ÉTUDE MATHÉMATIQUE ET NUMÉRIQUE D'ÉQUATIONS HYPERBOLIQUES NON-LINÉAIRES : COUPLAGE DE MODÈLES & CHOCS NON CLASSIQUES

Benjamin BOUTIN

CEA Saclay DEN/DANS/DM2S/SFME/LETR & Université Pierre et Marie Curie Paris 6

œ

Sous la direction de : Encadrement CEA : Co-encadrement universitaire : Philippe G. LEFLOCH Annalisa AMBROSO Frédéric COQUEL, Frédéric LAGOUTIÈRE

Paris, 27 novembre 2009

- Équations hyperboliques non-linéaires
- 2 Couplage de systèmes hyperboliques
- Analyse mathématique du couplage non-conservatif
 - Modèle d'interface épaisse et schéma équilibre
- 5 Conclusions et perspectives

Équations hyperboliques non-linéaires

- Modèle hyperbolique et critères de sélection
- Problème de Riemann
- Solutions non-classiques
- Schéma numérique pour les solutions non classiques

2 Couplage de systèmes hyperboliques

- Analyse mathématique du couplage non-conservatif
- Modèle d'interface épaisse et schéma équilibre
- 5 Conclusions et perspectives

Notations :

$$u := u(x, t) \in \mathbb{R}^N, \quad f \in C^1(\mathbb{R}^N, \mathbb{R}^N),$$

$$\partial_t u + \partial_x f(u) = 0, \quad x \in \mathbb{R}, \quad t > 0.$$

Non-linéarités ⇒ perte de régularité des solutions (apparition de discontinuités en temps fini) Non-unicité des solutions faibles : le modèle est incomplet !

> Limite de diffusion $u = \lim_{\epsilon \to 0} u^{\epsilon}$ $\partial_t u^{\epsilon} + \partial_x f(u^{\epsilon}) = \epsilon \partial_x (b(u^{\epsilon}) \partial_x u^{\epsilon})$

Critères macroscopiques dérivés :

Critère de LAX (caractère compressif des chocs) Critère de OLEINIK/LIU (stabilité structurelle des chocs) Solutions KRUŽKOV / Inégalités d'entropie Définition : problème de Riemann

$$\partial_t u + \partial_x f(u) = 0, \quad x \in \mathbb{R}, \quad t > 0,$$

 $u(x, 0) = \begin{cases} u_\ell, & x < 0, \\ u_r, & x > 0. \end{cases}$

Solutions auto-semblables en $\xi = x/t$

$$(-\xi \operatorname{Id} + \nabla f(u)) \frac{du}{d\xi} = 0$$

Avec $\lim_{\xi\to-\infty} u(\xi) = u_\ell$ et $\lim_{\xi\to\infty} u(\xi) = u_r$.

Remarque : capture du comportement asymptotique en temps grand des solutions du problème de CAUCHY pour des données initiales $u_0(x)$ avec pour limites aux infinis u_ℓ et u_r .

SOLUTIONS NON-CLASSIQUES

Limite diffusion-dispersion

 $\partial_t u^{\epsilon} + \partial_x f(u^{\epsilon}) = \epsilon \partial_{xx} u^{\epsilon} + \delta \epsilon^2 \partial_{xxx} u^{\epsilon}, \quad f \text{ non-convexe.}$

phénomènes visco-dispersifs (LEFLOCH)

Exemples : dynamique des transitions de phase (TRUSKINOVSKY) écoulement de films liquides minces (BERTOZZI, MÜNCH, SCHEARER).

