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Nano Electro Mechanical Systems (NEMS)

NEMS are devices integrating electrical and 

mechanical functionalities at the nanoscale.

NEMS are among the best candidates for 

measurement of interactions at nanoscale
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Frequency

NEMS resonators can be assimilated 

to harmonic oscillators
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Interactions at nanoscale

NEMS standard scheme:

• Mobile part suspended over a fixed substrate;

• Gap from tens nanometers to several microns;

• Plane-Plane geometry.

Gap
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Interactions between mobile and fixed parts can dominate the NEMS 

dynamics

• Chemical forces;

• Van der Waals and Casimir forces

• Electrostatic (residual) forces;

• Optical forces;

• Hydrodynamic forces;

• Near field thermal radiation.



Outlines

• Detection set-up: fibre-based optical interferometry.

• Hydrodynamic forces at micron and submicron scale:

1. Cavity damping of a microlever;

2. Cavity freezing of a microlever.
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2. Cavity freezing of a microlever.

• Radiative heat transfer at nanoscale:

1. Electromagnetic treatment of thermal radiation;

2. Radiative heat transfer between a sphere and a plane.

• Conclusions and perspectives.



X-ray and Mechanical Systems

OPTICAL  FORCES

Interaction between X-ray and Mechanical systems:

1) Mechanical effect of X-ray beam;

2) MEMS based X-ray chopper.
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Detection set-up: optical interferometry

Fabry Perot cavity formed between the fibre

end and the sample surface

Movement of the surface is translated in 

detectable light intensity modulation.
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Hydrodynamic forces at 
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Hydrodynamic forces at 

micron and sub-micron scale



Hydrodynamic forces at short distances

The oscillating behavior of a lever is 

studied when an “infinite” wall is gradually 

approached. 
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This system mimics a MEMS 

oscillating closed to a substrate

Si cantilever:

L = 107 µm

w = 30 µm

t = 0.18 µm

ω0/2π ≈ 50 kHz

No additional damping



Hydrodynamic forces at short distances

The lever is thermally actuated. 

With decreasing gap in micrometer range we 

observe a broadening and softening of 

fundamental resonance.
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Driven and damped 1D oscillator

Damping of lever studied 

recording resonance quality 
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Broadening: Softening:

Experimental results
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Micrometric lenght scale:

mdL µ20≈

Confinement effect

Nanometric lenght scale:

nmdC 400≈

Freeezing of resonance



Cavity damping of the oscillator

γω0

k
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Large gap: damping independent on distance

Small gap : damping depending on inverse of distance
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Theoretical description based on Navier-Stokes equation

Boundary conditions control the agreement theory - experiments

Which boundary conditions??

Reynold’s number:
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Boundary layer definition:

At lever resonance:

ρω

η2
=Ld

mdL µ20≈

Confinement characteristic length

Spatial region surrounding the lever where 
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viscosity dominates the fluid behavior 
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Perfect slip boundary conditions
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Perfect slip at fluid-solid interface:
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Consistent with experimental evidence
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No slip boundary conditions (Couette)
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No slip at fluid-solid interface:
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• Experimental data

Theoretical model (perfect slip)

Comparison Experiments-Theory

No adjustable parameter
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No adjustable parameter:  80% error at 400 nm

Parallelism adjusted: 5% error at 400 nm 

Residual misalignement : 10 mrad



Cavity freezing of the oscillator

In the limit of large damping the oscillator has a 

down-shift of the resonance

No adjustable parameter

Parallelism adjusted: 10 mrad
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If the gap is small enough air confinement can 

eventually freeze the mechanical oscillator



Hydrodynamic forces: summary

Cantilever dynamics modified by fluid confinement 

according to Navier-Stokes equation;
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Perfect slip at fluid-solid interface induces a long 

range hydrodynamic force:         F    1/d

For nanometre size cavity the lever oscillation can 

be freezed because of the fluid confinement.



Near – Field radiative 

18

Near – Field radiative 

heat transfer



Electromagnetic treatment.

Fluctuating dipole 

induced by thermal effect

FAR-FIELD: propagative waves

Independent by distance
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NEAR-FIELD: evanescent waves

Strongly dependent by distance



Dielectric materials: surface Phonon-

Polariton enhancement effect

Surface waves: described by dielectric constant      ε(ω)

E

p
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Infra-red resonance 

(SiC, quartz, alumine, silica, Si doped)

Radiative thermal transfer 

increased by the resonance effect



Dielectric materials: surface Phonon-

Polariton enhancement effect

Density of energy near a  SiC-vacuum interface

Far field: the energy density well 

reproduces the Plank black body theory
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Near field: the energy density exceeds 

the Plank black body theory:

Monochromatic thermal emission and 

exponential decay with the distance



Dielectric materials: surface Phonon-

Polariton enhancement effect

T2

Plane-Plane geometry

Theoretical model
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T1

T1 > T2



Plane-plane geometry: experimental issue

d d
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Plane-Plane

Theory developed

BUT

Experiments very difficult

Plane-sphere

Experimentally possible

BUT

Theory not yet developed



Sphere-Plane geometry: theory

Sphere-Plane geometry

24
Proximity force approximation
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Sphere-Plane geometry: theory
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Proximity force approximation

Far field Far field



Switch to radiative heat transfer measurement…

What we want to measure
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How we want to measure



Experimental set-up

Optical fiber
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- Power exchanged = lever deflection :  thermal switch effect on the lever

- High vacuum P~10-6 mbar :  conduction neglegible

- ∆T = 10-20 K.



Experimental raw data

Calibration ???
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Contact definition ???



Fluxmeter calibration
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Surface roughness

Contact between plate and 

sphere asperity

Average surface contact 

shifted repect hard contact
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From SEM image sphere 

roughness:

50 nm rms 



Comparison Experiments-theory

Glass sphere – glass plane

Sphere diameter 40 µµµµm
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H and b adjusted:

H = 2,162 nm/nW

b = 31,8 nm



Glass sphere – glass plane

Sphere diameter 40 µµµµm

Comparison Experiments-theory
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ZOOM ON NEAR-FIELD REGIME

H and b adjusted:

H = 2,162 nm/nW

b = 31,8 nm



Conclusions

Development of experimental set-up for the radiative

thermal transfer 
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Relative comparison theory-experience with 

4% indetermination 

Precise measurement heat transfer in 50nm-5um range



Perspectives

Interaction forces in plane-plane geometry: Gap
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Hydrodynamic force  (perfect slip):

F       1/d 

Electrostatic force:

F       1/d2

Thermal radiation:

Φ 1/d2

Hydrodynamic force  (no 

slip):

F       1/d3

Casimir force:

F       1/d4

Dependency on distance of the major interaction forces



Set-up

Misalignment correction

Attocube inertial motor goniometer:  

10-4 deg
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Focused Ion Beam sample realization



Alignment

Alignment can controlled using 

X-ray diffraction
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The precision in angle given by the 

Bragg peak .

For Silicon Bragg width  ~10-4 deg

arc sec
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What happens at large gap?

Damping of the lever is not depending 

on distance:  

WHY?

Coming back to NS equation:

v ∂
r

37

Boundary layer definition:
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Theory: electromagnetic treatment.

Green Tensor formalism:

Fluctuation-dissipation theorem:
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Electromagnetic energy density:
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More about Derjaguin approximation
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More about Derjaguin approximation
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More about Derjaguin approximation
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Spheres radius: 20 µm
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Casimir force and radiative heat transfer: 

same origin, same experimental set-up
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Siria et al, 2009Jourdan et al, 2007


