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Résumé 

Dans le contexte de l’annotation de documents filmiques 

assistée par ordinateur, nous posons le problème de 

l’analyse filmique automatique, et identifions 3 problèmes 

de base : classification de plans, regroupement temporel 

et pilotage d’algorithmes d’extraction. Ces trois proces-

sus mettent en œuvre des connaissances provenant de 

plusieurs domaines d’expertise : documentalistes, spécia-

listes d’analyse du signal et professionnels de 

l’audiovisuel. 

Nous proposons d’utiliser le formalisme des logiques de 

descriptions comme paradigme principal de représenta-

tion pour représenter ces divers types de connaissances 

dans un environnement intégré. Nous proposons dans ce 

cadre un mécanisme de regroupement temporel fondé sur 

une restriction du formalisme de Allen qui permet de 

limiter les problèmes de complexité. 

Mots Clef 

Logiques de descriptions, indexation, raisonnement tem-
porel, audiovisuel 

Introduction 

La numérisation systématique des documents filmiques 
ainsi que la production de documents accessibles au grand 
public ont connu ces dernières années une croissance 
exponentielle [1]. Le problème de l’indexation de grands 
volumes de documents filmiques devient ainsi une préoc-
cupation importante à la fois des industriels de 
l’audiovisuel et des centres documentaires comme l’INA 
(Institut National de l’Audiovisuel). 
Ce problème concerne des chercheurs de domaines très 
divers : bases de données, analyse d’image, traitement du 
signal sonore, recherche d’information, etc. Un schéma 
général d’indexation peut être vu comme étant composé 
de plusieurs étapes : analyse automatique (extraction de 
primitives et segmentation spatio-temporelle de bas 
niveau), annotation et découpage manuels, stockage en 
base de données. Les techniques de segmentation tempo-

relle actuellement disponibles ne permettent pas  
d’extraire des unités temporelles suffisamment longues et 
pertinentes pour qu’il soit concevable de les annoter 
manuellement. Nous proposons une méthode de regrou-
pement des unités temporelles de bas niveau, extraites 
automatiquement, en unités temporelles de plus haut 
niveau. Le but de cette méthode est d’offrir au documen-
taliste chargé de l’annotation un découpage du document 
en unités pertinentes – appelées séquences –, dont la co-
hésion permette qu’elles soient annotées comme un tout. 
Cette extraction nécessite une ingénierie des connais-
sances adaptée qui permette à des experts des domaines 
concernés (documentalistes, professionnels de 
l’audiovisuel et experts en analyse du signal) de spécifier 
simplement leurs connaissances du domaine. Cette étude 
se place dans le contexte du projet européen DIVAN 
(Distributed Video Archives Network) auquel participent 
l’INA, l’IRISA, la Rai, etc. 
Nous allons décrire précisément le problème de 
l’indexation dans ce contexte dans la première section, en 
identifiant trois problèmes de base. Nous identifions 
ensuite les logiques de descriptions comme un « bon » 
formalisme pour représenter le contenu des documents 
filmiques (radio, télévision) ainsi que les requêtes portant 
sur ces documents. Dans cet article, nous identifions le 
problème de l’analyse des documents à partir 
d’observations extraites par des automates. Nous propo-
sons d’enrichir les logiques de descriptions avec un sys-
tème de raisonnement temporel. Nous faisons le choix 
d’une représentation par intervalles permettant de modéli-
ser des actions simultanées (par exemple événements 
visuels et sonores) et d’assurer le regroupement d’unités 
temporelles avec une complexité raisonnable. Nous consi-
dérons pour le moment que toutes les actions sont celles 
du monteur ou du réalisateur. Dans l’avenir, nous 
espérons modéliser également les personnages et leurs 
actions, ce qui pose des problèmes difficiles, à peine 
ébauchés dans le domaine de la vision par ordinateur (voir 
tout de même [2] et [3]). 
Enfin, après une courte discussion, nous concluons sur 
l’état courant de notre implémentation et sur des perspec-
tives d’extension. 



1. Analyse filmique 

L’analyse, dans le sens dans lequel nous l’entendons, 
consiste à reconstituer la structure temporelle d’un 
document à partir d’informations « primitives » obtenues 
le plus souvent par des algorithmes d’analyse du signal. 
Certaines de ces informations primitives peuvent être 
obtenues a priori, de manière systématique, pour tous les 
documents (découpage en plan, histogrammes de 
couleurs, etc.). D’autres informations nécessitent la mise 
en œuvre d’algorithmes plus complexes et ne peuvent être 
obtenues que sur demande explicite, assorties 
d’informations contextuelles nécessaires au bon fonction-
nement de l’algorithme (reconnaissance de caractères ou 
de visages dans une image). 
 

film

séquence 1 séquence 2 (...)

plan 1 plan 2 plan 3 plan 4 plan 5 plan 6
 

figure 1 : découpage d'un film 

Dans la conception traditionnelle du film, représentée 
aujourd’hui par le cinéma hollywoodien, la structure tem-
porelle du film se présente comme un arbre où les plans, 
unités élémentaires, sont regroupés en séquences [4] (voir 
figure 1). Cette analyse pose trois problèmes de fond : 1) 
la représentation des primitives d’extraction et leur orga-
nisation dans une taxonomie de plans, 2) le regroupement 
automatisé de ces plans en séquences, et 3) le pilotage 
explicite d’algorithmes complémentaires d’extraction 
permettant de raffiner l’analyse. Ce schéma général est 
représenté figure 2. 
 

Extraction de
primitives

Classification

Regroupement
temporel

Pilotage
d’algorithmes

 

figure 2 : schéma général d’analyse 

Après avoir présenté l’état actuel de la modélisation des 
documents filmiques à l’INA, nous allons présenter dans 
les sections suivantes chacun de ces problèmes. 

1.1 Modèles de documents filmiques 
Certains éléments de base du langage filmique sont repré-
sentés sous forme de taxonomie explicite ; d’autre part, il 
existe une taxonomie implicite des types de documents, 
qui sont représentés sous la forme d’un ensemble de 
« fiches collection ». 

1.1.1 Taxonomie des événements filmiques 

Les connaissances générales du domaine pouvant être 
formalisées recouvrent les éléments propres à la 
production : prise de vue et montage essentiellement. Les 
différents cadrages, par exemple – gros plan, plan moyen, 

plan serré, etc. – peuvent être décrits par une hiérarchie. 
De même, les mouvements de caméra traditionnels se 
prêtent au même type de description : caméra fixe (sans 
mouvement), les divers types de zooms (zoom avant, 
zoom arrière), de travellings (latéral, avant, arrière), etc. 
Une taxonomie des événements filmiques (TEF) existe ; il 
est possible d’en donner une représentation formelle 
partielle. La figure 3 donne une vision simplifiée des 
mouvements de caméra classiques. 
Un des éléments importants du domaine est le plan. Le 
plan est généralement défini comme la plus petite unité 
syntaxique du film, et ne comporte ni coupure de caméra 
ni raccord [5], bien qu’on puisse le subdiviser en unités 
plus petites, surtout lorsque des mouvements de caméra 
complexes le composent. Les propriétés communément 
admises du plan sont la durée (plan long ou plan court), le 
type de transition avec le plan qui le précède et celui qui 
le suit : transition de type cut (coupe franche) ou de type 
graduel (fondus, volets, etc.), le nombre de personnages, 
le cadrage des personnages (gros plan, plan moyen, etc.). 
Une formalisation des propriétés générales d’un plan a été 
proposée  dans [5]. 
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figure 3 : mouvements de caméra dans la TEF 

1.1.2 Taxonomie des types de documents 

Des plans consécutifs peuvent être regroupés en 
séquences, qui constituent des unités sémantiques. Les 



émissions de télévision suivent très souvent un canevas 
relativement précis. C’est le cas pour les journaux télé-
visés, qui ont été jusqu’ici les plus étudiés, mais c’est 
également le cas de beaucoup d’autres émissions : maga-
zines de reportages, de variétés, feuilletons ou sit-coms. 
Des modèles d’émission peuvent alors être établis. C’est 
le cas à l’INA, où de tels modèles, appelés « fiches 
collection », servent à indexer manuellement un grand 
nombre d’émissions. Une fiche collection est donnée à 
titre d’exemple par la figure 4. 
 

Projection Privée 

Produit par S. Bleckmans 

Réalisé par E. David 
Présenté par L. Weil 
 
Magazine à rubriques hebdomadaire consacré à l’actualité 
cinématographique (...). 
 
Chaîne de 1ère diffusion Métropole Télévision 
Date de début 17/10/89 
(...) 
 
Genre : cinéma - Forme : magazine - Descripteurs : 
cinéma, film (...) 
 
Résumé 
Principe de l’émission : Ce magazine, présenté par L. Weil, 
est composé de présentation de sujets promotionnels sur les 
films qui vont sortir (...) 
Déroulement chronologique : Durant le premier plateau, 
xxx présente l’émission (sommaire en images). Il lance 
ensuite le premier sujet (...) 
 
Dispositifs 
Générique : début sur fond noir, incrustation du titre 
Dispositifs plateau : monocaméra, le siège du présentateur 
est (...) 
Construction générale : plans généraux du plateau, plans 
taille du présentateur, passage d’un plan à l’autre par zoom 
avant 
Construction des éléments : Sur les premières images, des 
sujets, le titre est incrusté sur un large bandeau noir (...) 
 
etc. 

figure 4 : exemple de fiche collection 

 (source : Inathèque de France) 

1.2 Agrégation temporelle de plans en 

séquences 
Annoter un document au niveau du plan n’est pas réaliste : 
les plans sont en général courts, et un document peut 
comporter plusieurs centaines, voire plusieurs milliers de 
plans. Le regroupement automatique de plans en 
séquences constitue donc un axe de recherche important 
qui permettrait de faciliter l’indexation et l’annotation 
d’un plus grand nombre de documents. 
Comme nous l’avons vu dans la section précédente, 
certaines caractéristiques d’un document filmique, film ou 
vidéo, peuvent être extraites du document de manière 
algorithmique. C’est le cas par exemple des mouvements 
de caméra (plans fixes, zooms, travellings), des transitions 
de plan (cuts, fondus) [6], de la présence de musique, etc. 

Cependant, ces caractéristiques se trouvent d’une part être 
en nombre limité et d’autre part présentent généralement 
un contenu sémantique faible. Il se pose alors le problème 
de les combiner entre elles afin de faire apparaître des 
entités de plus haut niveau, en rapport plus étroit avec 
l’idée que l’on peut se faire des éléments constitutifs du 
document. Le principe d’analyse dont nous avons besoin 
consiste à construire ces entités pertinentes en assemblant 
des caractéristiques primitives. L’analyse doit donc être 
générative. 

1.2.1 Règles structurelles générales 

Certaines règles de composition peuvent s’appliquer à un 
grand nombre de genres différents de films ou de 
documents vidéo. Il s’agit essentiellement de règles de 
montage qui, schématiquement, expriment la manière 
d’assembler les plans entre eux afin de ne pas rompre la 
continuité du discours : continuité des positions, des 
directions, des regards, des éclairages, etc. Le montage est 
parfois considéré comme l’essence même de l’art cinéma-
tographique [4]. 
L’étude menée dans [7] formalise quelques règles de 
montage ne nécessitant pas de connaissances préalables 
sur le document traité : les objets intervenants dans les 
prémisses des règles sont directement observables dans le 
flux vidéo et elles s’appliquent de manière générale pour 
tout type de document. Ces règles sont essentiellement 
fondées sur l’observation de l’alternance de différents 
types de transitions de plan (« cuts » et transitions 
graduelles), sur la similarité des plans entre eux, avec des 
mesures simples sur les histogrammes de couleurs, sur la 
présence ou l’absence de musique, sur la durée relative 
des plans, etc. La règle illustrée par la figure 5 signifie que 
lorsqu’on se trouve en présence d’au moins quatre plans 
séparés par des « cuts » suivis d’une transition graduelle, 
elle-même suivie à nouveau de quatre plans séparé par des 
« cuts », alors on peut estimer qu’il y a une rupture de 
séquence au moment de la transition graduelle. 

 

figure 5 : changement de séquence en fonction des 

transitions de plan, extrait de [7] 

1.2.2 Connaissances spécifiques 

Cependant, ces règles générales ne peuvent rendre compte 
de la diversité de tous les types de documents. Selon le 
genre d’émission (journaux télévisés, magazines de 
variété), la structure temporelle d’un document filmique 
peut être plus ou moins complexe et précise. Des modèles 
de documents spécifiques ont déjà été étudiés, concernant 
à notre connaissance principalement la structure du 
journal télévisé [8]. 
Dans les cas les plus simples, cette structure temporelle 
peut se formaliser comme une expression régulière. Ainsi, 
beaucoup de magazines alternent scènes de plateaux et 
scènes de reportage. La structure de ce type de documents 
peut alors se mettre sous la forme : 



générique_début  

(plateau reportage)*  

générique_fin. 

De la même manière, la structure de certains documents 
peut être décrite par une grammaire formelle, ou sous la 
forme d’une DTD SGML/HyTime, comme c’est le cas 
dans [9]. Il nous semble cependant que ces approches, si 
elles sont parfaitement justifiées pour un type particulier 
de documents, comme le journal télévisé, ne peuvent 
répondre au cas plus général de la description de diffé-
rents types de documents. 
Ces modèles de documents ne doivent pas seulement 
indiquer la structure temporelle respectée par les émis-
sions appartenant à une collection donnée, ils doivent 
également indiquer les élément non temporels que l’on 
retrouve généralement d’une émission sur l’autre. Il peut 
s’agir du ou des présentateurs, d’éléments de décor, du 
logo de l’émission, des génériques, des jingles, etc. Dans 
la perspective d’un modèle automatisé, des descriptions 
numériques ou des exemples sont précieux, qui permettent 
une détection algorithmique des éléments récurrents : 
modèles phonétiques des voix des principaux interve-
nants, images numérisées des logos, etc. 
Le modèle d’un document étant connu a priori à partir de 
simples données de catalogage, le problème se pose alors 
de contraindre les algorithmes d’analyse de bas niveau, en 
fournissant à ces algorithmes des données dépendantes du 
contexte. 

1.3 Pilotage d’algorithmes 
Nous décrirons par un exemple le type de situation dans 
lequel il est nécessaire de piloter des algorithmes 
d’extraction de primitives afin de raffiner l’analyse. 
Considérons un magazine de cinéma. Un tel magazine est 
composé principalement d’une alternance de scènes de 
studio et de séquences d’extraits d’un film à l’affiche. Les 
scènes de studio peuvent être isolées des séquences 
d’extraits en utilisant diverses méthodes : les scènes de 
reportages sont par exemple encadrées en haut et en bas 
par des bandes noires caractéristiques, ce qui est facile à 
détecter pour un algorithme d’analyse d’image. D’autre 
part, le modèle de document précise qu’au cours des cinq 
premières secondes des séquences d’extraits apparaît un 
panneau noir à gauche de l’écran où se trouve inscrit le 
titre du film dont il est question. 
Il est dans ce cas possible dans un premier temps d’isoler 
les séquences d’extraits des scènes de studio par détection 
des bandes noires, et dans un second temps de n’exécuter 
un algorithme d’extraction de texte que sur une partie 
réduite du document. 

2. Logiques de descriptions : un formalisme 

pour l’analyse 

Le problème de l’analyse filmique étant posé dans son 
ensemble, se pose alors celui du cadre technologique dans 
lequel l’exprimer en vue d’une ingénierie des connais-
sances outillée et efficace. Le formalisme des logiques de 
descriptions est particulièrement bien adapté à la repré-
sentation et l’exploitation de taxonomies naturelles, et 
nous avons déjà proposé dans [10] de le prendre comme 
outil conceptuel de base pour nos travaux. Les logiques de 

descriptions sont des langages de représentation des 
connaissances bien étudiés et formalisés [11]. Cependant, 
s’il est naturel d’utiliser les logiques de descriptions 
comme langage de représentation pour les objets du 
domaine filmique, il paraît plus malaisé de s’en servir 
pour exprimer des connaissances à forte composante 
temporelle. Nous verrons plus loin que les possibilités de 
règles de production en chaînage avant qu’offre CLASSIC 
[12], système de logique de descriptions que nous avons 
utilisé pour l’implémentation, permet de résoudre un 
certain nombre de problèmes.  

2.1.1 Classification et logiques de descriptions 

Les logiques de descriptions forment un ensemble de 
langages de représentation de connaissances ; elles 
permettent de représenter des connaissances de manière 
structurée en séparant les définitions de concept (base 
terminologique ou TBox) des descriptions d’individus 
(base des assertions ou ABox). Un concept représente un 
un ensemble d’individus. Les rôles représentent des 
relations binaires. Descriptions de concepts et rôles sont 
organisés en hiérarchies par la relation de subsomption : le 
concept C subsume le concept D si les instances de D sont 
nécessairement instances de C. La classification est 
l’opération permettant d’attribuer une place à un concept 
(ou éventuellement à un rôle) dans la hiérarchie des 
concepts (ou des rôles). On trouvera dans [11] une intro-
duction aux logiques de descriptions, un ouvrage de réfé-
rence restant [13]. 
Nous proposons de poursuivre la piste indiquée par [7] en 
nous plaçant dans le cadre des logiques de descriptions. 
Nous posons ici le problème de l’agrégation temporelle 
décrit dans la section 1.2 dans le contexte des logiques de 
descriptions. Nous pensons d’autre part que dans le cadre 
de l’analyse de documents filmiques, seuls un nombre très 
restreint de règles peuvent s’appliquer en toute généralité, 
et qu’il convient lorsque cela est possible de formaliser 
des modèles de documents représentant un type particulier 
de documents (journal télévisé, magazine, par exemple). 

2.2 Représentation de connaissances 
La taxonomie TEF se représente aisément à l’aide du 
formalisme des logiques de descriptions. Comme il a été 
dit plus haut, certaines connaissances du domaine filmique 
peuvent être assez naturellement exprimées sous forme de 
hiérarchies : types de cadrage, mouvements de caméra, 
types de transition de plans, types d’éclairage 
(intérieur/extérieur, par exemple), nombre de person-
nages, etc. Tous ces éléments s’expriment de manière 
naturelle dans un langage de description comme 
CLASSIC. 
Il est important de faire la distinction entre les aspects 
temporels d’un plan (ses dates de début et de fin) et sa 
description non temporelle, c’est-à-dire ses propriétés (ses 
rôles, pour reprendre la terminologie des logiques de 
descriptions).  
Par exemple, conformément à la taxonomie TEF, on peut 
représenter le fait qu’un plan à 3 personnages dont le 
principal mouvement de caméra est un travelling avant 
(track-in), défini par l’expression CLASSIC suivante : 



(define-concept ‘SHOT-1 ‘(and 

 (exactly 1 camera-motion) 

 (fills camera-motion track-in) 

 (exactly 1 character-num) 

 (fills character-num 1))) 

est plus spécifique que le concept de plan ayant entre 1 et 
5 personnages et dont le principal mouvement de caméra 
est un travelling, défini par : 

(define-concept ‘SHOT-2 ‘(and 

 (exactly 1 camera-motion) 

 (fills camera-motion tranck) 

 (exactly 1 character-num) 

 (all character-num (min 1) (max 5))) 

On obtient ainsi une opérationalisation de la taxonomie 
TEF, qui forme une ontologie explicite des types de plans. 

2.3 Raisonnement temporel 
Afin d’exprimer les règles reflétant la structure des 
documents, il convient de se doter d’un modèle temporel 
permettant d’exprimer des contraintes sur les occurrences 
d’événements. Il sera tout d’abord question du choix de ce 
modèle, puis nous nous intéresserons à un schéma de 
règles de regroupement temporel. 

2.3.1 Un modèle temporel 

Le choix du modèle de raisonnement temporel utilisé est 
important. Il s’agit en général d’un compromis entre 
expressivité et efficacité.  

2.3.1.1 Logique de Allen restreinte 

Pour exprimer la structure général d’un document 
filmique, il faut pouvoir exprimer des contraintes sur les 
occurrences d’événements temporels : un plan en intérieur 
suivi d’un plan en extérieur, une musique commençant 
pendant le dernier plan d’une séquence, etc.  
Dans le domaine de l’analyse de la vidéo, [14] propose 
une théorie – PNF calculus1 –, fondé sur la logique tem-
porelle d’intervalles de Allen [15] et assortie d’un algo-
rithme en temps polynomial pour la reconnaissance de 
structures temporelles. S’il est à noter que c’est l’une des 
rares tentatives d’exploiter le raisonnement temporel pour 
la représentation de la vidéo, il faut également remarquer 
que le pouvoir d’expression de cette théorie est trop 
limité : l’exigence d’un algorithme rapide (en O(n2)) 
conduit les auteurs à regrouper les relations temporelles 
dans trois classes correspondant aux notions intuitives de 
passé, présent et future, ce qui constitue une perte 
d’information importante. 
Nous proposons d’utiliser l’algèbre d’intervalles proposée 
par [16] – Pointizable Interval Algebra –, qui consiste à 
transformer les contraintes sur des disjonctions de 
relations de Allen (figure 6) entre intervalles temporels en 
conjonctions de contraintes sur les bornes de ces inter-
valles. Seul un sous-ensemble de l’algèbre proposé par 
Allen est ainsi représentable. Par exemple, la 
relation temporelle : 

A {before ∨ meets ∨ overlaps} B 
s’exprime par la conjonction de contraintes : 

                                                           
1 PNF : past, now, future 

début(A) < début(B) 
 fin(A) < fin(B)2 
mais la relation  
 A {before ∨ after} B 
n’a pas d’équivalent.  
Ce modèle est moins complet que celui de Allen, mais le 
test de cohérence peut être effectué en temps polynomial. 
D’autre part, la mise en œuvre de cette algèbre est relati-
vement simple. Plus récemment, [17] a proposé un 
sous-ensemble maximal calculable de la logique de Allen, 
la sous-classe ORD-Horn, qui reprend les travaux de van 
Beek [16] en s’affranchissant du passage des intervalles 
aux bornes d’intervalles. Nous n’excluons pas d’utiliser ce 
formalisme dans un second temps. 
 

Relation Exemple 

X equals Y Y 

 
X 

X meets Y 
Y met-by X 

 

X overlaps Y 
Y overlapped-by X  

X during Y 
Y includes X 

 

X starts Y 
Y started-by X 

 

X finishes Y 
Y finished-by X 

 

X before Y 
Y after X 

 

figure 6 : les 13 relations temporelles de Allen 

2.3.1.2 Subsomption de relations temporelles 

Nous avons choisi pour l’instant de réifier les relations 
temporelles. La principale raison est que nous bénéficions 
ainsi des mécanismes de classification de CLASSIC. 
Ainsi, la relation temporelle {before ∨ meets ∨ overlaps} 
subsume-t-elle la relation {before ∨ meets}, ce qui corres-
pond bien à l’intuition : l’ensemble des segments 
temporels mis en relation par {before ∨ meets} l’est a 

fortiori par la relation {before ∨ meets ∨ overlaps}. 
Du point de vue de l’implémentation, CLASSIC offre la 
possibilité sous certaines restrictions de définir un concept 
comme étant l’ensemble des instances qui satisfont un test 
(fonction Lisp renvoyant un booléen), et de définir expli-
citement des liens de subsomption entre ces tests afin que 
le système puisse classifier concepts et instances. 
Il est donc possible de définir un concept temporel 
(TEMPORAL) comme ayant un début et une fin, le début 
précédent la fin3 : 

                                                           
2 avec bien sûr début(A) < fin(A) et début(B)<fin(B) 
3 La syntaxe utilisée est proche de celle de CLASSIC, 
avec quelques facilités d’écriture pour les contraintes de 



(define-concept ‘TEMPORAL ‘(and 

 (exactly 1 begin) 

 (all begin integer) 

 (exactly 1 end) 

 (all end integer) 

 (< begin end))) 

De la même manière, on définit le concept de relation 
temporelle comme faisant intervenir deux instances de 
TEMPORAL. 

(define-concept ‘TEMPORAL-RELATION ‘(and 

 (exactly 1 temporal-1) 

 (all temporal-1 TEMPORAL) 

 (exactly 1 temporal-2) 

 (all temporal-2 TEMPORAL))) 

La relation temporelle définie ci-dessus est la relation la 
plus générale. Quelles que soient deux intervalles 
temporels, ils sont toujours en relation ! 
Les 13 intervalles de base de Allen sont définis comme 
sous-concepts de TEMPORAL-RELATION. La relation 
meets est par exemple définie par : 

(define-concept ‘TEMPORAL-MEETS ‘(and 

 TEMPORAL-RELATION 

 (= (temporal-1 end) (temporal-2 

 begin))) 

CLASSIC ne permettant pas de définir des concepts 
comme disjonction de concepts, les concepts qui corres-
pondent aux relations temporelles s’exprimant comme 
disjonction des relations de Allen doivent être décrites 
explicitement, ainsi que les relations de subsomption entre 
les tests correspondants. 
Une remarque doit être faite quant à la manière dont est 
effectué le test a R b (a et b sont-ils mis en relation par 
R ?). Dans l’implémentation existante, une instance de 
TEMPORAL-RELATION est créée. Si cette instance se 
trouve être classifiée par CLASSIC comme instance de R, 
alors la relation est respectée. Il est évident que cette 
manière de procéder en réifiant les relations temporelles 
est très coûteuse, mais cela nous permet dans un premier 
temps d’une part d’exprimer clairement ces relations et 
d’autre part de profiter du mécanisme de subsomption 
offert par CLASSIC.  

2.4 Règles de regroupement 
Pour exprimer la structure temporelle des documents, 
nous proposons d’utiliser des règles de regroupement 
temporel qui agrègent des formes temporelles de bas 
niveau en des formes de plus haut niveau.  

2.4.1 Principe général 

Le principe de regroupement temporel présenté ici repose 
sur la possibilité offerte par CLASSIC d’associer des 
règles à un concept, lesquelles règles sont déclenchées à 
chaque instanciation de ce concept. Lorsqu’une instance a 

du concept A est créée, une règle et déclenchée. Dans 
notre cas, le traitement de cette règle consiste à chercher 
toutes les instances bi du concept B telles que a R bi, avec 
R instance d’un sous-concept de TEMPORAL-
RELATION (R est une relation temporelle). a et bi sont 

                                                                                              
cardinalité et les tests Lisp. Ces derniers sont notés en 
italique. 

alors agrégées pour former une instance de plus haut 
niveau, de concept G. Ce type très général de règles fait 
intervenir quatre paramètres : les concepts A, B, R et G. 
Les nouvelles instances ainsi créées peuvent à leur tour 
être agrégés en groupes d’encore plus haut niveau. 

2.4.2 Trois types de règles 

Dans un premier temps, deux types de règles ont été iden-
tifiés qui permettent de regrouper des éléments 
temporels : les règles qui agrègent deux instances de 
concepts différents en une instance d’un concept de plus 
haut niveau, et les règles qui agrègent N instances du 
même concept en une instance d’un concept de plus haut 
niveau. 
Dans le premier cas, on cherche à regrouper des formes 
qui se complètent. Ce sera le cas par exemple du champ-
contre champ : admettons que l’on ait pu segmenter un 
document selon le schéma de la figure 7. Les cases repré-
sentent les plans. Les plans notés A et B sont des plans 
d’un type quelconque. Les plans notés I (resp. F) signalent 
la présence du personnage I (resp. F). Il paraît naturel ici 
de regrouper les plans sur le schéma : 
 A* (I F)* B* 
La règle de regroupement qui s’applique ici regroupe un 
plan de type I suivi d’un plan (relation temporelle meets) 
de type F en un groupe de deux plans I-F. Le premier type 
de règles peut se décrire sous la forme : 
 C1 R C2 � G (1) 

avec : 
C1, C2 : concepts héritant de TEMPORAL 
R : concept héritant de TEMPORAL-RELATION 
G : concept héritant de TWO-TEMP-GRP, groupe de 
deux instances de TEMPORAL. Ce concept est défini 
comme suit : 

(define-concept ‘TWO-TEMP-GRP ‘(and 

 TEMPORAL 

 (exactly 1 first-temporal) 

 (all first-temporal TEMPORAL) 

 (exactly 1 second-temporal) 

 (all first-temporal TEMPORAL))) 

Dans l’exemple cité, la règle de regroupement serait 
donc : 

I meets F � I–F 

 

A A A I B B BI I I IF F F F F

I-F I-F I-F I-F I-F

(I-F)*  

figure 7 : champ-contre champ 

Une fois regroupés les plans I et les plans F en groupes 
I-F , on voudrait pouvoir regrouper ces derniers en une 
séquence d’instances de I-F. Un deuxième type de règles 
intervient ici qui agrège des instances de la même classe 
en une instance d’une classe de plus haut niveau : 
 C R � G (2) 

avec : 
C : concept héritant de TEMPORAL 



R : concept héritant de TEMPORAL-RELATION 
G : concept héritant de TEMPORAL-SEQ, séquence 
d’instances de TEMPORAL, défini par : 

(define-concept ‘TEMPORAL-SEQ ‘(and 

 TEMPORAL 

 (at-least 2 element) 

 (all element TEMPORAL))) 

Ce type de règles permet d’instancier une séquence 
temporelle dont les éléments appartiennent à la même 
classe et sont deux à deux mis en relation par une relation 
temporelle donnée. 
Il est apparu qu’à ces deux types de règles d’agrégation 
devaient s’ajouter des règles permettant d’exprimer des 
ruptures temporelles ou des transitions. C’est le cas de la 
règle de transition entre séquences présentée plus haut 
(voir figure 5). Ces règles permettraient d’identifier des 
structures du type ABA’ comme indiquant que B est un 
élément de transition. Dans l’exemple décrit, A et A’ 
représentent une suite de plans séparés par des « cuts », et 
B représentent une transition graduelle. La règle tirée de 
[7] et illustrée par la figure 8 indique que lorsque deux 
plans consécutifs présentent des mesures colorimétriques 
voisines au sens d’une certaine distance, il y a de fortes 
chances qu’il y ait une rupture de séquences entre ces 
deux plans. Cette structure est de la forme ABB’C. Il est 
possible qu’un type spécifique de règles soit utile pour 
pouvoir effectuer des regroupements représentant ce genre 
de structure. Cependant, il faut noter que des structures de 
type AB A’ ou ABB’C peuvent être exprimées avec une 
combinaison de règles de type (1). Dans le premier cas, on 
peut agréger A et B en A-B, puis A-B et A’ en A-B-A’, 
dans le deuxième on peut également décomposer la règle, 
ce qui nuit bien sûr à la clarté des règles, et ce qui conduit 
à créer des concepts intermédiaires n’ayant pas néces-
sairement de sens. Cependant, il doit être possible 
d’automatiser la décomposition de ces règles et ainsi de 
« cacher » ces concepts intermédiaires. 

 

figure 8 : changement de séquence en fonction de 

similarités de plan 

2.4.3 Principes d’exécution et monotonie 

Les règles de regroupement étant exprimées de la manière 
exposée plus haut, il se pose alors un problème de mono-
tonie lié à l’ordre dans lequel sont créées les instances. 
Une règle de type A R B � G est déclenchée à chaque 
création d’une instance a du concept A. L’action effectuée 
par la règle consiste à chercher toutes les instances bi du 
concept B mis en relation par R avec a, puis à agréger a et 
bi en une instance du concept G. Ce principe est illustré 
par l’algorithme suivant : 

Création d’une instance a ⊂
4
 A (i) 

Déclenchement de la règle (ii) 

Recherche des bi ⊂ B tq a R bi (iii) 

Agrégation de a et bi (iv) 

Les règles étant déclenchées par l’instanciation de 
concept, on constate que l’ordre dans lequel les instances 
sont créées est important : deux instances ne peuvent être 
agrégées que si elles existent déjà au moment du déclen-
chement de la règle. Nous proposons ici une manière de 
résoudre ce problème pour chacun des deux types de 
règles exposés plus haut. 
Pour les règles de type (1) il convient d’engendrer pour 
chaque règle la règle symétrique quant à la relation 
temporelle. Ainsi, pour chaque règle de type : 
 A R B � G 
doit-on également créer la règle : 

 B R  A � G 

avec R la relation temporelle inverse de R, définie par : 

 x R y ⇔ y R x 
Par exemple, la relation inverse de la relation temporelle 
{before ∨ meets ∨ overlaps} est {after ∨ met-by ∨ 
overlapped-by}. 
Pour les règles de type (2), la procédure est un peu plus 
complexe. Le principe des règles inverses doit également 
être appliqué mais n’est cependant pas suffisant. 
L’étape (iv) de l’algorithme consiste à agréger a et a’, 
instances du même concept A.  
Pour la règle de type (2) A R � G regroupant N instances 
de A en une instance de G, une manière naïve de procéder 
consiste, lors du déclenchement de la règle par la création 
d’une instance a du concept A, à chercher une instance g 
du concept G telle que a soit en relation temporelle R 
avec l’une des valeurs du rôle element de g, puis à 
ajouter a comme valeur du rôle element à g. Si une telle 
instance g n’est pas trouvée, on cherche une instance a’ de 
A telle que a et a’ sont en relation temporelle R. Si un tel 
a’ existe, a et a’ sont alors agrégés en une nouvelle 
instance de G. 

chercher g ⊂ G tq a’ ∈
5
 g 

si g existe alors 

 ajouter a comme valeur du rôle 

 element à g 

sinon 

 chercher a’ tq a R a’ 

 si a’ existe 

 créer g ⊂ G avec a et a’ pour 

 valeurs du rôle element 

Sur l’exemple illustré par la figure 9, les plans grisés 
représentent des plans de la même classe L, par exemple 
une série de plans de plateau. Lorsque deux plans se che-
vauchent, la transition entre ces deux plans est graduelle. 
C’est le cas entre les plans 1 et 2, 2 et 3, 4 et 5, 5 et 6, 
alors qu’il y a un « cut » entre les plans 3 et 4. 
Pour regrouper les plans de type L, on écrit la règle de 
type (2) : 
 L {meets ∨ overlaps} � GL 

                                                           
4 ⊂ signifie « instance du concept » 
5 ∈ signifie ici « est valeur du rôle temporal-element 
de » 



avec GL le concept définissant un groupe de plans L, 
concept héritant de TEMPORAL-SEQ. 
On constate que si les plans sont créés dans l’ordre de leur 
numéro, l’algorithme indiqué agrège bien les plans en une 
seule instance de GL. Toutefois, si l’ordre de création est 
1-6-2-3-5-4, les plans seront regroupés en deux instances 
de GL : 1-2-3-4 et 4-5-6. On constate ici que le plan n°4 
peut être agrégé à deux groupes de plans distincts. Il 
convient dans ce cas d’agréger à nouveaux ces deux 
groupes. 
L’étape (iv) de l’algorithme, pour les règles de type (2), 
doit donc prendre en compte le fait que lorsqu’une 
instance peut s’agréger à plusieurs groupes, ces groupes 
doivent être agrégés entre eux. Cela peut s’exprimer de la 
manière suivante : 

extraire liste l des gi ⊂ G tq a’ ∈ gi 
si |l| = 0 

 créer g ⊂ G et ajouter a et a’ à g  

si |l| = 1 

 ajouter a à g1 
si |l|>1 

 ajouter a à g1 

 agréger gi, 2≤i≤|l|, à g1 

Agréger plusieurs instances de TEMPORAL-SEQ, 
comme il est indiqué à la dernière ligne de l’algorithme 
ci-dessus, peut ne pas être une opération triviale si 
d’autres rôles que element sont pourvus. Nous ne traite-
rons pas ce problème ici. 
 

1
2

3

4
5

6

 

figure 9 : groupement de plans similaires 

Enfin, un problème de monotonie se pose si les instances 
intervenant dans les règles de regroupement venaient à 
être modifiées. En effet, des propriétés peuvent être 
ajoutées aux instances ; ce serait le cas par exemple si 
plusieurs algorithmes de détection, ou bien une inter-
vention manuelle, venaient successivement raffiner une 
description des plans. 
 

2.5 Classification / Analyse 
L’analyse telle qu’elle est présentée ici repose en dernier 
recours sur les algorithmes d’analyse. Il reste donc à 
préciser la manière dont vont interagir ces algorithmes et 
les processus de raisonnement présentés plus haut. La 
manière la plus simple consiste à exécuter tous les algo-
rithmes d’analyse, puis à utiliser les résultats pour raison-
ner. Cependant, nous pouvons faire interagir plus étroite-
ment analyse et raisonnement. Deux modes d’interaction 
entre analyse et raisonnement ont été identifiés. Le 
premier consiste pour un algorithme à créer des instances 
« primitives ». C’est le cas d’un algorithme de segmen-
tation en plan, par exemple. Dans le second mode 
d’interaction, un algorithme spécialise une instance, par 
exemple en lui ajoutant des attributs. Cette instance peut 
alors à nouveau être classifiée. Ce second mode 
d’interaction est le plus complexe, car il fait intervenir des 
instances existantes. En utilisant ici encore le mécanisme 

de règles proposé par CLASSIC, il est possible de lier 
étroitement analyse de bas niveau et raisonnement.  
Dans l’exemple du magazine de cinéma cité plus haut, une 
première étape consiste à exécuter un algorithme de 
segmentation en plans du document (premier mode 
d’interaction) des instances de la classe SHOT, concept 
primitif héritant de TEMPORAL. Dans une seconde 
étape, les plans d’une séquence d’extraits sont définis 
ainsi : 

(define-concept ‘TRAILER-SHOT ‘(and 

 ‘SHOT 

 (black-strip? begin-time end-time))) 

black-strip? étant une fonction Lisp à deux paramètres 
calculant la présence de bandes noires dans le document 
entre deux dates. L’algorithme est donc déclenché 
automatiquement par le processus de classification 
(second mode d’interaction). 
Les plans instances de TRAILER-SHOT sont alors 
regroupés par la règle de type (2) : 
TRAILER-SHOT {meets ∨ overlaps} � TS-SEQ 

avec TS-SEQ concept héritant de TEMPORAL-SEQ. 
Enfin, un algorithme d’extraction de texte peut être exé-
cuté sur le début de chacune des séquences d’extraits 
instances de TS-SEQ. 
Ainsi, un schéma général se dégage où alternent des 
phases de classification et de regroupement avec des 
phases d’analyse de bas niveau. 

3. Discussion : reconnaissance de plan 

Les règles de regroupement présentées ci-dessus consti-
tuent d’une certaine manière des plans, dans le sens de la 
reconnaissance de plan ou de scénario. Plusieurs travaux 
ont déjà été conduits qui utilisent le raisonnement 
terminologique dans le cadre de la reconnaissance de 
plan : par exemple, [18] propose d’étendre la notion de 
subsomption aux plans, et [19] définit un langage unifié 
de raisonnement terminologique et temporel. Dans le 
même ordre d’idées que [18], [20] propose d’organiser les 
plans en taxonomie en intégrant à un système de raison-
nement terminologique (en l’occurrence CLASSIC) des 
techniques connues de planification utilisant des 
automates d’états finis. Une telle approche présente 
l’avantage d’offrir une formalisation claire du type de 
raisonnement mis en œuvre, ce qui permet d’avoir une 
bonne évaluation des types de problèmes pouvant être 
abordés ainsi que des limites du formalisme. En particu-
lier, les plans qui peuvent être représentés dans [20] sont 
restreints à des expressions régulières, ce qui est trop peu 
expressif pour décrire le contenu de documents filmiques. 
Nous envisageons cependant de nous inspirer de cette 
démarche en formalisant d’avantage le raisonnement 
temporel à l’extérieur du système de représentation. 

4. Expérimentations en cours 

L’implémentation du système décrit dans ce papier est en 
cours. Nous utilisons la version 2.3 du système CLASSIC 
déjà mentionné dans l’environnement CLISP. Les princi-
paux mécanismes de regroupement temporels ont été mis 
en œuvre ; des tests de plus grande envergure sur un 



corpus documenté doivent être engagés. notamment dans 
le contexte du projet DIVAN. 

Conclusion 

L’indexation de documents filmiques est un sujet de 
recherche dont les enjeux sont considérables. La nature de 
la diffusion étant en train de changer considérablement, il 
sera de plus en plus important de pouvoir accéder à des 
bases de documents gigantesques, posant ainsi le 
problème de l’annotation dans un cadre nouveau. Nous 
pensons que la combinaison d’expertises de champs 
complémentaires est nécessaire pour obtenir des systèmes 
efficaces et opérationnels. Ceci nécessite d’une part la 
formalisation des divers types de documents existants, ce 
qui permet de restreindre le champ de l’analyse, et d’autre 
part la collaboration des techniques d’analyse « bas 
niveau » du traitement d’image et de l’analyse de signal 
d’une part et des techniques de représentation et de 
raisonnement de plus haut niveau d’autre part. Nous pro-
posons dans ce papier un élément de réponse fondé sur 
l’exploitation du formalisme des logiques de descriptions 
qui nous paraît prometteuse. 
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ABSTRACT 

In this article we introduce the notion of audiovisual- 
based hypermedia authoring systems, i.e. systems mainly 
using documents from digital audiovisual (AV) archives 
as a source for hypermedia authoring. After showing that 
traditional hypermedia models are ill-designed for specific 
constraints implied by such systems, we propose a 
change of approach. We present a model based on formal 
structured representations of the content of documents as 
it is done in the field of structured documents. Since a 
specific mode1 for the representation of AV content is 
needed. we introduce Audiovisual Event Description 
Inter$ace (AEDI), which provides a model for the 
description of AV documents. and an XML-based syntax 
for the exchange of such descriptions. We describe 
AEDI’s main concepts, how it can be related to a formal 
specification of the domain knowledge -called 
onrofogy - which allows efficient dynamic hyperlinking 
among elements. Finally, we describe the implementation 
of this mode1 for the production of AV based hypermedia 
at INA‘s production department. 

KEYWORDS: audiovisual, structured documents, 

hypermedia design, ontology, content indexing. 

INTRODUCTION 
Many hypertext and hypermedia applications and systems 
rely mainly on texts and still images to convey 
information. Audiovisual (AV) - i.e. cinema. TV, radio 
and video - source documents are quite often only used 
by hypermedia authors as small extracts linked to text for 
occasional illustrative purposes. 

There are of course many economical and technical 

Pelmission to make digital or hart1 copies of all or part of this work for 

personal or cIassroo~n use is granted without fee prwitled that copies 

arc not nuic or distrihutcd for prolit or comnwrcial advantage and that 

topics bear this notice and the full citation on the first page. ‘To copy 

othsrwise. to republish. to post on scwrs or to redistribute to lists, 
requires prior specilic permission and/or a fee. 

Hypertext 99 Darmstadt Germany 

Copyright ACM 1999 I-58 113-064-3/99/2...$5.00 

reasons for this lack of use. However, we claim that 
design issues remain some of the most fundamental 
obstacles. Indeed as [25] and [9] show, the creation of a 
design model adapted to specific AV constraints remains a 
challenge for the hypertext community. 

In this article, we will describe our research on .\V-based 
hypermedia authoring environments, which bring together 
concepts of three different domains: digital libraries (our 
source documents are provided by INA, French TV and 
Radio Archives), hypertext (links are used for browsing 
and relating AV documents) and multimedia (the intensive 
use of AV media implies temporal constramts among 
components). We will analyze current hypermedia models 
and explain why they remain ill-designed for hjprmedia 
authoring tasks requiring intensive use of A\’ source 
documents. We will argue that the nature of AV media. as 
well as specific constraints applying to users’ interaction 
with large digital AV repositories, calls for the creation of 
a hypermedia mode1 based on structured represenbtions of 
the content of source documents. 

Our approach is inspired by structured document 
methodologies [4] and by their adaptation to traditional 
hypertext concepts [38] [36]. It provides hypermedia 
authors and/or readers with an efficient means of 
interpreting, manipulating, browsing, editing, searching 
and linking segments of documents. Moreover. relating 
structured representations of documents to a formal 
specification of the domain knowledge allows the 
application of inference mechanisms to the documents, as 
is done in [33], and dynamic linking to be performed 
among elements of the content as in [37]. 

We will argue that there is currently no perfectly suited 
mode1 for the representation of AV documents. ?herefore, 
we will introduce Audiovisual Event Description Interface 
(AEDI), which provides a description model and an XML- 
based exchange format for the description of AV 
documents. Moreover, as describing AV documents 
requires not only a mode1 and a format, but also a 
description policy defining what should be described and 
how. We will show how to relate AEDI descriptors with 
concepts defined in an ontology [7] and how to use this 
ontology for dynamic linking of description elements. 
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Finally, before concluding, we will discuss the 
implementation of this model in INA’s production 
department. 

Figure 1: An A&based hypermedia authoring 
environment 

CONTEXT 

As telecommunications, broadcasting and computer 
industries are converging into a single entity, new 
applications based on hypermedia concepts and including 
AV documents on a large scale are appearing: intemet- 
enabled TV, hypermedia versions of TV programs 
published on CD-ROM, video on demand on cable TV, 
and remote access to digital AV documents in archives are 
typical examples. 

For one year, INA’s research department has been 
working on the design and development of an AV-based 
hypermedia authoring environment. Such an environment 
is illustrated in Figure 1. AV directors are provided with 
an indexed repository containing AV archival documents, 
AV rushes’, still images and texts. The indexing is 
created during the production and archiving process 
following guidelines. It is stored in digital form and 
allows dynamic hyperlinking among documents. Using 
this relevant metadata, authors can select segments of AV 
source documents relevant to their needs, specify 
presentation guidelines and create new documents which 
can be published following diverse delivery specifications 
(as a broadcast program, a hypermedia application or even 
a book). 

The main objective of this project - which brings 
together the concepts of the digital library, the hypertext 
and the multimedia domains - is to show that the 
digitization of AV archives’ and broadcasters’ documents 
modifies traditional AV production processes and leads to 
the creation of new tools and usages integrating AV 
documents as a primary resource. 

DESIGN REQUIREMENTS 

AV-based hypermedia authoring environments call for a 
design model. This mode1 should conform to some 
specific requirements, which are listed below: 

’ A “rush” is a piece of AV content filmed by the author. which has 

not been edited yet. It is the produce of the original camera shooting 

Any AV-based hypermedia model should provide an 
adequate representation for what librarians and libre 
users traditionally refer to as document, i.e. tlx 
elementary units manipulated by clients for browsing the 
library content. to interpret it and to create neu 
documents from it. Furuta [ 181 describes librq 
documents as self-contained units representing an 
identified intellectual contribution and exhibiting, to a 
certain extent, an intentional structure. We would add that 
any element of a document is interpreted by readers not 
only in terms of the information it contains, but also in 
terms of its place in the document structure. This is whar 
we call its source document context, as opposed to the 
source context defined by [26], which is in fact the 
presentation context of a media element in a hyperrnediz 
document at runtime. Besides, most of the documenti 
provide a canonical navigation order, or “guided toui 
through their content structure (e.g. the continuous single 
timeline for traditional AV documents). All these 
elements should be represented formally in any modei 
used for AV-based hypermedia model authoring. 

Moreover, any AV-based hypermedia model should 
provide new ways to work efficiently with largs 
collections of AV-documents. Indeed, currently, once 2 
document is identified by using a library catalogue, the 
selection of relevant segments of its content remains a 
long, fastidious and little a3ded value process which 
should be improved as much as possible. 

Finally, a wa) to link efficiently not only to but ais.: 
from segments of AV documents should be provided t; 
allow content-based navigation of the AV material. 

These are the requirements we have to fulfili 
Unfortunately, as we will show in the next section, none 
of the hypermedia models currently referenced in the 
literature seems adequate. 

Drawbacks of Current Hypermedia Models 

Most hypertext and hypermedia models have been 
designed as static networks of nodes (or components) and 
links [ 121. Nodes contain information (most of the time 
text and/or still images) and links are created by the 
author and used by readers to browse this information b! 
“jumping” from one anchor to another. 

As [25] or [9] show, this type of approach remains ili- 
designed for dynamic temporal media such as video or 
audio recordings. Even a widely accepted and used hyper- 
text model such as the Dexter Model [24] has to lx 
modified in order to add temporal constraints to its scope. 

However, we claim that, even customized, the traditiona! 
Dexter-like approach is still inadequate for AV-ba.& 
hypermedia authoring systems. Indeed, to our knowledge. 
there is nothing exactly equivalent to the notion of source 
document in current hypertext approaches. Most of the 
time, the basis of the hypermedia authors’ work remains 
the node and link network, which itself might be part]! 
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structured using, for instance, Dexter’s composites’ as in 
[ 191 or [21], or it might even be considered as a structured 
document as in CMIF [27]. Similarly. the notion of 
entity’ in the Hypertext Design Model (HDM) (201 
provides a way to structure objects used for the 
hypermedia authoring process. 

However, none of the above models provides a notion 
corresponding to what librarians and Library users consider 
as documents, i.e. the structured sources from which the 
hypermedia document is authored. AV sources are still 
considered only as a special type of computer resources 

(i.e. mostly AV files on disk, without any specific 
logical structure), used as bricks for building hypermedia 
documents, which imply fairly complex interaction and 
synchronization schemes such as the one developed in the 
Amsterdam Hypermedia Model [25]. 

n Data chunks 

OComponant 
*l&k 

b Attribute 

-**** Reference 

to da& 

Figure 2: SG Dexter-like u approach to 
hypermedia design 

Moreover, classical hypermedia models are not better- 
suited than current analogue library systems for browsing 
and manipulating large collections of AV documents for 
hypermedia authoring purposes. Indeed, most of the time, 
components containing (or referencing) AV data are 
created the following way (cf. Figure 2): authors a&i a 
new component to the hypermedia network, then they fill 
in the component by selecting a temporal segment of AV 
data from an AV document’. they index the component 
by typing some textual information in predefined fields 
(Dexter’s “attributes”) and, finally, they deline 

presentation specifications controlling the execution of 
the application at the runtime layer. 

’ A composite component in the Dexter Model is a component 

containing other components 

3 An HDM entity is defined as an autonomous object composed of 

components related by structural links. 

’ i.e. run a digital AV file in a player, watch and/or listen to the AV 

document until the beginmg of the relevant segment and then select the 

begm time and the duration 

This type of interaction is acceptable for authors when 
they are dealing with only a few seconds of AV data, or 
when all segments to be integrated in hypermedia 
components are available as well-identified files on disk, 
which just have to be imported without being watched. 
However, it is simply too time-consuming to proceed 
this way when one deals with hours of AV content! As a 
consequence, some mean of providing relevant random 
access to segments of AV documents is needed. 

Finally, linking from AV content remains a thorny 
problem in traditional systems. Indeed anchoring zones 
inside the AV document are evolving through time: if 
users play a segment of an AV document, different 
anchors to different nodes may be accessible at different 
moments in time. Allowing this type of anchoring in a 
static component and link network, as ir has been done in 
[25], remains complicated. 

As a conclusion, we claim that AI--based hypermedia 
environments call for a new approach allowing more 
efficient browsing and manipulation of the content of AV 
documents. 

Representing the Content of AV Documents 
One way to avoid most of the problems listed above 
would be to provide hypermedia authors with tools for 
automatic searching, retrieving, comparing and linking 
relevant segments of AV documents that they could then 
insert into their hypermedia components. 

Unfortunately the very nature of the AV medium itself is 
a problem. Indeed, contrary to text, A\- data is not made 
out of discrete symbolic elements, i.e. elements that can 
be computed by computers and be interpreted by humans. 
and therefore it cannot be easily processed. Of course, [3] 
shows that many research projects from the digital signal 
processing field (such as [l l] or [32]‘1 are working on 
automatic extraction algorithms. Some applications, such 
as QBIC [ 161 or Virage”, have even become industrial 
products. However, such applications, though very 
helpful, remain only analytic tools and cannot replace 
human synthetic interpretation for the creation of the high 
level conceptual descriptions which are needed for an 
efficient manipulation of AV content. Therefore, other 
projects, such as [14], focus on computer-aided manual 
annotation of AV content. 

In all these projects, the central element is an infernzediure 
representation of the AV content which is used as a 
substitute for the AV document. Indeed, once related to 
the content by a temporal and spatial linking model, the 
intermediate representation acts as a document index. The 
changes, manipulations, filters and composition applied 
to the representation imply equivalent actions on the AV 
document itself. For example, it is possible to apply 
research, selection and linking functions to the 
representation of “Cyrano de Bergerac” in order to gather 

.’ See http:llwww virage.com 
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all the segments in which Gerard Depardieu is on screen. 
in close-up, etc. 

This leads us to the conclusion that the crucial challenge 
of AV-based hypermedia environments is to provide a 
representation framework for expressing the content of 

AV documents. Many standardization bodies such as IS0 
MPEG-7”, the joint EBU-SMPTE task force’, W3C 
Metadata’, the CENflSSS’ or DAVK? are currently 
addressing this issue by creating large scale initiatives 
aiming at defining a standard representation for metadata 
on AV and multimedia content. Prit & al [35] show that 
a generic model for representing (manual as well as 
automatic) annotations of AV documents is needed. 
Moreover. we claim that this representation has to be 
formally structured at the document level to allow easy 
computer-aided access to relevant parts of the content. 

1 

d 

Figure 3: Our approach, based on structured 
representations of the content of documents 

A C( Structured Documents )a Approach 

Our model is based on the concept of structured document 
[4]. In such a model (cf. Figure 3) any source document 
available in the archives is referred to by using a 
structured representation of its content. These 

representations can then be used as a basis for linking. 
Links among structure elements can of course be created 
by the author, but they can also be automatically 

6 MPEG-7 (“Multimedia 

htto:/ldrog&&t.irlmoe~ 

Content Description”). 
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_ The European Broadcasters’ Union/ Society of Motion Pictures & 

Television Engineers task force has created a metadata dictionary 

whtch has been published as an international standard in 1998 and 

should be adopted by tbe EBU and NATO fmm 1999 on. See 

htto://www.ebu.ch/ 

s World Wide Web Consortium, see hllp;uwww.w3c.&Metadata/ 

’ CEN Information Society Standardization System is currently 

involved in the Metadata for Multimedia Information initiative (M!dI). 

See. mww’ ecm 

lo Digital Audio Visual Council. see htto://www davtc ore/ 

generated. Indeed. if the elements of the structure are 
related to some formal representation of the domain 
knowledge, such as an ontology [7] or a semantic 
network (331, inference mechanisms can be applied for 
linking the elements related to the same notion in the 
domain knowledge [IO]. Once this interrelated network of 
structured documents is created, it can be browsed by 
users as a hypermedia application. This requires some 
presentation specifications, which build a “style sheet” for 
the hypermedia. This can be achieved by using a specific 
language such as SMIL”. 

This type of approach, though not much referenced in the 
hypertext literature [38], has proved efficient and relevant 
for electronic publishing tasks [37], for document 
manipulation and browsing in many industrial 
applications based on SGML [30]. It meets our 
requirements since it provides a model for the 
representation of documents (and thus for the source 
document context of an AV segment), it allows efficient 
manipulation of AV documents based on the 
manipulation of their representation structure and, finally, 
structure elements can be used as an anchoring system for 
linking among segments of the AV content. 

It should be noted that our notion of structured 
representation is not restricted to what is traditionally 
called “logical” or “generic” structure of an SGML- 
encoded text (i.e. the inclusion of the different parts of a 
text such as subsections into sections, etc.). Indeed. the 
logical structure, though conveying relevant semantic 
information about the document, is often not informative 
enough to describe the content and, therefore. it has to be 
complemented by some other knowledge representations 
such as anchors related to a semantic network, as in [33]. 
Moreover, when dealing with AV documents, the notion 
of logical structure remains limited to the editing 
elements that can be adequately interpreted for an up- 
translation’*, i.e. shots”, camera motion and, to a certain 
extent, scenesI [2]. However, trying to relate these AV 
editing elements with the semantics of the content is 
extremely difficult. Indeed, AV editing does not provide 
fairly stabilized traditions as text publishing does. As a 
consequence, we define a structured representation as any 
formal structure representing the content of an A V 
document in terms of a manipulable semiotic form. A 
semiotic form is a representation format which is directly 
human readable and does not require any machine-based 
computation and decoding (e.g.: characters, images, 
sketches...etc.). This type of representation is also called 
“content indexing”. 