Propriétés des solutions non-classiques :

- Violent les inégalités de LAX (chocs sous-compressifs)
- Ne dissipent qu'une seule entropie
- Augmentent la variation totale de la solution
- Satisfont une relation cinétique $u_r = \varphi^{\flat}(u_\ell)$

SCHÉMA NUMÉRIQUE POUR LES SOLUTIONS NON CLASSIQUES

 Schémas d'ordre élevé (CHALONS, HAYES, LEFLOCH, ROHDE) : conservatifs, consistance avec la formulation visco-dispersive, solutions oscillantes.

$$u_{j}^{n} \simeq \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} u(x,t) dx$$

$$t^{n+1} = u_{j}^{n} - \frac{\Delta t}{\Delta x} (t_{j+1/2}^{n} - t_{j-1/2}^{n})$$

$$t^{n+1} = u_{j}^{n} - \frac{\Delta t}{\Delta x} (t_{j+1/2}^{n} - t_{j-1/2}^{n})$$

SCHÉMA NUMÉRIQUE POUR LES SOLUTIONS NON CLASSIQUES

- Schémas d'ordre élevé (CHALONS, HAYES, LEFLOCH, ROHDE) : conservatifs, consistance avec la formulation visco-dispersive, solutions oscillantes.
- Schéma de type GLIMM (CHALONS, LEFLOCH) : utilisent la fonction cinétique φ^{b} via le solveur de RIEMANN non-classique, seulement statistiquement conservatifs, sans étape de projection.

SCHÉMA NUMÉRIQUE POUR LES SOLUTIONS NON CLASSIQUES

- Schémas d'ordre élevé (CHALONS, HAYES, LEFLOCH, ROHDE) : conservatifs, consistance avec la formulation visco-dispersive, solutions oscillantes.
- Schéma de type GLIMM (CHALONS, LEFLOCH) : utilisent la fonction cinétique φ^{b} via le solveur de RIEMANN non-classique, seulement statistiquement conservatifs, sans étape de projection.

BOUTIN, CHALONS, LAGOUTIERE, LEFLOCH (2008). A convergent and conservative schemes for nonclassical solutions based on kinetic relations. I. Interfaces and Free Boundaries,

Principe : étape de reconstruction avant calcul des flux $f_{i-1/2}^n$, $f_{i+1/2}^n$

« conservative » : $u_r(1 - d) + u_\ell(1 + d) = u_j^n$, « consistante » avec la relation cinétique : $u_r = \varphi^b(u_\ell)$.

B. Boutin

09 6

ILLUSTRATIONS NUMÉRIQUES

Propriétés remarquables du schéma de reconstruction

- coïncide en dehors des discontinuités non classiques avec le schéma classique choisi
- préserve les chocs non classiques « isolés »
- converge numériquement vers la bonne solution non classique (convergence en maillage de la relation cinétique numérique vers la relation cinétique prescrite).

Équations hyperboliques non-linéaires

Couplage de systèmes hyperboliques

- Introduction à la problématique du couplage
- Couplages conservatif et non-conservatif
- Formulation faible de la relation de couplage
- Existence pour le problème de RIEMANN couplé scalaire
- Démarche proposée

Analyse mathématique du couplage non-conservatif

- Modèle d'interface épaisse et schéma équilibre
- 5 Conclusions et perspectives

MOTIVATIONS INDUSTRIELLES

Couplage de codes :

Quelle information transmettre ?

Conservation de certaines quantités physiques Continuité de certaines variables pertinentes Définition des états « stationnaires » du problème

COUPLAGES CONSERVATIF ET NON-CONSERVATIF

Inconnue $w \in \mathbb{R}^N$

$$\begin{cases} \partial_t w + \partial_x f_-(w) = 0, & x < 0, t > 0, \\ \partial_t w + \partial_x f_+(w) = 0, & x > 0, t > 0. \end{cases}$$

Couplage par flux

 $f_{-}(w(0^{-},t)) = f_{+}(w(0^{+},t)), \quad t > 0.$

Couplage par état

 $w(0^{-},t) = w(0^{+},t), \quad t > 0.$

ou plus généralement $\theta_{-}(w(0^{-}, t)) = \theta_{+}(w(0^{+}, t)), \quad t > 0.$ θ_{+} changements de variable. AUDUSSE, PERTHAME, SEGUIN, VOVELLE, TOWERS, KARL-SEN, RISEBRO Couplage conservatif à flux discontinu Conditions entropiques à l'interface

GODLEWSKI, RAVIART

Pas de critère entropique naturel à l'interface (⇒ besoin d'un retour au niveau microscopique)

Difficulté : Les approches sont généralement incompatibles !

