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Preface R. AWEDIKIAN

PREFACE

« Quand est ce qu'il faut arréter de tester un yatddgiciel ? » « Comment étre slr qu’'un
produit logiciel ne contient plus de défaubaig9 et est prét a étre livré au client » et bien
d’autres questions sur la qualité logicielle m’'amterpellé des les premiers stages d’Ecole
d’Ingénieur. En effet, diplomé de I'Ecole polytedaure de I'Université de Nantes en 2004,
j'ai effectué 3 stages respectifs €it,12°"¢ et ™ années. Durant ces stages, j'ai participé au
développement de produits logiciels destinés a ajgdications PC mais aussi a des
applications embarquées. A chaque fois qu'on d@yelid un nouveau module logiciel, il
nous fallait le tester. Le mot «tester » en indesest souvent associé a tout type de
techniques de vérification et de validation lodieieAyant appris en Ecole d’Ingénieur une
panoplie de langages de développement informatiGueC++, ...) et notamment comment
concevoir et développer un produit logiciel, leshis de développement informatique me
paraissaient simples et maitrisables. Mais, une loiogiciel développé il faut le tester ; je
me trouvais alors fort dépourvu méthodologiqueneih effet, les formations actuelles
d’'Ingénieur logiciel se focalisent presque exclasient sur le développement logiciel au
détriment du test logiciel. Depuis les débuts dueltippement logiciel (Années 70), des
chercheurs ont montré qu’il était illusoire de pEm& effectuer un test logiciel exhaustif. Un
Ingénieur doit toujours se contenter de tester ausensemble de cas. Bien que certaines
entreprises (les grandes) ont des processus bimsd®our tester un produit logiciel, la tache
de comment choisir les cas de test reste en grapadiée basée sur l'expérience des
Ingénieurs. Pour cela, et afin de tester les madolgiciels pendant mes stages, je choisissais
certains cas de test en fonction de leur utilitdeckeur efficacité mais aussi du temps qu’il me
restait avant de devoir livrer le module.

Apres avoir obtenu le dipldme d’'Ingénieur en 20@4me suis intéressé plus généralement a
la question : « Comment sont définis les procesigusonception et congus les méthodes et
outils de conception de produits ». Afin de répendrcette question, j'ai effectué un Master
Recherche en ingénierie de conception au sein loordtoire Génie Industriel de I'Ecole
Centrale Paris. Le moment du stage arrivé, je ni® mis a la recherche d'un stage qui
porterait sur 'amélioration des processus, méthasteoutils de conception de test logiciel
pour établir une jonction entre mes domaines ddilecion. Bien heureusement, un stage sur
le sujet était proposé par I'équipementier éledtpom automobile Johnson Controls.
L’automobile, un secteur ou I'électronique et lgitiel représentent plus de 30% du prix d’'un
véhicule. Pendant ce stage de 6 mois, nous avossemplace une nouvelle approche de
conception de cas de test logiciel. Le stage & liles résultats prometteurs tant au niveau de
la qualité du test logiciel que du temps passé pester un produit logiciel. De plus, nous
avons pu identifier plusieurs pistes de rechercbeptteuses.

En se basant sur ces pistes de recherche, nous toromulé un sujet de thése de doctorat
(avec Bernard Yanndtet Ludovic Augustd) que nous avons proposé a la société Johnson
Controls. En effet, il a fallu mettre en avanceppart scientifique pour le laboratoire Génie
Industriel et surtout I'apport industriel pour lacgté Johnson Controls qui a financé ce projet
en partenariat avec 'ANR sur un statut CIFRE. &aitune réunion avec des responsables de
la société et du laboratoire, I'accord pour larmeprojet de thése de doctorat a été donné en
janvier 2006. Il est important de noter que la &@clohnson Controls (France) n’avait jamais
participé a un projet de thése de doctorat aupatava

! Bernard Yannou, Professeur de I'Ecole CentralésP@&ncadrant de mon stage chez Johnson Controls
2 Ludovic Augusto, Chef de projet chez Johnson @sitrtuteur industriel de mon stage chez Johnsmnir6ls
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Résumé R. AWEDIKIAN

RESUME

L’électronique dans les voitures devient de pluplkeis complexe et représente plus de 30%
du colt global d’'une voiture. Par exemple, dans BWBV série 5 modéle 2008, on peut
trouver jusqu'a 80 calculateurs électroniques comgquant ensemble et représentant aux
alentours de 10 millions de lignes de code logidiglce a cette montée en complexité, les
constructeurs et équipementiers électroniquesaigdmobile s’intéressent de plus en plus a
des méthodes efficaces de développement, vérditati validation de modules électroniques.
Plus précisément, ils focalisent leurs effortslaypartie logicielle de ces modules puisqu’elle
est a l'origine de plus de 80% des problemes détestir ces produits. Dans ce contexte, nous
avons mené un travail de recherche dont I'objextif de proposer une approche globale
d’amélioration de la qualité des logiciels embasjdéans les véhicules. Notre recherche part
d’'un audit des processus et outils actuellemenlisési dans lindustrie électronique
automobile. Cet audit a permis d’identifier desides potentiels d’amélioration de la qualité
logicielle. En se basant sur les résultats de itaetden tenant compte de la littérature dans le
domaine de la qualité logicielle, nous avons prépase approche globale de conception de
cas de test pour les produits logiciels. En effietls avons développé une plateforme de
génération automatique de tests pour un produiiciklg Cette plateforme consiste a
modéliser les spécifications du produit logicieupte simuler lors de tests, a se focaliser sur
les tests critiques (ayant une forte probabilit@é=cter des défauts) et a piloter la génération
automatique des tests par des criteres de qudbties que la couverture du code et de la
spécification mais aussi le colt des tests. Largdioé de tests critiques est rendue possible
par la définition de profils d’utilisation réell@pproduit logiciel, ainsi que par la réutilisation
des défauts et des tests capitalisés sur des anmiejets. En plus des aspects algorithmiques
du test logiciel, notre approche prend en compt akpects organisationnels tels que la
gestion des connaissances et des compétencegesitian de projet logiciel. Notre approche
a été mise en ceuvre sur deux cas d'étude réelsédjuipementier électronique automobile,
disposant de données de tests historiques. Lekat8stie nos expérimentations révelent des
gains de qualité significatifs : plus de défautstamuvés plus tot et en moins de temps.

Mots clés: Vérification et validation logicielle, AutomobileProcessus de test logiciel,
Simulation fonctionnelle, Qualité logicielle, Gesti des connaissances, Prise de décision,
Processus de conception.
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Abstract R. AWEDIKIAN

ABSTRACT

Nowadays, car electronics become more and more leanapd represents more than 30% of
the total cost of a car. For instance, in a 2008V series model, one can find up to 80
electronic modules communicating together and ssring 10 million lines of software
code. Facing this growing complexity, carmakers antbmotive electronic suppliers are
looking for efficient methods to develop, verifydamalidate electronic modules. In fact, they
focus on the software part of these modules sinaedounts for more than 80% of the total
number of problems detected on these modules.igncthntext, we achieved our research
project with the aim of proposing a global approable to improve the quality of automotive
embedded software. We started with an audit of sithiéware practices currently used in
automotive industry and we pinpointed potentialelsvto improve the global software
quality. Based on the results of the audit anditeeature review related to software quality,
we developed a global approach to improve the desidest cases for software products. In
fact, we developed a test generation platform ttoraatically generate test cases for a
software product. It is mainly based on modeling Hoftware functional requirements in
order to be simulated when testing the softwareydmg on critical tests to be done (because
of their higher probability to detect a bug) andnaring the automatic generation of tests by
quality indicators such as the structural and fimmeti coverage but also the tests cost. The
generation of critical tests is based on the d&bimiof real use profiles by software product
and on the reuse of bugs and test cases capitatine@revious projects. Besides the
computational aspects of software testing, our @gpr takes into account organizational
matters such as knowledge management, competentggement and project management.
Our approach have been implemented in a computgfoph and experimented on two
typical case studies of an automotive electronppBar, with historical test data. The results
of our experiments reveal significant improvement software quality: more bugs are
detected earlier and in less time.

Keywords: Software verification and validation, Automotiv&oftware testing process,
Functional simulation, Software quality, Knowledg@nagement, Decision making, Design
process.
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Context

Nowadays, electronics represents more than 30%eofjlobal cost of a car. Car electronic

architecture becomes more and more complex andaga&ns outsource the design of

electronic modules to automotive electronic supplighe software part is the added value of
these modules and they account for more than 808tedtotal number of defects detected on
these modules. As automotive electronic producteine more and more complex, the size
of software embedded in these products increasestichlly. As a consequence, the time
spent in verifying and validating these softwarse mreased exponentially the last 10 years.
Verification and Validation(V&V) activities account now for more than 50% of an
automotive electronic project time and effort. Desphe huge resources spent in verifying
and validating a software product and after eadivatg to the carmaker (up to 10 may be

made), some bugs are still detected by the carnaietforwarded to the supplier who must
react quickly and efficiently. Once an electroniodule is launched on the market (e.qg.
integrated into a vehicle), an average of one sufwug per year is detected by the end-
users, which may becomes dramatic for the eleatraupplier in financial and image terms if

the product has to be systematically substituted.

As the automotive market becomes more and more etingp decreasing the development
time of outsourced parts and lowering the numbedefects detected later in the process
becomes of major importance for carmakers and,ecprently, a major quality indicator for
automotive suppliers. Indeed, the carmakers’ pé@sassigning new projects to suppliers
is mainly based on feedbacks from previous projeCinsequently, suppliers work on
reducing the development time of their productéivdeng on time the products to carmakers
and detecting the maximum number of bugs as eanppasible in the development process.

Through our research proje®HD), we were asked by Johnson Controls, one of thddigso
leading suppliers of automotive interior systemecteonics and batteriesp improve the
performance of its softwaré&V activities. Their main purpose is to improve thalgy of
their products and therefore better satisfy theireqnents and expectations of their clients. In
our research (Awedikian 2007), we go through thisbfem with asystemic approacin
order to identify levers in any domains from whigk might be able to improve tlgtobal
performanceof the software/&V activities. The major added value of the presemtkwis to
globally solve the quality issue of teeftware testingrocess.

Research process

Our research process is based on five main stages:
Stage 1: Industrial audit

The audit of the industrial context aims to identénd determine the overall
environment of our research project. This resultglentifying a list of anomalies and
issues in the current verification and validatioaqgices.

Stage 2: Research topic definition

Based on the results of the industrial audit, teindion of our research topic allows
to better determine the scope and focus of ourareBe This also leads to a better
definition of the state-of-the-art focus.

Stage 3: State-of-the-art
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The state-of-the-art on the research issues instope of our research pinpoints
existing solutions; their advantages, drawbacks adaptability to our context. This
results in a list of potential proposals.

Stage 4: New concepts development

The development of new concepts is the result eftlinee previous stages. Based on
the concepts identified in the literature and tgkihe requirements of our industrial
context into account, new concepts are developed.

Stage 5: Concepts prototyping and validation

The prototype development aims to implement our r@@mcepts in a computer
platform. This platform gives us the opportunity\alidate our concepts on typical
case studies.

Figure Introduction.lillustrates our research stages all along theetlyears of thé?hD
cursus.

Stage
A
Industrial |
audit
Stage3™
State-of-
the-art
 Proposals
Stage 4
New concepts
development
Stage5
Concepts prototyping and validation
} : : ;
Istyear 2ndyear Fvear e

Figure Introduction.1 — Stages of our research proess
Contributions’ overview

Through our research project, we perform an auditttte current software practices in
automotive industry. The result of the audit issa ¢f anomalies and lacks (diagnoses) in the
current software/&V activities in automotive industry. Based on thelitwesults and the
literature review, we propose new systemic approach to automate efficiengydésign of
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test cases for software produc@ur approach presents a much different workfloantthe
one presently used in automotive industry. The mewkflow is based on eight activities
which aremanual semi-automatior automaticand managed bgifferentindividuals These
activities are:

1. Model the software functional requirements usinigranal simulation model that we
developed keeping in mind the automotive contexd @s constraints (Awedikian
2008a).

2. Verify and validate the consistency and compliaméethe requirements model
(Awedikian 2008a).

3. Define some behavioral characteristics of a carednivhen using the software product
under test (Awedikian 2008Db).

4. Reuse thdest casesleveloped in the past for similar software produétwedikian
2008b).

5. Reuse the bugs detected in the past on similavadtproducts (Awedikian 2008b).

6. Enrich the requirements model with knowledge (frantivity 3 to 5) on the driver
recurrenoperationsand the test engineers’ experience (Awedikian Bp0O8

7. Automate the design ¢ést casesrom the enriched model of functional requirements
(Awedikian 2008c).

8. Monitor the design oftest casesby quality objectives but also time and cost
constraints (Awedikian 2008c).

Processesroles andtools implementing these activities have been developbd. results of
the experiment of our approach on two typical indak case studies (within Johnson
Controls) are very promising. Weeduce by 70%the number of bugs detected by the
carmakers antty 9%the ones detected by the end-users. Moreovergddce by 22%he
time spent in testing a software product. In faet, detect the bugs earlier in the software
development process and closer to their origin. alée propose to deliver to the carmaker
formal quality indicatorson the delivered software. All these results dabote to an
improvement of theustomer satisfactioand as a direct impact; the number of tenders will
grow. Unfortunately, estimating the cost of softevdrugs in an organization is a delicate,
strategic and confidential question and therefoeewere not allowed to communicate the
numbers on the bugs’ costs savings via the usearodgproach.

As a consequence of these results, managers asalol@ontrols decide tpatent our
approach. However and in order to patent an idea in Johi@umtrols, a formal verification
and validation process of the idea is requiredoun case and before starting this process,
Johnson Controls has submittesvarldwide Quick Patefitin order to protect our approach.

A worldwide survey orsoftware testingpproaches has been performed by Johnson Controls
patent experts. Moreover, we were formally intemgd by many managers and experts on
the contributions of our approach. The final stagebe the decision of the Johnson Controls
Intellectual Property(IP) committee to patent or not our approach.

V. Reading guidelines

This dissertation is composed opdrts and eactpart is composed of two or mohapters
The structure of the document is illustratedrigure Introduction.2

® Including Bernard Yannou and Mounib Mekhilef asiteentors.
* In France, we associate @uick Patentto an “Enveloppe Soleau” hftp://www.inpi.fr/fr/services-et-
prestations/enveloppe-soleau.ht@bnsulted on November 2008).
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» Part | develops the research context and the industrait éChapters 1and?2).

» Part Il develops the research topic and the literaturewe(Chapters 3and4).

» Part Il develops our new conceptshapterss, 6, 7 and8).

» Part IV develops the computer implementation and the &atid of our new concepts
(Chapters %and10).

DOCUMENT STRUCTURE

General Part | - Part ll - Part Il - Part IV - General
introduction | Context and domain Problem statement A new approach for Implementation, conclusion
analysis and literature designing efficient test validation and impacts of
review cases for a software product  the proposed approach
Chapter 1. Chapter 3. Chapter 5. Chapter 9.
The need to Research topic Modeling and simulation Prototype
improve the of software functional implementation
quality of Chapter 4. requirements
software products State-of-the-art Chapter 10.
in automotive Chapter 6. Modeling and
industry Verification and simulating two
validation of a software industrial case studies
Chapter 2. functional requirements
Industrial audit model
Chapter 7.
Automatic generation of
test cases
Chapter 8.

Refining the operation
space description with
the driver behavior's
profile, past bugs and
test cases

Figure Introduction.2 — Document structure
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CHAPTER 1. THE NEED TO IMPROVE THE
QUALITY OF SOFTWARE PRODUCTS IN
AUTOMOTIVE INDUSTRY
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Introduction

The world of electronics is living a revolutiontime way products are imagined, designed and
implemented. The ever growing importance of thermet, the advent of microprocessors of
great computational power, the burden of wirelessraunication, the development of new
generations of integrated sensors and actuatochargying the world we live and work in.

The car as a self-contained universe is experigngisimilar revolution. We need to rethink
what a “car’ really is and the role of embeddedtetmics. Electronics is now essential to
control the movements of a car, of the chemicaleladtrical processes taking place inside, to
entertain the passengers, to constantly be corthedtk the rest of the world and to ensure
safety. However, the growth of electronics in a oaight reduce its reliability.Will
electronics take the major role in car manufactgrind design? How to control the quality
of electronic systems? How to manage the growtlsofifivare complexity in automotive
electronic parts? What will an automobile manufaetis core competence be in the next few
years? What are the new challenges for automotarenic suppliers?

Our intent in this chapter is to answer some o$¢hguestions. An illustration of the present
automotive industry context facing the globalizatend the outsourcing issues is carried out
in Section 2 Then, the electronic architecture of a modernclehs described irfsection 3
showing the tendency toward incorporating ever nebeetronics. An overview of the role of
software and the new challenges in automotive meeicts industry is done iSection 4and>.
Finally, the industrial needs and expectationd ass expressed for the first time by Johnson
Controls company are summarizedSection 6

The phenomena of globalization and outsourcing in womotive
industry

As we enter the new millennium, globalization haseeged as one of the most salient and
powerful forces shaping domestic and world econemie

Definition 1.1: Globalization (Wikipedia — Novemb&008)

Globalization in its literal sense is the proce$sransformation of local or regional things or
phenomena into global ones. It can also be useatésaribe a process by which the people of
the world are unified into a single society and diion together. This process is|a
combination of economic, technological, sociocwdtuand political forces. Globalization is
often used to refer to economic globalization, tisatintegration of national economies into
the international economy through trade, foreigredi investment, capital flows, migration,
and the spread of technology.

The automobile industry is typically considered he at the forefront of globalization.
Evidences supporting this view have been liste&pgtz (Spatz 2002):

e the intricate network of alliances and cross-shaldthgs among automobile
companies, within nations and regions but also eebharegions,

* intensified Mergers and AcquisitionfM&A) activities in the 1990s, involving both
end-producers and automotive input suppliers,

* and the trend towards technologically motivatedpavation agreements, which was
caused, inter alia, by end-producers entering im@ew forms of partnerships for the
design of principal modules and subsystems.
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The new face of globalization in automotive indyss best revealed by the rise of global
suppliers. Companies such as Johnson Controls,hBd3enso, Lear Corporation, TRW,
Magna, and Valeo have become the preferred suppicerautomakers around the world.
Some automakers, particularly American firms, hasenbined a move to “modular” final
assembly with increased outsourcing, giving incedagsponsibility tdirst-tier suppliers for
module design andecond-tier sourcingMany first tier-suppliers started to buildvartical
integration (through mergers, acquisitions, and joint-ventuasd to geographically spread
SO as to be able to provide their customers witldutes on a worldwide basis. At the same
time, it can be simultaneously observedeverticalizationin automaker companies which
leads to create a new global-scale supply-basebtapéh supporting the activities of final
assemblers on a worldwide basis.

The drivers of increased outsourcing include 1)risieg technological complexity of vehicle
development, 2) rising logistics complexity as mpreduction locations come on-stream, 3)
a desire to “streamline” the final assembly procd$s desire to pay for parts only as they are
incorporated into vehicles rather than when they stripped from suppliers, 5) increasing
competence in suppliers, and 6) a desire to lowstscby moving production to low cost
suppliers.

Twenty years ago, automakers practiced low-levetspassembly within final assembly
plants, purchased parts based on price, and pamdmali attention to quality. Now,
automakers ask suppliers to do more design andassdmbly work. This refers to as
“modularization” in the automotive industry. Foraemple, vehicle doors can be delivered
with the glass, fabric, interior panels, handlex] enirrors pre-assembled. Dashboards can be
delivered complete with polymers, wood, displayghts, and switches. The aim of
modularization is to move labor out of the final sasbly process (design for
manufacturability can serve the same purpose).

According to Sturgeon (Sturgeon 2000), fifteen meduepresent about 75% of vehicle
value. In fact, a supplier can provide groups tdtesl modules, called “module systems”. For
example, seats, interior trim, and cockpit modwesld be supplied as a complete “interior
system”.Figure 1.1provides a graphic representation of the appdrentl from discrete parts
to modules and systems.

® First-tier supplier means a supplier who diregilpvides goods and services to the assembly platiieo
product
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PART MODULE SYSTEM ! PART MODULE SYSTEM
1
Fabric i | Stamping
goan;_ > Seat i | Hardware > Skin
cat frame : Fasteners
Headliner ' | Primer
Interior panels \ Interior trim . 1 | Paint \ Finish
Trim yd Interior ) Body
System : Overcoat / System
Dashboard i | Exterior Trim
Gauges + | Undercoat
Shifter Cockpit module + | Lenses/Mirrors  » Trim
S‘tc‘:crmg wheel v | Fluids
Trim ' | Gaskets
time > i time >
|
Eng cntl/sensr AN . | Engine
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Alternator 1| Transmission
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Audio : Bumpers
Int. hghts ) t | Trim Front and rear
HVAC Interior Elec. i | Radiator end modules
Navigation ; | Fan
Airbags ' | Lights

Figure 1.1 — From part to module to system (Sturgen2000)

Strong growth forecast for electronic parts in autonotive

The past four decades have known an exponentiedase in the number and sophistication
of electronic systems in vehicles. According to gkeen 2002), nowadays, the cost of
electronics in luxury vehicles may amount to mdrant 23 percent of the total manufacturing
cost. According to Moavenzadeh (Moavenzadeh 2008)p R&D°® executive from General
Motors said that electronics and software contahtaescount for 40% of the value-added in
the vehicle over the new ten years. Moreover, anmequoté from Daimler executives says
that more than 80% of innovation in the automotieenain will be in electronic modules.

The growth of electronic systems has had implicetitor vehicle engineering. For example,
today’s vehicles may have more than 4 kilometersvoing, compared to 45 meters in
vehicles manufactured in 1955. In July 1969, Apdilb employed a little more than 150
Kbytes of onboard memory to go to the moon and bt 30 years later, a family car might
use 500 Kbytes to keep the CD player from skippiagks.

The resulting demands on power and design havie lechovations in electronic networks for
automobiles. Researchers have focused on develagdeujronic systems that safely and
efficiently replace entire mechanical and hydrawdisplications. Just atANS connect

computers, control networks connect a vehicle’scteb@ic equipment. These networks
facilitate the sharing of information and resouraesong the distributed applications. In the
past, wiring was the standard means of connectimgy @lement to another. As electronic

® R&D: Research and Development
’ http://www.dsp.acm.org/view_lecture.cfm?lecture 86¢consulted on November 2008)
8 LAN: Local Area Network
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content increased, the use of more and more desameting hit a technological wall.
Fortunately, today’s control and communicationsmogks, based on serial protocols, counter
the problems of large amounts of discrete wiringgiBning in the early 1980s, centralized
and then distributed networks have replaced pohptetint wiring.

Figure 1.2 shows the sheer number of systems and applicatontined in a modern
automobile’s network architecture.

Digital radio
Vehicle computer '

i m
Additional /|| ANl

systems
Drive train

MOST
Window lift
Universal light

i
"

u

Central
| body control

%Steering wheel [
panel :

;_[:ngumversal motor
Universal panel

Speaker

CAN  Controller area network

GPS  Global Positioning System

GSM  Global System for Mobile Communications
LIN  Local interconnect network

MOST Media-oriented systems transport

Figure 1.2 — A modern vehicle’s network architectue (Leen 2002)

The electronics and software content of vehicldeegemore on electrical and software
engineers than on the traditional mechanical emgsessociated with the automotive
industry. Moavenzadeh (Moavenzadeh 2006) indicdtest electronics and software
engineering functions are easier to outsource dshofe than mechanical engineering
functions. Software engineers across an ocean icanss a few lines of code easier than
mechanical engineers can discuss how to modifyddgmsign of a module. Software and
electronic systems also tend to follow a more madproduct architecture than mechanical
systems; therefore, it is easier to offshore bothand high value added functions.

Challenges for the automotive electronic suppliers

The overall goal of electronic embedded systemgaes to balance production costs with
development time and cost in view of performance famctionality considerations. In other
words, engineers are encouraged to shorten thalbdesign and validation cycle without
compromising quality, reliability, and cost targets
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A. Lower the production cost

Manufacturing costs mainly depend on the hardwarduies of the product. If one considers
an integrated circuit implementation, the sizehaf thip is an important factor in determining
production cost. Minimizing the size of the chippies tailoring the hardware architecture to
the functionality of the product. However, the co$ta state-of-the-art fabrication facility

continues to grow up. In addition, tiNon-Recurring EngineeringNRE) costs associated

with the design and tooling of complex chips arpidly growing. As a consequence, a
common hardware platform to be shared across nmil@pplications may increase the
production volume and decrease the overall cost.

B. Lower the development time and cost

Since the times of ignition car electronics in th®@70s, the complexity of automotive
electronics architecture is still growing. Presgntleen (Leen 2002) notices thaB&MW 5
seriesmodel can have up to 80 electronic control uriitswever, the market dynamics for
automotive electronic systems leads to shortershwditer development times. Presently, no
matter how complex the design problem is, suppliens’'t have more than six months from
the delivery of the customer requirements to & argd correct implementation. To meet the
design time requirements and ensure a high qualityhe delivered product, a design
methodology that favors automation, reuse and gamtyplem detection is essential. This
implies that the design activity must be rigoroudgfined, so that all stages are clearly
identified and appropriate checks are enforced.

The role of “software” in automotive electronics

Lets us start by defining what issaftware In this dissertation, we adopt the definition of
software proposed by thestitute of Electrical and Electronics Engine®(tEEE).

Definition 1.2: Software or Software product (IEEBStd. 610-1990) — Abbreviation: SW

Software is a general term used to describe a ctidie of computer programs, procedures,
and possibly associated documentation and dataapeng to the operation of a computer
system.

Moreover, a software product is composed from aksbdftware components modulegCf.
Figure 1.3.

Software product

—>

Outputs

—

Figure 1.3 — Software product versus software compent

® http://www.ieee.org/portal/siteConsulted on November 2008)
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Definition 1.3: Software component or module (Wilgdia — November 2008)

A software component or a software module is aesy&lement offering a predefined service
or event, and able to communicate with other coreptsror modules. It is a minimal
software item that can be tested in isolation.

A software product can be dedicated for differgpes of electronics architecture (computer,
automotive, airplane etc.). In our research, wg eohsider the software products written for
machines that are not, first and foremost, computier software engineering, this type of
software products is calleembedded softwar&or example, it is embedded to electronics in
cars, telephones, audio equipment, robots, ap@gnioys, security systems, pacemakers,
televisions and digital watches. This type of saftevproducts can become very sophisticated
in applications like airplanes, missiles, procesmtm| systems, and so on. Embedded
software is usually written for special purposecttanics architecture. For instance, the
CPUS® are different from general purpo&PUs that we could find in our desktops or
laptops. Moreover, a real-time operating systemeggiired for managing the simulation of
embedded software. In fact, tasks’ scheduler amdifpes are the fundamentals of a real-time
operating system.

The design process of software products shares meahyologies with the one of hardware
products. Nevertheless, there are important diffiege between the two types. In the
following, we identify some of these differences:

e the hardware product quality relies on design, enm@ntation and manufacturing
processes, however the software product qualityeselonly on design and
implementation processes. The software manufacfyincess is mainly based on a
“simple” reproduction activity,

* a software product is able to simulate alternat@emands on different inputs which
lead to a high complexity of the product,

» a software product is not a physical entity anddfoge, it doesn’t wear out over time.
In fact, since problems are detected and correthedquality of a software product
improves over time. However, the correction an@tlution activities can introduce
new problems in the product,

« software problems cannot be prevented. In factiBpesuccessive commands on the
inputs of the software product can reveal a probMrith was not detected during the
testingactivities of the product,

» the easiness and the rapidity which with a softvpaoeluct can be modified lead to the
fact the software development process should bey weell monitored and
documented,

« and historically, software modules are not freglyerstandardized and reused.
Nowadays, there is a trend toward a reuse of sotwandules in order to lower the
development time and cost.

One more specific concept to software productdhés dize. Software sizing (Wikipedia —
November 2008) is an important activity in softwargyineering that is used to estimate the
size of a software module. Size is an inherentatttaristic of a software in just like weight is
an inherent characteristic of any tangible matekhstorically, the most common software
sizing methodology was counting thanes Of Cod€LOC) written in the application source.
Another famous sizing method is the Function Paimdlysis. New trends of software sizing
have recently emerged.

19 CcpuU: Central Processing Unit
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A. Growth of software size in automotive electronictpa

The amount of software in many electronic produstsicreasing rapidly. For example, the
number of lines ofource codeén a mobile phone is expected to increase fromliBomtoday

to 20 million by 2010; a car will contain 100 mdah lines of code (Charrette 2005).
Consequently, electronics companies no longer ifimeonomically viable to provide all the
software in their products.

In fact, the amount of software in cars grows exmially. Within only thirty years, the
amount of software in a car has evolved from zertehs of millions lines of code. A current
premium car, for instance, implements about 27@tians a user interacts with, deployed
over about 70 embedded platforms. Altogether, digvare amounts to about 100 megabytes
of binary code. The next generation of upper clasicles, hitting the market in about 5
years, is expected to run up to 1 gigabyte of smwThis is comparable to what a typical
desktop workstation runs today.

A first reason for this growing complexity in sofive is that software enables the
implementation of functionality deemed impossihlstjtwenty years ago. Another reason is
that electronics in cars helps to reduce gas copsamand increase performance, comfort
and safety, as indicated by the decreasing numbemajor accidents whereas traffic
increases. Information processing technology cutess all aspects of the car and is a
persuasive, sophisticated and differentiating vaddlelition to the product. Furthermore,
software enables the car manufacturers and suppbdailor systems to particular customers'
needs. In other words, software can help diffeedatbetween cars. At least in principle, it is
the software that also allows hardware to be reusmmdss different cars. Contrarily to
hardware, software has an almost negligible reftinacost, which is a further incentive to
bet on software as a potential tool in cost-reductHowever, the growing complexity of
automotive software products leads to a dramatiease of the software development costs.
In addition, growing complexity is a driver for nenous challenges in the automotive
industries like: definition of key competenciespgesses, methods, tools, models, product
structures, division of labor, logistics, maintec@nand long term strategies.

B. Software Development Life Cycle

The Software Development Life Cy¢feDLC models describe activities of the software cycle
and the order in which those activities are exatufevariety of SDLC models have been
proposed in a paper (Green 1998), most of whiclugoexclusively on the development
activities: ad-hoc model waterfall model V-mode] iterative and incremental model
prototyping model rapid application development mogdedxploratory modeland spiral
model

1. Ad-hoc model

Early systems development often took place inlgerathaotic and haphazard manner, relying
entirely on the skills and experience of the indipal staff members performing the work (Cf.
Figure 1.4. Today, many organizations still practide-hoc Developmerdither entirely or
for a certain subset of their development (e.g.llsonajects).
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Figure 1.4 — Development based on the skills andmerience of the individual staff
members performing the work

In the absence of an organization-wide softwaregss, repeating results depends entirely on
having the same individuals available for the ngedject. Success that rests solely on the
availability of specific individuals provides no dia for long-term productivity and quality
improvement throughout an organization.

2. The waterfall model

The waterfall model prescribes a sequential execution of a set of ldpreent and
management activities (Gfigure 1.9. Some variants of theaterfall modelallow revisiting
the immediately preceding activity (“feedback loYpEinconsistencies or new problems are
encountered during the current activity. Theaterfall modelis the earliest method of
structured system development. Although it has hmitized in recent years for being too
rigid and unrealistic when it comes to quickly niegtcustomer’s needs, thaterfall model

is still widely used. It provides the theoreticakks for other process models.
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3. The V-model

A variant of thewaterfall model theV-model- associates each development activity with a
Verification and ValidationV&V) activity at the same level of abstraction (Eigure 1.69.
Each development activity builds a more detailedleh@f the system than the one before it,
and eachl/&YV activity tests a higher abstraction than its pcedsor.
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Requirements Validation
analysis testing

Integration and
Integration
testing

Implementation
and
Unittesting

Figure 1.6 — V development model (V-model)
4. The iterative and incremental model

The problems with thevaterfall modelcreated a demand for a new method of developing
systems which could provide faster results, redese up-front information, and offer greater
flexibility (Cf. Figure 1.7. With iterative development, the project is deabinto small parts.
This allows the development team to demonstratelteegarlier in the process and obtain
valuable feedback from system users. Often, eachtion is actually a mini-waterfall process
with the feedback from one activity providing vitafformation for the design of the next
activity.
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Figure 1.7 — Iterative and incremental developmeninodel
5. The prototyping model

The prototyping modeivas developed on the assumption that it is ofifficwt to know all

of your requirements at the beginning of a projdotpically, users know many of the
objectives that they wish to address with a systarhthey do not know all the nuances of the
data, nor do they know the details of the systemctionalities and capabilities. The
prototyping modeé&llows for these conditions, and offers a develepiapproach that yields
results without first requiring all information upant.

When using th@rototyping modelthe developer builds a simplified version of greposed
system and presents it to the customer for coretideras part of the development process.
The customer in turn provides feedback to the agerl who goes back to refine the system
requirements to incorporate the additional infoliorat
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6. The rapid application development model

A popular variation of the prototyping model isledIRapid Application Developme(RAD).
RAD focuses on developing a sequence of evolutioneototypes which are reviewed with
the customer, both to ensure that the system islolewg toward the user's requirements and
to discover further requirements. The process rgrotled by restricting the development of
each integration to a well-defined period of tirelled a time box. Each time box includes
analysis, design, and implementation of a protatype

7. The exploratory model

In some situations it is very difficult, if not impsible, to identify any of the requirements for

a system at the beginning of the project. Theaabticeas such a&rtificial Intelligenceare
candidates for using thexploratory modelbecause much of the research in these areas is
based on guess-work, estimation, and hypothesibielse cases, an assumption is made as to
how the system might work and then rapid iterati@me used to quickly incorporate
suggested changes and build a usable system. Angiishing characteristic of the
exploratory modelis the absence of precise specificatiowslidation is based on the
consistency of the end results and not in compéiamith existing requirements.

8. The spiral model

The spiral modelis similar to the incremental model, with more éages placed on risk
analysis. Thespiral modelhas some resemblance@eming’s“Plan, Do, Check, Act’cycle

and has four activitie®lanning Risk AnalysisEngineeringandEvaluation(Cf. Figure 1.8.

A software project repeatedly passes through thesgities in iterations (called Spirals in
this model). In the planning activity, requiremeats gathered and risk is assessed. In the risk
analysis activity, a process is undertaken to iflensk and alternate solutions. A prototype
is produced at the end of the risk analysis agtivitoftware is produced in the engineering
activity, along withtesting at the end of the activity. The evaluation acyivallows the
customer to evaluate the output of the projectaie defore the project continues to the next
spiral.

In the spiral mode] the angular component represents progress, antdhtlius of the spiral
represents cost.

Planning Risk analysis

i
-

Evaluation Engineering
Figure 1.8 — Spiral development model

/
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9. Common framework between software development lifeycles

In conclusion, there are a lot of models and mammmanies adopt their own, but all have
very similar patterns. The general, basic modshmswn inFigure 1.9

Figure 1.9 — General software development life cyelmodel

Each activity produces deliverables required by thext activity in the life cycle.
Requirementsare translated intalesign Code is produced duringnplementationthat is
driven by the designrlestingverifies the deliverable of thienplementationactivity against
requirements.

a. Requirements analysis

Customer requiremeni@re gathered in this activity. Meetings are helaider to determine
the requirements. Who is going to use the system# Will they use the system? What data
should be input into the system? What data shoaildubput by the system? These are general
guestions that get answered during a requiremeaiteegng activity. This produces a list of
functionality that the software product must previd

b. Design

The software systemesignis produced from the results of the requiremengdyais activity.

In this activity, the details on how the system haswork are produced. Architecture
(including hardware and software), communicatiod anftware design are all part of the
deliverables of a design activity.

c. Implementation

Code is produced from the deliverables of the desigtivilg during implementation.
Implementation may overlap with both the design tslingactivities. Many tools exist to
actually automate the production of code usingrmftion gathered and produced during the
design activity.

d. Testing

During testing the implementation is tested against the requerémto make sure that the
product is actually solving the needs addressedjatitered during the requirements analysis
activity. Unit, integrationandvalidationtestsare done during this activitynit testsact on a
specific module of the system, whilgegration andvalidation testsact on the system as a
whole.

C. Two complementary approaches to design “bug-freé@ivare

Let us start this section by giving a definitiom tbe termbug In this dissertation, we adopt
the definition proposed bfEEE.
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Definition 1.4: Mistake, error, fault, failure/bug(IEEE Std. 610-1990)

“Mistake” is a human action that produces an incect result.

“Error” is a difference between a computed resuticethe specified or theoretical one.
“Fault” is a defect in a module which is the marsfation of an error.

“Failure” is the inability of a system to performraquired function within specified limits.
The relation between a mistake, an error, a faotl a failure is illustrated in Figure 1.10.

Mistake —> Error —> Fault —> Failure/bug

Figure 1.10 — Relation between a mistake, an errog, fault and a failure

The results of a software testing activity is alufia, therefore an analysis activity
necessary to identify the fault.

S

In our research, we used the term “bug” rather thafailure”

Software’s complexity and accelerated developmehedules make designirfpug-free”
software difficult. In this dissertation, we alsdopt the definition of software quality
proposed byEEE.

Definition 1.5: Software quality (IEEE Std. 610-199
(1) The degree to which a system, module, or peocesets specified requirements.

(2) The degree to which a system, module, or peocesets customer or user needs| or
expectations.

A widely accepted premise on software quality isttlsoftware is so complex (in
combinatorial terms) that it is impossible to haveug-free” software. One technique
commonly used in industry to verify and validateoftware product is theoftware testingin
this dissertation, we adopt the definitionsoftware testingproposed by thslational Institute
of Standards and TechnoldgyNIST).

Definition 1.6: Software testing and execution (NTS2002)

Software testing is the process of applying metiicsletermine product quality. Software
testing is the dynamic execution of software anel ¢dbmparison of the results of that
execution against a set of pre-determined critéitakecution” is the process of running the
software on a computer with or without any formraftrumentation or test control software
being present. “Predetermined criteria” means thhe software’s capabilities are known
prior to its execution. What the software actuallyes can then be compared against the
anticipated results to judge whether the softwaebdved correctly. Software testing i§ a
widespread V&V technique in automotive industry.

In Chapter 8 — Section,2we demonstrate that theoftware testingproblem is aNP-
Completé’ problem We often hear maxims like "there's always one embug”, and
"softwareV&V techniques can reveal the existence of bugs,duérrprove their absence".

M hitp://www.nist.gov/Consulted on November 2008)
12 NP: Non-deterministic Polynomial time
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The Figure 1.11released by Liggesmeyer (Liggesmeyer 1998) shbasthe main part of
bugs are introduced during the first life cycletbé software development (around 90% in
requirements analysis, design and implementatitaites) and detected in the last activities
(around 80% duringnit test validation testandserial production. A study done in 2006 by
a Johnson Controls software expert (Le Corre 2006&bout 15 projects from different types
of products has confirmed the findings of Liggesarey

50% ril 12.5
- #
Introduced Detegte(:j Costof correcfion
. ’
40% —— bugs (in %) bugs (in %) : J perbug--1g
i “  /In1,000US )
o
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< ]
o
f‘r
10% —— - ;1' L‘._ -1-2:5
[P LA YJJ- Rt e G L _.-———-r“""" | =

Time (non-linear)

Figure 1.11 — Rate and cost of bugs introduced ardktected across the software
development life cycle (Liggesmeyer 1998)

Therefore, appropriate techniques, methods andeduwes must be adopted in order to help
engineers to:

* |lower the number of bugs introduced in the softveystem revention approach
* and detect all the bugs that have been introducdde software system as soon as
possible detection approach

1. Prevention approach (Mays 1990, Gale 1990, McDonakD07)

Bugs are a consequence of the nature of humarrgaatthe designing task. They arise from
oversights made by engineers duriequirements analysislesign implementatiorand even
testing Complex bugs can arise from unintended interastioetween different parts of the
software system. This frequently occurs becaussvacé systems can be complex - millions
of lines long in some cases - often having beegnaramed by many people over a great
length of time, so that engineers are unable totafigrirack every possible way in which
parts can interact. The software industry has puthmeffort into finding methods for
preventing engineers from inadvertently introdudmgys while designing a software system.
These methods include:

* Engineers practices

e Standards

* Formal languages

* Prototyping

e Modeling and simulation
* Reuse
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¢ Root cause analysis

Even with efficient bugs’ prevention techniques aaking the assumption that human is not
perfect, we conclude that each software systenuded bugs. That is why, verifying and
validating the software system before any custaeévery is a necessary activity.

2. Detection approach: V&V techniques (Beizer 1995, Mgrs 1978, So 2002)

Finding and fixing bugs has always been a majar gfaglesigning software systems. Maurice
Wilkes™, an early computing pioneer, said in the late $9ilkes 1949) that much of the
rest of his life would be spent finding errors iis lown programs. As computer programs
become more complex, bugs become more common amdtb&ix. Often programmers
spend more time and effort finding and fixing bulgan writing new code. Theoretical data
proposed byBrooks* (Brooks 2007) but also the results of a study dor#006 by a Johnson
Controls software expert (Le Corre 2006) on aboptdpects from different types of products
are presented ifable 1.1 The study points out that thvalidation testactivity takes up to
50% of the total development duration of a projébbreover, a recent study within Johnson
Controls (2008) has shown that this ratio numberlieen exceeded.

Software life Johnson F. Brooks Hewlett-
cycle Controls (%) (%) Packard (%)

Requirements

analysis

Design and

. . 17

implementation 20 34
Unit test 25

Integration and 40 o5 29

validation test

Table 1.1 — Time and effort spent during the softwma development life cycle (Brooks
2007, Le Corre 2006)

Usually, the most difficult part of finding a bug locating the erroneous part of thaurce
code Once the error is found, correcting it is usuabsy. Programs known as debuggers
exist to help programmers locate bugs. Howevern evigh the aid of a debugger, locating
bugs is something of an art. It is not uncommonafiererror in one section of a program to
cause bugs in a completely different section, tmaking it especially difficult to track.
Typically, the first step in locating a bug is find a way to reproduce it easily. Once the bug
is reproduced, the programmer can use a debuggeome other tool to monitor the
execution of the program in the faulty region, dimd the point at which the program went
astray. It is not always easy to reproduce bugseSbugs are triggered by inputs to the
program which may be difficult for the programmerré-create.

Therefore, bugs’ detection is still a tedious tesffuiring considerable manpower. Since the
1990s, particularly following thériane 5 Flight 501disaster, there has been a renewed
interest in the development of effective automatield to remove bugs but it's still remaining
much of a work in progress. Presently, bugs’ deiediechniques (also called softwar&Vv
techniques) can be classified into two classes:

13 hitp://www.cl.cam.ac.uk/~mvwi/short-biography.htfobnsulted on November 2008)
14 Frederick P. Brooks is a pioneer of software esiing, http://www.cs.unc.edu/~brookgtonsulted on
November 2008)
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« Static techniques(Review and Proof) which do not require the execution of the
software under test (Ayewah 2008)

* DynamictechniqueqTesting which require the execution of the software unst
(Beizer 1990, Barezi 2006).

Each of these techniques catches different clas$ebugs at different points in the
development cycle.

D. Impacts of detecting bugs later in the softwareettgument life cycle

According to a newly released study commissionedthi®y Department of Commerce's
National Institute of Standards and Technold®dyST 2002), software bugs cost the U.S.
economy an estimated $59.5 billion annually, oruad®@6 percent of the gross domestic
product. The study also found that, although albrsrcannot be removed, more than a third
of these costs, or an estimated $22.2 billion, ¢dud eliminated by an improved&V
infrastructure that enables earlier and more affeatientification and removal of software
bugs. These are the savings associated with fir@nigcreased percentage of bugs closer to
the development activities in which they are introeld. Currently (CfTable 1.}, over half

of all errors are not found until the lasstingactivity in the development procesalidation
tes) or during post-sale software usgpérational lifg.

The impact on the software industry due to lackobiust, standardized&V technology able
to detect bugs closer to where they are introducaa be grouped into three general
categories:

1. Poor quality perceived by the customer

The most troublesome effect of a lack of effici®i®&V technology is the increased incidence
of avoidable bugs that emerge after the productdess delivered to the customer. Poor
quality often results in loss of reputation andslag future business for the company. In
addition, legal actions are undertaken againstsilygplier when bugs are attributable to
insufficientV&V.

2. Increase of the software development cost

Historically, the process of identifying and coitieg bugs during the software development
process represents over half of development c@spending on the accounting methods
used,V&V activities account for 30 to 90 percent of labrpended to produce a working
program (Beizer 1990). Software engineers alregoynd approximately 50 percent of
development costs on identifying and correctingsb{€f. Table 1.). Early detection of bugs
can greatly reduce costs. Bugs can be classifieghgye they were found or introduced along
the activities of the software development life leymamely,requirements analysislesign
implementationtesting andoperational lifeactivities.Figure 1.11illustrates that the longer a
bug stays in the program, the more costly it beotodix it.

3. Increase of the time to market

The lack of efficienV&V technology also increases the time that it takidsing a product to

market. Increased time often results in lost oppoties. For instance, a late product could
potentially represent a total loss of any chancgaim any revenue from that product. Lost
opportunities can be just as damaging as postselgaoduct bugs. However, they are
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notoriously hard to measure. If efficiew&V techniques were readily available, engineers
would expend less time developing custdil technology.

Industrial needs and expectations

Nowadays, electronics represents more than 30%eflobal cost of a car (Sangiovanni-
Vincentelli 2003). Car electronic architecture h®es more and more complex and
carmakers outsource the design of electronic medol@utomotive electronic suppliers. The
software part is the added value of these moduldglzey account for more than 80% of the
total number of problems detected on these mod@@etnson Controls source). As
automotive electronic products become more and noomaplex, the size of software
embedded in these products increases drasticalfact, abody controller modulenanaging
the interior function of a car body account for mdhan 200KLOC" (Johnson Controls
source). As a consequence, the time spent in wagifgnd validating these software has
increased exponentially the last 10 ye&&YV activities account now for more than 50% of
an automotive electronic project time and effort. (Cable 1.). Despite the huge resources
spent in verifying and validating a software pradaicd after each delivery to the carmaker,
some bugs are detected by the carmaker and ford/émde supplier who must react quickly
and efficiently. Once an electronic module is lawaet on the market (e.g. integrated into a
vehicle), an average of one software bug per yeaketected by the end-users, which may
becomes dramatic for the electronic supplier iraficial terms if the product has to be
systematically changed. In fact, in term of bug&wrence, two types of contract engage
electronics suppliers with car manufacturers:

« Implicit contract: during software development process, each carnaderery must
be free of bugs.

« Explicit contract:on launched electronic module, carmaker toleratesrtain number
of defective products expressed in term#BM (Pieces Per Million)PPM includes
all software bugs but also electronic, mechaniodl groduction problems.

As the automotive market becomes more and more etng) decreasing the development
time of outsourced parts and decreasing the nuwibgroblems detected later in the process
becomes of major importance for carmakers and cuesdly a major quality indicator for

automotive suppliers. Indeed, the carmakers’ péasassigning new projects to suppliers
is mainly based on feedbacks from previous projeCisnsequently, suppliers work on

reducing the development time of their productéivdeng on time the products to carmakers
and detecting the maximum number of bugs as eadig@ossible in the development process.

Through our research project, we were asked byuameotive electronic supplier namely
Johnson Controls to improve the performance ofsdf&wareV&V activities. Their main
purpose is to improve the quality of their produ@sd therefore better satisfy the
requirements and expectations of their clientsldnnson Controls, the software development
life cycle follows aV-model (Cf. Chapter 2 — Section 3)BMoreover, the validation test
which is the lasV&V activity before a carmaker delivery is considemsdhe ultimate activity

to detect all the bugs and therefore deliver casrakbug-free” software. It represents up to
90% of the time spent in thé&V of a software product (Johnson Controls sourtegtinga
software product requires two main activities. Aailed specification of these activities is
done inChapter 2 — Section.3'he first one consists of designitest caseand the second

SKLOC : Kilo Lines Of Code.
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one of executing thedest case®n the software product under test. We adopt dimition
of test casgroposed byEEE.

Definition 1.7: Test Case (IEEE Std. 610-1990) —I&bviation: TC
IEEE defines test case as follows:

(1) A set of test inputs, execution conditions, exgected results developed for a particylar
objective, such as to exercise a particular prograpath or to verify compliance with |a
specific requirement.

(2) Documentation specifying inputs, predicted lss@nd a set of execution conditions for a
test item.

While the execution activity is often automated gigest execution platforjrthe test case
design activity remains a manual task that fillsimme many engineers. We propose below our
definition of atest execution platform

Definition 1.8: Test execution platform

A test execution platform is a platform that aimssimulate the environment of and perfgrm
test inputs on the software module or product unigst. Therefore, one can verify and
validate the behavior of the software under testameal environment. For more information
regarding the Johnson Controls test execution ptatf, please refer to Appendix C.

Up to 50% of a software project time is dedicateddesigntest caseqCf. Table 1.}.
Therefore, for many of software managers and egpertlohnson Controlsjutomating the
design of test casegems to be the most adapted solution to rededestingtime, cost and
resources while improving theode and requirementcoverage We adopt the definition of
coverageproposed byEEE.

Definition 1.9. Coverage (IEEE Std. 610-1990)

In software engineering, the term “coverage” medins degree, expressed as a percentage,
to which a specified coverage item (code or requést) has been exercised by a test case.
For the definition of code (structural) and requiment (functional) coverage, please refel to

Chapter 2 — Section 5.F.

In our research, we go through this problem witbyastemic approacim order to identify
levers in any domains from which we might be ablériprove theglobal performancef the
softwareV&V activities. The added value of such an approatieisesolution of the problem
with a global quality viewpoint. Consequently, i€hapter 2 we characterize the software
design environment in automotive industry and pourtissues and anomalies (diagnoses). In
Chapter 3 based on oundustrial audit we clearly define the scope of our research aad w
formulate our research topic in accordance with résearch issues software testingin
Chapter 4 we perform diterature reviewon the existing approaches, techniques and tools i
the field of theV&V of software products. More especially, we focus r@search on finding
or adapting “solutions” for the anomalies and la¢dggnoses) that we identify via our
industrial audit. We identify relevant actions fiomproving the global performance of the
Johnson Control¥&V activities. InChapter 5 6, 7 and8, we specify our proposed models.
A prototype implementing our models has been dgeglanChapter 9 Finally, in Chapter
10, wevalidateour models through two industrial case studiekistorical data.
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Conclusion

Presently, automotive industry is facing significaifficulties in terms of selling new cars.
Therefore, carmakers ask their suppliers to inrevacrease quality, reduce time to market
and decrease the development cost. As electroapregents more than 30% of the global
cost of a car and stands for a big amount of tlablpms detected on a car, electronic
suppliers are the most concerned. Software techgoi® at the core of each electronic
product; therefore, electronic suppliers focus rthefforts on the improvement of their
software development ané&V practices. Through our research project, we wekedby an
automotive electronic supplier namely Johnson @dstto improve the performance of its
software V&V activities. Their main purpose is to better sgtihe requirements and
expectations of their clients in terms of qualitgst and delay. In our research, we go through
this problem with asystemic approachn order to identify domains from which we mighd b
able to improve the global performance of the Johr@ontrols softwar¥&V activities.

In the following chapter, we perform an industr@aldit on the software practices and more
especially on th&/&V techniques currently used in automotive industvg aim to identify
the issues and lacks of the current practicesderaio propose relevant improvement actions
well adapted to the industrial context.
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CHAPTER 2. INDUSTRIAL AUDIT
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Introduction

The audit of the industrial context permits to itiignand determine the overall environment
in which our research project has to be performdis must results in a better understanding
of what verifying and validating a software prodowans and what are the necessary changes
to perform.

In this chapter, we perform andustrial auditon the software practices currently used in
automotive industry and more especially in JohnSontrols. The audit is divided into four
parts:

» The process of managing the carmakers’ requiremelated to the software domain.
In fact, delivered software products must be coamtli with the carmaker’'s
requirements.

* The processes of verifying and validating softwareducts. Manywerification and
Validation (V&V) activities are performed on a software produéoteethe delivery to
the carmaker.

e The process of managing and reusing capitalizeds.blgieed, bugs detected on
previous projects and stored in thblems’ databasenust be regularly reviewed in
order to avoid similar bugs on new developments.

« The process of managing and reusing capitaltestl casesin automotive industry,
the projects related to the same type of produdtcan platform of one carmaker have
up to 70% of common functionalities (Johnson Cdstsource). Therefore, reusing
test casesrom one project to another must be done frequentl

For each of these parts, we make our analysis orstages:

1. A snapshot of the current software practices inndoh Controls grocess tool,
peoplg
2. Analysis and diagnoses of these practices.

In the conclusion of this chapter, we summarizepidormed diagnoses and we locate them
within the Johnson Controls software organization.

Frame of the audit

Our approach to audit the practices currently usedohnson Controls when verifying and
validating software products can be divided intaciivities:

* Analyze the documents delivered by the carmaketkdin electronic suppliers. Their
formats and their evolutions during the softwareali@oment life cycle

* Analyze the main activities of an engineer whenigfesg test casedor a software
product. This analysis is performed with a multinpoof view: process, tool, and
people

* Audit engineers when designitgst cases

* Intervention on the design tdst case$or four software projects

* Interview managers on the expectations of the cieensaat each stage of the software
development life cycle

* Interview all types of engineers that can be inedlin a software project

* Analyze data on thsoftware testingractices of carmakers

In the following, the results of the audit are re®d.
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The software projects in automotive industry

A. An incremental software development process

Definition 2.1: Project (Wikipedia — November 2008)

A project is a temporary endeavour undertaken gat# a unique product or service. It can
also comprise an ambitious plan to define and gamnsta future by limiting it to set goals
and parameters. The planning, execution and mangomf major projects sometimes
involves setting up a special temporary organizaticonsisting of a project team and one| or
more work teams.

A project consists of a set of coordinated and controlled/iies organized to achieve an
objective conforming to specific requirements. Braly, at Johnson Controls, @oduct
project (hardware, software and mechanical skills) typycaepresents 24 months of
development and involves around 25 engineers (doh@ontrols source). The five main
stages of a project are illustrated kigure 2.1 and described ifTable 2.1 Each stage is
defined by a procedure that identifies the respmlitsi deliverables (inputs, processes and
outputs) and applicable references. The main fottisese stages is thiesignandtestingof
components and assemblies through product launhchalcustomizable process that is to be
applied for all automotive products within Johng&mntrols company.
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Figure 2.1 — Product development system at Johns@ontrols - Some parts of this figure
are voluntarily fuzzyfied for confidentiality reasons (Johnson Controls source)

PHASES DESCRIPTION

Phase 1: Proposal Responding to customer inquiries regarding new products.
The requirements of the customer are identified and
proposals are submitted for customer approval

Phase 2: Design & Expanding upon the proposal through the establishment of
Development the productdefinition to ensure product feasibility

Phase 3: Design Verification Completing product design resulting in a detailed definition
of both the product and process

Phase 4: Production Encompassing the activities required to ensure that the
Validation product meets all customer requirements when produced
Phase 5: Launch Ensuring production preparation to ensure a smooth

transition from production initiation to volume production

Table 2.1 — Description of the stages of a produptoject (Johnson Controls source)
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The objective of the milestones of the product tigu@ent system is to check the status and
the progress of the progrardoftware skill has to take into account thHeardware and
mechanicalreleases availability and carmaker deliveries irequents of the product project
to define its life cycle and its planning. filgure 2.1, the steps of thkigh level software life
cycleare mapped with the product development stageketailed description of the software
steps is given iifable 2.2

SOFTWARE Description
STEPS i

Proposal Analyze the customer need in order to estimate workload, schedule and resources
needed to perform the software project

Preparation Analyze in detail main customer requirements and deliver a 1st prototype (functionality
level)

Analysis & Design  Analyze all customer requirements, define details of software architecture, deliver a
functional release that contains main customer requirements and define the validation
strategy

ED*Development Complete the analysis of remaining requirements and deliver a partially functional
release, with full functional butwithout diagnostic

DV*Development  Complete the global design, deliver a partially functional release without validation and
manufacturing functionalities but with full functional and diagnostic and complete the test
report for DV release

PV*Development Complete the analysis of remaining requirements including validation and manufacturing
requirements, specify and accept testing tools for production line

Testing Perform a full testing of the software, improve the software reliability from customer tests
feedback and complete the test report for PV Release

Adjustment Take into account last minute customer changes and possible software problems and
deliveran industrial release

Maintenance Take into account eventual problems on serial products and customer changes

* ED: Engineering Development
DV: Design Verification
PV: Product Validation

Table 2.2 — Description of the steps of the highvel software life cycle (Mignen 2006a)

The software life cycle is initialized during tHeroposal step and adjusted during the
Preparation step according to carmaker deliveries planning @etgiirements prioritization
(Cf. Figure 2.). 100% functional softwareneans that all functionalities are implemented
(carmaker and manufacturing requirements are imgheed). If significant changes have to
be implemented for a new release during KMeEntenancestep, a new software project is
launched and the program remainstiage #5

B. The elementary V-model of the software developnpentess

Within each step of the software standard life €y@ngineering activities are performed
according to the standard-model of the software industry (CfFigure 1.6 and in an
incrementalway in order to take the carmaker constraints eamgiirements priorities into
account. The number of incrementations per stejefimed by the project and adjusted based
on carmaker inputs and project constraints. Basethe SPICE® model, Johnson Controls
has developed a process map implementing the ctamahv-model(Cf. Figure 2.2.

16 SPICE: Software Process Improvement and Capability dEtermination
(http://www.sqi.qgu.edu.au/spice/contents.ht@bnsulted on November 2008).
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Project management Management activities

Requirements Specification

(including
requirements management) «

Validation
’ ‘ Engineering activities
[ Global Design | ] Integration I

H Component Development

F‘I”

(Not detailed for conf

Support processes

. . Support activities
identiality reasons)

b

Figure 2.2 — Process map implementing the softwakmodel at Johnson Controls

(Mignen 2006a)

Each process or group of processapport processg®of the process map is synthetically

described inMmable 2.3

SOFTWARE PROCESS

Project Management (PM)
Requirements Specification (RS)
Global Design (GD)

Component Development (CD)
Integration (INT)

Validation (VAL)

Supportprocesses
(Not detailed for confidentiality reasons)

Plan and monitor the software project
Manage risks and documentation

Define, classify and prioritize requirements
Establish traceability after validation

Define general software architecture, components and interfaces
Provide traceability and verify global design

Develop detailed design, produce and verify components
Develop, review and execute unittest procedures

Define software integration strategy
Perform incremental integration and execute integration tests

Develop software validation strategy
Design, implementand perform validation procedure

Control changes to configuration items

Plan, track, verify and validate changes/ defects
Perform documentand project reviews

Perform Software quality and process audits

Table 2.3 — Description of the software processesthin Johnson Controls (Mignen

20063)

As illustrated inFigure 2.1 these software processes are carried out beémle earmaker

delivery of the software product. Despite &V of the software product and after each
delivery to the carmaker, some bugs are detectethéycarmaker. This could lead to the
conclusion that carmakers have more efficiesting approaches than their suppliers. But,

carmakers do not communicate on

their practicesfanidermore, they do not often transmit

test casedo their suppliers. We analyze data on sbé&ware testingractices of carmakers
and interview inner experts in touch with the cakara. As a conclusion, this efficiency in
testingsoftware products can be related to many faciuwhk as:
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e The carmakers benefit froneal electronic platformsvhere the supplier modules are
installed and tested. In fact, the modules areetest a simulated real environment
with surrounding modules in a global system appnoac

« The carmakers use thakperience feedbaak recurrent bugs to test a given module
with the knowledge of bug probabilities and evamd-user behavior's profileso
design the most relevatdst cases

Diagnosis 1

Verification and Validation practices and test casare rarely shared between the
carmakers and their electronic suppliers.

