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1.1 Enfrancais

Intention

Ce manuscrit constitue une contributiama moclisation et la simulation nuemique du transport et du
déepdt d’energie dans les plasmag&s par laser, ayant pour objectif une coatmnsion dtaillee des
procedes de compression d'un combustibledes conditions de teramture et denstapprop@esa
l'ignition de reactions de fusion. Cette application, en particulier, ser&&ain prioriée, puisqu’elle
constitue la principale motivation de ce travail. Des ouvertures et anafbdiastres domaines, @sentant
une physique proche, serong\welopees ouévoqiees. Elles €tendent I'électron-tiérapie [14], la
foudre, lesevenement&nergtiques dans la haute atmosph [19], la lithographi&lectronique, la Fu-
sion par Confinement Magtique (FCM) [15, 16], ou bien I'astrophysique, compte tenu @e im-
portant destlectronsénergtiques dans les ceintures radiatives de Jupiter [2], par exemple. Le poin
communa ce panel d’applications tieatla moclisation multiechelle de la cigtiqueélectronique et de
la physique des plasmas.

Contexte et concepts

Parmi les domaines de recherche promis, dans un futur practes, implications sogtales importantes,
l'interaction laser-plasma balaye un large eventail d’applications, de tuption d’energie, au traite-
ment nedical des cancerglectron-tierapie, proton-thrapie, hadron-#irapie) a I'astrophysique de lab-
oratoire, voirea la radiographie des objets denses et opaques. La fusion ther@aineicbntdlee cedieée

a la céation d’'une source abondant&dergie, est ainsi une voie envigag Elle fait I'objet actuellement
(2009) d'investissements massifs. Ce @dcvisea la combustion d’'un glange gazeux ou solide de
noyaux Bgersa haute tem@rature, jusqu atteindre la centaine de millions de degCelsius. A cette
temperature le combustible congiement ionig est sous forme plasma: un ensemble de particules libres
chargees, interagissant collectivement sous I'action de foetestromagatiques [11, 21, 22, 29].

La production d'une large quartid’énergie par la fusion de noyaukceessite de vaincre les forces
de pulsion Coulombienne. Lutilisation de noyaux de B&ium et de Tritium (D-T) est actuellement
la voie nominale pour atteindre de&actions de fusion avec un minimunédergie fournie au sy&ine.
La section éicace pour la&gaction de fusion D-T @domine en et sur les sectiondiécaces des autres
principales eactions de fusion (BHe, D-Dp, D-Dn,etd). La réaction D-T, qui produit des neutrons de
14 MeV, est la suivante

D + T — “He + n(141 MeV) (Q= 17.6 MeV).

La section @icace de cetteééaction de fusion est de I'ordre d’un barn (1 barh0~28m?), qui esta mettre

en perspective des 600 barns dedaation de fission dedlement?3>U. Lignition de réactions de fusion

est par consquent beaucoup plusfiicile a contbler, puisqu’elles incorporent une physique bien plus
riche et complexe. Par exemple, les sectidfis&ces de processus concurrents comme l'ionisation et la
diffusion Coulombienne de particules chizeg sont plus importantes. Dans ce contexte, des conditions
drastiques doivergtre remplies pour atteindre les deésiet temps de confinement requis pour obtenir
un gain total dénergie. Ainsi, le crére de Lawson impose une limite basse sur le produit de la éensit
ioniquen; avec le temps de confinememntde ce plasma

nite > 9(T)f(Q),
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ou g(T) repesente la variation du taux deaction avec la ten@pature,f &tant une fonction d@, lui-
méme le rapport entre la puissance issue éastions de fusion et la puissance externe, celle fournie au
plasma. Pour un plasma D-T de 10 keV, ceargtpeugtre €écrit

nite > 10°°m3s.

Le point de fonctionnement(Q) = 1, dit de break-evenest c&¢sormais presque accessible avec les
plus ecentes installations e&pgmentales. Leségimes satisfaisants le @it f(Q) > 1 correspon-
denta des plasmastloles Eactions de fusion sont auto-entretenues: il y a alors pkrsetljie @réree
gu'investie dans le sy8me. Deux voies sont alors expdas, reposant soit sur des plasraalsaute
temperature configs avec des champs magiques de maere quasi-stationnaire: Rusion par Con-
finement Magnétiqué~CM), Fig. 1.2(c), soit sur des plasmadaute pression et tef@@ture confiés
pendant un&chelle de temps courte, de I'ordre de plusieurs nanosecondes seul€ata deux@me
voie est laFusion par Confinement Inertiell&Cl), Fig. 1.2(a) and 1.2(b).

Le principe de la FCM consiste confiner un plasma dans un volume macroscopique par des struc-
tures de champs magtique appropées. La refsentation physique sous-jacente choigierid le mou-
vement contraint des particules du plasma, ayant des trajectéliedgititales dans un champ magigue
uniforme, et @rivant avec une vitesse moyenne dans la direction @gpas gradient, dans le cas d’'un
champ inhomogne. Un confinement transverse du plasma est alors rendu possiliéecigation d’'une
structure avec un champ magigue minimum sur I'axe. Les tokamaks assurent un confinement longitu-
dinal en proposant uneegnetrie toroidale pour legacteur de fusion. D’autregacteurs similaires sont
congus sur le principes de la FCM: les stellerateurs, spheroa@kDans un contexte FCM, le com-
bustible D-T peugtre chaffé en injectant des particules de haatergie, ou bien par le biais d’ondes
electromagatiques de forte puissance.

Les conditions d’oprationelles de la FCI sont atteintes par deux approches possibkes/oir
I'attaque directe et indirecte. Dans le éadha d’'attaque directe, une cible est illu@énpar un grand
nombre de faisceaux laser qui ont pour objet sorelcation, suivie de son implosion. Ce processus
requiert une &s faible tokrance visa-vis d’une syrdtrie d’irradiation ickale. Dans le cadre du saha
d’attaque indirecte, la cible est irr@di par des rayons X, issus de la conversion @eelfgie laser sur
une cavié pesentant un nuaro atomique £lee [23], appete leholhraum Malgre la faible déficacié
de conversion, la syétrie de l'irradiation seéeleétre meilleure, et peldtre optimige en jouant sur la
forme duholhraum

Une caggorie de eacteurs FCI, actuellemegtudie pour I'obtention et le coriite de action de
fusiona haut gain, et reposant sur le principe deésah d’attaque indirecte, estraoneeZ-pinch Ces
machines grerent des @charge£lectriques de haute interisitqui permettent la éation de plasmas
chauds et denses.

Ces Eacteurs grerent des échargeglectriques de haute intergsice qui permet d’obtenir des plas-
mas chauds et denses, issus de la stiction &tagre induite par d’importants courantsa la force de
Lorentz. De tels plasmas sont eux@me la source de rayons X intenses. Les Etats-Unis se sont fortement
enga@s dans cette voie, et notammeréigga leur installation SANDIA, monée Fig. 1.2(b). Celle-ci
peut celivrer des courants sepeursa 1 MA, en 100-200 nanosecondesagga une technologie de
puissance puée qui permet de comprimeffieacement Energieglectrique en espace et en temps [25].
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En 1996, une peee dans la puissanceéldréea partir de eseaux de fils en aluminium de tygepinch
(40 TW de puissance de rayon&partir d'un grérateur de 20 TW) [28], a suseitin regain d’inéret
dans la recherche pour I&spinch en placant le@seau de fil dans une ca¥jtune source importante de
radiationa la temrature planckienne estére. Celle-ci peuktre utilie pour des applications de haute
densié d’énergie (HEDP), dont les applications FCI [24].

Dans le cadre de la FCI en attaque directe, @fkexion europenne a condué proposer une in-
stallation reposant sur les techologies de pointe pour les lasers de peiss&#PER (acronyme ddigh
Power Laser Energy Reseal¢lgui a pour objectif premier laeimonstration de fusion par confinement
inertiel & haut taux deépeétition, et de sa viabild Economique. L'allumage rapide est, pour l'instant,
le sctema nominal retenu. Dans ce &aha, lesetapes de compression et d’allumage proprement dit
sont cecorglees. Le combustible est tout d’abord compégssles densiiséleves par urdriver appro-
prie. Le combustible @-compress est alluré par un secondriver ultra-intense. Les szifications
actuelles de HiIPER pwroient une configuration de type faisceaux multipléndrgie 250 kJa 3w, de
longueur d’'ondel = 0.35 um, suppEémenée par des faisceaux nanosecon@ey, pour l'allumage.
Indéependamment, le laser PETAL, actuellement en construction daggitasnrAquitaine, est un laser
de type PetaWatt, qui doi&tivrer unénergie de 3 kJ pendant 3-10 picosecondes. PETAL est inscrit
comme jallon sur la voie de l&alisation du projet HIPER.

Une approche alternative concerne lesésohs hybrides de fission-fusion [17]. Leur principe re-
pose sur I'observation suivante: la consommation d’'uranium fissile nasiréelle que ces ressources
sont supposes manquer d'ich 40-50 anées. La epartition d’'isotope, sur terre, montre une forte com-
posante, 99,27 %, pour I’isotoﬁéSU, qui est donc éfini comme un isotopéertile, vis-a-vis d’'une
faible composante, 0,72 %, pour I'isotop€U, qui est @none fissile puisque des neutronsétiergie
nulle peuvent éclencher la fission de cétement. Le sbma hybride fission-fusionfise la possibilié
d’une conversion ficace des isotopes fertiles en combustible fissilacga une source de neutrons
de fusiona haut flux. Ces neutrons peuvditte utili€s pour plusieurs applications: I'alimentation en
neutron pour le combustible fissile, I'introduction @actions de fission pour produire une puissance ad-
ditionelle, ou la transmutation dédhets radioactifa longue vie, comme lggdéments de type actinides,
via I'absorption de neutrons.

Un hybride fission-fusion est udacteur de type fusion, quigsente des isotopes fertiles dans sa cou-
verture. En létat actuel de I'art, un tel séma requiert seulemel{Q) ~ 2 pourétreéconomiquement
viable,a comparer au seuil de viab#if (Q) > 10 pour un eacteur de fusion. Bien que cette voie hybride
ne constitue pas une approche de fusion pure et propre, elle auinoins seévéler ineressante au
regard du compromis qu’elle propose, nhotamment qadatrelative faible puissance laser investie.

Affirmation des directions de recherches

Une probématique tBorique majeure en physique de la FEside dans le transport étique multi-
espece, collectif et collisionel; son couplage avec d’autres processmsned’absoption laser -collective
et collisionelle-, le transfert radiatif [18], la production de neutronslganeactions de fusion [13], et
la combustion dans le point chaud. La coitpension et la mdadisation de ces processus sont cruciales
pour proposer et construire des senarii susceptibles de prodsirgades en energieleves, ainsi que
pour assister, piloter, et optimiser les futures @sitle production FG I'aide de simulations iggrees.

Un tel programme se situe au-deles objectifs propresce document.
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Figure 1.1: lllustration d’entés dont le fonctionnement repose sur un principe de fusion par cordirte
soit inertiel -LMJ Figure (a), Z-pinch Figure (b)-, ou magigque -ITER Figure (c)-, ou gravitationel -le
Soleil Figure (d)-.

L'approche @clinée ici a pludt pour objet la modlisation, letude nurdrique, et la simulation du trans-
port ciretiqueélectronique collisionnel, dans un &ha FCI, entre la zone d’absorption du laser et la
zone du front d’ablation [8]. La physique induite par ces processiemgu diférents aspects, eux-
mémes consigiés comme des pointséda madtriser pour le transport cétique en physique de la FCI:
un mockle nuneérique doit pouvoir permettre aussi bien la description de l'interaction-fdlasma dans
les egions sous-denses, lorsque I&ets collectifs sont dominants, que la description du transport de
particules rapides et leue@dt d’énergie dans la cible e@mement dense (solide), losque les collisions
Coulombiennes longue distance contribuent largemanta dynamique de transferédergie. Nous
sommes alors confroesa un probéme pesentant des variations importantes &sis de se&chelles
caracéristiques d’'espace et de temps. Pour I'allumage par choc [1], les vasatiportantes de masse
surfacique impliquent une variation du libre parcours moyen de collisiore grarticules, de I'ordre
de quatrea cing ordres de grandeurs. Des benes au transport, dues aux champs rééigoes forts,

de l'ordre du MegaGauss, peuvent entrer en dgtitipn avec les fets collisionels, et ainsi inhiber
le transportelectronique en infichissant les trajectoires dekectrons, ce qui pourrait conduigeune
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modification significative de la sghicite du front d’ablation de la cible. Unefficulté suppémentaire,
lieea I'interaction laser-plasmaéside dans le fort couplage entre les grandeurs @isiiques dans le
plasma. Les diérentestchelles se recouvrent, ce qui rend tout traitemépaé d’'une seuléchelle
caracéristique illusoire sans perte degision.

Pour prendre en compte I'ensemble de ces aspects complexesgnvelapgons depuis 2006 un code de
reference, dterministe, de type Maxwell-Fokker-Planck-Landawluant dans uneégpnetrie plane de
I'espace des phases de dimensi@iy & 3D,. Notre point de @part aéte un solveur dterministe de type
Poisson-Fokker-Planck-Landayoluant dans un espace des phases de dimenBign3D,, et issu des
travaux deN. Crouseilles et F. Filbd7]. lls ont, les premiers, igge d'importants éveloppements, issus
dela communauté francaise de mathématiques appliquéegernant la disétisation des ograteurs
de collision -nous mentionnons pour ce propos les travaux de P. Degpril Lucquin-Desreux [10],
C. Buet [4], F. Filbet [6], et M. Lemou [5]-, et les ont ingphenés dans un cadre non hongo, en
couplant la disdtisation des collisiona un scema nurérique d’ordreglevé pour I'equation de trans-
port de Vlasov, ouvrant ainsi la voia,partir de cette approche mu#tchelle,a des couplages avec une
physique plus vaée.

Notre approchea partir de cette base forte, a consigtinclure les fets des champs magtigues,
a explorer le ggime relativiste, et proposer des reteb Eduits qui sont capables de retranscrire notre
compEhension du transpagtectronique pour la FCI. A ce momerit;tes aspecétaient toujours I'objet
de cEbats, et la magre d'inclure cesféets avec prcision dans de tels sgshes raides, muléchelles,
avec un potentiel de Coulomb de longue pertCe dernierféet rend la modlisation des collisions non
rasantes, entre particules déme espces, tés ardue.
Nous dfirmons avoir atteint les objectifs fis au pealable, et g¥sentons dans ce manuscrit, pétayer
cette dirmation, des simulations nuariques pecises et robustesgsultant d'analyses nuariques ap-
pronfondie, de moglisation pour la physique des plasmas, et de calculs scientifiques masiyEme
allelles: la version parale de ce code s’estveleéeétrescalablesur des milliers de processeurisdies
(plateforme de Calcul Haute Performance CCRT-CEA platine). Nous sousnes forceés de nous
tourner, @&s que faire se peut, vers des applications physiques pertinentes Jpatic [@ette approche
a été principalement contrainte -en particulier pour les futures comparaiseades expriences- par
le fait que les ions ongte consi@res comme immobiles dans néguations. S'iranchir de cette hy-
pothese, en incluant le mouvement des ions, pourrait constituer la base avaii arvenir.

Structure du manuscrit

Ce travall se situ@ l'interface de I'analyse nuamique, la physique des plasmas, et les mathtiques
appligees. Ainsi, un cloisenement entre toutes ces aefivierait articificiel. Cependant, nous de-
vrons identifier et analyser chacun des processus pertinents poandpart nonlocal pour la FCI. Par
congquent, pour chacun des processus idéstifious g@Fsenterons la&tivation de modles physiques,

et developperons une analyse nemgue. Ces sentations @uderons aux tests nuariques gbu a

des simulations&alistes, ref@sentatives de la physique. Nous co&tptons notre @sentation, lorsque
c’est possible, avec des analogéed’'autres domaines de la physique.

Finalement, nous partageons avec le lecteur notrerexpce, et proposerons des perspectives de recherche
attractives.

Chapitre 2:  Nous proposons ici une &e mise en perspective des processus en jeuéami¢h
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des plasmas, et une revue des &led de base et deséthodes pour les impienter, les coupler, et
les valider. Dans ce chapitree référant a I'ecole Russe de physique des plasnass adoptons une
approche critique, en discutant laditature et introduisant notre travail.

Chapitre 3: Nous nous concentrerons, dans cette partie, sur les aspects colidi&sfa ' équation
de transporélectronique libre, ditéree-streamingpour la limite non relativiste, ainsi que pour Egime
relativiste. Les points €k €sident ici dans les&veloppements et analyses renques des s@mas
pour le systme de Vlasov-Maxwell, et dans l&idvation de scemas nurariques appropés, robustes,
d’ordre sug@rieura deux. Ainsi, dans leérime relativiste, nous psentons une technique nérigque
efficace, non standard, dans laquelle nous proposons d’abandodise@éisation d’un eésidu relativiste

)

t,x,v) =0,
opz  0p1 ( )

en maintenant une discretisation correcte des invariants collisionels. Mopsspns aussi un choix
adequat pour la disétisation de la vitesse, qui provient de Efiditionv = meczvpy(p) , pour respecter
la conservation de &nergie discrete pour le sgshe dequations de Vlasov-Maxwell. Ce choix est
directement issu de la digtisation correcte de

0=V x(Vp¥(p)) -

Chapitre 4. Dans ce chapitre, nous nouséressons des aspects plus &gifigues du transport
collectif: le transport multi-egres, soumia des discontinuits dans I'espace des phases. Nous nous
référons ici au transport catique de diérentes particules, ayant des charges positivesggttives, et un
rapport de masse arbitraire. Cette physique peut s’appliquer, enutiartiaux plasmas electron-ion ou
electron-positron. Nou€alisons une analyse de convergence d'u@gisaVolumes Finigl'ordreélee,
de second ordre, pour le sgate de Vlasov-Poisson, ekmhontrons I'éicaci€ de la néthode pour le
traitement des discontinéis, pour un test pertinent, mettant en jeu deux populations avec un rdpport
mass interradiaire

1< m < 1836.
n

Chapitre 5: Cette partie est@liee a la moclisation multiechelle de la physique du transport
électronique, avec des termes source de collision, dans un espadeades Py x 3D, a geonetrie
plane. Nous validons cette approche, émintrons la gcision d’'un solveur Monte Carlo multi-
grille pour I'opérateur de collision electron-electron Fokker-Planck-Landau, dagamme deagimes
étendue, pertinente pour la physique de la FCI. Cette gamtenst des&gimes collisionela ragfies,
des Bgimes non magrtises aux magéties. La néthode multigrille est reconnue comragant bien
adapée pour I'acélération bas sur les protocoles de type FPGA, et pourraitséler interessante pour
des d'architectures parales et reconfigurables (dit€econfigurable Computing Systems in HPC plat-
formg. Nous pésentons une @thode nurarique de dis@tisation, I'algorithme d’adelération multi-
grille, ainsi qu’une 8lection de tests nuaniques simples mais reggentatifs, qui peuvent servir comme
tests de &férence pour le transport collisionel avec les gled Eduits pesenés dans le chapitre 2.
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Chapitre 6: Cette partie est@lieea des simulationgalistes pour le transport @tiqueélectronique
dans le cadre du séma d’allumage par choc. Ce &rha est un des candidat§iciels, inscrit dans les
spécifications du projet eur@en HIPER, comme séma nominal d’allumage pour cette future instal-
lation a taux de epétition éleve. Une campagne éfude exprimentale pour I'allumage par choc est
actuellement (2009) en couad’universié de Rochester sur le laser OMEGA. Cette campagne a d’'ores
et ceja cemonté un accroissement significatif du bilan de production de neuteoinsensié laser fixe,
compae aux scBmas classiques d'allumage pour la FCI. Cecsah est toujoursy ce jour, I'objet de
déebats. Letude et le confile des aspects @tiques reks au transpoglectronique est un des verrous
majeurs, identi#, a traiter pour I'obtention d’'un sé&ma de &férence. Le projet de simulation Transport
Cinetique Electronigue pour I'’Allumage par Choc (ayant pour acronym&Kéh langue anglaiseg g£te
I'objet d'un besoin spcifique de resources de calcul. Hieg plus de 8 millions d’heures processeurs
ontété obtenuesial'organisme GENCI, qui gre ces ressources en France depuis 2008. Ce projet est le
résultat d’'une collaboration avec X. Ribeyre, M. Lafon, G. Schurt®)’Bumiéres, S. Weber du CELIA,
leséquipes de R. J. Kinghaal'Imperial College, et A. R. Bell au Rutherford Appleton Laboratorg et
l'université d’Oxford.

Chapitre 7: Cette partie est@liee au éveloppement e la validation d’'un moéle de transport
électronique &duit en angle, de typkl1, ainsi qu'au éveloppement d’une @thode nurarique HLLC
pertinente, assoeea ce moeéle. La fermeturéM1 par minimisation entropique pour létectrons [3]
peutétre cerivee de la mamire suivante. Pour fermer le sgste, nous éterminons une fonction de
distribution f;yg qui minimise I'entropie deélectrons,

H(f):—f flog fdQ, (1.1)
g2
sous la contrainte de reproduire les moments d’ordre les plus bas,
fmedQ = fo = f fdQ and QfyedQ =f1 = QfdQ. (1.2)
s? s? s? s?

Cette fermeture est bien adaptau transpoélectronique car elle permet des calculs analytiques pour les
noyaux de collision, erégime relativiste et non relativiste. A la fois le n&de et la néthode nurarique
pos&dent une limitation de flux apprope||f1|| < fo, la positivie fyg > 0, et les propéts de con-
servation adquates. De plus, nous sommes capables de traiter exactement ausss distrititions
moncanergtiques, que les fonctions de distribution isotropes. Ces aspects réademsion multi-
groupe de ce made bien adag@e pour l'interaction laser-plasma relativiste, dans &gimes colli-
sionels et collectifs. Le made et les schmas nurariques sont teés dans les deuxegimes d’inérét.

Une analogie est conduite entre la FCI et le transpledtronique pour la radioginapie. En particulier,
nous insistons sur I'importance de la productioéldttrons secondaires pour les applicatioaeda la
radiotrerapie. Ce processus &stidé en etail dans le chapitre 8 dans un cadre FCI.

Chapitre 8: dans cette partie, nous nousargssona I'importance relative des processus impliquant
les collisions electron-electr@anhauteenergie. Nous mettons @wvidence I'importance du étanisme de
production délectrons secondairésdesénergies relativistes. Pour ce faire, nous proposons urelmod
multi-échelle, rapide et robuste, qui comporte des termes de Boltzmann relativiSee moéle est
destiré a étre plus pecis et rapide que les mels existant, et ce de plusieurs ordres de grandeeir.
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modele peut étre considéré comme une simplification de I'equati@otizmann, relativiste ou non, de

la forme >
d ~
G109 = [ ¢fa [ @ [10)1(@) - 1)) B AR

En particulier, il généralise et reprend les travaux de L. D. Landannges 1940), S. T. Beliaev (1956),
et A. V. Gurevich (1998), sur les collisions electron-electron, avepaiantiel de Coulomb a longue
distance. q

i

j#i |rii|
Une étape importante, dans la&mvation de ce magle, aéte la cecomposition de la&endance du
potentiel en 1Ir a I'aide d'un potentiel de lissag®

Vi =

1 (% - S(r)) +8(r)

r
Le principal €sultat de ce made eside dans sa robustess&ya@ga un choix appropé pour la fonction
S. Enfin, une attention particéie est poéea la future impémentation nu@rique de ce masgle. Les
applications potentielles concernent le projet eémpHIPER pour I'allumage rapide, les domaines de
la lithographieélectronique, la radiographie des objets opaques et densésglement&nergtiques
dans la haute atmosete, les plasmas dé&dharge, ou la éaction de plasmas electron-positron.

Chapitre 9: Conclusions et perspectivadong terme.

1.2 Enanglais

Intention

This manuscript provides with a contribution to the kinetic modelling and numegiicallations of the
electron energy transport and deposition in laser-produced plasawasgin view the processes of fuel
assembly to temperature and density conditions necessary to ignite fusitiomeaThis particular ap-
plication will be treated in detail, as it is the principal motivation of this work. Sop@ieations to
other fields, relying on similar physics, shall be also presented or mentiofigely concern electron
radiotherapy [14], lightening discharges, high energy phenomena umpiter atmosphere [19], electron
lithography, Magnetic Confinement Fusion (MCF) [15, 16], or astrefs/[2]. We should mention for
this latter application, as an example, the observed role of energetic eketrdupiter radiation belts
[2]. The common point of these fields is that they involve multi-scale modellingeotren kinetics and
plasma physics.

Context and concepts

One of the fundamental research area that promises significant segptaations, in a very near fu-
ture, is the laser-matter interaction. A broad spectrum targeted applicatinks from energy pro-
duction, medical treatment of cancers (electron radiotherapy, protapthénadrontherapy), laboratory
astrophysics, to the radiography of dense and opaque objects. Anmamngttie thermonuclear fusion is
at present (2009) the object of large-scale investments, dedicateddretii®on of an abundant energy
source. To this aim, the combustion of a gaseous or solid mixture of light ratdiggh temperature, at
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around a hundred millions of Celcius degrees, proves to bdfaieat mechanism. At these tempera-
tures the fuel is fully ionized becomingpasma an assembly of high-temperature particles interacting
collectively by electromagnetic forces [11, 21, 22, 29]. To producéubien of two nuclei, and thereby
the production of a large amount of energy, one has to overcome thertloudpulsive forces between
them. The use of deuterium and tritium (D-T) nuclei is currently the nomingl etesen to achieve
fusion with a minimum of energy provided to the system. The cross sectionTofdxction fusion is
indeed well above those of the other principal fusion reactionéHB-D-Dp, D-Dn, etd. The D-T
reaction, producing the 14 MeV neutrons, is the following

D + T — “He + n(141 MeV) (Q= 17.6 MeV).

The cross section of this fusion reaction is of the order of a barn (1&f?8m?), to be compared with
the 600 barns of the fission reaction of #if&U. It is, therefore, much more fiiicult to control, because
it involves a more rich and complex physics. For instance, the cross settioncurrent processes such
as ionization and Coulomb scattering of charged particles are much highénisicontext, stringent
conditions must be fulfilled to achieve the required density and confinement fimelasma and to
obtain a profitable total energy budget. This is the Lawson criteria, whichsegoa lower limit on the
product between the ion densityand the confinement time of this plasma

nite > g(T)F(Q) .

whereg(T) accounts for the variation of the reaction rate with the temperaturef, aridnction ofQ, the
ratio between the power issued from the fusion reaction and the extexwel provided to the plasma.
For a D-T plasma of 10 keV, this criteria can be rewritten as

nite > 10°°m3s.

f(Q) = 1 denotes the break-even, this operating point is almost satisfied in some ot recent
experimental installationf (Q) > 1 denotes regimes where the plasma is ignited and the fusion reaction
is self-sustained: there is then more energy generated than energytipeisystem. Two ways are then
explored, implying either high temperature plasmas confined with magnetic fieldsjliasi-steady op-
eration, theMagnetic Confinement FusidMCF), Fig. 1.2(c), or high pressure and temperature plasmas
confined for short time scale of the order of several nanosecongdiuis latter is thdnertial Confine-
ment Fusion(ICF), Fig. 1.2(a) and 1.2(b).

The MCF consists in confining plasma in a certain volume by appropriate magjek&tistructures.
The underlying idea is that plasma particles have a helical trajectory in armmifagnetic field, and
they are drifting in the direction opposite to the gradient in an inhomogeneads Tihen, a transerval
confinement of the plasma is achieved by creating a structure with the minimumgofetiafield on
the axis. In devices such as Tokamaks, the longitudinal confinementiesadtby choosing a toroidal
geometry for the magnetic fusion reactor. Many other MCF devices aignéek stellarator, reversed
field pinch, spheromaletc In the context of MCF, D-T fuel can be heated by injecting high energy
particles or by means of high power electromagnetic waves.

The ICF conditions may be fulfilled by two possible approaches, namely tbet@ind the indirect
drive. In the direct drive, a pellet is illuminated by a large number of lasants that accelerate it until
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implosion. This requires a very low tolerance to any departure from gtarfadiation symmetry. In

the indirect drive, the pellet is irradiated by X-rays, produced by thevesion of laser energy on a
high-Z-lined cavity [23], the hohlraum. Despite a lower energy converdidgciency, the symmetry of

the irradiation proves to be better, and can be optimized playing on the shidqgehmhlraum.

One category of devices, that is currently considered to reach anibkbigh gain fusion, and re-
lies on indirect drive ICF, falls into the “Z-pinch” denomination. These nireeh generate electrical
discharges of high intensities, that make it possible to obtain a warm and giassna, issued from the
magnetic striction induced by the high currentis, the Lorentz force. Such plasma is itself a source of
intense X-rays. The U.S. program is well-engaged in this direction, with DA facility, shown
in Fig. 1.2(b), that can deliver large currents, above 1 MA, in 100+2Z8fbseconds, thanks to a pulsed-
power technology that couldfeiently compress electrical energy in space and time [25]. In 1996, a
breakthrough in X-ray power output from aluminium wire array Z-pirec{d® TW X-ray power from a
20 TW electrical generator) [28] triggered a boom in Z-pinch resegptating the wire array inside a
hohlraum creates a high temperature Planckian radiation source that oaedfor high energy density
physics (HEDP) applications, including ICF research [24].

In the frame of direct drive ICF, a European reflexion has proptiseddigh Power Laser Energy
Research (HIPER) facility, with the primary goal of demonstrating laseedriwertial fusion at high
repetition rate, and its economic interest. Fast Ignition is the baseline appinachich the stages of
fuel compression and ignition are separated. The fuel is first congutésshigh density by a suitable
driver; the precompressed fuel is ignited by a second ultra-intengerdHiPER is expected to provide
250 kJ in multiple, 3 (wavelengtht = 0.35um), nanosecond beams for compression and 70 kJ in tens
of picoseconds, @ beams for ignition. Independently the PETAL laser is&i&J, 05-10 ps, PetaWatt-
class laser, which is under construction in the Aquitaine region, Frahisea fore-runner to the HIPER
facility.

An alternative approach involves hybrid fission-fusion schemes [L§,based on the following
observation: the natural fissile uranium is expected to lack to be consunaddin 40-50 years. The
isotope repartition, on Earth, is 99.27 % f6fU, which stands as fertile isotope, and only 0.72 %
for 235U, which is calledfissile since zero-energy neutrons can produce the fissicii®of. Hybrid
fission-fusion schemefiers the possibility of #icient conversion of fertile isotopes into fissile fuel, with
a high flux source of fusion neutrons. These neutrons may be usedvieral applications: breeding of
fissile fuel, induction of fission reactions to produce additional powehetransmutation of radioactive
wastes, such as actinides elemenwits neutron absorbtion.

A fusion-fission hybrid is a fusion reactor with fertile isotopes in the blanksta fusion reactor needs
f(Q) > 10 to be economical, the fusion-fission hybrid may be economical with i@y ~ 2. Although
this way is not a pure and clean fusion approach, it may still be interestingegfiect to the relatively
low laser power invested.

Research direction statement

A major theoritical issue in ICF physics is the mixed collective and collisional mpét®s kinetic
transport, and its coupling with other processes, such as laser absguptitesses, radiative transfer
[18], neutron production by fusion reactions [13], and combustion irhtitespot. The understanding
and modelling of these processes are indeed crucial to propose anddbiaitde senarii likely to pro-
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Figure 1.2: Various fusion devices relying on either an inertial -LMJ in féd@a), Z-pinch in Figure
(b)-, magnetic -ITER in Figure (c)-, or gravitational -the Sun in Figude ¢dnfinement.

duce high energy gains, to assist, pilot, and optimize the future ICF fusisedpower plant units with
integrated simulations. Such a comprehensive task is beyond the scoedufdhment.

The present approach rather focusses on the modelling, numericgl atutsimulation of the kinetic
electron collisional transport in ICF, between the laser absoption zahéharablation front [8]. This
physics gathers an important variety of features considered as a boktliemeinetic transport in ICF
physics: a numerical model needs to describe the laser-plasma interacttom low density region,
where the collectiveféects are dominant, as well as the fast particle transport and energsititapm
the extremely dense (solid) target, where long-range Coulomb collisiotisbrda greatly to the energy
transfer dynamics. We are faced with a problem with a large variation iractaarstic length and time
scales. In the shock ignition [1], the high areal density variations inva@vescrease of about 4-5 or-
ders of magnitude in mean-free-path. Transport barriers due to largeatiafields, up to MegaGauss
order, may compete with collisionaffects and inhibit the electron transport while bending the electron
trajectories, which may lead to a serious modification of the sphericity of thé@bfeont of the target.
Moreover, a particular feature of this laser-matter interaction is the largeplayebetween the scales
in a plasma. The dlierent scales recover each other, which makes it impossible to isolatefdre ot
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mechanisms without a latent loss of accuracy.

To encompass all these complex features, we develop since 2006 encefateterministic Maxwell-
Fokker-Planck-Landau code, in a pland.2x 3D, phase space geometry. Our starting point was a
1Dy x 3Dy Poisson-Fokker-Planck-Landau deterministic solver fienCrouseilles and F. Filbef7].
Their work first gathered important developments, issued fronfrteech school of applied mathemat-
ics, concerning the numerical discretization of collision operators -we shuoelation here the works
from P. Degond [9], B. Lucquin-Desreux [10], C. Buet [4], F. Eill6], and M. Lemou [5]-, and cast
them in a nonhomogeneous framework, while coupling the discretizatiorlisiaos to a high order nu-
merical scheme for the Vlasov transport equation, and opening the gathtHis multi-scale approach,

to the coupling with additional physics.

Our task, from this strong basis, was to include tffeas of magnetic fields, explore the relativistic
regime, and propose reduced models that could reproduce our tamiking of the electron transport for
ICF. At that time, these issues were still under debate, and the answersieteyet known how to in-
clude or model thesdfiects accurately with such ftmulti-scale systems, with the long-range Coulomb
potential. This latter makes it veryfticult to model nongrazing collisions between like particles.

We claim that we have brought some important information, and reachesbfmatives. We present in
this manuscript, to support this claim, accurate and robust numerical simslatisulting from numer-
ical analysis studies, plasma physics modelling, as well as massively pacidletific computing: the
parallel version of the code has proved to be scalable over thouskael$icated processors (CCRT-CEA
platine High Performance Computing platform). We have tried to turn, as faossible, to physical ap-
pications. This approach was mainly constrained -in particular for futurgarisons with experiments-
by the fact the ions were considered as fixed in our equations. This beulte object of a forthcoming
work.

Structure of the manuscript

This work is at the interface between numerical analysis, plasma physicapptied mathematics. On
the one hand, a rough decoupling between all these aspects would thesah@ngless. On the other
hand, we shall identify and analyse each of the relevant physica¢gses for ICF nonlocal transport
physics. Therefore, for each of the identified process, we firseptehe derivation of physical models,
develop numerical schemes and perform a numerical analysis upon thesh.p&sentation preludes

to numerical tests anok realistic simulations. We shall complete this presentation, when it is possible,
with analogies in other fields of physics.

Finally, we share with the reader our experience and propose rageaRgpectives.

Chapter 2: We provide here with a brief review of the processes at play in the collisionetic
theory of plasmas, and focus on basic models and methods to implement, codplelidate them.
In this chapterfollowing the Russian school of plasma physe® adopt a critical approach, while
discussing the literature and introducing our work.

Chapter 3: We shall focus here on the collective aspect related to the free-streataitpn trans-
port equation, in the nonrelativistic limit, as well as in the relativistic regime. Bygkints stand in the
numerical development and analysis of the scheme for the Vlasov-Magystim, and in the selection
of a validation procedure and numerical tests. In particular, we show theriamze of the derivation
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of robust numerical schemes, that present higher order than two., il$le relativistic regime, we
present a non-standaréieient numerical technique, in which we propose to drop the discretizatian of
relativistic residual

[( ovi  Ovo

— - —|f|(t,x,v) =0,
op2 ('3p1) ]( )

while maintaining the correct discrete invariants. We also propose a clwitteefvelocity discretization,
that comes from the definition= meczvpy(p) , in order to satisfy the discrete total energy conservation
for the Vlasov-Maxwell system of equations, which is the direct consecgi of the correct discretization
of

0=Vpx(Vpx(p)) -

Chapter 4: In this chapter, we investigate more specific aspects of the collective transpe
multi-species transport, submitted to phase-space discontinuities. We eedetiotthe kinetic transport
of different species of particles, having positive and negative chargigsnaarbitrary mass ratio. Such
physics can be applied, in particular, to electron-ion or electron-pogitemmas. We perform a numer-
ical convergence analysis of a high order (second order) Finite Voaatmeme for the Vlasov-Poisson
system, and show thefiency of the method for discontinuity handling on a relevant test case, with
two populations and with an intermediate mass ratio

Chapter 5: It is devoted to the multi-scale physics of electron transport with collisioncgour
terms, in the By x 3D, phase space. We validate the accuracy of a fast Monte Carlo multigrid solve
for the Fokker-Planck-Landau electron-electron collision operatonviida range of regimes relevant
for ICF physics, ranking from collisional to rarefied, and from unneiged to magnetized regimes.
The multigrid method is known as being well-suited for FPGA-based acceleratim could be used
efficiently on parallel, reconfigurable hardware architectures (RCS).ré&ept the numerical method,
the multigrid acceleration algorithm, and a selection of simple though representatinerical tests,
that could serve as reference tests to check the collisional transpotheiteduced models presented in
Chapter 2.

Chapter 6: It is devoted to realistic simulations for the kinetic electron transport in the fragfme
the shock ignition scheme. This scheme is fitial candidate, in the HIPER European project specifi-
cations, for the nominal ignition scheme of this future high repetition rate installafichock ignition
campaign is currently (2009) tested experimentally on the OMEGA laser atdbkeRter University,
and has proved to produce an enhanced neutron yield at a givereimgngty, compared to classical ICF
ignition schemes. This scheme is still, at the present date, under debaiav@stegation and control of
kinetic aspects related to the electron transport is one of the major identitigehleck for a successful
scheme. The proposed Kinetic Electron Transport for Shock Ignitionlatimn project (with acronym
KiTSI) has been the object of a specific need for computational resseuindeed, more than 8 mil-
lion processor hours have been obtained from the GENCI organismménaiges the computational
ressources in France since 2008. This project is a joint collaborationXviRibeyre, M. Lafon, G.
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Schurtz, E. D'Huméres, S. Weber from CELIA, the teams of R. J. Kingham at Imperial CallagR.
Bell at the Rutherford Appleton Laboratory and the Oxford University.

Chapter 7: It is devoted to the development and validation of a redulgEdelectron transport
angular model, together with the development of a relevant HLLC numericddatie The Minimum
Entropy M1 closure for electrons [3] can be derived in the following way. To clibsesystem we
determine a distribution functiofyyg that minimizes the entropy of the electrons,

H(f):—f flog fdQ, (1.3)
g2
under the constraint that it reproduces the lower order moments,

fmedQ = fo = f fdQ and QfyedQ =11 = QfdQ . (1.4)

s? s? s? s?
This closure is well-suited to electron transport because it allows analgtitailations of the collision
kernels, in the relativistic and non-relativistic regimes. Both the model antlitmerical method possess
the appropriate flux limitatioffif{|] < fo, positivenessye > 0, and adequate conservation properties.
Moreover we are able to treat exactly beams, as well as isotropic distridutiotions. These features
make the multi-group version of this model be well suited for relativistic latesrpa interactions, in
the collisional and collective regimes. The model and associated numeigahes are tested in these
two regimes. A parallel is drawn between ICF and radiotherapy electroppoat. In particular, we
insist on the importance of secondary electron production in radiotheygpications. This process is
investigated in detail in the Chapter 8.

Chapter 8: In this chapter, we investigate the relative importance of the procességigvelectron-
electron collisions at high energy. We bring the evidence of importanascofslary electron production
at relativistic energy. To do so, we propose a fast and robust, mulé-seduced model, with relativistic
Boltzmann terms, that is expected to be more accurate than the present nyaslerdal orders of mag-
nitude. This model constitutes a simplification, though very general, of the relativistionrelativistic,
Boltzmann equation

W2 -
WoWy QR 1) -

G0 = [ &a [ a@ 1)@ - 1@ o

In particular, it generalizes and encompasses the works from L. Ddaar{1940-ies), S. T. Beliaev

(1956), and A. V. Gurevich (1998), on electron-electron collisiolit, tlve long-range Coulomb potential
V, = a4 .
j#i |rij|

One important step, in the derivation of the model, is to decompose/thgependence of the potential
with a smoothing potentia$

1 (1

F = (F - S(r)) + S(I’)
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The main result of this model lies in its robustness, with a suitable choice faf tluaction. Also,

a lot of attention is paid on the future numerical implementation of this model. Potepfii¢aions
reach the HIPER European project for Fast Ignition, the fields of eleditttography, radiography of
dense and opaque object, energetic events in the upper atmosphdnargtigulasmas, or creation of
electron-positron plasmas.

Chapter 9: Conclusion and long term perspectives.
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1.3 Appendix: Glossary

In this appendix, we gather several conventions that we use thoutbisgfocument.

Table 1.1: Glossary

Quantity denomination Units (S.1.)
Me electron mass kg

K Boltzmann constant JK1
Te (withoutkg) | electron temperature K
kgTe electron temperature J

€ vacuum permittivity Fm-1
C speed of light mst
e positive electron charge C

e = —€ signed electron charge C

Ne electron density m-3
Yp Lorentz factor for the particle of momentumn AU

Ne Critical density m3
KAei Effective Knudsen number A. U.
Ry Nernst number A. U.
0 Scattering angle in the center of mass (CM) frame A.U.
p Momentum of a particle after collision in the CM framg A. U.
p Momentum of a particle before collision in the CM frameA. U.
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The object of the kinetic theory of gases or plasmas is the statistical destptibe particles, by
means of their distribution functiofi(t, X, v) in the phase space of the particules, that contains positions
x and velocities/, or momenta, the latter set is more adapted in the relativistic regime and for quantum
plasmas.

When faced to a more complex physics, one may want to extend this phaseamhadd extra
microscopic variables, accounting for non-translational degreesed@m of the particules. These refer
to the number of components in a mixture, the internal energy, the ejainThis can be a case for the
plasma-assisted combustion, where chemical reactions occur, or fotuquplasmas where the spin
must be taken into account.

However, one may rather be interested, and this is generally the case imtbgtof energy transport
and deposition for ICF, in a reduction of such a space. The full numdriatment of the particle
distribution function in this six-dimensional space is traditionally consideread¢stly to be &ective.
Several approaches, outlined in Section 2.2.6 and Chapter 7, havedyetopped to retain only the most
important features of this distribution function. Despite of their computatiofii@iency, the accuracy
remain dificult to preserve in regimes of interest for fusion devices, with respdlottoumerical noise or
a low anisotropy degree that these methods may present. There is a neegi&dification procedure of
these simplified methods for particular applications. The present thesisitsatktito the development
of a reference Fokker-Planck-Landau code, that can be coedid@ise-free and capable to treat high
anisotropy degree. We consider it as a step towards a versatile validationGa the one hand, an
accurate definition of the validity limits of reduced codes can be acheivedth®other hand, clear
indications could be provided if and where further modelling improvementsegded.

The need for kinetic modeling for plasma physics becomes a clear issuecatieonted with the va-
riety of experimental measurements that display compelling energy and pglehratated spatial ayior
temporal dispersion, and various types of highly non-Maxwellian featur¢éhe distribution functions.
Some important aspects of the collisional kinetic theory are first summarizegctios 2.1. Then we
give in Section 2.2 an overview of the processes relevant for ICF efetnsport issues, that justify a
full kinetic description of plasmas far from the statistical equilibrium.

2.1 Collisional kinetic theory of plasmas

A detailed representation, including the movement and interactions of allydaegtihat constitute plasma
is out of range of the state-of-the-art simulation capabilities and computhtessources. Moreover,
such atreatment carries a huge amount of information that is not necessaderstand and simulate the
overall dynamics of the plasma. A semi-microscopic, probabilistic evaluatitrecfystem is dticient:
this approach constitutes the collisional kinetic theory of plasmas.

From the Liouville master equation, a hierarchy of models is constructedetd,rin the next section,
a derivation procedure of this so-called BBGKY (Born-Bogolioubae&h-Kirkwood-Yvon) hierarchy.
Different limits are outlined in Sections 2.1.2 and 2.1.5, respectively the VlasotharBoltzmann
equations .
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2.1.1 Kinetic equation for a single-particle distribution function

Let us consider, at timg an ensemble of N particles of the same specie, having the posttipng and
momentaPie[1,n;- A N-body joint-probability density is introduced [73]

fN (t ’ Xla ’XN ’ pla ’pN) ’

wherefyd3xy...d3xyd®p;...d3py is the probability for the system to be, at timén the elementary§—D
volumed3x;...d3xyd3p;...d%py., located in the neighbourhood of the poiat ... ,Xn , P1, ..., Pn. IN
other words, this quantity represents the probability of the particule 1 to i ithe volumel®x; around
X1, with a momemtum whose extremity is around the voluifp; in the momentum space, aroupg
where in the same time the particule 2 is inside the volafe aroundx,, with a momemtum whose
extremity is around the voluma®p, aroundp,, and so forth until the particle N. The Liouville equation
expresses the conservation of this probability density while particles armgiovspace and time

i=N

di _ afN afN afN _

dp

o ; Vi are the velocity of the particle i and the force applied to that particule,

wherev; = % andX; =
respectively.

The N-body distribution functiorfy describes the system with a maximum level of refinement.
Practically, the computation of such a model is too heavy, and one has tml@oasmore stringent
statistic resolution. To this aim, the reducetbody joint-probability density is introduced for a sub-
system ofs < N particles

f~s(t, X1, o0y Xs 5 P1y.eer Ps) = f N (t, X1y oo XN Pst1s -0 PN) d3Xs+1...d3XNd3 ps+1...d3pN .

This distribution function describes tiseparticle state of a group of particles. As in the general cade,
is not a symmetric function of its arguments, a symmetitiody joint-probability density is constructed

1 -
fs(t, X1, ..., Xs, P1, ... ,Ps) = g Z fs(t, X1, ..., Xs, P15 -5 Ps)

where the sum is over the permutatidhsf particules 1..., s. The normalization is
f fs(t N Xl, ,Xs N pl, . ps) d3xld3Xsd3p1d3ps = 1

. . . o N
It is more appropriate to introduce the s-tuple distribution funclgre —g,)|f5’ that represents the

(N -

probable number of s-tuples of identical particules such that one of tiielpas in the phase volume
d®x1dp; about the poingxa, p1), the other one is in the phase volumixsti®p, about the poinfxy, p2),
and so forth, at a given time. The average kinetic and potential energpertles, Ex andEq are

defined with theF; andF, functions [73]

Ex(t.X) = f Fa(t.x, pmE(yp — DPp.

Eo(t,X) = f Fa(t, x, X', p, p’)®12 (X, X') d>pdp’ X’ |
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where @1, (x, x’) is the two-particle interaction potential angd = +/1+ p?/(mg? is the relativistic
Lorentz factor.

The evolution equation for the distribution functibp, calculated from the Liouville equation (2.1),

is theBY; equation

% + xl% + xlg% = - fxlzg%&xzd%z : (2.2)
whereX 1, represents the force acting on the particule 1 due to the particule 2.
By successive couplings, the equatid¥, i € N*, that relate the functions; andF;,1, can be con-
structed. The obtained system is refered as the BBGKY system. In [18§]slitown that the BBGKY
hierarchy of a plasma with electrostatic interactions inherits a Lie algebra istpeatiih Poisson brack-
ets, from the Liouville equation.

From this sytem, dierent asymptotic regimes can be identified.