Exemple du couplage de deux Euler (lois de pressions distinctes) formulé en $w = (\rho, u, p) \Rightarrow$ continuité de u et p, conservation de ρ et ρu , mais ρe n'est pas conservée

B. Boutin

PhD Defense

Demi-problème de RIEMANN (DUBOIS & LEFLOCH, 1988)

Condition de bord : $u(0^+, t) = b(t)$.

Forme affaiblie :

t

ŧ

 $u(0^+, t) \in O(b(t)),$ où $O(b(t)) = \{ \mathcal{W}(0^+, b(t), \tilde{u}), \tilde{u} \in \Omega \}$ \rightarrow Problème bien posé.

Demi-problème de RIEMANN (DUBOIS & LEFLOCH, 1988)

Condition de bord : $u(0^+, t) = b(t)$.

Forme affaiblie :

→Problème bien posé.

Recollement de deux demi-problèmes de RIEMANN (GODLEWSKI & RAVIART, 2004)

$$u(0^{-}, t) = u(0^{+}, t)$$

$$(0^{-}, t) = u(0^{+}, t)$$

$$(0^{-}, t) \in O_{-}(u(0^{+}, t)),$$

$$(0^{+}, t) \in O_{+}(u(0^{-}, t)).$$

Théorème (Boutin, Chalons, Raviart)

Cas scalaire N = 1, flux f_- et f_+ de classe C^1 , fonctions de couplage θ_{\pm} de même monotonie alors il existe une solution autosemblable (non nécessairement unique) du problème de RIEMANN couplé :

$$\begin{cases} \partial_t w + \partial_x f_{-}(w) = 0, & x < 0, \ t > 0, \\ \partial_t w + \partial_x f_{+}(w) = 0, & x > 0, \ t > 0, \end{cases} \qquad w(x, 0) = \begin{cases} w_{\ell}, & x < 0, \\ w_{r}, & x > 0, \end{cases}$$

avec la formulation faible de

$$\theta_{-}(w(0^{-},t)) = \theta_{+}(w(0^{+},t)), \quad t > 0.$$

Remarque :

Dans les cas de non-unicité, la mise en œuvre numérique témoigne de la sensibilité de la solution capturée au schéma choisi.

PhD Defense

Nous proposons d'ajouter au modèle de couplage une « structure d'interface »

- suffisamment enrichissante pour assurer un problème global mathématiquement bien posé/mieux posé.
- suffisamment souple pour envisager de prendre en compte a posteriori des considérations physiques discriminantes (dissipation d'entropie à l'interface, relation cinétique)
- implémentable numériquement

Nous proposons d'ajouter au modèle de couplage une « structure d'interface »

- suffisamment enrichissante pour assurer un problème global mathématiquement bien posé/mieux posé.
- suffisamment souple pour envisager de prendre en compte a posteriori des considérations physiques discriminantes (dissipation d'entropie à l'interface, relation cinétique)
- implémentable numériquement

Deux travaux complémentaires dans cette voie :

- Modèle d'interface mince et analyse de la résonance retour à une régularisation parabolique du problème en considération.
- Modèle d'interface épaisse (zone tampon) et mise en œuvre numérique

Équations hyperboliques non-linéaires

2 Couplage de systèmes hyperboliques

Analyse mathématique du couplage non-conservatif

- Formulation augmentée du couplage
- Analyse du couplage résonnant par la méthode de DAFERMOS
- Profil d'interface des solutions RIEMANN-DAFERMOS
- L'exemple quadratique

