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1.1 En français

Intention
Ce manuscrit constitue une contributionà la mod́elisation et la simulation nuḿerique du transport et du
dép̂ot d’énergie dans les plasmas créés par laser, ayant pour objectif une compréhension d́etaillée des
proćed́es de compression d’un combustible,à des conditions de température et densité appropríeesà
l’ignition de réactions de fusion. Cette application, en particulier, sera traitée en priorit́ee, puisqu’elle
constitue la principale motivation de ce travail. Des ouvertures et analogiesà d’autres domaines, présentant
une physique proche, seront dévelopṕees ouévoqúees. Elles s’́etendent̀a l’électron-th́erapie [14], la
foudre, leśevénementśenerǵetiques dans la haute atmosphère [19], la lithographiéelectronique, la Fu-
sion par Confinement Magnétique (FCM) [15, 16], ou bien l’astrophysique, compte tenu du rôle im-
portant deśelectronsénerǵetiques dans les ceintures radiatives de Jupiter [2], par exemple. Le point
communà ce panel d’applications tientà la mod́elisation multi-́echelle de la cińetiqueélectronique et de
la physique des plasmas.

Contexte et concepts
Parmi les domaines de recherche promis, dans un futur proche,à des implications sociétales importantes,
l’interaction laser-plasma balaye un large eventail d’applications, de la production d’energie, au traite-
ment ḿedical des cancers (électron-th́erapie, proton-th́erapie, hadron-th́erapie),̀a l’astrophysique de lab-
oratoire, voirèa la radiographie des objets denses et opaques. La fusion thermonucléaire contr̂olée d́edíee
à la cŕeation d’une source abondante d’énergie, est ainsi une voie envisagée. Elle fait l’objet actuellement
(2009) d’investissements massifs. Ce procéd́e viseà la combustion d’un ḿelange gazeux ou solide de
noyaux ĺegersà haute temṕerature, jusqu’̀a atteindre la centaine de millions de degrés Celsius. A cette
temṕerature le combustible complètement ioniśe est sous forme plasma: un ensemble de particules libres
charǵees, interagissant collectivement sous l’action de forcesélectromagńetiques [11, 21, 22, 29].

La production d’une large quantité d’énergie par la fusion de noyaux nécessite de vaincre les forces
de ŕepulsion Coulombienne. L’utilisation de noyaux de Deutérium et de Tritium (D-T) est actuellement
la voie nominale pour atteindre des réactions de fusion avec un minimum d’énergie fournie au système.
La section efficace pour la ŕeaction de fusion D-T prédomine en effet sur les sections efficaces des autres
principales ŕeactions de fusion (D-3He, D-Dp, D-Dn,etc). La réaction D-T, qui produit des neutrons de
14 MeV, est la suivante

D + T → 4He + n(14.1 MeV) (Q = 17.6 MeV) .

La section efficace de cette réaction de fusion est de l’ordre d’un barn (1 barn= 10−28m2), qui est̀a mettre
en perspective des 600 barns de la réaction de fission de l’élément235U. L’ignition de réactions de fusion
est par conśequent beaucoup plus difficile à contr̂oler, puisqu’elles incorporent une physique bien plus
riche et complexe. Par exemple, les sections efficaces de processus concurrents comme l’ionisation et la
diffusion Coulombienne de particules chargées sont plus importantes. Dans ce contexte, des conditions
drastiques doivent̂etre remplies pour atteindre les densités et temps de confinement requis pour obtenir
un gain total d’́energie. Ainsi, le crit̀ere de Lawson impose une limite basse sur le produit de la densité
ioniqueni avec le temps de confinementτe de ce plasma

niτe > g(T) f (Q) ,
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où g(T) repŕesente la variation du taux de réaction avec la température,f étant une fonction deQ, lui-
même le rapport entre la puissance issue des réactions de fusion et la puissance externe, celle fournie au
plasma. Pour un plasma D-T de 10 keV, ce critère peut̂etre ŕeécrit

niτe > 1020m−3s.

Le point de fonctionnementf (Q) = 1, dit debreak-even, est d́esormais presque accessible avec les
plus ŕecentes installations expérimentales. Les régimes satisfaisants le critère f (Q) > 1 correspon-
dentà des plasmas où les ŕeactions de fusion sont auto-entretenues: il y a alors plus d’énergie ǵeńeŕee
qu’investie dans le système. Deux voies sont alors explorées, reposant soit sur des plasmasà haute
temṕerature confińes avec des champs magnétiques de manière quasi-stationnaire: laFusion par Con-
finement Magnétique(FCM), Fig. 1.2(c), soit sur des plasmasà haute pression et température confińes
pendant unéechelle de temps courte, de l’ordre de plusieurs nanosecondes seulement. Cette deuxìeme
voie est laFusion par Confinement Inertielle(FCI), Fig. 1.2(a) and 1.2(b).

Le principe de la FCM consistèa confiner un plasma dans un volume macroscopique par des struc-
tures de champs magnétique appropríees. La repŕesentation physique sous-jacente choisie décrit le mou-
vement contraint des particules du plasma, ayant des trajectoires hélicöıdales dans un champ magnétique
uniforme, et d́erivant avec une vitesse moyenne dans la direction opposée au gradient, dans le cas d’un
champ inhomog̀ene. Un confinement transverse du plasma est alors rendu possible, par la cŕeation d’une
structure avec un champ magnétique minimum sur l’axe. Les tokamaks assurent un confinement longitu-
dinal en proposant une géoḿetrie toroidale pour le réacteur de fusion. D’autres réacteurs similaires sont
conçus sur le principes de la FCM: les stellerateurs, spheromak,etc. Dans un contexte FCM, le com-
bustible D-T peut̂etre chauffé en injectant des particules de hauteénergie, ou bien par le biais d’ondes
électromagńetiques de forte puissance.

Les conditions d’oṕerationelles de la FCI sont atteintes par deux approches possibles,à savoir
l’attaque directe et indirecte. Dans le schéma d’attaque directe, une cible est illuminée par un grand
nombre de faisceaux laser qui ont pour objet son accélération, suivie de son implosion. Ce processus
requiert une tr̀es faible toĺerance vis-̀a-vis d’une syḿetrie d’irradiation id́eale. Dans le cadre du schéma
d’attaque indirecte, la cible est irradiée par des rayons X, issus de la conversion de l’énergie laser sur
une cavit́e pŕesentant un nuḿero atomique Źelev́e [23], appeĺee leholhraum. Malgré la faible efficacit́e
de conversion, la syḿetrie de l’irradiation se ŕevèleêtre meilleure, et peut̂etre optimiśee en jouant sur la
forme duholhraum.

Une cat́egorie de ŕeacteurs FCI, actuellementétudíee pour l’obtention et le contrôle de ŕeaction de
fusionà haut gain, et reposant sur le principe de schéma d’attaque indirecte, est dénoḿeeZ-pinch. Ces
machines ǵeǹerent des d́echargeśelectriques de haute intensité, qui permettent la création de plasmas
chauds et denses.

Ces ŕeacteurs ǵeǹerent des d́echargeśelectriques de haute intensité, ce qui permet d’obtenir des plas-
mas chauds et denses, issus de la stiction magnétique induite par d’importants courants,via la force de
Lorentz. De tels plasmas sont eux-même la source de rayons X intenses. Les Etats-Unis se sont fortement
engaǵes dans cette voie, et notamment grâceà leur installation SANDIA, montŕee Fig. 1.2(b). Celle-ci
peut d́elivrer des courants supérieursà 1 MA, en 100-200 nanosecondes, grâceà une technologie de
puissance pulśee qui permet de comprimer efficacement l’́energieélectrique en espace et en temps [25].
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En 1996, une percèe dans la puissance délivréeà partir de ŕeseaux de fils en aluminium de typeZ-pinch
(40 TW de puissance de rayon X̀a partir d’un ǵeńerateur de 20 TW) [28], a suscité un regain d’int́er̂et
dans la recherche pour lesZ-pinch: en plaçant le ŕeseau de fil dans une cavité, une source importante de
radiationà la temṕerature planckienne est créée. Celle-ci peut̂etre utiliśee pour des applications de haute
densit́e d’énergie (HEDP), dont les applications FCI [24].

Dans le cadre de la FCI en attaque directe, une réflexion euroṕeenne a conduit̀a proposer une in-
stallation reposant sur les techologies de pointe pour les lasers de puissance: HiPER (acronyme deHigh
Power Laser Energy Research), qui a pour objectif premier la démonstration de fusion par confinement
inertiel à haut taux de réṕetition, et de sa viabilit́e économique. L’allumage rapide est, pour l’instant,
le sch́ema nominal retenu. Dans ce schéma, lesétapes de compression et d’allumage proprement dit
sont d́ecorŕelées. Le combustible est tout d’abord compressé à des densitésélev́es par undriver appro-
prié. Le combustible pré-compresśe est alluḿe par un seconddriver ultra-intense. Les spécifications
actuelles de HiPER prévoient une configuration de type faisceaux multiples d’énergie 250 kJ,̀a 3ω, de
longueur d’ondeλ = 0.35 µm, suppĺement́ee par des faisceaux nanosecondes,à 2ω, pour l’allumage.
Indépendamment, le laser PETAL, actuellement en construction dans la région Aquitaine, est un laser
de type PetaWatt, qui doit délivrer unénergie de 3.5 kJ pendant 0.5-10 picosecondes. PETAL est inscrit
comme jallon sur la voie de la réalisation du projet HiPER.

Une approche alternative concerne les schémas hybrides de fission-fusion [17]. Leur principe re-
pose sur l’observation suivante: la consommation d’uranium fissile naturel est telle que ces ressources
sont suppośees manquer d’icìa 40-50 anńees. La ŕepartition d’isotope, sur terre, montre une forte com-
posante, 99,27 %, pour l’isotope238U, qui est donc d́efini comme un isotopefertile, vis-à-vis d’une
faible composante, 0,72 %, pour l’isotope235U, qui est d́enoḿe fissile, puisque des neutrons d’énergie
nulle peuvent d́eclencher la fission de cetélement. Le sh́ema hybride fission-fusion offre la possibilit́e
d’une conversion efficace des isotopes fertiles en combustible fissile, grâceà une source de neutrons
de fusionà haut flux. Ces neutrons peuventêtre utiliśes pour plusieurs applications: l’alimentation en
neutron pour le combustible fissile, l’introduction de réactions de fission pour produire une puissance ad-
ditionelle, ou la transmutation de déchets radioactifs̀a longue vie, comme leśeléments de type actinides,
via l’absorption de neutrons.

Un hybride fission-fusion est un réacteur de type fusion, qui présente des isotopes fertiles dans sa cou-
verture. En l’́etat actuel de l’art, un tel schéma requiert seulementf (Q) ∼ 2 pourêtreéconomiquement
viable,à comparer au seuil de viabilité f (Q) > 10 pour un ŕeacteur de fusion. Bien que cette voie hybride
ne constitue pas une approche de fusion pure et propre, elle peut néanmoins se révéler int́eressante au
regard du compromis qu’elle propose, notamment quantà la relative faible puissance laser investie.

Affirmation des directions de recherches
Une probĺematique th́eorique majeure en physique de la FCI réside dans le transport cinétique multi-
esp̀ece, collectif et collisionel; son couplage avec d’autres processus, comme l’absoption laser -collective
et collisionelle-, le transfert radiatif [18], la production de neutrons parles ŕeactions de fusion [13], et
la combustion dans le point chaud. La compréhension et la mod́elisation de ces processus sont cruciales
pour proposer et construire des senarii susceptibles de produire des gains en energiéelev́es, ainsi que
pour assister, piloter, et optimiser les futures unités de production FCÌa l’aide de simulations intégŕees.
Un tel programme se situe au-delà des objectifs propres̀a ce document.
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(a) (b)

(c) (d)

Figure 1.1: Illustration d’entit́es dont le fonctionnement repose sur un principe de fusion par confinement
soit inertiel -LMJ Figure (a), Z-pinch Figure (b)-, ou magnétique -ITER Figure (c)-, ou gravitationel -le
Soleil Figure (d)-.

L’approche d́eclinée ici a plut̂ot pour objet la mod́elisation, l’́etude nuḿerique, et la simulation du trans-
port cińetiqueélectronique collisionnel, dans un schéma FCI, entre la zone d’absorption du laser et la
zone du front d’ablation [8]. La physique induite par ces processus met en jeu différents aspects, eux-
mêmes consid́eŕes comme des points clésà mâıtriser pour le transport cińetique en physique de la FCI:
un mod̀ele nuḿerique doit pouvoir permettre aussi bien la description de l’interaction laser-plasma dans
les ŕegions sous-denses, lorsque les effets collectifs sont dominants, que la description du transport de
particules rapides et leur dép̂ot d’énergie dans la cible extrêmement dense (solide), losque les collisions
Coulombiennes̀a longue distance contribuent largementà la dynamique de transfert dénergie. Nous
sommes alors confrontésà un probl̀eme pŕesentant des variations importantes vis-à-vis de seśechelles
caract́eristiques d’espace et de temps. Pour l’allumage par choc [1], les variations importantes de masse
surfacique impliquent une variation du libre parcours moyen de collision entre particules, de l’ordre
de quatrèa cinq ordres de grandeurs. Des barrières au transport, dues aux champs magnétiques forts,
de l’ordre du MegaGauss, peuvent entrer en compétition avec les effets collisionels, et ainsi inhiber
le transportélectronique en infĺechissant les trajectoires desélectrons, ce qui pourrait conduireà une
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modification significative de la sphéricité du front d’ablation de la cible. Une difficulté suppĺementaire,
li éeà l’interaction laser-plasma, réside dans le fort couplage entre les grandeurs caractéristiques dans le
plasma. Les différenteśechelles se recouvrent, ce qui rend tout traitement sépaŕe d’une seuléechelle
caract́eristique illusoire sans perte de précision.
Pour prendre en compte l’ensemble de ces aspects complexes, nous développons depuis 2006 un code de
référence, d́eterministe, de type Maxwell-Fokker-Planck-Landau,évoluant dans une géoḿetrie plane de
l’espace des phases de dimension 2Dx ×3Dv. Notre point de d́epart áet́e un solveur d́eterministe de type
Poisson-Fokker-Planck-Landau,évoluant dans un espace des phases de dimension 1Dx×3Dv, et issu des
travaux deN. Crouseilles et F. Filbet[7]. Ils ont, les premiers, intégŕe d’importants d́eveloppements, issus
de la communauté française de mathématiques appliquées, concernant la discrétisation des oṕerateurs
de collision -nous mentionnons pour ce propos les travaux de P. Degond [9], B. Lucquin-Desreux [10],
C. Buet [4], F. Filbet [6], et M. Lemou [5]-, et les ont implément́es dans un cadre non homogène, en
couplant la discŕetisation des collisions̀a un sch́ema nuḿerique d’ordréelev́e pour l’́equation de trans-
port de Vlasov, ouvrant ainsi la voie,à partir de cette approche multi-échelle,à des couplages avec une
physique plus variée.

Notre approche,̀a partir de cette base forte, a consisté à inclure les effets des champs magnétiques,
à explorer le ŕegime relativiste, et proposer des modèles ŕeduits qui sont capables de retranscrire notre
compŕehension du transportélectronique pour la FCI. A ce moment-là, ces aspectśetaient toujours l’objet
de d́ebats, et la manière d’inclure ces effets avec pŕecision dans de tels systèmes raides, multi-échelles,
avec un potentiel de Coulomb de longue portée. Ce dernier effet rend la mod́elisation des collisions non
rasantes, entre particules de même esp̀eces, tr̀es ardue.
Nous affirmons avoir atteint les objectifs fixés au pŕealable, et pŕesentons dans ce manuscrit, pourétayer
cette affirmation, des simulations nuḿeriques pŕecises et robustes, résultant d’analyses nuḿeriques ap-
pronfondie, de mod́elisation pour la physique des plasmas, et de calculs scientifiques massivement par-
allèlles: la version parallèle de ce code s’est révéléeêtrescalablesur des milliers de processeurs dédíes
(plateforme de Calcul Haute Performance CCRT-CEA platine). Nous noussommes efforcés de nous
tourner, d̀es que faire se peut, vers des applications physiques pertinentes pour laFCI. Cette approche
a ét́e principalement contrainte -en particulier pour les futures comparaisons avec les exṕeriences- par
le fait que les ions ont́et́e consid́eŕes comme immobiles dans noséquations. S’affranchir de cette hy-
poth̀ese, en incluant le mouvement des ions, pourrait constituer la base d’un travail à venir.

Structure du manuscrit
Ce travail se situèa l’interface de l’analyse nuḿerique, la physique des plasmas, et les mathématiques
appliqúees. Ainsi, un cloisenement entre toutes ces activités serait articificiel. Cependant, nous de-
vrons identifier et analyser chacun des processus pertinents pour le transport nonlocal pour la FCI. Par
conśequent, pour chacun des processus identifiés, nous pŕesenterons la d́erivation de mod̀eles physiques,
et d́evelopperons une analyse numérique. Ces pŕesentations préluderons aux tests numériques et/ou à
des simulations ŕealistes, repŕesentatives de la physique. Nous complèterons notre présentation, lorsque
c’est possible, avec des analogiesà d’autres domaines de la physique.
Finalement, nous partageons avec le lecteur notre expérience, et proposerons des perspectives de recherche
attractives.

Chapitre 2: Nous proposons ici une brève mise en perspective des processus en jeu en théorie
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des plasmas, et une revue des modèles de base et des méthodes pour les implémenter, les coupler, et
les valider. Dans ce chapitre,se référant à l’école Russe de physique des plasmas, nous adoptons une
approche critique, en discutant la littérature et introduisant notre travail.

Chapitre 3: Nous nous concentrerons, dans cette partie, sur les aspects collectifs reliésà l’équation
de transport́electronique libre, ditefree-streaming, pour la limite non relativiste, ainsi que pour le régime
relativiste. Les points clés ŕesident ici dans les développements et analyses numériques des schémas
pour le syst̀eme de Vlasov-Maxwell, et dans la dérivation de sch́emas nuḿeriques appropriés, robustes,
d’ordre suṕerieur à deux. Ainsi, dans le rérime relativiste, nous présentons une technique numérique
efficace, non standard, dans laquelle nous proposons d’abandonner ladiscŕetisation d’un ŕesidu relativiste

R ≡
[(

∂v1

∂p2
− ∂v2

∂p1

)

f

]

(t, x, v) = 0 ,

en maintenant une discretisation correcte des invariants collisionels. Nous proposons aussi un choix
ad́equat pour la discrétisation de la vitesse, qui provient de la définitionv ≡ mec2∇pγ(p) , pour respecter
la conservation de l’énergie discrete pour le système d’́equations de Vlasov-Maxwell. Ce choix est
directement issu de la discrétisation correcte de

0 = ∇p ×
(

∇pγ(p)
)

.

Chapitre 4: Dans ce chapitre, nous nous intéressons̀a des aspects plus spécifiques du transport
collectif: le transport multi-esp̀eces, soumis̀a des discontinuités dans l’espace des phases. Nous nous
référons ici au transport cinétique de différentes particules, ayant des charges positives et négatives, et un
rapport de masse arbitraire. Cette physique peut s’appliquer, en particulier, aux plasmas electron-ion ou
electron-positron. Nous réalisons une analyse de convergence d’un schémaVolumes Finisd’ordreélev́e,
de second ordre, pour le système de Vlasov-Poisson, et démontrons l’efficacit́e de la ḿethode pour le
traitement des discontinuités, pour un test pertinent, mettant en jeu deux populations avec un rapportde
mass interḿediaire

1 ≤ m1

m2
≤ 1836.

Chapitre 5: Cette partie est d́edíee à la mod́elisation multi-́echelle de la physique du transport
électronique, avec des termes source de collision, dans un espace des phases 2Dx × 3Dv à ǵeoḿetrie
plane. Nous validons cette approche, et démontrons la pŕecision d’un solveur Monte Carlo multi-
grille pour l’opérateur de collision electron-electron Fokker-Planck-Landau, dans une gamme de régimes
étendue, pertinente pour la physique de la FCI. Cette gamme s’étend des ŕegimes collisionels̀a raŕefiés,
des ŕegimes non magńetiśes aux magńetiśes. La ḿethode multigrille est reconnue commeétant bien
adapt́ee pour l’acćelération baśe sur les protocoles de type FPGA, et pourrait se révéler interessante pour
des d’architectures parallèles et reconfigurables (ditesReconfigurable Computing Systems in HPC plat-
forms). Nous pŕesentons une ḿethode nuḿerique de discŕetisation, l’algorithme d’acćelération multi-
grille, ainsi qu’une śelection de tests nuḿeriques simples mais représentatifs, qui peuvent servir comme
tests de ŕeférence pour le transport collisionel avec les modèles ŕeduits pŕesent́es dans le chapitre 2.
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Chapitre 6: Cette partie est d́edíeeà des simulations réalistes pour le transport cinétiqueélectronique
dans le cadre du schéma d’allumage par choc. Ce schéma est un des candidats officiels, inscrit dans les
sṕecifications du projet européen HiPER, comme schéma nominal d’allumage pour cette future instal-
lation à taux de ŕeṕetition élev́e. Une campagne d’étude exṕerimentale pour l’allumage par choc est
actuellement (2009) en coursà l’universit́e de Rochester sur le laser OMEGA. Cette campagne a d’ores
et d́ejà d́emontŕe un accroissement significatif du bilan de production de neutrons,à intensit́e laser fix́ee,
compaŕe aux sch́emas classiques d’allumage pour la FCI. Ce schéma est toujours,̀a ce jour, l’objet de
débats. L’́etude et le contr̂ole des aspects cinétiques relíes au transport́electronique est un des verrous
majeurs, identifíe, à traiter pour l’obtention d’un schéma de ŕeférence. Le projet de simulation Transport
Cinetique Electronique pour l’Allumage par Choc (ayant pour acronyme KiTSI en langue anglaise),à ét́e
l’objet d’un besoin sṕecifique de resources de calcul. En effet, plus de 8 millions d’heures processeurs
ont ét́e obtenuesvia l’organisme GENCI, qui g̀ere ces ressources en France depuis 2008. Ce projet est le
résultat d’une collaboration avec X. Ribeyre, M. Lafon, G. Schurtz, E.D’Humières, S. Weber du CELIA,
leséquipes de R. J. Kingham̀a l’Imperial College, et A. R. Bell au Rutherford Appleton Laboratory età
l’université d’Oxford.

Chapitre 7: Cette partie est d́edíee au d́eveloppement et̀a la validation d’un mod̀ele de transport
électronique ŕeduit en angle, de typeM1, ainsi qu’au d́eveloppement d’une ḿethode nuḿerique HLLC
pertinente, associéeà ce mod̀ele. La fermetureM1 par minimisation entropique pour lesélectrons [3]
peut être d́erivée de la manière suivante. Pour fermer le système, nous d́eterminons une fonction de
distribution fME qui minimise l’entropie deśelectrons,

H( f ) = −
∫

S2
f log f dΩ, (1.1)

sous la contrainte de reproduire les moments d’ordre les plus bas,
∫

S2
fMEdΩ = f0 ≡

∫

S2
f dΩ and

∫

S2
Ω fMEdΩ = f1 ≡

∫

S2
Ω f dΩ . (1.2)

Cette fermeture est bien adaptée au transport́electronique car elle permet des calculs analytiques pour les
noyaux de collision, en régime relativiste et non relativiste. A la fois le modèle et la ḿethode nuḿerique
poss̀edent une limitation de flux appropriée‖f1‖ ≤ f0, la positivit́e fME ≥ 0, et les propríet́es de con-
servation ad́equates. De plus, nous sommes capables de traiter exactement aussi bien les distributions
monóenerǵetiques, que les fonctions de distribution isotropes. Ces aspects rendentla version multi-
groupe de ce mod̀ele bien adaptée pour l’interaction laser-plasma relativiste, dans les régimes colli-
sionels et collectifs. Le modèle et les sch́emas nuḿeriques sont testés dans les deux régimes d’int́er̂et.
Une analogie est conduite entre la FCI et le transportélectronique pour la radiothérapie. En particulier,
nous insistons sur l’importance de la production d’électrons secondaires pour les applications liéesà la
radioth́erapie. Ce processus estétudíe en d́etail dans le chapitre 8 dans un cadre FCI.

Chapitre 8: dans cette partie, nous nous intéressons̀a l’importance relative des processus impliquant
les collisions electron-electroǹa hautéenergie. Nous mettons enévidence l’importance du ḿecanisme de
production d’́electrons secondairesà desénergies relativistes. Pour ce faire, nous proposons un modèle
multi-échelle, rapide et robuste, qui comporte des termes de Boltzmann relativistes. Ce mod̀ele est
destińe à être plus pŕecis et rapide que les modèles existant, et ce de plusieurs ordres de grandeur.Ce
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modèle peut être considéré comme une simplification de l’équation de Boltzmann, relativiste ou non, de
la forme

d
dt

f (p) =
∫

R3
d3q

∫

S2
dΩ̃′

[

f (p′) f (q′) − f (p) f (q)
]

ũ
W̃2

WpWq
Q(p̃, µ̃) .

En particulier, il généralise et reprend les travaux de L. D. Landau (années 1940), S. T. Beliaev (1956),
et A. V. Gurevich (1998), sur les collisions electron-electron, avec unpotentiel de Coulomb à longue
distance.

Vi =
∑

j,i

q j
∣

∣

∣r i j

∣

∣

∣

.

Une étape importante, dans la dérivation de ce mod̀ele, aét́e la d́ecomposition de la d́ependance du
potentiel en 1/r à l’aide d’un potentiel de lissageS

1
r
=

(

1
r
− S(r)

)

+ S(r)

Le principal ŕesultat de ce mod̀ele ŕeside dans sa robustesse, grâceà un choix approprié pour la fonction
S. Enfin, une attention particulière est port́eeà la future impĺementation nuḿerique de ce mod̀ele. Les
applications potentielles concernent le projet européen HiPER pour l’allumage rapide, les domaines de
la lithographieélectronique, la radiographie des objets opaques et denses, lesévénementśenerǵetiques
dans la haute atmosphère, les plasmas de décharge, ou la créaction de plasmas electron-positron.

Chapitre 9: Conclusions et perspectivesà long terme.

1.2 En anglais

Intention
This manuscript provides with a contribution to the kinetic modelling and numericalsimulations of the
electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel
assembly to temperature and density conditions necessary to ignite fusion reactions. This particular ap-
plication will be treated in detail, as it is the principal motivation of this work. Some applications to
other fields, relying on similar physics, shall be also presented or mentioned. They concern electron
radiotherapy [14], lightening discharges, high energy phenomena in theupper atmosphere [19], electron
lithography, Magnetic Confinement Fusion (MCF) [15, 16], or astrophysics [2]. We should mention for
this latter application, as an example, the observed role of energetic electrons in Jupiter radiation belts
[2]. The common point of these fields is that they involve multi-scale modelling of electron kinetics and
plasma physics.

Context and concepts
One of the fundamental research area that promises significant societalapplications, in a very near fu-
ture, is the laser-matter interaction. A broad spectrum targeted applications ranks from energy pro-
duction, medical treatment of cancers (electron radiotherapy, protontherapy, hadrontherapy), laboratory
astrophysics, to the radiography of dense and opaque objects. Among them, the thermonuclear fusion is
at present (2009) the object of large-scale investments, dedicated to thecreation of an abundant energy
source. To this aim, the combustion of a gaseous or solid mixture of light nucleiat high temperature, at
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around a hundred millions of Celcius degrees, proves to be an efficient mechanism. At these tempera-
tures the fuel is fully ionized becoming aplasma, an assembly of high-temperature particles interacting
collectively by electromagnetic forces [11, 21, 22, 29]. To produce thefusion of two nuclei, and thereby
the production of a large amount of energy, one has to overcome the Coulomb repulsive forces between
them. The use of deuterium and tritium (D-T) nuclei is currently the nominal way chosen to achieve
fusion with a minimum of energy provided to the system. The cross section of D-T reaction fusion is
indeed well above those of the other principal fusion reactions (D-3He, D-Dp, D-Dn, etc). The D-T
reaction, producing the 14 MeV neutrons, is the following

D + T → 4He + n(14.1 MeV) (Q = 17.6 MeV) .

The cross section of this fusion reaction is of the order of a barn (1 barn= 10−28m2), to be compared with
the 600 barns of the fission reaction of the235U. It is, therefore, much more difficult to control, because
it involves a more rich and complex physics. For instance, the cross sectionof concurrent processes such
as ionization and Coulomb scattering of charged particles are much higher. In this context, stringent
conditions must be fulfilled to achieve the required density and confinement time of a plasma and to
obtain a profitable total energy budget. This is the Lawson criteria, which imposes a lower limit on the
product between the ion densityni and the confinement timeτe of this plasma

niτe > g(T) f (Q) ,

whereg(T) accounts for the variation of the reaction rate with the temperature, andf a function ofQ, the
ratio between the power issued from the fusion reaction and the external power provided to the plasma.
For a D-T plasma of 10 keV, this criteria can be rewritten as

niτe > 1020m−3s.

f (Q) = 1 denotes the break-even, this operating point is almost satisfied in some of the most recent
experimental installation.f (Q) > 1 denotes regimes where the plasma is ignited and the fusion reaction
is self-sustained: there is then more energy generated than energy put inthe system. Two ways are then
explored, implying either high temperature plasmas confined with magnetic fields for a quasi-steady op-
eration, theMagnetic Confinement Fusion(MCF), Fig. 1.2(c), or high pressure and temperature plasmas
confined for short time scale of the order of several nanoseconds only, this latter is theInertial Confine-
ment Fusion(ICF), Fig. 1.2(a) and 1.2(b).

The MCF consists in confining plasma in a certain volume by appropriate magneticfield structures.
The underlying idea is that plasma particles have a helical trajectory in a uniform magnetic field, and
they are drifting in the direction opposite to the gradient in an inhomogeneous field. Then, a transerval
confinement of the plasma is achieved by creating a structure with the minimum of magnetic field on
the axis. In devices such as Tokamaks, the longitudinal confinement is achieved by choosing a toroidal
geometry for the magnetic fusion reactor. Many other MCF devices are designed: stellarator, reversed
field pinch, spheromak,etc. In the context of MCF, D-T fuel can be heated by injecting high energy
particles or by means of high power electromagnetic waves.

The ICF conditions may be fulfilled by two possible approaches, namely the direct and the indirect
drive. In the direct drive, a pellet is illuminated by a large number of laser beams that accelerate it until
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implosion. This requires a very low tolerance to any departure from perfect irradiation symmetry. In
the indirect drive, the pellet is irradiated by X-rays, produced by the conversion of laser energy on a
high-Z-lined cavity [23], the hohlraum. Despite a lower energy conversion efficiency, the symmetry of
the irradiation proves to be better, and can be optimized playing on the shape of the hohlraum.

One category of devices, that is currently considered to reach and control high gain fusion, and re-
lies on indirect drive ICF, falls into the “Z-pinch” denomination. These machines generate electrical
discharges of high intensities, that make it possible to obtain a warm and dense plasma, issued from the
magnetic striction induced by the high currents,via the Lorentz force. Such plasma is itself a source of
intense X-rays. The U.S. program is well-engaged in this direction, with the SANDIA facility, shown
in Fig. 1.2(b), that can deliver large currents, above 1 MA, in 100-200nanoseconds, thanks to a pulsed-
power technology that could efficiently compress electrical energy in space and time [25]. In 1996, a
breakthrough in X-ray power output from aluminium wire array Z-pinches (40 TW X-ray power from a
20 TW electrical generator) [28] triggered a boom in Z-pinch research: placing the wire array inside a
hohlraum creates a high temperature Planckian radiation source that can be used for high energy density
physics (HEDP) applications, including ICF research [24].

In the frame of direct drive ICF, a European reflexion has proposedthe High Power Laser Energy
Research (HiPER) facility, with the primary goal of demonstrating laser driven inertial fusion at high
repetition rate, and its economic interest. Fast Ignition is the baseline approach, in which the stages of
fuel compression and ignition are separated. The fuel is first compressed to high density by a suitable
driver; the precompressed fuel is ignited by a second ultra-intense driver. HiPER is expected to provide
250 kJ in multiple, 3ω (wavelengthλ = 0.35µm), nanosecond beams for compression and 70 kJ in tens
of picoseconds, 2ω beams for ignition. Independently the PETAL laser is a 3.5 kJ, 0.5-10 ps, PetaWatt-
class laser, which is under construction in the Aquitaine region, France. It is a fore-runner to the HiPER
facility.

An alternative approach involves hybrid fission-fusion schemes [17],it is based on the following
observation: the natural fissile uranium is expected to lack to be consumed inabout 40-50 years. The
isotope repartition, on Earth, is 99.27 % for238U, which stands as afertile isotope, and only 0.72 %
for 235U, which is calledfissile, since zero-energy neutrons can produce the fission of235U. Hybrid
fission-fusion scheme offers the possibility of efficient conversion of fertile isotopes into fissile fuel, with
a high flux source of fusion neutrons. These neutrons may be used forseveral applications: breeding of
fissile fuel, induction of fission reactions to produce additional power, orthe transmutation of radioactive
wastes, such as actinides elements,via neutron absorbtion.
A fusion-fission hybrid is a fusion reactor with fertile isotopes in the blanket.As a fusion reactor needs
f (Q) > 10 to be economical, the fusion-fission hybrid may be economical with onlyf (Q) ∼ 2. Although
this way is not a pure and clean fusion approach, it may still be interesting withrespect to the relatively
low laser power invested.

Research direction statement
A major theoritical issue in ICF physics is the mixed collective and collisional multi-species kinetic
transport, and its coupling with other processes, such as laser absorption processes, radiative transfer
[18], neutron production by fusion reactions [13], and combustion in thehot spot. The understanding
and modelling of these processes are indeed crucial to propose and buildreliable senarii likely to pro-
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(a) (b)

(c) (d)

Figure 1.2: Various fusion devices relying on either an inertial -LMJ in Figure (a), Z-pinch in Figure
(b)-, magnetic -ITER in Figure (c)-, or gravitational -the Sun in Figure (d)- confinement.

duce high energy gains, to assist, pilot, and optimize the future ICF fusion-based power plant units with
integrated simulations. Such a comprehensive task is beyond the scope of this document.
The present approach rather focusses on the modelling, numerical study, and simulation of the kinetic
electron collisional transport in ICF, between the laser absoption zone and the ablation front [8]. This
physics gathers an important variety of features considered as a bottleneck for kinetic transport in ICF
physics: a numerical model needs to describe the laser-plasma interaction inthe low density region,
where the collective effects are dominant, as well as the fast particle transport and energy deposition in
the extremely dense (solid) target, where long-range Coulomb collisions contribute greatly to the energy
transfer dynamics. We are faced with a problem with a large variation in characteristic length and time
scales. In the shock ignition [1], the high areal density variations involvesa decrease of about 4-5 or-
ders of magnitude in mean-free-path. Transport barriers due to large magnetic fields, up to MegaGauss
order, may compete with collisional effects and inhibit the electron transport while bending the electron
trajectories, which may lead to a serious modification of the sphericity of the ablation front of the target.
Moreover, a particular feature of this laser-matter interaction is the large interplay between the scales
in a plasma. The different scales recover each other, which makes it impossible to isolate the different
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mechanisms without a latent loss of accuracy.
To encompass all these complex features, we develop since 2006 a reference deterministic Maxwell-
Fokker-Planck-Landau code, in a planar 2Dx × 3Dv phase space geometry. Our starting point was a
1Dx × 3Dv Poisson-Fokker-Planck-Landau deterministic solver fromN. Crouseilles and F. Filbet[7].
Their work first gathered important developments, issued from theFrench school of applied mathemat-
ics, concerning the numerical discretization of collision operators -we shouldmention here the works
from P. Degond [9], B. Lucquin-Desreux [10], C. Buet [4], F. Filbet [6], and M. Lemou [5]-, and cast
them in a nonhomogeneous framework, while coupling the discretization of collisions to a high order nu-
merical scheme for the Vlasov transport equation, and opening the path, from this multi-scale approach,
to the coupling with additional physics.

Our task, from this strong basis, was to include the effects of magnetic fields, explore the relativistic
regime, and propose reduced models that could reproduce our understanding of the electron transport for
ICF. At that time, these issues were still under debate, and the answers were not yet known how to in-
clude or model these effects accurately with such stiffmulti-scale systems, with the long-range Coulomb
potential. This latter makes it very difficult to model nongrazing collisions between like particles.
We claim that we have brought some important information, and reached ourobjectives. We present in
this manuscript, to support this claim, accurate and robust numerical simulations, resulting from numer-
ical analysis studies, plasma physics modelling, as well as massively parallelscientific computing: the
parallel version of the code has proved to be scalable over thousands of dedicated processors (CCRT-CEA
platine High Performance Computing platform). We have tried to turn, as far aspossible, to physical ap-
pications. This approach was mainly constrained -in particular for future comparisons with experiments-
by the fact the ions were considered as fixed in our equations. This couldbe the object of a forthcoming
work.

Structure of the manuscript
This work is at the interface between numerical analysis, plasma physics and applied mathematics. On
the one hand, a rough decoupling between all these aspects would then bemeaningless. On the other
hand, we shall identify and analyse each of the relevant physical processes for ICF nonlocal transport
physics. Therefore, for each of the identified process, we first present the derivation of physical models,
develop numerical schemes and perform a numerical analysis upon them. Such presentation preludes
to numerical tests and/or realistic simulations. We shall complete this presentation, when it is possible,
with analogies in other fields of physics.
Finally, we share with the reader our experience and propose research perspectives.

Chapter 2: We provide here with a brief review of the processes at play in the collisional kinetic
theory of plasmas, and focus on basic models and methods to implement, couple and validate them.
In this chapter,following the Russian school of plasma physics, we adopt a critical approach, while
discussing the literature and introducing our work.

Chapter 3: We shall focus here on the collective aspect related to the free-streamingelectron trans-
port equation, in the nonrelativistic limit, as well as in the relativistic regime. The key points stand in the
numerical development and analysis of the scheme for the Vlasov-Maxwellsystem, and in the selection
of a validation procedure and numerical tests. In particular, we show the importance of the derivation
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of robust numerical schemes, that present higher order than two. Also, in the relativistic regime, we
present a non-standard efficient numerical technique, in which we propose to drop the discretization ofa
relativistic residual

R ≡
[(

∂v1

∂p2
− ∂v2

∂p1

)

f

]

(t, x, v) = 0 ,

while maintaining the correct discrete invariants. We also propose a choice for the velocity discretization,
that comes from the definitionv ≡ mec2∇pγ(p) , in order to satisfy the discrete total energy conservation
for the Vlasov-Maxwell system of equations, which is the direct consequence of the correct discretization
of

0 = ∇p ×
(

∇pγ(p)
)

.

Chapter 4: In this chapter, we investigate more specific aspects of the collective transport: the
multi-species transport, submitted to phase-space discontinuities. We refer here to the kinetic transport
of different species of particles, having positive and negative charges, and an arbitrary mass ratio. Such
physics can be applied, in particular, to electron-ion or electron-positronplasmas. We perform a numer-
ical convergence analysis of a high order (second order) Finite Volumescheme for the Vlasov-Poisson
system, and show the efficiency of the method for discontinuity handling on a relevant test case, with
two populations and with an intermediate mass ratio

1 ≤ m1

m2
≤ 1836.

Chapter 5: It is devoted to the multi-scale physics of electron transport with collision source
terms, in the 2Dx × 3Dv phase space. We validate the accuracy of a fast Monte Carlo multigrid solver
for the Fokker-Planck-Landau electron-electron collision operator in awide range of regimes relevant
for ICF physics, ranking from collisional to rarefied, and from unmagnetized to magnetized regimes.
The multigrid method is known as being well-suited for FPGA-based acceleration, and could be used
efficiently on parallel, reconfigurable hardware architectures (RCS). We present the numerical method,
the multigrid acceleration algorithm, and a selection of simple though representative numerical tests,
that could serve as reference tests to check the collisional transport withthe reduced models presented in
Chapter 2.

Chapter 6: It is devoted to realistic simulations for the kinetic electron transport in the frameof
the shock ignition scheme. This scheme is an official candidate, in the HiPER European project specifi-
cations, for the nominal ignition scheme of this future high repetition rate installation. A shock ignition
campaign is currently (2009) tested experimentally on the OMEGA laser at the Rochester University,
and has proved to produce an enhanced neutron yield at a given inputenergy, compared to classical ICF
ignition schemes. This scheme is still, at the present date, under debate. Theinvestigation and control of
kinetic aspects related to the electron transport is one of the major identified bottleneck for a successful
scheme. The proposed Kinetic Electron Transport for Shock Ignition simulation project (with acronym
KiTSI) has been the object of a specific need for computational ressources. Indeed, more than 8 mil-
lion processor hours have been obtained from the GENCI organism, thatmanages the computational
ressources in France since 2008. This project is a joint collaboration withX. Ribeyre, M. Lafon, G.
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Schurtz, E. D’Humìeres, S. Weber from CELIA, the teams of R. J. Kingham at Imperial College, A. R.
Bell at the Rutherford Appleton Laboratory and the Oxford University.

Chapter 7: It is devoted to the development and validation of a reducedM1 electron transport
angular model, together with the development of a relevant HLLC numerical method. The Minimum
Entropy M1 closure for electrons [3] can be derived in the following way. To closethe system we
determine a distribution functionfME that minimizes the entropy of the electrons,

H( f ) = −
∫

S2
f log f dΩ, (1.3)

under the constraint that it reproduces the lower order moments,
∫

S2
fMEdΩ = f0 ≡

∫

S2
f dΩ and

∫

S2
Ω fMEdΩ = f1 ≡

∫

S2
Ω f dΩ . (1.4)

This closure is well-suited to electron transport because it allows analyticalcalculations of the collision
kernels, in the relativistic and non-relativistic regimes. Both the model and thenumerical method possess
the appropriate flux limitation‖f1‖ ≤ f0, positivenessfME ≥ 0, and adequate conservation properties.
Moreover we are able to treat exactly beams, as well as isotropic distributionfunctions. These features
make the multi-group version of this model be well suited for relativistic laser-plasma interactions, in
the collisional and collective regimes. The model and associated numerical schemes are tested in these
two regimes. A parallel is drawn between ICF and radiotherapy electron transport. In particular, we
insist on the importance of secondary electron production in radiotherapyapplications. This process is
investigated in detail in the Chapter 8.

Chapter 8: In this chapter, we investigate the relative importance of the processes involving electron-
electron collisions at high energy. We bring the evidence of importance of secondary electron production
at relativistic energy. To do so, we propose a fast and robust, multi-scale reduced model, with relativistic
Boltzmann terms, that is expected to be more accurate than the present models by several orders of mag-
nitude.This model constitutes a simplification, though very general, of the relativistic, or nonrelativistic,
Boltzmann equation

d
dt

f (p) =
∫

R3
d3q

∫

S2
dΩ̃′

[

f (p′) f (q′) − f (p) f (q)
]

ũ
W̃2

WpWq
Q(p̃, µ̃) .

In particular, it generalizes and encompasses the works from L. D. Landau (1940-ies), S. T. Beliaev
(1956), and A. V. Gurevich (1998), on electron-electron collisions, with the long-range Coulomb potential

Vi =
∑

j,i

q j
∣

∣

∣r i j

∣

∣

∣

.

One important step, in the derivation of the model, is to decompose the 1/r dependence of the potential
with a smoothing potentialS

1
r
=

(

1
r
− S(r)

)

+ S(r)
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The main result of this model lies in its robustness, with a suitable choice for theS function. Also,
a lot of attention is paid on the future numerical implementation of this model. Potential applications
reach the HiPER European project for Fast Ignition, the fields of electron lithography, radiography of
dense and opaque object, energetic events in the upper atmosphere, discharge plasmas, or creation of
electron-positron plasmas.

Chapter 9: Conclusion and long term perspectives.
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1.3 Appendix: Glossary

In this appendix, we gather several conventions that we use thouroughthis document.

Table 1.1: Glossary

Quantity denomination Units (S.I.)
me electron mass kg
kB Boltzmann constant J.K−1

Te (withoutkB) electron temperature K
kBTe electron temperature J
ǫ0 vacuum permittivity F.m−1
c speed of light m.s−1

e positive electron charge C
qe = −e signed electron charge C
ne electron density m−3

γp Lorentz factor for the particle of momentump A.U.
nc Critical density m−3

kλei Effective Knudsen number A. U.
RN Nernst number A. U.
θ Scattering angle in the center of mass (CM) frame A. U.
p̃ Momentum of a particle after collision in the CM frame A. U.
p̃′ Momentum of a particle before collision in the CM frameA. U.
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The object of the kinetic theory of gases or plasmas is the statistical description of the particles, by
means of their distribution functionf (t, x, v) in the phase space of the particules, that contains positions
x and velocitiesv, or momentap, the latter set is more adapted in the relativistic regime and for quantum
plasmas.

When faced to a more complex physics, one may want to extend this phase space and add extra
microscopic variables, accounting for non-translational degrees of freedom of the particules. These refer
to the number of components in a mixture, the internal energy, the spin,etc. This can be a case for the
plasma-assisted combustion, where chemical reactions occur, or for quantum plasmas where the spin
must be taken into account.

However, one may rather be interested, and this is generally the case in the context of energy transport
and deposition for ICF, in a reduction of such a space. The full numerical treatment of the particle
distribution function in this six-dimensional space is traditionally considered toocostly to be effective.
Several approaches, outlined in Section 2.2.6 and Chapter 7, have beendevelopped to retain only the most
important features of this distribution function. Despite of their computational efficiency, the accuracy
remain difficult to preserve in regimes of interest for fusion devices, with respect tothe numerical noise or
a low anisotropy degree that these methods may present. There is a need for a qualification procedure of
these simplified methods for particular applications. The present thesis is dedicated to the development
of a reference Fokker-Planck-Landau code, that can be considered noise-free and capable to treat high
anisotropy degree. We consider it as a step towards a versatile validation tool. On the one hand, an
accurate definition of the validity limits of reduced codes can be acheived. On the other hand, clear
indications could be provided if and where further modelling improvements areneeded.

The need for kinetic modeling for plasma physics becomes a clear issue whenconfronted with the va-
riety of experimental measurements that display compelling energy and pitch angle-related spatial and/or
temporal dispersion, and various types of highly non-Maxwellian features in the distribution functions.
Some important aspects of the collisional kinetic theory are first summarized in Section 2.1. Then we
give in Section 2.2 an overview of the processes relevant for ICF electron transport issues, that justify a
full kinetic description of plasmas far from the statistical equilibrium.

2.1 Collisional kinetic theory of plasmas

A detailed representation, including the movement and interactions of all particules that constitute plasma
is out of range of the state-of-the-art simulation capabilities and computational ressources. Moreover,
such a treatment carries a huge amount of information that is not necessary to understand and simulate the
overall dynamics of the plasma. A semi-microscopic, probabilistic evaluation ofthe system is sufficient:
this approach constitutes the collisional kinetic theory of plasmas.
From the Liouville master equation, a hierarchy of models is constructed. We recall, in the next section,
a derivation procedure of this so-called BBGKY (Born-Bogolioubov-Green-Kirkwood-Yvon) hierarchy.
Different limits are outlined in Sections 2.1.2 and 2.1.5, respectively the Vlasov andthe Boltzmann
equations .
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2.1.1 Kinetic equation for a single-particle distribution function

Let us consider, at timet, an ensemble of N particles of the same specie, having the positionsxi∈[1,N] and
momentapi∈[1,N] . A N-body joint-probability density is introduced [73]

fN (t , x1, ... , xN , p1, ... ,pN) ,

wherefNd3x1...d3xNd3p1...d3pN is the probability for the system to be, at timet, in the elementary 6N−D
volumed3x1...d3xNd3p1...d3pN., located in the neighbourhood of the pointx1, ... , xN , p1, ... ,pN. In
other words, this quantity represents the probability of the particule 1 to be inside the volumed3x1 around
x1, with a momemtum whose extremity is around the volumed3p1 in the momentum space, aroundp1,
where in the same time the particule 2 is inside the volumed3x2 aroundx2, with a momemtum whose
extremity is around the volumed3p2 aroundp2, and so forth until the particle N. The Liouville equation
expresses the conservation of this probability density while particles are moving in space and time

d fN
dt
=
∂ fN
∂t
+

i=N
∑

i=1

vi
∂ fN
∂xi
+

i=N
∑

i=1

X i
∂ fN
∂pi
= 0 , (2.1)

wherevi =
dxi

dt
andX i =

dpi

dt
; vi are the velocity of the particle i and the force applied to that particule,

respectively.

The N-body distribution functionfN describes the system with a maximum level of refinement.
Practically, the computation of such a model is too heavy, and one has to consider a more stringent
statistic resolution. To this aim, the reduceds-body joint-probability density is introduced for a sub-
system ofs< N particles

f̃s (t, x1, ..., xs , p1, ...,ps) ≡
∫

fN (t, xs+1, ..., xN,ps+1, ...,pN) d3xs+1...d
3xNd3ps+1...d

3pN .

This distribution function describes thes-particle state of a group ofN particles. As in the general case,f̃s
is not a symmetric function of its arguments, a symmetrics-body joint-probability density is constructed

fs (t , x1, ... , xs , p1, ... ,ps) ≡
1
s!

∑

P(1,...,s)

f̃s (t , x1, ... , xs , p1, ... ,ps) ,

where the sum is over the permutationsP of particules 1, ..., s. The normalization is
∫

fs (t , x1, ... , xs , p1, ... ,ps) d3x1...d
3xsd

3p1...d
3ps = 1.

It is more appropriate to introduce the s-tuple distribution functionFs ≡
N!

(N − s)!
fs, that represents the

probable number of s-tuples of identical particules such that one of the particle is in the phase volume
d3x1d3p1 about the point(x1,p1), the other one is in the phase volume d3x2d3p2 about the point(x2,p2),
and so forth, at a given time. The average kinetic and potential energies of particles,EK and EΦ are
defined with theF1 andF2 functions [73]

EK(t, x) =
∫

F1(t, x,p)mc2(γp − 1)d3p ,

EΦ(t, x) =
∫

F2(t, x, x′,p,p′)Φ12
(

x, x′
)

d3pd3p′d3x′ ,
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whereΦ12 (x, x′) is the two-particle interaction potential andγp =
√

1+ p2/(mc)2 is the relativistic
Lorentz factor.

The evolution equation for the distribution functionF1, calculated from the Liouville equation (2.1),
is theBY1 equation

∂F1

∂t
+ x1

∂F1

∂v1
+ X1

∂F1

∂p1
= −

∫

X12
∂F2

∂p1
d3x2d3p2 , (2.2)

whereX12 represents the force acting on the particule 1 due to the particule 2.
By successive couplings, the equationsBYi , i ∈ N∗, that relate the functionsFi andFi+1, can be con-
structed. The obtained system is refered as the BBGKY system. In [76], itis shown that the BBGKY
hierarchy of a plasma with electrostatic interactions inherits a Lie algebra stucture, with Poisson brack-
ets, from the Liouville equation.
From this sytem, different asymptotic regimes can be identified.

2.1.2 Vlasov kinetic equation

A renormalization of theFs functions can be performed on theBYs equations, that defines the distribution
function f (x,p) ≡ n0F1(x1,p1), dropping the subscript 1. With the assumption ofN ≫ s, the dimen-
sionless form of theBYs equation is derived, that make appear, right in these equations, the parameters
[73]

α0 ≡
Φ0

kBT
, N0 ≡ n0r3

0 , N0α0 =

(

n0r3
0

)2
Φ0

n0r3
0kBT

≃ 〈EΦ〉〈EK〉
,

whereΦ0 is a potential,kB -the Boltzmann constant,T -the temperature,n0 -a characteristic number
density, andr0 -a characteristic scale length.

In the limitN0α0 ≥ 1, the plasma can be seen as strongly coupled, whereas in the limitN0α0 ≪ 1,
it is weakly coupled. This partitionning is exploited to reduce theBBGKYsystem, with the help of a set
of correlation functions. The correlation function between two particles,C2, is defined according to the
relation

f2 = f1 f1 +C2 .

By analogy, we can defineC3 such as

f3 = f1 f1 f1 +
∑

P(1,2,3)

f1C2 +C3 ,

and so on for the family{Ci}i<N.
The Vlasov limit is obtained assumingΦ0/(kBT) ≪ 1, i.e. small correlations between particles, and

long-range interactions,n0r3
0 ≫ 1. In this limit, a small parameterǫ can be defined, with the following

renormalizationα → ǫα andN0 → ǫN0. The first condition allows to redefine the correlation functions
as

f2 = f1 f1 + ǫC2 ,

f3 = f1 f1 f1 + ǫ
∑

P(1,2,3)

f1C2 + ǫ
2C3 .
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If only the lowestO(ǫ) terms are kept in the BBGKY system, then the limit is the self-consistent Vlasov
equation

(

∂

∂t
+
∂

∂x
· v + ∂

∂p
· X

)

f (t, x,p) = 0 , (2.3)

which is here written under its conservative form. Its non-conservativeform is equivalent, as
∂

∂p
·X = 0.

The particle density is defined asn =
∫

R3
f (t, x,p)d3p, and the effective temperature as

3
2

nkBT =
∫

R3
f (t, x,p)

p2

2m
d3p.

The Vlasov equation (2.3) is not a generic hyperbolic scalar equation, because of its Hamiltonian
geometric structure. It satisfies, in particular, an infinite set of conservation laws, the Casimir invariants.
This Hamiltonian structure gets lost by any numerical approximation [58], anda major challenge in
numerical analysis is to design schemes that preserve at least the low order Casimir invariants. The
purpose of high order schemes, as shown in Chapter 3, is to control the dispersive and diffusive artefacts
triggered by any “finite dimension” numerical approximation [8].

