Graph Rewriting for Model Construction in Modal Logic

Bilal SAID

Institut de Recherche en Informatique de Toulouse - IRIT Université de Toulouse

29 January 2010

Locating my work

	Automated reasoning	
Theory	×	Practice
	Graph rewriting	

1 Modal logics

- 2 Model Construction
- 3 Event-driven pattern matching

Outline

Modal logics Modelling with graphs Talking about graphs Reasoning about graphs

2 Model Construction

3 Event-driven pattern matching

Example: Switch-Bulb system

Example: Switch-Bulb system

Reasoning about graphs

Various systems, situations...

. . .

Guess-the-card game

Traffic-light

Various systems, situations...

Switch-Bulb system

at the state "Light_Off", after "Toggle" necessarily "Light_On"

Reasoning about graphs

Switch-Bulb-Mouse

Reasoning about graphs

Switch-Bulb-Mouse

Switch-Bulb-Mouse

at state "Light_Off", after "Toggle" not necessarily "Light_On"

Switch-Bulb-Mouse

at state "Light_Off", after "Toggle" not necessarily "Light_On" i.e. possibly not "Light_On"

Switch-Bulb-Mouse

at state "Light_Off", after "Toggle" not necessarily "Light_On" i.e. possibly not "Light_On" i.e. possibly "Light_Off"

Formal language: Formulas

■ "Light_Off" and after "Toggle" necessarily "Light_On" Light_Off ∧ [Toggle] Light_On

■ "Light_Off" and after "Toggle" possibly "Light_Off" Light_Off ∧ ⟨Toggle⟩ Light_Off

Generic sentences:

Necessarily A $\Box A$ Possibly A $\diamondsuit A$

How to evaluate these formulas?

Formal language: Formulas

■ "Light_Off" and after "Toggle" necessarily "Light_On" Light_Off ∧ [Toggle] Light_On

■ "Light_Off" and after "Toggle" possibly "Light_Off" Light_Off ∧ ⟨Toggle⟩ Light_Off

Generic sentences:

Necessarily A $\Box A$ Possibly A $\diamondsuit A$

How to evaluate these formulas?

Formal language: Formulas

- "Light_Off" and after "Toggle" necessarily "Light_On" Light_Off ∧ [Toggle] Light_On
- "Light_Off" and after "Toggle" possibly "Light_Off" Light_Off ∧ ⟨Toggle⟩ Light_Off

Generic sentences:

Necessarily A $\Box A$ Possibly A $\diamondsuit A$

How to evaluate these formulas?

Kripke models

Model

- = transition system
 - possible Worlds
 - = states
 - accessibility Relation
 transitions
 - Valuation
 - = labeling function

M = (W, R, V)

Semantics: Truth conditions

Atoms

• $M, w \Vdash P$ iff $P \in V(w)$

Classical operators

- $\blacksquare M, w \Vdash A \land B \text{ iff } M, w \Vdash A \text{ and } M, w \Vdash B$
- $\blacksquare M, w \Vdash A \lor B \text{ iff } M, w \Vdash A \text{ or } M, w \Vdash B$

• • • •

Modal operators

- $M, w \Vdash \Box A$ iff for all u, if wRu then $M, w \Vdash A$
- $M, w \Vdash \Diamond A$ iff exists u s.t. wRu and $M, u \Vdash A$

Example

M, u ⊢ Light_On
M, w ⊢ Light_Off ∧ [Toggle]Light_On
...

Various systems, situations...

Examples

. . .

- The card is red, Alice knows it and knows that Bob does not $Card_Red \land K_{Alice}Card_Red \land K_{Alice}\neg K_{Bob}Card_Red$
- Always, if it is Red then next it turns out Green $G(Red \rightarrow XGreen)$

How to take these into account

- Change truth conditions
- Constraints on R
- Constraints on V

Various systems, situations...

Examples

- The card is red, Alice knows it and knows that Bob does not $Card_Red \wedge K_{Alice}Card_Red \wedge K_{Alice}\neg K_{Bob}Card_Red$
- Always, if it is Red then next it turns out Green $G(Red \rightarrow XGreen)$

...

How to take these into account?

- Change truth conditions
- Constraints on R
- Constraints on V

Constraints on *R*

One relation:

- Transitive future of future is future
- Reflexive I know s.th. hence it is true
- Serial

. . . .

- there is always a future
- Symmetric
- Equivalence (universal)
- Confluent (Church-Rosser)

Two or more:

- $\blacksquare R_I \text{ included in } R_J$
- $\blacksquare R_I = R_J \cup R_K$
- $\blacksquare R_J = (R_I)^{-1}$
- $R_J = (R_I)^*$ (transitive closure)
- $\blacksquare R_I \circ R_J = R_J \circ R_I$
- Confluent
-

Constraints on *R*

One relation:

- Transitive future of future is future
- Reflexive I know s.th. hence it is true
- Serial there is always a future
- Symmetric

. . .