C. Functional organization of a software project

Besides theroject leadey the coordinationteam and theuality team, one can identify two
technical teams in a software project at Johnsantr@ls (Cf.Figure 2.3:

* One in charge of theevelopmentf the software product
* And the other in charge of italidation

Project leader

-
Coordination team Quality team
Validation
Development team
team
/

Figure 2.3 — Typical functional organization chartof one software project at Johnson
Controls - Not detailed for confidentiality reasons(Mignen 2006b)

The coordination team is located in so called “froffice” sites, close to the carmakers.
Development and validation teams are in generatéat in Low Cost CountrieLCC).
However, in some cases, they can be spread aceessak locations. Globally, we have
Software Developer(SD or developers who develop the software producgoftware
Validation Engineel(SVEor validator) who validate the software product before a caenak
delivery, Software Coordinator¢SC who are responsible for the assignment of thditgua
schedule, cost goals angdality engineersvho ensures that project quality commitments are
respected. For confidentiality reasons, we areatlotved to give more details on the roles
within a software project.

Ten years earlier, softwar®&V was covered only insoftware engineeringcourses.
Nowadays, American but also European universiteeghresponded to the importance of the
V&V practices in industry with new independent couraed specialties in verifying and
validating software products (Duernberger 1996)e Toal of these courses is to prepare
students forsoftware testingnanagement, testing considerations, desigtesg casesand
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applying variougestingtools and methodologies. The fact remains thatstréhls give value

to software verification and validationroles. In fact, software engineers often prefer
developmenactivities compared witkerification and validatioractivities. This observation
has been confirmed after interviewing software nganswithin Johnson Controls.

Diagnosis 2

Now, one cannot get a degree in software V&V. SaitesV&YV is incorporated into the
software engineering degree. Moreover, software iaegrs often prefer development
activities compared with verification and validahaactivities.

V. Management of the carmaker requirements related tsoftware

Let us start by defining a common vocabulary onmadkers’ requirements related to the
software domain. In this dissertation, we consitlee definition of specification and
requiremenfproposed byEEE.

Definition 2.2: Specification (IEEE Std. 610-1990)

A specification is a document that specifies, ilyeal a complete, precise and verifiahle
manner, the requirements, design, behavior, or rotttearacteristics of a component or
system, and, often, the procedures for determinumgther these provisions have been
satisfied.

Definition 2.3: Requirement (IEEE Std. 610-1990)

A requirement is a condition or capability needgdabuser to solve a problem or achieve|an
objective that must be met or possessed by a spsteystem component to satisfy a contract,
standard, specification, or other formally imposddcument. There are two groups |of
requirement:

- Functional requirement: A requirement that spiesifa function that a component or system
must perform.

- Non functional requirement: A requirement thateganot relate to functionality, but to
attributes such as reliability, efficiency, usatyilimaintainability and portability.

We also adopt some definition proposed by JohnsonirGls software experts.

Definition 2.4: (Software) Functionality (Johnson @ntrols)

A functionality (called also client or software fitionality) is described by some features that
are described by some requirements. For instancepeedometer is a functionality of| a
cluster

The term “Function” is not used in requirement mgeaent to avoid misunderstandings
with the coding language.

Definition 2.5: Feature (Johnson Controls)

A feature is a “property” or “behavior” of a softwe. It describes the particularity of a
device. Each feature is composed from one or maguirements. For instance, |a
“Speedometer” is a feature of a cluster. It candyeken down into 3 features:

- Speed display
- Speed computation
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- Conversion from Km to miles
The breakdown granularity has to be adjusted acicgydo the project needs.

Definition 2.6: Requirement (Johnson Controls)

A requirement is something to be done to desigrdévece (it is required). For instance, the
value of the speed shall be calculated using théatqa. Each requirement must contain
subject / object and a predicate:

- Subject = system, user
- Verb / Predicate = action

The whole Requirement needs to define a resulterfonmance or measurable indication
needs to be included

Example:
The display backlight has to be switched on in less than 1 second after ignition on,
— - " —
object action  result performance/measurable

There are 5 types of requirements:

- FCT: functional requirement (behavior of the s@ite)

- CON: constraint requirement (reliability, safetyjality, process, rules, guidelines ...)

- INT: interface requirement (specification of imtal and external interfaces)

- DEV: development requirement for internal develept support (interface, parameter ...

- MMI: man-machine interface requirement (Menugtdms ...)

Within the customer requirements, the software funtional requirements account for
more than 90% (Johnson Controls source). We also lidate this proposal by analyzing
the carmaker requirements for 5 different software projects (different products) in

Johnson Controls. Therefore, through our research mject, we focus on the software
functional requirements and how one could verify tle compliance of a software product
with its functional requirements.

A. The carmakers specification of software functiorralquirements:
diversity, typology, evolution

At the beginning of a project, automotive suppliefSicially receive the electronic product

requirements from the carmakers. In fact, theneoistandardization between carmakers and
electronics suppliers on the way requirements rbastxpressed. Based on this deliverable,

suppliers analyze and identify skill requiremensefivare hardware and mechanical.
Afterwards, software requirements are sorted byshidware department according to the
typology proposed iDefinition 2.5 In our research, we focus on the software funetio
requirements on which we identify two main charastes:

1. Carmakers consider different standards to exprdss s$oftware functional
requirements of a given electronic module. Someakers use semi-formal methods,
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such asStatecharor UML"" illustrated respectively in (Harel 1987) and (ONGD5),
others usenatural language Even, one carmaker could use two or more differen
standards according to each department policyO0Y 2we carried out a study on the
evolution of the formalisms used by carmakers tecgp software functional
requirements. IlChapter 4 — Section 4.0.We do a survey on the formalisms used to
specify the functional requirements of a softwaredpct (Dart 1987, Brinkkemper
1990). Three levels of formalism have been idesdifinformal, semi-formaland
formal. The study was done on eight editions of carmakquirements documents
spanning from 1997 till 2006. We also considereckdahdifferent carmakers: two
Europeans and one Japanese but only one typeabfoglie product. The results of the
study are illustrated ifigure 2.4 We underline the increase of formal methods based
on the requirements simulation and the decreasdarimal and semi-formal methods.
Since this conclusion is fully true for the conseletype of product, it is partially true
for other types of product wheratural languageand semi-formalmethods are still
widely used. However and according to automotiveeets, the trend is towafdrmal
methods. Through this study, we also noted thatvemé functional requirements are
often expressed in many documents, emails, and svee phone calls.
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Edition date of the software functional requirement S
Figure 2.4 — Evolution of the formalisms used by e¢aakers to specify the functional
requirements related software

" UML: Unified Modeling Languagehttp://www.uml.org/ consulted on November 2008).
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Diagnosis 3

In automotive industry, semi-formal and formal metks are more and more used to spegi

software functional requirements. However, theredadack of a standardormalism shared

between carmakers and suppliers. In fact, for egmioject, the supplier has to adapt its
processes to thisrmalism used by the carmaker.

2. Software functional requirements continuously eeaiuring development phases and
also duringoperational lifeof the product. In 2007, we analyze the evolutionooe
project of the carmaker requirements related tongo€. The studied project started in
2005 and it is considered (by experts) as a tygicaject in automotive electronics
industry. TheFigure 2.5 illustrates the results of the study. We note ginewth
number of changes asked by the carmaker after abe af software requirements
freeze. We interview inner software experts and agars, often in contact with the
carmakers, in order to understand this phenomelmfact, at the beginning of a
project, the carmaker does not havd(%-clear viewof what each functionality
should perform. It is through the project and a#ech delivery that the expected
behaviors become clearer. Moreover, suppliers &enanore experimented in the
development of automotive electronic products thsome carmakers (system
integrator). This leads to the fact that some clerglean on the suppliers by letting
them identify inconsistencies and ambiguities & phoduct specifications.

70 - 66
—&— Cumulated number of the
60 - software functionalities
53 63 53 53 53 implemented in the delivery
49 - —————
50 -
41
40 A Number of the requirements
change requests done by
30 - 2 the carmaker once the date
20 of freeze is passed
20 7 18 14
9
10 A
0 1 1 0 0
0 +—E—r—u——u . T . T ——
1 2 3 4 5 6 7 8 9
Software product delivery

" Sotwarepocuctceivey |1 12 1o 4 15 o |1 lo o

Date of deliveries jan-05 mar-05 juin-05 sept05 jan-06 juin-06 sept-06 jan-07 ma-07

Carmaker software requirements
freeze

Cumulated number of the software
functionalities implemented in the 9 24 41 49 53 53 53 53 53
delivery

Number of the requirements change

requests done by the carmakeronce 0 1 1 20 13 66 14 0 0
the date of freeze is passed

jul-04 oct-04 jan-05 juin-05 sept-05

Figure 2.5 — Growth of the number of changes askdaly the carmaker all along a project

Diagnosis 4

Deadlines for carmaker requirements freeze are sped in the carmaker-supplier

contract. Nevertheless, the carmaker’s requiremeea®Ilve continuously along the software

development life cycle without complying with thedeadlines. Moreover, suppliers must
react quickly by integrating (without regressior)é changes in the product.
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B. Commitment contract between carmakers and electsuppliers

As noticed before, doop-type design process initiated between the carmaker and the
supplier. About ten intermediary client deliverig® carried out. After each delivery, some
“bugs” are detected by the carmaker and forwardethé supplier who must react quickly
and efficiently. Once an electronic module is lehett on the market (e.g. integrated into a
vehicle), an average of one “bug” per year is detkby the end-users, which may becomes
dramatic for the electronic supplier in financiafrs if the product has to be systematically
changed.

We analyze typical contractual documents betweamaleers and electronic suppliers.
Moreover, we interview Johnson Controls manageharge of establishing these contracts.
In fact, in term of bugs’ occurrence, two typescohtract engage electronics suppliers with
car manufacturers:

« Explicit contract:on launched electronic module, carmakers tolerater@in number
of defective products expressed in term$BM (Pieces Per Million)PPM includes
all software bugs but also electronic, mechaniadl production defects. For instance,
in Table 2.4 when starting productiorS0P the carmaker tolerates RPM on 0 km
cars. It is logical that the required numberR#M on 0 km cars decreases (Y<X) 4
months after the production has started. The nurobd?PM is negotiated at the
beginning of a project. The electronic supplieineation of their capability in term of
PPM number is mainly based on tlexperience feedbadbut also on the product
complexity and novelty.

_m SOP + 4 months | SOP + 1 year

0 km Xppm** Y<Xppm Z<Yppm
3 months

1lyear

3years

*SOP: Start Of Production
**ppm: piece per million

Table 2.4 — Explicit contract, in terms of bugs’ ocurrence, between a carmaker and an
electronic supplier

* Implicit contract: implicit aspects are usually disclosed later ia tlevelopment life
cycle and are generally based on semantic problearsnstance, during the software
development process and even if it was not statethe contract, the carmaker
expected that each intermediate delivery must ée &f bugs. Many other examples
can be cited. In fact, the requirements speciticetidelivered by the carmakers are
usually and purposely unclear and incomplete ireotd be able to add, modify or
remove one or more requirements.

C. Sensitive criteria for carmakers
Carmakers are sensitive to different criteria deljpen on whether the project is in its

proposal designanddevelopmenor operational lifephase. In order to identify these criteria
for each phase, we interviewpBoject leaderdor 3 projects in each of these phases
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1. Proposal phase

In proposal phase, carmakers choose their supptiasscally oneconomic criteria An
additional cost regarding other suppliers can éxstmust be justified on quality and/or delay
levels. Moreover, they strongly used thexperience feedbaslon other or previous projects
with each supplier.

Presently, all the automotive electronic suppligase almost the same knowledge and know
how in the product design, development and maimemnaTherefore, competing with other
suppliers ortechnical criteriaremains very hard.

Finally, theprocess improvement aspdetcomes a major quality criterion for the carmaker
For instance, the carmakers require now that thgipliers have reached a specific maturity
level within the SPICE or CMMI*® models. These two models are process improvement
approaches that provide organizations with thergsdelements of effective processes.

2. Product design and development phase

During the product design and development phagernrediate deliveries of the product
(including all or part of the product functionadi$) are planned. Carmakers are sensitive to:

* Time to deliverythe supplier must respect the planning estaldisttiehe beginning of
the project.

* Product quality the supplier must test the product and validiseonformance with
the carmaker requirements before the delivéBero bug” is required by the
carmaker.

« Additional cost sometimes, the supplier tries to invoice the riication or evolution
requests asked by the carmaker.

3. Operational life phase

We identify three criteria to which carmakers aemsitive during theoperational lifeof a
product. We classify these criteria by priority erd

» Regression riskvhile modifying or correcting the product: thednrcial impact on the
supplier can be severe especially when the camptdohes are stopped because of its
product. In order to better illustrate this issle,us consider the following example
excerpted from a real situation. Once, a carmatguired a modification on a product
in operational lifephase. The modification as it was expressed bgdah@aker was to
“remove” a piece of software code from the prodactrder to avoid the hacking of
the product and therefore the stealing of the The supplier has implemented this
modification by erasing the piece of code, fullidgated and delivered the new product
version. The carmaker has also made a full vabdabf the new version of the
product. Unfortunately, when starting the serial geoduction and when integrating
the product in the cars, a bug related to this frezdion has occurred and thus
blocked all the car production lines. A deep arialg$ the bug has revealed that the
removed piece of code must not be removed fronptbhduct but hidden. One more
example on the implicit requirements of the carmsisnce the carmaker declared
that when he asked for “removing the code”, heregrdly asked for “hide the code”.

18 CMMI: Capability Maturity Model® Integrationhtp://www.sei.cmu.edu/cmmi/Consulted on November
2008).
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« Economic criteriaregarding the modification and correction costs.
* Time to deliverthe new product version with the modifications /andcorrections

requested.
D. Snapshot of the Requirements Specification proae3shnson Controls
1. Introduction

The purpose of the curreRequirements Specificatigorocess is to ensure that all software
requirements reflect allocation of carmaker anddgstem requirement to software are
identified, documented, maintained, committed aaliated to serve as a basis for software
design, implementation and validation. As a restitheRequirement Specificatigrocess:

» the software requirements to be allocated to thiwvace components of the system
and their interfaces are defined,

« software requirements are classified and analyaeddrrectness and testability,

* the impact of software requirements on the opegagmvironment is evaluated,

» prioritization for implementing the software reqnments is defined,

« the software requirements are approved and updatededed,

» consistency and bilateral traceability are esthblisbetween system requirements and
software requirements; and consistency and bilateeeeability are established
between system architectural design and softwapg@nements,

* and the software requirements are baselined andncomated to all concerned
people.

2. Interfaces with other software processes

The currentRequirements Specificatiqgprocess is considered as the main important psoces
within the software processes. In fact and as showhRigure 2.6 this process strongly
interacts with all other processes. Especiallgeiivers the software requirements to allocate
them to components Global Design, to develop these componentCoMmponent
Developmentand to design associatexst casegValidation).

| Project Management / Documentation Management |
C
u l .
st —hl Requirement Specification Validation
(o] A
m
e/f Integration
S ‘
y Component
st Developmen
e v
m
/
S
af
et
y Support processes

(Not detailed for confidentiality reasons)

R
e
q

Figure 2.6 — Interaction of the Requirements Spedifation process with the other
software processes (Mignen 2008)
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3. Process flow

Within each step of the software standard life ey€f. Figure 2.1, engineering activities are
performed according to the process map illustratdtigure 2.2and in anncrementalway in
order to take the carmaker constraints and reqeinésn priorities into account. After
analyzing internal documents related to the dedinitof the Requirements Specification
process, we identify 6 main activities for the ngeraent of software requirements. In fact,
for each design iteration, tiiRequirements Specificatiggrocess flow follows the series of
activities defined imMable 2.5
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Process Comments

Iteration start

Carmaker documents of requirements are

Elicit and maintain identified
needs
v The activity continues until all requirements in
Define the scope of iteration are defined). A list is used
requirements to track unclear needs until clarification with the
carmaker
A\ 4

All Software requirements are classified and
Classify &

prioritize req. prioritized
A4
Define validation Special conditions for validating requirements gre
criteria defined

A4

S Traceability is established with carmaker and/or
traceability system requirements
v All the requirements are reviewed by internal and
Obtain validation external concerned people.
& commitment Commitment on software requirements is dong
l with carmaker and system

Iteration stop

Table 2.5 — Process flow of the Requirements Spacdtion process

a. Elicit and maintain needs

This activity aims to establish and maintain careraknd system needs and expectation that
will serve as a basis for specifying requiremeititscated to software. The features required
by the carmaker are identified and peer projectstiese features are identified for use of
lessons learned.

b. Define requirements

For each feature, software requirements are spdcifr updated using th&oftware
Requirement SpecificatiofSRS) model (see next section for the principleshis model).
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Requirement Management toaisch asReqtify® or Doors?® can be used for managing and
storing requirements. All items that need to beifodal are filled in aCLarification Request
list (CLR) and discussed with concerned people.

c. Classify and prioritize requirements

For each software requirement identified in 8RS one has to define:

« the type of the requiremerECT, CON, INT, DEV, MMI),

« the statusriew acceptegconfirmed dropped,

* the priority fiigh, normal low),

* the associated feature,

» and the required verification and validation tecua €ode analysiscode reviewunit
test integration testvalidation tesy.

Other criteria can be added such as safety, revisim so on. Requirement Management
tool can be used for this classification.

d. Define validation criteria

In order to support the validation team and faaiéitest casedefinition, validation criteria
need to be specified. These criteria consist oint&f when the test can be considered as
passed correctlytgst caseresults acceptance). Yalidation criterion can be applicable on
several requirements or group of requireme¥tdidation criteriacan be based on a lesson
learned. By default, standavalidation criteriaare the successfully passingtest casegin

this case, it is not necessary to define specdldation criteria). Thevalidation criteriashall
define special conditions for validating some regpunents if their validation deviates from the
standard use of tests cases. For instance:

» Specific criteria to validate (respect of standapgrformance criteria, different
situations to validate ...).

» Condition for validating the requirement (normabaspecific conditions for the test,
stress situations, tools, or negative tests).

» Criteria defining when validation tests can be ob@®d as passed correctly
(including thresholds of performance deviation).

e. Establish traceability

Purpose of this activity is to establish and mamtgoward bilateral traceability between user
requirements (carmaker requirements, system regames) allocated to software and
software requirements in order to verify that @trnaker and system requirements that have
been allocated to software are taken into accaunihe SRS The result of this activity is a
matrix calledtraceability matrix

f. Obtain requirements validation and commitments

Each time a step of thBRSelaboration is achieved in order to start a parsaftware
development, the version 8RSs reviewed to make sure the understanding andrstnent

19 hitp://www.geensys.com/?0utils/Reqtifig@onsulted on November 2008).
20 hitp://www.telelogic.com/Products/doors/doors/indéx (Consulted on November 2008).
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by the implementation and validation teams. Oneevitrsion ofSRSis released, it is base
lined and serves as a basis for implementatiorvahdation activities.

E. The Software Requirement Specification model culyemsed in
Johnson Controls

Automotive electronics suppliers like magpftware engineeringprganizations adopt the
Software Requirement Specificati@R$ model to express the various expectations of a
software product. SRSmodel is a comprehensive description of the indéendurpose and
environment for software under development. BiRSfully describes what the software will
do and how it will be expected to perform. A goS&Sdefines how an application will
interact with system hardware, other programs amddm users in a wide variety of real-
world situations. Parameters such as operating dspeesponse time, availability,
maintainability, security and speed of recoveryrfradverse events are evaluated. Methods of
defining anSRSare described bNeEE (IEEE Std. 830-1998).

Johnson Controls has adapted 8Smodel to its organization, needs and types of yrtsd
In Figure 2.7 the data model of th8RScurrently used is described. TisRSdocument
serves as a basis for software design and validatanm.

The engineer responsible of managing the carmakguinements shall update tI&RS
document according to th€Larification Reques{CLR) answers and input specification
updates as well as change requests. Once the SRR&dot has been released, @ieR shall
be used to ask question or request or give clatibo on SRS(the CLR is used with the
carmaker and internally in the team). TBRSshall be updated with the content of DeR
The change of the specification after #peecification freezenilestone shall be an exception.
The specification freezeorresponds to the date where in theory no spatidin change is
allowed.

Quality of the design of test cases for automatoféwvare: design platform and testing process
76



Industrial audit R. AWEDIKIAN

Produet presentation <Variant 1> Level description

<Variant 2> Level description

Environrnent <Variant 1> Interfaces

<Variant 2> Interfaces
Operating modes

Product T
description flelmeces
Processor
Hardware support Main components
. Safety dependencies
Session management '
h Assumptions
Data reading
Data writing .
Feature overview
1/O control Inout data
Miscellaneous Diagnostic requirements P
. Qutput data
Negative answer codes .
) i i . Expected behavior
Diagnostic services summary All functional )
: requirements A Response time
Services map 1st feature: c it
Software FeatureName1 APACity
o = - Display
Process description Requirement | Functional N ;
s 5 ; xception
Surface-Mounting Technology Line Specification model requirements ,hreaﬂs
Assembling line Manufacturing requirements . _
All functional
Traceability requirements requirements B
General rules
Layouts
Pictograms All man machine interface
requirements Busses and
Messages q networks Protocols
Miscellaneous
Communication protocol
All interface Component X Exchanged data
requirements Expected services
Non functional Dispensed services

requirements Component Y

All non functional safety requirements
Other type of non functional requirements

Figure 2.7 — A UML-like data model of the SRS curratly used in Johnson Controls
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The Software Requirement Specification (SRS) docuninis often a large document (abou
hundreds of pages), difficult to manage, incompleted not regularly updated.

Diagnosis 5

—

Sometimes, the SRS document is the official andtcactual document between carmakey
and supplier. It is also the main document usedthg development and V&YV teams in thejr
activities. It has a standard structure but thereeano standards to specify carmakers’

Diagnosis 6

requirements (more especially functional requirentsh

F.

Quiality criteria of a requirement

In order to support reviews and improve the quaditysoftware requirements the following
criteria are defined by Johnson Controls softwatpeds. They must be checked during
reviews and respected during the set up of $IRSdocument. The review of th8RS
document is supported by @Ghecklist It consists of verifying explicitly the criteribsted
hereafter.

1.

2.

General criteria

Use a simple language style to define the requintsne
Short sentences, not interlocked, need.
Use present tense.
Use simple, clear, vocabularies, introduced terinsrever possible
No multiple definitions.
Reference what is defined correctly by existingc#fpmtions (do not copy).
Apply SRStemplate andRequirement Managemetatol template (Styles, fonts, types
o).

0 not specify design or implementation. Descrilt@itto do not how to do it.
In case of complicated conditions use state-, sempieor flow chart to gain clarity and
remove ambiguity.
Describe the interface of the device with the emwinent not the interface of
components within the device. In case of compldaienditions use state-, sequence-
or flow chart to gain clarity.

Detailed Quality Criteria

Understandable

The text is easy to understand and the requirera@tear for the reader.
Needless or confusing words are not used.

Complete

The Feature (group of requirements) will contaih tak information needed to
implement and test the requirement. No informaneeded to implement the feature
will be missing.
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Consistent

 There will be no contradictions within a single weggment or between two
requirements.
» Usage of the same terms as used in other defigition

Necessary

* The definition is needed for the realization of feature. Removing the requirement
will change the behavior related to the feature/@ndvill render the feature
incomplete.

* Unambiguous.

* The definition is clear and has only one singlerptetation.

Atomic

* A further breakdown of the definition is not podsib
Feasible

* Itis possible to implement, fulfill and test thefahition (time, budgetknow-howe).
Maintainable

 There will be no redundancy. Redundancy is alloveedy when removing the
redundant phrase, sentence or requirement willecaoiguity.

Testable

» ltis possible to test the definition / to devebfest case.
V. Software verification and validation activities inautomotive industry

A. Overview on software verification and validatiorchiaiques at Johnson
Controls

As we shown inrSection 3 within each step of the software standard lifeleyengineering
activities are performed in an iterative way acaagdo the standard-modelof the software
industry. TheComponent Developmemtrocess is the process where dwurce codels
developed. Following theode implementatioand before any carmaker delivery, a series of
verification and validation techniques have to ppli@d on thesource coden order to check

its correctness and its compliance with the carmakeectations (software requirement
specification). At Johnson Controls, we identifys8ftware inspection techniqué€ode
review static analysisdynamic analysjsand 3software test techniquésnit, integrationand
validation tes). In this dissertation, we adopt the definitiomegmsed byEEE for each of
these techniques.

Definition 2.7: Software code review (IEEE Std. 61@90)

The software code review is a visual examinatioa sbftware work product to detect defects,
e.g. violations of development standards and narfezmance to higher level documentatian.
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Definition 2.8: Static code analysis (IEEE Std. 61®90)

The static code analysis is an analysis of sounmeowvithout execution of that software
static code analyzer is tool that carries out statdde analysis. The tool checks source ¢
for certain properties such as conformance to cgditandards, quality metrics or data flg
anomalies.

Definition 2.9: Dynamic code analysis (IEEE Std. 611990)

The dynamic code analysis is the process of evatpdiehavior, e.g. memory performan
CPU usage, of a system or component during exetufibe dynamic analysis tool provid
run-time information on the state of the softwande These tools are most commonly use
identify unassigned pointers, check pointer aritienand to monitor the allocation, use a
de-allocation of memory and to flag memory leaks.

Ce,
es
dto
nd

Definition 2.10: Software Unit, Integration and Vadation test (IEEE Std. 610 1990)
Unit test is the test of individual software comgaits.

Integration test is the test performed to exposteds in the interfaces and interaction

between integrated components.

Validation test is the process of testing an indééed software product to verify that it meets

specified requirements.
The interactions between these testing technigresslastrated in Figure 2.8.

Unittested
components

CMP1

Validated
software
product

Integrated
components

CMP 2

Validation
test

Integration
test

—

CMPn

Figure 2.8 — Interactions between unit, integratiorand validation tests

The location of these techniques within the JohrSontrols software process map is shown

in Figure 2.9
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Project management D Management activities

Requirements Specification
(including

requirements management)

Global Design |

Compnmnt Development

Support processes \‘ upport activities
(Not gletailed for confidentiality reasons) \
=

Code Static Dynamic Integration
review analysis analysis test

Figure 2.9 — Software verification and validation €chniques within the Johnson Controls
process map

Each of these techniques must catch different etasd bugs at different points in the
development cycle.

Validation

Integration

Engineering activities

Validation
test

B. Software V&V techniques in Component Developmeotcpss

The purpose of th€omponent Developmeptocess, as it is defined in Johnson Controls, is
to produce executable software components thatepigopeflect the global design and
software requirements. Moreover, a strategy has deéned in order to verify and validate
each software component, after it is produced. $thistegy is applicable for all the software
components in the projects. For each componerttanstope of th&-mode] a Component
Developmenprocess is used. After analyzing internal docusieelated to the definition of
the Component Developmeptocess, we identify 3 main activities when depelg a new
software component (Ci.able 2.6)
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Process Comments

Iteration start

\ Develop detailed ! Bugs detected on component can lead to
| correct detailed design and/or code

design

Produce
component

—= The "Verify component" activity consists to:
component - Review the code
- Analyze statically the code
NO - Analyze dynamically the code

¥

ES

Unit test “Unit test” of the software component

component

NO If the results of the unit test done on the
component are OK, the component is
promoted to integration

¢

YES
v

Iteration stop

All these activities are performed by Software D@wers (SD)

Table 2.6 — Process flow of the Component Developnigrocess
First activity:Produce component

Produce componerdctivity aims to produce componenso(rce codecode generator data
...) and/or to fix bug(s) detected in next steps e¥elopment \(erification and unit test
activities). Thiscoding activity is based on global and detailed desigd emplements the
component desigmade previouslyCodinghas to be done in accordance with defioeding
standards rules and guidelines and with embedded system constraintserfory size
hardware dependency.).

Second activityVerify component

In this activity, threesoftware inspection techniquéstaticvV&V techniques) are performed:

» Code reviewbased on thReview & Verificatiorprocess.
« Static analysibased on a commercial toQAC?).
« Dynamic analysiased on a commercial todlqlySpac#).

The verify componenactivity follows a process flow describedTiable 2.7.

2 http://www.programmingresearch.com/QAC_MAIN.ht(@lonsulted on November 2008).
22 http://www.mathworks.com/products/polyspace/indarli{Consulted on November 2008).
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Process Comments
B, ¢
E Produce i
' component i
_________ e
Verify co¢1ponent
Comp, NO Do we need to review the software
eview 2 component?
] YES
Component Code reviewis performed in filling
'eVieW the nonconformities in alssue Log
YES
Bugs ?
— .
NO Do we need to statically analyze thg
$ software component?
y VYES . . .
p— Static analysisis performed with a
analysis static analysis toolQAC.
YES
Bugs ?
NO
NO Do we need to dynamically analyze
agalysis 2 the software component?
Dynamic Dynamic analysisis performed with
e adynamic analysis tooPolySpace
T It is possible to perform dynamic
N analysis only for the whole software
4—

Table 2.7 — Process flow of the verification of software component

Code reviewsare mainly intended for checking respect of coditejmdard and rules / quality
of comments in a software componegtatic analysiss intended to check the compliance of
the source codewith the international automotive software codinges MISRA-C).
Dynamic analysiss intended for detecting problems, witldynamicpoint of view, early in
the life cycle. This type of problems could be detd by testing activities. Static and
dynamic analysis can be done on the whole soft¢eareé not only for each component).

Third activity: Unit test component

This activity consists otesting unitarily each software component. In other worthgs
software test technique intends to verify the admess of allfunctions/ conditions/
decisiond component inputandoutputs/ boundariesandlimits in a componensource code

2 MISRA-C is a software development standard for@herogramming language developed by MISRA (Motor
Industry Software Reliability Associatiohttp://www.misra.org.uk/Consulted on November 2008).
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To summarize, the softwareComponent Developmergrocess within Johnson Controls
performs four V&V techniques on each software component: threaspection techniques
(code review static and dynamic analysiy and one test technique ynit tes). In the
following, we develop each of these techniques &ssipracticed at Johnson Controls.

1.

Technique 1: Review of a software code

According to the Johnson Controls process, thequaf the software component review is

to:

Check whether theource cod®f the produced component respects the desigotor n
Check whether all remaining problems after automatatic/dynamic analysis are
properly justified in thesource code
Verify the quality of the comments written in teeurce code
Verify the traceability of the component to softeaequirements.
Check whether theource codeespects the coding guidelines, especially thakesr
that cannot be tested automatically by a tool. & engineers have to check the
compliance of the inspected code to the rules aadommendations. The
modifications of these rules can be made by a cdm@eni whose members are
appointed by th&oftware Engineering Process GrétifSEPG) of the company. The
committee includes representatives of all JohnsamtiGls sites on which this
document is deployed. In fact, there is a documdrith defines coding rules and
recommendations for using th& languagé® in the development of embedded
software for the automotive industry. The documienbrganized as a collection of
rules and recommendations illustratedrigure 2.10
0o A rule is a prescription that has mandatory charactemust be always
followed.
0 A recommendations a prescription that has advisory charactemuist be
followed as much as possible.

Type conversion —| Portability

| General rules |

Code structure
Comments

- Safety -

| |

Source code and files | Coce layoul
File inclusion
Coding rules and Naming rules

recommendations
Functions
Flow control
Type
) Constants
- Coding — Structures and Unions
Variables

Arrays and Pointers

Figure 2.10 — Classification of programming rules ad recommendations

% The SEPG is a group of software experts.
% Computer language.
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An excerpt of these rules and recommendationdustiiated inAppendix A Absolute and
unconditional adherence to these rules and recomatiens may not be possible at all times.
However, it must be noted that some general rgles an outstanding importance — under no
circumstances shall this rule be broken.

In order to perform theode reviewof a software component, a group of Johnson Clsntro
software engineers must read #wirce codeand simultaneously fill afrssue Logwith the
identified issues. Arnssue Logcapitalizes the reviewers’ names, the date oferewig, the
name of the reviewed component, the review load,réviewed number dfines Of Code
(LOC) and a list of identified issues. For eacluésgeviewers give alD, the number of the
line where the issue was found, a description efitisue and the status of the decision and
correction.

In 2006, we carried out a study within Johnson @uston four projects related to two
different electronic products. The aim of this stwehs to audit the practical implementation
of thecode reviewechnique. The main result of this study is thanber of code reviewers is
not aware of the coding rules and recommendatigloseover, we note thatode reviews

not systematically performed on each new softwaraponent. These conclusions were also
validated by inner software experts and managers$adt, in automotive industrgoftware
testing is considered to be the mawM&V activity which has to detect all the bugs.
Unfortunately and as shown Figure 1.11 detecting bugs later in the process costs more
than detecting them as soon as they are introduced.

Diagnosis 7

Sometimes, the review of software code is badlyedoneven ignored. In fact, number of
code reviewers is not aware of the coding rules aadommendations to be checked.
Moreover, the code review is not systematicallyfpgned on each new software
component. In consequence, the code review doeofteh detect all the bugs that must be
detected through this activity.

2. Technique 2: Automatic static analysis of a softwar code

According to the Johnson Controls process, thesguiahe static analysis are to:

» Improve the quality of theource code.

* Improve the robustness of the software.

» Make thesource codas much as possible portable.
* Be compliant withMISRA-C

There are two phases of this analysis, executeal stey:

* During the verification activity of a single compat. This must be done by the
developers who create/modify the components.

» Overall project static analysis. Done after thegnation of all the components. This
task could be delegated to an experienced developer

The static analysids performed automatically using a computer tamhsasQAC, the most
used in automotive industry. It is recommendedpplhathisV&V technique in the beginning
of the project in order to be able to detect ardHe issues as early as possible. The criterion
to stop thestatic analysi®f asource codés that allQAC errors andwarningsare either fixed

or justified. A screenshot of tHgACtool is illustrated iMAppendix A

3. Technique 3: Automatic dynamic analysis of a softwa& code
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A dynamic analysi©f the software code is performed in order to fardl fix as early as
possible the software bugs that could possibly booe executing the software product and
cannot be detected mode reviewsandstatic analysis The dynamic analysiss performed
automatically thanks to a commercial td@blySpace The intention is to get a clear view
about the dynamic behavior of the software earlyh@ process. The earlier detection of
problems reduces the risk of having serious budatatproject phases. However, the project
has to plan enough time (depending on the projetzs and warnings reported) for warning
analysis. The criterion to stop the dynamic analydi asource codes that allPolyspace
errors andwarningsare fixed or justified. A screenshot of tRelyspacetool is illustrated in
Appendix A

4. Technique 4: Unit test of a software component

The unit testof a software component is described by the psoflesv of Table 2.8 After
analyzing many Johnson Controls documents relatéketunit testactivity and interviewing
inner engineers practicingnit tesf we identify three main activities: design ttest cases
review thetest casesnd finally execute thtest casesand analyze the results. We illustrate
below the definition of &est cases it is adopted in Johnson Controls.

Definition 2.11: Test Case, Test Step and Operat{dohnson Controls)

Let us consider a functionality with two input sag1 11(with domain D(11)={0,1}) and |
(D(12)={1,2,3}) and three output signals: O1(D(0X37,14}), O2 (D(02)={1,2,3}) and O
(D(03)={0,1}). We first call ‘Operatior?, the fact that an input signal is set to a valdar
example, 12=3 is an operation. ATest Step is composed from an operation, an inter-
operation time and expected results on the outjgiass. A “Test Caseéis a succession of
“test steps”.

[V

An excerpt from a test case designed is givenaririgure 2.11:

- In test step 96, test engineers wait for 500 nthowt carrying out any actions on the
product and check that the outputs of the prodageh’t changed.

- In test step 97, test engineers activate a switgbut_1=1), wait for 200 ms ancheck that
the concerned outputare activated according to the expected behavior.

TestStepNo | TestActions | Expected Results
Test# 96 Output_1=0
96 ; Output_2=0
; Wait 500 ms
Operation Output_3=0
Test# 97
Test Step =——p Output_1=7
P Output_2=3
-

Inter-operation
time

Expected results
on output signals

Figure 2.11 — An excerpt from a test case (two testeps) as designed by Johnson
Controls tester engineers
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Process Comments
Unit test camponent
Test casefor unit testare manually
Design H i
roat ol QeS|gned. The quallty.of these test cases
is based on the experience of the
developer.
Review Designedest casesire reviewed
test cases
YES S Designedest casesire executed on the
Bugs software component under test
NO
If the results of theinit testdone on the
Execute test cases component are OK, the component ig
& analyze results . .
promoted to integration
YES
< Bugs ?

NO
Iteration stop

Table 2.8 — Process flow of the unit test of a sefare component

After developing a software componestftware developerdesign manually test casés
the unit testof this component. The main purpose of thet testis to cover at 100% the
source codelt is the main criterion to stofesting unitarily a software component. The
principles ofcode coverageare developed irsection 6.AIn fact, developers analyze the
structure of the software component and detegh caseshat must cover all the source code
of the component under test. Ttest case design procepeesently used by the engineers at
Johnson Controls is deeply describedSection 6 It is important to note that a software
component is about 20Q00C (without blanksandcomments a reasonable number b©C

to be analyzed (according to experts). The teclnigfudesigningest casewhile having
access to the code of the software under testllisdcstructural or white-boxor program-
based testA survey onsoftware testingechniques (Bernot 1991, Beizer 1995) is provited
Chapter 4 — Section 3.B

Presently, in Johnson Controls, thweit testis not responsible to verify the compliance of a
software component with the carmaker requiremeéntfact, one software component can be
tested unitarily (100% otode coveragewithout fulfilling the behavior required by the
carmaker.
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Diagnosis 8

According to the “To Be” process, the unit test afsoftware component must ensure a
100% source code coverage. However, this V&V tedueiis not responsible to verify the
compliance of the component’s behavior with the oaaker requirements. One software
component can be tested unitarily (100% of codeerage) without fulfilling the behavior
required by the customer.

The language used to desitgst casedor the unit testof a software component is tl@
language A standardunit teststructure providing predefingd functionsin order to help the
test engineer writingest casess developed i\ppendix B

Thedesigned test cases are revieviedrder to check:

« the relevance of designéeist cases regard with the tests objectives,

« the reachedode coverage

e and the usefulness of the dumiegt casesledicated only to reach the expectede
coverage

Finally, allthe designed test cases are execwotethe software component under test. All the
dependencies and connections between the compoaentsimulated to isolate the tested
component from the project. Test results are aedlyp decide ilComponent Development
activities have to be restarted, in case of faitexis. Thecode coveragés recorded and used
as criteria to stop the design tefst casesThe unit test execution platforns developed in
Appendix C

C. Software verification and validation techniquedntegration process

Once a set of components are produced and vetifiedigh theComponent Development
process, they are integrated together anohtggration test{\V&V technique) is performed on
the overall software product. In Johnson Contribls,purpose of thimtegrationprocess is to
assemble the software product from the software poorents, ensure that the software
product, as integrated, functions properly, andivdelthe tested software product to
Validation process.

1. Technique 5: Integration test of a set of softwareomponents

The purposes of thmtegration testare to ensure thajlobal designrequirements work as
expected and the quality of the software allowsetkecution of th&/alidation process. To do
this, three steps have been defined by Johnsorrdl®sbftware experts:

First stepinterface review

The engineer responsible of integrating the sofwamponents reviews each component in
order to verify the conformity of interfaces to gedined architecture. According to the

relevance of the review, she/he can decide to saldfional verification by adding test steps

in thefunctionaland/orchange test

Second stepChange test

Change test caseme defined and executed only once, when changeegrated. The first
objective ofchange tests to verify the good implementation of the reguients involved in
the change. The second objectivechinge tests to verify the good implementation of the
architecture expectations involved in the changdar@e can be either evolution
implementation or bug fixing. For bug fixinghange test casdgve to check that bug is not
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reproduced when sequence used for bug detectimiagecuted. For evolutioghange test
caseshave to check main impacts of the change on sadtwejuirements.

Third step:Functional test

Functional test casesnprove confidence on the verification. The puspad this test is to
detectregressionon a new integration. It has to check a limitestl if software requirements.
In this perspective, a set @st caseper software functionality has to be defined.

In conclusion, the criteria to stop thetegration testof a software product are rather
subjective. Indeed, thengineemust verify (according to her/his point of viewat a change
does not impact the whole software product and that main requirements of each
functionality are satisfied.

D. Software verification and validation techniqued/adidation process

Once a set of components are integrated togetheglidation test(V&V technique) is
performed on the overall software product.

1. Technique 6: Validation test of a set of softwareamponents

In Johnson Controls, the purpose of thaidation testis to confirm that the integrated
software meets the carmaker requirements relatedftvare. Thevalidation testis activated
at each new iteration when the software productbessn successfully integrated. Now, the
validation tests completed when:

* The plannedvalidation procedurds executed. Avalidation procedurds composed
from a set ofest cases

» All of the requirements (defined in ti&R$ in the scope of the delivery are covered.

* And if any testable requirement could not be codetbe reason about it must be
justified. Therequirement coverages it is currently practiced in Johnson Contrigls,
developed irSection 6.B

For each iteration, thealidation testof a software product is described by the profless of
Table 2.9 After analyzing many Johnson Controls documeelsted to thevalidation test
activity and interviewing inner engineers practicivalidation test we identify two main
stagesPreparation of ValidatiorandExecution of Validation
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Process Comments
P . The strategy foSoftware Validatiof
R Develop software . .
E validation plan is defined
P y
é Design validation Test caseare identified
procedure
A
T Il _
| Implement validation Test cases are designed
(0] procedure
N g
—_NO Is there any new softwal
ew Integration 7 . .
0 integration?
YES
Pe”"\rg“i;actrig?e”ta' Execute the selectetbst caseson
e the new software integration
X
. <K
C YES
U . NO Is it the final software product?
T
|
0 YES
N Perform full Execute the whol¢est casen thg
validation final software product.
NO
YES _|_

v
Iteration stop

re

Table 2.9 — Process flow of the validation test af software product

a. Preparation of validation

Develop the software validation plan

The Software Validation PlarfSVB describes th&alidation strategyfor a project. It serves
as a guideline for executing validation tasks lgjgut and by scope of delivery. The strategy
of validation may be adjusted for each iteratiocc(ading to the delivery content). TI&/P
supports the following objectives:

1. Define the validation test execution platforthe necessary equipment and the common

and reused validation components. A detailed detson of thevalidation test execution

platformis performed imAppendix C.

2. Recommend and describe the strategy for validagshapplication The SVPindicates,
for each software functionality in the scope of tietivery, thetypes of validation test®
be performed and if the execution of the correspantests is manual or automatic. In
Table 2.1Qa description of the test types is provided.
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Type of test

Functional Ensure the properfunctionality of the whole software

Data integrity Ensure the proper functionality of the whole software during Data
treatment

Failover and recovery Ensure the properfunctionality of the whole software during
restoration process

Configuration Ensure the proper functionality of the whole software when different
system configurations are set

User interface Ensure the user’s interaction with the software

Performance Ensure time-sensitive requirements: response times, transaction
rates, etc.

Load Ensure time-sensitive requirements: response times, transaction
rates, etc.

Stress Ensure time-sensitive requirements: response times, transaction
rates, etc.

Long term Ensure time-sensitive requirements over a long period of time

Security and data Ensure the proper accessto specific functionalities

access control

Installation Ensure the proper software installation process

Table 2.10 — Description of the type of tests uséal validation test at Johnson Controls
(Apostolov 2007)

3. Establish the regression strategiwo kinds ofregression strategwre definedchange
oriented and priority oriented The purpose of thehange orienté strategy is to define
how to test a software product after new functiiesl or changes are implemented /
applied, in order to ensure that the implementatbbmot changed requirements is not
impacted by the changes. The aim of ghirity oriented strategy is to ensure that the
quality of implementation of requirements havinghast priority has not regressed while
adding new capabilities.

Design the validation procedure

The purpose of this activity is to identify theustture of the whol&alidation procedureand

to establish a link betwedrst casesand requirements. In other words, this activityaito
identify the number of requiredst casesand describe the scope of each one. The software
requirements (from th8R$ defined as scope of the following delivery and $vVPare used

as inputs for the design of thalidation procedure In Johnson Controls, a list of good
practices when designing the validation procedaebeen established:

e It is recommended that, for each software requirgna least onéest casehas to be
defined and oneest casecould cover more than one requirement.

* Onetest casean cover only one type of test.

« A test casenust cover all the aspects and combinations efjairement.

Implement the validation procedure

The aim of this activity is to design, in a stepdtgp manner, the test cases ofvakdation
procedure Based on eactest casescopeyvalidatorsanalyze the carmaker requirements and
design thetest casethat must verify the compliance of the softwar@duct with the
corresponding requirement. Thest case design procepgesently used by the engineers at
Johnson Controls is deeply describedSection 6 It is important to note thatalidators do
not have access to tlseurce codef the software product under test. It is a cosr®d as a
black-boxwith a set of inputs and outputs. The techniqueledigningtest caseswithout
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having access to the source code of the softwateruast is calle€Linctional or black-boxor
specification-based tesf survey onsoftware testingechniques (Bernot 1991, Beizer 1995)
is provided inChapter 4 — Section 3.B

The language used to desigist case$or thevalidation testof a software product depends on
thevalidationtest execution platformin case of an automatic execution of thst casesone
uses ascript languagelt is a Johnson Controls property language vénlar to the well-
known Visual Basi¢® language. A detailed description of this languageprovided in
Appendix BIn case of a manual execution of test casestest casesre written innatural
language

b. Execution of validation

The validation is executed in the following sequenc

1. Configuration and initialization of thealidation test execution platform
2. Execution of thaest casesn sequence defined by tihhegression strateggefined in
the SVP(incrementalor full validation).

During the execution of theest cases“OK” and “NOK” results, which are prepared by
observing and comparing the expected and the oddeesults, are set for eatdst stepThe
execution of thevalidation procedurecould performed either automatically with the hefm
tool or manually (CfAppendix Con thevalidation test execution platfojmin the case of a
“NOK” result, the comment describing the observiéddagion must be added and a bug has to
be issued in theroblems’ tracking tool A detailed description of the Johnson Controls
problems’ tracking toois performed irSection 7

The test case design process presently used in autdive industry

Our audit (Cf.Section % on the softwareV&V activities within Johnson Controls has
confirmed the proposal of théational Institute of Standards and Technold@y. Definition
1.5): “Software testings a widesprea®&V technique in automotive industry”. In fact, we
notice that each of th®evelopmentunit tesj and Validation (validation test processes
perform software testingin order to verify and validate the correctnesstiué software
delivered at the end of the process.

Presently, most of automotive suppliers have a mlaiest design proces#\s the software
products become more and more complex (@fapter J, it is illusory to be able to check
that the software product responds correctly tpadisibleoperations In Chapter 8 — Section
2, we further demonstrate thsbftware testings aNP-Completgroblem and therefore it is
impossible to be able to cover all theration spaceln fact, for each software component or
product under test, we can associatpotential operation spacéCf. Figure 2.13. Each
engineer has a different perception of the possabié criticaloperations(based on her/his
experience). Therefore, based on a commest objective two engineers could choose
differenttest casesccording to their perception. In Johnson Contralsoftware component
or product is always tested against predefinedotibgs.

% Computer languagehitp://msdn.microsoft.com/en-us/library/sh9ywfdk@8@).aspx Consulted on November
2008).
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Engineers vision of
the operation space

/////f'////// P N Software |, .
x, “ieeewm {2 —{icomponent |—>&
~ i T)iorproduct ["°

Operation :

Discrete Domains

Potential operation space
Figure 2.12 — Potential operation space of a softwa

A. Design test cases for the unit test

In Johnson Controls, the main purpose witesting unitarily a software component is to
cover at 100% theource codef the component under teBtevelopersanalyze the structure
of the software component under te®¥hite-box tegt select oneoperation within the
potential operation spacend choose eime to waitbefore a nexvperation(Cf. Figure 2.13.
Afterwards, by analyzing theource codeof the component, they assess the expected values
to be checked on sonmaitput signalsWe note thatlevelopersdo not check the behavior of
all the output signalsof a software after eaabperation In fact developersdecide to check
only someoutput signalsin relation with the performedperation In fact, they verify the
expected behavior according to their understandiniipe program behavior. If the designed
test stepsallow to cover all thesource codedevelopersstop designingest stepsif not,
developersanalyze deeply the uncovered pieces of code \Withgbal of designing one or
more test stepghat cover these pieces of code. Sometimestifue and budget reasons
managers could decide to stmgstingunitary a software component even if the 1068de
coverageis not reached. The principlesadde coveragare developed in the next section.

What are the expected
results on the outp
signals?

Objective: Cover at 100%
the source code of the
componentunder tes

100% code coverage
Time and Budget

Lig B Operation and Inter- Expected Test Case
@5 L N ST
g g s operation time 5 l“"’“’ Operation e results on Stopping oy
a2 8 — selection based on Developer: Inter- source code Developers some output criteri oK
= % i 4 ST i .
L8 g the engineers (.~ |operation time analysis signals
o experience NOK
Discrete
Domains
Which pieces of code are
not covered?
Human \
source code  Deve opers
analysis

Figure 2.13 — Johnson Controls present approach tesign a test case for unit test
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1. Code (structural) coverage

A survey oncode coveragbasedestingtools is done in (Yang 2006). In Johnson Controls,
the code coveragés measured by a commercial to6-Cove?’). Code coveragés a way to
measure how thoroughly a sette$t casesovers a code (CEigure 2.15:

« Thecoverage rateof statementsThis metric reports whether each executdible of
codeis encountered.

* The coverage rateof procedures This metric reports whether thest casenvokes
eachprocedure(or function) of the software. It is useful during preliminasstingto
assure at least someveragen all areas of the software.

+ The coverage rateof decisions This metric reports whethdroolean expressions
tested in control structures (such asifrtatementandwhile-statementevaluated to
both true and false The entireboolean expression is considered ohee-or-false
predicate regardless of whether it contalogical-and or logical-or operators.
Additionally, this metric includescoverage of switch-statement casegxception
handlers, andhterrupt handlers.

+ Thecoverage ratef conditions Condition coverageeports thdrue or false outcome
of eachbooleansub-expression, separatedlbgical-andandlogical-or if they occur.
Condition coverageneasures the sub-expressions independently of @hedn. This
metric is similar todecision coveragdut has better sensitivity to tlo@ntrol flow
However, fullcondition coverageloes not guarantee fulecision coverage

For instance, the piece of code of tHgure 2.14has: 1procedure 1 condition 2 decisions
and 8statements

Procedure AnswerYesNo() CONDITION
w var = « » B
2! Whilejvar <>« Yes » ouivar <>« No», *
) Write « Print Yes or No »
] ;
O iRead var P
Q! EndWhile DECISION
o Send var STATEMENT
End Procedure (Line of Code)

Figure 2.14 — Code (structural) coverage indicators

These criteria are apparently relevant since tla gothetestingactivity is to check if all the
pieces of the software have been visited. Butnbisthat simple (according to experts)!

In 2006, we analyze the unitary test reports onentiean 5 projects related to different type of
products. We also discuss these reports with inotware experts. In fact, even if the 100%
code coveragas not reached, managers can decide to t#epng unitary each software
component fotime and budget reasons

Diagnosis 9

Sometimes, the unit test of a software componenhcmplete or even inexistent. In other
words, the source code of the component under iegibt covered at 100%. As a
consequence, the uncovered pieces of code could bidical bugs.

27 http://www.bullseye.com/productinfo.htrtConsulted on November 2008).
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B. Design test cases for the validation test

Presently, in Johnson Controls, thweit testis not responsible to verify the compliance of a
software component with the carmaker requiremdntdact, once a set of unitarily tested
components are integrated togethealidators have the responsibility of verifying the
compliance of the whole software product with thentaker requirements. To do this,
validators analyze one or more software requiremertadk-box tegt and select one
operationwithin the potential operation spac€Cf. Figure 2.15. Afterwards, by analyzing
the carmaker requirements, they assess the expealees to be checked on sometput
signals Idem to the design of &est casefor the unit test validators decide to check only
someoutput signalsn relation with the performedperation In fact, they verify the expected
behavior according to their understanding of theneker requirements. If the designtedt
stepsallow to cover thecarmaker requirementsnder testyvalidators stop designingest
steps If not, validatorsanalyze deeply the considered requirements wétgtal of designing
one or mordest stepghat cover at 100% the requirements under teshefimes, fortime
and budget reasonsnanagers could decide to stop validating a seévpaoduct even if the
100% requirement coverages not reached. However, the carmaker must bdiewton the
uncovered requirements. Thequirement coverageas it is currently practiced in Johnson
Controls, is developed in the next section.

Objective: Cover at 100%
one or more carmaker.
software requirements

What are the expected
results on the outp
signals?
R Oo On

: Operation and Inter - °

100% requirement coverage
Time and Budget

Human

Test Case

Expected

s
&3

Software

product

—

operation time
selection based on
the engineers’

Operation

" ./ |operation time

Inter-

carmaker
software
requirements

ZGONLE

Developers

results on
some output
signals

Stopping
criteri

—>
OK

experience analysis NOK

Discrete
Domains

Which pieces of the
considered requiremen
are not covereg?

Human
carmaker
software

requirements
analysis

Figure 2.15 — Johnson Controls present approach wesign a test case for validation test

In 2007, we analyze the bugs of two different prtgerelated to two different electronic
products. It is important to note that, in John§&wontrols, bugs detected duringview and
unit testactivities are often not capitalized in theblems’ databas€Cf. Section 7. Once a
bug is detected during these activities, it is @cted immediately by the person who detects
it. Therefore, most of the capitalized bugs areected invalidation test Through our study,
we note that up to 30% of the stored bugs are deerors in the design of theest casesn
validation test In fact,validatorsdo not assess correctly the expected values thdéeked on
the output signalsThis could be explained by the fact that a humssessment of a program
behavior could be inaccuracy since carmaker reougngs related to the software domain
become more and more complex.

Developers
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Diagnosis 10

When testing a software component or product anteafan operation on the input signals,
test engineers do not check the behavior of all theput signals of the component or
product under test. Based on their understandingtbé program behavior and/or the

carmaker requirements, test engineers decide tookhenly some output signals in relatior

with the performed operation. In fact, they veritiie explicit expected behavior but not the
implicit one.

1. Requirement (functional) coverage

The criterion ofcode coveragedoes not directly assess the compliance of thevaoé
component or product with the carmaker requiremehts is a biased indicator. In fact, the
requirement coveragis related to theoverageof the functional requirements of the software
under test. Through a literature review (Dalal 1,988ntron 2005, Yang 2006), several stop
testingcriteria based on covering software requirementgetbeen identified i€hapter 4 —
Section 4.B.1 They primarily deal with thetransitions coverageof a graph-based
specification. At Johnson Controls, the carmakguirements related to the software domain
are referenced and managed using3R&model and theoverage ratef these requirements
is mainly used as the criterion to stegdidation test Moreover, theequirement coverages
measured subjectively by thelidator. Paradoxically and even a 10086verageof the
functional requirements has been reached duringteeeng of a software product, the
carmaker is able to detect a nonconformity betwlencode and their requirements. In fact,
presently, one requirement can hide two or moreratguirements. Let us consideiFigure
2.16 an excerpt of software functional requirementsttasy were defined by a Johnson
Controls engineer These requirements have two inputs and one autpufwith domain
D(11)={0,1}), 12 (D(12)={0,1}), O1 (D(O1{0,1}).

Requirement 1:
In case of input 11 is equal to 1 and input 12 is

equal to 0, therefore the output O2 must be set to 0

Requirement 2:
In other cases, Output O2 is always set to 1

Figure 2.16 — An excerpt of software functional regirements as defined by a Johnson
Controls engineer

During thevalidation test one inexperiencedalidator designs ongéest casgcomposed from
two test steppin order to cover the previous requirements:

- Teststed: setll to 1,12 to 0 and check iD1is equal to O
- Teststef®: setll, 12 to 1 and check iD1is equal to 1

Therefore, she/he decides to steptingthese requirements and to set them as covered. In
fact, throughtest step #1thevalidator covers at 100% the first requirement bedt step #2
does not cover at 100% the second requirementethdbe second requirement can be split
into three “implicit” requirements to be tested:

* In case of inputl is equal to 1 and inpu2 is equal to 1, therefore the out® must
be set to I covered by test step #2

* In case of inputl is equal to 0 and inpu2 is equal to 1, therefore the outf® must
be set to } not covered by the test case

e In case of inputl is equal to 0 and inpu2 is equal to 0, therefore the outf® must
be set to } not covered by the test case
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This could lead to the conclusion that the pregehthson Controls definition of a requirement
is not enough refined.

Diagnosis 11

The present definition of a software requirementnst enough refined. In fact, one
requirement can hide two or more implicit requiremis. Therefore, inexperienced
validators could miss testing some of the carmakaplicit requirements.

Based on our analysis of the present Johnson Gsmpproaches to desigest case$or unit
andvalidation testwe do the four diagnoses listed below.

Diagnosis 12

In validation test and after selecting an operatida be performed on the software under
test, test engineers analyze the carmaker requiretaén order to assess the expected values
to be checked on some output signals of the sofewvém fact, this assessment is based on
the engineers’ understanding of the requirementscamay lead to errors.

Diagnosis 13

For each software component or product under testarge potential operation space is
associated. Each engineer has a different perceptid the possible and critical operations
based on her/his experience. Therefore, the pressrdtegy to select operations in order to

test a software is irrelevant.

U7

Diagnosis 14

The test cases designed by engineers do not alsiayslate the real use of the software
product under test. The main purpose of testingiaities is to cover the software code and
requirements. As a direct consequence, basic ugarations on the product could be not

tested by the supplier before a carmaker delivery.

Diagnosis 15

Presently, the test cases for a software are mahudésigned by engineers. As the size of
automotive software growth, this task becomes alatus task and accounts for more thal
50% of the total time and budget of a project.

=)

VII. Capitalizing bugs in Johnson Controls

A. Snapshot on the Johnson Controls problems’ tradkiolg

Johnson Controls as many other electronic suppliesss aproblems’ tracking tool
(TeamTrack®) in order to manage and store problems detectgdgia project. A snapshot of
this tool is illustrated irfrigure 2.17

2 http://www.serena.com/products/teamtrack/index.{ansulted on November 2008).
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Figure 2.17 — Screenshot of the problems’ trackintpol

Problems are classified according to four categoseftware hardware mechanicaland
others. In the following, we focus on software peohs, called bugs. Theacking toolhas a
database where all the problems are stored byqtrdfefact, a project is the combination of a
customer (for instancdRenaul}, a type of product (for instance,bady controller module
and a car platform (for instandeaguna platformn. Theproblems’ databaséas been created
in the late 90’s and now we estimate to tens ofishads the number of capitalized software
bugs. According to experts, about 60% of these langstrue” bugs. The remaining 40% are
duplications or without continuation. Moreover, 2006, we perform a study on the
capitalized software bugs and we come up to thelasion that up to 90% of these bugs
were detected during thalidation testactivity. Software experts and managers confirat th
the bugs detected during the othé&V activities (eview and unit tesy are often not
capitalized in theproblems’ databaseOnce a bug is detected during these activitiess i
corrected immediately by the person who detectdaist of the capitalized software bugs are
detected irvalidation test

B. The bug’s model currently used in Johnson Controls

One of thesupportprocesses (Cfigure 2.9 has the responsibility of ensuring that all found
software bugs and all changes on the product ardifted, analyzed, managed and controlled
to resolution and implementation. In fact, once eargineer has recorded a bug in the
problems’ databasea workflow process is initiated between the teaembers in order to:

» assess the impacts of the bug,

* make decisions,

» plan and implement the corrections,

« and finally verify and validate th@on-regressiorof the software product.