” See http:Nwww.w3.orgfTlU1998/REC-smil-1998-19980615 

‘a An up-rrurlafion is an automatic translation from a physical 

appearance to a logical structure, as it is done when interpreting that 

all 12 points bold character strings in a text are “section title” 

elements. for instance. 

‘s A shot is a stream of contiguous frames continuously recorded by a 

single camera, and a shot cut can be detected with rather good results. 

I4 A scene is collection of one or more adjoining shots, that has the 

characteristic of perceptual continuity and semantic homogeneity 



A Model Specific to AV Documents 

Having decided upon a sttucture-based approach, the 
nature of the formal model to be used for the 
representation of AV documents remains to be 

determined. Indeed, however simple they may seem at the 
surface, traditional (i.e. single-timeline) AV documents 
are fairly complex objects (elements are related by 
temporal and/or logical constraints, they overlap easily, 
they can be interpreted in many different and concurrent 
ways, etc.) and finding an adequate model for their 
representation is not easy. 

For instance, SGML seems a very good candidate to 
encode document structure, but it cannot be used by itself 
and need some customization to be applied to AV 
documents. Indeed, describing AV data requires complex 
data types (such as those extracted by signal analysis 
algorithms) and a temporal and spatial model to relate the 
description to the content. Moreover, if SGML structures 
allow efficient representation of tree-structures such as 
segmentations in scenes and shots (cf. Fig. 4) they 
remain relatively ill-designed for describing overlapping 
stratification approaches (cf. Fig. 5) such as [l] or [ 1.51. 

DWXiptl0ll 

Figure 4: Segmentation 
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Figure 5: Stratification 

On the other hand, HyTime 1311 could seem a good 
candidate. However, it has been designed for the encoding 
of any linking between chunks of a hypermedia 
document. These chunks can be expressed in any user 
defined coordinate space. Therefore, HyTime is to open 
and not focused enough on AV document for our needs. 
Indeed the efficient use of AV descriptions requires a 

specific model for representing logical, spatial and 
temporal constraints among segments of a document . 

For the same reason, we cannot rely on very wide 
frameworks such as RDF”, intended for the encoding of 
metadata on any typ of computer resource. 

Finally, languages or models such as SMIL, MHEG [34], 
PREMO [29] or HyTime’s presentation module are 
intended for the synchronization of multimedia elements 

” see hnp://www.w3.org~~D-rdf-syntax 

for presermuion and interaction. They are concerned with 
the way the documents are presented on screen, which IS 
useful at the presentation specification level (cf. Fig. 3). 
However. a model for the represenfution of AV-documents 
remains to be defined. 

Since none of the above models and languages fulfills our 
needs, we believe that a specific representation model for 
continuous temporal media has to be defined’” and, as a 
consequence, in the next section, we will introduce 
Audiovisual Event Description Interface (AEDI), the 
formal representation model we developed at INA. 

OVERVIEW OF AEDI 

Audiovisual Event Description Interface (AEDI) combines 
a representation model and an application and platform 
independent XML-based exchange format for the 
description of AV documents. It is being used in AV 
indexing research projects and will be submitted to 
MPEG-7 standardization in February 1999 [S]. It is 
currently being tested by scholars to produce, exchange 
and reuse annotations on AV documents using the 
French Legal Deposit’s Computer-Aided AV Reading 
Station. This prototype, called Mkdiuscope. proposes a 

graphical interface for the annotation of AV documents. 
some automatic se_gmentation facilities and an export 
function which outputs descriptions as AEDI text files. 

Figure 6: Representing thematic annotations 
with AEDI in Mbdiascope 

Figure 6 shows how MM&cope can be used to annotate 
and browse thematic strata on a documentary: when 
clicking on a segment related to “poetry”, the user 
visualizes the inclusion of this particular segment in a 
“theme = poetry” stratum (horizontal scale) and other 
segments available on the same temporal segment 

I6 One could argue that such formats already exia : Open Media 

Framework from AVID Technology Inc. (cf. http://www.avid.coti 

for instance. is used in the professional world. But rhese formats are 

copyrighted. they depend on software from a specific company ‘and 
therefore are never widely accepted. 
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(vertical scale): here, for instance, the theme of the 
selected temporal segment is related to “minerals” as well. 

Temporal Model 
An AlZDI description is a graph containing description 
objects. These objects (called segment, stratum or A- 
Temporal Entiry (ATE)) are organized in a tree-structure 
and may be related one to each other using reference links 
(cf. Fig. 7). They refer to a single AV document”, which 
is defined in the following way: a document is a 
continuous and contiguous timeline identified by a unique 
identifier. 

* wu- 
a--w- 

Figure 7: AEDI graph structure for the 
description of a single timeline AV document 

However restrictive this definition may be (in many 
cases, such as hypermedia documents, a single temporal 
timeline is not adequate to describe a document), it is 
efficient. Indeed, it fits most of past and current AV 
productions, and it allows efficient and low-cost 
description generation. 

A projection mechanism inserted into the description 
(called timespace) allows the user to project the 
description upon the document “virtual” timeline and, 
then, to project the document timeline itself upon media 
instances of the document (Q Fig. 8). 

Figure 8: Using the document timeline 
abstraction in AEDI 

AEDI-aware browsers determine the document identifier in 
the description and then look for a service able to reIate 
this identifier to some chunks of media. This double 
projection mechanism is a way to allow more than one 
description of the same document, which is important, 
especially for user-centered annotation purposes. 
Moreover it enables the description to play documents 
that are specified on more than one chunk of media (e.g.: 
a single document can be divided among several files) 
without forcing users to get involved with files and media 
management systems. Finally it enables archives to 

” We are working on multiple documents descriptions. but the current 

version is restricted to single document descriptions. However. 

descriptions can be linked and related into metadata repositones. 

change the media used for storage without any impact on 
user’s interaction with the library system. 

Description elements 
AEDI defines various description elements, which are 
represented in Fig.9. 

Descfi#&Xl timeiinr 

Figure 9:AEDI description elements 

An ATE (A Temporal Element) is any non-temporal 
object used in a description. ATEs are defined 
independently of temporal objects but can be referenced 
for their description. A typical example of an ATEZ is the 
description of a given actor in a film in terms of name, 
date of birth, filmography, etc. which can be referenced as 
a characteristic of a shot. 

A segment is the definition of an actual part of an AV 
document, it may be temporal or spatial. A segment is 
associated with a locator which defines the type of object 
described: a temporal segment or a spatial region. 

l A temporal segment has at least a begin time and a 
duration. The description of a shot or a scene. for 
instance. can be represented as a temporal segment. A 
tree-like structure of temporally located segments can 
be used to build a segmentation (cf. Figure 4) of a 
document. 

. A spatial segment delimits a spatial region as a 
bounding box (rectangle) defined by positions relative 
to the side of the image (position of the top left 
comer and height and width). 

A stratum is a logical object which holds a collection of 
description elements (segment, stratum or ATEs) for a 
certain purpose. A stratum constitutes the expression of a 
point of view on the AV document. It allows a 
stratification approach (cf. Figure 5) of the document. The 
description of the collection of all the segments related to 
a subject (such as, for instance, the set of all speeches of 
a character in a theater play, or the results of a specific 
automatic analysis algorithm) can be represented as a 
stratum. 

Description elements are characterized by properties. 
Properties are associations of an attribute with a typed 
value. AEDI provides some basic types (such as integer. 
character string, float, boolean, time reference, date, etc.) 
and allows the definition of new types by users. It is 
possible to define properties such as “actor-on-screen” of 
type “string”, or “color” of type “RGB”, where “RGB” is 
defined as a structure of 3 integers, and so forth. Once a 
property is defined, it can be used to characterize an) 
AEDI description element. 
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Ri <!ELEMENTname(#F’CDATA)> 

<!AlTLISTname 

aedi CDATA #FIXED “propeny” 

basetype CDATA FIXED”string”> 

-_ _-- 
-.__ __= 

.-- 
w 

DTD 
:!ENTlTY 8 AEDlent SYSTEM “aedi.ent”> 

bAEDlent; 

<!ELEMm shot (segment, begin-effect. 

end-effect)> 

. ..etc. 

Instance 

<scene id=“scene I “> 
<segment, 

&egin>oo:OO+2:3Oc</begin> 

<en&OO:OOzO4:Wend, 

4segmenO 

<story>The hero steps into the 

room&tory> 

<actor_link reference=“RDN”> 

cshot id=“shotl”> 

uegmeno 

:!ELEMlZNT scene (segment, story, 

stor_link*. shot+)> 

:!ELEMEtVTstory(#FCDATA)> 

:!ATTLIST story 

aedi CDATA #FIXED”property” 

basetype CDATA FlXED”striog”> 

:!ELEMENT actor-link EMFlY> 

:!AlTLIST actor_liok 

aedi CDATA #FlXED”intlink” 

reference IDFCEF #REQUIRED 

refersto CDATA #FIXED “actor.5 

:!ELEME!! actor (ate. name)> 

:!AlTLISTactor 

id ID #REQUIRED> 

<?xml version=“1 .o” encoding=“UTF-8”?> 
<begin>oO:oO:O2:3Odbegin, 

<end> 00:0@.03:004end> 
<segmentation> 

Gimespaco 
c/segment> 

cdocumeotID>H3244documeotl~ 
4egio_effecPcut</begin_effecO 

<projection timebase=“intemal”> 
<end_effecWut</end_effeco 

</shot> 
Cprojtupb 

<intemal_timeref540:00:00:0040temal_timeref> 

<extemal_timerefz-OO:00:30:OO</extemal_timeref> 
cshot id=“shot2”> 

-5ntemal_duration>00:00:05:344ntemal_duration> 
<segmenb 

<begi#OO:oO:O3:OO&egin> 
~extemal_duration>00:00:05:3Wexternal_duration>~eod>00~00~03_2~end> 

</projtuple> 

</projection> 
</Segment, 

</timespace> 
<begin_effecDcutcibegin_effect> 

<end_effectxiissolvee<iend_effect, 

-AhoD 
<actor id=“RDN”> 

<ate/> 
c/scene> 

. ..etc. 
<name>Robert de Niro<namu 

dactor, 
u’segmentat~o~ 

Figure 10:Using XML to encode an AEDI description 

Besides. a description element may be an instance of a 
model. A model defines, in a way, the “interface” 
implemented by a description element. More precisely, an 
AEDI model defines the content model of a description 
object’“, i.e. which properties can, must or may be 
instantiated in the entity as well as the potential links 
from this entity to others. For example, a model for 
entities called “shot” could specify that these entities 
musf contain a property “cast” of type “list of string”, 
which provides the list of actors on screen, and might 
contain a property “camera-angle”. 

Finally, a description element can reference (i.e. be linked 
to) another one. For instance, a stratum “locutor” can be 
linked to a ATE of model “actor”. References can be 
named and typed: it is possible to specify to which model 
of an object a reference is pointing. 

Structure encoding using XML 
Being able to define a structured content model for a 
description is crucial for archives since descriptions ate 
produced, following systematic guidelines: descriptions of 
AV document are structured documents. Therefore, we 
decided to use XML as an exchange format for AEDI 
descriptions. Indeed, XML provides efficient structure 
control through DTDs. Moreover, it provides a common 
format for descriptions of AV documents and textual 
documents such as TV newspapers, scripts or elements of 
the production file. Indeed, AV archives store not only 

” AEDI content models are equivalent to SGML DTDs. 

AV data but also texts”’ which are extremely useful for 
the interpretation and the manipulation of AV documents 
and are potential hypermedia authoring sources. Using the 
same format for AV descriptions and text allows easy and 
generic linking and manipulation of data, which is 
generally considered as heterogeneous. 

From an XML point of view, AEDI data types are 
expressed as attributes [8] and AEDI elements (segments, 
strata and ATE) are stored in a parameter entity which is 
inserted in the DTD. 

The insertion of XML elements is also used to control 
AEDI logical, spatial and temporal constraints. For 
example, if a segment S2 is included in segment SI in 
the DTD, this means that the temporal and/or spatial 
borders of the instances of S2 should be included in the 
borders of the parent instance of S 1. It is also possible to 
store the temporal and spatial references as external links. 
In such a case, our format can be considered as an XML 
flavor of HyTime using a single standard coordinate 
space for time and space. 

From the XML description, the AEDI parser can build a 
tree-structure such as the one shown on Figure 7, which 
is then used for the manipulation of the AV document. 

Relating descriptors to an ontology 

AEDI properties and models define what we call 
descriptors, i.e. objects used to relate a concept and an 

” French legal deposit receives 50.000 pages a year of such textual 

documents. 
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element of a document. We propose the use of an 
ontolog?: to define the semantics of descriptors. An 
ontology is traditionally defined as the “specification of a 
conceptualization” [22], [23] and is used to represent the 
concepts associated with a domain. In this article, we will 
follow the definitions provided by [6], i.e. descriptors are 
linguistic termS”. The semantics of these descriptors is 
defined by the location of the terms in an “is-a” tree. Once 
the terms used in the domain are defined by experts using 
this tree structure, they can be used as primitives for any 
representation or encoding of the domain knowledge. This 
conforms to the ontologies as they are commonly defined 
in the literature [28]. In the end, each notion is 
represented by a term and defined in terms of its: 

. “interpretative semantics”: linguistic specification of 
the meaning and the knowledge content that 
corresponds to the symbol for a domain specialist. At 
this level, a symbol is understood as a term. 

. “formal semantics”: formal specification of the 
representation format and/or the possible values for 
the symbol. At this level, a symbol is understood as a 
logical predicate or function; 

. “computational semantics”: specification of the 

computational behavior of the symbol. At this level, 
a symbol is understood as an object to which 
messages can be sent so that it can exhibit some 
computational behavior. 

Dynamic hyperlinking 

Our AV-based hypermedia authoring environment is based 
on a database containing our ontology as well as XML- 
encoded texts and AEDI descriptions of AV documents. 
These have been created following controlled vocabulary 
guidelines: the tags are terms related to concepts in the 
ontology. 

Figure 11: Dynamic linking in an indexed 
repository. 

To help authors browse this primary resource and build 
up their hypermedia application, we provide dynamic 
linking among elements of the database. As they are all 
expressed using XML. documents of any kind are 
computable the same way. As shown on Figure 11, the 
application can thus dynamically link elements of any 
kind as long as they are indexed by the same concepts and 
constitute a link base similar to the ones developed in 
[ 171. Authors can browse the base by taking as an entry 
point the ontology (e.g.: see all the elements indexed by a 
particular term) or any document, which becomes, in a 
way. a table of contents for the others. Moreover, as the 
linking is done dynamically, documents can be added and 
retrieved from the repository without any major 
consequences for the hyperlink navigation facilities. 

Starting from this hyperlinked repository, authors can 
define presentation specifications by specifying a layout 
for the appearance of the information on the screen, which 
can then be applied as a style-sheet. 

An ontology of descriptors (or a semantic network) is a 
crucial tool for sharing descriptions of AV documents 
among members of a specific community. As a 
consequence. we are currently working on the creation of 
an ontology. which would allow the explicit 

representation of indexing methodologies used by the 
community of AV archivers. This ontology should also 
be able to represent the descriptors created during the 
production process (shooting, editing, broadcasting) as 
well as extracted by state of the art signal analysis 
algorithms. DISCUSSION AND FUTURE WORK 

However, this ontology will not be inserted into the 
AEDI model as a built-in feature. Indeed, efficient use of 
metadata requires agreement on a common ontology 
among users of specific community and different 
communities use different ontologies. Moreover, building 
a “one size fits all” ontology for describing AV content is 
probably impossible (cf. [13]) since as communities 
evolve, their ontologies also evolve. Communities adapt 
tools to their needs, so they would deviate from the use of 
a closed ontology and this would lead to ambiguity. 
Therefore, as we want AEDI to be as widely usable as 
possible, we provide specific links to relate descriptors to 
their ontological definition. Users are then free to 
organize their own ontological namespace and to declare 
their descriptors as they wish. 

In this section we describe the current implementation of 
our model at INA’s production department and we discuss 
the future of AEDI. 

Implementation issues 

INA’s production department is dedicated to the 
production of experimental programs for broadcasters. 
Since 1998, it has set up a multiple delivery production 
studio which aims at creating new types of programs 
based on indexed repositories of AV documents and in 
which the model described in this article is currently 
being implemented. 

Two initial prototypes have already proven the feasibility 
of the concept and contracts have been signed with French 
broadcasters for the production of experimental programs _ - 

I0 In some contexts, especially signal processing analysis. descriptors 
that could be “webcasted”. For each of these prototypes. 

might be numeric values, or even images or icons as in [ 151 
an indexing policy and presentation specifications have 
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been defined and hypermedia applications have been 
created by applying generic dynamic linking among 
elements based on the ontology. As a consequence, any 
properly indexed program can be processed the same way 
to create a new hyperdocument. 

Users of these hyperdocuments can watch the program and 
the rushes used to create it. They can browse it and search 
it following transcriptions issued by the producer, 
descriptions and annotations issued by documentalists. 
Finally, they can put their own bookmarks on the 
document and come back to what they liked or even edit a 
new AV document based on their bookmarks. The whole 
process is based on manipulation of AV document 
descriptions and, in the end, is applied to the content. 

Future Work 
In the future, we plan to test the robustness and the 
genericity of our model by confronting it with real life 
multiple delivery productions. In particular, we shall 
develop interfaces such as the one described in [27] for the 
interaction with document descriptions. Indeed, AV 
directors are not computer specialists and their adaptation 
to hypermedia authoring implies user friendly tools. 

Moreover, we intend to develop this model towards the 
specification of future hypermedia interfaces for accessing 
and browsing digital AV archives. The development of 
such systems should allow better access to archival 
documents and thus better re-use of available AV data in 

AV, hypermedia and multimedia productions. 

CONCLUSION 
In this article, we described our model for AV-based 
hypermedia authoring environments. We focused on the 
central role of document content representations for the 
efficient browsing and manipulation of large repositories 
of digital AV documents. Then we introduced Audiovisual 

Event Description Interface (AEDI). our model for the 
description of AV documents. We described AEDI 
temporal model, description elements and structure 
control facilities, then showed how relating descriptors to 
an ontology of the domain knowledge could help in 
creating links dynamically and provide better browsing 
facilities. 

As a conclusion, we would like to stress the fact that the 
digitization of AV archives provides an important 
opportunity for the domains of digital libraries, 
hypertexts and multimedia. Indeed, until now, scientists 
from these communities have built very powerful models, 
but these have not yet been combined. Digital AV 
archives, and the opportunity that they represent for 
hypermedia authors, provide an adequate context for this 
convergence. Nevertheless, adequate models remain to be 
defined to allow future developments. We believe that our 
view of AV-based hypermedia authoring environments 
provides an efficient framework for such models. 
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Abstract 

Segmenting video documents into sequences from ele- 
mentary shots to supply an appropriate higher level de- 
scription of the video is a challenging task. This paper 
presents a two-stage method. First, we build a binary 
agglomerative hierarchical time-constrained shot cluster- 
ing. Second, based on the cophenetic criterion, a break- 
ing distance between shots is computed to detect sequence 
changes. Various options are implemented and compared. 
Real experiments have proved that the proposed criterion 
can be efficiently used to achieve appropriate segmentation 
into sequences. 

1 Introduction 

Browsing and querying data in video documents requires 
to first extract and organize information from the audio and 
video tracks. The first step in building a structured descrip- 
tion is to segment the video document into elementary shots 
which are usually defined as the smallest continuous units of 
a video document, Numerous methods for shot segmenta- 
tion have been proposed (e.g., see [3]). Nevertheless, shots 
are often not the relevant level to describe pertinent events, 
and are too numerous to enable efficient indexing or brows- 
ing. 

The grouping of shots into higher-level segments has 
been investigated through various methods which can be 
gathered into three main families. The first one is based 
on the principle of the Scene Transition Graph (STG) [91, 
which can be formulated in a continuous way [7], or accord- 
ing to alternate versions [4]. Methods of the second fam- 
ily [I, 21 use explicit models of video documents or rules 
related to editing techniques and film theory. In the third 
family [5, 81, emphasis is put on the joint use of features 
extracted from audio, video and textual information. These 
methods achieve shot grouping more or less through a com- 
bination of the segmentations performed for each track. 

0-7695-0750-6/00 $10.00 0 2000 IEEE 

We present a method based on a so-called copherretic 
criterion which belongs to the first family. The sequel is 
organized as follows. Section 2 describes our method in- 
volving an agglomerative binary hierarchy and the use of 
the cophenetic matrix. Section 3 specifies the various op- 
tions we have implemented with respect to extracted fea- 
tures, distance between features, hierarchy updating, and 
temporal constraints. Experimental results are reported in 
Section 4, and Section 5 contains concluding remarks. 

2 Binary hierarchy for describing shot simi- 
larity 

We assume that a segmentation of the video into shots is 
available, where each shot is represented by one or more ex- 
tracted keyframes. The information representing a shot (ex- 
cept its duration) is given by the (average) signature com- 
puted from the corresponding keyframes. We build a spiitio- 
temporal evaluation of shot similarity through a binary ag- 
glomerative hierarchical time-constrained clustering. 

2.1 Binary agglomerative hierarchical time- 
constrained clustering 

To build a hierarchy following usual methods [lo], we 
need to define a similarity measure s between shots, and a 
distance between shot clusters, called index of dissimilar- 
ity 6. The temporal constraint, as defined in [9], involves 
a temporal distance dt . We introduce a temporal weighting 
function W accounting for a general model for the tempo- 
ral constraint. The formal definitions of all these functions 
will be given in Section 3. The time-constrained distance 
d between shots is defined (assuming that similarity is nor- 
malized between 0 and 100) by : 

100 - s ( i , j )  x W ( i , j )  if d t ( i , j )  5 AT 
otherwise d(i,j) = 
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where i and j designate two shots and AT is the maximal 
temporal interval for considering any interaction between 
shots. 

At the beginning of the process, each shot forms a clus- 
ter, and the time-constrained dissimilarity index between 
clusters is then the time-constrained distance d between 
shots. A symmetric time-constrained N x N proximity 
matrix d = [J(i, j ) ]  is considered [6], using b to evaluate 
the dissimilarity between clusters. The hierarchy is built by 
merging the two closest clusters at each step. The matrix V 
is updated according to the index of dissimilarity 8 to take 
into account each newly created cluster. This is iterated un- 
til the proximity matrix contains only infinite values. The 
resulting binary time-constrained hierarchy supplies a de- 
scription of the spatio-temporal proximity of the extracted 
shots. 

2.2 Cophenetic dissimilarity criterion 

In [6], another proximity matrix D,, called copkenetic 
matrix, is proposed to capture the structure of the hierar- 
chy. We will use the time-constrained version d, of this 
matrix to define a criterion for the segmentation of the 
video into sequences. The cophenetic matrix is expressed 
as D, = [d,(i, j ) ] ,  where & is the so-called clustering dis- 
tance defined by : 

where 8 is the index of dissimilarity constructed from d, 
and Cp and C, are two clusters. Assuming that the shot in- 
dices follow a temporal order, the copkenetic matrix leads 
to the definition of our criterion for sequence segmentation, 
called breaking distance, calculated between two consecu- 
tive shots as : &(i, i + 1) = mink<i<l - {*,(k, I)}. 

2.3 Segmentation using the breaking distance 

If the breaking distance I&, between consecutive shots ex- 
ceeds a given threshold rc, then a sequence boundary is in- 
serted between these two shots. An example is presented on 
Fig 1 where two different thresholds to perform segmenta- 
tion into sequences TI = 20 and r2 = 45 are considered. 
Fig. 2 displays results corresponding to thersholds 7-1 and 
72. 

2.4 Comparison with the STG method 

We have formally proved that our method delivers the 
same segmentation into sequences as the STG method de- 
scribed in [9]. Considering that STG method considers in a 
binary way inter-shot spacing and implies non-obvious set- 
ting of parameters [7],  the advantage of our formulation is 

to smooth the effects of time, in the time-constrained dis- 
tance, using continuous temporal weighting functions, and 
to consider a threshold parameter related to sequence seg- 
mentation and not to shot clustering. As a consequence, our 
approach allows one to visualize what the segmentation re- 
sults are according to the selected threshold value which can 
then be appropriately tuned by the user. There is no need to 
rebuild the STG whenever the threshold is changed. 

i : : I l  
-5 - - _ _ - _ _ _ _ _ _  _ - - -  

0 
4.4 4.45 4.5 4.55 4.6 4.65 

4.4 4.45 4.5 4.55 4.6 4.65 

- 
4.4 4.45 4.5 4.55 4.6 4.65 

" 
4.4 4.45 4.5 4.55 4.6 4.65 

lo4 Frame nb 

Figure 1. Thresholding the breaking distance 
values on excerpt 1 of Avengers movie (up- 
per row), detected sequence boundaries for 
71 (upper middle row) and r2 (lower middle 
row), and manual segmentation (lower row) 

3 Description of implemented options 

3.1 Signatures for shots 

We have considered in pratrice three kinds of signatures 
: shot duration, color and region-based color histograms. 
Color and region-based color histograms are defined in the 
(Y, cb7 CT) space with respectively 16, 4, and 4 levels, 
and 12 image blocks are considered for region-based his- 
tograms. The shot duration gives a relevant information on 
the rhythm of the action and on the editing work. 

3.2 Distances between signatures 

Various distances between signatures have been tested. 
Comparison between histograms can be achieved using his- 
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togram intersection, euclidian distance, x2 -distance. The 
distance chosen between shot durations is the Manhattan 
distance. 

3.3 Updating of the agglomerative binary hierar- 
chy 

In order to update the classification hierarchy, two algo- 
rithms are available [ 101 : 

e the Complete Link method. The index of dissimilarity 
between clusters is defined by : 

e the Ward’s method. The index of dissimilarity between 
clusters is given by : 

where Gc; is the gravity centre of cluster Ci, nci rep- 
resents either CurdinuZ(Ci) or Durution(Ci). 

In both cases, the-Lance and Wjlliam formula, given by 
b ( A  U B,C)  = u16(A,C) + u ~ ~ ( B , C )  + u36(A,B)  + 
u4(b (A ,  C )  - b(B, C)l, is used to update the proximity ma- 
trix. We have ul = u2 = u4 = $, u3 = 0 for the Complete 

u4 = nA,T+nc for the Ward’s method. 
n +n 

Link method, and a1 = n:;4::~,, u2 = na:B+Zc 9 ‘ 3  = 0 9  

si 
4 * -  so 

s5 S6 s7 

Figure 2. Obtained sequence segmentation 
on excerpt 1 of Avengers movie for threshold 
T ~ .  S3 is an angle / reverse angle sequence. 
S5 is a fade out I fade in effect. 

3.4 Temporal weighting function 

The temporal weighting function is used to constrain 
the distance and the index of dissimilarity as introduced in 
equation 1. In [9], only one type of temporal weighting 
function was proposed, i.e. rectangular function which is 
not smooth. We have tested three smooth functions : linear, 
parabolic, and sinusoidal. 

4 Experimental results 

We have evaluated our method on a three hour video cor- 
pus. We report here results on four excerpts of two minutes. 
Three excerpts are taken from Avengers movies to evaluate 
the segmentation into sequences in different contexts. The 
first one comprises an angle / reverse angle editing effect 
and a transition with a dissolve effect. The second one in- 
cludes a set change, and the third one involves color and 
rhythm changes. Obtained segmentations can be compared 
with a hand segmentation acting as ground truth. In plots 
displayed in Figures 1, 3 and 4, main sequence changes 
are represented by a value of 1 and secondary changes by 
a value of 0.5. The last excerpt is extracted from a news 
program to test the relevance of the built hierarchy. 

Among the implemented options, three sets of descrip- 
tors and functions are selected : ( 0 1 )  color histograms 
intersection, rectangular temporal weighting function, and 
Complete Link method, ( 0 2 )  color histograms intersection, 
parabolic temporal weighting function, and Ward’s method 
based on cluster duration, ( 0 3 )  Manhattan distance on shots 
duration, parabolic weighting function, and Ward’s method 
based on cluster duration. 

Results obtained on the news program excerpt show that 
the clustering distance d, provides a correct description of 
the similarity between shots at different levels, even if the 
information distribution is not homogeneous in the various 
levels of the hierarchy. An adaptive thresholding applied to 
breaking distance values would be nevertheless necessary to 
avoid heterogeneous results. Tests have shown that the best 
video segmentation into sequences is found using option set 

In the processed excerpts, most of the sequence changes 
were correctly detected, when the proper options were se- 
lected. On Fig. 1, we can point out that, using 7 1  and op- 
tion 01, all changes are detected with only one false alarm, 
the angle / reverse angle effect is recognized. Selecting the 
threshold value is nevertheless a rather critical issue. On 
excerpt 2, with a relevant threshold, we extract all the cor- 
rect boundaries with option 0 1 ,  with only one false alarm 
(Fig. 3) .  Using option 0 2  false alarms and missed detec- 
tions increase on excerpt 2. The color and rhythm changes 
in excerpt 3 (Fig. 4) have been better detected using option 

0 2 .  
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03, rather than 01. Consequently, how to automatically se- 
lect the proper option remains an open issue. 

5 Conclusion 
" 

3.05 3.1 3.15 3.2 3.25 3.3 3.35 

~~ 

3.15 3.2 3.25 3.3 3.35 

" 
3.05 3.1 3.15 3.2 3.25 3.3 3.35 

i o 4  Frame nb 

Figure 3. Breaking distance values on excerpt 
2 of Avengers movie using Option 01 (Upper 
row), option O3 (middle row), and manual seg- 
mentation (lower row) 
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Figure 4. Breaking distance values on excerpt 
3 of Avengers movie using option O1 (upper 
row), option O3 (middle row), and manual seg- 
mentation (lower row) 

The method described in this paper, based on the cophe- 
netic matrix, enables to accurately and efficiently segment 
video documents into sequences by building a binary ag- 
glomerative time-constrained hierarchy. We have imple- 
mented several versions. Selecting the most appropriate one 
improved results and gave a better description of the simi- 
larity of the shots through the hierarchy. Experiments on a 
larger base will be conducted in future work for selecting 
the best parameter set and evaluating altemative threshold- 
ing stategies. 
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Abstract 
 

In the context of video indexing, we present the Clavis system in which typical video sequences of television 
programs are represented by templates. Templates are terminological constraint networks in which video 
segments coming from automatic analysis tools are represented in a description logic formalism. Templates 
allow to express complex classes of video sequences with temporal constraints associated to a regular expression 
operator. Recognizing occurrences of a template in a video program is a plan recognition problem for which 
efficient methods have been implemented in a constraint satisfaction problem framework. The paper describes 
the system and illustrates its use with several experiments that were done in the context of the DiVAN european 
project. 
 
 

Introduction 
An important step towards content-based indexing television programs is the segmentation of the 
video into independent meaningful units, intermediate between the shot and the complete program.   
This is an inherently ill-posed problem in general, since even experts fail to agree on a common 
vocabulary of those units, and how to compare different segmentations. The problem becomes more 
tractable in more constrained situations, such as a collection of videos built on a common pattern or 
model. In that case, we can view segmentation as a plan recognition problem, where the plans to be 
recognized are characteristic of a collection of videos – such as a particular broadcast news or variety 
show. In this communication, we introduce a representation language and a computational framework 
for building such abstract models of television program collections, and recognizing the models from 
observations.  

In (Ronfard, 1997) it was first proposed to use a description logic to describe and index video shots 
with a rich set of film concepts. (Carrive et al., 1998) further elaborated on this idea, and extended the 
proposal to a general taxonomy of film events, useful in the description and the analysis of video 
documents in the large.  In this paper, we present Clavis (Classification of Video Sequences), a system 
which classifies typical video sequences found in collections of  television programs, using temporal 
compositions of film events. The classes of sequences are represented as templates which are 
terminological constraints networks. Recognizing occurrences of templates within the video is 
presented as a plan recognition problem and the solution proposed is an extension of the T-Rex system 
originally proposed by (Weida, 1995), which combines symbolic temporal relations with a regular 
expression operator.  

The paper is structured as follows. In section 0, we describe how classes of video segments coming 
from automatic analysis tools are represented in a description logic formalism, and used as building 
blocks of the Clavis system. In Section 3, we further explain how templates are defined as 
terminological constraints network and how the recognition process is designed. Finally in Section 4, 



we present some experiments that were done in the context of the DiVAN (Distributed Audiovisual 
Archives Network) project1. 

Templates: descriptions of video sequences 
A lot of periodic television programs, such as newscasts, variety shows or magazines, follow a 
predefined scenario which presents very little variation from one edition to another. These programs 
are part of what is called a collection. We propose to describe typical sequences of such programs 
using templates and we use a plan recognition algorithm based on Weida’s work on terminological 
constraints network (Weida, 1995). 

A plan recognition problem 
We claim that recognising the occurrences of a template in a television program is similar to 
recognising which plan some active agent is following (Kautz, 1991) or recognising which predefined 
scenario best describes the evolution of a dynamic system (Ramaux et al., 1996), and we present this 
problem as a plan recognition problem. In (Fontaine, 1996), the author distinguishes four steps in a 
plan recognition process: opportunity, filtering, activation and discrimination. We will concentrate in 
this paper on the last step, which can be formulated in our case as the problem of finding in a video 
program made of automatically labelled segments the occurrences of a typical sequence represented 
by a template2. This recognition process often results in attributing a modality to the plan being 
processed, depending on whether the observations satisfy, don’t satisfy or are compatible with the plan 
(Weida, 1995). (Ramaux and Fontaine, 1996) present a method that computes a proximity measure 
between the plan and the observations. We will focus in this paper on determining whether a set of 
observations satisfies or don’t satisfies a template. It has turned out that determining whether the 
observations are compatible with a template is difficult and we temporarily put this task to one’s side. 

Following (Weida, 1995), we define a template as a terminological constraint network. The vertices of 
the network are associated with concepts which describe classes of video segments coming from audio 
or video analysis tools. The edges of the network are temporal constraints which have to be respected 
by the observations, i.e. the video segments coming from the analysis tools. In addition to Weida’s 
formalism, we define an iteration operator “*” which expresses a contiguous sequence of video 
segments. For instance, a simple template may describe a report as a sequence of consecutive shots 
with a logo appearing during the first shot of the sequence. This template is defined by the following 
expression: 

Report 
nodes:  s1 [Shot] 
 s2 [Shot*] 
 s3 [Logo] 
constraints : s1 {meets} s2 
 s3 {starts ∨ during ∨ finishes} s1 
 s1 {starts} this 
 s3 {finishes} this 

 

Classification of basic film events 
Everything that appears on the screen, or is heard in the soundtrack constitutes an event. In this paper, 
we will consider that the temporal part of an event is only a time interval – for example a start point 
and a duration – identifying the temporal occurrence of the event within the video. Much like in 
grammars, we assume that a video is composed of several terminals, which we call segments. These 

                                                      

1 DiVAN is the Esprit project N° 24956. 
2 We choose the term “template” because scenario or plan (“plan” means “shot” in French) are ambiguous in the 
television domain. 
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events are terminal because they are not themselves composed of other segments. An event can be a 
particular shot, which is what is filmed in one shot of the camera, a segment of music, a gradual 
transition between two shots as a dissolve, etc.   

When applied in the context of DiVAN, the complete indexing process consists of the following steps: 
1) initial segmentation of the audio and video track, producing at least two separate segmentation 
layers (usually more); 2) feature extraction and classification of segments, based on learned statistical 
models; 3) symbolic classification, using DL descriptions; and 4) recognition of  composite events. In 
this paper, we assume the results from 1) and 2) provide a set of terminal events and focus on step 3) 
and 4). 

Description Logics Description logics (Nebel, 1990) form a family of knowledge representation 
languages which derive from works on semantic networks and frame languages. In a description logic, 
concepts represent sets of individuals, and roles represent binary relations between individuals. 
Concepts can be seen as unary logical predicates, as roles are similar to binary logical predicates. 
Concepts can be described by syntactic operators as intersection (AND), union (OR), restrictions on 
the domain of a role or on the cardinality of a role. Concepts (and sometimes roles) are organized into 
a taxonomy according to a generality link – a subsumption link. Computing the subsumption relation 
between two concepts is one of the principal task of a description logic system. Instantiation is one 
other important operation, which compute the set of concept an individual belongs to. Primitive 
concepts are defined with necessary – and not sufficient – conditions, as defined concepts are defined 
with necessary and sufficient conditions.  

Taxonomy of film events Using the CLASSIC system (Borgida, 1989), we define classes of events as 
concepts, focusing of classes of events which can be automatically recognized by audio and/or video 
analysis tools, such as those which are integrated in the DiVAN prototype: segmentation into shots, 
face regions and text regions detection, music/speech discrimination, jingle detection in the audio 
track, for example. 

Figure 1 shows five concepts corresponding to cases where a face region can be detected clearly. 
These concepts are derived from terms of a cinematographic vocabulary, called “shot values”, and 
range from close-up (CU), where the face occupies approximately half of the screen, to the long shot 
(LS), where the human figure is seen entirely, and the face occupies around ten percent of the screen. 
Intermediate shot values are the medium shot (MS), the medium-close-up (MCU) and the medium-
long-shot (MLS) (Thompson, 1998). Shot values are usually defined in relative and imprecise terms, 
based on the distance of the subject to the camera. We use the fact that the apparent size of faces on 
screen vary inversely with their distance to the camera to provide a computable definition of shot 
values. The ratio of the width of the face to the width of the frame is used to classify a shot among the 
five concepts. For example, the CLASSIC definition of a MCU shot is the following: 

 (cl-define-concept 'MCU-Face 
 `(and 
 face 
 (all face-ratio (and (min ,(/ 1 6)) (max ,(/ 1 2)))))) 
 

Face

CU MCU MS MLS LS
 

Figure 1: shot values 

The algorithm used in DiVAN to segment a video into shots also detects two different classes of 
progressive transitions between shots, namely dissolves and wipes. In a dissolve, the existing image is 



progressively replaced by superimposing a new image. In a wipe, a geometric pattern – often a simple 
line – erases the existing image and reveals the new one. This editing effects are illustrated by Figure 
2. 

Transition

Dissolve Wipe

Dissolve

Wipe

 

Figure 2: progressive transitions between shots 

In may happen in some collections of documents that low-level features can directly provide high-
level information. For example, in the five editions of the “France 3” evening newscast “Soir 3” from 
the DiVAN corpus, when some text is displayed at the bottom left  of the screen during a medium 
close-up shot of a character, the text always refers to the character on-screen, mentioning its name and 
sometimes its function or role (see Figure 3). Thus, a “named person shot” can be defined by the very 
simple CLASSIC expression: 

 

 (cl-define-concept ‘NamedPersonShot 
 ‘(and 
 MCU 
 BottomLeftTextShot))) 
 

 

Figure 3: example of a NamedPersonShot 

When a shot is classified both as a MCUShot and as a BottomLeftTextShot, it is automatically 
classified as a NamedPersonShot. The definition of this concept is specific to the “Soir 3” newscast. 
Specific concepts are defined for each collection, starting from generally defined concepts as MCU. In 
other words, a general taxonomy of concepts is specialized for each collection of programs. 

Constraint networks 
A template is a temporal constraint network whose vertices are associated with concepts defined in a 
description logic formalism, or with other templates. A vertex associated with a concept is called an 
“elementary” vertex and a vertex associated with a template is told a “composed” vertex. An iteration 
operator “*” is defined which can be applied on the vertices of the network which are associated with 
concepts or with certain types on templates. This types of templates will be discussed later. The “*” 
operator can be compared to the “+” operator in regular expressions, as it indicates a contiguous 
sequence of at least one element. Non iterated vertices are told “simple” vertices. This iteration 
operator indicates a sequence of contiguous events. This leads to four different types of vertices: 



• simple elementary vertices (vC) 
• simple composed vertices (vT) 
• iterated elementary vertices (vC*) 
• iterated composed vertices (vT*) 

The edges of the network are temporal constraints. In the current implementation of the system, these 
temporal constraints are temporal relations in the full interval algebra. A template is recognized – or 
satisfied – if and only if : 

• each simple elementary vertex vC is matched with an observation which is an instance C; 
• each simple composed vertex vT is matched with a subset of the observations which satisfies 

T; 
• each iterated elementary vertex vC* is matched with a subset of the observations forming a 

contiguous sequence of instances of C; 
• each iterated composed vertex vT* is matched with a subset of the observations forming a 

contiguous sequence of satisfied templates T; 
• the matching respect the temporal constraints defined in the template. 

When a set of observations satisfies a template T, it is said to be an instance of T. Without iterated 
vertices, the problem of template recognition comes down to find a matching between the constraint 
network and the observation network. This network matching problem has been proved to be NP-hard 
(Weida, 1995). Recognizing templates with iterated vertices lead to matching vertices of the template 
with sub-networks of the observation network. In order to avoid a combinatorial explosion, we 
designed methods which are very efficient for the type of cases we have to deal with. An overview of 
these methods is presented in section 0. 

Temporal constraints 
Several representations of time may underlie a temporal constraint network. The two main categories 
are the time point algebra (Vilain et al., 1989) and the time interval algebra (Allen, 1983). Complete 
constraint propagation in the latter representation is NP-hard and tractable subclasses of this algebra 
have been proposed (Nebel et al., 1994; Drakengren et al., 1997). Following (Weida, 1995) we have 
chosen the full interval algebra with a 3-path consistency constraint propagation algorithm which is 
potentially non complete. The reason why we choose this formalism is that when we started this work 
we didn’t have a precise idea on what would be the most appropriate representation of time. We thus 
adopted this very general and expressive formalism. In a second step, we should work on determining 
what are the temporal constraints we really need. For example, it appeared on the one hand that 
numerical constraints such as “a segment of music which starts less than 30 seconds before a shot”, as 
in (Aigrain, 1997), would enhance the powerfulness of our system. On the other hand, the full 
expressiveness of Allen’s algebra didn’t appear yet to be necessary. 

The temporal extension of an instance t of a template T can be specified in the template definition by 
setting temporal constraints between t – or more precisely what will be t when T will be recognized –  
and its components. The instance of a template is designed by “this” in the template definition. For 
example, the template illustrated by Figure 4 defines a “musical shot” as a shot which appears during a 
musical segment. The temporal extension of a musical shot is naturally set as being equal to the 
observed shot. Note that any disjunction of Allen’s relations may be set between the instance of a 
template and its components. 



MusicalShot 
nodes: s1[Shot] 
 s2[Music] 
constraints: s2 during s1 
 s1 equals this 
 
 

Figure 4: temporal extension of an instance of template 

Iterated sequences 
An iterated vertex vC* or vT* in a template represent a contiguous sequence of observations which are 
instances of C or instances of T. An iterated sequence contains at least one element, and the elements 
of an iterated sequence are contiguous, which means that two successive elements must be related by 
the Allen’s meets relation. The temporal extension of an iterated sequence is defined as the temporal 
union of the temporal extensions of its elements. This implies that the temporal extensions of those 
elements are known, which lead to limit the types of templates which can be associated to an iterated 
vertex (see section 0).  These types of templates are what we call “bounded” templates, i.e. templates 
whose temporal extension of instances may be computed. Roughly, a template is bounded if some of 
its vertices are in such a temporal relation with “this” that the temporal extension of its instances may 
be computed from the temporal extension of its components. This vertices have to be associated with 
event concepts or with other bounded templates. The temporal relations that allow to compute the 
starting point are starts, is-started, meets, equals, and the temporal relations that allow to compute the 
ending point are finishes, is-finished, is-met, equals. 

The Figure 5 illustrates an iterated sequence of the template MusicalShot illustrated by Figure 4. Note 
is this example that the same segment of music was used to recognize each of the shots as instances of 
the MusicalShot template. 

Music

Shot-1 Shot-2 Shot-3 Shot-4

MusicalSequence

 

Figure 5: example of an iterated sequence 

Other constraints 
Once the general architecture of a template is designed as a temporal constraint network whose 
vertices are associated to concepts in a taxonomy of audiovisual events or with other templates, and 
whose vertices may be iterated in some cases, it is possible to define other constraints on its vertices. 
For example, we define a “no … between” constraint telling that for a template to be recognized, there 
should be no instance of some concept C or some template T between the observations matched with 
two of the vertices of the template. For example, the template illustrated by Figure 6 defines a report 
as the sequence of shots that is shown between two consecutive “jingle” shots, a jingle shot being a 
shot during which some instance of Jingle is heard. 

Music

Shot

MusicalShot



Report 
nodes: s1[Shot] 
 s2[Shot*] 
 s3[Shot] 
 s4[Jingle] 
 s5[Jingle] 
constraints s1 meets s2 
 s2 meets s3 
 s4 during s1 
 s5 during s3 
 s2 equals this 
 no Jingle between s4 s5 

Figure 6: example of template with a “no … between” constraint 

Other constraints could be easily defined, which would be taken into account by the constraint solver 
during the recognition process. It might be for cardinality constraints on the number of elements of an 
iterated sequence, or even numerical constraints on the temporal dimension of vertices, as “two 
instances of Jingle separated by at least 30 seconds”. Note however that these constraints would not be 
taken into account during the construction of the temporal constraint network, and thus that 
inconsistencies would not be detected. In this case, the recognition process would scan the whole 
search space before answering that there are no solutions. 

CSP techniques for template recognition 
The problem of recognizing instances of a template T among the observations is expressed as a 
constraint satisfaction problem (CSP). Roughly, each vertex of T gives a variable of the CSP. Each 
variable takes its values from its domain, a finite set of possible values. The solutions of the problem 
are expressed as a set of constraints which are boolean functions whose arguments are variables.  

In this section, we give an overview of the implementation of the Clavis system, focusing on the 
recognition of iterated sequences. The implementation deeply relies on BackJava (Roy et al., 1999), a 
(CSP) framework which allows to implement specific classes or variables, constraints and even 
domains or heuristics as subclasses of general purpose predefined classes. Thus, general mechanisms 
as arc-consistency can be used, as specialized filtering methods can be defined. In the system 
presented here, we use general unary constraints for checking that a simple elementary vertices are 
matched with observations that are instances of the concept associated with the vertex, general binary 
constraints for temporal constraints between simple vertices and specialized filtering method for 
temporal constraints which implies iterated vertices. These methods are sketched below. Finally, we 
let the default resolution mechanism of BackJava realize the recognition process, i.e. we let it choose 
when it should instantiate a new variable, which variable to choose, when it should backtrack, etc. The 
time responses we get during the experimentations we did – a few seconds for templates with iterated 
composed vertices with about 200 observed events – were quite encouraging and we didn’t try to 
optimize the resolution phase. 

The most complicated part of the implementation concerns iterated vertices of templates. We describe 
what is done with iterated elementary vertices. Iterated composed vertices associated with a template T 
are managed in a similar way after all instances of T have been recognized. Each iterated elementary 
vertex vC* gives an “iterated variable” of the CSP. The first problem is to represent the domain of the 
variable, i.e. the set of iterated sequences of instances of C. The number of such sequences can be very 

important. For example, for an observation network made of N consecutive shots, there are 
N(N+1)

2   

distinct iterated sequences of shots. In this case, illustrated by Figure 7, all sequences of shots may be 
represented as sub-sequences of the biggest sequence of shots, which is called a “maximal” sequence. 
A maximal sequence of instances of C is an iterated sequence of instances of C where no observation 
is both an instance of C and is in the meets relation (respectively the is-met) relation with its first 
(respectively its last) element. Each sub-sequence is uniquely determined by its size and the index of 

Shot-2 Shot-3 Shot-4 Shot-5

Report

Shot-6 Shot-7 Shot-8Shot-1

Jingle-1 Jingle-2 Jingle-3

Report



its first element in the maximal sequence. An indexing function is used, which associates a unique 

integer between 0 and 
N(N+1)

2  -1 to all sub-sequences of a maximal sequence of size N according to 

their size and the index of their first element in the maximal sequence. The domain of an iterated 
variable is thus represented as a list of integers which is internally implemented as a list of intervals. 
This kind of integer variables are already implemented in BackJava which takes in charge basic 
operations on intervals, like union or intersection. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

6 7 8 9 10

i=6

w=5

Shots

 

Figure 7: representation of sub-sequences 

In order to compute the domain of an iterated variable representing an iterated vertex vC*, one’s must 
first compute the set of all maximal sequences of instances of C. This computation could be very 
expensive in the general case, but is quite acceptable for the kind of cases we have to process. 

Temporal constraints which imply an iterated variable are implemented using a set of several filtering 
methods. Each of this method is intended to reduce the domain of the iterated variable in a given 
context. The general principal is the following. Let CR(v, v*) be a temporal constraint which imposes 
hat the values of the two variables v and v* are in the R temporal relation, v* being an iterated 
variable, v being either iterated or not. When v is instantiated, i.e. when the solver chooses a value for 
v, some filtering methods are called which suppress from the domain of v* the iterated sequences 
which don’t respect the R relation. 

Let us take as example a template which specifies that a jingle must precisely meets an iterated 
sequence of shots. The meets relation is expected to be frequently encountered in templates, and thus a 
specialized filtering method has been designed for it. The vJ variable represents the jingle and the vS* 
variable represents the shot sequence. The observations are illustrated by Figure 8. During the 
recognition process, the solver may choose to affect the jingle-1 to vJ. In this case, the doMeets 
filtering method is called, which suppresses from the domain of vs*. all the sequences which don’t start 
with the sixth shot, as illustrated in the figure. Similar methods are designed for other cases which are 
expected to frequently happen, as the starts, equals or finishes temporal relations.  

Another set of 13 methods are designed to cope with any temporal constraint, one for each of the 
Allen’s basic temporal relation. For the r Allen’s basic relation, the filtering method doNot-r is 
implemented, which takes as argument an iterated variables v* and an observed event e, and which 
suppresses from the domain of v* all the sequences which are in the r relation with e. In order to 
process a CR(v, v*) constraint in the case where R is any disjunction of Allen’s basic relations, the 
doNot-r method is called for all the Allen’s basic relation r which are not part of R. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

jingle-1

Shots

jingle-2  

Figure 8: filtering iterated variables 

Template subsumption 
It would be appreciable if the template library was hierarchically organized according to subsumption 
links, as are concepts in a taxonomy. In (Weida, 1995), recognizing instances of templates among the 



observations amounts to testing subsumption between templates, as plans and observations are roughly 
the same kind of temporal constraint networks. Unfortunately, the iteration operator we introduce in 
the template definition language results in an important complexity in the computation of subsumption 
between templates, as the ‘*’ may appear in both the subsuming and the subsumee template. This 
implies that computing subsumption would necessitate to find a matching from sub-networks of the 
subsuming constraint network to sub-networks of the subsumee constraint network. Consider for 
example the templates T1 and T2 illustrated by Figure 9. T1 subsumes T2, as any set of observations 
recognized as an instance of T2 would also be recognized as an instance of T1. 

Shot* Shot
meets

Logo

Shot Shot*
meets

Logo
during during

T1 T2

Shot
meets

 

Figure 9: templates subsumption 

Experimentation 
We present in this section some experimentation we made on different broadcast news. Some of the 
documents come from an annotated corpus which was provided by INA and the AIM3 group, the other 
are part of the corpus of the DiVAN project. The results presented here rely on reference 
segmentations established for evaluation of analysis and classification tools of the DiVAN project 
(Bouthemy et al., 1999). The newscasts presented here fall into two main categories: 

• Traditional newscasts, alternating between the anchor person in the studio, and pre-recorded 
stories; 

• Short newscasts composed of a small set of pre-recorded stories separated by jingles and/or 
graphics. 

In order to recognize reports from this two types of newscast, two different methods are used which 
use different templates. It should be noted that similar classes of events – similar concepts – in two 
different newscast may have different definitions at the signal level. For example, the name of a 
character being filmed appears differently in a “Soir 3” and in a “France 2” evening newscasts, as well 
as the place of the logo is different (see Figure 3 above and Figure 10 below). 

Reports of “France 2” newscast 
In an edition of the “France 2” evening newscast, report sequences alternate with shots showing the 
anchorman in a studio. The anchorman can be filmed from different cameras. The logo of the channel 
always appear during report sequences on the bottom right of the screen, and never appears on studio 
shots, except once4. During report sequences, a text inscription on the bottom left of the screen always 
indicates the name of the person being filmed as a text inscription on the bottom right of a medium 
close-up shot always indicates the name of the location where the action takes place. Detecting these 
types of shots is interesting for at least two reasons. First, it may help to temporally structure the report 
sequence itself. Second, these shots may be used for summarize the report sequence, by for instance 
preferably select keyframes coming from these shots. 

By exploiting the results of three analysis tools, namely a logo, a text region and a face region 
detection tool, four classes of shots can be defined for this newscast. These four classes are illustrated 
by Figure 10 and are organized according to subsumption links as shown in the figure. 

                                                      

3 Action Indexation Multimedia 
4 We do not take this shot into account here 
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Figure 10: the four classes of shots from “France 2” evening newscast 

We present here an edition of a “France 2” newscast coming from the AIM corpus. This document 
contains 157 shots, including 15 studio shots, 7 shots of named persons and 11 shots of named places. 
The temporal order of the shots is shown Figure 11. In the figure, the missing shots are report shots 
which are not shots of named place or named person.   

.
NamedPersonShot

NamedPlaceShot
StudioShot

Reports

r1 r2 r3 r4 r5 r6 r7

time
 

Figure 11: temporal order of shots in “France 2” example 

In this example, we define a report as being what is shown between two shots of the anchorman. We 
thus extract the reports from the list of shots by defining the following template: 

Report 
nodes: s1[StudioShot] 
 s2[ReportShot*] 
 s3[StudioShot] 
constraints: s1 meets s2 
 s2 meets s3 
 s2 equals this 

 

This template specifies that a report is recognized when it occurs that a studio shot is followed by a 
sequence of report shots which is followed by another studio shot, and that the temporal extension of 



the report is equals to the temporal extension of the report shot sequence, i.e. it excludes the studio 
shots. This template is illustrated by Figure 12. 

(…)

Report  

Figure 12: example of a “France 2” report 

The recognition of this template gives 7 reports, as expected. The recognized reports are shown Figure 
11. We then try to establish which reports contain at least one shot of a named person. The following 
template is used for this purpose: 

ReportWithNamedPerson 
nodes: s1[Report] 
 s2[NamedPersonShot] 
constraints: s1 {starts finishes during equals} s2 
 s1 equals this 
 

This template specifies that the reports we are looking for are reports “during” which a shot of a 
named person occurs, the meaning of “during” being given by the disjunction of Allen relations: 
{ starts ∨ finishes ∨ during ∨ equals}. This relation states that the shot of the named person can be at 
any place in the report and can even temporally equals the report, which would be the case if the report 
is composed of a single shot of a named person – intervention of a foreign correspondent, for example. 
The temporal extension of such a report is obviously the same as the original report, as stated by the 
last constraint of the template definition.  

The reports r1, r3, r4, r5 and r7 of Figure 11 are recognized as reports with a named person. Note that 
the r4 report contains three distinct shots of a named person. Thus, there are three different ways to 
recognize r4 as a report with a named person. The recognition process gives three responses for r4 t o 
such a report, and a post-treatment is needed in order to keep only one answer. 

Reports recognized from audio jingle occurrences 
Several short newscasts share a common very simple temporal structure: reports are only separated by 
jingles. This is the case for example for the French channels M6 (the “6 minutes” newscast), Canal+ 
and Arte (the “8 ½” newscast). Most of time, the jingles of such newscasts are sequences of very 
similar images accompanied with very similar sound samples. We are interested here in the case where 
two analysis algorithms are applied, one providing a segmentation of the visual part into shots and the 
other detecting occurrences of jingles within the audio track. Jingles and shots are temporally 
independents, as shown in Figure 13. 

