

Nouveaux concepts pour des lasers de puissance :

- Fibres cristallines dopées Ytterbium

- Pompage direct de cristaux dopés Néodyme

Soutenance de thèse

Damien Sangla

Directeurs de thèse : François Balembois Kheirreddine Lebbou

Contexte de l'étude

L'essor de l'usinage des matériaux par laser

- Découpe/Perçage
 Soudure/Gravure
- etc..

Besoins

- Robustesse
- Faible coût
- Forte puissance moyenne
- Forte puissance crête

100 µm

50 µm

- Fiabilité
- Compacité
- Faible maintenance
- Forte évolution des diodes

laser

Montée en puissance des systèmes actuels

- Fiabilité
- Compacité
- Faible maintenance
- Forte évolution des diodes

Montée en puissance des systèmes actuels

Bilan énergétique

Echauffement dans un milieu laser

Echauffement dans un milieu laser

Exemple : Cristal de Nd:YAG pompé à 808 nm émettant à 1064 nm.

Echauffement dans un milieu laser

Soit on réduit la charge thermique

→ Défaut quantique

Echauffement dans un milieu laser

Soit on réduit la charge thermique

→ Défaut quantique

Soit on gère au mieux l'échauffement

→ Géométrie du milieu

Ex : fibres, disques minces, slabs...

Nous proposons d'étudier :

1. Pompage direct dans les niveaux émetteurs de cristaux dopés Néodyme

→ 2. Concept de fibres cristallines dopées Ytterbium

- Géométrie adaptée à la gestion des effets thermiques
- Réduction du défaut quantique

Soutenance de thèse

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
- 1.1 Principe du concept
 - 1.2 Etude expérimentale du Nd:YVO₄ pompé à 914 nm
 - **1.3 Conclusions et perspectives**
 - 2. Lasers à fibres cristallines dopées Ytterbium Conclusion

Objectif et principe

- **Objectif :** Réduire <u>au maximum</u> le défaut quantique pour l'ion Nd³⁺
 - Diminution intrinsèque des effets thermiques
 - Augmentation de l'efficacité optique/optique atteignable

• Principe :

Intérêt de l'étude sur le Nd:YVO4

Cristal	Nd:YVO ₄	Nd:YAG
Longueur d'onde de pompe	914 nm	938 nm
Défaut quantique	14.1 %	12 %
σ _{Emission} @ 1064 nm (×10 ⁻²⁰ cm ²)	114	28
Facteur de population de Z ₅ à T° _{Amb}	5 %	0.7 %
Δλ (T° _{Amb})	> 4 nm	~ 1 nm
σ _{Abs} (T° _{Amb}) (×10 ⁻²⁰ cm²)	~ 0,4	~ 0,077
Conductivité thermique	~ 6 W.m ⁻¹ .K ⁻¹	~ 10 W.m ⁻¹ .K ⁻¹

- **Propriétés du Nd:YVO₄:**
- Fort gain
- Absorption plus forte
- Propriétés thermo-mécaniques plus faibles

Etude plus intéressante pour ce cristal

Soutenance de thèse

λ _Ρ (nm)	808
1–η _Q	24 %

808 nm : R.A. Fields et al., Appl. Phys. Lett., 51 (1987). Peng et al., IEEE JQE, 38, (2002).

Réduction du défaut quantique :

λ _Ρ (nm)	808	880
1–η _Q	24 %	17.3 %

- **808 nm :** R.A. Fields et al., Appl. Phys. Lett., 51 (1987). Peng et al., IEEE JQE, 38, (2002).
- 880 nm : R. Lavi et al., Appl. Opt., 39 (2000).

Réduction du défaut quantique :

λ _Ρ (nm)	808	880	888
1–η _Q	24 %	17.3 %	16.8 %

888 nm

- **808 nm :** R.A. Fields et al., Appl. Phys. Lett., 51 (1987). Peng et al., IEEE JQE, 38, (2002).
- 880 nm : R. Lavi et al., Appl. Opt., 39 (2000).

888 nm : L. McDonagh et al., Opt. Lett. 31 (2006).