2.1.3 Self-consistent coupling to the Maxwell equations

The model (2.3) is now applied to charged particles, and completed with a definition of a microscopic

electromagnetic forceX i +

j=N
∑

j=1

X i j , where

X i = qi

(

Eext+ vi × Bext
)

,

X i j = −∇i

(

qiq j

4πǫ0r i j

)

,

that accounts for the external fields and interactions between the particles. Then it is possible to define

the self-consistent electric field asEsc =

∫

R3
n2X12d

3x2. Inserting this expression in theBY1 equation,

this leads to a full Lorentz forceX = qi (E + v × B) in the Vlasov equation, whereB = Bsc + Bext,
E = Esc+ Eext, andBext, Eext are the external fields.

While considering the Coulomb interaction potential between electronsΦ0 = e2/(4πǫ0r) in a neu-
tralizing fixed ion background, the Vlasov natural regimeα0N0 = O(1), defines a caracteristic length,

the Debye lengthλD ≡

√

ǫ0kBTe

n0e2
, that is a distance, where a significant charge separation can occur.

The plasma period stands as the characteristic response time of the plasma to any perturbation screened
by the Debye length. It is defined astpe ≡ 2π/ωpe, whereωpe ≡ vth/λD is the plasma period frequency
andvth ≡

√
kBTe/me is the thermal velocity. The condition of plasma neutralityne = Zni = n0 is the

necessary condition for plasma equilibrium in the absence of external forces.
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The Lorentz force relates the Vlasov equation with the Maxwell equations


































∂E
∂t
− c2∇x × B = − J

ǫ0
,

∂B
∂t
+ ∇x × E = 0,

(2.4)

whereǫ0 represents the permittivity of vacuum,c is the speed of light. The electric current is given by

J(t, x) = qe

∫

R3
fe(t, x,p) v d3p.

Moreover, the Maxwell system is supplemented by the Gauss laws

∇x · E =
ρ

ǫ0
, ∇x · B = 0, (2.5)

whereρ is the charge density:

ρ = qe (ne− no) = qe

(∫

R3
fe(t, x,p) d3p − n0

)

,

andn0/Z is the initial ion density.

2.1.4 Linear analysis of the free-transport system

Waves in a plasma, if it is collisionless, are described with the Vlasov-Maxwellsystem. These waves
give insight on the collective movements within this plasma. They can be caracterized by

• A dispersion lawω(k), if it is analytically available.

• Its polarisation,i.e. the angle (E, k).

• Its energy.

in a plasma, the electromagnetic energy is defined as

Wwave=Wvacuum
∂(ωRe[ǫ(ω, k)])

∂ω
, (2.6)

Wvacuum=
ǫ0E2

0

4
, (2.7)

whereǫ is the dielectric permittivity. This formalism permits the treatment of waves having negative
energy. The Poynting vectorS reads

S=Wvacuum
∂(ωRe[ǫ(ω, k)])

∂k
, (2.8)

S=Wwavevg , (2.9)

vg =
∂ω

∂k
. (2.10)

A criteria for the stability of the plasma can be defined

Im(ω) < 0 , (2.11)

that guarantees the positivity of the energy.
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Instability classifications

The natural response of plasma exposed to a (fast) electron current, isto maintain the charge neutrality.
This behaviour induces a configuration where two counterstreaming beamsinter-penetrate. This situation
can be an origin for various instabilities, that are potential candidates to inhibit/enhance the transport of
the incident electron beam, having velocityVb. The Two-Stream Instability is defined for electrostatic
perturbations with a wave vectork such ask || Vb andk || δE, whereδE is the created electric field.
We shall identify the Weibel instability as an electromagnetic instability for transverse modes, triggered

from a distribution function which presents a temperature anisotropy, but satisfies
∂ f0
∂v

> 0 at each point.

This definition matches the definition from Weibel’s original paper. On the other hand, the filamentation

instability concerns the distribution function whose original shape presents
∂ f0
∂v

< 0 for a subensemble

of points (in between two beam distribution functions, for instance), and maytrigger electromagnetic or
electrostatic modes, depending on the orientation of the wave vectork with respect to the beam velocity
Vb, in the plane perpendicular to the magnetic field perturbationδB. Several confusing and divergent
definitions emerge in the literature, and we found a clarification necessary at that point.

Let us assume a homogeneous, spatially infinite, collisionless and unmagnetized plasma, whose
dynamics is ruled by the nonrelativistic Vlasov-Maxwell equations. Ions are supposed to form a fixed
neutralizing background, while electrons have two components: cold and abeam. Within the linear
approximation, the plasma response to the harmonic perturbation of the electricfield E(ω, k) is described
by the tensor of dielectric permittivity , whose tensor elements are

ǫαβ(ω, k) = δαβ















1−
ω2

pe

ω2















+
ω2

pe

ω2

∫

R3
vαvβ

k · ∂ f0
∂v

ω − k · vd3v .

The systematic study of the space-time evolution of an instability, though complex inthis Fourier-
Laplace space, requires the knowledge of the Green’s function of the medium [46]. In one dimension,
for the longitudinal perturbation, the Green function reads

G(x, t) =
∫

L

dω
2π

∫

F

dk
2π

exp(ikx− iωt)
ǫ(ω, k)

,

whereǫ(ω, k) = 0 is the dispersion relation of the system, and the Fourier (F) and Laplace (L) contours
are chosen such as they satisfy the causality principle and convergenceof the integral.
The classification of two-stream instabilities can then be performed with respect to their time-asymptotic
behaviour, that can be evaluated with the complex pinch-points (ω0, k0), solution of a a system of equa-
tions

ǫ(ω, k) = 0 ,
∂ǫ

∂k
(ω, k) = 0 .

Finally, the asymptotic behaviour may be deduced:

G(x, t → ∞) ∼ exp(ik0x− iω0t)/t1/2 .

The instability is defined asabsoluteif Im(ω0) > 0 [46]. In this case the time-asymptotic behaviour is
dominated by the pinch-point with the largest positive Im(ω0). The instability is defined asconvectiveif
all pinch points satisfy Im(ω0) < 0.
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Critical comparison of different linear analysis in the relativistic regime

The Vlasov-Maxwell system, describes a variety of multi-scale coupled processes. The first step consists
in isolating and analysing each of them. The analytical representative solutions are desirable to validate
our numerical schemes.

In a recent publication [14], a linear analysis relying on the dispersion equation of the Vlasov-
Maxwell system, valid for any orientation of the wave-vector of the perturbation, provides a detailed
picture of the hierarchy of competing modes in the system-parameter space. In particular, the authors are
able to treat oblique perturbations, and give insight into the transition that mayoccur from one mode to
another one. However such a method, relying on dispersion relations, is efficient for a limited class of
distribution functions that lead to simple singularities in the dispersion equation, inthe (k, ω) complex
plane. This approach, detailed in [15], does not give information in the time evolution of the macroscopic
quantities in the linear regime, and is valid only for the limit of large phase velocities‖k‖V/ω ≪ 1,
whereV is a characteristic velocity of particules. A set of well-defined eigen-frequencies (modes) is
then selected among the variety of possible solutions. Moreover, when back to the physical space, only
exponential modes,∝ exp(−ωt), are filtered. Non-exponential solutions are much more difficult to find
and to characterize.Although they may bring an important contribution. Another method is proposed
in [87], where a nonlinear eigenvalue problem is solved. This method is worth noticable, because it
may potentially address more complex collision terms, such as the Fokker-Planck one, coupled to the
Maxwell’s equations. Such situations could occur in regimes where the collision frequency becomes
comparable to the plasma frequency. However, this technique still smoothes out non-exponential modes
that may arise, and does not have the time resolution of the instability in the linear regime.

This deficiency can be illustrated the following way, as explained by B. Wu in [120]: let us consider
the non-relativistic Vlasov-Poisson system, with a constant magnetic fieldB0. The initial quantities are
chosen such as

f (t = 0, x,p) = f0(p) + f1(t = 0, x,p), (2.12)

E(t = 0, x) = E1(t = 0, x), (2.13)

f1 ≪ f0. (2.14)

A Fourier series expansion gives∀t > 0

f1(t, x,p) = f̂1(t,p) cos(k · x), (2.15)

f̂1(t,p) =
1
V

∫

V

f1(t, x,p)e−ik·xd3x. (2.16)

Then the linearized equation around the equilibrium statef0, for the Fourier componentk, is

i
∂

∂t
f̂1(t, v) = K f̂1(t, v) , (2.17)

K f̂1(t, v) = k · v f̂1(t, v) + i
e

me
(v × B0) · ∂

∂v
f̂1(t, v) − η(v)

∫

R3
f̂1(t, v)d3v , (2.18)

η(v) =
ω2

pe

k2
k · ∂

∂v
f0(v) . (2.19)
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The discrete complex eigenvalue and associated eigenfunction couples (ω j ,G j) j∈N ∈ C × R (we note
here that the number of such couples can be infinite), are solution of the eigenvalue problemKG j(v) =
ω jG j(v). In particular, the discrete eigenvaluesω j are solutions of the equationsǫ(ω j , k) = 0, j ∈ N.
Among them, only the real eigenvalues (they appear ifB0 , 0) have their eigenfunctions that depend
on arbitrary functions an(v⊥, v||), n ∈ N. Therefore the spectrum of the operatorK can be splitted in
two parts: the first is continuous and real, the second is discrete and complex. The real eigenvalues
areuncountably infinitely degenerate[120]. This breaks the relation between eigenfunctions and the
usual Laplace resolvent solution where they can be considered as coefficients ofe−iωt. The spectrum
obtained for an unstable plasma consists of a continuous straight line through the origin, suplemented
with isolated eigenvalues away from this line (thus complex), and associated with unstable solutions of
the usual dispersion relation [69].

In the Chapter 3, we illustrate the effects of real eigenvalues on the two-stream instability.
Another particular case where a set of real eigenvalues arise is the relativistic regime, where at least

two branch points in the dispersion relation appear when Laplace transform technique is employed to
solve the linearized Vlasov-Poisson system.

Finally, we present a method that does not face this problem of non-analiticity (because it does not
rely on theω Fourier space), and thus guarantees the correct time dependence in thelinear regime, with
a prescribed accuracy. This semi-analytical technique is issued from thework of C. Sartori and G. G. M.
Coppa [100].The method is here extended to the self-consistent relativistic Vlasov-Maxwell system, In
Appendix 3.11. In the chapter 3, we shall make use of this procedure to validate our numerical schemes.
In the paper [22], this method had been employed for external applied fields. An extention of this method
with the inclusion of the simple Krook operator [23, 57] is straightforward.

2.1.5 Boltzmann equation

For a collisional plasma, the appropriate limit of the Liouville equation (2.1) is the Boltzmann equation,
where the two-particle correlation function is taken into account. The Boltzmann limit can be intro-
duced from the Liouville equation with different perturbation-expansion techniques, relying on diagrams
(Prigogine), discrete description of the state of the system (Klimontovitch), or the introduction of trun-
cated distribution function in the Liouville equation (Grad). These procedures can also be used to derive
higher-order corrections to the Boltzmann equation, relevant to denser fluids. The rigorous mathematical
derivation of the Boltzmann equation has only been investigated for the hardsphere model [116]. A rig-
orous justification in the case of long-range interactions between particles remains an open mathematical
problem [24, 116].
In this section we present the fundamental assumptions that lead to the Boltzmann equation, upon which
an heuristic derivation of the Boltzmann equation can be obtained.

• The interactions involving more than two particules are neglected. The gas is assumed to be dilute
enough.

• The collisions are assumed to be localized in both space and time, with respect tothe characteristic
scales of the description.

• The collision is supposed to be elastic,i.e. the momentum, number of particles, and the energy
are preserved in a collision process. Letp′, q′ stand for the momenta of the particles before the
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collision, andp, q those after collision. Letγp ≡
√

1+ p2/m2
ec2 be the Lorentz factor for the

particule having momentump. The elastic conservation laws read

p′ + q′ = p + q ,

γp′ + γq′ = γp + γq .

• Detailed balance principle: the probability for two particles having momentap′ and q′ before
collision to have the respective momentap and q after the collision event, is the same as the
probability for the reverse process.

• Boltzmann “one-sided chaos” assumption: the momenta of two particles which are about to collide
are uncorrelated, contrary to the post-collision momenta of the particles.

• Galilean invariance.

With these assumptions, the Boltzmann operator can be derived. We refer tothe physics-oriented refer-
ences [26, 73], and mathematical-oriented references [2, 4, 32, 33, 49, 50, 51, 114], that address issues
related to the relativistic Boltzmann equation, or some variants of it.

Its relativistic expression reads

d
dt

f (p) = QBO( f , f ) =
∫

R3
d3q

∫

S2
dΩ̃′

[

f (p′) f (q′) − f (p) f (q)
]

ũ
W̃2

WpWq
Q(p̃, µ̃) , (2.20)

where theWp = mec2γp is the total energy (including the energy at rest) of the particule with momentum
p. The quantities marked with tilde (respectively without tilde) refer to quantities inthe center of mass
frame (respectively, in the laboratory frame) for a collision event, except for the scattering angle in the
center of mass frame, denoted byθ. Here,W̃ is the energy of colliding particles in the center of mass,

µ̃ = cosθ is the cosine of the interaction angle. ˜u = 2p̃c2/W̃ is the relative velocity.vM ≡ ũ
W̃2

WpWq
is the

Møller velocity. Having in view electron-electron Coulomb interactions, we shall consider the screened
total relativistic Rutherford cross sectionQ [68].

A mixed canonical-dissipative expression for the irreversible processes described by the Boltzmann
equation can be formulated, using the concept of dissipative bracket, and “suitable Langevin forces”
[114].

Finally we present the fundamental properties of solutions of the homogeneous Boltzmann equation
(8.6). They satisfy the conservation of mass, momentum and energy

∫

R3

d f
dt

(t,p)





















1
p

Wp





















d3p = 0, t ≥ 0. (2.21)

Moreover, the entropy is decreasing with respect to time

dH
dt

(t) =
d
dt

∫

R3
f log f d3p ≤ 0, t ≥ 0. (2.22)
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The equilibrium statesfJS of the Boltzmann operator (8.6) are the elements of its Kernel:

QBO( fJS, fJS) = 0 .

These are the Jüttner-Synge (JS) distribution functions

fJS(p) =
nJS

4π(mec)3β2
th

(

K2

(

β−2
th

)

exp
[

β−2
th

])exp
[

−(γ(p) − 1)/β2
th

]

, (2.23)

whereK2 is the modified Bessel function of second order and second kind.
The extension of these equilibrium states from zero to non-zero drift velocity Vd can be obtained in the
same manner, with an entropy maximum principle [74], together with the relativisticdefinition of the
kinetic energy.

fJS(p) =
nJS

4π(mec)3γ(Vd)
[

β̃2
thK2

(

β̃−2
th

)

exp
[

β−2
th

]] ×

exp



















−
γ(Vd)

(

γ(p) − Vd·p
mec2

)

− 1

β̃th
2



















, (2.24)

whereβ̃2
th = γ(Vd)

kBTJS

mec2
.

The detailed computation of the normalization coefficient is presented in Appendix 2.5. The relativistic
Maxwellian probability density function for each component of momentumpi can be found in Appendix
8.9.

2.1.6 Relativistic Rutherford scattering in a screened potential

For collision of like particles, such as the electron-electron scattering, onecannot distinguish between the
electrons after the scattering event, in a probabilistic sense, even if they are affected a spin. This makes
the cross sections to be symmetric with respect to interchange between themselves after a scattering, and
they can be folded at the angleπ/2.
In the first Born approximation, the non-folded relativistic Rutherford cross sectionQ [68], including
relativistic effects and spin corrections, reads

Q(p̃, µ̃) = Q0A(p̃)

(

1

sin4(θ/2)
+

1
cos4(θ/2)

)

+ Q0B(p̃)

(

1

sin2(θ/2)
+

1
cos2(θ/2)

)

+ Q0C(p̃) , (2.25)

whereQ0 = (emec)4/(16πǫ0p̃2W̃)2 and the momentum-dependent functions are

A(p̃) =

(

1+
2p̃2

m2
ec2

)2

, (2.26)

B(p̃) = 1+
4p̃2

m2
ec2

, (2.27)

C(p̃) =
2p̃4

m4
ec4

(2.28)
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In the case of long-range Coulomb interactions, described with the Rutherford cross-section, a
screening should be applied that removes the singularity in angle. This screening corresponds to a partic-
ular energy exchange (at the Debye length). We shall built, in chapter 8,upon the Boltzmann equation,
an intermediate model that take advantage of this correspondance.

2.1.7 The Fokker-Planck-Landau equation: assumptions and limits of the model

Owing to the long-range nature of the Coulomb potential, the assumption of pitch-angle collision is
traditionally retained as the dominant interaction mecanism that contributes to the kinetic properties of a
plasma. Therefore a simplification of the Bolztmann equation (8.6) in the limit of smallangle collisions
is desirable. This procedure, in the relativistic regime, leads to the Beliaev-Budker operator [6]. This
operator possesses the same conservation properties (mass, momentum and energy), entropy decreasing
behaviour, and J̈uttner-Synge equilibrium state, respectively equations (2.21), (2.22) and (2.23), as the
relativistic Boltzmann equation (8.6).
The non-relativistic form of this operator is far more simple. This is the Fokker-Planck-Landau (FPL)
operator, shown in equation (2.29), whose original derivation dates back to Landau [68], in 1936.

CFPL( f , f ) =
e4 lnΛ

8π ǫ2
0 m2

e
∇v ·

(∫

R3
Φ(v − v′)

[

f (v′)∇v f (v) − f (v)∇v′ f (v′)
]

dv′
)

. (2.29)

Here lnΛ is the Coulomb logarithm [17, 59], defined as an integral over the scatteringangles, that
contains a Debye screening at small angles, due to the long-range natureof the Coulomb interaction, and
Φ(u) is an operator perpendicular to the relative velocityu

Φ(u) =
‖u‖2 Id − u ⊗ u

‖u‖3
. (2.30)

The FPL operator is used to describe binary elastic collisions between electrons. Its algebraic struc-
ture is similar to the Boltzmann operator, in that it satisfies the conservation of mass, momentum and
energy

∫

R3
Ce,e( fe, fe)(v)





















1
v
‖v‖2





















dv = 0, t ≥ 0.

Moreover, the entropy is decreasing with respect to time

dH
dt

(t) =
d
dt

∫

R3
fe(v, t) log( fe(v, t))dv ≤ 0, t ≥ 0.

The equilibrium states of the FPL operator,i.e. the set of distribution functions in the kernel ofCe,e( fe, fe),
are given by the Maxwellian distribution functions

Mne,ue,Te(v) = ne

(

me

2πTe

)3/2

exp

(

−me
‖v − ue‖2

2Te

)

,
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wherene is the density,ue is the mean velocity andkBTe is the temperature, defined as



































































ne =

∫

R3
fe(v)dv,

ue =
1
ne

∫

R3
fe(v)vdv,

Te =
me

3ne

∫

R3
fe(v)‖v − ue‖2dv.

A rigorous mathematical derivation of the FPL operator can be obtained (see e.g. [3, 34, 35]) as
the limit of the Boltzmann operator for a sequence of scattering cross sections, which converge, in an
appropriate sense, to a delta function at zero scattering angle. Mathematical stability results on the
coupling of the FPL operator with the relativistic Vlasov-Maxwell system is studied by R. Strain and Y.
Guo [107]. They are able to construct global in time solutions in a periodic domain, and near relativistic
Maxwellian (J̈uttner) distribution functions.

However the FPL operator provides with an inadequate description of collisional relaxation caused by
Coulomb interactions, whenever the distribution function is far from equilibrium [101]. This is due to

the importance of the large angle scattering for Coulomb interactions[54, 101].

In the Chapter 7, we give an illustration, issued from radiotherapy applications, of the importance of
large angle scattering for dose deposition in water.
In the Chapter 8, we propose a series of mathematical models, issued from the relativistic Boltzmann
equation, to take into account large angle scattering in the case of Coulomb interactions. These models
rank from the most general to increasingly simpler and tractable operators.

2.2 Multi-scale methods for modelling electron transport

2.2.1 Outline of physical, numerical, and mathematical challenges

The assumption of scale separation in kinetic ICF electron transport is problem-dependent. There are va-
riety of regimes -from collective to collisional-, with different possible reorderings of characteristic time
and spatial scales: the Debye length, electron-ion mean-free-path, Larmor radius, laser wavelength. The
treatment of the interactions between small, intermediate, and large scales in kinetic transport equations,
motivate the development of models presented in Chapter 7 and 8. Dependingon the regime we would
like to simulate, different scalings of the kinetic system may be considered, such as those of Appendix
3.9 and 5.5.
These multi-scale aspects can be cast in a more general mathematical framework, where the asymptot-
ical stability and well-posedness properties of transport equations are analysed, with respect to the stiff
(singular) coefficients. A well-known method to derive limit models is the Chapman-Enskog expan-
sion [21]. It can be shown, with such a method, that the transport equation, of hyperbolic nature, with
parabolic source term, may under certain conditions be reduced to the parabolic limit. This gives rise to
an outstanding numerical challenge:the derivation of numerical schemes valid in the asymptotic limit
(AP schemes). In the Chapter 3 and 5, we present high order numerical schemes that are designed to
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preserve the conservation properties (especially the energy). Except when slope limiters are activated
(to ensure the positivity of the solution), these schemes reduce to centeredscheme, which is a desirable
feature with respect to AP properties. The influence of the choice of slope limiters on the AP limit has
been explored in a work from R. G. McClarren and R. B. Lowrie [77]. In the Chapter 5, we validate our
scheme, which is not AP in a strict sense, in the limit of low Knudsen number,i.e. in the hydrodynamical
regime.

Various techniques can be employed to capture multi-scale features, such as sub-mesh models, for
turbulence or radiation, homogeneization or correlation methods. A multiscale strategy would consist
of a parameterization of outputs to be used in the next level of the hierarchy(suite) of codes in terms
of length and timescales. Alternatively, integrated multi-physics, multi-scale simulations make use of
the combination of codes within a complete code system, using micro-solvers forregions where micro-
resolution is needed, and systems of meso- up to macro-solvers in the other domain areas. In this context,
one should apply a step-by-step validation procedure to compare reduced numerical models with exact
solutions, microscopic models (see Chapters 3 and 5, Figure 2.1), and experiments, to gain understand-
ing in the couplings of a variety of physical processes.

Various levels of refinements and complexity, and subsequent models, may be required, according to
the regime of interest, to describe the multi-scale transport of electrons in ICFplasmas. These models
are presented and discussed in the next section.

2.2.2 The classical transport theory

We do not consider here the dynamics due to the Bremsstrahlung heating by the laser light, or mobile
ions, and refer to [90, 91] for the related transport theory and systematic treatment.

The Braginskii theory

The classical transport theory, where only regimes close to the hydrodynamical regime are treated, is
refered as the Braginskii [16] theory. For the sake of clarty, we present this theory in the non-relativistic
regime.
Let us first define the average over velocity of a functionA(v)

< A >=
1
ne

∫

R3
A fdv , (2.31)

wherene(t, x) =
∫

R3
f (t, x, v)dv is the density of electrons. Following [16, 40], we introduce the

macroscopic quantities
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mevCe,i( fe)dv,

(2.32)
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p = neTe =
1
3

mene 〈(v− < v >) · (v− < v >)〉 ,

Π =
1
3

mene 〈(v− < v >) ⊗ (v− < v >)〉 − pI ,

qloc =
1
2

mene 〈[(v− < v >) · (v− < v >)] (v− < v >)〉 .

(2.33)

There,j is the electric current,q the total heat flow,R the friction force accounting for the transfer of
momentum from ions to electrons in collisions,Te is the temperature,p is the scalar intrinsic pressure,
Π is the stress tensor,qloc is the intrinsic heat flow andI the unit diagonal tensor.
Quantitiesp,Π andqloc are defined in the local reference frame of the electrons, whereasj , q andR are
defined relative to the ion center of mass frame. Ions are supposed to be at rest. We have the relation

qloc = q + j · (5
2

pI +Π)/(nee) + j (
1
2

mene < v >2)/(nee). (2.34)

Following the formalism of Braginskii [16] for the transport relations, the transport coefficients in the
hydrodynamical regime have been corrected by Epperlein in [40]. These coefficientsαep, βep, κep, are
the electrical resistivity, thermoelectric and thermal conductivity tensors, respectively. The classical
derivation procedure to obtain the transport coefficients involves the linearization of the Fokker-Planck-
Landau equation, assuming the plasma to be close to the thermal equilibrium. The distribution function

is approximated using a truncated Cartesian tensor expansionf (t, x, v) = f (0)(‖v‖2) +
v
‖v‖2

· f (1)(t, x, v).

Following [40],Π andmene < v >2 are neglected. Then considering appropriate velocity moments of
f (1), electric fields and heat fluxes are expressed as a function of thermodynamical variables. The coeffi-
cients of proportionality, in the obtained relations, are defined as the transport coefficients.
Several notations can be used, depending on the chosen thermodynamical variables. Adopting the Bra-
ginskii notations, we obtain thetransport equationsfor the momentum and energy fluxes
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q = −5
2

j
e
Te− κep · ∇Te− βep · j
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e
.

(2.35)

As for the components of these tensors, we make use of the standard notations ||, ⊥, and∧. Directions
denoted with|| and⊥ are respectively parallel and perpendicular to the magnetic field in the planedefined
by the corresponding generalized force and magnetic field. Consequently, the parallel and perpendicular
components of a vectoru are respectivelyu|| = b(u · b) andu⊥ = b × (b × u), whereb is the unit vector
in the direction of the magnetic field. The direction defined by the third direction ina direct orthogonal
frame is denoted by∧. In the system (5.30), the relation between any transport coefficient tensorϕ and
vectoru is defined by

ϕ · u = ϕ||b(b · u) + ϕ⊥b × (u × b) ± ϕ∧b × u , (2.36)

where the negative sign applies only in the caseϕ = αep.
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Failure of the phenomenological flux limitation

In the Spitzer regime, where no magnetic field occurs in the transport relation(5.30), the flux is given by

qS pitzer= −κep∇xTe , κep ∝
neTeτ

me
,

whereτ the mean electron-ion collision time

τ =
3
4

16π2ǫ2
0
√

meT
3/2
e√

2πniZ2e4 lnΛ
. (2.37)

The flux can then be rewritten as
qS pitzer∝ −qf sKn ,

whereqf s = menev3
th is the free-streeming flux.vth =

√
kBTe/me is the thermal velocity. The Knudsen

numberKn = τvth/λT is a mesure of the thermodynamical non-equilibrium of the system.λT is here the
electron temperature gradient length. A regime characterized byKn → 0 refers to an hydrodynamical
descripion, whereas a regime characterized byKn ≥ 1 refers to a kinetic description, where the nonlocal
phenomena appear. The parameters for ICF implyKn ≥ 0.1, while the classical, local approach fails at
Kn ≥ 0.01. This premature failure of the classical diffusion approach in plasma is explained by a specific
dependence of the electron mean free path on their energy. In ICF applications the energy is transported
by the fastest electrons, which have a much longer mean free path.

To remedy the issue of delocalization , the flux limitation idea comes from the remarkthatq should
not become larger than the free-streaming fluxnemev3

th. In fact cross comparison between hydrodynamic
and Fokker-Planck simulations [108] showed that the flux should be limited to some fractionf of the
free-streaming flux (typically 6%). Also Fokker-Planck simulations revealed that a time and direction de-
pendant limiterf should be phenomenologically “constructed”. A sensitivity study has beenconducted
in CELIA [67] for hydrodynamical simulations of homothetic targets in the shock ignition scheme [10].
It exhibits a strong dependance with respect to the value chosen forf if the size of the target is reduced
(thus overcoming a higher laser irradiation). Also this study has confirmed the sensitivity of the flux lim-
itation on its numerical treatment, whether it is computed at the center or at the interfaces of the meshes
[43].

In fact, from a Chapman-Enskog expansion [21] with a small parameterKn, the equation for the
nonlocal heat flux can be written as a diffusion equation

(

1+ λ2(x)
∂2

∂x2

)

q(x) = qS pitzer(x) (2.38)

whereλ(x) is a delocalization (several mean free path) length. This variable accounts for the fact that the
heat flux is mostly carried by hot electrons having 3-4 thermal velocity.

2.2.3 Delocalisation, beam deposition, and diffusion models

Several investigations [53, 55] have highlighted situations where the description of thermal smoothing
involving the flux limitation technique can be ineffective. Moreover, the correct description of preheat
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phenomena, flux inhibition, counterstreaming flux, the inclusion of specific magnetic field related ef-
fects (flux inhibition, rotation, Nernst effect) in 2 dimensions, requires more sophisticated nonlocal heat
transport models. A series ofad hocmodels have been derived, relying on delocalization kernels in
convolution formulas on the heat flux obtained from the equation (2.38). First models date back to the
references [1, 75]. However these models are not well-suited for implementation in multidimensional
hydrodynamical codes, due to the use of delocalisation kernels and a large difference in time scales. In-
deed, the electron thermal conduction is determined on an electron time scale, and should be included on
a ion time step. This requires an implicit treatment over the entire plasma,i.e with a dense matrix, which
is too costly. In order to overcome this drawback, different models are introduced. A first category of
models can be isolated, refered as beam deposition models [78]. They decompose the total volume in a
region of high temperature, treated as a source of monoenergetic beams, which scatter and deposit their
energy, and a region of lower temperature and a shorter mean free path with respect to the temperature
perturbation, where Spitzer theory applies.
Another class of methods, refered as SNB, relies on a reduction of the kinetic equations [103], and an
interpretation of the convolution kernels as solutions of nonlocal diffusion equations, similar to the equa-
tion (2.38). This model is a valuable candidate for implementation in multidimensional hydrodynamical
codes . It permits also to include 2D effects, and an anisotropy of transport coefficients due to the mag-
netic fields [84], with a hypothesis of weak departure of locality.

Finally, an ongoing subsequent effort is lead for the derivation of models that do not rely on aad
hoc interpretation, but on well-defined closure, thus gaining in reliability/predictivity, and permiting the
treatment of a wider range of effective Kndusen numberkλei, the nonlocality parameter.

A rigorous nonlocal transport model was derived for small amplitude linear perturbations of hydro-
dynamical variables [12, 18]. This linear transport theory has been developed into a nonlocal nonlinear
model, which could be potentially implemented into large scale hydrodynamical codes [5]. The nonlinear
model was tested in the configuration of a temperature hot spot with FokkerPlanck simulations [5], with
good agreement. A linear model have also been proposed [13] to include the effects of external magnetic
fields. The relation between nonlocal and nonstationary effects were explored in [11], in the case of an
homogeneous plasma density. This model will be successfully compared to a 2D × 3V Fokker-Planck
simulation of a temperature hot spot relaxation in Chapter 5.

2.2.4 Cartesian tensor expansion

The electron distribution function is here decomposed in Cartesian tensors [65]:

f (t, x,p) =
∑

n

f0(t, x,p) + f1(t, x,p) · v + f2(t, x,p) : vv + ...

The closure of the subsequent set of equations relies on a diffusion approximation, using an isotropic
pressure tensor,i.e. scalar diagonal

P =
1
3

Id f0 , (2.39)

This type of method is refered asP1 models,e.gin [52].
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2.2.5 Spherical harmonics

The electron distribution function is here represented in momentum space (p, θ, φ) by an expansion in
spherical harmonics [7, 79]:

f (t, x,p) =
nmax
∑

n=0

n
∑

m=−n

f m
n (t, x,p)P|m|n (cosθ)e(imφ) ,

where f −m
n =

(

f m
n
)∗ andP|m|n (cosθ)e(imφ) are the spherical harmonics. The electron distribution can be

defined in the ion rest frame, so that electrons withp = 0 move with the ions, locally. The dependance
of the coefficients on the magnitude of the momentum means that the distribution function is not con-
strained to be Maxwellian.

Johnston [63] has shown the equivalence between a Cartesian tensor scalar product expansion and a
spherical harmonic expansion. He also demonstrated the correspondance between the order of the spher-
ical harmonic and the order of the tensor transport quantity, for the Boltzmann equation.
The description of electron transport with an anisotropic pressure [112] requires second order terms,
whereas the description of energy transport would require third orderterms [63].

One strength of such formalism is that it constitutes an efficient platform to include additional physics
[94]. Moreover, the spherical harmonic formalism permits an implicit treatmentfor both the magnetic
field and collisions, appart from the explicit core of a given spherical harmonic solver.

However, the spherical harmonic expansion relies on high order harmonic truncation, rather than
moment closure. In [58], it is mentioned that moment closures inherit the Lie-Poisson bracket structure
from the Vlasov Lie-Poisson structure, while moment truncations do not.

This is a reason why we adopt the denomination KET, an acronym for KineticElectron Transport,
according to the|·〉 brackets in Dirac notation, for the deterministic solvers we develop in this document.
This denomination permits to distinguish solvers of different mathematical structure.

2.2.6 Reduced angular model

The original derivation of reduced model dates back to mesoscopic modelling of the radiative transfer
[30], where the authors introduced a closure of the equation relying on aminimum entropy principle
together with an average on the radiation frequency spectrum and propagation direction: this is the so-
calledM1 model [30].
In the case of (fast) electron transport, instead of using the closure from Levermore [71, 30], the closure
from Minerbo [80] is more suitable, because it is directional, allows analytical calculation on the collision
operators, and makes it possible to obtain a convex set of admissible electron distribution functions. The
convexity property is indeed a desirable property, which sets the system ina standard form, that can be
treated with standard numerical techniques, such as the HLLC method.



Electron kinetic transport: Basic theory, processes & models 47

Both radiative or electronicM1 closure make use of a tensorial pressure, written as [71]

P =
(

1− χ
2

Id +
3χ − 1

2
f1

f0
⊗ f1

f0

)

f0 ,

which differs from theP1 closure (2.39) in the rarefied (collective) regimes, or for beam treatments. It
is similar to theP1 closure (2.39) in the diffusion (collisional) regime. Hereχ is the electron Eddigton
factor, which is precised in Chapter 7.

2.2.7 Collisional PIC

The different calculation steps in aParticle-In-Cell(PIC) code are the following:

• (1) The resolution of the macroparticle movement from dynamic equations. The electromagnetic
fields are interpolated at the macroparticle positions.

• (2) The current are transfered on the spatial grid based on the positions and velocities of the par-
ticles. In order to avoid large amplitude statistical fluctuations, the charge of each macroparticle
is distributed over a certain volume. This accumulation is done using an algorithmthat guarantees
by construction that the continuity equation is verified particle by particle. Thismethod can be
made compatible (employing Villasenor-Buneman, Esirkepov, or zigzag scheme) with Poisson’s
equation which solving is difficult to parallelize [115].

• (3) Maxwell’s equations are solved on the spatial grid.

High order interpolation, up to 4th order at the present time [99], can be used for steps (1) and (2), to
improve the performance of PIC simulations by extending the simulation grid size tothe plasma skin
length. The latter is much larger than the Debye length of the cold plasma, while theinterpolation avoids
the numerical heating. This enables also to reduce the computational cost drastically.

The modeling of large plasma density gradients may require variable weighted particles [99]. Keep-
ing the charge-to-mass ratio of the macro-particles constant, the density of real charges that they represent
can be changed. In a situation where the plasma density varies from the under-dense region, where the
laser pulse is absorbed, to a more than a hundred times over-dense target,it is unpractical to keep the
number density per macro-particle constant because choosing a reasonable resolution in the under-dense
region means an enormous number of particles in the target. This can be avoided by using variable par-
ticle weights.

The expansion of the electron distribution function in spherical harmonics and nonlocal approach
apply for relatively long laser pulses (hundreds of ps) and nonrelativistic intensities (below 1015-1016

W/cm2) where the deviation from the local thermal equailibrium is not too large. Theultra-short laser
accelerated electrons have an energy spread of a hundred percentfrom non-relativistic to ultra relativis-
tic energies.They have a beam-like distribution function and their transport has to be treated kinetically.
Collisions in the target are an important issue to determine the characteristics ofhot electron transport.
Fully relativistic binary-collision model is developed [98, 109], that has a desirable feature to preserve
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the energy in individual collisions, and momentum on the average, which is a great advantage for HEDP
simulations in which the numerical heating or energy violation, must be very smallto get an accurate
laser energy coupling to plasmas. The combined use of weighted particles has significant consequences
for the binary collision model, and such model are tested with respect to Monte-Carlo models [82]. We
mention here some attemps for the derivation of Asymptotic Preserving Monte Carlo methods [85], in
the collisional limit.

For the problem of high energy density physics (HEDP), the transport of fast electrons in solid-
density plasmas is the essential question. It is difficult to model high-density plasmas with Particle-
in-Cell (PIC) simulations because of the small plasma Debye length, which needs to be resolved to
avoid numerical heating of particles, due to the “finite grid instability” [36, 37]. Although impressive
improvements have been realized in the recent years, the statistical noise and the low resolution of the
electron distribution function by PIC solvers can lead to very stringent constraint in low temperature
and high density plasmas. This is why the traditional operating point of PIC codes concerns the source,
i.e. the zone of absorption of the laser and the generation of electrons that propagate further in plasma.
Moreover, the treatment of collisions is often made withad hocmethods, not physically well-formulated.

2.2.8 Langevin approach

In contrast to the methods traditionally designed to incorporate collisions in PICcodes, the Fokker-
Planck approach, though computationally costly, relies on a well-formulated physical basis. A possibility
remains open to combine the advantages of both theories (low computational cost and well-posedness
of the collision process) within a Langevin approach [19, 118, 42]. Thisapproach is a stochastic partial
differential equation mathematically equivalent to the Fokker-Planck equation.
The Langevin equation used for the modelling of laser-plasma iteraction has the form

dp
dt
= A0 + C.ξ + C.η , (2.40)

with two scalar stochastic processesξ andη. Using the Cayley-Hamilton theorem, that defines the root
of specific second-rank tensors [48, 66] of this form

(

MI − N
v ⊗ v

v2

)1/2
=
√

MI −
(√

M ±
√

M − N
v ⊗ v

v2

)

, (2.41)

whereM > 0 & M ≥ N, then the direct acceleration term and the stochastic sources in equation (2.40)
have the form,

A0 = A − N
(

C + D
)

· ∇ ·
(

C + D
)

, (2.42)

C =
B1/2
+√
2
, (2.43)

D =
B1/2
−√
2

(2.44)

whereξ is a Wiener process, chosen such as successive, independent smallangle Coulomb scattering
leads to a Gaussian distribution.N is a possible realization of a stochastic integral. The choice forN
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depends both on physical and numerical considerations.A andB are the Fokker-Planck coefficients of
the FPL operator, under the form

∂ f
∂t
= −∇v ·

(

A − 1
2
∇v

(

B f
)

)

. (2.45)

2.2.9 Hybrid approches

Hybrid codes combine a kinetic resolution for the fast, highly anisotropic, electron population with
an hydrodynamic fluid description for the bulk electron population. Such codes are able to describe
both collective and collisional effects. Hybrid codes rely on the assumption of low beam to plasma
density ratio, therefore they cannot simulate the fast electron transport near the critical density, where
the full kinetic description is more appropriate. Moreover the thermodynamical equilibrium assumption
of the bulk population is not a general statement [104]. However, these methods offer the most realistic
approach to date since they encompass the fast particle description and permit integrated simulations.
Several problems arise when coupling the populations, such as the cut-off between population in the
energy space, which is arbitrary, and depends on the physical assumptions and the boundary conditions.
Stability problems associated with the coupling of different methods may also arise, because of the
different scales and grid resolutions.

2.2.10 On the choice for a deterministic Eulerian Vlasov-Maxwell solver

A strong motivation for the choice of Eulerian deterministic solvers lies in their robustness properties
with respect to density and temperature gradients. Another desirable feature is that they are noise-free.
Interestingly, some low-level noise might be introduced (that could be thought as representative of the
plasma fluctuations), with or without frequency filters, in initial conditions, for Eulerian deterministic
resolution of laser-matter interactions. The objective would then be two-fold. First, an instability could
be triggered more fastly, so that the required range of unstable frequencies could be selected within the
white noise that is “artificially” introduced. Second, this could be a way to getrid of, or postpone the
recurrence effects.
Finally, Eulerian solvers provide with a well-defined frame for coupling with the collision terms, con-
trary to PIC solvers, where the use of macroparticles render the treatmentof collision bead hoc.
The counterparts of these good features are the high computational ressources needed, and the small
amount of literature about the accuracy and robustness results with regard to coupling of Vlasov-Maxwell
solvers with collision kernels.

A number continuous properties of the model should be reproduced at a discrete level by the numeri-
cal schemes, and should guide a design of deterministic Eulerian Vlasov-Maxwell solvers. The coupling
with collision brings additional constraints. Gathering of all these propertiesin a single scheme is out of
reach of any existing algorithm, and one should select a numerical method that would be appropriate to
the regime of interest. The potential candidate should share most of the following feature:

• Unsplit advection scheme [31, 39]. Avoiding the numerical heating issued from the time splitting
technique [105, 102].

• Discrete energy conservation when coupling with Maxwell equations [31].
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• Total mass conservation [25, 31, 44].

• Positivity of the particle distribution function [25, 31, 44].

• Ampère-Poisson compatibilityvia the continuity equation [105], we refer to the compatibility
between the statistical repartition of particle charges and positions.

• Local reconstruction stencil in space for ease of parallelisation [25, 31, 44].

• High order schemes for accuracy [25, 31, 44], that control the dispersive and diffusive artefacts of
the numerical approximation.

• Hamiltonian preserving [20], which is a feature that symplectic methods aim at capturing. The
Vlasov equation presents indeed a rich geometric structure related to its Hamiltonian character. In
particular, it satisfies an infinite set of conservation laws, that are the Casimir invariants. In [96],
a rigourous mathematical proof, relying on the Lie algebra, shows that anydiscretization of the
Vlasov-Poisson system cannot preserve the conservation of all the Casimir invariants.

• High order preservation discrete dispersion relations, in particular the one related to the electro-
magnetic and plasma waves and the Two-Stream Instability (TSI).

• Capture of the propagation velocities (eigenvalues of the Maxwell equations) of the electromag-
netic waves, for laser propagation.

• Avoiding numerical checkerboard instability with the numerical scheme for Maxwell equations
[105].

• Avoiding numerical Cherenkov effect in the relativistic regime [9, 61].

• Implicit resolution of the Maxwell equations [31, 9] is desirable since this method is not con-
strained a stringent CFL condition.

• Avoiding (postponing) recurrence effects [70]. This numerical artefact is a signature of reappari-
tion of some parts of the initial condition in the course of a simulation, where the caracteristic
modes return back to their initial state. This phenomenon may damage the solution inthe case of
a long time evolution of a wave that is not submitted to other dominant process. A way to supress
this effect would be to introduce an initial “artificial” low-level white noise, representative of the
fluctuation level of the plasma.

• Permiting discontinuities in the phase space [25, 31, 44], in particular, for rarefied plasma flows
[42]. This is a challenging numerical issue for Eulerian solvers. The PICsolvers are much more
adapted to discontinuous configurations, since they do not face thevacuum problem.

The use of particular techniques for Eulerian methods, such as Fourier transformation based methods
for the Vlasov-Maxwell system, is finally worth mentionning, since they have cast a new light on the
Landau damping or time echo phenomena [45], while reinterpreting them [97]. These problems require
a particular well-posed outflow boundary conditions [38, 70] in the velocityspace, to avoid filamented
and unphysical oscillatory structures, related to numerical recurrenceeffects.
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2.3 Key points for a successful modelling of ICF electron transport

2.3.1 Importance of an accurate collision treatment in ICF plasmas

The scaling laws derived in [7] for the inhibition of fast electron transport by electric field, the non-linear
conductivity (breakdown of the Spitzer conductivity) of return currents [104], runaway electrons, mag-
netic collimation, and magnetic inhibition, show that the electric conductivity plays an important role
in the ICF physics. An accurate modelling of the highly collisional slow electrons is, therefore, crucial,
even for simulation of fast electron beam (having lower collision probability), propagating in a thermal
plasma. This motivates developments in Chapter 8 of a two-scale collision model, involving two kinetic
populations (that may share some intermediate energy ranges, and allow runaway particules). This ap-
proach can be seen as an extension of the model of A. V. Gurevich [54], where the thermal population
was assumed to be a cold population, with infinite number of particles.

How accurate should be the treatment of thermal particules? This question remains open. If a Carte-
sian tensor expansion technique is employed (see section 2.2.4), some cluesare given in the literature
[56, 112]. For instance, the capture of the collisional Weibel instability [56] requires that the perturbative
expansion in the Knudsen number of the equilibrium distribution function should be pushed to the sec-
ond order. However, a closure on thef (3) component is reported to give Weibel growth rates five times
larger than when it was applied on thef (2) component. What do we know about the regime dependence
of other instabilities on the convergence of high order terms for cartesian tensor expansion, spherical
harmonics, or angular reduced models (These methods will be presented inthe sections 2.2.4, 2.2.5 , and
2.2.6, respectively)?

This issue is one of the reasons for development of a reference deterministic Maxwell-Fokker-Planck-
Landau code, which can deal with high anisotropy degrees of the distribution function.

2.3.2 Collective transport

The transport of electrons does not only rely on the sum of individual interactions between particules, but
also, and this is a characteristic feature of plasmas, on collective effects. They are due, one the one hand,
to the long-range Coulomb interaction, and on the other hand to the dynamic of the charge neutralization
in the plasma, generation of electric and magnetic fields, and wave propagation.

For instance, the charge separation, created by electrons acceleratedin the target, induces an electro-
static field that tend to mantain a charge equilibrium. This field is screened by thermal electrons, and its
strength depends on the value of the electric resistivity. Generation of magnetic fields (up to MegaGauss)
by the currents of fast and slow electrons have a significant effect on the transport coefficients, collimate
a beam a fast paticules or filament it.

2.3.3 Coupling between magnetic field and nonlocal transport

The ICF experiments [106, 111] are confronted to the emergence of strong magnetic fields, sponta-
neously generated in hydrodynamic flows that lack of the spherical symmetry. These assymetries due to
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non-uniform laser irradiation -this case will be numerically considered laterin Chapter 5-, nonuniformi-
ties in the target, or to an instability.

The generic equation for the magnetic field issued from the combination of the Faraday’s law with
local transport equations can be written [56] as

∂B
∂t
= S +V +D , (2.46)

where the right-hand side describes the sources due to the low frequency currentsS, convectionV and
diffusionD processes. The major term is generally due to crossed gradients∇Te × ∇ne effect. The
anisotropic pressure (rotational part of the stress tensor) and the laser field also contribute to the source
terms. An explicit, low-frequency form of the equation (2.46) is [56, 90]
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where the last two current terms, withj || andj⊥, can be interpreted and recast under the generic resistive
form ηj , whereη is the resistivity. Thej × B term can be interpreted in the same manner, as a magnetic
resistivity, that collimates an electron current. The Nernst term, proportional to qe × b, advects the
magnetic field along with the heat flow. The thermoelectric term∇Pe/nee, contains the well-known, first
order cross gradient∇ne × ∇Te source of magnetic field. Finally, the∇Te terms account for the friction,
issued from the electron-ion collisions, and their coupling with magnetic field generation.

In the low-frequency and local regimes, an analytical decomposition (2.46) is possible [56, 90].
However, for high frequency fields, or in the nonlocal regime where thedistribution functions are not
Maxwellian, such a general analytical expression is not available. Several cases may still be isolated as
remarkable, as they may lead to identified forms of the Ohm’s law.

In the situation where a fast beam population propagates through a cold static plasma population, the
magnetic field source can be represented [28] as

∂B
∂t
= η × ∇jb + ∇η × jb , (2.48)

whereη is the resistivity andjb the fast beam current. J. R. Davies [28] proposed a simple qualitative
interpretation of the equation (7.6.5). The first term on the right-hand side generates a magnetic field
that pinches the beam of fast electrons, while the second term pushes fast electrons towards regions of
higher resistivity. Such an analytical model can be of use to estimate the growth of a magnetic field col-
limating a fast electron beam [27], or to estimate the guiding effects of background density modulations,
that induce themselves resistivity and magnetic collimation modulations [93]. Target designs have been
proposed based on these interpretations [93].
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In the situation where the density is constant, the∇Te × ∇ne effects cancel and the high order mo-
ments of the distribution function are required to describe the departure from the spherical symmetry that
seeds the magnetic field generation [65]. This situation will be reproduced numerically in Chapter 5.

It should be also noted that the magnetic field source could be expressed,under particular plasma
conditions, as the curl of off-diagonal terms of the pressure tensor [81]. Independently, a possible source
could be the resonant absorption at high laser intensities [113].

A well-known kinetic effect is theflux inhibition of a nonlocal heat flow by a magnetic field, where
the heat carrying electrons movement is bent preferentially along the magnetic field lines. This effect
can be characterized by the Hall parameterχ = ωcτ, which is the product of the cyclotron frequencyωc

and the electron-ion collision frequencyτ. A strong Hall parameter reveals the formation of a transport
barrier, that reduces the preheat, even could lead to the suppression the heat flow, whereas a low one per-
mits nonlocal features to develop. The competition between a nonlocal heat flow and a strong magnetic
field will be illustrated in Chapter 5.

A strong coupling may occur between nonlocal phenomena (that modify the mean velocity of the
flow), and the Nernst effect (caracterized by the Nernst velocity, proportional to the heat flow). T. H.
Kho and M. G. Haines [64] describe how nonlocality modifies the rate of magnetic field advection. C.
Ridgers [92] describes the reemergence of nonlocality due to the cavitationof the magnetic fields by the
Nernst effects.

Last but not least, a magnetic fied can emerge from the electromagnetic perturbation of anisotropic
distribution functions. In laser-plasma interactions, the development of an anisotropy of the distribution
function can be due to temperature gradients [89], or absorption of laserlight, via the capture of laser
photons by plasma electrons (Inverse Bremsstrahlung) [112]. This mechanism for magnetic field genera-
tion is relevant for the Weibel instability, and develops at a nanosecond time scale for conditions foreseen
for ICF [95].

2.3.4 Fast electrons as energy carriers for ignition and source for electron-positron plas-
mas

The fast electrons that are generated by laser in low density corona regions are responsible for carrying
the energy to the ablation front. Therefore an accurate treatment of the their energy deposition into the
thermal plasma is of importance for the ICF target design. A review of fast electron physics in laser
plasmas is presented by A. R. Bell in [7], and more recently by F. Pisani in [88]. The mecanisms of
generation of fast electrons, as well as their transport in matter, considered as an insulator or a conductor,
compressed or not, are summarized in there. The main diagnostics of fast electrons, namely theKα ra-
diation, is also recalled in this latter reference. Therefore, we shall not reproduce such a comprehensive
task, but rather insist on specific but important aspects of the fast electron transport.

At this point we comment on the fact that a simple estimate of the heating rate of the thermal plasma
based on the collisional energy deposition of fast electrons may not be relevant for certain relativistic
regimes. The heating rate could indeed be different by several orders of magnitude, and the penetration
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of beam electrons may be underestimated, due to the large angle scattering in the collision processes. We
refer to the Chapter 8 for further detailled consideration on this crucial issue.

The fast electrons produced by ultraintense lasers reach energies more than several tens of MeV.
These become sources for creating electron-positron pairsvia their interaction with nuclei, according to
two processes [83], the Trident process

e− + Z→ e+ + 2e− + Z ,

and the Bethe-Heitler process
e− + Z→ γ + e− + Z ,

γ + Z→ e+ + e− + Z .

The generated electron-positron plasmas might exhibit very different dynamics and regimes from those
traditionally encuontered. Such regime could be reached with the Extreme Light Infrastructure (ELI)
European project.

2.4 Objectives

2.4.1 Objectives of the present work

High Energy Density Physics (HEDP) is a exciting field where improvements in modelling and numerical
analysis can bring a deeper understanding. Having in view applications such as the Inertial Confinement
Fusion (ICF) and more generally the laser-matter interactions, the kinetic electronic transport in the
conduction zone, from the laser absorption zone to the ablation front of the target, is identified as a bot-
tleneck. It is indeed necessary to treat within the same transport model collective and collisional effects,
for both thermal and fast relativistic particles. This stands as a multi-scale problem, which is a challenge
for modelling as well as for designing efficient numerical schemes. There is only a small amount of lit-
erature where all these scales are present together, considering the coupling of Vlasov-Maxwell solvers
with Fokker-Planck-Landau collision kernels, and few results on the accuracy and robustness for numer-
ical schemes are available in this situation. To step forward in this direction, wewould like to develop
and analyse robust and accurate, high order numerical methods that control the dissipative and dispersive
aspects inherent to the discretization of the system.
A a second step, we shall qualify (see figure 2.1) the numerical schemes ina wide range of regimes
relevant for the ICF physics. To this aim, we propose and develop an original validation procedure, that
addresses the multi-scale and high dimensionality features of the coupled system.
As a third step, we develop numerical tools for the modelling of electron transport under the conditions
of a new class of high power/ high energy lasers, with intensities that go beyond 1020Wcm−2, enter-
ing into the relativistic regime. We first extend the schemes to the relativistic regime, then evaluate the
relative importance of the different electron-electron collision mecanisms. The role of electron-electron
collisions at small impact parameters was indeed not clear before this thesis.In particular, we reconsider
the importance of large energy exchanges in the long range Coulomb collisionprocesses, and propose
a fast and robust model to identify and accurately capture the regimes where this mechanism could be
dominant.



Electron kinetic transport: Basic theory, processes & models 55

A concomitant aspect of this work will address the developement of an operational simulation tool, writ-
ten in C++. We bring an evidence of computational affordability for deterministic simulation in the
2Dx × 3Dv space. To reach this objective, we implement MPI parallelisation with domain decomposi-
tion in the 2Dx subspace, together with fast algorithms, such as the multigrid method, to accelerate the
calculations of the collisional terms in the velocity space. Such demonstration will enable a systematic
comparison with reduced but faster models. This cross comparison between solvers of different origins
ends up with a large-scale, realistic simulation for the kinetic electron transport shock ignition scheme,
in collaboration with the teams of Imperial College and Oxford. This latter constitutes our contribution
for the HiPER European project.