2.1.2 Vlasov kinetic equation

A renormalization of th&gfunctions can be performed on tB&; equations, that defines the distribution
function f(x, p) = ngF1(x1, p1), dropping the subscript 1. With the assumptio\ofs> s, the dimen-
sionless form of théY; equation is derived, that make appear, right in these equations, theqiara
[73]

2
(nord) @0 (Eq)
= — , No=nord , Noag= ~
= keT 0="0% " TnorlkeT  (Ex)

where®y is a potential kg -the Boltzmann constant, -the temperaturer, -a characteristic number
density, and -a characteristic scale length.

’

In the limit Mpag > 1, the plasma can be seen as strongly coupled, whereas in théViimjt< 1,
it is weakly coupled. This partitionning is exploited to reduce BRGKY system, with the help of a set
of correlation functions. The correlation function between two parti€esis defined according to the
relation
f2 = f]_ f]_ + C2 .

By analogy, we can defings such as
f3 = flflfl + Z f]_Cz + Cg y
P(1,2.3)

and so on for the familyC;}i<.

The Vlasov limit is obtained assuminigy/(ksT) <« 1, i.e. small correlations between particles, and
long-range interactionsnorg > 1. In this limit, a small parametercan be defined, with the following
renormalizatiorr — e and Ny — eNp. The first condition allows to redefine the correlation functions
as

fa
f3

f1 f1 + ECZ ,

f1 fl fl + € Z f1C2 + €2C3 .
P(1,2,3)
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If only the lowestO(e) terms are kept in the BBGKY system, then the limit is the self-consistent Vlasov
equation
0 0

0
(a+&-v+%-X)f(t,X,p)—0, (23)

which is here written under its conservative form. Its non-conservative is equivalent, a% -X =0.

The particle density is defined as = f f(t,x, p)d>p, and the &ective temperature a%nkBT =
R3

ff(txp)p—zdgp
T

The Vlasov equation (2.3) is not a generic hyperbolic scalar equati@aube of its Hamiltonian
geometric structure. It satisfies, in particular, an infinite set of consenviaws, the Casimir invariants.
This Hamiltonian structure gets lost by any numerical approximation [58],aanthjor challenge in
numerical analysis is to design schemes that preserve at least the lawCasleir invariants. The
purpose of high order schemes, as shown in Chapter 3, is to contraspi@sive and diusive artefacts
triggered by any “finite dimension” numerical approximation [8].

2.1.3 Self-consistent coupling to the Maxwell equations

The model (2.3) is now applied to charged particles, and completed with atidefiof a microscopic
j=N

electromagnetic forck; + Z Xij, where
j=1

Xi = q (Eext+ Vi X Bext) )
didj
Xii = =-Vi|l—] ,
g ! (47r€ol’ij )
that accounts for the external fields and interactions between the parfities it is possible to define
the self-consistent electric field &° = f Ny X 120%%0. Inserting this expression in tH&Y; equation,
3

R
this leads to a full Lorentz forcX = q; (E + v x B) in the Vlasov equation, wher® = BS¢ + B®X
E = ESC+ E®X andB®*, E®X are the external fields.

While considering the Coulomb interaction potential between electbgns €/(4reor) in a neu-
tralizing fixed ion background, the Vlasov natural regimgVo = O(1), defines a caracteristic length,

ok Te

n0e2
The plasma period stands as the characteristic response time of the plasyad¢otarbation screened
by the Debye length. Itis defined &g = 27/wpe, Wherewpe = Vin/Ap is the plasma period frequency
andvy, = VkgTe/Me is the thermal velocity. The condition of plasma neutrafity= Zny = ng is the
necessary condition for plasma equilibrium in the absence of extermalsfor

the Debye lengthlp = , that is a distance, where a significant charge separation can occur.
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The Lorentz force relates the Vlasov equation with the Maxwell equations

JE J
= _ A32v - _~
ot xxB €’

(2.4)
0B
E-l—VXXE = 0,

wheregy represents the permittivity of vacuumis the speed of light. The electric current is given by

Jt,X) = ge f fe(t, x, p) v dp.
RS
Moreover, the Maxwell system is supplemented by the Gauss laws
wE=£ wv.B=0 (2.5)
€
wherep is the charge density:

p =0e(Ne—No) = Qe (fs fe(t,X,p)d3p - nO)v
R

andng/Z is the initial ion density.

2.1.4 Linear analysis of the free-transport system

Waves in a plasma, if it is collisionless, are described with the Vlasov-Maxsystem. These waves
give insight on the collective movements within this plasma. They can be cazactéy

e Adispersion laww(k), if it is analytically available.
e |ts polarisationj.e. the angle E, k).
e |ts energy.

in a plasma, the electromagnetic energy is defined as
I(wRqe(w, k)])

Wwave= ancuumT s (2-6)
€E2
Wiacuum= TO ) (2.7)

wheree is the dielectric permittivity. This formalism permits the treatment of waves haviggtive
energy. The Poynting vect@reads

O(wRge(w, k)])

S = ancuumT > (28)
S = Whavevg (2.9)
ow
Vg = K (2.10)
A criteria for the stability of the plasma can be defined
Im(w) <0, (2.11)

that guarantees the positivity of the energy.
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Instability classifications

The natural response of plasma exposed to a (fast) electron currenin&ntain the charge neutrality.
This behaviour induces a configuration where two counterstreaming betmpenetrate. This situation
can be an origin for various instabilities, that are potential candidates tatjieimibance the transport of
the incident electron beam, having velocity. The Two-Stream Instability is defined for electrostatic
perturbations with a wave vectérsuch ask || Vy andk || 6E, wheredE is the created electric field.
We shall identify the Weibel instability as an electromagnetic instability for trassva@odes, triggered

o : . . ... Of .
from a distribution function which presents a temperature anlsotropyabstlesa—\? > 0 at each point.
This definition matches the definition from Weibel’s original paper. On therdtaied, the filamentation

: . o : . of
instability concerns the distribution function whose original shape presehts: 0 for a subensemble

of points (in between two beam distribution functions, for instance), andtnigger electromagnetic or

electrostatic modes, depending on the orientation of the wave Jewutith respect to the beam velocity
Vy, in the plane perpendicular to the magnetic field perturbai®n Several confusing and divergent
definitions emerge in the literature, and we found a clarification necesstingt goint.

Let us assume a homogeneous, spatially infinite, collisionless and unmadnatsena, whose
dynamics is ruled by the nonrelativistic Vlasov-Maxwell equations. lorssapposed to form a fixed
neutralizing background, while electrons have two components: cold dedm. Within the linear
approximation, the plasma response to the harmonic perturbation of the dietdrif(w, k) is described
by the tensor of dielectric permittivity , whose tensor elements are

2 2
a) w Ppp——"—
€op(w,K) = 6ap (1 - w—‘f] + w—"; f VoVp——dv..
The systematic study of the space-time evolution of an instability, though compthisifourier-
Laplace space, requires the knowledge of the Green’s function of tdaimg46]. In one dimension,
for the longitudinal perturbation, the Green function reads

[ dw [ dkexpkx - iwt)
G(X’t)‘szn cor e k)

wheree(w, k) = 0 is the dispersion relation of the system, and the FouFgaad Laplacel() contours
are chosen such as they satisfy the causality principle and convergfethesintegral.

The classification of two-stream instabilities can then be performed withgetsptheir time-asymptotic
behaviour, that can be evaluated with the complex pinch-painik(), solution of a a system of equa-
tions

Oe
€(w,k)=0 , E((w,k) =0.
Finally, the asymptotic behaviour may be deduced:
G(X,t — o) ~ exp(kox — iwgt)/tY/? .

The instability is defined aabsoluteif Im(wg) > 0 [46]. In this case the time-asymptotic behaviour is
dominated by the pinch-point with the largest positivedg)¢ The instability is defined asonvectiveaf
all pinch points satisfy Imgo) < O.
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Critical comparison of different linear analysis in the relativistic regime

The Vlasov-Maxwell system, describes a variety of multi-scale couplezkpees. The first step consists
in isolating and analysing each of them. The analytical representative swslatie desirable to validate
our numerical schemes.

In a recent publication [14], a linear analysis relying on the dispersiaatén of the Vlasov-
Maxwell system, valid for any orientation of the wave-vector of the pedtioh, provides a detailed
picture of the hierarchy of competing modes in the system-parameter spgaeticular, the authors are
able to treat oblique perturbations, and give insight into the transition thabotay from one mode to
another one. However such a method, relying on dispersion relatiorfsicierg for a limited class of
distribution functions that lead to simple singularities in the dispersion equatidine ift, w) complex
plane. This approach, detailed in [15], does not give information in the tumletion of the macroscopic
quantities in the linear regime, and is valid only for the limit of large phase velodfitigé/«w < 1,
whereV is a characteristic velocity of particules. A set of well-defined eigendieagies (modes) is
then selected among the variety of possible solutions. Moreover, wh&rtd#te physical space, only
exponential modess exp(-wt), are filtered. Non-exponential solutions are much moficdit to find
and to characterizeAlthough they may bring an important contributioAnother method is proposed
in [87], where a nonlinear eigenvalue problem is solved. This method ihwaticable, because it
may potentially address more complex collision terms, such as the FokkekRlaaccoupled to the
Maxwell's equations. Such situations could occur in regimes where the colli®guency becomes
comparable to the plasma frequency. However, this technique still smoathesreexponential modes
that may arise, and does not have the time resolution of the instability in the |leggare.

This deficiency can be illustrated the following way, as explained by B. Wui20]f let us consider
the non-relativistic Vlasov-Poisson system, with a constant magneticHeldhe initial quantities are
chosen such as

f(t=0,x,p) = fo(p) + f1(t = O, X, p), (2.12)
E(t = 0,x) = E1(t = 0,X), (2.13)
f]_ < f(). (2.14)

A Fourier series expansion givés > 0

fa(t,x, p) = fa(t, p) cosk - x), (2.15)
fa(t,p) = % f fa(t, x, p)e *Xd3x. (2.16)
\

Then the linearized equation around the equilibrium stgtéor the Fourier componetk, is

i%ﬂ(t,v) = Kfit,v), (2.17)

Kt v) = k-vf](t,v)+ir%(v>< Bo)-a%ﬂ(t,v)—n(v) fR . fa(t, v)d®v, (2.18)
whe 3

n(v) = F|<-Efo(v). (2.19)
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The discrete complex eigenvalue and associated eigenfunction coupl€s)jenw € C x R (we note
here that the number of such couples can be infinite), are solution of thevaige problemXG;(v) =
wjGj(v). In particular, the discrete eigenvalues are solutions of the equatioréwj,k) = 0, j € N.
Among them, only the real eigenvalues (they appe&yif¢ 0) have their eigenfunctions that depend
on arbitrary functions a(v.,Vv), n € N. Therefore the spectrum of the operafércan be splitted in
two parts: the first is continuous and real, the second is discrete and comie real eigenvalues
are uncountably infinitely degeneraf&20]. This breaks the relation between eigenfunctions and the
usual Laplace resolvent solution where they can be considered ficien¢és ofe . The spectrum
obtained for an unstable plasma consists of a continuous straight line thifoei@rigin, suplemented
with isolated eigenvalues away from this line (thus complex), and associ#tedngtable solutions of
the usual dispersion relation [69].

In the Chapter 3, we illustrate théects of real eigenvalues on the two-stream instability.

Another particular case where a set of real eigenvalues arise is thigistiaregime, where at least
two branch points in the dispersion relation appear when Laplace treamgéohnique is employed to
solve the linearized Vlasov-Poisson system.

Finally, we present a method that does not face this problem of non-aibalibecause it does not
rely on thew Fourier space), and thus guarantees the correct time dependencériedheegime, with
a prescribed accuracy. This semi-analytical technique is issued frowotkeof C. Sartori and G. G. M.
Coppa [100].The method is here extended to the self-consistent relativistic Vlasov-Maystem In
Appendix 3.11. In the chapter 3, we shall make use of this procedurdidateaour numerical schemes.
In the paper [22], this method had been employed for external applied.fisidextention of this method
with the inclusion of the simple Krook operator [23, 57] is straightforward.

2.1.5 Boltzmann equation

For a collisional plasma, the appropriate limit of the Liouville equation (2.1) is tiiBann equation,
where the two-particle correlation function is taken into account. The Boltartienit can be intro-
duced from the Liouville equation withfierent perturbation-expansion techniques, relying on diagrams
(Prigogine), discrete description of the state of the system (Klimontovitchipeointroduction of trun-
cated distribution function in the Liouville equation (Grad). These pro@sican also be used to derive
higher-order corrections to the Boltzmann equation, relevant to den&ks. flThe rigorous mathematical
derivation of the Boltzmann equation has only been investigated for theshhede model [116]. A rig-
orous justification in the case of long-range interactions between pargctesns an open mathematical
problem [24, 116].

In this section we present the fundamental assumptions that lead to the Baoitemueation, upon which
an heuristic derivation of the Boltzmann equation can be obtained.

e The interactions involving more than two particules are neglected. The gssuisiad to be dilute
enough.

e The collisions are assumed to be localized in both space and time, with resfiectharacteristic
scales of the description.

e The collision is supposed to be elastie. the momentum, number of particles, and the energy
are preserved in a collision process. pétq’ stand for the momenta of the particles before the
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collision, andp, g those after collision. Ley, = v1+ p2/méc? be the Lorentz factor for the
particule having momentum The elastic conservation laws read

pP'+q =p+q,
Yt Yy =Ypt7g-
e Detailed balance principle: the probability for two particles having momphtand q’ before

collision to have the respective momemtaand q after the collision event, is the same as the
probability for the reverse process.

e Boltzmann “one-sided chaos” assumption: the momenta of two particles wigietbaut to collide
are uncorrelated, contrary to the post-collision momenta of the particles.

e Galilean invariance.

With these assumptions, the Boltzmann operator can be derived. We réierghysics-oriented refer-
ences [26, 73], and mathematical-oriented references [2, 4, 3293830451, 114], that address issues
related to the relativistic Boltzmann equation, or some variants of it.

Its relativistic expression reads
72

WpWy

d )/ ’ ’ ~ ~ o~
G =Qaolf. N = [ da [ [1E)F() - 1] By QA . (220
where théW, = rneczyp is the total energy (including the energy at rest) of the particule with momentum
p. The quantities marked with tilde (respectively without tilde) refer to quantitiesdrcenter of mass
frame (respectively, in the laboratory frame) for a collision event, exiteghe scattering angle in the

center of mass frame, denoted dyHere,W is the energy of colliding particles in the center of mass,
A2

i = cosd is the cosine of the interaction angle="2pc2/W is the relative velocityvy = i is the

pVig
Mgller velocity. Having in view electron-electron Coulomb interactions, wél sbasider the screened
total relativistic Rutherford cross sectiGh[68].

A mixed canonical-dissipative expression for the irreversible prosegsscribed by the Boltzmann
equation can be formulated, using the concept of dissipative bracleét,saitable Langevin forces”
[114].

Finally we present the fundamental properties of solutions of the homogsm®oltzmann equation
(8.6). They satisfy the conservation of mass, momentum and energy

df 1
La®P| P d*p=0t>0 (2.21)
W

Moreover, the entropy is decreasing with respect to time

CL—T(t) _ dﬂtfRsf log fd®p < 0, t> 0. (2.22)



Electron kinetic transport: Basic theory, processes & models 39

The equilibrium state$;s of the Boltzmann operator (8.6) are the elements of its Kernel:

Qo(fys, f3s) = 0.
These are theldtner-Synge (JS) distribution functions
Nys
4n(mec)®63, (K2 (832) exp|B:2])
whereK; is the modified Bessel function of second order and second kind.
The extension of these equilibrium states from zero to non-zero driftigldy can be obtained in the

same manner, with an entropy maximum principle [74], together with the relatidefinition of the
kinetic energy.

f1s(p) = exp[-(x(p) - 1)/ - (2.23)

fis(p) ~nJS = X
4r(mec)®y(Va) [ B2 Kz (B;2) exp|:7|
v - ) -1
RL d)(y(pz : né) 1) (2.24)
Bth
wheresf, = y(Va) kBTCJzS-

The detailed computation of the normalization @méent is presented in Appendix 2.5. The relativistic
Maxwellian probability density function for each component of momenguoan be found in Appendix
8.9.

2.1.6 Relativistic Rutherford scattering in a screened pantial

For collision of like particles, such as the electron-electron scattering;ameot distinguish between the
electrons after the scattering event, in a probabilistic sense, even if theffeated a spin. This makes
the cross sections to be symmetric with respect to interchange between thesvedtdv a scattering, and
they can be folded at the angt¢2.

In the first Born approximation, the non-folded relativistic RutherforassrsectiorQ [68], including
relativistic dfects and spin corrections, reads

L N 1
ABA) = @AM w5 5672
o 1 1 o
- QB0+ szt 20D 2.25)
whereQq = (emxc)*/(16meop?W)? and the momentum-dependent functions are
AP = (l+n€c2) , (2.26)
.
B(p) = l+n€C2’ (2.27)
2~4
cp = (2.28)
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In the case of long-range Coulomb interactions, described with the Rottierfoss-section, a
screening should be applied that removes the singularity in angle. Thegugeorresponds to a partic-
ular energy exchange (at the Debye length). We shall built, in chaptgrd®, the Boltzmann equation,
an intermediate model that take advantage of this correspondance.

2.1.7 The Fokker-Planck-Landau equation: assumptions andmnits of the model

Owing to the long-range nature of the Coulomb potential, the assumption of gigle- collision is
traditionally retained as the dominant interaction mecanism that contributes tm#tie properties of a
plasma. Therefore a simplification of the Bolztmann equation (8.6) in the limit of smglé collisions
is desirable. This procedure, in the relativistic regime, leads to the Belindkds operator [6]. This
operator possesses the same conservation properties (mass, momehamargy), entropy decreasing
behaviour, andiittner-Synge equilibrium state, respectively equations (2.21), (2.22§2aR3), as the
relativistic Boltzmann equation (8.6).

The non-relativistic form of this operator is far more simple. This is the Fekkanck-Landau (FPL)
operator, shown in equation (2.29), whose original derivation dastbd andau [68], in 1936.

et InA

C f,f)= ———=Vy-
FPL( ) 871'65”‘% \4

(f (v - V) [F(V)Vy (V) - F(V)Vy (V)] dv’) ) (2.29)
R3

Here InA is the Coulomb logarithm [17, 59], defined as an integral over the scattarigtes, that
contains a Debye screening at small angles, due to the long-range afatueéCoulomb interaction, and
®(u) is an operator perpendicular to the relative veloaity

ull?ld — u®u

W) =P

(2.30)
The FPL operator is used to describe binary elastic collisions betweeroakeclts algebraic struc-
ture is similar to the Boltzmann operator, in that it satisfies the conservation &f masnentum and
energy
1
fa Cee(fe, fe)(v)( % Jdv =0, t>0.
R

V12
Moreover, the entropy is decreasing with respect to time

dH

d
0= fR Te(v.1) log(fe(v. D)dv < 0, t> 0.

The equilibrium states of the FPL operaiag, the set of distribution functions in the kernel@fe(fe, fe),
are given by the Maxwellian distribution functions

3/2 2
Me IV = Uell
me) exp(‘”’ez—Te)’

Mg ueTo(V) = ne(
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whereng is the densityue is the mean velocity ankkTe is the temperature, defined as

ne = f fe(v) dV,
R3

1
U = — f fo(v)vdv,
ne R3

Me
3Ne

Te= g [ tiv-ualav.
R3
A rigorous mathematical derivation of the FPL operator can be obtainedc(ge[3, 34, 35]) as

the limit of the Boltzmann operator for a sequence of scattering cross sgotich converge, in an
appropriate sense, to a delta function at zero scattering angle. Mathdrstdiuitity results on the
coupling of the FPL operator with the relativistic Vlasov-Maxwell system idistdiby R. Strain and Y.
Guo [107]. They are able to construct global in time solutions in a perioditadlg and near relativistic
Maxwellian (dittner) distribution functions.

However the FPL operator provides with an inadequate description of wmikd relaxation caused by
Coulomb interactions, whenever the distribution function is far from equilibrit@i]. This is due to
the importance of the large angle scattering for Coulomb interactjéds101].

In the Chapter 7, we give an illustration, issued from radiotherapy apiplica of the importance of
large angle scattering for dose deposition in water.

In the Chapter 8, we propose a series of mathematical models, issued farildtivistic Boltzmann
equation, to take into account large angle scattering in the case of Coulomdrtites. These models
rank from the most general to increasingly simpler and tractable operators

2.2 Multi-scale methods for modelling electron transport

2.2.1 Outline of physical, numerical, and mathematical chiéenges

The assumption of scale separation in kinetic ICF electron transport ilepratependent. There are va-
riety of regimes -from collective to collisional-, withfiierent possible reorderings of characteristic time
and spatial scales: the Debye length, electron-ion mean-free-pathot.eadius, laser wavelength. The
treatment of the interactions between small, intermediate, and large scalegio tkamesport equations,
motivate the development of models presented in Chapter 7 and 8. Depending regime we would
like to simulate, diferent scalings of the kinetic system may be considered, such as thoppedix
3.9and5.5.

These multi-scale aspects can be cast in a more general mathematical frenvelnere the asymptot-
ical stability and well-posedness properties of transport equationsiahgsad, with respect to the #ti
(singular) coéicients. A well-known method to derive limit models is the Chapman-Enskog expan
sion [21]. It can be shown, with such a method, that the transport equafidyperbolic nature, with
parabolic source term, may under certain conditions be reduced to tHmpaltanit. This gives rise to

an outstanding numerical challengbe derivation of numerical schemes valid in the asymptotic limit
(AP schemes)In the Chapter 3 and 5, we present high order numerical schemesé¢hd¢signed to
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preserve the conservation properties (especially the energy). Exbep slope limiters are activated
(to ensure the positivity of the solution), these schemes reduce to centératie, which is a desirable
feature with respect to AP properties. The influence of the choice oé $imyters on the AP limit has
been explored in a work from R. G. McClarren and R. B. Lowrie [7i]tHe Chapter 5, we validate our
scheme, which is not AP in a strict sense, in the limit of low Knudsen numbein the hydrodynamical
regime.

Various techniques can be employed to capture multi-scale features, ssab-aesh models, for
turbulence or radiation, homogeneization or correlation methods. A multistategy would consist
of a parameterization of outputs to be used in the next level of the hierésaitg) of codes in terms
of length and timescales. Alternatively, integrated multi-physics, multi-scale diondamake use of
the combination of codes within a complete code system, using micro-solveegfons where micro-
resolution is needed, and systems of meso- up to macro-solvers in theatheindareas. In this context,
one should apply a step-by-step validation procedure to compare cedungerical models with exact
solutions, microscopic models (see Chapters 3 and 5, Figure 2.1), aedne&pts, to gain understand-
ing in the couplings of a variety of physical processes.

Various levels of refinements and complexity, and subsequent models,emaguired, according to
the regime of interest, to describe the multi-scale transport of electrons ipl&Sfas. These models
are presented and discussed in the next section.

2.2.2 The classical transport theory

We do not consider here the dynamics due to the Bremsstrahlung heating Iagéh light, or mobile
ions, and refer to [90, 91] for the related transport theory and sysietreatment.

The Braginskii theory

The classical transport theory, where only regimes close to the hydaodgal regime are treated, is
refered as the Braginskii [16] theory. For the sake of clarty, wegmigthis theory in the non-relativistic
regime.

Let us first define the average over velocity of a funcitgm)

<A>= 1 Afdv (2.31)

ne R3

whereng(t, X) = f f(t,x,v)dv is the density of electrons. Following [16, 40], we introduce the
R3
macroscopic quantities

] = QeNe(V),

1
g = 5Mene((v-V)v), (2.32)

R- f MeVCei(fe)dv,
R3
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p=nele= %mene«v— <V>)-(V=<V>)),

I = %mene«v— <V>)®(v—<v>))—pl, (2.33)

Gloe = S [(v= < V) (v= < v )] (v= < v ).

There,j is the electric currenty the total heat flowR the friction force accounting for the transfer of
momentum from ions to electrons in collisiof, is the temperaturey is the scalar intrinsic pressure,
IT is the stress tensaye is the intrinsic heat flow antthe unit diagonal tensor.

Quantitiesp, IT andq)qc are defined in the local reference frame of the electrons, whgrgandR are
defined relative to the ion center of mass frame. lons are supposed todst Ve have the relation

floc = Q-+ - (Pl + T)/(8) +] (3 mene < v >2)/(nee) (239

Following the formalism of Braginskii [16] for the transport relations, trengport cofficients in the
hydrodynamical regime have been corrected by Epperlein in [40]. eTbedficientSaep, Sep, kep, are
the electrical resistivity, thermoelectric and thermal conductivity tensesgpectively. The classical
derivation procedure to obtain the transportfiicents involves the linearization of the Fokker-Planck-

Landau equation, assuming the plasma to be close to the thermal equilibriumisfrimition function

is approximated using a truncated Cartesian tensor expaféionv) = fO(v|j?) + # D, x, V).

Following [40], IT andmene < v > are neglected. Then considering appropriate velocity moments of

(1, electric fields and heat fluxes are expressed as a function of thenammibal variables. The céie

cients of proportionality, in the obtained relations, are defined as the tersgfticients.

Several notations can be used, depending on the chosen thermodynaméadtzes. Adopting the Bra-

ginskii notations, we obtain theansport equation$or the momentum and energy fluxes

Qep °J
Ne€

R=Vp+enE—-jxB= —Bep- VTe,

(2.35)
q= —gJéTe—Kep‘VTe_ﬁep'jT_ee-

As for the components of these tensors, we make use of the standardngdiatiop andA. Directions
denoted with| and_L are respectively parallel and perpendicular to the magnetic field in the gédimed
by the corresponding generalized force and magnetic field. Conggulea parallel and perpendicular
components of a vectar are respectively; = b(u - b) andu, = b x (b x u), whereb is the unit vector
in the direction of the magnetic field. The direction defined by the third directi@endinect orthogonal
frame is denoted by. In the system (5.30), the relation between any transpoffic@at tensok and
vectoru is defined by

p-u=gbbd-u)+p bxuxb)+tpbxu, (2.36)

where the negative sign applies only in the caseaep.
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Failure of the phenomenological flux limitation

In the Spitzer regime, where no magnetic field occurs in the transport re(atg), the flux is given by

S pitzer
q P = _KepVxTe s Kep & s

wherer the mean electron-ion collision time

31672%€2 ymeTs?

=~ - - 2.37
T3 V2rniZ2e4 In A (2:37)

The flux can then be rewritten as

S pitzer
q PR2el oc —(Q¢sKn ,

whereqss = meneVs, is the free-streeming fluxin, = VksTe/Me is the thermal velocity. The Knudsen
numberK, = tvih/At is a mesure of the thermodynamical non-equilibrium of the sysfignis here the
electron temperature gradient length. A regime characterizd¢,by 0 refers to an hydrodynamical
descripion, whereas a regime characterizetpy 1 refers to a kinetic description, where the nonlocal
phenomena appear. The parameters for ICF inkply- 0.1, while the classical, local approach fails at
Kn > 0.01. This premature failure of the classicafdsion approach in plasma is explained by a specific
dependence of the electron mean free path on their energy. In ICFatapiEthe energy is transported
by the fastest electrons, which have a much longer mean free path.

To remedy the issue of delocalization , the flux limitation idea comes from the retmetidgshould
not become larger than the free-streaming ﬂymevf’h. In fact cross comparison between hydrodynamic
and Fokker-Planck simulations [108] showed that the flux should be limitednte $ractionf of the
free-streaming flux (typically 6%). Also Fokker-Planck simulations revktilat a time and direction de-
pendant limiterf should be phenomenologically “constructed”. A sensitivity study has beeducted
in CELIA [67] for hydrodynamical simulations of homothetic targets in the &hgnition scheme [10].

It exhibits a strong dependance with respect to the value chosdnifftiie size of the target is reduced
(thus overcoming a higher laser irradiation). Also this study has confirngesktisitivity of the flux lim-
itation on its numerical treatment, whether it is computed at the center or at tHadeteof the meshes
[43].

In fact, from a Chapman-Enskog expansion [21] with a small parankgtethe equation for the
nonlocal heat flux can be written as d@fdsion equation

2 6_2 — S pitzey
1+2 (x)ax2 aix) =g (X) (2.38)

whereA(X) is a delocalization (several mean free path) length. This variable atscimuithe fact that the
heat flux is mostly carried by hot electrons having 3-4 thermal velocity.
2.2.3 Delocalisation, beam deposition, and ffusion models

Several investigations [53, 55] have highlighted situations where theiplésae of thermal smoothing
involving the flux limitation technique can be ifiective. Moreover, the correct description of preheat
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phenomena, flux inhibition, counterstreaming flux, the inclusion of specifgneti field related ef-
fects (flux inhibition, rotation, Nernstfkect) in 2 dimensions, requires more sophisticated nonlocal heat
transport models. A series ed hocmodels have been derived, relying on delocalization kernels in
convolution formulas on the heat flux obtained from the equation (2.383t miodels date back to the
references [1, 75]. However these models are not well-suited for implatien in multidimensional
hydrodynamical codes, due to the use of delocalisation kernels anceadiffiegence in time scales. In-
deed, the electron thermal conduction is determined on an electron time schéfcald be included on
aion time step. This requires an implicit treatment over the entire plasweth a dense matrix, which

is too costly. In order to overcome this drawbackfetient models are introduced. A first category of
models can be isolated, refered as beam deposition models [78]. Thayjgese the total volume in a
region of high temperature, treated as a source of monoenergetic behicts seatter and deposit their
energy, and a region of lower temperature and a shorter mean free ipatfespect to the temperature
perturbation, where Spitzer theory applies.

Another class of methods, refered as SNB, relies on a reduction of thgdkeguations [103], and an
interpretation of the convolution kernels as solutions of nonlodalsion equations, similar to the equa-
tion (2.38). This model is a valuable candidate for implementation in multidimensigdeddiynamical
codes . It permits also to include 2BEfects, and an anisotropy of transport fimgents due to the mag-
netic fields [84], with a hypothesis of weak departure of locality.

Finally, an ongoing subsequentat is lead for the derivation of models that do not rely oaca
hocinterpretation, but on well-defined closure, thus gaining in reliabjligdictivity, and permiting the
treatment of a wider range offective Kndusen numbéale;, the nonlocality parameter.

A rigorous nonlocal transport model was derived for small amplitude ipegurbations of hydro-
dynamical variables [12, 18]. This linear transport theory has beeglaleed into a nonlocal nonlinear
model, which could be potentially implemented into large scale hydrodynamicas ¢ The nonlinear
model was tested in the configuration of a temperature hot spot with FdakekPsimulations [5], with
good agreement. A linear model have also been proposed [13] to inclid@dbts of external magnetic
fields. The relation between nonlocal and nonstationffigces were explored in [11], in the case of an
homogeneous plasma density. This model will be successfully compareddio<eé8¥ Fokker-Planck
simulation of a temperature hot spot relaxation in Chapter 5.

2.2.4 Cartesian tensor expansion

The electron distribution function is here decomposed in Cartesian tee&jrs [
f(tx,p) = Y folt, X, p) + 1t X, p) - v+ ot X, P) - W + ...
n

The closure of the subsequent set of equations relies offusidn approximation, using an isotropic
pressure tensoie. scalar diagonal
1

P = —l14f 2.
3lafo. (2.39)

This type of method is refered # modelse.gin [52].
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2.2.5 Spherical harmonics

The electron distribution function is here represented in momentum spage) by an expansion in
spherical harmonics [7, 79]:

Nmax N

ftxp) =), > X PP (coshe™,

n=0 m=—-n

where f-™ = (f™* and P(cos#)ei™) are the spherical harmonics. The electron distribution can be
defined in the ion rest frame, so that electrons with 0 move with the ions, locally. The dependance
of the codficients on the magnitude of the momentum means that the distribution function ismot co
strained to be Maxwellian.

Johnston [63] has shown the equivalence between a Cartesian tealsonsoduct expansion and a
spherical harmonic expansion. He also demonstrated the corresperinktwveen the order of the spher-
ical harmonic and the order of the tensor transport quantity, for the Batizrequation.

The description of electron transport with an anisotropic pressurd fetRires second order terms,
whereas the description of energy transport would require third oedais [63].

One strength of such formalism is that it constitutesfaicient platform to include additional physics
[94]. Moreover, the spherical harmonic formalism permits an implicit treatrfzerioth the magnetic
field and collisions, appart from the explicit core of a given spheriaattonic solver.

However, the spherical harmonic expansion relies on high order h&rtrancation, rather than
moment closure. In [58], it is mentioned that moment closures inherit the diles&n bracket structure
from the Vlasov Lie-Poisson structure, while moment truncations do not.

This is a reason why we adopt the denomination KET, an acronym for Kikégictron Transport,
according to thé¢) brackets in Dirac notation, for the deterministic solvers we develop in thisdecu
This denomination permits to distinguish solvers dfefient mathematical structure.

2.2.6 Reduced angular model

The original derivation of reduced model dates back to mesoscopic mageflitne radiative transfer
[30], where the authors introduced a closure of the equation relyingramianum entropy principle
together with an average on the radiation frequency spectrum andgatapadirection: this is the so-
calledM1 model [30].

In the case of (fast) electron transport, instead of using the closurelfevermore [71, 30], the closure
from Minerbo [80] is more suitable, because it is directional, allows analyiadeulation on the collision
operators, and makes it possible to obtain a convex set of admissible eldistiribution functions. The
convexity property is indeed a desirable property, which sets the systarstamdard form, that can be
treated with standard numerical techniques, such as the HLLC method.



Electron kinetic transport: Basic theory, processes & models a7

Both radiative or electroniM1 closure make use of a tensorial pressure, written as [71]

(1-x y-1f, f1
P—( > lq + > f0®fo)fo,

which differs from theP; closure (2.39) in the rarefied (collective) regimes, or for beam treatménts
is similar to theP; closure (2.39) in the dliusion (collisional) regime. Herg is the electron Eddigton
factor, which is precised in Chapter 7.

2.2.7 Collisional PIC

The diferent calculation steps inRarticle-In-Cell (PIC) code are the following:

e (1) The resolution of the macroparticle movement from dynamic equatioreselBlctromagnetic
fields are interpolated at the macroparticle positions.

e (2) The current are transfered on the spatial grid based on the pesiimhvelocities of the par-
ticles. In order to avoid large amplitude statistical fluctuations, the chargecbf macroparticle
is distributed over a certain volume. This accumulation is done using an algdh#trguarantees
by construction that the continuity equation is verified particle by particle. matod can be
made compatible (employing Villasenor-Buneman, Esirkepov, or zigzagreheith Poisson’s
equation which solving is flicult to parallelize [115].

¢ (3) Maxwell’s equations are solved on the spatial grid.

High order interpolation, up to 4th order at the present time [99], can e fes steps (1) and (2), to
improve the performance of PIC simulations by extending the simulation grid site tplasma skin
length. The latter is much larger than the Debye length of the cold plasma, whitedhgolation avoids
the numerical heating. This enables also to reduce the computational asistalty.

The modeling of large plasma density gradients may require variable weigttiéclgs [99]. Keep-
ing the charge-to-mass ratio of the macro-particles constant, the densgt oharges that they represent
can be changed. In a situation where the plasma density varies from tbedarse region, where the
laser pulse is absorbed, to a more than a hundred times over-denseitasgatpractical to keep the
number density per macro-particle constant because choosing aabkssolution in the under-dense
region means an enormous number of particles in the target. This can bedbgidsing variable par-
ticle weights.

The expansion of the electron distribution function in spherical harmomidshanlocal approach
apply for relatively long laser pulses (hundreds of ps) and nonrititiintensities (below 18-10'6
W/cn?) where the deviation from the local thermal equailibrium is not too large. ufina-short laser
accelerated electrons have an energy spread of a hundred depoembn-relativistic to ultra relativis-
tic energies.They have a beam-like distribution function and their transpsitolbe treated kinetically.
Collisions in the target are an important issue to determine the characteristios @éctron transport.
Fully relativistic binary-collision model is developed [98, 109], that hagsirdble feature to preserve
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the energy in individual collisions, and momentum on the average, whichresa gdvantage for HEDP
simulations in which the numerical heating or energy violation, must be very $ong#t an accurate
laser energy coupling to plasmas. The combined use of weighted partislegghdicant consequences
for the binary collision model, and such model are tested with respect to Miarte models [82]. We
mention here some attemps for the derivation of Asymptotic Preserving Mol i@athods [85], in
the collisional limit.

For the problem of high energy density physics (HEDP), the transgdest electrons in solid-
density plasmas is the essential question. It fiadilt to model high-density plasmas with Particle-
in-Cell (PIC) simulations because of the small plasma Debye length, whiaktsrieebe resolved to
avoid numerical heating of particles, due to the “finite grid instability” [36,. 3&Xlthough impressive
improvements have been realized in the recent years, the statistical ndifeedow resolution of the
electron distribution function by PIC solvers can lead to very stringenstcaint in low temperature
and high density plasmas. This is why the traditional operating point of Pd€scooncerns the source,
i.e. the zone of absorption of the laser and the generation of electrons dpatgate further in plasma.
Moreover, the treatment of collisions is often made withhocmethods, not physically well-formulated.

2.2.8 Langevin approach

In contrast to the methods traditionally designed to incorporate collisions incBdi€s, the Fokker-
Planck approach, though computationally costly, relies on a well-formuldgsiqal basis. A possibility
remains open to combine the advantages of both theories (low computatishaincbwell-posedness
of the collision process) within a Langevin approach [19, 118, 42]. &pmoach is a stochastic partial
differential equation mathematically equivalent to the Fokker-Planck equation.
The Langevin equation used for the modelling of laser-plasma iteraction d&srth

dp

o =Po+Cé+Ca, (2.40)

with two scalar stochastic processeandr. Using the Cayley-Hamilton theorem, that defines the root
of specific second-rank tensors [48, 66] of this form

1/2
(MI—NV\iV) =N|—(Ni— M—N%V), (2.41)

whereM > 0 & M > N, then the direct acceleration term and the stochastic sources in equaioh (2
have the form,

Ao = A—N(g+g)-v-(g+g), (2.42)
Bl/Z

cC = =, 2.43

c - = (2.43)
BY/2

whereé is a Wiener process, chosen such as successive, independenasgialCoulomb scattering
leads to a Gaussian distributioN is a possible realization of a stochastic integral. The choicevfor
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depends both on physical and numerical consideratidrandB are the Fokker-Planck cficients of
the FPL operator, under the form B

of

A (A - 1w, (Ef)) | (2.45)

2.2.9 Hybrid approches

Hybrid codes combine a kinetic resolution for the fast, highly anisotropictrele population with

an hydrodynamic fluid description for the bulk electron population. Sudesa@re able to describe
both collective and collisionalfiects. Hybrid codes rely on the assumption of low beam to plasma
density ratio, therefore they cannot simulate the fast electron transpartime critical density, where
the full kinetic description is more appropriate. Moreover the thermodyn&eggealibrium assumption

of the bulk population is not a general statement [104]. However, thegwdwedier the most realistic
approach to date since they encompass the fast particle descriptionramtipgegrated simulations.
Several problems arise when coupling the populations, such as thdéf cigbaveen population in the
energy space, which is arbitrary, and depends on the physical assasngnd the boundary conditions.
Stability problems associated with the coupling oftelient methods may also arise, because of the
different scales and grid resolutions.

2.2.10 On the choice for a deterministic Eulerian Vlasov-Maxwll solver

A strong motivation for the choice of Eulerian deterministic solvers lies in th&iustmess properties
with respect to density and temperature gradients. Another desirablecfé&athat they are noise-free.
Interestingly, some low-level noise might be introduced (that could be tit@agyrepresentative of the
plasma fluctuations), with or without frequency filters, in initial conditions,Ealerian deterministic
resolution of laser-matter interactions. The objective would then be two-fatdt, an instability could
be triggered more fastly, so that the required range of unstable frei@serould be selected within the
white noise that is “artificially” introduced. Second, this could be a way taigedf, or postpone the
recurrence fects.

Finally, Eulerian solvers provide with a well-defined frame for coupling with ¢bllision terms, con-
trary to PIC solvers, where the use of macroparticles render the treadimmilision bead hoc

The counterparts of these good features are the high computationaliness needed, and the small
amount of literature about the accuracy and robustness results witd tegaupling of Vlasov-Maxwell
solvers with collision kernels.

A number continuous properties of the model should be reproducedsairate level by the numeri-
cal schemes, and should guide a design of deterministic Eulerian Vlasowdlaolvers. The coupling
with collision brings additional constraints. Gathering of all these propeértiasingle scheme is out of
reach of any existing algorithm, and one should select a numerical methogdadbla be appropriate to
the regime of interest. The potential candidate should share most of theifalteature:

e Unsplit advection scheme [31, 39]. Avoiding the numerical heating isswed the time splitting
technique [105, 102].

e Discrete energy conservation when coupling with Maxwell equations [31]
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Total mass conservation [25, 31, 44].
Positivity of the particle distribution function [25, 31, 44].

Ampere-Poisson compatibilityia the continuity equation [105], we refer to the compatibility
between the statistical repartition of particle charges and positions.

Local reconstruction stencil in space for ease of parallelisation [2541

High order schemes for accuracy [25, 31, 44], that control the disgeand difusive artefacts of
the numerical approximation.

Hamiltonian preserving [20], which is a feature that symplectic methods aimpairgzg. The
Vlasov equation presents indeed a rich geometric structure related to its Haamlobvaracter. In
particular, it satisfies an infinite set of conservation laws, that are thien€asvariants. In [96],
a rigourous mathematical proof, relying on the Lie algebra, shows thatliangetization of the
Vlasov-Poisson system cannot preserve the conservation of all HieiCavariants.

High order preservation discrete dispersion relations, in particular teeadated to the electro-
magnetic and plasma waves and the Two-Stream Instability (TSI).

Capture of the propagation velocities (eigenvalues of the Maxwell eqeatidrihe electromag-
netic waves, for laser propagation.

Avoiding numerical checkerboard instability with the numerical scheme foxviéd equations
[105].

Avoiding numerical Cherenkouiect in the relativistic regime [9, 61].

Implicit resolution of the Maxwell equations [31, 9] is desirable since this nektkaot con-
strained a stringent CFL condition.

Avoiding (postponing) recurrencefects [70]. This numerical artefact is a signature of reappari-
tion of some parts of the initial condition in the course of a simulation, where taetesistic
modes return back to their initial state. This phenomenon may damage the solutiercese of

a long time evolution of a wave that is not submitted to other dominant procesayAovsupress
this efect would be to introduce an initial “artificial” low-level white noise, reprgséve of the
fluctuation level of the plasma.

Permiting discontinuities in the phase space [25, 31, 44], in particularafefied plasma flows
[42]. This is a challenging numerical issue for Eulerian solvers. ThesBl@rs are much more
adapted to discontinuous configurations, since they do not facetheim problem

The use of particular techniques for Eulerian methods, such as Foamsfdrmation based methods
for the Vlasov-Maxwell system, is finally worth mentionning, since they hast a new light on the
Landau damping or time echo phenomena [45], while reinterpreting themT8@se problems require
a particular well-posed outflow boundary conditions [38, 70] in the vela@pce, to avoid filamented
and unphysical oscillatory structures, related to numerical recureffesss.
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2.3 Key points for a successful modelling of ICF electron transport

2.3.1 Importance of an accurate collision treatment in ICF pasmas

The scaling laws derived in [7] for the inhibition of fast electron transpgrelectric field, the non-linear
conductivity (breakdown of the Spitzer conductivity) of return cutsga04], runaway electrons, mag-
netic collimation, and magnetic inhibition, show that the electric conductivity playisn@ortant role
in the ICF physics. An accurate modelling of the highly collisional slow elestisntherefore, crucial,
even for simulation of fast electron beam (having lower collision probahilitygpagating in a thermal
plasma. This motivates developments in Chapter 8 of a two-scale collision moad¥jtgvtwo kinetic
populations (that may share some intermediate energy ranges, and albowmayuparticules). This ap-
proach can be seen as an extension of the model of A. V. GurevichWbéfe the thermal population
was assumed to be a cold population, with infinite number of particles.

How accurate should be the treatment of thermal particules? This questiameeopen. If a Carte-
sian tensor expansion technique is employed (see section 2.2.4), somarelgagen in the literature
[56, 112]. For instance, the capture of the collisional Weibel instability {&@uires that the perturbative
expansion in the Knudsen number of the equilibrium distribution functionldizeipushed to the sec-
ond order. However, a closure on tH&) component is reported to give Weibel growth rates five times
larger than when it was applied on tH& component. What do we know about the regime dependence
of other instabilities on the convergence of high order terms for cartesisortexpansion, spherical
harmonics, or angular reduced models (These methods will be presethedictions 2.2.4, 2.2.5, and
2.2.6, respectively)?

This issue is one of the reasons for development of a reference detitriiexwell-Fokker-Planck-
Landau code, which can deal with high anisotropy degrees of the distridunction.

2.3.2 Collective transport

The transport of electrons does not only rely on the sum of individtelations between particules, but
also, and this is a characteristic feature of plasmas, on colled¢teet® They are due, one the one hand,
to the long-range Coulomb interaction, and on the other hand to the dynam&aidige neutralization
in the plasma, generation of electric and magnetic fields, and wave propagatio

For instance, the charge separation, created by electrons acceieitiethrget, induces an electro-
static field that tend to mantain a charge equilibrium. This field is screened bygahelectrons, and its
strength depends on the value of the electric resistivity. Generation ofatiafjalds (up to MegaGauss)
by the currents of fast and slow electrons have a significd@@tton the transport céiicients, collimate
a beam a fast paticules or filament it.

2.3.3 Coupling between magnetic field and nonlocal transpor

The ICF experiments [106, 111] are confronted to the emergence ofgstnagnetic fields, sponta-
neously generated in hydrodynamic flows that lack of the spherical symriégese assymetries due to
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non-uniform laser irradiation -this case will be numerically considered ilat€hapter 5-, nonuniformi-
ties in the target, or to an instability.
The generic equation for the magnetic field issued from the combination ofatiael&y’s law with
local transport equations can be written [56] as
0B

E=S+(V+Z), (2.46)

where the right-hand side describes the sources due to the low frgouementsS, convectionV and
diffusion O processes. The major term is generally due to crossed gradiénts Vne effect. The
anisotropic pressure (rotational part of the stress tensor) and thditddelso contribute to the source
terms. An explicit, low-frequency form of the equation (2.46) is [56, 90]

0B j xB 1 VP
_ v« _j X 14 (lgp/\ B ,Bep::\ﬁem_ + e + ﬁep”V”Te
ot Ne€ WeTe Kepi Ne€ e
,BepAKep/\) ViTe Bepn Tep||.
+ + + xb-—=
(ﬁem o o een Qe ngezjll
2
Qep 1 IBep/\Te .
_ - , 2.47
[ néez ezKepJ_ ]Jl} ( )

where the last two current terms, withandj ,, can be interpreted and recast under the generic resistive
form nj, wheren is the resistivity. Thg x B term can be interpreted in the same manner, as a magnetic
resistivity, that collimates an electron current. The Nernst term, propaitionge x b, advects the
magnetic field along with the heat flow. The thermoelectric t€ifPa/nee, contains the well-known, first
order cross gradientng x VT, source of magnetic field. Finally, theTe terms account for the friction,
issued from the electron-ion collisions, and their coupling with magnetic figldng¢ion.

In the low-frequency and local regimes, an analytical decomposition )(2&4gossible [56, 90].
However, for high frequency fields, or in the nonlocal regime wheredtbiibution functions are not
Maxwellian, such a general analytical expression is not available r&esases may still be isolated as
remarkable, as they may lead to identified forms of the Ohm’s law.

