Caractérisation de l'environnement musical dans les documents audiovisuels

Hélène Lachambre

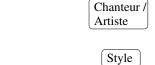
Directrice de recherche : Régine André-Obrecht

Co-encadrant : Julien Pinquier

8 décembre 2009

- Problématique
- 2 Monophonique / Polyphonique
- 3 Détection du chant
- Conclusion

Outline


- Problématique

Détection du chant

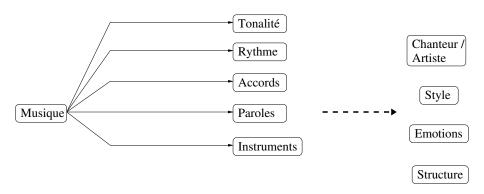
Contexte général

- Indexation multimédia
 - Recherche d'informations
 - Navigation
- Analyse de l'audio
- Indexation de grands flux audio par la musique
- Indexation de morceaux de musique

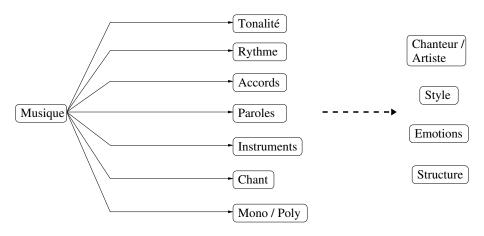
Indexation de la musique

Musique

Problématique 000000



Structure


Emotions

Indexation de la musique

Problématique 000000

Indexation de la musique

Monophonique / Polyphonique

Problématique

À l'instant t, combien y a-t-il de sources harmoniques?

Détection du chant

Monophonique / Polyphonique

Problématique

À l'instant t, combien y a-t-il de sources harmoniques?

Une source – Notre définition

Une source = Une note jouée par un instrument (chanteur)

- Une seule source? → Monophonie
 - Flûte, chant
- Plusieurs sources? → Polyphonie
 - Harmonica, piano, orchestre

Détection du chant

Problématique

À quels instants y a-t-il du chant?

Le chant : Parole? Musique?

Les classes et sous-classes

Chant Solo


Instrument Solo

Plusieurs Instruments,

Plusieurs Chanteurs

Instruments ET Chanteurs

Les classes et sous-classes

Les classes et sous-classes

Problématique 000000

> Chant Solo

Instrument Solo

Plusieurs Instruments

Plusieurs Chanteurs

Instruments ET Chanteurs

Chant

Non Chant

Corpus

Problématique

00000

- Corpus équilibré entre les classes et sous-classes
- Durée d'apprentissage : 25 s / sous-classe (5*5 extraits)
- Durée totale de test : 18 minutes
- Corpus de test varié : Styles (Classique, Rock, Variété, Rap,...), Effectifs
- Métrique utilisée : Taux global d'erreur

Outline

- Monophonique / Polyphonique
 - État de l'art
 - Notre approche
 - Paramètres
 - Modélisation Distributions de Weibull bivariées
 - Expériences et résultats

Etat de l'art (1/3) [Essid, Richard, Bertrand 2005]

Application: Reconnaissance d'instrument

Contexte : Nombre d'instruments ⇒ Nombre minimum de notes

- Paramètres : paramètres temporels, spectraux et MFCC + Sélection de paramètres
- Modélisation : GMM
- Corpus : Jazz
- Performances: 91 % de bonne reconnaissance d'instruments

État de l'art (2/3) [Tsai, Liao, Lai 2008]

Application: Reconnaissance du chanteur

Contexte: Chant solo vs Chant duo

Paramètres : MFCC.