Apart the evolution of the bug statudyiamic view since its creation and till its resolution,
we focus on the bug’s modedtétic view currently used in Johnson Controls. Fifteen years
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ago, Sagefl software experts developed a bug’s model withailves of 1) managing the life
cycle of a problem, 2) having traceability of theolgems detected internally and by the
carmaker, 3) monitoring a project by the numberdetected, corrected and uncorrected
problems and finally 4) reusing (by experts analysritical stored problems to avoid similar
problems on future developments. In fact, a tofdlld attributes should be filled in by the
engineers for each capitalized problem. We anablzeut 2000 bugs from two different
projects and products and we come up to the caondubkat 75% of these attributes are filled
in; the remaining 25% are systematically unfill&h the 75% filled attributes, 25% of these
attributes are free fields. Figure 2.18 we classify the 111 attributes according to tlegam
aspects of a software bug (Mellor 1992, Fenton Y9Rfation (9 attributes), timing (28
attributes), symptom (2 attributes), impact (2 ilatttes), cause (7 attributes), type (14
attributes), severity (7 attributes) and cost (Rikaites). The remaining 71 attributes are
related to Johnson Controls administrative dat@seary for the management of the bug.

Product
Location Skills
A‘ft?"s . 9 attributes
.Decision  Unclassified
71 attributes Acknowledge date
. Timing Actual analysis date
Estimated Cost Cost 28 attributes
2 attributes
Johnson Controls Detection Means
o : Symptom
Initial criticity bugs model 2 attributes
Residual criticity = Severity
7 attributes Obtained results
Impact
Problem 2 attributes
Solution Type -
14 attributes Origin Phase
Cause Cause Description
7 attributes

Figure 2.18 — Bug’s model currently used in Johnso@ontrols (this figure is voluntarily
uncompleted for confidentiality reasons)

As stated before, some attributes of the bug haaeeffelds in thgproblems’ tracking tooand
therefore engineers can write anything they warh whe main objective of giving as many
information as possible on the bug.Aigure 2.19 an excerpt of a bug stored in {@blems’
databasas illustrated. Since the attribuRroblem Descriptiorhas a free field, each engineer
has the possibility to fill in this field according her/his reasoning approach. Technical
language ¢ode variableselectronicand software jargon...) is often used in such case. In
fact, there is no standard format that engineerst maspect when describing a bug. Moreover,
attributes such a€ause TypendDescriptionare sometimes not filled in. In fact, through
these attributes, one could identify the respolisilof persons in the problem.

% |n 2001, Johnson Controls buys the electroniciness from Sagem Automotive.
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ATTRIBUTES DESCRIPTION OF THE BUG

Problem description |from int volume and vehicle speed. (cf ... specification)  Test

example. Initial Condition : Ignition =1 CanDatal =1

A‘very” technical |CanData2 =1 Vehicle_Speed =0 Wiper_Intermitent = 1

description of the  |Obtained Result : Intermitent time =8 s ... Then Vehicle Speed =
problem 20000 (200 km/h) ~ Obtained Result :  Intermitent time = 8s

Expected Result : Intermitent time = 4s ... Tested on E-CAR

Cause type Not filled in by the engineers
Cause description Not filled in by the engineers
Origin phase Development
Detection Means Validation test

Figurem2.19 — An excerpt of a bug stored in the ptdems’ database (this figure is

voluntarily uncompleted for confidentiality reasong

When describing a bug in the problems’ tracking {pthere are too many fields to fill in
(111 attributes), a lot of free fields (about 25%)d a lack of relevant predefined fields (fo
instance, a bug’s typology). As the detection ofjsicomes later in the process, engineers
do not have enough time to fill in all the fieldd @ bug (missing information). Moreover, ir
case of free fields, an engineer could write anytishe/he wants with the main objective of
giving as many information as possible on the bugdlevant information). Since

information is missing and/or irrelevant, it remama difficult problem to reuse bugs in

Diagnosis 16

=

order to avoid or detect similar problems on futudevelopments.

C.

Existing techniques to reuse capitalized bugs

We analyze many internal documents related to ¢use of bugs stored in thpgoblems’
database We also interview software experts and managersthe currentknowledge
managemenpractices. We come up to the conclusion that ksigsed in theproblems’
databaseare rarely used to avoid similar problems on fitdevelopments and ensure that
carmakers will not encounter the same problemsvorsimilar products.

Actually, no advancedd@rmal andautomatedl techniques have been implemented in order to
reuse stored bugs. Nevertheless, three traditgiratkgies are currently practiced:

Create and update “Lessons Learned Checklist” foftware developmentsThe
process of creating and updatiegsons learnis illustrated inFigure 2.20 On the one
hand and once a bug is detected on a projectpribject leaderdecides if this bug
must be verified on other projects or not. The sleai process is not formal and is
mainly based on the experience of the decision mdkecase of a reused bug, this
bug is transferred to tHgoftware Engineering Process Gro(8EPQ which confirms
or not the possible re-use of this bug. The wageasfcribing a bug in thproblems’
databasehas a major impact on this process. On the othedhasoftware forum
exists where engineers can submit their questi@mmarks and recommendations to
the SEPGwhich decides or not to generalize the submitssde. Finally, each reused
bug or group of bugs and each general issue is suxed in desson learn{a textual
sentence) to be consulted on future development&igure 2.21 an excerpt of a
lessons learned checklistillustrated.
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Lessonslearned Review

Software web forum
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Figure 2.20 — Process of creating and updating “Lesns Learned Checklists” for
software skill (Mignen 2005)
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Figure 2.21 — An excerpt of lessons learnt to be ebked during the design of the
validation procedure - This figure is voluntarily fuzzyfied for reasons of confidentiality
(Fradet 2008)

e Use of peer project to check problems on similardoicts.At the beginning of each
new project, a list of “similar” previous projectaccording to experts) is identified.
Then, engineers have to review all the problemdyding software bugs) detected on
these projects and identify a list of “critical’ gimems to be checked on the new
project.

e Increase the reuse of software components frompooject to another A software
product is composed from a set of software compisntfilling different services.
Therefore, the reuse of a component from one prdag@nother must be a usual
process. However, the challenge is to develop compis with standard interfaces
and configurations. The reuse of components is@ated since it increases the quality
and productivity. Indeedessons learntire already included in the reused software
components.

However and according to experts, some bugs oagain&rom one project to another. In
order to confirm this citation, we perform a study the bugs detected on one software
functionality, the front wiper managemenfunctionality, implemented in five different
projects since 1997 and till 2007. In fact and aditm to experts, all the projects related to
the same type of product and car platform of omenaker have up to 70% of common
functionalities. InTable 2.11 for each project, we identify the release yeathefproject, the
number ofLines Of CodgLOC) implementing thdront wiper functionality and the number
of bugs detected on this functionality.
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Project1
Project2
Project3
Project4

Project5

1997
2001
2003
2003
2007

Number of Lines Of Code implementing

the front wiper functionality
(without comments and blanks)

3909

1457
889
1255
1229

Number of bugs
detected on the front
wiper functionality

30
4
5

16

22

Table 2.11 — Characteristics of the front wiper fuictionality implemented in five
different projects since 1997 and till 2007

Through the analysis of these five projects, wesribat thefront wiper functionality has, in
common, 7 features. On some projects, there areoomaore additional features that we
ignored in our study. We make two classificatiohshe bugs detected on this functionality.
The first one according to the 7 features (@gure 2.23 and the second one according to a
typology of bugs (CfFigure 2.23 borrowed from the literature (Beizer 1990, Chdige
1992, Grady 1992, IEEE Std. 1044-1993). Then, wkenthe arithmetic mean by feature and
by type of bugs of the number of bugs detectegrajects 1 2, 3 and4. In fact, we try to
demonstrate that before developing trent wiper functionality on theproject 5 we were
able to predict which feature is the most criticaterms of bugs’ occurrencéegture 3 and
which types of bugs engineers are vulnerabl€tmm(rol flowandsequencing
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70%

60% -

o

o

S
1

N

Q

>
|

% of detected bugs

30% A

20% A

10% -

0%

Data

Control Flow And
Sequencing

Code
implementation

Type of software bugs

Processing

O Arithmetic mean
of the projects
1,2,3and 4

Project 5, 2007

Figure 2.23 — Classification of the bugs accordin a typology of software problems
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As a conclusion, the thousands of bugs stored m ploblems’ databaseare not
systematically nor efficiently reused to avoid @tett recurrent bugs. To better understand
the reasons for that, we interview software marsagdno refers to four main issues for
reusing stored bugs:

* Manual analysis by experts of tipgoblems’ databases impossible: thousands of
bugs and 111 attributes by bug.

» Lack of information: 25% of a bug’s attributes agstematically not filled in.

* Ambiguous and incomplete information: 25% of tHkedi attributes are free field and
these attributes (for instance, problem descripteme the most important to detect
recurrent type of bugs.

» Lack of knowledge indata mining processes and tools to perform an automatic
analysis of the@roblems’ database

Diagnosis 17

There are no advanced (formal and automated) teafu@s to reuse bugs stored in the

problems’ database in order to avoid or detect $ambugs on future developments. In fact,

carmakers are unhappy when encountering the sanygetpf problem on two different
products delivered by the same supplier.

Managing and reusing test cases in Johnson Controls

The languages used for designtegt case# each of theinit andvalidationtestactivity are
usuallycomputer languagesndeed test casegor unit testare developed i€ languageand
test casegor validation testare developed in script languagespecific to Johnson Controls.
A detailed description of these languages is peith Appendix B Presently, the versions of
the software components of a project are managedigh a commercialersion manager
tool (PVCSY. In consequence, thest casedor unit andvalidation testsare also versioned
using this tool and stored in the same folder as tblated software component or
functionality.

As stated before (CEection 7.¢, all the projects related to the same type oflpod and car
platform of one carmaker have up to 70% of commonctionalities. Therefore, using
capitalizedtest caseseems to be beneficial in automotive context. tmeo words, when
testinga software functionality that we already implengehin the past on another project, it
is judicious to reuse existingst casesUnfortunately, in Johnson Controls capitalizedt
casesare not always reused from one project to anotver.interview software experts and
managers on this phenomenon and we identify two mesons. The first one is the use of
different formats to specify dest case Sometimes, engineers specify thest cases
immediately in thecomputer languag€C language script languagg understandable by the
test execution platformOthers use theest casdormat presented iRigure 2.11 In fact, the
use ofcomputer languagemsakes the reuse tdst casea difficult task. One has to analyze
and adapttest caseswritten in acomputer languagdrom one project to another. It is
important to note that nowestinga software product of about 260.OC (Kilo Lines Of
Code requires about 100RLOC of tests (Johnson Controls source). The secondsotie
lack of an automated process to retest casesThe manual analysis and adaptationest
casesfrom one project to another seems a laborious taskuld be more time consuming to

%0 http://www.serena.com/products/pvcs/pvcs-versiomawer.htm(Consulted on November 2008).
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adapt existingest caseshan to design new ones. In this situation, tth@ual analysis tools
could help but unfortunately such tools are abgbyutot known in the company.

Diagnosis 18

Currently, test engineers use different formatsgpecify a test case. Sometimes, engineers
specify the test cases in a computer language (@leage, script language), others use a
more high level test case format (independent frime technology). Moreover, there is a
lack of formal process and tools to manage and retisst cases from one project to
another.

IX.

However, one initiative was launched two years agd had the purpose to create manually
standard test casefr software validation. An example ofstandardtest caseas it was
developed at Johnson Controls is illustrate@able 2.12

VPR ID Type of Test Date Modified
VPR.SPEED.0001.01 Functional 22.03.2006
Goal Initialization of the pointer
Applicable if — The device displays the vehicle speed with pointer
Description of test - The Ignition is switched ON.

— Set the signal concerning the Speed to value >/@.km
— The ignition is switched Off
— Set the signal concerning the Speed to value =/@.km
— The Ignition is switched ON.

Expected behavior - At the second ignition ON the pointer should beitsnstop
position.
Additional Comments - If the project contains 2 or more product lines. (eaw line,

High line) repeat the tests on both lines.

Bug reference (defect ID)
Table 2.12 — Example of a standard test case as égped at Johnson Controls

A set ofstandard test casesere developed and classified by functionalitpadduct. In fact,
potential bugs by product functionalities are idfeed and documented istandard test case
patterns These patterns must be systematically consultedhe given product type) before
beginningtestingstages. This is a conventiorRETEX(RETurn of EXperiengestrategy, but
which remains to be completed for apgoduct line The two main difficulties of such an
approach are to 1) describ@andard test casesith a suitable language level understandable
by anytest engineeand 2) keep the list dhesetest casespdated without exploding their
number. Two years after, many issues facedtéisiscaseaeuse strategy and coerced software
managers to stop it. The four main issues are d)ligh of standard test caseis no more
updated due to a lack of resources, 2) an explodimgber ofstandard test case8) all the
standard test casemre stored in the sanWéord document which becomes unmanageable and
finally 4) most of thestandard test casesre too much detailed and therefore not
understandable by a newly-graduatiest engineer

Conclusion

Through ourindustrial audit we analyze the current software practices at slmihiControls
and make diagnoses on the currd&8¥ activities of a software. The performed diagnases
listed in Table 2.13 In Figure 2.24 we locate each of these diagnoses within the stohn
Controls software organization.

In the following chapter, based on our industriatlig we clearly define the scope of our
research. We also formulate our research topiccooraance with the research issues in
software testing
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Diagnosis description
number

1 Verification and Validation (V&V) practices and testcases are rarely shared betweenthe carmakers and their electronic suppliers.

2 Now, one cannot get a degree in software V&V. Software V&V is incorporated into the software engineering degree. Moreover, software engineers often prefer development activities compared
with verification and validation activities.

In automotive industry, semi-formal and formal methods are more and more used to specify software functional requirements. However, there is a lack of a standard formalism shared between

3 carmakers and suppliers. In fact, for each project, the supplier has to adaptits processesto the formalism used by the carmaker.

4 Deadlines for carmaker requirements freeze are specified in the carmaker-supplier contract. Nevertheless, the carmaker’s requirements evolve continuously along the software development life
cycle withoutcomplying with these deadlines. Moreover, suppliers mustreact quickly by integrating (withoutregression) the changesin the product.

5 The Software Requirement Specification (SRS) documentis often a large document (about hundreds of pages), difficult to manage, incomplete and notregularly updated.

6 Sometimes, the SRS document is the official and contractual document between carmaker and supplier. It is also the main document used by the development and V&V teams in their
activities. It has a standard structure butthere are no standards to specify carmakers’requirements (more especially functional requirements).

7 Sometimes, the review of software code is badly done or even ignored. In fact, number of code reviewers is not aware of the coding rules and recommendations to be checked. Moreover, the
code review is not systematically performed on each new software component. In consequence, the code review does not often detectall the bugs that must be detected through this activity.

8 According to the "To Be” process, the unit test of a software component must ensure a 100% source code coverage. However, this V&V technique is not responsible to verify the compliance of
the component’s behavior with the carmaker requirements. One software component can be tested unitarily (100% of code coverage) without fulfilling the behavior required by the customer.

9 Sometimes, the unit test of a software component is incomplete or even inexistent. In other words, the source code of the component under test is not covered at 100%. As a consequence, the

uncovered pieces of code could hide critical bugs.

When testing a software component or product and after an operation on the input signals, test engineers do not check the behavior of all the output signals of the component or product under
10 test. Based on their understanding of the program behavior and/or the carmaker requirements, test engineers decide to check only some output signals in relation with the performed operation.
In fact, they verify the explicitexpected behavior but notthe implicit one.

The present definition of a software requirement is not enough refined. In fact, one requirement can hide two or more implicit requirements. Therefore, inexperienced validators could miss

11 testing some of the carmakerimplicitrequirements.

12 In validation test and after selecting an operation to be performed on the software under test, test engineers analyze the carmaker requirements in order to assess the expected values to be
checked on some output signals of the software. In fact, this assessmentis based on the engineers’understanding of the requirements and may lead to errors.

13 For each software component or product under test, a large potential operation space is associated. Each engineer has a different perception of the possible and critical operations based on
his/herexperience. Therefore, the presentstrategy to selectoperations in orderto test a software is irrelevant.

14 The test cases designed by engineers do not always simulate the real use of the software product under test. The main purpose of testing activities is to cover the software code and
requirements. As a direct consequence, basic user operations on the productcould be nottested by the supplier before a carmaker delivery.

15 Presently, the test cases for a software are manually designed by engineers. As the size of automotive software growth, this task becomes a laborious task and accounts for more than 50% of

the total time and budget of a project.

When describing a bug in the problems’ tracking tool, there are too many fields to fill in (111 attributes), a lot of free fields (about 25%) and a lack of relevant predefined fields (for instance, a

16 bug’s typology). As the detection of bugs comes later in the process, engineers do not have enough time to fill in all the fields of a bug (missing information). Moreover, in case of free fields, an
engineer could write anything she/he wants with the main objective of giving as many information as possible on the bug (irrelevant information). Since information is missing and/or irrelevant, it
remains a difficult problem to reuse bugs in order to avoid or detectsimilar problems on future developments.

There are no advanced (formal and automated) techniques to reuse bugs stored in the problems’ database in order to avoid or detect similar bugs on future developments. In fact, carmakers

17 are unhappy when encountering the same type of problem on two different products delivered by the same supplier.

18 Currently, test engineers use different formats to specify a test case. Sometimes, engineers specify the test cases in a computer language (C language, script language), others use a more
high leveltest case format (independent from the technology). Moreover, there is a lack of formal process and tools to manage and reuse testcases from one projectto another.

Table 2.13 — List of diagnoses on the software V&¥yractices in Johnson Controls
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CHAPTER 3. RESEARCH TOPIC

Quality of the design of test cases for automatfévare: design platform and testing process

109






Research topic R. AWEDIKIAN

Introduction

In our research, we go through the Johnson Congnalblem with asystemic approacim
order to identify domains from which we might bdeato improve theylobal performancef
the softwareVerification and Validation(V&V) activities. In Chapter 2 we perform an
industrial audit and make diagnoses on the cuivé&M practices within the company. Based
on theindustrial audit one could isolate critical anomalies and lackthacurrent engineers’
practices. A review of related solutions proposedhie literature could help in defining or
adapting relevant solutions to our context.

In this chapter, we clearly define tiseope of our researchnd we formulate ouresearch
topic based on the performed diagnoses and the relaggnchssues in software testing
The industrial and academic needs and objectives sammarized inSection 2 A
specification of our research topic and focus isedm Section 3 Finally, the mairsoftware
testingissues is highlighted iBection 4 In the conclusion of this chapter, we identifg th
diagnoses which are in the scope of our reseamdtassociate for each of these diagnoses one
or more relatedoftware testingssues (as stated in tligrature).

Industrial and academic needs and objectives

A. Initial industrial needs

Facing the fierce competition within the automotimelustry and the strong pressure that
carmakers impose on their suppliers to reduce tis¢ @&nd the development time, Johnson
Controls is looking for new and innovative engimegrsolutions to increase its performances
and therefore better satisfy the requirements aqubatations of their clients. As said in
Chapter 1 — Section, &lectronic parts represent now up to 30% of tbbaj cost of a car and
software bugs represent more than 80% of the pmableetected on such a product.
Therefore, decreasing the development cost aneéasorg the quality of software product
have become of main interest for carmakers. Joh@wrirols as an automotive electronics
supplier has launched many initiatives (tf6D is one of these initiatives) inside its
engineering centeraround the world with the aims of:

1. Decreasing the number of bugs detected by the éame@uality
2. Reducing the development time of electronic prgjeQelay
3. Reducing the development cost of electronic prejeCiost

Through our research project, we were asked byudmneotive electronic supplier namely
Johnson Controls to improve the performance ofsd&ware Verification and Validation
(V&V) activities. Their main purpose is to improve thelity of their products and therefore
better satisfy the requirements and expectationth@i clients. In Johnson Controls, the
validation testwhich is the laswW&V activity before a carmaker delivery is consideasdhe
ultimate activity to detect all the bugs and therefdeliver carmakers “bug-free” software. It
represents up to 90% of the time spent in\f8&/ of a software product (CChapter 2 —
Section % While thetest casesxecution activity is often automated viaest execution
platform thetest casalesign activity remains a manual task that fillsime many engineers.
Up to 50% of a software project team is dedicatediésigntest caseqCf. Table 1.).
Therefore, for many of software managers and egpertlohnson Controlsjutomating the
design of test casegems to be the most adapted solution to rededestingtime, cost and
resources while improving tlewdeandrequirement coverage
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B. Academic objectives

Since the 1990s, there has been a renewed intertds development of effectiveftware
testingtechniques. In the years, the topic has attracteasing interest from researchers, as
testified by the many specialized events and warkshas well as by the growing percentage
of testingpapers irsoftware engineering conferencésrecent paper titletSoftware Testing
Research: Achievements, Challenges, Dreamis’a software engineering pioneer named
Bertolino (Bertolino 2007) organizes the many aarsling research challenges swftware
testinginto a consistent roadmap. One of his conclusieas that there is a need to make the
process ofoftware testingnore effective, predictable and effortless. Iniadd, the author
pinpoints the many fruitful relations betweeaftware testingand other research areas. In
fact, by focusing on the specific problems siftware testingwe may overlook many
interesting opportunities arising at the bordemleeinsoftware testingand other disciplines.
Unfortunately, few papers exist in which the problef software testings considered with a
systemi@approach.

Our primary scientific goahas been to go through this problem witeyatemic approach
order to identify levers in any domains from whiel might be able to improve tlggobal
performanceof the softwareV&V activities. The added value of such an approacthas
resolution of the problem with global quality viewpoint. Therefore, inChapter 2 we
perform anindustrial auditon the software practices currently used in autoreandustry
and more especially in Johnson Controls. Through ahdit, we characterize the overall
environment of our problem. We understand whatfyieg and validating a software product
means and we point out the main current issuesaahkd in the automotive&V activities.

Research scope

A. Research topic formulation

Through a primary industrial audit at Johnson Gasfrwe first analyze th¥&V “To Be”
processes, activities and techniques. Then, weactaize the software engineers’ practices
(“As Is” processes, activities and techniques) in verifjangd validating a software product.
As a conclusion of the audit, we perform a listdidgnoses on the currewi&V practices
within the automotive industry and more especiallyjomotive electronic suppliers (such as
Johnson ControlsBased on these diagnosgsur research topic may now be refined through
these two questions:

1. How to detect bugs early in the software developmetife cycle? In other words,
How to detect bugs closer to where they were intragted?

2. How to detect “all” the bugs of a software productbefore a carmaker delivery?
Or, at least, how to measure that few bugs remairotbe found?

B. Research focus

Let us define a bit more the exact contour of @search. It was defined in accordance with
the Johnson Controls priorities and interests. Véeewot authorized to intervene within the
software design process in itself to a priori lowes number of bugs. It has been considered
as another issue. In other wordg do not work on avoiding bugs while designing and
developing a software product but on detecting thbugs once the product is developed

In Chapter 1 — Section 5.C.%ve identify two types o¥/&V techniques: thetatic ones and
the dynamicones (e.gsoftware testing In Chapter 4 — Section 2.B.We perform a survey
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on thestatic techniqueand on how they are adapted or not to the autematntextBased

on our industrial audit (Cf. Chapter 2 — Section 5)BJohnson Controls presently performs
most of thereview static techniqugsechnical reviewwalkthrough inspectionandaudit). On

the contrary, theroof static techniques still considered as a non-adapted method to the
automotive and more especially Johnson ControlgegbnEven if gatic techniquesare
necessary to detect errors earlier in the developmcess, they are not sufficient. In fact,
these techniques focus on analyzing #it&tic product representation and do not test the
product in its real lifedynamig. This could explain the fact that, in Johnson tGals, V&V
dynamictechniques are considered as the ultimate techsit detect all the bugs. They
represent up to 90% of the time spent in W&V of a software product (CChapter 2 —
Section %. As a consequencee focus our research on th&&V dynamic techniques. The
main dynamic V&V techniques the software testing

Testinga software product requires two main activitiesdétailed specification of these
activities is done irfChapter 2 — Section. @ he first one consists of designitegt casesand
the second one of executing thésst case®n the software product under tédased on our
industrial audit within Johnson Controls (Cf. Chapter 2 — Section)5the execution ofest
casesis performed thanks to Johnson Controls propéest execution platforsn These
platforms are described iAppendix C On the one hand, the number of bugs related to a
wrong execution of #&est casas minor regarding the one related to an irrelévisign of a
test cas€1 over 100 — Johnson Controls source). On therdtand, the design tdst casess

a manual task that accounts for up to 50% of avswé project time. Thereforeje focus our
research on the design of efficienest cases$or software. In fact,we are interested in any
organizational matterthat has a positive influence onto the quality ofhe test case design
process simulation platform knowledge managementcompetency managemenand
project management

V. Hot research issues in software testing

The Bertolino’s definition (Bertolino 2003) of theoftware testingechnique highlights the
four maintestingissues (four underlined words in the definition).

Definition 3.1: Software testing (Bertolino 2003)

Software testing consists of the dynawecification of the behavior of a program on aitén
set of test cases, suitably selectemm the usually infinite executions domain aghithe
specified expecteaehavior.

Dynamic: testingimplies executing the program on (valued) inp&isice static techniques
(review inspection...) are useful to evaluate the internal correctridss software product,
testingis the only technique allowing the assessmentisdfehavior when executed in its real
environment.

Research issue IHow to execute test cases on a software produ€ti?gissue is not in
the scope of our research)

Finite: even for simple programs, so maegt casesare theoretically possible thathaustive
testingwould require years to execute. Dijkstra (Dijkst&/2) calculated that thexhaustive
testingof a multiplier of two27-bit integerstaking “only” some tens of microseconds for a
single multiplication would require more than 100@€ars. InChapter 8 — Section, 2ve
demonstrate thaesting exhaustively a software product iSN&-Completeproblem from a
computational viewpoint. Generally, the whole t&st can be considered infinite. In contrast,
the number of executions that can realisticallyobserved must obviously be finite (and
affordable). Clearly, “enouglttéstingto get reasonable assurance of acceptable behaugir
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be performed. This basic need points to well knisgnes otesting bothtechnicalin nature
(criteria for deciding to stofesting andmanagerialin nature (estimating the effort to put in
testing. Testingalways implies arade-off between limited resources and schedules, and
inherently unlimited test requirements.

Research issue 2Vhen to decide to stop testing a software product?

Selected: many operation selection techniquediffer on their strategy to select a finite
number ofoperations.Test engineers must be constantly aware that diffdechniques may
lead to quite different quality results; they alsay be much dependent of context factors
such as the kind of application, the maturity & grocess and the organization, the expertise
of test engineers, the tool platform. How to seldw most suitableperationsto be
performed on the software under test is a compisxd (Vegas 2001).

Research issue F{ow to choose the “relevant” operations to be cked on a software
product?

Expected: it must be possible (although not always easyjld@cide whether the observed
outcomes of program execution are acceptable grotimérwise, théestingwould be useless.
The observed behavior may be checked against g@mhs and user’'s expectations. The
testpasgfail decision is commonly referred in thestingliterature to as theracle problem

Research issue 44ow to assess the expected behavior of a softyaoeuct?

Conclusion: our diagnoses, the scope of our reseéirand the software
testing research issues

Based on our research focus, we identiffable 3.1the diagnoses which are in the scope of
our research (the design tefst cases One diagnosis is related to the staf&\V techniques
and three diagnoses are related to the carmakexsiges on which a supplier can absolutely
not act. We also associate for each of the diagnmsthe scope of our research one or more
relatedsoftware testingssues (as stated in thigrature).
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Diagnosis
g Diagnosis description (Cf. Table 11.13) In the scope of our research Related software testing issues
number Design of test cases Literature review

Verification and Validation (V&V) .. NO - related to carmakers’practices
2 Now, one cannotgeta degree in software V&V ... YES Issue 2,3 and 4
3 In automotive industry, semi-formal and formal ... NO - related to carmakers’practices -
4 Deadlines forcarmakerrequirements freezeare ...  NO — related to carmakers’practices -
5 The Software Requirement Specification (SRS) ... YES Issue 2,3 and 4
6 Sometimes, the SRS documentis the official ... YES Issue 2,3 and 4
7 Sometimes, the review of software codeis ... NO — related to static V&V techniques -
8 According to the "To Be” process, the unittest ... YES Issue 2
9 Sometimes, the unit test of a software ... YES Issue 2
10 When testing a software component ... YES Issue 4
11 The presentdefinition of a software requirement ... MES Issue 2
12 In validation testand afterselectingan ... YES Issue 4
13 Foreach software componentor productunder ... MES Issue 3
14 Thetestcases designed by engineersdonot ... YES Issue 3
15 Presently, the test cases fora software are ... YES Issue3and 4
16 When describing a bug in the problems’tracking ... YES Issue2and 3
17 There are no advanced (formaland automated) ... YES Issue 3
18 Currently, testengineers use different formats ... YES Issue 3

Issue 1is notin the scope of our research

Table 3.1 — Our diagnoses, the scope of our reselrand the software testing research
issues

In the following chapter, we perform a literatureview on the existing approaches,
techniques and tools in the field of t&V of software products. More especially, we focus
our research on finding or adapting “solutions” fbe anomalies and lacks (diagnoses) that
we identify via ourindustrial audit In fact, we mainly develop théerature related to the
software testingssues 23 and4.
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CHAPTER 4. STATE-OF-THE-ART
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Introduction

Constructing reliable products continues to be ofesoftware development's greatest
challengesTesting one of the most crucial tasks along the softwseelopment life cycle
can easily exceed half of a project’'s total effékt.successfultesting approach can save
significant effort and increase product qualityerétby increasing customer satisfaction and
lowering maintenance costs.

Despite these obvious benefits, the statesaffware testingpractice isn’'t as advanced as
software development techniques overall. In fedtingpractices in industry are, most of the
time, neither very sophisticated nor effective.sTimight be due partly to the perceived higher
satisfaction from developing something new as opgd® testing something that already
exists. Also, many software engineers consider éegfineers asecond-class executives
They considetestingas a junior or entry position and use it merelyaaspringboard into
development jobs. Howeveacademiaspends significant effort in researching n&sting
approaches. Promising approaches have startedndb atceptance in industry, but the
technology transfer betwedesting research and industry is still insufficieicademics
sometimes say that industry is immature and pracéts are clueless, whereas practitioners
might argue that researchers squander their timeslag@ing cool but uselessesting
technologies. As it often happens, the truth lmsewhere in between.

In this chapter, we develop the literature relatethesoftware testing issues 2 and4 and
we focus our research on finding or adapting “sohd” for the anomalies and lacks
(diagnoses) that we identify via omdustrial audit An overview on the softwaneerification
and validation(V&V) techniques is proposed Bection 2 A classification of thesoftware
testingtechniques is done i8ection 3 Finally, software testingssues and related solutions
are developed irsection 4 We identify lacks in these solutions and propimsprovement
actions in order to fit in our context. In the ctuston of this chapter, we summarize the
improvement actions that we propose all along trepter.

Verification and Validation of software products

A. Principles

Verification and Validation(V&V) of software are defined in the present repodrédfielEEE
Standard Glossary of Software Engineering Termigp(¢tEEE Std. 610-1990).

Definition 4.1: Verification and Validation (IEEE $d. 610-1990) — Abbreviation: V&V

The V&V process is the process of determining vénettine requirements for a product |or
component are complete and correct, the productgawh development phase fulfill the
requirements or conditions imposed by the previphase, and the final product |or
component complies with the specified requiremdrits.distinction between verification and
validation has been well-framed by Barry Boehm, wiemorably described verification |as
“building the product right” and validation as “buding the right product”.

SoftwareV&V helps the product designers and test engineeantirm that a right product is

build right way throughout the development procasd improve the quality of the software
product. It makes sure that, certain rules areowadd when developing a software product
and also makes sure that the developed produdtisfuilie required specifications. This

reduces the risk associated with any software projp to certain level by helping in

detection and correction of faults, which are uniimgly done during the development
process.
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The standard definition of verification is: "Are we building the product RIGHT?" e.g.
verificationis makes sure that the software product is deeeldpe right way. The software
must confirm to its predefined specifications, &g product development goes through
different stages, an analysis is performed to enshat all required specifications are met.
The verification part of V&V comes before validation and incorporatefiware inspections
reviews audits etc. During theverification, thework product(the ready part of the software
being developed and various documentations) ievwesd / examined by one or more persons
in order to find and point out the bugs in it. TWexification helps in prevention of potential
bugs.

The standard definition of validation is: "Are we building the RIGHT product?" e.g. a
software product must do what the customer expiedts do. The software product must
functionally do what it is supposed to, it must gdynwith any functional requirement set by
the customerValidation occurs at the end of the development processderdo determine
whether the product complies with specified requeats.Validation starts after verification
ends (after coding of the product is completéiddstingmethods are basically carried out
during thevalidation

B. Software verification and validation techniques

Whatever the size of project, softwav&V greatly affects software quality. People are not
infallible, and software that has not been verifleab little chance of working. Gibson in
(Gibson 1992) stated that typically, 20 to 50 esrmper 100Q.ines Of CoddLOC) are found
during development and 1.5 to 4 per 1QGDC remain even aftevalidation test Each of
these errors could lead to an operational failbreg) or non-compliance with a requirement.
The objective of softwar€&V is to reduce software errors to an acceptabld.|&oeording

to Beizer (Beizer 1990), the effort needed can eafnigm 30% to 90% of the total project
resources, depending upon the criticality and cexipt of the software. The&V techniques
must be applied at each stage in the software gsode has two major objectives 1) the
discovery of bugs in a product and 2) the assessafemhether or not the product is useful
and useable in an operational situat/d&V must establish confidence that the software is fit
for purpose. This does not mean completelg fiedefects. Rather, it must be good enough
for its intended use and the type of use will detae the degree of confidence that is needed.
Confidence is certainly subjective and depends amyrfactors such as software criticity,
users and market expectations. W&V consists of humerous techniques and tools, often
used in combination with one another. Due to tihgddaumber oV &V approaches in use, we
cannot address every technique. In fact, softw&¥ both usestaticanddynamictechniques

of product checking to ensure that the resultingtwsse product matches with its
specifications and that the software product aslempnted meets the expectations of the
customer. In factdynamic techniquesivolve the execution of the software product unde
test, whereastatic techniquedo not:

« Static techniqguefReviewandProof) are concerned with analysis of the static product
representation to discover errors throughout atjes$ of the software life cycle. It may
be complemented kipol-based documemindcode analysis

* Dynamic techniqueg¢Testing are concerned with exercising and observing prbdu
behavior. The product is executed with test datd @&® operational behavior is
observed.
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1. Static techniques
a. Review

A reviewis a technique during whichveork product or set ofwork productsis presented to
project personnel, managers, users, customersher stakeholders for comment or approval
(IEEE Std. 610-1990)Reviewcan be used to examine all the products of thévaoé
evolution process. In particular, they are espbciapplicable and necessary for those
products not yet in machine processable form, sischequirements or specifications written
in lateral languagdEEE (IEEE Std. 610-1990) has identified four kindsre¥iewwhich are
often used for software verificatioechnical review, walkthrough, inspection and audit
Thesereviewsare all formal reviews” in the sense that all have specific diojes and
explicit rules of procedures. They expect to idgngirrors and discrepancies of the software
regarding the original specifications, plans arahgards.

Technical review

The objective of atechnical reviewis to evaluate a specific set of review items .(e.g
document,source codg and provide management with evidence that 1) tt@yform to
specifications made in previous phases; 2) the laen produced according to the project
standards and procedures and finally 3) any chahges been properly implemented, and
affect only those products identified by the chasgecification. Typical conclusions of a
review meeting are 1) authorization to proceedhi® next phase, subject to updates and
actions being completed, 2) authorization to prdosih a restricted part of the product and
3) a decision to perform additional work.

Walkthrough

Walkthroughshould be used for the early evaluation of documenodels, designs and code.
The objective of avalkthroughis to evaluate a specific review item (e.g. docoinsource
codg. A walkthroughshould attempt to identify errors and considersgme solutions. In
contrast with other forms of review, secondary otiyes are to educate, and to solve form
errors.

Inspection

Inspectioncan be used for the detection of errors in detalkesigns before coding and during
the coding stagdnspectionmay also be used to verifgst casesA study done by Fagan
(Fagan 1986) has shown that inspection could detest 50% of the total number of errors
introduced in development stagdSEE (IEEE Std. 610-1990) considers that inspection is a
more rigorous alternative to walkthrough, and ®msgly recommended for software with
stringent reliability, security and safety requients.

Audit

Audit is an independenteview that assesses compliance with software requirenent
specifications, baselines, standards, procedurestyuctions, codes and contractual and
licensing requirements. To ensure their objectjvatydit should be carried out by people
independent of the development team.

b. Proof

A proof attempts to logically demonstrate that softwareoisect. Whereas @stempirically
demonstrates that specific inputs result in speoifitputs proof logically demonstrate that all
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inputs meeting defined pre-conditions will resuldefined post-conditions being met. Adrion
(Adrion 1986) defineproof as is a collection of techniques that applyftivenality and rigor

of mathematics to the task of proving consistenejwben an algorithm solution and a
rigorous, complete specification of the intentlod solution. This technique is also referred to
as ‘formal verification”. Proof techniques are normally presented in the contexenfying

an implementation against a specification.

Prowell and Beizer (Powell 1986, Beizer 1990) halentified several limitations tproof
techniquesOne limitationis the dependence of eagloof technique to dormal specification
language. In fact, in order to use a specpgroof technigue on a project, the software
requirements of this project must be written in pedfic language associated with the
correspondingproof technique.Another limitationhas to do with the complexity of using
proof techniques. For large programs, the amount ofldetaandle, combined with the lack
of powerful tools may make thgroof technique impractical. According to inner software
managersproof techniques are not suitable to the automotive @&titiyge context and more
especially to Johnson Controls. The four main resswe:

» Prooftechniques are often used on critical softwarelpects. They often have precise
and logical specifications with no loopholes andytliequire being highly reliable,
since failures in this kind of products may leaddeathly consequences. Some areas
whereproof techniques have been successful are for the gdmh and verification
of safe and critical products such as aircraft ai®, nuclear power plant control and
patient monitoring. In Johnson Controls, the depetbelectronic products are related
to the car interior functionalities and are notsidered by the carmakers as critical.

* Automotive engineers are not familiar wgphoof techniques contrary to aeronautic or
defense engineerSoftware testings a widespread/&V technique in automotive
industry.

* Proof techniques are not widely used in automotive igu&armakers and Johnson
Controls competitors). This could lead to the casidn thatproof techniques are not
adapted to the automotive context. In fact, thdiadilty of expressing software
requirements in the mathematical form necessaryfdional proof has restricted a
wider application of this technique.

* Finally, many managers highlight the complexity ahd additional effort required
regardingreviewingor testingtechniques.

As said in the research focus (CfChapter 3 — Section 3)Bwe do not address thestatic
V&V techniquesbut we focus our research on thelynamic techniquege. g.software
testing.

2. Dynamic techniques

Software testingaV&V dynamictechnique is a widespread technique in automatigdestry.

In Johnson Controls (C€hapter 2 — Section)5software testingepresents up to 90% of the
total time spent in verifying and validation a sadte product. Moreover, in the academic
research, the traditional focus of softwM&V techniques has been theftware testingin
fact, testing approaches are widely studied in academic resemrdhdeployed in software
industry. Therefore, in odriterature review the software testingcategory has been further
refined. In the following section, we expose thejandesting principles, techniques and
issues.
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Software testing techniques

A. What is “software testing™?

Harrold (Harrold 2000) has identified several adages oftesting over static-analysis
techniquesOne advantagef testingis the relative ease with which many of the tegtin
activities can be performed.est casexan be generated automatically. Software can be
instrumented so that it reports information abde e&xecutions with théest casesThis
information can be used to measure how well thst casesatisfy the quality objectives.
Output from the executions can be compared witleetqal results to identify thosest cases
on which the software failedA second advantagef testing is that the software being
developed can be executed in its expected envirotnée results of these executions with
thetest caseprovide confidence that the software will behasersendedA third advantage
of testing is that much of the process can be aat®dn With this automation, thiest cases
can be reused for testing as the software evoldtbough, testing has a number of
advantages, it also has a number of limitatidrestingcannot highlight the absence of errors;
it can only stress their presence. Additionatlgsting cannot show that the software has
certain qualities. Despite these limitationssting is widely used in industry to provide
confidence in the quality of software. Therefotee growth of software complexity and the
increased emphasis on software quality, highlighe tneed for improvedtesting
methodologies. In the following, we list some ddat of software pioneers around the world.

“Quality assurance over test designs and testingssential to a successful quality effort. [}..]
More than the act of testing, the act of designiagts is one of the most effective hu
preventers known. [...] The ideal quality assuraacévity would be so successful at this that
all bugs would be eliminated during test designfddiminately, this ideal is unachievable. \1t/e
are human and there will be bugs. To the extent thelity assurance fails to reach its
primary goal of bug prevention, it must reach gsendary goal of bug detection.”

B. Beizer, (Beizer 1984

N—r

“Reliable Object-Oriented software cannot be ob&drwithout testing.” — R.V. Binder
Binder, (Binder 1995

“The importance of software testing and its impltioas with respect to software quality
cannot be overemphasized. [...] It is not unusoalaf software development organization|to
expend between 30 and 40 percent of total projéatteon testing. In the extreme, testing| of
human-rated software (e.g. flight control, nucleaactor monitoring) can cost three to fiye
times as much as all other software engineeringiiets combined!”

R.S. Pressman, (Pressman 1997)

However, several different definitions have beewenifor thesoftware testingechnique.
Some of them are listed below. In this dissertativa adopt the definition proposed by the
National Institute of Standards and Technol@yJST).
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Definition 4.2: Software testing (NIST 2002)

Software testing is the process of applying metiicsletermine product quality. Software
testing is the dynamic execution of software anel ¢dbmparison of the results of that
execution against a set of pre-determined critéfixecution” is the process of running the
software on a computer with or without any formratrumentation or test control software
being present. “Predetermined criteria” means thhe software’s capabilities are known
prior to its execution. What the software actuallyes can then be compared against| the
anticipated results to judge whether the softwaebdved correctly. Software testing is a
widespread V&V technique in automotive industry.

Definition 4.3: Software testing (Myers 1979)

Software testing is the process of executing anaragor system with the intent of finding
errors.

Definition 4.4: Software testing (IEEE Std. 610-109IEEE Std. 829-1998)
Software testing is:

(1) the process of operating a software componenproduct under specified conditions,
observing or recording the results, and making aral@ation of some aspect of the
component or product.

(2) the process of analyzing a software item tedethe differences between existing jand
required conditions (that is, bugs) and to evaluhie features of the software items.

While the NIST definition associates theoftware testingo a quality measurement tool, the
definition of Meyers insists on the fact that tegtisoftware must reveal bugs and tBEE
definition claims the good behavior of the softwaneler test.

B. Classification of software testing techniques

There is an excess of testing methods and testictiniques. Classified by life-cycle phase,
software testingcan be categorized as followsit test integration testvalidation testand
regression testClassified by accessibilitgoftware testingan be divided intavhite-box test
andblack box testAll these test methods can be used (individuadlin conjunction) at each
phase of the software life-cycle. In the followinge provide some details on each of these
testing techniques.

1. According to life-cycle phase

During the development lifecycle of a software preitestingis performed at different
levels and can involve the whole product or paftst.oDepending on the process model
adopted, thensoftware testingactivities can be articulated in different phaseach one
addressing specific needs relative to differentipos of a product. Whichever the process
adopted, Bernot (Bernot 1991) states that one tdeaat distinguish in principle between
unit, integrationandvalidation test These are the threestinglevels of a traditional phased
process (such as in Johnson Controls). Pezze (P&9%®) considers that these levels are
complementary with different goals and executioocpdures. In fact, none of these levels is
more relevant or important than the others. Eagbllenust address a specifigpology of
bugsin a software product. Thenit testmust detect bugs related to the behavior of each
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software component independently from its enviromind he integration testfocuses on
problems of communications and interfaces that aree during component integration. And
finally the validation tesfocuses on the behavior of a software productwabale.

a. Unit or component or module test

A component is the smallest testable piece of soBwWCf.Definition 1.3, which may consist
of hundreds sometimes thousand4.OIC, and generally represents the result of the wérk o
one programmerdevelope). Bernot (Bernot 1991) defines thait testas avV&V technique

to ensure that a software component satisfies uitgtional specification and/or that its
implemented structure matches the intended desigatgre. Theaunit testcan also be applied
to check thdocal data structurgimproper typing, incorrect variable name, incerent data
type) and theboundary conditionsin other words, go through all theource codeof a
software component.

b. Integration test

Generally speakingntegrationis the process by which software components agecggted
to create a software product. Bernot (Bernot 198éfines theintegration testas the
technique that aims at verifying that each compbriateracts with other components
according to its specifications. In particular, rtainly focuses on the communication
interfaces among integrated components. Even ththegkingle components are individually
acceptable when tested in isolation, in fact, tbeyld still result in incorrect or inconsistent
behavior when combined. For instance, there coeld improper call or return sequence
between two or more components. Fenton (Fenton)2089€ identified twantegration test
approachnon-incrementabndincremental In a non-incrementabpproach the components
are linked together and tested all at ortmg-pang testing In theincrementalapproach, we
find the classicatop-downstrategy, in which the modules are integrated aine time, from
the main program down to the subordinated oneshattom-up in which the tests are
constructed starting from the modules at the lowligrarchical level and then are
progressively linked together upwards, to consttiaetwhole product. Usually in practice (as
in Jonson Controls), a mixed approach is applieddetermined by external project factors
(e.g. availability of modules, release policy, dadaility of test engineers and so on).

c. Validation or system test

Validation testnvolves the whole software product and is defibgdernot (Bernot 1991) as
the technique that aims at verifying that the whetdtware behaves according to the
customer requirements. In particular it attemptseteeal bugs that cannot be attributed to
specific components, but they are due to the insterxies between components, or to the
planned interactions of components and other abjeehich are the subject aitegration
tes). In (Bertolino 2002), Bertolino summarizes thenary goals ovalidation test

» Discovering the bugs that manifest themselves anlgystem level and hence were
not detected duringnit or integration test.

* Increasing the confidence that the developed prtodacrectly implements the
required capabilities.

* Collecting information useful for deciding the raée of the product.

Validation tesimust therefore ensure that each product functiorksvas expected.
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d. Regression test

In (Bernot 1991), the author consider that ithgression tesis not a separate level of testing,
but may refer to the retesting of a component, mhgipation of components or a whole
software product after modification, in order t@esain that the change has not introduced
new errors. As software produced today is constaublving, driven by market forces and
technology advanceseggression testakes by far the predominant portiontestingeffort in
industry. Since both corrective and evolutive migdiions may be performed quite often, to
re-run after each change all previously exectestl casesvould be prohibitively expensive.
Therefore various types of techniques have beealdeed to reduceegression testosts and
to make it more effective. Fernandez (Fernande®)lpfoposes a selectivegression test
techniques based on selecting a (minimized) sudfdbe existingest caseby examining the
modifications. Other approaches instead prioritieetest casesccording to some specified
criterion (for instance maximizing tludde coverage

2. According to accessibility

Testingmethods can also be divided into two families pading to thanput datafrom which
test casesre selected (Beizer 199®lack-box tesandwhite-box testingBlack-box testa
term most likely borrowed from electronic engine@nsolves treating software component or
product as alack-box(like an electronic component) to which input dae supplied and
from which the corresponding output can be coléctaxd observed, but whose inner
intermediate workings of the software cannot bens¥¢hite-boxtest does allow one to
observe the internal workings of the software anthake use of its structural information to
adapt or drive th&estingprocess.

a. Functional or black-box or specification-based test

According to Beizer (Beizer 1995jest casesfor functional testare derived from the
functional specification of the software productantest, apart from the code. The criterion
of correctness is the functional specificationtd software under test: program behaviors are
compared to those required by the specificatiore gbal is to seledest caseshat cover
each requirement described by the functional sjpatibn. Functional testis typically the
base-line technique for designitgst casesfor a number of reasonBunctional test case
designcan (and should) begin as part of tequirement specificatioprocess. Even if the
source codeof a software is not already developed, one cangdeunctionaltest casedor
this software based on the software functional irequents. Moreoverfunctional testis
effective in finding some classes of bugs that dgjty elude structural testtechniques.
Functional testtechniques can be applied to any description ofjf@am behavior, from an
informal partial description to &rmal specification and at any level of granularity,nfro
software component to produessting

Since, functional testaims at finding any discrepancies between whabfavare does and
what it is intended to do, one must obviously rééerequirements as expressed by users and
specified by software engineers. An important safect of test design is highlighting
weaknesses and incompleteness of software funttimtpirements. A survey on the
formalism degree of the software functional requiremastperformed inSection 4.D.1
Designing functionaltest casedss an analytical process which decomposes regeinem
specifications intaest casesin most cases (as in Johnson Contrdighctional testis a
human intensive activity. For instance, when tesfireeers work froninformal specifications
written in natural languagemuch of the work is in analyzing the specificatfor identifying
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test casesEven expert test engineers can miss impottsit casesSystematic processes
amplify but do not substitute for skills and expee of the test engineers. In a few cases,
functional testcan be fully automated. This is possible for ex@mwhen requirement
specifications are expressed ifioamal language (for instance, a grammar or an executable
model). This approach is known under the nam®iwhal testingor model-based testingnd
has been described by Apfelbaum and Robinson irfie(dgum 1997, Robinson 1999). The
authors highlight the approach’s advantage of quaeang a good anfdrmal coveragef the
requirements specification. In fact, the test eegig’ job is limited to the choice of thest
selection criteria which defines the strategy for generattegt casesSeveral experiments
have been performed itesting using formal specifications. A good summary of these
experiments has been done by Gaudel and El-F&andel 1995, El-Far 2001).

b. Structural or white-box or program-based test

According to Beizer (Beizer 1993gst casedor structural testare derived from the code of
the software under test. In fact, the structurehef software itself is a valuable source of
information for selectingest casesand determining whether a set test casedas been
sufficiently thorough. We can check whetheteat casehas covered a specific part of the
program. In facttestingcan reveal an error only when the execution ofdbeesponding
erroneoustemscauses a bug. For instance, if there were an iertbe lineN of the program,

it could be revealed only wittest caseshat would cause this line to be executed. Based o
this observation, a program has not been adequigsiyd if some of itkemshave not been
executed. Antem could be dine of codedecision conditionor procedure(Cf. Chapter 2 —
Section 6.A)1l Unfortunately, a set of correct program exeagion which allstructural
itemsare exercised does not guarantee the absenceods. dfxecution of an erroneoitem
may not always result in a bug. The state may aatdsrupted when the item is executed with
some data values, and a corrupted state may npagate through execution to eventually
lead to a bug. Many software researchers (Jorgeh888, Pezze 1998, Woodward 2005)
state that structural information must not be usethe primary answer to the question, “How
shall | choose tests,” but it is useful in combioatwith othertest selection criterisuch as
cover the customer requirements.

Based on our industrial audit (Cf. Diagnosis §, test engineers in Johnson Controls use
the structural approach in the unit test stage and thefunctional approach in the
validation teststage. The purpose of designingest casesising thestructural approach is
to cover at 100% thesource codewhile using the functional approach, test engineers
have to check the compliance of the software withhé carmaker requirements. This
leads to the fact that bugs related to the behaviofregarding the requirements) of one
independent software component are detected laten ithe process (during thevalidation
tes). We propose to performfunctional testsince the earliertesting stages. One has to
verify the compliance of each software componentr(dependently from its environment)
with the carmaker requirements.

V. Software testing research issues and solutions

In this section, we develop tleeftware testingssue identified irChapter 3 — Section.4n
fact, we analyze the related solutions proposedheliterature, identify lacks in these
solutions and proposeprovement actions order to fit in our context.
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A. Research issue 1: How to execute test cases diweas®product?

The execution of gest casecan occur in ananualor automatedwvay. In other words, thiest
case descriptions that are the result of thest designactivity could be manually or
automatically executed against a software prodQete issue when automating thest
executionis to transcribe the specifigdst casesnto a computer language. Another issue is
the ability to put the product into a state fromieththe specifiedest casesan be launched.
This is sometimes referred to as thst preconditionin fact, before a specific command can
be executed, several runs in sequence are requar@dit the product in the suitabtest
precondition An effective way to deal with this is to arrantje selectedest casesnto
suitable sequences, such that etedt caseleaves the product into a state similar to the
preconditionof the nexttest case This problem has been eaftyyrmalized and tackled by
Dick in (Dick 1993). Moreover, a more complex pmtl arises whetestingonly one or
more components of a software product (the casesufftwareunit tesj. Indeed, the testing
task itself requires a large programming effort.bBoable to test one software component of a
large software product we need to emulate the behaof its peripheral software
components. Fortunately, some commercial test tewist which can facilitate these tasks.
Finally, when testing reveals a bug, the task ofegating the conditions that made it occur is
called test replay Exacttest replayrequires mechanisms for capturing the happening of
synchronizationoperations and for forcing the same order operationswhen a test is
replayed.

As said in the research focus (CfChapter 3 — Section 3)B we do not address the
problem of executingtest casesn the software product. In fact, we made the assuption
that the presenttest execution platformare reliable.

B. Research issue 2: When to decide to stop testsodtware product?

Determining when to stoestingand release a product is an importaainagement decision
It is clear that there is naturt@hde-offbetween the decision to continigstingor to stop: (a)

if testingstops too early, many bugs remain. Thus we ineercbst of later bug-fixing and
losses due to customers’ dissatisfaction. The abfiking a bug after release is a lot more
than the cost of fixing whilgesting (Cf. Figure 1.13. (b) if testing continues up to the
maximum permissible time, then there is the costesfing effort and a loss of market
initiative.

1. Criteria to stop testing a software
Several stopping criteria have been proposeddtiware testing

a. Stochastic similarity

A stopping criterion based on stochastic similarigyproposed by Whittaker in (Whittaker
1994) and refined by Sayre in (Sayre 2000). Thigron is based directly on the statistical
properties of aisageandtesting chainsThe usage chains a model of ideal testing of the
software; e.g. each arc probability is establishél the best estimate of actual usage, and no
failure states are present. Ttesting chain on the other hand, is a model of a specific test
history, including bug data. Thus, thesage chainrepresents what would occur in the
statistical test in the absence of bugs, andtéséng chainrepresents what has occurred.
Dissimilarity between the two models is therefongsaful measure of the progressesting
When the dissimilarity is small, the test histosyan accurate picture of thusage model
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Unfortunately, Johnson Controls test engineers aiten subjected to time pressure and
thereforetestandbug dataare note often well organized. Therefore, in tustext, the use of
thestochastic similaritymodel to decide staestinga software may lead to poor results.

b. Reliability estimation

A stopping criterion based on estimated reliabilitydaconfidences proposed by Littlewood
in (Littlewood 1997). This criterion relies on adat reliability. IEEE (IEEE Std. 610-1990)
defines software reliability as the probability of‘bug-free” software operations for a
specified period of time in a specified environmdntfact, during the past 30 years, many
models have been proposed assessing the relialmégsurements of software products. A
software reliability modegpecifies the general form of the dependenceebtiy process on
the principal factors that affect ierror introduction error removal and theoperational
environment Software reliabilitymodeling forecasts the curve of the bug rate htissical
evidences. The purpose of this measure is two-fldo predict the extra time needed to test
the software to achieve a specified objective; ®ptedict the expected reliability of the
software when théestingis finished. The success of a model is often jddgg how well it
fits a curve to the observed "number of bugs wsetifunction. It is important to note that all
the software reliability modelsare based on some assumptions 1) The module uester
remains essentially unchanged throughesting except for the removal of errors as they are
found, 2) Removing an error does not affect thenchdahat a different error will be found, 3)
"Time" is measured in such a way thestingeffort is constant and finally 4) All errors ark o
equal importance. Unfortunately, none of theseragsions fit with our industrial context and
therefore using such models in deciding when tp tstinga software in Johnson Controls
may lead to poor results. Many of the currsaftware reliability models, techniques and
practices are detailed in théandbook of Software Reliability Engineerity Lyu (Lyu
1996).

c. Cost benefit estimation

A cost-benefit stopping criteria based on estimafab® errors remaining in the product and
the cost to repair them both before and after reéeare proposed by Dalal in (Dalal 1988). A
more sophisticated version which includes costs doelost market and customer
dissatisfaction is proposed by Chavez in (Chave@0R0This model remedies all the
assumptions considered by theliability models However, this leads to a complex
mathematical problem. Since Johnson Controls tegjineers are not familiar with

mathematical theories (which are not the core eif tbkills), it remains difficult to apply such

a model in our context.

d. Test coverage

A stopping criteria based on test coverage presented by Offutt in (Offutt 1999a). The
decision of when to stopestingis based on covering a software code or requir&nien
various ways. In practicepode coveragés used to decide when to stsfpuctural testwhile
requirement coveragis used in dunctional testontext. On the one hand, researchesute
coveragemeasurement have reached a high level of matamitdymany automated tools were
commercialized. In a survey done by Yang in (Yaf§®&), the author studies and compares
17 code coverageneasurement tools. In fact, tbede coverageneasurement helps engineers
detecting“dead code”, piece of code that can be never covered and Spaeified code”,
piece of code that does not implement any of thguirements. On the other hand,
requirement coveragmeasurement is still immature. In fact, the accyraf arequirement
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coveragemeasurement depends on the degree of formalisoh when specifying a set of
requirements. IrSection 4.D.1we develop the three degreesfaimalism (nformal, semi-
formal andformal) used to specify software functional requiremektsasuring the coverage
of aninformal or semi-formalspecification is usually done by a manual appro@dntron
2005). In fact, all the requirements associatetthéosoftware product under test are identified
and when designingtast casgetest engineer has to identify the requiremenh@) has (have)
been covered by this test. Obviously, such an @gbrds imprecise since it strongly depends
on the engineers’ degree of the specification cemgnsion and interpretation. Measuring the
coverageof aformal specification can be considered as a simple pmolkat can be easily
automated (Offutt 1999a). However, tt@veragemeasurement criteria are specifics for each
formalism of formal specification. Now, in Johnson Controls, ttale coveragés formaly
used whentesting unitarily each software component. Moreover, vialidation test test
engineers have to ensure a 10@#verageof the software functional requirements. In
Chapter 2 — Section 4,Ave show thasemi-formalandformal methods are more and more
used to specify software functional requirementsuimmomotive industry but there is not a
unique standardformalism shared between carmakers and suppliers. As ndirect
consequence and even wiflormal specifications, test engineers still measuring the
requirement coveragasing the tradition manual approach presente@hapter 2 — Section
6.B.1

Based on our industrial audit (Cf. Diagnosis 2, 5, 6, 8, 9, 11 and Jl6he stopping
criterion used whentestingunitarily a software component is the 100%coverageof the
component source code. Sometimes, for time and bugigreasons, test engineers stop
testing a component even if the 100%ode coverageés not reached. In validation test, the
criterion to stop testing a software product is to cover at 100% the relateccarmaker
requirements. These requirements are documented ithe SRS document, a large
document difficult to manage, incomplete and not rgularly updated. Moreover, there
are no standards to specify software requirementsral test engineers have to adapt their
coveragepractices to each requirement’s formalism. Finally the present definition of a
software requirement is not enough refined. In fagtone requirement can hide two or
more implicit requirements. Therefore, inexperiencd validators could misstestingsome
of the carmaker implicit requirements. Based on thditerature review, we consider that
ensuring a 100%code coveragés a necessary quality objective whetestinga software.
Nevertheless, we propose ttormalize the measurement of theequirement coveragelo
do this, one has to specify the requirements using formal language. Moreover, we
suggest integratingproject constraintgtest time and cost) in the decision to stoggstinga
software product.

