

Melt-rock interactions and melt-assisted deformation in the Lherz peridodite, with implications for the structural, chemical and isotopic evolution of the lithospheric mantle

Véronique Le Roux

▶ To cite this version:

Véronique Le Roux. Melt-rock interactions and melt-assisted deformation in the Lherz peridodite, with implications for the structural, chemical and isotopic evolution of the lithospheric mantle. Geochemistry. Université Montpellier 2, 2008. English. NNT: . tel-00431325

HAL Id: tel-00431325 https://theses.hal.science/tel-00431325

Submitted on 12 Nov 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITÉ MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC

<u>THÈSE</u>

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ MONTPELLIER II

Discipline : Structure et évolution de la Terre et des autres planètes École Doctorale : SIBAGHE

Présentée et soutenue publiquement

Par

VÉRONIQUE LE ROUX

Le 7 novembre 2008

MELT-ROCK INTERACTIONS AND MELT-ASSISTED DEFORMATION IN THE LHERZ PERIDOTITE, WITH IMPLICATIONS FOR THE STRUCTURAL, CHEMICAL AND ISOTOPIC EVOLUTION OF THE LITHOSPHERIC MANTLE

JURY

M. Jean-Louis Bodinier M. Alain Vauchez Mme Suzanne Y. O'Reilly M. Michel Grégoire M. Ben Holtzman Mme Andréa Tommasi M. Francis Albarède M. Jean-Pierre Lorand Directeur de Recherche (CNRS UMII) Maître de Conférences (UM II) Professeur (Macquarie University) Chargé de Recherche (Obs. Midi. Pyr.) Docteur (Columbia University) Directeur de Recherche (CNRS UMII) Professeur (ENS Lyon) Directeur de Recherche (Muséum, Paris) Directeur de thèse Co-directeur de thèse Co-directrice de thèse Rapporteur Rapporteur Examinateur Examinateur Examinateur

The most exciting phrase to hear in science, the one that heralds new discoveries, is not "Eureka!" (I've found it!), but "That's funny..."

TABLE OF CONTENTS

ABSTRACT	<u>i</u>
DECLARATION	ii
ACKNOWLEDGMENTS	iii
CHAPTER I: INTRODUCTION	1
1. GENERAL INTRODUCTION	1
2. GEOLOGICAL SETTING OF THE LHERZ MASSIF	4
2.1 LITHOLOGIES	6
2.2 SAMPLING	9
3. PRESENTATION OF THE CHAPTERS	10
CHAPTER II:	13

THE LHERZ SPINEL LHERZOLITE: REFERTILIZED RATHER THAN PRISTINE	
MANTLE	13
1. INTRODUCTION	15
2. GEOLOGICAL BACKGROUND	17
3. STRUCTURAL AND MICROSTRUCTURAL DATA	19
4. GEOCHEMICAL DATA	21
5. DISCUSSION	24
5.1. STRUCTURAL RELATIONSHIPS BETWEEN HARZBURGITIC PROTOLITH AND SECONDARY	
LHERZOLITES	24
5.2. FORMATION OF THE LHERZOLITES BY REFERTILIZATION REACTION	25
5.3. REFERTILIZATION AND ISOTOPIC VARIATIONS	28
5.4. REFERTILIZATION FRONTS, A MOVING LITHOSPHERE-ASTHENOSPHERE BOUNDARY?	29
6. CONCLUSIONS	30

CHAPTER III:

33

FEEDBACK BETWEEN MELT PERCOLATION AND DEFORMATION IN AN EXHUMEDLITHOSPHERE-ASTHENOSPHERE BOUNDARY33

1. INTRODUCTION	35
2. THE LHERZ PERIDOTITIC MASSIF (PYRENEES, FRANCE)	37
3. EVOLUTION OF CPO THROUGH THE LHERZ MASSIF	41
3.1. SAMPLING AND METHODS	41
3.2. WEAKENING OF CPO ASSOCIATED WITH THE REFERTILIZATION PROCESS	44
4. DISCUSSION	48
4.1. EVOLUTION OF PERCOLATION-DEFORMATION FEEDBACK MECHANISMS FROM HARZBURGITI	ES TO
LHERZOLITES	48
4.2. FORMATION OF A PERVASIVE WEBSTERITIC LAYERING IN REFERTILIZED LHERZOLITES	52

54
57
E
<u> </u>
59
60
62
63
6 7
EES 6/
68 71
/1
15
77
81
01
93
96
96
96 s for
96 s for 97
96 s for 97
96 s for 97 118
96 s for 97 118 120
96 s for 97 118 120 127
96 97 97 118 120 127 138
96 97 118 120 127 138 142
96 97 118 120 127 138 142 144
96 97 97 118 120 127 138 142 144 146
96 97 118 120 127 138 142 144 146 147
96 97 118 120 127 138 142 144 146 147 148
96 97 118 120 127 138 142 144 146 147 148 152
96 97 97 118 120 127 138 142 144 146 147 148 152 154
96 97 97 118 120 127 138 142 144 146 147 148 152 154 155

ABSTRACT

Differentiation of the lithospheric mantle occurred principally through partial melting and extraction of basaltic melt. In this scheme, harzburgites are widely considered as refractory mantle residues left after extraction of a basaltic component, whereas fertile lherzolites are regarded as pristine mantle only weakly affected by partial melting. However, a part of tectonically-emplaced mantle rocks displays local evidence of melt percolation and have been ascribed to igneous refertilization of refractory peridotites. In this context, the present work re-investigates the nature of the Lherz spinel lherzolites (French Pyrenees), from the typelocality of lherzolites, described as a piece of preserved fertile mantle. Structural and geochemical data presented in this study show that the Lherz lherzolites are not pristine but formed through a refertilization reaction between MORB-like ascending partial melts and a depleted lithosphere from which the Lherz harzburgites are the remnants. As the type locality of lherzolites, the Lherz peridotites were partly used to infer the composition of the primitive upper mantle and these results may have important implications for the nature of the late veneer. Additionally, the analysis of crystal-preferred orientations (CPO) of minerals from Lherz peridotites highlight a strong feedback between percolation of basaltic melts and deformation under near-solidus conditions at the lithosphere-asthenosphere boundary, suggesting that refertilization may be a major process involved in the rejuvenation of the lithosphere. Variations in CPO patterns and intensity record the relative contribution of dislocation glide and diffusion processes, ruled by a balance between instantaneous melt fraction and local strain rate. These results also suggest that the pervasive websteritic layering that formed synchronous to the refertilized lherzolites may result from deformation-assisted melt segregation due to decreasing permeability in the system. Finally, this work investigated the effect of melt percolation on Hf, Nd and Sr isotopic variations. Isotope systematics of the Lherz peridotites shows that a strong isotopic decoupling may arise at the melt percolation front between depleted harzburgite and refertilized lherzolite. The one-dimensional modelling used shows that these decoupled signatures are generated by porous flow and governed by critical parameters such as the concentrations of the elements in the melt to the matrix, chemical diffusivities or efficiency of isotopic homogenization. We observe that, under certain circumstances, melt-rock interactions can generate enriched, "intraplate-like" isotopic signatures in the transition zone between upwelling partial melts and lithospheric mantle. These results suggest that a part of isotopic signatures of mantle-related rocks could be generated by diffusional processes associated with melt transport.

i

DECLARATION

This thesis is a cotutelle work carried out in University of Montpellier II, France, and in Macquarie University, Australia, over the period October 2005 to October 2008. I hereby declare that all data and interpretations presented in this thesis are my own work except for information cited from published or unpublished work of others that has been fully acknowledged. No part of this thesis has been submitted at any other university than Macquarie University.

A

Veronique Le Roux

1st of December 2008

Acknowledgments

This thesis results from the collaboration between Geosciences Montpellier (France) and GEMOC ARC National Key Centre (Australia). This work has been supported by INSU DYETI Program, University of Montpellier II, Macquarie University, ARC Discovery project grants, the French Ministry of Research and 'Bourses Lavoisier cotutelle'.

I want to thank all the people who have been implicated in my work during these three years, and particularly my official supervisors Jean-Louis Bodinier, Alain Vauchez and Suzanne O'Reilly. I am also grateful to Andrea Tommasi and Olivier Alard who were involved in some parts of my project.

Thanks a lot to the staff in Geosciences Montpellier (particularly Claude Merlet, Olivier Bruguier and Simone Pourtales) and in GEMOC ARC National Key Centre (particularly Peter Wieland and Norman Pearson) for their help on technical and analytical aspects.

Last but not least I want to thank all the PhD students, post-docs and researchers in Montpellier and in Sydney for the good moments that I spent in their company, and my family and my friends for their support.

I finally want to thank the jury who accepted to evaluate this work.

Remerciements

Par ces quelques lignes je tiens à remercier les principales personnes qui ont contribué à ce travail de recherche, et ceux qui m'ont soutenue et encouragée durant ces trois années.

Je pense tout d'abord à **Jean-Louis Bodinier**. Je le remercie pour son enseignement, pour m'avoir accordé sa confiance en me permettant de réaliser ce travail, et pour m'avoir laissé une grande liberté d'expression.

Je remercie très chaleureusement **Alain Vauchez** et **Andréa Tommasi** pour leurs conseils, leur efficacité et leur soutien. La confiance qu'ils m'ont accordée au fil du temps a été une vraie récompense en soi.

Pour nos discussions et pour son aide, je tiens à remercier **Olivier Alard**, toujours d'une grande disponibilité.

Je remercie également techniciens, ingénieurs et secrétaires. Je pense particulièrement à **Christophe Nevado**, **Doriane Delmas**, **Olivier Bruguier**, **Simone Pourtalès** et **Claude Merlet**. Je repense également à ces moments de réconfort apportés par 'maman' **Bernadette Marie** et au sourire radieux de **Marie-France Roch**.

La présence dans le laboratoire de Marion Drouin, Andreas Wüstefeld et Riccardo Vassallo a été un soutien énorme au quotidien et ils savent à quel point je tiens à eux. Je pense également à Nicolas Le Moigne, Sébastien Van Gorp, Mary-Alix Kaczmarek, Stéphanie Bordelais et Caroline Dewonck pour tous les bons moments partagés au cours de cette période montpelliéraine. Bien entendu un grand merci à tous les thésards et ingénieurs de Géosciences (Fab, Lyd, Flo, les Mickaël, Eric, Tom, Titou, Bruno etc.) pour avoir partagé les repas

gastronomiques du RU et les diverses soirées ensemble. Un merci à Vio pour ces moments de cobureau bien sympas...

Par la même occasion, il m'est indispensable de remercier **Jean-Marie Dautria** et **Michel Lopez**, avec qui j'ai partagé avec grand plaisir les principales heures d'enseignement de mon monitorat.

Je n'oublierai pas non plus les Ariégeois, qui m'ont accueillie lors de mes missions terrain, je pense particulièrement à **Pascale & Camille Coutanceau** et à **Catherine & Denis Mange**, les tenanciers de la mythique 'Auberge du Gypaète Barbu' (à Biert, pour la pub).

Mon séjour en Australie aura duré un peu plus de 6 mois, durant lesquels j'ai pu m'initier aux joies de la géochimie isotopique et apprécier l' « Australian way of life ». Je remercie ceux qui m'ont aidé financièrement à savoir le laboratoire GEMOC ARC National Key Centre en les personnes de **Suzanne O'Reilly** et **Bill Griffin**, les Bourses Lavoisier Cotutelle et le Ministère de la Recherche. Je remercie Sue et Bill pour leur accueil et pour m'avoir laissé une grande liberté d'action sur les machines. Pour tous les aspects techniques de mon travail, j'ai une grande reconnaissance envers **Peter Wieland** qui m'a initiée à la chimie des isotopes en salle blanche. Je remercie très amicalement **Norman Pearson** pour son aide sur les aspects analytiques et pour sa gentillesse. Pour avoir partagé la bière du vendredi soir et de nombreuses soirées poker ou BBQ, je remercie **Lee & Cara Donnelly**, **Alan & Melissa Kobussen**, **Weiqiang Li**, **Marek Locmelis**, **Olivia Wang**. Sans oublier la « french connection » et particulièrement **Alex Corgne** pour son aide au tout début de mon séjour et **June Chevet** pour sa bonne humeur permanente.

Je veux remercier mes amis de Nantes, et particulièrement Maud Rajeau et Elsa Jourd'heuil pour leur soutien. Un énorme merci à mes amis des années fac de Nantes, qui m'ont permis de me 'couper' des préoccupations de ma thèse: Benjamin Bonnefoy, Aurélien Delaunay, Hélène & Sébastien Dulais, Antoine Lucas, Sabrina Havard, Samuel Toucanne.

Egalement issu de la promo de Nantes et oreille attentive de tous les instants, je me dois de faire un special highlight sur **François Deschamps**, un ami inclassable avec qui j'ai dû battre le record du monde du papotage au téléphone.

Je remercie évidemment mes grands-parents, **Guéna**, mes grands frères **Stéphane** et **Damien**, ainsi que mes parents pour leurs encouragements à distance et leur soutien lorsque j'en ai eu besoin.

Finally, I want to thank the man who shares my life and supports me whatever it happens.

Je tiens par ailleurs à remercier mon jury qui a accepté d'évaluer ce travail.

Chapter I: Introduction

1. General Introduction

Mantle rocks that outcrop at the Earth's surface provide a direct source of information on the composition and evolution of the Earth's upper mantle. Until recently, the fertile lherzolites were generally regarded as pristine mantle, only weakly affected by partial melting (Frey et al., 1985; McDonough and Frey, 1989). Therefore, they have been used to infer the composition of the Earth's primitive mantle, i.e. the Earth's mantle before the extraction of the crust (Goldschmidt, 1929; Jagoutz et al., 1979; McDonough and Sun, 1995; Palme and O'Neill, 2003; Ringwood, 1975). Together with chondrites, the Lherz lherzolites have therefore contributed to the debate on Earth composition and differentiation.

However, some of the tectonically-emplaced mantle rocks are actually ascribed to igneous refertilization of refractory peridotites rather than to partial melting (Elthon, 1992; Müntener et al., 2004; Nicolas and Dupuy, 1984; Rampone et al., 1994). The refertilization process is a process whereby refractory mantle rocks previously depleted in basaltic components - during one or several melt extraction events - are re-enriched (re-fertilized) by basaltic melt percolation (Menzies et al., 1987). The refertilization process may either be viewed as melt entrapment followed by solidification (i.e. "impregnation") or as a melt-rock reaction at decreasing melt mass between peridotite and percolating melt. The refertilization may also be considered as a form of mantle metasomatism. However, the word "metasomatism" is more widely used to define mantle processes involving strong chemical disequilibrium between melt and fluids, marked by a selective enrichment in certain major or trace elements like Fe, Ti (Menzies, 1983), LILE, and LREE (Dawson, 1984), or in accessory minerals such as amphibole, mica or rutile (Harte, 1983).

Textural or chemical evidence for local refertilization has been mainly observed in plagioclase peridotites from ophiolitic (Barth et al., 2003; Dijkstra et al., 2001; Takazawa et al., 2003), abyssal (Elthon, 1992; Luguet et al., 2001; Paulick et al., 2006; Seyler et al., 2001) and orogenic mantle suites (Müntener et al., 2004; Nicolas and Dupuy, 1984; Piccardo et al., 2004; Rampone et al., 1997; Rampone et al., 1994; Saal et al., 2001). Refertilization was less commonly observed in spinel and garnet peridotites. In the Ronda massif (Spain), a significant part of the spinel lherzolites has been ascribed to the refertilization of subcontinental lithosphere by kilometer-scale porous melt flow (Garrido and Bodinier, 1999; Lenoir et al., 2001; Van der Wal and Bodinier, 1996). Rampone et al. (2008) also recently showed that spinel and plagioclase peridotites from the Mt. Maggiore (Corsica) underwent melt-rock reaction and melt impregnation, respectively, depending on the lithospheric depths at which interaction occurred. Likewise, garnet peridotites from the Western Gneiss Region (Norway) were recently reinterpreted as formed by refertilization of a dunitic Archean lithospheric mantle (Beyer et al., 2004; Beyer et al., 2006). In addition to tectonicallyemplaced mantle rocks, an increasing set of observations on mantle xenoliths further strengthen the hypothesis that the refertilization process may be widespread in the mantle (Carlson et al., 2004; Downes et al., 2006; Tang et al., 2008).

In the large Ronda massif (300 km2), the refertilization is associated to a melting front, that led to asthenospherization and attenuation of the lithospheric mantle (Garrido and Bodinier, 1999; Vauchez and Garrido 2001; Lenoir et al., 2001; Van der Wal and Bodinier, 1996). Likewise, the refertilization in Lanzo has been ascribed to the 'asthenospherization' of subcontinental lithospheric mantle by upwelling asthenospheric melts during the early stages of oceanisation (Müntener et al., 2004). Some authors have suggested that the presence of melt can weaken the lower lithosphere and accommodate its removal by mantle convection, initiating feedback processes and involving further thermo-chemical erosion.

The coexistence of depleted and fertile mantle rocks can be explained by different processes such as partial melting (e.g. Frey et al., 1985), melt-rock reactions (e.g. Downes 1991; Kelemen, 1995) or convective mingling (Bodinier and Godard, 2003). The Lherz massif, type-locality of lherzolites, has been described as a piece of preserved fertile mantle. However, the structural and chemical constraints provided by previous studies were insufficient to assess the mode of formation of the lherzolites-harzburgites alternations. The present work aims to re-investigate the Lherz massif peridotites, located in the French Pyrenees. At the end of 18th century, De La Méthérie proposed the term "lherzolite", though he did not know at that time the precise mineralogical composition of the rock. The Lherz lherzolites were then successively investigated by Lacroix (1917), Ave Lallemant (1967) and Conquéré (1978). For many decades the massif has been an inspiring source of debates, notably concerning melt processes in the mantle (Bodinier et al., 1988; Bodinier et al., 1987a; Bodinier et al., 2004; Bodinier et al., 1990; Burnham et al., 1998; Chaussidon and Lorand, 1990; Deloule et al., 1991; Downes et al., 1991; Fabriès et al., 1998; Fabriès et al., 1991; Hamelin and Allègre, 1988; Lorand, 1989; Lorand, 1991; Loubet and Allègre, 1982; McPherson et al., 1996; Mukasa et al., 1991; Pattou et al., 1996; Polvé and Allègre, 1980; Reisberg and Lorand, 1995; Woodland et al., 1996; Zanetti et al., 1996). So far, the Lherz lherzolites were traditionally considered as pristine rocks, close to the primitive mantle. The pristine origin of the lherzolites was commonly accepted and the chemical trends from lherzolites to harzburgites were generally attributed to partial melting. However in the Lherz massif, fertile lherzolites and depleted harzburgites are intermingled at the scale of tens of meters (Avé Lallemant, 1967; Conquéré, 1978; Conquéré and Fabriès, 1984; Fabriès et al., 1991) but show distinct isotopic signatures that are not consistent with a simple partial melting process (Bodinier and Godard, 2003; Downes et al., 1991). Downes et al. (1991) proposed that the harzburgites were selectively percolated by enriched melts whereas Bodinier and Godard (2003) interpreted the harzburgites as lithospheric strips incompletely mixed with pristine asthenospheric lherzolites during thermo-mechanical erosion of the lithosphere by upwelling mantle. However, previous structural maps of the Lherz massif did not detail the inner deformation structures of harzburgites and lherzolites (Avé Lallemant, 1967; Conquéré, 1978). Thus to examine the different hypotheses, the first step of this study consisted in a detailed structural mapping of the Lherz ultramafic complex. This was the starting point of this work.

2. Geological setting of the Lherz massif

The Pyrenean peridotite massifs occur as restricted bodies scattered across Mesozoic sediments along the North Pyrenean Fault (NPF; Fig. 1). More than 40 peridotite massifs have been listed in the Pyrenees, with dimensions varying from several m² to 1 km² for the Lherz massif (Fabriès et al., 1991; Monchoux, 1971). Additionally, some large massifs (2 x 3 km) crop out farther to the west (Fabriès et al., 1998). The Pyrenean orogenic peridotites are distributed in seven groups. To the east, the Salvezines, Prades-Bestiac, Vicdessos-Lherz, and Castillon groups form the eastern Pyrenean massifs. The Tuc Desse-Arguenos, Avezac-Moncaut and Turon de Técouère-Col d'Urdach groups form the central and western Pyrenean peridotite massifs

Fig. 1: Distribution of the Pyrenean peridotite bodies along the North Pyrenean Fault, from Lagabrielle et Bodinier (2008) after Choukroune (1978). 1: Oligocene and post-Oligocene sediments; 2: Mesozoic and Eocene sediments; 3: Paleozoic basement; 4: area of LP-HT Pyrenean metamorphism; 5: lherzolite bodies; 6: granulites; 7: main thrusts external zones; 8: North Pyrenean Fault.

Pyrenean peridotites are generally embedded in sedimentary basins made of voluminous detrital formations (flyschs) related to tectonic instabilities and sedimentary transport. The North Pyrenean Metamorphic Zone (NPMZ) is a narrow (0-5 km wide) band of Mesozoic carbonate sediments of Jurassic to Aptian age (Fig. 3) affected by a low pressure – high temperature metamorphism (Golberg and Leyreloup, 1990) dated between 110 and 85 Ma, with a peak at 95Ma (Albarède and Michard-Vitrac, 1978; Golberg and Maluski, 1988; Golberg et al., 1986; Montigny et al., 1986). The NPMZ also contains lenses of granulites (Azambre and Ravier, 1978; Vielzeuf and Kornprobst, 1984), breccias, and granulated agglomerates that contain a large variety of metamorphic minerals such as kornerupine, sapphirine, corundum, phlogopite or cordierite (Monchoux, 1972).

Fig. 2: Simplified geological map of the Aulus-Lherz region redrawn by Lagabrielle and Bodinier (2008) after Vielzeuf and Kornprobst (1984) and Colchen et al. (1997). Thick dotted line delineates the region of polymictic debris-flow deposits (Lagabrielle and Bodinier, 2008). Hatched area represents the region north of the main ultramafic bodies, where strongly deformed Mesozoic sediments are exposed, and where rare sedimentary clastic deposits have been observed.

Exhumation of Pyrenean peridotites is usually ascribed to lithospheric thinning associated with successive opening and closing of elongated, asymmetrical pull-apart basins in response to the dominantly transcurrent motion of the Iberian plate relative to the European plate in the mid-Cretaceous (Choukroune and Mattauer, 1978; Debroas, 1987; Vielzeuf and Kornprobst, 1984).

The crustal emplacement of the central and eastern peridotite massifs has been dated at 110-105 by Ar-Ar and Sm-Nd methods on amphiboles and whole-rocks, respectively, from Lherz and Caussou (Henry et al., 1998) but is probably older (109-117 Ma) in the western Pyrenees (Fabriès et al., 1998). Previous models of emplacement suggested purely tectonic mechanisms such as solid intrusion of mantle rocks into the sediments (Minnigh et al., 1980; Vielzeuf and Kornprobst, 1984). On the other hand, Choukroune (1973), Fortané (1986) and more recently Lagabrielle and Bodinier (2008) proposed tectono-sedimentary models involving disintegration and transport of mantle rocks exhumed on the sea-floor (Fig. 4).

Fig. 3: Possible geological setting and mode of emplacement of the ultramafic bodies and associated clastic rocks (Lagabrielle and Bodinier, 2008). Blue: Jurassic platform carbonates; pink: continental crust; green: mantle; 1: detachment leaving late foliation in mantle rocks; 2: LT shear zone(s), cataclasites (c) and exhumation to seafloor; 3: late normal faulting, weathering and brecciation; 4: gravity sliding and sedimentary reworking.

Meter-scale low-temperature mylonitic bands also cross-cut the massif; they are more common at the borders and are probably related to the emplacement of the massif in the crust (Costa and Maluski, 1988).

2.1 Lithologies

The Pyrenean peridotite massifs are mostly composed of layered spinel lherzolites where the layering is defined by ubiquitous cm- to dm-thick parallel bands of websterite. The Pyrenean peridotites are equilibrated either in the Ariege subfacies (garnet in mafic layers) or in the Seiland subfacies (mafic layers devoid of garnet) defined by O'Hara (1967) and Obata (1980). Eastern and Central Pyrenean peridotites are equilibrated either in the Ariege or Seiland spinel subfacies. The Lherz massif peridotites are equilibrated in the Ariege spinel subfacies and show petrological and geochemical characteristics typical of sub-continental lithosphere: equilibration temperatures of 800-900°C (Fabriès et al., 1991); old osmium ages (Reisberg and Lorand, 1995); metasomatic features comparable to those observed in mantle xenoliths (Bodinier et al., 1988; Bodinier et al., 1990; Downes et al., 1991). Besides, they are never associated with large gabbro or pillow-lavas formations of MORB affinity suggesting that they do not represent typical oceanic lithosphere. Western Pyrenean peridotites are equilibrated in the Seiland spinel subfacies and locally show incipient recrystallization in the plagioclase stability field (Fabriès et al., 1998). They are also more serpentinized than the Eastern bodies (Fabriès et al., 1991). This suggests that the westernmost Pyrenean peridotites reached a very shallow level in oceanic basins. They are considered to be transitional between the Lherz peridotites, which represent the subcontinental mantle, and the ocean-continent transition peridotites generally equilibrated at lower pressure, higher temperature and more affected by serpentinization (e.g. Lanzo).

Fig. 4: Cartography of the lherzolites and harzburgites of the Lherz massif from Conquéré (1978).

The Lherz massif is mostly constituted of spinel peridotites (around 80% lherzolite and 20% harzburgite; Fig. 5). Harzburgites "bands" attain thicknesses up to some 20m (Avé Lallemant, 1967; Conquéré, 1978). The websteritic layering locally shows small,

asymmetrical and isoclinal folds but more open folds are observed, especially in thick pyroxenite layers which have a higher resistance to deformation (Fabriès et al., 1991).

Fig. 5: (a) small websteritic "disk-like" pockets in depleted harzburgites; (b) the size of the websteritic pockets increases when approaching the contact with lherzolites; (c) Cr-rich websteritic bands close to a harzburgite-lherzolite contact; (d) a harzburgite-lherzolite contact underlined by a thin websteritic banding; (e) pervasive websteritic layering in the lherzolites; (f) some websteritic bands may locally attain tens of centimeters; (g) amphibole-pyroxenite dykes; (h) hornblendite veins; (i) carbonate-peridotite breccias.

The Lherz ultramafic complex is cross-cut by a late generation of amphibole-pyroxenite dykes (Bodinier et al., 1987b; Conquéré, 1971; Vétil et al., 1988) considered as high-pressure – high-temperature crystal segregates from alkaline basalts that migrated through the Pyrenean lithospheric mantle in the Cretaceous (Bodinier et al., 1990; Fabriès et al., 1991; Golberg et al., 1986; Loubet and Allègre, 1982; Rossy et al., 1992) . Hornblendites veins ("lherzites") were also emplaced at a slightly later stage. They were ascribed to the segregation of volatile-rich, evolved melts after crystallization of anhydrous garnet pyroxenites from the alkaline basalt (Bodinier et al., 1988; Wilshire et al., 1980; Woodland et al., 1996).

2.2 Sampling

Fig. 6: (a) Map of the Lherz massif realized during this study (Le Roux et al., 2007) presenting the location of the harzburgites, lherzolites and websterites sampled during this study, and used for microstructural, petrophysical, geochemical and isotopic analyses; (b) detail of the section 1. The samples are part of the 05LA sampling series; (c) detail of the section 2. The grey samples are part of the 04LH sampling series; the white samples are part of the 06LI sampling series.

The Lherz peridotites have been sampled in different locations. Sampling restricted to the harzburgite-lherzolite contacts aim to observe small-scale variations whereas profiles along the massif provide information on larger-scale processes.

3. Presentation of the chapters

Following the introduction, the second chapter presents a combined structural and geochemical survey of the Lherz peridotites. The main conclusion of this chapter is that the lherzolites from the type-locality do not represent pristine asthenospheric material, as assumed in previous studies, but are secondary and formed through a refertilization process at the expense of an ancient harzburgitic protolith (Le Roux et al., 2007; published in EPSL).

In the last decade, the relationships between melt percolation and deformation have been studied mostly using an experimental approach. Based on the new model on the formation of the Lherz lherzolites developed in the second chapter, the Lherz massif has become an exceptional area to study interactions between percolation and deformation in mantle rocks of a natural system. Thus, chapter three develops the geodynamical implications of a refertilization episode, through a detailed microstructural and petrophysical study of the refertilized lherzolites. The main conclusion of this chapter is that the lherzolites record a feedback between melt percolation and deformation, leading to a contemporaneous localization of the deformation / percolation (Le Roux et al., 2008; published in EPSL). This feedback might play a significant role in the structuration of the lithospheric mantle.

Additionally, the consequences of magma transport on chemical/isotopic variations in the mantle are usually neglected. The third part of this work (fourth chapter) consists in a detailed investigation of Hf, Nd and Sr isotopic variations in the Lherz massif through a frozen melt percolation front materialized by the harzburgite-lherzolite contacts. The main conclusion of this chapter is that melt percolation through mantle rocks may produce transient isotopic signatures that do not reflect a simple mixing between the two source components. Thus, part

10

of mantle rocks isotopic variability could be generated by diffusional processes associated with melt transport rather than by mixing between individual reservoirs (Le Roux et al., 2008a; accepted to EPSL). Finally, the fifth chapter summarizes the main conclusions of this study, discusses some remaining, open questions and suggests work perspectives.

For reader's convenience, all references are compiled at the end of this manuscript. Details on the technical work are given at the beginning of supplementary material. Two published articles and a fourth article in preparation are also presented in this last section.

Chapter II:

The Lherz spinel lherzolite: refertilized rather than pristine mantle

Article published in Earth and Planetary Science Letters 259 (2007), 599-612.

V. Le Roux^{1,2}, J.-L. Bodinier¹, A. Tommasi¹, O. Alard¹, J.-M. Dautria¹, A. Vauchez¹, A.J.V.

Riches³

¹ Géosciences Montpellier, Université de Montpellier 2 and CNRS, Cc 060, Place E. Bataillon, 34095 Montpellier cedex 5 France

² GEMOC, Department of Earth & Planetary Sciences, Macquarie University NSW 2109 AUSTRALIA

³ The Open University, Department of Earth Sciences, Walton Hall, Milton Keynes, MK7 6AA UNITED KINGDOM

VLR's contribution in this paper: analyses, interpretations, writing.

Abstract

Differentiation of the Earth's mantle and formation of continental and oceanic crust occur principally through partial melting and extraction of basaltic melt. Among the mantle rocks occurring at the Earth's surface, as tectonically-emplaced massifs, abyssal peridotites or xenoliths, the harzburgites (<5% clinopyroxene) are widely considered as refractory mantle residues left after extraction of a basaltic component. In contrast, the most fertile lherzolites (≥15% clinopyroxene) are generally regarded as pristine mantle, only weakly affected by partial melting. In this paper we present new convergent structural and geochemical data from the Lherz massif, the type-locality of lherzolite, indicating that the lherzolites from Lherz do not represent pristine mantle. Detailed structural mapping clearly shows that the lherzolites are secondary rocks formed at the expense of the harzburgites. Variations of major, minor and trace elements through the harzburgite-lherzolite contacts indicate that the lherzolites were formed through a refertilization process involving interaction of refractory, lithospheric mantle with upwelling asthenospheric partial melts. Combined with previously published indications of refertilization in orogenic peridotites, our new observations in Lherz suggest that most lherzolite massifs represent secondary (refertilized) rather than pristine mantle. Together with geochemical data on mantle xenoliths, this indicates that melt transport and melt-rock reaction play a key role on the rejuvenation and erosion of the lithospheric mantle.

Keywords: Lherz; refertilization; melt-rock reaction; erosion of the lithospheric mantle

1. Introduction

Chemical variations observed in mantle rocks are classically ascribed to variable degrees of partial melting and melt extraction: the most fertile lherzolites ($\geq 15\%$ clinopyroxene) are interpreted as pristine mantle only weakly affected by partial harzburgites melting whereas (<5%) clinopyroxene) record high degrees of melt (Bodinier, 1988; Frey et al., extraction 1985). Together with chondritic meteorites, these fertile lherzolites were used to infer the composition of the Earth's primitive mantle (McDonough and Sun, 1995). In this scheme, tectonically-emplaced peridotites massifs equilibrated in the plagioclase (Lanzo, Italy (Bodinier, 1988; Boudier and Nicolas, 1977); Othris, Greece (Menzies and Allen, 1974); Horoman, Japan (Frey et al., 1991)), spinel (Ronda, Spain (Dickey Jr, 1970; Frey et al., 1985); Lherz, France (Bodinier et al., 1988); Ivrea, Italy (Hartmann and Wedephol, 1993)) and garnet fields (Western Gneiss Region, Norway (Carswell, 1968)) were widely considered as residual mantle containing sparse remnants of pristine material. However, an increasing set of observations shows that lherzolites may also form by combined processes of partial melting and igneous refertilization. Plagioclase lherzolites, in particular, are

interpreted as products of impregnation of previously depleted peridotites by percolating melts (Nicolas and Dupuy, 1984; Piccardo et al., 2004; Rampone et al., 1997; Rampone et al., 1994; Saal et al., 2001). Müntener et al. (2004) have ascribed the formation of plagioclase peridotites in western Alps and Apennines to a reaction between extending lithosphere from embryonic ocean basins and upwelling asthenospheric melts. Spinel lherzolites from the Ronda Massif (S Spain) have also been ascribed to refertilization of subcontinental lithosphere (Lenoir et al., 2001; Van der Wal and Bodinier, 1996). In Ronda, this process was coupled with thermal erosion and extensive melting of deeper lithospheric levels (Garrido and Bodinier, 1999; Lenoir et al., 2001). Finally, Beyer et al. (2006) recently interpreted garnet peridotites and pyroxenites from the Western Gneiss Region (Norway) as formed by refertilization of a dunitic Archean lithospheric mantle.

The Lherz Massif in the Central Pyrenees, France, which is the type-locality of lherzolite, shows a decametric-scale intermingling of highly refractory harzburgites and fertile spinel lherzolites. This km-scale orogenic peridotite is therefore a natural laboratory to study the relations between depleted and fertile mantle

Fig. 1: (a) Geological map of the Lherz peridotite massif showing anastomosed fertile lherzolites enclosing irregularly-shaped refractory harzburgite bodies. Foliation in harzburgites shows a constant N40-N60 orientation with a gentle southward dip, while lherzolite foliation and websterite layering show variable directions and a steep southward dip. Right insert: localization of the massif. (b) 3-D bloc diagram of the upper part of the massif made after the dips of websterite layering at the contact

rocks. We present here a detailed structural mapping of this massif combined with

petrophysical and geochemical (major and trace elements) analyses performed along

two distinct, 7-8m-long sections across harzburgite-lherzolite (11 contacts harzburgites and 8 lherzolites). Additionally, 2 harzburgites and 2 lherzolites collected away from the contacts (>20m) were studied for comparison. Our results provide a unique set of convergent structural and geochemical arguments indicating that the Lherz spinel lherzolites were formed by a refertilization reaction between a refractory harzburgiticdunitic protolith and ascending basaltic melts. Combined with previous studies on worldwide mantle rocks, these results allow us to discuss the extent of the refertilization process and its implications for the rejuvenation and erosion of the lithospheric mantle.

2. Geological background

Pyrenean orogenic peridotites The comprise about 40 distinct ultramafic bodies mainly composed of layered spinel lherzolites, with dimensions varying from a few m² to 1 km² in Lherz (Fabriès et al., 1991). Most massifs are spatially associated with crustal granulites (Azambre and Ravier, 1978; Vielzeuf and Kornprobst, 1984) and are embedded within carbonate rocks of Jurassic to Aptian age affected by a low pressure high temperature metamorphism (the 'North Pyrenean Metamorphic Zone') (Golberg and Leyreloup, 1990; Montigny et al., 1986).

Exhumation of mantle rocks is generally ascribed to transcurrent movement of the Iberian plate relative to Europe in the mid-Cretaceous, which resulted in crustal thinning associated with successive opening and closing of elongated, asymmetrical pullapart basins (Choukroune and Mattauer, 1978; Debroas, 1987).

Fig. 2: Print of the fossil harzburgitic foliation in harzburgites (Hz) close to the contact, cross-cut by a latter mm-scale websteritic layering (W) related to the refertilization. The thin layering superimposed to the harzburgitic foliation initiates the development of cm-scale websteritic veins.

The Lherz massif is predominantly composed of spinel lherzolites which are intermingled with metric to decametric bodies of highly refractory harzburgites in the upper part of the massif (Fig 1). The lherzolites contain numerous cm- to 10 cmscale spinel-websterite layers and some thicker (10-50 cm) tabular garnet pyroxenites. The harzburgites often contain mm- to cm-thick websterite layers near the contact with lherzolites. Shortly before the exhumation, the massif was cross-cut by a late generation of amphibole pyroxenite dykes considered to represent translithospheric melt conduits for Cretaceous alkaline magmatism in Pyrenees (Bodinier et al., 1987a; Conquéré, 1971; Montigny et al., 1986; Vétil et al., 1988).

Fig. 3: Change in microstructure (left), from high-temperature porphyroclastic to coarse-granular, and associated weakening of olivine crystallographic preferred orientations (right) across two harzburgite–lherzolite contacts (sections 1 and 2). The presented CPO are representative of all measured CPO through the contacts. Microstructures are from samples collected within 1m from the contact, marked by cm-scale websterite banding. Microstructures were hand-drawn from thin sections; white: olivine, dashed lines mark subgrain boundaries; light grey: enstatite, dark grey: clinopyroxene; black: spinel. Olivine CPO are presented as lower-hemisphere equal area stereographic projections in a geographic reference frame (top to North); >130 individual grain measurements; contours at 0.5 multiple of a uniform distribution intervals. Solid lines: foliation; dashed lines: websterite layering; empty stars: lineation.

Narrow metasomatized dyke wall rocks and hornblendites veins record limited melt infiltration in host peridotites (Bodinier et al., 2004; Bodinier et al., 1990). The final emplacement of the peridotites is marked by extensive brecciation in the outer rim of the Lherz body and in the host limestones.

3. Structural and microstructural data

Previous structural maps of the Lherz Massif showed the harzburgites as elongated strips parallel to the high-temperature foliation of the lherzolites. However the present detailed mapping reveals that the harzburgite bodies form elongated, but irregularly-shaped bodies within lherzolites anastomosed (Fig. 1). All harzburgites, even those forming small isolated bodies, show penetrative a shallowly-dipping foliation with a constant N40-60°E orientation which is marked by elongated spinels and olivine porphyroclasts. The contact with the lherzolites is often sharp and steep, and underlined by a cmscale websteritic layering. Near the contact (<1m) with harzburgites, the lherzolites are generally coarse-grained and show a weak foliation. This foliation is variable in orientation (N10 to N80), steeply dipping towards the east or south, and generally oblique on the harzburgite foliation (Figs. 1&2). Both layering and foliation in the lherzolites tend to wrap the contact with the harzburgite bodies. Away from the contact, fertile lherzolites display a steeply dipping foliation, dominantly N40-N80, marked by alignment of spinel aggregates that parallels the cm-scale websteritic layering.

At the thin-section scale, harzburgites display a porphyroclastic microstructure, characteristic of deformation by dislocation creep (Fig. 3). Foliation and lineation are marked by elongated spinels and olivine porphyroclasts with curvilinear grain boundaries, undulose extinction, and closelyspaced (100)subgrain boundaries. Orthopyroxenes, as well small as clinopyroxenes (<1mm), show irregular shapes and undulose extinction. Close to the contact, websterites and Cpx-poor lherzolites have coarser, more equant grains, but intracrystalline deformation features are still observed in olivine crystals. Spinels are interstitial and display no shape-preferred orientation. Farther from the contact, lherzolites display large (2-4mm), equant clino- and orthopyroxenes. Elongate olivine porphyroclasts show a strong undulose extinction. Alignment of interstitial, holyleaf spinels defines a clear lineation and foliation.

Crystallographic orientations (Fig. 3) were measured by indexation of Electron Back Scattered Diffraction (EBSD) patterns using the SEM-EBSD system of Geosciences Montpellier (France).