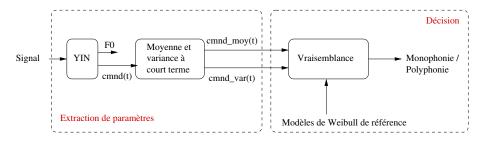
Modélisation : GMM

Corpus : Enregistrements « maison »

• Performances : Accuracy = 96 %

État de l'art (3/3) [Smit, Ellis 2007]

Application : Query by Singing


Contexte: Chant solo vs Polyphonies

- Méthode de référence : MFCC + GMM
- Corpus : Musique Folk et classique
- Performances : Précision = 70 %, Rappel = 50 %

- Méthode proposée : Recherche d'une fonction périodique unique pour modéliser une trame
- Performances : Précision = 70 %, Rappel = 70 %

Problématique Notre approche

Système de classification – Approche probabiliste

YIN: estimateur de fréquence fondamentale [de Cheveigné, Kahawara 2002]

La fonction de différence $d_t(\tau)$

$$d_t(\tau) = \sum_{k=1}^{N} (x_k - x_{k+\tau})^2$$
 (1)

Avec : x le signal, τ le décalage et t l'indice de la trame

YIN: estimateur de fréquence fondamentale [de Cheveigné, Kahawara 2002]

La fonction de différence $d_t(\tau)$

$$d_t(\tau) = \sum_{k=1}^{N} (x_k - x_{k+\tau})^2$$
 (1)

Le « Cumulative Mean Normalised Difference » $d'_{t}(\tau)$

$$d_t'(\tau) = \begin{cases} 1 & \text{si } \tau = 0 \\ d_t(\tau) / \left\lceil \frac{1}{\tau} \sum_{k=1}^{\tau} d_t(k) \right\rceil & \text{sinon} \end{cases}$$
 (2)

Avec : x le signal, τ le décalage et t l'indice de la trame

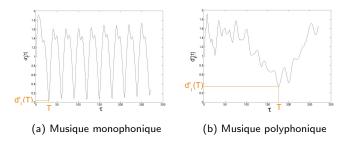
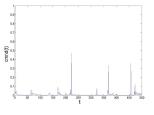
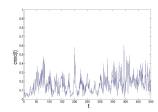
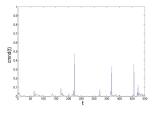
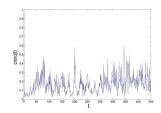




Fig.: $d_t'(\tau)$ pour une trame de signal (20 ms).

- F_0 est donnée par l'*indice* T du minimum de $d'_t(\tau)$
- Posons cmnd(t) = d't(T)
- cmnd(t) est un « indice de confiance »

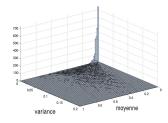


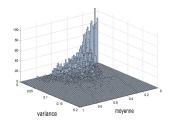


- (a) Musique monophonique
- (b) Musique polyphonique

Fig.: Valeurs de cmnd(t) pour 5 secondes de signal.

- Monophonie : cmnd(t) est bas et varie peu
- Polyphonie : cmnd(t) est élevé et varie plus

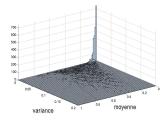

- (a) Musique monophonique
- (b) Musique polyphonique

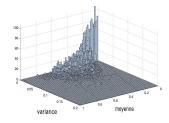

Fig.: Valeurs de cmnd(t) pour 5 secondes de signal.

- Monophonie : cmnd(t) est bas et varie peu
- Polyphonie : cmnd(t) est élevé et varie plus

Les paramètres sont :

- La moyenne court terme de cmnd(t) : $cmnd_{mov}(t)$
- La variance court terme de cmnd(t): cmnd_{var}(t)




(a) Monophonies

(b) Polyphonies

FIG.: Répartition bivariée du couple (cmnd_{mov}, cmnd_{var}) - 5000 et 7500 observations.

- *cmnd_{mov}* : moyenne sur 5 trames
- cmnd_{var} : variance sur 5 trames

(a) Monophonies

(b) Polyphonies

FIG.: Répartition bivariée du couple (cmnd_{mov}, cmnd_{var}) - 5000 et 7500 observations.

• cmnd_{moy} : moyenne sur 5 trames

cmnd_{var}: variance sur 5 trames

Modélisation

⇒ Modélisation par des distributions de Weibull bivariées.

La distribution de Weibull (univariée)

Fonction de répartition

$$F(x) = 1 - e^{-(x/\theta)^{\beta}} \tag{3}$$

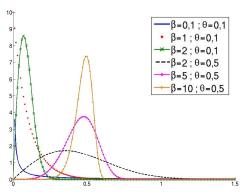


FIG.: Densités de probabilité d'une fonction de Weibull univariée, pour différentes valeurs de paramètres d'échelle θ et de forme β .

