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ABSTRACT

Dynamical behavior and deformation of a single neutrally buoyant suspended
vesicle (a closed phospholipid membrane), as a response to external applied
flows (simple shear and Poiseuille flows), is studied in the limit of small
Reynolds numbers. Unbounded and confined geometries are both consid-
ered here. For this purpose we use three-dimensional analytical calculation
(small deformation theory) as well as two-dimensional simulations (lattice-
Boltzmann and boundary integral methods) to solve the corresponding hy-
drodynamical equations and to track explicitly the vesicle dynamics.

The small deformation theory is used to draw the phase-diagram sum-
marizing the known vesicle dynamical regimes (tank-treading, tumbling and
vacillating-breathing), under shear flow. Impact of varying controlling pa-
rameters on the evolution of various quantities characterizing each vesicle
dynamical regime is reported.

We present also how we adapted the lattice Boltzmann method to simu-
late dynamics of vesicles in confined geometries (e.g. a micro-channel). As
benchmarkings, the vesicle equilibrium shapes in a fluid at rest are recovered
together with dynamical behavior of a vesicle under simple shear flow - tank-
treading -. The effect of confinement on the vesicle dynamics is investigated.

Lateral migration of a vesicle placed in unbounded and semi-bounded
Poiseuille flow is investigated using the boundary integral method simula-
tions. In the unbounded geometry we find that the nonlinear character of the
Poiseuille flow, together with the vesicle deformability, causes a lateral migra-
tion of the vesicles towards the flow centerline. In the presence of a bounding
wall an additional lift force appears. In this situation we investigate the inter-
play between the wall- and the Poiseuille flow curvature- induced lift forces.
A similarity law for the lateral migration velocity (as a function of relevant
structural and flow parameters) that is consistent with experimental results is
proposed.

Key words : Membranes, vesicles, complex fluids, Stokes flow, simple shear
flow, Poiseuille flow, modelling, simulation, non linear dynamics, blood rhe-
ology, lateral migration, microfluidic.
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RÉSUMÉ

La déformation et le comportement dynamique d’une vésicule sous l’action
d’un écoulement externe appliqué (cisaillement simple et Poiseuille) est étudié
dans la limite de faibles nombres de Reynolds. Les cas de géométries non-
confinée et confinée sont considérés.

On fait usage de plusieurs méthodes: (i) un calcul analytique tridimen-
sionnelle (théorie de faible déformation) (ii) des simulations bidimensionelle
(méthodes de Boltzmann sur réseau et intégrale de frontière) dans le but
de résoudre les équations hydrodynamiques correspondantes et de suivre ex-
plicitement la dynamique de la vésicule.

La théorie analytique de faible déformation est utilisée pour constru-
ire le diagramme de phase résumant tous les régimes dynamiques connus
pour une vésicule (chenille de char, bascule et vacillation-respiration) sous
un écoulement de cisaillement. L’impacte de la variation des paramètres,
contrôlant la dynamique, sur l’évolution de différentes quantités caractérisant
chaque régime dynamique d’une vésicule est présenté. On utilise également
la méthode de Boltzmann sur réseau afin de simuler la dynamique d’une
vésicule dans une géométrie confinée (e.g. un micro-canal). Comme cas test,
les formes d’équilibre d’une vésicule et son mouvement de chenille de char
sous cisaillement ont été analysés. L’effet du confinement sur la dynamique
de la vésicule a été examiné. La migration latérale d’une vésicule placée dans
un écoulement de Poiseuille non-confiné et semi-confiné est traité en utilisant
des simulations basées sur la méthode d’intégrale de frontière. Pour le cas
de la géométrie non-confinée, on a trouvé que le caractère non linéaire de
l’écoulement de Poiseuille combiné à la déformabilité de la vésicule, induit une
migration latérale des vésicules vers le centre de l’écoulement. La présence
d’une paroi délimitant le fluide externe induit également une force de por-
tance. On a analysé la compétition entre la force de portance due à la paroi et
celle du la courbure de l’écoulement de Poiseuille. Une loi donnant la vitesse
de migration latérale (en fonction des paramètres caractérisant la vésicule et
l’écoulement) est proposée et est en accord avec les résultats expérimentaux .

Mots clés : Membranes, vésicules, fluides complexes, écoulement de Stokes,
écoulement de cisaillement simple, écoulement de Poiseuille, modélisation,
simulation, dynamique non linéaire, rhéologie du sang, migration latérale,
micro-fluidique
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1. A BRIEF SUMMARY ON MAIN PROPERTIES OF
DEFORMABLE PARTICLES

1.1 Deformable particles

By the term deformable particles we mean all kinds of suspending particles
with ability to change their shape when they are subject to external applied
forces, mainly hydrodynamical stresses due to their suspending fluid flow.

Among the known classical deformable particle is a droplet, that has been
extensively studied in literature a long time ago, its wetting on a substrate [1],
its deformation and break-up under shear flow [2]. There are other biological
and artificial deformable particles that have also attracted the interest of
scientists and engineers. An old biological system that fascinated scientists
and in particular physicians is the red blood cell. A considerable literature has
been devoted to this topic. Artificial deformable particles such as capsules or
vesicles emerged in the recent decades and have attracted several scientific
communities [3–5]. This is due partly to the simplicity and the ability of
these models to reproduce some dynamical behaviors observed for living cells
(such as red blood cells) together with the interest in exploiting them in the
pharmaceutical industry as drug delivery carriers (carrying and releasing a
drug in a targeted specific site in the human body).

Understanding the dynamical behavior (orientation, deformation and mi-
gration) of such deformable entities in a flow (e.g. shear flow or Poiseuille
flow), presents both fundamental (a non trivial out-of-equilibrium and non-
linear system) and biomedical engineering interests. Not only is the biomed-
ical interest motivated by in vivo questions (like understanding blood rheol-
ogy), but also in vitro understanding has become an increasing demand in the
lab-on-chip technologies. Indeed, the advent of microfluidic devices and their
abilities to sort out and separate entities based on their mechanical properties
(size, deformability, encapsulated fluid...etc) [6–8] are regarded as promising
tools in medical diagnostic research (Fig. 1.1). Thus the understanding of
transport properties of deformable particles has known an upsurge of interest
in recent years.

Below a very brief description of the structure and properties of each
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Fig. 1.1: A lab-on-chip makes it possible to quickly perform medical diagnos-
tic on a drop of blood. Picture taken form the CNRS web site:
http://www2.cnrs.fr/

above cited deformable particle is given. For the vesicle system, an entire
chapter is dedicated to it since it is the subject of interest of the present
thesis.

Droplet

It is an amount of a liquid immersed in another fluid matrix of different
nature and immiscible with the suspended liquid drop. The fluid matrix
can be another liquid or a gas (air for example). The liquid droplet and
the suspending fluid are separated by an interface that changes its shape
depending on the condition of the forces exerted upon it. A free isolated
droplet has a spherical equilibrium shape.

Red blood cell

Red blood cells (RBCs) constitute the major component of the blood, about
45% in a given volume of the whole human blood, while white blood cells
and platelets occupy less than 1%. The rest is filled with plasma (the large
part of it is water). RBCs are among the simplest living cells in the human
organism, since they are devoid of a nucleus and organelles. A RBC consists
of a closed phospholipid membrane enclosing a hemoglobin solution (a new-
tonian fluid) and it is suspended in the blood plasma. A two-dimensional
cytoskeleton network is sticked to the membrane (called spectrin network).
Under physiological conditions a healthy red blood cell has a biconcave shape
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Fig. 1.2: A scanning electron micrograph of red blood cells

Fig. 1.3: Cartoon presenting the components of which a red blood cell membrane
is made.



18 1. a brief summary on main properties of deformable particles

(see Figure 1.2) with a size of about 8µm and a thickness of about 2µm (see
Figure 1.3 for the complex structure of the red blood cell membrane). Its has
a life time of about 120 days during which its task consists in transporting
and delivering oxygen to living tissues.

Vesicle

Vesicles are closed lipid membranes, encapsulating internal substances and
are usually suspended in another external aqueous solution (Fig. 1.4). Their
typical diameter varies from some dozen of nanometres to hundreds of mi-
crometers. For example vesicles which are present inside the cytoplasm of
real cells (and which have transport functions of substances such as protein)
are quite small in size, typically of the order of 100nm. While vesicles made
and studied experimentally (in our group) are quite large in size, typically
10 - 100µm, and are called Giant unilamellar vesicles (GUV). We will be
interested in this system in this thesis, albeit we shall often use simply the
denomination vesicles. Vesicles may be viewed as a first approximation to red
blood cell (they are somehow red blood cells without cytoskeleton network
and having a membrane made mainly and only of phospholipid molecules).
Despite the simplicity of the structure of vesicles compared to the red blood
cells one, many features observed for RBCs were also observed for vesicles.
The known biconcave shape of RBCs as well as their dynamical behaviour
under flow can be reproduced by the vesicles model as it will be shown in the
present thesis. Vesicles, like RBCs, have a conserved volume (due to the fact
that the enclosed fluid is incompressible) and a conserved surface (the mem-
brane is a two dimensional incompressible fluid) under certain conditions.
We shall back later to a more precise discussion of these notions.

Capsule

Capsules are closed hyper-elastic polymeric shell. Like vesicles, capsules are
used to enclose an internal fluid and are suspended in an other fluid. However,
due to the elasticity of their shell, their surface is not a conserved quantity.
This marks a difference with vesicles and RBCs.

1.2 Complex fluids

In recent decades considerable research has been dedicated to understand
the mechanical behaviors of deformable particle suspensions (we talk about
emulsion for the case of many droplets) at both microscopic and macroscopic
levels. In most cases the ultimate desire is to account for the observable
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Fig. 1.4: A phase-contrast micrpgraph of vesicles

macroscopic behavior of such systems (rheology) based on what happens
at the micro-scale, i.e. at the level of each single particle (orientation, de-
formation and migration, and so on..). The deformable particles together
with their suspending fluid constitute what we call a complex fluid. It is a
class of fluids for which the classical existing models of continuum mechanics
are not sufficient to describe the complex mechanical behaviors exhibited by
such fluids when they are subject to stresses. They can, for example, switch
from a fluid- to a solid-like behavior by increasing the strength of the applied
stresses. There exists to date no universal law (if any) for complex fluids. The
ultimate law should in principle emerge from understanding of micro/macro
link of the considered fluid. This is why it is essential to understand micro-
scopic dynamics before dealing with rheology, as will be documented in this
thesis.

1.3 Microfluidic devices

Microfluidic devices are small devices consisting of a labyrinth of channels
with dimension of tens to hundreds of micrometers. Designed to manipulate
small amount of fluids (10−9 to 10−18 liters) [9, 10]. The idea is to perform
chemical reactions in such devices in order to decrease the costs by using
inexpensive devices (small sized circuits made of cheap materials like PDMS)
and very small quantities of reactions (that are maybe hard to acquire or
toxic and need to be handled carefully [11]). Another promising application
of microfluidc devices to which we would like to contribute in this thesis, is to
separate and sort-out deformable particles based on their size, deformability
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Fig. 1.5: A microfluidic devices desgined to separate WBCs from a whole blood
sample [6].

and their enclosed fluid. Figure 1.5 shows a microfluidic device designed to
separate white blood cells from a whole blood sample based on the mechanical
properties of the WBCs. In this device the trick used is that WBCs and
RBCs have different degrees of deformability, a RBC is more deformable
than a WBC.

1.4 Contribution of the present thesis

Vesicles dynamics under an external applied simple shear flow has been the
subject of extensive studies, both in unbounded geometries [12–17] as well
as in the presence of a bounding wall [18–22]. In order to identify without
ambiguity the real contribution of the present work, we have felt it worthwhile
to list the main contributions achieved during the past three years during this
Phd work.

First contribution

For the unbounded geometries, it is known that vesicles under shear flow
exhibit three different types of dynamical regimes:

• Tank-treading (steady inclination angle and fixed shape, while the fluid
membrane undergoes a tank-tread like motion),
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• Vacillating-breathing (oscillation around the flow direction, while the
shape undergoes large deformations),

• Tumbling (flipping like a rigid body albeit a certain degree of membrane
tank-treading is preserved). This flipping pay occur in the shear plane,
or in a plane inclined with respect to shear.

Which dynamical mode prevails over the others depends on a set of three
dimensionless parameters:

• The excess area (the vesicle’s degree of deflation),

• The viscosity contrast (between the enclosed and the suspending fluids),

• The capillary number (ratio between the flow characteristic time scale
over that needed for the vesicle to relax to its equilibrium shape after
cessation of flow (this time depends on membrane rigidity)).

In the present thesis we make use of the dynamical equations, describing the
evolution in time of the vesicle orientation and its shape deformation, derived
in [23] for the higher order expansion of the small deformation theory reported
in [17] (i.e. for a shape close enough to a sphere). A phase-diagram includ-
ing the three mentioned vesicle dynamical regimes, in terms of the viscosity
contrast and the capillary number, is drawn. The location of the borders,
separating between the three dynamical regimes in our phase-diagram, dif-
fers from the one reported in [24] since in [23] the hydrodynamical problem
is solved consistently up to higher order. We complete this phase-diagram by
bringing additional information associated to each dynamical regime. More
precisely, we investigate how varying one parameter, while keeping the two
others fixed, affects various physical quantities:

• The steady inclination angle for the tank-treading regime,

• The amplitude and the period of oscillation as well as the shape defor-
mation for the vacillating breathing regime,

• The period of the flipping for the tumbling regime.

Emphasis is put on the vacillating-breathing mode (VB), which is less known
than the two other regimes, namely tank-treading (TT) and tumbling regimes
(TB). There are only few experimental papers in literature in which vacillating-
breathing is briefly discussed [14, 16]. It seems that an early experimental
discovery of the VB mode has been overlooked in the literature. This is due
to de Haas et al. [25] where a quite clear discussion of this mode was re-
ported. Quite recently an experimental determination of the phase-diagram
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has been reported [26], and these results are discussed in the light of the
present study. Here, importance is payed to quantifying this regime and an-
alyzing how associated physical quantities evolve with relevant parameters.
The major goal is to have a complete analysis at our disposal with the aim
of guiding future experiments.

Second contribution

For the wall bounded geometry, only the situation of a vesicle under shear
flow placed initially near (or adhered to) a substrate has been considered so
far [18–21, 27]. These studies revealed that the presence of a wall induces a
lift force upon the vesicle even in the Stokes limit (see the discussion below).
However these studies have not treated yet an important effect, namely the
effects of degree of confinement (ratio between the vesicle size and the width
of the channel) on the vesicle dynamics and its rheology under shear flow.
We have decided in order to treat this situation to make use of the lattice-
Boltzmann method (LBM) simulation. This method is quite versatile and it
allows us to explore quite naturally complex geometries (like bifurcations, for
examples). In the present thesis we expose how we achieved the vesicle dy-
namics and fluid flow coupling in the framework of this method. Preliminary
results concerning dynamics and rheology of confined tank-treading vesicle
are reported, namely:

• How the steady-inclination angle and vesicle membrane tank-treading
velocity is affected by the degree of confinement.

• The hydrodynamical stresses exerted by the external fluid, in the pres-
ence of the vesicle, on the bounding walls as a function of the vesicle
reduced volume and the degree of confinement,

• The pressure field and the streamlines inside and outside the vesicle
when it undergoes tank-treading motion in confined channel,

• Measuring the effective viscosity of the composite fluid for different
values of the vesicle reduced volume and degree of confinement.

The LBM method is now being used for different situations, and opens a
promising avenue for studies of concentrated suspensions.

Third contribution

A vesicle placed in an unbounded fluid subject to simple shear (in the Stokes
limit) does not exhibit a lateral migration with respect to the flow direction.
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If the suspended fluid is bounded by a wall, then this leads to breaking of
the translational symmetry perpendicular to the flow direction as well as the
upstream-downstream symmetry. As a consequence a tank-treading vesicle
migrates away from the wall. This viscous lift force is caused by the flow
induced fore-aft symmetry breaking of the vesicle shape [19]. In the present
thesis we found that even in unbounded geometry (no bounding walls) a
vesicle can exhibit lateral migration, perpendicular to the flow direction,
when subject to a Poiseuille flow. The deformability of the vesicle and the
non linear character of the Poiseuille velocity profile (non uniform shear rate)
cause the lateral migration of a vesicle towards the Poiseuille flow center-
line. Studies have been performed on the vesicle dynamics in Poiseuille flow
[28–31] but these concern vesicles flowing in small capillaries with no ability
to observe such lateral migration since the size of the vesicle is of the same
order as the width of the capillaries. In the present thesis we report how
the vesicle shape deforms during the lateral migration until reaching the
Poiseuille flow center-line. A tentative to extract a law for the vesicle lateral
migration in unbounded Poiseuille flow is also reported.

Fourth contribution

The last contribution of the present thesis is to study the interplay between
the Poiseuille flow- and the wall-induced lift forces. For this purpose we
performed boundary integral method simulation in a semi-infinite fluid bound
by a wall. We identify regimes where one mechanism (either wall-induced
or curvature-induced lift force) dominates over the other. Simulations data
in the case of larger distances from the wall to the Poiseuille center-line are
used to derive a similarity law for the vesicle lateral migration velocity as a
function of the flow parameters and intrinsic properties of the vesicle. This
law is then used to fit experimental data. A good agreement is found between
simulations and experiments.
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2. VESICE MODEL AND HYDRODYNAMICAL
EQUATIONS

Here we describe in more details the system of vesicle whose dynamics under
flow is studied along the present thesis. First we present the vesicle, its
structure, what is made of and its mechanical properties. Then we present
its mathematical description and the equations governing the flow of both
its internal and external fluids, together with the boundary conditions at the
membrane.