Table 1

Whole-rock major-	and trace-element cont	ents, and	modal	compositions,	of Lherz	peridotites	collected	along
two sections across	harzburgite-lherzolite co	ntacts and	d in dist	tal peridotites				

Section 1													
Sample	05LD1	05LD4	05LA2	05LA1	05LA16	05LA9	05LA1	2 05LA3	05LA4	05LA5	05LA6	05LA8	05LA15
I	Distal harz.	Distal harz	.harz.	harz.	harz.	harz.	harz.	harz.	harz.	lherz.	lherz.	lherz.	lherz.
Distance from contac	t >20m	>20m	4.5m	3.5m	1 m	1 m	10cm	10cm	5 cm	1.5m	3 m	5 m	5 m
SiO2	39,2	42,1	44,7	43,1	42,3	41,9	42,2	41,4	41,5	46,2	44,8	45,4	46,9
A12O3	0,170	0,920	1,87	0,880	0,640	0,980	2,46	1,26	0,700	4,97	3,01	3,53	4,03
Cr2O3	0,094	0,437	0,796	0,293	0,304	0,299	1,06	0,596	0,230	0,463	0,341	0,394	0,386
FeO	7,82	7,59	7,31	7,43	7,94	6,85	7,80	7,85	7,84	7,43	8,63	8,26	7,29
MgO	45,5	43,1	41,9	43,9	44,4	40,8	40,5	42,0	43,0	34,9	38,6	37,2	36,4
CaO	0,280	0,610	0,730	0,500	0,320	0,580	1,90	0,470	0,440	4,70	2,20	3,42	3,31
MnO	0,120	0,120	0,130	0,120	0,120	0,120	0,120	0,120	0,120	0,130	0,140	0,140	0,130
NiO	0,370	0,313	0,263	0,296	0,290	0,283	0,267	0,297	0,299	0,232	0,246	0,243	0,209
Na2O	0,050	0,060	0,090	0,070	0,080	0,060	0,160	0,070	0,070	0,360	0,200	0,290	0,260
TiO2	0,030	0,020	0,040	0,060	0,050	0,030	0,060	0,050	0,040	0,200	0,100	0,140	0,160
LOI	6,44	4,46	2,93	3,85	3,48	7,83	3,41	5,95	5,73	0,480	1,33	1,04	0,820
TOTAL	100,1	99,6	100,8	100,5	99,9	99,8	100,0	100,0	99,9	100,0	99,6	100,1	99,8
Modal composition													
01%	94.0	79.5	66.8	76.9	79.5	71.4	69.1	75.3	79.6	45.5	57.3	54.4	47.1
Opx %	4.6	16.8	27.7	20.3	18.4	25.7	16.7	20.8	17.9	28.5	29.5	28.4	34.4
Cpx %	1.2	2.4	3.1	2.1	1.5	2.3	10.7	2.2	1.9	22.7	10.9	15.2	15.7
Spl %	0,2	1.2	2.5	0.7	0.6	0.6	3.5	1.7	0.6	3 3	23	2.0	2.8
Mg#	92,0	91,8	91,9	92,1	91,7	92,2	91,1	91,4	91,6	90,3	89,8	89,9	90,8
Section 2													
Sample	04LH13	04LH	12 0	4LH14	04LH11	04LH	08 04	4LH815	04LH07	04LH0	4 051	23	05LE3
	harz.	harz.	h	arz.	harz.	lherz.	1h	erz.	lherz.	lherz.	lhe	۲Z.	lherz.
Distance from contac	t 2m	1.5 m	1.	2 m	1 m	10cm	5)cm	80cm	1.5m	>2) m	>20m
SiO2	41,3	41,5	4	1,5	41,9	43,9	4.	3,8	40,9	44,3	44,	1	44,4
A12O3	0,439	0,450	0.	444	0,539	2,10	3.	40	1.87	3,15	2,9	9	2,95
Cr2O3	0,287	0,252	0	223	0,274	0,461	0.	0,356 0,547		0,377	0,3	42	0,353
FeO	7,70	7,71	7	88	7.87	7.65	7.	57 7.72		7,87	7.9	1	7.79
MgO	43.8	43.4	4	3.8	44.2	41.9	3	8.3	40.2	39.3	38	7	39.6
CaO	0.358	0.351	0	319	0.382	2.18	3	26	2.01	2.66	2.6	9	2.46
MnO	0.118	0 118	0	119	0.121	0.125	0	129	0.124	0.132	0.1	30	0 130
NiO	0 296	0 298	0	299	0.292	0 260	0	243	0.284	0 240	0.2	60	0.251
Na2O	0.048	0.040	ů.	045	0.058	0,219	0	290	0.185	0.216	0.2	10	0,200
TiO2	0,010	0,012	ő	016	0.017	0,124	0	153	0.082	0,131	0,1	30	0,120
101	4.81	5.23	4	40	4.10	0,124	0,	350	1.23	1 75	2.6	2	1.43
TOTAL	99,1	99,4	9	9,1	99,7	99,7	9	7,9	95,1	100,1	100	,0 ,0	99,7
Modal composition													
01%	82.0	82.0	8	4 1	80.4	50.0	7	2.6	61.6	68.8	63	6	60.9
Onv %	15.0	15.2	1.	4 1	17.6	26.2	1.	5.2	20.8	10.0	22	7	25.6
Cov %	15,9	13,5	1	4	1.5	20,3	0	2	14.0	0.7	12	ó	113
Sp1 9/	1,5	0.4	0	4	0.5	2.1	9,	0	27	1.6	12,	0	2.2
Mo#	018	019	0.	17	01.8	2,1	1,	1.2	2,/ 00.0	01.6	1,/	6	2,2 91.0
mg.	91,0	91,8	9	1,7	21,0	20,8	9	شر I	20,2	91,0	90,	0	×1,0

harz. = harzburgite; harz.* = harzburgite with thin (~mm) websterite layers; lherz. = lherzolite. LOI = loss on ignition; Mg# = Mg/Mg+Fe cationic ratio.

Measurements were performed manually (i.e. indexing of every crystal was verified by the operator) on grain by grain basis along 2 mm-spacing profiles parallel to the long axis of the thin section. The change in microstructure is associated with a variation in both orientation and strength of olivine orientations crystal-preferred (CPO). Harzburgites exhibit a strong olivine CPO, characterized by alignment of [100] axes close to the lineation and a girdle distribution of [010] and [001] with a maximum of [010] normal to the foliation. At the contact, olivine CPO in the lherzolites is weaker but the orientation of the 3 maxima is preserved. In the lherzolites close to the contact, the weakening of the CPO is stronger, with a strong dispersion of [100] parallel to the layering but the orientation of [010] and [001] maxima is similar to the one in the harzburgites. Farther the contact, [010] axes are reoriented and the maximum concentration is normal to the lherzolite foliation.

Elements	Harzburgites				Lherzolites			
	Ol	Dl Opx		Spl	Ol	Opx	Срх	Spl
SiO2 (wt. %)	40.7-41.8	56.5-57.5	53.5-54.4	0.074-0.195	40.6-41.4	54.8-57.2	51.7-52.8	0.100-0.145
Al ₂ O ₃	-	1.65-2.81	2.48-5.06	26.1-43.2	-	1.9-4.43	5.99-7.45	46.4-61.3
Cr ₂ O ₃	-	0.331-0.562	0.937-1.79	25.7-41.6	-	0.197-0.403	0.602-1.30	6.74-21.4
FeO	8.45-9.09	5.51-6.17	1.84-2.10	13.7-19.6	9.13-10.75	6.11-6.86	1.99-2.37	11.1-14.6
MgO	48.7-49.3	33.7-34.3	14.4-16.3	11.9-16.8	47.3-49.2	31.3-34.0	13.7-14.4	16.5-20.0
CaO	0.008-0.017	0.331-0.505	20.6-23.2	-	0.006-0.022	0.282-1.324	20.3-21.5	-
MnO	0.119-0.141	0.133-0.175	0.066-0.088	0.182-0.316	0.126-0.155	0.146-0.164	0.065-0.090	0.105-0.190
NiO	0.416-0.436	0.069-0.090	0.026-0.075	0.074-0.198	0.375-0.450	0.049-0.089	0.028-0.065	0.227-0.462
Na ₂ O	-	0.021-0.049	0.705-2.19	-	-	0.023-0.217	1.85-2.18	-
TiO ₂	-	0.014-0.098	0.051-0.321	0.018-0.172	-	0.103-0.193	0.550-0.772	0.025-0.083
Mg#	90.5-91.5				89.0-89.9			
Cr#				0.28-0.41				0.069-0.104

Table 2

Compositional ranges in major and minor elements of olivine (Ol), orthopyroxene (Opx), clinopyroxene (Cpx) and spinel (Spl) for harzburgites and lherzolites, and ranges of Mg# in olivine (= Mg/Mg+Fe cationic ratio) and Cr# in spinel (=Cr/Cr+Al cationic ratio).

4. Geochemical data

Major elements, Ti, Cr and Ni in whole rocks were analyzed by X-ray fluorescence at Geosciences Laboratories (Canada) and Open University (UK). Major and minor elements in olivine, orthopyroxene, clinopyroxene and spinel were analyzed by electron probe at Microsonde Sud facility, Montpellier (France), and Rare Earth Elements (REE) in clinopyroxene by laserablation plasma-mass spectrometry (LAM-ICP-MS) at Geosciences Montpellier. Whole-rock analyses are reported in table 1, compositional ranges in major and minor elements of minerals in table 2 and of representative REE analyses clinopyroxene in table 3.

Sample	05LD4	1		04LH	11				04LH8	3					05LE3			
	Harzb	urgite		Harzb	urgite				Lherzo	olite					Lherzolite			
Distance from	>20m			95cm					10cm						>20m	>20m cpx1 cpx2 cpx3		
contact	cpx1	cpx2	cpx3	cpx1	cpx2	cpx3	cpx4	cpx5	cpx1	cpx2	cpx3	cpx4	cpx5	cpx6	cpx1	cpx2	cpx3	
La (ppm)	0.857	0.584	0.676	7.81	7.59	7.18	5.78	6.58	1.74	1.59	1.57	1.39	1.63	1.64	0.933	0.918	0.893	
Ce	1.70	1.19	1.75	14.4	13.9	14.2	11.7	12.6	5.99	5.63	5.47	5.19	5.59	5.66	3.69	3.50	3.33	
Pr	0.241	0.180	0.239	1.51	1.45	1.48	1.29	1.34	1.23	1.16	1.11	1.09	1.13	1.11	0.661	0.634	0.625	
Nd	1.11	1.16	1.37	5.83	5.70	5.73	5.07	5.26	7.87	7.30	6.94	6.94	7.25	7.14	3.96	3.91	3.93	
Sm	0.340	0.337	0.388	1.32	1.37	1.34	1.22	1.29	2.85	2.73	2.61	2.62	2.72	2.71	1.69	1.54	1.70	
Eu	0.103	0.103	0.107	0.458	0.466	0.465	0.434	0.458	1.08	1.06	1.01	1.02	1.03	1.03	0.726	0.674	0.700	
Gd	0.369	0.365	0.407	1.47	1.52	1.50	1.45	1.54	3.77	3.51	3.35	3.28	3.50	3.55	2.41	2.56	2.44	
Tb	0.050	0.054	0.058	0.245	0.246	0.247	0.238	0.249	0.613	0.560	0.541	0.525	0.560	0.558	0.433	0.451	0.466	
Dy	0.353	0.341	0.369	1.74	1.71	1.65	1.76	1.82	3.97	3.69	3.72	3.61	3.79	3.72	3.33	3.44	3.53	
Ho	0.076	0.075	0.072	0.373	0.349	0.351	0.389	0.383	0.795	0.719	0.708	0.703	0.724	0.722	0.674	0.753	0.753	
Er	0.259	0.259	0.243	1.09	1.05	1.04	1.23	1.14	2.15	1.96	1.96	1.93	1.94	1.99	2.16	2.30	2.32	
Yb	0.409	0.403	0.295	1.16	1.07	1.04	1.37	1.21	1.79	1.76	1.72	1.75	1.76	1.77	2.15	2.24	2.18	
Lu	0.063	0.067	0.058	0.171	0.155	0.163	0.208	0.180	0.251	0.244	0.248	0.247	0.234	0.254	0.279	0.304	0.302	

Table 3

REE compositions of clinopyroxene in four representative peridotites: a harzburgite and a lherzolite distal from harzburgites-lherzolites contacts, and the same rock types adjacent to a contact (section 2 in table 1).

Modal compositions calculated by linear inversion of whole-rock and mineral compositions for major elements are given in table 1. They range from 94% Ol, 4.6% Opx, 1.2% Cpx and <1% Spl in harzburgites to 62% Ol, 21% Opx, 15% Cpx and >2% Spl in lherzolites. Major and minor elements in whole rocks display a wide range of variation from highly refractory (e.g., 45.53 wt% MgO and 0.17 wt% Al₂O₃) to very fertile compositions (34.85 wt% MgO and 4.97 wt% Al₂O₃). Harzburgites collected in the vicinity of lherzolites (< 5m) are more fertile on average than more distal harzburgites. Their modal and major-element compositions partly overlap the composition of lherzolites (e.g., in the range 2-2.5 wt% Al_2O_3 -Table 1; Fig. 4). This feature reflects the presence of mm-scale websterite layers that are abundant near the contact with lherzolites. This is the case, for instance, in sample 05LA12 which is lherzolitic in terms of major-element and modal composition (10.7 % Cpx). However, this sample is distinguished from the "true" lherzolites from Lherz by lower Ti and much higher Cr contents (Fig. 4) and by mineral compositions typical of harzburgites (Table 2, Annex 1). It is therefore referred to as a harzburgite throughout this study.

Similar to the majority of mantle peridotite suites worldwide, the harzburgites and lherzolites from Lherz display chemical covariations such as decreasing MgO with

FIG. 4: MgO, TiO₂ and Cr vs. Al₂O₃ concentrations in whole-rock harzburgites and lherzolites from Lherz (table 1) compared with literature data for mantle xenoliths and orogenic peridotites (Canil, 2004). Empty squares = harzburgites; full circles = lherzolites. The variations observed within a few meters across harzburgite-lherzolite contacts in Lherz encompass almost the whole range of mantle peridotites worldwide.

increasing Al_2O_3 traditionally ascribed to partial melting (Fig. 4). A more detailed analysis shows however that harzburgites and lherzolites tend to define distinct covariations trends, notably for minor elements. For instance the lherzolites are distinguished by slightly higher Ti contents at a given Al_2O_3 value (Fig. 4). On a Cr *vs*. Al_2O_3 diagram, the difference between the harzburgite and lherzolite trends is striking: while the harzburgites show a steep, steady positive correlation, the lherzolites display a

Fig. 5: Chondrite-normalized (Sun and McDonough, 1989) REE patterns of clinopyroxenes in four representative peridotites, including harzburgites and lherzolites, both distal and adjacent to a harzburgite-lherzolite contact (table 2).

curved trajectory trending towards a gentle, positive correlation in the most fertile samples (Fig. 4). From their wide range of Cr contents (600 to 7400ppm) and low Al_2O_3 values (< 2.5%), the harzburgites resemble cratonic xenoliths, notably those equilibrated at shallow depth, in the stability field of spinel (Canil, 2004). Conversely, the lherzolites show a narrow range of Cr contents (2400-4000ppm) and higher Al_2O_3 comparable to the composition of other orogenic peridotites and off-craton mantle xenoliths.

The existence of two different trends for Cr in covariation diagrams is a reflection of the markedly distinct Cr contents in minerals from harzburgites and lherzolites (Table 2). The Cr# number (= Cr/Cr+Al cationic ratio) of spinel, for instance, is in the range 0.28-0.41 in harzburgites compared with 0.069-0.104 lherzolites. This in bimodal distribution of mineral compositions is also observed for Mg# (= Mg/Mg+Fe cationic ratio) in olivine and minor elements such as Ti in pyroxenes. The forsterite value of olivine (Fo) is 0.905-0.915 in harzburgites, compared with 0.890-0.899 in lherzolites, and TiO₂ in clinopyroxene is 0.02-0.06 wt% in harzburgites, compared with 0.12-0.20 wt% in for lherzolites.

Rare earth elements (REE) in clinopyroxene display a wide range of concentrations and variable chondritenormalized REE patterns (Table 3; Fig. 5). In the core of the thickest harzburgite bodies (> 10m), clinopyroxene shows strongly depleted, U-shaped REE patterns. These REE patterns mimic the whole-rock patterns previously reported for harzburgites unrelated to pyroxenite dykes and lherzolites (Bodinier et al., 1988; Bodinier et al., 2004).

In lherzolites away from contacts (> 20 m), clinopyroxene displays the classic, N-MORB, REE pattern observed in orogenic lherzolites worldwide (McDonough and Frey, 1989). This pattern is relatively enriched in heavy REE but selectively depleted in light REE. Within a few meters from the contact, both lherzolite and harzburgite show more LREE-enriched clinopyroxenes than their distal counterparts. The variations observed in harzburgites are especially striking: the REE content of clinopyroxene increases by a factor of 5 (heavy REE) to 10 (light REE) from the core of the harzburgite bodies to the contacts.

5. Discussion

5.1. Structural relationships between harzburgitic protolith and secondary lherzolites

The constant orientation of the foliation lineation in harzburgite and bodies throughout the Lherz Massif (Fig. 1) strongly suggests that all harzburgites were once part of a single and continuous unit. This, together with the observation that the steeply dipping lherzolite foliation and websterite layering cross-cut the shallowly dipping harzburgite foliation, indicates that the deformation of the harzburgites predates formation of the lherzolites the and websterites. Such structural relationships between harzburgites and lherzolites, visible throughout the intermingled zone and at the massif-scale (Fig. 1), clearly indicate that the lherzolites are secondary rocks compared to harzburgites. The harzburgite bodies represent the remnants of a highly refractory mantle protolith largely replaced by the lherzolites.

Analysis of microstructures and olivine CPO suggest deformation of harzburgites by dislocation creep with activation of the hightemperature, low-stress (010) [100] slip system. The formation of the lherzolites and websterites modifies both the microstructure and the CPO of the harzburgitic protolith. while However, the change in microstructure, marked by grain growth, occurs at the contact, the re-orientation of the [100] and [010] axis of olivine, parallel to the lineation and perpendicular to the lherzolite foliation respectively, is only observed at some distance from the contact (>1-2m). At the contact, lherzolites show larger and more equant grains and olivine CPO are quite similar to harzburgites, but weaker. The increase in grain size and the dispersion of the olivine CPO in lherzolites through harzburgite-lherzolite contacts may due to static recrystallization and be crystallization of new randomly-oriented olivine crystals during melt-rock reactions (Tommasi et al., 2004). The more pronounced growth of Opx and Cpx together with the increase in their modal proportions
suggest that they represent the main crystallization products of the reaction. Far from the contact, olivine microstructures and CPO are consistent with the steeply-dipping foliations and sub-horizontal lineations observed at the macroscopic scale. These observations suggest that melt percolation and melt-rock reactions started at static conditions, leading to changes in modal composition, grain growth and dispersion of olivine CPO. This percolation produced an anastomosed lherzolite network in which the later deformation producing the steeply dipping foliations was localised.

Our structural observations preclude therefore the formation of the harzburgitelherzolite intercalations by mechanical dispersion by small-scale convection at the base of the lithosphere (Bodinier and Godard, 2003), since this deformation would result in transposition of both harzburgites material) lherzolites (lithospheric and (asthenospheric material) foliations. The structural observations are on the other hand consistent with the formation of lherzolites by a near-solidus refertilization reaction between harzburgite and basaltic melts leading to precipitation of pyroxene, spinel, minor amphibole and sulphide phase, which started under static conditions and was followed by a deformation stage.

5.2. Formation of the lherzolites by refertilization reaction

Covariations of modal and majorelement compositions in the Lherz peridotites are comparable to those observed in several suites of mantle rocks worldwide. These covariations were generally ascribed to variable degrees of partial melt extraction (Bodinier, 1988; Canil, 2004; Frey et al., 1985), although in most cases variable degrees of refertilization of a refractory protolith would also account for the observed modal and chemical trends (Beyer et al., 2006). In the case of Lherz, the partial melting model is precluded by structural observations that show that the harzburgite the lherzolites. Formation of predate harzburgite-lherzolite intercalations by variable degrees of melting is also ruled out by variations of minor and trace elements in peridotites and/or their constituent minerals.

Chromium, for instance, shows two features at odds with the partial melting model. First, although highly compatible during mantle melting (Liu and O'Neill, 2004), this element tends to be negatively correlated with MgO and positively correlated with Al₂O₃ (Fig. 4). Second, harzburgites and lherzolites form two different trends on Cr vs. major-element correlation diagrams, a feature that reflects the bimodal distribution of the Cr content in minerals, notably spinel. In contrast with

FIG. 6: Cr vs. Al₂O₃ diagram for the peridotites of section 1 and distal samples (table 1), emphasizing the two distinct covariations trends observed in lherzolites and harzburgites, respectively. The symbols for the samples are the same as in figure 4. The dashed lines represent mixing between a refractory harzburgite (intersection of the harzburgite and lherzolite trends) and variable proportions (in percent) of two distinct components websterite (grey triangles). The compositions of the websterite components were calculated from modal and mineral compositions. Modal compositions estimated by extrapolating those of the peridotites towards 0 % olivine are roughly identical for harzburgites and lherzolites (60% Opx, 34% Cpx and 6% Sp). Websterite mineral compositions were measured in thin (<1cm) websterite layers hosted by harzburgites and lherzolites. In both cases, the mineral compositions are similar in websterites and in their host peridotites, but they differ markedly between harzburgites and lherzolites. As a result, the two websterite components show distinct compositions, the one related to harzburgites being much more enriched in Cr than the one related to lherzolites.

melt extraction, refertilization of a refractory protolith involving precipitation of Cr- and Al-bearing minerals, mostly spinel and pyroxenes, can explain both the positive Cr vs. Al₂O₃ correlations and the existence of distinct Cr arrays for harzburgites and lherzolites (Fig. 6). In this model, the intersection of the harzburgite and lherzolite trends at low (<1%) Al₂O₃ content indicates the composition of the refractory protolith before refertilization. The lherzolite trend is interpreted as a linear mixing line between the depleted protolith composition and 30-60 wt% of an aluminous websterite component (60% Opx, 34% Cpx, 6% Spl). Mineral compositions in the websterite are identical to those in lherzolites, as it is the case for thin (<10 cm) websterite layers in Lherz (Fabriès et al., 1991) and other orogenic (Shervais and Mukasa, 1991). lherzolites The harzburgite trend is defined by harzburgite samples collected within a few meters from the contact with lherzolites and containing thin (~ mm) websterite seams (section 1 in table 1). These samples may be accounted for by mixing of the refractory protolith with 10-40 wt% of a Cr-rich websterite component comparable to the of harzburgites in term mineral harzburgites compositions. These were probably slightly refertilized by Cr-rich (harzburgite-buffered) small volume melts infiltrated beyond the main refertilization front represented by the harzburgitelherzolite contact. The inferred variation in percolating melt composition, also reflected by bimodal Cr contents in minerals, may be explained by chromatographic fractionation of Cr due to cation exchange between the peridotite and the percolating melt (Navon and Stolper, 1987). The coincidence of the Cr chromatographic front with the

harzburgite-lherzolite contact indicates a significant drop in the melt fraction across the reaction front as a result of partial melt consumption by the reaction (Bodinier et al., 2004).

Titanium differs from chromium in showing closely spaced, almost aligned covariation trends for harzburgites and lherzolites on the TiO_2 vs. Al_2O_3 diagram (Fig. 4). Hence the two arrays may be overlooked and viewed а single as correlation recording variable degrees of partial melting. However, the distribution of Ti in Cpx precludes this process. It is roughly constant in lherzolites and drops abruptly in harzburgites, whereas melting models predict a gradual decrease of Ti contents in both whole rocks and minerals (Fig. 7). When recalculated for near-solidus, high-temperature conditions (1250°C), the bimodal distribution of Ti in Cpx is less pronounced but the discrepancy with the melting models remains significant. As shown on figure 7, the distribution of Ti can be successfully reproduced with a numerical simulation of refertilization involving a pyroxeneand spinel-forming reaction (Vernières et al., 1997). Based on the intersections harzburgite of the and lherzolites trends on Cr vs. modal and majorelement composition diagrams (e.g., Fig 6), the protolith is assumed to be a highly refractory harzburgite (1.5% Cpx, 0.02 wt% TiO_2). The Ti content of the infiltrated melt

Fig. 7: TiO_2 concentrations in clinopyroxene vs. whole rocks for the harzburgites and lherzolites (same symbols as in Fig. 4). Error bars indicate the variation in Cpx composition at the sample scale. Grey symbols represent Cpx compositions recalculated for nearsolidus temperature (1250°C) using inter-mineral partition coefficients derived from Wood and Blundy (2003). Numerical models of TiO₂ variations during partial melting and magmatic refertilization are shown for comparison. For the melting model, we used the modal composition of the most fertile lherzolite, and its TiO₂ content in Cpx and whole rock, as the source composition. The melting reaction was taken from Walter et al. (1995) and the mineral/melt partition coefficients from Wood and Blundy (2003). The results reported here were calculated with the fractional melting model. However, changing the melting model (e.g. for batch or incremental melting) does not significantly modify the variation trend of TiO₂ in Cpx vs. whole rock. Magmatic refertilization was simulated with the Plate Model of Vernières et al. (Vernières et al., 1997) applied to the following meltrock reaction: $f_i.melt_i + x_{ol}.Ol \rightarrow f_r.melt_r + x_{opx}.Opx +$ x_{cpx} .Cpx + x_{spl} .Spl, where melt_i and melt_r stand for the infiltrated and residual melts, respectively, f_i and f_r for the corresponding melt mass fractions, \boldsymbol{x}_{ol} for the mass fraction of dissolved olivine, and x_{opx}, x_{cpx} and x_{spl} for the mass fractions of crystallized Opx, Cpx, and Spl. Reaction parameters f_i , f_r , x_{ol} , x_{opx} , x_{cpx} and x_{sp} were adjusted to reproduce the modal variations and the Ti contents in Cpx and whole-rocks. The protolith is a highly refractory harzburgite (83% Ol, 15% Opx, 1.5% Cpx, 0.5% Spl, 0.02 wt.% TiO2 in whole rock and 0.05 wt.% TiO₂ in Cpx). The Ti content of the infiltrated melt (TiO₂ = 2 wt.%) was derived from the composition of clinopyroxene in the most fertile lherzolite and Cpx/melt partition coefficients (Wood and Blundy, 2003).

was derived from the composition of clinopyroxene in the most fertile lherzolite

and Cpx/melt partition coefficients (Wood and Blundy, 2003). The results indicate constant Ti concentration in clinopyroxene of refertilized peridotites, which have their mineral compositions governed by incoming melt. Downstream of the Ti chromatographic front, Ti in Cpx rapidly decreases in the more refractory harzburgites, which mostly preserve the mineral compositions of the protolith.

Finally, REE enrichments observed at harzburgite-lherzolite contacts the also cannot be explained by partial melting model and provide further evidence for the refertilization process. Strong enrichment of incompatible highly elements (HIE, including REE) at melt infiltration fronts is indeed predicted by theoretical modelling of melt-consuming reactions combined with melt transport (Vernières et al., 1997). This enrichment results from the segregation of HIE- and volatile-rich small melt fractions moving ahead of melt-consuming reaction fronts. This mechanism, also referred to as "percolative fractional crystallization" (Harte et al., 1993), was advocated to explain enriched HIE compositions in "cryptically" metasomatized mantle xenoliths (Bedini et al., 1997) and in tens of centimetres-thick wall-rocks of alkaline dykes in Lherz (Bodinier et al., 1990). In the case of the harzburgite-lherzolite contacts, the REE variation in harzburgite Cpx indicates that small melt fractions residual after the

refertilization reaction migrated in the harzburgite protolith several meters (< 20 meters) ahead of the main reaction front. Behind the reaction front, clinopyroxene REE compositions in lherzolites reflect the initial melt composition, which is depleted in LREE relative to HREE (i.e., similar to N-MORB).

5.3. Refertilization and isotopic variations

A striking feature of Pyrenean and several other orogenic peridotites is the existence of correlations between Os-Sr-Nd radiogenic isotopes and peridotite fertility (Bodinier and Godard, 2003; Downes et al., 1991; Reisberg and Lorand, 1995). In the Pyrenees, the positive correlation between 187 Os/ 188 Os and Al₂O₃ has been ascribed to a ~ 2.5 Ga-old depletion event considered to record partial melting and stabilization of mantle lithospheric in the Archean (Reisberg and Lorand, 1995). However, this hypothesis does not account for the negative correlation of ⁸⁷Sr/⁸⁶Sr and the positive correlation of 143 Nd/ 144 Nd with Al₂O₃. These covariations were ascribed either to selective percolation of enriched melts through the harzburgites (Downes et al., 1991) or to incomplete mixing of lithospheric strips (harzburgites) into asthenospheric material (lherzolites) during thermo-mechanical erosion of lithosphere by upwelling mantle

(Bodinier and Godard, 2003). However, the first alternative implies unrealistically enriched melt compositions (Bodinier and Godard, 2003) and the second is denied by our structural observations. In contrast the refertilization process suggested in this paper provides a coherent explanation for the isotopic variations observed in Pyrenean peridotites. The correlations of ⁸⁷Sr/⁸⁶Sr and 143 Nd/ 144 Nd with Al₂O₃ indicate that the refractory protolith was isotopically enriched - due to radiogenic decay following ancient enrichment - while the percolating melt had (Depleted DMM MORB Mantle) а composition. The refertilization process may also account for the positive correlation ¹⁸⁷Os/¹⁸⁸Os between and Al_2O_3 , as previously suggested for the Horoman orogenic peridotite in Japan (Saal et al., 2001).

5.4. Refertilization fronts, a moving lithosphere-asthenosphere boundary?

In the light of our convergent structural and geochemical arguments we suggest that the Lherz massif is a fossil lithosphereasthenosphere boundary, where a >2 Ga-old (Reisberg and Lorand, 1995) and refractory lithospheric mantle, from which the harzburgites are the remnants, was infiltrated and reacted with asthenospheric melts. The irregularly-shaped lherzolite-harzburgite contacts represent therefore a convoluted

front melt-rock reaction formed by coalescence of porous melt infiltration channels. All lithospheric structures and geochemical signatures were efficiently erased within a few meters across the front. The ubiquitous websterite layers record higher melt/rock ratios and suggest smallscale anisotropic variations in the melt flux. A possible origin for the websterite layering is refraction and channelling of percolating melts against the freezing horizon represented by eroded lithosphere (Rabinowicz and Ceuleneer, 2005; Sparks and Parmentier, 1991; Spiegelman, 1993). This hypothesis is consistent with the systematic parallelism of websterite layers and harzburgite-lherzolite contacts. It was already suggested for replacive websterite layers related to lithospheric thermal erosion in the Ronda peridotite (Garrido and Bodinier. 1999). The low equilibrium temperatures recorded by pyroxene compositions in the Lherz peridotites (Fabriès et al., 1991) imply that thermal relaxation occurred between the refertilization episode and the emplacement of the massif in the crust, in the Cretaceous. Refertilization is thus probably related to the late-Variscan, post-collisional thermal event responsible for granulitic metamorphism in western Pyrenees (Pin and Vielzeuf, 1983), which has been interpreted as the result of the destabilization of the thickened orogenic lithosphere.

Is the refertilization process specific to Lherz? This is the first study showing convergent structural and geochemical data for extensive rejuvenation of refractory by lithospheric mantle refertilization. However, textural or chemical evidence for igneous refertilization has been reported from tectonically-emplaced plagioclase lherzolites in New Caledonia (Nicolas and Dupuy, 1984), western Alps (Müntener et al., 2004; Rampone et al., 1994), Horoman (Saal et al., 2001), and from Cpx-poor lherzolites at the base of the Oman ophiolite (Godard et al., 2000). Recently Beyer et al. (2006)suggested the transformation of (dunitic) highly refractory Archean lithospheric mantle via igneous refertilization, producing garnet peridotites and pyroxenites. An association between refertilization and lithospheric thinning was proposed for the orogenic lherzolites of Ronda and Lanzo (Lenoir et al., 2001; Müntener et al., 2004). The Ronda massif displays a narrow (<400m) refertilization front which separates a spinel tectonite domain interpreted as an old lithospheric mantle and a granular domain deeply modified by melting processes (Lenoir et al., 2001; Van der Wal and Bodinier, 1996). The refertilization front of the Lherz massif may have been associated with such a melting front below.

In the Cr vs Al₂O₃ diagram, several suites of mantle rocks show variations comparable to those observed in the Lherz massif (Fig. 4). These variations are hardly consistent with partial melting and may suggest that the majority of lherzolites observed at the Earth surface record refertilization processes. The refertilization mechanism also provides a key to understand the paradoxical association of LREE-enriched harzburgites with LREEdepleted lherzolites often observed in mantle xenoliths and in tectonically-emplaced peridotites (McDonough and Frey, 1989). Although recognized for at least two decades. this association, which is inconsistent with partial melting, was never given a satisfactory explanation.

6. Conclusions

The Lherz Massif, lithotype of the lherzolite, is an exceptional area for studying the structural and geochemical evolution of the sub-continental lithospheric mantle. Detailed structural mapping reveals that the Lherz spinel lherzolites are secondary rocks formed at the expense of harzburgites, which represent remnant bodies of an old (>2Ga) and highly refractory protolith. Petrological and geochemical data show that the lherzolite-websterite suite has been formed by a near-solidus refertilization reaction involving crystallization of pyroxene and spinel, and dissolution of olivine. The irregular-shaped harzburgite-lherzolite contact thus materializes an anastomosed refertilization front formed by coalescence of melt infiltration channels. This evolution starts under static conditions but is followed by localization of the deformation in the refertilized domains. Upwelling of basaltic partial melts through the lithospheric mantle was associated with the migration of an important refertilization front. At a largerscale, the Ronda Massif (S Spain) also displays a refertilization front which is tightly linked to a partial melting domain below (Lenoir et al., 2001; Van der Wal and Bodinier, 1996). We can thus imagine that the refertilization front observed in the Lherz Massif also moved ahead of a melting front related to thermo-mechanical erosion of the lithosphere.

There is a growing body of evidence indicating that the chemical variations observed in tectonically-emplaced mantle rocks result from igneous refertilization superimposed onto previous depletion events. An important implication is that fertile lherzolites from peridotite massifs cannot be straightforwardly used to infer primitive mantle compositions. In this perspective, it is logic to wonder whether the fertile mantle xenoliths represent refertilized or pristine mantle. Several authors have chemical stratification of ascribed the cratonic lithosphere and/or its temporal evolution to metasomatic refertilization (Griffin et al., 2003; Kopylova and Russell, 2000; Lee and Rudnick, 1999). In this scheme, fertile (predominantly lherzolitic), off-craton lithosphere may be viewed as the transformation of ultimate cratonic lithosphere after one or several cycles of refertilization. Extensive igneous refertilization in the Western Alps and Betic peridotites is intrinsically related to the lithospheric thinning processes that led to mantle exhumation (Lenoir et al., 2001; Müntener et al., 2004; Piccardo et al., 2004), which may suggest that large-scale refertilization is specific of tectonicallyemplaced, orogenic peridotites. However, the Lherz massif illustrates a situation where refertilization and exhumation are related to distinct events, separated in time by thermal relaxation of the subcontinental mantle lithosphere. Several suites of spinel peridotite xenoliths compositionally comparable to the Lherz peridotites (i.e., formed of LREE-depleted lherzolites associated with subordinate, LREE-enriched harzburgites) might also record magmatic refertilization of a previously depleted lithospheric mantle.

Magmatic refertilization probably plays a key role in the rejuvenation and erosion of the lithospheric mantle. Seismological data suggest that the lithospheric mantle is strongly thinned in extensional environments (Bastow et al., 2005) and above mantle plumes (Li et al., 2004). Numerical models, however, predict that thermo-mechanical processes, like small-scale convective destabilization, only produce limited thinning (<30km) (Thoraval et al., 2006), due to the strong temperature dependence of the viscosity and slow heat conduction in the lithospheric mantle. Refertilization of the lithospheric mantle by asthenospheric melts may reconcile these contrasting observations. Deformation experiments show that the presence of even a small fraction of basaltic melt results in a marked decrease of olivinerich rocks strength (Hirth and Kohlstedt, 1995). Progression of the melt infiltration front producing the refertilization will therefore reduce the viscosity and favor the destabilization and removal of the lithospheric mantle.

Acknowledgements

This study was supported by the DyETI programme of INSU-CNRS and the Laboratoire de Tectonophysique, Montpellier. We thank Fred Frey for his comments on an earlier version of this paper, and Martin Menzies and Cin-Ty Lee for their constructive reviews. We are grateful to Christophe Nevado and Doriane Delmas for providing high-quality thin sections, to Claude Merlet for his help with electron probe analyses, and to Olivier Bruguier and Simone Pourtales for their assistance during LA-ICPMS analyses.

References: end of thesis manuscript.

Chapter III:

Feedback between melt percolation and deformation in an exhumed lithosphere-asthenosphere boundary

Article published in Earth and Planetary Science Letters 274 (2008), 401-413.

V. Le Roux^{1,2}, A. Tommasi¹, A. Vauchez¹

¹ Géosciences Montpellier, Université de Montpellier 2 and CNRS, Cc 060, Place E. Bataillon, 34095 Montpellier cedex 5 France

² GEMOC, Department of Earth & Planetary Sciences, Macquarie University NSW 2109 AUSTRALIA

VLR's contribution in this paper: analyses, interpretations, writing.

Abstract

Interactions between deformation and melt percolation yield important consequences for the evolution of the mantle lithosphere, controlling its composition and mechanical behavior. In the Lherz massif (Pyrenees, France), the analysis of structural relationships between harzburgites, lherzolites and pyroxenites and of the crystal-preferred orientations (CPO) of olivine and pyroxenes highlights a strong feedback between percolation of basaltic melts and deformation under near-solidus conditions at the lithosphere-asthenosphere boundary. Elongated harzburgite bodies up to tens of meters wide, which are the remnants of an old lithospheric mantle, preserve a constant foliation. This foliation is locally outlined by cmscale flattened websteritic lenses. At the contact with the enclosing lherzolites, the harzburgite foliation is crosscut by the lherzolites foliation and by cm-wide websterite bands parallel to the contact. Strain intensity in the lherzolites increases with distance to the harzburgites. Based on these observations, we propose that reactive percolation was synchronous to the deformation and propose that variations in instantaneous melt fraction, due to pyroxenes and spinel crystallization during reactive melt transport, guided strain localization. Accordingly, the observed decrease in olivine CPO intensity and change in CPO patterns from harzburgites to distal lherzolites are interpreted as recording changes in the relative contribution of dislocation glide and diffusion processes, which is ruled by a balance between the instantaneous melt fraction and the local strain rate. We also propose that the pervasive websteritic layering in the refertilized lherzolites may result from deformation-assisted melt segregation in a system with decreasing permeability due to refertilization reactions. Finally, we discuss the possible timing and geodynamical context of the refertilization episode.

Keywords: melt percolation; strain localization; mantle lithosphere; olivine; pyroxene; crystal-preferred orientation; dislocation creep; diffusion; refertilization reactions, lherzolites; websterites; harzburgites; melt segregation

1. Introduction

The evolution of the upper mantle is strongly associated with partial melting and refertilization processes. Recent studies have shown that percolating melts may react with the mantle lithosphere, inducing enrichment in fusible components, i.e., refertilization via the crystallization of pyroxenes and spinel (Beyer et al., 2006; Le Roux et al., 2007; Lenoir et al., 2001; Müntener et al., 2004; Rampone et al., 1994; Tommasi et al., 2004). Experimental deformation of partially molten assemblages shows that the presence of melt, even in low fractions, leads to a strong decrease in viscosity (Hirth and Kohlstedt, 1995; Rosenberg and Handy, Takei. 2005). 2005; Additionally, deformation may produce a higher transient permeability and facilitate melt segregation (Holtzman et al., 2003; Rosenberg and Handy, 2000). This feedback between melt percolation and deformation, observed experimentally, has also been proposed, on the basis of structural observations, as responsible for the development of shear zones in the middle and the lower crust (Brown and Solar, 1998; Kisters et al., 1998; Tommasi et al., 1994; Vauchez and Tommasi, 2003) and in the shallow mantle (Kelemen and Dick, 1995). At the plate scale, it has also been suggested, based on geodynamical models and seismic anisotropy data, that magmas play an essential role in the initiation of rifting (Buck, 2006; Kendall et al., 2006) and in the erosion of the lithosphere above mantle plumes (Thoraval et al., 2006). Interactions between melt percolation and deformation in the mantle are thus major processes in the evolution of the lithosphere, controlling its composition and mechanical behavior. In this article we document still poorly understood feedback processes between melt percolation and deformation in a complex natural system: a propagating lithosphere-asthenosphere boundary.

The Lherz Massif (Pyrenees, France) is an ideal location to study interactions between percolation and deformation in mantle rocks. It is composed of refertilized spinel lherzolites containing frequent cmscale websteritic layers that surround metric to decametric-scale bodies of depleted harzburgite in the southern part of the massif. Detailed structural mapping and geochemical analysis show that the lherzolites formed at the expense of the harzburgites near-solidus during a refertilization reaction coeval with deformation of the lherzolites (Le Roux et al., 2007). The Lherz massif represents therefore an outcrop of a frozen lithosphereasthenosphere boundary where the percolation of basaltic melts deeply modified the structure and the composition of the

Fig. 1: (a) Localization and geological context of the Lherz Massif (Azambre and Ravier, 1978; Kornprobst and Vielzeuf, 1984; Monchoux, 1970; Vielzeuf, 1980). 1- Schists; 2- Mesozoic and Cenozoic rocks; 3- Granulites; 4- Metamorphic Mesozoic rocks; 5- Peridotites; 6- Granulite occurrences; 7- Hercynian basement; 8- Late Tertiary sediments. (b) Geological map of the Lherz Massif (Le Roux et al., 2007) with the location of analyzed samples.

mantle lithosphere.

We present a detailed study of the lithological distribution and deformation structures from the massif to the thin section scale, combined with analyses of olivine and pyroxenes crystal-preferred orientations (CPO) in harzburgites, refertilized lherzolites and websterites from the Lherz massif. These observations associated with previous data on the refertilization process (Le Roux et al., 2007) highlight a strong feedback between reactive melt percolation and deformation during refertilization. This results in both strain localization, which allowed the preservation of the pre-existing structure in the harzburgite lenses, and melt segregation, which lead to the formation of the websterites. Finally, we discuss the possible timing and geodynamical context for the refertilization episode.

2. The Lherz peridotitic massif (Pyrenees, France)

The Lherz Massif, type-locality of the lherzolite, is one of the largest of the 40 ultramafic bodies that outcrop along the North Pyrenean Fault (NPF; Pyrenees, France; Fig. 1a). The Pyrenean peridotite massifs, which dimensions vary from several m^2 to a few km², with ~ 1 km² for the Lherz massif (Fabriès et al., 1991; Monchoux, 1971), are mainly composed of layered spinel lherzolites. Exhumation of Pyrenean peridotites is usually ascribed to lithospheric thinning associated with successive opening and closing of elongated, asymmetrical pullapart basins in response to the dominantly transcurrent motion of the Iberian plate relative to the European plate in the mid-Cretaceous (Choukroune and Mattauer, 1978; Debroas, 1987; Vielzeuf and Kornprobst, 1984). Most ultramafic massifs outcrop within carbonate rocks of Jurassic to Aptian age affected by a low pressure-high temperature metamorphism that characterizes the 'North Pyrenean Metamorphic Zone' (Golberg and Leyreloup, 1990), and they are generally associated with crustal granulites (Azambre and Ravier, 1978; Pin and Vielzeuf, 1983; Vielzeuf and Kornprobst, 1984).