Shots

Jingles

 

Figure 13: shot segmentation and jingle detection 

We define in this case a report as a sequence of shots which is delimitated – in a way that will be 
précised later – by two jingles. We consider the first jingle as being part of the report in order to be 



able to build sequences of reports, i.e. to recognize the Report* part of the whole newscast template. 
We choose to include the first jingle as a jingle is often announcing the report and may contain visual 
or audio information on the report. A report is illustrated Figure 14. The first and the last reports 
constitute special cases, which are dealt with separately.  

(…)

Report

 

Figure 14: example of a “M6” report 

We first define the whole temporal structure of the newscast, which is simpler that the definition of the 
report, and which is given by the following template: 

Newscast 
nodes: s1[FirstReport] 
 s2[Report*] 
 s3[LastReport] 
constraints: s1 meets s2 
 s2 meets s3 
 s1 starts this 
 s3 finishes this 

 

This template indicates that the newscast is composed of its first report followed by a sequence of 
reports followed by its last report, and that its temporal extension is the temporal union of all the 
reports. The template which defines a report is a bit more complicated, in order to handle all the 
possible relative temporal positions of the shots which are part of the jingles with respect to the audio 
part of those jingles. The definition of this template is the following: 

Report 
nodes: s1[Shot] 
 s2[Shot*] 
 s3[Shot] 
 s4[Jingle] 
 s5[Jingle] 
constraints: s1 meets s2 
 s2 meets s3 
 s1 {overlaps starts is-started is-during} s4 
 s3 {overlaps starts is-started is-during} s5 
 s1 starts this 
 s2 finishes this 
 no Jingle between s4 s5 

 

At least three shots are necessary to recognize a report. Shots labelled s1 and s3 in the template 
delimitate the report.  The temporal relation {overlaps ∨ starts ∨ is-started ∨ is-during} which 
constraint s1 and s3 stands for “the earliest shot which temporally intersect the jingle”. Roughly, a 
report is said to last from the beginning of one jingle to the beginning of the next jingle.  



The way the temporal constraints are set in the template ensures that recognized reports form a 
contiguous sequence. The last constraint imposes that there is no jingle between the jingles matched 
with s3 and s4, i.e. s3 and s4 are matched with consecutive jingles. Figure 15 shows an example of such 
a report. The matching of the template nodes are indicated on the figure, as are indicated the observed 
constraints between the shots which bound the report and the jingles.  

s4 s5

s1 s3

s2

Report

s1 starts s4
s3 overlaps s5

 

Figure 15: example of a report recognized from jingles 

First and last reports are defined in a similar way, assuming that the first and the last shots have been 
labelled as FirstShot and LastShot. The definition of the template of the first report is given bellow:  

FirstReport 
nodes: s1[FirstShot] 
 s2[Shot*] 
 s3[Shot] 
 s4[Jingle] 
constraints: s1 meets s2 
 s2 meets s3 
 s3 {overlaps starts is-started is-during} s4 
 s1 starts this 
 s2 finishes this 
 no Jingle between s1 s3 

 

At a first glance, it may not appear necessary to explicitly refer to the shots which bound the report –
 shots  indicated by s1 and s3 in the report template – and a report may seem to be more simply defined 
as a sequence of shots “between” two consecutive jingles, which would naturally lead to define the 
template: 

NaiveReport 
nodes: s1[Shot*] 
 s2[Jingle] 
 s3[Jingle] 
constraints: s1 {is-started is-overlapped} s2 
 s1 {meets overlaps} s3 
 s1 equals this 
 no Jingle between s2 s3 

 

Now consider the shots and the jingles illustrated by Figure 16. In the figure, shots which can be the 
first shot of a naïve report are indicated by a star and shots which can be the last shot of a naïve report 
are indicated by a diamond. Thus, there are 9 possible naïve reports, as there is only one report when 
applying the previous template. Moreover, this template doesn’t take into account some special cases, 
as the case where the audio jingle is totally temporally contained in one single shot. 



* * * ◆ ◆ ◆

 

Figure 16: multi occurrences of a naïve report 

We applied the newscast template to a “M6” newscast5 containing 174 shots and 10 jingles. The 
recognition process gives exactly 1 matching for the newscast, which is made of 1 first report, a 
sequence of 9 reports, and 1 last report, which means that all reports have been recognized and that 
each report was recognized is only one way. On the other side, the recognition of the “naïve” report 
template gives 485 reports. 

Other types of programs follow similar structures. For instance, programs of the “Top A” variety show 
from the DiVAN’s corpus present successive songs which can be segmented by only using the 
applause occurring at the end of each song. Delimitating the temporal boundaries of a song is however 
more difficult than those of a “M6” report, because applause can temporally overlap the music. 

Reports recognized from progressive transitions 
We compare in this section two different ways of recognizing reports from five editions of “Soir 3”, 
the evening newscast of the french France 3 channel. Four of these documents are part of the DiVAN 
corpus and the last one comes from the AIM corpus. A report of this newscast is defined as the 
sequence of shots that is showed between two consecutive shots of the anchorman. This definition is 
taken as the reference. The first method for recognising reports uses only one concept, 
AnchorManShot, and one template: 

Report 
nodes: s1[AnchorManShot] 
 s2[AnchorManShot] 
constraints: s1 before s2 
 s1 meets this 
 s2 is-met this 
 no AnchorManShot between s1 s2 

 

Most of time, reports in a “Soir 3” newscast begins or ends with a progressive transition, as a dissolve, 
as illustrated by Figure 17. 

 

Figure 17: progressive transition at the beginning of a “Soir 3” report 

Shots of the anchorman and progressive transitions of a typical “Soir 3” edition is illustrated by Figure 
18. As progressive transitions may appear during a report, and as reports don’t always start or end with 
a progressive transition, recognising reports with using only progressive transitions will produce some 
errors. These errors may come from a shot of the anchorman or a sequence of shots of the anchorman 

                                                      

5 Still from AIM corpus 



being classified as a report if  it is surrounded by progressive transitions, or from “missed” reports – or 
more precisely missed transitions between two consecutive reports – caused by an anchorman shot or 
a sequence of anchorman shots neither starting nor ending by a progressive transitions. 

 

 

Figure 18: anchorman shots and progressive transitions in a “Soir 3” edition 

 

The template used to recognize reports using the ProgressiveTransition event concept is the same as 
the template used with the AnchorManShot concept, by replacing AnchorManShot with 
ProgressiveTransition. Table 1 summarizes the number of reports recognized with the two templates, 
as the number of anchormans shots or sequences classified as reports and the number of missed 
reports.  

 

Reports from 
anchorman shots 

Reports from 
progressive transitions 

Anchorman shots or sequences 
classified as reports 

Missed 
reports 

12 15 3 1 

11 24 11 0 

10 17 6 1 

13 26 4 1 

10 31 6 0 

Table 1: reports from “Soir 3” editions 

This experience shows that detecting reports in this case by using only the progressive transitions 
entails some over-segmentation due to progressive transitions appearing during the reports and 
anchorman shots or sequences of shots surrounded by progressive transitions. The quasi systematic 
use of progressive transitions at the beginning or at the end of reports leads to a very small number of 
forgotten reports. 

Conclusion 
We have shown in this paper that a plan recognition approach, making use of complex temporal 
relations between video segments can be both useful and efficient for solving a variety of video 
segmentation and indexing tasks. This temporal framework is obviously not sufficient for solving all 
problems, and should be extended to deal with other relations, such as image or sound similarity 



between segment classes, and numerical temporal constraints. While this paper focused on the macro-
segmentation task, such extensions could be even more useful in other applications, such as the 
automatic generation of video abstracts. More work is also needed to determine whether this temporal 
framework is necessary (compared to other simpler approaches using regular expressions and finite 
automata) for solving the task at hand.  

This work should be extended in two main directions. First, experimentations showed that designing a 
template for a collection is not a trivial task, even for television experts, and that the quality of the 
results depends critically on such difficult design choices as temporal constraints. Therefore, we are 
now turning to machine learning techniques for creating templates from annotated examples. Second, 
we currently assume that the initial segmentation and classifying results observed by Clavis are 
perfect. In the future, we would like to relax this assumption, for instance by defining preferences in 
the space of solution of the CSPs. 
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A FRAMEWORK FOR ALIGNING AND INDEXING MOVIES WITH THEIR SCRIPT
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ABSTRACT

A continuity script describes very carefully the content of
a movie shot by shot. This paper introduces a framework
for extracting structural units such as shots, scenes, actions
and dialogs from the script, and aligning them to the movie
based on the longest matching subsequence between them.
We present experimental results and applications of the frame-
work with a full-length movie and discuss its applicability
to large-scale film repositories.

1. INTRODUCTION

Choosing terms for describing and indexing video content
is a difficult and important problem. We believe not enough
attention has been given to a very important source of video
descriptions - the continuity script which describes very care-
fully the content of a movie shot by shot. In this paper, we
discuss some of the issues related with synchronizing and
aligning a movie with its script using a combination of cues
from the dialogs and the image track. We describe gram-
mars and automata for formatting the script into structural
units such as shots, scenes, actions and dialogs. We then in-
troduce a dynamic programming algorithm for finding the
longest matching subsequence between the formatted script
and the video content. This procedure aligns the script to
the temporal axis of the movie at the shot and dialog levels,
and therefore allows dialogs and action descriptions in the
script to be used as indices to the video content. We illus-
trate the framework with ’The wizard of Oz ’, a well-known
masterpiece released in 1939, whose continuity script was
carefully edited and published on the Internet [1].

Alignment of script to video was mentioned by other re-
searchers [2, 3, 4] as a means to provide training data for
learning models of objects, scenes and actors. But contrary
to the similar problem of aligning bilingual translations of
the same text [5, 6], it was never formalized properly. With
this work, we would like to contribute to such a formaliza-
tion.

2. SCRIPT FORMATTING

In this section, we introduce our model of the continuity
script for ’The wizard of Oz’, and algorithms for automat-
ically formatting the script from plain text to XML. Typi-
cally, a continuity script is updated throughout shooting of
the movie and includes the breakdown of scenes into shots.
In contrast, a production script only breaks down the movie
into its master scenes. In that case, the alignment and index-
ing can only be performed at a much grosser scale. In this
work, we are particularly interested in continuity scripts,
such as ’The wizard of Oz’.

Fig. 1. High-level grammar of film structure. A movie is
composed of scenes, which are composed of shots. Tran-
sitions can occur between shots or scenes. Shots are com-
posed of actions, camera movements and dialogs.

From our own analysis of many film scripts and related
books in film studies, we found that the structural compo-
nents of a film script were - the scene, the shot, the tran-
sition, the action, the camera action and the dialog, as rep-
resented in Fig. 1. Scene is a segment of the movie tak-
ing place in a given location. It is described as ’interior’ or
’exterior’ and with the name of a place or location. It con-
tains a sequence of contiguous shots. Shot has type close-
shot (CS), medium-close-shot (MCS), medium shot (MS),
medium-long-shot (MLS), long-shot (LS) or extreme-long-
shot (ELS). It starts with a description, usually naming the
actors, the settings and the camera viewpoint, followed by a



sequence of actions, camera actions and dialogs. Transition
has type dissolve or fade and separates two shots or scenes.
Camera is an informal textual description of the camera mo-
tion. Action is an informal textual description of an action
taking place within a shot. It usually names the action with
a verb as well the actors performing the action, and includes
references to places in the scene and on the screen. Dialog
starts with the name of a speaker. It contains a sequence of
utterances (broken into lines) and actions.

The organization of those components in a particular
script is embodied by a set of typographic and stylistic rules.
In order to format the script into a strict, structured represen-
tation, we need to further describe those rules as a grammar,
down to terminal symbols such as letters, tabulations and
line breaks. It turns out that in many classical Hollywood-
style scripts, the grammar is regular. In other words, film
scripts can be modelled with regular expressions and rec-
ognized with finite-state automata. As an example, the for-
matting rules for the continuity script of the ’Wizard of Oz’
follows the grammar of Fig 2.

SCENARIO � CREDITS? SCENE � CREDITS?
SCENE � LOCATION (SHOT[TRANSITION]) �

LOCATION � (”INT.” � ”EXT.”) – TEXT
TRANSITION � TAB? (”FADE IN” � ”FADE OUT”
TRANSITION � TAB? ”LAP DISSOLVE TO”)

SHOT � SIZE DESCRIPTION DIALOG �
SIZE � ”CS” � ”MCS” � ”MS” � ”MLS” � ”LS”

DESCRIPTION � ACTION [–ACTION � CAMERA] �
DIALOG � TAB SPEAKER ”(O.S.)”? [LINE � ACTION] �

CAMERA � ”CAMERA” TEXT
ACTION � TEXT

Fig. 2. A grammar for the continuity script for ’The Wiz-
ard of Oz’. Higher-level symbols from Fig. 1 are explicitly
decomposed into lower-level entities and terminals (format-
ting and tabulations). This grammar is easily found to be
regular since all productions are either of type ��� �
or ��� �	� , where � is a terminal and ��
�� are non-
terminals.

As a result, the script can be analyzed as a regular ex-
pression with a finite state automaton. Once this grammar
has been fully worked out, it is easy to write down an au-
tomaton for transcribing the entire script into an XML tree
in the form of Fig. 1. Fig. 3 shows the three shots of Fig.
4 translated into XML using specialized tags for shots, ac-
tions, cameras and dialogs.

3. SCRIPT ALIGNMENT

Given the formatted script, we now have to align its ele-
ments with the temporal axis of the movie, so that the de-
scriptions from the script can be used as indices to the video
content. This is not a trivial task because the video comes
as large chunk of data, which must be parsed into elements
corresponding to the scenes, shots, actions and dialogs in

<shot size="CS">
<action>Toto by wheel of rake</action>
<action>listening to song</action>
</shot>
<shot size="MCS">
<action>Dorothy singing</action>
<action>swings on wheel of rake</action>
<action>then walks forward around wheel</action>
<action>Toto jumps up onto seat of rake</action>
<action>Dorothy pets him</action>
<camera>CAMERA PULLS back</camera>
<dialog speaker="DOROTHY">
<line>Someday I’ll wish upon a star</line>
</dialog>
</shot>
<shot size="LS">
<action>Miss Gulch rides forward</action>
<action>stops and gets off her bicycle</action>
</shot>

Fig. 3. Example of xml-formatted script. For lack of space,
we did not reproduce the scene level, where in fact the first
two shots are part of the same scene and the third shot in-
troduces a new scene.

the script. Since there may be errors in both the format-
ting of the script and the parsing of the video, the alignment
should be flexible enough. While video parsing has a long
and active history, we do not believe that the results of video
analysis can be trusted to generate a full tree structure allow-
ing to formulate the alignment as a tree-matching problem.
Instead, we temporally sort all the script elements and ex-
tracted video segments (shot transitions and subtitles) and
apply string matching techniques to align them.

In this section, we reformulate the alignment problem as
one of finding the longest matching subsequences (LMSS)
between the movie and the script, and we describe an ef-
ficient dynamic programming algorithm which solves this
problem. Dynamic programming has been used with much
success for aligning bilingual corpora [5] and for matching
video sequences [7].

For the purpose of aligning a movie and a script, we ex-
tract subtitles and candidate shot cuts. We implemented and
used an algorithm described by Salesin et al. for shot change
detection using Haar wavelet coefficients [8]. The algorithm
computes a distance between successive frames, and uses
thresholds to detect candidate shot cuts. We carefully tuned
the thresholds over multiple temporal resolutions to obtain
quasi perfect precision (no false detection). This results in
a fast and reasonably robust detection, except for the case
of dissolves and fades, which result in a large number of
missed shot transitions. Gradual transitions are still an open
issue for many other algorithms, because they typically in-
troduce large numbers of false detections. In the context of



Fig. 4. Example of three shots aligned to their script descriptions in The wizard of Oz. Shots in the script are aligned to
automatically detected shot changes in the video. Aligned shots are described by the locations, actors and actions mentioned
in the script.

this work, we were interested to verify the viability of our
alignment framework with imperfect shot detection, under
the assumption that the effect of missed transitions would
remain local (as was effectively verified).

Separately, we extracted the English subtitles from the
same video stream and performed optical character recog-
nition on them to produce a stream of time-stamped short
texts. The detected shots and subtitles were translated into
an MPEG7-like XML format for matching.

The alignment between the script and the detected video
segments was performed by matching a temporally sorted
string of shots and dialog lines from the script with the
shots and subtitles from the video. More specifically, we
searched for the longest increasing subsequence of matched
shots and dialog/subtitles, a problem which can be solved
efficiently with a classic dynamic programming algorithm
[9]. In its simplest form, this approach accounts for the
following three cases when comparing segments from the
script and the movie - either they match, or the script seg-
ment was deleted, or the video segment was inserted. Note
that this approach can be generalized in many ways to in-
clude more sophisticated editing models.

4. INDEXING AND SYNCHRONIZATION

Formatting and synchronizing the movie script for ’The wiz-
ard of Oz’ opened up two useful and interesting applica-
tions, which proved surprisingly easy to implement using

XSL transformations on the matched subsequences. In the
first application, we created a database of all the scenes,
shots, actions and dialogs of the movie and indexed them
with the corresponding text from the script. In addition, the
formatting of the script allowed us to extract and categorize
place/location names (from scene descriptions), speaker/actor
names (from dialogs) and action verbs (from shot descrip-
tions).

In the second application, we generated MPEG-7 like
elements and their temporal relations for use in an enhanced
multimedia player for film studies which we implemented
using our MDEFI framework. MDEFI 1 is an advanced en-
vironment for playing and editing multimedia documents
[10]. MDEFI is based on Madeus, an extension of SMIL
with the additional features of (1) enhanced separation of
media content location, temporal information and spatial in-
formation, (2) hierarchical, operator-based temporal model
complemented with relations, (3) rich spatial specification
model with relative placements and (4) media fragment in-
tegration. MDEFI allows to reformat media content descrip-
tions based on the MPEG-7 standard. This description is
then used for specifying fine-grained composition between
media objects. In this work, the fine-grained composition
features of MDEFI were used to synchronize the video shots
and the film script. When playing the movie, for example,
the corresponding parts of the film script can be highlighted
in synchronization. In addition, the user can jump to video

1Multimedia DEscription and Fine-grained Integration



segments by clicking anywhere on the script - as long as a
matched segment can be found.

5. EXPERIMENTAL RESULTS

We performed the alignment of ’The wizard of Oz’, start-
ing with 791 shots in the script and 683 detected shots.
Dissolves and special effects such as explosions and tran-
sitions through a crystal ball could not be detected at this
stage. The alignment was performed using 2649 subtitles
extracted from the video and 3041 dialog lines in the script.
We compared dialogs and subtitles using approximate string
matching 2, successfully matching a total of 1866 dialog
lines. As a result, we were able to automatically align 
����
shots, leaving ���	� scenario shots unmatched and ��� video
shots unmatched. A rapid manual inspection revealed that
most of the matched shots were matched correctly, except
for a few, highly localized segments of the movies with ei-
ther (1) a fast succession of missed dissolves and special
effects or (2) a missing scene, which was edited out from
the script in the final movie. The latter case accounts for ���
unmatched shots. Of the remaining ����� unmatched shots in
the script, half were due to undetected transitions and half
to smaller variations between the final movie and the script.
Our alignment algorithm therefore correctly matched �����
of the script shots and ����� of the detected video shots, re-
ducing the number of outstanding shots from ����� to ����� .

Of course, future work will be devoted to the remaining
fraction of shots and dialogs which could not be matched
with our current method. We are following two main di-
rections of research in this respect. On the one hand, we
can improve the alignment of shots (especially those with-
out dialogs) by matching visual descriptors in addition to
subtitles and compensating for inaccuracies in the shot de-
tection algorithm by matching all frames, using models of
the expected shot durations. This would match at the frame,
rather than shot level, and use shot transition probabilities,
rather than hard decisions in order to handle the more dif-
ficult cases of dissolves and special effects better3. On the
other hand, we are extending our alignment algorithm fol-
lowing previous work in machine translation [5] to account
for more elaborate models of insertions, deletions and re-
placements between the movie and script shots, based on
the experimentation reported here. We are also interested
in generalizing to other scripts and script formats, which
entails discovering the formatting rules for the new scripts,
writing down their grammars and checking that they remain
consistent. Finally, we believe this work opens the way
for even more ambitious developments such as tracking and

2Actually, another instance of the longest common subsequence search!
3This will effectively turn our longest matching subsequence algorithm

into a Hidden Markov Model decoding algorithm

hyper-linking of video objects and spatio-temporal synchro-
nization, which are already part of the MDEFI framework.

6. CONCLUSION

By examining the script of ’The wizard of Oz’, we have
found that at the structural level at least, a movie and its
script can be analyzed and synchronized with simple tools
(regular expressions and dynamic programming). This has
allowed us to format the script into high-level components
and to align some of them to the movie itself. As a result
of this work, we are currently building a large database of
movie shots, indexed by dialogs, actors, settings and ac-
tion descriptions. We believe such a database can be useful
for film studies as well as for learning statistical models of
video content.

7. REFERENCES

[1] Noel Langley, Florence Ryerson, and Edgar Allen Woolf,
“The wizard of oz– movie script,” 1939, Cutting Continu-
ity Script, Taken From Printer’s Dupe, Last revised March
15, 1939. This script was transcribed by Paul Rudoff.

[2] Joshua S. Wachman and Rosalind W. Picard, “Tools for
browsing a TV situation comedy based on content specific
attributes,” Multimedia Tools and Applications, vol. 13, no.
3, pp. 255–284, 2001.

[3] Salway and Tomadaki, “Temporal information in collateral
texts for indexing moving images,” in Proceedings of LREC
2002 Workshop on Annotation Standards for Temporal Infor-
mation in Natural Language, 2002.

[4] C.G.M. Snoek and M. Worring, “Multimodal video index-
ing: A review of the state-of-the-art,” Multimedia Tools and
Applications, 2003, Accepted for publication.

[5] W. A. Gale and K. W. Church, “A program for aligning sen-
tences in bilingual corpora,” in In Proceedings of ACL-91,
Berkeley CA., 1991.

[6] P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer,
“The mathematics of machine translation: Parameter estima-
tion,” Computational Linguistics, vol. 19, no. 2, 1993.

[7] Milind R. Naphade, Roy Wang, and Thomas S. Huang, “Sup-
porting audiovisual query using dynamic programming,” in
ACM Multimedia, 2001, pp. 411–420.

[8] Xiaodong Wen, Theodore D. Huffmire, Helen H. Hu, and
Adam Finkelstein, “Wavelet-based video indexing and
querying,” vol. 7, no. 5, pp. 350–358, 1999.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein, Introduction to Algorithms, MIT Press,
second edition edition, 2001.

[10] T. Tran Thuong and C. Roisin, Media content modelling for
Authoring and Presenting Multimedia Document, World Sci-
entific - Series in Machine Perception and Artificial Intelli-
gence, 2002.



CHAPITRE 2

Analyse du mouvement humain

Learning to Parse Pictures of People de Rémi Ronfard, Cordélia Schmid et Bill Triggs,

European Conference on Computer Vision, Copenhague, 2002.

Human Motion Tracking with a Kinematic Parameterization of Extremal Contours de

David Knossow, Rémi Ronfard et Radu Horaud, International Journal of Computer Vision, vol.

2, no. 79, Septembre 2008.

45



Learning to Parse Pictures of People
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Abstract Detectingpeoplein imagesisakey problemfor videoindexing,brows-
ing andretrieval. Themaindifficultiesarethelargeappearancevariationscaused
by action,clothing, illumination, viewpoint andscale.Our goal is to find peo-
ple in staticvideo framesusinglearnedmodelsof both the appearance of body
parts(head,limbs, hands),andof thegeometryof their assemblies.We build on
Forsyth& Fleck’s general‘body plan’ methodology andFelzenszwalb & Hut-
tenlocher’s dynamicprogramming approach for efficiently assemblingcandidate
partsinto ‘pictorial structures’.However wereplacetherathersimplepartdetec-
torsusedin theseworkswith dedicateddetectorslearnedfor eachbodypartusing
SupportVectorMachines(SVMs) or RelevanceVectorMachines (RVMs). We
arenot awareof any previous work usingSVMs to learnarticulatedbodyplans,
however they have beenusedto detectbothwholepedestriansandcombinations
of rigidly positionedsubimages(typically, upperbody, arms,andlegs) in street
scenes,undera wide rangeof illumination, poseandclothing variations.RVMs
areSVM-likeclassifiersthatoffer awell-foundedprobabilistic interpretationand
improvedsparsityfor reducedcomputation. Wedemonstratetheirbenefitsexper-
imentally in a seriesof resultsshowing greatpromisefor learningdetectorsin
moregeneral situations.

Keywords: objectrecognition,imageandvideoindexing, grouping andsegmen-
tation,statisticalpatternrecognition,kernelmethods.

1 Introduction

Detectingpeople in imagesis animportantpracticalchallenge for content-basedimage
andvideoprocessing. It is difficult owing to the wide range of appearancesthat peo-
ple canhave. Thereis a needfor methods that candetectpeople in general everyday
situations.For instance,actorsin typical featurefilms areshown in a great varietyof
activities,scales,viewpoints andlightings.We cannot rely on frequently-madesimpli-
fying assumptions suchasnon-occlusion,perfect backgroundsubtraction, etc.

To addressthis issue,Forsyth & Fleckintroducedthegeneral methodologyof body
plans [8] for finding people in images. However, they relied on simplistic body part
detectors basedon generalizedcylinders.This is problematic,especiallyin thecaseof
looseclothing. Similarly, Felzenszwalb & Huttenlocher[6] showedhow dynamic pro-
gramming could be usedto efficiently group body planscastas ‘pictorial structures’
[7], but they reliedonsimplisticcolour-basedpartdetectors.Bothof theseworks make
strongphotometric assumptions about the body parts.We retain their ideasfor com-
posingpartsinto assembliesby building tree-structuredmodelsof people,but propose�

This work wassupportedby theEuropeanUnion FET-OpenresearchprojectVIBES



a moregeneral approachto learning the body part detectors andthe underlying geo-
metric model, basedon Support VectorMachines(SVM) [24,4] or RelevanceVector
Machines(RVM) [22,23]. In the past,SVM classifiershave beenlearned for entire
humans [18] andalsofor rigidly connected assembliesof subimages(typically, upper
body, arms,andlegs)[16], but not for flexibly articulatedbodymodels.

We present a seriesof experimentsshowing thepromiseof learningthearticulated
structureof peoplefrom training exampleswith hand-labelledbodyparts,usingSVMs
or RVMs. Our contribution is three-fold. Firstly, our featuresetandtraining method
builds reasonably reliablepartdetectorsfrom asfew as100hand-labelledtrainingim-
ages,andthefinal RVM detectors arevery efficient, often involving comparisonwith
only 2–3positiveand2–3negativeexemplars.Secondly, wesketchamethodfor learn-
ing a body joint model usingthe recentlyproposedAdaptive Combination of Classi-
fiers (ACC) framework [16]. Thirdly, we describeanefficient decoderfor the learned
models,thatcombineskernelbaseddetectionwith dynamicprogramming. Our initial
experimentsdemonstratethat bodypart detectors learnedwith only 100 imagesfrom
the MIT pedestriandatabasecangive reliabledetection with asfew as4 falsealarms
per imageon this dataset.This is remarkableas even humansoften find it difficult
to classifythe isolatedpart subimagescorrectly. The detectedpartscanbe efficiently
assembledinto correctbody plansin 70%of cases.

Thepaperis structuredasfollows. We introduce our body planmodelin §2, then
discussbodypartdetectors learnedby two competingalgorithms,SVM andRVM, in
§3.§4presentsourapproachfor learning anddecodingbodyplans.Finally, §5presents
someresultsanddiscussesfuture work.

2 The Pictorial Structure of People

In thework of Marr & Nishihara[15] andothers[10,19], people aredescribedashier-
archical3D assembliesof generalizedcylindersandcomponents.Thepositionof apart
C relative to its parentP is parametrizedby C’s position

�������	��

�
andangular orienta-

tion
�������������

in P’s cylindrical coordinatesystem.Eachjoint is thusrepresentedasa
6-vector, with discretetolerancedvaluesfor eachparameter. They notethatperspective
projection makesmany parametersunobservable andthattheimagesignatureof a joint
is a pairof axes,but still emphasize,andattemptto recover, 3D structure.

Recoveringarticulated3D modelsfrom singleimagesis difficult. Felzenszwalb &
Huttenlocherrecently reconsideredFischler& Elschlager’snotionof pictorial structure
[7] anddemonstratedits usefulnessfor detectingpeoplein indoor scenes[6]. Pictorial
structuresarecollectionsof imagepartsarranged in deformableconfigurations.They
aredirectly adaptedto monocularobservations.Similarly, Morris & Rehgarguedthat
3D trackingsingularities canberemovedusingimagebased‘scaledprismaticmodels’
[17] — essentially, pictorial structure models.Other2D part-basedmodelsuseimage
edges[25] or motionmodelsderived from denseopticalflow [14] asfeaturesfor detec-
tion and/or tracking.

Following this line of research,we representpeopleusinga 2D articulatedappear-
ancemodelcomposedof 15 part-alignedimagerectanglessurroundingtheprojections
of body parts:thecompletebody, thehead,thetorso,andtheleft andright upperarms,
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forearms,hands,thighs,calvesandfeet,numbered from 1 to 15 asin Figure1. Each
bodypart ��� is a rectangleparametrizedin imagecoordinatesby its centre � ��� ��� ��� , its
lengthor size �	� andits orientation


 � . A coarseresolutionwhole-body imageis also
included in case‘the whole is greaterthanthe sumof the parts’.During trainingand
detection, we discretizethe admissible rangeof sizesandorientations. As discussed
later, we usea rangeof 8 scales,and36 orientationsequallyspacedevery 10 degrees.
14 body joints connecttheparts:theplexusbetweenbodyandtorso,theneckbetween
headandtorso,thehipsbetweentorsoandthighs,thekneesbetweenthighsandcalves,
the ankles betweencalvesandfeet, the shouldersbetweentorsoandupper arms,the
elbows betweenupper armsandforearmsandthewristsbetweenforearmsandhands.
Figure1 shows thebody model in average position, usinga singleaspectratio of 16:9
for all bodyparts.

HEAD(2)

TORSO(3)

UPPERARM(4)

FOREARM(5)

HAND(6)

UPPERARM(7)

FOREARM(8)

HAND(9)

THIGH(10)

CALF(11)

FOOT(12)

THIGH(13)

CALF(14)

FOOT(15)

ooneck
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ooankle

o
o
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Figure 1. Our articulatedbodymodelwith its 14 jointsand15 body parts.

Expressedin termsof theprobabilistic formulationof pictorial structure, theposte-
rior likelihood of therebeinga body with parts � � at imagelocations � ( !#"%$
&
'(')'(&+*-, �
is theproduct of thedata likelihoods for the15 parts (i.e. theclassificationprobabili-
tiesfor theobservedsubimagesat thegivenpartlocations to beimagesof therequired
parts)andthe prior likelihoods for the 14 joints (i.e. the probabilities for a coherent
bodyto generateanimagewith thegiven relativegeometricpositioningsbetweeneach
part andits parent in the body tree).The negative log likelihood for the whole body
assembly.0/1$2 43 � '5'6' �  �3879, canthusbewritten asfollows,where: is thelist of body
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joints (‘edges’ of thebodytree):

; � . � /=<?> �A@)BDC
� � �  � � <E>F ��G�HJIDK

L �MG �  � �  G �

Felzenszwalb & Huttenlocher modelbody partsas constantcolor regions of known
shapesandbody joints asrotational joints. In this paper, we machine-learnthe29 dis-
tributions

� � �  � � and
L ��G �  � �  G � from setsof positive andnegative examples. We model

the part andarticulation likelihoods usinglinear Support Vectoror Relevance Vector
Machines.Our work canbeviewedasanextensionof Mohan’s recent work on com-
binedclassifiers [16], where‘component’classifiersaretrainedseparatelyfor thelimbs,
torsoandheadbasedon imagepixel values,and‘combination’ classifiersaretrained
for theassembliesbasedon thescoresof thecomponent classifiersin fixed imagere-
gions.However, we learnpart-aligned, rather thanimage-aligned,classifiersfor each
bodypart,andweextend the‘combination’ classifierto includedeformable,articulated
structuresratherthanrigid assemblies.

3 Detecting Body Parts

In our model, learningeachbodypartamounts to estimatingits probability given the
observedimagedistributionat its location. Detectingandlabellingbodypartsis a cen-
tral problemin all component-basedapproaches.Clearlytheimagemustbescannedat
all relevant locations andscales,but thereis alsoa questionof how to handle differ-
entpartorientations,especiallyfor small,mobile,highly articulatedpartssuchasarms
andhands. Onecanwork eitherin the imageframe,trying to build a generaldetector
that is capableof finding the partwhatever its orientation, or in a part-alignedframe,
buildingadetectorthatworksfor justoneorientationandscanningthisoverall relevant
orientations.Thepart-alignedapproachhasthepotentialto producesimplerdetectors
from less(but betterlabelled)trainingdata,andtheadvantagethat it alsorecovers the
part orientation.Which approachis fasteror bettermustdependon the relative com-
plexity andreliability of all-orientationandone-orientationdetectors,but in general it
is difficult to build goodtransformationinvarianceinto general-purposedetectors.The
image-frameapproachis well adaptedto pedestriandetection applicationssuchasMo-
han’s[16], whereonewantsarelatively coarsewholepersondetectorfor distantpeople
with similarposes(mainly standingor walking). But ourultimategoalis to detectpeo-
ple andlabel themwith detailedpart locations, in applications wherethe person may
be in any poseandpartly occluded.For this we believe that the part-basedbodyplan
approachis preferable.

Our detectorworks with a generalizedfeature pyramid spanning 8 scalesand36
orientations NPOQ'5'6'SR
*9NTO . During training, thearticularstructureof eachtrainingimage
is clicked,andfor eachdesignatedparta &6UWVYX	U subimagealignedwith its axesand
scaledto its size is extractedas shown in Figure 2. We learn15 Support Vector or
RelevanceVectorMachinesfor the individual partsand the whole body, andduring
detectionrun eachof them over the scale-orientation-position featurepyramid, then
assembletheresultsasdiscussedin thenext section.
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Figure 2. A hand-labelled training imagefrom the MIT databaseand its extractedbody part
subimages. Readingvertically from left to right: left upperarm, forearm,hand; left thigh, calf
andfoot; head, torsoandwholebody;right thigh,calf, foot; right upperarm,forearmandhand.

3.1 Feature Sets

Theproblem of choosingfeaturesfor objectrecognition hasreceiveda lot of interest
in recentyearsandnumerous feature setshave beensuggested,including imagepixel
values,wavelet coefficients andGaussianderivatives.Waveletsarecurrently popular,
but as a general representationfor humanbody partsit is unclear whether standard
(rectangular) or non-standard(square) wavelet constructionsaremostsuitable[9,16].
Heiseleetal obtainedbetterresultsfor theirSVM facedetector usinggraylevelsrather
thanHaarwavelets[9]. Someauthorsalsofeel thatwaveletsareunsuitable asageneral
imagerepresentation becausethey representpoint events ratherthanline or curveones,
andinsteadproposeridgeletsandcurvelets[2,5]. Thesemight proveusefulfor detecting
humanlimbs.

Herewe leave suchissuesfor future work andusea featuresetconsistingof the
Gaussianfiltered imageand its first and secondderivatives.Although simple, these
featuresseemto representthe variations of body part detail effectively over a range
of scalesandorientations.Thefeaturevectorfor animagerectangleat location-scale-
orientation Z []\�^�_D\�^S`2\�^�a	\cb containstheabsolute valuesof theresponsesof thesix Gaus-
sian dfehg filters i+jk^SlnmDjk^�lno	jk^Slnm5m
jk^Slnm2o	jk^Slnopo	jnq in the rectangle’s (rescaled
andreoriented)g6r�sut	r window. Therearethus g5r�sut	r�s#v�ewt9xyg5v featuresperwindow.
For color images we useonly theluminance values Y. Theabsolutevaluesof thefilter
responsesarenormalizedacrosseachimage. Theextractedfeaturesarenot required to
be scale-or orientation-invariant.On the contrary, we seekfeatures that aretunedto
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thecharacteristic scalesandorientationsof thedetail in thealigned body-part images.
Someexamplesof thefeaturevectorsareshown in Figure 3.

To implementthis, theGaussianfilters arecomputedusing9 rotatedimagesfrom
0 to 80 degreesand8 scales.We resampleaccording to scalein eachwindow, so the
standarddeviation of the filters in their resampled&5UWVzX	U windows is always & . For
any givensizeandorientation,we selectthe featurevector thatbestapproximatesthe
part-alignedregionasanaxis-alignedrectangle of height24.This choice of primitives
makesreasonablyfew assumptionsabout thenatureof thefeaturesto belearned,which
canbearbitrary combinationsof shape,luminance andtexture.

Figure 3. The {}|	~ and {��2~ featureimagesfor theexamplein Figure2.

3.2 Training

Using the 2016-dimensional featurevectorsfor all body partsin the training set,we
trainedtwo linearclassifiersfor eachpart,oneusingaSupport VectorMachineandthe
otherusinga RelevanceVectorMachine.SVMs andRVMs aregroundedon statistical
learningresultsthatsuggestthatthey should givegood classificationperformanceeven
whentherearerelatively few trainingexamples.Herewe decidedto put this claim to a
severetestby trainingon thesmallestsetsof examples thatgive reasonable results—
in ourcase,about100.

We trainedthe15partclassifiersindividually againsta common ‘background’ data
setconsistingof random piecesof thetrainingimagesthatdonot contain people.Note
thatwe arenot attemptingto learnisolatedpartdetectors or multi-classpart-typeclas-
sifiers,but reliablefilters for rejectingnon-partswithin anarticulated bodyplanframe-
work.Weexpect theoverlapin appearancebetweendifferent partsto besignificant,but
we donotwantthis to causemisseddetectionsin ambiguouscases.

Support Vector Machines: SVMs arediscriminant classifiersthat give a yes/no
decision,notaprobability. Howeverin ourexperimentswetreattheSVM scores(scalar
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productsin feature space)asif they werelog likelihoods for thebodypartsgiven the
imagevalues1.

Relevance Vector Machines: RVMs [22,23] are Bayesiankernel methods that
choosesparsebasissetsusingan‘Automatic Relevance Determination’ [1] styleprior
thatpushesnon-essentialweightsto zero.They do not usuallygive significantlybetter
error ratesthanthe corresponding SVMs, but they do often give similar resultswith
many fewerkernels.Thefunctionalform of thefinal classifieris thesameasthatof an
SVM — only thefitted weightsaredifferent. Herewe uselogistic lineardiscriminant
RVMs, whoseoutputdirectly modelsthe log-oddsfor a part versusa non-part at the
givenpoint. In this paper, we useRVMs mainly to reducethenumber of kernels(‘rel-
evance vectors’) andhencethecomputationalcomplexity. ThetrainedRVM classifiers
typically useonly 2–3positive and2–3negative relevancevectorseach,ascompared
to 100–200support vectors for a comparableSVM classifier.

Currently we train thelinearRVMs to makesparseuseof examples, but they could
alsobetrainedto make sparseuseof features. This would potentiallymeanthat fewer
imagefeatureswouldhaveto beextracted,andhence thatthemethodwouldrunfaster.
We planto investigate this in future work.

3.3 Detection

We detectall of thebodypartsatonce,in a singlescanover theorientation-scalepyra-
mid. Thedetection scorefor eachpartreducesto a simpleconvolution product against
amaskcontaining thediscriminant sumof weightedsupport or relevancevectors.Con-
ceptually, this amounts to generalizedtemplatematching over imagesof local feature
vectors, with weightedsumsof training examples as templates.The nonlinearity of
the processis hidden in the rectified,normalized local featurevectors. For efficiency
in the assemblystage,we currently retainonly the 50 bestcandidatesfor eachpart.
Theobserveddetectionratessuggestthat this strategy sufficesfor simpleimages,but
it is not ideal for robustnessagainst occlusionsandwe ultimately plan to usea more
sophisticatedstrategy basedonadaptive thresholds.

4 Parsing the body tree

In anon-articulated, image-alignedmethod suchasthatof Mohan[16], assemblingthe
partdetectionsis relativelystraightforward:decomposethesearchwindow intosubwin-
dows,keepthehighestscorefor theappropriatepartin eachsubwindow, andcompose
thescoresinto a single,low-dimensionalfeaturevector. Giventhesesecond-stagefea-
turevectors,a singlelinearSVM canbelearnedfor theoverall body detection.

In our articulated,part-aligned method, the composition of part-models is only
slightly more difficult, and can be castas a combinatorial search:from all detected

1 A moreprincipledapproachto convertingthescoresof adiscriminantclassifierto probabilities
isasfollows:runthedetectoroveravalidationsetandfit densitymodelsto itspositive-example
and negative-exampleoutput scores.At any given score,the ratio of the positive-example
densityto the negative-exampleone is an estimateof the positive-to-negative oddsratio for
detectionsat thatscore.
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parts,searchfor the assemblieslooking most like people. Sinceassembliesarenatu-
rally described astrees,efficientdynamicprogrammingalgorithmscanbeusedto build
thesecond-stageclassifier, aswe now describe.

4.1 Parsing/decoding algorithm

GivenN candidatebodypartlocations  ��p� detectedby eachbodypartclassifier��� , we
arelooking for a ‘parse’of thesceneinto oneor more ‘body trees’.Oneimportant sub-
problem is to assigna ‘valid detection’or ’f alsealarm’ label to eachcandidate,based
not only on the candidate’s scores,but on the local configurationbetweenthe candi-
datesandits neighbours.Our approachrelieson anextensionof theViterbi decoding
algorithm, asdescribedby Ioffe & Forsyth[13] andFelzenszwalb & Huttenlocher[6],
which we sketchonly briefly here. Given the detectionscores� � �  ��� � for all candi-
dates��/�&D')'(' � , we searchfor thebestcandidateasa function of their directparents����� � � in thebody tree.For the leaves(i.e. hands, feetandhead), this is computedby
algorithm 1:

Algorithm 1 leaf location���D��� ���#���z�����P���+����      ¡�¢�£¥¤¦�9���§� � ��¨ª©D� � ���§� �P« � ���#��c¬� ��� ���#���®­6¯8°����±� ���+����      ¡�¢ £¥¤¦�9���§� � ��¨ª©D� � ���§� �²« � ���#�

Basedon this computation,we canscorecandidatesfrom thebottom up,usingthe
recursion algorithm 2:

Algorithm 2 bottomup���D��� ���#���z�����P���+����      ¡�¢�£¥¤¦�9���§� � ��¨ª©D� � ���§� �P« � ���#�y¨Y³u�J´Sµ � �-¶S·2¸M´J¹c¢�� ´ ���)� � ��c¬� ��� ���#���®­6¯8°����±� ���+����      ¡�¢ £¥¤¦�9���§� � ��¨ª©D� � ���§� �²« � ���#�y¨º³ �J´Sµ � �-¶S·2¸M´J¹c¢ � ´ ���§� � �

At therootnodeweobtainthesimpleformula3 for scoringthehigh level hypothe-
ses.

Algorithm 3 root location��»¥�®����� �8�2�]��      ¡Q¢ £¥¤}»+���)» � ��¨º³ �J´Sµ » �T¶�·2¸ ´�¹c¢ � ´ ���(» � �¼ ¬» �®­p¯8°������-�8�2�]��      ¡Q¢�£¥¤ » ��� » � ��¨º³u��´�µ » �-¶S·2¸M´J¹c¢�� ´ ��� » � �

Choosingthemostprobableroot node,we canthenassigntheothernodesin a top
down fashionby choosing

;�½� /¾ ½� � ;À¿6Á F � H � for eachnode given its parent. Note that
this algorithmhasa complexity Â �ÄÃ �ÆÅ � with

Ã
the number body partsand � the

number of candidatesper body part.As an example of the detectionresultsobtained
with this method, Figure6 shows the threemostprobable parsesfor four testimages,
rankedin orderof decreasinglikelihood.
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4.2 Learning the body tree

Thecostfunctionsusedin our bodytreemodelarebasedon geometric constraintson
therelativepositionsof partsatabodyarticulation, asin Felzenszwalb& Huttenlocher
[6]. Essentially, the articulationmodel is a linear combination of the differencesbe-
tweentwo joint locations,aspredictedseparatelyby thetwo body partsmeetingat the
articulation.

Algorithm 4 joint distance( � �  G )
Computejoint location ÇTÈ � «�É È � givenfirst bodypartlocation

� È
Computejoint location Ç � È «�É � È givensecondbodypartlocation

� �
Return

© È �Ê�zË |È �DÌ Ç È �¥£ Ç � È Ì ¨?Ë �È � Ì É È ��£ É � È Ì ¨?Ë¥ÍÈ �
Ì Î È £ Î ��£ Î È � Ì ¨ÏË�ÐÈ �
Ì4Ñ�Ò ° Ð4ÓÐ4Ô £ Ñ�Ò °QÕ È � Ì

Eachbody joint is parametrizedby the relative sizes �²��G andangles

 ��G between

its parts,andthe four rigidity parameters Ök×��G � Ö�Ø��G � Ö�Ù��G � Ö}Ú��G governingthe admissible
rangeof apparentdeformations of thearticulationin position,sizeandorientation.We
learnedthe relative sizes �9��G andangles


 ��G of eacharticulation by simply taking the
average relativepositionsof all pairsof body partsover thetrainingset.

To learntherigidity parameters,weagainusedaSupport VectorMachine.For each
articulation . �MG betweenparts � � and � G , we learneda ‘combinationclassifier’based
on a five-dimensional featurevector ÛÝÜ� /Þ�k��ßà�áG � Û�×� /ãâ �ä�MG�<®�²G���â � Û�Ø� /ãâ � ��G�<� G��Sâ � ÛåÙ� /1â 
 �]< 
 Gu< 
 ��GTâ � ÛåÚ� /æâ @)BDC Ú

ÓÚ Ô < @)BDC �2��GTâ .Usingpositive andnegative examplesfrom our trainingset,we useda linearSVM
classifierto learna setof weights Ö Ü�MG � Ö ×�MG � Ö Ø��G � Ö Ù��G � Ö Ú��G suchthatthescoreis positive
for all positive example, and negative for all negative examples.We experimentally
verifiedthatthelearnedweights have theexpectedsigns,ÖçÜ�MGkè N and Ö}×�MGké N � Ö Ø��G éN � Ö}Ù��Gwé N � Ö�Ú��Gwé N , so that the learnedmodel can indeedbe relatedto the log-
likelihood of thearticulation; � . ��G � /fÛ¦Ü� <æê ë�ìÓ�Ô êë]íÓ�Ô Û�×� < ê ë]îÓ�Ô êë]íÓ�Ô Û�Ø� <ïê ë�ðÓ�Ô êë]íÓ�Ô ÛåÙ� <ïê ë�ñÓ�Ô êë]íÓ�Ô ÛåÚ�

In ourexperimentswith theMIT pedestriandatabase,thelearnedmodelsperformed
slightly betterthanthenaiveapproachof assigningequalweightsto all parameters and
all articulations,andweexpect themethod to beof evengreaterbenefitfor dealingwith
themorecomplicatedcasesof people in actionsuchasrunning or jumping.

5 Implementation and results

Weimplementedandtestedourmethodin Matlab. Thesystemconsistsof severalcom-
ponents. Thereis an interactive programfor hand-labellingexamples andstoringthe
locationsof thebody joints andparts.Anotherfunction computesimagepyramids and
extractsimagesignatures at all locations �Àò ��� � ��
 . Theseareusedboth to generate
featurevectors for SVM/RVM training, andto perform detectionagainstthe learned
models.Finally, a parserbasedon the above dynamic programming approach reads
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candidatelocations from the15 bodypartdetectors andproducesa rankedlist of can-
didateassemblies.

WeusedMIT’ spublicdomainprogramSvmFu-3.0 to traintheSVM classifiers.We
trainedtheRVM classifiersin Matlabusinga new algorithmthatwill bedescribedin
detailelsewhere.

5.1 Experimental setup

We selected100frontal imagesfrom theMIT pedestriandatabaseandlabelledtheir15
parts,asshown in Figure2. Eachexample is labelledby clicking 14 body joints. Oc-
cludedpartsareclickedat their mostlikely (hidden)location,but flaggedasoccluded.
Only visible partsareusedto train the imagepartmodels,but thehiddenpartscanbe
included whentraining the geometricmodels. We alsopicked 5 backgroundregions
in eachimage,for useasnegative examples.As a result,eachbodypartclassifierwas
trainedwith slightly lessthan100positiveexamples,and500negativeexamples.

Separate examplesareneededfor training andtesting,sowe selectedandlabelled
another 100 images from theMIT pedestriandatabaseto serve asa testset.This was
usedto evaluatethebody partandassemblydetectors.

5.2 Detection of body parts.

Detectorsare traditionally comparedby tracingROC curves, i.e. true detectionrates
(recall)asa function of falsealarmrates( &
< precision).In our casethedetectorsmust
betunedto functionasfilters,somostimportant parameteris thefalsealarmrateneeded
to achieve ‘total recall’. Hence,we comparedthetwo detectorsby measuring thefalse
detectionratesrequiredto detectall visiblebody partsin our testset.Theresultingtrue
positiveratesfor eachpartdetectorareshown in Figure4.

As canbeseen,individual part imagesarenot very discriminative, sotheabsolute
falsealarmratesremainquitehigh. In fact,they becomestill higher(up to 15:1)once
confusionsbetweenpartsareincluded.Even so, the linking stagemanagesto resolve
mostof theambiguity, andthenumber of candidatesthathave to beexaminedremains
quite tractable,at mostabout 75 candidatesperpart for theseimages.Ignoring spatial
contiguity, the worst-casenumber of body joint hypothesesis therefore &5U?V�ó9*ÀÅ?/ó	ôTóD*9N . In practice,weobservedanaveragenumbercloserto &5UuVåX9N�Åu/õ*9ö
NDN andused
50candidatesasasafebetin all of ourexperiments.TheRVM classifiersperform only
slightly worsethantheir SVM counterparts,with meanfalsedetectionratesof 80.1%
and78.5% respectively. This is remarkablegiven the very small number of relevance
vectorsusedby theRVM detectors.For thepurposeof rapidfiltering, theadvantagesof
theRVM clearlyoutweightheir inconvenience.

Also notethat theworst resultsareobtainedfor thetorso(3) andhead(2) models.
Thetorsois probablythehardestbody partto detectasit is almostentirelyshapeless.It
is probablybestdetectedindirectlyfromgeometricclues.In contrast,theheadis known
to containhighly discriminantfeatures,but thetrainingimagescontainawide range of
posesandsignificantlymoretraining data(andperhaps somebootstrappingon false
alarms)is probablyneeded to build agooddetector.
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Figure 4. Truepositive ratesfor SVM andRVM bodypartdetectors.

5.3 Detection of body trees

We evaluatedthe final body detectorby visually comparing the best(highestproba-
bility) threeconfigurationsreturnedwith the correct interpretation in eachof the 100
testset images.Thus,the taskwaspurely that of detectinghumans usingthe 50 best
candidatesfor eachbodypartandthebody treemodel. Our first experimentused100
trainingexemples.Weobtainedcorrectdetections ratesof 72% usingRVM scoresand
83 % usingSVM scores,while usinga naive geometric model with uniform rigidity
parametersfor all of thebodyjoints.We thenlearnedageometricmodel usinglabelled
bodyjointsfromthe100trainingimages.Weusedthecorrectassembliesaspositiveex-
amples,andcircularpermutationsof thebody partsasnegativeones.Usingthelearned
model,the correctdetectionratesimproved to 74 % and85 %. We should notethat
detectionis arelatively easytaskwith thisdataset,andourmethod should beevaluated
alsowith regards to theposeestimates.We plan to investigatethis areaquantitatively
in laterwork. Qualitatively, we notedthata majority of thebodypartswerecorrectly
positioned in only 36% of thetestimagesfor RVM and55% for SVM.

In a secondexperiment,we increasedthesizeof the trainingsetto 200examples.
This resultedin a slight increaseof thedetectionrates,to 76 % for SVM and88 % for
RVM, anda muchvasterimprovement of theposeestimates,resultingin qualitatively
correct posesin 54% of thetestexamplesfor RVM and75% for SVM.

6 Discussion and Future Work

Thegooddetectionratesachievedby themethod makeaconvincingcasethatthebody-
plan strategy is applicableto real problemsin imageandvideo indexing. We plan to
extendthis work to video,wherewe hope to improve thedetectionratesevenfurther

11
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Figure 5. Partdetectionresultsfrom testcollection.

by makinguseof temporal andkinematic constraints. But theconstructionof the im-
agepyramid is computationallyexpensive, andwe plan to move to a more efficient
implementation,which couldrely on a morethoroughselectionof thefeaturevectors.
Oneway to do this will be to useRVM classifiersthat learnrelevant features rather
thanrelevant examples.As a complement,Sidenbladh & Black’s [20,21] approachfor
learningthe imagestatisticsof peoplevs. backgroundcouldprove usefulfor learning
bettermodelsby selectingbetterfeatures.In theassemblyphase,thecomplexity of the
dynamic programming algorithm is quadratic n the number of candidatepartswhich
needto be stored,which in turn depends on the precisionof the individual bodypart
detectors. By fine-tuning thebodypartdetectors, we expectto achieve significantim-
provementsalsoin theoverall performanceof theglobal detector.

12



E=116.3

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

E=122.4

1

2
3
4

5

6

7 8

9
10

11

12

13

14

15

E=123.7

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

E=70.3

1

2

34

5
6

7

8

9

10

11

12

13

14

15

E=74.8

1

2

3
4

5
6

7

8

9

10

11

12

13

14

15

E=75.9

1

2

34

5
6

7

8

9

10

11

12

13

14

15

E=116.8

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

E=123.0

1

2

3
4

5

6

7

8

9
10

11

12

13

14

15

E=123.4

1

2

34

5

6

7

8

9

10

11

12

13

14

15

Figure 6. Rankeddetectionsandtheir energies,usingthelearnedbodymodelandSVM scores.

Further work will beneededfor assessingthecorrectnessof thedetection andpose
estimationresultsin amoresystematicwayandfor ’bootstrapping’ thelearnedmodels
(adding examplesonwhichourcurrent model fails,andretraining). Evenwithoutboot-
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strapping, we have verifiedexperimentallythat thequality of thebody partclassifiers
is improved significantlyby increasingthe sizeof the training data.We will needto
quantify thisobservation in future work.

Wealsoplanto extendthemethodto handle multiple persons in agreatervarietyof
backgrounds andposes,by explicitly representing occlusionsin thedecoding process
asin thework of Coughlanet al. [3] or by introducingmixturesof partialbody trees,
asin the recentproposalmadeby Ioffe andForsyth[11,12]. The cost functions used
to evaluate theassemblyof thebodyplanscouldalsobenefitfrom a richergeometric
modelandadditional photometricconstraints (e.g.similarity of color andtexture be-
tweenthe body partsfor the sameperson). There arecaseswherewe would like to
move evenfurtheraway from thehumananatomicmodel, andreplaceit with a small
setof ’clothing models’,which could be learnedin muchthe sameway andprovide
additional flexibility . Thoseareavenuesfor furtherexperimentalwork.