4 Modèle d'interface épaisse et schéma équilibre

6 Conclusions et perspectives

Inconnue $u \in \mathbb{R}^N$, traité ici pour une transmission en u

$$u(0^{-},t) = u(0^{+},t)$$

$$\partial_{t}u + \partial_{x}f_{-}(u) = 0$$

$$\partial_{t}u + \partial_{x}f_{+}(u) = 0$$

$$\partial_{t}u + \partial_{x}f_{+}(u) = 0$$

$$\partial_{t}u + A_{1}(u,v)\partial_{x}u = 0,$$

$$\partial_{t}v = 0,$$

$$x \in \mathbb{R}, t \ge 0.$$

Fonction de couleur : exemple :

$$v(x,0) = \begin{cases} 1, & x > 0, \\ -1, & x < 0. \end{cases}$$

$$A_1(u,v) = \frac{1-v}{2} \nabla f_-(u) + \frac{1+v}{2} \nabla f_+(u), \mathbb{R} - \text{diagonalisable.}$$

Propriétés :

Système global hyperbolique non-conservatif,

Système en *u* de taille *N* strictement hyperbolique

Système en (u, v) de taille N + 1 : perte d'hyperbolicité

 $\lambda = 0$ est valeur propre multiple si $A_1(u, v)$ n'est pas inversible

(Manifestation de la résonance à l'interface).

Hors de la résonance, les composantes de *u* sont des invariants de RIEMANN pour les ondes de vitesse nulle.

ANALYSE DU COUPLAGE RÉSONNANT PAR LA MÉTHODE DE DAFERMOS

Régularisation parabolique de DAFERMOS : étude des solutions autosemblables en temps grand

Système augmenté régularisé

$$\partial_t u^{\epsilon} + A_1(u^{\epsilon}, v^{\epsilon}) \partial_x u^{\epsilon} = \epsilon t \, \partial_x \Big(B_0(u^{\epsilon}, v^{\epsilon}) \partial_x u^{\epsilon} \Big), \\ \partial_t v^{\epsilon} = \epsilon^2 t \, \partial_{xx} v^{\epsilon}.$$

ANALYSE DU COUPLAGE RÉSONNANT PAR LA MÉTHODE DE DAFERMOS

Régularisation parabolique de DAFERMOS : étude des solutions autosemblables en temps grand

Système augmenté régularisé

$$\partial_t u^{\epsilon} + A_1(u^{\epsilon}, v^{\epsilon}) \partial_x u^{\epsilon} = \epsilon t \, \partial_x (B_0(u^{\epsilon}, v^{\epsilon}) \partial_x u^{\epsilon}),$$
$$\partial_t v^{\epsilon} = \epsilon^2 t \, \partial_{xx} v^{\epsilon}.$$

Théorème d'existence (Воитім, Coquel, LEFLOCH)

Sous des hypothèses de proximité des données, le problème de RIEMANN pour ce système admet une solution u^{ϵ} , qui converge simplement vers u à variation bornée, autosemblable, solution entropique (sur chaque demi-espace) de

$$\begin{cases} \partial_t u + \partial_x f_-(u) = 0, & x < 0, \ t > 0, \\ \partial_t u + \partial_x f_+(u) = 0, & x > 0, \ t > 0. \end{cases}$$

Cas système $u \in \mathbb{R}^N$, pour des couplages généraux θ_{\pm} suffisamment proches.

Principe de démonstration : Théorème de point fixe

Représentation de la solution sur une base héritée de l'hyperbolicité du système en *u* Contrôle des coefficients d'interactions entre les ondes élémentaires qui constituent la solution Contrôle des coefficients d'interactions avec l'onde résonnante

ANALYSE DU COUPLAGE RÉSONNANT PAR LA MÉTHODE DE DAFERMOS

Régularisation parabolique de DAFERMOS : étude des solutions autosemblables en temps grand

Système augmenté régularisé

$$\partial_t u^{\epsilon} + A_1(u^{\epsilon}, v^{\epsilon}) \partial_x u^{\epsilon} = \epsilon t \, \partial_x (B_0(u^{\epsilon}, v^{\epsilon}) \partial_x u^{\epsilon}),$$
$$\partial_t v^{\epsilon} = \epsilon^2 t \, \partial_{xx} v^{\epsilon}.$$