In the situation where a fast beam population propagates through a dodgptama population, the
magnetic field source can be represented [28] as

%—?:nijb+Vn><jb, (2.48)
wheren is the resistivity andy, the fast beam current. J. R. Davies [28] proposed a simple qualitative
interpretation of the equation (7.6.5). The first term on the right-hand sidergtes a magnetic field
that pinches the beam of fast electrons, while the second term pushetefetrons towards regions of
higher resistivity. Such an analytical model can be of use to estimate théhgoba magnetic field col-
limating a fast electron beam [27], or to estimate the guidifigots of background density modulations,
that induce themselves resistivity and magnetic collimation modulations [93]efléegigns have been
proposed based on these interpretations [93].
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In the situation where the density is constant, Wig x Vne effects cancel and the high order mo-
ments of the distribution function are required to describe the departuneti@spherical symmetry that
seeds the magnetic field generation [65]. This situation will be reproduaménically in Chapter 5.

It should be also noted that the magnetic field source could be expressdzt, particular plasma
conditions, as the curl offtdiagonal terms of the pressure tensor [81]. Independently, a p@ssilrce
could be the resonant absorption at high laser intensities [113].

A well-known kinetic dfect is theflux inhibition of a nonlocal heat flow by a magnetic fielchere
the heat carrying electrons movement is bent preferentially along the tiafjakl lines. This &ect
can be characterized by the Hall paramgter wcr, which is the product of the cyclotron frequenoy
and the electron-ion collision frequeney A strong Hall parameter reveals the formation of a transport
barrier, that reduces the preheat, even could lead to the suppresstogstiflow, whereas a low one per-
mits nonlocal features to develop. The competition between a nonlocal twadritd a strong magnetic
field will be illustrated in Chapter 5.

A strong coupling may occur between nonlocal phenomena (that modify tha meocity of the
flow), and the Nernstféect (caracterized by the Nernst velocity, proportional to the heat flGwH.
Kho and M. G. Haines [64] describe how nonlocality modifies the rate of etagfield advection. C.
Ridgers [92] describes the reemergence of nonlocality due to the cavitditioa magnetic fields by the
Nernst éfects.

Last but not least, a magnetic fied can emerge from the electromagnetidbpédn of anisotropic
distribution functions. In laser-plasma interactions, the development afiaateopy of the distribution
function can be due to temperature gradients [89], or absorption ofligkérvia the capture of laser
photons by plasma electrons (Inverse Bremsstrahlung) [112]. Thisamisch for magnetic field genera-
tion is relevant for the Weibel instability, and develops at a nanosecond¢atefer conditions foreseen
for ICF [95].

2.3.4 Fast electrons as energy carriers for ignition and saae for electron-positron plas-
mas

The fast electrons that are generated by laser in low density coroiasegye responsible for carrying
the energy to the ablation front. Therefore an accurate treatment of ihernleegy deposition into the
thermal plasma is of importance for the ICF target design. A review of fastren physics in laser
plasmas is presented by A. R. Bell in [7], and more recently by F. Pisa@&h [The mecanisms of
generation of fast electrons, as well as their transport in matter, coedids an insulator or a conductor,
compressed or not, are summarized in there. The main diagnostics of tastrede namely th&” ra-
diation, is also recalled in this latter reference. Therefore, we shalepobduce such a comprehensive
task, but rather insist on specific but important aspects of the fastaidcansport.

At this point we comment on the fact that a simple estimate of the heating rate ottieatiplasma
based on the collisional energy deposition of fast electrons may notdame for certain relativistic
regimes. The heating rate could indeed kéedént by several orders of magnitude, and the penetration
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of beam electrons may be underestimated, due to the large angle scatterangatiiion processes. We
refer to the Chapter 8 for further detailled consideration on this cruciaiss

The fast electrons produced by ultraintense lasers reach energiestimarseveral tens of MeV.
These become sources for creating electron-positron yiaitheir interaction with nuclei, according to
two processes [83], the Trident process

e +Z->et+2e6 +7,

and the Bethe-Heitler process
e +Z->vy+€e +27,

y+Z-o€e"+e +Z.

The generated electron-positron plasmas might exhibit vefgrdint dynamics and regimes from those
traditionally encuontered. Such regime could be reached with the Extreme Ibfgdstructure (ELI)
European project.

2.4 Obijectives

2.4.1 Objectives of the present work

High Energy Density Physics (HEDP) is a exciting field where improvements deftiog and numerical
analysis can bring a deeper understanding. Having in view applicatichsastthe Inertial Confinement
Fusion (ICF) and more generally the laser-matter interactions, the kineticaglectransport in the
conduction zone, from the laser absorption zone to the ablation frongé @atbet, is identified as a bot-
tleneck. It is indeed necessary to treat within the same transport modeitivelland collisional fects,
for both thermal and fast relativistic particles. This stands as a multi-saabéeipn, which is a challenge
for modelling as well as for designindteient numerical schemes. There is only a small amount of lit-
erature where all these scales are present together, consideriruiimg of Vlasov-Maxwell solvers
with Fokker-Planck-Landau collision kernels, and few results on theracg and robustness for numer-
ical schemes are available in this situation. To step forward in this directiomont like to develop
and analyse robust and accurate, high order numerical methods titvai tioe dissipative and dispersive
aspects inherent to the discretization of the system.

A a second step, we shall qualify (see figure 2.1) the numerical schenzewiitle range of regimes
relevant for the ICF physics. To this aim, we propose and develop aimalrigalidation procedure, that
addresses the multi-scale and high dimensionality features of the couplenhsys

As a third step, we develop numerical tools for the modelling of electron teahspder the conditions
of a new class of high powgrhigh energy lasers, with intensities that go beyon@Mm=, enter-
ing into the relativistic regime. We first extend the schemes to the relativistic regieme evaluate the
relative importance of the fierent electron-electron collision mecanisms. The role of electron-electron
collisions at small impact parameters was indeed not clear before this timgsasticular, we reconsider
the importance of large energy exchanges in the long range Coulomb copigsioasses, and propose
a fast and robust model to identify and accurately capture the regimes wiie mechanism could be
dominant.
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A concomitant aspect of this work will address the developement of aratigeal simulation tool, writ-
ten in G++. We bring an evidence of computationdfaadability for deterministic simulation in the
2Dy x 3Dy space. To reach this objective, we implement MPI parallelisation with domaomnumusi-
tion in the Dy subspace, together with fast algorithms, such as the multigrid method, toratedhe
calculations of the collisional terms in the velocity space. Such demonstratiomablea systematic
comparison with reduced but faster models. This cross comparison beswekvers of diferent origins
ends up with a large-scale, realistic simulation for the kinetic electron transipack ignition scheme,
in collaboration with the teams of Imperial College and Oxford. This latter cotesitour contribution
for the HIPER European project.

Finally, we are able to demonstrate the relevance of our approach faeprs in other domains of
science. We focus on the electron radiotherapy, and prove that andldttic M1 model is able to reach
an attractive accuragsfticiency compromise over the existing methods (pencil-beam or Monte-Carlo).
This method is expected to meet practical applications for real patient treatiméhis application, an
accurate dose depostion by the electron beam requires the modellingontiaeg electron production,
with large energy exchanges during the collision events. We discuss a giyrleinveen the processes
at stake for the electron radiotherapy and the Fast Ignition electrorptEns

2.4.2 Mid term perspectives

A deeper understanding of nonlocal transport processes in lagtrindéeractions at high fluxes would
require a systematic comparison with experiments, in the frame of the qualifigaieedure shown
in figure 2.1. Simple though representative experimental configuratidd beuproposed [47], for in-
stance in the installation LULI2000. Very large discrepancies have lmerndfbetween experimental
and 1D hydrodynamical simulation results (LILAC)[72], for the investigatid Implosion Dynamics in
Direct-Drive Inertial Confinement Fusion experiments at OMEGA lasglifia Nonlocal aspects of the
implosion, as well as 2D features of the transport should be exploredtongeccuracy between simula-
tion and experiments. To this aim the implementation of the background ion motidd ®mnecessary
to reach nanosecond time scale simulations. Such upgrade of the modelalfowithe exploration of
the absorbtion zone of the laser, at the critical density, with a 2D deterministecincluding collisions.

Independently, the model for Coulomb collisions we derived in the Chaptehi8its low compu-
tational cost, together with accuracy and robustness features. Toiese @re not shared by any other
models. We bring, using this model, the evidence of importance of largeyeeechange for electron-
electron collisionsyia a first quantitative estimation. The model is most useful to explore, at @eddu
computational cost, theffects of large energy exchanges in collisions between like particles, and the
associated secondary electron production. The model caffiberly coupled with electro-magnetic
fields and it restitutes most of the properties of the original relativistic Boltmeaquation, with the
Coulomb cross section. Thefficulty for treating this Boltzmann operator lies in the long-range nature,
at the limit of integrability, of the Coulomb cross section, and the largier@ince in scales between
the particules. A traditional treatment of such mechanism involves Monte @etloods, that are very
costly.

The derivation of such a model opens the path for other applications inetrefuture, ranking from
electron-positron pair production at high laser intensity, to the electron fidipbg or high energetic
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processes in the upper atmostphere and ionosphere, namely thumis@stak sprites.

Physics VALIDATION
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Convergences ’
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-  Results
Data N |
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 Comparison of
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Verification tests the ability to solve the equations correctly
Validation tests the model to ensure that it describes the physics correctly

Figure 2.1:Generic qualification procedure for a simulation code.
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2.5 Appendix: Normalization of the relativistic Maxwellian distribution
function with a non-zero drift velocity

The introduction of a macroscopic drift velocitdy in the dittner-Synge distribution function (2.23) can
be performed with respect to the maximum entropy principle [74]

fis(p) = constx exp[— rl(;g%%h (mgc%,(p) - Vyg - p)) , (2.49)

with the parametesz, = y(Vq) kBTJS

The drift velocity in f;s satisfies a compatibility condition that is satisfied for any valu@wil| < c

_ p
- [ il hstoip | [ istprc. (250)

The constant in (2.49) is defined with the normalisation condition

s = [ hsip)p. 251)

In (2.52)-(2.57), we provide with detailed calculation leading to the normalisatastant of the relation
(2.51)

e 3exp( 2 ;) (mec?»(P) ~ V- p)]dp. (2.52)

const h

Settingua = y(Vd)/Bch, performing the variable change= p/mec, and integrating on the pitch angle

variable yields
nys “
— > = | exp|-ma+/1+P?
4n(mec)3const fo p( Haytt p)

Then we develop the sinh as dfdrence of exponential functions and pet Sinh(@®), = sintr* (Ml (v)).
It comes

"2

p

Sinh(#all\édllﬁ)} B
B WA 1Ty (2.53)

pallVallp
c

Nis C ® Ha ;
=+ exp| - cosh(® F sinh(29)d®. 2.54
4n(mec)3const  ~ 4||Vgllua fo p( ¥(Va) ©F a)) (@) (259

Now we perform the variable changés ® ¥ a. We obtain

ns _,_ ¢ o0 Ua .
4n(mec)3const _4||Vd||ﬂa£ exp( YVa )cosh({)))smh(Z(g ))d¢. (2.55)

Finally, we develop the sinh as products of sinh and cosh and find

Nis csinh(2v) ( )
Ko 2.56
4r(mec)3const 2Vglla 2 \7(Va) (259
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The JS distribution function becomes
nss ex ¥(Va) (Mec?y(p) - Vg - p)
An(mec)®y(Va) [B3 K2 (B32)] | mecin’|

fas(p) =

As for numerical considerations, in order to recover a smooth transitiomeba the relativistic and
nonrelativistic limits of the distribution function moments, the following form, wich is simitaan
exponential scaling on the modified Bessel function, may be more appedfisy = 0, this gives

Nys 2
f = — -1)/ . 2.57
35(p) o () exp[ﬁ;f])exp[ (r(p) - 1)/B] (2.57)
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3.1 Introduction

In this chapter, we shall focus on the collectiveets, which are a specific feature of plasmas, and
ignore the collisional ects. We present the model, its properties, and discuss on numericalescos
their discrete implementation in a deterministic solver. Finally we present valdiatbguantifying the
accuracy and robustness of the methods at low grid resolution.

3.2 The free-streaming kinetic model

3.2.1 The nonrelativistic Vlasov-Maxwell system

Two particle species (ions and electrons) are considered: ions gpesggto be fixed assuming an
electron-ion mass ratime/m < 1, whereas the evolution of electrons is described by a distribution
function fe(t, X, v) where for the more general case\) € Q x R3, with Q c R3. The non-relativistic
Vlasov equation, without collision source term is given by
6—fe+Vx-(er)+%VV-((E+V><B)fe):0, (3.1)
ot Me
whereqe = —eis the charge of an electron ang is the mass of an electron. The electromagnetic fields
(E, B) are given by the classical Maxwell system

OE i

— —CcVyxB = -~
ot CZXX €’
(3.2)
0B
E+Vx><E:O,

whereegy represents the permittivity of vacuum aads the speed of light. The current density is given
by
j(t,X) = ge f fo(t, X, v) v dv.
R3

Moreover, Maxwell system’s is supplemented by Gauss law’s

wE=2 v.B=0 (3.3)
€0

wherep is the charge density:

P = Ge(Ne—No) = Qe (fs fo(t, x, v) d3v — no),
R

andng/Z is the initial ion density.

In this model, the Vlasov equation stands for the invariance of the distributioctibn along the
particles trajectories under th&ects of electro-magnetic fieldsandB. The Vlasov transport terms, in
the left-hand side of equation (8.1), are written in their conservative foutrthey can also be written in
an equivalent non-conservative form, while the Maxwell equationg+(3.3) provide with a complete
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self-consistent description of low-frequency electromagnetic fieldg. cbupling between both is per-
formedvia the Lorentz force ternk + v x B in the Vlasov equation, and the current source terms in
the Maxwell equations. The Vlasov-Maxwell system (8.1)-(3.2)-(3.3}ristly equivalent to (8.1)-(3.2)
provided the Gauss’s laws (3.3) are initially satisfied. This gives a compatibdlitgition at initial time.

In the remainder of the section, we only consider a periodic or infinite spacain. The mass is pre-
served with respect to time for the Vlasov-Maxwell systém, system (8.1)-(3.2) without collision
operators

d f fo(t, x, vV)d®x d®v = 0, t > 0. (3.4)
dt R3XR3
The conservation of momentum can be written as
9( f [Ej (t,X) + e (E(t, X) X B(t, X)) d3x)
dt\Jgs| Qe
= qef E(t,x)ne(t,x)d3x+f eE(t, X) x (VxE(t, X)) d3x, t > 0. (3.5)
R3 R3

Moreover, the conservation of energy can be proved for the Vid&awell system by multiplying
equation (8.1) byne|lv||?/2 and integrating it in the velocity space. We obtain after an integration by
parts

f mel V|2 fe(t, x,v)d?’v}} d®x =0, t>0, (3.6)
R3

1d , 1 ,
3 ot | {IEC0R + SiBexe +

with c? eg o = 1. The Vlasov-Maxwell system also conserves the kinetic entropy

gH(t) _d f fo(t, X, V) log(fe(t, x, v)) d®x v = 0, t > 0. (3.7)
dt dt R3xR3

3.2.2 The relativistic Vlasov-Maxwell system

In the relativistic regime, we introduce the momemtpoiand associated Lorentz factgip) = /1 + p2/(mec)2.
The distribution functiorfe(t, X, p) is solution of the relativistic extension of equation (8.1)

coupled to the Maxwell equations

OE i
— - c?VyxB=--
ot x X €’
B
(?9_t+VXXE =0,
(3.9)

Vx‘Ezﬂ, VX-B=O,

€0

j(t,X) = Oe f fe(t, x, p) v dp.
R?’
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Local conservation of charge

Multiplying the equation (3.8) bye, and integrating over momentum yields

0
5 [ (Gefdp s Vi [ @viupeae [ T (elaE+vABDEP=0.  (3.10)
at R3 R3 R3
The distribution function satisfiels —O> co. Therefore, for all vector fielX
p—>
jﬂ;s Vp- (Xfe)d®p=0. (3.11)
The equation for conservation of the charge reads
9 3 3
5t |, (@fd’p+ Vi | (Gevie)d®p=0, (3.12)
R3 R3
and can be rewritten
0 .
pe+ Vx+] = 0. (3.13)

Local conservation of energy

The combination of Amere (3.14) and Faraday equations (3.15)

. 190
Vy X B = ——E 3.14
X X ,UOJ + C2 5'[ s ( )
0
aB+VxxE=O. (3.15)
gives
d (eoE? B? .
a( 5 +—2'uo)+Vx-S+j-E_O, (3.16)
EAB. .
whereS = is the Poynting vector.

Ho
The power term created by the work of the electric figlde is obtained by multiplying the Vlasov
equation bymec?y(p), and multiplying over momentum

of
f meC?y(p)—=~dp + f mMecy(p)VV fed®p + E - f Gemec?y(p)Vp fed®p
R3 t R3 R3

+ f QeMeC?y(p) (v X B) - Vp fed®p = 0. (3.17)
Then, using only integration by parts and the properties
v =mec®Vpy(p) . (3.18)
fe — o0, (3.19)
p—0

fRs Vp- (Xf)d®p=0 VX, (3.20)
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we obtain
, 0
=g [ meE e v [ mvpviap. (3.21)
R3 R3

Finally, the local energy conservation reads

0 (€0E2

2
— P2 f mec?y(p) fed®p| + Vy - [ S+ f mec?y(p)vfed®p|=0.  (3.22)
ot\ 2 " 2uo Jpe B3

Global conservation laws

In the case of a periodic or infinite domain in space, the conservation law3, (3.5), (3.6), and (3.7),
valid in the nonrelativistic limit, can be extended to the relativistic regime

d

— f fo(t,x, p)dxd®p = 0, t > 0, (3.23)
dt R3xR3

dgt(ﬁRs [Ls pfe(t, x, p)d3p + e (E(t, X) x B(t, x))] d3x)

= Ge f E(t, X)ne(t, X)d>x + f e0E(t, X) X (VxE(t,x)) d3x, t > 0. (3.24)
R3 R3

d €0 2 1 2
3 L {SEenr s s
[f mec” (¥(p) — 1) fe(t, X, p)dgp}} d®x =0, t>0, (3.25)
R3
d d 5
—H(t) = —f fo(t, X, p) log(fe(t, X, p)) d®x cPp = 0, t> 0. (3.26)
dt dt R3xR3

3.3 Numerical scheme for the nonrelativistic free-streaming transprt

We present a finite volume approximation for the Vlasov-Maxwell systen)-(8.2) without collision
operators. Indeed, it is crucial to approximate accurately the trangpdrof the system to assess the
collective behavidr of the plasma, that occurs typically at a shorter time scale than the collision pro-
cesses. We introduce a uniforrdjl space discretizatiorx(.1/2)ic1, | C N, of the interval (QL,), in the
direction denoted by the index 1. The associated space variable is déyotedWe define the control
volumesCi;j = (Xi—1/2, Xi+1/2) X (Vj-1/2, Vj+1/2), and the size of a control volume in one direction in space
Ax and velocityAv.

!By collective dfects, we denote here the self-consistent interaction of electromagnletscafiel particles. Some collective
effects are also considered in the collision processes, which make two atitdeactvia the Coulomb field. The self-
consistent electrostatic field then screens the long range Coulomb pogertdiedmoves the singularity in the Fokker-Plank-
Landau operator.
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The velocity variablev = (v, V2, v3) is discretized on the grigy = jAv = Y(vj,,Vj,,Vj,) with
i ='(j1, J2 J3) € Z°. Moreover we not&j.12 = ‘(j1 + 1/2, j2 + 1/2, j3 + 1/2) Av. Finally, the time
discretization is defined 4% = nAt, with n € N.
Let fif} be an average approximation of the distribution function on the control volijnat timet",
that is
oo L
H AXAV3 Cij

Moreover since the discretization is presented in a simplespace geometry, the electric and magnetic
fields have the following structur€ = '(Ex(t, x1)), Ex(t, X1), 0), B = Y(0, 0, Ba(t, x1)). Hence we denote
by‘(Eg"i, E5;) an approximation of the electric fiel(Ey, Ez) whereasBj; represents an approximation
of the magnetic fieldz in the control volumeXi_1,2, Xi+1/2) at timet".

f(t", x, v)dx dPv.

3.3.1 Second order approximation of a one dimensional kinat equation

For the sake of simplicity, we focus on the discretization obg &inetic transport equation; the extension
to higher dimensions is straightforward on a grid. The gendbig dcheme is applied in the five phase
space directions, without requiring time splitting techniques between trarspwos. In this section, the
index 1 is dropped both in space and velocity directions, for this simplegeometry.

Let us consider the following equation for 0 andx € (0, L),

L
ot OX

where the velocity > 0 is given. By symmetry it is possible to recover the case whismegative. In
the following we skip the velocity variable dependency of the distributiontfancUsing a time explicit
Euler scheme and integrating thB ¥lasov equation on a control volumg (1,2, Xi11/2), it yields

=0, (3.27)

fin+1 — fN

At
|_B([ .

D12 = Flpl (3.28)
where irll/z represents a conservative approximation of the fidig", x,1,2) at the interface.1,2.

The next step consists of the approximation of the fluxes and the recctimstrof the distribution
function. With this aim, we approximate the distribution functit’, x) by f,(X) using a second order
accurate approximation of the distribution function on the intengah [>, Xi+1,2), with a reconstruction
technique by primitive [7]

X=X
fh(x) = f" + " ( Ax ')(fﬂl - M. (3.29)
We introduce the limiter
0 if (£, -t (f"-£") <0,
R (L /) I
g =4 MM o | T <0, (3.30)
(2"
mln(l, m) else,
and set‘}-‘i’}rl/2 = V fh(Xi+1/2). This type of limiter introduces a particular treatment for extrema. At

this price only (dissipation at extrema), we were able to recover corre@ljilo-Stream Instabililty
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tests | and IV, without oscillations destroying the salient features of thakiistn function structure.
Another choice for the limitation consits in choosing the “Van Leer’s onerpatar family of the minmod
limiters” [15, 24]

(3.31)

fNo— M) (fn, — fN £0_ 0
g (- 1" = miand(b i~ 1) (fg — %) b( i |—1))’

Ax 2AX AX

where

minmod(, y, 2) = max(Q min(x,y, 2)) + min(0,max,y,2), (XV,2 €R,

and 1< b < 2. The importance of the choice of limiters will be observed on the Two-Sttaatability
test .

Finally, this reconstruction ensures the conservation of the averagbeapdsitivity onf,(x) [7].

3.3.2 Fourth order transport scheme

We turn now to a higher order approximation (fourth order MUSCL TVDesoh) [25]. This scheme
has also been considered in [2], in the frame of VFRoe schemes fordhevehvater equations, where
the authors proposed an additional limitation. Here we note that an optimized limipaboadure is
possible in our case, breaking the similar treatment for both right and leénments, and taking advan-
tage of the structure of the flux in the non-relativistic Vlasov equation: theefterm does not depend
of the advection variable.

For this MUSCL scheme, we only give here the algorithm for the implementatitiisodcheme and
refer to [2], [25] for the derivation procedure of this scheme.
The high order flux at the interface, 1,2, at timet" reads

iT—l/Z = 7:(fi?r’ firjrl,l vin if v<0O.

)_{vfi“r if v>0,
i+1

This numerical flux involves the reconstructed statgs:= f" + (Af)] and | = £ + (Af);, where
(Af);" are the reconstruction increments.

An intermediate staté*, defined by% (fif‘r + £+ fif}) = f"is introduced. It is shown in [2] that the

introduction of this intermediate state preserves, provided the CFL condifiemially divided by three,
the positivity of the distribution function. Following [25] and [2], the fourttder MUSCL reconstruction
reads



74

Algorithm of reconstruction.
Compute

1 _ .
(Af) = 5 (ZA* fiigo + A" fi+1/2),

1 £ % f
(Af =5 (A*fiij2 + 2A firap2),
where
A*fi_12 = minmod@A* fi_1/2, 4A™ fi11/2),

A* fir1/2 = MinModA* fi11/2, 4A fi_1/2)

and
% 1 3f
A" fiz12 = Afivyy - EA fis1/2,
A i1y = AEl/Z —2A f—i?u/z + Afi_is/z’
with

Af2) 5 = minmod@A fi_1/2, 2A fi1/2, 2A fi13)2),
AfiT.il/z = minmod(Q fii1/2, 2A i 32, 2Afi_1)2),

Afii3/2 = minmod@fi+3/2, 2Afi_1/2, 2A fi+1/2),

with the notatiomA fi.1/2 = fiz1 — fi.

Reminding that the minmod limiter is given by

0, ifxy<0o,
minmod,y) =< x if |[x| <yl (3.32)
y else,

with (x,y) € R3. The limitation proposed in [2] is then applied and allows the positivity of therreco
structed states to be satisfied.
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Algorithm for the limitation involving the intermediate state.

Compute A f)!™* such that
14 (Af)I™ >0,

14 (Af)IM™* >0,
and
f.

f= - (Af)™ —(Af)™ >0
This limitation reads:

(AH™™ = g max((Af), - 1),

(ADI™ = 0 max((Af)f,-f"),
where
1 it max((Af)7,—f") + max((af)f,-f") <0,
0= f‘n
min| 1, ! otherwise.

max((Af)7, - 1) + max((Af);, - 1)

3.3.3 Application to the Vlasov-Maxwell system.

We exactly follow the same idea to design a scheme for the full Vlasov equatjmrase space(v) €
Q x R3. In addition, a centered formulation for the electromagnetic fields is chosen:

En+1/2 — %(Eml + En) and Bn+1/2 — %(Bn+1+ Bn). (3_33)

The discretization of the Maxwell equations (3.2)-(3.3) is performiad an implicit 9-scheme, with

6 = 1/2, which corresponds to the Crank-Nicholson scheme and thus pesskestotal discrete energy.
This discretization is presented in a simpRyIspace geometry. The electric fidid= '(E;, Eo, 0) and

the magnetic field = (0,0, B3) are collocated on the discrete grid. These fields are solution of the
system

1
Bl -EL
At € ’
1 n+1/2 n+1/2
EST B Eg,i 2 B3,i+1 B B3,i—1 ‘]g,i (3.34)
+ C - T T '
At 2AX €
1 n+1/2 n+1/2
BQT - Bgi + E2,i+l _E2,i—1 -0
At 2AX )

This scheme is well-suited for the situations involving low frequency selégead electric and mag-
netic fields, and is design to minimize the numerical dissipation. The design otti@me is not tuned
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to reduce the numerical dispersion associated to the propagation of éiglefrcy, shorte-pulse electro-
magnetic waves.
The approximation for the current in (3.34) andJ; has been chosen such as

N = DAY, 8 and 35 = ) APy, ] (3.35)
jez3 jez3
Unfortunately, these expressions do not preserve the total energy slbpes limiters are active in the
discrete Vlasov solver, but we will show that they have the important featureproduce the discrete
Two-Stream dispersion relation.
First, we remind discrete properties concerning positivity, mass andyeoengervation [7] of the
second order scheme (3.28)-(3.29) coupled with (3.33)-(3.35)jdemmsy the magnetic component.

Proposition 1. Let the initial daturr(fi‘})i’jeza be nonnegative and assume the following CFL type con-
dition on the time step
At < Cmin(Ax, Av), (3.36)

where C> 0 is related to the maximum norm of the electric and magnetic fields and the bpped of
the velocity domain.

Then the scheme (3.28)-(3.29) coupled with (3.33)-(3.35), whendextea the infinite8Dy x 3D,
geometry, gives a nonnegative approximation, preserves total mdsnangy when slopes limiters are
not active on the transport in the velocity directions

1 1
2N AE ENZ + = |IBM?
5 2, JlEI + B + me

i€l

DAV A

jezd

}= CO, neN.

Remark 1. Both the second order scheme and its fourth order extension presery®sitivity of the
distribution function, provided the CFL criteria are satisfied. The positivity seasal to describe
correctly the high energy tail of the distribution function, where the particlesdg is low. In all the
tests presented, the time increment is chosen small enough to satisfy thiso@dfition, together with
the djfusive-type CFL condition that comes from the collision operators. Hereonsider centered
numerical schemes (if slope limiters are not active), in order to prestre energy. This is the reason
why we considered only schemes having even order.

In addition to these properties, we justify our choice for the numericakotthanks to a discrete
dispersion relation on the two-stream instability. In the rest of the sectiomregethe index 1 on the
variablesxs, vi1, E; andJi, because the transport is consider@j & 1D,,.

Proposition 2. Consider the second order scheme (3.28)-(3.29) coupled with (8338)), when slope
limiters are not active, to approximate the Vlasov-Ampére system

of of Qe  Of
ﬁ-'-va_x-’-_E

mo v

(3.37)
OE _J

ot €

Then the definition (3.35) for the current J defines a discrete dispersiation that converges toward
the continuous dispersion relation wham, Ax andAt tend to0.
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Proof: The Two-Stream Instability configuration can be fully analyzed with the Wasmpére system
(3.37) extracted from equations (8.1)-(3.3). The dispersion relatioa perturbationf ) o kx-«1 of
an initial equilibrium statef @, with ||f@)| < ||f©)|, then reads

% v ofo
eoMe Jr w(w—KV) dv
Here the crucial point is the discretization on the velocity part of the phaeees so that we perform
a semi-discrete analysis. In the frame of the discretization (3.28)-(3.2@Jexwith (3.33)-(3.35), we
consider the semi-discrete scheme approximating (3.37)

1+

dv = 0. (3.38)

of of e _ fjer2 — fje1p2

— —+ —E———— =0,
ot - Vax " Me Av
(3.39)
JE Qe
= _ _ AV Vi fi
ot € jeZZ Vit
with
fj+1+ fj
fii12 = >

assuming the slope limiter is not active. Then we perform a discrete linearizationd an equilibrium
state
fj= £O 4 @
j i

where||f Q)| < [1©)]. Using fj(l) o @kx-e) jn (3.39), it yields

q ‘(0)1/2 - f‘(0)1/2
—i(w - kyy) fO 4 2O IE_E g
(w i) [ Mo Av
(3.40)
LiwEW = _% £
lwEY = . ZAVVJ fi.
J€Z
These equations lead to the discrete dispersion relation
P Vi f@ @
14— % J R e XV} (3.41)
€ Me = w(w = kv)) Av

We recover the continuous dispersion relation (3.38) when passing to thalimit0. Any other choice
for the discrete current in (3.40) would introduce an additional errdrviald substitute to th©(Av?)
accuracy order of the dispersion relation (3.41). For instance, theecho
J = ZAVVj fis1/2
jez
would lead to
1@ _ @
j+1/2 j-1/2
Av

2 U

€0 Me £ w(w = Kkv))

which is a “shifted” dispersion relation, with@(Av) first oder accuracy, compared to the second order
accurate relation given by (3.41). i

Av = 0, (3.42)
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3.3.4 Boundary conditions
Truncation of the velocity domain.

The discretization in the velocity space imposes a truncation of the infinite veldaitain, and the
introduction of boundary conditions. We only need to consider the diregtiowhere the discretized
velocity variable isvj,, with j1 € [-ny,, ny,] € Z, and 2n,, + 1 is the total number of discretization points.
If the second order scheme (respectively the fourth order schemensdered, then the boundary
conditions are applied on two ghost points (respectively three ghodsjpoirnis is due to the extension
of the stencil. Considering the second order scheme, the ghost poingsvatidcity domain arg;j, with

j1 = =ny,, =(ny, + 1). Therefore, at these points, we impose the truncaft]iph = 0.

Boundary conditions in the velocity domain.

The treatment of runaway particles, in the frame of the model presentedaiptélt8, would require
boundary conditions in the velocity domain, for these runaway particle todeetd escape from the
thermal population and enter into the fast popultaion.

Boundary conditions in the space domain.

The boundary conditions for the space directions satisfy also naturalpotigvity constraint with our
scheme. It is indeed designed with reconstructed numerical fluxes, tiatbimahe positivity (under
the CFL condition) if the distribution function at the previous time step is positi&e.a boundary
interface x_1/, at the left boundary, where the numerical flux should be computed, thieemuirement
is to specify a positive distribution at ghost points to impose the boundaditaors. We explicit here
the non-trivial ghost point used by a zero current left boundaith(temperaturd’ ) condition, in the
directionx.

f”-:Clzexp—M (3.43)
_1’1 —/ 2TL El .

whereC_1,2 > 0 and satisfies

D F My = 0. (3.44)
j
Such a numerical choice for the boundary condition may induce a Knuggerboundary layer, in the
presence of collisions between particles. The collisions tend to stabilize thibwtisn function at the

thermal equilibrium in a few mean-free-path around this hydrodynamicabdimuity. This behaviour
is illustrated in Figure (5.1), for the test 1.

3.4 Extension to the relativisitic regime

In the same manner as in the nonrelativistic limit, we introduce a unifdby space discretization
(Xi+1/2)ie1, | € N, of the interval (QL,), in the direction denoted by the index 1. The associated space
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variable is denoted by;. We define the control volumés; = (Xi—1/2, Xi+1/2) X (Pj-1/2, Pj+1/2), the size
of a control volume in one direction in spage& and momenturanp.

The momentum variable = '(ps, pz, ps) is discretized on the grig; = j Ap = Y(pj,, Pj,» Pjs) With
i ='(j1, j2» j3) € Z% Moreover we notej.12 = '(j1 + 1/2, j2 + 1/2, j3 + 1/2) Ap. Finally, the time
discretization is defined 4% = nAt, with n € N.

Let fii} be an average approximation of the distribution function on the control volijnat timet",

that is
n 1 f f(t", x, p)dx p.
Cij

1T axap
Proposition 3. Let us consider the dimensionless (with normalization of appendix 3.9Wégiation
(3.8) written under its conservative form. Then the relativistic extension of tharex{828)(3.29)

together with the numerical scheme for Maxw@IB4), should present the following centered discretiza-
tion of the velocity variable,

27 ij1+Llj2,i3 — YVii-Lja2.js

Vij = MeC 3.45

1j 2Ap1 ( )
27 iviz+Ljs ~ Visi2-Ljs

Voi = MeC 3.46

2 2Ap2 ( )
27 itj2.j3+1 = Vitj2,js-1

V3j = MeC 3.47

3j 2Ap3 ( )

in order to respect, at the discrete level, the relation

This holds true because the discrete centered derivative commute. [Bhisrr@nsures the equivalence
between the conservative and nonconservative forms of the Vlasavoequa
On the one hand, if the discrete current is defined as

I =Ap Z v i (3.48)
jez3

then the discrete total energy is preserved, when slopes limiters aretive an the momentum advection
termVy. On the other hand, let us consider the discrete expression for thentuft@btained from the
discete analogous of the momentum conservation equédi@) The discrete form of this equation
is issued from the direct integration of the relativistic Vlasov solver, with thegpiteed definition for
the discrete velocity (3.45-3.47), coupled with the discretization of Maxweaht®on (3.34). Then the
discrete current, defined as

I =de ) (04 Pivisrr/2isVajs 06 Pirs1s s V2, 0) AP, (3.49)
jez3

preserves the discrete total momentum.
Finally discrete current definitiong3.48)and (3.49)satisfy the total mass conservation.
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Proof. The exact conservation of the discrete mass, momentum, and energyes pere in one space
dimension and three momentum dimensions, with a field geomEiryEp, B3) that is resolved by the
discrete Maxwell equation (3.34). We show here thétiedent definitions of the discrete source term
currents are possible, depending whether the discrete total momentumrgy eéfavoured. Given this
geometry, only advections in thg and p, directions are needed. The generalization to an arbitrary
configuration is straightforward.

Let us recall the numerical scheme for the relativistic extension of therse(i& 28)-(3.29) with velocity
(3.45)-(3.47), coupled with the discrete Maxwell equations (3.34). Tdlieme must be considered
first under its conservative form, because of the dependance oktbeity over the momenta, in the
relativisitic regime, in order to recover the discrete total mass conservdliena@s not the case in the
nonrelativistic limit)

i1 = - At(Dxf"l + D7 + Dp R + Dpz‘f‘pz) , (3.50)
where
D 7:X1 — fh(X(|1+1/2I2) Pj) = fa(X(i-1/2.i)- Pj)
“ AX ’
fh(X(inir+1/2)> ) — Th(X(ini—1/2), P})
szf(‘_‘XZ = V2,j 12 AX L2 s
P1 P1
D ?-pl = 7—1(]1+1/2,J'2,J'3) 7:'(11 1/2,j2,]3)
P1 Apl s
P2 p2
Dp2¢D2 = ?ﬂia(ilaizﬂ/zjs) B gria(ilaiz+l/2,js) ’

Apz

Py n+1/2 : . pml/2 Dy o
TI (Jl+1/2 12 13) - [E + V2’(Jl+l/2512513) B3,| ] fh(X|, p(]1+1/2!12513)) ’

P2 n+1/
7:I(Jl j2+1/2,j3) — [E

wherefy is the high order reconstruction of the distribution function. It is indepentdithe sign of the
force term in the advection scheme: there is no upwinding if the limiter are tio¢akVe obtain

o N D .
= Vi(j1.j2+1/2,]3) B3,i ] fa(Xi, Pjrjz+1/2.j5) »

fi(1+Lj0.a) + i
(X, Pliss1/212.09) = =5 :

fi (1.0 1js) + fi
Th(Xi, Plisiz+1/20) = =5 :

The interface velocities are defined with a mid-point rule

' o V2(ja+Lij2.ds) T V2,(j1j2.3)
V2,(j1+1/22.53) = 2 .

o - Vi(jnje+Lis) T Vi(j1j2.js)
Vi(j1.j2+1/2.ja) = 2 ~
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With these discretization choices, the conservative scheme can be reasitten

fif}+1 = fi'jj - Athfijl - AtDXfijz

A[ENYZ 4 B, | X [ fn(Xi> P(j1+1/2,j2,3)) — Fn(Xi, p(jl—l/z,jz,jS))]

Apr
f X', .. . _f X', [ .
_ At[En+l/2 BgJirl/ZVl,j] x[ h(Xi p(11,12+1/2,13))Ap h(Xi> P(iv.j2 1/2,13))]
? 2
Bn-i.—l/Z
+ AI%RU : (3.51)
V2,(j1+Lj2,i3) ~ V2
Rij = —fh(Xi,p(j1+1/2,jz,j3))[ = A2p1
[ V2,(j1-1,j2,j3) — V2 |
+ fh(Xis P(j1-1/2,j2.13)) : A2p1
[ V1,(j1.jo+1j3) = VA, |
+ (X0, P(njar1/2.j3) - ZApz
[V (j1.jo-1.j3) = Vi, |
= Ta(Xi, P(jujr-1/2,i3) - ZApz (3.52)

The conservative scheme is splitted twofold. On the one hand, the first sgarexpressed with an
apparent, nonstandard nonconservative discretization, and actualig thot, since the sum of these
terms does conserve energy, momenum and mass on its own. In the neisteldiinit, these terms
are consistent with the nonrelativistic scheme (3.28-3.29). On the othdr tlerelativistic residual
term®R;; is consistent with the continuous quant[(y N 4 3;;) f] (xi,Vvj) = 0, and constitues indeed a
discretization of zero, that appears only in the reIat|V|st|c regime. Any ee to the discretization of
this zero residual could be enhanced by strong magnetic fields, benfaheengi“l/z factor.

We shall show that the terms in the right-hand side of the equation (3.51)dhaitccontribute to
the relativistic residuaR;; are self-consistent with respect to the discrete mass, momentum and energy
conservation (Discrete momentum and energy conservations redfimeedt definitions for the current,
in the nonrelativistic regime as well). Therefore, the relativistic residualiishbe neglected, as it only
brings unavoidable additional errors to the discretization of zero. Thense still keeps all the relativistic
features of the mass, momentum, and energy transport.lts practical implemenitmut the relativistic
residual, writes

f_n_+1

fi] = AtDy, 77" = AtDy, 7,

A,[[En+1/2 Bn+_1/2V2.] " fh(Xi, P(ir+1/2,j2.i3) — Th(Xis P(j1-1/2,i2.i3))
i Apy
fr(Xi, P(jn.iz+1/2.j3) = falXi, p(jl,jz—l/z,jS))]
Ap2
Let us first investigate the discrete energy conservation. To this aim wetdactivate the slope lim-

iters in the advection terip, and define the discrete current#s= Ap® Z v; f;. We then perform
jez3

At[EDIZ - B2y, | x

(3.53)
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integrations by parts, consider thigt goes to zero afj || goes to infinity, and use

V1(j1i2+Lis) ~ V1(j1.j2-1ja) _ V2, (j1+Lj2.i3) ~ V2,(j1-1.j2.i3) -0
2Apy 2Ap2 ’

which is due to the discete numerical choice for the velocity variable. We finatgiroa simple form
for the ohmic heating term

12
A%p Z(?’j - 1)(Dp1‘7'-i?1 + Dpzﬁgz) = -3 B2
jez3

The discrete kinetic energy is defined as

el = AxA%p Z (-1 (3.54)
(i.)ez?xz3

Multiplying this latter expression by;AxA%p,and summing oveiij) € 22 x Z3
cancels the space advection terms with discrete integration by parts. Theicalrddinitions for
the velocities (3.45) (3.46) and the numerical currents are then introduced

P=a% Y 1y (3.55)
jez®

The cross terni, 2 of the pressure tensé, at the space point denoted by the subsarifs then intro-
duced

P = A%p Z V1,V ] - (3.56)
jez®

We finally obtain

n+l _ _n n+1/2 1n n+1/2pHn
e = € + AtAX Z ELi i+ Z E53’i P12i

ieZ ieZ
+AAX| 3RS - B, (3.57)
icz? iez?
This expression can be simplified, because the magnetic terms issuedfr@ncancel.
et = e + AtAX Y I EMYZ (3.58)

icz?

The power created by the electric fielat Z Jr- Ei””/ 2 can be expressed using the discrete &nepand
iez?

Faraday equations. Multiplying the Arage equation by "/

, and the Faraday equation B{}"*/?, we
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obtain
1 n+1/2 n+1/2

S En BS|1|2+1 3,i1,i0—1 —_Jn

1/2 1
Shalls En+1At En g2 ZAXBn+1/2 ; (3.59)

20 2 + _Sirtliz 3ii-liz _ _ g0

At 2AX o

n+1 n n+1/2 n+1/2 n+1/2 n+1/2

g1/ BS,i B BS,i E; (i1+Lip) Ez (i1i-Lip) E1 (ini2+l) — E; (i1,i2-1) _0 3.60
si |\ T At T 2AX 2AX - (360)

The combination of equations (3.59) and (3.60) give

2 2 2 2
(Eiml) B (Eun) (BQTl) B (Bg,i) +D S22 a0 EN+1/2
| | ?

+

Al X (3.61)

whereD;- is the discrete centered divergence operator ,%ttte Ponyting vector, whose discrete ex-
pression is

SH2 = (ExB)"Y?. (3.62)

A summation is then performed oviee Z?, that cancels the Poynting vector contribution by periodicity

5 (Er)" - () (B@fﬁ) <B”

At
icz?

== ) IEME (3.63)
iez?

The equations (3.58) et (3.63) are finally combined to obtain the dimensialisesste energy conser-
vation

n+1 n

€ AtEK+Z

icz?

(Er) ()" | (3" - (85)
At At

=0. (3.64)

The proof of the discrete conservation of momentum is straightforwarde di¢crete analogous
of equation (3.24) is obtained from the numerical scheme (3.53)), couptadthe discretization of
Maxwell equation (3.34), where the current source term are defineduation (3.49). The discrete
momentum conservation equation then reads

AXZJ

Ait [Z [Z oy Ap® + eE* ! x B{”l] [Z £ pAP® + 6E] X Bi”]

iez? |\jez3 jez3
= Ge ) [EMY A+ ) e|EN x (DS, x E)] Ax? (3.65)
iez? iez?

whereD{,; is the discrete centered gradient operator is space, at theimesh |
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Remark 2. This proposition holds true in the nonrelativistic limit, however, in this limit, the defirs

for momentum and current onlyffir by a factor ra. Though these are disctinct quantities, that have to
be discretized in a gierent manner.

Two relevant expressions have been proposed, and are possid@ates for the current discretiza-
tion. On the one hanB.48) preserves the total energy and discrete Two-Stream Instability dispersio
relation, on the other han¢B.49)preserves the momentum. We shall see that the expré8si®)also
preserves exactly the discrete Poisson equation. In the next sectiarsenan intermediate approach,
that makes use of a two step predictor-corrector approach and insahetwo possible identified cur-
rent discretizations.

3.5 High order time discretization

Time splitting was historically a standard way for the discretization of the multidimeakiscalar
Vlasov equation [5]. However, such technique may introduce some losgohronous and symmet-
ric advancing of the distribution function in the phase space [10]. In thmdrof Semi-Lagrangian
scheme, the time splitting technique was rigourously proven to be unstableThR] dificulty is re-
ported to be corrected, in [22], by the adoption of multi-dimensional velodwgetions, where a mod-
ified semi-lagrangian scheme is able to resolve circular particle orbits duettong snagnetic field,
while maintaining the phase and amplitude of the a momentum rotation on a cartediawegrshould
also mention here the back-substitution method [23], that is closely related tonieliscretization.
This latter method avoids the systematic heating of the plasma by the time splitting texhniqu

The numerical schemes we propose do not make use of time splitting techrgcest for the reso-
lution for the FPL collision operator for electron-electron collisions, in Géap, since it uses a specific
subcycling algorithm for time discretization.

To our knowledge, none of the present numerical methods is able to satigfye discrete level
(even formally, far from the extrema of the distribution function), the padsitiexact total energy, and
respect of Poisson equation alltogether. In this Chapter, we havegaopositive high order (second
and fourth order) MUSCL schemes designed to satisfy these conserpatiperties, except the exact
Poisson equation. However, for long-time simulations or particular corafligems, errors due to the non-
respect of the Poisson equation may accumulate and this issue may becoiale W& mention here an
alternative time discretization technique, adapted from [22], that permitsdgebthe gapin an exact
manner between the Poisson and Agp equationsyia the continuity equation. Using this approach,
we loose théormal discrete energy conservation.

While comparing these schemes, we shall therefore evaluate, for someseaefative configurations,
such as the nonlinear relativistic Landau Damping and Two-Stream Instdbdity 11l and IV, the re-
spective importance and need for an exact discrete total energyreatise andor exact discrete preser-
vation of the continuity equation.
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3.5.1 Second order unsplit energy preserving time discregation

In this section, the time discretization is set up such as the energy conserngafavoured over the

exact respect of the discrete continuity equation, because of the timeicgriéthe electromagnetic
guantities. The drawback of this method is that long-time error accumulations ecoay, due to a lack

of accuracy in the charge repartition with respect to the particle positioiestodthe non respect of the
Poisson equation. The second order in time, semi-discretized scheme reads

E* . o EP
g | = M (At/2,AX,]") gn | (3.66)
* n * n
- f”+%‘V(f”,E ;E B ;B ,Ax,Ap), (3.67)
En+1 _ . EN
( gn+1 ) = M7 (At AX] )( BN ) ) (3.68)
= i Aty (F1 EMY2 B™Y2 Ax Ap) (3.69)

where the operatoM~ denotes the operator issued from the discretization (3.34), that onlydepe
on the time step and mesh size. For an homegeneous grid and a constant pipnegstiie matrix
associated to the operatd only requires one inversion at initial time. The operaldrdenotes the
numerical unsplit high order discretization of the advection terms in the Vlegogtion. The discrete

currents are the discrete analogoug'of qef vid®p, j* = qef vf*dpin the relativistic regime.
3 3

R;
In this scheme, all the variables are collocated at the center of the mesh fiyp thetiexact total energy
conservation, when slope limiters are not active.