Réduction du défaut quantique :

λ _P (nm)	808	880	888	914
1–η _Q	24 %	17.3 %	16.8 %	14,1 %

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
 - 1.1 Principe du concept
- **1.2** Etude expérimentale du Nd:YVO₄ pompé à 914 nm
 - **1.3 Conclusions et perspectives**
- 2. Lasers à fibres cristallines dopées Ytterbium Conclusion

Absorption depuis le sous-niveau Z₅

Spectre @ T°ambiante (non polarisé) :

Absorption très faible à 914 nm :

 $\alpha_{\rm P} = 0.5 \, {\rm cm}^{-1}$ (pour 1 at.%)

$\overset{\bullet}{=}$ Absorption depuis le sous-niveau Z_5

INSTITUT

Longueur d'onde (nm)

$\overset{\bullet}{=}$ Absorption depuis le sous-niveau Z_5

INSTITUT

Cavité laser

Objectif avec cette cavité:

Favoriser le recouvrement spatial « pompe/laser » dans le cristal

Résultats expérimentaux

A température ambiante :

P_{max laser} = 11.5 W @ 1064 nm pour 14.6 W absorbés @ 914 nm

Pente d'efficacité = 80.7 % (η_Q = 85.9 %)

 $M^2 < 1.2$

Soutenance de thèse

Etude des effets thermiques

Evaluation de la lentille thermique

Etude des effets thermiques

Evaluation de la lentille thermique

Soutenance de thèse

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
 - 1.1 Principe du concept
 - 1.2 Etude expérimentale du Nd:YVO₄ pompé à 914 nm
- 1.3 Conclusions et perspectives
- 2. Lasers à fibres cristallines dopées Ytterbium Conclusion

Conclusions

- ✓ Premier laser Nd:YVO₄ pompé par diode à 914 nm
 - 11.5 W @ 1064 nm pour 14.6 W absorbés @ 914 nm, M² < 1,2</p>
 - 80.7 % de pente d'efficacité (soit ~79 % d'efficacité optique/optique)
- ✓ Très faible génération d'effets thermiques : $1 \eta_Q = 14$ %

Perspectives

- > Amélioration de l'efficacité globale :
 - Recyclage de la pompe, augmentation du produit {dopage*longueur}
- Montée en puissance
- > Applications aux régimes impulsionnels
- Etude du même concept avec d'autres cristaux dopés Nd³⁺

Nd:YAG pompé @ 938 nm : D. Sangla et al., Opt. Exp., 17, 10091-10097 (2009)

Plan de l'exposé

Introduction

1. Pompage direct de cristaux dopés Néodyme

2. Lasers à fibres cristallines dopées Ytterbium

Conclusion

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
- 2. Lasers à fibres cristallines dopées Ytterbium
 - 2.1 Concept et élaboration de fibres cristallines
 - 2.2 Dimensionnement du système
 - 2.3 Caractérisations des fibres
 - 2.4 Résultats lasers en régimes continu et déclenché
 - 2.5 Conclusions et perspectives

Conclusion

Cristaux massifs

- 🙂 Forte énergie
 - Effets thermiques à fort pompage

Fibres de verre dopées

- Très performantes thermiquement 💛
- Confinement du signal

- Effets non linéaires limitants :
- Energie < 1 mJ
- *Δτ* > 150 ns

Performances en régime déclenché :

Objectifs:

Génération d'impulsions courtes, de forte énergie et de forte puissance crête.

Comment obtenir des fibres cristallines ?

Système de tirage

Pas de carottage ou polissage du cylindre nécessaire (≠ Méthode Czochralski)

Soutenance de thèse

Fibres de bonne qualité cristalline et de faible diamètre

Fibres cristallines dopées Nd³⁺

(obtenues par croissance directe et en régime continu)

Aucune étude laser sur des fibres dopées Ytterbium

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
- 2. Lasers à fibres cristallines dopées Ytterbium
 - 2.1 Concept et élaboration de fibres cristallines
 - 2.2 Dimensionnement du système
 - 2.3 Caractérisations des fibres
 - 2.4 Résultats lasers en régimes continu et déclenché
 - 2.5 Conclusions et perspectives

Conclusion

Propriétés de l'Ytterbium

Spectroscopie de l'Yb:YAG à T°_{ambiante} :

