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their support during my stay at the LAAS laboratory.

I would like to thank all my friends, the long-standing ones and the ones I met at Grenoble,
for their support. I am indebted to the voluntary members of the Alliance Française de Grenoble
for their kindness and for helping me during my studies in French language.

I would like to thank my uncle Luiz, my aunt Sueli and my cousins Alexandre and Bruno
for their love and encouragement. I also thank my parents-in-law, Agenor and Yara, my sister-
in-law, Alexandra, and my relatives for their support.

I cannot find words to thank my parents, Aparecida and Sebastião, for their love and contin-
ual support throughout my studies. Without their help this thesis would not have been possible.
I also thank my brother, Ronaldo, for his friendship, love and for being an example to me.

Lastly, but most importantly, I would like to thank my dear wife, Camila, for her love,
unconditional support, encouragement, patience and for joining me in this adventure. To her, I
dedicate this thesis.

iii



iv



Résumé

L’une des principales difficultés dans l’utilisation de capteurs chimiques concerne le manque
de sélectivité inhérent à ces dispositifs. La stratégie classique pour faire face à ce problème
est fondée sur le développement de nouvelles membranes qui conduisent à des capteurs plus
sélectifs. Toutefois, plus récemment, on a démontré que ce problème peut également être traité
par une autre approche, dans laquelle l’acquisition de données est effectuée par un réseau de
capteurs qui ne sont pas forcément sélectifs. Ainsi, dans une deuxième étape, les informations
pertinentes sont récupérées à l’aide des outils de traitement de signal. L’un des bénéfices le plus
remarquable dans cette démarche concerne la flexibilité du système de mesure : le même réseau
de capteurs peut être utilisé pour réaliser différents types d’analyse.

Dans cette thèse, nous étudions l’utilisation de réseaux de capteurs dans le problème de
l’analyse chimique quantitative. Cependant, contrairement à la grande majorité des travaux
dans cette ligne, notre approche envisage des solutions non-supervisées, n’ayant pas besoin
d’une étape d’étalonnage. Cette situation peut être formulée comme un problème de séparation
aveugle de sources. Puisque les capteurs chimiques considérés dans cette recherche présentent
des réponses non-linéaires, le processus de mélange sous-jacent au réseau de capteurs est non-
linéaire, ce qui rend le problème difficile.

Les principales contributions de cette recherche sont liées justement au développement de
méthodes de séparation des mélanges non-linéaires sur mesure pour les réseaux d’électrodes
sélectives potentiométriques. Nous considérons des solutions fondées sur l’analyse en com-
posantes indépendantes, mais également sur d’autres stratégies qui nous permettent de prendre
en compte des connaissances a priori typiques dans l’application ciblée dans cette recherche,
comme la positivité des activités chimiques.
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Abstract

Chemical sensors usually lack selectivity, that is, they may respond to interfering species other
than the target one. The conventional strategy to cope with this problem is based on the
development of new sensitive membranes that lead to more selective sensors. More recently,
however, much attention has been given to an alternative approach, in which the data acquisition
is conducted through an array of sensors that are not necessarily selective. Then, in a second
stage, signal processing tools are employed to extract the relevant information from the acquired
data. Among the benefits brought by this approach, is the flexibility inherent in a sensor array,
which allows one to consider different analytes, or even different types of analysis, by using the
same measuring system.

In this thesis, we study the problem of quantitative chemical analysis through sensor arrays.
However, unlike the majority of the works in this line, we consider an unsupervised approach
in which the adjustment of the signal processing method does not require a set of training
(or calibration) points. This situation can be formulated as a Blind Source Separation (BSS)
problem. The difficulty here lies in the fact that the chemical sensors considered in this research
are clearly nonlinear devices, thus resulting in nonlinear mixing models.

The main contributions of this research are related to the development of nonlinear BSS
methods tailor-made for arrays of ion-selective electrodes. We consider a paradigm based upon
the Independent Component Analysis (ICA) but also upon other strategies that allow us to
incorporate some information typical of the application considered in this research, like positivity
of chemical activities.
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Introduction

One of the most relevant problems in chemical sensing is related to the difficulty in building
sensors that respond exclusively to a given target chemical species. Considerable effort has been
devoted to finding new materials that result in more selective sensors. This first strategy to deal
with interference problems is very popular among chemists and has been providing impressive
results. More recently, however, it has been shown that the lack of selectivity of chemical sensors
can also be treated via an alternative concept, quite widespread among the signal processing
community. Instead of relying on a single highly selective sensor, this alternative idea advocates
the use of a set of sensors that are not necessarily selective. Then, the relevant information is
found by applying signal processing methods. An interesting aspect of such a strategy, commonly
named Smart Sensor Arrays (SSA), concerns its similarity to the principles that govern the
sensory systems of living organisms like us; in many situations our imperfect sensory units are
compensated by sophisticated mechanisms based on diversity.

The advances on multichannel data processing have been paving the way for efficient chemical
SSAs. Valuable tools like artificial neural networks (ANN) and support vector machines (SVM)
have been providing very good results in a multitude of applications involving quantitative and
qualitative chemical analysis. One can even find commercial solutions making use of these
methods [125]. However, despite all this success, there are still some limitations in the chemical
SSAs developed to date. In particular, they are mostly based on supervised data processing
methods, which means that, before their effective use, the user should perform a learning stage
to adjust their parameters. The problem here is that such training procedure requires a set
of calibration points, and, in some situations, the acquisition of such points is not simple. For
instance, if the sensors suffer from drift, one must perform a calibration whenever the array is
used.

Considering again the analogy between a chemical SSA and organic sensory systems, it is
well-known that mammals, by exploiting the sensing diversity in a very efficient way, can deal
with a given information even in the absence of reference signals. What if a similar scheme could
be set for a chemical SSA? Certainly, a move toward total unsupervised solutions would be a
tremendous breakthrough in chemical sensing. For example, this new approach could result in
plug-and-measure chemical analyzers, in which no calibration procedures are needed.

The interesting perspectives in the use of unsupervised systems have been constantly evoked
in the literature of chemical SSAs. However, interestingly enough, this is still a little studied
topic. Although some progress has been achieved in unsupervised qualitative methods, the first

1



Introduction 2

studies on unsupervised quantitative analysis are quite recent. Of course, this problem is far
from being trivial and, at first glance, it seems unfeasible. Nonetheless, the signal processing
community, among others, has been studying over the last two decades a problem, which is
called Blind Source Separation (BSS), whose formulation suits perfectly the case of unsupervised
quantitative analysis via chemical SSAs. Indeed, the goal in BSS is to search for a set of unknown
signals (sources) by using only a set of signals (mixtures) that correspond to mixed versions of
the sources. In the case of chemical arrays, the sources would represent the concentrations of
the chemical species under analysis, whereas the mixtures would be the array outputs.

The first BSS methods addressed linear mixing models and were based on the concept of
Independent Component Analysis (ICA). The assumption of a linear mixing model has led to
very efficient algorithms. Moreover, the combination of ICA and linear models has been proved
to be quite useful in many domains. Examples of problems in which BSS methods were applied
encompass analysis of physiological signals such as brain and cardiac signals, audio separation,
wireless communications, and image processing.

However, the main difficulty in obtaining a BSS-based chemical SSA is related to the nature
of the resulting mixing process. As chemical sensors are (very often) nonlinear devices, the
outputs of the sensor array correspond to a nonlinear mapping of the concentrations to be
measured. Therefore, the application of the standard linear BSS methods in these cases is at
best questionable. The challenging aspect here is that many problems (theoretical and practical
ones), which are absent in linear BSS, appear when the more general problem of nonlinear BSS
is considered. In particular, because of their high degree of flexibility, nonlinear models are much
more susceptible to overfitting than linear ones. This characteristic points out that care must be
taken in the extension of linear BSS methods to the nonlinear case. For example, the application
of ICA in a nonlinear scenario does not necessarily give good estimations of the original sources.
In view of this constant risk of overfitting in nonlinear models, theoretical advances advocate
that, instead of searching for general solutions, nonlinear BSS should be rather studied on a
case-by-case basis. Actually, it has been shown that, although the same ideas that allow source
separation in linear models cannot be employed in a general nonlinear framework, they may still
be valid in restricted classes of nonlinear models. These results are by no means negligible as
they assure that the nonlinear BSS problem can be tackled, at least, in some cases.

In this thesis, our goal is to study several aspects related to the use of nonlinear BSS meth-
ods for performing unsupervised quantitative chemical analysis. Our analysis encompasses both
theoretical and practical points. More specifically, we aim at developing and analyzing
nonlinear BSS methods tailored for chemical sensor arrays and at their validation
through actual data. Special attention is given to the problem of how incorporating prior
information that are typical in chemical analysis. Concerning the type of chemical sensor con-
sidered in this work, our focus is on ion-selective electrodes (ISE), which have been intensively
applied for measuring ionic concentration. Moreover, as a minor contribution, we also consider
a BSS solution that can be used in a particular kind of gas sensor array.
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Organization of the manuscript

In Chapter 1, we provide a brief review on the two topics of interest in this thesis; in a first mo-
ment, we discuss some points related to chemical sensors, notably the interference phenomenon
that is typical of these devices. Then, we discuss the source separation problem, with a special
attention to its nonlinear instance.

In Chapter 2, we describe a set experiments conducted with ISE arrays. These experiments
were conducted at the Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS/CNRS,
France) with the aim of providing actual data to validate some of the methods proposed in this
thesis.

We begin, in Chapter 3, to present our contributions related to nonlinear source separation
methods. In this context, we consider the case in which the ions under analysis have different
valences. This situation results in a class of nonlinear models characterized by the presence of
power terms. To deal with this problem, we develop a source separation method based on a
recursive separating system whose parameters are adjusted through an ICA algorithm.

In Chapter 4, we consider the problem of how to take advantage of some information that
may be available in our problem. In a first contribution, we show that, by considering that one
of the sources is inactive during a certain time window, the class of mixing models considered in
Chapter 3 can be simplified. In a second contribution, we deal with the class of post-nonlinear
(PNL) models, which is important in context of ions with equal valences. In this situation, we
show that, when the sources are bandlimited signals —a concept that is closely related to slowly-
varying signals—then it becomes possible to set a two-stage algorithm in which the nonlinear
and linear stages of the PNL mixing model can be estimated separately.

In Chapter 5, we continue our discussion on the use of prior information but now by relying
on a Bayesian approach, which is more suitable for considering certain types of prior knowledge,
like, for instance, the non-negativity of the sources. The algorithm developed in this chapter
is based on MCMC sampling methods and can be applied to ISE arrays. We also introduce a
Bayesian solution to perform BSS of linear-quadratic (LQ) mixtures, which are relevant in the
context of gas sensors arrays.

In Chapter 6, we discuss some issues related to the practical application of BSS methods to
actual problems.

The thesis is closed with a chapter that presents our conclusions and comments about some
relevant problems that demand future investigation.

There are also other points that are left as appendixes. In particular, we call the reader’s
attention to Appendix C, in which we describe a novel linear BSS method that can extract
smooth signals in a very efficient manner. Although not entirely in the scope of this thesis, this
method can be applied, for instance, in conjunction with the PNL two-stage solution developed
in Chapter 4.
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Chapter 1

State of the art

1.1 Introduction

In this chapter, we present a brief introduction to the chemical sensors considered in this work.
Special attention is devoted to ion-selective electrodes (ISE) and to the interference phenomenon
that takes place in these sensors. We also discuss how this interference problem can be ap-
proached by means of smart sensor arrays (SSA). In a second part of this chapter, we introduce
the blind source separation (BSS) problem. The standard solutions designed for operating in
linear models are briefly reviewed. Then, some theoretical and practical aspects regarding the
nonlinear case are discussed. Finally, this chapter is closed with a discussion on the use of BSS
techniques in chemical sensor arrays.

1.2 Chemical sensors

According to the current IUPAC’s1 definition [89], a chemical sensor is a device that transforms
chemical information, ranging from the concentration of a specific sample component to total
composition analysis, into an analytically useful signal. The nature of this resulting signal can
be used to classify a chemical sensor [66] into, at least, three distinct categories: optical, mass
variation, and electrochemical devices. The sensors that are considered in this thesis belong
to this last category, in which the transducer mechanism relates a chemical signal with an
electrical signal. In contrast to optical and mass variation sensors, electrochemical sensors are
typically simple devices, and their use does not involve sophisticated laboratory procedures. This
feature is certainly the main reason why electrochemical sensors are so widespread in industrial
applications [66], or, more generally, whenever a rapid analysis is required.

Electrochemical sensors can be divided into three groups: potentiometric, amperiometric and
conductometric sensors. Again, the criterion for this classification is related to the transduction
stage. A variation in the chemical species under analysis may induce a variation in the electrical
potential (potentiometric sensors), in the current (amperiometric sensors), and in the resis-
tance/conductance (conductometric sensors). This thesis focus on a well-studied potentiometric

1International Union of Pure and Applied Chemistry.
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Figure 1.1: Simplified diagram of an ion-selective electrode.

sensor: the ion-selective electrode. As a secondary topic, we also consider a particular type of
conductometric sensors used for measuring gas concentrations: the tin oxide electrode. In the
following sections, a brief description of these two types of chemical sensors will be provided.

1.2.1 Ion-selective electrodes

Despite its long history —it dates back to the beginning of 20th century [6] —the ISE is still
one of the most used chemical sensor. Among the reasons for this success are the simplicity of
the ISE and the fact that such a device measures chemical species in their ionic forms, which
is important in the majority of applications. The oldest ISE, the glass electrode, is still an
ubiquitous device for measuring the pH2 and is by far the most successful chemical sensor in
commercial terms. Still, the existence of applications in which the analysis of other ions are
needed motivated the development of new ISEs for ions such as ammonium and potassium.

An ISE is basically composed of an internal solution, an internal reference electrode and a
sensitive membrane. A simplified diagram of the ISE is shown in Figure 1.1. The very core
of the ISE transduction mechanism is the sensitive membrane. Briefly speaking, the generated
electrical potential in this membrane is usually a result of the electrochemical equilibrium as-
sociated with the exchange of ions between the analyzed solution and the internal reference
solution3. The nature of these exchanged ions depends on the chemical composition of the ISE
membrane. For example, if pH estimation is desired, then the sensitive membrane should favor
the hydrogen ion exchange, which, in this case, can be achieved through a membrane composed
of a specific glass (from where the denomination glass electrode). There are also membranes
constituted of different materials such as polymers and crystals.

The mathematical description of the transduction mechanism of potentiometric sensors like
2The pH is the negative logarithm of the hydrogen ion activity.
3Actually, the transducer mechanism is a very complicated subject and it is still object of study. The following

references discuss this topic in more details [66, 19, 6].
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the ISE is based on the Nernst equation [145], which, under the assumption that the concentra-
tion of the ISE internal solution is constant, states that the equilibrium membrane potential E

is given by

E = E0 +
RT

zF
log a, (1.1)

where a denotes the activity4 of the target ion, whose valence is represented by z. The other
parameters in this equation are physical constants; R is the gas constant, T the temperature in
Kelvin, and F the Faraday constant. Finally, E0 is a reference potential, which is also constant.

In addition to indicating a linear relation between the membrane potential and the logarithm
of the ionic activity, the Nernst equation predicts the sensitivity5 of a potentiometric sensor.
Indeed, for a room temperature and considering a monovalent ion, the term multiplying the
logarithm (RT/zF ) in Equation (1.1) takes approximately 59mV, i.e. the expected sensitivity
is 59mV per decade. Electrodes with such a sensitivity are said to present a Nernstian response.
Due to causes such as the electrode aging and the fabrication process, one can observe deviations
from the Nernst sensitivity. If a larger sensitivity is observed, then one has a super-Nernstian
response. Conversely, one has a sub-Nernstian response whenever the sensitivity is smaller.

Applications

After this brief description of the ISE, let us mention some applications of this device.
Certainly, the most important ones are found in the domain of clinical analysis [6, 145, 126, 113].
Indeed, ISEs fit perfectly in this kind of application as their ability to provide prompt chemical
analyzes allows the conduction of rapid diagnoses. In this domain, for instance, ISEs are used
for estimating the activities of the blood electrolytes —for example sodium (Na+), potassium
(K+), calcium (Ca2+), magnesium (Mg2+), lithium (Li+) and the hydrogen ion (pH) —and also
of the urine electrolytes Na+ and K+ [6].

Another important domain of application of ISEs is water quality control [142, 144]. Some
of the ions of interest in this case are ammonium, potassium, calcium and magnesium. The sum

4The activity a of an ion, whose valence is z, can be seen as measure of effective concentration and is given by

a = f · c,

where c is the ionic concentration. The dimensionless activity coefficient f depends on the ionic strength I and

can be calculated according to the Debye-Hückel equation [145], which can be approximated by

− log(f) = A · z2 ·
√

I,

where A is a constant [145, 76] that is approximately 0.5. Finally the ionic strength I is a function of the

concentration of all ions (represented by c1, c2, . . . , cN ) within the solution and of their valences (represented by

z1, z2, . . . , zN ):

I =
∑

i

ci · z2
i .

For high diluted solutions, the ionic strength tends to zero, which gives an activity coefficient f close to one.

Therefore, in these cases, the activity becomes equal to the concentration. However, this is not true for high

concentrated solutions because f < 1 in these cases.
5We refer the reader to [43] for a mathematical definition of the sensitivity of a sensor.
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of these two last species gives the water total hardness, an important parameter that must be
controlled in industrial applications as hard water may damage water pipes and other industrial
structures.

There are many other applications in which ISEs play an important role. To cite some ex-
amples, these devices have been applied in beverage quality control [107], biodiesel analysis [38],
environmental monitoring [6] (including soil analysis and detection of trace metals). This list is
not exhaustive, and a brief review on the literature of the area indicates many other applications
of ISEs.

1.2.2 Gas sensors

The tin oxide (SnO2) sensor is another example of chemical device that has been drawing a
lot of attention in both scientific community and industry. Since its origin, which dates back
to the 1960s [5], the tin oxide sensor has been an important instrument for measuring gas
concentration. Some advantages in using tin oxide sensors include: low cost, relative simplicity,
and real-time operation [34]. These particular characteristics make the tin oxide sensors one of
the most important gas sensors in commercial terms.

The transduction mechanism in a tin oxide sensor is a result of the interaction between the
gas under analysis and the oxygen adsorbates, i.e. oxygen species which are accumulated on
the sensor surface [111, 158]. This interaction takes place in the form of oxidation or reduction
reactions, that is, the interaction between the gas under analysis and the adsorbed oxygen
is characterized by an exchange of electrons. The key point here is that the number of free
electrons in the sensor surface is associated with its electrical resistance (or equivalently with
its conductance). Therefore, by measuring this resistance one can determine the concentration
of the analyte, which makes the tin oxide sensor a typical example of a conductometric device.

A last remark on the transduction mechanism of tin oxide sensors is that an acceptable degree
of sensitivity is achieved only when the sensor is submitted to high temperatures, usually greater
than 200◦C. This requirement is attained by incorporating a heater element into the sensor
structure [5, 161]. Several works [155, 133] have shown that, by modulating the temperature
of operation of a tin oxide electrode, its selectivity can be increased. Moreover, by considering
such dynamical configuration, one can ease the problem related to the long time needed by a
tin oxide sensor to achieve a steady state response.

Applications

Notable applications of tin oxide sensors are found in toxic gases monitoring systems [5, 121].
For example, they are used to detect the presence of carbon monoxide, an odorless gas well-
known for its harmfulness to some living organisms, including human beings. Other examples of
hazardous gases that can be detected through tin oxide sensors include [92, 121] ammonia, ozone
and hydrogen sulfide. Tin oxide gas sensors are also useful in many industrial applications [121]
as, for instance, for monitoring leakages of flammable gases, and in control systems of combustion
engines.
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The development of tin oxide sensors able to detect volatile organic components (VOC) [109,
34] has increased the range of applications of these devices over the last years. Indeed, they
are now an important tool in food control and classification. Moreover, they can be used for
detecting VOCs that are important in the diagnosis of certain diseases [141].

1.2.3 Selectivity of chemical sensors

Ideally, a sensor should be totally selective toward the target analyte, i.e. it should not respond
to other chemical components present in the substance under analysis. In practice, however, it
is very difficult to develop a total selective transducer mechanism. For example, the two types
of chemical sensors described above suffer from lack of selectivity and, thus, their responses may
also be influenced by interfering species. While in some situations this interference process can
be negligible, there are other cases in which this problem seems to be more accentuated and, if
no care is taken, the measurements obtained in these situations may become uncertain.

Much effort has been employed to understand why and how the interference process takes
place in a chemical sensor. Not surprisingly, the “why” question requires a deep knowledge of
the physiochemical aspects underlying the transducer mechanism. To make a long story short6,
the interference problem comes from a possible interaction between the sensitive material and
chemical species presenting the same properties of the target species. For example, in the context
of ISEs, interference may be caused by ions having radii close to that of the target ion [42].

The “how” question, which is the most important for the present study, is usually approached
through empirical models. Certainly, the derivation of sound physiochemical models for the
sensors contacting surface has been providing a more accurate description of the interference
process [111, 20]. Yet, because of their simplicity, the first empirical models are still the most
used both among the scientific community and practitioners.

In chemical systems, one can find several phenomena that are typically of nonlinear nature.
For example, the description of process such as saturation, inhibition, and hysteresis, is strongly
based on nonlinear models. This is also true for the interference phenomenon. Indeed, a common
point that the most successful empirical and theoretical interference models share is that they are
nonlinear and, therefore, a consistent mathematical description of the interference phenomenon
in ISEs and in tin oxide sensors can only be achieved when nonlinear elements are considered
therein.

1.2.3.1 Interference in ISEs

The Nicolsky-Eisenman (NE) equation is the most widespread model describing the interference
in ISEs. The NE equation, which dates back to 1937 [66], can be seen as an empirical extension of
the Nernst equation. Assuming that ai and aj denote the activities of the target and interfering
ions, respectively, and zi and zj their respective valences, then, according to the NE equation,

6This subject has been intensively studied in the fields of chemistry, physics and material sciences. For a more

detailed description of the chemical sensors working principles, we refer the reader to [66, 76, 5].
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the membrane potential is given by:

E = E0 + di log


ai +

∑

j,j 6=i

Ki,ja
zi/zj

j


 , (1.2)

where di = RT/ziF . Ki,j , which is called the selectivity coefficient, gives an idea about the
degree of interference between the ions i and j. This coefficient is expected to be positive as
interference in ISEs is not an inhibitory process. There are mainly three chemical protocols [153]
for calculating Ki,j . While the fixed interference and separation solution methods are explicitly
based on the NE equation, a more analytical approach, the matched potential method, estimates
Ki,j by relying only on the membrane potentials obtained during an experiment where the
concentration of the interfering ion is gradually increased. The advantage of this strategy is
that the selectivity coefficients give good indications of the existing interference level even in
situations for which the NE equation is not accurate.

According to the NE equation, the interference phenomenon breaks the linearity, predicted
by the Nernst equation, between the membrane potential and the logarithm of the ionic activity.
To illustrate this point, let us suppose a Na+-ISE whose selective coefficients toward the ions
K+, Li+, and NH+

4 , are given by 0.1, 0.01, and 0.001, respectively. In Fig. 1.2, we show the
response of this Na+-ISE in the presence of a solution containing Na+ plus a single interfering
ion of activity 0.1M. We also plot its response when no interfering ion is present, i.e. the ideal
Nernstian response. Note that the interference phenomenon causes a decrease in the limit of
detection7 (LOD) of the electrode. For example, in the presence of Li+, the ISE gives very bad
measurements for the Na+ activities below 0.001M.

Although widely used, the NE model presents several limitations. First, it neglects the fact
that the selectivity coefficient may depend on the temperature and on the concentration of the
ions within the solutions [42, 153]. This is even more problematic when this dependence is
nonlinear, like in the electrodes studied in [42].

Another limitation of the NE model is that it predicts the same sensitivity (the slope RT/ziF )
for both target and interfering ions, which is not true in some situations. In [153], for instance,
measurements provided by a Ca2+-ISE gave a Nernstian slope of 29mV per decade for Ca2+, but
sub-Nernstian slopes of 24mV and 8mV per decade for the Strontium (Sr2+) and Barium (Ba2+)
ions, respectively. However, from the NE equation standpoint, all these sensitivities would be
incorrectly modeled as 29mV per decade.

Finally, as pointed out in several works (see [153, 120, 124, 20], for instance), if the ions have
different valences, there may be ranges of concentration for which the NE model is unaccept-
able. This limitation has motivated the derivation of new interference models having a stronger
theoretical foundation. For instance, by relying on the phase boundary potential model, [124]
provided a new model that outperforms the NE formalism, especially when the interference is
weak.

7The limit of detection (LOD) can be defined as the value below which the sensor is not able to detect changes

in the concentration of the analyte.
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Figure 1.2: Responses of an Na+-ISE in the presence of Na+ plus a monovalent interfering ion.

1.2.3.2 Interference in gas sensors

In tin oxide gas sensors, interference takes place in an additive form, as in ISEs, but can also
result in an inhibitory process [110]. In other words, the effects of the target analyte upon
the sensor may be attenuated in the presence of interfering gases. Therefore, one may end up
with measurements indicating a lower concentration than the actual one. This characteristic is
particularly incompatible with the main applications of tin oxide which, as discussed before, are
related to the detection of toxic gases.

Several models have been proposed for a steady-state description of the interference phe-
nomenon in tin oxide sensors. Among these contributions, the most popular is the work de-
veloped by Clifford and Touma, which proposed an empirical model based on the power law
theory [162]. The Clifford-Touma (CT) equation suggests that if a tin oxide sensor is in contact
with two gases of concentrations a1 and a2, then its electrical conductance G is given by8:

G = G0 + K1a
r1
1 + K2a

r2
2 + K12a

r1
1 ar2

2 , (1.3)

where G0, K1, K2, K12, r1 and r2 are physical quantities depending on the temperature of
operation. More specifically, G0 is the sensor conductance measured in the absence of analytes.
K1 and K2 correspond to the sensitivity toward the two gases under analysis, while K12 is the
selectivity coefficient related to these two gases. These three parameters can be either positive
or negative. Finally, the value of the power terms r1 and r2 depends on the degree of interaction
between each gas and the sensor. According to [111], these parameters usually lie in the interval
[0.3, 0.9].

8This equation can also be extended to the cases involving more than two gases [111].
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1.2.4 Dealing with the interference: the sensor array approach

The interference problem has been a recurrent topic of study in the analytical chemistry com-
munity as it is certainly one of the most important shortcomings of chemical sensors such as
the ones described in the last sections. A first natural strategy to overcome this problem is
to tackle its origin: the sensitive mechanism. Indeed, a lot of effort has been devoted to the
conception of new materials that result in more selective sensors [5]. However, this approach has
the inconvenient of being somewhat specific, in the sense that the design of a new sensor has, as
starting point, a particular ion as target. Therefore, if a different application, with a different
target ion, is envisaged, then novel research efforts must be conducted for this new particular
case. Moreover, the search for a more selective membrane may culminate on a rather expensive
sensor, thus loosing the benefit of cost that is typical of devices like ISEs and tin-oxide sensors.

In the case of ISEs, a second strategy to circumvent the interference problem involves adding
a solution that interacts with the interfering ions. For example, the added solution can be
chosen so its reaction with the interfering ions results in a precipitate [145]. Although popular
among chemists, this approach presents two major problems. First, it requires the conduction
of laboratory procedures thus restricting its application in the field. Second, the specification
of the added solution requires a precise knowledge about the composition of the solution under
analysis.

Recently, it has been shown that the interference problem can be dealt with via an approach
that, differently from the ones discussed in last paragraphs, does not work in a chemical basis.
Rather, it is based on a conjunction very popular in the signal processing community. Instead
of a highly selective sensor, this new idea suggests the use of an array of sensors that are not
necessarily selective —actually, low-selective sensors are usually adopted in this context. As a
consequence, the acquired data in this case are expected to be quite corrupted as they correspond
now to a kind of mixtures of the concentrations of the chemical species. To compensate for that,
the analysis of such data is conducted by signal processing tools that, by exploiting the diversity
provided by the array, are able to extract the relevant information. This concept, which is called
smart sensors array (SSA), became quite widespread in many applications notably because of
the progress in digital processors technology and the achieved developments on multivariate data
processing methods.

In Figure 1.3, the main elements of a SSA are depicted. The very core of this structure
is the signal processing block. Actually, the term “smart” makes reference to the adaptive
character of this block, which allows the SSA to operate in different situations through minor,
and often automatic, changes. For example, a SSA that is set to identify a given element can be
easily reconfigured to identify a different element. Besides this remarkable adaptability, there
are other features that have been contributing to the success of SSAs. A first one is related
to its robustness. In fact, even when one sensor within array fails, it may be still possible to
proceed the analysis by using the information collected by the others electrodes [76]. A second
interesting feature of SSAs regards the possibility of using different types of chemical sensors.
This can be done by incorporating data fusion methods into the signal processing block.
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Figure 1.3: Diagram of a smart sensor array.

In the literature of chemical sensors, SSAs developed for analyzing gases and liquids are also
called electronic nose [125] and electronic tongue [156], respectively. This comes from the analogy
between these SSAs and the functioning of the olfactory and taste systems. Interestingly, one
can also find an underlying interference phenomenon in these organic systems as their millions
of sensor units respond differently to a same substance. Electronic noses and tongues are now
major topics of research in chemical sensing. In particular, much attention has been given to
the choice of the SSA signal processing block. In the following, we shall discuss some of the
advances in this subject.

1.2.4.1 Signal processing methods for smart chemical sensors arrays

The signal processing techniques used in SSAs can be classified based on two attributes. The
first one concerns the nature of the envisaged task. In qualitative analysis, the signal processing
should assign classes for the array outputs. For example, in some medical diagnosis applications,
the outcome of the data processing block is a binary variable indicating whether a patient suffers
(or not) from a given disease. In mathematical terms, this classification task can be seen as a
mapping taking elements from an infinite set (in our case, the measurements taken by the
sensors) to a finite set, in which the elements represent the classes.

In the case of quantitative analysis, the problematic can be put as follows: given the mea-
surements taken by the sensor array, which were the values of concentration that resulted in
these measurements? In this situation, the data processing technique must be able to somehow
“invert” the effects introduced by the interference phenomenon into the transducer stage. In
contrast to qualitative analysis, both the measurements taken by an array and the outputs of
the signal processing block are real numbers in quantitative analysis, that is, we have now a
mathematical mapping between two infinite sets.

A second attribute used in the classification of signal processing methods is related to the
way that these methods are adjusted. In supervised methods, the parameters of the processing
system are adjusted by considering a set of training (or calibration) data. Therefore, in a stage
(training stage) that precedes the effective use of the array, one should provide to the signal
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processing block an exhaustive collection of measurements taken by the array together with
the desired output for that measurements (a given class in the qualitative case and the actual
concentrations in quantitative analysis). Conversely, if no training stage is conducted and the
parameters of the processing system are adjusted by only means of the array outputs, then the
method is said to be unsupervised or blind.

Each combination of the two attributes described in the last two paragraph leads to different
signal processing tasks. For instance, supervised qualitative chemical analysis is a clear example
of (supervised) pattern classification, which, for instance, can be dealt with through particular
machine learning techniques, such as multilayer perceptron (MLP) neural networks, support
vector machines and hybrid neural-fuzzy systems. Another important data processing task in
the context of supervised qualitative analysis is feature extraction, which is commonly employed
as a preprocessing stage searching for hidden patterns in the acquired data. Besides, feature
extraction is an important tool for reducing the dimension of the analyzed data. Very often, the
incorporation of a feature extraction stage into the pattern recognition system makes it simpler
and enhances the rate of correct classification.

In the case of supervised quantitative analysis through sensor arrays, one ends up with a
multivariate regression problem9. This subject has been a major area of study in many different
domains. In particular, the advent of techniques such as artificial neural networks has stimulated
the research on regression in nonlinear models. Among the studied topics in this area, much
attention has been given to the design of regressors that are flexible enough to capture nonlinear
effects but, at the same time, are robust to overfitting [81].

Many electronic tongues and noses available to date work in a supervised fashion. However,
one can find a growing number of works that consider chemical unsupervised qualitative analysis.
In this particular situation, the classes are not known beforehand; they are found based on the
degree of similarity between the elements of the data set. In other words, two elements belong
to the same class if they are similar in some sense. For example, elements that present a small
Euclidean distance can be considered similar. This task of grouping elements based on their
similarities is also known as clustering analysis and can be approached through algorithms like
k-means and self-organizing maps (SOM) [62].

The three signal processing tasks that we have discussed so far (supervised and unsupervised
qualitative analysis, and supervised quantitative analysis) are now familiar to the community
of chemical SSAs10. A non-exhaustive list of works that considered each of these tasks are
presented in Table 1.1. In this same table, we also highlight the situation addressed in the
present thesis: unsupervised quantitative chemical analysis. This particular case is a typical
example of a blind source separation problem. In contrast to the other three situations shown in
Table 1.1, the development of BSS-based smart chemical sensor arrays is still in its infancy and
is faced with a big challenge: the more standard BSS techniques cannot be (directly) applied in
systems such as electronic tongues and noses. The implications of this problem will be discussed
in more details in the second half of this chapter, which will introduce the BSS problem.

9It can be also formulated as an inversion problem.
10The branch of chemistry that studies this type of problem is known as chemometrics.
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Table 1.1: Examples of data processing methods used in chemical SSAs.
Qualitative analysis Quantitative analysis

Supervised Supervised pattern classification Multivariate regression
Discriminating function analysis [79] Partial-least squares [107, 144]

Neural networks [32] Neural networks [22, 107, 10, 131]
Support vector machines [132] Support vector machines [77]
Efficient feature extraction [70] Evolutionary computation [80]

Unsupervised Clustering analysis Blind source separation
K-means [67] Independent component analysis

Self-organizing map [156] [23, 28]
Principal component analysis [157]

1.3 Blind source separation

Blind Source Separation (BSS) aims at retrieving an ensemble of signals (sources) that underwent
a mixing process. The term “blind” is employed because this separation process is conducted
based on a minimum amount of information about the sources: one does not have access to
training samples and to any statistical modeling for the sources. One of the most interesting
aspects in BSS concerns the generality of its formulation; one can find BSS problems in a great
diversity of domains: from astronomical imaging to biosignal processing (see the textbooks [94,
90] for some examples of BSS applications). Even the human brain is usually faced with problems
close to BSS: we are able to understand our interlocutor(s) even in the presence of music and
other people talking. This ability is known as cocktail-party effect [83] and has been constantly
evoked in the literature to illustrate the goal of BSS.

Despite its simple formulation, BSS is a complicated problem and its resolution demanded
a breakthrough in signal processing. Indeed, the seminal work of Ans, Hérault and Jutten [84]
indicated that a formulation based on second-order statistics, which was the standard approach
in statistical signal processing at that time, was not appropriate for a BSS context. This result,
together with the advances in blind deconvolution [82], pointed out the importance of somehow
incorporating higher-order statistics into the resolution of unsupervised signal processing prob-
lems. This has eventually led to the idea of independent component analysis [39], an important
(and still most used) tool for tackling the BSS problem. In the sequel we will provide a math-
ematical formulation of the BSS problem and show how ICA and other more recent strategies
can be used therein.

1.3.1 Mathematical formulation

Let the vectors s(t) = [s1(t), s2(t), . . . , sns(t)]T and x(t) = [x1(t), x2(t), . . . , xnm(t)]T represent
sets of ns sources and nm mixtures, respectively. The mixing process that relates these two
vectors can be expressed through a mathematical mapping F(·), i.e.

x(t) = F(s(t)). (1.4)
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Then, the goal of BSS is to provide estimates of the sources s(t) based only on the observations
x(t), that is, neither the mixing mapping F(·) is known nor strong prior information about the
sources are available. Note that, in the context of chemical sensor arrays, the sources represent
the concentrations of the chemical species under analysis whereas the mixtures comprise the
responses of each sensor within the array.

The characteristics of the mixing system F(·) can be used for defining the following “BSS
taxonomy”: 1) linear BSS concerns the cases where F(·) is a linear mapping. Otherwise, one
ends up with a nonlinear BSS problem. 2) When F(·) is a static (memoryless) system, it is
said that the resulting model is an instantaneous one; otherwise one has a dynamical model. 3)
Finally, the relation between the number of sources ns and the number of mixtures nm is also used
to classify BSS problems: BSS is said to be underdetermined, determined and overdetermined
when the number of mixtures is, respectively, smaller, equal and greater than the number of
sources.

In Figure 1.4, the general scheme of BSS is illustrated. The retrieved sources11, represented
by the vector y(t) = [y1(t), y2(t), . . . , yns(t)]T , are given by

y(t) = G(x(t)), (1.5)

where G(·) corresponds to the separating mapping. Of particular interest in BSS methods is
how to define a separation criterion, that is, a strategy to adjust the parameters of G(·). The
difficulty here is that the lack of information renders the general BSS formulation a typical
example of ill-posed problem12, and, thus, every separation criterion defined in a such general
scenario would be useless. Still, this problem can be overcome by considering further information
about the sources. For example, let us imagine that the sources present a known mathematical
property that is lost after mixing. Then, a straightforward idea for building a separation criterion
would be to adjust G(·) so that it gives estimations y(t) having the same mathematical property
observed in s(t). The idea here is that the recovery of such original characteristic is enough to
guarantee that G(·) perfectly inverts F(·).