7 Conclusion

Detectinghumans is achallenging problemin computervision,with considerableprac-
tical implicationsfor content-basedindexing. We believewe have reachedthreeuseful
concusionswith thework reportedin this paper. Firstly, it is possibleto learnappear-
ancemodels for humanbodypartsfrom examplesandto usethemasinput to a body
planparser, at leastfor a modest-sizeproblem suchaspedestriandetection.Secondly,
we havebeenableto learngeometric modelsfor thecombinationof thedetectedparts,
allowing us to robustly estimatethe likelihood of a body part assembly, without re-
courseto samplingor HMM distributions,which require thousandsof examples to be
learnedefficiently. Thirdly, the learnedmodelsleadto anefficient decoding algorithm
thatcombineskernel basedlearning anddynamicprogrammingtechniques,andis sim-
pleenough to beextendedto videosequences.
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Abstract This paper addresses the problem of human mo-
tion tracking from multiple image sequences. The human
body is described by five articulated mechanical chains and
human body-parts are described by volumetric primitives
with curved surfaces. If such a surface is observed with a
camera, an extremal contour appears in the image when-
ever the surface turns smoothly away from the viewer. We
describe a method that recovers human motion through a
kinematic parameterization of these extremal contours. The
method exploits the fact that the observed image motion of
these contours is a function of both the rigid displacement
of the surface and of the relative position and orientation be-
tween the viewer and the curved surface. First, we describe
a parameterization of an extremal-contour point velocity for
the case of developable surfaces. Second, we use the zero-
reference kinematic representation and we derive an explicit
formula that links extremal contour velocities to the angular
velocities associated with the kinematic model. Third, we
show how the chamfer-distance may be used to measure the
discrepancy between predicted extremal contours and ob-
served image contours; moreover we show how the cham-
fer distance can be used as a differentiable multi-valued
function and how the tracker based on this distance can be
cast into a continuous non-linear optimization framework.
Fourth, we describe implementation issues associated with
a practical human-body tracker that may use an arbitrary
number of cameras. One great methodological and practical
advantage of our method is that it relies neither on model-to-
image, nor on image-to-image point matches. In practice we

D. Knossow · R. Ronfard · R. Horaud (�)
INRIA Rhône-Alpes, 655, avenue de l’Europe,
38330 Montbonnot Saint-Martin, France
e-mail: radu.horaud@inrialpes.fr

model people with 5 kinematic chains, 19 volumetric prim-
itives, and 54 degrees of freedom; We observe silhouettes
in images gathered with several synchronized and calibrated
cameras. The tracker has been successfully applied to sev-
eral complex motions gathered at 30 frames/second.

Keywords Articulated motion representation ·
Human-body tracking · Zero-reference kinematics ·
Developable surfaces · Extremal contours · Chamfer
distance · Chamfer matching · Multiple-camera motion
capture

1 Introduction and Background

In this paper we address the problem of tracking complex ar-
ticulated motions from multiple image sequences. The prob-
lem of articulated motion (such as human-body motion) rep-
resentation and tracking from 2-D and 3-D visual data has
been thoroughly addressed in the recent past. The problem is
difficult because it needs to solve an inverse kinematic prob-
lem, namely the problem of finding the parameters charac-
terizing the control space (the space spanned by the artic-
ulated parameters) from a set of measurements performed
in the observation space. In general this problem cannot be
solved explicitly because the dimensionality of the observa-
tion space is much smaller than the dimensionality of the
control space. More formally, the problem can be stated as
the following minimization problem:

min
�

E(Y,X (�)) (1)

where Y denotes a set of observations, X denotes a set of
predictions using the direct kinematic model, and � is the
vector of motion parameters to be estimated.
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In this paper we will embed the human-motion tracking
into the minimization problem defined by (1). We will em-
phasize a human-body model composed of articulated me-
chanical chains and of rigid body parts. Each such part is
defined by a developable surface. An intrinsic property of
such a surface is that it projects onto an image as a pair of
straight extremal contours (an extremal contour appears in
an image whenever a curved surface turns smoothly away
from the viewer). We develop a direct kinematic representa-
tion of extremal contours based on the differential properties
of developable surfaces and on the zero-reference kinematic
representation of articulated chains with rotational joints.
This kinematic description encapsulates the constrained ar-
ticulated motions as well as a free rigid motion and allows
us to predict both the position and the velocity of extremal
contours.

Therefore, human motion tracking may be formulated as
the problem of minimizing equation (1) using the chamfer
distance between predicted extremal contour points, X (�)

and contour points detected in images, Y . We show how
the chamfer distance can be used as a differentiable multi-
valued function and how the tracker based on this distance
can be cast into a non-linear optimization framework. Even
if, in theory, one camera may be sufficient for recovering the
motion parameters, we show that a multiple-camera setup
brings in the necessary robustness for implementing the
tracker.

There is a substantial body of computer vision litera-
ture on articulated motion tracking and excellent reviews
can be found in (Gavrila 1999), (Moeslund et al. 2006), and
(Forsyth et al. 2006).

Monocular approaches generally require a probabilistic
framework such as in (Deutscher et al. 2000; Toyama and
Blake 2002; Song et al. 2003; Agarwal and Triggs 2006) to
cite just a few. The probabilistic formulation has the attrac-
tion that both prior knowledge and uncertainty in the data
are handled in a systematic way. The first difficulty with
these methods is that the image data must be mapped onto a
vector space with fixed dimension such that statistical meth-
ods can be easily applied. The second difficulty is to estab-
lish a relationship (between the space of articulated poses
and the space spanned by the vectors mentioned above) that
should be learnt prior to tracking. This is not an obvious
task because it is virtually impossible to scan in advance
the space of all possible poses of an articulated object with
many degrees of freedom. Other methods attempted to re-
cover articulated motion from image cues such as optical
flow through sophisticated non-linear minimization meth-
ods (Bregler et al. 2004; Sminchisescu and Triggs 2003;
Sminchisescu and Triggs 2005).

A second class of approaches relies on multiple-video
sequences gathered with multiple cameras. One pre-requisite
of such a camera setup is that the frames are finely synchro-
nized—a not so obvious task. One can either perform

some kind of 3-D surface or volumetric reconstruction
prior to tracking (Cheung et al. 2005a; Mikic et al. 2003;
Plaenkers and Fua 2003), or use 2-D features such as sil-
houettes, color, or texture (Delamarre and Faugeras 2001;
Drummond and Cipolla 2001; Gavrila and Davis 1996;
Kakadiaris and Metaxas 2000). Others used a combina-
tion of both 2-D and 3-D features (Plaenkers and Fua 2003;
Kehl and Van Gool 2006).

In (Cheung et al. 2005a) and (Cheung et al. 2005b) the
authors develop a shape-from-silhouette paradigm that is ap-
plied to human motion tracking. They describe a volumetric-
based method that assigns a voxel to a body part and a
method based on colored surface points (CSP) that com-
bines silhouette-based reconstruction with color informa-
tion. Both these methods require 3-D reconstruction from
perfect silhouettes. A similar voxel-based method is de-
scribed in (Mikic et al. 2003). The tracker minimizes a cost
function that measures the consistency between the 3-D data
(a set of voxels) and the model (ellipsoids linked within an
articulated chain).

In (Kehl and Van Gool 2006) image edges, color, and a
volumetric reconstruction are combined to take advantage
of these various 2-D and 3-D cues. The authors notice that
while volumetric data are strong features, image edges are
needed for fine localization and hence accurate pose com-
putation. The use of edges implies that one is able to predict
model edges. Since the authors use superquadrics, it is nec-
essary to compute their contour generator (referred in Kehl
and Van Gool 2006 as the occluding contour) and project
it in the images using perspective projection. This is done
through a series of approximations since a closed-form solu-
tion is difficult to compute. Finally the authors cast the track-
ing problem into a stochastic optimization framework that
uses a three-term cost function for surface, edge, and color
alignment. The experimental setup uses 16 cameras. A sim-
ilar approach based on both 3-D data (depth from a stereo
image pair) and 2-D silhouettes is proposed in (Plaenkers
and Fua 2003).

In (Kakadiaris and Metaxas 2000) and (Delamarre and
Faugeras 2001) two similar methods are presented. Multiple-
camera tracking is performed by projecting the 3-D model
onto the images and building a cost function that measure
the distance between the projected model and the 2-D sil-
houettes. This distance sums up the squares of the projected-
model-point-to-silhouette-point assignments to estimate the
2-D force field and to infer the “physical forces” that allow
the alignment.

In this paper we use neither color nor photometric infor-
mation because it is not robust to illumination changes. We
do not use texture because it is not a shape-invariant fea-
ture. We decided to concentrate on contours because they
have been recognized as strong cues for representing shape
(Koenderink 1990; Forsyth and Ponce 2003) and therefore
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the tracker that we implemented projects predicted model
contours onto the images and compares them with observed
contours (edges, silhouettes, etc.). Nevertheless, the tasks of
computing contours from 3-D models, of projecting these
contours onto images, and of comparing them with ob-
served ones are not straightforward. Previous methods have
not made explicit the analytic representation allowing the
mapping of articulated objects (and their surfaces) onto 2-D
edges or silhouettes. Formally, a silhouette is the occluding
contour (Barrow and Tenenbaum 1981) that separates an ob-
ject from the background. Occluding contours are built up of
discontinuity and extremal contours. The former correspond
to sharp edges arising from surface discontinuities. The lat-
ter occur where a curved surface turns smoothly away from
the viewer.

In the case of sharp edges there are well documented
methods allowing for an explicit (analytic) representation
of the mapping between the object’s constrained (artic-
ulated) motion parameters and the observed image con-
tours both under orthography (Bregler et al. 2004) and un-
der perspective projection (Drummond and Cipolla 2001;
Martin and Horaud 2002). In the presence of smooth sur-
faces, an extremal contour is the projection of a contour gen-
erator—a virtual contour that lies onto the surface where the
lines of sight are tangent to the surface. Therefore, the ap-
parent image motion of an extremal contour is a function of
both the motion of the object itself and the motion of the
contour generator, the latter being a function of the relative
position of the object’s surface with respect to the viewer.
It turns out that the link between the differential properties
of certain classes of surfaces and the rigid motion of these
surfaces has barely been addressed.

In more detail, we use elliptical cones to model body
parts. These shapes belong to a more general class of devel-
opable surfaces that have interesting differential properties
that were not fully exploited in the past. Elliptical cones in
particular and developable surfaces in general project onto
images as a set of straight lines. By deliberately considering
only these contours we simplify both the tasks of interpret-
ing the image contours and of comparing them to the pre-
dicted object contours. Moreover, the body parts are joined
together to form an articulated structure composed of five
open kinematic chains. Therefore, each body-part motion is
composed of two motions: a motion constrained by a num-
ber of rotational joints (the motion of its associated kine-
matic chain) and a free motion, i.e., the motion of the root
body-part with respect to a world reference frame. We de-
rive an analytic expression for the motion of a predicted
extremal-contour point as a function of both the body-part
motion as well as the motion of its contour generator lying
onto the curved surface of that body part. Figure 1 briefly
illustrates how the method operates in practice.

Therefore, the problem of articulated motion tracking
may be formulated as the problem of minimizing a met-
ric between image contours (gathered simultaneously with
several cameras) and extremal contours (predicted from the
model). There are several ways of defining a distance be-
tween two contours, including the sum of squares of the
point-to-point distances, the Hausdorff distance, the cham-
fer distance, and so forth. We decided to capitalize onto the
chamfer distance, and unlike previous approaches, we de-
veloped an analytic expression allowing us to compare the
real-valued contour points predicted from the model with
the chamfer-distance image computed from binary-valued
image contours. This image-to-model metric thus defined
does not require point-to-point matches, its computation is
very efficient, and it can be analytically differentiated. We
analyse in detail the numerical conditioning of the tracker,
which amounts to the rank analysis of the Jacobian associ-
ated with the direct kinematic model. Although, in principle,
one camera may be sufficient for gathering enough data, we
claim that a multiple-camera setup provides the redundancy
that is absolutely necessary for robust tracking.

Paper Organization The remainder of this paper is orga-
nized as follows. In Sect. 2 we consider the case of de-
velopable surfaces and we show that their contour gener-
ators are rulings of the surface. We derive a closed-form
solution for the velocity of the contour generators (and of
the corresponding extremal contours) as a function of the
kinematic screw associated with the motion of the surface.
In Sect. 3 we develop an explicit solution for the human-
body kinematics using the zero-reference kinematic model
and in Sect. 4 we derive the Jacobian that maps joint and
free-motion velocities onto the 2-D velocity of an extremal-
contour point. Section 5 describes in detail how to fit pre-
dicted extremal contours to detected image contours and
how to carry out the minimization process using the chamfer
distance. Section 6 describes experiments performed with
simulated and real data. Finally, Sect. 7 draws some conclu-
sions and give directions for future work.

2 The Kinematics of Extremal Contours

2.1 Definitions and Notations

We use shapes with smooth surfaces in order to represent
rigid body parts. Each such body-part is linked to a root
body-part through a kinematic chain of body parts. Each
joint in the kinematic chain—the link between two adjacent
body parts—is modeled by a rotational joint. Each such joint
may have one, two, or three degrees of freedom. Moreover,
the root body-part is allowed to freely move in the 3-D space
with six degrees of freedom (three rotations and three trans-
lations).
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Fig. 1 An example of human-motion tracking based on extremal con-
tours and using six cameras. The extremal contours fitted to the image
data are shown superimposed onto the raw images. The tracker uses
image silhouettes to fit the parameterized extremal contours to the
data. The recovered pose of the human-body model is shown from the

viewpoint of the third camera. There are 250 frames in these six image
sequence. Notice that this apparent simple gesture (raising the arms
and then leaning forward) involves almost all the degrees of freedom
of the model as well as a motion of the root body-part

Therefore, the motion of any part of the kinematic chain
is obtained by a combination of a constrained motion and
of a free motion. We denote by � = (φ1, . . . , φn) all these
motion parameters. The first q parameters correspond to the
motion of the root with q ≤ 6 and the remaining p parame-
ters correspond to the joint angles: n = q +p. The kinematic
parameterization will be made explicit in the next section.
In this section we will describe the motion of a body-part by

a 3 × 3 rotation matrix R and by a 3-D translation vector t .
Both these rotation and translation are in turn parameterized
by �, i.e., we will have R(�) and t(�).

It will also be convenient to consider a body part as a rigid
object in its own right. The pose of a rigid object is described
by six parameters and let r be the pose vector. If a body-part
is treated as a free-moving rigid body, then the 6 components
of r are the free parameters. If a body-part is treated as a
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component of a kinematic chain, r is parameterized by �,
i.e., r(�). Finally we denote by ẋ the time derivative of x.

We consider now the smooth surface of a body-part. This
surface projects onto the image as an extremal contour. The
apparent image motion of such an extremal contour depends
on the motion of the body-part and on the local shape of the
surface. Indeed, let’s consider the contour generator that lies
onto the smooth surface—the locus of points where the sur-
face is tangent to the lines of sight originating from the cam-
era’s center of projection. When the surface moves, the con-
tour generator moves as well and it’s motion is constrained
both by the rigid motion of the surface and by the relative
position of the surface with respect to the camera. There-
fore, the contour generator has two motion components and
we must explicitly estimate these two components.

First, we will determine the constraints that formally de-
fine the contour generator. The extremal contour is simply
determined by projecting the contour generator onto the im-
age plane. Second, we will derive a closed-form solution for
the extremal-contour Jacobian, i.e., the Jacobian matrix that
maps 3-D joint velocities onto 2-D contour-point velocities.

2.2 The Contour-Generator Constraint and Extremal
Contours

Let X be a 3-D point that lies onto the smooth surface of
a body part, and let X = (X1,X2,X3) be the coordinates
of this point in the body-part frame, Fig. 2. Without loss of
generality, the camera frame will be chosen to be identical
to the world frame. Hence, the world coordinates of X are:

Xw = R(�)X + t(�). (2)

Fig. 2 A truncated elliptical cone is an example of a developable sur-
face used to model a body part. Such a surface projects onto an image
as a pair of extremal contours. The 2-D motion of these extremal con-
tours is a function of both the motion of the body-part itself as well as
the sliding of the contour generator along the smooth surface of the
part

The contour generator is the locus of points lying onto
the surface where the lines of sight (originating at the optical
center of the camera and passing through image points) are
tangent to that surface. Obviously, the contour generator is
defined by:

(Rn)� (RX + t − C) = 0 (3)

where the surface normal n is defined by the following
cross-product:

n = ∂X

∂z
× ∂X

∂θ
= Xz × Xθ . (4)

Here the couple (z, θ) is a parameterization of the body-
part’s surface and C denotes the camera’s optical center. The
equation above becomes:

X�n + (t − C)�Rn = 0 (5)

or:

(X + m)�n = 0 (6)

with m = R�(t − C). Equation (6) is the contour-generator
constraint that must be satisfied at each time instant. Once
the contour generator is determined, the 2-D extremal con-
tour (the projection of the contour generator) can be found
in the camera frame from:

(
sx

s

)
=

⎡
⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦(

Xw

1

)
. (7)

2.3 The Contour Generator of a Developable Surface

It would be difficult to treat the general case of curved sur-
faces. An interesting case is the class of developable surfaces
which are a special case of ruled surfaces (Do Carmo 1976).
We prove the following result:

Proposition Under perspective projection, the contour gen-
erators of a developable surface are rulings of the surface,
i.e., they are line segments.

This also means that the extremal contours of a devel-
opable surface are straight lines. In practice we need to con-
sider surfaces that are well suited to model body parts. We
will use elliptical cones but the result of this section allows
one to use any kind of developable surfaces.

Consider a differentiable one-parameter family of straight
lines (α(θ),β(θ)) where to each θ are assigned a 3-D point
α(θ) and a 3-D vector β(θ), so that both α(θ) and β(θ)

depend differentiably on θ . The parametrized surface:

X(θ, z) = α(θ) + zβ(θ) (8)
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is called a ruled surface, and the normal to this surface is
given by (4):

n = Xθ × Xz = (α′ + zβ ′) × β. (9)

Since a developable surface is a ruled surface whose
Gaussian curvature is null everywhere on the surface, one
can show ((Do Carmo 1976), (Kreyzig 1991)) that the nor-
mal to this surface can be written as:

n = (1 + bz)β ′ × β. (10)

Notice that the direction of the normal is given by the cross-
product of β ′ and β and it depends only on the parameter
θ . Using this parameterization of the normal, we can rewrite
the contour generator constraint, (6), for developable sur-
faces as follows:

(α(θ) + m)�(β ′(θ) × β(θ)) = 0. (11)

One should notice that this contour-generator constraint
involves only the surface parameter θ and not the z para-
meter. Therefore, any solution of (11), say θ̂ , will yield the
entire ruling line X(θ̂ , z). This proves that under perspective
projection, the contour generators of a developable surface
are rulings of the surface, i.e. line segments. As a result, the
kinematics of the contour generators are fully determined by
the evolution of the solutions θ̂ (t) of the contour generator
equation over time.

2.4 Truncated Elliptical Cones

In practice will model body parts with truncated elliptical
cones. Such a shape is bounded by two planar faces which
produce discontinuity contours, as well as a curved surface
which produces a pair of extremal contours. The latter can
be easily parameterized in cylindrical coordinates by an an-
gle θ and a height z as a ruled surface:

X(θ, z) =
⎛
⎝a cos θ

b sin θ

0

⎞
⎠ + z

⎛
⎝ak cos θ

bk sin θ

1

⎞
⎠ (12)

where a and b are minor and major half-axes of the ellip-
tical cross-section, k is the tapering parameter of the cone
and z ∈ [z1, z2]. It is straightforward to verify that an ellip-
tical cone is a developable surface. Below we provide an
analytical expression of its associated contour generators.

With this parametrization, (11) can be easily expanded
to yield a trigonometric constraint of the form F cos θ +
G sin θ + H = 0 where F , G and H depend on R(�), t(�)

and C while they are independent of the parameter z. In
order to solve this equation and find its roots we use the

standard trigonometric substitution, i.e., tan θ
2 and obtain a

second-degree polynomial:

(H − F) tan2 θ

2
+ 2G tan

θ

2
+ (F + H) = 0. (13)

This equation has two real solutions, θ1 and θ2, whenever
the camera’s optical center lies outside the cone that defines
the body part (a constrained that is rarely violated). There-
fore, in the case of elliptical cones the contour generator
is composed of two straight lines parameterized by z, i.e.,
X(�, θ1, z) and X(�, θ2, z).

2.5 The Motion of Extremal Contours

We turn our attention back to extremal contours—the pro-
jection onto the image plane of the contour generator. We
denote by x = (x1, x2) the real-valued image coordinates of
an extremal-contour point, i.e., (7). The motion of this point
depends on both:

• The rigid motion of the body-part with respect to the
world reference frame, and

• the sliding motion of the contour generator onto the part’s
curved surface, as the relative position and orientation of
this part varies with respect to the camera.

We formally derive the motion of an extremal contour point
in terms of these two components. The 2-D velocity of an
extremal-contour point is:

dx

dt
= dx

dXw

dXw

dr

dr

d�

d�

dt
. (14)

Vector Xw , already defined by (2), denotes the contour-
generator point in world coordinates. Its projection is ob-
tained from (7):

x1 = Xw
1

Xw
3

, x2 = Xw
2

Xw
3

. (15)

We recall that r was already defined in Sect. 2.1 and it
denotes the pose parameters associated with the body-part.
Since the latter is linked to the root part by a kinematic
chain, r is in it’s turn parameterized by �. We have:

• The first term of the right-hand side of (14) is the image
Jacobian denoted by JI :

dx

dXw = JI =
[

1/Xw
3 0 −Xw

1 /(Xw
3 )2

0 1/Xw
3 −Xw

2 /(Xw
3 )2

]
. (16)

• The second term is a transformation that allows to deter-
mine the velocity of a point from the motion of the part on
which this point lies. When the point is rigidly attached to
the part, this transformation is given by matrix A (see be-
low). When the point slides onto the smooth surface there
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is a second transformation— matrix B—that remains to
be determined:

dXw

dr
= A + B. (17)

• The third term is the Jacobian of the kinematic chain that
links the body part to a root body part and to a world refer-
ence frame. This Jacobian matrix will be denoted by JH .

• The fourth term is the vector composed of both the joint
velocities and the velocity of the root body part.

With these notations, (14) becomes:

ẋ = dx

d�
�̇ (18)

where:

dx

d�
= JI (A + B)JH (19)

is the extremal-contour Jacobian that will be used by the
tracker. It is useful to introduce the kinematic-screw nota-
tion, i.e., a six dimensional vector concatenating the rota-
tional velocity, �, and the translational velocity, V (see be-
low):

dr

dt
=

(
�

V

)
. (20)

The velocity of an extremal-contour point can therefore
be written as:

ẋ = JI (A + B)

(
�

V

)
. (21)

Let us now make explicit the 3 × 6 matrices A and B. By
differentiation of (2), we obtain:

Ẋ
w = ṘX + ṫ + RẊ. (22)

Equation (22) reveals that unlike the motion of a point
that is rigidly attached to a surface, the motion of a contour-
generator point has two components:

• A component due to the rigid motion of the smooth sur-
face, ṘX + ṫ , and

• a component due to the sliding of the contour generator
onto this smooth surface, RẊ.

2.5.1 The Rigid-Motion Component

The first component in (22) can be parameterized by the
kinematic screw and it becomes:

ṘX + ṫ = ṘR�(Xw − t) + ṫ = A
(

�

V

)
(23)

with [�]× = ṘR�, ṫ = V , and where A is the 3 × 6 ma-
trix that allows to compute the velocity of a point from the
kinematic screw of the rigid-body motion:

A = [[t − Xw]× I3×3]. (24)

The notation [m]× stands for the 3×3 skew-symmetric ma-
trix associated with the 3-vector m. Vectors � and V can be
concatenated to form a 6-vector (� V )� which is known
as the kinematic screw—the rotational and translational ve-
locities of the body part in world coordinates. This fac-
torization is strictly equivalent with V = ṫ − ṘR�t and
A = [[Xw]× I].

2.5.2 The Sliding-Motion Component

It is interesting to notice that, although the link between
image contours and smooth surfaces has been thoroughly
studied in the past, the problem of inferring the velocity of
these contours when the smooth surface undergoes a gen-
eral 3-D motion has not yet been addressed. In the general
case, the sliding-motion component is a complex function of
both the local surface shape and of the relative motion be-
tween the surface and the observer. The problem is strongly
linked to the problem of computing the aspects of a smooth
surface (Koenderink 1990) and (Forsyth and Ponce 2003)
(Chaps. 19 and 20). Both these textbooks treat the case of a
static object viewed under orthographic projection.

We establish a mathematical formalism for developable
surfaces, i.e., (Do Carmo 1976) when they are viewed under
perspective projection. As it has been shown above, the con-
tour generators are rulings of the surface and their motion
are fully determined by computing the time derivatives of
their θ parameters. If a surface point X lies onto the contour
generator, then its observed sliding velocity is:

Ẋ = ∂X

∂θ
θ̇ + ∂X

∂z
ż = Xθ θ̇ + Xz ż. (25)

The sliding velocity along the contour generator itself, ż,
is not observable because the contour generator is the ruling
of the surface—a straight line. Therefore one may assume
that:

ż = 0. (26)

Therefore, the sliding-motion component in (22) can be
written as:

RẊ = RXθ θ̇ . (27)

Since X lies onto the contour generator, it verifies the con-
tour generator constraint, i.e., (5). By differentiation of this
equation we obtain a constraint for the surface parameter ve-
locity, θ̇ , as follows. We differentiate equation (5), we per-
form the substitutions Ṙ� = −R�[�]× and ṫ = V , and we
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notice that the velocity of a surface point is tangent to the

surface, i.e., Ẋ
�
n = 0. We obtain the following expression

for the derivative of (5):

(X + R�(t − C))�ṅ = ([�]×(t − C) − V )�Rn. (28)

With ṅ = nθ θ̇ and with [a]×b = −[b]×a, we obtain
from (28):

θ̇ = (Rn)�[[C − t]× − I3×3]
(X + R�(t − C))�nθ

(
�

V

)
. (29)

Therefore, the sliding velocity θ̇ can be expressed as a func-
tion of (i) the surface parameterization, (ii) the relative po-
sition and orientation of the camera with respect to the sur-
face, and (iii) the rigid motion of the surface (the kinematic
screw). To summarize, (27) becomes:

RẊ = B
(

�

V

)
(30)

where B is the 3 × 6 matrix:

B = 1

b
RXθ (Rn)�[[C − t]× − I3×3] (31)

and the scalar b is defined by:

b = (X + R�(t − C))�nθ .

2.5.3 The Velocity of Extremal Contours

To conclude this section, the velocity of an extremal contour
point has a rigid-motion component and a surface-sliding
component:

ẋ = ẋr + ẋs . (32)

The explicit parameterization of the sliding component, as
shown above, allows its incorporation into the explicit rep-
resentation of the observed image velocities as a function
of the kinematic-chain parameters, as described in detail be-
low.

The sliding velocity depends both on the curvature of the
surface and on the velocity of the surface. In practice it will
speed up the convergence of the tracker by a factor of two,
as described in Sect. 6.

3 The Human-Body Kinematic Chain

In the case of a kinematic chain, the rigid motion of a body-
part can be parameterized by the joint parameters. Kine-
matic chains are widely used by human-body trackers and
motion capture systems. In this section we introduce the use

Fig. 3 Each body part has a frame associated with it, therefore motions
are represented by changes in coordinate frames. There is a reference
position for each body part in the chain defined by the joint angles �0.
Similarly, there is a docking position for the root body-part defined by
the six-dimensional vector �0

of the zero-reference kinematic representation for model-
ing the human-body articulated chains. The Zero-reference
kinematic representation was studied for robot manipula-
tors (Mooring et al. 1991) and (McCarthy 1990). The para-
meterization introduced in this section combines the zero-
reference representation with the free motion of the root
body-part, i.e., Fig. 3.

Without loss of generality we consider any one among
the several kinematic chains needed to describe the hu-
man body. A body part P is linked to the root body-part
R by a kinematic chain with p rotational degrees of free-
dom. The root body part itself moves freely with six de-
grees of freedom (three rotations and three translations)
and with respect to the world coordinate frame. Let � =
(λ1, . . . , λp) denote the joint angles associated with the
kinematic chain, and let � = (ψ1, . . . ,ψq) denote the ro-
tational and translational degrees of freedom of the free mo-
tion. In the most general case we have q = 6. Therefore,
there are p + q motion parameters embedded in the vector
� = (�,�).

With the same notations as in the previous section, we
consider a point X that belongs to the contour generator
associated with a developable surface and body part. The
point’s homogeneous coordinates in the local frame are de-
noted by X̃ = (X1 X2 X3 1)�. We also denote by Xr the
coordinates of the same point in the root body-part frame,
and by Xw its coordinates in the world frame.

Moreover, we denote with D(�) the 4 × 4 homogeneous
matrix associated with the free motion of the root body
part with respect to a fixed world frame, and with K(�)

the 4 × 4 homogeneous matrix associated with the con-
strained motion of a body part with respect to the root
part. Let �0 be the joint angles for a particular refer-
ence position of the kinematic chain. Obviously we have
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X̃
r
(�) = K(�)X̃ and X̃

r
(�0) = K(�0)X̃. We obtain

X̃
r
(�) = K(�)K−1(�0)X̃

r
(�0). With this formula and

from X̃
w
(�,�) = D(�)X̃

r
(�) we obtain:

X̃
w
(�,�) = D(�)K(�)K−1(�0)X̃

r
(�0).

We also consider a reference or a docking position for the
root body-part, defined by the free-motion parameters �0,
i.e., X̃

w
(�0,�0) = D(�0)X̃

r
(�0). Finally we obtain:

X̃
w
(�,�)

= D(�)K(�)K−1(�0)D−1(�0)X̃
w
(�0,�0) (33)

= H(�,�0,�,�0)X̃
w
(�0,�0). (34)

It will be convenient to write the above transformation as:

H(�,�0,�,�0) = F(�,�0)Q(�,�0,�0) (35)

with:

F(�,�0) = D(�)D−1(�0) (36)

and:

Q(�,�0,�0) = D(�0)K(�)K−1(�0)D−1(�0). (37)

3.1 The Kinematic-Chain Model

The transformation K describes an open kinematic chain
and the transformation Q describes exactly the same chain
but relatively to a reference position of the chain. K
may be written as a composition of fixed transforma-
tions L1, . . . ,Lp , and of one-degree-of-freedom rotations
J(λ1), . . . ,J(λp):

K(�) = L1J(λ1) · · ·LpJ(λp) (38)

where the matrices L1 . . .Lp are fixed transformations be-
tween adjacent rotational joints, and matrices of the form of
J are the canonical representations of a rotation.

Matrix Q in (37) can now be written as a product of one-
degree-of-freedom transformations Qi :

Q(�,�0,�0) = Q1(λ1 − λ0
1) · · ·Qi (λi − λ0

i ) · · ·
× Qp(λp − λ0

p) (39)

where each term Qi is of the form UiJ(λi − λ0
i )U

−1
i , i.e.,

(McCarthy 1990):

Qi (λi − λ0
i ) = D(�0)L1J(λ0

1) · · ·Li︸ ︷︷ ︸
Ui

J(λi − λ0
i )

× L−1
i · · ·J(−λ0

1)L
−1
1 D−1(�0)︸ ︷︷ ︸

U−1
i

. (40)

Notice that matrices Ui , {i = 1 . . . p} remain fixed when
the joint parameters vary and when the root body-part un-
dergoes a free motion. Others used the exponential repre-
sentation for this one-dimensional transformations (Murray
et al. 1994; Bregler et al. 2004).

3.2 The Zero-Reference Kinematic Model

Without loss of generality, one may set the initial joint-angle
values to zero, i.e., λ0

1 = · · · = λ0
p = 0. In this case, the kine-

matic chain does not depend any more on its reference pose,
since J(λ0

i ) = I for all i. The kinematic chain writes in this
case:

Q(�,�0) = Q1(λ1,�
0) · · ·Qi (λi,�

0) · · ·Qp(λp,�0).

(41)

The human-body zero-reference kinematic chain From the
equations above, one may write a compact and convenient
factorization of matrix H, i.e., (35):

H(�,�0,�) = F(�,�0)Q1(λ1,�
0) · · ·

× Qi (λi,�
0) · · ·Qp(λp,�0). (42)

4 The Jacobian of the Human-Body Kinematic Chain

In this section we make explicit the Jacobian matrix associ-
ated with the kinematic chain of the human-body, JH . This
matrix appears in (14); From this equation and from (21) we
obtain:(

�

V

)
= JH �̇. (43)

The Jacobian of a kinematic chain such as the one de-
scribed above is intrinsic to the mechanical and geometric
structure of the kinematic chain and it does not depend on a
particular choice of a point X, is it sliding onto the surface or
rigidly attached to it. The Jacobian JH maps joint velocities
onto the kinematic screw of a body part whose kinematic
chain is denoted by H. In order to establish an expression
for the Jacobian, we will first need to determine the tangent
operator Ĥ of H:

Ĥ = ḢH−1. (44)

Second, we parameterize Ĥ such that it depends only on
the kinematic parameters, i.e., we must take the derivative
of a body-part point with respect to the motion variables,
i.e., dXw/d�. The case of human-body motion is differ-
ent than the classical case studied in the robotics literature,
(McCarthy 1990; Mooring et al. 1991; Murray et al. 1994)
because one must take into account the fact that the root-part
of the chain undergoes a free rigid motion.
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4.1 A Rotational Joint

First, we consider the case of a single rotational joint. It’s
tangent operator is defined by Q̂i = Q̇iQ

−1
i , and we obvi-

ously have Q̂i = Ui ĴiU
−1
i . From Ĵ = J̇J−1, we have:

Ĵ(λi) = λ̇i J̃,

with

J̃ =

⎡
⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ .

Therefore, we obtain a simple expression for the tangent
operator associated with one joint:

Q̂i (λi − λ0
i ) = λ̇iUi J̃U−1

i = λ̇iQ̃i . (45)

Matrix J̃ is called the Lie-algebra of the Lie-group de-
fined by the matrices of the form of J. If one prefers the
exponential representation, J̃ is called a twist.

4.2 The Tangent Operator

Second, we determine the tangent operator of the human-
body kinematic chain. The zero-reference kinematic chain,
H, may well be viewed as an Euclidean transformation and
is composed of a rotation matrix and a translation vector:
RH , tH . Hence, its tangent operator has a rigid-motion com-
ponent, i.e., (23) and (24), as well as a sliding-motion com-
ponent, i.e., (30). When applied to (34) we obtain the action
of the tangent operator onto a surface point:

Ẋ
w
(�,�) = ṘH Xw(�0,�0) + ṫH + RH Ẋ

w
(�0,�0)

= ṘH R�
H (Xw(�,�) − tH ) + ṫH

+ RH Ẋ
w
(�0,�0)

= (AH + BH )

(
�

V

)
(46)

where we have � = ṘH R�
H , V = ṫH and with 3 × 6 matri-

ces AH and BH as defined by (24) and (31). The 3-D vectors
� and V form the kinematic screw which we seek to esti-
mate:

Ĥ(�,�) =
[ [�]× V

0� 0

]
. (47)

Since H = FQ, we have Ḣ = ḞQ + FQ̇ and:

Ĥ(�,�) = F̂(�) + FQ̂(�)F−1. (48)

As detailed below, the tangent operator can be written as
the sum:

Ĥ(�,�) = Ĥr (�) +
p∑

i=1

Ĥi (λi). (49)

• The tangent operator associated with the free motion of
the root body-part,
Ĥr (�) = F̂(�); from (36) we obtain: F̂(�) = D̂(�). Ĥr

is the 4 × 4 matrix parameterized by the rotational veloc-
ity ωr and the translational velocity νr of this free motion:

Ĥr (�) =
[ [ωr ]× νr

0� 0

]
. (50)

This motion has six degrees of freedom and can be para-
meterized by three rotations and three translations:

R = Rz(ψ3)Ry(ψ2)Rx(ψ1),

t = ψ4ex + ψ5ey + ψ6ez,

where ex = (1 0 0)� and so forth. The kinematic screw of
this motion can therefore be written as:

(
ωr

νr

)
=

[
ωx ωy ωz 0 0 0
0 0 0 ex ey ez

]
6×6

�̇ (51)

with [ωz]× = [ez]×, [ωy]× = Rz[ey]×R�
z , and [ωx]× =

RyRz[ex]×R�
z R�

y .

• The tangent operator associated with the constrained mo-
tion of the kinematic chain, FQ̂(�)F−1; it is expressed in
world coordinates and with respect to a reference position
defined by both �0 and �0. This tangent operator can be
expanded as (McCarthy 1990):

FQ̂(�)F−1 =
[
ω1 . . . ωp

ν1 . . . νp

]
�̇, (52)

with �̇ = (λ̇1 . . . λ̇p)�.

Therefore, by combining (49), (51), and (52) we obtain the
following expression for the kinematic screw:

(
�

V

)
=

[
ωx ωy ωz 0 0 0
0 0 0 ex ey ez

]
�̇

+
[
ω1 . . . ωp

ν1 . . . νp

]
�̇ (53)

with �̇ = (ψ̇1 . . . ψ̇6)
� and �̇ = (λ̇1 . . . λ̇p)�. Finally,

the Jacobian of the human-body kinematic chain writes as
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a 6 × (6 + p) matrix:

JH =
[
ωx ωy ωz 0 0 0 ω1 . . . ωp

0 0 0 ex ey ez ν1 . . . νp

]
. (54)

To conclude this section we remind that the relationship
between the kinematic velocities �̇ = (�̇ �̇) and the image
velocity of an extremal contour point x writes:

ẋ = JI (AH + BH )JH �̇. (55)

This corresponds to (21) where the kinematic screw is given
by (53).

5 Fitting Extremal Contours to Image Contours

In this section we consider the problem of fitting extremal
contours—model contours predicted in the image plane,
with image contours—contours extracted from the data.
Therefore, we have to measure the discrepancy between a
set of predictions (extremal contours) and a set of observa-
tions (image contours): we want to find the model’s parame-
ters that minimize this discrepancy.

Although the human body comprises several (five)
kinematic chains, for the sake of clarity of exposition
we consider only one such kinematic chain. We collect
extremal-contour points from all the body-parts. Let X =
{x1, . . . ,xj , . . . ,xm} be the prediction vector, a set of m

extremal-contour points. The components of this vector are
2-D points and they are parameterized by the kinematic- and
free-motion parameter vector �, i.e. x(�). Similarly, let
Y = {y1, . . . ,yi , . . . ,yk} be the observation vector—a set
of contour points observed in the image. In order to esti-
mate the motion parameters one has to compare these two
sets through a metric and to minimize it over the motion
variables. Therefore, the problem can be generally stated
as the minimization of a multi-variate scalar function E

of (1).
There are several ways of defining and measuring the dis-

tance between two sets of points, Y and X . One way of
measuring this distance is to sum over one-to-one pairings
(xj ,yi ):

E(Y,X (�)) =
∑

i

∑
j

αij‖yi − xj (�)‖2 (56)

where the hidden variables αij are the entries of an associa-
tion matrix: αij = 1 if the observable yi matches the predic-
tion xj , and αij = 0 otherwise. Therefore one has to solve
both for the hidden variables and for the motion parameters
(David et al. 2004).

5.1 The Hausdorf Distance

Another way of measuring the distance between two point-
sets is to use the Hausdorff distance (Huttenlocher et al.

1993; Sim et al. 1999) which does not make use of explicit
point pairings:

H(Y,X ) = max(h(Y,X ), h(X ,Y)) (57)

where h() is called the directed Hausdorff distance:
h(Y,X ) = maxi (minj (‖yi − xj‖)). The function h()

identifies the point in Y which is the farthest from any
point inX . The Hausdorff distance is the maximum between
h(Y,X ) and h(X ,Y) and hence it measures the degree of
mismatch between two point sets without making explicit
pairings of points in one set with points in the other set.
This means that many points of Y may be assigned to the
same point of X .

5.2 The Chamfer Distance

If the max operator in the Hausdorff distance is replaced by
the summation operator, we obtain the normalized directed
(or non-symmetric) chamfer distance:

DCD(Y,X ) = 1

k

k∑
i=1

min
j

(‖yi − xj‖). (58)

The directed chamfer distance, or DCD, is a positive
function and has the properties of identity and of triangle
inequality but not of symmetry. It also has the desirable
property that it can be computed very efficiently. Indeed, the
DCD can be computed from the binary image of the ob-
served image contour set Y using the chamfer-distance im-
age CY (Borgefors 1986; Gavrila and Philomin 1999). The
subscript Y reminds that this image is associated with the set
Y of observed edge points. For each image site (pixel) with
integer-valued image coordinates u1 and u2, the chamfer-
distance image CY (u1, u2) returns the real-valued distance
from this pixel to the nearest contour point of Y . Therefore
one can evaluate the distance from a predicted extremal-
contour point x ∈X to its closest image contour by evaluat-
ing the chamfer-distance image at x with real-valued image
coordinates x1 and x2.

We denote by [x] the integer part of a real number x.
Let u1 = [x1] and u2 = [x2] be the integer parts, and r1 =
x1 − [x1] and r2 = x2 − [x2] be the fractional parts of the
coordinates of a predicted point x. The chamfer distance at
x can be obtained by bi-linear interpolation of the chamfer-
distance image:

D(Y,x) = (1 − r1)(1 − r2)CY (u1, u2)

+ r1(1 − r2)CY (u1 + 1, u2)

+ (1 − r1)r2CY (u1, u2 + 1)

+ r1r2CY (u1 + 1, u2 + 1). (59)
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5.3 Minimizing the Chamfer Distance

The minimization problem defined by (1) can now be writ-
ten as the sum of squares of the chamfer distances over the
predicted model contours:

f (�) = 1

2

m∑
j=1

D2
j (Y,xj (�)) = 1

2

m∑
j=1

D2
j (�). (60)

In order to minimize this function over the motion parame-
ters, we take its second-order Taylor expansion as well as
the Gauss-Newton approximation of the Hessian:

f (� + d) = f (�) + d�J�
DD + 1

2
d�J�

DJDd + · · ·

where D� = (D1 . . . Dm) and J�
D = [dD/d�]� is the n ×

m matrix:

J�
D =

[
dD1

d�
. . .

dDm

d�

]
. (61)

The Chamfer-Distance Gradient The embedding of the
tracker into such an optimization framework requires an an-
alytic expression for the gradient of the error function to
be minimized. The derivative of the chamfer distance Dj

with respect to the motion parameters is the following ma-
trix product:

dDj

d�
=

(
dDj

dx

)�
dx

d�
.

By noticing that d[x]/dx = 0, we immediately obtain an
expression for dDj/dx:

∂Dj

dx1
= (1 − r2)(CY (u1 + 1, u2) − CY (u1, u2))

+ r2(CY (u1 + 1, u2 + 1) − CY (u1, u2 + 1)),

∂Dj

dx2
= (r1 − 1)(CY (u1 + 1, u2) + CY (u1, u2))

+ r1(CY (u1 + 1, u2 + 1) + CY (u1, u2 + 1)).

We recall that dx/d� = JI (A + B)JH is the extremal-
contour Jacobian defined in (19).

Issues related to the minimization of the chamfer dis-
tance can be found in (Knossow et al. 2006). Here we
analyse the practical conditions under which this minimiza-
tion should be carried out. At each time instant, the tracker
is initialized with the previously found solution and (60)
must be minimized. This minimization problem needs one
necessary condition, namely that the n × n Hessian ma-
trix has full rank. The Jacobian JD is of size m × n and
we recall that n is the number of variables to be estimated
(the motion parameters) and m is the number of predic-

tions (extremal contour points). To compute the inverse
of J�

DJD we must have m ≥ n with n independent matrix
rows.

5.4 How Many Cameras?

Since each prediction accounts for one row in the Jacobian
matrix, one must somehow insure that there are n “indepen-
dent” predictions. If each body part is viewed as a rigid ob-
ject in motion, then it has six degrees of freedom. A set of
three non-collinear points constrains these degrees of free-
dom. Whenever there are one-to-one model-point-to-image-
point assignments, a set of three points is sufficient to con-
strain all six degrees of freedom. In the case of the chamfer
distance there are no such one-to-one assignments and each
model point yields only one constraint. Therefore, when one
uses the chamfer distance, the problem is underconstrained
since three non-collinear points yield three constraints only.
Within a kinematic chain, the root body-part has six degrees
of freedom and each body-part has 6 + p degrees of free-
dom. Fortunately the body-parts are linked together to form
kinematic chains. Therefore, one sensible hypothesis is to
assume that the points at hand are evenly distributed among
the body parts.

The kinematic human-body model that we use is com-
posed of 5 kinematic chains that share a common root body-
part, 19 body-parts, and 54 degrees of freedom (48 rotational
joints and 6 free-motion parameters). Therefore, with an av-
erage of 3 points per body-part, there are in principle enough
constraints to solve the tracking problem. Notice that the
root-body part can arbitrarily be chosen and there is no evi-
dence that one body-part is more suitable than another body-
part to be the root part.

In practice there are other difficulties and problems.
Due to total and/or partial occlusions, not all the body-parts
can be predicted visible in one image. Therefore, it is im-
possible to insure that all the degrees of freedom are ac-
tually measured in one image. Even if a point attached to
a visible body-part is predicted in the image, it may not
be present in the data and/or it may be badly extracted
and located. Non-relevant edges that lie in the neighbor-
hood of a predicted location contribute to the chamfer dis-
tance and therefore complicate the task of the minimization
process.

One way to increase the robustness of the tracker it to
make recourse to redundant data. The latter may be ob-
tained by using several cameras, each camera providing an
independent chamfer distance error function. Provided that
the cameras are calibrated and synchronized the method de-
scribed above can be simultaneously applied to all the cam-
eras. There will be several Jacobian matrices of the form
of (61) (one for each camera) and these matrices can be
combined together into a unique Jacobian, provided that a
common world reference frame is being used (Martin and
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Fig. 4 This figure compares the ground truth (first, third and fifth rows) with the estimated poses (second, fourth and sixth rows). The ground-truth
poses were used to simulate silhouette data to be used by the tracker

Horaud 2002). Therefore, by using several cameras one in-
creases the number of predictions (columns in the Jacobian)
without increasing the number of variables.

It is worthwhile to notice that the extremal contours
viewed with one camera are different than the extremal con-
tours viewed with another camera. Indeed, these two sets
of contours correspond to different physical points onto the
surface. One great advantage of using extremal contours in
order to fit the model parameters with the data is that there is
no need to establish matches across images taken with dis-
tinct cameras.

6 Experiments with Simulated and Real Data

The simulated data were produced using a motion capture
system and an animation software. This outputs trajectories
for the motion parameters of our human-body model. From
these trajectories we generated a sequence of model mo-
tions. From each pose of the model we computed extremal
contours for six images associated with six virtual cameras.
We simulated a total of 120 frames for each image sequence.

Next, we applied our method to these contours. Figure 4
shows the simulated poses (top rows) as well as the esti-
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(a) (b)

Fig. 5 a The error between the image contours and the projected extremal contours before minimization (top curve) and after minimization
(bottom curve). b The average error between the simulated motion parameters and the estimated ones

(a) (b)

Fig. 6 Ground-truth and estimated joint-angle trajectories for the left and right elbows
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(c) (d)

Fig. 6 (continued)

mated poses (bottom rows). Figures 5, 6, and 7 compare the
results of our method with the ground truth. Figure 5-b plots
the average error between the true motion parameters and
the estimated ones. One may notice that the average error
remains within 20, with the exception of frame 98 for which
the average error is 150: this error is due to 1800 ambiguity
associated with one of the joints. Nevertheless, the tracker
was able to recover from this large error. Figure 5a shows
the initial error between the predicted contours and the im-
age contours (top curve) as well as the error once the motion
parameters were fitted using the minimization described in
Sect. 5.3. The failure of the tracker at frame 98 corresponds
to an error of 4–5 pixels. The initial mean error is 3.7 pixels
whereas the final mean error is 1.5 pixels.

In more detail, Figs. 6 and 7 compare the estimated tra-
jectories with the ground truth for the left and right elbows
and for the left and right shoulders. Both the elbow and
shoulder are modeled with two rotational degrees of free-
dom.

In order to track real human-body motions we used a
setup composed of six cameras that were accurately cal-
ibrated and whose video outputs are finely synchronized.
Fine synchronization (of the order of 10−6 s) and fast shut-
ter speed (10−3 s) allow one to cope with fast motions. The
camera setup is shown on Fig. 8. It consists in six Firewire
cameras that deliver 600 × 800 uncompressed images at 30
frames per second.

We used two different persons, Ben and Erwan. These
two persons have the same size and therefore we used the
same roughly estimated parameters for the elliptical cones
modeling the body parts.

We gathered three sets of data shown on Fig. 1 (Erwan-1),
Fig. 11 (Ben) and Fig. 12 (Erwan-2). For each data set, the
figures show the images associated with the first three cam-
eras, the associated silhouettes, and the estimated pose of
the model displayed from the viewpoint of the third cam-
era. The extremal contours eventually fitted to the data are
shown overlayed onto the raw images.
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(a) (b)

Fig. 7 Ground-truth and estimated joint-angle trajectories for the left and right shoulders

The tracking is initialized by incremental pose estimation
of the body parts. We start with an initial guess (Fig. 9a)
from which the pose of the root body part is first estimated
(Fig. 9b). This is followed by the pose estimation of other
body parts (Fig. 9c). The final kinematic pose found by this
initialization process is shown on Fig. 9d. The first exam-
ple, Erwan-1, has 250 frames, the second example, Ben, has
800 frames and the third example, Erwan-2, has 200 frames.
Notice that the Erwan motions involve all the degrees of
freedom of the articulated model, as well as the motion of
the root body-part.

The efficiency of minimization-based trackers, as the one
described here resides in number of iterations needed by the
optimization algorithm to converge. In all the examples de-
scribed in this paper we minimized an error function that
has two terms: one term corresponds to the rigid motions of
the body parts and the other terms corresponds to the sliding
of the contour generator on the body-parts’ surface. Under
these circumstances, the tracker converges in 3 to 5 itera-

tions and the RMS image error is, in this case, 1.5 pixels,
Fig. 13 (bold plots). If the sliding-motion term is left out the
efficiency of the tracker is substantially degraded because
the optimizer needs twice more iterations for an RMS error
of 2.3 pixels, Fig. 13 (dashed plots).

It is worthwhile to notice that we used a human model
with the same measurements for the two persons (body-
part parameters such as the size of the arms, feet, thighs,
head, torso, etc.). More accurate model parameters (finely
adjusted to each person) will result in smaller RMS er-
rors.

6.1 Comparison with Marker-Based Motion Capture Data

One way to quantitatively evaluate the performance of mark-
erless human tracking methods such as the one described
in this paper, is to compare it with a marker-based motion
capture system. Until recently it was believed that marker-
less motion capture systems cannot compete with marker-
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(c) (d)

Fig. 7 (continued)

Fig. 8 The camera setup used in our experiments. The cameras are calibrated with respect to a global reference frame. The human body model is
shown in it’s reference position
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Fig. 9 Initialization: Starting from an initial guess, (a), the pose of the root body-part is first estimated, (b), followed by the incremental estimation
of the remaining body parts, (c) and (d)

Fig. 10 The result of tracking Ben with 6 cameras over 800 frames (continues on the next figure)

based systems (Gleicher and Ferrier 2002). We performed
the following experiment and evaluation which is similar
in spirit with the work described in (Balan et al. 2005;
Sigal and Black 2006).

We equipped a room with two camera systems, our
6-camera system and a VICON system using 8 cameras.
We simultaneously gathered markerless and marker-based
data with these two systems. While our system gathers 8-
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Fig. 11 The result of tracking Ben with 6 cameras over 800 frames (continued from the previous figure)

bit color images, the VICON system only gathers the image
locations of the markers. Figure 14 shows two out of the
six image sequences (first and second columns), the corre-
sponding articulated poses found with our method (the third
and fourth columns show the pose of the model from the
viewpoints of the two cameras shown onto the left side
of the figure). Both our algorithm and an algorithm based
on the VICON data output joint trajectories. These trajec-
tories are used to estimate the poses of a virtual charac-
ter, as shown on the fifth and sixth columns. Character
animation using both these types of data are available at
http://perception.inrialpes.fr/~Knossow.

7 Conclusion

In this paper we proposed a contour-based method for track-
ing the motion of articulated objects. The main contribu-

tions of the paper are as follows. We derived an exact
kinematic parameterization of the extremal contours pro-
duced by developable surfaces. We combined this parame-
terization with the zero-reference kinematic model that is
well suited for representing the space of human motions,
i.e., a combination of both the space of articulated mo-
tions (spanned by rotational joints) and the space of free
motions (spanned by three rotations and three translations).
We derived an analytical expression for the Jacobian linking
joint- and free-motion velocities to extremal-contour veloci-
ties and we showed how this Jacobian matrix can be plugged
into a non-linear minimization method. We made explicit
two components of the Jacobian: a rigid-motion component
and a sliding-motion component. The cost function uses the
directed chamfer distance between extremal contours pre-
dicted by the model and image contours extracted from sil-
houettes. One major advantage of using the directed chamfer
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Fig. 12 The result of tracking Erwan-2 with 6 cameras over 250 frames

(a) (b)
Fig. 13 These graphs show the advantage of using the sliding motion.
a A comparison between the minimization error obtained using the
sliding motion (bold) and without using it (dashed). b A comparison

of the speed of convergence of the minimization method (number of
iterations) with the sliding-motion component (bold) and without us-
ing it (dashed)
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Fig. 14 This figure shows a qualitative comparison between marker-
less and marker-based motion capture. The videos shown on to the left
(together with four other videos which are not shown) produced the

results shown on the third, fourth and fifth columns. The last column
shows the result obtained from a method that uses a 8-camera VICON
system to locate image markers

distance is that it does not require one-to-one assignments
between image observations and model features.

Moreover, we analysed the conditions under which the
minimization process can be carried out effectively, i.e.,
without failures due to numerical instabilities. Although, in
principle, one camera may suffice, in practice it is desirable
to have several images gathered simultaneously with several
cameras. We carried out a large number of experiments with
both simulated and real data. The tracker performed very

well and is able to recover from badly estimated poses. We
performed experiments with both simulated and real data
gathered with six cameras. We compared the angle trajecto-
ries obtained with our method with trajectories obtained us-
ing a marker-based commercial system that uses eight cam-
eras. We plan to compare more thoroughly our method with
other methods within formal evaluation protocols.

In the future we plan to have a probabilistic look at
the problem while maintaining the deterministic relation-
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ship between extremal contours and moving articulated ob-
jects. One possibility is to consider the graphical model
framework successfully applied to the pictorial recognition
of articulated objects (Felzenswalb and Huttenlocher 2005),
(Ronfard et al. 2002). Another possibility is to view each
extremal contour as a thin and elongated cluster and to ap-
ply model-based clustering methods (Fraley and Raftery
2002). Both these approaches raise the problem of relat-
ing the parameters of the probability distribution function at
hand with the kinematic parameterization proposed in this
paper. It is worthwhile to notice that the clustering frame-
work just mentioned is consistent with the chamfer dis-
tance which can be modified such that it accounts for a
probabilistic association between a set of observations and
a model.
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Abstract

Action recognition is an important and challenging topic in computer vision, with many important applications including video sur-
veillance, automated cinematography and understanding of social interaction. Yet, most current work in gesture or action interpretation
remains rooted in view-dependent representations. This paper introduces Motion History Volumes (MHV) as a free-viewpoint represen-
tation for human actions in the case of multiple calibrated, and background-subtracted, video cameras. We present algorithms for com-
puting, aligning and comparing MHVs of different actions performed by different people in a variety of viewpoints. Alignment and
comparisons are performed efficiently using Fourier transforms in cylindrical coordinates around the vertical axis. Results indicate that
this representation can be used to learn and recognize basic human action classes, independently of gender, body size and viewpoint.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Action recognition; View invariance; Volumetric reconstruction

1. Introduction

Recognizing actions of human actors from video is an
important topic in computer vision with many fundamen-
tal applications in video surveillance, video indexing and
social sciences. According to Neumann et al. [1] and from
a computational perspective, actions are best defined as
four-dimensional patterns in space and in time. Video
recordings of actions can similarly be defined as three-di-
mensional patterns in image-space and in time, resulting
from the perspective projection of the world action onto
the image plane at each time instant. Recognizing actions
from a single video is however plagued with the unavoid-
able fact that parts of the action are hidden from the cam-
era because of self-occlusions. That the human brain is able
to recognize actions from a single viewpoint should not
hide the fact that actions are firmly four-dimensional,

and, furthermore, that the mental models of actions
supporting recognition may also be four-dimensional.

