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Résumé

Dans le contexte de I’annotation de documents filmiques
assistée par ordinateur, nous posons le probléme de
I’analyse filmique automatique, et identifions 3 problemes
de base : classification de plans, regroupement temporel
et pilotage d’algorithmes d’extraction. Ces trois proces-
sus mettent en ceuvre des connaissances provenant de
plusieurs domaines d’expertise : documentalistes, spécia-
listes d’analyse du signal et professionnels de
Iaudiovisuel.

Nous proposons d’utiliser le formalisme des logiques de
descriptions comme paradigme principal de représenta-
tion pour représenter ces divers types de connaissances
dans un environnement intégré. Nous proposons dans ce
cadre un mécanisme de regroupement temporel fondé sur
une restriction du formalisme de Allen qui permet de
limiter les problemes de complexité.

Mots Clef

Logiques de descriptions, indexation, raisonnement tem-
porel, audiovisuel

Introduction

La numérisation systématique des documents filmiques
ainsi que la production de documents accessibles au grand
public ont connu ces dernieres années une croissance
exponentielle [1]. Le probleme de I’indexation de grands
volumes de documents filmiques devient ainsi une préoc-
cupation importante a la fois des industriels de
I’audiovisuel et des centres documentaires comme I'INA
(Institut National de 1’ Audiovisuel).

Ce probleme concerne des chercheurs de domaines tres
divers : bases de données, analyse d’image, traitement du
signal sonore, recherche d’information, etc. Un schéma
général d’indexation peut étre vu comme étant composé
de plusieurs étapes : analyse automatique (extraction de
primitives et segmentation spatio-temporelle de bas
niveau), annotation et découpage manuels, stockage en
base de données. Les techniques de segmentation tempo-

relle actuellement disponibles ne permettent pas
d’extraire des unités temporelles suffisamment longues et
pertinentes pour qu’il soit concevable de les annoter
manuellement. Nous proposons une méthode de regrou-
pement des unités temporelles de bas niveau, extraites
automatiquement, en unités temporelles de plus haut
niveau. Le but de cette méthode est d’offrir au documen-
taliste chargé de I’annotation un découpage du document
en unités pertinentes — appelées séquences —, dont la co-
hésion permette qu’elles soient annotées comme un tout.
Cette extraction nécessite une ingénierie des connais-
sances adaptée qui permette a des experts des domaines
concernés (documentalistes, professionnels de
I’audiovisuel et experts en analyse du signal) de spécifier
simplement leurs connaissances du domaine. Cette étude
se place dans le contexte du projet européen DIVAN
(Distributed Video Archives Network) auquel participent
I’INA, I’IRISA, la Rai, etc.

Nous allons décrire précisément le probleme de
I’indexation dans ce contexte dans la premiere section, en
identifiant trois problemes de base. Nous identifions
ensuite les logiques de descriptions comme un « bon »
formalisme pour représenter le contenu des documents
filmiques (radio, télévision) ainsi que les requétes portant
sur ces documents. Dans cet article, nous identifions le
probleme de [I’analyse des documents a partir
d’observations extraites par des automates. Nous propo-
sons d’enrichir les logiques de descriptions avec un sys-
téme de raisonnement temporel. Nous faisons le choix
d’une représentation par intervalles permettant de modéli-
ser des actions simultanées (par exemple événements
visuels et sonores) et d’assurer le regroupement d’unités
temporelles avec une complexité raisonnable. Nous consi-
dérons pour le moment que toutes les actions sont celles
du monteur ou du réalisateur. Dans I’avenir, nous
espérons modéliser également les personnages et leurs
actions, ce qui pose des problemes difficiles, a peine
ébauchés dans le domaine de la vision par ordinateur (voir
tout de méme [2] et [3]).

Enfin, aprés une courte discussion, nous concluons sur
I’état courant de notre implémentation et sur des perspec-
tives d’extension.



1. Analyse filmique

L’analyse, dans le sens dans lequel nous I’entendons,
consiste a reconstituer la structure temporelle d’un
document a partir d’informations « primitives » obtenues
le plus souvent par des algorithmes d’analyse du signal.
Certaines de ces informations primitives peuvent étre
obtenues a priori, de maniere systématique, pour tous les
documents (découpage en plan, histogrammes de
couleurs, etc.). D’autres informations nécessitent la mise
en ceuvre d’algorithmes plus complexes et ne peuvent étre
obtenues que sur demande explicite, assorties
d’informations contextuelles nécessaires au bon fonction-
nement de I’algorithme (reconnaissance de caractéres ou
de visages dans une image).

| plan 1 | | plan 2 | | plan 3 | | plan 4 | | plan 5 | | plan 6 |

figure 1 : découpage d'un film

Dans la conception traditionnelle du film, représentée
aujourd’hui par le cinéma hollywoodien, la structure tem-
porelle du film se présente comme un arbre ou les plans,
unités élémentaires, sont regroupés en séquences [4] (voir
figure 1). Cette analyse pose trois problémes de fond : 1)
la représentation des primitives d’extraction et leur orga-
nisation dans une taxonomie de plans, 2) le regroupement
automatisé de ces plans en séquences, et 3) le pilotage
explicite d’algorithmes complémentaires d’extraction
permettant de raffiner ’analyse. Ce schéma général est
représenté figure 2.

Extraction de
primitives
Pilotage Regroupement
d’algorithmes temporel

figure 2 : schéma général d’analyse

Apres avoir présenté 1’état actuel de la modélisation des
documents filmiques a I’'INA, nous allons présenter dans
les sections suivantes chacun de ces problemes.

1.1 Modéeles de documents filmiques

Certains éléments de base du langage filmique sont repré-
sentés sous forme de taxonomie explicite ; d’autre part, il
existe une taxonomie implicite des types de documents,
qui sont représentés sous la forme d’un ensemble de
« fiches collection ».

1.1.1 Taxonomie des événements filmiques

Les connaissances générales du domaine pouvant é&tre
formalisées recouvrent les éléments propres a la
production : prise de vue et montage essentiellement. Les
différents cadrages, par exemple — gros plan, plan moyen,

plan serré, etc. — peuvent étre décrits par une hiérarchie.
De méme, les mouvements de caméra traditionnels se
prétent au méme type de description : caméra fixe (sans
mouvement), les divers types de zooms (zoom avant,
zoom arriere), de travellings (latéral, avant, arriere), etc.
Une taxonomie des événements filmiques (TEF) existe ; il
est possible d’en donner une représentation formelle
partielle. La figure 3 donne une vision simplifiée des
mouvements de caméra classiques.

Un des éléments importants du domaine est le plan. Le
plan est généralement défini comme la plus petite unité
syntaxique du film, et ne comporte ni coupure de caméra
ni raccord [5], bien qu’on puisse le subdiviser en unités
plus petites, surtout lorsque des mouvements de caméra
complexes le composent. Les propriétés communément
admises du plan sont la durée (plan long ou plan court), le
type de transition avec le plan qui le précede et celui qui
le suit : transition de type cut (coupe franche) ou de type
graduel (fondus, volets, etc.), le nombre de personnages,
le cadrage des personnages (gros plan, plan moyen, etc.).
Une formalisation des propriétés générales d’un plan a été
proposée dans [5].
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figure 3 : mouvements de caméra dans la TEF

1.1.2 Taxonomie des types de documents

Des plans consécutifs peuvent &tre regroupés en
séquences, qui constituent des unités sémantiques. Les



émissions de télévision suivent trés souvent un canevas
relativement précis. C’est le cas pour les journaux télé-
visés, qui ont été jusqu’ici les plus étudiés, mais c’est
également le cas de beaucoup d’autres émissions : maga-
zines de reportages, de variétés, feuilletons ou sit-coms.
Des modeles d’émission peuvent alors étre établis. C’est
le cas a I'INA, ou de tels modeles, appelés « fiches
collection », servent a indexer manuellement un grand

nombre d’émissions. Une fiche collection est donnée a
titre d’exemple par la figure 4.

Projection Privée
Produit par S. Bleckmans
Réalisé par E. David
Présenté par L. Weil

Magazine a rubriques hebdomadaire consacré a I’actualité
cinématographique (...).

Chaine de 1° diffusion Métropole Télévision
Date de début 17/10/89
(.)

Genre : cinéma - Forme : magazine - Descripteurs :
cinéma, film (...)

Résumé

Principe de I’émission : Ce magazine, présenté par L. Weil,
est composé de présentation de sujets promotionnels sur les
films qui vont sortir (...)

Déroulement chronologique : Durant le premier plateau,
xxx présente I’émission (sommaire en images). Il lance
ensuite le premier sujet (...)

Dispositifs

Générique : début sur fond noir, incrustation du titre
Dispositifs plateau : monocaméra, le siege du présentateur
est (...)

Construction générale : plans généraux du plateau, plans
taille du présentateur, passage d’un plan a I’autre par zoom
avant

Construction des éléments : Sur les premieres images, des
sujets, le titre est incrusté sur un large bandeau noir (...)

etc.

figure 4 : exemple de fiche collection
(source : Inatheque de France)

1.2 Agrégation temporelle de plans en

séquences

Annoter un document au niveau du plan n’est pas réaliste :
les plans sont en général courts, et un document peut
comporter plusieurs centaines, voire plusieurs milliers de
plans. Le regroupement automatique de plans en
séquences constitue donc un axe de recherche important
qui permettrait de faciliter I’indexation et 1’annotation
d’un plus grand nombre de documents.

Comme nous l’avons vu dans la section précédente,
certaines caractéristiques d’un document filmique, film ou
vidéo, peuvent étre extraites du document de maniere
algorithmique. C’est le cas par exemple des mouvements
de caméra (plans fixes, zooms, travellings), des transitions
de plan (cuts, fondus) [6], de la présence de musique, etc.

Cependant, ces caractéristiques se trouvent d’une part étre
en nombre limité et d’autre part présentent généralement
un contenu sémantique faible. Il se pose alors le probleme
de les combiner entre elles afin de faire apparaitre des
entités de plus haut niveau, en rapport plus étroit avec
I’'idée que 1’on peut se faire des éléments constitutifs du
document. Le principe d’analyse dont nous avons besoin
consiste a construire ces entités pertinentes en assemblant
des caractéristiques primitives. L’analyse doit donc étre
générative.

1.2.1 Regles structurelles générales

Certaines regles de composition peuvent s’appliquer a un
grand nombre de genres différents de films ou de
documents vidéo. Il s’agit essentiellement de regles de
montage qui, schématiquement, expriment la maniere
d’assembler les plans entre eux afin de ne pas rompre la
continuité du discours : continuité des positions, des
directions, des regards, des éclairages, etc. Le montage est
parfois considéré comme 1’essence méme de I’art cinéma-
tographique [4].

L’étude menée dans [7] formalise quelques regles de
montage ne nécessitant pas de connaissances préalables
sur le document traité : les objets intervenants dans les
prémisses des regles sont directement observables dans le
flux vidéo et elles s’appliquent de maniere générale pour
tout type de document. Ces regles sont essentiellement
fondées sur I’observation de l’alternance de différents
types de transitions de plan («cuts» et transitions
graduelles), sur la similarité des plans entre eux, avec des
mesures simples sur les histogrammes de couleurs, sur la
présence ou 1’absence de musique, sur la durée relative
des plans, etc. La regle illustrée par la figure 5 signifie que
lorsqu’on se trouve en présence d’au moins quatre plans
séparés par des « cuts » suivis d’une transition graduelle,
elle-méme suivie a nouveau de quatre plans séparé par des
«cuts », alors on peut estimer qu’il y a une rupture de
séquence au moment de la transition graduelle.
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figure 5 : changement de séquence en fonction des
transitions de plan, extrait de [7]

1.2.2 Connaissances spécifiques

Cependant, ces regles générales ne peuvent rendre compte
de la diversité de tous les types de documents. Selon le
genre d’émission (journaux télévisés, magazines de
variété), la structure temporelle d’'un document filmique
peut étre plus ou moins complexe et précise. Des modeles
de documents spécifiques ont déja été étudiés, concernant
a notre connaissance principalement la structure du
journal télévisé [8].

Dans les cas les plus simples, cette structure temporelle
peut se formaliser comme une expression réguliere. Ainsi,
beaucoup de magazines alternent scénes de plateaux et
sceénes de reportage. La structure de ce type de documents
peut alors se mettre sous la forme :



générique_début
(plateau reportage) *
générique_fin.

De la méme maniere, la structure de certains documents
peut étre décrite par une grammaire formelle, ou sous la
forme d’une DTD SGML/HyTime, comme c’est le cas
dans [9]. I nous semble cependant que ces approches, si
elles sont parfaitement justifiées pour un type particulier
de documents, comme le journal télévisé, ne peuvent
répondre au cas plus général de la description de diffé-
rents types de documents.

Ces modeles de documents ne doivent pas seulement
indiquer la structure temporelle respectée par les émis-
sions appartenant a une collection donnée, ils doivent
également indiquer les élément non temporels que 1’on
retrouve généralement d’une émission sur ’autre. Il peut
s’agir du ou des présentateurs, d’éléments de décor, du
logo de I’émission, des génériques, des jingles, etc. Dans
la perspective d’un modele automatisé, des descriptions
numériques ou des exemples sont précieux, qui permettent
une détection algorithmique des éléments récurrents :
modeles phonétiques des voix des principaux interve-
nants, images numérisées des logos, etc.

Le modele d’un document étant connu a priori a partir de
simples données de catalogage, le probleme se pose alors
de contraindre les algorithmes d’analyse de bas niveau, en
fournissant a ces algorithmes des données dépendantes du
contexte.

1.3 Pilotage d’algorithmes

Nous décrirons par un exemple le type de situation dans
lequel il est nécessaire de piloter des algorithmes
d’extraction de primitives afin de raffiner 1’analyse.
Considérons un magazine de cinéma. Un tel magazine est
composé principalement d’une alternance de scénes de
studio et de séquences d’extraits d’un film a 1’affiche. Les
scenes de studio peuvent étre isolées des séquences
d’extraits en utilisant diverses méthodes : les scenes de
reportages sont par exemple encadrées en haut et en bas
par des bandes noires caractéristiques, ce qui est facile a
détecter pour un algorithme d’analyse d’image. D’autre
part, le modele de document précise qu’au cours des cinq
premieres secondes des séquences d’extraits apparait un
panneau noir a gauche de 1’écran ou se trouve inscrit le
titre du film dont il est question.

Il est dans ce cas possible dans un premier temps d’isoler
les séquences d’extraits des scénes de studio par détection
des bandes noires, et dans un second temps de n’exécuter
un algorithme d’extraction de texte que sur une partie
réduite du document.

2. Logiques de descriptions : un formalisme
pour ’analyse

Le probleme de I’analyse filmique étant posé dans son
ensemble, se pose alors celui du cadre technologique dans
lequel I’exprimer en vue d’une ingénierie des connais-
sances outillée et efficace. Le formalisme des logiques de
descriptions est particulierement bien adapté a la repré-
sentation et 1’exploitation de taxonomies naturelles, et
nous avons déja proposé dans [10] de le prendre comme

outil conceptuel de base pour nos travaux. Les logiques de

descriptions sont des langages de représentation des
connaissances bien étudiés et formalisés [11]. Cependant,
s’il est naturel d’utiliser les logiques de descriptions
comme langage de représentation pour les objets du
domaine filmique, il parait plus malaisé de s’en servir
pour exprimer des connaissances a forte composante
temporelle. Nous verrons plus loin que les possibilités de
regles de production en chainage avant qu’offre CLASSIC
[12], systeme de logique de descriptions que nous avons
utilisé pour I'implémentation, permet de résoudre un
certain nombre de problemes.

2.1.1 Classification et logiques de descriptions

Les logiques de descriptions forment un ensemble de
langages de représentation de connaissances; -elles
permettent de représenter des connaissances de maniere
structurée en séparant les définitions de concept (base
terminologique ou TBox) des descriptions d’individus
(base des assertions ou ABox). Un concept représente un
un ensemble d’individus. Les réles représentent des
relations binaires. Descriptions de concepts et roles sont
organisés en hiérarchies par la relation de subsomption : le
concept C subsume le concept D si les instances de D sont
nécessairement instances de C. La classification est
I’opération permettant d’attribuer une place a un concept
(ou éventuellement a un rdle) dans la hiérarchie des
concepts (ou des roles). On trouvera dans [11] une intro-
duction aux logiques de descriptions, un ouvrage de réfé-
rence restant [13].

Nous proposons de poursuivre la piste indiquée par [7] en
nous placant dans le cadre des logiques de descriptions.
Nous posons ici le probleéme de 1’agrégation temporelle
décrit dans la section 1.2 dans le contexte des logiques de
descriptions. Nous pensons d’autre part que dans le cadre
de I’analyse de documents filmiques, seuls un nombre tres
restreint de regles peuvent s’appliquer en toute généralité,
et qu’il convient lorsque cela est possible de formaliser
des modeles de documents représentant un type particulier
de documents (journal télévisé, magazine, par exemple).

2.2 Représentation de connaissances

La taxonomie TEF se représente aisément a 1’aide du
formalisme des logiques de descriptions. Comme il a été
dit plus haut, certaines connaissances du domaine filmique
peuvent étre assez naturellement exprimées sous forme de
hiérarchies : types de cadrage, mouvements de caméra,
types de transition de plans, types d’éclairage
(intérieur/extérieur, par exemple), nombre de person-
nages, etc. Tous ces éléments s’expriment de maniére
naturelle dans un langage de description comme
CLASSIC.

Il est important de faire la distinction entre les aspects
temporels d’un plan (ses dates de début et de fin) et sa
description non temporelle, c’est-a-dire ses propriétés (ses
roles, pour reprendre la terminologie des logiques de
descriptions).

Par exemple, conformément a la taxonomie TEF, on peut
représenter le fait qu’un plan a 3 personnages dont le
principal mouvement de caméra est un travelling avant
(track-in), défini par I’expression CLASSIC suivante :



(define—-concept ‘SHOT-1 ‘ (and
(exactly 1 camera-motion)
(£ills camera-motion track-in)
(exactly 1 character-num)
(£ills character-num 1)))

est plus spécifique que le concept de plan ayant entre 1 et
5 personnages et dont le principal mouvement de caméra
est un travelling, défini par :

1

(define-concept ‘SHOT-2 (and
(exactly 1 camera-motion)
(£ills camera-motion tranck)
(exactly 1 character-num)
(all character-num (min 1) (max 5)))

On obtient ainsi une opérationalisation de la taxonomie
TEF, qui forme une ontologie explicite des types de plans.

2.3 Raisonnement temporel

Afin d’exprimer les reégles reflétant la structure des
documents, il convient de se doter d’'un modele temporel
permettant d’exprimer des contraintes sur les occurrences
d’événements. Il sera tout d’abord question du choix de ce
modele, puis nous nous intéresserons a un schéma de
regles de regroupement temporel.

2.3.1 Un modéle temporel

Le choix du modele de raisonnement temporel utilisé est
important. Il s’agit en général d’un compromis entre
expressivité et efficacité.

2.3.1.1 Logique de Allen restreinte

Pour exprimer la structure général d’un document
filmique, il faut pouvoir exprimer des contraintes sur les
occurrences d’événements temporels : un plan en intérieur
suivi d’un plan en extérieur, une musique commengant
pendant le dernier plan d’une séquence, etc.
Dans le domaine de I’analyse de la vidéo, [14] propose
une théorie — PNF calculus' —, fondé sur la logique tem-
porelle d’intervalles de Allen [15] et assortie d’un algo-
rithme en temps polynomial pour la reconnaissance de
structures temporelles. S’il est a noter que c’est 1’'une des
rares tentatives d’exploiter le raisonnement temporel pour
la représentation de la vidéo, il faut également remarquer
que le pouvoir d’expression de cette théorie est trop
limité : I'exigence d’un algorithme rapide (en O(n?))
conduit les auteurs a regrouper les relations temporelles
dans trois classes correspondant aux notions intuitives de
passé, présent et future, ce qui constitue une perte
d’information importante.
Nous proposons d’utiliser I’algebre d’intervalles proposée
par [16] — Pointizable Interval Algebra —, qui consiste a
transformer les contraintes sur des disjonctions de
relations de Allen (figure 6) entre intervalles temporels en
conjonctions de contraintes sur les bornes de ces inter-
valles. Seul un sous-ensemble de 1’algébre proposé par
Allen est ainsi représentable. Par exemple, la
relation temporelle :

A {before v meets v overlaps} B
s’exprime par la conjonction de contraintes :

' PNF : past, now, future

début(A) < début(B)

fin(A) < fin(B)*
mais la relation

A {before v after} B
n’a pas d’équivalent.
Ce modele est moins complet que celui de Allen, mais le
test de cohérence peut étre effectué en temps polynomial.
D’autre part, la mise en ceuvre de cette algebre est relati-
vement simple. Plus récemment, [17] a proposé un
sous-ensemble maximal calculable de la logique de Allen,
la sous-classe ORD-Horn, qui reprend les travaux de van
Beek [16] en s’affranchissant du passage des intervalles
aux bornes d’intervalles. Nous n’excluons pas d’utiliser ce
formalisme dans un second temps.

Relation Exemple

X equals Y

X meets Y
Y met-by X

X overlaps Y
Y overlapped-by X

X during Y
Y includes X

X starts Y
Y started-by X

X finishes Y
Y finished-by X

X before Y
Y after X

LR

figure 6 : les 13 relations temporelles de Allen

2.3.1.2 Subsomption de relations temporelles

Nous avons choisi pour I'instant de réifier les relations
temporelles. La principale raison est que nous bénéficions
ainsi des mécanismes de classification de CLASSIC.
Ainsi, la relation temporelle {before v meets v overlaps}
subsume-t-elle la relation {before v meets}, ce qui corres-
pond bien a Ulintuition: I’ensemble des segments
temporels mis en relation par {before v meets} I'est a
fortiori par la relation {before v meets v overlaps}.

Du point de vue de I'implémentation, CLASSIC offre la
possibilité sous certaines restrictions de définir un concept
comme étant I’ensemble des instances qui satisfont un test
(fonction Lisp renvoyant un booléen), et de définir expli-
citement des liens de subsomption entre ces tests afin que
le systeme puisse classifier concepts et instances.

Il est donc possible de définir un concept temporel
(TEMPORAL) comme ayant un début et une fin, le début
précédent la fin’ :

> avec bien stir début(A) < fin(A) et début(B)<fin(B)
’ La syntaxe utilisée est proche de celle de CLASSIC,
avec quelques facilités d’écriture pour les contraintes de



(define-concept ‘TEMPORAL ‘ (and
(exactly 1 begin)
(all begin integer)
(exactly 1 end)
(all end integer)
(< begin end)))

De la mé&me maniére, on définit le concept de relation
temporelle comme faisant intervenir deux instances de
TEMPORAL.
(define-concept ‘TEMPORAL-RELATION ‘ (and
(exactly 1 temporal-1)
(all temporal-1 TEMPORAL)
(exactly 1 temporal-2)
(all temporal-2 TEMPORAL)))

La relation temporelle définie ci-dessus est la relation la
plus générale. Quelles que soient deux intervalles
temporels, ils sont toujours en relation !
Les 13 intervalles de base de Allen sont définis comme
sous-concepts de TEMPORAL-RELATION. La relation
meets est par exemple définie par :
(define—concept ‘TEMPORAL-MEETS ‘(and
TEMPORAL-RELATION
(= (temporal-1 end) (temporal-2
begin)))

CLASSIC ne permettant pas de définir des concepts
comme disjonction de concepts, les concepts qui corres-
pondent aux relations temporelles s’exprimant comme
disjonction des relations de Allen doivent étre décrites
explicitement, ainsi que les relations de subsomption entre
les tests correspondants.

Une remarque doit étre faite quant a la maniére dont est
effectué le test a R b (a et b sont-ils mis en relation par
R 7). Dans I'implémentation existante, une instance de
TEMPORAL-RELATION est créée. Si cette instance se
trouve étre classifiée par CLASSIC comme instance de R,
alors la relation est respectée. Il est évident que cette
maniere de procéder en réifiant les relations temporelles
est trés coliteuse, mais cela nous permet dans un premier
temps d’une part d’exprimer clairement ces relations et
d’autre part de profiter du mécanisme de subsomption
offert par CLASSIC.

2.4 Regles de regroupement

Pour exprimer la structure temporelle des documents,
nous proposons d’utiliser des régles de regroupement
temporel qui agregent des formes temporelles de bas
niveau en des formes de plus haut niveau.

2.4.1 Principe général

Le principe de regroupement temporel présenté ici repose
sur la possibilité offerte par CLASSIC d’associer des
regles a un concept, lesquelles regles sont déclenchées a
chaque instanciation de ce concept. Lorsqu’une instance a
du concept A est créée, une regle et déclenchée. Dans
notre cas, le traitement de cette régle consiste a chercher
toutes les instances b; du concept B telles que a R b;, avec
R instance d’un sous-concept de TEMPORAL-
RELATION (R est une relation temporelle). a et b; sont

cardinalité et les tests Lisp. Ces derniers sont notés en
italique.

alors agrégées pour former une instance de plus haut
niveau, de concept G. Ce type tres général de regles fait
intervenir quatre parametres : les concepts A, B, R et G.
Les nouvelles instances ainsi créées peuvent a leur tour
étre agrégés en groupes d’encore plus haut niveau.

2.4.2 Trois types de regles

Dans un premier temps, deux types de regles ont été iden-
tifiés qui permettent de regrouper des éléments
temporels : les regles qui agrégent deux instances de
concepts différents en une instance d’un concept de plus
haut niveau, et les régles qui agrégent N instances du
méme concept en une instance d’un concept de plus haut
niveau.
Dans le premier cas, on cherche a regrouper des formes
qui se completent. Ce sera le cas par exemple du champ-
contre champ : admettons que 1’on ait pu segmenter un
document selon le schéma de la figure 7. Les cases repré-
sentent les plans. Les plans notés A et B sont des plans
d’un type quelconque. Les plans notés I (resp. F) signalent
la présence du personnage I (resp. F). Il parait naturel ici
de regrouper les plans sur le schéma :

A* 1IF)* B*
La regle de regroupement qui s’applique ici regroupe un
plan de type I suivi d’un plan (relation temporelle meets)
de type F en un groupe de deux plans I-F. Le premier type
de regles peut se décrire sous la forme :

C,RC, >G (1)

avec :
C,, C, : concepts héritant de TEMPORAL
R : concept héritant de TEMPORAL-RELATION
G : concept héritant de TWO-TEMP-GRP, groupe de
deux instances de TEMPORAL. Ce concept est défini
comme suit :
(define—-concept ‘TWO-TEMP-GRP ‘ (and
TEMPORAL
(exactly 1 first-temporal)
(all first-temporal TEMPORAL)
(exactly 1 second-temporal)
(all first-temporal TEMPORAL)))

Dans 1’exemple cité, la régle de regroupement serait
donc :

I meets F 2> I-F

AlAIA(T|F|T|F|TI|F|I|F|I|F|B|B|B

I-F I-F I-F I-F IF

(I-F)*
figure 7 : champ-contre champ

Une fois regroupés les plans I et les plans F en groupes
I-F, on voudrait pouvoir regrouper ces derniers en une
séquence d’instances de I-F. Un deuxiéme type de regles
intervient ici qui agrége des instances de la méme classe
en une instance d’une classe de plus haut niveau :
CR2G (2)

avec :
C : concept héritant de TEMPORAL



R : concept héritant de TEMPORAL-RELATION
G: concept héritant de TEMPORAL-SEQ, séquence
d’instances de TEMPORAL, défini par :
(define—-concept ‘TEMPORAL-SEQ ‘ (and
TEMPORAL
(at—-least 2 element)
(all element TEMPORAL)))

Ce type de regles permet d’instancier une séquence
temporelle dont les éléments appartiennent a la méme
classe et sont deux a deux mis en relation par une relation
temporelle donnée.

Il est apparu qu’a ces deux types de regles d’agrégation
devaient s’ajouter des régles permettant d’exprimer des
ruptures temporelles ou des transitions. C’est le cas de la
regle de transition entre séquences présentée plus haut
(voir figure 5). Ces regles permettraient d’identifier des
structures du type ABA’ comme indiquant que B est un
élément de transition. Dans I’exemple décrit, A et A’
représentent une suite de plans séparés par des « cuts », et
B représentent une transition graduelle. La regle tirée de
[7] et illustrée par la figure 8 indique que lorsque deux
plans consécutifs présentent des mesures colorimétriques
voisines au sens d’une certaine distance, il y a de fortes
chances qu’il y ait une rupture de séquences entre ces
deux plans. Cette structure est de la forme ABB’C. Il est
possible qu’un type spécifique de regles soit utile pour
pouvoir effectuer des regroupements représentant ce genre
de structure. Cependant, il faut noter que des structures de
type AB A’ ou ABB’C peuvent étre exprimées avec une
combinaison de régles de type (1). Dans le premier cas, on
peut agréger A et B en A-B, puis A-B et A’ en A-B-A’,
dans le deuxieme on peut également décomposer la regle,
ce qui nuit bien sir a la clarté des regles, et ce qui conduit
a créer des concepts intermédiaires n’ayant pas néces-
sairement de sens. Cependant, il doit étre possible
d’automatiser la décomposition de ces regles et ainsi de
« cacher » ces concepts intermédiaires.

i (o] (@] (2] <] (o] #] [a]

figure 8 : changement de séquence en fonction de
similarités de plan

2.4.3 Principes d’exécution et monotonie

Les regles de regroupement étant exprimées de la maniere
exposée plus haut, il se pose alors un probleme de mono-
tonie lié a 1’ordre dans lequel sont créées les instances.
Une régle de type A R B > G est déclenchée a chaque
création d’une instance a du concept A. L’action effectuée
par la régle consiste a chercher toutes les instances b; du
concept B mis en relation par R avec a, puis a agréger a et
b; en une instance du concept G. Ce principe est illustré
par 1’algorithme suivant :

. . . 4 .
Création d’une instance a C A (1)

Déclenchement de la regle (ii)
Recherche des b; € B tg a R b; (ii1)
Agrégation de a et b; (iv)

Les reégles étant déclenchées par !instanciation de
concept, on constate que I’ordre dans lequel les instances
sont créées est important : deux instances ne peuvent étre
agrégées que si elles existent déja au moment du déclen-
chement de la regle. Nous proposons ici une maniere de
résoudre ce probleme pour chacun des deux types de
regles exposés plus haut.
Pour les regles de type (1) il convient d’engendrer pour
chaque regle la regle symétrique quant a la relation
temporelle. Ainsi, pour chaque regle de type :

ARB->G
doit-on également créer la regle :

BR A>G
avec R Ia relation temporelle inverse de R, définie par :

xRyey Rx
Par exemple, la relation inverse de la relation temporelle
{before v meets v overlaps} est {after v met-by v
overlapped-by}.
Pour les regles de type (2), la procédure est un peu plus
complexe. Le principe des reégles inverses doit également
étre appliqué mais n’est cependant pas suffisant.
L’étape (iv) de I’algorithme consiste a agréger a et a’,
instances du méme concept A.
Pour la regle de type (2) A R = G regroupant N instances
de A en une instance de G, une maniere naive de procéder
consiste, lors du déclenchement de la régle par la création
d’une instance a du concept A, a chercher une instance g
du concept G telle que a soit en relation temporelle R
avec I'une des valeurs du rdle element de g, puis a
ajouter a comme valeur du role element a g. Si une telle
instance g n’est pas trouvée, on cherche une instance a’ de
A telle que a et a’ sont en relation temporelle R. Si un tel
a’ existe, a et a’ sont alors agrégés en une nouvelle
instance de G.

chercher g € G tq a’ €’ g

si g existe alors
ajouter a comme valeur du rdle
element a g

sinon
chercher a’ tg a R a’
si a’ existe
créer g C G avec a et a’ pour
valeurs du rdle element

Sur I’exemple illustré par la figure 9, les plans grisés
représentent des plans de la méme classe L, par exemple
une série de plans de plateau. Lorsque deux plans se che-
vauchent, la transition entre ces deux plans est graduelle.
C’est le cas entre les plans 1 et 2, 2 et 3,4 et 5, 5et6,
alors qu’il y a un « cut » entre les plans 3 et 4.

Pour regrouper les plans de type L, on écrit la regle de
type (2) :

L {meets v overlaps} 2 GL

4 e e .
c signifie « instance du concept »
5 N A
€ signifie ici « est valeur du réle temporal-element
de »



avec GL le concept définissant un groupe de plans L,
concept héritant de TEMPORAL-SEQ.

On constate que si les plans sont créés dans 1’ordre de leur
numéro, 1’algorithme indiqué agrége bien les plans en une
seule instance de GL. Toutefois, si I’ordre de création est
1-6-2-3-5-4, les plans seront regroupés en deux instances
de GL : 1-2-3-4 et 4-5-6. On constate ici que le plan n°4
peut étre agrégé a deux groupes de plans distincts. Il
convient dans ce cas d’agréger a nouveaux ces deux
groupes.

L’étape (iv) de I’algorithme, pour les regles de type (2),
doit donc prendre en compte le fait que lorsqu’une
instance peut s’agréger a plusieurs groupes, ces groupes
doivent étre agrégés entre eux. Cela peut s’exprimer de la
maniere suivante :

extraire liste 1 des g; € G tg a’ € g;
si |1] =0

créer g € G et ajouter a et a’ a g
si |1 =1

ajouter a a gi
si |1]>1

ajouter a a o

agréger gi, 2<i<|1], a g1

Agréger plusieurs instances de TEMPORAL-SEQ,
comme il est indiqué a la derniere ligne de 1’algorithme
ci-dessus, peut ne pas E€tre une opération triviale si
d’autres rdles que element sont pourvus. Nous ne traite-
rons pas ce probleme ici.

figure 9 : groupement de plans similaires

Enfin, un probléme de monotonie se pose si les instances
intervenant dans les régles de regroupement venaient a
étre modifiées. En effet, des propriétés peuvent Etre
ajoutées aux instances ; ce serait le cas par exemple si
plusieurs algorithmes de détection, ou bien une inter-
vention manuelle, venaient successivement raffiner une
description des plans.

2.5 Classification / Analyse

L’analyse telle qu’elle est présentée ici repose en dernier
recours sur les algorithmes d’analyse. Il reste donc a
préciser la maniere dont vont interagir ces algorithmes et
les processus de raisonnement présentés plus haut. La
maniere la plus simple consiste a exécuter tous les algo-
rithmes d’analyse, puis a utiliser les résultats pour raison-
ner. Cependant, nous pouvons faire interagir plus étroite-
ment analyse et raisonnement. Deux modes d’interaction
entre analyse et raisonnement ont été identifiés. Le
premier consiste pour un algorithme a créer des instances
« primitives ». C’est le cas d’un algorithme de segmen-
tation en plan, par exemple. Dans le second mode
d’interaction, un algorithme spécialise une instance, par
exemple en lui ajoutant des attributs. Cette instance peut
alors a nouveau é&tre classifiée. Ce second mode
d’interaction est le plus complexe, car il fait intervenir des
instances existantes. En utilisant ici encore le mécanisme

de regles proposé par CLASSIC, il est possible de lier
étroitement analyse de bas niveau et raisonnement.

Dans I’exemple du magazine de cinéma cité plus haut, une
premiere étape consiste a exécuter un algorithme de
segmentation en plans du document (premier mode
d’interaction) des instances de la classe SHOT, concept
primitif héritant de TEMPORAL. Dans une seconde
étape, les plans d’une séquence d’extraits sont définis
ainsi :

(define—-concept ‘TRAILER-SHOT ‘ (and

‘SHOT
(black-strip? begin-time end-time)))

black-strip? étant une fonction Lisp a deux parametres
calculant la présence de bandes noires dans le document
entre deux dates. L’algorithme est donc déclenché
automatiquement par le processus de classification
(second mode d’interaction).

Les plans instances de TRAILER-SHOT sont alors
regroupés par la regle de type (2) :

TRAILER-SHOT {meets v overlaps} > TS-SEQ

avec TS-SEQ concept héritant de TEMPORAL-SEQ.
Enfin, un algorithme d’extraction de texte peut étre exé-
cuté sur le début de chacune des séquences d’extraits
instances de TS-SEQ.

Ainsi, un schéma général se dégage ou alternent des
phases de classification et de regroupement avec des
phases d’analyse de bas niveau.

3. Discussion : reconnaissance de plan

Les regles de regroupement présentées ci-dessus consti-
tuent d’une certaine maniere des plans, dans le sens de la
reconnaissance de plan ou de scénario. Plusieurs travaux
ont déja été conduits qui utilisent le raisonnement
terminologique dans le cadre de la reconnaissance de
plan : par exemple, [18] propose d’étendre la notion de
subsomption aux plans, et [19] définit un langage unifié
de raisonnement terminologique et temporel. Dans le
méme ordre d’idées que [18], [20] propose d’organiser les
plans en taxonomie en intégrant a un systeme de raison-
nement terminologique (en 1’occurrence CLASSIC) des
techniques connues de planification utilisant des
automates d’états finis. Une telle approche présente
I’avantage d’offrir une formalisation claire du type de
raisonnement mis en ceuvre, ce qui permet d’avoir une
bonne évaluation des types de problémes pouvant étre
abordés ainsi que des limites du formalisme. En particu-
lier, les plans qui peuvent étre représentés dans [20] sont
restreints a des expressions réguliéres, ce qui est trop peu
expressif pour décrire le contenu de documents filmiques.
Nous envisageons cependant de nous inspirer de cette
démarche en formalisant d’avantage le raisonnement
temporel a I’extérieur du systeme de représentation.

4. Expérimentations en cours

L’implémentation du systeéme décrit dans ce papier est en
cours. Nous utilisons la version 2.3 du systtme CLASSIC
déja mentionné dans I’environnement CLISP. Les princi-
paux mécanismes de regroupement temporels ont été mis
en ceuvre ; des tests de plus grande envergure sur un



corpus documenté doivent €tre engagés. notamment dans
le contexte du projet DIVAN.

Conclusion

L’indexation de documents filmiques est un sujet de
recherche dont les enjeux sont considérables. La nature de
la diffusion étant en train de changer considérablement, il
sera de plus en plus important de pouvoir accéder a des
bases de documents gigantesques, posant ainsi le
probléme de I’annotation dans un cadre nouveau. Nous
pensons que la combinaison d’expertises de champs
complémentaires est nécessaire pour obtenir des systemes
efficaces et opérationnels. Ceci nécessite d’une part la
formalisation des divers types de documents existants, ce
qui permet de restreindre le champ de 1’analyse, et d’autre
part la collaboration des techniques d’analyse «bas
niveau » du traitement d’image et de ’analyse de signal
d’une part et des techniques de représentation et de
raisonnement de plus haut niveau d’autre part. Nous pro-
posons dans ce papier un élément de réponse fondé sur
I’exploitation du formalisme des logiques de descriptions
qui nous parait prometteuse.
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ABSTRACT

In this article we introduce the notion of audiovisual-
based hypermedia authoring systems, i.e. systems mainly
using documents from digital audiovisual (AV) archives
as a source for hypermedia authoring. After showing that
traditional hypermedia models are ill-designed for specific
constraints implied by such systems, we propose a
change of approach. We present a2 model based on formal
structured representations of the content of documents as
it is done in the field of structured documents. Since a
specific model for the representation of AV content is
needed. we introduce Audiovisual Event Description
Interface (AEDI), which provides a model for the
description of AV documents, and an XML-based syntax
for the exchange of such descriptions. We describe
AEDI's main concepts, how it can be related to a formal
specification of the domain knowledge — called
ontology — which allows efficient dynamic hyperlinking
among elements. Finally, we describe the implementation
of this model for the production of AV based hypermedia
at INA's production department.

KEYWORDS: audiovisual, structured documents,
hypermedia design, ontology, content indexing.

INTRODUCTION

Many hypertext and hypermedia applications and systems
rely mainly on texts and still images to convey
information. Audiovisual (AV) — i.e. cinema. TV, radio
and video — source documents are quite often only used
by hypermedia authors as small extracts linked to text for
occasional illustrative purposes.

There are of course many economical and technical
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reasons for this lack of use. However, we claim that
design issues remain some of the most fundamental
obstacles. Indeed as [25] and [9] show, the creation of a
design model adapted to specific AV constraints remains a
challenge for the hypertext community.

In this article, we will describe our research on AV-based
hypermedia authoring environments, which bring together
concepts of three different domains: digital libraries (our
source documents are provided by INA, French TV and
Radio Archives), hypertext (links are used for browsing
and relating AV documents) and multimedia (the intensive
use of AV media implies temporal constraints among
components). We will analyze current hypermedia models
and explain why they remain ill-designed for hypermedia
authoring tasks requiring intensive use of AV source
documents. We will argue that the nature of AV media. as
well as specific constraints applying to users’ interaction
with large digital AV repositories, calls for the creation of
a hypermedia model based on structured representations of
the content of source documents.

Our approach is inspired by structured document
methodologies {4] and by their adaptation to traditional
hypertext concepts {38] [36]. It provides hypermedia
authors and/or readers with an efficient means of
interpreting, manipulating, browsing, editing, searching
and linking segments of documents. Moreover. relating
structured representations of documents to a formal
specification of the domain knowledge allows the
application of inference mechanisms to the documents, as
is done in [33], and dynamic linking to be performed
among elements of the content as in {37].

We will argue that there is currently no perfectly suited
model for the representation of AV documents. Therefore,
we will introduce Audiovisual Event Description Interface
(AEDI). which provides a description model and an XML-
based exchange format for the description of AV
documents. Moreover, as describing AV documents
requires not only a model and a format, but also a
description policy defining what should be described and
how. We will show how to relate AEDI descriptors with
concepts defined in an ontology [7] and how to use this
ontology for dynamic linking of description elements.



Finally, before concluding, we will discuss the
implementation of this model in INA’s production
department.

Figure 1: An AV-based hypermedia authoring
environment

CONTEXT

As telecommunications, broadcasting and computer
industries are converging into a single entity, new
applications based on hypermedia concepts and including
AV documents on a large scale are appearing: internet-
enabled TV, hypermedia versions of TV programs
published on CD-ROM, video on demand on cable TV,
and remote access to digital AV documents in archives are
typical examples.

For one year, INA’s research department has been

working on the design and development of an AV-based

hvpermedia authoring environment. Such an environment
is illustrated in Figure 1. AV directors are provided with
an indexed repository containing AV archival documents,
AV rushes', still images and texts. The indexing is
created during the production and archiving process
following guidelines. It is stored in digital form and
allows dynamic hyperlinking among documents. Using
this relevant metadata, authors can select segments of AV
source documents relevant to their needs, specify
presentation guidelines and create new documents which
can be published following diverse delivery specifications
(as a broadcast program, a hypermedia application or even
a book).

The main objective of this project — which brings
together the concepts of the digital library, the hypertext
and the multimedia domains — is to show that the
digitization of AV archives’ and broadcasters’ documents
modifies traditional AV production processes and leads to
the creation of new tools and usages integrating AV
documents as a primary resource.

DESIGN REQUIREMENTS

AV-based hypermedia authoring environments call for a
design model. This model should conform to some
specific requirements, which are listed below:

"A "rush” is a piece of AV content filmed by the author, which has
not been edited yet. It is the produce of the original camera shooting.

170

Any AV-based hypermedia model should provide an
adequate representation for what librarians and libran
users traditionally refer to as document, ie the
elementary units manipulated by clients for browsing the
library content. to interpret it and to create new
documents from 1it. Furuta [18] describes librany
documents as self-contained units represeating an
identified intellectual contribution and exhibiting, to a
certain extent, an intentional structure. We would add that
any element of a document is interpreted by readers not
only in terms of the information it contains, but also in
terms of its place in the document structure. This is what
we call its source document context, as opposed to the
source context defined by [26], which is in fact the
presentation context of a media element in a hypermedia
document at runtime. Besides, most of the documents
provide a canonical navigation order, or “guided tour”
through their content structure (e.g. the continuous single
timeline for traditional AV documents). All these
elements should be represented formally in any model
used for AV-based hypermedia model authoring.

Moreover, any AV-based hypermedia model should
provide new ways to work efficiently with large
collections of AV-documents. Indeed, currently, once :
document is identified by using a library catalogue, the
selection of relevant segments of its content remains a
long, fastidious and little added value process which
should be improved as much as possible.

Finally, a way to link efficiently not only to but als:
from segments of AV documents should be provided
allow content-based navigation of the AV material.

These are the requirements we have to fulfill
Unfortunately, as we will show in the next section, none
of the hypermedia models curtently referenced in the
literature seems adequate.

Drawbacks of Current Hypermedia Models
Most hypertext and hypermedia models have beer
designed as static networks of nodes (or components) and
links [12]. Nodes contain information (most of the time
text and/or still images) and links are created by the
author and used by readers to browse this information by
“jumping” from one anchor to another.

As [25] or [9] show, this type of approach remains ili-
designed for dynamic temporal media such as video or
audio recordings. Even a widely accepted and used hyper-
text model such as the Dexter Model {24} has to be
modified in order to add temporal constraints to its scope.

However, we claim that, even customized, the traditiona!
Dexter-like approach is still inadequate for AV-based
hypermedia authoring systems. Indeed, to our knowledge.
there is nothing exactly equivalent to the notion of source
document in current hypertext approaches. Most of the
time, the basis of the hypermedia authors’ work remains
the node and link network, which itself might be partl



structured using, for instance, Dexter's composites® as in
[19]) or {21]. or it might even be considered as a structured
document as in CMIF [27]. Similarly. the notion of
entity’ in the Hypertext Design Model (HDM) [20]
provides a way to structure objects used for the
hypermedia authoring process.

However, none of the above models provides a notion
corresponding to what librarians and library users consider
as documents, i.e. the structured sources from which the
hypermedia document is authored. AV sources are still
considered only as a special type of computer resources
(i.e. mostly AV files on disk, without any specific
logical structure), used as bricks for building hypermedia
documents, which imply fairly complex interaction and
synchronization schemes such as the one developed in the
Amsterdam Hypermedia Model [25].

Runtime
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Moreover, classical hypermedia models are not better-
suited than current analogue library systems for browsing
and manipulating large collections of AV documents for
hypermedia authoring purposes. Indeed, most of the time,
components containing (or referencing) AV data are
created the following way {(cf. Figure 2): authors add a
new component to the hypermedia network, then they fill
in the component by selecting a temporal segment of AV
data from an AV document’, they index the component
by typing some textual information in predefined fields
(Dexter’s “attributes") and, finally, they define
presentation specifications controlling the execution of
the application at the runtime layer.

2 A composite component in the Dexter Model is a component

containing other components

' An HDM entity is defined as an autonomous object composed of
components related by structural links.

*ie runa digital AV file in a player, watch and/or listen to the AV
document unti! the begining of the relevant segment and then select the
begin time and the duration
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This type of interaction is acceptable for authors when
they are dealing with only a few seconds of AV data, or
when all segments to be integrated in hypermedia
components are available as well-identified files on disk,
which just have to be imported without being watched.
However, it is simply too time-consuming to proceed
this way when one deals with hours of AV content! As a
consequence, some mean of providing relevant random
access to segments of AV documents is needed.

Finally, linking from AV content remains a thomy
problem in traditional systems. Indeed. anchoring zones
inside the AV document are evolving through time: if
users play a segment of an AV document, different
anchors to different nodes may be accessible at different
moments in time. Allowing this type of anchoring in a
static component and link network, as it has been done in
[25], remains complicated.

As a conclusion, we claim that AV-based hypermedia
environments call for a new approach allowing more
efficient browsing and manipulation of the content of AV
documents.

Representing the Content of AV Documents
One way to avoid most of the problems listed above
would be to provide hypermedia authors with tools for
automatic searching, retrieving, comparing and linking
relevant segments of AV documents that they could then
insert into their hypermedia components.

Unfortunately the very nature of the AV medium itself is
a problem. Indeed, contrary to text, AV data is not made
out of discrete symbolic elements, i.e. elements that can
be computed by computers and be interpreted by humans.
and therefore it cannot be easily processed. Of course, {3]
shows that many research projects from the digital signal
processing field (such as [11] or [32]) are working on
automatic extraction algorithms. Some applications, such
as QBIC [16] or Virage*, have even become industrial
products. However, such applications, though very
helpful, remain only analytic tools and cannot replace
human synthetic interpretation for the creation of the high
level conceptual descriptions which are needed for an
efficient manipulation of AV content. Therefore, other
projects, such as [14], focus on computer-aided manual
annotation of AV content.

In all these projects, the central element is an intermediate
representation of the AV content which is used as a
substitute for the AV document. Indeed, once related to
the content by a temporal and spatial linking model, the
intermediate representation acts as a document index. The
changes, manipulations, filters and composition applied
to the representation imply equivalent actions on the AV
document itself. For example, it is possible to apply
research, selection and linking functions to the
representation of "Cyrano de Bergerac” in order to gather

¥ See http://www.virage.com



all the segments in which Gera

in Llose-up, etc.

This leads us to the conclusion that the crucial challenge
of AV-based hypermedia environments is to provide a

representation framework for expressing the content of

AV documents. Many standardization bodies such as ISO
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aiming at defining a standard representation for metadata
on AV and multimedia content. Prié & al {35] show that
a generic model for representing (manual as well as
automatic) annotations of AV documents is needed.
Moreover, we claim that this representation has to be
formally structured at the document level to allow easy
computer-aided access to relevant parts of the content.
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A « Structured Documents » Approach
Our model is based on the concept of structured document
[4]. In such a model (cf. Figure 3), any source docurment

available in the archives is referred to by using a
tant Thaca

tatin £ ite oan
Concne. 1 NCSE

o
Ui n>

opstite s ] 2
Jiriecinreca IC‘I’CJCI‘LU“UH

representations can then be used as a basis for linking.
Links among structure elements can of course be created

by the author, but they can also be automatically
¢ MPEG-7  (“Multimedia  Content  Description™). See
hup:/ cselt.iympeg

’ The European Broadcasters’ Union/ Society of Motion Pictures &

Television Engineers task force has created a metadata dictionary
which has been published as an international standard in 1998 and
should be adopted by the EBU and NATO from 1999 on. See
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generated. Indeed. if the elements of the structure are
related to some formal representation of the domain
knowledge, such as an ontology [7] or a semantic
network [33], inference mechanisms can be applied for
linking the elements related to the same notion in the
domain knowledge [10]. Once this interrelated network of
structured documents is created, it can be browsed by
users as a hypermedia application. This requires some
presentation specifications, which build a “style sheet™ for
the hypermedia. This can be achieved by us
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language such as SMIL".

This type of approach, though not much referenced in the
hypertext literature [38], has proved efficient and relevant
for electronic publishing tasks [37], for document

manipulation and browsing in many industrial
applications based on SGML [30]. It meets our
requirements  since it provides a model for the
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document context of an AV segment), it allows efficient
manipulation of AV  documents based the
manipulation of their representation structure and, finally,
structure elements can be used as an anchoring system for
linking among segments of the AV content.
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It should be noted that our notion of structured
represemation is not resm'cted to what is traditionally
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logical structure, though conveying relevant semantic
information about the document, is often not informative
enough to describe the content and, therefore, it has to be
complemented by some other knowledge representations
such as anchors related to a semantic network, as in [33].
Moreover, when dealing with AV documents, the notion
of logical structure remains limited to the editing
elements that can be adequately interpreted for an up-
translation’ camera motion and, to a certain
extent, scenes' [2]. However, trying to relate these AV
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extremely difficult. Indeed, AV editing does not provide
fairly stabilized traditions as text publishing does. As a
consequence, we define a structured representation as any
formal structure representing the content of an AV
document in terms of a manipulable semiotic form. A
semiotic form 1s a representation format which is directly
human readable and does not require any machine-based
computation and decoding (e.g.: characters, images,
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"' See http://www.w3.0rg/TR/1998/REC-smil-1998-1998061 5

2 . . .
12 An up-translation is an automatic

up islation is an automatic translation from a physical

from a physic
appearance to a logical structure, as it is done when interpreting that
all 12 points bold character strings in a text are ‘“section title”
elements, for instance.
3 A shot is a stream of contiguous frames continuously recorded by a
>m;.e camera, and a shot cut can be detected with rather good resuits.

* A scene is collection of one or more adjoining shots, that has the

characteristic of perceptual continuity and semantic homogeneity.



A Model Specific to AV Documents

Having decided upon a structure-based approach, the
nature of the formal model to be used for the
representation of AV documents remains to be
determined. Indeed, however simple they may seem at the
surface, traditional (i.e. single-timeline) AV documents
are fairly complex objects (elements are related by
temporal and/or logical constraints, they overlap easily,
they can be interpreted in many different and concurrent
ways, etc.) and finding an adequate model for their
representation is not easy.

For instance, SGML seems a very good candidate to
encode document structure, but it cannot be used by itself
and need some customization to be applied to AV
documents. Indeed, describing AV data requires complex
data types (such as those extracted by signal analysis
algorithms) and a temporal and spatial model to relate the
description to the content. Moreover, if SGML structures
allow efficient representation of tree-structures such as
segmentations in scenes and shots (cf. Fig. 4), they
remain relatively ill-designed for describing overlapping
stratification approaches (cf. Fig. 5) such as [1] or [15].

Sescription

-/4"\

| ik ]
‘;‘o\w‘ lm%

Figure 4: Segmentation

== =

Scenel

/
J_Sr-on I

Document

Actor
on screen

Sneecn":

e

Document

Figure 5: Stratification

On the other hand, HyTime [31] could seem a good
candidate. However, it has been designed for the encoding
of any linking between chunks of a hypermedia
document. These chunks can be expressed in any user
defined coordinate space. Therefore, HyTime is to open
and not focused enough on AV document for our needs.
Indeed, the efficient use of AV descriptions requires a
specific model for representing logical, spatial and
temporal constraints among segments of a document .

For the same reason, we cannot rely on very wide
frameworks such as RDF", intended for the encoding of
metadata on any type of computer resource.

Finally, languages or models such as SMIL, MHEG [34],
PREMO [29] or HyTime's presentation module are
intended for the synchronization of multimedia elements

" see hitp://www.w3.org/TR/WD-rdf-syntax
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for presentation and interaction. They are concerned with
the way the documents are presented on screen, which is
useful at the presentation specification level (cf. Fig. 3).
However, a model for the representation of AV-documents
remains to be defined.

Since none of the above models and languages fulfills our
needs, we believe that a specific representation model for
continuous temporal media has to be defined'® and, as a
consequence, in the next section, we will introduce
Audiovisual Event Description Interface (AEDI), the
formal representation model we developed at INA. )

OVERVIEW OF AEDI

Audiovisual Event Description Interface (AEDI) combines
a representation model and an application and platform
independent XML -based exchange format for the
description of AV documents. It is being used in AV
indexing research projects and will be submitted to
MPEG-7 standardization in February 1999 [5]. It is
currently being tested by scholars to produce, exchange
and re-use annotations on AV documents using the
French Legal Deposit’'s Computer-Aided AV Reading
Station. This prototype, called Médiascope, proposes a
graphical interface for the annotation of AV documents.
some automatic segmentation facilities and an export
function which outputs descriptions as AEDI text files.

C =immmmire = - gy Calfiel - Theman S [

Figure 6: Representing thematic annotations
with AEDI in Médiascope

Figure 6 shows how Médiascope can be used to annotate
and browse thematic strata on a documentary: when
clicking on a segment related to “poetry”, the user
visualizes the inclusion of this particular segment in a
“theme = poetry” stratum (horizontal scale) and other
segments available on the same temporal segment

'* One could argue that such formats already exist : Open Media
Framework from AVID Technology Inc. (cf. http://www.avid.com/)
for instance. is used in the professional world. But these formats are
copyrighted. they depend on software from a specific company and
therefore are never widely accepted.




(vertical scale): here, for instance, the theme of the
selected temporal segment is related to “minerals” as well.

Temporal Model

An AEDI description is a graph containing description
objects. These objects (called segment, stratum or A-
Temporal Entity (ATE)) are organized in a tree-structure
and may be related one to each other using reference links
(cf. Fig. 7). They refer to a single AV document'’, which
is defined in the following way: a document is a
continuous and contiguous timeline identified by a unique
identifier,

Figure 7: AEDI graph structure for the
description of a single timeline AV document

However restrictive this definition may be (in many
cases, such as hypermedia documents, a single temporal
timeline is not adequate to describe a document), it is
efficient. Indeed, it fits most of past and current AV
productions, and it allows efficient and low-cost
description generation.

A projection mechanism inserted into the description
(called fimespace) allows the user to project the
description upon the document “virtual” timeline and,
then, to project the document timeline itself upon media
instances of the document (¢f. Fig. 8).