C. Research issue 3: How to choose the operations tohkecked on a
software product?

Effective testing requires strategiedrade-offbetween the two opposite needs of amplifying
testing thoroughness on the one side (for whiclargel number otest casesvould be
desirable) and reducing times and costs on the ¢tbewhich the fewer théest caseshe
better). Given that test resources are limited, hlog&operationsare selected becomes of
crucial importance. Indeed, the problenopkration selectiomas been the major dominating
topic in software testingresearch. A decision procedure for selecting dperation is
provided by aroperation selection strategy

A basic strategy isandom testingaccording to which theperationsare randomly chosen
from the whole input domain according to a spedifistribution, e.g. after assigning to the
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inputs different “weights” (more properly probabds). For instance the uniform distribution
does not make any distinction among the inputs, @andinput has the same probability of
being chosen. In contrast withndom testinga broad class afperation selection strategies
referred to agartition testing The underlying idea is that the program input domis
divided into sub domains within which it is assuntledt the program behaves the same, e.g.
for every point within a sub domain the progranmeitsucceeds or fails: we also call this the
test hypothesisTherefore, thanks to this assumption only onéwar points within each sub
domain need to be checked, and this is what alfowgetting a finite set obperationsout of

the infinite domain. Hence artition testingstrategy essentially provides a way to derive the
sub domains. Aroperation selectiorstrategy yielding the assumption that efierations
within a sub domain either succeed or fail is oalyideal, and would guarantee that any
fulfilling set of operationsalways detect the same bugs; in practice, thengsson is rarely
satisfied, and different sets @perationsfulfilling a same criterion may show varying
effectiveness depending on how tbperationsare picked within each sub domain. The
relative merits of these two differemiperation selectionphilosophies have been highly
debated by Weyuker and Frankl in (Weyuker 1991 ,nlbral998). However, the most
practicedoperation selection strategyg industry is probably based on reaching an dhjec

in particular code and/orrequirement coveragebjective. In fact, the test engineer keeps
selectingoperationsuntil the predefined objective is reached or hsrfhanager tells her or
him to stop (fortime or budgeteasons). This strategy is clearly subjective laasked on the
test engineer's intuition and experience. Nevegglexpert test engineers can perform a very
good selection mechanism taking into account maniofs such as the time and cost and the
efficiency of the selectedperations(Johnson Controls source). When using tpsration
selection strategythe test engineer’s skill (experienced and sijllis the factor that mostly
affects test effectiveness in finding bugs.

Many are the factors of relevance wtamnoperation selection stratedpas to be chosen. An
important point to always keep in mind is that wimatkes a test a “good” one does not have a
unique answer, but changes depending on the comiexhe specific application, and on the
goal fortesting The most common interpretation for “good” woulel ‘fable to detect many
bugs”; but again precision would require to spewifyat kind of bugs, as Basanieri has shown
in (Basanieri 2002) that differenfperation selection strategyetect different types of faults.
Paradoxically, operation selectionseems to be the least interesting problem for test
practitioners. In 2006, we did a survey on existtogimercial tools supporting tlogperation
selectionwhentestinga software product. We focus our survey on thdstable to select
operations that verify the compliance of a software with gpecification functional
requirements We identify 6 tools:

1. CONFORMIQ TEST GENERATOR byVERYSOFF GERMANY

2. MATELO byALLATEC- FRANCE

3. PRO-TEST/PRAXIS by DIGITAL COMPUTATIONS, ING USA

4. REACTIS by REACTIVE SYSTEMS, INCUSA

5. RHAPSODY TESTCONDUCTOR/AUTOMATIC TEST GENERATOR by I-
LOGIX/TELELOGIC- USA

6. T-VEC RAVE/TESTER for Simulink/Stateflow byf-VEC— USA

An overview of the characteristics of each of thes#s is given iPAppendix D The major
number of these tools is based oMadel-Basedapproach. Indeed, the software functional
requirements are represented in a specific formain fwhich operations are selected
automatically. On the one hand, more than 278 tegfporting thesoftware testingprocess
(test managementest executiorand so on) have been referenced in (Legeard 2060Q7)
Legeard. On the other hand, we have shown throwghndustrial audit (Cf. Chapter 2 —
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Section § that the activity of designing manualigst casedor software products becomes
more and more laborious and time consuming. Thexgtme could highlight the lack of tools
supporting the selection of operations whesting a software. 2% (6 over 278) of the
commercialsoftware testingools are dedicated to tlseftware testingctivity that accounts
more than 50% of the total software project timd badget.

Based on our industrial audit (Cf. Diagnosis 2, 5, 6, 13, 14, 15, 16, 17 and),1the
operation selection strateggurrently used in Johnson Controls is a manual sybctive
one based the test engineers’ experience and infoi. Their main purpose is to reach a
code or requirement coverageobjective. In fact, test engineers do not alwaysekect
operationsthat simulate thereal useof the software product under test. Moreover, thee
is no formal process to analyze recurrent bugs stored in theroblems’ databaseand
selectoperationsthat detect these bugs on future developments. And firlg) there is a
lack of formal process and tools to manage and reugest casesrom one project to
another. We propose toformalize the process of selectingperationsin order to be
independent as much as possible from the test engirs’ experience. One solution we
propose is to automate this process. One could setleperationsrandomly or, select
operationsbased on theend-user behavior’s profil®r the experience feedbackrom bugs
and test casesapitalized on similar projects in the past).

Since 2005 and as the designtedt cases$or software has reached the 50% of the total time
and budget of a project in Johnson Controls, tHeraation of thetest case design process
became a hot topic. Therefore, inner software éxpmrd managers have evaluated some of
the previous listed tools (evaluation version @& tbol). None of these tools are fully adapted
to the Johnson Controls context. Many issues haen ddentified by the experts and
managers: 1) these tools propose to represenbftvease requirements infarmal language
which is not adapted to the automotive softwaretexin 2) these tools do not propose a
relevant stop testing criterion based on tist casequality and software project constraints
(test cost and time), 3) some of these tools donmentage the reuse of capitalized bugs and
test casesrom one project to another ,4) some of thesestdol not propose to generagst
caseswith a end-user behavior's profiland finally 5) the tool licenses and trainings are
expensive.

1. Advantages and drawbacks of automating the desigrf test cases

The activity of designingest casegor a software product is a major activity in dteare
development life cycle. To cut down cost of marteat caselesign and to increase reliability
of it, researchers and practitioners have triedutomate it. Many managers today expest
design automatiomo be a silver bullet; killing the problems of testheduling, the costs of
testing defect reporting, and more. However, there ar@ymfactors to consider when
planning fortest design automatiort usually has broad impacts on the organizasiach as
the skills needed to design and implement automtaigtd, automation tools, and automation
environments. Development and maintenance of autmmgests is quite different from
manual tests. The job skills change, test appr@change, and testing itself changes when
automation is installed. These impacts have pasiind negative components that must be
considered Automationis only a means to help accomplish our tadlestinga product. It
may reduce staff involvement during testing, thawirsy time relatively to manually
designingtest casesBut, automatic test desigmay generate a bunch of results that can take
much more staff involvement for analysis, thus iogstmore than manual test design. Often
the information obtained frorautomatic test generatioils more cryptic and takes longer to
analyze and isolate when bugs are discoveredctndaccessful test automation efforts don’t
focus on eliminating the test team, they focus omgl a more effective and efficient job of
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testing with the human resources availaletomatic test generatioman be incredibly
effective, giving morecoverage It also provides us with opportunities ftastingin ways
impractical or impossible for manu#&sting Indeed,automatic test desigman generate
millions of test casedimited only by the machine power and time avdéator running the
tests. However, Black (Black 2000) notice thatomated testing a huge investment, one of
the biggest that organizations make in testing.l Tioenses are often expensive. Engineers
cannot use alone most of these tools and ther&fmreng, consulting, and expert contractors
can cost more than the tools themselves. Moredkierfest engineers could resist using an
automation tool since they felt that their manualgess worked fine. Effort must be invested
in incorporating a new automation tool into the qgass. As we propose to automate the
design of test caseswithin Johnson Controls, we must take into accoalit these
considerations.

2. Design test cases based on end-user behavior’s plef

We propose to define aend-user (driver) behavior's profileor each software under test.
Therefore, whentesting the software, one could select tbperationsor succession of
operationsrecurrently performed on the software in real Uisdact, there is no better way to
test a product other than testing it in the way thaill be used. The main work in this field is
the one of Musa in (Musa 1993). Musa has proposedoaess to define aoperational
profile for a system. This process involves one or mortheffollowing five levelsClient
type list User type list System moded-unctional profile and Operational profile By
customizing this process to our context, we onlystder theoperational profilelevel. In fact,
we consider that a software product is dedicatezhtp one customer (carmaker) andlignt
type listis not necessarylhe end-userg(driver) of an automotive software product can be
classified regarding to criteria such job, climatexe, age, culture ... In our research, we do
not deal with these criteria and we consider a nahend-user behavior'gprofile. Most
software products have more than enede of operatiorfnormal mode,factory mode and
diagnosticmode). However, the occurrence probability of toemal mode is about 99%
(Johnson Controls source) and consequently we édoidgnore the other modes. The next
step is to breakystem modedown into the functionalities. It needs, to creafanctionality

list in determining the occurrence probability of e&aictionality. The best source of data to
determine occurrence probabilities is usage meamnts, e.g. frequency measurements of
the usersperations taken on the last release or on similar systenour context, we don’t
have this type of information (since it is consgttas confidential by the carmakers). Finally,
for each functionality, a set operationsandsucession of operations possible (CfChapter

2 — Section b Therefore, for each functionality, experts migntify recurrentoperations
and succession of operationand therefore define occurrence probabilities. nBghan
(Branaghan 1999) has developed the fundamentalsadfility testing In fact, theusability
testing techniqueare widely and often used in testi@gaphical User Interface§GUI).

3. Design test cases based on experience feedback

We also propose to reuse capitalized bugs tstl casesfrom one project to another.
Therefore, when testing the software, one couldthisexperience feedbaan bugs andest
cases respectively detected and designed on similarwsoé in the past. Presently,
information on stored bugs is missing and/or inrafé and reusing these bugs in order to
avoid or detect similar problems on future develepta remains a difficult problem (Cf.
Diagnosis 18. Therefore, classifying stored bugs and identifythe recurrent type of bugs
detected on a specific type of software could befulsIn the next section, we perform a
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survey on théug classification model&Ve propose to define a typology of bugs adapted t
our context and useful to focus the desigtest casesn recurrent type of bugs.

a. A survey on the software bugs classification models

In this section, we present one bug classificasicileme proposed BFEE standard and two
industrial schemes: theHewlett-Packard SchemdHP) and the Orthogonal Defect
Classification Schem@DC) developed byBM. Classification is performed by assigning a
set of measurement variabledt(ibuteg to discrete values, which are selected, based &o
predefined set of valueatfribute values Therefore, bug classification schemes can differ
the way differentattributesor attributes valueselate to each other.

Orthogonal Defect Classification (Chillarege 1992)

TheODC scheme has been developedBiyl. Since its definition, this classification has bee
adopted by more and more organizations. In a supeefprmed in 1999 by Paulk in (Paulk
2000), 14 out of 37 high-maturity software orgatimas (according to th€ MM maturity
model) used this scheme as quantitative analysistipe. Theattributesof this scheme are
organized according to two process steps:

» Step OPENwhen a bug has been detected and a bug repogeised inthe bug
tracking system
« Step CLOSEwhen the bug has been corrected and the bugtrispdosed.

Two interestingattributeswas taken into account in this scheme: 1)atigbute defect type
which captures the fix that was made to resolvebing and 2) thattribute trigger which
captures the reason why an error turns into a bbg. entireODC scheme withattribute
name, meaning and values is described by Chillare@@hillarege 1992).

Hewlett-Packard Scheme (Grady 1992)

The HP scheme was developed bByP’s Software Metrics Councih 1986. This scheme is
based on three descriptors for each bug:

* Theorigin — where was the bug introduced in the product

* Thetypeof the bug

 The mode- whether information wasnissing unclear, wrong, changedor done in a
better way

The choice of amttribute valuefor theattribute Origin defines the possible set aftributes
available for theattribute Type.The entireHP scheme withattributesandattribute valuess
developed by Grady in (Grady 1992).

IEEE Standard Classification for Software Anoma(iEEE Std. 1044-1993)

The IEEE scheme was developed by thestitute of Electrical and Electronics Engineers
(IEEE), the world's leading professional associationtf@ advancement of technology. The
different attributes of the scheme are organized according to a geterglclassification
process consisting of four steps:

» First Step:Recognition- the bug is found

» Second Stepnvestigation— we identify issues and propose solutions

* Third Step:Action— we establish a plan of action to resolve théler

» Last Step:Disposition— we complete all required resolution actions &m-term
corrective actions
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The entird EEE scheme withattributesandattribute valuess developed inlEEE Std. 1044-

1993).

b. Major aspects of a software bug model

The previous survey reveals several valuable elesrierbe take into account when designing
a new bug classification schemaéBugs are inserted due to a particular reason im@o
particular piece of software at a particular poimt time. The bugs are detected at a specific
time and occasion by noting some sort of symptoththey are corrected in specific way.
Each of these aspects might be relevant for a fspeneasurement and analysis purpose.
Mellor and Fenton in (Mellor 1992, Fenton 1996) éigwoposed a framework of bug key
elements that capture on high-level aspects of @ Bach of these key elements can be
refined leading to many attributes that can bewaptby means of measurement:

Location: where in the productPhelocation of a bug describes where in the product
the bug was detected. This attribute can also oord#ribute values describing
different high-level entities of the entire produ(®pecification Design Code
Documentation..).

Timing: when in the process phases, we introduetgal and correct the bugpPhe
timing of a bug refers to process phase when the bugcvesged @rigin phase,
detecteddetection phageand corrected.

Symptom: what we observe when the bug occur@gfptomcaptures what was
observed when the bug occurred or the activity altvg the bug. For instance, the
ODC attribute Trigger captures the mechanism that allows a bug to oddnder
symptomit is also possible to classify what is observadmdy diagnosisor inspection
For instance, InlEEE classification scheme, thattribute symptom provides a
classification of the symptom.

End result: what are the impacts of the bug ondabmmpany itself, on the customer, on
the end-user’End resultdescribes the failure caused by the bug. For mestain
ODC, theattributeimpactcaptures the impact of a bug on the custoperf¢rmance
usability, instability ...).

Mechanism: in which activity and how, we introdudetect and correct the bug?
Mechanismdescribes how the bug was created, detected amdctad. Creation
describes activity that inserted bug into the syst@etectiondescribes activity that
was performed when the bug was detectambl¢ review unit test...). Correction
refers to the steps taken to remove the bug.

Cause: What is the mistake that leads to the lit@Psedescribes the mistake leading
to the bug. For instance, in (Mays 1990) the authsesattributes vales like
Education Oversight CommunicationToolsandTranscriptionfor an attributeCause

In (Leszak 2000), the author uses differattributes capturing different kind of
causes Human-related Causefack of knowledge, communication problems ...),
Project Causegtime pressure, management mistake) brgpection Causegno or
incomplete inspection, inadequate participation ...).

Severity: what is the severity of the bug? Sevelescribes the severity of a resulting
or potential failure on the whole behavior of thieguct.

Cost: How much the bug cost the compa@g3tcaptures the time or effort to locate,
isolate and correct an error.

Bug classification schemeften have problems including incomplete, ambiguand
overlappingattributes and attribute values To prevent such problems,baig classification
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schemeneeds to be well defined. Freimut in (Freimut 2004s proposed a list of quality
properties of a goodug classification scheme

e Orthogonal attributes and orthogonal attributes wes: This means that for a
particular bug and for eachttribute only oneattribute valueis appropriate. If the
attribute valuesare notorthogonal it may happen that two or more attribute values
may fit so that the engineer has arbitrarily toideavhich value to assign. This leads
to inconsistent and unreliable data.

» Complete attribute valueShe set ofattributesvalue must be complete so that for all
bugs an appropriatattribute valuecan be selected. If the set of values are not
complete, engineer may decide not to classify thg ¢ select the nearest possible
value.

 Small number of attribute valueshe scheme must contain a small number of
attributes valuesas too large a number can make selection ofgphsoariateattribute
valuedifficult and therefore unreliable.

» Clear meaning and definition of attributes and iiite values:The attributes and
attribute valuesof the scheme need a clear definition. This defini has to be
developed with all engineers who have to useattrédbutesand need an understanding
of theattribute

D. Research issue 4: How to assess the expected beludva software
product?

An important component destingis theoracle Indeed, a test is meaningful only if it is
possible to decide about its outcome (*OK” or “N@K”). The difficulties inherent to this
task, often oversimplified, had been early artirdaby Weyuker in (Weyuker 1982). In
much of the research literature @oftware testingthe availability oforaclesis either
explicitly or tacitly assumed, but applicaldeaclesare not described. The research literature
on test oracleds a relatively small part of the research literatonsoftware testingSome
older proposals (Panzl 1978, Chapman 1982) baseahalysis either on the availability of
pre-computed input/output pairs or on a previoussive of the same program, which is
presumed to be correct. The former hypothesisuallystoo simplistic: being able to derive a
significant set of input/output pairs would impliget capability of analyzing the product
outcome. In the current industrial practicesofitware testingthe oracle is often a human
being. Relying on a human to assess program beisavas two evident drawbacksccuracy
andcost While the humarieyeball oracle” has an advantage over more technical means in
interpreting incomplete, natural-language spedifoces, humans are prone to error when
assessing complex behaviors or detailed, preciseifgm@tions, and theccuracy of the
eyeball oracledrops precipitously with increases in the numbetest runs to be evaluated.
Even if it were more dependable, tbgeball oracleis prohibitively expensive for large
volumes oftest casesand so may become a limiting factor when othetspaf testing are
accelerated with automation. Therefomefomated oraclesould be a well adapted solution
to this problem. Baresi’'s (Baresi 2001) survey ps®s approaches to automate thst
oracles In view of these considerations, it must be emidbat theoracle might not always
judge correctly. So the notion of relevance obaacleis introduced to measure @scuracy
Bertolino in (Bertolino 1997) proposes to measteoracle accuracy by the probability that
theoraclerejects a test, given that it must reject it.

Based on our industrial audit (Cf. Diagnosis 2, 5, 6, 10, 12 and )J8he oracle currently
used in Johnson Controls is a human being. In factfter selecting anoperationto be
performed on a software, test engineers analyze treource codeand/or the carmaker

Quality of the design of test cases for automatdfewvare: design platform and testing process

136



State-of-the-art R. AWEDIKIAN

requirements of this software in order to assess éhexpected values to be checked on
someoutput signals In fact, this assessment is based on the enging€eunderstanding of
the code and/or requirements and may lead to errordMoreover, as automotive software
becomes more and more complex, this task becomedadorious task and accounts for
more than 50% of the totaltime and budgebf a project. We propose to automate the
assessment process of all the expected outputs \ediby developing asimulation model
of the software functional requirements. In fact, &st engineers could perform the
selectedoperationon the requirements modeand assess the output values automatically
by simulating the model. Moreover, once developing simulation modelof the software
requirements, one couldormally measure therequirement coverage

1. Modeling and simulation of software functional requrements

a. Types of software requirements

In software domain, several standards organizafioctuding thelEEE) have identified four
categories of requirements:

* Functional requirementsare the main customer requirements. They refeth&o
behavior of the product. For instance, ibay controller produét , the behavior of
the front wiper managemenfunctionality is specified by a set of functional
requirements.

* Non functional requirementare the interface requirements between functitesli
and software performances in termsC#fU load andnemorycapacity. An example of
non functional requirementsan be the communication protocols.

e GUI (Graphical User Interfacefequirements are the customer requirements refated
user interfaces. This category of requirementsaiguent in electronic display product.

* Non technical requirementsnclude all organizational customer requirements.
Confidentiality, return of experience, past defeetgews capitalization is examples of
these requirements.

Johnson Controls has adopted this typology of requents (Cf.Definition 2.§. As
demonstrated irChapter 2 - Section 4he functional requirements account for more than
90% of the carmaker requirements related to theweoé domain. Therefore, through our
research project, we focus on the software funatioequirements and how one could verify
the compliance of a software product with its fumeal requirements.

b. Formalisms in specifying the functional requirensenit a software product

Both Dart and Brinkkemper in (Dart 1987, Brinkkem@d®90) propose same definitions of
informal, semi-formalandformal specification:

» Informal These techniques do not have complete sets of toleonstrain the models
that can be createdNatural language(written text) andunstructured picturesare
typical instances.

» Semi-formal These techniques have a defined syntax. Typicatamtes are
diagrammatic techniquesvith precise rules that specify conditions undemiol

3L A body controller module is an automotive elecicanodule in charge of managing all electrical eats of a
car
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constructs are allowed and textual and graphicatrifgions with limited checking
facilities.

* Formal These techniques have rigorously defined syntaksamantics. There is an
underlying theoretical model against which a deiomn expressed in mathematical
notationcan be verifiedSimulation languageare typical instances.

In Table 4.1 Duphy (Duphy 2000) propose a list of advantagesdrawbacks for each of the
informal, semi-formalandformal formalism.

I v

Informal Easy to be understand by all the project actors. Ambiguity.
No training but need to understandthe writing Incompleteness.
rules. Inconsistency.
Imprecision.
Cannotbe easily automated.
Semi-formal Graphical and abstract representation. Lackin precision.
Easy to be understood by all the project actors. Sometimes, notationsare ambiguous.
Synthetic, structuring and intuitive Difficultto be interpreted.
representation. Simulation notpossible.
Modularity and reuse. No techniques to verify and validate the model.
Better traceability. Code generation from these models are not reliable.
Formal Precision. Trainingsare mandatory.
Abstraction levels. If no trainings, cost and delay increase.
Formalism. Not easy to be understood .
Model verification and validation. Used for critical software products.
Proof. Lackin tools supporting formal methods.
Simulationis possible. Rarelyused in industry.
Generation of code and test cases from the Not integrated to the software development process.

specification model.

Avoid imprecision, ambiguities and
contradictionsin the customer requirements.
Long term cost reduction.

Table 4.1 — Advantages and drawbacks ahformal, semi-formaland formal specification
languages (Duphy 2000)

In Table 4.2 Duphy (Duphy 2000) has evaluated these tHoemalisms based on four
criteria: modelling precision, use, communicatianility and training cost.

Modelling Use Communication Training cost
precision facility
- +++ +++ ++

Informal
Semi-formal + ++ ++ +
Formal +++

+++ very positive; ++ positive; + quite positive; - quite negative; -- negative; --- very negative
Table 4.2 — Evaluation of thenformal, semi-formaland formal specification languages
(Duphy 2000)

In Table 4.3 a classification of the specification languageproposed by Fraser in (Fraser
1994).
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Informal Semi-formal Formal

Natural Language Specifications ~ UML Finite State Machines
(Although oftenused, published  Variations on Data/Control Flow Diagrams  Statecharts
studies are less numerous) Entity-Relationship Diagrams Markov Chain
DeMarco Decision Tables
Gane and Sarson PetriNets
PSL/PSA Executable Specifications
SADT GIST
SERM Refine
IORL VDM
CORE Anna
SDL Z
JSD CSP
GIST

Predicate-Transition-Nets

Table 4.3 — Classification of the specification laguages (Fraser 1994)

In fact, we cannot talk in detail about all the @peation languages. In (Davis 1988), the
author discussed a varietyiaformal, semi-formalandformal languages useful for testing. In
the Section 4.D we propose to develop simulation modelof the software functional
requirements in order to automate the test orackkfarmalize the measurement of the
requirement coverageOnly formal languages could be used to simulate software ifuradt
requirements (CfTable 4.). Therefore, we focus our research on the modtlugeccording

to the literaturejormal languagesFinite State Machine@§~SM), StatechartsMarkov Chains
and Decision TablegdDT). An FSMis a hypothetical machine that can be in only oha
given number of states at any specific time. Ipoese to an input, the machine generates an
output and changes state. Both the output andetvestate are purely functions of the current
state and the inpuESMsare applicable to any model that can be accuraietgribed with a
finite number (usually quite small) of specifictsta Chow in (Chow 1978) was one of the
earliest researchers addressing the ugeSdlisto specify the behavior of a software. Now,
there is work orFSMsin software engineering with varied tones, purgpssd audiences
(Apfelbaum 1997, Robinson 1999, Liu 200(®tatecharts extensions toFSMs were
proposed by Harel in (Harel 1987). Statecharts mikeen easier to model complex real-
time system behavior with less ambiguity. The esi@ms provide a notation and set of
conventions that facilitate the hierarchical decosifion of FSMs and a mechanism for
communication between concurréi$Ms Statechartsare probably easier to read tHeBMs

but they are also nontrivial to work with and requsome training upfront. A sample of
software requirements expressed usBtgtechartshas been proposed by Hong in (Hong
2000). Markov chainsare stochastic models proposed by Kemeny in (Kgni&76). They
are structurally similar t¢-SM and can be thought of as probabilistic automatafatt, a
probability is associated for each transition. Huen of the probabilities associated to the
transitions that get out of the same state mustdueal to 1. Many researchers worked on
using theMarkov chainsin specifying the behavior of a software (Whitak®94, Walton
2000). Sometimes there is a need to describe thereel external behavior of some aspect of
a system when theSM approach makes no sense. One simple solutior 3ehision Table
proposed by Moret in (Moret 1982). BT is used to lay out in tabular form all possible
situations on the inputs of a system and to speudfich action to take on the outputs in each
of these situations.
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c. How to choose a language to specify the functioegliirements of a software
product?

Many researchers (Davis 1988, Sommerville 1997Fd&I-2001) state that there are no
software specification languages today that fitiatents and purposes. In fact, for each
context decisions need to be made as to what lageg(@ collection of languages) is most
suitable. No large-scale studies have been madeetidy the claims of any particular

language. However, in his paper (Davis 1988), Ddnas identified five criteria to help

choosing the most adapted specification languagea &pecific context: 1) understandable to
non computer-oriented customers, 2) used as the mmput for the development and

validation teams, 3) automated checks for ambiguityompleteness, and inconsistency, 4)
encourage the requirements engineer to think anide wn terms of external product

behaviour, not internal product components, andllf{in5) provide a basis for automated
source codendtest generation

Based on the study that we performed on the ewoluwif theformalisms used by carmakers
to specify functional requirements related to safev(Cf. Chapter 2 — Section 4)Awe
underline the increase dbrmal languages and the decreaseirdbrmal and semi-formal
languages. However, within tHermal languages, there not a unique standardhalism
shared between carmakers and suppliers (70F&MsandStatechartsand 20% oDTs9). In
fact, for each project, the supplier has to adtgpprocesses to tHermalism used by the
carmaker. Duphy (Duphy 2000) highlights many wdhet try to complete or combirsemi-
formal and formal languages in order to have the fully, consisterd eeliable view of a
software. Three categories of combination can batitied: 1) create a nefermalism based
on the existing techniques concepts, 2) completexasting technique with the aim of
reducing its weakness and finally 3) use simultasbBoseveral existing techniques and thus
cumulate their advantages. In our context, we meo develop a new formal (simulation)
specification language better adapted to the Johr3ontrols context. In fact, for each
project, we propose to represent the software foimak requirements of the carmaker into this
language. In order to be able to represent allcdmenaker requirements (now and in the
future), it could be judicious to base our speatficnh language on a combination between the
FSM (Statechart and theDT languages; the two languages that carmakers temskt

V. Conclusion

We believe that the importance placed on testirljindgrease as software’s pervasiveness in
everyday life increases. Our dependence on soffvilama driving cars to shopping on the
Internet, will decrease users’ tolerance of detectioftware. Although testing isn’'t the only
software engineeringractice to ensure quality software, it remaingssential component of
the software development’s life cycle. We focus mgearch on the design of efficidast
casesfor improving the quality of software products. fact, we are interested in any
organizational matter that has a positive influenoéo the quality of theéest case design
process simulation platformknowledge managememiompetency managemeantd project
management

In this chapter, we pinpointed the main progressdoh of these fields when designiegt
cases Many techniques and approaches have been dedetomkfor each one, we identify
the advantages and drawbacks to be used or adjicstedr context. As a conclusion, we
propose a list of actions that could improve sigaifitly the global performance of the
Johnson Controls company:
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» Perform functional testsince the earlier testing stages. One has to ywehé
compliance of each software component (indepengdrdm its environment) with
the carmaker requirements.

* Formalize the measurement of threquirement coverageTo do this, one has to
specify the requirements usingf@mal language. Moreover, we suggest integrating
project constraints(test time and cost) in the decision to stop ngsta software
product.

* Formalize the process of selectimperationsin order to be independent as much as
possible from the test engineers’ experience. @hisn is to automate this process.
One could select operations randomly or, selectratips based on thend-user
behavior’'s profileor theexperience feedbagkrom bugs andest casegapitalized on
similar projects in the past).

« Automate the assessment process of all the expectpdts values by developing a
simulation modebf the software functional requirements. In faest engineers could
perform the selecteoperationon therequirements modelnd assess the output values
automatically by simulating the model. Moreovercemeveloping aimulation model
of the software requirements, one cofddnally measure theequirement coverage

Based on our proposals, in the following four ceeptChapter5, 6, 7 and 8), we start
specifying our approach to improve the global penfance of the Johnson Control&V
activities. Firstly, we develop a newsimulation model of the software functional
requirementsSecondlywe provide methods and toolsverify and validateéherequirements
model Thirdly, we propose tononitor the generation of test cad®gquality objectivesand
cost constraintsAnd finally, we suggestefining the operation space descriptiovith the
driver behavior’s profilepast bugsandtest cases

Quality of the design of test cases for automatdfewvare: design platform and testing process

141






PART Il — A NEW APPROACH
FOR DESIGNING EFFICIENT
TEST CASES FOR A SOFTWARE
PRODUCT

Quality of the design of test cases for automatfévare: design platform and testing process

143






Modeling and simulation of software functional requrements R. AWEDIKIAN

CHAPTER 5. MODELING AND SIMULATION
OF SOFTWARE FUNCTIONAL REQUIREMENTS
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Introduction

Ten years agdprmal methods were rarely used in automotive industoytrarily to medical,
avionics and railways industries. The main argunegrhutomotive industry managers was
the high cost of deploying and usifagmal methods. But, as automotive electronic products
becomes more and more complex, automotive industrgquired to start adapting existing
formal methods to their context or developing new onesudlly, the cost ohon-quality
(warranty and customer dissatisfaction) exceedsctise of usingformal methods. We still
have to change the engineers’ practices and evagrt #tk education isoftware engineering

to the challenge of complex products. Now, in awtive industry,semi-formalandformal
methods are more and more used to specify softiuational requirements (CDiagnosis

3). However, there is a lack of a standdnalism shared between carmakers and suppliers.
In fact, for each project, the supplier has to adspprocesses (test case design, requirement
coverage measurement) to feemalism used by the carmaker (@hapter 2 — Section 6)B
Most of the automotive electronic suppliers useSR&(Software Requirement Specificafion
model (Cf.Chapter 2 — Section 4)EThis model is mainly used to organize by furnmality

and by type the carmakers’ requirements relatestiovare and to tag them.

In this chapter, we develop our nefermal language to model software functional
requirements (aimulation mod¢gl Advantages and drawbacks of usfogmal languages in
modeling software functional requirements are sunmed inSection 2 Ourformal model to
represent software functional requirements is dga inSection 3 We identify two types
of software functional requirements in automotivelustry. These types of requirements
could be modeled using Becision Table elemerdr aFinite State Machine elementhe
simulation process of the requirements model icrnilesd in Section 4 Finally, a didactic
case study is proposedd@®ection 5n order to better illustrate our requirements eiod

In the following, we use the shortcut'software specification’to designate the Software
functional requirements specificatich

Advantages and drawbacks of formal languages in maing software
functional requirements

Formal specification is a specification expressed innglege whoseocabulary syntax and
semanticareformaly defined, and which has a mathematical, usualisnal logic and basis.
In this dissertation, we adopt the definition ofoamal specification language proposed by
Wing in (Wing 1990).

Definition 5.1: Formal Specification Language (Win@990)

A formal specification language provides a formathod’s mathematical basis. .... A formal
specification language provides a notation (itstagtic domain), a universe of objects (its
semantic domain), and a precise rule defining wiuibjects satisfy each specification.

Carmakers consider different standards to explessaftware functional requirements of a
given electronic module. Based on the study peréornm Chapter 2 — Section 4,A0me
carmakers still ussemi-formalandinformal methods, but most of them start usiogmal
methods gimulation mode). Incompleteness and ambiguity are the main ctexiatics of
informal and semi-formalmethods (CfChapter 4 — Section 4.D.4More than 30% of the
bugs detected on a software product are relatéacks in and incomprehension of software
functional requirements (Johnson Controls soutdce)act, when designing test cases for the
validation test, test engineers should assessxjected values to be checked on tlgput
signals of the software product under test (Chapter 4 — Section 4)DIndeed, a test is
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meaningful only if it is possible to decide abastautcome. In case of amformal or asemi-
formal representation of functional requirements, thesssent of the expected values on
output signalss always a human being (@hapter 2 — Section §@&s in Johnson Controls).
Relying on a human to assess program behavior$amasvident drawbacksaccuracyand
cost In fact, after choosing the future operation ¢éoperformed on the software product, test
engineers analyze the customer requirements antifidthe required behavior to be checked
on the product. In case of large volumes of tesesar complex behaviors, the accuracy of
the eyeball oracle drops precipitously. However,case of aformal representation of
functional requirements, the assessment of thecotegeralues ormoutput signalscould be
done automatically (by simulation). The usefafmal specification methods is expected to
lead to increased software quality and reliability.

Hall (Hall 1990) suggests that benefits of usiognal specifications are obtainable without
an increase in, and possibly in lowering, developmeosts. However, Sommerville
(Sommerville 1997) indicates thdbrmal specification methods have not been widely
accepted in industrial software development. Néwetess, a number of strategies have been
proposed for incorporatindormal specification methods into the software developgmen
process.

On the one handa variety of advantages has been attributed gécutie offormal software
specifications. These advantages include undersigindf specifications, help in the
verification of specifications and automatic getiera of the source code and test cases.
Firstly, according to Wing (Wing 1990), thformal specifications help crystallize the
customer’s vague ideas, and reveal or avoid coistrads, ambiguities, and incompleteness
in the specifications. Sommerville (Sommerville IY%ighlights that, depending on the
formal specification language used, it may be possibenimate (simulate) Bormal system
specification to provide a prototype system. Wmmulation modelcan be used by inner
engineers and by end-users to gain further insigitdssthe behavior of the specified system.
Secondly as formal specifications can be analyzed using mathematgp&rators, many
researchers (Wing 1990, Kemmerer 1990, Fraser 19@fpose to use mathematical proof
procedures to test (and prove) internal consisteaoy correctness of specifications.
Furthermore, the completeness of the specificatmars be checked in the sense that all
enumerated options and combinations have beenfiggedihirdly, from an implementation
point of view, as the final problem solution -tmeplementation- will be in éormal language
(e.g. programming language); it is easier to avoisconceptions and ambiguities in crossing
the divide fromformal specifications tdormal implementations. This raises the possibility of
automatic code generation frdiormal specifications and therefore avoiding the manudl a
labor coding of the software. Moreovéormal specifications can be used as a guide to the
test engineers of software components in identfyind generating automatically appropriate
test cases. In our research project, we do notidenghe code generation aspedi.
conclusion the use offormal methods can lead to higher-quality specifications,
implementations and testing.

On the other handa number of reasons by various authors have figggested to explain the
lack of usingformal methods in industrial contexts:irstly, Leveson (Leveson 1990)
pinpoints the lack of methodological and suppod 1o formal specification research which
makes it difficult to develop, analyze, and procksge-scale specifications usifigrmal
specification languagesSecondly Sommerville (Sommerville 1997) highlights thateth
notation and the conceptual grammarfafmal specification languages require familiarity
with discrete mathematics and symbolic logic whisbst practicing software engineers do
not currently haveThirdly, the veryformality which makesformal specifications desirable
during the later phases of software specificatioakes them an inappropriate tool for
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communicating with the end-user during the earngguirement elicitation and confirmation
stages.Finally, Sommerville (Sommerville 1997) suggests that rgangent is generally
conservative and unwilling to use new techniqgue®sghbenefits are not yet established.
Given these difficulties in usingprmal methods, challenges remain in integratfogmal
methods with the system development effort andcalisg upformal method techniques to
large-scale real-world development projects.

In Table 5.1 we summarize the main advantages and drawbacksrmfl languages in
modeling/specifying software functional requirengent

Advantages

Avoid contradictions, ambiguities, and Lack of methodological and supporttool
incompleteness in the software
specifications

Automatically Check consistency, Lack of familiarity with  discrete

correctness and completeness of softwvare mathematics and symbolic logic that most

specifications practicing software engineers do not
currently have

Automatically generate code for software Inappropriate tool for communicating with

product the end wuser durng the earlier
requirements elicitation and confirmation
stages

Automatically generate test cases for Need to verify and validate the developed

software functional testing model. Indeed, we have to proove the
conformity between carmaker

requirements and the developed model
Reduce development costand time

Easy maintenance

Table 5.1 — Advantages and drawbacks of formal langages in modeling/specifying
software functional requirements

Unfortunately, within thdormal languages currently used in automotive industrgré is not
a uniqueformalism shared between carmakers and supplierddi@gnosis 3. In Chapter 4 —
Section 4.D.4we pinpoint the benefits of a unifiddrmal (simulation) language able to
model all types of software functional requirements

Our formal language to model software functional rguirements for
functional simulation

Nowadays, and according to Davis and El-Far (D4@88, El-Far 2001), an international
unified model to specify and simulate software fiomal requirements doesn’t exist. After
studying a variety of models in literature, we campewith the fact that each model has been
developed for a specific industrial or academicterin Based on the study that we performed
on the evolution of thdormalisms used by carmakers to specify functional regoents
related to software (CfChapter 2 — Section 4Awe underline that, within thérmal
languages, there is not a unique standanchalism shared between carmakers and suppliers
(70% ofFSMsandStatechartand 20% oDTs).

In our research project, we define our ofenmal model, to represent software functional
requirement, keeping in mind the automotive contexd its constraints. As defined before
(Cf. Definition 2.4 2.5 and2.6), a software functionalityis described by somfeaturesthat
are described by sommequirementsin the following, we do not consider the non-ftiocal
requirements and we focus our research on modstiftggare functional requirements.
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A. Typology of software functional requirements

Each software functionality has a setaainfiguration (Config), input (I), output (O) and
intermediate(Int) signalswith discrete domains. These signals intercontiexfeatures(F)

of the functionality and eadeatureis composed from one or more requirements of dinees
type. Based on our study of the carmakers’ requergmrelated to software (Ghapter 2 —
Section 4.A and the literature review on modeling softwarecsfcations (Davis 1988,
Apfelbaum 1997, Robinson 1999), we identify twodgmf software functional requirements:

« combinatorial (Cf. Figure 5.)) if the values of the requiremeputput signalsat
instantt (O_Reg depend on the sole values of the requirenmmit signalsat instant

t (I_Req).

|_Req| | O_Req

Req

O_Req,=f(I_Req,)
Figure 5.1 — “Combinatorial’ functional requirement
» SequentialCf. Figure 5.2 if the values of the requiremeotitput signalsat instantt

(O_Reg@ not only depend on the values of the requirenrgmiit signalsat instantt
(I_Req) but also on the values of the requiremauput signalsat instant-1 (O_Reg

1)
|_Reg’ - O_Req

O_Req;=f(l_Req;, O_Req.,)
Figure 5.2 — “Sequential” functional requirement

In Figure 5.3 we provide a graphical illustration of our undidunctional requirements
model. This example is the functional requirementsiel of a software functionality which
has 1configuration signal 3 input signals 4 output signals 5 intermediate signaland 4
features Configuration signalsllow to parameterize the software functionalityr jnstance,
by activating or deactivating orfeaturg. Input signalscould be switches, sensors or car
environment variables (for instance, thiehicle speed signal Output signalscould be
actuators or any type of command (for instance witpeer motor command signalFinally,
intermediate signalallow to manage and share data between two or feateres

Configuration signals Intermediate signals
Feature | |
N1 19| Feature | |
] N°3: 1
1] i =] Feature
: - N°4
Feature [ - Vo
i N°2
Q\CIock'x,"
Input signals Output signals

Figure 5.3 — Graphical illustration of our unified formal model to represent software
functional requirements
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A “ClocK signal (Cf.Figure 5.9 is required since the behavior of a software pobas ruled
by synchronism. In fact, a&ClockK’ is just a signal that alternates between zeroare] back
and forth, at a specifigace(cycle time. It sets the pace€ for the functional simulation of the
model. The value of thiscycle timé& depends on some timing characteristics of thénsoe
functional requirements. It should be defined by tiodeleronce analyzing and designing
the requirements model.

Clock

A

1

0 S Time
Cycle time

Figure 5.4 — The shape of a “Clock” signal

B. Two types of modeling elements to model the featwka software
functionality

As we stated before, eabdatureis composed from one or more functional requireisiei
the same typecpmbinatorial or sequential). We propose to model these two stypie
functional requirements thanks to two types of niadeslements

1. Decision table element (DT)

Moret and Chvalovsky (Moret 1982, Chvalovsky 198&xe the first to thoroughly explore
the uses and capabilities BT. We use DT elementto model deaturecomposed from one
or morecombinatorialfunctional requirements. BT is a table (CfFigure 5.7 that presents
a set of exclusiveonditionson theDT input signals(Cq) and their corresponding set of
actionson theDT output signalgAq). Each set ofonditions(Cq) represents a requirement in
a DT element The characteristics of acdnditiori and an ‘actior’ on a signal (§ are
respectively illustrated ifigure 5.5andFigure 5.6

The structure of a “Condition” is organized as foll owing:
Condition(Operator Op, String Sig, float Val)
{
Operator = Op; // ANY, EQUAL, NEQUAL, GREATER, LESS, GREATER_EQ,LESS _EQ
Signal = Sig;
Value = Val;
}

Rules ofdefining a “Condition” on a signal S

1- When Operator is setto ANY, then Signal mustbe setto “” and Value mustbe setto 0
2- When Operator is differentfrom ANY and Signal is differentfrom“”, then Value must be setto 0

Examples:
S,: Condition(ANY, “”, 0) <> no matter the value of the signal S,

S,: Condition(LESS, “S,”, 0) <= if the value of the signal S, is LESS than the value of the signal S,
S;: Condition(EQUAL, “”, 10) < if the value of the signal S; is equalto 10
S,: Condition(GREATER_EQ,“”, 5) <> if the value of the signal S, is GREATER than or EQUALto 5

Figure 5.5 — Characteristics of a “Condition”
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The structure of a “Action” is organized as followi nag:
Action (GlobalOperator GOp, float Vall, float Val2, Operator Op, String Sig1, String Sig2)

{
GlobalOperator = GOp;// UNCHANGE, EQUAL

Signall = Sig1;
Signal2 = Sig2;
Operator = Op;// NONE, ADD, SOUS, DIV, MULT
Valuel =Vall;
Value2 = Val2;

}

Rules ofdefining an *Action”ona signalS

1- When GlobalOperator is setto UNCHANGE, then Signall and Signal2 mustbe setto “”,
Operator mustbe setto NONE and Valuel and Value2 mustbe setto 0

2-When GlobalOperator issetto EQUAL and Operator is setto NONE, then Signal2 mustbe set
to “” and Value2 mustbe setto 0. And if Signall is differentfrom*“”, then Valuel mustbe setto O

3- When GlobalOperator is setto EQUAL, Operator is differentfrom NONE and Signall and
Signal2 are differentfrom*“”, then Valuel and Value2 mustbe setto 0

4-When GlobalOperator is setto EQUAL and Operator is differentfrom NONE, Signall is
differentfrom“” and Signal2 is equalto “ ”, then Value2 mustbe setto 0

5- When Operator is equalto DIV and Signal2 is differentfrom“”, then the value of the Signal2
mustbe differentfrom O

6- When Operator is equalto DIV and Signal2 is equalto “”, then Value2 mustbe different from 0

Examples:

S;:Action(UNCHANGE, “”, “”, NONE, 0, 0) <= no actionsto doon S;

S,: Action(EQUAL, “S,", “ ", NONE, 0, 0) <> S, mustbe setto the value of the signal S,
S;:Action(EQUAL,“”, “ ", NONE, 5, 0) <> S; must be setto 5

S,:Action(EQUAL, “S,", “S;", ADD, 0, 0) <= S, must be setto the value of (S, + S;)

Ss: Action(EQUAL, “S,”, “”, SOUS, 5, 0) <= S; mustbe set to the value of (S, — 5)

Sg: Action(EQUAL, “”, “ ", MULT, 5, 10) <> Sg mustbe set to the value of (5 x 10)
S;:Action(EQUAL, “Sg”, “Sg”, DIV, 0, 0) <= S; must be setto the value of (Sg / Sg), with Sg # 0
Sg: Action(EQUAL, “S;”, “ ", DIV, 3, 0) <> Sg must be set to the value of (S, / 3)

Figure 5.6 — Characteristics of an “Action”

As said before, each software functionality hasetadf configuration (Config), input (1),

output (O) andintermediate(Int) signals These signals interconnect tfeatures(F) of the
functionality. In fact, an input signal of @ecision Table elememould be aconfiguration

input or intermediatesignal of the functionality. While an output signal oDeecision Table
elementcould be anoutput or intermediatesignal of the functionality. ADecision Table
elementis illustrated inFigure 5.7 a. For one set afonditions(for example,C1 in Figure

5.7), it must require that at least one input of ERkis set to a specific valué€lEl), the other
inputs of theDT may be indifferentANY).
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Confi
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]| § |2 INPUT SIGNALS " OUTPUT SIGNALS 1
Config o|| € [S g —
O O Y= = — = | = : E 22 5
Il ) g c - =& ) < (@) @) < < O
—pt @ Q 8 n3
— Rqu Cl * * * (EQUAL, ", 1) kJ kJ €3 x| x — Al (EQUAL' “r “" NONE, 10, o) Kk | kk | kx| kK| *K
Ind_ — |nt y
Reqq|Cq —|Aq
—=|Reqgn|Cn —|An ey
— Int ¢
Int,, | N0, n1, n2, n3, n4, n5, q and n ARE integers * = (ANY, “”, 0) —y
** = (UNCHANGE, “”, “”, NONE, 0, 0)

Figure 5.7 — A Decision Table element

Let us consider th®T elementillustrated inFigure 5.8 This DT has 2input signalsand 2
output signalsil, Domain = {0, 1};12, Domain = {1, 2, 3};01, Domain = {0, 1}; O2,
Domain = {0, 1}. When designing thI3T elementdesigners did not consider all the possible
conditionson theinput signalsof aDT (3 out of 6 possible conditions, Gfigure 5.83. They
only identify theconditions(Ci) which were explicitly specified in the customegueements.

In fact, when dealing with a smdllT, all the possibleonditionscan be easily identified. In
Figure 5.8h we illustrate theexhaustiveDT of the one ofFigure 5.8a On the one hand, a
condition could be splitted into 2 or momonditionswith the sameactions on theoutput
signals(C1 to C1.1, C1.2andC1.3. On the other hand, sonwenditionsdo not have any
impact on theoutput signal{C4, UNCHANGB. However, in industrial context, the problem
is a little bit more difficult since the number thfe DT input signalscan exceed 10 and the
domain length of one signal can exceed 100 (faam=e, when sampling the “vehicle speed”
signal). In that case, its remains a very difficask to identify manually all the possible
conditionsand their correspondingctions Therefore, an automatic generation of all the
possibleconditionson theinput signalsof a DT could be judicious. One could develop a
computer macroable to generate automatically an exhaustivedistonditionsfor a DT.
Unfortunately, we do not have enough time to dgvéiasmacroand in our experiments (Cf.
Chapter 10, we design manually exhaustilgds.

(a): Not exhaustive (b): Exhaustive
* DT DT * DT DT
S [INPUT SIGNALS o OUTPUT SIGNALS S [INPUT SIGNALS @ OUTPUT SIGNALS
2 S| o | o g 3 . N
8 ] o < o o 8 b ] < o e}
cLi| =0 =1 |-[AL =0 =0
C1 =0 ANY |—| Al =0 =0 Cl.2 =0 =2 —| A2 =0 =0
cL3| =0 =3 |-[ A3 =0 =0
Cc2 =1 =1 —| A4 =0 =1 C2 =1 =1 —| A4 =1 =1
C3 =1 =2 —| A5 =1 =1 C3 =1 =2 —| A5 =1 =1
C4 =1 =3 —| A6 | UNCHANGE | UNCHANGE
Figure 5.8 — Not exhaustive vs. exhaustive Decisidiable element
2. Finite State Machine element (FSM)

Gill (Gill 1962) introduces=SM theory in 60’s. Since, many applications (Chow &93uch
as in software engineering have been performedu¥éeaFSM elementto model afeature
composed form one or more sequential functionalirements. In our case and in addition to
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the input andutput signalof aFSM, eachFSM can have a timing sign@FSMTempopand a
set of internal signal@SMint). The timing signal helps to model timing requirerseand
the internal signals characterize #tatesof aFSM A graphical illustration of &inite State
Machineelemenis illustrated inFigure 5.9 It is composed from:

e aninitial state(S0)and a finite number dftates(Si) with a set ofactions(Ai) on the
FSM output, internal and timing signals. TR&M timing signal is set to 0 each time
the stateof theFSM changes. In fact, tHleSM timing signal computes the time spent
in eachstate

* a set oftransitions(Tij) from original state(Si) to destinatiorstate(Sj), and for each
transition (Tij), a set of exclusiveonditions (Cij,q)on theFSM input, internal and
timing signals. Each set afonditions (Cij,q) represents a requirement inF&M
element

For one set otonditions(for example Cij,1 in Figure 5.9, it must require that at least one
input signal of the FSM or oneFSM internal signal or thé&SM timing signal is set to a
specific valuel(l=1), the other signals of tHeSM may be indifferentANY).
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Figure 5.9 — A graphical illustration of a Finite Sate Machine element

Let us consider theSM elementillustrated inFigure 5.10 This FSM has 2input signals 2
output signalsil, Domain = {0, 1};12, Domain = {1, 2, 3};01, Domain = {0, 1}; O2,
Domain = {0, 1}. When designing thiESM element designers did not consider all the
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transitionsandconditions They only consider thieansitions(Tij) andconditions(Ci) which
were explicitly specified in the customer requirense(6 out of &ransitionsand 7 out of 9
conditions Cf. Figure 5.103. In order to be exhaustive when designing3M, modelers
must identify all théransitionsandconditionsthat get out of atateeven if they do not allow
to change thetateof theFSM (Cf. Figure 5.10).

(a): Not exhaustive (b): Exhaustive

FSM
States | Actions | OUTPUT SIGNALS
01 02
SO A0 =0 =0
S1 Al =0 =1
S2 A2 =1 =0
S3 A3 =1 =1
FSM FSM
Transitions | Conditions | INPUT SIGNALS Transitions | Conditions | INPUT SIGNALS
11 12 11 12
Cl.1 =1
TO1l C1 =1 ANY TO1 Cl.2 =1 =2
C1.3 =8
Cl.1 =1
T02 C1 =0 ANY TO2 Cl1.2 =0 =2
C1.3 =8
Cl.1 =1
Ti1 Cl1.2 =1 =2
C1.3 =8
Cl1 =1
T12 C1 =0 ANY T12 Cl1.2 =0 =2
C1.3 =8
Cl.1 =0
T20 C1 ANY =3 T20 C12 -1 =3
c1 ANY =1 _— = =1
123 - 23 C1.2 =1
~ c2.1 =0 =
c2 ANY =2 Co.2 -1
Cl1 =1
T33 Cl1.2 =0 =2
C1.3 =8
Cl.1 =1
T31 c1l =il ANY T31 Cl.2 =1 =2
C1.3 =8

Figure 5.10 — Not exhaustive vs. exhaustive Finitgtate Machine element

The functional simulation process of our software equirements
model

A synchronized functional simulation can be perfedon our model of software functional
requirements. The simulation is done with an ogdrdcyclic logic going from input tautput
signals of the software functionality. To better illustathe simulation mechanism, let us
consider the example of tikegure 5.3 The simulation order of tHeatureshas to be defined
when designing the modeFdature 1thenFeature 2thenFeature 3thenFeature 4. The
“ClockK signal synchronizes the behavior of the functlanadel. Indeed, at eadycle time
all thefeaturesare simulated following the predefined order. Sating afeatureconsists of
assessing itsutput signalsralues according to iiaput signalsvalues.
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In case of a feature modeled using a Decision Taldment all conditions(Cq) have to be
checked. There is no specific checking order fessétonditionssince up to oneondition
can be fulfilled at a time. Values on tb& output signalsaare updated according to taetion
associated to the satisfiedndition Note that, in some cases, none ofdbeditions(Cq) can
be fulfilled and therefore nactions(Aq) have to be done on tH&T output signalsin fact,
the DT conditionsdo not often consider all the possible combinaibetween the values of
all theDT input signals Let us consider thBT elementof theFigure 5.8a In Figure 5.11 a
simulation scenario of thiBT is shown.

» (Figure 5.113: After initialization 11 is set to0 andI2 is set to2. On the next front
edge of the ClocK signal, all the conditions (Ci) are checked following the
predefined order. Once a setaoinditionsis satisfied(C1), the correspondingctions
(A1) on theDT output signalsare performed and tleonditionschecking is stopped.

» (Figure 5.11h: 11 is set tal. On the next front edge of th€lbck', C3is satisfied.

» (Figure 5.119: 12 is set to3. On the next front edge of th&€tocK’, none of the
conditionsis fulfilled.
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Figure 5.11 — An example to illustrate the simulatin process of a Decision Table
element

In case of a feature modeled using a Finite Stadehvheelementonestatemust always be
activated. When simulating BSM, all conditionsof all the transitionsthat get out of the

activatedstate have to be checked. There is no specific checkinlgr fortransitionsand

conditions since they are exclusive and up to amndition (transition) can be satisfied

(crossed) at a time. Therefore, after e&3M simulation, at maximum ongansition is

crossed. The origistateof thetransitionis deactivated, the destinatistateis activated and

values oroutput signalsare updated. However, in some cases, none dfahsitionsthat get

out of the activatedtatecan be satisfied and therefore the activatade remains the same

and noactionshave to be done on th&SM output signalsin fact, theconditionsof all the

transitionsthat get out of the sanstatedo not often consider all the possible combination
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between the values of all ti&M input, internal and timing signals. Let us consite FSM
elemenbf theFigure 5.10a In Figure 5.12 a simulation scenario of thisSMis shown.

(Figure 5.123: After initialization 11 is set tol andI2 is set tol. On the next front edge of
the “ClocK signal, all theconditions(Ci) on all thetransitions (T0Qj) that get out of the
activatedstate (S0) are checked following the predefined orderc®a set otonditionsis
satisfied(T01, C1) the correspondingransitions(TO1) is crossed, the origistate (SO) is
deactivated, the destinatistate(S1)is activated and thaction (A1) on the destinatiostate
is performed.

(Figure 5.12): the activatedstateis S1 12 is set to2. On the next front edge of th€lock’,
all the conditions(Ci) on all thetransitions(T1j) that get out of the activatediate (S1)are
checked following the predefined order. Since, nofigheseconditionsis satisfied, the
activatedstatedoes not changé&l)and the values on tlSMoutput signalsho more.

(Figure 5.129: the activatedtateis S1 11 is set to0. On the next front edge of th€locK,
thetransition(T12)is crossed. The new activatstteis (S2)

(Figure 5.120: the activatedstateis S2 12 is set tol. On the next front edge of th€lock’,
thetransition(T23)is crossed. The new activatstéteis (S3)
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Figure 5.12 — An example to illustrate the simulatin process of a Finite State Machine element
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V. A case study on modeling software functional requements using our
new formal and simulation language

In this section, we develop a simple case studgrder to illustrate how an engineer can
design asimulation modelof a set of software functional requirements. T tdis, we
consider a functionality (“Auto_Light”) which hasc®nfiguration signals, Biput signalsand

2 output signals

» Configl(“Auto_Light_Config”), Domain = {0, 1}
* Config2(“Follow_Me_home_Config”), Domain = {0, 1}
» Config3(“Follow_Me_home_Calib”), Domain = {5, 10, 15}
* |1 (“Reset”), Domain = {0, 1}
* 12 (“Luminosity_Sensor”), Domain = {0, 1, 2, 3, 4,%,7}
e I3 (“Car_Locked”), Domain = {0, 1}
* 14 (“Ignition”), Domain = {0, 1}
e 15 (“Light_Combi_Switch”), Domain = {0, 1}
e Ol(“Head_Lamp”), Domain = {0, 1}
02 (“Tail_Lamp”), Domain = {0, 1}
The software functional requirements of this fuoicélity were specified by the carmaker

using the natural language (Gfigure 5.13. In fact, this functionality can be decomposed
into 3features Feature 1 Feature 2andFeature 3

Quality of the design of test cases for automatfévare: design platform and testing process

160



Modeling and simulation of software functional requrements R. AWEDIKIAN

Feature 1 (“Luminosity_Level Calculation”)

Reql.1: In case of “Luminosity_Sensor” is equal to 1 or 2, then “Luminosity_Level”
mustbe equalto 1

Reql.2: In case of “Luminosity_Sensor” is equal to 3, 4 or 5, then “Luminosity_Level”
mustbe equal to 2

Reql.3: In case of “Luminosity_Sensor” is equal to 6 or 7, then “Luminosity_Level”
mustbe equalto 3

Reqg1.4: In othercases, “Luminosity_Level’mustbe equal to 0

Feature 2 (“Folow_Me_Home Mode")

Reg2.1: In case of “Car_Locked” is equal to 1 and “Ignition” is equal to 0, then
“Follow_Me_Home_Activate” mustbe equal to 1

Reg2.2: In other cases, “Follow_Me_Home_Activate” mustbe equalto 0

Feature 3 (“Head_Tail Activation”)

Reg3.1: Once “Reset’ is set to 1, “Head_Lamp”and “Tail_Lamp” mustbe set at 0

Reqg3.2: In case of “Ignition” is equal to 1 and “Light_Combi_Switch” is equal to 1 and
“Auto_Light_Config” is equal to 1 and “Luminosity Level” is equal 1 or 2, then
“Head_Lamp”mustbe equalto 0 and “Tail_Lamp”must be equal to 1

Reqg3.3: In case of “Ignition” is equal to 1 and “Light_Combi_Switch” is equal to 1 and
“Auto_Light_Config” is equal to 1 and “Luminosity_Level” is equal 3, then “Head_Lamp”
mustbe equal to 1 and “Tail_Lamp” mustbe equal to 0

Req3.4: If “Head_Lamp” is equal to 1 or “Tail_Lamp” is equal to 1 and in case of
“Follow_Me_Home_Activate” is equal to 1 and “Follow_Me_home_Config” is equal to 1,
then “Head_Lamp” mustbe equal to 0 and “Tail_Lamp” mustbe equal to 1.

If “Ignition”is set to 0, then Reg3.5 and Req3.6

Req3.5: In case of “Head_Lamp” was equal to 1, wait “Follow_Me_home_Calib” ms
and then set“Head_Lamp” and “Tail_Lamp”to O

Req3.6: In case of “Head_Lamp” was equal to 0, than wait “Follow_Me_home_Calib"/2
ms and then set “Head_Lamp”and “Tail_Lamp”to O

Figure 5.13 — The software functional requirementsf the functionality “Auto_Light” as
they were specified by the carmaker

Once analyzing the requirementsFagure V13 we came up to the conclusion tiaature 1
andFeature 2can be modeled usirigecision TableslementsandFeature 3can be modeled
using aFinite State Machineelement We also identified twantermediate signalsintl
(“Luminosity_Level”) andInt2 (“Follow_Me_Home_Activate”). A graphical illustian of
the requirements model of the functionality “Autagiit” is developed irFigure 5.14
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«Auto_Light»

Configl=Auto_Light_Config

ConfigZzFollow_Me_home_Config: Feature 3
Config3=Follow_Me_home_Calib_ FSM 1
11=Reset_ Ol=Head_ Lamp
12=Luminosity_Sensor, Feature 1 |inti=Lunfinosity_Level

DT 1

0O2=Tail_Lamp

13=Car_Locked_

Feature 2 |Int2=Follgw_Me_Home_Activdte
l14=Ignition_ DT 2

15=Light_Combi_Switch

Figure 5.14 — A graphical illustration of the requrements model of the functionality
“Auto_Light”

TheDecision Tableelementof theFeatures land2 are developed iRigure 5.15andFigure
5.16 TheseDT are exhaustive.