- Equivalence (universal)
- Confluent (Church-Rosser)

Two or more:

- $\blacksquare R_I \text{ included in } R_J$
- $\blacksquare R_I = R_J \cup R_K$
- $\blacksquare R_J = (R_I)^{-1}$
- R_J = (R_I)* (transitive closure)
- $\blacksquare R_I \circ R_J = R_J \circ R_I$
- Confluent

Constraints on *R*

One relation:

- Transitive future of future is future
- Reflexive I know s.th. hence it is true
- Serial there is always a future
- Symmetric

. . .

- Equivalence (universal)
- Confluent (Church-Rosser)

Two or more:

- **R**_I included in R_J
- $\blacksquare R_I = R_J \cup R_K$
- $\blacksquare R_J = (R_I)^{-1}$
- R_J = (R_I)* (transitive closure)
- $\blacksquare R_I \circ R_J = R_J \circ R_I$
- Confluent

Constraints on *R*

One relation:

- Transitive future of future is future
- Reflexive I know s.th. hence it is true
- Serial there is always a future
- Symmetric

. . .

- Equivalence (universal)
- Confluent (Church-Rosser)

Two or more:

- $\blacksquare R_I \text{ included in } R_J$
- $\blacksquare R_I = R_J \cup R_K$
- $\blacksquare R_J = (R_I)^{-1}$
- R_J = (R_I)* (transitive closure)
- $\blacksquare R_I \circ R_J = R_J \circ R_I$
- Confluent

. . . .

Constraints on V

- HL(@): a nominal is true at a unique world
- Intuitionistic: atoms persist along paths
- PAL: literals persist throughout (updated) models

...

Interests

Given		Question	
Property P	System S	does S have P?	
Property P		is there a system S having P?	
Property P		which system S may have P?	

Problems

	Input		Output	
	Formula	Model	Ουτρυτ	
Model Checking	х	x	Yes/No	
Satisfiability / Validity	x		Yes/No	
Model Construction	х		Model/Counter-Model	

Methods

Since 1950's...

- Sequent calculi [Beth, Gentzen, ...]
 - Proof search
- Tableau calculi [Smullyan, Fitting, Massacci, ...]
 - Model existence check

Tableau by graph rewriting [à la toulousaine]
 Model construction

Reasoning about graphs

19/49

a node with the input formula

[] P & <> Q & <> (R v ~ P)

Example

$M, w \Vdash A \land B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

$M, w \Vdash A \land B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

$M, w \Vdash A \land B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

Example

$$M, w \Vdash \Diamond A$$
 iff $\exists u \mid wRu$ and $M, u \Vdash A$

Example

 $M, w \Vdash \Box A$ iff $\forall u : wRu$ then $M, u \Vdash A$

Example

$$M, w \Vdash A \lor B$$
 iff $M, w \Vdash A$ or $M, w \Vdash B$

Example

Reasoning about graphs

Reasoning Tools

- Fast (but: geek!, not generic)
 - FaCT [Horrocks]
 - LWB [Heuerding]
 - K-SAT [Giunchiglia & Sebastiani]
- Generic (but: limited, requires coding in OCaml)
 TWB [Abate & Goré]
- Educative (but: not generic!)
 - OOPS [Valkenhoef, Vaart & Verbrugge]
 - Molle [Mazzucchi & Mocci]

Reasoning about graphs

Reasoning Tools

Reflexivity only!

Reasoning about graphs

Reasoning Tools

OOPS

- Model update
- High-level language
- Graph viewer

Desiderata

- Generic: users' own new methods
- Educative: user-friendly
- Performance: reasonable time

Outline

1 Modal logics

- 2 Model Construction
 - Graph rewriting rules
 - On paper
 - In LoTREC
 - In Demo

In LoTREC

Uniform methodology

Semantics

via

Graph rewriting rules

How? What are graph rewriting rules?

In LoTREC

Demo

Uniform methodology

Semantics

via L ...

Graph rewriting rules

How? What are graph rewriting rules?

Definition

Matching

Application

In LoTREC

n Demo

Uniform methodology

Semantics

via

Graph rewriting rules

How? What are graph rewriting rules?

In LoTREC

Truth conditions

$M, w \Vdash \Diamond A \text{ iff } \exists u \mid wRu \text{ and } M, u \Vdash A$

R-Contraints

Transitivity

In LoTREC

In Demo

V-Contraints

Persistence

Certifying the method

- Termination: does it halt?
- Soundness: does it consider ALL the semantics?
- Completeness: does it consider s.th. ELSE?
- Complexity: what is its time / space costs?

...

How to experiment with it?