Finally, we are able to demonstrate the relevance of our approach for problems in other domains of
science. We focus on the electron radiotherapy, and prove that a deterministic M1 model is able to reach
an attractive accuracy/efficiency compromise over the existing methods (pencil-beam or Monte-Carlo).
This method is expected to meet practical applications for real patient treatment. In this application, an
accurate dose depostion by the electron beam requires the modelling of secondary electron production,
with large energy exchanges during the collision events. We discuss a similarity between the processes
at stake for the electron radiotherapy and the Fast Ignition electron transport.

2.4.2 Mid term perspectives

A deeper understanding of nonlocal transport processes in laser-matter interactions at high fluxes would
require a systematic comparison with experiments, in the frame of the qualificationprocedure shown
in figure 2.1. Simple though representative experimental configuration could be proposed [47], for in-
stance in the installation LULI2000. Very large discrepancies have been found between experimental
and 1D hydrodynamical simulation results (LILAC)[72], for the investigation of Implosion Dynamics in
Direct-Drive Inertial Confinement Fusion experiments at OMEGA laser facility. Nonlocal aspects of the
implosion, as well as 2D features of the transport should be explored to gain in accuracy between simula-
tion and experiments. To this aim the implementation of the background ion motion would be necessary
to reach nanosecond time scale simulations. Such upgrade of the model wouldallow the exploration of
the absorbtion zone of the laser, at the critical density, with a 2D deterministic code including collisions.

Independently, the model for Coulomb collisions we derived in the Chapter 8 exhibits low compu-
tational cost, together with accuracy and robustness features. These points are not shared by any other
models. We bring, using this model, the evidence of importance of large energy exchange for electron-
electron collisions,via a first quantitative estimation. The model is most useful to explore, at a reduced
computational cost, the effects of large energy exchanges in collisions between like particles, and the
associated secondary electron production. The model can be efficiently coupled with electro-magnetic
fields and it restitutes most of the properties of the original relativistic Boltmannequation, with the
Coulomb cross section. The difficulty for treating this Boltzmann operator lies in the long-range nature,
at the limit of integrability, of the Coulomb cross section, and the large difference in scales between
the particules. A traditional treatment of such mechanism involves Monte Carlomethods, that are very
costly.
The derivation of such a model opens the path for other applications in the near future, ranking from
electron-positron pair production at high laser intensity, to the electron lithography or high energetic
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processes in the upper atmostphere and ionosphere, namely thunderstorms and sprites.

Figure 2.1:Generic qualification procedure for a simulation code.
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in gases, Phys. Lett. , A 237, 240, (1998).



60

[55] Hawreliak J.et al., , J. Phys. B, 37, 1541, (2004).

[56] Haines M. G., Magnetic-field generation in laser fusion and hot-electron transport,Can. J.
Phys., 64, 912 (1986).

[57] Hao B., Sheng Z.-M., Ren C., Zhang J., Relativistic collisional current-filamentation instability
and two-strem instability in dense plasma,Can. J. Phys., 64, 912 (1986).

[58] Holm D. D., Tronci C., Geodesic Vlasov equations and their integrablemoment closures,
Journal of geometric mechanics, 1, 2 (2009).

[59] Huba J. D.NRL PLASMA FORMULARY,Beam Physics Branch Plasma Physics Division Naval
Research Laboratory Washington, DC 20375.

[60] Humphries S., Charged particule beams,Wiley Interscience, New York, (1990).

[61] Jacobs G. B., Hesthaven J. S., High-order nodal discontinuous Galerkin particle-in-cell method
on unstructured grids,J. Comput. Phys.214, 96-121, (2006).

[62] Joachain C. J., Quantum collision theory, Amsterdam, 1983.

[63] Johnston T. W., Cartesian Tensor Scalar Product and SphericalHarmonic Expansions in Boltz-
mann’s Equation,Physical Review, 120, 4, (1960).

[64] Kho T. H., Haines M. G., ,Phys. Fluids, 29, 2665 (1986).

[65] Kingham R. J., Bell A. R.,Nonlocal Magnetic-Field Generation in Plasmas without Density
Gradients, Phys. Rew. Letter, 88, 045004, (2002).

[66] Kloeden P. E., Platten E., Numerical Solution of Stochastic Differential Equations,Springer
Verlag, Berlin, Heidelberg, New York (1992).

[67] Lafon M.,Private communication(2009).

[68] Landau L. D., Lifschitz E. M., Vol. 4. Quantum Electrodynamics.

[69] Larsson J., Hermitian Structure for the Linearized Vlasov-Poisson and Vlasov-Maxwell Equa-
tions,Physical Review Letters, 66, 11, (1991).
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2.5 Appendix: Normalization of the relativistic Maxwellian distribution
function with a non-zero drift velocity

The introduction of a macroscopic drift velocityVd in the J̈uttner-Synge distribution function (2.23) can
be performed with respect to the maximum entropy principle [74]

fJS(p) = const× exp















− γ(Vd)

mec2β̃2
th

(

mec
2γ(p) − Vd · p

)















, (2.49)

with the parameter̃β2
th = γ(Vd)

kBTJS

mec2
.

The drift velocity in fJS satisfies a compatibility condition that is satisfied for any value of‖Vd‖ ≤ c

Vd =
∫

R3

p
meγ(p)

fJS(p)dp
/∫

R3
fJS(p)dp . (2.50)

The constant in (2.49) is defined with the normalisation condition

nJS =

∫

R3
fJS(p)dp. (2.51)

In (2.52)-(2.57), we provide with detailed calculation leading to the normalisation constant of the relation
(2.51)

nJS

const
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∫

R3
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
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)















dp. (2.52)

Settingµa = γ(Vd)/β̃2
th, performing the variable changēp = p/mec, and integrating on the pitch angle

variable yields

nJS

4π(mec)3const
=
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0
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p̄2dp̄. (2.53)

Then we develop the sinh as a difference of exponential functions and set ¯p = sinh(Θ),α = sinh−1
( ‖Vd‖

c γ(Vd)
)

.
It comes

nJS

4π(mec)3const
= ± c

4‖Vd‖µa

∫ ∞

0
exp

(

− µa

γ(Vd)
cosh(Θ ∓ α)

)

sinh(2Θ)dΘ. (2.54)

Now we perform the variable changesζ = Θ ∓ α. We obtain

nJS

4π(mec)3const
= ± c

4‖Vd‖µa

∫ ∞

0
exp

(

− µa

γ(Vd)
cosh(ζ))

)

sinh(2(ζ ± α)) dζ. (2.55)

Finally, we develop the sinh as products of sinh and cosh and find

nJS

4π(mec)3const
=

csinh(2α)
2‖Vd‖µa

K2

(

µa

γ(Vd)

)

. (2.56)
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The JS distribution function becomes

fJS(p) =
nJS

4π(mec)3γ(Vd)
[

β̃2
thK2

(

β̃−2
th

)]exp
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−
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(

mec2γ(p) − Vd · p
)

[

mec2β̃th
2]


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













.

As for numerical considerations, in order to recover a smooth transition between the relativistic and
nonrelativistic limits of the distribution function moments, the following form, wich is similar to an
exponential scaling on the modified Bessel function, may be more appropriate. If Vd = 0, this gives

fJS(p) =
nJS

4π(mec)3β2
th

(

K2

(

β−2
th

)

exp
[

β−2
th

])exp
[

−(γ(p) − 1)/β2
th

]

. (2.57)
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3.1 Introduction

In this chapter, we shall focus on the collective effects, which are a specific feature of plasmas, and
ignore the collisional effects. We present the model, its properties, and discuss on numerical schemes for
their discrete implementation in a deterministic solver. Finally we present valdiation test quantifying the
accuracy and robustness of the methods at low grid resolution.

3.2 The free-streaming kinetic model

3.2.1 The nonrelativistic Vlasov-Maxwell system

Two particle species (ions and electrons) are considered: ions are supposed to be fixed assuming an
electron-ion mass ratiome/mi ≪ 1, whereas the evolution of electrons is described by a distribution
function fe(t, x, v) where for the more general case (x, v) ∈ Ω × R3, with Ω ⊂ R3. The non-relativistic
Vlasov equation, without collision source term is given by

∂ fe
∂t
+ ∇x · (v fe) +

qe

me
∇v · ((E + v × B) fe) = 0 , (3.1)

whereqe = −e is the charge of an electron andme is the mass of an electron. The electromagnetic fields
(E,B) are given by the classical Maxwell system



































∂E
∂t
− c2∇x × B = − j

ǫ0
,

∂B
∂t
+ ∇x × E = 0,

(3.2)

whereǫ0 represents the permittivity of vacuum andc is the speed of light. The current density is given
by

j (t, x) = qe

∫

R3
fe(t, x, v) v d3v.

Moreover, Maxwell system’s is supplemented by Gauss law’s

∇x · E =
ρ

ǫ0
, ∇x · B = 0, (3.3)

whereρ is the charge density:

ρ = qe (ne− no) = qe

(∫

R3
fe(t, x, v) d3v − n0

)

,

andn0/Z is the initial ion density.
In this model, the Vlasov equation stands for the invariance of the distribution function along the

particles trajectories under the effects of electro-magnetic fieldsE andB. The Vlasov transport terms, in
the left-hand side of equation (8.1), are written in their conservative form,but they can also be written in
an equivalent non-conservative form, while the Maxwell equations (3.2)-(3.3) provide with a complete
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self-consistent description of low-frequency electromagnetic fields. The coupling between both is per-
formedvia the Lorentz force termE + v × B in the Vlasov equation, and the current source terms in
the Maxwell equations. The Vlasov-Maxwell system (8.1)-(3.2)-(3.3) isstrictly equivalent to (8.1)-(3.2)
provided the Gauss’s laws (3.3) are initially satisfied. This gives a compatibilitycondition at initial time.
In the remainder of the section, we only consider a periodic or infinite spacedomain. The mass is pre-
served with respect to time for the Vlasov-Maxwell system,i.e. system (8.1)-(3.2) without collision
operators

d
dt

∫

R3×R3
fe(t, x, v)d3x d3v = 0, t ≥ 0. (3.4)

The conservation of momentum can be written as

d
dt

(∫

R3

[

me

qe
j (t, x) + ǫ0 (E(t, x) × B(t, x))

]

d3x

)

= qe

∫

R3
E(t, x)ne(t, x)d3x+

∫

R3
ǫ0E(t, x) × (∇xE(t, x)) d3x , t ≥ 0. (3.5)

Moreover, the conservation of energy can be proved for the Vlasov-Maxwell system by multiplying
equation (8.1) byme ‖v‖2/2 and integrating it in the velocity space. We obtain after an integration by
parts

1
2

d
dt

∫

R3

{

ǫ0 ‖E(t, x)‖2 + 1
µ0
‖B(t, x)‖2 +

[∫

R3
me‖v‖2 fe(t, x, v)d3v

] }

d3x = 0, t ≥ 0, (3.6)

with c2 ǫ0 µ0 = 1. The Vlasov-Maxwell system also conserves the kinetic entropy

d
dt

H(t) =
d
dt

∫

R3×R3
fe(t, x, v) log( fe(t, x, v)) d3x d3v = 0, t ≥ 0. (3.7)

3.2.2 The relativistic Vlasov-Maxwell system

In the relativistic regime, we introduce the momemtump and associated Lorentz factorγ(p) =
√

1+ p2/(mec)2.
The distribution functionfe(t, x,p) is solution of the relativistic extension of equation (8.1)

∂ fe
∂t
+ ∇x · (v fe) + qe∇p · ((E + v × B) fe) = 0 , (3.8)

coupled to the Maxwell equations























































































∂E
∂t
− c2∇x × B = − j

ǫ0
,

∂B
∂t
+ ∇x × E = 0,

∇x · E = ρ
ǫ0
, ∇x · B = 0,

j (t, x) = qe

∫

R3
fe(t, x,p) v d3p.

(3.9)
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Local conservation of charge

Multiplying the equation (3.8) byqe, and integrating over momentum yields

∂

∂t

∫

R3
(qe fe)d

3p+ ∇x ·
∫

R3
(qev fed

3p+ qe

∫

R3
∇p ·

(

fe
[

qe(E + v ∧ B)
])

d3p = 0 . (3.10)

The distribution function satisfiesfe −−−→
p→0

∞. Therefore, for all vector fieldX

∫

R3
∇p · (X fe)d

3p = 0 . (3.11)

The equation for conservation of the charge reads

∂

∂t

∫

R3
(qe fe)d

3p+ ∇x ·
∫

R3
(qev fe)d

3p = 0 , (3.12)

and can be rewritten

∂

∂t
ρe+ ∇x · j = 0 . (3.13)

Local conservation of energy

The combination of Amp̀ere (3.14) and Faraday equations (3.15)

∇x × B = µ0j +
1
c2

∂

∂t
E , (3.14)

∂

∂t
B + ∇x × E = 0 . (3.15)

gives

∂

∂t

(

ǫ0E2

2
+

B2

2µ0

)

+ ∇x · S+ j · E = 0 , (3.16)

whereS=
E ∧ B
µ0

is the Poynting vector.

The power term created by the work of the electric fieldj · E is obtained by multiplying the Vlasov
equation bymec2γ(p), and multiplying over momentum

∫

R3
mec

2γ(p)
∂ fe
∂t

d3p +

∫

R3
mec

2γ(p)v∇x fed
3p+ E ·

∫

R3
qemec

2γ(p)∇p fed
3p

+

∫

qemec
2γ(p) (v × B) · ∇p fed

3p = 0 . (3.17)

Then, using only integration by parts and the properties

v = mec
2∇pγ(p) , (3.18)

fe −−−→
p→0

∞ , (3.19)
∫

R3
∇p · (X fe)d

3p = 0 ∀ X , (3.20)
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we obtain

j · E = ∂

∂t

∫

R3
mec

2γ(p) fed
3p+ ∇x ·

∫

R3
mec

2γ(p)v fed
3p . (3.21)

Finally, the local energy conservation reads

∂

∂t

(

ǫ0E2

2
+

B2

2µ0
+

∫

R3
mec

2γ(p) fed
3p

)

+ ∇x ·
(

S+
∫

R3
mec

2γ(p)v fed
3p

)

= 0 . (3.22)

Global conservation laws

In the case of a periodic or infinite domain in space, the conservation laws, (3.4), (3.5), (3.6), and (3.7),
valid in the nonrelativistic limit, can be extended to the relativistic regime

d
dt

∫

R3×R3
fe(t, x,p)d3x d3p = 0, t ≥ 0 , (3.23)

d
dt

(∫

R3

[∫

R3
p fe(t, x,p)d3p+ ǫ0 (E(t, x) × B(t, x))

]

d3x

)

= qe

∫

R3
E(t, x)ne(t, x)d3x+

∫

R3
ǫ0E(t, x) × (∇xE(t, x)) d3x , t ≥ 0. (3.24)

d
dt

∫

R3

{

ǫ0

2
‖E(t, x)‖2 + 1

2µ0
‖B(t, x)‖2+

[∫

R3
mec

2 (γ(p) − 1) fe(t, x,p)d3p

] }

d3x = 0, t ≥ 0 , (3.25)

d
dt

H(t) =
d
dt

∫

R3×R3
fe(t, x,p) log( fe(t, x,p)) d3x d3p = 0, t ≥ 0 . (3.26)

3.3 Numerical scheme for the nonrelativistic free-streaming transport

We present a finite volume approximation for the Vlasov-Maxwell system (8.1)-(3.2) without collision
operators. Indeed, it is crucial to approximate accurately the transportpart of the system to assess the
collective behavior1 of the plasma, that occurs typically at a shorter time scale than the collision pro-
cesses. We introduce a uniform 1Dx space discretization (xi+1/2)i∈I , I ⊂ N, of the interval (0, L1), in the
direction denoted by the index 1. The associated space variable is denotedby x1. We define the control
volumesCi,j = (xi−1/2, xi+1/2)× (vj−1/2, vj+1/2), and the size of a control volume in one direction in space
∆x and velocity∆v.

1By collective effects, we denote here the self-consistent interaction of electromagnetic fields and particles. Some collective
effects are also considered in the collision processes, which make two particles interactvia the Coulomb field. The self-
consistent electrostatic field then screens the long range Coulomb potentialand removes the singularity in the Fokker-Plank-
Landau operator.
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The velocity variablev = t(v1, v2, v3) is discretized on the gridvj = j ∆v = t(v j1, v j2, v j3) with
j = t( j1, j2, j3) ∈ Z3. Moreover we notevj+1/2 =

t( j1 + 1/2, j2 + 1/2, j3 + 1/2)∆v. Finally, the time
discretization is defined astn = n∆t, with n ∈ N.

Let f n
i,j be an average approximation of the distribution function on the control volumeCi,j at timetn,

that is

f n
i,j ≃

1
∆x∆v3

∫

Ci,j

f (tn, x, v)dx d3v.

Moreover since the discretization is presented in a simple 1Dx space geometry, the electric and magnetic
fields have the following structure:E = t(E1(t, x1)),E2(t, x1),0), B = t(0,0, B3(t, x1)). Hence we denote
by t(En

1,i ,E
n
2,i) an approximation of the electric fieldt(E1,E2) whereasBn

3,i represents an approximation
of the magnetic fieldB3 in the control volume (xi−1/2, xi+1/2) at timetn.

3.3.1 Second order approximation of a one dimensional kinetic equation

For the sake of simplicity, we focus on the discretization of a 1Dx kinetic transport equation; the extension
to higher dimensions is straightforward on a grid. The generic 1Dx scheme is applied in the five phase
space directions, without requiring time splitting techniques between transport terms. In this section, the
index 1 is dropped both in space and velocity directions, for this simple 1Dx geometry.

Let us consider the following equation fort ≥ 0 andx ∈ (0, L),

∂ f
∂t
+ v

∂ f
∂x
= 0 , (3.27)

where the velocityv > 0 is given. By symmetry it is possible to recover the case whenv is negative. In
the following we skip the velocity variable dependency of the distribution function. Using a time explicit
Euler scheme and integrating the 1D Vlasov equation on a control volume (xi−1/2, xi+1/2), it yields

f n+1
i = f n

i −
∆t
∆x

[

F n
i+1/2 − F

n
i−1/2

]

, (3.28)

whereF n
i+1/2 represents a conservative approximation of the fluxv f(tn, xi+1/2) at the interfacexi+1/2.

The next step consists of the approximation of the fluxes and the reconstruction of the distribution
function. With this aim, we approximate the distribution functionf (tn, x) by fh(x) using a second order
accurate approximation of the distribution function on the interval [xi−1/2, xi+1/2), with a reconstruction
technique by primitive [7]

fh(x) = f n
i + ǫ+i

(x− xi)
∆x

( f n
i+1 − f n

i ). (3.29)

We introduce the limiter

ǫ+i =















































0 if ( f n
i+1 − f n

i ) ( f n
i − f n

i−1) < 0,

min

















1,
2
(

‖ f 0‖∞ − f n
i

)

f n
i − f n

i+1

















if ( f n
i+1 − f n

i ) < 0 ,

min

(

1,
2 f n

i

f n
i+1 − f n

i

)

else,

(3.30)

and setF n
i+1/2 = v fh(xi+1/2). This type of limiter introduces a particular treatment for extrema. At

this price only (dissipation at extrema), we were able to recover correctly the Two-Stream Instabililty
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tests I and IV, without oscillations destroying the salient features of the distribution function structure.
Another choice for the limitation consits in choosing the “Van Leer’s one parameter family of the minmod
limiters” [15, 24]

ǫ+i ( f n
i+1 − f n

i ) = minmod

(

b
( f n

i+1 − f n
i )

∆x
,
( f n

i+1 − f n
i−1)

2∆x
,b

( f n
i − f n

i−1)

∆x

)

, (3.31)

where

minmod(x, y, z) ≡ max(0,min(x, y, z)) +min(0,max(x, y, z)) , (x, y, z) ∈ R,

and 1≤ b ≤ 2. The importance of the choice of limiters will be observed on the Two-StreamInstability
test I.

Finally, this reconstruction ensures the conservation of the average andthe positivity onfh(x) [7].

3.3.2 Fourth order transport scheme

We turn now to a higher order approximation (fourth order MUSCL TVD scheme) [25]. This scheme
has also been considered in [2], in the frame of VFRoe schemes for the shallow water equations, where
the authors proposed an additional limitation. Here we note that an optimized limitationprocedure is
possible in our case, breaking the similar treatment for both right and left increments, and taking advan-
tage of the structure of the flux in the non-relativistic Vlasov equation: the force term does not depend
of the advection variable.

For this MUSCL scheme, we only give here the algorithm for the implementation ofthis scheme and
refer to [2], [25] for the derivation procedure of this scheme.
The high order flux at the interfacexi+1/2, at timetn reads

F n
i+1/2 = F

(

f n
i,r , f n

i+1,l

)

=

{

v fn
i,r if v > 0 ,

v fn
i+1,l if v < 0 .

This numerical flux involves the reconstructed states:f n
i,r = f n

i + (∆ f )+i and f n
i,l = f n

i + (∆ f )−i , where
(∆ f )±i are the reconstruction increments.

An intermediate statef ∗i , defined by
1
3

(

f n
i,r + f ∗i + f n

i,l

)

= f n
i is introduced. It is shown in [2] that the

introduction of this intermediate state preserves, provided the CFL condition isformally divided by three,
the positivity of the distribution function. Following [25] and [2], the fourth order MUSCL reconstruction
reads
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Algorithm of reconstruction.

Compute

(∆ f )−i = −
1
6

(

2∆∗ f̄i−1/2 + ∆
∗ f̃i+1/2

)

,

(∆ f )+i =
1
6

(

∆∗ f̄i−1/2 + 2∆∗ f̃i+1/2

)

,

where
∆∗ f̄i−1/2 = minmod(∆∗ fi−1/2,4∆

∗ fi+1/2),

∆∗ f̃i+1/2 = minmod(∆∗ fi+1/2,4∆
∗ fi−1/2)

and

∆∗ fi+1/2 = ∆ fi+1/2 −
1
6
∆3 f̄i+1/2,

∆3 f̄i+1/2 = ∆ f̄ a
i−1/2 − 2∆ f̄ b

i+1/2 + ∆ f̄ c
i+3/2,

with
∆ f̄ a

i−1/2 = minmod(∆ fi−1/2,2∆ fi+1/2,2∆ fi+3/2),

∆ f̄ b
i+1/2 = minmod(∆ fi+1/2,2∆ fi+3/2,2∆ fi−1/2),

∆ f̄ c
i+3/2 = minmod(∆ fi+3/2,2∆ fi−1/2,2∆ fi+1/2),

with the notation∆ fi+1/2 = fi+1 − fi .

Reminding that the minmod limiter is given by

minmod(x, y) =











































0, if x y≤ 0,

x if |x| ≤ |y|,

y else,

(3.32)

with (x, y) ∈ R3. The limitation proposed in [2] is then applied and allows the positivity of the recon-
structed states to be satisfied.
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Algorithm for the limitation involving the intermediate state.

Compute (∆ f )lim,±
i such that

f n
i + (∆ f )lim,−

i ≥ 0,

f n
i + (∆ f )lim,+

i ≥ 0,
and

f ∗i = f n
i − (∆ f )lim,−

i − (∆ f )lim,+
i ≥ 0.

This limitation reads:























(∆ f )lim,−
i = θ max

(

(∆ f )−i ,− f n
i

)

,

(∆ f )lim,+
i = θ max

(

(∆ f )+i ,− f n
i

)

,

where

θ =







































1, if max
(

(∆ f )−i ,− f n
i

)

+ max
(

(∆ f )+i ,− f n
i

)

≤ 0 ,

min

















1,
f n
i

max
(

(∆ f )−i ,− f n
i

)

+ max
(

(∆ f )+i ,− f n
i

)

















otherwise.

3.3.3 Application to the Vlasov-Maxwell system.

We exactly follow the same idea to design a scheme for the full Vlasov equation inphase space (x, v) ∈
Ω × R3. In addition, a centered formulation for the electromagnetic fields is chosen:

En+1/2 =
1
2

(

En+1 + En
)

and Bn+1/2 =
1
2

(

Bn+1 + Bn
)

. (3.33)

The discretization of the Maxwell equations (3.2)-(3.3) is performedvia an implicit θ-scheme, with
θ = 1/2, which corresponds to the Crank-Nicholson scheme and thus preserves the total discrete energy.
This discretization is presented in a simple 1Dx space geometry. The electric fieldE = t(E1,E2,0) and
the magnetic fieldB = t(0,0, B3) are collocated on the discrete grid. These fields are solution of the
system















































































En+1
1,i − En

1,i

∆t
= −

Jn
1,i

ǫ0
,

En+1
2,i − En

2,i

∆t
+ c2

Bn+1/2
3,i+1 − Bn+1/2

3,i−1

2∆x
= −

Jn
2,i

ǫ0
,

Bn+1
3,i − Bn

3,i

∆t
+

En+1/2
2,i+1 − En+1/2

2,i−1

2∆x
= 0.

(3.34)

This scheme is well-suited for the situations involving low frequency self-generated electric and mag-
netic fields, and is design to minimize the numerical dissipation. The design of this scheme is not tuned
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to reduce the numerical dispersion associated to the propagation of high frequency, shorte-pulse electro-
magnetic waves.
The approximation for the current in (3.34)Jn

1 andJn
2 has been chosen such as

Jn
1,i =

∑

j∈Z3

∆v3 v j1 f n
i,j and Jn

2,i =
∑

j∈Z3

∆v3 v j2 f n
i,j . (3.35)

Unfortunately, these expressions do not preserve the total energy when slopes limiters are active in the
discrete Vlasov solver, but we will show that they have the important feature to reproduce the discrete
Two-Stream dispersion relation.

First, we remind discrete properties concerning positivity, mass and energy conservation [7] of the
second order scheme (3.28)-(3.29) coupled with (3.33)-(3.35), considering the magnetic component.

Proposition 1. Let the initial datum( f 0
i,j )i,j∈Z3 be nonnegative and assume the following CFL type con-

dition on the time step
∆t ≤ C min(∆x,∆v) , (3.36)

where C> 0 is related to the maximum norm of the electric and magnetic fields and the upperbound of
the velocity domain.

Then the scheme (3.28)-(3.29) coupled with (3.33)-(3.35), when extended to the infinite3Dx × 3Dv

geometry, gives a nonnegative approximation, preserves total mass and energy when slopes limiters are
not active on the transport in the velocity directions

1
2

∑

i∈I
∆x3



















ǫ0 ‖En
i ‖

2 +
1
µ0
‖Bn

i ‖
2 + me



















∑

j∈Z3

∆v3 ‖vj ‖2 f n
i,j





































= C0 , n ∈ N.

Remark 1. Both the second order scheme and its fourth order extension preserve the positivity of the
distribution function, provided the CFL criteria are satisfied. The positivity is essential to describe
correctly the high energy tail of the distribution function, where the particle density is low. In all the
tests presented, the time increment is chosen small enough to satisfy this CFLcondition, together with
the diffusive-type CFL condition that comes from the collision operators. Here we consider centered
numerical schemes (if slope limiters are not active), in order to preserve the energy. This is the reason
why we considered only schemes having even order.

In addition to these properties, we justify our choice for the numerical current thanks to a discrete
dispersion relation on the two-stream instability. In the rest of the section, wedrop the index 1 on the
variablesx1, v1, E1 andJ1, because the transport is considered 1Dx × 1Dv.

Proposition 2. Consider the second order scheme (3.28)-(3.29) coupled with (3.33)-(3.35), when slope
limiters are not active, to approximate the Vlasov-Ampère system







































∂ f
∂t
+ v

∂ f
∂x
+

qe

me
E
∂ f
∂v
= 0,

∂E
∂t
= − J

ǫ0
.

(3.37)

Then the definition (3.35) for the current J defines a discrete dispersion relation that converges toward
the continuous dispersion relation when∆v,∆x and∆t tend to0.
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Proof: The Two-Stream Instability configuration can be fully analyzed with the Vlasov-Ampère system
(3.37) extracted from equations (8.1)-(3.3). The dispersion relation for a perturbationf (1) ∝ ei(k x−ω t) of
an initial equilibrium statef (0), with ‖ f (1)‖ ≪ ‖ f (0)‖, then reads

1 +
q2

e

ǫ0 me

∫

R

v
ω(ω − k v)

∂ f (0)

∂v
dv = 0. (3.38)

Here the crucial point is the discretization on the velocity part of the phase space, so that we perform
a semi-discrete analysis. In the frame of the discretization (3.28)-(3.29) coupled with (3.33)-(3.35), we
consider the semi-discrete scheme approximating (3.37)











































∂ f
∂t
+ v

∂ f
∂x
+

qe

me
E

f j+1/2 − f j+1/2

∆v
= 0,

∂E
∂t
= −qe

ǫ0

∑

j∈Z
∆v vj f j ,

(3.39)

with

f j+1/2 =
f j+1 + f j

2
,

assuming the slope limiter is not active. Then we perform a discrete linearization around an equilibrium
state

f j = f (0)
j + f (1)

j ,

where‖ f (1)‖ ≪ ‖ f (0)‖. Using f (1)
j ∝ ei(k x−ωt) in (3.39), it yields











































−i (ω − k vj) f (1)
j +

qe

me
E(1)

f (0)
j+1/2 − f (0)

j−1/2

∆v
= 0,

−i ωE(1) = −qe

ǫ0

∑

j∈Z
∆v vj f (1)

j .

(3.40)

These equations lead to the discrete dispersion relation

1 +
q2

e

ǫ0 me

∑

j∈Z

v j

ω (ω − k vj)



















f (0)
j+1/2 − f (0)

j−1/2

∆v



















∆v = 0. (3.41)

We recover the continuous dispersion relation (3.38) when passing to the limit∆v→ 0. Any other choice
for the discrete current in (3.40) would introduce an additional error that would substitute to theO(∆v2)
accuracy order of the dispersion relation (3.41). For instance, the choice

J =
∑

j∈Z
∆v vj f j+1/2

would lead to

1 +
q2

e

ǫ0 me

∑

j∈Z

(v j − ∆v)

ω (ω − k vj)



















f (0)
j+1/2 − f (0)

j−1/2

∆v



















∆v = 0, (3.42)

which is a “shifted” dispersion relation, with aO(∆v) first oder accuracy, compared to the second order
accurate relation given by (3.41). �
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3.3.4 Boundary conditions

Truncation of the velocity domain.

The discretization in the velocity space imposes a truncation of the infinite velocitydomain, and the
introduction of boundary conditions. We only need to consider the directionv1, where the discretized
velocity variable isv j1, with j1 ∈ [−nv1,nv1] ⊂ Z, and 2nv1+1 is the total number of discretization points.
If the second order scheme (respectively the fourth order scheme) is considered, then the boundary
conditions are applied on two ghost points (respectively three ghost points). This is due to the extension
of the stencil. Considering the second order scheme, the ghost points at the velocity domain arev j1 with
j1 = ±nv1, ±(nv1 + 1). Therefore, at these points, we impose the truncationf n+1

j1
= 0.

Boundary conditions in the velocity domain.

The treatment of runaway particles, in the frame of the model presented in Chapter 8, would require
boundary conditions in the velocity domain, for these runaway particle to be free to escape from the
thermal population and enter into the fast popultaion.

Boundary conditions in the space domain.

The boundary conditions for the space directions satisfy also naturally thepositivity constraint with our
scheme. It is indeed designed with reconstructed numerical fluxes, that maintain the positivity (under
the CFL condition) if the distribution function at the previous time step is positive.At a boundary
interface,x−1/2 at the left boundary, where the numerical flux should be computed, the only requirement
is to specify a positive distribution at ghost points to impose the boundary conditions. We explicit here
the non-trivial ghost point used by a zero current left boundary (with temperatureTL) condition, in the
directionx1.

f n
−1,j = C−1/2 exp













−
‖vj ‖2

2TL













, (3.43)

whereC−1/2 > 0 and satisfies

∑

j

F n
−1/2,j = 0. (3.44)

Such a numerical choice for the boundary condition may induce a Knudsentype boundary layer, in the
presence of collisions between particles. The collisions tend to stabilize the distribution function at the
thermal equilibrium in a few mean-free-path around this hydrodynamical discontinuity. This behaviour
is illustrated in Figure (5.1), for the test 1.

3.4 Extension to the relativisitic regime

In the same manner as in the nonrelativistic limit, we introduce a uniform 1Dx space discretization
(xi+1/2)i∈I , I ⊂ N, of the interval (0, L1), in the direction denoted by the index 1. The associated space
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variable is denoted byx1. We define the control volumesCi,j = (xi−1/2, xi+1/2) × (pj−1/2,pj+1/2), the size
of a control volume in one direction in space∆x and momentum∆p.

The momentum variablep = t(p1, p2, p3) is discretized on the gridpj = j ∆p = t(p j1, p j2, p j3) with
j = t( j1, j2, j3) ∈ Z3. Moreover we notepj+1/2 =

t( j1 + 1/2, j2 + 1/2, j3 + 1/2)∆p. Finally, the time
discretization is defined astn = n∆t, with n ∈ N.

Let f n
i,j be an average approximation of the distribution function on the control volumeCi,j at timetn,

that is

f n
i,j ≃

1
∆x∆p3

∫

Ci,j

f (tn, x,p)dx d3p.

Proposition 3. Let us consider the dimensionless (with normalization of appendix 3.9) Vlasov equation
(3.8) written under its conservative form. Then the relativistic extension of the scheme (3.28)-(3.29),
together with the numerical scheme for Maxwell(3.34), should present the following centered discretiza-
tion of the velocity variable,

v1,j = mec
2γ j1+1, j2, j3 − γ j1−1, j2, j3

2∆p1
, (3.45)

v2,j = mec
2γ j1, j2+1, j3 − γ j1, j2−1, j3

2∆p2
, (3.46)

v3,j = mec
2γ j1, j2, j3+1 − γ j1, j2, j3−1

2∆p3
, (3.47)

in order to respect, at the discrete level, the relation

∇p ×
(

∇pγ(p)
)

= 0 .

This holds true because the discrete centered derivative commute. This relation ensures the equivalence
between the conservative and nonconservative forms of the Vlasov equation.
On the one hand, if the discrete current is defined as

Jn
i ≡ ∆p3

∑

j∈Z3

vj f n
i,j , (3.48)

then the discrete total energy is preserved, when slopes limiters are not active in the momentum advection
term∇p. On the other hand, let us consider the discrete expression for the current Jn

i obtained from the
discete analogous of the momentum conservation equation(3.5). The discrete form of this equation
is issued from the direct integration of the relativistic Vlasov solver, with the prescribed definition for
the discrete velocity (3.45-3.47), coupled with the discretization of Maxwell equation (3.34). Then the
discrete current, defined as

Jn
i = qe

∑

j∈Z3

(

fh(xi ,p j1, j2+1/2, j3)v1,j , fh(xi ,p j1+1/2, j2, j3)v2,j ,0
)

∆p3 , (3.49)

preserves the discrete total momentum.
Finally discrete current definitions(3.48)and (3.49)satisfy the total mass conservation.
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Proof. The exact conservation of the discrete mass, momentum, and energy is proved here in one space
dimension and three momentum dimensions, with a field geometry (E1,E2, B3) that is resolved by the
discrete Maxwell equation (3.34). We show here that different definitions of the discrete source term
currents are possible, depending whether the discrete total momentum or energy is favoured. Given this
geometry, only advections in thep1 and p2 directions are needed. The generalization to an arbitrary
configuration is straightforward.
Let us recall the numerical scheme for the relativistic extension of the scheme (3.28)-(3.29) with velocity
(3.45)-(3.47), coupled with the discrete Maxwell equations (3.34). This scheme must be considered
first under its conservative form, because of the dependance of the velocity over the momenta, in the
relativisitic regime, in order to recover the discrete total mass conservation (this was not the case in the
nonrelativistic limit)

f n+1
i,j = f n

i,j − ∆t
(

Dx1F
x1

i,j + Dx2F
x2

i,j + Dp1F
p1

i,j + Dp2F
p2

i,j

)

, (3.50)

where

Dx1F
x1

i,j ≡ v1,j
fh(x(i1+1/2,i2),pj ) − fh(x(i1−1/2,i2),pj )

∆x
,

Dx2F
x2

i,j ≡ v2,j
fh(x(i1,i2+1/2),pj ) − fh(x(i1,i2−1/2),pj )

∆x
,

Dp1F
p1

i,j ≡
F p1

i,( j1+1/2, j2, j3) − F
p1

i,( j1−1/2, j2, j3)

∆p1
,

Dp2F
p2

i,j ≡
F p2

i,( j1, j2+1/2, j3) − F
p2

i,( j1, j2+1/2, j3)

∆p2
,

F p1

i,( j1+1/2, j2, j3) ≡
[

En+1/2
1,i + v2,( j1+1/2, j2, j3)B

n+1/2
3,i

]

fh(xi ,p( j1+1/2, j2, j3)) ,

F p2

i,( j1, j2+1/2, j3) ≡
[

En+1/2
2,i − v1,( j1, j2+1/2, j3)B

n+1/2
3,i

]

fh(xi ,p j1, j2+1/2, j3) ,

where fh is the high order reconstruction of the distribution function. It is independent of the sign of the
force term in the advection scheme: there is no upwinding if the limiter are not active. We obtain

fh(xi ,p( j1+1/2, j2, j3)) =
fi,( j1+1, j2, j3) + fi,j

2
,

fh(xi ,p( j1, j2+1/2, j3)) =
fi,( j1, j2+1, j3) + fi,j

2
.

The interface velocities are defined with a mid-point rule

v2,( j1+1/2, j2, j3) ≡
v2,( j1+1, j2, j3) + v2,( j1, j2, j3)

2
.

v1,( j1, j2+1/2, j3) ≡
v1,( j1, j2+1, j3) + v1,( j1, j2, j3)

2
.
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With these discretization choices, the conservative scheme can be rewrittenas

f n+1
i,j = f n

i,j − ∆tDx1F
x1

i,j − ∆tDx2F
x2

i,j

− ∆t
[

En+1/2
1,i + Bn+1/2

3,i v2,j

]

×
[

fh(xi ,p( j1+1/2, j2, j3)) − fh(xi ,p( j1−1/2, j2, j3))

∆p1

]

− ∆t
[

En+1/2
2,i − Bn+1/2

3,i v1,j

]

×
[

fh(xi ,p( j1, j2+1/2, j3)) − fh(xi ,p( j1, j2−1/2, j3))

∆p2

]

+ ∆t
Bn+1/2

3,i

2
Ri,j , (3.51)

Ri,j = − fh(xi ,p( j1+1/2, j2, j3))

[

v2,( j1+1, j2, j3) − v2,j

∆p1

]

+ fh(xi ,p( j1−1/2, j2, j3))

[

v2,( j1−1, j2, j3) − v2,j

∆p1

]

+ fh(xi ,p( j1, j2+1/2, j3))

[

v1,( j1, j2+1, j3) − v1,j

∆p2

]

− fh(xi ,p( j1, j2−1/2, j3))

[

v1,( j1, j2−1, j3) − v1,j

∆p2

]

(3.52)

The conservative scheme is splitted twofold. On the one hand, the first termsare expressed with an
apparent, nonstandard nonconservative discretization, and actually this is not, since the sum of these
terms does conserve energy, momenum and mass on its own. In the nonrelativistic limit, these terms
are consistent with the nonrelativistic scheme (3.28-3.29). On the other hand, the relativistic residual
termRi,j is consistent with the continuous quantity

[(

− ∂v2
∂p1
+

∂v1
∂p2

)

f
]

(xi , vj ) = 0, and constitues indeed a
discretization of zero, that appears only in the relativistic regime. Any error due to the discretization of
this zero residual could be enhanced by strong magnetic fields, becauseof theBn+1/2

3,i factor.

We shall show that the terms in the right-hand side of the equation (3.51) that do not contribute to
the relativistic residualRi,j are self-consistent with respect to the discrete mass, momentum and energy
conservation (Discrete momentum and energy conservations require different definitions for the current,
in the nonrelativistic regime as well). Therefore, the relativistic residual should be neglected, as it only
brings unavoidable additional errors to the discretization of zero. The scheme still keeps all the relativistic
features of the mass, momentum, and energy transport.Its practical implemention, without the relativistic
residual, writes

f n+1
i,j = f n

i,j − ∆tDx1F
x1

i,j − ∆tDx2F
x2

i,j

− ∆t
[

En+1/2
1,i + Bn+1/2

3,i v2,j

]

×
[

fh(xi ,p( j1+1/2, j2, j3)) − fh(xi ,p( j1−1/2, j2, j3))

∆p1

]

− ∆t
[

En+1/2
2,i − Bn+1/2

3,i v1,j

]

×
[

fh(xi ,p( j1, j2+1/2, j3)) − fh(xi ,p( j1, j2−1/2, j3))

∆p2

]

(3.53)

Let us first investigate the discrete energy conservation. To this aim we donot activate the slope lim-

iters in the advection term∇p, and define the discrete current asJn
i ≡ ∆p3

∑

j∈Z3

vj f n
i,j . We then perform
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integrations by parts, consider thatfi,j goes to zero as‖j‖ goes to infinity, and use

v1,( j1, j2+1, j3) − v1,( j1, j2−1, j3)

2∆p1
−

v2,( j1+1, j2, j3) − v2,( j1−1, j2, j3)

2∆p2
= 0 ,

which is due to the discete numerical choice for the velocity variable. We finally obtain a simple form
for the ohmic heating term

∆3p
∑

j∈Z3

(γj − 1)
(

Dp1F
p1

i,j + Dp2F
p2

i,j

)

= −Jn
i · E

n+1/2
i .

The discrete kinetic energy is defined as

ǫn
K ≡ ∆x∆3p

∑

(i,j )∈ZZ2×ZZ3

f n
i,j

(

γj − 1
)

. (3.54)

Multiplying this latter expression byγj∆x∆3p,and summing over (i, j ) ∈ ZZ2 × ZZ3

cancels the space advection terms with discrete integration by parts. The numerical difinitions for
the velocities (3.45) (3.46) and the numerical currents are then introduced

Jn
i = ∆

3p
∑

j∈ZZ3

f n
i,j vj . (3.55)

The cross termP1,2 of the pressure tensorP, at the space point denoted by the subscripti, is then intro-
duced

P1,2,i = ∆
3p

∑

j∈ZZ3

v1,j v2,j f n
i,j . (3.56)

We finally obtain

ǫn+1
K = ǫn

K + ∆t∆x

















∑

i∈ZZ
En+1/2

1,i Jn
1,i +

∑

i∈ZZ
Bn+1/2

3,i Pn
1,2,i

















+∆t∆x



















∑

i∈ZZ2

En+1/2
2,i Jn

2,i −
∑

i∈ZZ2

Bn+1/2
3,i Pn

1,2,i



















. (3.57)

This expression can be simplified, because the magnetic terms issued fromv × B cancel.

ǫn+1
K = ǫn

K + ∆t∆x
∑

i∈ZZ2

Jn
i · E

n+1/2
i . (3.58)

The power created by the electric field∆x
∑

i∈ZZ2

Jn
i ·E

n+1/2
i can be expressed using the discrete Ampère and

Faraday equations. Multiplying the Ampère equation byEn+1/2
i , and the Faraday equation byBn+1/2

3,i , we



High order numerical schemes for the free-transport Vlasov-Maxwell model 83

obtain

En+1/2
i ·

































En+1
1,i − En

1,i

∆t
−

Bn+1/2
3,i1,i2+1 − Bn+1/2

3,i1,i2−1

2∆x
= −Jn

1,i

En+1
2,i − En

2,i

∆t
+

Bn+1/2
3,i1+1,i2

− Bn+1/2
3,i1−1,i2

2∆x
= −Jn

2,i

































, (3.59)

Bn+1/2
3,i ×

















Bn+1
3,i − Bn

3,i

∆t
+

En+1/2
2,(i1+1,i2) − En+1/2

2,(i1−1,i2)

2∆x
−

En+1/2
1,(i1,i2+1) − En+1/2

2,(i1,i2−1)

2∆x
= 0

















. (3.60)

The combination of equations (3.59) and (3.60) give

(

En+1
i

)2 −
(

En
i

)2

∆t
+

(

Bn+1
3,i

)2 −
(

Bn
3,i

)2

∆t
+ Di · Sn+1/2

i = −Jn
i · E

n+1/2
i , (3.61)

whereDi · is the discrete centered divergence operator , andS the Ponyting vector, whose discrete ex-
pression is

Sn+1/2
i = (E × B)n+1/2

i . (3.62)

A summation is then performed overi ∈ ZZ2, that cancels the Poynting vector contribution by periodicity

∑

i∈ZZ2





















(

En+1
i

)2 −
(

En
i

)2

∆t
+

(

Bn+1
3,i

)2 −
(

Bn
3,i

)2

∆t





















= −
∑

i∈ZZ2

Jn
i · E

n+1/2
i . (3.63)

The equations (3.58) et (3.63) are finally combined to obtain the dimensionlessdiscrete energy conser-
vation

ǫn+1
K − ǫn

K

∆t
+

∑

i∈ZZ2





















(

En+1
i

)2 −
(

En
i

)2

∆t
+

(

Bn+1
3,i

)2 −
(

Bn
3,i

)2

∆t





















= 0 . (3.64)

The proof of the discrete conservation of momentum is straightforward. The discrete analogous
of equation (3.24) is obtained from the numerical scheme (3.53)), coupledwith the discretization of
Maxwell equation (3.34), where the current source term are defined inequation (3.49). The discrete
momentum conservation equation then reads

1
∆t



















∑

i∈Z2





































∑

j∈Z3

f n+1
i,j pj∆p3 + ǫ0En+1

i × Bn+1
i



















−



















∑

j∈Z3

f n
i,j pj∆p3 + ǫ0En

i × Bn
i





































∆x2



















= qe

∑

i∈Z2

[

En
i nn

e,i

]

∆x2 +
∑

i∈Z2

ǫ0
[

En
i ×

(

Dc
x,i × En

i

)]

∆x2 , (3.65)

whereDc
x,i is the discrete centered gradient operator is space, at the meshi. �
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Remark 2. This proposition holds true in the nonrelativistic limit, however, in this limit, the definitions
for momentum and current only differ by a factor me. Though these are disctinct quantities, that have to
be discretized in a different manner.
Two relevant expressions have been proposed, and are possible candidates for the current discretiza-
tion. On the one hand(3.48)preserves the total energy and discrete Two-Stream Instability dispersion
relation, on the other hand(3.49)preserves the momentum. We shall see that the expression(3.49)also
preserves exactly the discrete Poisson equation. In the next section, weuse an intermediate approach,
that makes use of a two step predictor-corrector approach and involves the two possible identified cur-
rent discretizations.

3.5 High order time discretization

Time splitting was historically a standard way for the discretization of the multidimensional, scalar
Vlasov equation [5]. However, such technique may introduce some loss ofsynchronous and symmet-
ric advancing of the distribution function in the phase space [10]. In the frame of Semi-Lagrangian
scheme, the time splitting technique was rigourously proven to be unstable [12]. This difficulty is re-
ported to be corrected, in [22], by the adoption of multi-dimensional velocity advections, where a mod-
ified semi-lagrangian scheme is able to resolve circular particle orbits due to a strong magnetic field,
while maintaining the phase and amplitude of the a momentum rotation on a cartesian grid. We should
also mention here the back-substitution method [23], that is closely related to thetime discretization.
This latter method avoids the systematic heating of the plasma by the time splitting technique.

The numerical schemes we propose do not make use of time splitting techniques, except for the reso-
lution for the FPL collision operator for electron-electron collisions, in Chapter 5, since it uses a specific
subcycling algorithm for time discretization.

To our knowledge, none of the present numerical methods is able to satisfy, at the discrete level
(even formally, far from the extrema of the distribution function), the positivity, exact total energy, and
respect of Poisson equation alltogether. In this Chapter, we have proposed positive high order (second
and fourth order) MUSCL schemes designed to satisfy these conservation properties, except the exact
Poisson equation. However, for long-time simulations or particular configurations, errors due to the non-
respect of the Poisson equation may accumulate and this issue may become crucial. We mention here an
alternative time discretization technique, adapted from [22], that permits to bridge the gap,in an exact
manner, between the Poisson and Ampère equations,via the continuity equation. Using this approach,
we loose theformaldiscrete energy conservation.
While comparing these schemes, we shall therefore evaluate, for some representative configurations,
such as the nonlinear relativistic Landau Damping and Two-Stream Instabilitytests III and IV, the re-
spective importance and need for an exact discrete total energy conservation and/or exact discrete preser-
vation of the continuity equation.
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3.5.1 Second order unsplit energy preserving time discretization

In this section, the time discretization is set up such as the energy conservation is favoured over the
exact respect of the discrete continuity equation, because of the time centering of the electromagnetic
quantities. The drawback of this method is that long-time error accumulations may occur, due to a lack
of accuracy in the charge repartition with respect to the particle positions, due to the non respect of the
Poisson equation. The second order in time, semi-discretized scheme reads

(

E∗

B∗

)

= M−1 (

∆t/2,∆x, jn)
(

En

Bn

)

, (3.66)

f ∗ = f n +
∆t
2
V

(

f n,
E∗ + En

2
,
B∗ + Bn

2
,∆x,∆p

)

, (3.67)

(

En+1

Bn+1

)

= M−1 (

∆t,∆x, j ∗
)

(

En

Bn

)

, (3.68)

f n+1 = f n + ∆tV
(

f ∗,En+1/2,Bn+1/2,∆x,∆p
)

, (3.69)

where the operatorM−1 denotes the operator issued from the discretization (3.34), that only depends
on the time step and mesh size. For an homegeneous grid and a constant time-stepping, the matrix
associated to the operatorM only requires one inversion at initial time. The operatorV denotes the
numerical unsplit high order discretization of the advection terms in the Vlasovequation. The discrete

currents are the discrete analogous ofjn = qe

∫

R3
v f nd3p, j ∗ = qe

∫

R3
v f ∗d3p in the relativistic regime.

In this scheme, all the variables are collocated at the center of the mesh to satisfy the exact total energy
conservation, when slope limiters are not active.

3.5.2 Second order unsplit predictor-corrector time discretization: exact respect of the
continuity equation

The resolution of the Amp̀ere equation, of hyperbolic nature, instead of Poisson equation, of ellipticna-
ture, is desirable in term of computational time. This solution is explored in [1], for the Pierce-Buneman
instabilility (bump-on-tail), for a PPM scheme discretizing the Vlasov equation. The simulation run
is reported to be about 2000 plasma periods, while the maximum relative erroris 0.15 % between the
Ampère and Poisson solutions, which is considered small there. However, thisstatement is not general
and we found some configurations where the exact respect of the Poisson equation is required. We refer
to a 1Dx × 3Dv relativistic interaction where a transverse short-pulse electomagnetic wavepropagates in
the vacuum and interacts with a slab of plasma [19].

To remedy this issue, the time discretization may be set up such as the respect of the Poisson equation
is favoured over the exact total energy conservation, within a predictor-corrector approach
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(

E∗
∂C

B∗S

)

= M±1
(

∆t/4,∆x, jn
∂C

)

(

En
∂C

Bn
S

)

, (3.70)

f ∗ = f n +
∆t
2
V

(

f n,E∗∂C,B
∗
S,∆x,∆p

)

, (3.71)












En+1/2
∂C

Bn+1/2
S













= M±1
(

∆t/2,∆x, jn+1/4
∂C,V

)

(

En
∂C

Bn
S

)

, (3.72)

(

E∗
∂C

B∗S

)

= M±1
(

∆t/2,∆x, jn+1/4
∂C,V

)

(

En
∂C

Bn
S

)

, (3.73)

f n+1 = f n + ∆tV
(

f ∗,E∗∂C,B
∗
S,∆x,∆p

)

, (3.74)
(

En+1
∂C

Bn+1
S

)

= M±1
(

∆t,∆x, jn+1/2
∂C,V

)

(

En
∂C

Bn
S

)

. (3.75)

The subsriptsS and∂C denote the position where the quantity is calculated, either at the vertex or the
interfaces of the mesh, respectively.M±1 denotes any operator associated with an implicit or explicit dis-
cretization of the Maxwell equations. At the correction step, the currentsjn+1/4

∂C,V andjn+1/2
∂C,V are computed

from the high order spatial fluxesV issued from the Vlasov solver, at the mesh interfaces∂C. Therefore
the electric fieldsEn+1/2

∂C andEn+1
∂C are computed such as they respects exactly the Poisson equation at

time tn+1/2 andtn+1, respectively.
This scheme makes use of a staggered grid for the current and fields. Though, we have much more
freedom in the choice of the Maxwell solver, since we relax the exact energy preservation constraint
of the previous scheme. The Maxwell solver can therefore be either Crank-Nicholson [9], caracteristic
scheme (directional splitting, for PIC terminology) [16, 21], FDTD high order scheme [4, 8], Mimetic
Finite Difference [13], Finite Element or discontinuous Galerkin methods [6, 14]. For instance, the use
of staggered grid for the computation of the electric and magnetic fields can beconsidered [22], such as
to avoid the odd-even decoupling between the field, known as the checkerboard instability.
A potential drawback of this method could be the loss of the formal discrete total energy conservation,
however, we shall show, at least in the absence of magnetic fields, for the nonlinear relativistic Landau
Damping and Two-Stream Instability (Tests III and IV), a similar departure from energy conservation,
when compared to the scheme that is energy preserving, presented in Section 3.5.1. In the presence
of self-consistent magnetic fields, the design of the Maxwell solver shouldfocus either on the discrete
energy preservation,i.e. the low dissipation, in the case of low frequency fields generation, or disper-
sive properties in the case of high frequency propagation of a transverse electromagnetic field,i.e. a
short-pulse laser propagation.