Feature 1- DT 1

Our model - DTl . DI
Carmaker req ID req ID Conditions | INPUTS Actions | OUTPUTS
12 Intl
Reql.4 Reql.4 C1 =0 —| Al =0
12= Reql.1 Reql.1.1 C2 =1 - A2 =1 Intl=

Luminosity_Sensor Regl.1 Regl.1.2[ C3 =2 —| A3 =i Luminosity Level
—_— Reql.2 Reql.2.1| C4 = |- A4 =2 uminosity_Leve

Reql.2 Reqgl.2.2 C5 =4 —| A5 =2

Reqgl.2 Reql.2.3 C6 =5 —| A6 =2

Reql.3 Regl.3.1 C7 =6 —| A7 =3

Reql.3 Reql.3.2 C8 =7 —| A8 =3

| 4 carmaker requirements splitted into 8 requirements in our model |

Figure 5.15 — Feature 1 modeled using a Decision fla element

Feature 2 - DT 2

13= Our model L DT2 ) DT2
Carmaker req ID Conditions | INPUTS Actions | OUTPUTS
Car_Locked req ID
— 13] 14 Int2 Int2=
Req2.2 Reg2.2.1 €l 0101~ Al =0 Follow_Me_Home_Activate
4= Reg2.2 Reg2.2.2 Cc2 =0| =1 |- Al =0 e~ -
| t_ Reg2.1 Reg2.1 C3 =1| =0 |—| A3 =1
gnition) Req2.2 Req2.2.3| C4 |=1| =1 || A4 =0
| 2 carmaker requirements splitted into 4 requirements in our model |

Figure 5.16 — Feature 2 modeled using a Decision fla element

A graphical illustration of th&inite State Machinelementof the Feature 3is developed in
Figure 5.17 This FSM is not exhaustiveFigure 5.18 details thestates transitions and
conditionsof thisFSM In fact, theFeature 3has a sequential behavior since the behavior of
the signalD1 andO2 depends not only on the sign@lenfigl, Config2 Config3 I1, I5, Intl
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and Int2 but also on the currerstate of the feature We also define &SM timing signal
(FSM1Tempopand oneFSMinternal signal ESM1Intl, Domain = {0, 1}) in order to model
the requirementReq3.5andReq3.6

Feature 3- FSM 1

Configl=
Auto_Light_Config
Config2=

Follow_Me_
home_Config
—

Config3=

Follow_Me_
home_Calib
—

I1=Reset
14=Ignition,

15=
Light_Combi_Switch
—

Intl=
Luminosity_Level
—

Int2=
Follow_Me_
Home_Activate
—

Al
TOO 01=0
Cl:1=1 02=0
FSM1Int1=0

5<1, Int1=2

T30

CL:F$M1int1=1, p—
FSM1Tempo> Config3/2 g;ggﬂggi:i
C2: FSM1Int1=0, ’ '

FSM1Tempo> Config3

C1:Config

T32 ,
C2:Configl=1, 4=

C1:Configl=1,14=1,15=1, Int1=3

O1=
Head Lamp
e

02=
Tail_Lamp
e

Figure 5.17 — Feature 3 modeled using a Finite S&aMachine element — Graphical

illustration

Feature 3- FSM 1

Fomn |
Configl= states | Actions | OUTPUTS | y/ziaples
AutO_Light_Config o1 | 02 | Fsmiint1
so | A0 | =0 | =0 =0
Config2= S1 Al =0 | =1 |uNncHANGE
Follow_Me_ S2 A2 =1 | =0 =1
home_Config S3 A3 =0 | =1 |UNCHANGE
] P @ FSM1
Config3= || camaker |Ourmodel| £ | £ INPU"I:'SS’\IA(:BLNALS TtiziiE) Tim;?wslignal
Follow_Me_ req ID req ID % 2 Signals
home_Calib = 3 Configl |Config2 [Config3 fL |14 |15 Itl Iht2 | FSM1lintl | FSM1Tempo
Reg3.1 | Reg3.1.1| T0O Cl ANY ANY ANY |=1]ANY|ANY|ANY[ANY| ANY ANY
Reg3.1 |Req3.1.2| T10 Cl ANY ANY ANY |=1]ANY|ANY|ANY[ANY| ANY ANY
I1=Resel )™ Req3.1 |Reg3.1.3| 720 | CL | ANY | ANY | ANY [=1|ANY[ANY[ANY[ANY] ANY ANY
Reg3.1 |[Reg3.1.4| T30 | c1 [ ANY [ ANY [ ANY [=1[ANY[ANY[ANY[ANY] ANY ANY
14=Ignition Reg3.2 | Reqg3.2.1 To1 Cl il ANY ANY iO il il il ANY| ANY ANY
> [ Req3.2 | Reg3.2.2 c2 =1 ANY [ ANY [=0] =1 ] =1 [ =2 [ANY] ANY ANY
5= Req3.3 [Req3.3.1] 102 [ C1 =1 ANY | ANY [=0] =1 ] =1 [ =3 [ANY] ANY ANY
Light_Combi_Switch Reg3.3 | Reg3.3.2| T12 Cl =1 ANY ANY |=0] =1 | =1 | =3 [ANY| ANY ANY
—p{[ Req3.4 |Reqd34.1| T13 [ c1 [ ANY =il ANY [=0[ =0 [ANY[ANY[ =1 [ ANY ANY
Req3.2 [Reqd.23| ., [ C1 =1 ANY [ ANY [=0] =1 ] =1 =1 [ANY] ANY ANY
Intl= Reg3.2 | Reqg3.2.4 Cc2 =1 ANY ANY |=0] =1 | =1 | =2 |ANY| ANY ANY
Luminosity_Level Reg3.4 | Req3.4.2| T23 Cl ANY =1 ANY |=0] =0 |ANY|ANY| =1 ANY ANY
Reg35 | Reg35 | .. | C1 | ANY | ANY [ ANY [=O[ANY|ANY|ANY[ANY| =1 >Config3
Int2= c2 | ANY [ ANY | ANY [=o[ANY[ANY|ANY[ANY] =0 | >Config3 /2
Follow_Me_ Reg3.2 [Regd.25[ o [ €1 | =1 [ ANY | ANY [=0[ =1[=1 [ =1 [ANY] ANY ANY
Home Activate ||_Req3.2 |Req3.2.6 C2 | =1 | ANY | ANY [=0] =1 [ =1 | =2 [ANY| ANY ANY
~ ==——p|| Req3.3 [Reqg3.3.3| T32 Cl =1 ANY ANY |=0] =1 | =1 | =3 |ANY| ANY ANY

6 carmaker requirements splitted into 17 requirements in our model

O1=

Head Lamp
e

02=

Tail_Lamp
e

Figure 5.18 — Feature 3 modeled using a Finite S&atMachine element — States,

Transitions and Conditions
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Even with instructions and guidelines, we are cmnsc that two differenimodelerscan
design two different models for the same softwarecfional requirements. To overcome this
problem, we plan to demonstrate that for two orerdifferent models of the same functional
requirements, the generated test cases allow éotdbe same bugs (Ghapter 10 — Section
8.B).

Conclusion

Managing the software functional requirements issatered as one of the key issues in the
software development process. In fact, these reménts are the main input for the design
and implementation processes of the software ptodut also for theverification and
validation processes. Ten years afmrmal methods were rarely used in automotive industry,
contrary to medical, avionics and railways indestriNow, in automotive industrgemi-
formal and formal methods are more and more used to specify softvianetional
requirements (CfDiagnosis 3. However, there is a lack of a stand&odmalism shared
between carmakers and suppliers. In fact, for gadpect, the supplier has to adapt its
processes to tHermalism used by the carmaker.

In this chapter, we developed our néwmal and simulation language to model software
functional requirements (CDiagnosis §. A simulation modebf these requirements could
help to avoid ambiguity, incompleteness and incrscy in customers’ requirements (Cf.
Diagnosis 5. Development and validation teams could commueicaore easily with the
customer and fix specification’s problems (Ofagnosis 2. Moreover, through aimulation
mode] one could automate the assessment process tifeatbxpected outputs values of a
software product (CfDiagnosis 10, 12 and }5In fact, when designing test cases, test
engineers could perform the selectgukration on therequirements modeand assess the
expected output values automatically by simulatimg model. Finally, one coulfbrmally
measure theoverageof the requirements model (@iagnosis 1)

In the following chapter, we develop howredelercan verify and validate tr@mpleteness
the consistency the accuracy and the compliance of a requirements model with the
carmaker’s requirements.
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CHAPTER 6. VERIFICATION AND
VALIDATION OF A SOFTWARE FUNCTIONAL
REQUIREMENTS MODEL
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Introduction

Simulation models are increasingly being used wblgm solving and in decision making.
The developers and users of these models, theiatecisakers using information derived
from the results of the models, and people affebiedecisions based on such models are all
rightly concerned with whether a model and its ltssare “correct”. This concern is
addressed througModel Verification and ValidatiorfModel V&\). In this dissertation, we
adopt the definition oModel V&V proposed by Balci in (Balci 1997).

Definition 6.1: Model Verification (Balci 1997)

Model Verification is substantiating that the modsl transformed from one form into
another, as intended, with sufficient accuracy. Bloderification deals with building the
model right. The accuracy of transforming a problEmmulation into a model specificatign
or the accuracy of converting a model representafimm a micro flowchart form into an
executable computer program is evaluated in moelefivation.

Definition 6.2: Model Validation (Balci 1997)

Model Validation is substantiating that the modeithin its domain of applicability, behaves
with satisfactory accuracy consistent with the M@&&odeling and Simulation) objectives.
Model validation deals with building the right mdéde

Model V&V are essential parts of the model development psoitghe model has to be used
by organizationsModel V&V is not a phase or step in tM&S life cycle, but a continuous
activity throughout the entifgl&S life cycle. TheM&S life cycle should not be interpreted as
strictly sequential. TheM&S life cycle is iterative in nature and reverse s$iians are
expected. Deficiencies identified bylodel V&V activity may necessitate returning to an
earlier process and starting all over again. Mioglel V&V activity throughout the entifgl&S
life cycle is intended to reveal any quality dedfiaties that might be present as M&S
progresses from the problem definition to the catiph of theM&S application. Errors
should be detected as early as possible iVi&8 life cycle.

In this chapter, we develop scenarios in orderdofy and validate a software functional
requirements model developed using farmal simulation language. A survey on verifying
and validating simulation model is performedSaction 2 We consider a simplified version
of the modeling process. We discuss the basic appes used in deciding model validity.
We also describe varioddodel V&V techniques. Based on the literature review, tephes
and rules to help modelers in validating tbenceptual Modelverifying the Computerized
Modeland finally checking th®perational Validityof a requirements model are respectively
proposed inSection 34 and 5. These proposals take the industrial constraintd the
automotive context into account.

A survey on verifying and validating a simulation nodel

A model should be developed for a specific purparse its validity determined with respect
to that purpose. If the purpose of a model is tewaan a variety of questions, the validity of
the model needs to be determined with respectdb gaestion. Several sets of experimental
conditions are usually required to define the donafia model’s intended applicability. A
model may be valid for one set of experimental @ovts and invalid in another. A model is
considered valid for a set of experimental condgiaf its accuracy is within its acceptable
range, which is the amount of accuracy requiredttier model’s intended purpose. Several
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versions of a model are usually developed priookitaining a satisfactory valid model. The
substantiation that a model is valid (eMpdel V&V) is generally considered to be a process
and is usually part of the model development preces

It is often too costly and time consuming to deteasarthat a model is absolutely valid over
the complete domain of its intended applicabilifgsts and evaluations are conducted until
sufficient confidence is obtained that a model ¢en considered valid for its intended
application. The relationships of cost (a similalationship holds for the amount of time) of
performing model validation and the value of thedeloto the user as a function wiodel
confidencdas proposed by Sargent in (Sargent 2005) andn#itesd inFigure 6.1 The cost of
model validation is usually quite significant, pewtarly when extremely highmodel
confidencas required.

Value Value
of
Cost Model

Cost to
User

0% Model Confidence  100%
Figure 6.1 — Model confidence (Sargent 2005)

A. A simplified version of the modeling process

Sargent (Sargent 2005) has proposed a simplifiesiore of the modeling process kigure
6.2 TheProblem Entityis the system (real or proposed), idea, situapoticy, or phenomena
to be modeled; th€onceptual Modeis the mathematical/logical/verbal representatibthe
Problem Entity developed for a particular study; and tGemputerized Modeis the
Conceptual Modeimplemented on a computer. TB®nceptual Modeis developed through
an analysis and modelinghase, the&Computerized Modek developed through @omputer
programming and implementatiophase, and inferences about tReoblem Entity are
obtained by conductingcomputer experimenton the Computerized Modelin the
experimentation phase.

Problem
Entity
[ »
Operational ) ' Co;ldceéatll.lal
Validity K L oae
K Analysis ~ Validity
Experimentation and
’ Modeling
, ’ Data \\\
Validity *
’ 1
Computerized Computer Programming Conceptual
S S °__
Model and Implementation Model

\Computerizcd/
Model

Verification

Figure 6.2 — A simplified version of the modeling pcess (Sargent 2005)
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In the next three sections, we develop the tiMeelel V&V activities Conceptual Model
Validity, Computerized Model VerificatiprOperational Validity related to the simplified
version of the modeling process presentefigure 6.2

1. Conceptual Model Validity

Conceptual Model Validitis determining that 1) the theories and assumgtiorderlying the
Conceptual Modeére correct, and 2) the model representation@Ptbblem Entityand the
model’s structure, logic, and mathematical and @atedationships are “reasonable” for the
intended purpose of the model. Next, each sub-madel the overall model must be
evaluated to determine if they are reasonable amceat for the intended purpose of the
model. This should include determining if the agprate detail and aggregate relationships
have been used for the model’s intended purposkifdahe appropriate structure, logic, and
mathematical and causal relationships have beed. 0dee primary validation techniques
used for these evaluations d&face validityand Traces(Cf. Section 2.Cfor more details on
these techniqueslace validityis based on experts’ evaluation of tBenceptual Modein
order to determine if it is correct and reasonébitets purposeRroblem Entity. This usually
requires examining the flowchart or graphical moaoelthe set of model equations. The use
of Tracesis the tracking of entities through each sub-moaetl the overall model to
determine if the logic is correct and if the neeegsaccuracy is maintained. If errors are
found in theConceptual Modelit must be revised anfdonceptual Model Validitperformed
again.

2. Computerized Model Verification

Computerized Model Verificationensures that the computer programming and
implementation of th€onceptual Modeére correct. To help ensure that a correct compute
program is obtained, program design and developrpemtedures found in the field of
software engineeringhould be used in developing and implementingctimaputer program.
One should be aware that the type of computer ggused affects the probability of having
a correct program. The use of a special-purposellatran language generally results in
having fewer errors than if a general-purpose st language is used, and using a general
purpose simulation language generally results inngefewer errors than if a general purpose
higher order language is used. Not only does tledfissimulation languages increase the
probability of having a correct program, programgntime is usually reduced significantly.
After the computer program has been developed amdemented, the program must be
tested for correctness. Main functions but alsefsmistions must be tested to see if they are
correct. It is necessary to be aware while checktiegcorrectness of the computer model that
errors may be caused by tGenceptual Modebr the computer implementation.

3. Operational Validity

Operational Validityis concerned with determining that the model'spatibehavior has the
accuracy required for the model’'s intended purposer the domain of its intended
applicability. This is where most of the validatiand evaluation techniques take place. The
Computerized Modes used inOperational Validity and thus any deficiencies found may be
due to an inadequat€onceptual Model an improperly programmed or implemented
Conceptual Modefe.g. due to programming errors or insufficientnewical accuracy), or due
to invalid data. All of theModel V&V techniques discussed 8ection 2.Care applicable to
Operational Validity Which techniques to use must be decided by thdemdevelopment
team and other interested parties. The major at&ilaffecting Operational Validity is
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whether theProblem Entity(or system) is observable, where observable mgasipossible
to collect data on the operational behavior ofgfegram entity.

Finally, Data Validityis defined as ensuring that the data necessamddel building, model
evaluation and testing, and conducting the mod@leements to solve the problem are
adequate and correct.

B. How to decide whether a simulation model is valichot?

According to Sargent (Sargent 2005), three basicagehes are used in deciding whether a
simulation model is valid or invalid. Each of thgpaoaches requires the model development
team to conduct thilodel V&Vas part of the model development process:

1. The most common approach is based on the modelogerent team who has to
make the decision whether the model is valid or. fidis is a subjective decision
based on the results of the various tests and &wahs conducted as part of the model
development process.

2. Another approach, often calledndependent Verification and ValidatiblV&V),
uses a third (independent) party to decide whetireemodel is valid. The third party is
independent of both the model development teamthadnodel user(s). After the
model is developed, the third party conducts aruaetian to determine its validity.
Based upon this validation, the third party makesilajective decision on the validity
of the model. The evaluation performed in IN&V approach ranges from simply
reviewing theModel V&V conducted by the model development team to a catmpl
verification and validatioreffort. According to Wood (Wood 1986), a complBt&V
evaluation is extremely costly and time consumorg#hat is obtained.

3. Balci (Balci 1989) proposes an approach based sooeng modelfor determining
whether a model is valid or not. Scores (or weighte determined subjectively when
conducting various aspects of the validation pre@s then combined to determine
category scores and an overall score for the simunlanodel. A simulation model is
considered valid if its overall and category scoaes greater than some passing
score(s). This approach is infrequently used irctme. Sargent (Sargent 2005) does
not believe in the use of a scoring model for deieing validity, because 1) the
subjectiveness of this approach tends to be hidderthus appears to be objective, 2)
the passing scores must be decided in some (usidijgctive) way, 3) a model may
receive a passing score and yet have a defechéeals correction, and finally 4) the
score(s) may cause overconfidence in a model arsbd to argue that one model is
better than another.

Several versions of a model are usually developedeé modeling process prior to obtaining a
satisfactory valid model. During each model itematiModel V&V are performed. A variety
of techniques could be used. In the next sectiendewvelop these techniques.

C. Model Verification and Validation techniques

Taxonomy of more than 7WModel V&V techniques for simulation models is identified in
(Balci 1997). Most of these techniques come froastiftware engineerindiscipline and the
remaining are specific to the modeling and simalafield. Details on these techniques are
proposed in (DoD 1996, Balci 1997). The taxonomgduBy the authors classifies thiodel
V&YV techniques into four primary categori@sformal, static dynami¢ andformal. The use

of mathematical and logiftormalism by the techniques in each primary categoryea®es
from informal to formal. Likewise, the complexity also increases as thengmy category
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becomes moréormal. In the following, we describe various techniquesd inModel V&V.
Most of the techniques described here are fourtieriterature (Balci 1984, Sargent 2005),
although some may be described slightly differefigapted to our context). They can be
used either subjectively or objectively. By “objeety’, we mean using some type of
statistical test or mathematical procedure (e.gifidence intervals). A combination of
techniques is often used for validating and venidyihe sub-models and the overall model.

Animation: The model's operational behavior is displayed Qgregdly as the model moves
through time.

Comparison to Other Modeld7arious results (e.g. outputs) of the simulatioadel being
validated are compared to results of other (vahidyels.

Degenerate TestShe degeneracy of the model’s behavior is testeddpropriate selection
of values of the input and internal parameters.

Event Validity: The eventsof occurrences of the simulation model are conténethose of
the real system to determine if they are similar.

Extreme Condition Test3he model structure and output should be plau$drlany extreme
and unlikely combination of levels of factors irethystem.

Face Validity: Face validityis asking people knowledgeable about the systemthehn the
model and/or its behavior are reasonable. Thisnigole can be used in determining if the
logic in the Conceptual Modeis correct and if a model's input-output relatibips are
reasonable.

Fixed Values:Fixed values(e.g., constants) are used for various model igmat internal
variables and parameters. This should allow theckihg of model results against easily
calculated values.

Historical Data Validation:If historical data exist (or if data are collected a system for
building or testing the model), part of the dataised to build the model and the remaining
data are used to determine (test) whether the nimhelves as the system does.

Internal Validity: Several replications (runs) ofséochastic modedre made to determine the
amount of (internal) stochastic variability in tiredel. A high amount of variability (lack of
consistency) may cause the model's results to bestomnable and may question the
appropriateness of the system being investigated.

Parameter Variability - Sensitivity Analysighis technique consists of changing the values of
the input and internal parameters of a model terdehe the effect upon the model’s
behavior and its output. The same relationshipsilshoccur in the model as in the real
system.

Predictive Validation:The model is used to predict (forecast) the sydtemavior, and then
comparisons are made between the system’s behawiothe model’s forecast to determine if
they are the same. The system data may come fronopanational system or from
experiments performed on the system.

Traces: The behavior of different types of specific emftiin the model is traced (followed)
through the model to determine if the model’s lagicorrect and if the necessary accuracy is
obtained.

Turing Tests:People who are knowledgeable about the operatbrssystem are asked if
they can discriminate between system and modeltgitp
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Unfortunately, no algorithms or procedures exissétect which techniques to use. However,
some attributes that affect which techniques toausaliscussed by Sargent in (Sargent 1984).
In the next three sectionSdction 34 and5), we specify techniques, rules and scenarios to
help modelers in validating th€onceptual Modelverifying the Computerized Modehnd
finally checking theOperational Validityof a requirements model. Our proposals take not
only the Sargent’s recommendations into accounalsat our industrial context.

Using the experts’ knowledge to validate a Concepél requirements
Model (Conceptual validity)

In our context, th&Conceptual Modeis developed through an analysis and modelindghef t
software functional requirements. For each softwanetionality, modelers draw a sketch of
the requirements model by (@hapter 5 — Section)3

1. identifying theinput andoutputsignalsand their domains,

2. grouping the functional requirements according heirt types ¢ombinatorial or
sequentig|,

3. identifying theelementgDT andFSM) and thantermediate signaland their domains
and

4. finally specifying eactelement For aDT, identify theconditionsand their associate
actions For aFSM, identify thestatesand their associatctions thetransitionsand
their associateonditionsand if needed thimternal andtiming signals

Once theConceptual Modelis designed, each element and the overall modedt rha
evaluated to determine if they are reasonablegcband complete regarding the carmaker’s
requirements. We propose to uBace validity and Turing testsin order to valid our
Conceptual Modelln fact, the experts’ knowledge is the main seucd validating our
Conceptual Model People knowledgeable about the system under dsstasked to
discriminate between the model and the carmakeggirements and to give their confidence
in the model and/or its behavior.

A set of integrity rules to verify a Computerized iequirements Model

The Computerized Modet developed through a computer programming arplementation
of the Conceptual ModelWe provide modelers a high level graphical lamguto help them
computerizing theitConceptual requirements ModelThe main items of this language are
illustrated inFigure 6.3
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Func

Functionality

&

le} Clock
% Configuration signal
S N Input signal
-0 Output signal
—Int Intermediate signal
DT
= mms - Decision Table element
FSM
: i Finite State Machine element

State

Transitions

Intemal Signal FSM internal signal

FSM timing signal

Figure 6.3 — A high level graphical language to coputerize a Conceptual requirements
Model

Computerized Model Verificationensures that the computer programming and
implementation of theConceptual Modelare correct. The use of a graphical simulation
language generally results in having fewer errord programming time is usually reduced
significantly. To help ensure that a correct corepuhodel is obtained, we develop a set of
integrity rules to be checked automatically on ¢benputer model. These rules are developed
in Table 6.1

Ellmack
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Rule description

Rulel Each functionality musthave one clock

Rule2  Each functionality musthave atleast 1 inputand 1 outputsignals

Each functionality must have at least one element (a Decision Table or a Finite State

Rules Machine)

Rule4 Alltheinputsignals of the functionality must be inputs of elements
Rule5 Allthe outputsignals of the functionality must be outputs of elements

Rule6 Alltheintermediate signals of the functionality must be inputs or outputs of elements

All the inputs and outputs of elements must be input, output or intermediate signals of
the functionality

Each value of an input, output and intermediate signal of the functionality must be
considered in atleast one condition or action of an element

Rule 7
Rule 8

Rule9 Each DT musthave at least one condition

Rule 10 Each condition of a DT musthave one associated action

Each condition of a DT must have at least one input or intermediate signal of the
functionality
Each action of a DT must have at least one output or intermediate signal of the
functionality

Rule 11
Rule 12
Rule 13 Each FSM musthave at least two states and two transitions

Rule 14 Each transition of a FSM must have at least one condition

Rule 15 Each state of a FSM must have one associated action

Each condition of a FSM must have at least one input or intermediate signal of the

il e functionality

Rule 17 Each action of a FSM must have at least one output or intermediate signal of the
functionality

Rule 18 Each state of a FSM must have at least one transition that gets in the state and one

transition that gets out of the state

Rule 19 Each transition of a FSM must have an origin and a destination state

Table 6.1 — Integrity rules for verifying a Computeized requirements Model

Three possible scenarios to validate a Computerizetequirements
Model (Operational Validity)

Computerized Model Verificatioensures that mistakes have not been made in thputer
implementation of th€onceptual Modellt does not ensure the compliance of the computer
model with the (original) carmaker requirementse Operational Validityaims to verify that
the computer model behavior has the accuracy redjliy the carmaker. To do this, computer
experiments are conducted on tbemputerized Modeh the experimentation phase. This is
where most of the model deficiencies are detedEdors may be due to an erroneous
Conceptual Modebr to programming errors in computerizing thenceptual Modelln our
context, all of theModel V&V techniques discussed Bection 2.Care applicable. Which
techniques to use must be decided by the condrainthe system under test but also by the
model development team. In fact, we identify thpessible scenarios to help modelers
validating aComputerized requirements Mod@lperational Validity. These scenarios can be
used concurrently or separately.
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A. First scenario: Animate our requirements model

The most used technique to validate a simulatiodehs obviously to animate and trace it
(Cf. Figure 6.4. The behavior ointermediateand output signalsis provided graphically
through time. However, two questions can be raiskdn animating a model 1) How do |
choose thenput dataof the model? and 2) How can | be sure that thdehbehaves well
(expectedoutput datd? In order to answer the first question, we cderreo some of the
Model V&V techniques provided isection 2.C(for instance,degenerate testextreme
condition testsfixed valuesand parameter variability - sensitivity analysisThe second
guestion is more related to thmmalism of the (original) carmaker requirements. Inecab
informal or semi-formalrequirements, modelers have to predict the sydtetravior by
analyzing the requirements. In casefaimal and simulatedrequirements, expectezlitput
datacan be assessed automatically by simulating tnginements.

Modifications

Ourrequirements model

;:‘.3’ y Input data j " T ~ IR Model Intermediate
gf «’rj —_— = ; and Output data
n

Hi mi E (by simulation)
o I A

Compare
3
B2
v

Requirements analysis
OR

Requirements simulation

Figure 6.4 — Animate the requirements model

Expected Intermediate
and Output data

B. Second scenario: Simulate the test cases delivmrdtie carmaker on
our requirements model

Sometimes, carmakers deliver a setesft casedor the software product under test. These
test casesan be used to valid our requirements model k@ure 6.5.
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Modifications

Carmaker’s Ourrequirements model

testcases X
fa =] Inputdata - = || ¥ o - 5 Modeloutput data
= 1

1 -
TCn —

(by simulation)

A= 5
e 2 1

Compare
L
N7
v

Output data
(from the test cases)

Figure 6.5 — Simulate the test cases delivered byet carmaker on our requirements
model

C. Third scenario: Compare our requirements modehtiheer valid model
of the requirements

Ten years agaimulationmethods were rarely used in automotive industgwNautomotive
electronics architecture becomes more and more leonapd carmakers outsource the design
of electronic products. Therefore, it becomes @iufor carmakers to simulate their global
electronics architecture in order to better intesyand validate different electronic parts from
different suppliers. Presently, in automotive indysformal (simulation) methods are more
and more used to specify software functional regments (CfChapter 2 — Section 4)Aln
fact, simulation helps engineers to make bettersaets all along the product life cycle and
detect problems early in the development procesfortiinately, there is a lack of a standard
formalism shared between carmakers and suppliers D&fgnosis 3. However, some
existing simulation tools (StateMafe Matlab/SimulinR®) are currently used by carmakers
and suppliers to simulate software specificatiods. graphical interface generated
automatically from dormal specification (delivered by a carmaker to JohnSontrols) of
the “Front Wiper” functionality is illustrated ifigure 5.6 An engineer can animate this
model manually or simulate a setinput dataautomatically (set values on thgput signal$
and check the expected behavior of the functionédtieck values on theutput signals

32 http://www.telelogic.com/products/statemate/indéx.¢Consulted on November 2008)
3 http://www.mathworks.com/products/simulinfConsulted on November 2008)
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Figure 6.6 — A graphical interface generated autontecally from a formal specification
of the “Front Wiper” software functionality

Once a simulation model of the software functiagalinder test exists (CFkigure 6.7, an
engineer can choose a setigbut data(using techniques such dsgenerate testextreme
condition testsfixed valuesparameter variability - sensitivity analy$iand simulate these
data on thevalid” model (model delivered by the carmaker) and onrequirements model
in order to verify the validity of our model.

Modifications

————————————————————————————————————————————————————————

] - = | 5 Model output data

H | o (by simulation)
I = L, A

Anotherrequirements model
(forinstance, delivered by the carmaker)

Compare
L
%)
v

Input zLata

= S—— \'2
‘ @ Model output data
L > _—
AR\ = © (by simulation)

Figure 6.7 — Compare our requirements model to anber valid model of the
requirements

VI. Conclusion

Assessing credibility of a simulation model is anemus task. ApplyingModel V&V
techniques throughout a simulation model is timescoing and costly. However, thModel
V&V activity is extremely important for successful qaation of complex and large-scale
Modeling and SimulatiofiM&S) efforts. Unfortunately, there is no set of speciésts that
can easily be applied to determine the “correcthesthe model. Furthermore, no algorithm
exists to determine what techniques or proceduresst. Every new simulation project
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presents a new and unique challenge. However, tlsecensiderable literature adodel
V&V.

In this chapter, we developed a process to veriig &alidate a software functional
requirements model. We use proposals developedhanliterature as a starting point for
defining methods and techniques more adapted tocootext. We consider a simplified
version of the modeling procesBroblem Entity Conceptual Modeland Computerized
Model Firstly, we propose to validate (Conceptual M&ida Conceptual requirements
Model via experts’ knowledge. Secondly, we define a afeintegrity rules to verify a
Computerized requirements Mod€ginally, we develop three possible scenarios tidas
(Operational Validity aComputerized requirements Model

In the following chapter, we describe hagst casesan be generated automatically from a
requirements model.
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CHAPTER 7. AUTOMATIC GENERATION OF
TEST CASES
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Introduction

As the software products become more and more eafflf. Chapter 1}, it is illusory to be
able to check that the software product respondeecty to all possibleoperations In
Chapter 8 — Section, 2ve further demonstrate thedftware testings aNP-Completgroblem
and therefore it is impossible to be able to calktheoperation spaceln Johnson Controls,
the current strategy to seleoperationswithin the operation spaceoperation selection
strategy is a manual subjective one based the test engineperience and intuition (Cf.
Diagnosis 13. After choosing aroperationto be performed on the software under test, test
engineers analyze tlsource codeind/or the carmaker requirements of this softwa@der

to assess the expected values to be checked onaame signalsin fact, this assessment is
based on the engineers’ understanding of the codlarequirements and may lead to errors
(Cf. Diagnosis 12 In automotive industry, these tasks become labertasks that account
for more than 50% of the totdime and budgebf a software project. In fact, the stopping
criteria used is based aest coverageResearches icode coveragemeasurement have
reached a high level of maturity and many automedets were commercialized (GZhapter

2 — Section 6.A)1 However,requirement coverages still immature and the accuracy of a
requirement coveraganeasurement depends on the degree of formalisd wdeen
specifying a set of requirements (Tiagnosis 1) In addition, sometimes, fdime and
budgetreasons, test engineers stop desigtesgcasegven if 100%coverages not reached.

In this chapter, we develop our strategy to gepetedt caseqoperationsand expected
outputg automatically from the requirements model. Weoaldescribe ourstopping
aggregated criteriorbased orformal measurement ofoverage The test case generation is
based on a new concept namegbération matriX presented inSection 2 The process of
generating dest casas described irBection 3 The quality objectives and the time and cost
constraints when designirigst casesire developed ifection 4 A newstopping aggregated
criterion is proposed irSection 5 Finally, our heuristic algorithm to optimize tigeneration

of test casess specified irSection 6

The new concept of “operation matrix”

The generation abperationsandinter-operation timedor atest casas performed based on
the concept of dperation matriX. In fact, for each software functionality undesst, we
propose to set probabilities and time intervalsveen all possible successioperations
Therefore, we build a matrix that we nanmpération matriX which is a square matrix with
all possibleoperationsin columns and in rows. Between the teperationsof a pair we
define:

* The probability that the two operations be in sequence. The tftdie probabilities
by row must be equal to 1.

* The inter-operation time between these two operatiansdeled as an interval of
possible values (a uniform probability).

Let us consider a software functionality withirfut signalsand two output signals I1,
Domain = {0, 1};12, Domain = {1, 2, 3};I3, Domain = {0, 1};01, Domain = {0, 1};02,
Domain = {0, 1}. The “operation matrix” associatem this example is illustrated iRigure
7.1

Quality of the design of test cases for automatoféwvare: design platform and testing process
180



Automatic generation of test cases R. AWEDIKIAN

S 1
’m‘ : 1. Succession probability

Input \ =|| 11 12 I3 | 12. Timeinterval
signals \ Time between 2

1
1

. 1

I 1

AV CIENERESE PTRNE _: operations :
12y |- i '
1 I !

| 1

1 1 !

- Time |!

12 2 : Tmm Tmax I
3 e e e e e e e - !

13 0 e e RS
=01 4 ':Z(Succession probability):l:

Figure 7.1 — An example to illustrate the conceptfdoperation matrix”

Moreover and through theoperation matriX, engineers can enrich the requirements model
with knowledge on theend-user (driver) recurrentoperations and the test engineers’
experience. Indeed, high probabilities and speaifier-operation timesan be set between
recurrent and/or criticabperations The use ofdriver behavior's profile past bugsand
existing test cases order to refine theperation spacelescription is developed @hapter

8.

One major question is: How an engineer can desidioperation matriX? The basic solution

is to fill in manually each case of thegeration matriX by a succession probability and a
time interval. However, a functionality can havermthan 20nput signalsand 100 possible
values for these signals. In fact, the domain lergjtan analognput signal(for instance,
vehicle speed) depends on the level of details wkampling the analog domain. In
consequence, the size of aopération matriX can easily reach the 10000 cases which
become inconceivable to be filled manually. Oneusoh is to generate theoperation
matrixX’ automatically. For each functionality under teste propose to generate two
“operation matrices automatically. For the two matrices, the timeemtl can be set
automatically to a “generic” interval defined bypexts. Let us consider the same example of
the Figure 7.1 The first matrix called Nominal I (Cf. Figure 7.9 considers that all the
operationshave the same succession probability.

Defined by experts

&%
&69 11 12 13
&
2
g 0 1 1 2 3 0 1
8 v
i |0 004XV} | {0.14(Xv]) | {014 (X v]f [ {014 [X Y]} [ {0145 [X Y]} [ 0.04; [X Y]} | {0.14: [X Y]}
1 ]{0,14;[X:Y1} | {0,24;[X;Y]} ] {0,24;[X;Y]} ]| {0,24;[X;Y]} | {0,14;[X;Y]1} | {0,14;[X;Y]} | {0,14; [X;Y]}
1 1{0,24;[X;Y1}|{0,14;[X;Y]} ]| {0,24;[X;Y]} ]| {0,314 [X;Y]} | {0,14;[X Y]} | {0,14;[X;Y]} | {0,14; [X;Y]}
12 2 | {0,24;[X;Y]} | {0,214 [X;Y]} | {0,14; [X Y1} [ {0,2494X Y]} | {0,14; [X;Y]} | {0,14; [X;Y]} | {0,14; [X;Y]}
3 {0,14; [X;Y]} | {0,24; [X Y]} | {0,214 [X;Y]} [ {0,214 §[X;Y]} | {0,214 [X;Y]} | {0,214 [X;Y]} | {0,124 [X;Y]}
13 0 {0,14; [X;Y]} | {0,24; [X Y]} | {0,214 [X;Y]} [ {0,214 §[X;Y]} | {0,214 [X;Y]} | {0,14; [X;Y]} | {0,214 [X;Y]}
1 {0,14; [X;Y]} | {0,24; [X Y]} | {0,214 [X;Y]} [ {0,24[X;Y]} | {0,24; [X;Y]} | {0,214 [X;Y]} | {0,24; [X;Y]}
{Succession probability ; Time interval }

0.14+0.14+0.14+0.14+0.14+0.14+0.14=1
Figure 7.2 — An example of a Nominal 1 “operation mtrix”
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The second matrix calledNominal 2 (Cf. Figure 7.3 considers that the probability to
choose amperationon theinput signal { is the same than the one on itgut signal |.

Defined by experts

%\%
\'9@\ 11 12 13
\QQO
2
g 0 1 1 2 3 0 1
o
a e
11 10 [ 0.17:DvI} [ {047; VI3 | {011 {IX VIR | {0,105 XV} | {0,105 X YD} | {0,47 X Y1} | 0,47 [X Y]}
1 1{0,17;[X;Y]} ] {0,217 [X;Y1} ] {0,221 [X;Y1} [ {0,11; [X;Y]} | {0,11; [X;Y]} ] {0,17; [X;Y]} ] {0,17; [X;Y]}
1 1 {0,175 [X;5Y1}| {0,217 [X:5Y]1}) {0,211 [X Y]} ] {0,11;[X;Y]} ] {0,11; [X;Y]} § {0,17; [X;Y]} | {0,17; [X Y]}
12 2 1027, XYM 0.7 X Y13 ] {0415 DX YT | 0, 24NX VI | {0,415 XY} | {027 X YIMPM 0,17 [X Y1}
3 1{0,217;[X;Y]}] {0,27; [X;Y]} | {0,11; [X;Y]} | {0,221 [X;Y]} | {0,121 [X;Y]} | {0,175 [X;Y]} | {0,217 [X;Y]}
13 0 1{017;[X;Y]}] {0,217 [X;Y]} | {0,211 [X;Y]} [ {0,221 [X Y]} [ 0,11 [X;Y]} | {0,17; [X;Y1} | {0,17; [X Y]}
1 ]1{017;[X;Y]}] {0,27; [X Y]} | {0,115 [X;Y]} | {0,121 [X;Y]} | {0,11; [X;Y]} | {0,217 [X;Y]}| {0,17; [X Y]}
{Succession probability ; Time interval }

0.17+0.17 = 0.33 0.11+0.11+0.11 = 0.33 0.17+0.17 = 0.33

R

0.33+0.33+0.33 =1
Figure 7.3 — An example of a Nominal 2 “operation matrix”

Moreover, once these matrices are generated autathgtengineers have the possibility to
adjust manually the succession probability and tihee interval between some specific
operations Following the engineers’ modifications, the prbitisy distribution by row is
updated in order to take into account the matrixst@ints. For instance, let us consider the
Nominal 1 “operation matrix"of theFigure 7.2 One engineer can decide to:

e set the succession probability between tperation “I1=0" and theoperation
“11=1" t00.8
* and set all the time intervals after tygeration“I3=0" to[X1, Y1]

The modifiedNominal 1 “operation matrix”is presented ifigure 7.4
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&‘o
e,\°§\ 11 12 13
\’}\
N
2
g 0 1 1 2 3 0 1
[e]
[a)
i1 |0 L {0,033 BXVI} {085 [X Y1} 4 {0.033;[X;Y]} [ {0,033;[X;Y]} | {0,033;[X Y]} | {0.033;[X;Y]} [ {0,033;[X;Y]}
1] {014, X% {O,IW; [X;Y1} {0,14; [X;Y]} {0,14; [X;Y1} {0,20NX ;Y1) {0,14; [X;Y]} {0,14; [X;Y]}
1 {0,14; [X;Y1} ' JXY1} {0,14; [X;Y]} {0,14; [X;Y1} {0,24] [X;Y1} {0,14; [X;Y]} {0,14; [X;Y]}
12 2 | {014; X1} [#%0.04; DY 0.24: DY} | 0,241y | f0.4f Xoviy [ {0245 1X;Y1} [ {0.14;[X Y]}
3 {0,14; [X;Y1}e*| {0,24;[X;Y]} MY}} {0,14; [X;Y1} {0,24] [X;Y1} {0,14; [X;Y]} {0,14; [X;Y]}
13 0 [{0.24; x1;va11[{0,14; [x1 ;1] 1 [ {0,24; [X1 VIR0, 14 [X1 ;v1] 3| 0,14 X2 ;a1 1 {0.14; [x2 ;2] 3| {0,245 [x1 ;Y1 }
1] o141y [ 024:1xv1r | 024,01 | oYy [ 024l x5v1 | 0,145 1X:v1) | {0,145 X1}
0.8 0.033+0.033+ 0.033+0.033+ 0.033+0.033=0.2
0.8+0.2=1

Figure 7.4 — An example of a Nominal 1 “operation mtrix” after engineers’
modifications

1. How to generate a “Test Case”?

Generating aest caseautomatically requires generating a settedt stepsuntil stopping
criterion is validated. The process of generatirigsd casas illustrated inFigure 7.5

Generate a
Test Step

Stopping
Criterion

Yes

Figure 7.5 — The process of generating a test case

The definition of ourstopping aggregated criterioms developed inSection 5 In the
following, we focus on the generation ofest stepBased on the definition oftast stegCf.
Definition 2.11, designing dest steprequires to choose aperation aninter-operation time
and assess thexpected result® be checked on thautput signalsof the software under test.
Through our approach, two automated activitiesnamessary to generatéest step

A. Activity 1: A Monte Carlo simulation on the “opel@ matrix”

In order to generate ayperationand aninter-operation timewe propose to performMonte
Carlo simulationon the ‘bperation matriX. Two steps are required:
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e Step l:anoperationis chosen according to the probabilities on sigigesoperations.
In software testingdMarre 1992), this technique is known under stedistical testing
technique. Before start generatingest casgethe input signalsof the requirements
model are set to specific values. Therefore, theisg operationof thetest cases
randomly chosen among the initiaperations(initial values of theinput signal3.
Sometimes, the startimgperationis chosen in order to favor a specific succession
operationsat the beginning of thiest case

» Step 2:theinter-operation timeis randomly chosen within the time interval of the
choserpperation

B. Activity 2: A simulation of the software requirentermodel

The chosermperationis performed on the requirements model and a sitionl of the model
(synchronized by theycle timeof the Clock signa) starts until thenter-operation timean
out. The values on thautput signalof the model are thexpected resultsf thetest steplLet
us consider the example lBigure 7.1with the“operation matrix” of Figure 7.4 The process
of generating dest steps illustrated using this example kingure 7.6
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Simulation model

& Process : :
flow Operation matrix
Test Case
) Choosethe next
“I1=0"is the operation according to
starting operation the probabilities
|
. | 11 [ 12 13
Stan‘mg vallues on \“ 5 T T V> 3 5 T
the inputsignals 0,033 0.8 0,033 0,033 | 0033 | 0033 | 0033
12 [ [200.4001 | (200,401 | 1200.4001 | [200.4001 | (200,401 | [200,4001 | [200,400]
0,14 0,14 0,14 0,14 0,14 0,14 0,14
[200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
. — 0,14 0,14 0,14 0,14 0,14 0,14 0,14
Software functional 01=0 i [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
: 0,14 0,14 0,14 0,14 0,14 0,14 0,14
requirements 02=0 212 1500.4001 | [200.400] | [200.4001 | [200.4001 | [200.4001 | [200.4001 | [200.4001
~es 0,14 0,14 0,14 0,14 0,14 0,14 0,14
model 3| [200.400] |-{200.400; L1200,400] | [200,400] | [200,400] | [200,400]
o| 014 o 0.14 § Probability=0.14 014
13 ] [603'3400 603,350 ﬂn:leintervalﬂZOOAOO] (in m||||sec?nd) 1%3400]_
Test Case [200.400] | [200.400] | [200.400] | [200.400] | 200.400] | [200.400] | [200.400]
Test Step No TestActions Expected Results
Stepl: "I1=1"is the chosen operation (high probability — 0.8)
ep2: Aninter-operation time is randomly chosen within X ms
Step2: Anint tion't domly ch thin [200,400] (250
[ [T 2 12 13
0 i 1 2 3 0 1
0,033 08 0033 | 0033 | 0033 | 0033 | 0033
V :i[zoo,ztoo] [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
- o 0,14 0,14 0,14 0,14 0,14 0,14 0,14
0,1 11=1 ) 01=0 ACtIVItyl 1| (200.400] | [200,400] | [200.400] | [200.400] | (200,400 | [200.400] | [200.400]
i = 0,14 0,14 0,14 0,14 0,14 0,14 0,14
12= Softwar_e funCtlonal Monte Carlo 1] 1200.400] | [200.400] | [200.400] | [200.400] | [200.400] | [200.400] | [200.400]
1,2,3 requirements H 7 0,14 0,14 0,14 0,14 0,14 0,14 0,14
¢ } _ q del 02=0 simulation on an 12{2] 1200.4001 | [200.400] | [200.4001 | [200.400] | [200.400] | [200.400] | [200.400]
13=0 moae > “operation matrix” 4| o014 0,14 0,14 0,14 0,14 0,14 0,14
0,1} ——> [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
0,14 0,14 0,14 0,14 0,14 0,14 0,14
13|} [600.900] | [600,900] | [600,900] | [600.800] | [600.900] | [600,900] | [600,900]
TestC 0,14 0,14 0,14 0,14 0,14 0,14 0,14
est Lase [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200.400]
Test Step No TestActions Expected Results
11=1
1 .
Wait 250 ms Choosethe nextoperation
s according to the probabilities
r:l‘l IS the'?ﬁ (generation of the nexttest step)
chosenoperation
0 2 i3
\ 0 1 1 2 3 0 1
v 0,033 0.8 0,033 | 0033 || 0033 | 0033 | 0,033
1 | (200.400] | [200,400] | [200.400] | [200.4004/{ [200,400] | [200.400] | [200.400]
11=1 e 0.14 0,14 0.14 0,14 0.14 0.14 0.14
{ 1}; 01=0 ACtIVItyZ [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
' : = . . 0.14 0.14 0.14 0.14 0.14 0.14 0.14
12=1 Software functional | 2-3 Simulation of the 1| [200.400] | [200.400] | [200.400] | [200.400] | [200.400] | [200.400] | [200.400]
R i . 0,14 0,14 0,14 0,14 0,14 0,14 0,14
{123} requirements requirements 1212| 1200.400] | [200,400] | [200,400] | [200,400] | [200.400] | [200.400] | [200.400]
13=0 model model S| o1a 014 0,14 0,14 0,14 0,14 0,14
{0,1} ——>| [200,400] | [200,400] | [200,400] | [200.400] | [200,400] | [200,400] | [200,400]
o| o1a 0,14 0,14 0,14 0,14 0,14 0,14
3|} 1600.200] | [600.900] | [600.900] | [600.900] | [600.900] | [600.900] | [600.900]
| o1 0,14 0,14 0,14 0,14 0,14 0,14
Test Case [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
Test Step No TestActions Expected Results
=1 01=0
1 .
Wait 250 ms 02=1

Figure 7.6 — The process of generating a test step
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Test generation objectives and constraints

Testing software exhaustively remains a major mnobfrom the computing point of view.
Therefore software testingnust often be based on specific assumptions ajedtoles which
help test engineers and managers to decide wheatofothe testing protocol. In order to
monitor our automatic generation tafst caseswe develop ambjective functiorbased on a
formal structural (code) andfunctional (requirement specificationfoverage and the
execution time and cost of generated tests. Inapproach, test engineers can genetede
casesaccording to their quality objectives but alsodiand cost constraints.

A. Structural (code) coverage objectives

While generating #est caseand for each generation ofest stepwe execute theest sten
the software product under test and we evaluatedde coveragen terms ofstatements
proceduresconditionsanddecisionscoverage To do so, we us€-Coverfrom Bullseyeas a
code coveraganeasurement tool. A detailed description of tieele coverages given in
Chapter 2 — Section 6.A.85ince thecode coverageneasurement is already formalized using
commercial tools, we focus our efforts on formalgi the requirement coverage
measurement.

B. Functional (requirement specification) coveragesotiyes

Once we define a model to formally represent andukite the software functional
requirements, we considerfarmal coverage ratef the requirements model. Figure 7.7
we illustrate the functional coverage indicator®tigh the example dfigure 5.3

Finite State Machines coverage

: ~.._ Decision Tablescoverage

~
’ ~ -,

~ [ald

o 7 > i
c Element N1 &
o | Finite , o
3 ! State | | Element NB;
1 Al ° .
o Machine Decision / Element N4
B Table - Finite
% - L / State
e 2 Machine
c ’
.9 ! K
— 1
s ¥ F
o Element N2 ‘
[oREEANER SN L p
@) AT Decision ;
' e Table 1.
Clock ot .

Signals domain coverage
Figure 7.7 — Functional (requirement specificationtoverage indicators
While generating gest casgetest engineers can visualize in real time theeoey zones of the
requirements model (CFigure 7.8 7.9, 7.10and7.11).
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1. The coverage rate of a signal domain

Eachinput, outputor intermediatesignal has a discrete domain. Thignal domain coverage
of a requirements model consists of tteerage rateof the domains of these signals. In
addition, since testing the boundary values ofgaali often reveals many problems, we also
assess theoverage rateof the minimum and maximum values of each sigimakigure 7.8

we illustrate thecoverageof a signal by a practical example. After genetatest case
some values of the signals domains have been gightl. In fact, the signdbignal_3” is
covered at 100% while the two values of this sigmaile visited at least once by the generated
test caseThe signal'Signal_1" has acoverage ratef 33,33% (1 value visited over 3 values
in total).

Signal name Signal domain |
Signal_1 12]6[16]le—— Signal covered at 33,33%
Signal 2 10
Signal_3 1jol«—Signal coveredat 100%
Signal_4 HEENEBRR!
Signal 5 1/0]
Signal B 1{0
Signal 7 1[0}
Figure 7.8 — Signals domain coverage
2. The coverage rate of an operation matrix

The operation matrixcoverageof a requirements model consists of towerage rateof all
successions between pairsoplerationsvisited. Once a succession probability is set betw
each twooperations we define acoverage rateof the critical successions where the
succession probability is above a certain levelngef by the engineer. IRigure 7.9 we
illustrate thecoverageof an“operation matrix” by a practical example. After generating a
test casesome cases of the matrix have been highlightefadt, in the generatddst case
the operation #4has followed theperation #1 theoperation #2has followed theperation
#2, the operation #2has followed theoperation #3and so on. This way, we compute the
coverage rateof successions between pairs agerations(around 38%; 5 successions of
operationswere covered over 13 possible successions)

Operations Opl Op2 Op3 Op4 Coveredsuccession
Opl 0,2-[100:200] | 0,1-[200:200] | 04— [wmé of operations
op2 0 0,5 [100;200] 0 05 [100;100] |
op3 02— [200;200] | 0,4=[100:200] | 0,2 [100;300] <—8:2=[100:300
Op4 0,2-[100:400] | 0,2—[100:200] 0 0,6-[100;200] | Non-covered succession

of operations
Figure 7.9 — Operation matrix coverage

3. The coverage rate of an element (DT or FSM)

Theelement coveragef a requirements model consists of theerage ratef theconditions
of eachDecision TablgDT) and thecoverage ratef thestates transitionsandconditionsof

eachFinite State MachindFSM). In Figure 7.10 we illustrate thecoverageof a DT by a

practical example. After generating tast case some conditions of the DT have been
highlighted. In fact, theonditionsare covered at 75% (®nditionsvisited over 4conditions
in total).

Quality of the design of test cases for automatoféwvare: design platform and testing process
187



Automatic generation of test cases R. AWEDIKIAN

Conditions Actions
. Signal 1 [Signal 2 _ Signal_3
Coveredcondition—» -0 =0 -0
. =10 =1 =0
Non-covered condition—» -1 -0 -1
=1 =1 =1

Figure 7.10 — Decision Table coverage

In Figure 7.11 we illustrate theoverageof aFSMby a practical example. After generating a
test casesomestatesandtransitionsof theFSM have been highlighted. In fact, te&atesare
covered at 75% (8tatesvisited over 4statesin total). Thetransitionsare covered at 43% (3
transitionsvisited -different from 0%- over #fansitionsin total). Theconditionsare covered
at 29% ((50%+0%+100%+0%+50%+0%+0%)/7=29%).

[ Statel ] 50% of the conditions are covered
Y => Covered transition

T2 0% T1 502

j '
State3 7 09 T5 602 State2
T3 100% L

Coveredstate

T6 0%

None of the conditions is covered (0%)

Non-covered state Stated =>Non-coveredtransition

Figure 7.11 — Finite State Machine coverage

Moreover, when designing the requirements modgineers can affect toonditions states

and transitions a normalized criticity level between 0 and 1. Gapgently, we define a
second set otoverage ratedor expressing the degrees abverageof the most critical

conditions statesandtransitions(in fact, this is aveighted coveragef anelemeny

C. Test execution time and cost constraints

Presently, in the automotive industry, the time ammhey spent to test a software product is
the major criterion to stop testing. We have tinmel anoney spent to analyze carmakers’
requirements, to desigast casesind to executeest casesn the software product under test
(Cf. Chapter 2 — Section)6In our approach, we generatest casesautomatically and
therefore, one can have a tendency to generatmany tests. However, executitest cases
on the software product under test and analyziggrésults can cost too much time and
money (Cf.Chapter 4 — Section 4.0.And more especially when the execution is peréorm
manually by a test engineer (CChapter 2 — Section 5.D.1In our approach, when
generating dest casetest engineers can set targets not to be excdedadtraints) on time
and cost indicators:

e Indicator 1: Execution time The time that a test engineer will spend in ekagu
manually the generatedst casen the software product.
» Indicator 2: Number oftest stepsn the generatetest case
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e Indicator 3: Number of “distinct’test stepsn the generatetkst caseTwo test steps
are distinct if they perform differeniperations

Let us consider theest caseof the Figure 7.12 The total execution timeis 1150 ms
(250ms+200ms+300ms+400ms=1150ms, around 19 secofkig)test caseis composed
from 4 test stepsand the number of “distincttest stepss 3 (Test Step and Test Step 4
perform the sameperation “11=1").

Test Case
Test Step No Test Actions Expected Results
1 11=1 01=0
Wait 250 ms 02=1
5 2=2 01=0
Wait 200 ms 02=1
3 13=1 Ol=1
Wait 300 ms 02=1
4 11=1 Ol=0
Wait 250 ms 02=1

Figure 7.12 — An example of test case

Constraints on time and cost are helpful in casigbt planning and budget on the project. It
can also be useful on projects where the test ¢wecis performed manually. In that case,
the execution timeand number ofest stepsnust be reduced and the repetitiest stepor
succession dffest stepsnust be avoided. Typically, when testing@eaphical User Interface
(GUI), test engineers have to check visually the exgeotsults. Nevertheless, new testing
platforms allow even to automate the testingfl using a camera system.

V. Our stopping aggregated criterion

A. The objective function combining objectives andstaaints

Based on theoverageobjectives and the time and cost constraints ifiedtin Section 4we
develop a panel interface to allow the test engsde set precise targets on the test
generation objectives and constraints (Eijure 7.13. The quality objectivescpde and
requirementspecification coverageare expressed in terms of ratioscolverageand, then,
are normalized which aim to reach a value of 100%e execution timeconstraint is
expressed imillisecond(msg. In addition, we define a set of weightgi) that test engineers
can associate for each defined target: O (to beregh), 1 (not very important), 5 (important),
10 (very important). The panel presentedrigure 7.13helps test engineers to express their
targets in terms of the required software qualitg &ests cost and therefore genetatst
casedulfilling their objectives and constraints.
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Targets “Weights

Stiuctural [code) Coverage Objectives

Code statements Coverage % |0 [
Code procedures Coverage 4 |IJ |IJ
Code conditions Coverage % ||} ||:|
Code decizions Coverage 4 [ﬂ [0

Funchional [specification] Coverage Objectives

Signals domains covesage

Inputs domamns Coverage % |0 [0
Dutputs domains Coverage % |0 |0
Intermediates domains Coverage % [0 |0
Inputs boundaries Coverage % |85 |5
Dutputs boundaries Coverage & |35 |5
Intermediates boundanies Coverages % Iﬂs |5
Operation mathix coverage

Successive 2-0perations Coverage % |0 [i
Citical successive 2-Operations Coverage = |ﬂ |D

~ Elements coverage

DT Condition Coverage % [I] |EI
FSM State Coverage % [0 [
FSM Transition Coverage % [o |0
F5M Condition Coverage i |l] IEI
DT Ciitical Condition Coverage % |0 |0
FSM Ciitical State Coverage % 10 |0
FSM Ciitical Transition Coverage % |0 [
FSM Ciitical Condition Coverage % [o o

Test ExecutionT e and Cost Constraints

Test Case Execution Time [x1] ms 108000 [10
Test Step Mumber |_l] ID
Digtinct Test Step Number |U ID

Figure 7.13 — Panel of the quality, time and coshdicators for monitoring the automatic
generation of test cases

In fact, through our approach, the automatic gdiweraof tests is monitored by the set of
targets and weights predefined for each of theityualme and cost indicators. During one
test generation session, the targets may be cosdpteiowing different orders and the first
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target completed does not immediately stop thegamcWe stop only when tlaggregated
preferenceF, defined as:

F :\ Z ‘OT arget - OCurrent X VV|/+\ Z ‘CT arget - CCurrent X VV|
\ |

Fobjectives Fconstraints

whereOs are thecoverageobjectivesCs are thenormalizedtime and cost constraints ams

are weights, attains zero or does not decreasedertain number of successive genersdst
steps This number is one of 8 parameters of ieerristic algorithmused to optimize the
objective function(F) when generating &est case The algorithm and its parameters are
described irSection 6 Since the objective®s are normalized to 100% and in order to have a
consistentaggregated preferencé-), we normalize to 100% the time and cost condsain
(test case execution time, test step number, digest step numbgrThese constraints are
expressed immillisecond (m9 and in number of generatddst steps We illustrate our
normalization process of these constraints thraauglexample. At each time, test engineers
decide to set a constraiat the normalized target of this constrait,ge{Ci) is immediately
set to 100%. For instance, once a test engineedaléc generate test casehat the total
execution timedo not exceed 10800@s (value set in the panel of quality, time and cost
indicators, CfFigure 7.13, the normalized target of thest execution timeonstraint is set to
100% Crarga(test execution time)100%). After generating a setteit stepsthe normalized
current value of this constraintCéuren{Ci)) is assessed by calculating the ratio
(current_constraint_value*100/target_constraint_\v@lun our example, we generate a set of
test stepswith a totalexecution timeof 21600ms Therefore Ccurrenf{test execution timeay
assessed to (21600*100)/1080@ (renftest execution time)20%).