Figure 8: Using the document timeline
abstraction in AEDI

AEDI-aware browsers determine the document identifier in
the description and then look for a service able to relate
this identifier to some chunks of media. This double
projection mechanism is a way to allow more than one
description of the same document, which is important,
especially for user-centered annotation  purposes.
Moreover it enables the description to play documents
that are specified on more than one chunk of media (e.g.:
a single document can be divided among several files)
without forcing users to get involved with files and media
management systems. Finally it enables archives to

!” We are working on multiple documents descriptions, but the current
version is restricted to single document descriptions. However,
descriptions can be linked and related into metadata repositories.
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change the media used for storage without any impact on
user’s interaction with the library system.

Description elements
AEDI] defines various description elements, which are
represented in Fig.9.
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Figure 9:AED! description elements

An ATE (A Temporal Element) is any non-temporal
object used in a description. ATEs are defined
independently of temporal objects but can be referenced
for their description. A typical example of an ATE is the
description of a given actor in a film in terms of name,
date of birth, filmography, etc. which can be referenced as
a characteristic of a shot.

A segment is the definition of an actual part of an AV
document, it may be temporal or spatial. A segment is
associated with a locator which defines the type of object
described: a temporal segment or a spatial region.

e A temporal segment has at least a begin time and a
duration. The description of a shot or a scene. for
instance. can be represented as a temporal segment. A
tree-like structure of temporally located segments can
be used to build a segmentation (cf. Figure 4) of a
document.

e A spatial segment delimits a spatial region as a
bounding box (rectangle) defined by positions relative
to the side of the image (position of the top left
comer and height and width).

A stratum is a logical object which holds a collection of
description elements (segment, stratum or ATEs) for a
certain purpose. A stratumn constitutes the expression of a
point of view on the AV document. It allows a
stratification approach (cf. Figure 5) of the document. The
description of the collection of all the segments related to
a subject (such as, for instance, the set of all speeches of
a character in a theater play, or the results of a specific
automatic analysis algorithm) can be represented as a
stratum.

Description elements are characterized by properties.
Properties are associations of an attribute with a typed
value. AEDI provides some basic types (such as integer.
character string, float, boolean, time reference, date, etc.)
and allows the definition of new types by users. It is
possible to define properties such as “actor-on-screen” of
type “string”, or “color” of type “RGB”, where “RGB” is
defined as a structure of 3 integers, and so forth. Once a
property is defined, it can be used to characterize any
AEDI description element.
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l<!'ENTITY % AEDIlent SYSTEM "aedi .ent">
[%AEDlent;

I<!ELEMENT scene (segment, story,
rctor_link*. shot+)>

I<!ELEMENT story (#PCDATA )>
(<! ATTLIST story
aedi CDATA #FIXED “property”

<!ELEMENTname(#PCDATA)>
<!ATTLISTname
aedi CDATA #FIXED “property™
basetype CDATA FIXED “string™>
<!'ELEMENT shot (segment, begin_effect,
end_effect)>

O (o

Instance

<?xml version="1.0" encoding="UTF-8"?2>
<scgmentation>

<timespace>
<documentiD>H324</documentiD>
<projection timebase="internal ">
<projtuple>

<scene id="scenel”>
<segment>
<begin>00:00:02:30c</begin>
<end>00:00:04:00</end>
</segment>

<story>The hero steps into the
room</story>

<actor_link reference="RDN">
<shot id="shot]">
<segment>
<begin>00:00:02:30</begin>
<end> 00:00:03:00</end>
</segment>
<begin_effect-cut</begin_effect>
<end_effecocut</end_effect>
</shot>

basetype CDATA FIXED “string™>

I<!ELEMENT actor_link EMPTY>
[<!ATTLIST actor_link

aedi CDATA #FIXED “intlink”
reference IDREF #¥REQUIRED
refersto CDATA #FIXED “actor™>

</projtuple>
</projection>
</timespace>

</actor>

<internal_timeref>00:00:00:00</internal _timeref>

<external_timeref>00:00:30:00</exiernal_timeref>

<internal_duration>00: 00:05:34</internal_duration>
<external_duration>00:00:05:34</external _duration>

e . </shot>
<! ELEMENT actor (ate, name)> <actor id="RDN™> <iscene>
<! ATTLIST actor <ate/> ) et
id ID #REQUIRED> <name>Robert de Niro<name> <segmentation>

<shot id="shot2">

<segment>
<begin>00:00:03:00</be gin>
<end>00:00:03:20</end>
</segment>
<begin_effect>cut</begin_effec>
<end_effect>dissolve</end_effect>

Figure 10:Using XML to encode an AEDI description

Besides. a description element may be an instance of a
model. A model defines, in a way, the “interface”
implemented by a description element. More precisely, an
AEDI model defines the content model of a description
object’. ie. which properties can, must or may be
instantiated in the entity as well as the potential links
from this entity to others. For example, a model for
entities called “shot” could specify that these entities
must contain a property ‘“cast” of type “list of string”,
which provides the list of actors on screen, and might
contain a property “camera-angle”.

Finally, a description element can reference (i.e. be linked
to) another one. For instance, a stratum “locutor” can be
linked to a ATE of model “actor”. References can be
named and typed: it is possible to specify to which model
of an object a reference is pointing.

Structure encoding using XML

Being able to define a structured content model for a
description is crucial for archives since descriptions are
produced, following systematic guidelines: descriptions of
AV document are structured documents. Therefore, we
decided to use XML as an exchange format for AEDI
descriptions. Indeed, XML provides efficient structure
control through DTDs. Moreover, it provides a common
format for descriptions of AV documents and textual
documents such as TV newspapers, scripts or elements of
the production file. Indeed, AV archives store not only

'® AEDI content models are equivalent to SGML DTDs.
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AV data but also texts' which are extremely useful for
the interpretation and the manipulation of AV documents
and are potential hypermedia authoring sources. Using the
same format for AV descriptions and text allows easy and
generic linking and mampulation of data, which is
generally considered as heterogeneous.

From an XML point of view, AEDI data types are
expressed as attributes [8] and AEDI elements (segments,
strata and ATEs) are stored in a parameter entity which is
inserted in the DTD.

The insertion of XML elements is also used to control
AEDI logical, spatial and temporal constraints. For
example, if a segment S2 is included in segment Sl in
the DTD, this means that the temporal and/or spatial
borders of the instances of S2 should be included in the
borders of the parent instance of S1. It is also possible to
store the temporal and spatial references as external links.
In such a case, our format can be considered as an XML
flavor of HyTime using a single standard coordinate
space for time and space.

From the XML description, the AEDI parser can build a
tree-structure such as the one shown on Figure 7, which
is then used for the manipulation of the AV document.

Relating descriptors to an ontology
AEDI properties and models define what we call
descriptors, i.e. objects used to relate a concept and an

' French legal deposit receives 50.000 pages a year of such textual
documents.



element of a document. We propose the use of an
ontology to define the semantics of descriptors. An
ontology is traditionally defined as the "specification of a
conceptualization” {22], (23] and is used to represent the
concepts associated with a domain. In this article, we will
follow the definitions provided by [6)}, i.e. descriptors are
linguistic terms™. The semantics of these descriptors is
defined by the location of the terms in an “is-a” tree. Once
the terms used in the domain are defined by experts using
this tree structure, they can be used as primitives for any
representation or encoding of the domain knowledge. This
conforms to the ontologies as they are commonly defined
in the literature [28]. In the end, each notion is
represented by a term and defined in terms of its:

¢ ‘“interpretative semantics”: linguistic specification of
the meaning and the knowledge content that
corresponds to the symbol for a domain specialist. At

this level, a symbol is understood as a term.

“formal semantics”: formal specification of the
representation format and/or the possible values for
the symbol. At this level, a symbol is understood as a
logical predicate or function;

“computational semantics™: specification of the
computational behavior of the symbol. At this level,
a symbol is understood as an object to which
messages can be sent so that it can exhibit some
computational behavior.

An ontologv of descriptors (or a semantic network) is a
crucial tool for sharing descriptions of AV documents
among members of a specific community. As a
consequence. we are currently working on the creation of
an ontology. which would allow the explicit
representation of indexing methodologies used by the
community of AV archivers. This ontology should also
be able to represent the descriptors created during the
production process (shooting, editing, broadcasting) as
well as extracted by state of the art signal analysis
algorithms.

However, this ontology will not be inserted into the
AEDI model as a built-in feature. Indeed, efficient use of
metadata requires agreement on a common ontology
among users of specific community and different
communities use different ontologies. Moreover, building
a "one size fits all” ontology for describing AV content is
probably impossible (cf. [13]) since as communities
evolve, their ontologies also evolve. Communities adapt
tools to their needs, so they would deviate from the use of
a closed ontology and this would lead to ambiguity.
Therefore, as we want AEDI to be as widely usable as
possible, we provide specific links to relate descriptors to
their ontological definition. Users are then free to
organize their own ontological namespace and to declare
their descriptors as they wish.

% In some contexts, especially signal processing analysis, descriptors
might be numeric values, or even images or icons as in [15)
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Dynamic hyperlinking

Our AV-based hypermedia authoring environment is based
on a database containing our ontology as well as XML-
encoded texts and AEDI descriptions of AV documents.
These have been created following controlled vocabulary
guidelines: the tags are terms related to concepts in the
ontology.

Figure 11: Dynamic linking in an indexed
repository.

To help authors browse this primary resource and build
up their hypermedia application, we provide dynamic
linking among elements of the database. As they are all
expressed using XML. documents of any kind are
computable the same way. As shown on Figure 11, the
application can thus dynamically link elements of any
kind as long as they are indexed by the same concepts and
constitute a link base similar to the ones developed in
{17]. Authors can browse the base by taking as an entry
point the ontology (e.g.: see all the elements indexed by a
particular term) or any document, which becomes, in a
way, a table of contents for the others. Moreover, as the
linking is done dynamically, documents can be added and
retrieved from the repository without any major
consequences for the hyperlink navigation facilities.

Starting from this hyperlinked repository, authors can
define presentation specifications by specifying a layout
for the appearance of the information on the screen, which
can then be applied as a style-sheet.

DISCUSSION AND FUTURE WORK

In this section we describe the current implementation of
our model at INA’s production department and we discuss
the future of AEDL

Implementation issues

INA’s production department is dedicated to the
production of experimental programs for broadcasters.
Since 1998, it has set up a multiple delivery production
studio which aims at creating new types of programs
based on indexed repositories of AV documents and in
which the model described in this article is currently
being implemented.

Two initial prototypes have already proven the feasibility
of the concept and contracts have been signed with French
broadcasters for the production of experimental programs
that could be “webcasted”. For each of these prototypes.
an indexing policy and presentation specifications have



been defined and hypermedia applications have been
created by applying generic dynamic linking among
elements based on the ontology. As a consequence, any
properly indexed program can be processed the same way
to create a new hyperdocument.

Users of these hyperdocuments can watch the program and
the rushes used to create it. They can browse it and search
it following transcriptions issued by the producer,
descriptions and annotations issued by documentalists.
Finally, they can put their own bookmarks on the
document and come back to what they liked or even edit a
new AV document based on their bookmarks. The whole
process is based on manipulation of AV document
descriptions and, in the end, is applied to the content.

Future Work

In the future, we plan to test the robustness and the
genericity of our model by confronting it with real life
multiple delivery productions. In particular, we shall
develop interfaces such as the one described in [27] for the
interaction with document descriptions. Indeed, AV
directors are not computer specialists and their adaptation
to hypermedia authoring implies user friendly tools.

Moreover, we intend to develop this model towards the
specification of future hypermedia interfaces for accessing
and browsing digital AV archives. The development of
such systems should allow better access to archival
documents and thus better re-use of available AV data in
AV, hypermedia and multimedia productions.

CONCLUSION

In this article, we described our model for AV-based
hypermedia authoring environments. We focused on the
central role of document content representations for the
efficient browsing and manipulation of large repositories
of digital AV documents. Then we introduced Audiovisual
Event Description Interface (AEDI), our model for the
description of AV documents. We described AEDI
temporal model, description elements and structure
control facilities, then showed how relating descriptors to
an ontology of the domain knowledge could help in
creating links dynamically and provide better browsing
facilities.

As a conclusion, we would like to stress the fact that the
digitization of AV archives provides an important
opportunity for the domains of digital libraries,
hypertexts and multimedia. Indeed, until now, scientists
from these communities have built very powerful models,
but these have not yet been combined. Digital AV
archives, and the opportunity that they represent for
hypermedia authors, provide an adequate context for this
convergence. Nevertheless, adequate models remain to be
defined to allow future developments. We believe that our
view of AV-based hypermedia authoring environments
provides an efficient framework for such models.
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Abstract

Segmenting video documents into sequences from ele-
mentary shots to supply an appropriate higher level de-
scription of the video is a challenging task. This paper
presents a two-stage method. First, we build a binary
agglomerative hierarchical time-constrained shot cluster-
ing. Second, based on the cophenetic criterion, a break-
ing distance between shots is computed to detect sequence
changes. Various options are implemented and compared.
Real experiments have proved that the proposed criterion
can be efficiently used to achieve appropriate segmentation
into sequences.

1 Introduction

Browsing and querying data in video documents requires
to first extract and organize information from the audio and
video tracks. The first step in building a structured descrip-
tion is to segment the video document into elementary shots
which are usually defined as the smallest continuous units of
a video document. Numerous methods for shot segmenta-
tion have been proposed (e.g., see [3]). Nevertheless, shots
are often not the relevant level to describe pertinent events,

and are too numerous to enable efficient indexing or brows-

ing.

The grouping of shots into higher-level segments has
been investigated through various methods which can be
gathered into three main families. The first one is based
on the principle of the Scene Transition Graph (STG) [9],
which can be formulated in a continuous way [7], or accord-
ing to alternate versions [4]. Methods of the second fam-
ily [1, 2] use explicit models of video documents or rules
related to editing techniques and film theory. In the third
family [5, 8], emphasis is put on the joint use of features
extracted from audio, video and textual information. These
methods achieve shot grouping more or less through a com-
bination of the segmentations performed for each track.
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We present a method based on a so-called cophenetic
criterion which belongs to the first family. The sequel is
organized as follows. Section 2 describes our method in-
volving an agglomerative binary hierarchy and the use of
the cophenetic matrix. Section 3 specifies the various op-
tions we have implemented with respect to extracted fea-
tures, distance between features, hierarchy updating, and
temporal constraints. Experimental results are reported in
Section 4, and Section 5 contains concluding remarks.

2 Binary hierarchy for describing shot simi-
larity

We assume that a segmentation of the video into shots is
available, where each shot is represented by one or more ex-
tracted keyframes. The information representing a shot (ex-
cept its duration) is given by the (average) signature com-
puted from the corresponding keyframes. We build a spatio-
temporal evaluation of shot similarity through a binary ag-
glomerative hierarchical time-constrained clustering.
2.1 Binary agglomerative hierarchical time-
constrained clustering

To build a hierarchy following usual methods [10], we
need to define a similarity measure s between shots, and a
distance between shot clusters, called index of dissimilar-
ity 8. The temporal constraint, as defined in [9], involves
a temporal distance d;. We introduce a temporal weighting
function W accounting for a general model for the tempo-
ral constraint. The formal definitions of all these functions
will be given in Section 3. The time-constrained distance
d between shots is defined (assuming that similarity is nor-
malized between 0 and 100) by :

if de(i, j) < AT

otherwise

i) { (1)30—3(1’,]') x W (i, )

1)



where 7 and j designate two shots and AT is the maximal
temporal interval for considering any interaction between
shots.

At the beginning of the process, each shot forms a clus-
ter, and the time-constrained dissimilarity index (5 between
clusters is then the time-constrained distance d between
shots. A symmetric time-constrained N x N proximity
matrix D = [d(4, j)] is considered [6], using & to evaluate
the dissimilarity between clusters. The hierarchy is built by
merging the two closest clusters at each step. The matrix D
is updated according to the index of dissimilarity ¢ to take
into account each newly created cluster. This is iterated un-
til the proximity matrix contains only infinite values. The
resulting binary time-constrained hierarchy supplies a de-
scription of the spatio-temporal proximity of the extracted
shots.

2.2 Cophenetic dissimilarity criterion

In [6], another proximity matrix D,, called cophenetic
matrix, is proposed to capture the structure of the hierar-
chy. We will use the time-constrained version D, of this
matrix to define a criterion for the segmentation of the
video into sequences. The cophenetic matrix is expressed
as D, = [d.(i, )], where d, is the so-called clustering dis-
tance defined by :

de(i,5) = {0(Cp, Cy)}

max
p#4/(,5)€CrxCq

where ¢ is the index of dissimilarity constructed from d,
and C}, and C, are two clusters. Assuming that the shot in-
dices follow a temporal order, the cophenetic matrix leads
to the definition of our criterion for sequence segmentation,
called breaking distance, calculated between two consecu-
tive shots as : dy(7,% + 1) = ming<;<; {Dc(k,1)}.

2.3 Segmentation using the breaking distance

If the breaking distance dy between consecutive shots ex-
ceeds a given threshold 7., then a sequence boundary is in-
serted between these two shots. An example is presented on
Fig 1 where two different thresholds to perform segmenta-
tion into sequences 731 = 20 and 72 = 45 are considered.
Fig. 2 displays results corresponding to thersholds 7 and
T2.

2.4 Comparison with the STG method

We have formally proved that our method delivers the
same segmentation into sequences as the STG method de-
scribed in [9]. Considering that STG method considers in a
binary way inter-shot spacing and implies non-obvious set-
ting of parameters [7], the advantage of our formulation is
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to smooth the effects of time, in the time-constrained dis-
tance, using continuous temporal weighting functions, and
to consider a threshold parameter related to sequence seg-
mentation and not to shot clustering. As a consequence, our
approach allows one to visualize what the segmentation re-
sults are according to the selected threshold value which can
then be appropriately tuned by the user. There is no need to
rebuild the STG whenever the threshold is changed.
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Figure 1. Thresholding the breaking distance
values on excerpt 1 of Avengers movie (up-
per row), detected sequence boundaries for
71 (upper middle row) and , (lower middle
row), and manual segmentation (lower row)

3 Description of implemented options

3.1 Signatures for shots

We have considered in pratrice three kinds of signatures
: shot duration, color and region-based color histograms.
Color and region-based color histograms are defined in the
(Y, Cy,C,) space with respectively 16, 4, and 4 levels,
and 12 image blocks are considered for region-based his-
tograms. The shot duration gives a relevant information on
the rhythm of the action and on the editing work.

3.2 Distances between signatures

Various distances between signatures have been tested.
Comparison between histograms can be achieved using his-



togram intersection, euclidian distance, x»-distance. The
distance chosen between shot durations is the Manhattan
distance.

3.3 Updating of the agglomerative binary hierar-
chy

In order to update the classification hierarchy, two algo-
rithms are available [10] :

e the Complete Link method. The index of dissimilarity
between clusters is defined by :

max

8(Cy, Cy) =
(Cp, Ca) (i,)€Cp X Cy

{d(i,5)}

e the Ward’s method. The index of dissimilarity between
clusters is given by :

~ ne, ne, s
3(Cy,Cy) = m‘d(Gc,,,ch)

where G ¢, is the gravity centre of cluster C;, nc; rep-
resents either Cardinal(C;) or Duration(C;).

_ In both cases, the Lance and William formula, given by
6(AUB,C) = a10(A,C) + a26(B,C) + a3é(A, B) +
a4]6(A,C) —6(B, C)|, is used to update the proximity ma-
trix. We have a; = ay = a4 = 3, ag = 0 for the Complete

; — _natnc — _nptnc —
Lmkmeth:d, anci‘al 1—1- ﬁ}wfl’d}nc ) clllzd— b, a3 =0,
a4 = % for the Ward's method.

S0 S

Figure 2. Obtained sequence segmentation
on excerpt 1 of Avengers movie for threshold
T1. S is an angle / reverse angle sequence.
Ss is a fade out / fade in effect.
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3.4 Temporal weighting function

The temporal weighting function is used to constrain
the distance and the index of dissimilarity as introduced in
equation 1. In [9], only one type of temporal weighting
function was proposed, i.e. rectangular function which is
not smooth. We have tested three smooth functions : linear,
parabolic, and sinusoidal.

4 Experimental results

We have evaluated our method on a three hour video cor-
pus. We report here results on four excerpts of two minutes.
Three excerpts are taken from Avengers movies to evaluate
the segmentation into sequences in different contexts. The
first one comprises an angle / reverse angle editing effect
and a transition with a dissolve effect. The second one in-
cludes a set change, and the third one involves color and
rhythm changes. Obtained segmentations can be compared
with a hand segmentation acting as ground truth. In plots
displayed in Figures 1, 3 and 4, main sequence changes
are represented by a value of 1 and secondary changes by
a value of 0.5. The last excerpt is extracted from a news
program to test the relevance of the built hierarchy.

Among the implemented options, three sets of descrip-
tors and functions are selected : (O;) color histograms
intersection, rectangular temporal weighting function, and
Complete Link method, (O2) color histograms intersection,
parabolic temporal weighting function, and Ward’s method
based on cluster duration, (O3 ) Manhattan distance on shots
duration, parabolic weighting function, and Ward’s method
based on cluster duration.

Results obtained on the news program excerpt show that
the clustering distance d, provides a correct description of
the similarity between shots at different levels, even if the
information distribution is not homogeneous in the various
levels of the hierarchy. An adaptive thresholding applied to
breaking distance values would be nevertheless necessary to
avoid heterogeneous results. Tests have shown that the best
video segmentation into sequences is found using option set
O,.

In the processed excerpts, most of the sequence changes
were correctly detected, when the proper options were se-
lected. On Fig.1, we can point out that, using 7, and op-
tion Oy, all changes are detected with only one false alarm,
the angle / reverse angle effect is recognized. Selecting the
threshold value is nevertheless a rather critical issue. On
excerpt 2, with a relevant threshold, we extract all the cor-
rect boundaries with option Oy, with only one false alarm
(Fig. 3). Using option O, false alarms and missed detec-
tions increase on excerpt 2. The color and rhythm changes
in excerpt 3 (Fig. 4) have been better detected using option
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Figure 3. Breaking distance values on excerpt
2 of Avengers movie using option O; (upper
row), option O; (middle row), and manual seg-
mentation (lower row)
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3 of Avengers movie using option O; (upper
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O3, rather than O;. Consequently, how to automatically se-
lect the proper option remains an open issue.

5 Conclusion

The method described in this paper, based on the cophe-
netic matrix, enables to accurately and efficiently segment
video documents into sequences by building a binary ag-
glomerative time-constrained hierarchy. We have imple-
mented several versions. Selecting the most appropriate one
improved results and gave a better description of the simi-
larity of the shots through the hierarchy. Experiments on a
larger base will be conducted in future work for selecting
the best parameter set and evaluating alternative threshold-
ing stategies.
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Abstract

In the context of video indexing, we present the Clavis system in which typical video sequences of television
programs are represented by templates. Templates are terminological constraint networks in which video
segments coming from automatic analysis tools are represented in a description logic formalism. Templates
allow to express complex classes of video sequences with temporal constraints associated to a regular expression
operator. Recognizing occurrences of a template in a video program is a plan recognition problem for which
efficient methods have been implemented in a constraint satisfaction problem framework. The paper describes
the system and illustrates its use with several experiments that were done in the context of the DiVAN european
project.

I ntroduction

An important step towards content-based indexing television programs is the segmentation of the
video into independent meaningful units, intermediate between the shot and the complete program.
This is an inherently ill-posed problem in general, since even experts fail to agree on a common
vocabulary of those units, and how to compare different segmentations. The problem becomes more
tractable in more constrained situations, such as a collection of videos built on a common pattern or
model. In that case, we can view segmentation as a plan recognition problem, where the plans to be
recognized are characteristic of a collection of videos — such as a particular broadcast news or variety
show. In this communication, we introduce a representation language and a computational framework
for building such abstract models of television program collections, and recognizing the models from
observations.

In (Ronfard, 1997) it was first proposed to use a description logic to describe and index video shots
with a rich set of film concepts. (Carrive et al., 1998) further elaborated on this idea, and extended the
proposal to a general taxonomy of film events, useful in the description and the analysis of video
documents in the large. In this paper, we present Clavis (Classification of Video Sequences), a system
which classifies typical video sequences found in collections of television programs, using temporal
compositions of film events. The classes of sequences are represertdplates which are
terminological constraints networks. Recognizing occurrences of templates within the video is
presented as a plan recognition problem and the solution proposed is an extension of the T-Rex system
originally proposed by (Weida, 1995), which combines symbolic temporal relations with a regular
expression operator.

The paper is structured as follows. In section 0, we describe how classes of video segments coming
from automatic analysis tools are represented in a description logic formalism, and used as building
blocks of the Clavis system. In Section 3, we further explain how templates are defined as
terminological constraints network and how the recognition process is designed. Finally in Section 4,



we present some experiments that were done in the context of the DiVAN (Distributed Audiovisual
Archives Network) project”.

Templates: descriptions of video sequences

A lot of periodic television programs, such as newscasts, variety shows or magazines, follow a
predefined scenario which presents very little variation from one edition to another. These programs

are part of what is called a collection. We propose to describe typical sequences of such programs

using templates and we use a plan recognition algorithm based on Weida’'s work on terminological
constraints network (Weida, 1995).

A plan recognition problem

We claim that recognising the occurrences of a template in a television program is similar to
recognising whiclplan some active agent is following (Kautz, 1991) or recognising which predefined
scenario best describes the evolution of a dynamic system (Ramaux et al., 1996), and we present this
problem as a plan recognition problem. In (Fontaine, 1996), the author distinguishes four steps in a
plan recognition process: opportunity, filtering, activation and discrimination. We will concentrate in
this paper on the last step, which can be formulated in our case as the problem of finding in a video
program made of automatically labelled segments the occurrences of a typical sequence represented
by a template This recognition process often results in attributing a modality to the plan being
processed, depending on whether the observations satisfy, don’t satisfy or are compatible with the plan
(Weida, 1995). (Ramaux and Fontaine, 1996) present a method that computes a proximity measure
between the plan and the observations. We will focus in this paper on determining whether a set of
observations satisfies or don't satisfies a template. It has turned out that determining whether the
observations are compatible with a template is difficult and we temporarily put this task to one’s side.

Following (Weida, 1995), we define a template as a terminological constraint network. The vertices of
the network are associated watncepts which describe classes of video segments coming from audio

or video analysis tools. The edges of the network are temporal constraints which have to be respected
by the observations, i.e. the video segments coming from the analysis tools. In addition to Weida's
formalism, we define an iteration operator “*” which expresses a contiguous sequence of video
segments. For instance, a simple template may describe a report as a sequence of consecutive shots
with a logo appearing during the first shot of the sequence. This template is defined by the following
expression:

Report

nodes: s1hot] ) Ryt ;
s2 [Shot*] N »
s3 [Logo]

constraints : slrfeets} s2 [ 9ot [Su| So [3d] Su |
s3 {starts O during Ofinishes} s1 @
sl {dtarts} this
s3 {finishes} this

Classification of basic film events

Everything that appears on the screen, or is heard in the soundtrack constiuees. &m this paper,

we will consider that the temporal part of an event is only a time interval — for example a start point
and a duration — identifying the temporal occurrence of the event within the video. Much like in
grammars, we assume that a video is composed of several terminals, which we call segments. These

! DiVAN is the Esprit project N° 24956.
2 We choose the term “template” becassanario or plan (“plan” means “shot” in French) are ambiguous in the
television domain.



events are terminal because they are not themselves composed of other segments. An event can be a
particular shot, which is what is filmed in one shot of the camera, a segment of music, a gradual
transition between two shots as a dissolve, etc.

When applied in the context of DiVAN, the complete indexing process consists of the following steps:
1) initial segmentation of the audio and video track, producing at least two separate segmentation
layers (usually more); 2) feature extraction and classification of segments, based on learned statistical
models; 3) symbolic classification, using DL descriptions; and 4) recognition of composite events. In
this paper, we assume the results from 1) and 2) provide a set of terminal events and focus on step 3)
and 4).

Description Logics Description logics (Nebel, 1990) form a family of knowledge representation
languages which derive from works on semantic networks and frame languages. In a description logic,
concepts represent sets of individuals, and roles represent binary relations between individuals.
Concepts can be seen as unary logical predicates, as roles are similar to binary logical predicates.
Concepts can be described by syntactic operators as intersection (AND), union (OR), restrictions on
the domain of arole or on the cardinality of arole. Concepts (and sometimes roles) are organized into

a taxonomy according to a generality link — asubsumption link. Computing the subsumption relation
between two concepts is one of the principal task of a description logic syssamtiation is one
other important operation, which compute the set of concept an individual belorigsntiive
concepts are defined with necessary — and not sufficient — conditiatfefiresl concepts are defined
with necessary and sufficient conditions.

Taxonomy of film events Using the CLASSIC system (Borgida, 1989), we define classes of events as
concepts, focusing of classes of events which can be automatically recognized by audio and/or video
analysis tools, such as those which are integrated in the DiVAN prototype: segmentation into shots,
face regions and text regions detection, music/speech discrimination, jingle detection in the audio
track, for example.

Figure 1 shows five concepts corresponding to cases where a face region can be detected clearly.
These concepts are derived from terms of a cinematographic vocabulary, called “shot values”, and
range from close-up (CU), where the face occupies approximately half of the screen, to the long shot
(LS), where the human figure is seen entirely, and the face occupies around ten percent of the screen.
Intermediate shot values are the medium shot (MS), the medium-close-up (MCU) and the medium-
long-shot (MLS) (Thompson, 1998). Shot values are usually defined in relative and imprecise terms,
based on the distance of the subject to the camera. We use the fact that the apparent size of faces on
screen vary inversely with their distance to the camera to provide a computable definition of shot
values. The ratio of the width of the face to the width of the frame is used to classify a shot among the
five concepts. For example, the CLASSIC definition of a MCU shot is the following:

(cl-define-concept 'MCU-Face
“(and
face
(all face-ratio (and (min ,(/ 1 6)) (max,(/ 1 2))))))

Face
CuU MCU MS MLS LS

Figure 1. shot values

The algorithm used in DiIVAN to segment a video into shots also detects two different classes of
progressive transitions between shots, namely dissolves and wipes. In a dissolve, the existing image is



progressively replaced by superimposing a new image. In awipe, a geometric pattern — often a simple
line — erases the existing image and reveals the new one. This editing effects are illustrated by Figure
2.

Dissolve

Transition
Dissolve Wipe

Figure 2: progressive transitions between shots

In may happen in some collections of documents that low-level features can directly provide high-
level information. For example, in the five editions of the “France 3” evening newscast “Soir 3" from
the DiVAN corpus, when some text is displayed at the bottom left of the screen during a medium
close-up shot of a character, the text always refers to the character on-screen, mentioning its name and
sometimes its function or role (see Figure 3). Thus, a “named person shot” can be defined by the very
simple CLASSIC expression:

(cl-define-concept ‘NamedPersonShot
‘(and
MCU
BottomLeftTextShot)))

Figure 3: example of a NamedPersonShot

When a shot is classified both as a MCUShot and as a BottomLeftTextShot, it is automatically
classified as a NamedPersonShot. The definition of this concept is specific to the “Soir 3" newscast.
Specific concepts are defined for each collection, starting from generally defined concepts as MCU. In
other words, a general taxonomy of concepts is specialized for each collection of programs.

Constraint networks

A template is a temporal constraint network whose vertices are associated with concepts defined in a
description logic formalism, or with other templates. A vertex associated with a concept is called an
“elementary” vertex and a vertex associated with a template is told a “composed” vertex. An iteration
operator “*” is defined which can be applied on the vertices of the network which are associated with
concepts or with certain types on templates. This types of templates will be discussed later. The “*”
operator can be compared to the “+” operator in regular expressions, as it indicates a contiguous
sequence of at least one element. Non iterated vertices are told “simple” vertices. This iteration
operator indicates a sequence of contiguous events. This leads to four different types of vertices:



* simple elementary vertices (v¢)

» simple composed vertices (V1)

» iterated elementary vertices (vc+)
» iterated composed vertices (v«)

The edges of the network are temporal constraints. In the current implementation of the system, these
temporal constraints are temporal relations in the full interval algebra. A template is recognized — or
satisfied — if and only if :

» each simple elementary vertexig matched with an observation which is an instatice

» each simple composed vertexig matched with a subset of the observations which satisfies
T;

e each iterated elementary vertex ¥s matched with a subset of the observations forming a
contiguous sequence of instance€pf

* each iterated composed vertex 18 matched with a subset of the observations forming a
contiguous sequence of satisfied templdies

» the matching respect the temporal constraints defined in the template.

When a set of observations satisfies a templaiéis said to be an instance ©f Without iterated
vertices, the problem of template recognition comes down to find a matching between the constraint
network and the observation network. This network matching problem has been proved to be NP-hard
(Weida, 1995). Recognizing templates with iterated vertices lead to matching vertices of the template
with sub-networks of the observation network. In order to avoid a combinatorial explosion, we
designed methods which are very efficient for the type of cases we have to deal with. An overview of
these methods is presented in section O.

Temporal constraints

Several representations of time may underlie a temporal constraint network. The two main categories
are the time point algebra (Vilain et al., 1989) and the time interval algebra (Allen, 1983). Complete
constraint propagation in the latter representation is NP-hard and tractable subclasses of this algebra
have been proposed (Nebel et al., 1994; Drakengren et al., 1997). Following (Weida, 1995) we have
chosen the full interval algebra with a 3-path consistency constraint propagation algorithm which is
potentially non complete. The reason why we choose this formalism is that when we started this work
we didn’'t have a precise idea on what would be the most appropriate representation of time. We thus
adopted this very general and expressive formalism. In a second step, we should work on determining
what are the temporal constraints we really need. For example, it appeared on the one hand that
numerical constraints such as “a segment of music which starts less than 30 seconds before a shot”, as
in (Aigrain, 1997), would enhance the powerfulness of our system. On the other hand, the full
expressiveness of Allen’s algebra didn’t appear yet to be necessary.

The temporal extension of an instanad a templatél can be specified in the template definition by
setting temporal constraints betwdenor more precisely what will kewhenT will be recognized —

and its components. The instance of a template is designed by “this” in the template definition. For
example, the template illustrated by Figure 4 defines a “musical shot” as a shot which appears during a
musical segment. The temporal extension of a musical shot is naturally set as being equal to the
observed shot. Note that any disjunction of Allen’s relations may be set between the instance of a
template and its components.



M usical Shot

MeE3d
nodes: s1{Shot] -—
s2[Music]
constraints: S2 during sl
sl equalsthis
| Msc

Figure 4: temporal extension of an instance of template

Iterated sequences

An iterated vertex v« or v« in atemplate represent a contiguous sequence of observations which are

instances of C or instances of T. An iterated sequence contains at least one element, and the elements

of an iterated sequence are contiguous, which means that two successive elements must be related by

the Allen’smeets relation. The temporal extension of an iterated sequence is defined as the temporal
union of the temporal extensions of its elements. This implies that the temporal extensions of those
elements are known, which lead to limit the types of templates which can be associated to an iterated
vertex (see section 0). These types of templates are what we call “bounded” temela¢esplates

whose temporal extension of instances may be computed. Roughly, a template is bounded if some of
its vertices are in such a temporal relation with “this” that the temporal extension of its instances may
be computed from the temporal extension of its components. This vertices have to be associated with
event concepts or with other bounded templates. The temporal relations that allow to compute the
starting point aretarts, is-started, meets, equals, and the temporal relations that allow to compute the
ending point arénishes, is-finished, is-met, equals.

The Figure 5 illustrates an iterated sequence of the tenMiaieal Shot illustrated by Figure 4. Note
is this example that the same segment of music was used to recognize each of the shots as instances of
the Musical Shot template.

Musi cal Sequence
< >

[Shot-1] Shot-2 |  Shot-3 | Shot-4 |

Music

Figure5: example of an iterated sequence

Other constraints

Once the general architecture of a template is designed as a temporal constraint network whose
vertices are associated to concepts in a taxonomy of audiovisual events or with other templates, and
whose vertices may be iterated in some cases, it is possible to define other constraints on its vertices.
For example, we define a “no ... between” constraint telling that for a template to be recognized, there
should be no instance of some condeémtr some templat& between the observations matched with

two of the vertices of the template. For example, the template illustrated by Figure 6 defines a report
as the sequence of shots that is shown between two consecutive “jingle” shots, a jingle shot being a
shot during which some instanceJofigle is heard.



Report

nodes: s1[Shot] Report Report
< . -
s2[Shot*]

3[Shot] | shot-1 | Shot-2 Jshot-3]shot-4] Shot-5 | Shot-6 |shot-7] Shot-8 |

sAlJingle]
sb[Jingle]
constraints sl meets s2
S2 meets s3
4 during sl
sb during s3
s2 equalsthis
no Jingle between s4 s5

Figure 6: example of template with a “no ... between” constraint

Other constraints could be easily defined, which would be taken into account by the constraint solver

during the recognition process. It might be for cardinality constraints on the number of elements of an

iterated sequence, or even numerical constraints on the tempora dimension of vertices, as “two
instances ofingle separated by at least 30 seconds”. Note however that these constraints would not be
taken into account during the construction of the temporal constraint network, and thus that
inconsistencies would not be detected. In this case, the recognition process would scan the whole
search space before answering that there are no solutions.

CSP techniquesfor template recognition

The problem of recognizing instances of a templatemong the observations is expressed as a
constraint satisfaction problem (CSP). Roughly, each vert@xgifes avariable of the CSP. Each
variable takes its values from ilemain, a finite set of possible values. The solutions of the problem
are expressed as a setonstraints which are boolean functions whose arguments are variables.

In this section, we give an overview of the implementation of the Clavis system, focusing on the
recognition of iterated sequences. The implementation deeply relies on BackJava (Roy et al., 1999), a
(CSP) framework which allows to implement specific classes or variables, constraints and even
domains or heuristics as subclasses of general purpose predefined classes. Thus, general mechanisms
as arc-consistency can be used, as specialized filtering methods can be defined. In the system
presented here, we use general unary constraints for checking that a simple elementary vertices are
matched with observations that are instances of the concept associated with the vertex, general binary
constraints for temporal constraints between simple vertices and specialized filtering method for
temporal constraints which implies iterated vertices. These methods are sketched below. Finally, we
let the default resolution mechanism of BackJava realize the recognition prazegs,let it choose

when it should instantiate a new variable, which variable to choose, when it should backtrack, etc. The
time responses we get during the experimentations we did — a few seconds for templates with iterated
composed vertices with about 200 observed events — were quite encouraging and we didn't try to
optimize the resolution phase.

The most complicated part of the implementation concerns iterated vertices of templates. We describe
what is done with iterated elementary vertices. Iterated composed vertices associated with altemplate
are managed in a similar way after all instance$ bave been recognized. Each iterated elementary
vertex \& gives an “iterated variable” of the CSP. The first problem is to represent the domain of the
variable,i.e. the set of iterated sequences of instanc&s @he number of such sequences can be very

. , . N(N+1
important. For example, for an observation network made odnsecutive shots, there aréz—)

distinct iterated sequences of shots. In this case, illustrated by Figure 7, all sequences of shots may be
represented as sub-sequences of the biggest sequence of shots, which is called a “maximal” sequence.
A maximal sequence of instances@fs an iterated sequence of instance€ @fhere no observation

is both an instance @@ and is in themeets relation (respectively thes-met) relation with its first
(respectively its last) element. Each sub-sequence is uniquely determined by its size and the index of



its first element in the maximal sequence. An indexing function is used, which associates a unique

N(N+1)

integer between 0 and 5 -1 to al sub-sequences of a maximal sequence of size N according to

their size and the index of their first element in the maximal sequence. The domain of an iterated
variable is thus represented as a list of integers which isinternally implemented as a list of intervals.
This kind of integer variables are already implemented in BackJava which takes in charge basic
operations on intervals, like union or intersection.

Shots
[TT2T3T2[5]6]7J8]oJofii]2[3[4]15]16]17]
4 i=6
(617]8]9f10]

< >

w=5

Figure 7: representation of sub-sequences

In order to compute the domain of an iterated variable representing an iterated vertex ve:, one’s must
first compute the set of all maximal sequences of instanc€s ®his computation could be very
expensive in the general case, but is quite acceptable for the kind of cases we have to process.

Temporal constraints which imply an iterated variable are implemented using a set of several filtering
methods. Each of this method is intended to reduce the domain of the iterated variable in a given
context. The general principal is the following. Le{\; v*) be a temporal constraint which imposes

hat the values of the two variables v and v* are in Rheemporal relation, v* being an iterated
variable, v being either iterated or not. When v is instantiaedyhen the solver chooses a value for

v, some filtering methods are called which suppress from the domain of v* the iterated sequences
which don't respect thR relation.

Let us take as example a template which specifies that a jingle must preeestdyan iterated
sequence of shots. Theets relation is expected to be frequently encountered in templates, and thus a
specialized filtering method has been designed for it. Tivanable represents the jingle and the v
variable represents the shot sequence. The observations are illustrated by Figure 8. During the
recognition process, the solver may choose to affecjitighe-1 to v;. In this case, theloMeets

filtering method is called, which suppresses from the domaig.adlthe sequences which don'’t start

with the sixth shot, as illustrated in the figure. Similar methods are designed for other cases which are
expected to frequently happen, asdtaets, equals or finishes temporal relations.

Another set of 13 methods are designed to cope with any temporal constraint, one for each of the
Allen’s basic temporal relation. For theAllen's basic relation, the filtering methadbNot-r is
implemented, which takes as argument an iterated variables v* and an observes] amdnivhich
suppresses from the domain of v* all the sequences which are inréegtion withe. In order to
process a gv, v*) constraint in the case wheReis any disjunction of Allen’s basic relations, the
doNot-r method is called for all the Allen’s basic relatiowhich are not part dR.

Shots l
[TT2T3T4[5[6[7[8[of0[1i]12]13]14]15]16]17]

Figure8: filtering iterated variables

Template subsumption

It would be appreciable if the template library was hierarchically organized according to subsumption
links, as are concepts in a taxonomy. In (Weida, 1995), recognizing instances of templates among the



observations amounts to testing subsumption between templates, as plans and observations are roughly

the same kind of temporal constraint networks. Unfortunately, the iteration operator we introduce in

the template definition language results in an important complexity in the computation of subsumption

between templates, as the *’ may appear in both the subsuming and the subsumee template. This
implies that computing subsumption would necessitate to find a matching from sub-networks of the
subsuming constraint network to sub-networks of the subsumee constraint network. Consider for
example the templates &nd T, illustrated by Figure 9. (Tsubsumes J as any set of observations
recognized as an instance gfWould also be recognized as an instance;of T

[ o =] ot | ot s shot s shor |

during during

T T,

Figure 9: templates subsumption

Experimentation

We present in this section some experimentation we made on different broadcast news. Some of the
documents come from an annotated corpus which was provided by INA and thgral\, the other

are part of the corpus of the DIVAN project. The results presented here rely on reference
segmentations established for evaluation of analysis and classification tools of the DiVAN project
(Bouthemy et al., 1999). The newscasts presented here fall into two main categories:

» Traditional newscasts, alternating between the anchor person in the studio, and pre-recorded
stories;

» Short newscasts composed of a small set of pre-recorded stories separated by jingles and/or
graphics.

In order to recognize reports from this two types of newscast, two different methods are used which
use different templates. It should be noted that similar classes of events — similar concepts — in two
different newscast may have different definitions at the signal level. For example, the name of a
character being filmed appears differently in a “Soir 3" and in a “France 2" evening newscasts, as well
as the place of the logo is different (see Figure 3 above and Figure 10 below).

Reports of “France 2" newscast

In an edition of the “France 2" evening newscast, report sequences alternate with shots showing the
anchorman in a studio. The anchorman can be filmed from different cameras. The logo of the channel
always appear during report sequences on the bottom right of the screen, and never appears on studio
shots, except onteDuring report sequences, a text inscription on the bottom left of the screen always
indicates the name of the person being filmed as a text inscription on the bottom right of a medium
close-up shot always indicates the name of the location where the action takes place. Detecting these
types of shots is interesting for at least two reasons. First, it may help to temporally structure the report
sequence itself. Second, these shots may be used for summarize the report sequence, by for instance
preferably select keyframes coming from these shots.

By exploiting the results of three analysis tools, namely a logo, a text region and a face region
detection tool, four classes of shots can be defined for this newscast. These four classes are illustrated
by Figure 10 and are organized according to subsumption links as shown in the figure.

3 Action Indexation Multimedia
4 We do not take this shot into account here



Shot

[~

ReportShot StudioShot

A~

NamedPersonShot || NamedPlaceShot

ReportShot NamedPersonShot NamedPlaceShot

Figure 10: the four classes of shots from “France 2" evening newscast

We present here an edition of a “France 2" newscast coming from the AIM corpus. This document
contains 157 shots, including 15 studio shots, 7 shots of named persons and 11 shots of named places.
The temporal order of the shots is shown Figure 11. In the figure, the missing shots are report shots
which are not shots of named place or named person.
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[ studioShot Vv\\\

[] NamedPlaceShot

B NamedPersonShot time Reports
—

Figure 11: temporal order of shots in “France 2” example

In this example, we define areport as being what is shown between two shots of the anchorman. We
thus extract the reports from the list of shots by defining the following template:

Report
nodes: s1[ StudioShot]
s2[ReportShot*]
s3[StudioShot]
constraints: sl meets s2
S2 meets s3
s2 equalsthis

This template specifies that a report is recognized when it occurs that a studio shot is followed by a
sequence of report shots which is followed by another studio shot, and that the temporal extension of



the report is equals to the temporal extension of the report shot sequence, i.e. it excludes the studio
shots. Thistemplateisillustrated by Figure 12.

W '
E;% (..
r s

Report

Figure 12: example of a “France 2” report

The recognition of this template gives 7 reports, as expected. The recognized reports are shown Figure
11. We then try to establish which reports contain at least one shot of a hamed person. The following
template is used for this purpose:

ReportWithNamedPer son

nodes: s1[Report]
s2[NamedPer sonShot]

constraints: sl { starts finishes during equals} s2
sl equalsthis

This template specifies that the reports we are looking for are reports “during” which a shot of a
named person occurs, the meaning of “during” being given by the disjunction of Allen relations:
{starts [ finishes O during [ equals}. This relation states that the shot of the named person can be at
any place in the report and can even temporally equals the report, which would be the case if the report
is composed of a single shot of a named person — intervention of a foreign correspondent, for example.
The temporal extension of such a report is obviously the same as the original report, as stated by the
last constraint of the template definition.

The reportg, ra, r4, s andr; of Figure 11 are recognized as reports with a named person. Note that
ther, report contains three distinct shots of a named person. Thus, there are three different ways to
recognizer, as a report with a named person. The recognition process gives three respanges for
such a report, and a post-treatment is needed in order to keep only one answer.

Reports recognized from audio jingle occurrences

Several short newscasts share a common very simple temporal structure: reports are only separated by
jingles. This is the case for example for the French channels M6 (the “6 minutes” newscast), Canal+
and Arte (the “8 ¥2" newscast). Most of time, the jingles of such newscasts are sequences of very
similar images accompanied with very similar sound samples. We are interested here in the case where
two analysis algorithms are applied, one providing a segmentation of the visual part into shots and the
other detecting occurrences of jingles within the audio track. Jingles and shots are temporally
independents, as shown in Figure 13.

Shots

- . w e

Figure 13: shot segmentation and jingle detection

We define in this case a report as a sequence of shots which is delimitated — in a way that will be
précised later — by two jingles. We consider the first jingle as being part of the report in order to be



able to build sequences of reports, i.e. to recognize the Report* part of the whole newscast template.
We choose to include the first jingle as ajingle is often announcing the report and may contain visual
or audio information on the report. A report is illustrated Figure 14. The first and the last reports

constitute special cases, which are dealt with separately.

We first define the whole temporal structure of the newscast, which is simpler that the definition of the
report, and which is given by the following template:

Report

zzi o .
-

Figure 14: example of a “M6” report

Newscast
nodes: sl[FirstReport]
S2[Report*]
s3[LastReport]
constraints: sl meets 2
S2 meets s3
sl startsthis
s3 finishes this

This template indicates that the newscast is composed of its first report followed by a sequence of
reports followed by its last report, and that its temporal extension is the temporal union of all the
reports. The template which defines a report is a bit more complicated, in order to handle al the
possible relative temporal positions of the shots which are part of the jingles with respect to the audio
part of those jingles. The definition of this template is the following:

Report
nodes: s1[Shot]
s2[Shot*]
S3[Shot]
sA[Jingle]
s5[Jingle]
constraints: sl meets s2
S2 meets s3
sl {overlaps startsis-started is-during} s4
s3 {overlaps startsis-started is-during} s5
sl startsthis
s2 finishesthis
no Jingle between s4 s5

At least three shots are necessary to recognize a report. Shots labelled s, and s; in the template
delimitate the report. The temporal relation {overlaps O starts O is-started O is-during} which
constraint s; and s; stands for “the earliest shot which temporally intersect the jingle”. Roughly, a
report is said to last from the beginning of one jingle to the beginning of the next jingle.



The way the temporal constraints are set in the template ensures that recognized reports form a
contiguous sequence. The last constraint imposes that there is no jingle between the jingles matched
with s;and s, i.e. 53 and s, are matched with consecutive jingles. Figure 15 shows an example of such
areport. The matching of the template nodes are indicated on the figure, as are indicated the observed
constraints between the shots which bound the report and the jingles.

Report
/ N\
HeHHHH s
T oS s, overlaps s,
v
w- e
Sy S5

Figure 15: example of areport recognized from jingles

First and last reports are defined in a similar way, assuming that the first and the last shots have been
labelled as FirstShot and LastShot. The definition of the template of the first report is given bellow:

FirstReport
nodes: sl[FirstShot]
s2[Shot*]
s3[Shot]
sA[Jingle]
constraints: sl meets s2
S2 meets s3
s3 {overlaps startsis-started is-during} s4
sl startsthis
s2 finishesthis
no Jingle between s1 s3

At afirst glance, it may not appear necessary to explicitly refer to the shots which bound the report —

shots indicated bs; ands;in the report template — and a report may seem to be more simply defined
as a sequence of shots “between” two consecutive jingles, which would naturally lead to define the
template:

NaiveReport

nodes: s1[Shot*]
s2[Jingle]
s3[Jingle]

constraints: slié-started is-overlapped} s2
s1 {meets overlaps} s3
slequals this

noJingle between s2 s3

Now consider the shots and the jingles illustrated by Figure 16. In the figure, shots which can be the
first shot of a naive report are indicated by a star and shots which can be the last shot of a naive report
are indicated by a diamond. Thus, there are 9 possible naive reports, as there is only one report when
applying the previous template. Moreover, this template doesn't take into account some special cases,
as the case where the audio jingle is totally temporally contained in one single shot.



Figure 16: multi occurrences of a naive report

We applied the newscast template to a “M6” newSoemntaining 174 shots and 10 jingles. The
recognition process gives exactly 1 matching for the newscast, which is made of 1 first report, a
sequence of 9 reports, and 1 last report, which means that all reports have been recognized and that
each report was recognized is only one way. On the other side, the recognition of the “naive” report
template gives 485 reports.

Other types of programs follow similar structures. For instance, programs of the “Top A” variety show
from the DiVAN’s corpus present successive songs which can be segmented by only using the
applause occurring at the end of each song. Delimitating the temporal boundaries of a song is however
more difficult than those of a “M6” report, because applause can temporally overlap the music.

Reportsrecognized from progressive transitions

We compare in this section two different ways of recognizing reports from five editions of “Soir 3",
the evening newscast of the french France 3 channel. Four of these documents are part of the DiVAN
corpus and the last one comes from the AIM corpus. A report of this newscast is defined as the
sequence of shots that is showed between two consecutive shots of the anchorman. This definition is
taken as the reference. The first method for recognising reports uses only one concept,
AnchorManShot, and one template:

Report

nodes: s14nchorManShot]
s2[AnchorManShot]

constraints: sbefore s2
slmeetsthis
s2is-met this

no AnchorManShot between sl s2

Most of time, reports in a “Soir 3" newscast begins or ends with a progressive transition, as a dissolve,
as illustrated by Figure 17.

Figure 17: progressive transition at the beginning of a “Soir 3” report

Shots of the anchorman and progressive transitions of a typical “Soir 3” edition is illustrated by Figure
18. As progressive transitions may appear during a report, and as reports don't always start or end with
a progressive transition, recognising reports with using only progressive transitions will produce some
errors. These errors may come from a shot of the anchorman or a sequence of shots of the anchorman

® Still from AIM corpus



being classified as a report if it is surrounded by progressive transitions, or from “missed” reports — or
more precisely missed transitions between two consecutive reports — caused by an anchorman shot or

a sequence of anchorman shots neither starting nor ending by a progressive transitions.

Progressive transitions

Anchorman shots

— H H  HH — — — H H H H

a 5000 10000 15000 20000 25000 30000 35000 40000

Frame number

Figure 18: anchorman shots and progressive transitions in a “Soir 3” edition

The template used to recognize reports using the ProgressiveTransition event concept is the same as
the template used with the AnchorManShot concept, by replacing AnchorManShot with
ProgressiveTransition. Table 1 summarizes the number of reports recognized with the two templates,
as the number of anchormans shots or sequences classified as reports and the number of missed
reports.

Reportsfrom Reportsfrom Anchorman shotsor sequences | Missed
anchor man shots progressivetransitions | classified asreports reports
12 15 3 1
11 24 11 0
10 17 6 1
13 26 4 1
10 31 6 0

Table 1: reports from “Soir 3" editions

This experience shows that detecting reports in this case by using only the progressive transitions
entails some over-segmentation due to progressive transitions appearing during the reports and
anchorman shots or sequences of shots surrounded by progressive transitions. The quasi systematic
use of progressive transitions at the beginning or at the end of reports leads to a very small number of
forgotten reports.

Conclusion

We have shown in this paper that a plan recognition approach, making use of complex temporal
relations between video segments can be both useful and efficient for solving a variety of video
segmentation and indexing tasks. This temporal framework is obviously not sufficient for solving all
problems, and should be extended to deal with other relations, such as image or sound similarity




between segment classes, and numerical temporal constraints. While this paper focused on the macro-
segmentation task, such extensions could be even more useful in other applications, such as the
automatic generation of video abstracts. More work is aso needed to determine whether this temporal
framework is necessary (compared to other simpler approaches using regular expressions and finite
automata) for solving the task at hand.

Thiswork should be extended in two main directions. First, experimentations showed that designing a
template for a collection is not a trivial task, even for television experts, and that the quality of the
results depends critically on such difficult design choices as temporal constraints. Therefore, we are
now turning to machine learning techniques for creating templates from annotated examples. Second,
we currently assume that the initial segmentation and classifying results observed by Clavis are
perfect. In the future, we would like to relax this assumption, for instance by defining preferences in
the space of solution of the CSPs.
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A FRAMEWORK FOR ALIGNING AND INDEXING MOVIESWITH THEIR SCRIPT
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ABSTRACT

A continuity script describes very carefully the content of
a movie shot by shot. This paper introduces a framework
for extracting structural units such as shots, scenes, actions
and dialogs from the script, and aligning them to the movie
based on the longest matching subsequence between them.
We present experimental results and applications of the frame-
work with a full-length movie and discuss its applicability
to large-scale film repositories.

1. INTRODUCTION

Choosing terms for describing and indexing video content
is a difficult and important problem. We believe not enough
attention has been given to a very important source of video
descriptions - the continuity script which describes very care-
fully the content of a movie shot by shot. In this paper, we
discuss some of the issues related with synchronizing and
aligning a movie with its script using a combination of cues
from the dialogs and the image track. We describe gram-
mars and automata for formatting the script into structural
units such as shots, scenes, actions and dialogs. We then in-
troduce a dynamic programming algorithm for finding the
longest matching subsequence between the formatted script
and the video content. This procedure aligns the script to
the temporal axis of the movie at the shot and dialog levels,
and therefore allows dialogs and action descriptions in the
script to be used as indices to the video content. We illus-
trate the framework with *The wizard of Oz *, a well-known
masterpiece released in 1939, whose continuity script was
carefully edited and published on the Internet [1].

Alignment of script to video was mentioned by other re-
searchers [2, 3, 4] as a means to provide training data for
learning models of objects, scenes and actors. But contrary
to the similar problem of aligning bilingual translations of
the same text [5, 6], it was never formalized properly. With
this work, we would like to contribute to such a formaliza-
tion.