La distribution de Weibull bivariée [Hougaard 1986], [Lu, Bhattacharvya 1990]

Fonction de répartition

$$F(x,y) = 1 - \exp\left(-\left[\left(\frac{x}{\theta_1}\right)^{\frac{\beta_1}{\delta}} + \left(\frac{y}{\theta_2}\right)^{\frac{\beta_2}{\delta}}\right]^{\delta}\right) \tag{4}$$

Avec:

- β_1 et β_2 les paramètres de forme,
- θ_1 et θ_2 les paramètres d'échelle,
- \bullet δ le paramètre de corrélation.

La distribution de Weibull bivariée [Hougaard 1986], [Lu, Bhattacharyya 1990]

Fonction de répartition

$$F(x,y) = 1 - \exp\left(-\left[\left(\frac{x}{\theta_1}\right)^{\frac{\beta_1}{\delta}} + \left(\frac{y}{\theta_2}\right)^{\frac{\beta_2}{\delta}}\right]^{\delta}\right) \tag{4}$$

Avec:

- β_1 et β_2 les paramètres de forme,
- θ_1 et θ_2 les paramètres d'échelle,
- \bullet δ le paramètre de corrélation.

Estimation des paramètres

- β_1 , β_2 , θ_1 , θ_2 : paramètres des lois marginales
- δ est estimé en utilisant la méthode des moments

Les moments de la loi

$$E[X] = \theta_1 \Gamma \left(\frac{1}{\beta_1} + 1 \right) \tag{5}$$

$$E[Y] = \theta_2 \Gamma \left(\frac{1}{\beta_2} + 1 \right) \tag{6}$$

$$Var(X) = \theta_1^2 \left(\Gamma(2/\beta_1 + 1) - \Gamma^2(1/\beta_1 + 1) \right)$$
 (7)

$$Var(Y) = \theta_2^2 \left(\Gamma(2/\beta_2 + 1) - \Gamma^2(1/\beta_2 + 1) \right)$$
 (8)

$$Cov(X, Y) = \theta_1 \theta_2.$$

$$[\Gamma\left(\frac{\delta}{\beta_1} + 1\right) \Gamma\left(\frac{\delta}{\beta_2} + 1\right) \Gamma\left(\frac{1}{\beta_1} + \frac{1}{\beta_2} + 1\right)$$

$$-\Gamma\left(\frac{1}{\beta_1} + 1\right) \Gamma\left(\frac{1}{\beta_2} + 1\right) \Gamma\left(\frac{\delta}{\beta_1} + \frac{\delta}{\beta_2} + 1\right)]$$

$$\div \Gamma\left(\frac{\delta}{\beta_1} + \frac{\delta}{\beta_2} + 1\right)$$

$$(9)$$

Notre approche

L'estimation de δ Lachambre, Obrecht, Pinquier 2009

Étape 1 : M.q. δ est solution d'une équation

$$Cov(X, Y) = ... \Leftrightarrow \delta B(\delta/\beta_1, \delta/\beta_2) = C = f(\delta)$$

Avec
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
 la fonction Beta

L'estimation de δ Lachambre, Obrecht, Pinquier 2009

Étape 1 : M.g. δ est solution d'une équation

$$Cov(X, Y) = ... \Leftrightarrow \delta B(\delta/\beta_1, \delta/\beta_2) = C = f(\delta)$$

Étape 2 : M.q. $f(\delta)$ est strictement décroissante – Unicité de δ

$$f'(\delta) = B\left(\frac{\delta}{\beta_1}, \frac{\delta}{\beta_2}\right) \left[1 + \frac{\delta}{\beta_1} \left(\psi_0\left(\frac{\delta}{\beta_1}\right) - \psi_0\left(\frac{\delta}{\beta_1} + \frac{\delta}{\beta_2}\right)\right) + \frac{\delta}{\beta_2} \left(\psi_0\left(\frac{\delta}{\beta_2}\right) - \psi_0\left(\frac{\delta}{\beta_1} + \frac{\delta}{\beta_2}\right)\right)\right]$$