B. A simple example to illustrate our stopping aggtedariterion

Let us consider a practicabftware testingoroblem in order to illustrate the purpose of our
objective function. Through thexperience feedbaodf the software testingexperts, some
software bugs often occur when a signal is setstbaundaries valuesConsequently, test
engineers could always decide to generaesticasda set of test steps) which aims to detect
potential bugs related to tlheundaries valuedHereatfter, we consider the functionality which
consists in managing tHeont wiperin a vehicle. The corresponding software compoieent
made of 1229.ines Of Codgblank and comment lines excluded), ib®ut signalsand 8
output signalsWe decide to generatetest casdulfilling the following targets and weights
in terms of coverage objectives (€Eigure 7.13:

- Cover theboundaries input signalat 85% with a weight of 5
- Cover theboundaries output signakst 85% with a weight of 5
- Cover theboundaries intermediate signads 85% with a weight of 5

While respecting the constraint:
- Do not exceed 30 minutes (108000 ms) of tests ¢xecwith a weight of 10

After generating @est casewith the objectives and constraints defined belatest reportis
generated automatically. An excerpt of this repoitlustrated inFigure 7.14 In this report,
the reached (current) values on the objective amgtcaint indicators are illustrated. In fact,
even if theinputs and outputs boundaries coverdgeve respectively reached and exceeded
their targets (respectively 85% and 94%cov¥eragg, our optimization algorithm did not stop
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the generation ofest stepsexpecting that thentermediate boundaries coverageaches its
target. But once the maximutast execution timeshich has a weight of 10 (very important)
has been exceeded (110255 ms instead of 10800Ghas)ptimization algorithm decides to
stop generatingest stepseven if theintermediates boundaries coverage not already
reached. The excess of anstraint out of its bounds is accounted for a penalty that
irremediably increases the overall objective value.

Test Case. Indicators Progress Current Target Weight

Functional (specification) coverage objectives

DT Condition 68 0 % 0
FSM State 63 e 0 % 0
FSM Transition 2T % 0 % 1]
FSM Condition 30 % 0 % 0
Inputs darmains 83 % 0 % 1]
Qutputs domains G % 0 % 1]
Intermediates domains 75 G 0 % ]
Inputs boundaries 85 % 85 % g
Cutputs boundaries 94 % 85 % g
Iotermediates boundaries " g5 % b
Successive 2-Operations | | 5% 0 % 0
Test execution time and cost constraints

[ TC Execuion Time (ms) 110255 106000 10
Test Step Mumber 445 1] 1]

Figure 7.14 — An excerpt of the report delivered atomatically after generating a test

case
Our heuristic algorithm to optimize the objective function
A. Process flow

In conclusion, for a set of targets and weightstmcoverageobjectives and the time and
cost constraints, the test engineer can generage oonmoretest casesfulfilling these
predefined objectives and constraints. Afterwartte “Optimal” test caseis selected
automatically. To do so, we compare the genertstdcasesn pairs and we select the one
which has the lowest value of tlaggregated preferencEopjeciivesOf the quality ¢overage
indicators. If the twdest casediave the same value Bfpjecives W Select the one which has
the lowest value of thaggregated preferend€onstraint Of the time and cost indicators. If the
two test casedave the same value Bfonstrains We Select the utmost one that respects each
individual constraints going from the higher to toeer weights.

Moreover, a software functionality under test htisroconfiguration signal¢Cf. Chapter 5 —
Section 3.A which allow to parameterize the functionality r(fimstance, by activating or
deactivating one feature of the functionality). Bdnfiguratiori of a functionality consists to
set all theconfiguration signalsf the functionality to fixed values. Through aalgorithm,
two strategies are possible for managing the “@umétion” of a functionality. On the one
hand, test engineers can generate one or tasteasesor each specific Configuratiori of
the functionality. Theconfiguration signalsare set to fixed values all ovetest caseOn the
other hand, test engineers can generate one ortesireasesvhere eaclest caseonsiders a
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set of predefined Configuration$ of the functionality. In this case, the values thie
configuration signalsan change from ortest stego another within the santest case

In Table 7.1 we describe the process flow of our optimizatdgorithm. The parameters of
this algorithm are identified imable 7.1(Parameter) and described in the next section.
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Process flow

Brief description

@

o Set a new “Configuration” for
the functionality under test

Fixed values on the
configuration signals

a Set targets on the quality, time
and cost indicators

I Otargetand Ciarget

e Set the parameters of the
optimization algorithm

Start generating a__ ¢ Parameters
testcase

o Choose a succession of two
operations

Optimize the coverage of
the operation matrix?

Succession already
covered?

Parameter
N1 trials?

Choose another
succession of

operations r

Test engineers can decide to test a functionality under
different “Configurations” (Configl, Config2 ...).

We set a new “Configuration” for the functionality under test.

Test engineers have to define the targets and weights for the
coverage objectives and for the time and cost constraints

Test engineers have to set the parameters of the
optimization algorithm.

We start generating a test step by choosing a succession of
operations

Did the test engineer decide to optimize the coverage of the
“operation matrix”?

If NO, we keep the chosen operation

If YES, we check if the chosen operation is already covered
by another test step in the test case

If NO, we keep the chosen operation

If YES, we check if we already made N1 trials and all the
chosen operations were already covered

If NO, we choose a new succession operation
If YES, we keep the last chosen operation

To be continued ...
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Process flow

Brief description

A

within the time interval

* Inter-operation time

Simulate the requirements
e model and assess the
expected results

* Test Step

Assess the current values of
0 the quality, time and cost
indicators

e I Choose an inter-operation time

OCUI’I’eﬂI an d Ccurrent

Optimize the number of test
steps?

F decrease?

N2 trials?

Delete the test
step and generate

anew one

We choose an inter-operation time within the time interval

We set the chosen operation on the requirements model, we
simulate the model during the inter-operation time and we
assess the expected results on the output signals

A new test step is generated

We assess the current values of the coverage objectives
and the execution time and cost constraints

Did the test engineer decide to optimize the number of test
steps in a test case?

If NO, we keep the generated test step

If YES, we check if the aggregated preference F has
decreased

If YES, we keep the generated test step

If NO, we check if we already generated successively N2
test steps with no decrease of the aggregated preference F.

If NO, we delete the last generated test step and we
generate a new one

If YES, we keep the last generated test step

To be continued ...
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Process flow

Brief description

B

v

e Add the generated test step to I

the test case

Test Case

Yes

Fobjectives =0?

F decrease?

Generate a
new test step

Last N3 Test Steps?

ald

Cumulate the coverage of
different configurations?

C D

For a set of “Configurations”, we
generate an “Optimal “Test Case
fulfilling the predefined objectives
by accumulating the coverage of
the different “Configurations”

For each “Configuration”, we
generate an “Optimal “Test Case
fulfilling the predefined objectives

We add the test step to the current test case
The current test case is updated with a new test step

We check if the “set” coverage objectives have reached their
targets (Fobjectives:O)

If YES, we stop generating test steps for the current test
case

If NO, we check if the aggregated preference F has
decreased

If YES, we generate a new test step for the current test case

If NO, we check if the aggregated preference F have not
been decreased with the N3 last test steps of the current test
case

If NO, we generate a new test step

If YES, we stop generating test steps for the current test
case

Did the test engineer decide to cumulate the coverage of
different “Configurations” in order to reach the targets on the
coverage objectives?

If YES, follow C

If NO, follow D
To be continued ...
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Process flow

Brief description

Other “Configurations”
that should be tested?

Choose the “Optimal” Test
e Case between the present test
case and the previous one

“Optimal “Test Case

N4 generated Test
Cases?

Generate a
new test case

Is there other “Configurations” for the
functionality that should be tested?

If YES, we change the “Configuration”
and continue generating test steps for
the same test case

If NO,
finalized

the current test case is

We choose the “Optimal” test case
between the current test case and the
previous one.

The “Optimal”

Do we generate N4 test cases in order
to choose the “Optimal” one?

test case is chosen

If NO, we generate a new test case for
the set of “Configurations”

If YES, we stop the algorithm and we
deliver the “Optimal” test case for
the set of “ Configurations ”

D

v

Choose the “Optimal” Test
Case between the present test
case and the previous one

Optimal Test Case

N5 generated Test
Cases?

Generate a
new test case

Yes

Other “Configurations
that should be tested?

The current test case is finalized

We choose the “Optimal” test case
between the current test case and the
previous one.

The “Optimal” test case is chosen

Do we generate N5 test cases in order
to choose the “Optimal” one?

If NO, we generate a new test case
with the same “Configuration”

If YES, we check if there is other
“Configurations” for the functionality
that should be tested?

If YES, we change the “Configuration”
and start generating a new set of test
cases

If NO, we stop the algorithm and we
deliver an “Optimal” test case for
each “ Configuration

Table 7.1 — Our heuristic algorithm to optimize thegeneration of test cases
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B.

Parameters

In the Table 7.1 we identify 8 parameters that must be set bytélse engineer before start
generatingest cases

Parameter 1 Test engineer can decide to optimize twwerageof the “operation
matrix”. To do soParameter Imust be set té. Otherwise, it is set tO.

Parameter 2 In order to optimize theoverageof the “operation matrix”, we check if
the chosen successionayerationsis already covered or not. When it is already cede
we propose to choose another successiapefationsand so on. However, we have to
avoid the non-stop loop in the algorithm. TRarameter 2specifies the maximum
number of unsatisfied tria[®1) before the algorithm exists the loop.

Parameter 3 Test engineer can decide to optimize the numbeesb stepsn atest case
To do soParameter Imust be set té. Otherwise, it is set tO.

Parameter 4 In order to optimize the number tdst stepsn atest casewe check if a
generatedest stepdecreases thaggregated preference. fn case of no decrease lef
we propose to delete thest stepand generate a new one. However, we have to déveid
non-stop loop in the algorithm. Thearameter 4specifies the maximum number of
unsatisfied trial§N2) before the algorithm exists the loop.

Parameter 5 In case of generating one or motest casesfor each specific
“Configuratiori of the functionality, this parameter allows t@gtgeneratingest steps
for eachtest case In fact, we check if theaggregated preference Ras not been
improved on the lasfN3) test stepf the currentest caself it is the case, we stop
generatingest stepslt not, we continue generatingst steps

Parameter 6 Test engineer can generate one or mest caseswhere eachest case
considers a set of predefine@dnfiguration$ of the functionality. To do this?arameter
6 must be set td. When this parameter is set@peach generategst caseconsiders
only one specific Configuratiori.

Parameter 7(used wherParameter 6= 1): This parameter defines the numbetesit
casegN4) to be generated in order to identify the “Optifraie.

Parameter 8(used wherParameter 6= 0): This parameter defines the numbetesit
caseqNb) to be generated in order to identify the “Optitraie.

Conclusion

In automotive industry, the activity of designingamually test casedor software products
becomes more and more laborious and time consurmg.activity accounts for more than
50% of the total software project time and bud@d#t Chapter 1 — Section 5.0.2Despite the
huge time and money spent in testing a softwarelymoand after each delivery to the
carmaker, some bugs are detected by the carmakee Be late 90’s, the automation of the
test case design procebecame a hot topic and automotive electronic sewgplare still
looking for a relevant automation of this process.

In this chapter, we developed our strategy to gerdest casesautomatically from our
formal model to represent software functional requiremé@f. Diagnosis 1%. The selection
of operationsis performed based onMonte Carlo simulatioron an ‘bperation matriX (Cf.
Diagnosis 13 All the expected values on tbatput signalsof the functionality are assessed
through a simulation of the requirements model (@&gnosis 10 and 12 Moreover, test
engineers could parameterize the generatidesifcase# order to take into account quality
objectives but also time and cost constraints. dddéhe decision to stop designitegt cases
is based on tormal measurement of thddeandrequirement coveragand the test time and
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cost (Cf.Diagnosis 1)1 A heuristic algorithmis in charge of optimizing the generationtest
caseswhile fulfilling quality objectives and constragt

In the following chapter, we suggest refining thigeration spaceéby focusing on critical
operationsor succession obperations To do this, we defindriver behavior’'s profileand
propose to reudeugsandtest casesapitalized on similar projects in the past.
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CHAPTER 8. REFINING THE OPERATION
SPACE DESCRIPTION WITH THE DRIVER
BEHAVIOR'S PROFILE, PAST BUGS AND TEST
CASES

Quality of the design of test cases for automatfevare: design platform and testing process

201






Refining the operation space description with the dver behavior's profile, past bugs and test cases
R. AWEDIKIAN

Introduction

As automotive software products become more andencomplex (Cf.Chapter }, it is
illusory to be able to check that the software pridresponds correctly to all possible
operations In other words, it is impossible to cover all thgeration spacef a software
product(Cf. Chapter 2 — Section)6In fact, each engineer has a different percapbibthe
possible and criticabperations(based on her/his experience). When desigtaagcasestest
engineers aim to reach a code@guirement coveragebjective. In fact, test engineers do not
always selectoperationsthat simulate theeal use of the software product under test.
Moreover, they do ndbrmally use capitalized bugs atest cases order to improve theest
design procesen future developments.

In this chapter, we point up how tlaperation space&an be objectively refined by focusing

on critical test scenarios. The complexity of tagtiexhaustively a software product is
illustrated inSection 2 An overview on oupperation spaceeducing techniques is proposed
in Section 31In Section 45 and6, we develop respectively each of these technidfoeasing

on test scenarios regularly done by émel-userof the product, focusing on recurrent types of
bugs through an analysis of tpeoblems’ databasand finally focusing on test engineers’

experience feedbadly reusingest casesapitalized on previous projects.

The impossibility of testing exhaustively a softwag product

Testing exhaustively a software product isNP-Completeproblem from a computational
viewpoint. In other words, it is very complex tstall theinputs combinations of inputand
pathsof a software. In computationabmplexity theorythe complexity clasdiP-Complete
also known afNP-C or NPC, is a subset of th&lP class (Non-deterministic Polynomial
time' class, (Karp 1972)). They are the most diffiquibblems inNP. To prove that amNP
problemA is in fact anNP-Completeproblem it is sufficient to show that an alreadyown
NP-Completeproblem reduces tA. There are more than 3000 knoviP-Complete
problems. Most of the problems are listed in Gameg Johnson's seminal book (Garey 1979).
In (Seroussi 1988), Seroussi and Bshouty provethgatiesign of an optimal exhaustiest
casefor an arbitrary logic circuit is aNP-Completeproblem. In fact, they demonstrate that
finding the minimaltest casgand its size) which covers the logic circuit isNP-Complete
problem. In order to do this, they first show thhe problem can be solved by a
nondeterministic algorithm in polynomial time. Thethey use the standard technique of
reduction to prove that the problem N§-Complete for a given problenP (the Graph
Coloring probleni®) known to beNP-Completethey show that if our problem is solvable in
deterministic polynomial time, then soRs In (Cheng 2003, Hessel 2007), the authors prove
that finding optimaltest casedor a software product is adP-Completeproblem. Indeed,
they reduce the problem of generatiagt case$o theset-covering problertanNP-Complete
problem).

For our research project, we propose to generatematically test casedor a software
product. Our approach is based on modeling thewaodt functional requirements and
generatingtest casesfrom this model. To guide the design tast casescode and/or
requirementcoveragecriteria are used. &Aoveragecriterion can be seen as a set of items
(relations between inputs and outputs) in Hwirce codeor requirements modefo be
covered. Therefore, our test generation problem banformulated as d&eachability

34 Graph coloring problenhttp://en.wikipedia.org/wiki/Graph_coloringonsulted on November 2008)
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problent® (anNP-Completeproblem) which consists to explore thgeration spacenly if it
might increase the totaloverage In fact, atest casds a set of ([S1Cov]), (TS2 Cov2d,
(TS3 Cov3, ... (TSn Covn), whereTSiis atest stepandCovi is thecoveragecontribution
performed byTSi Ideally, this set should be reduced so that ot& toverageXCovi is not
changed, and the length of ttest casee.g.2|TSi| is minimized. However and as it was
shown above, designing a subseteast stepwith this property is alNP-Completgoroblem
(the Reachability problem

A present, all known algorithms foNP-Complete problems require time that is
superpolynomial(for instance, exponential) in the inputs sized @nis unknown whether
there are any faster algorithms. The following teghes can be applied to solve
computational problems in general and they oftee gse to substantially faster algorithms:

« RandomizationUserandomnesgo get a faster average running time, and allosv th
algorithm to fail with some small probability.

» Heuristic: An algorithm that works "reasonably well" on margses, but for which
there is no proof that it is both always fast ahdags produces a good result. In
Chapter 7 — Section, 6nve develop théneuristic algorithmthat we use in order to
explore theoperation spacef a software product and monitor the generatibtest
cases

In the next sections of this chapter, we develow ho reduce theoperation spaceof a
software product by highlighting and eliminating ne® operations or succession of
operations Our purpose is to explore tbperation spacef a software product efficiently.

Reduce the operation space

As said in the previous section, selectopgrationsfrom the wholeoperationspacein order
to reach a coverage objective iSNBR-Completgoroblem. For that reason, it can be useful to
reduce theperation spacéy:

A. Focusing on recurrent operations done by the eadafghe product

We analyzed in 2006 a set of software bugs (thebeunof these bugs is confidential)
detected on different types of products by carmaked end-users (drivers) and not detected
by Johnson Controls. The conclusion which was a#éid by Johnson Controls software
experts is that some of these bugs (more than B@%b)nly be detected via successions of
operationsregularly done by the end-user of the product.rditoee, we propose to generate
test caseshat simulate the behavior of the end-user ofptteeluct. To do saest casesnust

be generated from‘operation matrices” where illogic (from end-users’ viewpoint)
successions adperationsare eliminated (for instance, set the vehicle d@€l00 km/h then
open the trunk) and regular succession®mérationsare favored (for instance, close the
driver door and set the ignition). Our process #fimeé a driver behavior's profileis
developed irSection 4

B. Focusing on specifics operations with high probghib detect bugs

We performed in 2007 a study on 70 software bugectkd on the same functionality
developed in Johnson Controls for 5 different mtgeespectively in 1997 (27 bugs), 2001 (4

% Reachability problemhttp://en.wikipedia.org/wiki/ReachabilifConsulted on November 2008)
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bugs), 2003 (4 bugs), 2003 (13 bugs) and 2007 (@@)(Cf.Chapter 2 — Section 7)CThe
studied functionality has féatures so we classified these bugs by project antebture(Cf.
Figure 2.23. We also classified these bugs by project andypg of problem (CfFigure
2.23. In fact, we only consider 4 types of problem ige 1990, Chillarege 1992, Grady
1992, IEEE Std. 1044-1993)ode implementatigrcontrol flow, data andprocessing A full
typology of software bugs is described3ection 5.BThe conclusions which were validated
by Johnson Controls software experts are 1) enginegve the tendency to make errors in
implementing the samfeaturesof a functionality Featurel, 3 and 7) and 2) these errors are
related to the same types of proble@ofitrol flow andprocessing} As a consequence and
when testing a functionality, we propose to rewated stored bugs in order to genetats
caseswhich verify the nonexistence of recurrent bugs.db sotest casesnust be generated
from “operation matrices”where the successions @berationsthat reveal the recurrent bugs
are favored. Moreover, classifying the recurrergsoaf a functionality (byeatureand/or by
type of problem) could help the test engineersdttelb focus the generation st case®n
critical featuresor on specific types of problem. More details @using stored bugs are
provided inSection 5

C. Focusing on specifics operations recurrently dopehle test engineers
on previous projects

Using capitalizedest caseseems to be beneficial in automotive context smoee than 50%

of functionalities performed by software produats aommon to any series of cars (Johnson
Controls source). Moreovetest casesnanagement and reuse are considered as one of the
main characteristics of a mature software orgamaaf herefore, when testing a functionality
that we already implemented in the past on angit@ect, it is judicious to reuse existitept
cases To do so, we propose to analymst casesdeveloped in the past for the same
functionality and desigrfoperation matrices” where theoperation spaceds reduced by
focusing on the test scenarios based on our retfregperienceTest casegenerated from
these"operation matrices” contain similar successions gperationsas in the one designed
manually or generated automatically in the pastrévitetails on reusing capitalizezbt cases
are provided irBection 6

V. Four types of constraints for the definition of a diver behavior’s
profile

We define four types ofonstraintsthat test engineers can affect to eagbut signalof a
requirements model in order to, when generatés casesutomatically, eliminate or favor
specific successiveperations Eachinput signalcan have one or momonstraints These
constraintsaim to reduce the number of possible combinat@mgput signalsand to more
thoroughly pinpoint which ones are frequently setethe product is launched on the market.
These fourconstraintsare:logical constraint conditional constraintsuccession constraint
andtiming constraint

A. Logical constraint

This constraint forbids that anput signalswitches between inadequate values from a use
point of view. In order to illustrate this constrgilet us consider the input signal which
has a domaib(11)={0,1,2,3}. We classifyinput signalsinto two types:

Acyclic (Cf. Figure 8.1)Input signalll is acyclic if, at any moment, all tioperations(11=0
or 11=1 or 11=2 or11=3) on the signal are possible. A practical examplarcacyclic signal
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is therain intensity signaimeasured via a sensor. When it is raining so flareB), it can
stop raining 1=0) at any moment without a decrease of the rainmegnisity (1=3 — 11=2
— 11=1 — 11=0).

110 1|2]3
Oj1]1]1]1
1]1]1]1|1]1
2111111
3111111

Figure 8.1 — Acyclic signal

Cyclic (Cf. Figure 8.2)input signalll is cyclic if the futureoperation(11=0 or 11=1 or [1=2
or 11=3) on the signal depends on the one did in the pagiractical example of a cycle
signal is thewipers’ switch signal. When wiping at a high speed=3), user cannot
immediately switch off the wiperg1=0) via the switcher. In fact, she/he must progresgiv
slow down the wiper speed until the complete stbp3 — 11=2 — 11=1 — 11=0).

1]1]0]1(2]3
0j]1|1
1]11]1(1

2 111]1
3 11

Figure 8.2 — Cyclic signal
B. Conditional constraint

This constraint characterizes a specific user hehdetween two or more correlat@tput
signals In other words, when one or marguts fulfill specific conditions, the domain of
otherinputs is adapted (shrinked) automatically. For insta(Ce Figure 8.3, the vehicle
speed cannot be more thanlD>Q), only if the vehicle is runningZ=1) and the vehicle can
be running 2=1) only if the car engine is switched dB8<£1).

I1 cannot be more than 0 Only if 12 is equal to 1

11 12
>0 =1
12 cannot be equalto 1 | Onlyifl3isequalto 1
12 13
=1 =1

Figure 8.3 — Conditional constraint
C. Succession constraint

In practical use of an electronic product, two asreoperationshave a high probability to
succeed (sometimes, must intuitively succeed). Ugindhis type of constraint, we favor such
successiveoperations For example (CfFigure 8.4, when drivers close the driver door
(I11=1), they often (with a probability of 0,75) switch the car engind3=1).
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I 12 13
0 1 1 2 3 0 1
10
1 [ 004 [ 004] 004]004] 004 004
1
2 2
3
0
13—
Probability only
Figure 8.4 — Succession constraint
D. Timing constraint

Major Johnson Controls software experts approvetitme interval betweenperationsplays
a major role in bugs’ detectio@n the one handwo specificoperationscan be performed
with a specific time interval (Ckigure 8.5. For instance, in case of a taxi driver, the @riv
door is closedl{=1) and the car engine is switched ¢8=1) within a small time interval
(150ms®, 100ms] according to experts).

11 12 13
0 1 1 2 3 0 1

N
RO|WIN|F|F][O

Inter-operation time interval only
Figure 8.5 — A specific time interval between twoperations

On the other handa specificoperationcan be performed during a specific time (Eijure
8.6). For instance, the ignition is switched af8£0) for more than 5 seconds (according to
experts) in order to reset a functionality.

11 12 13
0 1 1 2 3 0 1

N
= NN =)

Inter-operation time interval only
Figure 8.6 — An operation set during a specific tira

Reuse of bugs detected on previous projects

Each bug stored in tHeug’s databasdias a set of 111 attributes “theoretically” fillbg the
engineer while resolving the bug. Ghapter 2 — Section 7,Bve estimate that 75% of these

%% ms: millisecond
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attributes are filled; the remaining 25% are systirally unfilled. On the 75% filled
attributes, 25% of these attributes are free fieMereover, we deduce that tipeoblems’
databasein Johnson Controls is mainly used to manage tlgs land keep their traceability.
Unfortunately, none of the 111 attributes is usefubentify critical succession aiperations

or recurrent types of problem for a specific fuaetlity. In this section, we propose two
strategies in order to reuse bugs detected onque\projectsThe first strategyconsists of
defining a specific format to capitalize the init@nditions and the successigperations
which lead to detect a bughe second strateg@ims to define a detailed typology of software
problems.

A. A specific format to capitalize the successive apens leading to a bug

Now at Johnson Controls, engineers describe hoviulgewas detected by filling a free field
in the problems’ databaseamed Problem descriptioh(Cf. Figure 2.19. Indeed, apart the
requirement of using the English language, no otequirements or recommendations for
filling this field are given to database usersfdat, each engineer has to describe the way the
bug was detected by giving as much detail as plessib Figure 8.7 we propose a new
specific format to describe the successiperationsleading to a bug.

Problem description

The initial state of the functionality under test. Here, practitioner

Initial values on input signals must list all the initial values on the functionality input signals

Step 1
The first operation. Here, practitioner must put nothing or an input
signal set to a specific value
The waiting time before performing the second operation. Here,
practitioner must put a time in millisecond
The expected values on the functionality output signals. Here,
Expected values on output signals practitioner must list all the expected values on the functionality
output signals
The observed values on the functionality output signals. Here,
Observed values on output signals practitioner must list all the observed values on the functionality
output signals

First operation

Inter-operation time (ms)

Step 2

Second operation

Inter-operation time (ms)
Expected values on output signals
Observed values on output signals

Step i

i operation

Inter-operation time (ms)
Expected values on output signals
Observed values on output signals

Stepn

n" operation

Inter-operation time (ms)
Expected values on output signals
Observed values on output signals

Figure 8.7 — A predefined format to fill in the “Problem description” attribute of a bug

Let us consider a practical example of a functibyavith 3 input signals(I1, Domain = {0,
1}; 12, Domain = {1, 2, 3};13, Domain = {0, 1}) and twamutput signal§O1, Domain = {0,
1}; O2, Domain = {0, 1}). When testing this functionalitjy@ project in 2005, a test engineer
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has detected a bug and added this bug tbulés databaseln Figure 8.8 we illustrate how
the “Problem descriptichattribute of this bug was filled in. IBtep 6 the observed values on
output signalsare different from the expected values (this s dhmptomof the bug). For
each bug in the database, the functionality whesebtig was detected is specified. Therefore,
when testing the same functionality on a projec007 (2 years after), a test engineer could
select from theproblems’ databasall the bugs detected on this functionality onvpres
projects. Based on the predefined format of fRwblem descriptiohattribute, each bug can
be translated automatically into &operation matrix” (Cf. Figure 8.9. A glossary of the
input signalsnames on the previous and current projects isssacg In fact, from one
project to another, the name of imput signalcan change even if the use of the signal stills
the same. Theest casegenerated from thisoperation matrix” (Cf. Figure 8.§ allow to
check if the bug that we detected in the pastésgmt or not in our new development of the
functionality.
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A capitalized bug

Problem description

Automatic

11=1
Initial values on input signals 12=1
13=0

Step 1
1st operation 11=0 =
Inter-operation time (ms) 50 |
Expected values on outputs 01=0; 02=0 1
Observed values on outputs 01=0; 02=0 :

Step 2 1
2nd operation 11=1 —:
Inter-operation time (ms) 200 1
Expected values on outputs 01=0; 02=0 1
Observed values on outputs 01=0; 02=0 :

Step 3 1
3rd operation 12=2 <
Inter-operation time (ms) 100
Expected values on outputs 01=1; 02=0
Observed values on outputs 01=1; 02=0

Step 4
4th operation 13=1
Inter-operation time (ms) 800
Expected values on outputs 01=1; 02=1
Observed values on outputs 01=1; 02=1

Step 5
5th operation 11=0 =
Inter-operation time (ms) 200 1
Expected values on outputs 01=0; 02=1 1
Observed values on outputs 01=0; 02=1 :

Step 6 1
6th operation 11=1 —:
Inter-operation time (ms) 300 |
Expected values on outputs 01=1; 02=1 1
Observed values on outputs 01=1; 02=1 :

Step 7 1
7th operation 13=0 i< -
Inter-operation time (ms) 150
Expected values on outputs 01=1; 02=0
Observed values on outputs 01=1; 02=1

Figure 8.8 — Process of reusing bugs capitalized the problems’ database

The generated
“Operation matrix”

11=1 has succeeded to
11=0 with two different
inter-operation times

I _ 1 I _ 1
(50ms and 200ms) . 12=2 has o 13=0 has |
e \ |- - | succeededone | | succeededone 1
\ 1 1 timeto 11=1 (50%) ! I timeto 11=1 (50%) !
\ 5P - b r=1 L=y )= === i
I i T PN 37
0 \" 1 1 2 4,1 ¢33 0 ; 2R
i 17 ’
. 0 [50.200] 0 o/ 0 o ! 0
05 * 05 "
a 0 0 0 [200,200] 0 [300,300] 0
1 0 0 0 0 0 0 0 Automatic
1 generation of
12(2] © 0 0 0 0 % | pmooaoo | | “Test Cases),
3l o 0 0 0 0 0 0
of o 0 0 0 0 0 0
13 1
1 [800,800] 0 0 0 0 0
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The generated
“Test Cases”

TestCase 1
Test Ste .
No P Test Actions | Expected Results

1 11=0 To be filled by simulatin

Wait 200 ms the requirements model
2 11=1 To be filled by simulatin
Wait 200 ms the requirements model
12=2 To be filled by simulatin
3 . the requirements model
Wait 100 ms
Wait800 ms Test Case n

5 Test Ste .

P Test Actions | Expected Results
No

11 watacoms | BRI
Wait 100 ms !

7 2 =1 To be filled by simulatin
Wait 300 ms the requirements model
13=0 To be filled by simulatin:

3 the requirements model
Wait 800 ms

4 1=0 Tobe filled by simulatin
Wait 50 ms the requirements model

.

. 5 =1 To be filled by simulatin
. Wait 200 ms the requirements model
6 12=2 To be filled by simulatin

Wait 100 ms the requirements model

7 13=1 Tobe filled by simulatin

Wait 800 ms the requirements model
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In conclusion, for each functionality, test engirseean generate a settekt casesrom the
bugs detected on the same functionality on previimagects. Once executing theest cases

on the new software of the functionality, test exegrs can, at least, guarantee that the new
development is free of the bugs already made ipése

B. A new typology of software problems

A second way to reuse bugs stored in pheblems’ databasés to analyze these bugs and
identify the recurrent type of problems when impéenting a software product. Theroblem
typ€’ captures the nature of the fix. It addressesqnestion: “What did the engineer correct
in order to resolve the bug?” With this definitiof “Problem typg the classification is
easier for the engineer, since she/he can almastiel®bjectively whichattribute valueto
assign. Presently, Johnson Controls doesn't havgpalogy of software problems (Cf.
Chapter 2 — Section 7)B

In 2007, we participated to a work group on thariigdn of a newbug classification model
within Johnson Controls. The aim of this new modelto be able to identify process
improvement actions for the development auatification and ValidationV&V) processes.
In other words, the nelug classification modehust answer the question of “which types of
bugs are injected and detected in which processegtiarheclassification modeturrently
used in Johnson Controls (@hapter 2 — Section 7)Bloes not allow to answer this question
since there is no typology of software problemse Aewbug classification modehat we
propose is summarized Fgure 8.9 It is mainly inspired by the literature on théogct (Cf.
Chapter 4 — Section 4.Q.2T'he new model is based on three attributes:

» Detection phasethe phase of the process where the bug was detecte

» Injection phasethe phase of the process where the bug was idjecte

» Problem/Correction typethis attribute answers the question of “what dadi yix in
order to correct the bug?”

For each of these attributes, a set of predefireddeg was defined in accordance with the
Johnson Controls software process CHapter 2:

« Detection phaseSpecification review, Design review, Code revi€damponent test,
Integration test, Manufacturing test, Validationstfe System test, Test review,
Customer test.

e Injection phase System Specification, Specification, System Desiddesign,
Implementation, Integration, Manufacturing, Testimhases (Component test,
Integration test, Validation test, System test, Manturing test, Customer test).

« Problem/Correction typeA two-level typology of software problems is defd. The
values of the first-level typology are: Specificati update, Design update,
Implementation update, Integration update, Manufawg update, Test case update,
Update none. The second-level typology is detaiiedppendix E
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Detection Specificati|| Design Code ||Component|Integration|| Manufact || Validati || System Test Customer
phase onreview || review review test test uringtest || ontest test review test

Injection System || Specificaf System
phase Spec. ion Design

N/

Specificati| Design ImpIementT

type onupdate| update |tionupdate
1stlevel

Implgme Integration Man_ufac Testing
ntation turing phases

Design

Problem Integration ||Manufactur|| TestCase || Update

update [ingupdate|| update none

Problem
type
2 level
Cf.Appendix F

Figure 8.9 — Our new bug classification model

On the one handas inHP classification model (Chillarege 1992); the atttdminjection
phaseandProblem/Correction typare linked. Indeed, the choice of a value fordttabute
Injection phasedefines the possible values for the attribBf®blem/Correction typeln
practice, when an engineer is editing a bug imptleblems’ databaseonce she/he defines the
Injection phaseof the bug, the list of proposderoblem/Correction typenust be adapted
dynamically to the chosemjection phase For example, if the bug was injected in the
Specification phase, the list dProblem/Correction typemust be (Cf. Appendix E
requirements incorrect, requirements logic, reguneets completeness ... If the bug was
injected in thelmplementationphase, the list oProblem/Correction typenust be (Cf.
Appendix B data definition, structure, declaration, dateess and handling, control flow and
sequencing ...

On the other handat the end of eacbesignphase, one or mor€&V phases have the
responsibility to detect all the type of problemgected in this phase (CTable 8.). The
validation and system teate the lasV&V phases before the software product delivery to the
carmaker. These phases have to check the complafnitee developed software with the
carmaker requirements. They have the responsitiiitydetect all the type of problems
injected during the design and development phasdsnat detected by the corresponding
V&YV technique.

Bugs injected in Must be detected in
System specification Specification review
Specification Validation and System test
System design Design review
Design Validation and System test
Code review
Implementation Component test

Validation and System test
Integration test
Validation and System test
Manufacturing test
Validation and System test

Testing phases Test review

Table 8.1 — Theoretical bugs’ injection and deteatin phases

Integration

Manufacturing

However, som&/&V activities Detection phasgsare not enough reliable to detect all related
types of problems. The nelbug classification modetnables to pinpoint such lacks in the
software process. In fact, managers can identiéydénsity and type of software problems
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injected in and detected by each phases of thevaatdevelopment life cycle. Therefore,
improvement actions on the design phases (devaapdesign or development rules ...) and
on the V&V phases (develop newode reviewrules, a new testing strategy...) can be
performed. The first-level typology of software plems is not enough detailed and the
improvement actions that can be raised from witl lo® enough efficient. For instance, after
analyzing a set of bugs relatedSpecification Updat@roblems, one engineer can note that
the total number of these bugs is injecte®pecification SysteandSpecificationphases and
few of them are detected Bpecification Revieywhase. As a conclusion, tispecification
Reviewprocess has to be improved. However, it is a vagti®n. Engineers need to know
what they have to improve in tihheviewprocess. Are the requirements unclear? Incori@ot?
the requirements change often? ... We work in colialban with software experts in order to
define the second-level software problem typologsised on the literature review (Beizer
1990, Chillarege 1992, Grady 1992, IEEE Std. 10493} and taking into account the
automotive and industrial context, we propos@ppendix Ea detailed typology of problems.

Through our research project, a new approach tergémtest casesautomatically for a
functionality is proposed. The generatiedt casedave the responsibility to detect all the
bugs injected during thémplementationphase of thesource code Analyzing the bugs
injected during themplementationphase of the same functionality on previous ptsjec
allows test engineers to better parameterize theergéon oftest casesInstructions to
generatdest casesble to detect one specific type of software imq@atation problems (Cf.
Appendix R are listed infable 8.2

Types of software Can this type of Instructions when generating test
implementation problems problem be detected by [cases in order to detect this type of
(Cf. Appendix E) test cases? problem

Cover at 100% the input signals domain,
output signals domain, intermediate signals
Data definition, structure, YES domain

declaration Cover at 100% the inputs boundaries
domain, outputs boundaries domain,
intermediates boundaries domain

Cover at 100% the input signals domain,

Data access and handling YES output signals domain, intermediate signals
domain
Cover at 100% the code conditions and
. decisions
Control flow and sequencing YES Cover at 100% the FSM transitions and
conditions

Cover at 100% the input signals domain,

output signals domain, intermediate signals

domain

Cover at 100% the code procedures

Cover at 100% the DT conditions

Cover at 100% the FSM states

Coding and typographical YES Cover at 100% the code statements

Standards violation NO, code revieyv or other
V&V techniques

NO, code review or other

Documentation V&V techniques

Table 8.2 — Instructions to generate test cases alib detect one specific type of software
implementation problems

Processing YES
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Reuse of existing test cases from previous projects

Test casen previous projects are versioned by softwarectfanality and stored in a
database. But unfortunately, thewst casesare not always reused from one project to
another. Two main reasons are identified (Chapter 2 — Section)81) the use of different
formats when designing manualigst casesSometimes, test engineers write thst cases
immediately in a computer languag€ (anguage test scrip} understandable by thiest
execution platformOthers use theest casdormat presented iDefinition 2.11 2) the lack of
an automated process to reuse these casesHowever, one initiative was launched two
years ago and had the purpose to create manudthnlard Test Caskdor software
validation (Cf.Chapter 2 — Section)8This is a convention&® ETEX(RETurn of EXperienge
strategy and the main difficulty of such an apploecto keep theseest casesipdated. Two
years after, it is not the case.

Through our research project, we adopttdst casdormat presented iDefinition 2.11as the
standard format to representest caseOur proposal to reuse existitgst case®n previous
projects is based on this assumption. When testifumnctionality, test engineers could select
from previous projects all theest caseselated to the functionality under test. A glogsaf
theinput signalsnames on the previous and current projects isssacg. Then, for eadiest
case (independently from the length of thest casg an ‘operation matriX is generated
automatically. This 6peration matriX has high probability on the successigperations
regularly done in théest caselt also contains the set ofter-operation timeused between
each couple obperations Consequently, when generatiteggt casedrom these Operation
matrice$, we reduce theoperation spaceyy focusing on the test scenarios based on our
returns of experience.

Let us consider a practical example of a functibypabith 3 input signals(l1, Domain = {0,
1}; 12, Domain = {1, 2, 3};13, Domain = {0, 1}) and dutput signal§O1, Domain = {0, 1};
02, Domain = {0, 1}). This functionality was already\d#oped on a previous project in 2005
and onetest casehas been designed. Therefore, when testing the $anctionality on a
project in 2007 (2 years after), a test enginekscge from the database ttest casealready
designed in the past (2005) for this functionalifgach test casecan be translated
automatically into andperation matriX (Cf. Figure 8.1(Q. Thetest casegenerated from this
“operation matriX (Cf. Figure 8.1Q focus on specific test scenarios that test emgmbave
judged critical to perform in the past.
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A Capitalized test case The generated The generated

Test Case 11 . Hu ] 1 ”
. Operation matrix Test Cases
Test | Test Actions | Expected Results
Step No
11=1 01=0
1
Wait 250 ms 02=1
, le2=2 01=0 TestCase 1
Wait 200 ms | 02=1
R 3=1 Ol=1 Tes:\litep Test Actions | Expected Results
N N N YT
2=1 01=0 Wait 100 ms ! S
4 [ T I Tl il
Wait 250 ms 02=1 i 12=1 has : : 12=2 has | : 13=3 has ! 2 13=0 To be filled by simulatin
5 12=3 01=0 | succeededone || succeededone | | succeededone 1 Wait 200 ms | e requirements mode
Wait 900 ms 02=0 ,_ti_m_e _to_ll_:} (330?)_ T t_inle _to_ll_:_‘l (330,/01 J ! l",nemllfz_l _(3_30_/0)_ : 3 11=0 Iﬁé’?eg'&?r% by simulatinc
11=0 01=0 = T Wait 350 ms
6 . 11 2 3T 7 A
Wait 200 ms 02=1 0 AN 1 2 o ,/13 0 Ty 4 2=2
= = 0,5 2,5 Wait 200 m
; 3=1 01=0 0 o oo o 1" 0 o000 | 60200 i s TestCasen
Wait 400 ms 02=1 70,33 033 ° ¥70,33
2=3 o1=1 ° ° [100,100] | [250,250] ° ° [100,100] 5 Tes,t\litep Test Actions | Expected Results
8 ; _ 0 0 0 0 1 ) 0 Automatic _
Wait 200 ms 02=1 05 10250 05 generation of 6 1 ' - 0 Thoe ied by Simulati
9 1=1 01=0 | [700,700] 0 0 0 0 0 [200,200] | | “Test Cases) Wait 200 ms d
Wait 100 ms 02=1 033 | 066 o o o o o 7 13=1 Tobe f —
2 o be filled by simulatin
=1 01=0 [900.900] [%‘00,500] - i the requirements mode
10 Wait 150 ms 02=0 [2001200] rho ° ° ° ° ° :/;Ia_llt1300 " To be filled by simulatin
o : (,) n .‘0 E g 0 . ) 3 B the requirements mode
1 12=3 01=0 1 [300,300] | [350,350] | [400,400] — Wait 200 ms
Wait 500 ms 02=1 / \ 13=1 ] . .
/ 1 4 . T e it
11=1 Ol1=1 U g g . Wait 400 ms q
12 i = | 11=1 has succeeded to 1' . 12=3
Wait 100 ms 02=1 | =2 with two diff | . 5 = Tobe filled by simulatin
13 13=1 01=0 | : —t wit tWtO 1 t_erent | Wait 900 ms | the requiremients mode
. inter-operation times 1 —
|_W1|t 320 ms 02=1 : (200ms and 500ms) 1 5 1 B 0 Iﬁ be filled by stimulatci’n
14 12=2 01=0 P A 1 Wait 400 ms e requirements mode
Wait 700 ms 02=0 7 13=0 Tobe filed by simulatin
15 11=0 Oo1=0 Wait 100 ms the requirements model
Wait 100 ms 02=1
13=0 01=0
16
Wait 200 ms 02=0
11=0 01=0
17
Wait 200 ms 02=1

Figure 8.10 — Process of reusing test cases cap#ad on previous projects
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Conclusion

Only exhaustive testing can show that a softwamdyet is free from bugs. However,

exhaustive testing of a software product is notfcal because variable input values and
variable sequencing of inputs result in too mangsjiae combinations to test. So it would be
useful to concentrate the test on the areas assdormth the greatest risks and priorities.
However, we have to identify and analyze thesesrasid priorities.

In this chapter, we developed three strategiestahleduce theperation spacef a software
product. Our main purpose was to focus on testasamnwith a high probability to detect
software bugsFirstly, we specified four types of constraints that egjineers can set on the
input signalsof the functionality under test in order to favmravoid specific successions of
operations Secondly we developed a newPfoblem descriptiohformat to capitalize the
initial conditions and the successioperationsthat lead to a bug. Based on this new format,
tester engineers can generate automatically omeooetest case$rom each capitalized bug.
We also developed a detailed software problem tgyothat helps test engineers to identify
recurrent types of problems and better addresgeheration otest casesFinally, we set up
an automatic process to reusst casefrom one project to another.

In the latest four chapter€kapter 5 6, 7 and8), we specified our approach to improve the
global performance of the Johnson Controls V&V watts. In the following two chapters
(Chapter 9 and 10), we respectively implement our approach in a aawep platform
(prototype) and validate it through two industdake studies.
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CHAPTER 9. PROTOTYPE IMPLEMENTATION
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Introduction

After specifying our new approach to generate effittest casesutomatically (CfChapter

5, 6, 7 and § we focus in this chapter on the practical usehi$ approach within an
industrial context. We develop a prototype impletmgnour models, concepts and theories.
A “functional’ view of our approach is illustrated Bection 2A “process-role-todlview of
our approach is proposed 8ection 3 The processes are mainly definedChapter 5, 6, 7
and 8 Some specific skills which are mandatory whemgiur approach are detailed. We
also describe the three computer tools that weldpgd in order to automate the generation
of test casesThe main one is th€est Case Generation towlhich is aPC application. The
main functionalities of this tool are developedigtails inSection 4

A “functional” view of our approach

In Chapter 2 — Section, Gve describe how Johnson Controls test enginagrsrdly design
test cases for software products. They proceed to a atadesign oftest cases The
performance of the design is mainly based on tagierience. IlChaptes 5, 6, 7 and8, we
develop our new approach to desitpst casesautomatically. Afunctional view of our
approach is presentedhiigure 9.1 It is based on eight activities. These activities:

1. Design a simulation model of the software functlaeguirements of the functionality
under testCf. Chapter .

2. Verify and validate the requirements modef.(Chapter §.

3. Define some behavioral characteristics of a cavedrivhen using the functionality
under testCf. Chapter §.

4. Perform a statistical analysis on bugs detectetthenpast on the functionality under
test Cf. Chapter §.

5. Perform a statistical analysis tast casesleveloped (in the past) on the functionality
under testCf. Chapter §.

6. Highlight the relevant, critical and mandatapyerationsand succession @iperations

to be chosen from thgperation spacef the functionality under tes€{. Chapter §.

Automate the design oést casefrom the requirements modeZfi Chapter 7.

Monitor the design ofest casedy quality objectives and time and cost constgaint

(Cf. Chapter 7.

o~
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Figure 9.1 — A “functional” view of our approach
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A “process-role-tool” view of our approach

Our approach presents a much different workflowdesigningtest caseshan the present
one. The new workflow is presented figure 9.2 It is composed from seveprocesses
which are manual semi-automaticor automatic and managed bylifferent individuals
(experts, modelers and test engineers).
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A.

Processes

Our approach is composed of seven processes:

1.

2.

N

Modeling procesgmanual): models the software functional requiretaeusing our
formal specification language.

Driver profile definition procesgmanual): defines the driver behavior when using t
functionality under test.

Bugs reuse procegsemi-automatic): establishes a framework in oitdereuse the
bugs capitalized in thgroblems’ databasand related to the functionality under test.
Test cases reuse procdsemi-automatic): establishes a framework in otdereuse
the test casesleveloped on previous projects and related tofuhetionality under
test.

Model verification and validation procegautomatic): verifies and validates the
requirements model consistency and compliance tvéltarmaker requirements.
Model simulation procegsutomatic): simulates the requirements model

Test Case generation proce@itomatic): monitors the generation tekt casedy
guality objectives and time and cost constraints

These seven processes have been developed irs de@hlapterss, 6, 7 and8.

B.

Roles

“Roles” can be allocated to one or more people sofware project provided one has the
time and the required skills. Three types of rélage been identified:

Modeler: the main tasks of a modeler are to analyze théwaod functional
requirements, design the requirements model, vantyvalidate the model and finally
simulate it. A modeler has to be familiar with thehavior of the car’s software
functionalities and a master of the formal speatimn language. She/he also needs
good communication skills. Indeed, she/he has teract with the carmakers in order
to eliminate ambiguities and inconsistencies frém tequirements. Finally, analysis
skills are necessary for théerification and Validation(V&V) of the requirements
model.

Expert the main tasks of an expert or a group of expersto define a driver profile
for the functionality under test, to identify reddt bugs andest casesapitalized on
previous projects and to extract from these bugs test caseselevantlessons
learned An expert has to be a master of automotive elaats. She/He needs to have
a global view of all the projects and software picas within the company.

Test engineerthe main tasks of a test engineer are to parainetére test generation
algorithm and to set the quality objectives and tinee and cost constraints. The
generation oftest casess automatic. However, test engineer has to eretiwe
generatedest case®n the software product under test and analyzeabts. A test
engineer has to be familiar with the behavior & ¢tlar's software functionalities and
the formal specification language. Knowledge aboptimization is necessary to
better parameterize the optimization algorithmadiition, she/he has to be a master
in requirementsand code coveragdn order to set relevantoverage objectives.
Finally, analysis skills are mandatory for the gaml of the test results and reports.
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C. Tools

In this section, we develop the three computerstaalpporting thesemi-automaticand
automaticprocesses of our approaddugs Reuse toolest Cases Reuse tanid Test Case
Generation toal

1. Bugs Reuse tool

In order to reuse the bugs capitalized in pheblems’ databaseexperts have to identify the
relevant bugs related to the functionality undet.tén Chapter 8 — Section 5,Bve define a
new format to fill in the Problem descriptiohattribute of a bug. Based on this format, we
develop arExcel Macroable to analyze theProblem descriptiohof a bug and to generate
the correspondingdperation matriX (Cf. Figure 9.3. This matrix is used to generatest
casesable to detect a similar bug on future developm&ihen analyzing a bug and
generating andperation matri¥, the Excel Macrouses a glossary afput signalsnames on
the previous and current projects. TWacro has been developedVfisual Basidanguage.
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Figure 9.3 — Bugs Reuse tool

A detailed description of the process of analyzihg bug and generating theperation
matrix’ is given inChapter 8 — Section 5.A

2. Test Cases Reuse tool

In order to reuse theest casegrom one project (in the past) to another (in gnesent or
future), experts have to identify thest caseselated to the functionality under test. In
Chapter 8 — Section, Gve adopt theéest casdormat defined irDefinition 2.11 Based on this
format, we develop aBxcel Macroable to analyze &st casend generate the corresponding
“operation matriX (Cf. Figure 9.94. In this matrix, theoperation spaces reduced by
focusing on the test scenarios based on the retiragperienceTest casegenerated from
this “operation matriX contain similar successions @fperationsas in the one designed
manually or generated automatically in the pasgidgssary of thenput signalsnames on the
previous and current projects is also necessarg. M&cro has been developed WMisual
Basiclanguage.
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Test Case
Test | TestActions | Expected Results
Step No
1 n=1 01=0
Wait 250 ms 02=1
2 12=2 01=0
Wait 200 ms 02=1 - -
P o Operation matrix
Wait 300 ms 02=1
O ExcelMacro 2
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Figure 9.4 — Test Cases Reuse tool
A detailed definition of the process of analyzihg test caseand generating theoperation
matrix’ is given inChapter 8 — Section. 6
3. Test Case Generation tool

Through our research project, we were asked byatitemotive electronic supplier Johnson
Controls to automate the designte$t casesgor software products (CChapter 1 — Section
6). Therefore, we develop a computer tool, Test Case Generation toable to computerize
our requirements models and therefore genéeatecaseautomatically.

a. Computer implementation

We use théVisual C++ toof’ and theC++ languageto develop thélest Case Generation
tool. First, we perform a global design of the toohgsiheUML?®® language, then we generate
automatically theVisual C++ code-skeletonf the developedJML model and finally, we
develop the body of theode-skeleton

We use th&JML editor ofRational RoséRational Rose Modeler ta) in order to perform a
global design of thélest Case Generation toofA simplified class diagramwith all the
classes of the tool is shown kingure 9.5 Two groups of classes are identified. The firs¢ o

is related to the design of the requirements motlet. second one deals with the generation
of test casesThe detailed diagram with tratributesandmethodsof all the classes and the
types of relations between classes is not preséwezifor confidential reasons.

37 http://msdn.microsoft.com/fr-fr/visualc/default.asfConsulter on November 2008)
38 http://www.uml.org/(Consulter on November 2008)
39 http://www-01.ibm.com/software/awdtools/developataiodeler(Consulter on November 2008)
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Figure 9.5 — Simplified class diagram of the Test&e Generation tool
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We use thdRational Rose Professional C++ td8iin order to generate thésual C++ code-
skeleton from the developedclass diagram When generatingcode-skeletan the tool
automatically creates thé and.cppfiles. It generates thelassesand adds thattributesto
them. It also creates theethodswith empty bodies. Afterwards, we must go in add ¢he
body of themethods A screenshot of theode-skeletorgenerated byRational Roseis
presented ifrigure 9.6

*.. TCG - Microsoft ¥isual C++4

REIES
e o g it ot g Lock o CStopCriteria.h

| EStepEiera =118 class members) =R~ \@ e RE L] “,*if sy GgmROhEasaPn EHab

8zl | na 2y \‘ME%‘ QW—_”

BE S =TES)|

CStopCrlterla cpp

_@w:ukspace 'TOG" 1 project(s) 77 Copyright tf‘ 1991 - 1999 Rational Software Corporatic— / Copyright (C) 1991 - 199% Rational Software Cc-:'pars*l:r‘
@lCG fies finclude “stdafx.h" #if defined (_MSC_VER) && (_MSC_VER >= 1000) ul
JS_DJUZE'F:; ) finclude "CStopCriteria h" #pragna once
amClack.cpp #endif
2] CActiviy.cpp #ifndef _INC_CSTOPCRITERIA_4684DBEE0248_INCLUDED
|#] COTActivity.cf #define _INC_CSTOPCRITERIA_4684DBBE0248_INCLUDED
e EFemﬂ”Wp” CStopCriteria: :STOCRICaleEd E
- { #include "FeatureCoverage.h”
2] CResturelnputMatizecpp 3 Methods to be completed #include *TestCassLength.h

] CFeatureVariable.cpp
(5] CFSMactivity.cpp CStopCriteria: :CStopCriterial)
2] CFSMState cpp

[#] CFSMTransition.cpp
_ﬂ E\n:k cpp

#7 ToDo: Add your specialized code hef

class CStopCriteria .
e { List of methods
and/or call the public:

STOCRICalcFitnessFunction():

CStopCriteria; (CStopCriteria{const CPtopCriteriaé orig)
i CStopCriterial):

_] Creatone cpp

ToDo: Add your specialized code herf and/or call the

2] CTestStepcop } CStopCriteria(const CStopCriteriad orig)

L] CVaiiable.cpp

|#] FeslweCoverage cpp CStopCriteria: :~“CStopCriteria() - virtual ~CStopCriteriaf):

] MainF

E]s&ﬁ:‘:;"p #7 TeDo: Add your specialized cods here and/or call the const FeatureCoveragek get_STOCRIFeatureCoverageCurre
1] TCG.cpp void set STOCRIFeatursCoverageCurrsnt(FeatureCoverage
|8 TChe const FeatursCoverage&k CStopCriteria::get STOCRIFeatureCc

2] TCBDoc.cpp { const FeatursCoveragei get_STOCRIFsatursCoverageSetti

|£] TCGView.cpp

return STOCRIFeatureCoverageCurrent:
}
1] TestCaselength.cpp

void set_STOCRIFeatureCoverageSetting(FeatureCoverage

3 Time cop void CStopCriteria::set STOCRIFeatureCoverageCurrent (Feat const TestCaselengthé get_STOCRITestCaseLengthCurrent
B (2] Header Files
53 Resouce Fies STOCRIFeatursCoverageCurrent = wvalue: void set_STOCRITestCaselengthPreferencetTestaseieng
return: . A
B X it List of attributes
E ic:
(5] TCGDecico const FeatureCoveragek CStopCriteria::get_STOCRIFeatureCc FeatureCoverage STOCRIFeatureCoverageCurrent:
5] %aLMelﬂ e }xeturh STOCRIFeatureCoverageSetting: FeatureCoverage STOCRIFeatureCoverageSetting:
-] Extemal Dependencies TestCaselength STOCRITestCaselengthCurrent
void CStopCriteria: set_STOCRIFeatureCoverageSetting(Feat
N . TestCaselength STOCRITestCaselengthSetting;
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Figure 9.6 — A screenshot of the C++ code-skeletgenerated by Rational Rose

Once the software architecture of thiest Case Generation toe generated, we start
developing inC++ languagethe body of eachmethod We have developed about 12500
Lines Of Codegexcluding comments and blank lines). In fact,hage implemented, using a
computer language, all the models developedhapter5, 6, 7 and8.

b. List of main functionalities

The main functionalities of thEest Case Generation toate:

» Computerize and verify a requirements model

* GeneratdNominal “operation matrices’automatically

* Import“operation matrices”

* Set constraints on thenput signals of a requirements model and generate
automatically the correspondifigperation matrix”

* Simulate a requirements model

40 http://www-01.ibm.com/software/awdtools/developesk/visualstudio/support{Consulted on November
2009)
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* Generatdest caseautomatically
Each of these functionalities is developed in thetisection.

Main functionalities of the Test Case Generation tol

In this section, the main functionalities of thest Case Generation toate detailed.