INSTITUT d'OPTIQUE

SCHO

Propriétés de l'Ytterbium

Spectroscopie de l'Yb:YAG à T°_{ambiante} :

INSTITUT

IQUE

Propriétés de l'Ytterbium

Spectroscopie de l'Yb:YAG à T°_{ambiante} :

INSTITUT

QUE

Dimensionnement du système

Démarche suivie :

- Modélisations du milieu laser (Yb:YAG)
- -> Propriétés spectroscopiques et thermiques
- Modélisations du système laser
- Propriétés géométriques des faisceaux de pompe et las er
- Validation expérimentale du modèle

Spécifications du milieu laser et du système

Fibre cristalline

Diamètre = ?, Longueur = ? Taux de dopage = ? Système global

Système de pompe ? Géométrie des faisceaux ?

Ajustements successifs

Favoriser un milieu ayant un gain le plus important

Définition d'un module *de gain (module amplificateur)*

• Optimisation du régime impulsionnel (durée d'impulsions)

Choix du critère d'optimisation :

Favoriser un milieu ayant un gain le plus important

Définition d'un module *de gain (module amplificateur)*

• Optimisation du régime impulsionnel (durée d'impulsions)

Choix du critère d'optimisation :

• Propagation réelle (simulation sous Apilux)

Profil simulé :

• Propagation réelle (simulation sous Apilux)

Profil simulé :

• Propagation réelle (simulation sous Apilux)

Profil simulé :

Soutenance de thèse

Sur la qualité spatiale :

Sur la qualité spatiale :

« **Soft aperture** *»* (Diaphragme progressif) T. Y. Fan, Opt. Lett., 19, (8) pp 554-556, 1994.

Sur la qualité spatiale :

« Soft aperture » (Diaphragme progressif) T. Y. Fan, Opt. Lett.,19,(8) pp 554-556, 1994.

Point de départ :

- Puissance de pompe : 200 W
- Diamètre de 1 mm
- Taux de dopage max : 1 at.%

Choix de la longueur et du taux de dopage

Point de départ :

- Puissance de pompe : 200 W
- Diamètre de 1 mm
- Taux de dopage max : 1 at.%

Choix de la longueur et du taux de dopage

Point de départ :

- Puissance de pompe : 200 W
- Diamètre de 1 mm
- Taux de dopage max : 1 at.%

Choix de la longueur et du taux de dopage

Point de départ :

- Puissance de pompe : 200 W
- Diamètre de 1 mm
- Taux de dopage max : 1 at.%

Choix de la longueur et du taux de dopage

L = 40 mm, Taux de dopage = 1 at.%

Soutenance de thèse

Récapitulatif

• Etude théorique

Fibre cristalline

 Φ = 1mm, L = 40 mm Taux de dopage = 1 at.%

Système global

Système de pompe : 200 W, Φ = 200 μ m

Géométrie des faisceaux : <u>Pompe</u> : $W_P = 200 \mu m$ <u>Laser</u> : $W_L = 220 \mu m$

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
- 2. Lasers à fibres cristallines dopées Ytterbium
 - 2.1 Concept et élaboration de fibres cristallines
 - 2.2 Dimensionnement du système
 - 2.3 Caractérisations des fibres
 - 2.4 Résultats lasers en régimes continu et déclenché
 - 2.5 Conclusions et perspectives

Conclusion

• Localisation radiale du dopant Yb³⁺

Image de micro-luminescence (avec excitation à 224 nm)

• Etat de surface des fibres cristallines

Soutenance de thèse

N. Aubry, et al., J. Cryst. Growth, **311** (2009).

Soutenance de thèse

N. Aubry, et al., J. Cryst. Growth, **311** (2009).

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
- 2. Lasers à fibres cristallines dopées Ytterbium
 - 2.1 Concept et élaboration de fibres cristallines
 - 2.2 Dimensionnement du système
 - 2.3 Caractérisations des fibres
 - 2.4 Résultats lasers en régimes continu et déclenché
 - 2.5 Conclusions et perspectives

Conclusion

- Définition de la cavité laser
 - Simple : 2 miroirs

Adaptée à la montée en puissance

- Courte pour limiter la durée d'impulsions (L< 200 mm)
- Utilisation d'un Modulateur Acousto-Optique (M. A. O.)