Fig. 2: Photographs of (a) fertile pockets in harzburgites; (b) a contact between harzburgite and lherzolite underlined by a thin websteritic layering. The foliations of harzburgites and lherzolites and the direction of the websteritic layering measured on the field are reported on the photograph as dashed lines; (c), (d) pervasive websteritic layering in distal lherzolites.

(c) distal lherzolites

(d) websterites

Fig. 3: Polarized-light photomicrographs showing: (a) the porphyroclastic texture in harzburgites; (b) the granular texture in lherzolites at the contact with an incipient foliation; (c) the porphyroclastic texture in distal lherzolites with well-developed foliation and lineation, marked by the elongation of spinel (Spl) and olivine (Ol) crystals; and (d) the coarse-granular texture in websterites with large deformed orthopyroxenes (Opx).

Emplacement of the ultramafic rocks in the crust has been dated at 105-110 Ma (Henry et al., 1998). In the Lherz massif, the last stage of exhumation of the peridotites is marked by extensive brecciation in the outer rim of the peridotite body and in the host limestones that show structures typical of sedimentary reworking (Lagabrielle and Bodinier, 2008).

Although mainly composed of refertilized spinel lherzolites that form ca.

75% of the massif (Fig. 1b), the Lherz massif decametric-scale displays metric to intermingling of secondary lherzolites and highly refractory harzburgites in its topographically higher, southern part (Le Roux et al., 2007). The northern part of the massif is essentially composed of refertilized lherzolites containing a pervasive cm-scale websteritic layering (Fig. 2c,d). The websteritic bands are numerous in lherzolites, whereas harzburgites are devoid

of them, except at the contact between the two lithologies. The entire massif is crosscut by a later generation of amphibole-bearing pyroxenite dykes and hornblendite veins, related to alkaline magmatism during the Cretaceous (Bodinier et al., 1987a; Golberg et al., 1986; Loubet and Allègre, 1982; Vétil et al., 1988). Meter-scale low-temperature mylonitic bands cross-cut the massif; they are more common at its borders and are probably related to the emplacement of the massif in the crust (Costa and Maluski, 1988).

The harzburgites generally occur as elongated bands a few meters to tens of meters-wide within the lherzolites. All harzburgites show a penetrative shallowlydipping foliation with a constant N40-N60°E orientation SW-NE sub-horizontal and lineation, marked by elongated spinels and elongated olivine porphyroclasts. Throughout the massif, harzburgites display a homogeneous coarse-grained porphyroclastic microstructure (Fig. 3a), characteristic of deformation by dislocation creep under high-temperature, low-stress conditions (T >1100° C). Large olivine porphyroclasts (up to 5 mm long) are usually elongated; aspect ratios may attain up to 1:4. They display curvilinear grain boundaries, wavy extinction, and closely-spaced (100) subgrain boundaries. Orthopyroxenes and rare clinopyroxenes are smaller (2-3 mm and < 1 mm on average, respectively) and show irregular shapes and wavy extinction.

Fig. 4: (a) Photomicrograph parallel to the foliation plane of a porphyroclastic harzburgite showing a orthopyroxene-clinopyroxene-spinel rich websteritic lens with a coarse granular texture. Detail photomicrographs of the lens showing (b) irregularly-shaped interstitial spinels (Spl) and (c) a strongly deformed orthopyroxene (Opx) with en-echelon fractures normal to the kink bands filled with clinopyroxene.

Harzburgites often contain cm-scale disk-like pockets enriched in orthopyroxeneclinopyroxene-spinel flattened parallel to the foliation (Fig. 2a, 4a). In these fertile pockets, orthopyroxene is strongly deformed with common kink bands that locally evolve into fractures filled with clinopyroxene (Fig. 4c). Clinopyroxene deformation varies from grain to grain, some crystals show wavy extinction whereas others do not display any intracrystalline deformation features. Spinels display irregular interstitial shapes, which evolve into thin films along grain boundaries (Fig. 4b). Preservation of these delicate interstitial crystallization morphologies, marked by the crystallographic continuity between crystals within triple junctions and thin films along grain boundaries indicate that these crystals have not been deformed. In addition, some irregularly-shaped spinels, which surround the pyroxenes, may have formed by exsolution from the pyroxenes at even lower temperatures during cooling. According to their compositions, minerals constituting these pockets are in equilibrium with the harzburgitic matrix and represent accumulated newly-formed crystals. Approaching the contact with the lherzolites, these websteritic pockets become larger and more numerous and evolve to irregular or vein-like shapes oblique to the harzburgite foliation, but sub-parallel to the contact.

The contact between harzburgites and lherzolites is often sharp, steeply-dipping

and marked by cm-scale websteritic layers (Fig. 2b) that crosscut the harzburgite foliation (Fig. 1, 2b). However, a progressive within transition some meters from harzburgite to clinopyroxene-poor lherzolites and to lherzolite may be locally observed. In the lherzolites close to the contact, the foliation is marked by a weak alignment of interstitial, irregularly-shaped spinels. This foliation is incipient close to the contact (<1m), but it strengthens away from it, where it is marked by alignment of spinels and elongation of olivine and pyroxene crystals (Fig. 3b). It is variable in orientation (N10 to N80) and dips either eastward or southward. It is usually oblique to the harzburgite foliation and parallel to the lherzolite-harzburgite contacts. At the contact, lherzolites often display a mm- to cm-scale websteritic layering parallel to the foliation. Proximal lherzolites show coarse pyroxene grains: orthopyroxenes are 2-3 mm large on average, but may attain up to 5mm, and clinopyroxenes are 1-2 mm large on average. Most pyroxenes are undeformed, but some display a faint wavy extinction. Olivine porphyroclasts (3-4 mm on average) are associated with smaller olivine grains (<1 mm). All olivine grains display wavy extinction and subgrains and they are more elongated with increasing distance to the contact.

Farther from the contact with the harzburgite bodies (>30m), distal refertilized

lherzolites are associated with a pervasive mm- to tens of cm-scale websteritic layering that parallels the foliation plane. Distal lherzolites are characterized by a welldeveloped, steeply-dipping foliation. dominantly oriented N40-N80, and defined by the alignment of spinel aggregates and the shape preferred orientation of olivine porphyroclasts (Fig. 3c). These lherzolites display both elongated olivine porphyroclasts (3-4 mm on average) with marked wavy extinction and closely-spaced subgrain boundaries, and smaller deformed olivine grains (<1 mm). Clinopyroxenes and orthopyroxenes are equant, 2-4 mm wide, and show wavy extinction. The thickest websterite bands (>10 cm wide) are locally folded or boudinaged, suggesting that they behaved as stiffer layers during the late stages of deformation. Generally, websterite layers contain small and equant olivine grains (<1 mm) showing wavy extinction. Clinopyroxenes and orthopyroxenes are 3-4 mm on average, but orthopyroxene may attain up to 1 cm (Fig. 3d). The largest orthopyroxene and clinopyroxene crystals usually show strong wavy extinction and subgrains. Spinels display irregular shapes.

3. Evolution of CPO through the Lherz Massif

3.1. Sampling and Methods

To investigate the evolution of the deformation in refertilized lherzolites and associated websterites through the Lherz massif, we sampled harzburgite-lherzolite contacts, proximal lherzolites close to the contacts with harzburgites (<30m), distal lherzolites (> 30m from the contact) and their associated websterites in the western part of the massif where they dominate (Fig. 1b).

Crystal-preferred orientations (CPO) of olivine, orthopyroxene and clinopyroxene were measured by indexing of Electron Back Scattered Diffraction (EBSD) patterns using the SEM-EBSD system at Geosciences Montpellier (France). Indexing was performed either manually or automatically. Manual measurements consisted of grain-bygrain indexing along 2 mm-spacing profiles parallel to the long axis of the thin section. For each thin section, except in the websterites, ≥ 200 olivine grains were indexed to obtain а statistically representative sampling of the CPO (Ben Ismaïl and Mainprice, 1998). The automatic mapping used a regular grid step of 85µm, which is in average 10-11 times smaller than the largest observed grains, over the whole thin section. Raw maps are characterized by 50-60% indexed surface. Non-indexed pixels are linked to serpentinization, polishing defects, grain boundaries and non-indexed minor phases like spinels. Post-acquisition data treatment allowed to further increase the

Fig. 5: (a) Olivine crystal-preferred orientations (CPO) in distal harzburgites (>15 m from the contact). (b) Olivine crystal-preferred orientations (CPO) in distal lherzolites (>30m from the contact). Lower hemisphere equal area projections in the geographic reference frame (N at the top, E on the right). Contours at 0.5 of multiple of a uniform distribution intervals. 1 measurement per grain. N= Number of grains measured. Empty stars and solid lines indicate the projection of the apparent lineation and foliation, respectively.

indexing rate by (i) filling the non-indexed pixels that have up to 8 identical neighbors with this orientation, (ii) repeating this operation using respectively 7, 6, and 5 identical neighbors, (iii) identifying the grains, i.e. continuous domains characterized by an internal misorientation $<15^{\circ}$, and (iv) within each olivine crystal, searching and correcting for systematic indexing errors due

to the olivine hexagonal pseudo-symmetry, which results in similar diffraction patterns for orientations differing by a rotation of 60° around [100]. At each step, the resulting orientation maps were checked to avoid over-extrapolation of the data. In addition, the microstructure and average grain size estimated from the EBSD crystal orientation

Fig. 6: Evolution of olivine crystal-preferred orientations (CPO) across two harzburgite-lherzolite contacts. Lower hemisphere equal area projections in the geographic reference frame (N at the top, E on the right). Contours at 0.5 of multiple of an uniform distribution intervals. 1 measurement per grain. N= Number of grains measured. Empty stars and solid lines indicate the projection of the apparent lineation and foliation, respectively.

maps were constrained by comparison to those observed by optical microscopy.

Pole figures are represented using average Euler angles for each grain instead of individual measurements to avoid overrepresentation of larger grains on the thin section. In addition we set up a minimum grain area of $36125\mu m^2$ (5 contiguous measurement points) to avoid overrepresenting poorly indexed grains. This minimum area is small enough not to lose information on the orientation of the smaller grains, which are on average 1mm-wide. We obtained >400 indexed olivine grains and >200 indexed pyroxenes for each thin section, with exception of the websterites where fewer olivine grains could be measured. The fabric strength is quantified by the J index, which is the volume-averaged integral of the squared orientation densities and hence is sensitive to peaks in the orientation distribution function (Bunge, 1982). J is dimensionless; it is 1 for a random distribution and infinity for a single crystal orientation. It usually ranges between 2 to 20 for natural peridotites (Ben Ismaïl and Mainprice, 1998).

3.2. Weakening of CPO associated with the refertilization process

Harzburgites display a clear [100]-fiber olivine CPO throughout the massif (Figs. 5a, 6 & 7). This olivine CPO pattern is characterized by alignment of [100] axes close to the lineation and a girdle distribution of [010] and [001] with a maximum of [010] normal to the foliation. It is typical of deformation by dislocation creep with activation of the high temperature, low stress (0kl)[100] slip systems, with (010) as the dominant slip plane (Tommasi et al., 2000). The orientation of the olivine CPO in the harzburgites is consistent throughout the massif. Its intensity, characterized by J_{ol} (Table 1) varies from point to point; CPO are strong $(J_{ol} > 8)$ away from the contacts, but more variable (J_{ol} varying from 10 to 4, with an average close to 7) within 10m of the contacts (Fig. 7). Orthopyroxene CPO in the

Fig. 7: Evolution of olivine CPO as function of the distance to the harzburgite-lherzolite contacts. (a) CPO strength, represented by the J index. (b), (c), and (d) Maximum density of distribution of [100], [010], and [001] axes of olivine, respectively. (e) Ratio of maximum density of distribution of [100] axes relative to the one of [010] axes. This plot highlights the transition from strong [100]-fiber patterns in harzburgites to ([010]-fiber patterns in lherzolites close to the contact, and finally to weak [100]-fiber patterns in lherzolites far from the contact. Empty squares: harzburgites; solid circles: lherzolites; grey triangles: websterites. Dotted lines outline the general evolution of the olivine CPO from the harzburgites to the lherzolites far from the contacts.

Le Roux et al.	(2008),	Feedback b	etween 1	melt pe	ercolation	and	deformation
		in an exhu	med lith	osphei	re-astheno:	sphe	re boundary

Sampling	a	Distance from contact	J index of olivine	fiber	Modal composition			
site	Sample type				Ol	Opx	Срх	Spl
1	harzburgite	5 cm	8.6	[100]	79.6	17.9	1.9	0.6
1	harzburgite	10 cm	6.6	[100]	75.3	20.8	2.2	1.7
1	harzburgite	1 m	8.5	[100]	71.4	25.7	2.3	0.6
1	harzburgite	3.5 m	9.2	[100]	76.9	20.3	2.1	0.7
1	harzburgite	4.5 m	10	[100]	66.8	27.7	3.1	2.5
1	lherzolite	1.5 m	3.8	[100]	45.5	28.5	22.7	3.3
1	lherzolite	3 m	6	[010]	57.3	29.5	10.9	2.3
1	lherzolite	5 m	7	[010]	54.4	28.4	15.2	2.0
2	harzburgite	1 m	4	[100]	80.4	17.6	1.5	0.5
2	harzburgite	1.2 m	7.9	[100]	84.1	14.1	1.4	0.4
2	harzburgite	1.5 m	8.7	[100]	82.9	15.2	1.4	0.4
2	harzburgite	2 m	9.7	[100]	82	16	1.5	0.6
2	lherzolite	5 cm	4	[010]	78	16	5	1
2	lherzolite	10 cm	3.6	[010]	68.8	19.9	9.7	1.6
2	lherzolite	50 cm	4.6	[100]	61.6	20.8	14.9	2.7
2	lherzolite	80 cm	4.1	[010]	72.6	16.1	9.3	1.9
2	lherzolite	1.5 m	4	[010]	59.9	26.3	11.7	2.1
3	harzburgite	> 15 m	8.7	[100]	94.0	4.6	1.2	0.2
4	harzburgite	>15 m	10	[100]	79.5	16.8	2.4	1.2
5	harzburgite	>15 m	9.2	[100]	78.0	19.0	2.0	1.0
6	harzburgite	> 15 m	10.1	[100]	76.0	21.0	2.0	1.0
7	lherzolite	30 m	4.3	[100]	61.0	25.0	11.5	2.5
8	lherzolite	50 m	3.4	[010]	46.0	35.0	15.0	2.0
9	lherzolite	60 m	1.75	[010]	46.0	32.0	20.0	2.0
10	lherzolite	70m	2.6	[100]	46.0	29.0	20.0	5.0
11	lherzolite	150 m	4.4	[010]	63.0	19.0	15.0	3.0
12	lherzolite	150 m	3	[100]	63.6	22.7	12.0	1.7
13	lherzolite	350 m	4	[100]	62.0	24.0	12.0	2.0
14	lherzolite	80 m	2.9	[100]	78.0	16.0	5.0	1.0
15	lherzolite	80 m	3.2	[100]	60.0	25.0	12.5	2.5
16	websterite	10 m	3.6	[010]	5.0	46.5	38.5	10.0
17	websterite	30 m	2.3	[010]	30.0	39.0	27.0	4.0
18	websterite	30 m	3.5	[010]	12.0	34.0	45.0	9.0

Table 1: Modal composition and olivine CPO pattern and intensity (J index) of the studied samples, according to their distance to the nearest harzburgite-lherzolite contact. The localization of the samples is given in Fig. 1; OI = olivine, Opx = orthopyroxene, Cpx = clinopyroxene, Spl = spinel. Modal compositions were calculated by inversion of whole-rock chemical compositions based on mineral compositions obtained by microprobe analysis (Le Roux et al., 2007).

display strong [001]-fiber harzburgites patterns (Fig. 8a), characterized by alignment of [001] axes close to the lineation and a weaker concentration of [100] axes normal to the foliation (Fig. 8a). This CPO is typical of high-temperature deformation of orthopyroxene with dominant activation of the (100)[001] slip system. The correlation between olivine and orthopyroxene CPO, marked by parallelism of the dominant hightemperature Burgers vectors [100] and [001] respectively, suggests a coherent deformation of these two mineral phases. Although more dispersed, clinopyroxenes CPO are similar to that of the orthopyroxenes (Fig. 8a).

The harzburgite-lherzolite contacts are marked by a significant decrease of the olivine CPO from the harzburgites to the lherzolites with J_{ol} varying from 7 on

Fig. 8: (a) Representative crystal-preferred orientations (CPO) of olivine, enstatite and diopside in harzburgites (H.), proximal lherzolites (P.L.) and distal lherzolites (D.L.). Lower hemisphere equal area projections in the geographic reference frame (N at the top, E on the right). Contours at 0.5 of multiple of a uniform distribution intervals. 1 measurement per grain. N= Number of grains measured. Empty stars and solid lines indicate the projection of the average lineation and foliation of representative samples. (b) Shape- and crystal-preferred orientations (CPO) of olivine (Ol, white), orthopyroxene (Opx, light gray) and clinopyroxene (Cpx, dark gray) measured by crystal orientation mapping with a 85µm grid step in two 'abnormal' distal lherzolites. Empty stars and solid lines indicate the projection of the apparent lineation and foliation respectively. The lineation, marked by the elongation of olivine crystals, is not parallel to the maximum concentrations (CPO) of olivine, but it is parallel to the maximum concentration of [100] axes of olivine, but it is parallel to the maximum concentration of [001] axes of pyroxenes. (c) Crystal-preferred orientations (CPO) of olivine, enstatite and diopside in cm-scale websterite layers within lherzolites. Dotted lines represent the orientation of the websteritic layer.

average in harzburgites to 4 in lherzolites within a few meters (Table 1; Fig. 7). Most lherzolites at the contact have a weak [010]fiber olivine CPO pattern (Figs. 6 & 7). Surprisingly, in lherzolites within 1m from the contact, olivine (010) planes and pyroxenes (100) planes are not parallel to the incipient foliation measured in the field; they are rather aligned with the foliation and the olivine CPO in the neighboring harzburgites. Farther away from the contact (>1m), the olivine CPO becomes consistent with the lineation and foliation observed in the lherzolites at both field and thin-section scales (Fig. 6). The re-alignment of the crystallographic axes in the newly-developed foliation seems thus belated compared to the change in modal composition in response to the refertilization process, suggesting a weak deformation at the contact. Pyroxenes CPO in proximal lherzolites is weak, but orthopyroxenes show a clear [001] maximum lineation, parallel to the whereas clinopyroxenes tend to show a weak [010] maximum and a girdle distribution of [001] normal and parallel to the foliation, respectively (Fig. 8a).

In the distal (> 30m from the contact), layered lherzolites that outcrop in the northern and western part of the Lherz massif, olivine CPO is always weak: J_{ol} ranges between 4.4 and 1.7 (J_{ol} =3 on average; Table 1 & Fig. 7). These lherzolites dominantly display [100]-fiber olivine CPO patterns (Figs. 5b & 7). [100] axes of olivine are aligned close to the lineation, whereas [010] and [001] display a girdle distribution with a maximum of [010] normal to the foliation. This crystallographic fabric is consistent with activation of (0kl)[100] slip systems with dominant slip on (010) planes. Some distal lherzolites display [010]-fiber olivine CPO, similar to those observed close to the harzburgite bodies (Figs. 5b & 7). Orthopyroxene CPO in distal lherzolites are also weak, but well-correlated with the olivine CPO (Fig. 8a). Finally, some distal lherzolites from the western part of the massif, show an olivine CPO uncorrelated to the olivine shape preferred orientation that marks a clear foliation and lineation (Fig. 8b). In these peculiar lherzolites, the maximum concentration of [100] axes of olivine is oblique (ca. 40-50°) to the elongation of olivine crystals. In contrast, pyroxenes CPO show a good correlation with the olivine shape preferred orientation; [001] axes of clino- and orthopyroxenes are preferentially aligned parallel to the direction of elongation of olivine crystals (Fig. 8b).

Distal lherzolites are always associated with cm-scale websteritic layers in which olivine and pyroxene display a weak CPO (Fig. 8c). Olivine CPO is usually characterized by [010]-fiber patterns and J_{ol} varying from 3.6 to 1.7 ($J_{ol} = 2.6$ on average; Table 1). [100] axes of olivine and [001] axes of pyroxenes are parallel to the direction of elongation of pyroxenes while [010] axes of olivine and [010] and [100] axes of clino- and orthopyroxene, respectively, are normal to the layering measured in the field.

4. Discussion

4.1. Evolution of percolationdeformation feedback mechanisms from harzburgites to lherzolites

In the Lherz massif, lherzolites formed through a refertilization process involving interaction of refractory mantle lithosphere (harzburgites) with upwelling asthenospheric melts (Le Roux et al., 2007). Detailed structural mapping shows that the orientation of the foliation and the lineation in harzburgites is consistent at the scale of the massif even though many harzburgites are small, isolated bodies enclosed in the lherzolites. On the other hand, the direction of the foliation and lineation in lherzolites varies throughout the massif. The lherzolites steeply-dipping foliation locally moulds the harzburgite bodies and often crosscuts their steady shallowly-dipping foliation. In addition, within the lherzolites, an increase in the deformation away from the contact with harzburgites is suggested by the progressive development of a shapepreferred orientation of olivine crystals and a better alignment of spinels, which results in an evolution in the field from an incipient to a well-developed foliation with increasing Stronger distance the contacts. to deformation in the distal lherzolites is also suggested by boudinage and folding of the websteritic layering that are not observed close to the contacts. These observations support that the harzburgites preserve structures related to an episode of deformation prior to the formation of the lherzolites, and that subsequent deformation was localized in the lherzolites. The important change in the deformation kinematics, characterized by sub-horizontal foliations in harzburgites to steeply-dipping foliations in lherzolites, suggests two distinct deformation episodes rather than a continuum. In the following paragraphs we discuss the relations between melt percolation and deformation that vary throughout the massif, from the harzburgites to the distal lherzolites.

The numerous cm-scale websteritic lenses in the harzburgites (Fig. 2a) were probably formed by partial crystallization of small volumes of melt injected in the Coexistence harzburgite. of strongly deformed orthopyroxene crystals showing wavy extinction, kink bands, local 'en echelon' fractures and moderately to undeformed clinopyroxenes and undeformed spinels (Fig. 4) suggests syn-kinematic crystallization where strain rate progressively decreased with increasing

crystal fraction. Fractures normal to kink bands in large deformed orthopyroxene crystals filled by small undeformed clinopyroxene crystals (Fig. 4c) may have resulted from crystal-scale hydraulic fracturing in the harzburgites caused by local overpressure due to the presence of melts.

Far from the harzburgite-lherzolite contacts, these websteritic lenses are systematically parallel to the harzburgites foliation. In contrast, close to the contacts, they are larger and more numerous and they are often oblique to the harzburgite foliation and parallel to the contact. Because of their minerals composition similar to those of the host matrix, it seems difficult to chemically discriminate whether these pockets are linked or not to the refertilization event. Although a possible formation of these websteritic lenses during an older melt percolation event cannot be ruled out, we favor, based on our structural observations, the hypothesis that they represent the early stage of the melt percolation event that formed the lherzolites. In this scenario, the foliation-parallel websterite lenses represent the initial stages of melt percolation that were accompanied by an incipient deformation of the harzburgites. Alignment of the melt lenses in the foliation implies that the percolation of these small melt volumes was guided by the preexistent anisotropic structure of the harzburgites (Tommasi et al., 2008; Waff and Faul, 1992). The strong

olivine CPO in the harzburgites resulted in a mechanical anisotropy (Tommasi and Vauchez, 2001) that probably also controlled the incipient stages of deformation. Close to the contact with lherzolites, the structural control by the harzburgite foliation was probably overwhelmed by the external solicitation (imposed kinematics), which is better expressed in lherzolites. Finally, coexistence of deformed and undeformed minerals in these lenses suggests that partial crystallization and refertilization reactions in the melt pockets led to a stop of the deformation and transfer of strain to domains with a larger proportion of melt and hence a lower dynamic viscosity.

With increasing distance to the contacts with harzburgites, lherzolites display an evolution of macroscopic structures and crystal preferred orientations that may be explained by variations in finite strain and in the melt fraction present during deformation. The tectonic fabric of the lherzolites strengthens with increasing distance to the contact. Within 1m from contact, the lherzolites show an incipient foliation marked by the alignment of interstitial spinels and a cm-scale websterite banding, but their olivine CPO is still parallel to the harzburgite one. This suggests that, in this narrow contact zone, strain was not high enough to erase the crystallographic fabric inherited from harzburgites. Within 30m from the contacts, proximal lherzolites show

a weak but clearly developed foliation and lineation, to which is associated a weak olivine CPO with a dominant [010]-fiber pattern, characterized by a point maximum of [010] normal to the foliation and dispersion of [100] in the foliation plane.

[010]-fiber olivine patterns similar to those observed in the proximal lherzolites have been observed in peridotites worldwide, for instance in the Ronda massif (Vauchez and Garrido, 2001), in alkali-basalt xenoliths from Siberia (Tommasi et al., 2008), in cratonic xenoliths (Ben Ismaïl and Mainprice, 2001; Vauchez et al., 2005) and in mantle xenoliths from oceanic islands (Bascou et al., 2008). The development of such patterns has been explained by: (i) axial shortening or 3D transpressive deformation (Bascou et al., 2008; Tommasi et al., 1999), (ii) activation of multiple glide directions (Mainprice et al., 2005; Tommasi et al., 2000), (iii) static recrystallization (Tommasi et al., 2008), and (iv) deformation in presence of melt (Holtzman et al., 2003). The alignment of [001] axes of orthopyroxene forming a point maximum close to the lineation does not support a transpressive deformation, which would also result in dispersion of the orthopyroxene [001] axes in the foliation plane, as observed for instance in the Kerguelen Islands mantle (Bascou et al.. 2008). The present microstructural observations indicate that the Lherz peridotites were deformed in the

shallow mantle (in the spinel stability field) near-solidus conditions. The at pressure/stress conditions that prevailed during the deformation are therefore too low for activation of [001] glide (Couvy et al., 2004; Jung and Karato, 2001; Mainprice et al., 2005; Vauchez et al., 2005). Indeed, analysis of crystallographic orientation maps shows that subgrain boundaries in these lherzolites are dominantly (100) tilt boundaries, implying dominant activation of [100] glide. Finally, the absence of annealing features in olivine does not support static recrystallization. Thus we favor the latter hypothesis, i.e., a simple shear deformation in presence of melt to explain [010]-fiber olivine patterns in the proximal lherzolites. This suggests that deformation mechanisms similar to those in the laboratory experiments activated even were though natural deformation conditions were very different from the experimental ones, in particular the grain sizes (10 microns versus several mm in natural conditions) and the strain rates.

Farther from the contact (>30m), the distal lherzolites have a well-developed foliation and lineation marked by the alignment of spinel aggregates and flattening of olivine, which suggest a larger finite strain. This interpretation is corroborated by the observation of local boudinage or folding of the pervasive websteritic layering. Paradoxically, the distal lherzolites display olivine CPO with a dominant [100]-fiber pattern (Fig. 5b), but that are significantly weaker than those in the proximal lherzolites. Higher finite strain in the distal lherzolites may have favored a better orientation of [100] parallel to the lineation. The association of a strong foliation and lineation with weak CPO might be explained by an increase of diffusion accommodated creep and/or grain boundary sliding at the expense of dislocation creep. Diffusion processes are favored by higher temperatures, lower deviatoric stresses, and the presence of fluids. An important temperature or stress gradient is unrealistic at the tens of meters scale. However the greater abundance of websteritic layers, locally up to tens of cm-wide, suggests that this zone may have experienced a higher melt flux than the proximal lherzolites, even though the porosity probably never exceeded 2-3%. Larger instantaneous melt fractions may have favored melt-assisted grain boundary sliding (Rosenberg and Handy, 2001; Scott and Kohlstedt, 2006). The average olivine grain size decreases from harzburgites to refertilized lherzolites. Smaller grains have a larger surface/volume ratio which, when deformation occurs in the presence of melt, favors an accommodation by melt-assisted grain boundary sliding. Furthermore, Wark and Watson (2000) have shown that when coarse- and fine-grained domains are in chemical communication, melt is focused in

the fine-grained domains, resulting in a permeability that matches or exceeds that of coarser grained domains. Thus if grain size refinement preceded melt percolation, both melt percolation and deformation may have localized within the fine-grained domains. Finally, some distal lherzolites have a maximum concentration of [100] axes at 40- 50° to the lineation marked by the elongation of the olivine crystals, which is nevertheless parallel to the enstatite [001] maximum (Fig. 8b). We speculate that the observed lack of correlation between the shapeand crystallographic fabric of olivine might be related to partitioning of deformation with a higher contribution of diffusion and dislocation creep in melt-rich and melt-poor domains, respectively (Holtzman et al., 2003) or to local transtension.

Structural data in the Lherz massif points to a direct correlation between strain intensity and percolating melt volume fraction as illustrated in Fig. 9. Increasing deformation tends to favor melt segregation (Holtzman et al., 2003), which, by a feedback effect, leads to further strain localization. In the Lherz massif however, the progressive crystallization of the magmas during the refertilization reaction might have been a limitant parameter for this feedback deformation between and percolation, resulting in transfer of strain towards new melt-rich zones.

Fig. 9: Sketch summarizing the evolution of microstructures and olivine CPO in harzburgites and lherzolites from the Lherz massif according to their distance to the harzburgite-lherzolite contacts.

4.2. Formation of a pervasive websteritic layering in refertilized lherzolites

The refertilization process in the Lherz massif resulted in the formation of both massive lherzolites and of mm- to tens of cm-scale websteritic layers parallel to the foliation of the lherzolites. The websteritic layering is pervasive in the distal lherzolites, but cm-wide websteritic bands are also often observed the harzburgite-lherzolite at contacts. The chemical composition of these websterites shows that they do not represent simple crystallized trapped melts (Bodinier et al., 1987b). We interpret therefore these websteritic layers as zones of melt segregation, favored by strain, where higher melt fractions resulted in more developed

refertilization reactions (dissolution of larger volumes of olivine and crystallization of larger amounts of pyroxenes and spinels). However, the actual volume of melts needed to form these layers cannot be assessed accurately.

Holtzman et al. (2003) showed that in olivine + basalt + chromite or FeS, anorthite + basalt, and in olivine + albite melt samples deformed under simple shear. melt segregates into a network of melt-rich bands. Analysis of these results as well as numerical models suggest that segregation is controlled by pressure gradients and depends therefore on the compaction length of the system, which is a function of the permeability and of the solid and fluid viscosities (Hofmann, 2003; Rabinowicz and Ceuleneer, 2005; Spiegelman, 1993). In the Lherz massif, pyroxenes and spinel crystallization during refertilization reactions resulted in a reduction of porosity, plugging the melt network and hence favoring the segregation of melts. The coexistence of cm-scale strongly deformed orthopyroxenes and moderately to undeformed clinopyroxenes suggests that the deformation slowed progressively as the newly-formed crystals plugged the porosity, likely localizing further in less crystallized domains. The websteritic layers in the Lherz massif thus probably represent multiple "frozen" timesteps of a dynamic melt transport system.

4.3. Geodynamic environment of the refertilization process

In this paper we suggest that the refertilization of the old harzburgitic mantle lithosphere was coeval with a deformation dominated by simple shear under subsolidus temperature conditions. During the evolution of the Pyrenean domain, two major events have tightly associated magmatism and deformation: 1) the Cretaceous deformation 2) the Hercynian orogeny. and The emplacement of the Lherz massif in the crust during the Cretaceous (Henry et al., 1998) might have produced such a deformation. However amphibole-pyroxenite dykes considered to represent trans-lithospheric melt conduits for Cretaceous alkaline magmatism (Bodinier et al., 1987a; Golberg et al., 1986; Loubet and Allègre, 1982; Vétil et al., 1988) crosscut at high angle the foliations of both the harzburgites and refertilized lherzolites, suggesting that the refertilization event occurred before the Cretaceous. Moreover Pyrenean peridotites record equilibrium conditions of 8-17 kb at ~950°C suggesting an isobaric cooling stage from ~1200°C to ~900°C during a ~20My thermal relaxation episode (Fabriès et al., 1991; Sautter and Fabriès, 1990). This long thermal relaxation rules out the idea that the refertilization episode occurred during the emplacement of the massif in the crust, since this later is inferred to have occurred in <5m.y. throughout the Pyrenees (Fabriès et al., 1998; Fabriès et al., 1991; Schärer et al., 1995).

Seismic anisotropy measurements in the Pyrenees led Barruol et al. (1998) to suggest that the retrieved S-wave polarization anisotropy is largely inherited from the deformation of the mantle lithosphere during the Hercynian orogeny. Indeed, shear-wave splitting measurements yield a consistent ~N100E polarization of the fast S-wave and rather large splitting, suggesting а lithospheric fabric mostly due to transcurrent motions. This anisotropy is observed in all domains of the Pyrenean belt, even in the southern and northern external domains where the ECORS seismic profile has shown that only the uppermost crust was involved in the Pyrenean tectonics (Choukroune, 1988). An Hercynian orogenic fabric therefore appears as the best candidate to explain the observed S-wave anisotropy (Barruol et al., 1998; Vauchez and Barruol, 1996). The late stages of the Hercynian orogeny in the Pyrenees are characterized by emplacement of syncinematic granites at the scale of the belt. Based on the analysis of the magmatic flow fabric of these granites and of the tectonic fabric in the host rocks, Gleizes et al. (1997) suggested that the whole Pyrenean belt behaved large, as a lithospheric-scale "shear-zone" during the last stage of the Variscan orogeny. We suggest therefore that the Variscan event

may represent an adequate context for the syn-orogenic refertilization episode of an older lithosphere, remnants of which have been preserved in Lherz massif.

5. Conclusions

Based on a detailed study of the relationships between deformation and melt percolation in harzburgites, refertilized lherzolites and websteritic layers in the Lherz massif we propose that:

(a) Reactive percolation of basaltic melts in the harzburgitic Pyrenean lithosphere was synchronous to a lithospheric-scale simple shear deformation, which led to the development of a new foliation in the refertilized, secondary lherzolites and associated websterites. Some remnants of the harzburgitic protolith avoided most of this deformation and form elongated lenses the refertilized deformed within and lherzolites.

(b) There is a continuum in the deformation, which started in the harzburgites and progressively localized in the refertilized lherzolites. The deformation intensity increases with increasing distance from the harzburgites and increasing volume of percolating melts. We suggest that feedback between deformation and melt percolation produced the observed structures: larger melt fractions favored strain localization and larger strain favored

54

melt percolation through a higher dynamic porosity. This feedback is probably a major process in the compositional and structural rejuvenation of the subcontinental mantle lithosphere.

(c) The response of the rocks' texture to deformation depends on a subtle balance between two parameters: the strain intensity and the volume of percolating melts. In the Lherz massif, this led to coexistence of [100]-fiber and [010]-fiber olivine CPO. [100]-fiber olivine CPO developed where strain dominated the evolution (very low melt fractions as in the harzburgites or high strain as in the distal lherzolites). On the [010]-fiber other hand, olivine CPO developed where melt played an equally important or dominant part in the evolution (low melt fraction and incipient strain in proximal lherzolites or large melt fractions in the websterites).

(e) The formation of the websterites layers was synchronous of that of the lherzolites, due to melt segregation that was probably favored by the refertilization reactions, which plugged the melt network, reducing the permeability and producing small-scale pressure gradients.

(e) The deformation-refertilization event observed in the Lherz massif probably records the evolution of the Pyrenean mantle lithosphere during the late stage of the Variscan orogeny during the Carboniferous, when abundant magmatism coeval with orogen-parallel transcurrent faulting was emplaced throughout the Pyrenean domain. shearing produced a large-scale This anisotropic structure in the mantle lithosphere, which may explain the beltparallel polarization of the fast split shear wave observed in the Pyrenees.

Acknowledgments

We thank Ben Holtzman and Günter Suhr for their constructive reviews. D. Mainprice provided softwares for analysing/plotting CPO data and C. Nevado and D. Delmas supplied high quality polished thin sections for EBSD measurements. This study was partially funded by the Institut National des Sciences de l'Univers (CNRS/INSU) program 'Dynamique et Evolution de la Terre Interne' (DyETI). This is contribution no 544 from the GEMOC ARC National Key Centre.

References: end of thesis manuscript.

Chapter IV:

Isotopic decoupling during porous melt flow: a case-study in the Lherz peridotite

Article accepted to Earth and Planetary Science Letters

V. Le Roux^{1,2}, J.-L. Bodinier¹, O. Alard^{1,2}, S.Y. O'Reilly², W.L. Griffin²

¹ Géosciences Montpellier, Université de Montpellier 2 and CNRS, Cc 060, Place E. Bataillon, 34095 Montpellier cedex 5 France

² GEMOC, Department of Earth & Planetary Sciences, Macquarie University NSW 2109 AUSTRALIA

VLR's contribution in this paper: analyses, interpretations, writing.

Abstract

Most peridotite massifs and mantle xenoliths show a wide range of isotopic variations, often involving significant decoupling between Hf, Nd and Sr isotopes. These variations are generally ascribed either to mingling of individual components of contrasted isotopic compositions or to time integration of parent-element enrichment by percolating melts/fluids, superimposed onto previous depletion event(s). However, strong isotopic decoupling may also arise during porous flow as a result of daughter-elements fractionation during solid-liquid interaction. Although porous flow is recognized as an important process in mantle rocks, its effects on mantle isotopic variability have been barely investigated so far. The peridotites of the Lherz massif (French Pyrenees) display a frozen melt percolation front separating highly refractory harzburgites from refertilized lherzolites. Isotopic signatures observed at the melt percolation front show a strong decoupling of Hf from Nd and Sr isotopes that cannot be accounted for by simple mixing involving the harzburgite protolith and the percolating melt. Using one dimensional percolation-diffusion and percolation-reaction modeling, we show that these signatures represent transient isotopic compositions generated by porous flow. These signatures are governed by a few critical parameters such as daughter element concentrations in melt and peridotite, element diffusivity, and efficiency of isotopic homogenization rather than by the chromatographic effect of melt transport and the refertilization reaction. Subtle variations in these parameters may generate significant inter-isotopic decoupling and wide isotopic variations in mantle rocks.

Keywords: isotopic decoupling; mantle rocks; melt transport; metasomatism; diffusion; Lherz

1. Introduction

Mantle rocks that outcrop at the Earth's surface provide a direct source of information on the composition and evolution of the Earth's mantle. Isotopes systematics observed in most peridotite (Reisberg and Zindler, massifs 1986; Downes et al., 1991; Pearson and Nowell, 2004) and mantle xenoliths (Deng and 1992; Mcdougall, Witt-Eickschen and Kramm, 1997; Bizimis et al., 2003;Wittig et al., 2007) show a wide range of variations compared with single suites of mantlederived lavas. Some of the isotopic variations observed in peridotite massifs are correlated with lithologies, e.g. pyroxenites vs. peridotites (Reisberg and Zindler, 1986; Pearson and Nowell, 2004) and have been ascribed to convective mingling of subducted material with pristine material (Allègre and Turcotte, 1986; Becker, 1996). Other, small scale heterogeneities are ascribed to isotopic enrichment by metasomatizing fluids/melts superimposed onto ancient depletion due to melt extraction (Downes et al., 1991; Bizimis et al., 2003; Wittig et al., 2007). The time integration of both depletion and enrichment of parent elements is often considered as the primary cause of isotopic variations in lithospheric peridotites.

However, few studies have tackled the relationships between isotopic variations and metasomatic processes (e.g. Ionov et al., 2002; Bodinier et al. 2004). Therefore, the mechanisms of isotopic enrichment and inter-isotopes decoupling during mantle metasomatism are still barely understood. the "instantaneous" Additionally, (as opposed to "time-integrated") effect of melt transport on isotopes systematics is usually neglected, although it may theoretically generate drastic fractionation of daughter elements from different isotopic systems (Navon and Stolper, 1987). Further complexity may also arise from solid-liquid disequilibrium during fluid/melt-rock interaction. Van Orman (2001) showed that REE (Rare-Earth Elements) diffusion in clinopyroxene at magmatic temperatures may be slower than first envisioned. For instance, Sneeringer et al. (1984) obtained a diffusion rate of $\sim 5.10^{-15} \text{ cm}^2.\text{s}^{-1}$ for Sm in diopside at 1250°C and 1.4 Gpa while Van Orman et al. (2001) showed that Yb, one of the fastest REE, did not diffuse faster than 5- 6.10^{-16} cm $2.s^{-1}$ at the same pressuretemperature conditions. The high mantle temperature and the relatively slow rate of mantle melting may not guarantee isotopic equilibrium between the solid residue and the extracted molten fractions when the mantle source is isotopically heterogeneous.

In the lower temperature conditions of the lithosphere-asthenosphere transition, diffusional processes may be even slower, and therefore chemical and isotopic equilibrium between minerals and percolating melts may not be reached.

Recent studies in the Lherz massif, the type-locality of lherzolites exposed in the French Pyrenees, suggest that the Lherz lherzolites formed through a near-solidus refertilization reaction between а harzburgitic protolith and ascending partial melts (Le Roux et al., 2007). The transition zone between the remnants of the harzburgitic protolith and the refertilized material represents a frozen melt-percolation "front", tens of meters wide that moved the subcontinental through mantle lithosphere. Thus, the massif offers a unique opportunity to trace Hf, Nd and Sr isotopic variations related to melt transport. We used one-dimensional percolation-diffusion а model (Vasseur et al., 1991) modified to include isotopic homogenization and a percolation-reaction model (Vernières et al., 1997) to assess the effects of mineralogical reactions on isotopic variations. We show that transient, decoupled, isotopic signatures may develop in a melt percolation front. These signatures are highly sensitive to parameters such as daughter-element concentrations in peridotite and melt, element diffusivity, mineral grain size and efficiency of isotopic reequilibration. The variations observed in the Lherz peridotites are more readily governed by diffusional peridotite-melt disequilibrium than by the chromatographic effect of melt transport and the refertilization reaction.