Théorème d'existence (BOUTIN, COQUEL, LEFLOCH)

Sous des hypothèses de proximité des données, le problème de RIEMANN pour ce système admet une solution u^{ϵ} , qui converge simplement vers u à variation bornée, autosemblable, solution entropique (sur chaque demi-espace) de

$$\begin{cases} \partial_t u + \partial_x f_-(u) = 0, & x < 0, \ t > 0, \\ \partial_t u + \partial_x f_+(u) = 0, & x > 0, \ t > 0. \end{cases}$$

Cas système $u \in \mathbb{R}^N$, pour des couplages généraux θ_{\pm} suffisamment proches.

Principe de démonstration : Théorème de point fixe

Représentation de la solution sur une base héritée de l'hyperbolicité du système en *u* Contrôle des coefficients d'interactions entre les ondes élémentaires qui constituent la solution Contrôle des coefficients d'interactions avec l'onde résonnante

Qu'en est-il des traces à l'interface?

-	-	
к	Rc	vi itin
ъ.		uuni

Principe de renormalisation de la solution révélant la structure à l'interface.

$$U^{\epsilon}(y) = u^{\epsilon}(\epsilon y)$$
 et $V^{\epsilon}(y) = v^{\epsilon}(\epsilon y)$.

PROFIL STRUCTUREL DE L'INTERFACE

Résultat obtenu dans le cas scalaire $u \in \mathbb{R}$ par un procédé constructif :

 $\exists U \in C^2(\mathbb{R})$ avec des limites aux infinis $U_{-\infty}$ et $U_{+\infty}$ t.q.

```
\min(u_{\ell}, u_r) \leq U_{\pm\infty} \leq \max(u_{\ell}, u_r).
```

Équation de profil visqueux

 $A_1(U, V)U_y = (B_0(U, V)U_y)_y,$

Chocs stationnaires de part de d'autre de l'interface $f_{-}(u(0^{-})) = f_{-}(U_{-\infty}), \quad q_{-}(u(0^{-})) \ge q_{-}(U_{-\infty}),$ $f_{+}(U_{+\infty}) = f_{+}(u(0^{+})), \quad q_{+}(U_{+\infty}) \ge q_{+}(u(0^{+})).$

Si de plus $f'_{-}(U_{-\infty}) < 0$ ou $f'_{+}(U_{+\infty}) > 0$, alors U est constante et $U_{-\infty} = U_{+\infty}$.

L'EXEMPLE QUADRATIQUE : SOLUTIONS SÉLECTIONNÉES

 $f_L(u) = u^2/2$ $f_R(u) = (u - c)^2/2$ avec c = -1

Remarques :

Non-unicité dans certains domaines

Les solutions à deux ondes ont un état intermédiaire bien déterminé (après analyse complémentaire par une mé- $u_r = c/2$ thode de Laplace).

Au plus 4 solutions

Conclusion :

L'approche visqueuse a sélectionné certaines solutions parmi toutes celles satisfaisant à la condition de couplage.

Pourquoi plusieurs solutions ? Interprétation du problème de Riemann Cas résonnants.

Équations hyperboliques non-linéaires

2 Couplage de systèmes hyperboliques

Analyse mathématique du couplage non-conservatif

Modèle d'interface épaisse et schéma équilibre

- Modèle d'interface épaisse
- Schéma équilibre multidimensionnel
- Résultats numériques

Conclusions et perspectives

MODÈLE D'INTERFACE ÉPAISSE

$$\frac{\partial_t w + \partial_x f_-(w) = 0}{v = -1} \quad \frac{\partial_t w + \partial_x f_+(w) = 0}{v = 1} \quad x = 0$$

_

MODÈLE D'INTERFACE ÉPAISSE

Le couplage par état $\theta_{-}(w(0^{-}, t)) = \theta_{+}(w(0^{+}, t))$ est ici restitué sous la forme "les états à *u* constant sont stationnaires", où

$$u = C_0(w, v), \quad C_0(w, \pm 1) = \theta_{\pm}(w),$$

Modèle d'interface épaisse

$$\partial_t w + \partial_x f(w, v) = \partial_v f(w, v) \partial_x v.$$
 (1)