Czochralski vs Micro-Pulling Down

Comparaison en configuration laser pour 60 W de pompe

	Czochralski (Cz)	Micro-Pulling Down (µPD)
Diamètre	1 mm	1 mm
Longueur	35 mm	30 mm
Taux de dopage	0.65 at.%	0.7 at.%
Transmission/Guidage	98 % / 91 %	98 % / 90 %

P_{Max} = 11.3 W @ 1031 nm M² ≤ 2.5 Pente d'efficacité = 31 %

Résultats similaires avec les deux types de croissance

Efficacité pour 200 W de pompe

 $T_{coupleur} = 40 \%$ $\Phi = 1 \text{ mm}, L = 40 \text{ mm}, 1 \text{ at.}\%$ $P_{max} = 55 \text{ W}$ Pente = 35 % $M^2 \le 2,5$

D. Sangla et al., Appl. Phys. B, 97 (2009)

INSTITUT

Montée en puissance en régime continu

Evolution du facteur de qualité M² avec la pompe

NSTITUT

Régime déclenché

Au-delà de 130 W, limitation liée au taux d'extinction du M. A. O.

D. Sangla et al., Appl, Phys. B, 97 (2009)

Régime déclenché

Pour 150 W de puissance de pompe : P_{moy} ≤ 9.5 W <u>A 5 kHz :</u> Energie = 1.8 mJ Durée d'impulsions = 13 ns P_{crête} = 138 kW

A plus basses cadences : limitation due à la densité d'énergie sur les Traitements AR

Soutenance de thèse

D. Sangla et al., Appl, Phys. B, **97** (2009)

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
- 2. Lasers à fibres cristallines dopées Ytterbium
 - 2.1 Concept et élaboration de fibres cristallines
 - 2.2 Dimensionnement du système
 - 2.3 Caractérisations des fibres
 - 2.4 Résultats lasers en régimes continu et déclenché
 - **2.5** Conclusions et perspectives

Conclusion

- ✓ Etude du concept de laser à fibre cristalline dopée Yb³⁺
- ✓ Elaboration et caractérisation de fibres de qualité laser
- ✓ En régime continu :

Dernier résultat : plus de 65 W pour 180 W de puissance de pompe

Soutenance de thèse

- ✓ Performances en régime déclenché
- Plus de 20 W à 20 kHz pour 130 W @ 940 nm, Δτ = 20 ns, P_{crête} = 54 kW
- Près de 10 W à 5 kHz pour 150 W @ 940 nm, Δτ = 13 ns, P_{crête} = 138 kW

- ✓ Performances en régime déclenché
- Plus de 20 W à 20 kHz pour 130 W @ 940 nm, Δτ = 20 ns, P_{crête} = 54 kW
- Près de 10 W à 5 kHz pour 150 W @ 940 nm, $\Delta \tau$ = 13 ns, P_{crête} = 138 kW

- ✓ Performances en régime déclenché
- Plus de 20 W à 20 kHz pour 130 W @ 940 nm, Δτ = 20 ns, P_{crête} = 54 kW
- Près de 10 W à 5 kHz pour 150 W @ 940 nm, Δτ = 13 ns, P_{crête} = 138 kW

Extension des résultats en régime impulsionnel

Igor Martial (Thèse CIFRE IO/Fibercryst)

De la table optique...

Soutenance de thèse

Perspectives d'études

> Réduction diamètre

Puissance de pompe (W)

Etude d'autres matériaux dopés Yb³⁺

✓ Fibres cristallines en Yb:LuAG

✓ Yb:YSO, Yb:CaF₂, Yb:CALGO...

D. Sangla et al., J. Cryst. Growth, **312**, (2009).

Fonctionnalisation des fibres cristallines

But : concentrer l'inversion de population au cœur de la fibre

Soutenance de thèse

Introduction

- 1. Pompage direct de cristaux dopés Néodyme
- 2. Lasers à fibres cristallines dopées Ytterbium

Conclusion

Étude de fibres cristallines dopées Ytterbium

Croissance par la technique micro-pulling-down :

- Premiers résultats laser

- Fort potentiel pour atteindre des performances inédites en régime déclenché