2. Background and sampling

The Lherz massif is one of the largest peridotite massifs in the Pyrenees (France), exhumed from the mantle around 105 Ma ago (Henry et al. 1998) and exposed within sedimentary basins of Cretaceous age. Pyrenean peridotites usually outcrop embedded in metamorphized carbonate sediments of Jurassic to Aptian age (Golberg and Leyreloup, 1990) scattered in small groups along the North Pyrenean Fault (Monchoux, 1971; Fabriès et al., 1991; Fig. 1a). The Lherz massif is mostly constituted of fertile spinel lherzolites associated with websteritic layers, intermingled with elongated bodies of depleted spinel harzburgites (Avé Lallemant, 1967; Conquéré, 1978; Fabriès et al., 1991; Le Roux et al., 2007; Fig.1b).

Recent work yielded convergent structural and geochemical evidence demonstrating that the melt-extraction hypothesis, which regards depleted harzburgites as derived through partial meting of the fertile lherzolites, was not consistent with structural and chemical observations (Le Roux et al., 2007). Harzburgites bodies show a consistent

Fig. 1: (a) Distribution of the Pyrenean peridotite bodies along the North Pyrenean Fault (NPF), from Lagabrielle and Bodinier (2008) after Choukroune (1978). 1: Oligocene and post-Oligocene sediments; 2: Mesozoic and Eocene sediments; 3: Paleozoic basement; 4: area of LP-HT Pyrenean metamorphism; 5: Iherzolite bodies; 6: granulites; 7: main thrusts external zones; 8: North Pyrenean Fault. (b) Harzburgites and Iherzolites intermingling in the Lherz massif (Le Roux et al., 2007); the location of the sampling sites are indicated on the map, 1: distal Iherzolite; 2: profile through a contact; 3: distal harzburgites. (c) Detailed sampling site 2 through a harzburgite-Iherzolite contact.

sub-horizontal foliation throughout the massif that is crosscut by the lherzolite foliation and the websteritic layering. This suggests that the harzburgite bodies once formed a single continuous unit and that the deformation of harzburgites predates the formation of the lherzolites and websterites. Microstructural and petrophysical data the deformation of indicate that the lherzolite-websterite suite was enhanced by the presence of melts. By feedback effect, fractions larger melt favored strain localization and larger strain favored melt percolation through a higher dynamic

porosity (Le Roux et al., 2008). Besides, major and minor elements correlations, as well as the association of LREE-enriched harzburgites and LREE-depleted lherzolites, are not consistent with partial melting, but can be explained by melt-rock reaction. Thus the Lherz lherzolites probably formed during a refertilization episode via a near-solidus reaction at the expense of a harzburgite protolith (Le Roux et al., 2007). Therefore the transition zone between the harzburgitic protolith and the refertilized material represents a frozen, anastomosed, meltpercolation "front", tens of meters wide that moved through the subcontinental mantle lithosphere.

Within the transition zone we sampled 8 harzburgites and 5 lherzolites along a ~ 10m profile across one contact between harzburgite and lherzolite (Fig. 1c). The new samples come from the same location than samples from section 2 in Le Roux et al. (2007). The sampled zone is not cross-cut by dykes and/or veins related to the alkaline magmatism that affected the Lherz massif during Cretaceous time. Three 'distal' peridotites have also been sampled, outside of the transition zone at more than 15m from a contact, to characterize the lithospheric protolith and the refertilized mantle.

We present here the Hf, Nd and Sr isotopic compositions of clinopyroxene separates, considered to have similar isotopic signatures to the whole-rocks, and their rareearth elements compositions obtained during this study.

3. Samples preparation and analytical methods

Rare Earth Elements (REE) were obtained by Laser ablation inductively coupled plasma-mass spectrometer (LA-ICP-MS) at ARC GEMOC National Key Centre (Australia), using a Agilent 7500 ICPMS frequency coupled with а quintupled Nd:YAG UV laser from New Wave/Merchantek laser microprobes. Ablation was performed under a pure He atmosphere, Typical spot sizes were ca. 70 μ m, energy density about 10 J.cm⁻² and the repetition rate was set at 10Hz. The oxide production was kept low (²⁴⁸ThO/²³²Th<1%). Data reduction was carried out using the GLITTER software (Van Achtebergh et al., 2001). The CaO content of clinoyroxenes (Cpx), obtained by electron microprobe (Cameca SX 100, GEMOC ARC National Key Centre), was used as internal standard. Data in Table 1 are averages of "n" analyses of different Cpx grains from the same sample.

Aliquots of the crushed samples were ground in agate mortars to produce wholerocks powders. Cpx fractions were obtained for the same samples by magnetic preconcentration (using a Frantz magnetic separator), further purification was achieved through careful handpicking under a binocular microscope. The final 16 pure clinopyroxene fractions (weights ranging between 102 to 222mg) have been leached prior to dissolution to remove possible contamination from grain surfaces and cracks. Cpx mineral were leached in 2N two-bottle distilled HCl for 30 minutes in an ultrasonic bath and then rinsed three times with $MQ-H_2O$. This procedure was repeated twice.

Hf, Nd and Sr isotopes analyses, including samples dissolution, chemical separation and measurements were carried out at the GEMOC ARC National Key Centre (Macquarie University, Australia). Chemical separation of Sr and Nd were performed using standard dissolution and column procedures described by Mukasa et al. (1991) and by Pin and Zalduegui (1997) for Nd-specific columns. Hf chemical separation was carried out following the protocol of Blichert-Toft (2001). The sixteen and nine Nd isotopic ratios of Sr clinopyroxene separates were obtained on a Thermo Finnigan Triton thermal ionization mass spectrometer (TIMS). ⁸⁷Sr/⁸⁶Sr and $^{143}\mathrm{Nd}/^{144}\mathrm{Nd} \ \ \mathrm{ratios} \ \ \mathrm{were} \ \ \mathrm{corrected}$ for instrumental mass fractionation by 86 Sr/ 88 Sr=0.1194 normalizing to and ¹⁴⁶Nd/¹⁴⁴Nd=0.7219, respectively. Seven replicate analyses of the BHVO-2 standard yielded 87 Sr/ 86 Sr of 0.703491 ± 8 (2SD; typical internal precision was about 5.10⁻⁶) and 143 Nd/ 144 Nd of = 0.512971 ± 5 (2SD; typical internal precision was about 4.10^{-6}). These values are well within the acceptedpublished values (Weis et al., 2005). The sixteen Hf and seven Nd isotopic ratios of clinopyroxene separates were measured on a Nu Plasma high resolution multi-collector inductively-coupled plasma mass spectrometer (MC-ICPMS). All measured Hf isotope ratios were corrected for W and Ta, and Lu and Yb interferences at masses 180 and 176, respectively, by monitoring the isotopes ¹⁸²W, ¹⁸¹Ta, ¹⁷⁵Lu, and ¹⁷³Yb, and normalized for mass fractionation to

 179 Hf/ 177 Hf of 0.7325 using an exponential law. In order to asses the daily performance of the MC-ICP-MS, JMC475 (≈50 ppb) and JMC321 (≈50 ppb) were used as internal standards for Hf and Nd respectively and yield $({}^{176}\text{Hf}/{}^{177}\text{Hf})_{IMC475} = 0.282173 \pm 15$ (2SD; n= 18; typical internal precision is c.a 3.10^{-6}) and (¹⁴³Nd/¹⁴⁴Nd)_{JMC321}= 0.511008 ± 20 (2SD; n= 5; typical internal precision is c.a 5.10^{-6}). Four standards BHVO-2 gave a 176 Hf/ 177 Hf of 0.283107 ± 20 (2SD; typical internal precision is c.a 8.10^{-6}) and 143 Nd/ 144 Nd of 0.512961 ± 9 (2SD; typical internal precision is c.a. 6.10^{-6}). These values are well within the accepted-published values (Barrat and Nesbitt, 1996; Blichert-Toft and Albarede, 1997; Weis et al., 2005;). Procedural blanks were as follow: $[Sr]_{blank} =$ $139\pm61 \text{ pg (n=2)}; \text{ [Nd]}_{blank} = 26 \text{ pg (n=1)};$ $[Hf]_{blank} = 64\pm31 \text{ pg} (n=3)$. The results are given in Table 1.

4. Results

REE obtained in clinopyroxenes from the sixteen peridotites sampled for this work (Table 1) show strongly depleted, U-shaped patterns in distal harzburgite bodies with $La_N=0.5$ and $(La/Sm)_N\sim 2$ (normalized to chondrites after Sun and McDonough, 1989) and classic, N-MORB, REE pattern in the distal lherzolite ($La_N=2.3$; ($La/Sm)_N\sim 0.3$), as observed in orogenic lherzolites worldwide (McDonough and Frey, 1989). At the

(Hf) (Hf)	1.22 - 1.14 - 1.52 1.60	2.23 0.12 0.12 0.13 1.39 0.71 3.67 3.67 3.67 3.13 3.13	Lu	0.315 0.042 0.238	0.025	0.030	0.023	0.028 0.265	0.025 0.240	0.022	0.014	0.013	0.012	0.013	0.147 0.016	0.081	0.011	0.018	0.006	0.068	1000
Ehf	9.09 7.93 7.91 8.73 5.45 18.30	2.11 2.511 2.514 2.544 2.544 2.541 1.9.48 2.14.36 95.15	Yb	2.26 0.265 1.72	0.149	0.182	0.135	0.180 1.87	0.160 1.69	0.143 1.05	0.087 0.966	0.088 0.733	0.074	0.073	0.105	0.540	0.843	0.108	0.035	0.452	0,000
2σ	5.E-06 6.E-06 8.E-06 4.E-06 1.E-05 2.E-05	1.E.05 2.E.05 1.E.05 2.E.05 7.E.06 7.E.06 7.E.06 1.E.04 3.E.05 3.E.05 2.0E-05 2.0E-05 2.0E-05 2.0E-06	Tm	0.340 0.041 0.266	0.027 0.225	0.028 0.236	0.023	0.028 0.272	0.024 0.247	0.021 0.149	0.013 0.135	0.012 0.106	0.011	0.010	0.149 0.015	0.075	0.010	0.016	0.005	0.065	0.000
176HB ¹⁷⁷ Hf	0.283029 0.282996 0.282996 0.283019 0.283293 0.28329	0.28316 0.28349 0.28349 0.288407 0.288407 0.28843434 0.288323 0.288310 0.288310 0.288310 0.288310 0.288310 0.288310 0.288310 0.288310 0.288310 0.282163	L.	2.40 2.285 .92	0.164 60	0.196	0.137	0.182	0,160	141	0.079	0.076	0.067	1901	.093	.449	242	0.092	0.023	1478	500 s
2σ	0.016 0.002 0.002 0.002 0.003 0.003	0.002 0.003 0.002 0.002 0.004 0.005 0.009 0.008 0.009 N = 18 N = 18	Ho H	0.850 0.850 0.097 0.001	0.063 (0.067 (0.049 0.879	0.062 (0.053 (0.636	0.048 0.048 0	0.025 (0.0260 0	0.024	0.017	0.378 (0.148	0.250	0.027 (0.006	0.193 (~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
3H ⁷⁷⁷ Lu/ ¹⁷⁷ Hf	0.046 0.022 0.022 0.026 0.032	0.026 0.033 0.033 0.025 0.025 0.040 0.040 0.015 0.084	Dy	3.92 0.460 3.29	0.260 2.79	0.330 2.69	0.207 4.05	0.305 3.06	0.240 3.00	0.235 1.42	0.115 1.34	0.110	0.109	0.090	0.166	0.683	0.081	0.178	0.029	1.05	FAT 10
ENd	2.86 3.09 3.20 3.59 8.75	4.08 1.34 1.68 3.52 3.52 0.52 1.50 0.11 2.43	Tb	0.532 0.062 0.478	0.047 0.417	0.050 0.407	0.037	0.042 0.411	0.033 0.471	0.037 0.202	0.016 0.196	0.018	0.020	0.017	0.287 0.026	0.102	0.189	0.024	0.006	0.184	0.000
2σ	2.E.05 2.E.05 1.E.05 1.E.05 1.E.05 1.E.05 1.E.05	1.E-05 6.E-06 6.E-06 6.E-06 6.E-06 6.E-06 5.	Gd	2.85 0.350 2.75	0.240 2.49	0.310 2.49	0.206	0.235 2.25	0.185 2.91	0.230 1.21	0.101 1.29	0.104 1.36	0.112	0.086	0.159	0.644	c/0.0 1.46	0.153	0.022	1.39	0.1.00
hd/144Nd/	0.51278 0.51280 0.51285 0.51280 0.51280 0.51280 0.51282	0.51285 0.512724 0.512724 0.512551 0.512551 0.512665 0.512665 0.512715 0.512765 0.512765 0.512765 0.512765 0.51297 0.51297 0.51297 0.51101 0.51297	Eu	0.887 0.101 0.855	0.065 0.950	0.108 0.930	0.069	0.065 0.734	0.056 1.06	0.079 0.466	0.036 0.516	0.041 0.481	0.039	0.028	0.768 0.059	0.220	0.024	0.058	0.008	0.594	- 40%
2α	0.0851 0.0517 0.0600 0.0610 0.0610	0.0344 0.0248 0.0210 0.0310 0.0350 0.0359 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369 N= 4 N= 3 N= 5	Sm	1.97 0.225 2.09	0.159	0.260 2.45	0.181	0.169	0.134	0.235	0.107	0.115	0.121	0.088	2.06	0.625	0.0/8 1.884	0.189	0.026	1.63	0.1.0
147Sm/144Nd	0.2657 0.2469 0.1859 0.1739 0.2859	0.1655 0.1136 0.11368 0.11508 0.11508 0.1520 0.1650 0.1650 0.1003 0.1471	PN	4.68 0.525 5.34	0.385 7.61	0.855 8.87	0.613 4.61	0.320 3.21	0.315 11.12	0.730 6.81	0.445 8.94	0.585	0.430	0.202	7.97 0.545	2.03	<i>VCL</i> 0 11.86	0.835	0.035	6.97	0.000
2α	2.E-05 1.E-05 2.E-05 1.E-05 4.E-05 2.E-05	5.E-06 6.E-06 6.E-06 6.E-06 6.E-06 6.E-06 8.E-06 8.E-05 8.E-05 8.E-05 8.E-05 8.E-05	Pr	0.730 0.086 0.929	0.079 1.53	0.178 1.84	0.143 0.674	0.048 0.732	0.055 2.36	0.155 2.09	0.137 2.66	0.192 1.60	0.122	0.046	0.109	0.508	0.03/ 3.31	0.220	0.007	1.54	×110
$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$	0.70281 0.70318 0.70297 0.70297 0.70313 0.70280 0.70280	0.702981 0.702950 0.702901 0.702902 0.702902 0.703046 0.703046 0.703046 0.70348 0.70348 0.70348	Ce	3.19 0.390 4.79	0.445 8.94	1.085 10.96	0.927 2.67	0.186 3.79	0.265 13.93	0.860 19.12	1.170 22.73	1.490 14.56	0.985	0.440	0.650	5.73	0.380 27.24	1.765	0.037	9.98 0.735	0. / v.v.
20	5.E-04 1.E-04 2.E-04 1.E-04 6.E-04 2.E-04	$\begin{array}{c} l.E-0+\\ 8.E-05\\ 8.E-05\\ 1.E-0+\\ l.E-0+\\ 1.E-0+\\ 1.E-0+\\ 1.E-0+\\ 1.E-0+\\ N=4\\ N=4\end{array}$	La	0.561 0.061 1.37	0.127 2.29	0.240	0.247 0.460	0.035 0.847	0.064 3.81	0.245 8.23	0.525 8.66	0.610	0.530	4.00 0.295	3.03 0.192	3.73	0.235	0.720	0.019	2.92	01.6.8.V
⁸⁷ Rb/ ⁸⁶ Sr	0.0036 0.0010 0.0013 0.0006 0.0054 0.0018	0.0006 0.00029 0.00029 0.0009 0.0006 0.0006 0.0006 0.0005 0.0005	Ηf	0.951 0.114 1.49	0.138 1.34	0.159 1.23	0.109 1.41	0.111 0.904	0.082 1.30	0.107 0.566	0.050	0.054	0.059	110.0	0.367	0.283	0.03/	0.112	0.011	0.112	× 70'0
weight (mg)	202 171 180 136 167 134	135 136 102 132 132 132 151 151	Sr	55.2 5.1 81.7	5.2 105.6	9.7 113.3	7.2 50.1	3.2 55.1	4.0 128.6	8.21 144.6	9.23 168.2	11.1	8.83	167	127.4	62.4	5.9/ 174.8	11.9	0.95	181.5	
dist. (m)	1.5 1 0.3 50	03 1.3 1.5 1.8 1.8 2.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	Rb	0.0713 0.0062 0.0297	0.0039 0.0482	0.0067	0.0966	0.0092 0.0344	0.0038 0.029	0.004 0.021	0.005	0.004	0.005	0.005	0.026	0.016	0.040	0.005	0.006	0.059	1000
CPX Spinel Iberrolitee	06L11 06L12 06L13 06L13 06L19 06L117 06L117	nar zongues 06.15% 06.15% 06.15% 06.15% 06.15% 06.11% 06.110% 06.110% 06.110% 06.1110% 06.1110% 06.1110% 06.1110% 06.1110% 10.112? 10.122 publish IMC 475 Mic.RC	CPX (ppm)	06L/1 06L/2	06LI3	6FT90	06LI12	06L117	06LI4	06LI5a	06L15b	061.16	21.120	/1700	06LI8	06L110a	06L110b	511150	VULLET C	06LI16	

Table 1: 87 Sr/ 86 Sr, 143 Nd/ 144 Nd and 176 Hf/ 177 Hf isotopic ratios in the 16 clinopyroxenes separates from a harzburgite-lherzolite transition zone in the Lherz massif as well as in distal samples (06L115: harzburgitic protolith; 06L117 distal lherzolite), obtained by TIMS and MC-ICP-MS techniques at the GEMOC ARC National Key Centre (Australia). The associated 87 Rb/ 86 Sr, 147 Sm/ 144 Nd and 176 Lu/ 177 Hf were calculated from Rb, Sr, Sm, Nd, Lu and Hf concentrations in clinopyroxenes obtained by LA-ICPMS. dist. (m) is the distance to the contact between harzburgites and lherzolites. Meaningless T_{CHUR} model ages have not been reported. * denotes that Nd isotopes ratios obtained by TIMS. BHVO-2 values are from Weis et al. (2005), JMC475 values are from Blichert-Toft and Albarede, (1997) and JMC321 values are from Barrat and Nesbitt (1996). The clinopyroxene REE compositions (ppm) in harzburgites and lherzolites are from the transition zone and the distal (>15m from a contact) peridotites. Errors are twice the standard deviations. At least 5 clinopyroxenes have been lasered in each thin section, and all individual clinopyroxenes have been lasered twice.

contact, lherzolite and harzburgite show more Light-REE-enriched clinopyroxenes than their distal counterparts, especially in harzburgites which display strong enrichment in LREE relative to Heavy REE (HREE) and/or Medium REE (MREE) with La_N up to 29 and $(La/Sm)_N \sim 3.6$ (Fig. 2). These patterns are similar to the representative REE patterns at the massifscale obtained on more than 50 samples in Le Roux et al. (2007). Thus the harzburgitelherzolite contact sampled for this study can be considered as a representative transition zone between harzburgites and lherzolites.

Fig. 2: Chondrite-normalized (Sun and McDonough, 1989) clinopyroxenes REE patterns in the sixteen peridotites analyzed in this study, including distal harzburgites and lherzolites (> 15m from the contact), and samples adjacent to the contact ('proximal').

The association of LREE-enriched harzburgites with LREE-depleted lherzolites observed at the harzburgite-lherzolite contact in the Lherz massif are actually predicted by theoretical modeling of melt-consuming reactions combined with melt transport (Vernières et al., 1997) and were attributed to small melt fractions residual after the refertilization reaction which migrated in the harzburgite protolith several meters ahead of the main reaction front (Le Roux et al., 2007). We consider that the U-shaped patterns observed in the distal harzburgites are related to an older metasomatic event, distinct from the refertilization episode that affected the Lherz peridotites (Le Roux et al. 2007). The models presented in this study aim to reproduce the effect of the refertilization episode.

Hf, Nd and Sr isotopic compositions of clinopyroxene separates from the 16 harzburgites and lherzolites of the Lherz massif are presented in figure 3. The isotopic signatures of the Lherz peridotites are widely scattered. Hf isotopes describe a large range of variations ($2 < \varepsilon_{Hf} \le 214$) that encompasses a significant part of the variability seen in cratonic and off-craton peridotites worldwide (Fig. 3a). ⁸⁷Sr/⁸⁶Sr ratios also vary between 0.702562 and 0.703276 and ε_{Nd} ranges between -1.7 and 8.8 (Fig 3b). The harzburgitic protolith and the distal refertilized lherzolites have distinctive isotopic signatures that define two different poles. One is a highly refractory lithosphere characterized by a time-integrated high Lu/Hf and Rb/Sr and low Sm/Nd ($\varepsilon_{\rm Hf} \approx 214$) $\varepsilon_{\text{Nd}} \approx 0$; ⁸⁷Sr/⁸⁶Sr= 0.703046). Calculations of the T_{CHUR} Hf model age gave a value of ~

Fig. 3: (a) ¹⁷⁶Hf/¹⁷⁷Hf (and ϵ_{Hf}) versus ¹⁴³Nd/¹⁴⁴Nd (and ϵ_{Nd}) for 16 clinopyroxene separates from Lherz harzburgites (open squares) and lherzolites (solid circles), compared with the fields of Beni Bousera peridotites (Pearson and Nowell, 2004), cratonic and off-craton peridotites (Pearson and Nowell, 2004), MORB (Vervoort et al., 1999; Nowell et al. 1998) and Ocean-Island Basalts - OIB - (Salters and White, 1998). ϵ_{Nd} and ϵ_{Hf} are defined as ((¹⁴³Nd/¹⁴⁴Nd _{sample} / ¹⁴³Nd/¹⁴⁴Nd _{CHUR})-1)*10000 and ((¹⁷⁶Hf/¹⁷⁷Hf _{sample} / ¹⁷⁶Hf/¹⁷⁷Hf _{CHUR})-1)*10000 respectively (e.g. Blichert-Toft and Albarede, 1997). ϵ_{Nd} and ϵ_{Hf} are present-day values. The Nd isotopic ranges of Pyrenean harzburgites (H) and lherzolites (L) (Downes et al., 1991) are also shown for comparison. (b) ¹⁴³Nd/¹⁴⁴Nd versus ⁸⁷Sr/⁸⁶Sr for the same clinopyroxene separates compared with the fields of Pyrenean peridotites (Downes, 1991), MORB, OIB and HIMU (Hofmann, 1997; Zindler and Hart, 1986 and reference therein). The isotopic data for this study have been measured by TIMS and MC-ICP-MS techniques and corrected to 105 Ma, the age of exhumation. The differences between corrected and non-corrected isotopic ratios range between 1*10⁻⁶ to 5*10⁻⁶.

2.1Ga on the protolith sample (06LI15), slightly younger than the ~2.2 Ga previously published Re depletion model ages (Reisberg and Lorand, 1995) and ~2.5 Ga in-situ Os model age (Alard et al., 2008). However, giving the variations of T_{CHUR} Hf model ages in harzburgitic samples, uncertainty on this age is probably high. The 'distal' harzburgitic sample which combines a Ushaped, highly REE-depleted signature (Fig. 2) the most enriched isotopic and composition is considered to be the closest to the depleted protolith before refertilization. The second pole is represented by a distal refertilized lherzolite characterized by a MORB-like isotopic signature ($\varepsilon_{Hf} \approx 18$, $\varepsilon_{Nd} \approx$ 9; 87 Sr/ 86 Sr = 0.702562) and a LREEdepleted signature (Fig. 2). Other Pyrenean lherzolites that contain no visible harzburgites are isotopically comparable to the distal Lherz lherzolite (Downes et al., 1991; Mukasa et al., 1991; Fig. 3), suggesting a similar origin by regional magmatic refertilization.

Harzburgites and lherzolites from the transition zone differ markedly from the distal ones with respect to their isotopic signatures. Their compositions plot close to the field of intraplate basalts (Ocean-Island Basalts and HIMU) and a simple mixing between the two poles defined by the distal peridotites particularly fail to account for their Hf-Nd isotopic signatures (Fig. 3).

5. Discussion

5.1. Contrasted isotopic compositions of *lherzolites and harzburgites in the Pyrenees*

Previous works have revealed that fertile lherzolites and depleted harzburgites in eastern Pyrenean peridotites show markedly distinct Os-Sr-Nd isotopic signatures (Downes et al., 1991; Reisberg and Lorand, 1995; Burnham et al., 1998). The positive correlation of 187 Os/ 188 Os with Al₂O₃ wt% has been ascribed to an old (Proterozoic) depletion event (Reisberg and Lorand, 1995; Burnham et al., 1998). However, ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd show, respectively, negative and positive correlations with Al₂O₃ wt% in whole-rocks, a feature which is not consistent with partial melting (Downes et al., 1991; Bodinier and Godard, 2003). Downes et al. (1991) proposed that the Lherz harzburgites were selectively percolated by enriched melts whereas Bodinier and Godard (2003) interpreted them as lithospheric strips incompletely mixed with pristine asthenospheric lherzolites during thermomechanical erosion of the lithosphere by upwelling mantle. Recently, Le Roux et al. (2007) suggested that the refertilization scenario was the most likely to explain, at the same time, the positive correlation of 187 Os/ 188 Os vs. Al₂O₃, and the negative and positive correlations of 87 Sr/ 86 Sr and 143 Nd/ 144 Nd, respectively, vs. Al₂O₃.

The Nd and Sr isotopic variations observed in this study, from the harzburgitic protolith to the refertilized lherzolites, are consistent with previously published data in the Pyrenees (Downes et al., 1991). We obtained a Nd-Sr negative correlation which can be roughly accounted for by mixing between a low-Nd/high-Sr harzburgite protolith and a melt in equilibrium with the high-Nd/low-Sr distal lherzolite (Fig. 3b). However, at the harzburgite-lherzolite contacts, the Hf isotopes are strongly decoupled from Nd (Fig. 3a) and Sr (not shown). In contrast with the Nd-Sr isotopic covariation, the Hf-Nd isotopic signatures observed at the harzburgite-lherzolite contact cannot be accounted for by mixing between the harzburgite protolith and a melt in equilibrium with the distal lherzolites (Fig. 3a). In a mixing scheme, these isotopic signatures would require a third, unradiogenic Hf-Nd component. However, this would necessitate the circulation of intraplate-type melt strictly confined to the sharp and convoluted contact between harzburgites and lherzolites, which is very unlikely according to chemical and structural constraints. A more likely alternative is that these isotopic signatures formed at the melt percolation front through a particular chemical/physical process that led to the decoupling of Hf from Nd and Sr.

5.2. Modeling of isotopic reequilibration during melt percolation

We have evaluated the influence of melt percolation on isotopic reequilibration between peridotite and an infiltrated melt one-dimensional percolationusing a diffusion model (Vasseur et al., 1991) modified to include isotopic homogenization. The model incorporates the effects of chemical diffusion, critical distance of isotopic homogenization, melt velocity, height of the percolating column and grain size. It assumes instantaneous solid-liquid equilibrium at the surface of mineral grains, considered to be spherical, and chemical diffusion within the grains, from surface to core. Isotopic equilibrium between fluid and solid phases is governed by the mass-balance equation of isotopic homogenization at the scale of critical volumes. The critical volume of isotopic homogenization is defined as the volume of percolated peridotite in which melt and matrix have reached isotopic equilibrium during the critical time of percolation (i.e., the times it takes for the melt to reach the top of the column). In addition, a percolation-reaction model (the "plate model" of Vernières et al., 1997) has also been used to evaluate the effects of the refertilization reaction on isotopic reequilibration during melt percolation. The plate model assumes instantaneous solidliquid equilibrium between the whole mineral matrix and the melt.

Isotopic reequilibration between a rock disequilibrium percolating melt and а involves four distinct processes: (a) advective transport of the elements by interstitial melt; the-chromatographic theory of Navon and Stolper (1987) predicts that incompatible elements in the matrix reequilibrate with the melt at lower meltrock ratios than more compatible elements, producing extreme chemical fractionations when mineral-melt diffusional exchange is rapid; (b) chemical diffusion within the minerals and the melt; diffusion rates vary according elements to and pressuretemperature conditions; (c) isotopic homogenization of rock volumes by selfdiffusion, which is effective even in the lack of chemical potential gradient (e.g. when the percolating melt and the peridotite have reached chemical equilibrium); (d) chemical reaction between the rock and the infiltrating changes mineralogical melt that the composition of the rock and/or the melt fraction.

A detailed parameterization was carried out to assess the influence of the main percolation-diffusion model parameters on the covariation of Hf, Nd and Sr isotopic compositions in a harzburgite column percolated by a melt in equilibrium with the

from its ionic radius and charge, yielding a

distal lherzolites. The parameters used for modeling are compiled in Table 2. The protolith was very likely heterogeneous; for modeling we took the most extreme composition characterized by the highest ¹⁷⁶Hf/¹⁷⁷Hf and ⁸⁷Sr/⁸⁶Sr and the lowest $^{143}Nd/^{144}Nd$ values in the studied harzburgites. As isotopic composition for the melt, we took that of the distal, refertilized lherzolite. This sample is comparable to other Pyrenean lherzolites unrelated to harzburgites (Downes et al., 1991) and is therefore considered to be equilibrated with the fertilizing, infiltrated melt. In all experiments the length of the percolation column has been fixed at 100m. This length corresponds to the typical distance in the Lherz massif between the distal harzburgites, which represents the protolith before percolation, and the distal lherzolites, considered to be fully equilibrated with incoming, fertilizing melt. Mineral/melt partition coefficients are from Blundy (1998), Lee (2007) and McDade (2003). The diffusivity of the elements in interstitial melt is the same for the three elements and fixed at 10^{-8} cm².s⁻¹ (Lesher, 1994).

For simplicity, the chemical diffusivities in solid phases, d, were considered to be identical for all minerals. Extrapolated at 1250°C and 1.5 Gpa from the experimental data of Van Orman et al. (2001), the diffusion rate of Nd was fixed at 3.4*10⁻¹⁷ cm².s⁻¹. The diffusivity of Hf was estimated diffusion rate of $1.2*10^{-17}$ cm².s⁻¹. The chemical diffusivity of Sr is somewhat controversial. While the study of Sneeringer et al. (1984) indicates that this element has a faster diffusivity in clinopyroxene, compared with REE, the recent study of Von der Handt (2008) on orthopyroxene suggests that the diffusion of Sr is actually slower than that of REE, in both clino- and orthopyroxene. For this reason, we fixed the diffusivity of Sr identical to that of Nd. To assess the effect of chemical diffusivities variations, we run experiments involving variations of this parameter in the range 0.1 to 30 times the d values. The observed range of pyroxenes grains sizes in Lherz varies from 1 to 4mm (Le Roux et al. 2008), except in small-scale mylonitic zones (<1mm). In the models, mineral grain size varies from 0.1 mm to 5 mm. This represents the average diameter of the grains, considered to be spherical. For simplicity, olivines and pyroxenes were considered to have the same size for modeling. The Hf, Nd and Sr contents in the protolith (based on the composition of the most depleted sample) are ~ 0.003, 0.015 and 1 ppm, respectively, and the Hf, Nd and Sr contents in the infiltrated melt (based on equilibrium with clinopyroxenes from distal, refertilized lherzolites) are ~ 2.45, 10.7 and 743 ppm, respectively. To evaluate the effect of the compositional contrast between melt

Parameters con	nmon to al	l models										
porosity 0.03 height of the column (m) 100 melt velocity (cm.y ⁻¹) 1 chemical diffusivity in melt (cm ² .s ⁻¹) $1*10^{-8}$				3) 10 ⁻⁸								
Minelral/melt pa	rtition coef	ficients										
1	Cpx		Opx	Spl	Ol							
Hf	0.37		0.047	0.05	0.013	0.013						
Nd	0.3		0.012	0.01	0.00003							
Sr	0.074		0.003	0.0002	0.00018							
modal compositi	on of the h	arzburgiti	ic protolith									
Ol	Cpx	Opx	Spl									
0.85	0.02	0.12	0.01									
Element abundar	nces in the	infiltrated	l melt (ppm)		models 4b / 5b	models 4e / 5e	models 4d / 5d					
models 4a / Sa					2.45	2.45	2.45					
Nd ppm	11 ppm 2.45				2.45	2.43	10.7					
Sr ppm	743				743	743	743					
51 ppm	715				110	7.02	715					
Other paramet	ers											
	models 4a / 5a				models 4b / 5b	models 4c / 5c	models 4d / 5d					
grain size (mm) 3					0.1 to 3 / 1 to 5	3	3					
Chemical diffusi	vity in min	erals (cm ²	² .s ⁻¹)									
Hf $1.2^{*10^{-17}}$ to $3.4^{*10^{-16}}$					$1.2*10^{-17}$	$1.2*10^{-17}$	$1.2*10^{-17}$					
Nd	$3.4*10^{-17}$ to $3.4*10^{-16}$ / $3.4*10^{-18}$ to $3.4*10^{-16}$				3.4*10 ⁻¹⁷	3.4*10 ⁻¹⁷	3.4*10 ⁻¹⁷					
Sr	$3.4*10^{-18}$ to $3.4*10^{-16}$				3.4*10 ⁻¹⁷	3.4*10 ⁻¹⁷	3.4*10 ⁻¹⁷					
CDIH (m) 0.1					0.1	0.1	0.1 to 10 / 0. to 1					
Element abunda	nces in the	harzburgi	itic protolith (pj	om)								
Hf ppm	0.003					0.003 to 0.008						
Nd ppm	0.015				0.015	0.007 to 0.022	0.015					
Sr ppm 1					1	1	1					

Table 2: Fixed and variable modeling parameters used in the one-dimensional model of Vasseur et al. (1991). Ol = olivine; Opx = orthopyroxene; Cpx = clinopyroxene; Spl = spinel. CDIH is the critical distance of isotopic homogenization.

and matrix, we run a series of experiments with a realistic range of daughter element variations in the harzburgites. Hf_{melt}/Hf_{matrix} ratios vary from 817 to 305, assuming constant Hf_{melt} and Nd_{melt}/Nd_{matrix} , and Nd_{melt}/Nd_{matrix} ratios vary from 475 to 1420, assuming constant Nd_{melt} and Sr_{melt}/Sr_{matrix} . The critical distance of isotopic homogenization along the column ranges between 0.1 and 10m. The parameters used in the percolationreaction model of Vernières et al. (1997), such as porosity, isotopic ratios and elements concentrations, are the same as for the onedimensional model. The melt-rock reaction was taken from Le Roux et al. (2007). It is a pyroxene-forming reaction at decreasing melt mass also involving some degree of olivine dissolution.

5.3. Results of the modeling

Representative results of the percolationdiffusion modeling are illustrated on figures 4 and 5. These figures show the isotopic covariations of Hf-Nd (Fig. 4) and Nd-Sr (Fig. 5) along the percolation column, from the composition of the harzburgite protolith (atop the column) to that of the melt (at base of the column). Both Hf-Nd and Nd-Sr covariations define curved trajectories that may be either convex upward, lying above the mixing lines, or convex downward, lying below the mixing lines. These variations imply significant inter-isotopic decoupling, notably for the Hf-Nd pair.

Fig. 4: ¹⁷⁶Hf/¹⁷⁷Hf versus ¹⁴³Nd/¹⁴⁴Nd in clinopyroxene separates from Lherz harzburgites (open squares) and lherzolites (solid circles), compared with the mixing curve (dotted line) between a harzburgite protolith and a MORB-type melt, and with the results of the one-dimensional percolation-diffusion modeling (solid lines). The diagrams (a) to (d) illustrate the effects of varying parameters in the model: (a) diffusivity, d, of the elements in minerals; (b) the mineral grain size; (c) the Hf_{melt}/Hf_{matrix} ratio; (d) the critical distance of isotopic homogenization along the column. Heavy lines represent a 'best fit' of the Lherz data.

Drastic variations in the shape of the Hf-Nd isotopic covariation curves may indeed occur for relatively small variations of several critical parameters, namely: (1) element diffusivity in minerals (Fig. 4a), (2) average grain size of minerals (Fig. 4b), (3) compositional contrast between protolith and melt for the daughter elements Hf and Nd (Fig. 4c), and (4) critical distance of isotopic homogenization along the percolation column (Fig. 4d).

Hf-Nd isotopic The convex-upward covariation trend observed for high element diffusivities in minerals (Fig. 4a) and/or small grain sizes (Fig. 4b) is consistent with the chromatography theory of trace-element reequilibration in porous flow systems (Navon and Stolper, 1987). The latter predicts that if the critical time of mineral/melt reequilibration by diffusion is short enough compared to the critical time of percolation (Vasseur et al., 1991) then Nd reequilibrates at lower melt/rock ratio than Hf due to its higher incompatibility degree, e.g. $Kd_{Cpx/melt} = 0.30$ for Nd compared with 0.37 for Hf (Blundy et al., 1998). This type of Hf-Nd decoupling is also in agreement with the classical assumption that Hf is more robust to mantle metasomatism than Nd (e.g. Bedini, 2004).

However, our experiments also show convex-downward Hf-Nd covariation trends that are opposite to the variation predicted by the chromatographic theory. At a given Hf_{melt}/Hf_{matrix} value, they are systematically observed in experiments involving relatively slow element diffusivities in minerals (Fig. 4a) and/or coarse grain sizes (Fig. 4b), i.e., when the critical time of solid-liquid equilibrium tends to be significant compared to the critical time of percolation (10^4 years) in all our experiments). This type of Hf-Nd decoupling does not result from the difference in diffusivity between Hf and Nd as Hf diffuses at a slower rate than Nd. The convex-downward Hf-Nd trends reflect the persistence of solid-liquid chemical disequilibrium in significant parts of the percolation column – notably the uppermost part - where the percolating melt and the matrix partly preserve their original compositions. In these conditions, the chromatographic fractionation process is overwhelmed by the compositional effect of Hf and Nd concentrations in the protolith and disequilibrium melt. This effect results from the dependence of the bulk (solid + melt) isotopic values calculated with the isotopic mixing equation at the scale of critical homogenization volumes daughter on element concentrations in minerals and melt.

For a given set of parameters consistent with the chromatography theory, the convexupward Hf-Nd isotopic trends are observed in experiments involving relatively low concentration of Hf in melt relative to the matrix ($Hf_{melt}/Hf_{matrix} < 443$ for the experiments shown on figure 4c). However, a subtle increase of the Hf concentration in the melt relative to the matrix $(Hf_{melt}/Hf_{matrix} = 443 \text{ to } 817, \text{ i.e. } Hf \text{ matrix} = 0.008 \text{ to } 0.003$ on figure 4c) is sufficient to generate a change from convex-upward to convexdownward Hf-Nd isotopic covariation trends.

Finally, the amplitude of the transient Hf-Nd isotopic decoupling along the percolation column is negatively correlated with the efficiency of the isotopic homogenization process. Spatially limited homogenization (i.e., short critical distance of isotopic homogenization along the column) yields strongly convex Hf-Nd covariation curves, either upwards or downwards depending on the other model parameters (e.g., Fig. 4d). Conversely, in the limiting case where the critical distance of isotopic homogenization is of the same length as the percolating column, the result of the percolationdiffusion experiment is similar to that of a mixing between the protolith and the melt (Fig. 4d).

The Lherz data are best explained by a strongly convex-downward Hf-Nd trend (heavy line on figure 4). Within the range of parameters fixed from our petrographical observations (mineralogy and grain size), geochemical data (protolith and inferred melt composition) and published experimental works (partition and diffusion coefficients), this Hf-Nd variation implies that the critical size of the isotopic homogenization volumes was ≤ 1 m during the melt percolation event. The dispersion observed for a few samples may be accounted for by subtle variations of critical parameters such as the mineral grain size, or the Hf-Nd content in peridotite or percolating melt.

In contrast with the Hf-Nd isotopic covariations, the modeled Nd-Sr trends are generally hardly distinguishable from the mixing curves in the range of the parameter values constrained by the Lherz data and experimental works (Fig. 5). Within this range of parameters, most experiments yield moderately convex-downward trajectories consistent with the chromatographic theory which predicts that Sr reequilibrates at lower melt/rock ratio than Nd due to its higher incompatibility degree, e.g. $Kd_{Cpx/melt} = 0.074$ for Sr compared with 0.30 for Nd (Blundy et al., 1998). Noticeable exceptions are the experiments involving relatively high Nd_{melt}/Nd_{matrix} ratios (Fig. 5c). As previously noted by Ionov et al. (2002), the relative concentration of Nd and Sr in the protolith and disequilibrium melt are indeed critical parameters for the relative velocities of the Nd and Sr isotopic reequilibration fronts in a porous flow column. For Nd_{melt}/Nd_{matrix} values in the range defined by the theoretical melt in equilibrium with the Cpx of the distal lherzolite and the distal harzburgites, the modeled Nd-Sr isotopic curves vary from moderately convex upward to moderately convex downward, on either side of the mixing curve. These variations encompass

Fig. 5: 143 Nd/ 144 Nd versus 87 Sr/ 86 Sr in clinopyroxene separates from Lherz harzburgites (open squares) and lherzolites (solid circles), compared with the mixing curve (dotted line) between a harzburgite protolith and a MORB-type melt, and with the results of the one-dimensional percolation-diffusion modeling (solid lines). The diagrams (a) to (d) illustrate the effects of varying parameters in the model: (a) diffusivities, d, of the elements in minerals; (b) the mineral grain size; (c) the Nd_{melt}/Nd_{matrix} ratio; (d) the critical distance of isotopic homogenization along the column.

the whole range observed in the samples from the transition zone. In contrast with Hf-Nd, no inference on the size of the isotopic homogenization volumes can be drawn from the Nd-Sr covariation (Fig. 5d).