3.5.2 Second order unsplit predictor-corrector time discetization: exact respect of the
continuity equation

The resolution of the Amgre equation, of hyperbolic nature, instead of Poisson equation, of eligotic
ture, is desirable in term of computational time. This solution is explored indgi.jhe Pierce-Buneman
instabilility (bump-on-tail), for a PPM scheme discretizing the Vlasov equatioime dimulation run
is reported to be about 2000 plasma periods, while the maximum relativeiedr5 % between the
Ampere and Poisson solutions, which is considered small there. Howevestdtesnent is not general
and we found some configurations where the exact respect of th@PReiggation is required. We refer
to a 1Dy x 3D, relativistic interaction where a transverse short-pulse electomagneticonapagates in
the vacuum and interacts with a slab of plasma [19].

To remedy this issue, the time discretization may be set up such as the rdspedaisson equation
is favoured over the exact total energy conservation, within a preeictoector approach
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E; . . EN
( Bag) = M—l(At/4,Ax,JgC)( Bf ) (3.70)
At
fr = f”+7(v(f",Egc,B*S,Ax,Ap), (3.71)
En+l/2 1/4 En
( o ) - Mil(At/Z,Ax,jga{,)( = ) , (3.72)
S S
Eic x1 in+1/4 Egc
5C | = mE(av2.8xic)| g9 ] (3.73)
S S
f™h = "4+ AtV (%, Eje. B, AX Ap) (3.74)
Efc £ inv12) [ Eje
ain | = M (AL AX 507 gt |- (3.75)

The subsriptsS anddC denote the position where the quantity is calculated, either at the vertex or the
interfaces of the mesh, respectiveM*! denotes any operator associated with an implicit or explicit dis-
cretization of the Maxwell equations. At the correction step, the curj%@(é‘ andjgg%z are computed
from the high order spatial fluxe® issued from the Vlasov solver, at the mesh interfag@sTherefore

the electric fieldfggl/ 2 and Eggl are computed such as they respects exactly the Poisson equation at
time t"1/2 andt™1, respectively.

This scheme makes use of a staggered grid for the current and fieldsigif,hwe have much more
freedom in the choice of the Maxwell solver, since we relax the exaagggn@eservation constraint

of the previous scheme. The Maxwell solver can therefore be eithek@techolson [9], caracteristic
scheme (directional splitting, for PIC terminology) [16, 21], FDTD highesrdcheme [4, 8], Mimetic
Finite Difference [13], Finite Element or discontinuous Galerkin methods [6, 14]inBtance, the use

of staggered grid for the computation of the electric and magnetic fields camnis@ered [22], such as

to avoid the odd-even decoupling between the field, known as the cheekdrinstability.

A potential drawback of this method could be the loss of the formal discretiectotagy conservation,
however, we shall show, at least in the absence of magnetic fields efoiotilinear relativistic Landau
Damping and Two-Stream Instability (Tests Il and 1V), a similar departtwenfenergy conservation,
when compared to the scheme that is energy preserving, presentedionSe6.1. In the presence

of self-consistent magnetic fields, the design of the Maxwell solver sHoulgs either on the discrete
energy preservation.e. the low dissipation, in the case of low frequency fields generation, ormispe
sive properties in the case of high frequency propagation of a tresesedectromagnetic field.e. a
short-pulse laser propagation.

3.6 Numerical tests

The objectives of this section are multiple. First we want to bring the evidehef#iciency of the high

order MUSCL schemes we have proposed. We intend to do so in seivepd sbut representative con-
figurations, with respect to ICF physics. These would stand as a validztibe numerical schemes in
the collective regime. Second, we focus on coarse grid resolutionaghawiew large scale simulation
that include more physics (collisions, Inverse Bremsstrahlung heatingndary electron production,
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etg. Therefore we would like to highlight the need for robust and high osdaemes in this context.
Finally, we shall propose a validation strategy in the linear, collisionless retpased on the work of C.
Sartori and G.M.M. Coppa [20], to describe the transient behavior cfdhion to the VIasov-Maxwell
system, in the nonrelativistic and relativistic cases, when the initial data sse wathe equilibrium.
The need for such an approach is motivated by the presence of ttmasiftent magnetic fields giod
within a relativistic description, that can lead to the failure of the dispersiatioa approach. This isssue
is explained in detailed in the section 2.1.4. Related analytical calculationsvareigiAppendix 3.10,
in the nonrelativistic regime. In Appendix 3.11, we extend this approach tgldsmv-Maxwell system,
with self-consistent fields. Classical validations of kinetic solvers dedidat@lasma physics [7, 17]
are based on the calculation of the growth rates (instability), or decratese(damping) in the linear
regime. We will show theféciency of this semi-analytical method, that permits an interpretation of the
Two-Stream Instability tests | and IV.

The transport schemes are tested, with a low number of dimensibgsx 1D, , for the tests |,
II, and IV (The computational resources are then very low), ¢ & 3Dy, for the test Il. For this latter
test, a parallelisation technique is employed, with a domain decomposition in treedipsnsion. The
simulation is performed with 42 processors to accelerate the calculationse dbEA-CCRT-platine
facility. This facility is a cluster of Novascale 3045 servers, including 93®as, each one having 4 Intel
Itanium dual core processors, at 1.6 Ghz. Each processor has aywid Go. The Novascale servers
are interconnected by a Voltaire network, with technology Infiniband DDR.
The scaling of appendix 3.8 is used for tests | and Il, whereas the scélappendix 3.9 is used for tests
Il and IV. We do not consider thefiects of the collisions in these tests.

3.6.1 Test I: the nonlinear nonrelativistic Two-Stream Ingability. Comparison between
second and fourth order MUSCL schemes

The ICF physics involves a propagation of electron beams in plasma. Thmaleesponse to the
beam consists in a return current that goes in the opposite direction to dhe ibeorder to preserve
the quasineutrality. This leads to a very unstable configuration favoraliletexcitation of plasma
waves. We focus here on the instability with a perturbation wavevectoliglacathe beam propagation
direction, namely the Two-Stream Instability. Of course, this stands asaaie@c numerical test but it
is closely related to the physics of ICF.

This numerical test is a very demanding for numerical schemes of trangairhave to be specially
designed (see Proposition 2). In particular, a discrete dispersion relatiative to that problem is
developed to justify numerical choices for the second order schemethis@scheme also, during the
limitation procedure, an additional dissipation at extrema is introduced, cecdhpar[7], in order to
preserve the solution from spurious oscillations. We will show the sensit¥itye scheme with respect
to the chosen limiter, for this particular test case. Moreover, the fourtbr@cheme is introduced to
reduce numerical heating, for simulations intended to deal with the TworStresability.

We consider the Dy x 1D, Vlasov-Ampere system (3.37) and choose the scaling (3.81), witl0.
The initial distribution function and electric field are

(20cV) = 3 [(L+ A cosk) M) + (1~ Acosk)Ma (V)]

E%(x) = 0,
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where
v- Vd||2)

1
Mayy(V) = N exp( 5

is the Maxwellian distribution function centered around the drift velogity

In order to compare the numerical dissipation associated to the seconouatiddrder schemes, we
choose a strong perturbation amplitulle= 0.1. The perturbation wavelength ks = 2x/L and the
beam initial mean velocities ang = +4, L = 25 being the size of the periodic space domain. We
choose a truncation of the velocity space tovRex = 12 and time steps are chosen toAie= 1/200,
such as to satisfy the CFL criteria and maintain the positivity of the distributiortiitmc

The objectives of this numerical simulation are, on the one hand, to compgesec¢bnd order Finite
Volume scheme (specially designed to conserve exactly the discrete totgl,eaecept if the slope
limiters are active) for dferent slope limiters and the fourth order MUSCL scheme. On the other hand,
we want to explore thefiect of a reduced number of grid points on the conservation of the discrete
invariants.
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Figure 3.1:Beams phase space) at initial time, (b) at 20 plasma periods (after saturation), wit¥?
grid points.

In Figure 3.1, two countersteaming beams that are initially well separated ihdse gpacey] start
to mix together. They finally create a complicated vortex structure, involvingwearticle interactions.
This behavior remains quantitatively the same whatever the transport siesaeond or fourth order.
In Figure 3.2, we present the evolution of the electric energy fierdint schemes and several config-
urations from 32 points to 256. We observe that with a reduced number of grid points (smaller than
128 points in velocity), the second order scheme with the slope limiters (3r8Djparth order scheme,
present a dierent behavior on the total electric energy and total energy. Indeed,reduced grid res-
olutions (32 or 64 points), the fourth order scheme proves to be better than the seconmdoederor
322 points, plasma oscillations at the plasma frequency in the nonlinear phasetasproduced with
the second order scheme whereas they can be seen with the fourtsardere (see Figure 3.2). More-
over for this resolution, the transition from the linear phase to the nonlifessepoccurs earlier than it
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should for the second order scheme. Furthermore, as the grid resohdieases, the accuracy remains
better for the fourth order scheme than for the second order one, iotitie@ar phase. The convergence
toward curves with 128or 256 resolution grid is indeed better. We recall that quantities in Figure 3.2
are plotted with a logarithmic scale, that smoothes out discrepancies betweges.dn addition to these
results, the respect of total discrete energy conservation provesbiettee for the fourth order scheme
than for the second order one at a reduced grid resolution, as shdvguires 3.3 and 3.4.

The use of the slope limiters (3.31) for the second order scheme improvesstiits. The plasma
wave structure can then be captured at reduced grid resolutiondgsee 8.2 p) and €). However, the
energy dissipation remains quantitatively the same as the second orderesefta the limiters (3.30),
see Figures 3.3 and 3.4. Only in the case of the second order schemetWittitaus, could the energy
be exactly conserved. The counterpart would be the loss of any eXgogalution (loss of stability).

As this test case requires both a good preservation of invariants anchagavhen nonlinear phe-
nomena occur, we might conclude that the fourth order scheme, with latiescalong each velocity
direction greater than 32 cells, is well suited for our physical applications.

Finally, the semi-analytical solution presented in appendix 3.10, allows to iateipe patterns of
the electrostatic energy in the linear regime, as represented in Figure 3shdWea mean behavior, in
the linear regime, that is related to the discrete, imaginary part of the speafthmeigenvalue problem
associated to the linearized equation (2.17). The corresponding solat@msoportional t@*!. The
modulations around this mean behavior come from the contribution of the consirand real part of the
spectrum of the eigenvalue problem, that is not reproduced by the @kgaiication approach relying
on dispersion relations.
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Figure 3.3: Comparison of the energy evolution for the second (with limi880) and fourth order
transport schemes. Results are shdayfor 322 (b) 64? grid points.
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3.6.2 Testll: 1D, x 3D, X-mode plasma waves with self-consistent magnetic field

This numerical test stands as a validation of the schemes in the linear regierethehVvlasov equation
is coupled with the Maxwell system, without the collisions between particlessé&bend order scheme
is used for the transport terms in tkg vy, Vo andvs directions. A particular initial data is chosen (see the
derivation in Appendix 3.12) to trigger an X-mode plasma wave at a well-e@firequencyv. This type

of wave presents a mixed polarization (longitudinal and transverse wipleceto the magnetic field),
that propagates in the plaifg , perpendicular to the magnetic field direction.

The chosen frequenay is a solution of the dispersion relation (3.123) of the linearized Vlasov-
Maxwell equations, introducing the equilibrium stéfté) (||v||2). The initial data are chosen such that
fO, E1, E», and Bs only depend onw, B, k; = 2r/L; and A; where f,, Bs, E1 and E; are the
reconstructed (in Appendix 3.12) Fourier transforms of the distributioictfon and electromagnetic
fields. The magnetic fiel®© is the nonperturbed magnitude of the magnetic fieldis the length of
the periodic space domaiA,is the perturbation amplitude. The initial data can then be constructed with
the help of truncated Fourier series

2
100, v) = FOUMP) + > fa(vi)eaX ™, x4 € (0,L), v e R,
n=-2
Ei(t.xq) = Eyex x e (0,Ly),

Ez(t, Xl) = éze_iwt+iklxl, X1 € (O, Ll) s

B(t, x1) = B@ + Bge @tk y, e (0, Ly).

We definey as the angle in the cylindrical coordinates for the velocity, where the axe&dtibn is the
magnetic field direction (See Appendix 3.12).

The scaling is defined by the relations (3.81), witk: 0. We choosd8® = 2 and a rather strong
amplitude perturbatioA = 0.1 with periodic boundary conditions on the space domaingaadis/c =
0.05. Hence, the dispersion relation has been solved for these parareiersf the solutiomw ~ 5.1432
is choosen in the initial data set.

We considered 126 points along the &pace direction, and 64 points along each velocity direction
v = Y(v1,V2,V3). The dimension of the space domairlis = 25 whereas the truncation of the velocity
space occurs aknax = 7 for each velocity direction. Furthermore, the time steptis= 1/200, which
ensures the positivity of the distribution function here.

The Fourier spectrum in Figure 3.8)(exhibits a well defined frequencly = 1/T ~ 1.6375 (cor-
responding to a period) for the total magnetic energy, that corresponds to a frequér2yfor the
magnetic field oscillations. We finally find = 27 f/2 ~ 51443 from the numerical solution, to be
compared with the analytical resultd832. This proves a good accuracy of the numerical results, while
the distribution function is greathfiected by the magnetic field. As anillustration, we show in Figure 3.5
(c) how the magnetic field makes the distribution function rotate in the velocity spapemdicular to
the magnetic field axis.
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Figure 3.5: Discrete Fourier spectrum in frequency (a) of the discrete analogoukeototal dimen-
b |Bal?
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function is shown at initial time,t= 0 (b) and at = 40 (c), for a particular point of the space domain,
X1 =0,v3=0.

sionless magnetic energ dx;. Projection on the ¥y— v, velocity domain for the distribution

3.6.3 Test lll: the nonlinear relativistic Landau Damping

This numerical test stands, in the one hand, as a validation the numerigzd elmhave made to develop
the relativitic extension of the kinetic, collisionless, Vlasov solver, as destin Section (3.4). On the
other hand, it provides with a comparison between two schemes for timettiation; as described in
Section (3.5), one favors discrete total energy preserving, ratherthieaother one rather projects the
solution onto the solutions of the discrete Poisson equation.

The following parameters: time steyt = 1/500, simulation timél' = 60, truncation of the momentum
spacepmax = 6, initial temperaturd, = 0.5% of the maxwelian distribution, length of the space domain
L = &, uniform mesh siz&ax = L/64 in space, uniform mesh siA = 2 X pmnax/64 for momentum, and
nonlinear perturbation amplitud®e= 0.1 are chosen for the simulation setup. The initial electric field is
homogeneously valued zero. The initial distribution function is under thre foescribed in [20]

f(t=0xp) = fo<px>+A%(px)cos(kxx>, (3.76)
where
fo(p) = exp(—(\/(1+p§)—1)/Te)/K,
_ _ 2\ _
K = fRexp( (\/(1+ p%) 1)/Te).

In the Figure (3.6)l), we show that the departure from the analytic, constant solution, ofgbheete
total energy, is less than 1%, despite the activation of slope limiters. Theedmoithe discrete velocity
on the momentum grid proves to maintain the numerical heating at a low level, asrorthaativistic
case.
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Figure 3.6:Nonlinear relativistic Landau damping for @4 x 64 grid resolution. The evolution of the
logarithm of the discrete, dimensionless total electrostatic energy (a) autete,dimensionless total
energy (b) is shown against time.

P

)]

.

(0]

c

[0}

9

T

I

]

: -

o -10 \ QO 0455-
Il

) Rl c

0 .

0 19t ‘ i 8 04545

9 | “ ‘ ‘ e}

5 i

D -4+ : J 9 0454t

c | ‘ 0

2 5

5 -16f g 0.4535-

E £

£ -18 = 0453t

< [a)

S 0 Time discretization with predictor-corrector— | 0425

g .

o]

|

!
N
[N

60

o

10

Finally in the Figure (3.6)d) & (b), the comparison between the two time discretizations, on this Landau
damping regime, does not show any improvement of the solution (in terms ofetetdtostatic field

or total energy) due to centered electromagnetic fields on the Vlasov .solVerefore the Poisson
preserving time discretization seems to be competitive here.

3.6.4 Test IV: the nonlinear relativistic Two-Stream Instability

This numerical test continues the Test Il of the previous section in thimistec two-stream instability
regime.

The following parameters: time steyt = 1/500, simulation timél' = 60, truncation of the momentum
spacepmax = 20, temperatur@ = 0.52 of the maxwellian distributions, length of the space domain
L = 25, uniform mesh siz&dx = L/32 in space, uniform mesh siZ2g = 2 X pmax/32 in momentum,
nonlinear perturbation amplitude = 0.1, and drift momentapy = +4 are chosen for the simulation
setup. The initial electric field is homogeneously valued zero. The initial digiwib function is

ft=0,xp) = [fo(px+ Pa)(1—AcogkkX)) + fo(px — pa)(1+ AcogkkX))] /2,  (3.77)
fpd = oo~ (Y@ - ) me)
_ . 2\ _
K = fRexp( ( 1+ p) 1)/Te).
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Figure 3.7: Nonlinear relativistic two-stream instability for 82 x 32 grid resolution. The evolution
of the logarithm of the discrete, dimensionless total electrostatic energgnhyliscrete, dimensionless
total energy (b) is shown against time.

From the Figure (3.7)d) & (b), and for the same reasons as in the Test Il (same low dissipa-
tion/heating level, and proximity of the solutions) of the previous section, we agaiolude that the
choice for the discrete velocity maintains the numerical dissipation at a lowftavible relativistic two-
stream instability regime. In this regime also, the Poisson preserving time diatietiproves to be
a competitive numerical design. Indeed, the Poisson equation is notedsblut it is exactly satisfied
at the discrete leveljia the continuity equation. The computational cost and complexity (especially in
2Dy ) is then lighten while resolving only the Arepe equation, the low energy dissipation is not lost, and
additional benefits come from the compliance of the discrete solution with thedPasguation. This last
feature could be relevent in regimes where large density gradientsrapgdealong time simulations.

3.7 Perspectives

In this section, we would like to mention possible improvements in the approachesent, relying on

high order schemes. An endeavour in this direction is desirable, andweeshawn in this Chapter the
necessity of such schemes. First, the (formal) fourth order scheme Hrdaiguji, S. Yamamoto, and
C. Berthon, that we have presented here, might be optimized, while desyzing the limitation, that

ensures positivity, on the reconstuction of the right and left states [3].

Second, an attractive perspective, at least for the electromagnetiof pae Maxwell equations in the
short pulse regime, could be the usage and improvement upexam explicit, third order Discon-

tinuous Galerkin (DG) scheme, from P.-H. Maire [18], whose strengthdiéts accurate treatment of
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extrema [18], in a morefcient manner than the usual limitation procedures. This feature is illustrated
in Figure (3.8) for the free linear transport. Another desirable featusaah method is that they present

a local stencil, which makes the treatment of boundary conditions much more siapdedters the
possibility to run 2D simulations with collisions. However, the computational ogdrtmming from the

DG scheme, that uses more variables per mesh, could prove to be toordgtimgauilti-D geometries.

To lighten this overload, a GPU acceleration technique can be employetiaaradready proven to be

efficient [11].

1
T T I/“:, “?fl T T Initl
; RK3 -+
i DYB ----x<---
0.8 | i i .
0_6 - . i —
0.4 3 1 i
0.2 i + .
] i
o . w X0 Lo L e ,
-1 -0.8 -0.6 -0.4 -0.2 (0] 0.2 0.4 0.6 0.8 1

Figure 3.8:Comparaison of free transport between the formal fourth order schesned from Daigugi,
Yamamoto, and Berthon (DYB, blue), an exact third order Discontisi@alerkine scheme from P.-H.
Maire [18], with suitable slope limiters (RK3, green). The initial solution is tlsdred curve. 200 grid
points discretize the [-1,1] computational domain. The CFL conditioly & with 400 time steps until
the final time §n,g = 8, when the solution of the transport equation (with velocity ) is represented
with green and blue curves.
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3.8 Appendix: Scaling with a plasma frequency in the nonrelativisit limit

Scaling parameters can be introduced to obtain a dimensionless form of ihelatiwistic Vlasov-
Maxwell system (8.1), coupled with Fokker-Planck-Landau collisionrafoes, such as the electron-
electron collision operator (2.29). A plasma frequengy, Debye lengthip, thermal velocity of elec-
tronsvy,, and cyclotron frequenayce can be defined as follows

f Npe? feoKBTo [k To eB
— , /l — s Vip = . = —. 378
Wpe p D No > th Wce ( )

These parameters enable us to define normalized dimensionless paraN@teraized time, space and
velocity, respectively:

X \%
t>t, ——>X — >V 3.79
T T &79)
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Normalized electric field, magnetic field and distribution function, respectively

eE eB v
= E - Yee g gt g (3.80)
Me Vihwpe Mewpe  Wpe No

This leads to the following dimensionless equations

of %
8—: + Vy- (v = Vy - (E+VvxB)fe) = 7 Ceelfe, fe) + vCei(fe),
% - B—lzvx x B =nu,
(3.81)

0B
E"'VXxE:O,

VxE:(l_n), Vx‘BZO,

whereB = vy,/C, v is the ratio between an electron-ion collision frequency and the plasmafregu

ZnpetlnA ZInA Vei . ZnoetlnA
v = > = 5 = — With vej = ———.
87r60r‘r‘évf’ha)pe 8mno A3 Wpe 87reor’r‘évt3h

The zero and first order moments of the distribution function are
n(t,x) = f fe(t, X, v) dv,
R3

1
) L; . fe(t, X, v) vdv

which are normalized respectively by andv.
In the system (3.81), one may want to include tlfie@ of collisions as a source term of the Vlasov
equation. The dimensionless electron-electron and electron-ion collisevatops read

u(t,x) =

Cee(fe. fe) = Vy - ( jlé . O(v — V') [fe(V)Vy fe(V) — fe(V)Vy fe(V')] dV' ], .82

Cei(fe) = Vy - [®(V)Vy fe(V)],
with @ given by (5.3).
3.9 Appendix: Scaling with a plasma frequency in the relativistic olli-

sionless regime, with nonrelativistic collisions

There are two basic temporal scales in the kinetic equation (8.1), coupledrakiter-Planck-Landau
collision operators, such as the electron-electron collision operaton (2@ is related to the collective
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electron motion and is characterized by the electron plasma frequepcy, vZnoe?/epme, another is

the time of electron collisions characterized by the electron ion collision fregueg. As it depends

on the electron velocity, we have a possibility to choose either the thermaltyaddplasma electrons,

Vih = VkeTo/Me, Wherexg is the Boltzmann constant afd is the characteristic temperature of the bulk
plasma electrons, or a characteristic velocity of beam electrons, whiclses to. If we are interested

in the beam electrons and on thelfeet on plasma, it is more appropriate to normalize the electron
collision frequency to its value calculated for fast electrons,

vei = Z2noe* In A/8regmécd, (3.83)

Consequently, the electron velocity is normalizedchbthe electron momentum byc, and the electron
distribution function byZno/méc3. Then, our small parameter for the future analysis is the ratio of
electron collision and plasma frequencies:

vei 232\ InA

—_——x 1, 3.84
Wpe 87reg/zmg/2(,3 ( )

which is a standard parameter in the ideal theory of plasmas.

If one is interested in the wave-particle interaction processes, it is morem@gie to normalize the
time by the electron plasma frequeneypet — t, and the space coordinate by the electron inertial
length, Xxwpe/C — X. Then the electric and magnetic fields are normalizedbyhwpe/€ andMewpe/ €,
correspondingly. This leads to the following dimensionless system of egsatio

of

To Vo (V) = Vo ((E+Vx B)fe) = = Codlfe fe) + vCai( o)

OE .

5 VyxB=-],

0B

i +VyxE =0,

Ve E=p. (3.85)
Vx-B =0,

Cedfe, fe) = Vp - fR ,2(P-p) | fe(p") Vp fe(p) = fe(p) Vi )| P,

Ceife) = Vp - (P(P)Vp Te).
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3.10 Appendix: semi-analytical solution of an electrostatic configuration
in the linear regime

The non-relativistic Dy x 3Dy Vlasov-Poisson system extracted from the equations (8.1)-(3.3) reads

AL L

Ry 16_\/1_0’ (3.86)
@ = —% (no —f f(t, X1, V)d3V) . (387)
0X1 € R3

The distribution functiorf is assumed to be a perturbation around an equilibrium §{&@v|)), E(lo) =0,
N = f fO(v|)d3v. The system (3.86),(3.87) is linearized around this equilibrium state
R3

f(t, xe,v) = FOMI) + Tt xq,v) (3.88)
EVt x) = EQ + EM(t, ), (3.89)
under the hypothesis:
IO < 119, (3.90)
IEM<1. (3.91)

The Vlasov-Poisson can then be set under the following form (trahegaation along the space direc-
tions supplemented by a source term alongvthéirection), after linearization

e e £(0)
3_ +V18— = —%Egl)a— >
ot 0X1 mMe ovy
" (3.92)
0E
1 _ G 1) 3
—_— = — FY(L, Xq, V)V .
5X1 € JR3 ( ! )
If f4 and E(ll) are periodic and integrable, then their respective normalized Fouriiiciert are well-
defined. A Fourier series expansion givés> 0

FO, x1,v) = fO(t, ky, v)cogkixq) ,

) e ' (3.93)
Otk v) = = f FO(t 0, Ve edx
1Jo

WherelL; is the size of the domain. The same reconstruction using Fourier seriesl iﬁ)UEél).
These cofficients verify the following equations,obtained by Fourier transformatiofopeed on the
equations of the system (3.92), for all réal

of@ . Qe ~(1y0f©
ot v _ e pdf?

ot + Ik]_Vlf E1 Ve , (394)
ik, By = 2p, . (3.95)

€0
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Then introducing the notatiofM(t = 0,ky,v) = 29k, v), the equation (3.94) can be written in the
integral form

POt kg, v) = FAO(Kky, v)erkavt — G f t EO k1)—8f(0) g kvit-U)gy (3.96)
o ’ meJo * 7 v ' '

Integrating the equation (3.96) overand injecting in it the relation (3.95), one obtains the following
integral equation for the density

t

AL, ky) = M(t, ky) + fo K(t —t', k) AD, kp)dt' (3.97)
where
iq2 f ot vt 3

K(t ki) = ity 3.98
(t. k) Kimec Joe av1 © v, (3.98)
M(t, k) = f 10k, v)e kavity . (3.99)

RS

These kernels can be computed with the desired accuracy, following T2@] numerical resolution of
(3.97) finally reduces to the inversion of a triangular linear system.

Macroscopic quantities such as the density or the heat flux can thendestewrted using these latter
equations.

3.11 Appendix: Semi-analytical solution for an X-mode configuration in
the linear regime

In order to illustrate this method, let us now look after the particular X-modé&gumation (3.100) of
the free transport Vlasov-Maxwell system, that is in the electromagnetic(kas E). Two momen-
tum components are considered to account for the self-consistentienalfithe magneti®s(t, x;) and
electric Ex(t, x;) fields, in the directions perpendicular to the direction of the perturbatipso as to
treat the Weibel and filamentation instabilities. The same semi-analytical preceau be applied for
the Vlasov-Poisson electrostatic cakg|(E), assuming only one component of electric fi@gt, x1)

[9, 20]. Finally, oblique modes (arbitraky, i.e. mixed Weibel, flamentation and two-stream instability)
can be treated if the system (3.112)-(3.114) is supplemented with an eqaattbe current in theg
direction, together with the corresponding component of the é&mapquation.

The dimensionless X-mode system reads ,with the scaling described in app&hd

of of of of

__ - By)— — (B> — v1B)— = O, 3.100
5t +V18x1 (V2 3)8p1 (Ex—v1 3)6p2 ( )
0E> 0Bz .

0B, _ 0By . 3.101
- o 2 (3.100)
0B OE

9Bs _ 9B (3.102)
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The initial quantities are chosen such as

f(t=0,x1,p) = fo(p) + fO(t = 0, x1, p), (3.103)
Ea(t = 0,x1) = ES(t = 0, xa), (3.104)
Ba(t = 0, x1) = B{(t = 0, 1), (3.105)
O < f,. (3.106)

A Fourier series expansion givés > 0

fOt, 1, p) = FO(t, ki, p) coskaxa), (3.107)
fO(t. p) = Li f fO(, x1, p)e ¥ edxy. (3.108)
1 JL,

The same reconstruction using Fourier series is useE(ﬁ)and B(31).
Now performing a linearization of (3.100)-(3.102), and applying the EEouransform (3.108) on the
system leads to

of® () _ o am9fo ey sy dfo
7 + |k1V]_f( ) = VZB3 a—pl + (E2 — V183 )a—pz, (3109)
JEW JPN

L = ka8 - I (3.110)
oBd .
a—f = —ik;ES. (3.111)

At this point it is worth noticable that we restrict to space Fourier transfard,do not perform Laplace
transform, that would face the complex treatment of branch cut intbemplex plane.

Instead, equation (3.109) is integrated in time. Then it is multiplieedhgy and finally integrated over
momentum

2

{
i) = Ma(t) - fo ED()Koo(t - t)dt

t
- fo BO(t') (Kaza(t — 1) — Kara(t — 1)) d, (3.112)
GED PR
a_tz = —ikyBY — 75, (3.113)
oBY .
(9t3 = —ik ED, (3.114)



104

where:
afo —iklvlt 3
Koo(t) = » Vza—pze d°p, (3.115)
Ma(t) = — fR V2 At = 0, p)ekavatglp, (3.116)
Kz21(t) = L 3v§g—g)je‘ikl"1td3p, (3.117)
9o ikt g3
Ka12(t) = . vzvla—pze d°p. (3.118)

The system (3.112)-(3.114) can be simplified following several remarks
o Ko21(t) — Ka12(t) = O: the termv x B has indeed no influence on the energy evolution.

¢ Using spherical coordinatek, » andM; can be greatly simplified.

oo 4
Koaka,t) = =2 [ fo(pl Guaptizeldp >0, (3119)
BJo vy
p -
I(a) = f sin3(9)éa°°s(9)d9=%(S'”(a)—cos(a)) Vt>0,acR, (3.120)
0
10) = 4/3. (3.121)

Then the systeif8.112}(3.114)can be solved numerically,
with a simple inversion of a linear system,
at a prescribed accuracjg0].

3.12 Appendix: Initialization for the generation of a single X-mode plasma
wave

This test case stands as a validation for the couplings of Vlasov and Magquations. We determine
initial conditions that trigger a plasma wave at a given wavelength. To délasgv-Maxwell equations
are linearized, setting = f©@ + fO, E = EW, B = BO + BM around the equilibrium staté =
fO E = 0, B = BO. In this appendix, we use the normalization (8.49)-(3.80). We assumealjgerio
boundary conditions. The fluctuations of the total pressure tensoegteated with respect to those of

the magnetic field.
, : an 0] . .
Using the conservation Ia\%Y + 6% = 0, the former hypothesis lead us to solve the system of six

1
equations with six unknowit?, j P, ED, ED, B andn®
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(@
%%+EP+§%Q:O,
3j{1)
—%+E9—§%P:o,
ontd .
at "+ axll(ll) =0,
) (3.122)
B o

o o)
OE; _ 10857 4w
Ay B T
0B3 _ _aE2
ot 5X1 '
Applying time and space Fourier transform to this system, and identifyingéfazsmponentsr!) =
nexpiwt + ik1x1)), the following system is obtain

—iwjl + él + B(O)jz =0,
—lwjz + B2 - BOj; =0,
Ciwh+ikij1 =0,

ikiE; = -1,

oA 1. -~ =
—lwEy = —Elleg + ]2,
~iwBg = —ik{Ey .

The dispersion equation of this system reads

VI A v -1 . (3.123)
pPu? T WX (w? -1~ |BOR)

In this equation, the plasma frequencyJse. = 1 and the cyclotron frequencyds, = 0elBO)||/m, that is
1B in this dimensionless case. The perturbation term of the distribution functiaitiak time can be
determined for a particular solutianof this relation dispersion.
The Fourier transform is applied on the linearized Vlasov equation

L 9fO . 9f@ of of

—iw +ikyv))f — Ej—— — Ep—— — BOw,— + BOy,— = 0. 3.124
( @+ 1K 1) ! 6V1 2 (9V2 25V1 * 13V2 ( )

This equation is expressed in cylindrical coordinates
{ Vi =V, cos{),

V2 = v, sinE),
V3 =V

where ) 12
{ vy = (Ival® + [Ival?) 2,

Vv
tan() = V—i .
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Recalling that:

of of of
va = MVVVJ_ + %Vvlﬁ + a_\/”VVVH y
ov,
ng = cos() ,
VvV, .
— =SIn R
e )
V== sing)
5T
8_\/2 = [ COS@) s

with Vyv, = &, Vyv, = &, andV,v, = &, whereg are vectors in the local basis. Settin@(||v|[?) =
. W I |
(27)? exp(-¥5), and writing

(vAB).V,f = (Vyf AV).B = —B<°>Z—L, with B = (0,0, B©) ,
the kinetic equation (3.124) becomes
. f N A
(—iw + ikav, cos@))f + B(O)g—lﬁ + fOUVIPVL(ELcosg) + Exsin@)) = 0. (3.125)

In order to solve this equation, we decompose the distribution function asreeFseries

+00

f= Z fo(v, ).

N=—0oc0

Then from (3.125),

Z (—iw + ikev, cosgy) + iNBO) f.e™ = —fO(v|I?)v. (E1cos@) + Eosin@)) .

N=—oc0

Multiplying this equation by™, integrating from 0 to 2, we obtain

+00  on .
> f €™ (“iw + kg, cos) + inB®) fred™dy
0

N=—o0
o R
= —fOv|P)v, f ™ (E; cos{) + Eo sin@))dy . (3.126)
0
Form = 0, terms are dierent from zero only fon = —1,0, 1. From (3.126) comes
kv, f1 — 2wfo+ kv, f1 = 0. (3.127)

Form= -1, R R ) R R
kv, fo — 2i(w — BOYf; + ikyv, fo = —fo(VP)V. (E1 —IE)) . (3.128)
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Form=1,

ikev, f o — 2i(w + BO)f_q + ikqv, fo = —FO(VIPVL(EL +iED) . (3.129)

The casen = —2 involves s,

ikev, f1 — 2(w — 2BOYf, + ikyv, f3 = 0. (3.130)

In the same manner the case= 2 involvesf_s,

ikiv, f3 — 2(w + 2BO)f_, + ikev, f1 = 0. (3.131)

In order to close the system, the compondntsand f3 are neglected, and we deduce from (3.127-3.131),

2w+ 2B f o +ikyv, fq = 0

ikv, o — 2i(w+ B, +ikyv, fo = —fOUVIPVL(Ey +iEy),
R kVJ_ f_1 - 2wfo + leJ_ fAl = 0,
ileJ_ fo - 2I(a) - B(o)) fl + ileJ_ f2 = _f(o)(IIV”Z)VJ_(El - iEz) s

ikiv, f1 — 2(w — 2BOYf, = 0.

The solution of linearized Vlasov equation can be calculated

ftxy) = FOOMP) + D52, fofvy)er oo,
El(t, X) — éle_iwt+iklxl ,
Ext,x) = éze—iwt+ik1x1 ’

B(t, X) = B(O) + Bge_i‘”t+iklxl .

The dispersion relation (3.123) provides with a particulahen we obtain the following results for the
construction of the initial solution,

2
f(O,x,v) = f(O)(”V”2) + Z fAn(VJ_)eiklenz//
n=-2
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With the expressions

f_ . . . an . . . .
— 2 = i(~40%E; - 4iw3Es + 121w?BO E, + 120w2BO E; - 8|BO)w E,
fO(|v|2)D
+ kv, 2w By + 3iki2v, 2w B, — 8ilIBOPw E; — 4ikiv, 2BO Ep)v, 2Ky,
f_ s . - . _ .
— =t = 2iv, (B1kv, 202 + 4iBO w3E; — 16|BO)Pw E; — 16iBOPw B,
fO(IvI>)D
+ BiBo kv, 202 — 4B w* - 8iEski2v, 2IBO? + 2ki2v, 2BO) o By
+ 20k, 2BO w By + 16 B IBOPw? + 16iE; IBOPw? + 4BO 3E;
- 4iE,w?),
LA = 2iv, %k (16]BOPw By + ki2v, 2w E; — 40%E; + 41w?BOE,
fO(|v|2)D
— 16i|IBOIE, + 2iki2v, 2BO Ey),
— = 2i(-2BO + w)v, (~4ik2v, 2BO B, + kv, 2w By - 3iki 2V, 20w B
fO(|IvI2)D
~ 120?BOE; + 12iw?BO) B, — 403E; + 4iwE; — 8|BO)Pw E;
+ 8ilBOwEy),
fA2 _ 2 1.2y, 2R0) F 2, 2, F 2 2, B 2R0) £
W = ikyv “(-4iky“v, B Es + ki7v, “w E1 — 31KV, “w Ex — 12w°BY Eq

+ 12iw?BO B, — 4w3E; + 4iw3E; — 8]BO)Pw By + 8iIBOw By),

where

D = w (64/1BO)" = 16k;2v, 202 + 16w + 16k2v, 2IBO| + 3k, 4 — 80|BO) w?).

kiv, being small with respect t8© andw, for this particular applicationv( must be considered in

the range where the equilibrium distribution functi&f®(||v||?) = (27r)% exp(—@) does not vanish. If
BO = 2, w ~ 5 andk = 27/25, thenkv, < B©, w), the numerical powers dév, can be neglected
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compared to these terms. The solution can be written

£ o o
——— = iV, %k (-4w%E; - 4iw’Es + 12iw?BO E
OV 1K1 (-4 w’E;r - 4iw’Ez + 12iw 2

+ 120?BOE; - 8|BO w E; - 8iIBO w Ey),

f_ _ _ . . _ . .
— 1 = 2iv, 4iBOW3E; - 16/BO)w B - 16i|BOPw B, - 4B o
fO(IvI?)D

+ 16E;|IBOw? + 16iE, [|BOPw? + 4B w3E; — 4iE, wd),
— 0 = 2iv, 2K (16|BOPw E; + ki?V, 2w Bl — 40%E] + 4iw?BOE,
fO(IvI>)D

- 16iIBO’Ey),
— 1 = 2iv, (w-2BO)(-120?BOE; + 12iw?BO E, — 403E; + 4iwE,
fO(|IvI[2)D

~ 8|BOwEy + 8ilBO wEy),

f, . . . . e an
——= = kv, %(-12w?B E; + 12iw?BO B, - 40w%E; + 4iwE
D ikav, <( w 1+ 121w 2 w’Eq + 4iw’Ey

~ 8|BOPwE; + 8B wEy),

where . )
D = w (64/BO|" + 16w* - 80|BY)|“w?).

We choose to initialize the perturbation from the amplitude of the magnetic field:
Bs; = AwhereA € [0, 1].

Then from the system (3.122) and the dispersion relation (3.123), wecdéhe values of1, E, and
thus reconstruct thé,

. A 2 2 A
~iBs (w82 - w?a? - B2 - IBOI W’ + 1B k?) . B,

1= k]ﬂZB(O) ’ 2 = k_l
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4.1 Introduction

In this chapter, we shall adress the issu of discontinuous solutions eled#rostatic collectivefiects,
and therefore restrict to Vlasov-Poisson systems.

The Vlasov-Poisson system is a model for the motion of a collisionless plasindeacribes the evo-
lution of the distribution function of particles, solution of the Vlasov equatiomleutthe &ects of free
transport and self-consistent electric fields given by the Poissortiequalere, we consider a dilute
electron gas emitted at positior= 0 and absorbed at= L. It gives rise to a honlinear system of equa-
tions with boundary conditions. Under an external voltage, the dynamissabf a problem is modeled
by the following system [15, 17]

of of of
ﬁ+v&+E(t,x)E_O, t>0, (x,v) € Q;
8¢ 4.1)

9 . :
_W(t’ X) = p(t,x), EtX = —&(t, X); t>0, xeQ;

f(O,x,v) = fo(x,v), (XVv) € Q;

whereQ = Q xR with Q := (0, L). We define the macroscopic charged densftyx) and the related
current densityj(t, x) by

p(t,X) = foo f(t,x,Vdv, j(t,x) = foo vi(t, x,v)dv, (t,xX) e R x Q. (4.2)
Here, the boundary conditions for the electron distributi¢inx, v) > 0 are given ak = 0
f(t,0,v) = g(t,v) =0, v > 0O; (4.3)
andatx =L
f(t,L,v) =0, v<O; (4.4)

and external voltages are givenxat 0 andx = L:
#(t,0) =0, ¢t L)=-At) <0, t=>0. (4.5)

Mathematical study of such nonlinear boundary value problem was initiatld pioneering work of
C. Greengard and P.-A. Raviart [15], in which stationary solutions@msteucted. A higher dimensional
generalization was given in [19] and [8]. On the other hand, for thedyecal problem of plane diode
(4.1)-(4.5), weak solutions can be constructed as in [7]. Finally, tgc¥nGuo et al. give a complete
existence and uniqueness proof for the present model (4.1)-(ZJgijtl for the Vlasov-Maxwell system
[14].

The aim of this paper is to propose a high order finite volume scheme for éhdiorensional Vlasov-
Poisson equation over an interval and to analyze its convergencee bir tmo dimension, the numerical
resolution of the Vlasov equation is often performed using eulerian metfibése methods are strongly
inspired by the discretization of conservation laws in fluid mechanics [4,128]y consist in a discretiza-
tion of the phase space,{), which is done by following the characteristic curves at each time step and
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interpolating the value at the origin of the characteristics by polynomial [3R, This interpolation
method works well for simple geometries of the physical space but doeserot to be well suited to
more complex geometries. We refer to [13, 1] for a review of the literaturthisrtopic and notice that
more recently, J.A Carrill@t al [5] propose new schemes based on WENO reconstructions, which are
particularly well suited andf&cient for the study of discontinuities propagation.

Another type of schemes for the Vlasov equation is the finite volume type methdidiX balance
method), where the discrete unknowns are averages of the distributiotioiu on volumes paving the
phase space. These unknowns are updated by considering incordingtgning fluxes leading to mass
conservation. A high order scheme of this type was introduced by J.B.&uai D.L. Book [4] for trans-
port equations and later F. Filbet al. proposed an improved version of this scheme, called the Positive
and Flux Conservative method (PFC) [12, 13], which is not only caagige, but also preserves the
positivity and the maximum value of the distribution function. The scheme was imptedhap to third
order accuracy. Let us also mention related papers where the cengergf a numerical scheme for the
Vlasov-Poisson system is investigated. On the one hand, J.{Bah&€] proves the convergence of a fi-
nite difference scheme for the Vlasov-Poisson-Fokker-Planck system paratsrms are approximated
by a characteristic method whereafwkive term are treated by a classical finit&etience operator. On
the other hand, N. Besse studies the convergence of semi-lagrangiardmathsmooth solutions to the
Vlasov-Poisson [2] but it seemsfiicult to adapt this methodology for discontinuous solutions. Thus,
F. Filbet performs a convergence analysis and gets error estimatesrote adlume scheme [10, 11]
for weak BV solutions allowing discontinuities to occur, but this scheme is only first ondérianot
enough accurate to get a good approximation of the distribution functiore, Me extend the analysis
to second order finite volume schemes and investigate the case where tilmmsohy be discontinuous.
More precisely, the purpose of this work is to prove the convergeneeseicond order finite volume
scheme for the dynamic of plane diode model problem in plasma physics, naneetne-dimensional
Vlasov-Poisson system with boundary conditions with respect to the spaeble.

We first present a second order upwind finite volume scheme computingixies thn the boundary
of each cell of the mesh. Thus, from &ff estimate on the velocity moments fjf we obtain a bound
on the discrete electric field W-*. We next give a weaBV inequality which will be useful for the
convergence of the approximation to the weak solution to the Vlasov-Pagstam.

4.2 Numerical scheme and main results

In order to compute a numerical approximation of the solution of the VlasissBo system, let us
define a Cartesian mesh of the phase spdgeonsisting of cells, denoted 16 j,i € | = {0,...,nx—1},
whereny is the number of subcells of (D) and j € Z. The meshM, is given by an increasing sequence
space.
Let AX; = Xi4+1/2 — Xi—1/2 be the physical space step afvd, = vj.1/»> — vj_1/2 be the velocity space
step. The parametérindicates
h= rTih’j:’t)({AXi,AVj}.

We assume the mesh satisfies the following condition : there exist§), 1) such that for alh > 0 and
(i,])) e I xXZ,
ah<Ax <h, and ah<Av;<h (4.6)
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Finally, we obtain a Cartesian mesh of the phase space constituted of cahtiles
Cij = (Xi—1/2, Xi+1/2) X (Vj-1/2,Vj+1/2) forielandjeZ.

In order to work with a bounded domain, we will truncatévat= vy (v, sufficiently large which will
go to+o0 ash — 0) and we denote by the following set

J:={j€Z, [|Vjl £Vn}.
Let At be the time step anil = nAt andx; (resp.v;) represents the middle oki[1/2, Xi+1/2] (resp.
[Vj-1/2, Vj+1/2]). We set the discrete initial datum as

o 1

0 - = fo(X, v)dxdv
LTAX AVJ‘ c 0( )

Forn > 0, we define a sequencf;n o j» which is assumed to approximate the average of the Vlasov
eguation solution (4.1)-(4.5) on the control voluyg. Itis given by

frrt = £ - A—Xi[?'m/z,j = Fi-y2jl - A—\/J_[Qi,j+1/2—§i,j—1/2], (4.7)
with
|
Firr2j = V+ f|+1/21 - VJ— fir+l/2,j’
(4.8)
Gij+12 = Em f||]+1/2 En_ flrj+l/2’
wheref! andf' are second order reconstructions with respect to the space varial§ L) of

i+1/2,] i+1/2,]
the distribution function

| _ n . . n n
fizj = fij + vz [fi+1,j - fi,j]’

(4.9)
fir+1/2,j = firJ]rl,j — Oi+3/2,] [firlz,j - firll,j]’
with the sloperi, /2 j given by the minmod limiter
0, |f(fl+1] fi[‘j)(fif‘j " 1J) <0,
|1:'n'_firll,jl AX . |f | l]| |fl+lj IJ|
i <
Tir1/2) =\ 1f — N A%+ AXiog Ax. +AX_1 ~ AX + AXigr (4.10)
A% else
AX; + AXir1’ '
Also f' i+1/2 andf! 12 1€ built using the same type of reconstruction with respect to the velocitg spa
veR for the quxgI j+1/2
|
f 12 = fi?j * Oi,j+1/2,] [fir,]j+l - fir,]j]’
(4.11)

r _ n . n n
fi+1/2,j = fi,j+1 - UI,J+3/2[fi,j+2 - fi,j+1]’
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with the sloper j.1/2 given by the minmod limiter

0, it(E,, — £ () - 1) <0,
15— il A, o 5 = Wl 165 — B
Oij+1/2 = |fif‘j+1 — fif‘jl AV + Avj_q AVj + AVj_1 ~ AVjs1 + Avj’ (4.12)
AVj |
29 e Se-
AVj + AV

Let us notice that in this paper, we only consider the case of minmod limiterseocameasily apply
the present analysis to classical limiters as superbee, etc. These canaig@tficent to compute some
approximations but we add some limiters useful to prove an error estimate: rigre exist,, Ko > 0
andp € (1, 2) such that

gisa2j(f = £ )% + oijaa(fl - D% < KW, V(i j)elxZ (4.13)

This conditions are used in section 4.3.3 only, for the consistency result.
The valueE is an approximation of the electric field oxi[1/2, Xi+1/2] given below by computing an
approximate solution of the Poisson equation. To complete the scheme forptexiamation of the
Vlasov equation, we impose boundary conditionsxorfo do this, we define two approximatiomgl,j
and fr?x’j on “virtual cells”, given by

f—nl,j = g? =gt v), ifvi>0, je]

(4.14)
fr =0, ifvi<0, jelJ

Nx. ]

and to define slope limiters in the neighborhood of the boundary we also imaposelope condition,
thatis,f_oj = f_1; andf, ;1 = fn,j. We also set

Gij+12 = 0, for (i,j)elxzZ\Jd
Thus, we are able to define the numerical solution approximating the solutibae ¥fasov equation
onQt := Q1 xR by

fif‘j, if (t, %, v) e [t", t"1) x Cijand{,j)elx]
fn(t, X, v) =

0, if V| > Vh.