In this paper, we investigate how to build spatio-temporal
models of human actions that can support categorization
and recognition of simple action classes, independently of
viewpoint, actor gender and body sizes. We use multiple
cameras and shape from silhouette techniques. We separate
action recognition in two separate tasks. The first task is the
extraction of motion descriptors from visual input, and the
second task is the classification of the descriptors into vari-
ous levels of action classes, from simple gestures and pos-
tures to primitive actions to higher levels of human
activities, as pointed out by Kojima et al. [2]. That second
task can be performed by learning statistical models of the
temporal sequencing of motion descriptors. Popular meth-
ods for doing this are hidden Markov models and other
stochastic grammars, e.g., stochastic parsing as proposed
by Ivanov and Bobick [3]. In this paper, we focus on the
extraction of motion descriptors from multiple cameras,
and their classification into primitive actions such as raising
and dropping hands and feet, sitting up and down, jumping,
etc. To this aim, we introduce new motion descriptors based
on motion history volumes which fuse action cues, as seen

1077-3142/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2006.07.013

* Corresponding author.
E-mail addresses: weinland@inrialpes.fr (D. Weinland), ronfard@

inrialpes.fr (R. Ronfard), edmond.boyer@inrialpes.fr (E. Boyer).
1 D. Weinland is supported by a grant from the European Community

under the EST Marie-Curie Project Visitor.

www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 104 (2006) 249–257



from different viewpoints and over short time periods, into a
single three-dimensional representation.

In previous work on motion descriptors, Green and Guan
[4] use positions and velocities of human body parts, but such
information is difficult to extract automatically during unre-
stricted human activities. Motion descriptors which can be
extracted automatically, and which have been used for
action recognition, are optical flows, as proposed by Efros
et al. [5], motion templates in the seminal work of Bobick
and Davis [6], and space-time volumes, introduced by
Syeda-Mahmood et al. [7] or Yilmaz and Shah [8]. Such
descriptors are not invariant to viewpoint, which can be par-
tially resolved by multiplying the number of action classes by
the number of possible viewpoints [6], relative motion direc-
tions [5], and point correspondences [7,8]. This results in a
poorer categorization and an increased complexity.

In this research, we investigate the alternative possibility
of building free-viewpoint class models from view-invariant
motion descriptors. The key to our approach is the
assumption that we need only consider variations in view-
points around the central vertical axis of the human body.
Within this assumption, we propose a representation based
on Fourier analysis of motion history volumes in cylindri-
cal coordinates. Fig. 1 explains our method for comparing
two action sequences. We separately compute their visual
hulls and accumulate them into motion history volumes.
We transform the MHVs into cylindrical coordinates
around their vertical axes, and extract view-invariant fea-
tures in Fourier space. Such a representation fits nicely
within the framework of Marr’s 3D model [9] which has
been advocated by linguist Jackendoff [10] as a useful tool
for representing action categories in natural language.

The paper is organized as follows. First, we recall Davis
and Bobick’s definition of motion templates and extend it

to three dimensions in Section 2. We present efficient
descriptors for matching and aligning MHVs in Section
3. We present classification results in Section 4 and con-
clude in Section 5.

2. Definitions

In this section, we first recall 2D motion templates as
introduced by Davis and Bobick in [6] to describe temporal
actions. We then propose their generalization to 3D in
order to remove the viewpoint dependence in an optimal
fashion using calibrated cameras. Finally, we show how
to perform temporal segmentation using the 3D MHVs.

2.1. Motion history images

Motion Energy Images (MEI) and Motion History
Images (MHI) [6] were introduced to capture motion infor-
mation in images. They encode, respectively, where motion
occurred, and the history of motion occurrences, in the
image. Pixel values are therefore binary values (MEI)
encoding motion occurrence at a pixel, or multiple-values
(MHI) encoding how recently motion occurred at a pixel.
More formally, consider the binary-valued function
D(x,y, t), D = 1 indicating motion at time t and location
(x,y), then the MHI function is defined by:

hsðx; y; tÞ ¼
s; if Dðx; y; tÞ ¼ 1;

maxð0; hsðx; y; t � 1Þ � 1Þ; otherwise;

�

ð1Þ

where s is the maximum duration a motion is stored. The
associated MEI can easily be computed by thresholding
h > 0.

Fig. 1. The two actions are recorded by multiple cameras, spatially integrated into their visual hulls (a), and temporally integrated into motion history
volumes (b) and (c). Invariant motion descriptors in Fourier space (d) are used for comparing the two actions.
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The above motion templates are based on motion, i.e.,
D(x,y, t) is a motion indicating function, however Bobick
and Davis also suggest to compute templates based on
occupancy, replacing D(x,y, t) by the silhouette occupancy
function. They argue that including the complete body
makes templates more robust to incidental motions that
occur during an action. Our experiments confirm that
and show that occupancy provides robust cues for recogni-
tion, even if occupancy encodes not only motion but also
shapes which may add difficulties when comparing move-
ments, as illustrated in Fig. 2.

2.2. Motion history volumes

In this paper, we propose to extend 2D motion tem-
plates to 3D. The choice of a 3D representation has several
advantages over a single, or multiple, 2D view
representation:

• A 3D representation is a natural way to fuse multiple
images information. Such representation is more infor-
mative than simple sets of 2D images since additional
calibration information is taken into account.

• A 3D representation is more robust to the object’s posi-
tions relative to the cameras as it replaces a possibly
complex matching between learned views and the actual
observations by a 3D alignment (see Section 2.3).

• A 3D representation allows different camera
configurations.

Motion templates extends easily to 3D by considering the
occupancy function D(x,y,z, t) in 3D, where D = 1 if
(x,y,z) is occupied at time t and D = 0 otherwise, and by
considering voxels instead of pixels:

vsðx; y; z; tÞ ¼
s; if Dðx; y; z; tÞ ¼ 1;

maxð0; hsðx; y; z; t � 1Þ � 1Þ; otherwise:

�

ð2Þ

In the rest of the paper, we will assume templates to be nor-
malized and segmented with respect to the duration of an
action:

vðx; y; zÞ ¼ vs¼tmax�tmin
ðx; y; z; tmaxÞ=ðtmax � tminÞ ð3Þ

where tmin and tmax are start and end time of an action.
Hence, motions loose dependencies on absolute speed
and result all in the same length. Section 2.3 shows how
we detect these boundaries using a motion energy based
segmentation.

The input occupancy function D(x,y,z, t) is estimated
using silhouettes and thus, corresponds to the visual hull
[12]. Visual hulls present several advantages, they are easy
to compute and they yield robust 3D representations. Note
however that, as for 2D motion templates, different body
proportions may still result in very different templates.
Fig. 3 shows examples for motion history volumes.

2.3. Temporal segmentation

Temporal segmentation consist in splitting a continuous
sequence of motions into elementary segments. In this
work, we use an automatic procedure that we recently
introduced in [13]. It relies on the definition of motion
boundaries as minima in motion energy, as originally pro-
posed by Marr and Vaina [9]. Such minima correspond
either to small rests between motions or to reversals in
motion. As it turns out, an approximation of the global
motion energy can be effectively computed using MHVs:
Intuitively, instant motion can be encoded using MHVs
over small time windows (typically 2–10 frames). Then
the sum over all voxel values at time t will give a measure
of the global motion energy at that time. Next, we search
this energy for local minima, and recompute the MHVs
based on the detected boundaries. For more details we
refer to our work in [13].

Fig. 2. Motion versus occupancy. Using motion only in image (a), we can roughly gather that someone is lifting one arm. Using the whole silhouette
instead, in (b), makes it clear that the right arm is lifted. However the same movement executed by a woman, in (c), compares favorably with the man’s
action in (a), whereas the whole bodies comparisons between (b) and (d) is less evident.

Fig. 3. Motion history volume examples: From left to right: ‘‘sit down’’;
‘‘walk’’; ‘‘kick’’; ‘‘punch’’. Color values: red = current; . . . ; blue = maxi-
mum duration, encode time of last occupancy. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this paper.)
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3. Motion descriptors

Our objective is to compare body motions that are free
in locations, orientations and sizes. This is not the case of
motion templates, as defined in the previous section, since
they encode space occupancy. The location and scale
dependencies can be removed by centering, with respect
to the center of mass, and scale normalizing, with respect
to a unit variance, motion templates, as usual in shape
matching. For the rotation, and following Davis and
Bobick [6] who used the Hu moments [14] as rotation
invariant descriptors, we could consider their simple 3D
extensions by Sadjadi and Hall [15]. However, our experi-
ments with these descriptors, based on first and second
order moments, were unsuccessful in discriminating
detailed actions. In addition, using higher order moments
as in [16] is not easy in practice. Moreover, several works
tend to show that moments are inappropriate feature
descriptors, especially in the presence of noise, e.g., Shen
[17]. In contrast, several works, such as that by Grace
and Spann [18] and Heesch and Rueger [19], demonstrated
better results using Fourier based features. Fourier based
features are robust to noise and irregularities, and present
the nice property to separate coarse global and fine local
features in low and high frequency components. Moreover,
they can be efficiently computed using fast Fourier-trans-
forms (FFT). Our approach is therefore based on these
features.

Invariance of the Fourier transform follows from the
Fourier shift theorem: a function f0(x) and its translated
counterpart ft(x) = f0(x � x0) only differ by a phase modu-
lation after Fourier transformation:

F tðkÞ ¼ F 0ðkÞe�j2pkx0 : ð4Þ
Hence, Fourier magnitudes jFt(k)j are shift invariant sig-
nal representations. The invariance property translates
easily onto rotation by choosing coordinate systems that
map rotation onto translation. Popular example is the
Fourier–Mellin transform, e.g., Chen et al. [20], that uses
log-polar coordinates for translation, scale, and rotation
invariant image registration. Recent work in shape
matching by Kazhdan et al. [21] proposes magnitudes of
Fourier spherical harmonics as rotation invariant shape
descriptors.

In a similar way, we use Fourier-magnitudes and cylin-
drical coordinates, centered on bodies, to express motion
templates in a way invariant to locations and rotations
around the z-axis. The overall choice is motivated by the
assumption that similar actions only differ by rigid trans-
formations composed of scale, translation, and rotation
around the z-axis. Of course, this does not account for all
similar actions of any body, but it appears to be reasonable
in most situations. Furthermore, by restricting the Fourier-
space representation to the lower frequencies, we also
implicitly allow for additional degrees of freedom in object
appearances and action executions. The following section
details our implementation.

3.1. Invariant representation

We express the motion templates in a cylindrical coordi-
nate-system:

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; tan�1 y

x

� �
; z

� �
! vðr; h; zÞ:

Thus, rotations around the z-axis results in cyclical transla-
tion shifts:

vðx cos h0 þ y sin h0;�x sin h0 þ y cos h0; zÞ ! vðr; hþ h0; zÞ:

We center and scale-normalize the templates. In detail, if v
is the volumetric cylindrical representation of a motion
template, we assume all voxels that represent a time step,
i.e., for which v(r,h,z) > 0, to be part of a point cloud.
We compute the mean l and variances rr and rz in z-
and r-direction. The template is then shifted, so that
l = 0, and scale normalized so that rz = rr = 1.

We choose to normalize in z and r direction, instead
of a principal component based normalization, focusing
on the main directions human differ on, and assuming
scale effects dependent on positions to be rather small.
This method may fail aligning, e.g., a person spreading
its hand with a person dropping its hand, but gives good
results for people performing similar actions, which is
more important.

The absolute values jV(r,kh,z)j of the 1D Fourier-
transform

V ðr; kh; zÞ ¼
Z p

�p
vðr; h; zÞe�j2pkhh dh; ð5Þ

for each value of r and z, are invariant to rotation along h.
See Fig. 4 for an illustration of the 1D-Fourier trans-

form. Note that various combinations of the Fourier trans-
form could be used here. For the 1D Fourier-transform the
spatial order along z and r remains unaffected. One could
say, a maximum of information in these directions is
preserved.

An important property of the 1D-Fourier magnitudes is
its trivial ambiguity with respect to the reversal of the sig-
nal. Consequently, motions that are symmetric to the z-axis
(e.g., move left arm–move right arm) result in the same
motion descriptors. This can be considered either as a loss
in information or as a useful feature halving the space of
symmetric motions. However, our practical experience
shows that most high level descriptions of human actions
do not depend on this separation.

In cases where it is important to resolve left/right ambi-
guities a slightly different descriptor can be used. One such
descriptor is the magnitude jV(kr,kh,kz)j of the 3D-Fourier
transform

V ðkr; kh; kzÞ ¼
Z 1

�1

Z p

�p

Z 1

�1
vðr; h; zÞe�j2pðkrrþkhhþkzzÞ dr dhdz;

ð6Þ
applied to the motion template v. This descriptor is only
symmetric with respect to an inversion of all variables,
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i.e., humans standing upside-down, which does not happen
very often in practice. While our previous work [22] used
that descriptor Eq. (6) with success, the results were any-
way inferior to those obtained with Eq. (5) and an invari-
ance to left right symmetry proved to be beneficial in
many classification cases. A visualization of both descrip-
tors is shown in Fig. 5.

3.2. On invariance vs. exhaustive search

Although we cannot report experiments for lack of
space, another significant result of our research is that
viewpoint-invariant motion descriptors (Fourier magni-
tudes) are at least as efficient as methods based on exhaus-
tive search (correlation), at least for comparing simple
actions. Numerous experiments have shown that, although
it is possible to precisely recover the relative orientations
between history volumes using phase or normalized corre-
lation in Fourier space [23], and compare the aligned
volumes directly, this almost never improves the classifica-
tion results. Using invariant motion descriptors is of course
advantageous because we do not need to align training
examples for learning a class model, or align test examples
with all class prototypes for recognition.

4. Classification using motion descriptors

We have tested the presented descriptors and evaluated
how discriminant they are with different actions, different
bodies or different orientations. Our previous results [22]
using a small dataset of only two persons already indicated
the high potential of the descriptor. This paper presents
results on an extended dataset, the so called IXMAS dataset.
The dataset is introduced in Section 4.1, followed by classifi-
cation results using dimensional reduction combined with
Mahalanobis distance and linear discriminant analysis
(LDA).

4.1. The IXMAS dataset

The Inria Xmas Motion Acquisition Sequences
(IXMAS)2 aim to form a dataset comparable to the current
‘‘state-of-the-art’’ in action recognition. It contains 11
actions, see Fig. 6 for instance, each performed three
times by 10 actors (5 males/5 females). To demonstrate the

Fig. 4. 1D-Fourier transform in cylindrical coordinates. Fourier transforms over h are computed for couples of values (r,z). Concatenation of the Fourier
magnitudes for all r and z forms the final feature vector.

Fig. 5. Volume and spectra of sample motions ‘‘lift left arm’’ (left) and ‘‘lift right arm’’ (right): (a) cylindrical representation in (h, r), (r,z), (h,z) averaged
over the third dimension for visualization purposes; (b) corresponding 3D-Fourier Spectra; (c) 1D-Fourier spectra. Note that the 3D descriptor treats both
motions differently (i.e., top and bottom row (b)), while the 1D descriptors treats them the same.

2 The data is available on the perception website http://perception.
inrialpes.fr in the ‘‘Data’’ section.
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view-invariance, the actors freely change their orientation
for each acquisition and no further indications on how to
perform the actions beside the labels were given, as illustrat-
ed in Fig. 7.

The acquisition was achieved using five standard Fire-
wire cameras. Fig. 8 shows example views from the camera
setup used during the acquisition. From the video we
extract silhouettes using a standard background subtrac-
tion technique modeling each pixel as a Gaussian in
RGB space. Then visual hulls are carved from a discrete
space of voxels, where we carve each voxel that not projects
into all of the silhouettes. However, there are no special

requirements for the visual hull computation and even
the simplest method showed to work perfectly with our
approach. After mapping into cylindrical coordinates the
representation has a resolution of 64 · 64 · 64. Temporal
segmentation was performed as described in Section 2.3.
Note, that the temporal segmentations splits some of the
actions into several elementary parts. To evaluate the
descriptor on a selected dataset of primitive motions, we
choose from each of the segments the one that best represents
the motion. For example the action ‘‘check watch’’ is split
into three parts: an upward motion of the arm—several
seconds of resting in this position—releasing the arm. From
these motions we only use the first for the class ‘‘check
watch’’. Another example is the action ‘‘walk’’, that has been
broken down into separate steps. Interestingly, in those
examples, we were able to classify even moderately complex
actions based on one segment only. However, classification
of composite actions is a topic of future research.

4.2. Classification using Mahalanobis distance and PCA

In initial experiments on a small dataset and with differ-
ent distance measures (i.e., Euclidean distance, simplified
Mahalanobis distance, and Mahalanobis distance + PCA,
see also [22]), the combination of a principal component
analysis (PCA) dimensional reduction plus Mahalanobis
distance based normalization showed best results. Due to
the small amount of training samples we only used one
pooled covariance matrix for all classes. Interestingly, we
found that the method extends well to larger datasets and
even competes with linear discriminant analysis (LDA),
as will be shown in Section 4.3.

PCA is a commonly used method for dimensional reduc-
tion. Data points are projected onto a subspace that is chosen
to yield the reconstruction with minimum squared error. It
has been shown that this subspace is spanned by the largest
eigenvectors of the data’s covariance R, and corresponds
to the directions of maximum variance within the data. Fur-
ther, by normalization with respect to the variance, an equal-
ly weighting of all components is achieved, similar to the
classical use of Mahalanobis distances in classification, but
here computed for one pooled covariance matrix.

Every action class in the data-set is represented by the
mean value of the descriptors over the available population
in the action training set. Any new action is then classified
according to a Mahalanobis distance associated to a PCA
based dimensional reduction of the data vectors. One
pooled covariance matrix R based on the training samples
of all classes xi 2 Rd , i = 1, . . ., n was computed:

R ¼ 1

n

Xn

i

ðxi �mÞðxi �mÞ>; ð7Þ

where m represents the mean value over all training
samples.

The Mahalanobis distance between feature vector x and
a class mean mi representing one action is:

Fig. 7. Sample action ‘‘kick’’ performed by 10 actors.

Fig. 8. Example views of five cameras used during acquisition.

Fig. 6. Eleven actions, performed by 10 actors.
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dðmi; xÞ ¼ ðx�miÞ>V K�1V >ðx�miÞ;
with K containing the k largest eigenvalues k1 P k2 P � � �
P kk, k 6 n � 1, and V the corresponding eigenvectors of
R. Thus feature vectors are reduced to k principal
components.

Following this principle, and reducing the initial
descriptor Eq. (5) to k = 329 components an average clas-
sification rate of 93.33% was obtained with leave-one-out
cross validation, where we successively used 9 of the actors
to learn the motions and the 10th for testing. Note that in
the original input space, as well as for a simple PCA reduc-
tion without covariance normalization the average rate is
only 73.03%. Detailed results are given in Table 1.

4.3. Classification using linear discriminant analysis

For further data reduction, class specific knowledge
becomes important in learning low dimensional representa-
tions. Instead of relying on the eigen-decomposition of one
pooled covariance matrix, we use here a combination of
PCA and Fisher linear discriminant analysis (LDA), see
e.g., Swets and Weng [24], for automatic feature selection
from high dimensional data.

First PCA is applied, Y = V>X, V = [v1, . . . ,vm], to
derive a m 6 n � c dimensional representation of the data

points xi, i = 1, . . ., n. The class-number c dependent limit
is necessary to guaranty non-singularity of matrices in dis-
criminant analysis.

Fisher discriminant analysis defines as within-scatter
matrix:

Sw ¼
Xc

i

Xni

j

ðyj �miÞðyj �miÞ>; ð8Þ

and between-scatter matrix:

Sb ¼
Xc

i

ðmi �mÞðmi �mÞ>; ð9Þ

and aims at maximizing the between-scatter while minimiz-
ing the within-scatter, i.e., we search a projection W that
maximize detðSbÞ

detðSW Þ. It has been proven that W equal to the
largest eigenvectors of S�1

w Sb maximizes this ratio. Conse-
quently, a second projection Z = W>Y, W = [w1 , . . . ,wk],
k 6 c � 1 is applied to derive our final feature representa-
tion Z.

During classification each class is represented by its
mean vector mi. Any new action z is then classified by sum-
ming Euclidean distances over the discriminant features
and with respect to the closest action class:

dðmi; zÞ ¼ kmi � zk2
: ð10Þ

In the experiments the magnitudes of the Fourier represen-
tation Eq. (5) are projected onto k = 10 discriminant fea-
tures. Successively we use nine of the actors to learn the
motions, the 10th is used for testing. The average rate of
correct classifications is then 92.42%. Class specific results
are shown in Table 1 and Fig. 9.

We note that we obtain much better results with the
Mahalanobis distance, using the 329 largest components
of the PCA decomposition, as compared to using the
PCA components alone. LDA allows us to further reduce
the number of features to 10, but otherwise does not fur-
ther improve the overall classification results.

4.4. Motion history vs. motion energy and key frames

With the same dataset as before, we compare our MHV
based descriptors with a combination of key poses and

Table 1
IXMAS data classification results. Results on PCA, PCA + Mahalanobis
distance based normalization using one pooled covariance, and LDA are
presented

Action PCA (%) Mahalanobis (%) LDA (%)

Check watch 46.66 86.66 83.33
Cross arms 83.33 100.00 100.00
Scratch head 46.66 93.33 93.33
Sit down 93.33 93.33 93.33
Get up 83.33 93.33 90.00
Turn around 93.33 96.66 96.66
Walk 100.00 100.00 100.00
Wave hand 53.33 80.00 90.00
Punch 53.33 96.66 93.33
Kick 83.33 96.66 93.33
Pick up 66.66 90.00 83.33

Average rate 73.03 93.33 92.42

Fig. 9. Average class distance: (Left) before discriminant analysis. (Right) after discriminant analysis.
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energy volumes. While Davis and Bobick suggested in the
original paper the use of history and binary images, our
experiments with motion volumes showed no improvement
in using a combination of MHVs and the binary MEVs.
We repeated the experiment described in Section 4.3, for
MEVs. Using the binary information the recognition rate
becomes 80.00% only. See Table 2 for detailed results. As
can be expected: reverse actions, e.g., ‘‘sit down’’–‘‘get
up’’, present lower scores with MEVs than with MHVs.
The MHVs show also better performance in discriminating
actions on more detailed scales, e.g., ‘‘scratch head’’–
‘‘wave’’.

Also, to show that integration over time plays a funda-
mental role of information, we compare our descriptor
with descriptors based on a single selected key frame. The
idea of key frames is to represent a motion by one specific
frame, see e.g., Carlson and Sullivan [25]. As invariant rep-
resentation, we use the magnitudes of Eq. (5). For the pur-
pose of this comparison we simply choose the last frame of
each MHV computation as corresponding key frame. The
average recognition rate becomes 80.30%. While motion
intensive action, e.g., ‘‘walk’’–‘‘turn around’’ score much
lower, a few pose expressive actions, e.g., ‘‘pick up’’,
achieve a better score. This may indicate that not all
actions should be described with the same features.

We conclude, that invariant Fourier descriptors of bina-
ry motion volumes and key frames are suitable for motion
recognition as well. However, the use of additional motion
information, as present in the motion history volumes, in
both cases distinctly improves the recognition.

4.5. Classification on video sequences

The previous experiments show that the descriptor per-
forms well in discriminating selected sets of learned
motions. In this experiment we test the descriptor on
unseen motion categories as they appear in realistic situa-
tions. For this purpose we work on the raw video sequences
of the IXMAS dataset. In a first step the dataset is seg-
mented into small motion primitives using the automatic

segmentation. Then each segment is either recognized as
one of the 11 learned classes or rejected. As in the previous
experiments, we work in PCA space spanned by the 11
sample motions and perform nearest-mean assignment.
To decide for the ‘‘reject’’-class we use a global threshold
on the distance to the closest class.

The automatic segmentation of the videos results in
1188 MHVs, corresponding to approximately 23 min of
video. In manual ground truth labeling we discover 495
known motions and 693 ‘‘reject’’-motions. Note, that such
a ground truth labeling is not always obvious. A good
example is the ‘‘turn’’-motion that was included in the
experiments, but additional turn-like motions also appear
as the actors where free to change position during the
experiments. Moreover, it might be that an actor was acci-
dentally checking his watch or scratching his head.

Testing in a leave-one-out manner, using all possible
combinations of 9 actors for training and the remaining
10th for testing, we show a multi-class ROC curve,
Fig. 10, plotting the average number of correctly classified
samples, against the number of false positives. We found a
maximal overall recognition rate (including correctly
rejected motions) of 82.79%, for 14.08% false positives
and 78.79% correctly classified motions. Fig. 11 shows
the average distance between the ‘‘reject’’-motions and
the learned classes.

Table 2
IXMAS data classification results

Action (%) MEV (%) Key frame (%) MHV (%)

Check watch 86.66 73.33 86.66
Cross arms 80.00 93.33 100.00
Scratch head 73.33 86.66 93.33
Sit down 70.00 93.33 93.33
Get up 46.66 53.33 93.33
Turn around 90.00 60.00 96.66
Walk 100.00 80.00 100.00
Wave hand 80.00 76.66 80.00
Punch 93.33 80.00 96.66
Kick 90.00 90.00 96.66
Pick up 70.00 96.66 90.00

Average rate 80.00 80.30 93.33

Results using the proposed MHVs are presented. For comparison we also
include results using binary MEVs and key frame descriptors.
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Fig. 10. Recognition on raw video sequences: plots recognition rate into
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The experiments demonstrate the ability of MHVs even
to work with large amounts of data and under realistic sit-
uations (23 min of video, 1188 motion descriptors). The
segmentation proved to almost always detect the important
parts of motions; MHVs showed good quality in discrimi-
nating learned and unseen motions.

An obvious problem for the false detections, is the nearly
infinite class of possible motions. Modeling unknown
motions may require more than a single threshold and
class, multiple classes and explicit learning on samples of
unknown motions becomes important. Another problem
we found is, that many motions can not be modeled by a
single template. Small motions may seem very similar,
but over time belong to very different actions. For example
the turn around motion is split into several small steps that
may easily be confused with a single side step. In such cases
temporal networks over templates, as e.g., in an HMM
approach, must be used to resolve these ambiguities.
However, we leave this for future work.

5. Conclusion

Using a data set of 11 actions, we have been able to
extract 3D motion descriptors that appear to support
meaningful categorization of simple action classes per-
formed by different actors, irrespective of viewpoint, gen-
der and body sizes. Best results are obtained by
discarding the phase in Fourier space and performing
dimensionality reduction with a combination of PCA and
LDA. Further, LDA allows a drastic dimension reduction
(10 components). This suggests that our motion descriptor
may be a useful presentation for view invariant recognition
of an even larger class of primitive actions. Our current
work is suited to segmentation of composite actions into
primitives, and classification of sequences of the corre-
sponding LDA coefficients.
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Abstract

We present a new method for segmenting actions into
primitives and classifying them into a hierarchy of action
classes. Our scheme learns action classes in an unsuper-
vised manner using examples recorded by multiple cameras.
Segmentation and clustering of action classes is based on a
recently proposed motion descriptor which can be extracted
efficiently from reconstructed volume sequences. Because
our representation is independent of viewpoint, it results in
segmentation and classification methods which are surpris-
ingly efficient and robust. Our new method can be used as
the first step in a semi-supervised action recognition sys-
tem that will automatically break down training examples
of people performing sequences of actions into primitive ac-
tions that can be discriminatingly classified and assembled
into high-level recognizers.

1 Introduction

Recognizing actions of human actors from video is an
important topic in computer vision with many fundamen-
tal applications in video surveillance, video indexing and
social sciences. From a computational perspective, actions
are best defined as four-dimensional patterns in space and
in time [10]. Yet, much current research in computer vision
ignores this fact and attempts to learn action models directly
from monocular video [3, 6, 1]. In our work, we use mul-
tiple video cameras and shape-from-silhouette techniques
to obtain four-dimensional recordings of action sequences.
We compute new motion descriptors based on - motion his-
tory volumes - which fuse action cues, as seen from different
viewpoints and over short time periods, into a single three
dimensional representation. From that representation, we
are able to segment the action streams into primitives and to
cluster those primitives into a hierarchy of primitive action
classes.
∗D. Weinland is supported by a grant from the European Community

under the EST Marie-Curie Project Visitor.

Our long-term goal is to automatically generate high-
level descriptions of video sequences in terms of the actions
that can be recognized or inferred from the given visual in-
put. Actions generally fall under two distinct categories -
composite actions which can be broken down into distinct
temporal parts or segments, and primitive actions, which
cannot be broken down further. In order to build a general
action recognizer, we need the ability to break down a given
sequence into primitive action segments, to label those seg-
ments into primitive actions using a vocabulary of learned
action models, and to assemble the labeled segments into
composite actions using concept hierarchies [8] or gram-
mars [11].

In this work, we use a novel motion descriptor based
on the motion history volume (MHV) which summarizes
the action content of a short multi-view sequence without
knowledge of body parts [15]. We automatically segment
action sequences into primitive actions which can be repre-
sented by a single MHV and we cluster the resulting MHVs
into a hierarchy of action classes, which allow us to recog-
nize multiple occurrences of repeating actions. We are able
to perform those two steps automatically, mainly because
MHVs work in a volume space which considerably re-
duces the ambiguities traditionally associated with changes
in viewpoints and occlusions even in multiple views.

As a concrete example, we asked two members of our
lab to perform a sequence of simple actions, each repeated
several times with different poses and styles, in front of 6
calibrated cameras. The resulting data set consists of unseg-
mented and unlabeled synchronized video sequences such
as the one depicted in Figure 1. Using the new motion
descriptor, we were able to segment (Section 5) and clus-
ter (Section 6) such sequences into primitive actions, which
we used as training examples for learning statistical classi-
fiers. Such a semi-supervised scheme is important in practi-
cal terms because it facilitates the creation of large training
sets for action recognition in the large.

Our method generates action taxonomies based on
purely visual cues since we create higher-level action
classes by abstracting two or more recorded actions which



Figure 1. Example action sequence: Raise arms - rotate arms - turn left - raise arms - rotate arms -
turn left - raise arms - rotate arms, seen from two different viewpoints. Such sequences are difficult
to segment and label consistently from monocular cues, but are easily segmented and labeled using
our view-independent motion descriptors.

look the same from all viewpoints (as measured by the dif-
ferences in a metric space of motion descriptors extracted
from their MHVs). We believe this is an important step to-
wards building complete, semantic taxonomies of actions
and plans.

The paper is organized as follows. We review related
work in Section 2. We briefly review motion history vol-
umes and associated view-independent motion descriptors
in Sections 3 and 4. We describe our segmentation algo-
rithm in Section 5 and our clustering algorithm in Section
6. Both algorithms are based on the motion descriptors in-
troduced in Section 4. Finally in Section 7 we describe
a semi-supervised action classification system which uses
the proposed algorithms to automatically segment and la-
bel the training and test sequences, and report initial results
obtained on a limited but realistic data set.

2 Related work

Segmentation and labeling of action sequences from
monocular video is a difficult problem that has received
considerable attention in recent years. Rittscher et al. learn
dynamical models of actions from tracked contours and use
them to segment new sequences [12]. Rui and Anandan
perform an SVD decomposition of a long sequence of op-
tical flow images and detect discontinuities in the trajec-
tories of selected SVD components to segment video into
motion patterns [13]. Zelnik-Manor and Irani cluster video
sequences into events using normalized cuts on multires-
olution sequences of spatio-temporal gradient magnitudes
[16]. Brand and Kettnaker use unsupervised HMMs to per-
form simultaneous segmentation and clustering of actions
from sequences of human silhouettes [3]. Wang et al. also
use unsupervised HMMs to segment 2D hand motions and
extract a vocabulary of musical conducting gestures, which
allows them to describe video sequences optimally in the
sense of minimum description length [14]. Feng and Cham
compare methods for segmenting action sequences with or

without body part correspondences and propose a hybrid
scheme that can handle ambiguous correspondences [5].
All such methods work only with restricted variations in
viewpoint, which make them ill-suited to cases such as of
Figure 1 where each action is performed multiple times with
vastly different poses.

Segmentation and labeling of action sequences from
multiple views is a relatively little-studied area. Previous
work assumes either that the cameras are uncalibrated (so
that reconstruction is not possible) or that a full human
body model can be recovered (so that reconstruction in-
cludes body part recognition and tracking). Thus, Marr and
Vaina discuss the problem of segmenting the 3D movement
of shapes and suggest the use of local minima of the 3D
motion of human limbs as natural transitions between prim-
itive movements [9]. Campbell et al. investigate several
view-invariant features for action classification from face
and hand tracking based on using multi-view stereo [4].
Davis and Bobick use motion templates in multiple views,
but they assume uncalibrated cameras and are therefore un-
able to perform 3D reconstruction [2]. Similarly, Ogale et
al. cluster action sequences in multiple views separately
by detecting minima and maxima of optical flow inside sil-
houettes and matching the selected silhouettes using phase
correlation [11]. This allows them to learn action gram-
mars from examples recorded by multiple cameras, but their
grammars remain viewpoint-dependent.

To the best of our knowledge, no previous work has at-
tempted to perform segmentation and clustering from vol-
umetric reconstructions. In this paper, we propose such a
method, which extends monocular methods most naturally
by introducing view-invariant motion descriptors built from
silhouettes in multiple calibrated views. Compared with
previous work, our method has the advantage that we per-
form all three steps of segmenting, clustering and classify-
ing action sequences in 3D with a representation which is
fully view-invariant, and is much simpler to recover than a
full human body model.



Figure 2. Example motion history volumes:
”Lift arm” and ”knee”, rendered from differ-
ent viewpoints. Colors: red = current, ..., blue
= maximum duration, encode time of last oc-
cupancy.

3 Motion History Volumes

In this section, we present the 3D motion templates on
which we ground our approach. These templates are a 3D
generalization of the 2D motion templates introduced by
Bobick and Davis in [2]. Both 2D and 3D templates are
based on image silhouettes, which are binary valued func-
tions indicating object occupancies in image projections.

Motion templates encode the history of motion occur-
rences. In 2D images, pixel values are therefore multiple-
values recording how recently motion occurred at a pixel.
The extension to 3D is straightforward by considering vox-
els instead of pixels, and the space occupancy function
D(x, y, z, t) over time steps t. Voxel values in the MHV
at time t are then defined by:

vτ (x, y, z, t) =



τ if D(x, y, z, t)
max(0, vτ (x, y, z, t − 1) − 1) oth. (1)

where τ is the maximum duration a motion is stored.
The input occupancy function D(x, y, z, t) is estimated

using silhouettes and is defined by the visual hull at time t.
Voxelic visual hulls are easy to compute and yield robust 3D
representations. Note however that, as for 2D motion tem-
plates, different body proportions may still result in differ-
ent templates. Figure 2 shows examples for motion history
volumes.

4 Motion Descriptors

To compare or discriminate motions, we need to find a
representation which is invariant to transformations in lo-
cations, orientations or sizes. To this purpose, we use both
alignment and invariant descriptors based on motion tem-
plates and Fourier transform. The idea is first to center
scale-normalized motion history volumes into a cylindrical
coordinate system where the z-axis is aligned with the verti-
cal direction. Hence, dependencies on scale and horizontal
translations are removed. For rotations around the vertical

axis, we use the fact that they correspond to translations in
the cylindrical coordinate systems, and that a function f0(x)
and its translated counterpart ft(x) = f0(x−x0) only differ
by a phase modulation after Fourier transform:

Ft(k) = F0(k)e−j2πkx0 . (2)

Thus absolute values of the Fourier transform are rotation
invariant descriptors.

The choice made here is motivated by the assumption
that similar actions only differ by rigid transformations
composed of scale, translation, and rotation around the z-
axis. Of course, this does not account for all similar actions
of any body shape, but it appears to be reasonable in most
situations. In addition, restricting the Fourier-space repre-
sentation to the lower frequencies also implicitly allows for
additional degrees of freedom in object appearances and ac-
tion executions. Our experiments also show that Fourier
magnitudes provide more discriminative information than
correlation features when comparing actions. The follow-
ing section details our exact implementation.

Alignment We express the motion templates in a cylin-
drical coordinate-system:

v(
√

x2 + y2, tan−1
(y

x

)
, z) → v(r, θ, z).

Thus rotations around the z-axis results in cyclical trans-
lation shifts:

v(x cos θ0+y sin θ0,−x sin θ0+y cos θ0, z) → v(r, θ+θ0, z).

We center and scale-normalize the templates. In detail,
if v is the volumetric cylindrical representation of a motion
template, we assume all voxels that represent a time step,
i.e. for which v0(r, θ, z) > 0, to be part of a point cloud.
We compute the mean µ and variances σr and σz in z- and
r-direction. The template is then shifted, so that µ = 0,
and scale normalized so that σz = σr = 1. We choose
to normalize in z and r direction, instead of a PCA based
normalization, focusing on the main directions human differ
on, and assuming scale effects dependent on positions to be
rather small. This method may fail aligning e.g. a person
spreading its hand with a person dropping its hand, but gives
good results for people performing similar actions, which is
more important.

Invariant descriptors In the new coordinate system we
apply a 1D Fourier-transform over θ for each value r and z:

V (r, kθ, z) =
∫ π

−π

v(r, θ, z)e−j2πkθθdθ, (3)

and take as invariant features the magnitudes:

f(r, kθ, z) = |V (r, kθ, z)|. (4)



Note that various combination of the Fourier transform
could be used here, for example magnitudes of the 3D
Fourier-transform over all dimensions r, θ, z as we did in
[15]. We use the Fourier transform over the single dimen-
sion θ to preserve exact spatial information in the remain-
ing directions. Such spatial information appears to be im-
portant when segmenting motions into elementary actions.
The counterpart is that the above descriptor (4) is ambigu-
ous with axial symmetries along the z-axis, hence similar
actions performed by the left or right body parts can be dif-
ficult to discriminate.

It should also be mentioned here that to preserve the
properties of the Fourier transform (e.g. robustness to
noise, separation in fine and coarse features) for all dimen-
sions, an additional 2D Fourier-transform can be applied to
f(r, kθ, z) for r and z:

V̂ (ωr, kθ, ωz) =

ZZ ∞

−∞
|V (r, kθ , z)|e−j2π(ωrr+ωzz)drdz. (5)

5 Temporal Segmentation

Temporal segmentation consists in splitting a sequence
of motions into elementary segments. It is a necessary
preliminary step to higher level processing of motion se-
quences including classification and clustering. In super-
vised approaches, segments are usually manually labeled in
an initial set of motion sequences, and further operations are
achieved by correlating unknown motion sequences with
these learned segments on a frame by frame basis, using
possibly various temporal scales [2, 7]. In this paper, we do
not assume such a priori knowledge and propose instead a
simple but efficient approach to automatically segment 3D
motion sequences.

Any temporal segmentation relies on the definition of el-
ementary motion segments. There are two main approaches
to segmentation: Energy minima can be used to detect re-
versal of motion direction, following an early proposal by
Marr and Vaina [9]. Or discontinuities can be used to de-
tect changes in the temporal pattern of motion [13]. From
experiments we found energy minima more stable, i.e. sim-
ilar action sequences are segmented more consistently. The
function over time that we segment is then a global mo-
tion energy function. This function is an approximation of
the global body velocity estimated using the motion history
volumes. It is based on the observation that rest states cor-
respond to instants where few motions only occur, and thus
result in few voxels encoding motion in the MHV, when
small temporal windows are considered. Therefore, seg-
ment detection simply consists in finding minima of the sum
of voxel values in the MHV, assuming a small value for τ
in 1. Figure 3 shows several examples of sequences seg-
mented this way. As can be seen in the figure, detection of
energy minima is fairly unambiguous in this examples.
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Figure 3. Motion Energy for action: Lift arms -
rotate arms - lower arms and turn in new po-
sition. Executed three times by (left) female
actor, (right) male actor. Local energy minima
serve as segmentation criteria of sequences.
Motion volumes for each segment are shown
in Figure 4.

In the implementation we use a derivative of Gaussian
filter and zero crossing to detect the minima. Parameter τ
in equation (1) was set to constant 10 frames during all ex-
periments. Temporal scale was not important for detection
of all relevant segments. In practice, the minima detection
appears to be very successful in segmenting motions, even
for coupled motions, like moving torso and arms in parallel,
local minima occur. Of course, this measure is still sensitive
to small variations of velocity that can result in local min-
ima. However, by allowing a possible over-segmentation
the method will detect most of the motion segment bound-
aries.

6 Action taxonomies

Given a segmented action sequence, we would like to
recognize multiple occurrences of the same primitive ac-
tions and to label the sequence accordingly. This capabil-
ity will be important in the next section when we attempt to
train classifiers for all primitive actions in a semi-supervised
fashion.

We build an action taxonomy from a segmented se-
quence by hierarchically clustering the segments into
classes. Initially, each segment is a single occurrence of
its own action class, and is represented as a single point in
the space of view-invariant motion descriptors of Section
4, which is a high-dimensional Euclidean space. We then
apply a standard hierarchical clustering method to the seg-
ments. This creates a binary tree of action classes, where
each class is now represented by a point cloud in the space
of motion descriptors (see Figure 6).

We report experiments on two different datasets of in-
creasing complexity. In each we segment the sequences as
explained in section 5 and compute a single MHV per seg-
ment. This is illustrated in Figures 4 and 8. The experiments
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9 Lift
arms

10 Turn
arms

11 Lift
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Figure 4. History volumes computed at segments of varying duration, and their clusters, using seg-
mentation from Figure 3. (Top) female actor repeating three times: Lift arms ahead - rotate arms -
lower arms and turn in new position. (Bottom) the same done by a male actor, from original sequence
shown in Figure 1. The clusters are labeled manually for presentation purposes.

were conducted on MHVs obtained from 6 silhouettes ex-
tracted using a standard background subtraction method.
The resulting motion templates were mapped into a discrete
cylindrical coordinate representation of size 64 × 64 × 64.
Clustering was achieved using an agglomerative scheme,
where the distance between objects is the Euclidean dis-
tance, and clusters were linked according to their furthest
neighbor. The first dataset shows how actions performed by
different persons, with different bodies, are handled by our
system. The second dataset is a more realistic set of natural
actions in arbitrary orders. Its interpretation is less straight-
forward, but it gives strong insights on the potential of our
motion descriptors to yield consistent high-level interpreta-
tions.

6.1 Clustering on Primitive Actions

Here a dataset of 22 motion sequences performed by
both a male and a female actor were considered. Segmented
key actions are shown in Figure 5. The actors perform suc-
cessively each action three times while changing their ori-
entations in between. The automatic motion segmentation
returns 203 motion volumes (100 for the woman, 103 for
the man). We start by computing a dendrogram of all male
segments, using Euclidean distances and furthest neighbor
assignments. A good trade-off between motion variation
within single clusters and multiple clusters having same la-
bels is then to cut the hierarchy into 21 clusters. All seg-
ments inside these clusters are labeled according to the most
obvious interpretation. From these labels, the 21 clusters
are then labeled with respect to the most current actions
which occurs in each cluster. Figure 6 shows the labeled
dendrogram. Within these clusters, 7 (6.8%) actions were
obviously assigned a wrong cluster, 4 actions give birth to

1 2 3 4 5

6 7 8 9 10 11

Figure 5. Perspective views of the motion his-
tory volumes computed for each action cate-
gory. (1) lift right arm ahead. (2) lift right arm
sideways. (3) lift left arm sideways ahead. (4)
lift left arm sideways. (5) rotate both arms
lifted. (6) lower both arms sideways. (7) lift
both arms sideways. (8) lift right leg bend
knee. (9) lift left leg bend knee. (10) lift right
leg firm. (11) jump.

single clusters, and one cluster is ambiguous (lower or lift
arm sideways).

We next compute a hierarchy from the male and female
data. The procedure is the same as in the previous exper-
iment. Du to higher variations in the dataset the clusters
result in a coarser action grouping. A good trade-off be-
tween motion variation within single clusters and multiple
clusters having same labels is this time to cut the hierarchy
into 9 clusters, as shown in Figure 7. With respect to this
labeling only two actions are wrongly assigned.
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Lift leg bending
Lower bended leg
Jump
Lower firm leg
Turn in new position
Rebounce after jump
Crouch before jump
Lift leg firm
Lift arm ahead
Lower arm from ahead
Lower arm sideways
Lift arm ahead (single)
Lift both arms ahead (single)
Rotate both arms lifted
Lift arm sideways
Lift arm sideways (single)
Do nothing (single)
Lift both arms ahead
Turn both arms sideways
Lower both arms sideways
Lift or lower both arms sideways

Figure 6. Hierarchical clustering of 103 male
actions. 21 top nodes labeled with respect to
the most occurring action.

0.550.60.650.70.750.80.850.9

Rotate both arms lifted
Lift or lower both arms sideways
Lift or lower single arm
Lift arm sideways
Lift both arms ahead
Stay leg lifted
Lift leg firm
Turn / Jump / lift or lower leg
Lift or lower leg

Figure 7. Hierarchical clustering of 203 male
and female actions. 9 top nodes labeled with
respect to the most occurring action.

6.2 Clustering on Composite Actions

In another clustering experiment we used a different
dataset of actions with a much more complex semantics.
Those sequences are pantomimes of various daily life ac-
tions such as catching a ball, picking up, stretching, laugh-
ing, etc. The segmentation and clustering methods were
applied to each of these sequences. Figures 8 and 9 show
the segmented motion templates and the hierarchy obtained
for one such sequence. Again groups of higher level actions
in Figure 9 have a simple interpretation such as lift or lower
arms. Note also the group rest in position where segments
without motion, typically between actions, have been con-
sistently clustered.

7 Semi-supervised classification

In this section we use the MHV clusters as training data
to learn discriminant classifiers for each of the discovered
action classes. We use the motion templates that have been

1 Lift
arms

2 Lower
arms

3 Catch 4 Rest 5 Return 6 Do
nothing

7 Lift
arms

8 Lower
arms

9 Catch 10 Rest 11 Return 12 Catch

13 Return 14 Turn 15 Catch 16 Rest 17 Return 18 Turn

Figure 8. History Volumes for pantomime se-
quence “catching ball”.

automatically extracted in the previous section, i.e. we use
the 11 actions corresponding to the key labels in Figure 5.
Each action is represented each by 3 samples per actor. One
example per class is shown in Figure 5.

We split the set into two configurations: woman/man and
man/woman. While simple, this test shows how the pro-
posed descriptors discriminate actions with different bod-
ies. Every action class in the data-set is represented by the
mean value of the descriptors over the available population
in the action training set. Any new action is then classified

 1  7  3  9 15 12  4 10 16  2  8  5 11 17 18  6 13 14

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

CatchLift
arms

Rest
in
position

Lower
arms Turn

Figure 9. Hierarchical clustering of “catching
ball” sequence.
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Figure 10. Average distances in feature space
between male action classes and female
samples. Actions see Figure 5.

according to a Mahalanobis distance associated to a PCA
(Principal Component Analysis) based dimensional reduc-
tion of the data vectors.

One pooled covariance matrix Σ based on all training
samples xi ∈ Rd, i = 1, . . . , n was computed:

Σ =
1
n

n∑

i

(xi −m)(xi −m)>, (6)

where m represents the mean value over all training sam-
ples.

The Mahalanobis distance between feature vector x and
a class mean mi representing one action is:

d(mi,x) = (x −mi)>V Λ−1V >(x −mi),

with Λ containing the k largest eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λk, and V the corresponding eigenvectors of Σ. Thus
feature vectors are reduced to k principal components.

In all tests x are the vectorized 6 × 6 × 6 lowest com-
plex valued frequencies of equation (5), that are further re-
duced to the 32 largest principal components. Independent
whether the classes are learned from the male/female data,
we achieve in both cases a classification rate of 100%. A
confusion matrix of average distances is shown in Figure
10, with surprisingly good results even with respect to axial
symmetry.

8 Conclusion

In this paper, we have introduced new methods for seg-
menting and clustering sequences of volumetric reconstruc-
tions of a human actor performing actions, without recogni-
tion or tracking of body parts. This has allowed us to learn

classifiers for a small vocabulary of primitive actions, in-
dependently of style, gender and viewpoint. We have also
applied our algorithms to discover meaningful hierarchies
of action concepts in more complex composite sequences.
We are currently using our new semi-supervised method to
build training sets with more actions, actors and styles. In
future work, we plan to use those techniques to learn statisti-
cal models of composite actions by simultaneously learning
the component actions and their grammars.
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Abstract

In this paper, we address the problem of learning com-
pact, view-independent, realistic 3D models of human ac-
tions recorded with multiple cameras, for the purpose of
recognizing those same actions from a single or few cam-
eras, without prior knowledge about the relative orienta-
tions between the cameras and the subjects. To this aim,
we propose a new framework where we model actions us-
ing three dimensional occupancy grids, built from multiple
viewpoints, in an exemplar-based HMM. The novelty is, that
a 3D reconstruction is not required during the recognition
phase, instead learned 3D exemplars are used to produce
2D image information that is compared to the observations.
Parameters that describe image projections are added as
latent variables in the recognition process. In addition,
the temporal Markov dependency applied to view param-
eters allows them to evolve during recognition as with a
smoothly moving camera. The effectiveness of the frame-
work is demonstrated with experiments on real datasets and
with challenging recognition scenarios.

1. Introduction

We consider the problem of recognizing actions usinga
priori unknown camera configurations. Action recognition
has received considerable attention over the past decades,
as a result of the growing interest for automatic and ad-
vanced scene interpretations shown in several applications
domains,e.g. video-surveillance or human machine interac-
tions. In this field, two main directions have been followed.
Model based approaches, e.g. [6, 20] assume a known para-
metric model, typically a kinematic model, and represent
actions in a joint or parameter space. Unfortunately, recov-
ering the parameters,e.g. the pose, of the model appears
to be a difficult intermediate task without the help of land-
marks.

∗D. Weinland is supported by a grant from the European Community
under the EST Marie-Curie Project Visitor.

In contrast, template based or holistic approaches,
e.g. [3, 7, 2, 19], do not use such an intermediate represen-
tation and directly model actions using image information,
silhouettes or optical flow for instance. Action templates are
then spatio-temporal shapes either in a three-dimensional
space, when a single camera is considered, or in a four di-
mensional space when multiple calibrated cameras are con-
sidered. In both cases, action recognition is achieved by
comparing a motion template, built from observations, with
learned models of the same type. This limits recognition to
situations where observed and learned models are obtained
using similar camera configurations.

In this work, we propose an approach that takes advan-
tage of the template based methods but that does not con-
strain camera configurations during recognition. Instead,
actions can be observed with any camera configuration,
from single to multiple cameras, and from any viewpoint.
Our main motivation is to be able to cope with unknown
recognition scenarios without learning multiple and specific
databases. This has particularly clear applications in video-
surveillance where actions are often observed from a single
and arbitrary viewpoint.

To this purpose, we propose an exemplar-based hidden
Markov model (HMM) inspired by the works of Frey and
Jojic [9] and Toyama and Blake [18]. This model accounts
for dependencies between three dimensional exemplars,i.e.
representative pose instances, and image cues, this over
time sequences. Inference is then used to identify the ac-
tion sequence that best explains the image observations. In
particular, a nice feature is that observations from any cal-
ibrated view can be incorporated. In addition, explicitly
modeling the transformation between exemplars and image
cues allows such transformation to change over time during
recognition.

The paper proceeds as follows. In Section2 we review
the state of the art in view-independent action recognition.
In Section3 we present an overview of the proposed ap-
proach. Details on the exemplar-based HMM design are
given in Section4. In Section5 the exemplar selection and
the model learning are explained. Section6 details recogni-
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tion. Experiments using a challenging dataset of 11 actions
are presented in Section7.

2. Related Work

In order to allow actions to be learned and recognized
using different camera configurations, action descriptions
must exhibit some view invariance. Campbell [5] describes
3D hand and head trajectories using view invariant coor-
dinate representations. Fundamental matrices can also be
used to compare 2D action representations from different
views, as joint trajectories in [16, 20] or silhouettes in [17].
To achieve similar comparisons, Parameswaran and Chel-
lappa [14] use projective invariants of coplanar landmark
points on a human body. In a previous work [19] we
compare 3D action representations based on visual hulls
and propose invariant Fourier-descriptors that are computed
from multiple-view reconstructions. These approaches have
focused on representations in which view dependent infor-
mation is removed, often at the cost of an impoverished
action model and without adding full flexibility in camera
configurations. This motivates the search for another solu-
tion.

In a different context, Frey and Jojic [9] show how to
account for view transformations in a dynamic probabilis-
tic model. In the same spirit, Toyama and Blake [18] ex-
tend the idea for tracking with powerful image distances,
and Elgammalet al. [8] propose a nonparametric mixture
extension that, however, applies to view-dependent action
recognition. Our approach builds on a similar model and
incorporates geometric transformations into the probabilis-
tic modeling of an action.

It is worth to mention also the work of Brand[4] that uses
HMMs and a direct mapping between a three dimensional
joint space and silhouette observations for pose estimation.
It shares some similarities with our approach since we also
use HMMs to model temporal sequences of exemplars.

A very recent and interesting work is that of Lv and
Nevatia [12]. Developed in parallel to our method, it shares
the idea of projecting a set of learned 3D exemplars/key-
poses into 2D to infer actions from arbitrary view. However
we use a probabilistic model instead of the deterministic
linked action graph introduced in [12], allowing therefore to
naturally handle uncertainties inherent to actions performed
by different people and with different styles.

3. Overview

We model an action as a sequence over a set of key-
poses, the exemplars. Figure1 shows two examples of ob-
servation sequences and the corresponding best matching
exemplar sequences computed with our model.

Exemplars are represented in 3D as visual hulls that have
been computed using a system of 5 calibrated cameras. The

model does thus not rely on motion capture data, which is
generally difficult to obtain.

The observation sequence comes in this example from
a single camera and is represented trough silhouettes ob-
tained from background subtraction. To match observation
and exemplars, the visual hulls are projected into 2D and a
match between the resulting silhouettes is computed. The
recognition phase thus generates 2D from 3D and never has
to infer 3D from a single view observation.

Modeling actions and views The matching between
model and observation is represented in a probabilistic
framework (Section4). Consequently, and crucially, that
neither the best matching exemplar sequence, nor the exact
projection parameters need to be known. Instead a proba-
bility of all potential exemplar sequence and projection is
computed. Using the classical HMM algorithms [15], such
a probability can be efficiently computed under the follow-
ing conditions: First, we use a small set of exemplars that
is shared by all models. As we show in Section5.1, a small
set of exemplars is sufficient to describe a large variety of
actions, if the exemplars are discriminative with respect to
these actions. Second, we make a few reasonable assump-
tions on the parameters of the projective transformation,i.e.
the camera calibration and position of a person can be ro-
bustly observed during recognition and only the orientation
of a person around the vertical axis is unknown.

Exemplar selection and model learning Learning an ac-
tion model consists of two steps: A set of exemplars is se-
lected and shared by all actions models (Section5.1); prob-
abilities over these exemplars are learned individually for
each action (Section5.2).

When selecting the exemplars, we are interested in find-
ing the subset of poses from the training sequences, that
bests discriminates actions. To this purpose, we present in
Section5.1 a novel solution based on a method for feature
subset selection, awrapper [11].

Given a set of exemplars, the action specific probabilities
are estimated using standard probability estimation tech-
niques for HMMs, as described in Section5.2. Interest-
ingly, the learning of dynamics over a set of selected 3D ex-
emplars can be performed either on 3D sequences of aligned
visually hulls (Section5.2.1), thus under ideal conditions,
or simply from single view observations (Section5.2.2).
Hence 3D information is not mandatory for that step.

Classification Classification is performed using standard
HMM algorithms, as described in Section6.