Representative results of the percolationreaction modeling are illustrated on figure 6, showing the influence of the refertilization, melt-rock reaction on isotopic reequilibration. In order to compare with the percolation-diffusion model, we first run experiments using the plate model without reaction. This yielded convex-upward Hf-Nd isotopic reequilibration trends consistent

Fig. 6: Results of percolation-reaction modeling (Vernières et al., 1997) for the Hf-Nd isotopes in the Lherz peridotites. Symbols are the same than in previous figures.

with the chromatography theory. Moreover, that melt-rock we show reactions at decreasing melt-mass enhance chromatographic effects by decreasing the porosity. This reflects the key role of porosity on chromatographic fractionation (Bodinier et al, 1990). Besides, isotopic signatures of the lherzolites close to the contact are not consistent with isotopic signatures predicted by a mineralogical reaction, although they result from a reaction. refertilization Therefore, the percolation-reaction model strengthens previous results obtained with the onedimensional percolation-diffusion model, where chemical diffusion is a required, critical parameter to explain isotopic reequilibration during melt percolation.

6. Conclusions

The isotopic heterogeneity observed in the transition zone between harzburgites and lherzolites in the Lherz massif can be reproduced with a realistic range of physical parameters: a melt fraction of a few percent, a percolation rate of several cm.y⁻¹, a distance of percolation from tens to several hundreds of meters associated with a volume of homogenization on the scale of the sample (some tens of cm). The Lherz example suggests that a large range of isotopic signatures may be generated at a melt percolation front, depending on chemical isotopic homogenization diffusion, and peridotite-melt compositions. We also show that mineralogical reactions at decreasing melt-mass enhance chromatographic effects by decreasing the porosity. The variations observed in the Lherz peridotites are more readily governed by diffusional peridotitemelt disequilibrium than by the chromatographic effect of melt transport and the refertilization reaction. The development of these signatures is a transient phenomenon associated with the passage of a percolation front which has been "frozen in" in the Lherz massif. Moreover, we observe that the microstructural characteristics (e.g. the grain size) of the percolated protolith strongly influence the resulting isotopic signature front. Thus within the percolation deformation and recrystallization of mantle rocks may induce local variations in isotopic signatures, as observed in the Ronda massif (Reisberg and Zindler, 1986) or in xenoliths from the French Massif Central (Downes and Dupuy, 1987). The world-wide association of LREE-enriched harzburgites with LREEdepleted lherzolites, as observed in Lherz, suggests that the interaction of percolating melts with the lithospheric mantle is a widespread process. We observe that, under certain circumstances, these interactions can generate enriched, "intraplate-like" isotopic signatures in the transition zone between the two contrasting components. These results suggest that a part of isotopic signatures of mantle-related rocks could be generated by diffusional processes associated with melt transport.

Acknowledgements

Trace element and isotope data were obtained at GEMOC using instrumentation funded by ARC LIEF, DEST Systemic Infrastructure Grants, Macquarie University and industry, and the work was supported by ARC Discovery project grants (OA, SYO'R and WLG) and INSU DYETI Program. VLR also got funding from the French Ministry of Research and from 'Bourses Lavoisier' for the collaboration with Australia. Peter Wieland and Norman Pearson are deeply thanked for assistance and advice during the isotopic work. We thank James Van Orman and Anette von der Handt for their help in the estimation of elements diffusivities, and Nadine Wittig and an anonymous reviewer for their constructive reviews. This is contribution no. XX from the GEMOC ARC National Key Centre.

References: end of thesis manuscript.

Chapter V: Conclusion and outlook

The present work provides structural evidence that the lherzolites from the Lherz massif, considered as pristine, are actually secondary and formed at the expense of a depleted harzburgitic protolith. Variations of major, minor and trace elements in minerals and whole-rocks peridotites show that the lherzolites result from igneous refertilization reaction between depleted lithospheric mantle and percolating MORB-type partial melts. Local evidence of igneous refertilization has been previously reported in orogenic peridotites. At Lherz, structural arguments show that the whole lherzolite body is secondary and refertilized. As a result, the Lherz massif, type-locality of lherzolites, now represents a case study for the refertilization process in the mantle (Le Roux et al., 2007). Therefore the Lherz massif represents a "frozen" photograph of transient percolation stages in an old refractory lithosphere.

Implications of this result are wide. Not only for the composition of the primitive mantle itself, a major problem in the mantle community, but also for the evolution of the mantle lithosphere and the role of refertilisation in the structural and chemical evolution of the lithospheric mantle. These implications are detailed below.

Together with mantle xenoliths and chondrites, the Lherz massif has been used to infer the composition of the primitive upper mantle, in particular for the highly siderophile elements. However, the formation of the Lherz lherzolites by igneous refertilization raises the question of the validity and significance of the primitive mantle values based on fertile mantle rocks compositions. In this context, primitive mantle values needs to be re-assessed. In particular, the Os-isotope primitive upper mantle composition has major implications for the debate on the "late veneer" composition, the late meteorite bombardment that occurred on Earth after core segregation (Alard et al., 2008; supplementary material).

Evidence of melt percolation observed in previous studies of orogenic peridotites worldwide and in the Lherz massif suggests that a fundamental characteristic of most orogenic lherzolites is their refertilized nature. This suggests that magmatic percolation plays a significant role in the structural, chemical and isotopic evolution of the lithospheric mantle, contributing to its rejuvenation and thermo-mechanical erosion through time.

This work has revealed that the Lherz massif represents a natural example for feedback between melt percolation and deformation of mantle rocks (Le Roux et al., 2008b), providing natural observations consistent with experimental results (Holtzman et al., 2003). Multiple deformation episodes have been observed via a detailed microstructural study combined with analyses of crystallographic fabrics of minerals in harzburgites, lherzolites and websterites. Depleted harzburgites, percolated lherzolites and related websterites show a continuum of deformation suggesting that larger melt fractions favor strain localization and, in turn, larger strain favor melt percolation through a higher dynamic viscosity. This feedback effect may constitute a major process in the structural evolution of the lithosphere. Indeed it has been suggested for instance that the presence of melt in the lithosphere may reduce its viscosity, favoring the development of rift systems. Therefore, the refertilization process could also play a major role during orogenic stages, favoring the restructuration of the lithosphere.

The progressive deformation observed in the percolated lherzolites with increasing distance to the harzburgitic protolith shows that, in presence of melts, an increase in strain intensity may be associated with a decrease in crystallographic fabrics of minerals. This can be explained by a progressive increase of diffusion-creep accommodated deformation at the expense of dislocation-creep accommodated deformation. Moreover, the development of either [100]-fiber or [010]-fiber in olivines observed in peridotites worldwide may depend on a subtle balance between the strain intensity and the volume of percolating melts. Synchronous to the refertilization episode, the development of a pervasive websteritic banding in lherzolites is also commonly observed in mantle rocks. In the Pyrenean massifs, the websteritic layers probably formed through melt segregation favored by the refertilization reaction which plugged the melt network, and represent multiple "frozen" timesteps of a dynamic melt transport system. However, considering that the websterites does not represent simple crystallized trapped melts, the quantification of the volume of melts which has percolated through the Lherz mantle rocks remains an open question.

The third part of this work has shown that melt percolation by diffuse porous flow is likely to produce a large range of isotopic signatures. The models show that melt percolation may be an alternative way to produce isotopic signatures previously restricted to mantle reservoirs signatures. Indeed, a large range of Hf, Nd and Sr isotopic variations is observed at the transition zone between depleted harzburgites and fertile lherzolites of the Lherz massif, suggesting that significant isotopic decoupling can be produced at a melt percolation front.

78

The decoupled signatures cannot be explained by a mixing line between the percolated rock and the percolating melt. Modelling of isotopic variations associated with melt infiltration shows that the nature and extent of isotopic decoupling strongly depends on (1) the compositional contrast between protolith and melt with respect to daughter elements (2) the chemical diffusion rates of the elements and (3) the critical times of solid-liquid chemical reequilibration and isotopic homogenization.

Mantle rocks worldwide show a large isotopic variability and interactions between partial melts and lithospheric mantle have often been observed both in xenoliths and orogenic peridotites. Thus, a part of the mantle isotopic variability observed in mantle rocks may not be necessarily representative of the global earth mantle but rather related to percolation processes that affect the lithosphere-asthenosphere boundary. To some extent, the percolation-diffusion process could be responsible for some of the isotopic signatures observed in intraplate lavas, that may originate from melt-rock interactions at the lithosphere-asthenosphere boundary. However, the importance of the isotopic variability originated by this process needs to be further evaluated.

References

- Alard, O., Le Roux, V., Lorand, J.P., Bodinier, J.-L., Griffin, W.L., O'Reilly, S.Y., 2008. Mantle refertilisation, Osmium isotopes and the "Primitive Upper Mantle" fallacy, consequences for the nature of the late veneer. In prep.
- Albarède, F., Michard-Vitrac, A., 1978. Age and significance of the North Pyrenean metamorphism. Earth and Planetary Science Letters. 40, 327-332.
- Allègre, C.J., Turcotte, D.L., 1986. Implications of a two-component marble-cake mantle. Nature. 323, 123-127.
- Avé Lallemant, H.G., 1967. Structural and petrographic analysis of an "alpine-type" peridotite. The lherzolite of French Pyrenees. Leidse Geologische Mededelingen. 42, 1-57.
- Azambre, B., Ravier, J., 1978. Les écailles de gneiss du faciès granulite du Port de Saleix et de la région de Lherz (Ariège). Nouveaux témoins du socle profond des Pyrénées. Bulletin de la Société Géologique de France. XX, 221-228.
- Barrat, J.A., Nesbitt, R.W., 1996. Geochemistry of the Tertiary volcanism of Northern Ireland. Chemical Geology 129, 15–38.
- Barruol, G., Souriau, A., Vauchez, A., Diaz, J., Gallart, J., Tubia, J., Cuevas, J., 1998. Lithospheric anisotropy beneath the Pyrenees from shear wave splitting. Journal of Geophysical Research. 103, 30039-30053.
- Barth, M.G., Mason, P.R.D., Davies, G.R., Dijkstra, A.H., Drury, M.R., 2003. Geochemitry of the Othris ophiolite, Greece: evidence for refertilization? Journal of Petrology. 44, 1759-1785.
- Bascou, J., Delpech, G., Vauchez, A., Moine, B.N., Cottin, J.-Y., Barruol, G., 2008. An integrated study of microstructural, geochemical and seismic properties of lithospheric mantle above the Kerguelen plume (Indian Ocean). Geochem. Geophys. Geosyst. 9, Q04036, doi:04010.01029/02007GC001879.
- Bastow, I.D., Stuart, G.W., Kendall, J.-M., Ebinger, C.J., 2005. Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift. Geophysical Journal International. 162, 479-493, doi:410.1111/j.1365-1246X.2005/02666.x.
- Becker, H., 1996. Geochemistry of garnet peridotite massifs from lower Austria and the composition of deep lithosphere beneath a Paleozoic convergent plate margin. Chemical Geology. 134, 49-65.
- Bedini, R.M., Blichert-Toft, J., Boyet, M., Albarède, F., 2004. Isotopic constraints on the cooling of the continental lithosphere. Earth and Planetary Science Letters. 223, 99-111.
- Bedini, R.M., Bodinier, J.-L., Dautria, J.-M., Morten, L., 1997. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth and Planetary Science Letters. 153, 67-83.
- Ben Ismaïl, W., Mainprice, D., 1998. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics. 296, 145-157.
- Ben Ismaïl, W., Mainprice, D., 2001. The Kaapvaal craton seismic anisotropy: petrophysical analyses of upper mantle kimberlite nodules. Geophysical Research Letters. 28, 2497-2500.
- Beyer, E., Brueckner, H.K., Griffin, W.L., O'Reilly, S.Y., Graham, S., 2004. Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology. 32, 609-612.

- Beyer, E., Griffin, W.L., O'Reilly, S.Y., 2006. Transformation of Archaean lithospheric mantle by refertilization: evidence from exposed peridotites in the Western Gneiss Region, Norway. Journal of Petrology. 47, 1611-1636.
- Bizimis, M., Sen, G., Salters, V.J.M., 2003. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth and Planetary Science Letters. 217, 43-58.
- Blichert-Toft J., Albarede F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters. 148, 243-258.
- Blichert-Toft, J., 2001. On the Lu-Hf isotope geochemistry of silicate rocks. Geostandards Newsletter. 25, 41-56.
- Blundy, J.D., Robinson, J.A.C., Wood, B.J., 1998. Heavy REE are compatible in clinopyroxene on the spinel-lherzolite solidus. Earth and Planetary Science Letters. 160, 493-504.
- Bodinier, J.-L., 1988. Geochemistry and petrogenesis of the Lanzo peridotite body, Western Alps. Tectonophysics. 149, 67-88.
- Bodinier, J.-L., Dupuy, C., Dostal, J., 1988. Geochemistry and petrogenesis of Eastern Pyrenean peridotites. Geochimica et Cosmochimica Acta. 52, 2893-2907.
- Bodinier, J.-L., Fabriès, J., Lorand, J.-P., Dostal, J., Dupuy, C., 1987a. Geochemistry of amphibole pyroxenite veins from the Lherz and Freychinède ultramafic bodies (Ariège, French Pyrenees). Bulletin Minéralogique. 110, 345-358.
- Bodinier, J.-L., Godard, M., 2003. Orogenic ophiolitic, and abyssal peridotites. in: R.W. Carlson (Eds), Treatise on Geochemistry The Mantle and Core. Elsevier, 103-170.
- Bodinier, J.-L., Guiraud, M., Fabriès, J., Dostal, J., Dupuy, C., 1987b. Petrogenesis of layered pyroxenites from the Lherz, Freychinède and Prades ultramafic bodies (Ariège, French Pyrenees). Geochimica et Cosmochimica Acta. 51, 279-290.
- Bodinier, J.-L., Menzies, M.A., Shimizu, N., Frey, F.A., McPherson, E., 2004. Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt-harzburgite reaction. Journal of Petrology. 45, 299-320.
- Bodinier, J.-L., Vasseur, G., Vernières, J., Dupuy, C., Fabriès, J., 1990. Mechanism of mantle metasomatism: Geochemical evidence from the Lherz orogenic peridotite. Journal of Petrology. 31, 597-628.
- Boudier, F., Nicolas, A., Structural control on the partial melting of the Lanzo peridotite, AGU Chapman Conf. Proc. Bull. 96, Geol. Min. Industries, Oregon Dep, 1977.
- Brown, M., Solar, G.S., 1998. Shear-zone systems and melts: feedback relations and selforganization in orogenic belts. Journal of Structural Geology. 20, 211-227.
- Buck, W.R., 2006. The role of magma in the development of the Afro-Arabian rift system. Geological Society of London, Special Publications. 259, 43-54.
- Bunge, H.J., 1982. Texture analysis in material sciences, Butterworths, London.
- Burnham, O.M., Rogers, N.W., Pearson, D.G., Van Calsteren, P.W., Hawkesworth, C.J., 1998. The petrogenesis of eastern Pyrenean peridotites: an integrated study of their whole-rock geochemistry and Re-Os isotopic composition. Geochimica et Cosmochimica Acta. 62, 2293-2310.
- Canil, D., 2004. Midly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos. 77, 375-393.
- Carlson, R.W., Irving, A.J., Schulze, D.J., Carter Hearn Jr, B., 2004. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos. 77, 453-472.

- Carswell, D.A., 1968. Picritic magma residual dunite relationships in garnet peridotite at Kalskaret near Tafjord, South Norway. Contributions to Mineralogy and Petrology. 19, 97-124.
- Chaussidon, M., Lorand, J.-P., 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (north-eastern Pyrenees, France): an ion microprobe study. Geochimica et Cosmochimica Acta. 54, 2835-2846.
- Choukroune, P., 1973. La brèche de Lherz dite "d'explosion liée à la mise en place des lherzolites" est une brèche sédimentaire d'âge cénozoïque. Comptes Rendus de l'Académie des Sciences. 277, 2621-2624.
- Choukroune, P., 1988. The ECORS deep reflection seismic survey across the Pyrenees. Nature. 331, 508-510.
- Choukroune, P., Mattauer, M., 1978. Tectonique des plaques et Pyrénées: sur le fonctionnement de la faille transformante nord-pyrénéenne; comparaison avec des modèles actuels. Bulletin de la Société Géologique de France. 20, 689-700.
- Colchen, M., Ternet, Y., Debroas, E.J., Carte géologique de la France au 1/50000, feuille 1086, Aulus-les-Bains, in: é. BRGM, (Ed), 1997.
- Conquéré, F., 1971. Les pyroxénites à amphibole et les amphibolites associées aux lherzolites du gisement de Lherz (Ariège, France): un exemple du rôle de l'eau au cours de la cristallisation fractionnée des liquides issus de la fusion partielle des lherzolites. Contributions to Mineralogy and Petrology. 33, 32-61.
- Conquéré, F., 1978. Pétrologie des complexes ultramafiques de lherzolite à spinelle de l'Ariège (France). Ph.D. thesis, Univ. Paris.
- Conquéré, F., Fabriès, J., 1984. Chemical disequilibrium and its thermal significance in spinel peridotites from the Lherz and Freychinède ultramafic bodies (Ariège, French Pyrenees). in: J. Kornprobst (Eds), Kimberlites II. The mantle and Crust-Mantle Relationships. Elsevier, Amsterdam, 319-331.
 Costa, S., Maluski, H., 1988. Use of ⁴⁰Ar-³⁹Ar stepwise heating method for dating mylonitic
- Costa, S., Maluski, H., 1988. Use of ⁴⁰Ar-³⁹Ar stepwise heating method for dating mylonitic zones: an example from the St. Barthelemy Massif (Northern Pyrenees, France). Chemical Geology. 72, 127-144.
- Couvy, H., Frost, D.J., Heidelbach, F., Nyilas, K., Ungar, T., Mackwell, S., Cordier, P., 2004. Shear deformation experiments of forsterite at 11 GPa - 1400°C in the multianvil apparatus. European Journal of Mineralogy. 16, 877-889.
- Dawson, J.B., 1984. Contrasting types of upper-mantle metasomatism. in: J. Kornprobst (Eds), Kimberlites II. The mantle and Crust-Mantle Relationships. Elsevier, Amsterdam, 289-294.
- Debroas, E.J., 1987. Modèle de bassin triangulaire à l'intersection de décrochements divergents pour le fossé albo-cénomanien de la Ballongue (zone nord-pyrénéenne, France). Bulletin de la Société Géologique de France. 8, 887-898.
- Deloule, E., Albarède, F., Sheppard, M.F., 1991. Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth and Planetary Science Letters. 105, 543-553.
- Deng, F. L. and McDougall, J. D., 1992. Proterozoic depletion of the lithosphere recorded in mantle xenoliths from Inner Mongolia. Nature. 360, 333-336.
- Dickey Jr, J.S., 1970. Partial fusion products in Alpine-type peridotites: Serrania de La Ronda and other examples. Mineral Soc. Amer. Spec. Pap. 3, 33-49.
- Dijkstra, A., Drury, M.R., Vissers, R.L.M., 2001. Structural Petrology of Plagioclase Peridotites in the West Othris Mountains (Greece): Melt Impregnation in Mantle Lithosphere. Journal of Petrology. 42, 5-24.
- Downes, H., 2001. Formation and modification of the shallow subcontinental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and

tectonically emplaced ultramafic massifs of western and central Europe. Journal of Petrology. 42, 233-250.

- Downes, H., Bodinier, J.-L., Thirlwall, M.F., Lorand, J.-P., Fabriès, J., 1991. REE and Sr-Nd isotopic geochemistry of Eastern Pyrenean peridotite massifs: Sub-continental lithospheric mantle modified by continental magmatism. Journal of Petrology. 97-115.
- Downes, H., Cvetkovic, V., Hock, V., Prelevic, D., Lazarov, M., Refertilization of highly depleted lithospheric mantle (Balkan peninsula, SE Europe): evidence from peridotite xenoliths, Goldschmidt Conference Abstracts, 2006.
- Downes, H., Dupuy, C., 1987. Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France. Earth and Planetary Science Letters. 82, 121-135.
- Elthon, D., 1992. Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. Journal of Geophysical Research. 97, 9015-9025.
- Fabriès, J., Lorand, J.-P., Bodinier, J.-L., 1998. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics. 292, 145-167.
- Fabriès, J., Lorand, J.-P., Bodinier, J.-L., Dupuy, C., 1991. Evolution of the upper mantle beneath the Pyrenees: evidence from orogenic spinel lherzolite massifs. Journal of Petrology. 55-76.
- Fortané, A., Duée, G., Lagabrielle, Y., Coutelle, A., 1986. Lherzolites and the Western "Chaînons Béarnais" (French Pyrenees): structural and paleogeographical pattern. Tectonophysics. 129, 81-98.
- Frey, F., Shimizu, N., Leinbach, A., Obata, M., Takazawa, E., 1991. Compositional variations within the lower layered zone of the Horoman peridotites, Hokkaido, Japan: constraints on models for melt-solid segregation. in: M.A. Menzies, C. Dupuy, A. Nicolas (Eds), Orogenic lherzolites and mantle processes. Oxford University Press, Oxford,
- Frey, F.A., Suen, C.J., Stockman, H.W., 1985. The Ronda high temperature peridotite: geochemistry and petrogenesis. Geochimica et Cosmochimica Acta. 49, 2469-2491.
- Garrido, C., Bodinier, J.-L., 1999. Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt/rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J. Petrol. 40, 729-754.
- Gleizes, G., Leblanc, D., Bouchez, J.-L., 1997. Variscan granites of the Pyrenees revisited: their role as syntectonic markers of the orogen. Terra Nova. 9, 38-41.
- Godard, M., Jousselin, D., Bodinier, J.-L., 2000. Relationships between geochemistry and structure beneath a paleo-spreading centre: a study of the mantle section in the Oman Ophiolite. Earth and Planetary Science Letters. 180, 133-148.
- Golberg, J.-M., Maluski, H., 1988. Données nouvelles et mise au point sur l'âge du métamorphisme pyrénéen. Comptes Rendus de l'Académie des Sciences. 306, 429-435.
- Golberg, J.M., Leyreloup, A.F., 1990. High temperature low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France. Contributions to Mineralogy and Petrology. 104, 194-207.
- Golberg, J.M., Maluski, H., Leyreloup, A.F., 1986. Petrological and age relationship between emplacement of magmatic breccia, alkaline magmatism and static metamorphism in the North Pyrenean Zone. Tectonophysics. 129, 275-290.
- Goldschmidt, V.M., 1929. The distribution of chemical elements. Proc. Roy. Inst. Great Britain. 26, 73-86.
- Griffin, W.L., O'Reilly, S.Y., Natapov, L.M., Ryan, C.G., 2003. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos. 71, 215-242.
- Hamelin, B., Allègre, C.J., 1988. Lead isotope study of orogenic lherzolite massifs. Earth and Planetary Science Letters. 91, 117-131.

- Hart, S.R., Dunn, T., 1993. Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology. 113, 1-8.
- Harte, B., 1983. Mantle peridotites and processes-the kimberlite sample. in: C.J. Hawkesworth, M.J. Norry (Eds), Continental Basalts and Mantle Xenoliths. Shiva Publishing, Cheshire, U.K.,
- Harte, B., Hunter, R.H., Kinny, P.D., 1993. Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. in: (Eds), Philosophical Transactions of the Royal Society of London. 1-21.
- Hartmann, G., Wedephol, K.H., 1993. The composition of peridotites tectonites from the Ivrea complex (N-Italy) representing material at different stages of depletion. Geochimica et Cosmochimica Acta. 57, 1761-1782.
- Henry, P., Azambre, B., Montigny, R., Rossy, M., Stevenson, R.K., 1998. Late mantle evolution of the Pyrenean sub-continental lithospheric mantle in the light of new ⁴⁰Ar-³⁹Ar and Sm-Nd ages on pyroxenites and peridotites (Pyrenees, France). Tectonophysics. 296, 103-123.
- Hirth, G., Kohlstedt, D.L., 1995. Experimental constraints on the dynamics of the partially molten upper mantle: deformation in the dislocation creep regime. Journal of Geophysical Research. 100, 15.441-415.449.
- Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature. 385, 219-229.
- Hofmann, A.W., 2003. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. in: R.W. Carlson (Eds), Treatise on Geochemistry The Mantle and Core.
- Holtzman, B.K., Kohlstedt, D.L., Zimmerman, M.E., Heidelbach, F., Hiraga, T., Hustoft, J., 2003. Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science. 301, 1227-1230.
- Ionov, D., Mukasa, S.B., Bodinier, J.-L., 2002. Sr-Nd-Pb isotopic compositions of peridotite xenoliths from Spitsbergen: numerical modelling indicates Sr-Nd decoupling in the mantle by melt percolation metasomatism. Journal of Petrology. 43, 2261-2278.
- Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V., Wänke, H., The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules, Proc. 10th Lunar Planetary Science Conference 2031-2050, 1979.
- Jung, H., Karato, S., 2001. Water-induced fabric transition in olivine. Science. 293, 1460-1463.
- Kelemen, P.B., Dick, H.J.B., 1995. Focused melt flow and localized deformation in the upper mantle: juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. Journal of Geophysical Research. 100, 423-438.
- Kendall, J.-M., Pilidou, S., Keir, D., Bastow, I.D., Stuart, G.W., Ayele, A., 2006. Mantle upwellings, melt migration and the rifting of Africa: insights from seismic anisotropy. Geological Society of London, Special Publications. 259, 55-72.
- Kisters, A.F.M., Gibson, R.L., Charlesworth, E.G., Anhaeusser, C.R., 1998. The role of strain localization in the segregation and ascent of anatectic melts, Namaqualand, South Africa. Journal of Structural Geology. 20, 229-242.
- Kopylova, M.G., Russell, J.K., 2000. Chemical stratification of cratonic lithosphere; constraints from the northern Slave Craton, Canada. Earth and Planetary Science Letters. 181, 71-87.
- Kornprobst, J., Vielzeuf, D., 1984. Transcurrent crustal thinning: a mechanism for the uplift of deep continental crust/upper mantle associations. in: J. Kornprobst (Eds),

Kimberlites II. The mantle and Crust-Mantle Relationships. Elsevier, Amsterdam, 347-359.

- Lacroix, A., Les péridotites des Pyrénées et les autres roches intrusives non feldspathiques qui les accompagnent, C.R. Académie des Sciences, Paris, 1917.
- Lagabrielle, Y., Bodinier, J.-L., 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova. 20, 11-21.
- Le Roux, V., Bodinier, J.-L., Alard, O., O'Reilly, S.Y., Griffin, W.L., 2008a. Isotopic decoupling between Hf, Nd and Sr during porous melt flow: case study in the Lherz peridotites (Pyrenees). Earth and Planetary Science Letters. Submitted.
- Le Roux, V., Bodinier, J.-L., Tommasi, A., Alard, O., Dautria, J.-M., Vauchez, A., Riches, A.J.V., 2007. The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth and Planetary Science Letters. 259, 599-612.
- Le Roux, V., Tommasi, A., Vauchez, A., 2008. Feedback between melt percolation and deformation in an exhumed lithosphere-asthenosphere boundary. Earth and Planetary Science Letters. 274, 401-413.
- Lee, C.-T., Rudnick, R.L., Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths from the Labait Volcano, Tanzania, in: B.J.v. Dawson, J.J. Gurney, J.L. Gurney, M.D. Pascoe, S.R. Richardson, (Eds), Proc. VIIth International Kimberlite Conference, 1999, pp. 503-521.
- Lee, C.-T.A., Harbert, A., Leeman, W.P., 2007. Extension of lattice strain theory to mineral/mineral rare-earth element partitioning: an approach for assessing disequilibrium and developing internally consistent partition coefficients between olivine, orthorpyroxene, clinopyroxene and basaltic melt. Geochimica et Cosmochimica Acta. 71, 481-496.
- Lenoir, X., Garrido, C., Bodinier, J.-L., Dautria, J.-M., Gervilla, F., 2001. The recrystallization front of the Ronda peridotite: evidence for melting and thermal erosion of subcontinental lithospheric mantle beneath the Alboran Basin. Journal of Petrology. 42, 141-158.
- Lesher, C.E., 1994. Kinetics of Sr and Nd exchange in silicate liquids: theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. Journal of Geophysical Research. 99, 9585-9604.
- Li, Y., Kind, R., Yuan, X., Wolbern, I., Hanka, W., 2004. Rejuvenation of the lithosphere by the Hawaiian plume. Nature. 427, 827-829.
- Liu, X., O'Neill, H.S.C., 2004. The effect of Cr₂O₃ on the partial melting of spinel lherzolite in the system CaO-MgO-Al₂O₃-SiO₂-Cr₂O₃ at 1.1 GPa. Journal of Petrology. 45, 2261-2286.
- Lorand, J.-P., 1989. Abundance and distribution of Cu-Fe-Ni sulfides, sulfur, copper and platinium-group elements in orogenic-type spinel lherzolite massifs of Ariège. Earth and Planetary Science Letters. 93, 50-64.
- Lorand, J.P., 1991. Sulphide petrology and sulphur geochemistry of orogenic lherzolites: a comparative study of the Pyrenean bodies (France) and the Lanzo massif (Otaly). in: M.A. Menzies, C. Dupuy, A. Nicolas (Eds), Orogenic lherzolites and Mantle Processes. 77-95.
- Loubet, M., Allègre, C.J., 1982. Trace elements in orogenic lherzolites reveal the complex history of the upper mantle. Nature. 298, 809-814.
- Luguet, A., Alard, O., Lorand, J.P., Pearson, N.J., Ryan, C., O'Reilly, S.Y., 2001. Laserablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth and Planetary Science Letters. 189, 285-294.

- Mainprice, D., Tommasi, A., Couvy, A., Cordier, P., Frost, D.J., 2005. Pressure sensitivity of olivine slip systems and seismic anisotropy of the Earth's upper mantle. Nature. 233, 731-733.
- McDade, P., Blundy, J.D., Wood, B.J., 2003. Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Physics of The Earth and Planetary Interiors. 139, 129-147.
- McDonough, W.F., Frey, F.A., 1989. Rare earth elements in upper mantle rocks. in: B.R. Lipin, G.A. McKay (Eds), Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Washington DC, 99-139.
- McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology. 120, 223-253.
- McPherson, E., Thirlwall, M.F., Parkinson, I.J., Menzies, M.A., Bodinier, J.-L., Woodland, A., Bussod, G., 1996. Geochemistry of metasomatism adjacent to amphibole-bearing veins in the Lherz peridotite massif. in: M.A. Menzies, J.-L. Bodinier, F.A. Frey, F. Gervilla, P. kelemen (Eds), Melt Processes and Exhumation of Garnet, Spinel and Plagioclase Facies Mantle. Elsevier, Amsterdam, 135-157.
- Menzies, M.A., 1983. Mantle ultramafic xenoliths in alkaline magmas: Evidence for mantle heterogeneity modified by magmatic activity. in: C.J. Hawkesworth, M.J. Norry (Eds), Continental Basalts and Mantle Xenoliths. Shiva Publishing, Cheshire, U.K., 92-110.
- Menzies, M.A., Allen, C., 1974. Plagioclase lherzolite-residual mantle relationships within two eastern mediterranean ophiolites. Contributions to Mineralogy and Petrology. 45, 197-213.
- Menzies, M.A., Rogers, N., Tindle, A., Hawkesworth, C.J., 1987. Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. in: M.A. Menzies, C.J. Hawkesworth (Eds), Mantle Metasomatism. Academic Press, London, 313-361.
- Minnigh, L.D., Van Calsteren, P.W.C., den Tex, E., 1980. Quenching: an additional model for emplacement of the lherzolite at Lers (French Pyrenees). Geology. 8, 18-21.
- Monchoux, P., Les lherzolites pyrénéennes: contribution à l'étude de leur minéralogie, de leur genèse et de leurs transformations., 1970.
- Monchoux, P., 1971. Comparaison et classement des massifs de lherzolite de la zone mésozoïque Nord-Pyrénéenne. Bulletin de la Société d'Histoire Naturelle de Toulouse. 107, 393-407.
- Monchoux, P., 1972. Roches à saphirine au contact des lherzolites pyrénéennes. Contributions to Mineralogy and Petrology. 37, 47-64.
- Montigny, R., Azambre, B., Rossy, M., Thuizat, R., 1986. K-Ar study of Cretaceaous magmatism and metamorphism of the Pyrenees: age and length of rotation of the Iberian Peninsula. Tectonophysics. 129, 257-273.
- Mukasa, S.B., Shervais, J.W., Wilshire, H.G., Nielson, J.E., 1991. Intrinsic Nd, Pb and Sr isotopic heterogeneities exhibited by the Lherz alpine peridotite massifs, French Pyrenees. Journal of Petrology. 117-134.
- Müntener, O., Pettke, T., Desmurs, L., Meier, M., Schaltegger, U., 2004. Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust-mantle relationships. Earth and Planetary Science Letters. 221, 293-308.
- Navon, O., Stolper, E., 1987. Geochemical consequence of melt percolation: the upper mantle as a chromatographic column. Journal of Geology. 95, 285-307.
- Nicolas, A., Dupuy, C., 1984. Origin of ophiolitic and oceanic lherzolites. Tectonophysics. 110, 177-187.

- O'Hara, M.J., 1967. Mineral parageneses in ultramafic rocks. in: P.J. Wyllie (Eds), Ultramafic and related rocks. Wiley, New York, 393-403.
- Obata, M., Suen, C.J., Dickey, J.S., The origin of mafic layers in the Ronda high-temperature peridotite intrusion, S. Spain: an evidence of partial fusion and fractional crystallisation in the upper mantle, Orogenic mafic and ultramafic association 272, Colloques Inter. C.N.R.S., 1980, pp. 257-268.
- Palme, H., O'Neill, H.S.C., 2003. Cosmochemical estimates of mantle composition. in: R.W. Carlson (Eds), Treatise on Geochemistry The Mantle and Core. Elsevier, 1-38.
- Pattou, L., Lorand, J.-P., Gros, M., 1996. Non-chondritic platinum-group element ratios in the Earth's mantle. Nature. 379, 712-715.
- Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., Harvey, J., 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology. 234, 179-210.
- Pearson, D.G., Nowell, G.M., 2004. Re-Os and Lu-Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif: implications for mixed peridotite-pyroxenite mantle sources. Journal of Petrology. 45, 439-455.
- Piccardo, G.B., Müntener, O., Zanetti, A., 2004. Alpine-Apennine ophiolitic peridotites: new concepts on their composition and evolution. Ofioliti. 29, 63-74.
- Pin, C., Vielzeuf, D., 1983. Granulites and related rocks in Variscan median Europe: a dualistic interpretation. Tectonophysics. 93, 47-74.
- Pin, C., Zalduegui, J.F.S., 1997. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Analytica Chimica Acta. 339, 79-89.
- Polvé, M., Allègre, C.J., 1980. Orogenic lherzolites complexes studied by ⁸⁷Rb-⁸⁷Sr: A clue to understanding the mantle convection processes? Earth and Planetary Science Letters. 51, 71-93.
- Rabinowicz, M., Ceuleneer, G., 2005. The effect of sloped isotherms on melt migration in the shallow mantle: a physical and numerical model based on observations in the Oman ophiolite. Earth and Planetary Science Letters. 229, 231-246.
- Rampone, E., Piccardo, G.B., Hofmann, A.W., 2008. Multi-stage melt–rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contributions to Mineralogy and Petrology. DOI 10.1007/s00410-00008-00296-y.
- Rampone, E., Piccardo, G.B., Vannucci, R., Bottazzi, P., 1997. Chemistry and origin of trapped melts in ophiolitic peridotites. Geochimica et Cosmochimica Acta. 61, 4557-4569.
- Rampone, E., Piccardo, G.B., Vannucci, R., Bottazzi, P., Zanetti, A., 1994. Melt impregnation in ophiolitic peridotite: an ion microprobe study of clinopyroxene and plagioclase. Mineralogical Magazine. 58A, 756-757.
- Reisberg, L., Lorand, J.-P., 1995. Longevity of subcontinental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature. 376, 159-162.
- Reisberg, L., Zindler, A., 1986. Extreme isotopic variations in the upper mantle: Evidence from Ronda. Earth and Planetary Science Letters. 81, 29-45.
- Ringwood, A.E., 1975. Composition and Petrology of the Earth's Mantle, McGraw Hill, New York.
- Rosenberg, C.L., Handy, M.R., 2000. Syntectonic melt pathways during simple shearing of a partially molten rock analogue (Norcampher-Benzamide). Journal of Geophysical Research. 105, 3135-3149.

- Rosenberg, C.L., Handy, M.R., 2001. Mechanisms and orientation of melt segregation paths during pure shearing of a partially molten rock analog (norcamphor-benzamide). Journal of Structural Geology. 23, 19717-11932.
- Rosenberg, C.L., Handy, M.R., 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology. 23, 19-28.
- Rossy, M., Azambre, B., Albarède, F., 1992. REE and Sr-Nd isotope geochemistry of the alkaline magmatism from the Cretaceous North Pyrenean Rift Zone (France-Spain). Chemical Geology. 97, 33-46.
- Saal, A.E., Takazawa, E., Frey, F.A., Shimizu, N., Hart, S.R., 2001. Re-Os Isotopes in the Horoman peridotite: evidence for refertilization? Journal of Petrology. 42, 25-37.
- Salters, V.J.M., White, W.M., 1998. Hf isotope constraints on mantle evolution. Chemical Geology. 145, 447-460.
- Sautter, V., Fabriès, J., 1990. Cooling kinetics of garnet websterites from the Freychinède orogenic lherzolite massif, French Pyrenees. Contributions to Mineralogy and Petrology. 105, 533-549.
- Schärer, U., Kornprobst, J., Beslier, M.O., Boillot, G., Girardeau, J., 1995. Gabbro and related rock emplacement beneath rifting continental crust: U-Pb geochronological and geochemical constraints for the Galicia passive margin (Spain). Earth and Planetary Science Letters. 130, 187-200.
- Scott, T., Kohlstedt, D.L., 2006. The effect of large melt fraction on the deformation behavior of peridotite. Earth and Planetary Science Letters. 246, 177-187.
- Seyler, M., Toplis, M., Lorand, J.P., Luguet, A., Cannat, M., 2001. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology. 29, 155-158.
- Shervais, J.W., Mukasa, S.B., 1991. The Balmuccia orogenic lherzolite massif, Italy. in: M.A. Menzies, C. Dupuy, A. Nicolas (Eds), Orogenic lherzolites and mantle processes. Oxford University Press, Oxford (U.K.), 155-174.
- Sneeringer, M., Stanley, H., Shimizu, N., 1984. Strontium and samarium diffusion in diopside. Geochimica et Cosmochimica Acta. 48, 1589-1608.
- Sparks, D.W., Parmentier, E.M., 1991. Melt extraction from the mantle beneath spreading centres. Earth and Planetary Science Letters. 105, 368-377.
- Spiegelman, M., 1993. Physics of melt extraction: theory, implications and applications. Philosophical Transactions: Physical Sciences and Engineering. 342, 23-41.
- Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. in: A.D. Saunders, M.J. Norry (Eds), Magmatism in the Ocean Basins. Geol. Soc. London, 313-345.
- Takazawa, E., Okayasu, T., Satoh, Keiichi, 2003. Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block). Geochemistry, Geophysics and Geosystems (G3). 4, 2000GC000080.
- Takei, Y., 2005. Deformation-induced grain boundary wetting and its effects on the acoustic and rheological properties of partially molten rock analogue. Journal of Geophysical Research. 110, doi:10.1029/2005JB003801.
- Tang, Y.-J., Zhang, H.-F., Ying, J.-F., Zhang, J., Liu, X.-M., 2008. Refertilization of ancient lithospheric mantle beneath the central North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos. 101, 435-452.
- Thoraval, C., Tommasi, A., Doin, M.-P., 2006. Plume-lithosphere interactions beneath a fastmoving plate. Geophysical Research Letters. 33, L01301, doi:01310.01029/02005GL024047.

- Tommasi, A., Godard, M., Coromina, G., Dautria, J.-M., Barsczus, H., 2004. Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia. Earth and Planetary Science Letters. 227, 539-556.
- Tommasi, A., Mainprice, D., Canova, G., Chastel, Y., 2000. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations. Implications for upper mantle seismic anisotropy. Journal of Geophysical Research. 105, 7893-7908.
- Tommasi, A., Tikoff, B., Vauchez, A., 1999. Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth and Planetary Science Letters. 168, 173-186.
- Tommasi, A., Vauchez, A., 2001. Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle. Earth and Planetary Science Letters. 185, 199-210.
- Tommasi, A., Vauchez, A., Fernandes, L.A.D., Porcher, C.C., 1994. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil. Tectonics. 13, 421-437.
- Tommasi, A., Vauchez, A., Ionov, D., 2008. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth and Planetary Science Letters. doi: 10.1016/j.epsl.2008.1004.1020.
- Van Achtebergh, E., Ryan, C.G., Jackson, S.E., Griffin, W.L., 2001. Data reduction software for LA-ICP-MS. in: P.J. Sylvester (Eds), Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications. Mineral. Assoc. of Can., Ottawa, Ontario, Canada,
- Van der Wal, D., Bodinier, J.-L., 1996. Origin of the recrystallisation front in the Ronda peridotite by km-scale pervasive porous melt flow. Contributions to Mineralogy and Petrology. 122, 387-405.
- Van Orman, J.A., Grove, T.L., Shimizu, N., 2001. Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contributions to Mineralogy and Petrology. 141, 687-703.
- Vasseur, G., Vernières, J., Bodinier, J.-L., 1991. Modelling of trace element transfer between mantle melt and heterogranular peridotite matrix. Journal of Petrology. 41-54.
- Vauchez, A., Barruol, G., 1996. Shear-wave splitting in the Appalachians and the Pyrenees: importance of the inherited tectonic fabric of the lithosphere. Physics of The Earth and Planetary Interiors. 95, 127-138.
- Vauchez, A., Dineur, F., Rudnick, R., 2005. Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: insights from the Labait volcano xenoliths (Tanzania). Earth and Planetary Science Letters. 232, 295-314.
- Vauchez, A., Garrido, C., 2001. Seismic properties of an asthenopherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth and Planetary Science Letters. 192, 235-249.
- Vauchez, A., Tommasi, A., 2003. Wrench faults down to the asthenosphere: Geological and geophysical evidence and thermo-mechanical effects. in: F. Storti, R.E. Holdsworth, F. Salvini (Eds), Intraplate strike-slip deformation belts. Geol. Soc. London Spec. Publ., London, 15-24.
- Vernières, J., Godard, M., Bodinier, J.-L., 1997. A plate model for the simulation of trace element fractionation during partial melting and magma transport in the earth's upper mantle. Journal of Geophysical Research. 102, 24771-24784.

- Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarède, F., 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters. 168, 79-99.
- Vétil, J.Y., Lorand, J.P., Fabriès, J., 1988. Conditions de mise en place des filons des pyroxénites à amphibole du massif ultramafique de Lherz (Ariège, France). C. R. Acad. Sci. Paris 307, 587-593.
- Vielzeuf, D., Pétrologie des écailles granulitiques de la région de Lherz (Ariège-Zone Nord Pyrénéenne). Introduction à l'étude expérimentale de l'association grenat(alm-py)feldspath potassique. Thesis, University of Clermont-Ferrand, 1980.
- Vielzeuf, D., Kornprobst, J., 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth and Planetary Science Letters. 67, 87-96.
- Von der Handt, A. 2008. Deciphering petrological signatures of reactive melt stagnation and cooling in the oceanic mantle underneath ultraslow spreading ridges. PhD Thesis. Geochemistry Department. Max-Planck Institute for Chemistry, Mainz. pp 311.
- Waff, H.S., Faul, U.H., 1992. Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts. Journal of Geophysical Research. 97, 9003-9014.
- Walter, M.J., Sisson, T.W., Presnall, D.C., 1995. A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite. Earth and Planetary Science Letters. 135, 77-90.
- Wark, D.A., Watson, B.E., 2000. Effect of grain size on the distribution and transport of deepseated fluids and melts. Geophysical Research Letters. 27, 2029-2032.
- Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W., Barling, J., 2005. High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem. Geophys. Geosyst. 6, Q02002, doi:02010.01029/02004GC000852.
- Wilshire, H.G., Pike, J.E.N., Meyer, C.E., Schwarzman, E.C., 1980. Amphibole-rich veins in lherzolite xenoliths, Dish Hill and Dead-man Lake, California. American Journal of Science. 280-A, 576-593.
- Wittig, N., Baker, J.A., Downes, H., 2007. U-Th-Pb and Lu-Hf isotopic constraints on teh evolution of the sub-continental lithospheric mantle, French Massif Central. Geochimica et Cosmochimica Acta. 71, 1290-1311.
- Wood, B.J., Blundy, J.D., 2003. Trace element partitioning under crustal and uppermost mantle conditions: the influences of ionic radius, cation charge, pressure, and temperature. in: R.W. Carlson (Eds), Treatise on Geochemistry - The Mantle and Core. Elsevier, 395-425.
- Woodland, A., Kornprobst, J., McPherson, E., Bodinier, J.-L., Menzies, M.A., 1996. Metasomatic interactions in the lithospheric mantle: petrologic evidence from the Lherz Massif, French Pyrenees. in: M.A. Menzies, J.-L. Bodinier, F.A. Frey, F. Gervilla, P. Kelemen (Eds), Melt Processes and Exhumation of Garnet, Spinel and Plagioclase Facies Mantle. Elsevier, Amsterdam, 83-112.
- Zanetti, A., Vannucci, R., Bottazzi, P., Oberti, R., Ottolini, L., 1996. Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein. in: M.A. Menzies, J.-L. Bodinier, F.A. Frey, F. Gervilla, P. Kelemen (Eds), Melt Processes and Exhumation of Garnet, Spinel and Plagioclase Facies Mantle. Elsevier, Amsterdam, 113-133.
- Zindler, A., Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences. 14, 493-571.

Supplementary material

96

TABLE OF CONTENTS

Technical work

<u>Article</u>

Mantle refertilisation, osmium isotopes and the "Primitive Upper Mantle" fallacy, Consequences for the nature of the late veneer 97

Table 1 - Crystallographic fabrics strengths of minerals	118
Figure 1 - Crystal-preferred orientations of minerals (CPO)	120
Table 2 - Major and minor elements compositions of minerals from Lherz peridotites	127
Table 3 - Whole-rock chemical compositions – major and minor elements (ppm)	138
Table 4 - Whole-rocks chemical compositions – trace elements (ppm)	142
Table 5 - Whole-rocks chemical compositions – trace elements normalized to primitive mantle	144
Figure 2 - Whole-rocks trace elements normalized to primitive mantle	146
Table 6 - Modal compositions of Lherz peridotites	147
Table 7 - REE clinopyroxenes concentrations (ppm)	148
Table 8 - REE clinopyroxenes concentrations normalized to chondrites	152
Figure 3 - REE clinopyroxenes concentrations normalized to chondrites	154
Table 9 - Hf, Nd and Sr isotopic ratios of the Lherz peridotites	155
Summary of chemical techniques and methods	156

Technical work

After I realized the detailed structural map of the Lherz massif, I have sampled, cut with diamond saw and prepared in proper dimensions for thin sections all the Lherz peridotites studied during this work (~ 160 samples). The thin sections have been realized by Christophe Nevado and Doriane Delmas (Géosciences Montpellier).

The thin sections were used for optical observations (~ 160 thin sections), EPMA and LASER-ICPMS (~ 55 thin sections each) analyses, and manual and automatic EBSD measurements that I have performed (~ 50 thin sections).

I have crushed the whole-rocks into powders (~ 60 samples). I performed a chemical digestion of some of them in the clean lab of Geosciences Montpellier and some others in the clean lab of GEMOC ARC National Key Centre. I made the ICPMS measurements with the help of Olivier Bruguier (Montpellier) and Suzy Elhlou (Sydney).

I have crushed, sieved and passed rocks fractions through magnetic separator. I have made a careful handpicking to get the clinopyroxene separates I used for isotopic data (16 samples of >100mg pure clinopyroxene fractions). I have performed the chemical separation of Hf, Nd and Sr (clinopyroxene separates and corresponding whole-rocks) in the clean lab of GEMOC ARC National Key Centre with the help of Peter Wieland and I have performed the TIMS and MC-ICPMS measurements.

This work was supported by INSU DYETI Program and ARC LIEF, DEST Systemic Infrastructure Grants, Macquarie University and industry, and by ARC Discovery project grants. I have obtained financial help from the French Ministry of Research and a 6 months 'Bourse Lavoisier Co-tutelle' scholarship for the collaboration with Australia.
Mantle refertilisation, osmium isotopes and the "Primitive Upper Mantle" fallacy, Consequences for the nature of the late veneer

Article in preparation.

O. Alard^{1,2}, V. Le Roux^{1,2}, J.-P. Lorand³, J.-L. Bodinier¹, W. L. Griffin², , S. Y. O'Reilly²

¹ Géosciences Montpellier, Université de Montpellier 2 and CNRS, Cc 060, Place E. Bataillon, 34095 Montpellier cedex 5 France

² GEMOC, Department of Earth & Planetary Sciences, Macquarie University NSW 2109 AUSTRALIA

³ Unité de Recherche "Minéralogie", Muséum National d'Histoire Naturelle de Paris, UMR7160 CNRS, Paris 75005, France.

VLR's contribution in this paper: data and writing.

Abstract

The abundances of highly siderophile elements in the Earth's mantle are best explained by the addition of chondritic material after core segregation, during a late phase of heavy meteorite bombardment; this "late veneer" may also have delivered water and the seeds of life. However, the Os-isotope composition of the Primitive Upper Mantle, as estimated from supposedly "pristine" mantle rocks, rules out the only wet chondrite group: the carbonaceous chondrites. New data show that the type Lherzolite, a keystone of "primitive mantle" models, consists largely of non-pristine material. This sampling bias and misconceptions about the geochemical behaviour of the highly siderophile elements, mean that the Os-isotope constraint, which has bogged down the debate on the nature of the late veneer, is not robust. The Os-isotope composition of Earth's mantle can only be defined as broadly chondritic, and thus does not rule out carbonaceous chondrites as a major component of the late veneer.

A recurrent question in planetary sciences is: what were the "building blocks" of our planet? Of foremost interest is the nature of the `late veneer'; this late accretion (0.2-0.8% of Earth's mass) is seen by many as the carrier of water and possibly the seeds of life for Earth¹. However, the nature of this late component remains elusive and constraints from various geochemical systems seem at first glance contradictory². The highly siderophile elements (HSE: Os, Ir, Ru, Rh, Pt, Pd, Au and Re) have been seen as one of the most promising first-order constraints on the nature of the late component. The broadly chondritic relative abundances of HSEs in Earth's mantle are assumed to reflect the addition of chondritic material to the mantle after core formation via an intense meteorite bombardment^{3,4}. Re and Os are both HSEs, ¹⁸⁷Re decays by beta emission to ¹⁸⁷Os, with a half-life of 41.6 Ga^5 , and the ¹⁸⁷Os/¹⁸⁸Os of Earth's Primitive Upper Mantle (PUM) reflects its timeintegrated Re/Os. The currently accepted ¹⁸⁷Os/¹⁸⁸Os value for the PUM, derived from peridotites stored in post-Archean continental lithosphere from five continents^{6,7} is 0.1296 ± 0.0008 . Taken at face value, the PUM composition rules out carbonaceous chondrites⁸ (¹⁸⁷Os/¹⁸⁸Os_{CC}= 0.1262 ± 0.0006) as the source of the "late veneer" and would suggest that ordinary $(^{187}\text{Os}/^{188}\text{Os}_{\text{OC}} = 0.1283$ chondrites⁸ \pm

0.0017) formed the bulk of this veneer. However, carbonaceous chondrites are the only known water-bearing chondrites and have a Deuterium/Hydrogen ratio $(D/H\approx150\cdot10^{-6})$ similar to Earth's seawater⁹. These inconsistencies led Drake and Righter² to propose that the Earth was made of an unsampled type of material, the "Earthchondrite" or "Earth achondrite". Recently, the Pd/Ir of the PUM has been estimated¹⁰ at ca 2.02 ± 0.30, but no chondrite group shows such fractionated HSE abundances¹¹.

However, a key question is the robustness and significance of the estimated PUM composition. We show here that the estimate of the Os-isotope composition of the PUM is erroneous, because it is based on sample suites in which the HSE abundances and Os-isotope composition have been altered by metasomatic processes. In the light of these new data the Os-isotope composition of the silicate Earth can currently only be constrained at best to be broadly chondritic.

Behind the PUM

The PUM is the composition of a hypothetical upper mantle reservoir that has never experienced melt depletion or metasomatic enrichment (i.e. the silicate earth prior to crustal differentiation). True PUM almost certainly does not exist anywhere on Earth today. Thus, the PUM composition has been estimated using correlations between potential indicators of melt depletion such as Al_2O_3 and $^{187}Os/^{188}Os$ (Figure 1) in samples of the sub-continental lithospheric mantle, including xenoliths (scavenged by alkali-basalt volcanoes) and orogenic peridotites (tectonically emplaced into the crust). The PUM estimate relies mainly on two key assumptions: (i) due to the highly refractory nature of Os, the ¹⁸⁷Os/¹⁸⁸Os of a mantle section is "frozen in" during major melt extraction events and is not modified by percolation-reaction with ascending magmas; (ii) the least depleted (high-Al₂O₃) peridotites represent samples from which no (or little) melt has been extracted. However, the validity and robustness of these two assumptions are highly questionable.

The type Lherzolite under scrutiny

The Lherz massif is the largest and bestexposed peridotite massif in the Pyrenées (France) and is the type locality of fertile mantle rock (i.e. Lherzolite). As such (and for historical reasons) Lherz has played a key role in the PUM estimate; it thus represents an ideal (and emblematic) place to investigate the true nature of the correlation between Al_2O_3 and ${}^{187}Os/{}^{188}Os$ and to test the robustness of the PUM estimate.

The Lherz massif shows several features inconsistent with the conventional meltextraction hypothesis, which regards

Fig. 1: Whole-rock major-element systematics (TiO₂, Na₂O *vs* Al₂O₃) for the Pyrenées massifs. Open circles, Pyrenées peridotites¹²; grey circles, Lherz samples (this study); black diamonds, interlayered spinel-websterites from all Pyrenées massifs. Solid bold curves show theoretical evolution of Al₂O₃, TiO2 and Na₂O during partial melting¹³ (tick marks every 10%). Dashed line denotes mixing between a refractory protolith (Al₂O₃ = 0.45 ; TiO₂=0.01 ; Na₂O= 0.02 wt.%) and a basaltic melt (Al₂O₃ = 15; TiO₂= 0.6 ; Na₂O= 1.45 wt.%); crosses show 5% mixing increments. Vertical lines denote the estimated Al₂O₃ composition of a hypothetical Primitve Upper Mantle^{6,7,10} (4.2±0.2 wt.%)

depleted harzburgites (low Al_2O_3) as derived through partial meting of the fertile lherzolites (high Al_2O_3)¹². Recent detailed field work¹⁴ has defined a unique set of convergent structural and geochemical evidence demonstrating that the Lherz harzburgites were not derived through partial melting of the fertile lherzolite: (i) harzburgite bodies (1-10m) show a welldefined foliation (N40-60°) throughout the massif, while the surrounding lherzolites have a weak and variable (N10-N80°) foliation oblique to the harzbugite foliation; (ii) the coarse-grained lherzolites contrast deformed (pophyroclastic with the to mylonitic), fine-grained harzbugites, suggesting coarsening and addition of Opx+Cpx via melt/rock reaction; (iii) harzburgites LREE-enriched while are lherzolites LREE-depleted; this are relationship, although common in both peridotite xenoliths and massifs. is inconsistent with partial melting but can be explained through melt/rock reaction¹². The Lherz peridotites show strong linear relationships of TiO₂ and NaO vs Al₂O₃ (Figure 1), inconsistent with partial melting ^{13,15,16}. Elements such as Na and Ti, which low relatively bulk partition have coefficients (D \leq 0.1), will be more quickly depleted than less incompatible elements such as Al (D≈0.35±0.05) during partial melting, thus producing an upward-concave trend. In contrast, linear trends, such as those observed for the Lherz and the Pyrenées peridotites, are typical of mixing processes (Figure 1). Thus, while Al₂O₃ (or CaO, MgO, Lu...) are indices of fertility, they are not necessarily melt depletion indicators^{16,17}, as has been assumed for the calculations that led to the PUM ^{6,7,10} estimate. While the positive correlation Al₂O₃-¹⁸⁷Os/¹⁸⁸Os has been ascribed to an old (Proterozoic) depletion event involving partial melting and stabilization of the lithospheric mantle ^{18,19}, such a scenario cannot explain the negative and positive correlations of Al₂O₃ with ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd, respectively ^{12,20}.

Thus, the (micro- and macro-) structural features suggest that all of the harzburgite bodies once formed a single continuous unit and that the deformation of the harzburgites predates the formation of the lherzolites and websterites. The petrographic and geochemical observations (e.g. Figure 1) are not consistent with a model in which the harzbugite represents the residue left after the extraction of partial melts from the fertile lherzolite. Instead, these features indicate that the lherzolite formed during refertilisation via a near-solidus reaction at the expense of the harzburgite protolith. This reaction caused the precipitation of pyroxenes \pm spinel \pm amphibole and sulphide. The pervasive websteritic layering in the refertilised lherzolites probably reflects melt segregation, or porosity waves in a matrix in which permeability was decreasing due to the pyroxene-producing refertilisation reaction²¹. Thus, ironically and in contrast to the canonical interpretation, the eponymous lherzolites of the Lherz massif are in fact re-fertilised harzburgites.

The Os-sulphide paradox

Despite the compatible nature of Os, which should give the Re-Os isotopic system

a degree of immunity to metasomatic processes, the isotopic composition of Os commonly is modified during melt-rock processes²²⁻²⁶. percolation-reaction This paradox stems from the highly mobile and of. reactive nature the base-metal sulphides²⁷, which are the main host phase for Os in mantle rocks. Due to their low melting temperature and low viscosity, and their affinity for volatile-rich fluids^{28,29} sulphides are extremely mobile and reactive in the mantle^{23,24,30,31}. As predicted by modeling and whole-rock observations³²⁻³⁴ and demonstrated by in-situ analyses²⁷ and experimental studies^{35,36} this mobility is accompanied by severe fractionation of the HSE. For instance, Pd/Ir may vary by several orders of magnitude between sulphide grains 10-100s of micrometers few а apart^{24,27,30,31,37,38}, and sulphides from the same sample may show extreme isotopic heterogeneity^{23,24,26,39,40} reflecting their contrasting petrogenetic history, i.e. residual after melting or metasomatically introduced. Thus the HSE abundances and the isotopic composition of Os in whole-rock samples reflect the proportions of different sulphide populations with contrasting elemental and isotopic compositions.

Sulphides and the Re-Os systematics of the Lherz peridotites

Within this new framework, the

relationships between refertilisation and the Os-isotope systematics of the Pyrenées massifs were investigated through the in-situ determination of the Re-Os composition of individual sulphide grains ²⁵. First, we sampled at the meter scale in the Lherz (Figure 1 RM, 10 samples, 103 massif sulphides, Table RM1). Then we extended our study to the regional scale by investigating "historical" samples - used to estimate the HSE and Os-isotope composition of the PUM^{6,7,10}- from Lherz and other peridotite massifs in the Pyrenées (188 sulphides from 12 samples, Table RM1).

Whole-rock data show that these samples also display the Al_2O_3 - Pd/Ir - $^{187}Os/^{188}Os$ correlation, which is the backbone of the PUM estimate (Figure 2). The likelihood of metasomatic enrichment is indicated in the Pyrenées massifs by (1) the fact that the Pd/Ir vs Al₂O₃ correlation yields an extremely fractionated fertile mantle (Figure 2a) that is incompatible with the composition of the three main groups of chondrite¹¹; (2) although partition coefficients for Pd and Ir are loosely constrained³⁵ a linear correlation between Pd/Ir and Al₂O₃ is not predicted by 25,32; melt modeling (3)pyroxenites (probable melts) fall on the correlation lines defined by the peridotites (Figure 2b).

Harzburgites have low sulfur contents (S \leq 50 ppm); each thin section contains 0 to 2 small sulphide grains (\leq 50µm). In contrast,

Fig. 2: Symbols as in figure 1; Histogram: black, carbonaceous chondrites; grey, ordinary chondrites; stippled, enstatite chondrites. Chondrite compositions after ref.^{8,11}; PUM composition after ref.^{6,7,10}.

Iherzolites have S contents up to ≈300 ppm and show ≥20 large (50-600 µm) sulphide grains per section. All sulphides are interstitial and show polyhedral shapes with inward-convex grain boundaries and low dihedral angles (≤60°). In contrast to the peridotite xenoliths hosted by alkali basalts and kimberlites, no primitive sulphide inclusions (spherical shapes, mono-sulphide solid solution composition^{27,35}) in olivine have been found. All sulphides, irrespective of the peridotite type, consist of pentlandite (Pn: (Fe,Ni)₈S₉) and minor chalcopyrite (Cp: CuFeS₂). The abundance of Cu-rich phases (Cp \pm bornite) is higher (up to 20%) in sulphide-rich samples. Thus the sulphides of the Pyrenées lherzolites are not typical of residual mantle; instead, they have a metal (Ni,Cu)-rich composition typical of sulphide melts produced by partial melting of mantle sulphides^{35,36}. The abundance of sulphide (up to 415 ppm of S) and the proportion of pyrrhotite (Po: Fe_(1-x)S) increase in peridotite samples interlayed with websterite. Spinel-

websterites show abundant sulphides (300 $<S \le 700$ ppm) consisting of Pn, Po, Cp and Pyrite ⁴¹. This spatial variation suggests a cogenetic relationship between sulphides in the lherzolites and websterites.

In-situ data show that the rare small sulphides in the harzburgites have unradiogenic Os-isotope compositions $(^{187}\text{Os}/^{188}\text{Os}{=}0.1137{\pm}0.0012,$ weighed mean, n=21), usually low $^{187} \text{Re} / ^{188} \text{Os}$ (<0.1) and high Os contents (\approx 30-250 ppm), in broad agreement with whole-rock data⁴². Such low ¹⁸⁷Os/¹⁸⁸Os indicates a long-term evolution in a low Re/Os (depleted) environment and yields some Re-depletion ages (T_{RD}) in excess of 2.5 Ga. In contrast the sulphides of the lherzolites have Os-isotope compositions that vary widely (0.109-0.173). There is also a large spread in ¹⁸⁷Re/¹⁸⁸Os from 0.001 up to values ≥ 1 . Clearly Figure 3 shows that the whole-rock composition represents only an average of the compositional range observed the in sulphides. In fact, the sulphides from a single sample encompass the whole range of Re-Os composition reported for whole-rock samples from Lherz and the other Pyrennées massif peridotites (Figure 3). Several sulphide grains define a trend toward high Re/Os at \approx constant ¹⁸⁷Os/¹⁸⁸Os (Figure 3). This indicates a recent Re contamination and agrees with previous observations about the mobility of Re and its effects on the wholerock Re-Os systematics of the Pyrenées

peridotite massifs¹⁹. The upper value of ¹⁸⁷Os/¹⁸⁸Os in sulphide is much more radiogenic than any realistic estimate for the primitive mantle. This simple observation precludes the possibility that the Os-sulphide systematics can reflect partial melting of a PUM-like protolith. On the contrary, the inverse correlation between Os and ¹⁸⁷Os/¹⁸⁸Os (Figure 3) indicates mixing between two end-members.

Fig. 3: ¹⁸⁷Os/¹⁸⁸Os vs ¹⁸⁷Re/¹⁸⁸Os in sulphides from a single sample and whole-rock samples of Pyrenées peridotites. Open circles: sulphides in a single sample (04LH06), error bars are 2SE; black diamonds, 04LH6 whole-rock composition; grey diamond, Pyrenées peridotites whole-rock compositions^{10,18,19,42}. Grey squares are whole-rock spinel-websterites (unpublished data). Solid and dashed lines denote the PUM composition^{6,7,10}. The Insert shows the same sulphides plotted in ¹⁸⁷Os/¹⁸⁸Os-1/Os space. Such a linear correlation is symptomatic of a mixing trend. Note the agreement with the bulk-rock composition (estimated after Os and corrected S whole-rock content and using a pentlandite composition S=33 wt.%)

One end-member corresponds to a "relict" depleted component found in all peridotite samples irrespective of their degree of fertility. Most lherzolite samples contain some sulphides with unradiogenic ¹⁸⁷Os/¹⁸⁸Os (< 0.115), low Re/Os and high Os contents, like those found in the harzburgites (Figure 4, RM table). This clearly indicates that all samples have undergone a major melting event during lower Proterozoic time (mean T_{RD} = 2.2±0.2 Ga). This observation strongly supports the hypothesis that the protolith of the Lherz massif consisted of deformed old harzburgites¹⁴. The second sulphide endmember shows extremely radiogenic Os $(^{187}\text{Os}/^{188}\text{Os} >> 0.15)$, high Re/Os and low Os contents (<5 ppm). The increase in sulphide abundance in the lherzolite at the contact with pyroxenite and the continuous trend in

whole-rock composition between peridotites and pyroxenites (Figure 2) support a genetic link between the refertilising agent (i.e. the radiogenic end-member) and the interlayered spinel-websterites. Spinel websterites (unpublished data) yield a poorly constrained (MSWD 6.6) Re-Os isochron age of 1.35±0.12 Ga and an initial Os-isotope composition of 0.118±0.004. This age is similar to that of the spinel-websterites in the Beni Bousera massif (Morocco)⁴³ and for some pyroxenites in the Ronda massif $(Spain)^{44}$. The initial Os-isotope composition of the spinel-websterites is within error of a MORB composition at that time, consistent with lithophile element abundances¹⁴ and isotopic $data^{45}$.

Fig. 4: Relative probability plot of ¹⁸⁷Os/¹⁸⁸Os in Pyrenées sulphides. Solid curve, sulphide ¹⁸⁷Os/¹⁸⁸Os composition in residual harzburgites (n=22, Table 1 repository material); dashed curve, sulphide ¹⁸⁷Os/¹⁸⁸Os for all Pyrenées lherzolites studied here (n=268; Table 1). Histogram of whole-rock compositions^{10,18,19,42}. Right column shows the ¹⁸⁷Os/¹⁸⁸Os distribution in single whole-rock samples from the same outcrop, a few meters wide (Figure 1, repository material). Technical limitations inherent to the in-situ technique²⁵ mean that samples with high Re/Os (¹⁸⁷Re/¹⁸⁸Os>0.7) and/or low Os sulphides (<1pm) suffer large errors, and the ¹⁸⁷Os/¹⁸⁸Os of sulphide having ¹⁸⁷Re/¹⁸⁸Os >1 cannot be determined. Consequently the sulphide population presented here is slightly biased toward sulphides with high Os contents and low Re/Os. Vertical solid and dashed lines denote the estimated ¹⁸⁷Os/¹⁸⁸Os composition and uncertainty (respectively) of a hypothetical Primitve Upper Mantle^{6,7,10}; Shaded region indicates minimum ¹⁸⁷Os/¹⁸⁸Os deduced from whole-rock alumino-isochron ^{18,19}.

Thus the whole-rock ¹⁸⁷Os/¹⁸⁸Os and Re/Os composition of the Pyrenées lherzolites do not reflect partial melting but simply the precipitation of sulphides having the high metal/sulphide ratio and fractionated HSE patterns ^{27,37} predicted by experimental work ^{35,36,46}. The only primitive feature preserved in these rocks is probably the relict melt-depletion age carried by the sulphide population both residual the harzburgites and the lherzolites.

Consequences for the "late veneer" and the composition of the upper mantle

The fertile nature of the lherzolites from the Lherz massif - the type locality - is thus not related to small degrees of melting but rather to the referilisation of a refractory ancient mantle lithosphere through the reactive percolation of a MORB-like melt. This event accompanied by was the precipitation of sulphide, which has modified profoundly the Os-isotope composition and HSE abundances of the Lherz mantle. Thus, the commonly-used indices of fertility (e.g. Al₂O₃), the HSE abundances (e.g. Pd/Ir, Re/Os) and the ¹⁸⁷Os/¹⁸⁸Os of the Pyrenées lherzolites are not pristine characteristics. The linear correlation between ¹⁸⁷Os/¹⁸⁸Os and Al₂O₃ must be considered as a mixing line between an injected mafic component ("mantle botox") and an old (Archean-Proterozoic) refractory mantle. The intersections of these trends with a "primitive" Al₂O₃ content therefore have no meaning in terms of the composition of the PUM.

Fig. 5: Nd and Os isotopic composition for the non-Archean lithospheric mantle. Black circles, alkalibasalt hosted peridotite xenoliths; empty triangles, orogenic peridotite massifs, for data source see repository material; dashed grey line shows the expected composition of variably depleted mantle, i.e. old and depleted mantle should have $\Box Nd >>0$ and ${}^{187}Os/{}^{188}Os <<0.13$ depending on the age and extent of melting; conversely pristine undepleted mantle should have $\Box Nd\approx0$ and ${}^{187}Os/{}^{188}Os$ near the PUM composition⁶ (i.e. $\approx 0.1296\pm0.0008$). Solid and dotted thin lines denote PUM estimate ${}^{6}(\Box Nd_{PUM}\approx -0.1\pm1)$.

the existence of linear However. ¹⁸⁷Os/¹⁸⁸Os-Al₂O₃ trends and the intersection foci (0.127-0.131) of these trends on a worldwide basis at a fertile composition $(Al_2O_3=4.2\pm0.2 \text{ wt.\%})$ remains an important constraint on the large-scale, long-term evolution of the Proterozoic lithospheric mantle⁶. Data from the literature suggest that re-fertilisation processes described here are extremely common; they have been

described in several localities worldwide and from a variety of geodynamic settings: massifs^{26,32,33,47,48}; Orogenic peridotite ophiolites^{38,49}, peridotite^{24,32,34,42}. abyssal xenoliths^{23,31,33,50}. sub-continental mantle Furthermore, many mantle suites, including those used in estimates of the PUM composition ^{6,10} show the same "symptoms" as the Lherz and Pyrenées massifs. These include (1) behaviour of major- and minor elements inconsistent with melting models; (2)discrepancies between mineral composition, modes and whole-rock composition; (3) fractionated whole-rock HSE patterns inconsistent with any known chondrite group (e.g. Pd/Ir>2); (4) the coexistence at the thin section scale of several unrelated sulphide populations. However, the most convincing arguments stem from the discrepancies between ¹⁴³Nd/¹⁴⁴Nd and $^{187}\text{Os}/^{188}\text{Os}$. It has been recognised that even the most fertile peridotites that were used to estimate the PUM composition show Ndisotope compositions indicative of oldmelting events⁶ (i.e. \Box Nd>>0; Figure 5). Further work has shown that this observation is not an aberration, but is rather systematic; a broad inverse correlation between Nd and Os isotopes is found on a worldwide basis, similar to that observed in the Pyrenées peridotite massifs (Figure 5). Therefore, we conclude that a large proportion of the subcontinental lithospheric mantle has been refertilised, as suggested by the ubiquitous

radiogenic Os composition of the "fertile" upper mantle. This suggests that a fundamental characteristic of the lithospheric mantle is its refertilised nature.

 187 Os/ 188 Os-Al₂O₃ correlation, If the which is the backbone of the PUM estimate, is not due to partial melting then it cannot be used to calculate a primitive mantle composition for the Earth. Due to the complex history of melt extraction and percolation-reaction, which affect the abundances and isotopic composition of the siderophile elements, lithospheric peridotite samples cannot be used to derive a "primitive upper mantle" value that allows distinction between the various chondrite classes that potentially formed the "late veneer". At best the 187Os/188Os and HSE systematics of the primitive upper mantle can be considered as broadly chondritic. The Os-isotope composition of the PUM thus not rule out the carbonaceous does chondrites as a major constituent of the late veneer, and can be reconciled with the D/H ratio of the Earth' water. From mass-balance considerations, it is obvious that the late veneer had no effect on the O-isotope, Mg/Si Al/Si composition of the Earth². or Therefore, there is no need for a yet unsampled type of chondrite to account for elemental²⁸ the both and isotopic composition of the HSE in the Earth mantle systematics and the D/H of seawater.

Acknowledgments

We thank N.J. Pearson, P. Wieland and S. Elhou for assistance with chemistry and mass spectrometry, C. Countenceau (the Gypaete barbue crew) and "Momo" for field assistance and S. Demouchy and A. Luguet for comments. Analytical data were obtained at GEMOC, using instrumentation funded by ARC LIEF, a DEST Systemic Infrastructure Grant, Macquarie University and industry. O.A. thanks the Royal Society and the Australian Research Council for financial support. This is publication XXX from the ARC National Key Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC).

References

- [1] Martin, H. et al., Earth, Moon, and Planets 98, 97-151 (2006).
- [2] Drake, M. J. and Righter, K., Nature 416, 39-43 (2002).
- [3] Chou, C. L., presented at the Proc. Lunar Planet. Sci Conf 9th, 1978 (unpublished).
- [4] Wänke, H., Phil. Trans. R. Soc. Lond. A 303, 287-302 (1981).
- [5] Smoliar, M. I., Walker, R. J., and Morgan, J. W., Science 271, 1099-1102 (1996).
- [6] Meisel, T., Walker, R. J., Irving, A. J., and Lorand, J.-P., *Geochim. Cosmochim. Acta* 65 (8), 1311-1323 (2001).
- [7] Meisel, T., Walker, R. J., and Morgan, J. W., Nature 383 (10 October), 517-520 (1996).
- [8] Walker, R. J. et al., Geochim. Cosmochim. Acta 66 (23), 4187-4201 (2002).
- [9] Robert, F., Spc. Sci. Rev. 106, 87-101 (2003).
- [10] Becker, H. et al., Geochim. Cosmochim. Acta 70, 4528-4550 (2006).
- [11] Horan, M. F. et al., Chem. Geol. 196 (1-4), 5-20 (2003).
- [12] Bodinier, J.-L. and Godard, M., in *The mantle and the core*, edited by R. W. Carlson (Elsevier-Pergamon, Oxford (UK), 2003), Vol. 2, 103-170
- [13] Niu, Y., Langmuir, C. H., and Kinzler, R. J., *Earth Planet. Sci. Lett.* **152**, 251-265 (1997).
- [14] Le Roux, V. et al., Earth Planet. Sci. Lett. 259, 599-612 (2007).
- [15] Ghiorso, M. S. and Sack, R. O., Contrib. Min. Petrol. 119, 197-212. (1995).
- [16] Langmuir, C. H., (198X).
- [17] Palme, H. and O'Neill, H. S. C., in *The mantle and the core*, edited by R. W. Carlson (Elsevier-Pergamon, Oxford (UK), 2003), Vol. 2, 1-38
- [18] Burnham, O. M. et al., Geochim. Cosmochim. Acta 62 (13), 2293-2310 (1998).
- [19] Reisberg, L. and Lorand, J.-P., Nature 376, 159-162 (1995).
- [20] Bodinier, J. L. et al., J. Petrol. 45 (2), 299-320 (2004).
- [21] Le Roux, V., Tommasi, A., and Vauchez, A., *Earth and Planetary Science Letters*, In press (2008).
- [22] Brandon, A. D., Creaser, R. A., Shirey, S. B., and Carlson, R. W., Science 272 (10 May), 861-864 (1996).
- [23] Alard, O. et al., Earth Planet. Sci. Lett. 203 (2), 651-663 (2002).
- [24] Alard, O. et al., Nature 436, 1005-1008 (2005).
- [25] Pearson, N. J. et al., Geochim. Cosmochim. Acta 66 (6), 1037-1050 (2002).
- [26] Beyer, E. E., Griffin, W. L., and O'Reilly, S. Y., J. Petrol. 47, 1611-1636 (2006).
- [27] Alard, O. et al., Nature 407, 891-894 (2000).
- [28] Andersen, T., Griffin, W. L., and O'Reilly, S. Y., Lithos 20, 279-294. (1987).

- [29] Gaetani, G. A. and Grove, T. L., Earth Planet. Sci. Lett. 169, 147-163 (1999).
- [30] Luguet, A. et al., Earth Planet. Sci. Lett. 189 (3-4), 285-294 (2001).
- [31] Lorand, J.-P. and Alard, O., Geochim. Cosmochim. Acta 65 (16), 2789-2806 (2001).
- [32] Rehkämper, M. et al., Earth Planet. Sci. Lett. 172, 65-81 (1999).
- [33] Pearson, D. G. et al., Chem. Geol. 208 (1-4), 29-59 (2004).
- [34] Brandon, A. D. et al., Earth Planet. Sci. Lett. 177 (3-4), 319-335 (2000).
- [35] Ballhaus, C. et al., Contrib. Min. Petrol. 152, 667-684. (2006).
- [36] Bockrath, C., Ballhaus, C. G., and Holzheid, A., Science 305, 1951-1953 (2004).
- [37] Lorand, J.-P. et al., Chem. Geol. 248, 174-194. (2008).
- [38] Luguet, A., Lorand, J.-P., Alard, O., and Cottin, J.-Y., Chem. Geol. 208, 175-194 (2004).
- [39] Burton, K. W., Schiano, P., Birck, J.-L., and Allegre, C. J., *Earth Planet. Sci. Lett.* 172 (3-4), 311 (1999).
- [40] Meibom, A. et al., Nature 410, 705-708 (2002).
- [41] Lorand, J. P., J. Petrol. 30, 987-1015 (1989).
- [42] Luguet, A., Horan, M. F., and Carlson, R. W., *Geochim. Cosmochim. Acta* 71, 3082-3097 (2007).
- [43] Pearson, D. G. and Nowell, G. M., J. Petrol. 45, 439-455. (2004).
- [44] Reisberg, L., Allègre, C.-J., and Luck, J.-M., *Earth Planet. Sci. Lett.* **105**, 196-213 (1991).
- [45] Downes, H. et al., J. Petrol. Special Lherzolite Issue, 97-115 (1991).
- [46] Li, C. et al., Geochim. Cosmochim. Acta 60 (7), 1231-1238 (1996).
- [47] Piccardo, G. B., Zanetti, A., and Müntener, O., Lithos 94 (181-209), (2007).
- [48] Saal, A. et al., J. Petrol. 42, 25-37. (2001).
- [49] Rampone, E. et al., Min. Mag. 58A, 756-757 (1994).
- [50] Lee, C.-T. A., Geochim. Cosmochim. Acta 66 (22), 3987-4005 (2002).

Mantle refertilisation Os isotopes and the "Primitive Upper Mantle" fallacy,...

Alard et al., 2008

REPOSITORY MATERIAL

Figure RM1: Photo of the "site 2" outcrop in the Lherz Massif (Pyrennees, France). The dotted line denotes the contact between the harzburgite (black circles) and the lherzolite (white circles). The foliation for each sample is marked by the solid line and the lineation by the small triangle (projections in a geographic reference frame, top to North, lower hemisphere).