2.1 What is a vesicle?

Vesicles are closed lipid membranes, encapsulating an internal fluid and are
usually suspended in an external aqueous solution. Thier typical size ranges
from the order of 100nm to the order of 10µm. In the latter case we call
them Giant unilamellar vesicles (GUV). Figure 2.1 shows a phase-contrast
micrograph of a vesicle.

The membrane of vesicles can be made of phospholipid molecules. Each
molecule has a hydrophilic phosphate head (polar) and two hydrophobic
fatty acid tails (non polar), see Fig. 2.2. In our experiments two types of
phospholipids molecules are commonly used, the dioleoyl-phosphatidilcholine
(DOPC) or the dimyristoyl-phosphatidylcholine (DMPC).

For a vesicle with a given radius of about 10µm, the membrane contains
about 1010 molecules. These phospholipid molecules, when hydrated, assem-
ble themselves spontaneously into a bilayer (with a thickness of the order
of 5nm) in which all the hydrophilic heads of the molecules are in contact
either with the internal or the external aqueous solutions, as it is depicted in
Fig. 2.2.

Vesicles are widely used as a mimicking model to study biological cells.
They can be artificially produced in the laboratory and they can be easily
handled compared to the living cells that need much more precaution and
care. Vesicles have shown many features observed for living cells. As a way of
example, the known biconcave equilibrium shapes of red blood cells, as well
as and several of their dynamics under flow are also exhibited by vesicles, as
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Phospholipid membrane
(fluid membrane)

Internal fluid
(the encapsulated

fluid)

External fluid
(the suspending fluid)

Fig. 2.1: A phase-contrast micrograph of a vesicle with a size of 50µm.

Hydrophilic phosphate 
head (polar)

Two hydrophobic fatty 
acid tails (non polar)

Phospholipid
molecule

Phospholipid bilayer
membrane

Vesicle

~ 10 µm

~ 5 nm

~ 0.2 nm

~ 1-3 nm

Fig. 2.2: A cartoon showing a vesicle and the molecular structure of its membrane
(here is the SOPC molecule). Picture taken from the web site of the Nasa
Astrobiology Institute: http://astrobiology.nasa.gov/nai/
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Shearing

Extension / Compression

Bending

A0

A0

A0 + dA

R1

R2

Fig. 2.3: Schematic representation of different deformation modes that a portion
of the vesicle membrane surface (the gray colored open square with initial
surface A0) can undergo: shearing, extension / compression and bending.

will be discussed in the next chapters.

2.2 Vesicle mechanical properties

A vesicle membrane can undergo three different basic modes of deformation:
1 - Shearing (by keeping the membrane surface conserved), 2 - Extension
or compression (inducing a variation in both the area and the thickness of
the membrane) and 3 - Bending. Figure. 2.3 illustrates these three different
deformation modes.

At room temperature (and at physiological temperature as well) the mem-
brane is at liquid phase. At this phase shearing a portion of the membrane
surface does not cost much energy. This is so because the phospholipid
molecules are free to move and so to reorganize into a new configuration to
relax the applied forces. However the energy required to expand or to com-
press a portion of it without breaking it off, is very high (surface compress-
ibility modulus v 100mN/m [3]). Therefore, the membrane is considered as
a two-dimensional incompressible Newtonian fluid and this implies local and
global conservation of the vesicle surface, which will be denoted A. Such con-
servation of the surface is not observed for other deformable particles, such as
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capsules or droplets. This is one of the intrinsic properties of a vesicle which
is shared with red blood cells. Moreover, since the water permeability of the
membrane is very small (permeability is of the order of 10−3cm/s [32]), and
that the membrane encloses an incompressible Newtonian fluid (an aqueous
solution), the volume V is also a conserved quantity. Both of these properties
of vesicles have to be taken into consideration in modelling and simulation.
The basic deformation is bending. The amount of energy stored when the
membrane (∂Ω) is bent is given by the so-called Helfrich energy [33]:

E =
κ

2

∫
∂Ω

(2H)2dA +

∫
∂Ω

ζdA (2.1)

where κ is the membrane rigidity (which is of the order of 10−19J [3]) and H
the local membrane mean curvature: H = (1/R1 +1/R2)/2 where R1 and R2

are two radii characterizing locally a curved surface, please refer to Fig. 2.3,
in the case of bending mode, for a geometrical interpretation. dA is a surface
element on the membrane domain ∂Ω. Note that for the sake of simplicity,
we do not account for a spontaneous curvature (a constant spontaneous cur-
vature H0 may be included by substituting 2H by 2(H−H0)). The last term∫

∂Ω
ζdA, where ζ is a Lagrange multiplier, is introduced in order to fulfill

the vesicle local area dA (perimeter P in 2D) conservation constraint. ζ may
be viewed as a two dimensional (on the membrane) pressure-like field that
enforces this local area constraint. The enclosed volume V (area A in 2D)
conservation constraint is automatically conserved, owing to the divergence-
free condition of the velocity field in the fluid (incompressible fluid), and
absence of permeation. Indeed, the volume is conserved only if we do not
allow for fluid flow across the membrane (exchange or leaking of fluid), as
assumed here according to the conventional wisdom.

2.3 Membrane forces

The membrane tries to release excess of bending energy by exerting a reaction
force f upon its surrounding fluid. This force is obtained as a functional
derivative of the energy with respect to a membrane elementary displacement:

f = −δE

δr
, (2.2)

where δr is a small displacement of a point belonging to the membrane
surface. This is the natural extension of the force definition to an extended
entity (in opposition with a material point).



2.3. Membrane forces 29

2.3.1 In two-dimension

Numerical studies explored in this thesis have focused on a two dimensional
case, for simplicity and for computational time reasons that preclude from
having extensive quantitative results on a reasonable time scale in three di-
mensions. In a two-dimensional space a vesicle is represented by a closed
contour. Details of the derivation steps of the membrane force in this case is
given in Appendix A and the resulting expression is:

f =

[
κ

(
∂2H

∂s2
+

H3

2

)
−Hζ

]
n +

∂ζ

∂s
t , (2.3)

where t and n are respectively the tangent and the normal vectors to the
membrane contour. s is the curvilinear coordinate along this contour.

This force is composed of a normal as well as a tangential contribution.
If ζ is constant along the membrane, then only the normal part survives
because of the following reason. If ζ is constant, the tension-like force (which
is a vector) associated with ζ is tangential to the curve, and has the same
magnitude at both extremities of an arc element ds (which can be taken to
be a portion of a circle, provided that ds is small enough). It follows, that
the sum of the two forces is directed in the normal direction. If, on the
contrary, ζ changes along the contour, then the two values at the extremities
of ds are different, and the force has, besides a normal part, a tangential
one, which is given by (∂ζ/∂s)t. On the other hand, the bending energy
depends on the curvature (which is a geometrical quantity). It follows that
the only force that is able to change the shape of a geometrical surface (i.e.
a mathematical boundary having no internal physical structure) must be
normal to the surface. Finally, note that the term −ζHn has the same
structure as the force due to surface tension of a droplet f = −σHn where
σ is the droplet surface tension. There is, however, a significant physical
difference: for a droplet σ is an intrinsic uniform quantity which represents
the cost in energy for moving a molecule from the bulk (surrounded by other
molecules) to the surface (and thus it looses some neighbors). In the present
problem ζ is a Lagrange multiplier which must be determined a posteriori
locally at each time by requiring a constant local area. ζ is not an intrinsic
quantity, but rather it depends on other parameters (like κ, the vesicle radius,
etc...).

2.3.2 In three-dimension

The analytical work presented in this thesis is made in three dimensions,
and therefore we need to express the corresponding membrane force. The
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three-dimensional version of the membrane force is given by [34]:

f =
(
κ
[
2H
(
2H2 − 2K

)
+ 2∆sH

]
− 2ζH

)
n +∇sζ, (2.4)

where H and K are the mean and the Gaussian curvatures respectively, ∆s

is the Laplace-Beltrami operator and ζ a Lagrange multiplier which is intro-
duced, as it is discussed above, in order to fulfill the local surface conservation
of the vesicle membrane, and n is the normal vector.

H = ∇.n, (2.5)

while the Gaussian curvature K by:

2K = H2 −∇n : ∇nT . (2.6)

Note that the above expression for K is nothing but the determinant of
the tensor ∇n, while H is the trace of the same quantity. As these two
quantities are invariant under a membrane reparametrisation, it is natural
to expect that the energy can depend only on these invariants, as does the
Helfrich energy. We have introduced in (2.4) the surface gradient defined as:

∇s ≡ (I − n⊗ n)∇. (2.7)

The quantity (I − n ⊗ n) is the projector operator. The Laplace-Beltrami
operator is defined as:

∆sf = ∇s. (∇sf) (2.8)

where f is any scalar function. A recent concise and self-contained derivation
of the force in three dimensions has been given in Ref. [35].

2.4 Vesicle equilibrium shapes

A vesicle does not have a spherical shape as an equilibrium shape in con-
trast to a droplet. It exhibits other non spherical equilibrium shapes when
it is placed in a fluid at rest. Such equilibrium shapes can be computed by
minimizing the Helfrich energy Eq. (2.1) while imposing the two constraints
of vesicle area S and volume V conservation [36]. Figure 2.4 shows different
obtained vesicle equilibrium shapes. An equivalent way for energy minimiza-
tion is to impose a vanishing force. The only parameter controlling the shape
of a vesicle, in the absence of an external applied flow, is the reduced volume.
This parameter quantifies the degree of deflation of a vesicle, it is given by
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ProlateOblateStomatocyte

Fig. 2.4: Different vesicle equilibrium shapes as a function of its reduced volume
[36].

the ratio of the volume of the vesicle V to the volume of a sphere VS having
the same surface A as the vesicle:

τ =
V

VS

=
V

4π
3

(
A
4π

)3/2
, (2.9)

it has a value 1 for a spherical vesicle (a maximally swollen vesicle) and less
than 1 for a deflated one. In Fig. 2.4 we can see that at the reduced volume
of 0.65 the vesicle has a biconcave shape, a similar shape as the one observed
for healthy red blood cells.
For a two-dimensional vesicle the reduced volume is defined as the ratio of
the area of the vesicle A to the area of a circle having the same perimeter P
as the vesicle:

τ2D =
4πA

P 2
(2.10)

2.5 Hydrodynamical equations

Since in the next chapters we deal with the dynamical behavior of a vesicle
when it is subject to flow, it is worthwhile to mention briefly the correspond-
ing hydrodynamical equations.
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2.5.1 Navier-Stokes equations and dimensionless numbers

The flow of the internal and the external fluids, that are considered to be
incompressible Newtonian fluids with viscosity η and density ρ (here for
simplicity we consider the fluids to be of the same nature), is governed by
the known Navier-Stokes equations:

ρ

(
∂v(r)

∂t
+ v(r) · ∇v(r)

)
= −∇p(r) + η∇2v(r) + f(r)δ(r− r′),

O · v(r) = 0. (2.11)

where v and p are the velocity and the pressure fields, respectively. f, which
appears in the RHS of Eq. (2.11), represents the membrane force applied on
the fluid. The flow at a point r belonging to bulk fluid, or at the membrane,
is disturbed by a force (the above membrane force) exerted by a point r′

belonging to the vesicle membrane.
The above Navier-Stokes equations can be rewritten in a dimensionless form
(refer to Appendix B for the procedure of dimensionlization):

Re

(
∂v∗

∂t∗
+ v∗ · ∇∗v∗

)
= −∇∗p∗ +∇∗2v∗

+
1

Ca

(
∂2H∗

∂s∗2
+

H∗3

2

)
δ(r∗ − r′∗)n

+
1

Cas

(
∂ζ∗

∂s∗
t−H∗ζ∗n

)
δ(r∗ − r′∗). (2.12)

where dimensionless variables are defined as follows:

• r∗ = r/R0,

• t∗ = t/T ,

• v∗ = v/U ,

• p∗ = pR0/ηU ,

• H∗ = H/H0 = HR0,

• s∗ = s/R0,

• ζ∗ = ζ/Γ with Γ is the spring-like constant (see discussion below in
the summary of dimensionless numbers). In two-dimensional simula-
tions the membrane contour is discretized into points interconnected
by elastic spring, see the next chapter for more details.
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• δ(r− r′) = δ(R0(r
∗ − r′∗)) = δ(r∗ − r′∗)/R0.

where R0 is the effective radius of a vesicle taken here as a characteristic
length scale, T is a characteristic time scale and U a characteristic velocity
of the flow.

Summary about the dimensionless numbers

In summary the adimensional numbers appearing in Eq. (2.12) are:

• The Reynolds number :

Re =
ρUR0

η
, (2.13)

associated to the applied external flow and that measures the impor-
tance of the inertial forces upon the viscous ones,

• The capillary number :

Ca =
ηγR3

0

κ
(2.14)

associated to the vesicle and measures the ratio between the shear
time 1/γ (γ can be expressed as γ = U/R0) and the characteristic time

(
ηR3

0

κ
) needed by a vesicle (at an out-of-equilibrium state) to relax to

its equilibrium shape after cessation of flow.

These two numbers are to be supplemented by two other numbers which are:

• The reduced volume in 3D (or area in 2D):

τ =
V

VS

, (3D) or τ2D =
A

As

(2D), (2.15)

Vs (As) is the volume (area) of a sphere (circle) having the same area
(perimeter) as the vesicle.

• The viscosity ratio between the internal and external fluids:

λ ≡ ηint

ηext

. (2.16)

We have thus above four independent quantities, and in the small Reynolds
number limit (see next section) we shall be left with only three independent
dimensionless parameters.
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Finally, note that the Lagrange multiplier ζ is not an intrinsic quantity,
since it is related to other physical parameters via the constraint of surface
free divergence ∇s.v = 0. In practice (and especially in numerical treat-
ments) it is useful (see later) to view the membrane incompressibility as
achieved thanks to a a quite stiff-spring force between material points on the
membrane. In that case it will be needed in the numerics to estimate another
dimensionless parameter, namely

• The tension number :

Cas =
ηγR0

Γ
(2.17)

which is the ratio between the spring relaxation time (recall that Γ is
the spring constant) and the shear time.

2.5.2 The Reynolds number and the Stokes flow limit

The flow of an incompressible Newtonian fluid with viscosity η and density
ρ is characterized by the dimensionless Reynolds number,

Re =
ρUR0

η
, (2.18)

where U is a characteristic velocity and R0 a characteristic length of the
studied system. Along the present thesis we take the size of a vesicle, which
is of the order of 10 − 100µm [37], as the characteristic length. For such
length and for vesicles suspended in an aqueous solution subject to shear,
with moderate applied shear rates (γ = U/R0) that are usually of the order
of 10s−1, the Reynolds number is rather small, Re ∼ 10−3 − 10−2 � 1.
At such small Reynolds number limit (Stokes flow), the fluid flow is well
approximated by the Stokes equations:

−∇p(r) + η∇2v(r) = −f(r)δ(r− r′),

O · v(r) = 0. (2.19)

In this limit, which is the typical situation in microfluidic devices, for ex-
ample, the viscous forces are dominant over the inertial ones, the flow is
almost laminar, and no turbulence can be observed, at least in the absence
of vesicle. Moreover the fluid flow does not depend on its previous history
(because of the absence of the term ∂v/∂t in the Stokes equation), it de-
pends only on the boundary conditions and it is generated and maintained
by external applied forces. When the driven forces are switched off the fluid
stop flowing [38]. The Stokes equations enjoy an important symmetry: they
are symmetric upon time reversal. This has several consequences, like no lift
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can be experienced close to a substrate for a spherical suspended entity, the
flow is symmetric past a symmetric obstacle, the absence of swimming for
swimmers having only one degree of freedom (the Scallop theorem) and so
on [38,39].

2.6 Boundary conditions on the membrane

The dynamics require specifying boundary conditions on the vesicle mem-
brane ∂Ω:

• Because of the (largely adopted) assumption of non-slip at the mem-
brane, together with non permeability of the membrane, the velocity
at the vesicle membrane is continuous [40]:

vext(rm) = vint(rm) = v(rm) where rm ∈ ∂Ω. (2.20)

where vext and vint are the velocity of the external and the internal
fluids, respectively.

• The hydrodynamical stresses due to the external and the internal fluids
flow are balanced by the membrane force f:(

σext(rm)− σint(rm)
)
n = −f(rm) where rm ∈ ∂Ω. (2.21)

where σij = −pδij + η(∂iuj + ∂jui) is the stress tensor.

• At large distances from the location of the vesicle membrane the exter-
nal fluid (Ωext) flow tends to its undisturbed state:

vext(r) −→
|r−rm|→∞

v∞(r) where rm ∈ ∂Ω and r ∈ Ωext. (2.22)

where v∞ is the undisturbed external applied flow.



36 2. Vesice model and hydrodynamical equations



3. THE USED METHODS FOR SOLVING VESICLE
DYNAMICS

In the present chapter methods used to solve the hydrodynamical equations
(Eqs. 2.11 in Ch. 2), to capture dynamics and deformation of vesicles, are pre-
sented. Each method presents advantages and drawbacks for given situation.
Advantages and drawbacks of each method are discussed.

3.1 The boundary integral method

The boundary integral method (BIM) - also named the boundary elements
method (BEM) - is an adequate numerical method to simulate dynamics of
free deformable interfaces moving under Stokes flows in unbounded or semi-
bounded geometries. Physical quantities of interest are directly computed on
the interface; therefore, there is no need to solve for the fluid flow through-
out the whole computational domain in order to capture the dynamics of the
membrane. The Stokes equations, which are linear partial differential equa-
tions, can be converted into an integral equation form (see Appendix C).
For more details about the method see [41] and [42]. The method has been
adapted to the problem of vesicle dynamics by several groups [19,20,43].