Avec
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
 la fonction Beta, $\psi_0(x) = \frac{d \ln \Gamma(x)}{dx}$ la fonction digamma

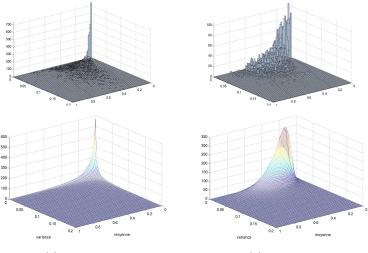
Notre approche

L'estimation de δ Lachambre, Obrecht, Pinguier 2009

Étape 1 : M.g. δ est solution d'une équation

$$Cov(X, Y) = ... \Leftrightarrow \delta B(\delta/\beta_1, \delta/\beta_2) = C = f(\delta)$$

Étape 2 : M.q. $f(\delta)$ est strictement décroissante – Unicité de δ


$$f'(\delta) = B\left(\frac{\delta}{\beta_1}, \frac{\delta}{\beta_2}\right) \left[1 + \frac{\delta}{\beta_1} \left(\psi_0\left(\frac{\delta}{\beta_1}\right) - \psi_0\left(\frac{\delta}{\beta_1} + \frac{\delta}{\beta_2}\right)\right) + \frac{\delta}{\beta_2} \left(\psi_0\left(\frac{\delta}{\beta_2}\right) - \psi_0\left(\frac{\delta}{\beta_1} + \frac{\delta}{\beta_2}\right)\right)\right]$$

Étape 3

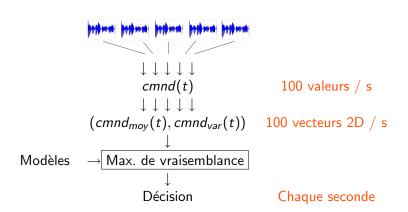
$$a(\psi_0(a) - \psi_0(a+b)) + b(\psi_0(b) - \psi_0(a+b)) < -1 \Rightarrow f'(\delta) < 0$$

Avec $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ la fonction Beta, $\psi_0(x) = \frac{d \ln \Gamma(x)}{dx}$ la fonction digamma et $a = \delta/\beta_1$ et $b = \delta/\beta_2$, $(a,b) \in \mathbb{R}^{+*} \times \mathbb{R}^{+*}$

Distributions de Weibull estimées – Validation visuelle

(a) Monophonie

(b) Polyphonie

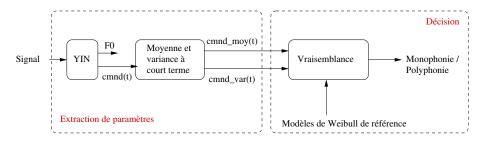

Notre approche

Validation théorique des marginales

TAB.: Test de Kolmogorov

		Weibull	Gaussienne	Gamma
Poly	cmnd _{moy}	0.0642 $\sqrt{}$	0.0746 🗸	0.0757 🗸
	cmnd _{var}	0.0863 🗸	0.235 ×	0.107 ×
Mono	cmnd _{moy}	0.092 🗸	0.228 ×	0.082 🗸
	cmnd _{var}	0.335 ×	0.274 ×	0.358 ×

Fonctionnement du système



Approche « Classe »

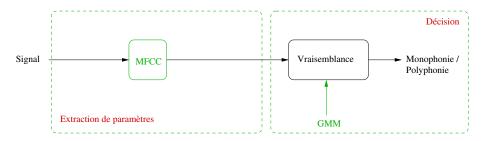
Test de l'approche proposée :

• Approche « Classe » : cmnd + Weibull bivariées

- Système « de base » : 26 MFCC + GMM (16 composantes)
- Système « Gaussien » : cmnd + Gaussiennes bivariées
- Système « Weibull univarié » : cmnd + Weibull univariées
- Système « SVM » : cmnd + SVM (noyau gaussien)

Système « de Base » — Référence

Test de l'approche proposée :