2. SCRIPT FORMATTING

In this section, we introduce our model of the continuity
script for "The wizard of Oz’, and algorithms for automat-
ically formatting the script from plain text to XML. Typi-
cally, a continuity script is updated throughout shooting of
the movie and includes the breakdown of scenes into shots.
In contrast, a production script only breaks down the movie
into its master scenes. In that case, the alignment and index-
ing can only be performed at a much grosser scale. In this
work, we are particularly interested in continuity scripts,
such as *The wizard of Oz’.

movie

action line

Fig. 1. High-level grammar of film structure. A movie is
composed of scenes, which are composed of shots. Tran-
sitions can occur between shots or scenes. Shots are com-
posed of actions, camera movements and dialogs.

From our own analysis of many film scripts and related
books in film studies, we found that the structural compo-
nents of a film script were - the scene, the shot, the tran-
sition, the action, the camera action and the dialog, as rep-
resented in Fig. 1. Scene is a segment of the movie tak-
ing place in a given location. It is described as "interior’ or
“exterior” and with the name of a place or location. It con-
tains a sequence of contiguous shots. Shot has type close-
shot (CS), medium-close-shot (MCS), medium shot (MS),
medium-long-shot (MLS), long-shot (LS) or extreme-long-
shot (ELS). It starts with a description, usually naming the
actors, the settings and the camera viewpoint, followed by a



sequence of actions, camera actions and dialogs. Transition
has type dissolve or fade and separates two shots or scenes.
Camera is an informal textual description of the camera mo-
tion. Action is an informal textual description of an action
taking place within a shot. It usually names the action with
a verb as well the actors performing the action, and includes
references to places in the scene and on the screen. Dialog
starts with the name of a speaker. It contains a sequence of
utterances (broken into lines) and actions.

The organization of those components in a particular
script is embodied by a set of typographic and stylistic rules.
In order to format the script into a strict, structured represen-
tation, we need to further describe those rules as a grammar,
down to terminal symbols such as letters, tabulations and
line breaks. It turns out that in many classical Hollywood-
style scripts, the grammar is regular. In other words, film
scripts can be modelled with regular expressions and rec-
ognized with finite-state automata. As an example, the for-
matting rules for the continuity script of the *Wizard of Oz’
follows the grammar of Fig 2.

SCENARIO —  CREDITS? SCENE + CREDITS?
SCENE —  LOCATION (SHOT[TRANSITION]) +
LOCATION  —  ("INT. | "EXT.") - TEXT
TRANSITION  —  TAB? ("FADE IN” | "FADE OUT”
TRANSITION  —  TAB?”LAP DISSOLVE TO”)
SHOT —  SIZE DESCRIPTION DIALOG +
SIZE —  "CS”|”MCS”|"MS” | ”MLS” | "LS”
DESCRIPTION  —  ACTION [-ACTION | CAMERA]+
DIALOG —  TABSPEAKER ”(0.S.)”? [LINE | ACTION]+
CAMERA —  "CAMERA” TEXT
ACTION —  TEXT

Fig. 2. A grammar for the continuity script for "The Wiz-
ard of Oz’. Higher-level symbols from Fig. 1 are explicitly
decomposed into lower-level entities and terminals (format-
ting and tabulations). This grammar is easily found to be
regular since all productions are either of type A — a
or A — aB, where g is a terminal and A, B are non-
terminals.

As a result, the script can be analyzed as a regular ex-
pression with a finite state automaton. Once this grammar
has been fully worked out, it is easy to write down an au-
tomaton for transcribing the entire script into an XML tree
in the form of Fig. 1. Fig. 3 shows the three shots of Fig.
4 translated into XML using specialized tags for shots, ac-
tions, cameras and dialogs.

3. SCRIPT ALIGNMENT

Given the formatted script, we now have to align its ele-
ments with the temporal axis of the movie, so that the de-
scriptions from the script can be used as indices to the video
content. This is not a trivial task because the video comes
as large chunk of data, which must be parsed into elements
corresponding to the scenes, shots, actions and dialogs in

<shot size="CS">

<action>Toto by wheel of rake</action>
<action>listening to song</action>

</ shot >

<shot size="MS">

<acti on>Dor ot hy singi ng</action>

<acti on>swi ngs on wheel of rake</action>

<action>t hen wal ks forward around wheel </ acti on>
<action>Toto junps up onto seat of rake</action>

<acti on>Dorothy pets hinx/action>

<canmer a>CAMERA PULLS back</ caner a>

<di al og speaker =" DOROTHY" >

<line>Sonmeday I’|| wi sh upon a star</line>
</ di al og>

</ shot >

<shot size="LS">

<action>M ss @l ch rides forward</action>

<action>stops and gets off her bicycle</action>

</ shot >

Fig. 3. Example of xml-formatted script. For lack of space,
we did not reproduce the scene level, where in fact the first
two shots are part of the same scene and the third shot in-
troduces a new scene.

the script. Since there may be errors in both the format-
ting of the script and the parsing of the video, the alignment
should be flexible enough. While video parsing has a long
and active history, we do not believe that the results of video
analysis can be trusted to generate a full tree structure allow-
ing to formulate the alignment as a tree-matching problem.
Instead, we temporally sort all the script elements and ex-
tracted video segments (shot transitions and subtitles) and
apply string matching techniques to align them.

In this section, we reformulate the alignment problem as
one of finding the longest matching subsequences (LMSS)
between the movie and the script, and we describe an ef-
ficient dynamic programming algorithm which solves this
problem. Dynamic programming has been used with much
success for aligning bilingual corpora [5] and for matching
video sequences [7].

For the purpose of aligning a movie and a script, we ex-
tract subtitles and candidate shot cuts. We implemented and
used an algorithm described by Salesin et al. for shot change
detection using Haar wavelet coefficients [8]. The algorithm
computes a distance between successive frames, and uses
thresholds to detect candidate shot cuts. We carefully tuned
the thresholds over multiple temporal resolutions to obtain
quasi perfect precision (no false detection). This results in
a fast and reasonably robust detection, except for the case
of dissolves and fades, which result in a large number of
missed shot transitions. Gradual transitions are still an open
issue for many other algorithms, because they typically in-
troduce large numbers of false detections. In the context of
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' CS:‘Toto

wheel

e
| WoS: Dofpihy |

iss Guich

Close Shot: Toto
behind wheel,
listening to song.

Medium Close Shot: Dorothy singing,
swings on wheel of rake , then walks
forward around wheel. Toto jumps up onto
seat of rake. Dorothy pets him, sits on
front of rake . Dorothy finishes song.
CAMERA PULLS back.
DOROTHY sings

@ @ & @

Long Shot: Miss
Gulch rides forward
fo front of Gale's
home, stops and
gets off her bicycle
as Uncle Henry
comes forward.

Fig. 4. Example of three shots aligned to their script descriptions in The wizard of Oz. Shots in the script are aligned to
automatically detected shot changes in the video. Aligned shots are described by the locations, actors and actions mentioned

in the script.

this work, we were interested to verify the viability of our
alignment framework with imperfect shot detection, under
the assumption that the effect of missed transitions would
remain local (as was effectively verified).

Separately, we extracted the English subtitles from the
same video stream and performed optical character recog-
nition on them to produce a stream of time-stamped short
texts. The detected shots and subtitles were translated into
an MPEG7-like XML format for matching.

The alignment between the script and the detected video
segments was performed by matching a temporally sorted
string of shots and dialog lines from the script with the
shots and subtitles from the video. More specifically, we
searched for the longest increasing subsequence of matched
shots and dialog/subtitles, a problem which can be solved
efficiently with a classic dynamic programming algorithm
[9]. In its simplest form, this approach accounts for the
following three cases when comparing segments from the
script and the movie - either they match, or the script seg-
ment was deleted, or the video segment was inserted. Note
that this approach can be generalized in many ways to in-
clude more sophisticated editing models.

4. INDEXING AND SYNCHRONIZATION

Formatting and synchronizing the movie script for *The wiz-
ard of Oz’ opened up two useful and interesting applica-
tions, which proved surprisingly easy to implement using

XSL transformations on the matched subsequences. In the
first application, we created a database of all the scenes,
shots, actions and dialogs of the movie and indexed them
with the corresponding text from the script. In addition, the
formatting of the script allowed us to extract and categorize
place/location names (from scene descriptions), speaker/actor
names (from dialogs) and action verbs (from shot descrip-
tions).

In the second application, we generated MPEG-7 like
elements and their temporal relations for use in an enhanced
multimedia player for film studies which we implemented
using our MDEFI framework. MDEFI ! is an advanced en-
vironment for playing and editing multimedia documents
[10]. MDEFI is based on Madeus, an extension of SMIL
with the additional features of (1) enhanced separation of
media content location, temporal information and spatial in-
formation, (2) hierarchical, operator-based temporal model
complemented with relations, (3) rich spatial specification
model with relative placements and (4) media fragment in-
tegration. MDEFI allows to reformat media content descrip-
tions based on the MPEG-7 standard. This description is
then used for specifying fine-grained composition between
media objects. In this work, the fine-grained composition
features of MDEFI were used to synchronize the video shots
and the film script. When playing the movie, for example,
the corresponding parts of the film script can be highlighted
in synchronization. In addition, the user can jump to video

IMultimedia DEscription and Fine-grained Integration



segments by clicking anywhere on the script - as long as a
matched segment can be found.

5. EXPERIMENTAL RESULTS

We performed the alignment of *The wizard of Oz’, start-
ing with 791 shots in the script and 683 detected shots.
Dissolves and special effects such as explosions and tran-
sitions through a crystal ball could not be detected at this
stage. The alignment was performed using 2649 subtitles
extracted from the video and 3041 dialog lines in the script.
We compared dialogs and subtitles using approximate string
matching 2, successfully matching a total of 1866 dialog
lines. As a result, we were able to automatically align 604
shots, leaving 187 scenario shots unmatched and 79 video
shots unmatched. A rapid manual inspection revealed that
most of the matched shots were matched correctly, except
for a few, highly localized segments of the movies with ei-
ther (1) a fast succession of missed dissolves and special
effects or (2) a missing scene, which was edited out from
the script in the final movie. The latter case accounts for 80
unmatched shots. Of the remaining 107 unmatched shots in
the script, half were due to undetected transitions and half
to smaller variations between the final movie and the script.
Our alignment algorithm therefore correctly matched 82%
of the script shots and 88% of the detected video shots, re-
ducing the number of outstanding shots from 791 to 107.
Of course, future work will be devoted to the remaining
fraction of shots and dialogs which could not be matched
with our current method. We are following two main di-
rections of research in this respect. On the one hand, we
can improve the alignment of shots (especially those with-
out dialogs) by matching visual descriptors in addition to
subtitles and compensating for inaccuracies in the shot de-
tection algorithm by matching all frames, using models of
the expected shot durations. This would match at the frame,
rather than shot level, and use shot transition probabilities,
rather than hard decisions in order to handle the more dif-
ficult cases of dissolves and special effects betters. On the
other hand, we are extending our alignment algorithm fol-
lowing previous work in machine translation [5] to account
for more elaborate models of insertions, deletions and re-
placements between the movie and script shots, based on
the experimentation reported here. We are also interested
in generalizing to other scripts and script formats, which
entails discovering the formatting rules for the new scripts,
writing down their grammars and checking that they remain
consistent. Finally, we believe this work opens the way
for even more ambitious developments such as tracking and

2Actually, another instance of the longest common subsequence search!
SThiswill effectively turn our longest matching subsequence algorithm
into a Hidden Markov Model decoding agorithm

hyper-linking of video objects and spatio-temporal synchro-
nization, which are already part of the MDEFI framework.

6. CONCLUSION

By examining the script of *The wizard of Oz’, we have
found that at the structural level at least, a movie and its
script can be analyzed and synchronized with simple tools
(regular expressions and dynamic programming). This has
allowed us to format the script into high-level components
and to align some of them to the movie itself. As a result
of this work, we are currently building a large database of
movie shots, indexed by dialogs, actors, settings and ac-
tion descriptions. We believe such a database can be useful
for film studies as well as for learning statistical models of
video content.
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L earning to Par se Pictures of People

RemiRonfard,CordeliaSchmidandBill Triggs*
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Abstract Detectingpeoplein imagess akey problemfor videoindexing, brows-

ing andretrieval. The maindifficultiesarethelarge appearace variationscaused
by action, clothing, illumination, viewpoint and scale.Our goal is to find peo-
ple in staticvideo framesusinglearnedmodelsof both the appearane of body
parts(head limbs, hands) andof the geometryof their assembliesWe build on

Forsyth& Fleck’s general'body plan’ methodolog and Felzenszwlb & Hut-

tenlochers dynamicprogranming approat for efficiently assemblingandicate
partsinto ‘pictorial structures’ However we replacetherathersimplepartdetec-
torsusedin theseworkswith dedicatedletectordearnedor eachbodypartusing
SupportVector Machines (SVMs) or ReleranceVector Machines (RVMs). We

arenot awareof ary previous work usingSVMs to learnarticulatedoody plans,
howeverthey have beenusedto detectbothwhole pedestrianandcombinatiors
of rigidly positionedsubimagegtypically, upperbody, arms,andlegs)in street
scenesundera wide rangeof illumination, poseandclothing variations.RVMs

areSVM-lik e classifierghatoffer awell-foundedprobalilistic interpretatiorand

improved sparsityfor reduceccomputation\We demonstrat¢heir benefitsexper

imentally in a seriesof resultsshawving greatpromisefor learningdetectorsin

moregengal situations.

Keywords: objectrecognitionjmageandvideoindexing, grougng andsegmen-
tation, statisticalpatternrecognition kernelmethods

1 Introduction

Detectingpemlein imagess animpottantpracticalchalleng for contentbasedmage
andvideo processinglt is difficult owing to the wide range of appearacesthat peo-
ple canhave. Thereis a needfor method that candetectpemle in geneal everyday
situations For instance actorsin typical featurefilms areshavn in a gred variety of
actiities, scalesyiewpoints andlightings.We cannotrely on frequentlymadesimpli-
fying assumptioasuchasnon-occlusion perfed backgoundsubtractio, etc.

To addessthisissue Forsyth & Fleckintroduwcedthe geneal methoalogy of body
plans|[8] for finding peope in images. However, they relied on simplistic body part
detectos basedon genealizedcylinders.This is prablematic,especiallyin the caseof
looseclothing Similarly, Felzenszwlb & Huttenlacher[6] shavedhow dynamic pro-
gramning coud be usedto efficiently group body planscastas ‘pictorial structures
[7], butthey reliedon simplistic colour-basedbartdetectos. Both of theseworks make
strongphotanetric assumptias abaut the body parts.We retaintheir ideasfor com-
posingpartsinto assemblie®y building tree-structted mocels of people but propose

* This work wassuppated by the EuropearlJnion FET-OpenresearctprojectVIBES



a moregereral appoachto learnirg the body part detectos andthe uncerlying geo-
metric mockel, basedon Suppet VectorMachires (SVM) [24,4] or RelevanceVector
Machines(RVM) [22,23. In the past,SVM classifiershave beenlearred for entire
humars [18] andalsofor rigidly connectd assemblie®f subimags (typically, upper
body arms,andlegs)[16], but notfor flexibly articulatedoodymodels.

We preseha seriesof experimentsshaving the promise of learningthearticulated
structureof peoplefrom training exanmpleswith handtabelledbody parts,usingSVMs
or RVMs. Our contibution is three-fdd. Firstly, our featuresetandtraining methal
builds reasonhly reliablepartdetectordrom asfew as100handtabelledtrainingim-
agesandthefinal RVM detectos arevery efficient, ofteninvolving conparisonwith
only 2—3positive and2—-3negative exenplars.Secondy, we sketcha methodfor learn-
ing a body joint mockl usingthe recentlyproposedAdaptive Combinatio of Classi-
fiers (ACC) frameawork [16]. Thirdly, we describean efficient decodeifor the learna
models,thatcombireskernelbaseddetectionwith dynamic progamming Our initial
expelimentsdemorstratethat body part detectos learnedwith only 100imagesfrom
the MIT pedestriardatabaseangive reliable detectiom with asfew as4 falsealarms
perimageon this dataset. This is remakable as even humansoften find it difficult
to classifythe isolatedpart subimags correctly. The detectedpartscanbe efficiently
assembledhto correctbody plansin 70%of cases.

The paperis structuredasfollows. We introdwce our body planmodelin 82, then
discussbody part detectos learnedby two competing algoiithms, SVM andRVM, in
83.84 present®urappoachfor learnirg anddecaling bodyplans.Finally, 85 presents
someresultsanddiscusses$uture work.

2 ThePictorial Structure of People

In thework of Marr & Nishihara[15] andothers[10,19, peope aredescrited ashier
archical3D assembliesf gereralizedcylinders andcomponerts. The positionof a part
C relative to its parentP is parametized by C's position(p, r,#) andanguar orierta-
tion (¢, ¢, x) in P’s cylindrical coordnate system.Eachjoint is thusrepresentedasa
6-vector, with discretetolerancedraluesfor eachparaneter They notethatperspectie
projecticn makesmary paranetersundosenale andthattheimagesignatue of ajoint
is a pair of axes,but still emplasize andattemptto recover, 3D structure.

Recovering articulated3D modelsfrom singleimagesis difficult. Felzenszwlb &
Huttenlodherrecertly reconsideedFischler& Elschlagers notionof pictorial structue
[7] anddemorstratedits usefulressfor detectingpeoplein indoa sceneg6]. Pictorial
structuresare collectionsof imagepartsarrangd in deformable configuations.They
aredirectly adaptedo morocularobsenations. Similarly, Morris & Rehgargued that
3D trackingsingulaities canberemoved usingimagebasedscaledprismaticmodels’
[17] — essentiallypictorid structue models.Other2D part-tasedmodelsuseimage
edgeq25] or motionmocelsderived from denseopticalflow [14] asfeatuesfor detec-
tion and/a trackirng.

Following this line of researchwe represenpeopleusinga 2D articulatedapper-
ancemodelcomppsedof 15 part-alignedimagerectanglesurroundingthe projedions
of body parts:thecompletebody, thehead thetorso,andtheleft andright upperarms,



foreams, hands thighs,calvesandfeet, numbeed from 1 to 15 asin Figurel. Each
body part P; is arectangleparanetrizedin imagecoordnatesby its centre[z ;, y;], its
lengthor size s; andits orientdion §;. A coaseresolutionwholebodyimageis also
includel in case'the wholeis greaterthanthe sumof the parts’. During training and
detection we discretizethe adnissible rangeof sizesand orientatins. As discussed
later, we usearangeof 8 scalesand36 oriertationsequallyspacedevery 10 degrees.
14 body joints comectthe parts:the plexus betweerbodyandtorso,the neckbetween
headandtorso,thehipsbetweertorsoandthighs,theknees betweerthighs andcalves,
the anKes betweencalves andfeet, the shoulders betweentorsoand uppe arms,the
elbavs betweerupper armsandforeams andthe wrists betweerforearmsandhands.
Figurel shavsthebody model in averag position usinga singleaspectratio of 16:9
for all bodyparts.

Figurel. Ourarticulatedbody modelwith its 14 jointsand15 body parts.

Expressedn termsof the prokabilistic formulationof pictorial structure the poste-
rior likelihoad of therebeinga body with partsP; atimagelocations!; (i € {1...15})
is the prodict of the datalikelihoads for the 15 parts (i.e. the classificationprobalili-
tiesfor the obsened subimagsat the given partlocatiors to beimagesof therequirel
parts)andthe prior likelihoads for the 14 joints (i.e. the prokabilities for a coheent
bodyto geneateanimagewith thegiven relative geonetric positionirgs betweereach
partandits paret in the body tree). The negative log likelihoad for the whole body
assemblyd = {l4,..., 15} canthusbewritten asfollows, whereF is thelist of body



joints (‘edges’ of thebodytree):

L(A) = _ZIOgPi(li) — > dii(ls1y)

(ij)eE

Felzenszwlb & Huttenlocker model body partsas constantcolor regions of known

shapesandbody joints asrotationd joints. In this paper we machinelearnthe 29 dis-

tributions p;(1;) andd;;(1;,1;) from setsof positive andnegative examples. We model
the partandarticulation likelihoads usinglinear Suppot Vectoror Relesarce Vector
Machines.Our work canbe viewed asan extensionof Moharis recen work on com-
binedclassifies [16], where‘component’classifiersaretrainedseparatelyor thelimbs,

torsoandheadbasedon imagepixel values,and‘combination’ classifiersaretrained
for the assembliebasedon the scoresof the compnernt classifiersn fixedimagere-

gions.However, we learnpart-aligred, rathe thanimage-aligned, classifiersfor each
bodypart,andwe exterd the‘combination’ classifierto includedefomable articulated
structuresatherthanrigid assemblies.

3 Detecting Body Parts

In our mockl, learningeachbody partamouwnts to estimatingits probability giventhe
obseredimagedistribution atits locatian. Detectingandlabellingbodypartsis acen-
tral problemin all commnentbasedpprachesClearlytheimagemustbe scannedt
all relevant locatiors and scales but thereis alsoa questionof how to hande differ
entpartorientatiors, especiallyfor small,mobile, highly articulatedpartssuchasarms
andhand. Onecanwork eitherin theimageframe,trying to build a generaldetecto
thatis capableof finding the partwhatever its orientatian, or in a part-aligiedframe,
building adetectoithatworksfor justoneorientationrandscanninghis overall relevant
orientations. The part-aligredappr@ch hasthe potentialto producesimplerdetectors
from less(but betterlabelled)training data,andthe advartagethatit alsorecovers the
partoriertation. Which apprachis fasteror bettermustdependon the relative com-
plexity andreliability of all-oriertation andone-aientationdetectorsput in gereralit
is difficult to build goodtransfamationinvarianceinto geneal-purpsedetectos. The
image-fameapprachis well adaptedo pedestriametectiom applicatios suchasMo-
han’s[16], whereonewantsarelatively coarsevholepersordetectorfor distantpele
with similar poseqmairly standingor walking). But our ultimategoalis to detectpeo-
ple andlabelthemwith detailedpartlocatiors, in applications wherethe persm may
bein any poseandpartly occluded. For this we believe thatthe partbasedbody plan
apprachis prefeable.

Our detectorworks with a generalizedeatue pyramid spanniig 8 scalesand 36
orientations0° . . . 350°. During training the articularstructureof eachtrainingimage
is clicked,andfor eachdesignategbarta 14 x 24 subimae alignedwith its axesand
scaledto its sizeis extractedas shavn in Figure 2. We learn 15 Suppot Vector or
RelevanceVector Machinesfor the individual partsand the whole body, and during
detectionrun eachof them over the scale-orietation-sition featurepyramd, then
assembl¢heresultsasdiscussedhn thenext section.
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Figure2. A hand-lakelled training image from the MIT databaseand its extractedbody part
subimagesReadingvertically from left to right: left upperarm, forearm,hand left thigh, calf
andfoot; head torsoandwhole body; right thigh, calf, foot; right upperarm,forearmandhand.

3.1 FeatureSets

The prodem of choosingfeaturesfor objectrecogiition hasreceveda lot of interest
in recentyearsandnumerais featue setshave beensuggestedncluding imagepixel
values,wavelet coeficients and Gaussiarderivatives. Waveletsare currerly popular,
but as a gereral representatiorfor humanbody partsit is undear whetrer standad
(rectanglar) or nonstandard'squae) wavelet corstructionsare mostsuitable[9,16)].
Heiseleet al obtairedbetterresultsfor their SVM facedetecto usinggraylevelsrather
thanHaarwavelets[9]. Someauthas alsofeelthatwaveletsareunsuitalte asa gereral
imagerepresentatiobecausehey represenipoirt everts ratherthanline or curve ones,
andinsteadoroposeridgeletsandcunelets[2,5]. Thesemight prove usefulfor detectirgy
humanlimbs.

Herewe leave suchissuesfor future work and usea featuresetconsistingof the
Gaussiarfiltered imageandits first and secondderiatives. Although simple, these
featuresseemto representthe variatiors of body part detail effectively over a range
of scalesandoriertations.The featurevectorfor animagerectangleat locationscale-
orientation [z, y;, s;, 6;] containgthe absolde valuesof theresponsesf the six Gaus-
sianc = 1 filters {G,V,G,V,G, V., G,V,,G,V,,G} in therectande’s (rescaled
andreoiiented)14 x 24 window. Therearethus14 x 24 x 6 = 2016 featuesperwindow.
For color images we useonly theluminane values Y. Theabsolutevaluesof thefilter
resposesarenormalizedacrosseachimage Theextractedfeatuesarenot requirel to
be scale-or oriertation-invariant. On the contiary, we seekfeatuesthat aretunedto



the charactestic scalesandoriertationsof the detailin the aligned body-pat images.
Someexanplesof thefeaturevectorsareshavn in Figure 3.

To implementthis, the Gaussiarfilters are compued using 9 rotatedimagesfrom
0 to 80 degreesand8 scalesWe resampleaccordng to scalein eachwindow, sothe
standarddeviation of thefilters in their resampled 4 x 24 windows is always1. For
ary givensizeandoriertation, we selectthe featurevecta thatbestapproaimatesthe
part-alignedregion asan axis-aligred rectandge of height24. This chdce of primitives
makesreasonbly few assumptioaabou thenatue of thefeaturedo belearnedwhich
canbearbitraly comhbnationsof shapeluminane andtexture.
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Figure3. TheV,G andV, G featureimagesfor the examplein Figure2.

3.2 Training

Using the 2016dimersional featurevectorsfor all body partsin the training set,we
trainedtwo linearclassifierdor eachpart,oneusinga Suppet VectorMachineandthe
otherusinga RelevanceVectorMachire. SVMs andRVMs aregroundedon statistical
learningresultsthatsuggesthatthey shoud give goadd classificatiorperfamancesven
whentherearerelatively few trainingexampes. Herewe decidedo putthis claimto a
severetestby trainingon the smallestsetsof examgesthatgive reasonale results—
in our caseabout100.

We trainedthe 15 partclassifierandividually againstacomman ‘backgound data
setconsistingof rancm piecesof thetrainingimagesthatdo not cortain people Note
thatwe arenot attemptingto learnisolatedpartdetectos or multi-classpart-type clas-
sifiers,but reliablefilters for rejectingnon-partswithin anarticulatel bodyplanframe-
work. We expect the overlapin appearace betweerdifferent partsto besignificant,but
we do notwantthis to causamisseddetectionsn ambigiouscases.

Support Vector Machines. SVMs arediscriminan classifiersthat give a yes/no
decisionnotaprobability. Howeverin ourexperimentswe treatthe SVM scoregscalar



productsin featue spacelsif they werelog likelihoads for the body partsgiven the
imagevalues!.

Relevance Vector Machines: RVMs [22,23 are Bayesiankernel method that
choesparsebasissetsusingan ‘Automatic Relevane Determiration’ [1] style prior
thatpushesion-essentialweightsto zero.They do not usuallygive significantlybetter
error ratesthanthe corresponthg SVMs, but they do often give similar resultswith
mary fewer kernels.Thefunctionalform of thefinal classifieris the sameasthatof an
SVM — only thefitted weightsaredifferert. Herewe uselogistic linear discrimirant
RVMs, whoseoutputdirectly modelsthe log-oddsfor a part versusa non-part at the
givenpoint. In this paper we useRVMs mainly to redwce the numbe of kernels(‘rel-
evane vectas’) andhencethe compuationalcomgexity. ThetrainedRVM classifiers
typically useonly 2—3 positive and2—3 negative relevarce vectorseach,ascompared
to 100-200suppat vectas for acompmrableSVM classifier

Currerly wetrainthelinearRVMs to make sparseaiseof examplesbut they could
alsobetrainedto make sparseuseof featues This would potentiallymeanthatfewer
imagefeaturesvould have to be extracted andhene thatthe methodwould run faster
We planto investigde this in future work.

3.3 Detection

We detectall of thebodypartsatonce,in a singlescanover theorientationscalepyra-

mid. The detectim scorefor eachpartredu@sto a simplecorvolution product against
amaskcontairing thediscriminant sumof weightedsuppaet or relevancevectos. Con-
ceptually this amourts to gereralizedtemplatematching over imagesof local feature
vectos, with weightedsumsof training exanples as templates.The nonlineaity of

the processis hidden in the rectified, normdized local featurevectas. For efficiency

in the assemblystage,we currerily retainonly the 50 bestcandicatesfor eachpart.
The obsered detectionratessuggesthatthis strategy sufiicesfor simpleimagesbut

it is notideal for robustness agairst occlusionsandwe ultimately planto usea more
sophisticatedtratgy basedn adaptve threshdds.

4 Parsing the body tree

In anonarticulatedimage-aliged methal suchasthatof Mohan[16], assemblinghe
partdetectiosis relatively straightfowvard: deconposethesearctwindow into subwin-
dows, keepthe highestscorefor the appiopriatepartin eachsubwindav, andcompmpse
thescorednto a single,low-dimensionalffeaturevector Giventhesesecondstagefea-
turevectas, asinglelinearSVM canbelearnedor theoverall body detection

In our articulated,part-aligred methal, the compsition of part-malels is only
slightly more difficult, and can be castas a comhinatorial search:from all detected

! A moreprincipledapproacho corvertingthescoresof adiscriminantlassifietto probalilities
is asfollows: runthedetectoioveravalidationsetandfit densitymodelsto its positive-example
and negative-example output scores.At ary given score,the ratio of the positve-exanple
densityto the negative-exampleoneis an estimateof the positive-to-ngative oddsratio for
detectionsatthatscore.



parts,searchfor the assembliesooking mostlike peope. Sinceassembliesre natu-
rally describe astrees efficientdynamicprogammingalgoithmscanbeusedto build
thesecondstageclassifier aswe now describe.

4.1 Parsing/decoding algorithm

GivenN candicitebodypartlocatiorsly,, detectedy eachbodypartclassifierC',, we
arelooking for a‘parse’ of thescendnto oneor more ‘body trees’.Oneimportar sub-
probdemis to assigna ‘valid detection’or 'falsealarm’ labelto eachcanddate,based
not only on the candidate’s scores but on the local configurationbetweenthe candi-
datesandits neighlours.Our apprachrelieson an extensionof the Viterbi decaling
algorithm, asdescribedy loffe & Forsyth[13] andFelzenszwlb & Huttenlacher[6],
which we sketchonly briefly here Given the detectionscoresD  (I,,) for all candi-
datesn = 1...N, we searchfor the bestcandidateasa function of their directparents
pa(n) in thebodytree.For theleaves(i.e. hand, feetandhead, this is compued by
algorithm 1.

Algorithm 1 leaflocation

By (ljm) = mingp—1.. Ny —Dr(lkn) + dij(len, Lim)
Li(ljm) = argming,—;  ny —Di(lkn) + dij(lgn, ljm)

Basedon this compuation, we canscorecandidéesfrom the bottam up, usingthe
recursim algoiithm 2:

Algorithm 2 bottomup

By (ljm) = ming,—1.. Ny —Di(lkn) + dij (lens Lim) + Zicik=pa(e)} Be (lkn)
Li(ljm) = arg ming,—;..N} —Dy(lkn) + dij(Ukn, Lim) + E{c\k=pa(c)}Bc(lkn)

At therootnodewe obtainthe simpleformula 3 for scoringthe high level hypothe-
ses.

Algorithm 3 rootlocatin

B, = min{n:l...N} _Dr(lrn) + E{c|7‘:pa(c)}BC(l7‘n)
L: = arg min{nzl...N} _Dr(lrn) + E{c|r:pa(c)}BC(lrn)

Choasingthe mostprabableroot node ,we canthenassigrthe othernodesin atop
down fashionby choasing L} = I} (Lp,x)) for eachnoce givenits paren. Note that
this algorithmhasa comgexity O(M N?2) with M the nunmber body partsand N the
number of candicitesper body part. As an examge of the detectionresultsobtainel
with this method Figure 6 shows the threemostprobalte parsedor four testimages,
rankedin orderof decreasindikelihoad.



4.2 Learningthebody tree

The costfundions usedin our bodytreemodelarebasedon geoméric constrainton
therelative positionsof partsatabodyarticulation asin Felzenszwlb & Huttenlocher
[6]. Essentiallythe articulationmodelis a linear combiration of the differercesbe-
tweentwo joint locations aspredcted separatelyy the two body partsmeetingatthe
articulation

Algorithm 4 joint distance(;, [;)

Computejoint locationz;; , y;; givenfirst body partlocationl;

Computgjoint locationz;;, y;: givensecondoody partlocation;

Returnd;; = wfj|zi; — il + whjlyi; — yjil +wl;10: — ; — 6i;] + wij|log 5+ — log s

Eachbody joint is paranetrizedby the relative sizess;; andanglesf;; between
its parts,andthe four rigidity paranetersw;, w;’/j, wfj, wj; governingthe admissible
rangeof appaentdefamatiors of thearticulationin position,sizeandoriertation. We
learnedthe relative sizess;; andanglesd;; of eacharticulation by simply taking the
average relative positionsof all pairsof body partsover thetrainingset.

To learntherigidity paraneterswe againuseda Suppat VectorMachire. For each
articulationA;; betweenparts P; and P;, we learneda ‘comhination classifier’ based
onafive-dmensionafeaturevecta F? = D; + D;, F¥ = |zij — zji|, FY = |yij —
yjil, F{ = |6; — 6; — 035], Ff = |log 5* —log sy .

Using positive andnegdive exanplesfrom our trainingset,we useda linear SVM
classifierto learna setof Weightsw?j W wfj, wfj, wj; suchthatthe scoreis positve
for all positive exampe, and negative for all negative exanples. We expeiimentally
verifiedthatthe learnedweights have the expectedsigns,wg; > 0 andw; < 0,w; <
0,wf; < 0,wj; < 0, sothatthelearnedmodé canindeedbe relatedto the log-
likelihodd of thearticulation

L(Ai;) = FO — Wil pe _ WGl oy _ [wG po _ 105 g
1) % w?, i w?, i w?. i w?. i

In ourexperimentswith theMIT pedestriémzlatabasétheIearne&nodalsperfcrmed
slightly betterthanthe naive apprachof assigningequalweightsto all parametesand
all articulatiors, andwe exped themethal to be of evengreder benefitfor dealingwith

themorecompicatedcase®f peope in actionsuchasrunring or jumping.

5 Implementation and results

Weimplemertedandtestedour methodin Matlah Thesystemcorsistsof severalcom-
ponaits. Thereis aninteractive programfor hard-labellingexamgdes and storingthe
locationsof the body joints andparts.Anotherfunction conputesimagepyramids and
extractsimage signatues at all locationsz y, s,8 . Theseare usedboth to geneate
featurevectos for SVM/RVM training andto perfam detectionagainstthe learnel
models.Finally, a parserbasedon the abore dynamic progammirg apprach reads



candidtelocatiors from the 15 body partdetectos andproducesa ranked list of can-
didateassemblies.

We usedMIT’ s publicdomainprogam SvmFu-30to trainthe SVM classifiers\We
trainedthe RVM classifiersn Matlab usinga new algorithmthatwill be describedn
detailelsavhere.

5.1 Experimental setup

We selectedlO0frontalimagesfrom the MIT pedestriamatabaeandlabelledtheir 15
parts,asshavn in Figure2. Eachexamge is labelledby clicking 14 body joints. Oc-
cludedpartsareclickedat their mostlik ely (hidden)location,but flaggedasoccluded
Only visible partsare usedto train the imagepartmodels but the hiddenpartscanbe
included whentraining the geometricmodéds. We also picked 5 backgound regions
in eachimage for useasnegdive exanples.As aresult,eachbody partclassifierwas
trainedwith slightly lessthan100positive examges,and500 negaive examges.

Separte examges areneededor training andtesting,sowe selectecandlabelled
anothe 100images from the MIT pedstriandatabasdo sene asatestset. This was
usedto evaluatethebody partandassemblydetectos.

5.2 Detection of body parts.

Detectorsare traditiorally comparedby tracing ROC cunes, i.e. true detectionrates
(recall)asa function of falsealarmrates(1—precision).In our casethe detectorsnust
betunedto function asfilters,somostimportan paraneteris thefalsealarmrateneede
to achieve ‘total recall’. Hence we comparedthe two detectordy measurig thefalse
detectiorratesrequredto detectall visible body partsin ourtestset. Theresultingtrue
positive ratesfor eachpartdetectormreshavn in Figure4.

As canbe seenjndividual partimagesarenot very discrimindive, sothe absolute
falsealarmratesremainquite high. In fact,they became still higher(up to 15:1)once
confusionsbetweerpartsareincluded. Even so,the linking stagemanagego resolhe
mostof theambiguity, andthe numker of candidéesthathave to beexamiredremains
quitetractable at mostabou 75 candicgitesper partfor theseimageslignoiing spatial
contigtity, the worst-casenumber of body joint hypothesess therdore 14 x 752 =
78750. In practice we obseredanaveragenumkercloserto 14 x 202 = 5600 andused
50 candichtesasa safebetin all of ourexperiments.TheRVM classifierperfam only
slightly worsethantheir SVM counteparts,with meanfalsedetectionratesof 80.1%
and78.%% respectiely. This is remakablegiventhe very small numter of relevarce
vectos usedby theRVM detectorsFor the purposeof rapidfiltering, theadwartagesof
theRVM clearly outweightheirincornvenierce.

Also notethatthe worstresultsareobtaired for the torso(3) andhead(2) models.
Thetorsois probably thehardestbody partto detectasit is almostentirelyshapelesdt
is probably bestdetectedndirectly from geonetricclues.In contiast,theheads known
to containhighly discrimirantfeatureshut thetrainingimagescontainawide range of
posesand significantly more training data(and perhag somebodstrappingon false
alarms)is prokably neede to build agooddetector
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Figure4. True positive ratesfor SVM andRVM body partdetectors.

5.3 Detection of body trees

We evaluatedthe final body detectorby visually comparing the best(highest proba-

bility) threeconfigurationsretumedwith the corred interpretatio in eachof the 100
testsetimages.Thus,the taskwas purely that of detectinghumars usingthe 50 best
candichtesfor eachbody partandthe body treemodéd. Our first experimentused100
trainingexempes. We obtainedcorrectdetectioms ratesof 72 % usingRVM scoresand
83 % using SVM scoreswhile usinga naive geanetric mocel with uniform rigidity

paraméersfor all of thebodyjoints. We thenlearneda geometrionocel usinglabelled
bodyjointsfrom the 100trainingimagesWe usedthecorrectassemblieaspositive ex-

amplesandcircularpermuationsof thebody partsasnegaive ones.Usingthelearnel

model, the correctdetectionratesimproved to 74 % and 85 %. We shoud notethat
detectioris arelatively easytaskwith this dataset,andour methal shoud beevaluaed
alsowith regardsto the poseestimatesWe planto investigatethis areaquariitatively
in laterwork. Qualitatively, we notedthata majority of the body partswere correctly

positional in only 36 % of thetestimagesfor RVM and55 % for SVM.

In a secondexperiment,we increasedhe size of the training setto 200 exanmples.
Thisresultedn aslightincreaseof the detectiorratesto 76 % for SVM and88 % for
RVM, anda muchvasterimprovemen of the poseestimatesresultingin qualitatively
corred¢ posesn 54 % of thetestexanplesfor RVM and75 % for SVM.

6 Discussion and Future Work
Thegooddetectiorratesachiezedby themetha make acorvincing casethatthebody

plan stratgy is applicableto real prodemsin imageandvideoindexing. We planto
extendthis work to video, wherewe hope to improve the detectionrateseven further

11
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Figure5. Partdetectionresultsfrom testcollection.

by makinguseof tempoal andkinematic constrénts. But the corstructionof theim-
agepyramd is computationally expersive, and we plan to move to a more efficient
implemenation,which couldrely on a morethoraigh selectionof the featurevectas.

Oneway to do this will beto useRVM classifiersthat learnrelevart featuesrather

thanrelevart examges. As a compement,Sidenblath & Black’s [20,21] appoachfor
learningtheimagestatisticsof peoplevs. backgoundcould prove usefulfor learnirg
bettermocklsby selectingoetterfeaturesin theassemblyphasethe comgexity of the
dynamic progammirg algoritim is quadatic n the numbe of candidatepartswhich
needto be stored,which in turn depend on the precisionof the individual body part
detectos. By fine-tuning the body part detectos, we expectto achieve significantim-
provementsalsoin theoverall performarce of theglobd detector

12



Figure6. Ranled detectionsandtheir enegies,usingthelearnedbody modelandSVM scores.

Furtherwork will be neededor assessinthe correctnes®of thedetectim andpose
estimatiorresultsin amoresystematiavay andfor 'bootstrapping thelearnedmodels
(addirg exampesonwhich ourcurrent mode fails, andretraining. Evenwithoutboa-
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strapping we have verified experimentallythatthe quality of the body partclassifiers
is improved significantly by increasingthe size of the training data.We will needto
quariify thisobsenretion in future work.

We alsoplanto extendthemethodto hande multiple persos in agreatewvarietyof
backgourds andposeshy explicitly represeting occlusionsin the decodng proess
asin thework of Coughlanetal. [3] or by introducingmixturesof partial body trees,
asin the recentproposalmadeby loffe andForsyth[11,12]. The costfundions used
to evalude the assemblyof the body planscould alsobenefitfrom a richer geonetric
modelandadditioral phaometric constraims (e.g. similarity of color andtexture be-
tweenthe body partsfor the sameperson. There are caseswherewe would like to
move even furtheraway from the human anatomicmoded, andreplaceit with a small
setof 'clothing models’,which could be learnedin muchthe sameway and provide
additioral flexibility . Thoseareavenuedor furtherexperimentalwork.

7 Conclusion

Detectinghumarsis a challengng prodemin compuervision,with consideableprac-
tical implicationsfor contentbasedndexing. We believe we have reacledthreeuseful
conctsionswith the work reportedin this paper Firstly, it is possibleto learnapper-
ancemodéds for humanbody partsfrom examplesandto usethemasinputto a body
plan parserat leastfor a modest-sizeproblen suchaspedestriardetection.Secolly,
we have beenableto learngeonetric mockelsfor thecombirationof the detectedarts,
allowing us to rohustly estimatethe likelihoad of a body part assemblywithout re-
courseto samplingor HMM distributions, which require thousandsof exampesto be
learnedefficiently. Thirdly, thelearnedmodelsleadto an efficient decodng algorittm
thatcombireskerne basedearnirg anddynamicprogammingtechriques,andis sim-
ple enoudn to beexterdedto videosequenes.
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Abstract This paper addresses the problem of human mo-
tion tracking from multiple image sequences. The human
body is described by five articulated mechanical chains and
human body-parts are described by volumetric primitives
with curved surfaces. If such a surface is observed with a
camera, an extremal contour appears in the image when-
ever the surface turns smoothly away from the viewer. We
describe a method that recovers human motion through a
kinematic parameterization of these extremal contours. The
method exploits the fact that the observed image motion of
these contours is a function of both the rigid displacement
of the surface and of the relative position and orientation be-
tween the viewer and the curved surface. First, we describe
a parameterization of an extremal-contour point velocity for
the case of developable surfaces. Second, we use the zero-
reference kinematic representation and we derive an explicit
formula that links extremal contour velocities to the angular
velocities associated with the kinematic model. Third, we
show how the chamfer-distance may be used to measure the
discrepancy between predicted extremal contours and ob-
served image contours; moreover we show how the cham-
fer distance can be used as a differentiable multi-valued
function and how the tracker based on this distance can be
cast into a continuous non-linear optimization framework.
Fourth, we describe implementation issues associated with
a practical human-body tracker that may use an arbitrary
number of cameras. One great methodological and practical
advantage of our method is that it relies neither on model-to-
image, nor on image-to-image point matches. In practice we

D. Knossow - R. Ronfard - R. Horaud ()
INRIA Rhoéne-Alpes, 655, avenue de 1’Europe,
38330 Montbonnot Saint-Martin, France
e-mail: radu.horaud @inrialpes.fr

model people with 5 kinematic chains, 19 volumetric prim-
itives, and 54 degrees of freedom; We observe silhouettes
in images gathered with several synchronized and calibrated
cameras. The tracker has been successfully applied to sev-
eral complex motions gathered at 30 frames/second.

Keywords Articulated motion representation -
Human-body tracking - Zero-reference kinematics -
Developable surfaces - Extremal contours - Chamfer
distance - Chamfer matching - Multiple-camera motion
capture

1 Introduction and Background

In this paper we address the problem of tracking complex ar-
ticulated motions from multiple image sequences. The prob-
lem of articulated motion (such as human-body motion) rep-
resentation and tracking from 2-D and 3-D visual data has
been thoroughly addressed in the recent past. The problem is
difficult because it needs to solve an inverse kinematic prob-
lem, namely the problem of finding the parameters charac-
terizing the control space (the space spanned by the artic-
ulated parameters) from a set of measurements performed
in the observation space. In general this problem cannot be
solved explicitly because the dimensionality of the observa-
tion space is much smaller than the dimensionality of the
control space. More formally, the problem can be stated as
the following minimization problem:

mqinE(y,X(())) (1)

where ) denotes a set of observations, X denotes a set of
predictions using the direct kinematic model, and @ is the
vector of motion parameters to be estimated.
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In this paper we will embed the human-motion tracking
into the minimization problem defined by (1). We will em-
phasize a human-body model composed of articulated me-
chanical chains and of rigid body parts. Each such part is
defined by a developable surface. An intrinsic property of
such a surface is that it projects onto an image as a pair of
straight extremal contours (an extremal contour appears in
an image whenever a curved surface turns smoothly away
from the viewer). We develop a direct kinematic representa-
tion of extremal contours based on the differential properties
of developable surfaces and on the zero-reference kinematic
representation of articulated chains with rotational joints.
This kinematic description encapsulates the constrained ar-
ticulated motions as well as a free rigid motion and allows
us to predict both the position and the velocity of extremal
contours.

Therefore, human motion tracking may be formulated as
the problem of minimizing equation (1) using the chamfer
distance between predicted extremal contour points, X (®)
and contour points detected in images, ). We show how
the chamfer distance can be used as a differentiable multi-
valued function and how the tracker based on this distance
can be cast into a non-linear optimization framework. Even
if, in theory, one camera may be sufficient for recovering the
motion parameters, we show that a multiple-camera setup
brings in the necessary robustness for implementing the
tracker.

There is a substantial body of computer vision litera-
ture on articulated motion tracking and excellent reviews
can be found in (Gavrila 1999), (Moeslund et al. 2006), and
(Forsyth et al. 2006).

Monocular approaches generally require a probabilistic
framework such as in (Deutscher et al. 2000; Toyama and
Blake 2002; Song et al. 2003; Agarwal and Triggs 2006) to
cite just a few. The probabilistic formulation has the attrac-
tion that both prior knowledge and uncertainty in the data
are handled in a systematic way. The first difficulty with
these methods is that the image data must be mapped onto a
vector space with fixed dimension such that statistical meth-
ods can be easily applied. The second difficulty is to estab-
lish a relationship (between the space of articulated poses
and the space spanned by the vectors mentioned above) that
should be learnt prior to tracking. This is not an obvious
task because it is virtually impossible to scan in advance
the space of all possible poses of an articulated object with
many degrees of freedom. Other methods attempted to re-
cover articulated motion from image cues such as optical
flow through sophisticated non-linear minimization meth-
ods (Bregler et al. 2004; Sminchisescu and Triggs 2003;
Sminchisescu and Triggs 2005).

A second class of approaches relies on multiple-video
sequences gathered with multiple cameras. One pre-requisite
of such a camera setup is that the frames are finely synchro-
nized—a not so obvious task. One can either perform
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some kind of 3-D surface or volumetric reconstruction
prior to tracking (Cheung et al. 2005a; Mikic et al. 2003;
Plaenkers and Fua 2003), or use 2-D features such as sil-
houettes, color, or texture (Delamarre and Faugeras 2001;
Drummond and Cipolla 2001; Gavrila and Davis 1996;
Kakadiaris and Metaxas 2000). Others used a combina-
tion of both 2-D and 3-D features (Plaecnkers and Fua 2003;
Kehl and Van Gool 2006).

In (Cheung et al. 2005a) and (Cheung et al. 2005b) the
authors develop a shape-from-silhouette paradigm that is ap-
plied to human motion tracking. They describe a volumetric-
based method that assigns a voxel to a body part and a
method based on colored surface points (CSP) that com-
bines silhouette-based reconstruction with color informa-
tion. Both these methods require 3-D reconstruction from
perfect silhouettes. A similar voxel-based method is de-
scribed in (Mikic et al. 2003). The tracker minimizes a cost
function that measures the consistency between the 3-D data
(a set of voxels) and the model (ellipsoids linked within an
articulated chain).

In (Kehl and Van Gool 2006) image edges, color, and a
volumetric reconstruction are combined to take advantage
of these various 2-D and 3-D cues. The authors notice that
while volumetric data are strong features, image edges are
needed for fine localization and hence accurate pose com-
putation. The use of edges implies that one is able to predict
model edges. Since the authors use superquadrics, it is nec-
essary to compute their contour generator (referred in Kehl
and Van Gool 2006 as the occluding contour) and project
it in the images using perspective projection. This is done
through a series of approximations since a closed-form solu-
tion is difficult to compute. Finally the authors cast the track-
ing problem into a stochastic optimization framework that
uses a three-term cost function for surface, edge, and color
alignment. The experimental setup uses 16 cameras. A sim-
ilar approach based on both 3-D data (depth from a stereo
image pair) and 2-D silhouettes is proposed in (Plaenkers
and Fua 2003).

In (Kakadiaris and Metaxas 2000) and (Delamarre and
Faugeras 2001) two similar methods are presented. Multiple-
camera tracking is performed by projecting the 3-D model
onto the images and building a cost function that measure
the distance between the projected model and the 2-D sil-
houettes. This distance sums up the squares of the projected-
model-point-to-silhouette-point assignments to estimate the
2-D force field and to infer the “physical forces” that allow
the alignment.

In this paper we use neither color nor photometric infor-
mation because it is not robust to illumination changes. We
do not use texture because it is not a shape-invariant fea-
ture. We decided to concentrate on contours because they
have been recognized as strong cues for representing shape
(Koenderink 1990; Forsyth and Ponce 2003) and therefore
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the tracker that we implemented projects predicted model
contours onto the images and compares them with observed
contours (edges, silhouettes, etc.). Nevertheless, the tasks of
computing contours from 3-D models, of projecting these
contours onto images, and of comparing them with ob-
served ones are not straightforward. Previous methods have
not made explicit the analytic representation allowing the
mapping of articulated objects (and their surfaces) onto 2-D
edges or silhouettes. Formally, a silhouette is the occluding
contour (Barrow and Tenenbaum 1981) that separates an ob-
ject from the background. Occluding contours are built up of
discontinuity and extremal contours. The former correspond
to sharp edges arising from surface discontinuities. The lat-
ter occur where a curved surface turns smoothly away from
the viewer.

In the case of sharp edges there are well documented
methods allowing for an explicit (analytic) representation
of the mapping between the object’s constrained (artic-
ulated) motion parameters and the observed image con-
tours both under orthography (Bregler et al. 2004) and un-
der perspective projection (Drummond and Cipolla 2001;
Martin and Horaud 2002). In the presence of smooth sur-
faces, an extremal contour is the projection of a contour gen-
erator—a virtual contour that lies onto the surface where the
lines of sight are tangent to the surface. Therefore, the ap-
parent image motion of an extremal contour is a function of
both the motion of the object itself and the motion of the
contour generator, the latter being a function of the relative
position of the object’s surface with respect to the viewer.
It turns out that the link between the differential properties
of certain classes of surfaces and the rigid motion of these
surfaces has barely been addressed.

In more detail, we use elliptical cones to model body
parts. These shapes belong to a more general class of devel-
opable surfaces that have interesting differential properties
that were not fully exploited in the past. Elliptical cones in
particular and developable surfaces in general project onto
images as a set of straight lines. By deliberately considering
only these contours we simplify both the tasks of interpret-
ing the image contours and of comparing them to the pre-
dicted object contours. Moreover, the body parts are joined
together to form an articulated structure composed of five
open kinematic chains. Therefore, each body-part motion is
composed of two motions: a motion constrained by a num-
ber of rotational joints (the motion of its associated kine-
matic chain) and a free motion, i.e., the motion of the root
body-part with respect to a world reference frame. We de-
rive an analytic expression for the motion of a predicted
extremal-contour point as a function of both the body-part
motion as well as the motion of its contour generator lying
onto the curved surface of that body part. Figure 1 briefly
illustrates how the method operates in practice.

Therefore, the problem of articulated motion tracking
may be formulated as the problem of minimizing a met-
ric between image contours (gathered simultaneously with
several cameras) and extremal contours (predicted from the
model). There are several ways of defining a distance be-
tween two contours, including the sum of squares of the
point-to-point distances, the Hausdorff distance, the cham-
fer distance, and so forth. We decided to capitalize onto the
chamfer distance, and unlike previous approaches, we de-
veloped an analytic expression allowing us to compare the
real-valued contour points predicted from the model with
the chamfer-distance image computed from binary-valued
image contours. This image-to-model metric thus defined
does not require point-to-point matches, its computation is
very efficient, and it can be analytically differentiated. We
analyse in detail the numerical conditioning of the tracker,
which amounts to the rank analysis of the Jacobian associ-
ated with the direct kinematic model. Although, in principle,
one camera may be sufficient for gathering enough data, we
claim that a multiple-camera setup provides the redundancy
that is absolutely necessary for robust tracking.

Paper Organization The remainder of this paper is orga-
nized as follows. In Sect. 2 we consider the case of de-
velopable surfaces and we show that their contour gener-
ators are rulings of the surface. We derive a closed-form
solution for the velocity of the contour generators (and of
the corresponding extremal contours) as a function of the
kinematic screw associated with the motion of the surface.
In Sect. 3 we develop an explicit solution for the human-
body kinematics using the zero-reference kinematic model
and in Sect. 4 we derive the Jacobian that maps joint and
free-motion velocities onto the 2-D velocity of an extremal-
contour point. Section 5 describes in detail how to fit pre-
dicted extremal contours to detected image contours and
how to carry out the minimization process using the chamfer
distance. Section 6 describes experiments performed with
simulated and real data. Finally, Sect. 7 draws some conclu-
sions and give directions for future work.

2 The Kinematics of Extremal Contours
2.1 Definitions and Notations

We use shapes with smooth surfaces in order to represent
rigid body parts. Each such body-part is linked to a root
body-part through a kinematic chain of body parts. Each
joint in the kinematic chain—the link between two adjacent
body parts—is modeled by a rotational joint. Each such joint
may have one, two, or three degrees of freedom. Moreover,
the root body-part is allowed to freely move in the 3-D space
with six degrees of freedom (three rotations and three trans-
lations).
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Fig. 1 An example of human-motion tracking based on extremal con-
tours and using six cameras. The extremal contours fitted to the image
data are shown superimposed onto the raw images. The tracker uses
image silhouettes to fit the parameterized extremal contours to the
data. The recovered pose of the human-body model is shown from the

Therefore, the motion of any part of the kinematic chain
is obtained by a combination of a constrained motion and
of a free motion. We denote by ® = (¢1, ..., ¢,) all these
motion parameters. The first ¢ parameters correspond to the
motion of the root with ¢ < 6 and the remaining p parame-
ters correspond to the joint angles: n = g + p. The kinematic
parameterization will be made explicit in the next section.
In this section we will describe the motion of a body-part by
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viewpoint of the third camera. There are 250 frames in these six image
sequence. Notice that this apparent simple gesture (raising the arms
and then leaning forward) involves almost all the degrees of freedom
of the model as well as a motion of the root body-part

a 3 x 3 rotation matrix R and by a 3-D translation vector £.
Both these rotation and translation are in turn parameterized
by @, i.e., we will have R(®) and ¢(®P).

It will also be convenient to consider a body part as a rigid
object in its own right. The pose of a rigid object is described
by six parameters and let r be the pose vector. If a body-part
is treated as a free-moving rigid body, then the 6 components
of r are the free parameters. If a body-part is treated as a
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component of a kinematic chain, r is parameterized by ®,
i.e., r(®). Finally we denote by x the time derivative of x.

We consider now the smooth surface of a body-part. This
surface projects onto the image as an extremal contour. The
apparent image motion of such an extremal contour depends
on the motion of the body-part and on the local shape of the
surface. Indeed, let’s consider the contour generator that lies
onto the smooth surface—the locus of points where the sur-
face is tangent to the lines of sight originating from the cam-
era’s center of projection. When the surface moves, the con-
tour generator moves as well and it’s motion is constrained
both by the rigid motion of the surface and by the relative
position of the surface with respect to the camera. There-
fore, the contour generator has two motion components and
we must explicitly estimate these two components.