3.6 Numerical tests

The objectives of this section are multiple. First we want to bring the evidenceof efficiency of the high
order MUSCL schemes we have proposed. We intend to do so in several simple, but representative con-
figurations, with respect to ICF physics. These would stand as a validationof the numerical schemes in
the collective regime. Second, we focus on coarse grid resolutions, having in view large scale simulation
that include more physics (collisions, Inverse Bremsstrahlung heating, secondary electron production,
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etc). Therefore we would like to highlight the need for robust and high order schemes in this context.
Finally, we shall propose a validation strategy in the linear, collisionless regime, based on the work of C.
Sartori and G.M.M. Coppa [20], to describe the transient behavior of thesolution to the Vlasov-Maxwell
system, in the nonrelativistic and relativistic cases, when the initial data are close to the equilibrium.
The need for such an approach is motivated by the presence of the self-consistent magnetic fields and/or
within a relativistic description, that can lead to the failure of the dispersion relation approach. This isssue
is explained in detailed in the section 2.1.4. Related analytical calculations are given in Appendix 3.10,
in the nonrelativistic regime. In Appendix 3.11, we extend this approach to theVlasov-Maxwell system,
with self-consistent fields. Classical validations of kinetic solvers dedicated to plasma physics [7, 17]
are based on the calculation of the growth rates (instability), or decrease rates (damping) in the linear
regime. We will show the efficiency of this semi-analytical method, that permits an interpretation of the
Two-Stream Instability tests I and IV.

The transport schemes are tested, with a low number of dimensions, 1Dx × 1Dv,p for the tests I ,
II, and IV (The computational resources are then very low), or 1Dx × 3Dv for the test II. For this latter
test, a parallelisation technique is employed, with a domain decomposition in the space dimension. The
simulation is performed with 42 processors to accelerate the calculations, on the CEA-CCRT-platine
facility. This facility is a cluster of Novascale 3045 servers, including 932 nodes, each one having 4 Intel
Itanium dual core processors, at 1.6 Ghz. Each processor has a memory of 24 Go. The Novascale servers
are interconnected by a Voltaire network, with technology Infiniband DDR.
The scaling of appendix 3.8 is used for tests I and II, whereas the scalingof appendix 3.9 is used for tests
III and IV. We do not consider the effects of the collisions in these tests.

3.6.1 Test I: the nonlinear nonrelativistic Two-Stream Instability. Comparison between
second and fourth order MUSCL schemes

The ICF physics involves a propagation of electron beams in plasma. The plasma response to the
beam consists in a return current that goes in the opposite direction to the beam in order to preserve
the quasineutrality. This leads to a very unstable configuration favorable tothe excitation of plasma
waves. We focus here on the instability with a perturbation wavevector parallel to the beam propagation
direction, namely the Two-Stream Instability. Of course, this stands as an academic numerical test but it
is closely related to the physics of ICF.

This numerical test is a very demanding for numerical schemes of transport, that have to be specially
designed (see Proposition 2). In particular, a discrete dispersion relation relative to that problem is
developed to justify numerical choices for the second order scheme. Forthis scheme also, during the
limitation procedure, an additional dissipation at extrema is introduced, compared to [7], in order to
preserve the solution from spurious oscillations. We will show the sensitivityof the scheme with respect
to the chosen limiter, for this particular test case. Moreover, the fourth order scheme is introduced to
reduce numerical heating, for simulations intended to deal with the Two-Stream Instability.

We consider the 1Dx × 1Dv Vlasov-Amp̀ere system (3.37) and choose the scaling (3.81), withν = 0.
The initial distribution function and electric field are



























f 0(x, v) =
1
2

[

(1+ A cos(kx))M1,vd(v) + (1− Acos(kx))M1,−vd(v)
]

,

E0(x) = 0,
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where

M1,vd(v) =
1
√

2π
exp

(

−‖v− vd‖2
2

)

is the Maxwellian distribution function centered around the drift velocityvd.
In order to compare the numerical dissipation associated to the second and fourth order schemes, we

choose a strong perturbation amplitudeA = 0.1. The perturbation wavelength isk = 2π/L and the
beam initial mean velocities arevd = ±4, L = 25 being the size of the periodic space domain. We
choose a truncation of the velocity space to bevmax = 12 and time steps are chosen to be∆t = 1/200,
such as to satisfy the CFL criteria and maintain the positivity of the distribution function.

The objectives of this numerical simulation are, on the one hand, to compare the second order Finite
Volume scheme (specially designed to conserve exactly the discrete total energy, except if the slope
limiters are active) for different slope limiters and the fourth order MUSCL scheme. On the other hand,
we want to explore the effect of a reduced number of grid points on the conservation of the discrete
invariants.
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Figure 3.1:Beams phase space(a) at initial time, (b) at 20 plasma periods (after saturation), with642

grid points.

In Figure 3.1, two countersteaming beams that are initially well separated in the phase space (a) start
to mix together. They finally create a complicated vortex structure, involving wave-particle interactions.
This behavior remains quantitatively the same whatever the transport schemeis, second or fourth order.
In Figure 3.2, we present the evolution of the electric energy for different schemes and several config-
urations from 322 points to 2562. We observe that with a reduced number of grid points (smaller than
128 points in velocity), the second order scheme with the slope limiters (3.30), and fourth order scheme,
present a different behavior on the total electric energy and total energy. Indeed, for a reduced grid res-
olutions (322 or 642 points), the fourth order scheme proves to be better than the second order one. For
322 points, plasma oscillations at the plasma frequency in the nonlinear phase arenot reproduced with
the second order scheme whereas they can be seen with the fourth orderscheme (see Figure 3.2). More-
over for this resolution, the transition from the linear phase to the nonlinear phase occurs earlier than it
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should for the second order scheme. Furthermore, as the grid resolutionincreases, the accuracy remains
better for the fourth order scheme than for the second order one, in the nonlinear phase. The convergence
toward curves with 1282 or 2562 resolution grid is indeed better. We recall that quantities in Figure 3.2
are plotted with a logarithmic scale, that smoothes out discrepancies between curves. In addition to these
results, the respect of total discrete energy conservation proves to bebetter for the fourth order scheme
than for the second order one at a reduced grid resolution, as shown inFigures 3.3 and 3.4.

The use of the slope limiters (3.31) for the second order scheme improves theresults. The plasma
wave structure can then be captured at reduced grid resolutions, see Figure 3.2 (b) and (c). However, the
energy dissipation remains quantitatively the same as the second order scheme with the limiters (3.30),
see Figures 3.3 and 3.4. Only in the case of the second order scheme without limiter, could the energy
be exactly conserved. The counterpart would be the loss of any exploitable solution (loss of stability).

As this test case requires both a good preservation of invariants and accuracy when nonlinear phe-
nomena occur, we might conclude that the fourth order scheme, with a resolution along each velocity
direction greater than 32 cells, is well suited for our physical applications.

Finally, the semi-analytical solution presented in appendix 3.10, allows to interpret the patterns of
the electrostatic energy in the linear regime, as represented in Figure 3.2. Weshow a mean behavior, in
the linear regime, that is related to the discrete, imaginary part of the spectrumof the eigenvalue problem
associated to the linearized equation (2.17). The corresponding solutionsare proportional toeiωt. The
modulations around this mean behavior come from the contribution of the continuous and real part of the
spectrum of the eigenvalue problem, that is not reproduced by the classical validation approach relying
on dispersion relations.



90

−3

−2

−1

 0

 1

 2

 3

 4

 0  5  10  15  20  25  30  35  40  45  50  55  60

32 Points
64 Points
128 Points
256 Points
Semi−Analytical

Dimensionless time

L
o

g
a

ri
th

m
 o

f 
d

im
e

n
s
io

n
le

s
s
 t

o
ta

l 
e

le
c
tr

o
s
ta

ti
c
 e

n
e

rg
y

−3

−2

−1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60

Semi−Analytical
256 Points
128 Points

32 Points
64 Points

Dimensionless time

L
o

g
a

ri
th

m
 o

f 
d

im
e

n
s
io

n
le

s
s
 t

o
ta

l 
e

le
c
tr

o
s
ta

ti
c
 e

n
e

rg
y

−3

−2

−1

 0

 1

 2

 3

 4

 0  5  10  15  20  25  30  35  40  45  50  55  60

32 Points
64 Points
128 Points
256 Points
Semi−analytical

Dimensionless time

L
o

g
a

ri
th

m
 o

f 
d

im
e

n
s
io

n
le

s
s
 t

o
ta

l 
e

le
c
tr

o
s
ta

ti
c
 e

n
e

rg
y

(a) (b) (c)

Figure 3.2: Evolution of the electrostatic energy for322, 642, 1282, 2562 grid points, and the semi-
analytical solution in the linear regime. Results are shown for the second order with (a) slope limiters
(3.30)and(b) slope limiters(3.31)with b= 2, and(c) fourth order transport scheme.
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Figure 3.3:Comparison of the energy evolution for the second (with limiter(3.30)) and fourth order
transport schemes. Results are shown(a) for 322 (b) 642 grid points.
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Figure 3.4:Comparison of the energy evolution for the second (with limiter(3.31), b = 2) and fourth
order transport schemes. Results are shown(a) for 322 (b) 642 grid points.



92

3.6.2 Test II: 1Dx × 3Dv X-mode plasma waves with self-consistent magnetic field

This numerical test stands as a validation of the schemes in the linear regime, when the Vlasov equation
is coupled with the Maxwell system, without the collisions between particles. Thesecond order scheme
is used for the transport terms in thex1, v1, v2 andv3 directions. A particular initial data is chosen (see the
derivation in Appendix 3.12) to trigger an X-mode plasma wave at a well-defined frequencyω. This type
of wave presents a mixed polarization (longitudinal and transverse with respect to the magnetic field),
that propagates in the planeP⊥, perpendicular to the magnetic field direction.

The chosen frequencyω is a solution of the dispersion relation (3.123) of the linearized Vlasov-
Maxwell equations, introducing the equilibrium statef (0)

(

‖v‖2
)

. The initial data are chosen such that

f (0), Ê1, Ê2, and B̂3 only depend onω, B(0), k1 = 2π/L1 and A; where f̂n, B̂3, Ê1 and Ê2 are the
reconstructed (in Appendix 3.12) Fourier transforms of the distribution function and electromagnetic
fields. The magnetic fieldB(0) is the nonperturbed magnitude of the magnetic field,L1 is the length of
the periodic space domain,A is the perturbation amplitude. The initial data can then be constructed with
the help of truncated Fourier series


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





f (0)(x1, v) = f (0)(‖v‖2) +
2

∑

n=−2

f̂n(v⊥)eik1 x1+ i nψ, x1 ∈ (0, L1), v ∈ R3,

E1(t, x1) = Ê1 e−iωt+ik1x1, x1 ∈ (0, L1) ,

E2(t, x1) = Ê2e−iωt+ik1x1, x1 ∈ (0, L1) ,

B(t, x1) = B(0) + B̂3e−iωt+ik1x1, x1 ∈ (0, L1).

We defineψ as the angle in the cylindrical coordinates for the velocity, where the axial direction is the
magnetic field direction (See Appendix 3.12).

The scaling is defined by the relations (3.81), withν = 0. We chooseB(0) = 2 and a rather strong
amplitude perturbationA = 0.1 with periodic boundary conditions on the space domain andβ = vth/c =
0.05. Hence, the dispersion relation has been solved for these parameters. One of the solutionω ≃ 5.1432
is choosen in the initial data set.

We considered 126 points along the 1D space direction, and 64 points along each velocity direction
v = t(v1, v2, v3). The dimension of the space domain isL1 = 25 whereas the truncation of the velocity
space occurs atvmax = 7 for each velocity direction. Furthermore, the time step is∆t = 1/200, which
ensures the positivity of the distribution function here.

The Fourier spectrum in Figure 3.5 (a) exhibits a well defined frequencyf = 1/T ≃ 1.6375 (cor-
responding to a periodT) for the total magnetic energy, that corresponds to a frequencyf /2 for the
magnetic field oscillations. We finally findω = 2π f /2 ≃ 5.1443 from the numerical solution, to be
compared with the analytical results 5.1432. This proves a good accuracy of the numerical results, while
the distribution function is greatly affected by the magnetic field. As an illustration, we show in Figure 3.5
(c) how the magnetic field makes the distribution function rotate in the velocity space perpendicular to
the magnetic field axis.
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Figure 3.5: Discrete Fourier spectrum in frequency (a) of the discrete analogous ofthe total dimen-

sionless magnetic energy
∫ L1

0

‖B3‖2
2

dx1. Projection on the v1 − v2 velocity domain for the distribution

function is shown at initial time tn = 0 (b) and at tn = 40 (c), for a particular point of the space domain,
x1 = 0, v3 = 0.

3.6.3 Test III: the nonlinear relativistic Landau Damping

This numerical test stands, in the one hand, as a validation the numerical choice we have made to develop
the relativitic extension of the kinetic, collisionless, Vlasov solver, as described in Section (3.4). On the
other hand, it provides with a comparison between two schemes for time discretization; as described in
Section (3.5), one favors discrete total energy preserving, rather than the other one rather projects the
solution onto the solutions of the discrete Poisson equation.
The following parameters: time step∆t = 1/500, simulation timeT = 60, truncation of the momentum
spacepmax= 6, initial temperatureTe = 0.52 of the maxwelian distribution, length of the space domain
L = π, uniform mesh size∆x = L/64 in space, uniform mesh size∆p = 2× pmax/64 for momentum, and
nonlinear perturbation amplitudeA = 0.1 are chosen for the simulation setup. The initial electric field is
homogeneously valued zero. The initial distribution function is under the form prescribed in [20]

f (t = 0, x, px) = f0(px) + A
d f0
dpx

(px)cos(kxx) , (3.76)

where

f0(px) = exp

(

−
(
√

(1+ p2
x) − 1

)

/Te

)

/K ,

K =

∫

R

exp

(

−
(
√

(1+ p2
x) − 1

)

/Te

)

.

In the Figure (3.6) (b), we show that the departure from the analytic, constant solution, of the discrete
total energy, is less than 1%, despite the activation of slope limiters. The choice for the discrete velocity
on the momentum grid proves to maintain the numerical heating at a low level, as in thenonrelativistic
case.
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Figure 3.6:Nonlinear relativistic Landau damping for a64× 64 grid resolution. The evolution of the
logarithm of the discrete, dimensionless total electrostatic energy (a) and discrete,dimensionless total
energy (b) is shown against time.

Finally in the Figure (3.6) (a) & (b), the comparison between the two time discretizations, on this Landau
damping regime, does not show any improvement of the solution (in terms of totalelectrostatic field
or total energy) due to centered electromagnetic fields on the Vlasov solver. Therefore the Poisson
preserving time discretization seems to be competitive here.

3.6.4 Test IV: the nonlinear relativistic Two-Stream Instability

This numerical test continues the Test III of the previous section in the relativistic two-stream instability
regime.
The following parameters: time step∆t = 1/500, simulation timeT = 60, truncation of the momentum
spacepmax = 20, temperatureTe = 0.52 of the maxwellian distributions, length of the space domain
L = 25, uniform mesh size∆x = L/32 in space, uniform mesh size∆p = 2 × pmax/32 in momentum,
nonlinear perturbation amplitudeA = 0.1, and drift momenta±pd = ±4 are chosen for the simulation
setup. The initial electric field is homogeneously valued zero. The initial distribution function is

f (t = 0, x, px) =
[

f0(px + pd)(1− Acos(kxx)) + f0(px − pd)(1+ Acos(kxx))
]

/2 , (3.77)

f0(px) = exp

(

−
(
√

(1+ p2
x) − 1

)

/Te

)

/K ,

K =

∫

R

exp

(

−
(
√

(1+ p2
x) − 1

)

/Te

)

.
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Figure 3.7: Nonlinear relativistic two-stream instability for a32× 32 grid resolution. The evolution
of the logarithm of the discrete, dimensionless total electrostatic energy (a)and discrete, dimensionless
total energy (b) is shown against time.

From the Figure (3.7) (a) & (b), and for the same reasons as in the Test III (same low dissipa-
tion/heating level, and proximity of the solutions) of the previous section, we againconclude that the
choice for the discrete velocity maintains the numerical dissipation at a low levelfor the relativistic two-
stream instability regime. In this regime also, the Poisson preserving time discretization proves to be
a competitive numerical design. Indeed, the Poisson equation is not resolved, but it is exactly satisfied
at the discrete level,via the continuity equation. The computational cost and complexity (especially in
2Dx) is then lighten while resolving only the Ampère equation, the low energy dissipation is not lost, and
additional benefits come from the compliance of the discrete solution with the Poisson equation. This last
feature could be relevent in regimes where large density gradients appear or for long time simulations.

3.7 Perspectives

In this section, we would like to mention possible improvements in the approach we present, relying on
high order schemes. An endeavour in this direction is desirable, and we have shown in this Chapter the
necessity of such schemes. First, the (formal) fourth order scheme, from H. Daiguji, S. Yamamoto, and
C. Berthon, that we have presented here, might be optimized, while desyncronizing the limitation, that
ensures positivity, on the reconstuction of the right and left states [3].
Second, an attractive perspective, at least for the electromagnetic part of the Maxwell equations in the
short pulse regime, could be the usage and improvement upon anexact, explicit, third order Discon-
tinuous Galerkin (DG) scheme, from P.-H. Maire [18], whose strength liesin its accurate treatment of



96

extrema [18], in a more efficient manner than the usual limitation procedures. This feature is illustrated
in Figure (3.8) for the free linear transport. Another desirable feature of such method is that they present
a local stencil, which makes the treatment of boundary conditions much more simpler, and offers the
possibility to run 2D simulations with collisions. However, the computational overload coming from the
DG scheme, that uses more variables per mesh, could prove to be too stringent in multi-D geometries.
To lighten this overload, a GPU acceleration technique can be employed, andhas already proven to be
efficient [11].

Figure 3.8:Comparaison of free transport between the formal fourth order schemeissued from Daigugi,
Yamamoto, and Berthon (DYB, blue), an exact third order Discontinuous Galerkine scheme from P.-H.
Maire [18], with suitable slope limiters (RK3, green). The initial solution is the bold red curve. 200 grid
points discretize the [-1,1] computational domain. The CFL condition is1/5, with 400 time steps until
the final time tend = 8, when the solution of the transport equation (with velocity v= 1) is represented
with green and blue curves.
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3.8 Appendix: Scaling with a plasma frequency in the nonrelativistic limit

Scaling parameters can be introduced to obtain a dimensionless form of the nonrelativistic Vlasov-
Maxwell system (8.1), coupled with Fokker-Planck-Landau collision operators, such as the electron-
electron collision operator (2.29). A plasma frequencyωpe, Debye lengthλD, thermal velocity of elec-
tronsvth, and cyclotron frequencyωce can be defined as follows

ωpe =

√

n0e2

ǫ0me
, λD =

√

ǫ0κBT0

n0e2
, vth =

√

κBT0

me
, ωce =

eB
me
. (3.78)

These parameters enable us to define normalized dimensionless parameters.Normalized time, space and
velocity, respectively:

ωpe t → t,
x
λD
→ x,

v
vth
→ v. (3.79)
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Normalized electric field, magnetic field and distribution function, respectively

e E
me vthωpe

→ E,
e B

meωpe
=

ωce

ωpe
→ B, fe

v3
th

n0
→ fe. (3.80)

This leads to the following dimensionless equations























































































∂ fe
∂t
+ ∇x · (v fe) − ∇v · ((E + v × B) fe) =

ν

Z
Ce,e( fe, fe) + νCe,i( fe),

∂E
∂t
− 1
β2
∇x × B = nu,

∂B
∂t
+ ∇x × E = 0,

∇x · E = (1 − n), ∇x · B = 0,

(3.81)

whereβ = vth/c, ν is the ratio between an electron-ion collision frequency and the plasma frequency

ν =
Z n0 e4 lnΛ

8π ǫ2
0 m2

e v3
thωpe

=
Z lnΛ

8πn0 λ
3
D

=
νe,i

ωpe
with νe,i =

Z n0 e4 lnΛ

8π ǫ2
0 m2

e v3
th

.

The zero and first order moments of the distribution function are






































n(t, x) =
∫

R3
fe(t, x, v) dv,

u(t, x) =
1

n(t, x)

∫

R3
fe(t, x, v) v dv

which are normalized respectively byn0 andvth.
In the system (3.81), one may want to include the effect of collisions as a source term of the Vlasov
equation. The dimensionless electron-electron and electron-ion collision operators read































Ce,e( fe, fe) = ∇v ·
(∫

R3
Φ(v − v′)

[

fe(v′)∇v fe(v) − fe(v)∇v′ fe(v′)
]

dv′
)

,

Ce,i( fe) = ∇v ·
[

Φ(v)∇v fe(v)
]

,

(3.82)

with Φ given by (5.3).

3.9 Appendix: Scaling with a plasma frequency in the relativistic colli-
sionless regime, with nonrelativistic collisions

There are two basic temporal scales in the kinetic equation (8.1), coupled withFokker-Planck-Landau
collision operators, such as the electron-electron collision operator (2.29). One is related to the collective
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electron motion and is characterized by the electron plasma frequency,ωpe =
√

Zn0e2/ǫ0me, another is
the time of electron collisions characterized by the electron ion collision frequency, νei. As it depends
on the electron velocity, we have a possibility to choose either the thermal velocity of plasma electrons,
vth =

√
κBT0/me, whereκB is the Boltzmann constant andT0 is the characteristic temperature of the bulk

plasma electrons, or a characteristic velocity of beam electrons, which is close toc. If we are interested
in the beam electrons and on their effect on plasma, it is more appropriate to normalize the electron
collision frequency to its value calculated for fast electrons,

νei = Z2n0e4 lnΛ/8πǫ2
0m2

ec3. (3.83)

Consequently, the electron velocity is normalized byc, the electron momentum bymec, and the electron
distribution function byZn0/m3

ec3. Then, our small parameter for the future analysis is the ratio of
electron collision and plasma frequencies:

ν =
νei

ωpe
=

Z3/2√n0e3 lnΛ

8πǫ3/2
0 m3/2

e c3
≪ 1, (3.84)

which is a standard parameter in the ideal theory of plasmas.
If one is interested in the wave-particle interaction processes, it is more appropriate to normalize the
time by the electron plasma frequency,ωpet → t, and the space coordinate by the electron inertial
length,xωpe/c→ x. Then the electric and magnetic fields are normalized bymevthωpe/e andmeωpe/e,
correspondingly. This leads to the following dimensionless system of equations:































































































































































∂ fe
∂t
+ ∇x · (v fe) − ∇p · ((E + v × B) fe) =

ν

Z
Cee( fe, fe) + νCei( fe),

∂E
∂t
− ∇x × B = −j ,

∂B
∂t
+ ∇x × E = 0,

∇x · E = ρ,

∇x · B = 0,

Cee( fe, fe) = ∇p ·
∫

R3
Φ(p − p′)

[

fe(p′)∇p fe(p) − fe(p)∇p′ fe(p′)
]

dp′,

Ce,i( fe) = ∇p ·
(

Φ(p)∇p fe
)

.

(3.85)
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3.10 Appendix: semi-analytical solution of an electrostatic configuration
in the linear regime

The non-relativistic 1Dx × 3DvVlasov-Poisson system extracted from the equations (8.1)-(3.3) reads

∂ f
∂t
+ v1

∂ f
∂x1
+

qe

me
E1

∂ f
∂v1
= 0 , (3.86)

∂E1

∂x1
= −qe

ǫ0

(

n0 −
∫

R3
f (t, x1, v)d3v

)

. (3.87)

The distribution functionf is assumed to be a perturbation around an equilibrium statef (0)(‖v‖), E(0)
1 = 0,

n0 =

∫

R3
f (0)(‖v‖)d3v. The system (3.86),(3.87) is linearized around this equilibrium state

f (t, x1, v) = f (0)(‖v‖) + f (1)(t, x1, v) , (3.88)

E(1)
1 (t, x1) = E(0)

1 + E(1)
1 (t, x1) , (3.89)

under the hypothesis:

‖ f (1)‖ ≪ ‖ f (0)‖ , (3.90)

‖E(1)
1 ‖ ≪ 1 . (3.91)

The Vlasov-Poisson can then be set under the following form (transport equation along the space direc-
tions supplemented by a source term along thev1 direction), after linearization











































∂ f (1)

∂t
+ v1

∂ f (1)

∂x1
= − qe

me
E(1)

1

∂ f (0)

∂v1
,

∂E(1)
1

∂x1
=

qe

ǫ0

∫

R3
f (1)(t, x1, v)d3v .

(3.92)

If f (1) andE(1)
1 are periodic and integrable, then their respective normalized Fourier coefficient are well-

defined. A Fourier series expansion gives∀t > 0






























f (1)(t, x1, v) = f̂ (1)(t, k1, v)cos(k1x1) ,

f̂ (1)(t, k1, v) =
1
L1

∫ L1

0
f (1)(t, x1, v)e−ik1x1dx1 ,

(3.93)

WhereL1 is the size of the domain. The same reconstruction using Fourier series is used for E(1)
1 .

These coefficients verify the following equations,obtained by Fourier transformation performed on the
equations of the system (3.92), for all realk1

∂ f̂ (1)

∂t
+ ik1v1 f̂ (1) = − qe

me
Ê(1)

1

∂ f (0)

∂v1
, (3.94)

ik1Ê1 =
qe

ǫ0
n̂1 . (3.95)
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Then introducing the notation̂f (1)(t = 0, k1, v) = f̂ (10)(k1, v), the equation (3.94) can be written in the
integral form

f̂ (1)(t, k1, v) = f̂ (10)(k1, v)e−ik1v1t − qe

me

∫ t

0
Ê(1)

1 (t′, k1)
∂ f (0)

∂v1
e−ik1v1(t−t′)dt′ . (3.96)

Integrating the equation (3.96) overv and injecting in it the relation (3.95), one obtains the following
integral equation for the density

n̂(1)(t, k1) = M(t, k1) +
∫ t

0
K(t − t′, k1)n̂(1)(t′, k1)dt′ , (3.97)

where

K(t, k1) =
iq2

e

k1meǫ0

∫

R3

∂ f (0)

∂v1
e−ik1v1td3v , (3.98)

M(t, k1) =
∫

R3
f̂ (10)(k1, v)e−ik1v1td3v . (3.99)

These kernels can be computed with the desired accuracy, following [20]. The numerical resolution of
(3.97) finally reduces to the inversion of a triangular linear system.
Macroscopic quantities such as the density or the heat flux can then be reconstructed using these latter
equations.

3.11 Appendix: Semi-analytical solution for an X-mode configuration in
the linear regime

In order to illustrate this method, let us now look after the particular X-mode configuration (3.100) of
the free transport Vlasov-Maxwell system, that is in the electromagnetic case (k ⊥ E). Two momen-
tum components are considered to account for the self-consistent evolution of the magneticB3(t, x1) and
electricE2(t, x1) fields, in the directions perpendicular to the direction of the perturbationx1, so as to
treat the Weibel and filamentation instabilities. The same semi-analytical procedure can be applied for
the Vlasov-Poisson electrostatic case (k || E), assuming only one component of electric fieldE1(t, x1)
[9, 20]. Finally, oblique modes (arbitraryk, i.e. mixed Weibel, filamentation and two-stream instability)
can be treated if the system (3.112)-(3.114) is supplemented with an equationon the current in thex1

direction, together with the corresponding component of the Ampère equation.

The dimensionless X-mode system reads ,with the scaling described in appendix 3.9,

∂ f
∂t
+ v1

∂ f
∂x1
− (v2B3)

∂ f
∂p1
− (E2 − v1B3)

∂ f
∂p2
= 0, (3.100)

∂E2

∂t
= −∂B3

∂x1
− j2, (3.101)

∂B3

∂t
= −∂E2

∂x1
. (3.102)
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The initial quantities are chosen such as

f (t = 0, x1,p) = f0(p) + f (1)(t = 0, x1,p), (3.103)

E2(t = 0, x1) = E(1)
2 (t = 0, x1), (3.104)

B3(t = 0, x1) = B(1)
3 (t = 0, x1), (3.105)

f (1) ≪ f0. (3.106)

A Fourier series expansion gives∀t > 0

f (1)(t, x1,p) = f̂ (1)(t, k1,p) cos(k1x1), (3.107)

f̂ (1)(t,p) =
1
L1

∫

L1

f (1)(t, x1,p)e−ik1x1dx1. (3.108)

The same reconstruction using Fourier series is used forE(1)
2 andB(1)

3 .
Now performing a linearization of (3.100)-(3.102), and applying the Fourier transform (3.108) on the
system leads to

∂ f̂ (1)

∂t
+ ik1v1 f̂ (1) = v2B̂(1)

3

∂ f0
∂p1
+ (Ê(1)

2 − v1B̂(1)
3 )

∂ f0
∂p2

, (3.109)

∂Ê(1)
2

∂t
= −ik1B̂(1)

3 − ĵ(1)
2 , (3.110)

∂B̂(1)
3

∂t
= −ik1Ê(1)

2 . (3.111)

At this point it is worth noticable that we restrict to space Fourier transform,and do not perform Laplace
transform, that would face the complex treatment of branch cut in theω complex plane.
Instead, equation (3.109) is integrated in time. Then it is multiplied by−vy, and finally integrated over
momentum

ĵ(1)
2 (t) = M2(t) −

∫ t

0
Ê(1)

2 (t′)K2,2(t − t′)dt′

−
∫ t

0
B̂(1)

3 (t′)
(

K22,1(t − t′) − K21,2(t − t′)
)

dt′, (3.112)

∂Ê(1)
2

∂t
= −ikxB̂(1)

3 − ĵ(1)
2 , (3.113)

∂B̂(1)
3

∂t
= −ik1Ê(1)

2 , (3.114)
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where:

K2,2(t) =
∫

R3
v2
∂ f0
∂p2

e−ik1v1td3p, (3.115)

M2(t) = −
∫

R3
v2 f̂ (1)(t = 0,p)e−ik1v1td3p, (3.116)

K22,1(t) =
∫

R3
v2

2
∂ f0
∂p1

e−ik1v1td3p, (3.117)

K21,2(t) =
∫

R3
v2v1

∂ f0
∂p2

e−ik1v1td3p. (3.118)

The system (3.112)-(3.114) can be simplified following several remarks

• K22,1(t) − K21,2(t) = 0: the termv × B has indeed no influence on the energy evolution.

• Using spherical coordinates,K2,2 andM2 can be greatly simplified.

K2,2(k1, t) = −
π

β2

∫ ∞

0

p4

γ2
p

f0(p)I (k1x1pt/γp)dp ∀t > 0 , (3.119)

I (a) =
∫ π

0
sin3(θ)eia cos(θ)dθ =

4
a2

(

sin(a)
a
− cos(a)

)

∀t > 0 , a ∈ R , (3.120)

I (0) = 4/3 . (3.121)

Then the system(3.112)-(3.114)can be solved numerically,
with a simple inversion of a linear system,

at a prescribed accuracy[20].

3.12 Appendix: Initialization for the generation of a single X-mode plasma
wave

This test case stands as a validation for the couplings of Vlasov and Maxwell equations. We determine
initial conditions that trigger a plasma wave at a given wavelength. To do so,Vlasov-Maxwell equations
are linearized, settingf = f (0) + f (1), E = E(1), B = B(0) + B(1) around the equilibrium statef =
f (0), E = 0, B = B(0). In this appendix, we use the normalization (8.49)-(3.80). We assume periodic
boundary conditions. The fluctuations of the total pressure tensor are neglected with respect to those of
the magnetic field.

Using the conservation law
∂n
∂t
+
∂ j1
∂x1

= 0, the former hypothesis lead us to solve the system of six

equations with six unknownj(1)
1 , j(1)

2 , E(1)
1 , E(1)

2 , B(1)
3 andn(1)
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





















































































































∂ j(1)
1

∂t
+ E(1)

1 + B(0) j(1)
2 = 0 ,

∂ j(1)
2

∂t
+ E(1)

2 − B(0) j(1)
1 = 0 ,

∂n(1)

∂t
+ ∂x1 j(1)

1 = 0 ,

∂E(1)
1

∂x1
= −n(1) ,

∂E(1)
2

∂t
= − 1

β2

∂B(1)
3

∂x1
+ j(1)

2 ,

∂B(1)
3

∂t
= −

∂E(1)
2

∂x1
.

(3.122)

Applying time and space Fourier transform to this system, and identifying Fourier components (n(1) =

n̂exp(−iωt + ik1x1)), the following system is obtain






























































−iω ĵ1 + Ê1 + B(0) ĵ2 = 0 ,
−iω ĵ2 + Ê2 − B(0) ĵ1 = 0 ,
−iωn̂+ ik1 ĵ1 = 0 ,
ik1Ê1 = −n̂ ,

−iωÊ2 = −
1
β2

ik1B̂3 + ĵ2 ,

−iωB̂3 = −ik1Ê2 .

The dispersion equation of this system reads

N2 =
k2

1

β2ω2
= 1− ω2 − 1

ω2(ω2 − 1− ‖B(0)‖2)
. (3.123)

In this equation, the plasma frequency isωpe = 1 and the cyclotron frequency isωc = qe‖B(0)‖/m, that is
‖B0‖ in this dimensionless case. The perturbation term of the distribution function atinitial time can be
determined for a particular solutionω of this relation dispersion.
The Fourier transform is applied on the linearized Vlasov equation

(−iω + ik1v1) f̂ − Ê1
∂ f (0)

∂v1
− Ê2

∂ f (0)

∂v2
− B(0)v2

∂ f̂
∂v1
+ B(0)v1

∂ f̂
∂v2
= 0 . (3.124)

This equation is expressed in cylindrical coordinates



















v1 = v⊥ cos(ψ) ,
v2 = v⊥ sin(ψ) ,
v3 = v‖

where














v⊥ = (‖v1‖2 + ‖v2‖2)1/2 ,

tan(ψ) =
v2

v1
.
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Recalling that:

∇v f =
∂ f
∂v⊥
∇vv⊥ +

∂ f
∂ψ
∇vψ +

∂ f
∂v‖
∇vv‖ ,































































∂v⊥
∂v1
= cos(ψ) ,

∂v⊥
∂v2
= sin(ψ) ,

∂ψ

∂v1
= − 1

v⊥
sin(ψ)

∂ψ

∂v2
=

1
v⊥

cos(ψ) ,

with ∇vv⊥ = ~e⊥, ∇vvψ = ~eψ and∇vv‖ = ~e‖, where~e are vectors in the local basis. Settingf (0)(‖v‖2) =

(2π)
3
2 exp(− ‖v‖

2

2 ), and writing

(v ∧ B).∇v f̂ = (∇v f̂ ∧ v).B = −B(0)∂ f
∂ψ

, with B = (0,0, B(0)) ,

the kinetic equation (3.124) becomes

(−iω + ik1v⊥ cos(ψ)) f̂ + B(0)∂ f̂
∂ψ
+ f (0)(‖v‖2)v⊥(Ê1 cos(ψ) + Ê2 sin(ψ)) = 0. (3.125)

In order to solve this equation, we decompose the distribution function as a Fourier series

f̂ =
+∞
∑

n=−∞
f̂n(v⊥)einψ.

Then from (3.125),

+∞
∑

n=−∞
(−iω + ik1v⊥ cos(ψ) + inB(0)) f̂neinψ = − f (0)(‖v‖2)v⊥(Ê1 cos(ψ) + Ê2 sin(ψ)) .

Multiplying this equation byeimψ, integrating from 0 to 2π, we obtain

+∞
∑

n=−∞

∫ 2π

0
eimψ(−iω + ik1v⊥ cos(ψ) + inB(0)) f̂neinψdψ

= − f (0)(‖v‖2)v⊥

∫ 2π

0
eimψ(Ê1 cos(ψ) + Ê2 sin(ψ))dψ . (3.126)

Form= 0, terms are different from zero only forn = −1,0,1. From (3.126) comes

k1v⊥ f̂−1 − 2ω f̂0 + k1v⊥ f̂1 = 0 . (3.127)

Form= −1,
ik1v⊥ f̂0 − 2i(ω − B(0)) f̂1 + ik1v⊥ f̂2 = − f0(v2)v⊥(Ê1 − iÊ2) . (3.128)
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Form= 1,

ik1v⊥ f̂−2 − 2i(ω + B(0)) f̂−1 + ik1v⊥ f̂0 = − f (0)(‖v‖2)v⊥(Ê1 + iÊ2) . (3.129)

The casem= −2 involves f̂3,

ik1v⊥ f̂1 − 2(ω − 2B(0)) f̂2 + ik1v⊥ f̂3 = 0 . (3.130)

In the same manner the casem= 2 involves f̂−3,

ik1v⊥ f̂−3 − 2(ω + 2B(0)) f̂−2 + ik1v⊥ f̂−1 = 0 . (3.131)

In order to close the system, the componentsf−3 and f3 are neglected, and we deduce from (3.127-3.131),











































−2(ω + 2B(0)) f̂−2 + ik1v⊥ f̂−1 = 0 ,
ikv⊥ f̂−2 − 2i(ω + B(0)) f̂−1 + ik1v⊥ f̂0 = − f (0)(‖v‖2)v⊥(Ê1 + iÊ2) ,

kv⊥ f̂−1 − 2ω f̂0 + k1v⊥ f̂1 = 0 ,
ik1v⊥ f̂0 − 2i(ω − B(0)) f̂1 + ik1v⊥ f̂2 = − f (0)(‖v‖2)v⊥(Ê1 − iÊ2) ,

ik1v⊥ f̂1 − 2(ω − 2B(0)) f̂2 = 0 .

The solution of linearized Vlasov equation can be calculated































f (t, x, v) = f (0)(‖v‖2) +
∑+∞

n=−∞ f̂n(v⊥)e−iωt+ik1x1+inψ ,

E1(t, x) = Ê1e−iωt+ik1x1 ,

E2(t, x) = Ê2e−iωt+ik1x1 ,

B(t, x) = B(0) + B̂3e−iωt+ik1x1 .

The dispersion relation (3.123) provides with a particularω. Then we obtain the following results for the
construction of the initial solution,

f (0, x, v) = f (0)(‖v‖2) +
2

∑

n=−2

f̂n(v⊥)eik1x+inψ
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With the expressions

f̂−2

f (0)(‖v‖2)D̂
= i(−4ω3Ê1 − 4 iω3Ê2 + 12iω2B(0) Ê2 + 12ω2B(0) Ê1 − 8‖B(0)‖2ω Ê1

+ k1
2v⊥2ω Ê1 + 3 ik1

2v⊥2ω Ê2 − 8 i‖B(0)‖2ω Ê2 − 4 ik1
2v⊥2B(0) Ê2)v⊥2k1,

f̂−1

f (0)(‖v‖2)D̂
= 2 iv⊥ (Ê1 k1

2v⊥2ω2 + 4 iB(0)ω3Ê2 − 16‖B(0)‖3ω Ê1 − 16i‖B(0)‖3ω Ê2

+ 3 iÊ2 k1
2v⊥2ω2 − 4 Ê1ω

4 − 8 iÊ2 k1
2v⊥2‖B(0)‖2 + 2k1

2v⊥2B(0)ω Ê1

+ 2 ik1
2v⊥2B(0)ω Ê2 + 16Ê1 ‖B(0)‖2ω2 + 16iÊ2 ‖B(0)‖2ω2 + 4 B(0)ω3Ê1

− 4 iÊ2ω
4),

f̂0
f (0)(‖v‖2)D̂

= 2 iv⊥2k1(16‖B(0)‖2ω Ê1 + k1
2v⊥2ω Ê1 − 4ω3Ê1 + 4 iω2B(0) Ê2

− 16i‖B(0)‖3Ê2 + 2 ik1
2v⊥2B(0) Ê2),

f̂1
f (0)(‖v‖2)D̂

= 2 i(−2 B(0) + ω)v⊥ (−4 ik1
2v⊥2B(0) Ê2 + k1

2v⊥2ω Ê1 − 3 ik1
2v⊥2ω Ê2

− 12ω2B(0) Ê1 + 12iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2 − 8‖B(0)‖2ω Ê1

+ 8 i‖B(0)‖2ω Ê2),
f̂2

f (0)(‖v‖2)D̂
= ik1v⊥2(−4 ik1

2v⊥2B(0) Ê2 + k1
2v⊥2ω Ê1 − 3 ik1

2v⊥2ω Ê2 − 12ω2B(0) Ê1

+ 12iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2 − 8‖B(0)‖2ω Ê1 + 8 i‖B(0)‖2ω Ê2),

where

D̂ = ω (64‖B(0)‖4 − 16k1
2v⊥

2ω2 + 16ω4 + 16k1
2v⊥

2‖B(0)‖2 + 3k1
4v⊥

4 − 80‖B(0)‖2ω2).

k1v⊥ being small with respect toB(0) andω, for this particular application (v⊥ must be considered in

the range where the equilibrium distribution functionf (0)(‖v‖2) = (2π)
3
2 exp(− ‖v‖

2

2 ) does not vanish. If
B(0) = 2, ω ≃ 5 andk = 2π/25, thenkv⊥ ≪ B(0), ω), the numerical powers ofk1v⊥ can be neglected
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compared to these terms. The solution can be written

f̂−2

f (0)(‖v‖2)D̂
= iv⊥2k1(−4ω3Ê1 − 4 iω3Ê2 + 12iω2B(0) Ê2

+ 12ω2B(0) Ê1 − 8‖B(0)‖2ω Ê1 − 8 i‖B(0)‖2ω Ê2),
f̂−1

f (0)(‖v‖2)D̂
= 2 iv⊥ (4 iB(0)ω3Ê2 − 16‖B(0)‖3ω Ê1 − 16i‖B(0)‖3ω Ê2 − 4 Ê1ω

4

+ 16Ê1 ‖B(0)‖2ω2 + 16iÊ2 ‖B(0)‖2ω2 + 4 B(0)ω3Ê1 − 4 iÊ2ω
4),

f̂0
f (0)(‖v‖2)D̂

= 2 iv⊥2k1(16‖B(0)‖2ω Ê1 + k1
2v⊥2ω Ê1 − 4ω3Ê1 + 4 iω2B(0) Ê2

− 16i‖B(0)‖3Ê2),
f̂1

f (0)(‖v‖2)D̂
= 2 iv⊥ (ω − 2 B(0))(−12ω2B(0) Ê1 + 12iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2

− 8‖B(0)‖2ω Ê1 + 8 i‖B(0)‖2ω Ê2),
f̂2

f (0)(‖v‖2)D̂
= ik1v⊥2(−12ω2B(0)) Ê1 + 12iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2

− 8‖B(0)‖2ω Ê1 + 8 i‖B(0)‖2ω Ê2),

where
D̂ = ω (64‖B(0)‖4 + 16ω4 − 80‖B(0)‖2ω2).

We choose to initialize the perturbation from the amplitude of the magnetic field:

B̂3 = A whereA ∈ [0,1].

Then from the system (3.122) and the dispersion relation (3.123), we deduce the values of̂E1, Ê2 and
thus reconstruct thêfi ,

Ê1 =
−i B̂3

(

ω4β2 − ω2k1
2 − ω2β2 − ‖B(0)‖2ω2β2 + ‖B(0)‖2k1

2
)

k1β2B(0)
, Ê2 =

ωB̂3

k1
.
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4.1 Introduction

In this chapter, we shall adress the issu of discontinuous solutions underelectrostatic collective effects,
and therefore restrict to Vlasov-Poisson systems.
The Vlasov-Poisson system is a model for the motion of a collisionless plasma and describes the evo-
lution of the distribution function of particles, solution of the Vlasov equation, under the effects of free
transport and self-consistent electric fields given by the Poisson equation. Here, we consider a dilute
electron gas emitted at positionx = 0 and absorbed atx = L. It gives rise to a nonlinear system of equa-
tions with boundary conditions. Under an external voltage, the dynamics ofsuch a problem is modeled
by the following system [15, 17]



























































∂ f
∂t
+ v

∂ f
∂x
+ E(t, x)

∂ f
∂v
= 0, t ≥ 0, (x, v) ∈ Q ;

−∂
2φ

∂x2
(t, x) = ρ(t, x), E(t, x) = −∂φ

∂x
(t, x); t ≥ 0, x ∈ Ω ;

f (0, x, v) = f0(x, v), (x, v) ∈ Q ;

(4.1)

whereQ := Ω × R with Ω := (0, L). We define the macroscopic charged densityρ(t, x) and the related
current densityj(t, x) by

ρ(t, x) =
∫ ∞

−∞
f (t, x, v)dv, j(t, x) =

∫ ∞

−∞
v f(t, x, v)dv, (t, x) ∈ R+ ×Ω. (4.2)

Here, the boundary conditions for the electron distributionf (t, x, v) ≥ 0 are given atx = 0

f (t,0, v) = g(t, v) ≥ 0, v > 0; (4.3)

and atx = L
f (t, L, v) = 0, v < 0; (4.4)

and external voltages are given atx = 0 andx = L:

φ(t,0) = 0, φ(t, L) = −λ(t) ≤ 0, t ≥ 0. (4.5)

Mathematical study of such nonlinear boundary value problem was initiated inthe pioneering work of
C. Greengard and P.-A. Raviart [15], in which stationary solutions are constructed. A higher dimensional
generalization was given in [19] and [8]. On the other hand, for the dynamical problem of plane diode
(4.1)-(4.5), weak solutions can be constructed as in [7]. Finally, recently Y. Guo et al. give a complete
existence and uniqueness proof for the present model (4.1)-(4.5) [17] and for the Vlasov-Maxwell system
[14].

The aim of this paper is to propose a high order finite volume scheme for the one-dimensional Vlasov-
Poisson equation over an interval and to analyze its convergence. In one or two dimension, the numerical
resolution of the Vlasov equation is often performed using eulerian methods.These methods are strongly
inspired by the discretization of conservation laws in fluid mechanics [4, 23]. They consist in a discretiza-
tion of the phase space (x, v), which is done by following the characteristic curves at each time step and
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interpolating the value at the origin of the characteristics by polynomial [12, 13]. This interpolation
method works well for simple geometries of the physical space but does notseem to be well suited to
more complex geometries. We refer to [13, 1] for a review of the literature onthis topic and notice that
more recently, J.A Carrilloet al [5] propose new schemes based on WENO reconstructions, which are
particularly well suited and efficient for the study of discontinuities propagation.

Another type of schemes for the Vlasov equation is the finite volume type method (or flux balance
method), where the discrete unknowns are averages of the distribution function on volumes paving the
phase space. These unknowns are updated by considering incoming and outgoing fluxes leading to mass
conservation. A high order scheme of this type was introduced by J.P. Boris and D.L. Book [4] for trans-
port equations and later F. Filbetet al. proposed an improved version of this scheme, called the Positive
and Flux Conservative method (PFC) [12, 13], which is not only conservative, but also preserves the
positivity and the maximum value of the distribution function. The scheme was implemented up to third
order accuracy. Let us also mention related papers where the convergence of a numerical scheme for the
Vlasov-Poisson system is investigated. On the one hand, J. Schaeffer [20] proves the convergence of a fi-
nite difference scheme for the Vlasov-Poisson-Fokker-Planck system : transport terms are approximated
by a characteristic method whereas diffusive term are treated by a classical finite difference operator. On
the other hand, N. Besse studies the convergence of semi-lagrangian methods for smooth solutions to the
Vlasov-Poisson [2] but it seems difficult to adapt this methodology for discontinuous solutions. Thus,
F. Filbet performs a convergence analysis and gets error estimates on a finite volume scheme [10, 11]
for weak BV solutions allowing discontinuities to occur, but this scheme is only first order and is not
enough accurate to get a good approximation of the distribution function. Here, we extend the analysis
to second order finite volume schemes and investigate the case where the solution may be discontinuous.
More precisely, the purpose of this work is to prove the convergence ofa second order finite volume
scheme for the dynamic of plane diode model problem in plasma physics, namely, the one-dimensional
Vlasov-Poisson system with boundary conditions with respect to the spacevariable.

We first present a second order upwind finite volume scheme computing the fluxes on the boundary
of each cell of the mesh. Thus, from anL∞ estimate on the velocity moments offh, we obtain a bound
on the discrete electric field inW1,∞. We next give a weakBV inequality which will be useful for the
convergence of the approximation to the weak solution to the Vlasov-Poissonsystem.

4.2 Numerical scheme and main results

In order to compute a numerical approximation of the solution of the Vlasov-Poisson system, let us
define a Cartesian mesh of the phase spaceMh consisting of cells, denoted byCi, j , i ∈ I = {0, . . . ,nx−1},
wherenx is the number of subcells of (0, L) and j ∈ Z. The meshMh is given by an increasing sequence
(xi−1/2)i∈{0,...,nx} of the interval (0, L) and by a second increasing sequence (v j−1/2) j∈Z of R for the velocity
space.

Let ∆xi = xi+1/2 − xi−1/2 be the physical space step and∆v j = v j+1/2 − v j−1/2 be the velocity space
step. The parameterh indicates

h = max
i, j
{∆xi ,∆v j}.

We assume the mesh satisfies the following condition : there existsα ∈ (0,1) such that for allh > 0 and
(i, j) ∈ I × Z,

αh ≤ ∆xi ≤ h, and αh ≤ ∆v j ≤ h. (4.6)
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Finally, we obtain a Cartesian mesh of the phase space constituted of controlvolumes

Ci, j = (xi−1/2, xi+1/2) × (v j−1/2, v j+1/2) for i ∈ I and j ∈ Z.

In order to work with a bounded domain, we will truncate at|v| = vh (vh sufficiently large which will
go to+∞ ash→ 0) and we denote byJ the following set

J := { j ∈ Z, |v j | ≤ vh}.

Let ∆t be the time step andtn = n∆t andxi (resp.v j) represents the middle of [xi−1/2, xi+1/2] (resp.
[v j−1/2, v j+1/2]). We set the discrete initial datum as

f 0
i, j =

1
∆xi ∆v j

∫

Ci, j

f0(x, v)dxdv.

For n ≥ 0, we define a sequence (f n+1
i, j )i, j , which is assumed to approximate the average of the Vlasov

equation solution (4.1)-(4.5) on the control volumeCi, j . It is given by

f n+1
i, j = f n

i, j −
∆t
∆xi

[Fi+1/2, j − Fi−1/2, j ] −
∆t
∆v j

[Gi, j+1/2 − Gi, j−1/2], (4.7)

with






















Fi+1/2, j = v+j f l
i+1/2, j − v−j f r

i+1/2, j ,

Gi, j+1/2 = En+
i f l

i, j+1/2 − En−
i f r

i, j+1/2,

(4.8)

where f l
i+1/2, j and f r

i+1/2, j are second order reconstructions with respect to the space variablex ∈ (0, L) of
the distribution function























f l
i+1/2, j = f n

i, j + σi+1/2, j

[

f n
i+1, j − f n

i, j

]

,

f r
i+1/2, j = f n

i+1, j − σi+3/2, j

[

f n
i+2, j − f n

i+1, j

]

,

(4.9)

with the slopeσi+1/2, j given by the minmod limiter

σi+1/2, j =



































































0, if ( f n
i+1, j − f n

i, j) ( f n
i, j − f n

i−1, j) ≤ 0,

| f n
i, j − f n

i−1, j |
| f n

i+1, j − f n
i, j |

∆xi

∆xi + ∆xi−1
if
| f n

i, j − f n
i−1, j |

∆xi + ∆xi−1
≤
| f n

i+1, j − f n
i, j |

∆xi + ∆xi+1
,

∆xi

∆xi + ∆xi+1
, else.

(4.10)

Also f l
i, j+1/2 and f r

i, j+1/2 are built using the same type of reconstruction with respect to the velocity space
v ∈ R for the fluxGi, j+1/2























f l
i, j+1/2 = f n

i, j + σi, j+1/2, j

[

f n
i, j+1 − f n

i, j

]

,

f r
i+1/2, j = f n

i, j+1 − σi, j+3/2

[

f n
i, j+2 − f n

i, j+1

]

,

(4.11)



A step towards short-pulse laser multi-species Vlasov simulations 115

with the slopeσi, j+1/2 given by the minmod limiter

σi, j+1/2 =



































































0, if ( f n
i, j+1 − f n

i, j) ( f n
i, j − f n

i, j−1) ≤ 0,

| f n
i, j − f n

i, j−1|
| f n

i, j+1 − f n
i, j |

∆v j

∆v j + ∆v j−1
if
| f n

i, j − f n
i, j−1|

∆v j + ∆v j−1
≤
| f n

i, j+1 − f n
i, j |

∆v j+1 + ∆v j
,

∆v j

∆v j + ∆v j+1
, , else.

(4.12)

Let us notice that in this paper, we only consider the case of minmod limiters but we can easily apply
the present analysis to classical limiters as superbee, etc. These conditions are sufficent to compute some
approximations but we add some limiters useful to prove an error estimate result : there existK1,K2 > 0
andβ ∈ (1,2) such that

σi+1/2, j( f n
i, j − f n

i−1, j)
2 + σi, j+1/2( f n

i, j − f n
i, j−1)2 ≤ K hβ, ∀(i, j) ∈ I × Z. (4.13)

This conditions are used in section 4.3.3 only, for the consistency result.
The valueEn

i is an approximation of the electric field on [xi−1/2, xi+1/2] given below by computing an
approximate solution of the Poisson equation. To complete the scheme for the approximation of the
Vlasov equation, we impose boundary conditions onx. To do this, we define two approximationsf n

−1, j
and f n

nx, j
on “virtual cells”, given by























f n
−1, j = gn

j := g(tn, v j), if v j > 0, j ∈ J,

f n
nx, j
= 0, if v j < 0, j ∈ J,

(4.14)

and to define slope limiters in the neighborhood of the boundary we also imposezero slope condition,
that is, f−2, j = f−1, j and fnx+1, j = fnx, j . We also set

Gi, j+1/2 = 0, for (i, j) ∈ I × Z \ J.