2
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Figure 1. 2D observation sequencesyt (“walk in cycle” and “punch”), observed from different viewpoints and with unknown orientation of
the persons, are explained trough 3D action models. The bestmatching exemplar sequencext and the best matching 2D projectionPl̂l̃(xi),
as generated by the models, are displayed. Both models sharea small set of exemplars (labeled on top).
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Figure 2. Probabilistic dependencies of actions: an actionis mod-
eled as a hidden state sequenceQ, e.g. a motion sequence in a
pose space. At each time stept, a 3D exemplarxt, i.e. a visual
hull, is drawn from the motion sequenceQ. Observationsyt, i.e.
silhouettes, result then from a geometric transformation of exem-
plars that is defined by2 sets of parameterŝl andl̃. l̂ are observed
parameters,e.g. camera parameters determined in a preliminary
step, and̃l are latent parameters,e.g. body orientation determined
during recognition. Shaded nodes in the graph correspond toob-
served variables.

4. Probabilistic Model of Actions and Views

Our representation for human action is a product of two
independent random processes, one for the orientation of
the subject relative to the camera, and the other for the view-
independent, body-centered poses taken by the performer
during the various stages of the action. The two processes
are modeled in an exemplar based Markov model, shown in
Figure2, in the spirit of [9] and [18].

Hidden Motion States Dynamics in exemplar space are
represented by a discreteN -state latent variableq that
follows a first order Markov chain over time. Thus:
p(qt|qt−1, . . . , q1) = p(qt|qt−1), with t ∈ [1 . . . T ], and
with the priorp(q1) at timet = 1. Though generally hid-
den,q can intuitively be interpreted as a quantization of the
joint motion space into action-characteristic configurations.

Exemplars At each timet, a three dimensional body tem-
platext is drawn fromp(xt|qt). A crucial remark here is
that these templates do not result from body models and
joint configurations but are instead represented by a set of
M exemplars:X = {xi∈[1...M ]}, learned from three dimen-
sional training sequences.

Note here thatp(xt = xi|qt) models the non-
deterministic dependencies between motion states and body
configuration. Thus motion statesq are not deterministi-
cally linked to exemplars as in [12, 18], allowing therefore
a single motion stateq to be represented with different ex-
emplars, to account for different body proportions, style,or
clothes.

View Transformation and Observation To ensure inde-
pendence with respect to the view projection onto the im-
age plane:Pl̂l̃(x) = P̂ [Rθ, u]x, we condition observations
y on parameters that represent this transformation. We dif-
ferentiate view transformation parameters{l̂t} that can be
robustly observed (i.e. the camera matrix̂P and positionu),
and body pose parameters{l̃t} that are latent (i.e. the orien-
tation around the vertical axisθ).

The resulting densityp(yt|xt, l̂t, l̃t) is represented in
form of a kernel function centered on the transformed ex-
emplarsPl̂l̃(xi):

p(yt|xt = xi, l̂t, l̃t) ∝
1
Z

exp
(
− d(yt, Pl̂l̃(xi))/σ2

)
, (1)

whered is a distance function between between the result-
ing silhouettes,e.g. the Euclidean distance (i.e. the number
of pixels which are different), or a more specialized distance
such as the chamfer distance [10]. (Note that both were giv-
ing similar results in our experiments.)

The temporal evolution of the latent transformation vari-
ables is modeled as a Markov process with transitions prob-
abilitiesp(l̃t|l̃t−1), and a priorp(l̃1). This is equivalent to a
temporal filtering of the transformation parameters where,
interestingly, various assumptions could be made on the dy-
namic of these parameters: a static model or an autoregres-
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sive model, or even a model taking into account dependen-
cies between an action and view changes.

In our implementation all variables{l̃, l̂} are discretized.
For instance, the orientationθ is discretized intoL equally
spaced angles within[0, 2π] and u is discretized into a
set of discrete positions. The temporal evolution ofθ is
modeled using a von Mises distribution:p(θt|θt−1) ∝
exp(κ cos(θt−θt−1)), that can be seen as the circular equiv-
alent of a normal distribution, and a uniform priorp(θ1).

5. Learning

We learn separate action modelsλc for each action
classc ∈ {1, . . . , C}. A sequence of observationsY =
{y1, . . . , yT } is then classified with respect to the maximum
a posteriori (MAP) estimate:

g(Y ) = argmax
c

p(Y |λc)p(λc). (2)

The setλc is composed of the probability transition matri-
cesp(qt|qt−1, c), p(q1|c) andp(xt|qt, c), which are specific
to the actionc, as they represent the action’s dynamics. In
contrast, the observation probabilitiesp(yt|xt, l̂t, l̃t) are tied
between classes, meaning that all actions{c = 1..C} share
a common exemplar set,i.e. Xc = X, and a unique variance
σ2

c = σ2. In the context of HMMs, such an architecture is
known as atied-mixture or semi-continuous HMM[ 1]. This
architecture is particularly well adapted to action recogni-
tion since different actions naturally share similar poses.
For example, many actions share a neutral rest position and
some actions only differ by the sequential order of poses
that composed them. In addition, sharing parameters dra-
matically reduces complexity during recognition, when ev-
ery exemplar must be projected with respect to numerous
latent orientations.

Learning consists then in two main operations: selecting
the exemplar set that is shared by all models; learning the
action specific probabilities. As we will see in the follow-
ing, the two operations are tightly coupled. Selection uses
learning to evaluate the discriminant quality of an candidate
exemplar set, and learning probabilities relies on a selected
set of exemplars. Both operations are detailed below.

5.1. Exemplar Selection

Identifying discriminative exemplars is an essential step
of the learning process. Previous works use motion en-
ergy minima and maxima [12, 13], or k-means clustering
(adapted to return exemplars) [18] to this end. However,
there is no apparent relationship between such criteria and
the action discriminant quality of the selected exemplars.
In particular for the adapted k-means clustering [18] we ob-
served experimentally, that clusters tend to consist of dif-
ferent poses performed by similar actors rather than similar

poses performed by different actors. Consequently, select-
ing exemplars as poses with minimum within-cluster dis-
tance often leads to neutral and therefore non-discriminative
poses.

In light of this, we propose a novel approach for exem-
plar selection, to better link the discriminant quality of ex-
emplars and the selection. We therefore use a wrapper [11],
a technique for discriminant feature subset selection. The
idea behind a wrapper is to use the trained classifier (2) it-
self to evaluate how discriminative a candidate set of exem-
plars is. Thus a wrapper performs a greedy search over the
full set of exemplars, where in each iteration classifiers are
learned and evaluated for each possible subset considered.

The wrapper method we use is called “forward selection”
[11], and proceeds as follows: LetY denote a set of 3D
visual hulls. Assume training sequences and test sequences
for all actionsc ∈ {1, . . . , C} are given.

1. SetX = ∅.

2. Findy∗ ∈ {Y \ X}, where a classifierg (trained on all
actions) using exemplar set{X∪ y∗} has best recogni-
tion performance on the test-set. Addy∗ to X.

3. Repeat step2 until M visual hulls fromY have been
added toX.

Note that the above procedure can only work when the
exemplar set is shared by all action models. The selection
thus starts by training a classifier for each singleton exem-
plar. The exemplar for which the classifier has best evalua-
tion performance is selected, and the procedure is repeated
for couples of exemplars, triples,etc., until M exemplars
have been selected. Note that training and evaluation of the
classifier can be performed in 3D or 2D, as detailed in Sec-
tion 5.2. In case that the training sequences are 3D,Y can
simply be the training-set.

The approach is illustrated in Figures3 and4 where ex-
emplars and the associated classification rates are shown.
Figure3 shows that the selected poses naturally represent
key-frames or characteristic frames of an action.

5.2. Learning Dynamics

Given a set of exemplars, the action parameters
λc∈{1,...,C}: probabilities p(qt|qt−1, c), p(q1|c) and
p(xt|qt, c), can be learned. Various strategies can be consid-
ered for that purpose. In the following, we sketch2 of them:
learning from 3D observations (sequences of visual hulls),
and learning from 2D observations (image sequences). Note
that in both cases, motion is learned in 3D over the set of 3D
exemplars, obtained as described in section5.1.
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Figure 3. Selected exemplars: first 24 discriminative exemplars as returned by the forward selection. The dataset is composed of11 actions
performed by10 actors. Recognition rates are shown in Figure4.
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Figure 4. Recognition rate vs. number of selected exemplars.

5.2.1 Learning from 3D Observations

In this training scenario, several calibrated viewpoints are
available, leading therefore to 3D visual hull sequences,
and all actions are performed with the same orientation. In
that case, motion dynamics are learned independently from
any viewing transformation, thusp(yt|xt, l̂t, l̃t) = p(yt|xt)
with y being 3D. Transformation parameters appear later
during the recognition phase where both dynamics and
viewing process are joined into a single model.

Each modelλc is learned through a forward-backward
algorithm that is similar to the standard algorithm for Gaus-
sian mixture HMMs [15], except that the kernel parameters,
that correspond to mean and variance of the Gaussians (i.e.
X and σ), are not updated. Note that a similar forward-
backward algorithm was already proposed in the context of
exemplar based HMMs [8].

5.2.2 Learning from 2D Observations

In this scenario, dynamics in the exemplar 3D space are
learned using 2D cues only. In that case, the situation is
similar when either learning or recognizing. A nice feature
here is that only a valid set of 3D exemplars is required, but
no additional 3D reconstruction. This is particularly useful
when large amounts of 2D observations are available but no
3D inference capabilities (e.g. 3D exemplars can be synthe-
sized using a modeling software; the dynamics over these
exemplars are learned form real observations).

View observations are not aligned and so the orientation

variablẽl is latent. Nevertheless, the number of latent states
remains in practice small, (i.e. L×N , with L being the num-
ber of discrete orientations̃l andN the number of statesq).
The model can be learned by introducing a new variable
q́ = (q, l̃) of sizeL × N that encodes both state and orien-
tation. Probabilities of thisextended states are then simply
defined as Cartesian products of the transition probabilities
for q and l̃. Loops in the model are thus eliminated, and
learning can be performed via the forward-backward algo-
rithm introduced in5.2.1.

6. Action Recognition from 2D Cues

A sequence of observationsY is classified using the
MAP estimate (2). Such a probability can now be com-
puted using the classical forward variableα(q́t|λc) =
p(y1, . . . , yt, q́t|λc) as explained in [15], whereq́ = (q, l̃)
is a variable encoding state and orientation as explained in
Section5.2.2

Arbitrary viewpoints do not share similar parameters; in
particular scales and metrics can be different. However,
the kernel parameterσ2 is uniquely defined, with the con-
sequence that distances computed in equation (1) can be
inconsistent when changing the viewpoint. To adjustσ2

with respect to changes in these parameters, we introduce
σ2

l̃
= sl̃σ

2. Ideally,σ2
l̃

should be estimated using test data.
In practice, the following simple approximation ofσ2

l̃
ap-

pears to give satisfactory results with the distance functions
we are considering:

sl̂ =
1
M

M∑

i=1

1
L

∑L
l̃=1 ||Pl̂l̃(xi)||2
||xi||2

. (3)

Another remark is that observations from multiple cali-
brated cameras can easily be incorporated. Assuming multi-
ple view observations{y1

t , . . . , y
K
t } at timet, we can write

their joint conditional probability as:

p(y1
t , . . . , yK

t |xt, l̂t, l̃t) ∝
K∏

yk
t

p(yk
t |xt, l̂t, l̃t). (4)
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Figure 5. Camera setup and extracted silhouettes: (Top) theaction “watch clock” from the 5 different camera views. (Middle and bottom)
sample actions: “cross arms”, “scratch head”, “sit down”, “get up”, “turn”, “walk”, “wave”, “punch”, “kick”, and “pick up”. Volumetric
exemplars are mapped onto the estimated interest regions indicated by blue box.

7. Experiments

Experiments were conducted on our publicly available
dataset1, the IXMAS dataset. We choose 11 actions, per-
formed by 10 actors, each 3 times, and viewed by 5 cal-
ibrated cameras (see Figure5). In this dataset, actor ori-
entations are arbitrary since no specific instruction was
given during the acquisition. The 3D sequences are seg-
mented into elementary segments using our approach pro-
posed in [19].

Note, that the same dataset was used in [12] in a simi-
lar context. However, results are reported only for a single
sequence (out of three) per actor. This sequence has been
selected to give best results, thus making a direct compari-
son difficult.

Our experimental scheme is as follows:9 of the actors
are used for exemplar selection and model learning, the re-
maining actor is then used for testing. We repeat this pro-
cedure by permuting the test-actor and compute the average
recognition rate. Examplar selection is performed on sub-
sampled sequences (i.e. 2.5 frames/s) to save computational
costs. Example results for exemplars are shown in Figure3.
The numberM of examplars was empirically set to52 . Pa-
rameter learning and testing is performed using all frames
in the database. Action are modeled with2 states, which
appears to be adequate since most segmented actions cover
short time periods. Voxel grids are of size:64×64×64 and
image ROIs:64× 64. The rotation around the vertical axis
is discretized into64 equally spaced values. Consequently,
each frame is matched to52×64 exemplar projections. The
ground plane is clustered into4 positions.

7.1. Learning in 3D

In these experiments, learning is performed in 3D (as
explained in5.2.1). Recognition is then performed on 2D
views with arbitrary actor orientations. Recognition rates

1The data-set is available on the Perception website
http://perception.inrialpes.fr in the “Data” section.

cameras 2 4 3 5 1 3 5 1 2 3 5 1 2 3 4
% 81.3 61.6 70.2 75.9 81.3

Table 1. Recognition rates with camera combinations. For com-
parisons, a full 3D recognition considering 3D manually aligned
models as observations, instead of 2D silhouettes, yields91.11%.

per camera are given in Figure6(a), the corresponding
views are shown in Figure5.

Unsurprisingly, the best recognition rates are obtained
with fronto-parallel views (cameras2 and4). The top cam-
era (camera 5) scores worst. For this camera, we observe
that: the silhouette information is not discriminative; the
perspective distortion results in strong bias in distances; es-
timating the position of the actor is difficult. All these hav-
ing a strong impact on the recognition performance.

In the next experiment, several views were used in con-
junction to test camera combinations. First,2 view combi-
nations were experimented. Camera2 and4 give the best
recognition rate at81.27%. Those2 cameras are both ap-
proximately fronto-parallel and perpendicular one another.
Figure 6(b) shows the resulting confusion matrix for this
specific setup. Adding further cameras did not improve re-
sults. We also try other camera combinations (Table1). For
instance, combining the two cameras with the worst recog-
nition results (camera3 and5) raises the recognition rate to
61.59%.

7.2. Learning from single views

In this experiment, learning is performed using single
cameras (as explained in Section5.2.2). Observations dur-
ing learning and recognition are thus not aligned. The ex-
emplars considered are the same than in the previous sec-
tion. Learning from a single view is obviously prone to
ambiguities, especially when the number of training sam-
ples is limited. We thus restricted the experiments to the
3 best cameras with respect to the previous experiments.
Figure6(c) shows the recognition results per action class
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Figure 6.(a)Recognition rates when learning in 3D and recognizing in 2D.The average rates per camera are{65.4, 70.0, 54.3, 66.0, 33.6}.
(b) Confusion matrix for recognition using cameras2 and4. Note that actions performed with the hand are confused,e.g. “wave” and
“scratch head” as well as “walk” and “turn”.(c) Recognition rates when learning and recognizing in 2D.

and per camera. Compared to the previous scenario, recog-
nition rates drop drastically, as a consequence of learning
from non-aligned data and single view observations. Sur-
prisingly, some of the actions,e.g. “cross arms”, “kick” still
get very acceptable recognition rates, as well as “sit down”
and “pick up” that would normally be confused. The aver-
age rate for camera1 is 55.24%, 63.49% for camera2 and
60.00% for camera4.

8. Conclusion

This paper presented a new framework for view inde-
pendent action recognition. The main contribution is a
probabilistic 3D exemplar model that can generate arbitrary
2D view observations. It results in a versatile recognition
method that adapts to various camera configurations. The
approach was evaluated on a dataset of 11 actions and with
different challenging scenarios. The best results where ob-
tained with a pair of fronto-parallel perpendicular cameras,
validating the fact that actions can be recognized from view
arbitrary viewpoints.
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Abstract 
The variational method has been introduced by Kass et al. (1987) in the field of object contour modeling, as 
an alternative to the more traditional edge detection-edge thinning-edge sorting sequence. Since the method is 
based on a pre-processing of the image to yield an edge map, it shares the limitations of the edge detectors it 
uses. In this paper, we propose a modified variational scheme for contour modeling, which uses no edge detection 
step, but local computations instead only around contour neighborhoods--as well as an "anticipating" strategy 
that enhances the modeling activity of deformable contour curves. Many of the concepts used were originally 
introduced to study the local structure of discontinuity, in a theoretical and formal statement by Leclerc & Zucker 
(1987), but never in a practical situation such as this one. The first pa~ of the paper introduces a region-based 
energy criterion for active contours, and gives an examination of its implications, as compared to the gradient 
edge map energy of snakes. Then, a simplified optimization scheme is presented, accounting for internal and 
external energy in separate steps. This leads to a complete treatment, which is described in the last sections of 
the paper (4 and 5). The optimization technique used here is mostly heuristic, and is thus presented without 
a formal proof, but is believed to fill a gap between snakes and other useful image representations, such as 
split-and-merge regions or mixed line-labels image fields. 

1 Introduction 

1.1 The Contour Modeling Problem in Image 
Analysis 

This paper addresses the problem of automatically 
creating geometric models for the external boundaries 
of objects in a 2D image grid. We call the geometric 
representation a "contour" of the object, and reserve 
the term "boundary" for its pixel location in the im- 
age. A contour representation of objects can be useful 
for image understanding in 2D or 3D. 

The contour modeling problem has traditionally 
received two opposed approaches: region-based ap- 
proaches derive a contour representation from a seg- 
mentation of the image into well-defined regions, 
while edge-based methods use a continuous approxi- 

*Current address: Computervision, 14 Crosby Drive, Bedford, MA 
02144, Phone: (617) 275-1800 

mation of the original image function, so that bound- 
ary points can be characterized by a differential prop- 
erty (image gradient or curvature) and a contour rep- 
resentation be fitted to the boundary points. In their 
simpler versions, both methods use a point-wise cri- 
terium to decide if a given pixel belongs inside an 
object, outside all objects or at an object boundary. 
In the region-based approach, a pixel belongs to the 
boundary if it is in the object region and has neigh- 
bors in the background. In the edge-based approach, 
a pixel belongs to the boundary if it passes a numer- 
ical test (e,g. local maximum of the image gradient). 
In this early boundary detection step, such methods 
do not take into account the fact that those bound- 
ary points really constitute a closed geometric con- 
tour, with usually strong continuity and smoothness 
properties. The next step consists of an approximation 
method, which strives to find an optimal contour go- 
ing through all boundary points, but has no interaction 
with the first step. The deficiency of those methods 
lies in the absence of top-down mechanisms, such 
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that boundary detection could be guided by contour 
constraints. 

1.2 Active Contour Models: Approaches and 
Previous Work 

As an alternative to the traditional approach pre- 
sented in the previous section, the methods of vari- 
ational calculus (Prenter 1989) have been used by 
Kass, Witkins and Terzopoulos (1987) in the field 
of contour modeling. The resulting contour models 
were named "active contour models" or "snakes." The 
snakes method provides a way to constraint the points 
that are tested as boundaries, so that they constitute a 
parametric curve (or, more simply, an N-sided poly- 
gon). Starting from a user-defined curve, an energy 
minimization algorithm is used to deform the contour 
model until it fits objects boundaries. The method is 
gradient-based, and the criterium that characterizes 
boundary points is summed up over the whole contour 
to provide the goodness-of-fit measure (or external 
energy). A smoothness criterium (or intemat energy) 
is also added to guarantee good convergence proper- 
ties and robustness. Those internal energies provide a 
very nice framework for top-down processes as men- 
tioned above, and can be theoretically founded on 
regularization theory. 

Active contour models provide a very appealing 
and successful alternative to the more contrived se- 
quence of boundary points detection and contour 
curve approximation. They have received much at- 
tention in the last few years, and have been improved 
significantly, notably by Fua & Leclerc (1990), Menet 
et al. (1990), Amini et al. (1990) and Cohen (1991). 
They have been applied to image understanding prob- 
lems in 2D (Fua & Leclerc t990) or 3D situations 
(Nitzberg & Mumford 1990), for tracking objects 
over time (Kass et al. 1987; Cohen 1991), or for in- 
feting 3D structure from the deformation of apparent 
contoui:s in a sequence of images (Cipolla & Blake 
1990). Our interest in this approach was motivated 
by the need for a fast, interactive tool to assist image 
interpretation and morphometry in scientific applica- 
tions, such as medical imaging and remote sensing. 
Of particular interest to us was the ability to focus on 
a given object of interest, specified by the user, among 
large sets of data. However, active contours all use an 
edge-based definition for object boundaries, and we 
felt the need to extend them to region-based defini- 

tions, which are more appropriate for color or remote 
sensing image analysis problems, and also provide 
important clues even in more traditional image anal- 
ysis problems. 

1.3 Proposed Approach 

In this paper, we propose algorithms and strategies 
that generalize the variational approach of active con- 
tour models to region-based image analysis. In Fig. i, 
we illustrate the action of external forces acting on an 
energy-minimizing contour model. Figure IA shows 
the effect of an edge-based energy criterium, as used 
in most active contour models. A now classic problem 
with this approach stems from the fact that the image 
and gradient functions are not very well-behaved (Co- 
hen 1991; Leitner et al. 1991). Inside regions, both 
derivatives of either the image or the gradient func- 
tion vanish, therefore providing no clue to the energy- 
minimizing process. Around boundaries, a more sub- 
tle situation arises, where one derivative (normal to 
the boundary curve) also vanishes. On a theoretical 
basis, one should resort to higher-order derivatives 
(e.g. image curvature) or piece-wise continuous im- 
age models (preferably with explicit image disconti- 
nuities) to correctly model the boundaries (Leitner et 
al. 1991). In practical terms, most recent active con- 
tour models turn the difficulty by pre-processing the 
edge-data, e.g. through the use of a distance func- 
tion. 

In Fig. 1B, a region-based criterium is illustrated. 
Instead of a point-wise edge criterium, we use sta- 
tistical models of the object region (enclosed by the 
contour model) and background region. If a homo- 
geneous region against a homogeneous background 
is anticipated, the forces are defined in the following 
way. All contour points with a neighborhood that fits 
the object model are pushed outside by centrifugal 
forces. Conversely, all contour points with a neigh- 
borhood that fits the background model are pulled in- 
side by centripetal forces. Both situations are depicted 
in Fig. 1B, and it is easily seen that this conjectures 
an external force field F(M), defined for all image 
points M on the contour curve, and aligned to the 
normal N to the contour curve (oriented from object 
to background in Fig. 1). The force magnitude should 
also be proportional to the difference of statistical fits 
to object and background. A convenient notation for 
this is the following: 
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Fig. 1. Edge-based and region-based external forces acting on 
a contour model. (1A) Edge-based forces. An edge-map is esti- 
mated from the original image, and the x- and y-derivatives of 
the edge-map function are evaluated in every sampled point M. 
(1B) Region-based forces. Statistical models for the object and 
background regions are estimated from the original image values 
and current contour geometry. Statistical fits are evaluated in every 
sampled point M. 

F(M) = [ object(M) - background(M) ] N(M) (1) 

Contrary to edge-based models such as snakes, this 
external energy cannot easily be derived from a poten- 
tial energy, because it is only defined along the con- 
tour curve, and is therefore not a point-wise function 
in the image plane. This paper proposes an approach 
that closely follows the intuitive view of Fig. 1B, 
while providing a more formal definition of the en- 
ergies and forces involved, as well as optimization 

strategies suited to experiment with them. The result- 
ing algorithm, named "anticipating snake," eventually 
captures the essence of the original snake approach, 
but in a very different computational setting, owing 
much to region-contour interaction methods such as 
simulated annealing relaxation (Geman et al. 1990) 
and anisotropic diffusion methods 

Thus, in the following section of the paper, we wil l  
introduce a contrast measure based on a region statis- 
tical image model, which will allow us to use region 
energies to drive a contour model, and an investiga- 
tion of the local aspects of variational edge detection 
methods will be presented, showing the advantages 
and failings of both edge-oriented and region-oriented 
contour models. Then, the optimization procedure and 
heuristics necessary to fit contour curves to object 
boundaries following our local, region-based scheme 
will be presented in the third and fourth section of the 
paper. This will include an important discussion on 
scale-change issues, and it will be shown how region- 
based active models can be devised to use a scale 
heuristic (section 3) and a diffusion heuristic (sec- 
tion 4) while they are being optimized. The last sec- 
tion of the paper will allow us to present and discuss 
an implementation and some results of the method, 
with application to different kinds of images. 

2 Edge and Region Based Contour Models 

2.1 Minimum Principles for Contour Models 

Using a minimum principle to define the loci of ob- 
ject contours in an image is appealing, because it 
corresponds to the intuition of the gestalt definition 
of shape, which is perceived as a stable, minimum 
configuration of sensed data. Accordingly, minimum 
principles have been used extensively in vision re- 
search to reconstruct shape from lower-level image 
data. Active contours are a special case of such re- 
construction problems. In order to set those models 
in a general framework, we will refer to the notations 
of Fig. 2 throughout this paper, whether dealing with 
snakes or anticipating snakes. Our general formula- 
tion is as follows. Given an image and a hypothetical 
object contour M(s), we define a set of interaction 
forces on every point in the contour, so that every 
deformation of the contour can be quantified with an 
energy transition 3W, basically equal to the work of 
the interaction forces during deformation. Then, any 
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M (s) 
k 

Mk+l (~) 

C 

C+ dC 

Fig. 2. Deformation of a contour model, Points on the contour are detbrmed from M k (s) at time k to M k+l (s) at time (k+ 1 ). The deformation 
is in direction U(s) and has amplitude t(s). The contour model is defined by a set of forces F(s) such that 3W = t(s)F(s).U(s). 

particular contour will be a solution of  the contour 
model if it is a local energy minimum, i.e: 

- -  0 ( 3 )  
On 

8W > 0 for all deformations 8M(s) (2) 

Inversely, when we set out to define a contour model 
to solve an application problem, we must insure that 
actual object boundaries are solutions of  (2)--this is 
our first minimum principle. In addition, we should 
favor models for which all solutions of  (2) are indeed 
object boundaries (no false local minima). This con- 
stitutes a second minimum principle. Devising an ac- 
tive contour model, or equivalently a set of  interaction 
forces, meeting the requirements of  those two mini- 
mum principles is a tremendous task in the general 
case. If  the problem is somewhat restricted, e.g. by 
use of  "proper" initializations from which solutions 
can be obtained, or with rigid constraints, then useful 
models can be devised. In the rest of  this section, we 
will first review the method of  snakes, which is one 
such restricted method of  practical value, with exter- 
nal forces driven by the image gradient. From there, 
we will then introduce our region-based method of  
anticipating snakes. 

2.2 Snakes: A Gradient-Based Contour Model 

2.2.1 Overview of the Snakes Method. Capturing the 
local structure of  discontinuities is a difficult process, 
as illustrated by Leclerc & Zucker (1987), because 
many different situations can arise. One key definition 
for local edge modeling is that o f  the maximal step 
edge normal to the direction n at point (x, y), where 
Gn is the image gradient taken in the direction n 
(Haralick 1984): 

Unfortunately, this equation is usually not easily 
solved, so that a more tractable version must be 
adopted instead, using the total norm of the gradi- 
ent G(x, y) = Il l(x,  y)ll: 

OG OG 
- -  - -  0 ( 4 )  

3x 3y 

Direct resolution of  equations (3) or (4) is possible 
in the form of a parametric solution curve M(s),  
given an exact initial position M(so) on the actual 
object boundary. This point of  view has been advo- 
cated recently, because it solves exactly for the pre- 
cise boundary, in cases when precision is the focus of  
image treatment---e.g, for medical applications (Cin- 
quirt et al. 1990). But in many other image vision 
problems, where robustness is the focus of  interest, 
one must resort to regularization techniques to handle 
equations (3) or (4) efficiently. 

The variational method has been introduced to 
cope with the difficult numerical problems encoun- 
tered while trying to solve equations (3) or (4) on a 
local basis only. The interpretation of  equations (3) 
or (4) becomes that of  a maximal contrast condition 
i.e. minimization of  gradient-based energies 

Eint - G ] M, ~ s  o r E i n t - G 2 ( M )  (5) 

relative to small variations or deformations o f  the 
parametric curve M(s).  The internal energy Eint 
which appears in this minimum principle has the in- 
terpretation of  a regularizing term such as curvature 
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or arc length. The original snakes algorithm (Kass et 
al. 1987) uses a linear combination 

OM 2 02M 12 ,~ll--~ll + ~ll-ffyI (6) 

which can be expressed using a finite difference 
scheme in the form of a rigidity/elasticity matrix Bij 
if the contour curve is sampled into N points, so that 
the function M(s) can be approximated by the 2N- 
dimensional vector Mi = [(xi, yi)i = 1..N]. 

The minimum principle imposes that the energy 
integral over the whole solution curve M(s) be mini- 
mal: as such, it has no immediate local interpretation, 
although the Euler-Lagrange method can be used to 
transform the global, compound energy minimization 

back into a differential equation in M, ~ t  and 02Mas2 
(Kass et al. 1987). Using equations (5) and (6), and 
the notations of  Kass et al. (1987) and Szeliski & 
Terzopoulos (1989), a finite difference scheme can be 
used to express the total energy as a quadratic form 
of the (discretized) position vector M (see appendix): 

I ['MBM-' E = ~  (7) 

A natural solution for variational contour optimiza- 
tion is the classical gradient descent strategy. Clearly, 
the gradient of expression (7) is BM - i 2 VG , so that 
a step from M ~ to M k+t can be taken at time T k such 
that 

M k+l = M k - t [ B M k - ~ V G  2] (8) 

Equation (8) introduces a constant step-size t which 
controls the rate of deformation of the algorithm, and 
plays an important role in all active contour optimiza- 
tion schemes. A variation on this theme is suggested 
by (Kass et al. 1987), resulting in a two-step, semi- 
implicit scheme with faster convergence, because t 
can then be chosen arbitrarily large while equation (4) 

1 imposes the condition t < ~ .  This yields a pow- 
erful treatment of internal energies (as should be ex- 
pected), but leaves many pratical issues unanswered 
as far as external energies are concerned (those as- 
pects of the snakes method have been detailed and 
discussed in Fua & Leclerc (1990) and Amini et al. 
(1990). 

2.3 Anticipating Snakes: A Region-Based Contour 
Model 

2.3.1 Region Statistics and Image Models. Because 
the method of snakes relies entirely on its poten- 
tial energy E(x, y), its domain of application has 
remained limited. One limitation is that it is some- 
times not possible to provide such a function, because 
of image non-stationnarity. Another limitation is that 
regional criteria such as color or texture cannot eas- 
ily be integrated into a potential function (unless a 
segmentation of the image can be provided). Varia- 
tional methods have been described, which incorpo- 
rate gradient and region criteria into a single energy 
function (Mumford & Shah 1985; Grossberg 1987; 
Geman & Geman 1984; Marroquin et al. 1987; Ge- 
man et al. 1990; Shah 1990). Those methods differ 
fundamentally from snakes, because they attempt to 
model the image intensity function, as well as its 
object boundaries. Although their theoretical impor- 
tance is enormous, none has led to significant prac- 
tical solution, most notably because of mathemati- 
cal difficulties documented in e.g. Mumford & Shah 
(1989). In this paper, we take a less rigorous ap- 
proach, drawing mainly on heuristic solutions, in or- 
der to show that region criteria can indeed be used 
to guide a contour model, with a quality of results 
comparable to that of snakes or related models. In 
our anticipating snakes method, we replace energy 
criterions such as (5) by other photometry functions, 
taking into account the local partition of the image 
into an object region and a background region. An 
intuitive interpretation of the approach will first be 
presented, and then expanded to a complete mathe- 
matical treatment suitable for use in the rest of the 
paper. 

The basic idea is that a given closed contour model 
C = {M(s), s in [0, 1]} partitions the image plane 
into an inside (or object) region and an outside (or 
background) region which, along with a statistical 
model, may be fitted to the image data. Thus, an 
alternative to gradient-based schemes will consists 
in choosing local changes from Mk(s) to Mk+l(s) 
in a given direction U(s), with amplitude t(s), such 
that the new partition improves the fit. An intuitive 
implementation of this approach would use separate 
statistical models Iobject(X, y) and Ibackground(X, y). 
Those models would be tested against the given 
image data I(x, y), based on a mean-square-error 
criterion: 
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/ ,  

MSE = [ IIIobject(x, y) - I(x,  y)[12dxdy 
Jo bject 

+ f IIlbackgro,nd(X, Y) -- I(x,  y)ll2dxdy (9) 
db background 

While (9) readily takes on the interpretation of an en- 
ergy, it still cannot satisfy our minimum principles, 
because any arbitrary contour can be a local mini- 
mum in homogeneous parts of the image. We there- 
fore need a more constrained energy definition, so that 
energy minima occur only at actual image boundaries. 

2.3.2 A Region-Based Energy Model for Active Con- 
tours. In this section, we will use an image contrast 
measure best known in the context of split-and-merge 
methods as the fusion energy of the regions (or their 
Ward distance) (Beaulieu & Goldberg 1989). Using 
the notations and conventions of Fig. 3, we define 
the region energy wregi°n(Rk) of a given region R~ 
as in Leclerc & Zucker (1987), Beaulieu & Gold- 
berg (1989), i.e. the image functions I (x, y) (intensi- 
ties, colors or textures) are approximated as a linear 
combination of basis functions Ki (x, y), using a least 
squares scheme: 

L l (x ,  y) = aikKi(x , y) + AkI(x,  y) (10) 
1 

The region energy is defined as the sum of squared 
errors AkI(x,  y), with subscript k to remind us that 
the error-of-fit function AkI  depends on the region 
described: 

wregi°n(Rk)  = [IRkllAkI(x, Y)lledxdy] (11)  

This scheme can be devised to fit any possible set of 
basis functions Ki (x, y), according to the same least 
squares rule. We then proceed to define the contour 
energy of a closed curve C, bounding an internal re- 
gion Rin and an external region Rout, as depicted in 
Fig. 4A. We want to derive the contour energy from 
neighborhood region energies such as in (6). A sim- 
ple solution to this classical problem is to introduce 
the union Rin W Rout. We can then write the classical 
Ward distance between regions Rin and Rou t 

D[Rin ,  Rout] = wregi°n(Rin -{- Rout) (12)  

_ wreg  ion (Rin)  -- wreg ion (Rou t)  

This is defined by Beaulieu & Goldberg (1989) as 

/ gg.-K.  

Fig. 3. Notations ~ r  image regions. Image intensity l(x, y) is 
approximated by a region model lk(x, y) specific to region Rk. 
The error defines a new image function Ah:(x, y). 

the energy needed to merge the two regions Rin and 
Rout. We are thus entitled to interpret it as the energy 
needed to disrupt the bounding contour C between the 
two regions, and we set WC°nt°ur(c) = D[Rin, Rout]. 
Such a contour energy can be interpreted as the 
amount of region energy absorbed (or explained) by 
the contour curve C at steady-state. 

We now consider a deformed version C + 3C of 
the original contour, and proceed to compute the 
variation 8W of the contour energy during defor- 
mation. To make further developments easier, we 
introduce two smaller regions 3Rin and 3Rout, cor- 

responding to outwards and inwards deformations re- 
spectively, as in Fig. 4B. Note that the inside (respec- 
tively outside) region is now Rin +3 Rout (respectively 
Rout q- 3 Rin) just before deformation, arid Rin + 3 Rin 
(Rout + 3Rout) just after deformation. Since the union 
Rin -]- Rout -I- 3 Rin + (~ Rout is  not changed by the de- 
formation, we only need consider the negative terms 
in (7). We thus write the contour energies as 

WC°nt°ur (c )  ---- Wo - wregi°~(Ri~ + 8Rout) 

- wregi°n(Rout "+ 3Rin) 
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Rin ~~t 

(a) (b) 

Fig. 4. Regions around a contour model. (4A) Inside and outside regions for a contour model at steady-state. (4B) Inside and outside regions 
during a deformation. Rin and Rout are defined as those regions which remain entirely inside or outside the curve during all deformations. 
The actual regions inside and outside the curve differ from those by t~Rin and 3R,,ut. 

W~°~w""(C + 3C) = Wo - w~gi°n(Ri~ + 8Rin) 

- W~Si°'*(Rout + 3Ro,t) (13) 

The energy for unions of disjoint regions can be fur- 
ther developed into a sum of the individual region 
energies and their Ward distance, thus 

wregi°n(A + B) (14) 

= wresi°"(A) + Wregi°n(B) + D(A ,  B) 

Using (14), we can transform (13) so that all indi- 
vidual region energies are cancelled out when we 
compute the difference 8W = W~°nt°"r(C + 6C) - 
W~°nt°~"(C), and only Ward distances remain, thus 

3 W  = [D(R~,,, 3R~.) - D(Rou~, 3Rin)] (15) 

+ [D(Ro,,,, 3Rout) -- D(Ri,,, 3Rout)] 

When applied locally, this expression becomes even 
simpler, because local deformations will be either ex- 

panding (SRo, t = 0) or retracting (~Ri~ = 0), so that 

only one of the two terms in (1.5) need to be eval- 

uated locally. More specifically, we now study the 
case when an infinitesimal deformation i~M(s) is ap- 

plied to a point M(s)  along the curve. The situation 
is depicted in Fig. 5 for the two possible cases of 
expansion and retraction. From (15) we can write the 
force F(s)  acting on the point M(s) ,  such that 

3W = F ( s ) . 3 M ( s )  (16) 

.................. ~ ....................... :; o.> ..... \ / 

/ i ~ g J ": ~I¢out \ 
/ :  Rou~ ! out ":::, 

/ i ) ' .  Mk 

'., ~ J ..." ~ . 
\ Mi i ! ": 

'\ ' \ /  i R, k \ 

\ \ ......... 
R. i \ ....... 

\ ......... 

F/g. 5. Expansion and retraction of a contour model. Local interior 
and exterior regions are shown for each case. 

In the case of a retraction, we find that 

F(s) = 
3M(s )  (17) 

[O(Ro.,,  8R) - O(Ri~, 8R)] 
llSM(s)l 12 

is a solution of (16), as can be easily checked out. 
Similarly, a solution of (16) for the case of an expan- 
sion is 
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F(s) = 

8m(s) (18) 
[O(Rin, aR) - D(Rou,, ~R)] 

[13M(s)l[ 2 

Both cases can be unified if points M(s) are con- 
strained to deform along the oriented normal N(s) to 
the contour. Assuming that the orientation is toward 
the outside, as in Fig. 7, and that the deformation is 
in the form SM(s) = t(s)N(s), then (17) and (18) 
simplify to the single case 

N(s) 
F(s) = [D(Rin, 6R) - D(Rout, ~ R ) ] - -  (t9) 

It (s)[ 

which is the exact form that was anticipated in (1) 
for the idealized region-based approach in the intro- 
duction to this paper (see Fig. 1B). This expression is 
very important for our active contour scheme, because 
it makes explicit the energy variations as a function 
of deformation, in a computationally attractive way. 
In this paper, we will use the notation 0w -~- to denote 
the pseudo-force defined by (19). This is to reminds 
us that the pseudo-force is not an external field de- 
rived from a potential energy, but really a function 
of the contour curve and pixel values in its image 

OW neighborhood. We still refer to F(s) or -flu(s) as a 
force, because it is used as a force. Since an active 
contour will usually be discretized and approximated 
by a piece-wise linear curve, we next review how this 
changes the computation of energies and forces. 

2.3.3 The Discretized Anticipating Snake Model. 
The previous section has shown that the energy vari- 
ations and forces acting on a contour model cannot 
be expressed analytically as simple functions of the 
position of curve points M(s) and their tangent vec- 
tors, but involves computing the deformation regions 
as well. Therefore, we cannot use the Euler-Lagrange 
method to transform the energy-minimizing problem 
into a differential equation. This, of course, is due to 
the fact that the region derivatives (or Ward distances) 
depend on the image data in a more intricate fashion 
than in the case of snakes. Accordingly, it is prefer- 
able to use a discretized version of the contour, and 
express the local forces in this framework, much in 
the same way as Kass et al. (1987) derived their sim- 
pler equations using a finite difference approximation. 

Our next step will be to partition the object and 
background neighborhoods of the contour into small 
local neighborhoods Ri ,  following a discretization of 
the contour curve itself, as in Fig. 6. For the purpose 

R .  

: J  J 

R = { R  i } 
out  OUt 

Fig. 6. Discrete regions of deformation. All deformations of point 
M(i) are confined to its inside and outside regions. 

of prototyping our approach, we used a neighborhood 
structure described in Fig. 7 and section 3 below. We 
now write the energy as a sum of contributions from 
every contour point: 

W c°nt°ur = Wo + Z V~NT(Mi i) 

i (20) 
region i wregion ( t~i ~ ] 

- ~ [ W  (Rin) + " , "ou t -  
i 

where W~Nr(M i) is an internal, elastic energy, as 
defined in Kass et al. (1987). This approximates the 
real energy field whenever local neighborhoods parti- 
tion the entire image plane, as in Fig. 6. Smoothness 
and rigidity terms can be transformed into finite dif- 
ferences as in (3), (16), Kass et al. (1987). External 
forces can still be computed as in (19), but using 
only terms belonging to one particular point M i, so 
that the local dissipated energy during a deformation 
~ M  i amounts to: 

OWi Z B i j M J ] ~ M i  (21) 

Practical implementations of (2t) can vary greatly, 
e.g. region statistics can be modeled separately for 
each point M i , hardware can be used to produce the 
goodness-of-fit functions, or the image function itself 
can be approximated continuously and calculations 
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M(s,t)  = M(s) + ~ N(s) 

' \  \ 

\ 
/ 

. / '  t 
/ 

¢¢ //" / . /  ............... 

\\ 

isoparametric t-curves isoparametric s-curves 

Fig. Z Local coordinates. Choosing the normal direction for all deformations defines a local system of coordinates (s, t). Curves of constant 
t are the directions of deformation. Curves of constant s are iso-deformation curves. The real deformation will be M(s) + t(s)N(s). 

performed analytically. In this paper, we present the 
first (and simpler) solution. 

2,4 Internal Energy and Spline Models 

Following Kass et al. (1987), we have written explic- 
itly the internal energy terms in (7) and (21). We are 
now going to cancel those terms out, and use simpler 
kinds of contour models with external forces only. 
The reason is the following. In the regularization ap- 
proach to snakes, a key issue lies in the choice of 
a common scale unit between internal and external 
energy terms (Ronfard 1990). Internal energies were 
first introduced by Kass et al. (1987), drawing on 
the theory of approximating spline functions 0~aurent 
1972), which have classically handled the difficulty 
by use of  cross-correlation methods (Sharahray & An- 
derson 1989). No such solution extends to the case of 
equations (17) or (22), because of the strongly non- 
linear image forces (Ronfard 1990). This is therefore 
a very difficult problem, and one that this work does 
not try to address. 

R ( M(s 

out ~M(s )~  i ~" ~ ' ~ ~  

Fig. 8. A simple local structure for variational edge detection. 
We approximate local coordinates (s, t) with a discrete set s = 
I ... NL, t = -P... P, i.e. a local image grid (s, t). 

In the following, we will use instead a simplified 
version of contour models, similar to the B-snakes 
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described in Menet et al. (1990) or the spline-snakes 
in Cinquin et al. (1990). In essence, those spline mod- 
els imbed the internal energy into a B-spline repre- 
sentation. Internal energy becomes an implicit func- 
tion of the sampling rate h ---- S / N  along the contour. 
Control points or knot points can still undergo de- 
formation, under the influence of external interaction 
forces alone, and other intermediate points are ap- 
proximated as a B-spline curve fit to the deformed 
control or knot polygon (see section 5.2 for more 
details on this). The same basic procedure has been 
reported also by Cipolla & Blake (1990) as well as 
Menet et al. (1990), Cinquin et al. (1990) and Ron- 
fard (1990), so that we will resort to it without further 
justification in this paper, as a powerful and efficient 
short-cut for illustration of our energy model. 

3 Local Depth-Adapting Algorithm 

3.1 A Simple Neighborhood Structure for 
Anticipating Snakes 

3.1.1 Energy and forces. The snakes equation (8) 
establishes a global evolution rule for all sampled 
points on an active contour model. The first part of 
this paper has been devoted to present a different ap- 
proach for active contours, consisting in the choice 
of arbitrary directions of deformation and local evolu- 
tion rules, one for each point in the contour curve. We 
now present algorithms and heuristic methods usefld 
for an active contour model based on equation (19). 
Using the discrete form of equations introduced in 
this paper makes all derivatives and forces depend 
explicitly on image scale (the characteristic size of 
image neighborhoods around the contour curve). The 
choice of any particular image scale can be adapted, 
either geometrically (to fit local image characteris- 
tics) or temporally (to improve the efficiency and 
robustness of the optimization process). The adap- 
tive nature of the algorithms presented in this sec- 
tion makes them particularly suited for interpretation- 
guided, semi-interactive segmentation, as will be 
illustrated later. 

For the purpose of clarity, we will focus in this pa- 
per on the very simple neighborhood structure shown 
in Fig. 7 and Fig. 8, which can be easily and ef- 
ficiently implemented. It consists in separate, non- 
overlapping L-pixel-wide bands centered on sampled 
points M (s). These structures are (2P + 1) pixel-deep 
and directed along the normal to the curve N(s). All 

image-contour interactions at point M(s) thus orig- 
inate from a neighborhood M(s) + t (s)N(s) ,  in the 
narrow image strip following the estimated local nor- 
mal N(s), as in Fig. 8. The normal vector N(s)  may 
be obtained from the B-spline expansion of the con- 
tour curve, provided the sampling is not too fine. In 
practice, better estimates will be obtained if a 1-D 
gaussian-derivative kernel is convolved with the sam- 
pled contour M (s) (s -~ 1 . . .  N). This is important to 
insure that the mapping from (s, t) to a neighborhood 
of the curve C in the image plane is one-to-one. This 
also allows finer sampling intervals on the contour 
curve, independently of its original B-spline repre- 
sentation (Ronfard 1991). 

We compute image-contour interactions from the 
neighborhood structure in Fig. 8 in a straightforward 
fashion, using the simplest form of equation (10), 
i.e. with a piece-wise stationary image model, so that 
the error-of-fit functions AkI are simply the average- 
corrected image values. In this case, the region ener- 
gies are simply regional image variances 

W regi°n (Rk) = 

~ Ill(x, y) - 
(22) 

(I)kll2dxdy 

and the contour energy is just the classical (stationary) 
Ward distance between regions Rin and Rout, i.e. 

WC°nt°"r (C) = D[Rin, Ro,t] (23) 

The general expression for the image forces acting 
on the contour curve during a step-wise deformation 
t(s)  --+ t(s) + At(s) then becomes 

0 W f I ds 
Jo (Din[M(s)] - Dout[M(s)l) lAt(s)-"'--~l (24) 

OC 

where Di~(M(s))(resp.Do,t(m(s)))  denotes the 
Ward distance between Ri,(M(s))(resp.Ro, t (M(s)))  
and the L-pixel deep region SM(s) around M(s),  as 
shown in Fig. 8. This is the simplest possible imple- 
mentation of equation (21), and it has the interesting 
properties that the local deformation state of the con- 
tour curve is completely described by the parameter 
t(s), and image forces are local to the neighborhood 
structure M ( s ) +  t(s)N(s) ,  as prescribed. 

3.1.2 Computational Framework. We can now pre- 
sent a computionally simple variation scheme, based 
on the above discussion, as a candidate to solve the 
active contour optimization problem. For each iter- 
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ation step of the procedure, we have the following 
sequence: 

Compute normals N(s) for all sampling points 
M(s), s = 1 . . .  N, and build the image statistics 
in the neighborhood image regions. 
Starting from undeformed points M(s) = A(s, O) 
take as many steps as possible in either one of the 
deformation directions M(s)+t(s)N(s) or M ( s ) -  
tN(s), t(s) = 0 . . .  P, as long as the power of the 
external forces remain positive 

Din [M(s)] - Dour [M(s)])At (s) > 0 (25) 

Compute a new contour from all deformed sam- 
pled points, using them as control points for an 
regular cubic B-spline curve. Such a curve will 
not interpolate sampled points, but merely approx- 
imate them with the best-looking piece-wise cubic 
curve, in a certain sense (Laurent 1972). This is 
sufficient for our purpose, because we re-sample 
contour points in every iteration. 

In order to proceed successfully with such a sim- 
ple scheme, several issues have to be dealt with. First, 
a number of parameters remain unspecified, i.e. the 
maximum depth P allowed for step-wise deforma- 
tions in a single iteration, the sampling rate N of 
points along the curve, the gaussian variance cr used 
to estimate smooth normals along the curve. Along 
with neighborhood width L, those parameters deter- 
mine all scale choices for our model (see Fig. 9). In 
contrast to the original snakes (see Fig. 10), those pa- 
rameters are all local to the iterative scheme, and can 
therefore be adapted more easily than a filter size for 
edge detection. Indeed, experience has shown that all 
scale parameters should be modified during the opti- 
mization process. Thus, heuristic methods for deter- 
mining N and P in each step of the procedure will 
be presented here (we introduce no such refinement 
for or, which we in fact consider as a function of N 
and P), while the last section of the paper will be 
devoted to the width scale parameter L. 

A different line of problems arise from the choice 
of  the Ward distance. We use the sign of At(s) 
(Di,~[M(s)] - Do,tiM(s)]) in order to determine in 
which direction the curve should be deformed. It 
would be comforting to know that this expression 
vanishes on boundary points. This is not the case, 
however, and section 3.3 discusses transformed dis- 
tance functions with a better behaviour in that respect. 

L 

• DiscretizaOon 

h = S / N  . 

.o---'2 ¢ 

Local Statistics 

2 P - ~  l 

Fig. 9. Scale factors in the anticipating snakes model. Scale choices 
are needed in (1) to discretize the contour; in (2) to estimate 
smoothed normals along the contour; in (3) to decide image neigh- 
borhood size (depth 2P + 1 and width L). 

3.2 Local Depth-Adapting Strategy 

3.2.1 Scale-Space Strategies. The point in this sec- 
tion is to adapt neighborhood size P (see Fig. 8 and 
Fig. 9) to the scale at which the object-to-background 
contrast is maximal. A compromise must therefore 
be found between smaller neighborhoods (for which 
the norms have no statistical significance) and larger 
neighborhoods (where more than two regions are in 
the scope of M(s) + t(s)N(s)). The second term of 
the alternative represents the most difficult situation, 
because all the equations used to model edges assume 
two regions (possibly identical) only. This makes the 
traditional coarse to fine, scale-space approach advo- 
cated by Kass et al. (1987) very dangerous, since the 
local forces acting from the image at coarser scales 
may become unfounded and misleading, and no ver- 
ification can be made at finer scales. 

This failing is illustrated by the dominant role 
played in such cases by the automatic internal forces 
of snakes or other related models (elastic forces, pres- 
sure). In such cases, active contours are driven away 
from their target object boundaries, without being 
given any chance to recover them (since only finer 
scales will subsequently be examined, to improve--  
not correct--the first coarser optimization steps), Fol- 
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First Derivative / / / 7  

, / /  Time Step t J" .! . . . . .  / /  

Fig. lO. Scale factors in the snakes model. Scale choices are needed 
in (1) to compute the image gradient; in (2) to compute the gradient 
derivatives in x and y; in (3) to discretize the contour and choose 
uniform step t. 

lowing Leclerc & Zucker (1987), we have investi- 
gated the opposite, fine to coarse strategy. This ap- 
proach starts with very small neighborhood structures 
(P = 1, 2, 3 . . . )  even though a high level of noise 
may be present at such scale. Noise in earlier stages 
of optimization can be dealt with because the contour 
curve is regularized, and the steps taken in each iter- 
ation are very small (tmax < P). Then P is increased 
while optimizing, until all neighborhoods become sta- 
tistically significant. The optimal deformation state is 
then easily obtained in a few iterations. 

3.2.2 Depth-Adapting Algorithm. This strategy cap- 
tures the intuitive idea behind active contour mod- 
ets, that optimization should use local image analysis 
whenever available (in close neighborhoods of object 

boundaries) and internal cohesion forces when the 
image profiles are locally flat. The fine to coarse ap- 
proach also offers an efficient heuristic for increasing 
the dependency of the variational procedure on im- 
age characteristics, since object boundaries are only 
a finite distance away from the initial contour po- 
sition, and will be reached in a finite number of 
steps--without oscillations. This of course assumes 
a control mechanism for stopping at interfering ob- 
jects appearing in the background, as the scope of the 
neighborhood structures extends. All of the above ob- 

servations can now be summed up in the following 
depth-adapting algorithm: 

[ 1] Start with an initial B-spline curve, sampled uni- 
formly after arc-length s. Then choose an initial 
depth parameter P = P0 (preferably d < P0 < D 
where d is the min-distance from the initializer to 
the target object and D is the rain-distance between 
objects in the image). 

[2] Iterate the basic steps : fit all control points in the 
B-spline basis, compute normals N(s) at control 
points M(s), extract (2P + 1) image pixets in the 
direction of N(s) for every s, using a fast line 
drawing algorithm such as Bressenham's, move 
all control points step-wise from M(s) to M(s) + 
tN(s), - P  < t < P, according to the sign of the 
dissipated energy. This is simply the work of the 
external pseudo-force from equation (19). 

[3] Increment P, and compare energy levels ob- 
tained in step [2] with those of the increased neigh- 
borhoods, allowing only lower energies at coarser 
scales. All points with increasing energies at this 
stage should become inactive or attached. 

[4] Iterate steps [2] and [3] until no more control 
points are active. 

An application of this algorithm to a brain tomog- 
raphy scan is presented in Fig. 11. The initial curve 
is an interactively designed B-spline, sampled every 
five pixels in a 256 x 256 image. Ten iterations were 
performed before convergence, with increased depth 
ranging from five to fifteen pixels on each side of the 
curve. Since all objects in this image are isolated and 
offer a roughly constant contrast to their background, 
the algorithm performs well in this case. 

3.3 Controlling Stability 

When computing the difference of the Ward distances 
Din[M(s)] and Dout[M(s)], we simply check for its 
sign, in order to determine in which direction the 
curve should be deformed. This raises a difficult prob- 
lem for stability issues, since deformations will al- 
ways occur, regardless of the magnitude of the en- 
ergy term. We would like to have a threshold value 
here to tell us when the external forces acting on the 
curve are so small as too be negligible. This is not 
possible within the Ward distance formulation, how- 
ever, because it does not capture the intuition that 
external forces smoothly vanish around real object 
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Fig. 11. Application of depth-adapting algorithm to medical imaging segmentation. 

boundaries. Instead, it is easily seen that the force 
magni tude  Din - Dout may be as great as the Ward 
distance [Rin, Rout] in the vicinity of a highly con- 
trasted edge, whereas regions without edges can have 
very low Din - Dout altogether. In such cases, the 
threshold value would have all optimal points move 
in and out around an object boundary, while those 
points that are far from optimum remain in a fixed 
(and erroneous) position. In order to avoid this unde- 
sirable behaviour, we can use the sign and magnitude 
of other functions of the involved Ward distances, For 
example, we can use 

Din[M(s)] - Do,t [M(s)] 
(26) 

D[ Rin Ro.t] 

which appears as a formal derivative of the logarithm 
of the Ward distance, and enhances the forces in re- 
gions where the overall contrast is low, so that points 
in those areas can be moved away. Another possibil- 
ity is 

[Din [m (s)] -- Do,t [m(s)]Je -kD[R~" R,~,~] (27) 

which can be interpreted (loosely) as the derivative of 
the exponential function of the Ward distance. This 
also has the desirable effect of boosting the forces 
in regions away from real boundaries, while having 
them vanish at higher-contrast edges. Since the ex- 

ponential in (27) is better-behaved than the ratio in 
(26), we have used (27) in our implementation. 