First, we will determine the constraints that formally de-
fine the contour generator. The extremal contour is simply
determined by projecting the contour generator onto the im-
age plane. Second, we will derive a closed-form solution for
the extremal-contour Jacobian, i.e., the Jacobian matrix that
maps 3-D joint velocities onto 2-D contour-point velocities.

2.2 The Contour-Generator Constraint and Extremal
Contours

Let X be a 3-D point that lies onto the smooth surface of
a body part, and let X = (X1, X3, X3) be the coordinates
of this point in the body-part frame, Fig. 2. Without loss of
generality, the camera frame will be chosen to be identical
to the world frame. Hence, the world coordinates of X are:

X" =R(®)X +¢(®). 2)

Camera or
world frame

Contours

S~

Body-part

frame

Contour Generator

Fig. 2 A truncated elliptical cone is an example of a developable sur-
face used to model a body part. Such a surface projects onto an image
as a pair of extremal contours. The 2-D motion of these extremal con-
tours is a function of both the motion of the body-part itself as well as
the sliding of the contour generator along the smooth surface of the
part

The contour generator is the locus of points lying onto
the surface where the lines of sight (originating at the optical
center of the camera and passing through image points) are
tangent to that surface. Obviously, the contour generator is
defined by:

Rn) T RX+t—-C)=0 3)

where the surface normal n is defined by the following
cross-product:

X 09X X. % X @
n=—x—=X; x Xp.

A
Here the couple (z,60) is a parameterization of the body-
part’s surface and C denotes the camera’s optical center. The
equation above becomes:

X'n+t-C)'"Rn=0 (5)
or:
X+m)'n=0 (6)

with m =R (t — C). Equation (6) is the contour-generator
constraint that must be satisfied at each time instant. Once
the contour generator is determined, the 2-D extremal con-
tour (the projection of the contour generator) can be found
in the camera frame from:

0 0 0

1 w
<”)= 0100 (Xl> 7)
s 001 0

2.3 The Contour Generator of a Developable Surface

It would be difficult to treat the general case of curved sur-
faces. An interesting case is the class of developable surfaces
which are a special case of ruled surfaces (Do Carmo 1976).
We prove the following result:

Proposition Under perspective projection, the contour gen-
erators of a developable surface are rulings of the surface,
i.e., they are line segments.

This also means that the extremal contours of a devel-
opable surface are straight lines. In practice we need to con-
sider surfaces that are well suited to model body parts. We
will use elliptical cones but the result of this section allows
one to use any kind of developable surfaces.

Consider a differentiable one-parameter family of straight
lines (a(6), B(6)) where to each 0 are assigned a 3-D point
a(f) and a 3-D vector (0), so that both a(f) and B(0)
depend differentiably on 6. The parametrized surface:

X(0,2) =a(®) +zB(0) ®)
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is called a ruled surface, and the normal to this surface is
given by (4):

n=XgxX,=(+2zB) xB. 9)

Since a developable surface is a ruled surface whose
Gaussian curvature is null everywhere on the surface, one
can show ((Do Carmo 1976), (Kreyzig 1991)) that the nor-
mal to this surface can be written as:

n=(1+bz)p xB. (10)

Notice that the direction of the normal is given by the cross-
product of B’ and B and it depends only on the parameter
0. Using this parameterization of the normal, we can rewrite
the contour generator constraint, (6), for developable sur-
faces as follows:

(@) +m) " (B'(0) x B(6)) =0. (11)

One should notice that this contour-generator constraint
involves only the surface parameter 6 and not the z para-
meter. Therefore, any solution of (11), say 0 , will yield the
entire ruling line X (é , 2). This proves that under perspective
projection, the contour generators of a developable surface
are rulings of the surface, i.e. line segments. As a result, the
kinematics of the contour generators are fully determined by
the evolution of the solutions 6(1) of the contour generator
equation over time.

2.4 Truncated Elliptical Cones

In practice will model body parts with truncated elliptical
cones. Such a shape is bounded by two planar faces which
produce discontinuity contours, as well as a curved surface
which produces a pair of extremal contours. The latter can
be easily parameterized in cylindrical coordinates by an an-
gle 6 and a height z as a ruled surface:

acosf ak cos 6
X@,z)=| bsin6 | +z | bksinf (12)
0 1

where a and b are minor and major half-axes of the ellip-
tical cross-section, k is the tapering parameter of the cone
and z € [z1, z2]. It is straightforward to verify that an ellip-
tical cone is a developable surface. Below we provide an
analytical expression of its associated contour generators.
With this parametrization, (11) can be easily expanded
to yield a trigonometric constraint of the form F cosf +
Gsin6 + H =0 where F, G and H depend on R(®), #(P)
and C while they are independent of the parameter z. In
order to solve this equation and find its roots we use the
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standard trigonometric substitution, i.e., tan% and obtain a
second-degree polynomial:

0 0
(H—F)tanzi+ZGtan§+(F+H)=0. (13)

This equation has two real solutions, #; and 6,, whenever
the camera’s optical center lies outside the cone that defines
the body part (a constrained that is rarely violated). There-
fore, in the case of elliptical cones the contour generator
is composed of two straight lines parameterized by z, i.e.,
X(®,601,72) and X (®, 0;, 2).

2.5 The Motion of Extremal Contours

We turn our attention back to extremal contours—the pro-
jection onto the image plane of the contour generator. We
denote by x = (x1, x2) the real-valued image coordinates of
an extremal-contour point, i.e., (7). The motion of this point
depends on both:

e The rigid motion of the body-part with respect to the
world reference frame, and

e the sliding motion of the contour generator onto the part’s
curved surface, as the relative position and orientation of
this part varies with respect to the camera.

We formally derive the motion of an extremal contour point
in terms of these two components. The 2-D velocity of an
extremal-contour point is:

dx_ dx dXV dr d®
dr — dX" dr d® dt’

(14)

Vector X%, already defined by (2), denotes the contour-
generator point in world coordinates. Its projection is ob-
tained from (7):

Xy Xy

=L =2 (15)
Xy Xy

X

We recall that r was already defined in Sect. 2.1 and it
denotes the pose parameters associated with the body-part.
Since the latter is linked to the root part by a kinematic
chain, r is in it’s turn parameterized by ®. We have:

e The first term of the right-hand side of (14) is the image
Jacobian denoted by J;:

dx /XY 0 —XV/(X¥)? (16)
L0 /Xy -Xxy/x? |

e The second term is a transformation that allows to deter-
mine the velocity of a point from the motion of the part on
which this point lies. When the point is rigidly attached to
the part, this transformation is given by matrix A (see be-
low). When the point slides onto the smooth surface there
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is a second transformation— matrix B—that remains to

be determined:

axv
dr

=A+B. (17)

e The third term is the Jacobian of the kinematic chain that
links the body part to a root body part and to a world refer-
ence frame. This Jacobian matrix will be denoted by J 5.

e The fourth term is the vector composed of both the joint
velocities and the velocity of the root body part.

With these notations, (14) becomes:

_dx

where:
d
& N A+BI (19)

do

is the extremal-contour Jacobian that will be used by the
tracker. It is useful to introduce the kinematic-screw nota-
tion, i.e., a six dimensional vector concatenating the rota-
tional velocity, 2, and the translational velocity, V (see be-
low):

dr Q@

— = . 20

dt < \4 ) 20)
The velocity of an extremal-contour point can therefore

be written as:

x:hm+m<§) 21

Let us now make explicit the 3 x 6 matrices A and B. By
differentiation of (2), we obtain:

X" =RX +i+RX. (22)

Equation (22) reveals that unlike the motion of a point
that is rigidly attached to a surface, the motion of a contour-
generator point has two components:

e A component due to the rigid motion of the smooth sur-
face, RX + ¢, and

e a component due to the sliding of the contour generator
onto this smooth surface, RX.

2.5.1 The Rigid-Motion Component

The first component in (22) can be parameterized by the
kinematic screw and it becomes:

RX+i=RRT(Xw—t)+i=A<g> (23)

with [2]x = RRT, # = V, and where A is the 3 x 6 ma-
trix that allows to compute the velocity of a point from the
kinematic screw of the rigid-body motion:

A=t — X"]x Iisl. (24)

The notation [m]« stands for the 3 x3 skew-symmetric ma-
trix associated with the 3-vector m. Vectors £ and V can be
concatenated to form a 6-vector (2 V)T which is known
as the kinematic screw—the rotational and translational ve-
locities of the body part in world coordinates. This fac-
torization is strictly equivalent with V = ¢ — RR'¢ and
A=[[X"]x1].

2.5.2 The Sliding-Motion Component

It is interesting to notice that, although the link between
image contours and smooth surfaces has been thoroughly
studied in the past, the problem of inferring the velocity of
these contours when the smooth surface undergoes a gen-
eral 3-D motion has not yet been addressed. In the general
case, the sliding-motion component is a complex function of
both the local surface shape and of the relative motion be-
tween the surface and the observer. The problem is strongly
linked to the problem of computing the aspects of a smooth
surface (Koenderink 1990) and (Forsyth and Ponce 2003)
(Chaps. 19 and 20). Both these textbooks treat the case of a
static object viewed under orthographic projection.

We establish a mathematical formalism for developable
surfaces, i.e., (Do Carmo 1976) when they are viewed under
perspective projection. As it has been shown above, the con-
tour generators are rulings of the surface and their motion
are fully determined by computing the time derivatives of
their 6 parameters. If a surface point X lies onto the contour
generator, then its observed sliding velocity is:

. X . 00X, . .
X=—10+——2=Xp0+X;2. (25)
a0 9z

The sliding velocity along the contour generator itself, z,
is not observable because the contour generator is the ruling
of the surface—a straight line. Therefore one may assume
that:

z=0. (26)

Therefore, the sliding-motion component in (22) can be
written as:

RX =RXy6. 27)

Since X lies onto the contour generator, it verifies the con-
tour generator constraint, i.e., (5). By differentiation of this
equation we obtain a constraint for the surface parameter ve-
locity, 6, as follows. We differentiate equation (5), we per-
form the substitutions RT = —RT[R]« and = V, and we
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notice that the velocity of a surface point is tangent to the

surface, i.e., X "n = 0. We obtain the following expression
for the derivative of (5):

X+RT(t—-C)"n=(R]«—-C)— V) Rn. (28)
With 77 = ng6 and with [a]xb = —[b]xa, we obtain
from (28):

T — —
5 Rm)TIC — 1] Im](sz) 09)

(X+RTt-C)Tng \V

Therefore, the sliding velocity 6 can be expressed as a func-
tion of (i) the surface parameterization, (ii) the relative po-
sition and orientation of the camera with respect to the sur-
face, and (iii) the rigid motion of the surface (the kinematic
screw). To summarize, (27) becomes:

. Q
RX=B<V> (30)

where B is the 3 x 6 matrix:

B= %RXG Rn)T[[C —1]x — 3] (31
and the scalar b is defined by:

b=(X+R"(t—C)) ny.

2.5.3 The Velocity of Extremal Contours

To conclude this section, the velocity of an extremal contour
point has a rigid-motion component and a surface-sliding
component:

¥=x" +i (32)

The explicit parameterization of the sliding component, as
shown above, allows its incorporation into the explicit rep-
resentation of the observed image velocities as a function
of the kinematic-chain parameters, as described in detail be-
low.

The sliding velocity depends both on the curvature of the
surface and on the velocity of the surface. In practice it will
speed up the convergence of the tracker by a factor of two,
as described in Sect. 6.

3 The Human-Body Kinematic Chain

In the case of a kinematic chain, the rigid motion of a body-
part can be parameterized by the joint parameters. Kine-
matic chains are widely used by human-body trackers and
motion capture systems. In this section we introduce the use
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Body frame in
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Fig.3 Eachbody part has a frame associated with it, therefore motions
are represented by changes in coordinate frames. There is a reference
position for each body part in the chain defined by the joint angles A°.
Similarly, there is a docking position for the root body-part defined by
the six-dimensional vector W

of the zero-reference kinematic representation for model-
ing the human-body articulated chains. The Zero-reference
kinematic representation was studied for robot manipula-
tors (Mooring et al. 1991) and (McCarthy 1990). The para-
meterization introduced in this section combines the zero-
reference representation with the free motion of the root
body-part, i.e., Fig. 3.

Without loss of generality we consider any one among
the several kinematic chains needed to describe the hu-
man body. A body part P is linked to the root body-part
R by a kinematic chain with p rotational degrees of free-
dom. The root body part itself moves freely with six de-
grees of freedom (three rotations and three translations)
and with respect to the world coordinate frame. Let A =
(A1,...,Ap) denote the joint angles associated with the
kinematic chain, and let ¥ = (¥, ..., v¥,) denote the ro-
tational and translational degrees of freedom of the free mo-
tion. In the most general case we have g = 6. Therefore,
there are p + g motion parameters embedded in the vector
®= (¥, A).

With the same notations as in the previous section, we
consider a point X that belongs to the contour generator
associated with a developable surface and body part. The
point’s homogeneous coordinates in the local frame are de-
noted by X = (X1 X2 X3 DT. We also denote by X" the
coordinates of the same point in the root body-part frame,
and by X" its coordinates in the world frame.

Moreover, we denote with D(W) the 4 x 4 homogeneous
matrix associated with the free motion of the root body
part with respect to a fixed world frame, and with K(A)
the 4 x4 homogeneous matrix associated with the con-
strained motion of a body part with respect to the root
part. Let A° be the joint angles for a particular refer-
ence position of the kinematic chain. Obviously we have
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X' (A) = KA)X and X (A% = K(A9)X. We obtain
X' (A) = KAK 1(AYX"(A?). With this formula and
from Xw(\II, A) = D(\Il)Xr(A) we obtain:

X" (¥, A)=DWKAK '(AY)X (A?).

We also consider a reference or a docking position for the
root body-part, defined by the free-motion parameters W,
ie, X" (W0 A% =D X" (A?). Finally we obtain:

X" (¥, A)
=DWKAK ' AHD (W)X (w0, A) (33)
=HW, ¥, A, ADX " (W0, A). (34)

It will be convenient to write the above transformation as:

HW, ¥ A, A" =FW, ¥ Q(A, A%, ¥%) (35)
with:

F(¥, ¥ =Dw)D~ ! (¥0) (36)
and:

Q(A, A°, ¥%) = D¥FHKAK ' (AHD! (w?). (37)

3.1 The Kinematic-Chain Model

The transformation K describes an open kinematic chain
and the transformation Q describes exactly the same chain
but relatively to a reference position of the chain. K
may be written as a composition of fixed transforma-
tions Ly, ...,L,, and of one-degree-of-freedom rotations

IO, J0p):
K(A) =LJ(u) - LyJ(hp) (38)

where the matrices Ly ...L, are fixed transformations be-
tween adjacent rotational joints, and matrices of the form of
J are the canonical representations of a rotation.

Matrix Q in (37) can now be written as a product of one-
degree-of-freedom transformations Q;:

QA A ¥ =Q (n =AY - Qi(n — ) -
x Qp(hp —19) (39)

where each term Q; is of the form U;J(A; — A?)Ui_l, ie.,
(McCarthy 1990):

Qi(xi — )»?) = D(‘I’O)LlJ()\(l)) L JOu — )\?)

U;

x L7 IO ' (w0). (40)

u;!

i

Notice that matrices U;, {i = 1... p} remain fixed when
the joint parameters vary and when the root body-part un-
dergoes a free motion. Others used the exponential repre-
sentation for this one-dimensional transformations (Murray
et al. 1994; Bregler et al. 2004).

3.2 The Zero-Reference Kinematic Model

Without loss of generality, one may set the initial joint-angle
values to zero, i.e., )“(1) =...= )»?, = (. In this case, the kine-
matic chain does not depend any more on its reference pose,
since J (A?) =1 for all i. The kinematic chain writes in this
case:

QA, ¥ =Q (A, ¥9) - Qi (1, ¥0) ---Q, (1, WO).
(41)

The human-body zero-reference kinematic chain  From the
equations above, one may write a compact and convenient
factorization of matrix H, i.e., (35):

HW, ¥ A) =FW, ¥)Q,(1;, ¥%) ...
x Qi (A, ¥0) - Qp(hp, WO). 42)

4 The Jacobian of the Human-Body Kinematic Chain

In this section we make explicit the Jacobian matrix associ-
ated with the kinematic chain of the human-body, J . This
matrix appears in (14); From this equation and from (21) we
obtain:

(3) — b, @3)

The Jacobian of a kinematic chain such as the one de-
scribed above is intrinsic to the mechanical and geometric
structure of the kinematic chain and it does not depend on a
particular choice of a point X, is it sliding onto the surface or
rigidly attached to it. The Jacobian Jz maps joint velocities
onto the kinematic screw of a body part whose kinematic
chain is denoted by H. In order to establish an expression
for the Jacobian, we will first need to determine the tangent
operator Hof H:

H=HH' (44)

Second, we parameterize H such that it depends only on
the kinematic parameters, i.e., we must take the derivative
of a body-part point with respect to the motion variables,
ie., dX"/d®. The case of human-body motion is differ-
ent than the classical case studied in the robotics literature,
(McCarthy 1990; Mooring et al. 1991; Murray et al. 1994)
because one must take into account the fact that the root-part
of the chain undergoes a free rigid motion.
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4.1 A Rotational Joint

First, we consider the case of a single rotational joint. It’s
tangent operator is defined by Q; = Q,-Ql._l, and we obvi-
ously have Q; = U,-JiUi_l. From J = jJ_l, we have:

J0.) = 4J,
with
0 -1 0 0
o 1 0 00
o 0 0 0
0 0 00

Therefore, we obtain a simple expression for the tangent
operator associated with one joint:

Qi — ) =4 UJU ! = 4,Q;. (45)

Matrix J is called the Lie-algebra of the Lie-group de-
fined by the matrices of the form of J. If one prefers the
exponential representation, J is called a twist.

4.2 The Tangent Operator

Second, we determine the tangent operator of the human-
body kinematic chain. The zero-reference kinematic chain,
H, may well be viewed as an Euclidean transformation and
is composed of a rotation matrix and a translation vector:
Ry, t . Hence, its tangent operator has a rigid-motion com-
ponent, i.e., (23) and (24), as well as a sliding-motion com-
ponent, i.e., (30). When applied to (34) we obtain the action
of the tangent operator onto a surface point:

X"(W,A)=RyX"(Wo, Ag) + iy + Ry X" (Wo, Ag)
=RyR(X"(W,A) —ty) +iy

+Ru X" (¥, Ag)
Q
= (An +Bp) (V) (46)

where we have = RHR;, V =ty and with 3 x 6 matri-
ces Ay and By as defined by (24) and (31). The 3-D vectors
@ and V form the kinematic screw which we seek to esti-
mate:

HW,A) = [, Vv 47)
Ul eT o

Since H = FQ, we have H= FQ + FQ and:

HW, A) =F(¥) + FQA)F . (48)

@ Springer

As detailed below, the tangent operator can be written as
the sum:

p
H(W, A)=H,(¥) + > H;(1). (49)

i=1

e The tangent operator associated with the free motion of
the root body-part,
H, (W) = F(¥); from (36) we obtain: F(¥) = D(¥). H,
is the 4 x 4 matrix parameterized by the rotational veloc-
ity @, and the translational velocity v, of this free motion:

A, () = [[‘}’,’T]x ‘;] . (50)

This motion has six degrees of freedom and can be para-
meterized by three rotations and three translations:

R=R;(¥3)Ry (¥R (¥1),
t =yYe, + Ysey + Yoe,

where e, = (100)T and so forth. The kinematic screw of
this motion can therefore be written as:

@\ |0 o, o 0 0 0 W 1)
v, ) L0 0 0 e e e 6

with [@;]x = [e;]x, [wy]x = Rz[ey]XR;r, and [w,]x =
R,R [e,].R/R].

e The tangent operator associated with the constrained mo-
tion of the kinematic chain, FQ(A)F’I; it is expressed in
world coordinates and with respect to a reference position
defined by both W0 and A°. This tangent operator can be
expanded as (McCarthy 1990):

F@(A)Flz[(:ll ‘;"’}A, (52)
v,

with A = (h...34,) 7.

Therefore, by combining (49), (51), and (52) we obtain the
following expression for the kinematic screw:

Sl_wxwwaOOO‘i’
V) L0 0 0 e e e

+|:w1 wpi|A (53)

1 T

with W = (¢1...9)" and A = (A;...4,)7. Finally,
the Jacobian of the human-body kinematic chain writes as
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a6 x (6 + p) matrix:

J_wxwwaOOOwl...wp
H=10 0 0 e ey e v ... v,

i| . (54)

To conclude this section we remind that the relationship
between the kinematic velocities ® = (¥ A) and the image
velocity of an extremal contour point x writes:

¥=J/(Ag +Bp)Jy®. (55)

This corresponds to (21) where the kinematic screw is given
by (53).

5 Fitting Extremal Contours to Image Contours

In this section we consider the problem of fitting extremal
contours—model contours predicted in the image plane,
with image contours—contours extracted from the data.
Therefore, we have to measure the discrepancy between a
set of predictions (extremal contours) and a set of observa-
tions (image contours): we want to find the model’s parame-
ters that minimize this discrepancy.

Although the human body comprises several (five)
kinematic chains, for the sake of clarity of exposition
we consider only one such kinematic chain. We collect
extremal-contour points from all the body-parts. Let X' =
{x1,...,xj,...,x;} be the prediction vector, a set of m
extremal-contour points. The components of this vector are
2-D points and they are parameterized by the kinematic- and
free-motion parameter vector ®, i.e. x(®). Similarly, let
Y ={y,.--,Yi,---, Yi} be the observation vector—a set
of contour points observed in the image. In order to esti-
mate the motion parameters one has to compare these two
sets through a metric and to minimize it over the motion
variables. Therefore, the problem can be generally stated
as the minimization of a multi-variate scalar function E
of (1).

There are several ways of defining and measuring the dis-
tance between two sets of points, ) and X'. One way of
measuring this distance is to sum over one-to-one pairings

(xj,y):

EQ, X(®) =Y aijlly; —x,;(®]* (56)

! J

where the hidden variables «;; are the entries of an associa-
tion matrix: a;; = 1 if the observable y; matches the predic-
tion x j, and «;; = 0 otherwise. Therefore one has to solve
both for the hidden variables and for the motion parameters
(David et al. 2004).

5.1 The Hausdorf Distance

Another way of measuring the distance between two point-
sets is to use the Hausdorff distance (Huttenlocher et al.

1993; Sim et al. 1999) which does not make use of explicit
point pairings:

HY, X) =max(h(Y, X), h(X,))) (57)

where h() is called the directed Hausdorff distance:
h(Y,X) = max;(min;(||y; — x;|])). The function h()
identifies the point in )} which is the farthest from any
point in A'. The Hausdorff distance is the maximum between
h(Y,X) and h(X,)) and hence it measures the degree of
mismatch between two point sets without making explicit
pairings of points in one set with points in the other set.
This means that many points of ) may be assigned to the
same point of X.

5.2 The Chamfer Distance

If the max operator in the Hausdorff distance is replaced by
the summation operator, we obtain the normalized directed
(or non-symmetric) chamfer distance:

k
1
DCDY, X) =+ > Injin(”yi —x;[D. (58)
i=1

The directed chamfer distance, or DCD, is a positive
function and has the properties of identity and of triangle
inequality but not of symmetry. It also has the desirable
property that it can be computed very efficiently. Indeed, the
DCD can be computed from the binary image of the ob-
served image contour set Y using the chamfer-distance im-
age Cy (Borgefors 1986; Gavrila and Philomin 1999). The
subscript )Y reminds that this image is associated with the set
Y of observed edge points. For each image site (pixel) with
integer-valued image coordinates u1 and u», the chamfer-
distance image Cy(u1, u) returns the real-valued distance
from this pixel to the nearest contour point of ). Therefore
one can evaluate the distance from a predicted extremal-
contour point x € X to its closest image contour by evaluat-
ing the chamfer-distance image at x with real-valued image
coordinates x| and xj.

We denote by [x] the integer part of a real number x.
Let u; = [x1] and uy = [x2] be the integer parts, and r; =
x1 — [x1] and r» = x3 — [x2] be the fractional parts of the
coordinates of a predicted point x. The chamfer distance at
x can be obtained by bi-linear interpolation of the chamfer-
distance image:

DY, x) =0 —=r))(1 —r)Cy(ur, u2)
+r1(1=r)Cyuy +1,u3)
+ (I =r)rCy@ui,uz+1)
+r1rCyy +1,ur +1). (59)
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5.3 Minimizing the Chamfer Distance

The minimization problem defined by (1) can now be writ-
ten as the sum of squares of the chamfer distances over the
predicted model contours:

1 & 1 —
F(@®)=53 DiY.x;(®)=5) Dj(®). (60)
j=1 j=1

In order to minimize this function over the motion parame-
ters, we take its second-order Taylor expansion as well as
the Gauss-Newton approximation of the Hessian:

1
f(¢-%d)=jT¢)+dTJgD—kEdTJEJDd+~~

where DT = (D; ... D,) and J}, = [dD/d®]" is the n x

m matrix:
dD dD
T 1 m
=|— ... —. 61
Ip I:dq’ d‘l’i| (61)

The Chamfer-Distance Gradient The embedding of the
tracker into such an optimization framework requires an an-
alytic expression for the gradient of the error function to
be minimized. The derivative of the chamfer distance D;
with respect to the motion parameters is the following ma-
trix product:

dD; (dD;\' dx
d®  \dx ) do

By noticing that d[x]/dx = 0, we immediately obtain an
expression for dD; /dx:

aD;
— =1 =r)(Cyur +1,u2) — Cy(uy, uz))
dx1

+r(Cyu+1,uz +1) = Cy(uy, uz + 1)),
0D ;
Zé=m—mqummnfﬂmm»

+r1(Cyur+ Lus+ 1)+ Cyur, uz + 1)).

We recall that dx/d® = J; (A + B)Jy is the extremal-
contour Jacobian defined in (19).

Issues related to the minimization of the chamfer dis-
tance can be found in (Knossow et al. 2006). Here we
analyse the practical conditions under which this minimiza-
tion should be carried out. At each time instant, the tracker
is initialized with the previously found solution and (60)
must be minimized. This minimization problem needs one
necessary condition, namely that the n x n Hessian ma-
trix has full rank. The Jacobian Jp is of size m x n and
we recall that n is the number of variables to be estimated
(the motion parameters) and m is the number of predic-
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tions (extremal contour points). To compute the inverse
of JBJ p we must have m > n with n independent matrix
rOws.

5.4 How Many Cameras?

Since each prediction accounts for one row in the Jacobian
matrix, one must somehow insure that there are n “indepen-
dent” predictions. If each body part is viewed as a rigid ob-
ject in motion, then it has six degrees of freedom. A set of
three non-collinear points constrains these degrees of free-
dom. Whenever there are one-to-one model-point-to-image-
point assignments, a set of three points is sufficient to con-
strain all six degrees of freedom. In the case of the chamfer
distance there are no such one-to-one assignments and each
model point yields only one constraint. Therefore, when one
uses the chamfer distance, the problem is underconstrained
since three non-collinear points yield three constraints only.
Within a kinematic chain, the root body-part has six degrees
of freedom and each body-part has 6 + p degrees of free-
dom. Fortunately the body-parts are linked together to form
kinematic chains. Therefore, one sensible hypothesis is to
assume that the points at hand are evenly distributed among
the body parts.

The kinematic human-body model that we use is com-
posed of 5 kinematic chains that share a common root body-
part, 19 body-parts, and 54 degrees of freedom (48 rotational
joints and 6 free-motion parameters). Therefore, with an av-
erage of 3 points per body-part, there are in principle enough
constraints to solve the tracking problem. Notice that the
root-body part can arbitrarily be chosen and there is no evi-
dence that one body-part is more suitable than another body-
part to be the root part.

In practice there are other difficulties and problems.
Due to total and/or partial occlusions, not all the body-parts
can be predicted visible in one image. Therefore, it is im-
possible to insure that all the degrees of freedom are ac-
tually measured in one image. Even if a point attached to
a visible body-part is predicted in the image, it may not
be present in the data and/or it may be badly extracted
and located. Non-relevant edges that lie in the neighbor-
hood of a predicted location contribute to the chamfer dis-
tance and therefore complicate the task of the minimization
process.

One way to increase the robustness of the tracker it to
make recourse to redundant data. The latter may be ob-
tained by using several cameras, each camera providing an
independent chamfer distance error function. Provided that
the cameras are calibrated and synchronized the method de-
scribed above can be simultaneously applied to all the cam-
eras. There will be several Jacobian matrices of the form
of (61) (one for each camera) and these matrices can be
combined together into a unique Jacobian, provided that a
common world reference frame is being used (Martin and
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Fig. 4 This figure compares the ground truth (first, third and fifth rows) with the estimated poses (second, fourth and sixth rows). The ground-truth
poses were used to simulate silhouette data to be used by the tracker

Horaud 2002). Therefore, by using several cameras one in-
creases the number of predictions (columns in the Jacobian)
without increasing the number of variables.

It is worthwhile to notice that the extremal contours
viewed with one camera are different than the extremal con-
tours viewed with another camera. Indeed, these two sets
of contours correspond to different physical points onto the
surface. One great advantage of using extremal contours in
order to fit the model parameters with the data is that there is
no need to establish matches across images taken with dis-

tinct cameras.

6 Experiments with Simulated and Real Data

The simulated data were produced using a motion capture
system and an animation software. This outputs trajectories
for the motion parameters of our human-body model. From
these trajectories we generated a sequence of model mo-
tions. From each pose of the model we computed extremal
contours for six images associated with six virtual cameras.
We simulated a total of 120 frames for each image sequence.

Next, we applied our method to these contours. Figure 4
shows the simulated poses (top rows) as well as the esti-
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Fig. 5 a The error between the image contours and the projected extremal contours before minimization (fop curve) and after minimization
(bottom curve). b The average error between the simulated motion parameters and the estimated ones
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Fig. 6 Ground-truth and estimated joint-angle trajectories for the left and right elbows
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Fig. 6 (continued)

mated poses (bottom rows). Figures 5, 6, and 7 compare the
results of our method with the ground truth. Figure 5-b plots
the average error between the true motion parameters and
the estimated ones. One may notice that the average error
remains within 2°, with the exception of frame 98 for which
the average error is 15°: this error is due to 180° ambiguity
associated with one of the joints. Nevertheless, the tracker
was able to recover from this large error. Figure 5a shows
the initial error between the predicted contours and the im-
age contours (top curve) as well as the error once the motion
parameters were fitted using the minimization described in
Sect. 5.3. The failure of the tracker at frame 98 corresponds
to an error of 4-5 pixels. The initial mean error is 3.7 pixels
whereas the final mean error is 1.5 pixels.

In more detail, Figs. 6 and 7 compare the estimated tra-
jectories with the ground truth for the left and right elbows
and for the left and right shoulders. Both the elbow and
shoulder are modeled with two rotational degrees of free-
dom.

Argplar values Plot of the ground truth motion for right elbow
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100
| —— Ground truth Ry for right Elbow
a0+
80
704
B0
S0
40—
304
204
ntr—T—TT7T " T T T T T T T T T T T T T
0 20 40 =] 80 100 120
Frames
Angular values Plot of the estimated motion for right elbow
indegres
00
1 [—— Estimated Ry for right Elbow
a0+
80—
70
60—
S0+
40
30
204
71T T 7 T T T T T T T T T T T
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Frames

(d)

In order to track real human-body motions we used a
setup composed of six cameras that were accurately cal-
ibrated and whose video outputs are finely synchronized.
Fine synchronization (of the order of 107° s) and fast shut-
ter speed (1073 s) allow one to cope with fast motions. The
camera setup is shown on Fig. 8. It consists in six Firewire
cameras that deliver 600 x 800 uncompressed images at 30
frames per second.

We used two different persons, Ben and Erwan. These
two persons have the same size and therefore we used the
same roughly estimated parameters for the elliptical cones
modeling the body parts.

We gathered three sets of data shown on Fig. 1 (Erwan-1),
Fig. 11 (Ben) and Fig. 12 (Erwan-2). For each data set, the
figures show the images associated with the first three cam-
eras, the associated silhouettes, and the estimated pose of
the model displayed from the viewpoint of the third cam-
era. The extremal contours eventually fitted to the data are
shown overlayed onto the raw images.
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Fig. 7 Ground-truth and estimated joint-angle trajectories for the left and right shoulders

The tracking is initialized by incremental pose estimation
of the body parts. We start with an initial guess (Fig. 9a)
from which the pose of the root body part is first estimated
(Fig. 9b). This is followed by the pose estimation of other
body parts (Fig. 9¢). The final kinematic pose found by this
initialization process is shown on Fig. 9d. The first exam-
ple, Erwan-1, has 250 frames, the second example, Ben, has
800 frames and the third example, Erwan-2, has 200 frames.
Notice that the Erwan motions involve all the degrees of
freedom of the articulated model, as well as the motion of
the root body-part.

The efficiency of minimization-based trackers, as the one
described here resides in number of iterations needed by the
optimization algorithm to converge. In all the examples de-
scribed in this paper we minimized an error function that
has two terms: one term corresponds to the rigid motions of
the body parts and the other terms corresponds to the sliding
of the contour generator on the body-parts’ surface. Under
these circumstances, the tracker converges in 3 to 5 itera-
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tions and the RMS image error is, in this case, 1.5 pixels,
Fig. 13 (bold plots). If the sliding-motion term is left out the
efficiency of the tracker is substantially degraded because
the optimizer needs twice more iterations for an RMS error
of 2.3 pixels, Fig. 13 (dashed plots).

It is worthwhile to notice that we used a human model
with the same measurements for the two persons (body-
part parameters such as the size of the arms, feet, thighs,
head, torso, etc.). More accurate model parameters (finely
adjusted to each person) will result in smaller RMS er-
rors.

6.1 Comparison with Marker-Based Motion Capture Data

One way to quantitatively evaluate the performance of mark-
erless human tracking methods such as the one described
in this paper, is to compare it with a marker-based motion
capture system. Until recently it was believed that marker-
less motion capture systems cannot compete with marker-
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Fig. 7 (continued)

Fig. 8 The camera setup used in our experiments. The cameras are calibrated with respect to a global reference frame. The human body model is
shown in it’s reference position
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(a) (b) (c) (d)

Fig. 9 Initialization: Starting from an initial guess, (a), the pose of the root body-part is first estimated, (b), followed by the incremental estimation
of the remaining body parts, (c) and (d)

g

Fig. 10 The result of tracking Ben with 6 cameras over 800 frames (continues on the next figure)

based systems (Gleicher and Ferrier 2002). We performed We equipped a room with two camera systems, our
the following experiment and evaluation which is similar ~ 6-camera system and a VICON system using 8 cameras.
in spirit with the work described in (Balan et al. 2005;  We simultaneously gathered markerless and marker-based
Sigal and Black 2006). data with these two systems. While our system gathers 8-

@ Springer
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Fig. 11 The result of tracking Ben with 6 cameras over 800 frames (continued from the previous figure)

bit color images, the VICON system only gathers the image
locations of the markers. Figure 14 shows two out of the
six image sequences (first and second columns), the corre-
sponding articulated poses found with our method (the third
and fourth columns show the pose of the model from the
viewpoints of the two cameras shown onto the left side
of the figure). Both our algorithm and an algorithm based
on the VICON data output joint trajectories. These trajec-
tories are used to estimate the poses of a virtual charac-
ter, as shown on the fifth and sixth columns. Character
animation using both these types of data are available at
http://perception.inrialpes.fr/~Knossow.

7 Conclusion

In this paper we proposed a contour-based method for track-
ing the motion of articulated objects. The main contribu-

tions of the paper are as follows. We derived an exact
kinematic parameterization of the extremal contours pro-
duced by developable surfaces. We combined this parame-
terization with the zero-reference kinematic model that is
well suited for representing the space of human motions,
i.e., a combination of both the space of articulated mo-
tions (spanned by rotational joints) and the space of free
motions (spanned by three rotations and three translations).
We derived an analytical expression for the Jacobian linking
joint- and free-motion velocities to extremal-contour veloci-
ties and we showed how this Jacobian matrix can be plugged
into a non-linear minimization method. We made explicit
two components of the Jacobian: a rigid-motion component
and a sliding-motion component. The cost function uses the
directed chamfer distance between extremal contours pre-
dicted by the model and image contours extracted from sil-
houettes. One major advantage of using the directed chamfer

@ Springer
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Fig. 12 The result of tracking Erwan-2 with 6 cameras over 250 frames
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Fig. 13 These graphs show the advantage of using the sliding motion.
a A comparison between the minimization error obtained using the
sliding motion (bold) and without using it (dashed). b A comparison
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(b)
of the speed of convergence of the minimization method (number of
iterations) with the sliding-motion component (bold) and without us-
ing it (dashed)
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Fig. 14 This figure shows a qualitative comparison between marker-
less and marker-based motion capture. The videos shown on to the left
(together with four other videos which are not shown) produced the

distance is that it does not require one-to-one assignments
between image observations and model features.

Moreover, we analysed the conditions under which the
minimization process can be carried out effectively, i.e.,
without failures due to numerical instabilities. Although, in
principle, one camera may suffice, in practice it is desirable
to have several images gathered simultaneously with several
cameras. We carried out a large number of experiments with
both simulated and real data. The tracker performed very

results shown on the third, fourth and fifth columns. The last column
shows the result obtained from a method that uses a 8-camera VICON
system to locate image markers

well and is able to recover from badly estimated poses. We
performed experiments with both simulated and real data
gathered with six cameras. We compared the angle trajecto-
ries obtained with our method with trajectories obtained us-
ing a marker-based commercial system that uses eight cam-
eras. We plan to compare more thoroughly our method with
other methods within formal evaluation protocols.

In the future we plan to have a probabilistic look at
the problem while maintaining the deterministic relation-
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ship between extremal contours and moving articulated ob-
jects. One possibility is to consider the graphical model
framework successfully applied to the pictorial recognition
of articulated objects (Felzenswalb and Huttenlocher 2005),
(Ronfard et al. 2002). Another possibility is to view each
extremal contour as a thin and elongated cluster and to ap-
ply model-based clustering methods (Fraley and Raftery
2002). Both these approaches raise the problem of relat-
ing the parameters of the probability distribution function at
hand with the kinematic parameterization proposed in this
paper. It is worthwhile to notice that the clustering frame-
work just mentioned is consistent with the chamfer dis-
tance which can be modified such that it accounts for a
probabilistic association between a set of observations and
a model.
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Abstract

Action recognition is an important and challenging topic in computer vision, with many important applications including video sur-
veillance, automated cinematography and understanding of social interaction. Yet, most current work in gesture or action interpretation
remains rooted in view-dependent representations. This paper introduces Motion History Volumes (MHV) as a free-viewpoint represen-
tation for human actions in the case of multiple calibrated, and background-subtracted, video cameras. We present algorithms for com-
puting, aligning and comparing MHVs of different actions performed by different people in a variety of viewpoints. Alignment and
comparisons are performed efficiently using Fourier transforms in cylindrical coordinates around the vertical axis. Results indicate that
this representation can be used to learn and recognize basic human action classes, independently of gender, body size and viewpoint.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Action recognition; View invariance; Volumetric reconstruction

1. Introduction

Recognizing actions of human actors from video is an
important topic in computer vision with many fundamen-
tal applications in video surveillance, video indexing and
social sciences. According to Neumann et al. [1] and from
a computational perspective, actions are best defined as
four-dimensional patterns in space and in time. Video
recordings of actions can similarly be defined as three-di-
mensional patterns in image-space and in time, resulting
from the perspective projection of the world action onto
the image plane at each time instant. Recognizing actions
from a single video is however plagued with the unavoid-
able fact that parts of the action are hidden from the cam-
era because of self-occlusions. That the human brain is able
to recognize actions from a single viewpoint should not
hide the fact that actions are firmly four-dimensional,
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E-mail addresses: weinland@inrialpes.fr (D. Weinland), ronfard@
inrialpes.fr (R. Ronfard), edmond.boyer@inrialpes.fr (E. Boyer).
! D. Weinland is supported by a grant from the European Community
under the EST Marie-Curie Project Visitor.

1077-3142/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2006.07.013

and, furthermore, that the mental models of actions
supporting recognition may also be four-dimensional.

In this paper, we investigate how to build spatio-temporal
models of human actions that can support categorization
and recognition of simple action classes, independently of
viewpoint, actor gender and body sizes. We use multiple
cameras and shape from silhouette techniques. We separate
action recognition in two separate tasks. The first task is the
extraction of motion descriptors from visual input, and the
second task is the classification of the descriptors into vari-
ous levels of action classes, from simple gestures and pos-
tures to primitive actions to higher levels of human
activities, as pointed out by Kojima et al. [2]. That second
task can be performed by learning statistical models of the
temporal sequencing of motion descriptors. Popular meth-
ods for doing this are hidden Markov models and other
stochastic grammars, e€.g., stochastic parsing as proposed
by Ivanov and Bobick [3]. In this paper, we focus on the
extraction of motion descriptors from multiple cameras,
and their classification into primitive actions such as raising
and dropping hands and feet, sitting up and down, jumping,
etc. To this aim, we introduce new motion descriptors based
on motion history volumes which fuse action cues, as seen
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from different viewpoints and over short time periods, into a
single three-dimensional representation.

In previous work on motion descriptors, Green and Guan
[4]use positions and velocities of human body parts, but such
information is difficult to extract automatically during unre-
stricted human activities. Motion descriptors which can be
extracted automatically, and which have been used for
action recognition, are optical flows, as proposed by Efros
et al. [5], motion templates in the seminal work of Bobick
and Davis [6], and space-time volumes, introduced by
Syeda-Mahmood et al. [7] or Yilmaz and Shah [§]. Such
descriptors are not invariant to viewpoint, which can be par-
tially resolved by multiplying the number of action classes by
the number of possible viewpoints [6], relative motion direc-
tions [5], and point correspondences [7,8]. This results in a
poorer categorization and an increased complexity.

In this research, we investigate the alternative possibility
of building free-viewpoint class models from view-invariant
motion descriptors. The key to our approach is the
assumption that we need only consider variations in view-
points around the central vertical axis of the human body.
Within this assumption, we propose a representation based
on Fourier analysis of motion history volumes in cylindri-
cal coordinates. Fig. 1 explains our method for comparing
two action sequences. We separately compute their visual
hulls and accumulate them into motion history volumes.
We transform the MHVs into cylindrical coordinates
around their vertical axes, and extract view-invariant fea-
tures in Fourier space. Such a representation fits nicely
within the framework of Marr’s 3D model [9] which has
been advocated by linguist Jackendoff [10] as a useful tool
for representing action categories in natural language.

The paper is organized as follows. First, we recall Davis
and Bobick’s definition of motion templates and extend it

a
B o
n ®
Visual Hull Motion History Volume
B o
a/ ¢

to three dimensions in Section 2. We present efficient
descriptors for matching and aligning MHVs in Section
3. We present classification results in Section 4 and con-
clude in Section 5.

2. Definitions

In this section, we first recall 2D motion templates as
introduced by Davis and Bobick in [6] to describe temporal
actions. We then propose their generalization to 3D in
order to remove the viewpoint dependence in an optimal
fashion using calibrated cameras. Finally, we show how
to perform temporal segmentation using the 3D MHVs.

2.1. Motion history images

Motion Energy Images (MEI) and Motion History
Images (MHI) [6] were introduced to capture motion infor-
mation in images. They encode, respectively, where motion
occurred, and the history of motion occurrences, in the
image. Pixel values are therefore binary values (MEI)
encoding motion occurrence at a pixel, or multiple-values
(MHI) encoding how recently motion occurred at a pixel.
More formally, consider the binary-valued function
D(x,y,t), D=1 indicating motion at time ¢ and location
(x,»), then the MHI function is defined by:

T, if D(x,y,t) =1,

h‘[ b 7t -
1) {maxm, he(e,,t— 1) = 1),

otherwise,

(1)

where 7 is the maximum duration a motion is stored. The
associated MEI can easily be computed by thresholding
h>0.

Cylindrical Coordinates Fourier Magnitudes

Fig. 1. The two actions are recorded by multiple cameras, spatially integrated into their visual hulls (a), and temporally integrated into motion history
volumes (b) and (c). Invariant motion descriptors in Fourier space (d) are used for comparing the two actions.
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The above motion templates are based on motion, i.e.,
D(x,y,t) is a motion indicating function, however Bobick
and Davis also suggest to compute templates based on
occupancy, replacing D(x, y,t) by the silhouette occupancy
function. They argue that including the complete body
makes templates more robust to incidental motions that
occur during an action. Our experiments confirm that
and show that occupancy provides robust cues for recogni-
tion, even if occupancy encodes not only motion but also
shapes which may add difficulties when comparing move-
ments, as illustrated in Fig. 2.

2.2. Motion history volumes

In this paper, we propose to extend 2D motion tem-
plates to 3D. The choice of a 3D representation has several
advantages over a single, or multiple, 2D view
representation:

e A 3D representation is a natural way to fuse multiple
images information. Such representation is more infor-
mative than simple sets of 2D images since additional
calibration information is taken into account.

e A 3D representation is more robust to the object’s posi-
tions relative to the cameras as it replaces a possibly
complex matching between learned views and the actual
observations by a 3D alignment (see Section 2.3).

e A 3D representation allows different camera
configurations.

Motion templates extends easily to 3D by considering the
occupancy function D(x,y,z,t) in 3D, where D=1 if
(x,y,z) is occupied at time ¢ and D = 0 otherwise, and by
considering voxels instead of pixels:

T? if D(xty?Zal) = 1’

T b b 7t =
(3 2:1) {maxw,hf(x?y?z?r— D),

otherwise.
(2)

In the rest of the paper, we will assume templates to be nor-
malized and segmented with respect to the duration of an
action:

v(x,y, Z) = Ut=tmax —tmin (L%Z, tmax)/(tmax - tmin) (3)

RET

Fig. 3. Motion history volume examples: From left to right: “sit down”;
“walk’’; “kick”; “punch”. Color values: red = current;. . .; blue = maxi-
mum duration, encode time of last occupancy. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this paper.)

where 7., and t,,,, are start and end time of an action.
Hence, motions loose dependencies on absolute speed
and result all in the same length. Section 2.3 shows how
we detect these boundaries using a motion energy based
segmentation.

The input occupancy function D(x,y,z,t) is estimated
using silhouettes and thus, corresponds to the visual hull
[12]. Visual hulls present several advantages, they are easy
to compute and they yield robust 3D representations. Note
however that, as for 2D motion templates, different body
proportions may still result in very different templates.
Fig. 3 shows examples for motion history volumes.

2.3. Temporal segmentation

Temporal segmentation consist in splitting a continuous
sequence of motions into elementary segments. In this
work, we use an automatic procedure that we recently
introduced in [13]. It relies on the definition of motion
boundaries as minima in motion energy, as originally pro-
posed by Marr and Vaina [9]. Such minima correspond
either to small rests between motions or to reversals in
motion. As it turns out, an approximation of the global
motion energy can be effectively computed using MHVs:
Intuitively, instant motion can be encoded using MHVs
over small time windows (typically 2-10 frames). Then
the sum over all voxel values at time ¢ will give a measure
of the global motion energy at that time. Next, we search
this energy for local minima, and recompute the MHVs
based on the detected boundaries. For more details we
refer to our work in [13].

a. b. | - d.
Fig. 2. Motion versus occupancy. Using motion only in image (a), we can roughly gather that someone is lifting one arm. Using the whole silhouette

instead, in (b), makes it clear that the right arm is lifted. However the same movement executed by a woman, in (c), compares favorably with the man’s
action in (a), whereas the whole bodies comparisons between (b) and (d) is less evident.
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3. Motion descriptors

Our objective is to compare body motions that are free
in locations, orientations and sizes. This is not the case of
motion templates, as defined in the previous section, since
they encode space occupancy. The location and scale
dependencies can be removed by centering, with respect
to the center of mass, and scale normalizing, with respect
to a unit variance, motion templates, as usual in shape
matching. For the rotation, and following Davis and
Bobick [6] who used the Hu moments [14] as rotation
invariant descriptors, we could consider their simple 3D
extensions by Sadjadi and Hall [15]. However, our experi-
ments with these descriptors, based on first and second
order moments, were unsuccessful in discriminating
detailed actions. In addition, using higher order moments
as in [16] is not easy in practice. Moreover, several works
tend to show that moments are inappropriate feature
descriptors, especially in the presence of noise, e.g., Shen
[17]. In contrast, several works, such as that by Grace
and Spann [18] and Heesch and Rueger [19], demonstrated
better results using Fourier based features. Fourier based
features are robust to noise and irregularities, and present
the nice property to separate coarse global and fine local
features in low and high frequency components. Moreover,
they can be efficiently computed using fast Fourier-trans-
forms (FFT). Our approach is therefore based on these
features.

Invariance of the Fourier transform follows from the
Fourier shift theorem: a function fy(x) and its translated
counterpart fi(x) = fo(x — xo) only differ by a phase modu-
lation after Fourier transformation:

F (k) = Fo(k)e*™, 4)

Hence, Fourier magnitudes |Fy(k)| are shift invariant sig-
nal representations. The invariance property translates
easily onto rotation by choosing coordinate systems that
map rotation onto translation. Popular example is the
Fourier—Mellin transform, e.g., Chen et al. [20], that uses
log-polar coordinates for translation, scale, and rotation
invariant image registration. Recent work in shape
matching by Kazhdan et al. [21] proposes magnitudes of
Fourier spherical harmonics as rotation invariant shape
descriptors.

In a similar way, we use Fourier-magnitudes and cylin-
drical coordinates, centered on bodies, to express motion
templates in a way invariant to locations and rotations
around the z-axis. The overall choice is motivated by the
assumption that similar actions only differ by rigid trans-
formations composed of scale, translation, and rotation
around the z-axis. Of course, this does not account for all
similar actions of any body, but it appears to be reasonable
in most situations. Furthermore, by restricting the Fourier-
space representation to the lower frequencies, we also
implicitly allow for additional degrees of freedom in object
appearances and action executions. The following section
details our implementation.

3.1. Invariant representation

We express the motion templates in a cylindrical coordi-
nate-system:

v( x2 42, tan ! (X),z) — u(r,0,z).
X

Thus, rotations around the z-axis results in cyclical transla-
tion shifts:

v(xcos by + ysin Oy, —xsin 6y + y cos 0y, z) — v(r, 0 + 6y, z).

We center and scale-normalize the templates. In detail, if v
is the volumetric cylindrical representation of a motion
template, we assume all voxels that represent a time step,
i.e., for which v(r,0,z) > 0, to be part of a point cloud.
We compute the mean p and variances o, and ¢, in z-
and r-direction. The template is then shifted, so that
u =0, and scale normalized so that . =0, = 1.

We choose to normalize in z and r direction, instead
of a principal component based normalization, focusing
on the main directions human differ on, and assuming
scale effects dependent on positions to be rather small.
This method may fail aligning, e.g., a person spreading
its hand with a person dropping its hand, but gives good
results for people performing similar actions, which is
more important.

The absolute values |V(r,ky,z)| of the 1D Fourier-
transform

T

V(r,ko,z) = / v(r,0,z)e 2™’ 40, (5)
—T

for each value of r and z, are invariant to rotation along 6.

See Fig. 4 for an illustration of the 1D-Fourier trans-
form. Note that various combinations of the Fourier trans-
form could be used here. For the 1D Fourier-transform the
spatial order along z and r remains unaffected. One could
say, a maximum of information in these directions is
preserved.

An important property of the 1D-Fourier magnitudes is
its trivial ambiguity with respect to the reversal of the sig-
nal. Consequently, motions that are symmetric to the z-axis
(e.g., move left arm—move right arm) result in the same
motion descriptors. This can be considered either as a loss
in information or as a useful feature halving the space of
symmetric motions. However, our practical experience
shows that most high level descriptions of human actions
do not depend on this separation.

In cases where it is important to resolve left/right ambi-
guities a slightly different descriptor can be used. One such
descriptor is the magnitude |V(k,, kg, k.)| of the 3D-Fourier
transform

V (ke ko, k) Z/ / / v(r, 0, z)e 2tk thi0kz) 4 46 dz,
(6)

applied to the motion template v. This descriptor is only
symmetric with respect to an inversion of all variables,
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Fig. 4. 1D-Fourier transform in cylindrical coordinates. Fourier transforms over 6 are computed for couples of values (r,z). Concatenation of the Fourier

magnitudes for all r and z forms the final feature vector.

Fig. 5. Volume and spectra of sample motions “lift left arm” (left) and “lift right arm” (right): (a) cylindrical representation in (0,r), (r,z), (0,z) averaged
over the third dimension for visualization purposes; (b) corresponding 3D-Fourier Spectra; (c) 1 D-Fourier spectra. Note that the 3D descriptor treats both
motions differently (i.e., top and bottom row (b)), while the 1D descriptors treats them the same.

i.e., humans standing upside-down, which does not happen
very often in practice. While our previous work [22] used
that descriptor Eq. (6) with success, the results were any-
way inferior to those obtained with Eq. (5) and an invari-
ance to left right symmetry proved to be beneficial in
many classification cases. A visualization of both descrip-
tors is shown in Fig. 5.

3.2. On invariance vs. exhaustive search

Although we cannot report experiments for lack of
space, another significant result of our research is that
viewpoint-invariant motion descriptors (Fourier magni-
tudes) are at least as efficient as methods based on exhaus-
tive search (correlation), at least for comparing simple
actions. Numerous experiments have shown that, although
it is possible to precisely recover the relative orientations
between history volumes using phase or normalized corre-
lation in Fourier space [23], and compare the aligned
volumes directly, this almost never improves the classifica-
tion results. Using invariant motion descriptors is of course
advantageous because we do not need to align training
examples for learning a class model, or align test examples
with all class prototypes for recognition.

4. Classification using motion descriptors

We have tested the presented descriptors and evaluated
how discriminant they are with different actions, different
bodies or different orientations. Our previous results [22]
using a small dataset of only two persons already indicated
the high potential of the descriptor. This paper presents
results on an extended dataset, the so called /XM AS dataset.
The dataset is introduced in Section 4.1, followed by classifi-
cation results using dimensional reduction combined with
Mahalanobis distance and linear discriminant analysis
(LDA).

4.1. The IXMAS dataset

The Inria Xmas Motion Acquisition Sequences
(IXMAS)? aim to form a dataset comparable to the current
“state-of-the-art” in action recognition. It contains 11
actions, see Fig. 6 for instance, each performed three
times by 10 actors (5 males/5 females). To demonstrate the

2 The data is available on the perception website http://perception.
inrialpes.fr in the “Data” section.



254 D. Weinland et al. | Computer Vision and Image Understanding 104 (2006) 249-257

—

1 R

Check watch Cross arms Scratch head

it

Turn around

3

Punch

Kick Pick up

4 ¢ 4 ¢
1 ¢t ¢ 8

Fig. 7. Sample action “kick” performed by 10 actors.

view-invariance, the actors freely change their orientation
for each acquisition and no further indications on how to
perform the actions beside the labels were given, as illustrat-
ed in Fig. 7.

The acquisition was achieved using five standard Fire-
wire cameras. Fig. 8 shows example views from the camera
setup used during the acquisition. From the video we
extract silhouettes using a standard background subtrac-
tion technique modeling each pixel as a Gaussian in
RGB space. Then visual hulls are carved from a discrete
space of voxels, where we carve each voxel that not projects
into all of the silhouettes. However, there are no special

-

~

Fig. 8. Example views of five cameras used during acquisition.

requirements for the visual hull computation and even
the simplest method showed to work perfectly with our
approach. After mapping into cylindrical coordinates the
representation has a resolution of 64 x 64 x 64. Temporal
segmentation was performed as described in Section 2.3.
Note, that the temporal segmentations splits some of the
actions into several elementary parts. To evaluate the
descriptor on a selected dataset of primitive motions, we
choose from each of the segments the one that best represents
the motion. For example the action “check watch” is split
into three parts: an upward motion of the arm—several
seconds of resting in this position—releasing the arm. From
these motions we only use the first for the class “check
watch”. Another example is the action “walk”, that has been
broken down into separate steps. Interestingly, in those
examples, we were able to classify even moderately complex
actions based on one segment only. However, classification
of composite actions is a topic of future research.

4.2. Classification using Mahalanobis distance and PCA

In initial experiments on a small dataset and with differ-
ent distance measures (i.e., Euclidean distance, simplified
Mahalanobis distance, and Mahalanobis distance + PCA,
see also [22]), the combination of a principal component
analysis (PCA) dimensional reduction plus Mahalanobis
distance based normalization showed best results. Due to
the small amount of training samples we only used one
pooled covariance matrix for all classes. Interestingly, we
found that the method extends well to larger datasets and
even competes with linear discriminant analysis (LDA),
as will be shown in Section 4.3.