Thus, we are able to define the numerical solution approximating the solution ofthe Vlasov equation
on QT := ΩT × R by

fh(t, x, v) =























f n
i, j , if ( t, x, v) ∈ [tn, tn+1) ×Ci, j and (i, j) ∈ I × J,

0, if |v| > vh.

Computing moments inv of the distribution functionfh, we define the discrete charge and current densi-
ties for (t, x) ∈ [tn, tn+1) × [xi−1/2, xi+1/2):

ρh(t, x) =

∫

R

fh(t, x, v)dv =
∑

j∈Z
∆v j f n

i, j = ρn
i ,

jh(t, x) =

∫

R

v fh(t, x, v)dv =
∑

j∈Z
∆v j v j f n

i, j = jni .
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Now, to complete the scheme we apply a finite volume scheme to the electric field’s equation. Let us
denoteEn

i an approximation of the electric field in (xi−1/2, xi+1/2) given by

En
i+1 − En

i = ∆xi ρ
n
i , for i = 0, . . . ,nx − 2, (4.15)

and is supplemented by the following condition, which comes from the discrete potential

nx−1
∑

i=0

∆xi En
i = λ(tn) − 0 = λ(tn). (4.16)

We compute a continuous approximation of the discrete field such that


















Eh(tn, xi) = En
i ,

Eh ∈ Q1([tn, tn+1] × [xi−1/2, xi+1/2]),
(4.17)

whereQ1([tn, tn+1] × [xi−1/2, xi+1/2]) represents the space of polynomial of degree one in [tn, tn+1] ×
[xi−1/2, xi+1/2] such thatEh ∈W1,∞(ΩT) andẼh is a piecewise constant approximation given by

Ẽh(t, x) = En
i , for (t, x) ∈ [tn, tn+1) × [xi−1/2, xi+1/2).

We introduce the space
BV(Q) = {u ∈ L1(Q), TVQ(u) < ∞}

where

TVQ(u) = sup

{∫

Q
u(x, v) div(x,v)ϕ(x, v)dxdv, ϕ ∈ C∞c (Q), |ϕ(x, v)| ≤ 1, ∀(x, v) ∈ Q

}

.

We shall now prove the following theorem of convergence for the numerical approximation.

Theoreme 3. Assume for some p> 2, f0(x, v) and g(t, v) satisfy: for all T> 0

TVQ( f0) +
∫ T

0

∫

v≥0
[1 + v]g(s, v)dvds+ ‖|v|p f0‖∞ + ‖|v|p g‖∞ < ∞. (4.18)

LetMh be a Cartesian mesh of the phase space and∆t be the time step satisfying the CFL condition :
there existsξ ∈ (0,1) such that

3∆t
2

( |v j |
∆xi
+

Cλ

∆v j

)

≤ 1− ξ ∀(i, j) ∈ I × J, (4.19)

with

Cλ =
‖λ‖L∞

L
+ 2

(

‖ f 0‖L1 +

∫ T

0

∫

v≥0
v gh(t, v)dvdt

)

.

We consider the numerical solution given by the scheme (4.7)-(4.12), denoted by fh(t, x, v), and the
discrete self-consistent field Eh(t, x) given by (4.15)-(4.17). Then we have

fh(t, x, v) ⇀ f (t, x, v) weak-⋆ in L∞(QT) as h→ 0,

Eh(t, x) → E(t, x) in C(ΩT) as h→ 0,
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where( f ,E) is the unique solution to the Vlasov-Poisson system (4.1)–(4.5), that is for alltest functions
which belong to

T := {ϕ ∈ C1
c([0,∞) × (0, L) × R), ϕ(t,0, v) = ϕ(t, L,−v) = 0, ∀v ≤ 0},

we have
∫

QT

f (t, x, v)

[

∂ϕ

∂t
+ v

∂ϕ

∂x
(t, x, v) + E(t, x)

∂ϕ

∂v
(t, x, v)

]

dxdvdt+

∫

ΩT

f0(x, v)ϕ(0, x, v) dv dx+
∫ T

0

∫

v≥0
v

[

g(t, v)ϕ(t,0, v)
]

dv dt = 0

and for the electric field
∂E
∂x
= ρ(t, x), ∀(t, x) ∈ [0,T] ×Ω,

supplemented with boundary conditions.

4.3 A priori estimates

In this section, we will give some properties satisfied by the numerical approximation as well as by
the solution of the continuous problem. We will first prove some properties onthe discrete distribution
function fh. From these estimates, we will also give anL∞ estimate on the electric fieldEh. Then, in
Proposition 5, we will obtain a uniform bound on|v|p fh in order to obtain anL∞ estimate on the moments
in velocity of fh and finally aW1,∞ estimate on the discrete electric fieldEh.

4.3.1 Basic estimates

Proposition 4. Assume that f0(x, v) ≥ 0 and g(t, v) ≥ 0 satisfy : for all T> 0
∫ T

0

∫

v≥0
[1 + v]g(s, v)dvds+ ‖ f0‖L∞ + ‖g‖L∞ + ‖ f0‖L1 < +∞.

LetMh be a Cartesian mesh of the phase space and∆t be the time step satisfying the CFL condition:
there existsξ ∈ (0,1) such that for all k∈ {0, . . . ,n}

∆t
∆xi ∆v j

(

∆v j |v j | + ∆xi |Ek
i |
) ≤ 1− ξ ∀(i, j) ∈ I × J. (4.20)

Then, we have

(i) the discrete distribution function at time tn+1 satisties the following maximum principle

0 ≤ f n+1
i, j ≤ max(‖ f0‖L∞ , ‖g‖L∞) ; ∀(i, j) ∈ I × Z ; (4.21)

(ii ) the discrete density functionρh(tn+1) satisfies

0 ≤
∑

i∈I
∆xi ρ

n+1
i ≤ ‖ f 0‖L1 +

n
∑

k=0

∑

j∈Z
∆t∆v j v+j gk

j ; (4.22)
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(iii ) the discrete electric field is bounded

|En+1
i | ≤

λ(tn+1)
L
+ 2



















‖ f 0‖L1 +

n
∑

k=0

∑

j∈Z
∆t∆v j v+j gk

j



















; (4.23)

(iv) the CFL condition (4.20) at iteration n+ 1 is satisfied.

Proof: We start from the scheme (4.9)-(4.10) and first introduce the following limiters : for (i, j) ∈ I × J

f l
i+1/2, j = f n

i, j + σi+1/2, j [ f n
i+1, j − f n

i, j ],

= f n
i, j + si+1/2, j [ f n

i, j − f n
i−1, j ],

with

si+1/2, j =



































































0, if ( f n
i+1, j − f n

i, j) ( f n
i, j − f n

i−1, j) ≤ 0,

| f n
i+1, j − f n

i, j |
| f n

i, j − f n
i−1, j |

∆xi

∆xi + ∆xi+1
if
| f n

i+1, j − f n
i, j |

∆xi + ∆xi+1
≤
| f n

i, j − f n
i−1, j |

∆xi + ∆xi−1
,

∆xi

∆xi + ∆xi−1
, else

(4.24)

and

f r
i+1/2, j = f n

i+1, j − σi+3/2, j [ f n
i+2, j − f n

i+1, j ],

= f n
i+1, j − si+3/2, j [ f n

i+1, j − f n
i, j ].

Also, f l
i, j+1/2 and f r

i, j+1/2 can be re-written in a similar way

f l
i, j+1/2 = f n

i, j + si, j+1/2 [ f n
i, j − f n

i, j−1],

f r
i, j+1/2 = f n

i, j+1 − si, j+3/2 [ f n
i, j+1 − f n

i, j ],

with

si, j+1/2 =



































































0, if ( f n
i, j+1 − f n

i, j) ( f n
i, j − f n

i, j−1) ≤ 0,

| f n
i, j+1 − f n

i, j |
| f n

i, j − f n
i, j−1|

∆v j

∆v j + ∆v j+1
, if

| f n
i, j+1 − f n

i, j |
∆v j + ∆v j+1

≤
| f n

i, j − f n
i, j−1|

∆v j + ∆v j−1
,

∆v j

∆v j + ∆v j−1
, else,

(4.25)

where we observe that 0≤ si, j+1/2, si+1/2, j < 1. Using the scheme (4.7)-(4.12), we explicitly write the
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value of the numerical solution at iterationn+ 1, in terms of the values at timetn in a better way,

f n+1
i, j = f n

i, j −
v+j ∆t

∆xi

[

1+ si+1/2, j − σi−1/2, j

]

( f n
i, j − f n

i−1, j)

+
v−j ∆t

∆xi

[

1− si+3/2, j + σi+1/2, j

]

( f n
i+1, j − f n

i, j)

−
En+

i ∆t

∆v j

[

1+ si, j+1/2 − σi, j−1/2

]

( f n
i, j − f n

i, j−1)

+
En−

i ∆t

∆v j

[

1− si, j+3/2 + σi, j+1/2

]

( f n
i, j+1 − f n

i, j).

Under the stability condition (4.20), the discrete distribution functionf n+1
i, j could be written as a convex

combination off n
i, j , f n

i−1, j , f n
i+1, j , f n

i, j−1, f n
i, j+1; it yields the nonnegativity off n+1

i, j for all (i, j) ∈ I × Z. Thus
we get the result

0 ≤ f n+1
i, j ≤ max(‖ f0‖L∞ , ‖g‖L∞) .

Now, we give an estimate of total mass evolution : fork ∈ {0, . . . ,n} we multiply (4.7)-(4.12) by
∆xi ∆v j and sum over (i, j) ∈ I × Z. It gives,

∑

(i, j)∈I×Z
∆xi ∆v j f k+1

i, j + ∆t
∑

j∈Z
∆v j

[

v−j f r
−1/2, j + v+j f l

nx+1/2, j

]

=
∑

(i, j)∈I×Z
∆xi ∆v j f k

i, j + ∆t
∑

j∈Z
∆v j

[

v+j f r
−1/2, j + v−j f l

nx+1/2, j

]

.

Then, using boundary conditions (4.14), it yields
∑

(i, j)∈I×Z
∆xi ∆v j f k+1

i, j + ∆t
∑

j∈Z
∆v j

[

v−j f k
0, j + v+j f k

nx−1, j

]

=
∑

(i, j)∈I×Z
∆xi ∆v j f k

i, j + ∆t
∑

j∈Z
∆v j v+j gk

j

and summing overk ∈ {0, . . . ,n} we get

∑

(i, j)∈I×Z
∆xi ∆v j f n+1

i, j +

n
∑

k=0

∑

j∈Z
∆t∆v j

[

v−j f k
0, j + v+j f k

nx−1, j

]

=
∑

(i, j)∈I×Z
∆xi ∆v j f 0

i, j +

n
∑

k=0

∑

j∈Z
∆t∆v j v+j gk

j ,

which gives the result
∑

i∈I
∆xi ρ

n+1
i ≤ ‖ f 0‖L1 +

n
∑

k=0

∑

j∈Z
∆t∆v j v+j gk

j .

Now, let us prove that the discrete electric field is bounded at iterationn + 1. The argument is
the same as in the continuous case: using the scheme (4.15)-(4.16), we have En+1

0 = Cn+1 and for
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i = {1, . . . ,nx − 1}

|En+1
i | =

∣

∣

∣

∣

∣

∣

∣

Cn+1 +

i−1
∑

k=0

∆xk ρ
n+1
k

∣

∣

∣

∣

∣

∣

∣

,

≤ Cn+1 + ‖ f 0‖L1 +

n
∑

k=0

∑

j∈Z
∆t∆v j v+j gk

j ,

whereCn+1 is such that the relation (4.16) is satisfied at iterationn+ 1, so that

Cn+1 =

λ(tn+1) +
∑

i∈I
∆xi(L − xi−1/2) ρn+1

i

L
,

which proves (4.23)

|En+1
i | ≤

λ(tn+1)
L
+ 2



















‖ f 0‖L1 +

n
∑

k=0

∑

j∈Z
∆t∆v j v+j gk

j



















.

Finally, from this latter bound we check that the CFL condition (4.19) is satistiedat timen+ 1. �

4.3.2 Estimates on the electric field

Now, let us give a uniform bound on|v|p fh for p > 2, which will lead to a uniform bound on the and an
estimate on first momentsρh and jh throughout an energy estimate.

Proposition 5. Assume that for p> 2 and for all (t, x, v) ∈ QT

|v|p f0(x, v) + |v|p g(t, v) < ∞

and‖λ‖W1,∞ < ∞. Then, there exists CT > 0, ony depending on f0, g,λ andα, such that

0 ≤ max
i, j
{|v j−1/2|p f n

i, j} ≤ CT . (4.26)

Moreover, there exists CT > 0, for all (n, i) ∈ {0, . . . ,NT} × I,

∣

∣

∣

∣

∣

∣

∣

En+1
i − En

i

∆t

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

En
i+1 − En

i

∆xi

∣

∣

∣

∣

∣

∣

≤ CT . (4.27)

Proof: For p > 2, we multiply the scheme (4.7)-(4.12) by|v j−1/2|p and using the reconstruction proposed



A step towards short-pulse laser multi-species Vlasov simulations 121

in (4.24)-(4.25), we have

|v j−1/2|p f n+1
i, j = |v j−1/2|p f n

i, j

−
v+j ∆t

∆xi

[

1+ si+1/2, j − σi−1/2, j

]

(|v j−1/2|p f n
i, j − |v j−1/2|p f n

i−1, j)

+
v−j ∆t

∆xi

[

1− si+3/2, j + σi+1/2, j

]

(|v j−1/2|p f n
i+1, j − |v j−1/2|p f n

i, j)

−
En+

i ∆t

∆v j

[

1+ si, j+1/2 − σi, j−1/2

]

(|v j−1/2|p f n
i, j − |v j−3/2|p f n

i, j−1)

+
En−

i ∆t

∆v j

[

1− si, j+3/2 + σi, j+1/2

]

(|v j+1/2|p f n
i, j+1 − |v j−1/2|p f n

i, j).

−
En+

i ∆t

∆v j

[

1+ si, j+1/2 − σi, j−1/2

]

(|v j−3/2|p − |v j−1/2|p) f n
i, j−1

+
En−

i ∆t

∆v j

[

1− si, j+3/2 + σi, j+1/2

]

(|v j−1/2|p − |v j+1/2|p) f n
i, j+1.

Then, using that
∣

∣

∣|v j+1/2|p − |v j−1/2|p
∣

∣

∣ ≤ p (1+ |v j−1/2|p)∆v j and from the CFL condition (4.20), we get

max
i, j
{|v j−1/2|p f n+1

i, j } ≤ max
i, j
{|v j−1/2|p f n

i, j}

+ ∆t
3 p‖Eh‖L∞

2α

(

max
i, j
{|v j−1/2|p f n

i, j} + ‖ fh‖L∞
)

.

It finally yields using a discrete version of Gronwall’s lemma and taking into account boundary condi-
tions

max
i, j
{|v j−1/2|p f n

i, j} ≤
(

max
i, j
{|v j−1/2|p [gn

j + f 0
i, j ]} + ‖ fh(0)‖L∞ + ‖gh‖L∞

)

exp

(

3 p‖Eh‖L∞
2α

tn
)

.

We remind that in Proposition 6, we have already seen thatEh is bounded inL∞. On the one hand from
the latter estimate, we can prove a uniform upper bound on the discrete density

ρn
i =

∑

j∈Z
∆v j f n

i, j ≤ ‖ fh(tn)‖L∞ + max
i, j
{|v j−1/2|p f n

i, j}
∑

|v j−1/2|≥1

∆v j

|v j−1/2|p
≤ CT .

Therefore, from the finite volume scheme forEn
i we get

∣

∣

∣

∣

∣

∣

En
i+1 − En

i

∆xi

∣

∣

∣

∣

∣

∣

= ρn
i ≤ CT .

On the other hand, we give a uniform upper bound on the jump
∣

∣

∣

∣

∣

∣

∣

En+1
i − En

i

∆t

∣

∣

∣

∣

∣

∣

∣

.
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Using the finite volume scheme forEn
i (4.15)-(4.16) and the scheme for the distribution functionf n

i, j
(4.7)-(4.12), we get a new formulation

En+1
i − En

i

∆t
=

Cn+1 −Cn

∆t
+

i
∑

k=0

ρn+1
k − ρn

k

∆t

=
Cn+1 −Cn

∆t
− jni+1/2 + jn−1/2,

with
jni+1/2 =

∑

j∈Z
∆v j [v+j f l

i+1/2, j − v−j f r
i+1/2, j ],

or

En+1
i − En

i

∆t
=

λ(tn+1) − λ(tn)
L∆t

− jni+1/2 −
1
L

∑

k∈I
∆xk jnk+1/2.

It remains to get an upper bound ofjni+1/2, which can be done from (4.26). We have forh ≤ 1

| jni+1/2| ≤
∑

j∈Z
∆v j [v+j f l

i+1/2, j + v−j f r
i+1/2, j ],

≤ 4
∑

j∈Z
∆v j

(

1+ |v j−1/2|
)

f n
i, j ≤ CT .

Thus under the assumptionλ ∈W1,∞(0,T), it yields
∣

∣

∣

∣

∣

∣

∣

En+1
i − En

i

∆t

∣

∣

∣

∣

∣

∣

∣

≤ CT .

�

4.3.3 WeakBV estimate for fh

The following lemma will be useful to obtain the convergence of (Eh, fh) to the Vlasov equation solution.

Lemma 4. Under the stability condition (4.20) on the time step and the condition on the mesh(4.6),
assume the initial data belong to L1(Q) ∩ L∞(Q). Consider R> 0 and T > 0 with h < R and∆t < T.
Let j0, j1 ∈ Z and NT ∈ N be such that−R ∈ (v j0−1/2, v j0+1/2), R ∈ (v j1−1/2, v j1+1/2), and T ∈ ((NT −
1)∆t,NT ∆t). We define

EF1h = ∆t
NT
∑

n=0

∑

i∈I

j1
∑

j= j0

∆xi ∆v j

[

v+j | f n
i, j − f n

i−1, j | + v−j | f n
i, j − f n

i+1, j |

+En+
i | f n

i, j − f n
i, j−1| + En−

i | f n
i, j − f n

i, j+1|
]

(4.28)
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and

EF2h = ∆t
NT
∑

n=0

∑

i∈I

j1
∑

j= j0

∆xi ∆v j

∣

∣

∣

∣

f n+1
i, j − f n

i, j

∣

∣

∣

∣

. (4.29)

Then, there exists C> 0 depending only on T,R, f0, α, ξ such that

EF1h ≤ C h1/2 and EF2h ≤ C∆t1/2. (4.30)

Proof: Multiplying the scheme (4.7)-(4.12) by∆xi ∆v j f n
i, j and summing overi ∈ {

0, . . . ,nx − 1
}

, j ∈
{

j0, . . . , j1
}

, andn ∈ {

0, . . . ,NT
}

, it follows that

B1 + B2 = 0,

where

B1 =
∑

n,i, j

∆xi∆v j [ f n+1
i, j − f n

i, j ] f n
i, j .

B2 = ∆t
∑

n,i, j

∆v j [Fi+1/2, j − Fi−1/2, j ] f n
i, j + ∆xi [Gi, j+1/2 − Gi, j−1/2] f n

i, j

Noting that

[ f n+1
i, j − f n

i, j ] f n
i, j = −

1
2

[ f n+1
i, j − f n

i, j ]
2 − 1

2
( f n

i, j)
2 +

1
2

( f n+1
i, j )2,

then

B1 = −
1
2

∑

n,i, j

∆xi∆v j [ f n+1
i, j − f n

i, j ]
2 − 1

2

∑

i, j

∆xi∆v j( f 0
i, j)

2 +
1
2

∑

i, j

∆xi∆v j( f NT+1
i, j )2.

By scheme (4.7)-(4.12), we have

∑

n,i, j

∆xi∆v j [ f n+1
i, j − f n

i, j ]
2

=
∑

n,i, j

∆t2

∆xi∆v j

[

∆v j v+j
(

1+ si+1/2, j − σi−1/2, j

)

( f n
i, j − f n

i−1, j) +

∆v j v−j
(

1− si+3/2, j + σi+1/2, j

)

( f n
i, j − f n

i+1, j) +

∆xi En+
i

(

1+ si, j+1/2 − σi, j−1/2

)

( f n
i, j − f n

i, j−1) +

∆xi En−
i

(

1− si, j+3/2 + σi, j+1/2

)

( f n
i, j − f n

i, j+1)

]2

.
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Using the Cauchy-Schwarz inequality and the stability condition (4.20), thereexistsC0 > 0, only de-
pending onf0, such that

B1 ≥ −∆t
2

(1− ξ)
∑

n,i, j

[

∆v j v+j
(

1+ si+1/2, j − σi−1/2, j

)

( f n
i, j − f n

i−1, j)
2

+∆v j v−j
(

1− si+3/2, j + σi+1/2, j

)

( f n
i, j − f n

i+1, j)
2

+∆xi En+
i

(

1+ si, j+1/2 − σi, j−1/2

)

( f n
i, j − f n

i, j−1)2

+∆xi En−
i

(

1− si, j+3/2 + σi, j+1/2

)

( f n
i, j − f n

i, j+1)2
]

− C0.

Now, we study the termB2, which may be rewritten asB2 = B21 + B22 whereB21 is the contribution of
the first order approximation

B21 =
∆t
2

∑

n,i, j

[

∆v j v+j [ f n
i, j − f n

i−1, j ]
2 + ∆v j v−j [ f n

i, j − f n
i+1, j ]

2 +

∆xi En+
i [ f n

i, j − f n
i, j−1]2 + ∆xi En−

i [ f n
i, j − f n

i, j+1]2
]

+
∆t
2

∑

n,i

[

∆xi En+
i [( f n

i, j1
)2 − ( f n

i, j0−1)2] + ∆xi En−
i [( f n

i, j0
)2 − ( f n

i, j1+1)2]

]

+
∆t
2

∑

n, j

[

∆v j v+j [( f n
i1, j

)2 − ( f n
i0−1, j)

2] + ∆v j v−j [( f n
i0,, j

)2 − ( f n
i1+1, j)

2]

]

andB22 the contribution of the second order term

B22 = ∆t
∑

n,i, j

∆v j

[

v+j [si+1/2, j − σi−1/2, j ][ f n
i, j − f n

i−1, j ] + v−j [si+3/2, j − σi+1/2, j ] [ f n
i+1, j − f n

i, j ]
]

f n
i, j +

∆xi

[

En+
i [si, j+1/2 − σi, j−1/2] [ f n

i, j − f n
i, j−1] + En−

i [si, j+3/2 − σi, j+1/2] [ f n
i, j+1 − f n

i, j ]
]

f n
i, j .

On the one hand, from the estimates on velocity moments in Proposition 5, we get that there exists a
constantC1 > 0, only depending onT and f0, such that

B21 ≥
∆t
2

∑

n,i, j

[

∆v j v+j [ f n
i, j − f n

i−1, j ]
2 + ∆v j v−j [ f n

i, j − f n
i+1, j ]

2 +

∆xi En+
i [ f n

i, j − f n
i, j−1]2 + ∆xi En−

i [ f n
i, j − f n

i, j+1]2
]

− C1.

On the other hand, using that

si+1/2, j( f n
i, j − f n

i−1, j) = σi+1/2, j( f n
i+1, j − f n

i, j),

and
si, j+1/2( f n

i, j − f n
i, j−1) = σi, j+1/2( f n

i, j+1 − f n
i, j),
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we prove that there exists a constantC2, only depending onT and f0, such that

B22 ≥ −∆t
∑

n,i, j

[

∆v j

(

v+j σi−1/2, j [ f n
i, j − f n

i−1, j ]
2 + v−j si+3/2, j [ f n

i, j − f n
i+1, j ]

2
)

+

∆xi

(

En+
i σi, j−1/2 [ f n

i, j − f n
i, j−1]2 + En−

i si, j+3/2 [ f n
i, j − f n

i, j+1]2
)

]

− C2.

Then, sinceB1 + B21+ B22 = 0 the following inequality holds:

ξ ∆t
2

∑

n,i, j

[

∆v j v+j [ f n
i, j − f n

i−1, j ]
2 + ∆v j v−j [ f n

i, j − f n
i+1, j ]

2

+∆xi En+
i [ f n

i, j − f n
i, j−1]2 + ∆xi En−

i [ f n
i, j − f n

i, j+1]2
]

≤ ∆t
∑

n,i, j

∆v j |v j | [si+1/2, j + σi−1/2, j ] [ f n
i, j − f n

i−1, j ]
2 + ∆xi |En

i | [si, j+1/2 + σi, j−1/2] [ f n
i, j − f n

i, j−1]2

+ C0 + C1 + C2.

Therefore, using hypothesis on the limiters (4.13), there exists a constantC > 0, only depending onf0,
T, R andξ, such that

∆t
2

∑

n,i, j

[

∆v j v+j [ f n
i, j − f n

i−1, j ]
2 + ∆v j v−j [ f n

i, j − f n
i+1, j ]

2 +

∆xi En+
i [ f n

i, j − f n
i, j−1]2 + ∆xi En−

i [ f n
i, j − f n

i, j+1]2
]

,

≤ C
ξ

(

1 + K hβ−1
)

.

Finally, the previous inequality and the Cauchy–Schwarz inequality lead to

EF1h ≤
[

∆t
∑

n,i, j

∆v j v+j [ f n
i, j − f n

i−1, j ]
2 + ∆v j v−j [ f n

i, j − f n
i+1, j ]

2

+∆xi En+
i [ f n

i, j − f n
i, j−1]2 + ∆xi En−

i [ f n
i, j − f n

i, j+1]2
]1/2

×
[

∆t
∑

n,i, j

∆x2
i (∆v j |v j | + ∆xi |En

i |)
]1/2

,

≤ h1/2
(C
ξ

(

1 + K hβ−1
)

)1/2
[

2T L R (1− ξ)
]1/2

.
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Now, we prove the second estimate onEF2h, using the scheme (4.7)-(4.12):

EF2h = ∆t
∑

n,i, j

∆xi∆v j

∣

∣

∣

∣

f n+1
i, j − f n

i, j

∣

∣

∣

∣

,

≤ ∆t2
∑

n,i, j

[

∆v j v+j | f n
i, j − f n

i−1, j | + ∆v j v−j | f n
i, j − f n

i+1, j |

+∆xi En+
i | f n

i, j − f n
i, j−1| + ∆xi En−

i | f n
i, j − f n

i, j+1|
]

.

As in the previous case, we use the Cauchy–Schwarz inequality and the stability condition (4.20). We
also recall that the discrete electric field is uniformly bounded:

EF2h ≤ ∆t1/2
[

2T L R(1− ξ) C
ξ

(

1 + K hβ−1
)

]1/2

.

�

4.4 Proof of Theorem 3

In a first part, we prove that there are subsequences which converge to a limit (f ,E) and in a second step
we identify this limit as the unique solution to the Vlasov-Poisson system (4.1)-(4.5).

4.4.1 Compactness of the sequence( fh,Eh).

We consider a sequence of a mesh of the phase space defined as in the beginning of the paper satisfying
the condition (4.6), and we define a time step∆t such that the stability condition (4.20) is true. This
sequence is denoted by (Mh)h>0.

For a given mesh, we are able to construct, by the finite volume scheme (4.7)-(4.12), a unique pair
( fh,Eh). Thus, we set

A =
{

Eh ∈W1,∞(ΩT) ; Eh given by (4.17) for a meshMh

}

.

On the one hand, in Proposition 6 and Proposition 5 we have proved there exists a constant independent
on the meshMh such that

‖Eh‖L∞ +
∥

∥

∥

∥

∥

∂Eh

∂t

∥

∥

∥

∥

∥

L∞
+

∥

∥

∥

∥

∥

∂Eh

∂x

∥

∥

∥

∥

∥

L∞
≤ CT .

Moreover, from the same estimates, we also have

‖Eh − Ẽh‖L∞ ≤ CT (h + ∆t)

On the other hand, using the fact that the injection fromW1,∞(ΩT) to C0(ΩT) is compact, there exists a
subsequence of (Eh)h>0 and a functionE belonging toC0(ΩT) such that

Eh ⇀ E in L∞(ΩT) weak-⋆ as h→ 0,
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and

Eh→ E in C0(ΩT) strong as h→ 0 ;

Ẽh→ E in C0(ΩT) strong as h→ 0.

Moreover, we also know by Proposition 6 that the discrete distribution function fh is bounded in
L∞(QT). Therefore, there exists a subsequence and a functionf ∈ L∞(QT) such that

fh(t, x, v) ⇀ f (t, x, v) in L∞(QT) weak-⋆ as h→ 0.

The discrete chargeρh is bounded inL∞(ΩT); then up to the extraction of a subsequence, we also
have

ρh(t, x) ⇀ ρ(t, x) in L∞(ΩT) weak-⋆ as h→ 0.

4.4.2 Convergence to the weak solution of the Vlasov equation

Let ϕ ∈ C∞c (QT), R> 0, and j0, j1 ∈ Z be such that

Supp
(

ϕ(t, x, .)
)

⊂ [−R,R]

and

−R ∈ (v j0−1/2, v j0+1/2) and R ∈ (v j1−1/2, v j1+1/2).

Moreoverϕ(t,0, v) = 0 for all v ≤ 0 andϕ(t, L, v) = 0 for all v ≥ 0.

We setϕn
i, j such that

ϕn
i, j :=

1
∆t∆xi ∆v j

∫ tn+1

tn

∫

Ci, j

ϕ(t, x, v)dxdvdt

and multiply the finite volume scheme (4.7)-(4.12) byϕn
i, j , sum overi ∈ {

0, . . . ,nx − 1
}

, j ∈ {

j0, . . . , j1
}

,

andn ∈ {

0, . . . ,NT =
T
∆t

}

,

E1 + E2 + E3 = 0,

with

E1 =
∑

n,i, j

( f n+1
i, j − f n

i, j)∆xi ∆v j ϕ
n
i, j ,

E2 =
∑

n,i, j

[

∆v j v+j ( f n
i, j − f n

i−1, j) + ∆v j v−j ( f n
i, j − f n

i+1, j) + ∆xi En+
i ( f n

i, j − f n
i, j−1)

+ ∆xi En−
i ( f n

i, j − f n
i, j+1)

]

∆t ϕn
i, j
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and

E3 =
∑

n,i, j

[

∆v j v+j
[

si+1/2, j − σi−1/2, j

]

( f n
i, j − f n

i−1, j)

+ ∆v j v−j
[

σi+1/2, j − si+3/2, j

]

( f n
i, j − f n

i+1, j)

+ ∆xi En+
i

[

si, j+1/2 − σi, j−1/2

]

( f n
i, j − f n

i, j−1)

+ ∆xi En−
i

[

σi, j+1/2 − si, j+3/2

]

( f n
i, j − f n

i, j+1)

]

∆t ϕn
i, j .

Moreover, we denoteE1,0 andE2,0 by

E1,0 =

∫

QT

fh(t, x, v)
∂ϕ

∂t
(t, x, v)dtdxdv +

∫

Q
f0(x, v)ϕ(0, x, v)dxdv

and

E2,0 =

∫

QT

fh(t, x, v)

[

v
∂ϕ

∂x
(t, x, v) + Eh(t, x)

∂ϕ

∂v
(t, x, v)

]

dxdvdt

+

∫ T

0

∫

v≥0
v

[

gh(t,0, v)ϕ(t,0, v)
]

dv dt.

In the sequel we will compareE1 with E1,0 andE2 with E2,0 to establish thatE1,0 + E2,0 goes to zero as
h→ 0. We first treat the termsE1 andE1,0 and remark thatE1,0 can be rewritten as

E1,0 =
∑

n,i, j

f n
i, j

∫

Ci, j

[

ϕ(tn+1, x, v) − ϕ(tn, x, v)
]

dx dv+
∫

Q
f0(x, v)ϕ(0, x, v) dx dv.

By a discrete integration by parts, it follows that

E1,0 = −
∑

n,i, j

(

f n+1
i, j − f n

i, j

)

∫

Ci, j

ϕ(tn+1, x, v)dxdv

−
∫

Q

(

fh(0, x, v) − f0(x, v)
)

ϕ(0, x, v)dxdv.

Thus,

|E1 + E1,0| ≤
∑

n,i, j

| f n+1
i, j − f n

i, j |
∫ tn+1

tn

∫

Ci, j

∣

∣

∣

∣

∣

∂ϕ

∂t
(t, x, v)

∣

∣

∣

∣

∣

dtdxdv

+

∫

Q
| fh(0, x, v) − f0(x, v)| |ϕ(0, x, v)|dxdv,

with the discrete initial data defined, for example, by

fh(0, x, v) =
1
|Ci, j |

∫

Ci, j

f0(x, v)dxdv ∀(x, v) ∈ Ci, j .
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Using the assumption on the initial dataf0 ∈ L1(Q) ∩ L∞(Q), we then have

lim
h→0

∫

Q
| fh(0, x, v) − f0(x, v)| |ϕ(0, x, v)|dxdv= 0.

Moreover, from the inequality on the termEF2h given by (4.30) in Lemma 4, we have

∑

n,i, j

| f n+1
i, j − f n

i, j |
∫ tn+1

tn

∫

Ci, j

∣

∣

∣

∣

∣

∂ϕ

∂t
(t, x, v)

∣

∣

∣

∣

∣

dtdxdv≤ C‖∂ϕ
∂t
‖L∞ ∆t1/2.

Then,

|E1 + E1,0| → 0 ash→ 0. (4.31)

Now we deal with the termsE2 andE2,0. Therefore, we first introduce the notation

E2,1 =
∑

n,i, j

[

v+j ( f n
i, j − f n

i−1, j)
∫ tn+1

tn

∫ v j+1/2

v j−1/2

ϕ(t, xi−1/2, v)dvdt

+ v−j ( f n
i, j − f n

i+1, j)
∫ tn+1

tn

∫ v j+1/2

v j−1/2

ϕ(t, xi+1/2, v)dvdt

+En+
i ( f n

i, j − f n
i, j−1)

∫ tn+1

tn

∫ xi+1/2

xi−1/2

ϕ(t, x, v j−1/2)dxdt

+En−
i ( f n

i, j − f n
i, j+1)

∫ tn+1

tn

∫ xi+1/2

xi−1/2

ϕ(t, x, v j+1/2)dxdt

]

.

On the one hand, we compareE2 andE2,1:

|E2 − E2,1| =




















∑

n,i, j

[

v+j ( f n
i, j − f n

i−1, j)
[ 1
∆xi

∫ tn+1

tn

∫

Ci, j

ϕ(t, x, v) − ϕ(t, xi−1/2, v)dvdt
]

+ v−j ( f n
i, j − f n

i+1, j)
[ 1
∆xi

∫ tn+1

tn

∫

Ci, j

ϕ(t, x, v) − ϕ(t, xi+1/2, v)dvdt
]

+En+
i ( f n

i, j − f n
i, j−1)

[ 1
∆v j

∫ tn+1

tn

∫

Ci, j

ϕ(t, x, v) − ϕ(t, x, v j−1/2)dxdt
]

+En−
i ( f n

i, j − f n
i, j+1)

[ 1
∆v j

∫ tn+1

tn

∫

Ci, j

ϕ(t, x, v) − ϕ(t, x, v j−1/2)dxdt
]

]



















.

Using the inequality onEF1h given by (4.30) in Lemma 4, there existsc > 0 depending only onT, R, L,
f0, α, ξ such that the following inequality holds:

|E2 − E2,1| ≤ c‖∇(x,v)ϕ‖L∞ h1/2. (4.32)
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On the other hand, we estimate|E2,0 + E2,1|, rewriting the termE2,1 and using the boundary conditions,
it yields the following (we remind thatϕ is compactly supported in velocity):

E2,1 = −
∑

n,i, j

f n
i, j

∫ tn+1

tn

∫

Ci, j

v j
∂ϕ

∂x
(t, x, v) + En

i
∂ϕ

∂v
(t, x, v)dvdxdt

+
∑

n, j

v+j gn
j

∫ tn+1

tn

∫ v j+1/2

v j−1/2

ϕ(t,0, v)dvdt.

Therefore,

|E2,0 + E2,1| ≤
∑

n,i, j

f n
i, j

[∫ tn+1

tn

∫

Ci, j

∣

∣

∣v− v j

∣

∣

∣

∣

∣

∣

∂ϕ

∂x
(t, x, v)

∣

∣

∣ +
∣

∣

∣Eh(t, x) − En
i

∣

∣

∣

∣

∣

∣

∂ϕ

∂v
(t, x, v)

∣

∣

∣dxdvdt

]

≤ ‖∇ϕ‖L∞
∑

n,i, j

∆t∆xi ∆v j f n
i, j

[

∆v j + sup|Eh(t, x) − En
i |
]

and there existsC > 0, only depending onT, R, L, f0, α, ξ, such that

|E2,0 + E2,1| ≤ C ‖∇ϕ‖L∞ h. (4.33)

It remains to estimate the last termE3. Using the definition ofsi+1/2, j and si, j+1/2 and performing a
discrete integration by part, we get

E3 = ∆t
∑

n,i, j

∆v j

[

v+j σi−1/2, j ( f n
i, j − f n

i−1, j) − v−j σi+1/2, j ( f n
i, j − f n

i+1, j)
]

[ϕn
i−1, j − ϕ

n
i, j ] +

∆xi

[

En+
i σi, j−1/2 ( f n

i, j − f n
i, j−1) − En−

i σi, j+1/2 ( f n
i, j − f n

i, j+1)
]

[ϕn
i, j−1 − ϕ

n
i, j ].

However, we know that

|ϕn
i−1, j − ϕ

n
i, j | ≤ ‖

∂ϕ

∂x
‖L∞

(

∆xi−1 + ∆xi

2

)

.

and using the estimate onEF1H in Lemma 4, it yields there exists a constantC > 0 such that

|E3| ≤ C ‖∇(x,v)ϕ‖L∞ h1/2. (4.34)

Finally, recalling thatE1 + E2 + E3 = 0, we obtain

ǫ(∆t,h) =
∫

QT

fh

(

∂ϕ

∂t
+ v

∂ϕ

∂x
+ Eh(t, x)

∂ϕ

∂v

)

dtdxdv+
∫

Q
f0(x, v)ϕ(0, x, v)dxdv

= E1,0 + E2,0

= E1,0 + E1 + E20 + E2,1 − E2,1 + E2 + E3,

and from the previous estimates, we proved there exists a constantC depending only onϕ, f0, L, T, α, ξ
such that

|E1,0 + E1| ≤ C (‖ f0 − fh(0)‖L1 + ∆t1/2),

|E2,0 − E2| ≤ C h1/2,

|E2,0 + E2,1| ≤ C h.

|E3| ≤ C h1/2.
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Then,ǫ(∆t,h)→ 0 ash→ 0.
As we know

fh(t, x, v) ⇀ f (t, x, v) in L∞(QT) weak-⋆

and
Eh(t, x)→ E(t, x) in C0(ΩT),

we have shown that the limit pair (f ,E) of a subsequence (fh,Eh)h>0 is a solution of the Vlasov equation
(4.1). To conclude, we have to prove that this couple is also a solution of thePoisson equation.

Remark 5. In practical calculation, we use a large but finite bound M for the velocity space. In this
paper, we assume that as h→ 0, the support of the velocity space goes to infinity, and the stability
condition (4.20) imposes on us that

∃ ε ∈ (0,1), vh ≃
1
hǫ
, and ∆t ≃ h2

h1−ǫ + h
≃ h1+ǫ .

4.4.3 Convergence to the solution of the Poisson equation

We have already proved that there exists a subsequence of (Eh)h>0 andE ∈ C0(ΩT) such thatEh con-
verges toE and‖Eh− Ẽh‖L∞ goes to zero whenh goes to zero. Hence, we know that up to a sub-sequence
Ẽh converges toE. Now let us prove thatE is solution to the Poisson equation.

On the one hand, for all test functions which belong toC1
c([0,T) × (0, L)), we setϕn

i such that

ϕn
i :=

1
∆t∆xi

∫ tn+1

tn

∫ xi+1/2

xi−1/2

ϕ(t, x)dxdt

and multiply the finite volume scheme (4.15) by∆t∆xi ϕ
n
i , sum overi ∈ {

0, . . . ,nx − 1
}

and n ∈
{

0, . . . ,NT =
T
∆t

}

, it givesT1 + T2 = 0 with

T1 = ∆t
∑

i,n

∆xi En
i

(

ϕn
i − ϕn

i−1

)

T2 =
∑

i,n

∫ tn+1

tn

∫ xi+1/2

xi−1/2

ρn
i ϕ(t, x)dxdt.

We also setT1,0 andT2,0

T1,0 =

∫

ΩT

Ẽh(t, x)
∂ϕ

∂x
(t, x) dxdt

T2,0 =

∫

ΩT

ρh(t, x)ϕ(t, x) dtdx,

and observe thatT2 = T2,0 and

|T1 − T1,0| =
∣

∣

∣

∣

∣

∣

∣

∑

i,n

∆xi En
i

∫ tn+1

tn

[

ϕn
i − ϕ(t, xi+1/2) − ϕn

i−1 + ϕ(t, xi+1/2)
]

dt

∣

∣

∣

∣

∣

∣

∣

≤ CT ‖
∂ϕ

∂x
‖L∞ h.
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The weak formulation infers that the solution of the Vlasov-Poisson system belongs toC0([0,T[;D′),
but observing the electric fieldE is bounded inW1,∞(ΩT) and the initial data are continuous, we see that
the distribution functionf is also continuous in (x, v). Let us recall that under our hypothesis, the solution
of the Vlasov-Poisson system (4.1)-(4.5) is unique; then any subsequence that we considered converges
to the same limit and the sequence (fh,Eh)h>0 converges to the unique solution.

4.5 Numerical Simulations

In this section, we consider the two component Vlasov-Poisson system. Letfα be the distribution func-
tion of speciesα ∈ {e, i}; it satisfies the Vlasov equation

∂ fα
∂t
+ v

∂ fα
∂x
+

qα
mα

E(t, x)
∂ fα
∂v
= 0 (4.35)

coupled with the Poisson equation

E(t, x) = −∇xφ(t, x), −∂
2φ

∂x2
(t, x) =

ρ

ǫ0
, (4.36)

where
ρ(t, x) =

∑

α∈{i,e}
ρα

and

ρα = qα

∫

R

fα(t, x, v) dv, α ∈ {e, i}.

In the previous analysis we presented for clarity reasons the single component Vlasov-Poisson system,
but the result remains true for the multi-component case. We assume here that qe = −qi = 1 and
ǫ0 = 1 andme/mi = 0.001, which means that ions are more heavy than electrons. We perform numerical
simulations for this model with a zero initial datumf0 = 0, λ(t) = 1 and

g(t, v) =
1
√

2π
exp(−v2/2).

In order to improve time discretization accuracy, the procedure is achievedby a second order Runge-
Kutta scheme. We performed numerical simulations for different meshes and only report the results of
a simulation using a number of cellsnx = 128 in thex-direction, andnv = 128 in thev-direction with
vmax = 6, and the time step∆t = 0.01 for the conservative finite volume scheme. For these config-
urations, numerical results are no more sensitive to the mesh and are comparable in term of accuracy.
The evolution obtained by the finite volume scheme clearly appears to give a good approximation with
128× 128 points. Here, nonlinear effects are so important that it is necessary to control spurious oscil-
lation; the second order scheme is conservative and also preseves positivity of the numerical solution.
Moreover, the use of slope correctors in the finite volume scheme allows to damp spurious osccillations.
For the distribution function in the (x, v) space, some filaments become smaller than the phase space grid
size. Nevertheless, this smooth approximation seems to give a good description of macroscopic values
(physics quantities obtained by the integration of moments of the distribution function with respect tov).
Indeed, the evolution of the electric energy is still accurate using the second order accuracy.
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(a) (b)

(c) (d)

Figure 4.1:Formation of a phase space vortex : the distribution function fh(t, x, v) at time t= 12, 24, 36
and42obtained with the second order finite volume scheme with128× 128points.
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The processes that are at stake here are highly nonlinear and present discontinuities in phase space.
They consist in the excitation of a plasma wave by injected electrons. As the beam progresses in plasma,
the amplitude of the plasma wave grows and more electrons are trapped in this wave as shown in figure
(4.1). At the same time, the plasma electron are ejected through the right side ofthe simulation box to
neutralize the injected charge with electron beam. The modulations of electron density are the result of
large plasma frequency oscillations.
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Chapter 5
High order numerical coupling with the
Fokker-Planck-Landau collision model: the
collisional multi-scale transport
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5.1 Introduction

In this chapter, we step towards a reference numerical solution, able to capture both (self-consistently
magnetized) collective and collisional effects and couple them, with high anisotropy degree. We present
relevent tests for validation of the coupling between the diferent components, in order to show the ro-
bustness of the method and to quantify the accuracy.

5.2 Approximation of the collision operators

5.2.1 The nonrelativistic FPL model for the collisions

In this section, we focus on the approximation of collision operators. Since the space variable is a
parameter, we only consider the space homogeneous equation,



























d f
dt
= Ce,e( f , f ) + Ce,i( f ),

f (0, v) = f (0)(v),

The FPL operatorCe,e( fe, fe) stands for the electron-electron collision operator

Ce,e( fe, fe) =
e4 lnΛ

8π ǫ2
0 m2

e
∇v ·

(∫

R3
Φ(v − v′)

[

fe(v′)∇v fe(v) − fe(v)∇v′ fe(v′)
]

dv′
)

, (5.1)

whereasCe,i( fe) is the electron-ion collision operator

Ce,i( fe) =
Z n0 e4 lnΛ

8π ǫ2
0 m2

e
∇v ·

[

Φ(v)∇v fe(v)
]

. (5.2)

where lnΛ is the Coulomb logarithm, which is supposed to be constant over the domain andΦ(u) is an
operator acting on the relative velocityu

Φ(u) =
‖u‖2 Id − u ⊗ u

‖u‖3
. (5.3)

The FPL operator is used to describe elastic, binary collisions between charged particles, with the long-
range Coulomb interaction potential. Classical but important properties of theoperators (5.1) and (5.2),
are briefly recalled. For detailed proofs, we refer to [11, 12]. As we assume ions to be fixed, the FPL op-
erator can then be simplified for electron-ion collisions [11], and reducedto the Lorentz approximation.
We refer to [2] for a physical derivation.

5.2.2 Properties of the nonrelativistic FPL collision operators

The FPL operator is used to describe binary elastic collisions between electrons. Its algebraic structure
is similar to the Boltzmann operator, in that it satisfies the conservation of mass, momentum and energy

∫

R3
Ce,e( fe, fe)(v)





















1
v
‖v‖2





















dv = 0, t ≥ 0.
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Moreover, the entropy is decreasing with respect to time

dH
dt

(t) =
d
dt

∫

R3
fe(v, t) log( fe(v, t))dv ≤ 0, t ≥ 0.

The equilibrium states of the FPL operator,i.e. the set of distribution functions in the kernel ofCe,e( fe, fe),
are given by the Maxwellian distribution functions

Mne,ue,Te(v) = ne

(

me

2πTe

)3/2

exp

(

−me
‖v − ue‖2

2Te

)

,

wherene is the density,ue is the mean velocity andTe is the temperature, defined as


































































ne =

∫

R3
fe(v)dv,

ue =
1
ne

∫

R3
fe(v)vdv,

Te =
me

3ne

∫

R3
fe(v)‖v − ue‖2dv.

On the other hand, the operator (5.2), modelling collisions between electronsand ions, is a Lorentz
operator. It satisfies the conservation of mass and energy

∫

R3
Ce,i( fe)(v)

(

1
‖v − ue‖2

)

dv = 0.

Moreover, the equilibrium states for this operator are given by the set ofisotropic functions:

Ker
(

Ce,i
)

=
{

fe ∈ L1
(

(1+ ‖v‖2)dv
)

, fe(v) = φ(z), z = ‖v − ue‖2
}

.

Finally, each convex functionψ of fe is an entropy forCe,i( fe),

d
dt

∫

R3
ψ( fe) dv ≤ 0, t ≥ 0.

In addition to these properties, we present a symmetry property. This property may have some
importance, in particular in presence of self-consistent magnetic fields. Indeed, any break of symmetry
due to an inadequate discretization method could lead to generation of artificialmagnetic fields,via
current source terms.

Proposition 6. If fe has the following symmetry property with respect to the direction k at time t0

fe(t0, v) = fe(t0, vk), (5.4)

with components for

vk
i =

{

+vi if i , k,
−vi if i = k.

Then, this symmetry property is preserved with respect to time.
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5.2.3 Discrete Lorentz operator

We considerfj an approximation of the distribution functionf (vj ) and introduce the operatorD, which
denotes a discrete form of the usual gradient operator∇v whereasD∗ represents its formal adjoint, which
represents an approximation of−∇v·. Therefore, for any test sequence (ψj )j∈Z3, we set (Dψj )j∈Z3 as a
sequence of vectors ofR3

Dψj =
t(D1ψj ,D2ψj ,D3ψj ) ∈ R3,

whereDs is an approximation of the partial derivative∂∂vs
with s ∈ {1,2,3}. In order to preserve the

property of decreasing entropy at the discrete level, we use the log weakformulation of the Lorentz
operator (6.19) [13]

∫

R3
Ce,i( f )(v)ψ(v) dv = −

∫

R3
Φ(v) f (v)∇v log( f (v)) · ∇vψ(v) dv,

whereΦ is given by (5.3) andψ is a smooth test function. Then, using the notations previously intro-
duced, the discrete operatorC∆v

e,i ( f ) is given by

C∆v
e,i ( f )(vj ) = −D∗

[

1
‖vj ‖3

S(ṽj ) fj D(log( fj ))

]

, (5.5)

whereS(ṽj ) is the following matrix

S(ṽj ) = ‖ṽj ‖2 Id − ṽj ⊗ ṽj .

Now, ṽj has to satisfy the discrete conservation of energy

D1(‖vj ‖2)

ṽ j1
=

D2(‖vj ‖2)

ṽ j2
=

D3(‖vj ‖2)

ṽ j3
. (5.6)

Then, we consider the 8 uncentered operatorsDǫ , with the formalism:

Dǫ = t(Dǫ1
1 ,D

ǫ2
2 ,D

ǫ3
3 ),

with ǫ = t(ǫ1, ǫ2, ǫ3), andǫi ∈ {+1,−1} for i ∈ {1,2,3}. More precisely, the operatorDǫi is the forward
uncentered discrete operator ifǫi = +1 and the backward uncentered discrete operator ifǫi = −1:

DǫΨj =
1
∆v





















ǫ1[Ψ j1+ǫ1 − Ψ j1]
ǫ2[Ψ j2+ǫ2 − Ψ j2]
ǫ3[Ψ j3+ǫ3 − Ψ j3]





















(5.7)

This 8 operators respectively match to 8 expressions ofṽǫj , following (5.6)

ṽǫj =
1
2

(

vj + vj+ǫ

)

.

This choice has been made to avoid the use of the centered discrete operator that conserves non physical
quantities. On the other hand, the uncentered operators, taken separately, introduce some artificial asym-
metry in the distribution function leading to a loss of accuracy when coupling to Maxwell equations.
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To overcome these difficulties, following the idea of [8], we introduce a symmetrization of the discrete
operator based on the averaging over the eight uncentered discretizations:

C∆v
e,i ( f )(vj ) =

1
8

∑

ǫ

Cǫ
e,i( f )

Cǫ
e,i( f ) = −D∗,ǫ

[

1
‖vj ‖3

S(ṽǫj ) fj Dǫ(log( fj ))

]

.

This final expression presents the desirable properties: the mass and energy conservation, the entropy
decreasing behavior, the positivity preservation of the distribution function in a finite time sequence. The
proofs are not detailed here but can be deduced easily from those presented in [11]. Also, it introduces
an additional discrete symmetry property, compared to the operator presented in [11]. Indeed, we obtain
the operator as an average over the full set of the uncentered operators. The motivation of this averaging
comes from the isotropization effect of the Lorentz operator: it diffuses in angle. This averaging leads to
a discrete analogous of the symmetry property presented in Proposition 6. This symmetry concerns the
directions that are aligned with the grid. The symmetries along directions that are not aligned with the
grid are preserved with marginal errors.

Proposition 7. Under the condition (5.6) oñvj , the discretization (5.8) to the Lorentz operator (5.2)
satisfies the following properties,

• it preserves the mass and energy,

• it decreases the discrete entropy

H(t) = ∆v3
∑

j∈Z3

fj (t) log( fj (t)),

• there exists a time-sequence∆tn such that the scheme

f n+1
j = f n

j + ∆t C∆v
e,i ( f )(vj ),

defines a positive solution at any time i.e.
∑

n∆tn = +∞.

Furthermore, if fj is symmetric with respect to0 in the direction jk at time tn, then this property is
preserved at time tn+1,

∑

j∈Z3

C∆v
e,i ( f )(vj )v jk∆v3 = 0. (5.8)

Proof: The proofs of all the properties but the last one can be found in [11]. We prove the last property
and rewrite the operator (5.8) in a different manner, assuming we have a symmetry along the velocity
directionv jk

C∆v
e,i ( f )(vj ) =

1
8

∑

ǫ

Cǫ
e,i( f )(vj ) =

1
8

∑

ǫ

















1
3

3
∑

k=1

1
2

(

Cǫ+,(k)

e,i (vj ) +Cǫ−,(k)

e,i (vj )
)

















, (5.9)
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where the notationǫ±,(k) refers to










ǫ
±,(k)
i = ±1 if i = k,
ǫ
±,(k)
i = ǫi if i , k.