MODÈLE D'INTERFACE ÉPAISSE

Le couplage par état $\theta_{-}(w(0^{-}, t)) = \theta_{+}(w(0^{+}, t))$ est ici restitué sous la forme "les états à *u* constant sont stationnaires", où

$$u = C_0(w, v), \quad C_0(w, \pm 1) = \theta_{\pm}(w),$$

Modèle d'interface épaisse

$$\partial_t w + \partial_x f(w, v) = \partial_v f(w, v) \partial_x v.$$
 (1)

Théorème à la Kružkov non-homogène avec terme source lipschitzien

Soit une à de CAUCHY $w_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ et $v \in W^{2,\infty}(\mathbb{R})$, alors

 $\exists ! w \in L^{\infty}(\mathbb{R}_+, L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R}))$ solution « entropique » de (1).

B. Boutin

 $\partial_t w + \partial_x h(w, x) = S(w, x)$

 $\partial_t w + \partial_x h(w, x) = S(w, x)$

27/11/09

 $\partial_t w + \partial_x h(w, x) = S(w, x)$

Evolution en temps et projection :

$$w_{j}^{n+1} = w_{j}^{n} - \frac{\Delta t}{\Delta x} \left(H_{j+1/2}^{n} - H_{j-1/2}^{n} \right) - \frac{\Delta t}{\Delta x} \left(h(w_{j-1/2+}^{n}, v_{j-1/2}) - h(w_{j+1/2-}^{n}, v_{j+1/2}) \right)$$

Evolution en temps et projection :

$$w_{j}^{n+1} = w_{j}^{n} - \frac{\Delta t}{\Delta x} \left(H_{j+1/2}^{n} - H_{j-1/2}^{n} \right) - \frac{\Delta t}{\Delta x} \left(h(w_{j-1/2+}^{n}, v_{j-1/2}) - h(w_{j+1/2-}^{n}, v_{j+1/2}) \right)$$

CONVERGENCE DU SCHÉMA

Propriété équilibre / Couplage

Une solution numérique w_i^0 telle que $u_i^0 := C_0(w_i^0, v_i) = cste$ est stationnaire.

Théorème de convergence du schéma 1D (BOUTIN, COQUEL, LEFLOCH)

La solution numérique converge vers l'unique solution Kružkov de

 $\partial_t w + \partial_x h(w, x) = S(w, x).$

Propriété équilibre / Couplage

Une solution numérique w_i^0 telle que $u_i^0 := C_0(w_i^0, v_j) = cste$ est stationnaire.

Théorème de convergence du schéma 1D (BOUTIN, COQUEL, LEFLOCH)

La solution numérique converge vers l'unique solution Kružkov de

$$\partial_t w + \partial_x h(w, x) = S(w, x).$$

La preuve :

Stabilité L^{∞} : (sous CFL 1/2) min_k $u_k^0 \le u_i^n \le \max_k u_k^0$, $\forall n \in \mathbb{N}, j \in \mathbb{Z}$.

Consistance avec les inégalités d'entropie associées à : $\partial_t w + \partial_x h(w, x) = S(w, x)$

Pas d'estimation en variation totale (à cause des reconstructions)

Estimation faible sur les dérivées discrètes

Passage à la limite au sens des solutions à valeurs mesures entropiques de DiPerna

Limite au sens des mesures d'Young = solution Kružkov, par unicité des solutions à valeurs mesures entropi

Extension du schéma au cas multiD :

L + 1 domaines (géométrie, flux, fonction de couplage) de \mathbb{R}^d Fonction couleur vectorielle : $v(x) \in \mathbb{R}^L$ Possible recouvrement des domaines Étape de reconstruction effectuée via un maillage « dual » \mathcal{T}_h^* Hypothèse de non-dégénérescence du maillage.