Integral equation

The unknown solutions of the Stokes equations are written in the form of
integral equations (see Appendix C). Here we give the expression of the
velocity which is valid everywhere in the fluid domains, and in particular
at the membrane. Knowledge of membrane velocity is sufficient in order to
ascertain the subsequent vesicle evolution. The velocity at any point of the
fluid domains takes the form

∆vj(r) =
1

4π

∮
∂Ω

GS
ji(r, r

′)fi(r
′)ds(r′)

+
(ηext − ηint)

4π

∮
∂Ω

vi(r
′)T S

ijk(r
′, r)nk(r

′)ds(r′)

+ηextv
∞
j (r) (3.1)
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Fig. 3.1: A schematic representation of a vesicle membrane contour ∂Ω (in 2D),
the internal fluid Ωint and the external fluid Ωext domains. r is a location
where the velocity is evaluated and r′ a point belonging to the vesicle
membrane.

with

∆ =


ηint

ηext
1
2
(ηint + ηext)

r ∈ Ωint

r ∈ Ωext

r ∈ ∂Ω
(3.2)

where v∞ is the applied undisturbed flow velocity, the first integral with the
kernel GS is known as the single-layer potential and the second one with the
kernel TS is known as the double-layer potential. The unknown solution v
appears on the LHS of Eq. 3.1 and as well as on its RHS under the integral
sign. Because the domain of integration is well defined, the integral equation
is a Fredholm integral equation of the second kind.
In the absence of viscosity contrast (ηint = ηext = η), Eq. 3.1 reduces to the
simpler expression:

vj(r) =
1

4πη

∮
∂Ω

Gji(r, r
′)fi(r

′)ds(r′) + v∞j (r) (3.3)

This equation is valid for any point r in the whole computational domain:
at the membrane ∂Ω as well as in both fluids Ωint and Ωext.

Green’s functions

The integral kernels, G and T, appearing in both integral equations 3.1 and
3.3 are Green’s functions.
For a two-dimensional infinite fluid (unbounded geometry), they have the
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following expressions:

GS
ij = −δij ln r +

rirj

r2

Stokeslet

T S
ijk = −4

rirjrk

r4

Stresslet

(3.4)

where r ≡ |r− r′| and ri is the ith component of the vector r− r′. Physically
the Stokeslet represents the induced fluid velocity in the i-direction at the
position r due to a unit singular force exerted locally at r′ and has the j-
direction.
The Green’s functions have the following properties:

Gij(r, r
′) = Gji(r, r

′), (3.5)

Gij(r, r
′) = Gij(r

′, r), (3.6)

Tijk(r, r
′) = −Tijk(r

′, r). (3.7)

In the case of a two-dimensional fluid bounded by an infinite solid plane wall
(half-space) located at y = w, the Green’s functions are given by:
The velocity Green’s function can be presented as a sum of the following
elementary Green’s functions

GW
ij (r, r′) = GS

ij(r̂)−GS
ij(R̂)

+2h2
0G

D
ij (R̂)− 2h0G

SD
ij (R̂) (3.8)

where r̂ = r− r′ and R̂ = r− r′IM with r′IM = (r′x, 2w − r′y) is the image of
r′ with respect to wall. h0 = r′y − w is the distance of the point force from
the wall. The other terms are:

• Stokeslet doublet

GD
ij (r) = ±

(
δij

r2
− 2

rirj

r4

)
(3.9)

• Source doublet

GSD
ij (r) = ryG

D
ij (r)±

δjyri − δiyrj

r2
(3.10)

with ” + ” for x-direction and ”− ” for y-direction

The stress Green’s function

TW (r, r′) = TS(r̂)−TS(R̂) + 2h2
0T

D(R̂)− 2h0T
SD(R̂) (3.11)
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where

TD
ijk =

∂GD
ij

∂rk

+
∂GD

kj

∂ri

,

= ±4

(
−δijrk + δikrj + δjkri

|r|4
+ 4

rirjrk

|r|6

)
(3.12)

(3.13)

and

T SD
ijk =

GSD
ij

∂rk

+
∂GSD

kj

∂ri

− δikp
SD
j

= ryT
D
ijk ± 2

(
δjyδki

|r|2
− δjyrkri

|r|4

)
− δikp

SD
j (3.14)

with the vector pSD having the components:

pSD = − 2

|r|4
(
2rxry, r

2
x − r2

y

)
. (3.15)

Thus, depending on the geometry of the studied problem (unbounded or
bounded by a wall) we substitute GS (respectively TS) into Eq. 3.1 with the
appropriate function. More precisely, for the study of dynamics of a vesicle
suspended in an unbounded flow (situation corresponding to infinite fluid)
we use the couple

(
GS

ij, T
S
ij

)
given by Eqs. 3.4. This is used in chapter 5 in

order to study the lateral migration of a vesicle in unbounded Poiseuille flow.
For a vesicle placed in a semi-bounded flow (a fluid bounded by infinite plane
wall), we use the couple

(
GW

ij , TW
ij

)
that take into consideration the existence

of the wall (via the notion of images, like in electrostatics). This is used
in order to simulate the lateral migration of a vesicle under the influence of
both the wall and the Poiseuille flow, see chapter 5.

Numerical procedure steps

In general, nonlinear integral equations (as those encountered here) have
no available exact analytical solution. The shape of the vesicle obeys such
nonlinear integral equation. The shape of a vesicle is not known a priori
(not a fixed shape) and has not a simple geometry, in general, except in
the very special situation of a sphere. Thus, in general, one has to resort to
numerical techniques. For that purpose the vesicle membrane contour (in 2D)
is discretized and the integral equation takes a dicretized form, which can,
in principle, be handled numerically . After evaluating the membrane force
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Fig. 3.2: Organigram giving the main steps performed to get the vesicle dynamics.
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which enters the right hand side of Eq. (3.3), the velocity is then evaluated
at each discretization point using Eq. (3.3). The displacement in the course
of time of the vesicle membrane is obtained by updating the discretization
points after each time iteration, using a Euler scheme (See the organigram
in Fig. 3.2):

r(t + dt) = v(r, t)dt + r(t). (3.16)

Fulfilling local membrane area

In principle, from Eq.(3.3) we can determine the membrane velocity, if the
force and the initial shape are given. The force (2.3) contains geometrical
quantities (like the normal vector and mean curvature H) which are deter-
mined from the initial shape, plus a function ζ(s, t), which is unknown a
priori. Numerically, the following method has been tested. An initial shape
(typically an ellipse) and an initial ζ (typically a constant along the contour)
have to be chosen. Then the geometrical quantities appearing in the force
can be calculated (the method of discretization of the integral equation (3.3)
has been discussed in [40]). This allows one to evaluate the right hand side
of (3.3) at initial time. The membrane velocity at this time is thus fixed. We
then displace each membrane element according to the computed velocity,
and by this way we obtain a new shape. However, the new shape does not
fulfill, in general, the local membrane incompressibility. A local stretching
(or compression) of the membrane takes place as long as the projected diver-
gence of the velocity field of the fluid adjacent to the membrane is non zero.
We thus must adjust the appropriate function ζ(s) in order to fulfill this
condition. The condition that the projected divergence must vanish reads

(I− nn) : ∇v = 0 (3.17)

where I is the identity tensor, and nn stands for the tensor product (I− nn
is the projector on the contour). The above relation can be viewed as an
implicit equation for ζ(s), similar to ∇.v = 0 which fixes the pressure field
in 3D fluids. This way of reasoning is quite practical in the analytical study
of vesicles [17]. From the numerical point of view, this way has suffered from
several numerical instabilities. We have thus introduced another approach
[40] as outlined below.

In a 2D simulation, when discretizing the vesicle membrane contour, the
vesicle perimeter conservation constraint could be achieved without dealing
with the local Lagrange multiplier entering the membrane force given by
Eq. (2.3). This constraint could be fulfilled in another and more convenient
way. For that purpose we have used a straightforward method based on the
fact that two material representative points on the membrane are attached to
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each other by strong cohesive forces which we describe by quasi-rigid springs,
so that we can achieve in numerical studies less than 1% variation of the area.
By this way an additional parameter ks is introduced, which is the spring
constant [40], ζN(i) = Γ(ds(i)−ds0(i)). By choosing Γ large enough (in order
to keep the membrane quasi-incompressible) the discretization step ds(i) is
kept as close as possible to its initial value ds0(i). Typically in units where
η = κ = 1 and where the typical radius of vesicles is of order unity, a value
of Γ = 103 has proven to be sufficient.

Advantages of the boundary integral formulation

• Reducing the problem dimensionality from 2D to 1D,

• Computing directly the vesicle membrane velocity (i.e. we do not need
to solve the problem in the fluid bulk),

• Tracking high deformations of the vesicle membrane,

• Incorporating easily the vesicle membrane force.

Drawbacks

• Evaluating integral equations with integrands exhibiting singularities
(logarithmic for G and 1/r for T),

• Limited geometrical configurations for which the Green’s functions ex-
ist (an unbounded and semi-bounded media). Note, however, that the
Green’s function for an unbounded domain can be used in the presence
of any typpe of bounding walls. This is done at certain price; one has
to integrate over bounding boundaries terms of the form

∫
Boundary

Gσ

and
∫

Boundary
Tv where σ is the total stress at the boundary and v the

velocity on that boundary.

• Spurious buckling of the membrane is observed for long time simula-
tions (in particular in 3D).

3.2 The lattice-Boltzmann method

3.2.1 Fluid flow

In the limit of small Mach M (ratio of the speed of a particle in a medium
to the speed of sound in that medium) and Knudsen K (ratio of the molec-
ular mean free path to the macroscopic characteristic length scale) numbers
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(smaller than 0.15 the hydrodynamic limit of the kinetic theory ) the lattice-
Boltzmann methods recover with good approximation, using Chapman-Enskog
procedure [44], the solutions of the known Navier-Stokes equations:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + η∇2u + f, (3.18)

∇ · u = 0. (3.19)

governing the fluid flow of an imcompressible Newtonian fluid. Where ρ and
η are respectively the mass density and the dynamic viscosity of the studied
fluid, u and p are respectively its velocity and pressure fields (which are the
unknown quanities). f in the right-hand side of Eq. (3.18) is a bulk force
(e.g. gravity) or the membrane forces as it is used here and discussed below.
In the recent decades, the lattice-Boltzmann method has been introduced and
widely used to simulate at the mesoscopic scale fluid flow in more complex
situations, such as fluid flow with complex bounding geometries (e.g. in
porous media), flow of multi-components and multi-phases fluid (e.g drops
and binary fluids), for a general review see Refs. [45–47]). Popularity of
the LB method among scientists and engineers has been gained because of
its straightforward implementation and its locality that allows for parallel
programming.

Lattice-Boltzmann method approach

In the spirit of the lattice-Boltzmann method, a fluid is seen as a cluster of
pseudo-fluid particles (or packets of this fluid), that can collide with each
other when they spread under the influence of external applied forces. The
main quantity associated to a pseudo-fluid particle is the distribution func-
tion:

fi(r, t), (3.20)

that gives the probability to find the pseudo-fluid particle at the position
r and with the velocity ci, in the i-direction, at the time t. In the lattice-
Blotzmann method context, not only the position space is discretized but
also the velocity space too. This implies that every pseudo-fluid particle can
move just to given discrete directions with given discrete velocities.
There are many LB lattices in which the position and the velocity spaces are
discretized (in different ways). It is then demanded that the method should
fulfill the following constraints:

• Mass conservation,

• Momentum conservation,
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Fig. 3.3: The lattice Boltzmann D2Q9.

• Galilean and rotational invariance

Here, the D2Q9 lattice is used, D2 means two-dimensional space and Q9 the
number of possible discrete velocity vectors (that means a pseudo-particle
can move just to 9 given possible directions), see Fig. 3.3. The choice of
9 directions is due to the constraints that the continuum limit of the LBM
provides the Navier-Stokes equations. If, for example, only the first neighbors
are included in Fig. 3.3, then we would not have the isotropic Laplacian in
the Navier-Stokes equations.
The evolution in time of the distribution fi is governed by the so-called lattice
Boltzmann equation:

fnew
i (r + ci∆t, t + ∆t)− f old

i (r, t) = ∆t (Ωi + Fi) (i = 0...8), (3.21)

where f old
i (r, t) is the old distribution of the pseudo-fluid particle when it

was at the position r at the previous time t, fnew
i (r+ci∆t, t+∆t) is the new

distribution of the same pseudo-fluid particle after it moved in the direction
ci to the new location r + ci∆t during the ellapsed time ∆t, with ∆t is the
time step. The left-hand side of Eq. (3.21) alone gives the spreading of the
pseudo-fluid particles freely under no external applied forces. In the right-
hand side of Eq. (3.21), Fi is an external applied force and Ωi is the collision
operator. Here the Bhatnagar-Gross-Krouk (BGK) approximation is used
for the operator (which is valid for Re << 1 Stokes limit) [48]:

Ωi = −1

τ

(
f old

i (r, t)− f eq
i (r, t)

)
, (3.22)

that describes the relaxation of the pseudo-fluid particle distribution f old
i (r, t)

to an equilibrium distribution f eq
i (r, t) (to be defined below) with a relaxation
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time τ . This relaxation time is related to an intrinsic macroscopic quantity
characterizing the fluid which is the kinematic viscosity ν via the relation:

ν = c2
S∆t

(
τ − 1

2

)
, (3.23)

where cS is the speed of the sound. For the LB lattice model used here
(D2Q9) cS = 1/

√
3 (in lattice units). The viscosity is then given by:

ν =
2τ − 1

6
, (3.24)

in our simulations we used the value τ = 1 for the method to be stable
and for the particle density and viscosity to be positive. The equilibrium
distribution f eq

i (r, t) - which is given as an approximation of the Maxwell-
Boltzmann equilibrium distribution - is given by:

f eq
i (r, t) = ωiρ(r, t)

[
c1 + c2 (ci · u) + c3 (ci · u)2 + c4 (u · u)

]
(3.25)

where c1, c2, c3 and c4 are lattice constants and ωi are the weight factors,
see Fig. 3.3. For the D2Q9 lattice, c1 = 1, c2 = 1/c2

S, c3 = 1/(2c4
S) , c4 =

−1/c2
S and ωi equals 4/9 for 0 velocity vector, 1/9 in the directions of nearest

neighbors, and 1/36 in the diagonal directions.
ρ(r, t) is the local density defined in term of fi as:

ρ(r, t) =
8∑

i=0

fi(r, t) (3.26)

and,

u(r, t) =
1

ρ(r, t)

8∑
i=0

fi(r, t)ci (3.27)

is the fluid local velocity. In our simulations we always check and try to keep u
smaller than a value of 0.1 (by choosing appropriate simulation parameters)
in order to stay in the limit of small Mach numbers (usual liquid regime,
besides sound propagation). The LBM are weakly-compressible methods. In
the BGK approximation we used, the method is valid for small values of M
and smaller values of the Reynolds number.
The fluid local pressure is given by:

p(r, t) = ρ(r, t)c2
S. (3.28)
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The boundary conditions

On the bounding walls The fluid is represented by a fixed mesh. The sim-
ulation box is a rectangular box with width L and height 2W . Periodic
boundary conditions are imposed on the right and on the left side of the box,
i.e. the inlet and the outlet of the fluid flow. Care has to be taken when
choosing the value of L. The physics of the problem can be dramatically
affected when values of L are chosen without caution. This value has to be
chosen large enough in a such way that the disturbance of the presence of
the vesicle on the external applied flow can not be felt at the boundaries of
the simulation box. If a smaller value of L is chosen, the simulations will
produce results corresponding to a periodic suspension array of vesicles sep-
arated by a distance L, therefore the inclination angle and other measured
physical quantities will be affected by the nearest neighboring vesicles.
Bounceback boundary conditions are implemented on the two walls [49]:

f−i(r, t + ∆t) = fi(r, t) + 2
ρwi

c2
s

(uwall · c1), (3.29)

where uwall is the velocity of the displacement of the wall. The shear flow is
generated by moving the two walls with the same velocity but in the opposite
directions. At the steady regime we obtain (for a fluid which is free of vesicles)
a linear shear velocity profile of the form u∞ = γyc1 where γ = uwall/W is
the shear rate.

On the vesicle membrane Because of the non-slip boundary condition and
the non permeability of the membrane the velocity across the vesicle mem-
brane is continuous:

vext(rm) = vint(rm) = v(rm) where rm ∈ ∂Ω. (3.30)

The hydrodynamical stresses due to the external and the internal fluids flow
are balanced by the membrane force f:(

σext − σint
)
n = −f where rm ∈ ∂Ω. (3.31)

At large distances from the location of the vesicle membrane the external
fluid flow tends to its undisturbed shape:

vext(r) −→
|r−rm|→∞

v∞(r) where rm ∈ ∂Ω and r ∈ Ωext. (3.32)
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M o v i n g  L a g r a n g i a n  m e s h
( v e s i c l e )

E x t e r n a l  f l u i d

I n t e r n a l  f l u i d

M e m b r a n e

F i x e d  E u l e r i a n  m e s h
( f l u i d )

Fig. 3.4: Schematic showing a Lagrangian mesh representing a two-dimensional
vesicle (where the membrane is represented by a contour) immersed in a
Eulerian mesh representing a fluid.

Fluid flow parameters

In the framework of the lattice-Boltzmann simulations we take the viscosity
η = 1/6, the mass density ρ = 1 and fluid flow velocity always smaller than
0.1. The choice of the parameters are also dictated by the fact that the low
Reynolds and low Mach numbers limits are respected.

3.2.2 Fluid-vesicle interaction

The immersed boundary approach

It remains to be shown now how the membrane is coupled with the flow. For
that purpose we make us of the so-called immersed boundary method. The
immersed boundary method (IBM) was developed first by C. S. Peskin to
simulate some aspect of blood flow in heart [50]; for a review see Ref. [51].
Within the framework of this method an interface (separating two regions
occupied by two fluids) is discretized into points interconnected by elastic
springs (as it is illustrated in Fig. 3.4 for the vesicle case). This interface
is represented by a moving Lagrangian mesh immersed in a fixed Eulerian
mesh representing the fluid. The fluid flow is computed, using a Navier-
Stokes equations solver, in the whole computational domain by ignoring the
existence of the interface. The fluid feels the existence of the interface due
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Fig. 3.5: The discrete delta function

to point singular forces exerted by the membrane nodes on their respective
surrounding fluid nodes. Physical quantities computed on every mesh are
linked to each others via a discrete delta function suggested by C. S. Peskin
[52].