Putting the idea presented in the last paragraph in a more rigorous formulation, a separation
criterion can be defined through the following principle: given a property of s(t), the mapping
G(·) must be chosen so that such property be invariant under the transformation y(t) = G ◦
F(s(t)) if, and only if, G ◦ F is the identity transformation or, at least, a mapping that does
not mix the signals s(t). Evidently, the challenging point in this idea concerns the practical
definition of the sources’ characteristic acting as invariant. On the one hand, a very broad
characteristic may lead to an ill-posed problem since it may act as invariant even when G ◦ F
has a non-diagonal Jacobian, i.e. when it is still mixing the sources. However, on the other hand,
if one makes use of a very detailed characteristic of the sources to define a separation criterion,

11In some applications, there is no need to retrieve all the sources, i.e. only the extraction of one or of a few

sources is desired. The resulting problem in these cases is called Blind Source Extraction (BSE).
12Indeed, we can have an intuition on the ill-posedness of the more general BSS problem by looking at it as a

representation problem, in which one searches for both s(t) and F(·) (or equally G−1(·) in the determined case)

that originated the observations x(t). Evidently, if no further information is incorporated into the described

representation problem, then it may admit non-unique solutions. We shall return to this point later.
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Figure 1.4: BSS basic setup: mixing and separating systems.

then one is definitely in a context that is not blind anymore. This discussion summarizes the
main questions underlying the viability of BSS methods, namely: are there properties that
can characterize whole classes of signals (especially the classes found in practical problems) and
that, at the same time, are invariant only for non-mixing mappings? In the following, we discuss
how this question is approached in the classical BSS formulation of linear instantaneous mixing
models.

1.3.2 Linear instantaneous models

The most common BSS set-up considers mixing models13 that are linear, instantaneous and de-
termined (or possibly overdetermined). Besides its simplicity, this linear configuration provides
acceptable descriptions in various practical problems. For example, in BSS of physiological
signals such as the electrocardiogram (ECG) or the electroencephalogram (EEG), the corre-
sponding mixing models can be well described by linear models [143, 90].

In linear BSS, the mixing process described in Equation (1.4) becomes14

x(t) = As(t), (1.6)

that is, the mixing process in now represented by a nm×ns matrix A. Moreover the separating
system of Equation (1.5) should be defined linear and, thus, the recovered signals are given by

y(t) = Wx(t), (1.7)

13In this thesis, neither dynamical nor underdetermined models are considered. Therefore, we will only empha-

size whether the mixing system is linear or nonlinear, given that all cases discussed from now on are instantaneous

and determined (or possibly overdetermined).
14For matter of clarity, sometimes we will omit the temporal index t used in the description of the sources and

mixtures.
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where W is the ns × nm separating matrix.
In the spirit of the discussion presented in the Subsection 1.3.1, a separation criterion for

finding W could be obtained by exploiting a known characteristic of the sources. For example,
let us assume that the sources can be modeled as uncorrelated centered random variables of vari-
ances given by σ1, . . . , σns . In this situation the correlation matrix Rs of the vector containing
the sources is given by15

Rs = E{ssT } = diag(σ1, . . . , σns), (1.8)

where diag(σ1, . . . , σns) denotes a diagonal matrix whose diagonal entries are σ1, . . . , σns .
As a result of the mixing process, the elements of the vector x become correlated. Therefore,

the correlation matrix of x is not diagonal anymore and, more specifically, it is given by

Rx = AE{ssT }AT = Adiag(σ1, . . . , σns)A
T. (1.9)

We thus had a property (mutually uncorrelated sources) that was lost after the mixing process.
Hence, we could now try to perform source separation by retrieving this lost property. In this
context, to have a sound separation criterion, every W giving a set of mutually uncorrelated
signals should result in a product WA that is a non-mixing matrix, given by the product of
a diagonal matrix D and a permutation matrix16 P. Unfortunately, this is not true for the
described correlation-based approach.

It can be easily demonstrated that there are matrices W that provide uncorrelated estimated
sources but also result in a product WA that is still a mixing matrix. A simple way to check
this result is by firstly considering the ideal separating matrix which is given Wideal = A−1.
Obviously, this matrix solves the source separation problem because y = s in this case. That said,
let us suppose a new situation in which the separating matrix is now given by W = QWideal,
where Q can be any orthogonal matrix. The correlation matrix of y in this situation is given by

Ry = QWidealAdiag(σ1, . . . , σns)A
TWT

idealQ
T = diag(σ1, . . . , σns). (1.10)

That is, because QQT = I (this comes from the orthogonality of Q) Ry is a diagonal matrix
no matter the orthogonal matrix Q. In other words, we end up with uncorrelated estimated
sources y which are given by

y = QWidealx = Qs,

and, thus, are still mixed versions of the sources.
The procedure of transforming a correlated random vector into an uncorrelated vector (with

correlation matrix equal to identity) is commonly called spatial whitening17. Therefore, from
the discussion presented in this section, it became clear that whitening does not assure BSS as

15We omit the time index since we are considering here that each source corresponds to a white random process.
16Note that, a permutation matrix P in the solution means that the original order of the sources cannot

be recovered. Equivalently, by accepting diagonal matrices D other than the identity matrix in our solution,

we cannot retrieve the correct scales of the sources. These permutation and scale ambiguities are typical of

unsupervised methods and their resolution can be achieved only when further information, like the variances of

the original sources, is available.
17Whitening can be performed by methods of principal components analysis (PCA)
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it can provide, at the best, an orthogonal transformation (rotation) of the actual sources. The
breakthrough idea in BSS is exactly related to that limitation of whitening. In fact, the first
works on BSS indicated that source separation can be indeed achieved by a procedure close
to the one discussed in the last paragraphs. However, an important modification is necessary:
one must take into account an information “stronger” than the correlation as, for instance, the
concept of statistical independence18. This eventually resulted in the notion of independent
component analysis.

1.3.2.1 Independent component analysis

Although ICA first appeared as a solution to the BSS problem, it rapidly became an important
methodology in signal processing and machine learning problems other than the source separa-
tion one. For example, ICA can be also useful in problems like feature extraction, efficient coding
and prediction. In this thesis, we limit our discussion to the application of ICA to BSS. The
interested reader is referred to [40, 94, 90] for further information on other aspects associated
with ICA.

The application of ICA to the linear BSS problem is possible when the following conditions
hold [39]

• The sources are statistically mutually independent;

• There is, at most, one Gaussian source;

• The mixing matrix A has full rank.

Based on the Darmois-Skitovich theorem, Comon [39] derived the fundamental result of ICA,
namely: given the assumptions described above, the retrieved signals y are statistically mutually
independent if, and only if, WA = PD, where P is permutation matrix and D a diagonal
matrix. Put differently, under some conditions, the recovery of the sources, up to order and
scale ambiguities, can be achieved by searching for independent components y.

The practical implementation of ICA is accomplished through the formulation of an optimiza-
tion problem, in which the cost function should be able to measure the statistical independence.
In the BSS literature, this particular cost function is usually termed contrast function and its
maximum value is attained only when a given random vector y is mutually independent. From
this discussion, it follows that, in the application of ICA to linear BSS, the retrieved sources are
given by

y = W̃x, W̃ = arg max
W

C(Wx), (1.11)

where C(·) corresponds to a contrast function.
A first natural candidate to build a contrast function is the opposite of the mutual information

of a random vector y = [y1, . . . , yns ]T . The mutual information is defined as the Kullback-Leibler
18The random variables z1, z2, . . . , zN are statistically mutually independent if, and only if, the joint distribution

p(z1, z2, . . . , zN ) can be expressed as the product of the marginal distributions p(z1),p(z2),. . .,p(zN ). A noteworthy

property resulting from this definition is that variables that are statistical independent are always uncorrelated

but there may be uncorrelated variables that are not independent.
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divergence between the joint and the product of marginal distributions of the vector y [41], that
is

I(y) =
∫

p(y) log
(

p(y)∏ns
i=1 p(yi)

)
dy, (1.12)

where p(y) is the joint distribution of y while p(yi) represents the marginal distribution of yi.
It can be shown that I(y) ≥ 0 and that the equality here occurs if, and only if, the elements of
y are mutually independent. Therefore, this property allows one to solve the ICA by defining a
contrast function given by C(y) = −I(y) [39].

For the case of mutual information, the resolution of the problem expressed in (1.11) via a
gradient-based optimization technique results in the following update rule

W ← W − µ
∂I(Wx)

∂W
, (1.13)

where µ corresponds to the positive step size. The calculation of the gradient ∂I(Wx)/∂W can
be accomplished by resorting to a simple mathematical manipulation involving the definition of
mutual information. Actually, Equation (1.12) can be equally written as [41]

I(y) =
ns∑

i=1

H(yi)−H(y), (1.14)

where H(·) denotes the Shannon’s differential entropy. Based on the fact that y = Wx in our
case, we can rewrite (if W is invertible) the joint entropy H(y) as [41, 90]

H(y) = H(x) + log | detW|.

Since H(x) does not depend on W, this joint entropy term can be omitted from the gradient
calculation, that is

∂I(Wx)
∂W

=
∂

∂W

ns∑

i=1

H(yi)− ∂ log | detW|
∂W

.

A further development of this equation (see [15] for instance) shows that the learning rule
presented in (1.13) can be rewritten as

W ← W − µ
(
E{Ψ(y)xT } −W−T

)
, (1.15)

where Ψ(y) = [ψ(y1), ψ(y2), . . . , ψ(yns)] corresponds to the vector of score functions, where each
element is defined by ψ(yi) = −p(yi)′/p(yi). Note that, since y = Wx, Equation (1.15) can also
be written as

W ← W − µ
[(

E{Ψ(y)yT } − I
)
W−T

]
.

It is noteworthy that Equation (1.15), which give us a route for calculating the independent
components, depends on the distributions p(yi) through the associated score functions. This
means that, unlike the whitening approach, which only considers second-order statistics, the
learning rule (1.15) considers a complete statistical characterization of the random variables yi.
On the other hand, the exploitation of all statistics in this case requires the estimation of score
functions, which is usually a cumbersome task. Therefore, the computational burden associated
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with the ICA-based algorithm (1.15) is expected to be much heavier than the one associated
with whitening algorithms. Therefore, although in perfect harmony with the theoretical idea of
ICA, the mutual information approach does not provide a simple practical implementation of
ICA.

Fortunately, ICA can be performed in a simpler manner by defining contrast functions that
are not based directly on probability density functions (pdf) but rather on some higher-order
moments. One interesting example in this context concerns the contrast function based on the
kurtosis, a statistic closely related to the fourth-order cumulant of a random variable [102].
The utility of the kurtosis in ICA is related to the so-called non-gaussianity maximization ap-
proach [90, 40], which is based on the observation that the mixtures are always “more Gaussian”
than the sources (this result stems from the central limit theorem (CLT)). Thus, in view of this
result, the non-gaussianity maximization approach searches for components that are as far as
possible from Gaussian variables (again, we are trying to recover an original property of the
sources). This can be done by maximizing their kurtosis, since this statistic is a natural mea-
sure of the “gaussianity” of a random variable [130]. It can be proved that, if the mixtures
are whitened in a pre-processing stage, the non-gaussianity maximization principle provides
independent components [90, 40].

There are several approaches that also lead to simple ICA algorithms. Examples include

• Infomax [25];

• Maximum likelihood approach [35, 137];

• Nonlinear decorrelation methods [36];

• Nonlinear PCA [97];

• Cumulant-based approaches [39].

Since the literature on BSS and ICA methods is very abundant, the presentation of these ap-
proaches is beyond the scope of this chapter and we refer the interested reader to [40, 90] for an
introduction to this subject. Still, we close our brief introduction to ICA with two important
remarks on this topic. First, there are strong connections between the above-mentioned ICA
approaches; they can be described through an equivalent theoretical framework [90, 97, 106]
and, thus, result in similar algorithms. For example, the Infomax principle provides a learn-
ing rule almost equal to the one presented in Equation (1.15). The only modification concerns
the nonlinear function ψ(·): instead of the score functions of yi, fixed nonlinear functions, that
should be defined beforehand, are considered in the Infomax method.

Finally, we remark that, besides the achievements in the definition of separation criteria,
the study on ICA has been also dealt with the application of optimization tools other than
the ordinary gradient-descent method. Examples in this line of research include: the concepts
of natural and relative gradient [36, 8], the utilization of fixed-point methods (the well known
FastICA [90] algorithm follows this approach), and the formulation of ICA as a task of joint
diagonalization of higher-order cumulants (this is the idea underlying the JADE algorithm [37]).
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1.3.2.2 Second-order methods

ICA is not the only way to perform BSS; alternatives to ICA can be obtained by exploiting
prior information that are usually available in real problems. For example, in ICA the sources
are regarded as i.i.d. random process, i.e. such methodology does not make use of the fact
that, very often in real applications, the sources have a clear temporal structure. By taking
into account such an information, it becomes possible to derive efficient BSS algorithms founded
on second-order statistics (the methods exploiting such an idea are usually called second-order
BSS methods19). In this approach, there are basically two formulations that can be considered.
While the first one is based on the assumption that each source is a time-correlated stationary
process [26], the second considers that the sources are non-stationary signals [136].

According to the discussion of Section 1.3.2, a simple diagonalization of the correlation matrix
Rx(0) = E{x(t)x(t)T } is not enough to assure source separation. Yet, under the condition that
the sources are mutually uncorrelated and that each one has a different temporal structure (or
equivalently a different spectral content), it is possible to achieve source separation by jointly
diagonalizing Rx(0) and one (or several) lagged covariance matrices, given by Rx(τ) = E{x(t−
τ)x(t)T }, τ 6= 0 [151, 26, 40].

The formulation of BSS as a problem of joint diagonalization of correlation matrices permits
the utilization of relevant theoretical insights and established methods developed in linear al-
gebra. For example, the SOBI algorithm [26], which is based on the diagonalization of several
correlation matrices20, makes use of a diagonalization method based on Givens rotations.

1.3.2.3 Sparse component analysis

In the last few years, there is a clear trend toward approaches that make use of other types of
prior information that are usually less general than the ones considered by ICA and second-
order methods21. In this context, much attention has been paid to the use of Sparse Component
Analysis (SCA) [74, 71], which works with the assumption that the sources can be represented
by sparse signals, i.e. their variances are null (almost null in practice) in most of the time22.
SCA is a useful tool notably for solving underdetermined BSS problems and has been intensively
studied in the context of audio signal separation.

The basic principle behind SCA can be understood through Figure 1.5, which refers to a
BSS problem with three sources and two mixtures. The left column of this figure corresponds
to a situation in which the sources are not sparse. As can be seen in the bottom of this column,
the scatter plot of the mixtures does not give us any particular information about the mixing

19Some authors also consider second-order BSS methods as ICA methods. However, as these two approaches

are based on distinct formulations and work under different assumptions, we believe that they should be classified

into different groups.
20This is done for overcoming problems that appears when the correlation matrices to be diagonalized possess

degenerate eigenvalues
21The term “semi-blind” is usually employed to classify these types of methods since they usually consider

stronger prior information than the ones considered in ICA. However, some care must be taken given that “semi-

blind” is also used for classifying methods that work with a very reduced set of reference signals.
22It is thus an extreme case of non-stationary sources.
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process. Conversely, when the sources are sparse (right column of Figure 1.5), the directions
given by the columns of the mixing matrix become visible in the scatter plot of the mixtures. In
such a case, therefore, source separation can be carried out by firstly identifying the columns of
A with, for example, a clustering approach [74]. After that, one ends up with a sparse inverse
problem for which several efficient techniques are available [74, 71].
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Figure 1.5: Example illustrating the application of SCA to an underdetermined source separation
(3 sources and 2 mixtures). The left column presents the sources, mixtures and the scatter plot
of the mixtures for a case when the sources are not sparse. In the right column, the same
figures are presented but now for the case of sparse sources. The sparsity of the sources results
in mixtures whose joint plot is aligned with the directions given by the columns of the mixing
matrix A.

In the example illustrated by Figure 1.5, which was firstly presented in [73], the sources were
sparse in time. However, SCA can be also applied for signals that are sparse in representations
other than the temporal one. This can be achieved by considering the source separation problem
in a transformed domain23. For example, audio sources may not be sparse in time but may
become sparse after the application of, for instance, the modified discrete cosine transform
(MDCT) [68]. One important question in SCA is how to find good sparse representations for a
given class of signals, i.e. it is important to define a “dictionary” of signals that allows one to

23This can be done under the condition that the mixing process be also linear in the transformed domain.
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write the signals of interest as a linear combination of the elements of the dictionary being the
coefficients of such combination sparse.

1.3.2.4 Non-negative matrix factorization

The goal of non-negative matrix factorization [129, 104] (NMF)24 methods is to factorize a
given matrix into the product of two matrices, both of them having non-negative elements.
Mathematically speaking, given a matrix X one searches two positive matrices, say A and S
(with aij ≥ 0 and sjk ≥ 0), that give a good representation of X, i.e. X ≈ AS. Hence the
formulation of NMF is convenient to linear source separation problems in which both the sources
and the mixing coefficients take non-negative values. For example, this is usually the case in
chemical analysis given that the sources are related to concentrations [122].

Because NMF is not unique [57, 123], source separation methods based on this approach must
resort to regularization terms. In this spirit, some NMF extensions work with the assumption
that the sources, besides positive, are also sparse [88]. Another type of regularization that has
been proposed is to consider that the sources are actually smooth signals [164]. Finally, it is
also possible to define a constrained NMF framework when one has access to a reference signal
with a shape close to the one of the desired sources [108].

1.3.2.5 Other approaches

In the literature, one can find BSS methods based on strategies that were not discussed so far.
Examples include:

• BSS based on Bayesian approach25 [119, 100];

• Constrained ICA [112];

• Methods based on time-frequency representations [27, 52].

1.3.3 Nonlinear models

In some practical cases, the linear approximation does not give a good enough description of
the interference model. For example, we mentioned in Section 1.2.3 that devices like ISEs and
tin oxide gas sensors can be well described only when nonlinear models are considered. Also, in
many applications, the presence of amplification stages may introduce nonlinear distortions. In
such cases, the mixing process underlying the sensor array becomes nonlinear, and, thus, cannot
be approached by linear BSS models anymore.

The first approaches to the nonlinear instance of BSS appeared in [33, 93]. However, it was
only after the works [91, 150] that it became possible to have an idea about some fundamental
problems involving nonlinear mixtures. For example, by relying on the Darmois’ theorem, [91]
showed that for a given random vector —which could represent the mixtures —it is always

24Also known as positive matrix factorization.
25We provided a brief introduction to Bayesian source separation methods in Chapter 5.
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possible to find a nonlinear transformation that results in a vector whose elements are statistically
independent. Moreover, they showed that such transformation is not unique; it thus became
clear that a simple extension of the ICA principle to the nonlinear case was not enough to
assure BSS in a general context. Yet, Taleb and Jutten [150] showed that an ICA-based solution
assures source separation in a class of constrained models called post-nonlinear (PNL) models.
This work was fundamental to indicate that, even though nonlinear BSS is an ill-posed problem
in its general formulation, we can find some particular classes of nonlinear models in which
source separation is still possible. This point will be discussed in more details latter.

Besides the non-uniqueness question, there are other limitations that make nonlinear BSS a
complicated problem. First, many of the ideas and methods applied in the linear case are based
on a linear-algebraic framework —for example, the second-order methods for linear BSS exploit,
in a very efficient way, the temporal structure of the sources by jointly diagonalizing correlation
matrices —and, thus, are not appropriate to a nonlinear context. Second, as we discussed before,
the simplicity inherent in ICA-based linear BSS methods is much due to possibility of obtaining
independent components through quantities simpler than the “exact” measures of independence
such as the mutual information. Conversely, in nonlinear models, care must be taken in the
utilization of such simplified measures of independence. For example, we saw that kurtosis-
based contrast functions are associated with the non-gaussianity maximization principle, which,
in a nonlinear context, becomes meaningless. A third problem in nonlinear BSS is that, in certain
nonlinear models, it may be difficult to define an adequate separating model. The trade off here
is that very flexible structures may lead to non-unique solutions whereas simpler systems may
not be enough to totally invert the nonlinear mapping. Finally, as nonlinear functions usually
amplify the effects of noise, nonlinear BSS algorithms are much more sensitive to noise than the
linear ones. More details and a review on nonlinear BSS can be found in [96, 7].

1.3.3.1 ICA, separability conditions and constrained models

Briefly, a mixing model is said to be separable26 if the application of ICA assures that the
resulting mapping from the sources to their estimated versions has a diagonal Jacobian, which
means that the composition of the mixing and separating mappings results in a non-mixing
mapping. For example, under the conditions described in 1.3.2.1, the linear model is separable.
On the other hand, as discussed before, the works [91, 150] revealed that nonlinear models are,
as rule, not separable.

Intuitively speaking, the lack of separability in nonlinear models comes from their high degree
of flexibility and, thus, nonlinear BSS may be feasible only in constrained situations. However,
the problem of how to impose such constraints is hard and, sometimes, may be very tricky. For
example, an apparent logical solution to cope with the lack of separability would be to constrain
the separating system to be a smooth mapping27. However, it can be shown that even smooth
models are able to mix the sources while keeping their independence [15].

26A formal definition of separability can be found elsewhere [65].
27Here, the notion of smoothness means a mapping that is not too flexible.
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Figure 1.6: PNL mixing and separating systems.

The example presented above is interesting as it points out that a more prudent approach
is to work in situations for which structural constraints are imposed on both the mixing and
the separating systems. Of course such approach does not always work. Yet, it has been
fundamental in the search for separable models. In the sequel, we discuss some examples of
constrained models.

1.3.3.2 Post-nonlinear models

The basic structure of a post-nonlinear (PNL) model28, which was introduced [150], is shown
in Figure 1.6. The mixing process is composed of a mixing matrix A which is followed by
component-wise functions, represented by the vector of functions f(·) = [f1(·), f2(·), . . . , fnm(·)]T .
Thus, a given mixture xi(t) can be written as

xi(t) = fi




ns∑

j=1

aijsj(t)


 ,

and the mixing process can be represented through the following vectorial notation

x(t) = f(As(t)). (1.16)

As shown in Figure 1.6, the PNL separating system is basically a mirrored version of the mixing
system and, thus, the estimated sources are given by

y(t) = Wg(x(t)), (1.17)

where g(·) = [g1(·), g2(·), . . . , gnm(·)]T is a set of nonlinear functions that must be adjusted to
invert the action of f(·), and W corresponds to the linear separating matrix.

The separability of PNL models was addressed in several works [150, 15, 2] and requires the
following conditions:

28The PNL model is inspired by sensor arrays where the amplifying stages introduce some nonlinear distor-

tion [150].
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• The sources are statistically mutually independent;

• There is, at most, one Gaussian source;

• The mixing matrix has full rank and must actually mix the signals, that is, each row and
column of A should contain two elements that are not null;

• The functions fi(·) and gi(·) must be monotonic.

Note that, as the PNL model comprises a linear model, the same conditions required for the
separability of linear models also show up in PNL models. Moreover, in PNL models, the
sources can be recovered up to the same ambiguities present in the linear case plus a DC
ambiguity —even if the sources are centered, the retrieved sources may have a DC level. Finally,
the structural relation between PNL and linear models has been taken into account by the
works [150, 15, 2] that addressed the separability of PNL models under the mentioned conditions.
In fact, the separability of PNL models can be proved by showing that, under the typical
hypotheses of ICA, the statistical independence of y results in the linearity of the composition
fi ◦ gi ∀i. Having proved that, the resulting model becomes linear and, thus, one can complete
the proof by making use of the separability result of linear models [39].

ICA-based approaches

The separability of PNL models provides the theoretical foundations for the derivation of
ICA-based techniques in this case. In this context, a natural approach is to set a method based
on the mutual information, whose opposite is also a contrast for PNL models. In this case,
the parameters of the separating system can be found by resolving the following optimization
problem

min
W,g(·)

I (y(t)) ≡ min
W,g(·)

∑
i
H(yi(t))−H(y(t)) (1.18)

According to the entropy transformation law [90, 41], H(y(t)) can be rewritten as a function of
the joint entropy of the mixtures, H(x(t)), which allows one to rewrite (1.18) as follows

min
W,g(·)

∑
i
H(yi(t))−H(x(t))− log |detW| − E

{
log

∏
i

∣∣g′i(xi(t))
∣∣
}

. (1.19)

As H(x(t)) does not depend on the separating system parameters, the optimization problem
expressed in Equation (1.19) is equivalent to the following one

min
W,g(·)

C (y(t)) =
∑

i
H(yi(t))− log |detW| − E

{
log

∏
i

∣∣g′i(xi(t))
∣∣
}

. (1.20)

This “trick” is important in a practical standpoint because it avoids the estimation of multidi-
mensional quantities.

In [150], the derivation of a gradient descent algorithm for optimizing (1.19) was proposed.
By considering that the i -th nonlinear separating function gi is parametrized by the vector Θi,
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the following learning rule was obtained

W ← W − µW

(
E{Ψ(y)qT } −W−T

)
= W − µW

(
E{Ψ(y)yT } − I

)
W−T (1.21)

Θi ← Θi − µΘi

(
−E

{
∂ log |g′i(Θi, xi)|

∂Θi

}
+ E

{( ns∑

k=1

ψ(yk)wki

)∂gi(Θi, xi)
∂Θi

})
(1.22)

where µW and µΘi correspond to the learning rates.
Like in the linear case (Equation (1.15)), the learning rules derived for the PNL model also

depend on the score functions Ψ(y) = [ψ(y1), ψ(y2), . . . , ψ(yns)]T . We mentioned before that, in
the linear case, it is possible to avoid the estimation of score functions by defining simpler criteria
that also lead to statistical independence. However, in the PNL case, a rough estimation of the
score functions leads to poor results and, consequently, score function estimation becomes a
central point in this problem. Classical examples of methods to carry out this task of estimation
include: techniques founded on the Gram-Charlier expansion [150] and kernel methods [150, 15].
More recently, Pham [134] proposed a very efficient kernel-based method for estimating score
functions. His approach differs from the classical ones in two points: the estimation is done over
a regular grid and a cardinal spline is used as kernel function.

An alternative way for obtaining an ICA method for PNL mixtures is based on the notion
of the differential of the mutual information [18, 15]. Briefly speaking, this idea, which can be
used in any problem involving mutual information optimization, differs from [150] in consid-
ering the cost function (1.19) instead of the one presented in (1.20). As demonstrated in [4],
although equivalent in a theoretical standpoint, these expressions may lead to different practical
algorithms [16] due to the different statistical properties of the associated estimators.

We close this subsection by mentioning some works that also dealt with ICA algorithms
for PNL mixtures. In [3], the authors derived a method based on a measure of statistical
independence called quadratic dependence. The motivation for this approach resided in the
fact that there may be a large bias in the estimators associated with the mutual information
approach. Other important topics in the PNL-ICA framework concerns the definition of appro-
priate parametrizations for gi(Θi, ·). The difficulty here is to find flexible functions that do not
violate the monotonicity requirement to the model’s separability. This matter has been studied,
for instance, in [135].

Two-stage solutions

The PNL methods mentioned so far work in an one-stage basis, in which the two parts
(linear and nonlinear) of a PNL model are adjusted at the same time to minimize a measure
of independence between the estimated sources. Despite the theoretical soundness of this one-
stage approach, there are several drawbacks regarding its applicability. For example, when
the mutual information is considered as separation criterion, it becomes necessary to estimate
marginal entropies (or their derivatives), which is costly in computational terms. Moreover, in
one-stage methods, it is complicated to define MISO (multiple-input single-output) contrasts
and, thus, to design a source extraction algorithm for searching only for a set of the original
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sources.

An alternative approach to one-stage methods is motivated by the peculiar structure of the
PNL mixture; its clear division between the linear and the nonlinear sections suggests that one
could treat each stage separately. The major benefit brought by this formulation (known as the
two-stage approach) is that linear BSS can be used to adapt W. Actually, after canceling the
nonlinear distortion introduced by the functions fi(·) in a first moment, the problem is reduced
to the one of linear BSS. The main difficulty in developing a PNL two-stage solution concerns
the definition of a criterion for adjusting gi(·) so it inverts fi(·). Note that every attempt based
on independence criteria becomes meaningless in this case.

The first two-stage PNL method was obtained through a geometric approach [17]. To illus-
trate how this method works, let us consider an example of two PNL mixtures obtained from
two sources that are mutually independent and uniformly distributed. In Figure 1.7, we present
the scatter plots of these sources, as well as the outputs of the linear and of the nonlinear
mixing stages. Initially, one has a rectangular joint plot that, due to linear mixing, becomes
a parallelogram that is not rectangular anymore. Then, the nonlinear functions f(·) transform
this parallelogram into a nonlinear form. Based on this observation, [17] shows that is possible
to invert the action of f(·) by searching for g(·) that give again a scatter plot in the form of a
parallelogram.
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Figure 1.7: Illustration of the geometrical approach for PNL mixtures: sources (left), outputs
of the linear mixing stage (center) and mixtures (rigtht).

Another two-stage PNL method exploits the relations between gaussianity and nonlinear
functions [147, 165]. According to the central limit theorem, the outputs of the linear mixing
stage, z(t) tend toward Gaussian distributions. However the nonlinear functions fi(·) destroy
the Gaussian aspect of zi(t). In view of this observation, [147, 165] suggest that g(·) can be
adjusted in order to provide signals q(t) that are as most Gaussian as possible. Unfortunately,
this approach does not assure a perfect inversion of f(·) because it is based on an asymptotic
result, and, consequently, the distributions of zi(t) are close to Gaussian only when there is a
great number of sources. Still, this approach has been proved to be a valuable initialization
scheme for other PNL algorithms.

Finally, we cite the work of Lee at al [105] which developed a two-stage approach in which the
estimations of the nonlinear functions are done through a dimensionality reduction technique.
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1.3.3.3 Linear-quadratic models

It is common to draw analogies between multiple-input multiple-output (MIMO) and single-
input single-output (SISO) systems. For example, the linear BSS model is usually associated
with SISO filters [13, 14]. By resorting to this analogy, the linear-quadratic (LQ) mixing model
can be regarded as an extension of second-order Volterra filters [127], since both models are
characterized by the presence of quadratic-terms. Indeed, in its more general form, the LQ
model is given by

xi(t) =
ns∑

j=1

aijsj(t) +
∑

1≤j<k≤ns

bijksj(t)sk(t), ∀i ∈ 1, . . . , nm, ∀t ∈ 1, . . . , nd, (1.23)

where aij et bijk correspond to the mixing parameters.

Source separation of LQ mixtures was firstly reported in [101, 1]. In both works, the LQ
model was approached through linear methods. However, such an approach is feasible only when
the very restrictive class of circular sources are considered.

More general BSS algorithms for LQ mixtures were proposed in [86, 87]. In these works,
special attention was paid to the problem of how defining a proper structure for the separating
system. Indeed, in contrast to linear, or even PNL mixtures, it is quite difficult to find a para-
metric separating system able to perfectly invert the LQ model29. This task requires calculating
the analytical form of the inverse mapping associated with (1.23), i.e. it is necessary to express
the sources as a function of the mixtures. This is difficult in LQ models because it is associated
with the inversion of polynomial functions [86]. Moreover, even when it is possible to conduct
this inversion —for example, in the case having two sources and two mixtures —the resulting
separating system may assume a complex form that renders difficult the derivation of a training
algorithm.

In [86], it has been shown that recurrent systems provide an interesting way to define the LQ
separating model. To understand the basic motivation behind such an approach, let us consider
an example with two mixtures and two sources, i.e.

x1(t) = s1(t) + a12s2(t) + b112s1(t)s2(t) (1.24)

x2(t) = s2(t) + a21s1(t) + b212s1(t)s2(t). (1.25)

Now, let us represent the samples of the mixtures at a given instant T by xi(T ). In order to
retrieve si(T ) from the mixtures xi(T ), the recurrent system shown in Fig. 1.8 can be used [86].
Mathematically speaking, this system is given by

y1(n) = x1(T ) + w12y2(n− 1) + t112y1(n− 1)y2(n− 1), (1.26)

y2(n) = x2(T ) + w21y1(n− 1) + t121y1(n− 1)y2(n− 1). (1.27)

29One could think of powerful nonlinear structures, such as MLP neural networks, to perform the inversion of

LQ models. However, as discussed before, the use of too flexible structures could lead to identifiability problems.

Moreover, the better a MLP network can do is to give an approximate inverse mapping.
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Figure 1.8: The recurrent LQ separating system proposed in [86].

It is easy to show that, when wij = −aij and tijk = −bijk, this dynamical system admits
y1 = s1(T ) and y2 = s2(T ) as fixed points30. That is, this recurrent network allows one to invert
the action of the LQ mixing system in an implicit manner.

An important issue that was discussed in [86] concerns the stability of the recurrent sys-
tem (1.27). Indeed, for this strategy to work, the sources and mixing coefficients should satisfy
the local stability condition derived in [86]. More recently, in order to overcome this limitation,
[50] proposed an alternative recurrent system that eases the stability problem.

Concerning the adjustment of the recurrent network, a first approach [86] considered an ICA
learning rule based on a nonlinear decorrelation approach. Then, the same authors derived a
more rigorous technique through a maximum likelihood framework [87], which can also be ob-
tained through the minimization of the mutual information between the outputs of the recurrent
system.

Curiously enough, although ICA strategies are usually adopted in LQ models, the separability
of this model has never been proved. Yet, there are some evidences suggesting separability, at
least for the case of two sources and two mixtures. Firstly, to the best of our knowledge, there
are no counterexamples against the separability. Moreover, the reported performance of ICA-
LQ methods does not point out any particular problem that would be related to a possible lack
of separability. Finally, the separability indeed holds for two sources and two mixtures in the
particular case a12 = 2b112 and a21 = 2b121. Indeed the resulting model in this case becomes an
example of a class of models —the models satisfying the addition theorem (AT) —for which the
separability has already been proved [64].

30These fixed points are calculated by solving equations (1.26) and (1.27) in yi after setting yi(n) = yi(n−1) =

yi.
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1.4 Application of BSS techniques to chemical sensor arrays

The application of BSS methods to chemical sensor arrays is a relative new topic and was
considered in a small number of papers. The first contributions in this area were made by Sergio
Bermejo and collaborators [29, 28]. In these works, linear source separation was employed to
process the data obtained by an array of ion-sensitive field-effect transistors31 (ISFET). In [63],
a linear BSS method was also considered but now in the context of gas sensor arrays.

As discussed in Section 1.2, ISEs and tin-oxide sensors are clearly nonlinear devices and,
thus, arrays of such sensors culminate in nonlinear BSS problems. For instance, in the case of
ISEs, when the ions under analysis have the same valences, the NE model becomes an example of
PNL model. Moreover, assuming that ri is known in the CT equation (1.3), the mixing process
associated with a tin oxide sensor array can be described by means of the LQ model. These two
facts were firstly observed in [23]. This work investigated the application of the PNL method
proposed in [150] to ISFET arrays and the application of the LQ methods [86, 87] to arrays of
tin oxide sensors.

1.5 Conclusion

In the first part of this chapter, we briefly introduced the chemical sensors that will be considered
in the following chapters. Special attention was devoted to the interference problem and to how
solve it through sensor arrays. In a second part, we turned our attention to the blind source
separation. We provided a brief introduction to the classical linear BSS solutions. Then, we
discussed some aspects related to the nonlinear instance of the BSS problem. In particular,
we saw that unsupervised chemical quantitative analysis via chemical sensor arrays leads to a
nonlinear BSS problem.

31ISFETs and ISEs have the same principle of operation. However, ISFETs are miniaturized devices built on a

MOSFET by replacing the metallic gate with a membrane sensitive to the ion of interest. The ISFET modeling

is also based on the NE equation and, thus, the source separation methods developed for ISEs are also valid for

ISFETs.
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Experiments with ISE arrays

2.1 Introduction

This chapter describes a set of experiments conducted with ion-selective electrodes arrays. In
a first moment, the experimental set-up is detailed. Then, we try to identify the scenarios in
which the interference process is considerable and also to quantify the errors resulting from a
modeling based on the Nicoslky-Eisenman equation. Although the primary goal of the present
thesis is the analysis of unsupervised sensor arrays, the acquired data can also be useful in the
design of supervised smart arrays.

The experiments described in this section were done in a cooperation with Dr. P. Temple-
Boyer (Laboratoire d’Analyse et d’Architecture des Systèmes - LAAS/CNRS, Toulouse France)
and his team. The datasets obtained in the performed experiments are public available at
www.gipsa-lab.inpg.fr/isea.

2.2 Experimental

The objective of the conducted experiments is to acquire a dataset having the following entries:
1) temporal evolution of the activity of the ions under analysis (sources) and 2) the steady-state
response of each ISE within the array (mixtures). A first step to attain such goal is to define an
experimental set-up in which the concentrations of ionic solutions within a beaker vary in time.
In the sequel, we will detail how this can be achieved.

2.2.1 Materials

Manufactured ISEs (Consort c©) were used in the experiments. Two titrators Dosimat 765
(Metrohm c©) were responsible for injecting solutions in the beaker containing the analytes. The
solution under analysis was stirred through a Fisher Bioblock c© magnetic stirrer. The acquisi-
tion block was composed of a Consort c© C835 desktop analyzer and of an acquisition software
developed by researchers of the LAAS laboratory. Finally, all solutions were prepared using
deionized water and, in contrast to common practice, no buffer solution to keep the pH fixed

33
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was used. The motivation for working in such a crude situation is related to the benefits brought
by unsupervised SSAs, which reside exactly in the simplification of laboratory procedures.