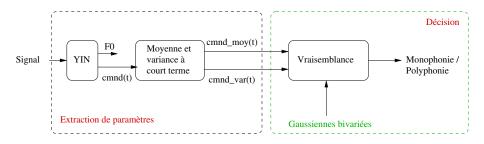

Approche « Classe » : cmnd + Weibull bivariées

Comparaisons et validation de la méthode :

Système « de base » : 26 MFCC + GMM (16 composantes)

Détection du chant

- Système « Gaussien » : cmnd + Gaussiennes bivariées
- Système « Weibull univarié » : cmnd + Weibull univariées
- Système « SVM » : cmnd + SVM (noyau gaussien)

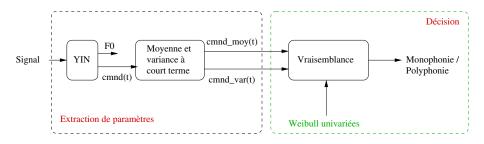

Système « Gaussien » — Validation des paramètres et de la modélisation

Détection du chant

Test de l'approche proposée :

Approche « Classe » : cmnd + Weibull bivariées

- Système « de base » : 26 MFCC + GMM (16 composantes)
- Système « Gaussien » : cmnd + Gaussiennes bivariées
- Système « Weibull univarié » : cmnd + Weibull univariées
- Système « SVM » : cmnd + SVM (noyau gaussien)

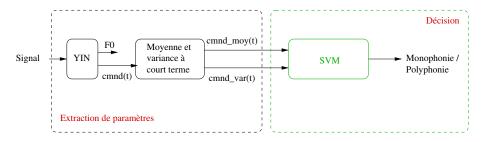


Système « Weibull univarié » — Validation de l'approche bivariée

Test de l'approche proposée :

Approche « Classe » : cmnd + Weibull bivariées

- Système « de base » : 26 MFCC + GMM (16 composantes)
- Système « Gaussien » : cmnd + Gaussiennes bivariées
- Système « Weibull univarié » : cmnd + Weibull univariées
- Système « SVM » : cmnd + SVM (noyau gaussien)

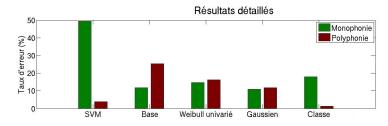


Système « SVM » — Validation de l'approche probabiliste

Test de l'approche proposée :

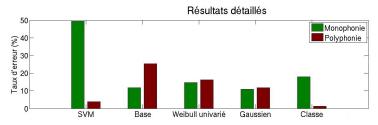
Approche « Classe » : cmnd + Weibull bivariées

- Système « de base » : 26 MFCC + GMM (16 composantes)
- Système « Gaussien » : cmnd + Gaussiennes bivariées
- Système « Weibull univarié » : cmnd + Weibull univariées
- Système « SVM » : cmnd + SVM (noyau gaussien)



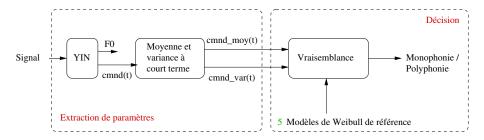
TAB.: Taux global d'erreur de chaque approche.

SVM	Base	W. univ.	Gauss.	Classe
22,5 %	19,2 %	15,5 %	11,4 %	8,5 %


TAB.: Taux global d'erreur de chaque approche.

SVM	Base	W. univ.	Gauss.	Classe
22,5 %	19,2 %	15,5 %	11,4 %	8,5 %

TAB.: Taux global d'erreur de chaque approche.


SVM	Base	W. univ.	Gauss.	Classe
22,5 %	19,2 %	15,5 %	11,4 %	8,5 %

Erreurs:

- Notes monophoniques rapides
- Accords polyphoniques « trop parfaits »

Approche « Sous-Classe » : 5 modèles de Weibull bivariées

Taux global d'erreur = 6.5 % (gain de 2 %)

Détection du chant

Problématique

- Détection du chant
 - État de l'art
 - Notre approche
 - Paramètres
 - Décision
 - Expériences et résultats