Computing moments iw of the distribution functiorf,, we define the discrete charge and current densi-
ties for ¢, x) € [t", ™) x [Xi_1/2, Xi+1/2):

fR fiat, X, V)dv = > Av; Y} = pf!,

jez

Pn(t, X)

jint,x) = fR vt x Vv = AV =

jez
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Now, to complete the scheme we apply a finite volume scheme to the electric fialdsaqg Let us
denoteE" an approximation of the electric field imi(1/2, Xi+1/2) given by

EN

L —E'=Axp], for i=0,....,nx—2 (4.15)
and is supplemented by the following condition, which comes from the disco&tatial

ny—1
DTAXE! = At - 0= A(t"). (4.16)
i=0

We compute a continuous approximation of the discrete field such that

En(t",x) = E,
{ 4.17)
En € Qu([t" t™1] X [Xi-1/2, Xi+1/2]),

where Qq([t", t"1] x [x_1/2, Xi+1/2]) represents the space of polynomial of degree one"int"f1] x
[Xi-1/2, Xi+1/2] such thatE, € W-°(Qr) andEp is a piecewise constant approximation given by

En(t.X) = E[, for (t,X) € [t"t"") X [Xi_1/2, Xi+1/2)-

We introduce the space
BV(Q) = {ue LYQ), TVo(u) < o}

where
TVo(u) = SUIO{ f u(x V) divye(x, V)dxdu ¢ € CP(Q), lp(x VI <1, V(xV) e Q}-
Q

We shall now prove the following theorem of convergence for the numleajgproximation.

Theoreme 3. Assume for some p 2, fo(x, v) and dt, v) satisfy: forall T> 0

)
TVo(fo) + f f [L +Vig(s V)Avds+ [IVP folle + IMP glles < . (4.18)
0 v>0

Let My be a Cartesian mesh of the phase space anhde the time step satisfying the CFL condition :
there existg € (0, 1) such that
% (le| Ca

> A—Xi+A—Vj)sl—§ Y(@i,))el xJ (4.19)

Al 0 T
C,= + 27 + V oh(t, v)dvdt].
L 0 Jv=0

We consider the numerical solution given by the scheme (4.7)-(4.12)tede by {(t, X, v), and the
discrete self-consistent field,& x) given by (4.15)-(4.17). Then we have

with

fut,x,v) — f(t,x,v) weakx in L*(Qy) ash— 0,
En(t,X) — E(t,X)inC(Qr) ash-— 0,
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where(f, E) is the unique solution to the Vlasov-Poisson system (4.1)—(4.5), that is tesafunctions
which belong to

T := {p € C}([0,00) x (O,L) xR), ¢(t,0,V) = o(t,L,-v) =0, VYv<0),

fQT f(t, x,v)

T
LT fo(X, V)e(0, X, V) dvdx + fo Lov [o(t,v)e(t,0,Vv)] dvdt = O

and for the electric field

we have

%_f + v%(t, x V) + E(t, x)g—t(t, x,v)]dxdvdt+

(;_Ii =pt,%), VY(t,x) €[0,T]xQ,

supplemented with boundary conditions.

4.3 A priori estimates

In this section, we will give some properties satisfied by the numerical gjppation as well as by
the solution of the continuous problem. We will first prove some propertigh@udiscrete distribution
function f,. From these estimates, we will also give &t estimate on the electric field,. Then, in
Proposition 5, we will obtain a uniform bound P f, in order to obtain ah™ estimate on the moments
in velocity of f,, and finally aw’* estimate on the discrete electric fielg.

4.3.1 Basic estimates

Proposition 4. Assume thato{x, v) > 0 and (t, V) > O satisfy : forall T> 0

=
f f [1 +V]lg(s v)dvds+ | follLe + [l + [Ifoll .z < +oo.
0 v>0
Let My, be a Cartesian mesh of the phase space anbe the time step satisfying the CFL condition:
there existg € (0, 1) such that for all ke {0,...,n}

At
AX; Avj

(AVj Vil + A% [EM) < 1—¢ V(i,j) el xJ (4.20)
Then, we have
(i) the discrete distribution function at tim&t satisties the following maximum principle
0 < % < max(lfolls, ligl=); V(i) € 1 X Z; (4.21)
(i) the discrete density functigm(t"*!) satisfies

n
0< > Axipl™ < 1%+ ) > Atavvi gt (4.22)
iel k=0 jeZ
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(iii) the discrete electric field is bounded

(n+ )
EMY < 22 2|11 + Z Z AtAV) v ¢ (4.23)
k=0 jeZ
(iv) the CFL condition (4.20) at iteration # 1 is satisfied.

Proof: We start from the scheme (4.9)-(4.10) and first introduce the following limitéor (, j) € | x J

| _ n
f|+1/2] = f +0—|+1/21[fl+1] fl,j]’

fl,] * S+1/2 [fl,j |—1,j]’

with

0, n‘(fI+1J fif‘j)(fif‘j N 1J)<0

|f|+l] | AX . |1:|+1] f|r,1j| < |fn | 1j|

Sw12j =9 [fh - f0 lJ| AX; + AXis1 AXi + AXip1 ~ AX + AXi_1’ (4.24)
A% else

AX; + AXi_1’

and
fir+1/2,j = firll,j — Oi+3/2,] [firlz,j I+lj]

n n
= fi+1,j - S1'+3/2»J'[fi+l,j - I,J]'

Also, fI 4172 and fI 'i+1/2 Can be re-written in a similar way
[
fliv12 = fif]j + S,i+1/2[fi?j - fir,]j—l]’
fitj+l/2 = fir,1j+l - S»]+3/2[fi?j+l - 1Eir,]j]’
with
0, if fI 1 fif‘j) (fif‘j - fif‘j_l) <0,
If| NES | AVj . If| L+l f||,P]j| < Ifir,]j Ij l|
a2 =9 Iff - ij—l| AV + AVji1 AV} + AVji1 ~ AVj + AVj1’ (4.25)
Avj else
AVj + AVj_l, '

where we observe that 8 s j.1/2, S+1/2j < 1. Using the scheme (4.7)-(4.12), we explicitly write the
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value of the numerical solution at iteration+ 1, in terms of the values at tinte in a better way,

VTAt

it =6 - Ax |1+ suaz = oiczg | (B = £20)
+ \g—it [1 — S+3/2j + 0'i+1/2,j] (firll,j - fir.]j)

_ Efvjm [l +Sj+1/2 — O'i,j—l/Z] (f7 - 1120

Ei_vjAt [1 —Sjs32+ 0'i,j+1/2] (= ).

Under the stability condition (4.20), the discrete distribution funciﬂi(jﬁL could be written as a convex
combination offif‘j, firjl’j, fijl’j, fif‘j_l, fif‘j+1; it yields the nonnegativity ofif‘;f1 forall (i, j) € | xZ. Thus
we get the result

0 < £ < max(|ifolle, ligll) -

Now, we give an estimate of total mass evolution : koe {0, ..., n} we multiply (4.7)-(4.12) by
Ax; Avj and sum overi(j) € | x Z. It gives,

kil - '
DT A AV A AV T VL L

(i.))erxz iz
k - £l
= Z Ax; Avj £ + AtZAvj [v]r fly0)+V fnx+1/2’j].
(i.f)elxz iz

Then, using boundary conditions (4.14), it yields
k+1 - £k k
AX AV S+ ALY Ay [ Vi S VTR
(i.i)elxz jez
k k
= Z Ax; Avj £ + AtZAvj Vi
(i,j)elxz jezZ

and summing ovek € {0,...,n} we get

n
1 -k K
2 ANV D D AAv [V g+ v
(e <0<

= Z AX; AV fif’j + iZAtAVj v g'j‘,

(i.i)elxz k=0 jez

which gives the result
n
Z AX p™ < (19 + Z Z AtAV; v gk,
iel k=0 jez

Now, let us prove that the discrete electric field is bounded at iteratienl. The argument is
the same as in the continuous case: using the scheme (4.15)-(4.16), avEghév: Cc™1! and for



i-1
Cn+1 4 Z AkaEJrl
k=0

|EM

B

n
< CULa %L+ ) > AtAY v df,
k=0 jeZ

A

whereC"™! is such that the relation (4.16) is satisfied at iteratianl, so that

A + Y AL = Xoay2)
Cn+1 — i€l

L 9
which proves (4.23)

1 tl"l+1 n
[EMY < % #2[ 1%+ > ) AtAv v gk,
k=0 jeZ

Finally, from this latter bound we check that the CFL condition (4.19) is satistitichen+ 1. O

4.3.2 Estimates on the electric field

Now, let us give a uniform bound dwP f;, for p > 2, which will lead to a uniform bound on the and an
estimate on first moments, and j, throughout an energy estimate.

Proposition 5. Assume that for p- 2 and for all (t, X, v) € Qr
VP fo(x,v) + MPg(t,v) < e
and|||lwi~ < oo. Then, there exists{> 0, ony depending ongfg, A anda, such that

0 < max|vj-1/2” {7} < Cr. (4.26)
1] ’

Moreover, there exists{> 0, for all (n,i) € {0,..., Nt} x I,

1
EPL - ED
At

ED EN

i+1

AX

< Cr. (4.27)

Proof: Forp > 2, we multiply the scheme (4.7)-(4.12) |wy_1,2|P and using the reconstruction proposed
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in (4.24)-(4.25), we have

V-2l 5 = vl
_ VTAt [1+S Lo ](|V |p fn —|v; |p fn )
AX +1/2,] i-1/2, =172 i j=1/200 Yioaj
L oA |1 - siar2) + oisarz| Vil £y — Vica2l® £7)
AX S+3/2, i+1/2,j [ UVj-1/21" Tiyq j-1721" 1§
EM At
- IAvj |1+ 8 js12 = oijoasa| (Vi-j2l® £ = vj_aal® £_y)
EN- At
i e - o PEN e . oPEN
+ AV [1 S,j+3/2 + (Tu,;+1/2] (IVir1s2l® fij 1 = IVir2l® £5).
EM At
_ i - . . P _ v Py fn
AV [1 +S,j+1/2 0’.,;-1/2] (Ivj-3/2l Vi-1/21") fij_1
EN- At
IA [1 — S j+3/2 + 0'i,j+1/2] (Vi-1/21P = Vjs/2l?) s
Vj ,

Then, using thahvj+1/2|p - |Vj—1/2|p’

IA

P (1 + vj-1/2|P) Av; and from the CFL condition (4.20), we get

1
ni]?-mvj—l/ﬂp fit]j+ }

IA

rTg?X{IVj-l/zlp fi?j}

¢ 3PIIEnlIL-

A
2a

(r??ﬂle—l/zlp fl} + ||fh||L°<>)-
It finally yields using a discrete version of Gronwall's lemma and taking int@actboundary condi-
tions
3plEnlli
rTi1<]_:1><{|Vj—1/2|p fil) < (W?ﬂle—l/zlp[g? + 21} + 11 fa(O)llLs + ||gh||L°°) eXp(pz—aL tn)-
We remind that in Proposition 6, we have already seenEhat bounded irL®. On the one hand from
the latter estimate, we can prove a uniform upper bound on the discrefgydens

AVJ' C
<
IVj—1/2IP

Pl = ZAvj £ < Il + ﬁg?x{lvj—llep fi) Z

jez IVj-1/2121
Therefore, from the finite volume scheme &t we get

E,-E

1+1

= p' <Cr.
AX| pPi =71

On the other hand, we give a uniform upper bound on the jump

1
EM - E
At '
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Using the finite volume scheme fd" (4.15)-(4.16) and the scheme for the distribution functfﬁp
(4.7)-(4.12), we get a new formulation

Ein+l _ Ein B cmnl_cn . i prk1+1 ‘PE
At AU 4T A
B Cn+1 _ Cn - .
= T At liz2 + 12qy20
with
. I _
Jin+1/2 = ZAVJ' [V}r fii12) — Vi fir+1/2,j]’
jezZ
or
BB Ao Iy,
B Sy v FSVP —[Z k Jke1/2:

kel

It remains to get an upper bound ';ﬁ[l/z, which can be done from (4.26). We have fox 1

A

n Tt ol —£r
Jiv2l < ZAVJ Vi fiia2) + Vi fihayels
JeZ

4 Z AVj (l + |Vj_1/2|) fi?j < Cr.
jez

IA

Thus under the assumptiare W-*(0, T), it yields

£ -

<Cr.
At | T

4.3.3 WeakBV estimate for f,

The following lemma will be useful to obtain the convergencef () to the Vlasov equation solution.

Lemma 4. Under the stability condition (4.20) on the time step and the condition on the (g€5h
assume the initial data belong td(Q) N L*(Q). Consider R> 0and T > Owith h < R andAt < T.
Let jo, j]_ e Z and Nr € N be such that-R € (Vjo_]_/z, Vjo+1/2)’ Re (le_]_/z,le+1/2), and T e ((NT -
1)At, Nt At). We define

Nt 1

n=0 il j=jo

i
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and
Nt j1
EFon=At Y > > A AV - ) (4.29)
n=0 iel j=jo
Then, there exists € 0 depending only on IR, fo, @, £ such that
EFin < ChY2 and EFRy < CAtY2 (4.30)
Proof: Multiplying the scheme (4.7)-(4.12) byx; Av; fif‘j and summing over € {0,...,nx -1}, j €

{io,..., 1}, andn € {0,..., Nr}, it follows that

Bl + Bz = O,
where
ni,j
B, = AtZ AV [Fisrjz = Fi-172j] T + A% [Gijr1/2 = Gij-172] £
n,d,|
Noting that
[fn+1_ f ] f __[fn+1_ fIJ]Z__(fIJ)Z _(fn+1 2’
then
- __ZMAVJ[f”” -1 - ZAx.Avj(f ZAX.AVJ(fNT+1)2
n,i,j i,j

By scheme (4.7)-(4.12), we have

ZAx.Av,[f”+l — 12
ni,j
A 2

ni,j
AV vy (1— S+3/2j + 0'i+1/2,j) (7 = fle)) +

AX Ei”Jr (1+ S,j+1/2 — O'i,j—1/2) (fi?j - i,i—l) +
2

AX B (1= s jegz + oijeage) (£ = £1,0)
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Using the Cauchy-Schwarz inequality and the stability condition (4.20), #astsCy > 0, only de-
pending onfy, such that

By > (l &) Z[AVJ i 1+S+1/21 Ti- 1/2]) (f firll,j)z

n,i,j
AViV: (1= Sia0i + Tis1oi) (F1 — £, )2
+ AV VJ- ( S+3/2, +0'|+1/2,J) ( ij i+1,j)

+AX B (1+ 81172 = oijoaz) (7 = £

+AX BT (1 TSzt o—i’j”/z) (f - fi?j+1)2] - Co.

Now, we study the ternB,, which may be rewritten aB, = By1 + B2 WhereB,; is the contribution of
the first order approximation

At )
BZl = E ' [AVJ V-j'— [fll?J - firll’j]z + AVJ Vj [fll:]] I+l J]Z
n,i,j
Ax B[R = £ 407+ AT L] - fir,]j+1]2]
At
i Z[AX' B (113,07 = (6] + A% B [(£3)% - € M)Zl]
n,
At , ,
+ E nZ[AVJ V] [(f (flo 11) ] + AVJ VJ [(flg j (f|1+1l) ]:|

andBy; the contribution of the second order term

Bz = At Z AV [ViTsij2 = icap I BT = 601+ VilSiara) — oz ) [y — B3] 6 +

n,i,j
AX; [Ein+ [sj+1/2 = oijo12d [ £ = Fioa] + B[S jea2 = oijeasal [0 = fi?j]] f

On the one hand, from the estimates on velocity moments in Proposition 5, weagétahe exists a
constantC; > 0, only depending ofi and fy, such that

B = ZZ[AV‘VJ” = a7 AV VT T = R 07 +

n,i.j

Ax EM A - fi'jj_l]2 + Ax B[ - fi'jj+1]2 - Ci.
On the other hand, using that

S+1/2,J'(fi?j - firll,j) = O'i+l/2,j(firl1,j - fir,]j)’

and
S,j+l/2(fi?j - firjj_l) = 0'i,j+1/2(fir71j+1 - fi?j)’
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we prove that there exists a const@at only depending off and fp, such that

By > —At Z[Avj (Vi iy [F] = 20 0% + V) Suaga [6 = £14,07) +

n,i,j

Axi (B o joae [ = 1207 + B sijuspa[ ) - fi',]j+1]2)] - Ca

Then, sinceB; + By1 + By = 0 the following inequality holds:

&AL

o> 2| AV I = 0% A v [ = 6 1

i+1,]

n,i, j

+AX B[ - %+ A TR - 1407

IA

At ZAVJ' Vil [Sisa/2) + oica2j] LR — 2007 + AXIE[S jrajz + oijoas2) [ = £)?
ni,j

+Co +C1 +C2.

Therefore, using hypothesis on the limiters (4.13), there exists a costan®, only depending orfi,
T, Randé, such that

At 2 _ 2
> Z AV VTR = 1012+ Avy vy [T — 60 02 +

ni,j

Ax EM [ - fi'jj_l]2 + Ax Ef [ - fif‘j+1]2 ,

(@]

< E (1+ KhB_l).

Finally, the previous inequality and the Cauchy—Schwarz inequality lead to

EFin < [AtZAVJ VI = £ 50+ Avy v [ = £ 02
n,i,j
1/2
+AX B IR = £ 1%+ A E L] - fi?1+1]2]
1/2
x| At Z AXE(AV] Vj] + AX IE{‘I)] ;
n,i,j
1/2
<

hl/z(% (1+K hB—l))l/2 [ZT LR (1—6)}
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Now, we prove the second estimate bR, using the scheme (4.7)-(4.12):

EFon = At) AXAY,

n,i, j

At? Z

ni,j

n+1 n

’

IA

AN n TN n

As in the previous case, we use the Cauchy—Schwarz inequality and iigystandition (4.20). We
also recall that the discrete electric field is uniformly bounded:

C 1/2
EFo < Atl/z[ZT LR(1-&) E (1+K hB‘l)] .

4.4 Proof of Theorem 3

In a first part, we prove that there are subsequences which cengeagimit (f, E) and in a second step
we identify this limit as the unique solution to the Vlasov-Poisson system (4.3)-(4

4.4.1 Compactness of the sequenc¢é, Ey).

We consider a sequence of a mesh of the phase space defined as igitinenigeof the paper satisfying
the condition (4.6), and we define a time st&jpsuch that the stability condition (4.20) is true. This
sequence is denoted b¥1y)n-o-

For a given mesh, we are able to construct, by the finite volume schemg44L2); a unique pair
(fh, En). Thus, we set

A={Ene W""(Qr); Engiven by (4.17) for a mesivy|.
On the one hand, in Proposition 6 and Proposition 5 we have proved thiste & constant independent
on the mesh\t;, such that

9E

Enllj «
||h||L+Hat

|
15)4 L

< Cr.

Moreover, from the same estimates, we also have
IEp - Enliie < Ct (h + At)

On the other hand, using the fact that the injection fmfrf"(QT) to CO(Q7) is compact, there exists a
subsequence 0&()n-o and a functiorE belonging taC%(Qr) such that

Enh—=E inL*(Qr)weak+« as h—0,
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and

En —» E inC%Qr)strong as h— 0;
En — E inC%Qy) strong as h — 0.

Moreover, we also know by Proposition 6 that the discrete distributiontifumdy, is bounded in
L*(Qr). Therefore, there exists a subsequence and a funttoh*® (Qy) such that

fat, x, v) = f(t,x,v) inL*(Qr)weak+« as h— 0.

The discrete chargey, is bounded inL®(Q7); then up to the extraction of a subsequence, we also
have

oh(t,X) = p(t,x) inL*”(Qr)weak+« as h— 0.

4.4.2 Convergence to the weak solution of the Vlasov equatio

Lety € CZ(Qr), R> 0, andjo, j1 € Z be such that

SupRe(t, x.)) < [-R R

and
-Re (Vjo—l/Z,Vjo+1/2) and Re (Vj1—1/2’ Vj1+1/2).

Moreovery(t, 0,v) = 0 for all v < 0 ande(t, L,v) = 0 for all v > 0.

We sety]'; such that

1 tn+1
n.—_ - t, x, v)dxdvdt
Al AtAX Ay, ft qu #lt V)

and multiply the finite volume scheme (4.7)-(4.12)915{}{, sumoverl € {0,...,nx— 1}, j € {jo,..., J1},
andne {0,...,Nr = 1},
E]_ + E2 + E3 =0,

with
E 1

n,ij

ni,j
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and

Egzz

n,i,j

Avj V! j [S+1/2J Ti- 1/2]] (f.J firll,j)

+ AV V] [z - Searz| (7 = )

+ Ax E" [S,j+1/2 - O'i,j—l/z] (fi?j - fi?j_l)
+ Ax E” [O'i,j+1/2 - S,j+3/2] (fi - fir,]j.;.l)] Atg;.
Moreover, we denot&; o andE; o by

E1,o=f fh(t,x,v)a—‘p(t,x,v)dtdxdv+ ffo(x,v)go(o,x,v)dxdv
Qr ot Q

Exo = f fa(t, X, v) |V
Qr

)
N fo fvz VIgn(.0.1)p(t, 0] dvel

and

(t X, V) + Ep(t, x) (t X, v)]dxdvdt

In the sequel we will comparg; with E; o andE; with Ez to establish thaE; o + Ez goes to zero as
h — 0. We first treat the term8; andE; o and remark thakE; o can be rewritten as

Eio= Z "f go(tml X, V) — o(t", X, v)]dxdv+ f fo(x, V) ¢(0, X, v) dx dv
n,i,j
By a discrete integration by parts, it follows that

Eig = —Z(f’”l ”)f (™, x, v)dxdv

nij Ci.j

- f (fn(0. %, V) = fo(x, V) J¢(0, x, v)dxdv
Q

Thus,

tn+1

|E1 + Exol < Z|f”+1—f.,|f f
ni,j Cij

+ f|fh(0, X, V) — fo(X, V)| |¢(0, X, v)|dxdy,
Q

(t X, v)’ dtdxdv

with the discrete initial data defined, for example, by

(O, X, V) = |Cl e fo(x,v)dxdv V(x,v) € Cj;.
[ J i,
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Using the assumption on the initial daf@e L1(Q) N L*(Q), we then have
fm [ 1710.5) = fo( V) (0. x Widxdv=0
—YJQ

Moreover, from the inequality on the ter&F,, given by (4.30) in Lemma 4, we have
n+1 _ f| J| f
n,i j

|E1 + E]_’OI -0 ash — 0. (4.31)

tl’H—l

Op ‘ Oy 12
—(t dtdxdv< Cl|—=—||| » At~<.
fci,i‘at(’x’v) xdvs Cll—l

Then,

Now we deal with the termB andE, . Therefore, we first introduce the notation
EZ,l = Z | 1 J) f
n,i,j
Vi+1/2
|+1J (t’ Xi+1/2’ V)dth
Vj-1/2
+ Ein+ (fi?j IJ 1) f

tn+1
+ Ein_ (fir,]j i J+1) f

On the one hand, we compédte andE;:

tn+1

Vij+1/2
f o(t, Xi—1/2, v)dvdt

Vij-1/2
tn+

— n
+V] (fi’j

tn+

Xi+1/2
f o(t, X, Vj_1/2)d xdt
Xi-1/2

Xi+1/2
f ot % Vj+1/2)dth]-
Xi—1/2

tn+l
|Ez — E2al = va(fi'fj 1) Ax.f fc_ga(t,x,v)—<p(t,xi_1/2,v)dvdt]
n,Ll,) i,j
tn+l
G AX f __go(t, x,v)—go(t,le/z,v)dvdt]
tn+1 .

FEP (8- 119 5 f [ ettx v - ptt xvi-saaxe
(8]

tn+1

+E (] - IJ+1) AV f fc o(t, X, V) — o(t, X, vj- 1/2)dxdtm
i

Using the inequality o F1, given by (4.30) in Lemma 4, there exists- 0 depending only oif, R, L,
fo, @, £ such that the following inequality holds:

|E2 — E21l < [[VixyeliLe hY2. (4.32)
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On the other hand, we estimai& o + E; 1|, rewriting the termE; ; and using the boundary conditions,
it yields the following (we remind thag is compactly supported in velocity):

tl’Hl

dg dg
E i —(t, X, EM —Z(t, X, v)dvdxdt
2,1 L,-VJ ax( X,V) + 'av( X, V)dvdx

n| N
Vijt1/2
v gjf f o(t, 0, v)dvdt

Vj-1/2
tn+l

tn+l

Therefore,

|[Eco+ E2q| < [f
tn

||V¢||Lw D ALAX; AV £ [Av) + SuplEn(t, %) — E]]

n,i,j

A

0 9
fC” v = vl |a—i(t, V)| + |En(t, x) - E{‘||a—t(t, x, v)|dxdvd

IA

and there exist€ > 0, only depending o, R, L, fp, a, &, such that
|[E20 + E21| < Cl[Vyl|L~ h. (4.33)

It remains to estimate the last ter&. Using the definition ofs,1/2; ands j.1/2 and performing a
discrete integration by part, we get

Es = At ZAVj [VT Ji-1/2, (fir,]j - firll,j) - Vj_ Ti+1/2,j (fir,]j - firll,j)] [‘Pin_l,j - ‘Pirjj] +
ni,j
AX; [Eim O'i,j—l/z(fi?j - fi?j_l) - Ein_ 0'i,j+1/2(fif]j - fi?j+1)] [‘Pirjj_l - ‘PRj]~

However, we know that
AXi_1 + AX;
> .
and using the estimate &y in Lemma 4, it ylelds there exists a constént 0 such that

|Soin—]_1 QD|J| = || ”L (

|Esl < ClIV(xyellLe h*'2. (4.34)

Finally, recalling thaE, + E> + E3 = 0, we obtain

€(At, h)

f fr (%—f + VZ—X + En(t, X) —) dtdxdv+f fo(X, V)e(0, X, v)dxdv

E10+ E2p

El,O + El + Ezo + E2,1 - E2,1 + E2 + E3,

and from the previous estimates, we proved there exists a costagending only o, fo, L, T, «, &
such that

[Ero + E1il < C(lfo — f(O)lls + AtY2),
[Ezo — Eol < ChYZ
|E2’o + E2,1| < Ch

|Es] < ChY2
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Then,e(At,h) — 0 ash — 0.
As we know
fa(t, x, v) — f(t, % V) in L*(Qt) weak—

and _
En(t, X) — E(t, X) in C°(Q7),

we have shown that the limit paif (E) of a subsequencdy, En)n-o is a solution of the Vlasov equation
(4.1). To conclude, we have to prove that this couple is also a solution &fisson equation.

Remark 5. In practical calculation, we use a large but finite bound M for the velocitycepdn this
paper, we assume that as-kh 0, the support of the velocity space goes to infinity, and the stability
condition (4.20) imposes on us that

h2

1
Jee(0,1), = e and At =~ e S hite.

4.4.3 Convergence to the solution of the Poisson equation

We have already proved that there exists a subsequené®)afd{ andE € C°(Qr) such thatEy, con-
verges tce and||E, - EnllLe goes to zero wheh goes to zero. Hence, we know that up to a sub-sequence
Ej, converges t&. Now let us prove thaE is solution to the Poisson equation.

On the one hand, for all test functions which belon€{¢[0, T) x (O, L)), we sety! such that

tn+l

n 1 Xi+1/2 dxd
Ji= t, X)dxdt
Y XAk ft L » o(t, X)

and multiply the finite volume scheme (4.15) ByAx; ¢!, sum overi € {0,...,ny — 1} andn €
{0,...,Ny = &}, itgivesT; + To = O with

T1 o= At AXE! (¢ - ¢y)
i,n

tI’H—

T, = Zf
i,n 3

! Xi+1/2
[ et gt
Xi

-1/2

We also sefl1p and Tz

T10

~ o
En(t —(t dxdt
fQT (6 S5t %) dx

Too

f pr(t, X) ¢(t, X) dtdx
Qr

and observe thalt; = Ty and

tﬂ+l

T - Teol > AX E] f |6 = @t Xie1/2) — @0y + @t Xi41/2)] dlt
n trl
1,Nn

dy
Ct =L~ h.
T||ax||L
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The weak formulation infers that the solution of the Vlasov-Poisson syseémndps taC%([0, T[; D),
but observing the electric fiel is bounded inW-*(Q7) and the initial data are continuous, we see that
the distribution functiorf is also continuous inq v). Let us recall that under our hypothesis, the solution
of the Vlasov-Poisson system (4.1)-(4.5) is unique; then any subsegtleat we considered converges
to the same limit and the sequendg, En)n-0 cOnverges to the unique solution.

4.5 Numerical Simulations
In this section, we consider the two component Vlasov-Poisson systent, betthe distribution func-
tion of species € {g, i}; it satisfies the Vlasov equation

o, s

Qo _
5tV T m E(t, X) oy = 0 (4.35)
coupled with the Poisson equation
2
E(LX) = ~Veb(t ). —oo(t ) = 2, (4.36)
ox2 €0
where
p(t,x) = Z Pa
aefi,el
and

pa:qaffa(t,x,v)dv, aclei}l
R

In the previous analysis we presented for clarity reasons the single cemipdglasov-Poisson system,
but the result remains true for the multi-component case. We assume herg tha—g = 1 and
e = 1 andmg/my = 0.001, which means that ions are more heavy than electrons. We perfonerical
simulations for this model with a zero initial datufj= 0, A(t) = 1 and

1
g(t,v) T exp(V2/2).
In order to improve time discretization accuracy, the procedure is achigvedsecond order Runge-
Kutta scheme. We performed numerical simulations feiedént meshes and only report the results of

a simulation using a number of celtg = 128 in thex-direction, andh, = 128 in thev-direction with

Vmax = 6, and the time stept = 0.01 for the conservative finite volume scheme. For these config-
urations, numerical results are no more sensitive to the mesh and are abiegarterm of accuracy.

The evolution obtained by the finite volume scheme clearly appears to givedsaggroximation with

128x 128 points. Here, nonlineaffects are so important that it is necessary to control spurious oscil-
lation; the second order scheme is conservative and also preseviastpad the numerical solution.
Moreover, the use of slope correctors in the finite volume scheme allowsrp sfaurious osccillations.

For the distribution function in thex(v) space, some filaments become smaller than the phase space grid
size. Nevertheless, this smooth approximation seems to give a good deraripthi@croscopic values
(physics quantities obtained by the integration of moments of the distributiotidaneith respect ta).
Indeed, the evolution of the electric energy is still accurate using the derder accuracy.
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© (d)

Figure 4.1:Formation of a phase space vortex : the distribution functig(t, X, v) at time t= 12, 24, 36
and42 obtained with the second order finite volume scheme 18w 128 points.
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The processes that are at stake here are highly nonlinear andtpitssemtinuities in phase space.
They consist in the excitation of a plasma wave by injected electrons. Asdne fi@gresses in plasma,
the amplitude of the plasma wave grows and more electrons are trapped invkiasvshown in figure
(4.1). At the same time, the plasma electron are ejected through the right gl ssmulation box to
neutralize the injected charge with electron beam. The modulations of eleengitydare the result of
large plasma frequency oscillations.
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Chapter 5

High order numerical coupling with the
Fokker-Planck-Landau collision model: the
collisional multi-scale transport

137
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5.1 Introduction

In this chapter, we step towards a reference numerical solution, ablgtiaredoth (self-consistently
magnetized) collective and collisiondftects and couple them, with high anisotropy degree. We present
relevent tests for validation of the coupling between the diferent comp&nienorder to show the ro-
bustness of the method and to quantify the accuracy.

5.2 Approximation of the collision operators

5.2.1 The nonrelativistic FPL model for the collisions

In this section, we focus on the approximation of collision operators. Sireephce variable is a
parameter, we only consider the space homogeneous equation,

df

a = Cae(f, f) + Ce,l(f)’

f(0.v) = fOv),

The FPL operato€e¢( fe, fe) Stands for the electron-electron collision operator

et InA
Ceelfe. fo) = ——5 5 Vy ( f O ~ V') [ V)V felv) — fe(V)Vy fe(V)] dv'), (5.1)
8me; mg R3
whereasC(fe) is the electron-ion collision operator
Zmpetin A
Cei(fe) = ———= Vv - [D(V)Vy fe(V)]. 5.2
e,|( e) 87‘[6(2)”% \ [ ( ) \ E( )] ( )

where InA is the Coulomb logarithm, which is supposed to be constant over the domai(ahts an
operator acting on the relative velocity

_|ul?ld - ueu
lulP®

The FPL operator is used to describe elastic, binary collisions betweegechgarticles, with the long-
range Coulomb interaction potential. Classical but important properties opt@tors (5.1) and (5.2),
are briefly recalled. For detailed proofs, we refer to [11, 12]. As sgime ions to be fixed, the FPL op-
erator can then be simplified for electron-ion collisions [11], and redtméute Lorentz approximation.
We refer to [2] for a physical derivation.

D(u) (5.3)

5.2.2 Properties of the nonrelativistic FPL collision opeators

The FPL operator is used to describe binary elastic collisions betweeroakectts algebraic structure
is similar to the Boltzmann operator, in that it satisfies the conservation of massemham and energy

1
f Ce’e( fe, fe)(v){ \% JdV = 0, t 2 O
R3

IIvI[?
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Moreover, the entropy is decreasing with respect to time

dH d
E(t) = G fR . fe(v, 1) log(fe(v,t))dv < 0, t > 0.

The equilibrium states of the FPL operaica, the set of distribution functions in the kernel@f¢( fe, fe),
are given by the Maxwellian distribution functions

3/2 2
: Me IV = Uell
MieueTe(V) = ne(zﬂe) exp( Me 3T, )

whereng is the densityu, is the mean velocity andl is the temperature, defined as

Ne = f fe(V)dv,
R3

1
Ue = — fe(V)vdy,
ne R3

Me
Te = g [t - ualfav.

On the other hand, the operator (5.2), modelling collisions between elearmh#ons, is a Lorentz
operator. It satisfies the conservation of mass and energy

1
11;3 Ce,i(fe)(v)( v — ue”2 )dV = 0.

Moreover, the equilibrium states for this operator are given by the $edtwbpic functions:
Ker(Cei) = {fee L' ((1+IMP)av), fe(v) = ¢(2), z = IIV—uel}.

Finally, each convex functiog of fe is an entropy foCej(fe),

Ef Y(fe)dv < 0, t>0.
dt RS

In addition to these properties, we present a symmetry property. Thignyomay have some
importance, in particular in presence of self-consistent magnetic fieldeeth any break of symmetry
due to an inadequate discretization method could lead to generation of artifi@gaietic fieldsyia
current source terms.

Proposition 6. If f¢ has the following symmetry property with respect to the direction k at g§me t
fe(to,v) = fe(to, V¥), (5.4)

with components for
oo i ifi #Kk,
P~y ifi =k

Then, this symmetry property is preserved with respect to time.
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5.2.3 Discrete Lorentz operator

We considerf; an approximation of the distribution functidifvj) and introduce the operat@, which
denotes a discrete form of the usual gradient opefatavheread* represents its formal adjoint, which
represents an approximation e¥,-. Therefore, for any test sequenag)(c;3, we set Dyj);czs as a
sequence of vectors &

Dyj = '(D1yj, Dawsj, Dayj) € R3,

whereDg is an approximation of the partial derlvatl\éé with s € {1,2,3}. In order to preserve the
property of decreasing entropy at the discrete level, we use the log fogaklation of the Lorentz
operator (6.19) [13]

f Cei()(V) y(v)dv = — f O(v) £(v) Vylog(f(v)) - Vw(v) dv,
R3 R3

where® is given by (5.3) and is a smooth test function. Then, using the notations previously intro-
duced, the discrete operatbﬁj’(f) is given by

Cel (D) = - [“ E S(¥;) f; D(og(f)) | (5.5)

whereS(vVj) is the following matrix
S(%) = IVIP1d - Vi ®V;.
Now, V; has to satisfy the discrete conservation of energy

Da(lvjl¥) _ Da(vill®) _ Da(Ivill®).

— — (5.6)
Vi Vi, VJs

Then, we consider the 8 uncentered operdbstsvith the formalism:
_t
De — (Dfl’ D;Z, D§3)’

with € = Ye1, e, €3), ande € {+1, -1} for i € {1, 2, 3}. More precisely, the operat®@¢ is the forward
uncentered discrete operatokif= +1 and the backward uncentered discrete operaef-1:

61[\le+€1 - \le]
62[T1'2+62 - lez]
63[‘Pj3+53 - ‘Pjs]

DY) = — 5.7
Y (5.7)

This 8 operators respectively match to 8 expressioﬁ/?é,dbllowing (5.6)

- 1
V= > (vj + vj+5).
This choice has been made to avoid the use of the centered discrete pfferiatonserves non physical
guantities. On the other hand, the uncentered operators, taken siparateluce some artificial asym-
metry in the distribution function leading to a loss of accuracy when couplingarwéll equations.
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To overcome these filiculties, following the idea of [8], we introduce a symmetrization of the discrete
operator based on the averaging over the eight uncentered discreszatio

Car(H(v) = 820 (1)

Cei(f) = D [H 1H33(ve) f, D*(log(, ))]

This final expression presents the desirable properties: the mass engg enonservation, the entropy
decreasing behavior, the positivity preservation of the distribution fumatia finite time sequence. The
proofs are not detailed here but can be deduced easily from thasenped in [11]. Also, it introduces
an additional discrete symmetry property, compared to the operator prdsefill]. Indeed, we obtain
the operator as an average over the full set of the uncentered apeiktte motivation of this averaging
comes from the isotropizatiorfect of the Lorentz operator: itfilises in angle. This averaging leads to
a discrete analogous of the symmetry property presented in Propositidnisssyfnmetry concerns the
directions that are aligned with the grid. The symmetries along directions thabarligned with the
grid are preserved with marginal errors.

Proposition 7. Under the condition (5.6) ofj, the discretization (5.8) to the Lorentz operator (5.2)
satisfies the following properties,

e it preserves the mass and energy,

e it decreases the discrete entropy

HE) = AV > §i() log(fi (1),

jez3
e there exists a time-sequentg, such that the scheme
= £+ AtCH(F)(v),
defines a positive solution at any time i}¢, Aty = +co.

Furthermore, if f is symmetric with respect @in the direction j at time t', then this property is
preserved at time't?,
DDV AR = 0. (5.8)

jez3

Proof. The proofs of all the properties but the last one can be found in [1&]pkive the last property
and rewrite the operator (5.8) in afidirent manner, assuming we have a symmetry along the velocity
directionv;,

3
(N = & Zc () = g 215> 5 (e ) + ¢ w)|. (5.9)

€ k=1
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where the notatioa*® refers to

(5.10)

W =11 ifi=k
,(")—e if i # k.

We are interested in the cancellation of the oper%t}mcm’(f)(vJ )Vj.. This is equivalent to the cancella-
tion of =
QW = 3 (ce W) +cg W) v,
jezd
=y ﬁ i [5G )D<" log(f))] - D v,

jez3

0y K K
Z” ”31[8(J )D“log(f)] - D v,

Then, sinceD¢ Wy = DE ”v,k = g, it yields

= D ,1||3f‘[.¢k(vi ))DEE()(Iog(f’»

jez3

eh®

1 e +(k)
- T ( ol (lo f)}
_Z ||Vj||3 Jk o J

M 2l W
v )Jka (log(f;))

74 #
D ¥
) 23||v||3‘ I (Z’ ' (Iogfj)]'
jezZ

Then using definition (5.10) and the symmetryf‘ﬁfwith respect to O in the velocity directior),, we

obtainQ® = 0. Then multiplying (5.9) by;, and integrating in the full velocity space gives the relation
(5.8). This relation implies thal‘sr”l is symmetric with respect to 0 in the directiop. |

5.2.4 Discrete Landau operator

With a standard splitting algorithm, we may restrict to the homogeneous FPLtoper46.19), in the
3D, velocity space. Its discretization based on the entropy conservativetilistion introduced in [13],
where a discrete weak log form of the FPL operator is used. This disaietizyields

df
ﬁ =(Dpt);, jeZ’

(5.11)
p® = AV 3" () (D) - Vi) (D(l0g(f (1); — D(og f(O)m).

mez3
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whereD stands for a downwind or upwind finite discrete operator approximating sbal gradient
operatorV,. This uncentered approximation ensures that the only equilibrium statébeatiscrete
Maxwellian, and satisfies the discrete conservation of mass, momentum,exgg.€rhe dirct use of the
centered discrete operatQg would have lead to non physical conserved quantities. The discretization

: : 1 : .
of the FPL operator is then obtained as the averggez Q¢, over the eight possible uncentered
eef-1,1)°
operatorsQ¢, € € {-1,1}3, in order to recover the symmetry of the problem. In [9], the scheme is
rewritten, for any test sequengeas the sum of two contribution from the operat@sandQ®, since

Z[% > Qf‘—Qc,j —ATVZQ,-A]w,- =0,

jez® ec{-1,1°

whereQ” is defines by the duality relation

1 T
Ad — = . o
Z Qe = -5 DT O fm) (A¥) - A¥y)
jez® (1.mez®xz®
X O (vj = Vi) (A(IN ), = A(In ), ) AV? (5.12)
1
Ay, _ H
O (V) — Vi) = ﬁDlag(vz—vj?l,vz—vi,vz—vfs) . (5.13)
The viscosity termQ? presents aV? factor, which kills spurious oscillations. The computational cost
of QA can be reduced, repacing the sum oyem) € Z2 x Z3, by a sum overj(m) € Z2 x Z* with
li —m| < V2. This reduction does noffact the conservation properties and does not generate any
spurious collisional invariants.
This discrete approximation preserves positivity, mass, momentum, enad)ensures that the
entropy is decreasing. Moreover, the discrete equilibrium states arestnetd Maxwellian. We refer to
[13] for the proofs and to [11] for numerical tests cases illustrating thesgerties in the homogeneous
case.
We refer to [9] and [10] for the details of the implementation on the FPL operato

5.2.5 The multigrid formulation

The computational cost of a direct approximation of (5.11) remains too higerefore, a multigrid
formulation of the FPL operator is employed [9, 22], inspired from [20he Tnultigrid description

follows [22].
We first set
Hv,w) = f(v)f(w)V?S(v)[Vy(log f)— Vy(log )] , (5.14)
S(v) = Is—v\iv, (5.15)
q(f, f)(v) = f||v—w||‘3H(v,W)d3W. (5.16)
RS

The continuous FPL operator, in(6.19), writes

Q(f, £)(v) = V- q(f, f)(v) (5.17)
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Let us now consider successive refinement layers of regular ledwtwmains of the velocity space. The
initial level consists in considering a regular cu®g with edges of length 1, as a domain for integration.
Given a refinement levéd € N, with an associated mapping of cubes, having same edge lef@jthiri

the D, velocity space, we denote I8 (v) the unique cube that belongs to that mapping and contains
the velocityv. The cube(sCy(Vo) andCy(wop) are said to be well-separated|ify — wo|| > 1/2¢1. The
chosen numerical resolution, that can be either multipole [22] or monte &rlis fthen performed be-
tween well-separated cubes. A refinement to the higher level is perfaomesnpute the remaining not
well-separated terms. This distinction between well-separted (ws) andetiegeparated cubes (nws) is
well-suited to the long-range nature of the Coulomb cross section.

This process is repeated until the higher specified desciption level.
We start at the lowest level, from the truncated analogous of the eiqum&5s16)

qO(f, f)(v) = fc v — Wl 3H (v, w)dw . (5.18)

The first step of the multigrid algorithm consists in splitting the “father cuBg”into eight regular
“chidren cubes”, having same sizes, and denote@hyTheir center coordinates are

1 r{ 1 ro 1 r3
r_
Ol—(rwwwz)’

wherer = (rq,r,r3) € {0, 1}5.
We obtain the following decomposition gf®)

dO(F, ) = f v = Wi H(v, w)dw . (5.19)
(rr’)eOl3><01 CixCy

where each cube of this mapping is not well-separated from the other Ardigect refinement is then
applied at this first step, without any numerical computation.

As for the higher stepk > 2, the contribution of the interactions between cubes of same kesaah be
splitted in well-separated (ws) and not well separated (nws) cubesculi®C, is located according to
its center position

r (1 r 1 ro 1 rs
KT\ 2t * e et T e Tk

wherer = (r1,r2,r3) €{0,1, ..., 2K — 1.

qu(f, f)(v) = qSPS(f V) + gl f, F)(v) k= 2 (5.20)

qU ) = f IV = Wi BH (v, w)dw, (5.21)
r/(Cl ws Q(V))

d94F HY) = f IV — Wi 3H(v, w)dw . (5.22)

r/(CL nws Q(v))
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The process is repeated until the finest lewgl, where both well-separated and not well-separated
interactions between cubes are computed. Therefore, we come to tessrpr

af. F)(v) = da(f. D) + " afid(f. (V) . (5.23)
k=2

that is to be approximated umerically. To this aim we employ a monte carlo algorittthefmtegrations,
presented in the next section.

5.2.6 The monte carlo numerical integration

We employ here a monte carlo quadrature formula [9], that randomly sekgicsésgb interacting cubes,
and satsifies the minimal possible complexity (due to the specific structure oéihelk being of order
O(ndlogn?), whereny is the number of discretization points per velocity direction. This algorithm was
first suggested in [1], as an improvement of Nanbu’s scheme of the Baitzeguation.

Nevertheless, this monte carlo solver introduces a new approximation thatatiegt the accuracy. We
shall test the accuracy of the scheme against analytical solutions in th&-#esfgthis chapter.

5.3 Numerical results for the full kinetic model

5.3.1 A 1D temperature gradient configuration

In the context of laser produced plasma, the heat conduction is the leadetganism of energy transport
between the laser energy absorption zone and the target ablation zone.
In such a system, the parameters of importance for the heat flux are

¢ the dfective electron collision mean free path
¢ the electron temperature gradient length
¢ the magnetic field and its orientation with respect §T .

These parameters enable to distinguidfedént regimes of transport, according to the Knudsen and
the Hall parameters.

On the one hand, the Knudsen numBgris a mesure of the thermodynamic non-equilibrium of the
system

Kn = E. (5.24)
At

A regime characterized b, — 0 refers to an hydrodynamic limit, whereas a regime characterized by
Kn = 1 refers to a kinetic limit, where nonlocal phenomena occur. Let us notéyihiatl parameters
for ICF yield thatK,, > 0.1, while the hydrodynamic regime (or local approach) fail&at> 0.01.
This premature failure of the local approach in plasma is explained by dfispg®pendence of the
electron mean free path on the electron energy. In our applications thgydamdransported by the

fastest electrons, which have a much longer mean free path.
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On the other hand, the Hall parameteE w.r quantifies the relative importance of magnetic and
collisional gfects.w; = eB/mg is the electron cyclotron frequency anthe mean electron-ion collision
time

127° €5 YMeTe (5.25)
T = . .
V2an,Z2e* InA

The aim of this section is to validate our solver ififeient regimes, in order to show its robustness
with respect to the variations of the Knudsen and Hall parameters. Tluspmsider a simple gradient
temperature configuration, shown in Figure 5.1, modelling a layer of honeogsnplasma. A laser
deposits its energy on the hot temperature side and the absorbed eneaggp®rted with electrons to
the cold temperature side. A heat flux is created, contributing to preheatitigtfie fastest particles)
of the region down the temperature gradient, and to smoothing of this temgegatlient. The charge
separation induced by the movement of particles generates electrictswanehelectric fields. The heat
flux and electric field are important in a preliminary transient phase. Latter inthimyedecrease and
stabilize due to the collisionalffiect and the return current of cold particles. These quantities may be
inhibited in the direction of the temperature gradient if the magnetic field, cdnistdihe domain, is
present. In that case, heat fluxes and electric fields are created #éhgodinection perpendicular to the
temperature gradient. A Knudsen boundary layer is observed, haverextbnsion of several collision
mean free paths. It is due to the zero boundary current condition,evtherpopulations that leave
and enter the computational domain hav@edlent temperatures. However, since the boundaries are far
enough from the temperature gradient, this boundary layer does netrinéuhe heat flux propagation in
the region of the temperature gradient. We observed that the presemstafig magnetic field enforces
the variation of the fluxes inside this boundary layer.