(5.10)

We are interested in the cancellation of the operator
∑

j∈Z3

C∆v
e,i ( f )(vj )v jk. This is equivalent to the cancella-

tion of

Q(k) :=
∑

j∈Z3

(

Cǫ+,(k)

e,i (vj ) +Cǫ−,(k)

e,i (vj )
)

v jk

=
∑

j∈Z3

1
‖vj ‖3

fj
[

S(ṽj
ǫ+,(k)

)Dǫ+,(k)
log( fj )

]

· Dǫ+,(k)
v jk

+
∑

j∈Z3

1
‖vj ‖3

fj
[

S(ṽj
ǫ−,(k)

)Dǫ−,(k)
log( fj )

]

· Dǫ−,(k)
v jk.

Then, sinceDǫ+,(k)
v jk = Dǫ−,(k)

v jk = ek , it yields

Q(k) =
∑

j∈Z3

1
‖vj ‖3

fj

















∑

i,k

(

ṽ
ǫ
+,(k)
i
j i

)2
















Dǫ
+,(k)
k (log( fj ))

−
∑

j∈Z3

1
‖vj ‖3

fj ṽ
ǫ
+,(k)
k
jk

















∑

i,k

ṽ
ǫ
+,(k)
i
j i

Dǫ
+,(k)
i (log fj )

















−
∑

j∈Z3

1
‖vj ‖3

fj

















∑

i,k

(

ṽ
ǫ
−,(k)
i
j i

)2
















Dǫ
−,(k)
k (log( fj ))

−
∑

j∈Z3

1
‖vj ‖3

fj ṽ
ǫ
−,(k)
k
jk

















∑

i,k

ṽ
ǫ
−,(k)
i
j i

Dǫ
−,(k)
i (log fj )

















.

Then using definition (5.10) and the symmetry off n
j with respect to 0 in the velocity directionv jk, we

obtainQ(k) = 0. Then multiplying (5.9) byv jk and integrating in the full velocity space gives the relation
(5.8). This relation implies thatf n+1

j is symmetric with respect to 0 in the directionv jk. �

5.2.4 Discrete Landau operator

With a standard splitting algorithm, we may restrict to the homogeneous FPL operator in (6.19), in the
3Dv velocity space. Its discretization based on the entropy conservative discretization introduced in [13],
where a discrete weak log form of the FPL operator is used. This discretization yields







































d fj (t)

dt
=

(

D∗ρ(t)
)

j j ∈ ZZ3,

ρ(t) = ∆v3
∑

m∈ZZ3

fj (t) fm(t)Φ(vj − vm)
(

D(log( f (t))j − D(log f (t))m

)

,

(5.11)
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whereD stands for a downwind or upwind finite discrete operator approximating the usual gradient
operator∇v. This uncentered approximation ensures that the only equilibrium states arethe discrete
Maxwellian, and satisfies the discrete conservation of mass, momentum, and energy. The dirct use of the
centered discrete operatorQc would have lead to non physical conserved quantities. The discretization

of the FPL operator is then obtained as the average
1
8

∑

ǫ∈{−1,1}3
Qǫ , over the eight possible uncentered

operatorsQǫ , ǫ ∈ {−1,1}3, in order to recover the symmetry of the problem. In [9], the scheme is
rewritten, for any test sequenceψ, as the sum of two contribution from the operatorsQc andQ∆, since

∑

j∈ZZ3









































1
8

∑

ǫ∈{−1,1}3
Qǫ

j





















− Qc,j −
∆v2

4
Q∆j





















ψj = 0 ,

whereQ∆ is defines by the duality relation
∑

j∈ZZ3

Q∆j Φj = −1
2

∑

(j ,m)∈ZZ3×ZZ3

fj (t) fm(t)
(

∆Ψj − ∆Ψm

)T

× Φ∆
(

vj − vm

) (

∆ (ln f )j − ∆ (ln f )m

)

∆v3 , (5.12)

Φ∆
(

vj − vm

)

=
1
v3

Diag
(

v2 − v2
j1, v

2 − v2
j2, v

2 − v2
j3

)

. (5.13)

The viscosity termQ∆ presents a∆v2 factor, which kills spurious oscillations. The computational cost
of Q∆ can be reduced, repacing the sum over (j ,m) ∈ ZZ3 × ZZ3, by a sum over (j ,m) ∈ ZZ3 × ZZ3 with
‖j −m‖ ≤

√
2. This reduction does not affect the conservation properties and does not generate any

spurious collisional invariants.
This discrete approximation preserves positivity, mass, momentum, energy, and ensures that the

entropy is decreasing. Moreover, the discrete equilibrium states are the discrete Maxwellian. We refer to
[13] for the proofs and to [11] for numerical tests cases illustrating theseproperties in the homogeneous
case.
We refer to [9] and [10] for the details of the implementation on the FPL operator.

5.2.5 The multigrid formulation

The computational cost of a direct approximation of (5.11) remains too high.Therefore, a multigrid
formulation of the FPL operator is employed [9, 22], inspired from [20]. The multigrid description
follows [22].
We first set

H(v,w) = f (v) f (w)v2S(v)
[∇v(log f ) − ∇w(log f )

]

, (5.14)

S(v) = I3 −
v ⊗ v

v2
, (5.15)

q( f , f )(v) =
∫

R3
‖v − w‖−3H(v,w)d3w . (5.16)

The continuous FPL operator, in(6.19), writes

Q( f , f )(v) = ∇ · q( f , f )(v) (5.17)
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Let us now consider successive refinement layers of regular bounded domains of the velocity space. The
initial level consists in considering a regular cubeC0, with edges of length 1, as a domain for integration.
Given a refinement levelk ∈ N, with an associated mapping of cubes, having same edge length 1/2k, in
the 3Dv velocity space, we denote byCk(v) the unique cube that belongs to that mapping and contains
the velocityv. The cube(s)Ck(v0) andCk(w0) are said to be well-separated if‖v0 − w0‖ ≥ 1/2k−1. The
chosen numerical resolution, that can be either multipole [22] or monte carlo [9], is then performed be-
tween well-separated cubes. A refinement to the higher level is performedto compute the remaining not
well-separated terms. This distinction between well-separted (ws) and not well-separated cubes (nws) is
well-suited to the long-range nature of the Coulomb cross section.

This process is repeated until the higher specified desciption level.
We start at the lowest level, from the truncated analogous of the expression (5.16)

q(0)( f , f )(v) =
∫

C0

‖v − w‖−3H(v,w)d3w . (5.18)

The first step of the multigrid algorithm consists in splitting the “father cube”C0 into eight regular
“chidren cubes”, having same sizes, and denoted byCr

1. Their center coordinates are

Or
1 =

(

1
22
+

r1

2
,

1
22
+

r2

2
,

1
22
+

r3

2

)

,

wherer = (r1, r2, r3) ∈ {0,1}3.
We obtain the following decomposition ofq(0)

q(0)( f , f )(v) =
∑

(r ,r ′)∈{0,1}3×{0,1}3

∫

Cr
1×Cr ′

1

‖v − w‖−3H(v,w)d3w , (5.19)

where each cube of this mapping is not well-separated from the other ones. A direct refinement is then
applied at this first step, without any numerical computation.
As for the higher stepsk ≥ 2, the contribution of the interactions between cubes of same levelk can be
splitted in well-separated (ws) and not well separated (nws) cubes. ThecubeCr

k is located according to
its center position

Or
k =

(

1

2k+1
+

r1

2k
,

1

2k+1
+

r2

2k
,

1

2k+1
+

r3

2k

)

,

wherer = (r1, r2, r3) ∈ {0,1, ...,2k − 1}3.

q(k)( f , f )(v) = q(k)
ws( f , f )(v) + q(k)

nws( f , f )(v) , k ≥ 2 (5.20)

q(k)
ws( f , f )(v) =

∑

r/(Cr
k ws Ck(v))

∫

Cr
k

‖v − w‖−3H(v,w)d3w , (5.21)

q(k)
nws( f , f )(v) =

∑

r/(Cr
k nws Ck(v))

∫

Cr
k

‖v − w‖−3H(v,w)d3w . (5.22)
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The process is repeated until the finest levelnf , where both well-separated and not well-separated
interactions between cubes are computed. Therefore, we come to the expression

q( f , f )(v) = q
(nf )
nws( f , f )(v) +

nf
∑

k=2

q(k)
ws( f , f )(v) , (5.23)

that is to be approximated umerically. To this aim we employ a monte carlo algorithm for the integrations,
presented in the next section.

5.2.6 The monte carlo numerical integration

We employ here a monte carlo quadrature formula [9], that randomly selects pairs of interacting cubes,
and satsifies the minimal possible complexity (due to the specific structure of the kernel), being of order
O(n3

v logn3
v), wherenv is the number of discretization points per velocity direction. This algorithm was

first suggested in [1], as an improvement of Nanbu’s scheme of the Boltzmann equation.
Nevertheless, this monte carlo solver introduces a new approximation that might affect the accuracy. We
shall test the accuracy of the scheme against analytical solutions in the tests1-4 of this chapter.

5.3 Numerical results for the full kinetic model

5.3.1 A 1D temperature gradient configuration

In the context of laser produced plasma, the heat conduction is the leadingmechanism of energy transport
between the laser energy absorption zone and the target ablation zone.
In such a system, the parameters of importance for the heat flux are

• the effective electron collision mean free pathλe.

• the electron temperature gradient lengthλT .

• the magnetic fieldB and its orientation with respect to∇T.

These parameters enable to distinguish different regimes of transport, according to the Knudsen and
the Hall parameters.

On the one hand, the Knudsen numberKn is a mesure of the thermodynamic non-equilibrium of the
system

Kn =
λe

λT
. (5.24)

A regime characterized byKn → 0 refers to an hydrodynamic limit, whereas a regime characterized by
Kn ≥ 1 refers to a kinetic limit, where nonlocal phenomena occur. Let us note thattypical parameters
for ICF yield thatKn ≥ 0.1, while the hydrodynamic regime (or local approach) fails atKn ≥ 0.01.
This premature failure of the local approach in plasma is explained by a specific dependence of the
electron mean free path on the electron energy. In our applications the energy is transported by the
fastest electrons, which have a much longer mean free path.
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On the other hand, the Hall parameterχ = ωcτ quantifies the relative importance of magnetic and
collisional effects.ωc = eB/me is the electron cyclotron frequency andτ the mean electron-ion collision
time

τ =
12π2 ǫ2

0
√

me T3/2
e√

2πni Z2 e4 lnΛ
. (5.25)

The aim of this section is to validate our solver in different regimes, in order to show its robustness
with respect to the variations of the Knudsen and Hall parameters. Thus, we consider a simple gradient
temperature configuration, shown in Figure 5.1, modelling a layer of homogeneous plasma. A laser
deposits its energy on the hot temperature side and the absorbed energy istransported with electrons to
the cold temperature side. A heat flux is created, contributing to preheating (with the fastest particles)
of the region down the temperature gradient, and to smoothing of this temperature gradient. The charge
separation induced by the movement of particles generates electric currents and electric fields. The heat
flux and electric field are important in a preliminary transient phase. Latter in timethey decrease and
stabilize due to the collisional effect and the return current of cold particles. These quantities may be
inhibited in the direction of the temperature gradient if the magnetic field, constant in the domain, is
present. In that case, heat fluxes and electric fields are created also inthe direction perpendicular to the
temperature gradient. A Knudsen boundary layer is observed, having the extension of several collision
mean free paths. It is due to the zero boundary current condition, where the populations that leave
and enter the computational domain have different temperatures. However, since the boundaries are far
enough from the temperature gradient, this boundary layer does not influence the heat flux propagation in
the region of the temperature gradient. We observed that the presence ofa strong magnetic field enforces
the variation of the fluxes inside this boundary layer.

5.3.2 Test 1 : Electron transport in the local regime

Here, we consisider configurations that present small Knuden parameters: Kn≪ 1. In order to validate
the numerical scheme in the local regime, we compare the heat fluxQFP and electric fieldEFP computed
from the numerical solution of (6.18), with those analytically computed from anhydrodynamic model
[5, 15].

Hydrodynamic model. Let us define the average over velocity of a functionA(v)

〈A〉 = 1
ne

∫

R3
A(v) f (v) dv, (5.26)

wherene(t, x) =
∫

R3
f (t, x, v)dv is the density of electrons.

Following [5, 15], we introduce the macroscopic quantities
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



j = qe ne 〈v〉,

q =
1
2

me ne〈 ( v · v) v 〉,

R =
∫

R3
me v Ce,i( fe) dv,

(5.27)
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Figure 5.1:Configuration of the temperature gradient test 1: a temperature profile isconsidered between
two domains of plasma with particles at a thermal equilibrium. Zero currentboundary conditions enable
to maintain the mass conservation. A heat flux is generated wherever there is a nonzero temperature
gradient. Knudsen boundary layers appear on the heat flux, temperature, and electromagnetic profiles.
This boundary layer, located in a very narrow zone, close to the hydrodynamical discontinuity (where
the zero curent boundary conditions are applied), is the signature of a stabilization of the distribution
function at the thermal equilibrium. The boundaries are maintained far enough from the temperature
gradient, so that no boundary effect should interfere with its evolution.



148

and

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p = ne Te =
1
3

me ne〈 (v − 〈v〉 ) · (v − 〈v 〉 ) 〉,

Π =
1
3

me ne 〈 (v − 〈v〉 ) ⊗ ( v − 〈v〉 ) 〉 − p I ,

qloc =
1
2

me ne〈 [ ( v − 〈v〉 ) · (v − 〈v〉) ] ( v − 〈v〉 ) 〉,

(5.28)

wherej is the electric current,q the total heat flow,R the friction force accounting for the transfer of
momentum from ions to electrons in collisions,Te is the temperature,p is the scalar intrinsic pressure,
Π is the stress tensor,qloc is the intrinsic heat flow andI the unit diagonal tensor.
Quantitiesp,Π andqloc are defined in the local reference frame of the electrons, whereasj , q andR are
defined relative to the ion center of mass frame. Ions are supposed to be at rest. We have the relation

qloc = q + j · 5 p I + 2Π
2ne e

+ j
me ne〈v〉2

2ne e
. (5.29)

The validation of our Fokker-Planck-Landau solver in the domain close to the hydrodynamic regime
(local regime) requires knowledge of the transport coefficients. Following the formalism of Braginskii
[5] for the transport relations, the transport coefficients in the hydrodynamic regime have been calculated
by Epperlein in [15]. These coefficientsαep, βep, κep, are the electrical resistivity, thermoelectric and
thermal conductivity tensors, respectively. From these quantities, we are able to compare the heat flux
and the electric field issued from the Fokker-Planck solver to those calculated analytically in [15], in the
local regime.

The classical derivation procedure to obtain the transport coefficients involves the linearization of
the Fokker-Planck-Landau equation, assuming the plasma to be close to the thermal equilibrium. The
distribution function is approximated using a truncated Cartesian tensor expansion

f (t, x, v) = f (0)(‖v‖2) +
v
‖v‖ · f

(1)(t, x, ‖v‖).

Following [15],Π andme ne〈v〉2 are neglected and we consider appropriate velocity moments off (1),
electric fields and heat fluxes are expressed as a function of thermodynamical variables. The coefficients
of proportionality, in the obtained relations, are defined as the transport coefficients. Several notations
can be used, depending on the chosen thermodynamical variables. Adopting the Braginskii notations,
we obtain
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

R = ∇p + e ne E − j × B =
αep · j
nee

− βep · ∇Te,

q = −5
2

j
e

Te − κep · ∇Te − βep · j
Te

e
.

(5.30)

We want to compare of the results of the solver with the analytical electric fieldsand heat fluxes in the
local regime. For that purpose, we use the values of coefficients, forZ = 1, that are tabulated in [15].
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As for the components of these tensors, we make use of the standard notations ||, ⊥, and∧. Directions
denoted with|| and⊥ are respectively parallel and perpendicular to the magnetic field. Consequently, the
parallel and perpendicular components of a vectoru are respectivelyu|| = b (u ·b) andu⊥ = b× (u×b),
whereb is the unit vector in the direction of the magnetic field. The direction defined by the third
direction in a direct orthogonal frame is denoted by∧. In the system (5.30), the relation between any
transport coefficient tensorϕ and vectoru is defined by

ϕ · u = ϕ|| b (b · u) + ϕ⊥ b × (u × b) ± ϕ∧ b × u , (5.31)

where the negative sign applies only in the caseϕ = αep.
These coefficients can be expressed in dimensionless form
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αc
ep = αep

τ

me ne
,

βc
ep = βep,

κc
ep = κep

me

neτTe
.

(5.32)

The dimensionless transport coefficientsαc
ep, β

c
ep, κ

c
ep are functions ofZ and the Hall parameterχ = ωcτ

only.
The heat flux and the electric field in (5.30) can then be rewritten in terms of dimensionless quantities,
for the particular 1D geometry of our temperature gradient configuration.In that case, the scaling using
a collision frequency (5.41)-(6.17) is used.
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q1 = −
5
2

Te n−1
e j1 − χTe B−1

3 ∇x1Te κ
c
ep,⊥ − Te

(

βc
ep,⊥ j1 − βc

ep,∧ j2
)

,

q2 = −
5
2

Te n−1
e j2 − χTeB−1

3 ∇x1Te κ
c
ep,∧ − Te

(

βc
ep,⊥ j2 + βc

ep,∧ j1
)

,

E1 = ne
−1 j2 B3 − n−1

e ∇x1 p − ∇x1Teβ
c
ep,⊥ + ne

−1 B3 χ
−1 (αc

ep,⊥ j1 + αc
ep,∧ j2),

E2 = −ne
−1 j1 B3 − ∇x1Teβ

c
ep,∧ + ne

−1 B3 χ
−1 (αc

ep,⊥ j2 − αc
ep,∧ j1).

(5.33)

The Hall parameterχ is expressed in terms of the dimensionless quantitiesB3 andTe:

χ =
3
√
π

2
√

2

B3 T3/2
e

Z
. (5.34)

We denote byQBR the heat flux and byEBR the electric field computed from the system (5.33). The
transport coefficientsαep, βep, κep have been tabulated in [15] and will be compared with those obtained
by our numerical solution approaching the kinetic FPL equation (6.18).

Let us note that in this configuration source terms can be considered stiff; the discretization of the
collision operator is then of crucial importance and its accuracy can be tested. Moreover we provide,
in this local regime, with validation results for a wide range of Hall parameters corresponding to ICF



150

applications.
The initial temperature gradientTe(x1) has the form of a step

Te(x1) =


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TR
e (x1) if x1 > xm

1 ,

TL
e (x1) else,

(5.35)

whereTR
e andTL

e are third order polynomials inx1 − xm
1 , x1 standing for the space coordinate andxm

1 for
the mid-point of the 1D domain. The coefficients of these polynomials are chosen such as they verify the
following conditions atxm

1
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(xR
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1)/λ
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e (xm

1 ) = TR
e (xm

1 ) =
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2
,

(5.36)

and at the boundaries
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∂x1
(xL

1) =
∂TR

e

∂x1
(xR

1) = 0,

(5.37)

whereTL (resp.TR) is the initial temperature of the leftmost (resp. rightmost) pointxL
1 (resp.xR

1) of the
domain. Here,λ is a parameter that determines the initial stiffness of the temperature gradient.

The simulations are performed with the following parameters: the size of the dimensionless domain
L = xR

1 − xL
1 = 5400, 2× vmax = 12, the ion chargeZ = 1, the frequency ratioνe,i/ωpe = 0.01, the

electron thermal velocity such asvth/c = 0.05. The magnetic field is found from the Maxwell equations;
the initial values areB3(t = 0, x1) = 0.001,0.01,0.1, or 1. In the test cases in the local regime, any
variation to this initial value proved to be negligible. The initial electric field is zeroover the domain:
E1(t = 0, x1) = E2(t = 0, x1) = 0. The initial distribution function is a Maxwellian function depending
on the local temperature, with a density that is constant over the domain. The initial temperature profile
is chosen such asTL = 0.8, TR = 1.2 andλ = 10. This set of parameters enables us to consider the local
regime, close to the hydrodynamic limit (the Knudsen number is about 1/500). The second order scheme
is used for the transport terms in thex1, v1, v2 andv3 directions. The dimensionless time step and mesh
size are∆t = 1/500,∆x1 = L/126,∆v = 2vmax/32 respectively. The grid has 126 points in space and
323 points in velocity; 42 processors were used for each simulation (CEA-CCRT-platine facility). The
domain decomposition on the space domain allows each processor to deal onlywith 3 points in space.
The fourth order scheme is used for the space and velocity transport terms. The zero current boundary
condition is written explicitly in Section 3.3.4. The boundary conditions for fieldsare chosen with ghost
points at their initial value (zero for the electric field and 0.001,0.01,0.1, or 1 for the magnetic field. The
results are presented in Figures 5.2-5.4. The typical run time is 24 hours for 40 collision times, with that



High order numerical coupling with the Fokker-Planck-Landau collision model 151

set of parameters. The maximum difference between the numerical and the analytical solution is less
than 10% for longitudinal macroscopic quantities (heat flux and electric field); 20% for transverse ones.
Transverse quantities have only been considered for simulations presented in Figures 5.3 and 5.4 where
the magnetic field was strong enough so that

• The transverse heat flux can attain its asymptotic value during the simulation time.

• transverse quantities have the value comparableto the longitudinal ones.

These conditions are fulfilled forB3 = 0.1,1.
In Figures 5.2-5.4, the results for simulations withB3 = 0.001,B3 = 0.1, B3 = 1 are shown, respectively.
The simulation withB3 = 0.01 proved to show no significant differences with those withB3 = 0.001.
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Figure 5.2:The longitudinal (along the temperature gradient) heat flux ratio
maxx1(QFP)
maxx1(QBR) (dashed curve)

and electric field ratio
maxx1(EFP)
maxx1(EBR) (oscillating curve) are shown against the dimensionless time. The

dimensionless magnetic field is B3 = 0.001. Asymptotic behavior, where the flux is well established,
shows good agreement (less than5% error) with analytical solution (Braginskii formalism), denoted by
subscript BR.

The numerical results are shown Figures 5.2-5.4 : a transient phase is observed before attaining a
stationary regime. The oscillations are enforced by the magnetic field as it is observed in Figure 5.4,
whereas the oscillations of electric fields are the signature of the plasma waves excited by the initial
conditions. Then, these oscillations are damped in a few electron-ion collisiontimes. These plasma
oscillations are smoothed out by the large time steps we used in simulations, permittedby the implicit
treatment of the Maxwell equations. However, these oscillations have a little importance on the asymp-
totic values and a little importance for accuracy. With a larger magnetic field, Figure 5.4, we observe
frequency modulations atωc = νe,i (corresponding toB3 = 1), both in electric fields and heat fluxes. The
total energy is conserved with a 0.1% accuracy in the caseB3 = 0.001, and with a 1% accuracy with
B3 = 1. The total density is conserved with accuracy of 0.01%.

In order to investigate Larmor rotation effects for simulations presented in Figures 5.3 and 5.4, we
refined the space grid below the dimensionless Larmor radiusrL = B−1

3 . Thus the simulation presented
in Figure 5.3 was repeated with the same parameters on the same time period: we have refined the grid



152

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  5  10  15  20  25  30  35  40  45
Dimensionless time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  5  10  15  20  25  30  35  40  45

Dimensionless time

(a) Longitudinal (b) Transverse

Figure 5.3: Longitudinal (a) and tranverse (b) heat flux
maxx1(QFP)
maxx1(QBR) (curve in bold) and electric field

maxx1(EFP)
maxx1(EBR) (dashed curve) are shown against the dimensionless time. Longitudinalquantities (along the

temperature gradient) agree with the theoritical values with about10% accuracy in the asymptotics.
Transverse quantities agree with the theory with about20% accuracy in the asymptotics. The dimen-
sionless magnetic field is B3 = 0.1.
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Figure 5.4: Longitudinal (a) and transverse (b) heat flux
maxx1(QFP)
maxx1(QBR) (curve in bold) and electric field

maxx1(EFP)
maxx1(EBR) (dashed curve) are shown against the dimensionless time. Longitudinalquantities (along

the temperature gradient) agree with the theoritical values with about5% accuracy in the asymptotics.
Transverse quantities agree with the theory with about20% accuracy in the asymptotics. The dimen-
sionless magnetic field is B3 = 1.
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to 1260 points in space (420 processors). In the same manner, the simulationpresented in Figure 5.4
has been repeated with 6300 grid points in space (2100 processors) and ∆t = 1/1000 (according to
the CFL condition), during the same time period. The results prove to be similar to those with coarse
space grids, both for macroscopic quantities and for the distribution functions. Thus no dependence on
the Larmor radius is found. We recall here that the cyclotron period is always resolved, as the time
steps are constrained by the CFL condition on the collision operators. The positivity property is always
maintained.

5.3.3 Test 2 : Electron transport in the nonlocal regime without magnetic fields

Here, we consider configurations that present Knudsen parameters up to Kn ≃ 1. Therefore, we ob-
serve the behavior of the transport coefficients far from the hydrodynamic regime. These coefficients
are normalized with the coefficients in the Spitzer-Ḧarm regime, denoted by the subscriptS H. The
Spitzer-Ḧarm regime is the hydrodynamic regime, with a zero magnetic field. Then it is possible to eval-
uate directly the ratio of effective thermal conductivity to the Spitzer-Härm conductivity,κ/κS H, by the
relation:

κ

κS H
=

q1

qS H
, (5.38)

whereq1 is the heat flux in thex1 direction. It is calculated from the numerical solution andqS H from
(5.33) in the Spitzer-Ḧarm limit.

Transport coefficients are extracted from the domain where the flux and temperature gradient attain
their maximum values. The effective Knudsen number, characterized by the wavelength of the temper-
ature perturbationkλe,i in the Fourier space, is computed from the gradient temperature profile. This
enables us to evaluate a range forkλe,i (due to an uncertainty for the estimation ofkλe,i in the 1Dx space),
corresponding to this temperature gradient. The results are compared with the analytical formula from
[16]

κ

κS H
=

1

1 + (30kλe,i β)4/3
, (5.39)

β =

(

3π
128

3.2(0.24 + Z)
(1 + 0.24Z)

)1/2 Z1/2

2
. (5.40)

This formula has been obtained by a fit of data issued from the Fokker-Planck solver SPARK [16].
While considering the comparison between the numerical results and the analytical solution shown in
Table 5.1, one should keep in mind that the test procedure involves a large domain of uncertainty. Three
runs have been performed with the same precision for the temperature gradient. The CFL conditions are
respected, maintaining the positivity of the distribution function.

5.3.4 Test 3: Electron transport in the nonlocal regime perpendicularly to the magnetic
field

The objective of this section is to illustrate a competition between the nonlocal andmagnetic effects on
the distribution function. More precisely, we consider a situation where the Knudsen numberKn ≃ 1/10.
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Table 5.1: Comparison between the numerical results and the analytical solution.

Parameters RUN1 RUN2 RUN3
Size of the domain 5400 540 540
Stiffness parameterλ 10 10 100
Number of points along the Gradient 126 126 1260
Number of processors 42 42 420

Results
kλe,i 10−3 0.05± 0.03 0.2± 0.1

Analytical κ/κS H 0.998 [0.93− 0.67] [0.60− 0.26]
Numericalκ/κS H 1.03 0.675 0.395

This corresponds to a situation with a stiffness parameterλ = 100. The 1D domain goes from 0 to
L = 540, the grid has 1260 points in space, 420 processors were used foreach simulation (10 collision
times), during 6 hours. Other parameters are kept identical to those in the test cases in the local regime.
Two cases are distinguished, respectively with weak magnetic fields effects,ωc/νei = 10−2 (see Figures
5.6 and 5.7(a)), and strong magnetic fields effecs,ωc/νei = 1 (see Figures 5.5(b) and 5.7(b)). The
magnetic field is calculated from the Maxwell equations; no more than 0.1% departure from their initial
value is encountered after 10 collision times. The positivity of the distribution function is maintained,
and the CFL conditions are satisfied. In Figures 5.5 and 5.6, the averageddistribution function is shown
in the region of the temperature gradient

∑

j2, j3

fe(t, x1, v j1, v j2, v j3) ,

The initial distribution function, Figure 5.5(a), is a Maxwellian function with a temperature that depends
on the space variablex1. It is symmetric in thev1 direction. After 10 collision times, for the simulation
with ωc/νei = 10−2, Figure 5.6, the distribution function keeps the same structure for the bulk electrons.
Only the structure for the fastest electrons is modified. The fast electron population with positive ve-
locities is depleted in the hot side of the temperature gradient, whereas the fast electron population with
negative velocities is enforced, contributing to smoothing of the temperature gradient and heating of the
bulk. These nonlocal effects are important, because the main contribution to the heat flux comes from
the fastest particles.
The same distribution fonction is shown in Figure 5.5(b), at the same time, but for a simulation with a
strong magnetic fieldωc/νei = 1. The distribution fonction is here stronger localized. This means that
the magnetic field tends to inhibit the electron transport, while forcing the Larmorrotation of electrons.

In order to gain more insight in the processes at stake, we show in Figure 5.7 the quantity
∑

j2, j3

[

fe(t, x1, v j1, v j2, v j3) − fe(t, x1,−v j1, v j2, v j3)
]

,

which is odd in the variablev j1. It accounts for the asymmetries between the positive and negative
velocities, along the directionv1, and contributes to the heat flux and the current. We observe that the fast
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population contributes to the total current with a negative sign, whereas thebulk population contributes
to the return current, with a positive sign. Comparing Figures 5.7(a) and 5.7(b), we observe that the
assymetries are strongly re-localized in the region of the temperature gradient, with a strong magnetic
field.
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Figure 5.5:Averaged distribution function in the v2 and v3 directions, in the region of the temperature
gradient, at initial time (a), and at tνei = 10 (b), for a simulation withωc/νei = 1.
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Figure 5.6:Averaged distribution function in the v2 and v3 directions, in the region of the temperature
gradient, at tνei = 10, for a simulation withωc/νei = 10−2.

5.3.5 Test 4: 2D nonlocal magnetic field generation

We present here results on the nonlocal magnetic field generation in the relaxation of cylindrical laser
hot spots, having a periodic structure, in a plasma with an initial constant density. This stands as a first
step to prove the 2Dx capabilities of the solver, and also as a comparison in the nonlocal regime with a
model from the literature [6]. The extension of the present numerical schemes is straightforward on a
2Dx grid. The fourth order scheme is used for the transport terms in thex1, x2, v1, v2 andv3 directions.
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Figure 5.7:The quantity
∑

j2, j3

[

fe(t, x1, v j1, v j2, v j3) − fe(t, x1,−v j1, v j2, v j3)
]

is shown, in the region of

the temperature gradient, at the same time tνei = 10, for ωc/νei = 10−2 in panel (a), andωc/νei = 1 in
panel (b). It corresponds to the odd part of the distribution function.

We consider a planar geometry with periodic boundary conditions for the distribution function and
fields. For this application, the scaling using a collision frequency (5.41)-(6.17) is used. The initial
dimensionless temperature profile is

Te(x, t = 0) = 1 + 0.12 exp

(

− x2

R2

)

,

with R = 5.6. We used the following parameters for the simulation: the frequency ratio isνe,i/ωpe =

0.003, the ion charge isZ = 5. We do not consider here the electron-electron collision operator, because
the electron-ion collisions dominate. Then the relaxation only acts with electron-ion collisions on the
anisotropic part of the distribution function. The electron thermal velocity is such asvth/c = 0.05.
These parameters are close to those used in [28]. The size of the simulation domain isL = 70 for one
space direction, 2× vmax = 12 for one velocity direction. The initial electric and magnetic fields are
zero over the domain. The initial distribution function is a Maxwellian function depending on the local
temperature, the initial density being constant over the domain. The dimensionless time step and mesh
size are∆t = 1/500,∆x = ∆y = L/100,∆v = 2vmax/32, respectively. The grid has 1002 points in space
and 323 points in velocity; 625 processors are used for this simulation. With these parameters, the CFL
conditions are satisfied and the distribution function remains positive. The simulation time is 24 hours.

First order process of temperature relaxation

The dominant process that is at play in this test case is the temperature relaxation of the hot spot. In
this case the ratiosize of a hot spot/ distance between hot spotsis small enough, allowing to consider,
at first order, that each hot spot relaxes independently without interaction with neighbors. Therefore
we employ the 1Dx non-magnetized nonlocal heat transport model [6], to validate this process. This
model is designed to take into account nonstationary effects, which account for the dependance of the
transport coefficients on time. Two characteristic relaxation regimes are identified in [6], respectively at
the hydrodynamic and collisionless kinetic time scale.
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Both electron-electron and electron-ion collisions are considered in [6].Owing the fact that we have
chosenZ = 5, the electron-electron collisions can be considered negligible in the model [6], for this
particular set of parameters.
Figure 5.8 presents the evolution of the maximum of the temperature, obtained from the 2Dx × 3Dv

Maxwell-Fokker-Planck-Landau solver and from the model; it shows good agreement. The total mass is
exactly preserved and the total energy is preserved with a 0.01% accuracy.
Several theoritical publications [7], [18], [25], [3], consider configurations where magnetic field effects
are important.
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Figure 5.8: Evolution of the maximum of dimensionless temperature. Comparison between the
Maxwell-Fokker-Planck-Landau solver (bold, red curve) and the model from [6] (dash, green curve).

Second order process of nonlocal interaction between hot spots

The interaction between hot spots become important if the ratiosize of a hot spot/ distance between
hot spotsis large enough, at a given temperature perturbation. The signature of this interaction is the
magnetic field generation, due to the non-azimuthal symmetry, even if the densitygradient is zero. This
source of magnetic field cannot be described by hydrodynamic models. Itis identified in [21] using a
nonlocal kinetic description. A nonlocal Ohm’s law that is proposed in [21]describes the magnetic field
generation in plasma, at a constant density, with an isotropic pressure. A nonlocal source of magnetic
field is proportional to the angle between the gradients of the third and fifth moments of the electron
distribution function (see Figure 5.9(b)):

∂B
∂t
∝ ∇x

(∫

R3
fe‖v‖3dv

)

× ∇x

(∫

R3
fe‖v‖5dv

)

Here the lower order term∇xne × ∇xTe, standing as a classical source of magnetic field generation, is
discarded because of the constant density.
The magnetic field and the cross gradients of high order moments are shown inFigure 5.9, demonstrat-
ing a clear similarity. This test case demonstrates that our numerical method provides sufficiently high
accuracy and low noise, allowing to recover the second order effects at the level better than 0.01%.
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Having in view the scaling law for this mechanism with respect to the temperature perturbation [21]:
ωc/νei ∝ (δT/T)2, we conclude that this magnetic field can influence the energy transport, if the tem-
perature perturbationδT is large enough. Therefore, the accurate capture of high order momentsby the
numerical scheme is crucial for the energy transport.
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Figure 5.9:Dimensionless magnetic field and cross gradients of high order moments (third and fifth) at
tνe,i = 8.

5.4 Perspectives

As a conclusion for this section, we propose several imporvements that could serve as a research direc-
tion line.
First, practically, the average of the discrete electron-ion collision operator in eight uncentrered colli-
sion operators, though computationally costly, is more robust than the decomposition in two, forward
and backwards, operators [11, 14]. In order to reduce the computational cost, we could derive, for the
electron-ion collision operator, a decomposition similar to the one used for the electron-electron collision
operator, that is splitted in a centered operator and a viscosity operator.
Second, as far as an implicit treatment is desirable to reach demanding regimes[4, 17, 27, 23, 24] of low
temperature/high density regimes faced to large phase space resolution volumes, the issue of positivity is
essential. The relevence of implicit schemes in that context is still under debate. Also, if implicit schemes
are considered, a multigrid preconditioning relying on frequential decomposition could be interesting.
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Finally, automatic coding of implicit schemes should be considered: techniques such as Automatic Dif-
ferentiation (AD) emerge and become standard . We mention the widely used Tapenade AD code from
INRIA.
Third, having in view multi-physics contexts, the implementation of the collision/radiation operators
must let free this extension, and, as far as possible, use unsplit techniques. Indeed, if two collision/radiative
kernels (Bremsstrahlung, Compton, double Compton, etc) are computed at the same moment, there is a
possibility to parallelize these tasks with a “fork and join” technique (OpenMP or MPI-2).
Finally, a sharper validation strategy might be considered that could rely ondimension independant, fully
multi-scale techniques, such as the “echography” of codes [19].
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5.5 Appendix: Scaling with an electron-ion frequency

For the analysis of collisional processes, a new scaling is introduced here, that allows time steps to be of
the order of the electron-ion collision time. In order to take into account transport phenomena occurring
at the collision time scale, several parameters are required: the electron-ion collision frequencyνe,i , the
associated mean free pathλe,i , the thermal velocityvth, and the cyclotron frequencyωce

νe,i =
Z n0 e4 lnΛ

8π ǫ2
0 m2

e v3
th

, λe,i =
vth

νe,i
, vth =

√

κBT0

me
, ωce =

eB
me

, (5.41)

These parameters enable us to define the dimensionless parameters marked with a tilde.
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• Dimensionless time, space and velocity, respectively

t̃ = νe,i t, x̃ = x/λe,i , ṽ = v/vth. (5.42)

• Dimensionless electric field, magnetic field, and distribution function, respectively

Ẽ =
eE

mevthνe,i
, B̃ =

eB
meνe,i

=
ωce

νe,i
, f̃e = fe

v3
th

n0
. (5.43)

This leads to the following dimensionless equations
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∂ fe
∂t
+ ∇x · (v fe) − ∇v · ((E + v × B) fe) =

1
Z

Ce,e( fe, fe) +Ce,i( fe),

∂E
∂t
− 1
β2
∇x × B =

1
α2

nu,

∂B
∂t
+ ∇x × E = 0,

∇x · E =
1
α2

(1− n),

∇x · B = 0,

(5.44)

whereα = νe,i/ωpe andβ = vth/c. The collision termsCe,e( fe, fe) andCe,i( fe) are given in (6.19).



Chapter 6
From code validation to realistic simulations:
kinetic transport for shock ignition

163



164

6.1 Introduction

The general framework of this chapter is the theoretical investigation of theelectron energy transport
in Inertial Fusion targets, for the shock ignition regime. This program is part of the European project
HiPER which aims at demonstrating the feasablity of an Inertial Fusion reactor. This project, if success-
ful, will have a very large societal and economical impact. A new approachto inertial fusion related to
the fast ignition of compressed fuel is now being pursued by european scientists, allowing high target
gains using moderate laser energies and powers. This approach, known as shock ignition, is still under
discussion, and a major, and up to now unsolved issue of this scheme is the conversion of the laser en-
ergy into a very high pressure converging shock wave. The efficiency of this conversion mainly relies on
the properties of the electron energy transport in plasmas. An important issue is the ability of electron
diffusion to smooth out any departure from symmetry of the laser irradiation. Though this subject has
been extensively studied in the past decades, it is not perfectly understood, nor acurately modelled in the
target design codes. Moreover, the regimes of temperatures and densities specifically encountered in the
shock ignition scheme have never been explored so far.

Detailed calculations of electron heat transport require the solution of the Vlasov-Fokker-Planck-
Landau equations. The temporal scale of this model is the electron-electroncollision frequency, whereas
the spatial scale relates to the collision mean free path. These scales are very small as compared to the
hydrodynamic time and spatial scale lenghts of an ICF target, so such completesimulations of target
implosions where up to now considered as out of reach of state of the art computers and codes.

We propose here to calculate the electron transport on realistic spatial dimensions and physical time
by using the recently developped Fokker-Planck codes on high performance computing (HPC) plat-
forms from the GENCI organism. The proposed computational model is representative of shock ignition
physics. This work is achieved within the frame of the HiPER project, and benefits from a collaboration
between CELIA, Oxford University(UK), and Imperial College(UK). The analysis of the calculations
will contribute to our physical understanding and cross calibration of codes from CELIA, Imperial Col-
lege, and Oxford University. It will help validating reduced models implemented in the design codes.

This chapter sums up the developments that have been performed onto the Vlasov-Fokker-Planck-
Landau solver, to reach the regimes of shock ignition. Several representative test for code cross-calibration
are also proposed in appendix.
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6.2 Specific developments in the reference deterministic solver

To achieve realistic numerical simulation of the electon transport for the shock ignition regime, we
have develop several new features of the Vlasov-Fokker-Planck-Landau code. These concern, first the
implementation of the laser collisional absorption at low intensity, second the extension of the numerical
scheme to non-uniform meshes. These development were required by theconfiguration of the numerical
simulations we have proposed in Appendix 6.8. Finally we mention a technique thatcould be appropriate
to handle with large density gradients, such as those in the shock ignition regime(ranging from 0.1nc to
more than 100nc). This method relies on a rescaling technique.

6.2.1 3Dv Langdon IB heating operator derivation

The collisional conversion of the laser energy in the plasma,via electron-ion collisions, is called the
inverse bremsstrahlung process. It is described by Langdon [22], and is approriate for relatively low
intensities, up to 1014-1016Wcm−2. These are typically the laser intensities relevant in the shock ignition
regime, at the spike launch.

Weak equivalence relation

We show here an isotropic extension of the Langdon operator to arbitrarydistribution functions of the
3Dv space, together with a numerical finite volume scheme for its implementation in the deterministic
reference code. We finally present some validation tests that show, on theone hand, the accuracy of the
implementation, and on the other hand some new interesting features related to thisoperator.

Proposition 8. The Langdon Inverse Bremsstrahlung (IB) heating operator [22]

∂ f0
∂t

(t, v) =
Av2

0

3
1
v2

∂

∂v

(

g
v
∂ f0
∂v

(t, v)

)

, (6.1)

and the3Dv operator

∂ f
∂t

(t, v) =
Av2

0

3
∇v ·

[ g

v5
[v ⊗ v] ∇v f (t, v)

]

, (6.2)

are equivalent, in a weak sense.

Proof. Let us consider the approximationg(v) = 1, and the space homogeneous operators having the
general form

∂ f
∂t

(t, v) = α∇v ·
[

Γ(v) [v ⊗ v] ∇v f (t, v)
]

, (6.3)

whereα ∈ R, and f has a compact support in the phase space.
Let ϕ(v) be a smooth test function, that must belong in a regular enough space, which will be precised
latter on.
The weak form of equation (6.3) can be writen as

∫

R3

∂ f
∂t

(t, v)ϕ(v)d3v = α
∫

R3

[

β′(v) + β(v)
2
v

]

f (t, v)d3v , (6.4)
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whereβ(v) = Γ(v)ϕ′(v)v2.
Using the isotropic distribution function definition

f0(t, v) ≡
∫

S2
f (t, v)dΩ ,

a straightforward integration leads to
∫ ∞

0

∂ f0
∂t

(t, v)ϕ(v)dv= α
∫ ∞

0

[

β′(v) + β(v)
2
v

]

f0(t, v)v2dv , (6.5)

Finally, the development of equation (6.5) with appropriate defined integrations by parts gives,∀ϕ ∈
{

ϕ ∈ D(]0,∞[)
/

β′(v)v2 ∈ L1
loc(]0,∞[) , Γ(v)ϕ′(v)v3 ∈ L1

loc(]0,∞[),
}

∫ ∞

0

∂ f0
∂t

(t, v)ϕ(v)v2dv= α
∫ ∞

0

∂

∂v

(

Γ(v)v4∂ f0
∂v

(t, v)

)

ϕ(v)dv (6.6)

Finally we obtain the equivalence in the dual space, between the operators(6.3) and (6.7)

∂ f0
∂t

(t, v) = α
1
v2

∂

∂v

(

Γ(v)v4∂ f0
∂v

(t, v)

)

. (6.7)

This proof applies in the particular case of Inverse Bremsstrahlung, whereα = Av2
0/3 andΓ(v) = 1/v5.

�

The operator (6.2) can be seen as the 3Dv isotropic extension of the operator (6.1).
Herev0 is the electron quiver velocity in the laser field,ω is the laser frequency,τ−1

ei ≡ 2A/v3 is the

electron-ion scattering rate,vω is defined by the relationωτei(vω) = 1, andg(v) =
(

1+ ω−2τ−2
ei (v)

)−2
=

(

1+ v6
ω/v

6
)−2

. Let us consider that the collisions only act as a perturbation on the oscillation of the entire
distribution,i.e.ωτei ≫ 1, theng = 1.
This approximation will be used for the numerical evaluation ofg.

Finite Volume numerical scheme

Let us consider a uniform, cell-centered, cartesian grid
{

vj =
(

v j1, v j2, v j3

)}

j∈Z3 of the velocity spaceR3, ,

such as the pointv = 0 is located at a mesh interface. We definej = ( j1, j2, j3) ∈ Z3, ek the unit vector
in the directionk, and fj as an approximation of the distribution functionf (vj ). The operator (6.2) is
rewritten using a conservative formulation

∂ f
∂t

(t, v) =
Av2

0

3
∇v · F ,

F =

[ g

v5
[v ⊗ v] ∇v f (t, v)

]

.

We use a centered discretization in velocity, together with a forward Euler scheme

f n+1
j − f n

j

∆t
=

Av2
0

3
DcF n

j , (6.8)
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where

DcF n
j =

3
∑

k=1

F n
j+ek/2

− F n
j−ek/2

∆vk
,

F n
j+ek/2

=

















g

ṽ5
j+ek/2

[

vj+ek/2 ⊗ vj+ek/2

]

Dc f n
j+ek/2

















,

Dc f n
j+ek/2

· el =
1
2













f n
j+ek+el

− f n
j+ek−el

2∆vl
+

f n
j+el
− f n

j−el

2∆vl













,

vj+ek/2 =
1
2

(

vj+ek + vj

)

,

ṽ5
j+ek/2

=
1
2

(

ṽ5
j+ek
+ ṽ5

j

)

.

N.B. The IB operator could have also been discretized using the log formulation.

6.2.2 Validation with self-similar solutions

The numerical scheme is tested against a self-similar solution, presented in [22], such as

f (t → ∞, v = 0) ∝ t−3/5 , (6.9)

f (t → ∞, v) = κ1(t) exp(−κ2(t)v5) , (6.10)

where the coefficientsκi(t), i = 1,2 do not depend on the velocity variable.
The self-similar behaviour (6.9) should be accurately described, sincef (t, v = 0) controls the Inverse
Bremsstrahlung absorption of the laser energy [22]. On the other hand,the super-gaussian velocity de-
pendance (6.10) of the self-similar solution should also be tested.

Isotropic situation: quantitative check

The isotropic behaviour of equation (6.2) is tested with a space homogeneous configuration, that explores
the relaxation of a Maxwellian distribution function

Mne,Te,ve =
ne

(2πTe)3/2
e−(v−ve)2/(2Te) ,

towards a supergaussian state. The Maxwellian has initially a temperatureTe = 1, densityne = 1, and
drift velocity ve = 0. 32 velocity points per direction are used, with a truncation of the domain velocity
at vmax = ±8. The time steps are chosen such as∆t = 1/100. The quiver velocity of the electrons is
v0 = 1, where the frequency parameter isA = 1.
In Figures 6.1-6.2, the self-similar behaviour (6.9)-(6.10) is recoveredwith high accuracy, as well as the
isotropic geometry.
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Figure 6.1:Evolution of f(t, v = 0). The dotted black line indicates the t−3/5 recovered analytic self-
similar behaviour, with less than 0.08 % error.

Anisotropic situation: qualitative check

Let us now introduce a drift velocityve ∝ ex, whereex is the unit vector in the x direction.
The other simulation parameters are the same as for the isotropic case. Figure6.3 demonstrates a
correct behaviour of the electronic population having a non-zero driftvelocity, and heatedvia Inverse
Bremsstrahlung. The fast electron population takes indeed more time to be heated than the slower popu-
lation.

6.2.3 Extension of the Finite Volume transport scheme to non-uniform cartesian meshes

We present here the basics for an extension of the Finite Volume transportscheme to non-uniform carte-
sian spatial meshes. This is required by the observed large variations of mean-free-path in the transport
region. The main steps for the discretization procedure are listed below.

The conservative discretization of free-transport terms

f n+1
i = f n

i − v
∆t
∆xi

(

f n
i+1/2 − f n

i−1/2

)

The choice for the stencil

The stencil is chosen
{

xi−1/2, xi+1/2, xi+3/2
}

for positive velocityv, and
{

xi−3/2, xi−1/2, xi+1/2
}

for negative
velocityv [8].
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Figure 6.2:Dimensionless f(t, vx, vy = 0, vz = 0) at different times. The final straight line denotes a
super-gaussian dependance on the velocity dimension. Negative and positive velocities are surimposed,
which shows the perfect conservation of the isotropic geometry at any time.
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Figure 6.3:A cut of the distribution function at vy = 0 and vz = 0 is shown for the anisotropic IB heating
of an initial Maxwellian distribution function with non-zero drift velocity.
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The second order flux reconstruction technique “by primitive”

Here we only focus on the case of positive velocityv; the negative velocity case can be deduced by
symmety arguments.
The average value in the cell is defined as

f n
i =

1
∆xi

∫ xi+1/2

xi−1/2

f (tn, x, v)dx .

The primitive functionFh should satisfy, on the required stencil,

Fh(xi+1/2, v) − Fh(xi−1/2, v) = ∆xi f n
i ,

Fh(xi+3/2, v) − Fh(xi+1/2, v) = ∆xi+1 f n
i+1 ,

Fh(xi+3/2, v) = Fh(xi−1/2, v) + ∆xi f n
i + ∆xi+1 f n

i+1 .

These conditions give

Fh(x, v) = Fh(xi−1/2, v) + (x− xi−1/2) f n
i (v) +

(x− xi−1/2)(x− xi+1/2)

∆xi + ∆xi+1
( f n

i+1 − f n
i )

and finally the high order reconstruction

fh(x, v) ≡ ∂Fh

∂x
(x, v) = f n

i +
2x( f n

i+1 − f n
i )

∆xi + ∆xi+1
−

xi+1/2 + xi−1/2

∆xi + ∆xi+1
( f n

i+1 − f n
i ) .

Finally, the standard limiting procedure in Finite Volume MUSCL schemes consists inlimiting the slope
with a parameterν+i ∈ [0,1]

fh(x, v) = f n
i + ν

+
i (v)

(x− xi)
0.5(∆xi + ∆xi+1)

( f n
i+1 − f n

i )

The limitation procedure

In the case of positive velocityv the slope limiter can be written as

ν+i (v) =















































0 if ( f n
i+1 − f n

i )( f n
i − f n

i−1) < 0 ,

min

(

1,
f n
i

f n
i+1 − f n

i

∆xi + ∆xi+1

∆xi

)

elseif (f n
i+1 − f n

i ) > 0 ,

min

















1,

(

f n
max− f n

i

)

−( f n
i+1 − f n

i )
∆xi + ∆xi+1

∆xi

















else.

6.3 Arbitrary density /temperature: the rescaling velocity method

In this section, we mention a technique that could be suited to the extreme variations of hydrodynamical
quantities in the transport region, and especially for the shock ignition regime. As such, an attractive
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perspective for handling with arbitrary densities and temperatures is described in [16]. It is based on a
rescaling of the distribution function

ge(t, ξ) = Te
3/2 fe(t,ue+ ξ

√

Te) ,

where the novel velocity space is rescaled in the electron moving frameξ =
v − ue√

Te
. Te is the tempera-

ture,ue is the mean velocity, andne is the density.
This technique permits to preserve, at the discrete level, the collision invariants (mass, momentum and
energy), the equilibrium states, of the original discretization of the collision operators, while avoiding
the vacuum problem, at high density and low temperature, using an adpatative scaling to treat strong
variations of the density, velocity, and temperature in space.
This method potentially permits to treat the large density/temperature gradients encountered in the Shock
Ignition.
Therefore, with the prescribed variable change, the discretization of thehomegeneous equation for
electron-electron collisions

∂ fe
∂t
= Q( fe, fe) , v ∈ R3 ,

is replaced by the discrete resolution of the system:

∂ge

∂t
− ∇ξ

(

T−1/2
e

(

(ue)
′ +

( √

Te

)′
ξ
)

ge

)

= Te
3/2Q̃(ge,ge) , (6.11)

(neue)
′ =

d(neue)
dt

= Te
2
(∫

R3
Q̃(ge,ge)ξd

3ξ

)

, (6.12)

( √

Te

)′
=

d
√

Te

dt
=

Te
3/2

2× 3ne

(∫

R3
Q̃(ge,ge)ξ

2d3ξ

)

, (6.13)

Q̃(ge,ge) = Q( fe, fe) . (6.14)

This techniques involves the computation of the collisions in the electron frame, not in the ion frame.
Therefore, it is well-suited for the treatment of like particules, but not forelectron-ion collisions, because
these latter present desirable symmetry properties in the ion rest frame. Similarly, the technique is well-
suited only for like electron populations, if a multiscale decomposition between fast and thermal electrons
should be considered.
Also, in the particular regimes where self-similar solutions are valid, an analyticdecoupling between the
ODEs (6.12)-(6.13) and the PDE (6.11) is possible, and would permit a simpler resolution [16].

6.4 Conclusion

In this chapter, we have attempted to adress the issues related to the full scalesimulation for transport in
the shock ignition regime, with our reference Fokker-Planck-Landau code. We have brougth these ele-
ments together, as it could serve for the future transport simulation campaigns. Having this in view, data
issued from PIC simulations of collisionless absorbtion of the laser light in the underdense region could
be used as input for the transport code. Such data is provided in [21],in the regime of shock ignition.
Despite their accuracy, and owing to their computational cost, the reference calculation need to be com-
pleted by longer time scale simulations relying on reduced, faster models. On theother hand reduced
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model needs to know precisely what are their own limits, which is not trivial. Inthe next chapter, we
step toward this direction.
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6.5 Appendix: Hydrodynamic profiles from CHIC at the spike pulse launch
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Figure 6.4:Electronic Density and temperature from hydrodynamic data, over the 1D domain.
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Figure 6.5:Electronic Density in critical Density units and Temperature from hydrodynamic data, over
the 1D domain.
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6.6 Appendix: Profiles fitted from 2D-ALE hydrodynamic CHIC simula-
tions

Potentially large electric fields may be generated at density discontinuities. Therefore a smooth density
profile is required to avoid such an effect, especially if the ion density profile is kept constant, which is
the case in our simulations. We choose aC1 smooth fitting for temperature and density issued from CHIC
2D -ALE simulations. With such choice, the electric field can itself present discontinuities, because the
fitting does not reach aC2 smoothness.