Théorème de convergence du schéma multiD (Воитім, Соquel, LeFloch)

La solution numérique converge vers l'unique solution Kružkov de

$$\partial_t w + \partial_x h(w, x) = S(w, x).$$

B. Boutin

PhD Defense

27/11/09

RÉSULTATS NUMÉRIQUES (1) - CAS RÉSONNANTS EN 1D

Interfaces

Solutions correspondantes (N = 1000)

27/11/09

Configuration géométrique :

$$\partial_t w + \partial_x f_i(w) = 0, \quad x \in \mathcal{D}_i, \ i = 0$$

$$f_0(w) = w^2/2\binom{1}{0},$$

$$\theta_i(w(x^i,t)) = \theta_j(w(x^j,t)), \quad i \neq j.$$

Configuration géométrique :

$$\partial_t w + \partial_x f_i(w) = 0, \quad x \in \mathcal{D}_i, \ i = 0, 1$$

$$f_0(w) = w^2/2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \theta_0(w) = w,$$

$$f_1(w) = w^2/2 \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}, \qquad \theta_1(w) = w/2,$$

$$\theta_i(w(x^i,t)) = \theta_j(w(x^j,t)), \quad i \neq j.$$

Configuration géométrique :

 $\partial_t w + \partial_x f_i(w) = 0, \quad x \in \mathcal{D}_i, \ i = 0, 1, 2.$

$$f_{0}(w) = w^{2}/2 {\binom{1}{0}}, \qquad \theta_{0}(w) = w,$$

$$f_{1}(w) = w^{2}/2 {\binom{0.5}{0}}, \qquad \theta_{1}(w) = w/2,$$

$$f_{2}(w) = w^{2}/2 {\binom{0}{1}}, \qquad \theta_{2}(w) = w/3.$$

$$\theta_i(w(x^i,t)) = \theta_j(w(x^j,t)), \quad i \neq j.$$

RÉSULTATS NUMÉRIQUES (2) - CAS NON-RÉSONANT EN MULTI-D

Test réalisé avec 200×200 mailles cartésiennes sur le rectangle $[-1, 1]^2$

click here

- Équations hyperboliques non-linéaires
- 2 Couplage de systèmes hyperboliques
- Analyse mathématique du couplage non-conservatif
- Modèle d'interface épaisse et schéma équilibre
- 5 Conclusions et perspectives

CONCLUSIONS ET PERSPECTIVES

Solutions non-classiques :

- Schéma de reconstruction efficace pour des flux scalaires concave-convexes généraux.
- X Preuve de convergence (schéma « entropique » , propriété TVB)
- X Extension au cas système (elastodynamique non-linéaire)

Formulation ensembliste de la relation de couplage :

 $\begin{cases} u(0^{-},t) \in O_{-}(u(0^{+},t)), \\ u(0^{+},t) \in O_{+}(u(0^{-},t)). \end{cases}$

Résultat d'existence d'une solution au problème de RIEMANN couplé dans le cas scalaire 1D pour des flux généraux.

✓ Possible non-unicité des solutions confirmée numériquement.

Système augmenté :

$$\begin{cases} A_0(u,v)\partial_t u + A_1(u,v)\partial_x u = 0, \\ \partial_t v = 0, \end{cases} \quad u \in \mathbb{R}^N, \ x \in \mathbb{R}, \ t \ge 0. \end{cases}$$

Analyse par la régularisation de DAFERMOS pour un critère de sélection et une étude de stabilité des solutions du problème de RIEMANN couplé

Non-unicité réduite des solutions après dégagement d'un critère sélectif de type profil visqueux à l'interface.

Modèle d'interface épaisse :

$$\partial_t w + \partial_x f(w, v) = \partial_v f(w, v) \partial_x v, \qquad w \in \mathbb{R}, \ x \in \mathbb{R}^d, \ t \ge 0.$$

Problème bien posé.

- ✓ Schéma de volumes finis de type "well-balanced" conservant les équilibres du couplage.
- X Sensibilité des solutions à la forme d'interface choisie.