5.3.2 Test 1: Electron transport in the local regime

Here, we consisider configurations that present small Knuden pamami€te< 1. In order to validate
the numerical scheme in the local regime, we compare the hedfand electric fieldEgp computed
from the numerical solution of (6.18), with those analytically computed frorhyaltodynamic model
[5, 15].

Hydrodynamic model. Let us define the average over velocity of a functigw)

(A = n—le fR _AW) (V) dv. (5.26)

whereng(t, X) = f f(t,x, v)dv is the density of electrons.
Following [5, 15], we introduce the macroscopic quantities

J = QeNe(V),

1
q = Emene<(v-v)v>, (5.27)

szmevce,i(fe)dv,
R3
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Target side: Cold Laser side: Hot
temperature domain temperature domain

AR

Magnetic field profile

Density profile

Heat flux profile

z// Bz

Boundary layers on
temperature profile

Figure 5.1:Configuration of the temperature gradient test 1: a temperature profiensidered between
two domains of plasma with particles at a thermal equilibrium. Zero cuenindary conditions enable
to maintain the mass conservation. A heat flux is generated whereveritharnonzero temperature
gradient. Knudsen boundary layers appear on the heat flux, teraperand electromagnetic profiles.
This boundary layer, located in a very narrow zone, close to the hydieical discontinuity (where
the zero curent boundary conditions are applied), is the signature tdlglization of the distribution
function at the thermal equilibrium. The boundaries are maintained far gndom the temperature
gradient, so that no boundaryfect should interfere with its evolution.
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and

1
P =nNTe = émene<(v (V) - (v —=<(V))),

1
= émene<(V— W) ®(v-(M)-npl (5.28)

Qoc = %mene<[(v - (W) - (V=W (v = (W),

wherej is the electric currenty the total heat flowR the friction force accounting for the transfer of
momentum from ions to electrons in collisiong, is the temperaturey is the scalar intrinsic pressure,
IT is the stress tensayec is the intrinsic heat flow antthe unit diagonal tensor.

Quantitiesp, IT andqoc are defined in the local reference frame of the electrons, whgrgasdR are
defined relative to the ion center of mass frame. lons are supposedtodst &Ve have the relation

5pl + 20 . . Me Ne(V)?

2
2nge 2nge (5.29)

Qoc = g+ -

The validation of our Fokker-Planck-Landau solver in the domain closeedylrodynamic regime
(local regime) requires knowledge of the transportfioents. Following the formalism of Braginskii
[5] for the transport relations, the transport ffagents in the hydrodynamic regime have been calculated
by Epperlein in [15]. These cé#cientsaep, Bep, kep, are the electrical resistivity, thermoelectric and
thermal conductivity tensors, respectively. From these quantities, evalde to compare the heat flux
and the electric field issued from the Fokker-Planck solver to those ceddwaalytically in [15], in the
local regime.

The classical derivation procedure to obtain the transpofficants involves the linearization of
the Fokker-Planck-Landau equation, assuming the plasma to be close tetimaltequilibrium. The
distribution function is approximated using a truncated Cartesian tensanggpa

%
ftxv) = FOUP) + o0 1O .
Following [15], IT and me ne(Vv)? are neglected and we consider appropriate velocity momerftd pf
electric fields and heat fluxes are expressed as a function of theranodyal variables. The céiicients
of proportionality, in the obtained relations, are defined as the transpefficients. Several notations
can be used, depending on the chosen thermodynamical variablestingdibye Braginskii notations,
we obtain

a’ep'j

R=Vp+enE-jxB-= — Bep- VTe,
© (5.30)
5 T
—EJeTe Kep* VTe — Bep J?e-

We want to compare of the results of the solver with the analytical electric feld$eat fluxes in the
local regime. For that purpose, we use the values officdents, forZ = 1, that are tabulated in [15].
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As for the components of these tensors, we make use of the standardmsgiatio andA. Directions
denoted with| and_L are respectively parallel and perpendicular to the magnetic field. Coesty the
parallel and perpendicular components of a veatare respectively;, = b (u-b)andu, = bx(uxb),
whereb is the unit vector in the direction of the magnetic field. The direction defined éythind
direction in a direct orthogonal frame is denoted/AylIn the system (5.30), the relation between any
transport cofficient tensorp and vectou is defined by

p-u=gbb-u)+¢ bx (uxb)+terbxu, (5.31)

where the negative sign applies only in the case aep.
These cofficients can be expressed in dimensionless form

T

a/gp = ep MeNe’
ng = ﬁep, (532)
kS = K _Me

ep P et Te

The dimensionless transport ¢heientsagy, Bep, kgp are functions oZ and the Hall parameter = wcr
only.

The heat flux and the electric field in (5.30) can then be rewritten in terms oindiotdess quantities,

for the particular 1D geometry of our temperature gradient configuraltiothat case, the scaling using
a collision frequency (5.41)-(6.17) is used.

5 L ) . :
01 = ) Teneljl - xTe levxlTeK(Cep,J_ - Te(ﬁgpsi— 1 - ’ng/\ JZ)’

5 1. _ . .
P = —§Te Netiz — x TeB3 Vi, TekSp, — Te(ﬁgp,L J2 + Bepa 11),

(5.33)
Ex = ne_l j2Bs - n;l Vi P = VxlTeﬁng_ + ne_l B3X_l (Q'gp,¢ ju+ a'gp,/\ i2),
Eo = —ne_1 j1B3 - VxlTeﬂgp,/\ + ne_1 B3X_l (a’gp,J_ j2 = a’gg/\ j1)-
The Hall parametey is expressed in terms of the dimensionless quantBieandTe:
3 yr B3 T3?
_ 3VrBeTe” (5.34)

2V2 <

We denote byQgr the heat flux and b¥gr the electric field computed from the system (5.33). The
transport cofficientsaep, Bep, kep have been tabulated in [15] and will be compared with those obtained
by our numerical solution approaching the kinetic FPL equation (6.18).

Let us note that in this configuration source terms can be considefédtsti discretization of the
collision operator is then of crucial importance and its accuracy can bealtelstereover we provide,
in this local regime, with validation results for a wide range of Hall parametem®sgponding to ICF
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applications.
The initial temperature gradiefit(x1) has the form of a step

Tox)  if x> X,
Te(x1) = (5.35)
Ti(x)  else,

whereTR andT{ are third order polynomials iry — 7", x1 standing for the space coordinate adjtfor
the mid-point of the 1D domain. The déieients of these polynomials are chosen such as they verify the
following conditions ax’

GT('g
8X1

8T§
5X1

Tr—TL
O = x)/ 4

(X)) = = =(x) =
(5.36)
TR + T|_

Teq) = TECQ) = —5—,

and at the boundaries

Te(xp) = To,

RiyRY _
Te(xy) = Tr, (5.37)

aT
0 X1

aTR
aX]_

(X)) = =05 =0,
whereT_ (resp.Tg) is the initial temperature of the leftmost (resp. rightmost) p&&n(resp.x?) of the
domain. Hereg is a parameter that determines the initiaffetss of the temperature gradient.

The simulations are performed with the following parameters: the size of the siomégss domain
L = x¥ — x} = 5400, 2x Vmax = 12, the ion charg& = 1, the frequency ratioej/wpe = 0.01, the
electron thermal velocity such &g/c = 0.05. The magnetic field is found from the Maxwell equations;
the initial values areB3(t = 0,x;) = 0.001,0.01, 0.1, or 1. In the test cases in the local regime, any
variation to this initial value proved to be negligible. The initial electric field is zmrer the domain:
Ei(t = 0,x1) = Ex(t = 0,x1) = 0. The initial distribution function is a Maxwellian function depending
on the local temperature, with a density that is constant over the domain. ifiaet@mperature profile
is chosen such af_ = 0.8, Tr = 1.2 anda = 10. This set of parameters enables us to consider the local
regime, close to the hydrodynamic limit (the Knudsen number is aby@®Q). The second order scheme
is used for the transport terms in tkg vy, v» andvs directions. The dimensionless time step and mesh
size areAt = 1/500,Ax; = L/126,Av = 2vmax/32 respectively. The grid has 126 points in space and
328 points in velocity; 42 processors were used for each simulation (CEATGLRIne facility). The
domain decomposition on the space domain allows each processor to dewalitbnB/points in space.
The fourth order scheme is used for the space and velocity transpus.tdihe zero current boundary
condition is written explicitly in Section 3.3.4. The boundary conditions for fialgschosen with ghost
points at their initial value (zero for the electric field an@@L, 0.01, 0.1, or 1 for the magnetic field. The
results are presented in Figures 5.2-5.4. The typical run time is 24 haout8 twllision times, with that
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set of parameters. The maximunfidrence between the numerical and the analytical solution is less
than 10% for longitudinal macroscopic quantities (heat flux and electrig;f20d6 for transverse ones.
Transverse quantities have only been considered for simulations féserrigures 5.3 and 5.4 where
the magnetic field was strong enough so that

e The transverse heat flux can attain its asymptotic value during the simulation time.
e transverse quantities have the value comparableto the longitudinal ones.

These conditions are fulfilled fdz = 0.1, 1.
In Figures 5.2-5.4, the results for simulations wh= 0.001,B3 = 0.1, B3 = 1 are shown, respectively.
The simulation withBz = 0.01 proved to show no significantftiérences with those witBz = 0.001.

10 15 20 2 3 35 20
Dimensionless time

Figure 5.2:The longitudinal (along the temperature gradient) heat flux r axxlgg.;g (dashed curve)
1

and electric field ratio%gg (oscillating curve) are shown against the dimensionless time. The
1

dimensionless magnetic field ig B: 0.001 Asymptotic behavior, where the flux is well established,
shows good agreement (less tHztb error) with analytical solution (Braginskii formalism), denoted by
subscript BR.

The numerical results are shown Figures 5.2-5.4 : a transient phasseisveth before attaining a
stationary regime. The oscillations are enforced by the magnetic field as iséswveld in Figure 5.4,
whereas the oscillations of electric fields are the signature of the plasma wavited by the initial
conditions. Then, these oscillations are damped in a few electron-ion coltisies. These plasma
oscillations are smoothed out by the large time steps we used in simulations, pebyittedimplicit
treatment of the Maxwell equations. However, these oscillations have a littletiamge on the asymp-
totic values and a little importance for accuracy. With a larger magnetic fieldrd-gd, we observe
frequency modulations ai; = ve;j (corresponding t@3 = 1), both in electric fields and heat fluxes. The
total energy is conserved with al® accuracy in the cadgs = 0.001, and with a 1% accuracy with
B3z = 1. The total density is conserved with accuracy ©f10%6.

In order to investigate Larmor rotatiorfects for simulations presented in Figures 5.3 and 5.4, we
refined the space grid below the dimensionless Larmor radisgs Bgl. Thus the simulation presented
in Figure 5.3 was repeated with the same parameters on the same time periodewefined the grid
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o] ‘5 10 20 1"»0 3‘5 1‘&0
Dlmensmnless tlme Dimensionless time
(a) Longitudinal (b) Transverse
max, (Qrp)

Figure 5.3: Longitudinal (a) and tranverse (b) heat flq%w (curve in bold) and electric field

%ﬁzg (dashed curve) are shown against the dimensionless time. Longitugliaatities (along the

1

temperature gradient) agree with the theoritical values with akbtldfto accuracy in the asymptotics.
Transverse quantities agree with the theory with al@@fo accuracy in the asymptotics. The dimen-

sionless magnetic field iszB= 0.1.
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Figure 5.4: Longitudinal (a) and transverse (b) heat flqﬁﬁ (curve in bold) and electric field

% (dashed curve) are shown against the dimensionless time. Longitugliaaltities (along

1

the temperature gradient) agree with the theoritical values with aBéttccuracy in the asymptotics.
Transverse quantities agree with the theory with ali2Qf accuracy in the asymptotics. The dimen-

sionless magnetic field is;B= 1.
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to 1260 points in space (420 processors). In the same manner, the simplatsemted in Figure 5.4
has been repeated with 6300 grid points in space (2100 processdra} an 1/1000 (according to
the CFL condition), during the same time period. The results prove to be similange thith coarse
space grids, both for macroscopic quantities and for the distribution funsctibhus no dependence on
the Larmor radius is found. We recall here that the cyclotron period iayawesolved, as the time
steps are constrained by the CFL condition on the collision operators. OBli#v/jty property is always
maintained.

5.3.3 Test 2: Electron transport in the nonlocal regime withait magnetic fields

Here, we consider configurations that present Knudsen paramgtéoskin ~ 1. Therefore, we ob-
serve the behavior of the transport flagents far from the hydrodynamic regime. Thesefioents

are normalized with the cdigcients in the Spitzer-Bkm regime, denoted by the subscrihpH. The

Spitzer-Harm regime is the hydrodynamic regime, with a zero magnetic field. Then it ibpo&seval-

uate directly the ratio offéective thermal conductivity to the Spitzedkin conductivityx/ksn, by the

relation:

o _od (5.38)

KsSH  OsH
whereq; is the heat flux in the direction. It is calculated from the numerical solution apg; from
(5.33) in the Spitzer-BArm limit.

Transport cofficients are extracted from the domain where the flux and temperature drattgn

their maximum values. Theffective Knudsen number, characterized by the wavelength of the temper-
ature perturbatiofle; in the Fourier space, is computed from the gradient temperature profiis. Th
enables us to evaluate a rangeKkag; (due to an uncertainty for the estimationkat; in the 1Dy space),
corresponding to this temperature gradient. The results are compared svidhdlytical formula from
[16]

K 1
K , 5.39
KS H 1 + (30k1ei B)*/3 (5.39)
5 - 3r 32(024 + 2)\'? 242 (5.40)
~ \128 (1 + 0.242) 2 '

This formula has been obtained by a fit of data issued from the FokkeclPsmlver SPARK [16].
While considering the comparison between the numerical results and théieaiadglution shown in
Table 5.1, one should keep in mind that the test procedure involves a lamggardof uncertainty. Three
runs have been performed with the same precision for the temperaturengradhe CFL conditions are
respected, maintaining the positivity of the distribution function.

5.3.4 Test 3: Electron transport in the nonlocal regime perpedicularly to the magnetic
field

The objective of this section is to illustrate a competition between the nonlocahagdetic &ects on
the distribution function. More precisely, we consider a situation where thel&en numbefn ~ 1/10.
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Table 5.1: Comparison between the numerical results and the analytical solutio

Parameters RUN1 RUN2 RUN3
Size of the domain 5400 540 540
Stiffthess parameter 10 10 100
Number of points along the Gradient 126 126 1260
Number of processors 42 42 420

Results

Klej 10° | 0.05+0.03 02+0.1
Analytical k/ks 0.998 | [0.93-0.67] | [0.60- 0.26]
Numericalk/ksH 1.03 0.675 0.395

This corresponds to a situation with aftess parametet = 100. The D domain goes from 0 to
L = 540, the grid has 1260 points in space, 420 processors were useatcfosimulation (10 collision
times), during 6 hours. Other parameters are kept identical to those in tloases in the local regime.
Two cases are distinguished, respectively with weak magnetic fifetst®w:/vei = 1072 (see Figures
5.6 and 5.7¢)), and strong magnetic fielddfecs,wc/vei = 1 (see Figures 5.5 and 5.70)). The
magnetic field is calculated from the Maxwell equations; no more thi¥ @eparture from their initial
value is encountered after 10 collision times. The positivity of the distributiantfon is maintained,
and the CFL conditions are satisfied. In Figures 5.5 and 5.6, the avedtesgeldution function is shown
in the region of the temperature gradient

Z fe(t’ Xl’ le’ Vj2’ Vjs) ’

J2,)3
The initial distribution function, Figure 5.8}, is a Maxwellian function with a temperature that depends
on the space variabbg. It is symmetric in thes; direction. After 10 collision times, for the simulation
with we/vei = 1072, Figure 5.6, the distribution function keeps the same structure for the buikais.
Only the structure for the fastest electrons is modified. The fast electpulation with positive ve-
locities is depleted in the hot side of the temperature gradient, whereasttieéefason population with
negative velocities is enforced, contributing to smoothing of the temperatadéegt and heating of the
bulk. These nonlocalftects are important, because the main contribution to the heat flux comes from
the fastest particles.
The same distribution fonction is shown in Figure B)5@t the same time, but for a simulation with a
strong magnetic fieldc/vei = 1. The distribution fonction is here stronger localized. This means that
the magnetic field tends to inhibit the electron transport, while forcing the Larotation of electrons.

In order to gain more insight in the processes at stake, we show in Figutieebquantity
Z [fe(t, X1, Vij1» Vi, Vja) = felt, xa, —Vij1s Vi Vjs)] >
j2.Js
which is odd in the variable;j,. It accounts for the asymmetries between the positive and negative
velocities, along the direction, and contributes to the heat flux and the current. We observe that the fas
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population contributes to the total current with a negative sign, wheredmitk@opulation contributes
to the return current, with a positive sign. Comparing Figuresa).d@gd 5.7b), we observe that the
assymetries are strongly re-localized in the region of the temperature mfradith a strong magnetic
field.
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Figure 5.5:Averaged distribution function in the and s directions, in the region of the temperature
gradient, at initial time (a), and att; = 10(b), for a simulation withuc/vej = 1.
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Figure 5.6:Averaged distribution function in the\and s directions, in the region of the temperature
gradient, at tej = 10, for a simulation withw/vej = 1072,

5.3.5 Test 4: 2D nonlocal magnetic field generation

We present here results on the nonlocal magnetic field generation in tRatr@heof cylindrical laser

hot spots, having a periodic structure, in a plasma with an initial constastitglemhis stands as a first
step to prove the @y capabilities of the solver, and also as a comparison in the nonlocal regime with a
model from the literature [6]. The extension of the present numericanseh is straightforward on a
2Dy grid. The fourth order scheme is used for the transport terms irithe, v1, vo andvs directions.
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Figure 5.7: The quantityzm3 [fe(t, X1, Vj1s Vij,» Vjs) — Te(t, Xq, —vjl,vjz,vjs)] is shown, in the region of
the temperature gradient, at the same tinrg t= 10, for wc/vei = 1072 in panel (a), andve/vei = 11in
panel (b). It corresponds to the odd part of the distribution function.

We consider a planar geometry with periodic boundary conditions for tiebdison function and
fields. For this application, the scaling using a collision frequency (5@8.1)#] is used. The initial
dimensionless temperature profile is

2
Te(x,t=0) = 1 + 012 exp(—%),
with R = 5.6. We used the following parameters for the simulation: the frequency ratiq i&pe =
0.003, the ion charge i& = 5. We do not consider here the electron-electron collision operat@aubec
the electron-ion collisions dominate. Then the relaxation only acts with elerocellisions on the
anisotropic part of the distribution function. The electron thermal velocityuehsasvy,/c = 0.05.
These parameters are close to those used in [28]. The size of the simulatiamdsL = 70 for one
space direction, Z vmax = 12 for one velocity direction. The initial electric and magnetic fields are
zero over the domain. The initial distribution function is a Maxwellian functiopeaheling on the local
temperature, the initial density being constant over the domain. The dimerssidime step and mesh
size areAt = 1/500,Ax = Ay = L/100,Av = 2vmax/32, respectively. The grid has 19points in space
and 32 points in velocity; 625 processors are used for this simulation. With thesengsers, the CFL
conditions are satisfied and the distribution function remains positive. Thésgiorutime is 24 hours.

First order process of temperature relaxation

The dominant process that is at play in this test case is the temperaturdiogla{ahe hot spot. In
this case the ratisize of a hot spatdistance between hot spasssmall enough, allowing to consider,
at first order, that each hot spot relaxes independently without atienawith neighbors. Therefore
we employ the Dy non-magnetized nonlocal heat transport model [6], to validate this gsoCEhis
model is designed to take into account nonstationéiigces, which account for the dependance of the
transport cofficients on time. Two characteristic relaxation regimes are identified in [6]ectigply at
the hydrodynamic and collisionless kinetic time scale.
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Both electron-electron and electron-ion collisions are considered inQ@jing the fact that we have
chosenZ = 5, the electron-electron collisions can be considered negligible in the m@lléobf this
particular set of parameters.

Figure 5.8 presents the evolution of the maximum of the temperature, obtaoradtie Dy x 3Dy
Maxwell-Fokker-Planck-Landau solver and from the model; it showxlgagreement. The total mass is
exactly preserved and the total energy is preserved wit 0 accuracy.

Several theoritical publications [7], [18], [25], [3], consider cgnfiations where magnetic fieldfects
are important.

11r

Dimensionless temperature

1 2 3 4 5 6 7 8
Dimensionless time

Figure 5.8: Evolution of the maximum of dimensionless temperature. Comparetoredn the
Maxwell-Fokker-Planck-Landau solver (bold, red curve) and theghfrdm [6] (dash, green curve).

Second order process of nonlocal interaction between hot spots

The interaction between hot spots become important if the s® of a hot spot distance between
hot spotsis large enough, at a given temperature perturbation. The signatures afitdraction is the

magnetic field generation, due to the non-azimuthal symmetry, even if the dgraignt is zero. This

source of magnetic field cannot be described by hydrodynamic modestsidintified in [21] using a

nonlocal kinetic description. A nonlocal Ohm’s law that is proposed in f&Ecribes the magnetic field
generation in plasma, at a constant density, with an isotropic pressurenldcal source of magnetic
field is proportional to the angle between the gradients of the third and fifth misnoé the electron

distribution function (see Figure 5.9(b)):

B vy ( f fe||v||3dv) X Vy ( f fe||v||5dv)
ot R3 R3

Here the lower order terrixne X V4 Te, Sstanding as a classical source of magnetic field generation, is
discarded because of the constant density.

The magnetic field and the cross gradients of high order moments are sh&guie 5.9, demonstrat-

ing a clear similarity. This test case demonstrates that our numerical methadgzradficiently high
accuracy and low noise, allowing to recover the second offtiects at the level better thar0Q %.
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Having in view the scaling law for this mechanism with respect to the temperatuxelggion [21]:
we/vei o (6T/T)?, we conclude that this magnetic field can influence the energy transpore, tiéii-
perature perturbatiofil is large enough. Therefore, the accurate capture of high order moknetits
numerical scheme is crucial for the energy transport.

-0.00025

(a) Magnetic field (b) Cross gradients of high order moments

Figure 5.9:Dimensionless magnetic field and cross gradients of high order montbintsgnd fifth) at
tVeJ =8.

5.4 Perspectives

As a conclusion for this section, we propose several imporvements thiat ®erve as a research direc-
tion line.

First, practically, the average of the discrete electron-ion collision operakight uncentrered colli-
sion operators, though computationally costly, is more robust than the desiiop in two, forward
and backwards, operators [11, 14]. In order to reduce the commaatost, we could derive, for the
electron-ion collision operator, a decomposition similar to the one used foletttean-electron collision
operator, that is splitted in a centered operator and a viscosity operator.

Second, as far as an implicit treatment is desirable to reach demanding régirhes27, 23, 24] of low
temperaturgnigh density regimes faced to large phase space resolution volumes, thefipasitivity is
essential. The relevence of implicit schemes in that context is still undetadeklao, if implicit schemes
are considered, a multigrid preconditioning relying on frequential decsitipo could be interesting.
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Finally, automatic coding of implicit schemes should be considered: technigokss Automatic Dif-
ferentiation (AD) emerge and become standard . We mention the widely upeddde AD code from
INRIA.

Third, having in view multi-physics contexts, the implementation of the colljsaaiiation operators
must let free this extension, and, as far as possible, use unsplit teeknlqdeed, if two collisiomadiative
kernels (Bremsstrahlung, Compton, double Compton, etc) are computerlsatrite moment, there is a
possibility to parallelize these tasks with a “fork and join” technique (OpenM®ARI-2).

Finally, a sharper validation strategy might be considered that could reljnm@msion independant, fully
multi-scale techniques, such as the “echography” of codes [19].
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5.5 Appendix: Scaling with an electron-ion frequency

For the analysis of collisional processes, a new scaling is introducedthat allows time steps to be of
the order of the electron-ion collision time. In order to take into accountpabhphenomena occurring
at the collision time scale, several parameters are required: the eleatrontigion frequency;, the
associated mean free patky, the thermal velocity,, and the cyclotron frequeneyce

Znpet InA Vih kgTo eB
e = R TR VI . Wee= —, 5.41
e 87re§m§vt3h e Vei th Me ce Me ( )

These parameters enable us to define the dimensionless parameters niidrlaetilde.
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e Dimensionless time, space and velocity, respectively
t= veit, X=X/Aej, V=V/vn.

e Dimensionless electric field, magnetic field, and distribution function, reségti

~ e E ~ e B (,l)ce ~ Vt3h
E = N B = =, fe = fe_.
MeVihve, Mevej Ve No

This leads to the following dimensionless equations

of 1
B_te +Vx - (vfe) = Vy - (E+ Vv xB)fe) = zCe,e(fe, fe) + Cei(fe).

OoE 1 1
E—@VXXB:?I’]U,
0B

ﬁ‘i‘VXXE:O,

Vx'E: iz(l_n),
(07

VX~B=0,

wherea = vej/wpe anNdB = Vin/C. The collision termEee( fe, fe) andCe;(fe) are givenin (6.19).

(5.42)

(5.43)

(5.44)



Chapter 6

From code validation to realistic simulations:
Kinetic transport for shock ignition
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6.1 Introduction

The general framework of this chapter is the theoretical investigation ofldwron energy transport
in Inertial Fusion targets, for the shock ignition regime. This program isgfahe European project
HIPER which aims at demonstrating the feasablity of an Inertial Fusion reddtisrproject, if success-

ful, will have a very large societal and economical impact. A new apprtaatertial fusion related to

the fast ignition of compressed fuel is now being pursued by europsantists, allowing high target
gains using moderate laser energies and powers. This approachm ksahock ignition, is still under
discussion, and a major, and up to now unsolved issue of this scheme intlezsion of the laser en-
ergy into a very high pressure converging shock wave. Tigency of this conversion mainly relies on
the properties of the electron energy transport in plasmas. An importaetisshe ability of electron

diffusion to smooth out any departure from symmetry of the laser irradiationugrhthis subject has
been extensively studied in the past decades, it is not perfectly todéysor acurately modelled in the
target design codes. Moreover, the regimes of temperatures and desis@@fically encountered in the
shock ignition scheme have never been explored so far.

Detailed calculations of electron heat transport require the solution of ldmoW-Fokker-Planck-
Landau equations. The temporal scale of this model is the electron-eleothision frequency, whereas
the spatial scale relates to the collision mean free path. These scalesyasenefiras compared to the
hydrodynamic time and spatial scale lenghts of an ICF target, so such corsiphetiations of target
implosions where up to now considered as out of reach of state of therapiters and codes.

We propose here to calculate the electron transport on realistic spatialsiimgand physical time
by using the recently developped Fokker-Planck codes on high peafae computing (HPC) plat-
forms from the GENCI organism. The proposed computational model isgeptative of shock ignition
physics. This work is achieved within the frame of the HIPER project, andflisiirom a collaboration
between CELIA, Oxford University(UK), and Imperial College(UK)n& analysis of the calculations
will contribute to our physical understanding and cross calibration océsdwm CELIA, Imperial Col-
lege, and Oxford University. It will help validating reduced models implenteintéhe design codes.

This chapter sums up the developments that have been performed onto she-Ftkker-Planck-
Landau solver, to reach the regimes of shock ignition. Several rapiegise test for code cross-calibration
are also proposed in appendix.
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6.2 Specific developments in the reference deterministic solve

To achieve realistic numerical simulation of the electon transport for theksigodion regime, we
have develop several new features of the Vlasov-Fokker-Plaackidu code. These concern, first the
implementation of the laser collisional absorption at low intensity, second thesgoteof the numerical
scheme to non-uniform meshes. These development were requireddonfiguration of the numerical
simulations we have proposed in Appendix 6.8. Finally we mention a techniqusptlidtbe appropriate
to handle with large density gradients, such as those in the shock ignition réggimggng from OLn; to
more than 106;). This method relies on a rescaling technique.

6.2.1 3D, Langdon IB heating operator derivation

The collisional conversion of the laser energy in the plasweglectron-ion collisions, is called the
inverse bremsstrahlung process. It is described by Langdon [B&]jsaapproriate for relatively low
intensities, up to 1¥-10%Wcm2. These are typically the laser intensities relevant in the shock ignition
regime, at the spike launch.

Weak equivalence relation

We show here an isotropic extension of the Langdon operator to arbdistribution functions of the
3Dy space, together with a numerical finite volume scheme for its implementation in thenatestic
reference code. We finally present some validation tests that show, onéh®and, the accuracy of the
implementation, and on the other hand some new interesting features relatedfuetiaitor.

Proposition 8. The Langdon Inverse Bremsstrahlung (IB) heating operator [22]

ofo, . A1 9 (gafy
E(t, V) = T@a_\/(\_lm(t’ V)) s (61)
and the3D, operator
of AV(Z) g
e A - I NAAI Y (6.2)

are equivalent, in a weak sense.

Proof. Let us consider the approximatigtv) = 1, and the space homogeneous operators having the
general form

%(t, V) =aVy - [[(V)[veVv] Vyf(t, V)], (6.3)

wherea € R, andf has a compact support in the phase space.

Let ¢(v) be a smooth test function, that must belong in a regular enough spaiod, wili be precised
latter on.

The weak form of equation (6.3) can be writen as

fR . (Z—I(t, V)e(W)dPv = @ fR .

B'(V) + ﬁ(v)%] f(t,v)d3v, (6.4)
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whereB(v) = T(V)¢' (V2.
Using the isotropic distribution function definition

fo(t,v) = f f(t,v)dQ,
]2
a straightforward integration leads to

fo a—fo(t V)p(V)dv = afooo

Finally, the development of equation (6.5) with appropriate defined integgaby parts givesyy €
{p e D0, [ B W)V € LE(10.c]) . NW¢0mﬁehmGQwDJ

B(V) + ,B(v)\—zl] fo(t, V)V2dv, (6.5)

f 00
%(t, V)p(WV2dv = @ fo (r( )v4 (t v)) ¢(V)dv (6.6)
Finally we obtain the equivalence in the dual space, between the opd&a®)rand (6.7)
PR = a2 (M 20 ). (6.7

This proof applies in the particular case of Inverse Bremsstrahlunggwhe A\/(Z)/S and'(v) = 1/w°.

The operator (6.2) can be seen as tbg Botropic extension of the operator (6.1).
Herevy is the electron quiver velocity in the laser field,is the laser frequency‘,‘;1 = 2A/V is the

electron-ion scattering ratg,, is defined by the relatiowrgi(v,,) = 1, andg(v) = (1 + a)_ZT;iZ(V))_Z =

-2 . - . . .
(1 + vff)/ve) . Let us consider that the collisions only act as a perturbation on the oscilt#tibe entire
distribution,i.e. wtej > 1, theng = 1.
This approximation will be used for the numerical evaluatiog.of

Finite Volume numerical scheme

Let us consider a uniform, cell-centered, cartesian bfjidz (le, Vi, v,-3)}j _. of the velocity spac&?,

such as the point = 0 is located at a mesh interface. We define (j1, j2, j3) € Z2, & the unit vector
in the directionk, and f; as an approximation of the distribution functié(v;). The operator (6.2) is
rewritten using a conservative formulation

of AV
E(t,v) 3 —Vv-F,
F = %[v@)v]vvf(t,v) .

We use a centered discretization in velocity, together with a forward Euiense

fjn+1 — fn AVZ

J 0 ~Cn
- - = —_—_—DF .
A 3 0% (6.8)



From code validation to realistic simulations 167

where
n

3
Z +e«/2 84/2

k=1

g
lesz = |5 — [Vires2® Vivasz| D°fllg 2

jrec/2 = ’
j+e/2
n n n _ ¢n
DSEN g = 1( fiaca ~ fltaca L i+e filq
J+ec/2 2 2Av 2Av ’

1
Vite/2 = > (Vj+a< + Vj) ,

Vs

j+e/2 =

5 (P + %)

j+ex

N.B. The IB operator could have also been discretized using the log formulation.

6.2.2 Validation with self-similar solutions

The numerical scheme is tested against a self-similar solution, present&, isyeh as

f(t > o0,v=0) o t°/°, (6.9)
f(t > oo,v) = «ki(t) explko(t)V°), (6.10)

where the coicientsk;(t),i = 1, 2 do not depend on the velocity variable.

The self-similar behaviour (6.9) should be accurately described, siftce = 0) controls the Inverse
Bremsstrahlung absorption of the laser energy [22]. On the other Handuper-gaussian velocity de-
pendance (6.10) of the self-similar solution should also be tested.

Isotropic situation: quantitative check

The isotropic behaviour of equation (6.2) is tested with a space homogeoeoiiguration, that explores
the relaxation of a Maxwellian distribution function

Ne ~(V-Ve)2/(2Te)
MneTeVe= e(V Ve)/(2Te ,
(2nTe)¥/?

towards a supergaussian state. The Maxwellian has initially a tempefatarel, densityn. = 1, and
drift velocity ve = 0. 32 velocity points per direction are used, with a truncation of the domainiteloc
atVmax = £8. The time steps are chosen suchas= 1/100. The quiver velocity of the electrons is
Vo = 1, where the frequency parameteAis- 1.

In Figures 6.1-6.2, the self-similar behaviour (6.9)-(6.10) is recovertdhigh accuracy, as well as the
isotropic geometry.
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Figure 6.1:Evolution of fit,v = 0). The dotted black line indicates the’t> recovered analytic self-
similar behaviour, with less than 0.08 % error.

Anisotropic situation: qualitative check

Let us now introduce a drift velocitye « ey, whereey is the unit vector in the x direction.

The other simulation parameters are the same as for the isotropic case. Eigutemonstrates a
correct behaviour of the electronic population having a non-zero \iéicity, and heatedia Inverse
Bremsstrahlung. The fast electron population takes indeed more time toted tiean the slower popu-
lation.

6.2.3 Extension of the Finite Volume transport scheme to nomniform cartesian meshes

We present here the basics for an extension of the Finite Volume traissperne to non-uniform carte-
sian spatial meshes. This is required by the observed large variationsaoffree-path in the transport
region. The main steps for the discretization procedure are listed below.

The conservative discretization of free-transport terms
At

frt = £ - Vax (fha2- fe)0)

The choice for the stencil

The stencil is chosefxi_1/2, Xi+1/2, Xi+3/2} for positive velocityv, and{x_z/2, Xi—1/2, Xi+1/2} for negative
velocity v [8].



From code validation to realistic simulations 169

:0)

=0,vz
o

Self similar solution in the asymptotics

_15,
Increasing time

~20r Initial time

_25,

Logarithm of the dimensionless f(t,vx,vy

0 5000 10000 15000 20000
Dimensionless [vI"5

Figure 6.2: Dimensionless (t, vy, vy = 0,v, = 0) at different times. The final straight line denotes a
super-gaussian dependance on the velocity dimension. Negative sitislgpeelocities are surimposed,
which shows the perfect conservation of the isotropic geometry at any time
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Figure 6.3:A cut of the distribution function at,= 0 and \; = 0 is shown for the anisotropic IB heating
of an initial Maxwellian distribution function with non-zero drift velocity.
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The second order flux reconstruction technique “by primitive”

Here we only focus on the case of positive veloaifythe negative velocity case can be deduced by
symmety arguments.
The average value in the cell is defined as

e L 7 e
i _A_X,f (t", x, v)dx.

Xi-1/2

The primitive functionF, should satisfy, on the required stencil,
Fr(Xir1/2, V) — Fr(Xi—1/2,V) = Ax f",

Frn(Xir3/2, V) = Fn(Xis1/2, V) = Axiya fl, .
Fr(Xis3/2:V) = Fr(Xi-1/2.V) + Ax 7+ Axia £

These conditions give

(X = Xi—1/2)(X = Xi11/2)

Fr(X,V) = Fr(Xi—1/2 V) + (X = %i_1/2) f"(v) + Ax + AN (fh— )
and finally the high order reconstruction
OFh 2x(f =N X2 + Xic1y2
f =___ — f_n 1+ | _ f'n _ f_n .
h(%.V) 3% (V) = £+ AX; + AXi1 AX + AXpq — LT )

Finally, the standard limiting procedure in Finite Volume MUSCL schemes consiktsifimg the slope
with a parameter;” € [0, 1]

(X = X)
0.5(AX% + AXit1)

fa(x, V) = £+ v (V) fly = 1"

The limitation procedure

In the case of positive velocitythe slope limiter can be written as

0 if (fi']rln— (" - 1) <0,

i . .
min(l, f_n ! f‘n AX ZxAiXHl) elseif (f}, - f") >0,

j+1 i

(frﬂax_ fin) AX; + AX
min| 1, 11 else.
( —(ff - Ax

V) =

6.3 Arbitrary density /temperature: the rescaling velocity method

In this section, we mention a technique that could be suited to the extreme variattioydrodynamical
guantities in the transport region, and especially for the shock ignition regkaesuch, an attractive
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perspective for handling with arbitrary densities and temperatures isilgesddn [16]. It is based on a
rescaling of the distribution function

Qe(t, &) = T2 fe(t,ue + ¢ \/T_e) ,

where the novel velocity space is rescaled in the electron moving fgmmeF. Te is the tempera-
e
ture,ue is the mean velocity, anak is the density.

This technigue permits to preserve, at the discrete level, the collision inis(rmass, momentum and
energy), the equilibrium states, of the original discretization of the collismerators, while avoiding
the vacuum problemat high density and low temperature, using an adpatative scaling to tread str
variations of the density, velocity, and temperature in space.

This method potentially permits to treat the large derigitgperature gradients encountered in the Shock
Ignition.

Therefore, with the prescribed variable change, the discretization ofidhegeneous equation for

electron-electron collisions
ofe 3
E:Q(fe, fe), VER ’

is replaced by the discrete resolution of the system:

%‘Vf (Te¥2 (o) + (VTe) €)ge) = Te¥*Qge.g0) (6.11)
d(NeUe .
(NeUe)” = (r;t”) = Tez( fR . Q(ge,ge)fd%f), (6.12)
r_dTe T2 =
(VTe) = &t 2x3n ( fR , Q(ge,ge)§2d3§), (6.13)
Qe 9) = Qlfe. fo). (6.14)

This techniques involves the computation of the collisions in the electron framhén the ion frame.
Therefore, it is well-suited for the treatment of like particules, but nogfectron-ion collisions, because
these latter present desirable symmetry properties in the ion rest frame. Birtlilatechnique is well-
suited only for like electron populations, if a multiscale decomposition betweéarid thermal electrons
should be considered.

Also, in the particular regimes where self-similar solutions are valid, an anditioupling between the
ODEs (6.12)-(6.13) and the PDE (6.11) is possible, and would permit a singgi@ution [16].

6.4 Conclusion

In this chapter, we have attempted to adress the issues related to the fudlisadbgion for transport in
the shock ignition regime, with our reference Fokker-Planck-Landde.c@/e have brougth these ele-
ments together, as it could serve for the future transport simulation cansp&lgaing this in view, data
issued from PIC simulations of collisionless absorbtion of the laser light inridenrdense region could
be used as input for the transport code. Such data is provided inrjahg regime of shock ignition.
Despite their accuracy, and owing to their computational cost, the refecahculation need to be com-
pleted by longer time scale simulations relying on reduced, faster models. @thérehand reduced
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model needs to know precisely what are their own limits, which is not triviathénnext chapter, we
step toward this direction.



174

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Bell A. R. and Kingham R. J., PRL 91 035003, (2003).

Bell A. R., Robinson A.P.L., Sherlock M., Kingham R. J. and Rozmud-8t electron transport
in laser-produced plasmas and the KALOS code for solution of the VEsder-Planck equatign
Plasma Physics and controlled fusion, 48, R37-R57, (2006).

Betti R., Zhou C. D., Anderson K. S., Perkins L. J., Theobald W. aniddv A. A., Shock ignition
of thermonuclear Fuel with High Areal Densitghysical Review Letter, 98, 155001, (2007).

Betti R., Zhou C. D., Anderson K. S., McKenty P. W., Skupsky S., $isvR., Goncharov V. N.,
Delettrez J. A., Radha P. B., Sangster T. C., Stoeckl C. and Meyerbofer, Shock ignition of
thermonuclear Fuel with High Areal Densjtyhe fifth International Conference on Inertial Fu-
sion Sciences and Applications (IFSA2007), Journal of Physicsfebamce Series 112, 022024,
(2008).

Blanchot N., Bignon E., Ciz H., Cotel A., Couturier E., Deschaseaux G. and ForgetNlfi-
petawatt high-energy laser project on the LIL facility in Aquitgifiepical Problems of Nonlinear
Wave Physics, Proc. SPIE, Vol. 5975, 59750C, (2006).

Brysk H., P. Campbell P. M., Hammerling Fhermal conduction in laser fusidflasma Phys., 17,
473-484, (1975).

Buet C., Cordier S., Degong P., Lemou Mast algorithm for numerical, conservative and entropy
approximation of the Fokker-Planck-Landau equatjan Comput. Physics 133, 310-322, (1997).

Crouseilles N., Filbet FINumerical approximation of collisional plasmas by high order methods
Journal of Computational Physics, 201, 546-572, (2004).

Degond P., Lucquin-Desreux BAn entropy scheme for the Fokker-Planck collision operator of
plasma kinetic theoryNumer. Math. 68, 239-262, (1994).

Delettrez J. Aet al, Plasma Phys. Control. Fusion, 47, B791, (2005).

Duclous R., Filbet F., Dubroca B., Tikhonchuck V. Righ order resolution of the Maxwell-Fokker-
Planck-Landau model intended for ICF applicatip28, 14, pp 5072-5100, (2009).

Duclous R., Filbet F., Dubroca BAnalysis of a high-order Finite Volume Scheme for the Vlasov-
Poisson Systensubmitted, preprint available on Francis Filbet home page (Lyon uitiers

Dunne M. , Nature, 2, 2, 2006.

Epperlein E. M., Haines M. GRlasma transport cgcients in a magnetic field by direct numerical
solution of the Fokker-Planck equatioRhys. Fluids 29 (4), (1986)

Eserkipov,Private communication



From code validation to realistic simulations 175

[16] Filbet F., Russo G., A rescaling velocity method for kinetic equations:htiraogeneous case.
Proceedings Modelling and Numerics of Kinetic Dissipative Systeipari, Italy, Nova-Science,
(2004).

[17] Miyanaga Net al, Inertial Fusion Sciences and Applications, ed B. Hammel, D. D. Meyerliof
Meyer-ter-Vehn, and H. Azechi, p507, (2003).

[18] JohzakiPrivate communication, ILE Osaka

[19] Kingham R. J., Bell A. RAn implicit Vlasov-Fokker-Planck code to model non-local electron
transport in 2-D with magnetic field®ournal of Computational Physics, 194, 1-34, (2004).

[20] Kingham R. J., Bell A. R.Nonlocal Magnetic-Field Generation in Plasmas without Density Gra-
dients Phys. Rew. Letter, 88, 045004, (2002).

[21] Klimo O., Weber S., Tiknonchuk V. T., Limpouch Rarticle in Cell Simulations of Laser Plasma
Interaction in the Shock Ignition Scenaygubmitted to Plasma Phys. Control. Fusion.

[22] Langdon A. B., Nonlinear Inverse Bremsstrahlung and Heatedtfle DistributionsPhys. Rev.
Lett. 44, 9, (1980).

[23] Lifshitz E. M. and Pitaevskii L. P., Chap 4., Physical Kinetics, Parga Press, Oxford, (1981).
[24] Nanbu K. and Yonemura S., J. Comput. Phys. 145, 639, (1998).

[25] Otsuka F., Omura Y., Verkhoglyadova O., Energetic particle pardlfielgdon in a cascading wave
turbulence in the foreshock region, Nonlin. Processes Geophy£81401, (2007).

[26] Ridgers C. P., Thomas A. G. R. and Kingham R. J., Phys. Rev.1@@t.075003, (2008).
[27] Robinson et al, PRL 100 025002, (2008).
[28] Robinson et al., PPCF 48 1063, 2006

[29] Sangam A., Morreeuw J.-P. , Tikhonchuck V.Anisotropic instability in a laser heated plasina
Physics of Plasmas 14, 0531111, (2007).

[30] Sentoku Y. et al., J. Phys. IV France 133, 425-427, (2006).

[31] Sentoku Y., Kemp A.,Numerical methods for particle simulations at extreme densities and tem-
peratures: weighted particles, relativistic collisions and reduced curfeht€omput. Phys. 227,
n° 14, 6846-6861, (2008).

[32] Takizuka T. and Abe H., J. Comput. Phys. 25, 205, (1977).



176

6.5 Appendix: Hydrodynamic profiles from CHIC at the spike pulse launch

Te (keV)

r (um)

Figure 6.4:Electronic Density and temperature from hydrodynamic data, over thedbiadh.
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Figure 6.5:Electronic Density in critical Density units and Temperature from hydrodyinalata, over
the 1D domain.
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6.6 Appendix: Profiles fitted from 2D-ALE hydrodynamic CHIC simula-
tions

Potentially large electric fields may be generated at density discontinuitiesefdleea smooth density
profile is required to avoid such afffect, especially if the ion density profile is kept constant, which is
the case in our simulations. We choog@lasmooth fitting for temperature and density issued from CHIC
2D -ALE simulations. With such choice, the electric field can itself present disugties, because the
fitting does not reach @ smoothness.

Realistic fitted density and temperature profiles are presented at the time vehsepikh pulse is
launched. They are issued from CHIC data, with the convemi{gi= 0) = n.. The fitted density profile
is

n(x) = [0.0008x (x + x1)/(0.0029x (x + x1 — 7.6))’]n¢ ,

wherexl = 2(600x +/36655)+ 115979Y4205um, X is the position in micrometers(x = 10— x1) ~
1651 is the leftmost boundary of the profile(x = 1000— x1) ~ 0.0966n, is the rightmost boundary of
the profile.

The smooth - in the first dervative- fitted temperature profile (in keV) is

TeM(X) = 0.00005x (200~ (x+x1-200P) +2, if10-x1<x<X2,
TEM(x) = -0.00072x (x-x2)+Ts '(x2), if X2 < x < 1000- X1,

wherex2 = 200- x1 + 0.00072/(2 x 0.00005)um.