Realistic fitted density and temperature profiles are presented at the time when the spike pulse is
launched. They are issued from CHIC data, with the conventionn(x = 0) = nc. The fitted density profile
is

n(x) = [0.0008× (x+ x1)/(0.0029× (x+ x1− 7.6))2]nc ,

wherex1 = 2(600×
√

36655)+ 115979)/4205µm, x is the position in micrometers,n(x = 10− x1) ≃
165nc is the leftmost boundary of the profile,n(x = 1000− x1) ≃ 0.0966nc is the rightmost boundary of
the profile.
The smooth - in the first dervative- fitted temperature profile (in keV) is

T le f t
e (x) = 0.00005× (200− (x+ x1− 200)2) + 2 , if 10 − x1 < x < x2 ,

Tright
e (x) = −0.00072× (x− x2)+ T le f t

e (x2) , if x2 < x < 1000− x1 ,

wherex2 = 200− x1+ 0.00072/(2× 0.00005)µm.

One may want to cut the density and temperature profiles, or broaden the space domain, while main-
taining smooth profiles. To this aim we introduce an arbitrary cut-off positionxcut (in micrometers) such
as 10− x1 ≤ xcut < 1000− x1. This defines a cut-off densityncut = n|xcut

and temperatureTcut = T |xcut
.

We introduce also the arbitrary distanceL (in micrometers) asL = xcut − xmin and the density jump
∆n = n|(xcut−L) − ncut, wherexmin is the position (in micrometers) of the leftmost domain boundary, at
a prescribed temperatureTmin ≤ Tcut. We obtain for the corrected density and temperature profiles for
xmin ≤ x ≤ xcut

n(x) =
1
L2

(

dn
dx

∣

∣

∣

∣

∣

xcut

+
2∆n
L

)

(x− (xcut − L))3

− 1
L

(

dn
dx

∣

∣

∣

∣

∣

xcut

+
3∆n
L

)

(x− (xcut − L))2 + ncut + ∆n , if xmin ≤ x ≤ xcut ,

T(x) =
1
L

[

dT
dx

∣

∣

∣

∣

∣

xcut

− 1
L

(Tcut − Tmin)

]

(x− (xcut − L))2

+

[

2
L

(Tcut − Tmin) −
dT
dx

∣

∣

∣

∣

∣

xcut

]

(x− (xcut − L)) + Tmin , if xmin ≤ x ≤ xcut , .

dn
dx

∣

∣

∣

∣

∣

xcut

=
0.0008nc

(0.0029× (xcut + x1 − 7.6))2

[

1− 2(xcut + x1)
(xcut + x1 − 7.6)

]

.

dT
dx

∣

∣

∣

∣

∣

xcut

= −2× 0.00005× (xcut + x1 − 200) .
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6.7 Appendix: Scaling of the equations

The initial set of equations are, in S.I. Units,














































































































∂ fe
∂t
+ ∇x · (v fe) +

qe

me
∇v · ((E + v × B) fe) = Ce,e( fe, fe) +Ce,i( fe) +Cbrem( fe),

∂E
∂t
− c2∇x × B = − j

ǫ0

∂B
∂t
+ ∇x × E = 0,

∇x · E = qe(ne− Zni),

∇x · B = 0,

(6.15)

where the Fokker-Planck-Landau collision termsCe,e( fe, fe) andCe,i( fe) are given by
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For the analysis of collisional processes, a scaling is introduced here, that is appropriate with respect
to large time steps, of the order of the electron-ion collision time. In order to account for transport
phenomena occuring at the collision time scale, several reference parameters are required: an electron-
ion collision frequencyνe,i
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wherenc = 9.1027 m−3 is the critical density,Tc is the initial temperature at the critical density point
xc = 0. The Coulomb logarithm [6] at that point is
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lnΛ0 , 2, wherebmax = max
(

λ′D, r i
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(
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These parameters enable us to define the dimensionless parameters with tilde.

• Dimensionless time, space and velocity, respectively

t̃ = νe,i t, x̃ = x/λe,i , ṽ = v/vth. (6.16)

• Dimensionless electric field, magnetic field, and distribution function, respectively

Ẽ =
eE

me vth|nc
νe,i
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∣

∣
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me νe,i
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∣

∣
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∣

∣
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, f̃e = fe
vth|3nc
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. (6.17)

This leads to the following dimensionless equations
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c. ni(x) is the ionic density. The Fokker-Planck-Landau collision terms
Ce,e( fe, fe) andCe,i( fe) are given in (6.19)
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(6.19)
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For the sake of simplicity for comparaison between the different solvers, the Coulomb logarithm could
be approximated homogeneously as

lnΛ(t, x) ≃ lnΛc ,

without affecting the realism of the simulations (due to the 1/lnΛ dependence of the higher order terms
in the Fokker Planck developments).
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6.8 Appendix: configuration to test and compare the transport codes

In this section, we try to provide simple and realistic test cases, suitable for theshock ignition regime, on
which to compare the different transport codes.

6.8.1 Academic test for the transport, with simplified configuration

We propose periodic (or reflective) boundary conditions.
The critical density isnc = 9 × 1027m−3. The temperatureTc = 1keV is homogeneous over the do-

main. We approximate lnΛ(t, x) ≃ lnΛc, and choose a laser absorption source such as
(

v0(x)/vth|nc

)2
=

0.1 ,∀x
/

ne
nc

(t, x) < 1. The initial electric field and initial hydrodynamic profiles, are

ne

nc
(t = 0, x) =

Zni(x)
nc

=

[

1+ sin

(

2π
L

x

)]

nre f

nc
, (6.20)

Te

Tc
(t = 0, x) = 1 , (6.21)

Ex(t = 0, x) = 0 . (6.22)

These profiles are represented in figure 6.6.
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6.8.2 Realistic test for the transport up to12nc

For this simulation set-up, we perform a smooth fit of the 2D-ALE CHIC hydrodynamic profiles (in
appendix 6.6), at the spike launching time, where we fix the parameters of appendix 6.6 as:xcut = −15.7,
∆n = 0.1, L = (xcut − xmin) λei|nc

× 106 , Tmin = 0.8Tcut, andnc = 9× 1027m−3.
Also the inverse bremsstrahlung heating zone is chosen as

(

v0(x)/vth|nc

)2
= 0.1 ,∀x

/[

0 < x/ λei|nc
< 50× 10−6/ λei|nc

]

. The figure 6.7 shows the resulting profiles of the dimensionless temperature, density, mean-free-path,
together with the set-up of the non-uniform mesh below the mean-free-path.
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Figure 6.7: Fitted hydrodynamic profiles from 2D-ALE CHIC simulations. The mesh geometry is set
according to the mean free path. All quantities are scaled at the critical density, located at x= 0,
according to appendix 6.7.
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Chapter 7
From kinetic to mesoscopic: a first validation
of reduced description for electron transport.
Application in both radiotherapy and ICF
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7.1 Introduction

In this chapter, we wish to introduce a reduced model for electron transport, that relies on an angular
moment closure, and validate the numerical implementation of this scheme in different regimes.
We shall first focus on the electron radiotherapy applications, which involves only collision processes
very similar to those at play in ICF electron transport. After the problem formulation in section 7.2.1,
we derive the approximation in section 7.2.2. This approximation consists of a system of nonlinear
hyperbolic partial differential equations, whose properties we briefly discuss. Due to the possibility of
shock solutions, hyperbolic PDEs have to be solved with great care. In section 7.2.4, we introduce a
scheme which is adapted to the problem at hand. Numerical results for tests from the medical physics
literature are presented in section 7.2.5.
As a second step, in section 7.3, we investigate the behaviour of such angular oment model faced with
the collective effects of the Vlasov-Amp̀ere system, that complete the collisional effects in electron ICF
transport. The angular moment model proves to be accurate for the Landau damping as well as for the
two-stream instability collective regimes.
Finally, in section 7.4, we put forward the analogy between electron radiotherapy and ICF electron
transport with respect to the processes at play, and suggest that large angle collisions for ICF electron
transport should be important as well.

7.2 The angular moment reduced model in the collisional regime of elec-
tron radiotherapy

The use of ionizing radiation is one of the main tools in the therapy of cancer. The aim of radiation
treatment is to deposit enough energy in cancer cells so that they are destroyed. On the other hand,
healthy tissue around the cancer cells should be harmed as little as possible. Furthermore, some regions
at risk, like the spinal chord, should receive almost no radiation at all.

Most dose calculation algorithms in clinical use rely on the Fermi–Eyges theoryof radiation which
is insufficient at inhomogenities,e.g.void-like spaces like the lung. This work, on the other hand, starts
with a Boltzmann transport model for the radiation which accurately describes all physical interactions.

Until recently, dose calculation using a Boltzmann transport equation has not attracted much attention
in the medical physics community. This access is based on deterministic transport equations of radiative
transfer. Similar to Monte Carlo simulations it relies on a rigorous model of the physical interactions
in human tissue that can in principle be solved exactly. Monte Carlo simulations are widely used, but it
has been argued that a grid-based Boltzmann solution should have the samecomputational complexity
[19]. Electron and combined photon and electron radiation were studied in the context of inverse therapy
planningcf. [148, 147] and most recently [149]. A consistent model of combined photon and electron
radiation was developed [65] that includes the most important physical interactions. Furthermore, several
neutral particle codes have been applied to the dose calculation problem, see [58] for a review.

7.2.1 A deterministic model for dose calculation

A ray of high energy electrons that interacts with human tissue is subject to elastic scattering processes
and inelastic ones. It is this latter process that leads to energy deposition in the tissuei.e. to absorbed
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dose.
To formulate a transport equation for electrons we study their fluence in phase space. Let

ψ(r, ǫ,Ω) cosΘdAdΩdǫdt be the number of electrons at positionr that move in timedt through areadA
into the element of solid angledΩ aroundΩ with an energy in the interval (ǫ, ǫ +dǫ). The angle between
directionΩ and the outer normal ofdA is denoted byΘ. The kinetic energyǫ of the electrons is the
relativistic kinetic energy.

Boltzmann transport equation

The transport equation can generally be formulated as [41]

Ω · ∇ψ(r, ǫ,Ω) = ρin(r)

∞
∫

ǫ

∫

S2

σin(ǫ′, ǫ,Ω′ ·Ω)ψ(r, ǫ′,Ω′)dΩ′dǫ′

+ ρel(r)
∫

S2

σel(r, ǫ,Ω
′ ·Ω)ψ(r, ǫ,Ω′)dΩ′

− ρin(r)σtot
in (ǫ)ψ(r, ǫ,Ω)

− ρel(r)σ
tot
el (r, ǫ)ψ(r, ǫ,Ω), (7.1)

with σin being the differential scattering cross section for inelastic scattering, andσel the differential
cross section for elastic scattering;σtot

in =
∫

S2 σindΩ andσtot
el =

∫

S2 σeldΩ are the total cross sections
for inelastic and elastic scattering, respectively;ρin andρel are the densities of the respective scattering
centers.

Explicit formulas for the cross sections that we used in this model can be found in section 7.2.1.
They are based on the model developed in [65]. The energy integration isperformed over (ǫ,∞) since
the electrons lose energy in every scattering event. Also, we consider only electron radiation. Equation
(7.1) could also be used to model electrons which are generated by the interactions of photons with
matter, as in [65]. In this case we would have an additional source term on the right hand side for the
generated electrons.

Besides the transport equation one needs an equation for the absorbeddose. It was derived in [65]
as an asymptotic limit of a model with a finite lower energy boundǫs > 0. The formula is exact if one
chooses the lower energy limitǫs = 0, as we do here.

D(r) =
T
ρ(r)

∫ ∞

0
S(r, ǫ′)ψ(0)(r, ǫ′)dǫ′ (7.2)

with

ψ(0)(r, ǫ) :=
∫

S2

ψ(r, ǫ,Ω′)dΩ′,

T being the duration of the irradiation of the patient andρ the mass density of the irradiated tissue. If all
quantities are calculated in SI units, equation (7.2) leads to SI units J/kg or Gray (Gy) for the dose.

S is the stopping power related to the inelastic cross section. It is defined as

S(r, ǫ) = ρin(r)

ǫ
∫

0

ǫ′σin(ǫ, ǫ′)dǫ′.
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Continuous slowing-down approximation

Electron transport in tissue has very distinctive properties. The soft collision differential scattering cross
sections have a pronounced maximum for small scattering angles and small energy loss. This allows
for a simplification of the scattering terms in the Boltzmann equation. The Fokker-Planck equation
is the result of an asymptotic analysis for both small energy loss and small deflections. It has been
rigorously derived in [117] and has been applied to the above Boltzmann model in [65]. However, some
electrons will also experience hard collisions with large changes in directionand energy losses which
have to be described by Boltzmann integral terms. Thus we only use an asymptotic analysis to describe
energy loss, called continuous slowing-down approximation. This approximation has a greater domain
of validity than the Fokker-Planck approximation. The Boltzmann equation in continuous slowing-down
approximation (BCSD) is [91]

Ω · ∇ψ(r, ǫ,Ω) = ρin(r)
∫

S2

σCSD
in (ǫ,Ω′ ·Ω)ψ(r, ǫ,Ω′)dΩ′

+ ρel(r)
∫

S2

σel(r, ǫ,Ω
′ ·Ω)ψ(r, ǫ,Ω′)dΩ′

− ρin(r)σin,tot(ǫ)ψ(r, ǫ,Ω)

− ρel(r)σel,tot(r, ǫ)ψ(r, ǫ,Ω)

+
∂

∂ǫ
(S(r, ǫ)ψ(r, ǫ,Ω)) (7.3)

with

σCSD
in =

∫ ∞

0
σin(ǫ, ǫ′, µ)dǫ′.

A truncation in the energy space is introduced, that does not allow particleswith arbitrary high energy,

lim
ǫ→∞

ψ(r, ǫ,Ω) = 0. (7.4)

In the numerical simulations, we use a sufficiently large cutoff energy. Furthermore, we prescribe the
ingoing radiation at the spatial boundary,

ψ(r, ǫ,Ω) = ψb(r, ǫ,Ω) for n ·Ω < 0, (7.5)

wheren is the unit outward normal vector.

Modeling of Scattering Cross Sections

Henyey-Greenstein Scattering Theory The detailed interactions of electrons with atoms give rise
to complicated explicit formulas for the scattering coefficients. Because of this, many studies use the
simplified Henyey-Greenstein scattering kernel for elastic scattering [11],

σHG(µ,g) =
1− g2

4π(1+ g2 − 2gµ)3/2
. (7.6)

The parameterg, which can depend onr, is the average cosine of the scattering angle and is a measure
for the anisotropy of the scattering.
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Mott and Møller Scattering A more realistic model for elastic and inelastic scattering of electrons in
tissue has been developed in [65]. This model introduces material parameters (namely densitiesρe and
ρc, ionization energyǫB and effective atomic chargeZ). The energy integration for inelastic scattering is
cut-off at ǫB.

The model uses the Mott scattering formula for elastic scattering [139, 138]

σMott(r, ǫ,Ω
′ ·Ω) =

Z2(r)r2
e(1+ ǫ)2

4[ǫ(ǫ + 2)]2(1+ 2η(r, ǫ) − cosϑ)2

[

1− ǫ(ǫ + 2)
(1+ ǫ)2

sin2 ϑ

2

]

,

with ϑ = arccos(Ω′ · Ω). Here,α ≈ 1/137 is the fine structure constant,Z is the atomic number of
the irradiated medium,re is the classical electron radius.Z depends onr to account for heterogeneous
media. To avoid an otherwise occurring singularity atϑ = 0 a screening parameter

η(r, ǫ) =
π2α2Z2/3(r)
ǫ(ǫ + 2)

,

can be introduced [159] that models the screening effect of the electrons of the atomic shell.
The dominant inelastic scattering process is Møller (electron-electron) scattering. Due to kinemat-

ical reasons of the scattering processes the range of solid angles in Møller scattering is restricted. The
electron, which has the higher energy after the collision is called primary electron, the other electron sec-
ondary. Here, an incoming electron with energyǫ′ hits an electron at rest. After the collision, the angle
between the directions of the electrons is at mostπ/2. Electrons are indistinguishable. For an angle in
[0, π/4], the electron with energyǫ is the primary electron, for an angle in [π/4, π/2], it is the secondary
electron. Therefore the Møller cross section can be written as

σM = σ̃Mχ{0<Ω·Ω′<
√

2/2} + σ̃M,δχ{
√

2/2<Ω·Ω′<1},

whereχ denotes the characteristic function of a set,

σ̃M(ǫ′, ǫ,Ω′ ·Ω) = σM(ǫ′, ǫ)δM(µ, µp)
1
2π
, µ = Ω′ ·Ω,

is the Møller differential cross section of primary electrons and

σ̃M,δ(ǫ
′, ǫ,Ω′ ·Ω) = σM(ǫ′, ǫ)δM,δ(µ, µδ)

1
2π
, µ = Ω′ ·Ω,

is the Møller differential cross section of secondary electrons. Here,

σM(ǫ′, ǫ) =
2πr2

e(ǫ′ + 1)2

ǫ′(ǫ′ + 2)

[

1
ǫ2
+

1
(ǫ′ − ǫ)2

+
1

(ǫ′ + 1)2
− 2ǫ′ + 1

(ǫ′ + 1)2ǫ(ǫ′ − ǫ)

]

,

and
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Møller scattering does not take into account distant collisions. In the simulations the model parameters
ρel, ρin, ǫB andZ are fitted to tabulated values taken from the database of the Penelope Monte Carlo code
[125].
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Figure 7.1: Eddington factorχ and system eigenvalues versus anisotropy parameter|α|.

7.2.2 Partial Differential Equation Model

We will try to reduce the cost of solving system (7.1) by assuming a minimum entropy principle for
the angle distribution of particles. This principle has been first proposed by Jaynes [72] as a method
to select the most likely state of a thermodynamical system having only incomplete information. It has
subsequently been developed in [107], [95], [10] and [45], among others, and has become the main
concept of rational extended thermodynamics [113]. A full account and an exhaustive list of references
on the historical development can be found in [64].

We define the first three moments in angle:

ψ(0)(r, ǫ) =
∫

S2
ψ(r, ǫ,Ω)dΩ, (7.7)

ψ(1)(r, ǫ) =
∫

S2
Ωψ(r, ǫ,Ω)dΩ, (7.8)

ψ(2)(r, ǫ) =
∫

S2
(Ω ⊗Ω)ψ(r, ǫ,Ω)dΩ, (7.9)

where we note thatψ(0) is a scalar,ψ(1) is a vector andψ(2) is a tensor.
If we integrate the system (7.3) overΩ, we can derive the following equations,

∇xψ
(1) =

∂

∂ǫ
(Sψ(0)), (7.10a)

∇xψ
(2) = −(TM + TMott)ψ

(1) +
∂

∂ǫ
(Sψ(1)). (7.10b)

We have introduced the transport coefficients

Tin(r, ǫ) = πρin(r)
∫ (ǫ−ǫB)/2

ǫB

∫ 1

−1
(1− µ)σin(ǫ, ǫ′, µ)dµdǫ′, (7.11)

Tel(r, ǫ) = πρel(r)
∫ 1

−1
(1− µ)σel(ǫ, µ)dµ. (7.12)
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These coefficients and the stopping power can be computed for both Henyey-Greenstein and Mott/Møller
scattering. Explicit expressions can be found in [65, 53].

The problem remains open for the computation of momentψ(2) as a function ofψ(0) andψ(1). The
Minimum EntropyM1 closure for electrons [26] can be derived in the following way. To close the system
we determine a distribution functionψME that minimizes the entropy of the electrons,

H∗R(ψ) = −
∫

S2
ψ logψdΩ, (7.13)

under the constraint that it reproduces the lower order moments,

∫

S2
ψMEdΩ = ψ(0) and

∫

S2
ΩψMEdΩ = ψ(1). (7.14)

By using this entropy, we have implicitly assumed that the electrons obey classical Maxwell-Boltzmann
statistics. This is justified, since here quantum effects can be neglected.

Analogous to the calculations in [95] we can show that the entropy minimizer hasthe following form,

ψME = a0 exp(−Ω · a1), (7.15)

wherea0 is a non-negative scalar, anda1 is a three component real valued vector. This is a Maxwell-
Boltzmann type distribution anda0, a1 are (scaled) Lagrange multipliers enforcing the constraints. An
important parameter is the anisotropy parameterα,

α =
ψ(1)

ψ(0)
,

whose norm is by construction less than or equal to one. If we compute the different moments of the
distribution function given by (8.42) we obtain,

ψ(0) = 4πa0
sinh(|a1|)
|a1|

, ψ(1) = 4πa0
sinh(|a1|)(1− |a1| coth(|a1|))

|a1|3
a1. (7.16)

In fact, these relations can be combined to give,

α =
1− |a1| coth(|a1|)

|a1|2
a1, (7.17)

or by taking the modulus,

|α| = |a1| coth(|a1|) − 1
|a1|

. (7.18)

The relation (7.18) cannot be inverted explicitly by hand,i.e. we cannot express|a1| as a function
of α in a closed form. However, this relation determines a unique solution which canin principle be
computed. If we assume that we knowa1, ψ(2) can be computed as

ψ(2) = ψ(0)
(

1− χ(α)
2

I +
3χ(α) − 1

2
α ⊗ α

)

, (7.19)
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where

χ =
|a1|2 − 2|a1| coth(|a1|) + 2

|a1|2
(7.20)

is a function ofα by means of (7.18).
For its efficient numerical evaluation, the Eddington factor has to be approximated. Several possibil-

ities exist:

• One could solve the closure relation (7.18) for|a1| e.g.by a Newton iteration in each step during
the simulation.

• One could precompute a table that gives the Eddington factorχ as a function ofα.

• One could approximateχ(α) by a suitable special function.

The second approach has been followed in [53]. It is advantageous only if the space in which one
interpolates is low-dimensional. For more moments, this approach becomes infeasible, and the first
approach has to be used.

In some cases, anansatzfor χ can provide a good approximation. This is the approach we are
following here. The Eddington factorχ can be approximated by a very simple rational function,

χ(α) ≈ a6α
6 + a4α

4 + a2α
2 + a0

α4 + b2α2 + b0.
(7.21)

This approximation is very accurate (the difference with exact curve is about 10−15). The coefficients are
given by

a0 = 0.762066949972264, b0 = 2.28620084991677,
a2 = 0.219172080193380, b2 = −2.10758208969840,
a4 = −0.259725400168378,
a6 = 0.457105130221120.

(7.22)

7.2.3 Properties of the System

In the literature, the system that has been thoroughly investigated (both analytically and numerically) is
system (7.10) restricted to its conservative terms, without external sources, but with time-dependence.

In the present work, we adapt a pseudo-time technique. We focus on thespatial discretization and
use a standard discretization for the terms on the right-hand side. Thus we consider

∂

∂t
ψ(0) + ∇xψ

(1) = 0, (7.23a)

∂

∂t
ψ(1) + ∇xψ

(2)
(

ψ(0), ψ(1)
)

= 0, (7.23b)

with the closure (7.18).
The Eddington factorχ is shown in Figure 7.1. Furthermore, we show the system eigenvalues in two

dimensions. In the isotropic regime (anisotropy parameter zero), they coincide with the P1 eigenvalues.
On the other hand, in the case of free-streaming (|α| = 1), they coincide and have absolute value one.
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Thus the system (7.10) is hyperbolic and the speed of propagation is limited byone. Moreover the system
is hyperbolic symmetrisable [45].

System (7.23) closed by the relation (7.19) has been analyzed thoroughlyin [38]. There, solutions to
Riemann problems are constructed and invariant regions are computed. Since the reconstruction (8.42)
of the kinetic distributionψ is always positive, it can be expected that system (7.23), (7.19) must admit a
positive solutionψ(0) and a limited flux‖α‖ < 1. To our knowledge, however, there exists no proof of this
fact. The invariant regions computed in [38] only cover a subset of all admissible values. For a related
model [54], bounds were proved, but only in 1D and steady state. Nevertheless, we construct a scheme
which preserves exactly the positivity ofψ(0) and the flux limitation,i.e. the convex set of the admissible
states of the system (7.23) is [17]

A =
{(

ψ(0), ψ(1)
)

: ψ(0) ≥ 0, |ψ(1)| ≤ ψ(0)
}

.

In the absence of sources or boundaries, the total mass, momentum and energy are conserved.
In addition, the minimum entropy system recovers the equilibrium diffusion regime as a relaxation

limit for large absorption coefficients [37].
In a two-dimensional geometry, we have in addition [17]: Letn be the unit normal vector to an

interface; then the system exhibits two acoustic waves, with velocitiesλL(n) andλR(n), supplemented by
a contact wave with velocityβ(n). The quantityβ · n satisfies the following inequalityλL(n) ≤ β(n) · n ≤
λR(n). The Riemann invariants associated with the contact wave are{β,Π}. They are defined by the
relations

ψ1 = (Π + ψ0) β, (7.24a)

ψ2 = (ψ0 + Π) β ⊗ β + ΠId . (7.24b)

7.2.4 Numerical Method

The properties of the continuous model should be reproduced by the numerical scheme. In particular
the positivity and flux limitation constraints are fundamental. An HLL scheme [63]can be constructed
[12, 28, 17], that satisfies the required properties. However such anapproach cannot capture the contact
discontinuity. To prevent this failure, an HLLC scheme [12] has been derived, that resolves the contact
discontinuity and satisfies the physical constraints.

To complete this presentation of the numerical approximation, we mention that a suitable high or-
der extension that preserves both the positivity and the flux limitation can be derived, relying on an
appropriate limitation procedure.

An HLL scheme for the free transport M1 angular moment system

In this section, we derive a Finite Volume method, issued from the HLL method [63] to discretize the
free transport equation contained in the system (7.23). Put in other words, we omit the source terms and
we consider the one dimensional generic conservative system

∂

∂t
U + ∂

∂x
[F (U)] = 0 , (7.25)
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Figure 7.2: Structure of the approximate HLL Riemann Solver

where

U =
(

ψ0

ψ1

)

andF stands for the flux of theM1 system in thex space direction.
We consider a structured mesh of size∆xi , defined by the cellsI i =

[

xi−1/2, xi+1/2
)

, where we have set
xi+1/2 = xi + ∆x/2 , i ∈ Z, at timetn. As usual, we consider known a piecewise contant approximation
Uh(x, tn), defined byUh(x, tn) = Un

i , x ∈ I i ,∀i ∈ Z.
At initial time t = 0, we impose

U0
i =

∫ xi+1/2

xi−1/2

U0(x)dx,

whereU0 is the initial data. This approximation evolves in time, involving a suitable approximateRie-
mann solver. In the HLL approach, the exact Riemann solver solution is substituted by a single approxi-
mate state (see Figure 7.2). HerebL andbR are relevant approximations ofλL andλR, respectively. Let
us introduce the proposed approximate solution:

UHLL(x, t) ≡
(

ψ0(x, t)
ψ1(x, t)

)

HLL

=



















UL if x
t < bL ,

U∗ if bL ≤ x
t ≤ bR ,

UR if bR <
x
t .

(7.26)

Moreover, the search of weak solutions leads to the Rankine-Hugoniot jump conditions

−bL
[U∗ −UL

]

+
[

F̃ − F (UL)
]

= 0, (7.27a)

−bR
[UR−U∗

]

+
[

F (UR) − F̃
]

= 0. (7.27b)

These relations provide us with an explicit expression for the intermediate state and flux of the numerical
scheme

U∗ = bRUR− bLUL − (F (UR) − F (UL))
bR− bL

, (7.28a)

F̃(UL,UR) =
bRF (UL) − bLF (UR) − bLbR(UR−UL)

bR− bL
, (7.28b)

At each interfacexi+1/2, we impose the above HLL approximate Riemann solver, assuming the CFL like
condition (7.29) ensuring that the Riemann solvers do not interact in the case wherebL,i+1/2 < 0 and
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bR,i−1/2 > 0 :

∆t
∆x
≤

bL,i+1/2bR,i−1/2

bL,i+1/2 − bR,i−1/2
. (7.29)

We setUh(x, t + ∆t), at timetn + ∆t, the superposition of the non-interacting Riemann solutions. We
define the updated approximation at timetn+1 by

Un+1
i =

1
∆x

∫ xi+1/2

xi−1/2

Uh(x, tn + ∆t).

An easy computation gives

Un+1
i = Un

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2) , (7.30)

where

Fn
i+1/2(Un

i ,Un
i+1) =



























F
(

Un
i

)

if 0 < bL,i+1/2

F̃i+1/2

(

Un
i ,Un

i+1

)

if bL,i+1/2 ≤ 0 ≤ bR,i+1/2

F
(

Un
i+1

)

if bR,i+1/2 < 0

The robustness of the scheme, namely the positivity, the flux limitation, the total mass preservation, has
been established for the HLL scheme (see [17] for further details).
Finally, concerning the high order extension, we adopt a van Leer MUSCL technique [157], supple-
mented by a suitable slope limitation preserving these expected physical properties [16].

An accurate HLLC scheme

The HLL scheme has proved to be robust, however, its 2D extension fails when approximating contact
waves. Several works [12, 17] introduce a more accurate scheme, theHLLC scheme, based on a two
state approximation, denoted byU∗L andU∗R.

First, let us recall the relevant linearization that permits us to define an approximation with two
intermediate states: on the one hand, the Rankine-Hugoniot conditions (7.27) are considered; on the
other hand, they are supplemented by the continuity of the Riemann invariants accross the contact wave:

(βx)
∗
L = (βx)

∗
R = β

∗
x , Π∗L = Π

∗
R = Π

∗ , (7.31)

whereβx andΠ are defined by the relation (7.24). The combination of both the Rankine-Hugoniot
condition (7.27) and the relation (7.31) standing as the continuity of the Riemanninvariants accross the
contact wave, is sufficient to determine uniquely [12, 17] the two approximate statesU∗L andU∗R, together
with their associated fluxes̃FL andF̃R. The proposed HLLC approximate solution can be written as

UHLLC(x, t) ≡
(

ψ0(x, t)
ψ1(x, t)

)

HLLC

=































UL if x
t < bL ,

U∗L if bL ≤ x
t ≤ β∗x ,

U∗R if β∗x ≤ x
t ≤ bR ,

UR if bR <
x
t .

(7.32)
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Similar to the derivation of the HLL scheme, we integrate over a cellI i the juxtaposition of the non-
interacting HLLC Riemann approximate solvers at each interface (projectionstep), in order to obtain the
updated quantity

Un+1
i =

1
∆x

∫ xi+1/2

xi−1/2

Uh(x, tn + ∆t).

This brief description of the HLLC scheme is now completed. It is able to capture exactly the contact
wave, and satisfies the positivity, the flux limitation, and the total mass preservation.

7.2.5 Numerical Results

Central Void

The first test case is taken from the medical physics literature [11]. We consider only elastic scattering,
which is modeled by the Henyey-Greenstein kernel. ThusS = 0 andTin = 0. We compare the particle
flux ψ(0)(x) obtained with the minimum entropy model (labeled M1) with a discrete ordinates solution of
the transport equation (labeled SN) with sufficiently many angles (128). The method has been described
in [47].

The test case consists of a one-dimensional geometry with three layers: optically thick, followed by
optically thin followed again by optically thick. The layers have an equal depthof 40 mm. The scattering
and absorption coefficients areσs = 0.5 mm−1, σa = 0.005 mm−1 for the optically thick region, and
σs = 0.01 mm−1, σa = 0.0001 mm−1 for the optically thin region. Moreover,g = 0. Figure 7.3 shows
the particle fluxψ(0) as a functon of space. Compared to the benchmark solution, the minimum entropy
model slightly overestimates but nevertheless quite accurately describes theparticle flux. In Figure 7.3
we also show the partice distribution functionψ(x,Ω), whereΩ = (0,0, µ) in 1D. The main difference is
that for M1, the forward-peak of the incoming particles reaches furtherinto the medium.

Two-dimensional Void-like Layer

Our second test case, again taken from [11], is a two-dimensional quadratic domain which contains a
void-like layer, shown in gray in Figure 7.4(a). Again, we consider only elastic scattering modeled by
the Henyey-Greenstein kernel.

We takeσs = 0.5 mm−1 andσa = 0.005 mm−1 inside the square, andσs = 0.01 mm−1 andσa =

0.0001 mm−1 in the void-like ring. In both regions,g = 0. An isotropic source of particles is placed on
the left boundary. In a 2D contour plot (Figure 7.4), the fluxesψ0 from the discrete ordinate method and
from the minimum entropy method are virtually indistinguishable. The propagationinto the medium,
as well as the void-like layer are equally well resolved. A difference between the models only becomes
apparent in a logarithmic plot of a cut through the center of the square aty = 50 mm. Figure 7.4 shows the
particle flux along this line. The difference between both solutions is again of the order of one percent.

Electrons on Water Phantom

As a first test case with energy loss, we consider a 10 MeV electron beamimpinging onto a slab of water.
In Figure 7.5 we compare the results computed with our code to the dose computed by the state-of-the-
art Monte Carlo code PENELOPE [125]. This code has been extensively validated against experimental
results.
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Figure 7.3: Geometry with central void.
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Figure 7.4: Transport versus minimum entropy for void-like layer.
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Figure 7.5: Dose for 10 MeV electron beam on water.

To obtain a good fit with the tabulated scattering data, we have fixed our modelparameters for water
asǫB = 16.0 eV,Z = 9.40,ρel = 0.256× 1023 g/cm3, ρin = 6.21× 1023 g/cm3. As boundary conditions,
we have taken a very narrow Gaussian in energy, and aδ pulse in angle

ψb = ψ0 exp(−200× (ǫ − ǫbeam)2)δ(µ − 1)

and computed the angular moments. PENELOPE was set up in a pseudo-1D setting with a large beam
size perpendicular to the beam direction.

In order to compare the different formulations of the models, both depth-dose curves in Figure 7.5
have been normalized to dose maximum one. The penetration depth computed withthe M1 model agrees
very well with the Monte Carlo result. In fact this deviation is within the margin of differences between
different Monte Carlo codes [132]. The only major difference occurs near the boundary, where the
M1 model overestimates the dose. This might be due to the simplified physics (possibly neglection of
Bremsstrahlung effects) or an oversimplification of the angular dependence ofψ in the M1 model. Both
possibilities will be investigated further. However, we believe that this resultcan serve as a proof of
concept of a PDE based modeling of dose computation.

7.2.6 CT Data

In our final test case, we compare our method with Monte Carlo results fromPENELOPE using real
patient CT data showing the hip bone. We took a two-dimensional slice of 6× 6 cm from the three-
dimensional CT data. A square region is split into 64×64 squares. In each of the squares, the material is
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Figure 7.6: CT data of hip bone.

described by its Hounsfield grey valueG(x, y). The grey values can be translated into physical parameters
as follows,

ρ(x, y) =

(

G(x, y)
1000

+ 1

)

ρWater,

i.e. the densitiesρel andρin for water are multiplied by a specified factor. The region shows the hip
bone and the density varies between 86% and 226% of the value of water. The boundary conditions
were set up similar to the previous case, with three beams of width 2 cm, each consisting of 10 MeV
electrons, impinging from the centers of three sides of the domain. Contour plots of the dose distribution
are shown in Figure 7.7. There, we also show two cuts through the dose distribution. looking at the 2D
dose distribution, the contour lines agree very well. Note that, although we have used 3× 1010 particles,
there still is significant noise in the Monte Carlo results. The two cuts through the beam centers show
that also quantitatively the independently computed dose distributions agree very well.

The computation time for the 3D Monte Carlo dose was 3×29 hours for 3×1010 particles on a 3GHz
Pentium 4 with 1 GB RAM. In 1D, the minimum entropy model took about 1 second,in 2D 4 seconds.
Thus we expect a computation time of several seconds in a full 3D dose computation.

Again, this result shows that if our model is developed further, it may serve as an alternative to
existing dose computation methods.
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(a) Monte Carlo solution. (b) Minimum entropy solution.
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Figure 7.7: Dose distribution for three beams impinging on hip bone.
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7.3 The angular moment reduced model in the collective regime of plasma
physics

Having in view ICF applications, we have shown that the derivedM1 reduced angular model is accurate
with respect to the collisional processes. As a counterpart, in this section,we wish to explore the response
of the model in the collective unmagnetized regime, which is still relevant for ICF plasma physics. We
propose the linear Landau damping and Two-Stream Instability as first electrostatic 1Dx×1Dv validation
tests.

7.3.1 Linear Landau damping

The Landau damping effect is triggered, in this section, with the following initial distribution function
and electric field

fe(t = 0, x, vx) = [1+ Acos(kxx)] fM(n0,T0, v0) , (7.33)

Ex(t = 0, x) = 0 , (7.34)

whereLx = 25,kx = 2π/Lx, fM is the nonrelativistic Maxwellian with zero drift velocityv0 = 0,arbitrary
densityn0, and initial temperatureT0 = 1.
For the kinetic reference Vlasov model, we have chosen 64 discretization points in the space and velocity
directions, and a truncation of the velocity domain at the dimensionless maximum velocity |vmax| = 6.
We use, for the discretization of theM1 model, 128 points in velocity, with a truncation of the velocity
domain at the dimensionless maximum velocityvmax = 7. We choosedt = 1/100 for both theM1 and
reference simulations.
In Fig. 7.8, bothM1 and reference kinetic (formal fourth order) simulations have the same analytical
instability growth rates, in the linear (A=0.001) and nonlinear (A=0.1) Landau damping as well. The
numerical schemes, in the linear phase of the instability, exhibit a very accurate agreement with the
theory. The Fig. 7.8 shows, first, the correct behaviour of the reduced model in the collective electrostatic
regime, and second, the accurate numerical treatment of theM1 reduced model by our numerical scheme.
For A = 0.1, the nonlinear phase of the instability, some discrepancies apprear between the models. We
may conclude that the mixing of the particles in the phase space needs to be moreaccurately described
than the one-groupM1 model.

7.3.2 Two-Stream Instability

The Two-Stream Instability is triggered, in this section, with the following initial distribution function
and electric field

fe(t = 0, x, vx) =

[

1
2
+ Acos(kxx)

]

fM(n0,T0, v0) +

[

1
2
− Acos(kxx)

]

fM(n0,T0,−v0) , (7.35)

Ex(t = 0, x) = 0 , (7.36)

whereLx =, kx = 2π/Lx, fM is the nonrelativistic Maxwellian with non-zero drift velocityies|v0| = 4,
arbitrary densityn0, and initial temperatureT0 = 1. For the kinetic reference Vlasov model, we have
chosen 64 discretization points in the space and velocity directions, and a truncation of the velocity do-
main at the dimensionless maximum velocity|vmax| = 12. We use, for the discretization of theM1 model,
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Figure 7.8: Comparison between the electronicM1 and reference kinetic solution
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Figure 7.9: Comparison between the electronicM1 and reference kinetic solution

128 points in velocity, with a truncation of the velocity domain at the dimensionless maximum velocity
vmax= 7. We choosedt = 1/100 for both theM1 and reference simulations.
In Fig. 7.9, both two-groupM1 and reference kinetic (formal fourth order) simulations are consistent
with respective analytical instability growth rates. The two groups are defined with positive and nega-
tive velocities, respectively. We have deliberately chosen a wavelenth number for which there exists a
relatively large discrepancy between the analytical solutions issued fromthe dispersion relations of the
reduced two-groupM1 and reference Vlasov models. The Fig. 7.9 shows, first, the correct behaviour of
the reduced model in the collective electrostatic regime, and second, the accurate numerical treatment of
theM1 reduced model by our numerical scheme.
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Figure 7.10: The role of the relativistic electron inelastic collisions on dose deposition in water phantom

7.4 Standalone effects of ionization: the role of Møller inelastic scattering
in radiotherapy and ICF

In this section, we investigate the effects of Møller inelastic scattering, related to large angle scattering,
in water phantom, using theM1 model. The results show that the energy deposition is postponed in
space (pushed forward with respect to the beam direction), and contributes to a non-diffuse localization
of the energy deposition zone, for the stationnary solution. We finally present our results in relation with
a Monte-Carlo simulation of electron transport inD − T, in the ICF context. Such simulation could be
reproduced with less computational cost with the model present in Chapter 8.

7.4.1 The case of an electron beam propagation in water phantom for radiotherapy

The simulation parameters are the same as in the Sec. 7.2.5, except that the initialelectron beam energy
ǫbeamis now valued 5 MeV. The Figures 7.10(a) and 7.10(b) suggest that the effect of the Møller scat-
tering would be to push forward the dose deposition in the beam direction. Asa consequence, the dose
deposition is more peaked (less diffuse) than in the case where the Møller scattering is simply switched-
off. We have shown here the importance of the large angle scattering, in a simple but representative 1Dx

configuration.
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7.4.2 The case of an electron beam propagation inD − T for ICF

In this section, we present a Monte-Carlo simulation of relativistic electron propagation inD − T. This
simulation is extracted from the HiPER technical report [68], and presented in relation of, first, the dose
deposition of relativistic electron beam for radiotherapy, second, the model derived in the Chapter 8, that
is able to describe the heating of a thermal plasma with collisions ranking from grazing to nongrazing
(small to large angle), in a continuous manner.

The electron stopping power (7.37) and mean squared angular deflection(7.38) inD−T is calculated
using the Møller formula

dE
ds

=
dp
dt
= −4πnee4
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
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wherep, E, v(p), γ(p) are the momentum, energy, velocity and lorents factor of the fast electron.s is the
distance along its path.λs is a screening length for the atoms or ions.λBr is the de Broglie wavelength
of the fast electron.ne andωpe are the electron density and plasma frequency of theD − T medium.
If D is assumed constant, a simple solution can be obtained for the stopping distancesstop and timetstop

sstop =
E2

0

1.96E0 + 1
1.56

1− 0.048 lnρ
g
/

cm2 (7.39)
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(
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− arctan

p0

mec

)

, (7.40)

whereE0 is the electron energy in MeV,ρ is theD − T plasma density in g
/

cm2 .

An example of axial and radial energy deposition profiles for an MeV electron in 300 g
/

cm2 D − T,
calculated with a Monte-Carlo code using (7.37) and (7.38), is shown in Figure 7.11.
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Figure 7.11: Average energy deposition profiles for an MeV electron in 300 g
/

cm2 D-T. The z-axis is
aligned along the initial direction of motion. These curves are exctracted from HiPER technical report
[68]

The curve in Fig. 7.11 illustrates the similarity between the physics of electron transport in radiother-
apy and the electron transport in ICF. Moreover it could stands as a reference simulation for the model
we present in Chapter 8.

7.5 Conclusion

We have proposed in this chapter a reduced angular model, which is standard in terms of admissible
states, and is appropriate for the description of the relativistic electron transport. It is valid in the col-
lective or rarefied regimes, as well as in the collisional regime. Thereforeits multi-group version should
be well-suited for a multi-scale mesoscopic description of the electron transport in ICF plasma physics.
A relevant HLLC scheme has been developped to account for the specific difficulties -in particular the
flux limitation and contact discontinuities in 2Dx-, inherent to thisM1-type system. We have proposed
an analogy between electron transport in radiotherapy and ICF, and show the importance of collisions
with large angle scattering in radiotherapy, then finally present a reference Monte-Carlo simulation for
ICF (from the literature) that takes into account these effect, and could serve for a compararison with the
model derived in the next Chapter 8.
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Math. Phys. Kl. Nachr., 195, 41-53, (1906).
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7.6 Appendix: Explicit formulas for the cross sections

This appendix lists all scattering cross sections that are used in the Boltzmannmodel. All cross sections
are calculated for the laboratory system where the scattering centers areat rest before scattering. Except
for elastic Mott scattering, all differential scattering cross sections are differential in energy and in solid
angle. They can be decomposed into a product of a cross section, that isonly differential in solid angle
or energy and a Dirac delta function, that guarantees energy and momentum conservation during the
scattering event. The Mott cross section is only differential in solid angle. Total cross sections are
calculated by integrating the double differential cross sections with respect to energy and solid angle.
Because of the delta functions one integration is always trivial.

For all differential cross sections the following conventions are used: quantities with aprime belong
to incoming particles, quantities without a prime to outgoing particles in a scattering event. The order of
appearence in all differential cross sections is: energy of incoming (ǫ′), energy of outgoing (ǫ), direction
of incoming (Ω′), direction of outgoing particles (Ω). To simplify notation and to keep the standard
notation used in literature we useΩ′ · Ω = cosϑ ≡ µ, ϑ being the scattering angle in the laboratory
system. Additionally we keep sinϑ and tanϑ in formulas, to maintain a handy notation. The relationship
to cosϑ is evident. Furthermore it should be kept in mind thatǫB = ǫB(r) which is not explicitly written
to keep notation short. In all formulas the classical electron radiusre = 2.8179· 10−15 m appears.

7.6.1 Differential cross section for Møller scattering

Due to kinematical reasons of the scattering processes the range of solid angles in Møller (electron-
electron) scattering is restricted. The electron, which has the higher energy after the collision is called
primary electron, the other electron secondary. Here, an incoming electron with energyǫ′ hits an electron
at rest. After the collision, the angle between the directions of the electrons isat mostπ/2. Electrons
are indistinguishable. For an angle in [0, π/4], the electron with energyǫ is the primary electron, for an
angle in [π/4, π/2], it is the secondary electron. Therefore the Møller cross section canbe written as

σM = σ̃Mχ0<Ω·Ω′<
√

2/2 + σ̃M,δχ√2/2<Ω·Ω′<1,

whereχ denotes the characteristic function of a set, ˜σM is the Møller differential cross section of primary
electrons and ˜σM,δ is the Møller differential cross section of secondary electrons.
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7.6.2 Differential cross section for Møller scattering of primary electrons, i.e. ǫ > (ǫ′ −
ǫB)/2 [79]

σ̃M(ǫ′, ǫ,Ω′ ·Ω) = σM(ǫ′, ǫ)δM(µe, µp)
1
2π
, µe = Ω

′ ·Ω

with

σM(ǫ′, ǫ) =
2πr2

e(ǫ′ + 1)2

ǫ′(ǫ′ + 2)

[

1
ǫ2
+

1
(ǫ′ − ǫ)2

+
1

(ǫ′ + 1)2
− 2ǫ′ + 1

(ǫ′ + 1)2ǫ(ǫ′ − ǫ)

]

δM(µe, µp) = δ















µe−
√

ǫ

ǫ′
ǫ′ + 2
ǫ + 2















, ǫ >
(ǫ′ − ǫB)

2

7.6.3 Differential cross section for Møller scattering of secondary electrons, i.e.ǫ < (ǫ′ −
ǫB)/2 [79]

σ̃M,δ(ǫ
′, ǫ,Ω′ ·Ω) = σM(ǫ′, ǫ)δM,δ(µe, µδ)

1
2π
, µe = Ω

′ ·Ω

with

σM(ǫ′, ǫ) =
2πr2

e(ǫ′ + 1)2

ǫ′(ǫ′ + 2)

[

1
ǫ2
+

1
(ǫ′ − ǫ)2

+
1

(ǫ′ + 1)2
− 2ǫ′ + 1

(ǫ′ + 1)2ǫ(ǫ′ − ǫ)

]

δM,δ(µe, µδ) = δ















µe−
√

ǫ

ǫ′
ǫ′ + 2
ǫ + 2















, ǫ <
(ǫ′ − ǫB)

2

7.6.4 Total cross section for Møller scattering of electrons[79]

σtot
M (ǫ) =

(ǫ−ǫB)/2
∫

ǫB

σM(ǫ, ǫ′)dǫ′

The lower limit of integration is due to the fact that the primary electron can only be scattered if at least
the binding energyǫB is transferred to the secondary electron (of a tissue molecule). Besides the evident
motivation of this choice based on our model, this is a standard way to avoid singularities in calculating
total cross sections (seee.g. [158]). The upper limit of integration is due to the fact that the primary
electron has larger energy than the secondary electron and that the binding energyǫB was introduced into
the scattering processes (usually the upper limit isǫ′/2). One gets:

σtot
M (ǫ) =

2πr2
e(ǫ + 1)2

ǫ(ǫ + 2)

×
{ 1
ǫB
− 3
ǫ − ǫB

+
2

ǫ + ǫB
+

ǫ − 3ǫB
2(ǫ + 1)2

+
2ǫ + 1
ǫ(ǫ + 1)

g[ln
ǫ + ǫB

ǫ − ǫB
− ln

ǫ − ǫB
ǫB

g]
}
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7.6.5 Differential cross section for Mott scattering of electrons [139, 138]

α ≈ 1/137 is the fine structure constant,Z is the atomic number of the irradiated medium.Z depends on
r to account for heterogeneous media.

σMott(r, ǫ,Ω
′ ·Ω) =

Z2(r)r2
e(mc2)2

4p2c2β2 sin4 ϑe
2

[

1− β2 sin2 ϑe

2
+ Zπαβ sin

ϑe

2

(

1− sin
ϑe

2
)

)]

≈ Z2(r)r2
e(mc2)2

4p2c2β2 sin4 ϑe
2

[

1− β2 sin2 ϑe

2

]

,

with β2 =
ǫ(ǫ+2)
(ǫ+1)2 . The last approximation is justified, because in the energy range studied here and for

typical low-Z media like water only small errors are made.
To avoid the singularity atϑe = 0 a screening parameterη can be introduced [159] that models the
screening effect of the electrons of the atomic shell:

σMott(r, ǫ,Ω
′ ·Ω) =

Z2(r)r2
e(1+ ǫ)2

4[ǫ(ǫ + 2)]2(1+ 2η(r, ǫ) − cosϑe)2

[

1− ǫ(ǫ + 2)
(1+ ǫ)2

sin2 ϑe

2

]

with

η(r, ǫ) =
π2α2Z

2
3 (r)

ǫ(ǫ + 2)

7.6.6 Total cross section for Mott scattering of electrons

σtot
Mott(r, ǫe) =

π(Z(r)re)2

ǫ(ǫ + 2)

×
[

(ǫ + 1)2

(πα)2Z2/3(r)(1+ η(r, ǫe))
+

1
1+ η(r, ǫe)

+ ln η(r, ǫe) − ln(1+ η(r, ǫe))

]
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8.1 Introduction

Large-scale, high intensity laser installations [6, 19, 12, 20, 41, 40] canachieve highly relativistic inten-
sities and generate extremely high currents of relativistic electrons in interaction with solid targets. An
accurate description of the transport of such high currents of relativistic electrons in dense matter is an
important issue for many applications including the fast ignition of thermonuclearfusion targets, radio-
graphy of dense opaque objects, cancer therapy, lithography, etc. [7, 23, 38]. Recent proposed schemes
for ignition also rely on pre-assembled overdense targets [28], and mightface such regimes.

The complexity of this problem comes from the fact that the collective and collisional processes are
operating in the same time and spatial scales and they require a kinetic description of particles in a very
broad energy domain ranging from thermal electrons of a few tens or hundred eV of the main plasma to
several tens of MeV of the beam electrons. The dominant physical processes include the collisions of
beam electrons with the electrons and ions of plasma, the electron-ion and electron-electron collisions
of plasma particles, production of secondary energetic electrons in head-on electron-electron collisions,
generation of self-consistent electric and magnetic fields, return currents, and plasma heating. There is a
necessity to describe correctly both the energy deposition of beam electrons and their transport from the
injection to the energy deposition region.

A very large difference in energies and densities between the electron beam and the plasma electrons
are revealed in the time and spatial scales of the collective and collisional processes, that makes it difficult
to describe all physical processes within the same kinetic equation. It was suggested to separate the
plasma and beam electrons and to consider them as two different populations. A theoretical approach
that is currently implemented is based on the hybrid model where the plasma electrons are described
in the fluid approximation, while the beam electrons are treated kinetically [3, 13, 15, 29]. While this
approach has shown its capability to describe the major effects such as the collisional slowing down of
beam electrons and the return current generation along with the self-consistent electric and magnetic
fields, certain physical effects are left out of the frames of this model. In particular, the plasma electron
distribution function is supposed to be close to the Maxwellian function and therefore the nonlocal effects
in the plasma electric and thermal conductivities are neglected. Moreover, production of secondary
fast electrons created in the head-on collisions of the beam and plasma electrons is discarded. A more
advanced model of the fast electron transport would be necessary in order to evaluate the domain of
validity of the hybrid model and to extend it to higher current densities, higherbeam electron energies,
and higher plasma densities.

The relativistic extension of the integro-differential Fokker-Planck-Landau kinetic equation [2] or
simplified techniques [8, 43, 32, 4], have been proposed to incorporatethe relativistic effects in the
collisional process in the pitch-angle description. Several studies [44, 50] have been undertaken recently
based on an electron kinetic code KALOS [4], to investigate issues related tothe fast electron beam
energy deposition in fusion targets. There the pitch-angle electron collisions and the self-consistent
fields are described relativistically, however the effect of secondary electron production, including both
relativistic effects and large momentum transfers, was neglected. The objective of this chapter is to
consider in detail this latter process and to evaluate its importance, from a theoretical point of view and
from the point of view of numerical treatment of the kinetic equation.

The problem of secondary electron production has been addressed inthe publications [25, 27] that
consider the effect of cosmic rays on the thunderstorm discharges in the Earth atmosphere. A kinetic
modeling technique based on the relativistic Boltzmann equation, have been set up to describe large angle
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scattering processes and production of secondary electrons, that is often calledthe ionization process.
Such specific models have been also derived for gas discharges, runaway breakdown [26], and Tokamak
disruptions [22]. However, these models describe the background electrons as a cold [25] or a warm fluid
[22] and consider them as a potential source of secondary electrons.The effect of the energy deposition
in plasma was not considered there, whereas it is important issue for the transport problem. A non-
Maxwellian distribution function of plasma electrons could be responsible forthe modification of the
electric conductivity, return current and other important effects [50].