∆(x) =

{
1

16l2s

(
1 + cos πx

2ls

)(
1 + cos πy

2ls

)
for |x| 6 2ls and |y| 6 2ls,

0 otherwise,
(3.33)

where ls is the lattice spacing. Here, in the context of the lattice-Boltzmann
method, it has a fixed value ls = 1. The function ∆ has non zero values on a
square of an area 4ls×4ls (see Fig. 3.5). In the present work the same strategy
as in IBM is used to simulate vesicle dynamics under a flow computed here
by the lattice-Boltzmann method.

Fluid flow action on the vesicle

The velocity at a given membrane node rm is evaluated by interpolating the
velocities at its nearest fluid nodes rf , which are already computed by the
lattice Boltzmann procedure, using the ∆ function:

v(rm) =
∑

f

∆(rf − rm)u(rf ) rm ∈ ∂Ω. (3.34)

Such a procedure of deducing the velocity of membrane nodes from fluid
nodes velocity is possible since we considered that velocity is continuous
across the membrane. After evaluating every membrane node velocity we
update its position using a Euler scheme:

rm(t + dt) = rm(t) + v(rm(t)). (3.35)



50 3. The used methods for solving vesicle dynamics

and so the shape deformation and dynamics of the vesicle is computed. The
same procedure steps as for the boundary integral method simulation is used
here, except that the velocity involved in Eq. (3.35) is computed using the
lattice Bolzmann procedure.

Vesicle action on the fluid flow

The vesicle membrane is not a passive interface but an active one that induces
disturbance on the applied flow. It exerts a reaction force as a response to
the applied hydrodynamical stresses that try to bend it. This force is given
by the following formula:

f(rm) =

[
κB

(
∂2H

∂s2
+

H3

2

)
−Hζ

]
n +

∂ζ

∂s
t + κA (A− A0)n, (3.36)

where H is the local curvature of the membrane, κ is its rigidity, n and t are
respectively the normal and the tangential unit vectors. The additional last
term in Eq. (3.36) is added to force area conservation, since numerically a
slight variation of area is observed as it is discussed in Ref. [40]. A detailed
derivation of this force can be found in Appendix A. This force has a non
zero value only at the membrane. Therefore, a given fluid point localized at
rf is subject to the force:

F(rf ) =

∫
∂Ω

f(rm)δ(rf − rm)ds(rm) with rm ∈ ∂Ω (3.37)

However, since the membrane is discretized and thus presented by a cluster
of points, this integral is rather a sum of the singular forces localized on the
membrane nodes:

F(rf ) =
∑
m

f(rm)δ(rf − rm)ds(rm) (3.38)

In addition, writing the force felt by a fluid node in term of an ordinary
Dirac’s delta function is not suitable here, since the membrane nodes are
off-lattice and do not necessarily coincide with the fluid lattice nodes. The
Dirac’s delta function in Eq. (3.38) has to be replaced by a function that takes
into account the discrete nature of the fluid medium in order to distribute
membrane force on the nearby fluids nodes. We use the ∆ function suggested
above which has a peak on the membrane node and it decays to zero at a
distance equal to twice the lattice spacing (Fig. 3.5). The choice of a such
shape of the function ∆ has to smooth out the presence of the Eulerian
lattice as much as possible. It is required to avoid jumps in velocity or in
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Fig. 3.6: LBM computed equilibrium shapes of a vesicle for different values of
the numerical parameters : (a) the discretization points on the vesicle
membrane n, (b) the half width of the simulation box nx and (c) the
spring constant κp. Here the vesicle has an effective radius of R0 = 20, a
reduced volume of τ = 0.60 and is placed in a fluid at rest (Re = Ca = 0)
bounded by two walls at a distance of 2W = 401.

applied force as the Lagrangian membrane points cross over the Eulerian grid
axes [52]. In this way the membrane force has no zero value only in a squared
area of size 4ls × 4ls centered on the membrane node.

3.2.3 Convergence and benchmarking tests

As a convergence test computed equilibrium shapes of a vesicle, with reduced
volume of τ = 0.6, for different values of the numerical parameters are per-
formed and are shown in Fig. 3.6. In each case we vary one of the three
numerical parameters: the discretization points on the vesicle membrane n,
the half width of the simulation box nx and the spring constant κp. In all
cases the physical parameters are kept the same: Re = Ca = 0, R0 = 20
and R0/W = 0.1. All the obtained curves, corresponding to the equilibrium
shapes, collapse onto one curve as it is illustrated in Figs. 3.6a, 3.6b and
3.6c. For the range of the numerical parameters used for Figs. 3.6 the code
gives a convergent solution. In all the simulations the enclosed area and the
perimeter are well conserved. A good conservation is achieved for higher κp

and smaller n. nx does not affect the vesicle area and perimeter conservation.
Fig. 3.7 shows the computed equilibrium shape for different reduced vol-

umes. Here again we used the same physical parameters as in Fig. 3.6:
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Fig. 3.7: Computed vesicle equilibrium shapes for different values of the re-
duced volume. On the top row the shapes computed using the lattice-
Boltzmann method for each vesicle reduced volume. On the bottom row,
for comparison purpose, the same vesicle shapes and their corresponding
shapes computed using the boundary integral method (the black solid
line).

Re = Ca = 0, R0 = 20 and R0/W = 0.1. For the numerical parame-
ters we use: n = 100, nx = 200 and κp = 8. The obtained shape for
each given reduced volume is compared to its corresponding shape obtained
by the boundary integral method (the black solid lines in Fig. 3.7). For a
given reduced volume, the computed equilibrium shapes obtained by the two
numerical methods are undistinguishable, especially at higher values of the
reduced volumes.

Advantages

• Simplicity of the algorithm compared to other classical computation
fluid dynamics (CFD) methods based on finite element methods,

• Straightforward implementation steps,

• Ability to simulate fluid flow in microfluidic devices since complex ge-
ometries can be easily implemented,

• Ability to be parallelised because of its local aspect.
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Drawbacks

• Time consuming simulations.

3.3 Small deformation theory

We introduce now another interesting alternative to solve the vesicle prob-
lem analytically in some situations. Solutions are obtained approximately if
one assumes that the shape is close to a sphere. Having analytical results is
important in order to guide numerical results. On the other hand they pro-
vide an attractive basis for understanding underlying physical phenomena.
In the small deformation theories, dynamics and deformation of a particle,
due to an external applied flow, are obtained by performing an expansion
around a simple geometry, namely a spherical shape (vesicles [17, 25, 53],
droplets [54,55] and capsules [56,57]).

3.3.1 The vesicle shape

The surface of the vesicle, in the spherical coordinates (θ ∈ [0, π] and φ ∈
[0, 2π[), is determined by the vector position [17]:

R(θ, φ) = R0 [1 + εf(θ, φ)] er, (3.39)

where ε is a small parameter related to the vesicle excess area ∆ by the
relation ε =

√
∆, and which is used as an expansion parameter for the

vesicle shape deviation from a sphere [23, 58]. The excess area is defined as
∆ = A− 4πR2

0, and measures the excess area from a sphere. It is related to
the reduced volume τ (see Eq.2.9) by

∆ = 4π[τ−2/3 − 1] (3.40)

∆ = 0 (τ = 1) corresponds to a sphere. Small ∆ corresponds to the quasi-
spherical limit.

The shape function f is decomposed on spherical harmonics Y m
n (θ, φ) as:

f(θ, φ) =
+∞∑
n=0

n∑
m=−n

Fn,m(t)Y m
n (θ, φ) , (3.41)

where Fn,m is a time-dependent amplitude of the corresponding mode, the
evolution equations of which will be analyzed.
Exapnding the geometrical quantities associated to the vesicle around a
sphere, we get [53]:
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• Vesicle surface

A = R2
0

(
4π

(
1 +

F0,0√
4π

)2

+
+∞∑
n=1

n∑
m=−n

|Fn,m|2 (1 + l(l + 1)/2))

)
,

(3.42)

• Vesicle volume

V = R3
0

(
4π

3

(
1 +

F0,0√
4π

)3

+
+∞∑
n=1

n∑
m=−n

|Fn,m|2
)

. (3.43)

The amplitude F0,0 can be expressed in terms of the other amplitudes, via
the vesicle volume conservation constraint [17,23,53]:

F0,0 = −
+∞∑
n=1

n∑
m=−n

|Fn,m|2√
4π

, (3.44)

inserting this into Eq. 3.42 the excess area becomes:

∆ =
+∞∑
n=1

n∑
m=−n

|Fn,m|2
(l + 2)(l − 1)

2
. (3.45)

Later the mode Y m
1 is omitted, since we are not interested in the translation

of the vesicle. Since we consider a vesicle under simple linear shear flow
only the spherical harmonics of order n = 2 survive [17]. This is sufficient
in order to capture the basic features of dynamics. Indeed, as shear flow is
linear its normal projection on a sphere (normal n ≡ R/|R|; actually only
normal displacement matter for shape modification) of radius unity provides
quadratic forms in x, y and z. This quadratic form can be written on a
second harmonics basis like

f(θ, φ) =
2∑

m=−2

F2,m(t)Y m
2 = F2,−2Y

−2
2 + F2,0Y

0
2 + F2,2Y

2
2 , (3.46)

with,

Y −2
2 (θ, φ) =

1

4

√
15

2π
sin2 θe−2iφ, (3.47)

Y 0
2 (θ, φ) =

1

4

√
5

π

(
3 cos2 θ − 1

)
, (3.48)

Y 2
2 (θ, φ) =

1

4

√
15

2π
sin2 θe2iφ. (3.49)
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The amplitude F2,m(t) are time-dependent quantities whose determination is
achieved by solving the flow equations together with boundary conditions at
the membrane. The knowledge of the equations obeyed by these amplitudes
determines the instantaneous shape of a vesicle, and its subsequent evolution.
Since these amplitudes depend on time only (the spatial dependence on shape
is encoded in the spherical harmonics), the corresponding evolution equations
are ordinary non linear differential equations. In some cases these equations
can be solved analytically, otherwise we have resort to a numerical solution
which is quite straightforward manner, as discussed below.

Note that we have omitted in Eq. (3.46) harmonics Y ±1
2 since we analyze

dynamics only in the plane of the shear flow, that is to say Y ±1
2 = 0 at

θ = π/2; the shear plane is the x− y one.

3.3.2 Hydrodynamical equations

We briefly recall the flow equations. We consider the small Reynolds number
limit which is consistent with most of available experimental data on vesicles.
Hence, the internal (Ωint) and the external (Ωext) fluids flow is governed by
the Stokes equations:{

ηint∇2uint(r)−∇pint(r) = 0,
∇ · uint(r) = 0,

r ∈ Ωint (3.50)

and {
ηext∇2uext(r)−∇pext(r) = 0,

∇ · uext(r) = 0,
r ∈ Ωext (3.51)

respectively. Moreover, since the membrane is considered as an incompress-
ible fluid its velocity field has to fulfill the condition (free surface divergence
condition):

(δij − ninj) ∂iuj(r) = 0, r ∈ ∂Ω, (3.52)

where η is the viscosity, p is the pressure and u the velocity. The subscripts
”int” and ”ext” are used to distinguish between quantities associated with
the internal and the external fluids, respectively.
Equations. (3.50), (3.51) and (3.52) are solved by taking into considera-
tion the boundary conditions: 1 - The stress jump

(
σext

ij − σint
ij

)
n + F = 0

(σij = −pδij + η(∂iuj + ∂jui) is the stress tensor) and 2 - The continuity of
the velocity uext = uint across the membrane and 3 - The external fluid flow,
at distances far from the location of the vesicle membrane, is undisturbed.
Solutions are obtained following the Lamb’s procedure [59], their expression
are given by:
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• For the external fluid as:

uext(r) =
∞∑

n=0

[
∇χext

−n−1 × r +∇φext
−n−1 −

n− 2

2n(2n− 1)
r2∇pext

−n−1 +
n + 1

n(2n− 1)
rpext

−n−1

]
.

(3.53)
where χext

−n−1 = r−n−1Qn, with Qn depend on the angular variables only
and are decomposed, in the most general case, on an infinite series of
surface spherical harmonics. However, as stated above, in a linear shear
flow, only second order harmonics are excited. Similar expressions hold
for φext

−n−1 and pext
−n−1.

• For the internal fluid as:

uint =
∞∑

n=0

[
∇χint

n × r +∇φint
n +

n + 3

2(n + 1)(2n + 3)
r2∇pint

n − n

(n + 1)(2n + 3)
rpint

n

]
(3.54)

where for χint
n , φint

n and pint
n the r-depedence is rn with angular func-

tions.

The pressure distribution is represented by p =
∑

n pn with pn are solid
spherical harmonics. The coefficeint of the expansion on spherical harmonics
of the functions Qn, and so on, are determined from velocity and forces
boundary conditions on the membrane.

3.3.3 Shape evolution equations

The evolution in time of the vesicle shape configuration, under an applied
shear flow, is given by the evolution of the Fi,j modes (see Ref. [23]). In
the present work we make use of the so-called post-expansion theory which
consists in keeping in the full evolution equations the leading terms in a
consistent manner [23]. We set [17] F2,2 = Re−2iΨ, Ψ coincides with the
orientation angle of the vesicle long axis with respect to the flow direction,
and R is the amplitude of the vesicle deformation. It may be convenient,
instead of using R, to use Θ [24] defined by 2R = cos Θ with 0 6 Θ < π.

But hereafter we use the expression R =
√

∆
2

cos Θ, to absorb ε appearing in
Eq. 3.39, in order to quantify the shape deformation (since this corresponds to
the entire amplitude deformation). Following the post-expansion theory [23]
we have

T
∂Θ

∂t
= −S sin Θ sin 2Ψ + cos 3Θ

+Λ1S sin(2Ψ)(cos 4Θ + cos 2Θ), (3.55a)
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T
∂Ψ

∂t
=

S

2

[
cos 2Ψ

cos Θ
− Λ

]
, (3.55b)

with

S =
7
√

3π

9

Ca

∆
, (3.56)

T =
7
√

10π

720

(23λ + 32) Ca

γ
√

∆
, (3.57)

Λ =
1

240

√
30

π
(23λ + 32)

√
∆, (3.58)

Λ1 =
1

28

√
10

π

λ− 2

23λ + 32

√
∆. (3.59)

The above coefficients are related to the three independent parameters ∆, λ
and Ca already introduced before. We can rescale time by T , so we are left
with three independent parameters S, Λ and Λ1. Below, we shall use either
of the two sets (∆, λ, Ca) or (S, Λ, Λ1). Equations. (3.55a) and (3.55b) are
symmetric under the transformations:{

Θ −→ Θ
Ψ −→ Ψ + π

and

{
Θ −→ π −Θ
Ψ −→ Ψ + π

2

(3.60)

The first term on the right hand side of Eq. (3.55a) is of order 1/ε2 (recall
that ε =

√
∆), the second one of order 1 and the final one of order 1/ε.

The first contribution (1/ε2) arises in the leading theory [17], the second ( of
order 1) is the additional term added in [24], while the full calculation shows
the need for the third term (1/ε). The reason for this has been discussed
at length in [23]. Below the relevance of this term for the dynamics of the
vesicle is presented and discussed.

Equation (3.55b) provides the evolution of the vesicle inclination angle
Ψ (−π ≤ Ψ ≤ π). For a given set of solutions {Θ(t), Ψ(t)} we obtain
F2,2 = |R|e(−i2Ψ), F2,−2 = |R|e(i2Ψ) and also F2,0 via the area conservation
constraint (see Eq.(3.45)), 2F 2

2,0 + 4|F2,2|2 = 1, and this leads us to the
determination of the vesicle shape configuration.

Advantages

• Ability to get analytical expressions and thus capture the physics,

• Fast time calculations (only ordinary differential equations (ODE) are
solved numerically).
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Drawbacks

• Limited to the small deformation regimes,

• Implementing bounding walls is not easy in practice.



4. VESICLE DYNAMICS UNDER SHEAR FLOW

The last chapter has dealt with different ways of solving the vesicle problem.
Now we present the outcomes. We first begin with the analytical results
based on the small deformation theory presented in the previous chapter.
Then dynamics in confined geometries is studied on the basis of the lattice
Boltzmann simulation discussed also in the previous chapter.

Regarding the first part of the study dynamics of a single neutrally buoy-
ant vesicle, as a response to an external applied shear flow, is studied analyt-
ically in the limit of low Reynolds number. In particular we are interested to
investigate how the vesicle dynamics (its orientation and its shape deforma-
tion) is related to three key dimensionless parameters: the excess area (the
degree of deflation), the viscosity contrast (between the internal and external
fluids) and the capillary number (the ratio of the time scales needed by the
vesicle to relax to its equilibrium shape after cessation of the flow and the
one of the imposed flow; inverse of shea rate). Secondly we study numer-
ically the effect of the confinement on the vesicle dynamics. In particular
we investigate how the vesicle’s steady inclination angle in the tank-treading
regime and the rheology depend on the degree of confinement (the ratio of
the effective radius of the vesicle divided by the half width of the channel).
These studies will shed light on vesicle dynamics at the individual level and
their impact on rheology.