PCA is a commonly used method for dimensional reduc-
tion. Data points are projected onto a subspace that is chosen
to yield the reconstruction with minimum squared error. It
has been shown that this subspace is spanned by the largest
eigenvectors of the data’s covariance X2, and corresponds
to the directions of maximum variance within the data. Fur-
ther, by normalization with respect to the variance, an equal-
ly weighting of all components is achieved, similar to the
classical use of Mahalanobis distances in classification, but
here computed for one pooled covariance matrix.

Every action class in the data-set is represented by the
mean value of the descriptors over the available population
in the action training set. Any new action is then classified
according to a Mahalanobis distance associated to a PCA
based dimensional reduction of the data vectors. One
pooled covariance matrix X based on the training samples
of all classes x; € RY, i=1, ..., n was computed:

n

ZZ%Z(Xi—m)(Xi—m)T7 (7)

i

where m represents the mean value over all training
samples.

The Mahalanobis distance between feature vector x and
a class mean m; representing one action is:



D. Weinland et al. | Computer Vision and Image Understanding 104 (2006) 249-257 255

Table 1

IXMAS data classification results. Results on PCA, PCA + Mahalanobis
distance based normalization using one pooled covariance, and LDA are
presented

Action PCA (%) Mahalanobis (%) LDA (%)
Check watch 46.66 86.66 83.33
Cross arms 83.33 100.00 100.00
Scratch head 46.66 93.33 93.33
Sit down 93.33 93.33 93.33
Get up 83.33 93.33 90.00
Turn around 93.33 96.66 96.66
Walk 100.00 100.00 100.00
Wave hand 53.33 80.00 90.00
Punch 53.33 96.66 93.33
Kick 83.33 96.66 93.33
Pick up 66.66 90.00 83.33
Average rate 73.03 93.33 92.42

d(m;,x) = (x —m) VAV (x ~m),

with A containing the k largest eigenvalues 1, > 4, > - --
> /g, k<n—1, and V the corresponding eigenvectors of
2. Thus feature vectors are reduced to k principal
components.

Following this principle, and reducing the initial
descriptor Eq. (5) to k = 329 components an average clas-
sification rate of 93.33% was obtained with leave-one-out
cross validation, where we successively used 9 of the actors
to learn the motions and the 10th for testing. Note that in
the original input space, as well as for a simple PCA reduc-
tion without covariance normalization the average rate is
only 73.03%. Detailed results are given in Table 1.

4.3. Classification using linear discriminant analysis

For further data reduction, class specific knowledge
becomes important in learning low dimensional representa-
tions. Instead of relying on the eigen-decomposition of one
pooled covariance matrix, we use here a combination of
PCA and Fisher linear discriminant analysis (LDA), see
e.g., Swets and Weng [24], for automatic feature selection
from high dimensional data.

First PCA is applied, Y=V'X, V=[v,... V], to
derive a m < n — ¢ dimensional representation of the data

Check watch
Cross arms
Scratch head
Sit down
Get up

Turn around
Walk

Wave hand
Punch

Kick

Pick up

points x;, i =1, ..., n. The class-number ¢ dependent limit
is necessary to guaranty non-singularity of matrices in dis-
criminant analysis.

Fisher discriminant analysis defines as within-scatter
matrix:

Sw = Z Z[(yl
i J

and between-scatter matrix:

y/ _mi)Tv (8)

Sy =) _(m; —m)(m; —m)’, )
and aims at maximizing the between-scatter while minimiz-
ing the within-scatter, i.e., we search a projection W that
maximize ;ett(ssb It has been proven that W equal to the
largest eigenvectors of S,'S, maximizes this ratio. Conse-
quently, a second projection Z= W'Y, W=1[wy,...,w],
k < c¢—11s applied to derive our final feature representa-
tion Z.

During classification each class is represented by its
mean vector m;. Any new action z is then classified by sum-
ming Euclidean distances over the discriminant features
and with respect to the closest action class:

d(m;,z) = |m; —z||*. (10)

In the experiments the magnitudes of the Fourier represen-
tation Eq. (5) are projected onto k£ = 10 discriminant fea-
tures. Successively we use nine of the actors to learn the
motions, the 10th is used for testing. The average rate of
correct classifications is then 92.42%. Class specific results
are shown in Table 1 and Fig. 9.

We note that we obtain much better results with the
Mahalanobis distance, using the 329 largest components
of the PCA decomposition, as compared to using the
PCA components alone. LDA allows us to further reduce
the number of features to 10, but otherwise does not fur-
ther improve the overall classification results.

4.4. Motion history vs. motion energy and key frames

With the same dataset as before, we compare our MHV
based descriptors with a combination of key poses and

Check watch
Cross arms
Scratch head
Sit down
Get up

Turn around
Walk

Wave hand
Punch

Kick

Pick up

Fig. 9. Average class distance: (Left) before discriminant analysis. (Right) after discriminant analysis.
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Table 2

IXMAS data classification results

Action (%) MEV (%) Key frame (%) MHYV (%)
Check watch 86.66 73.33 86.66
Cross arms 80.00 93.33 100.00
Scratch head 73.33 86.66 93.33
Sit down 70.00 93.33 93.33
Get up 46.66 53.33 93.33
Turn around 90.00 60.00 96.66
Walk 100.00 80.00 100.00
Wave hand 80.00 76.66 80.00
Punch 93.33 80.00 96.66
Kick 90.00 90.00 96.66
Pick up 70.00 96.66 90.00
Average rate 80.00 80.30 93.33

Results using the proposed MHVs are presented. For comparison we also
include results using binary MEVs and key frame descriptors.

energy volumes. While Davis and Bobick suggested in the
original paper the use of history and binary images, our
experiments with motion volumes showed no improvement
in using a combination of MHVs and the binary MEVs.
We repeated the experiment described in Section 4.3, for
MEVs. Using the binary information the recognition rate
becomes 80.00% only. See Table 2 for detailed results. As
can be expected: reverse actions, e.g., “‘sit down’—“get
up”, present lower scores with MEVs than with MHVs.
The MHVs show also better performance in discriminating
actions on more detailed scales, e.g., ‘“scratch head”-
“wave”’.

Also, to show that integration over time plays a funda-
mental role of information, we compare our descriptor
with descriptors based on a single selected key frame. The
idea of key frames is to represent a motion by one specific
frame, see e.g., Carlson and Sullivan [25]. As invariant rep-
resentation, we use the magnitudes of Eq. (5). For the pur-
pose of this comparison we simply choose the last frame of
each MHV computation as corresponding key frame. The
average recognition rate becomes 80.30%. While motion
intensive action, e.g., “walk”—“turn around” score much
lower, a few pose expressive actions, e.g., “pick up”,
achieve a better score. This may indicate that not all
actions should be described with the same features.

We conclude, that invariant Fourier descriptors of bina-
ry motion volumes and key frames are suitable for motion
recognition as well. However, the use of additional motion
information, as present in the motion history volumes, in
both cases distinctly improves the recognition.

4.5. Classification on video sequences

The previous experiments show that the descriptor per-
forms well in discriminating selected sets of learned
motions. In this experiment we test the descriptor on
unseen motion categories as they appear in realistic situa-
tions. For this purpose we work on the raw video sequences
of the IXMAS dataset. In a first step the dataset is seg-
mented into small motion primitives using the automatic

Recognition vs. False Positive

Recognition
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False Positive Rate

Fig. 10. Recognition on raw video sequences: plots recognition rate into
11 classes against false positive rate.

segmentation. Then each segment is either recognized as
one of the 11 learned classes or rejected. As in the previous
experiments, we work in PCA space spanned by the 11
sample motions and perform nearest-mean assignment.
To decide for the “‘reject”’-class we use a global threshold
on the distance to the closest class.

The automatic segmentation of the videos results in
1188 MHYVs, corresponding to approximately 23 min of
video. In manual ground truth labeling we discover 495
known motions and 693 “reject”’-motions. Note, that such
a ground truth labeling is not always obvious. A good
example is the “turn”-motion that was included in the
experiments, but additional turn-like motions also appear
as the actors where free to change position during the
experiments. Moreover, it might be that an actor was acci-
dentally checking his watch or scratching his head.

Testing in a leave-one-out manner, using all possible
combinations of 9 actors for training and the remaining
10th for testing, we show a multi-class ROC curve,
Fig. 10, plotting the average number of correctly classified
samples, against the number of false positives. We found a
maximal overall recognition rate (including correctly
rejected motions) of 82.79%, for 14.08% false positives
and 78.79% correctly classified motions. Fig. 11 shows
the average distance between the ‘‘reject”’-motions and
the learned classes.
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Fig. 11. Average distance between ‘“‘reject’”’-samples and training classes.
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The experiments demonstrate the ability of MHVs even
to work with large amounts of data and under realistic sit-
uations (23 min of video, 1188 motion descriptors). The
segmentation proved to almost always detect the important
parts of motions; MHVs showed good quality in discrimi-
nating learned and unseen motions.

An obvious problem for the false detections, is the nearly
infinite class of possible motions. Modeling unknown
motions may require more than a single threshold and
class, multiple classes and explicit learning on samples of
unknown motions becomes important. Another problem
we found is, that many motions can not be modeled by a
single template. Small motions may seem very similar,
but over time belong to very different actions. For example
the turn around motion is split into several small steps that
may easily be confused with a single side step. In such cases
temporal networks over templates, as e.g., in an HMM
approach, must be used to resolve these ambiguities.
However, we leave this for future work.

5. Conclusion

Using a data set of 11 actions, we have been able to
extract 3D motion descriptors that appear to support
meaningful categorization of simple action classes per-
formed by different actors, irrespective of viewpoint, gen-
der and body sizes. Best results are obtained by
discarding the phase in Fourier space and performing
dimensionality reduction with a combination of PCA and
LDA. Further, LDA allows a drastic dimension reduction
(10 components). This suggests that our motion descriptor
may be a useful presentation for view invariant recognition
of an even larger class of primitive actions. Our current
work is suited to segmentation of composite actions into
primitives, and classification of sequences of the corre-
sponding LDA coefficients.
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Abstract

We present a new method for segmenting actions into
primitives and classifying them into a hierarchy of action
classes. Our scheme learns action classes in an unsuper-
vised manner using examples recorded by multiple cameras.
Segmentation and clustering of action classes is based on a
recently proposed motion descriptor which can be extracted
efficiently from reconstructed volume sequences. Because
our representation is independent of viewpoint, it results in
segmentation and classification methods which are surpris-
ingly efficient and robust. Our new method can be used as
the first step in a semi-supervised action recognition sys-
tem that will automatically break down training examples
of people performing sequences of actions into primitive ac-
tions that can be discriminatingly classified and assembled
into high-level recognizers.

1 Introduction

Recognizing actions of human actors from video is an
important topic in computer vision with many fundamen-
tal applications in video surveillance, video indexing and
social sciences. From a computational perspective, actions
are best defined as four-dimensional patterns in space and
in time [10]. Yet, much current research in computer vision
ignores this fact and attempts to learn action models directly
from monocular video [3, 6, 1]. In our work, we use mul-
tiple video cameras and shape-from-silhouette techniques
to obtain four-dimensional recordings of action sequences.
We compute new motion descriptors based on - motion his-
tory volumes - which fuse action cues, as seen from different
viewpoints and over short time periods, into a single three
dimensional representation. From that representation, we
are able to segment the action streams into primitives and to
cluster those primitives into a hierarchy of primitive action
classes.

*D. Weinland is supported by a grant from the European Community
under the EST Marie-Curie Project Visitor.

Our long-term goal is to automatically generate high-
level descriptions of video sequences in terms of the actions
that can be recognized or inferred from the given visual in-
put. Actions generally fall under two distinct categories -
composite actions which can be broken down into distinct
temporal parts or segments, and primitive actions, which
cannot be broken down further. In order to build a general
action recognizer, we need the ability to break down a given
sequence into primitive action segments, to label those seg-
ments into primitive actions using a vocabulary of learned
action models, and to assemble the labeled segments into
composite actions using concept hierarchies [8] or gram-
mars [11].

In this work, we use a novel motion descriptor based
on the motion history volume (MHV) which summarizes
the action content of a short multi-view sequence without
knowledge of body parts [15]. We automatically segment
action sequences into primitive actions which can be repre-
sented by a single MHV and we cluster the resulting MHV's
into a hierarchy of action classes, which allow us to recog-
nize multiple occurrences of repeating actions. We are able
to perform those two steps automatically, mainly because
MHVs work in a volume space which considerably re-
duces the ambiguities traditionally associated with changes
in viewpoints and occlusions even in multiple views.

As a concrete example, we asked two members of our
lab to perform a sequence of simple actions, each repeated
several times with different poses and styles, in front of 6
calibrated cameras. The resulting data set consists of unseg-
mented and unlabeled synchronized video sequences such
as the one depicted in Figure 1. Using the new motion
descriptor, we were able to segment (Section 5) and clus-
ter (Section 6) such sequences into primitive actions, which
we used as training examples for learning statistical classi-
fiers. Such a semi-supervised scheme is important in practi-
cal terms because it facilitates the creation of large training
sets for action recognition in the large.

Our method generates action taxonomies based on
purely visual cues since we create higher-level action
classes by abstracting two or more recorded actions which



Figure 1. Example action sequence: Raise arms - rotate arms - turn left - raise arms - rotate arms -
turn left - raise arms - rotate arms, seen from two different viewpoints. Such sequences are difficult
to segment and label consistently from monocular cues, but are easily segmented and labeled using
our view-independent motion descriptors.

look the same from all viewpoints (as measured by the dif-
ferences in a metric space of motion descriptors extracted
from their MHVs). We believe this is an important step to-
wards building complete, semantic taxonomies of actions
and plans.

The paper is organized as follows. We review related
work in Section 2. We briefly review motion history vol-
umes and associated view-independent motion descriptors
in Sections 3 and 4. We describe our segmentation algo-
rithm in Section 5 and our clustering algorithm in Section
6. Both algorithms are based on the motion descriptors in-
troduced in Section 4. Finally in Section 7 we describe
a semi-supervised action classification system which uses
the proposed algorithms to automatically segment and la-
bel the training and test sequences, and report initial results
obtained on a limited but realistic data set.

2 Related work

Segmentation and labeling of action sequences from
monocular video is a difficult problem that has received
considerable attention in recent years. Rittscher et al. learn
dynamical models of actions from tracked contours and use
them to segment new sequences [12]. Rui and Anandan
perform an SVD decomposition of a long sequence of op-
tical flow images and detect discontinuities in the trajec-
tories of selected SVD components to segment video into
motion patterns [13]. Zelnik-Manor and Irani cluster video
sequences into events using normalized cuts on multires-
olution sequences of spatio-temporal gradient magnitudes
[16]. Brand and Kettnaker use unsupervised HMMs to per-
form simultaneous segmentation and clustering of actions
from sequences of human silhouettes [3]. Wang et al. also
use unsupervised HMMs to segment 2D hand motions and
extract a vocabulary of musical conducting gestures, which
allows them to describe video sequences optimally in the
sense of minimum description length [14]. Feng and Cham
compare methods for segmenting action sequences with or

without body part correspondences and propose a hybrid
scheme that can handle ambiguous correspondences [5].
All such methods work only with restricted variations in
viewpoint, which make them ill-suited to cases such as of
Figure 1 where each action is performed multiple times with
vastly different poses.

Segmentation and labeling of action sequences from
multiple views is a relatively little-studied area. Previous
work assumes either that the cameras are uncalibrated (so
that reconstruction is not possible) or that a full human
body model can be recovered (so that reconstruction in-
cludes body part recognition and tracking). Thus, Marr and
Vaina discuss the problem of segmenting the 3D movement
of shapes and suggest the use of local minima of the 3D
motion of human limbs as natural transitions between prim-
itive movements [9]. Campbell et al. investigate several
view-invariant features for action classification from face
and hand tracking based on using multi-view stereo [4].
Davis and Bobick use motion templates in multiple views,
but they assume uncalibrated cameras and are therefore un-
able to perform 3D reconstruction [2]. Similarly, Ogale et
al. cluster action sequences in multiple views separately
by detecting minima and maxima of optical flow inside sil-
houettes and matching the selected silhouettes using phase
correlation [11]. This allows them to learn action gram-
mars from examples recorded by multiple cameras, but their
grammars remain viewpoint-dependent.

To the best of our knowledge, no previous work has at-
tempted to perform segmentation and clustering from vol-
umetric reconstructions. In this paper, we propose such a
method, which extends monocular methods most naturally
by introducing view-invariant motion descriptors built from
silhouettes in multiple calibrated views. Compared with
previous work, our method has the advantage that we per-
form all three steps of segmenting, clustering and classify-
ing action sequences in 3D with a representation which is
fully view-invariant, and is much simpler to recover than a
full human body model.



Figure 2. Example motion history volumes:
”Lift arm” and “knee”, rendered from differ-
ent viewpoints. Colors: red = current, ..., blue
= maximum duration, encode time of last oc-
cupancy.

3 Motion History Volumes

In this section, we present the 3D motion templates on
which we ground our approach. These templates are a 3D
generalization of the 2D motion templates introduced by
Bobick and Davis in [2]. Both 2D and 3D templates are
based on image silhouettes, which are binary valued func-
tions indicating object occupancies in image projections.

Motion templates encode the history of motion occur-
rences. In 2D images, pixel values are therefore multiple-
values recording how recently motion occurred at a pixel.
The extension to 3D is straightforward by considering vox-
els instead of pixels, and the space occupancy function
D(x,y,z,t) over time steps t. Voxel values in the MHV
at time ¢ are then defined by:

7 if D(z,y, 2,t)

max(0,v-(x,y, z,t — 1) — 1) oth. M

vr(z,y, 2,t) = {
where 7 is the maximum duration a motion is stored.

The input occupancy function D(x,y, z,t) is estimated
using silhouettes and is defined by the visual hull at time ¢.
Voxelic visual hulls are easy to compute and yield robust 3D
representations. Note however that, as for 2D motion tem-
plates, different body proportions may still result in differ-
ent templates. Figure 2 shows examples for motion history
volumes.

4 Motion Descriptors

To compare or discriminate motions, we need to find a
representation which is invariant to transformations in lo-
cations, orientations or sizes. To this purpose, we use both
alignment and invariant descriptors based on motion tem-
plates and Fourier transform. The idea is first to center
scale-normalized motion history volumes into a cylindrical
coordinate system where the z-axis is aligned with the verti-
cal direction. Hence, dependencies on scale and horizontal
translations are removed. For rotations around the vertical

axis, we use the fact that they correspond to translations in
the cylindrical coordinate systems, and that a function fo(x)
and its translated counterpart fi(x) = fo(z—x0) only differ
by a phase modulation after Fourier transform:

Fy(k) = Fo(k)e=i2mkao, )

Thus absolute values of the Fourier transform are rotation
invariant descriptors.

The choice made here is motivated by the assumption
that similar actions only differ by rigid transformations
composed of scale, translation, and rotation around the z-
axis. Of course, this does not account for all similar actions
of any body shape, but it appears to be reasonable in most
situations. In addition, restricting the Fourier-space repre-
sentation to the lower frequencies also implicitly allows for
additional degrees of freedom in object appearances and ac-
tion executions. Our experiments also show that Fourier
magnitudes provide more discriminative information than
correlation features when comparing actions. The follow-
ing section details our exact implementation.

Alignment We express the motion templates in a cylin-
drical coordinate-system:

v(v/22 4+ y2, tan ™! (g),z) —v(r, 0, 2).
x
Thus rotations around the z-axis results in cyclical trans-
lation shifts:

v(x cos Op+y sin by, —x sin Oy +y cos by, 2) — v(r, 0400, 2).

We center and scale-normalize the templates. In detail,
if v is the volumetric cylindrical representation of a motion
template, we assume all voxels that represent a time step,
i.e. for which vg(r,6,z) > 0, to be part of a point cloud.
We compute the mean p and variances o, and o, in 2- and
r-direction. The template is then shifted, so that p = 0,
and scale normalized so that 0, = o, = 1. We choose
to normalize in z and r direction, instead of a PCA based
normalization, focusing on the main directions human differ
on, and assuming scale effects dependent on positions to be
rather small. This method may fail aligning e.g. a person
spreading its hand with a person dropping its hand, but gives
good results for people performing similar actions, which is
more important.

Invariant descriptors In the new coordinate system we
apply a 1D Fourier-transform over 6 for each value r and z:

V(r ke, z) = / v(r, 0, z)e 2kl qg, (3)

—T

and take as invariant features the magnitudes:

f(’l’,kg,Z): |V(7‘7k9,2)|. 4



Note that various combination of the Fourier transform
could be used here, for example magnitudes of the 3D
Fourier-transform over all dimensions r, 8, z as we did in
[15]. We use the Fourier transform over the single dimen-
sion 6 to preserve exact spatial information in the remain-
ing directions. Such spatial information appears to be im-
portant when segmenting motions into elementary actions.
The counterpart is that the above descriptor (4) is ambigu-
ous with axial symmetries along the z-axis, hence similar
actions performed by the left or right body parts can be dif-
ficult to discriminate.

It should also be mentioned here that to preserve the
properties of the Fourier transform (e.g. robustness to
noise, separation in fine and coarse features) for all dimen-
sions, an additional 2D Fourier-transform can be applied to
f(r kg, z) forr and z:

V(wT,ke,wz):// [V (r, ke, z)|e 727 @rm+e=) draz (5)

5 Temporal Segmentation

Temporal segmentation consists in splitting a sequence
of motions into elementary segments. It is a necessary
preliminary step to higher level processing of motion se-
quences including classification and clustering. In super-
vised approaches, segments are usually manually labeled in
an initial set of motion sequences, and further operations are
achieved by correlating unknown motion sequences with
these learned segments on a frame by frame basis, using
possibly various temporal scales [2, 7]. In this paper, we do
not assume such a priori knowledge and propose instead a
simple but efficient approach to automatically segment 3D
motion sequences.

Any temporal segmentation relies on the definition of el-
ementary motion segments. There are two main approaches
to segmentation: Energy minima can be used to detect re-
versal of motion direction, following an early proposal by
Marr and Vaina [9]. Or discontinuities can be used to de-
tect changes in the temporal pattern of motion [13]. From
experiments we found energy minima more stable, i.e. sim-
ilar action sequences are segmented more consistently. The
function over time that we segment is then a global mo-
tion energy function. This function is an approximation of
the global body velocity estimated using the motion history
volumes. It is based on the observation that rest states cor-
respond to instants where few motions only occur, and thus
result in few voxels encoding motion in the MHV, when
small temporal windows are considered. Therefore, seg-
ment detection simply consists in finding minima of the sum
of voxel values in the MHV, assuming a small value for 7
in 1. Figure 3 shows several examples of sequences seg-
mented this way. As can be seen in the figure, detection of
energy minima is fairly unambiguous in this examples.
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Figure 3. Motion Energy for action: Lift arms -
rotate arms - lower arms and turn in new po-
sition. Executed three times by (left) female
actor, (right) male actor. Local energy minima
serve as segmentation criteria of sequences.
Motion volumes for each segment are shown
in Figure 4.

In the implementation we use a derivative of Gaussian
filter and zero crossing to detect the minima. Parameter 7
in equation (1) was set to constant 10 frames during all ex-
periments. Temporal scale was not important for detection
of all relevant segments. In practice, the minima detection
appears to be very successful in segmenting motions, even
for coupled motions, like moving torso and arms in parallel,
local minima occur. Of course, this measure is still sensitive
to small variations of velocity that can result in local min-
ima. However, by allowing a possible over-segmentation
the method will detect most of the motion segment bound-
aries.

6 Action taxonomies

Given a segmented action sequence, we would like to
recognize multiple occurrences of the same primitive ac-
tions and to label the sequence accordingly. This capabil-
ity will be important in the next section when we attempt to
train classifiers for all primitive actions in a semi-supervised
fashion.

We build an action taxonomy from a segmented se-
quence by hierarchically clustering the segments into
classes. Initially, each segment is a single occurrence of
its own action class, and is represented as a single point in
the space of view-invariant motion descriptors of Section
4, which is a high-dimensional Euclidean space. We then
apply a standard hierarchical clustering method to the seg-
ments. This creates a binary tree of action classes, where
each class is now represented by a point cloud in the space
of motion descriptors (see Figure 6).

We report experiments on two different datasets of in-
creasing complexity. In each we segment the sequences as
explained in section 5 and compute a single MHV per seg-
ment. This is illustrated in Figures 4 and 8. The experiments
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Figure 4. History volumes computed at segments of varying duration, and their clusters, using seg-
mentation from Figure 3. (Top) female actor repeating three times: Lift arms ahead - rotate arms -
lower arms and turn in new position. (Bottom) the same done by a male actor, from original sequence
shown in Figure 1. The clusters are labeled manually for presentation purposes.

were conducted on MHVs obtained from 6 silhouettes ex-
tracted using a standard background subtraction method.
The resulting motion templates were mapped into a discrete
cylindrical coordinate representation of size 64 x 64 x 64.
Clustering was achieved using an agglomerative scheme,
where the distance between objects is the Euclidean dis-
tance, and clusters were linked according to their furthest
neighbor. The first dataset shows how actions performed by
different persons, with different bodies, are handled by our
system. The second dataset is a more realistic set of natural
actions in arbitrary orders. Its interpretation is less straight-
forward, but it gives strong insights on the potential of our
motion descriptors to yield consistent high-level interpreta-
tions.

6.1 Clustering on Primitive Actions

Here a dataset of 22 motion sequences performed by
both a male and a female actor were considered. Segmented
key actions are shown in Figure 5. The actors perform suc-
cessively each action three times while changing their ori-
entations in between. The automatic motion segmentation
returns 203 motion volumes (100 for the woman, 103 for
the man). We start by computing a dendrogram of all male
segments, using Euclidean distances and furthest neighbor
assignments. A good trade-off between motion variation
within single clusters and multiple clusters having same la-
bels is then to cut the hierarchy into 21 clusters. All seg-
ments inside these clusters are labeled according to the most
obvious interpretation. From these labels, the 21 clusters
are then labeled with respect to the most current actions
which occurs in each cluster. Figure 6 shows the labeled
dendrogram. Within these clusters, 7 (6.8%) actions were
obviously assigned a wrong cluster, 4 actions give birth to
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Figure 5. Perspective views of the motion his-
tory volumes computed for each action cate-
gory. (1) lift right arm ahead. (2) lift right arm
sideways. (3) lift left arm sideways ahead. (4)
lift left arm sideways. (5) rotate both arms
lifted. (6) lower both arms sideways. (7) lift
both arms sideways. (8) lift right leg bend
knee. (9) lift left leg bend knee. (10) lift right
leg firm. (11) jump.

single clusters, and one cluster is ambiguous (lower or lift
arm sideways).

We next compute a hierarchy from the male and female
data. The procedure is the same as in the previous exper-
iment. Du to higher variations in the dataset the clusters
result in a coarser action grouping. A good trade-off be-
tween motion variation within single clusters and multiple
clusters having same labels is this time to cut the hierarchy
into 9 clusters, as shown in Figure 7. With respect to this
labeling only two actions are wrongly assigned.



Lift or lower both arms sideways

’—: Lower both arms sideways
| Turn both arms sideways
Lift both arms ahead
] Do nothing (single)
Lift arm sideways (single)

\—‘—E Lift arm sideways
L Rotate both arms lifted
Lift both arms ahead (single)
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Lower arm sideways
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Lift leg firm
Crouch before jump
Rebounce after jump
Turn in new position
Lower firm leg
Jump
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Lift leg bending
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Figure 6. Hierarchical clustering of 103 male
actions. 21 top nodes labeled with respect to
the most occurring action.

Lift or lower leg
Turn / Jump / lift or lower leg
Lift leg firm

Stay leg lifted
Lift both arms ahead
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Lift or lower single arm

— Lift or lower both arms sideways
| Rotate both arms lifted
.

. . .
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Figure 7. Hierarchical clustering of 203 male
and female actions. 9 top nodes labeled with
respect to the most occurring action.

6.2 Clustering on Composite Actions

In another clustering experiment we used a different
dataset of actions with a much more complex semantics.
Those sequences are pantomimes of various daily life ac-
tions such as catching a ball, picking up, stretching, laugh-
ing, etc. The segmentation and clustering methods were
applied to each of these sequences. Figures 8 and 9 show
the segmented motion templates and the hierarchy obtained
for one such sequence. Again groups of higher level actions
in Figure 9 have a simple interpretation such as lift or lower
arms. Note also the group rest in position where segments
without motion, typically between actions, have been con-
sistently clustered.

7 Semi-supervised classification

In this section we use the MHV clusters as training data
to learn discriminant classifiers for each of the discovered
action classes. We use the motion templates that have been

1 Lift 2 Lower 3 Catch 4 Rest
arms arms

7 Lift 8 Lower 9 Catch
arms arms

JEIRIRIL

13 Return 14 Turn 15 Catch 16 Rest

5 Return 6 Do
nothing

10 Rest 11 Return 12 Catch

17 Return 18 Turn

Figure 8. History Volumes for pantomime se-
quence “catching ball”.

automatically extracted in the previous section, i.e. we use
the 11 actions corresponding to the key labels in Figure 5.
Each action is represented each by 3 samples per actor. One
example per class is shown in Figure 5.

We split the set into two configurations: woman/man and
man/woman. While simple, this test shows how the pro-
posed descriptors discriminate actions with different bod-
ies. Every action class in the data-set is represented by the
mean value of the descriptors over the available population
in the action training set. Any new action is then classified

Rest
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0.3r
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Figure 9. Hierarchical clustering of “catching
ball” sequence.



Figure 10. Average distances in feature space
between male action classes and female
samples. Actions see Figure 5.

according to a Mahalanobis distance associated to a PCA
(Principal Component Analysis) based dimensional reduc-
tion of the data vectors.

One pooled covariance matrix > based on all training

samples x; € RY, ;= 1,...,n was computed:
Y= li(x —m)(x; —m)" (6)
n 1 3 b

K3
where m represents the mean value over all training sam-
ples.
The Mahalanobis distance between feature vector x and
a class mean m; representing one action is:

d(m;,x) = (x — mi)TVAflvT(x —m;),

with A containing the k largest eigenvalues \; > Ay >
-+ > )\, and V the corresponding eigenvectors of 3. Thus
feature vectors are reduced to k principal components.

In all tests x are the vectorized 6 X 6 x 6 lowest com-
plex valued frequencies of equation (5), that are further re-
duced to the 32 largest principal components. Independent
whether the classes are learned from the male/female data,
we achieve in both cases a classification rate of 100%. A
confusion matrix of average distances is shown in Figure
10, with surprisingly good results even with respect to axial
symmetry.

8 Conclusion

In this paper, we have introduced new methods for seg-
menting and clustering sequences of volumetric reconstruc-
tions of a human actor performing actions, without recogni-
tion or tracking of body parts. This has allowed us to learn

classifiers for a small vocabulary of primitive actions, in-
dependently of style, gender and viewpoint. We have also
applied our algorithms to discover meaningful hierarchies
of action concepts in more complex composite sequences.
We are currently using our new semi-supervised method to
build training sets with more actions, actors and styles. In
future work, we plan to use those techniques to learn statisti-
cal models of composite actions by simultaneously learning
the component actions and their grammars.
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Action Recognition from Arbitrary Views using 3D Exemplars
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Abstract

In this paper, we address the problem of learning com-
pact, view-independent, realistic 3D models of human ac-
tions recorded with multiple cameras, for the purpose of
recognizing those same actions from a single or few cam-
eras, without prior knowledge about the relative orienta-
tions between the cameras and the subjects. To this aim,
we propose a new framework where we model actions us-
ing three dimensional occupancy grids, built from multiple
viewpoints, in an exemplar-based HMM. The novelty is, that
a 3D reconstruction is not required during the recognition
phase, instead learned 3D exemplars are used to produce
2D image information that is compared to the observations.
Parameters that describe image projections are added as
latent variables in the recognition process. In addition,
the temporal Markov dependency applied to view param-
eters allows them to evolve during recognition as with a
smoothly moving camera. The effectiveness of the frame-
work is demonstrated with experiments on real datasets and
with challenging recognition scenarios.

1. Introduction

Edmond Boyer
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Montreal, Canada

remr@rtificialife.com

In contrast, template based or holistic approaches,
eg. [3, 7, 2, 19, do not use such an intermediate represen-
tation and directly model actions using image information,
silhouettes or optical flow for instance. Action templates a
then spatio-temporal shapes either in a three-dimensional
space, when a single camera is considered, or in a four di-
mensional space when multiple calibrated cameras are con-
sidered. In both cases, action recognition is achieved by
comparing a motion template, built from observations, with
learned models of the same type. This limits recognition to
situations where observed and learned models are obtained
using similar camera configurations.

In this work, we propose an approach that takes advan-
tage of the template based methods but that does not con-
strain camera configurations during recognition. Instead,
actions can be observed with any camera configuration,
from single to multiple cameras, and from any viewpoint.
Our main motivation is to be able to cope with unknown
recognition scenarios without learning multiple and sfieci
databases. This has particularly clear applications iaa4d
surveillance where actions are often observed from a single
and arbitrary viewpoint.

To this purpose, we propose an exemplar-based hidden
Markov model (HMM) inspired by the works of Frey and
Jojic [9] and Toyama and Blakelf]. This model accounts

‘We consider the problem of recognizing actions using  for dependencies between three dimensional exemplars,
priori unknown camera configurations. Action recognition representative pose instances, and image cues, this over
has received considerable attention over the past decadegime sequences. Inference is then used to identify the ac-
as a result of the growing interest for automatic and ad- tion sequence that best explains the image observations. In
vanced scene interpretations shown in several appliGtion particular, a nice feature is that observations from any cal
domainsg.g. video-surveillance or human machine interac- jbrated view can be incorporated. In addition, explicitly

Mode! based approaches, eg. [6, 2] assume aknown para-  cyes allows such transformation to change over time during
metric model, typically a kinematic model, and represent ecognition.

actions in a joint or parameter space. Unfortunately, recov
ering the parametergg. the pose, of the model appears
to be a difficult intermediate task without the help of land-
marks.

The paper proceeds as follows. In Sectibwe review
the state of the art in view-independent action recognition
In Section3 we present an overview of the proposed ap-
proach. Details on the exemplar-based HMM design are
given in Sectiord. In Section5 the exemplar selection and
the model learning are explained. Secttotetails recogni-

*D. Weinland is supported by a grant from the European Comtyuni
under the EST Marie-Curie Project Visitor.



tion. Experiments using a challenging dataset of 11 actionsmodel does thus not rely on motion capture data, which is

are presented in Sectign generally difficult to obtain.
The observation sequence comes in this example from
2. Related Work a single camera and is represented trough silhouettes ob-

tained from background subtraction. To match observation

and exemplars, the visual hulls are projected into 2D and a
match between the resulting silhouettes is computed. The
recognition phase thus generates 2D from 3D and never has
go infer 3D from a single view observation.

In order to allow actions to be learned and recognized
using different camera configurations, action descriggtion
must exhibit some view invariance. Campbéll flescribes
3D hand and head trajectories using view invariant coor-
dinate representations. Fundamental matrices can also b
used to compare 2D action representations from different
views, as joint trajectories in.f, 20] or silhouettes in 7.

To achieve similar comparisons, Parameswaran and ChelModeling actions and views The matching between
lappa [L4] use projective invariants of coplanar landmark Model and observation is represented in a probabilistic
points on a human body. In a previous workd we framework (Sectiond). Consequently, and crucially, that
compare 3D action representations based on visual hullgh€ither the best matching exemplar sequence, nor the exact
and propose invariant Fourier-descriptors that are coetput Projection parameters need to be known. Instead a proba-
from multiple-view reconstructions. These approacheghav Pility of all potential exemplar sequence and projection is
focused on representations in which view dependent infor-computed. Using the classical HMM algorithmist, such
mation is removed, often at the cost of an impoverished & Probability can be efficiently computed under the follow-
action model and without adding full flexibility in camera ng conditions: First, we use a small set of exemplars that
configurations. This motivates the search for another solu-iS Shared by all models. As we show in Sectiof, a small

tion. set of exemplars is sufficient to describe a large variety of

In a different context, Frey and Jojié][show how to actions, if the exemplars are discriminative with respect t
account for view transformations in a dynamic probabilis- these actions. Second, we make a few reasonable assump-
tic model. In the same spirit, Toyama and Blake][ex- tions on the parameters of the projective transformatien,
tend the idea for tracking with powerful image distances, the camera calibration and position of a person can be ro-
and Elgammatt al. [8] propose a nonparametric mixture bustly observed during recggnltlop a}nd only the orientatio
extension that, however, applies to view-dependent action®f & person around the vertical axis is unknown.
recognition. Our approach builds on a similar model and
incorporates geometric transformations into the prolsbil
tic modeling of an action. Exemplar selection and model learning Learning an ac-

Itis worth to mention also the work of Brand[thatuses  tion model consists of two steps: A set of exemplars is se-
HMMs and a direct mapping between a three dimensionallected and shared by all actions models (Seddidiy prob-
joint space and silhouette observations for pose estimatio abilities over these exemplars are learned individually fo
It shares some similarities with our approach since we alsoeach action (Sectiof.2).

use HMMs to model temporal sequences of exemplars. When selecting the exemplars, we are interested in find-
A very recent and interesting work is that of Lv and jng the subset of poses from the training sequences, that
Nevatia [L7]. Developed in parallel to our method, it shares pests discriminates actions. To this purpose, we present in

the idea of projecting a set of learned 3D exemplars/key- sections.1a novel solution based on a method for feature
poses into 2D to infer actions from arbitrary view. However gypset selection,arapper [11].

we use a probabilistic model instead of the deterministic
linked action graph introduced ifi ], allowing therefore to
naturally handle uncertainties inherent to actions peréut

by different people and with different styles.

Given a set of exemplars, the action specific probabilities
are estimated using standard probability estimation tech-
niques for HMMs, as described in Sectiér2. Interest-
ingly, the learning of dynamics over a set of selected 3D ex-

) emplars can be performed either on 3D sequences of aligned
3. Overview visually hulls (Sectiorb.2.1), thus under ideal conditions,
or simply from single view observations (Sectiér2.2).

We model an action as a sequence over a set of key . A
Hence 3D information is not mandatory for that step.

poses, the exemplars. Figuteshows two examples of ob-
servation sequences and the corresponding best matching
exemplar sequences computed with our model.

Exemplars are represented in 3D as visual hulls that haveClassification Classification is performed using standard
been computed using a system of 5 calibrated cameras. Th&lMM algorithms, as described in Sectién
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the persons, are explained trough 3D action models. Therrbﬁshing exemplar sequeneeand the best matching 2D projectidty(x;),
as generated by the models, are displayed. Both models alsanall set of exemplars (labeled on top).

Motion States Exemplars At each time!, a three dimensional body tem-
platex; is drawn fromp(x:|g:). A crucial remark here is
Exemplars that these templates do not result from body models and
joint configurations but are instead represented by a set of
M exemplarsX = {x;c(1...a}, learned from three dimen-

Body Orientations : .
sional training sequences.

View transformation Note here thatp(z; = x;|¢:) models the non-
deterministic dependencies between motion states and body
Observations configuration. Thus motion statgsare not deterministi-
cally linked to exemplars as in P, 1], allowing therefore
Figure 2. Probabilistic dependencies of actions: an adsiomod- a single motion state to be represented with different ex-

eled as a hidden state sequerigee.g. a motion sequence in a
pose space. At each time stepa 3D exemplatz,, i.e. a visual
hull, is drawn from the motion sequenég Observationg,, i.e.
silhouettes, result then from a geometric transformatioexem-
plars that is defined by sets of parameteisand!. [ are observed  View Transformation and Observation To ensure inde-
parameterse.g. camera parameters determined in a preliminary pendence with respect to the view projection onto the im-
step, and are !a_ltent parameterag. b_ody orientation determined age plane:P;(x) = p[R% u]x, we condition observations
during recognition. Shaded nodes in the graph correspooto 5\ harameters that represent this transformation. We dif-
served variables. ferentiate view transformation parametéts} that can be
robustly observed . the camera matri¥ and position),

4. Probabilistic Model of Actions and Views ?arli%EZ%S,?;?h%a\r,imigdjigat are latent(e. the orien

The resulting density(iy|z:, ;. 1;) is represented in
orm of a kernel function centered on the transformed ex-
emplarsPj;(x;):

emplars, to account for different body proportions, stgle,
clothes.

Our representation for human action is a product of two
independent random processes, one for the orientation o
the subjectrelative to the camera, and the other for the-view
mdependent body-centered poses taken by the performer 1

during the various stages of the action. The two processes P(yi|r = xi, li, 1) o - oXP (= d(yi, Pg(xi))/0?), (1)

are modeled in an exemplar based Markov model, shown in

Figure2, in the spirit of P] and [L9]. whered is a distance function between between the result-
ing silhouettese.g. the Euclidean distance (i.e. the number
of pixels which are different), or a more specialized dis&n
such as the chamfer distande]. (Note that both were giv-

Hidden Motion States Dynamics in exemplar space are ing similar results in our experiments.)

represented by a discret¥-state latent variablg that The temporal evolution of the latent transformation vari-

follows a first order Markov chain over time. Thus: ablesis modeled asa Markov process with transitions prob-

p(glgi—1,-- . q1) = p(glgi—1), with t € [1...T], and  abilitiesp(l;|l;_1), and a priop(l; ). This is equivalent to a

with the priorp(q1) at timet = 1. Though generally hid-  temporal filtering of the transformation parameters where,

den,q can intuitively be interpreted as a quantization of the interestingly, various assumptions could be made on the dy-

joint motion space into action-characteristic configumasi. namic of these parameters: a static model or an autoregres-



sive model, or even a model taking into account dependen-poses performed by different actors. Consequently, select
cies between an action and view changes. ing exemplars as poses with minimum within-cluster dis-
In our implementation all variabled, I} are discretized.  tance often leads to neutral and therefore non-discrirviaat
For instance, the orientatighis discretized intd, equally poses.
spaced angles withif0, 27| and u is discretized into a In light of this, we propose a novel approach for exem-
set of discrete positions. The temporal evolutionjos plar selection, to better link the discriminant quality of e
modeled using a von Mises distributiom(6:(0;—1) o emplars and the selection. We therefore use a wrappgr [
exp(r cos(0;—0;-1)), that can be seen as the circular equiv- a technique for discriminant feature subset selection. The
alent of a normal distribution, and a uniform prie( ). idea behind a wrapper is to use the trained classifigit{
self to evaluate how discriminative a candidate set of exem-
plars is. Thus a wrapper performs a greedy search over the
full set of exemplars, where in each iteration classifiees ar
learned and evaluated for each possible subset considered.
The wrapper method we use is called “forward selection”
[11], and proceeds as follows: L&t denote a set of 3D
visual hulls. Assume training sequences and test sequences
for all actionsc € {1,...,C} are given.

5. Learning

We learn separate action models for each action
classc € {1,...,C}. A sequence of observations =
{y1,...,yr}isthen classified with respect to the maximum
a posteriori (MAP) estimate:

g(Y) = arg znaxp(YIAc)p(Ac)- 2

The set\. is composed of the probability transition matri- 1. Sex=0.
cesp(qt|qi—1, ¢), p(qi|c) andp(:|qt, ¢), which are specific
to the actiore, as they represent the action’s dynamics. In
contrast, the observation probabiliti, |, I;, [;) are tied
between classes, meaning that all actipns- 1..C'} share

a common exemplar séte. X. = X, and a unigue variance
% = o2, In the context of HMMs, such an architecture is

2. Findy* € {¥\ X}, where a classifieg (trained on all
actions) using exemplar s€X U y*} has best recogni-
tion performance on the test-set. Agltto X.

c

known as died-mixture or semi-continuous HMM[ 1]. This
architecture is particularly well adapted to action redegn
tion since different actions naturally share similar poses

3. Repeat step until M visual hulls from)’ have been
added toX.

Note that the above procedure can only work when the

For example, many actions share a neutral rest position antsyemplar set is shared by all action models. The selection
some actions only differ by the sequential order of poses s starts by training a classifier for each singleton exem-
that composed them. In addition, sharing parameters drap|ar. The exemplar for which the classifier has best evalua-
matically reduces complexity during recognition, when ev- tjon performance is selected, and the procedure is repeated
ery exemplar must be projected with respect to numerousgy, couples of exemplars, triplesic., until A/ exemplars
latent orientations. . . . _have been selected. Note that training and evaluation of the
Learning consists then in two main operations: selecting ¢|assifier can be performed in 3D or 2D, as detailed in Sec-
the exemplar set that is shared by all models; learning thetion 5.2 In case that the training sequences are B@an
action specific probabilities. As we will see in the follow- simply be the training-set.
ing, the two operations are tightly couplgd. Selection USES  The approach is illustrated in Figurdsnd4 where ex-
learning to evaluate the discriminant quality of an canttida emplars and the associated classification rates are shown.

exemplar set, and learning prpbabllltles rel!es on a sefect Figure 3 shows that the selected poses naturally represent
set of exemplars. Both operations are detailed below. key-frames or characteristic frames of an action

5.1. Exemplar Selection

. o ) , 5.2. Learning Dynamics
Identifying discriminative exemplars is an essential step

of the learning process. Previous works use motion en-
ergy minima and maximalp, 13], or k-means clustering  Accq1,...cy:  probabilities p(q:lg:—1,¢), p(qlc) and
(adapted to return exemplars)q to this end. However,  p(x¢|g, c), canbe learned. Various strategies can be consid-
there is no apparent relationship between such criteria ancered for that purpose. In the following, we skefobf them:

the action discriminant quality of the selected exemplars. learning from 3D observations (sequences of visual hulls),
In particular for the adapted k-means clustering] fjve ob- and learning from 2D observations (image sequences). Note
served experimentally, that clusters tend to consist of dif thatin both cases, motionis learned in 3D over the set of 3D
ferent poses performed by similar actors rather than simila exemplars, obtained as described in seciidn

Given a set of exemplars, the action parameters



S — _ — L —

ﬁ\ L } Y i e

Figure 3. Selected exemplars: first 24 discriminative exansas returned by the forward selection. The dataset iposed ofl 1 actions

performed byl0 actors. Recognition rates are shown in Figlire
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5.2.1 Learning from 3D Observations

In this training scenario, several calibrated viewpoires a

variablel is latent. Nevertheless, the number of latent states
remains in practice smalli.¢. L x NV, with L being the num-
ber of discrete orientatiorisand N the number of stateg.

The model can be learned by introducing a new variable
G = (q,1) of size L x N that encodes both state and orien-
tation. Probabilities of thisxtended states are then simply
defined as Cartesian products of the transition probadsliti
for ¢ andi. Loops in the model are thus eliminated, and
learning can be performed via the forward-backward algo-
rithm introduced irb.2.1

6. Action Recognition from 2D Cues

A sequence of observations is classified using the
MAP estimate 2). Such a probability can now be com-

available, leading therefore to 3D visual hull sequences,puted using the classical forward variabiéd;|\.) =

and all actions are performed with the same orientation. Inp(y,, ..

- s, di|Ae) as explained in15), whereg = (q,1)

that case, motion dynamics are learned independently fromis a variable encoding state and orientation as explained in

any viewing transformation, thys(y, |z, y, I;) = p(y:|z:)

with y being 3D. Transformation parameters appear later

Section5.2.2
Arbitrary viewpoints do not share similar parameters; in

during the recognition phase where both dynamics andparticular scales and metrics can be different. However,

viewing process are joined into a single model.

Each model\. is learned through a forward-backward
algorithm that is similar to the standard algorithm for Gaus
sian mixture HMMs [L5], except that the kernel parameters,
that correspond to mean and variance of the Gaussians (

the kernel parameter? is uniquely defined, with the con-
sequence that distances computed in equatidrcdn be
inconsistent when changing the viewpoint. To adju$t
with respect to changes in these parameters, we introduce
o? = s;0°. Ideally,o? should be estimated using test data.

X ando), are n_ot updated. Note that a si_milar forward- |, practice, the following simple approximation of ap-
backward algorithm was already proposed in the context of heays to give satisfactory results with the distance fonsti

exemplar based HMMs3].

5.2.2 Learning from 2D Observations

In this scenario, dynamics in the exemplar 3D space are
learned using 2D cues only. In that case, the situation is
similar when either learning or recognizing. A nice feature

we are considering:

®)

[Ixi[?

M L
s=—3 7 2 1Pl
T

Another remark is that observations from multiple cali-

here is that only a valid set of 3D exemplars is required, but brated cameras can easily be incorporated. Assuming multi-

no additional 3D reconstruction. This is particularly ugef

ple view observation§y;, . . .,y } at timet, we can write

when large amounts of 2D observations are available but notheir joint conditional probability as:

3D inference capabilitie®(. 3D exemplars can be synthe-

sized using a modeling software; the dynamics over these

exemplars are learned form real observations).

View observations are not aligned and so the orientation

K
: 7ytK|xta Zt: lt) X Hp(yﬂxtvitv[t)'

yr

Py, - (4)



Figure 5. Camera setup and extracted silhouettes: (Togdthen “watch clock” from the 5 different camera views. (Mid and bottom)
sample actions: “cross arms”, “scratch head”, “sit dowrget‘'up”, “turn”, “walk”, “wave”, “punch”, “kick”, and “pick up”. Volumetric
exemplars are mapped onto the estimated interest regidicaiad by blue box.

7. Experiments cameras 24 35 135 1235 1234
% 81.3 616 70.2 75.9 81.3

Experiments were conducted on our publicly available
dataset, the IXMAS dataset. We choose 11 actions, per- Tab_le 1. Recognition rates_, yvith camera combinations. Fm_-co
formed by 10 actors, each 3 times, and viewed by 5 cal- Parisons, a full 3D recog_nltlon conS|der|_ng 3D manuallyadd
ibrated cameras (see Figusp In this dataset, actor ori- models as observations, instead of 2D silhouettes, yiglds %.
entations are arbitrary since no specific instruction was
given during the acquisition. The 3D sequences are se€gper camera are given in Figu@a), the corresponding
mented into elementary segments using our approach proyjews are shown in Figurg
posed in [.9]. o Unsurprisingly, the best recognition rates are obtained

Note, that the same dataset was used.il} n a simi-  ith fronto-parallel views (camerasand4). The top cam-
lar context. However, results are reported only for a single gra (camera 5) scores worst. For this camera, we observe
sequence (out of three) per actor. This sequence has beefhat: the silhouette information is not discriminativegth
selected to give best results, thus making a direct compariperspective distortion results in strong bias in distaness
son difficult. - _ timating the position of the actor is difficult. All these hav

Our experimental scheme is as followsof the actors  jnq 5 strong impact on the recognition performance.
are used for exemplar selection and model learning, the re- |, the next experiment, several views were used in con-
maining actor is then used for testing. We repeat this pro-;,nction to test camera combinations. Fisyiew combi-
cedure by permuting the test-actor and compute the averag@ations were experimented. Camérand4 give the best
recognition rate. Examplar selection is performed on Sub- recognition rate ag1.27%. Those2 cameras are both ap-
sampled sequencesy 2.5 frames/s) to save computational oyimately fronto-parallel and perpendicular one anothe
costs. Example results for exemplars are shown in Figure - rigyre 6(b) shows the resulting confusion matrix for this
The numben/ of examplars was empirically setia . Pa-  gpecific setup. Adding further cameras did not improve re-
rameter learning and.testing is performed using all f_ramessuns_ We also try other camera combinations (Tapld=or
in the database. Action are modeled wttstates, which  jhstance, combining the two cameras with the worst recog-

appears to be adequate since most segmented actions coVR[ijon results (camera ands) raises the recognition rate to
short time periods. Voxel grids are of siz&t x 64 x 64 and 61.59%.

image ROIs64 x 64. The rotation around the vertical axis
is discretized intdi4 equally spaced values. Consequently, 7 2. | earning from single views
each frame is matched 5@ x 64 exemplar projections. The

ground plane is clustered intopositions. In this experiment, learning is performed using single
cameras (as explained in Sectivr2.2. Observations dur-
7.1. Learning in 3D ing learning and recognition are thus not aligned. The ex-

) o ) emplars considered are the same than in the previous sec-
In these experiments, learning is performed in 3D (aS {jon. | earning from a single view is obviously prone to

explained in5.2.1). Recognition is then performed on 2D 5 mpiguities, especially when the number of training sam-

views with arbitrary actor orientations. Recognition gte o5 s limited. We thus restricted the experiments to the
1The data-set is available on the Perception website 3_be5t cameras with reSpECt_t_o the previous experiments.

http:/perception.inrialpes.fr in the “Data” section. Figure 6(c) shows the recognition results per action class
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Figure 6.(a) Recognition rates when learning in 3D and recognizing in i average rates per camera£66.4, 70.0, 54.3, 66.0, 336
(b) Confusion matrix for recognition using cameragnd4. Note that actions performed with the hand are confuseg,‘wave” and
“scratch head” as well as “walk” and “turn{c) Recognition rates when learning and recognizing in 2D.

and per camera. Compared to the previous scenario, recog-[7] A. A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing

nition rates drop drastically, as a consequence of learning

action at a distance. ICCV, pages 726-733, 2003.

from non-aligned data and single view observations. Sur- [8] A. M. Elgammal, V. D. Shet, Y. Yacoob, and L. S. Davis.

prisingly, some of the actions,g. “cross arms”, “kick” still

get very acceptable recognition rates, as well as “sit down”
and “pick up” that would normally be confused. The aver-
age rate for camerais 55.24%, 63.49% for camera2 and
60.00% for camerad.

Bl

(10]

8. Conclusion a1
This paper presented a new framework for view inde-

pendent action recognition. The main contribution is a
probabilistic 3D exemplar model that can generate arlyitrar [12]
2D view observations. It results in a versatile recognition
method that adapts to various camera configurations. The
approach was evaluated on a dataset of 11 actions and witli13]
different challenging scenarios. The best results where ob
tained with a pair of fronto-parallel perpendicular cansera
validating the fact that actions can be recognized from view [14]
arbitrary viewpoints.
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Modeles de Potts et relaxation d’images
de labels par champs de _Markov
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Nous montrons dans cet article la relation profonde entre certaing modgles
d’énergie provenant de la Physique Statistique utilisés et les modéles
utilisés en champ de Markov pour 1"étiquetage d’images. Nous présentons
comme application une méthode markovienne de relaxation et d’améliora-
tion d’images préclassifiées. On définit pour cela une fonction énergie ne
dépendant que des labels et de leur valeur initiale, la connaissance a priori
sur I'image provenant de la matrice de confusion déduite des échantillons
de référence utilisés pour la classification initiale. La fonction 4 minimiser
inclut divers termes assurant la régularité spatiale des labels, la croissance
ou la disparition de certaines classes. Cette méthode permet en particulier

We show in this paper the deep relationship berween classic models from
Sratistical Physics and Markovian Random Fields models used in image
labelling. We present as an application a markovian relaxation method
for enhancement and relaxation of previously classified images. An
energy function is defined, which depends only on the labels and on their
initial value. The main a priori pixel knowledge results from the confusion
matrix of the reference samples used for initial classification. The energy
to be minimized includes also terms ensuring simultaneous spatial label
regularity, growth af some classes and disparition of some others. The
method allows for example to reclassify previous rejection class pixels in

RESUME

ABSTRACT
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des Mines de Paris en 1984, Il a fravaillé en tant qu'attaché au Centre
de Télédétection de 'Ecole des Mines & Sophia Anfipolis. Il a souteny
une thése de Doctorat en féviier 1991 sur l'extraction de contours
dans les images mulli-spectrales et en couleur. Il fravaille actuelle-
ment qu département modeleur Géométrique de Dassault Systémes.

de reclasser contextuellement les pixels d’une classe de rejet. Enfin, nous
présentons des résultats obtenus sur des images multispectrales en
télédétection et en géologic, ot nous comparons les résultats des modes
conditionnels itérés et du recuit simulé. La méthode n’opérant gque sur un
processus label s’avere &ure trés performante.

MOTS CLES

Images, classification, relaxation, champs de Markov, physique statisti-
que.

their spatial environment. Last we present some results on Remote
Sensing multispeciral and geological ore images, comparing the perform-
ances of Iterated Conditional Modes (ICM) and Simulated Annealing
(SA). Very low CPU time was obtained due 10 the principle of the method,
working on labels instead of gray levels.