Table RM1 :									Alard et al., 20	08
Sample	N#Sulf	Osppm	¹⁸⁷ Re/ ¹⁸⁸ Os	2SE	¹⁸⁷ 0s/ ¹⁸⁸ 0s	2SE	T _{RD} (Ga)	2 □	T _{MA} (Ga)	2□
Lherz Site 2										
04LH11	A/s1	187,9	0,00022	0,00010	0,11130	0,00092	2,35	0,03	2,35	0,02
Al ₂ O ₃ =0.57 wt.%	B/s1	124,0	0,00028	0,00012	0,11134	0,00084, 0	2,34	0,03	2,34	0,02
S=38.5 ppm	B/s2	41,3	0,00275	0,00051	0,1172	0,0013	1,53	0,03	1,54	0,02
n.Sulf/sect ^o =1.3 (Pd/Ir)=0.40	C/s1	131,3	0,0022	0,0011	0,1124	0,0024	2,19	0,08	2,21	0,04
	WR	5.14•10 ⁻³	0,0298	0,0015	0,11586	0,00011	1,72	0,00	1,85	0,01
04LH12	A/s1	34.6	0.2128	0.0024	0.1188	0.0018	1.31	0.07	2.61	0.05
$A _{2}O_{3}=0.48$ wt.%	A/s2	74,2	0.00207	0,00015	0,1124	0,0014	2,19	0,05	2,20	0,02
S=36 ppm	A/s6	188,8	0,00054	0,00013	0,1100	0,0026	2,53	0,10	2,53	0,05
n.Sulf/sectº=8	WR	4.82•10 ⁻³	0,0437	0,0022	0,11298	80000, 0	2,12	0,00	2,36	0,01
04LH13	A/s1	29.9	0.0297	0.0017	0.1164	0.0015	1.65	0.04	1.77	0.02
$A_{1}O_{2}=0.47$ wt.%	A/s5a	57.4	0.0335	0.0045	0.11290	0.00082	2.13	0.03	2.31	0.03
S=27 ppm	A/s5b	154,6	0,0093	0,0026	0,11208	0,00046	2,24	0,02	2,29	0,02
n.Sulf/sect ^o =6 (Pd/Ir)=0.25										
	WR	4.00•10 ⁻³	0,0422	0,0021	0, 11385	0,00012	2,00	0,00	2,22	0,01
04LH14	A/s1	144,4	0,0310	0,0028	0,11124	0,00080	2,36	0,03	2,54	0,02
Al ₂ O ₃ =0.47 wt.%	A/s2	39,2	0,0546	0,0049	0,1141	0,0016	1,97	0,06	2,26	0,04
S=57 ppm	A/s3	29,5	0,3053	0,0041	0,1184	0,0036	1,37	0,28	4,83	0,22
n.Sulf/sectº=8	A/s8	69,6	0,109	0,010	0,1117	0,0022	2,30	0,11	3,07	0,11
	WR	4.58•10 ⁻³	0,0819	0,0041	0,11622	0,00009	1,67	0,00	2,07	0,02
041 H00	A/c1	5 9	0 9203	0 00 10	0 1574	0.0051	-4 33	0.28	3 4 2	0 1/
	A/c2	5,5	0,0200	0,0011	0,1374	0,0031	2 1 2	0,20	2,42	0,14
AI2O3=1.9 WL.%	Ay SZ	5,0	0,0232	0,0011	0,1420	0,0044	-2,13	0,15	2,15	1000
p Sulf/sect9 = 10	A/s3[ren]	10.2	0,433	0,055	0,1290	0,0018	-0,12	0,12	-2.79	1151
$(Dd/T_{r}) = 1.77$	A/s2[ieb]	10,2	0,404	0,071	0,1209	0,0014	-0,11	0,00	-2,79	0.04
(Pd/If) = 1.77	A/ 54C	21,3	0,00210	0,00013	0,1305	0,0044	-1,20	0,08	-1,21	0,04
	Ay 54a A/c5	9,0 80.8	0,031	0,002	0,1330	0,0050	1.06	0,10	1 17	0,09
	A/c9	274	0,0415	0,00057	0,1200	0,0052	2,00	0,10	2 17	0,05
	A/ 58 A/ 57	3,9	1,20	0,0005 0,13	0,11270 0,169	0,00096 <i>0,017</i>	-6,09	0,03 0,89	2,17 3,05	0,02 0,67
		3								
	WR	3.45•10°	0,1770	0,0044	0,1207	0,00012	1,05	0,00	1,81	0,03
04LH07	A/s1	6,8	0,307	0,074	0,1226	0,0070	0,78	0,32	2,84	1,85
$AI_2O_3 = 2.00 \text{ wt.}\%$	A/s2	8,8	0,0975	0,0060	0,1297	0,0052	-0,23	0,03	-0,30	0,01
S = 139 ppm	A/s3	10,8	0,0640	0,0058	0,1261	0,0026	0,29	0,01	0,34	0,01
Se=42.4 ppb	A/s4	4,2	0,89	0,1 /	0,1395	0,0056	-1,65	0,13	1,45	0,53
n.Sulf/sectº=	A/s5a	4,5	0,82	0,16	0,1319	0,0042	-0,55	0,04	0,57	0,23
	A/ \$5C A/ \$7	9,2 4,0	0,358 0,223	0,081 0,017	0,1285 0,1268	0,0010	-0,06 0,18	0,01 0,02	-0,39 0,39	0,50 0,04
	A/s10	5,0	0,0542	0.0053	0,1350	0.0074	-0,99	0,14	-1.14	0.07
	A/s14	7,1	0,0361	0,0039	0,1239	0,0060	0,60	0,06	0,65	0,03
	A/s14[rep]	9,0	0,059	0,010	0,1222	0,0046	0,84	0,07	0,98	0,04
	A/s15a	1,5	1,190	0,078	0,1488	0,0066	-3,02	0,17	1,59	0,18
	A/s15a[rep]	2,0	0,97	0,16	0,1397	0,0062	-1,68	0,12	1,26	0,37
	A/s15b	3,1	0,295	0,048	0,1294	0,0068	-0,18	0,07	-0,60	0,23
	A/s17	19,6	0,745	0,095	0,1382	0,0024	-1,46	0,07	1,85	0,54
	A/s18	2,2	0,376	0,068	0,1375	0,0052	-1,36	1,15	-13,9	20,78
	A/s19	5,0	0,340	0,057	0,1337	0,0020	-0,81	0,13	-4,35	3,08
	A/s22a	7,8	0,0232	0,0013	0,1219	0,0058	0,87	0,09	0,93	0,04
	A/s22b	183,9	0,0112	0,0011	0,1102	0,0018	2,50	0,07	2,56	0,04
	A/s25	3,3	0,343	0,014	0,1349	0,0030	-0,97	0,26	-5,43	0,98
	A/s26	4,7	0,151	0,016	0,1368	0,0022	-1,25	0,07	-1,96	0,12
	A/s27a	26,8	0,700	0,065	0,1281	0,0036	0,00	0,00	0,00	0,00
	A/s27c	18,1	0,883	0,018	0,1374	0,0032	-1,34	0,06	1,19	0,06
	WR	4.57•10 ⁻³	0,1237	0,0036	0,12435	0,00018	0,53	0,00	0,75	0,01
04LH15	A/s1	6,2	0,191	0,036	0,1290	0,0050	-0,12	0,02	-0,22	0,04
Al ₂ O ₃ =3.99 wt.%	A/s2	158,6	0,0023	0,0005	0,1115	0,0027	2,31	0,10	2,33	0,05
S= 203 ppm	A/s3	34,1	0,753	0,063	0,1109	0,0096	2,41	0,50	-3,20	0,66

a 164 10 00										
n.Sulf/secto=28	A/s5a	16,3	0,099	0,012	0,1215	0,0022	0,93	0,04	1,21	0,05
$(Dd/T_{r}) = 1.02$	A/cEh	2 5	1 00	0.15	0 1 5 2	0.014	2 61	0 52	2,20	0 56
(Fu/II)=1.95	Ay SJD	2,5	1,00	0,15	0,155	0,014	-5,04	0,52	2,20	0,50
	A/s6	6,7	0,256	0,030	0,1257	0,0024	0,34	0,03	0,87	0,16
	A/c7	20	0 500	0 072	0 1422	0 0052	2 10	0 11	E 1 E	2.21
	Ay S7	2,0	0,569	0,072	0,1452	0,0055	-2,19	0,44	5,15	2,21
	A/s8	43	0 0602	0.00.83	0 1281	0 0054	0 00	0 00	0 00	0 00
	1,4 30	1,5	0,0002	0,0000	0,1201	0,0001	0,00	0,00	0,00	0,00
	A/s10	5,6	0,351	0,056	0,1318	0,0072	-0,53	0,37	-3,23	2,58
	A/c11	4.6	0 0722	0 00 70	0 1250	0 0032	0 44	0.03	0 53	0.02
	7, 511	4,0	0,0722	0,0070	0,1230	0,0052	0,44	0,05	0,55	0,02
	A/s13	44.2	1.05	0.22	0.1180	0.0032	1.43	0.05	-0.97	0.34
	10010	F 2	1,00	0,22	0,1100	0,00052	1,15	0,00	0,57	0,51
	A/s14	5,2	0,0550	0,0013	0,1248	0,001/	0,47	0,01	0,54	0,01
	A/c15	5.8	0 1 7 9	0 0 2 7	0 1217	0 0026	0 0 0	0.06	1 57	0 18
	ry 515	5,0	0,175	0,027	0,1217	0,0020	0,90	0,00	1,57	0,10
	A/s16a	7.6	0.224	0.033	0.1210	0.0026	1.01	0.09	2.14	0.36
	Match	4.5	0 1 4 7	0.010	0 1 2 1 1	0.0044	0 42	0.05	0,00	0.02
	AV STOD	4,5	0,147	0,010	0,1311	0,0044	-0,43	0,05	-0,00	0,03
	A/s16c	49	0 1 5 1	0.018	0 1237	0 0058	0.62	0 09	0.96	0 08
	// 17	2,5	0,101	0,010	0,1207	0,0000	0,02	0,05	0,50	0,00
	A/s1/a	3,9	0,166	0,015	0,1287	0,0040	-0,08	0,01	-0,13	0,01
	A/c185	2 1	0 155	0 020	0 1207	0,0066	-0.23	0.04	-0.37	0.03
	Ay 510a	2,1	0,155	0,020	0,1297	0,0000	-0,25	0,04	-0,57	0,05
	A/s18b	8,5	0,235	0,022	0,1224	0,0056	0,80	0,16	1,80	0,23
		,	,	,	,			,	,	,
		0 0 0 1 0-3					o o=		o = /	
	WR	3.90•10 [°]	0,4590	0,0069	0,12857	0,00014	-0,07	0,00	0,74	0,13
041 401 5	A/c1	20 6	0.265	0 0 2 7	0 1227	0.0040	0.76	0 12	2.04	0.26
041815	Ay SI	20,6	0,265	0,027	0,1227	0,0040	0,76	0,13	2,04	0,30
Al ₂ O ₂ =3.50 wt.%	A/s2a	16.3	0,573	0,084	0,1391	0,0024	-1,59	0,16	4,19	2,31
2 4 9 9			0.000	0,011	0,4000	0,00=0		0.07	,	
S = 188 ppm	A/s2b	9,4	0,386	0,041	0,1203	0,0050	1,10	0,95	11,99	13,99
n Sulf/sect0-20	A/s2c	58.3	0 807	0 080	0 1115	0 0082	2 2 2	0 35	-2.64	0 58
11.5 ull/sect = 20	ry 320	50,5	0,007	0,000	0,1115	0,0002	2,55	0,55	-2,04	0,50
	A/s3	11,3	0,279	0,037	0,1172	0,0036	1,54	0,25	4,44	1,16
	N/a/	47 4	0,400	0.001	0 1201	0,0000	0.15	0.04	1 00	1 01
	Ay 54	4/,1	0,482	U,U61	0,1291	0,0022	-0,15	0,04	1,02	1,01
	A/s5a	10 4	0.64	010	0.1423	0.0028	-2 05	017	3 77	1 73
	, y 350	10,1	0,0-T	0,10	0,1720	0,0020	2,00	0,17	3,77	1,75
	A/s5b	4,1	1,098	0,068	0,1477	0,0064	-2,86	0,18	1,71	0,19
	A/c7	67	0 1 2 7	0.031	0 1316	0 0049	-0 50	0.06	-0.72	0.00
	Hy 57	0,7	0,127	0,051	0,1510	0,0040	-0,50	0,00	-0,72	0,00
	A/s8	33.5	0.893	0.063	0.1117	0.0058	2.29	0.20	-2.12	0.30
	A/-10	12.0	0 1 0 7 2 2	0,000	0,1212	0,0010	-,,	0,00	0,00	0,00
	A/ \$10	13,9	0,18/23	0,00085	0,1313	0,0012	-0,46	0,02	-0,83	0,01
	Δ/s12a	3.6	0 925	0 091	0 1426	0 0038	-2 10	0 10	1 70	0 31
	Ay 5120	5,0	0,525	0,051	0,1420	0,0050	2,10	0,10	1,70	0,51
	WR	4.03•10 ⁻³	0.447	0.012	0.12788	0.00012	0.03	0.00	-0.51	0.23
			-,	-,	-,	-,	-,	-,	- /	-/
04LH06	A/s1	122.4	0.00251	0.00011	0.1116	0.0018	2.31	0.07	2.32	0.03
	A/-2	2 4	0.205	0.024	0 1 2 0 0	0,0000	0.27	0.11	2 20	2.04
$AI_2O_3 = 3.46$ Wt.%	A/ S2	2,7	0,385	0,034	0,1300	0,0022	-0,27	0,11	-3,20	3,04
C - 195 nnm	A/c3	11 /	0 303	0 060	0 1150	0.0016	1 7 2	0 13	16 62	20.02
3 – 103 ppm	Fy 55	11,4	0,505	0,009	0,1139	0,0010	1,/2	0,45	10,02	29,92
Se=63.5 ppb	A/s4	8,5	0.112	0.010	0,1169	0.0018	1,58	0.06	2.14	0.07
n Culf/ac at0 10	A/aF	2,2	0,242	0,042	0 1 2 7 0	0,0004	0 16	0.01	0'04	0.46
11.5 uii/sect°= 16	Ay SS	5,2	0,545	0,045	0,1270	0,0004	0,10	0,01	0,04	0,40
	A/c6	5 1	0.081	0.010	0 1196	0 0028	1 20	0 07	1 / 0	0.05
	7,30	5,1	0,001	0,010	0,1190	0,0020	1,20	0,07	1,45	0,05
	A/s7	49,6	0,00469	0,00014	0,1113	0,0012	2,35	0,05	2,38	0,02
	A/c7[rop]	11.2	0,00262	0,00021	0 1116	0 0010	2,21	0.07	່າ່າວ	0.02
	Ay sy [i ep]	44,5	0,00502	0,00051	0,1110	0,0010	2,51	0,07	2,55	0,05
	A/s8a	4.2	0.188	0.025	0.1220	0.0022	0.86	0.05	1.54	0.17
	A / OI	2,0	0, 500	0,055	0 4055	0,0040	1.00	0.40	4.24	2.24
	A/ \$8D	2,0	0,522	0,055	0,1355	0,0018	-1,06	0,12	4,24	2,31
	Δ/ς9	76	0 468	0 075	0 1130	0 0048	2 1 2	1 79	-23 5	3773
	Fy 35	7,0	0,400	0,075	0,1150	0,0040	2,12	1,75	25,5	57,75
	A/s12	8,1	0,343	0,037	0,1166	0,0020	1,61	0,26	8,22	3,89
	A/c13	16	0 528	0 020	0 1169	0 0032	1 50	0.34	-670	1 26
	Ay 515	4,0	0,520	0,020	0,1100	0,0052	1,59	0,54	-0,70	1,20
	A/s16	1.7	0.81	0.15	0.1382	0.0062	-1,46	0.15	1.52	0,59
	,	,	- / -	-, -	-,	-,	, -	-, -	/ -	-,
	WP	3 2 8 10-3	0 442	0.013	0 12830	0 00007	-0.03	0 00	0 55	033
	WDG 1	2 - 4 - 4 - 3	0,772	0,010	0 1 2 5 2 2	0,00007	0,00	0,00	5,55	2,55
	w R [rep]	3.51.10	0,398	0,012	0,12585	0,00011	0,52	0,01	5,70	3,09
		3,8					15.95			
0 41 110 A		2,2	1 0 6 2	0 000	0.466	0.000		4 55	2 42	
U4LHU4	A/SZ	వ,/	1,063	0,220	U,166	0,026	-5,65	1,55	3,43	1,41
Al-02=3.22 wt %	A/s3h	4.5	0.784	0.088	0.1482	0.0082	-2.94	0.43	3,23	0.81
	A/- C	./5	0,20	0,000	0,1000	0,0002	-,-,-	0,10	6,20	10 7 -
5 = 165 ppm	A/ 54	9,7	0,38	0,11	0,1239	0,0028	0,59	0,27	6,02	16,/1
p Culf/coct0 = 17	A/cE	16.2	0 106	0 010	0 1252	0 0022	0.41	0.04	0 72	0.06
1.3 uii/sect*=1/	ry 53	10,5	0,100	0,010	0,1252	0,0032	0,41	0,04	0,75	0,00
	A/s5b	11.1	0.225	0,029	0,1301	0,0046	-0,28	0.04	-0.61	0.09
	N/66	16 2	0 2004	0.00 57	0 1244	0 0012	_0_01	0.20	_12.0	2 75
	Ay So	10,5	0,3884	0,0057	0,1344	0,0015	-0,91	0,20	-12,9	2,25
	A/s7	13.4	0 222	0 052	0.1319	0.0034	-0 54	0.06	-115	0 20
	,,,,,,	10,7	0,222	0,002	0,1010	0,0004	5,54	0,00	2,15	0,50
	A/SY	1,9	1,29	0,21	U,167	0,030	-5,/8	1,38	2,61	0,93
	Δ/c10	6.6	0 611	0 023	0 1/177	0 0033	-7 86	0 20	5 80	0 73
	ry 510	0,0	0,011	0,025	0,17//	0,0052	2,00	0,50	5,05	0,75
	A/s11	5.6	1.04	0.21	0.119	0.011	1.29	0.16	-0.89	0.31
	A/a12	12 2	0.204	0,000	0 1250	0,0050	0,20	0.00	0,00	0 1 7
	A/ \$12	13,3	0,264	0,020	0,1256	0,0056	0,36	0,09	0,96	0,13
	A/s15	107 1	0 1129	0 00 1 1	0 1129	0 0011	2 1 3	0.05	2 90	0 03
	ry 313	10/,1	0,1129	0,0011	0,1129	0,0011	2,10	0,05	2,50	0,05
	A/s17	24,8	0,398	0,079	0,1298	0,0014	-0,24	0,10	-4,57	15,59
		3.71•10	0,3637	0,0055	0,12471	0,00020	0,48	0,01	3,45	0,33
	WR									
Lherz 'Historic'	WR									
Lherz 'Historic'	WR									
Lherz 'Historic' 71-323	WR A/s1	39,2	0,00233	0,00018	0,1207	0,0013	1,05	0,02	1,05	0,01
Lherz 'Historic' 71-323 Al-0a=0 76 wt %	WR A/s1 A/s1[ren]	39,2 33 9	0,00233	0,00018	0,1207	0,0013	1,05 1 38	0,02 0.05	1,05 1 39	0,01 0.03
Lherz 'Historic' 71-323 Al ₂ O ₃ =0.76 wt.%	WR A/s1 A/s1[rep]	39,2 33,9	0,00233 0,00136	0,00018	0,1207 0,1183	0,0013 0,0024	1,05 1,38	0,02 0,05	1,05 1,39	0,01 0,03
Lherz 'Historic' 71-323 Al ₂ O ₃ =0.76 wt.% S= 22 ppm	WR A/s1 A/s1[rep] A/s2	39,2 33,9 102,9	0,00233 0,00136 0,00036	0,00018 0,00037 0,00005	0,1207 0,1183 0,1117	0,0013 0,0024 0,0012	1,05 1,38 2,30	0,02 0,05 0,04	1,05 1,39 2,30	0,01 0,03 0,02
Lherz 'Historic' 71-323 Al ₂ O ₃ =0.76 wt.% S= 22 ppm p. Suf(sect ⁰ = 3.5	WR A/s1 A/s1[rep] A/s2 A/s3	39,2 33,9 102,9 39.8	0,00233 0,00136 0,00036	0,00018 0,00037 0,00005	0,1207 0,1183 0,1117 0,11898	0,0013 0,0024 0,0012	1,05 1,38 2,30 1 29	0,02 0,05 0,04 0,02	1,05 1,39 2,30	0,01 0,03 0,02

(Pd/Ir)=0,3 ‡	B/s2 B/s2[rep] B/s3 B/s4	251,2 208,8 32,1 131,6	0,041 0,0277 0,12666 0,0326	0,010 0,0093 0,00086 0,0068	0,11165 0,11099 0,1174 0,11177	0,00078 0,00090 0,0030 0,00054	2,30 2,39 1,51 2,28	0,03 0,04 0,10 0,02	2,54 2,56 2,15 2,47	0,07 0,06 0,05 0,04
	WR‡	2.8•10-3	0,03405	0,00085	0,11530	0,00080	1,80	0,02	1,95	0,01
82-4 Al ₂ O ₃ =1.14 wt.% S = 80 ppm n.Sulf/sect ^o =10.3 (Pd/Ir)=0,64 † (Pd/Ir)=0,87 ©	WR‡ A/sX A/s1 A/s2 A/s3 A/s4 A/s4[rep] A/s5 A/s7b B/s1a B/s7b B/s7c B/s8 B/s8 B/s8 B/s8 B/s8 B/s7c B/s8 B/s7 B/s8 B/s8 B/s8 B/s	2.8•10-3 10,4 3,7 3,1 4,2 10,5 9,5 9,7 18,6 69,7 103,2 36,5 16,5 4,5 9,6 25,4 4,5 37,5 31,9 27,4 37,5 2,6 4,9 4,1 5,9 17,8 4,9	0,03405 0,456 0,201 0,600 0,373 0,0210 0,558 0,455 0,0969 0,1860 0,0085 0,0279 0,0448 0,190 0,125 0,461 0,1169 0,0203 0,2988 0,0260 0,555 0,4040 0,184 0,133 0,1545 0,1494 0,1454	0,00085 0,018 0,044 0,026 0,027 0,0007 0,033 0,018 0,0077 0,0044 0,009 0,0050 0,0040 0,032 0,020 0,030 0,0057 0,0027 0,0045 0,0027 0,0045 0,0027 0,0045 0,0027 0,0045 0,0031 0,012 0,054 0,0031 0,013 0,0039 0,0069 0,0087	0,11530 0,1200 0,1489 0,1518 0,1243 0,1239 0,1202 0,1182 0,1116 0,1088 0,1110 0,11513 0,1277 0,1219 0,1159 0,1382 0,1249 0,1132 0,11723 0,12686 0,1483 0,1329 0,1354 0,1322 0,12566 0,1252	0,00080 0,0019 0,0046 0,0082 0,0013 0,0062 0,0014 0,0014 0,0012 0,0018 0,0026 0,0026 0,0026 0,0026 0,0024 0,0028 0,0014 0,0028 0,0017 0,00074 0,00098 0,0044 0,0024 0,0024 0,0024 0,0022	1,80 1,15 -3,04 -3,47 -1,50 0,54 0,60 1,11 1,39 2,31 2,69 2,39 1,82 0,06 0,88 1,72 -1,46 0,45 2,09 1,53 0,18 -2,95 -0,69 -1,05 -0,73 0,35 0,41	0,02 0,48 0,44 0,96 1,93 0,01 0,19 0,36 0,04 0,08 0,00 0,03 0,01 0,03 0,01 0,04 0,03 0,01 0,18 0,02 0,01 0,19 0,09 0,13 0,04 0,01 0,02	1,95 -16 -5,98 7,46 -15 0,57 -1,87 -15,95 1,80 4,08 2,74 2,56 2,03 0,12 1,25 -22 -2,03 0,12 1,25 -22 -2,03 0,12 1,25 -2,03 0,12 1,63 -0,56 -1,23 -1,09 -1,63 -0,56	0,01 8 1,22 1,19 8 0,01 0,46 8,53 0,05 0,09 0,04 0,03 0,02 0,09 17 0,06 0,01 0,27 0,01 0,23 0,08 0,07 0,001 0,02
	C/s3	6,6	0,1447	0,0022	0,1299	0,0020	-0,25	0,01 0.01	-0,39 2 38	0,01
71 222		4.7 2010	0,075	0,0013	0,11410	0,00025	0.74	0,01	0.76	0,01
Al ₂ O ₃ =1.5 wt.% S= 56 ppm n.Sulf/sect ^o =8 (Pd/Ir)=1,09 © (Pd/Ir)=0,76 †	A/ 52 A/ 56 A/ 58 A/ 510 B/ 52 B/ 53 B/ 54 B/ 56 WR* WR [*]	$\begin{array}{c} 3,2\\ 14,4\\ 144,2\\ 4,1\\ 12,9\\ 145,4\\ 3,1\\ 6,1\\ 17,3\\ 3.91{\scriptstyle \bullet 10^{-3}}\\ 4.03{\scriptstyle \bullet 10^{-3}}\end{array}$	0,6133 0,627 0,0019 0,088 0,0519 0,0001 0,70 0,078 0,0095 0,0671 0,0544	0,026 0,0005 0,021 0,0070 0,0000 0,22 0,010 0,0003 0,0013 0,0011	0,1155 0,1124 0,1550 0,1274 0,1274 0,1274 0,1273 0,1435 0,1246 0,1173 0,1235	0,0058 0,0010 0,0060 0,0028 0,00044 0,013 0,0056 0,0012 0,00023 0,00025	1,77 2,19 -3,96 0,09 2,27 -6,71 -2,23 0,50 1,52 0,65	0,00 0,35 0,04 0,09 0,00 0,02 1,96 0,25 0,01 0,01 0,00	-3,79 -2,20 -5,06 0,11 2,27 8,87 -2,75 0,51 1,80 0,75	0,03 0,51 0,02 0,40 0,00 0,01 7,05 0,15 0,00 0,01 0,00
71-324 Al ₂ O ₃ =2.96 wt.% S = 170 ppm n.Sulf/sect ^o = 24 (Pd/Ir)=2,05 ®	A/s1a A/s1b A/s3 A/s2 A/s2[rep] A/s5 A/s6a A/s6b A/s8 A/s10 A/s11 A/s14 WR*	412,2 291,0 184,9 106,1 93,3 12,4 16,6 19,8 12,8 9,6 6,5 127,0 3.92•10 ⁻³	0,0098 0,007 0,0070 0,0117 0,0155 0,085 0,458 0,425 0,524 0,0812 0,1856 0,0110 0,302	0,0006 0,0011 0,0003 0,005 0,018 0,0014 0,047 0,022 0,0028 0,0012 0,0013 0,0060	0,11109 0,1147 0,11901 0,11853 0,1360 0,12847 0,1275 0,1312 0,1413 0,1526 0,11895 0,12590	0,00058 0,00078 0,0011 0,00078 0,00056 0,0022 0,00022 0,0012 0,0010 0,0016 0,00056 0,00025	2,38 2,34 1,88 1,28 1,35 -1,14 -0,05 0,08 -0,44 -1,91 -3,60 1,29 0,31	0,02 0,03 0,03 0,01 0,05 0,00 0,28 0,03 0,04 0,17 0,01	2,43 2,34 1,91 1,32 1,40 -1,44 -0,06 -8,16 1,75 -2,38 -6,60 1,33 1,10	0,01 0,02 0,01 0,08 0,00 85,61 0,38 0,03 0,09 0,01 0,06
71-326 Al ₂ O ₃ =3.58 wt.% S = 170 ppm n.Sulf/sect ^o = 28	A/s3 A/s4 A/s5 A/s6a A/s6b A/s7 A/s10 A/s11 A/s12 A/s13a A/s13b A/s13c	29,3 14,0 37,5 23,8 5,9 14,7 8,3 5,5 21,2 154,9 7,5 6,1	0,0878 0,108 0,362 0,217 0,0820 0,00539 0,354 0,1688 0,254 0,0121 0,4215 0,429	0,00 89 0,012 0,042 0,031 0,0066 0,00032 0,065 0,0071 0,026 0,0026 0,0026 0,088	0,12575 0,1346 0,1273 0,1294 0,1510 0,1323 0,1393 0,1416 0,12752 0,11146 0,1559 0,1313	0,00044 0,0016 0,0017 0,0020 0,0034 0,0020 0,0032 0,0048 0,00090 0,00032 0,00032	0,33 -0,94 0,12 -0,19 -3,35 -0,60 -1,62 -1,95 0,08 2,33 -4,10 -0,46	0,00 0,03 0,02 0,01 0,23 0,02 0,56 0,00 0,01 13,85 2,00	0,42 -1,26 0,85 -0,39 -4,19 -0,60 -11,0 -3,29 0,21 2,39 243 20	0,01 0,05 0,60 0,06 0,14 0,01 10,7 0,16 0,03 0,02 1269 218

	A/s14a A/s14b A/s15 A/s16 A/s17 A/s18 A/s19 A/s20	11,9 5,7 6,5 5,7 7,3 5,1 10,0 7,0	0,511 0,515 0,0561 0,0481 0,438 0,0286 0,0727 0,509	0,079 0,048 0,0031 0,0047 0,027 0,0033 0,0050 0,042	0,1251 0,1349 0,1411 0,1390 0,1342 0,1382 0,1288 0,1327	0,0068 0,0048 0,0030 0,0022 0,0026 0,0030 0,0020 0,0014	0,43 -0,98 -1,88 -1,57 -0,88 -1,46 -0,10 -0,66	0,22 0,32 0,10 0,06 0,76 0,07 0,00 0,07	-2,05 4,23 -2,17 -1,77 19 -1,57 -0,12 3,05	1,80 2,17 0,05 0,04 30 0,04 0,00 1,46
72-442 Al ₂ O ₃ =1.21 wt.% S = 23 ppm n.Sulf/sect ^o =2.5 (Pd/Ir)=0.30 ‡ (Pd/Ir)=0.29 ‡	A/s1 A/s2 A/s2[rep] A/s3 B/s1 B/s2	108,2 160,4 142,0 57,3 397,9 125,1	0,0364 0,00441 0,00396 0,177 0,0001 0,0120	0,0061 0,00048 0,00007 0,018 0,0000 0,0032	0,1190 0,11756 0,11729 0,1270 0,11109 0,1195	0,0013 0,00013 0,00076 0,0034 0,00030 0,0014	1,28 1,48 1,52 0,16 2,38 1,21	0,03 0,00 0,02 0,01 0,01 0,03	1,41 1,50 1,54 0,28 2,38 1,25	0,03 0,00 0,01 0,02 0,01 0,02
(Pd/Ir)=0,44 ©	WR* WR‡ WR‡	2.89•10 ⁻³ 2.79•10 ⁻³ 3.17•10 ⁻³	0,058 0,051 0,045	0,0012 0,0010 0,0009	0,11780 0,11775 0,11810	0 ,00024 0 ,00004 0 ,00040	1,45 1,46 1,41	0,01 0,00 0,01	1,68 1,66 1,58	0,01 0,00 0,01
72-273 Al ₂ O ₃ =3.11 wt.% S = 185 ppm n.Sulf/sect ^o =14	A/s1 A/s2 A/s3 A/s4 A/s5 A/s6a A/s6b	10,4 14,2 8,1 6,6 154,5 41,0 23,8	0,0783 0,498 0,0617 0,629 0,0130 0,147 0,0109	0,00 34 0,097 0,00 57 0,078 0,00 25 0,042 0,00 17	0,1252 0,1103 0,1261 0,135 0,1103 0,1150 0,1197	0,0016 0,0072 0,0034 0,010 0,0022 0,0048 0,0050	0,41 2,49 0,28 -0,99 2,49 1,84 1,18	0,01 1,81 0,02 0,33 0,09 0,21 0,10	0,50 -16 0,33 1,95 2,57 2,80 1,21	0,01 20 0,01 0,75 0,05 0,44 0,05
Frechynede 'Historio	c'									
71-339 Al ₂ O ₃ =3.41wt.% S = 244 ppm n.Sulf/sect ^o = 36 (Pd/Ir)=2,02 ©	A/s1 A/s1[rep] A/s2 A/s3 A/s4 A/s5 A/s6 A/s18[nug] A/s18[all] A/s18[all] A/s19 A/s20 A/s21b A/s21b A/s22b A/s22b A/s22b A/s22b A/s22c A/s22b A/s22c A/s22b A/s24b A/s24b A/s24b A/s24b A/s25b A/s25b A/s25b A/s25b A/s26 A/s27 A/s28 A/s30 WR*	7,9 8,2 9,0 2,8 5,3 42,6 13,4 90,8 22,2 21,4 8,6 4,3 4,1 11,1 18,7 3,9 2,0 10,6 120,2 12,0 12,5 4,3 5,9 12,1 4,8 2,7 3.47•10 ⁻³	0,080 0,070 0,288 0,0143 0,417 0,0683 0,0683 0,0680 0,246 0,0368 0,0680 0,591 0,44 0,1171 0,757 0,553 0,177 0,553 0,177 0,553 0,177 0,0488 0,0217 0,671 0,0488 0,539 0,339 0,339 0,572 0,152 0,852 0,2995	0,015 0,013 0,074 0,0006 0,073 0,0018 0,0022 0,0066 0,037 0,0038 0,0014 0,098 0,11 0,0019 0,042 0,024 0,024 0,024 0,024 0,024 0,024 0,0068 0,068 0,068 0,068 0,068 0,068 0,034 0,034 0,034 0,090 0,0060	0,1207 0,1213 0,1251 0,1211 0,1274 0,12028 0,12137 0,1214 0,1215 0,1204 0,1256 0,1317 0,1257 0,1197 0,1286 0,132 0,1267 0,1115 0,1154 0,1255 0,1247 0,1130 0,1262 0,1372 0,12680	0,0019 0,0016 0,0017 0,0044 0,00044 0,00048 0,0011 0,0013 0,0020 0,0060 0,0016 0,0022 0,0060 0,0016 0,0022 0,0060 0,010 0,0018 0,0020 0,0034 0,0017 0,0072 0,0066 0,0074 0,0075 0,00025	1,05 0,96 0,43 0,99 0,10 1,10 1,24 0,95 0,93 1,08 0,36 -0,52 0,34 1,18 -0,07 -0,61 0,19 2,32 1,79 0,37 0,49 2,02 2,12 0,27 -1,31 0,19	0,04 0,03 0,04 0,07 0,68 0,01 0,04 0,02 0,04 0,09 0,01 0,05 0,02 0,17 0,01 0,05 0,17 0,01 0,21 1,02 0,75 0,04 0,23 0,00	$\begin{array}{c} 1,30\\ 1,15\\ 1,35\\ 1,02\\ 10\\ 1,32\\ -2,17\\ 1,03\\ 2,26\\ 1,02\\ 1,29\\ -0,91\\ 10\\ 0,46\\ -1,52\\ 0,22\\ 2,44\\ -3,13\\ 0,42\\ -1,78\\ 9,67\\ -6,31\\ 0,42\\ 1,25\\ 0,64\\ \end{array}$	0,06 0,04 0,75 0,04 181 0,20 0,02 0,48 0,01 0,02 0,53 59 0,01 0,19 0,04 0,19 0,04 0,19 0,04 0,19 0,04 0,19 0,01 0,02 0,53 59 0,01 0,02 0,53 59 0,01 0,02 0,03 0,03 0,03 0,03
71-336 Al ₂ O ₃ =3.45wt.% S = 179 ppm n.Sulf/sect ^o =24 (Pd/Ir)=1,81 ®	A/s2 A/s4 A/s5a A/s5a[rep] A/s6 A/s8 A/s10 A/s13 A/s15 A/s16 A/s18 A/s19 A/s23 A/s20 A/s21	2,8 117,1 1,9 1,7 3,4 5,9 18,1 13,3 2,2 2,8 2,4 1,2 1,4 40,0 8,9	0,436 0,0046 0,566 0,512 0,0123 0,0374 0,0200 0,093 0,0297 0,0997 0,0734 0,83 1,59 0,049 0,187	0,061 0,0017 0,080 0,028 0,0009 0,010 0,0030 0,0040 0,0051 0,20 0,25 0,010 0,014	0,1329 0,11269 0,1426 0,1412 0,1207 0,1230 0,1242 0,1252 0,130 0,1241 0,1218 0,1248 0,1264 0,12032 0,1249	0,0044 0,00072 0,0065 0,0031 0,0066 0,0028 0,0012 0,0010 0,014 0,0086 0,007 0,0068 0,017 0,0260 0,00080 0,0011	-0,69 2,16 -2,10 -1,90 1,05 0,75 0,55 0,41 -0,33 0,57 0,89 -2,96 0,24 1,10 0,45	1,19 0,02 0,59 0,39 0,11 0,01 0,01 0,01 0,08 0,10 0,12 0,84 0,04 0,02 0,01	17,02 2,18 5,71 8,11 1,08 0,79 0,58 0,52 -0,35 0,75 1,08 2,89 -0,09 1,24 0,80	70,78 0,02 3,17 2,51 0,06 0,02 0,04 0,05 0,06 1,47 0,03 0,03 0,05

	WR*	3.47•10 ⁻³	0,228	0,005	0,1284	0,0003	-0,04	0,00	-0,09	0,00
71-335										
Al ₂ O ₃ =2.86 wt.%	A/s1	7,3	0,0410	0,0066	0,1270	0,0066	0,16	0,02	0,18	0,01
S = 312 ppm	A/s2	6,8	0,143	0,058	0,1271	0,0040	0,14	0,01	0,21	0,04
n.Sulf/sect ^o = 22	A/s3	5.2	0.550	0.091	0,1330	0,0070	-0.71	0.25	2.24	1.58
$(Pd/Ir) = 1.46 \ \odot$	A/s4	117.1	0.0046	0.0017	0.11147	0.00072	2.33	0.03	2.35	0.02
(A/s4[ren]	128.7	0.059	0.010	0.1113	0.0011	2.34	0.05	2.72	0.08
	A/s5	119.6	0.142	0.065	0.11565	0.00040	1.75	0.02	2.62	0.61
	/v55	10	0.913	0,000	0 1450	0,0050	-2 60	0.21	2,62	0.64
	Ay 50 A/c7	21.9	0,815	0,092	0,1439	0,0030	1.04	0,21	6 30	1 17
	A/c8	3.2	0,555	0,015	0,1207	0,0030	-2 11	0,50	2 80	0 72
	A/202	5,2	0,720	0,070	0,1720	0,0072	0.21	0,19	2,00	C,72
	A/s9a	 	0,383	0,056	0,1303	0,0026	-0,31	0,14	-3,49	5,12
	A/ 59D	5,9	0,118	0,060	0,1241	0,0040	0,57	0,05	0,79	0,16
	A/ 59C	9,1	0,004	0,000	0,1212	0,0024	0,98	0,04	0,99	0,02
	A/siua	52,9	0,0093	0,0007	0,1124	0,0012	2,19	0,04	2,24	0,02
	A/s10b	35,6	0,040	0,006	0,1191	0,0024	1,27	0,05	1,40	0,03
	A/s11	29,7	0,0088	0,0034	0,12001	0,00098	1,14	0,02	1,17	0,01
	A/s15	49,9	0,517	0,030	0,1184	0,0024	1,37	0,24	-6,42	2,01
	WR*	4.12•10-3	0,270	0,005	0,1226	0,0002	0,78	0,01	2,15	0,08
72-425	A/ s0	8,4	0,0097	0,0008	0,1316	0,0042	-0,50	0,03	-0,51	0,02
Al ₂ O ₃ =3.63 wt.%	A/ s1	7,0	0,0857	0,0047	0,1356	0,0056	-1,08	0,12	-1,35	0,06
S= 389 ppm	A/ s2	7,1	0,140	0,014	0,1332	0,0024	-0,74	0,04	-1,11	0,06
n.Sulf/sect ^o = 39	A/ s3	4,9	0,342	0,018	0,1386	0,0042	-1,52	0,57	-8,52	1,95
	A/ s4	4,4	0,184	0,011	0,1410	0,0060	-1,86	0,32	-3,35	0,22
	A/ s5	413,4	0,0051	0,0012	0,11225	0,00072	2,22	0,03	2,25	0,01
	A/ s6	1,6	1,235	0,094	0,1698	0,0240	-6,25	1,24	3,00	0,71
	A/ s7	16,6	0,244	0,033	0,1288	0,0012	-0,10	0,00	-0,24	0,04
	A/ s8	3,0	0,0583	0,0010	0,147	0,011	-2,74	0,58	-3,19	0,29
	A/ s9	2,5	1,56	0,14	0,137	0,017	-1,33	0,14	0,48	0,09
	A/s10	1,9	0,768	0,083	0,1593	0,0086	-4,62	0,72	5,16	1,28
	A/s11	6,9	1,44	0,23	0,1392	0,0026	-1,60	0,03	0,65	0,15
	A/s14b	2.7	0.153	0.013	0.1545	0.0056	-3.88	0.56	-6.21	0.41
	A/s15	4.6	0.245	0.023	0.1488	0.0060	-3.03	0.72	-7.54	1.05
	A/s16	7.7	0.0309	0.0018	0,1336	0.0022	-0.79	0.03	-0.85	0.02
	A/s20	5.9	0.0883	0.0062	0.1407	0.0030	-1.83	0.11	-2.32	0.07
	A/s22	17 3	1 09	0 13	0 1328	0 0042	-0.67	0 03	0.42	0.08
	Δ/s24a	85	0.0435	0,00,20	0 1312	0.0030	-0 44	0,05	-0.50	0,00
	Δ/s24h	27.7	0 0201	0.00.38	0 1234	0.0019	0.67	0.02	0 70	0 01
	A/c25a	12 0	0,0201	0,0030	0,1294	0,0013	_0.05	0,02	-0.06	0,01
	Ay 52.50	12,9	0,0998	0,0022	0,1204	0,0022	-0,05	0,00	-0,00	0,00
	A/ 5250	6,9 00 c	0,1073	0,0070	0,1341	0,0030	-0,80	0,05	-1,15	0,04
	Ay SZOd	90,6	0,013	0,020	0,1131	0,0022	2,11	0,08	2,18	0,11
	A/S26D	10,2	0,577	0,018	0,1304	0,0020	-0,33	0,03	0,90	0,10
	A/ \$26C	14,4	0,677	0,020	0,1244	0,0024	0,53	0,03	-0,88	0,07
	A/s28	6,6	0,0532	0,0018	0,1345	0,0048	-0,92	0,08	-1,06	0,04
	WR*	4.1 5•10 ³	0,168	0,003	0,1225	0,0002	0,79	0,01	1,31	0,02
Fontete Rouge 'histor	ric'									
FON-B-93	A/s1a	6,6	0,518	0,095	0,13703	0,00340	-1,29	0,28	5,27	5,14
Al ₂ O ₃ =3.23 wt.%	A/s1b	5,9	0,409	0,028	0,13921	0,00200, 0	-1,60	5,14	-163	385
S= 277 ppm	A/s1c	10,7	0,349	0,019	0,13440	0,00164	-0,90	0,14	-5,53	1,47
n.Sulf/sect ^o = 16	A/s2a	15,2	0,677	0,028	0,13278	0,00280	-0,67	0,05	1,09	0,12
(Pd/Ir)=1,85 ®	A/s2b	8,1	0,211	0,013	0,13011	0,00280	-0,29	0,03	-0,58	0,04
(Pd/Ir)=1,78 @	A/s3a	3,3	0,814	0,028	0,15001	0,00640	-3,21	0,33	3,26	0,29
	A/s3a[rep]	4,5	0,876	0,017	0,15194	0,00780	-3,50	0,39	3,07	0,22
	A/s3c	7,1	0,397	0,023	0,13490	0,00194	-0,98	0,61	-20	19
	A/s4	7,3	0,429	0,023	0,13441	0,00142	-0,91	0,75	34	92
	A/s5	7,9	0,223	0,011	0,13413	0,00320	-0,87	0,09	-1.85	0,11
	A/s6	5,0	0,585	0,015	0,14149	0,00200	-1,94	0,15	4,71	0,44
	A/s8	20,1	0,125	0,029	0,12613	0,00220	0,28	0,01	0,40	0,04
	A/s9	68,1	0,013	0,004	0,12016	0,00054	1,12	0,01	1,16	0,01
	A/s10	38.9	0.684	0.041	0.12268	0.00220	0.77	0.04	-1 25	0.20
	A/s11	5.3	0.202	0.017	0.13493	0.00420	-0.98	0.13	-190	0.16
	Δ/ς17	25.0	0,202	0.045	0 12773	0,00420	0.05	0,15	-0.06	0,10
	-y 512	20,0	0,700	0,040	0,120,41	0,00000	0,05	0,01	-0,00	0,01
	WK.	4.4•10	0,058	0,013	0,12841	0,0003	-0,04	0,00	0,08	0,00

Table RM1(caption):

Sample information: Al₂O₃ content (in W.t. %) and S content (in ppm) are from Bodinier (1989), Pattou et *al.*, 1995, Lorand et al., 1999 Le Roux et al., 2007 (Ref-13); Pd/Ir from ®, Pattou et *al.*, 1995; ©, Lorand et al., 1999; †, Becker et *al.*, 2006 (Ref-10); ‡, Luguet et *al.*, 2007 (Ref-42), @, Lorand et *al.*, 2008 (Ref-37).

Whole rock (**WR**) Re-Os Composition; *, Reisberg & Lorand, 1995 (Ref-19); ‡, Luguet et al., 2007 (Ref-42); ‡, Becker et al., 2006 (Ref-10) and unpublished data from A. Luguet (^{AL}). Unless reported by the authors, 2SE (standard error) was set at 0.2% and 2% for ¹⁸⁷Os/¹⁸⁸Os and ¹⁸⁷Re/¹⁸⁸Os respectively.

Sulfide: N# Denotes the sulphide number in a given section; A,B, C are the thin section numbers; [rep] denotes replicate i.e. a second analysis of the same large sulphide grain (Ø>120 μm).

Os sulphide content: Note, that the method used, laser ablation MC-ICP-MS²⁵, only allows determination of mass ratio, and not Re and Os concentrations, as internal normalisation is not possible. Thus, Os concentrations (given in ppm) are estimates computed from Os voltage measured on sulphide and on the PGE-A standard bracketing the analyses. Average uncertainties using this method are at least about 20% when internal error on voltage measurements and external reproducibility for PGE-A are propagated through; other sources of uncertainties are: between-run variation of laser output energy, gas flow fluctuation, ...