2.2.2 Scenarios

Experiments were conducted in each of the following situations:

1. Analysis of a solution containing NH4Cl and KCl using one NH+
4 -ISE and one K+-ISE ;

2. Analysis of a solution containing NaCl and KCl using two Na+-ISE , one K+-ISE and one
Cl−-ISE ;

3. Analysis of a solution containing NaCl and CaCl2 using two Na+-ISE and one Ca2+-ISE .

The first scenario concerns a well-known example of interference in the ISE context: the potas-
sium and ammonium ions. This case is relevant in applications like water quality monitoring. In
the second scenario, we also address the analysis of two monovalent ions (sodium and potassium)
but now the ISE array is composed of four electrodes, including a Cl−-ISE and an additional
sodium electrode. One of the motivations for performing this second scenario is to check whether
a possible variability between two electrodes of the same type can be exploited by a BSS method.
Finally, in the third scenario, we analyze the situation in the ions have different valences (calcium
and sodium). As it will be discussed in Chapter 3, this third case results in a very challenging
mixing model.

2.2.3 Experimental details and data set organization

In Figure 2.1, a picture of the experimental set-up is shown. The diagram presented in Figure 2.2
illustrates how the experiments took place. Basically, there were two titrators responsible for
injecting salt solutions. The parameters of these titrators, such as the total volume of injected
solution and the injection period, were controlled via software. Concerning the data acquisition,
the ISEs were connected to a desktop meter which in turn communicated with a personal
computer through the RS232 port. The precision of the desktop meter was 1mV and the
measurements were recorded every 5 seconds.

As discussed in the scenarios definition, two chloride salt solutions were analyzed; we shall
represent these solutions by S1Cl and S2Cl, where S1 and S2 denote the cations associated with
the chlorine anion. The concentrations of these cations were varied according to the following
injection scheme:

1. Initially, the beaker contained a solution of S1Cl with concentration Ci and volume v =
50mL;

2. In a first period of approximately one hour, only the first titrator was active and it injected
the salt solution S2Cl (concentration C = 10−1M) with an injection period of 30s. The
total injected volume was 5mL;
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Figure 2.1: Experimental set-up. In a blind source separation context, the sources are related to
the titrators given that these devices are responsible for varying the ionic concentrations. The
mixtures are obtained from the ISE array.

Figure 2.2: Diagram illustrating the experimental set-up.

3. In a second period of approximately one hour, the first titrator was deactivated and the
second titrator started the injection of the salt solution S2Cl (concentration C = 10−1M)
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but now the total injected volume was 110mL with an injection period of 30s.

As a result of this injection scheme, the concentrations of the cations S1 and S2 vary in
the range 10−4 − 10−1M. In Figure 2.3, the temporal evolution of these concentrations, for one
experiment, is shown (these are the source signals in our problem). Given that a linear injection
scheme (same amount of solution at each injection) was considered, it became necessary to define
two injection periods (steps 2 and 3) in order to obtain measurements in the concentration range
10−4 − 10−3M. This explains why only 5mL of solution is injected during the first hour of the
experiment.
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Figure 2.3: Temporal evolution of the concentrations of the cations S1 and S2.

In each scenario, the same injection procedure was performed eight times (each realization
took approximately two hours). The difference between these realizations was the initial con-
centration Ci of the salt solution S1Cl. We considered concentrations close to Ci = 10−iM,
i = 1, . . . , 4. At the end of these four experiments, we repeated the same procedure but with
an inversion of salt solutions, i.e., we started with an initial volume of solution S2Cl and then
an injection of solution S1Cl took place. Finally, the electrodes were rinsed with distilled water
between each experiment.

The following notation was defined in order to identify each experiment: SAS110−CS2, where
A, S1, C and S2 refer to the scenario number, the initial salt solution present in the beaker, its
(approximate) concentration, and the injected solution, respectively. For example, S1NH410−1K
refers to an experiment of the first scenario where an initial solution of NH4Cl with concentration
of approximately 10−1M was set, and where KCl was injected by the two titrators according
to the procedure described above. Therefore, the first scenario is composed of the following
eight experiments: S1NH410−iK for i = 1, . . . , 4 and S1K10−iNH4 for i = 1, . . . , 4. Finally, the
activities were estimated according to the Debye-Hückel formalism (see Section 1.2.1).
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2.3 Data analysis

The characterization of ISEs is commonly performed via the conduction of some chemical pro-
tocols. For instance, as we mentioned in Section 1.2.3.1, the selectivity coefficients of the NE
equation can be estimated, for instance, through the matched potential method. These chemi-
cals protocols are very useful in practice as they provide selectivity coefficients offering a good
indication of the degree of interference. However, our focus will be on a regression approach. In
fact, as the ultimate goal of the present work concerns the application of BSS methods, we are
mainly interested in assessing the goodness of fit of the considered mixing model.

In our study, we will focus on a data modeling based on the NE equation. The model
parameters E0, di and Ki,j will be estimated through a non-linear least square (LS), i.e. by
resolving the following optimization problem1:

min
E0,di,Ki,j

1
N

T∑

t=1


E(t)−


E0 + di log


ai(t) +

∑

j,j 6=i

Ki,jaj(t)zi/zj










2

, (2.1)

where T is number of samples, aj(t) is the activity of the j -th ion, and E(t) denotes the actual
response of the electrode at the instant and t. As it will be discussed later, we also consider
alternative models to the NE equation and a LS regression approach is also conducted for these
cases.

The goodness of fit of the NE model will be checked through the signal-to-noise ratio (SNR),
which, for a logarithmic decibel scale, is defined as

SNR = 10 log
σ2

E

σ2
e

, (2.2)

where, σ2
E and σ2

e denote the variance of the actual sensor response and the variance of the
regression error, respectively. Besides yielding a relative measure of model fitness, the SNR
gives us a more direct way for estimating the amount of noise present in the mixed signals.

2.3.1 First scenario

The modeling of the potassium and ammonium electrodes through the NE equation has led to
the results shown in Tables 2.1 and 2.2, respectively. A first point that merits some discussion
concerns the difference between the SNR obtained when considering each experiment separately
and when considering four or eight experiments altogether. This discrepancy is a clear indicator
that the NE equation could only provide a proper local description of the data. Actually,
modeling the whole data is difficult because of the lack of repeatability; we observed that the
simple fact of immersing the electrodes in a new solution may cause a considerable drift in the
measurements. Interestingly enough, while this lack of repeatability poses serious problems in
a supervised context (it may result in a model with poor generalization capability), it can be
used as an argument for unsupervised approaches.

1This was done through the Matlab’s function nlinfit which is based on the Gauss-Newton algorithm.
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Table 2.1: First scenario: modeling the K+-ISE through the NE equation.
Experiment E0(mV) d(mV) KK+,NH+

4
SNR(dB)

S1NH410−iK
S1K10−iNH4

i = 1, . . . , 4
115.08 38.94 0.0314 8.91

S1NH410−iK
i = 1, . . . , 4

123.82 43.83 0.0093 12.46

S1K10−iNH4

i = 1, . . . , 4
114.36 37.25 0.0655 10.9

S1NH410−1K 174.95 81.46 0.0680 30.3

S1NH410−2K 144.85 57.48 0.0739 35.7

S1NH410−3K 129.91 46.10 0.2420 26.5

S1NH410−4K 128.90 45.18 3.0158 23.8

Table 2.2: First scenario: modeling the NH+
4 -ISE through the NE equation.

Experiment E0(mV) d(mV) KNH+
4 ,K+ SNR(dB)

S1NH410−iK
S1K10−iNH4

i = 1, . . . , 4
125.53 44.05 0.0976 14.3

S1NH410−iK
i = 1, . . . , 4

125.18 42.38 0.0761 15.0

S1K10−iNH4

i = 1, . . . , 4
128.67 47.51 0.1157 15.9

S1K10−1NH4 184.11 89.63 0.2293 31.2

S1K10−2NH4 149.95 61.78 0.2769 30.0

S1K10−3NH4 148.36 59.62 1.3782 30.1

S1K10−4NH4 135.16 51.68 2.3373 22.7

Still in Tables 2.1 and 2.2, one may observe that the estimated slopes di are of the same order
of magnitude as the theoretical Nernstian slopes (59mV). Concerning the selectivity coefficients,
the greater values obtained in the regression of the NH4-ISE suggests that such electrode is more
sensitive to K+ than the other way around.

Besides the values of the estimated Ki,j , another way to check the interference phenomenon
can be achieved by plotting, for each experiment, the response of the electrode as a function
of the activity of its respective target ion. For example, one can note in Figure 2.4 that the
NH+

4 -ISE presents an almost linear (with respect to the logarithm of the activity) response when
the activity of K+ is smaller. On the other hand, the ammonium electrode does not provide
good measurements for activities below 0.01M when the activity of K+ is high (experiment
S1K10−1NH4). Note that this particular shape resembles the one predicted by the NE equation
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(see for instance, the example illustrated in Figure 1.2).
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Figure 2.4: First scenario: response of the NH+
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4 .

The response of the K+-ISE as a function of the potassium ion activity is depicted in Fig-
ure 2.5. In this case, one observes a behavior that is not compatible with the NE paradigm
since there are some areas in which the response obtained for low activities of interfering ions
is greater than the one obtained for high activities2. Several hypotheses can be formulated to
describe this strange behavior. First, as we have already mentioned, a considerable drift can take
place between two experiments. Indeed, if 10mV are subtracted from the results obtained in the
experiments S1K10−3NH+

4 and S1K10−4NH+
4 , the shape of resulting figure becomes closer to the

one predicted by the NE equation. A second hypothesis would be related to the stabilizing time
required by the electrode: perhaps, for the concentration ranges considered in S1K10−3NH+

4

and S1K10−4NH+
4 , the electrode needs a time greater than the period of injection (30s). Fi-

nally, there may be indirect interactions between the ions under analysis and the electrodes; for
example, we did not consider the effects of the variation of the pH on the ISEs.

2.3.1.1 On the application of alternative models

A very basic principle in data analysis is that nonlinear models should be used only when the
linear approximation does not give a well enough description. This is even more evident in the
context of source separation since, as discussed in Chapter 1, linear BSS techniques are much
simpler than the nonlinear ones. Motivated by that, we studied the implications of considering
a model in which the ISE response E is a linear function of the logarithm of the activities aj .

2An interesting point here regards the possibility of incorporating into the signal processing block methods

able to identify which sensors within the array present a response that deviates from the response predicted by

the NE model. Although not treated in the present research, this feature would be quite helpful to practitioners.
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Figure 2.5: First scenario: response of the K+-ISE as a function of the activity of K+ .

When there are only two ions, this model becomes

E = c0 + c1 log(a1) + c2 log(a2), (2.3)

where ci represents the model parameters. Note that linear BSS can be used in this case if one
considers the following transformation of variables: si = log(ai).

The model (2.3) offers a simpler description than that of the NE model. In our study, we also
considered a model that is more complex than the NE equation. Indeed, in order to investigate
if, as in the case of gas sensors, the presence of cross-product terms may resulted in a better
modeling of the studied ISEs, the following extension of the NE equation was defined

E = E0 + d log (a1 + K1,2a2 + Q1,2a1a2) , (2.4)

where E0, d, K1,2 Q1,2 correspond to the model parameters. We shall refer to this model as the
NE-cross model.

After performing some experiments, we verified that the linear model given in Equation (2.3)
only gives a rough description of the ISE device. Indeed, in Tables 2.3 and 2.4, one can note
that the linear model gives rather inferior SNR when compared to the NE model. Concerning
the NE-cross model, it performs slightly better than the standard NE model. Actually, this
is expected because the NE model is a particular case of the NE-cross model. Therefore, the
important question here is whether the gains brought by the NE-cross model justify the increase
in the model complexity.

A possible way to investigate the trade-off between model complexity and model accuracy
can be obtained through the Bayesian information criterion (BIC) [81]. The BIC is a function
of the training error and of the number of model parameters. Ideally, the model with lower
BIC must be favored. In tables 2.3 and 2.4, we show the BICs for each model. Due to the
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large residuals, the linear model presents a much higher BIC than the nonlinear models. Within
the nonlinear models, the difference between the estimated BICs was relatively smaller; the
NE-cross model was the one with smaller BIC. However, it is important to remark here that,
for the BIC’s standpoint, the difference between the complexity associated with the NE and the
NE-cross models is just given by the number of parameters present in each model —three in the
NE model and four NE-cross —and, thus, such a difference is small. On the other hand, for the
source separation standpoint, a method tailored for the NE-cross model is much more complex
than the one designed to NE equation, and, thus, more susceptible to separability problems and
overfitting.

Table 2.3: First scenario: modeling the ammonium electrode.
Linear model NE model NE-cross model

Experiment SNR (dB) BIC SNR (dB) BIC SNR (dB) BIC

S1K10−1NH4 15.8 163.7 31.2 −115.2 31.5 −116.7

S1K10−2NH4 13.0 361.5 30.0 5.1 30.3 2.9

S1K10−3NH4 13.0 385.6 30.1 25.6 32.6 −21.7

S1K10−4NH4 15.2 349.8 22.7 194.1 24.5 160.8

Table 2.4: First scenario: modeling the potassium electrode.
Linear model NE model NE-cross model

Experiment SNR (dB) BIC SNR (dB) BIC SNR (dB) BIC

S1NH410−1K 13.4 694.4 30.3 −12.6 33.1 −122.8

S1NH410−2K 14.0 719.4 35.7 −184.4 38.7 −305.8

S1NH410−3K 16.5 564.8 26.5 152.68 30.9 −25.7

S1NH410−4K 17.3 529.1 23.8 258.2 30.0 −3.3

2.3.2 Second scenario

In Tables 2.5 and 2.6, we show the regression results for the sodium and potassium electrodes.
Again, the NE equation resulted in good SNRs when the experiments were considered separately.
Moreover, we observed that the sensitivity of the sodium electrodes toward the potassium ion
is high. This interference can be observed in Figure 2.6, in which we plot the responses of the
two sodium electrodes within the array as a function of the sodium activity.

The interference of the ion Na+ in the response of the K+-ISE was relative small. This is indi-
cated, for instance, by the small3 selectivity coefficients obtained in the experiment S2Na10−1K.

3Note that a good indicator of the interference phenomenon is the selectivity coefficient obtained in the

experiment where the activity of the interfering ion is high. However, for small activities of the interference ion,

high selectivity coefficients does not necessarily point out a strong interference. Actually, in these cases, the

selectivity coefficients are multiplying very low activities and, as consequence, even when they vary in a large

range of values, their influence on the regression is small.
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Table 2.5: Second scenario: modeling the two sodium electrodes through the NE equation.
Experiment E0(mV) d(mV) KNa+,K+ SNR(dB)

ISE(1) ISE(2) ISE(1) ISE(2) ISE(1) ISE(2) ISE(1) ISE(2)

S2K10−iNa 207.19 185.36 60.46 51.24 0.0410 0.0308 10.7 9.8
i = 1, . . . , 4

S2K10−1Na 382.32 390.37 206.19 226.21 0.3162 0.3866 26.2 28.0

S2K10−2Na 287.08 260.43 115.85 103.85 0.8273 0.7948 31.2 31.6

S2K10−3Na 264.41 241.24 96.26 85.78 3.6122 4.8365 27.4 27.0

S2K10−4Na 250.27 226.25 82.68 71.72 10.7876 10.1880 23.0 23.5

Table 2.6: Second scenario: modeling the K+-ISE through the NE equation.
Experiment E0(mV) d(mV) KK+,Na+ SNR(dB)

S2Na10−iK 119.47 46.06 0.0018 8.7
i = 1, . . . , 4

S2Na10−1K 153.78 62.26 0.0008 21.5

S2Na10−2K 144.78 56.07 0.0058 19.0

S2Na10−3K 144.55 57.67 0.6350 23.7

S2Na10−4K 131.18 52.50 7.2332 17.5
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Figure 2.6: Second scenario: responses of the two sodium electrodes within the array as a
function of the activity of Na+).

Another worth mentioning point concerning the K+-ISE in this second scenario is that, as can
be observed in Figure 2.7, this electrode presented the same irregular behavior as in the first
scenario.
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Figure 2.7: Second scenario: response of the K+-ISE as a function of the activity of K+ .

2.3.2.1 The response of the Cl−-ISE

In this subsection, we investigate the response of the Cl−-ISE. As can be verified4 in Figure 2.8,
the Cl−-ISE response is not sensitive to the presence of the Na+ ion. This is in accordance with
the great majority of ISEs described in the literature. Indeed, it is rare to find mentions about
a possible interference caused by cations in anionic ISEs.

At first glance, in this particular scenario, the fact that the Cl−-ISE does not respond to
cations could ease the derivation of a BSS method. In fact, due to the defined injection scheme,
the concentration of Cl− is the sum of the concentrations of Na+ and K+ and, thus, we would
end-up with an electrode (Cl−-ISE) that is somehow related to the sum of the sources5. Still,
this idea is of limited interest because such a relationship of concentrations is not expected to
be observed in a real problem.

2.3.2.2 Diversity between sodium electrodes

Finally, we try to check whether the two sodium electrodes present variations that can be useful
in BSS6. This point can be easily verified by plotting the response of the first Na+-ISE versus the
response provided by the second one. This is done in Figure 2.9 for the experiments S2Na10−iK,
i = 1, . . . , 4. As can be observed in this figure, for all experiments, there is an almost perfect
linear relationship between these two electrodes, which means that a very reduced degree of
diversity exists. In this particular case, thus, the use of these two sodium electrodes would not

4In anionic ISEs, the Nernstian slope is negative, from where the decreasing of the response as the activity

grows.
5Note, however, that such a relation is only an approximation as the sources actually represent ionic activities.
6Note that, in BSS, it is desirable to have a high degree of diversity within the array to avoid sensors with

similar responses.
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Figure 2.8: Second scenario: response of the Cl−-ISE as a function of the activity of Cl−.

bring any benefit to the development of BSS methods.

2.3.3 Third scenario

The results of the regression analysis for this third scenario are shown in Table 2.7 (sodium
electrodes) and in Table 2.8 (calcium electrode). Compared to the preceding experiments, the
interference level in this third scenario was quite low. This can be verified in Figure 2.10,
which depicts responses of the first Na+-ISE and of the Ca2+-ISE as a function of the respective
activities. Note that, the response of both electrodes are influenced by the activities of the
interfering ions only when the activity of the target ion is below 0.001M. Finally, as in the
second scenario, a quite reduced diversity is observed within the two sodium electrodes.

Table 2.7: Third scenario: modeling of the two sodium electrodes through the NE equation.
Experiment E0(mV) d(mV) KNa+,Ca2+ SNR(dB)

ISE(1) ISE(2) ISE(1) ISE(2) ISE(1) ISE(2) ISE(1) ISE(2)

S3Ca10−iNa 237.48 213.89 62.22 54.39 0.0063 0.0039 9.3 9.4
i = 1, . . . , 4

S3Ca10−1Na 225.71 212.95 57.54 57.11 0.0009 0.0010 32.2 32.4

S3Ca10−2Na 227.95 215.80 63.74 62.06 0.0063 0.0066 32.5 36.6

S3Ca10−3Na 235.56 216.10 70.19 62.05 0.0201 0.0159 35.9 33.6

S3Ca10−4Na 242.42 227.39 78.61 72.87 0.0349 0.0682 30.4 30.6
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Figure 2.9: Second scenario: analyzing the diversity within the responses of the two sodium
electrodes.

Table 2.8: Third scenario: modeling the Ca2+-ISE through the NE equation.
Experiment E0(mV) d(mV) KCa2+,Na+ SNR(dB)

S3Na10−iCa 130.55 41.84 0.0831 15.9
i = 1, . . . , 4

S3Na10−1Ca 133.42 42.81 0.0370 23.5

S3Na10−2Ca 150.33 50.70 3.5737 28.0

S3Na10−3Ca 145.27 48.37 304.65 26.1

S3Na10−4Ca 152.60 52.53 3530.5345 21.3

2.4 Conclusions

In this chapter we described a set of experiments that were conducted with ISE arrays. A
nonlinear regression analysis based on the NE was carried out to model the acquired data.

A first point that called our attention was the pronounced lack of repeatability of the ISEs
used in the experiments. This characteristic has led to poor regression results when all experi-
ments were considered at the same time. Still, we observed that, within the same experiment, the
NE equation gives a good description of the electrode response. Concerning the ISE modeling,
we could also check that a linear model provides a very crude approximation of the interference
process. Therefore, in the context of source separation, the application of linear techniques
would have to face a mixing model corrupted by a large amount of modeling noise, which is not
a trivial task.
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Figure 2.10: Third: response of the first sodium electrode (left) and of the calcium electrode
(right).

Still in the context of source separation, the first scenario was the most interesting one.
Indeed, in this case, both electrodes within the array were susceptible to interference. Conversely,
in the third scenario, the electrodes proved to be more robust to interference from other ions.

Finally, our experiments also allowed us to investigate some points that are important in
practice. Firstly, we verified that the two electrodes of the same type used in scenarios 2 and 3
gave too similar responses. Thus, because of this lack of diversity, there is no advantage in using
these two electrodes (instead of only one of them) in a source separation context. Secondly, we
saw that, in the second scenario, the response of the Cl−-ISE was not influenced by the cationic
species and that, because of the relation between the concentrations of the chemical species in
the considered experiment, it is related to the sum of the sources.



Chapter 3

Methods based on Independent

Component Analysis

3.1 Introduction

This chapter initiates the second part of the present thesis. We now turn our attention to
the investigation of source separation methods tailored for chemical sensor arrays. A first and
natural step toward this goal is to focus on ICA methods since they operate with a minimum
amount of prior information. As mentioned in Chapter 1, some advances in this direction have
already been reported [23, 24]: one can find ICA methods that can be applied to tin oxide gas
sensor arrays (LQ model) and to a potentiometric electrode arrays for detecting ions of equal
valences (PNL model).

In this chapter, we aim at designing ICA methods for a situation that has not yet been
addressed, namely ISE arrays made for analyzing ions of different valences. Depending on
the array configuration, this particular case may result in a rather complex mixing model for
which it is difficult to define the separating structure and a proper algorithm for adjusting
their parameters. To overcome these problems, we consider a recurrent separating system and
investigate learning rules based on the ICA framework.

3.2 Problem statement: the mixing model

First of all, let us clarify an important point concerning the notation. In this chapter, we will
omit the temporal index; the j -th source and the i -th mixture will be represented by sj and xi,
respectively. This is done because in ICA methods the signals are seen as realizations of i.i.d.
random processes1. Thus, according to the NE model (see Equation (1.2)), the response xi of
the i -th ISE within the array is given by

xi = ei + di log
(
si +

∑

j,j 6=i

aijs

zi
zj

j

)
. (3.1)

1More precisely, ICA does not take into account temporal relationship between sucessive samples.

47
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Note that a notation different from Equation (1.2) is used here: now the selectivity coefficients
are represented by aij and the DC level by ei. The terms zi and zj denote the valence of the
ions i and j, respectively.

As discussed in Section 1.4, when the ratio zi/zj is equal to 1, the mixing model (3.1)
becomes a particular case of the class of PNL models. On the other hand, when the valences
are different, the resulting mixing model becomes tougher because a nonlinearity (power term)
appears inside the logarithm term.

A possible way to deal with the presence of terms zi/zj 6= 1 relies on a clever choice of the
electrodes composing the array. To illustrate that, let us take as an example the third scenario
of the experiments described in Chapter 2. The goal in that case was to estimate the activities of
Ca2+ and Na+. Suppose that such estimation is conducted through two sodium ISEs, instead of
considering an array composed of one calcium and one sodium electrode. Therefore, according
to Equation (3.1), the mixing model can be written as:

x
(ISE1)
1 = e

(ISE1)
1 + d

(ISE1)
1 log

(
s1 + a

(ISE1)
12 s

1/2
2

)
, (3.2)

x
(ISE2)
1 = e

(ISE2)
1 + d

(ISE2)
1 log

(
s1 + a

(ISE2)
12 s

1/2
2

)
, (3.3)

where s1 and s2 denote the activities of the sodium and calcium ions, respectively. The key
point is that such mixing process, under the simple transformation s∗2 = s

1/2
2 , can be rewritten

as a PNL model. Note that a similar result could be obtained through other configurations. For
example, if two calcium ISEs were selected, the transformation s∗1 = s2

1 would also culminate in
a PNL model.

Whenever possible, the procedure introduced in the last paragraph should be adopted as
it permits the application of PNL methods. Nonetheless, a clever choice of the ISEs depends
on some practical issues that, in some situations, may be unfavorable. For instance, if the
sodium electrodes used in our experiments (see Chapter 2) were considered in the example under
discussion, the aforementioned idea would not work. Indeed, as the responses of the sodium
electrodes in those experiments were too similar, we would end up with a very ill-conditioned
PNL model that cannot be handled without strong prior information on the sources. Therefore,
in these cases, electrodes of different types should be used and, thus, there is no way to avoid
the power terms in the nonlinear mixing model.

Motivated by that limitation, we shall discuss, in the rest of this chapter, how a BSS scheme
can be set for this difficult case.

3.2.1 A simplified mixing model

In view of the complexity of the mixing model (3.1), some simplifications are considered hereafter.
First, we assume that the valences of the ions under analysis are known in advance. Second,
the parameters di and ei are also known in advance. Therefore, before applying the developed
method on the acquired data, one should conduct the following pre-processing step to invert the
logarithm functions

xi = 10

(
x∗i−ei

di

)

, (3.4)
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where x∗i denotes the actual response provided by i -th electrode of the sensor array. The
parameter di can be set by simply considering the theoretical value predicted by the NE equation.
It should be stressed, however, that when the theoretical value strongly deviates from the actual
one, the pre-processing step (3.4) may introduce a nonlinear effect not predicted by the simplified
mixing model. Fortunately, a discrepancy between the actual value of ei and the one used in
the pre-processing stage is not as important as in the case of the parameter di. Indeed, when ei

is not exactly known, we can still apply our method but the best one can do is to retrieve each
source up to an unknown multiplicative gain (see Appendix A for a more detailed discussion on
the ambiguities associated with the NE model).

A last simplification of the mixing model (3.1) concerns the number of sources and sensors.
Although the techniques proposed in this chapter can also be extended to high-dimensional
scenarios, our development will only consider the case with two sources and two mixtures. This
assumption is realistic in many practical situations where there is one interfering ion that is
dominant while the others can be neglected. Moreover, this choice makes possible a theoretical
analysis and, thus, a better understanding of the elements of our proposals.

Based on the simplifications described in the last paragraphs, the mixing model (3.1) can be
written as2:

x1 = s1 + a12s
k
2

x2 = s2 + a21s
1
k
1

. (3.5)

The term k corresponds to z1/z2 and we assume that k ∈ N; this is the case, for instance, in
the detection of Ca2+ and Na+ where k = 2. It is worth noticing that, since the sources are
non-negative in our problem —they represent chemical activities —there is no risk of having
complex-value numbers from the term s

1
k
1 . Finally, as we are interested in an ICA solution, it is

assumed that the signals s1 and s2 are mutually statistically independent.

3.3 Defining a separating structure

3.3.1 Invertibility of the mixing model

A very important point to be addressed before defining a separating system concerns the invert-
ibility of the mixing system (3.5). In other words, we should verify if it is possible to restore a
given value si from the knowledge of xi and of the coefficients aij . This can be done by resolving
equation (3.5) for s1 and s2. By a simple manipulation of this expression, we obtain

x1 = s1 + a12

(
x2 − a21s

(1/k)
1

)k
. (3.6)

After straightforward calculation, including a binomial expansion, (3.6) becomes

(1 + a12b0)s1 + a12

k−1∑

i=1

bis
1− i

k
1 + (a12bk − x1) = 0, (3.7)

where bi =
(
k
i

)
xi

2(−a21)(k−i), and
(
k
i

)
is defined as k!

i!(k−i)! .

2In this model, each ISE has a different ion as target.
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By considering the transformation u = s
1
k
1 in Equation (3.7), one can verify that the solution

of this expression is equivalent to the determination of the roots of a polynomial of order k and,
as a consequence, the number of solutions grows linearly as k increases. A relevant point here
concerns the nature of these solutions, i.e. whether they are still nonlinear combinations of s1

and s2. The main problem to conduct such an analysis is that we need to solve Equation (3.7),
which is a difficult task for high values of k.

In order to gain some insight into Equation (3.7), let us solve it for k = 2. After some
calculation, we obtain the following two solutions: the expected pair (φ1, φ2) = (s1, s2) and the
pair given by

φ1 =

(
(2a12a21s2)+(a12a2

21−1)s
1
2
1

(1+a12a2
21)

)

φ2 = s2 + a21s
1
2
1 − a21

∣∣∣∣∣

(
(2a12a21s2)+(a12a2

21−1)s
1
2
1

(1+a12a2
21)

)∣∣∣∣∣

. (3.8)

Therefore, the simplified mixing model (3.5) is not invertible and, even more problematic, one
of the solutions consists of a nonlinear mixture of the sources. Therefore, we must somehow
limit the operation of the source separation technique to the regions in which the mixing model
is locally invertible. In the sequel, we will describe how this can be done in a systematic way by
using a recurrent network as separating system.

3.3.1.1 A nonlinear recurrent separating system

Besides the non-invertibility of the model (3.5), there is another problem that renders difficult
the search for a proper separating structure in this case. In fact, unlike the linear model or even
the PNL model, it is not possible to define a direct separating structure for the simplified NE
model because, as discussed in the last section, the inversion of this model is associated with
the resolution of a polynomial model of order k. Interestingly enough, this problem is close to
the one of LQ mixtures and, therefore, one can follow the strategy proposed in [86]: the use of
a recurrent system as separating structure3.

In our case, we adopt the separating structure shown in Figure 3.1. In mathematical terms,
this recursive structure is characterized by the following dynamics

y1(n + 1) = x1 − w12y2(n)k

y2(n + 1) = x2 − w21y1(n)
1
k

, (3.9)

where [w12 w21]T are the parameters to be adjusted and [x1 x2]T represents a given sample
of the mixtures4. In order to understand how this structure works, we must investigate their
equilibrium points. At convergence, by setting y1(n + 1) = y1(n) = y1 and y2(n + 1) = y2(n) =
y2 in (3.9), one can easily check that, when [w12 w21]T = [a12 a21]T , the equilibrium points

3Like the LQ model, the simplified NE model is actually a particular case of the class of additive-target

mixtures (ATM) which was recently defined by Deville and Hosseini [51]. They provided some examples showing

that recurrent separating structures are indeed quite valuable in this particular class of mixture.
4Note that each sample of the mixtures demands one execution of the dynamics (3.9).
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correspond to the solutions of (3.6). Put differently, the recurrent network is able to perform an
implicit inversion of the mixing model.

Figure 3.1: A recurrent separating system for the simplified NE mixing model.

Evidently, we saw that the mixing model is not globally invertible and, thus, the recurrent
network of Equation (3.9) may converge to points other than the actual sample of the sources,
e.g. to (3.8). The next step of our investigation is exactly to verify the conditions to be satisfied
so that the equilibrium point associated with the sources is stable and, thus, a potential attractor
for the adopted dynamical system.

In view of the difficulty embedded in a global analysis of stability, we consider the study
of the local stability in the neighborhood of the equilibrium point s = [s1 s2]T based on the
first-order (i.e. linear) approximation of the nonlinear system (3.9). This linearization can be
expressed by using a vectorial notation as follows:

y(n + 1) ≈ c + J
∣∣∣
y=s

y(n), (3.10)

where y(n) = [y1(n) y2(n)]T , c is a constant vector. J
∣∣∣
y=s

is the Jacobian matrix —evaluated

at the equilibrium point y = s —of the dynamics (3.9), that is:

J
∣∣∣
y=s

=




∂y1(n)
∂y1(n−1)

∣∣∣
y=s

∂y1(n)
∂y2(n−1)

∣∣∣
y=s

∂y2(n)
∂y1(n−1)

∣∣∣
y=s

∂y2(n)
∂y2(n−1)

∣∣∣
y=s


 =

[
0 −a12ks

(k−1)
2

− 1
ka21s

( 1
k
−1)

1 0

]
. (3.11)

A necessary and sufficient condition for local stability of a discrete recurrent system is that
the absolute values of the eigenvalues of the Jacobian matrix evaluated at the equilibrium point
of interest be smaller than one [85]. Applying this result on (3.11), the local stability of the
network for a given realization of the sources is guaranteed when the following condition holds:

|a12a21s
( 1

k
−1)

1 sk−1
2 | < 1. (3.12)

This stability condition points out a first constraint of our strategy, given that we are able to
separate only the sources lying in this region. In the context of the chemical sensing problem
treated in this work, this condition gives the range in which our ISE array can operate properly.
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Figure 3.2: Stability boundary (dashed line) and equilibrium points (black dots) of the dynamics
(3.9).

Another interesting point related to the stability of the recurrent separating system is that
it may provide a systematic way to avoid the convergence to a solution that does not correspond
to the actual sources. In order to clarify this idea, let us present an example. Consider the
mixing of the sample s = [0.5 1.5]T in a scenario where the parameters in (3.5) are given by
a12 = a21 = 0.5 and k = 2. The resulting sample of the mixtures is x = [1.625 1.853]T . In
Figure 3.2, we plot the contour lines x1 = constant and x2 = constant in the (s1, s2) plane.
In particular, we highlight the contour lines corresponding to the samples of the mixtures in
our examples. The solutions of (3.6), or equally the equilibrium points of (3.9), are given by
the intersection of these two contour lines. In this particular example, we found the following
solutions: [0.5 1.5]T (as expected) and the spurious solution [0.01 1.79]T (this is the solution
given by (3.8)). Still in Figure 3.2, we indicate the region for which the condition (3.12) is
met. The key point here is that, while the equilibrium point related to the actual source is
within the stability region, the spurious solution lies outside and, as a consequence, will never
be a potential attractor for the recurrent network (3.9). Of course, this example is not a proof.
However, we observed in our simulations such an approach may indeed be useful to deal with
the non-invertibility of the mixing model.

As mentioned before, the stability condition of Equation (3.12) should be satisfied for each
sample. Thus, if s1 and s2 are bounded in the intervals (s1min , s1max) and (s2min , s2max), respec-
tively, then a necessary condition for the stability of all samples can be written as5

|a12a21s
( 1

k
−1)

1min
sk−1
2max

| < 1. (3.13)

It is interesting to note that such condition is somewhat related to the degree of nonlinearity of
the mixing model given that the point (s1min , s2max) is one that suffers the most severe nonlinear

5This is simply a worst-case condition.
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distortion6.

The stability condition (3.13) provides an important practical information in the context
of ISEs, namely: given the range of the sources, one can trace the stability boundaries in
the (a12, a21) plane, i.e. one may know for which selectivity coefficients the adopted recurrent
network works properly. For example, suppose that we are interested in detecting the ions in
the range 0.001M− 0.5M. Then, the adopted recurrent separating will work properly if the ISE
array has selectivities coefficients inside the gray regions shown in Figure 3.3(a) (for k = 2) and
in Figure 3.3(b) (for k = 3). Note that the area of the stability region becomes smaller as k

grows.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
12

a 21

Stability region

(a) Stability region for k = 2.
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Figure 3.3: Stability boundaries in the (a12, a21) plane: an example where the ions lie in the
range 0.001M− 0.5M.

3.4 ICA learning algorithm

Having defined the separating structure, we can now turn our attention to developing ICA-based
learning algorithms to adjust the parameters of the chosen separating structure. We begin by
studying methods based on higher-order statistics.

3.4.1 Approach based on higher-order statistics

An easy route to perform ICA in the linear case is based on the nonlinear decorrelation ap-
proach [95, 90]. The motivation behind this idea comes from the following alternative definition
of statistical independence: two random variables y1 and y2 are mutually statistically indepen-
dent if, and only if,

E{f(y1)g(y2)} = E{f(y1)}E{g(y2)} (3.14)

for any non-zero continuous functions f(·) and g(·). Evidently, it would be impossible to set a
practical algorithm for enforcing such a condition. However, it turns out that in many practical
cases the statistical independence can be achieved by assuring condition (3.14) for only one pair

6Note that the derivative of s
1/k
1 increases as s1 decreases whereas the derivative of sk

2 increases as s2 increases.
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of functions f(·) and g(·). This approach can be valuable even for some nonlinear mixing models,
as demonstrated for the LQ case [86].

In the nonlinear decorrelation approach, a clever choice of the nonlinear functions f(·) and
g(·) becomes of paramount importance. A very common approach [90] is to set f(x) = x3 and
g(x) = x. In our problem, this choice leads to the following learning rule:

w12 ← w12 + µE{y3
1 ȳ2}

w21 ← w21 + µE{y3
2 ȳ1}

, (3.15)

where µ corresponds to the learning rate and ȳi to the centered version of yi, i.e. ȳr
i = yr

i −
E{yr

i }. One can check7 that (3.15) converges when E{y3
1y2} = E{y3

1}E{y2} and E{y3
2y1} =

E{y3
2}E{y1}. Obviously, these conditions are only necessary ones for the statistical independence

between the sources and, as a consequence, there may be particular sources for which such
strategy fails. On the other hand, this strategy provides a less complex algorithm than those
that are directly connected with a measure of statistical independence.