KEY WOQORDS
Images, classification, relaxation Markov Random fields, statistical
physics.
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Modeles de Potts et relaxation d’images

1. Introduction

Nous présentons dans cet article une méthode a base de
Champs de Markov pour le traitement général d’une classe
de problémes de relaxation de labels dans les images [1],
[2], [3], [4]. Nous décrivons dans ¢e but un cadre théorique
issu de la Physique Statistique permettant de généraliser le
modele d’Ising (restauration d’images binaires) a la restau-
ration d’images multi-classes connu sous le nom de modgle
de Potts en Physique [5]. L’approche usuelle utilisée en
segmentation markovienne fait intervenir la référence aux
données originales [6], [7], gue ce soit une image mono-
ou multispectrale. La méthode exposée ici s applique dans
le cas oli I’on dispose de peu de connaissances a priori
specifiques, et ol les seuls éléments d’information provien-
nent d’une classification initiale des données, qui sera prise
comme référence. Dans cette approche, [’algorithme
d’étiquetage initial reste inchangé, et la méthode de
relaxation par Champs de Markov intervient comme
seconde étape permettant de « retoucher » la classification
initiale en fonction des vesoins requis. Le déroulement de
chaque étape du processus global peut ainsi étre contrélé et
modifié si nécessaire. De plus, 1’algorithme de relaxation
n’opérant que sur un processus label entraine un faible
temps calcul. Nous espérons que le cadre ainsi décrit
fournisse une approche cohérente 2 ce genre de problémes.

Le paragraphe 2 décrit le probléme de classification contex-
tuelle érudi€ et sa décomposition en deux étapes. Les
paragraphes 3 et 4 présentent le cadre théorique employé
ainsi que ses relations avec la théorie des réseaux de spins
en Physique Statistique. Dans le paragraphe 5 nous discu-
tons les paramétres du modele:et donnons un apercu de leur
estimation a partir de données issues de la classification
initiale et d’autres connaissances spéeifiques a priori
lorsqu’elles sont disponibles. Nous présentons enfin dans
le paragraphe 6 un ensemble de résultats obtenus sur des
images de télédétection en classification multispectrale et
sur des images géologiques de fond de mines, puis
décrivons les performances de la méthode.

2. Relaxation stochastique de données classifiées de
facon optimale

Notons X le processus pixel (par exemple une image
Landsat multispectrale) et L le processus label (par exem-
ple une classification thématique du terrain). Nous propo-
sons ici le schéma suivant de classification en deux étapes :

X - L, — L
premiére classification (A) relaxation markovienne (B)
Max P(X/Ly) P(L,) Max P(LyL)P(L).
Lorsque la premigre classification (A) est bayésienne (ce
qui sera le cas envisagé dans la suite), 1’étiquetage initial

L, est obtenu en maximisant P(X/L,) P(L,), les probabili-
tés conditionnelles P(X/L,) étant connues 2 partir des

histogrammes multispectraux d’échantillons de référence
convenablement choisis. Le processus de relaxation sto-
chastique (B) permet de reclasser les. pixels situés aux
frontieres entre régions ainsi que les pixels non classés
dans 1’étape (A). Les pixels frontiéres sont reclassés de
fagon contextuelle grace au Champ de Markov P(L). Ence
qui concerne le traitement des pixels de la classe de rejet,
deux possibilités se présentent :

— I’échantillonnage initial n’est pas complet en nombre
de classes : ces pixels constituent donc une nouvelle
classe, dont la régularité spatiale sera assurée au méme titre
que les autres régions par le processus (B) :

— V’échantillonnage initial est complet : ces pixels doivent
alors étre reclassés dans les autres régions, et ceci de fagon
contextuelle.

Il est clair que dans ce schéma, aucune référence aux
probabilités initiales de classification n’est effectude pen-
dant la relaxation, de sorte que 1’attache aux données doit
&tre précisée de facon fiable a partir de I’étiquetage initial.
Nous suggérons d’utiliser pour cela les résultats de la
premiere classification sur les échantillons de référence
eux-mémes, par une utilisation non conventionnelle de la
matrice de confusion qui en résulte (voir § 5).

3. Modele d’Ising et régularisation d’images
binaires

Le modele d’Ising a été développé en 1925 dans le cadre de
la théorie du ferromagnétisme pour rendre compte des
propriétés de transition de phase ordre-désordre dans les
solides. Dans le modéle du résean plan isotrope et 4-
connexe, un spin en un site s du réseau interagit avec ses 4-
voising (notés r) par une constante de couplage J et avec un
champ magnétique B de sorte que I’énergie du site s
conditionnellement & ses voisins s écrit

(1) Wi=-T%Yo0,0,~Bo, (o;,=%1).

L’énergie totale E du réseau est la somme des termes
d’interaction site-site (cliques d'ordre 2) et des termes
d’interaction site-champ magnétique (cliques d’ordre 1).
Une forme équivalente de la fonction énergie est la forme
de Heisenberg

J B
@ E=zXle-alt 3K e -o)?
ou encore
J - o B k) o
SR P CETA S S o
T, §) r

la premiére somme portant sur les cliques d’ordre 2, la
deuxieéme sur les cliques d’ordre 1, on les u, sont les
vecteurs unitaires associés aux directions des spins en
chaque site et b le vecteur unitaire associé au sens du
champ magnétique.
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Rappelons maintenant la démonstration de Carnevali,
Coletti et Patarnello [8] établissant le lien entre régularisa-
tion d’une image binaire et modele d’'Ising. Elle est la
source des extensions que nous avons effectuées pour les
images multi-classes. Considérons une image i régulariser
f°(x, y) comme continue dérivable dans un domaine de
R?, on cherche f(x, y) solution du probléme

minE =E, + E,
ol

4) E =\|[f-f*=
'=>\J-J (f (x, y) — O, y))Ydx dy
Image

est le terme d’écart 4 1’'image originale

() Ey=w [VF)*=

o () ()

est le terme de régularisation d’image adopté (norme
L? du gradient de I'intensité). E est Dénergie totale de
I’image. En discrétisant sur ’image, il vient

IR

ILL(Z ”fi,j_fi+1.j||2+ ”fi,j_fi,j+1”2) .

6) E,

7 E,

(Les effets de bord peuvent étre pris en compte en
raccordant I'image de fagon torique ou en ’encadrant d’un
bord fixe.)

Lorsque I’image est binaire : f; ; = 0 ou 1 V/, j on associe
a chaque pixel sa « variable de spin » o, ;
1l +0;;

® fii=—>

(0, ==1).

Les équations (4-5) deviennent

(9) E = El +E2
A
(10) E; = ZZ lo: ;- C’?JHZ
i

[
(11) E, = Y (z llo: —‘Ti+1.j||2+ lo:,; —U'i,j+1||2) .
i

Comparant a (3), on trouve que |’énergie totale E est celle
d’un modele d’Ising 2D isotrope de constante de couplage

entre sites J = % en présence d’un champ magnétique de

A .
module constant B = 5 mais inhomogeéne et dont le sens
en chaque pixel dépend de sa valeur originale binaire
(c’est-a-dire un champ magnétique presque « homogéne
par morceaux » 5i I'image de départ n’est pas trop bruitée).

N.B. : Une série de tests menés sur des images binaires
donne un choix des parameétres J = 2, B = 3, température

initiale Ty = 2, en accord avec les valeurs trouvées par
Carnevali et al. [8]. Nous verrons dans la suite comment
généraliser ce choix aux images maulti-classes.

4. Restauration d’images multi-classes et modéle de
Potts

Le potentiel de cliques d’ordre 2 le plus couramment utilisé
dans les méthodes de régularisation d’images de classes est

(4], [6], [7}, [9], [11], [12]

(12) Vir,s)=
+B si f,#F

(on supposera la 4(connexité dans la suite de 1’exposé).

Il s’agit 12 3 une constante prés du modele dit (standard) de
Potts en Physique Statistique

(13) V(r,s)=—Ks(l,, 0,) K =2p)
3 est le symbole de Kronecker défini par

5(x, x5) =1 si x;=x,, 0 sinon

Ce modele a été abondamment étudié pour ses propriétés de
Transitions de Phase [5], qui sont maintenant bien connues
et qui dépendent fortement du nombre de classes q. Le
modéle de Potts coincide avec le modeéle d’Ising lorsque
g = 2, en vertu de la formule

1+ 0,0,

5(f,, (,) = >

(d’o il résulte Kpoo = 2 Tig,,), les o étant les variables de
spin = 1 associées aux valeurs (binaires) des pixels. Il en
est donc une extension naturelle lorsque ¢ est quelconque.
Nous allons maintenant montrer comment étendre les
résultats du paragraphe a partir de ce formalisme. Partons
de la formule suivante [5]

(14) 8(m,n)=$(1+(q—1)ﬂm.izm)

— ol m et n sont deux entiers appartenant a 1’intervalle
0..q-11

— ol les ﬂ,- sont g vecteurs unitaires « réguliérement
répartis » au sommet d’un hypertétraédre de R?~' (voir
fig. 1), c’est-a-dire tels que

1

1 S1 Mme#£n.
q—

q_]/\ g ) E
(15) Y w=0 et u,.u,=—
k-0

Le cas g = 2 est bien celui du modgle d'Ising : on obtient
deux valeurs de spin de direction opposée. Les vecteurs
u; étant unitaires, la fonctionnelle énergie obtenue en (9-
10-11) s’étend de fagon naturelle sous la forme suivante

(16) E =E, +E,

A&1
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q=4

Fig. 1. — Le modtle de Potts pour plusieurs valeurs du nombre de classes
(d*apreés [5]).

an By =ny fu,; —u,|°
ij

A8 By = (T iy = o iy i)
i

Le contenu scalaire de I'image f (x, y) a été remplacé par
une expression vectorielle dans RY ™! et 1a forme d’énergie
obtenue est une généralisation 3 ¢ — 1 dimensions du
modele de Heisenberg. L’énergie conditionnelle en un site

s prend la forme

(19) W, = -K Y8, £)_Bs, {9
ol

_g-1B  ,_g-1K
20) vefmg e w= T

les notations étant celles des formules (4) et (5).

La forme (19), qui est probablement le modele le plus
simple associé & la restauration d’images de classes, est
indépendante de toute «relation d’ordre » entre labels
distincts ou de toutes connaissances a priori sur les régions
(proximité, etc...). Nous développons au paragraphe sui-
vant une extension de cette formulation afin de permettre
leur prise en compte.

NB.: De la méme fagcon que Kpots = 2 Jising» 0N 2
BPous =2 Blsing'

Cela nous a incité A adopter dans nos applications
K=4, B =6, température initiale T, = 4.

Interprétation physique du potentiel de Derin

Besag, Derin, Kelly et Karssemeijer [4], [9], [10], [11],
[12] incluent dans leur modéle d’énergie le potentiel
suivant (d’ordre 1)

21) Vn)=a, pour ne[0..qg—1]

uni' permet de favoriser ou défavoriser 1’apparition de
certaines classes, ce que nous allons retrouver 3 partir du
formalisme précédent. En effet, on peut écrire

g-1
(22) Veln) =Y o 8k n)

k=0

¢’est-a-dire, en employant les expressions vectorielles
développées plus haut

q—]_q‘_l o~ S =+~

(23) Vc(n)=—q— Y oy, +W=—C.u +W

k=0

ou W est une constante scalaire et C un vecteur de
R~ entierement analogue & un champ magnétigue
constant

- —_ 91 ~ o~
(24) Cz—q——IZQukv=c
9 i

ouv = ”C” L’énergie totale correspond alors au modéle
de Potts en présence d’un champ magnétique constant. Les
pixels (« spins ») vont « s’orienter » selon la direction de
ce champ, c’est-a-dire selon les labels & associés aux
composantes o, les plus faibles. Cette modélisation est

cohérente : ainsi lorsque les o, sont égaux, C est le vecteur

7=1 .
nul <Z u, = O). Effectivement aucune classe n’a été
k=0

particularisée. Notons que le terme supplémentaire associé
au potenticl de Derin apparaissant dans la fonctionnelle
énergie est

@3) B =23 s - )
i

Dans un de nos applications, nous avons pris en compte un
terme de champ C dirigé selon un vecteur #; particulier
(Le[0..g—11), afin d’augmenter ou de diminuer la
probabilité de présence de la classe L dans I'image a
restaurer. La forme de I’énergie conditionnelle au pixel s
devient

(26) U=-B Y3, ) +a Yo, L)-

~K ¥ 50, 0,).

r, 5)

Tous ces développements montrent donc le lien profond
avec la « Physique des Transitions de Phase » pour les
modeéles envisagés dans ce travail.

5 + Extension a la restauration d’images de classes

On peut toujours mettre la probabilité a posteriori 2
maximiser P (Ly/L)P(L) sous forme d’une distribution de
Gibbs « composée » ;

27 P(Ly/L)P(L) = %e—UmaL»um_

En effet le terme contextuel P(L) peut déja étre supposé
champ de Markov, c’est-a-dire vérifiant la propriété de
Gibbs. Quant 2 la conditionnelle P(Ly/L ), on peut égale-
ment la metire sous forme de distribution de Gibbs sous
I'hypothése de stationnarité et d’indépendance des pixels

487



R echerches
Modéles de Potts et relaxation d’images

-

conditonnellement 4 leurs valeurs initiales. Il est alors
facile de généraliser le modele d’énergie développé au
paragraphe précédent en définissant les « éléments de
matrice » suivants :

— le terme d’énergie d’ordre 1 est

(28) U, ) = - Y B; 8(, £2)3¢, £))

ij
— le terme d’énergic d’ordre 2 est

(29) U@, £)=-YK;3G, £,)8¢, L)

— (K1 est une matrice générale décrivant I’interaction
entre sites, dont les paramétres sont en général difficiles a
évaluer et au prix de méthodes complexes (ne serait-ce que
pour le modg¢le de Potts lui-méme). Nous choisirons par la
suite une représentation diagonale « scalaire »

K] =-K[1]

ol [ 1] désigne la matrice identité. La seule connaissance &
priori supplémentaire sur la configuration spatiale des
régions que nous avons incluse dans [K] concerne le cas de
deux régions/ et j non adjacentes. Le coefficient K;;
associ€ prend alors une valeur négative de grande ampli-
tude ;

— [B] est une matrice dont chacun des éléments B;;
contrble la probabilité de transition de I'étiquetage initial
Lo = vers l’étiquetage relaxé L =j. Ses coefficients
peuvent &tre déduits de la classification initiale. En effet,
soient S; des échantillons de référence parfaitement classi-
fiés, de taille n;. On peut en déduire la probabilité
conditionnelle d’un étiquetage initial  étant donné 1’ étique-

tage « vrai» j:

n;:

7

ol n; est I’occurrence de la classe ¢ dans 1’échantillon j. La
matrice [P] n’est autre que la transposée de la matrice de
confusion calculée sur les échantillons de référence eux-
mémes. En effet, la matrice de confusion associée 2 ces
¢chantillons donne, ligne par ligne, la probabilité de
classification initiale obtenue pour chacun des échantillons
supposés parfaits (voir une application au § 6.4). De plus,
le processus de relaxation (B) maximisant la probabilité
posteriori P(Ly/L)P(L), et en supposant 1’hypoth&se
d’ergodicité ainsi que 1’indépendance des pixels vis-a-vis
de P(Ly/L), on peut déduire les coefficients B;;:

_ ©Xp Bi;)

ij
Z

(31) PO =i, =j)

ou les coefficients Z; assurent la normalisation des probabi-
lités conditionnelles P;;

(32) TP, =1.

Les B;; sont définis 2 une constante additive prés. Dans ce

contexte nous pouvons maintenant formuler la contribution
des divers termes d’énergie — of §(1, L) comme suit :
10 00
- 0
0
-0
00

0

g-1 0

(33) [Bl=—Y o0
L=0 0
0

1
1
1
1

oo oo

En effet, pour chaque valeur de L, on a U({,, {%) =
— oy lorsque ¢, = L (0 sinon) indépendamment du label
initial £9.

6. Implémentation et résultats

1. Conditions générales d expérimentation

— L’image est raccordée de fagon « torique » de fagon 2
obtenir la méme cardinalité du voisinage pour tout point de
I'image. De fagon a accélérer le déroulement de 1’algo-
rithme, nous avons mis en place les procédures suivantes.

— Les matrices [K]et [B] sont & coefficients entiers, aux
coefficients de pondération respectifs K et B prés, de sorte
que la probabilité de transition en tout pixel peut se mettre
sous la forme :

(34) P = min [exp (M ) 1.0]

T

oll M et N sont des entiers finis. On peut donc connaitre &
température fixée 1’ensemble des probabilités de transition
possibles, sans avoir 2 les recalculer en chaque pixel.

— De la méme fagon, nous avons implanté une liste
circulaire (2 048 éléments par exemple) prédéfinie
d’« objets aléatoires », contenant A la fois des labels et des
nombres générés de fagon aléatoire. A ’examen de chaque
pixel, I’élément courant de la liste indique une transition
possible, ainsi qu’un nombre aléatoire qui est comparé a la
probabilité P définie par (34). Lorsque le pixel suivant est
examiné on passe A 1’élément de liste suivant, et ainsi de
suite pendant I’ensemble des itérations.

Les parameétres de 1’algorithme de recuit simulé que nous
avons employés sont les suivants :

La température initiale est T, = 4. Elle décroit ensuite
d’un facteur p =5 % & chaque itération, c’est-a-dire 2
chaque balayage d’image.

— La convergence est supposée atteinte quand le nombre
de pixels ayant changé de valeur entre deux itérations est
inférieur a 160 (taille de I’image).

— En général, de 30 a 50 itérations suffisent pour assurer
la convergence pour des images comprenant un faible
nombre de vclasses (de 4 a 7). Une image de taille
256 x 256 nécessite donc un temps CPU moyen de 1,6 s
par itération sur VAX 8550 et de 6s sur PC-AT 286
(équipé d'une carte de visualisation en temps réel), d’ott un
temps CPU total compris entre 45 s et 1 mm 20 s sur VAX
et entre 3 et 5 mn sur PC respectivement (i.e. environ 4 fois
plus de temps pour des images 512 x 512).
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Nous avons comparé les résultats issus de la méthode du
recuit simulé et des Modes Conditionnels Itérés (ICM). Le
recuit simulé s’est révélé plus efficace et mieux adapté i
notre probléme, car la classification initiale peut &tre
proche d’un minimum local de la fonction énergie, surtout
lorsque la région A reclasser est importante (voir fig. 2:
images LANDSAT). En effet, dans ce cas la contributicn
des termes d’attache aux données et d’interaction pixel-
pixel est prépondérante de sorte que cette région ne peut
étre facilement reclassifiée par I'ICM.

2. Reclassification d’'images LANDSAT

Dans notre premier exemple, une image multispectrale
LANDSAT de la région de- Toulon avait été classifide
précédemment en sept régions : sols nus — culture — sites
urbains — feuillus — conifeéres — eau — classe de rejet
{fig.-2.1). La classe de rejet correspond au label L = 0 (en
noir sur la fig. 2). On note qu’elle forme presque une région
en elle-méme. la matrice d’interaction de cliques d’ordre 2
est [K]=—4.0[1] dans tous les cas. Deux matrices
[B] ont été utilisées dans nos expériences (coefficient de
pondération dans la fonction énergie B = 1.0)

(6 00 0 000

6 0
060
0 6
0

coocooo
oo o -
oo -
coocooo

00 0
B,

sans reclassification

[—2 00 0 0 0 0]
-86 0 . . 0
~-806 0 . 0
-800 6 0 .0
~-80 .06 00
-80 . - 060
-8 00 0 0 0 6]
Bl

reclassification de la classe 0
Les matrices [B] utilisées
dans I’étude d’images LANDSAT .
Les résultats correspondants sont indiqués en figure 2.

— la figure 2.2 a été obtenue pour la fonctionnelle d’éner-
gie décrite en (26) avec la matrice [B], par recuit simulé.
Les régions correspondant aux diverses classes ont &té
« homogénéisées » de fagon « uniforme », indépendam-
ment de leur classe. L’image obtenue peut déja étre utilisée
de fagcon exploitable ;

— la figure 2.3 a été obtenue par ICM pour la méme

fonctionnelle d’énergie avec la matrice (B], (correspondant
au label de rejet L = 0). La convergence a été obtenue en

10 itérations. Comme précisé auparavant, on n’obtient pas
une reclassification totale des pixels de rejet. Cest ici I'un
des cas ol le recuit simulé s’avére indispensable pour
obtenir 1’optimum désiré.

— Ja figure 2.4 a été obtenue avec la matrice [B], par
recuit simulé. L’ensemble des pixels noirs a été reclassifié
de fagon contextuelle dans les autres classes, ce qui est en
accord avec la connaissance a priori que 1’on avait de
Iimage (6 classes seulement). On remarque que les autres
classes ont €t€ peu modifiées par rapport a la figure 2.2, ce
qui indique la stabilité de ce type de méthode. La validité
du résultat reste a &tre étayée par comparaison avec une
carte thématique réelle.

3. Reclassification d'images de roches

La série de figures 3 et 4 présente des résultats d’expéri-
mentations effectuées sur des images de roches prises en
imagerie vidéo couleur,

L’image étudiée comprend 6 classes

0 = Fond (En noir sur I'image)

1 = Quartz (En sombre sur 1'image)

2 = Schistes (En blanc sur I’image)

3 = Blende (En gris foncé sur 1'image)
4 = Oxydes (En gris clair sur I'image)

5 => Classe de rejet  (En noir sur 'image) .

Un des buts de cette étude était d’estimer la teneur réelle en
blende dans 1’image initiale (classe 3). Il s’agissait comme
dans ’exemple précédent de reclasser les pixels initiale-
ment rejetés, dont le taux considérable dans cette image
(37,18 %) est di a deux raisons :

— Les distributions spectrales des minerais présents sur

les trois canaux vidéo couleur se recouvrent considérable-
ment, d’olt un seuil de rejet élevé dans la classification
initiale.

— L’image de teinte initiale est trés texturée. Les points de
fort gradient ont alors été inclus dans la classe de rejet pour
permetire & I’algorithme d’homogénéiser la distribution
spatiale des classes. Dans cette étude, elle est la suivante :

classe
1 2 3 4 5
1 80,05 2,08 0 0,35 17,51
2| 5,14 93,76 0 0 1,09
échantillon 3 | 21,35 10,82 64,24 2,64 0,94
4 125,20 10,87 3,25 52,24 7,53
5 0 0 0 0 0

La matrice de confusion sur les données de la classification
nitiale (les probabilités sont exprimées en %).

On note une « corrélation » considérable entre les diverses
classes, que 1’on peut plus ou moins prendre en compte
dans l'algorithme de reclassification. Le lien avec la
matrice [B] s’effectue, comme exposé précédemment,
grice a (31). Nous avons testé notre méthode avec les
matrices [B] suivantes (le coefficient de pondération dans
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Fig. 2.

1) Classification bayésienne multispectrale d’une image LANDSAT de la
région de Toulon.

2) Reclassification de cette image par recuit simulé avec la matrice
[B]; (voir texte).

AZE

3) Reclassification de cette irﬁagc par Conditionnels Modes Itérés avec la
matrice [B],.
4) Reclassification de cette image par recuit simulé avec la matrice

B], (voir texte). Les pixels précédemment non classifiés (pixels noirs) ont
disparu.
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Fig. 3. — Etude d’images géologiques. Classification initiale d’une image de
roche (voir texte),

la fonction énergie est B = 0,6)

10 4770 10 47 70
210550 210 550
0 0930 0 0930
0 0290 0O 0290
6 0040 7 7770

(B s Bl
10 0000 10 4 77 -5

010000 2 055 —5

0 0900 0 093 —5

0 0090 0 029 —5

7 7770 6 004 -5

[Bls Bl

Les différentes matrices [B] utilisées dans I’étude d’images
de roches (La classe « fond » n’est pas incluse).

— Les matrices [B]; et [B]; prennent effectivement en
compte la confusion entre classes. Les pixels de rejet
seront reclassés par préférence vers les classes | (Schistes)
et 4 (Oxydes) (voir derniére ligne de la matrice). La matrice
[Bls ne differe de [Bl; que par un terme de type
oy, L = 5, assurant la reclassification totale de la classe de
rejet. Les résultats sont indiqués respectivement sur les
figures 3.1 et 3.4.

— Les matrices [B], et [B]; assurent une répartition
« uniforme » de la classe de rejet vers les autres classes. Le
traitement avec [B ], permet une reclassification gouvernée

par la « sous-matrice » de confusion associée aux vraies
clagses. Le traitement avec [B )5 effectue au contraire une
approximation « diagonale » de la matrice de confusion et
assure ainsi une reclassification selon les proportions des
vraies classes dans la classification initiale. Les résultats
sont indiqués respectivement sur les figures 3.2 et 3.3.

Les taux de présence des minerais dans les diverses images
sont les suivants :

Initiale [B]s  [Bl4 [B]s [Bls
qQuartz | 15.64| 37.74| 21.71| 26.05| 39.70
schistes| 33.64( 41.85] 53.25| 54.05| 41.30
blende 5.38 5931 1227 9.12 | 5.90
oxydes | 8.16 | 12.72| 12.77| 10.78| 13.10
rejet 37.18| 1.76 0.0 0.0 0.0 |

La variation de ces taux de présence d’un cas A ’autre est
cohérente avec le choix correspondant de la matrice
[B]. Cette étude reste toutefois une approche d’école
demandant a &tre étayée aupres de spécialistes du domaine.

7. Conclusion

En conclusion, nous avons mis en place une méthode
efficace et fiable de relaxation d’images de classes qui
pourrait en particulier étre en classification multispectrale.
Le modtle énergétique décrit dans cet article pourrait &tre
amélioré de fagon profitable en y incluant la connaissance
des probabili€s ponctuelles mises en jeu dans la premiere
classification. Il en résulterait un processus de Markov non
stationnaire [12]. Parmi les problémes théoriques liés 2
I"algorithme du recuit simulé qui restent 2 aborder, on peut
citer les suivants :

— a) Estimer la température de départ du recuit simulé en
fonction de la « qualité » de I’image originale (basse si
I'image est peu bruitée, forte sinon), ainsi que la tempéra-
ture finale 4 atteindre (en fonction d’un taux final de
contours par exemple).

— b) Examiner le comortement de 1’image au voisinage
d’une température critique. On sait en particulier qu’en
4 connexité et en champ magnétique nul, 1’énergie
moyenne par site posseéde une discontinuité  la température
criique quand le nombre de classe g est supérieur 2 4 ! Les
propri€tés critiques sont connues pour toute valeur de g,
excepté g = 3 [5]. Ainsi la température critique vérifie

(35) exp TE =1++7g.

[

L’¢nergie par site au point critique, ainsi que son saut
lorsque ¢ =4 peuvent &tre calculés analytiquement [5].

Vi Y’
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Fig. 4. .
Etnde d’une image de roche, 3) Reclassification de cette image par recuit simulé avec la matrice
1) Reclassification de cette image par recuit simulé avec la matrice [B]; (voir texte).
[B];.
2) Reclassification de cette image par recuit simulé avec la matrice 4) Reclassification de cette image par recuit simulé avec la matrice
[B], (voir texte).

[B]; (voir texte).

AZ"
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Ces caractéristiques critiques peuvent d’ailleurs facilement
étre retrouvées par 1’étude d’une série d’échantillonneurs
de Gibbs effectués a diverses températures. Il serait
nécessaire de généraliser ces résultats en présence d’un
« champ magnétique » uniforme (ou uniforme par mor-
ceaux dans le cas de la restauration), ainsi que de les
étendre au cas de la 8-connexité. I’ensemble des recherches
menées dans ce domaine fait apparaitre 1’importance du
nombre de classes a priori pour I’analyse d’images par des
méthodes markoviennes [13) !

Manuscrit recu le 18 novembre 1991 .
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Abstract

The variational method has been introduced by Kass et al. (1987) in the field of object contour modeling, as
an alternative to the more traditional edge detection-edge thinning-edge sorting sequence. Since the method is
based on a pre-processing of the image to yield an edge map, it shares the limitations of the edge detectors it
uses. In this paper, we propose a modified variational scheme for contour modeling, which uses no edge detection
step, but local computations instead—only around contour neighborhoods—as well as an “anticipating” strategy
that enhances the modeling activity of deformable contour curves. Many of the concepts used were originally
introduced to study the local structure of discontinuity, in a theoretical and formal statement by Leclerc & Zucker
(1987), but never in a practical situation such as this one. The first part of the paper introduces a region-based
energy criterion for active contours, and gives an examination of its implications, as compared to the gradient
edge map energy of snakes. Then, a simplified optimization scheme is presented, accounting for internal and
external energy in separate steps. This leads to a complete treatment, which is described in the last sections of
the paper (4 and 5). The optimization technique used here is mostly heuristic, and is thus presented without
a formal proof, but is believed to fill a gap between snakes and other useful image representations, such as
split-and-merge regions or mixed line-labels image fields.

1 Introduction

1.1 The Contour Modeling Problem in Image
Analysis

This paper addresses the problem of automatically
creating geometric models for the external boundaries
of objects in a 2D image grid. We call the geometric
representation a “contour” of the object, and reserve
the term “boundary” for its pixel location in the im-
age. A contour representation of objects can be useful
for image understanding in 2D or 3D.

The contour modeling problem has traditionally
received two opposed approaches: region-based ap-
proaches derive a contour representation from a seg-
mentation of the image into well-defined regions,
while edge-based methods use a continuous approxi-

*Current address: Computervision, 14 Crosby Drive, Bedford, MA
02144, Phone: (617) 275-1800

mation of the original image function, so that bound-
ary points can be characterized by a differential prop-
erty (image gradient or curvature) and a contour rep-
resentation be fitted to the boundary points. In their
simpler versions, both methods use a point-wise cri-
terium to decide if a given pixel belongs inside an
object, outside all objects or at an object boundary.
In the region-based approach, a pixel belongs to the
boundary if it is in the object region and has neigh-
bors in the background. In the edge-based approach,
a pixel belongs to the boundary if it passes a numer-
ical test (e.g. local maximum of the image gradient).
In this early boundary detection step, such methods
do not take into account the fact that those bound-
ary points really constitute a closed geometric con-
tour, with usually strong continuity and smoothness
properties. The next step consists of an approximation
method, which strives to find an optimal contour go-
ing through all boundary points, but has no interaction
with the first step. The deficiency of those methods
lies in the absence of top-down mechanisms, such
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that boundary detection could be guided by contour
constraints.

1.2 Active Contour Models: Approaches and
Previous Work

As an alternative to the traditional approach pre-
sented in the previous section, the methods of vari-
ational calculus (Prenter 1989) have been used by
Kass, Witkins and Terzopoulos (1987) in the field
of contour modeling. The resulting contour models
were named “active contour models” or “snakes.” The
snakes method provides a way to constraint the points
that are tested as boundaries, so that they constitute a
parametric curve (or, more simply, an N-sided poly-
gon), Starting from a user-defined curve, an energy
minimization algorithm is used to deform the contour
model until it fits objects boundaries. The method is
gradient-based, and the criterium that characterizes
boundary points is summed up over the whole contour
to provide the goodness-of-fit measure {or external
energy). A smoothness criterium (or internal energy)
is also added to guarantee good convergence propet-
ties and robustness. Those internal energies provide a
very nice framework for top-down processes as men-
tioned above, and can be theoretically founded on
regularization theory.

Active contour models provide a very appealing
and successful alternative to the more contrived se-
quence of boundary points detection and contour
curve approximation. They have received much at-
tention in the last few years, and have been improved
significantly, notably by Fua & Leclerc (1990), Menet
et al. (1990), Amini et al. (1990) and Cohen (1991).
They have been applied to image understanding prob-
lems in 2D (Fua & Leclerc 1990) or 3D situations
(Nitzberg & Mumford 1990), for tracking objects
over time (Kass et al, 1987; Cohen 1991), or for in-
fering 3D structure from the deformation of apparent
contours in a sequence of images (Cipolla & Blake
1990). Our interest in this approach was motivated
by the need for a fast, interactive tool to assist image
interpretation and morphometry in scientific applica-
tions, such as medical imaging and remote sensing.
Of particular interest to us was the ability to focus on
a given object of interest, specified by the user, among
large sets of data. However, active contours all use an
edge-based definition for object boundaries, and we
felt the need to extend them to region-based defini-

tions, which are more appropriate for color or remote
sensing image analysis problems, and also provide
important clues even in more traditional image anal-
ysis problems.

1.3 Proposed Approach

In this paper, we propose algorithms and strategies
that generalize the variational approach of active con-
tour models to region-based image analysis. In Fig. 1,
we illustrate the action of external forces acting on an
energy-minimizing contour model. Figure 1A shows
the effect of an edge-based energy criterium, as used
in most active contour models. A now classic problem
with this approach stems from the fact that the image
and gradient functions are not very well-behaved (Co-
hen 1991; Leitner et al. 1991). Inside regions, both
derivatives of either the image or the gradient func-
tion vanish, therefore providing no clue to the energy-
minimizing process. Around boundaries, a more sub-
tle situation arises, where one derivative (normal to
the boundary curve) also vanishes. On a theoretical
basis, one should resort to higher-order derivatives
(e.g. image curvature) or piece-wise continuous im-
age models (preferably with explicit image disconti-
nuities) to correctly model the boundaries (Leitner et
al. 1991). In practical terms, most recent active con-
tour models turn the difficulty by pre-processing the
edge-data, e.g. through the use of a distance func-
tion.

In Fig. 1B, a region-based criterium is illustrated.
Instead of a point-wise edge criterium, we use sta-
tistical models of the object region (enclosed by the
contour model) and background region. If a homo-
geneous region against a homogeneous background
is anticipated, the forces are defined in the following
way. All contour peints with a neighborhood that fits
the object model are pushed outside by centrifugal
forces. Conversely, all contour points with a neigh-
borhood that fits the background model are pulled in-
side by centripetal forces. Both situations are depicted
in Fig. 1B, and it is easily seen that this conjectures
an external force field F (M), defined for all image
points M on the contour curve, and aligned to the
normal N to the contour curve (oriented from object
to background in Fig. 1). The force magnitude should
also be proportional to the difference of statistical fits
to object and background. A convenient notation for
this is the following:
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Fig. 1. Edge-based and region-based external forces acting on
a contour model. (1A) Edge-based forces. An edge-map is esti-
mated from the original image, and the x- and y-derivatives of
the edge-map function are evaluated in every sampled point M.
{1B) Region-based forces. Statistical models for the object and
background regions are estimated from the original image values
and current contour geometry. Statistical fits are evaluated in every
sampled point M.

F(M) = [ object(M) — background(M) ] N(M) (1)

Contrary to edge-based models such as snakes, this
external energy cannot easily be derived from a poten-
tial energy, because it is only defined along the con-
tour curve, and is therefore not a point-wise function
in the image plane. This paper proposes an approach
that closely follows the intuitive view of Fig. 1B,
while providing a more formal definition of the en-
ergies and forces involved, as well as optimization

strategies suited to experiment with them. The result-
ing algorithm, named “anticipating snake,” eventually
captures the essence of the original snake approach,
but in a very different computational setting, owing
much to region-contour interaction methods such as
simulated annealing relaxation (Geman et al. 1990)
and anisotropic diffusion methods

Thus, in the following section of the paper, we will
introduce a contrast measure based on a region statis-
tical image model, which will allow us to use region
energies to drive a contour model, and an investiga-
tion of the local aspects of variational edge detection
methods will be presented, showing the advantages
and failings of both edge-oriented and region-oriented
contour models. Then, the optimization procedure and
heuristics necessary to fit contour curves to object
boundaries following our local, region-based scheme
will be presented in the third and fourth section of the
paper. This will include an important discussion on
scale-change issues, and it will be shown how region-
based active models can be devised to use a scale
heuristic (section 3) and a diffusion heuristic (sec-
tion 4) while they are being optimized. The last sec-
tion of the paper will allow us to present and discuss
an implementation and some results of the method,
with application to different kinds of images.

2 Edge and Region Based Contour Models
2.1 Minimum Principles for Contour Models

Using a minimum principle to define the loci of ob-
ject contours in an image is appealing, because it
corresponds to the intuition of the gestalt definition
of shape, which is perceived as a stable, minimum
configuration of sensed data. Accordingly, minimum
principles have been used extensively in vision re-
search to reconstruct shape from lower-level image
data. Active contours are a special case of such re-
construction problems. In order to set those models
in a general framework, we will refer to the notations
of Fig. 2 throughout this paper, whether dealing with
snakes or anticipating snakes. Our general formula-
tion is as follows. Given an image and a hypothetical
object contour M (s), we define a set of interaction
forces on every point in the contour, so that every
deformation of the contour can be quantified with an
energy transition 8 W, basically equal to the work of
the interaction forces during deformation. Then, any
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M (s5)
k

i(s) U(s)

\

C+dC

Mevi (s)

Fig. 2. Deformation of a contour model, Points on the contour are deformed from M®(s) at time k to M**1(s) at time (k+1). The deformation
is in direction U (s) and has amplitude 1(s). The contour model is defined by a set of forces F(s) such that W = ¢ (s) F (5).U(s).

particular contour will be a solution of the contour
model if it is a local energy minimum, .-

SW > 0 for ail deformations §M (s) 2)

Inversely, when we set out to define a contour model
to solve an application problem, we must insure that
actual object boundaries are solutions of (2)—this is
our first minimum principle. In addition, we should
favor models for which all solutions of (2) are indeed
object boundaries (no false local minima). This con-
stitutes a second minimum principie. Devising an ac-
tive contour model, or equivalently a set of interaction
forces, meeting the requirements of those two mini-
mum principles is a tremendous task in the general
case. If the problem is somewhat restricted, e.g. by
use of “proper” initializations from which solutions
can be obtained, or with rigid constraints, then useful
models can be devised. In the rest of this section, we
will first review the method of snakes, which is one
such restricted method of practical value, with exter-
nal forces driven by the image gradient. From there,
we will then introduce our region-based method of
anticipating snakes.

2.2 Snakes: A Gradient-Based Contour Model

2.2.1 Overview of the Snakes Method. ~Capturing the
local structure of discontinuities is a difficult process,
as illustrated by Leclerc & Zucker (1987), because
many different situations can arise. One key definition
for local edge modeling is that of the maximal step
edge normal to the direction » at point (x, y), where
G, is the image gradient taken in the direction n
(Haralick 1984):

3G,
on

=0 3)

Unfortunately, this equation is usually not easily
solved, so that a more (tractable version must be
adopted instead, using the total norm of the gradi-
ent G(x, y) = [[I(x, y)II:

39 % o @
dx dy

Direct resolution of equations (3) or {(4) is possible
in the form of a parametric solution curve M(s),
given an exact initial position M(sp) on the actual
object boundary. This point of view has been advo-
cated recently, because it solves exactly for the pre-
cise boundary, in cases when precision is the focus of
image treatment—e.g. for medical applications (Cin-
quin et al. 1990). But in many other image vision
problems, where robustness is the focus of interest,
one must resort to regularization techniques to handle
equations (3) or (4) efficiently.

The vartationa! method has been introduced to
cope with the difficult numerical problems encoun-
tered while trying to solve equations (3) or (4) on a
local basis only. The interpretation of equations (3)
or (4) becomes that of a maximai contrast condition
i.e. minimization of gradient-based energies

oM
Ein— G} (M, —Q) or Eine — G*(M) (5)

relative to small variations or deformations of the
parametric curve M(s). The internal epergy FE;.
which appears in this minimum principle has the in-
terpretation of a regularizing term such as curvature
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or arc length. The original snakes algorithm (Kass et
al. 1987) uses a linear combination

IM M
angnz—;—ﬁu%—;nz (©)

which can be expressed using a finite difference
scheme in the form of a rigidity/elasticity matrix B;;
if the contour curve is sampled into N points, so that
the function M (s) can be approximated by the 2N-
dimensional vector M; = [(x;, y;)i = 1.N].

The minimum principle imposes that the energy
integral over the whole solution curve M (s) be mini-
mal: as such, it has no immediate local interpretation,
although the Euler-Lagrange method can be used to
transform the global, compound energy minimization
back into a differential equation in M, 2% and f;zT"{’
(Kass et al. 1987). Using equations (5) and (6), and
the notations of Kass et al. (1987) and Szeliski &
Terzopoulos (1989), a finite difference scheme can be
used to express the total energy as a quadratic form
of the (discretized) position vector M (see appendix):

E=_["MBM ' MVG?] Q)

B2 | b

A natural solution for variational contour optimiza-
tion is the classical gradient descent strategy. Clearly,
the gradient of expression (7) is BM —1VG?, so that
a step from M* to M**! can be taken at time T* such
that

1
M = M ¢ [BM" ~ EVGZ} (8)

Equation (8) infroduces a constant step-size ¢+ which
controls the rate of deformation of the algorithm, and
plays an important role in all active contour optimiza-
tion schemes. A variation on this theme is suggested
by (Kass et al. 1987), resulting in a two-step, semi-
implicit scheme with faster convergence, because ¢
can then be chosen arbitrarily large while equation (4)
imposes the condition f < — ”1(8}. This yields a pow-
erful treatment of internal energies (as should be ex-
pected), but leaves many pratical issues unanswered
as far as external energies are concerned (those as-
pects of the snakes method have been detailed and
discussed in Fua & Leclerc (1990) and Amini et al.
(1990).

2.3 Anticipating Snakes: A Region-Based Contour
Model

2.3.1 Region Statistics and Image Models. Because
the method of snakes relies entirely on its poten-
tial energy E{(x,y), its domain of application has
remained limited. One limitation is that it is some-
times not possible to provide such a function, because
of image non-stationnarity. Another limitation is that
regional criteria such as color or texture cannot eas-
ily be integrated into a potential function (unless a
segmentation of the image can be provided). Varia-
tional methods have been described, which incorpo-
rate gradient and region criteria into a single energy
function Mumford & Shah 1985; Grossberg 1987;
Geman & Geman 1984; Marroquin et al. 1987; Ge-
man et al. 1990; Shah 1990). Those methods differ
fundamentally from snakes, because they attempt to
model the image intensity function, as well as its
object boundaries. Although their theoretical impor-
tance is epormous, none has led to significant prac-
tical solution, most notably because of mathemati-
cal difficulties documented in e.g. Mumford & Shah
(1989). In this paper, we take a less rigorous ap-
proach, drawing mainly on heuristic solutions, in or-
der to show that region criteria can indeed be used
to guide a contour model, with a quality of results
comparable to that of snakes or related models. In
our anticipating snakes method, we replace energy
criterions such as (5) by other photometry functions,
taking into account the local partition of the image
into an object region and a background region. An
intuitive interpretation of the approach will first be
presented, and then expanded to a complete mathe-
matical treatment suitable for use in the rest of the
paper.

The basic idea is that a given closed contour model
C = {M(s),s in [0, 1]} partitions the image plane
into an inside (or object) region and an outside (or
background) region which, along with a statistical
model, may be fitted to the image data. Thus, an
alternative to gradient-based schemes will consists
in choosing local changes from M*(s) to M**!(s)
in a given direction U (s), with amplitude ¢(s), such
that the new partition improves the fit. An intuitive
implementation of this approach would use separate
statistical models Iopjec: (%, y) and Ipackgrouna(x, ¥).
Those models would be tested against the given
image data /(x,y), based on a mean-square-error
criterion:
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MSE==]' W objeer (s ¥) — I x, y)|Pdxdy
object

+f ”Ibackground(xy }7) - I(x, y)HZdXdy (9)
background

While (9) readily takes on the interpretation of an en-
ergy, it still cannot satisfy our minimum principles,
because gny arbifrary contour can be a local mini-
mum in homogeneous parts of the image. We there-
fore need a more constrained energy definition, so that
energy minima occur only at actual image boundaries.

2.3.2 A Region-Based Energy Model for Active Con-
tours. In this section, we will use an image contrast
measure best known in the context of split-and-merge
methods as the fusion energy of the regions (or their
Ward distance) (Beaulieu & Goldberg 1989). Using
the notations and conventions of Fig. 3, we define
the region energy W7%"(R,) of a given region R,
as in Leclerc & Zucker (1987), Beaulieu & Gold-
berg (1989), i.e. the image functions I (x, y) (intensi-
ties, colors or textures) are approximated as a linear
combination of basis functions K; (x, y), using a least
squares scheme:

160 = [ wKiy)+adey) (0
jm=]

The region energy is defined as the sum of squared
errors Al (x, y), with subscript £ to remind us that
the error-of-fit function Azl depends on the region
described:

Wregiorz(Rk) - []RkHAkI(JC, y)|12dxdy] (11)

This scheme can be devised to fit any possible set of
basis functions K;{(x, y), according to the same least
squares rule. We then proceed to define the contour
energy of a closed curve C, bounding an internal re-
gion R;, and an external region R,,,, as depicted in
Fig. 4A. We want to derive the contour energy from
neighborhood region energies such as in (6). A sim-
ple solution to this classical problem is to introduce
the union R;, + R,,;. We can then write the classical
Ward distance between regions R;, and R,

D[Riy, Rows] = Wregion(Rm + Rour) (12)
— WSO (R) — WS (Roue)
This is defined by Beaulieu & Goldberg (1989) as

i{xy}

i (xy) /

\
A

mﬁw‘ckﬁ%ééggga

Fig. 3. Notations for image regions. Image intensity /(x, y) is
approximated by a region model {¢(x, y) specific to region Ry.
The error defines a new image function Al (x, y).

the energy needed to merge the two regions R;, and
R,.:- We are thus entitled to interpret it as the energy
needed to disrupt the bounding contour C between the
two regions, and we set W (C) = D[R;n, Rou].
Such a contour epergy can be interpreted as the
amount of region energy absorbed (or explained) by
the contour curve C at steady-state.

We now consider a deformed version C + §C of
the original contour, and proceed to compute the
variation W of the contour epergy during defor-
mation. To make further developments easier, we
introduce two smaller regions dR;, and d Ry, cor-
responding to outwards and inwards deformations re-
spectively, as in Fig. 4B. Note that the inside (respec-
tively outside) region is now R;,+8R,,, (respectively
Rou: +8Riy) just before deformation, and R;, 4+ 0R;,
(Rous + 3 Rour ) just after deformation. Since the union
Rin + Rour + 8Rip + 8 Rour is not changed by the de-
formation, we only need consider the negative terms
in (7). We thus write the contour energies as

Wconmur(c> = W, — W’egion(Rm + 8Rour)
. Wregiofz(Rout + 8R;n)
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(a)

Fig. 4. Regions around a contour model. (4A) Inside and outside regions for a contour model at steady-state. (4B) Inside and outside regions
during a deformation. R;, and R, are defined as those regions which remain entirely inside or outside the curve during all deformations.
The actual regions inside and outside the curve differ from those by §R;, and dR,.us.

Wcontour(c +8C) = Wy — Wregion(Rm +S8R;in)
— WreEON (R e+ SR u) (13)

The energy for unions of disjoint regions can be fur-
ther developed into a sum of the individual region
energies and their Ward distance, thus

Wregion(A + B)
— Wregion(A) + Wregion(B) + D(A, B)

Using (14), we can transform (13) so that all indi-
vidual region energies are cancelled out when we
compute the difference §W = WHow (C 4. §C) —
weentour (Y and only Ward distances remain, thus

(14)

§W = [D(Rin, §Rin) — D(Rour, SRin)] (15)
+ {D(Roufs 5Ro;;£) - D(Rin; 3Rout>]

When applied locally, this expression becomes even
simpler, because local deformations will be either ex-
panding {8 K,,; = 0) or retracting (S R;, = 0), so that
only one of the two terms in (15) need to be eval-
uated locally. More specifically, we now study the
case when an infinitesimal deformation §M (s) is ap-
plied to a point M(s) along the curve. The situation
is depicted in Fig. 5 for the two possible cases of
expansion and retraction. From (15) we can write the
force F(s) acting on the point M (s), such that

W = F(s).8M(s) (16)

Fig. 5. Expansion and retraction of a contour model. Local interior
and exterior regions are shown for each case.

In the case of a retraction, we find that

F(s) =
SM(s) (7

D{Rous. 8R) = D(Rip, R)]———
[D( ) =D HHSM(S)HZ

is a solution of (16), as can be easily checked out.
Similarly, a solution of (16) for the case of an expan-
sion is
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F(s) =

SM(s) (18)
[8M ()1
Both cases can be unified if points M(s) are con-
strained to deform along the oriented normal N (s) to
the contour. Assuming that the orientation is toward
the outside, as in Fig. 7, and that the deformation is
i the form M (s) = t(s)N(s), then (17) and (18)
simplify to the single case

[D(Rin’ 5R) - D(Routa 3R)]

N{s)
f£(s)

which is the exact form that was anticipated in {1)
for the idealized region-based approach in the intro-
duction to this paper (see Fig. 1B). This expression is
very important for our active contour scheme, because
it makes explicit the energy variations as a function
of deformation, in a computationally attractive way.
In this paper, we will use the notation %—C“ﬁ to denote
the pseudo-force defined by (19). This is to reminds
us that the pseundo-force is not an external field de-
rived from a potential energy, but really a function
of the contour curve and pixel values in its image
neighborhood. We still refer to F(s) or %(5} as a
force, because it is used as a force. Since an active
contour will usually be discretized and approximated
by a piece-wise linear curve, we next review how this
changes the computation of energies and forces.

F(s) = [D(Rin, 3R) — D(Rous, 3R)] (19

2.3.3 The Discretized Anticipating Snake Model.
The previous section has shown that the energy vari-
ations and forces acting on a contour model cannot
be expressed analytically as simple functions of the
position of curve points M (s) and their tangent vec-
tors, but involves computing the deformation regions
as well. Therefore, we cannot use the Euler-Lagrange
method to transform the energy-minimizing problem
into a differential equation. This, of course, is due to
the fact that the region derivatives (or Ward distances)
depend on the image data in a more intricate fashion
than in the case of snakes. Accordingly, it is prefer-
able to use a discretized version of the contour, and
express the local forces in this framework, much in
the same way as Kass et al. (1987) derived their sim-
pler equations using a finite difference approximation.

Our next step will be to partition the object and
background neighborhoods of the contour into small
local neighborhoods R;, following a discretization of
the contour curve itself, as in Fig. 6. For the purpose

Fig, 6, Discrete regions of deformation. All deformations of point
M (i) are confined to its inside and outside regions.

of prototyping our approach, we used a neighborhood
structure described in Fig. 7 and section 3 below. We
now write the energy as a sum of contributions from
every contour point:

W contour Wy -+ Z WI;.NT(ME)
i

o o (20)
- Z[Wregtorz(RE”) 4 Wresion (R;ut)]
i

where Wiy,(M?") is an internal, elastic energy, as
defined in Kass et al. (1987). This approximates the
real energy field whenever local neighborhoods parti-
tion the entire image plane, as in Fig. 6. Smoothness
and rigidity terms can be transformed into finite dif-
ferences as in (3), (16), Kass et al. (1987). External
forces can still be computed as in (19), but using
only terms belonging to one particular point M', so
that the local dissipated energy during a deformation
S§M* amounts to:

[ﬁﬁ +ZB-«MJ]5M?‘ 21
ac &
J#i
Practical implementations of (21) can vary greatly,
e.g. region statistics can be modeled separately for
each point M¢, hardware can be used to produce the
goodness-of-fit functions, or the image function itself
can be approximated continuously and calculations
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ISoparamelric t-curves

T S~ S

ISoparametric §—curves

Fig. 7. Local coordinates. Choosing the normal direction for all deformations defines a local systern of coordinates (s, £}. Curves of constant
¢t are the directions of deformation. Curves of constant s are iso-deformation curves. The real deformation will be M(s) +t{5)N {s).

performed analytically. In this paper, we present the
first (and simpler) solution.

2.4 Internal Energy and Spline Models

Following Kass et al. (1987), we have written explic-
itly the internal energy terms in (7) and (21). We are
now going to cancel those terms out, and use simpler
kinds of contour models with external forces only.
The reason is the following. In the regularization ap-
proach to snakes, a key issue lies in the choice of
a common scale unit between internal and external
energy terms (Ronfard 1990). Internal energies were
first introduced by Kass et al. (1987), drawing on
the theory of approximating spline functions (Laurent
1972), which have classically handled the difficulty
by use of cross-correlation methods (Sharabray & An-
derson 1989). No such solution extends to the case of
equations (17) or (22), because of the strongly non-
linear image forces (Ronfard 1990). This is therefore
a very difficult problem, and one that this work does
not try to address.

L~

R (M5}

i

Fig. 8. A simple local structure for variational edge detection.
We approximate local coordinates (s, t) with a discrete set s =
I..NL t=—P.. P, ie alocal image grid {s,1).

In the following, we will use instead a simplified
version of contour models, similar to the B-snakes
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described in Menet et al. (1990) or the spline-snakes
in Cinquin et al. (1990). In essence, those spline mod-
els imbed the internal energy into a B-spline repre-
sentation. Internal energy becomes an implicit func-
tion of the sampling rate h = S/N along the contour.
Control points or knot points can still undergo de-
formation, under the influence of external interaction
forces alone, and other intermediate points are ap-
proximated as a B-spline curve fit to the deformed
control or knot polygon (see section 5.2 for more
details on this). The same basic procedure has been
reported also by Cipolla & Blake (1990) as well as
Menet et al. (1990), Cinquin et al. (1990} and Ron-
fard (1990), so that we will resort to it without further
justification in this paper, as a powerful and efficient
short-cat for illustration of our energy model.

3 Local Depth-Adapting Algorithm

3.1 A Simple Neighborhood Structure for
Anticipating Snakes

3.1.1 Energy and forces. The snakes equation (8)
establishes a global evolution rule for all sampled
points on an active contour model. The first part of
this paper has been devoted to present a different ap-
proach for active contours, consisting in the choice
of arbitrary directions of deformation and local evolu-
tion rules, one for each point in the contour curve. We
now present algorithms and heuristic methods useful
for an active contour model based on equation (19).
Using the discrete form of equations introduced in
this paper makes all derivatives and forces depend
explicitly on image scale (the characteristic size of
image neighborhoods around the contour curve). The
choice of any particular image scale can be adapted,
either geometrically (to fit local image characteris-
tics) or temporally (to improve the efficiency and
robustness of the optimization process). The adap-
tive nature of the algorithms presented in this sec-
tion makes them particularly suited for interpretation-
guided, semi-interactive segmentation, as will be
illustrated later.

For the purpose of clarity, we will focus in this pa-
per on the very simple neighborhood structure shown
in Fig. 7 and Fig. 8, which can be easily and ef-
ficiently implemented. It consists in separate, non-
overlapping L-pixel-wide bands centered on sampled
points M (s). These structures are (2P +1) pixel-deep
and directed along the normal to the curve N(s). All

image-contour interactions at point M(s) thus orig-
inate from a neighborhood M(s) + t(s)N(s), in the
narrow image strip following the estimated local nor-
mal N(s), as in Fig. 8, The normal vector N(s) may
be obtained from the B-spline expansion of the con-
tour curve, provided the sampling is not too fine. In
practice, better estimates will be obtained if a 1-D
gaussian-derivative kernel is convolved with the sam-
pled contour M(s) (s = 1...N}. This 1s important to
insure that the mapping from (s, ¢) to a neighborhood
of the curve C in the image plane is one-to-one. This
also allows finer sampling intervals on the contour
curve, independently of its original B-spline repre-
sentation (Ronfard 1991).

We compute image-contour interactions from the
neighborhood structure in Fig. 8 in a straightforward
fashion, using the simplest form of equation (10),
i.e. with a piece-wise stationary image model, so that
the error-of-fit functions A,/ are simply the average-
corrected image values, In this case, the region ener-
gies are simply regional image variances

Wregion (Rk) —

(22)

1 (x, y) = (I el Pdxdy

Ry
and the contour energy is just the classical (stationary)
Ward distance between regions R;, and R, i.e.

Wconmur(c) = D[Rim Rout] (23)

The general expression for the image forces acting
on the contour curve during a step-wise deformation
t(s) — t{s) + At{s) then becomes

/ (Din[M(s)] = Dow: [M (s)]) (24)

IA()I

where D;,(M(s))(resp.D,,,(M(s))) denotes the
Ward distance between R, (M (s))(resp.Rou (M (s)))
and the L-pixel deep region §M (s) around M(s), as
shown in Fig. 8. This is the simplest possible imple-
mentation of equation (21), and it has the interesting
properties that the local deformation state of the con-
tour curve is completely described by the parameter
t(s), and image forces are local to the neighborhood
structure M (s) + ¢ (s)N (s), as prescribed.