4.1 Unbounded geometry

The following results are obtained by solving numerically Eqs. (3.55a) and
(3.55b), that are non-linear ordinary differential equations of first-order, us-
ing Maple. The phase-diagram (Fig. 4.1a) contains three domains corre-
sponding to the three known vesicle hydrodynamical regimes, under shear
flow: tank-treading (blue area), vacillating-breathing (violet area) and tum-
bling (red area). The phase diagram is drawn using Eqs. (3.55a) and (3.55b).
Steady (tank-treading) to unsteady (tumbling or vacillating-breathing) tran-
sition border, in the phase-diagram, is captured as follows: (i) The bifur-
cation from tank-treading to tumbling (which happens at low Ca) corre-
sponds to a saddle node bifurcation. (ii) The bifurcation from tank-treading
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Fig. 4.1: (a) Phase diagram giving the known vesicle dynamical regimes, exhibited
under shear flow, as a function of the capillary number and the viscosity
contrast, (b) Evolution of the phase diagram borders location under the
effect of varying the value of the vesicle excess area.

to vacillating-breathing is of Hopf type, and is captured when at least one
eigenvalue ω of the stability matrix of the set of fixed points has a real
part which becomes positive (we look for perturbation of the fixed point as
∼ eωt). Since the occurrence of vacillating-breathing mode corresponds to a
Hopf bifurcation, the real part of ω vanishes, while it imaginary part is non
zero.

The border separating the two unsteady regimes (tumbling and vacillating-
breathing) is obtained numerically. Tumbling is the continuation of the
vacillating-breathing mode when Ψ reaches ±π/4.
At low deformation regime (Ca < 1) the transition from tank-treading to
tumbling is direct and it occurs via a saddle-node bifurcation (in this range of
Ca no vacillating-breathing mode). At higher deformation regime (Ca > 1),
there exist a vacillating-breathing regime between tank-treading and tum-
bling regions.

The phase-diagram, for the parameters ranges used in Fig. 4.1a, looks
simple and it can be characterized by three quantities: the critical viscosity
contrast (λC), the critical capillary number (CaC) and the thickness of the
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vacillating-breathing domain (∆λ) at higher capillary numbers (as it is shown
in Fig. 4.1b).

Figure 4.1b shows the evolution of the domains border location, in the
phase-diagram, when varying the value of the excess area. Decreasing the
excess area towards vanishing values (towards the spherical vesicle limit)
induces a shift of CaC to the left of the phase-diagram (i.e. to smaller values)
and to an increase of both λC and ∆λ. The increase of λC when decreasing
∆ was already reported in literature [12–14]. The decrease of CaC and the
shift of the vacillating-breathing domain to higher viscosity (as it can be
seen in Fig. 4.1b), when decreasing ∆ were also observed by Noguchi and
Gompper [60]. The increase of ∆λ for smaller values of ∆ does not mean that
vacillating-breathing mode becomes important for quasispherical vesicles (in
comparison with more deflated ones) as it will be shown and discussed below
(in the subsection vacillating-breathing).
Figure 4.2 shows a comparison between the phase-diagram of the present
work and that obtained in Ref. [24]. The location of the borders, separating
the three vesicle dynamical regimes under shear flow, is different in both
works. In fact the additional term (with Λ1) appearing in the right-hand
side of Eq. (3.55a) makes the border location, in the phase-diagram, sensitive
to the excess area parameter. This contrasts with the result of Lebedev et
al [24] according to which vesicle dynamics, under shear flow, depends only
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on two dimensionless parameters S and Λ. In Figure 4.2 it can be seen that
when decreasing ∆, the borders obtained by the present theory (the colorful
curves) shift towards the ones obtained in [24] (the solid black curves).

Note that a value of ∆ = 1 corresponds to only 8% of relative excess
area. We could thus, legitimately, use the relative excess area as a dimen-
sionless small parameter in the expansion in order to stress the validity of
a perturbative scheme. This is more visible when using the reduced volume
ν to quantify the deflation. This is defined as the ratio between the actual
volume V and the volume of a sphere having the same area as the actual
shape, that we denote as V0. Thus ν = V/V0, or

ν =
V

4π
3

[A/4π]3/2
, (4.1)

and its relation to the excess area is ∆ = 4π[ν−2/3 − 1]. ∆ = 1 corresponds
to ν ∼ 0.93. Thus, when considering ∆ = 1 we must keep in mind that in
a perturbative sense this is a small quantity. Most of available experimental
data are in the range [14,15,25] ∆ = 0.5− 1.5. It will be seen later that the
effect of the third parameter Λ1 (when keeping S and Λ fixed) has a more
dramatic effect on the amplitude of the vacillating-breathing mode.

4.1.1 Tank-treading

We found that the steady inclination angle decreases with increasing the
viscosity contrast (Fig. 4.3a), an already known phenomenon reported in
literature [13, 16, 61, 62]. Moreover, we observed that at high deformation
regime, i.e. when the capillary number is greater than unity, the steady
inclination angle continues to decrease until reaching small negative angles.
This effect was briefly observed in [23] by using equation (52) in the same
reference.

Figure 4.3b shows, for a given set of viscosity ratios, the variation of the
steady inclination angle when varying the capillary number (or shear rate).
At low shear rate (Ca � 1), the steady inclination angle decreases with
increasing the capillary number. This decrease is quite important (see Figure
4.3b for λ = 2) where it can attain a factor of about two. This behavior was
briefly commented in the experiments of Ref. [25]. A systematic experimental
analysis of this fact is lacking.

At higher deformation (Ca � 1), the variation of the steady inclination
angle with increasing the capillary number, becomes smaller and smaller
until reaching a saturation state. For a vesicle without viscosity contrast
(λ = 1), its steady inclination angle has already reached a plateau for the
range of the capillary numbers used in Fig. 4.3. This is in good agreement
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Fig. 4.3: The steady inclination angle in radian of a vesicle, performing tank-
treading, (a) versus the viscosity contrast for different values of the cap-
illary number and (b) versus the capillary number for different values of
the viscosity contrast. Here ∆ = 1.

with numerical simulations results reported in [43]. In that wok it is stated
that the inclination angle of a tank-treading vesicle, under shear flow, is
independent of the applied shear rate value; however, in that work, tank-
treading of vesicles having a viscosity contrast and under smaller shear rates
was not reported.

This behavior (decrease of the angle with Ca) is revealed in the context of
the higher order expansion [23] dealt with here. This effect is not captured
in the leading order theory [17], where it was found that the steady inclination

angle does not depend on the capillary number (Ψ0 = ±1
2
cos−1

[
23λ+32

120

√
15∆
2π

]
).

4.1.2 Tumbling

At large enough Ca (i.e. when a vacillating-beathing mode exists, owing to a
significant vesicle deformation; see Figure 4.1) the tumbling period decreases
slowly with increasing the viscosity contrast (Fig. 4.4a; cases with Ca = 1 and
2; see phase-diagram for ∆ = 1 in Fig.4.1). It is only in the small Ca regime
(i.e. when there is direct bifurcation from TT to TB; see Fig.4.1) that the
period varies abruptly with λ (with infinite period at the transition point).
To our knowledge, such behavior of the tumbling angular period (of a vesicle)
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Fig. 4.4: The period of vesicle tumbling (rescaled by γ), (a) versus the viscos-
ity contrast for different values of the capillary number. The measure-
ments are taken starting from the viscosity contrast, corresponding to
the threshold of the transition to tumbling regime. The dash gray line
corresponds to the period of a rotating rigid body [63]; and (b) versus
the the capillary number for different values of the viscosity contrasrt.
Here ∆ = 1.

with varying the viscosity contrast was not reported so far in literature. The
dash gray line in Fig. 4.4a corresponds to the period of a rotating rigid body
with the frequency Ω = γ/2 [63], all TB angular period curves tend to this
value at higher values of the viscosity contrast. Deformation of vesicles, with
small viscosity contrast, slows down their tumbling motion.

Variation of the tumbling period when varying the capillary number, for
different values of the viscosity contrast, has also been investigated (Fig. ??b).
At lower deformation regime (Ca � 1), a decrease of the tumbling period
with increasing the capillary number is observed for all values of the viscosity
contrast, but that decrease is quite small, it varies in a range of 6 to 11%.
At a higher deformation regime (Ca � 1) more precisely in the range of 2
and for ∆ = 1, the period ceases to depend on the capillary number and it
becomes practically constant, whatever the value of the viscosity contrast is.
Noguchi and Gompper [60] have also measured numerically the period (the
frequency in their paper), but they observed an increase of this quantity when
increasing the capillary number, which disagrees with our observation. The
non-variation of the period when increasing the capillary number to higher
values is also observed numerically using boundary integral method in three
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dimensions (to be reported elsewhere).

4.1.3 Vacillating-breathing
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Fig. 4.5: The period of vacillating-breathing (rescaled by γ), (a) versus the viscos-
ity contrast for different values of the capillary number and (b) versus
the capillary number for different values of the viscosity contrast. Here
∆ = 1.

The vacillating-breathing period decreases with increasing the viscosity
contrast, after exhibiting a maximum (Fig. 4.5a) in the vicinity of the tran-
sition from the tank-treading regime to the vacillating-breathing one.

Fig. 4.5b shows the vacillating-breathing angular period versus the capil-
lary number, for different values of the viscosity contrast. Only in the vicinity
of the transition from tumbling to the vacillating-breathing (please refer to
Fig.4.1 for ∆ = 1 when looking to data in Fig. 4.5b in order to locate the
various regimes) does the period undergoes an abrupt fall. Upon increasing
Ca beyond a typical value of about 2 the period exhibits a plateau. Thus
here again, we observe that the angular period has a plateau for higher val-
ues of Ca. This is in disagreement with the observation in Ref. [60] in which
the period of the vacillating-breathing (the frequency in the paper) where
significant decreases with increasing the capillary number is reported. In our
case, a significant decrease is only observed in the vicinity of the tumbling-
vacillating-breathing transition, but no significant variation is found beyond
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Ca ∼ 2. The fact that the period is insensitive to Ca (for Ca of order of, or
higher than, 2) is confirmed by full three dimensional simulations based on
the boundary integral formulation, to be reported elsewhere.

Vacillating-breathing amplitude
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Fig. 4.6: The angular amplitude, in radian, of vacillating-breathing, versus the vis-
cosity contrast for different values of the capillary number. The dashed-
dotted lines are fits of the angular amplitude with a square root law
(v
√

λ− λC) (a); and versus the capillary number for different values of
the viscosity contrast (b). Here ∆ = 1

Let us investigate now a quantity which is quite sensitive to the three
dimensionless parameters, namely the amplitude of the vacillating-breathing
mode. The vacillating-breathing angular amplitude ∆Ψ increases with in-
creasing the viscosity contrast, as it is depicted in Fig. 4.6a. It tends to the
limit π/2 (in the right side in Fig. 4.6a) when the viscosity contrast tends
to the threshold of the transition to the tumbling regime. Note that the
amplitude is defined here as the absolute value of difference between the
maximum and the minimum of Ψ(t). Tumbling occurs when the minimum
Ψmin or the maximum angles Ψmax tend to the values −π/4 and +π/4, re-
spectively. When the viscosity contrast tends to the threshold value of the
transition to the tank-treading regime (in the left side in Fig. 4.6a), the min-
imum and the maximum angles values both tend to zero, and therefore the
amplitude vanishes.
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The fact that amplitude goes to zero at the tanktreading and vacillating-
breathing when decreasing λ (at fixed Ca) in a continuous manner is observed
for all the parameter values explored so far. That is to say, the bifurcation
from tank-treading to vacillating-breathing is supercritical (in contrast to
a subcritical bifurcation; a dynamical analogue of a first order transition).
This feature is further investigated by plotting the amplitude as a function
of λ. A typical behavior is shown in Fig. 4.6a. The amplitude is well fitted
with a square root law (∆Ψ v

√
λ− λC) in the vicinity of the bifurcation, a

prototypical result for a supercritical (or pitchfork) bifurcations.

We also found that the absolute values of the maximum and the mini-
mum angles are different |Ψmin| 6= |Ψmax| with |Ψmin| > |Ψmax|. In fact, dur-
ing vacillating-breathing, the vesicle longest axis oscillates around a small
negative angle (in contrast to RBCs that oscillate with respect to a posi-
tive angle [64]). This angle has the value of the steady inclination angle
measured in the tank-treading regime, just before the vacillating-breathing
threshold, for the same capillary number. Eigenvalues analysis of the stabil-
ity matrix of the non-linear equations (3.55a) and (3.55b) shows that this
angle corresponds to a fixed point that changes its nature from stable (in the
tank-treading regime) to an unstable spiral when the vacillating-breathing
threshold is crossed. This is a typical situation of a supercritical Hopf bi-
furcation. Figure 4.6b shows the vacillathing-breathing angular amplitude
versus the capillary number for different values of the viscosity contrast. At
smaller values of the capillary number, the amplitude decreases with increas-
ing the capillary number until it reaches a plateau, at higher values of the
capillary number. The same behavior was also reported in [60].
Figure 4.7 presents the variation of the angular and the deformation ampli-

tudes with the excess area for the vacillating-breathing regime. The values
of the parameters S and Λ used in Fig. 4.7 are chosen in a such way to be
in the vacillating-breathing regime domain, in the phase-diagram (Fig. 4.2),
for different values of ∆ belonging to the range between 0.125 and 1 (a typ-
ical range in experiments [14–16, 25, 26]). The angular amplitude decreases,
while the deformation amplitude increases, when increasing the excess area.
That means that for more deflated vesicles the deformation variation is im-
portant compared to the angular oscillations. The opposite situation occurs
for quasi-spherical vesicles (more swollen vesicle).

These results confirm again the importance of the excess area as a third
control parameter, on the vesicle dynamics, besides S and Λ. The present
analysis shows that for a fixed set of S and Λ, varying the excess area in-
duces ample variations in the deformation and the angular amplitudes of a
vacillating-breathing mode.
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Fig. 4.7: Variation of both the angular in radian (the left axis) and the deformation
rescaled by R0 (the right axis) amplitudes with the excess area, for a given
set of S and Λ parameters.

Vacillating-breathing limit-cycles

Figure 4.8 shows the limit-cycles of a vesicle performing vacillating-breathing,
under shear flow, for different sets of parameters. A point belonging to a limit
cycle (e.g. the point A in Fig. 4.8a) represents the instantaneous vesicle
inclination angle and the respective deformation.

In Fig. 4.8a we show a typical limit cycle for the vacillating-breathing ob-
tained when varying ∆, while keeping S and Λ fixed, as in Fig. 4.7. Increasing
the excess area induces a shift of the limit cycle to higher deformation regions,
and to small amplitude angular oscillations.

It must be noted that when varying the capillary number, in the range
used in Fig. 4.8b, while keeping λ and ∆ fixed, the configuration of the
limit-cycle does not exhibit a dramatic change. Only small variations in the
deformation and the angular amplitudes are observed.

Figure 4.8c shows the evolution of the limit cycle when varying only the
viscosity contrast. Increasing the viscosity contrast induces an increase of the
deformation and the angular amplitudes. The same information is presented
in Fig. 4.8d, in the Θ−Ψ Atlas.
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Fig. 4.8: Evolution of the limit-cycle configuration (in the R − Ψ plane) of a
vacillating-breathing vesicle, under shear flow, when varying either the
excess area (a), the capillary number (b) or the viscosity contrast (c).
Evolution of the limit-cycle configuration in the Atlas Θ−Ψ when vary-
ing the viscosity contrast.

4.2 Tank-treading of a confined vesicle

The analytical work presented above was made possible at small deviation
from a sphere. Also the flow was taken as unbounded. In confined geometries
we need to resort to numerical methods. Now we would like to illustrate one
of the presented methods, namely the LBM (Lattice-Boltzmann Method).