The use of the exponential further brings a nice sta- 
tistical interpretation, since e -gDtR¢"g',"~l is the Boltz- 
mann distribution for energies D[ Ri,~ Rout ], mean- 
ing that it is (up to some factor) the probability of 
the image intensity at M, given its neighbor pixels 
and the hypothesis of the contour curve C passing 
through M. Let 's  denote this conditional probability 
P(I(M)IC in M). It is classically related to the prob- 
ability of the curve C passing in M, conditionally to 
the observed intensity I (M), by the Bayes rule which 
we write here: 

P(C in M[I(M)) 

P(I(M)IC in M)P(C in M) (28) 

P(I(M)) 

so that, taking both prior probabilities P(C in M) and 
P(I(M)) to be uniform, our evolution rules can be 
shown to solve for the most probable contour curve 
position, given the image intensity function I(M) 
(Ronfard 1991). 

Expressions (26) and (27) are very useful to en- 
hance the performances of our variational scheme. 
We thus substitute one of the expressions (26) or (27) 
into the computation of image interaction forces. This 
alteration of our variational definition for optimal im- 
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Fig. 12. Application of depth-adapting algorithm to histological morphometry. 

age contours makes it remarkably similar to proba- 
bilist, non-determinist schemes such as described in 
Geman et al. (1990), where the exponentials of a 
quadratic contrast function play a central role. 

Our second example (presented in Fig. 12) is a 
case where direct application of the depth-adapting 
algorithm fails if we do not use (27), because of 
the texture in the lighter background. Those bone 
biopsy images were digitized and contours extracted 
at interactive rate from a photo-microscope. Because 
the internal structure in the background has a lower 
contrast, using (27) results in a correct segmentation 
in very few iterations. Sampled points on the bone 
boundary are easily stabilized, since their energy tran- 
sitions are scaled down by the exponential. Sampled 
points falling in the background are then more eas- 
ily moved to the boundary, as the search depth is 
increased to reach higher contrasted edges. 

4 Adaptive Diffusion Algorithm 

4.1 Failings and Extensions of the Depth-Adapting 
Algorithm 

Contours obtained with the algorithm presented in 
section 3 are usually comparable in precision and 
quality to other snakes (Kass et al. 1987), balloons 

(Cohen 1991) or model-driven detectors (Fua & 
Leclerc t990), although it is difficult to substantiate 
such an affirmation. One critical element in our ap- 
proach is the choice of the initial depth and discretiza- 
tion scales. Also, a snake can be used to fill-in missing 
data from the edge-map, or even occluded contours 
from 3D-objects, through its internal energy. Our 
method does not have this feature. More importantly, 
it usually, fails in cases when too many object bound- 
aries are present (experiments not presented), because 
each local part of the curve sticlcs to its own optimum, 
with very little global interaction between different 
sampling points, except in the spline fitting step. 

This section introduces a different algorithm, based 
on a diffusion method, rather than a purely local 
scale-adapting method. More precisely, we show how 
the framework that we have established enables us to 
control some sort of consistency between locally op- 
timized neighborhoods M(s) + t(s)N(s) along the 
curve parameter s, so that alien boundary parts can 
be dismissed while consistent parts are inforced. This 
is intended as a solution to some of the initialization 
problems, as well as an interesting methodological 
shift from a purely local scheme, to a more global 
approach. While snakes and most other active mod- 
els have used internal energy to provide global con- 
trol, we choose to propagate the external energy, in a 
sense that will be made clear later. 
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4.2 A Diffusion Heuristic 

The depth-adapting algorithm that we have presented 
and illustrated in our previous sections can be de- 
scribed as a set of automata, placed at regular inter- 
vals along the contour model, which detect possible 
object boundaries in a given direction, and move to 
those anticipated boundaries. Those moves determine 
the global deformation of the contour model. Each 
move is based on the Ward distance between the au- 
tomaton and its local estimates of intensities or colors 
inside and outside the contour curve. We have made 
no attempt so far toward a cooperation between ad- 
jacent automata, and this of course results in a rather 
poor modeling power, since the global behaviour of 
our contour model only depends on (1) the nearest 
edge element to each automaton in the direction of 
its normal, and (2) the shape of the contour curve, 
because of the spline-fitting step which tends to pull 
its points towards its centers of curvatures. Without 
an intuition of what object shapes should be, this does 
not provide a robust detection method, except in re- 
gions where only one object is present. 

In order to obtain a more satisfying model, es- 
pecially in cases where several objects are present 
around the initial contour model, we are faced with 
the alternative, either to allow multiple contour mod- 
els, i.e. deformable models consisting of several 
closed contours (one for each object), or to enhance 
a single contour model, so that it can discriminate 
between different object boundaries, and converge 
toward a single object. We will not discuss further 
the first approach, because it seems difficult to re- 
strict it to the simpler cases of contour models having 
disjoint interiors, without introducing nested struc- 
tures (Koenderink & van Doom 1979) or overlapping 
contours (Nitzberg & Mumford 1990). In both those 
cases, contour models become much more complex. 
In the second approach, we only need to enforce new 
constraints on the contour model, e.g. impose that 
the regions bounded by the contour curve be of ho- 
mogeneous intensity or color, at least in the neigh- 
borhood of the contour model. This will cause the 
contour model to favour consistent boundaries, and 
selectively converge towards a single object. We now 
have to find an efficient way of enforcing such con- 
straints. 

This will be easier to illustrate in terms of a de- 
cision network. Instead of a set of independent au- 
tomata, we now want a network of such automata, so 

that each one can base its dynamics on estimates of 
intensities or colors provided by its nearest neighbors 
as well. As an example, Fig. 13 shows how local es- 
timates (1)in and (1)out can be propagated along the 
contour curve, and new estimated values (I*)in and 
(I*)o,t can be formed from this mechanism. Since 
each automaton computes its own estimates, it is a 
simple matter to connect them so that they share those 
values. In this section of the paper, we will show how 
such a simple diffusion mechanism can be used to en- 
hance the modeling power of our anticipating snake 
model. 

In order to compute the second-order estimates 
(I*)in and (l*)out, w e  use combinations of the first- 
order estimated image intensities (I)in and (I)o,t, typ- 
ically using a one-dimensional gaussian weight func- 
tion g(j) as shown in Fig. 13 and Fig. 14 

and 

L 
* i  

{I )in ~ • i+j = g(J){I)in 
j=--L 

L 
* i  (I)out = ~ g( :''I'i+jJ~ 1out (29) 

j=--L 

In (29), indices i and j are in the range of the discrete 
arc length s across C. This yields a representation of 
the neighborhood structure extended in width as two 
layers of inter-connected cells, as depicted in Fig. 14 
below, while retaining the local decision structure de- 
scribed above. The input cells are image pixel values, 
extracted in the estimated normal direction N(s). The 
first layer of cells then computes local estimates of the 
image values in half-neighborhoods, while the second 
layer averages those values along the curve parame- 
ter. Finally, output cells perform nonlinear transforms 
and local comparisons to determine the directions of 
deformation, much in the same way as before. 

4.3 Adaptive Diffusion 

With this new definition for our local neighborhood 
structure, we have introduced a new parameter L, 
which controls the width of the propagation process, 
i.e. typically the number of inter-connected points on 
the contour curve, or more intuitively, the width of 
the second-order neighborhood structure itself. Just 
as in our previous sections, we need to decide for a 
control strategy for this new parameter. This will be 
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Fig. 13. Extending image neighborhood width. The simultaneous diffusion of intensity on both sides of the contour extends neighborhoods 
in width. 
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Fig. 14. Interconnection of neighborhood structures. Local color 
values are weighted sums of the estimated colors for each neigh- 
borhood. 

based on the following experimental observations: 

• substituting (I*}in and {I*)o,,t to the original val- 
ues in equations (23) and (25) improves the 
convergence qualities of the anticipating snakes 
algorithm around object boundaries (where first- 
encountered boundaries act as seeds for width 
propagation of the deformations), 

• away from object boundaries, extending the width 
of image neighborhoods yields confusions and 
unpredictable resulk% mainly because the differ- 

ences between inside and outside neighborhoods 
are small and obscured by random, tangent het- 
erogeneities. 

We thus have to introduce a more adaptive prop- 
agation scheme, so that we can use the seed val- 
ues at object boundaries to extend in the width di- 
mension, while ignoring this dimension altogether 
when no such information is available. Such adaptive 
treatments are reminiscent of biologically motivated 
computational models, such as retinex theory (Land 
1977) or boundary contour-feature contour interac- 
tions (Grossberg 1987). 

The retinex scheme computes perceived lightness 
or color using path integrals away from boundaries-- 
a scheme later shown to be equivalent to a diffusion 
equation with boundary conditions (Blake & Brelstaff 
1987). This original idea was recently re-discovered 
and extended as anisotropic diffusion i.e. diffusion 
of image intensity values, with coefficients depend- 
ing on local image gradients--a scheme which al- 
lows filling-in to take place away from object bound- 
aries, which act as diffusion barriers. It should be 
noted that our own extending neighborhood structures 
must follow the same kind of rule, but in a differ- 
ent perspective, since all unidentified neighborhoods 
should progressively be filled-in by image values dif- 
fusing from distinct object and background seed half- 
neighborhoods (the contour curve itself acting as a 
diffusion barrier). 

Interaction between extending neighborhood struc- 
tures (allowing image intensities to fill-in) and op- 
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timizing contour curves (which extend and main- 
tain optimal local contrasts) can best be described 
in the light of the neural theory of interacting fea- 
tures and boundaries, as defined in Grossberg (1987). 
S. Grossberg's model of visual perception introduces 
two competing forces (completion of boundaries and 
featural filling-in) which are both necessary and suf- 
ficient to explain, in his view, most pre-attentive ob- 
ject perception data. Feature contours are generated 
by orientation-insensitive, direction-of-contrast sensi- 
tive cells, while boundary contours are detected by 
direction-of-contrast insensitive, orientation-sensitive 
cells. 

This is an important distinction, which we are 
going to use a lot in this section. The process of com- 
puting a Ward distance along the normal to the con- 
tour curve, as in our previous section, is orientation- 
sensitive, but not sensitive to direction-of-contrast, 
i.e. it responses to all discontinuities tangent to the 
contour curve, regardless of the absolute intensities 
or colors inside and outside the contour. It would be 
useful to devise direction-of-contrast sensitive detec- 
tors as well, in order to guide the deformable contour 
towards a continuous boundary, i.e. with a constant 
or slowly varying direction-of-contrast. Of course, 
this is difficult, unless we are given the object and 
background colors, or we can anticipate those colors, 
based on larger, extended neighborhoods. 

In order to achieve this goal in the framework 
of our anticipating snake algorithm, we propose to 
use an intensity or color diffusion scheme with non- 
constant coefficients, each coefficient h(s) at arc- 
length s being a monotonous increasing function of 
the image contrast along the normal N(s) at s. This is 
a quite different assumption compared to anisotropic 
diffusion, because the diffusion along our curve pa- 
rameter s is controlled by the contrast in the orthog- 
onal direction t. Therefore, the more contrast we find 
between the inside and outside colors at s, the more 
we diffuse those colors. When the diffused colors are 
used by each automaton to compute its motion, we get 
a process which has become sensitive in the direction- 
of-contrast. For highly contrasted points, this does not 
change the computation of energy and forces much, 
and those points will still maximize their own lo- 
cal contrast, regardless of direction-of-contrast. On 
the other hand, for lower contrast points, local color 
values are outweighted by the diffused values from 
highly contrasted points, which impose a given di- 
rection of contrast. Therefore those points will maxi- 

mize their Ward distance to the diffused colors "from 
within" and "from without," as if we had set the 
functions object() and background() in equation (1) 
for those points, or equivalently the intensity or color 
charateristics of regions Rin and Rout in equation (19). 
This clearly results in a direction-of-contrast process 
for those points. 

Drawing upon this basic idea, we therefore h a v e  
implemented a simple diffusion process with a dif- 
fusion coefficient h(s) which is a function of arc 
length. This consists of the same two-layer structure 
as Fig. 14, but with an additional term h(s). We de- 
fer the precise definition of h(s) to section 4.5 and 
simply introduce it here with the following diffusion 
equation: 

(I*) i --__ ( I )  i 

L 

+ Z g(j)hi+j((I}i+J -- (1)i) 
j = - L  

(30) 

The interpretation of h(s) at s = i + j  in this equation 
is that of a local contrast measure at point M(s). Us- 
ing h(s) results in a selective diffusion from highly 
contrasted areas to undifferentiated regions, as in 
Fig. 15. More precisely, equation (30) results from 
the following line of  reasoning: (I*) i is expected to 
take values ranging between the local depth value ([)i 
and the sflrrounding value Iiurr : 

[iur r = zL=--L  g(j)h(i+j)(I) i+j 
L h (31) 

~ j = - L  gJ i+j 

Therefore we have (1") i ---= ( I - H ) ( I ) i + H l j , r r .  This 
simplifies to equation (30) if H is chosen to be the 
averaged contrast ~ = - L  g(j)h(i+j) around Mi. Sub- 

stituting (I*} i from equation (30) into the anticipat- 
ing snake algorithm, and increasing the neighborhood 
width L at every iteration, a very efficient and sta- 
ble scheme was obtained, as illustrated in Fig. 16 and 
Fig. 17. The critical--and somehow more technical-- 
point in this version of the algorithm lies in the esti- 
mation of the h(s) coefficients--which play a similar 
role here as the line-process energies in Geman et al. 
(1990). 
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h(s) (s) nls) 

s = i  s = j  s = k  

Fig. 15. Diffusion coefficient influence. Diffusion coefficients are related to image contrast across the contour curve. This has the effect of 
diffusing contrasted colors into undifferentiated regions. 

Fig. 16. Application of diffusion algorithm to real-scene image. 
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Fig. 17. Steps in diffusion algorithm and object tracking application. 

4.4 Adaptive Diffusion Algorithm 

In order to illustrate the use of our diffusion heuristic, 
we have implemented the following extension of our 
anticipating snakes algorithm. 

[1] Starting from an initial contour curve, we per- 
form a first series of iterations following the depth 
procedure of our previous section, until a limit 
depth value P is obtained. 

[2] We use variances from all half-neighborhoods to 
estimate the contrasts h(s) and build the two layers 
of neighborhoods described above. 

[3] We compute fusion forces as in equation (15), 
using the second layer outputs ( I*)  i for all neigh- 
borhoods, and apply the depth deformation rules 
from M(s) to M(s) + t(s)N(s). 

[4] We increment L and iterate [2] and [3], until an 
equilibrium is reached. 

It should be noted that, since expression (30) 
acts as a smoothing, regularizing term, no explicit 
stopping criterion is needed (contrary to the depth- 
adapting algorithm). In fact, it is possible to rely (as 
in the original snakes approach) on a much simpler 
rule, i.e. we end the process when no more defor- 
mations occur. Figure 16 presents an example of ini- 
tial and stabilized contour curves in a color image 
(shown here in grey levels). The Ward distance is 
derived from a visual metric in the vector-space of 
color triplets. All objects have been optimized sep- 

arately. The contours shown are sampled every five 
pixels. The depth parameter was varied from 10 to 
20 pixels in the first ten iterations. Then the width 
parameter was increased from 5 to 15 points in the 
last ten iterations (i.e. every sampled point received 
information from up to 30 neighbors). The displayed 
results use as many as 80 to 100 sampling points here. 
It should be noted that the final scale is large enough 
for different objects to overlap, meaning that we re- 
ally obtain a solution which is an optimum among all 
possible present object boundaries. Figure 17 shows 
further interesting application results, in the case of 
a sequence of images. The images in the sequence 
have been chosen so that the average deplacement 
corresponds to the depth parameter used, of approxi- 
mately 20 pixels. Again, this shows a good modeling 
power, discriminating easily between object bound- 
aries and the surrounding texture. Intermediate states 
of the contour model are shown in those three images, 
illustrating only the adaptive-diffusion part of the al- 
gorithin ~ig .  17). Except for the first frame, where we 
have provided an initial curve manually, contours ob- 
tained in a given frame were used directly to initialize 
the next frame (although no real-time implementation 
has been attempted). 

4.5 Computing the Diffusion Coefficients 

We cannot use the Ward distance in order to compute 
the diffusion coefficients, because D(It, I2) has the 
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dimension of a square norm of image values and h(s) 
must be a dimensionless coefficient in [0,1]. Non- 
linear transforms such as (27) and (28) result in poor 
numerical behaviour when averaged by the gaussian 
function gj. Our experience here is that better contrast 
estimates can in fact be obtained using a statistical test 
for identical variances in the first layer of the neigh- 
borhood structure (Fig. 4). This follows a theoretical 
suggestion by Leclerc & Zucker (1987). 

Letting Vl be the total variance in the complete 
neighborhood M(s) + tN(s) and V2 be the sum of 
separately estimated variances inside and outside the 
contour curve at point M(s), we test the ratio L v2' 
which we assume to follow an incomplete t-function 
(Press et al. 1988). The result of this test is the proba- 
bility p(s) of the observed ratio, under the hypothesis 
that V1 and V2 were drawn from a homogeneous pop- 
ulation. The local contrast h(s) can thus be estimated 
as 1 -p(s). The test Fisher-Snedecor has already b ~ n  
used to study the local structure of discontinuities and 
detect edges (Leclerc & Zucker 1987) and it proves 
both consistent and reasonably efficient in our case 
as well. It extends naturally to more complex image 
cases than illustrated here, e.g. color or multi-spectral 
imagery (Ronfard 1991). 

5 Results and Discussion 

5.1 Scale Changes: Comparison of Depth-Adapting 
and Diffusion Algorithms 

A remarkable feature of the two algorithms presented 
here is their capacity to change scales during opti- 
mization. Our treatment of scale changes in depth 
closely follows Leclerc & Zucker (1987) but in a 
more favourable context, because of error-correcting 
iterations and regularization. As a consequence, a 
more ambitious treatment of scale changes was pos- 
sible, as captured by our width extending scheme. 
However, extensions in depth or in width both have 
merits and failings, which will now be illustrated and 
discussed. 

Extending in depth has been illustrated in Fig. 1 
and Fig. 8. The intuitive nature of the extension pro- 
cess is that all pixels in a neighborhood of the con- 
tour curve interact with their projections on the curve, 
the forces being repulsive, proportional to the simi- 
larity of pixel values on and around the curve, and 
limited in range to the depth parameter P (Fig. 8) 

All such forces result in a contour-image interaction 
which drives the optimization process throughout. 

This scheme can be very successful (e.g. Fig. 11) 
as long as the expected boundaries are absolute con- 
trast maxima even at a reasonably large scale P. 
When this is not the case, our extending scheme will 
favour higher contrasts in the distance (within P) and 
lose track of real boundaries. Controlling this situa- 
tion has proved extremely difficult in the absence of 
a more global information. On the other hand, cases 
that can be correctly modeled by depth neighborhoods 
are optimized without oscillations, in a near-optimal 
number of steps (typically less than the Haussdorf 
distance between initial curve and solution). Further- 
more, the resulting curve can be refined to quasi pixel- 
size resolution (Fig. 11 shows final curve sampled 
every 3 pixels). 

Thus, our depth-adapting strategy is best used 
when image contrast is high and varies smoothly 
along the anticipated boundary. Otherwise, smooth- 
ing image values around optimizing contour is nec- 
essary. Adaptive diffusion provides important clues 
on how to solve those cases. The process has been 
represented in Fig. 13 as distributed forces acting on 
the contour curve from neighborhood pixels on the 
curve. 

The diffusion process that we use to compute local 
pixel colors presents major advantages over both tra- 
ditional snake methods and our local depth-adapting 
algorithm, when an overall direction of contrast is 
perceptible, because it is able to correct itself locally, 
using neighborhood information without assumptions 
on the geometry of expected object boundary (as in 
Fig. t6 and Fig. 17). On the other hand, it is more 
difficult to control, and not as precise as the simpler 
depth-adapting algorithm, because it changes image 
values and therefore leads to smoother contour solu- 
tions than the real image boundaries. An implemen- 
tation using more elaborate neighborhood structures 
(such as a triangulation of the image) would be very 
useful for further study of the adaptive diffusion con- 
cept. 

5.2 Merits and Failings of the Anticipating Snakes 
Method 

The framework presented in this paper addresses only 
the case of feature contours (step-edges), and cannot 
easily be made to recognize "roof-edges" or bound- 
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aries between objects of similar colors. In the case of 
step-edges, our diffusion algorithm retains most of the 
available image contrast information, while allowing 
non-stationnarity (as opposed to pure region segmen- 
tation based on the same energy function). The use 
of an energy measure derived from local comparisons 
of quadratic error-of-fit functions was borrowed from 
split-and-merge methods, for which it is well known 
that smooth, regular contours are usually difficult to 
obtain. Our anticipating snakes approach could pro- 
vide a criterion for those cases, making contour ex- 
traction much more reliable, while retaining the ro- 
bustness qualities of region analysis. It also supports 
scale changes more easily than other related schemes, 
which is an important factor for stability of our re- 
sults. 

Figures 11 and 12 present results obtained with the 
depth algorithm, on tomography scan and microscopy 
images. Figure 16 shows results of the diffusion algo- 
rithm on a fairly complex video image. An application 
of the diffusion algorithm to object tracking in an im- 
age sequence is shown in (Fig. 17). In simpler cases 
such as Fig. 11 or Fig. 12, convergence is obtained in 
ten to fifteen iterations, with an initial depth of about 
five pixels, and the algorithm runs in time linear with 
the number of sampled points. If the diffusion heuris- 
tic is used in those images, the number of iterations 
is reduced, but the running time increases because 
of the more drastic computations there. However, all 
examples shown were obtained in times compatible 
with interactive use (typically under 2 seconds on a 
12 MHz microcomputer for 30 sampled points). 

The combination of contour-oriented control struc- 
tures and region-oriented energy measures is power- 
ful, yet many problems will remain unsolved as long 
as contours are optimized one at a time. There are 
cases when our anticipating snakes split into sep- 
arate curves, and it would be interesting to pro- 
ceed with such twin processes (as a matter of fact, 
such situations are detected, and corrected by sim- 
ply deleting all loops but the largest one). Multiple- 
contour optimization could also prove valuable in or- 
der to generate initial curves at different positions in 
the image--sharing neighborhood values when nec- 
essary, thus cooperating into a global segmentation 
procedure such as Geman et al. (1990), but with an 
explicit contour shape representation, as in Mumford 
& Shaw (1985; 1989). 

Other difficult issues in the approach that we 
present here include the choice of an optimal sam- 

piing rate, efficient control of the diffusion heuris- 
tic after several iterations, and the trade-off be- 
tween local depth-adapting and diffusion strategies 
in the course of optimization. Such issues should 
be discussed in the light of more specific, domain- 
dependent image analysis application of the method. 

6 Conclusion 

This paper was motivated by the need to explore vari- 
ational conditions and algorithms resting on local re- 
gion analysis, instead of pre-processed edge maps, 
to handle cases when such maps are not available 
or too costly. Based on such local region criteria, 
we have presented a coherent treatment of image- 
contour forces and variations, as well as strategies 
for application in a practical active contour system, 
which compares well with other existing systems, es- 
pecially in the case of over-segmented images. This 
is remarkable since we essentially took a very sim- 
plistic approach to optimization, control and conver- 
gence issues. We argue that it is due to the fact that 
the region-based energy used here is a better repre- 
sentation for optimal shapes than are image gradi- 
ents in those cases. Our energy definitions have been 
presented with statistical and perceptual interpreta- 
tions, and can be suggested along with their varia- 
tional procedures and heuristics--to enforce explicit 
shape representations in other areas of image analy- 
sis i.e. simulated annealing image segmentation and 
retinex/diffusion schemes. 

In the more specific domain of active contour mod- 
els, our first contribution has been to introduce a gen- 
eral formulation for region-based models, using local 
error-of-fit functions to build an energy criterium suit- 
able for optimization. This formulation has been illus- 
trated using piece-wise constant image models only, 
and should benefit from higher-order models when 
available. Our second contribution has been to make 
use of adaptive neighborhood structures and diffusion 
processes, in order to obtain a more robust active con- 
tour modeling scheme in the case of very busy images 
with many objects. The same heuristics could easily 
be transposed to the case of edge-based contour mod- 
els as well, hopefully with the same benefits. 

This work was performed while the author was 
a research assistant with Ecole des Mines de Paris, 
as well as being hosted by Laboratoire Image, Tele- 
corn Paris. The author would like to acknowledge the 
help and support of J.M. Monget, M. Albuisson and 
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and M. Sigelle at Telecom, as well as valuable criti- 
cal examination and discussion on earlier versions of 
this work by Ph. Cinquin. 
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Appendix A V a r i a t i o n a l  P r i n c i p l e s  and Equations 

W e  a s s u m e  tha t  the  exac t  e n e r g y  e x p r e s s i o n  is • 

E f '  ii 2 0 2 M 2  G 2 ( M ) )  
= + ~ll-5-jS-s2 tl - cts 

an d  tha t  it can  be a p p r o x i m a t e d  by  a s u m  of  local  
n 

e n e r g y  fields E = Y~i=l Ei: 

n OMi 2 n 02Mi 
E = v e Z [ l - - ~ - - - s  11 + f l Z l [ ~ l l  2 - ~ G 2 ( M i )  

i = 1  i=l  i = t  

All  t e rms  in th is  e x p r e s s i o n  can  b e  a p p r o x i m a t e d  by  

f ini te  d i f ferences :  
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OMi 2 
it--g-s i1 = 

OZ Mi  2 
II--gr-~ II = 

(Xi+l  - -  Xi) 2 "-[- (Yi+I - -  Yi) 2 

(Xi-t-1 -- 2Xi -'1- Xi--1) 2 

-I- (Yi+I - -  2yi q- Y i - l )  2 

I f  we now differentiate, we obtain 

and 

OE x-~ OG 2 

2_, B i j x j  
Oxi Oxi j = l  

OE ~ OG 2 
Oyi B i j y j  Oy i 

j = l  

in which the coefficients in B are simple sums of  ce 

and ft. 
I f  we assume E(M) to be a quadratic function, 

we can write (using Euler formula for homogeneous 

functions): 

~-~OE ~ OE 
2E = - - x i  -t- ~yi Yi 

i = 1 0 X i  i=1 

which easily develops into 

_[ y G2] 1 tXB X t X OG2 -k -t YBY _t 
e = 2 ax  - 5 7 1  

Equation (7) in the paper is but a short-hand no- 
tation for this latter expression, in which we recog- 
nize potential energy terms tXBX -t -t YBY as well 
as artificial, quasi-static Gibbs function coefficients 
t y  OG 2 _t_t y OG 2 
"'Ug- ~v • 

When we use our region-based formalism, the lat- 
ter, image-driven energy terms appear only as varia- 
tions t ,SY OG2 -4-t,~Y OG2 v. .-g 2- _ v - - g  g- which are interpreted (more 
meaningfully in our opinion) as the amount of  dissi- 
pated energy due to the image force vector  VG 2. 



EUROGRAPHICS '94 / M. Daehlen and L. Kjelldahl (Guest 
Editors), Blackwell Publishers 
© Eurographics Association, 1994 

Volume 13, (1994), number 3 

Triangulating mult iply-connected polygons: 
A simple, yet efficient algorithm. 

Remi  P. Ronfard Jarek R. Rossignac 
IBM T.J.Watson Research Center 

P.O.Box 704, Yorktown Heights, NY 10598 

Abstract 

We present a new, simple, yet efficient algorithm for triangulating multiply-connected 
polygons. The algorithm requires sorting only local concave minima (sags). The order in 
which triangles are created mimics a flooding process of the interior of the polygon. At 
each stage, the algorithm analyses the positions and neighborhoods of two vertices only, 
and possibly checks for active sags, so as to determine which of five possible actions to 
take. Actions are based on a local decomposition of the polygon into monotonic regions, 
or gorges (raise the water level in the current gorge, spill into an adjacent gorge, jump to 
the other bank of a filled gorge, divide a gorge into two, and fill a gorge to its top). The 
implementation is extremely simple and numerically robust for a large class of polygons. It 
has been tested on millions of cases as a preprocessing step of a walkthrough and inspection 
program for complex mechanical and architectural scenes. Extensive experimental results 
indicate that the observed complexity in terms of the number of vertices, remains under 

in all cases. 

1 Introduction 

Triangulation is a fundamental operation in computational geometry and has been studied 
extensively in an attempt to  reduce its algorithmic complexity, i.e. the running time of trian- 
gulation as a function of the number of vertices N in the polygon [7] [5] [6] [1]. Triangulation is 
particularly important in geometric modeling and in graphics. In these applications, the per- 
formance of triangulation algorithms cannot be evaluated solely in terms of their algorithmic 
worst-case complexity. More important is the average expected behaviour for polygons with a 
reasonable number of edges. Several efficient triangulation algorithms have been proposed for 
polygons that are simply-connected (without holes) [ 3 ] .  Unfortunately, many computer-aided 
design systems produce multiply-connected faces that need to  be triangulated for efficient 
rendering and for other downstream applications. 

We present in this paper an  efficient algorithm, called flooding, which works for both simply 
and multiply connected polygons. The remainder of this section defines the domain, i.e., the 
class of polygons properly triangulated by the flooding algorithm and their representation 
accepted as input format by the algorithm. Section 2 positions the proposed solution in the 
context of previous publications. Section 3 introduces a suitable vocabulary for presenting the 
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algorithm, in terms of the metaphor of flooding a polygon with water. Section 4 describes the 
algorithm (at an intuitive level) in terms of a finite state machine with only 6 possible states 
and five transition operations. Section 5 provides implementation details. Section 6 discusses 
the correctness of the algorithm, and addresses the handling of degenerate (invalid) input 
models or of topological errors resulting from numerical inaccuracies. Finally, the algorithmic 
complexity is analyzed in Section 7 .  

We define a polygon to  be a bounded, connected subset of the plane, such tha t  it is 
equal to  the interior of its closure and tha t  it has a finite piecewise linear (nowhere dense) 
boundary. The boundary may be decomposed into a finite set of vertices and edges as follows. 
Vertices are the points with non-linear neighborhoods. Edges are the maximally connected 
components of the boundary minus its vertices. 

The boundary of a polygon may be partitionned into maximally connected components 
called loops. There exists a unique circular order of all the edges within a loop. The order is 
obvious at manifold vertices. The edge orientation defines the start-vertices and end-vertices. 
The next edge is the one starting at the end-vertex of the current edge. At non-manifold 
vertices there are two or more such edges. We chose as next the first one encountered while 
rotating in a clockwise manner around the end-vertex. Given the above convention, a polygon 
has a unique representation (as a set of loops, each loop being a circular ordering of vertex 
references) which is always valid. In this paper, we address the issue of triangulating a 
polygon represented using our conventions. The triangulation produces a list of triangles T 
and internal edges I such that:  

a) Internal edges of I are relatively open line segments contained in the polygon and 
connect vertices of the polygon (triangulation does not add artificial vertices) , 

b) Internal edges and triangles partition the generalized polygon (they are pairwise disjoint 
and their union is the entire polygon). 

2 Previous work 

Triangulation may be performed by first decomposing the polygon into simpler parts and then 
by triangulating each part with an efficient, special-purpose method. As an example, polygon 
decomposition into convex parts [9] yields an efficient method of triangulation, because any 
vertex in a convex polygon can be joined by internal lines to  all other non-adjacent vertices to  
produce a correct triangulation. Another interesting approach consists in adding horizontal 
internal edges, so as to  decompose the polygon into a union of trapezoids. Since trapezoids are 
trivially triangulated, this again provides an efficient approach [a] [4], which has been recently 
improved to a linear complexity algorithm [1]. A more general (monotonic) decomposition 
method has been described by Lee and Preparata [3], as a special case of what they call 
regularization of a planar graph. The regularization algorithm finds a set of monotonic regions 
partitioning both the interior and the exterior of any simple polygon in N log N time and 
N space. An efficient triangulation of monotonic polygons has been described by Garey and 
his colleagues in 1978 [5] and is also discussed in [4]. 

The new flooding algorithm applies to  all types of polygons, whether simply or multiply 
connected. Flooding generalizes the monotonic decomposition of [3] and the monotonic tri- 
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angulation of [5], but does not require building their complex auxiliary data-structures. It is 
similar in spirit t o  the sweep-line algorithm of [6], but sweeps only one gorge at a time. 

3 The flood metaphor. 

A coordinate system (a direction, the vertical, and an origin) is chosen and used to  define 
the height for vertices. A polygon is monotonic if its boundary has exactly one maximum 
and one minimum. A polygon may be decomposed into monotonic regions: its gorges. (Such 
a decomposition is in general not unique.) Since a gorge is monotonic, its boundary can be 
split into two parts, its left and right banks. 

Bottom. Sag. Top. Ceiling. 

Figure 1: Non-monotonic vertex types. 

As illustrated in figure 1, there are four types of special vertices: a convex local minimum 
is called a bottom, a concave local minimum is called a sag, a concave local maximum is called 
a top, and a convex local maximum is called a ceiling. Note tha t  no distinction needs to  be 
given to  non-manifold vertices. A wedge is a chain of adjacent triangles sharing a common 
vertex, called the apex of the wedge. 

The internal data-structure used by the flooding algorithm is an array of vertices and a list 
of loops, each stored as a doubly-linked list of vertex references. As the algorithm progresses, 
loops may be split or merged, but there is one active loop at any moment. 

The active chain is a connected subset of the active loop. Its starting and ending vertices 
are called respectively Left and Right. The vertex preceding Left is called NextLeft. The 
vertex following Right is called NextRight. (NextLeft and NextRight are indicated by fingers 
of left and right hands in the following figures.) The active chain always forms a concave line 
and is bounded by a bottom vertex of the active loop. The Right and Left vertices are on 
the opposite sides of a gorge. Initially, the active chain contains only one vertex, the lowest 
bottom in the external loop of the polygon, which is the Left and the Right vertex of the 
active chain. 

In the simplest situation, the flooding algorithm fills tha t  gorge by removing bottom 
triangles and by extending the active chain to  its neighbor edges. Basically, the height of 
NextLeft and NextRight are compared. Suppose, without loss of generality tha t  NextLeft 
is lower. The vertices of the active chain tha t  are visible from NextLeft (and connected to  
NextLeft, by either external or internal edges) define a wedge of triangles to  be removed 
from the polygon. The active loop is adjusted and NextLeft becomes Left. This operation 
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is called a raise, and can be iterated in a monotonic polygon, which it will triangulate in 
O(N) time [3] [5] [6] [7]. The main contribution of our method consists in the four other 
operations (bridge,fill,spill and jump), which together with the raise, will triangulate an 
arbitrary triangle, in a similar fashion. 

4 High-level description of the algorithm. 

In the pre-processing stage, we extract all sags and sort them in height. (Equal height conflicts 
are resolved using lexicographics order of both the X and Y coordinates of the vertices.) The 
sorted list of sags reduces the cost of searching for the lowest sags inside the current gorge. 

Before a raise After a raise 

Figure 2: Raise. 

Each sag will eventually be connected t o  a top or a regular vertex by an  internal edge. 
Such a bridge operation may divide the active loop or connect it to  another loop creating two 
gorges. The algorithm will pursue (and fill) one of these gorges. The bottom of the other 
gorge will be put on a to-do list of pending bottoms. When the top of a gorge is reached (the 
gorge is full), the flooding algorithm checks the list for bottoms of unprocessed gorges. (Note 
tha t  a pending bottom added to  the to-do list during a bridge operation can also be processed 
as a result of spilling around a hole, in which case it will not require further actions.) 

Each vertex has pointers to  its immediate right and left neighbours in a loop, plus an  
additional jump pointer, initialized to  null. The purpose of jump is to  point directly t o  the 
other bank of a previously filled gorge, tha t  was momentarily put on hold to  pursue a spill. 

Flooding may be viewed as a finite-state automaton with only the following five transitions 
(i.e., actions): 

Raise. Assume (without loss of generality) that  NextLeft is below NextRight. If 
NextLeft is above Left (the edge goes up and Left is not a top), we search the sorted 
list of sags for the lowest sag above Left and Right and below NextLeft in tha t  gorge. If 
no such sag exists, one can triangulate a portion of the polygon by constructing interior 
edges between NextLeft and the vertices of the active chain visible from NextLeft (cf. 
fig. 2).  
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Before a fill After a fill 

Figure 3: Fill. 

Before a bridge After a bridge 

Figure 4: Bridge. 

Fill. If NextLeft and NextRight are the same, internal edges can be created from this 
vertex to  all non-adjacent vertices in the loop triangulating the remainder of the polygon 
(figure 3). After a fill,  the Left and Right pointers are reset to  the next non-processed 
pending bottom. 

Bridge. If a sag is found during the above check, we create a bridge of two internal 
edges from the  sag t o  the highest vertex in the active chain. After a Bridge, the chain is 
either split into two subchains, one of which remains active, while the other one remains 
attached to  a new pending bottom (cf fig. 4) .  

Spill. If Left (respectively Right) is a top, and has a null jump pointer), we set its jump 
pointer t o  Right (respectively Left) on the opposite bank of the gorge for when we are 
done filling the adjacent gorge, and then follow the chain towards the left (respectively 
right), searching for the next bottom not matched by a sag encountered along the search 
path. This new bottom becomes the start  of a new gorge-flooding process (it becomes 
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Before a spill After a spill 

Figure 5: Spill. 

Before a jump After a jump 

Figure 6: Jump. 

the Left and the Righ of a new active chain, see figure 5). The requirement for skipping 
as many bottoms as sags encountered during the search guarantees tha t  we will not 
at tempt to  back-track a spill, which would create an  infinite loop. 

Jump. If the Left (respectively Right) pointer is a top, and its jump pointer is not 
null, we jump to  the other bank (i.e., reset it to  the value in the jump pointer), as seen 
on figure 6. 

The entire flooding process is illustrated in figures 7 and 8, which show one example of 
triangulation, at several important intermediate steps of the algorithm (figure 7), with all 
triangles numbered according to  the order in which they have been flooded (in figure 8). 
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Figure 7 :  Intermediate steps. Each figure shows the result of a series of actions, followed by numbers 
indicating which triangles have been created and removed: (1) Raise 0-7, Spill; (2) Raise 8-12, Jump; 
(3) Raise 13-18, Bridge, Raise 19-26, Spill, Raise 27-30, Jump. (4) Raise 31-33, Fill. Raise 34-41, 
Bridge; (5) Raise 42-45, Jump; (6) Bridge, Raise 46-52, Spill, Raise 53-62, Jump, Raise 63-64, Fill. 
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Figure 8:  Flooding triangulation example. The numbers indicate the order in which triangles have 
been removed. 

5 Implement at ion details 

The control mechanism for our finite-state implementation of the method is based on the deci- 
sion tree summarized in figure 9. In order to  control numerical stability and handle degenerate 
cases, the number of geometric routines has been kept at a minimum. Our implementation 
consists of just three geometric predicates, called convex, below and inside. 

Convex. A predicate is used to  decide whether vertex between and 
is convex. Given the orientation of and in their loop, this solves the question 

whether triangle lies inside or outside the polygon. 

Below. A predicate is used to  compare the heights of a pair of vertices, with 
the  convention tha t  vertices with equal height use the other coordinate for comparison (this 
defines a lexicographic ordering of vertices, based on both their X and Y coordinates in the 
plane; we can still represent this ordering as a height if we give an imaginary tilt on all 
horizontal lines). 
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Inside. A predicate inside(S, A ,  B) is needed to  determine whether a given vertex S (a sag) 
lies inside the quadrangle formed by the Left and Right pointers and their fingers NextLeft 
and NextRight (fig. 4). This is obviously a sufficient condition for a sag S t o  be inside the 
active gorge. For sags whose heights have been bracketed between the current water level 
and the next water level this will be a necessary condition also. 

Figure 9: Decision tree for flooding actions. Next is the lowest of NextLeft (NL) and NextRight 
(NR); C is the corresponding left or right end of chain (Left or Right). 
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6 Correctness of the algorithm. 

Although a formal proof of our algorithm is difficult, we can nevertheless show tha t  if the 
polygon is valid, then (a) the algorithm produces a valid set of triangles, and (b) the resulting 
triangulation covers the input polygon completely. In order to  prove (a), we first remark 
tha t  all vertices between the Left and Right pointers (if any) are concave. Only the Left and 
Right ends of the active chain can ever be convex, which is why we claim that  our algorithm 
generalizes Garey et al. [5]. As a result, the local configuration in the active chain is always 
similar to  a monotonic polygon, which we can triangulate correctly as long as no other edges 
are contained in it. Because we detect sags, this can never happen, and all triangles are 
therefore valid. Secondly, as we triangulate a polygon, we update the boundary of the non- 
triangulated region, by chopping off triangles as we progress. We now must explain how this 
process eventually leads to  a set of empty regions, and thus prove (b). Intuitively, the reason 
is tha t  there is only one way of closing the active chain, which is to  go through all vertices 
in the initial bo t tom’s  loop. It is then easy to  prove tha t  when this happens, the remaining 
region enclosed will be completely triangulated by the final fill. If the initial bo t tom’s  loop 
is monotonic, i.e. without tops nor enclosed sags, this intuition is easily proved, as in [5]. 
If the loop encloses sags, but has no tops, it will be divided into several components, each 
of them monotonic, and therefore each of them completely triangulated. The more difficult 
case comes with tops and spilling. The active chain is temporarily disrupted after a spill, 
but this is necessarily followed by a corresponding jump from the opposite direction, because 
each top has exactly two different banks. Although this is quite difficult t o  prove formally, it 
intuitively shows tha t  the disrupted chain is always restored, and therefore no vertices are left 
behind (see [8] for more detail). As a consequence, flooding will produce a valid triangulation 
when loops are valid. When this is not the case, our finite-state machine implementation 
provides at least to  direct ways to  track down errors and degeneracies: forbidden transitions 
and forbidden states (see fig. 10). 

Figure 10: Vertex combinations and states. States are raise (R), fill (F), bridge (B), spill (S), jump 
(J) and forbidden (X) . 

Because of its finite state implementation, our algorithm either ends successfully or an 
error is detected (forbidden state or transition). As an example, consider invalid polygons 
represented in fig. 11. In 11-A, the Right and Left pointers are identical, and classified as a 
sag because the polygon intersects itself. In 11-B, the Left pointer is classified as a ceiling, 
not as a top,  so tha t  spilling should not occur, and an error is detected for the same reason. 
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Figure 11: Invalid polygons and error detection. A,B: Invalid polygons. 

In practice, we triangulate both the polygon and its complement , for verification purposes. 
We leave as an  open conjecture that  this detects all invalid or degenerate polygons. 

7 Complexity analysis 

Let us first describe worst-case costs for all relevant steps of the algorithm. Identifying 
bottoms and sags requires two below and one convex predicates to  be evaluated. This is 
therefore linear in the total number N of vertices. Sorting sags can be done in S log(S) time, 
where S is the number of sags. Finding the next sag is linear in the number of sags, because 
sags are sorted. For each gorge, the worst case is when all sags between the current and next 
water levels have to  be tested, and they are all outside. The inside test is then performed a 
maximum number of S G  times in all, where G is the number of gorges. As a conclusion, 
the asymptotic behaviour of the flooding algorithm can be predicted to  be O ( N )  + O(SG) , 
therefore O(N²) in the worst case. 

In practice, we have observed almost-linear behaviour in many different cases, and an 
actual worst-case complexity of We base this claim on a series of experiments, 
described in [8], in which we fitted a log-linear model to  the running times T vs. number 
of vertices N ,  in a variety of practical cases, i.e. T = where A is the exponent. Our 
findings are that the exponent varies between 0.9 and 1.4 in all cases (see [8]) . It should also 
be noted tha t  the connectivity type (number of holes) does not in itself add t o  the complexity, 
because holes are taken into account naturally (as sags) in our framework. 

8 Conclusion 

We have presented an  algorithm for triangulation of a general class of multiply connected 
polygons, and described a compact implementation of it as a finite state machine. The 
implementation is remarkably robust because numerical errors generate impossible transitions, 
which can be checked and reported at no cost. The asymptotic behaviour of our approach 
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depends on the  relative number of monotonic and special vertices (sags, tops, ceilings and 
bottoms). If the  proportion of special vertices decreases with the total size of the polygon, as 
is usually the  case in practical situations (smooth, faceted surfaces, manufactured objects), 
the  method becomes linear in the total number of vertices. On average, it has been found t o  
be although its theoretical worst-case behaviour can be predicted t o  be One 
limitation in our approach is tha t  self-intersecting polygons can only be reported as invalid 
input, but not triangulated. On the other hand, within the class of non-intersecting polygons, 
we are able t o  deal efficiently with an arbitrary number of holes, in a very natural way. 
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Abstract 

We propose a new algorithm for automatically computing approximations of a given 
polyhedral object a t  different levels of details. The application for this algorithm is the 
display of very complex scenes. where many objects are seen with a range of varying 
levels of detail. Our approach is similar to the region-merging method used for image 
segmentation. We iteratively collapse edges, based on a measure of the geometric deviation 
from the initial shape. When edges are merged in the right order, this strategy produces 
a continuum of valid approximations of the original object, which can be used for faster 
rendering at vastly different scales. 

Keywords: Visualisation, Polyhedral Surfaces, Levels of Detail, Region Merging. 

1 Introduction 

This paper describes a new method for automatically generating several levels of details of 
a polyhedral object, whose faces have been triangulated [9]. Our method is applicable to 
architectural walk-through, assembly mock-up: virtual reality, medical simulation, planning 
and monitoring. The difficulty in those applications is that a wide range of viewing conditions 
must be accommodated, so that 'the available levels-of-details should span several orders of 
magnitude [5, 12]. 

There are two sides to all simplification methods. On one side, it is desirable t o  be able 
to  simply iterate the process until a desired level of detail is reached (in terms of the number 
of elements in the approximation): without having to guess for global parameters. Thus, 
incremental methods remove triangles from a 3D object, based on a measure of how much the 
shape changes locally in each move [15, 13. 16, 14]. On the other side, global control of the 
simplification error is also useful, and has been emphasized by recent authors [8, 2, 7, 6, 4]. 

Our method takes an intermediate view of the problem. It is based on local, incremental 
operations, but keeps track of the initial object, by tracing a history of all vertex moves. As a 
result , we can control approximation levels by prescribing geometric tolerances. and still get 
the benefits of working incrementally. 

The previous work of Rossignac and Borrel [ 11] is based on space-partionning and cluster- 
ing techniques in 3D space. By allowing topological changes. that method yield much higher 
compression ratios than most other previous work, at an extremely low computational cost. 

1Current address: Institut National de l'Audiovisuel. 4. ave. de l'Europe. 94 366 Bry-sur-Marne, France. 

Rémi Ronfard 1and Jarek Rossignac
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Figure 1 : Surface of a human face. extracted from MR image data, with three levels of simplification. 
and the number of triangles for each level. 

but with too little control over the quality of the approximation. In our new method, ver- 
tices are merged in a much more controlled way. based on a step by step evaluation of the 
approximation error. 

[3] gives a suitable theoretical 
framework to surface simplification based on wavelets but it is not yet clear that it is practical. 
because it cannot deal with surface discontinuities or topological simplifications. 

The paper is organized as follows. First, we present a general overview of the algorithm 
in section 2. Then, we discuss our definition of the approximation error, in section 3 .  Im- 
plementation issues are discussed in section 4. with a focus on data structures and topology 
issues. We end with a discussion of results and performance analysis. 

The multiresolution approach advocated by Eck et al. 

2 Algorithmic foundations of the method. 

Our method is based on a merging algorithm, which removes edges one at  a time from a 
polyhedral object. Each edge removal is applied by moving the first, vertex into the second 
vertex of the edge, as shown in fig. 3. We view this operation as a region. merge. because 
all triangles around the merged vertices are modified. We associate a cost with each merge, 
which can be precomputed and stored for all edges. The cost function itself will be described 
in section 3. We also maintain the topological links between vertices, edges and triangles 
throughout the simplification process. As a general overview, we can outline our method as 
follows: 

Pre-processing. Build the topology of the object, and compute the  costs associated with 
all edges. Insert edges into a priority queue: so the the edge with the lowest, cost is readily 
available at  all times. 

Iteration. 
second vertex, ant3 update the topological data structure accordingly. 

Merge edges one at a time, by moving their first vertex at the location of the 

Relaxation. After each merge, update the geometric location of the remaining vertex, based 
on its new neighborhood. Update the values of the cost function for all edges that have been 
affected. and update the priority queue accordingly. 
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Topology reconstruction. When the number of vertices, or the total approximation error. 
reach pre-specified levels. intermediate approximations of the object are extracted. and the 
whole process can be iterated until the full range of approximation levels have been obtained. 

Figure 2: Star and crown of a vertex. A: Edges and faces touching a vertex are its star. B: Edges 
bounding the star of a vertex are its crown. 

Figure 3: Merging vertices and their stars: A: Initial configuration around edge. B: Final configuration 
around collapsed vertex. 

3 Geometric foundations of the method. 

Local tesselation error. 

We call the region composed of all edges and triangles around a given vertex its star. By 
definition, the neighborhood of a vertex is composed of edges and triangles in its star, as 
depicted in fig. 2. In the same figure, the crown of a vertex is introduced, consisting of the 
boundary of its star (i.e. the set of edges adjacent t o  but not part of. its star.). 

Our single topological operation for simplifying polyhedral shapes consists in merging the 
stars of two adjacent, vertices. Fig. 3 shows a typical example of the region-merging operator, 
where one vertex is merged into another vertex 

We evaluate the cost, of merging vertices, with th maximum e maximum of two functions of those 
vertices, LGE and LTE. The local geometric error LGE is the variation of a geometric error 
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G during the merge (a measure of the distance between the initial arid approximated shapes). 
The local tesselation error LTE is a penalty function, used to  keep the triangular mesh valid 
and smooth. With reference to fig. 3, the merge involves deleting vertex edges 
and as well triangles and Four more triangles are modified. and a 
cost LTE is associated with the amount, of rotation undergone by their normal vectors. In 
addition, vertex moves at a distance from its previous location. thus increasing the 
global geometric error in the approximation by an amount LGE. 

A triangular mesh defined on a plane or a surface is a valid tesselation when no edges 
intersect. and no triangles overlap on that plane or surface. In our case, the surface is not 
explicitly given, but the validity of the mesh can still be approximately evaluated, if we assume 
that the initial shape is a valid mesh. When we merge vertices, we deform triangles in their 
star. For each triangle the deformation can be represented by the rotation of the 
normal vector to  the plane of the triangle. and measured with just one angle between 0 
and 

The validity and the quality of the mesh are violated when a triangle reverses its orien- 
tation. i.e. when it turns around the surface of the object with an angle equal to In the 
planar case. an example of this situtation is given in fig. 4. To prevent such cases, and to 
keep the mesh as balanced and smooth as possible, we impose the penalty function: 

With a large coefficient K ,  this function can be used to prevent flipping triangles tangent to 
the surface of the object,. if we use a data structure allowing us to pre-compute LTE (without 
merging). Color plates 7 and 8*show the mesh at different, stages of the simplification process, 
on two simple examples. 

Local geometric error. 

We have devised a novel geometric error function, based on the distance of vertices as they 
move perpendicular to the surface of' the initial object,. We use this geometric error as a cost 
function in combination with the penalty function, which puts constraints on how vertices 
move tangent to the surface. As a result! all vertices that have been merged with costs 
inferior to a given tolerance remain within this tolerance of the original shape (see [10]). 
* See page C-462 for figures 7 and 8. 
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Figure 5: Special cases for simplification. The shaded regions materialize zones with zero, one or two 
degrees of freedom around vertex . A: Merge almost coplanar vertices, two degrees of freedom. B: 
Merge vertices aligned on a sharp edge. one degree of freedom. C: Merge vertices into a sharp corner, 
zero degree of freedom. 

Intuitively, the different, ways of merging vertices without changing the shape of the object 
are (a) to merge vertices whose regions are entirely co-planar: (b )  to merge vertices along 
prominent edges. where the dihedral angle is greatest: (c) to merge vertices into prominent 
corners (see fig. 5) .  In order to deal with those three cases simultaneously. we measure 
the deviation of the merged vertices from their tangent planes, i.e. a finite set of planes 
around each vertex. We start with a  simple observation: in the original object,. every vertex 
is a solution of a linear system of equations, obtained with the plane equations for all the 
triangles in its star. Let us write this system, with denoting any such plane: 

If we move a vertex to an arbitrary new position (x.y.z), we can associate costs 
proportional to the distances from those planes to the new position, i.e. 

As a generalization, we associate an arbitrary set of planes, called its zone, to each vertex 
in the object. Initially, those planes are picked from the star of the vertex. with a total cost 
of zero. If we now move one vertex, there will be a corresponding deviation for each 
plane in its zone. If we merge vertices, we will also update their zones. 

In order to maintain a constraint such as we need to confine the vertex in a 
slab around plane In order to maintain all the constraints in its zone, the vertex must be 
confined in a region which is the intersection of all the slabs in the zone. The exact shape of 
this region depends on the neighborhood of the vertex to be merged. There are three possible 
cases. In the case of a planar neighborhood, the region is just a single slab with an infinite 
extent because there is only one equation (see fig. 5-A). In the case of fig. 5-B, the region 
is an infinite tube around a sharp edge, because there are only two different equations in the 
zone. In most other cases, however, the vertex is really confined in a finite region, because 
three or more equations are in its zone. This is the case of the corner in fig. 5-C. 

We define the geometric error function G around a vertex as the maximum distance 
from to planes in the zone of . When vertex is merged into vertex . the new region 
inherits plane equations from the zones of the two merged vertices. The local geometric error 
LGE is the variation of the error, therefore = max . Because 
we merge vertices by rank of increasing geometric errors: the maximum error after the merge 
is necessarily one of the new constraints in Therefore, an equivalent definition for 
LGE is simply: 
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In other words. LGE is the largest new constraint associated with the vertex being merged. 
Note that we always choose the final vertex position to be itself, i.e. we only use existing 
vertices at this point. Using a combination of LGE and LTE as a cost function. we can merge 
edges with increasing costs, first, in the smoother regions of the object,. then along sharp edges. 
and finally into corners in the object (see examples showing the triangular mesh in fig. 7 and 
fig. 8 in the color plates). 

4 Implementation details. 

Vertex-based data structure. 

We have devised a vertex-based data structure with easy access to edges around a local center. 
enabling us to compute the local cost functions as efficiently as possible. The local tesselation 
error LTE involves edges in the crown of a vertex. The local geometric error LGE involves 
edges in its star, as well as equations in its zone. 

We therefore represent each vertex as a triplet: its star, its crown and its zone. The 
star contains a list of edges incident to the vertex. which means that we maintain a complete 
representation of the graph of vertices and edges. In addition, the crown specifies an imbedding 
of that graph on a particular surface: each edge in the crown corresponds to one triangle on 
the surface. The zone contains the history of the approximation, and relates its vertices to 
their ancestors in the original object. The construction of this dynamic data structure is quite 
straight-forward. and is described in much more detail in our researach report [10]. 

Edge ordering based on local errors. 

In order to merge edges with increasing costs in the right order. we maintain an auxillary data 
structure, in the form of a heap of directed edges. We associate a priority to each directed 
edge, which is just the opposite of its cost function. We use the heap as a priority queue, 
such that (a) the first element in the queue always has the highest priority, and (b) we can 
efficiently remove and update edges when their priority changes. The heap is a particularly 
efficient implementation of the priority queue, as a balanced. partially ordered tree [1]. The 
heap is easily updated when an edge priority changes. by bubbling up (if the priority increases) 
or down (if the priority decreases). The heap is initialized by reading the triangulation data 
sequentially. Its elements are updated as we merge edges, as we will now explain in more 
details. 

In each move, we update the local of the dynamic graph structure around the merged 
vertex, as well as the heap, and the position (coordinates) of the merged vertex. The heap 
updating operations consist in removing some edges (two opposite directed edges at a time), 
and reordering the heap based on new priorities, for those edges that have been modified 
but not deleted. Edges pointing from must be recomputed, because of the additional 
constraints inherited from . Edges pointing toward need only be recomputed if we also 
update the position of at. this point. 