3.1.2 Computational Framework. We can now pre-
sent a computionally simple variation scheme, based
on the above discussion, as a candidate to solve the
active contour optimization problem, For each iter-
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ation step of the procedure, we have the following
sequence:

¢ Compute normals N(s) for all sampling points
M(s), s = 1...N, and build the image statistics
in the neighborhood image regions.

o Starting from undeformed points M (s) = A(s, 0)
take as many steps as possible in either one of the
deformation directions M {s)+t(5)N(s) or M(s)—
tN(s), t{(s) =0... P, as long as the power of the
external forces remain positive

Din[M(s)] — Dous [M(s)]) AL (s) > 0 (25)

e Compute a new contour from all deformed sam-
pled points, using them as control points for an
regular cubic B-spline curve. Such a curve will
not interpolate sampled points, but merely approx-
imate them with the best-looking piece-wise cubic
curve, in a certain sense (Laurent 1972). This is
sufficient for our purpose, because we re-sample
contour points in every iteration.

In order to proceed successfully with such a sim-
ple scheme, several issues have to be dealt with. First,
a number of parameters remain unspecified, i.e. the
maximum depth P allowed for step-wise deforma-
tions in a single iteration, the sampling rate N of
points along the curve, the gaussian variance o used
to estimate smooth normals along the curve. Along
with neighborhood width L, those parameters deter-
mine all scale choices for our model] (see Fig. 9). In
contrast to the original snakes (see Fig. 10), those pa-
rameters are all local to the iterative scheme, and can
therefore be adapted more easily than a filter size for
edge detection. Indeed, experience has shown that all
scale parameters should be modified during the opti-
mization process, Thus, heuristic methods for deter-
mining N and P in each step of the procedure will
be presented here (we introduce no such refinement
for o, which we in fact consider as a function of N
and P), while the last section of the paper will be
devoted to the width scale parameter L.

A different line of problems arise from the choice
of the Ward distance. We use the sign of Ar(s)
(D;,[IM(s)] — D, IM(s)]) in order to determine in
which direction the curve should be deformed. It
would be comforting to know that this expression
vanishes on boundary points. This is not the case,
however, and section 3.3 discusses transformed dis-
tance functions with a better behaviour in that respect.

Discretization

- E =S/N
Lﬂ‘/

C’\I:rmal Estimation //
e
/‘\-‘—"uw‘—r'/
v

(v)

Local Statistics

Fig. 9. Scale factors in the anticipating snakes model. Scale choices
are needed in (1) to discretize the contour; in {2) to estirmate
smoothed normals along the contour; in (3) to decide image neigh-
borhood size {depth 2P + 1 and width L).

3.2 Local Depth-Adapting Strategy

3.2.1 Scale-Space Strategies. The point in this sec-
tion is to adapt neighborhood size P (see Fig. § and
Fig. 9) to the scale at which the object-to-background
contrast is maximal. A compromise must therefore
be found between smaller neighborhoods (for which
the norms have no statistical significance) and larger
neighborhoods (where more than two regions are in
the scope of M (s} + r(s)N (s)). The second term of
the alternative represents the most difficult situation,
because all the equations used to model edges assume
two regions (possibly identical) only. This makes the
traditional coarse to fine, scale-space approach advo-
cated by Kass et al. (1987) very dangerous, since the
local forces acting from the image at coarser scales
may become unfounded and misleading, and no ver-
ification can be made at finer scales.

This fatling is illustrated by the dominant role
played in such cases by the automatic internal forces
of snakes or other related models (elastic forces, pres-
sure). In such cases, active contours are driven away
from their target object boundaries, without being
given any chance to recover them (since only finer
scales will subsequently be examined, to improve—
not correct—the first coarser optimization steps). Fol-
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Fig. 10. Scale factors in the snakes model. Scale choices are needed
in (1) to compute the image gradient; in (2) to compute the gradient
derivatives in x and y; in (3) to discretize the contour and choose
uniform step ¢.

lowing Leclerc & Zucker (1987), we have investi-
gated the opposite, fine to coarse strategy. This ap-
proach starts with very small neighborhood structures
(P = 1,2,3...) even though a high level of noise
may be present at such scale. Noise in earlier stages
of optimization can be dealt with because the contour
curve is regularized, and the steps taken in each iter-
ation are very small (f,,,, < P). Then P is increased
while optimizing, until all neighborhoods become sta-
tistically significant. The optimal deformation state is
then easily obtained in a few iterations.

3.2.2 Depth-Adapting Algorithm. This strategy cap-
tures the intuitive idea behind active contour mod-
els, that optimization should use local image analysis
whenever available (in close neighborhoods of object
‘boundaries) and internal cohesion forces when the
image profiles are locally flat. The fine to coarse ap-
proach also offers an efficient heuristic for increasing
the dependency of the variational procedure on im-
age characteristics, since object boundaries are only
a finite distance away from the initial contour po-
sition, and will be reached in a finite number of
steps—without oscillations. This of course assumes
a control mechanism for stopping at interfering ob-
jects appearing in the background, as the scope of the
neighborhood structures extends. All of the above ob-

servations can now be summed up in the following
depth-adapting algorithm:

[1] Start with an initial B-spline curve, sampled uni-
formly after arc-length s. Then choose an initial
depth parameter P = P, (preferably d < Py < D
where d is the mip-distance from the initializer to
the target object and D is the min-distance between
objects in the image).

[2] Iterate the basic steps : fit all control points in the
B-spline basis, compute normals N({s) at control
points M (s), extract (2P + 1) image pixels in the
direction of N(s) for every s, using a fast line
drawing algorithm such as Bressenham’s, move
all control points step-wise from M (s) to M(s) +
tN(s), —P <t < P, according to the sign of the
dissipated energy. This is simply the work of the
external pseudo-force from equation (19).

[3] Increment P, and compare energy levels ob-
tained in step [2] with those of the increased neigh-
borhoods, allowing only lower energies at coarser
scales. All points with increasing energies at this
stage should become inactive or attached.

[4] Tterate steps {2] and [3] until no more control
points are active.

An application of this algorithm to a brain tomog-
raphy scan is presented in Fig. 11. The initial curve
is an interactively designed B-spline, sampled every
five pixels in a 256 x 256 image. Ten iterations were
performed before convergence, with increased depth
ranging from five to fifteen pixels on each side of the
curve. Since all objects in this image are isolated and
offer a roughly constant contrast to their background,
the algorithm performs well in this case.

3.3 Controlling Stability

When computing the difference of the Ward distances
D;, [M(s)] and D,,.[M(s)], we simply check for its
sign, in order to determine in which direction the
curve should be deformed. This raises a difficult prob-
lem for stability issues, since deformations will al-
ways occur, regardless of the magnpitude of the en-
ergy term. We would like to have a threshold value
here to tell us when the external forces acting on the
curve are so small as too be negligible. This is not
possible within the Ward distance formulation, how-
ever, because it does not capture the intuition that
external forces smoothly vanish around real object
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Fig. 11. Application of depth-adapting algorithm to medical imaging segmentation.

boundaries. Instead, it is easily seen that the force
magnitude D;, — D,,, may be as great as the Ward
distance [R;y,, Ry ] in the vicinity of a highly con-
trasted edge, whereas regions without edges can have
very low D;, — D,,, altogether. In such cases, the
threshold value would have all optimal points move
in and out around an object boundary, while those
points that are far from optimum remain in a fixed
(and erroneous) position. In order to avoid this unde-
sirable behaviour, we can use the sign and magnitude
of other functions of the involved Ward distances. For
example, we can use

Din[M(s)] = Dou [M(s)]
D{Rin Rouf}

which appears as a formal derivative of the logarithm
of the Ward distance, and enhances the forces in re-
gions where the overall contrast is low, so that points
in those areas can be moved away. Another possibil-
ity is

(26

[Din[M (5)] ~ Doy [M (5)]]e ™ PlRinRon] @n

which can be interpreted (loosely) as the derivative of
the exponential function of the Ward distance. This
also has the desirable effect of boosting the forces
in regions away from real boundaries, while having
them vanish at higher-contrast edges. Since the ex-

ponential in (27) is better-behaved than the ratio in
(26), we have used (27) in our implementation.

The use of the exponential further brings a nice sta-
tistical interpretation, since e *P{RinRul j5 the Boltz-
mann distribution for energies D[R, R, ], mean-
ing that it is (up to some factor) the probability of
the image intensity at M, given its neighbor pixels
and the hypothesis of the contour curve C passing
through M. Let’s denote this conditional probability
PI(M)|C in M). Itis classically related to the prob-
ability of the curve C passing in M, conditionally to
the observed intensity 7 (M), by the Bayes rule which
we write here:

P(C in MI(M))
_ PUMD|C in MYP(C in M) (28)
B P(I(M))

so that, taking both prior probabilities P(C in M) and
P(I(M)) to be uniform, our evolution rules can be
shown to solve for the most probable contour curve
position, given the image intensity function [{M)
(Ronfard 1991).

Expressions (26) and (27) are very useful to en-
hance the performances of our variational scheme.
We thus substitute one of the expressions (26) or (27)
into the computation of image interaction forces. This
alteration of our variational definition for optimal im-
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Fig. 12. Application of depth-adapting algorithm to histological morphometry.

age contours makes it remarkably similar to proba-
bilist, non-determinist schemes such as described in
Geman et al. (1990), where the exponentials of a
quadratic contrast function play a central role.

Our second example (presented in Fig. 12) is a
case where direct application of the depth-adapting
atgorithm fails if we do not use (27), because of
the texture in the lighter background. Those bone
biopsy images were digitized and contours extracted
at interactive rate from a photo-microscope. Because
the internal structure in the background has a lower
contrast, using (27) results in a correct segmentation
in very few iterations. Sampled points on the bone
boundary are easily stabilized, since their energy tran-
sitions are scaled down by the exponential. Sampled
points falling in the background are then more eas-
ily moved to the boundary, as the search depth is
increased to reach higher contrasted edges.

4 Adaptive Diffusion Algorithm

4.1 Failings and Extensions of the Depth-Adapting
Algorithm

Contours obtained with the algorithm presented in
section 3 are usually comparable in precision and
quality to other snakes (Kass et al. 1987), balloons

(Cohen 1991) or model-driven detectors (Fua &
Leclerc 1990), although it is difficult to substantiate
such an affirmation. One critical element in our ap-
proach is the choice of the initial depth and discretiza-
tion scales. Also, a snake can be used to fill-in missing
data from the edge-map, or even occluded contours
from 3D-objects, through its internal energy. Our
method does not have this feature. More importantly,
it usually. fails in cases when too many object bound-
aries are present (experiments not presented), because
each local part of the curve sticks to its own optimum,
with very little global interaction between different
sampling points, except in the spline fitting step.

This section introduces a different algorithm, based
on a diffusion method, rather than a purely local
scale-adapting method. More precisely, we show how
the framework that we have established enables us to
control some sort of consistency between locally op-
timized neighborhoods M{s) + t(s)N (s} along the
curve parameter 5, so that alien boundary parts can
be dismissed while consistent parts are inforced. This
is intended as a solution to some of the initialization
problems, as well as an interesting methodological
shift from a purely local scheme, to a more global
approach. While snakes and most other active mod-
els have used internal energy to provide global con-
trol, we choose to propagate the external energy, in a
sense that will be made clear later.
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4.2 A Diffusion Heuristic

The depth-adapting algorithm that we have presented
and illustrated in our previous sections can be de-
scribed as a set of automata, placed at regular inter-
vals along the contour model, which detect possible
object boundaries in a given direction, and move to
those anticipated boundaries. Those moves determine
the global deformation of the contour model. Each
move is based on the Ward distance between the au-
tomaton and its local estimates of intensities or colors
inside and outside the contour curve. We have made
no attempt so far toward a cooperation between ad-
jacent automata, and this of course results in a rather
poor modeling power, since the global behaviour of
our contour model only depends on (1) the nearest
edge element to each automaton in the direction of
its normal, and (2) the shape of the contour curve,
because of the spline-fitting step which tends to pull
its points towards its centers of curvatures. Without
an intuition of what object shapes should be, this does
not provide a robust detection method, except in re-
gions where only one object is present.

In order to obtain a more satisfying model, es-
pecially in cases where several objects are present
around the initial contour model, we are faced with
the alternative, either to allow multiple contour mod-
els, i.e. deformable models consisting of several
closed contours (one for each object), or to enhance
a single contour model, so that it can discriminate
between different object boundaries, and converge
toward a single object. We will not discuss further
the first approach, because it seems difficult to re-
strict it to the simpler cases of contour models having
disjoint interiors, without introducing nested struc-
tures (Koenderink & van Doorn 1979) or overlapping
contours (Nitzberg & Mumford 1990). In both those
cases, contour models become much more complex.
In the second approach, we only need to enforce new
constraints on the contour model, e.g. impose that
the regions bounded by the contour curve be of ho-
mogeneous intensity or color, at least in the peigh-
borhood of the contour model. This will cause the
contour model to favour consistent boundaries, and
selectively converge towards a single object. We now
have to find an efficient way of enforcing such con-
straints.

This will be easier to illustrate in terms of a de-
cision network. Instead of a set of independent au-
tomata, we now want a network of such automata, so

that each one can base its dynamics on estimates of
intensities or colors provided by its nearest neighbors
as well. As an example, Fig. 13 shows how local es-
timates (/);, and (I),, can be propagated along the
contour curve, and new estimated values (I*);, and
{I*},ur can be formed from this mechanism. Since
each automaton computes its own estimates, it is a
simple matter to connect them so that they share those.
values. In this section of the paper, we will show how
such a simple diffusion mechanism can be used to en-
hance the modeling power of our anticipating snake
model.

In order to compute the second-order estimates
(I*)in and (I*),,;, we use combinations of the first-
order estimated image intensities (/);, and (), typ-
ically using a one-dimensional gaussian weight func-
tion g{j) as shown in Fig. 13 and Fig. 14

L 4 .
U, = > gDy
j=—L

and
L

() = Y 8GN 9)

=

In (29), indices i and j are in the range of the discrete
arc length s across C. This yields a representation of
the neighborhood structure extended in width as two
layers of inter-connected cells, as depicted in Fig. 14
below, while retaining the local decision structure de-
scribed above. The input cells are image pixel values,
extracted in the estimated normal direction N(s). The
first layer of cells then computes local estimates of the
image values in half-neighborhoods, while the second
layer averages those values along the curve parame-
ter. Finally, output cells perform nonlinear transforms
and local comparisons to determine the directions of
deformation, much in the same way as before.

4.3 Adaptive Diffusion

With this new definition for our local neighborhood
structure, we have introduced a new parameter L,
which controls the width of the propagation process,
1e. typically the number of inter-connected points on
the contour curve, or more intuitively, the width of
the second-order neighborhood structure itself. Just
as in our previous sections, we need to decide for a
control strategy for this new parameter. This will be



244  Ronfard

Ay

Fig. 13. Extending image neighborhood width. The simultaneous ditfusion of intensity on both sides of the contour extends neighborhoods

in width,

C*i

Fig. 14. Interconnection of neighborhood structures. Local color
values are weighted sums of the estimated colors for each neigh-
borhood.

based on the following experimental observations:

o substituting {I*};, and {I*), to the original val-
ues in equations (23) and (25) improves the
convergence qualities of the anticipating snakes
algorithm around object boundaries (where first-
encountered boundaries act as seeds for width
propagation of the deformations),

s away from object boundaries, extending the width
of image neighborhoods yields confusions and
unpredictable results, mainly because the differ-

ences between inside and outside neighborhoods
are small and obscured by random, tangent het-
erogeneities.

We thus have to introduce a more adaptive prop-
agation scheme, so that we can use the seed val-
ues at object boundaries to extend in the width di-
mension, while ignoring this dimension altogether
when no such information is available. Such adaptive
treatments are reminiscent of biologically motivated
computational models, such as retinex theory (Land
1977) or boundary contour—feature contour interac-
tions (Grossberg 1987).

The retinex scheme computes perceived lightness
or color using path integrals away from boundaries—
a scheme later shown to be equivalent to a diffusion
equation with boundary conditions (Blake & Brelstaff
1987). This original idea was recently re-discovered
and extended as anisotropic diffusion i.e. diffusion
of image intensity values, with coefficients depend-
ing on local image gradients—a scheme which al-
lows filling~in to take place away from object bound-
aries, which act as diffusion barriers. It should be
noted that our own extending neighborhood structures
must follow the same kind of rule, but in a differ-
ent perspective, since all unidentified neighborhoods
should progressively be filled-in by image values dif-
fusing from distinct object and background seed half-
neighborhoods (the contour curve itself acting as a
diffusion barrier).

Interaction between extending neighborhood struc-
tures (allowing image intensities to fill-in) and op-
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timizing contour curves (which extend and main-
tain optimal local contrasts) can best be described
in the light of the neural theory of interacting fea-
tures and boundaries, as defined in Grossberg (1987).
S. Grossberg’s model of visual perception introduces
two competing forces (completion of boundaries and
featural filling-in) which are both necessary and suf-
ficient to explain, in his view, most pre-attentive ob-
ject perception data. Feature contours are generated
by orientation-insensitive, direction-of-contrast sensi-
tive cells, while boundary contours are detected by
direction-of-contrast insensitive, orientation-sensitive
cells.

This is an important distinction, which we are
going to use a Jot in this section. The process of com-
puting a Ward distance along the normal to the con-
tour curve, as in our previous section, is orientation-
sensitive, but not sensitive to direction-of-contrast,
1.e. it responses to all discontinuities tangent to the
contour curve, regardless of the absolute intensities
or colors inside and outside the contour. It would be
useful to devise direction-of-contrast sensitive detec-
tors as well, in order to guide the deformable contour
towards a continuous boundary, i.e. with a constant
or slowly varying direction-of-contrast. Of course,
this is difficult, unless we are given the object and
background colors, or we can anticipate those colors,
based on larger, extended neighborhoods.

In order to achieve this goal in the framework
of our anticipating snake algorithm, we propose to
use an intensity or color diffusion scheme with non-
constant coefficients, each coefficient A(s) at arc-
length s being a monotonous increasing function of
the image contrast along the normal N(s) at s. This is
a quite different assumption compared to anisotropic
diffusion, because the diffusion along our curve pa-
rameter s is controlled by the contrast in the orthog-
onal direction ¢. Therefore, the more contrast we find
between the inside and outside colors at s, the more
we diffuse those colors. When the diffused colors are
used by each automaton to compute its motion, we get
a process which has become sensitive in the direction-
of-contrast. For highly contrasted points, this does not
change the computation of energy and forces much,
and those points will still maximize their own lo-
cal contrast, regardless of direction-of-contrast. On
the other hand, for lower contrast points, local color
values are outweighted by the diffused values from
highly contrasted points, which impose a given di-
rection of contrast. Therefore those points will maxi-

mize their Ward distance to the diffused colors “from
within” and “from without,” as if we had set the
functions object(} and background() in equation (1)
for those points, or equivalently the intensity or color
charateristics of regions R;, and R,,, in equation (19).
This clearly results in a direction-of-contrast process
for those points.

Drawing upon this basic idea, we therefore have.
implemented a simple diffusion process with a dif-
fusion coefficient h(s) which is a function of arc
length. This consists of the same two-layer structure
as Fig. 14, but with an additional term Z(s). We de-
fer the precise definition of k(s) to section 4.5 and
simply introduce it here with the following diffusion
equation:

() =<1y
L . . (30)
+ Y iy (1Y = (1))

=L

The interpretation of 2(s) at 5 = [ +j in this equation
is that of a local contrast measure at point M (s). Us-
ing A{s) results in a selective diffusion from highly
contrasted areas to undifferentiated regions, as in
Fig. 15. More precisely, equation (30) results from
the following line of reasoning: (I*)' is expected to
take values ranging between the local depth value (1)’

and the sirrounding value 1/, :

DO LI i
surr Z}»Lw_l‘ gjh[.%j

€19

Therefore we have (I*)! = (1—H)(I)'+HI!,, . This
simplifies to equation (30) if H is chosen to be the
averaged contrast Z;‘:w 1 &(;)h(;4;) around M;. Sub-
stituting {7*)* from equation (30) into the anticipat-
ing snake algorithm, and increasing the neighborhood
width L at every iteration, a very efficient and sta-
ble scheme was obtained, as illustrated in Fig. 16 and
Fig. 17. The critical—and somehow more technical—
point in this version of the algorithm lies in the esti-
mation of the h(s) coefficients—which play a similar
role here as the line-process energies in Geman et al.
(1990).
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Fig. 15. Diffusion coefficient influence. Diffusion coefficients are related to image contrast across the contour curve. This has the effect of
diffusing contrasted colors into undifferentiated regions.

Fig. 16. Application of diffusion algorithm to real-scene image.
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Fig. 17. Steps in diffusion algorithm and object tracking application.

4.4 Adaptive Diffusion Algorithm

In order to illustrate the use of our diffusion heuristic,
we have implemented the following extension of our
anticipating snakes algorithm.

[1} Starting from an initial contour curve, we per-
form a first series of iterations following the depth
procedure of our previous section, until a limit
depth value P is obtained.

{2] We use variances from all half-neighborhoods to
estimate the contrasts 4(s) and build the two layers
of neighborhoods described above.

[3] We compute fusion forces as in equation (15),
using the second layer outputs {I*)* for all neigh-
borhoods, and apply the depth deformation rules
from M(s) to M(s) +t(s)N(s).

[4] We increment L and iterate [2] and [3], until an
equilibrium is reached.

It should be noted that, since expression (30)
acts as a smoothing, regularizing term, no explicit
stopping criterion is needed (contrary to the depth-
adapting algorithm). In fact, it is possible to rely (as
in the original snakes approach) on a much simpler
rule, i.e. we end the process when no more defor-
mations occur. Figure 16 presents an example of ini-
tial and stabilized contour curves in a color image
(shown here in grey levels). The Ward distance is
derived from a visual metric in the vector-space of
color triplets. All objects have been optimized sep-

arately. The contours shown are sampled every five
pixels. The depth parameter was varied from 10 to
20 pixels in the first ten iterations. Then the width
parameter was increased from 5 to 15 points in the
last ten iterations (i.e. every sampled point received
information from up to 30 neighbors). The displayed
results use as many as 80 to 100 sampling points here.
It should be noted that the final scale is large enough
for different objects to overlap, meaning that we re-
ally obtain a solution which is an optimum among all
possible present object boundaries. Figure 17 shows
further interesting application results, in the case of
a sequence of images. The images in the sequence
have been chosen so that the average deplacement
corresponds to the depth parameter used, of approxi-
mately 20 pixels. Again, this shows a gnod modeling
power, discriminating easily between object bound-
aries and the surrounding texture. Intermediate states
of the contour model are shown in those three images,
illustrating only the adaptive-diffusion part of the al-
gorithm (Fig. 17). Except for the first frame, where we
have provided an initial curve manually, contours ob-
tained in a given frame were used directly to initialize
the next frame (although no real-time implementation
has been attempted).

4.5 Computing the Diffusion Coefficients

We cannot use the Ward distance in order to compute
the diffusion coefficients, because D([{, I;) has the
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dimension of a square norm of image values and i(s)
must be a dimensionless coefficient in [0,1]. Non-
linear transforms such as (27) and (28) result in poor
numerical behaviour when averaged by the gaussian
function g;. Our experience here is that better contrast
estimates can in fact be obtained using a statistical test
for identical variances in the first layer of the neigh-
borhood structure (Fig. 4). This follows a theoretical
suggestion by Leclerc & Zucker (1987).

Letting V; be the total variance in the complete
neighborhood M (s) + tN(s) and V, be the sum of
separately estimated variances inside and outside the
contour curve at point M(s), we test the ratio %—l-,
which we assume to follow an incomplete 8-function
(Press et al. 1988). The result of this test is the proba-
bility p(s) of the observed ratio, under the hypothesis
that V| and V, were drawn from a homogeneous pop-
ulation. The local contrast 2(s) can thus be estimated
as 1 —p(s). The test Fisher-Snedecor has already been
used to study the local structure of discontinuities and
detect edges (Leclerc & Zucker 1987) and it proves
both consistent and reasonably efficient in our case
as well. It extends naturally to more complex image
cases than illustrated here, e.g. color or multi-spectral
imagery (Ronfard 1991).

5 Results and Discussion

5.1 Scale Changes: Comparison of Depth-Adapting
and Diffusion Algorithms

A remarkable feature of the two algorithms presented
here is their capacity to change scales during opti-
mization. Our treatment of scale changes in depth
closely follows Leclerc & Zucker (1987) but in a
more favourable context, because of error-correcting
iterations and regularization. As a consequence, a
more ambiticus treatment of scale changes was pos-
sible, as captured by our width extending scheme.
However, extensions in depth or in width both have
merits and failings, which will now be illustrated and
discussed.

Extending in depth has been illustrated in Fig. 1
and Fig. 8. The intuitive nature of the extension pro-
cess is that all pixels in a neighborhood of the con-
tour curve interact with their projections on the curve,
the forces being repulsive, proportiopal to the simi-
larity of pixel values on and around the curve, and
limited in range to the depth parameter P (Fig. 8)

All such forces result in a contour-image interaction
which drives the optimization process throughout.

This scheme can be very successful (e.g. Fig. 11)
as long as the expected boundaries are absolute con-
trast maxima even at a reasonably large scale P.
When this is not the case, our extending scheme will
favour higher contrasts in the distance (within P) and
lose track of real boundaries. Controlling this situa-
tion has proved extremely difficult in the absence of
a more global information. On the other hand, cases
that can be correctly modeled by depth neighborhoeds
are optimized without oscillations, in a near-optimal
number of steps (typically less than the Haussdorf
distance between initial curve and solution). Further-
more, the resulting curve can be refined to quasi pixel-
size resolution (Fig. 11 shows final curve sampled
every 3 pixels).

Thus, our depth-adapting strategy is best used
when image contrast is high and varies smoothly
along the anticipated boundary. Otherwise, smooth-
ing image values around optimizing contour is nec-
essary. Adaptive diffusion provides important clues
on how to solve those cases. The process has been
represented in Fig. 13 as distributed forces acting on
the contour curve from neighborhood pixels on the
curve.

The diffusion process that we use to compute local
pixel colors presents major advantages over both tra-
ditional snake methods and our local depth-adapting
algorithm, when an overall direction of contrast is
perceptible, because it is able to correct itself locally,
using neighborhood information without assumptions
on the geometry of expected object boundary (as in
Fig. 16 and Fig. 17). On the other hand, it is more
difficult to control, and not as precise as the simpler
depth-adapting algorithm, because it changes image
values and therefore leads to smoother contour solu-
tions than the real image boundaries. An implemen-
tation using more elaborate neighborhood structures
(such as a triangulation of the image) would be very
useful for further study of the adaptive diffusion con-
cept.

5.2 Merits and Failings of the Anticipating Snakes
Method

The framework presented in this paper addresses only
the case of feature contours (step-edges), and cannot
easily be made to recognize “roof-edges” or bound-
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aries between objects of similar colors. In the case of
step-edges, our diffusion algorithm retains most of the
available image contrast information, while allowing
non-stationnarity (as opposed to pure region segmen-
tation based on the same energy function). The use
of an energy measure derived from local comparisons
of quadratic error-of-fit functions was borrowed from
split-and-merge methods, for which it is well known
that smooth, regular contours are usually difficult to
obtain. Our anticipating snakes approach could pro-
vide a criterion for those cases, making contour ex-
traction much more reliable, while retaining the ro-
bustness qualities of region analysis. It also supports
scale changes more easily than other related schemes,
which is an important factor for stability of our re-
sults.

Figures 11 and 12 present results obtained with the
depth algorithm, on tomography scan and microscopy
images. Figure 16 shows results of the diffusion algo-
rithm on a fairly complex video image. An application
of the diffusion algorithm to object tracking in an im-
age sequence is shown in (Fig. 17). In simpler cases
such as Fig. 11 or Fig. 12, convergence is obtained in
ten to fifteen iterations, with an initial depth of about
five pixels, and the algorithm runs in time linear with
the number of sampled points. If the diffusion heuris-
tic is used in those images, the number of iterations
is reduced, but the running time increases because
of the more drastic computations there. However, all
examples shown were obtained in times compatible
with interactive use (typically under 2 seconds on a
12 MHz microcomputer for 30 sampled points).

The combination of contour-oriented control struc-
tures and region-oriented energy measures is power-
ful, yet many problems will remain unsolved as long
as contours are optimized one at a time. There are
cases when our anticipating snakes split into sep-
arate curves, and it would be interesting to pro-
ceed with such twin processes (as a matter of fact,
such sitvations are detected, and corrected by sim-
ply deleting all loops but the largest one). Multiple-
contour optimization could also prove valuable in or-
der to generate initial curves at different positions in
the image—sharing neighborhood values when nec-
essary, thus cooperating into a global segmentation
procedure such as Geman et al. (1990), but with an
explicit contour shape representation, as in Mumford
& Shaw (1985; 1989).

Other difficult issues in the approach that we
present here include the choice of an optimal sam-

pling rate, efficient control of the diffusion heuris-
tic after several iterations, and the trade-off be-
tween local depth-adapting and diffusion strategies
in the course of optimization. Such issues should
be discussed in the light of more specific, domain-
dependent image analysis application of the method.

6 Conclusion

This paper was motivated by the need to explore vari-
ational conditions and algorithms resting on local re-
gion analysis, instead of pre-processed edge maps,
to handle cases when such maps are not available
or too costly. Based on such local region criteria,
we have presented a coherent treatment of image-
contour forces and variations, as well as strategies
for application in a practical active contour system,
which compares well with other existing systems, es-
pecially in the case of over-segmented images. This
is remarkable since we essentially took a very sim-
plistic approach to optimization, control and conver-
gence issues. We argue that it is due to the fact that
the region-based energy used here is a better repre-
sentation for optimal shapes than are image gradi-
ents in those cases. Our energy definitions have been
presented with statistical and perceptual interpreta-
tions, and can be suggested—along with their varia-
tional procedures and heuristics—to enforce explicit
shape representations in other areas of image analy-
sis i.e. simulated annealing image segmentation and
retinex/diffusion schemes.

In the more specific domain of active contour mod-
els, our first contribution has been to introduce a gen-
eral formulation for region-based models, using local
error-of-fit functions to build an energy criterium suit-
able for optimization. This formulation has been illus-
trated using piece-wise constant image models only,
and should benefit from higher-order models when
available. Our second contribution has been to make
use of adaptive neighborhood structures and diffusion
processes, in order to obtain a more robust active con-
tour modeling scheme in the case of very busy images
with many objects. The same heuristics could easily
be transposed to the case of edge-based contour mod-
els as well, hopefully with the same benefits.

This work was performed while the author was
a research assistant with Ecole des Mines de Paris,
as well as being hosted by Laboratoire Image, Tele-
com Paris. The author would like to acknowledge the
help and support of J.M. Monget, M. Albuisson and
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L. Wald, at Ecole des Mines, H. Maitre, F. Schmidt
and M. Sigelle at Telecom, as well as valuable criti-
cal examination and discussion on earlier versions of
this work by Ph. Cinquin.
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Appendix A Variational Principles and Equations
We assume that the exact energy expression is :

- [ (ot

and that it can be approximated by a sum of local
energy fields £ = > ..

w}:u»—m:f ZG%M)

i=1 P==]

- G?-(M)) ds

t—-l

All terms in this expression can be approximated by
finite differences:
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If we now differentiate, we obtain
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in which the coefficients in B are simple sums of «
and 8.

If we assume E(M) to be a quadratic function,
we can write (using Euler formula for homogeneous

functions):

2F = Z a—x,xl

which easily develops into

1 aG* 3G?
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Equation (7} in the paper is but a short-hand no-

tation for this latter expression, in which we recog-

dE
Z i

" nize potential energy terms ‘X BX +' YBY as well

as artificial, quasi-static Gibbs function coefficients
(X 3G 4t ydGt

When we use our region-based formalism, the lat-
ter, image-driven energy terms appear only as varia-
tions ‘§X %QXZ— +8Y %3 which are interpreted (more
meaningfully in our opinion) as the amount of dissi-
pated energy due to the image force vector VG2,
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Abstract

We present a new, simple, yet efficient algorithm for triangulating multiply-connected
polygons. The algorithm requires sorting only local concave minima (sags). The order in
which triangles are created mimics a flooding process of the interior of the polygon. At
each stage, the algorithm analyses the positions and neighborhoods of two vertices only,
and possibly checks for active sags, so as to determine which of five possible actions to
take. Actions are based on alocal decomposition of the polygon into monotonic regions,
or gorges (raise the water levd in the current gorge, spill into an adjacent gorge,jump to
the other bank of afilled gorge, divide a gorge into two, and fill a gorge to its top). The
implementationis extremely simpleand numerically robust for alargeclassof polygons. It
has been tested on millionsof cases as a preprocessing step of awalkthrough and inspection
program for complex mechanical and architectural scenes. Extensive experimental results
indicate that the observed complexity in terms of the number of vertices, remains under
O(N#) in all cases.

1 Introduction

Triangulation is a fundamental operation in computational geometry and has been studied
extensively in an attempt to reduce its algorithmic complexity, i.e. the running time of trian-
gulation as a function of the number of vertices N in the polygon [7] [5] [6] [1]. Triangulation is
particularly important in geometric modeling and in graphics. In these applications, the per-
formance of triangulation algorithms cannot be evaluated solely in terms of their algorithmic
wor st-case complexity. More important is the average expected behaviour for polygons with a
reasonable number of edges. Several efficient triangulation algorithms have been proposed for
polygons that are simply-connected (without holes) [3]. Unfortunately, many computer-aided
design systems produce multiply-connected faces that need to be triangulated for efficient
rendering and for other downstream applications.

We present in this paper an efficient algorithm, called flooding, which worksfor both simply
and multiply connected polygons. The remainder of this section defines the domain, i.e., the
class of polygons properly triangulated by the flooding algorithm and their representation
accepted asinput format by the algorithm. Section 2 positions the proposed solution in the
context of previous publications. Section 3 introduces asuitable vocabulary for presenting the
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algorithm, in terms of the metaphor of flooding a polygon with water. Section 4 describes the
algorithm (at an intuitive level) in terms of afinite state machine with only 6 possible states
and five transition operations. Section 5 provides implementation details. Section 6 discusses
the correctness of the algorithm, and addresses the handling of degenerate (invalid) input
models or of topological errors resulting from numerical inaccuracies. Finally, the algorithmic
complexity is analyzed in Section 7.

We define a polygon to be a bounded, connected subset of the plane, such that it is
equal to the interior of its closure and that it has afinite piecewise linear (nowhere dense)
boundary. The boundary may be decomposed into afinite set of vertices and edgesasfollows.
Vertices are the points with non-linear neighborhoods. Edges are the maximally connected
components of the boundary minus its vertices.

The boundary of a polygon may be partitionned into maximally connected components
caled loops. There exists aunique circular order of al the edges within aloop. The order is
obvious at manifold vertices. The edge orientation defines the start-vertices and end-vertices.
The next edge is the one starting at the end-vertex of the current edge. At non-manifold
vertices there are two or more such edges. We chose as next the first one encountered while
rotating in aclockwise manner around the end-vertex. Given the above convention, a polygon
has a unique representation (as a set of loops, each loop being a circular ordering of vertex
references) which is always valid. In this paper, we address the issue of triangulating a
polygon represented using our conventions. The triangulation produces alig of triangles T
and internal edges | such that:

a) Internal edges of | are relatively open line segments contained in the polygon and
connect vertices of the polygon (triangulation does not add artificial vertices),

b) Internal edgesand triangles partition the generalized polygon (they are pairwise disjoint
and their union is the entire polygon).

2 Previous work

Triangulation may be performed by first decomposing the polygon into simpler partsand then
by triangulating each part with an efficient, special-purpose method. Asan example, polygon
decomposition into convex parts [9] yields an efficient method of triangulation, because any
vertex in aconvex polygon can bejoined by internal linesto all other non-adjacent vertices to
produce a correct triangulation. Another interesting approach consists in adding horizontal
internal edges, so asto decompose the polygon into aunion of trapezoids. Since trapezoids are
trivialy triangulated, this again provides an efficient approach [a] [4], which has been recently
improved to a linear complexity algorithm [1]. A more general (monotonic) decomposition
method has been described by Lee and Preparata [3], as a special case of what they call
regularization of a planar graph. The regularization algorithm finds a set of monotonic regions
partitioning both the interior and the exterior of any simple polygon in N logN time and
N space. An efficient triangulation of monotonic polygons has been described by Garey and
his colleagues in 1978 [5] and is also discussed in [4].

The new flooding algorithm applies to dl types of polygons, whether simply or multiply
connected. Flooding generalizes the monotonic decomposition of [3] and the monotonic tri-



R.P. Ronfard et al. / TriangulatingMultiply-Connected Polygons C-283

angulation of [5], but does not require building their complex auxiliary data-structures. It is
similar in spirit to the sweep-line algorithm of [6], but sweeps only one gorge at atime.

3 The flood metaphor.

A coordinate system (adirection, the vertical, and an origin) is chosen and used to define
the height for vertices. A polygon is monotonic if its boundary has exactly one maximum
and one minimum. A polygon may be decomposed into monotonic regions: its gorges. (Such
a decomposition is in general not unique.) Since a gorge is monotonic, its boundary can be
split into two parts, its left and right banks.

Bottom. Sag. Top. Celling.

Figure 1: Non-monotonic vertex types.

Asillustrated in figure 1,there arefour types of special vertices. aconvex local minimum
iscalled a bottom, a concave local minimum iscalled a sag, a concave local maximum is called
a top, and a convex local maximum is called a ceiling. Note that no distinction needs to be
given to non-manifold vertices. A wedge is a chain of adjacent triangles sharing a common
vertex, caled the apex of the wedge.

Theinternal data-structure used by the flooding algorithm isan array of verticesand alis
of loops, each stored as a doubly-linked list of vertex references. Asthe algorithm progresses,
loops may be split or merged, but there is one active loop at any moment.

The active chain is a connected subset of the active loop. Its starting and ending vertices
are called respectively Left and Right. The vertex preceding Left is caled NextLeft. The
vertex following Right iscalled NextRight. (NextLeft and NextRight are indicated by fingers
of left and right handsin the following figures.) The active chain alwaysforms a concave line
and is bounded by a bottom vertex of the active loop. The Right and Left vertices are on
the opposite sides of a gorge. Initially, the active chain contains only one vertex, the lowest
bottom in the external loop of the polygon, which is the Left and the Right vertex of the
active chain.

In the simplest situation, the flooding algorithm fills that gorge by removing bottom
triangles and by extending the active chain to its neighbor edges. Basicaly, the height of
NextLeft and NextRight are compared. Suppose, without loss of generality that NextLeft
is lower. The vertices of the active chain that are visible from NextLeft (and connected to
NextLeft, by either external or internal edges) define a wedge of triangles to be removed
from the polygon. The active loop is adjusted and NextLeft becomes Left. This operation
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is called a raise, and can be iterated in a monotonic polygon, which it will triangulate in
O(N) time [3] [5] [6] [7]. The main contribution of our method consists in the four other
operations (bridgefill,spill and jump), which together with the raise, will triangulate an
arbitrary triangle, in asimilar fashion.

4 High-level description of the algorithm.

In the pre-processingstage, we extract all sagsand sort them in height. (Equal height conflicts
are resolved using lexicographics order of both the X and Y coordinates of the vertices.) The
sorted list of sags reduces the cost of searching for the lowest sagsinside the current gorge.

(-

Before a raise After araise

Figure 2. Raise.

Each sag will eventually be connected to atop or aregular vertex by an internal edge.
Such a bridge operation may divide the active loop or connect it to another loop creating two
gorges. The algorithm will pursue (and fill) one of these gorges. The bottom of the other
gorge will be put on ato-do lig of pending bottoms. When the top of agorge is reached (the
gorge isfull), the flooding algorithm checks the list for bottoms of unprocessed gorges. (Note
that a pending bottom added to the to-do list during a bridge operation can also be processed
as aresult of spilling around a hole, in which case it will not require further actions.)

Each vertex has pointers to its immediate right and left neighbours in a loop, plus an
additional jump pointer, initialized to null. The purpose of jump isto point directly to the
other bank of a previously filled gorge, that was momentarily put on hold to pursue aspill.

Flooding may be viewed asafinite-state automaton with only the following five transitions
(i.e., actions):

e Raise. Assume (without loss of generality) that NextLeft is below NextRight. If
NextLeft is above Left (the edge goes up and Left is not atop), we search the sorted
list of sagsfor the lowest sag above Left and Right and below NextLeft in that gorge. If
no such sag exists, one can triangulate a portion of the polygon by constructing interior
edges between NextLeft and the vertices of the active chain visible from NextLeft (cf.
fig. 2).
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Before a fill After a fill

Figure 3: Fill.

Before a bridge After a bridge
Figure 4: Bridge.

e Fill. If NextLeft and NextRight are the same, internal edges can be created from this
vertex to al non-adjacent verticesin theloop triangulating the remainder of the polygon
(figure 3). After afill, the Left and Right pointers are reset to the next non-processed
pending bottom.

e Bridge. If asag isfound during the above check, we create a bridge of two internal
edgesfrom the sagto the highest vertex in the active chain. After aBridge, thechainis
either split into two subchains, one of which remains active, while the other one remains
attached to a new pending bottom (cf fig. 4).

e Spill. If Left (respectively Right) isatop, and has anull jump pointer), we setitsjump
pointer to Right (respectively Left) on the opposite bank of the gorge for when we are
done filling the adjacent gorge, and then follow the chain towards the left (respectively
right), searching for the next bottom not matched by a sag encountered along the search
path. This new bottom becomes the start of a new gorge-flooding process (it becomes
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Before a spill After a spill

Figure 5: Spill.

Before ajump After ajump
Figure 6: Jump.

the Left and the Righ of anew active chain, see figure 5). The requirement for skipping
as many bottoms as sags encountered during the search guarantees that we will not
attempt to back-track a spill, which would create an infinite loop.

e Jump. If the Left (respectively Right) pointer is atop, and its jump pointer is not

null, we jump to the other bank (i.e., reset it to the value in the jump pointer), as seen
on figure 6.

The entire flooding process is illustrated in figures 7 and 8, which show one example of
triangulation, at several important intermediate steps of the algorithm (figure 7), with dl
triangles numbered according to the order in which they have been flooded (in figure 8).
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Figure 7: Intermediate steps. Each figure shows the result of a series of actions, followed by numbers
indicating which triangles have been created and removed: (1) Raise 0-7, Spill; (2) Raise 8-12, Jump;
(3) Raise 13-18, Bridge, Raise 19-26, Spill, Raise 27-30, Jump. (4) Raise 31-33, Fill. Raise 34-41,
Bridge; (5) Raise 42-45, Jump; (6) Bridge, Raise 46-52, Spill, Raise 53-62, Jump, Raise 63-64, Fill.
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Figure 8: Flooding triangulation example. The numbers indicate the order in which triangles have
been removed.

5 Implementation details

The control mechanism for our finite-state implementation of the method is based on the deci-
sion tree summarized in figure 9. In order to control numerical stability and handle degenerate
cases, the number of geometric routines has been kept at a minimum. Our implementation
consists of just three geometric predicates, called convex, below and inside.

Convex. A predicate convex(p1, p2, ps) is used to decide whether vertex p, between p, and
ps isconvex. Given the orientation of p;, ps and ps in their loop, this solves the question
whether triangle (p1,p2,p3) liesinside or outside the polygon.

Below. A predicate below(p;, pz) is used to compare the heights of a pair of vertices, with
the convention that vertices with equal height use the other coordinate for comparison (this
defines a lexicographic ordering of vertices, based on both their X and Y coordinates in the
plane; we can till represent this ordering as a height if we give an imaginary tilt on dl
horizontal lines).
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Inside. A predicate inside(S,A,B) isneeded to determine whether agiven vertex S (asag)
lies inside the quadrangle formed by the Left and Right pointers and their fingers NextL eft
and NextRight (fig. 4). This is obviously a sufficient condition for a sag Sto be inside the
active gorge. For sagswhose heights have been bracketed between the current water level L,
and the next water level L, , this will be a necessary condition also.

SAG in ACTIVE GORGE ?

0 AN, T

A iy

Figure 9: Decision tree for flooding actions. Next is the lowest of NextLeft (NL) and NextRight
(NR); C isthe corresponding left or right end of chain (Left or Right).
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6 Correctness of the algorithm.

Although aformal proof of our algorithm is difficult, we can nevertheless show that if the
polygon isvalid, then (@) the algorithm produces avalid set of triangles, and (b) the resulting
triangulation covers the input polygon completely. In order to prove (a), we first remark
that all vertices between the Left and Right pointers (if any) are concave. Only the Left and
Right ends of the active chain can ever be convex, which is why we claim that our algorithm
generalizes Garey et a. [5]. As a result, the local configuration in the active chain is always
similar to a monotonic polygon, which we can triangulate correctly aslong as no other edges
are contained in it. Because we detect sags, this can never happen, and al triangles are
therefore valid. Secondly, as we triangulate a polygon, we update the boundary of the non-
triangulated region, by chopping offtriangles as we progress. We now must explain how this
process eventually leads to a set of empty regions, and thus prove (b). Intuitively, the reason
is that there is only one way of closing the active chain, which is to go through all vertices
in the initial bottom’ doop. It isthen easy to prove that when this happens, the remaining
region enclosed will be completely triangulated by the final fill. If the initial bottom’ doop
IS monotonic, i.e. without tops nor enclosed sags, this intuition is easily proved, as in [5].
If the loop encloses sags, but has no tops, it will be divided into several components, each
of them monotonic, and therefore each of them completely triangulated. The more difficult
case comes with tops and spilling. The active chain is temporarily disrupted after a spill,
but this is necessarily followed by a corresponding jump from the opposite direction, because
each top has exactly two different banks. Although this is quite difficult to prove formally, it
intuitively showsthat the disrupted chain is alwaysrestored, and therefore no vertices are | eft
behind (see [8]for more detail). As aconseguence, flooding will produce avalid triangulation
when loops are valid. When this is not the case, our finite-state machine implementation
provides at least to direct waysto track down errors and degeneracies: forbidden transitions
and forbidden states (see fig. 10).

monotonic ceiling sag top bottom
monotonic R,B,F X X X R,B/F
ceiling X X X X X
sag X X X X X
top S,J X X X S,J
bottom R,B,F X X SJ RBJF

Figure 10: Vertex combinations and states. States are raise (R),fill (F), bridge (B), spill (S),jump
(J) and forbidden (X).

Because of its finite state implementation, our algorithm either ends successfully or an
error is detected (forbidden state or transition). As an example, consider invalid polygons
represented in fig. 11. In 11-A, the Right and Left pointers are identical, and classified as a
sag because the polygon intersectsitself. In 11-B, the Left pointer is classified as a ceiling,
not asatop, so that spilling should not occur, and an error is detected for the same reason.
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A B

Figure 11: Invalid polygons and error detection. A,B:Invalid polygons.

In practice, we triangulate both the polygon and its complement, for verification purposes.
We leave as an open conjecture that this detects al invalid or degenerate polygons.

7 Complexity analysis

Let us first describe worst-case costs for al relevant steps of the algorithm. Identifying
bottoms and sags requires two below and one convex predicates to be evaluated. This is
therefore linear in the total number N of vertices. Sorting sags can be donein Slog(S) time,
where Sis the number of sags. Finding the next sag islinear in the number of sags, because
sagsare sorted. For each gorge, the worst case iswhen al sags between the current and next
water levels have to be tested, and they are dl outside. The insidetest isthen performed a
maximum number of SG times in al, where G is the number of gorges. As a conclusion,
the asymptotic behaviour of the flooding algorithm can be predicted to be O(N)+O(SG),
therefore O(N?) in the worst case.

In practice, we have observed almsost-linear behaviour in many different cases, and an
actual worst-case complexity of O(Nz). We base this clam on a series of experiments,
described in [8],in which we fitted a log-linear model to the running times T vs. number
of vertices N, in a variety of practical cases, i.e. T = k N4 where A is the exponent. Our
findings are that the exponent varies between 0.9 and 1.4 in al cases (see [8]) . It should aso
be noted that the connectivity type (number of holes) does not in itself add to the complexity,
because holes are taken into account naturally (assags) in our framework.

8 Conclusion

We have presented an algorithm for triangulation of a general class of multiply connected
polygons, and described a compact implementation of it as a finite state machine. The
implementation is remarkably robust because numerical errors generate impossible transitions,
which can be checked and reported at no cost. The asymptotic behaviour of our approach
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depends on the relative number of monotonic and special vertices (sags, tops, ceilings and
bottoms). If the proportion of special vertices decreases with the total size of the polygon, as
is usually the case in practical situations (smooth, faceted surfaces, manufactured objects),
the mett;od becomes linear in the total number of vertices. On average, it has been found to
be O(N?2), although its theoretical worst-case behaviour can be predicted to be O(N?). One
limitation in our approach is that self-intersecting polygons can only be reported as invalid
input, but not triangulated. On the other hand, within the class of non-intersecting polygons,
we are able to deal efficiently with an arbitrary number of holes, in avery natural way.
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Abstract

We propose a new algorithm for automatically computing approximations of a given
polyhedral object at different levels of details. The application for this algorithm is the
display of very complex scenes. where many objects are seen with a range of varying
levels of detail. Our approach is similar to the region-merging method used for image
segmentation. We iteratively collapse edges, based on a measure of the geometric deviation
from the initial shape. When edges are merged in the right order, this strategy produces
a continuum of valid approximations of the original object, which can be used for faster
rendering at vastly different scales.

Keywords: Visualisation, Polyhedral Surfaces, Levels of Detail, Region Merging.

1 Introduction

This paper describes a new method for automatically generating several levels of details of
a polyhedral object, whose faces have been triangulated [9]. Our method is applicable to
architectural walk-through, assembly mock-up: virtual reality, medical simulation, planning
and monitoring. The difficulty in those applications is that a wide range of viewing conditions
must be accommodated, so that 'the available levels-of-details should span several orders of
magnitude [5, 12].

There are two sides to all simplification methods. On one side, it is desirable to be able
to simply iterate the process until a desired level of detail is reached (in terms of the number
of elements in the approximation): without having to guess for global parameters. Thus,
incremental methods remove triangles from a 3D object, based on a measure of how much the
shape changes locally in each move [15, 13. 16, 14]. On the other side, global control of the
simplification error is also useful, and has been emphasized by recent authors [8, 2, 7, 6, 4].

Our method takes an intermediate view of the problem. It is based on local, incremental
operations, but keeps track of the initial object, by tracing a history of all vertex moves. As a
result, we can control approximation levels by prescribing geometric tolerances. and still get
the benefits of working incrementally.

The previous work of Rossignac and Borrel [11]is based on space-partionning and cluster-
ing techniques in 3D space. By allowing topological changes. that method yield much higher
compression ratios than most other previous work, at an extremely low computational cost.

1Current address: Institut National de I'Audiovisuel. 4.ave. de I'Europe. 94 366 Bry-sur-Marne, France.
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Figure 1. Surface of a human face. extracted from MR image data, with three levels of simplification.
and the number of triangles for each level.

but with too little control over the quality of the approximation. In our new method, ver-
tices are merged in a much more controlled way. based on a step by step evaluation of the
approximation error.

The multiresolution approach advocated by Eck et al. [3]gives a suitable theoretical
framework to surface simplificationbased on wavelets but it is not yet clear that it is practical.
because it cannot deal with surface discontinuities or topological simplifications.

The paper is organized as follows. First, we present a general overview of the algorithm
in section 2. Then, we discuss our definition of the approximation error, in section 3. Im-
plementation issues are discussed in section 4. with a focus on data structures and topology
issues. We end with a discussion of results and performance analysis.

2 Algorithmic foundations of the method.

Our method is based on a merging algorithm, which removes edges one at a time from a
polyhedral object. Each edge removal is applied by moving the first, vertex into the second
vertex of the edge, as shown in fig. 3. We view this operation as a region. merge. because
all triangles around the merged vertices are modified. We associate a cost with each merge,
which can be precomputed and stored for all edges. The cost function itself will be described
in section 3. We also maintain the topological links between vertices, edges and triangles
throughout the simplification process. As a general overview, we can outline our method as
follows:

Pre-processing. Build the topology of the object, and compute the costs associated with
all edges. Insert edges into a priority queue: so the the edge with the lowest, cost is readily
available at all times.

Iteration. Merge edges one at a time, by moving their first vertex at the location of the
second vertex, ant3 update the topological data structure accordingly.

Relaxation. After each merge, update the geometric location of the remaining vertex, based
on its new neighborhood. Update the values of the cost function for all edges that have been
affected. and update the priority queue accordingly.
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Topology reconstruction. When the number of vertices, or the total approximation error.
reach pre-specified levels. intermediate approximations of the object are extracted. and the
whole process can be iterated until the full range of approximation levels have been obtained.

A B

Figure 2. Star and crown of a vertex. A: Edges and faces touching a vertex are its star. B: Edges
bounding the star of a vertex are its crown.

Figure 3. Merging vertices and their stars: A: Initial configuration around edge. B: Final configuration
around collapsed vertex.

3 Geometric foundations of the method.

Local tesselation error.

We call the region composed of all edges and triangles around a given vertex its star. By
definition, the neighborhood of a vertex is composed of edges and triangles in its star, as
depicted in fig. 2. In the same figure, the crown of a vertex is introduced, consisting of the
boundary of its star (i.e. the set of edges adjacent to but not part of. its star.).

Our single topological operation for simplifying polyhedral shapes consists in merging the
stars of two adjacent, vertices. Fig. 3 shows atypical example of the region-merging operator,
where one vertex Vi is merged into another vertex Va.

We evaluate the cost, of merging vertices, with the maximum of two functions of those
vertices, LGE and LTE. The local geometric error LGE is the variation of a geometric error
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G during the merge (ameasure of the distance between the initial arid approximated shapes).
The local tesselation error LTE is a penalty function, used to keep the triangular mesh valid
and smooth. With reference to fig. 3, the merge involves deleting vertex V. edges V1Va2. V1V5
and V1Vig. as well triangles ViVaVs and V1 VaVig. Four more triangles are modified. and a
cost LTE is associated with the amount, of rotation undergone by their normal vectors. In
addition, vertex V1 moves at a distance ||V Va{l from its previous location. thus increasing the
global geometric error in the approximation by an amount LGE.

Figure 4: Enforcing validity constraints on a triangular mesh. A: Initial configuration. B: 17 — 15 s
an authorized move: all triangle normals keep their orientation. C: 37 = 15 is a forbidden move: one
triangle (V7 1 15 Yhias reversed its orientation.

A triangular mesh defined on a plane or a surface is a valid tesselation when no edges
intersect. and no triangles overlap on that plane or surface. In our case, the surface is not
explicitly given, but the validity of the mesh can still be approximately evaluated, if we assume
that the initial shape is a valid mesh. When we merge vertices, we deform triangles in their
star. For each triangle V;,V;, V. the deformation can be represented by the rotation of the
normal vector to the plane of the triangle. and measured with just one angle A;;x between 0
and .

The validity and the quality of the mesh are violated when a triangle reverses its orien-
tation. i.e. when it turns around the surface of the object with an angle equal to =. In the
planar case. an example of this situtation is given in fig. 4. To prevent such cases, and to
keep the mesh as balanced and smooth as possible, we impose the penalty function:

LTE(Vi.Va) = K A
(V1. V2) i,j.k€star(vr'1n)?§k$star(%) ik

With a large coefficient K , this function can be used to prevent flipping triangles tangent to
the surface of the object,.if we use a data structure allowing us to pre-compute LTE (without
merging). Color plates 7 and 8*show the mesh at different, stages of the simplification process,
on two simple examples.

Local geometric error.

We have devised a novel geometric error function, based on the distance of vertices as they
move perpendicular to the surface of the initial object,. We use this geometric error as a cost
function in combination with the penalty function, which puts constraints on how vertices
move tangent to the surface. As a result! all vertices that have been merged with costs
inferior to a given tolerance remain within this tolerance of the original shape (see [10]).

* See page C-462 for figures 7 and 8.
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Figure 5: Special cases for simplification. The shaded regions materialize zones with zero, one or two
degrees of freedom around vertex 13 . A: Merge almost coplanar vertices, two degrees of freedom. B:
Merge vertices aligned on a sharp edge. one degree of freedom. C: Merge vertices into a sharp corner,
zero degree of freedom.

Intuitively, the different, ways of merging vertices without changing the shape of the object
are (a) to merge vertices whose regions are entirely co-planar: (b)to merge vertices along
prominent edges. where the dihedral angle is greatest: (c) to merge vertices into prominent
corners (see fig. 5). In order to deal with those three cases simultaneously. we measure
the deviation of the merged vertices from their tangent planes, i.e. a finite set of planes
around each vertex. We start with a simple observation: in the original object,. every vertex
is a solution of a linear system of equations, obtained with the plane equations for all the
triangles in its star. Let us write this system, with 7. denoting any such plane:

(Vi) = apx; + bryi + cpzi +dp = 0

If we move a vertex V; to an arbitrary new position (X.y.z) we can associate costs Cj
proportional to the distances from those planes to the new position, i.e. Cp = mr(z,y, 2).