3.4.1.1 On the local stability of the learning rule

Several works [69, 148, 48] on linear BSS have studied some convergence issues related to learning
rules similar to (3.15). Such an analysis is usually conducted 1) by searching for the equilibrium
points of the learning rule—with special attention to possible spurious solutions —and 2) by an-
alyzing the stability conditions for each equilibrium point; in particular, one is usually interested
in knowing for which kind of sources the separating solution is a stable fixed point. Following the
same guidelines considered in the aforementioned works, a local convergence analysis of (3.15)
will be sketched in the following.

According to the ordinary differential equation theory, it is possible to rewrite (3.15) —by
assuming that µ is sufficiently small —as:

dw12

dt
= f1(w12, w21) = E{y3

1 ȳ2}
dw21

dt
= f2(w12, w21) = E{y3

2 ȳ1}. (3.16)

A first point to be stressed is that the determination of all equilibrium points of (3.16), which
is done by searching for wij that satisfies E{y3

i ȳj} = 0, is a rather difficult task. Even for
k = 1, which corresponds to the linear BSS problem, this calculation demands a great deal of
effort [148]. Still, we know that [w12 w21]T = [a12 a21]T is an equilibrium point given that the
outputs y1 and y2 are mutually independent8 in this case. Therefore, one can, at least, study
the conditions of stability for this particular point.

7Note that (3.15) converges when E{y3
i ȳj} = E{y3

i yj} − E{y3
i } E{yj} = 0.

8When we say that [w12 w21]
T = [a12 a21]

T is a fixed point of (3.15), we are tacitly assuming that, in such

case, y1 = s1 and y2 = s2. However, we saw that, even when the parameters of the separating system are well

adjusted, the recurrent separating system can converge to points other than the actual sources. Therefore, in our

analysis, we are assuming that these spurious points do not met the stability condition (3.12); this was the case

in the example presented in Figure 3.2.
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As in the case of the separating structure, we can study the local stability of a fixed point
of (3.16) through a first-order approximation. In this situation, the Jacobian matrix is given by

J =

[
∂f1(w12,w21)

∂w12

∂f1(w12,w21)
∂w21

∂f2(w12,w21)
∂w12

∂f2(w12,w21)
∂w21

]
. (3.17)

This expression can be rewritten —by simply applying chain rules on Equation (3.16) —as

J =

[ (
3E{y2

1 ȳ2
∂y1

∂w12
}+ E{ȳ3

1
∂y2

∂w12
}) (

3E{y2
1 ȳ2

∂y1

∂w21
}+ E{ȳ3

1
∂y2

∂w21
})(

3E{y2
2 ȳ1

∂y2

∂w12
}+ E{ȳ3

2
∂y1

∂w12
}) (

3E{y2
2 ȳ1

∂y2

∂w21
}+ E{ȳ3

2
∂y1

∂w21
})

]
. (3.18)

As we are now dealing with a continuous dynamics, a given equilibrium point of the learning rule
is locally stable when the real parts of all eigenvalues of the Jacobian matrix are negative [85].

The next step of our development is to find the partial derivatives of the entries of the
Jacobian matrix. This can be done by applying the chain rule property on (3.9). Indeed, it is
easy to check that

∂y1

∂w12
= −(yk

2 + w12kyk−1
2

∂y2

∂w12
), (3.19)

and also that
∂y2

∂w12
= −1

k
w21y

1
k
−1

1

∂y1

∂w12
. (3.20)

By inserting this last expression into (3.19), one obtains:

∂y1

∂w12
=

−yk
2

1− w12w21y
1
k
−1

1 yk−1
2

. (3.21)

After similar calculations, the other derivatives can be found:

∂y2

∂w12
=

w21y
1
k
−1

1 yk
2

k(1− w12w21y
1
k
−1

1 yk−1
2 )

, (3.22)

∂y1

∂w21
=

kw12y
1
k
1 yk−1

2

1− w12w21y
1
k
−1

1 yk−1
2

, (3.23)

∂y2

∂w21
=

−y
1
k
1

1− w12w21y
1
k
−1

1 yk−1
2

. (3.24)

Since we are interested in the stability of the separating point, it is necessary to find the
eigenvalues of (3.18) for w = a and y = s. By conducting this substitution to the case k = 1
—which corresponds to the linear case —one can check that the terms

E
{

ȳ3
1

∂y2

∂w12

}∣∣∣
w=a,y=s

, E
{

y2
1 ȳ2

∂y1

∂w21

}∣∣∣
w=a,y=s

, E
{

ȳ3
2

∂y1

∂w21

}∣∣∣
w=a,y=s

, E
{

y2
2 ȳ1

∂y2

∂w12

}∣∣∣
w=a,y=s

become null. Furthermore, the denominators of the derivatives become 1 − w12w21. These
simplifications allowed [148, 69] to express the stability conditions for the solution w = a as a
function of only some statistics of the sources. For k 6= 1, however, this seems impossible; the
presence of nonlinear terms in the denominators of the derivatives makes difficult the separation
of the contributions of aij and si. Consequently, the best one can do in this case is to obtain a
condition that is also a function of the mixing parameters, which is of limited interest in a blind
scenario.
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Stability of the learning rule (3.15): a practical example

In order to illustrate the local stability condition derived from Equation (3.18), we conduct
simulations considering the following two cases: 1) sources distributed according to a uniform
random variable and 2) sources following an exponential distribution. In both cases, the number
of samples is 10000 and the mixing parameters are given by a12 = a21 = 0.5. Moreover, the
sources lie in the interval [0.1, 1]. This configuration assures, for both examples, the local stability
of the recurrent separating system (Equation (3.12)).

Concerning the stability of the nonlinear decorrelation learning rule (3.15), we calculated for
both situations the eigenvalues of the Jacobian matrix (3.18) at the separating point w12 = a12

and w21 = a21. For uniform sources, the real parts of the eigenvalues were negative and, thus,
the separating point is a potential attractor for the learning rule. On the other hand, in the
case of exponential sources, one of the eigenvalues had a positive real part, thus violating the
condition of local stability.

To check if the stability analysis of the last paragraph is confirmed in practice, we executed
the learning rule (3.18) for both types of sources mentioned before. We considered 20000 it-
erations and a small step µ = 0.0001. The initial condition for [w12 w21]T was given by the
separating point [a12 = 0.5 a21 = 0.5]T added to a small random perturbation. In Figure 3.4
(left), we plot the trajectory in the plane [w12 w21]T during the learning rule for the uniform
sources. Note that the dynamics remains in the neighborhood of the separating solution. How-
ever, as can be seen in the right side of Figure 3.4, for the exponential distributed sources, the
dynamics diverges despite the initial condition close to the separating point.
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Figure 3.4: Trajectories in the (w12, w21) plane. Left: uniform distributed sources. Right:
exponential distributed sources. The symbol ◦ represents the initial condition and the symbol
× the equilibrium point.
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Table 3.1: Nonlinear decorrelation algorithm: average SIR results over 100 experiments and
standard deviation (STD).

SIR1( dB) SIR2( dB) SIR( dB) STD(SIR)

k = 2 (Situation 1) 37.18 33.05 35.12 8.90

k = 2 (Situation 2) 18.07 15.46 16.77 0.975

k = 2 (Situation 3) 36.49 31.84 34.17 4.92

k = 3 (Situation 1) 22.46 21.04 21.75 5.02

3.4.1.2 Results

To assess the performance of the recurrent separation system (3.9) trained by the learning
rule (3.15), we conducted some experiments for the cases k = 2 and k = 3. Here, and throughout
this thesis, the performance of the separation technique is quantified according to the following
index:

SIRi = 10 log
(

E{s2
i }

E{(si − ŝi)
2}

)
, (3.25)

where si denotes the actual source and ŝi its respective estimation (after correct scaling). A
global index is defined as SIR = 1/ns

∑ns
i=1 SIRi.

Case of k = 2.

In a first scenario, we consider the separation of two sources uniformly distributed between
[0.1, 1.1]. The mixing parameters were given by a12 = 0.5 and a21 = 0.5; nd = 3000 samples
were considered and the number of iterations regarding the learning algorithm (3.15) was 3500
with a learning step of µ = 0.05. The initial conditions of the dynamics (3.9) were chosen
as [y1(1) y2(1)]T = [0 0]T . The results of this first case are expressed in the first row of
Table 3.1. In Figure 3.5, the joint distributions of the mixtures and of the retrieved signals
are depicted for a typical case (SIR = 35 dB). Note that the outputs of the separating system
are almost uniformly distributed, which indicates that the separation task was fulfilled. Also, we
performed experiments by considering on each sensor an additive white Gaussian noise with of
SNR = 15 dB. The results for this second scenario are depicted in the second row of Table 3.1.

A third scenario was composed by a uniformly distributed source between [0.3, 1.3] and a
sinusoidal source varying in the range [0.2, 1.2]. In this case, the mixing parameters were given
by a12 = 0.6 and a21 = 0.6 and the parameters related to the separating system were adjusted
as in the first experiment. Again, the satisfactory SIRs presented in the third row of Table 3.1
indicate that our method was able to separate the source in this case.

Case of k = 3.

The problem becomes more tricky when k = 3. Firstly, we observed through simulations
that, even for a separating point [w12 w21]T = [a12 a21]T that satisfies the equilibrium condition
(3.12), the structure (3.9) does not guarantee source separation, since there may be another
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Figure 3.5: Nonlinear decorrelation algorithm: first situation (separation of uniformly dis-
tributed sources) - k = 2.

stable equilibrium solution that has no relation with the sources. In this particular case, we
observed, after performing some simulations, that the adopted network may be attracted by a
stable limit cycle and, also, that it is possible to overcome this problem by changing the initial
conditions of (3.9) when a periodic equilibrium solution occurs.

A second problem in this case is related to the convergence of the learning rule. Some
simulations suggested the existence of spurious minima in this case. These two problems result
in a performance degradation of the method when compared to the case k = 2, as can be seen
in the last row of Table 3.1. In this case, we considered a scenario with two sources uniformly
distributed between [0.3, 1.3] and mixing parameters given by a12 = 0.5 and a21 = 0.5. The
initial conditions of (3.9) were defined as [0.5 0.5]T . Also, we considered nd = 3000 samples and
10000 iterations of the learning algorithm with µ = 0.01.

3.4.2 Approach based on mutual information

If, on the one hand, Equation (3.15) results in a simple learning rule demanding only the
estimation of some higher-order statistics, on the other hand, we saw that it presents some
convergence problems which may be exacerbated especially if the sources are close to the stability
boundary of the recurrent separating network (this was the case for k = 3). Therefore, aiming
to obtain a more robust learning algorithm, we investigate whether it is possible to set an
alternative algorithm based on the mutual information minimization.

3.4.2.1 Minimizing the mutual information: a first idea

For a 2-D random vector constituted of two random variables y1 and y2, the mutual information
is defined as

I(y) = H(y1) + H(y2)−H(y1, y2). (3.26)

As discussed in Section 1.3, a common trick to avoid the estimation of the joint entropy H(y1, y2)
consists in expressing it as a function of the joint entropy of the mixtures. Thus, considering
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that the mapping provided by (3.26) after the convergence is invertible in the region containing
the mixed signals and applying the entropy transformation law [130, 90], one obtains:

I(y) = H(y1) + H(y2)−H(x)− E{ln(| detJ|)}, (3.27)

where J is the Jacobian matrix associated with the separating system mapping. Since the term
H(x) does not depend on w, the minimization of (3.27) becomes equivalent to minimizing

C(y) = H(y1) + H(y2)−E{ln(| detJ|)}. (3.28)

We conducted some tests with a gradient-based algorithm to optimize (3.28). We checked
that the resulting algorithm was quite dependent on a good estimation of the score functions; a
numerical example can be found in [60]. This limitation motivated us to consider an approach
based on the notion of the mutual information differential, described in Section 3.4.2.2. However,
as shown by Yannick Deville and collaborators in a recent9 technical report [53], there is, in [60],
an error in the calculation of the gradient of (3.28); more precisely in the Jacobian term10.
Therefore, instead of attributing this bad performance to the estimation of the score functions,
it could be simply a result of the calculation errors. However, this question seems tricky. Indeed,
we observed, in preliminary simulations, that even when the correct calculation is considered,
the gradient-based algorithm to optimize (3.28) works only when a very accurate estimation of
the score functions is available. We intend to continue our investigation to clarify this point in
future works.

3.4.2.2 Minimizing the mutual information: an approach based on the notion of
the mutual information differential

We develop in this section an alternative learning rule for minimizing the mutual information.
Motivated by the difficulties in working with Equation (3.28), we consider the direct minimiza-
tion of (3.27). In fact, although equivalent from a theoretical standpoint, expressions (3.27)
and (3.28) may lead, in a nonlinear context, to different practical algorithms. Moreover, due
to the estimator errors, the performance of these two algorithms is not the same. This can be
explained by the different statistical properties of the estimators considered in both approaches,
as demonstrated in [2] for the case of PNL models.

The direct minimization of (3.27) can be carried out by considering the notion of the dif-
ferential of the mutual information, introduced in [18]. In this work, it was shown that a small
variation ∆y of a given random vector y results, up to higher-order terms (expressed by o(∆y)),
in the following variation of the mutual information

I(y + ∆y)− I(y) = E{∆yT βy(y)}+ o(∆y), (3.29)

9This error was showed to the author by Prof. Deville during the evaluation of the present work.
10One must take into account the indirect terms given by the total derivative. These terms come from the

recurrent terms of the separating system.



3.4. ICA learning algorithm 60

where βy(y) is the score function difference vector associated with the random vector y. This
result allows one to interpret βy(y) as the gradient11 of the mutual information with respect to
y. In mathematical terms, the i -th element of βy(y) is given by

βyi(y) =
(
−d ln p(yi)

dyi

)
−

(
−∂ ln p(y)

∂yi

)
, (3.30)

where −∂ ln p(y)
∂yi

denotes the i -th component of the joint score function of y and −d ln p(yi)
dyi

the
marginal score function of yi. It can be proved [18] that y have independent components if, and
only if, βyi(y) = 0 for every i.

The result expressed in (3.29) provides the guidelines for setting a learning algorithm ac-
cording to the minimum mutual information idea. However, as we are interested in the gradient
of (3.27) with respect to w, we must find how a small variation of the separating system pa-
rameters w, denoted ∆w, affects the small variation ∆y. This can be done by considering the
linearized version of the separating system (3.9), that is

[
∆y1

∆y2

]
=

∂y
∂w

∆w =

[
∂y1

∂w12

∂y1

∂w21
∂y2

∂w12

∂y2

∂w21

][
∆w12

∆w21

]
. (3.31)

The elements of ∂y
∂w were already calculated in this chapter and are given by Equations (3.21),

(3.22), (3.23) and (3.24).
Finally, by substituting (3.31) into (3.29) one readily obtains:

I(y + ∆y)− I(y) = E

{
∆wT ∂y

∂w

T

βy(y)
}

+ o(∆y). (3.32)

This expression allows one to establish the gradient of the mutual information with respect to
the parameters w:

∂I(y)
∂w

= E

{
∂y
∂w

T

βy(y)
}

. (3.33)

Therefore, it is expected that the following learning rule minimizes the mutual information
between the reconstructed sources

w ← w − µE

{
∂y
∂w

T

βy(y)
}

, (3.34)

where µ denotes the learning rate.
Concerning the estimation of the score function difference vector βy(y) in (3.34), we con-

sidered the method proposed in [134]. In short, this is a kernel-based method which differs
from the classical approaches in two points: the estimation is done over a regular grid and a

11As pointed out in [18], an intuitive way to understand this result is to consider a N-dimensional (and deter-

ministic) function f(y). Indeed, for a small perturbation εy, we can write

f(y + εy)− f(y) = εT
y

∂f(y)

∂y
+ o(ε2

y);

where ∂f(y)
∂y

= [ ∂f(y)
∂y1

· · · ∂f(y)
∂yN

]T corresponds to the gradient of f(y) with respect to y. That said, an analogy

between this expression and (3.29) suggests that ∂I(y)
∂y

= βy(y).
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cardinal spline is used as kernel function. As a consequence, one obtains a faster algorithm than
the classical kernel method. As remarked in [15], although originally developed for estimating
conditional score functions, this method can also be used for estimating βy(y).

3.4.2.3 Results

This section is devoted to assess the learning rule (3.34). We consider the detection of Ca2+

and Na+ (k = 2). The sources in our experiments were artificially generated, but the mixtures
were obtained using the selectivity coefficients (shown in the first row of Table 3.2) extracted
from the experiments S3Na10−4Ca and S3Na10−1Ca, described in Chapter 2. The responses of
the electrodes in these experiments are plotted in Figure. 3.6, which also depicts the predicted
responses provided by the NE model.
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Figure 3.6: Electrodes responses in the experiments S3Na10−4Ca and S3Na10−1Ca .

We also consider a second scenario where the selectivity coefficients are higher than the ones
of the first case. Actually, this will permit us to assess the performance of the BSS method
in a situation where the interference takes place in the two electrodes. In this case, the values
of the selectivity coefficients, which are presented in the second row of Table 3.2, were taken
from [152].

Table 3.2: Selectivity coefficients considered in the experiments
a12 a21

First scenario (from experiments of Chapter 2) 0.0589 0.0001

Second scenario (from [152]) 0.1995 0.3981

Performance of the source separation method

For the first scenario, we consider a situation in which the activity of the ion Ca2+ lies in the
interval [10−4, 10−3]M, whereas the activity of Na+ varies between [10−4, 10−1]M. In Figure 3.7,
we present the artificial sources generated for this case and also the mixtures generated by (3.5).
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A set of nd = 500 samples of the mixtures was considered. The learning rate was set µ = 0.003
and the initial conditions of the recurrent network were [y1(1) y2(1)]T = [0 0]T . In this situation,
the learning algorithm converged after 8500 iterations. The results of this first case are expressed
in the first row of Table 3.3. Our method was able to separate the sources, as can be seen in
Figure 3.7. For matter of comparison, we also show in the second row of Table 3.3, the results
obtained with the nonlinear decorrelation method presented in Section 3.4.1.

Table 3.3: Obtained SIR for both scenarios.
SIR1 (dB) SIR2 (dB) SIR (dB)

First scenario (mutual information algorithm) 56.90 56.35 56.62

First scenario (nonlinear decorrelation algorithm) 33.78 30.54 32.16

Second scenario (mutual information algorithm) 43.77 35.70 39.74

Second scenario (nonlinear decorrelation algorithm) 36.96 40.78 38.87
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(c) Retrieved sources after 8500 iterations.

Figure 3.7: Mutual information minimization algorithm: sources, mixtures and estimated
sources for the first scenario.

For the second scenario, the Ca2+ ion activity varies in [10−4, 10−2]M while the Na+ activity
is varying in [10−4, 10−1]M. The sources and the associated mixtures are depicted in Figure 3.8.
Note that in this situation, the interference is clear in both electrodes. Again, the number of



63 Chapter 3. Methods based on Independent Component Analysis

available samples was nd = 500. The convergence was observed after 600 iterations while the
learning rate in this case was set µ = 0.01. As can be checked in the third row of Table 3.3, our
proposal was able to provide good source estimations and performed better than the method
introduced in Section 3.4.1 (fourth row of Table 3.3). This is illustrated in Figure 3.8, where we
show the retrieved sources in a typical situation. Finally, we present in Figure 3.9, the evolution
of the [w12 w21]T during the learning algorithm. Note that these parameters indeed converge to
the ideal values which are given by selectivity coefficients a12 and a21.
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(c) Retrieved sources after 600 iterations.

Figure 3.8: Mutual information minimization algorithm: sources, mixtures and sources estimates
for the second scenario.

Sensitivity to noise

As discussed in Chapter 1, the NE model, although widely used, has some limitations and,
in some cases, gives only an approximate description. Motivated by that, we here conduct some
experiments with the aim of investigating how sensitive to noise the proposed method is. The
following two situations were considered:

1. Additive white Gaussian noise (AWGN), represented by ni, inside the logarithm of the NE
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Figure 3.9: Mutual information minimization algorithm: evolution of the separating system
parameters (solid) and the selectivity coefficients (dashed)

equation, which, for the simplified NE model (3.5), becomes

xi = si + aijs
zi/zj

j + ni. (3.35)

This noise here is associated with model error due to the missing interfering ions and will
be called “internal” noise.

2. AWGN, represented by ni, outside the logarithm of the NE equation, that is

x∗i = ei + di log(si + aijs
zi/zj

j ) + ni. (3.36)

This noise will be called “external” noise. In view of Equation (3.4), the external noise
model is equivalent to a multiplicative noise in the simplified NE model (3.5):

xi = 10
ei+di log(si+aijs

zi/zj
j

)+ni−ei

di =
(
si + aijs

zi/zj

j

)
10

ni
di . (3.37)

We investigated these noise models in the separation of sources uniformly distributed between
[0.1, 1.1] with k = 2. In Figure 3.10, which represents the average of 30 experiments, we plot the
performance index SIR as a function of the SNR for both noise models. Note that, for a same
SNR, the noise model (3.36) culminates in a larger performance degradation when compared to
the model (3.35). In fact, this can be attributed to the noise amplification introduced by power
term in Equation (3.4) —as discussed before, this preprocessing stage results in the presence of
a multiplicative noise in the simplified NE model. Finally, we remark that the proposed method
can provide good SIR for SNR equivalent to the SNR obtained in the regressions with real data
presented in Chapter 2.
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Figure 3.10: Mutual information minimization algorithm: influence of noise.

Influence of the number of samples

We also investigated the performance degradation of our method as the number of available
samples decreases. Our motivation for this analysis comes from the fact that in the envisaged
chemical sensing application the number of samples is usually small. In this study, we consider
a scenario with sources uniformly distributed and k = 2. We checked through simulations
that good estimations are provided for SIR higher than 20 dB. Therefore, as we can see in
Figure 3.11, where each result represents the average of 20 experiments, the proposed algorithm
works properly with a number of samples equal to or greater than nd = 400. This large number
is necessary for properly estimating the score function difference vector present in (3.18).
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Figure 3.11: Mutual information minimization algorithm: influence of the number of samples.
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An example of source separation for the case k = 3

In this section, we investigate the performance of the ICA method for the case k = 3. For
that, the separation of two sources uniformly distributed between [0.2, 1.2] is considered. The
mixing parameters are given by a12 = a21 = 0.5 and the learning step by µ = 0.008. In this
situation, there are a few samples of the sources that do not satisfy the stability condition (3.12).
Thus, the adopted separating system will never converge to these samples which means that they
cannot be retrieved. Also, these samples act as a kind of noise in the adaptation stage, in the
sense that even for an ideal separating system, there are outputs that are still mixtures of the
sources which may disturb the separating criteria.

Regardless the problem discussed above, our proposal performs well in this scenario: we
obtained SIR1 = 39.41 dB and SIR2 = 36.4 dB (average of 50 simulations). However, we observed
that the algorithm did not converge in 2 among the 50 experiments. In Figure 3.12, the joint
distributions of the mixtures and of the retrieved signals are depicted for a typical case. Note
that the outputs of the separating system are almost uniformly distributed, which indicates that
the separation task was accomplished.
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Figure 3.12: Mutual information minimization algorithm: example of source separation when
k = 3.

3.4.3 Separability issues

In our experiments, we did not observe any solution that gave independent components which
were still mixed versions of the sources. In other words, no counterexample to the separability
of the mixing model (3.5) was found. Of course, this observation is by no means a proof12 but,
at least, it validates, in a certain extent, an ICA formulation for this class of mixing model.

A possible way to gain some insight into the separability of the model (3.5) can be achieved

12Proving the separability of (3.5) seems to be a difficult task. Indeed, unlike the PNL model, it is not possible

to prove the separability of (3.5) based on the separability of the linear model. Moreover, the model (3.5) does

not satisfy the addition theorem [64], which guarantees separability.
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by analyzing the mutual information between the retrieved signals y1 and y2 as a function of
separating system parameters. In this spirit let us consider an example where the sources are
uniformly distributed in [0.1, 1.1] and the mixing coefficients are given by a12 = a21 = 0.5. In
Figure 3.13, we plot the logarithm of the mutual information13 I(y1, y2) as function of w12 and
w21, the parameters of the separating system (3.9). Note that the global minimum is indeed
located near the point w12 = w21 = 0.5, which corresponds to the ideal solution in terms of
source separation.
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Figure 3.13: Logarithm of the mutual information between y1 and y2 as a function of the
separating system parameters w12 and w21. Left: surface. Right: contour.

3.5 Toward a complete solution

Before closing this chapter, let us discuss some issues related to an ICA solution for the situation
in which the slopes di considerably deviates from the value predicted by the NE model. In these
cases, as discussed before, the methods developed for the simplified model (3.5) are useless and,
therefore, it becomes necessary to set a strategy for estimating di. Of course, a first idea in
this spirit is to extend the ICA approach to the “complete” NE model (Equation (3.1)). The
separating system in this case is similar to the one considered for PNL mixtures (see Figure 1.6).
However, we must replace the linear separating stage by the recurrent network defined for the
simplified NE model (Equation (3.9)).

A first problem in developing an ICA method for the mixing model (3.1) is related to the
stability of the recurrent network. Actually, there is an enormous risk of instability when the
parameters di and the parameters of the recurrent network are adjusted at the same time; we
could observe this problem in practice during our attempts to build an ICA solution based on
a gradient-descent minimization.

Besides this practical problem, the separability of the complete NE model is also a relevant
open problem. In the last section, we saw that even for the simplified model (3.5), although we
did not find counter examples, there is no result assuring separability in this case.

13In this example, the mutual information was estimated through the method proposed in [118].
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Regardless of those problems, it is still possible to investigate whether an ICA solution is,
at least, feasible in such a case. In this spirit, let us consider a situation with ns = 2 uniformly
distributed sources, nm = 2 mixtures and nd = 2000 samples. The mixing coefficients in this
example are given by: a12 = 0.5, a21 = 0.5, d1 = 0.59 and d2 = 0.59.

To set an ICA method in this case, one must resolve the following optimization problem:

min
w12,w21,d1,d2

I(y1, y2). (3.38)

To cope with the instability problem, we consider the evolutionary technique described in Ap-
pendix B to optimize (3.38). This algorithm requires estimating I(y1, y2), which was done
according to the method presented in [46]. The optimization of (3.38) has led to estimations
(ŵ12 = 0.46, ŵ21 = 0.45, d̂1 = 0.61 and d̂2 = 0.58) close to the actual values, which means
that the separating system was able to retrieve good estimations of the sources. This can be
confirmed in Figure 3.14 which depicts the scatter plots of the sources, the mixtures and the
recovered sources.
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Figure 3.14: Applying ICA to the complete NE model: scatter plots.

Despite these good results, this example serves only to illustrate the applicability of ICA
methods to the NE model. In fact, the approach adopted in this section suffers from several
drawbacks that may limit its application to a real problem. Firstly, we observed that it does not
work when the number of samples is smaller than 1000. Moreover, the conjunction evolutionary
method/mutual information estimator results in a rather time-demanding algorithm even when
only two sources are considered.



69 Chapter 3. Methods based on Independent Component Analysis

3.6 Conclusion

In this chapter, we investigated source separation methods for potentiometric arrays designed
for analyzing ions of different valences. We considered a recurrent separating system that was
able to perform a sort of implicit inversion of the mixing system. We showed that the stability
of this recurrent network depends on the range of the sources and on selectivity coefficients.

Concerning the learning rule, an ICA approach based on nonlinear decorrelation criterion
was studied in a first moment. Then, in order to obtain a more robust method, we investigated
ICA methods based on the minimum mutual information principle. We considered an approach
based on the notion of the differential of the mutual information. Simulation results indicated the
efficacy of our proposal but, on the other hand, showed that it requires a relative large number of
samples to achieve good estimations for the sources. Moreover, the application of the methods
developed in the present chapter to the actual data described in Chapter 2 is not possible.
Actually, the sources in the performed experiments were clearly dependent, thus violating the
fundamental assumption of statistical independence considered in the ICA formulation of the
present chapter.

Finally, we discussed the difficulties in developing an ICA method for the complete NE
model. Motivated by these limitations, we will show in the next chapter how the incorporation
of prior information can simplify the derivation of source separation algorithms.
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Chapter 4

Source separation methods

incorporating prior information

4.1 Introduction

Originally, the study on source separation focused on scenarios where a minimum amount of
prior information is available. In ICA methods, for instance, only the independence between
the sources is assumed. More recently, however, there is a clear trend toward methods in which
some additional prior information is taken into account. The reason for that is simple: in many
problems, additional information appears in a very natural way and, very often, by considering
it, one obtains a better performance or a simpler algorithm or both.

In this chapter, we investigate the use of prior information in the context of the nonlinear
mixing models associated with chemical sensor arrays. More precisely, we describe two contri-
butions showing that, based on additional prior information, it becomes possible to estimate the
component-wise nonlinear functions present in the NE model. In a first moment (Section 4.2),
we address the same case studied in the last chapter: ISE arrays for detecting ions of different
valences. Then, in a second moment (Section 4.3), we turn our attention to the PNL model,
which, as discussed before, is related to the detection of ions of equal valences.

4.2 Incorporating prior information through a geometric ap-

proach

In this section, we consider the same problem treated in Chapter 3: the detection of two ions
having different valences through an array composed of different ISEs. According to the NE
model, this situation is given by1

x1(t) = d1 log
(
p1(t)

)
= d1 log

(
s1(t) + a12s2(t)k

)

x2(t) = d2 log
(
p2(t)

)
= d2 log

(
s2(t) + a21s1(t)

1
k

) , (4.1)

1The offset terms ei present in NE equation are not considered here because they only introduce a scale

ambiguity.
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where k = z1/z2.
In the last chapter we developed an ICA method for Equation (4.1) assuming that the

parameters di are known in advance. As discussed in Section 3.5, there are some problems
in the design of a complete source separation method for the model (4.1), e.g. the risk of
instability. A possible way to overcome these limitations is to consider a two-stage approach
where the parameters di are firstly estimated. Then, in a second moment, the recurrent system is
adjusted. The difficulty in such an approach resides in the definition of a criterion for dealing with
the first stage of (4.1). To cope with this problem, we consider, in addition to the assumptions
considered in Chapter 3, the following assumption

Assumption 1 There is, at least, a period of time where one, and only one, of the sources
takes a constant value different from zero.

In other words, we are assuming something similar to a silent period in which the activity of
one of the ions is constant. This kind of hypothesis is very common in problems involving
speech separation. In the context of chemical sources this hypothesis also seems valid in some
applications as can be seen in the waveforms presented in [78].

4.2.1 Inversion of the NE model component-wise functions

The following parametric model can be considered to invert the first stage of (4.1)

e1(t) = 10
x1(t)

d∗1

e2(t) = 10
x2(t)

d∗2
, (4.2)

where d∗i denotes the unknown parameters. In the sequel, we will show how these parameters
can be adjusted with the aid of Assumption 1.

Let us consider a time window where s1(t) takes a constant value S1 6= 0. During this time
window, according to (4.1), it asserts that

p1(t) = S1 + a12s2(t)k

p2(t) = s2(t) + a21S
1
k
1

. (4.3)

From this expression, it is not difficult to see that

p1(t) = S1 + a12(p2(t)− a21S
1
k
1 )k. (4.4)

Hence, under such an assumption, (4.4) is a polynomial of order k in the (p1, p2) plane2.
The next step of our development is to check how the polynomial in the (p1, p2) plane is

propagated in the (e1, e2) plane. By considering (4.1), one can rewrite (4.2) as:

e1(t) = 10
d1 log(p1(t))

d∗1 = p1(t)
d1
d∗1

e2(t) = 10
d2 log(p2(t))

d∗2 = p2(t)
d2
d∗2

. (4.5)

2Note that such property also holds when s2(t) takes a constant value and, thus, the same development can

also be done for this case.
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The polynomial in Equation (4.4) can be expressed by

p1(t) =
k∑

i=0

ϕip2(t)i, (4.6)

where the coefficients ϕi can be determined by the binomial expansion of (4.4). Therefore, after
a straightforward development considering (4.6) and (4.5), the following expression is obtained:

e1(t) =

[
k∑

i=0

ϕie2(t)
d∗2
d2

i

] d1
d∗1

. (4.7)

To sum up, we had a polynomial in the (p1, p2) plane that was lost in the (x1, x2) plane
because of the logarithm functions. Based on this observation, the inversion of these functions
can be driven by the recovery of a polynomial in the (e1, e2) plane (see illustration in Figure 4.1).
More precisely, we search for d∗1 and d∗2 that result in a polynomial of order k in the (e1, e2)
plane. In fact, it is clear that when the optimum solution (d∗1 = d1, d

∗
2 = d2) is achieved, the

expression (4.7) is a polynomial of order k. Evidently, the reverse question must be investigated:
does a polynomial in the (e1, e2) plane result necessarily in the solution (d∗1 = d1, d

∗
2 = d2)?

A simple inspection of (4.7) reveals a negative answer for the question posed in the last
paragraph; there is a particular situation in which a polynomial is obtained although the mapping
(4.5) is still nonlinear. In fact, when S1 is null, then all the coefficients except ϕk in (4.6) are
null. In this situation, expression (4.7) becomes

e1(t) =
[
ϕke2(t)

d∗2
d2

k
] d1

d∗1
,

and, thus, the solution (d∗1 = Dd1, d
∗
2 = Dd2), where D is a constant, also gives a polynomial of

order k although does not correspond to our desired solution. This explains why it was necessary
to consider that S1 6= 0 in Assumption 1. Although the idea cannot be applied for time windows
where S1 = 0, it is noteworthy that one can distinguish between this situation and the case
when S1 6= 0 (the “good case”); if, and only if, S1 = 0, than the obtained polynomial passes
through the origin.

Let us now discuss how the idea introduced in the last paragraphs can be implemented.
First, we must define a way to check if a set of points in the (e1, e2) plane corresponds to a
polynomial of order k. This can be done by assuming, as a cost function, the mean square of the
residuals resulting from the regression of the set of samples {(e1(t), e2(t))}N

t=1 (where N is the
number of samples) through a polynomial of order k. In this context, the following optimization
problem can be formulated:

min
d∗1,d∗2

J =
∑

t

(
e1(t)−

k∑

i=0

αi (e2(t))
i

)2

, (4.8)

where αi corresponds to the i-th regression coefficient. In order to gain more insight, let us
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Figure 4.1: Illustration of the proposed idea. Top: signals in time. Bottom: scatter plots of the
signals. The time window in which the source s1 has zero-variance is highlighted in the scatter
plots. This period results in a polynomial of order k in the (p1, p2) plane, which is lost after the
logarithm functions. The idea is to adapt d∗1 and d∗2 to restore a polynomial in the (e1, e2) plane.

substitute (4.7) into (4.8), which gives

min
d∗1,d∗2

∑
t




[
k∑

i=0

ϕi(e2(t))
d∗2
d2

i

] d1
d∗1
−

k∑

i=0

αi (e2(t))
i




2

. (4.9)

One may note that this expression is a nonlinear function with respect to the parameters {d∗1, d∗2}.
Moreover, in view of Equation (4.7), for a given sample at time t there is an underlying relation
between e1(t) and e2(t), which in turn makes the regression coefficients αi nonlinearly dependent
on the parameters to be optimized. As a consequence, it becomes difficult to obtain the deriva-
tives of this function. Furthermore, such a cost function may present suboptimum local minima.
These problems may pose some problems to the development of gradient-based optimization
methods.
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4.2.2 Detection of silent periods

The idea described in the last section works under the assumption that there is a time window
in which one of the sources does not vary. Evidently, if a blind scenario is envisaged, then one
should be able to detect this “silent period”. A possible way to perform this task is to consider
the problem from a geometric standpoint. Given that the mixing model is invertible and the
sources are supposed bounded, the borders of the distribution in the (x1, x2) plane corresponds
to the situation in which one of the source is constant. Therefore, at least in an ideal situation,
we could detect the silent periods by estimating the borders of the distribution of the mixtures,
in the same way as performed3 in [17]. Note that this strategy works even when the Assumption
1 is not met. However, this procedure is difficult to implement in practice since it demands a
very accurate estimate of the borders, which may be difficult to achieve when the number of
samples is small.

A second approach to search the silent periods is based on the fact that when one of the
sources is constant, each sensor response corresponds to a deterministic function of the same
random variable, i.e. x1 = g1(s2) and x2 = g2(s2). Therefore, such situation is the one with
maximum (complete) dependence between the sensors and, thus, we may try to identify the silent
periods by searching time windows for which a measure of dependence is maximized4. This idea
has already been developed for linear source separation in [52] where the silent periods are
found by observing the second-order correlation measure. In our case, however, we deal with a
nonlinear model and, as consequence, it is more prudent5 to employ a measure able to detect
nonlinear dependences. A natural candidate in this case is the mutual information.

The mutual information of two continuous random variables lies on the interval 0 ≤ I(x1, x2) <

+∞, being zero when x1 and x2 are statistically independent, and tending to infinity when there
is a deterministic relation between these variables. Therefore, we can find the silent periods by
looking at the time windows for which the mutual information is maximized. In fact, it is more
practical to maximize a normalized version of the mutual information [45] defined as

ς(x1, x2) =
√

1− exp(−2I(x1, x2)),

where I(x1, x2) corresponds to the mutual information between x1 and x2. It is easy to verify that
ς(x1, x2) ∈ [0, 1] and its maximum value is attained when there is a deterministic relationship
between x1 and x2.