Relaxation. 

After each merge, it is possible to optimize the coordinates of the central vertex. based on the 
(fixed) coordinates of its new neighbors. The general idea is to minimize an energy function 
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that will make the triangular mesh as smooth and balanced as possible, while keeping the 
geometric errors as small as possible. 

An interesting choice for the relaxation energy is taken directly from the geometric error 
function. except that we now use the sum of errors. rather than the maximum error. i.e. 

Deforming the object locally by moving into its minimum local error, enhances the 
method at all scales. We must acknowledge that, a more elegant solution would incorporate 
that optimization into the estimate of the merging costs. i.e. we should use as our local 
geometric error, and the optimized value of in our cost function. But, this would be terribly 
inefficient. and we prefer to  apply those two steps separately. As a heuristic, we have found 
that the two cost functions worked together quite nicely. because the optimized value for 

was never very far from its initial position. and the prediction used for LTE and LGE 
remained correct. 

Local topology changes. 

Collapsing an edge can change the topology of the object. For instance. a through- 
hole may become filled-up (in topological terms, handles may be removed. e.g. a torus may 
be transformed into a sphere). Vertices sharing an edge with both and play a very 
important role in this step of our algorithm. Their number charac rizes the local topological 
structure of the object, (zero at  a wireframe edge. one at the border of an open surface, 
two inside a closed surface, three or more on a surface with self-intersections). Our vertex- 
based data structure allows all those cases to be represented: which is a key to changing 
the topological genus of the shape, i.e. removing holes, handles, and separating components 
[2, 7, 6]. Our dynamic data structure can tolerate such changes, because it is based on 
vertices, and vertices can be incident to  arbitrary numbers of edges and triangles. In many 
cases, topological simplification is in fact acceptable, and we have used it to achieve the higher 
compression ratios in most of the examples shown here. 

While we are able to correctly reconstruct approximations in presence of topological 
changes, we do not know how to re-organize constraints. For instance, if several compo- 
nents are separated, which constraints should be associated wth each component, ? In those 
cases. an appropriate enhancement of our method would consist in resolving the new struc- 
ture, so that the constraints for each of several new components could be separated, and the 
constraints which came from filled-up holes could be eliminated. This appears to be a diffi- 
cult issue in general, and is not a part of our current implementation. As a result, we keep 
too many constraints in those cases, and the approximation process artificially slows down in 
those regions. 

5   Results and comments. 

As an input, the algorithm is given a number L of levels and a geometric tolerance for each 
level ( ). Each tolerance can be expressed as a percentage of the object size. or 
as a multiple of the initial costs found during the pre-computing step. As an alternative, the 
numbers of triangles in each level may be pre-specified ( =   ... , ) .  

A typical example is shown fig. 6 (top). with a maximum compression ratio of 1:80, leading 
to just under a hundred triangles. Subtle topological changes occur between the second and 
third approximation levels; holes disappear, antennas retract. eventually leading to the almost 
minimal representation of the fourth level of the figure. 
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Figure 6: Top: Power brake assembly. Middle: Radiation iso-dose surface. Bottom: Skull sur- 
face extracted from X-ray scanner image data. Three levels of approximation for each example, and 
corresponding numbers of triangles. 

We also show results obtained with iso-surface data (courtesy of G. Turk [15]) in fig. 
6 (middle). Our results are comparable to  previously published work, only with a much 
wider range of approximation levels. Examples in fig. 1 and 6 (bottom) are applications of 
our method to medical data. Iso-surface extraction methods of that  sort typically generate 
results with hundreds of thousands of polygons, and efficient data reduction methods are 
therefore particularly important for dynamic simulations. surgery planning, and other related 
applications. Although our approach is heuristically based on only a partial measure of the 
approximation error. we are able to control the tolerances a t  each level. so that no vertices 
move further away from their initial configuration than 0.1. 0.5 and 1.0 per cent of the image 
size. 6 (bottom), very good approximations can be obtained at 
intermediate compression ratios (1: 10 to 1:20), while much coarser approximation result at 
further stages. The initial shapes were extracted from MR and CAT-scan data as iso-surfaces 

As can be seen in fig. 



© Eurographics Association, 1996 R. Ronfard et al. / Approximation of Triangulated Polyhedra C-75 

(courtesy of A.  Guéziec). 

We estimate that  the complexity of the method is for bringing the number of 
vertices down from to triangles. In our analysis. we consider the heap operations, which 
are approximately logarithmic, and  the tests on all the equations in the  vertex zones. Because 
equations are inherited. their number is constant thoughout the simplification process. hence 
the result. In practice, the computing times for all examples run from a few seconds to several 
minutes on a workstation. 

6 Conclusion. 

We have presented a new method for simplifying three-dimensional shapes, based on an  par- 
ticular measure of the approximation error, tha t  we derive from simple plane equations. Our 
approach allows us to reach very high compression ratios in a variety of cases, while keep- 
ing the general appearance of the original shapes. It has been noted by other researchers 
that  an important part  of obtaining minimal approximations of shapes was the elimination of 
small features. No previous method has addressed that issue successfully. Our method shows 
that feature elimination can be achieved. part ly a t  least: with purely geometric reasonning 
(i.e., without any detection or even understanding of the eliminated features), if we allow the 
topology o f  t h e  shape to  be modified. 
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Short Papers 
Implicit Simplicial Models for Adaptive 

Curve Reconstruction 

Gabriel Taubin and Remi Ronfard 

Abstract-Parametric deformable models have been extensively and 
very successfully used for reconstructing free-form curves and 
surfaces, and for tracking nonrigid deformations, but they require 
previous knowledge of the topological type of the data, and good initial 
curve or surface estimates. With deformable models, it is also 
computationally expensive to check for and to prevent self- 
intersections while tracking deformations. The Implicit Simplicial 
Mode/s that we introduce in this paper are implicit curves and surfaces 
defined by piece-wise linear functions. This representation allows for 
local deformations, control of the topological type, and prevention of 
self-intersections during deformations. As a first application, we also 
describe in this paper an algorithm for two-dimensional curve 
reconstruction from unorganized sets of data points. The topology, the 
number of connected components, and the geometry of the data are 
all estimated using an adaptive space subdivision approach. The main 
four components of the algorithm are topology estimation, curve fitting, 
adaptive space subdivision, and mesh relaxation. 

Index Terms-Curve fitting, topology estimation, shape recovery, 
geometric modeling. 

+ 

1 INTRODUCTION 
THE reconstruction of curves and surfaces from unorganized sets 
of data points is an important problem in computer vision. Curves 
and surfaces can be represented parametrically or implicitly, and 
depending on the final application, one representation is more 
suitable than the other. Since parametric curves and surfaces, such 
as splines [l], allow for a high degree of local control, they are 
very good for modeling free-form objects, but the topological type 
of these curves and surfaces is determined by the topology of the 
domain, and it is difficult to check for, and to prevent self- 
intersections. The now popular deformable models [4], [6], [13] 
are all parametric. There has been some recent work on recon- 
structing surfaces of unknown topology [3], [8], but no new repre- 
sentation is introduced to control the topology and to prevent self- 
intersections during deformations. 

Arbitrary topology can be achieved with implicit curves and 
surfaces. The Implicit Simplicial Models that we introduce in this 
paper are polygonal curves and polyhedral surfaces not repre- 
sented as lists of vertices and planar faces, but defined implicitly 
by piece-wise linear functions. This representation allows for local 
deformations, control of the topological type, and prevention of 
self-intersections during deformations. A piece-wise linear func- 
tion is determined by a simplicial tessellation of its domain, and 
by the values of the function at the vertices of the mesh. The func- 
tion is linear in each one of the domain cells. The usual represen- 
tation of a polygonal curve or polyhedral surface as a list of verti- 

l G. Taubin is with IBM T.J.Watson Research Center, P.O.Box 704, York- 
town Heights, NY 20598. E-mail: taubin@watson.ibm.com. 
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ces and a list of flat faces can be recovered in time proportional to 
the number of faces. Irregular meshes allow for adaptive recon- 
struction algorithms, and for hierarchies of curves and surface 
approximations of different resolutions. 

While the topology of an implicit simplicial model is deter- 
mined by the combinatorial structure of the domain mesh, and by 
the signs of the values of the piece-wise linear function at the ver- 
tices of the mesh, the geometry is determined by the magnitudes of 
the values of the piece-wise linear function at the vertices of the 
mesh. Small scale constant topology deformations can be achieved 
by changing the magnitudes of the implicit function at the vertices 
of the mesh keeping the signs fixed. Large scale constant topology 
deformations are obtained by also deforming the underlying mesh 
without inverting the orientation of the cells. 

This paper builds upon previous work on algebraic curve and 
surface fitting [9], [lo], [ll], [12], and some ideas from [7], where 
an algorithm for adaptively reconstructing piece-wise algebraic 
curves and surfaces defined on triangular and tetrahedral meshes 
is described. 

While the reconstruction algorithm is applied only to two- 
dimensional curves here, the representation is valid in any di- 
mension, and the general structure of the reconstruction algo- 
rithm can be generalized to higher dimension as well. However, 
since results were not available at the time this paper was writ- 
ten, we will discuss how to extend the reconstruction algorithm 
of this paper to surfaces, and how to track deformations, in fu- 
ture reports. 

2 IMPLICIT SIMPLICIAL CURVES 
The data structure commonly used to represent a simplicial curve 
is a pair of lists, a list of vertices, and a list of straight line seg- 
ments. This representation is good for rendering the curve in time 
proportional to the number of segments, but it is not very good for 
checking for, least for imposing, topological or geometric con- 
straints. Even if we start with a valid simplicial curve, deforma- 
tions can introduce self-intersections, and there is no simple way 
to check for them. A straightforward check for self-intersections 
requires time proportional to the square of the number of seg- 
ments. The main problem with this representation is that the con- 
ditions for a set of line segments to define a valid simplicial curve 
are global. 

An implicit simplicial curve is the set of zeros of a piece-wise 
linear function of two variables, which is defined by a planar tri- 
angular mesh and the values of the function at the vertices of the 
mesh. Thus, we will represent an implicit simplicial curve as a set 

of three lists C = {V, T, FJ. A list of vertices V = I vi, . . . , v,” > , a list 

of triangles T = (ti, . . . . t,J, and a list of function values at the 

vertices of the mesh F = [F,, . . , Fn, 1. Since we will also need 

later on an explicit representation for the edges of the mesh, we 
will write C = [V, E, ‘IJ for the domain mesh, where 

E = {e,, . . . . enE} is the list of edges. The piece-wise linear function 

defining the implicit simplicial curve is 

(2.1) 
i=l 

i 1 

t 
where F is seen as a row vector, X = x,, .., xnV , and xi is the 

unique piece-wise linear function subordinated to the mesh Z 

016%8828/96$05.00 01996 IEEE 
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which satisfies the following equation 

( I-{ 

1 
‘i 'j - 

if j=i 
0 if j f i ’ 

(a) 03 (4 
Fig. 1. Singular cases. (a): function is zero at one vertex. (b): Func- 
tion is zero on three edges. (c): Function is zero on two neighboring 
triangles. 

To prevent singular cases, such as those shown in Fig. 1, we 
will constrain the values of the piece-wise linear function at the 
vertices of the mesh to be non-zero. We will also require the do- 
main mesh Z to be positively oriented. A mesh C = (V, E, ?‘) is 
positively oriented if all the determinants 

associated with the triangles t = [vi ,vj ,vd of the mesh, are positive, 

where ‘ui 1, vi 2 are the coordinates of the vertex vi of the mesh. Note 
that if ihe brder of the vertices is interchanged in a triangle 

t = {vj, vi, VJ the sign of the determinant I Vt I changes. 

(4 03 Cc) 
Fig. 2. Topology preserving deformations. (a): Original implicit sim- 
plicial curve. (b): Deformed mesh with constant external boundary. (c): 
Invalid mesh deformation can produce self-intersections. 

Topology preserving deformations of a simplicial implicit 
curve are obtained automatically by deforming the domain mesh 
maintaining its orientation, wurping the space around the curve, 
and eventually changing the magnitudes of the function values at 
the vertices of the mesh, but not their signs. If a mesh is deformed 
preserving its orientation, the outside boundary of the mesh might 
change shape, but preserves its topology. In our reconstruction 
algorithms we will impose a stronger constraint. We will keep the 
outside boundary of the mesh constant. 

Once the mesh C is fixed, the topology of an implicit simplicial 
curve is fully determined by the signs of the piece-wise linear 
functionfat the vertices of the mesh, (crl, . , cnV}, 4 = sign (FJ E 

(-1, 11, while the geometry of the curve is determined by the mugni- 

t&es of the same function values (/F& . . , pn, I}. 

3 AN ALGORITHM FOR CURVE RECONSTRUCTION 
In &is section we describe an algorithm to reconstruct an implicit 
simplicial curve from an unorganized set of points in the plane 
D = t p,, . . . . Pnil). h T e only assumption is that the data points 

belong to, or are close to, a non-singular curve (without self- 
intersections), and are roghly uniformly distributed along the 
curve. The topology and the number of connected components are 
tiown in advance, and estimated by the algorithm. The result 
is a triangular mesh covering a neighborhood of the data set, and 
a regular piece-wise linear function represented by its values at 
the vertices of the mesh. Fig. 3 shows the global structure of the 
algorithm, and Fig. 4 shows typical examples of curves recon- 
sticted with this algorithm. 

procedure FitImplicitSimplicialCurve 
InitializeMesh 
for level c 0 to max-level step 1 do 

EstimateTopology 
EstimateGeometry 
if MaximwnFittingError < E 

return 
else 

AdapiivelySubdivideMesh 
RelaxMesh 

Fig. 3. Global structure of the implicit simplicial curve reconstruction 
algorithm. 

0 0 
<13 

0 0 0 

(4 04 (4 
Fig. 4. Nlulfiply connected objects and simplicial curve reconstruction 
of boundaries, using the algorithm of Section 3-(a): data set; (b): 
reconstructed implicit simplicial curve; (c): details of a and b. 

The algorithm follows a strict top-down approach, minimizing 
the amount of storage required. A very simple mesh is used at the 
beginning of the algorithm covering a region containing all the 
data points. In our experiments, we have used triangulated 
squares and regular hexagons as initial meshes, and in general, the 
hexagonal geometries produce better results. However, the initial 
mesh should be tailored to the application. Once a mesh is fixed, 
an implicit simplicial curve subordinated to the current mesh is 
reconstructed from the data by a least squares fitting algorithm, by 
first estimating the topology, and then the geometry of the curve. 
After the curve fitting step, the maxitium fitting error within each 
triangle is measured. If all the triangles meet the prespecified fol- 
erance, the algorithm finishes. Otherwise, the triangles where the 
tolerance is not met, are subdivided, along with a few other that 
are necessary to maintain a valid mesh. The mesh is then relaxed 
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to prevent the vertices of the subdivided mesh to be too close to 
the data, and to improve the aspect ratio of the triangles. This step 

mum value, the local error offit l t, and its minimizer L, = (L, i, Lti I I 

is essential for the success of the algorithm. Once this new mesh is Ltk). This is done for each triangle independently of the data in , 
fixed, the loop is traversed again, until the tolerance test is satis- other triangles. This can be done in closed form and involves 
fied by all triangles. solving a 2 x 2 eigenvalue problem. In general, the three compo- 

Now we proceed to describe in detail the main building 
blocks of the curve reconstruction algorithm: implicit curve fit- 

nents of L, are nonzero. Let us denote by ot i, otil at k the signs of , , I 

ting, topology estimation, testing, adaptive subdivision, and ’ 
L, i, LfP I, k, 

’ 
i.e., ot i is equal to 1 or -1 depending on whether L,,i 

mesh relaxation. is positive or negative. 
A good estimate for the signs of the global coefficients Fi can 

3.1 Implicit Curve Fitting then be obtained by minimizing a sum over all triangles: 

We formulate this step of the algorithm building upon previous A*(F) = 
work on algebraic curve and surface fitting [9], [lo], [ll], [12]. I 
Given a finite set of two dimensional data points F C (uf,Pt,jGF, + ut,~*,&Fk + ut,jut,&F,) 

fcT,t= 
[e) (3.3) 

D = t 
I 1 Oi,Uj ,?Jk 

pl, . . . . PflD If we cast the problem of fitting an implicit curve 

Z( f ) = (p: f (p) = O] to the data set D as globally minimizing the 
constraining the function values at the vertices of the mesh to be 
either -I or I 

mean square distance from the data points to the curve Z( f ), as 
a function of the vector of parameters F, the values of the piece- F,, . . . . F,,, E {-1,l). (3.4) 
wise linear function on the vertices of the mesh. For a piece-wise 
linear function, the mean square distance has the following ex- 

Expression (3.3) involves a measure of the goodness-of-fit for 

plicit expression each triangle, where E,, = max 1 et], , et,r , and a similar defi- 3 

*,(q = -px i(P)’ = c % w*c nition for emin. Thus, the global coefficients F, change signs only 

tc~ *D p~~fNVf; tsT *D W,F: ’ (3’1) 
when there is enough evidence from the local fits in their neigh- 
borhood. Of course, we also have to define a goodness of fit and a 

where D, is the subset of data points that belong to the triangle t = fitting vector I, for each empty triangle, because otherwise the 
k, “j’ @, nD is the number of points in D,, ft (p) = Fi xi (p) + problem could be underconstrained. For an empty triangle t we 

Fixi + Fkxk(p) is the restriction off(p) to the triangle t, F,= (F, FP set I., = 11, 1, 1) with a high confidence value e, = e empty’ BY re- 

F,), XL = (xi, x., x 1, 
arranging terms, we obtain 

4 = ~~&*~PMP)r] rNt = ~p-$%(Pwt~PY]~ (3,2) 

AZ(F) = c H&F, (3.5) 
EE 

and DX, is the Jacobian of X, 
with the sum ranging over all the edges e = [vi, oj] of the triangu- 

lation. The edge weight II, corresponding to the edge e=(vi,vi) is 
In fact, since X, is a linear function, its Jacobian is constant, and easily obtained from (3.3) 
the matrix Nt is only a function of the vertices of the triangle, and He=-z (3.6) 
not a function of the data points inside it. t:eEt 

3.2 Topology Estimation with the sum extended over all the triangles that contain e as an 

In the absence of prior knowledge about the solution, it is difficult 
edge, The minimization of the quadratic expression (3.5) in 1-1, 1) 

to minimize (3.1), because the system to be solved becomes sin- 
is exactly the Ising model, for which simulated annealing schemes 
are well documented. We have found that simulated annealing 

gular when a nodal value Fi approaches zero. On the other hand, based on (3.5) gives good results. This approximation is also 
if we can estimate the signs of the nodal values, i.e., the topology faster, and more robust, than the more obvious choice of using 
of the solution, we can minimize (3.1) locally, with a program (3.1) directly at this stage. Some results of the topology estimation 
such as LBFGS [5], which is designed for large unconstrained step are presented in Figs. 5 and 6. 
nonlinear minimization. 

The piece-wise linear function determined by the coefficients Fi 
constitutes an approximate inside-outside function for the data (up 
to a global sign inversion). When an inside-outside function is 
directly available from the data, the topology estimation step is 
therefore not necessary. In all other cases, we can still estimate the 
inside-outside function, with combinatorial optimization methods. 
We do this by independently fitting straight lines in all non-empty 
triangles, and counting sign changes. More specifically, for each 
triangle t = [vi, oY v,), i.e., such that the set D, is not empty, we fit a 

straight line to the data set D, in the least squares sense by mini- 
mizing the local mean square error 

4wG 
L,N& ‘ Q’r 

where M, and N, are the matrices of (3.2), obtaining its mini- 
Fig. 5. Example of topology estimation step. 
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3.3 Testing 
Testing the quality of the fit is necessary to determine when the 
algorithm should stop, and otherwise, which triangles need to be 
subdivided. After the minimization of (3.1) for the current mesh, 
for each triangle t we compute 

h(P) 
” = % :: Il~fi(~)ll’ 

If S, > S we mark the triangle for subdivision. If no triangle is 
marked, the algorithm stops. Otherwise we continue. In practice, 
this test is generally sufficient, although problems occur when the 
number of data points inside a triangle becomes too small, usually 
around high curvature regions, or in cases of sparse or very noisy 
data points. 

Fig. 6. Example of topology estimation step. 

3.4 Adaptive Subdivision 
At this point we have a valid triangular mesh with some triangles 
marked for subdivision. It turns out that to maintain a valid mesh, 
other unmarked triangles may have to be subdivided as well. A 
simple method to automate the process involves three steps [2], 
[14]. In the first step the vertices of each triangle marked for sub- 
division are marked. In the second step a new vertex is created at 
the midpoint of each edge which has the two vertices marked. In 
the third step, illustrated in Fig. 7, the triangles are subdivided 
according to how many vertices are marked. A triangle with the 
three vertices marked is subdivided into four triangles, a triangle 
with two vertices marked is subdivided into two triangles, and 
triangles with one or no marked vertices are not subdivided. 

(a) 63 
Fig. 7. Subdivision rules. Marked vertices are represented with a cir- 
cle. (a): Mesh with some vertices marked. (b): Mesh a after subdivi- 
sion. 

3.5 Mesh Relaxation 
Since the desired final result is a regular implicit simplicial curve, 

we cannot allow the function to be close to zero at any vertex of 
the triangulation. If a vertex is allowed to get close to the data 
points, the function value at that vertex will tend to be small with 
respect to the values a the other vertices, or even zero. Contrary to 
what is done in other related algorithms based on triangular 
meshes, where the mesh is relaxed by pulling the vertices close to 
the data points [7l, our mesh relaxation process pushes the vertices 
awayfrom the data. It is not only that we want the vertices to be far 
away from the data, but we also want the data inside each triangle 
to be well approximated by a straight line connecting the mid- 
points of two edges. At least this is approximately what happens 
when the algorithm stops, but we would like to try to impose this 
condition at each level of subdivision. So, the data has to pull the 
vertices away, but at the same time, for each triangle the distance 
from the three vertices to the data must be as equal as possible. 
Also, the mesh has to remain a valid mesh, and the triangles have 
to remain as equilateral as possible, because otherwise, the local 
nonlinear minimization algorithm gets plagued with all sort of 
numerical problems. 

We have decided to base our mesh relaxation algorithm on an 
energy m  inimization scheme, and instead of solving ordinary 
differential equations, we perform an approximate minimization 
based on gradient descent. 

The mesh energy U = ,Q UD + KE UE has two components, the 
data energy I&, and the edge energy LIE. The two constants KD and 
us must be positive. In our current implementation KE = 0.25 and 
KD = 1.0. 

The data energy pushes the vertices as far away and equidis- 
tantly as possible from data points in each triangle. The edge en- 
ergy pulls vertices together and tends to make equilateral trian- 
gles, which regularizes the mesh relaxation process. In addition, 
we constrain the boundary of the mesh to remain constant. This 
can be achieved by fixing the boundary vertices in their initial 
positions, and allowing the vertices laying on the boundary edges 
to move only along the edges they belong to. All of this can be 
done with linear constraints on some of the vertices. If a vertex z, 
of the mesh belongs to a boundary edge e, then z, must satisfy the 
linear equation of the line containing the edge C,(V) = 0. Since a 
boundary vertex belongs to two non-parallel edges, making it 
satisfy the two constraints is equivalent to keeping it fixed. 

The data energy is defined as follows 

‘II = P’z(o(‘i) - @(vj))21 ’ 

with the inner sum extended over all the edges e = {v, v,], and 
where 

(3.8) 

with the sum extended over all the triangles that contain ni as a 
vertex, and all the data points inside these triangles. The constant 
p is the diameter of the mesh, ,and the reason to include the factor 
p2 here is to make the data energy scale invariant. Scale invariance 
is important only to be able to define the mesh energy as a linear 
combination of the data energy and the edge energy, independ- 
ently of the scale of the problem. 

The edge energy is defined as follows 

(3.9) 

where e = {vi, vi}, and v,, . . . . vnV are positive constants defined as 
/ 

follows. The degree of a vertex is the number of edges incident to 
the vertex, or equivalently, the number of vertices connected to the 
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former one through an edge of the triangulation. The mean degree edge and range image segmentation,” IEEE Transactions on Pat- 
of a mesh is the mean value of the degrees of its vertices. In our tern Analysis and Machine Intelligence, vol. 13, no. 11, pp. 1,115- 

implementation we have defined the constant Vi as the rabo of the 
1,138, Nov. 1991. 

[ill G. Taubin, “An improved algorithm for algebraic curve and sur- 
degree of the vertex vi over the mean degree of the mesh, but other face fitting,” Proc. fourth Int’T Con& Comp&r Vision, pp. 658-665, 

values provide similar results. For example, making v = 1 for all i 
Berlin, Germany, May 1993. 

[12] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D.J. Kriegman, 

is also a good choice. The factor p’ is included in the denominator “Parameterized families of polynomials for bounded algebraic 

to make the edge energy scale invariant. 
curve and surface fitting,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 16, no. 3, pp. 287-303, Mar. 1994. 

Special care should be taken in choosing the enerev minimiza- [13] D. Terzopoulos and K. Fleischer, “Deformable models,” The Vis- 
tion algorithm, because since each time the;ertices are moved, the uul Compb, vol. 4, pp. 306-311,1988. 
data set has to be repartitioned, evaluating the energy function is [14] G.L. Tindle, The Mathematics of Surfaces II, pp. 387-394. Oxford, 

potentially expensive. In principle, after a mesh deformation each England: Clarendon Press, 1987. 

Point must be-tested against each triangle for membership, but for 
small deformations each data point most likely will remain in the 
same triangle, or will move to one of the three neighbors. 

4 CONCLUSIONS 
We have introduced implicit simplicial models as a new repre- 
sentation for piece-wise linear curves and surfaces. We have 
shown that this new representation allows for a complete and 
efficient control of the topology of the curve or surface, and has 
most of the good properties of more traditional deformable mod- 
els, and algebraic curves and surfaces. Implicit simplicial models 
can be used to model free-form curves and surfaces, but at the 
same time they provide an inside-outside function defined in a 
large neighborhood of the curve or surface. This inside-outside 
function can be constructed as an approximation to the distance 
from an arbitrary point to the curve or surface. At the same time, 
implicit simplicial curves and surfaces have explicit local 
parameterizations, which are good for other purposes. As a first 
application, we have described a two dimensional curve recon- 
struction algorithm from unorganized data sets which can be ex- 
tended with almost no modification to an algorithm for surface 
reconstruction. We believe that a number of graphics and vision 
problems can be solved either more robustly, more generally, or 
both using implicial simplicial models, as for example surface 
reconstruction, tracking of surface deformations and adaptive 
isosurface construction, to mention just a few applications that we 
intend to demonstrate in future reports. 
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Abstract

We present a variational framework for rapid shape pro-
totyping. The modeled shape is represented as a Catmull-
Clark multiresolution subdivision surface which is interac-
tively deformed by direct user input. Free-form design goals
are formulated as constraints on the shape and the modeling
problem is cast into a constrained optimization one. The fo-
cus of this paper is on handling multiresolution constraints
of different kinds and on preserving surface details through-
out the deformation process. Our approach eliminates the
need for an explicit decomposition of the input model into
frequency bands and the overhead associated with saving
and restoring high-frequency detail after global shape fair-
ing. Instead, we define a deformation vector field over the
model and we optimize its energy. Surface details are con-
sidered as part of the rest shape and are preserved during
free-form model editing. We explore approximating the so-
lution of the optimization problem to various degrees to bal-
ance trade-offs between interactivity and accuracy of the re-
sults.

1. Introduction

A common design paradigm is to allow designers to in-
teractively deform an initial geometric shape to obtain a
new one that satisfies certain requirements. The require-
ments are typically formulated as a set of constraints and
the underlying geometric representation is modified to meet
these constraints (see Figure 1). In general, the desired re-
sult is the one that has the most pleasing or fairest over-
all shape among all solutions that satisfy the constraints.

A commonly used procedure to attain this result is to op-
timize a fairness measure representing physical parameters
of a real object bearing the shape. A standard such mea-
sure [26] is the linear combination of the so-called stretch
and bend energies:

E = α
∫
||I||2dS + β

∫
||II||2dS (1)

where I and II are the first and second fundamental forms
of the surface S and ||.|| is a suitably chosen matrix norm.

It is often the case, however, that the input model has
high-frequency geometric detail across multiple resolutions
which needs to be preserved during global deformations of
its shape. Fairing techniques like the one just described tend
to smooth out not only the global shape of the object, but the
high-frequency detail as well (see Figure 2).

To avoid this problem, multi-band decomposition
schemes have been proposed [13], in which a multireso-
lution modeling operation and the associated fairing step
are applied within one frequency band. Subsequently,
the higher frequency detail is reconstructed using a dis-
placement map. This implies computing and storing the
displacement map prior to editing and restoring it after-
wards. We opt for an alternative approach that avoids the
computation of the displacement map and the overhead as-
sociated with saving and restoring high-frequency informa-
tion by considering the deformations applied to the initial
shape as a vector field defined over the input model. In-
stead of optimizing the energy of the deformed shape,
we optimize the energy of the deformations and we ap-
ply the resulting smooth vector field to the original shape
to obtain the deformed one. Using this approach, the in-
put model becomes the rest shape to which the opti-
mization converges in the absence of constraints. In the
language of elastic body deformations, this is equiva-



(a) (b)

(c)

Figure 1. Variational design with multiresolu-
tion constraints. (a) Input model. (b) Coarse-
scale edits affect the global shape. (c) Fine
scale edit with local effect (patch structure of
underlying surface representation is shown).
Red dots indicate constraints.

lent to considering the input shape as the natural state of
the model [26].

In this paper we describe the design and implementa-
tion of a variational modeler that allows interactive editing
of complex objects of arbitrary topology. We use Catmull-
Clark multiresolution subdivision surfaces as our underly-
ing representation and we take advantage of their hierarchi-
cal organization to allow editing with constraints at differ-
ent resolution levels.

The main contributions of our research are:

1. A variational approach that leads to a smooth shape
while preserving multiresolution details.

2. A framework for free-form design with constraints
which can be imposed at different levels of resolution.

3. An implementation setup in which a fast approximate
solution is computed at interactive rates during the de-
formation process. Solutions of increasing accuracy
may follow upon user request.

The work presented in this paper adds a new technique to
a growing set of surface modeling tools based on multires-
olution subdivision surfaces that have been proposed in re-

Figure 2. Free-form modeling with con-
straints. (a) Original model with multiresolu-
tion details. A point constraint at the tip of
the nose is used to deform the model. (b) The
model is deformed using thin-plate energy
minimization. Note the smoothing of the orig-
inal details (boundary constraints are neces-
sary to prevent the collapse of the model).
(c) Deformation with detail preservation (no
boundary constraints needed in this case).

cent years (e.g., boolean operations [1], engraving, emboss-
ing, trimming [3], cut-and-paste editing [2]).

The remaining sections of the paper are organized as fol-
lows: in section 2 we discuss related work, in section 3
we briefly review the underlying data representation and
we outline our approach; modeling with constraints is pre-
sented in section 4; results are discussed and illustrated in
section 5; section 6 concludes our paper.

2. Related Work

Variational design of surfaces has emerged as a power-
ful modeling paradigm. It entails finding a surface that sat-
isfies a number of constraints and minimizes a given con-
tinuous functional that represents the energy of the surface.
Expression (1) gives an example of a commonly used such
functional. In practice, discrete approximations of each of
its two terms are used.

Following the pioneering work of Duchon [6] and
Meinguet [19], many authors (e.g., [5, 12, 32, 11, 27]) ap-
proximate surface energy by one or a combination of the
following parameterization-dependent expressions:

Estretch ≈
∫

Ω

(
∂S

∂u

)2

+
(

∂S

∂v

)2

dudv (2)

Ebend ≈
∫

Ω

(
∂2S

∂u2

)2

+ 2
(

∂2S

∂u∂v

)2

+
(

∂2S

∂v2

)2

dudv



where Ω denotes the parametric domain of the surface S. In
our approach we also make use of these linearized forms
of the stretch and bend energies. We note that other ap-
proximations, generally more expensive to compute, have
also been proposed [20, 21, 8], as well as alternative en-
ergy functionals [16, 28]. Various types of constraints can
be imagined. We address here some of the most common
categories.

Constrained optimization Variational surfaces are often
modeled by specifying a set of constraints and solving for
the solution that minimizes the objective functional (1) or
an approximation thereof and satisfies the constraints.

Interpolating point constraints prescribe desired posi-
tions for points on the surface. This type of constraints are
considered by virtually all methods. In our approach we
translate point constraints into linear combinations of mesh
vertices and we perform energy minimization with linear
constraints.

Interpolating normal constraints prescribe desired nor-
mal vectors at given points on the surface. A common ap-
proach (see, for example, [11]) is to formulate the fact that
desired normal N at a point S(u0, v0) must be perpendicu-
lar to the vectors defined by the partial derivatives, i.e.:

N
∂S

∂u
(u0, v0) = 0 and N

∂S

∂v
(u0, v0) = 0

These expressions can also be translated into linear con-
straints on the mesh vertices. Alternatively, some authors
[15] enforce normal constraints by freezing all the vertices
of a planar mesh face. While more stable, this approach
tends to overly constrain the optimization problem.

Interpolating curve constraints prescribe desired posi-
tions at points along one or more curves on the surface.
Such constraints typically require the constraint curves to
be aligned with mesh edges or iso-parameter lines [27]. Us-
ing the re-parameterization idea of [3] we are able to avoid
this requirement and to allow for constraints to be imposed
along arbitrary curves.

Multiresolution We take advantage of our underlying hi-
erarchical surface representation to handle constraints in a
multiresolution fashion. An important issue to be addressed
is identifying the region of influence of a given constraint.
As observed in [22], the same constraint can be satisfied at a
coarse scale by the global rigid motion of the entire surface
or at a fine scale by the motion of an isolated surface point.
The designer’s intent usually lies somewhere in between.
Except for the work of Takahashi [24, 25], this problem has
received little attention in existing literature. Takahashi has
developed a wavelet-based framework that accommodates
linear constraints at multiple resolutions. His framework,
however, is limited to topological patches. Surfaces of arbi-
trary topological type are handled by ”gluing” patches and
only simple examples are documented. In our work, we use

a similar approach in which we propagate constraints from
fine to coarse scales. However, we give the user explicit con-
trol over the region of influence of each constraint and we
rely on subdivision rules to perform constraint restriction in
a more straightforward fashion. Arbitrary topology is han-
dled automatically due to the nature of the surface represen-
tation we use.

Another relevant question is how to reconcile differ-
ent energy measures computed at different resolutions. In
[24, 25] they are combined into a weighted sum of energy
functions at multiple levels. This approach causes undesir-
able side-effects of constraints at coarse resolutions over
the shape at finer levels. A recursive scheme of solving the
shape level-by-level is used to avoid the interactions be-
tween constraints at different levels. Instead, we have cho-
sen to fix a target resolution level at which the energy is
minimized and to use the solutions at coarser resolutions as
approximations in a multigrid fashion.

Subdivision and variational design Halstead et al. [11,
10] were among the first to propose a variational model-
ing approach in the context of subdivision surfaces. An al-
ternative re-formulation using wavelets was introduced by
Gortler and Cohen [7]. Recent work by Warren, Weimer,
Kobbelt, and Schröder [29, 30, 14, 15] emphasizes the rela-
tionship between variational methods and subdivision. Vari-
ational subdivision seeks to define subdivision rules that
produce a sequence of shapes that not only converges to
a limit shape that follows the initial control shape, but also
minimizes the energy functional associated with the limit
surface.

An appealing aspect of subdivision hierarchies which
we exploit for efficiency is that they naturally accommo-
date multigrid-type solvers [9]. The basic operations, i.e.,
restriction and prolongation can be easily formulated as
local masks. The restriction operator maps the data from
a fine level to a coarser level. When applying a deforma-
tion at the finer level, the main question to be addressed is
how project it onto coarser levels. The prolongation oper-
ator achieves the inverse mapping, from coarse to fine. We
apply the Catmull-Clark subdivision masks for this purpose,
in contrast with the approach suggested in [31] in which
special-purpose prolongation operators are devised.

3. Multiresolution Variational Design

We reformulate the optimization problem previously in-
troduced in a discrete multiresolution setting. To justify our
choices, we begin with an overview of the underlying rep-
resentation used. Basic concepts related to variational cal-
culus can be found in any standard textbook (e.g., [17]).



Figure 3. Natural parameterization of a subdi-
vision surface. Each time we apply the sub-
division rules to compute the finer control
mesh we also apply midpoint subdivision to
a copy of the initial control mesh. As we re-
peatedly subdivide, we get a mapping from a
denser and denser subset of the control poly-
hedron (left) to the control points of a finer
and finer control mesh (right). In the limit we
get a map from the control polyhedron to the
surface.

3.1. Multiresolution Subdivision Surfaces

The representation we use was introduced by several au-
thors in different forms [18, 23, 33]. Subdivision defines
a smooth surface recursively as the limit of a sequence of
meshes. Each finer mesh is obtained from a coarse mesh
by using a set of fixed refinement rules. In the work de-
scribed in this paper we use the Catmull-Clark rules [4].
Multiresolution subdivision extends the concept of subdi-
vision by allowing detail vectors to be introduced at each
level. Hence, a finer mesh is computed by adding detail off-
sets to the subdivided coarse mesh. Given a semi-regular
mesh, i.e., a mesh with subdivision connectivity, it can be
easily converted to a multiresolution surface by defining a
smoothing operation to compute a coarse level from a finer
level. The details are then computed as differences between
levels.

For our purposes, it is important to recognize that a mul-
tiresolution subdivision surface can be naturally interpreted
as a function on the domain defined by the base mesh (see
Figure 3). This interpretation is useful in many circum-
stances, including dealing with constraints along arbitrary
curves as described in section 4.

It is, however, a known fact that the first and second or-
der partial derivatives of the surface with respect to the nat-

ural parameterization diverge around extraordinary points.
Therefore, for the purpose of evaluating expressions (2)
we define a different parameterization as described in sec-
tion 3.3.

3.2. Problem Formulation

Let H = (M0, M1, · · · , ML−1) denote a multiresolu-
tion subdivision hierarchy with L levels such that the con-
trol mesh M l at each level l is obtained from the coarser
mesh M l−1 by subdividing it and adding detail offsets. Let
P l = {P l

i }, i = 0, · · · , N − 1 denote the vertices of M l.
By applying quadrature formulas to discretize the integrals
in (2), we obtain a discrete formulation of the energy asso-
ciated with M l:

E(M l) = E(P l) =
α

∑

i

Estretch(P l
i ) + β

∑

i

Ebend(P l
i )) (3)

where

Estretch(P l
i ) = ||∂M l

i(u, v)
∂u

||2 + ||∂M l
i (u, v)
∂v

||2

Ebend(P l
i ) =

||∂
2M l

i (u, v)
∂u2

||2 + 2||∂
2M l

i (u, v)
∂u∂v

||2 + ||∂
2M l

i (u, v)
∂v2

||2

and M l
i (u, v) denotes the parameterization of M l around

vertex P l
i .

In the presence of constraints on subsets of the vertices
{P l

i }, the constrained energy optimization problem for level
l becomes:

E(P l) → min
f l

k(P l
i1

, · · · , P l
ik

) = Cl
k, k = 1, · · · , ml

with Cl
k the target value of the kth constraint on level l. In

this paper we restrict our attention to cases in which the con-
straints f l

k are linear combinations of the vertices P l
ij

.
As mentioned in the previous section, instead of combin-

ing energies defined at different resolutions, we set as our
goal the minimization of the energy of the finest level mesh
E(PL−1). To efficiently handle the optimization problem
at this level, we use solutions from coarser levels as part of
a multigrid approach.

3.3. Local Parameterization

In section 3.1 we pointed out that the natural parameter-
ization induced by subdivision over the base control mesh
is not suitable for evaluating partial derivatives everywhere
on the surface. While feasible, finding a global parameteri-
zation that satisfies certain smoothness requirements is not
a simple task. Fortunately, for the purpose of the work pre-
sented here, local parameterizations that allow us to approx-
imate first and second order derivatives with divided differ-
ences are sufficient. We have opted for using local quadratic



polynomial interpolants as done in [15]. We briefly review
this approach next.

To compute divided differences in the vicinity of a vertex
P l

0, a quadratic interpolating polynomial is fitted in least-
squares sense to the local geometry defined by P l

0 and its
immediate neighbors (see Figure 4):

Q(u, v) =

Q + uQu + vQv +
1
2
u2Quu + uvQuv +

1
2
v2FQvv

To solve this problem we need at least six interpolation
conditions which we formulate by assigning local parame-
ter values (ui, vi) to P l

0 and its one-ring neighbors (we con-
sider both edge and face neighbors). Since our underlying
representation is a quadrilateral mesh, each vertex (interior
or on the boundary) has at least five neighbors, with the ex-
ception of boundary vertices of valence one when only three
direct neighbors exist. In such cases, we compute a least
norm solution. Following [15], we assign coordinates (0, 0)
to P l

0 and

(ui, vi) =

||P l
i − P l

0||

⎛
⎝cos

⎛
⎝ ∑

j∈R(0)

αj

⎞
⎠ , sin

⎛
⎝ ∑

j∈R(0)

αj

⎞
⎠

⎞
⎠

to its neighbors, where R(0) denotes the set of indices of
vertices in the one-ring of P l

0 and

αj =
2π � (P l

jP
l
0P

l
j+1)∑

j∈R(0)

� (P l
jP

l
0P

l
j+1)

.

The least-squares solution obtained by solving the interpo-
lation problem yields values for the partial derivatives:

[Qu, Qv, Quu, Quv, Qvv]T =
(ΦT Φ)−1ΦT [· · · , P l

i − P l
0, · · ·]T

where

Φ =

⎛
⎜⎜⎝

...
...

...
...

...
ui vi

1
2u2

i uivi
1
2v2

i
...

...
...

...
...

⎞
⎟⎟⎠

In the remainder of the text, we denote by

Di,l =
[
Di,l

m,k

]
m=1,5,k∈R(i)

= (ΦT Φ)−1ΦT the co-

efficients of the divided difference operators corresponding
to vertex P l

i .

3.4. Discrete Energy Formulation

By replacing the partial derivatives in the energy expres-
sion (3) with divided differences computed from the local
parameterization, we obtain our discrete energy formula-
tion:

Figure 4. Local quadratic interpolant used to
approximate first and second order deriva-
tives.

E(P ) =
∑

i

∑

j,k∈R(i)

Eijk(Pj − Pi)T (Pk − Pi)

where the level index l is omitted to simplify the notation,
and the coefficients Eijk are defined as follows:

Eijk = αEstretch
ijk + βEbend

ijk

Estretch
ijk = Di

1,jD
i
1,k + Di

2,jD
i
2,k,

Ebend
ijk = Di

3,jD
i
3,k + 2Di

4,jD
i
4,k + Di

5,jD
i
5,k

In matrix form, this is equivalent to

E(P ) =
1
2
PTHP ,

where H is an N × N matrix. The minimum of E(P ) is
found by setting all partial derivatives with respect to P i to
zero and solving the corresponding system:

∂E(P )
∂Pi

= 0, i = 0, · · · , N − 1

or equivalently:

∇E(P ) = HP = 0 (4)

Since the functional E(P ) is quadratic in every vertex, the
system (4) is linear. In the next section we describe a strat-
egy for solving it taking into account constraints.

4. Detail-Preserving Modeling with Con-
straints

4.1. Shape Deformation

We regard the deformations applied to a given mesh M
as vector offsets with respect to the original vertex posi-
tions:

∆Pi = P deformed
i − P original

i

Instead of minimizing the energy of the deformed mesh
E(P deformed), we would like to minimize solely its change
in stretching and bending with respect to the initial shape.



Figure 5. Constraint propagation from a fine
level (left) to coarser ones. Constrained ver-
tices are shown as (red) squares. The target
value of the constraint is marked with a (blue)
circle.

Thus, our constrained optimization problem at resolution
level l becomes:

E(∆P l) → min
f l

k(∆P l
i1

, · · · , ∆P l
ik

) = Cl
k, k = 1, · · · , ml

Before we present our solution to this problem, we de-
scribe the types of constraints we consider and how they are
propagated and enforced at different resolutions.

4.2. Constraints

We model shape by prescribing points, normals, and
curves that should be interpolated by the surface. The en-
ergy optimization model discussed in the previous section
defines the behavior of the shape in the regions without con-
straints so that the designer does not need to directly spec-
ify the surface in these regions.

Region of influence In our multiresolution setting, con-
straints can be imposed at any level. However, since it is
typically the actual surface that needs to interpolate the con-
straints and not the mesh at some intermediate level, we first
project all constraints to the finest level (or, alternatively, the
limit surface), and then we propagate them through the mul-
tiresolution hierarchy to coarser levels.

We define the region of influence of a constraint as the
portion of the surface affected by the constraint. We control
the region of influence by the coarse level to which a con-
straint is propagated. Hence, a constraint propagated to a
relatively fine level in the hierarchy will have only local im-
pact (see Figure 1 (c)), whereas a constraint propagated to a
very coarse level will have an effect on the global shape of
the model (see Figure 1 (b)).

Point constraints Figure 5 shows how positional con-
straints are generated. In general, if C l+1

i is the pre-
scribed deformation at a mesh vertex P l+1

i on level
l + 1, then a linear constraint is generated at level l us-
ing the Catmull-Clark subdivision masks. This choice al-
lows us to apply the Catmull-Clark subdivision rules to
the deformation vectors to obtain a fast approximate solu-
tion during interactive manipulation. This solution is sub-

(1 − β − γ)∆P l
i + β

k

∑
2j∈R(i)

∆P l
2j + γ

k

∑
2j+1∈R(i)

∆P l
2j+1

= Cl+1
i
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Table 1. Linear constraints are created at
coarse levels using the Catmull-Clark rules.
From top to bottom, the rules are for inte-
rior even vertex, boundary even vertex, in-
teior odd face vertex, interior odd edge ver-
tex, and boundary odd vertex, respectively.
Vertex indexing corresponds to Figure 6 (k
denotes vertex valence, β = 3

2k , and γ = 1
4k ).

Figure 6. Linear constraints are generated on
coarse levels using the Catmull-Clark masks
accoring to the expression listed in Table 1.

sequently improved by using a solver as discussed later
in this section. With the notations in Figure 6, the ex-
pressions for the linear constraints generated depend-
ing on the position of the constrained vertex in the mesh
are given in Table 1.

Normal constraints Normal constraints are imposed by
constraining two tangent vectors at a point to be perpen-
dicular to the normal at that point. We use the vectors Qu

and Qv estimated from the quadratic interpolant in place of
the two tangents:

Qu(P l
i ) ·N(P l

i ) = 0 and Qv(P l
i ) ·N(P l

i ) = 0

Using the notations from section 3.3, we see that these
two conditions translate into linear equations involving the
point P l

i and its immediate neighbors:



∑

j∈R(i)

Di,l
k,j(P

l
j − P l

i )
T N(P l

i ) = 0, k = 1, 2

The equivalent conditions on the deformations become:
∑

j∈R(i)

Di,l
k,j(∆P l

j −∆P l
i )

T N(P l
i ) =

−
∑

j∈R(i)

Di,l
k,j(P

l,original
j − P l,original

i )T N(P l
i ), k = 1, 2

Curve constraints Besides interpolation of prescribed
points and normals, it may be useful to manipulate the
surface by modifying the shape of embedded lower-
dimensional entities. We restrict our attention to arbitrary
curves lying on the surface. The most common exam-
ple is modifying an open surface by rigidly manipulat-
ing its boundary curves (see Figures 9 (a) and (b)). In
this case, we can sample the curves with boundary ver-
tices and create collections of point constraints at these ver-
tices. However, in the general case, a curve lying on the sur-
face is not aligned with the underlying mesh edges, so
a direct sampling with vertices is not possible. To al-
low for constraints along such curves, we re-parameterize
the surface as in [3] to align it with the curve. The de-
tails of the re-parameterization are appended for con-
venience in the Appendix at the end of the paper. Af-
ter re-parameterization, the original curve is approximated
by a piecewise linear one that passes through mesh ver-
tices. Point constraints are placed at vertices along the
approximating curve and propagated through the multires-
olution hierarchy as previously described.

4.3. Constrained Optimization

The simplest approach to solving our constrained min-
imization problem is to fix the deformation vectors at the
constrained vertices to certain values and to solve an un-
constrained energy minimization problem for the remain-
ing ones. To determine the fixed deformations for the con-
strained vertices, we solve the linear system of constraints
in the least-squares sense. Using matrix notation, we can
write the system as:

A∆P l
c = Cl (5)

where ∆P l
c denotes the vector of deformations correspond-

ing to the constrained vertices at level l. The least-squares
solution is given by:

∆P l
c = (AT A)−1AT Cl

We update the deformations associated with the uncon-
strained vertices iteratively, using a Gauss-Seidel approach
(∆P l,n

i denotes the deformation at iteration n and {H ij}
are entries of the matrix H):

∆P l,n+1
i =

1
Hii

(−
∑

j<i

Hij∆P l,n+1
j −

∑

j>i

Hij∆P l,n
j )

We have also experimented with successive over-relaxation
to accelerate convergence:

∆P l,n+1
i =

(1−ω)∆P l,n
i +

ω

Hii
(−

∑

j<i

Hij∆P l,n+1
j −

∑

j>i

Hij∆P l,n
j )

where ω is a relaxation parameter between 0 and 2. It has
been our experience that choosing a suitable value for ω re-
sults in considerable speedup. The choice, however, is typi-
cally problem dependent.

5. Results and Implementation

Figures 7, 8, and 9 illustrate sample results obtained with
our system. Figure 9 top shows the smooth deformation of a
planar surface using constraints along the boundary. In par-
ticular, the vertices on the inner boundary are rigidly ro-
tated as indicated by the yellow arcball and the surface fol-
lows naturally. Figures 9 bottom and 7 illustrate deforma-
tions of organic shapes rich in high-frequency detail. Note
the preservation of this detail on the modified shapes, on
both the cow and the vase models. Figure 8 illustrates differ-
ent accuracy approximations of the solution to the optimiza-
tion problem. Combining constraint propagation through
the multiresolution hierarchy and applying Catmull-Clark
rules as a smoothing operation yields a good initial approx-
imation of the thin plate energy minimization (see Figure 8
(b)) and allows the user to assess the modified shape at in-
teractive rates. An improved solution later computed using
a multigrid approach is shown in (c). The shape at interme-
diate levels and the multiresolution constraints are shown in
Figure 8 bottom.

We make several observations pertaining to our imple-
mentation.

Point vs. normal constraints In the case of point con-
straints (including those generated from curve constraints),
the system (5) represents, in fact, a collection of three lin-
ear systems, one for each of the spatial dimensions of the
deformation vectors. Unfortunately, our formulation of nor-
mal constraints violates this independence of spatial dimen-
sions which is attractive from a computational point of view.
If normal constraints are present in the optimization prob-
lem, we set up a single coupled system for all dimensions,
and we solve the larger system. Each point constraint is rep-
resented by three equations in this system (one for each of
the x, y, and z components of a deformation). Each normal
constraint translates into two equations as described in sec-
tion 4.2. The resulting system is larger, and hence, more ex-
pensive to compute, however, it allows for more flexible de-
sign options.

Multigrid optimization Since the emphasis in our proto-
type is on interactivity, we explore approximating the so-
lution of the optimization problem to various degrees to



balance interactivity and accuracy. During constraint ma-
nipulation, we use Catmull-Clark smoothing which yields
a good approximation of the solution very fast (see Fig-
ure 8). At the end of a design step (e.g., upon mouse re-
lease), a more accurate solution is obtained through energy
minimization. Finally, per user request, a fully converged
solution will also be provided (typically at non-interactive
rates).

To accelerate convergence of the iterative energy mini-
mization process, we use a multigrid approach to compute
the solution in a hierarchical fashion. We use a simplified
coarse grid correction method consisting of two main steps.
Relaxation iteratively minimizes the energy at level l using
Gauss-Seidel iterations as previously described. Prolonga-
tion is used to propagate the solution computed at level l
to the next finer level. We use Catmull-Clark subdivision
as our prolongation operator. Note that we are not currently
using restriction from fine to coarse as full multigrid imple-
mentations typically do.

(a) (b) (c)

(d)

Figure 7. Modeling with detail preservation
(a) Original model. (b) Deformation under
point constraints (marked with red points).
(c) Normal constraints (marked with green
lines; red points indicate constrained re-
gion). (d) Constraints imposed along an arbi-
trary curve on the surface (left) are used to
rigidly deform the surface in the vicinity of
the curve (right).

(a) (b) (c)

(d) (e) (f)

Figure 8. Top: approximating energy mini-
mization. (a) Input model. (b) Fast solution
obtained using Catmull-Clark smoothing. (c)
Improved solution obtained via multigrid en-
ergy minimization. Bottom: (d)-(f) the opti-
mized control mesh and the constraints at
levels 2, 3, and 4 during multigrid.

6. Conclusions and Future Work

In this paper we described a variational modeling ap-
proach as implemented in a system we have developed.
Models are represented by multiresolution subdivision sur-
faces. During interactive deformations, their shapes are re-
computed via energy optimization with constraints. Point,
normal, and curve constraints are considered at multiple res-
olution levels. To preserve multiresolution details, we opti-
mize only the energy of the deformations, instead of the to-
tal surface energy.

In our work we have adapted existing variational meth-
ods to multiresolution subdivision surfaces and in doing so,
we have shown the advantages of using this representation
for interactive free-form design. Some of the remaining is-
sues to be solved include the derivation of better stopping
criteria for the iterative solver (we are currently using a fixed
number of iterations), a full-fledged multigrid implementa-
tion including restriction of deformations to avoid recom-
puting surface regions already optimized, as well as alter-
native solvers.

Appendix: Re-Parameterization for Plac-
ing Constraints Along Arbitrary Curves

We briefly review the re-parameterization algorithm
of [3] which we use for allowing constraints to be im-
posed along arbitrary curves on a surface.



(a) (b)

(c) (d)

Figure 9. Top: curve constraints along
boundary. (a) Input model. (b) Surface after
rotating the inner boundary curve and energy
optimization (rotation arc and axis are super-
imposed). Bottom: interactive editing. (c) In-
put model with details at multiple resolutions.
(d) The model in (c) after variational editing.
Red points indicate constraints.

As mentioned in section 2, we view the input surface as a
parametric surface over the domain defined by the base con-
trol polyhedron. The main idea is to re-parameterize the sur-
face to align the parameterization with a given curve or set
of curves.

Let X denote the parameter domain of the surface de-
fined by its base mesh and let c denote an input curve de-
fined on X , c : [0, 1] → X . In general, c traverses the do-
main X at arbitrary positions. We want to re-parameterize
the domain X such that c passes through the vertices of X .
Therefore, we compute a one-to-one mapping Π : X →
X which maps vertices of X to curve points: Π(vi) =
c(ti), for some vertices {v0, v1, . . .} and curve parameters
{t0, t1, . . .}. The mapping Π is built to satisfy the follow-
ing approximation property (AP):

(AP): the piecewise linear curve [v0, v1, . . .] has the
same topology as c and either follows along mesh edges
or crosses mesh faces diagonally.

The re-parameterization algorithm alternates between
snapping and refinement steps. The snapping step moves
mesh vertices onto the curve if they are sufficiently close.
In the refinement step we simply subdivide the parameter-

ization linearly. The algorithm terminates if the sequence
of vertices {v0, v1, · · ·} along c satisfies the approximation
property (AP). Property (AP) is guaranteed to be satisfied
after a finite number of steps for piecewise-linear curves c.

Figure 10. Re-parameterization matching a
feature curve. The quad is recursively split
and vertices are snapped to the curve. After
four subdivision steps, the curve is approxi-
mated by a sequence of mesh vertices. Con-
straints may be imposed at these vertices.
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