The numerical realization of the relativistic collisional operator has been developed for the collisional
particle-in-cell (PIC) or Monte Carlo (MC) codes [45, 47, 22]. However, independently of the domain of
application, laser interaction with dense matter or a Tokamak plasma, the implementation cost of proba-
bilistic methods into the kinetic models may be too high due to a large number of particles/macroparticles
needed to maintain an acceptable low level of statistical fluctuations. Even PICcodes using weighted
macroparticules [47] heavily rely on the small angle scattering to do so. This has lead authors [22] to
derive a more specific model that incorporates specifically the productionof secondary electrons.

The deterministic numerical methods [52] could be better suited for descriptionof the large angle
scattering effects, because they are by nature less dependent on the density and temperature conditions.
As we will show in this chapter, the plasma heating process, which is due to smallangle collisions, is of
the same order, with a logarithmic accuracy, as the production of secondary electrons, due to large angle
collisions. This rather general result will be illustrated here for simple distribution functions for the bulk
and beam electrons.

A collisional interaction between the electrons in very different energy scales (from eV to MeV) jus-
tifies a need for two populations of electrons: the beam (fast) and the bulk (thermal) particles. However, a
direct separation of two populations in the energy or momentum space cannot be efficient, since the bulk
electron distribution function may have a long tail, and the fast particle distribution function may have an
extension down to the fastest thermal particles. One has to allow for the particle to be transferred from
one population to another. In this chapter we propose a model based on theelectron kinetic equation,
that separates the electrons in two populations operating in two different energy scales. The model is
derived by using a procedure based on an operator decomposition technique, where the collision oper-
ators are interpreted in a systematic manner. This model respects the particle number, momentum and
energy conservations, and introduces an artificial screening parameter in the cross sections, depending
on the bulk electron temperature. A reasonable choice for this parameter is fundamental to maintain an
acceptable number of particles in each population. Thus a numerical validation of the present model is
necessary to find a compromise for this parameter and to gain confidence in the results.

The present chapter is structured as follows. In Sec. 8.2, the electron collision processes are de-
scribed, a two population model is proposed and its design principles are discussed. In Sec. 8.3, the
collision invariant preserving property of the procedure is highlighted. Then, basic properties of the
model are illustrated on a simple beam-plasma configuration in Sec. 8.4. Finally, areduced model suit-
able for numerical computations is presented in Sec. 8.5. A quantitative analysis is performed for the
case of a mono-energetic electron beam propagation in a warm plasma. Theimportance of large angle
scattering for the energy deposition and angular scattering of the beam is demonstrated.
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8.2 Relativistic model of electron kinetics

8.2.1 Collision processes of importance for plasma physics

Let us consider a plasma made of electrons and immobile ions1 of a chargeZe and a densityni . The
electrons are described by a relativistic kinetic equation

d fe
dt
≡ ∂ fe

∂t
+ ∇x · (v fe) + qe∇p · (E + v × B) fe = Cee( fe, fe) +Cei( fe). (8.1)

Here, qe = −e is the charge of electron, the velocity and momentumv = p/meγ are related by the
relativistic factorγ(p) =

√

1+ p2/m2
ec2, c is the speed of light, andme is the mass of electron. The

electric and magnetic fields are described by the Maxwell’s equations, where the electric charge and
current densities,ρ = e(Zni − ne) and j are defined by the electron distribution function:ne(t, x) =
∫

fe(t, x,p)dp and j (t, x) = qe

∫

fe(t, x,p)v dp. In what follows, we concentrate our discussion on the
collisional effects leaving apart the convective terms in the left hand side of Eq. (8.1). Our main objective
is to separate this kinetic equation into the fast and slow components and to describe the coupling between
them.

The standard approach in the physics of Coulomb collisions consists in developing the collision
integrals in series assuming a small momentum transfer in each collision. That reduces the general
Boltzmann-like collision integral in the Landau-Fokker-Planck differential form containing the friction
and diffusion terms in the phase space:

Ceα[ fe] = ∇p · (FDα fe(p)) + ∇p ·
(

Dα ∇p fe(p)
)

. (8.2)

In the non-relativistic limit and neglecting small ion mass corrections,me/mi ≪ 1, the electron-ion
collision integral has only a diffusion term,FDi ≃ 0, that is

Di =
Z2nie4 lnΛ

8πǫ2
0

Φ(v) , (8.3)

whereΦ(u) = (|u|2I − u ⊗ u)/|u|3 is the tensor describing the pitch angle scattering,u = v − v′ is the
relative velocity,I is the unitary matrix, and lnΛ = ln(∆pmax/∆pmin) is the Coulomb logarithm, with
∆pmax ∼ p being the maximum momentum transfer in a collision between particles,∆pmin ≃ ~/λD is the
minimum momentum transfer at the Debye cut-off, λD, and~ is the Planck constant. The expressions for
the electron-electron friction force and the diffusion coefficient, in the relativistic case, are as follows

FDe[ fe] =
e4 lnΛ

4πǫ2
0me

∫

v − v′

|v − v′|3
fe(p′) d3p′, (8.4)

De[ fe] =
e4 lnΛ

8πǫ2
0

∫

Φ(u) fe(p′) d3p′. (8.5)

In plasmas with highly charged ions,Z≫ 1, the electron-ion collisions dominate the diffusion, while the
friction is related to the electron-electron collisions.

1The assumption of immobile ions makes the equations more readable. The ion motion can be included in the model with a
marginal loss of accuracy.
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A usual approximation of classical plasmas, where lnΛ ≫ 1, justifies the possibility to neglect the
head-on collisions, which makes usually a small contribution of the order of 1/ lnΛ. However, this
statement of unimportance of large angle scattering events is not general, and there are conditions where
the hard collisions could produce qualitatively new effects that do not exist in the Landau-Fokker-Planck
approximation. One well-known example is the ionization of atoms or molecules by free electrons in
partially-ionized plasmas. Another example is the electron-ion collisions in a strong laser field. The hard
collisions dominate the electron heating rate if the electron quiver velocity is larger than the electron
thermal velocity multiplied by the Coulomb logarithm [9].

In what follows we are considering a problem of an electron beam propagation through plasma. The
characteristic beam electron energy,ǫb, is supposed to be much larger than the mean energy,kBTe, of
the bulk electron population. In that case the hard collisions of the beam andbulk electrons, similarly
as in the ionization process, produce energetic electrons and thus increase the fast electron population.
Moreover, the collisions of beam and bulk electrons at small angles produce a fast electron tail in the
bulk of electron distribution, which might affect the transport coefficients in such a plasma.

We develop a system of kinetic equations for the beam (fast) electrons described by the distribution
function fb, and the bulk (thermal) electrons described by the distribution functionfth, assuming that
ǫb ≫ kBTe and that that density of beam is small,nb ≪ ne. We just suppose that the beam electrons
could be relativistic, while the plasma electrons are non-relativistic,kBTe≪ mec2.

8.2.2 Kinetic equations for two electron populations

The master equation that incorporates the hard collision processes is the relativistic Boltzmann equation
[16, 48, 49]

d
dt

f (p) =
∫

R3
d3q

∫

S2
dΩ̃′

[

f (p′) f (q′) − f (p) f (q)
]

ũ
W̃2

WpWq
Q(p̃, µ̃) . (8.6)

The notations for the momentap, q and energiesWp, Wq are applied to the outgoing particles, that is,
after a collision event, whereas the momentap′, q′ and energiesWp′ , Wq′ refer to the ingoing particles,
that is, before the same collision event. The conservation of the momentum andthe energy in the collision
implies thatp + q = p′ + q′ andWp +Wq = Wp′ +Wq′ . The quantities marked with tilde (respectively
without tilde) refer to quantities in the center of mass frame (respectively, in the laboratory frame) for a
collision event, except for the scattering angle in the center of mass frame, denoted byθ. In particular,W̃
is the energy of colliding particles in the center of mass, ˜µ = cosθ is the cosine of the interaction angle.

ũ = 2p̃c2/W̃ is the relative velocity.vM ≡ ũ
W̃2

WpWq
is the Møller velocity, andQ is the total relativistic

Rutherford cross section (8.7), that takes into account both relativistic and spin (including Pauli statistical
principle) effects

Q(p̃, µ̃) = Q0A(p̃)

(

1

sin4(θ/2)
+

1
cos4(θ/2)

)

+ Q0B(p̃)

(

1

sin2(θ/2)
+

1
cos2(θ/2)

)

+ 2Q0C
2(p̃) , (8.7)

whereQ0 = (emec)4/(16πǫ0p̃2W̃)2 and the momentum-dependent functions areA(p̃) = (1 + 2C(p̃))2,
B(p̃) = 1+ 4C(p̃), C(p̃) = p̃2/m2

ec2.
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The stiffness of the Boltmann operator is due to the long range Coulomb interaction. Thecom-
plexity of its tensorial form, acting on the general distribution functionf (gathering both thermal and
fast particules), makes a numerical treatment very difficult. We develop a simplification procedure of
the Boltzmann operator, that captures the essential processes and associated collision frequencies with a
good accuracy. This procedure is relying on appropriate assumptions that respect the original collision
invariants.

The first step is folding of the total cross section (8.7)Q → Qf . Owing the fact that electrons have
to be considered identical, the cross section can be folded, that is, the electrons in the outgoing channel
can be exchanged, and the singularities be concentrated at small angles.This step is necessary for
development of the small angle scattering approach, and for derivation of the Landau type formulation
presented in Eqs. (8.16) - (8.18).

As a second step, an intermediate -in momentum exchange- screening is introduced in the Rutherford
cross-section, that makes it possible to discriminate between the smaller and larger angles (equivalently
energy exchanges) for scattering, and thus to introduce a cut-off volume in the momentum space. This
strategy is equivalent to the decomposition, at a finer level though, of the screened Coulomb potential
V(r) [?]

V(r) =

[

e−r/λD

r
− S(r)

]

“ smaller angles′′
+













S(r)













“ larger angles′′
,

whereS ≥ 0 is a smoothing function, which introduces an upper screening, and
e−r/λD

r
− S(r) ≥ 0.

This Debye-like screening procedure of the Coulomb singularity allows a re-interpretation of the above
bracketed collisional processes. A rough, but sufficient condition, for such an interpretation to be safe,
reads [25]

nb

nth
≪ 1 ,

Wth

Wb
≪ 1 ,

which reduces, for the model, the admissible configurations of the plasma. Here the subscripts′b′ and
′th′ refer respectively to the beam and thermal plasma populations.
After a standard folding procedure of the cross-section of like particle collisions, it is decomposed, based
on the intermediate screening, in two -or more than two- daughter cross sections. Each of these sub
cross sections is interpreted as a specific collisional process -either the smaller or larger angle scattering-
, which offers the possibility for a discrimination between two sets of particles, based on the momentum
cut-off, and leads to the subsequent operators. Such a decomposition preserves a generality of the de-
scription, but is not unique. The positivity of the daughter cross sectionsis preserved during the decom-

position. In the limit defined by the angleθa → θD ≡ 2
~

λD∆pmax
≃ 2

~

λD p̃
, the smaller angle scattering

processes are selected. The larger angle ones shall be discarded bya Fokker-Planck-Landau procedure.
On the other hand, the uppper cut-off θa > θD, above the Debye screening, defines the frontier between
the smaller and larger scattering angles, and could be chosen such as to respect a robustness criteria,
that is crucial for the numerical implementation of the model. The possiblity remainsopen to select an
anisotropic cut-off in the momentum phase space.
The folded, screened cross section, readsQf (p̃, µ̃) = Q(sa)

f (p̃, µ̃)+Q(la)
f (p̃, µ̃), where a possible choice for
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the daughter cross sections is as follows

Q(sa)
f (p̃, µ̃) =

2Q0A(p̃)
(

sin2(θ/2)+
[

θD
2

]2
)2
− 2Q0A(p̃)

(

sin2(θ/2)+
[

θa
2

]2
)2
, (8.8)

Q(la)
f (p̃, µ̃) =

2Q0A(p̃)
(

sin2(θ/2)+
[

θa
2

]2
)2
− 2Q0B(p̃)

sin2(θ/2)+
[

θa
2

]2
+ Q0C(p̃). (8.9)

Both functions are positively defined. The inclusion of screening terms in the nonlogarithmic terms is
allowed because the relevent range for the parameterθa satisfies the multi-scale criteriaθD ≪ θa ≪ 1,
which involves cos2

(

θa
2

)

≃ 1. It does not affect the accuracy of the cross section, since the contributing,
singular part remains physically screened. Rather than the decomposition (8.8)-(8.9), we prefer the
screening and decomposition such as

Q(sa)
f (p̃, µ̃) =

2Q0A(p̃)
(

sin2(θ/2)+
[

θD
2

]2
)2
−

2Q0A(p̃) cos2
(

θ
2

)

(

1+
[

θa
2

]2
) (

sin2(θ/2)+
[

θa
2

]2
)2
, (8.10)

Q(la)
f (p̃, µ̃) =

2Q0A(p̃) cos2
(

θ
2

)

(

1+
[

θa
2

]2
) (

sin2(θ/2)+
[

θa
2

]2
)2

−





















cos2
(

θa
2

)

1+
[

θa
2

]2





















2Q0B(p̃)
(

sin2(θ/2)+
[

θa
2

]2
) + Q0C(p̃) . (8.11)

These daughter cross sections are positive. This form allows us to simplifyforthcoming analytical com-
putations and to postpone crucial hypothesis at the end of the computation.

The distinction between thermalf θa
th and beamf θa

b distribution functions is the consequence of the
discrimination of the collisional processes. As a matter of fact, the two populations present two different
resolutions for the phase-space discretization. In the remainder, we drop the superscriptsθa on the dis-
tribution functions.

The processes associated with each of two energy scales are listed in Table 8.1. The two electron
populations, thermal and fast, are allowed to share energy ranges, provided distinct energy exchange
scales can be identified among the collision processes at stake. This leads toa simplification of the Bolz-
mann operator to a set of bilinear operators. The modeling choice for theseoperators and the attribution
procedure to each of the populations, are also given in Table 8.1.

Concerning the thermal population, only pitch angle scattering between the thermal particles is taken
into account (process ST(sa)). The large angle scattering of the thermal particle (process ST(la)) is ne-
glected assuming 1/ lnΛ as a small parameter. The collisions of the thermal particles with the beam
particles give raise to three processes. The small angle scattering (H) increases the energy of the thermal
particle, while leaving it in its own population. The large angle scattering (IO) has two manifestations:
the thermal particle gains energy and joins the beam population (IO+) − this is the ionization term− and,
at the same time, the thermal population looses this particle (IO−).
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Table 8.1: List of collisional processes considered for the beam and plasma electrons.
Entering Collisional process Target Exiting Collision model
particle (sa)/(la) scattering particle particle

Self Thermalisation: ST(sa) thermal small angle scattering (sa)thermal thermal Fokker-Planck-Landau
Self Thermalisation: ST(la) thermal large angle scattering (la) thermal thermal neglected
Heating: H thermal small angle scattering (sa)beam thermal Fokker-Planck
Ionization gain: IO+ thermal large angle scattering (la) beam beam Boltzmann gain term
Ionization loss: IO− thermal large angle scattering (la) beam thermal Boltzmann loss term
Slowing Down: SD(sa) beam small angle scattering (sa)thermal beam Fokker-Planck
Slowing Down: SD(la) beam large angle scattering (la) thermal beam Fokker-Planck
Self Thermalisation beam any scattering angle beam beam neglected

Concerning the beam population, the process SD(sa) is identified as the small angle scattering on the
thermal particles. It is the standard Fokker-Planck-Landau process producing the diffusion and friction
of the beam in the phase space. The process SD(la) can be interpreted as large angle scattering of beam
particles on the thermal particles, where particles of each population are maintained, in the outgoing
channel (at the end of the collision process), in their original populations. This appears paradoxal, since
the large angle scattering statement should be responsible for a thermal particle to become member
of the beam population. We solve this by choosing a Fokker-Planck approach (see Sec. 8.3) for the
process SD(la), that maintains the collision invariants of the bilinear Boltzmann form. Doing so, makes
the large energy exchanges be discarded for thermal particles, as non-physical in this process. This is
possible because we considered folded cross sections around small angles, and thus all scattering angles
are gathered (considering the forward peakness of the Coulomb crosssection) around zero. This Fokker-
Planck treatment is valid for the beam particles as well, since the large energyexchanges can still be
considered small with respect to the variation of the beam distribution function. Finally, all collisions
between the beam particles are neglected because of a relatively small number of beam electrons.

The final model, that presents two energy exchange scales, reduces to

d
dt

fb(p) = CIO+ [ fth, fb] +
(

CS D(sa) [ fb, fth] +CS D(la) [ fb, fth]
)

, (8.12)

d
dt

fth(p) = CIO− [ fth, fb] +CH[ fth, fb] +CS T(sa) [ fth, fth] , (8.13)

where the explicit forms of the collision operators are presented in Eqs (8.14)-(8.18). In particular, the
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operators that describe hard collisions, where the two populations exchange particles, read

CIO+ [ fth, fb] =
∫

R3
d3q

∫

S2
dΩ̃′ fth(p′) fb(q′) ũ

W̃2

WpWq
Q(la)

f (p̃, µ̃)

=

∫

R3×R3
fth(p′) fb(q′)

2c4W̃′
2

WpWp′Wq′
δ(W̃′ − W̃)Q(la)

f (p̃, µ̃)d3q′d3p′ , (8.14)

CIO− [ fth, fb] = − fth(p)
∫

R3
d3q

∫

S2
dΩ̃′ fb(q) ũ

W̃2

WpWq
Q(la)

f (p̃, µ̃)

= − fth(p)
∫

R3×R3
fb(q)

2c4W̃2

WpWqWp′
δ(W̃′ − W̃)Q(la)

f (p̃, µ̃)d3p′d3q

= −2π fth(p)
∫

R3
d3q fb(q)ũ

W̃2

WpWq

∫ 1

−1
Q(la)

f (p̃, µ̃)dµ̃ , (8.15)

where the delta function accounts for the property of energy conservation for a collision between a fast
and a thermal particle, in the center of mass frame. The last two forms in the right hand side of Eq. (8.12)
are merged inCS D[ fb, fth] = CS D(sa) [ fb, fth] +CS D(la) [ fb, fth].
The other processes can be described in the pitch angle limit

CS D[ fb, fth] = ∇p ·
(

FD [ fth] fb(p)
)

+ ∇p ·
(

D[ fth]∇p fb(p)
)

, (8.16)

CH[ fth, fb] = ∇p ·
(

FD
(sa)[ fb] fth(p)

)

+ ∇p ·
(

D(sa)[ fb]∇p fth(p)
)

, (8.17)

CS T(sa) [ fth, fth] = ∇p · (FDe[ fth] fth(p)) + ∇p ·
(

De[ fth]∇p fth(p)
)

. (8.18)

The friction forceFDe and diffusion coefficient De are given in Eqs. (8.4) and (8.5), because only
small angle deviations in the non-relativistic regime are considered, with a logarithmic accuracy, for
the scattering of thermal particles.
Finally, the bilinear formsCH[ fth, fb] (Heating, with the cross sectionQ(sa)

f ), andCS D[ fb, fth] (Slowing
Down, with the cross sectionQf ), of the Bethe type, are derived following the Landau method. The
resulting expressions for the coefficientsFD[ f ] andD[ f ] are given in Eqs. (8.20) - (8.21) and (8.27) -
(8.29). They are respecting the collision invariants – the conservation of the total mass, momentum, and
energy – for the complete distribution functionfth + fb, for the model (8.12) - (8.13). The derivation
presented in the next section is based on a decomposition of the collision operator in moments of the
cross section. Compared to the original Landau derivation, the presentapproach differs only in non-
logarithmic terms, but has the advantage of exactly preserving the collision invariants of the model, thus
contributing to gain a confidence into it.

8.3 An invariant preserving Fokker-Planck procedure

We propose here a Fokker-Planck procedure of derivation of the model (8.12) - (8.13) from the original
Boltzmann operator (8.7). Its particularity lies in the preservation of the collision invariants – total mass,
momentum and energy –, for each process of the model, independently. The derivation of Fokker-Planck
type operators starts from the weak form of the Boltzmann operator, operating on a arbitrary, forward-
peaked folded cross sectionQf . Let us consider an arbitrary smooth test functionF (p), and calculate
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the following integral
〈

d
dt

f (p),F
〉

=

∫

S2×R3×2
F (p)

(

f (p′) f (q′) − f (p) f (q)
)

ũQf (p̃, µ̃)
W̃2

WpWq
dΩ̃′d3qd3p .

The right hand side of this equation can be rewritten, exchanging the incoming {p′,q′} and outgoing
particles{p,q}, as

1
2

∫

S2×R3×2

(F (p) − F (p′)
) (

f (p′) f (q′) − f (p) f (q)
)

ũQf (p̃, µ̃)
W̃2

WpWq
dΩ̃′d3qd3p .

Then a Taylor expansion is performed on the functionsF and f , assuming small angle deviations,∆p≪
p (small energy exchanges), and using the momentum conservationp′ + q′ = p + q

F (p′) = F (p) − ∆p · ∂F
∂p

(p) + (−1)n
(∆pi)n

n!
∂nF
∂pi

n (p) n > 1 ,

f (p′) = f (p) − ∆p · ∂ f
∂p

(p) + (−1)n
(∆pi)n

n!
∂n f
∂pi

n (p) n > 1 ,

f (q′) = f (q) + ∆p · ∂ f
∂q

(q) +
(∆pi)n

n!
∂n f
∂qi

n (q) n > 1 ,

∆p = p − p′ ,

Only the terms being less than first order are retained, in these developments. Then we obtain the
differential Landau form of the operator

CL
[

f , f
]

= ∇p · (FD[ f ] f (p)) + ∇p ·
(

D[ f ]∇p f (p)
)

, (8.19)

where the drag forceFD and the matrixD are

FD[ f ] =
1
2

∫

R3
∇q · 〈∆p∆p〉 f (q)d3q , (8.20)

D[ f ] =
1
2

∫

R3
〈∆p∆p〉 f (q)d3q . (8.21)

These coefficients only depend on the matrix〈∆p∆p〉, whose components are defined by

〈

∆pi∆p j

〉

≡
∫

S2
∆pi∆p j ũQf (p̃, µ̃)

W̃2

WpWq
dµ̃dϕ̃ , (8.22)

where the integration is conducted in the center of mass frame over the polar and azimuthal angles ˜µ and
ϕ̃. If two distinct populations,fl and fm are introduced (l andm referring either to the thermal or beam
population), the following Boltzmann bilinear form is considered,

CB
[

fl , fm
]

=

∫

R3
d3q

∫

S2
dΩ̃′

[

fm(p′) fl(q′) − fm(p) fl(q)
]

ũ
W̃2

WpWq
Qf (p̃, µ̃) . (8.23)

A first order Taylor expansion leads to the corresponding Landau bilinear form

CL
[

fl , fm
]

= ∇p ·
(

FD[ fm] fl(p)
)

+ ∇p ·
(

D[ fm]∇p fl(p)
)

. (8.24)
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The coefficients of this operator are written explicitly by using a decomposition with moments ofthe
cross section. This avoids logarithmic approximations of this cross sectionQf , which remains the same
for the Fokker-Planck and the Boltzmann operators. In the next section,we develop this procedure and
justify formally that the Landau operator (8.19) (respectively the Landaubilinear form (8.24)) reproduces
the conservation properties of the initial Boltzmann equation (8.6) (respectively the Boltzmann bilinear
forms (8.23)).

8.3.1 A Fokker-Planck procedure based on moment decomposition

Let the cross sectionQf be arbitrary in this section, though forward-peaked. The analysis we propose
here is based on the decomposition of the momentum exchange∆p = ∆p||n + ∆p⊥ in one parallel and
two perpendicular components, with respect to the velocityV = Vn of the center of mass frame in the
laboratory frame. If a Taylor expansion is performed on the weak form of Botzmann equation (8.6), with
infinite order, the so-obtained operatorC

[

f , f
]

(Qf ) involves the coefficients

〈

(

∆p||
) j (
∆p⊥1

)k (

∆p⊥2

)l
〉

,

where the subscripts⊥1 and⊥2 refer to each perpendicular directions, and the brackets are defined by
the expression (8.22).

The parallel component does not depend on the azimuthal angle ˜ϕ. Then ifk+ l is odd, the coefficient
〈

(

∆p||
) j (
∆p⊥1

)k (

∆p⊥2

)l
〉

is equal to zero, after integration in ˜ϕ. In the case wherek+ l is even, we obtain

〈

(

∆p||
) j (
∆p⊥1

)k (

∆p⊥2

)l
〉

=

∫ 1

−1
(1− µ̃) j(1− µ̃2)

l+k
2 K j,k,lQf (p̃, µ̃)dµ̃

≃ 2
l+k
2

∫ 1

−1
(1− µ̃) j+ l+k

2 K j,k,lQf (p̃, µ̃)dµ̃ ,

where the coefficients K j,k,l only depend on the variables ˜p, V, Wp, Wq, but not on the variable ˜µ.
At this point we have made the logarithmic approximation(1+ µ̃)(l+k)/2 ≃ 2(l+k)/2 for the coefficient
〈

(

∆p||
) j (
∆p⊥1

)k (

∆p⊥2

)l
〉

, in the casek+ l is even, assuming that the dominant contribution comes from
the small angles, because of the divergence of the cross section. This allows to rearrange formally the
operator as the infinite sum

C
[

f , f
]

(Qf ) =
∑

m∈N∗
C(m) [ f , f

]

(Qf ) ,

C(m) [ f , f
]

(Qf ) ∝
∫ 1

−1
(1− µ̃)mQf (p̃, µ̃)dµ̃ ,

whatever the expression of the cross section is. In this decomposition, the contribution of themth moment

of the cross section
∫ 1

−1
(1 − µ̃)mQf (p̃, µ̃)dµ̃ is assigned to the formal operatorC(m)(Qf ). Since this

decomposition does not assume the explicit knowledge of the cross section,all the properties of the
operatorC(Qf ) hold for each operatorC(m)(Qf ). In particular , dropping terms withm> 1, the collision
invariants are preserved for the operatorC(1)(Qf ). This procedure remains valid when bilinear forms are
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considered for two distinct populations. Then we obtain the conservation properties on these bilinear
forms

∫

R3
CL

[

fl , fm
]

d3p =

∫

R3
CB

[

fl , fm
]

d3p = 0 (8.25)
∫

R3
F (p)CL

[

fl , fm
]

d3p =

∫

R3
F (p)CB

[

fl , fm
]

d3p = −
∫

R3
F (p)CB

[

fm, fl
]

d3p , (8.26)

whereF (p) can be eitherp, or Wp. Moreover the only equilibrium states of this operator are the
Maxwellian distribution functionsfl and fm whose temperature and mean velocity are the same. These
conservation properties can be rigourously proved for the operators(8.16) - (8.17), with the explicit
expressions of the Fokker-Planck components (8.27) - (8.29), givenin the next section. The energy con-
servation will be illustrated in the case of a model issued from [25], that hasbeen modified following
this procedure, in the section 8.4.1.

This approach only differs from the original Landau-Fokker-Planck development in non-logarithmic
terms. However, these additional non-logarithmic contribution prove to be essential to maintain the
correct conservation properties (8.26) all through the model derivation.

8.3.2 Explicit expression of the Fokker-Planck coefficients

In this section, we choose the cross sectionQf , defined by the sum of expressions (8.10) and (8.11),
and derive the Fokker-Planck coefficients from the above presented Fokker-Planck procedure. The cross
section shows a singularity at ˜µ → 1, that corresponds to small angle scattering. Then the operator
C(1)(Qf ) contains both logarithmic and non-logarithmic terms; the non-logarithmic contribution being
located inside the cross section. The other operatorsC(m)(Qf ), m > 1, only contain non-logarithmic
terms, and are dropped in the following sections.

The coefficient 〈∆p∆p〉 is no more a pure diffusion matrix if the Landau derivation of Sec. 8.3.1 is
applied. In this context, the quantities〈∆p∆p〉 and∇q · 〈∆p∆p〉 are written as

〈∆p∆p〉 = M ũ2π
W̃2

WpWq

∫ 1

−1
(1− µ̃)Qf (p̃, µ̃)dµ̃ , (8.27)

where the matrixM is defined as

M =
(

I p̃2 +
p̃2c2

4W̃2
(p + q) ⊗ (p + q) − 1

4
(p − q) ⊗ (p − q)

)

, (8.28)

and thus

∇q · 〈∆p∆p〉 = ũπ
p(WpWq − p · qc2) − qm2

ec4

WpWq

∫ 1

−1
(1− µ̃)Qf (p̃, µ̃)dµ̃ . (8.29)

With this approximation, the coefficients satisfy the relation−∇q · 〈∆p∆p〉 = 2 〈∆p〉 − ∇p · 〈∆p∆p〉.
Therefore we obtain the equivalence between the Landau operator of Eq. (8.19) and the Fokker-Planck
form

CL
[

f , f
]

= −∇p ·
(

f (p)
∫

R3
f (q) 〈∆p〉 d3q

)

+
1
2
∇2

p ·
(

f (p)
∫

R3
f (q) 〈∆p∆p〉d3q

)

.

The equivalence between the Landau and Fokker-Planck forms remainstrue for the bilinear operators.
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8.3.3 Coulomb logarithms and cross sections

The collision integralCS Ddescribes the scattering of beam on plasma electrons. Its Coulomb logarithm is

defined with the Debye cut-off parameterθD. It is contained in the coefficient
∫ 1
−1

(1− µ̃)Qf (p̃, µ̃)dµ̃ . The
contribution of the collisions between beam electrons and ions can be directlyincorporated, substituting
Z→ Z + 1.

The plasma heating (processH in Table 8.1) is defined by the energy deposition of fast particles,
while they are scattered on small angles on the plasma electrons. The Coulomb logarithm is contained

in the coefficient
∫ 1
−1

(1− µ̃)Q(sa)
f (p̃, µ̃)dµ̃ .

The Boltzmann operators that exchange particles(processesIO± in Table 8.1), have an integral form
that presents a logarithmic singularity. The analogy with the Coulomb logarithm willbe illustrated in the
case of a beam electron population in Sec. 8.4.

8.4 Energy exchange of beam electrons in a cold plasma

8.4.1 Kinetic equation for beam electrons

Relativistic electron-ion and electron-electron collision operators for a lowdensity electron beam prop-
agating through a cold and dense plasma were derived in [25]. It was shown that under the conditions
nb ≪ ne andǫb ≫ kBTe, they can be presented as a sum of three terms. First two terms correspond to the
small angle collisions (process E in Table 8.1), and they have a Fokker-Planck differential form (8.2):

Ct[ fb(p)] = ∇p ·
(

FD
p
p

fb(p)

)

+ ∇p ·
[

D

(

Id −
p ⊗ p

p2

)

∇p fb(p)

]

. (8.30)

The drag forceFD is due to the electron-electron collisions, while the diffusion termD describes the
elastic scattering accounts for the electron-electron and electron-ion collisions. If only logarithmic terms
are retained

FD =
Ze4ni lnΛ

4πǫ2
0mev2

, D = FD(Z + 1)
p

2γ
. (8.31)

These expressions are similar to Eqs. (8.4) and (8.5) in the non-relativisticcase, with the same expression
for the Coulomb logarithm. In addition, the large angle collisions (process F in Table 8.1) are responsible
for production of secondary high energy electrons. This term, so-called, ionization integral[25], reads

CI [ fb(ǫ, µ, ϕ)] = α(ǫ)
∫ +∞

ǫmin

∫

S2
fb(ǫ′, µ′, ϕ′)

(ǫ′ +mec2)2

ǫ(ǫ + 2mec2)
K(ǫ′, ǫ)δEdǫ′

dΩp′

2π
. (8.32)
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Here, the collision rate,α, the kernel,K, and the Delta function accounting for the energy conservation
δE, are defined as

α(ǫ) =
Znie4

8πǫ2
0mec

√

ǫ(ǫ + 2mec2)

ǫ +mec2
, (8.33)

K(ǫ′, ǫ) =

(

1
ǫ2
+

1
ǫ′ +mec2

)

, (8.34)

δE = δ(Ωp ·Ωp′ − µ0(ǫ′, ǫ)) , (8.35)

µ0(ǫ′, ǫ) =

√

ǫ(ǫ′ + 2mec2)
ǫ′(ǫ + 2mec2)

, (8.36)

whereǫ′ = mec2(γ′ − 1) andǫ = mec2(γ − 1) are the kinetic energies of the incoming and outgoing
particles, associated to the Lorentz factorsγ′ andγ. The momentump is written in spherical coordinates
in terms of the variables (ǫ, µ, ϕ). Here the ionization integral (8.32) involves the cross sectionQ∗f (|p̃|, µ̃)
folded around the large angles. It is defined asQf (|p̃|, µ̃) = Q∗f (|p̃|,−µ̃).

The integral (8.32) does not contain the Coulomb logarithm, contrary to the friction and diffusion
terms. However it contains a logarithmic dependence on the low energy limit, andthat makes it of the
same order as the diffusion and friction terms. This is illustrated in the next section for the case of a
mono-energetic electron beam.

8.4.2 Energy losses of a mono-energetic electron beam on a cold plasma

Let us consider a mono-energetic electron beam with energyǫb = mec2(γb−1) propagating in a direction
defined by the polar axisz. The beam distribution function writes

fb(γ, µ) =
nb

2πm3
ec3

1

γb

√

γ2
b − 1

δ(γ − γb) δ(µ − 1). (8.37)

The beam energy loss is defined as

−dWb

dt
= −mec

2 d
dt

∫

R3
(γ − 1) fb(p)d3p.

The beam energy loss due to pitch-angle collisions with plasma electrons is described by the friction
term in Eq. (8.30), which gives

−dWbt

dt
= nbvbFD = ln

(

pb

~/λD

)

Ze4ninb

4πǫ2
0mec

γb
√

γ2
b − 1

. (8.38)

Here, for a background plasma of 0.1 keV, with a density of 1021cm−3, the minimum kinetic energyǫmin,
related to the momentum~/λD, is of the order of 10 meV.
The energy loss due to hard collisions with plasma electrons is obtained from the ionization integral in
Eq. (8.32)

−dWbi

dt
= −nb

∫ γb

γmin

α(γ)
γbγ

(γ + 1)















1
(γ − 1)2

+
1

γ2
b















√

γ2 − 1

γ2
b − 1

dγ . (8.39)
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The integral over the energy has a logarithmic divergence at the lower limitγmin ≃ 1, corresponding to
small angle collisions.

Further, turning to the Fokker-Planck procedure described in Sec. 8.3, we demonstrate an energy
conservation property (8.40), similar to Eq. (8.26), in the model (with cold plasma) of [25]. This model
is modified here in two aspects: first, the complete cross sections are retained, and second, the Fokker-
Planck derivation procedure described in Sec. 8.3 is applied. These modifications lead to the following
expression for the energy loss in Eq. (8.38)

−dWbi

dt
= −Zninbc2πmec

(γb − 1)
√

γ2
b − 1

γb

∫ 1

−1
(1− µ̃)Qf (p̃, µ̃)dµ̃ =

dWbt

dt
. (8.40)

8.5 Reduced model for fast electron distribution functions

8.5.1 Assumptions concerning the electron distribution function

In order to simplify the ionization operator (IO), we assume that the thermal electron population, with
the densitynth, has an isotropic energy distribution

fth(p) =
nth

4πm3
ec3

Fth(γp) , (8.41)

with the normalization
∫ ∞

1
γ(γ2−1)1/2Fth(γ) dγ = 1. Also, in order to simplify the calculations, we only

retain the dominant part of the cross sections, that contains the Coulomb logarithm. The cross sections in
the ionization operator (IO) can be further simplified, owing to the fact that all the quantities that do not
contribute to the logarithmic divergence can be approximated with the assumptionof weak dependence
with respect to the temperature of the thermal population.

We describe the beam distribution function within the M1 model [5, 18, 53], that relies on the an-
gular moment closure in the phase space. Its angular dependence is defined from the minimum entropy
principle [36, 39]

fb(p) = ρ0(γp) exp(−Ωp · a1(γp)), (8.42)

whereΩp is the unit vector in thep momentum direction,ρ0 is a non negative scalar (ρ0 ≥ 0), anda1 is
a three component real valued vector. The functionsa1 andρ0 only depend on the fast electron energy.
An important parameter is the anisotropy of beam distributionA = f1/ f0, where

f0(p) =
∫

S2

f (p) dΩp , f1(p) =
∫

S2

Ωp f (p) dΩp , f2(p) =
∫

S2

Ωp ⊗Ωp f (p) dΩp .

The anisotropy parameter is by construction less or equal than one (‖A‖ ≤ 1). Theansatz(8.42) ensures
the analytical computation of momentf2 as a function off0 andf1, based on a tabulated Eddington factor
[17], which defines the relation betweenA anda1.

An important feature of the M1 model, consists of the fact that it reproduces exactlyboth beam-like
and isotropic distribution functions. Moreover, the form (8.42) is convenient for the calculation of the
ionization operator that presents a very narrow domain of integration overthe angular variable.
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Under the assumptions formulated above, the ionization (IO) operator takesthe following form

d
dt

fb,0(p) = νio

∫ ∞

1
dγq′

∫ ∞

1
dγp′ Fth(γp′) fb,0(q′) G0(γp′ , γq′ , γp, γc) 1L−<L+ , (8.43)

d
dt

fb,1(p) = νio

∫ ∞

1
dγq′

∫ ∞

1
dγp′ Fth(γp′) fb,1(q′) G1(γp′ , γq′ , γp, γc) 1L−<L+ , (8.44)

where we have introduced an effective collision frequencyνio ≡ e4nth/4πǫ2
0m2

ec3, the dimensionless
kernelsG0 andG1, which are regular kernels,1L−<L+ is an indicative function, valued 1, ifL− < L+, and
0 otherwise, withL± = O (‖p′‖). This indicative function can be narrow, as the energies on the outgoing
channel may present a very narrow divergence in angles. However, a fine energy discretization of the
thermal population allows to capture this feature. This is an imporatnt aspect of the model. The integrals
(8.43) and (8.44) depend on the parameterγc that separates the fast and slow electron populations.

8.5.2 Relaxation of a mono-energetic electron beam in a thermal Maxwellian plasma

Let us consider a mono-energetic beam with the distribution function (8.37) propagating through a ho-
mogeneous Maxwellian plasma with a non-relativistic temperatureΘth = kBTth/mec2 ≪ 1. The finite
value ofΘth is needed for the calculation of the ionization integral. However, it may be setto zero in
the calculations of the slowing down operator (SD), as the particles affected by this process do not move
from one population to another. This choice makes it appear an explicit logarithmic divergence of the
singularity.

First, we analyse the value of the ionization integral by evaluating the ionizationrate, that is, the
evolution of the number of beam electrons with time. This provides also with a hintfor choosing the
separation parameterγc, as it should not lead to a significant leakage of the thermal population.

dnb

dt
=

d
dt

∫

R3
fb(p)d3p

= nbνio

∫ ∞

1
dγp

∫ ∞

1
dγp′

γp

(

γ2
p − 1

)1/2

γb

(

γ2
b − 1

)1/2
Fth(γp′) G0(γp′ , γq′ , γp, γc)1L−<L+ .

The dependence of the secondary electron production rate on the beamelectron energy and on the
cut-off parameter is shown in Fig. 8.1 for the representative case of a 5 keV thermal plasma. The
ionization rate presents a strong dependence with respect toγc if the cut-off energy is chosen very close
to the thermal energy of plasma electrons. This dependence becomes weaker as soon as the cut-off energy
goes far in the tail of the plasma distribution function. The production of secondary electrons increases
also with the energy of fast electrons. Both these effects can be easily understood if one accounts for
the fact that, even in the pitch angle scattering event, the secondary electron gains a significant energy.
Indeed, assuming the scattering angleθ ≪ 1 and the large energy of the beam electrons,γb ≫ 1, one
finds from the energy and momentum conservation relations that the energyof secondary electron is

ǫ′ ≃ 1
2

mec
2γ2

bθ
2.

The secondary electron energy would be 700 keV if the 5 MeV is scatteredto a small angle of 10◦.
Therefore too small energy cut-off corresponds to accounting for the pitch angle scattered electrons as
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Figure 8.1: Production rate (νionb)−1dnb/dt of secondary electrons by a beam electrons propagating in
a 5 keV Maxwellian thermal plasma as a function of the beam energy and the energy cut-off parameter.
Isolines 1, 100, 500, 1000, 5000 for the production rates are labelled with respective letters (a)-(e).

the secondary beam electrons. For this reason the choice of the cut-off energy is problem dependent.
It must be chosen in such a domain where the dependence of the secondary electron production with
respect to the cut-off energy is weak. Figure 8.1 proves the existence of such a domain for the beam-
plasma configuration. Moreover, this figure illustrates two more points: first,the model respects the
positivity of G0, second, the ionization rate profile is peaked for a low energy cut-off.

One can also analyse the relative contribution of the ionization and slowing down mechanisms to the
total momentum. In the limit of low plasma temperature and retaining only the logarithmic terms, one
finds the following expression for the slowing down rate of the fast electron momentum:

nb
d 〈p〉t

dt
· ez ≡

∫

R3
Ct[ fb] (p · ez) d3p = (8.45)

−nbνiomec ln

(

pb

~/λD

)

γ2
b + (Z + 1)γb

γ2
b − 1

,

where the Bethe operator (8.30), with friction and diffusion coefficients (8.31) was taken into account.
The averaged contribution of this process to the total beam momentum is negative.

The contribution to the total beam momentum due to the ionization operator is

nb
d 〈p〉io

dt
· ez ≡

d
dt

∫

R3
fb(p) p · ez d3p = (8.46)

mecnbνio

∫ ∞

1
dγp

∫ ∞

1
dγp′

γp

(

γ2
p − 1

)1/2

γb

(

γ2
b − 1

)1/2
Fth(γp′) G1(γp′ , γb, γp, γc) 1L−<L+ .

The ratio of the momentum evolution rates (8.46) over (8.45) is shown Fig. 8.2.The dependence with
respect to the energy cut-off parameter is found to be strong as well, even if the momentum tends to
weaken the singularity, compared to Fig 8.1. Moreover, this ratio exhibits a negative sign, which implies
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a positive contribution of the secondary electrons into the beam momentum. Large values of this ratio is
the signature of the importance of the secondary electron production, under these conditions.

The conservation of the total momentum in the plasma-beam system implies that the fast electron
beam cannot gain energy from plasma. This fact provides another hintfor the choice of the cut-off
parameter. We are now in position to prescribe a choice for the energy cut-off parameter, that could be
defined at an apropriate isosurface in Fig. 8.2, that is, where we can ensure a weak dependence with
respect to that parameter.
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Figure 8.2: Relative contribution (large over small angle scattering) to the momentum transfer rate of
beam particles in a 5 keV Maxwellian thermal plasma as a function of the beam energy and the energy
cut-off parameter. Isolines -1, -10, -100, -200, -300, -400 for this ratio arelabelled with respective letters
(a)-(f).

8.5.3 Influence of the energy-scale cut-off parameter on the propagation of oscillations

In [1], the authors are proposing a sophisticated renormalization procedure upon the non-homogeneous,
non-relativistic Boltzmann equation. They show that oscillations are immediately damped by a singular
cross section. Conversely, the oscillations, if a cut-off is applied, propagate. The question that arises is:
what is the effect of the energy exchange cut-off parameter on the propagation of these oscillations? For
instance, one may expect a transfer of these oscillations, at fixed energy, from one population to another.
This could be possible because the two populations are allowed to share energy ranges, and also because
the Boltzmann gain and loss terms are split between the populations.

8.6 Conclusion

We have shown that the large angle scattering in electron-electron collisions[51], and resulting produc-
tion of secondary fast electrons [25], is of great importance for the overall dynamics of the electron beam
and plasma populations, at relativistic energies. We proposed a robust reduced model to deal with such a
mechanism. This model is based on a decomposition of the relativistic Boltzmann collision operator, re-
lying itself on a decomposition over the relativistic Rutherford cross section,instead of a partition of the
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phase-space between populations, as done usually. This model proposes a natural definition for the ther-
mal and beam populations, according to the collision process they are issued from. The two populations
are allowed to share energy ranges in the model. Further quantitative evaluation are foreseen to check
the accuracy of the model and quantify the influence of the large angle scattering on the fast electron
transport. This can be achieved using Monte-Carlo codes, such asGeantor Penelope. Such comparison
could also be profitable contribution for specifications to the HiPER project [14]. Beyond 10− 20 MeV
beam energies, Bremsstrahlung, density effects, photon production, and creation of electron-positron
pairs, should complete this model [34, 35].
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[52] Symbalisty E. M. D., Roussel Dupré R. A., Yukhimuk V. A. (1998).Finite Volume Solution
of the Relativistic Boltzmann Equation for Electron Avalanche Studies, IEEE Transactions on
Plasma Science, 26, 5.

[53] Turpault R. (2002).Construction of a multigroup M1 model for the radiative transfer equa-
tions, Comptes Rendus Mathématique, 334, 4, 331-336.
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8.7 Appendix: M1 Kernels of the ionization operator

G0(γp′ , γq′ , γp, γc) =
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whith the small parametersL±
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The parametersL± are issued from the integration boundaries over an angle variable. Theyremain small
as the energy of the thermal population.
For the sake of completness of the model, we finally give the expression of the sign functions

S− = sign
(

N − L2
−
)

S+ = sign
(

N − L2
+

)

(8.47)

8.8 Appendix: Scaling with an electron-ion frequency in the case of a
beam population

There are two basic temporal scales in the kinetic equation (8.1). One is related to the collective electron
motion and is characterized by the electron plasma frequency,ωpe =

√

Znie2/ǫ0me, another is the time of
electron collisions characterized by the electron ion collision frequency,νei. As it depends on the electron
velocity, we have a possibility to choose either the thermal velocity of plasma electrons,vth =

√
κBTe/me,

or a characteristic velocity of beam electrons, which is close toc. Since we are interested in the beam
electrons and on their effect on plasma, it is more appropriate to normalize the electron-ion collision
frequency to its value related to the fast electrons,

νei = Z2nie
4 lnΛ/8πǫ2

0m2
ec3. (8.48)

Consequently, the electron velocity is normalized byc, the electron momentum bymec, and the electron
distribution function byZni/m3

ec3. Then, our small parameters are the ratio of electron collision and
plasma frequencies:

ν =
νei

ωpe
=

Z3/2√nie3 lnΛ

8πǫ3/2
0 m3/2

e c3
≪ 1, (8.49)

the ratio of the beam density to the plasma electron densityn = nb/Zni ≪ 1 and the plasma temperature,
kBTe/mec2 ≪ 1.
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Table 8.2: Cut-off parameters
kBTe/ (mec

2) Kmin/ (mec
2) Kmax/ (mec

2)
0.1 0.02 1
1 0.3 10
10 1 100

For the problems where the collisional effects dominate, it is appropriate to choose the collision
frequency for normalization of the time,νeit → t. Then the space coordinate is normalized by the
electron mean free path,xνei/c→ x, and the electric and magnetic fields are normalized bymecνei/eand
meνei/e, correspondingly.

8.9 Appendix: Fast electron Transport Calculations for HiPER Bench-
marking Collision Routines WP9.1.8 (courtesy from J.R. Davies)

8.9.1 Fast electrons

The fast electrons should be set up at time zero with a number density

nb ∝ cos2
( zπ
20∆z

)

,0 ≤ z≤ 10∆z , (8.50)

where∆z is the grid spacing specified for the diagnostics, and a 3D, relativistic Maxwellian momentum
distribution for: kBTe/ (mec2) = 0.1 , 1 , 10. Particle based codes should use 106 particles for the fast
electrons. The cut-off between fast and background electrons (Kmin) and the upper cut-off (Kmax since a
Maxwellian distribution extends to infinity) are given in Table 8.2. Electrons withan energy belowKmin

should be assumed to deposit their energy.
The probability density function for the Lorentz factorγ of a 3D, relativistic Maxwellian is

f (γ) =
β

K2(β)
γ

√

γ2 − 1 exp(−γβ) , (8.51)

whereβ = mec2/(kBTe) andKn is the modified Bessel function of the first kind, which comes from the
normalization

∫ ∞
1

f (γ)dγ = 1. In terms of the magnitude of the momentump this is

f (p) =
β

K2(β)
p2

m3
ec3

exp(−γ(p)β) , (8.52)

whereγ(p) =
√

1+ p2
/

(m2
ec2) . The probability density function for any given component of momentum

pi is

f (pi) =
1

2mec
1+ γi

(1− β)K1(β) + K2(β)
exp(−γ(pi)β) , (8.53)
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Table 8.3: Grid spacing parameter for various temperatures
kBTe/ (mec

2) ∆z/ (cT)
0.1 0.05
1 0.1
10 1

8.9.2 Background

Static, uniform, infinite media with atomic numbers ofZ = 1 (hydrogen), 13 (aluminium), 79 (gold).
A fixed constant should be used for all the lnΛ ’s. If the distribution of the background particles has
to be specified use a Maxwellian with a temperature ofKmin/10 and a density 100 times greater than
the maximum fast electron density. If possible, following the runs with a fixed lnΛ the Al and Au runs
should be repeated with values of lnΛ for room temperature and pressure and the hydrogen run for a
electron density of 7.231031/m3 (300 g/cm3 D − T) and a temperature (kBTe/e) of 1 keV.

8.9.3 Boundary Conditions

Reflective boundary at z= 0 and place the far z boundary far enough away that it has no effect.

8.9.4 Diagnostics

1. The fast electron energy as a function of time.
2. The time by which 90% of the fast electron energy has been lost.
3. The fast electron energy deposition (energy per unit length) on a uniform axial grid with points at
(k− 0.5)∆z, wherek is an integer greater than zero.
4. The depth within which 90% of the fast electron energy is lost.

The results should be expressed in the following units:
Length:cT ,
Time: T ,
Total Fast Electron Energy: 1 ,
whereT = (4πǫ2

0m2
ec3)

/

nee4L , ne is the background electron density and L is the fixed value used for
all of the lnΛ ’s or 1 for runs using variable lnΛ. The grid spacing∆z is given by in Table 8.3. The
grid should have 100 points or more. For runs using variable lnΛ’s, appropriate values should be chosen
and clearly specified. Appropriate values should be chosen for the spatial and temporal grids used by the
codes. This is just a specification for the diagnostic that will be compared.
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9.1 Main results and consequences of the present work

The present essay aimed at the development of a mathematical basis for crucial processes of ICF physics.
It can be summarized in five points.

First, we have developed a 2Dx × 3Dv parallel Maxwell-Fokker-Planck-Landau solver, which can serve
as a reference simulation tool, because it can handle with highly anisotropic distribution functions. We
have demonstrated the computational affordability of this approach, and shown the relevance of such a
tool to capture high order moments of the distribution function, in particular when magnetic field and
collision effects are coupled. We have then proposed an extension of the numerical schemes to the rela-
tivistic regime, where additional processes for electron acceleration andtransport occur.

Second, we provide with a mathematical proof of convergence of a high order Finite Volume scheme,
and comparison between simulation results, which shows good behaviour withrespect to discontinuities
in the phase space. This mathematical and numerical work is reaching the numerical requirements nec-
essary to the treatment of high intensity regimes, such as wavebreaking, bubble regime, or high harmonic
generation on plasma.

Third, we have developed angular reduced models, based on previousworks on radiative transfer, that
are able to describe the isotropic distribution functions (thermal, highly collisional, for example), as well
as highly anisotropic distribution functions (of fast particles, for example), coupled with realistic colli-
sion/ionization/radiation kernels. We have demonstrated the accuracy and robustness of such electron
M1 models, while performing academic and fundamental simulations for electron radiotherapy and ICF
applications.

Fourth, we have proposed an accurate, fast and robust modelling, for long-range Coulomb interaction,
of an arbitrary type of collision events, ranking from grazing and multiple, tohard and single, without
artificial discrimination between collision events, the Coulomb force being indeed continuous by nature.
This model is, in particular, able to describe the heating of a kinetic thermal population with Coulomb
collision of arbitrary angle.

Finally, we turned our model, our numerical methods to realistic simulations, concerning the shock ig-
nition scheme. In the ICF, this latter is currently one of most promising candidates among advanced
inertial fusion projects. The 2009 KiTSI project (an acronym for Kinetics Transport for Shock Ignition )
has recently been pointed out as a milestone on the critical path in the HiPER roadmap, as well as for the
shock ignition design on the National Ignition Facility (Livermore, Ca). The reason is that realistic de-
sign for shock ignition relying only on experiments would be meaningless. A credible design, including
realistic constraints and effects of random imperfections, will come from numerical modeling. So the
achievement of a predictive, validated, integrated numerical model is a central issue. Of course, a shock
ignition study includes partial experimental validation of the concept using medium scale laser facilities,
integrated experiments using the Omega facility of the University of Rochester(NY-USA) and scale 1
ignition demonstration on the National Ignition Facility (Livermore, Ca).

Among the possible perspectives that emerge from this work, we would like tomention the quantification



Conclusion and perspectives 249

of the importance of hard collisions for regimes of interest, together with the issue of the implementation
of this process in a PIC solver. We are now in position to explore and characterize new regimes of trans-
port, that will serve for a better understanding of the electron transport,and may become fundamental
processes upon which new schemes for ignition or particle acceleration could be constructed.
The model accounting for these hard collisions, presented in Chapter 8, proves to be rich in term of math-
ematical issues, such as rigorous mathematical derivation of the model, or conditional stability analysis
[1].
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