To illustrate the idea of the last paragraph, we present in Figure 4.2 the evolution of the nor-
malized mutual information between the sensors response (estimated through a time window of
length W = 151) and the respective sources. Note that the maximum of the mutual information
occurs exactly for time windows containing a constant source.

3This work considers the PNL case, i.e. when k = 1 in Equation (4.1).
4If one is not sure about the existence of, at least, one silent period, then one must compare the normalized

mutual information with a threshold close to one.
5Note however that [49] employed a method based on a second-order correlation measure to deal with a related

problem in the context of LQ mixtures.
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Figure 4.2: Top: Mutual information between the mixtures. Center and bottom: the corre-
sponding sources.

4.2.3 Description of a complete source separation method for the NE model

The idea introduced in the preceding sections allows us to set a complete algorithm, which is
described in Table 4.1, for the NE mixing model. In the first step (detection of silent periods),
we adopted the mutual information estimator proposed in [46]. As already discussed, it is
difficult to set a gradient-descent algorithm for optimizing (4.8) in the second stage. In view
of this limitation, we consider an optimization based on the opt-aiNet algorithm [47]. This
evolutionary method has been proved to be efficient in signal processing applications (see [12],
for instance). In addition to its robustness to local minima, the opt-aiNet only needs zero-order
information of the cost function, which, as discussed before, is a very interesting feature for our
problem. The technical details of this method can be found in Appendix B.

Having counterbalanced the logarithm functions, the final step is to apply the method intro-
duced in Chapter 3 to deal with the second stage of the NE model.

4.2.4 Results

To assess the performance of the algorithm described in Table 4.1, we simulated the problem
of detecting the ions Ca2+ and Na+ through an array of two sensors (each one has a different
ion as target). For that, we consider the parameters a12 = 0.79 and a21 = 0.40, which were
taken from [152]. Also, we have assumed that both sensors have a perfect Nerstian response,
i.e., d1 = 0.029 and d2 = 0.059.

Concerning the parameters of the algorithm, a set of nd = 1000 samples was considered. The
detection of the silent periods was performed by estimating the mutual information for a window
of a length of W = 151 samples. Actually, we observed that it is difficult to achieve a reliable
estimation of the mutual information with a smaller number of samples. Finally, the number
of iterations considered in the training of the recurrent network was 1500 and the learning rate
was µ = 0.02.
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Table 4.1: Complete source separation method for the NE model

1. Detection of silent periods

• Estimate the mutual information between the mixtures x1 and x2 for a moving-time
window of length W .

• Select the time window in which the mutual information is maximum.

2. Estimation of the component-wise functions.

• For the selected time window, minimize expression (4.8) with respect to d∗1 and d∗2.

3. Application of the recurrent network proposed in Chapter 3.

• Determine the parameters wij of (3.9) through the learning rule (3.34). The inputs
of the recurrent network are ei.

Under the described scenario and with the two sources shown in Figure 4.3, our method
has achieved the following performance indexes SIR1 = 40.52 dB, SIR2 = 38.27 dB and SIR =
39.39 dB, which means that our proposal did well in this case, as can be confirmed by looking
at the mixed signals and at the retrieved sources in Figure 4.3.

4.2.5 Discussion

Notwithstanding the good results presented in the preceding section, there is a significant per-
formance degradation when the algorithm of Table 4.1 is applied in noisy scenarios. More
precisely, we observed that a proper operation of our method needs, at least, a signal-to-noise
ratio of SNR = 40 dB. This limitation can be attributed to the two following causes. First,
as already discussed in Section 3.4.2.3, there is a noise amplification phenomenon in the sep-
arating structure due to the exponential functions used for inverting the logarithm functions.
Second, as (4.8) is basically the error regression from a polynomial regression, this cost function
is sensitive to noise. This becomes even more problematic given that the size of zero-variance
periods is usually small, which means that only a small number of samples is considered in the
evaluation (4.8).

4.3 Separation of PNL mixtures: incorporating prior informa-

tion in the frequency domain

We now turn our attention to the source separation problem related to potentiometric electrode
arrays designed for detecting ions of equal valences. As discussed in Chapter 1, this case results
in a PNL mixing model, which is basically composed of a linear mixing stage followed by a set
of component-wise functions (see Figure 1.6). We also mentioned in Chapter 1 that some of the
PNL methods work in a two-stage basis, in which the nonlinear and linear stages of the PNL
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Figure 4.3: Application of the algorithm described in Table 4.1: sources, mixtures and recovered.

model are treated separately. Indeed, if the nonlinear effects introduced in a PNL model can
be counterbalanced in a first stage, then the remaining task becomes essentially of linear nature
and, thus, can be accomplished in a very efficient way by linear source separation methods.

The main difficulty in the design of a PNL two-stage solution is how to find a criterion for
correctly adjust the functions g(·) = [g1(·) . . . gnm(·)] so they can invert the effects introduced by
f(·) = [f1(·) . . . fnm(·)]. Actually, unlike the linear stage, the non-linear stage f(·) has a diagonal
Jacobian and, thus, does not affect the level of independence between the input signals6. This
fact eliminates all the possibilities of working with criteria based on independence measurements
and, thus, points out that two-stage methods require prior information other than the statistical
independence between the sources.

In the context of the application treated in thesis, a first idea would be to develop a two-stage
PNL solution based on the same prior information considered in the preceding section (silent
periods). In fact, as discussed in Section 4.2.2, this idea is strongly related to the geometrical
PNL method proposed in [17], which basically enforces the scatter plots of the signals qi(t) =
gi(xi(t)) to have linear borders7. The main limitation of this method is that its extension
to scenarios with more than two sources is complicated. Moreover, as we discussed before, a

6We are assuming here fi(·) is an invertible function
7This procedure results in the same idea presented in Section 4.2 when k = 1.



79 Chapter 4. Source separation methods incorporating prior information

geometric approach has the inconvenient of being too sensitive to noise.
In this section we will show that an alternative PNL two-stage solution can be developed

by considering that the sources are smooth signals, an assumption which is also realistic in the
context of chemical sensors. We shall detail this idea in the sequel.

4.3.1 From smooth signals to baseband signals

Before introducing the proposed method, let us discuss some points concerning smooth signals.
First of all, it is noteworthy that the definition of a smooth signal is not unique. For example,
one can borrow from mathematics the concept of smoothness to characterize a smooth signal
as a function that has derivatives of all orders. Alternatively, a smooth signal can be defined
as any signal that presents a very slow temporal variation or, equivalently, any signal whose
spectral content is concentrated in the low-frequency bands. In this work, we consider this last
definition.

Although more representative in practice, defining a smooth signal as a slowly-varying signal
is still too broad and, thus, a more rigorous description should be done if one is interested in
exploiting this characteristic. In this context, several works [117, 31] consider that the smooth-
ness/slowness of a discrete-time x(n) can be evaluated by

ρ = E{(x(n)− x(n− 1))2}. (4.10)

This quantity, which is nothing but the variance of the first derivative of x(n), is indeed in
accordance with the practical notion behind a smooth signals. To illustrate that, we show in
Figure 4.4 three different signals (all having the same variance) and the estimated ρ for each
case.

100 200 300 400 500 600 700 800 900 1000

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x(
t)

time

(a) ρ = 0.0001

100 200 300 400 500 600 700 800 900 1000

−3

−2

−1

0

1

2

3

x(
t)

time

(b) ρ = 0.0250

100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4

x(
t)

time

(c) ρ = 1.9795

Figure 4.4: Three signals and their respective measure ρ, defined in (4.10).

As the derivative operator is associated with high-pass filtering in the frequency domain, ex-
pression (4.10) can be equally seen as a measure of the energy associated with the high-frequency
components of x(t). This interpretation is helpful in that it points out a close relationship be-
tween the rationale behind (4.10) and the concept of a baseband signal. Indeed, a baseband
signal is defined as a signal whose energy beyond a given frequency (bandwidth) is null. Note,
however, that one can easily find a baseband signal having a high ρ; that is, the concept of
baseband signal is wider than the definition of smoothness based on (4.10).
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In the rest of this chapter, we will focus on the assumption that the sources are baseband
signals. As discussed in the preceding paragraph, baseband signals are related to slowly-varying
signal, which is a typical characteristic of chemical signals. Moreover, the notion of a baseband
signal is somewhat more precise8 than classifying a signal as smooth according (4.10).

4.3.2 Preliminaries: mixing model and assumptions

In our development, we will consider the notation shown in Figure 1.6, where zi(t) and qi(t)
denote the i -th output of the linear mixing stage and the i -th output of the nonlinear separating
stage, respectively. Our goal in this section will be to define a strategy for adjusting the non-
linear functions g(·) = [g1(·), g2(·), . . . , gnm(·)]T to invert f(·) = [f1(·), f2(·), . . . , fnm(·)]T . After
canceling these nonlinear functions, the second stage of the separating system is reduced to a
linear BSS problem.

The proposed strategy for inverting f(·) only requires the following assumption

Assumption 2 Each source si(t) is a baseband signal with maximum frequency given by Bsi.

Note, however, since the inversion of the component-wise function f(·) is only a step in a BSS
context, there may be necessary to consider additional assumptions. For instance, the application
of an ICA method to the linear stage requires that the sources be independent, whereas the
application of second-order methods (like SOBI) requires that Bs1 6= Bs2 6= . . . Bsns

.

4.3.3 Spectral spreading due to nonlinear distortion: application to the PNL

model.

In view of Assumption (2), the signals zi(t) are also bandlimited signals with maximum fre-
quency given by Bzi(t) = max(Bs1(t), · · · , Bsn(t)). However, based on an important result from
the nonlinear signal processing theory (see [103, 115, 55] for instance), we know that if the ban-
dlimited signal zi(t) is submitted to a monotonic nonlinear function f(·), then the spectrum of
the observed signal xi(t) = f(zi(t)) will be wider than the spectrum of the original signal.

In order to show why spectral spreading takes place in nonlinear systems, let us assume that
fi(·) admits a power series expansion, i.e.

xi(t) = fi (zi(t)) =
∞∑

k=1

f
(k)
i zi(t)k. (4.11)

Denoting by Zi(ω) the Fourier transform of zi(t), the Fourier transform of (4.11) is given by

Xi(ω) = f
(1)
i Zi(ω) + f

(2)
i Zi(ω) ∗ Zi(ω) + f

(3)
i Zi(ω) ∗ Zi(ω) ∗ Zi(ω) + · · · , (4.12)

where the symbol ‘∗’ stands for the convolution operator. A basic property of the convolution
states that if R1(ω) and R2(ω) denote the Fourier transform of two signals bandlimited to
B1 and B2, respectively, then R1(ω) ∗ R2(ω) is bandlimited to B1 + B2 [128]. Therefore, in

8Indeed, while the concept of a baseband signal is binary, the classification of smooth signals through (4.10)

requires the arbitrary definition of a threshold.
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Equation (4.12), since Zi(ω) is bandlimited to Bzi(t), then Zi(ω) ∗ Zi(ω) will be bandlimited to
2Bzi(t), Zi(ω) ∗ Zi(ω) ∗ Zi(ω) to 3Bzi(t), and so forth. As a consequence, it is expected that the
maximum frequency of Xi(ω) be larger than Bzi(t). This phenomenon is illustrated in Figure 4.5
which shows the effects in the frequency domain of a nonlinear transformation.
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Figure 4.5: Illustration of the spectral spreading caused by a nonlinear distortion: the DCTs of
a baseband signal x(t) and of the distorted version z(t) = tanh(x(t)).

The spectral spreading phenomenon described above suggests a natural way to counterbal-
ance the nonlinear effects introduced by fi(·). The idea here is to adjust gi(·) so that it gives a
signal qi(t) = gi(xi(t)) that is bandlimited to the original bandwidth of the input signal zi(t). In-
deed, in view of Equation (4.12), this condition is satisfied when qi(t) = gi(fi(zi(t))) = αzi(t)+β,
where α, β ∈ R, that is, when the composition of the two functions is a linear function, which is
exactly the desired solution. This idea has also been exploited in several works [55, 56] for the
case of SISO systems. Yet, to the best of our knowledge, this strategy has never been exploited
in the context of BSS.

4.3.4 Implementation issues

We here discuss how the idea introduced in the last section can be put into practice. In mathe-
matical terms, we should find a criterion to estimate the function gi(·,bi), which is parametrized
by bi. Since we are searching for a signal qi(t) = gi(xi,bi) whose energy beyond the frequency
Bzi(t) is as low as possible, a first and natural way for adjusting bi is expressed by the following
minimization problem

min
bi

J1(bi) =
E

f>Bzi(t)

qi(t)

Eqi(t)
, (4.13)

where Eqi(t) denotes the total energy of qi(t) and E
f>Bzi(t)

qi(t)
the energy associated with the

frequency components greater than Bzi(t). The purpose of the term Eqi(t) is to avoid a trivial
solution where the signal qi(t) has null energy.

The cost function defined in (4.13), which is the basis of the approach developed in [55], works
with the strong assumption that Bzi(t) is known in advance. As a consequence, its application is
not possible in a blind source separation context, as such an information is usually not available.
Yet, it would be possible to extend J1(bi) to a complete blind scenario with unknown Bzi(t). In
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fact, we could replace, in (4.13), Bzi(t) by a value B̂zi(t) that satisfies the condition B̂zi(t) > Bzi(t)

(for instance, this can be achieved by selecting B̂zi(t) close to one9). In this new situation, we
are thus trying to minimize the spectral spreading in the band [B̂zi(t) > Bzi(t), 1]. Evidently,
since this is only a necessary condition, there is no theoretical guarantee that such a procedure
will lead to a proper compensation of fi(·). On the other hand, this procedure usually performs
well in practice, at least in noiseless situations.

When the mixtures are corrupted by noise, it turns out that the complete blind strategy
described in the last paragraph may become rather suboptimal. For example, suppose that
B̂zi(t) >> Bzi(t), i.e. our guess is much higher that the actual bandwidth of zi(t). Then, the
criterion (4.13) will consider only a few high-frequency components, whereas all the information
available in the band [Bzi(t), B̂zi(t)] will be discarded. As a consequence, the resulting estimator
in this case will be much less robust to noise than the estimator considering the actual value
Bzi(t). This is particularly undesirable in our problem given that even a low-power noise can
become significant after the nonlinear functions.

In view of the limitations associated with the blind extension of the paradigm introduced by
Equation (4.13), a more reasonable approach is to define a cost function in which Bzi(t) is also
considered as an unknown parameter. In this spirit, we propose the following cost function

min
b,B̂zi(t)

J2(b, B̂zi(t)) =
E

f>B̂zi(t)

qi(t)

E
f>B̂zi(t)

−φ

qi(t)

, (4.14)

where the parameter φ lies inside ]0, 1[ and should be assigned in advance. Later, we will discuss
how this can be done.

Given that (4.14) is simply the ratio between the energies of qi(t) in the bands [B̂zi(t), 1]
and [B̂zi(t) − φ, 1], this cost function attains a small value whenever the energy in the band
[B̂zi(t), 1] is much smaller than the energy in the band [B̂zi(t) − φ, 1]. The key point here is that
such a situation is expected for the desired solution to our problem, i.e. for the situation in
which (b = bd, B̂zi(t) = Bzi(t)), where bd represents the parameters that provide the inversion of
fi(·). To gain more insight into this question, let us rewrite (4.14) as the following maximization
problem

max
bi,B̂zi(t)

J2(bi, B̂zi(t)) =
E

f>B̂zi(t)
−φ

qi(t)

E
f>B̂zi(t)

qi(t)

, (4.15)

The term E
f>B̂zi(t)

−φ

qi(t)
is given by the sum of the terms E

f>Bzi(t)

qi(t)
and E

Bzi(t)
−φ<f<Bzi(t)

qi(t)
. There-

fore, (4.15) can rewritten as

max
bi,B̂zi(t)

J2(bi, B̂zi(t)) = 1 +
E

Bzi(t)
φ<f<Bzi(t)

qi(t)

E
f>B̂zi(t)

qi(t)

≡ max
bi,B̂zi(t)

J2(bi, B̂zi(t)) =
E

Bzi(t)
−φ<f<Bzi(t)

qi(t)

E
f>B̂zi(t)

qi(t)

.

(4.16)
9In this work, we consider that the signals are already in a discrete-time representation. Given that, we always

refer to the normalized frequency, where B = 1 corresponds, in the analog domain, to Fs/2, where Fs is the

sampling frequency.
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In the desired solution, gi ◦ fi is approximately linear and, thus, qi(t) is bandlimited in Bzi(t).

Therefore, in this situation, a very low energy E
f>Bzi(t)

qi(t)
is expected. On the other hand, the

term E
Bzi(t)

−φ<f<Bzi(t)

qi(t)
lies within the bandwidth of zi(t), and, as a consequence, is expected to

be much larger than E
f>Bzi(t)

qi(t)
, which thus explains the rationale behind the maximization of

(4.16).

It is worth noting that significant variations between E
f>B̂zi(t)

qi(t)
and E

f>B̂zi(t)
−φ

qi(t)
may also

happen if the spectrum of qi(t) presents energy variations as, for instance, an attenuated band.
As a consequence, the cost function (4.14) tends to present local modes around the points
B̂zi(t) where these variations occur. A practical consequence of this observation regards the
definition of the optimization algorithm: as J2(b, B̂zi(t)) may be multimodal, the application of
methods based only on local search mechanisms, such as the pure gradient-based techniques, is
not recommended since they may converge to local minima.

Another important practical point regards the role of φ in J2(b, B̂zi(t)). This parameter acts
as a sort of frequency resolution. For example, if the input signal is periodic (pure harmonics),
then φ should be small as the energy variations are high concentrated in the spectrum. Con-
versely, for aperiodic signals, the energy is less concentrated in the spectrum and, thus, a greater
value for φ must be defined. In practice, we observed that a good rule of thumb is to select
φ = 0.01 for periodic signals and φ = 0.1 for aperiodic signals.

4.3.5 A complete algorithm for PNL source separation

Having discussed how the nonlinear inversion of fi(·) can be carried out, the complete algorithm
for PNL source separation can be summarized as follows:

1. First stage. For each mixture xi(t), find gi(xi(t),bi) by minimizing the cost function
J2(bi, B̂zi(t)) (Equation (4.16));

2. Second stage. The estimated sources yi(t) are obtained by applying a linear source
separation or extraction method to the signals qi(t) = gi(xi(t)).

As it was discussed before, due to the existence of local optima in J2(bi, B̂zi(t)), the adopted
optimization method should be robust to sub-optimal convergence. In this work, we resort to
the opt-aiNet (see Appendix B for more details). The optimization of (4.16) through the opt-
aiNet requires the evaluation of the energy of qi(t) in a given frequency band. This can be
done by calculating the frequency content of qi(t) via, for instance, the discrete cosine transform
(DCT)10. Then, the energy is given by the Euclidean norm of the DCT coefficients associated
with the desired band.

Concerning the second stage, any linear BSS method can be applied. Evidently, it is im-
portant to assure that the selected method is appropriate for the considered set of sources. For

10We could equally adopt the discrete Fourier transform (DFT). However, the DCT has the advantage of being

a real-valued transform. Furthermore, we checked through preliminary simulations that the DCT gives better

results for aperiodic signals.
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example, in the case of Gaussian sources, ICA methods based on higher-order statistics cannot
be applied. A last remark about this issue regards the assumption of baseband sources. We
developed a linear source extraction method that explicitly makes use of this information. The
details of this method, which is denoted SOFI (second-order frequency identification) algorithm,
are given in Appendix C.

4.3.6 Results

We present in this section a set of simulations performed in order to check the effectiveness of
the proposed two-stage PNL method. In a first moment, we study the problem of compensating
the component-wise functions. Then, we present an example that shows the usefulness of our
proposal in a complete PNL source separation framework. Finally, we discuss the application of
the developed method to actual data.

4.3.6.1 Inversion of the nonlinear stage

In order to illustrate the applicability of the cost function (4.16), let us consider an example
of PNL mixing model with ns = 2 sources and nm = 2 mixtures. The two sources, whose
bandwidths are given by Bs1(t) = 0.2 and Bs2(t) = 0.5, were obtained from low-pass FIR filters
(100 taps) driven by white Gaussian noise. The linear part of the PNL mixing system is given
by the matrix A = [1 0.5; 0.6 1]. Concerning the nonlinear component-wise functions fi(·), our
analysis encompassed two cases: the NE model (fi(zi) = di log(zi)) and the situation where the
inverting functions gi(·) are polynomials.

Nicolsky-Eisenman model (ions with equal valences)

In this case the inversion of the nonlinear stage can be achieved by means of the following
functions

qi(t) = gi(xi(t), d̂i) = 10
(

xi(t)

d̂i
)
= zi(t)

di
d̂i . (4.17)

If, and only if, d̂i = di, the composition gi ◦ fi is linear and, thus, this situation corresponds to
the desired solution.

Since the function gi(xi(t), d̂i) is parametrized by just one parameter, it becomes possible to
visualize the shape of the cost function (4.16) in this case. For example, in a noiseless situation
in which d1 = 0.059 and d2 = 0.040, the cost functions for both g1(·) and g2(·) are shown in
Figure 4.6. Note that the values d̂i that minimize J2(d̂i, B̂zi(t)) coincide with the actual values
of di. Moreover, the proposed criterion is minimized for both cases when B̂zi(t) = 0.54, which is
close to the bandwidth of the linear mixtures (Bzi(t) = 0.5).

As discussed in Section 4.3.4, there may exist locally optimal models if there are energy
variations in the spectrum of zi(t). This phenomenon is clear in Figure 4.6(a) where one can
observe a local mode around the frequency B̂zi(t) = 0.2. In this case, the energy variation around
this frequency takes place because zi(t) is a linear combination of two bandlimited signals, one
of them having a bandwidth equal to Bs1(t) = 0.2.
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Figure 4.6: Cost functions J2(d̂i, B̂zi(t)) for the NE model.

A relevant point in nonlinear systems like the NE model regards the effect of the noise. As
we mentioned in Section 3.4.2.3, the exponential function gi(·) amplifies the effects of the noise.
Given that, we conducted a set of simulations to investigate these effects on the estimations
of d2 obtained by the following approaches: 1) the estimator associated with J2(d̂2, B̂z2(t)), 2)
the estimator associated with J1(d̂2) assuming the knowledge of the bandwidth Bz2(t) (semi-
blind case), 3) the same cost function J1(d̂2) but now in a complete blind situation, in which
Bz2(t) is defined beforehand (we set B̂z2(t) = 0.8). In Table 4.2, which represents the average
of 100 experiments, one can note that, in a noiseless scenario, the three estimators give values
closer to the actual one (d2 = 0.040). When there is noise, the blind version of J1(d̂2) gives
poor estimations for d2, whereas J1(d̂2) and J2(d̂2, B̂z2(t)) still work properly. However, while
J1(d̂2) assumes the knowledge of the actual bandwidth of the input signal, our cost function
J2(d̂2, B̂z2(t)) operates in a completely blind fashion.

Polynomial model

It is noteworthy that our proposal is by no means restricted to the NE model. To illus-
trate that, we consider a second situation in which the nonlinear mixing functions are given by
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Table 4.2: Effects of noise on the estimation of d2.
d̂2 (SNR = 18dB) d̂2 (SNR = 20 dB) d̂2 (noise free)

J1(d̂2) (semi-blind) 0.0515 0.0455 0.0395

J1(d̂2, B̂z2(t)) (blind) 0.3336 0.1085 0.0398

J2(d̂2, B̂z2(t)) 0.0490 0.0457 0.0396

fi(zi(t)) = 3
√

zi(t). To invert them, we make use of polynomial functions given by:

qi(t) = gi(xi(t),wi) = aix
5
i (t) + bix

3
i (t) + cixi(t). (4.18)

The expected solution (in a noiseless case) is thus given by ai = ci = 0 and bi = δ, where δ ∈ R.
Note that in this case one can fix, without loss of generality, bi = 1.

In order to check if the cost function (4.16) succeeds in discriminating the desired solution,
we plot in Figure 4.7 the shapes of this cost function for the two mixtures of our example. Since
this function depends on three parameters (ai, ci and B̂zi(t)), we had to fix B̂zi(t) to the value
that minimizes (4.16); B̂zi(t) = 0.52 in this case. By looking at the resulting shapes, one can note
that the proposed cost function is indeed minimized by the expected solutions of our problem.
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Figure 4.7: Cost functions J2(ai, ci, B̂zi(t)) for the polynomial model.

4.3.6.2 Example of PNL source separation

We now present an example where the complete procedure, described in Section 4.3.5, is applied
to a PNL mixture with 3 sources and 3 sensors. The first source is a sine wave of frequency
Bs1(t) = 0.01, while the two others are aperiodic signals with bandwidth Bs2(t) = 0.5 and Bs3(t) =
0.8 —these signals are depicted in Figure 4.9(a) and the resulting mixtures in Figure 4.9(b).
The linear part of the mixing system is given by the matrix A = [1 0.5 0.5; 0.4 1 0.6; 0.3 0.6 1],
and the nonlinear functions followed the NE model, i.e., fi(xi) = di log(xi) where d1 = 0.050,
d2 = 0.060 and d3 = 0.045. The number of available samples in this situation was 1000, and an
AWG noise of SNR = 20 dB was defined in each sensor.
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The application of the proposed method provided the following estimations: d̂1 = 0.048,
d̂2 = 0.070 and d̂3 = 0.044. As can be seen in Figure 4.8, the resulting mappings between zi(t)
and qi(t) are close to linear functions, which indicates that the task of inverting the nonlinearities
was satisfactorily accomplished. Yet, it is clear in this figure the noise amplification phenomenon;
note that the noise effect grows as the input value grows.
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Figure 4.8: Mappings between zi(t) and qi(t) for each channel.

Having dealt with the nonlinear functions, we applied the SOBI algorithm [26] on the sig-
nals qi(t). As can be seen in Figure 4.9(c), this method provided good estimations of the
actual sources. The obtained performance indices were SIR1 = 17.75 dB for the sine wave, and
SIR2 = 16.58 dB SIR3 = 13.18 dB for the aperiodic signals. We also considered the SOFI al-
gorithm (see Appendix C) for extracting the sinusoidal signal (the smoothest one). As shown
in Figure 4.10, a good estimation of the sine wave was obtained; the performance index was
SIR1 = 19.39 dB. Note that, due to effect of noise amplification mentioned before, the estima-
tion error is more evident when the signal attains high values. For matter of comparison, we
calculated the performance obtained when the original coefficients di and the original mixing
matrix A are considered. In this situation, the performance indices were SIR1 = 15.43 dB for
the sine wave, and SIR2 = 10.01 dB SIR3 = 11.69 dB for the aperiodic signals. Note that, due
to noise, the solutions provided by the original parameters become suboptimal.

4.3.6.3 Application to the actual data

In a last experiment, we check whether our proposal is able to estimate the logarithm functions
in the case of actual data. For that, we consider the data of the experiments S1K10−1NH4

and S1K10−4NH4 (see Chapter 2). Despite the quite reduced number of samples (nd = 170),
our method provided fair estimations for the Nernstian slopes (d̂1 = 0.031 and d̂2 = 0.056); for
matter of comparison, a MSE regression provided the following values d̂1 = 0.039 and d̂2 = 0.050.
To check if the obtained parameters indeed results in a linear mixing model, the signals qi(t)
were modeled as a linear combination of the sources. The resulting signal-to-noise ratios were
given by SNR1 = 16.91dB and SNR2 = 22.05dB.

A last remark concerns the application of linear BSS methods to the second stage in this case.
Neither SOBI nor SOFI were able to separate the linear mixtures in this experiment. Actually,
as illustrated in Figure 2.3, the sources obtained in the experiments described in Chapter 2 were
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Figure 4.9: Application of the complete PNL method (the SOBI algorithm was considered in
the linear stage).
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Figure 4.10: Extraction of the smoothest source through the SOFI algorithm. Actual source
s1(t) (black) and estimated source y1(t) (gray).

highly correlated, thus explaining the poor performance of these two methods.
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4.4 Conclusion

In this chapter, we introduced two contributions that make use of prior information for estimat-
ing the nonlinear component-wise functions that appear in the NE model. In the first one, we
considered the nonlinear mixing model associated with the case in which the ions under analysis
had different valences. In this situation, we set a geometric approach that was based on the
assumption that one of the sources does not vary in a certain time-window. The obtained results
confirmed that such an approach can simplify the development of the complete NE model. Yet,
the main limitation of the proposed geometrical method resides in its high sensitivity to noise.

Although we focused on the NE model (logarithm functions), the geometrical approach
described in the first part of this chapter can be extended to other nonlinear functions.

The second part of this chapter was devoted to the description of a PNL two-stage approach
based on the assumption that the sources are baseband signals. We saw that such an assumption
is related to slowly-varying signals which in turn are usually observed in chemical sensing appli-
cations. Based on a classical result that associates nonlinear functions with spectral spreading,
we propose a novel criterion for compensating the effects introduced by the nonlinear section
of the PNL model. The novelty of our approach is that it does not require the knowledge of
the bandwidths of the sources. Experiments with artificial and actual data demonstrated the
effectiveness of our proposal.

We can cite several perspectives involving the contribution described in the second part of
this chapter. A first one concerns its extension to more general nonlinear functions. Indeed,
we only considered matched situations in the sense that nonlinear separating functions were
able to perfectly invert the mixing functions. Although this is quite natural in the application
in mind, there may be other applications where no parametric information about the mixing
functions is available. In these cases, more general structures (polynomials, neural networks etc)
are considered as separating functions and, thus, only an approximate compensation of fi can
be achieved in these cases. In this context, it would be interesting to investigate the behavior
of the cost function (4.16) for such cases.

Another interesting perspective related to the proposed cost function (4.16) is that it may
be useful in nonlinear source separation problems other than the PNL one. To illustrate that,
let us consider the following mixing model

xi(t) = ai1s1(t) + ai2s2(t) + bi1

√
s1(t) + bi2

√
s2(t). (4.19)

Suppose that four mixtures are available. In this case, it is expected that the application of
linear ICA-BSS methods provides the following two signals11: y1(t) = c11s1(t) + c12

√
s1(t) and

y2(t) = c21s2(t)+c22

√
s2(t). Given that yi(t) is not bandlimited, we could apply12, based on the

assumption that the source si(t) is bandlimited, the same idea developed in the second part of
11Note that such situation is equivalent to a linear BSS problem in which the sources are given by s1(t), s2(t),√
s1(t) and

√
s2(t). Since there are dependent sources in this case, the best ICA can do is to retrieve linear

combinations (subspaces) of the dependent sources.
12One way to implement this idea could be achieved by resorting to SISO recurrent networks, similar to the

ones proposed in [86] and in Chapter 3.
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this chapter to extract si from yi(t). Such an approach would allow one to deal with nonlinear
mixing models through linear algorithms followed by a post-processing stage whose goal would
be to extract si(t) from nonlinear combinations of this signal.



Chapter 5

Bayesian approach

5.1 Introduction

In this chapter, we continue our investigation on how to take advantage of prior information
that is typical of chemical signals. However, while prior information has been used so far as a
stratagem for simplifying the mixing model, we now turn our attention to a Bayesian approach,
in which prior information appears as a central element. One of the motivations behind this
approach is related to some prior information whose incorporation is easier in a probabilistic
framework, e.g. the non-negativity of the sources.

In a first part of this chapter, we provide a brief introduction to the Bayesian estimation
principle. Then, in Section 5.3, we present a Bayesian source separation method tailored for
ISE arrays. The basis of this approach is the use of log-normal distributions to model the
sources. Finally, in section 5.4, we introduce a novel Bayesian method aimed at linear and
linear-quadratic models. The developed method can be used either in the linear stage of the
NE model or in arrays composed of tin-oxide electrodes. Our development in this case follows a
model based on truncated Gaussian distributions.

5.2 Bayesian source separation

Bayesian estimation [139] has been studied in many domains, from biology to engineering ap-
plications. The advent of the so-called Markov Chain Monte Carlo (MCMC) [72] methods and
of the variational approximation [146] has allowed the application of Bayesian techniques even
in complex and high-dimensional systems.

The central idea in Bayesian estimation is to incorporate some available information about
the unknown variables into the likelihood function. This is accomplished through a probabilistic
formulation in which the available information are expressed by defining a priori distributions,
or simply priors, for each unknown parameter. Very often, the use of prior information results
in more accurate estimators [98].

The development of Bayesian methods to source separation was addressed in many works [99,
116, 154, 160] —see [100, 119] for an introduction. Moreover, the applicability of Bayesian

91
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source separation methods has been demonstrated in several domains including audio source
separation [68], spectroscopy data analysis [122], hyperspectral images [21] and astronomical
data processing [159, 54].

In source separation, the unknown parameters comprise the sources but also the coefficients
related to the mixing process. Moreover, as it will become clear later, it is usual to assume a
hierarchical model in which the parameters of the prior distributions are also seen as unknown
parameters; this strategy results in a more flexible modeling. Henceforth, all these unknown
parameters will be denoted by the vector θ. Also, the observations of our problem, the mixed
signals, will be represented by the matrix X ∈ Rnm×nd in which each row contains the response
(in time) of a given sensor in the array.

In Bayesian estimation, the available information about θ is taken into account through a
probabilistic modeling. In this spirit, a first step in a Bayesian framework is to assign a prior
distribution for each element of θ. This set of priors, which will be represented by p(θ), must
somehow be related to the available information at hand. For example, one of the information
that we will exploit in the sequel is the non-negativity of the sources; given that the sources
represent ionic activities in our problem, it is natural to consider prior distributions whose
support lies in [0, +∞).

Another important element in a Bayesian formulation is the likelihood function, which will
be represented by p(X|θ). Intuitively speaking, while the priors serve to model the unknown
parameters, the likelihood function provides a probabilistic model for the relation between the
unknown parameters and the observed data. Therefore, in the context of source separation,
p(X|θ) will be directly related to the assumed mixing model. It is noteworthy that the likelihood
function by itself can be used to derive source separation methods. As briefly discussed in
Chapter 1, many methods assuming a noise-free linear mixing model can be understood in the
light of a likelihood formulation [35]. Furthermore, the likelihood principle can be applied even
when the noise is explicitly considered in the mixing model description [122, 30].

With the concepts of prior distribution and likelihood function in mind, one can easily
understand the rationale behind Bayesian estimation. Indeed, the key element in this approach
is the so-called posterior distribution which, according to the Bayes’ rule, is given by

p(θ|X) =
p(X|θ)p(θ)

p(X)
. (5.1)

Because p(X) is not a function of the unknown parameters θ, the shape of the posterior distri-
bution can be obtained by solely means of the priors and the likelihood function, that is

p(θ|X) ∝ p(X|θ)p(θ). (5.2)

From expression (5.2), the posterior distribution can be interpreted as an updated version
of the prior information brought by the likelihood function, that is, one had an initial belief
that was refined after observing the data. An interesting point here is that the contribution of
the likelihood term to the shape of p(θ|X) is implicitly defined in a quite natural manner. For
example, when the observations are strongly corrupted by noise, the likelihood term becomes
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flat and, as a result, the posterior distribution is mostly influenced by the priors distribution.
Conversely, if a great number of observations is available, then the likelihood term becomes
sharper and, thus, tends to dominate the posterior distribution.

A last step in the Bayesian approach is to extract an estimation θ̂ of the unknown parameters
from the posterior distribution. A first (and natural) solution to this problem can be achieved by
considering the values that maximize the posterior distribution, i.e. by resolving the following
optimization problem

θ̂MAP = arg max
θ

p(X|θ)p(θ). (5.3)

This strategy is known as maximum a posteriori (MAP) estimation. Very often, the derivation
of the MAP estimator is done for the logarithm of the posterior distribution (note that, as the
logarithm is a monotonic function, the solutions of the logarithm of the MAP and of the MAP
estimators coincide).

Another popular way to provide an estimation θ̂ from p(X|θ) is based on the Bayesian
minimum mean square error (MMSE) estimation. In this case, the estimations are given by the
posterior mean, that is

θ̂MMSE = E{θ|X} =
∫

θ p(θ|X)dθ. (5.4)

It can be shown [98] that this estimator, which is also known as conditional mean estimator,
minimizes E{(θ̂ − θ)2}. In some cases, e.g. when the posterior distribution is Gaussian, the
MAP and Bayesian MMSE estimators coincide.