Détection du chant

•00000000000000

<u>État de l'art – Paramètres & Modélisation (1/2)</u>

- MFCC [Rocamora et al. 2007, Markaki et al. 2008]
- Paramètres spectraux (centroïde, flux, énergie par bande de fréquence, LPCC) [Rocamora et al. 2007, Ramona et al. 2008, Berenzweig et al. 2001]
- Paramètres temporels : ZCR, Énergie, Ondelettes [Rocamora et al. 2007, Ramona et al. 2008, Zang 2003, Mesaros et al. 2006

<u>État de l'art – Paramètres & Modélisation (2/2)</u>

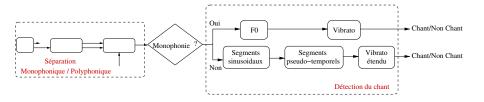
- Paramètres spécifiques :
 - Coefficient harmonique [Chu et al. 2001]
 - Analyse de l'évolution temporelle des fréquences : modulation d'amplitude dans les bandes de fréquences, stabilité des harmoniques, trajectoire de F₀ [Maddage 2004, Ohishi 2005. Santosh et al. 20091

Détection du chant

- Vibrato [Gerhard 2002, Regnier et al. 2009, Khine et al. 2008, Nwe et al. 2007]
- Modélisation: GMM [Lukashevich et al. 2007, Toh et al. 2008, Ezzaidi et al. 2002], SVM [Ramona et al. 2008, Rocamora et al. 2007], HMM [Berenzweig et al. 2001, Ramona et al. 2008]

Détection du chant

Etat de l'art – Corpora et Résultats


Pas de corpus de référence :

- Sons monophoniques [Gerhard 2002, Ohishi 2005]
- Chant dans la musique Pop [Maddage 2004, Nwe 2004, Khine et al. 2008, Rocamora et al. 2007]
- Enregistrements « faits maison » [Mesaros et al. 2006, Ohishi 2005]
- Quelques corpora très variés [Taniguchi 2005, Ezzaidi et al. 2002]

Résultats: 75 % à 80 % de bonne détection

Notre approche

Schéma global

Problématique Notre approche

Vibrato

Vibrato

Oscillation périodique de la fréquence fondamentale Vibrato du chant : toujours présent et à une fréquence entre 4 et 8 Hz

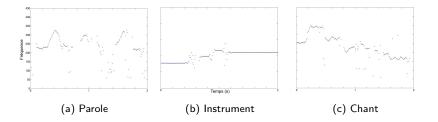


FIG.: Fréquence fondamentale (extraits de 2 s).

Segments sinusoïdaux : Suivi des maxima du spectre [Taniguchi et al. 2005]

Détection du chant 000000000000000

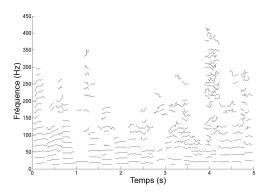


FIG.: Chanson a capella (5 s): chaque ligne est un segment sinusoïdal. Un segment sinusoïdal est défini par :

- un instant de début
- un instant de fin
- un vecteur de fréquences

Segments sinusoïdaux : Suivi des maxima du spectre [Taniguchi et al. 2005]

Détection du chant 000000000000000

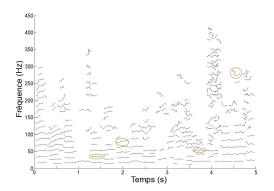


Fig.: Chanson a capella (5 s): chaque ligne est un segment sinusoïdal. Un segment sinusoïdal est défini par :

- un instant de début
- un instant de fin
- un vecteur de fréquences

Segments sinusoïdaux : Suivi des maxima du spectre [Taniguchi et al. 2005]

Détection du chant 000000000000000

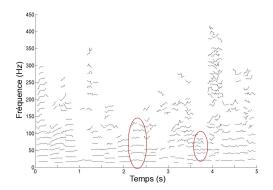


Fig.: Chanson a capella (5 s): chaque ligne est un segment sinusoïdal. Un segment sinusoïdal est défini par :

- un instant de début
- un instant de fin
- un vecteur de fréquences

Notre approche

Segments pseudo-temporels [Lachambre, André-Obrecht, Pinquier 2006]

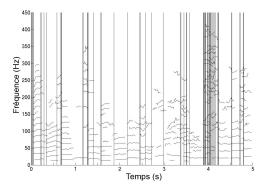


FIG.: Segmentation pseudo-temporelle du même extrait : les lignes verticales sont les limites des segments.