As a generalization, we associate an arbitrary set of planes, called its zone, to each vertex
in the object. Initially, those planes are picked from the star of the vertex. with a total cost
of zero. If we now move one vertex, there will be a corresponding deviation 7 (V;) for each
plane in its zone. If we merge vertices, we will also update their zones.

In order to maintain a constraint such as w%(Vi) < ¢, we need to confine the vertex V; in a
slab around plane 7. In order to maintain all the constraints in its zone, the vertex must be
confined in a region which is the intersection of all the slabs in the zone. The exact shape of
this region depends on the neighborhood of the vertex to be merged. There are three possible
cases. In the case of a planar neighborhood, the region is just a single slab with an infinite
extentbecause there is only one equation (see fig. 5-A). In the case of fig. 5-B, the region
is an infinite tube around a sharp edge, because there are only two different equations in the
zone. In most other cases, however, the vertex is really confined in a finite region, because
three or more equations are in its zone. This is the case of the corner in fig. 5-C.

We define the geometric error function G around a vertex V; asthe maximum distance
from V; to planes in the zone of V; . When vertex V; is merged into vertex V. . the new region
inherits plane equations from the zones of the two merged vertices. The local geometric error
LGE is the variation of the error, therefore G/*" = max {G*f°'¢, LGE(V}.V5)} . Because
we merge vertices by rank of increasing geometric errors: the maximum error after the merge
is necessarily one of the new constraints in zone(Vy). Therefore, an equivalent definition for
LGE is simply:
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LGE(V,V3) = max ’/T?(V_Q)
j€zone(Vi)

In other words. LGE is the largest new constraint associated with the vertex being merged.
Note that we always choose the final vertex position to be V5 itself, i.e. we only use existing
vertices at this point. Using a combination of LGE and LTE as a cost function. we can merge
edges with increasing costs, first,in the smoother regions of the object,.then along sharp edges.
and finally into corners in the object (see examples showing the triangular mesh in fig. 7 and
fig. 8 in the color plates).

4 Implementation details.

Vertex-based data structure.

We have devised a vertex-based data structure with easy access to edges around a local center.
enabling us to compute the local cost functions as efficiently as possible. The local tesselation
error LTE involves edges in the crown of a vertex. The local geometric error LGE involves
edges in its star, as well as equations in its zone.

We therefore represent each vertex as a triplet: its star, its crown and its zone. The
star contains a list of edges incident to the vertex. which means that we maintain a complete
representation of the graph of vertices and edges. In addition, the crown specifies an imbedding
of that graph on a particular surface: each edge in the crown corresponds to one triangle on
the surface. The zone contains the history of the approximation, and relates its vertices to
their ancestors in the original object. The construction of this dynamic data structure is quite
straight-forward. and is described in much more detail in our researach report [10].

Edge ordering based on local errors.

In order to merge edges with increasing costs in the right order. we maintain an auxillary data
structure, in the form of a heap of directed edges. We associate a priority to each directed
edge, which is just the opposite of its cost function. We use the heap as a priority queue,
such that (a) the first element in the queue always has the highest priority, and (b) we can
efficiently remove and update edges when their priority changes. The heap is a particularly
efficient implementation of the priority queue, as a balanced. partially ordered tree [1]. The
heap is easily updated when an edge priority changes. by bubblingup (if the priority increases)
or down (if the priority decreases). The heap is initialized by reading the triangulation data
sequentially. Its elements are updated as we merge edges, as we will now explain in more
details.

In each move, we update the local of the dynamic graph structure around the merged
vertex, as well as the heap, and the position (coordinates) of the merged vertex. The heap
updating operations consist in removing some edges (two opposite directed edges at a time),
and reordering the heap based on new priorities, for those edges that have been modified
but not deleted. Edges pointing from V5 must be recomputed, because of the additional
constraints inherited from Vi . Edges pointing toward V> need only be recomputed if we also
update the position of V5 at.this point.

Relaxation.

After each merge, it is possible to optimize the coordinates of the central vertex. based on the
(fixed) coordinates of its new neighbors. The general idea is to minimize an energy function
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that will make the triangular mesh as smooth and balanced as possible, while keeping the
geometric errors as small as possible.

An interesting choice for the relaxation energy is taken directly from the geometric error
function. except that we now use the sum of errors. rather than the maximum error. i.e.

Egr(Vo) = Y (1A)
JjEzone(V1)

Deforming the object locally by moving V-, into its minimum local error, enhances the
method at all scales. We must acknowledge that, a more elegant solution would incorporate
that optimization into the estimate of the merging costs. i.e. we should use Er as our local
geometric error, and the optimized value of V5 in our cost function. But, this would be terribly
inefficient. and we prefer to apply those two steps separately. As a heuristic, we have found
that the two cost functions worked together quite nicely. because the optimized value for
V> was never very far from its initial position. and the prediction used for LTE and LGE
remained correct.

Local topology changes.

Collapsing an edge (V;,V>) can change the topology of the object. For instance. a through-
hole may become filled-up (in topological terms, handles may be removed. e.g. a torus may
be transformed into a sphere). Vertices sharing an edge with both V7 and V5 play a very
important role in this step of our algorithm. Their number characterizes the local topological
structure of the object, (zero at a wireframe edge. one at the border of an open surface,
two inside a closed surface, three or more on a surface with self-intersections). Our vertex-
based data structure allows all those cases to be represented: which is a key to changing
the topological genus of the shape, i.e. removing holes, handles, and separating components
[2, 7, 6]. Our dynamic data structure can tolerate such changes, because it is based on
vertices, and vertices can be incident to arbitrary numbers of edges and triangles. In many
cases, topological simplification is in fact acceptable, and we have used it to achieve the higher
compression ratios in most of the examples shown here.

While we are able to correctly reconstruct approximations in presence of topological
changes, we do not know how to re-organize constraints. For instance, if several compo-
nents are separated, which constraints should be associated wth each component,? In those
cases. an appropriate enhancement of our method would consist in resolving the new struc-
ture, so that the constraints for each of several new components could be separated, and the
constraints which came from filled-up holes could be eliminated. This appears to be a diffi-
cult issue in general, and is not a part of our current implementation. As a result, we keep
too many constraints in those cases, and the approximation process artificially slows down in
those regions.

5 Results and comments.

As an input, the algorithm is given a number L of levels and a geometric tolerance for each
level ( €1, €2....,er ). Each tolerance can be expressed as a percentage of the object size. or
as a multiple of the initial costs found during the pre-computing step. As an alternative, the
numbers of triangles in each level may be pre-specified ( Ny =Ns, ... , N ).

A typical example is shown fig. 6 (top). with a maximum compression ratio of 1:80,leading
to just under a hundred triangles. Subtle topological changes occur between the second and
third approximation levels; holes disappear, antennas retract. eventually leading to the almost
minimal representation of the fourth level of the figure.
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Figure 6: Top: Power brake assembly. Middle: Radiation iso-dose surface. Bottom: Skull sur-
face extracted from X-ray scanner image data. Three levels of approximation for each example, and
corresponding numbers of triangles.

We also show results obtained with iso-surface data (courtesy of G. Turk [15]) in fig.
6 (middle). Our results are comparable to previously published work, only with a much
wider range of approximation levels. Examples in fig. 1and 6 (bottom) are applications of
our method to medical data. Iso-surface extraction methods of that sort typically generate
results with hundreds of thousands of polygons, and efficient data reduction methods are
therefore particularly important for dynamic simulations. surgery planning,and other related
applications. Although our approach is heuristically based on only a partial measure of the
approximation error. we are able to control the tolerances at each level. so that no vertices
move further away from their initial configuration than 0.1. 0.5 and 1.0 per cent of the image
size. As can be seen in fig. 6 (bottom), very good approximations can be obtained at
intermediate compression ratios (1:10 to 1:20), while much coarser approximation result at
further stages. The initial shapes were extracted from MR and CAT-scan data as iso-surfaces
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(courtesy of A. Guéziec).

We estimate that the complexity of the method is Ny log? T\i for bringing the number of

vertices down from Ng to Ny, triangles. In our analysis. we consider the heap operations, which
are approximately logarithmic, and the tests on all the equations in the vertex zones. Because
equations are inherited. their number is constant thoughout the simplification process. hence
the result. In practice, the computing times for all examples run from a few seconds to several
minutes on aworkstation.

6 Conclusion.

We have presented a new method for simplifying three-dimensional shapes, based on an par-
ticular measure of the approximation error, that we derive from simple plane equations. Our
approach allows us to reach very high compression ratios in a variety of cases, while keep-
ing the general appearance of the original shapes. It has been noted by other researchers
that an important part of obtaining minimal approximations of shapes was the elimination of
small features. No previous method has addressed that issue successfully. Our method shows
that feature elimination can be achieved. partly at least: with purely geometric reasonning
(i.e., without any detection or even understanding of the eliminated features), if we allow the
topology ofthe shape to be modified.
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Short Papers

Implicit Simplicial Models for Adaptive
Curve Reconstruction

Gabriel Taubin and Remi Ronfard

Abstract—Parametric deformable models have been extensively and
very successfully used for reconstructing free-form curves and
surfaces, and for tracking nonrigid deformations, but they require
previous knowledge of the topological type of the data, and good initial
curve or surface estimates. With deformable models, it is also
computationally expensive to check for and to prevent self-
intersections while tracking deformations. The Implicit Simplicial
Models that we introduce in this paper are implicit curves and surfaces
defined by piece-wise linear functions. This representation allows for
local deformations, control of the topological type, and prevention of
self-intersections during deformations. As a first application, we also
describe in this paper an algorithm for two-dimensional curve
reconstruction from unorganized sets of data points. The topology, the
number of connected components, and the geometry of the data are
all estimated using an adaptive space subdivision approach. The main
four components of the algorithm are topology estimation, curve fitting,
adaptive space subdivision, and mesh relaxation.

Index Terms—Curve fitting, topology estimation, shape recovery,
geometric modeling.

+

1 INTRODUCTION

THE reconstruction of curves and surfaces from unorganized sets
of data points is an important problem in computer vision. Curves
and surfaces can be represented parametrically or implicitly, and
depending on the final application, one representation is more
suitable than the other. Since parametric curves and surfaces, such
as splines [1], allow for a high degree of local control, they are
very good for modeling free-form objects, but the topological type
of these curves and surfaces is determined by the topology of the
domain, and it is difficult to check for, and to prevent self-
intersections. The now popular deformable models [4], [6], [13]
are all parametric. There has been some recent work on recon-
structing surfaces of unknown topology [3], [8], but no new repre-
sentation is introduced to control the topology and to prevent self-
intersections during deformations.

Arbitrary topology can be achieved with implicit curves and
surfaces. The Implicit Simplicial Models that we introduce in this
paper are polygonal curves and polyhedral surfaces not repre-
sented as lists of vertices and planar faces, but defined implicitly
by piece-wise linear functions. This representation allows for local
deformations, control of the topological type, and prevention of
self-intersections during deformations. A piece-wise linear func-
tion is determined by a simplicial tessellation of its domain, and
by the values of the function at the vertices of the mesh. The func-
tion is linear in each one of the domain cells. The usual represen-
tation of a polygonal curve or polyhedral surface as a list of verti-
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ces and a list of flat faces can be recovered in time proportional to
the number of faces. Irregular meshes allow for adaptive recon-
struction algorithms, and for hierarchies of curves and surface
approximations of different resolutions.

While the topology of an implicit simplicial model is deter-
mined by the combinatorial structure of the domain mesh, and by
the signs of the values of the piece-wise linear function at the ver-
tices of the mesh, the geometry is determined by the magnitudes of
the values of the piece-wise linear function at the vertices of the
mesh. Small scale constant topology deformations can be achieved
by changing the magnitudes of the implicit function at the vertices
of the mesh keeping the signs fixed. Large scale constant topology
deformations are obtained by also deforming the underlying mesh
without inverting the orientation of the cells.

“This paper builds upon previous work on algebraic curve and
surface fitting [9], [10], [11], [12], and some ideas from [7], where
an algorithm for adaptively reconstructing piece-wise algebraic
curves and surfaces defined on triangular and tetrahedral meshes
is described.

While the reconstruction algorithm is applied only to two-
dimensional curves here, the representation is valid in any di-
mension, and the general structure of the reconstruction algo-
rithm can be generalized to higher dimension as well. However,
since results were not available at the time this paper was writ-
ten, we will discuss how to extend the reconstruction algorithm
of this paper to surfaces, and how to track deformations, in fu-
ture reports.

2 IMPLICIT SIMPLICIAL CURVES

The data structure commonly used to represent a simplicial curve
is a pair of lists, a list of vertices, and a list of straight line seg-
ments. This representation is good for rendering the curve in time
proportional to the number of segments, but it is not very good for
checking for, least for imposing, topological or geometric con-
straints. Even if we start with a valid simplicial curve, deforma-
tions can introduce self-intersections, and there is no simple way
to check for them. A straightforward check for self-intersections
requires time proportional to the square of the number of seg-
ments. The main problem with this representation is that the con-
ditions for a set of line segments to define a valid simplicial curve
are global.

An implicit simplicial curve is the set of zeros of a piece-wise
linear function of two variables, which is defined by a planar tri-
angular mesh and the values of the function at the vertices of the
mesh. Thus, we will represent an implicit simplicial curve as a set

of three lists C = {V, T, F}. A list of vertices V = {vl, s Uy } , a list
of triangles T = {tl, s tnr}, and a list of function values at the

vertices of the mesh F = {Fl, s an}. Since we will also need

later on an explicit representation for the edges of the mesh, we
will write £ = {V, E, T} for the domain mesh, where

E= {el, e enE} is the list of edges. The piece-wise linear function

defining the implicit simplicial curve is

ny
f=>Fx=FX, 2.1)
i=1

t
where F is seen as a row vector, X = {x,, xnv} , and x; is the

unique piece-wise linear function subordinated to the mesh X

0162-8828/96$05.00 ©1996 IEEE
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which satisfies the following equation

wo)={o ¥ 135

(@) - (b) ()
Fig. 1. Singular cases. (a): function is zero at one vertex. (b): Func-
tion is zero on three edges. (c¢): Function is zero on two neighboring
triangles.

To prevent singular cases, such as those shown in Fig. 1, we
will constrain the values of the piece-wise linear function at the
vertices of the mesh to be non-zero. We will also require the do-
main mesh X to be positively oriented. A mesh X = {V, E, T} is
positively oriented if all the determinants

1 1 1
|V¢, =01 Y1 Ykal
iz Uiz Y2

associated with the triangles ¢ = {o; P v} of the mesh, are positive,

where v, ,, v, , are the coordinates of the vertex v; of the mesh. Note
that if the order of the vertices is interchanged in a ftriangle

t= {vj, v, v} thg sign of the determinant |V, | changes.

XS
VAVAN - FAVAN AV \VAN
\VAV/=\VAV) ¥ oY)
XN
VAV P> AV

\V

VA%
AN

(@) (b) (@
Fig. 2. Topology preserving deformations. (a): Original implicit sim-
plicial curve. (b): Deformed mesh with constant external boundary. {c}:
Invalid mesh deformation can produce self-intersections.

Topology preserving deformations of a simplicial implicit
curve are obtained automatically by deforming the domain mesh
maintaining its orientation, warping the space around the curve,
and eventually changing the magnitudes of the function values at
the vertices of the mesh, but not their signs. If a mesh is deformed
preserving its orientation, the outside boundary of the mesh might
change shape, but preserves its topology. In our reconstruction
algorithms we will impose a stronger constraint. We will keep the
. outside boundary of the mesh constant.

Once the mesh X is fixed, the fopology of an implicit simplicial
curve is fully determined by the signs of the piece-wise linear

function f at the vertices of the mesh, {crl, Y .

}, o;=sign (F) e
{~1, 1}, while the geometry of the curve is determined by the magni-
E N

tudes of the same function values {,P],, coor |By

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 3, MARCH 1996

3 AN ALGORITHM FOR CURVE RECONSTRUCTION

In this section we describe an algorithm to reconstruct an implicit .
simplicial curve from an unorganized set of points in the plane

D= {pl, ey pnn}. The only. assumption is that the data points

belong to, or are close to, a non-singular curve (without self-
intersections), and are roghly uniformly distributed along the
curve. The topology and the number of connected components are
unknown in advance, and estimated by the algorithm. The result
is a triangular mesh covering a neighborhood of the data set, and
a regular piece-wise linear function represented by its values at
the vertices of the mesh. Fig. 3 shows the global structure of the
algorithm, and Fig. 4 shows typical examples of curves recon-
structed with this algorithm. '

procedure FitImplicitSimplicial Curve
InitializeMesh
for level < 0 to max-level step 1 do
EstimateTopology
EstimateGeometry
if MaximumFittingError < e
return
else
AdaptivelySubdivideMesh
RelaxMesh -

Fig. 3. Globa! structure of the implicit simplicial curve reconstruction
algorithm.

N

(@) (b) (@)
Fig. 4. Multiply connected objects and simplicial curve reconstruction
of boundaries, using the algorithm of Section 3—(a): data set; (b):
reconstructed implicit simplicial curve; (c): details of a and b.

The algorithm follows a strict top-down approach, minimiziﬁg
the amount of storage required. A very simple mesh is used at the
beginning of the algorithm covering a region containing all the
data points. In our experiments, we have used triangulated
squares and regular hexagons as initial meshes, and in general, the
hexagonal geometries produce better results. However, the initial
mesh should be tailored to the application. Once a mesh is fixed,
an implicit simplicial curve subordinated to the current mesh is
reconstructed from the data by a least squares fitting algorithm, by
first estimating the topology, and then the geometry of the curve. .
After the curve fitting step, the maximum fitting error within each
triangle is measured. If all the triangles meet the prespecified tol-
erance, the algorithm finishes. Otherwise, the triangles where the
tolerance is not met, are subdivided, along with a few other that
are necessary to maintain a valid mesh. The mesh is then relaxed
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to prevent the vertices of the subdivided mesh to be too close to
the data, and to improve the aspect ratio of the triangles. This step
is essential for the success of the algorithm. Once this new mesh is
fixed, the loop is traversed again, until the tolerance test is satis-
fied by all triangles.

Now we proceed to describe in detail the main building
blocks of the curve reconstruction algorithm: implicit curve fit-
ting, topology estimation, testing, adaptive subdivision, and
mesh relaxation.

3.1 Implicit Curve Fitting

We formulate this step of the algorithm building upon previous
work on algebraic curve and surface fitting [9], [10], [11], [12].
Given a finite set of two dimensional data points
D= {pl, cos Pap }, we cast the problem of fitting an implicit curve

Z(f) = {p: f (p) = 0} to the data set D as globally minimizing the
mean square distance from the data points to the curve Z( f), as
a function of the vector of parameters F, the values of the piece-
wise linear function on the vertices of the mesh. For a piece-wise
linear function, the mean square distance has the following ex-
plicit expression

NGEDRS)

teT peby

ff(p)z =2”D, FtMtFtt
Vﬁ(p)"z & " ENE

where D, is the subset of data points that belong to the triangle t =

3.1

(v, v Vs np, is the number of points in D, f, (p) = F; x; (p) +
P}. X (p) + F x, (p) is the restriction of f (p) to the triangle t, F,= (F, F].,
F), X,=(x, X x),

1 £ _ i ¢
SR> S A Ll L
and DX, is the Jacobian of X,

In fact, since X, is a linear function, its Jacobian is constant, and

the matrix N, is only a function of the vertices of the triangle, and
not a function of the data points inside it.

3.2 Topology Estimation

In the absence of prior knowledge about the solution, it is difficult
to minimize (3.1), because the system to be solved becomes sin-
gular when a nodal value F; approaches zero. On the other hand,
if we can estimate the signs of the nodal values, i.e., the topology
of the solution, we can minimize (3.1) locally, with a program
such as LBFGS [5], which is designed for large unconstrained
nonlinear minimization.

The piece-wise linear function determined by the coefficients F,
constitutes an approximate inside-outside function for the data (up
to a global sign inversion). When an inside-outside function is
directly available from the data, the topology estimation step is
therefore not necessary. In all other cases, we can still estimate the
inside-outside function, with combinatorial optimization methods.
We do this by independently fitting straight lines in all non-empty
triangles, and counting sign changes. More specifically, for each
triangle f = {vi, v}., v}, i.e,, such that the set D, is not empty, we fita

straight line to the data set D, in the least squares sense by mini-
mizing the local mean square error

LML,

LtNiLti '

where M, and N, are the matrices of (3.2), obtaining its mini-

mum value, the local error of fit €, and its minimizer L,= (L, ,, L, ].,

L, ). This is done for each triangle independently of the data in
other triangles. This can be done in closed form and involves
solving a 2 x 2 eigenvalue problem. In general, the three compo-

nents of L, are nonzero. Let us denote by o, , o, 7 Ok the signs of

LyLLyie, 0,isequal to1or-1 depending on whether L,
is positive or negative.

A good estimate for the signs of the global coefficients F; can
then be obtained by minimizing a sum over all triangles:

Ay(F) =

2>

T teT,f:{v,-,v]- ,vk}

‘max ~ €min

€ . —€ (3.3)
(Ut,i"t,jFin +0,,0,,FF + o-t,jo't,kpjpk)[?w_t)

constraining the function values at the vertices of the mesh to be
either -1 or1

E,.., F, e{-11}. (3.4)

Expression (3.3) involves a measure of the goodness-of-fit for

each triangle, where ¢, = max{etl, e }, and a similar defi-
iT

nition for e, . Thus, the global coefficients F; change signs only
when there is enough evidence from the local fits in their neigh-
borhood. Of course, we also have to define a goodness of fit and a
fitting vector L, for each empty triangle, because otherwise the
problem could be underconstrained. For an empty triangle t we

set L, = {1, 1, 1} with a high confidence value ¢, = €ompyy BY TE-
arranging terms, we obtain
A,(F) = Y HEF, (35)

eeE

with the sum ranging over all the edges ¢ = {v, v].} of the triangu-
lation. The edge weight H, corresponding to the edge e={vi,v].} is
easily obtained from (3.3)

€ _—¢
_— max +
H, = z al‘ial,j[———ﬁ < )
max:

teet ax ™ €min

(3.6)

with the sum extended over all the triangles that contain e as an
edge, The minimization of the quadratic expression (3.5) in {-1, 1}
is exactly the Ising model, for which simulated annealing schemes
are well documented. We have found that simulated annealing
based on (3.5) gives good results. This approximation is also
faster, and more robust, than the more obvious choice of using
(3.1) directly at this stage. Some results of the topology estimation
step are presented in Figs. 5 and 6.

d

Fig. 5. Example of topology estimation step.
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3.3 Testing

Testing the quality of the fit is necessary to determine when the
algorithm should stop, and otherwise, which triangles need to be
subdivided. After the minimization of (3.1) for the current mesh,
for each triangle t we compute
2
S, = maxi(p—)——
peby

el

If 6 > 6 we mark the triangle for subdivision. If no triangle is
marked, the algorithm stops. Otherwise we continue. In practice,
this test is generally sufficient, although problems occur when the
number of data points inside a triangle becomes too small, usually
around high curvature regions, or in cases of sparse or very noisy
data points.

oy AN
| g

Fig. 6. Exampie of topology estimation step.

3.4 Adaptive Subdivision

At this point we have a valid triangular mesh with some triangles
marked for subdivision. It turns out that to maintain a valid mesh,
other unmarked triangles may have to be subdivided as well. A
simple method to automate the process involves three steps [2],
[14]. In the first step the vertices of each triangle marked for sub-
division are marked. In the second step a new vertex is created at
the midpoint of each edge which has the two vertices marked. In
the third step, illustrated in Fig. 7, the triangles are subdivided
according to how many vertices are marked. A triangle with the
three vertices marked is subdivided into four triangles, a triangle
with two vertices marked is subdivided into two triangles, and
triangles with one or no marked vertices are not subdivided.

(@ - (b)
Fig. 7. Subdivision rules. Marked vertices are represented with a cir-

cle. (a): Mesh with some vertices marked. (b): Mesh a after subdivi-
sion.

3.5 Mesh Relaxation
Since the desired final result is a regular implicit simplicial curve,

we cannot allow the function to be close to zero at any vertex of
the triangulation. If a vertex is allowed to get close to the data
poinis, the function value at that vertex will tend to be small with
respect to the values a the other vertices, or even zero. Contrary to
what is done in other related algorithms based on triangular
meshes, where the mesh is relaxed by pulling the vertices close to
the data points [7], our mesh relaxation process pushes the vertices
away from the data. It is not only that we want the vertices to be far
away from the data, but we also want the data inside each triangle
to be well approximated by a straight line connecting the mid-
points of two edges. At least this is approximately what happens
when the algorithm stops, but we would like to try to impose this
condition at each level of subdivision. So, the data has to pull the
vertices away, but at the same time, for each triangle the distance
from the three vertices to the data must be as equal as possible.
Also, the mesh has to remain a valid mesh, and the triangles have
to remain as equilateral as possible, because otherwise, the local
nonlinear minimization algorithm gets plagued with all sort of
numerical problems. )

We have decided to base our mesh relaxation algorithm on an
energy minimization scheme, and instead of solving ordinary
differential equations, we perform an approximate minimization
based on gradient descent. o

The mesh energy U = &, U, + &; U, has two components, the
data energy Uy, and the edge energy Uy. The two constants x, and
K must be positive. In our current implementation #; = 0.25 and
K, =1.0. '

The data energy pushes the vertices as.far away and equidis-
tantly as possible from data points in each triangle. The edge en-
ergy pulls vertices together and tends to make equilateral trian-
gles, which regularizes the mesh relaxation process. In addition,
we constrain the boundary of the mesh to remain constant. This
can be achieved by fixing the boundary vertices in their initial
positions, and allowing the vertices laying on the boundary edges
to move only along the edges they belong to. All of this can be
done with linear constraints on some of the vertices. If a vertex v
of the mesh belongs to a boundary edge e, then v must satisfy the
linear equation of the line containing the edge C,(v) = 0. Since a
boundary vertex belongs to two non-parallel edges, making it
satisfy the two constraints is equivalent to keeping it fixed.

The data energy is defined as follows

Uy = 23 (o(0) - d(o,))

e€E -

(3.7)

with the inner sum extended over all the edges e = {v, vj}, and
where

¢(Ui) = = :

np t;et p;eD, W' (3.8) ‘

with the sum extended over all the triangles that contain v, as'a
vertex, and all the data points inside these triangles. The constant
p is the diameter of the mesh, and the reason to include the factor

p2 here is to make the data energy scale invariant. Scale invariance
is important only to be able to define the mesh energy as a linear
combination of the data energy and the edge energy, independ-
ently of the scale of the problem.

The edge energy is defined as follows

e ool

eeE

(3.9)

where e = {v, vl.}, and v,, ..., v, are positive constants defined as
p

follows. The degree of a vertex is the number of edges incident to
the vertex, or equivalently, the number of vertices connected to the
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former one through an edge of the triangulation. The mean degree
of a mesh is the mean value of the degrees of its vertices. In our

implementation we have defined the constant v, as the ratio of the
degree of the vertex v; over the mean degree of the mesh, but other
values provide similar results. For example, making v,= 1 for all i

is also a good choice. The factor p2 is included in the denominator
to make the edge energy scale invariant.

Special care should be taken in choosing the energy minimiza-
tion algorithm, because since each time the vertices are moved, the
data set has to be repartitioned, evaluating the energy function is
potentially expensive. In principle, after a mesh deformation each
point must be tested against each triangle for membership, but for
small deformations each data point most likely will remain in the
same triangle, or will move to one of the three neighbors.

4 CONCLUSIONS

We have introduced implicit simplicial models as a new repre-
sentation for piece-wise linear curves and surfaces. We have
shown that this new representation allows for a complete and
efficient control of the topology of the curve or surface, and has
most of the good properties of more traditional deformable mod-
els, and algebraic curves and surfaces. Implicit simplicial models
can be used to model free-form curves and surfaces, but at the
same time they provide an inside-outside function defined in a
large neighborhood of the curve or surface. This inside-outside
function can be constructed as an approximation to the distance
from an arbitrary point to the curve or surface. At the same time,
implicit simplicial curves and surfaces have explicit local
parameterizations, which are good for other purposes. As a first
application, we have described a two dimensional curve recon-
struction algorithm from unorganized data sets which can be ex-
tended with almost no modification to an algorithm for surface
reconstruction. We believe that a number of graphics and vision
problems can be solved either more robustly, more generally, or
both using implicial simplicial models, as for example surface
reconstruction, tracking of surface deformations and adaptive
isosurface construction, to mention just a few applications that we
intend to demonstrate in future reports.
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Abstract

We present a variational framework for rapid shape pro-
totyping. The modeled shape is represented as a Catmull-
Clark multiresolution subdivision surface which is interac-
tively deformed by direct user input. Free-formdesign goals
areformulated as constraints on the shape and the modeling
problemis cast into a constrained optimization one. The fo-
cus of this paper is on handling multiresolution constraints
of different kinds and on preserving surface detailsthrough-
out the deformation process. Our approach eliminates the
need for an explicit decomposition of the input model into
frequency bands and the overhead associated with saving
and restoring high-frequency detail after global shapefair-
ing. Instead, we define a deformation vector field over the
model and we optimize its energy. Surface details are con-
sidered as part of the rest shape and are preserved during
free-form model editing. We explore approximating the so-
lution of the optimization problemto various degreesto bal-
ancetrade-offsbetween interactivity and accuracy of there-
sults.

1. Introduction

A common design paradigm is to allow designers to in-
teractively deform an initial geometric shape to obtain a
new one that satisfies certain requirements. The require-
ments are typically formulated as a set of constraints and
the underlying geometric representation is modified to meet
these constraints (see Figure 1). In general, the desired re-
sult is the one that has the most pleasing or fairest over-
all shape among all solutions that satisfy the constraints.

A commonly used procedure to attain this result is to op-
timize a fairness measure representing physical parameters
of a real object bearing the shape. A standard such mea-
sure [26] is the linear combination of the so-called stretch
and bend energies:

E=af|[2ds+ 6 |[IPdS (1)

where [ and I are the first and second fundamental forms
of the surface S and ||.|| is a suitably chosen matrix norm.

It is often the case, however, that the input model has
high-frequency geometric detail across multiple resolutions
which needs to be preserved during global deformations of
its shape. Fairing techniques like the one just described tend
to smooth out not only the global shape of the object, but the
high-frequency detail as well (see Figure 2).

To avoid this problem, multi-band decomposition
schemes have been proposed [13], in which a multireso-
lution modeling operation and the associated fairing step
are applied within one frequency band. Subsequently,
the higher frequency detail is reconstructed using a dis-
placement map. This implies computing and storing the
displacement map prior to editing and restoring it after-
wards. We opt for an alternative approach that avoids the
computation of the displacement map and the overhead as-
sociated with saving and restoring high-frequency informa-
tion by considering the deformations applied to the initial
shape as a vector field defined over the input model. In-
stead of optimizing the energy of the deformed shape,
we optimize the energy of the deformations and we ap-
ply the resulting smooth vector field to the original shape
to obtain the deformed one. Using this approach, the in-
put model becomes the rest shape to which the opti-
mization converges in the absence of constraints. In the
language of elastic body deformations, this is equiva-



Figure 1. Variational design with multiresolu-
tion constraints. (a) Input model. (b) Coarse-
scale edits affect the global shape. (c) Fine
scale edit with local effect (patch structure of
underlying surface representation is shown).
Red dots indicate constraints.

lent to considering the input shape as the natural state of
the model [26].

In this paper we describe the design and implementa-
tion of a variational modeler that allows interactive editing
of complex objects of arbitrary topology. We use Catmull-
Clark multiresolution subdivision surfaces as our underly-
ing representation and we take advantage of their hierarchi-
cal organization to allow editing with constraints at differ-
ent resolution levels.

The main contributions of our research are:

1. A variational approach that leads to a smooth shape
while preserving multiresolution details.

2. A framework for free-form design with constraints
which can be imposed at different levels of resolution.

3. An implementation setup in which a fast approximate
solution is computed at interactive rates during the de-
formation process. Solutions of increasing accuracy
may follow upon user request.

The work presented in this paper adds a new technique to
a growing set of surface modeling tools based on multires-
olution subdivision surfaces that have been proposed in re-

Figure 2. Free-form modeling with con-
straints. (a) Original model with multiresolu-
tion details. A point constraint at the tip of
the nose is used to deform the model. (b) The
model is deformed using thin-plate energy
minimization. Note the smoothing of the orig-
inal details (boundary constraints are neces-
sary to prevent the collapse of the model).
(c) Deformation with detail preservation (no
boundary constraints needed in this case).

cent years (e.g., boolean operations [1], engraving, emboss-
ing, trimming [3], cut-and-paste editing [2]).

The remaining sections of the paper are organized as fol-
lows: in section 2 we discuss related work, in section 3
we briefly review the underlying data representation and
we outline our approach; modeling with constraints is pre-
sented in section 4; results are discussed and illustrated in
section 5; section 6 concludes our paper.

2. Related Work

Variational design of surfaces has emerged as a power-
ful modeling paradigm. It entails finding a surface that sat-
isfies a number of constraints and minimizes a given con-
tinuous functional that represents the energy of the surface.
Expression (1) gives an example of a commonly used such
functional. In practice, discrete approximations of each of
its two terms are used.

Following the pioneering work of Duchon [6] and
Meinguet [19], many authors (e.g., [5, 12, 32, 11, 27]) ap-
proximate surface energy by one or a combination of the
following parameterization-dependent expressions:

aS\> [0S\’
EstTetch %/ <a_> + <_> dudv (2)
o \Ou v
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where €2 denotes the parametric domain of the surface S. In
our approach we also make use of these linearized forms
of the stretch and bend energies. We note that other ap-
proximations, generally more expensive to compute, have
also been proposed [20, 21, 8], as well as alternative en-
ergy functionals [16, 28]. Various types of constraints can
be imagined. We address here some of the most common
categories.

Constrained optimization Variational surfaces are often
modeled by specifying a set of constraints and solving for
the solution that minimizes the objective functional (1) or
an approximation thereof and satisfies the constraints.

Interpolating point constraints prescribe desired posi-
tions for points on the surface. This type of constraints are
considered by virtually all methods. In our approach we
translate point constraints into linear combinations of mesh
vertices and we perform energy minimization with linear
constraints.

Interpolating normal constraints prescribe desired nor-
mal vectors at given points on the surface. A common ap-
proach (see, for example, [11]) is to formulate the fact that
desired normal N at a point S(ug, vg) must be perpendicu-
lar to the vectors defined by the partial derivatives, i.e.:

Ng—i(uo,vo) = 0and Ng—f(uo,vo) =0
These expressions can also be translated into linear con-
straints on the mesh vertices. Alternatively, some authors
[15] enforce normal constraints by freezing all the vertices
of a planar mesh face. While more stable, this approach
tends to overly constrain the optimization problem.

Interpolating curve constraints prescribe desired posi-
tions at points along one or more curves on the surface.
Such constraints typically require the constraint curves to
be aligned with mesh edges or iso-parameter lines [27]. Us-
ing the re-parameterization idea of [3] we are able to avoid
this requirement and to allow for constraints to be imposed
along arbitrary curves.

Multiresolution We take advantage of our underlying hi-
erarchical surface representation to handle constraints in a
multiresolution fashion. An important issue to be addressed
is identifying the region of influence of a given constraint.
As observed in [22], the same constraint can be satisfied at a
coarse scale by the global rigid motion of the entire surface
or at a fine scale by the motion of an isolated surface point.
The designer’s intent usually lies somewhere in between.
Except for the work of Takahashi [24, 25], this problem has
received little attention in existing literature. Takahashi has
developed a wavelet-based framework that accommodates
linear constraints at multiple resolutions. His framework,
however, is limited to topological patches. Surfaces of arbi-
trary topological type are handled by "gluing” patches and
only simple examples are documented. In our work, we use

a similar approach in which we propagate constraints from
fine to coarse scales. However, we give the user explicit con-
trol over the region of influence of each constraint and we
rely on subdivision rules to perform constraint restriction in
a more straightforward fashion. Arbitrary topology is han-
dled automatically due to the nature of the surface represen-
tation we use.

Another relevant question is how to reconcile differ-
ent energy measures computed at different resolutions. In
[24, 25] they are combined into a weighted sum of energy
functions at multiple levels. This approach causes undesir-
able side-effects of constraints at coarse resolutions over
the shape at finer levels. A recursive scheme of solving the
shape level-by-level is used to avoid the interactions be-
tween constraints at different levels. Instead, we have cho-
sen to fix a target resolution level at which the energy is
minimized and to use the solutions at coarser resolutions as
approximations in a multigrid fashion.

Subdivision and variational design Halstead et al. [11,
10] were among the first to propose a variational model-
ing approach in the context of subdivision surfaces. An al-
ternative re-formulation using wavelets was introduced by
Gortler and Cohen [7]. Recent work by Warren, Weimer,
Kobbelt, and Schrioder [29, 30, 14, 15] emphasizes the rela-
tionship between variational methods and subdivision. Vari-
ational subdivision seeks to define subdivision rules that
produce a sequence of shapes that not only converges to
a limit shape that follows the initial control shape, but also
minimizes the energy functional associated with the limit
surface.

An appealing aspect of subdivision hierarchies which
we exploit for efficiency is that they naturally accommo-
date multigrid-type solvers [9]. The basic operations, i.e.,
restriction and prolongation can be easily formulated as
local masks. The restriction operator maps the data from
a fine level to a coarser level. When applying a deforma-
tion at the finer level, the main question to be addressed is
how project it onto coarser levels. The prolongation oper-
ator achieves the inverse mapping, from coarse to fine. We
apply the Catmull-Clark subdivision masks for this purpose,
in contrast with the approach suggested in [31] in which
special-purpose prolongation operators are devised.

3. Multiresolution Variational Design

We reformulate the optimization problem previously in-
troduced in a discrete multiresolution setting. To justify our
choices, we begin with an overview of the underlying rep-
resentation used. Basic concepts related to variational cal-
culus can be found in any standard textbook (e.g., [17]).



Figure 3. Natural parameterization of a subdi-
vision surface. Each time we apply the sub-
division rules to compute the finer control
mesh we also apply midpoint subdivision to
a copy of the initial control mesh. As we re-
peatedly subdivide, we get a mapping from a
denser and denser subset of the control poly-
hedron (left) to the control points of a finer
and finer control mesh (right). In the limit we
get a map from the control polyhedron to the
surface.

3.1. Multiresolution Subdivision Surfaces

The representation we use was introduced by several au-
thors in different forms [18, 23, 33]. Subdivision defines
a smooth surface recursively as the limit of a sequence of
meshes. Each finer mesh is obtained from a coarse mesh
by using a set of fixed refinement rules. In the work de-
scribed in this paper we use the Catmull-Clark rules [4].
Multiresolution subdivision extends the concept of subdi-
vision by allowing detail vectors to be introduced at each
level. Hence, a finer mesh is computed by adding detail off-
sets to the subdivided coarse mesh. Given a semi-regular
mesh, i.e., a mesh with subdivision connectivity, it can be
easily converted to a multiresolution surface by defining a
smoothing operation to compute a coarse level from a finer
level. The details are then computed as differences between
levels.

For our purposes, it is important to recognize that a mul-
tiresolution subdivision surface can be naturally interpreted
as a function on the domain defined by the base mesh (see
Figure 3). This interpretation is useful in many circum-
stances, including dealing with constraints along arbitrary
curves as described in section 4.

It is, however, a known fact that the first and second or-
der partial derivatives of the surface with respect to the nat-

ural parameterization diverge around extraordinary points.
Therefore, for the purpose of evaluating expressions (2)
we define a different parameterization as described in sec-
tion 3.3.

3.2. Problem Formulation

Let H = (M° M*',... ML~1) denote a multiresolu-
tion subdivision hierarchy with L levels such that the con-
trol mesh M! at each level [ is obtained from the coarser
mesh M1 by subdividing it and adding detail offsets. Let
Pl = {P!},i =0,---,N — 1 denote the vertices of M.
By applying quadrature formulas to discretize the integrals
in (2), we obtain a discrete formulation of the energy asso-
ciated with A/*:

E(M!) = E(P!) =
« Z Estretch(Pil) + ﬁ Z Ebend(Pil)) (3)

where
oM} (u,v) OM! (u,v)
1\ i ’ 2 i ) 2
Estretch(&) - H au || + H 61) ||
Ebend(Pil) =
|| aQle(u: ’U) H2 + 2” 82Mz’l(ua U) ||2 || aQle(u7 1)) H2
Ou? Oudv ov?

and M} (u,v) denotes the parameterization of M around
vertex P!
In the presence of constraints on subsets of the vertices
{ P!}, the constrained energy optimization problem for level
[ becomes:
E(PY) — min
flf;(Rilla"'vRilk) = C]lwk = 17"'aml

with C/. the target value of the k" constraint on level .. In
this paper we restrict our attention to cases in which the con-
straints f} are linear combinations of the vertices P}J_.

As mentioned in the previous section, instead of combin-
ing energies defined at different resolutions, we set as our
goal the minimization of the energy of the finest level mesh
E(PL=1). To efficiently handle the optimization problem
at this level, we use solutions from coarser levels as part of
a multigrid approach.

3.3. Local Parameterization

In section 3.1 we pointed out that the natural parameter-
ization induced by subdivision over the base control mesh
is not suitable for evaluating partial derivatives everywhere
on the surface. While feasible, finding a global parameteri-
zation that satisfies certain smoothness requirements is not
a simple task. Fortunately, for the purpose of the work pre-
sented here, local parameterizations that allow us to approx-
imate first and second order derivatives with divided differ-
ences are sufficient. We have opted for using local quadratic



polynomial interpolants as done in [15]. We briefly review
this approach next.

To compute divided differences in the vicinity of a vertex
P}, a quadratic interpolating polynomial is fitted in least-
squares sense to the local geometry defined by P} and its
immediate neighbors (see Figure 4):

1Q(u’ V= 1
Q + uQu + UQ’U + §u2Quu + quU’U + §v2FQ’U’U

To solve this problem we need at least six interpolation
conditions which we formulate by assigning local parame-
ter values (u;, v;) to P} and its one-ring neighbors (we con-
sider both edge and face neighbors). Since our underlying
representation is a quadrilateral mesh, each vertex (interior
or on the boundary) has at least five neighbors, with the ex-
ception of boundary vertices of valence one when only three
direct neighbors exist. In such cases, we compute a least
norm solution. Following [15], we assign coordinates (0, 0)
to P} and

(uiyvz’) =
||P! — PL| | cos Z a; | ,sin Z o
JER(0) JER(0)

to its neighbors, where R(0) denotes the set of indices of
vertices in the one-ring of P} and

27 L(P}P{P},)

ST (PP
JER(0)

a; =

The least-squares solution obtained by solving the interpo-
lation problem yields values for the partial derivatives:

[Qus Qus Quus Quus Quo|T =
(‘I’T{))_l@T[. .. vPil _ P(l), . .]T

where
b = Ui V; %uf UiV; %vf
In the remainder of the text, we denote by
D = [Djl,] — (®T®) 187 the co-
mk m=1,5,k€ R(i) ( )

efficients of the divided difference operators corresponding
to vertex P/.

3.4. Discrete Energy Formulation

By replacing the partial derivatives in the energy expres-
sion (3) with divided differences computed from the local
parameterization, we obtain our discrete energy formula-
tion:

Figure 4. Local quadratic interpolant used to
approximate first and second order deriva-
tives.

E(P)=Y" Y Ei(Pj—P) (P~ P)
t j,keR(i)
where the level index [ is omitted to simplify the notation,
and the coefficients F;;;, are defined as follows:
Eijx = aEfJ?,;’etfh + E_’fﬁ?d‘
Egfietet = Dy ;DY + Dy ;D 4,
Bt = D ;D + 2D ;Dj y, + D5 ;D5

In matrix form, this is equivalent to

E(P) = 1PTHP,
2

where H is an N x N matrix. The minimum of E(P) is
found by setting all partial derivatives with respect to P; to
zero and solving the corresponding system:
OE(P)
op;
or equivalently:
VE(P)=HP =0 o))

Since the functional E(P) is quadratic in every vertex, the
system (4) is linear. In the next section we describe a strat-
egy for solving it taking into account constraints.

—0,i=0,---,N—1

4. Detail-Preserving Modeling with Con-
straints

4.1. Shape Deformation

We regard the deformations applied to a given mesh M
as vector offsets with respect to the original vertex posi-
tions:

AP, = Pdeformed _ Ppriginal
Instead of minimizing the energy of the deformed mesh

E(pdeformed) we would like to minimize solely its change
in stretching and bending with respect to the initial shape.



Figure 5. Constraint propagation from a fine
level (left) to coarser ones. Constrained ver-
tices are shown as (red) squares. The target
value of the constraint is marked with a (blue)
circle.

Thus, our constrained optimization problem at resolution
level [ becomes:

E(APY — min

(AP - APy =Cl k=1,---,my
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Before we present our solution to this problem, we de-
scribe the types of constraints we consider and how they are
propagated and enforced at different resolutions.

4.2. Constraints

We model shape by prescribing points, normals, and
curves that should be interpolated by the surface. The en-
ergy optimization model discussed in the previous section
defines the behavior of the shape in the regions without con-
straints so that the designer does not need to directly spec-
ify the surface in these regions.

Region of influence In our multiresolution setting, con-
straints can be imposed at any level. However, since it is
typically the actual surface that needs to interpolate the con-
straints and not the mesh at some intermediate level, we first
project all constraints to the finest level (or, alternatively, the
limit surface), and then we propagate them through the mul-
tiresolution hierarchy to coarser levels.

We define the region of influence of a constraint as the
portion of the surface affected by the constraint. We control
the region of influence by the coarse level to which a con-
straint is propagated. Hence, a constraint propagated to a
relatively fine level in the hierarchy will have only local im-
pact (see Figure 1 (c)), whereas a constraint propagated to a
very coarse level will have an effect on the global shape of
the model (see Figure 1 (b)).

Point constraints Figure 5 shows how positional con-
straints are generated. In general, if Cf“ is the pre-
scribed deformation at a mesh vertex P/ on level
I + 1, then a linear constraint is generated at level [ us-
ing the Catmull-Clark subdivision masks. This choice al-
lows us to apply the Catmull-Clark subdivision rules to
the deformation vectors to obtain a fast approximate solu-
tion during interactive manipulation. This solution is sub-

(1—ﬁ—7)AP¢l+%‘Z‘AP21j+% > AP2lj+1

2j4+1€R(i)

1(AP[+ APl + AP} + AP}) = C1H!

(AP} + AP)) + %(AP}ZJ APl + AP + AP})

J(AP+ AP)) =ClT!

Table 1. Linear constraints are created at
coarse levels using the Catmull-Clark rules.
From top to bottom, the rules are for inte-
rior even vertex, boundary even vertex, in-
teior odd face vertex, interior odd edge ver-
tex, and boundary odd vertex, respectively.
Vertex indexing corresponds to Figure 6 (k
denotes vertex valence, 8 = 5, and v = ).

p“l

1 1 1 y L L 11 L
lj_lk__‘\ szv l’[] I ! P . PI P’1 F‘: p

J’_T\_ | boundary

Figure 6. Linear constraints are generated on
coarse levels using the Catmull-Clark masks
accoring to the expression listed in Table 1.

sequently improved by using a solver as discussed later
in this section. With the notations in Figure 6, the ex-
pressions for the linear constraints generated depend-
ing on the position of the constrained vertex in the mesh
are given in Table 1.

Normal constraints Normal constraints are imposed by
constraining two tangent vectors at a point to be perpen-
dicular to the normal at that point. We use the vectors Q ,,
and @, estimated from the quadratic interpolant in place of
the two tangents:

Qu(P)) - N(P}) =0and Qu(P}) - N(P{) =0

Using the notations from section 3.3, we see that these
two conditions translate into linear equations involving the
point P! and its immediate neighbors:
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The equivalent conditions on the deformations become:

> DiL(AP - APTN(P)) =
JER(Y)
_ Z Dzl Pl original Jgil,original)TN(ljil)’ k3=1,2
JER(Y)

Curve constraints Besides interpolation of prescribed
points and normals, it may be useful to manipulate the
surface by modifying the shape of embedded lower-
dimensional entities. We restrict our attention to arbitrary
curves lying on the surface. The most common exam-
ple is modifying an open surface by rigidly manipulat-
ing its boundary curves (see Figures 9 (a) and (b)). In
this case, we can sample the curves with boundary ver-
tices and create collections of point constraints at these ver-
tices. However, in the general case, a curve lying on the sur-
face is not aligned with the underlying mesh edges, so
a direct sampling with vertices is not possible. To al-
low for constraints along such curves, we re-parameterize
the surface as in [3] to align it with the curve. The de-
tails of the re-parameterization are appended for con-
venience in the Appendix at the end of the paper. Af-
ter re-parameterization, the original curve is approximated
by a piecewise linear one that passes through mesh ver-
tices. Point constraints are placed at vertices along the
approximating curve and propagated through the multires-
olution hierarchy as previously described.

4.3. Constrained Optimization

The simplest approach to solving our constrained min-
imization problem is to fix the deformation vectors at the
constrained vertices to certain values and to solve an un-
constrained energy minimization problem for the remain-
ing ones. To determine the fixed deformations for the con-
strained vertices, we solve the linear system of constraints
in the least-squares sense. Using matrix notation, we can
write the system as:

AAP! = (! (5)

where A P! denotes the vector of deformations correspond-
ing to the constrained vertices at level [. The least-squares
solution is given by:
AP = (ATA)1ATC!
We update the deformations associated with the uncon-
strained vertices iteratively, using a Gauss-Seidel approach

(AP™ denotes the deformation at iteration n and {H;}
are entries of the matrix H):

ZHijAP;,7L+1 ZH APl n

Jj<i J>i

Af)il,nqu

We have also experimented with successive over-relaxation
to accelerate convergence:

APl n+1 _

l,n+1 l,n

;= D H AR
Jj<i j>i

where w is a relaxation parameter between 0 and 2. It has

been our experience that choosing a suitable value for w re-

sults in considerable speedup. The choice, however, is typi-
cally problem dependent.

(1 —w)AP}"

5. Resultsand Implementation

Figures 7, 8, and 9 illustrate sample results obtained with
our system. Figure 9 top shows the smooth deformation of a
planar surface using constraints along the boundary. In par-
ticular, the vertices on the inner boundary are rigidly ro-
tated as indicated by the yellow archall and the surface fol-
lows naturally. Figures 9 bottom and 7 illustrate deforma-
tions of organic shapes rich in high-frequency detail. Note
the preservation of this detail on the modified shapes, on
both the cow and the vase models. Figure 8 illustrates differ-
ent accuracy approximations of the solution to the optimiza-
tion problem. Combining constraint propagation through
the multiresolution hierarchy and applying Catmull-Clark
rules as a smoothing operation yields a good initial approx-
imation of the thin plate energy minimization (see Figure 8
(b)) and allows the user to assess the modified shape at in-
teractive rates. An improved solution later computed using
a multigrid approach is shown in (c). The shape at interme-
diate levels and the multiresolution constraints are shown in
Figure 8 bottom.

We make several observations pertaining to our imple-
mentation.

Point vs. normal constraints In the case of point con-
straints (including those generated from curve constraints),
the system (5) represents, in fact, a collection of three lin-
ear systems, one for each of the spatial dimensions of the
deformation vectors. Unfortunately, our formulation of nor-
mal constraints violates this independence of spatial dimen-
sions which is attractive from a computational point of view.
If normal constraints are present in the optimization prob-
lem, we set up a single coupled system for all dimensions,
and we solve the larger system. Each point constraint is rep-
resented by three equations in this system (one for each of
the z, y, and z components of a deformation). Each normal
constraint translates into two equations as described in sec-
tion 4.2. The resulting system is larger, and hence, more ex-
pensive to compute, however, it allows for more flexible de-
sign options.

Multigrid optimization Since the emphasis in our proto-
type is on interactivity, we explore approximating the so-
lution of the optimization problem to various degrees to



balance interactivity and accuracy. During constraint ma-
nipulation, we use Catmull-Clark smoothing which yields
a good approximation of the solution very fast (see Fig-
ure 8). At the end of a design step (e.g., upon mouse re-
lease), a more accurate solution is obtained through energy
minimization. Finally, per user request, a fully converged
solution will also be provided (typically at non-interactive
rates).

To accelerate convergence of the iterative energy mini-
mization process, we use a multigrid approach to compute
the solution in a hierarchical fashion. We use a simplified
coarse grid correction method consisting of two main steps.
Relaxation iteratively minimizes the energy at level [ using
Gauss-Seidel iterations as previously described. Prolonga-
tion is used to propagate the solution computed at level [
to the next finer level. We use Catmull-Clark subdivision
as our prolongation operator. Note that we are not currently
using restriction from fine to coarse as full multigrid imple-
mentations typically do.

(d)

Figure 7. Modeling with detail preservation
(a) Original model. (b) Deformation under
point constraints (marked with red points).
(c) Normal constraints (marked with green
lines; red points indicate constrained re-
gion). (d) Constraints imposed along an arbi-
trary curve on the surface (left) are used to
rigidly deform the surface in the vicinity of
the curve (right).

Figure 8. Top: approximating energy mini-
mization. (a) Input model. (b) Fast solution
obtained using Catmull-Clark smoothing. (c)
Improved solution obtained via multigrid en-
ergy minimization. Bottom: (d)-(f) the opti-
mized control mesh and the constraints at
levels 2, 3, and 4 during multigrid.

6. Conclusions and Future Work

In this paper we described a variational modeling ap-
proach as implemented in a system we have developed.
Models are represented by multiresolution subdivision sur-
faces. During interactive deformations, their shapes are re-
computed via energy optimization with constraints. Point,
normal, and curve constraints are considered at multiple res-
olution levels. To preserve multiresolution details, we opti-
mize only the energy of the deformations, instead of the to-
tal surface energy.

In our work we have adapted existing variational meth-
ods to multiresolution subdivision surfaces and in doing so,
we have shown the advantages of using this representation
for interactive free-form design. Some of the remaining is-
sues to be solved include the derivation of better stopping
criteria for the iterative solver (we are currently using a fixed
number of iterations), a full-fledged multigrid implementa-
tion including restriction of deformations to avoid recom-
puting surface regions already optimized, as well as alter-
native solvers.

Appendix: Re-Parameterization for Plac-
ing Constraints Along Arbitrary Curves

We briefly review the re-parameterization algorithm
of [3] which we use for allowing constraints to be im-
posed along arbitrary curves on a surface.
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Figure 9. Top: curve constraints along
boundary. (a) Input model. (b) Surface after
rotating the inner boundary curve and energy
optimization (rotation arc and axis are super-
imposed). Bottom: interactive editing. (c) In-
put model with details at multiple resolutions.
(d) The model in (c) after variational editing.
Red points indicate constraints.

As mentioned in section 2, we view the input surface as a
parametric surface over the domain defined by the base con-
trol polyhedron. The main idea is to re-parameterize the sur-
face to align the parameterization with a given curve or set
of curves.

Let X denote the parameter domain of the surface de-
fined by its base mesh and let ¢ denote an input curve de-
fined on X, ¢ : [0,1] — X. In general, c traverses the do-
main X at arbitrary positions. We want to re-parameterize
the domain X such that ¢ passes through the vertices of X.
Therefore, we compute a one-to-one mapping IT : X —
X which maps vertices of X to curve points: II(v;) =
¢(t;), for some vertices {vg, v1, ...} and curve parameters
{to,t1,...}. The mapping II is built to satisfy the follow-
ing approximation property (AP):

(AP): the piecewise linear curve [vg,v1,...] has the
same topology as ¢ and either follows along mesh edges
or crosses mesh faces diagonally.

The re-parameterization algorithm alternates between
snapping and refinement steps. The shapping step moves
mesh vertices onto the curve if they are sufficiently close.
In the refinement step we simply subdivide the parameter-

ization linearly. The algorithm terminates if the sequence
of vertices {vg, v1, - - -} along ¢ satisfies the approximation
property (AP). Property (AP) is guaranteed to be satisfied
after a finite number of steps for piecewise-linear curves c.

:tﬁg E%ﬁ %5

Figure 10. Re-parameterization matching a
feature curve. The quad is recursively split
and vertices are snapped to the curve. After
four subdivision steps, the curve is approxi-
mated by a sequence of mesh vertices. Con-
straints may be imposed at these vertices.
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