One may want to cut the density and temperature profiles, or broaderette dpmain, while main-
taining smooth profiles. To this aim we introduce an arbitrary ¢tipositionxcy; (in micrometers) such
as 10- X1 < Xcut < 1000- x;. This defines a cutfbdensityncy: = Ny, and temperatur@cye = Tly,-
We introduce also the arbitrary distancgin micrometers) ad = Xcut — Xmin @and the density jump
AN = Niy,-1) = Neuts WhereXmin is the position (in micrometers) of the leftmost domain boundary, at
a prescribed temperatulignin < Teyt. We obtain for the corrected density and temperature profiles for

Xmin < X < Xeut

1 (dn 2An 3
nx) = 0z (d_x . + T) (X = (Xcut— L))
1/(dn 3An .
- (& ‘o + T)(X_ (Xeut — L))2 + Nyt + An, if Xmin < X < Xeut
1(dT 1
T09 = | Gl ~ L CTe= Toun| (= G L2
2 dT .
+ E(Tcut — Tmin) — ax (X = (Xcut = L)) + Trin » if Xmin < X< Xeut s -
X Xeut
@ 3 0.0008. [ ~ 2(Xeut + X1)
X |y (0.0029% (Xeut + X1 — 7.6))2 (Xeut+ X1 —7.6)|
T
d— = —2x0.00005% (Xcut + X1 — 200).
dX Xeut
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6.7 Appendix: Scaling of the equations

The initial set of equations are, in S.1. Units,

of
—= + Vx- (vfe) + n—va ((E + v xB)fe) = Cee(fe, fe) + Cei(fe) + Corenl fe).

oE i
VyxB=—-—
ot ¢ x X €
9B (6.15)
i +VyxE =0,

VX : E = qe(ne - Zn)a

Vx-B=0,
where the Fokker-Planck-Landau collision tef@g(fe, fe) andCe;(fe) are given by

Ceelfe 1) = e:%ggg)vv ([, 0= )90 - 17 el v )

Z2n;i(t, X)e* In A(t, x)

Cei(fe) = 87'(65 n,% Vy - [®(V)Vy fe(V)],

ull?ld — u®u
flull®

Cbrem( fe) = @

For the analysis of collisional processes, a scaling is introduced heteisthppropriate with respect
to large time steps, of the order of the electron-ion collision time. In order touatdor transport
phenomena occuring at the collision time scale, several reference parame required: an electron-
ion collision frequencwa,| an electron-ion collision mean free pathy | aplasma frequencgope|nc,

a thermal velocityy,., and a cyclotron frequenayce

v_| _ / Zn.€e InAc /l-| _ Vin w| _ Nc€E
Sl o 8re2mgvd I T vt TP €Me

_ |eoksTc k8T _€eB
/1D|nc - n e2 s Vth|nc - Me , Wee = E s
C

wheren; = 9.10?” m~3 is the critical densityT. is the initial temperature at the critical density point
Xc = 0. The Coulomb logarithm [6] at that point is

I _ ll brznax
nA¢ = max Z,En 1+ max ey ,

min

®d(u) =

VV-[% [veV] Vyf(t,v)
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ze

S Ao .
4”€O3kBTc ei—Broglie

1
INAo # 2, wherebmay = max(a}.1i), bmin = max(bgo, E/lei_Brog“e) , boo =

2 2
fi 4 3n Y JEOKB \/T +Tferm|
o L=

, Tiermi IS defined from the Fermi enerd¥;ermi

\/2§rnevth ' 3 I r-]Ce2
h 2/3 3
ﬁ (3772nc) = EkBTfermi .

These parameters enable us to define the dimensionless parameters with tilde.

e Dimensionless time, space and velocity, respectively
f: Ve,it, X = X//le’i, V= V/Vth. (616)

e Dimensionless electric field, magnetic field, and distribution function, resgégcti

3
~ E ~ B ~ Vi
E-_ B g _eB _ wee p_ Vih (6.17)
Me Vihln, Veilnc Me Vei'nc Ve,i|nc Ne
This leads to the following dimensionless equations
of
a_te + VX (V fe) - VV ((E +V X B) fe) = Weec:ee( fe, fe) + (,{)eiCe’i(fe) + wbremcbrem( fe),
BE 1 1
oB 6.18
r +VyxE=0, ( )
1
Vy-E = ;(1—n),
Vy-B =0,
wherean. — L [FL[InACY) [9r [In A(t,x) | [ ni(X) 1 [or w0\
Wee = 27| InAe || 9% T 2| InAc Zre | T 8\ 2 Vinln, ) ¢ =

ve.| / wpe| andB = Vinlp /c ni(x) is the ionic density. The Fokker-Planck-Landau collision terms
Ceel fe, fe) andCe.(fe) are given in (6.19)

Ceelfe, fe) = Vy - ( [R . (v — V') [fe(V)Vy fe(V) = fo(V)Vy fe(V)] dv'),

Cei(fe) = Vv - [®(V)Vy fe(V)],

6.19
lullld — u®u (6.19)

[Jul®

d(u) =

Coen(fe) = Vy - % Ve V] vy f(t, V)
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For the sake of simplicity for comparaison between tHeedent solvers, the Coulomb logarithm could
be approximated homogeneously as
INA(,X) = InAc,

without &fecting the realism of the simulations (due to thnJA dependence of the higher order terms
in the Fokker Planck developments).
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6.8 Appendix: configuration to test and compare the transport codes

In this section, we try to provide simple and realistic test cases, suitable felndioi ignition regime, on
which to compare the fierent transport codes.

6.8.1 Academic test for the transport, with simplified configiration

We propose periodic (or reflective) boundary conditions.
The critical density is = 9 x 10°’/m™3. The temperaturd@. = 1keV is homogeneous over the do-

main. We approximate IA(t, X) ~ In A¢, and choose a laser absorption source suc(lv(ﬁx)/vthlnc) =

0.1 ,VX/E—‘C*(t, X) < 1. The initial electric field and initial hydrodynamic profiles, are

Z . [2r n
n—e(t:O,x) = () = 1+sm(— ) if,
nc r]C L nc
Te
e = = l
Tc(t 0,X%) ,

These profiles are represented in figure 6.6.
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Figure 6.6: Initial profiles for electron and ion densities, electron temperature. Therelization if
uniform in space and velocity. The discretization in space resolves thefreegrath. For this particular
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6.8.2 Realistic test for the transport up tol2 n.

For this simulation set-up, we perform a smooth fit of the 2D-ALE CHIC hglgnamic profiles (in
appendix 6.6), at the spike launching time, where we fix the parameterpefidi 6.6 asx.y = —15.7,
An=0.1,L = (Xeut — Xmin) Aeiln, X 18, Tmin = 0.8Tcy, andne = 9 x 107'm3,

Also the inverse bremsstrahlung heating zone is chosen as

(o0 Mtlre)” = 0.1, ¥x /[0 < X/ Aelln, < 50% 1078/ el |

. The figure 6.7 shows the resulting profiles of the dimensionless temperdémsty, mean-free-path,
together with the set-up of the non-uniform mesh below the mean-free-path.
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Figure 6.7: Fitted hydrodynamic profiles from 2D-ALE CHIC simulations. The mesimgéy is set
according to the mean free path. All quantities are scaled at the criticaliernscated at x= 0,
according to appendix 6.7.
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Chapter ;

From kinetic to mesoscopic: a first validation
of reduced description for electron transport.
Application in both radiotherapy and ICF

185



186

7.1 Introduction

In this chapter, we wish to introduce a reduced model for electron trandpat relies on an angular
moment closure, and validate the numerical implementation of this schemféiredt regimes.

We shall first focus on the electron radiotherapy applications, whichviesmnly collision processes
very similar to those at play in ICF electron transport. After the problem featian in section 7.2.1,
we derive the approximation in section 7.2.2. This approximation consists ygtans of nonlinear
hyperbolic partial dierential equations, whose properties we briefly discuss. Due to thibitipssf
shock solutions, hyperbolic PDEs have to be solved with great careectios 7.2.4, we introduce a
scheme which is adapted to the problem at hand. Numerical results forrmstshe medical physics
literature are presented in section 7.2.5.

As a second step, in section 7.3, we investigate the behaviour of suclamoment model faced with
the collective &ects of the Vlasov-Amgre system, that complete the collisionfieets in electron ICF
transport. The angular moment model proves to be accurate for the ldadasping as well as for the
two-stream instability collective regimes.

Finally, in section 7.4, we put forward the analogy between electron rategtly and ICF electron
transport with respect to the processes at play, and suggest tretlagte collisions for ICF electron
transport should be important as well.

7.2 The angular moment reduced model in the collisional regime of elec-
tron radiotherapy

The use of ionizing radiation is one of the main tools in the therapy of candes. aim of radiation
treatment is to deposit enough energy in cancer cells so that they areydestrOn the other hand,
healthy tissue around the cancer cells should be harmed as little as posgitierfore, some regions
at risk, like the spinal chord, should receive almost no radiation at all.

Most dose calculation algorithms in clinical use rely on the Fermi—Eyges tlidoadiation which
is insuficient at inhomogenitie®.g.void-like spaces like the lung. This work, on the other hand, starts
with a Boltzmann transport model for the radiation which accurately descalbphysical interactions.

Until recently, dose calculation using a Boltzmann transport equation hastracted much attention
in the medical physics community. This access is based on deterministic trieegpations of radiative
transfer. Similar to Monte Carlo simulations it relies on a rigorous model of tlysigdl interactions
in human tissue that can in principle be solved exactly. Monte Carlo simulatiengidely used, but it
has been argued that a grid-based Boltzmann solution should have the@amgtational complexity
[19]. Electron and combined photon and electron radiation were studied @otiiext of inverse therapy
planningcf. [148, 147] and most recently [149]. A consistent model of combinedgohand electron
radiation was developed [65] that includes the most important physicahatiens. Furthermore, several
neutral particle codes have been applied to the dose calculation probke[B8%éor a review.

7.2.1 A deterministic model for dose calculation

A ray of high energy electrons that interacts with human tissue is subjectsticedaattering processes
and inelastic ones. It is this latter process that leads to energy deposition tisghei.e. to absorbed
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dose.

To formulate a transport equation for electrons we study their fluencesisepdpace. Let
U(r, e, Q) cos®@dAdQdedt be the number of electrons at positiothat move in timedt through areal A
into the element of solid angQ aroundQ with an energy in the intervak(e + de). The angle between
directionQ and the outer normal alA is denoted by®. The kinetic energy of the electrons is the
relativistic kinetic energy.

Boltzmann transport equation

The transport equation can generally be formulated as [41]

Q- Vy(r,e,Q)

pin(r)ff(rin(e’,e, Q- Q(r, €,Q)dQ de’

€ S2

pei(r) f et Q- Qu(r, e, )deY
32

+

Pin(r)o'}r?t(f)lﬂ(r, €, Q)
pel(N)og (1, (T, €, Q), (7.1)

with o, being the diferential scattering cross section for inelastic scattering,canthe diferential
cross section for elastic scattering®' = fsz oindQ ando' = fsz o dQ are the total cross sections
for inelastic and elastic scattering, respectivgky;andpe are the densities of the respective scattering
centers.

Explicit formulas for the cross sections that we used in this model can bl fiousection 7.2.1.
They are based on the model developed in [65]. The energy integratpanrfe@med overd, o) since
the electrons lose energy in every scattering event. Also, we consilyeelentron radiation. Equation
(7.1) could also be used to model electrons which are generated by thectittes of photons with
matter, as in [65]. In this case we would have an additional source termeangtit hand side for the
generated electrons.

Besides the transport equation one needs an equation for the abdossedt was derived in [65]
as an asymptotic limit of a model with a finite lower energy boend 0. The formula is exact if one
chooses the lower energy lindt = 0, as we do here.

:L " EWO(r, €)de
D(r) p(r)fo S(r, € y(r, €)d (7.2)

with
wO(r, ) := f w(r, e, Q)dQ,
2
T being the duration of the irradiation of the patient artthe mass density of the irradiated tissue. If all

quantities are calculated in Sl units, equation (7.2) leads to Sl ykg=d Gray (Gy) for the dose.
S is the stopping power related to the inelastic cross section. It is defined as

S(r.€) = pin(?) f ¢ one. €)de’
0
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Continuous slowing-down approximation

Electron transport in tissue has very distinctive properties. The sliition differential scattering cross
sections have a pronounced maximum for small scattering angles and sergy évss. This allows
for a simplification of the scattering terms in the Boltzmann equation. The FdéKkack equation
is the result of an asymptotic analysis for both small energy loss and smalttilerfis. It has been
rigorously derived in [117] and has been applied to the above Boltzmadelrimo[65]. However, some
electrons will also experience hard collisions with large changes in direatidrenergy losses which
have to be described by Boltzmann integral terms. Thus we only use antasignapalysis to describe
energy loss, called continuous slowing-down approximation. This appation has a greater domain
of validity than the Fokker-Planck approximation. The Boltzmann equationnfiragous slowing-down
approximation (BCSD) is [91]

Q- Vy(r,e,Q)

() [ 7806 - D e ey
SZ

+ pe|(r)f0'e|(r, €,Q - Q(r,e, Q)dQ’
82

- Pin(r)o'in,tot(f)Eb(r’ €, Q)
- pel(r)a'el,tot(r’ E)Qb(r, €, Q)

+ %(S(r, e)y(r, e,Q)) (7.3)
with .
a'i(r:]SD = L oin(e, €, u)de’.
A truncation in the energy space is introduced, that does not allow pamittearbitrary high energy,
Elgrolo Y(r,e,Q) =0. (7.4)

In the numerical simulations, we use d#faiently large cut@ energy. Furthermore, we prescribe the
ingoing radiation at the spatial boundary,

U(r, e, Q) = yp(r,e,Q) for n-Q <0, (7.5)

wheren is the unit outward normal vector.

Modeling of Scattering Cross Sections

Henyey-Greenstein Scattering Theory The detailed interactions of electrons with atoms give rise
to complicated explicit formulas for the scattering fim@ents. Because of this, many studies use the
simplified Henyey-Greenstein scattering kernel for elastic scattering [11]

1-¢°
Ar(L+ g — 29u)32°

The parameteg, which can depend on is the average cosine of the scattering angle and is a measure
for the anisotropy of the scattering.

oHeu. 9) = (7.6)
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Mott and Mgller Scattering A more realistic model for elastic and inelastic scattering of electrons in
tissue has been developed in [65]. This model introduces material pararfreimely densitiese and
Pc, ionization energyg and dfective atomic chargg). The energy integration for inelastic scattering is
cut-of ateg.

The model uses the Mott scattering formula for elastic scattering [139, 138]

Z2(Nra(1 + €)? _€(e+2) sir? )
4[e(e + 2)]2(1 + 2n(r, €) — cos?)? 1+ ¢€)? 2|

with & = arccos)’ - Q). Here,a ~ 1/137 is the fine structure constait,is the atomic number of
the irradiated mediunm, is the classical electron radiug. depends om to account for heterogeneous
media. To avoid an otherwise occurring singularityat 0 a screening parameter
71'2(1’222/30’)

e(e+2) °
can be introduced [159] that models the screenttece of the electrons of the atomic shell.

The dominant inelastic scattering process is Mgller (electron-electrottgising. Due to kinemat-
ical reasons of the scattering processes the range of solid angles i Btatering is restricted. The
electron, which has the higher energy after the collision is called primarir@hethe other electron sec-
ondary. Here, an incoming electron with eneegyits an electron at rest. After the collision, the angle
between the directions of the electrons is at mg& Electrons are indistinguishable. For an angle in
[0, 7/4], the electron with energyis the primary electron, for an angle in/B, 7/2], it is the secondary
electron. Therefore the Mgller cross section can be written as

omott(r, €, Q" - Q) =

n(r,e) =

TM = TMY|0cq.r < v2/2) T TMIX (V220 00 <1y

wherey denotes the characteristic function of a set,
~ /7 ’ ’ 1 ’
om(€,e,Q -Q):(J'M(e,e)éM(,u,,up)g, u=9 -Q,
is the Mgller diferential cross section of primary electrons and
~ ’ 4 ’ 1 ’
ams(e, e,Q - Q) =om(e 96)5M,6(/J,,U§)Z, u=9Q -Q,

is the Mgller diferential cross section of secondary electrons. Here,
2nrd(e’ + 172 [ 1 1 1 2¢ +1

om(e’€) = c@+2) |@ (@-ef (@+1P (¢ +1Pele o)
and
€€ +2 (¢ —es)
= — 1= f —_—
6M(ﬂe7ﬂp) 6(/’19 ¢ E+2]’ ore> 2 s

3 €€ +2 (€' —es)
5M,5(/1e,ﬂa)—5(ﬂe "e’e+2)’ e<———.

Mgller scattering does not take into account distant collisions. In the simudatiermodel parameters
Pel, Pin, €g andZ are fitted to tabulated values taken from the database of the Penelope Molatedtie
[125].
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Figure 7.1: Eddington factgr and system eigenvalues versus anisotropy paranagter

7.2.2 Partial Differential Equation Model

We will try to reduce the cost of solving system (7.1) by assuming a minimummnponciple for
the angle distribution of particles. This principle has been first propogethynes [72] as a method
to select the most likely state of a thermodynamical system having only incompietenation. It has
subsequently been developed in [107], [95], [10] and [45], amdhgrs, and has become the main
concept of rational extended thermodynamics [113]. A full accoudtaamexhaustive list of references
on the historical development can be found in [64].

We define the first three moments in angle:

yO(r,€) = f w(r, e, Q)dQ, (7.7)
S2

O, €) = f Qu(r, e, Q)dQ, (7.8)
]2

02,9 = [ @o 0.0 (7.9)
52

where we note that© is a scalary is a vector anay® is a tensor.
If we integrate the system (7.3) ov@t we can derive the following equations,

vl = 2 (500, (7.102)
€
V2 = (T + o + 2 (Sy) (7.10b)
€
We have introduced the transport Godents

(e-e)/2 1
Tin(r, €) = 7pin(r) f (1-pWain(e, €, n)dude’, (7.11)

€B -1

1
Tel(r, €) = 7pei(r) j: 1(1 — p)oel(e, p)du. (7.12)
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These cofficients and the stopping power can be computed for both Henyey-GrieesnstidMot{Maller
scattering. Explicit expressions can be found in [65, 53].

The problem remains open for the computation of mongéfitas a function of4(?) andyV). The
Minimum EntropyM1 closure for electrons [26] can be derived in the following way. Toectbg system
we determine a distribution functiafy g that minimizes the entropy of the electrons,

Hy() = - LZ Y logydQ, (7.13)

under the constraint that it reproduces the lower order moments,

f ymedQ =y© and f QuyedQ =y, (7.14)
S2? S2

By using this entropy, we have implicitly assumed that the electrons obey ebs&gwell-Boltzmann
statistics. This is justified, since here quantufiees can be neglected.
Analogous to the calculations in [95] we can show that the entropy minimizehadsllowing form,

YME = 0 EXP(Q - ay), (7.15)

whereag is a non-negative scalar, aiag is a three component real valued vector. This is a Maxwell-
Boltzmann type distribution anah, a; are (scaled) Lagrange multipliers enforcing the constraints. An
important parameter is the anisotropy parameter

whose norm is by construction less than or equal to one. If we computéffeeedt moments of the
distribution function given by (8.42) we obtain,

sinh(ay|)

sinh(a)(1 - |ay| coth(ay])) aL.

©) = 4rag , v = 4nag 7.16
v Y o (7.16)

In fact, these relations can be combined to give,

1 - |az| coth(ay|)
= ay, 7.17
au? 1 (7.17)
or by taking the modulus,
h -1

of = 2alcoth(a)) - 1 (7.18)

[aq]

The relation (7.18) cannot be inverted explicitly by haned, we cannot expressy| as a function
of a in a closed form. However, this relation determines a unique solution whiclingarnciple be
computed. If we assume that we knaw @ can be computed as

y® = lJ/(O)(l _/ZY(Q)I + 3)((0’2) — 1a®a , (7.19)
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where
_ lauf? - 2ag| coth(au]) + 2

B (7.20)

is a function ofa by means of (7.18).
For its dficient numerical evaluation, the Eddington factor has to be approximateerebpossibil-
ities exist:

e One could solve the closure relation (7.18) fayf e.g.by a Newton iteration in each step during
the simulation.

e One could precompute a table that gives the Eddington fgcasra function ofr.
e One could approximatg(a) by a suitable special function.

The second approach has been followed in [53]. It is advantageduysfahe space in which one
interpolates is low-dimensional. For more moments, this approach becomesibigeand the first
approach has to be used.

In some cases, aansatzfor y can provide a good approximation. This is the approach we are
following here. The Eddington factgrcan be approximated by a very simple rational function,

aga® +agat + & + ag
o + bz a? + bo.

x(@) =~ (7.21)

This approximation is very accurate (théfdience with exact curve is about ). The codficients are
given by
ap = 0.762066949972264 by = 2.28620084991677
ap = 0.219172080193380 by = —2.10758208969840
as = —0.259725400168378
ag = 0.457105130221120

(7.22)

7.2.3 Properties of the System

In the literature, the system that has been thoroughly investigated (bdthieally and numerically) is
system (7.10) restricted to its conservative terms, without externalesyuyat with time-dependence.

In the present work, we adapt a pseudo-time technique. We focus @pdiial discretization and
use a standard discretization for the terms on the right-hand side. Thumsider

%w(o) + V't =0, (7.23a)
0
0@+ V@ (@) =0, (7.23b)

with the closure (7.18).

The Eddington factoy is shown in Figure 7.1. Furthermore, we show the system eigenvalues in two
dimensions. In the isotropic regime (anisotropy parameter zero), theyidewith the P1 eigenvalues.
On the other hand, in the case of free-streamjag=£ 1), they coincide and have absolute value one.
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Thus the system (7.10) is hyperbolic and the speed of propagation is limitatebyvoreover the system
is hyperbolic symmetrisable [45].

System (7.23) closed by the relation (7.19) has been analyzed thorangB8]. There, solutions to
Riemann problems are constructed and invariant regions are computed.tls@reconstruction (8.42)
of the kinetic distributiony is always positive, it can be expected that system (7.23), (7.19) mumst ad
positive solutions(?) and a limited fluxja|| < 1. To our knowledge, however, there exists no proof of this
fact. The invariant regions computed in [38] only cover a subset ofdaflissible values. For a related
model [54], bounds were proved, but only in 1D and steady state. rifeless, we construct a scheme
which preserves exactly the positivity 9f%) and the flux limitationj.e. the convex set of the admissible
states of the system (7.23) is [17]

A= {(¥Ou®): y©@ >0, |p® < yO).

In the absence of sources or boundaries, the total mass, momentumeagyl &e conserved.

In addition, the minimum entropy system recovers the equilibriufiusiion regime as a relaxation
limit for large absorption cd&cients [37].

In a two-dimensional geometry, we have in addition [17]: bhdbe the unit normal vector to an
interface; then the system exhibits two acoustic waves, with veloditi@s andAr(n), supplemented by
a contact wave with velocitg(n). The quantitys - n satisfies the following inequality, (n) < 8(n) - n <
Ar(n). The Riemann invariants associated with the contact wav¢sarg. They are defined by the
relations

Y1 = (I1+ o) B, (7.24a)
Yo =Wo+I)BeB+IIId. (7.24b)

7.2.4 Numerical Method

The properties of the continuous model should be reproduced by thericatrecheme. In particular
the positivity and flux limitation constraints are fundamental. An HLL scheme ¢&8]be constructed
[12, 28, 17], that satisfies the required properties. However suelppmach cannot capture the contact
discontinuity. To prevent this failure, an HLLC scheme [12] has beeneattrthat resolves the contact
discontinuity and satisfies the physical constraints.

To complete this presentation of the numerical approximation, we mention th&gahlsthigh or-
der extension that preserves both the positivity and the flux limitation can ederelying on an
appropriate limitation procedure.

An HLL scheme for the free transport M1 angular moment system

In this section, we derive a Finite Volume method, issued from the HLL meth®fdt¢ediscretize the
free transport equation contained in the system (7.23). Put in othesywsedomit the source terms and
we consider the one dimensional generic conservative system

9 9
U+ o [F (U] =0, (7.25)
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Figure 7.2: Structure of the approximate HLL Riemann Solver

u=(;)

and¥ stands for the flux of th#/11 system in thex space direction.
We consider a structured mesh of sixe, defined by the cell§ = [Xi_1/2, Xi+1/2), where we have set
Xir12 = X + AX/2 i € Z, at timet". As usual, we consider known a piecewise contant approximation
UN(x, t"), defined byu"(x, t") = UM, x € I; , ¥i € Z.

At initial time t = 0, we impose

where

Xi+1/2
uP = f Uo(x)dx,
Xi-1/2

whereUg is the initial data. This approximation evolves in time, involving a suitable approxiRiate
mann solver. In the HLL approach, the exact Riemann solver solution sitiibd by a single approxi-
mate state (see Figure 7.2). Héieandbg are relevant approximations a@f andAg, respectively. Let
us introduce the proposed approximate solution:

if X
UL (x 1) = ( Z;’& 3 )HLL - { ZI; II]; tfsb% <br. (7.26)
Ur if br < §
Moreover, the search of weak solutions leads to the Rankine-Hugomgtgonditions
b [U* - U]+ |F - F(U)| =0, (7.27a)
—br [Ur - U] + [F(UR) - F] = 0. (7.27Db)

These relations provide us with an explicit expression for the intermediadeestd flux of the numerical
scheme

brUR — bLUL — (F (Ur) — F (UL))
br — b ’
brF (UL) — bLF (Ur) — bLbr(UR - U.)
br — b ’
At each interface..1/2, we impose the above HLL approximate Riemann solver, assuming the CFL like
condition (7.29) ensuring that the Riemann solvers do not interact in tieevdasreb j.1> < 0 and

U =

(7.28a)

F(UL, Ur)

(7.28b)
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bR,i—l/Z >0:

ES bLi+1/2bRi-1/2 . (7.29)
AX ™ briv12 = bri-1/2

We set?"(x,t + At), at timet" + At, the superposition of the non-interacting Riemann solutions. We
define the updated approximation at titfie* by

1 Xi+1/2

Ut = — U (x, 1" + At).
! AX Xi-1/2
An easy computation gives
n+1 n At n n
U =U = S (Fiiap = Filya) (7.30)
where
?((l/lln) if 0 < b|_,i+1/2
Filoa oW, ULy = Fit1/2 ((Uin,(uinﬂ) if bLis12 <0< brirye2
F(ur.,) if briv1/2 < O

The robustness of the scheme, namely the positivity, the flux limitation, the totalpneservation, has
been established for the HLL scheme (see [17] for further details).

Finally, concerning the high order extension, we adopt a van Leer MUSChnique [157], supple-
mented by a suitable slope limitation preserving these expected physicaitEepEd].

An accurate HLLC scheme

The HLL scheme has proved to be robust, however, its 2D extension faéla approximating contact
waves. Several works [12, 17] introduce a more accurate schemglLtleé scheme, based on a two
state approximation, denoted by andUy.

First, let us recall the relevant linearization that permits us to define améppation with two
intermediate states: on the one hand, the Rankine-Hugoniot condition3 é&re2¢onsidered; on the
other hand, they are supplemented by the continuity of the Riemann invariantssithe contact wave:

B =BIr=Bx » M =Tx=1I", (7.31)

whereBy andIl are defined by the relation (7.24). The combination of both the Rankineitioig
condition (7.27) and the relation (7.31) standing as the continuity of the Riemeaauiants accross the
contact wave, is dticient to~deterrr1ine uniquely [12, 17] the two approximate stdfeandUy, together
with their associated fluxds, andFg. The proposed HLLC approximate solution can be written as

. it X <by .
Yo(X, 1) ) Uu: if by <X <pB%,
Unic(xt) = - L oL < v =px 7.32
HLLC (X, 1) ( i) e u, it 1 < X < br. (7.32)
Ur if b < X |
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Similar to the derivation of the HLL scheme, we integrate over algghe juxtaposition of the non-
interacting HLLC Riemann approximate solvers at each interface (projesttpi, in order to obtain the

updated quantity
1 Xi+1/2

7/{_H+1 _ -

= U (X, 1" + Ab).
: AX ( )

Xi-1/2
This brief description of the HLLC scheme is now completed. It is able to camxactly the contact
wave, and satisfies the positivity, the flux limitation, and the total mass préiserva

7.2.5 Numerical Results
Central Void

The first test case is taken from the medical physics literature [11]. Weider only elastic scattering,
which is modeled by the Henyey-Greenstein kernel. Thus0 andT;, = 0. We compare the particle
flux (©)(x) obtained with the minimum entropy model (labeled M1) with a discrete ordinaketisoof

the transport equation (labeled SN) withfsziently many angles (128). The method has been described
in [47].

The test case consists of a one-dimensional geometry with three lay&csillgghick, followed by
optically thin followed again by optically thick. The layers have an equal defd mm. The scattering
and absorption cdicients arecs = 0.5 mnT?!, o5 = 0.005 mnT? for the optically thick region, and
os = 0.01 mnT!, o5 = 0.0001 mn? for the optically thin region. Moreoveg = 0. Figure 7.3 shows
the particle fluxy© as a functon of space. Compared to the benchmark solution, the minimumyentrop
model slightly overestimates but nevertheless quite accurately describeartivée flux. In Figure 7.3
we also show the partice distribution functig(x, Q2), whereQ = (0,0, 1) in 1D. The main dference is
that for M1, the forward-peak of the incoming particles reaches furtherthe medium.

Two-dimensional Void-like Layer

Our second test case, again taken from [11], is a two-dimensionatajiadomain which contains a
void-like layer, shown in gray in Figure 7.4(a). Again, we consider otdgtéc scattering modeled by
the Henyey-Greenstein kernel.

We takeos = 0.5 mnt! andoy = 0.005 mnt? inside the square, ands = 0.01 mnT! ando, =
0.0001 mn1t in the void-like ring. In both regiongy = 0. An isotropic source of particles is placed on
the left boundary. In a 2D contour plot (Figure 7.4), the flux$rom the discrete ordinate method and
from the minimum entropy method are virtually indistinguishable. The propagatiorthe medium,
as well as the void-like layer are equally well resolved. &atience between the models only becomes
apparentin a logarithmic plot of a cut through the center of the squgire &0 mm. Figure 7.4 shows the
particle flux along this line. The fierence between both solutions is again of the order of one percent.

Electrons on Water Phantom

As afirst test case with energy loss, we consider a 10 MeV electron ingainging onto a slab of water.
In Figure 7.5 we compare the results computed with our code to the dose carbputee state-of-the-
art Monte Carlo code PENELOPE [125]. This code has been exténsaigdated against experimental
results.
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Figure 7.3: Geometry with central void.
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Figure 7.4: Transport versus minimum entropy for void-like layer.
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Figure 7.5: Dose for 10 MeV electron beam on water.

To obtain a good fit with the tabulated scattering data, we have fixed our madeheters for water
aseg = 16.0 eV, Z = 9.40, pe = 0.256x 1072 g/cn?, pin = 6.21 x 10?3 g/cm?. As boundary conditions,
we have taken a very narrow Gaussian in energy, ahdudse in angle

Wb = Yo eXP(200x (€ — ebeam?)S(u — 1)

and computed the angular moments. PENELOPE was set up in a pseudttia®weh a large beam
size perpendicular to the beam direction.

In order to compare the flierent formulations of the models, both depth-dose curves in Figure 7.5
have been normalized to dose maximum one. The penetration depth computdwewith model agrees
very well with the Monte Carlo result. In fact this deviation is within the marginiffiedences between
different Monte Carlo codes [132]. The only majoffeiience occurs near the boundary, where the
M1 model overestimates the dose. This might be due to the simplified physisshigaseglection of
Bremsstrahlungféects) or an oversimplification of the angular dependenceinfthe M1 model. Both
possibilities will be investigated further. However, we believe that this resuitserve as a proof of
concept of a PDE based modeling of dose computation.

7.2.6 CT Data

In our final test case, we compare our method with Monte Carlo results RBNELOPE using real
patient CT data showing the hip bone. We took a two-dimensional slicexo @m from the three-
dimensional CT data. A square region is split intoc64 squares. In each of the squares, the material is
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Figure 7.6: CT data of hip bone.

described by its Hounsfield grey valgé€x, y). The grey values can be translated into physical parameters
as follows,
X,
p(xy) = (Ql(oo)(/)) + l)PWater,

i.e. the densitiepe and pi, for water are multiplied by a specified factor. The region shows the hip
bone and the density varies between 86% and 226% of the value of wdterbolindary conditions
were set up similar to the previous case, with three beams of width 2 cm, easistory of 10 MeV
electrons, impinging from the centers of three sides of the domain. Corltdsgh the dose distribution
are shown in Figure 7.7. There, we also show two cuts through the dasbudien. looking at the 2D
dose distribution, the contour lines agree very well. Note that, although veeuszd 3« 109 particles,
there still is significant noise in the Monte Carlo results. The two cuts througbéhm centers show
that also quantitatively the independently computed dose distributions agnewell.

The computation time for the 3D Monte Carlo dose wa<9 hours for 3 10'° particles on a 3GHz
Pentium 4 with 1 GB RAM. In 1D, the minimum entropy model took about 1 secior2l) 4 seconds.
Thus we expect a computation time of several seconds in a full 3D doseutatiop.

Again, this result shows that if our model is developed further, it mayesassan alternative to
existing dose computation methods.
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Figure 7.7: Dose distribution for three beams impinging on hip bone.
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7.3 The angular moment reduced model in the collective regime of plasma
physics

Having in view ICF applications, we have shown that the derivildreduced angular model is accurate

with respect to the collisional processes. As a counterpart, in this sesgomish to explore the response

of the model in the collective unmagnetized regime, which is still relevant ferdl@sma physics. We

propose the linear Landau damping and Two-Stream Instability as firstestatic Dy x 1D, validation
tests.

7.3.1 Linear Landau damping

The Landau dampingfkect is triggered, in this section, with the following initial distribution function
and electric field

fe(t = O’ X, VX) = [1 + ACOS«XX)] fM (nO, TOa VO) s (733)
Ext=0,x) = O, (7.34)

wherelLy = 25,ky = 2/Ly, fp is the nonrelativistic Maxwellian with zero drift velocity = 0,arbitrary
densityng, and initial temperaturégy = 1.

For the kinetic reference Vlasov model, we have chosen 64 discretizatiors jn the space and velocity
directions, and a truncation of the velocity domain at the dimensionless maximouoityeévma, = 6.
We use, for the discretization of tid1 model, 128 points in velocity, with a truncation of the velocity
domain at the dimensionless maximum veloaifysx = 7. We choosealt = 1/100 for both theM1 and
reference simulations.

In Fig. 7.8, bothM1 and reference kinetic (formal fourth order) simulations have the saaigt@al
instability growth rates, in the linear £0.001) and nonlinear (A0.1) Landau damping as well. The
numerical schemes, in the linear phase of the instability, exhibit a very atecagreement with the
theory. The Fig. 7.8 shows, first, the correct behaviour of the rebionoelel in the collective electrostatic
regime, and second, the accurate numerical treatment M theduced model by our numerical scheme.
For A = 0.1, the nonlinear phase of the instability, some discrepancies appreaebdtreemodels. We
may conclude that the mixing of the particles in the phase space needs to bacoarately described
than the one-group 1 model.

7.3.2 Two-Stream Instability

The Two-Stream Instability is triggered, in this section, with the following initiatriiation function
and electric field

1
fe(t =0,%vy) = 5" AcoskyX)

1
E + ACOS((XX)] fM (no, TQ, Vo) + fM(I’lo, To, —V()) , (735)
Ext=0,x) = 0, (7.36)

wherelLy =, kg = 21/Ly, fm is the nonrelativistic Maxwellian with non-zero drift velocityipg| = 4,
arbitrary densityng, and initial temperatur@y = 1. For the kinetic reference Vlasov model, we have
chosen 64 discretization points in the space and velocity directions, andcatian of the velocity do-
main at the dimensionless maximum velogity, = 12. We use, for the discretization of tMl model,
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Figure 7.9: Comparison between the electraviit and reference kinetic solution

128 points in velocity, with a truncation of the velocity domain at the dimensionlezsmaen velocity

Vmax = 7. We chooselt = 1/100 for both the\i1 and reference simulations.

In Fig. 7.9, both two-groupM1 and reference kinetic (formal fourth order) simulations are consistent
with respective analytical instability growth rates. The two groups are elfivith positive and nega-
tive velocities, respectively. We have deliberately chosen a wavelemtbberufor which there exists a
relatively large discrepancy between the analytical solutions issuedtfremispersion relations of the
reduced two-groupl1 and reference Vlasov models. The Fig. 7.9 shows, first, the corbewipur of

the reduced model in the collective electrostatic regime, and second, thrai@ccumerical treatment of
the M1 reduced model by our numerical scheme.
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Figure 7.10: The role of the relativistic electron inelastic collisions on dogediéon in water phantom

7.4 Standalone #ects of ionization: the role of Mgller inelastic scattering
in radiotherapy and ICF

In this section, we investigate thé&ects of Mgller inelastic scattering, related to large angle scattering,
in water phantom, using thisl1 model. The results show that the energy deposition is postponed in
space (pushed forward with respect to the beam direction), and agesito a non-diuse localization

of the energy deposition zone, for the stationnary solution. We finallyeptesir results in relation with

a Monte-Carlo simulation of electron transportin- T, in the ICF context. Such simulation could be
reproduced with less computational cost with the model present in Chapter 8

7.4.1 The case of an electron beam propagation in water phamofor radiotherapy

The simulation parameters are the same as in the Sec. 7.2.5, except that thelétitiah beam energy
€peamlS NOw valued 5 MeV. The Figures 7.10(a) and 7.10(b) suggest thattdt of the Mgller scat-
tering would be to push forward the dose deposition in the beam directioa.cAasequence, the dose
deposition is more peaked (les¢fdse) than in the case where the Mgller scattering is simply switched-
off. We have shown here the importance of the large angle scattering, in a simpdplesentativelly
configuration.
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7.4.2 The case of an electron beam propagation ib — T for ICF

In this section, we present a Monte-Carlo simulation of relativistic electropawyation inD — T. This
simulation is extracted from the HIPER technical report [68], and predeémtelation of, first, the dose
deposition of relativistic electron beam for radiotherapy, second, thelhdedived in the Chapter 8, that
is able to describe the heating of a thermal plasma with collisions ranking framingrto nongrazing
(small to large angle), in a continuous manner.

The electron stopping power (7.37) and mean squared angular defl@c88ninD —T is calculated
using the Mgller formula

dE _ dp_  4mnee’ (In 1.24%y(p)mev? 0409 0.818) _ D (7.37)
ds — dt - me? | wpp(p+1 YA v(P) ) VA(p)° '
d{e)  Brznet s v(p)\?

wherep, E, v(p), y(p) are the momentum, energy, velocity and lorents factor of the fast electi®the
distance along its pathis is a screening length for the atoms or iofg, is the de Broglie wavelength
of the fast electronne andwpe are the electron density and plasma frequency ofxheT medium.

If D is assumed constant, a simple solution can be obtained for the stopping distgnaed timetsop

E2 1.56
0 .
_ 7.39
S0P = 796, + 11— 0.048Inp Ji (7.39)
3
MeC
tstop = —5- _rrrt)c - arctan—rrif)c) : (7.40)

wherekEy is the electron energy in MeY, is theD — T plasma density in ,b:mz.

An example of axial and radial energy deposition profiles for an MeMadn 300 g/cm2 D-T,
calculated with a Monte-Carlo code using (7.37) and (7.38), is shown ind-igy1.
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Figure 7.11: Average energy deposition profiles for an MeV electrorti)ﬁhgfcm2 D-T. The z-axis is
aligned along the initial direction of motion. These curves are exctracted Hi®ER technical report
[68]

The curve in Fig. 7.11 illustrates the similarity between the physics of electnospioat in radiother-
apy and the electron transport in ICF. Moreover it could stands ageerefe simulation for the model
we present in Chapter 8.

7.5 Conclusion

We have proposed in this chapter a reduced angular model, which is mtandarms of admissible
states, and is appropriate for the description of the relativistic electrogpan It is valid in the col-
lective or rarefied regimes, as well as in the collisional regime. Theré&neulti-group version should
be well-suited for a multi-scale mesoscopic description of the electron transp@F plasma physics.

A relevant HLLC scheme has been developped to account for the spdiffiftulties -in particular the
flux limitation and contact discontinuities irD2-, inherent to thidvi1-type system. We have proposed
an analogy between electron transport in radiotherapy and ICF, amdthle importance of collisions
with large angle scattering in radiotherapy, then finally present a refergionte-Carlo simulation for
ICF (from the literature) that takes into account theffea, and could serve for a compararison with the
model derived in the next Chapter 8.
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7.6 Appendix: Explicit formulas for the cross sections

This appendix lists all scattering cross sections that are used in the Boltznuateh. All cross sections
are calculated for the laboratory system where the scattering centextsrast before scattering. Except
for elastic Mott scattering, all dierential scattering cross sections aradiential in energy and in solid
angle. They can be decomposed into a product of a cross section, tmdy @ifferential in solid angle
or energy and a Dirac delta function, that guarantees energy and mameatservation during the
scattering event. The Mott cross section is onlffedential in solid angle. Total cross sections are
calculated by integrating the doublef@rential cross sections with respect to energy and solid angle.
Because of the delta functions one integration is always trivial.

For all differential cross sections the following conventions are used: quantities pitima belong
to incoming particles, quantities without a prime to outgoing particles in a scattesemg. & he order of
appearence in all dfierential cross sections is: energy of incomieg,(energy of outgoinge), direction
of incoming '), direction of outgoing particlexY). To simplify notation and to keep the standard
notation used in literature we us¥ - Q = cos? = u, ¥ being the scattering angle in the laboratory
system. Additionally we keep sihand tan? in formulas, to maintain a handy notation. The relationship
to cos¢ is evident. Furthermore it should be kept in mind tgat eg(r) which is not explicitly written
to keep notation short. In all formulas the classical electron ragies2.8179- 10~1°m appears.

7.6.1 Dfferential cross section for Mgller scattering

Due to kinematical reasons of the scattering processes the range of glés & Mgller (electron-
electron) scattering is restricted. The electron, which has the higheyyeatter the collision is called
primary electron, the other electron secondary. Here, an incoming eledtioenergy’ hits an electron

at rest. After the collision, the angle between the directions of the electratsmsstr/2. Electrons

are indistinguishable. For an angle in 4Q4], the electron with energyis the primary electron, for an
angle in [r/4, /2], it is the secondary electron. Therefore the Mgller cross sectiobeanitten as

OM = OMX 0.0/ <v2/2 T OMSX y3/2<0.00<1>

wherey denotes the characteristic function of a sy, iS the Mgller diterential cross section of primary
electrons andry s is the Mgller diferential cross section of secondary electrons.
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7.6.2 Dfferential cross section for Mgller scattering of primary eledrons, i.e. € > (¢’ —

€s)/2[79]
~ ’ ’ ’ 1 ’
O-M(E’EaQ ‘Q)=0'M(Ea5)6M(ﬂe,,up)Z’ ,Lle:Q Q)
with
0_(6,6)_27rr§(6’+1)2£+ 1 ) 1 2¢ +1
M Tee+2) |2 (@-e2 (@+12 (¢ +12e(e —e)

3 €€ +2 (¢ —eB)
5M(,Ue,/1p)—5(ﬂe Ve’e+2]’ €>—

7.6.3 Dfiferential cross section for Mgller scattering of secondary ektrons, i.e.e < (¢/ —

es)/2[79]
~ ’ ’ ’ 1 ’
O—Mﬁ(e 5 699 : Q) = O-M(E 5 €)5M,6(ﬂe’ﬂ6)Z, He = Q : Q
with
(.o = 2rrg(€ + 17 [ 1 1 . 1 2¢ +1
MEET Te@+2) | (@-e2 (¢ +12 (¢ +12e(e —e)
3 €€ +2 (¢' —eB)
om.s(Hes 5) = 5(,“e \/?“_2], €<—

7.6.4 Total cross section for Mgller scattering of electronfr9]

(e-es)/2
o(e) = f om(e, €)de

€B

The lower limit of integration is due to the fact that the primary electron can anbchttered if at least
the binding energyg is transferred to the secondary electron (of a tissue molecule). Besalegidient
motivation of this choice based on our model, this is a standard way to avoudasiitigs in calculating
total cross sections (sexg.[158]). The upper limit of integration is due to the fact that the primary
electron has larger energy than the secondary electron and that thegl@nergyeg was introduced into
the scattering processes (usually the upper limitf2). One gets:

2nr3(e + 1)

tot
7€) e(e + 2)
1 3 2 €—3ep 2¢+1 €+ e €—€p
— - —1In
% {65 €—EB+€+€B+2(E+1)2+€(6+1)[ €—€B € g]}
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7.6.5 Dfferential cross section for Mott scattering of electrons [139138]

a ~ 1/137 is the fine structure constatis the atomic number of the irradiated mediufndepends on
r to account for heterogeneous media.

Z2(r)r&(mc)?
4p2c2p2 sint* 2
Z2(r)r(mc)?
4p2c2p2 sirf* Ze

omott(r, €, Q" - Q) [1 _ Bsir? %e + Znap sin%e (1 —sin %e))}

’

, o0
[1—,8 smz?

with g2 = % The last approximation is justified, because in the energy range studiecine for
typical low-Z media like water only small errors are made.

To avoid the singularity af/e = 0 a screening parametgrcan be introduced [159] that models the
screening ffect of the electrons of the atomic shell:

Z2(Nra(1 + €)? 1- e(e + 2) sir? Je

rneQ - Q)=
mon(rs € )= Uele+ DR+ 20(r ) —cost | @reor " 2

with i
m?a?Z5(r)

n(r.€) = e(e +2)

7.6.6 Total cross section for Mott scattering of electrons
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Chapter 8

From classic to relativistic: extension of the

model to high energy electrons, questioning
grazing collisions.
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8.1 Introduction

Large-scale, high intensity laser installations [6, 19, 12, 20, 41, 40hchieve highly relativistic inten-
sities and generate extremely high currents of relativistic electrons in itiradth solid targets. An
accurate description of the transport of such high currents of rekatieectrons in dense matter is an
important issue for many applications including the fast ignition of thermonufilean targets, radio-
graphy of dense opaque objects, cancer therapy, lithography,/e®3,[38]. Recent proposed schemes
for ignition also rely on pre-assembled overdense targets [28], and faigghsuch regimes.

The complexity of this problem comes from the fact that the collective and icolisprocesses are
operating in the same time and spatial scales and they require a kinetic deswfpigrticles in a very
broad energy domain ranging from thermal electrons of a few tens alrédmeV of the main plasma to
several tens of MeV of the beam electrons. The dominant physicaégses include the collisions of
beam electrons with the electrons and ions of plasma, the electron-ion atrdrlelectron collisions
of plasma particles, production of secondary energetic electrons indreal@ctron-electron collisions,
generation of self-consistent electric and magnetic fields, return ¢syeerd plasma heating. There is a
necessity to describe correctly both the energy deposition of beam eleeind their transport from the
injection to the energy deposition region.

A very large diference in energies and densities between the electron beam and the e¢ronse
are revealed in the time and spatial scales of the collective and collisioralgs@s, that makes ifficult
to describe all physical processes within the same kinetic equation. ltwgaested to separate the
plasma and beam electrons and to consider them as tf¥evatdit populations. A theoretical approach
that is currently implemented is based on the hybrid model where the plasmamrdeate described
in the fluid approximation, while the beam electrons are treated kinetically [35,329]. While this
approach has shown its capability to describe the mdfects such as the collisional slowing down of
beam electrons and the return current generation along with the seistant electric and magnetic
fields, certain physicalffects are left out of the frames of this model. In particular, the plasma electron
distribution function is supposed to be close to the Maxwellian function andftrerthe nonlocalféects
in the plasma electric and thermal conductivities are neglected. Moreawehigiion of secondary
fast electrons created in the head-on collisions of the beam and plasriraredas discarded. A more
advanced model of the fast electron transport would be necessargen to evaluate the domain of
validity of the hybrid model and to extend it to higher current densities, higham electron energies,
and higher plasma densities.

The relativistic extension of the integrofidirential Fokker-Planck-Landau kinetic equation [2] or
simplified techniques [8, 43, 32, 4], have been proposed to incorptirateclativistic &ects in the
collisional process in the pitch-angle description. Several studies (34have been undertaken recently
based on an electron kinetic code KALOS [4], to investigate issues relatiw tiast electron beam
energy deposition in fusion targets. There the pitch-angle electron coflisind the self-consistent
fields are described relativistically, however tiffeet of secondary electron production, including both
relativistic dfects and large momentum transfers, was neglected. The objective of &ptecls to
consider in detail this latter process and to evaluate its importance, fromraticabpoint of view and
from the point of view of numerical treatment of the kinetic equation.