A. Computerize and verify a requirements model

After sketching “on paper” the requirements modef. (Chapter 5 — Section)50ne can

computerize this model using theest Case Generation tooDne can also verify the
correctness of the computerized model by checkirtgraatically the set of integrity rules
presented imMable 6.1 A screenshot of the tool after computerizing téguirements model
of theChapter 5 — Section &ample is illustrated iRigure 9.7
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<l Test Case generation tool x|
Fle: Edb_ View Help Configuration Signals
= ariable Name ariable Type Walue Min Mazx Step | Domain
DER&E PR T m o B Follow_Me_Home_Calib InputConfiguration 5.00 5.00 | 15.00 | 5.00 | wvalid | [15.00[10.00[5.00] | |
=+ Auto_Light functionaty & Auto_Light_Config InputConfiguration 1.00 0.00 1.00 1.00 Valid 1.DD|D.DD|
Configuration Signals| / Faollow_Me_Home_Config InputConfiguration 1.00 0.00 1.00 1.00 Walid 1.DD|D.DD|
Input Signals < .
Output Signals i i Input Signals i i
Inkermediate Signals ariable Name ‘Variable Type Value Min Mazx Step | Domain
£l Faathures Light_Cormbi_Switch InputUser 0.00 0.00 1.00 1.00 Valid 1.00|0.00
L oT1 n Car_Locked InputCarEnvironment 0.00 0.00 1.00 1.00 Valid 1.00|0.00
7 1 Ignition InputCarEnvironment 0.00 0.00 1.00 1.00 Valid 1.00|0.00
cz Reset InputCarEnvironment 0.00 0.00 1.00 1.00 Valid 1.00|0.00
&5 Lumninosity_Sensar InputSensar 0.00 0.00 7.00 1,00 valid 7.00]6.00[5.00]4.00[3.00]
c4 Qutput Signals
= ariable Name ‘ariable Type Value Min Mazx Step | Domain
c6 Tail_Larmp Cutput 0.00 0.00 1.00 1.00 walid | [1.00]0.00]
E; Head_Lamp Cutput 0.00 0.00 1.00 1.00 walid | [1.00[0.00]
=DT2 Intermediate Signals
C1 ariable Name ‘ariable Type Value Min Mazx Step | Domain
cz Fallow_Me_Horme_Activate Internal 0.00 0.00 1.00 1.00 Valid |1.DD D.DD|
c3 | Lurninosity_Level Internal 0.00 0.00 3.00 1.00 valid | [3.00]z.00[1.00]0.00]
4
=l FsMi -
= Statel DT Inputs DT Outputs
=TI Lurninosity_Sensar Lurminosity_Level
1 — 0.00 — 0.00 DT Inputs DT Dutputs
=-Ti2 —1.00 r\ —1.00 Car_Locked Ignition (L Follow_Me_Horne_Activate
c T a3 — 1o =0.00 =0.00 ,-S\ =0.00
=T10 — =00 ™ T =0.00 =1.00 N =0.00
1 — 400 T =1.00 =0.00 =1.00
) State2 T T =1.00 =1.00 =0.00
=123 =6.00 = 3.00
c1 =7.00 =3.00
2121
C1
2
=) TZOCI stated |
- State3 Ll —— A
=132
= Q 0% o
=-T31 — |
1 0%
cz
T30
1 Statel
c2
3
=] StateQ
=102 — 0%
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= To1 0%
C1
2
100 _J= State3
<| 3

Figure 9.7 — A screenshot of the tool after computieging the requirements model of theChapter 5 — Section Bxample
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B. Generate Nominal “operation matrices” automatically

After computerizing the requirements model, one gamerate automatically the timminal
“operation matrices” (Nominal 1andNominal 2 Cf. Chapter 7 — Section)20ne can also
customize these matrices by modifying some suamegsiobabilities ointer-operation time
interval (Cf. Chapter 7 — Section .2)

A screenshot of the tool after generatingtweminal “operation matrices’of theChapter 5 —
Section Sexample is illustrated iRigure 9.8
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18]
File Edit Wiew Help
DeEs =R T e (B ! b e e 50 S S e | Riz | ¥
= Auto_Light functionality
Configuration Signals
Input Signals
Cutput Signals
Intermediate Signals
= Features
=-DT1 .
a Nominal 1
cz Yariables WValues 1] 1 0 1 1] 1 2 3 4 5 [
3 Car_Locked 0 | 6.25, [100,400] | 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | .25, [100,400
c4 Car’iLIDcked 1 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Tgnition 0 |6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | .25, [100,400
5 Ignition 1 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | .25, [100,400] | .25, [100,400] | .25, [100,400] | .25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] [ .25, [100,400] | &6 .25, [100,400
ce Lurninosity_Sensor 1] 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
<7 Luminosity_sensor | 1 | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | &.25, [100,400
-] Lurninosity_Sensor 2 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
=.DT2 Luminosity_Sensor | 3 | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | &.25, [100,400
Cl Lurninosity_Sensar 4 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Lumninasity_Sensar | G | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Lumninosity_Sensor | & | 6.25, [100400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ &.25, [100,400
Lurninosity_Sensor 7 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Reset 0 |6.25, [100,400] | 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | .25, [100,400
Reset 1 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400
Light_Combi_Switch| 0 | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6,25, [100,400
Light_Cornbi_Switch| 1 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
NOMINAL] =
HOMINALZ
Generated Test Cases
Sirmulated Test Cases
Wariables Walues 1] 1 0 1 1] 1 2 3 4 5 6
Car_Locked 0 | 6.25, [100,400] | 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | .25, [100,400
Car_Locked 1 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Tgnitian 0 |6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6,25, [100,400
Tgnition 1 |6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | .25, [100,400
Lurninosity_Sensor 1] 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Luminosity_Sensor | 1| 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | &.25, [100,400
Lurninosity_Sensar 2 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Lurninosity_Sensor 3 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Luminosity_sensor | 4 | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | &.25, [100,400
|1 [Luminosity_Sensar S 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400
— [Luminosity_Sensor | & | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, (100,400
Lurninosity_Sensar 7 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | .25, [100,400] | .25, [100,400] | .25, [100,400] | .25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] [ .25, [100,400] | &6 .25, [100,400
Reset 1] 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Reset 1 | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | .25, [100,400
Light_Cornbi_Switch| 0 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400
Light_Combi_Switch] 1 | 6.25, [100,400] | 6.25, [100,400] [ 6.25, [100,400] | 6.25, [100,400] | .25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6.25, [100,400] | 6,25, [100,400
Nominal 2
UM

Figure 9.8 — A screenshot of the tool after genenag the Nominal “operation matrices” of theCh. 5 — Section Bxample
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C. Import “operation matrices”

One can importoperation matrices” These matrices can be the results ofbihgsandtest
cases reuse processefShey can also be designed manually by an innginear. A
screenshot of the tool after importita@peration matrices”is illustrated inFigure 9.9

#= Test Case generation tool

File Edt WView Help

D& e T ml o

= Auto_Light functionality
Configuration Signals
Input Signals
Oubput Signals
Intermediake Signals

[= Festures

#-DT1

D72
£+ FSM1 3 operation matrices generated automatically
= Operation Matrices 7| fromthe bu gs reuse process
NOMINALL
MNOMINALZ
BUG REUSEL
TEST CASE REL)SE || 2 operation matrices generated automatically
e RENSES || from the test cases reuse process
TEST CASE RESEZ
BUG REUSE3
CUSTOMIZED
Generated Test Cases | 1 operation matrix designed manually by an

Sirmdated Test Cases

innerengineer
Figure 9.9 — A screenshot of the tool after importig “operation matrices”

D. Set constraints on the input signals of a requirgenmodel and generate
automatically the corresponding “operation matrix”

We develop a computer language that experts camuseler to specify their constraints on
the input signals Four types of constraints have been propose@hapter 8 — Section 4
(Logical, Conditional Successiorand Timing constraints The Test Case Generation tool
analyzes these constraints and generates autollyatica correspondingDriver Profile
“operation matrix”. The generation ofest casesrom this “operation matrix” fulfills the
predefined constraints onput signals An excerpt on how experts can set constraintgien
input signalsof a requirements model is showrHigure 9.10
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T
Design of constraints

The “Ignition” signal is Cyclic
Constraint1(Cyclic);

Ignition(Constraintl);

The “Ignition” signal can be
different from 2 only if
"Light_Combi_Switch" is equal to 0

Constraint2(NEQUAL, 2, "Light_Combi_Switch", EQUAL, 0);

Ignition(Constraint2);

Once "Car_Locked" is set to 0, the
“Light_Combi_Switch” signal is set
to 1 with a probability of 0.5

Constraint3(1, "Car_Locked", 0, 50);

Light_Combi_Switch(Constraint3);

Once "Car_Locked" is set to 0, the
“Light_Combi_Switch” signal is set
to 0 with a time interval of
[13000;13000]

Constraint4(0, "Car_Locked", 0, 13000, 13000);

Light_Combi_Switch(Constraint4);

Export the constraints to the
Test Case generation tool

= Test Case generation tool

File Edit View Heip
DSEHE ) R (T | m e B ) e bla[E 0 o

=1 Auto_Light Functionality
f:;n;gstzﬁo: ke Variables Values i 1
Output Signals Car_Locked 0 |10.00, [100,400]j10.00, [1
Intermediate Signals Car__l_.‘l:'tcﬂ_:ad 1 |10.00, [100,400]j10.00, [1
B _Ignition 0 |10.00, [100,400]]10.00, [1
B Features Ignition 1 [10.00, [100,400]]10.00, [1
DTl Lur . . . . po,[1
# D72 ‘Lury Driver Profile “operation matrix” iy 11
- FSM1 Lurl generated automatically from the po, [1
FEperscan Matrcn Lun exported constraints po, [1
NOMINALL / L — _— . - 0, [1
DRIVERFROFILE Lurninosity_Sensor | S [10.00, [100,400]{10.00, [1
NOMINALZ Luminosity_Sensor | & |10.00, [100,400]]10.00, [1
BUG RELUSEL Luminosity_Sensor | 7 [|10.00, [100,400]]10.00, [1
TEST CASE REUSEL Reset 0 |10.00, [100400]110.00, [1
BUG RELISE? Reset 1 [10.00, [100,400]]10.00, [1
TEST CASE RELISE? L!ght_Ccmb_r_Sw!tch 0 [10.00, [100400]110.00, [1
BUG RELISE3 Light_Combi_Switch|] 1 [10.00, [100400]]10.00, [1
CUSTOMIZED
-Generated Test Cases
Simulated Test Cases

Figure 9.10 — An excerpt on how experts can set cgtnaints on the input signals of a
requirements model

E.

Simulate a requirements model

Once the requirements model is computerized, onestaulate it. Modeler has to define a
simulation period (theycle timeof theClock signal Cf. Chapter 5 — Section)3Modeler has
also to specify the path where tienulation planis stored. In fact, aimulation planconsists
of a finite number of steps. In each step, at noyst operation on theinput signalsis
performed and aimter-operation timeas defined. The result of a simulation is the bebtiagof
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the output signalsof the requirements model after each step ofsihaulation plan The
output data of a model simulation are stored ifc&celfile. In Figure 9.11 we illustrate the
simulation parameters and the four modes of sinmgad requirements model. THeaon-
stop” mode aims to simulate the whaenulation plannonstop. Thé'step by step”mode
consists of simulating th&mulation planin a step by step manner. Indeed, after eachsstep’
simulation, the simulation process is stopped. Tperiod by period” mode stops the
simulation at each period of ti&ock signal Finally, the*feature by feature”’mode stops the
simulation after eacfeaturesimulation.

:-'E-_Test Case generation tool
File Edit Wiew Help

[DEEE & DR (T (m e [B 1 ke |59

/5{;5/%3%‘: & (R R

A“feature by feature” simulation

cock  Cycle time of the Clock signal A*“period by period” simulation

1h H H ’_‘ m H A‘“step by step” simulation
" Cycletime. i A*“non-stop” simulation of

Cycle time the whole simulation plan

Model simulation parameters | x|
0K
Simulation p|an Simulation Period |5EI ms _

Step No Actions Path tothe Sitmulation Plan —[C://Model Simuistion/Sin

1 Ignition = 0

Wait 200 ms

Ignition = 1

Wait 200 ms
Luminosity_Sensor= 2
Wait 100 ms
Car_Locked =1

Wait 800 ms
Car_Locked =0

Wait 150 ms
Light_Combi_Switch =1
Wait 300 ms
Light_Combi_Switch =0
Wait 800 ms

2

3

Figure 9.11 — The simulation toolbox of the Test G Generation tool
F. Generate test cases automatically

The main functionality of theTest Case Generation tods to generatetest cases
automatically. InChapter 7 — Section, 4ve developed a set of test generation objecawnels
constraints. A panel interface to allow the tesgieeer to set precise targets on these
objectives and constraints is presentedrigure 7.13 In Chapter 7 — Section, 6ve have
developed a heuristic algorithm to optimize theeagation oftest casesvhile fulfilling the
predefined objectives and constraints. A list giadBameters that a test engineer should set
before start generatirtgst casess also introduced.

Through theTest Case Generation toane can set targets on the test generation olgsct
and constraints and parameterize the test generatjorithm. The generation tést casess
automatic. Each generated test case and its reatijectives and constraints are stored in an
Excelfile. In Figure 9.12 we illustrate the panels where a test engineerczdibrate the
generation otest casesWe also identify the four modes of generatiest casesThe“non-
stop” mode aims to generate the set of requiestl casesonstop. Théstep by step”’mode
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consists of generating eatdst casan atest stefoy test stepmanner. Indeed, after eatdst
stepgeneration, the test generating process is stopffeéen designing éest stepand after
choosing aroperationand aninter-operation time the “period by period” mode stops the
model simulation (in order to assess the expecdiputs) at each period of ti@ock signal
Finally, the“feature by feature’mode stops the simulation after edeaturesimulation. We
are conscious of the number of parametewms/drageobjectives, constraints, optimization
parameters ...) required to set our approachChapter 10 — Section, 8ve propose two
strategies to help test engineers parameterizegéheration afest cases

Generate the testcases fulfilling the
predefined objectives and constraints

Generate “step by step”the test cases fulfilling

the predefined objectives and constraints
Afterchoosing a new operation and inter-operation
time, simulate the model “period by period”

Afterchoosing a new operation and inter-operation
time, simulate the model “feature by feature”

__{-_Test Case generation tool
File Edit ‘iew Help

A /A—A— 4

I e = A | — T i
DEeEdE @ 2R T B 1 s leat e | =) O St Gt Gme | & | REZ| P
Objectives and Constraints Parameters of the optimization algorithm
(Cf. Chapter 7 — Section 5) (Cf. Chapter 7 — Section 6)
est Case Quality Indicators x| Optimization Algorithm Parameters x|
Targets Weights
I —— == | Operaton Mt name:  [NOMINALT
z[o [o Mame of the Dperation Matiix from which ou need to generate test cases e
%[o 0 —I
- — — Parameler 1 n
] o — Pracitioners ean decide to aptimize the caverage of the operation matii. To do so, Parameter 1 must be set to 1
Otherwise, it is set ta 0
a0
~Signals domains P
2 In arder ta optimize the coverage of the operation matrix, we check if the chosen succession of operations is
Inputs dc [ % 0 P 0 [ - P
P demelnsEaveieas already covered or not. When it is alieady covered, we propose to choose anather succession of operations
(e % 0 and so on. However, we have to avoid the??
%[0 o
B 0 Parameter 3 1
% 0
. Practitioners can decide to optimize the number of test steps in a test case. To do o, Parameter 1 must be set
=l o to 1. Othervise, it is set to
[ Parameter 4 E0
Ciitical successive 2-Operations Coverage 3 [0 0 In order to optimize the number of test steps in a test case, we check if the generated test step decreases the
aggregated preference F. In case of no decrease of F. we propose to delete the test step and generate a new
[ Elements o one. However, we have to avoid the n??
DT Condiion Coverage O C—
FSM State Coverage %o o Parameter & 1
0 0
Thig parameter allows to stop generating test steps for a specific "Configuration” of the functionality. In fact, we
o 0 check if the agaregated preference F has not been improved on the last (N3] test steps of the cunent test case. [Fit
77
Co— — s the case, we stop??
0 0
Parameter 0
o 0
0 0 Practitioners can generate a set of test cases for one or more predefined *'Configurations" of the functionality. To do
this, Parameter B must be set to 0 When this parameter is set to 1, each generated test case considers all the
predefined "Configuration??
Parameter 7 and & 10
These parameters define the number of test cases [N4 and M5] to generate in order to identify the "Optimal* one.

Figure 9.12 — The test generation toolbox of the BeCase Generation tool

Let us consider the example of tGlapter 5 — Section. After computerizing and verifying
the requirements model (CFEigure 9.7, one decides to generate tN®minal 1and 2
“operation matrices” (Cf. Figure 9.8. For a specific Configuratiori of the functionality
“Auto_Light” under testParameter 6= 0, Cf. Chapter 7 — Section ,6one decides to generate
test caseghat covers at 100% the domain of all thput, output andintermediate signals
(coverageobjectives, CfChapter 7 — Section 4 and.Nevertheless, the length of thasst
casesmust not exceed S@st stepgtime and cost constraints, @hapter 7 — Section 4 and
5). The test casesmust be generated from tHéominal 2 “operation matrix” When
generating thdest casesone decides to avoid already covered successibaperations
(Parameter 1= 1 andParameter 2= 30, Cf.Chapter 7 — Section)60ne also decides to
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optimize the number dest stepdy keeping only the ones which contribute to thgctives
fulfillment (Parameter 3= 1, Parameter 4= 10, Cf. Chapter 7 — Section)6 After 10
generatedest stepsvith no improvement in the objectives fulfillmerihe correspondintest
casemust be endedP@rameter 5= 10,Cf. Chapter 7 — Section).6And finally, one decides to
generate 5 separatest casesn order to choose the “optimal” ongrameter 8= 5, Cf.
Chapter 7 — Section)6SinceParameter 6is equal to OParameter 7has not to be defined
(Cf. Chapter 7 — Section 6.B) screenshot of th€est Case Generation toafter generating
the test casedor the previous exercise is presentedrigure 9.13 The generatetest cases
and their reached objectives are stored iacelfile. In case the execution of thest cases
on the software product under test is automatee géneratetest casesan be translated into
a computer language understandable by tést execution platforn{Cf. Appendix G.
Moreover, while simulating aimulation planon a requirements model or generatiegt
casesfrom a requirements model, one can visualize al tene the covered zones of the
model (Cf.Chapter 7 — Section 4)BIn fact, theTest Case Generation tobighlights the
covered zone of the modelignals domain Conditions of Decision Tables States
Transitions and Conditions of Finite State Machinesand Operation matrices After
generating a set @ést case$rom the computerized requirements model preseint€agure
9.7the covered zones of this model are illustrateféigure 9.14
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++ Test Case generation tool
File Edit View Help

D @ R | T o mBE ) b oo O fste Gt S & |REZ| P
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Configuration Signals Waiting time Input Signals DU Signass The lasttest step of
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Intermediate Signals Operation Expected results
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-+
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Test Case simulation Time - ms (x1) 13300 0 1]
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By clicking on a test
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its characteristics.
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Test Step Number

ho Stop Mode selected : Running UM
Figure 9.13 — A screenshot of the tool after genetfag test cases for the&Chapter 5 — Section Bxample
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Figure 9.14 — A screenshot of the tool while higlghting the covered zones of a requirements model
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Conclusion

The prototype presented in this chapter takesantmunt the impacts of our approach on the
processes roles and tools of the software testing skillwithin the Johnson Controls
organization. A new process map for generatingraatwally test casesrom the functional
requirements of a functionality is presented. Ne¥es andskills for software engineers in
charge of designintest casesising our approach are developed. And finalbmputer tools
automating up to 70% of our approach are describkd.development of these tools is not
presently entirely completed. Some improvements bandone and especially on the
Graphical User Interfaces

In the following chapter, we analyze the resultsisihg this prototype on two industrial case
studies of practical size. We model, simulate aedegatetest casesfor two software
functionalities of a car.
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CHAPTER 10. MODELING AND SIMULATING
TWO INDUSTRIAL CASE STUDIES
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Introduction

In order to validate our integrated framework tongmatetest casesautomatically for a
software module or product, we consider, at JohnSomtrols, two case studies with
historical data. Through these case studies, waigig the benefits of using our approach in
the unit testof software modules. In each case study, we cengide functionality that has
already been developed and validated in the paisty uhe softwareVerification and
Validation (V&V) techniques currently used in Johnson Controls Q@apter 2 — Section)5
For each carmaker delivery (GZhapter 2 — Section)3historical data on the time spent to
verify and validate these functionalities and oe bugs’ detection by Johnson Controls and
by the carmakers are available. We consider tis ¥iersion of the two software modules
(corresponding to the two functionalities) as itswdelivered for the first time by the
development team to the validation team. We alsosider the version of the software
functional requirements of these functionalitiesewldelivering the software modules for the
first time to the carmaker. We model, verify, valid and simulate the software functional
requirements and then generédést casesautomatically for theunit testof each software
module. These test cases are executed on thedngbn of the two modules.

Our process to choose the two functionalities uredgreriment is described Bection 2 A
characterization of the carmakers’ requirementatedl to the software of these two
functionalities is performed iSection 3 Modeling, verification and validation activities
the requirements models are respectively present8dction 45 and6. A set of“operation
matrices” for each functionality is designed 8ection 7 Strategies to tune the generation of
test casesre developed iection 8 The generation and execution of test cases ®iwio
functionalities are specified iSection 9 Finally, a deep analysis of the execution resslts
illustrated inSection 10

Characterization of the two case studies

We experiment our proposals on two software fumetities of automotive electronic
products developed within Johnson Controls. Thecehof these functionalities has been
delicate. Many criteria have guided our choices:

e C1: Recent products

e C2: Two different products

e C3: Two different carmakers

» C4: Two different management teams

» C5: Two different development teams

* C6: Two different validation teams

» C7: Two different levels of complexity (from expegoint of view)
e C8: Two different types of software functional regments

« C9: Functionalities already verified and validatesing the tradition process
e C10: Functionalities well documented (historicalaja

e C11: Functionalities’ experts still in the compdhystorical data)

Based on these criteria, we choose two functiaaalitThe first one is thefront wiper
managemefitfunctionality. This functionality is implementaslith other functionalities in an
automotive electronic product, nambddy controller moduleThe second one is théuél
gauge managemeéntunctionality. It is implemented with other funchalities in another
automotive electronic product, namddshboardor cluster The compliance of the chosen
functionalities with the predefined criteria isustrated inTable 10.1
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. . Front wiper Fuel gauge
CIEEEn CTiEETE functionality functionality

Projectstartsin 2005.  Projectstarts in 2005.

C1 Startof serial Startof serial
production in 2007 production in 2007
c2 Body controller module CarDashboardor
ofacar Cluster
C3 Same carmaker
C4 Two differentmanagementteams
C5 Two differentdevelopmentteams
C6 Two differentvalidationteams
C7 Quite complex Very complex
C8 Formal Informal
co Functionalities alreadyyerified and validated
using the traditional process
C10 Historical data are available
c11 Atleast, one expertof these functionalities is still

in the company
Table 10.1 — Criteria for selecting the two functioalities

These two functionalities have already been dewslopnd validated using the Johnson
Controls present process. Some characteristicsheftwvo software modules developed
respectively for these two functionalities are give Table 10.2

_ Front wiper functionality Fuel gauge functionality

Number of input signals  of
the software module 18 35

Number of output signals

of the software module 9 25

Size of the software module
(Lines Of Code - without 1229 1500
comments and blanks)

Table 10.2 — Characteristics of the two software nttules developed respectively for the
two functionalities under experiment

Each software module delivered to thalidation team(first version) is considered to be
verified and validated independently from its eamiment (other software modules). This
means that @ode review a static and dynamic analysisand aunit test(Cf. Chapter 2 —
Section % have been performed on each module delivered hto validation team
Unfortunately, at Johnson Controls, bugs detect@ihd theseV&V phases are often not
capitalized in theproblems’ databas€Cf. Chapter 2 — Section 7)AOnce a bug is detected, it
is corrected immediately by the person who detgctdoreover, in Johnson Controls, these
phases mainly focus on answering the question: Weebuilding the product RIGHT?” and
not on: “Are we building the RIGHT product”. In @h words, the compliance with the
carmaker requirements are not verified on the soffwnodules delivered to twalidation
team Presently, when testing unitarily a software medthe main purpose of a test engineer
is to cover at 100% thsource codeof the module (CfDiagnosis §. Thevalidation team
integrates the set of modules (already tested nilg)tplanned for the carmaker delivery and
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performsvalidation testgCf. Chapter 2 — Section 5.C and 5.[During thevalidation test
test engineers design manuakgt cases order to demonstrate the compliance of the whol
software product (integration of at least two saftev modules) with the carmaker
requirements (CfChapter 2 — Section)6 Bugs detected by inner engineers during the
validate teststage (before the delivery) and by the carmakgmeers (after the delivery) are
capitalized. The distributions of bugs relatedne internal behavior of the two functionalities
are illustrated irFigure 10.1 Until the last carmaker delivery, 22 bugs wertedied on the
software module of thé&ont wiper functionality and 23 bugs on the one of foel gauge
functionality. These bugs were detected, on the fimztionalities, beforev@lidation tesy
and after ¢armaker tegt the carmaker deliveries. Unfortunately, we do thelve any
information on the bugs detected during the otledmdon Controld/&V activities (code
review, unit test ...). In fact, after analyzing tlmtal number of the bugs &ligure 10.1 we
came up to the conclusion that all these bugs coeldetected earlier in the process (during
theunit teststage). In fact, during thenit testof a software module and in addition to a 100%
code coveragetest engineers should verify the compliance chesoftware module with the
carmaker requirements. We call this thactional unit test In order to comment thigéigure
10.1, let us consider th&ont wiper functionality example. 17 bugs were detected by the
Johnson Controlsalidation testand 5 bugs by the carmaker after intermediateseisii It
must be noted that, after developing the softwaoeute of thefront wiperfunctionality for
the first time, only 12 bugs were detected durihg first validation stage. Therefore, a
delivery was performed and the carmaker immediatetgcted 2 more bugs. In the meantime
and before the second carmaker delivery, test eegintried to improve thetiest caseand
design some nevest casesin consequence, they have been able to deteahone bug and
after the second intermediate carmaker deliverynew bug was detected by the carmaker.
For the &' intermediate delivery, no netest caseshave been developed. The complete
scenario of bugs’ detection until the last carmaételivery of the two functionalities is
summarized in the histogram Bigure 10.1

Allthese bugs could be detected (earlier in the process) during
the UNIT test of each software module of the two functionalities
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Figure 10.1 — Distribution across the carmakers’ deveries of the bugs detected on the
two functionalities

Among the bugs detected on the two functionalitsesne of them are considered to be more
critical than othersSeverityandOccurrenceare twoattributesof the current bug model and
are filled at 99% for each capitalized bug (Chapter 2 — Section 7)BTheseattributesare
not free fields. Indeed, a set of predefined valtegseach attribute has been defined by
Johnson Controls software experts (Cible 10.3.
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Secondary — cosmetic failure, not customer relevant Once — low probability, unlikely failure

Minor — cosmetic failure, customer relevant Very Rare — low probability, few failures

Major — workaround exists Rare - moderate probability, occasional failures
Critical — no workaround exists Often — high probability, repeated failures

Catastrophic — system crash of the vehicle system (risk of person injury) ~ Systematic - failure unavoidable

Table 10.3 — Severity and Occurrence levels as itaw defined by Johnson Controls
software experts (Johnson Controls source)

Despite the predefined values and according to rexpihe attribution of @everityand an
occurrencefor a bug detected internally remainsuibjectivequestion. In fact, most of the test
engineers do not have a global view of the systeorder to assess the impact of the detected
bug on theend-user However, theseverityandoccurrenceof bugs detected by the carmakers
are more relevant since they are set by the camiisledf. The distribution of bugs, detected
on the two functionalities, across the cougbe\erity Occurrence is presented irFigure
10.2 For thefront wiperfunctionality, up to 76% of the bugs amdiGor, Systematicand for
the fuel gaugefunctionality, up to 72% of the bugs areldjor, Systematic These results
could be explained from two different points of wieThe first oneconfirms the notion of
subjectivity in defining a criticity level for a lgu In fact, the bugs of these two functionalities
were described by two different teams in two déf@rcountriesThe second onis related to
the fact that the functionality of managing fiael levelin a car is more critical than the one
managing theavipers As a consequence, bugs on thel gaugefunctionality are considered
to be more critical than the ones of thent wiperfunctionality. Moreover, bugs detected by
the carmakers are often considered as critical.

Front wiper functionality Fuel gauge functionality
14 - 13 % Bugs detected by the 14 - 13
| s Johnson Controls 1 e
L % VALIDATION test e %
_§’ 1: : % = Bugs detected by the E’ 1: %
S S
5 / carmaker 5 /
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0 ‘ ﬁ ‘ /EEEEEEE W y;;;f ‘ o0 L % /:1:1:1:1 ‘ /15
(Minor, (Minor, (Minor, (Major, (Major, (Minor, (Minor, (Minor, (Major, (Major,
Once) Often) Systematic) Often) Systematic) Once) Often) Systematic) Often) Systematic)
(Severity, Occurence) (Severity, Occurence)
Criticity growth Criticity growth

Figure 10.2 — Distribution across the couple (Sevigy, Occurrence) of the bugs detected
on the two functionalities

In Figure 10.3 we illustrate the time spent by the project teararder to debug the software
modules of the two functionalities using the corti@ral testing techniquesurit testand
validation test Cf. Chapter 2 — Section)5The main activities done are:

» Design and executest case$or theunit testof each software modulé&(it tes).
* Analyze the carmaker requirements in order to degdjdation test cases.

» Design and execute test cases forthl@ation tesiof each functionality.

e Manage the bugs detected internally and by the aleem

We note that up to 50% and 10% of the total timensn verifying and validating a software
functionality were respectively spent to manualgsidgn thetest casesand manage the bugs
detected by the carmakers. Using the current John8ontrols testing practices,
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approximately 54eight-hour dayswere spent to test thieont wiper functionality and 50
eight-hour daydor thefuel gaugegunctionality.
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Figure 10.3 — An estimate of the time spent duringach delivery to test the two
functionalities using the conventional testing teahiques

In our experiment, we propose to perform gunctional unit teston the software modules
of the two functionalities. In other words, we planto verify unitarily the compliance of
each software module with its functional requiremets. To do this, we use our new
approach to designtest case¢Cf. Chapter5, 6, 7, 8 and 9).
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Characteristics of the software functional requirenents of the two
functionalities

The core of our approach is the modeling of soféwanctional requirements. Therefore, one
important criterion while choosing the function@l# of the two case studies was the diversity
of the software functional requirements. In fact, want to prove that whatever the formalism
used by the carmaker to express the requiremetdtedeto software, one can use our
approach to generatest casesutomatically. InChapter 2 — Section 4,Ave present the
result of a study that we performed on the divgrsiypology and evolution of these
requirements within Johnson Controls. MoreoverCimapter 4 — Section 5,Gve identify
three formalisms of software functional requirensefformal, Semi-formaland Formal).
Some characteristics of the software functionaliregnents of the chosen functionalities are
presented iTable 10.4

_ Front wiper functionality Fuel gauge functionality

Formalism Formal Informal
(Cf. Chapter 4 — Section 4.D.1) (Statechart) (Natural language specifications)

Size of the software functional
requirements document
(Number of pages in Microsoft
Word format)

30 30

Table 10.4 — Characteristics of the software funatinal requirements of the two
functionalities

Modeling the software functional requirements of tke two
functionalities

Three stages have been necessary for modelingtivease functional requirementghe first
oneconsists of analyzing and understanding the reqents with our modeling language. A
loop process was initiated with inner experts ideorto well understand and clarify the
requirementsThe second oneonsists of sketching “on paper” the requirememtsiels. We
identify theinput, outputandintermediate signaland theelementgDecision Table®r Finite
State Machingsof each functionality. Then, we develop eatbmentby identifying all the
states transitionsandconditionsof theelementgCf. Chapter 5. The third and last stageas
been the computerization of the requirements magigy theTest Case Generation tothlat

we developed (CfChapter 9 — Section 4AA comparison of the time spent in each of these
stages for the two functionalities is illustratediable 10.5

Time in eight-hour days Front wiper functionality Fuel gauge functionality

Time spent to analyze the requirements

3 3
before starting modeling task
Time spent to design “on paper’ the 5 7
requirements model
Time spent to computerize the paper 12 6
requirements model
TOTAL 20 16

Table 10.5 — Time spent to design the requirementsodel of the two functionalities
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In fact, it was more difficult and time consuming design the requirements of the second
case study (eight-hour daysthan the first one (Bight-hour days The main reason is that
the requirements of the second case study are ssqulieformally. However, we spent more
time in computerizing the first case study @ight-hour daysthan the second oné gight-
hour day$. Indeed, the requirements model of the first cetsey is bigger than the second
one in terms of number gignals elementsstates transitionsandconditions In Table 10.6

we illustrate the characteristics of the requireteemodels of the two case studies. The
requirements model of thdrbnt wiper” functionality has 19 Decision Tables and-hite
State Maching, while the one of theflel gaugé functionality has 2Decision Tablesand 4
Finite State Machines

_ Front wiper functionality Fuel gauge functionality

# of input signals 18 6
# of output signals 9 8
# of intermediate signals 24 31
# of Decision Tables 19 2
# of Conditions in DT 289 110
# of Finite State Machines 5 4
# of States in FSM 36 53
# of Transitions in FSM 119 158
# of Conditions in FSM 154 197

Table 10.6 — Characteristics of the requirements naels of the two functionalities

Verifying the requirements models of the two funcinalities

In Chapter 6 — Section,4we developed a set amtegrity rulesto be checked on each
requirements model in order to verify its corresgeThe verification of the requirements
models of the two functionalities was performed oaly and automatically. In fact, when
sketching “on paper” the requirements model, wafywananually the fulfilment of the
integrity rules Moreover and after computerizing the model, Test Case Generation tool
(Cf. Chapter 9 — Section 4.Allows to check automatically these rules. Thaesfthe time
spent in verifying these models is integrated te thme of sketching “on paper” and
computerizing the models (Cfable 10.%. We stop verifying a requirements model when all
theintegrity rulesare checked OK on the model. After verifying treveloped requirements
models (manually and automatically), around 30gwielations are detected on each model.
The distribution of these violations over the seintegrity rulesis presented ifrigure 10.4
We first model the ffont wipef’ functionality then the fuel gaugé one. As a consequence,
violations inRules 1 14, 15 and 18 were detected on the first case study and nothen t
second. In fact, when modeling th&uél gaugé functionality, we focus on respecting the
rules already violated on the previous case stitbreover, up to 80% of the violations on
the first case studyRule § are related to the fact that the domains of timetionality’sinput,
outputandintermediatesignalsare not covered bgonditionsandactionsin elementsSince
the requirements model of the second case stusinadler than the one of the first case study
(Cf. Table 10.8, it capitalizes up to 60% &tule 8violation. The remaining 40% is shared out
between theRules 4 5, 6 and7. This is due to the fact that the requirementshef ‘fuel
gaugé functionality are expressadformally (Natural language).
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Figure 10.4 — Distribution of violations over the mtegrity rules

Validating the requirements models of the two funabnalities

Once the requirements models are designed, congmdeand verified, we validate these
models. In other words, we verify that the devetbpeguirements models are compliant with
the carmaker requirements related to the softwareath. In Chapter 6 — Section, 5ve
propose three scenarios to validate a requirenmeotie!:

» First scenario:Animate our requirements model

» Second scenarioSimulatetest caseslelivered by the carmaker on our requirements
model

e Third scenario: Compare our requirements model to another validlehof the
requirements

These scenarios can be used concurrently or sepyardbwever, it is mandatory to have the
data necessary for performing one scenario or anokor instance, in case of the first case
study, the carmaker has delivered a simulation iaofdine software functional requirements
and onetest casgabout 1000Qest steps Therefore, the three scenarios are applicabte. O
the contrary, the carmaker requirements of therscase study cannot be simulated and no
carmakertest casesire available. For that reason, only the firshac® can be applied in the
second case study. Because of time constrainteniyeapply the first and second scenarios
for the first case study and the first scenariotfi@ second case study. One main question is:
When to stop validating a modelf? fact, we consider a tradeoff between the qualftthe
model and the resources (time, people, and costjtsp validation (CfChapter 6 — Section
2.B). On the one handwve spenb eight-hour daywvalidating the requirements model of the
first case study and we detect around 15 noncortiesnbetween the model and the
requirements as it was delivered by the carmaRarthe other handwe spent 2@ight-hour
daysvalidating the second case study and we deteandr60 nonconformities. Even if the
requirements model of the first case study is higigen the one of the second case study (Cf.
Table 10.6) we spent more time and detected more nonconfiesnit validating the second
case study. Indeed, the main reason of this résuhat the requirements delivered by the
carmaker for the second case studyiafermal, while the ones for the first case study are
formal. In the following, we detail the validation proses the two requirements models.

Quality of the design of test cases for automatféwvare: design platform and testing process

252



Modeling and simulating two industrial case studies R. AWEDIKIAN

In case of the first case stydye first simulate on our requirements modeltdst casdabout
10000 test steps delivered by the carmaker. Once a nonconformgydetected, the
requirements model is corrected before restartimg simulation of thetest case The
cumulated number of nonconformities detected orfiteecase study is presentedkigure
10.5 After the 2008 test step no more nonconformities are detected on the model
Afterwards and in order to increase the confidanogur model, we propose to animate it by
an expert. Twosimulation plansof 100 steps eacloferationsand inter-operation times)
have been designed by an expert and simulatisg ‘by stepon the model (CfChapter 8 —
Section 4. No nonconformities have been detected. In camsece, we decide to stop
validating the model.
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Figure 10.5 — Cumulated number of nonconformities o the first case study (Second
scenario)

In case of the second case stugg animate the model by an expert. Thsmeulation plans

of 300 steps eacloperationsandinter-operation timeshave been designed and simulated
successively “step by step” on the model (Chapter 8 — Section 4)E Once a
nonconformity is detected, the requirements modelcorrected before restarting the
simulation. The cumulated number of nonconformitietected on the second case study is
presented inFigure 10.6 Through the first set of 300 steps, we detect aodect 27
nonconformities. The second one allows to detedt@mrect 14 nonconformities. The third
one detects 8 nonconformities. The main questicst vee there other nonconformities in the
model? To answer this question, we design asiawlation planof 50 steps and we simulate
it on the model. In fact, thisimulation planallows to detect new nonconformities. At this
moment, we realize the difficulty of validating H20% a model and we decide to consider a
tradeoff between the quality of the model and e tspent in validation. In fact, through the
three simulation plans we spent up to 2@ight-hour dayssimulating and debugging our
requirements model and we cover at 90% the regeinégsnmodel gignals and elements
Therefore, we decide to stop validating the model.
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scenario)

Designing “operation matrices” for the two case stdies

The generation ofest casess performed based on the concept'@eration matrix” (Cf.
Chapter 7 — Section)2 Through an“operation matrix”, inner engineers can enrich the
requirements model with knowledge on the user é@ljivecurrent operations (GThapter 8 —
Section 4 and the test engineers’ experience @fapter 8 — Section 5 and.61owever, one
major question is: How engineers can desigfiogeration matrix”? Five possible scenarios
are identified (CfChapter 9 — Section 3 ang:4

1. Design manually one or mofeperation matrices”and export them to theest Case
Generation tool.

2. Generate th&lominal “operation matrices’(Nominal landNominal 2 automatically
via theTest Case Generation tool.

3. Design manually a set @bnstraintson theinput signalsof the requirements model,
export them to th@est Case Generation toahd generate @river profile “operation
matrix” automatically.

4. Generate via thBugs Reuse toane or mordBug “operation matricesfrom one or
more capitalized bugs and export them toTtbst Case Generation tool.

5. Generate via th@est Cases Reuse tambe or morelest Case “operation matrices”
from one or more capitaliza@st casesind export them to thEest Case Generation
tool.

The number of cases of daperation matrix” for the “front wiper” functionality is 9604
(98x98, 98 is the number of possileerationson the functionality). 7921 (89x89) is the one
for the *fuel gaugé functionality. Therefore, it was ridiculous toittk of manually designing
“operation matrices”for these functionalities (C€hapter 7 — Section)2

As a basic solution, we generate, via fhest Case Generation tqathe two Nominal
“operation matrices”for the two functionalities (CiChapter 7 — Section, Zf. Chapter 9 —
Section 4.B According to experts, we define one standan@ intervaland we affect it to all
successiveperations
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Moreover, experts design manually a set coinstraints on the input signals of each
functionality (Cf. Chapter 8 — Section)4hat we export to th&est Case Generation tool
Based on theseonstraints the Test Case Generation toaeneratesa Driver Profile
“operation matrix” for each functionality (CfChapter 9 — Section 4)DThe number and
type of the designecbnstraintsis illustrated inTable 10.7

(ct gﬁgpﬂ;f%nfgg;n 4) Front wiper functionality Fuel gauge functionality

Logical

1
Conditional 3
Succession 2

1

I e S =

Timing
Table 10.7 — Constraints designed for the two funiinalities

Unfortunately, we do not have enough time to arelgags andest casesapitalized on
previous projects implementing thiiél gaugé functionality. In fact, we decide to focus our
effort on the front wiper’ functionality. In Chapter 2 — Section 7,@ve perform a study on
the bugs detected on th&dnt wiper’ functionality through 5 different projects sind®97
and till 2007. Excluding the last projedrpject § which is the one on which we carry out
our experiments, 55 bugs were detected on thistimadity since 1997. InChapter 8 —
Section Swe propose two strategies to reuse capitalizgg.bOne strategy (C€hapter 8 —
Section 5.Aconsists of representing thBroblem descriptiohof bugs in a specific format in
order to generate Bug “operation matrix” for each bug. One difficult task was to represent
the “Problem descriptiohof the 55 identified bugs into our specific form8ased on the
experts’ advices, we only consider the 10 mosicatibugs providing that there exists enough
information related to theProblem descriptiohof the bug. Afterwards, we generate, via the
Bugs Reuse toolCf. Chapter 9 — Section 3.G,1the corresponding0 Bug “operation
matrices” that we export to th@est Case Generation tooA glossary of thenput signals
names on the previous and current projects wassace

Over the 4 projects implementing th&dht wiper’ functionality (Cf. Chapter 2 — Section
7.C), only one projecP has adopted thiest case formapresented irDefinition 2.11 This
format oftest casess required for generating Best Case “operation matrixautomatically
for eachtest casdCf. Chapter 8 — Section)6Within P, test engineers have designed tast
case(about 200Qest stepsin order to test theffont wiper’ functionality. Based on thitest
case we generate, via théest Cases Reuse tg@f. Chapter 9 — Section 3.G,2ne Test
Case “operation matrix”"that we export to th&est Case Generation tod\ glossary of the
input signalsnames on the previous and current projects wasssacy.

A summary of thé'operation matrices” designed for the two functionalities is illustrehti
Table 10.8 We also estimate the time spent in designingettgseration matrices” For the
front wiperfunctionality, we spent 2ight-hour daysand for thefuel gaugdunctionality, 0,5
eight-hour daysIn fact, identifying and preparing the capitatizeugs andest casediave
taken about 1,Bight-hour days
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Front wiper functionality Fuel gauge functionality

2 Nominal « operation matrices » 2 Nominal « operation matrices »
(Nominal 1 and Nominal 2) (Nominal 1 and Nominal 2)
1 Driver Profile « operation matrix » 1 Driver Profile « operation matrix »

10 Bug « operation matrices »

1 Test Case « operation matrix »

Table 10.8 — “Operation matrices” designed for théwo functionalities

How to tune the generation of test cases?

Three questions have been raised at this stadpe @fperiment:

* From which*operation matrix” do we start generatirigst case?
* How to tune theoverageobjectives and the time and cost constraints?
* How to tune the test generation algorithm?

In order to answer the first question, we propasgedneratdest casegrom the“operation
matrices” according to the order presentedHigure 10.7 Firstly, we generatdest cases
from theBug “operation matrices’ At least, we ensure that our software moduleegs from
bugs similar to the ones already detected in tsé $acondlywe generateest casesrom the
Test Case “operation matricesThesetest casesre suitable to detect bugs since they are
based on the test engineers’ experieddardly, we generatdest casedrom the Driver
Profile “operation matrix”. This aims to check that the software module lfalthe end-user
(driver) expectationgzinally, we generatéest casesrom theNominal “operation matrices”
Improbable successions operationsare generated in order to check the robustnesiseof
software module. In the previous section, we nbi# hoBug or Test Case “operation
matrices” have been designed for the second case studyolverand according to experts,
simulating random operations (Nominal “operation matricesf on the fuel gauge
functionality does not make real sense. Thereflmrethis case study, we only generate test
cases from th®river Profile “operation matrix”.

Front wiper functionality

Driver Profile
“operation matrix”

Bug
“operation matrices”

Nominal
“operation matrices”
| (Nominall or/and Nominal2)

TestCase
“operation matrices”

Figure 10.7 — Our strategy of generating test cas&®m the “operation matrices”

Before generatintgst casefrom an“operation matrix”, we have to define the objectives and
constraints of the generation (Chapter 7 — Section, &f. Chapter 9 — Section 4)but also
the parameters of the optimization algorithm (Chapter 7 — Section, 8f. Chapter 9 —
Section 4.F. In our case studies, we tune these factors basedry-and-testprotocol and on
the experts’ knowledge.
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According to the type of théoperation matrix”, we propose guidelines for defining the
coverageobjectives and the time and cost constraints T@hle 10.9. These guidelines have
been defined based on our analysis of the difféigpgration matrix” modes. For instance,
in case of aBug or Test Case “operation matrixXmode, the knowledge extracted from
capitalized bugs otest casess incorporated in théoperation matrix”. Therefore, it is
necessary to cover at least all the successiooparaitionsof aBug or Test Case “operation
matrix”. The constraints’ values depend on the contextdétdglanning, and resources) of
the project.

“Operation matrix” from which o o . o
the test case has to be generated Objectives guidelines Constraints guidelines

. . At least, cover at 100% the « operation
Bug « operation matrix »

matrix »

. The number of test steps and the

. . Aleast, cover at 100% the « operation L

Test Case « operation matrix » matrix execution time of the generated
»

. test case depend on the context

. : . . Aleast, cover at 100% the domains of P .
Driver Profile « operation matrix » (budget, planning, resources) of

the input signals
At most, cover the requirements model
and the « operation matrix »

the project
Nominal « operation matrix »

Table 10.9 — Guidelines for defining the objectiveand constraints of a test case
generation

Based on these guidelines, we set the objectivdscanstraints of théest casegeneration

for the two functionalities (CfTable 10.1) Because of technical reasons and based on the
assumption that covering at 100% the requiremerdeminvolves that theource codds
covered at 100%, we decide to only set objectimegims of functional coverage. From the
opposite direction, this assumption is rarely @& Chapter 7 — Section)4Moreover, we do

not consider the criticity of the requiremen®rifical Successive 2-Operations coverabd
Critical Conditions coveragand so on — CChapter 7 — Section 4)BFinally, no constraints

are set in terms of numbertafst stepsind execution time of the generatest cases

Front wiper functionality Fuel gauge functiona'ity
“Operation matrices” TestCase | Driver Profile NominaIZ TestCase/| Driver Profile ‘Nominal2 |
Objectives Vo Vi /
Functional coverage . ; |
Inputs domains - ] 100-10 100-10 S 100-10
Outputs domains - - - 100-10 7"
Intermediates domains - - - 100-10
Inputs boundaries - - - 100-10
Outputs boundaries - Target- Weight - 100-10
Intermediates boundaries - - - 100-10 - k - - %
Successive 2-Operations 100- 10 100-10 - 100-10 - - - .—
DT Conditions - - - 100-10 ’ "
FSM States - - - 100-10
FSM Transitions - - - 100-10
FSM Conditions - - - 100-10 £
Constraints
Testexecutiontime and cost
Test Execution Time (en ms)
Test Step Number

Table 10.10 — Objectives and constraints when geraging test cases for the two
functionalities
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Once defining objectives and constraints, we haveume the optimization algorithm of the
test casaggeneration. IrChapter 7 — Section, Gve describe the optimization algorithm and its
parameters. Eight parameters have been identifredour case studies, we tune these
parameters based on the traditiotrgdand-testprotocol. In fact, we first set the objectives
and constraints of th&est casegeneration, then we set specific values on thengtion
algorithm parameters and finally we genetatd casesBased respectively on the fulfillment
and respect of the objectives and constraints, dyestithe optimization parameters. The
purpose is to better fulfill and respect tbheverage objectives and the time and cost
constraints. For each case study and after 1@ {jagproximate), the “optimal” values for the
optimization algorithm parameters are identified able 10.11We spent kight-hour dayin
adjusting these parameters for the two case studétsus consider the first case study. We
have to generatiest case$rom aBug “operation matrix”. According toTable 10.9 we first
set the objectives and constraints of test casegeneration (Cover at 100% tHgug
“operation matrix”). Afterwards, we tune the parameters of the op@tnon algorithm (Cf.
Table 10.1)1 In fact, we decide to optimize tlewverageof the Bug “operation matrix”
(Parameter 1= 1). When choosing a newperation in the “operation matrix”, the
optimization algorithm checks if the correspondisgccession ofoperationsis already
covered or not. If it is the case, anotbperationis chosen until a non-covered succession of
operationsis selected. The maximum number of unsatisfiedstribefore the algorithm exits
the loop, is 30 Rarameter 2= 30). Even if the designeidst stepdoes not improve the
objectives fulfillment, we decide to add it to tiest caseinder constructiorParameter 3= 0
andParameter 4= 0). After 30test stepgenerated without an improvement in the objectives
fulfillment, we decide to stop designingst stepgor the correspondintgst casgParameter

5 = 30). According to experts, we decide to genaegecasesor only one“Configuration”

of the front wiperfunctionality Parameter 6= 0 andParameter 7not defined). In fact, we
choose the basic (by default in a capnfiguration” of the functionality. Finally, only one
test casénas to be generatedlqrameter 8= 1).

“Operation matrices”

Bug

TestCase

Driver Profile

Nominal

. Bug

TestCase’|

Driver Profile

» Nominal/

Parameter 1

1

4

1

a8

Parameter 2

30

90

Parameter 3

0

0

Parameter 4

0

0

Parameter5

30

30

Parameter 6

0

0

Parameter 7

Parameter 8

1

6

6

6

3

Table 10.11 — Optimization parameters when generatg test cases for the two
functionalities

Generation and execution of the test cases on theftsvare modules of
the two functionalities

In Section 7 we develop théoperation matrices” designed for the two case studies. In
Section 8 objectives, constraints and optimization paransefier the generation dést cases
for the two functionalities are defined. In thiscsen, we describe the generation and
execution oftest casesThe number and characteristics of the genertdstl casesare
illustrated inFigure 10.8and 10.9 In fact, the generation ¢ést casedas been carried out
automatically via th@est Case Generation to(f. Chapter 9 — Section 4)F
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10Bug 1 Driver Profile “operation
“operation matrices” matrix”
10testcases (1 testcase 6 test cases fromthe
from each Bug “operation Driver Profile “operation
matrix”) matrix”
Eachtestcase,around 10 Eachtestcase,around
teststeps 1000 teststeps
Foreachtest case, Foreachtestcase,

objectivesare fulfilled at

100%
1 TestCase

‘ FRONT
“operation matrix”

6 test cases from the Test
Case “operation matrix”

objectives are fulfilled at
70%

’ FUNCTIONALITY‘

Nominal 2
“operation matrix”

6 test cases fromthe
Nominal 2 “operation

‘ WIPER

Eachtestcase, around matrix”
400 test steps Eachtestcase, around
Foreachtestcase, 10000teststeps
objectives are fulfilled at Foreachtestcase,
9% objectives are fulfilled at

90%

Figure 10.8 — Order of generating and executing tésases for the front wiper
functionality

1 Driver Profile “operation
matrix”

3testcases fromthe
Driver Profile “operation
matrix”

Eachtestcase, around
300test steps

Foreachtestcase,
objectivesare fulfilled at
90%

‘ FUNCTIONALITY‘

. FUEL . GAUGE

Figure 10.9 — Order of generating and executing teésases for the fuel gauge
functionality

As we plan to do &unctional unit testof the two functionalities (CfSection 2, we execute
the generatetest case®n the first version of the two corresponding wafte modules (as it
was delivered for the first time by tldevelopment tearto thevalidation tean. In other
words, we isolate the first version of the softwanedule which fulfils thefront wiper
functionality and the one of théuel gaugefunctionality and we test them through the
generatedest casesTo do this, we first translate thewsst casesvia an inner tool, into the
unit test languagelt is a computer language understandable by uhié test execution
platform (Cf. Appendix BandC). The execution is performed following the ordefided in
Figure 10.8and 10.9 Once an anomaly is detected, we analyze it irerotd identify its
origin. The origin can be:

* A bug in the requirements model

* A known bug in the software module is a bug that thealidation testof Johnson
Controls or the carmaker has already detectedHiGtire 10.1,

e An unknown bug in the software moduleis a bug which is not yet detected neither
by thevalidation testof Johnson Controls nor by the carmaker.

Quality of the design of test cases for automatféwvare: design platform and testing process

259



Modeling and simulating two industrial case studies R. AWEDIKIAN

Whatever the origin, the bug is corrected befostarting the executioof thetest cases

It is important to note that the time to genernat® casewvia theTest Case Generation tool
and the time to executidest casewia theunit test execution platforrare both trivial from
the automotive industry point of view. It can bepectively estimated to 500 and 1(@8t
stepsper minute. These estimations are given for ref@eonly because they depend on
many factors CPU", inter-operations timesf thetest stepsparameters of the optimization
algorithm and so on).

X. Analysis of the results of the two case studies

A. Detect bugs earlier in the software life cycle

Once executing all the generatedt casesn the software modules of the two functionalities
a total of 29 anomalies were detected on the d¢aise study and 35 anomalies on the second
one. In fact, it is important to assess dlceuracyof the results delivered by our measurement
system. Therefore, we measure (Eijure 10.10:

e The ratio between the number ‘Galse” bugs (bugs in the requirements models)
detected by our approach and the total number t#ctedl anomalies. Th#alse”
bugs are the anomalies that are not related to ioutiee software module under test
but to bugs in the requirements model itself. Asl $&a Section it is impossible to
validate at 100% a requirements model and therdioigs in this model could be
detected later when executing the genereagsticasesn the software under test.

* The ratio between the number‘“dfue” bugs (known bugs in the software modules)
detected by our approach and the total numbertetti anomalies.

e The ratio between the number“aew” bugs (unknown bugs in the software modules)
detected by our approach and the total number g$ lhuthe software module under
test.

About 17% (5 over 29) of the anomalies detectetheifront wiperfunctionalitywere related
to bugs in the requirements model and up to 49%oyETr 35) on théuel gaugdunctionality.
This could be explained by the fact that the rezjagnts models of the two functionalities
could not be exhaustively validated (Skction §. More especially, the one of theel gauge
functionality because of thaformal formalism of the carmaker requirements. Around 65%
(19 over 29) of the anomalies detected onfitbiet wiperfunctionality were related thnown
bugsin the software module and up to 51% (18 overd@bjhefuel gaugdunctionality. We
also detect 5rhinor” bugs (‘minor’ from experts’ point of view) that neither the a@mtional
validation testof Johnson Controls nor the carmaker test hascweteon thefront wiper
functionality. According to experts, these bugseénao impact on thend-user(driver). It
represents 19% (5 over (22+5)) of the total nundbdarugs in the functionality (22+5).

From another point of view, we were able to de®&% (19 over 22) of the bugs already
detected by the conventionalidation teston the first case study and 78% (18 over 23) on
the second ond hese results prove that many of the bugs detectdater in the software

life cycle (vValidation tesj could be detected earlier{nit tes) via our functional unit test

“1CPU : Central Processing Unit
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20 -

18 # Front wiper
16 - functionality
14 # Fuel gauge
12 - functionality
10 -

Minor

Numberof anomalies

Bugsin the Known bugsinthe  Unknown bugsin the
requirements model software module software module

Origin of the detected anomalies

Figure 10.10 — Origin of the anomalies detected wheexecuting the generated test cases
on the two functionalities

After analyzing the remaining 3 (22-19) and 5 (&}-#nown bugsot detected respectively
on the first and second case studies, we come tigetoonclusion that these bugs could be
detected by our platform since we reach a 100% effunctionalcoverage(which is not the
case, Cf.Section 9 These non-detected bugs are related to somefisp&mctional
requirements that weren’t covered by our genertgsticasesindeed, when generatingst
casesfrom aNominal “operation matrix’; our computational algorithms didn’t succeed to
reach 100% of the functionabverage(maximum of 90%). To overcome this lack, we have
to improve our computational algorithm in orderfécus on covering the non-covered zones
of the requirements model. Figure 10.11 we identify across the carmakers’ deliveries the
known buggCf. Figure 10.) not detected by our approach.Rigure 10.12 we illustrate the
criticity (Severity Occurrencg of the non-detected bugs as it was filled in gneblems’
databasgCf. Figure 10.3.

Front wiper functionality Fuel gauge functionality
14 4 * Bugs detected by the Johnson 141
| Controls VALIDATION test 12
12
12} 1]
§’ 10 - - Bugs detected by the carmaker §’10 1
S 8- S 8 -
(] [}
o 3
> =]
Z 4 Z 4 -
2 2
2 1 2 27 z 111
I’ o &
0 = .
1 2 3 4 5 6 sop 1 2 3 4 5 6 7 8 9 10 11 12 13 SOP
Deliveries to carmaker Deliveries to carmaker

Figure 10.11 — Distribution according to the carmakrs’ deliveries of the known bugs
not detected by our approach
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Figure 10.12 — Distribution across the couple (Sexity, Occurrence) of the known bugs
not detected by our approach

Among theknown bugsletected by our approach, some of them are buggdyl detected by
the conventional Johnson Contralalidation testand others by the carmaker (Figure
10.13. For thefront wiperfunctionality, we detect 60% (3 over 5) of the bdgsected by the
carmaker and 94% (16 over 17) of the bugs detduydtie conventionalalidation test For
the fuel gaugefunctionality, we detect 80% (4 over 5) of the bulgtected by the carmaker
and 78% (14 over 18) of the bugs detected by thearttionalvalidation test

100% 1 94% % Known bugs
90% - already detected

80%
80% - P > 18% by the carmaker
70% -

60% -
50% -
40% -
30% -
20% -
10% -
0% 7

60%

= known bugs
already detected
by the Johnson
Controls
validation test

Percentage of bugs detected by our
approach

Front wiper functionality Fuel gauge functionality

Figure 10.13 — Origin of the known bugs detected bgur approach on the two
functionalities

In the case of the front wiper functionalitythe evolution of the cumulated numberkabwn
and unknown bugghat we detect through our approach is illustrate&igure 10.14 The
evolution is drawn according to the execution ordethe generatetest caseslefined in
Figure 10.8 Once a bug is detected, it is corrected befostareng the execution. Through
the test casegenerated from thBug “operation matrices; we detect 2 bugs out of the 17
bugs detected by the Johnson Controls softwarengeptocesses. Thest casegenerated
from theTest Case “operation matrixénable to detect 6 bugs out of the 17 bugs detdxte
Johnson Controls, 1 bug out of the 5 bugs detebiedhe carmaker after intermediate
delivery and 2 new “minor” bugs that were neithetetted by Johnson Controls nor by the
carmaker. Thdest casegenerated from th®river Profile “operation matrix” enable to
detect 1 bug out of the 17 bugs detected by Joh@smwrirols. And finally, theest cases
generated from thBlominal 2 “operation matrix"enable to detect 7 bugs out of the 17 bugs
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detected by Johnson Controls, 2 bugs out of thads loletected by the carmaker and 3 new
“minor” bugs that were neither detected by John€mmtrols nor by the carmaker. As
conclusions on the bugs’ detection flow:

* All new detected bugs (5 bugs) have occurred inTitast Caseand Nominal 2test
stages. This could be explained by the fact thesdhbugs are related to specific
successions ajperations illogical from a use point of view but could padidy occur
in the serial life of the software product.

* At the end of each test stage, the number of thextiel bugs tends to stabilize.

Front wiper functionality

18 1 |—-Known bugs already
detected by the supplier 16
16 conventional testing phases
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]
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2 8- nor by the carmaker) o ! =
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5 = 2 &
()
g 6 S S
= N 2 5
] = °
‘ = 5 i3
o i
2] 2 |2
2 1 i
{ I
0 e 1
Q0 = T it :—]-v—v—v—v* .
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"—'—'—'—'—'—'—'—'—8"‘—'—'—'—'—'—“'—'—'—'—'—'—“'—'—'—'—'—',—
| | | |
10 test cases generated from the 10 6 test cases 6 test cases 6 test cases
Bug “operation matrices” generated fromthe generatedfromthe generatedfromthe
(Each test case from a matrix) TestCase Driver Profile Nominal 2
“operation matrix”  “operation matrix”  “operation matrix”

Execution order ofthe test cases
-Once abugis detected, itis corrected before restarting the execution -
Figure 10.14 — Evolution of the cumulated number obugs detected by our approach on
the front wiper functionality

We also execute independently on the first versiotine front wiper software module all the
test casegenerated from each mode“operation matrix”. The result of this experiment is
illustrated inFigure 10.15 We identify the number and type of bugs that lbardetected by
one or more modes tbperation matrix”. As a conclusion:

« One mode of theé'operation matrix” wasn't able to detect all the bugs already
detected by the present Johnson Controls testoaepses and by the carmaker.

* Each mode has at least one bug that can only leetddtvia this mode.

* TheNominal 2mode“operation matrix” detects the maximum number of bugs. This
could be explained by the fact that we generat®@0€st stepgrom this“operation
matrix” and we cover at 90% the requirements model.

v
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« TheTest Casenode“operation matrix” detects up to 80% of the bugs that Dreve
Profile mode can detect. In fact, the capitalizest casesiave been designed with an
end-usermpoint of view.

Front wiper functionality

Bugs not detected by

our approach
= 2 Bu%]s dete_cted wa_then Bug
I operation matrices
| . : I
i |_ 7.4 - < Bugsdetected viathe
. | Nominal2 “operation matrix”
; J
1 1
r| | I- -3 1
] - I
l | e '_—_'_—;'_! 1 . Bugsdetected viathe Test Case
I [ | “operation matrix”
I |
o) I I
_——_—————_——— -
|
I ! . Bugs detected via the Driver
l _: Profile “operation matrix”

Known bugs already detected by the :
conventional validation test

Known bugs already detected by the
carmaker :

Unknown bugs (Not detected by the
conventional validation testnor by the :
carmaker :

Figure 10.15 — Number and type of bugs detected veach “operation matrix” mode

In the case of the fuel gauge functionalitghe evolution of the cumulated numberkabwn
andunknown bugshat we detect through our approach is illustratdeéigure 10.16 Through

the test casegienerated from the sol@river Profile “operation matrix” (Cf. Section § we
detect 14 bugs out of the 18 bugs detected by doh@sntrols and 4 bugs out of the 5 bugs
detected by the carmaker. No new bugs have beentddt Comparing to the first case study,
we were able through tHeriver Profile mode to detect most of the known bugs. This could
be explained by two facts:

* We cover 90% of thenput signalsdomains in comparison with 70% in the first case
study.