4.2.1 Effect of the reduced volume

A single isolated vesicle placed in an external suspending fluid subject to a
simple shear induced by the motion of the bounding walls with the same ve-
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locity but in opposite directions is simulated. Here we set the vesicle effective
radius R0 = 30 to acheive higher resolution and to have enough fluid nodes
between the wall and the membrane in more confined situations. The width
of the simulation box is set to L = 2× nx + 1 = 601 to avoid any unphysical
effects induced by the periodic boundary conditions.
In a such condition and in the absence of a viscosity contrast (between
the internal and the external fluids) a vesicle performs tank-treading mo-
tion [12, 15, 43]. It deforms until reaching a steady fixed shape (deformed
compared to the initial shape) with a long axis having a steady inclination
angle with respect to the applied flow direction. The membrane of the vesicle
undergoes a tank-treading like motion and so it generates a rotational flow
of the internal enclosed fluid. Fig. 4.9 shows different physical quantities
measured during tank-treading of a vesicle. The reached steady shapes for
different values of the vesicle reduced volume is shown in Fig. 4.9a. The
resulting streamlines inside and outside the vesicle, with reduced volume of
τ = 0.90, is shown in Fig. 4.9b. The internal fluid rotates due the tank-
treading of the vesicle membrane that transfer motion to it. The external
fluid flow exhibits recirculations in the right and in the left sides of the vesi-
cle. Such recirculations do not occur and are not observed in the unbounded
geometry case. They are observed for confined rotating hard spheres [65]
and for hard ellipsoides [66]. Their pattern configuration evolution with the
shape of the vesicle and degree of confinement is reported below. In Fig. 4.9c
the steady inclination angle of the vesicle versus its reduced volume for two
different given values of the degree of confinement is shown. The steady
inclination (for both values of R0/W ) increases with increasing the reduced
volume until reaching almost the value 45◦ which is the value of the steady
inclination angle of a spherical vesicle in unbounded geometry. Such behavior
is observed also for the unbounded geometry case [12,15,43]. For the values
of the degree of confinement used here, the measured values of the steady
angle are quantitatively different from the one that can be obtained using the
boundary integral method simulations for the unbounded geometry case [13]
(in a two-dimensional space). In Ref. [67] they report a good quantitative
agreement between steady inclination angles computed both by the BIM and
the LBM. But such collapse of data, with a slight deviation observed at small
values of the reduced volumes, can be achieved by choosing a small width of
the simulation box, but in such conditions we simulate accidentally the situ-
ation of an array of vesicles, seeing each other, and that results in a decrease
of the measured inclination angle.
The membrane tank-treading velocity versus the reduced volume is shown
in Fig. 4.9d. For the degree of confinement R0/W = 0.40 the tank-treading
velocity increases with increasing the reduced volume as this is also observed
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Fig. 4.9: Tank-treading of vesicles (with R0 = 30) under shear flow (Re = 9.45×
10−2 and Ca = 1) induced by two walls sliding with the same velocity
but in opposite directions (a) final steady shapes of vesicles, with different
reduced volumes, under shear flow. (a) streamlines inside and outside a
vesicle (τ = 0.9) performing a tanktreading motion in a fluid bounded
by two walls at a distance W = 151, (c) tank-treading inclination angle
verus the vesicle reduced volume for two degrees of confinement R0/W =
0.40 and 0.81. (d) membrane tank-treading velocity (scaled with 2R0/2
the analytical solution of the rotation of a cylinder under shear flow in
unbounded geometry) versus the reduced volume.
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Fig. 4.10: The hydrodynamical stress exerted on the bottow wall and the viscosity
of the system (vesilce and the suspending fluid). The hydrodynamical
stress exerted on the bottom wall for different values of the vesicle re-
duced volume for two values of the degree of confinement R0/W : 0.40 in
(a) and 0.81 in (b). (c) the viscosity versus the vesicle reduced volume
for the both values of the degree of confinement.

in the unbounded geometry case [12, 15, 43]. However for higher degrees of
confinement R0/W = 0.81, the tank-treading velocity does not vary anymore
monotonously as in the previous case. It has a maximum around the value
of τ = 0.85 and gets lower value for τ = 1. This behavior can be explained
by the fact that at higher degrees of confinement, the amount of the external
fluid able to flow from one side (the left) to the other side (the right) of the
box by crossing the narrow region between the wall and the membrane is
very small. Therefore, the external fluid flow does not participate much to
generate the tank-treading motion of the vesicle.
The modified bounce back boundary condition of Ladd [49] implemented on

the walls allows to measure the hydrodynamical stress field exerted by the
fluid. Fig. 4.10 gives the measured hydrodynamical stress and the effective
viscosity. The latter is defined as the ratio between the shear stress on the
wall divided by the imposed shear rate. For a given shear rate, the presence
of a vesicle modifies the applied shear stress on the wall. For a given value of
the degree of confinement Figs. 4.10a or 4.10b, the hydrodynamical stress is
important when placing vesicles with higher reduced volume, since the mem-
brane approaches more and more the wall. For the reduced volume τ = 1,
the stress is symmetrical with respect to the vertical axis perpendicular to
the walls and crossing the center of mass of the vesicle. Such symetrical
shape of the stress curves for circular vesicles is observed for confined hard
spheres. For deflated vesicles (τ 6= 1) their corresponding stress curve has
two unequal maxima and one minimum. The values of these maxima and
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Fig. 4.11: Distubed flow velocity profile measured at x = 0 for different values
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applied shear flow profile vx = γy

minimum significatly deviates from the value ηγ (the black solid line) - the
hydrodynamical stress in the absence of the vesicle - when increasing the
reduced volumes. By comparing Figs. 4.10a and 4.10b, we conclude that the
stress is important at higher degrees of confinement. At higher R0/W we
observe local region with negative hydrodynamical stress. Whether this is a
physical fact or is rather related to the LBM is not completly understood.
This question require more refined analysis before drawing a conclusive an-
swer.
In Figs. 4.10c the viscosity of the suspending fluid in the presence of a vesi-
cle is measured for different vesicle reduced volume. The viscosity increases
when increasing the reduced volume. Higher viscosities for a given reduced
volume is observed at higher degree of confinement. Below we pay a special
attention to the effect of confinement on the dynamics and the rheology.
In Fig. 4.11 we show the disturbed velocity profile for different values of the

reduced volume. The vesicle with τ = 1 disturbs much the applied external
flow. For this case in the region between the wall and the vesicle membrane
(near x = 0) an almost parabolic velocity profile is developed. This is due
to the birth of a pressure gradient as it is shown in Fig.4.12, showing the
pressure field for τ = 1.
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4.2.2 Effet of the degree of confinement

Fig.4.13 shows the variation of several physical quantities measured for a
tank-treading vesicle when varying the degree of confinement of the chan-
nel. The steady inclination angle decrease when increasing R0/W . We ex-
pect that by decreasing farther R0/W , we reach the unbounded geometry
limit. Here we explored the confinement values up to R0/W = 0.4. For
R0/W > 0.4 we need to increase W and also L to avoid unphysical effects
induced by the periodic boundary conditions. The decrease of the inclina-
tion angle when increasing the degree of confinement is observed for droplet
too [68]. The membrane tank-treading velocity decreases when increasing
R0/W . At higher degrees of confinement, just a small layer of the external
fluid is able to cross the narrow region between the membrane and the wall.
For hard spheres a decrease of the rotation velocity when increasing the de-
gree of confinement [69] is also observed.
The stress exerted on the channel walls, increases when increasing R0/W .
The deduced viscosity also increases when increasing R0/W . In fact increas-
ing R0/W , induces an increase in the flow resistance and to dissipation.

Fig.4.14 shows the pressure field and the streamlines developped inside
and outside a vesicle with reduced volume τ = 0.9 for three degrees of con-
finement.

4.3 Conclusions

• A two-dimensional tank-treading of a vesicle in a confined geometry is
simulated using the technique of lattice-Boltzmann,

• The immersed boundary method approach is used to couple vesicle
dynamics and fluid flow computed by lattice-Boltzmann method,

• The steady inclination angle and the vesicle membrane tank-treading
velocity decreases when increasing the degree of confinement (the ratio
between the size of the vesicle and the height of the channel),

• Recirculations of the external fluid flow takes place in a confined chan-
nel,

• The effective viscosity, in the presence of the vesicle, increases when
increasing the vesicle reduced volume (for a given value of the degree
of confinement) or by increasing the degree of confinement (for a given
value of the reduced volume).
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5. VESICLE DYNAMICS UNDER POISEUILLE FLOW

In recent years there has been a great interest to design micro-fluidic de-
vices with abilities to sort-out at the micro-scale particles such as living cells
or vesicles based on their size, deformability or their enclosed fluid. One
of the promising tricks is to exploit the properties of streamlines to guide
particles. Micro-fluidic devices are mainly composed of straight channels
where Poiseuille flow develops. Therefore it is interesting to understand how
a vesicle reacts dynamically when it is subject to a such flow. Here we
investigate numerically in two-dimensions the dynamical behavior and de-
formation of a single vesicle placed in a Poiseuille flow in the Stokes limit.
This study is also motivated to understand how the macroscopic rheology
of blood can be related to the deformation and migration of individual red
blood cells, constituting it, under Poiseuille flow developing in capillaries and
veinules. One of the interesting question in blood circulatory research con-
cerns the Fahraeus-Lindqvist effect (decrease of the apparent blood viscosity
in smaller vessels) [70]. We consider two cases: (1) the ambient fluid is un-
bounded (no bounding walls), in order to investigate only the effect of the
Poiseuille flow (i.e. the flow curvature), or (2) bounded by a steady infinite
solid wall, in order to investigate the interplay between the Poiseuille flow-
and the wall-induced lift forces. To track the vesicle in such geometries we
used the boundary integral method. Here we limited our study to vesicles
without viscosity contrast between their internal and external fluids. Com-
parison and validation of a suggested similarity law, for the lateral migration
velocity, with experimentally obtained data are also reported.

5.1 Poiseuille flow velocity profile

The applied plane Poiseuille flow v∞(r) in 2D has the following form{
v∞x (r) = vmax

[
1−

(
y
w

)2]
,

v∞y (r) = 0,
(5.1)

where vmax is the maximum velocity at the centerline located at y = 0 and
2w is the distance from the centerline to the location where the velocity of
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Poiseuille flow 
centre-line

Fig. 5.1: Schematic showing a vesicle placed in unbounded Poiseuille flow

the flow vanishes. In all the simulations performed so far we take always
the aspect ratio R0/w � 1, with R0 is the size of the vesicle, in order to
keep v∞x (w) = v∞x (−w) = 0 practically unperturbed by the presence of the
vesicle. Another important quantity characterizing the Poiseuille flow is its
curvature c given by:

c = ∂2v∞x /∂2y = −2
vmax

w2
. (5.2)

In the unbounded geometry this is the only parameter characterizing the flow,
as discussed below. Moreover, the Poiseuille flow has non uniform shear rate,
which depends on the position:

γ(r) = ∂v∞x /∂y = −
(
2
vmax

w2

)
y = cy. (5.3)

5.2 Unbounded geometry

In this first part we focus our attention on describing the dynamics of a single
vesicle placed in an unbounded plane Poiseuille flow (no bounding walls). In
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such conditions we would like to suppress completely the effects of the walls
(as discussed below) and to focus just on investigating the bulk effects of the
Poiseuille flow on the vesicle dynamics. This situation corresponds in reality
to a vesicle flowing in a channel (with a width which is large enough as com-
pared to the vesicle size) at distances far away from the bounding walls. We
consider the small Reynolds number limit (Re << 1), so that inertia can be
neglected.
In an unbounded linear shear flow (of low Reynolds number) a vesicle does
not exhibit any lateral migration with respect to the flow direction. The pres-
ence of a wall breaks the translational symmetry perpendicular to the flow
direction and a vesicle is found to migrate away from the wall [18–21,53]. This
is the so-called lift force caused by the flow induced upstream-downstream
asymmetry of the vesicle [19]. More recently, it has been shown that even
a spherical vesicle may execute a lift force as well, provided that the wall
is flexible [13]. In that case, the wall deformability breaks the upstream-
downstream symmetry.
A nonlinear shear flow (e.g. a Poiseuille flow) has a varying shear rate. It is
therefore of certain importance to understand its possible contribution to a
cross-streamline migration process. We consider neutrally buoyant vesicles
so that gravity effect is suppressed. Fig. 5.1 shows the geometry of the stud-
ied problem.
As stated above dynamics is simulated by making use of the boundary in-
tegral method. Thus the velocity of each point belonging to the vesicle
membrane is given by the integral equation:

vj(r) =
1

4πη

∮
∂Ω

Gji(r, r
′)fi(r

′)ds(r′) + v∞j (r) (5.4)

where v∞j (r) is substituted by Eq. (5.1) to implement the Poiseuille flow.
Gji is the two-dimensional free space Green’s function and fi is the force ex-
erted by the membrane on its surrounding fluid. See chapter Used resolution
methods for more details.

5.2.1 Lateral migration

Figure 5.2 shows the time evolution of the lateral position of a vesicle which
has been released initially at five different vertical positions: y0 = 0, ±1, ±2,
±3 and ±4. In most cases we have studied vesicles having a large enough re-
duced volume (small and moderate deviations from a circular shape) placed
in a Poiseuille flow characterized by vmax = 800 and w = 10. In all situa-
tions treated so far, vesicles migrate towards the centerline of the Poiseuille
flow where no further lateral migration is observed. The position gives the
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Fig. 5.2: The time evolution of the lateral position of a vesicle released initially at
five different initial positions y0 = 0,±1,±2,±3,±4.

distance from the centerline of the Poiseuille flow measured in units of the
vesicle effective radius. All the curves are linear in a large range and devia-
tions from this linear law occur only close to the center of the Poiseuille flow,
in a range smaller than the vesicle size.
The curvature of the imposed velocity profile, together with the vesicle de-
formability, causes a systematic migration of a tank-treading vesicle per-
pendicularly to the parallel streamlines towards the flow center-line. Once
it reaches this equilibrium lateral position, it stops tank-treading. It keeps
moving just parallel to the flow direction.
Our results show that the lateral migration velocity increases with the cur-
vature of the flow profile. This behavior (lateral migration towards the
Poiseuille flow centerline) is different from a prediction made by L. G. Leal
for droplets [71], according to which droplets should migrate away from the
center of the Poiseuille flow towards the periphery. Actually, in Ref. [71] it
is predicted that the direction of the lateral migration of a droplet depends
on the viscosity contrast, between the internal and the external fluids. For
values between 0.5 and 10 –and particularly in the absence of a viscosity
contrast as treated here–, migration occurs towards the periphery, while for
values smaller than 0.5 or greater than 10, it occurs towards the center line.
We did not observe any of these scenarios neither from numerical studies,
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Fig. 5.3: The shape of the vesicle changes from an initially elliptical shape in part
a) to the final axisymmetric parachute shape in d) when it migrates
towards Poiseuille flow center-line, reduced area ν = 0.90.

nor from analytical results [72].
As stated above, a drop (having no viscosity contrast with the ambient fluid)
is predicted to drift towards the periphery [71]. Thus, vesicles and droplets
behave quite differently. In chapter Vesicle model and hydrodynamical equa-
tions we have presented the main differences between vesicles and droplets,
both from the physical and the mathematical point of view 1 . For vesicles,
we have explored a large domain of parameter space and in all cases the vesi-
cle migrate towards the center. This result is also confirmed by analytical
calculations [72] in the quasi-spherical limit (following the spirit in Ref. [17])
in three spatial dimensions and experimentally [73]. This points to the fact
that the migration direction does not depend on the dimensionality.

5.2.2 Vesicle shape deformation

During the migration, the vesicle shape undergoes deformations due to the
hydrodynamic stresses imposed by the Poiseuille flow on the membrane. The
vesicle is deformed and tilted until reaching a quasi-stationary orientation
which is oblique with respect to the parallel streamlines. Figure 5.3 shows
different vesicle shape deformations occurring in our simulations during the
migration, from an initially elliptical shape at the initial position y0 = 1
shown in Fig. 5.3(a), to a final parachute-like shape at the center of the
Poiseuille flow as shown in Fig. 5.3(d). More or less similar parachute shapes
are observed for capsules [75] and red blood cells [74, 76] as they have been
observed also experimentally for vesicles in Ref. [29], but all these exam-

1 A preliminary analytical calculation for drops actually show that the drop migrates
always towards the centerline (G. Danker and C. Misbah (private communication)). The
analytical result found by these authors is different from that of L. G. Leal.
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Fig. 5.4: Red blood cells flowing in vivo in a capillary showing parachute-like shape
[74].

Fig. 5.5: Shapes of vesicles flowing in glass capillaries [29].
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Fig. 5.6: The final steady parachute shape of a vesicle, with reduced volume τ =
0.90, in different Poiseuille flows.
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ples, unlike the present study, concern capillary flows. Before the vesicle
reaches the center of the Poiseuille flow, it acquires an asymmetric shape as
depicted in Fig. 5.3(b) and in Fig. 5.3(c). This asymmetry, which is caused
by the non-uniform shear rate across the vesicle, is crucial for cross-stream
line migration of vesicles in a plane Poiseuille flow. For the axisymmetric
final steady prachute-like shape, it depends only on the values of the vesi-
cle reduced volume and on the curvature of the imposed Poiseuille flow, as
shown in Fig. 5.4b. Variation of geometrical quantities characterizing the
parachute-like shape with the curvature is given in Fig. 5.4d.

5.2.3 Migration velocity

The lateral migration velocity depends on various parameters. Of particular
importance are the curvature of the velocity profile of the Poiseuille flow and
the local capillary number, defined as:

Ca(r) =
ηR3

0

κ
γ(r) (5.5)

as discussed in the following. There should be, in the absence of a wall, no
lateral migration in a linear shear flow. In the presence of a flow having a
nonlinear shear gradient, migration becomes possible. Migration becomes
significant if the flow curvature varies on the scale of the vesicle size. There-
fore, curvature of the Poiseuille flow profile plays an essential role, but more
precisely, the magnitude of the local capillary number, which determines es-
sentially the vesicle deformation (which loses the up-down symmetry due to
the shear gradient), is the most relevant quantity. The dependence of the
migration velocity on the local capillary is shown in Fig. 5.7 for different
values of vmax, w and c, after the decay of an initial transient. In Fig. 5.7(a)
and in Fig. 5.7(b) we kept the value of vmax fixed and we investigated the
vesicle migration by varying the value of w. For smaller values of w, which
corresponds to larger values of the curvature c, the vesicle migrates faster
towards the center of the Poiseuille flow. Fig. 5.7(b) shows the data collapse
by plotting the migration velocity normalized with the curvature versus the
local capillary number. In Fig. 5.7(c) and in Fig. 5.7(d) we kept w fixed
and we examined the effect of varying the value of vmax for each value of w.
The vesicle migrates faster with increasing values of vmax for every fixed w,
because the curvature c increases with vmax. Data collapse is again obtained
in Fig. 5.7(d) by plotting the normalized migration velocity versus the local
capillary number. The data collapse is more pronounced for smaller values
of the curvature. In Fig. 5.7(e) and Fig. 5.7(f) we have varied vmax and
w in such a way to keep the curvature fixed. We find that the vesicle mi-
grates in this case to the Poiseuille flow center-line for the three parameters
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Fig. 5.7: Time evolution of the vesicle position in an unbounded Poiseuille flow
and its corresponding normalized migration velocity versus the local cap-
illary number for different values of vmax, w and c (see text). The data
correspond to situation where initial transients have decayed.
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combinations exactly (i.e. quantitatively the same results) in the same man-
ner, which emphasizes again the important role of the nonlinear shear field.
From the above study, we can conclude that the migration velocity in an
unbounded Poiseuille flow divided by the curvature c should be described by
the following universal scaling law:

vm(y)

c
∼ f [Ca(y)] . (5.6)

The extraction of this law is based on results of Figs. 5.7b, 5.7d, and 5.7f.
The function f is universal and depends only on Ca. The analytical form of
the universal function is not at present.
If the initial vesicle shape is not quasi-circular but elliptical, we find a simi-
lar behavior as depicted in Fig. 5.7. The deformability of the vesicle, which
depends on the bending rigidity κ, is a further ingredient for migration. By
increasing the bending rigidity κ the local capillary number Ca ∝ κ−1 de-
creases and so does the migration velocity. This leads also to the conclusion
that a rigid particle, corresponding to very large values of κ, will not ex-
hibit a lateral migration in parabolic shear flow in the Stokes limit. It has
been shown earlier that rigid spheres migrate only due to the contribution
of (v · ∇)v in the Navier-Stokes equation [77], which is beyond the Stokes
limit. Similar trends as for a vesicle are obtained for deformable bead-spring
models [78], where the migration velocity decreases with increasing rigidity
of the tumbling object, corresponding also to increasing values of the spring
constant. Indeed the vesicle deformability is, in addition to the nonlinear
shear gradient, the main ingredient for the lateral migration in the Stokes
limit. A vesicle in unbounded Poiseuille flow undergoes large deformations
(Ca � 1, see Fig. 5.7 ) caused mainly by the curvature of the velocity profile.