The problem of secondary electron production has been addressezlpablications [25, 27] that
consider the ffect of cosmic rays on the thunderstorm discharges in the Earth atmosphé&neetic
modeling technique based on the relativistic Boltzmann equation, have liegriseescribe large angle
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scattering processes and production of secondary electrons, tHtriscalledthe ionization process
Such specific models have been also derived for gas dischargagjayibreakdown [26], and Tokamak
disruptions [22]. However, these models describe the backgroundogis@s a cold [25] or a warm fluid
[22] and consider them as a potential source of secondary elecirbasffect of the energy deposition
in plasma was not considered there, whereas it is important issue for tispara problem. A non-
Maxwellian distribution function of plasma electrons could be responsibléghtomodification of the
electric conductivity, return current and other importaffieets [50].

The numerical realization of the relativistic collisional operator has beegiaj@ed for the collisional
particle-in-cell (PIC) or Monte Carlo (MC) codes [45, 47, 22]. Hoeewndependently of the domain of
application, laser interaction with dense matter or a Tokamak plasma, the implementsi@f proba-
bilistic methods into the kinetic models may be too high due to a large number of pantiatasparticles
needed to maintain an acceptable low level of statistical fluctuations. Evendelés using weighted
macroparticules [47] heavily rely on the small angle scattering to do so. &kiselad authors [22] to
derive a more specific model that incorporates specifically the produstieecondary electrons.

The deterministic numerical methods [52] could be better suited for descriptitre large angle
scattering ffects, because they are by nature less dependent on the density ancterapgmnditions.
As we will show in this chapter, the plasma heating process, which is due toamggdl collisions, is of
the same order, with a logarithmic accuracy, as the production of segogldatrons, due to large angle
collisions. This rather general result will be illustrated here for simple digtgh functions for the bulk
and beam electrons.

A collisional interaction between the electrons in verffaetient energy scales (from eV to MeV) jus-
tifies a need for two populations of electrons: the beam (fast) and thethalkr(al) particles. However, a
direct separation of two populations in the energy or momentum spacetdandhcient, since the bulk
electron distribution function may have a long tail, and the fast particle distribfiticction may have an
extension down to the fastest thermal particles. One has to allow for thel@aotice transferred from
one population to another. In this chapter we propose a model based elettr®n kinetic equation,
that separates the electrons in two populations operating in tiierelit energy scales. The model is
derived by using a procedure based on an operator decompositiarigieehwhere the collision oper-
ators are interpreted in a systematic manner. This model respects the pamitiernmomentum and
energy conservations, and introduces an artificial screening paraméte cross sections, depending
on the bulk electron temperature. A reasonable choice for this parametedsnental to maintain an
acceptable number of particles in each population. Thus a numerical vatidditibe present model is
necessary to find a compromise for this parameter and to gain confideneera@sthts.

The present chapter is structured as follows. In Sec. 8.2, the eledli@ion processes are de-
scribed, a two population model is proposed and its design principles angssél. In Sec. 8.3, the
collision invariant preserving property of the procedure is highlightetdenT basic properties of the
model are illustrated on a simple beam-plasma configuration in Sec. 8.4. Finatuyeed model suit-
able for numerical computations is presented in Sec. 8.5. A quantitativesaned\performed for the
case of a mono-energetic electron beam propagation in a warm plasmanfdréance of large angle
scattering for the energy deposition and angular scattering of the beamandtrated.
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8.2 Relativistic model of electron kinetics

8.2.1 Caollision processes of importance for plasma physics

Let us consider a plasma made of electrons and immobilé ioha chargeZe and a densityy. The
electrons are described by a relativistic kinetic equation

dfe of
Here,ge = —eis the charge of electron, the velocity and momentura p/mey are related by the

relativistic factory(p) = +/1+ p2/méc?, c is the speed of light, anthe is the mass of electron. The
electric and magnetic fields are described by the Maxwell's equations evtherelectric charge and
current densitiesp = e(Zn, — neg) andj are defined by the electron distribution functioms(t,x) =

f fe(t,x, p)dp andj(t,x) = qef fe(t,x, p)vdp. In what follows, we concentrate our discussion on the
collisional dfects leaving apart the convective terms in the left hand side of Eq. (8ut)n@in objective

is to separate this kinetic equation into the fast and slow components andiibeése coupling between
them.

The standard approach in the physics of Coulomb collisions consists ifodige the collision
integrals in series assuming a small momentum transfer in each collision. Thaesthe general
Boltzmann-like collision integral in the Landau-Fokker-Plancetential form containing the friction
and difusion terms in the phase space:

Ceul fe] = Vp - (Foa fe(p)) + Vp - (Da Vi fe(p)) - (8.2)

In the non-relativistic limit and neglecting small ion mass correctiongm, < 1, the electron-ion
collision integral has only a ffusion termfFp; ~ 0, that is

_ Z’nefinA

D .
I 87re§

(V) , (8.3)

where®(u) = (Jul’l — u®u)/|u® is the tensor describing the pitch angle scattering; v — V' is the
relative velocity,| is the unitary matrix, and IN = IN(ApPmax/APmin) iS the Coulomb logarithm, with
Apmax ~ p being the maximum momentum transfer in a collision between partitlgs, ~ 7/1p is the
minimum momentum transfer at the Debye ctii-@p, and7: is the Planck constant. The expressions for
the electron-electron friction force and théfdsion codicient, in the relativistic case, are as follows

etlnA V-V

Foel fo] = fo(p’) d3p, 8.4

De[ e] 471_6_(:2)rrb |V—V/|3 e(p) p ( )
e'inA .

Diffel = £ [ owp) . (8.5)
8re

0

In plasmas with highly charged iong,> 1, the electron-ion collisions dominate théfdsion, while the
friction is related to the electron-electron collisions.

1The assumption of immobile ions makes the equations more readable.rTimfimn can be included in the model with a
marginal loss of accuracy.
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A usual approximation of classical plasmas, whera Is- 1, justifies the possibility to neglect the
head-on collisions, which makes usually a small contribution of the ordey of AL However, this
statement of unimportance of large angle scattering events is not gemergheae are conditions where
the hard collisions could produce qualitatively neffeets that do not exist in the Landau-Fokker-Planck
approximation. One well-known example is the ionization of atoms or moleculesebyefectrons in
partially-ionized plasmas. Another example is the electron-ion collisions intagsiaser field. The hard
collisions dominate the electron heating rate if the electron quiver velocity isrléngn the electron
thermal velocity multiplied by the Coulomb logarithm [9].

In what follows we are considering a problem of an electron beam gatjma through plasma. The
characteristic beam electron energy, is supposed to be much larger than the mean enkgdy, of
the bulk electron population. In that case the hard collisions of the bearhudk@lectrons, similarly
as in the ionization process, produce energetic electrons and thussmtheafast electron population.
Moreover, the collisions of beam and bulk electrons at small angles peaaldiast electron tail in the
bulk of electron distribution, which mighti&ct the transport cdiécients in such a plasma.

We develop a system of kinetic equations for the beam (fast) electrooskBzsby the distribution
function f,, and the bulk (thermal) electrons described by the distribution fundtiprassuming that
& > kgTe and that that density of beam is smai), < n.. We just suppose that the beam electrons
could be relativistic, while the plasma electrons are non-relativigits < mec?.

8.2.2 Kinetic equations for two electron populations

The master equation that incorporates the hard collision processes itathastec Boltzmann equation
[16, 48, 49]

W2
WpWo

S0 = [ da [ @ [1G)1(@) - 1O @] 8y QB (3.6)
R3 s?

The notations for the momena g and energie$V,, W, are applied to the outgoing particles, that is,
after a collision event, whereas the momepitag” and energiesV,y, Wy refer to the ingoing particles,
thatis, before the same collision event. The conservation of the momentuimesgnakergy in the collision
implies thatp + q = p’ + " andW, + Wg = Wy + Wy . The quantities marked with tilde (respectively
without tilde) refer to quantities in the center of mass frame (respectivelygitatioratory frame) for a
collision event, except for the scattering angle in the center of mass fremeted! byy. In particularW

is the energy of colliding particles in the ceqtgzr of mass, Cosd is the cosine of the interaction angle.

0l = 2pc?/W is the relative velocityvy = {

is the Mgller velocity, and) is the total relativistic

pVVq
Rutherford cross section (8.7), that takes into account both relativigtis@in (including Pauli statistical
principle) efects

Q(P. 1)

~ 1 1
QOA(p) (sin4(9/2) * C054(9/2))
1

1
sint(6/2) " cog(6/2)

whereQp = (emc)?*/(167e?W)2 and the momentum-dependent functions Aff) = (1 + 2C(p))?,
B() = 1+ 4C(p), C(p) = p*/méc?.

+

QoB(b)( ) + 200C2(H) 8.7)
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The stitness of the Boltmann operator is due to the long range Coulomb interactioncofe
plexity of its tensorial form, acting on the general distribution functfo(gathering both thermal and
fast particules), makes a numerical treatment vefiycdilt. We develop a simplification procedure of
the Boltzmann operator, that captures the essential processes atidtasisollision frequencies with a
good accuracy. This procedure is relying on appropriate assumptiansetipect the original collision
invariants.

The first step is folding of the total cross section (8¥)» Q;. Owing the fact that electrons have
to be considered identical, the cross section can be folded, that is, th@e¢ein the outgoing channel
can be exchanged, and the singularities be concentrated at small afiglissstep is necessary for
development of the small angle scattering approach, and for derivdtibie dandau type formulation
presented in Egs. (8.16) - (8.18).

As a second step, an intermediate -in momentum exchange- screening igéettaa the Rutherford
cross-section, that makes it possible to discriminate between the smaller gerddiagles (equivalently
energy exchanges) for scattering, and thus to introduce aftutlame in the momentum space. This
strategy is equivalent to the decomposition, at a finer level though, oftcteersed Coulomb potential
V(r) [?]

—I'/Ap

V(r) = [e

— S(r)} +{S(I’)] >
r “smaller angle% “larger angleg

—1'/Ap
whereS > 0 is a smoothing function, which introduces an upper screening,—a}qdr —S(r) = 0.
This Debye-like screening procedure of the Coulomb singularity allowsstegpretation of the above
bracketed collisional processes. A rough, bufisient condition, for such an interpretation to be safe,
reads [25]

n W,
—b<<1 , —th<<1,

Nth b

which reduces, for the model, the admissible configurations of the plasnra.thtesubscriptd’ and
‘th’ refer respectively to the beam and thermal plasma populations.

After a standard folding procedure of the cross-section of like partailsions, it is decomposed, based
on the intermediate screening, in two -or more than two- daughter crossnsect@ch of these sub
cross sections is interpreted as a specific collisional process -eithen#ifiersor larger angle scattering-
, which dfers the possibility for a discrimination between two sets of particles, base@ endaimentum
cut-of, and leads to the subsequent operators. Such a decompaosition gsese@nerality of the de-
scription, but is not unique. The positivity of the daughter cross secisgm®eserved during the decom-
position. In the limit defined by the anglg — 6p = 2 ~ 2 f the smaller angle scattering

ADA Pmax App’
processes are selected. The larger angle ones shall be discaraéwkier-Planck-Landau procedure.

On the other hand, the uppper cut-@, > 0p, above the Debye screening, defines the frontier between
the smaller and larger scattering angles, and could be chosen such apdoct i@ robustness criteria,
that is crucial for the numerical implementation of the model. The possiblity rerogieis to select an
anisotropic cut-ff in the momentum phase space.

The folded, screened cross section, re@dd, 1) = Q(fsa)(f), )+ Q(f'a)(f), i), where a possible choice for
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the daughter cross sections is as follows

QS(p.j) = 2QoA(P) - 2QoA(P) . (8.8)
(sirer2)+ [ 3]} (sifor2)+ [4])
QP = —— 2O ZXBB_ o, 6.9)

(sin2(9/2) n [9—;]2)2 si?(0/2) + | %°

Both functions are positively defined. The inclusion of screening termseiméimlogarithmic terms is
allowed because the relevent range for the parandgteatisfies the multi-scale criteripy < 6; < 1,
which involves co%(e—;) ~ 1. It does not fiect the accuracy of the cross section, since the contributing,
singular part remains physically screened. Rather than the decomposSii®)n(§.9), we prefer the
screening and decomposition such as

2QA(F)  2QA(p)cos (3)
(sin2(9/2) + [f’g]z)z (1 + ["—;]2) (sin2(0/2) + [%]2)
2QoA(p) cog (§)
(1+[4F) (sier2) + [4T)

) [COSZ("—;)} 2Q0B(p)
1+ (4] ] (sirPer2) + [4])

These daughter cross sections are positive. This form allows us to sidgstiigoming analytical com-
putations and to postpone crucial hypothesis at the end of the computation.

Q¥(p, 1) (8.10)

2°

QY (p, i)

+ QoC(p) . (8.11)

The distinction between therm§f* and beamf distribution functions is the consequence of the
discrimination of the collisional processes. As a matter of fact, the two popugpiesent two dierent
resolutions for the phase-space discretization. In the remainder, weldrsuperscripts, on the dis-
tribution functions.

The processes associated with each of two energy scales are listedar8TabThe two electron
populations, thermal and fast, are allowed to share energy rangesjqualistinct energy exchange
scales can be identified among the collision processes at stake. This leaisfification of the Bolz-
mann operator to a set of bilinear operators. The modeling choice fordpesators and the attribution
procedure to each of the populations, are also given in Table 8.1.

Concerning the thermal population, only pitch angle scattering between tinegthgarticles is taken
into account (process $P). The large angle scattering of the thermal particle (proce$®5i§ ne-
glected assuming/In A as a small parameter. The collisions of the thermal particles with the beam
particles give raise to three processes. The small angle scattering (eBses the energy of the thermal
particle, while leaving it in its own population. The large angle scattering (E3)ttvo manifestations:
the thermal particle gains energy and joins the beam population @@his is the ionization term and,
at the same time, the thermal population looses this particte) (10
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Table 8.1: List of collisional processes considered for the beam asthplalectrons.

Entering| Collisional process Target | Exiting | Collision model
particle | (sa)(la) scattering particle | particle
Self Thermalisation: S | thermal | small angle scattering (sa)thermal| thermal| Fokker-Planck-Landads
Self Thermalisation: S® | thermal | large angle scattering (la) thermal| thermal | neglected
Heating: H thermal | small angle scattering (sa)beam | thermal | Fokker-Planck
lonization gain: IO thermal | large angle scattering (la) beam | beam | Boltzmann gain term
lonization loss: 10 thermal | large angle scattering (la) beam | thermal | Boltzmann loss term
Slowing Down: S beam small angle scattering (sa)thermal | beam | Fokker-Planck
Slowing Down: S beam large angle scattering (la) thermal| beam | Fokker-Planck
Self Thermalisation beam any scattering angle beam | beam | neglected

Concerning the beam population, the proces$%3 identified as the small angle scattering on the
thermal particles. It is the standard Fokker-Planck-Landau procedsiging the dfusion and friction
of the beam in the phase space. The proces$)Sfan be interpreted as large angle scattering of beam
particles on the thermal particles, where particles of each population aréamaih in the outgoing
channel (at the end of the collision process), in their original populatibnis appears paradoxal, since
the large angle scattering statement should be responsible for a therrielegar become member
of the beam population. We solve this by choosing a Fokker-Planck agipr@ee Sec. 8.3) for the
process S, that maintains the collision invariants of the bilinear Boltzmann form. Doing soemak
the large energy exchanges be discarded for thermal particles, gghpsical in this process. This is
possible because we considered folded cross sections around sghedl, amd thus all scattering angles
are gathered (considering the forward peakness of the Coulombserctésn) around zero. This Fokker-
Planck treatment is valid for the beam particles as well, since the large emechgnges can still be
considered small with respect to the variation of the beam distribution funciiorally, all collisions
between the beam patrticles are neglected because of a relatively sma#imafrbbam electrons.

The final model, that presents two energy exchange scales, reduces to

d
ot fo(p) = Cio+[ ftn, fb] + (Cspsal fo, ] + Cspia[ T, fin])

d
afth(p) = Cio-[fin. ol + CH[ fin, o] + Csesal i, fin]

(8.12)

(8.13)

where the explicit forms of the collision operators are presented in Eq$){@B118). In particular, the
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operators that describe hard collisions, where the two populationsrexelparticles, read

Cio+[ fin, ol

- W2
3 ’ ’ n o (la) /= ~
fR _d%g fs O @) (@) 0 g Q)

’ ’ 2C4W’2 N7y " (l2) fx ~\ A3 43 o7
= [, ) g o0 - QPG Ay de . (314)
Coo[fn fo] = —f (p)fd%f 4 fo(a) T - (5, )
10~ LTth, To th - - b WoW, Y
2cW2 & A A(18) ko 43,43
= —fin(p) o fb(Q)W5(W - W)Q{™ (P, )d’p’'d>q
I 1
= 2rfu(D) f 6q Q)T f Q. A)di (8.15)
R3 Wqu -1 f ’ ’

where the delta function accounts for the property of energy cortgmmfar a collision between a fast
and a thermal particle, in the center of mass frame. The last two forms in théaigt side of Eq. (8.12)
are merged ilCs pf fp, fin] = Cspsal fo, fin] + Cspea[ fo, fin]-

The other processes can be described in the pitch angle limit

Csolfo. fin] = Vo (Folfin] fo(p)) + Vo - (DL fin] Vp fu(p)) . (8.16)
Culfin fol = Vp-(Fo¥[fo] fin(p)) + Vp - (DI 1]V fin(p)) . (8.17)
Cstealfin fin] = Vo (Foel fin] fin(D)) + Vp - (Del fin Vi fn(p)) - (8.18)

The friction forceFpe and difusion codficient D are given in Egs. (8.4) and (8.5), because only
small angle deviations in the non-relativistic regime are considered, with attogéac accuracy, for
the scattering of thermal particles.

Finally, the bilinear form<y[ fin, fy] (Heating, with the cross sectic@(fsa)), andCsp fp, fin] (Slowing
Down, with the cross sectioQ;), of the Bethe type, are derived following the Landau method. The
resulting expressions for the déeientsFp[f] and D[ f] are given in Egs. (8.20) - (8.21) and (8.27) -
(8.29). They are respecting the collision invariants — the conservatior ¢dtal mass, momentum, and
energy — for the complete distribution functidg + fy, for the model (8.12) - (8.13). The derivation
presented in the next section is based on a decomposition of the collisicat@parmoments of the
cross section. Compared to the original Landau derivation, the prappnbach dfers only in non-
logarithmic terms, but has the advantage of exactly preserving the collisiarnants of the model, thus
contributing to gain a confidence into it.

8.3 An invariant preserving Fokker-Planck procedure

We propose here a Fokker-Planck procedure of derivation of theh(®d 2) - (8.13) from the original
Boltzmann operator (8.7). Its particularity lies in the preservation of the callisiariants — total mass,
momentum and energy —, for each process of the model, independerdlgletitiation of Fokker-Planck
type operators starts from the weak form of the Boltzmann operatoratipgion a arbitrary, forward-
peaked folded cross secti@y. Let us consider an arbitrary smooth test functi®(p), and calculate
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the following integral

W2
WpW

d ~
<d—tf(p),7’> = f F () (F(p") F(a') = f(p) f(q)) GQx (P, 1) d¥'d’qd’p.
S2%R3%2

The right hand side of this equation can be rewritten, exchanging the ingdpiirg’} and outgoing
particles{p, g}, as

5] (F(0) - 7)) () 1) — F(P)F(6) BQ (B )~ dfy ek
2 Jarmae O PO HPINHG P (@) 8Q (B A iy qdp.

Then a Taylor expansion is performed on the funct®nsnd f, assuming small angle deviatiods) <
p (small energy exchanges), and using the momentum conserpatiog = p +q

) =70 - 8p- () + (UL TT ) ns 1,
f )" ot

() = ()~ 2p- 5o+ (-DPRL ) 0>
f )" o f

(@) =@+ G @+ BLr@  ns1,

Ap=p-p’,

Only the terms being less than first order are retained, in these developmEma we obtain the
differential Landau form of the operator

CL[f. f]= Vo (Folf1f(p) + Vp - (DIFIV,f(P)) . (8.19)
where the drag forcEp and the matriXD are
1
Folf1= 5 [ Va-pap) f(ada. (8.20)
1
DIf) = [ (apap) flaca. 8.21)

These cofficients only depend on the matt&pAp), whose components are defined by

A2

o W
<A|OiApj> = LzApiApquf(paﬂ)Wqu

did (8.22)

where the integration is conducted in the center of mass frame over the pdlazismuthal angleg and
@. If two distinct populationsf; and fr, are introducedl(andm referring either to the thermal or beam
population), the following Boltzmann bilinear form is considered,

i2
WpWq

Celfifol = [ &°a [ 0 [0(p)1(@) - P)T(@] By Q). (829

A first order Taylor expansion leads to the corresponding Landau ailfioem

CL[fi. fml = V- (Fol ] fi(p)) + Vp - (DL Vo i (p)) - (8.24)
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The codficients of this operator are written explicitly by using a decomposition with momerttseof
cross section. This avoids logarithmic approximations of this cross se@tipwhich remains the same
for the Fokker-Planck and the Boltzmann operators. In the next seet®dgevelop this procedure and
justify formally that the Landau operator (8.19) (respectively the Lamiaear form (8.24)) reproduces
the conservation properties of the initial Boltzmann equation (8.6) (respscthe Boltzmann bilinear
forms (8.23)).

8.3.1 A Fokker-Planck procedure based on moment decompogin

Let the cross sectio@s be arbitrary in this section, though forward-peaked. The analysis omope
here is based on the decomposition of the momentum exchsmgeApn + Ap, in one parallel and
two perpendicular components, with respect to the veldéity Vn of the center of mass frame in the
laboratory frame. If a Taylor expansion is performed on the weak féfBotzmann equation (8.6), with
infinite order, the so-obtained opera®f f, f] (Q¢) involves the cofficients

(AP (AP (ApLy)')

where the subscripts; and 1, refer to each perpendicular directions, and the brackets are defined b
the expression (8.22).

The parallel component does not depend on the azimuthal angleeh ifk+1 is odd, the cofficient
(AP (ApLy)* (ApL,)'} is equal to zero, after integrationgn n the case wherle+ | is even, we obtain

H 1 H I+k
((App) (ApL) (ApL)) = f (A= A=) T K Qi(p.

I+k

1 _— R
~ 2% f (=0 K Qe (P

where the cofficients Ky only depend on the variablgs V, W,, Wy, but not on the variable.”

At this point we have made the logarithmic approximati@nr ji))+*9/2 ~ 20+K/2 for the codficient
<(Ap||)‘ (Ale)" (ApLZ)'>, in the casék + | is even, assuming that the dominant contribution comes from
the small angles, because of the divergence of the cross section. llbhis & rearrange formally the
operator as the infinite sum

CIf.H@Q) = >, C™[f Q).

meN*

1
C (1, 11(Qr) « f (A= R"Qi(p. 7).

whatever the expression of the cross section is. In this decompositiomyrttiéoation of then™ moment
1

of the cross sectiorf (1 - )™Q¢(p, 1)dix is assigned to the formal operat6f™(Qs). Since this
1

decomposition does not assume the explicit knowledge of the cross sedititime properties of the
operatoiC(Qs) hold for each operatd®™(Qs). In particular , dropping terms witm > 1, the collision
invariants are preserved for the opera®d¥(Q¢). This procedure remains valid when bilinear forms are
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considered for two distinct populations. Then we obtain the conservatapegies on these bilinear
forms

ch[fl,fm]d% ch[fl,fm]d:*p:o (8.25)
R3 R3

f F(O)CL[ i, fm] &p f F()Ca [ i, fm] & = — f F()Calfm h]dp.  (8.26)
R3 R?’ R?’

where ¥ (p) can be eithep, or W,. Moreover the only equilibrium states of this operator are the
Maxwellian distribution functiond; and f, whose temperature and mean velocity are the same. These
conservation properties can be rigourously proved for the operé8d8) - (8.17), with the explicit
expressions of the Fokker-Planck components (8.27) - (8.29), givitie next section. The energy con-
servation will be illustrated in the case of a model issued from [25], thabbas modified following
this procedure, in the section 8.4.1.

This approach only dliers from the original Landau-Fokker-Planck development in nonritigaic
terms. However, these additional non-logarithmic contribution prove to Sengal to maintain the
correct conservation properties (8.26) all through the model dernivatio

8.3.2 Explicit expression of the Fokker-Planck cofficients

In this section, we choose the cross secti@n defined by the sum of expressions (8.10) and (8.11),
and derive the Fokker-Planck diieients from the above presented Fokker-Planck procedure. Thg cro
section shows a singularity at = 1, that corresponds to small angle scattering. Then the operator
C(Qy) contains both logarithmic and non-logarithmic terms; the non-logarithmic cotitiibbeing
located inside the cross section. The other opera@¥PQs), m > 1, only contain non-logarithmic
terms, and are dropped in the following sections.

The codficient(ApAp) is no more a pure €fusion matrix if the Landau derivation of Sec. 8.3.1 is
applied. In this context, the quantitiéSpAp) andVy - (ApAp) are written as

A2 1
(APAD) = Muzzrw\’;’wq f (A= DQH(p.d (8.27)
where the matridM is defined as
M = IfJ2+ﬁ(p+q)®(p+q)—}(p—q)®(p—q)), (8.28)
A2 4

and thus

P(WpWg — p - gc?) — gmgc
WpWa

With this approximation, the cdiécients satisfy the relatiorVq - (ApAp) = 2(Ap) — Vp - (ApPAp).

Therefore we obtain the equivalence between the Landau operator ¢8 29) and the Fokker-Planck
form

1
Va- (APAP) = Ur [ a-neend. (8.29)

Lt 1=, (1) [t apr el + 555 (169) [ t(a) apaprca).

The equivalence between the Landau and Fokker-Planck forms retnarfsr the bilinear operators.
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8.3.3 Coulomb logarithms and cross sections

The collision integraCs p describes the scattering of beam on plasma electrons. Its Coulomb logarithmis
defined with the Debye cutfioparametedp. It is contained in the cdﬁcientf_ll(l—ﬁ)Qf(fJ, @di . The
contribution of the collisions between beam electrons and ions can be direxihporated, substituting
Z—Z+1.

The plasma heating (procebkin Table 8.1) is defined by the energy deposition of fast particles,
while they are scattered on small angles on the plasma electrons. The Coutgarithio is contained
in the codficient [ (1 - ) Qi (p. fi)d .

The Boltzmann operators that exchange particles(procé®ses Table 8.1), have an integral form
that presents a logarithmic singularity. The analogy with the Coulomb logarithrbaillustrated in the
case of a beam electron population in Sec. 8.4.

8.4 Energy exchange of beam electrons in a cold plasma

8.4.1 Kinetic equation for beam electrons

Relativistic electron-ion and electron-electron collision operators for adlemsity electron beam prop-
agating through a cold and dense plasma were derived in [25]. It veagnstinat under the conditions
Ny < Ne ande, > kgTe, they can be presented as a sum of three terms. First two terms coddsyiba
small angle collisions (process E in Table 8.1), and they have a FokkeckRiiferential form (8.2):

p®p

ct[fb(p)]=Vp-(FD%fb(p))+vp-[D (I g )fob(p)}. (8.30)

The drag forcep is due to the electron-electron collisions, while th&wion termD describes the
elastic scattering accounts for the electron-electron and electron-ionargdlisf only logarithmic terms
are retained

Zeniin A

Fo = ,
b 47reg meV2

D =Fo(Z+ 1)2—‘; . (8.31)

These expressions are similar to Egs. (8.4) and (8.5) in the non-relatddsgg with the same expression
for the Coulomb logarithm. In addition, the large angle collisions (process &tileB.1) are responsible
for production of secondary high energy electrons. This term, soec@digization integral[25], reads

+ mMec?)?
€(e + 2mec?)

’ /de,
Ciltenel =@ [ [t ) EETE L (€ apede S @.32)
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Here, the collision ratey, the kernelK, and the Delta function accounting for the energy conservation
O, are defined as

Znet  e(e + 2mec?) (8.33)

a(e) = 87763%0 € + MeC?
1 1
K(€,e) ==+ ——|, 8.34
(€.e) (62 P mecz) (8:34)
OE = 6(Qp - Qp — uo(€', €)) , (8.35)

;N /6(6/ + 2meC?)
Ho(€’, €) = m ) (8.36)

wheree’ = mec?(y’ — 1) ande = mec?(y — 1) are the kinetic energies of the incoming and outgoing
particles, associated to the Lorentz factgrandy. The momentunp is written in spherical coordinates
in terms of the variablese(u, ¢). Here the ionization integral (8.32) involves the cross sed@pffl, 1)
folded around the large angles. It is definedg$lfl, 1) = Q; (IPl, —i).

The integral (8.32) does not contain the Coulomb logarithm, contrary to ittefr and difusion
terms. However it contains a logarithmic dependence on the low energy limithahchakes it of the
same order as theftlision and friction terms. This is illustrated in the next section for the case of a
mono-energetic electron beam.

8.4.2 Energy losses of a mono-energetic electron beam on actplasma

Let us consider a mono-energetic electron beam with ergrgymec?(yp — 1) propagating in a direction
defined by the polar axis The beam distribution function writes

Np 1

2mmec? Yovg— 1
The beam energy loss is defined as

de _ 2 d 3
=g [ - DREE.

The beam energy loss due to pitch-angle collisions with plasma electronscisbeesby the friction
term in Eq. (8.30), which gives

B AWt
dt

fo(y. ) = 6(y = vb) 6(u — 1). (8.37)

Po )Ze4ninb Yb (8.38)

/o) dnedmec [2 1

= npVpFp = In(
b

Here, for a background plasma of 0.1 keV, with a density 3tdf3, the minimum kinetic energsmin,
related to the momentufiy Ap, is of the order of 10 meV.

The energy loss due to hard collisions with plasma electrons is obtained feoionization integral in
Eq. (8.32)

. Vb 2 _
_%:_nbf o) W( ! +1] r=1, (8.39)

dt D =12 2 \2-1
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The integral over the energy has a logarithmic divergence at the lowenrjdigit: 1, corresponding to
small angle collisions.

Further, turning to the Fokker-Planck procedure described in Se¢c.w@.8lemonstrate an energy
conservation property (8.40), similar to Eq. (8.26), in the model (with colsinpég of [25]. This model
is modified here in two aspects: first, the complete cross sections are retigesecond, the Fokker-
Planck derivation procedure described in Sec. 8.3 is applied. Theséaatians lead to the following
expression for the energy loss in Eq. (8.38)

: -1)4
N )yb f (- i)Q, S

gt = ~Znnocormec (P, m)di = (8.40)

8.5 Reduced model for fast electron distribution functions

8.5.1 Assumptions concerning the electron distribution faction

In order to simplify the ionization operator (I0), we assume that the thermetretepopulation, with
the densityny,, has an isotropic energy distribution

fin(p) = (8.41)

Nth
=
47rrT‘€(>'3 th()’p) ’

with the normalization|  y(y?>—1)"2Fi(y) dy = 1. Also, in order to simplify the calculations, we only

retain the dominant pa%t of the cross sections, that contains the CoulonmitHogarl he cross sections in
the ionization operator (I0) can be further simplified, owing to the fact th&te quantities that do not
contribute to the logarithmic divergence can be approximated with the assurnpticrak dependence
with respect to the temperature of the thermal population.

We describe the beam distribution function within the M1 model [5, 18, 531, ri&es on the an-
gular moment closure in the phase space. Its angular dependence ésldedim the minimum entropy
principle [36, 39]

fo(P) = po(yp) EXPELp - 21(yp)). (8.42)

whereQ;, is the unit vector in th@ momentum directiongg is a non negative scalgsq > 0), anday is
a three component real valued vector. The functinandpg only depend on the fast electron energy.
An important parameter is the anisotropy of beam distributtos f;/ fo, where

folp) = fs f(p)dQy . fi(p) = fs Qf(p)dQy . fa(p) = fs Q) ® 0, f(p) A,

The anisotropy parameter is by construction less or equal than|@tile(1). Theansatz8.42) ensures
the analytical computation of momefatas a function offy andf,, based on a tabulated Eddington factor
[17], which defines the relation betweghanda;.

An important feature of the M1 model, consists of the fact that it reprasiexactlyboth beam-like
and isotropic distribution functions. Moreover, the form (8.42) is coramrfor the calculation of the
ionization operator that presents a very narrow domain of integratiortloeemgular variable.
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Under the assumptions formulated above, the ionization (10) operatorttekéslowing form

d OO 0 ,
afb,o(p) = Vo fl dyy fl dyy Fin(yp) fo.0(d) Go(yp, v ¥ps ve) 1L <L, (8.43)
d 00 00 ,
afb,l(p) = Vioj; d)’qffl dyp Fin(yp) fo.0(d) Ga(yp ¥g» ¥ps ve) L <L, » (8.44)

where we have introduced atfective collision frequencyi, = €*n/4resméc®, the dimensionless
kernelsGo andG1, which are regular kernelg; .|, is an indicative function, valued 1, if- < L., and

0 otherwise, with_. = O (||p’l]). This indicative function can be narrow, as the energies on the outgoing
channel may present a very narrow divergence in angles. HowevVire energy discretization of the
thermal population allows to capture this feature. This is an imporatnt asfthet imodel. The integrals
(8.43) and (8.44) depend on the parametdhat separates the fast and slow electron populations.

8.5.2 Relaxation of a mono-energetic electron beam in a theral Maxwellian plasma

Let us consider a mono-energetic beam with the distribution function (8r®pppating through a ho-
mogeneous Maxwellian plasma with a non-relativistic temperadgre= keTin/mec® < 1. The finite
value of®y, is needed for the calculation of the ionization integral. However, it may b&sadro in
the calculations of the slowing down operator (SD), as the parti€festad by this process do not move
from one population to another. This choice makes it appear an explicittlugéc divergence of the
singularity.

First, we analyse the value of the ionization integral by evaluating the ionizedien that is, the
evolution of the number of beam electrons with time. This provides also with ddrithoosing the
separation parameteg, as it should not lead to a significant leakage of the thermal population.

T - q L, we

. L2
® “ Yp (Vp - 1)
Novio | dyp d?’p'ﬁ Ftn(yp) Go(yp > Yars Yps Ye) 1L <L, -
1 1 Yb (Vb - 1)

The dependence of the secondary electron production rate on thedbeetnon energy and on the
cut-of parameter is shown in Fig. 8.1 for the representative case of a 5 keV thelasea. The
ionization rate presents a strong dependence with respegiftthe cut-df energy is chosen very close
to the thermal energy of plasma electrons. This dependence becomes agakon as the cutf@nergy
goes far in the tail of the plasma distribution function. The production ofreeny electrons increases
also with the energy of fast electrons. Both theffeats can be easily understood if one accounts for
the fact that, even in the pitch angle scattering event, the secondary elgains a significant energy.
Indeed, assuming the scattering anglec 1 and the large energy of the beam electrops> 1, one
finds from the energy and momentum conservation relations that the esfesggondary electron is

1
€ ~ —meczyﬁez.
2
The secondary electron energy would be 700 keV if the 5 MeV is scatteradsmall angle of 10

Therefore too small energy cuffa@orresponds to accounting for the pitch angle scattered electrons as
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Figure 8.1: Production ratei§n,) 1dn,/dt of secondary electrons by a beam electrons propagating in
a 5 keV Maxwellian thermal plasma as a function of the beam energy andehgyesut-d¢f parameter.
Isolines 1, 100, 500, 1000, 5000 for the production rates are labeitbdegpective letters (a)-(e).

the secondary beam electrons. For this reason the choice of thé @tengy is problem dependent.
It must be chosen in such a domain where the dependence of the sgceledéron production with
respect to the cutfbenergy is weak. Figure 8.1 proves the existence of such a domain foe#ime-b
plasma configuration. Moreover, this figure illustrates two more points: fitrestmodel respects the
positivity of Gg, second, the ionization rate profile is peaked for a low energy ffut-o

One can also analyse the relative contribution of the ionization and slowimg shechanisms to the
total momentum. In the limit of low plasma temperature and retaining only the logarithmis tene
finds the following expression for the slowing down rate of the fast elagtromentum:

d
P o, = f Clfol (p- &) d®p = (8.45)
dt RS
2
Yo+ (Z+ 1L)yp
—nbViorTme(h;)/;)D) b 21 ,
=

where the Bethe operator (8.30), with friction anéfulion codficients (8.31) was taken into account.
The averaged contribution of this process to the total beam momentum isveegati
The contribution to the total beam momentum due to the ionization operator is

d<pxo d 3
e, = — f . = A4
e =g [ )P e (8.46)
1/2
> > (-1
MeCMNpvio d'}’p de'—]_/z Fth()/p/) Gl(’}/p” Ybs Vp, )/C) 1L_<L+ .
1 1 yw(v2-1)

The ratio of the momentum evolution rates (8.46) over (8.45) is shown Fig.TB2 dependence with
respect to the energy cuffgarameter is found to be strong as well, even if the momentum tends to
weaken the singularity, compared to Fig 8.1. Moreover, this ratio exhibitgaime sign, which implies
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a positive contribution of the secondary electrons into the beam momentuge \aues of this ratio is
the signature of the importance of the secondary electron productioer, tirese conditions.

The conservation of the total momentum in the plasma-beam system implies thasteettron
beam cannot gain energy from plasma. This fact provides anothefdnitite choice of the cutd
parameter. We are now in position to prescribe a choice for the energffquarameter, that could be
defined at an apropriate isosurface in Fig. 8.2, that is, where we cameca weak dependence with
respect to that parameter.

(@)
(b)

0
-200
-400
-600
-800
-1000
-1200
-1400
-1600
-1800
—-2000

Figure 8.2: Relative contribution (large over small angle scattering) to the mtametransfer rate of
beam particles in a 5 keV Maxwellian thermal plasma as a function of the beargyesind the energy
cut-of parameter. Isolines -1, -10, -100, -200, -300, -400 for this ratitedyedled with respective letters

(@)-(f).

8.5.3 Influence of the energy-scale cutfbparameter on the propagation of oscillations

In [1], the authors are proposing a sophisticated renormalization proeegon the non-homogeneous,
non-relativistic Boltzmann equation. They show that oscillations are immedisdetped by a singular
cross section. Conversely, the oscillations, if a diit<oapplied, propagate. The question that arises is:
what is the &ect of the energy exchange cut-parameter on the propagation of these oscillations? For
instance, one may expect a transfer of these oscillations, at fixedyefierg one population to another.
This could be possible because the two populations are allowed to shegg earges, and also because
the Boltzmann gain and loss terms are split between the populations.

8.6 Conclusion

We have shown that the large angle scattering in electron-electron coll[Sibjpsind resulting produc-
tion of secondary fast electrons [25], is of great importance for tieeadhvdynamics of the electron beam
and plasma populations, at relativistic energies. We proposed a rebusid model to deal with such a
mechanism. This model is based on a decomposition of the relativistic Boltzmbisioomperator, re-
lying itself on a decomposition over the relativistic Rutherford cross sedtistead of a partition of the
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phase-space between populations, as done usually. This modelgs@poatural definition for the ther-
mal and beam populations, according to the collision process they ard fssoe The two populations
are allowed to share energy ranges in the model. Further quantitativexgéealare foreseen to check
the accuracy of the model and quantify the influence of the large angierscg on the fast electron
transport. This can be achieved using Monte-Carlo codes, suBkastor Penelope Such comparison
could also be profitable contribution for specifications to the HIPER projeijt Beyond 10- 20 MeV
beam energies, Bremsstrahlung, densifieas, photon production, and creation of electron-positron
pairs, should complete this model [34, 35].
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8.7 Appendix: M1 Kernels of the ionization operator
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whith the small parametets.
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The parameterk.. are issued from the integration boundaries over an angle variable.r&iman small
as the energy of the thermal population.
For the sake of completness of the model, we finally give the expressiog sigh functions

r
I
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Sy

sign(N - L2)
sign(N - L?)

(8.47)

8.8 Appendix: Scaling with an electron-ion frequency in the case of a
beam population

There are two basic temporal scales in the kinetic equation (8.1). One igirieldbe collective electron
motion and is characterized by the electron plasma frequengy: Zne?/eme, another is the time of
electron collisions characterized by the electron ion collision frequegcyls it depends on the electron
velocity, we have a possibility to choose either the thermal velocity of plasmia@iegs, = VipTe/Me,

or a characteristic velocity of beam electrons, which is close t8ince we are interested in the beam
electrons and on theirffiect on plasma, it is more appropriate to normalize the electron-ion collision
frequency to its value related to the fast electrons,

vei = Z2nie* In A /8redméc’. (8.48)

Consequently, the electron velocity is normalizedcpthe electron momentum bykec, and the electron
distribution function byZn/mgc®. Then, our small parameters are the ratio of electron collision and
plasma frequencies:

_ e _ZPymeinA 8.49
=== g <1, (8.49)
Wpe  8Brey “Me c3

the ratio of the beam density to the plasma electron densityy,/Zn, < 1 and the plasma temperature,
kgTe/meC? < 1.
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Table 8.2: Cut-& parameters

keTe/ (MeC?) | Kmin/ (MeC?) | Kimax/ (MeC?)
0.1 0.02 1

1 0.3 10

10 1 100

For the problems where the collisionafexts dominate, it is appropriate to choose the collision
frequency for normalization of the timegt — t. Then the space coordinate is normalized by the
electron mean free pathyei/c — X, and the electric and magnetic fields are normalizethky /e and
Mevei/€, correspondingly.

8.9 Appendix: Fast electron Transport Calculations for HIPER Bench-
marking Collision Routines WP9.1.8 (courtesy from J.R. Davies)

8.9.1 Fastelectrons

The fast electrons should be set up at time zero with a number density

n
p o COZ (m) ,0<z<10Az, (8.50)
whereAz s the grid spacing specified for the diagnostics, and a 3D, relativistic Miigw momentum
distribution for: kgT¢/ (mecz) = 0.1, 1, 10. Particle based codes should usé férticles for the fast
electrons. The cutfbbetween fast and background electrog,f) and the upper cutfd(Knax Since a
Maxwellian distribution extends to infinity) are given in Table 8.2. Electrons aiittenergy beloviKmin
should be assumed to deposit their energy.

The probability density function for the Lorentz factoof a 3D, relativistic Maxwellian is

f(y) = %@y 2 - Lexpiyp). (8.51)

whereB = mec?/(keTe) andK,, is the modified Bessel function of the first kind, which comes from the
normalizationflw f(y)dy = 1. In terms of the magnitude of the momentgrthis is

B P

= Ko(B) e expy(p)B) , (8.52)

f(p)

wherey(p) = /1 + p? /(mécz). The probability density function for any given component of momentum
pi is
1 1+ vy

) = s B T B &P P (8.53)
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Table 8.3: Grid spacing parameter for various temperatures

ksTe/ (MeC?) | AZ/(CT)
0.1 0.05

1 0.1

10 1

8.9.2 Background

Static, uniform, infinite media with atomic numbersf= 1 (hydrogen), 13 (aluminium), 79 (gold).

A fixed constant should be used for all theAlris. If the distribution of the background particles has
to be specified use a Maxwellian with a temperatur&@f,/10 and a density 100 times greater than
the maximum fast electron density. If possible, following the runs with a fixedtime Al and Au runs
should be repeated with values ofAnfor room temperature and pressure and the hydrogen run for a
electron density of 231¢%/m? (300 g/cm® D — T) and a temperaturdgTe/€) of 1 keV.

8.9.3 Boundary Conditions

Reflective boundary atz 0 and place the far z boundary far enough away that it hagtaote

8.9.4 Diagnostics

1. The fast electron energy as a function of time.

2. The time by which 90% of the fast electron energy has been lost.

3. The fast electron energy deposition (energy per unit length) on aromiaial grid with points at
(k — 0.5)Az, wherek is an integer greater than zero.

4. The depth within which 90% of the fast electron energy is lost.

The results should be expressed in the following units:

Length:cT ,

Time: T

Total Fast Electron Energy: 1 ,

whereT = (47re§m§c3)/ ne€’L , ne is the background electron density and L is the fixed value used for
all of the InA ’s or 1 for runs using variable IN. The grid spacing\z is given by in Table 8.3. The
grid should have 100 points or more. For runs using variabdédnappropriate values should be chosen
and clearly specified. Appropriate values should be chosen for thialsgrad temporal grids used by the
codes. This is just a specification for the diagnostic that will be compared.
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9.1 Main results and consequences of the present work

The present essay aimed at the development of a mathematical basicfarmrocesses of ICF physics.
It can be summarized in five points.

First, we have developed @2 x 3D, parallel Maxwell-Fokker-Planck-Landau solver, which can serve
as a reference simulation tool, because it can handle with highly anisotispibwtion functions. We
have demonstrated the computation@bedability of this approach, and shown the relevance of such a
tool to capture high order moments of the distribution function, in particulamwhagnetic field and
collision efects are coupled. We have then proposed an extension of the numehieales to the rela-
tivistic regime, where additional processes for electron acceleratiotramsport occur.

Second, we provide with a mathematical proof of convergence of a higgr &inite Volume scheme,
and comparison between simulation results, which shows good behaviouesgjitbct to discontinuities
in the phase space. This mathematical and numerical work is reaching thecalmezjuirements nec-
essary to the treatment of high intensity regimes, such as wavebreakitde bbegime, or high harmonic
generation on plasma.

Third, we have developed angular reduced models, based on previokis on radiative transfer, that
are able to describe the isotropic distribution functions (thermal, highly colésifor example), as well
as highly anisotropic distribution functions (of fast particles, for examgie)pled with realistic colli-
sionionizationradiation kernels. We have demonstrated the accuracy and robustress@lectron
M1 models, while performing academic and fundamental simulations for eleetltsthierapy and ICF
applications.

Fourth, we have proposed an accurate, fast and robust modellmignfprange Coulomb interaction,
of an arbitrary type of collision events, ranking from grazing and multipldnaa and single, without
artificial discrimination between collision events, the Coulomb force being thdeetinuous by nature.
This model is, in particular, able to describe the heating of a kinetic thermallgtagn with Coulomb
collision of arbitrary angle.

Finally, we turned our model, our numerical methods to realistic simulationseoning the shock ig-
nition scheme. In the ICF, this latter is currently one of most promising candidet®ng advanced
inertial fusion projects. The 2009 KiTSI project (an acronym for Kirgelicansport for Shock Ignition )
has recently been pointed out as a milestone on the critical path in the HiP&Rapaas well as for the
shock ignition design on the National Ignition Facility (Livermore, Ca). Téwson is that realistic de-
sign for shock ignition relying only on experiments would be meaninglessedilaie design, including
realistic constraints andtfects of random imperfections, will come from numerical modeling. So the
achievement of a predictive, validated, integrated numerical model isteatissue. Of course, a shock
ignition study includes partial experimental validation of the concept usingumestale laser facilities,
integrated experiments using the Omega facility of the University of Roch@¥lSA) and scale 1
ignition demonstration on the National Ignition Facility (Livermore, Ca).

Among the possible perspectives that emerge from this work, we would likemdion the quantification
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of the importance of hard collisions for regimes of interest, together with the @fthe implementation
of this process in a PIC solver. We are now in position to explore and cliesize new regimes of trans-
port, that will serve for a better understanding of the electron transpodtmay become fundamental
processes upon which new schemes for ignition or particle acceleratidohlo® constructed.

The model accounting for these hard collisions, presented in Chaptev@sdo be rich in term of math-
ematical issues, such as rigorous mathematical derivation of the modehditiaoal stability analysis
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