» According to experts, simulating randaperations(Nominal “operation matricesy
on thefuel gaugdunctionality does not make real sense.
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Figure 10.16 — Evolution of the cumulated number obugs detected by our approach on
the fuel gauge functionality

B. Decrease the time spent in testing a functionality

On the one handve detect bugs earlier in the software life cycleéOn the other handwve
lower the time spent in testing a functionality Thanks to historical data, the total time spent
in testing conventionally the two functionalitiesiliustrated inFigure 10.17 e.g. 53.75 eight-
hour days for théront-wiperand 50 days for thieiel gauge For thefront wiperfunctionality,

no unit testhas been performed. During thalidation teststages, test engineers spent 11,5
eight-hour daysanalyzing the carmaker requirements before stastgding manuallytest
cases(29,5 eght-hour day$. 6 eight-hour daysvere spent executing the desigrnest cases
and analyzing the results. Finally, we estimate5,@5 eight-hour daysthe time spent in
managing the bugs detected later in the processhEéuel gaugdunctionality, 5eight-hour
days were spent testing unitarily the functionality. rilyg the validation teststages, test
engineers spent l1l@ight-hour daysanalyzing the carmaker requirements before start
designing manuallyest caseg22 eight-hour days 6 eight-hour daysvere spent executing
the designedest casesand analyzing the results. Finally, we estimaté eight-hour dayshe
time spent in managing the bugs detected latdramptocess.

As stated irSection 2up to 50% and 10% of the total time spent infyarg and validating a
software functionality were respectively spent tanmally design théest casesand manage
the bugs detected later in the process.
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Conventional Johnson Controls testing approach
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Figure 10.17 — An estimate of the total time spemt testing conventionally the two
functionalities

The total time that we spent in testing unitarig two functionalities using our approach is
presented inFigure 10.18 It has been approximately spent 39 and &light-hour days
testing respectively thigont wiper andfuel gaugefunctionalities. InSection 45, 6, 7 and9,

we estimate and comment the time spent analyziagcitmaker requirements, modeling,
computerizing, verifying and validating the requm@nts model, designing tHeperation
matrices” and finally generating and executing automatictilytest casesAfter executing
the generatetest caseswe estimate to 10 ande2ght-hour dayghe time respectively spent
in analyzing the execution results. It consistg;eoan anomaly is detected, of answering the
guestion: “Is it a bug in the requirements modelaobug in the software module?”. The
correction of anomalies is instantaneous. The spent in analyzing the execution results is
proportional to the number of executed test stéost( wiper. 68500test stepsfuel gauge
900 test stepp In fact, the task of manually designing tiest caseslisappears in favor of
designing, verifying and validating the requirensemiodel. Once the model is developed, the
test design activity is automated but more effarts necessary to analyze the results of the
tests execution. Indeed, test engineers have terstahd the generatéelst casesn order to
confirm or not a bug. Moreover, we do not deteah@ 5known bugsespectively on the first
and second case studiesSection 10.Awe come up to the conclusion that these bugsicoul
be detected by our platform since we reach a 10D&eofunctionalcoverage(now, it is not
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the case, CfSection 9. Based on the assumption that our computatiolggrithm was
improved (to be able to reach the 100% functi@oaleragg, we estimate the time required to
detect the remaining bugs on the two case studias. time take into account the time to
generate and execute tlest casesand analyze the results. For the first case studyalready
cover 90% of the requirements model and 3 bugseanaining. Therefore, we estimate to 2
eight-hour dayghe time to detect these bugs. For the first casgyswe already cover 70%
of the requirements model and 5 bugs are remairfihgrefore, we estimate toesght-hour
daysthe time to detect these bugs. These estimatiand be explained by the fact that:

* The requirements model of the first case studyiggdr than the one of the second
case study (CfTable 10.6.

* Analyzing the execution results of the second chisdy takes more time that the one
of the first case study. In fact, the requirememisdel of the second case study
(Natural languagg is less reliable that the one of the first caselys (Cf. Section 3
and6).

Globally, we spent approximately 39 and 4#&ight-hour daydesting respectively thiont
wiper andfuel gaugefunctionalities. In this estimation, we do not swmler the time spent in
configuring our test platform using they-and-testprotocol (Cf.Chapter 8.A. In conclusion,
we lower by 27% (39 instead of 53,éght-hour daysand 17% (41,5 instead of ®ight-
hour day$ respectively the time spent in testing ftent wiperandfuel gaugeunctionalities.

Our approach
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Figure 10.18 — An estimate of the total time spef testing unitarily the two
functionalities using our approach
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After the first carmaker delivery and for each n#slivery, we estimate that an average of 1
eight-hour dayscan be enough to review and updatetdst case®f the functionality under
test. In fact, as carmaker requirements is suitebkvolve along the different deliveries (Cf.
Chapter 2 — Section 4)Ait will be easier to test engineers to update rgguirements model
and generate automatically a new setest caseshan to update manually the desigriext
cases

C. Quantitative results’ overview: earlier detectidrbags and time saving

Performing afunctional unit test for each functionality (software module), usingro
approach to generatest casesutomatically leads taotably improved results In Table
10.12 we summarize the results of the two case studiésrms of detecting bugs earlier in
the software life cycle.

_ Front wiper functionality ~ Huel gauge functionality

Increase the number of bugs detected 100% (from 12 to 24) 800% (from 2 to 18)
since the first testing phase

Decrease the number of bugs detected by 60% (from 5 to 2) 80% (from 5 to 1)
the carmaker

Increase the number of bugs detected by 41% (from 17 to 24) 22% (from 18 to 22)
Johnson Controls

New bugs detected 18% (5 out of 27) 0% (0 out of 23)

Table 10.12 — A summary of the results of the twaase studies

Moreover, we lower by 27% and 17% respectivelytthee spent in testing thigont wiper
andfuel gaugdunctionalities (CfFigure 10.19.

: o l-27% 41&517% i -
% * / % % Qurapproach

Figure 10.19 — Reducing the time spent in testindpé two functionalities

Conclusion

In this chapter, we have experimented our testing methodologihrough two typical case
studies on historical data. Potential benefitgiaptitative and qualitativg have been
guantified. We reduce by 70% the number of bugealetl by the carmakers and by 9% the
ones detected by the end-users. Moreover, we relduc22% the time spent in testing a
software product. We also propose to deliver to ¢hemakerformal quality indicators
(coveragé on the delivered software. All these results dbaote to an improvement of the
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customer satisfaction and as a direct impact; thmber of tenders will grow. Unfortunately,
estimating the cost of software bugs in an orgdinas a delicate, strategic and confidential
guestion and therefore we were not allowed to comoate the numbers on the bugs’ costs
savings via the use of our approach.

In the following chapter, we give an overview oe ttontributions, impacts and perspectives
of our approach.
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Contributions’ review

In this research project, we were asked by an aniigenelectronic supplier, namely Johnson
Controls, to improve the performance of its sofeWa&V activities. Their main purpose is to
improve the quality of their products and therefdretter satisfy the requirements and
expectations of their clients. We went through gimsblem with asystemic approacim order

to identify levers in any domains from which we ftigoe able to improve thglobal
performanceof the software/&V activities. The major added value of the presemtkwis to
globally solve the quality issue of tlseftware testingrocess. Hereafter, we summarize the
main ten contributions of our research:

Contribution 1: A list of anomalies and lacks in the software figation and validation
(V&V) practices in automotive industry.

Through anndustrial audit we analyze the current software practices inraatve industry.
The audit is divided into four parts: 1) the prace$ managing the carmakers’ requirements
related to the software domain, 2) the processesrifiying and validating software products,
3) the process of managing and reusing capitalizegs and finally 4) the process of
managing and reusing capitalizest casesFor each of these parts, we make our analysis in
two stages: 1) a snapshot of the current softweaetipes in automotive industrprpocess
tool, peoplg and 2) an analysis and identification of issued kcks (diagnoses) in these
practices. Our approach to perform the audit cadibeled into 7 activities: 1) analyze the
documents delivered by the carmakers to their meit suppliers, 2) analyze the main
activities of an engineer when designiegt casegor a software product, 3) audit engineers
when designingest cases4) intervention on the design ¢ést casedor four software
projects, 5) interview managers on the expectatminthe carmakers at each stage of the
software development life cycle, 6) interview gibes of engineers that can be involved in a
software project and finally 7) analyze data on sbh&ware testingpractices of carmakers.
The result of the audit is a list of anomalies &uks (diagnoses) in the current softwei&V
activities in automotive industry.

Contribution _2: A formal specification language to represent anchusate software
functional requirements in automotive industry

Managing the software functional requirements issatered as one of the key issues in the
software development process. In fact, these reménts are the main input for the design
and implementation processes of the software ptofut also for theverification and
validation processes. Ten years afmmal methods were rarely used in automotive industry,
contrarily to medical, avionics and railways indieg. Now, in automotive industrgemi-
formal and formal methods are more and more used to specify softvianetional
requirements. However, there is a lack of a stahftamalism shared between carmakers and
suppliers. In fact, for each project, the suppiirst adapt its processes to themalism used

by the carmaker. In this context, we develop a f@mwal andsimulationlanguage to model
software functional requirements.simulation modebf these requirements can help to avoid
ambiguity, incompleteness and inconsistency inausts’ requirements. Development and
validation teams can communicate more easily whid ¢ustomer and fix specification’s
problems. Moreover, throughsamulation modelone can automate the assessment process of
all the expected outputs values of a software pbdno fact, when designing test cases, test
engineers can perform the selectgzbrationon therequirements modednd automatically
assess the expected output values by simulatingntiel. We then nameperatiori the fact
that aninput signalof the software product is set to a given valuealy, one can now
formally measure theoverageof the requirements model, which bring new valeaipality
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indicators in addition of the soleode coveragdor better monitoring theoftware testing
process.

Contribution 3: An automatic process to design test cases fowaodtproducts

In industry, the activity of manually designitest cases$or software products becomes more
and more laborious and time consuming. Despitectimsiderable time and money spent in
testing a software product and after each delitethe customer, some bugs are still detected
by the customer. Since the late 90’s, the automatibthe test case design processis
become a hot topic and industrials are still logkior a relevant automation of this process.
In this context, we develop a strategy to autoraiyidesigntest casesvith simulations from
our formal model. Atest caseas aseries ofoperationswhose selection is performed based on
a Monte Carlo simulatioron an ‘dperation matriX. Probabilities are expressed for choosing
a nextoperation and for defining the time interval between botltcassiveoperations
Therefore, we build a matrix that we nangération matriX with all possibleoperationsin
columns and in rows; thisoperation matrix” becomes central to odest case generation
algorithm. All along theest case generatipthe expected values on thetput signalof the
functionality are assessed through a simulatiaih@irequirements model.

Contribution 4: An objective function for optimizing the designtedt cases for software
products

Testing software exhaustively remains a major mnobfrom the computing point of view.
Therefore software testingnust often be based on specific assumptions ajedtoles which
help test engineers and managers to decide wheatofothe testing protocol. In order to
monitor our automatic design oést caseswe propose ambjective functionbased on a
formal structural (software code) andunctional (customer requirement specification)
coverageand the execution time and cost of desigtestl casesin software engineering, the
term “coverag@ means the degree, expressed as a percentagkido avspecified item (code
or requirement) has been exercised lgsh caseln addition, we define an exponential set of
weights that test engineers can associate for @éefthedcoveragetime or costtarget: O (to
be ignored), 1 (not very important), 5 (importaidf), (very important).

Contribution 5: A hybrid heuristic algorithm for optimizing the siign of test cases for
software products

When testing a software product, test engineere lmexecute the designexst casesn the
software under test. The execution could rbanual or automaticand is often time and
resource consuming. The main purpose of a tesheagis to detect the maximum number of
bugs in minimum laps of time. Therefore, optimizithge number and length ¢ést cases
while fulfilling predefined objectives and constits is critical to reach the quality, schedule
and cost goals of a software project. To overcohg problem, we propose a heuristic
algorithm in charge of optimizing the designte$t casesvhile fulfilling quality objectives
and time constraints. In this algorithm, we implamnivo types of optimization strategies:
Look Backand Look Ahead In fact, when designingest caseswe avoid similar and
repetitive operations or successions of operatitvo®k Back and we focus on the ones
which improve the objective fulfillmentook Aheajl

Contribution 6: A software bug classification model and a detaitgdology of software
problems

Each software organization usesp@blems’ tracking toolin order to manage and store
problems detected during a software project. Moeeawetracking toolhas a database where
all the problems are stored. Such databases holsaimds of software bugs and are difficult
to be analyzed. In fact, when describing a budghergroblems’ tracking tool, there are often
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too many fields to fill in, a lot of free fields dra lack of relevant predefined fields. Moreover
and as the detection of bugs comes later in theegs) engineers do not have enough time to
fill in all the fields of a bug. Therefore, analggithese databases in order to pinpoint issues in
the development processes and propose improvermsgohsis a complicated task. In this
context, we propose a nevug classification modelThe aim of this model is to be able to
identify process improvement actions for the depelent andV&V processes. In other
words, the newbug classification modednswers the question of “which types of software
problems are injected and detected in which propkase?” To do this, we propose a detailed
software problem typology taking the industrial @t into account. In addition, identifying
recurrent type of software problems allows testirggys to focus the design tefst casesn
detecting these problems.

Contribution 7: A process to define software users’ profiles ideorto design test cases that
simulate the real use of a software product

There is no better way to test a product other thating it in the way that it will be used. The
major number of bugs detected by #al-usersof a software product is related to specific
operationsor successions ajperationsrecurrently performed on the software in real use.
Therefore, testing a software product with eard-userpoint of view seems beneficial. We
propose to define aend-user behavior’'s profileor each software under test. This profile can
be used by test engineers when desigrieg} caseslIn fact, we define four types of
constraintsthat test engineers can affect to eeqgut signalof a software product in order to
eliminate or favor specific successigperations Eachinput signalcan have one or more
constraints Theseconstraintsaim to lower the number of possible combinationsirnput
signalsand to more thoroughly pinpoint which ones aredently set once the product is
launched on the market. These foonstraintsare:logical constraint conditional constraint
succession constraiindtiming constraint

Contribution 8: An automatic and formal process to use capitaligeftware bugs in the
design of test cases suitable to detect similaskarga new software development

Only exhaustive testing can show that a softwamdyet is free from bugs. However,
exhaustive testing of a software product is notfcal because variable input values and
variable sequencing of inputs result in too mangsfiale combinations to test. So it is useful
to concentrate the test on the areas associat&édtiat greatest risks and priorities. In this
context, we propose to desigest casesvhich have a high probability to detect software
bugs. Therefore, we specify a new format for tReoblem descriptiohattribute of a bug
capitalized in the problems’ database. This forouatsists of describing the initial conditions
and the successivaperationsthat lead to the capitalized bug. Based on thvg fiemat, we
propose an automated process able to design onemtest casegrom each capitalized
bug. Thesdest casesire suitable to detect bugs recurrently done styergineers on specific
software functionalities.

Contribution 9: An automatic and formal process to reuse capidlitest cases for one
project to another

Reusing capitalizedest casedrom one project to another seems to be benefiaiahn
industrial context. In other words, whastinga software functionality that has already been
implemented in the past on another project, iugigious to reuse existingst casesBut
unfortunatelytest casesire not often reused from one project to anoffwn potential main
reasons are: 1) the use of different formats whesigthing manuallyest casesSometimes,
test engineers write theest casesmmediately in a computer languag€ (anguage .).
understandable by thtest execution platfornOthers use a more high level language. 2) the
lack of an automated process to reuseelecasesTo overcome this problem, we propose to
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use one specific format as the standard formatpoesent dest caseBased on this new
format, we develop an automated process able tigrdeme or mordest casegrom each
capitalizedtest caselIn fact, the designetkst casedocus on test scenarios based on the
returns of experience from previous projects.

Contribution 10: Promising results of the experiment of our testmgthodology on two
typical case studies within an automotive elecicaupplier

Through our research project, we propasgew systemic approach to automate efficientdy th
design of test cases for software produggsart from the computational aspects of software
testing, the approach takes into account orgaoizakimatters (CfContributions2, 3, 4, 5, 6,

7, 8and9) such adunctional simulationknowledge managemembmpetency management
and project managementOur testing methodologyas been implemented in a computer
platform and experimented on two typical case swddf Johnson Controls for which
historical data are available. Consequentlyreduce by 70%f the number of bugs detected
by the carmakers ara/ 9%the ones detected by the end-users. Moreoveretece by 22%
the time spent in testing a software product. tt,fave detect the bugsarlier in the software
development process awtbser to their origin We also propose to deliver to the carmaker
formal quality indicatorson the delivered software. All these results abote to an
improvement of theustomer satisfactioand as a direct impact; the number of tenders will
grow. Unfortunately, estimating the cost of softavdrugs in an organization is a delicate,
strategic and confidential question and therefoeehave not been allowed to communicate
the numbers on the bugs’ costs savings via theuser methodology

Contribution 11: A patent on our approach to design test casesdtiware products

The promising results of the deployment of @esting methodologwithin the industrial
context have motivated the automotive electronmpsiar Johnson Controls (who grants this
PhD) to patent this approachPresently, the company patent experts are asgesise
economical profit of patenting our approach. In theantime, avorldwide Quick Patefit
(for a preliminary protection of the idea) has beahmitted by the company.

Impact of our testing methodology in the company aganization

Estimating the cost of bugs in a software orgaiopais a delicate, strategic and confidential
guestion. In 2002, thilational Institute of Standards and TechnoldbyST) has estimated
that software bugs cost U.S. economy 59,5 billioflatls annuall§®. In Johnson Controls,
there is no model to estimate the cost of softwamgs. Unfortunately, these data are
confidential. However, the number of software bufytected by the carmakers during
intermediate deliveries or by tlend-usersafter theStart Of ProductionSOB is estimated
each month. As the automotive market becomes mudenere competing, decreasing the
development time of outsourced parts and decredlsengumber of problems detected later in
the process becomes of major importance for carreaded consequently a major quality
indicator for automotive suppliers. Indeed, thentakers’ process for assigning new projects
to suppliers is mainly based on feedbacks from iptev projects. Through outesting
methodology{Cf. Table 10.12, wereduce by 70%((60+80)/2, 60% and 80% respectively on
the first and second case studies) the numberfofa® bugs detected by the carmakers after
intermediate deliveries. Making the assumption tha&t new “minor” bugs that we detect

“2 In France, we associate @uick Patentto an “Enveloppe Soleau”hftp://www.inpi.fr/fr/services-et-
prestations/enveloppe-soleau.ht@bnsulted on November 2008).
3 http://www.nist.gov/public_affairs/releases/n024itéh (Consulted on November 2008)
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through ourmethodologyand which were neither detected by Johnson Caentrot by the
carmaker have been detected byead-userwe can state that weduce by 9% ((18+0)/2,
18% and 0% respectively on the first and second saglies) the number of software bugs
detected by thend-usersonce the product is launched on the market. Maeave propose
to deliver to the carmakeuality indicators related tocode coveraggalready done in the
industry) but alsdormal requirements coverage which may increase its confidence about
the quality of the software products. Presentlg, fieasurement aéquirements coverage
informal (Cf. Chapter 2 — Section 6.B.1In conclusion, across otesting methodologyhe
image of the company(Johnson Controls) in front of its customers (cakers) will be
improved and as a direct impact of thestomer satisfaction the number of tenders will
grow.

Moreover, thevalidation teststage accounts for more than 50% of the projexe tand
resources (CfChapter 1 — Section 5.Q.2n fact, bugs related to the internal behavioorme
software module could be detecteduimit teststage(earlier in the process) Unfortunately, it

is not the case and such bugs are detected latdreimalidation teststage. Of course,
analyzing the origin of a bug walidation teststage (all the software modules are integrated
together) is more difficult and time consuming trearalyzing the bug’s origin in a specific
software module. Through otesting methodolog{Cf. Figure 10.20, we reduce by 22%
((27+17)/12, 27% and 17% respectively on the firel aecond case studies) the time spent in
testing a functionality. While lowering the numbmrbugs detected by carmakers and end-
users, wdower the resources required for testing a softwar@roduct.

However, we are conscious of thepact of our testing methodology (model and design
platform) on the current software organization in @se of an industrial deployment
Indeed, annvestmentbut alsopersonal commitmentsof all the software players within the
company are mandatory for the success of such ehafngractices. IIChapter 9 we develop

a “process-people-toblview of our testing methodologyBased on this view, we identify
three streams of actions necessary for integratimgnethodology within the current software
organization of the company:

* Integrate th@rocesse®f our methodology (Cfigure 9.2 within the global software
process map of the company (Eigure 2.9.

» Train the softwareengineersto the newtesting methodologyTest automatiorhas
broad impacts on an organization such as the skdédded to design and implement
automated tests, automation tools, and automatemosnments. The test engineers’
practices, roles and competencies change when atityms installed. These impacts
have negative aspects that must be considered. Witreducing a new methodology
and tool to the testing program, mentors and tngmiare very important. Even with
training, automation skills take time and expereetg acquire. The best automation
tool in the world will not help the test effortstlie test team resists using it. The test
engineers may feel that 1) their manual procesksvbne, and they don’t want to
bother with the additional setup work for introdugian automation tool and 2) they
may lose theirknow howin designing manually test cases for software pectsl
Indeed, test engineers’ technical skills will hageswitch from a manual design to a
high level modeling of the test scenarios and dhbjes in using in a flexible manner
our design platform. Nevertheless, based on teeatiire (Bunse 2007), model-based
software development approaches are slowly supegsettaditional ways of
developing software products and software enginheecuired skills tend toward
modeling and automation tool monitoring.

* Improve theMan Machine Interface®f the computertools that we developed to
support ourtesting methodologyCf. Chapter 8 — Section 3.C and).4In fact,

Quality of the design of test cases for automatféwvare: design platform and testing process

277



General conclusion R. AWEDIKIAN

ergonomic user interfaces play a major role ingteetitioners’ use and perception of
a computer tool.

Research perspectives

The open perspectives of this research projedisiesl by topic.

Perspective 1Related to the formal language to specify softWanetional requirements
The perspectives concerning our formal languagpéxify software functional requirements
are:

« Perform a broad survey on the carmakers’ spedificadf the software functional
requirements. The purpose is to fill out darmal specification language in order to
be able to specify any carmakers’ software funeioaquirement.

* Develop a list ofrules and recommendationso helpmodelersusing efficiently our
specification language and therefore develop ctersisequirements model at the first
attempt.

» Develop more efficient strategies to validate tbenpliance of a requirements model
developed using our specification language with(trginal) carmaker requirements.
One solution could be to validate the model bydéwenaker itself.

* Develop areditor toolto supportmodelersin designing a requirements model using
our specification language. For instance, whengihé@sg aDT element designers can
not consider all the possibt®nditionson theinput signals In fact, in an industrial
context, the number of thHeT input signalscan exceed 10 and the domain length of
one signal can exceed 100 (for instance, when sagnble “vehicle speed” signal). In
that case, its remains a very difficult task tonidly manually all the possible
conditionsand their correspondingctions Therefore, an automatic generation of all
the possibleonditionson theinput signalsof aDT could be judicious. Theditor tool
could perform such functionality.

Perspective 2Related to the knowledge management in terms pfatiaed bugs and test
cases

On the one handwve propose to reuse capitalized bugs in ordeetdy the nonexistence of
recurrent bugs. To do this, we develop a newg classification modeWith a detailed
typology of software problems and a specific forneatlescribe the initial conditions and the
successiveoperationsthat lead to detect a bug. We propose to genawatiematicallytest
cases that verify the nonexistence of recurrent (cape) bugs on each software
functionality (for instancefront wipern of a new development. To do this, for each saftwa
functionality of a product family, a glossary ofetliunctionality’sinput signalsnames on
previous and new projects are necessary. A faniilyraduct is defined by austomer(for
instance,Renaul), a type of product(for instance, aody controller moduleand acar
platform (for instanceLaguna platform. We experiment these proposals on two industrial
case studies with historical data. However, it dobk judicious to experiment olnug
classification mode{software problems typology and description foiisralof a bug) and the
inputs glossary on new software projects. Theref@eecould adjust our proposals in order to
take practical considerations into account.

On the other handwve propose to reugest case$rom one project to another. To do this, we
define a new formalism to representeat caseand based on this formalism, we develop an
automatic process to generate one or nese caseshat focus oroperationsor successions
of operationsregularly done in a capitalizeadst caseln fact, we propose to reusest cases
when testing a software functionality that we aliyetested in the past. Therefordgeat cases
library should be specified in order to capitalthe test casedy software functionality and
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family of product. Moreover, for each software ftianality of a product family, a glossary of
the functionality’sinput signalsnames on previous and new projects are necessary.

Perspective 3Related to the test case generation algorithm

Through our experiment, we show that our computali@lgorithm does not successfully
reach 100% of function@loveragethe maximum was 90%). Consequently, we were blat a
to detect bugs related to the non-covered functioeguirements. To overcome this
deficiency, we plan to develop a nésst case generatioagorithm that focuses on covering
non-covered zones of a requirements model. Indadtinstead of selectiraperationsvia a
Monte Carlo simulationon theinput signalsof a model, we propose to synthesize the
operationsthat lead in covering a specific item (for instepastateof anFSM, aconditionof
aDT ...) of the model. In other words, one has to sdleetitem that should be covered and
the algorithm will propose a list of successiygerationsto be performed on the model in
order to cover this item. We already start a glatesdign of this algorithm but unfortunately,
we had not enough time to implement it in our appho

Perspective 4Related to the strategy for tuning the generatibtest cases

We are conscious of the variability or subjectiwatyour current strategyri-and-tesy to set
coverageobjectives and optimization parameters when géngreest casesln fact, there are

a lot of parameters to set. As a consequence, aretpl propose a new strategy to help test
engineers to parameterize the generatiortest casesin fact, when testing a software
product, the main purpose of a test engineer idetect the maximum number of bugs in
minimum laps of time. Therefore, we have to identthe correlations between the
optimization algorithm parameters, the functiorverage the execution time of the
generatedest casesand the number and type of detected bugs. Basdlese correlations,
we might definerules and recommendationdo help test engineers parameterizing the
generation oftest casesMoreover, we plan to develgparameterization profileshat test
engineers could adopt according to the test stdgectives. A parameterization profile
consists of a set of predefined optimization patense coverage objectives and time
constraints. To do this, we plan to perforrDesign of ExperimentéoE) on our approach
(Cf. Figure Conclusion.1)We set all the functionatoverageobjectives to 100% with no
time or cost constraints. We decide to genetlegecasesor only one“Configuration” of the
functionality under testRarameter 6= 0, Parameter 7not to be defined). We plan to
generate ongest casdor each combination of the parametdParameter 8= 1). The five
remaining parameters of the optimization algoritfifarameterl, 2, 3, 4 and5) represent the
factors of theDoE. Two factors Parameter 1land3) have two levels (0, 1) and three factors
(Parameter 24 and5) haven levels ( integer). Based on our experience, we sample the
domain of these factors into four leveB9,(60, 90 and 120 Consequently, aomplete DoE
accounts for 256 combinations angaxrtial onefor 16 combinations. We decide to perform
the partialDoE. After generating one or motest casedor each combination, we have to
measure the reached functionalerage And after executing independently eaebt casen

the software module under test, we have to askessumber and type of detected bugs and
the time spent to execute ttest caseOnce all the combinations of tB®E are achieved, the
experiment results must be analyzed and corretidentified. In fact, we expect that the
results of theDoE can help test engineers to configure the tesfgptatin a short time
(around 1hour) instead of leight-hour dayusing atry-and-teststrategy (Cf.Chapter 10 —
Section 3 We start performing th®oE but unfortunately, we had not enough time to
complete it.
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Figure Conclusion.1 — A Design of Experiments to ehtify the correlations between the

parameters of our approach and the detection of bugy

Perspective S5Related to the consistency and reliability of emperiment’s results

Our approach to desigiest casedor software products can be identified tonaasurement
systemwhich has to measure the number of bugs in a aoftwroduct. As a consequence, we
have to check the statistical properties of a bédianeasurement systemepeatability and
reproducibility. We start performing this task but unfortunatelys had not enough time to
complete the experiments.

Reproducibility: In our testing methodologythe two main activities depend on the
operator (e.g. human intervention). The first one is theigie of the requirements
model and the second one is the definition of aoééargets and weights for thiest
case generationTherefore, thereproducibility of our experiment results must be
verified. In fact, two operators must independently model the same carmaker
requirements.Rules and recommendationshave to be defined in order to help
operators configure the generation dest cases Each operator has to generate
automatically a set oN test casedulfilling the predefined targets. After executing
independently each set dfi test casesone has to assess the ratio of bugs
simultaneously detected by the two settest cases

Repeatability: Since our generation dest casess partly based on atochastic
process therepeatabilitymust be verified. Consequently, we propose to igeadwo

or more sets oN test case$rom the same requirements model and with the same
objectives, constraints and optimization paramet@fter executing independently
each set oN test caseone has to assess the ratio of bugs simultanedagtcted by
two or more sets dést cases
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Perspective 6Related to the monitoring of our test case deprgicess
We also plan to monitor the quality of our new itgg{process. To do so, it seems that within
the Design for Six SigmgDFSS framework, theDefing Measure Analyze Design
Optimize andVerify (DMADOV) methodology is the appropriate approach. Thisallbw us
to put the proper focus on the up front designhef testing process. Therefore, we need to
establish the set of measurable, customer-orieattetutes, which can be defined, measured,
analyzed, optimized and verifieDMADOV) in thesoftware testingprocess. These attributes
need to be directly built into the testing processhat it is specifically geared to producing
pre-defined quality limits. This means embeddingcsjic design intent within theoftware
testing algorithm to meet specific and understood, custeia@ng performance metrics.
Below, we identify two types dfritical-to-customermmnetrics concerning theoftware testing
process. We plan to assess the following metriceaxh software project that undergoes
testing:
» Critical-to-Quality (CTQ) metrics:
Y1.The capacity to reduce the number of bugs detdayethe carmaker: the ratio
between the number of bugs detected by carmakdrthartotal number of bugs
Y2.The capacity to reduce the number of bugs deteoyethe end-user the ratio
between the number of bugs detected byehd-usersand the total number of
bugs
» Critical-to-delivery(CTD) metrics:
Y3.The number of versions of each software moduler@alyoct
Y4.The capacity to deliver software free of bugs sitioe first delivery: the ratio
between the number of bugs detected in the fissinig phase and the total number
of bugs
Since we place a high premium on reducing the nurabéugs detected by carmakers and
end-users(Y1 and Y2, one solution could be to increase the structawadl functional
coverage But, experiments reveal that some bugs canndetexted even if our requirements
model andsource codeare covered at 100%. This leads to the realizatiah we need to
refine our functionacoveragemodel. Typically, we can consider tlseverage rateof the
succession of twiransitionsin aFSMelement.

General discussions

In this section, we discuss three major topicsteeldao thedeploymenand thedurability of
ourtesting methodologwithin an industrial context.

Since 2003, carmakers, suppliers and other compdroen the electronics, semiconductor
and software industry have been working on the ldpwment and introduction of an open,
standardized software architecture for the automoindustry AUTOSAR- AUTomotive
Open System ARchitectur©ne of the key features of this consortium srttodularityand
configurability of automotive software products. This leads tadase the reuse of software
components from one project to another. As a carssg, reused software components
would reach a high reliability degree and do nguree to be tested unitarily after each reuse.
Integration and validation test will be of major importance. Nevertheless, that testof
software components will remain necessary sincethk) reused software components
represent around 50% of the total components @fudmmotive software product and 2) these
reused component will evolve continuously (new fiomalities and features) and therefore
need to be tested unitarily.

Presently, many researches and industrial propeds with the automatic generation of the
sourcecodeof a software product. The main purposes of thesiers are to 1) reduce the

Quality of the design of test cases for automatféwvare: design platform and testing process

281



General conclusion R. AWEDIKIAN

software development time and 2) avoid some soéwmaoblems injected by the software
engineer when designing and coding the softwardymto As for the automatic generation of
test casesa formal representation of the software spedibcais required. Most of thisrmal
specification languages found in the literatureratit to be useful for theodeandtest case
generation Therefore, it could be useful to explore the edtic generation asource code
from our functional requirements model of a sofevaroduct. Considering the following two
assumptions 1) the requirements model is validate@l00% and 2) the generation of the
source code is reliable at 100%, the generatadce codeof a software product does not
need to be tested. Unfortunately, it is not theecasd a software product needs always to be
tested (verified and validated).

Although our testing methodologyhas been customized to software embedded in cars
(carmaker requirements formalisms, automotive cairgs ...), the use of this approach in
industries such as aeronautic, railway, medicdctanmunication ... seems beneficial. In
these industries, software products propertiesaaohlitectures are similar to the automotive
industry. However, software requirements formalisersl priorities in testing software
products could be different. For instance, corliyraio automotive industry, in aeronautic
industry, constraints on software project planrang budget are less important than software
quality objectives. This could be explained by taet that avionics software requires being
highly reliable, since failures in this kind of phects may very likely lead to deathly
consequences. One more point is the applicabititgdaptability of outesting methodology
to computers applicationdor instance, testing software products sucthadticrosoft Word
software.
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Appendix A: Verification and Validation static tools

In Johnson Controls, there is a document whichnésftoding rulesand recommendations
for using theC languagé&® in the development of embedded software. Theses and
recommendationare defined and updated by a committee, whose menave appointed by
the Software Engineering Process Gro(EPQ of the company. The committee includes
representatives of all Johnson Controls sites oislwthis document is deployed. An excerpt
of thecoding rulesandrecommendations illustrated inTable A.1

Rule -
number Rule type Rule description
Rule 1 | General Optimization objectives must berdsfibefore coding. These objectives define
priorities between optimization ways (memory...).
Do not optimize unless it is planned.
It has been demonstrated many times that the progeasis spend a considerable
amount of energy to optimize a piece of code thifltalmost never be used.
Before starting to optimize always identify the etxaature of the problem.
Rule 2 | Comments Comments shall be written in USiEim¢anguage.
Rule 3 | Code layout Each variable must be declanea separate line.
Rule 4 | Naming rules Never use names that diffey bpluppercase/lowercase.
Rule 5 | Functions A function must never return anpaito one if it is a local function. Doing so,
would rather be a bug than just a rule break.
Rule 6 | Flow control Give all loops a fixed uppewubd.
Rule 7 | Variables No multiple assignments
a=b=c=d;

Table A.1 — An excerpt of coding rules and recommetations used in Johnson Controls
(Johnson Controls source)

Thestatic analysids performed automatically using a computer tomhsasQAC*, the most
used in automotive industry. The criterion to stbgstatic analysiof asource codes that
all QAC errors andwarningsare either fixed or justified. A screenshot of AC tool is
illustrated inFigure A.1

4 Computer language
> http://www.programmingresearch.com/QAC_MAIN.ht(@lonsulted on November 2008)
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0] HTTPHeaders.h throw STDNS runtime_error("I/0 error"):
0] Mstreamable.h )
[ resource Files fPostData = STDNS string(temp, getContentLength()):
= [ Source Files — delets [1 Eap:
&1 Cgicc.cpp ¥
€+ CgiEnvironment.cpp
2—1 Colis. cpp fCookies.reserve [10) ;
2 ForEntry.cop ||| Copkioal) .
solution Exp... [FF Class Wiew [T Property Ma... |4 5
o el il e —————
@ 9Enors || 1597 Warnings || (i) 0 Messages
[Fie - [ Line [
1, 525 warning QP30S0: This is an implicit user conversion. CgEnvironment.cpp(51,43)
1y 527 warning QP30SO: This is an implicit user conversion. CoEnvironment.cpp(54,48) I
1 526 warning QP4070: This #-else-# chain is not terminated by else. CgEnvironment.cop(54,8)
A rning QP ctor. 59,11) |
4 529 warning QP4263: The class slocates memory in constructor but does not have an overloaded copy assignment operator, CoiEnvironment.cpp(59,11)
s 530 warning QP3000: This is an implicit con b sighed and types. CoEnvironment.cpp(6,42)
4y 531 warning QP3010: This is an implcit conversion from a larger integer to a smalier Integer. CoEnvironment.cpp(60,42)
B

= 7 =
7 Code Defintion Window [ 1Call Srowser | =] Output |5 Find Results 1|

seody List of E"é?tr‘ors and warnings
Figure A.1 — Screenshot of the static analysis toQAC)

The dynamic analysiss performed automatically thanks to a commertial PolySpacé.
The criterion to stop thdynamic analysi®f a source codes that allPolyspaceerrors and
warningsare fixed or justified. A screenshot of tRelyspacdool is illustrated irFigure A.2

H eulySpace Tiews: - ©PalytpaceWPelyS paceFarCu samg ey Dema CRTT_gn_ 07 Dewes © LAST RISUL TS, rtn
B L e bk

| e | e ﬂﬁgl!**ﬁ.‘i’ﬁﬁ-*“"
- f——— O=Efrers andwwarning details

Gt | Prcam ] v o Parte_Riptrewie 1w 13 P anaewn 13

[ - = 53 J* Owur of baundm */
e T M e =

List of errors ¢

and warnings

-m'iﬂﬂ
s DiEma_C

® infassahors

B Poer_scerroet _ Software code to be
analyzed

Ciose_To Zero [ §

Mon_inhinde _Loop [ )

RTE[]

if {10 « T Y <= L00)

Recurson callsr |} 117

Figure A.2 — Screenshot of the dynamic analysis tbPolyspacé

% http://www.mathworks.com/products/polyspace/indaxli{Consulted on November 2008)
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Appendix B: Test description languages

As developed irChapter 2 — Section, 3hree techniques «foftware testingare performed
before a software delivery to the customanit, integrationandvalidation testIn case ofinit
test the execution otest caseds always automated usingtest execution platforngCf.
Appendix ¢. The language used for describitest casedor unit testis the C language
However, the language used to dedigst casegor thevalidation testof a software product
depends on thealidation test execution platformin case of an automatic execution of the
test casesone uses acript languagelt is a Johnson Controls property language vemylar

to the well-knownVisual Basi¢’ language. In case of a manual execution of thecteses,
test casesre written imatural language

1. Unit test language

A standardunit teststructure provides predefin€zl functionsin order to help test engineers
writing test case$or the unit test of a software component:

* Function 1: TSTStartPhase(Title),displayTitle.
0 Thetest caseshould be broken down in phases to facilitate tds results
interpretation.
* Function 2: TSTWaitMs(Delay), wait Delay.
o This function is essential because the time is smhulated when this function
is called. The time is executed at the maximumapee
o Delayshould be in milliseconds.
¢ Function 3: mTSTCheck(Condition), generate an error @onditionis false.
o Conditionis a boolean.
* Function 4: TSTTerminate(), displayFinal resultsof the test
o List the number o€hecked points
o List the number of bugs.
o IndicatesTest NOKor Test OKif an error has been detected or not.

An excerpt oftest caseslesigned for theinit testof a software component is illustrated in
Figure B.1

4" Computer languagehttp://msdn.microsoft.com/en-us/library/sh9ywfdk@@).aspx Consulted on November
2008).
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S test case 11
Inputl 11;
Input? 12;
Input3 14;

TSTWaitM=(5000) ;

nTSTCheck (Outputl
nTSTCheck (Qutput2
nTSTCheck (Output3

) e )
(LA

S test case 12

S 0=l — ezsence, (=210 - diesel
TYPCARE = 0;

Inputl 0:

Input? 12:

Input3 14:

TSTWaitM=({1000) ;

nTSTCheck (Outputl
nTSTCheck (Cutput?
nTSTCheclk (Cutput 3

oo o
e

S5 test case 13

S 0zl - essence. 0xl1l0 - diesel
TYPCARE = 2:

Inputl 0:

Input? 12:

Input3 20;

TSTWaitM=(500);

nTSTCheclk (Cutputl
nTSTCheck (Output2
nTSTCheck (Output3

oo
e

Figure B.1 — An excerpt of test cases designed fibre unit test of a software component

(Johnson Controls source)

2. Integration and Validation test language (when autmating the test case execution)

The test script languagealeveloped in Johnson Controls is mainly basedhenuniversal
Visual Basiclanguage. A set of codinglles andrecommendation be taken into account

when designingest casesising thetest script languaglas been defined. An excerpt of these
rulesandrecommendations illustrated inTable B.1

Rule number

Description

Rule 1

The “include” files must not have the full accesstpindicated.
Example (in C):

#include "../../h/defs.h" is OK

#include "defs.h" is OK

#include <defs.h> is OK

#include "c:\sources/h/defs.h" is NOK

)

Rule 2 The validation procedures titles must be the sasnhactitle of the SW function (functionalit
which is testing
Example: Odometer, Trip meter, Diagnostic, Engipee®l, Vehicle speed, Warnings, etc.
Rule 3 Any Test Step having state NOK, must refer to defeference.
Rule 4 Random values in Test Actions and Preconditionsatellowed in any circumstances. Ple

note: Arbitrary values are allowed. Such test tyg@spart of many test procedures. To dev
more efficient Validation Procedures loop operasirall be used instead linear programmin

ase
tlop
J.

Table B.1 — An excerpt of the validation test scripcoding rules and recommendations

(Johnson Controls source)
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The test script is made of a setstatementrganized in grocessessub-programsand
functionsstructure. The overall structure is describeBigure B.2

// Comments

Scenario “Proba”
Header | ion02.00

Include “Models.mvl”
Includes =

Include “Library.hvl”

Const Int State=0

Declarations ByteArray Values[5] = {0,1,2,3,4}
(Variables, constants, [ Int Counter = 0
Sub-programs and
Processes.)

v

Process Odometer
// Statements
End Process

Process main
l > // The main process

| End Process

Main process

| Single Empty Line

Figure B.2 — Overall structure of a test script prgram (Johnson Controls source)
The grammar of the test script language is develapEigure B.3
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Check <Expression> “The explanation Message”

StartChecking <Expression> “The explanation
Message” OnChangeOf <Var>
StopChecking <Var

Error “The explanation Message”

- Checks and errors

Wait <Duration>
Stops the execution of a process for a

given time
WaitUser “Text of the dialog”, <Varint>,
“TxtButton1”, ..., “TxtButton5”
Opens a dialog box "
P = Waitings
PromptUser "Message" <Var>
EndOfLine
Opens a dialog box
SetEvent <VarEvent>
WaitEvent <VarEvent> [ TimeOut = <Duration> |
MultipleWait
Case <VarEwvi1> ... Events .
Provide communication channels
Case <VarEviN> ... between processes
[Case TimeOut = <Duration> ]
Enf MultipleW ait
Declaration :
Process <Proc> ... End Process
Calling: Processes
Starting : StartProcess <Proc> Piece of code that can be launched
Stopping : StopProcess <Proc> concurrently from the rest of the script. It
Waiting : WaitProcess <Proc> ends when its last instruction is executed.
Declaration:
Function <FuncName> (<argument list
declaration>) as Int ... End Sub .
Calling: Functions
el Like a Sub-Program but it behaves like an

< > (< ist> . .
FuncName> (<argument list>) expression (i.e. it returns a value)

Test script language

Integer
Event
Local variables Integer array

Time counter

Integer
Constants Integer array

Integer
Global variables Event
Shared by all the X-Car components T
through the Com-center Byte array

Usual operators
Expressions System of priorities and parenthesis

Print
Display statements Display

"If" statement
Decision structures —— "Select Case" statement

While ... Wend
LOOp structures Do ... Loop While

InitTimer ( <VarTimer> )

TImers = ReadTimer ( <VarTimer>, <Unit> )

R. AWEDIKIAN

Declaration:

Sub <SubName> (<argument list

declaration>) ... End Sub

Sub-programs
Named piece of code that can be
executed like the language commands

Calling:

Figure B.3 — Grammar of the test script language
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As developed imMAppendix C a computer platformX-Car) has been developed in order to
executetest casedor the integration and validation test of a saftes product. This platform
has atest language interpretetool which allows to perform initial check fdest script
correctness, run automati¢est script handle data automatically by script and derivigpou
for reporting. A screenshot of tiseript language interpreter toas illustrated inFigure B.4

[ Load Play ] Stop ]
Script Script execution

[ Reload

Save ]
Script

% Script Interpreter - 1.5

%%%@%@

Scnpl Repoll

Fw\e D \AW'I1DB\VAL\AW'I1BS\VALIDATIDN\SCHIPT\WAHN\NG _BUZZER\WamingBuzzer.svl

Loading
Syntax checking : OK

[Running ...

TPMS Sensor Model started
IRKE ECAR Model launched

T1p Model launched

Injection Vetlog Model Launched
I—7 Start DiagOnCanProcess

Figure B.4 — Screenshot of the test script interpter (Johnson Controls sources)

Another tool is theest script sequencarhich allows to manage a list tdst scriptsn order

to execute them automatically and consecutivelg specified order. Each script in the list
has a status and it can be activated or deactiv@egeral action can be executed before each
script (reset the software, reload the softwanenda an initialization script). A screenshot of
thetest script sequencer towl illustrated inFigure B.5

Scriptl Script2 ] Script3 J

X Yalid.bric * - bric

| -1o] x|
File Exec Setup 7
| DS || [2]]82] Appicaton: [CPior%2\e0EV{BULDNERE Y[ 4| T Auto check Syntax
oot D [C\Projets\AZ10Z5WAL - t'; By X /@ X
g] % (RoolDi) _Jﬂ%_ Statis EI
=@ Pati @ ValidDdomfeter! ¥ Execution finished successfully
| Validdometer v @ Vaiid0darieter2/vl 3 |Checi: aiice
| ValidOdometer2. svl > @ ValdT emperaire.svl ASpteian |E|
@) ValidT achometer] sl 2 ‘J:::;:mmg;zﬂ
«| |2
| ValidT achometerZ svl @ v v Evecution finished successfully
| ValidT achometer3.svl @ ValidFuelConsumplion svl

= (¥ Pant2
! ValidFuelConsumption. svl _I
3yl ;[

Filter :

Globel | Syria | VahdOdomelert. svi | Viald0 dometer2.svi | VakdTemperature:svl | VakdTahomeer3:si|

Scupt Report Execution

Flla C \Pm[els\AZT UES\VAL\PalH WalidT achometer3.svl
status

Loading...
Syntax checking : OK

Running ..

Model Activation

Column Lock Model - Activated

Card Reader Model (Script 1) - Disactivated =l
Card Reader Model (Script 2) - Activated

Injection Model - Activated

Initializing Dashboard... Done ;l

[Duration : ©Oh O7m 14, 20 Total : Oh07m 14,200

Figure B.5 — Screenshot of the test script sequemnddohnson Controls source)
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Appendix C: Test execution platforms
1. Unit test execution platform

During theunit testof a software component, the desigriegt casesre executed on the
component automatically via thmit test execution platfornin fact, all the dependencies and
connections between the componentssarailated on computen order to isolate the tested
component from the project. Test results are aedlyp decide iiComponent Development
activities have to be restarted, in case of faiésds. Thecode coveragés recorded and used
as criteria to stop the design t#st casesThe abstract model of thenit test execution
platformis illustrated inFigure C.1

OutputF(A, 2)
Software component

under test Test Cases
(internal state z)

Input A

Figure C.1 — Abstract model of the unit test execudn platform (Johnson Controls
source)

The unit testuses the inputs and outputs of the software coemtonnder testTest cases
should know expected outpktwhen inputA is applied. The presently produced output has to
be compared with the expectation. If they do notcimaan error should be generated in the
test report.

2. Integration and Validation test execution platform

During theintegration and validation testsf a software product, the test execution platform
could be manual or automatic. For each project,agars (in close cooperation with the
carmaker) decide to automate or not the executidheovalidation test casedn case of an
automatic executiorigst casesre designed in script languaggCf. Appendix B. In case of

a manual executioniest casesre written imnatural language The manual execution aims to
perform operationsmanually on the software product via a set of dwés and to check
visually (by an engineer) the behavior of the outpignals (lamps, actuators ...). In the
following, we develop the automatiest execution platform

The Software Validation PlafSVB supports the definition of the validatidest execution
platform (Cf. Chapter 2 — Section 5.D:1the necessary equipments and the common and
reused validation components. The functional modl@ validationtest execution platforns
shown inFigure C.2
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Variable power supply

Y

______________

Device under test

Real device on CAN
BUS(*)

A

(Buttons,

Directdevice inputs

Analogue

and Digital signals)

Real device on CAN
BUS

Simulation and monitoring
PC

1.

CAN(¥)

Network

BUS load or monitoring
PC

(*) Controller Area Network (or CAN) is the latest communication system within the
automotive world. At its simplest level, it can be thought of as a means of linking all of
the electronic systems within a car together to allow them to communicate with each
other  (http://www.semiconductors.bosch.de/en/20/can/index.asp  Consulted on

November 2008)

Figure C.2 — Functional model of a validation tesexecution platform (Johnson Controls

source)

An excerpt of a list of hardware and software taelguired for the execution eglidation
test cass is illustrated inrable C.1andC.2

ID Tool Type Name Mandatory Comment
[HW_T1] | Power supply Constant/variablY/N Information on the tool configuration
e/programmable Specific inputs, outputs and features requi
Work instructions for the tool
[HW_T2] |<Measuring Oscilloscope YIN
instrumentation
>

Table C.1 — An excerpt from a hardware tool list rguired for the execution of validation

test cases
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ID Tool Type Name Mandatory Comments
[SW_T1] Report generatof YIN Information for the tool configuration
to Specific input, output and feature required
Work instruction for the tool
Reporter
If related with any HW, mention it.
If standard guideline/work instruction for the
tool is available, put it as reference document
[SW_T2] |[|Testtool 1 R-car YIN
Intermat

Table C.2 — An excerpt from a software tool list rquired for the execution of validation
test cases

Finally, an excerpt of a list of reused compondatghe execution ovalidation test cases
illustrated inTable C.3

ID Tool Type Name Mandatory Comment

[SW_V1] |Source code Library for YIN Brief description

programming

If related with any HW or SW, mention it.
power supply

Path to the original Configuration management
base

Work instruction for the tool

[SW_V2] |Test script Test cases for | Y/N
<Functionality
i>

Table C.3 — An excerpt from a reused components tisequired for the execution of
validation test cases

The aim of the softwarealidation tests to test the functional behavior of a softwaredoct

in its real environment. Therefore, we need to &weuthis environment (hardware, other
electronic devices, network ...). For that purposéndon Controls has developed two types
of test execution platform

E-Car (Emulated Car Cf. Figure C.3 is asimulation on computeof the entire electronic
automotive network with all the electronic devic€his platform simulates also the hardware
on which the software product under test must perfdt composes network frames on
specified periods, fills them with the appropriatgnals and sends them on a virtual network
bus. It also simulates pressing of buttons andiceaof sensors in the car.
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Device
undertest

éomputer Device \ ‘ )
undertest ' -
A

Hardware '

K Network j

Figure C.3 — E-Car environment (Johnson Controls sarce)

R-Car(Real Car— Cf.Figure C.4 is a hardware - software interface used wherh#éndware
of the software product under test is real phydiaajet. It transforms the parametric signals
into real electric signals and sends them on teeiBpd channels in the appropriate format.

Device
undertest

/ \ Device
CompUter undertest
¢y ';

K Network /

Figure C.4 — R-Car environment (Johnson Controls sarce)

X-Car is the base framework which allows the runningEsCar or R-Car plus some
additional programs to support thalidation executiorfCf. Figure C.5:

* Network viewerThis tool allows to trace or spy different typdglata’s exchange via
the network.

* Test language interpretert allows to run automatiomest scriptsand to perform
initial check for script correctness. It handlesadautomatically by script and derives
output for reporting.

* Bench tool: This tool simulates the inputs and outputs of diezice under test. It
shows data output state, handles data input stdtsleows data access status.

« Display simulator: It shows output state by switching between two qgams,
simulate pointer indicator on a dashboard and siteldot matrix display.

Quality of the design of test cases for automatoféwvare: design platform and testing process

306



Appendix C: Test execution platforms R. AWEDIKIAN

/ E-Car or R-Car

Device
under test Communication Center

I ! ! Scheduler
1L

|| |
- J

Network | Testlanguage] ) Display
| viewer | | interpreter Bench Tool simulator

I [CTTTTTECEE—— S

i RBRES

X-Car
Figure C.5 — X-Car framework (Johnson Controls souce)

The core ofX-Car is theCommunication Centerhere all the signals present in the vehicle
network are stored. Every program that attempt ealifg or to check the value of a signal
will go in there. Another important component i€ ®chedulerwhich manages in time the
platform.

Integration testmay be executed di-Car, however,validation testmay be executed either
on E-Car or onR-Car. When a bug is detected &aCar, it must be confirmed oR-Car. In
fact, E-Car is a simulation on computer while tReCar is the real physical environment and
therefore the behavior of the real hardware cafedifom the behavior of the simulation
hardware.
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Appendix D: Commercial test case design tools (Suey done in 2006)

Tool name Company Comp_any Description Input Output F_ree Appllcat_lon
name location trial domain
Graphical test ﬁanslst):ste?\e tei?af;sezres
CONFORMIQ Conformig Test Generator is a solution for] model which rovided by Conformi Automotive,
TEST VERYSOFT | Germany | dynamic model-based test generation anges extended ° y . 9 ves Aircratft,
GENERATOR automatic test execution UML Test Generator into a Telecommunication
_—= format understood by the
statecharts )
test execution platform
Test cases are generafed
. in XML/HTML format o
MaTelLo generates, according to several for manual execution or Telecommunication,
MATELO ALL4ATEC France | optimization algorithms, test cases from Bsage model in TTCN-3 and NO Automotive,
usage model TestStand 20 fo Railway, Aerospace
automatic execution
Pro-Test is a Windows based stand-alope
tool implementing HTT approach. The gqal
of HTT is to ensure all pairs test cas Test cases can he Telecommunication,
DIGITAL . o oftware , : :
PRO- coverage with a minimal number of tgs exported in a variety of Railway, Aerospace
COMPUTA USA input/level : . YES
TEST/PRAXIS TIONS. INC cases listin formats including XML, Defense, PC
' Praxis is a new service-based HTT solutign.> "9 Excel, and HTML Software editor
Praxis offers a custom application of HTT |to
problem based upon specific needs
REACTIVE Reactisautomates the generation of test da; imulink and Test Cases are saved i Automotive,
REACTIS SYSTEMS, USA f Ce 9 ateflow . ‘o 4Es Telecommunication,
rom Simulink and Stateflow models special format (“.rst”) .
INC model Aerospace, Medical
Rhapsody TestConductor is a UML
compliant, scenario-based test generation for
RHAPSODY real-time embedded applications. With
IESTCONDY | - fest o deaign against s requrements |- Telecommrication
%A'\FLIJETS?F LCI;(E(I;((/;'II'EL USA Rhapsody Automatic Test Generatoris a UML diagram | UML diagram NO Aerospace, Medical
o e UML model-based testing solution. ATG Defense
GENERATOR allows engineers to define and test
individual components for specific purposes
such as state and transition coverage

... To be continued
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Tool name Company Comp_any Description Input Output F_ree Appllcat_|on
name location trial domain
T-VEC RAVE:

T-VEC RAVE solution is a method andT-VEC Test cases can he

integrated toolset for requirement-bage AVE: I transformed in  test
T-VEC defect prevention and automated testing/ C .Tabular drivers in any
RAVE/TESTE System requirements are mode_led and_ o programm_ing language Automotiye, _
Rfor T-VEC USA analyzed with RAVE before design a1dI'-VEC or test scripts for any test YES Telecommunication,
. coding ] execution tool — | Aerospace, Medical
Simulink/Statefl T-VEC Tester analyzes Simulink anj-srfaStel.r'k d T-VEC Tester: Client-Server, Web
ow Stateflow models for errors, and generatgs'tmtuflln and| Test scripts or drivers are

comprehensive test cases for verifying hneq;I deélow automatically generated

models and their implementations

for executing tests i
Matlab simulator T

Table D.1 — Commercial test case design tools (Segvdone in 2006)
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Appendix E: A second-level typology of software prolems

First-level Second-level Second-level : description
Requirements incorrect The requirement or a part of it is incorrect
Requirements logic The requirement is illogical or unreasonable
Requirements completeness The requirement as specified is either ambiguawsmmplete, or overly specified
Specification , - Specification bugs having to do with verifying ttre requirement was correctly
ugdate Requirements verifiability of incorrectly implemented

Requirements presentation

Bugs in the presentation or documentation of reguients. The requirements ar
presumed to be correct, but the form in which #u@ypresented is not.

Requirements changes

Requirements, whether or not correct, have beengdd between the time
programming started and testing ended

Design update

... To be continued

Design correctness

Having to do with the correctness of the design

Design completeness, Feature

Having to do with the completeness with which festare designed

Design completeness, Requireme

ntlaving to do with the completeness of requirementtsn features

Domains

Processing requirements or feature depends on dic@tion of input values. A
domain bug exists if the wrong processing is exettdr the selected input-valug
combination

D

User messages and diagnostics

User prompt or printout or other form of communioatis incorrect. Processing
is assumed to be correct: e.g., a false warningngrmessage

Exception conditions mishandled

Exception conditions such as failure modes, wheduire special handling, are
not correctly handled or the wrong exception-hamglimechanisms are used

Diagnostic conditions mishandled

Diagnostic conditions, which require special handli are not correctly handled
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Design update

or the wrong diagnostic-handling mechanisms areluse

Software architecture

Architectural problems

Performance

Bugs related to the throughput-delay behavior dfveare under the assumption
that all other aspects are correct

Partitions and overlays

Memory or virtual memory is incorrectly partitioneaverlay to wrong area,
overlay or partition conflicts

Environment

Wrong operating system version, or other host emvirent problem

External and other third-party
software

Bugs in the interface to third-party software ohet software developed
externally. Due to a misunderstanding or wrongtiptetation of the features and
operation of the third-party software; or due tmptems in the third-party
software which the vendor does not correct

Implementation
update

... To be continued

Data definition, structure,
declaration

Bugs in the definition, structure and initializatio of data: e.g., Type,
Dimension, Initial values, default values, Duplicain, Scope (local, global),
Static/dynamic resources

Data access and handling

Having to do with access and manipulation of dathjects that are presumed tg
be correctly defined: e.g. Type, Dimension, Duplice, Resources, Access

Control flow and sequencing

Bugs specifically related to the control flow ofdtprogram or the order and
extent to which things are done, as distinct fronmat is done

Processing

Bugs related to processing under the assumptiontttie control flow is correct

Coding and typographical

Bugs which can be clearly attributed to simple codiand typographical bugs. If
a programmer believed that the correct variable WABSCD" instead of
"ABCE" but she/he changed D to E because of a typéimg bug, then it
belongs to this correction type

Standards violation

Bugs having to do with violating or misunderstandjrthe applicable
programming standards and conventions (MISRA, JolamsControls rules ...).

Quality of the design of test cases for automatdfevare: design platform and testing process

312



Appendix E: A second-level typology of software prolems

R. AWEDIKIAN

Implementation
update

The software is assumed to work properly

Documentation

Bugs in the documentation associated with the cadehe content of comments
contained in the code

Integration
update

Internal interfaces

Bugs related to the interfaces between communigamponents with the
program under test. The components are assumeavio frassed their compone
level tests. In this context, direct or indirecrisfer of data or control informatio
via a memory object such as tables, dynamicallycalied resources, or files,
constitute an internal interface (e. g. Componenbtation, Interface parameter
Component invocation return, Invocation in wrongqa, Duplicate invocation,

)

External interfaces and timing

Having to do with external interfaces, such asd&¥ices and/or drivers, or othe
software not operating under the same control stmec(e. g. Interrupts, Devices
and drivers, 1/O timing)

Manufacturing
update

Manufacturing bugs

Bugs related to the manufacturing process

Test design bugs

Bugs in the design of tests

Test execution bugs

Bugs in the execution of tests

Test Case update

Test documentation

Documentation of test case or verification criteigancorrect or misleading

Test case completeness

Cases required to achieve specified coverage @itaissing

Update none

None

None of the proposed types of problem is applicable

Table E.1 — A second-level typology of software pbbems
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