Vibrato étendu [Lachambre, André-Obrecht, Pinquier 2006]

Le vibrato étendu

$$vibr = \frac{\sum_{s \in \Gamma} I(s)}{\sum_{s \in \Omega} I(s)}$$
 (10)

Avec:

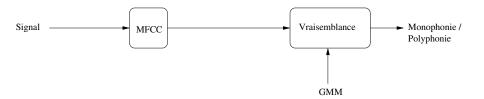
- Ω les segments sinusoïdaux présents dans le segment pseudo-temporel courant
 - les segments sinusoïdaux avec du vibrato
- I(s) la durée du segment sinusoïdal s

Décision

Chaque seconde

Monophonie

Il y a du chant si on trouve du vibrato sur au moins 10 % des trames.


Polyphonie

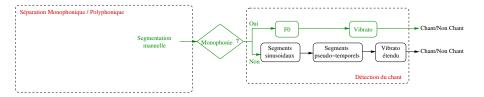
If y a du chant si vibr > 0,15 sur au moins une trame.

Détection du chant

Système « de base »

- Système « de base » : GMM + MFCC
- Système « primaire » : vibrato étendu
- Système « manuel » : Segmentation Mono/Poly manuelle, vibrato, vibrato étendu
- Système « automatique » : Segmentation Mono/Poly automatique, vibrato, vibrato étendu

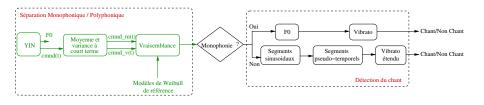
Système « primaire »


- Système « de base » : GMM + MFCC
- Système « primaire » : vibrato étendu
- Système « manuel » : Segmentation Mono/Poly manuelle, vibrato, vibrato étendu
- Système « automatique » : Segmentation Mono/Poly automatique, vibrato, vibrato étendu

Expériences et résultats

Système « manuel »

- Système « de base » : GMM + MFCC
- Système « primaire » : vibrato étendu
- Système « manuel » : Segmentation Mono/Poly manuelle, vibrato, vibrato étendu
- Système « automatique » : Segmentation Mono/Poly automatique, vibrato, vibrato étendu



Détection du chant

0000000000000000

Système « automatique »

- Système « de base » : GMM + MFCC
- Système « primaire » : vibrato étendu
- Système « manuel » : Segmentation Mono/Poly manuelle, vibrato, vibrato étendu
- Système « automatique » : Segmentation Mono/Poly automatique, vibrato, vibrato étendu

TAB.: Taux global d'erreur de chaque approche.

Base	Primaire	Manuel	Automatique
28,7 %	29,7 %	21,7 %	25 %

Expériences et résultats

Problématique

Résultats détaillés- Segmentation Mono/Poly automatique

TAB.: Résultats - Système automatique.

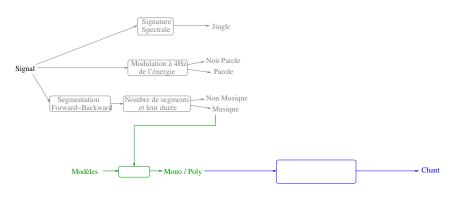
	Chant	Non chant
Chanteur solo	79 %	21 %
Instrument solo	26 %	74 %
Instruments et chanteurs	65 %	35 %
Instruments	18 %	82 %

Résultats détaillés- Segmentation Mono/Poly automatique

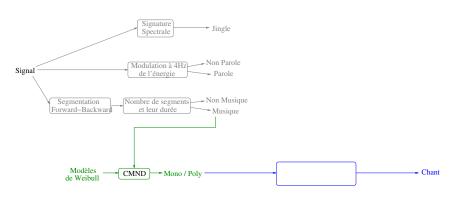
TAB.: Résultats - Système automatique.