5.3 Semi-bounded geometry

In this section we study the dynamics of a vesicle placed in a semi-bounded
Poiseuille flow, it consists in placing a solid infinite plane wall at one of the
locations where the Poiseuille flow velocity vanishes. The only difference
with the above unbounded geometry situation is the appearance of an ad-
ditional lift force caused by the presence of the bounding wall [19–21]. In
our simulations we considered just one wall in order to be able to investi-
gate the interplay between the Poiseuille curvature- and the wall-induced lift
force. It should be noted also that there exists an explicit Green’s function
for a semi-infinite domain (see chapter Used resolution methods), and this is
another motivation for considering one wall only. In the limit where the dis-
tance from the wall to the Poiseuille centerline is large enough (compared to
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Fig. 5.8: Evolution in time of the vesicle lateral position in Poiseuille flow for five
different initial lateral positions. (a) in unbounded fluid, (b) in a semi-
infinite fluid bounded by a plane wall located at y = 0. In the both cases
vmax = 600, w = 10 and the vesicle has a reduced volume of τ = 0.95.
The Poiseuille flow centerline is located at y = 10. The vesicle shapes
shown in the right side of every plot are the one taken at time 10 and
their color correspond to the curve with same color.

the size of the vesicle; typically we have considered R0/w > 8), the obtained
simulations results agrees quite well with experiment in channel [73]. We
have compared our results to the experimental data [73]. A similarity law
giving the lateral migration velocity of a vesicle flowing in a micro-channel
as a function of the geometry and vesicle parameters is derived.

5.3.1 Simulations results

Vesicles with the same size (R0 = 1) and the same reduced volume (τ =
0.95) are initially placed at five different lateral positions, one of them being
intentionally placed at the flow center-line (y = 10). The imposed flow is
characterized by vmax and w:

vx = vmax

(
2
( y

w

)
−
( y

w

)2
)

with 0 < y < 2w. (5.7)

We have studied the effect of presence of a wall. For that purpose, we have
considered two situations (i) the suspending fluid is unbounded, (ii) the sus-
pending fluid is bounded by an infinite plane wall located at y = 0. For
the unbounded case Fig. 5.8a, we find that vesicles migrate laterally towards
the flow center-line as was reported in Ref. citeKaoui2008 and also in the
previous section Unbounded geometry. The center-line correspond here to
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the equilibrium lateral position; there the vesicle moves parallel to the flow
direction with an axisymmetric shape (the blue colored shape in Fig. 5.8a).
The final equilibrium lateral position location does not depend on the initial
position of the vesicle, in this case. Moreover, the problem is symmetric with
respect to the location of the flow center-line: a vesicle placed above or be-
low this axis moves and deform in the same fashion (see the trajectories and
their corresponding shapes in Fig. 5.8a). By placing a steady infinite plane
wall at the position y = 0 (where the Poiseuille flow velocity vanishes), the
evolution in time of the vesicle lateral position is affected (see Fig. 5.8b). In
this case, the dynamics of the vesicle is sensitive to the initial lateral position
as it is depicted in Fig. 5.8b. Vesicles initially placed below the center-line
(0 < y(t = 0) < w) migrate laterally until reaching an equilibrium lateral
position (with a slight shift above the center-line, which becomes negligible
for w > 8). Here the vesicle reaches this position faster compared to the
unbounded case (see for example the vesicle presented with the red line in
the two Figs. 5.8a and 5.8b), due to the presence of an additional lift force,
due to the presence of the wall. An interesting feature is that the vesicle,
despite the fact that it is asymmetric (up down asymmetry) it ceases to drift
laterally. (the blue colored shape in Fig. 5.8b). This seems to indicate that
migration forces due to the curvature dominate over wall effects near the
center-line.

In order to discuss the relative influence of the wall and of the curvature
of the velocity profile, it is convenient to take advantage of the domain where
no bounding wall exists in the simulations: vesicles initially placed above the
center-line (w < y(t = 0) < 2w) move with negative inclination angles (the
magenta and the cyan colored shapes in 5.8b) because of the shape of the
Poiseuille velocity profile in this region. The vesicle presented by the cyan
colored line moves very slowly towards the centerline while the one presented
with the magenta colored line travels outward the center-line. It is notewor-
thy that in this region the two lift forces are in competition and have opposite
signs: the curvature induced lift force tries to attract the vesicle toward the
centerline, while the wall induced lift force even at such distance still pushes
the vesicle far from the wall (due to the two-dimensionality of the space).
However, their relative amplitude depends on the distance of the vesicle to
the center-line. Close to the center-line, the shear rate tends to vanish and
the wall induced lift force becomes weaker; this explains the inward migration
of the cyan colored vesicle. Far from the center-line, the shear rates become
greater which explains the outward migration of the magenta colored vesicle.
More, when this vesicle travels away its shape undergoes larger deformations
because it finds itself in regions with higher shear rates. Hereafter, we con-
tinue talking just about simulations performed for vesicles placed initially and
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Fig. 5.9: (a) Evolution in time of the lateral position y(t) of a vesicle with τ = 0.8
in different Poiseuille flows, (b) with scaled space and time variables and
(c) a log-log plot.

moving in the region between the wall and the flow centerline (0 < y(t) < w).

5.3.2 Similarity law

Figure 5.9a shows the evolution in time of a vesicle released initially near the
wall (y = 2) and moving towards the Poiseuille center-line for different values
of w. In this figure only the data of vesicles reaching an almost R0 before
the Poiseuille centreline (but not beyond) are presented. We did so since
we are interested in extracting a law giving the lateral migration of a vesicle
moving between the wall and the Poiseuille center-line location, in order to
compare with experiments in a channel where it is observed that the vesicle
does not cross the centreline. For a given value of the vesicle reduced volume
(here τ = 0.8) y(t) depends a priori on the three parameters (R0, w, vmax).
In order to determine the functional dependence of the migration velocity,
space and time are rescaled. We take vesicle size R0 as a spatial scale. The
dimensionless spatial coordinate is thus written as:

ŷ =
y

R0

, (5.8)

for the vesicle lateral position and

ŵ =
w

R0

(5.9)

for the half-width of the Poiseuille flow.
However, the choice of a relevant time (or velocity) scale is less obvious.
Indeed, while the inverse of the shear rate yields a natural scale in the case
of simple shear flow, here this is not an adequate choice since the shear rate
is not uniform in space and it varies along the vesicle trajectory. The trick
is to rescale each infinitesimal time step dt around the time t by the local
shear rate:
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Fig. 5.10: The vesicle lateral velocity versus its lateral position for different values
of vmax (a) and w (b). Simulations data are represented by scatters
while the colored solid curves are fits with the law Eq. (5.13).

γ(y) =
∂v∞x
∂y

= c(w − y), (5.10)

of the unperturbed flow at the position y(t). Note that this amounts to
saying that the migration velocity is controlled by the local flow, which is
a reasonable assumption in a Stokes flow. The new dimensionless time-like
variable is obtained by integrating the rescaled time steps:

t̂ =

∫ t

0

γ(y(τ ′))dτ ′ = c

∫ t

0

[w − y(τ ′)] dτ ′, (5.11)

t̂ accounts for the history of the shear rates experienced by the vesicle along
its trajectory. Interestingly, as shown in Fig. 5.9b, all the curves ŷ(t̂) − ŷ0

(with ŷ0 is the intial lateral position) exhibit a quite reasonable collapse,
whatever the value of w is. A log-log plot of ŷ(t̂) − ŷ0 is linear, a clear
signature of a power law behavior of the forme:

ŷ(t̂)− ŷ0 = βt̂α, (5.12)

where the dimensionless parameters α and β, that are independent form R0,
w and vmax, are obtained from the data fit. The lateral migration velocity
vm as a function of the position y and the triplet (R0,w,vmax) is then easily
extracted:

vm = ξcR2
0

ŵ − ŷ

(ŷ − ŷ0)
δ

= ξ
R0γ(y)

(ŷ − ŷ0)
δ
, (5.13)

with ξ ≡ αβ1/α and δ ≡ 1/α − 1. Figures 5.10a and 5.10b presents fits of
simulations data by the above law Eq. (5.13). The simulations data are well
fitted by the law given Eq. (5.13) with δ ' 0.8 and ξ = 0.1.
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Fig. 5.11: A schematic showing the geometry of the problem of a vesicle placed
in a micro-channel.

5.3.3 Comparison with experimental results

Here the similarity law obtained above (Eq. 5.13) for the lateral migration
velocity is used to fit data obtained experimentally [73]. The micro-channel is
straight and has a rectangular cross section (see the schematic presentation
in Fig. 5.11). The flow direction is Ox and the lateral migration is along
Oy, this means that migration is studied for a given position z. Let 2w
denote the channel width in th y-direction with R0/W << 1 and vmax the
imposed flow velocity at the center of the channel in the absence of the
vesicle. The two walls are located at y = 0 and y = 2w. The vesicle
is characterized by two geometrical parameters: 1 - Its effective radius R0,
determined from its volume V by R0 = (3V/4π)1/3 and 2 - its reduced volume

τ = V/
(
4π (S/4π)3/2 /3

)
characterizing vesicle deflation, with S being the

surface of the vesicle.

Experimental set-up

The micro-fluidic device is composed of straight channels of height h0 =
66.6µm (in the direction of gravity z) and width 2w (rectangular cross sec-
tion). The walls of the channels are made of the PDMS glued to a glass cover
slide. The flow is induced by applying a pressure difference between the in-
let and the outlet which are linked to reservoirs placed at different heights.
Vesicles are prepared following the electroformation method [79]. They are
made of a DOPC lipid bilayer enclosing an internal solution of sugar (sucrose
or glucose) in water or in a 1:4 glycerol-water (w:w) mixture. Samples are
diluted in a slightly hyperosmotic outer solution of the same type, in order
to deflate them by osmosis. Dextran can be added to one of the solutions to
modify the viscosity ratio λ.
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Fig. 5.12: Experimental snapshots (taken at different times) showing the displace-
ment of a single vesicle in a micro-channel

A particular design of the upstream channel creates an initial condition where
incoming vesicles touch the y = 0 wall in the observation area and start to
be lifted away from it. In particular, they have already developed a nearly
ellipsoidal shape tilted with respect to the wall [19–21]. Moreover, the flow
has been established for a long time, resulting in centering in the z-direction.
In that case, the 2D fluid velocity profile in the xy-plane where the vesicle lies
is nearly paraboloic, provided the rectangular cross section of the 3D channel
obeys 2w/h0 ≤ 3 [80].Therefore, as a first approximation, the vesicle is in a
2D plane Poiseuille flow, with reproducible initial condition y(t = 0) = y0,
where y0 is the position of the vesicle center of mass just before the lift-off,
which is close to R0. as the vesicle is centered in the z-direction, the imposed
profile is thus written as v∞x (r) = c (yw − y2/2) where c = 2vmax/w

2 is the
curvature of the parabolic velocity profile. The vesicle is tracked along its
trajectory with a phase-contrast microscope, and the position y of its center
of mass is determined by image processing.

Experimental results

The same type of dynamical behavior of a vesicle regarding migration to-
wards the Poiseuille centerline is observed also experimentally. Figure 5.12
shows snapshots of a vesicle while it is moving towards the center of the
microchannel. Figure 5.13 shows the evolution in time of the lateral position
of a vesicle for different set of parameters and the main steps as performed
above to reach the power law:

ŷ(t̂)− ŷ0 = βt̂α. (5.14)

For the experimental data we found:

ξ ≡ αβ1/α = 1.3× 10−2 ± 0.3× 10−2, (5.15)

and

δ ≡ 1

α
− 1 = 0.8± 0.2. (5.16)
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Fig. 5.13: (a) Evolution in time of the lateral position of a vesicle flowing in a
microchannel for different values of the problem parameters, (b) with
scaled space and time variables and (c) the log-log plot
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Fig. 5.14: Experimental data and fits with equation ŷ(t̂)− ŷ0 = βt̂α

The errors bars for these cofficients can be linked with errors bars on y and
w due to local defects on the PDMS walls, ans also (and mainly) with un-
certainties on the measure of τ (the reduced volume), which requires a very
precise determination of the mambrane position. For the experimental data,
working directly with the velocity vm instead of the position y(t) is more
problematic due to the noise caused by a discrete time derivation of the posi-
tion, which is known with limited precision. For this reason we treat directly
the data y(t). Figure 5.14 reveal that the experimental data are well fitted
with the proposed similarity law.
The agreement between experiments and simulations regarding the exponent
δ is quite satisfactory. However, numerical studies overestimate the ampli-
tude ξ. This is attributed to the 2D character (actually a translationally
invariant form in the z-direction), causing an enhancement of the lift force
due to a wider contact between the drifting entity (vesicle) and the ambient
fluid.
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Conclusions

• A single vesicle placed in an unbounded plane Poiseuille flow has been
investigated numerically. We found that the vesicle migrates during its
tank-treading motion towards the Poiseuille flow centerline.

• When the vesicle reaches this final equilibrium position, its tank-treading
and lateral migration velocities vanish and it continues to move with
an axisymmetric parachute-like shape parallel to the flow direction.

• The migration velocity is found to increase with the local capillary
number, but reaches a plateau above a certain value of the capillary
number. This plateau value increases with increasing the curvature
of the parabolic flow profile c. We found that the migration velocity
normalized with the curvature vmigration/c follows essentially a universal
law where the universal function depends on the local capillary number
Ca, namely vmigration/c ∼ f(Ca).

• In the wall-bounded geometry, there is an additional lift force caused
by the wall.

• We find that the closer the vesicle is to the centerline, the more the
curvature induced lift force is dominant.

• Far from the center-line, the migration is mainly governed by the wall-
induced lift force. Curvature-driven lift dominates when the distance
is few times the vesicle size. However, both effects always coexist and
couple in a non linear way, giving rise to a migration law which could
not be directly inferred from already known laws of more simple cases
(unbounded Poiseuille flow [81] or wall-bounded shear flow [19–21]).

• A similarity law for the lateral migration velocity of a vesicle in a
bounded Poiseuille flow as a function of its distance to the walls and
to the center-line, its effective radius, the channel’s width and the flow
velocity is suggested.

• Comparison with, and validation of this law by, experimental results
has been undertaken and have revealed good agreement.



6. CONCLUSIONS

Along the present thesis we studied analytically and numerically the dynam-
ical behavior and the deformation of a single vesicle under simple shear and
Poiseuille flows. Two situations are considered for each type of the flow, the
suspending fluid is unbounded (infinite fluid) or confined by bounding walls.

For the unbounded shear flow, the small deformation theory is used to
derive two analytical dynamical equations governing the orientation and the
deformation of a vesicle subject to simple unbounded shear flow. The phase-
diagram giving the known vesicle dynamical regimes (tank-treading, tum-
bling and vacillating-breathing), under shear flow, as a function of the vis-
cosity contrast (between the enclosed and the suspending fluids) and the
capillary number (ratio between the flow time scale - inverse of shear rate -
and that needed for the vesicle to relax to its equilibrium shape) is drawn.
Effect of varying the excess area on bifurcation boundaries, in the phase-
diagram, is investigated and good agreement is obtained with results reported
in Ref. [60]. Importance of the vesicle excess area as an independent param-
eter controlling the dynamics (beside the viscosity contrast and the capillary
number), under shear flow, is confirmed by a systematic analysis. Impact of
varying one of the controlling parameters (while fixing the two others) on the
evolution of various quantities characterizing each vesicle dynamical regime
is reported. The behavior of the vacillating-breathing mode is emphasized
since there is lack of quantitative measurements concerning this mode in
literature.

For confined shear flow, the lattice-Boltzmann method is used. In the
present thesis, we presented how we adapted the lattice-Boltzmann method
to simulate dynamics of vesicles. The internal and the external fluids flow are
computed using the lattice-Boltzmann approach on a fixed Eulerian regular
mesh. While the vesicle membrane is presented by a moving Lagrangian
mesh immersed in the previous fluid mesh. On the one hand the vesicle
membrane finds itself advected by its surrounding fluid flow and on the other
hand it exerts a reaction force in response to the applied hydrodynamical
stresses and therefore it causes disturbance and modification on its nearby
fluid flow. As benchmarkings, the known vesicle equilibrium shapes in a fluid
at rest are recovered and the known dynamical behavior of a vesicle under
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simple shear flow - tank-treading - is also captured. The next step was to
focus on investigating the effect of the confinement on the vesicle dynamics.
In particular, we analyzed the vesicle’s steady inclination angle, membrane
tank-treading velocity and the rheology. Significant dependencies on the
degree of confinement (the size of the vesicle divided by the half-width of the
channel) is revealed.