In LoTREC

User-defined language

Example (definition)					
name	arity	display			
not	1	\sim -			
and	2	- & -			
pos	1	<> -			

Example (usage)

■ pos P <> P

• and not Q not P \sim Q & \sim P

User-defined rules

<u>Rule</u> Pos

hasElement w pos variable A

<u>createNewNode</u> u <u>link</u> w u R <u>add</u> u <u>variable</u> A

End

In LoTREC

In Demo

User-defined rules

Rule Pos isLinked w u R isLinked u v R

<u>link</u> w u R

End

In LoTREC

User-defined strategies

- Ordering on the rules
- Saturation (<u>repeat</u>...<u>end</u>)
- Priority (<u>firstRule</u>...<u>end</u>)

In LoTREC

In Demo

The black box

What was done?

In LoTREC

In Demo

What was done?

LOTREC	
File Theory Strategy Exemples	
Latrec #1	r 🖉 🖂
📿 Connectors and Rules 📿 Strategies 💭 Formula	
The Formula Must Begin by the Name of the Strategy!!!	
Formute Kstrategy and and nec (not and A not B) nec A not nec B	
赛 Run	
🔅 Granikis Mada 🔿 Toot Moda 🔿 Granikis and Toot Mada	
OutPut	

Graph rewriting rules

On paper

In LoTREC

Some of what I did

Some of what I did

Added techniques:

- One occurrence rules application (K.alt, LTL,...)
- Defining non-injective patterns (Confluence)
- Extend the language (Model Checking,...)
- Model checking (LTL, PDL,...)
- Labeled formulas (PAL)
- Nodes as memory cells (S4 + histories)
- Run in step-by-step mode (debugging)
- Code new extensions

...

In LoTREC

Some of what I did

Running live

http://www.irit.fr/Lotrec

Congle 🗖 NoTREC Generic Tableau × DO LOTREC × 🕢							
← → C A g http://www.int.fr/ACTIVITES/LLILaC/Lotrec/							
🖉 Hotmail 🔣 Personnaliser les liens 🕒 Win	dows Media 🕒 Windows 🗋 Getting Started			C Other bookmarks			
Lotre	Home Rur C Generic Tableau Prover news	contact	Download Doc login links	about			
 Home Run LoTREC Download 	Proving by Tableau becomes easier		Search this site	:: Search			
Operation Executable Sources Sources Occumentation Online User's Manual Publications Tutorials FA.Q.	LoTREC 2.0 Release Nen, 04/14/2008 - 15:16 - Bial Said LoTREC 2.0 is released: • Launch the LoTREC Web Start (1) • Webstart • Download executable package (2) What's New • Tableau builder controls: stop, pause/resume mode were introduced to give th more corrord during the tableaux construction. Thus, endless loops, that may be from unpredicted behavior of some rules combinations, can be stopped manual user. • Step-by-Step run mode: users can make break points on any sub set of their Add new comment. Read more	he user sraised ly by the rules,					

36 / 49

Outline

1 Modal logics

2 Model Construction

3 Event-driven pattern matching

- Mechanism
- Semantics
- Evaluation

Naive pattern matching

 $O(k^{|L|})$ where $k \ll |G|$

Equivalence to usual semantics

[Gasquet, Said & Schwarzentruber 09]

Rewriting with event-based matching = Rewriting without event-based matching

Reasons:

- Every successful pattern is considered
- Only unfruitful events are deleted

Related works

PROGRES [Zündorf 99]

- chooses an optimal plan over |L|! local search plans
- tracks invalid patterns

■ Incremental Update [Varró & Varró 04]

- tracks successful patterns in DB
- stores & updates are space & time consuming

Evaluation

VS. other rewriting tools

- Comparison is not fair: formula matching
- Benchmark is hard to setup
- General purpose tools are not competent:
 3 levels confluent graph takes:
 - lacksim pprox 6 sec in AGG
 - \bullet < 0.5 sec in LoTREC

VS. naive pattern matching

Nb tentatives of pattern matching Hardest S4 formulas in LWB benchmark

Conclusion

Research

Implementation of

- Time Sub-Intervals Logic [Goranko et al. 08]
- Public Announcement Logic (PAL)
 [De Lima et al. 09]

Not possible using another platform!

Academic

Accessed through logic courses:

Automated Reasoning
 Prof. C. Pêcheur
 Université Catholique de Louvain, Belgium

FGI 3 - Logik
 Dr. C. Eschenbach
 University of Hamburg, Germany

Logique, informatique et sciences cognitives
 Prof. R. Villemaire
 University of Quebec at Montreal, Canada

Recap

Recap on the contributions of my thesis:

- Develop & maintain the LoTREC platform
- Study & implement new logics
- Promote the software in research & academic fields
- Establish the links with graph rewriting theory
- Study the event-based pattern matching
- Clarify the semantics of our rewriting system

2010: The Odyssey continues...

Currently:

 Book: "Kripke's World" Authors: [Gasquet, Herzig, Said, Schwarzentruber]

Next events:

- Universal Logic 2010, April Lisbon (tutorial)
- ESSLLI 2010, August Copenhagen, (1 week course)

Contributions

What about?

- Language extension: SQL-queries?
- Performance: backtracking?
- Generic interface with other tools: will be user-friendly?
- Converse: what about CPDL?
- New methods for new logics...

Merci!