	Chant	Non chant
Chanteur solo	79 %	21 %
Instrument solo	26 %	74 %
Instruments et chanteurs	65 %	35 %
Instruments	18 %	82 %

Erreurs:

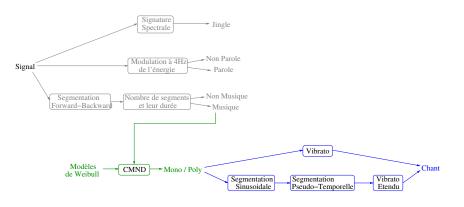

- Instruments à vent avec du vibrato
- Chant accompagné de nombreux instruments

Outline

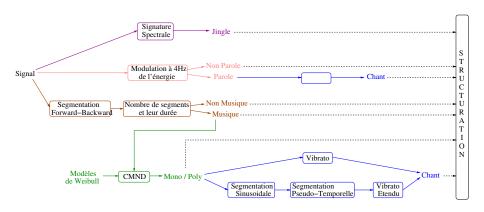

- Conclusion
 - Contribution
 - Synthèse Structuration
 - Perspectives

Contribution

Bilan



Bilan



Contribution

Bilan

Une tentative de structuration

Une tentative de structuration – Exemple 1

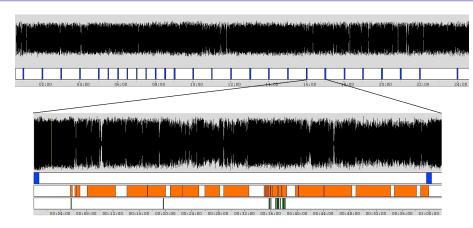


FIG.: France Inter – 16h00-17h00 : Emission de musique instrumentale Jingles, Musique, Chant

Une tentative de structuration – Exemple 2

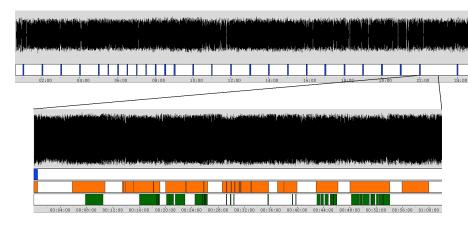


FIG.: France Inter - 22h00-23h00 : Emission musicale - Variétés Jingles, Musique, Chant

Perspectives - Monophonique / Polyphonique

TAB.: Test de Kolmogorov

		Weibull	Gaussienne	Gamma
Poly	cmnd _{moy}	0.0642 $\sqrt{}$	0.0746 🗸	0.0757 🗸
	cmnd _{var}	0.0863 🗸	0.235 ×	0.107 ×
Mono	cmnd _{moy}	0.092 🗸	0.228 ×	0.082 🗸
	cmnd _{var}	0.335 ×	0.274 ×	0.358 ×

⇒ Utiliser des lois différentes?

Perspectives - Monophonique / Polyphonique

Application à la distinction Parole / Parole Simultanée

Traduction simultanée

Problématique

Perspectives

Personnes se coupant la parole → zones très courtes

Perspectives – Monophonique / Polyphonique

Application à la distinction Parole / Parole Simultanée

Traduction simultanée

Problématique

Perspectives

Personnes se coupant la parole → zones très courtes

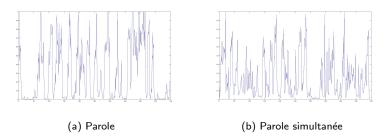
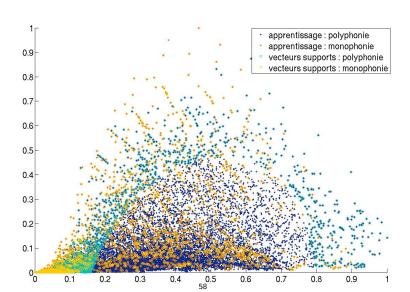


FIG.: Valeurs de cmnd(t) pour 5 secondes de signal.

Perspectives – Chant

Problématique


Perspectives

Amélioration de notre méthode :

- Fusion avec le système de base
- Ajout de paramètres : Coefficient harmonique, paramètres spectraux, MFCC... → Sélection de paramètres

Questions?

SVM