The boundary integral method is appropriate for simulation of dynamics
of a vesicle suspended in infinite or semi-infinite fluids. It has thus been used
to investigate lateral migration under Poiseuille flow. In the unbounded ge-
ometry case, we find that the nonlinear character of the Poiseuille flow (non
spatially uniform shear rate) causes the lateral migration of the vesicles to-
wards the flow centerline, which is in a marked contrast with the migration
of droplets, on which it has been reported theoretically that they migrate
outward the centerline in the absence of a viscosity contrast. Once the vesi-
cles reach the centerline, their lateral migration and tank-treading velocities
vanish. They then only move parallel to the flow direction with a steady
parachute-like shape. We find that the lateral migration velocity normalized
by the curvature of the Poiseuille flow velocity profile is a universal function
of the local capillary number.

In the wall-bounded geometry, an additional lift force caused by the pres-
ence of the wall appears. Here we considered one wall in order to be able to
investigate the interplay between the wall- and the Poiseuille flow curvature-
induced lift forces. We find that the closer the vesicle is to the centerline, the
more the curvature induced lift force is dominant over the wall induced one.
The opposite situation prevails when the vesicle is far from the centreline.
In such a geometry, even in the absence of an opposite bounding wall, for
certain initial positions the vesicle migrate laterally to reach an equilibrium
lateral position which is shifted slightly above the centerline. We find that
this shift could be decreased by increasing the gap between the centerline and
the wall. In this limit a law for the lateral migration velocity (as a function
of relevant structural and flow parameters) is proposed and is compared and
validated by experimental results. This similarity law markedly differs from
its analogue in unbounded geometry.
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A. DERIVATION OF THE MEMBRANE FORCE

In a two spatial dimension the vesicle membrane is represented by a one-
dimensional closed contour. The corresponding membrane energy is an inte-
gral over this contour,

E =
κ

2

∫ L

0

H2(r)ds(r) +

∫ L

0

ζ(r)ds(r), (A.1)

where L is the vesicle perimeter (i.e. the length of the contour) and r the
membrane vector position. Let,

EC =
κ

2

∫ L

0

H2(r)ds(r), (A.2)

and,

ET =

∫ L

0

ζ(r)ds(r), (A.3)

The counterclockwise tangent unit vector (see Fig. A.1) is given by,

t =
∂r

∂s
, (A.4)

and its derivative with respect to s defines the curvature,

∂t

∂s
= −Hn, (A.5)

r t

n
y

x

Fig. A.1: (Color) A schematic showing the vector position r, the normal n and the
tangent t unit vectors.
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where n is the outward unit vector normal to the curve. The derivative of n
with respect to s gives,

∂n

∂s
= Ht. (A.6)

Using Eq. (A.4) and Eq. (A.5) we get the expression of the curvature,

H2 =

(
∂2r

∂s2

)2

. (A.7)

The membrane force is deduced from the functional derivative of the
energy δE/δr, where δr is a local small displacement of the vesicle membrane.
Due to the displacement of r by δr, ds will undergo variations as well. It is
convenient to introduce a fixed parametrization (instead of s) of the curve,
which is denoted by α. α is a parameter that we can take to vary from 0 to
1. The correspondence with s is such that s(α = 0) = 0 and s(α = 1) = L.
We then introduce the metric g ≡ |∂r/∂α|2, so that ds =

√
gdα. We convert

the various terms in the energy by using now the variable α. The curvature
assumes the following expression

H2 =

(
∂2r

∂α2

(
dα

ds

)2

+
∂r

∂α

d2a

ds2

)2

, (A.8)

=
1

g2

(
∂2r

∂α2
− ∂2s

∂α2
t

)2

. (A.9)

Writing ∂2r/∂α2 in terms of the tangent and the normal vectors, it is straight-
forward to show that,

∂2r

∂α2
=

d2s

dα2
t− gHn, (A.10)

This allows to eliminate s from the expression for H:

H2 =
1

g2

((
∂2r

∂α2

)2

− 1

g

(
∂2r

∂α2

∂r

∂α

)2
)

. (A.11)

The curvature force

Replacing in Eq. (A.2 H2 by the expression given in Eq. (A.11) we obtain,

EC =
κ

2

∫ 1

0

(
r̈2 − 1

g
(r̈.ṙ)2

)
g−3/2dα . (A.12)
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The functional derivative of EC reads (from classical variation results)

δEC

δr
=

∂eC

∂r
− ∂

∂α

∂eC

∂ṙ
+

∂2

∂α2

∂eC

∂r̈
, (A.13)

whith eC = (κ/2)
(
r̈2 − 1

g
(r̈ṙ)2

)
g−3/2, ṙ = ∂r/∂α and r̈ = ∂2r/∂α2. Since

eC does not explicitly depend on r, the first term on the right hand side of
Eq. (A.13) vanishes. The second term gives,

∂

∂α

∂eC

∂ṙ
= κ

∂

∂α

(
− 1

g5/2

(
(r̈ṙ)r̈ +

3

2
(r̈)2ṙ− 5

2g
(r̈ṙ)2ṙ

))
, (A.14)

= −κ
∂

∂α

(
− ∂2s

∂α2

H

g
n +

3

2
H2t

)
(A.15)

while the third one becomes,

∂2

∂α2

∂eC

∂r̈
= κ

∂2

∂α2

(
1

g3/2
r̈− 1

g5/2
(r̈ṙ)ṙ

)
, (A.16)

= κ
∂2

∂α2

(
− H
√

g
n

)
, (A.17)

= κ
∂

∂α

(
−∂(Hn)

∂s
+

∂2s

∂α2

H

g
n

)
. (A.18)

Reporting the above results into (A.13), we obtain the following expression
for the functional derivative

δEC

δr
= κ

∂

∂α

(
−∂H

∂s
n +

1

2
H2t

)
, (A.19)

= −√gκ

(
∂2H

∂s2
+

1

2
H3

)
n, (A.20)

Therefore, the membrane curvature force is given by,

fC = κ

(
∂2H

∂s2
+

1

2
H3

)
n, (A.21)

where the factor
√

g disappears from the physical force, since this one must
be defined as fC = −(1/

√
g)δEC/δr, as explained at the end of the appendix.
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The tension force

Finally Eq. (A.3) takes the following form

ET =

∫ 1

0

ζ(r)
√

gdα, (A.22)

whose functional derivative is,

δET

δr
= − ∂

∂α

∂eT

∂ṙ
(A.23)

with eT = ζ(r)
√

g. Note that eT depends neither on r nor on r̈. We easily
find

δET

δr
= − ∂

∂α

(
ζ(r)

ṙ
√

g

)
, (A.24)

= − ∂

∂α
(ζ(r)t) , (A.25)

= −√g
∂

∂s
(ζ(r)t) , (A.26)

= −√g

[
∂ζ

∂s
t− ζHn

]
. (A.27)

The membrane force associated with the Lagrange multiplier is then,

fT = −
[
ζHn− ∂ζ

∂s
t

]
. (A.28)

By adding Eqs. (A.21) and (A.28), we obtain the total membrane force,

f =

[
κ

(
∂2H

∂s2
+

H3

2

)
−Hζ

]
n +

∂ζ

∂s
t, (A.29)

Let us briefly explain why the force is given by −f = −(1/
√

g)δET /δr (and
not just −δET /δr). The reason is that what matters is a physical displace-
ment of the curve element ds and not dα (which is a mathematical arbitrary
parametrization). If one performs directly the variation on the integral, one
finds (according to the previous results)

δE = −
∫ [[

κ

(
∂2H

∂s2
+

H3

2

)
−Hζ

]
n +

∂ζ

∂s
t

]
√

gdαδr, (A.30)

= −
∫ [[

κ

(
∂2H

∂s2
+

H3

2

)
−Hζ

]
n +

∂ζ

∂s
t

]
dsδr (A.31)

= −
∫

fdsδr. (A.32)



B. DIMENSIONLIZING THE HYDRODYNAMICAL
EQUATIONS

The Navier-Stokes equation, gouverning the flow of an incompressible New-
tonian fluid, is given by:

ρ

(
∂v(r)

∂t
+ v(r) · ∇v(r)

)
= −∇p(r) + η∇2v(r) + f(r), (B.1)

where ρ and η are, respectively, the mass density and the viscosity of the
fluid. The unknown solutions of this equation are the velocity u and the
pressure p fields. f in the RHS of Eq. (B.1) represents an external force
applied on the fluid. Hereafter we consider the situation that the flow of the
considered fluid is disturbed at a point r by a singular force exerted by a
point r′ belonging to the vesicle membrane.

We write all the variables appearing in Eq. (B.1) in a dimensionless form:

• r∗ = r/R0,

• t∗ = t/T ,

• v∗ = v/U ,

• p∗ = pR0/ηU ,

where we used a characteristic length scale R0 (here the effective radius of a
vesicle), a characteristic time scale T and a characteristic velocity U of the
flow. Substituting all these new variables in Eq. (B.1) and multiplying it by
the quantity (R2

0/ηU) gives:(
ρR2

0

ηT

)
∂v∗

∂t∗
+

(
ρUR0

η

)
v∗ · ∇∗v∗ = −∇∗p∗ +∇∗2v∗, (B.2)

which can be rewritten in the form:

β
∂v∗

∂t∗
+ Re (v∗ · ∇∗v∗) = −∇∗p∗ +∇∗2v∗, (B.3)

with β is the frequency number and Re is the Reynolds number. We can take
T = R0/U and thus β = Re.
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Now, we write the membrane force in a dimensionless form. The expres-
sion of the membrane force is given by:

f =

[
κ

(
∂2H

∂s2
+

H3

2

)
n +

∂ζ

∂s
t− ζHn

]
δ(r− r′). (B.4)

where κ is the membrane rigidity, H the membrane local curvature and ζ
a local Lagrange multiplier (or tension). n and t are respectively the unit
normal and tangential vectors. This force has no zero value just on a point
belonging to the vesicle membrane r′ ∈ ∂Ω. We rewrite the variables in
Eq. (B.4) in a dimensionless form:

• H∗ = H/H0 = HR0,

• s∗ = s/R0,

• ζ∗ = ζ/Γ with Γ is the spring constant (see chapter Model),

• δ(r− r′) = δ(R0(r
∗ − r′∗)) = δ(r∗ − r′∗)/R0

1,

Substituting all these variables in Eq. (B.4), multiplying it by (R2
0/ηU) (as

we did above) and taking U/R0 = γ, with γ is the shear rate, this gives:

R2
0

ηU
f =

κ

ηγR3
0

(
∂2H∗

∂s∗2
+

H∗3

2

)
δ(r∗ − r′∗)n

+
Γ

ηγR0

(
∂ζ∗

∂s∗
t−H∗ζ∗n

)
δ(r∗ − r′∗), (B.5)

where appear:

• The capillary number :

Ca =
ηγR3

0

κ
(B.6)

that gives the ratio between the shear time (1/γ) and the characteristic
time needed by a vesicle (at an out-of-equilibrium state) to relax to its
equilibrium shape,

• The tension number :

Cas =
ηγR0

Γ
(B.7)

which is the ratio between the spring relaxation time and the shear
time.

1 Using one property of the Dirac’s delta function δ(ax) = 1
|a|δ(x)
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Finally the dimensionless Navier-Stokes equation, with the membrane force
term, is given by:

Re

(
∂v∗

∂t∗
+ v∗ · ∇∗v∗

)
= −∇∗p∗ +∇∗2v∗

+
1

Ca

(
∂2H∗

∂s∗2
+

H∗3

2

)
δ(r∗ − r′∗)n

+
1

Cas

(
∂ζ∗

∂s∗
t−H∗ζ∗n

)
δ(r∗ − r′∗). (B.8)

and its corresponding dimensionless Stokes equation by:

−∇∗p∗ +∇∗2v∗ = − 1

Ca

(
∂2H∗

∂s∗2
+

H∗3

2

)
δ(r∗ − r′∗)n

− 1

Cas

(
∂ζ∗

∂s∗
t−H∗ζ∗n

)
δ(r∗ − r′∗). (B.9)
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C. BOUNDARY INTEGRAL FORMULATION

Here we present the main steps needed to derive the boundary integral equa-
tion, giving the velocity field on the membrane of a vesicle placed in un-
bounded Stokes flow.

Flow due to a singular force

Exerting a singular unit force f at the point r′, locally in the j-direction,
induces at another point r of the fluid:

• The velocity in the i-direction:

u∗i (r) =
1

4πη∗
Gij(r, r

′)fj, (C.1)

where η∗ is the viscosity of the considered fluid.

• The pressure:

p∗(r) =
1

4π
Qj(r, r

′)fj, (C.2)

• The stress tensor:

σ∗ij(r) =
1

4π
Tijk(r, r

′)fj, (C.3)

Gij and Qj are Green’s functions for a unbounded Stokes flow and are by
definition solutions of the following set of equations:

∂jjGik(r, r
′)− ∂iQk(r, r

′) = −δikδ(r, r
′),

∂iGik(r, r
′) = 0, (C.4)

where δij is the Kronecker’s delta and δ is the Dirac’s delta function. Tijk is
the Green’s function associated to the stress tensor and it is given by:

Tijk(r, r
′) = (∂jGik(r, r

′) + ∂iGjk(r, r
′))−Qk(r, r

′)δij, (C.5)

and its derivation satisfies:

∂jTijk(r, r
′) = −δijδ(r, r

′), (C.6)
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which allows to rewritte Eqs. C.4 in the form:

∂jTijk(r, r
′) = −δijδ(r, r

′),

∂iGik(r, r
′) = 0. (C.7)

For the two-dimensional unbouned Stokes flow (i.e. a two-dimensionl free
space) the Green’s functions have the following expressions:

Gij = −δijlnr +
rirj

r2
, (C.8)

Tijk = −4
rirjrk

r4
, (C.9)

Qj = 2
rj

r2
. (C.10)

where r ≡ |r− r′| and ri is the ith component of the vector r− r′.

Flow of the external fluid

Now consider the Stokes equations of the vesicle external fluid:

∂jσ
ext
ij (r) = 0,

∂iv
ext
i (r) = 0. (C.11)

where r ∈ Ωext and σext
ij = ηext(∂iv

ext
j + ∂jv

ext
i )− pextδij is the stress tensor.

Taking the divergence of the products (η∗u∗i (r
′)σext

ij (r′)) and (ηvi(r
′)σ∗ij(r

′))
and substracting one from another gives:

∂j(η
∗u∗i (r

′)σext
ij (r′))− ∂j(ηvi(r

′)σ∗ij(r
′)) = ηvi(r

′)δijδ(r
′, r). (C.12)

Substituting u∗i and σ∗ij by their respective expressions in Eq. C.12, integrat-
ing over the whole external fluid domaine Ωext and applying the divergence
theorem on the membrane ∂Ω gives:∫

Ωext

ηextvi(r
′)δijδ(r

′, r)dv(r′) = − 1

4π

∫
∂Ω

Gij(r, r
′)σext

ij (r′)n(r′)ds(r′)

+
1

4π

∫
∂Ω

vi(r
′)Tijk(r, r

′)n(r′)ds(r′)(C.13)

We have: ∫
Ωext

vi(r
′)δijδ(r

′, r)dv(r′) = ∆vj(r
′) (C.14)

with

∆ =


1 r ∈ Ωext

0 r ∈ Ωint
1
2

r ∈ ∂Ω
(C.15)
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ηext∆vj(r
′) = − 1

4π

∫
∂Ω

Gij(r, r
′)σext

ij (r′)n(r′)ds(r′)

+
ηext

4π

∫
∂Ω

vi(r
′)Tijk(r, r

′)n(r′)ds(r′) (C.16)

Flow of the internal fluid

Following the same procedure we derive the boundary integral equation for
the the internal fluid flow:

ηint∆′vj(r
′) = − 1

4π

∫
∂Ω

Gij(r, r
′)σint

ij (r′)n(r′)ds(r′)

+
ηint

4π

∫
∂Ω

vi(r
′)Tijk(r, r

′)n(r′)ds(r′) (C.17)

with

∆′ =


1 r ∈ Ωint

0 r ∈ Ωext
1
2

r ∈ ∂Ω
(C.18)

The boundary integral equation at the membrane

At a point belonging to the membrane r ∈ ∂Ωm, we have:

1

2
vext

k (r) = − 1

4πηext

∫
∂Ωm

Gik(r, r
′)σext

ij (r′)nj(r
′)dS(r′)

+
1

4π

∫
∂Ωm

vext
i (r′)Tijk(r

′, r)nj(r
′)dS(r′) (C.19)

and

1

2
vint

k (r) =
1

4πηint

∫
∂Ωm

Gik(r, r
′)σint

ij (r′)nj(r
′)dS(r′)

− 1

4π

∫
∂Ωm

vint
i (r′)Tijk(r− r′)nj(r

′)dS(r′) (C.20)

Taking advantage of the continuity velocity boundary condition on the mem-
brane vext = vint = v and after addition of Eqs. (C.19) and (C.20):

ηint + ηext

2
vk(r) = −

∫
∂Ωm

Gik(r− r′)
[
σext

ij (r′)− σint
ij (r′)

]
nj(r

′)dS(r′)

+ (ηint − ηext)

∫
∂Ωm

vi(r
′)Tijk(r

′, r)nj(r
′)dS(r′)(C.21)
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Expressing the stress jump across the membrane in term of the membrane
force

[
σext

ij (r′)− σint
ij (r′)

]
nj(r

′) = −fi(r
′), the velocity field at the membrane

is then given by:

ηint + ηext

2
vk(r) =

∫
∂Ωm

Gik(r, r
′)finj(r

′)dS(r′)

+ (ηint − ηext)

∫
∂Ωm

vi(r
′)Tijk(r

′, r)nj(r
′)dS(r′) (C.22)

This is the integral equation that need to be solved to track the membrane
dynamics. If we consider the case of a vescile placed in a semi-infinite fluid
bounded by an infinite plane steady wall, then all the above mentioned
Green’s functions Gij, Qj, Tijk have to be substituted by the ones taking
into aacount the existence of the wall by fullfilling zero velocity field on the
wall [?].
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