5.2.1 A simple example

In order to gain more intuition on the Bayesian approach in source separation, let us consider a
simple example in which the mixtures are given

x(t) = f(A, s(t)) + n(t), (5.5)

where A contains all the mixing coefficients and each element of n(t) corresponds to a zero mean
additive white Gaussian noise (AWGN) whose variance, which is assumed known in this example,
is given by σ2

i . Therefore, the unknown parameters in this case are θ = [s(1), . . . , s(nd),A].
As discussed before, a first step toward a Bayesian estimation is to assign prior distributions

for θ. For example, suppose that we know that the sources as well as the mixing coefficients lie
in the interval [0, 1]. Thus, in this case, a simple way to take into account this information is to
assign priors uniformly distributed in [0, 1], i.e.

p(si(t)) ∝ 1[0,1](si(t))

and
p(aij) ∝ 1[0,1](aij)

where 1A(x) is the indicator function, which is defined as follows

1A(x) =

{
1 if x ∈ A

0 if x /∈ A.
(5.6)
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We consider that the sources are white signals and mutually statistically independent (the
same for the mixing coefficients). Moreover, we assume that the noise terms are both spatially
and temporally uncorrelated. Based on these assumptions, the posterior distribution can be
written as follows

p(θ|X) ∝
nm∏

i=1

nd∏

t=1

exp

(
−(xi(t)− fi(A, s(t)))2

2σ2
i

)
×

ns∏

j=1

nd∏

t=1

1[0,1](sj(t))×
nm∏

i=1

ns∏

j=1

1[0,1](aij). (5.7)

According to our previous discussion, the MAP estimator in this case will search for a
θ = [s(1), . . . , s(nd),A] that maximizes (5.7) or, equivalently, the logarithm of this expression,
that is

θ̂MAP = arg max
θ

ln p(θ|X) =

−
nm∑

i=1

nd∑

t=1

(xi(t)− fi(A, s(t)))2

2σ2
i

+
ns∑

j=1

nd∑

t=1

ln(1[0,1](sj(t))) +
nm∑

i=1

ns∑

j=1

ln(1[0,1](aij)). (5.8)

Equation (5.8) is helpful in that it illustrates the very idea of Bayesian source separation.
For instance, one can note that the term associated with the likelihood function (the first one)
is actually trying to fit the observed data to the considered mixing model. This is achieved by
minimizing the square error between the data and the representation provided by the assumed
model. In this context, the noise variance acts as a sort of a regularization term in that it defines
the weight of the likelihood term in (5.8). That is, the higher is the noise variance the smaller
is the influence of the likelihood function on the posterior distribution and vice versa.

Concerning the other terms in (5.8), the ones related to the priors, they are avoiding solutions
that do not lie in the expected interval. Indeed, if any element of θ is not in the interval [0, 1],
then there are indicator functions that take zero and, as a consequence, Equation (5.8) goes to
−∞. That is, the chosen priors in this example are constraining the search space considered in
the inference.

Finally, a last step concerns the resolution of (5.8). In this case, as in many other real
problems, it is not possible to find an analytical solution to (5.8). In view of this difficulty, this
optimization problem is usually carried out by considering iterative methods.

5.3 A Bayesian source separation method for the NE model

We now turn our attention to the derivation of a Bayesian source separation method tailored for
the NE mixing model. However, before getting into the details of our approach, it is important
to discuss the motivations that led us to resort to a Bayesian approach. Firstly, as discussed
before, this framework allows the incorporation of prior information in a natural manner, which
can result in more realistic solutions. Secondly, in contrast to the developed methods so far, the
noise is explicitly considered in a Bayesian formulation; this is important because, as discussed
in Chapter 2, the NE equation is only an approximate model which means that the mixtures
are corrupted by noise. Finally, as pointed out in [122], a Bayesian formulation may provide fair
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estimations of the sources even when they present some degree of correlation. This situation
happens in chemical sensing when the analytes are coupled, for instance, through a chemical
reaction or a biological regulatory process.

The Bayesian algorithm that will be developed in the sequel aims at the following mixing
model

xi(t) = yi(t) + ni(t) = ei + di log


si(t) +

ns∑

j=1,j 6=i

aijs
zi/zj

j (t)


 + ni(t), (5.9)

where ni(t) corresponds to the AWG noise term. The terms ni(t), i = 1, . . . , nm are mutually
independent and, thus, the noise covariance matrix is given by Cn = diag(σ2), where the
variances σ2 = σ2

1, . . . , σ
2
nm

, are unknown.

The mixing model (5.9) can also be expressed in a matrix notation:

X = Y + N = e · 11×nd
+ diag(d) log (A⊗z S) + N, (5.10)

where Y ∈ Rnm×nd , e = [e1, . . . , enm ]T , d = [d1, . . . , dnm ]T , A ∈ Rnm×ns
+ and S ∈ Rns×nd

+ . The
element [i, t] of X corresponds to xi(t) and therefore the i -th row of X corresponds to the time
response of the i -th ISE within the array. Analogously, the element [j, t] of S denotes the activity
of the j -th ion at the instant t, i.e. sj(t). Matrix A contains the selectivity coefficients. The
vector of valences is denoted by z = [z1, . . . , zns ]T , and the operator ⊗z describes the nonlinear
transformation inside the logarithm function present in the NE model. If the valences zi are
equal, then ⊗z results in a simple matrix multiplication (as discussed in Chapter 1, this situation
is an example of PNL model). Finally, 11×nd

corresponds to a vector (dimension nd) with all
elements equal to one.

We may now formulate the source separation problem treated in this section: given the
array response X and assuming that the vector of valences z is known, we aim at estimating the
elements of S (ionic activities). Since we envisage a blind method, the other parameters related
to the mixing model (except z) and the noise variance at each electrode are also unknown
and, thus, should be estimated. Furthermore, as it will become clear later, there are other
unknown parameters, denoted by φ, which are related to the prior distributions assigned to the
sources. Henceforth, all the parameters that should be estimated will be represented by the
vector θ = [S,A,d, e, σ, φ] and we will adopt the following notation: θ−θq represents the vector
containing all elements of θ except θq.

5.3.1 Defining the prior distributions

In this section, we describe how the prior distributions were defined in our Bayesian method.
However, before discussing this point, let us present a concept that will be fundamental in the
sequel: the notion of conjugate prior. Suppose a problem in which one is interested in estimating
X from Y . As already discussed, the three quantities of interest in a Bayesian approach are the
prior distribution, the likelihood function and the posterior distribution which are represented
by p(X), p(Y/X) and p(X/Y ) ∝ p(Y/X)p(X), respectively. When p(X/Y ) and p(X) belong to
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the same family of probability distributions, then p(X) is said to be conjugate with respect to
the likelihood p(Y/X) [139].

As it will be clarified in Section 5.3.4, the implementation of the Bayesian methods devel-
oped in this chapter requires the simulation of conditional posterior distributions. This task is
simplified when these posterior distributions assume standard form (Gaussian, exponential etc)
since the simulation of these distributions is straightforward. Of course, the role of the priors
is important here since they determine the posterior distributions. In this spirit, it is always
recommended to define standard priors that be conjugated with the likelihood so the resulting
posterior distributions also assume the standard forms of the priors. Unfortunately, this is not
always possible and, in these cases, another sampling scheme should be adopted; we will discuss
this point later.

5.3.1.1 Prior distribution of the sources S

In our problem, the sources are always non-negative since they represent ionic activities. There
are many possibilities to take into account the non-negativity of the sources. For example,
in [122], this was achieved through Gamma priors. This distribution has a non-negative support
and provides a flexible solution as it can model from sparse to almost uniform sources [122].
However there is a practical drawback associated with the use of a Gamma distribution: it
is difficult to find a conjugate prior in the estimation of the Gamma distribution parameters.
Therefore, according to our previous discussion, the simulation of conditional posterior distri-
butions becomes more complicated in these cases.

Alternatively, one can model the non-negativity of the sources by considering a log-normal
distribution. The motivation behind this choice is twofold. Firstly, in contrast to the Gamma
distribution, we will check later that it is possible to define a simple conjugate prior in this
case. Also, there is a practical argument behind this choice. Ionic activities are expected to
have a relative small variation in the logarithmic scale. This can be taken into account by the
log-normal distribution, since such a distribution is nothing but a Gaussian distribution in the
logarithmic scale. In mathematical terms, the prior assigned to sj(t) is given by

p(sj(t)|µj , σj) ∝ 1
sj(t)

exp

(
−(ln(sj(t))− µj)2

2σ2
j

)
1[0,+∞[(sj(t)), (5.11)

where µj and σj are the distribution parameters, and 1[0,+∞[(sj(t)) is the indicator function.
We assume that the samples are independent and identically-distributed (i.i.d) and also that
the sources are mutually statistically independent1, that is

p(S|φj) =
ns∏

j=1

nd∏

t=1

p(sj(t)|µj , σj),

where φj = [µj σj ].
1If some information concerning a possible dependency between the sources is available, it can be used in

the definition of the a priori distributions. In this case, however, one goes toward a less general approach that

may useful only to the modeled situation. Besides, the resulting inference problem becomes more difficult in this

situation.
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5.3.1.2 Prior distribution of the sources hyperparameters φ

Since we consider an hierarchical model, the parameters φj = [µj σj ] in Equation (5.11) are also
unknown in our problem and, thus, we must assign priors for them. In this context, a Gaussian
prior distribution was adopted for µj , that is:

p(µj) =
1√

2πσ2
µj

exp

(
−

(
µj − µµj

)2

2σ2
µj

)
, (5.12)

where µµj and σµj correspond to the hyperparameters. For2 rj = 1/σ2
j , a Gamma distribution

is considered:

p(rj) =
r
αrj−1

j

Γ(αrj )β
αrj
rj

exp

(
−rj

βrj

)
1[0,+∞[(rj), (5.13)

where αrj
and βrj

are the hyperparameters. In Section 5.3.4.2, we will show that these two
priors lead to conjugate pairs in the estimation of µj and rj = 1/σ2

j .

5.3.1.3 Prior distribution of the selectivity coefficients A

According to the literature in potentiometric sensors (see [66, 152]), the selectivity coefficients
are also non-negative. Moreover, it is rare to find a sensor whose response depends more on the
interfering ion than on the target one, that is, aij usually lies in the interval [0, Amax] where
Amax ∈ [0, 1]. Thus, a uniform distribution can be assumed for each3 aij , that is

p(aij) ∝ 1[0,Amax](aij). (5.14)

If no additional information is available, one can set Amax = 1. However, it is possible to refine
this information by using databases such as [152] or by incorporating some information acquired
during the fabrication process. Finally, the coefficients of A are assumed mutually independent,
so that we can write:

p(A) =
nm∏

i=1

ns∏

j=1

p(aij).

5.3.1.4 Prior distribution of the Nernstian slopes d

As discussed in Section 1.2.3.1, di is related to physical parameters and, for a room temperature,
it takes approximately 0.059/zi. However, due to the sensor fabrication process and aging, a
deviation of this theoretical value is usually observed. Furthermore, even the way the solutions
are injected may influence di [58]. This possible deviation from the Nernstian value can be taken
into account by setting a Gaussian prior of mean µdi = 0.059/ziV, i.e.:

p(di) ∝ exp

(
−(di − µdi)

2

2σ2
di

)
. (5.15)

2For the sake of clarity, we consider the estimation of the precision rj instead of the variance σ2
j . This is done

because a Gamma prior for the precision is conjugates with the likelihood in this case.
3In view of Equation (5.9), we consider aij = 1 when i = j.
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σ2
di

must be high enough to correctly model the derivations from the theoretical value. For
example, for an electrode whose target ion is monovalent, by setting σdi = 0.01 the probability
mass of (5.15) is concentrated (99% of the mass) in the interval [0.03, 0.09]. Note again that
this knowledge could be refined if additional information is available, or if the measurements are
conducted in different temperatures. Finally, we assume that the elements of d are statistically
independent, so that

p(d) =
nm∏

i=1

p(di).

5.3.1.5 Prior distribution of the parameters e

In contrast to the parameters di, there is no theoretical value for ei. On the other hand, as can
be observed in [76, 80] and in the experiments of Chapter 2, this parameter usually lies on the
interval [0.05, 0.35]V. Hence, the following Gaussian prior distribution can be adopted:

p(ei) ∝ exp
(
−(ei − µei)

2

2σ2
ei

)
. (5.16)

The mean of this distribution is given by µei = 0.20V whereas σ2
ei

must be defined so the resulting
prior goes toward a flat prior in the interval [0.05, 0.35]. The elements of e are assumed mutually
independent.

5.3.1.6 Prior distribution of the noise variance σ2
i

A common approach [59] to assign priors for the noise variances is based on the inverse Gamma
distribution, that is, the precision γi = 1/σ2

i is modeled through a Gamma distribution with
parameters ασi and βσi

p (γi) =
γ

ασi−1
i

Γ(ασi)β
ασi
σi

exp
(−γi

βσi

)
1[0,+∞[ (γi) . (5.17)

The motivation behind this modeling comes from the fact that it results in a conjugate pair.
Moreover, it is possible to set ασi and βσi to obtain a non-informative prior [59].

5.3.2 Probabilistic modeling of the mixing process

Having defined the prior distributions, the next step is to obtain the likelihood p(X|θ). Based
on the mixing model (5.9) and on the assumption of i.i.d. Gaussian noise which is also spatially
uncorrelated, the likelihood is given by

p(X|θ) =
nd∏

t=1

nm∏

i=1

Nxi(t)

(
ei + di log

( ns∑

j=1

aijsj(t)zi/zj

)
, σ2

i

)
, (5.18)

where Nxik
(µ, σ2) represents a Gaussian pdf, in xik, with mean µ and variance σ2.
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5.3.3 Bayesian inference

Based on the priors and on the likelihood function, one can use the Bayes’ rule to obtain the
posterior distribution p(θ|X). Given that the unknown variables of our problem are a priori
mutually independent (except S and φ), the prior distribution factorizes and, as a consequence,
the posterior distribution becomes

p(θ|X) ∝ p(X|S,A, e,d, σ) p(S|φ) p(φ) p(A) p(e) p(d) p(σ). (5.19)

Concerning the inference scheme, the implementation of a MAP estimator for (5.19) is dif-
ficult because it requires the resolution of a complex high-dimensional optimization problem.
At first sight, the implementation of the MMSE Bayesian estimation seems also complicated
because it requires the analytical evaluation of an integral which is hard in the problem con-
sidered here. Yet, a good approximation of (5.4) can be provided by sampling methods. The
idea here is to approximate the MMSE estimator using samples obtained from the posterior
distribution p(θ|X). Indeed, let the generated samples be represented by θ(1),θ(2), . . . ,θ(M).
Then expression (5.4) can be approximated by

θ̃MMSE =
1
M

M∑

m=1

θ(m). (5.20)

According to the law of large numbers, θ̃MMSE → θMMSE as M → +∞. This important result
gives the theoretical foundation for the above-described methodology, which is referred as Monte
Carlo integration [140].

5.3.4 Gibbs sampling scheme

From expression (5.20), one can note that the implementation of the Bayesian MMSE estimator
boils down to the task of generating samples from p(θ|X). In this work, this task is accomplished
by the Gibbs’ sampler, a Markov Chain Monte Carlo (MCMC) method specially tailored for
simulating joint distributions. The idea in MCMC methods is to generate a Markov chain that
admits the desired distribution (p(θ|X) in our case) as stationary distribution. If we assume that
x ∼ p(x) stands for the sampling operation, i.e. x is a sample obtained from the distribution
p(x), then the Gibbs’ sampler can be summarized as follows:

1. Set initial samples θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
N ;

2. For m = 1 to M , do

θ
(m)
1 ∼ p(θ1|θ(m−1)

2 , θ
(m−1)
3 , , . . . , θ

(m−1)
N ,X)

θ
(m)
2 ∼ p(θ2|θ(m)

1 , θ
(m−1)
3 , . . . , θ

(m−1)
N ,X)

...

θ
(m)
N ∼ p(θN |θ(m)

1 , θ
(m)
2 , . . . , θ

(m)
N−1,X)

end.



5.3. A Bayesian source separation method for the NE model 100

As the resulting Markov chain of the Gibbs’ sampler takes some time to converge to its
stationary distribution, it becomes necessary to perform some iterations of the Gibbs’ sampler
only to achieve the convergence to the stationary distribution of the underlying Markov chain.
During this period, which is known as burn-in period, the samples generated by the Gibbs’
sampler are not taken into account by the approximated version of MMSE estimator shown in
Equation (5.36).

The fundamental feature of the Gibbs’ sampler is that it simulates a high-dimensional joint
distribution by sequentially sampling from the conditional distribution of each variable. Actually,
the Gibbs’ sampler requires only the conditional distributions up to a proportional gain. In the
sequel, we will derive the conditional distributions for each element of θ. Such a procedure will
be accomplished by observing that

p(θq|θ−θq ,X) ∝ p(X|θ)p(θq) (5.21)

and by considering the likelihood function (5.18) and the prior distributions (defined in Sec-
tion 5.3.1).

5.3.4.1 Conditional distributions for the sources

Substituting expressions (5.18) and (5.11) into (5.21), one has

p(sj(t)|θ−sj(t),X) ∝ exp

[
nm∑

i=1

− 1
2σ2

i

(
xi(t)− ei − di log

(
aijsj(t)zi/zj +

ns∑

b=1,b 6=j

aibsb(t)zi/zb

))2

− (ln(sj(t))− µj)
2

2σ2
j

]
1

sj(t)
1[0,+∞[(sj(t)). (5.22)

5.3.4.2 Conditional distributions for the sources hyperparameters φ

Because p(X|θ) is not a function of the parameters φj = [µj σj ], the conditional density of µj

is given by
p

(
µj |σj ,S(j,:)

) ∝ p
(
S(j,:)|µj , σj

)
p(µj), (5.23)

where S(j,:) denotes all the elements of the j -th row. By substituting (5.11) and (5.12) into
(5.23), we obtain:

p
(
µj |σj ,S(j,:)

) ∝
nd∏

t=1

[
exp

(
−(ln(sj(t))− µj)

2

2σ2
j

)]
exp

(
−

(
µj − µµj

)2

2σ2
µj

)
. (5.24)

The first term of (5.24) can be rewritten as a Gaussian function in µj , with mean µLµj
=

1/nd
∑nd

t=1 ln(sj(t)) and variance σ2
Lµj

= σ2
j /nd. Thus, (5.24) becomes a product of two Gaussian

distributions which is a Gaussian distribution too, i.e.:

p
(
µj |σj ,S(j,:)

) ∝ exp


−

(
µj − µPostµj

)2

2σ2
Postµj


 , (5.25)

where4 σPostµj
= σ2

Lµj
σ2

µµj
/(σ2

Lµj
+ σ2

µµj
) and µPostµj

= (µLµj
σ2

µµj
+ µµµj

σ2
Lµj

)/(σ2
Lµj

+ σ2
µµj

).

4The derivation of the mean and variance of a product of two Gaussian can be found in [98].
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Similarly to the case of µj , the conditional density of rj = 1/σ2
j is given by p

(
rj |µj ,S(j,:)

) ∝
p

(
S(j,:)|µj , rj

)
p(rj). Thus, by considering (5.11) and (5.13), one has

p
(
rj |µj ,S(j,:)

) ∝
nd∏

t=1

[
√

rj exp
(
−0.5rj (ln(sj(t))− µj)

2
)]

r
αrj−1

j exp

(
−rj

βrj

)
1[0,+∞[(rj).

(5.26)
We can rewrite p(rj |µj ,S(j,:)) as a Gamma distribution, i.e.

p
(
rj |µj ,S(j,:)

) ∝ r
αPostrj

j exp

(
− rj

βPostrj

)
1[0,+∞[(rj), (5.27)

where αPostrj
= αrj + nd/2 and β−1

Postrj
=

(∑nd
t=1 (ln(sj(t))− µj)

2
)
/2βrj

It is now clear that

we obtain a conjugate pair and, thus, we can sample from p
(
rj |µj ,S(j,:)

)
by sampling from a

Gamma distribution.

5.3.4.3 Conditional distribution of aij

The derivation of the conditional distribution of p(aij |θ−aij ,X) is close to the one conducted for
sj(t). Indeed, by considering expression (5.18), (5.21), and (5.14), it turns out that

p(aij |θ−aij ,X) ∝ exp

[
− 1

2σ2
i

nd∑

t=1

(
xi(t)− ei−

di log
(
aijsj(t)zi/zj +

ns∑

b=1,b6=j

aibsb(t)zi/zb

))2]
1[0,1](aij). (5.28)

5.3.4.4 Conditional distribution of di

By using Equations. (5.9) and (5.15), and after some straightforward calculations, p(di|θ−di,X)
can be written as the following Gaussian distribution

p(di|θ−di ,X) ∝ exp


−

(
di − µPostdi

)2

2σ2
Postdi


 , (5.29)

where σPostdi
= σ2

Ldi
σ2

µdi
/(σ2

Ldi
+ σ2

µdi
), µPostdi

= (µLdi
σ2

µdi
+ µµdi

σ2
Ldi

)/(σ2
Ldi

+ σ2
µdi

), and

µLdi
=

(
∑nd

t=1 (xi(t)− ei)) log
(∑ns

b=1 aibsb(t)zi/zb
)

(
log

(∑ns
b=1 aibsb(t)zi/zb

))2 , (5.30)

σ2
Ldi

=
σ2

µdi(
log

(∑ns
b=1 aibsb(t)zi/zb

))2 . (5.31)
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5.3.4.5 Conditional distribution of ei

The development of this expression is similar to the one performed for di. After some calcula-
tions, it is not difficult to show that

p(ei|θ−ei ,X) ∝ exp


−

(
ei − µPostei

)2

2σ2
Postei


 , (5.32)

where σPostei
= σ2

Lei
σ2

µei
/(σ2

Lei
+ σ2

µei
), µPostei

= (µLei
σ2

µei
+ µµei

σ2
Lei

)/(σ2
Lei

+ σ2
µei

), and

µLei
=

∑nd
t=1

(
xi(t)− di log

(∑ns
b=1 aibsb(t)zi/zb

))

nd
(5.33)

σ2
Lei

=
σei

nd
. (5.34)

5.3.4.6 Conditional distribution of the noise variance σ2
i

As discussed before, the attribution of a Gamma prior for γi = 1/σ2
i culminates in a conjugate

pair. Indeed, by considering expressions (5.18) and (5.17), one can show that p(γi|θ−γi ,X) can
be reduced to the following Gamma distribution:

p(γi|θ−γi ,X) ∝ γ
αPostσi

−1

i exp

(
−γi

βPostσi

)
1[0,+∞[, (5.35)

where αPostσi
= ασi +nd/2 and β−1

Postσi
= 1

2

∑nd
t=1

(
xi(t)− ei − di log

(∑ns
b=1 aibsb(t)

zi
zb

))2

+β−1
σi

.

5.3.5 Algorithm Description

Let us make some remarks on the final algorithm, which is summarized in Table 5.1. In a first
step, we must define hyperparameters that lead to non-informative distributions [139]. In the
experiments described in Section 5.3.6, this strategy was implemented by setting the following
values for the variances of the Gaussian priors: σ2

di
= 0.01 and σ2

ei
= 0.03. Moreover, a high

value of the parameter σ2
µj

, which is related to the sources prior, was defined (σ2
µj

= 100).
As discussed before, the resulting Markov chain of the Gibbs’ sampler takes some time to

converge to its stationary distribution (burn-in period). For determining the burn-in period, a
visual inspection of the evolution of some channel states was done.

A last step in our algorithm concerns a post-processing stage for dealing with the scale and
translation ambiguities inherent in blind methods. For example, in PNL mixtures, the best we
can do is to obtain an estimation s̃jt given by s̃j(t) = ajsj(t)+ bj , where aj and bj are unknown,
and sj(t) is the actual source. Given that this ambiguity in not acceptable in a sensing problem,
we are forced to use at least two calibration points in order to retrieve the scale and translation
parameters. This can be done by a simple linear regression, i.e. we need to find aj and bj that
minimize the mean squared error J = 1/Ncal

∑Ncal
n=1 (s̃j(n)(c) − sj(n)(c))2, where sj(n)(c) denotes

the calibration points and s̃j(t)(c) the corresponding estimations. The calibration procedure will
be discussed in more details in Chapter 6.
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5.3.5.1 Conditional distributions and Metropolis-Hasting algorithm

The resulting conditional distributions for almost all parameters in Table 5.1 are given by stan-
dard distributions (normal and Gamma), which means that sampling is easy in these cases. How-
ever, because of the logarithm in the likelihood function, the expressions of p(sj(t)|θ−sj(t),X)
and p(aij |θ−aij ,X) do not assume a standard form. Therefore, the simulation of these dis-
tributions requires a more sophisticated method. A possible choice here is to resort to the
Metropolis-Hasting (MH) algorithm [140] for simulating p(sj(t)|θ−sj(t),X) and p(aij |θ−aij ,X).
Strictly speaking, since we are incorporating MH steps into the Gibbs’ sampler, the final algo-
rithm should be classified as an hybrid MCMC method [72].

Metropolis-Hasting algorithm

The Metropolis-Hasting algorithm is also a MCMC method and, thus, it is based on building
a Markov chain whose stationary distribution is given by the distribution to be sampled. To
illustrate how the MH works, let us consider the simulation of a given distribution p(x). The
first step in the MH method concerns the definition of an instrumental (or proposal) distribution
g(x; y); this distribution should be easy to simulate as it will generate the candidate samples. For
example, suppose that x(t) represents the current sample of p(x) , then the following iteration
is set for obtaining the next sample x(t+1):

1. x∗ ∼ g(x; x(t)) (generation of candidate sample).

2. Calculate a = min
(
1, p(x∗)g(x(t);x∗)

p(x(t))g(x∗;x(t))

)
.

3. u ← sample from a uniform distribution in [0, 1].

4. if u ≤ a, x(t+1) = x∗ (accept the proposed sample) else x(t+1) = x(t) (reject the proposed
sample).

Note that the MH method demands only the simulation of g(x; y) and the evaluation of g(x; y)
and p(x). It can be shown [140, 72] that such a procedure indeed results in a Markov chain of
stationary distribution p(x).

An important practical question related to the MH algorithm is the definition of the instru-
mental distribution g(x; y). Actually, in a theoretical standpoint, there are only some mild con-
ditions to be respected by g(x; y) so the Markov chain has p(x) as stationary distribution [140].
However, in practice, the choice of g(x; y) is fundamental because it determines the acceptation
rate and how fast the Markov chain converges to p(x) (see [9] for some examples). Moreover,
a bad choice of g(x; y) can make the chain to be confined in a local mode of the probability
distribution to be sampled.

In the method described in Table 5.1, truncated Gaussian are considered as instrumental
distributions in the MH steps. In order to obtain good acceptance rate, we conducted, for each
situation, preliminary simulations to adjust the variances of these distributions.
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Table 5.1: Proposed Bayesian source separation algorithm
1. Define hyperparameters µµj ,σ2

µj
,αpj ,βpj ,ασi ,βσi ;

2. Random initialization of the current samples θ0;

3. Run Gibbs sampler
For m = 1 to M do

• For j = 1, · · · , ns, t = 1, · · · , nd

sj(t)m ∼ p(sj(t)|θ−sj(t),X) (Equation (5.22)) (simulation through MH algorithm)

• For j = 1, · · · , ns

µm
j ∼ p(µj |θ−µj ,X) (Equation (5.25))

σm
j ∼ p(σj |θ−σj ,X) (Equation (5.27))

• For i = 1, · · · , nm, j = 1, · · · , ns

am
ij ∼ p(aij |θ−aij ,X) (Equation (5.28)) (simulation through MH algorithm)

• For i = 1, · · · , nm

dm
i ∼ p(di|θ−di ,X) (Equation (5.29))

em
i ∼ p(ei|θ−ei ,X) (Equation (5.32))

σm
i ∼ p(σi|θ−σi ,X) (Equation (5.35))

end

4. Infer the sources through the Bayesian MMSE estimation

s̃j(t) =
1

M −B

M∑

m=B+1

sj(t)m, ∀j, t, (5.36)

where B denotes the number of iterations of the burn-in period.

5. Retrieve the source scale using Ncal calibration points (Ncal ≥ 2).

5.3.6 Results

To assess the performance of the algorithm described in Table 5.1, we conduct in a first moment
a set of experiments considering artificially generated data. Then, in Section 5.3.6.2, we test our
proposal with actual data.

5.3.6.1 Experiments with artificial data

Based on the selectivity coefficients database presented in [152], we define the following testing
scenarios:

• First scenario (ns = 3 and nm = 3): array of three electrodes (one K+-ISE , one NH+
4 -ISE
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-ISE and one Na+-ISE ) to estimate K+ , NH+
4 and Na+. Mixing system parameters: A =

[1 0.16 0.40; 0.25 1 0.19; 0.40 0.13 1], d = [0.059 0.050 0.055]T and e = [0.095 0.105 0.110]T .

• Second scenario (ns = 2 and nm = 2): array of two electrodes (one Ca2+-ISE and one
Na+-ISE ) to estimate the activities of Ca2+ and Na+. Mixing system parameters: A =
[1 0.39; 1 0.20], d = [0.026 0.046]T and e = [0.100 0.090]T .

In the first scenario we have a PNL model as mixing system. In the second one, the mixing
system is similar to the class considered in Chapter 3. Finally, we consider noisy mixtures with
a signal-to-noise ratio of SNR = 18 dB in both cases.

We tested our method in a situation where the sources are realizations of log-normal distri-
butions (the number of samples was nd = 500). For the first scenario, we considered P = 50000
iterations for the Gibbs sampler with a burn-in period of B = 30000. The number of calibration
points used in the post-processing stage was Ncal = 5. The performance indices in this situation
were SIR1 = 12.83 dB, SIR2 = 19.0 dB, SIR3 = 17.4 dB, and SIR = 16.4 dB, which indicates
that our proposal was able to achieve a good source separation (to illustrate that, we show in
Figure 5.1 the mixed signals, and in Figure 5.2, the actual sources and their respective estima-
tions). For matter of comparison, we estimated the performance when considering the original
parameters that originate the mixtures; the following values were obtained: SIR1 = 18.35 dB,
SIR2 = 21.11 dB, SIR3 = 19.72 dB.
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Figure 5.1: Artificial data (first scenario): ISE array outputs (mixtures).

In the second scenario, we considered P = 25000 iterations for the Gibbs sampler with a
burn-in period of B = 18000, and Ncal = 3 calibration points were used. The performance
indices in this case were SIR1 = 17.4 dB, SIR2 = 16.2 dB, and SIR = 16.8 dB. As can be
observed in Figures 5.3 and 5.4, our method was able to provide fair estimations of the sources.

Analysis of the Markov Chains

As we mentioned before, the length of the burn-in period was determined through visual
inspection of the Markov chains. In Figure 5.5, we plot the Markov chains for the mixing
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Figure 5.2: Artificial data (first scenario): actual sources (gray) and their estimation (black).
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Figure 5.3: Artificial data (second scenario): ISE array outputs (mixtures).
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Figure 5.4: Artificial data (second scenario): actual sources (gray) and their estimation (black).
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coefficient a12 and for the sources at instant t = 112 (we considered the first scenario of the
last section). Note that, after about 30000 iterations, the chain states indeed converge to values
close to the actual ones, which are depicted in gray.
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Figure 5.5: Artificial data (first scenario): Markov chains.

5.3.6.2 Experiments with actual data

In Chapter 2, we saw that the first scenario (detection of ammonium and potassium) was the one
with higher level of interference. Motivated by that, we tested our Bayesian method to process
the data acquired in the experiments S1NH410−1K and S1NH410−4K. After joining these two
experiments in a single dataset, we obtained the sources shown in Figure 5.8. The total number
of samples of the two experiments altogether was nd = 170.

In Figure 5.6, we present the responses of the ISE array. Since we have access to the
inputs and to the outputs of the electrode array, it is possible to analyze the fitness of the NE
model for this case, that is, we can have an idea about the amount of noise in the mixing model.
Concerning the potassium electrode, we measured a signal-to-noise ratio of SNRK+ = 24 dB. For
the ammonium electrode, this value was given by SNRNH+

4
= 20 dB. We assumed a Gaussian

modeling for the noise in each electrode, and, to have an insight into the pertinence of such
assumption, the distribution of the regression errors is plotted in Figure 5.7.

After scale and translation normalization with Ncal = 4 calibration points, the performance
indices (average of 30 experiments) obtained by the Bayesian method in this scenario were
SIR1 = 24.0 dB, SIR2 = 22.5 dB and SIR = 23.2 dB. Concerning the parameters of the Gibbs
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Figure 5.6: Real data: responses provided by the ISE array.
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Figure 5.7: Histograms of the regression errors resulting from a fitting with the NE model. The
black curves correspond to the fitted Gaussian distribution.

sampler, the number of performed iterations was P = 10000 and the burn-in period was B =
7000. The obtained signals are shown in Figure 5.8. Despite a small residual interference, mainly
for the K+ activity, the method was able to provide good estimations of the sources. On the
other hand, the application of a PNL source separation method based on ICA [61] provided poor
approximations of the sources (SIR1 = 7.6 dB, SIR2 = −0.3 and SIR = 3.6).

5.3.6.3 Discussion

The experiments with artificial data showed that the proposal can achieve good estimations
even when the valences are different. In the scenario with real data, the Bayesian algorithm
achieved a much better performance than the ICA-based PNL algorithm. In fact, in this case
the sources were clearly dependent and, thus, they violated the fundamental assumption of any
ICA method. Evidently, a scenario with dependent sources also poses a problem to a Bayesian
method, since there is no guarantee that the provided data representation is unique in such a case.
Nonetheless, in contrast to ICA, a Bayesian method does not optimize a functional associated
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Figure 5.8: Real data: Retrieved signals (black) and actual sources (gray).

with the statistical independence. Rather, it searches for a “good” data representation given
a set of prior information. Thus, in the Bayesian approach, the independence should be seen
rather as a simplifying assumption, that is, we are just omitting an additional prior information
to the inference machine, which may still work.

Concerning the algorithm’s convergence, we observed that the Gibbs sampler may get trapped
in local minima, thus leading to poor estimations. For the situations with two sources the per-
centage of poor convergences5 was 3% for artificial data and 7% for the real case; in the case
with three sources, this value attained 17%. Although we do not have access to the source, it
is still possible to identify a bad solution: we observed that poor convergence usually implies in
a significant mismatch between the representation provided by the Bayesian algorithm and the
actual array response.

Another important point concerns the execution time of our method. For the experiments
with real data, the MCMC algorithm took about6 26s to perform 10000 iterations. Nevertheless,
the algorithm took 380s to perform 50000 iterations in the situation with three sources. This
points out a well-known drawback of MCMC-based Bayesian methods: their computational
burden can become quite large as the number of sources and samples grows.

Finally, let us make a remark concerning the choice of the priors. In this work, we tried to
define priors 1) that ease the resulting inference problem and 2) that, based on the available
information, limit the range of the unknown parameters. Evidently, there is no guarantee that
our choices are optimum and, as we mentioned before, a large dataset of measurements would
permit to refine the priors’ definition. An interesting issue in this context would be to compare
the selected priors with alternative models. Because the possibilities are non-exhaustive, we con-
sider a single example where, instead of log-normal priors for the sources, Gamma distributions

5These percentages were obtained through a visual inspection after 30 executions.
6The method was implemented in Matlab (Windows XP) and the simulations were performed in a Intel Core

2 duo 3GHz, 2048MB RAM.
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are considered.

After applying the solution with the Gamma modeling to process the real data, the obtained
performance (average of 30 experiments with Ncal = 4 calibration points) —SIR1 = 22.4 dB
and SIR2 = 17.5 dB —was inferior to that of the log-normal prior. Furthermore, as mentioned
before, unlike the log-normal case, it is not possible to find a conjugate prior in the estimation of
the Gamma distribution parameters. Thus, it becomes necessary to incorporate an additional
Metropolis-Hastings algorithm into the Gibbs’ sampler, which increases the algorithm’s com-
plexity and has the inconvenient of requiring the definition of instrumental distributions, which
is not an easy task.

5.4 A Bayesian source separation method for linear and linear-

quadratic mixtures

In this section, we continue our study on Bayesian methods. However, we now turn our attention
to the linear-quadratic model which, as discussed in Chapter 1, is relevant in the context of tin
oxide gas sensor arrays. Moreover, as it will be clarified in the sequel, the proposed method can
also be applied to linear mixtures.

A first motivation behind a Bayesian source separation method tailored for LQ mixtures is
related to the difficulty in defining a proper separating system to this case. In fact, we saw in
Chapter 1 that a recurrent separating system was proposed [86, 87] to overcome this problem.
Nonetheless, despite its simplicity and its good performance, this approach can operate only
when the sources and the mixing parameters lie within the stability region of the recurrent
system. Even if the development of more elaborate recurrent networks [51] can extend the
stability region, it seems that the resulting training algorithms may be quite complicate in these
new situations.

Conversely, in a Bayesian context, the definition of a separating system is not a problem
given that BSS is seen rather as a data representation problem and, thus, there is no need to
define a separating system in this case. A second fact that motivates the development of a LQ-
BSS Bayesian method is related to the possibility of taking into account prior information other
than the statistical independence. In our development, we will consider two prior information
that are typical in chemical sensing applications, namely: 1) the bounds of the sources and of the
mixing coefficient values are known in advance, and 2) the sources have a temporal structure.

Before getting into the details of our proposal, let us recapitulate the LQ mixing model:

xi(t) =
ns∑

j=1

aijsj(t) +
∑

1≤j<k≤ns

bijksj(t)sk(t) + ni(t), ∀i ∈ 1, . . . , nm,∀t ∈ 1, . . . , nd, (5.37)

where aij et bijk are the mixing parameters and ni(t) corresponds to the noise term, which is
assumed i.i.d. and Gaussian with unknown variance σ2

i . In this situation, the unknown param-
eters are given by θ = [sj(t), aij , bijk, σ

2
i , µj , pj ], where µj and pj correspond to the parameters

related to the sources distributions.



111 Chapter 5. Bayesian approach

Following the same steps conducted in Section 5.3, we will introduce in the sequel the pro-
posed Bayesian BSS method for the mixing model (5.37).

5.4.1 Definition of prior distributions

5.4.1.1 Sources

We here assume a modeling based on truncated Gaussian distributions for the sources. This
distribution is interesting when, for instance, the limit values of the sources are known, which is
usually the case in the chemical sensing applications considered in this work. In a first moment,
the following i.i.d. modeling is considered

p(sj(t)|µj , pj , s
min
j , smax

j ) =

√
pj

2π exp
(
−pj

2 (sj(t)− µj)
2
)
1[smin

j ,smax
j ](sj(t))

Φ
(√

pj

(
smax
j − µj

))
− Φ

(√
pj

(
smin
j − µj

)) , (5.38)

where µj , pj are the unknown distribution parameters, and Φ(·) is the cumulative distribution
function of the standard normal distribution. In Figure 5.9, the distribution (5.38) is plotted
considering different parameters and bounds.

Very often in real problems, the sources present a temporal structure. Motivated by that,
a second prior modeling7 can be defined by substituting µj = sj(t − 1) in Equation (5.38).
The resulting prior is a first-order Markovian model quite similar to the classical AR(1) model
driven by Gaussian noise, with the only difference that the recurrence is limited in the interval
[smin

j , smax
j ]. Both in the i.i.d. and in the Markovian modeling, we assume that the sources are

mutually independent, i.e. p(S) =
∏ns

j=1 p(Sj,:).

5.4.1.2 Sources hyperparameters

For the i.i.d. modeling, uniform priors are assigned for the sources hyperparameters, that is

p(µj) ∝ 1[µmin
j ,µmax

j ](µj), (5.39)

p(pj) ∝ 1[pmin
j ,pmax

j ](pj), (5.40)

where the parameters µmin
j , µmax

j , pmin
j and pmax

j should be assigned according to the available
information. If, for example, the sources are expected to be concentrated near the minimum
value, one can set µmin

j < µmax
j < smin

j . Conversely, if no additional information is available,
one must increase the limits of both hyperparameters. Regarding the Markovian modeling, we
have only one hyperparameter (pj) and the same prior of Equation (5.40) is assigned for it.

7Since the derivation of a Bayesian method is almost the same for the i.i.d. and the Markovian modeling, our

calculations will be based in Equation (5.38). Note however that, in the Markovian modeling, there is no need to

estimate the term µj that appears in this equation.
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Figure 5.9: Truncated Gaussian distribution.

5.4.1.3 Mixing parameters

Before assigning priors for the mixing parameters, let us rewrite the LQ mixing model as

xi(t) =
J∑

m=1

cims̄m(t) + ni(t), (5.41)

where J = ns + ns!
2(ns−2)! . The vector ci = [ci1, . . . , ciJ ] stems from the concatenation of

[ai1, . . . , ains ] and [bi12, . . . , bins−1ns ]; and the vector s̄(t) = [s̄1(t), . . . , s̄J(t)] denotes the con-
catenation of the sources [s1(t), . . . , sns(t)] and the linear quadratic terms [s1(t)s2(t), s2(t)s3(t)
. . . , sns−1(t)sns(t)]. As it will clarified later, this representation allows us to check that the
conditional distributions of aij and bijk used in the Gibbs’ sampler assume similar expressions.
Therefore, for sake of simplicity, both aij and bijk will be represented by cim.

In our method, the mixing coefficients cim are modeled through uniform priors, i.e.

p(cim) ∝ 1[cmin
im ,cmax

im ](cim). (5.42)

The distribution bounds should be set based on the available information. An interesting aspect
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of this modeling is that it renders possible to perform linear BSS using the same implementation
of the LQ case. Indeed, if one sets cmin

ins+1:J = cmax
ins+1:J = 0, then the parameters that multiply the

linear-quadratic terms become null and, thus, the resulting model becomes linear. Moreover,
if smin

j = 0 and smax
j → ∞, our proposal becomes able to model non-negative prior as in

non-negative matrix factorization (NMF).

5.4.1.4 Noise variances

Again, we assign Gamma priors for the noise precisions ri = 1/σ2
i , that is

p(ri) ∝ r
αri−1
i exp

(−ri

βri

)
1[0,+∞[ (ri) . (5.43)

As already discussed before, this choice culminates in a conjugate pair, which eases the sampling
step in the Gibbs sampler.

5.4.2 Likelihood function

Due to the assumption of white Gaussian noise in the observation model, the likelihood function
associated with the mixing model (5.37) is given by

p(X|θ) =
nd∏

t=1

nm∏

i=1

Nxi(t)

(
ns∑

j=1

aijsj(t) +
∑

1≤j<k≤ns

bijksj(t)sk(t);σ2
i

)
. (5.44)

5.4.3 Bayesian inference and Gibbs sampler

Since we assume that all elements of p(θ) are statistically independent (except the sources Sj,:

and their hyperparameters µj and pj), the posterior distribution p(θ|X) can be rewritten as

p(θ|X) ∝ p(X|θ)×
nm∏

i=1

J∏

m=1

p(cim)×
ns∏

n=1

p(Sj,:|µj , pj)

×
ns∏

n=1

p(µj)×
ns∏

n=1

p(pj)×
nm∏

i=1

p(σ2
i ). (5.45)

As it was done in Section 5.3.4, we set an inference scheme based on the Bayesian MMSE
estimator and on the Gibbs’ sampler. In this spirit, we provide in the sequel the expressions of
the conditional distributions for each unknown parameter. This will be achieved by considering
the expression (5.21) and the priors defined in Section 5.4.1.

5.4.3.1 Conditional distribution: sources

It is not difficult to show that, by substituting expressions (5.21) and (5.38) into (5.21), one has

p(sj(t)|θ−sj(t),X) ∝ exp

[
−

nm∑

i=1

1
2σ2

i

(
Ψijtsj(t)

+ Ωijt

)2

− 0.5pj (sj(t)− µj)
2

]
1[smin

j ,smax
j ](sj(t)), (5.46)
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where

Ωijt = xi(t)−
ns∑

g=1,g 6=j

aigsg(t)−
∑

1≤g<k≤ns,g 6=j

bigksg(t)sk(t), (5.47)

and

Ψijt = aij +
ns∑

g=1,g 6=j

bijgsg(t). (5.48)

After expanding Equation (5.46), one can obtain the expression of the conditional distribution
of the sources, given by

p(sj(t)|θ−sj(t),X) ∝ exp

(
−

(
sj(t)− µPostj

)2

2σ2
Postj

)
1[smin

j ,smax
j ](sj(t)), (5.49)

where σPostj = σ2
Lj

σ2
j /(σ2

Lj
+ σ2

j ) and µPostj = (µLjσ
2
j + µjσ

2
Lj

)/(σ2
Lj

+ σ2
j ), and

σ2
Lj

=

(
nc∑

i=1

Ψ2
ijt

σ2
i

)−1

, (5.50)

µLj = σ2
Lj

nc∑

i=1

ΩijtΨijt

σ2
i

. (5.51)

Expression (5.49) corresponds to a truncated Gaussian distribution and its simulation can
be conducted, for instance, by the procedure proposed in [44]. The basic idea of this method is
that, by defining a set of latent variables8, one obtains a very simple method that only requires
sampling from uniform distributions.

5.4.3.2 Conditional distribution for the sources hyperparameters

Let us start with the derivation of the conditional distribution of pj . As the likelihood func-
tion (5.44) is not a function of pj , it asserts that p(pj |Sj,:, µj) ∝ p(Sj,:|, pj , µj)p(pj), that is

p(pj |Sj,:, µj) ∝ p
nd
2

j exp
(
− 0.5pj

nd∑

t=1

(sj(t)− µj)
2
)

×
1[pmin

j ,pmax
j ](pj)

Φ
(√

pj

(
smax
j − µj

))
− Φ

(√
pj

(
smin
j − µj

)) . (5.52)

This expression does not assume a standard form because of the nonlinearity in the denominator
of the second term. This is also true for the distribution p(µj |sj,:, pj) that appears in the i.i.d.
modeling

p(µj |Sj,:, pj) ∝ exp
(
− 0.5pj

nd∑

t=1

(sj(t)− µj)
2
)

×
1[µmin

j ,µmax
j ](µj)

Φ
(√

pj

(
smax
j − µj

))
− Φ

(√
pj

(
smin
j − µj

)) . (5.53)

8In fact, the method proposed in [44] can be regarded as a slice sampling method [72].
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The non-standard distributions (5.52) and (5.53) could be simulated through the MH algo-
rithm, as it was done in Section 5.3. However, as discussed before, this kind of solution requires
the definition of an instrumental function which is not a trivial task. Besides, the presence of
the MH algorithm would increase the complexity of our final solution because the burn-in period
is usually bigger when MH stages are considered.

Aiming at a more practical algorithm, we consider an alternative approach based on the
use of latent variables. The key idea, which was developed in [75], is based on the following
transformation:

lj(t) = µj + p
−1/2
j × Φ−1


 Φ

(√
pj (sj(t)− µj)

)− Φ
(√

pj

(
smin
j − µj

))

Φ
(√

pj

(
smax
j − µj

))
− Φ

(√
pj

(
smin
j − µj

))

 . (5.54)

It can be proved [75] that if sj(t) follows a truncated Gaussian with parameters µj and pj , then
lj(t) is distributed according to a Gaussian distribution of mean µj and precision pj .

From the discussion of the last paragraph, lj(t) follows a Gaussian distribution, and therefore

p(Lj,:|µj , pj) =
nd∏

t=1

√
pj

2π
exp

(
−pj

2
(lj(t)− µj)

2
)

. (5.55)

Using this equation and the prior distributions (5.39) and (5.40), one can show that the distri-
butions of µj and pj conditionally to lj(t) are given by

p(µj |pj ,Lj,:) ∝ p(µj)p(Lj,:|µj , pj) ∝ 1[µmin
j ,µmax

j ](µj)

× exp


−pj · nd

2

(
µj − 1

ns

nd∑

t=1

lj(t)

)2

 (5.56)

p(pj |µj ,Lj,:) ∝ p(pj)p(Lj,:|µj , pj) ∝ 1[pmin
j ,pmax

j ](pj)

× p
nd
2

j exp

(
−pj

nd∑

t=1

(lj(t)− µj)
2

)
. (5.57)

These two distributions reveal an interesting point: if one considers the latent variables lj(t)
instead of the sources sj(t), then one ends up with tractable distribution, since p(µj |pj ,Lj,:) is
a truncated Gaussian whereas p(pj |µj ,Lj,:) is a truncated Gamma. The simulation of these two
distributions can be conducted through the method proposed in [44].

Although originally proposed [75] for i.i.d. models, the procedure described in the last para-
graphs can be readily extended for estimating pj when the Markovian modeling is considered.
Indeed, this can be done by observing that the innovation process sj(t)− sj(t− 1) is distributed
according to a truncated Gaussian whose limits depend on the time index. Therefore, the condi-
tional distribution of pj in this case is obtained by substituting µj = sj(t−1) in Equation (5.57).
Also, the same substitution should be conducted in Equation (5.54) for the calculation of the
latent variables lj(t).
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5.4.3.3 Conditional distribution: mixing parameters

The calculation of the conditional distributions can be done by substituting equations (5.42)
and (5.44) into Equation (5.21). Therefore, one obtains after some calculations

p(cim|θ−cim ,X) ∝ exp

(
− ρL

im

2
(cim − νL

im)2
)
1[cmin

im ,cmax
im ](cim), (5.58)

where

ρL
im = σ2

i

nd∑

t=1

s̄m(t), (5.59)

νL
im =

∑nd
t=1 s̄m(t)

(
xi(t)−

∑J
g=1,g 6=m cig s̄g(t)

)
∑nd

t=1 s̄m(t)2
. (5.60)

Again, the resulting conditional distribution (Equation (5.58)) is a truncated Gaussian distri-
bution and can be simulated by the technique presented in [44].

5.4.3.4 Conditional distribution: noise variances

The conditional distribution of the noise precision ri = 1/σ2
i is obtained by substituting (5.43)

and (5.44) into Equation (5.21), which gives

p(ri|θ−ri ,X) ∝ r
nd
2

i exp (−0.5riΘit) r
αri−1
i exp

(−ri

βri

)
1[0,+∞[ (ri) (5.61)

where Θit = xi(t)−
∑ns

j=1 aijsj(t)−
∑

i,j,k bijksj(t)sk(t). This equation can be rewritten as

p(ri|θ−ri ,X) ∝ exp
(
−ri

(
0.5Θit +

1
βri

))
r

nd
2

+αri−1

i 1[0,+∞[ (ri) , (5.62)

which is a Gamma distribution with parameters αi = nd
2 + αri and β−1

i = 0.5Θit + β−1
ri

.

5.4.4 Algorithm Description

In Table 5.2, we summarize the developed Bayesian method for LQ-BSS. A first step in this
case concerns the definition of the hyperparameters. As already discussed, information about
the bounds of the sources and the mixing coefficients can be taken into account through the
hyperparameters smin

j , smin
j , cmin

im and cmax
im . For instance, in the context of chemical sources,

it is natural to assume smin
j = 0. Concerning the sources hyperparameters, if no additional

information is available, one must adopt the following strategy: pmin
j = 0, pmax

j >> 0, and
µmin

j << 0, µmax
j >> 0 (for the i.i.d. case).

5.4.5 Results

We here present some experiments to assess the performance of Bayesian solution proposed in
the last sections. In a first moment, we test our method in a linear source separation. In this
case we consider a toy problem but also a situation with actual data. Then, in Section 5.4.5.2,
we address the case of linear-quadratic mixtures.
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Table 5.2: Bayesian source separation algorithm for LQ mixtures
1. Define hyperparameters smin

j , smin
j , pmin

j , pmax
j , cmin

im , cmax
im and, for the i.i.d. case, µmin

j ,
µmax

j ;

2. Random initialization of the current samples θ0;

3. Run Gibbs sampler
For m = 1 to M do

• For j = 1, · · · , ns, t = 1, · · · , nd

sj(t)m ∼ p(sj(t)|θ−sj(t),X) (Equation (5.49))

• Define latent variables lj(t) (Equation 5.54)

• For j = 1, · · · , ns

µm
j ∼ p(µj |θ−µj ,Lj,:,X) (Equation (5.56)) (only for the i.i.d. case)

pm
j ∼ p(pj |θ−pj ,Lj,:,X) (Equation (5.57))

• For i = 1, · · · , nm, j = 1, · · · , J

cm
ij ∼ p(cij |θ−cim ,X) (Equation (5.58))

• For i = 1, · · · , nm

rm
i ∼ p(ri|θ−ri ,X) (Equation (5.62))

end

4. Infer the sources through the Bayesian MMSE estimation

s̃j(t) =
1

M −B

M∑

m=B+1

sj(t)m, ∀j, t, (5.63)

where B denotes the number of iterations of the burn-in period.

5. Retrieve the source scale using Ncal calibration points (Ncal ≥ 2).

5.4.5.1 Separation of linear mixtures

Synthetic Data

To illustrate the performance of our proposal in a linear case, we tested it in situations
where nd = 300, ns = 3, nm = 3; and the mixing matrix is given by A = [1 0.5 0.5 ; 0.6 1
0.3 ; 0.8 0.4 1] . Three scenarios were considered: 1) the sources are realizations of truncated
Gaussian distributions (matched case with our i.i.d. modeling); 2) the sources are realizations
of truncated Gaussian Markovian process (matched case with our Markovian modeling); 3) the
sources correspond to a sine wave, a ramp function and a sawtooth wave. In all these situations
the SNR at each sensor was 20 dB. The total number of iterations of the Gibbs’ samples was
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P = 10000 with a burn-in period of B = 5000.

Table 5.3: SIR(dB) for the separation of linear mixtures (synthetic data).
Situation 1 Situation 2 Situation 3
(i.i.d. trunc. (Markovian (deterministic
Gaussian) trunc. Gaussian) sources)

Bayesian method (i.i.d. modeling) 17.50 17.69 15.55

Bayesian method (Markovian modeling) 12.60 17.07 18.37

FastICA 20.43 17.74 11.81

The results presented in Table 5.3 represent the mean SIR over 50 experiments. Despite a
(not surprisingly) performance degradation when the Markovian prior is used for separating i.i.d.
sources, our proposal was able to separate the sources. However, the FastICA algorithm [90]
gave us better results in the first scenario and equivalent results in the second one. On the other
hand, the application of this method on the third situation did not provide satisfactory results.
This was due to the existence of two correlated sources in this scenario. It is worth remembering
that, in contrast to the Bayesian approach, the FastICA searches for independent components
and, therefore, it may fail when the sources are not independent.

Actual data

We also tested the Bayesian solution (linear case) with the data acquired in the experiments
S1NH410−1K and S1NH410−4K; this is the same configuration considered in Section 5.3.6.2
and the corresponding outputs of the ISE array are depicted in Figure 5.6. As the Bayesian
method considered here is aimed at linear mixtures, we had to set a strategy to invert the
logarithm functions present in the NE model. This was done through the method introduced
in Section 4.3 (more precisely we considered the results described in Section 4.3.6.3). The
hyperparameters were defined as follows: smin

j = amin
ij = 0, smax

j = amax
ij = 1. For the Gibbs’

sampler, we considered 12000 iterations with a burn-in period of 7000 samples. Finally, to
retrieve the sources scales, we make use of the same Ncal = 4 calibration points considered in
Section 5.3.6.2.

In Figures 5.10(a) and 5.10(b), we plot the retrieved sources obtained by the Bayesian method
with i.i.d. modeling and Markovian modeling, respectively. The performance indices were
quite similar in these two cases: SIR1 = 17.74 dB, SIR2 = 22.13 dB and SIR= 19.94 dB (i.i.d.
modeling), and SIR1 = 17.68 dB, SIR2 = 22.11 dB and SIR= 19.90 dB (Markovian modeling).
Note that, despite the fair estimations, the combination of the Bayesian linear method with
the method introduced in Section 4.3 performed worst than the Bayesian method presented in
Section 5.3.6.2 (complete solution). Finally, in Figure 5.10(c), we show the sources obtained by
the SOBI algorithm [26]. In this case, while the estimation of the first source is slightly better
(SIR1 = 18.45) than the one provided by the Bayesian method, the SOBI algorithm failed to
recover the second source (SIR2 = 9.73)
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(a) Bayesian method (i.i.d. modeling).
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(b) Bayesian method (Markovian model-
ing).
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(c) SOBI algorithm.

Figure 5.10: Experiments with actual data: retrieved signals (black) and actual sources (gray).

5.4.5.2 Separation of linear-quadratic mixtures

In a first moment, we considered a situation where nd = 500, ns = 2 and nm = 2. The original
sources and the mixtures are presented in Figures. 5.11(a) and 5.11(b), respectively. The mixing
parameters were selected a11 = 1, a12 = 0.5, b112 = 0.2, a21 = 0.5, a22 = 1, b212 = 0.2, and
the SNR at each sensor was 30 dB. The hyperparameters related to the limit values of the prior
distributions were9 smin

j = cmin
im = 0 and smax

j = cmax
im = 1. Concerning the Gibbs sampler

parameters, the total number of iteration was P = 20000 with a burn in period of B = 8000.
In this situation, the obtained performed index were SIR= 26.63 dB for the i.i.d. modeling
and SIR= 27.47 dB for the Markovian modeling. We also tested the ICA method proposed
in [87] which was able to provide good approximations (SIR= 22.58 dB). Despite the better
performance, it worth mentioning that the gains brought by our method comes at the price of
a greater computational effort.

We assessed our method in a second scenario similar to the first one with the only difference
that the mixing parameters are now given by a11 = 1, a12 = 0.7, b112 = 0.6, a21 = 0.6,
a22 = 1, b212 = 0.6. Our method was able to retrieve the sources both for i.i.d. modeling

9We set amin
11 = amin

22 = 1 to avoid scaling ambiguities.
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(SIR= 22.17 dB) and for the Markovian modeling (SIR= 23.40 dB). To illustrate that, we
showed in Figure 5.11 the retrieved sources for the Markovian modeling (the estimated mixing
coefficients were â12 = 0.64, b̂112 = 0.69, â21 = 0.56, and b̂212 = 0.64 ). Note that, despite the
noise amplification, which is typical in nonlinear systems, the retrieved signals are close to the
sources. Conversely, in this new case, the method proposed in [87] failed to separate the sources
since the mixing coefficients violate the stability condition of the recurrent separating system.
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(c) Retrieved sources

Figure 5.11: Separation of LQ mixtures (Markovian modeling): SIR1 = 23.25 dB and SIR2 =
23.54 dB.

5.5 Conclusion

A first contribution of this chapter was a Bayesian source separation method tailored for the
NE model. The implementation of our idea relied on MCMC methods. A set of simulations
with synthetic data illustrated the effectiveness of the proposed method in the case when the
valences of the ions are equal (PNL model) but also when they are different (mixing model
considered in Chapter 3). Moreover, we also tested our proposal considering the experiments
of Chapter 2 that present the higher degree of interference. The obtained results showed that
the Bayesian algorithm was able to deal with these actual data even under adverse conditions,
namely: reduced number of samples and sources with a not negligible degree of correlation.
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Conversely, the use of an ICA-based solution failed to separate the sources in this case.
In a second part of this chapter, we considered a Bayesian method aimed at source separation

of linear and LQ mixtures. The resulting method was based on truncated Gaussian priors and
we considered an i.i.d. as well as a Markovian modeling for the sources10. By relying on
the definition of latent variables, we could avoid the presence of MH stages, which in turn
led to algorithms not requiring the specification of instrumental distributions. The conducted
experiments attested to the viability of the proposed method and showed that it is particularly
useful in some situations where ICA methods cannot be applied.

A final remark here concerns the computational complexity of the methods introduced in this
chapter; this is actually the main drawback of MCMC methods. Indeed, as we could see in the
first part of this chapter, the computational burden becomes quite large with increasing number
of samples and sources. In this context, there are some perspectives involving the reduction
of this complexity. A first one is to consider Hamiltonian MCMC methods to accelerate the
sampler’s convergence. Also, simplifications regarding the method’s implementation could be
envisaged. For example, some calculations could be parallelized by considering, for instance,
an implementation tailored for a graphics processing unit (GPU). Finally, another approach to
obtain a simpler Bayesian implementation could be achieved by defining methods based on the
variational approximation [146]. The difficulty here is that such a framework strongly relies on
the existence of conjugate priors.

10We also investigated the use of Markovian priors in the Bayesian method developed in Section 5.3. However,

the resulting algorithm in this case did not work properly.
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Chapter 6

Practical issues

6.1 Introduction

In this brief chapter, we consider some issues that are important in the application of the source
separation methods described in the last chapters to real problems. We focus on arrays of ion-
selective electrodes. In a first moment, we discuss some questions related to the post-processing
stage needed for circumventing the scale ambiguities typical of BSS. Then, we briefly comment
on some practical limitations that may pose some problems to the source separation methods,
e.g. the time required by ISEs to achieve the steady state.

6.2 Circumventing the scale ambiguity

As we mentioned in Chapter 1, the absence of strong prior information in blind source separation
methods culminates in permutation and scale ambiguities. Very often, finding the sources up
to an unknown permutation does not pose any particular problem. Moreover, in applications
in which one is only interested in retrieving the sources waveforms, the scale ambiguity can be
accepted. Unfortunately, this is not the case in chemical sensing applications as the main goal
is to retrieve the correct value of the concentration and not a scaled version.

Due to the limitation described in the last paragraph, the application of source separation
methods to chemical sensor arrays should be followed by a post-processing whose goal is to re-
trieve the correct scale. This additional stage requires, at least, two calibration points. Evidently,
in view of this requirement, we may ask ourselves why not simply use the available calibration
points for performing supervised processing. For example, we could define a separating system
(inverse of NE model) where the estimate ŝj(t) is given by

ŝj(t) =
nm∑

i=1

a∗ij10
xi(t)−e∗i

d∗
i . (6.1)

Then, we could estimate a∗ji, d∗i , and e∗i based on a supervised approach, i.e. by minimizing the
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following MSE regression criterion

J =
ns∑

j=1

nd∑

t=1

(ŝj(t)− sj(t))
2 . (6.2)

We will refer to such strategy as the supervised-NE algorithm.
Evidently, the performance of the supervised-NE algorithm depends on the number of avail-

able calibration points. To illustrate that, we show Figure 6.1 the resulting SIR as the number
of calibrations points Ncal grows. In this figure, which represents an average of 100 runs, one
can note that supervised-NE method requires Ncal = 20 for providing a SIR of approximately
20 dB (SIRs bellow this value indicate a poor source separation).

Also in Figure 6.1, we plot the performance of the Bayesian source separation proposed
in Section1 5.3. It is interesting to note that our Bayesian method only needs Ncal = 3 to
provide an estimation of approximately 20 dB. Of course, this difference2 between the number
of calibration points is achieved because the “real” data processing in our proposal is done by
the Bayesian BSS algorithm and the calibration points are only used to circumvent the signal
ambiguities.

Figure 6.1 is quite useful in that it clarifies the benefits brought by source separation methods.
The first remarkable point is that, when the acquisition of calibration points is not a stringent
problem, the employment of supervised method should be favored. Conversely, the application
of unsupervised methods becomes attractive when the number of calibration points is relatively
small; in our example, for instance, the performance of source separation methods is better than
that of the supervised-NE algorithm when there are less than 40 calibration points.
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Figure 6.1: Performance index as the number of calibration points grows.

1In this case, we considered the scenario with actual described in Section 5.3.6.2.
2In Figure 6.1, we plot the training performance of the supervised-NE algorithm. If the test error were plotted,

then the difference between the number of calibration points required by the supervised NE method and the one

required by the Bayesian method would be slightly bigger.
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6.3 Difficulties found in practice

In this section, we discuss some practical issues that may hinder the application of source
separation methods to ISE arrays.

6.3.1 Electrode’s dynamics

All along our work, we have assumed that the mixing process that takes in place in an ISE
array is instantaneous. However, it is well known [114] that the time taken by an ISE to reach
its steady response may not be negligible. The problem here is that, due to the assumption of
an instantaneous model, one must wait until the electrode’s stabilization to acquire a sample.
Of course, this means that the minimum sampling rate that one can consider is limited by the
electrode’s transition time.

In the experiments that were described in Chapter 2, the injection of solutions took place
every 30 seconds while the samples were acquired every 5 seconds. This long period of injection
gave some margin to the stabilization of the electrodes. However, if a lower period of injec-
tion were considered, we might face some problems given that a new injection could take place
before the stabilization of the electrodes regarding the preceding injection. In other words, in-
stantaneous models may not be suitable to fast-varying (high-frequency) signals. An interesting
question in this context is the study of dynamical mixing models for these particular cases.

6.3.2 Hysteresis

During our experiments, in a test with the a K+-ISE and a NH+
4 -ISE, we observed a particular

behavior in the response of the K+-ISE that resembled the hysteresis phenomenon. This can
be observed in Figure 6.2, which depicts the K+-ISE response as a function of the activity of
potassium. It should be noted, however, that the concentration of NH+

4 is also varying in the
considered test and, thus, although different responses for the same activity of K+ was obtained,
the concentrations of NH+

4 were different. That is, the different responses for the same activity
of K+ could be attributed to the interference ion NH+

4 -ISE. Nonetheless, it seems that is not
the only factor that is influencing the response of the K+-ISE. Indeed, curiously enough, we
observed that, for a same activity of K+, the response of the K+-ISE was larger for a smaller
activity of NH+

4 , which contradicts what we expect from the interference phenomenon. This is
the reason why we attribute the strange behavior shown in Figure 6.2 to a phenomenon related
to a system memory.

Electrodes presenting hysteresis may pose serious problems to the methods developed in this
thesis, given that the adopted mixing model does not take into account such a phenomenon.

6.3.3 Estimation of concentration

Because the proposed methods are based on the NE model, the sources correspond to the
ionic activities. In some applications, however, the quantity of interest is the concentration.
Of course, if one knowns the exact composition of the solution under analysis, then one can



6.4. Conclusion 126

−3.4 −3.2 −3 −2.8 −2.6 −2.4 −2.2 −2 −1.8 −1.6
0

5

10

15

20

25

30

35

40

45

50

log(Activity [K+])

E
le

ct
ro

de
 K

+
 (

m
V

)

Figure 6.2: Hysteresis in the response of the K+-ISE.

estimate the concentrations from the activities by using the Debye-Hückel equation (see Section
1.2.1). Nonetheless, this procedure cannot be used anymore if there is no information about
which ions are in the solution.

6.4 Conclusion

In this chapter, we briefly discuss some practical questions related to the application of source
separation methods to the design of ISE arrays. By comparing the number of calibration points
required by a source separation method and a supervised one to achieve a satisfactory perfor-
mance, we tried to highlight in which situations the application of the methods developed in
this thesis may be interesting. Also, we listed some practical problems that may hamper the
application of source separation methods to ISE arrays.



Conclusions

In this thesis, we considered the development of nonlinear source separation methods designed
for mixing models that are related to chemical sensor arrays. The focus of our research was on
arrays of ion-selective electrodes. Yet, our achievements may also be useful for the case of arrays
of ISFETs, given that such a sensor is often described through the same models used for ISEs.
In the present research, we also presented a contribution regarding the linear-quadratic model,
which is relevant in the context of arrays of tin oxide gas sensors.

Summary of contributions

The main contributions of this thesis are related to the development of new algorithms for source
separation in nonlinear models originated from the Nicolsky-Eisenman equation. In this context,
a first contribution was to address the situation in which the valences of the ions under analysis
are different. This case results in a nonlinear model characterized by the presence of a power
term. As discussed in Chapter 3, one of the challenges in this type of mixing model was how to
define the separating system. Inspired by the solution proposed in [86], we showed that a simple
yet efficient way to define the separating system in this case is to resort to recurrent systems.
Of course, in such a situation, it became of paramount importance to study the stability of the
recurrent separating system so we could have an idea about the range of concentrations and
selectivity coefficients within which the proposed method works properly.

Still in Chapter 3, we studied different types of ICA algorithms for adjusting the parameters
of the recurrent network set as separating system. In a first moment, we considered an algorithm
based on the nonlinear decorrelation principle. Despite its simplicity, we saw that such a method
has some performance limitations especially when the sources are close to the stability boundary.
Motivated by that, we studied, in a second moment, algorithms based on the minimization of
the mutual information between the retrieved sources. In this spirit, we developed a paradigm
based on the notion of the differential of the mutual information.

In Chapter 4, we described two contributions based on the use of prior information. In
the first one, we developed a way to adjust the Nernstian slopes for the case of the mixing
model considered in Chapter 3. The developed method assumes that one of the sources does
not vary in a certain time window. This hypothesis allowed us to formulate a criterion founded
on geometrical issues.

In a second part of Chapter 4, we turned our attention to the PNL mixing model, which is
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relevant for the application considered in this work because the NE equation, for ions of equal
valence, becomes an example of PNL model. Based on the assumption that the sources are
bandlimited signals, we showed that is possible to define a simple two-stage method, in which
the nonlinear stage of the PNL model can be counterbalanced by observing the effects of a
nonlinear function on the spectral content of the mixtures. Then, once the nonlinear stage is
inverted, the remaining task is of linear natural and, thus, can be dealt with through standard
linear source separation.

The data obtained in the experiments described in Chapter 2 shed some light on some
difficulties that are often found in real applications. For example, the sources may present a
certain degree of correlation and the number of available sample may be quite reduced. Since
these facts render difficult the application of ICA methods to our problem (at least to the
available data), we investigated, in Chapter 5, the benefits brought by a Bayesian formulation.
In a first part of that chapter, we developed a Bayesian source separation for the NE model.
We tried to exploit some information that is typical of chemical sensing application, e.g. the
fact that the sources are non-negative since they represent concentrations. To implement our
Bayesian algorithm, we resorted to an inference scheme based on MCMC methods. The resulting
algorithm has led to the most important practical result of the present research: we could
perform source separation in a scenario with actual data. It is noteworthy that, to the best of
our knowledge, this work was the first one to report results with actual data, thus showing that
the application of source separation methods to potentiometric arrays is indeed viable and can
pave way for new improvements in chemical sensing system.

Also in Chapter 5, we developed a Bayesian method for the separation of linear-quadratic
models. Based on the definition of auxiliary variables, we obtained a method that can be
implemented in a simple manner. Moreover, we showed through simulations that the developed
method is particularly useful in some cases where ICA methods fail.

Finally, in Chapter 6, we discussed some practical issues that may pose some problems to
the application of source separation methods to real problems of chemical sensing.

Perspectives

The benefits brought by chemical sensor arrays equipped with source separation techniques were
highlighted in Chapter 6; we showed, for instance, that such an approach leads to solutions that
work even if only a reduced number of samples is available. Of course, in a practical context,
this nice feature is quite useful; for instance a less demanding calibration step may ease analysis
in the field. Yet, despite the encouraging results obtained in this research, there are still many
questions that should be investigated before envisaging the incorporation of source separation
blocks into commercial chemical analyzers.

A first important question that must be addressed concerns the number of sources. All along
this thesis, we mainly considered that there were two sources and that such an information was
known in advance. However, in a practical situation, there might be many sources and, still
more problematic, it is not assured that their exact number be known.
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A second interesting point to be investigated is related to the underlying mixing process in
chemical sensor arrays. In our work, we have considered instantaneous mixing models. However,
as discussed in Chapter 6, sensors like ISEs do have a clear dynamical behavior. Besides,
several works [109, 155] on gas sensor arrays have shown that the array’s dynamics carries some
information regarding the mixing process. In view of such observations, it might be interesting
to investigate whether we can exploit these dynamical aspects in an unsupervised paradigm by,
for instance, formulating a dynamical source separation problem. More generally, we believe
that a more precise mixing model could increase the estimation quality, thus permitting the use
of source separation methods even in very-high-precision applications.

Finally, another important issue to be considered in future works concerns the definition of
more efficient practical algorithms. For instance, all the methods proposed in this thesis operate
in an off-line fashion and, thus, cannot be applied in applications requiring real-time operation.
Moreover, we also intent to improve the proposed off-line methods. For example, in our Bayesian
solution, the inference stage was carried out by means of sampling methods, which often result
in time-consuming algorithms when the number of sources and samples is large. One perspective
in this context is to investigate Bayesian methods based on the variational approximation [146],
since they provide a less complex solution in terms of computational burden.
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Appendix A

Ambiguities associated with the

model (3.1)

In this appendix, we discuss the ambiguities associated with the mixing model (3.1). With that
goal in mind, let us consider a situation with two sources and two mixtures. In this case, one
has the following mixing model:

x1 = e1 + d1 log(z1) = e1 + d1 log
(
s1 + a12s

k
2

)
, (A.1)

x2 = e2 + d2 log(z2) = e2 + d2 log
(
s2 + a21s

1/k
2

)
. (A.2)

A first point to be addressed concerns the influence of the off-set term ei. In this spirit let
us consider the inversion of the nonlinear stage through the following functions:

q1 = 10
x1−e∗1

d∗1 , (A.3)

q2 = 10
x2−e∗2

d∗2 , (A.4)

where e∗i and d∗i denote the parameters of the separating system. It can be easily verified that

q1 = 10

(
e1−e∗1

d∗1

)

z

d1
d∗1
1 , (A.5)

q2 = 10

(
e2−e∗2

d∗2

)

z

d2
d∗2
2 . (A.6)

From this expression, it becomes clear that the parameter e∗i only scales z
d1/d∗1
i . As a consequence,

it is not possible to retrieve e∗i by means of ICA methods given that statistical independence is
not altered by scaling.

Another interesting point concerns the sources scaling. Actually, when one fixes a11 = a22 =
1 in a linear model with two sources and two mixtures, there is no scale ambiguity in the
estimation of the sources. However, this is no longer true for the model (A.2). Indeed, consider
the following solution s∗1 = Ss1 and s∗2 = Ss2, where S is a constant representing the scale
indeterminacy. To verify if the sources can be scaled, we must check whether it is possible
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rewrite (A.2) but now in terms of s∗1 and s∗2. In this spirit, let us assume that k = 1 (PNL
model). It is not difficult to check that (A.2) can be written as follows

x1 = e∗1 + d1 log
(
s∗1 + a12s

∗
2

)
, (A.7)

x2 = e∗2 + d2 log
(
s∗2 + a21s

∗
2

)
, (A.8)

where e∗i = ei + d∗i log(S). This expression points out that the solutions s∗i = Ssi are valid,
which in turn confirms that there is a scale ambiguity in the analyzed case.



Appendix B

Optimization via the opt-aiNet

algorithm

In this appendix, we describe the opt-aiNet1 algorithm [47], which was used for accomplishing
optimization tasks in Chapters 3 and 4. The opt-aiNet algorithm was inspired by the modus
operandi of the immunological system. The applicability of the opt-aiNet to signal processing
problems was firstly studied by Attux [11]. In this work, it has been shown that the opt-aiNet is
particularly interesting to overcome the following difficulties: 1) existence of bad local minima,
2) impossibility to calculate the derivatives of the cost-function and 3) risk of instability during
the learning phase.

The opt-aiNet can be classified as an evolutionary algorithm. A fundamental notion in such
class of algorithms is the concept of population, which comprises a set of individuals, each
of them representing a candidate solution for the considered optimization problem. Another
important concept in evolutionary algorithms is the fitness of each individual. The fitness of an
individual is related to the cost function evaluated at the solution represented by that individual.
Since the opt-aiNet maximizes the fitness of the population during the iterative procedure, for
maximization problems, the fitness can be simply defined as f = J , where J corresponds to cost
function. Conversely, for minimization problems, the fitness is given by f = 1/(1 + J).

The robustness of the opt-aiNet to suboptimal convergence is due to the existence of a
mechanism that guarantees diversity within the individuals of the population, thus minimizing
the risk of having candidate solutions converging to a same local mode of the cost function.
Another interesting aspect of the opt-aiNet is the presence of a mechanism to automatically
control the size of the population. This characteristic is not found in more classical evolutionary
techniques such as the genetic algorithms.

In Table B.1, we present the opt-aiNet algorithm. Briefly speaking, there are two main stages
in this method: the first one concerns the step 2 in Table B.1 and is related to a local search
procedure whose goal is to improve the fitness of the population through cloning, mutation and
selection operators. Step 3 is related to the mechanism responsible for controlling the size of the
population and for keeping a satisfactory level of diversity. This is done by suppressing similar

1Opt-aiNet is an acronym for Artificial Immune Network for Optimization.
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Table B.1: The opt-aiNet algorithm.

1. Initialization: randomly create a population;

2. Local searching: while stopping criterion is not met, do:

(a) Clonal expansion: for each individual, determine its fitness fi. Generate a set of Nc

clones, which are the exact copies of their parent individuals;

(b) Mutation: mutate each clone c∗i with a rate that is inversely proportional to the fitness fi of
its parent individual ci, which itself is kept unmutated:

c∗i = ci + αN(0, 1), with α = β−1 exp (−f∗i ) , (B.1)

where N(0, 1) corresponds to the realization of a normal variable; β is a free parameter
that controls the decay of the inverse exponential function.

(c) Selection: for each group composed of the parent individual and of their mutated clones,
select the individual with highest fitness and calculate the average fitness of the selected
individuals.

(d) Local convergence: if the average fitness of the population does not vary significantly from
one iteration to the other, go to the next step; else, return to Step 2;

3. Interactions in the population;

(a) Individual interactions: determine the similarity between each pair of individuals in the
population ;

(b) Individual suppression: eliminate all but one of the individual whose affinity (similarity cal-
culated by the Euclidean distance) with each other is lower than a pre-specified threshold
σs, and determine the size of the population;

(c) Diversity: introduce a number of new randomly generated individual into the population
and return to Step 2.

individuals.
In the opt-aiNet algorithm, there are some parameters that should be defined, notably the

number of clones per individual Nc, the suppression threshold σs and the parameter β which is
related to the mutation. There is no systematic way to adjust all these parameters and, very
often, they are adjusted based on preliminary simulations. Concerning the initial size of the
population, its definition does not pose a problem since there is an automatic mechanism to
control this parameter.



Appendix C

Blind extraction of smooth signals

through the SOFI algorithm

C.1 Introduction

In this appendix, we describe a novel linear source separation method for retrieving baseband
signals having different bandwidths. Such a configuration is characterized by the existence
of inactive bands in the frequency domain. By exploiting the eigenstructure of the mixtures
covariance matrix calculated in these inactive bands, we develop a simple yet efficient extraction
procedure that works in an ordered fashion, in which the sources are extracted according to
their degree of smoothness. Numerical results attest the viability of the proposal.

The work presented in this appendix was done in cooperation with professor Bertrand Rivet.

C.2 Mixing model and assumptions

We consider a linear mixing model, i.e. the vector x(t) = [x1(t) . . . xM (t)]T containing the M

mixtures is given by

x(t) = As(t), (C.1)

where s(t) = [s1(t) . . . sN (t)]T represents the N sources, and A ∈ RM×N is the mixing matrix.
The i -th column of A is represented by ai, i.e. A = [a1 . . . aN ].

The following hypotheses are considered:

H1) M ≥ N , i.e. the number of mixtures is greater or equal to the number of sources, which
is assumed to be known.

H2) The sources covariance matrix is given by Rs = E{s(t)s(t)T } = diag(σ2
s1

, . . . , σ2
sN

), where
σ2

si
denotes the variance of the i -th source.

H3) Each source si(t) is a baseband signal with maximum frequency given by Bsi , where
Bs1 6= Bs2 6= . . . 6= BsN .
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Concerning the hypothesis H1, if M > N then a dimensional reduction, e.g. via principal com-
ponent analysis (PCA), should be done to obtain M = N . Hypothesis H2 assures uncorrelated
sources. Finally, hypothesis H3 guarantees sources with different spectral contents, which is a
necessary condition for identifiability in methods based on second-order statistics. For the sake
of clarity, we also assume that Bs1 < Bs2 < . . . < BsN . In view of the permutation ambiguity,
there is no loss of generality in this additional assumption, and our method works no matter the
original order of the sources.

C.3 The covariance matrix eigenstructure in inactive bands

Equation. (C.1) also holds in the frequency domain1, i.e.

x(f) = As(f). (C.2)

In view of assumption H3, the baseband sources are inactive in certain frequency bands. For
instance, the spectrum of the signal having smaller bandwidth, s1(f), is inactive beyond the
frequency Bs1 .

Sources having inactive bands can be detected through second-order statistics [138, 149].
Indeed, let us consider a frequency band, represented by γ, where K signals are inactive, i.e.
for f ∈ γ, ∃κ1, . . . , κK / sκ1(f) = . . . = sκK (f) = 0. In this case, the mixing model becomes
overdetermined (N mixtures and N−K sources) and, thus, the covariance matrix of the mixtures
in the band2 γ, Rx(γ), becomes rank deficient. The key point here is that the number of null
eigenvalues corresponds to the number of inactive sources, i.e. it is possible to search, in a
blind fashion, all the inactive bands by analyzing the profile of the eigenvalues of Rx(f) for all
frequencies. This is illustrated in Figure C.1 which shows the DCT of three baseband sources3

and the eigenvalues of Rx(f).
In practice, the identification of inactive bands is done by searching for the eigenvalues

that are smaller than a pre-defined threshold φ. However, suppose that one of the sources,
say s1, is much less powerful than the other ones. In this case, even when all the sources are
active, the eigenvalue of Rx(f) associated with s1 is much smaller than the other eigenvalues,
which may lead to an incorrect inactive period detection. As shown in [149, 138], this prob-
lem can be mitigated by replacing the ordinary eigenvalue decomposition by the generalized
eigenvector decomposition (GEVD) of the matrices (Rx(f), Rx([0, 1])). As a corollary of the
result shown in [149], the number of null generalized eigenvalues associated with the GEVD of
(Rx(f), Rx([0, 1])) also gives the number of inactive sources in the frequency window (size W )
centered at f .

1We considered the discrete cosine transform (DCT) to obtain a frequency domain representation. The DCT

has the advantage of being a real-valued transform.
2The following notation is adopted: given a vector x(f) of signals in a frequency representation, Rx([Bx1 , Bx2 ])

and Rx(f) denote, respectively, the covariance matrix of x(f) calculated in the band [Bx1 , Bx2 ] and in a frequency

window of size W centered at f .
3We consider the normalized frequency where B = 1 corresponds, in the analog domain, to Fs/2 (Fs being the

sampling frequency).
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Figure C.1: DCTs of sources (first three signals) and the eigenvalues of Rx(f). The number of
null eigenvalues indicates the number of inactive bands.

C.4 SOFI algorithm

In this section, we discuss how the SOFI algorithm makes use of the particular eigenstructure of
Rx(f) for sequentially extracting the sources. A first step in this context is to estimate, through
a sliding-window of size W , the covariance matrix Rx(f) for all frequencies. Then, as discussed
before, the generalized eigenvalues of (Rx(f), Rx([0, 1])) can be used to identify the inactive
frequency bands. In practical terms, this is done by comparing the generalized eigenvalues at a
given frequency f with a pre-established threshold φ.

Based on the information brought by the generalized eigenvalues, one can identify, for in-
stance, the frequency interval f ∈ [Bs1 , Bs2 ], in which only s1(f) is inactive. The key point here
is that the generalized eigenvector v1 associated with the unique null generalized eigenvalue
of (Rx([Bs1 , Bs2 ]), Rx([0, 1])) is orthogonal to all the columns of A except a1. Indeed, in this
situation one has

Rx([Bs1 , Bs2 ])v1 = 0. (C.3)

As the sources are uncorrelated (H2) and s1(f) is inactive in the interval [Bs1 , Bs2 ] (H3), one
can write4

Rx([Bs1 , Bs2 ]) = ARs([Bs1 , Bs2 ])A
T = [a2 . . .aN ]diag(σ2

s2(f), . . . , σ
2
sN (f))[a2 . . .aN ]T . (C.4)

By substituting Equation (C.4) into Equation (C.3), one readily obtains vT
1 A = [α 0 . . . 0],

where α 6= 0, which means that v1 can be used to extract the smoothest source s1(f).

Even though the idea described above aims at the extraction of the smoothest source, i.e.
the one having bandlimited in Bs1 , it can also be used for recovering the remaining sources.
This can be achieved through a deflation procedure (see [163] for instance), in which the goal is

4Without loss of generality, s2(f), . . . , sN (f) are supposed centered here.
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to eliminate the contribution of the estimated source ŝ1(f) = vT
1 x(f) to x(f). In mathematical

terms, this procedure is given by

x(f) ← x(f)− h1ŝ1(f) (C.5)

where h1 = E{x(f)ŝ1(f)}/E{ŝ2
1(f)} (this vector minimizes E{(x(f)− h1ŝ1(f))2}).

As the outcome of the first deflation is a BSS problem with N mixtures and N − 1 sources,
we reduce the dimension of x(f) via PCA to obtain a (N − 1) × (N − 1) model. After that,
we retrieve a similar scenario to the one that we had before the first GEVD, but now s2(f)
appears as the smoothest source. Therefore, this signal can be estimated through the GEVD of
Rx([Bs2 , Bs3 ]) and Rx([0, 1]). Finally the remaining sources can be extracted by repeating the
same steps described so far, as detailed in Algorithm 1.

Algorithm 1 SOFI algorithm
1: if M > N , reduce the dimension of x(t) to N via PCA end if
2: Calculate a frequency representation of the mixtures⇒ xi(f) = DCT (xi(t)), for i = 1, . . . , N

3: For all frequencies f , estimate Rx(f) (covariance matrix calculated in a frequency window
of size W and centered in f) and compute the GEVD of (Rx(f), Rx([0, 1]))

4: Based on the number of generalized eigenvalues smaller than φ for each frequency, identify
the frequency bands [0, Bs1 ],[Bs1 , Bs2 ], . . .,[BsN , 1]

5: for i = 1 to N − 1 do
6: Compute GEVD(Rx([Bsi , Bsi+1 ]),Rx([0, 1]))⇒ vi is the generalized eigenvector associated

with the smallest generalized eigenvalue.
7: Estimation of si(f) ⇒ ŝi(f) = vT

i x(f)
8: Deflation step ⇒ Equation (C.5)
9: Reduce the dimension of x(f) to N − i through PCA

10: end for

Some remarks on the SOFI algorithm. First, if the extraction of only a few smooth sources
is envisaged, then there is no need to estimate the eigenvalues profile for all frequencies: one
may stop when the number of inactive bands is equal to the number of sources to be extracted.
Second, even when H3 is only approximated, the SOFI algorithm can recover all the sources
except those having the same bandwidth.

C.5 Experiments

Before describing the experiments, let us discuss the selection of W and φ. W acts as a sort of
frequency resolution in the sense that a small W allows the separation of sources having close
bandwidths. Of course, too small a W means that only few samples are used in the estimation
of Rx(f), i.e. there is a tradeoff between frequency resolution and estimation accuracy. In the
experiments provided in this section, we checked that a good empirical strategy to set W is to
consider about 5% of the total number of samples.
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Figure C.2: Performance as a function of the threshold φ.

Ideally, the smaller the threshold φ, the better the silent periods detection is and, conse-
quently, the better the performance is. This was actually observed in experiments with noiseless
models. For example, in Figure C.2, we plot the index SIR1 as a function of φ (we considered
here the extraction of one source from three mixtures). Note, however, that the influence of φ

is minimal when φ < 0.1. In noisy scenarios, the definition of φ is more tricky and requires a
visual inspection of the eigenvalues profile.

C.5.1 Source Separation

We here consider the separation of the sources shown in the first column of Figure C.3: an
exponential signal and three signals obtained from low-pass filtering of white Gaussian noise;
the respective bandwidths are given by Bs1 = 0.2, Bs2 = 0.5, and Bs3 = 0.8. The mixtures are
shown in the second column of Figure C.3 (2000 samples were considered). The third column of
Figure C.3 presents the signals recovered by the SOFI algorithm (W = 71 and φ = 0.001). The
original order of extraction is kept in Figure C.3; note that SOFI indeed ranks the components
according to their smoothness. The performance indices in this case were: SIR1 = 63 dB,
SIR2 = 30dB, SIR3 = 30 dB, and SIR4 = 27dB. Note that the SIR decreases as the extraction
procedure progresses; this is typical in deflation-based approaches and is due to the accumulation
of errors from the precedent iterations.

C.5.2 Extraction of a smooth signal from a large number of mixtures

We consider the extraction of an exponential signal from N mixtures of N sources having
bandwidths between 0.4 and 0.9. As shown in Table C.1, the SOFI algorithm (with φ = 0.0001
and W = 101) has led to high SIRs, even for a large N . We also show in this table the
performances achieved by the SOBI [26] and FastICA [90] algorithms5. As these two methods

5The FastICA did not converge for N = 50 and N = 70.
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Figure C.3: Example of source separation: sources (first column), mixtures (second column)
and retrieved signals (third column).

Table C.1: Extraction of the smoothest signal: SIR ( dB) for different number of sources N

(average over 50 experiments).
N = 2 N = 10 N = 20 N = 50 N = 70

SOFI 86.7 72.5 68.7 63.2 55.5
SOBI 61.0 43.7 40.4 36.3 34.9

FastICA 39.2 23.7 19.6 − −

do not rank the sources, the exponential source was obtained by analyzing each retrieved signal6.

C.5.3 Source extraction in a noisy situation

We here consider the extraction of the exponential depicted in Figure C.4 (first row third column)
from M = 10 mixtures (first two columns of Figure C.4) of N = 5 sources (signals of bandwidths
Bs2 = 0.4, Bs3 = 0.6, Bs4 = 0.8 and Bs5 = 0.9). Each mixture was corrupted by additive white
Gaussian noise of signal-to-noise ratio (SNR) equal to 15 dB. Regardless of noise, it is still
possible7 to identify the inactive bands; by inspecting Figure C.5 it is clear that the inactive
bands can be identified by looking at the eigenvalues lower than approximately 0.1 (this value
is thus attributed to the threshold φ). The first inactive band is thus the one in which there is
only one eigenvalue lower than φ (B̂s1 = 0.03 and B̂s20.43 in this case). The SOFI algorithm
(W = 301) provided the second signal (SIR1 = 10.4 dB) of the third column in Figure C.4.

6[117] proposed a method to extract smooth sources based on the FastICA. As the idea was to force the first

component to be the smoothest one, the performance of this constrained FastICA approach is equivalent to that

of the ordinary FastICA (symmetric orthogonalization version).
7This is due to the GEVD; if the ordinary EVD were considered, the noise terms would be taken as inactive

sources.
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Figure C.4: Source extraction: mixtures (first and second columns). Third column contains:
actual source, its estimation, and a filtered version of this estimation.
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Figure C.5: Generalized eigenvalues of (Rx(f),Rx([0, 1])) in a noisy scenario.

Note that the estimated bandwidths can be used to improve the extracted source. Indeed, after
low-pass filtering (stopband at B̂s1 = 0.03), we obtained SIR1 = 23.9 dB (see the third column,
last row of Figure C.4). For matter of comparison, the performance of the SOBI algorithm was
SIR1 = 10.4 dB.

Finally, we consider the same situation described above but now with a noise of SNR = 10dB.
Again, based on a visual inspection of the eigenvalues profile, we set φ = 0.4. The performance
obtained by the SOFI algorithm was SIR1 = 6.0 dB, and SIR1 = 22.6 dB after low-pass filtering
at the estimated B̂s1 = 0.013. A similar performance of the SOBI algorithm was obtained
(SIR1 = 6.0 dB).
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C.6 Conclusion

We introduced in this appendix the SOFI algorithm, a BSS method designed to separate base-
band signals. By exploiting the existence of inactive bands, we developed a simple algorithm
that is based on second-order statistics and on a deflation procedure. As it could be checked
in simulations, the proposed method performs well even in the presence of noise; moreover, it
outperformed standard BSS algorithms in the problem of extracting a smooth signal from a
great number of mixtures. Future works include the derivation of an automatic strategy for
adjusting the parameter φ in noisy scenarios.
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Bibliography 154

[123] S. Moussaoui, D. Brie, and J. Idier, “Non-negative source separation: range of admissible
solutions and conditions for the uniqueness of the solution,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5,
18-23 March 2005, pp. v/289–v/292Vol.5.
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Spécialité : Signal, Image, Parole, Télécoms
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Dr. Säıd MOUSSAOUI, Examinateur

Dr. Pierre TEMPLE-BOYER, Examinateur

Résumé

Dans ce document, nous présentons un résumé des travaux réalisés pendant la thèse de doctorat

de Leonardo Tomazeli Duarte. Une description plus détaillée de ces travaux est présentée dans la

version originale (en anglais) du manuscrit [1].

1 Introduction

L’une des principales difficultés dans l’utilisation de capteurs chimiques concerne le manque de

sélectivité inhérent à ces dispositifs. La stratégie classique pour faire face à ce problème est fondée sur

le développement de nouvelles membranes qui conduisent à des capteurs plus sélectifs. Toutefois, plus

récemment, on a démontré que ce problème peut également être traité par une autre approche, dans la-

quelle l’acquisition de données est effectuée par un réseau de capteurs qui ne sont pas forcément sélectifs.

Ainsi, après l’acquisition, les informations pertinentes sont récupérées à l’aide des outils de traitement de

signal. L’un des bénéfices le plus remarquable dans cette démarche concerne la flexibilité et l’adaptabilité

du système de mesure. Compte tenu de ces deux caractéristiques, l’idée décrite ci-dessus, et illustrée à la

figure 1, est couramment appelée ¿réseau de capteurs chimiques intelligent À.

La méthode de traitement du signal utilisée dans un réseau de capteurs chimiques intelligent dépend 1)

du type d’analyse souhaitée (quantitative ou qualitative) et 2) du paradigme d’adaptation de la technique
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Figure 1 – Réseau de capteurs chimiques intelligent.

choisie ; les techniques dites supervisées ont besoin d’un jeu d’échantillons d’étalonnage pour l’adaptation,

tandis que les techniques non-supervisées n’utilisent que les réponses fournies par le capteurs. La combi-

naison de ces deux caractéristiques conduit à des problèmes différents de traitement du signal, comme le

montre le tableau 1.

Table 1 – Réseaux de capteurs intelligents : les différents types de méthode de traitement du signal.
Analyse qualitative Analyse quantitative

Supervisé Classification Régression

supervisée multivariée

Non-supervisé Clustering Séparation aveugle

des sources

Dans cette thèse, nous nous plaçons dans le contexte de l’analyse quantitative non-supervisée. Cette

situation peut être formulée comme un problème de séparation aveugle de sources (SAS). En effet, les

méthodes de séparation aveugle de sources (SAS) ont pour but retrouver un ensemble de signaux inconnus

(appelés sources) en n’utilisant qu’un ensemble de mélanges, c’est-à-dire des observations obtenues en

mélangeant les sources. Dans l’application envisagée, les sources représentent les activités chimiques des

espèces en cours d’analyse tandis que les mélanges comprennent les réponses de chaque capteur dans

le réseau. Le principal avantage dans l’utilisation des méthodes de SAS concerne la réduction, voire

l’élimination, de l’étape d’étalonnage.

Puisque les capteurs chimiques considérés dans cette recherche, les électrodes ioniques sélectives (ISE),

présentent des réponses non linéaires, le processus de mélange sous-jacent au réseau de capteurs est non

linéaire, ce qui rend le problème difficile. En effet, quoique le problème de séparation de mélanges linéaires

et ses solutions reposent désormais sur de solides bases théoriques [2, 3], l’instance non linéaire de la SAS

présente encore des défis théoriques et pratiques [4].

Les principales contributions de cette recherche sont liées justement au développement de méthodes

de séparation dans des mélanges non-linéaires à partir de mesures réalisées sur des réseaux d’électrodes
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sélectives potentiométriques. Plus précisément, nous considérons le processus de mélange engendré par

l’équation de Nicolsky-Eisenman (NE) [5, 6], d’après laquelle la réponse du i-ème capteur du réseau,

représentée par xi(t), s’écrit :

xi(t) = ei + di log
(
si(t) +

∑

j,j 6=i

aijsj(t)
zi
zj

)
, (1)

où si(t) et sj(t) correspondent respectivement aux activités chimiques de l’ion ¿cible À et des ions

¿interférants À. Les paramètres ei et di sont des paramètres inconnus à valeur constant. Finalement, la

quantité zk, qui est supposée connue dans ce travail, correspond à la valence de l’ion k.

Ce résumé est organisé comme suit : dans la partie 2, nous commentons les expériences que nous

avons conduit afin d’obtenir un ensemble de données réels pour valider les modèles considérés ainsi que

les méthodes proposées. Ensuite, nous décrivons les techniques proposées, à commencer, dans la partie 3,

par celles fondées sur l’analyse en composantes indépendantes (ACI). Dans la partie 4, nous montrons

deux stratégies pour simplifier le problème de SAS à partir de la prise en compte des informations a

priori typiques de l’application traitée. Dans la partie 5, nous continuons notre investigation sur la prise

en compte des informations a priori, mais maintenant en nous appuyant sur une approche bayésienne.

Enfin, nous présentons nos conclusions et des perspectives dans la partie 6.

2 Expériences avec des électrodes sélectives

L’objectif des expériences réalisées a été d’acquérir un ensemble de données avec les mesures suivantes :

1) évolution temporelle de l’activité des ions en cours d’analyse (sources) et 2) la réponse de chaque ISE

dans le réseau (mélanges). Ces expériences ont été conduites au Laboratoire d’Analyse et d’Architecture

des Systèmes (LAAS-CNRS, Toulouse) dans le cadre d’une collaboration avec le Dr Pierre Temple-Boyer

et son équipe. Les données obtenues sont publiquement disponibles sur le site www.gipsa-lab.inpg.fr/isea.

Nous avons considéré les scénarios suivants (chaque scénario était composé de 8 expériences.) :

1. Analyse d’une solution contenant NH4Cl et KCl en utilisant une NH+
4 -ISE et une K+-ISE ;

2. Analyse d’une solution contenant NaCl et KCl en utilisant une Na+-ISE, une K+-ISE et une Cl−-

ISE ;

3. Analyse d’une solution contenant NaCl et CaCl2 en utilisant une Ca2+-ISE, deux Na+-ISEs et une

Cl−-ISE ;

Le premier scénario est un exemple bien connu d’interférence dans le contexte des électrodes sélectives :

les ions potassium et ammonium. Par exemple, ce cas est pertinent dans les applications telles que la

surveillance de la qualité de l’eau. Dans le deuxième scénario, nous considérons aussi l’analyse de deux

ions monovalents (sodium et potassium), mais maintenant avec un réseau de capteurs composé de quatre

électrodes, dont une électrode de sodium supplémentaire. La motivation pour effectuer ce deuxième

scénario consistait à vérifier si une éventuelle variabilité entre deux capteurs du même type pourrait être

exploitée par une méthode de SAS. Enfin, dans le troisième scénario, nous analysons la situation dans

laquelle les ions ont des valences différentes (calcium et sodium). D’après l’équation de NE, cette situation

conduit à un modèle de mélange qui présente des termes de puissances.
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Dans la figure 2, nous montrons le dispositif expérimental. En bref, il y avait deux burettes automa-

tiques qui injectaient des solutions salines afin de faire varier les concentrations, et donc les activités, des

ions analysés. La configuration des burettes et l’acquisition des données ont été faites à l’aide d’un logiciel

développé par les chercheurs du LAAS.

Figure 2 – Le dispositif expérimental.

Quant à l’analyse de données, nous avons considéré une approche fondée sur des régressions non-

linéaires par moindres carrés. En général, le modèle de NE a fourni des bonnes explications pour les

données d’une même expérience. Toutefois, à cause du manque de répétabilité dans les réponses des ISEs,

il s’est avéré difficile de modéliser ensemble toutes les expériences d’un même scénario. Curieusement,

alors que cette absence de répétabilité pose des problèmes dans un contexte supervisé (il peut en résulter

des modèles avec une capacité de généralisation faible), il sert comme un argument pour les approches

non supervisé.

D’après notre analyse de données, le scénario 1 a été le plus intéressant pour l’étude des méthodes de

SAS. En effet, dans ce cas, nous avons observé un niveau d’interférence important dans les électrodes de

potassium et ammonium. Une autre observation importante de notre analyse est que les deux capteurs

de sodium utilisés dans le scénario 2 présentaient des réponses très similaires, ce qui rend très difficile,

au moins dans ce cas particulier, la conception de méthodes de séparation pour des réseaux composés de
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capteurs du même type.

3 Méthodes fondées sur l’analyse en composantes indépendantes

(ACI)

Une première étape naturelle pour développer des méthodes de SAS est de se concentrer sur les tech-

niques d’analyse en composantes indépendantes (ACI), puisqu’elles fonctionnent avec un minimum d’in-

formation préalable : uniquement le fait que les sources sont statistiquement indépendantes. Récemment,

quelques résultats dans cette direction ont été rapportés. En particulier, Bedoya [7] a analysé l’application

des méthodes d’ACI pour la détection des ions de même valence. Dans cette situation, le modèle de NE

devient un cas particulier de la classe de modèles de mélanges post non linéaires (PNL) pour laquelle il

existe de nombreuses solutions [8, 9, 10].

Dans cette thèse, nous étudions les méthodes d’ACI pour une situation qui n’a pas encore été abordée,

à savoir : des réseaux de ISEs conçus pour analyser des ions de valences différentes. En fonction de la

configuration du réseau, ce cas particulier peut engendrer un modèle de mélange assez complexe. Face à

cette difficulté, nous avons considéré, dans un premier moment, une version simplifiée du modèle de NE,

où les paramètres di et ei sont supposés connus par avance. De plus, nous traitons l’analyse de deux ions

(donc deux sources) à partir d’un réseau de deux électrodes, chacun ayant un ion différent comme cible.

Dans cette situation, le modèle (1) s’écrit

x1 = s1 + a12s
k
2

x2 = s2 + a21s
1
k
1

, (2)

où le terme k correspond au rapport des valences z1/z2 ; nous supposons que k ∈ N, ce qui est le cas, par

exemple, dans le scénario 2 (détection des ions sodium et calcium) de nos expériences.

Une première difficulté dans la conception d’une méthode de séparation pour le modèle (2) concerne

le choix d’un système apte à inverser les processus de mélange. En effet, puisque le modèle (2) n’est

pas inversible, il s’avère difficile de définir un système d’inversion direct. Afin de surmonter ce problème,

nous avons proposé comme système d’inversion la structure récurrente illustrée par la figure 3. L’une des

motivations pour un tel choix a été les bons résultats obtenus par des systèmes d’inversion récurrents

dans le contexte de mélanges linéaires-quadratiques (LQ) [11, 12].

On peut montrer que, étant donné un échantillon des mélanges [x1(T ) x2(T )]T , l’échantillon des

sources qui a généré ces mélanges, [s1(T ) s2(T )]T , est un point fixe du système montré dans la fi-

gure 3 lorsque ses paramètres sont égaux aux paramètres du système mélangeant. Autrement dit, la

structure récurrente adoptée est capable de procéder à une inversion implicite du processus mélangeant.

Évidemment, il devient important dans ce cas de vérifier si le point fixe séparant est stable. Dans ce

contexte, nous avons mené une étude de la stabilité locale du système séparant récurrent, ce qui nous a

fourni des conditions nécessaires pour le bon fonctionnement de notre méthode.

Quant à adaptation de la structure récurrente adoptée, nous avons considéré, dans un premier temps,

une méthode basée sur la décorrelation non linéaire. Cette approche fournit une règle d’apprentissage

simple qui ne demande que l’estimation de quelques statistiques d’ordre supérieur. Néanmoins, nous avons
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Figure 3 – La structure récurrent adoptée comme système separant.

vérifié, à partir d’une étude de stabilité, que la règle d’adaptation obtenue ne peut être appliquée que

pour quelques classes de sources. Face à cette difficulté, nous avons considéré d’autres types de méthodes

ACI qui sont fondées sur une mesure plus précise d’indépendance : l’information mutuelle.

La dérivation d’un algorithme ACI suivant la minimisation de l’information mutuelle a été effectuée à

l’aide du théorème proposé en [13]. Cela nous a permis d’obtenir un algorithme dont l’implémentation est

assez simple. Néanmoins, malgré les bons résultats obtenus dans quelques scénarios artificiels, la méthode

proposée présente quelques limitations qui ont empêché son application sur des données réelles. D’abord,

puisqu’il s’agit d’une méthode ACI, les sources sont supposées indépendantes, ce qui n’a pas été le cas

pour les données réelles. De plus, la méthode développée demande un grand nombre d’échantillons pour

fournir une bonne estimation des sources.

4 Utilisation des informations a priori

À l’origine, l’étude sur la séparation à la source était concentrée sur des situations très générales,

où un minimum d’information sur les sources était pris en compte. Dans les méthodes de l’ACI, par

exemple, on ne considère que l’hypothèse d’indépendance entre les sources. Néanmoins, plus récemment,

il y a une tendance claire vers des méthodes qui prennent en compte des informations supplémentaires.

La raison en est simple : dans de nombreux problèmes, les informations supplémentaires apparaissent très

naturellement. De plus, en s’appuyant sur ces informations, on peut obtenir une meilleure performance

et des algorithmes plus efficaces, et souvent plus simples.

Dans cette thèse, nous avons étudié l’utilisation des informations a priori qui sont souvent disponibles

dans l’application traitée. Dans un premier temps (voir paragraphe 4.1), nous avons considéré la même

situation décrite dans la section précédent, à savoir : l’analyse d’ions de valences différentes. Ensuite, nous

avons considéré l’utilisation des informations a priori pour définir une nouvelle méthode de séparation de

mélanges PNL, qui, rappelons-le, sont liés à la détection d’ions de valences égales.
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4.1 Utilisation d’informations a priori : approche géométrique

Dans la proposition décrite dans la partie 3, nous avons supposé que les paramètres di étaient connus

par avance. A priori, on pourrait étendre la méthode proposée pour estimer ces paramètres. Cependant,

dans ce cas, le risque d’instabilité de la structure récurrente devient important. En outre, la séparabilité

du système de mélange n’est pas assurée dans ce cas. Autrement dit, on n’est pas sûr que l’application

du principe de l’ACI soit suffisante pour assurer la séparation des sources.

C’est dans le contexte décrit au paragraphe précédent que la prise en compte des informations a priori

s’avère intéressante. En effet, en supposant comme hypothèse additionnelle que l’une des sources reste

constante pendant un période de temps, nous avons proposé un algorithme pour estimer les paramètres

di dans une étape qui précède l’application de la méthode décrite dans la partie 3. En bref, l’estimation

des paramètres di est conduite en prenant en compte les courbes engendrées dans le plan conjoint des

signaux pendant la période d’inactivité. Afin d’illustrer la performance de la méthode proposée, nous

montrons, dans la figure 4, les sources, les mélanges et les sources estimées par l’algorithme dans un

scénario synthétique. Notons que la méthode a réussi à séparer les sources. Cependant, le besoin d’un

grand nombre d’échantillons est toujours présent dans ce cas.
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Figure 4 – Application de la méthode géométrique.

4.2 Utilisation d’informations a priori : approche fréquentielle

Dans le contexte de mélanges PNL, nous avons proposé une nouvelle méthode en deux étapes, fondée

sur l’hypothèse que les sources sont des signaux à bande limitée. Ceci est souvent le cas pour les signaux
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chimiques puisqu’ils sont à variation très lente. Compte tenu de cette hypothèse, les signaux issus de la

première partie du système mélangeant sont toujours des signaux à bande limitée, puisqu’ils sont des

combinaisons linéaires des sources. Néanmoins, à cause de l’étalement spectral introduit par les fonctions

non linéaires, les mélanges PNL sont des signaux ayant un spectre plus large que celui des sources.

Afin d’inverser les effets introduits par les fonctions non linéaires de mélanges, nous avons proposé

une nouvelle méthode où on ajuste les fonctions non linéaires de séparation de sorte que leurs sorties

soient à nouveau des signaux à bande limitée. Ainsi, une fois cette première étape est achevée, on peut

utiliser les méthodes de SAS linéaire pour retrouver les sources originelles. L’application de la méthode

proposée, qui est illustrée à la figure (5), s’est avérée très efficace dans les scénarios synthétiques et aussi

dans le premier scénario de nos expériences.

Figure 5 – Schéma de séparation de sources à bande limitée dans des mélanges PNL.

5 Approche bayésienne

Les méthodes présentées dans la partie précédente utilisent les informations a priori plutôt comme une

stratégie pour simplifier le modèle de mélange. Une autre façon de prendre en compte des informations

a priori typiques de signaux chimiques peut être obtenue à partir d’une formulation bayésienne, où

les informations préalables apparaissent maintenant comme un élément central. L’une des motivations

derrière cette approche est liée à certaines informations a priori dont la prise en compte est plus facile

dans un cadre probabiliste, comme par exemple la non-négativité des sources 1 ou le caractère bruité des

mesures.

Essentiellement, il y a trois étapes dans la formulation d’une méthode bayésienne de séparation de

sources [14]. Tout d’abord, il faut définir des lois a priori pour chaque paramètre inconnu. C’est dans

cette étape qu’on incorpore les informations disponibles du problème traité. Par exemple, nous avons

défini des lois log-normales afin de prendre en compte la non-négativité des sources.

1. Cette information découle du fait que les sources représentent des activités ioniques.
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La deuxième étape concerne l’obtention de la loi a posteriori. Pour cela, il faut trouver la fonction

de vraisemblance des paramètres inconnus, ce qui dépend du modèle de mélange supposé ainsi que du

modèle du bruit. Ensuite, on obtient les expressions de la loi a posteriori en appliquant la règle de

Bayes. Enfin, il faut définir un schéma d’inférence des paramètres inconnus à partir de la loi a posteriori

trouvée. Par exemple, on peut considérer l’estimateur bayésien avec un coût quadratique. Cependant,

dans notre problème, cet estimateur ne peut pas être calculé de façon analytique compte de tenu de la

complexité de la loi a posteriori, aussi nous avons considéré des approximations fondées sur les méthodes

d’échantillonnage. Plus précisément, cette tâche a été réalisée en employant les méthodes de Monte Carlo

par châınes de Markov (MCMC).

Nous avons évalué la méthode bayésienne proposée avec les données réelles du premier scénario de nos

expériences (voir partie 2). Dans la figure 6, nous présentons les réponses fournies par le réseau de cap-

teurs. Notons que le problème d’interférence est évident dans ce cas particulier. Le nombre d’échantillons

disponibles était de 170. Dans la figure 7, nous montrons les sources estimées par la méthode bayésienne.

Malgré une interférence résiduelle, notamment pour l’électrode de potassium, celle-ci est faible et la

méthode a été capable de fournir des bonnes estimations des sources. Cela est corroboré par les rapports

signal-sur-interférence obtenus dans ce cas : RSI1 = 24 dB et RSI2 = 22, 5 dB. A titre de compa-

raison, une méthode fondée sur l’ACI [15] a échoué dans l’estimation des sources : RSI1 = 7, 6 dB et

RSI2 = −0, 3 dB. Cette mauvaise performance est due au fait que, dans cette expérience, les sources sont

fortement corrélées, ne respectant donc pas l’hypothèse fondamentale de l’ACI.
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Figure 6 – Évaluation de la méthode bayésienne avec les données réelles du premier scénario : les

mélanges.

6 Conclusions

Le thème central de cette thèse a été le développement de méthodes de séparation sources conçues

pour les réseaux de capteurs d’électrodes ioniques sélectives. Le résultat le plus important de la présente
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Figure 7 – Évaluation de la méthode bayésienne avec les données réelles du premier scénario : les sources

(gris) et les sources estimées (noir).

recherche a été obtenu par la méthode bayésienne, qui a été capable de retrouver des bonnes estimations

des sources même face à des conditions défavorables (sources corrélées et faible nombre d’échantillons).

Il est à noter que, au meilleur de notre connaissance, ce travail est le premier à rapporter des résultats

avec des données réelles, montrant ainsi que l’utilisation de réseaux de capteurs chimiques équipés avec

des méthodes de séparation de sources est effectivement viable et peut ouvrir la voie à des nouveaux

types de systèmes d’analyse chimique. Toutefois, malgré les résultats encourageants obtenus dans cette

recherche, il existe encore de nombreuses questions qui doivent être examinées avant d’envisager l’appli-

cation industrielle des méthodes proposées.

Tout d’abord, une première question importante qui doit être examinée concerne le nombre de sources.

Tout au long de cette thèse, nous avons considéré qu’il n’y avait que deux sources et qu’on disposait de

cette information. Toutefois, dans de nombreuses situations pratiques, il peut y avoir beaucoup plus de

sources et, de plus, il n’est pas certain que leur nombre exact soit connu.

Un deuxième point intéressant à étudier est liée au processus de mélange sous-jacent au réseau

d’électrodes. Dans notre travail, nous avons considéré des modèles de mélange instantané. Toutefois,

les capteurs de type ISE présentent un comportement dynamique qui n’est pas négligeable. Compte tenu

de cette observation, il pourrait être intéressant de vérifier les bénéfices apportés par une formulation

dynamique du modèle de mélange. Enfin, une autre question importante à considérer concerne la concep-

tion d’algorithmes plus efficaces. Par exemple, il serait intéressant de développer des méthodes capables

d’opérer en temps réel, ou proche du temps réel, notamment dans le cadre bayésien.
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