Re-Os isotopic composition: SE, standard error of means, Data are processed in time-resolved mode as described in Pearson et *al.*, (2002; Ref-25). We emphasize here that the correction for ¹⁸⁷Re overlap on ¹⁸⁷Os has been demonstrated to be reliable only for sulphide having ¹⁸⁷Re/¹⁸⁸Os≤1 (Pearson et al., 2002; Ref-25), Therefore, *data in italics* (high Re/Os sulphides) are for information only. They are reported in order to show the reader that sulphide with high ¹⁸⁷Re/¹⁸⁸Os (>1) occur and because they show values broadly consistent with sulphides from the same sample having lower Re/Os ratio. Consequently the reader must be aware that our sampling is biased toward sulphides having Os content >1 ppm and low Re/Os.

Model ages: T_{MA} is the Re-Os model age and is defined as:

$$T_{MA} = \frac{1}{\lambda_{\rm Re}} \bullet \ln \left(1 + \frac{(^{187}Os/^{188}Os)_{Sulf} - (^{187}Os/^{188}Os)_{\rm REF}}{(^{187}Re/^{188}Os)_{Sulf} - (^{187}Re/^{188}Os)_{\rm REF}} \right) (Eq.1)$$

where \Box_{Re} is the ¹⁸⁷Re decay constant (1.666•10⁻¹¹ a⁻¹; ⁵; *Sulf*, Sulphide; REF denotes the reference model chosen (see below). T_{MA} relies on the assumption that there has been no disturbance of the Re/Os ratio. That is obviously not the case here (Re-addition; see text), since T_{MA} model ages for some sulphides are unrealistic, giving future ages or ages older than 4.5 Ga.

 T_{RD} , the Re depletion age, assumes that all Re has been removed from the residue ((¹⁸⁷Re/¹⁸⁸Os)_{*Sulf*}=0 in *Eq. 1*) and thus yields a minimum depletion age, but one that is more 'robust' to addition or removal of Re by recent secondary processes. Model ages are here calculated relative to the Enstatite (EC) Chondrite reference model, i.e. (¹⁸⁷Os/¹⁸⁸Os)_{REF} = (¹⁸⁷Os/¹⁸⁸Os)_{EC} and (¹⁸⁷Re/¹⁸⁸Os)_{REF} = (¹⁸⁷Re/¹⁸⁸Os)_{EC} , with (¹⁸⁷Os/¹⁸⁸Os)_{EC}=0.1281±0.0004 and (¹⁸⁷Re/¹⁸⁸Os)_{EC}=0.421±0.013 ⁸. An EC type composition for the primitive Earth' mantle has been <u>arbitrarily</u> chosen because its value is intermediate between the carbonaceous chondrite (CC) model ⁸ and the PUM model (Meisel et *al.*, 2001; Ref-6) Uncertainties for T_{RD} and T_{MA} were calculated following Albarède's formulation ⁵¹, model uncertainties are not propagated through. Note that T_{RD} will be roughly younger or older by ~0.15 Ga if computed relative to CC (0.1275) or PUM (0.1296) Os isotopic composition, respectively.

RM-References

Bodinier J.L., 1989, Distribution des terres rares dans les massifs lherzolitiques de Lanzo et de l'Ariège, State Thesis, Université de Montpellier 2, Document et travaux du Centre Géologique et Géophysique de Montpellier, 22: 177 pp.

Albaréde, F., 1995. Introduction to Geochemical Modelling. Cambridge University Press, Cambridge, 543 pp.

Lorand, J.P., Pattou, L., Gros, M., 1999. Fractionation of platinum-group elements and gold in the upper mantle: a detailled study in the Pyrenean orogenic lherzolites, J.Petrol., 40:957-981.

Pattou, L., Lorand, J.P., Gros, M., 1996. Non-chondritic PGE ratios in the terrestrial upper mantle, Nature, 379: 712-715.

	sample number	distance to	Ŭ	Olivine		number of	Jindex	щ	Instatite		Jindex	D	iopside	
Sample Harzburgites	in Le Roux et al. 2008a	the contact (m)	[100]	[010]	[001]	measurements	olivine	[100]	[010]	[001]	Opx	[100]	[010]	[001]
05LA16		-	6,3	5,2	3,1	183	5,6	,	,	,	,	,	,	•
04LH9	section 2	0,05	4,4	5,1	2,7	230	4	'	,	,		'	,	'
05LA4	section 1	0,05	6	5	3,5	233	8,6	'	,	,		'	,	'
05LA3	section 1	0,1	9	4	2,8	246	6,6	'	ī	,	,	,	,	,
04LH11	section 2	_	5,9	4,3	2,4	208	4	'	,	,		'	,	'
04LH14	section 2	1,2	8,5	6,2	4,1	230	7,9	'	,	,		'	,	'
04LH12	section 2	1,5	11,2	5,8	3,7	207	8,7	ı	ī	,		,	ī	,
04LH13	section 2	2	10	6,6	4,7	284	9,7	•	•			•	,	•
05LA2	section 1	4,5	12	4,5	4,1	262	10	'	,	,		'	,	'
05LA1	section 1	3,5	10,7	4,6	3,7	284	9,2	'	,			•	,	'
06LD6	5	20	11,5	5	4	637	9,2	5	5	5,5	3	10	24	10
06LD8	9	20,5	14,5	5	5	417	10,1	5,5	5,5	6,5	4,3	9	Π	9
05LD1	3	21	9,3	5,1	5,1	276	8,7					'	,	'
05LD4	4	21,5	8,8	5,1	3,7	280	10	'	,	,	,	'	,	'
05LA9	section 1	_	Π	4	3,8	263	8,5	'	,	,	,	'	,	'
06LE6		2	Π	4	4	788	6,1	4,5	S	9	2,8	2	5,5	2,5
06LF27		4	9,5	4	4	671	5,5	3,7	3,5	4,9	3,2	5	9,3	٢
06LF4		ю	10,5	٢	5	480	1	9	5	10	3,9	5	7,2	4,5
05LA12		0,1	9,3	4,3	4,4	98	9,2	•						•
average							7,8	_			3,44			
I.herzolites														
041 HS	section 2	0.1	50	46	33	200	36	,	,	,		,	,	
04LH7	section 2	0.8	1 6	4.7	ζm	206	4.1	,					,	
04LH815	section 2	0.5	3.4	4.9	3.4	240	4.6	'	,	,		,	,	
05LA5	section 1	1,5	4,4	3,6	3,6	234	3,8	•			•	•		'
04LH4	section 2	1,5	2,8	3,67	3,24	227	4	'	,	,		,	,	,
05LA6	section 1	ŝ	4 4	7,6	3,1	264	9	•				•	,	'
05LA8	section 1	5	5,7	8,1	3,5	268	7	•						'
05LA15		5	4,3	5,4	4	137	5,9	'						•
06LF3L		4	9	×	4,2	607	5,3	3,5	4,5	4,7	4	4,5	7,6	З
average							4.9							

Table 1 - Crystallographic fabrics strengths of minerals

Table 1 - continued

sside	[roo] [or	,3 5,5	5 4	,4 2,5	5	4 2,5	,5 2,2	,8 2,8	9 2,8	,6 4	•	•	•			7 5	5 3	,7 3,5	5 4	5 3,5	
Diop	ol [oor]	3 7.	5	3.4	6	2,2	2,5 3.	2,8	2,8	3.4		,				4,5	3,5 5.	2,5 4.	3,5	2,5	
Jindex	vhv	3,5	3,8	2,8	3,4	2,8	3,7	4,7	2,3	3,4				3,4		æ	4,6	3,8	90	3,4	5,56
e [001]	100	4,2	7,5	4	4	5,8	6,5	8	5,2	4,2		,				13,5	5	3,5	10	4	
nstatit [010]	[010]	5,8	~	5,3	С	4	9	10,8	9	С	,		,			12	4	4	6	9	
E	[m]	3,5	6,5	5,3	4,9	3,5	T,T	8	5	4,2		,	•			11	9	4,5	8	4	
Jindex	OILVIIC	4,3	3,4	2,9	4,4	3,2	2,6	2,4	1,75	3	4	3,5	6,8	3,5		3,6	2,3	3,5	2	1,7	2,6
number of		735	762	776	587	1010	407	668	716	069	226	129	249			143	85	339	64	63	
1100	[TAA]	б	ŝ	ŝ	0	ŝ	2,5	4,6	2,2	ŝ	4	4	4,6			4,5	4,2	3,5	3,5	L	
ivine		4	9	3,5	6,8	2,5	3,5	б	3,3	4	3,6	4,2	5,8			8	3,5	7	3,5	9,7	
0 I		6,3	3,5	4,3	5	4,2 2,4	4,5	4,6	2,8	4,3	4	4,3	7,8			ŝ	3,5	4	С	7	
distance to		30	50	80	150	80	70	80	60	20	150	150	150			10	30	30	100	100	
sample number in L e Rouv et al	2008a	7	8	14	11	15	10		6		13		12			16	17	18			
Samula	Distal Iherzolites	06LF26L	06LF9	06LF11	06LE5	06LF15	06LF23	06LF16	06LF21W	06LF25	05LE1	05LE2	05L3	average	Websterites	06LF3W	06LF8	06LF26W	06LF17	06LF20	average

Table 1: Crystallographic fabric strengths and J_{index} (in grey) of olivine and pyroxenes in harzburgites, lherzolites and websterites from the Lherz massif, presented according to their distance with the harzburgite-lherzolite contacts and obtained by EBSD-SEM system (Géosciences Montpellier). The fabric fiber is in bold. Manual indexing usually does not yield enough measurements for pyroxenes (which should be >100 to be representative). Thus, only the fabric strengths obtained by automatic indexing are shown. The sample numbering is the same as in chapter 4 (Le Roux et al., EPSL 2008). Samples with number > 18 are additional samples not shown in publication for space reason and presented in italics.

Figure 1 : Crystal-preferred orientations of olivine, orthopyroxene and clinopyroxene in harzburgites, lherzolites and websterites from the Lherz massif. Lower hemisphere equal area projections in the geographic reference frame (N at the top, E on the right). Contours at 0.5 of multiple of an uniform distribution intervals. 1 measurement per grain. N= Number of grains measured.

	Spl 0,2	0,172	35,2	33,5	17,45	0,254	13,8	0,005	0,007	0,116	100,7	1000	100,00	010,0	1,073	0,864	0,325	0,022	0,390	0,002	0,010	0.013	0,209
(harz) 1	Cpx 54,0	0,254	4,21	1,79	1,97	0,082	14,7	20,6	2,14	0,038	99,8	2010	171 0	0,029	0,073	0,139	0,087	0,008	0,289	0,086	0,134	0.015	0,221
05LA16 1n	0px 57,4	0,068	2,10	0,416	5,94	0,153	33,9	0,415	0,046	0,078	100,5	8110	04140	U,UUX	0, 128	0,036	0,070	0,015	0,052	0,014	0,007	0.012	0,116
	OI 41,1	0,006	0,008	0,004	9,02	0,128	49,4	0,013	0,004	0,416	100,1	0.405	1000	u,uu4	0,013	0,004	0,108	0,005	0,360	0,005	0,003	0.004	0,418
	Spl 0,1	0,104	40,5	28,5	14,95	0,190	15,9	0,004	0,000	0,158	100,4	0.008	0000	0,014	1,340	1,215	0,647	0,011	0,406	0,005	0,000	0.015	0,100
(harz) m	Cpx 53,7	0,264	4,28	1,43	1,94	0,073	15,2	21,0	1,71	0,031	99,7	0 207	0.015	crn'n	0,284	0,266	0,088	0,010	0,266	0,293	0,102	0.012	0,185
05LA1 3.5	Opx 56,8	0,095	2,41	0,378	5,81	0,140	33,9	0,382	0,035	0,097	100,1	0 708	0.440	0,022	0,299	0,122	0,080	0,004	0,307	0,050	0,008	0.019	0,242
	01 41,1	0,005	0,007	0,011	8,69	0,131	48,0	0,011	0,006	0,431	98,4	1800	10700	cuu,u	0,008	0,011	0,099	0,008	1,160	0,006	0,006	0.003	1,449
	Spl 0,1	0,024	43,2	25,7	14,63	0,194	16,2	0,002	0,000	0,164	100,2	0.018	010/0	0,01/	4,871	5,078	0,935	0,030	1,004	0,001	0,000	0.020	0,159
(harz) m	Cpx 54,2	0,062	4,14	1,48	1,93	0,087	15,1	21,3	1,75	0,038	100,0	0130	0110	0,013	0,169	0,083	0,037	0,009	0,236	0, 169	0,076	0.006	0,158
05LA2 4.5	0px 57,4	0,021	2,19	0,331	5,80	0,153	34,0	0,350	0,032	0,082	100,3	0 226		0,012	0,385	0, 118	0,029	0,012	0,338	0,054	0,028	0.014	0,232
	01 41,3	0,007	0,003	0,000	8,77	0,126	48,7	0,012	0,008	0,430	99,3	0 280	10000	0,009	0,006	0,000	0,091	0,013	0,439	0,003	0,004	0.005	0,853
	Spl 0,2	0,034	36,0	31,8	17,41	0,219	13,7	0,011	0,013	0,105	99,5	0.015	01000	ciu,u	4,284	4,289	0,984	0,027	0,965	0,000	0,001	0.004	0,048
(harz) im	Cpx 54,0	0,064	2,34	0,824	1,86	0,055	16,4	23,3	0,685	0,042	9,66	1000	10000	U,UU/	0,128	0, 142	0,021	0,009	0,162	0, 143	0,059	0.010	0,184
05LD4 >15	0px 57,2	0,028	1,99	0,366	5,75	0, 140	33,7	0,446	0,022	0,072	99,7	8610	07100	0,014	0,292	0,089	0,062	0,005	0,299	0,059	0,012	0.016	0,161
	01 41,2	0,002	0,001	0,002	8,69	0,128	49,6	0,017	0,003	0,436	100,0	0 253	0000	U,UU3	0,001	0,002	0,086	0,009	0,639	0,004	0,003	0.004	0,509
	Spl 0,2	0,056	33,3	35,1	17,41	0,257	13,7	0,006	0,000	0,104	100,1	0000	000,00	0,014	1,538	1,734	0,444	0,013	0,323	0,004	0,000	0.009	0,313
(harz) m	Cpx 54,3	0,051	2,57	1,01	1,95	0,084	16,3	23,0	0,854	0,037	100,2	0 258	0,470	0,019	0,290	0,196	0,038	0,018	0,166	0,207	0,047	0.010	0,075
05LD1 >15	0px 57,5	0,018	1,91	0,398	5,77	0,135	33,8	0,419	0,021	0,070	100,0	0 160	0 0 1 5	crn'n	0,072	0,014	0,004	0,011	0,063	0,027	0,001	0.004	0,011
	01 41,2	0,006	0,007	0,006	8,78	0,125	49,7	0,020	0,004	0,425	100,2	1020	140,0	cuu,u	0,004	0,005	0,083	0,016	0,602	0,005	0,005	0.003	0,491
Sample distance from contact	SiO ₂ (wt. %)	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	NiO	Total	(%) I''Y - Uis	200 / (mr. /v)	1102	AI 2 O 3	Cr_2O_3	FeO	OuW	08M	CaO	Na 2 O	<i>NiO</i>	Total

Table 2 - Major and minor elements compositions of minerals from Lherz peridotites

	Spl 0.1	0.052	61.3	6,74	11,16	0,105	19,7	0,002	0,008	0,462	9,66	10000	c00,0	0,024	0,215	0,153	0,119	0,012	0,131	0,002	0,011	0.018	0,083
(lherz) m	Cpx 52.6	0.630	7,45	0,664	2,29	0,090	13,7	20,7	2,11	0,028	100,3	00000	0,300	0,019	0, 110	0,025	0,047	0,012	0,047	0,100	0,061	0,011	0,278
05LA5 (1.5)	0px 56.4	0.132	3.75	0,225	6,84	0,153	32,7	0,379	0,041	0,082	100,7		0,2,0	0,013	0,361	0,014	0,048	0,020	0,210	0,062	0,018	0,011	0,196
	01 41 0	0.011	0,010	0,004	10,37	0,151	48,5	0,014	0,002	0,425	100,4		0,529	0,009	0,015	0,005	0,121	0,009	0,721	0,004	0,003	0,007	0,500
	Spl 0.1	0.113	42,7	26,0	14,69	0,192	16,0	0,005	0,003	0,168	100,0		<i>c10,</i> 0	0,016	1,928	2,006	0,597	0,018	0,413	0,003	0,005	0,027	0,247
(harz) 1	Cpx 53.5	0.298	5,06	1,60	1,96	0,080	14,4	20,6	2,01	0,026	9,66		0,200	0,024	0,186	0,046	0,046	0,010	0,096	0,103	0,071	0,011	0,304
05LA4 (5cn	0px 573	0.074	1,99	0,332	5,92	0,150	33,8	0,331	0,031	0,076	100,0		0,41/	0,012	0,467	0,099	0,094	0,015	0,227	0,054	0,015	0.010	0,115
	01 41.2	0.003	0,003	0,005	8,89	0,125	49,0	0,015	0,003	0,421	9,66		0,33/	0,007	0,003	0,008	0, 149	0,011	0,510	0,004	0,004	0,002	0,512
	Spl 0 1	0.129	36,8	32,5	15,54	0,228	14,9	0,022	0,004	0,157	100,4		0,01/	0,006	1,145	0,920	0,513	0,017	0,408	0,033	0,006	0.025	0,196
harz) n	Cpx 53 8	0.274	4,83	1,73	1,94	0,080	14,6	20,7	2,02	0,032	100,1		0,140	0,018	0,086	0,033	0,042	0,014	0,096	0,093	0,069	0,008	0,207
05LA3 (10cr	Opx 573	0.070	2,35	0,418	5,84	0,161	33,7	0,394	0,049	0,080	100,4	0.0.4	0,1/8	0,018	0,275	0,082	0,097	0,011	0,230	0,084	0,021	0,015	0,183
	01 41 4	0.004	0,004	0,006	8,73	0,126	49,0	0,013	0,004	0,429	99,7	tu,	0,45/	0,006	0,005	0,006	0,198	0,011	0,523	0,004	0,005	0,007	0,754
	Spl 0.7	0.103	40,8	27,6	16,14	0,208	15,4	0,002	0,000	0,166	100,5),UU4 (0,019	0,882	0,846	9,258 (0,019	0,111	0,003	0,000	0.008	0,210
harz)	Cpx 53.7	0.314	4,88	1,50	2,13	0,078	14,7	20,6	2,00	0,024	100,0) 101'	031 (349 (0,160 (0,075 (010 (0 111.0	351 (0,062 (0.016 (0,175 (
05LA12 (10cm	Opx 57 1	0.080	2,44	0,358	6,13	0,149	33,6	0,416	0,047	0,078	100,3	C L L) 6/01	000 (,636 (,140 (019 (,021 (,334 (,059 (011 (015 (064 (
-	01 41 1	.014 (0.005	0,001	9,20),132 (49,1	0,018 (,004 (,414 (0,001	100	0 177	010 0	,005 (001 0	,073 (,006 6	,280 6	,004 (,005 6	003 0	376 0
	Spl 0.1	0.018 (42.7 (26,6 (3,70),182 (16,8	,005 (000,0	,198 (00,4		,012 0	,008 0	,284 0	,438 0	,022 0	,020 0	,796 0	,004 0	,000	.026 0	378 0
arz)	Cpx 53.7	050 0	3.37	1,17	1,86 1	,070 0	15,9	22,3 (1,05 0	,055 (99,5 1	101	0 061.	014 0	.190 3	104 3	079 1	013 0	.144 0	.138 0	072 0	023 0	233 0
05LA9 (h: 1m) xdC	.014 0	2,81	,562	5,51	,149 0	33,8	,505	,028	,075 0	00,1		0/2	010 0	046 0	041 0	024 0	016 0	194 0	089 0	0 100	016 0	156 0
-	01 3	003 0	,006	,011 0	8,43	,120 0	50,9	,018 0	,005 0	,433 0	01,2 1	0,0	248 U	003 0	0 600	013 0	070 0	004 0	411 0	005 0	004 0	003 0	231 0
at		0	0	0		0		0	0	0	-	¢	Ċ,	<i>0</i> ,	0,	0,	0,	0,	Ι,	0,	0,	0.	Ι.
Sample distance from contac	SiO, (wf %)	TiO ₂	Al_2O_3	Cr_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	NiO	Total		SIU 2 (WL. %)	TiO_2	$AI_{2}O_{3}$	$Cr_{2}O_{3}$	FeO	Outor Outo	M_{gO}	CaO	Na 2 O	0iN	Total

	Spl 0.1	1 0,025	58,4	5 9,58	5 12,00	3 0,116	19,0	0,003	000001	5 0,381	9,66 (1100	110'0	0,006	0,127	0,112	0,104	0,012	0,060	0,003	0,000	0.016	0,114
(lherz) 000	Cpx 52.6	0,574	6,51	0,745	2,26	0,088	14,1	21,0	2,04	0,035	100,0	0 157	0,404	0,068	0,778	0, 141	0,050	0,009	0,385	0,264	0,155	0.017	0,198
05LE3 150,	0px 56.2	0,108	3,73	0,268	6,38	0,151	32,7	0,355	0,051	0,085	100,0	1227	170,0	0,009	0,421	0,085	0,096	0,013	0, 189	0,005	0,017	0.017	0,143
	01 41.0	0,002	0,005	0,003	9,85	0,141	49,0	0,016	0,005	0,422	100,4	1000	0,441	0,002	0,005	0,003	0,118	0,007	0,772	0,006	0,009	0,005	0,587
	Spl 0.1	0,045	58,3	9,66	11,79	0,112	18,6	0,000	0,000	0,364	0,06	0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000
herz) m	Cpx 52.8	0,628	6,38	0,807	2,28	0,086	13,8	21,1	2,06	0,035	9,99	0000	0,477	0,019	0,321	0,078	0,064	0,006	0,197	0, 149	0,089	0,012	0,151
05L3 (1 150	Орх 56.1	0,124	3,81	0,293	6,65	0,156	32,2	0,311	0,041	0,049	99,7	CVCU	0,444	0,011	0,423	0,020	0,015	0,003	0,295	0,018	0,005	0,007	0,049
	01 41.3	0,002	0,005	0,004	10,20	0,148	47,3	0,011	0,003	0,375	99,4	0 067	100,00	0,003	0,006	0,007	0,112	0,012	0,304	0,003	0,004	0,029	0,333
	Spl 0.1	0,054	59,1	9,12	11,67	0,106	19,1	0,002	0,012	0,379	99,7	2100	110'0	0,016	1,855	1,934	0,444	0,009	0,370	0,002	0,008	0.041	0,205
(lherz)	Cpx 53.2	0,550	6,21	0,602	2,25	0,070	14,4	21,0	1,94	0,039	100,2	1 201	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,044	0,732	0,118	0,057	0,018	0,365	0,361	0, 164	0,012	0,105
05LA15 (5m	0px 56.6	0,103	3,38	0,214	6,70	0,146	33,0	0,360	0,029	0,070	100,6	3910	0,400	0,023	0,561	0,039	0,049	0,013	0,357	0,043	0,007	0,006	0,263
	0 41.0	0,000	0,004	0,001	10,09	0,145	48,3	0,014	0,004	0,420	100,0	3750	COC '0	0,000	0,006	0,002	0,113	0,010	0,454	0,004	0,004	0,007	0,520
	Spl 0,1	0,071	58,2	9,45	12,45	0,121	18,7	0,006	0,000	0,364	99,4	8100	010'0	9,015	9,676	9,747	9,179	9,004	9,193	9,003	0,000	9.029	9,017
herz)	Cpx 52,4	0,662	7,14	0,791	2,32	0,082	13,7	20,3	2,18	0,037	9,66	0200	0/7,	0,041 (0,130 (0,030 (0,165 (0111 (0,151 (0,185 (0,151 (0.008 (0,117
05LA8 (ll 5m	Opx 55.5	0,193	4,34	0,325	6,68	0,163	31,3	1,324	0,217	0,086	100,2	1 150 1	,407),059 (),465 (0,058 (0,137 (0,017 (),685 (),666 (0,121 (0.010 (),164 (
	01 41.0	0,006	0,008	0,007	10,70	0,150	48,7	0,016	0,006	0,408	101,0	1 8100	, 210	,005 (,007 () 600'(,063 (0111 (,136 (,004 (,007 (004 (,905 (
	Spl 0.1	,049 (59,0 (8,70	12,20	,109 (19,0	0,003 (000(),361 (9,66	1 110	+10	,008 (,284 (,389 (060 (020 0	101	,003 (000 (012 0	121 0
(crz)	Cpx 52.5),660 (7,12	,785	2,37	,080 (13,8	20,3 (2,12 (,040 (9,8	237 (0 / 67,	,034 6	,265 0	,026 6	,081 6	,005 6	,236 6	,330 6	,052 6	.017 6	,121 6
5LA6 (lh 3m	56.3	,107 (3,24	,215 (6,86	,153 (32,6	,318	,028	,063 (9,99	146 0	0 0 + 1	028 0	445 0	048 0	118 0	015 0	0 011	0 600	013 0	014 0	313 0
0	01 (40.9	,003 0	,004	,015 0	0,65	,147 0	48,7	,013 0	,008 0	,408 0	00,8	0 300	() ()	004 0,	006 0,	000 0	082 0,	007 0,	032 0,	005 0,	007 0,	008 0	862 0,
Ħ		0	0	0	-	0	-	0	0	0	<u> </u>	0	Ś	Ó,	<i>0</i> ,	0,	0,	0,	Ι,	0,	0,	0.	0,
Sample distance from contac	SiO ₂ (wt. %)	TiO ₂	Al ₂ O ₃	Cr_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	NiO	Total	(%) iny Ois	2010 2 (111: 10)	TiO_2	$AI_{2}O_{3}$	$Cr_{2}O_{3}$	FeO	Outor	M_{gO}	CaO	Na 2 O	0iN	Total

Table 2 - continued

	Spl 0.1	0,083	46,4	21,4	14,61	0,190	16,5	0,002	0,000	0,227	99,5		<i>c00,0</i>	0,006	1,136	1,302	0,278	0,018	0,078	0,002	0,000	0,001	0,384
(lherz) m	Cpx 51.7	0,772	5,99	1,30	2,18	0,065	14,4	21,1	1,97	0,044	9,66		0,448	0,095	0,081	0,118	0, 111	0,007	0,416	0,217	0,102	0,024	0,532
04LH08 10c	0px 56.6	0,107	1,90	0,204	6,27	0,147	34,0	0,282	0,023	0,074	99,7		200,0	0,033	0,499	0,097	0,120	0,022	0,302	0,039	0,012	0,013	0,432
	01 40.8	0,008	0,005	0,004	9,28	0,149	49,0	0,022	0,003	0,434	99,7		0,290	0,010	0,011	0,006	0,151	0,024	0, 177	0,022	0,006	0,027	0,320
	Spl 0.1	0,125	33,4	33,4	18,20	0,275	13,5	0,002	0,004	0,111	99,1	0	0,006	0,006	0,421	0,235	0,530	0,012	0,344	0,002	0,007	0,014	0,064
(harz)	Cpx 54.1	0,203	4,23	1,50	2,16	0,086	14,8	21,0	2,08	0,039	100,2		0,071	0,017	0,320	0,390	0,045	0,018	0, 127	0,472	0,125	0,012	0,453
04LH11 1m	Opx 56.5	0,044	2,01	0,393	6,00	0,143	34,1	0,374	0,040	0,088	7,99		0,5/5	0,012	0,329	0,094	0, 148	0,024	0,361	0,208	0,038	0,016	0,587
	оі 40.6	0,005	0,006	0,004	8,98	0,130	49,6	0,010	0,004	0,428	7,99		0,2/3	0,005	0,008	0,006	0,072	0,012	0,377	0,005	0,006	0,003	0,383
	Spl 0.2	0,126	30,8	36,5	18,54	0,253	12,9	0,003	0,008	0,098	99,3		000,0	0,010	0,614	0,380	0,477	0,011	0,240	0,002	0,006	0,019	0,199
(harz) n	Cpx 54.4	0,154	3,88	1,77	2,06	0,079	14,9	20,9	2,19	0,033	100,4		0,33/	0,035	0,066	0,156	0,081	0,011	0,220	0,209	0, 140	0,011	0,213
04LH14 1.2n	Opx 57.2	0,059	2,17	0,445	5,84	0,153	34,0	0,331	0,035	0,087	100,3		0,243	0,013	0,115	0,04I	0,055	0,019	0,113	0,082	0,028	0,028	0,418
	0 40.5	0,010	0,003	0,005	9,01	0,130	49,6	0,012	0,008	0,425	9,66		0,0/1	0,009	0,005	0,009	0,048	0,005	0,506	0,003	0,013	0,003	0,640
	Spl 0,1	0,107	29,7	37,7	19,17	0,279	12,7	0,004	0,011	0,097	9,99		0,021	0,019	0,898	0,892	0,680	0,019	0,272	0,002	0,009	0,018	0,606
(harz) n	Cpx 53.9	0,099	3,87	1,57	2,09	0,072	14,9	21,0	2,14	0,075	9,99		U, 383	0,013	0,035	0,016	0,005	0,024	0,097	0,111	0,005	0,044	0,567
04LH12 1.5n	Opx 57.0	0,039	2,14	0,493	6,00	0,175	34,0	0,407	0,047	0,069	100,2		0,111	0,010	0,077	0,025	0,023	0,008	0,079	0,041	0,011	0,043	0,386
	о 40.5	0,004	0,003	0,006	8,93	0,131	49,6	0,012	0,002	0,428	99,7		0,462	0,004	0,005	0,005	0,139	0,012	0,380	0,004	0,003	0,003	0,439
	Spl 0.1	0,081	26,1	41,6	19,63	0,316	11,9	0,005	0,001	0,074	9,66		0,021	0,018	2,223	2,027	0,733	0,021	0,512	0,003	0,003	0,022	0,539
(harz)	Cpx 54.1	0,078	3,34	1,55	2,10	0,088	15,3	21,4	1,90	0,033	99,8		0,421	0,010	0,167	0,205	0, 104	0,019	0,175	0,099	0,116	0,018	0,461
04LH13 2m	Opx 57.1	0,021	1,65	0,338	5,87	0,133	34,3	0,352	0,043	0,073	9,99		0,515	0,011	0, 147	0,049	0,138	0,025	0,164	0,052	0,020	0,014	0,541
	01 41.0	0,007	0,002	0,002	8,92	0,141	49,3	0,014	0,011	0,432	9,66		0,3/2	0,009	0,002	0,002	0,183	0,013	0,267	0,006	0,010	0,019	0,690
ntact																							
Sample distance from con	SiO ₂ (wt. %)	TiO ₂	AI_2O_3	Cr_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	NiO	Total		SIO 2 (WL. %)	TiO ₂	AI_2O_3	$Cr_{2}O_{3}$	FeO	Outo	MgO	CaO	Na 2 O	NiO	Total

Table 2 - continued

Sample distance from contact		04LH815 50c	5 (lherz) m			04LH07 80c	(lherz) m			04LH04 (1.5n	(lherz) n			06L116 (15n	(harz) 1			06L115 (15n	harz) 1	
	0	Opx	Cpx	Spl	0	Opx	Cpx	Spl	0	Opx	Cpx	Spl	0	Opx	Cpx	Spl	0	Opx	Cpx	Spl
SiO ₂ (wt. %)	40,5	55,7	51,8	0,1	40,6	55,6	52,3	0,1	40,6	54,8	51,8	0,1	41,3	57,2	54,0	0,0	41,6	57,6	54,3	0,0
TiO ₂	0,010	0,123	0,734	0,042	0,006	0,131	0,693	0,056	0,007	0,123	0,698	0,030	0,010	0,031	0,102	0,095	0,002	0,012	0,022	0,028
Al ₂ O ₃	0,007	3,23	7,14	60,1	0,003	3,74	6,22	52,9	0,003	4,43	6,32	59,0	0,007	2,02	3,27	31,3	0,002	2,09	2,05	33,6
Cr ₂ O ₃	0,003	0,197	0,689	7,96	0,009	0,403	1,06	14,7	0,009	0,315	0,736	8,30	0,002	0,433	1,35	36,5	0,009	0,428	0,655	34,6
FeO	9,79	6,46	2,26	11,15	9,13	6,11	1,99	12,24	9,91	6,53	2,20	11,46	8,83	5,76	2,05	17,59	8,79	5,74	1,85	16,80
MnO	0,145	0,151	0,080	0,107	0,126	0,149	0,074	0,128	0,148	0,164	0,077	0,134	0,131	0,131	0,075	0,243	0,143	0,159	0,065	0,212
MgO	48,7	33,3	13,9	20,0	49,2	33,3	14,2	18,4	48,4	32,9	14,3	19,5	50,2	34,9	16,0	13,9	50.5	34,9	17,2	14,6
CaO	0,012	0,310	21,1	0,006	0,006	0,462	21,2	0,044	0,012	0,336	21,5	0,035	0,012	0,395	22,2	0,002	0,018	0,445	23,6	0,006
Na ₂ O	0,003	0,025	2,08	0,003	0,006	0,048	2,04	0,000	0,004	0,032	1,85	0,011	0,003	0,027	1,30	0,006	0,002	0,018	0,559	0,005
NiO	0,420	0,088	0,035	0,412	0,450	0,062	0,065	0,293	0,414	0,089	0,046	0,413	0,449	0,084	0,028	0,119	0,415	0,085	0,046	0,105
Total	9,66	9,66	99,8	99,8	99,5	6,99	6,66	98,9	99,5	99,8	99,5	99,0	101,0	101,0	100,3	100,1	101,5	101,5	100.5	100,3
SiO 2 (wt. %)	0,333	0,430	0,334	0,016	0,259	0, 196	0,106	0,013	0,080	0,614	0,433	0,005	0,268	0,155	0,213	0,007	0, 134	0,261	0,300	0,018
TiO ₂	0,010	0,037	0,046	0,014	0,003	0,021	0,049	0,002	0,003	0,025	0,081	0,002	0,005	0,016	0,013	0,002	0,002	0,002	0,009	0,004
AI 2 O 3	0,008	0,808	0,298	0,296	0,005	0,265	0,343	0, 148	0,002	0,982	0,787	0,330	0,005	0,234	0,157	1,202	0,004	0,138	0,213	0,552
$Cr_{2}O_{3}$	0,005	0,068	0,052	0,109	0,009	0,019	0,088	0,102	0,009	0,081	0,202	0,357	0,004	0,086	0,081	1,189	0,010	0,019	0,159	0,621
FeO	0,095	0, 134	0,072	0,229	0, 114	0,090	0,018	0,055	0,085	0, 171	0,095	0,246	0,081	0,100	0,063	0,367	0,111	0,014	0,033	0,185
OuW	0,017	0,018	0,016	0,028	0,007	0,023	0,007	0,008	0,023	0,031	0,027	0,004	0,021	0,022	0,010	0,007	0,018	0,022	0,017	0,026
OgM	0,484	0,318	0,222	0, 131	0,238	0,157	0,166	0,027	0,195	0,479	0,453	0,267	0,334	0,116	0, 148	0,245	0,171	0,216	0,163	0,169
CaO	0,006	0,057	0,262	0,003	0,005	0,135	0,237	0,042	0,007	0,058	0,348	0,020	0,011	0,029	0,071	0,002	0,004	0,059	0, 144	0,005
Na 2 O	0,004	0,011	0,153	0,005	0,006	0,017	0,105	0,000	0,005	0,014	0,168	0,011	0,004	0,004	0,032	0,005	0,002	0,002	0,059	0,004
0 NiO	0,006	0,018	0,018	0,027	0,021	0,017	0,040	0,028	0,024	0,023	0,022	0,009	0,035	0,027	0,017	0,004	0,028	0,025	0,024	0,011
Total	0,514	0,447	0,453	0,398	0,356	0,358	0,429	0,053	0,156	0,685	0,274	0,026	0,501	0,388	0,086	0,173	0,313	0,065	0,297	0,314

Table 2 - continued

Spl 0,094 26,9 19,67 19,67 12,2 0,006 0,006 0,008	$\begin{array}{c} 0,010\\ 0,020\\ 0,831\\ 0,627\\ 0,488\\ 0,063\\ 0,003\\ 0,003\\ 0,004\\ 0,003\\ 0,003\\ 0,003\\ 0,009\\ 0,009\end{array}$																					
(harz) Cpx 54,5 54,5 3,37 1,54 1,54 1,54 1,56 2,11 0,050 15,6 1,91 0,025 100,3	0,239 0,012 0,056 0,148 0,016 0,016 0,016 0,016 0,016																					
06L110a 2n 57,8 57,8 0,017 5,91 0,136 5,91 0,136 35,0 0,335 0,039 0,039	0,138 0,006 0,102 0,073 0,073 0,073 0,013 0,013 0,013 0,013 0,013																					
01 41,3 0,005 0,001 8,98 8,98 0,127 50,3 0,010 0,010 0,010	0,305 0,006 0,004 0,005 0,005 0,007 0,007 0,007 0,007 0,007																					
Spl 0,0 0,122 27,9 40,4 18,85 0,271 12,7 0,004 0,008 0,007 100,7	0,012 0,015 2,277 2,191 0,706 0,045 0,004 0,004 0,004 0,004 0,019																					
(harz) n Cpx 54,1 0,140 1,78 1,78 1,78 1,78 2,12 0,061 14,7 20,4 2,39 0,039 100,1	0,284 0,009 0,144 0,142 0,095 0,095 0,024 0,024 0,179																					
$\begin{array}{c} 061110b\\ 22r\\ 22r\\ 57,3\\ 57,3\\ 0,026\\ 1,73\\ 5,89\\ 0,379\\ 5,89\\ 0,379\\ 5,89\\ 0,379\\ 5,89\\ 0,144\\ 34,6\\ 0,1144\\ 34,6\\ 0,065\\ 0,065\\ 0,085\\ 100,8\end{array}$	0,293 0,012 0,012 0,137 0,091 0,014 0,038 0,017 0,141																					
01 41,4 0,008 0,000 8,95 0,127 49,9 0,016 0,016 0,016	0,058 0,004 0,000 0,236 0,160 0,160 0,023 0,023 0,203																					
Spl 0,0 0,127 31,3 36,3 36,3 18,70 0,0256 13,4 0,002 0,002 0,002	0,008 0,008 0,793 0,793 0,002 0,004 0,005 0,217																					
harz) 54,3 54,3 3,925 3,925 1,78 1,78 1,78 1,78 2,14 0,045 15,2 20,9 2,16 0,041	0,156 0,044 0,189 0,133 0,133 0,021 0,027 0,043 0,027 0,164																					
06L16 (3m 57,7 57,7 0,036 1,49 0,344 6,01 0,146 35,1 0,126 0,029 0,029	0,082 0,015 0,015 0,023 0,023 0,014 0,013 0,014 0,218																					
01 41,5 0,003 0,010 9,00 0,133 50,1 0,007 0,002 0,422 101,2	0,180 0,003 0,003 0,005 0,129 0,124 0,129 0,003 0,003 0,031																					
Spl 0,0 0,08 26,5 41,1 19,89 0,259 0,002 0,008 0,008	0,006 0,004 0,556 0,556 0,007 0,003 0,003 0,013 0,121																					
harz) 54,4 54,4 0,070 3,38 1,62 1,62 1,62 1,62 1,62 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,68 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,98	0,123 0,026 0,026 0,096 0,077 0,077 0,026 0,026 0,026																					
06LL7 (4m 4m 57,5 57,5 0,022 1,79 0,410 5,92 0,131 34,9 0,468 0,058 0,058	0,164 0,015 0,075 0,076 0,075 0,179 0,179 0,011 0,011																					
OI 41,4 0,005 0,006 8,98 8,98 49,9 0,135 0,135 100,0 0,006	0,089 0,004 0,002 0,007 0,007 0,007 0,007 0,007 0,007 0,205 0,007																					
Spl 30,6 30,6 37,1 18,96 0,266 0,266 13,1 0,005 0,005 0,005	0,008 0,010 1,366 1,437 0,861 0,861 0,015 0,005 0,005 0,016																					
harz) C px 54,1 3,93 1,62 1,62 1,62 1,62 1,62 2,09 0,059 15,1 21,0 2,12 100,1	0,189 0,010 0,0207 0,103 0,103 0,198 0,198 0,198 0,198 0,198																					
06L18 (57,5 57,5 0,012 1,73 0,352 6,05 0,154 34,7 0,363 0,044 0,041 0,091	0,195 0,007 0,075 0,075 0,075 0,043 0,013 0,013 0,013 0,013																					
01 41,4 0,001 0,012 9,18 49,8 0,010 0,003 0,003 0,010	0,169 0,005 0,008 0,008 0,008 0,008 0,005 0,005 0,310																					
ntact																						
e trom co At. %)	W1. %)																					
Sample distanc SiO ₂ (r TiO ₂ Al ₂ O ₃ Al ₂ O ₃ ErcO MmO MgO MgO Na ₂ O Nia ₂ O Nia ₂ O Nia	SiO_{2} (TiO_{2} $Al_{2}O_{3}$ $Al_{2}O_{3}$ $Cr_{2}O_{2}$ MgO MgO $Na_{2}O$ NiO NiO																					
	Spl 0.0	0,132	45,1	22,7	15,04	0,168	16,6	0,000	0,009	0,205	100,2	0.015	0,039	0,697	0,738	0,356	0,024	0,253	0,000	0,006	0,009	0,075
---------------------------------	-------------------	------------------	--------------------------------	--------------------------------	-------	--------	------	-------	-------------------	-------	-------	---------------	-------	-------	-----------	----------	-------	--------	--------	--------	------------	-------------------
lherz)	Cpx 53.2	0,536	5,45	1,41	2,20	0,068	14,6	20,9	2,12	0,057	100,5	0.281	0,012	0,337	0,250	0,040	0,013	0,239	0, 128	0,112	0,018	0,382
06LI3 (1n	Opx 57.2	0,118	2,52	0,319	6,38	0,152	34,3	0,343	0,031	0,049	101,4	0.284	0,015	0,379	0,096	0,136	0,011	0,221	0,024	0,013	0,025	0,215
	01 41,4	0,003	0,004	0,003	9,44	0,138	50,0	0,015	0,013	0,394	101,5	0.158	0,004	0,007	0,004	0,085	0,036	0,031	0,010	0,014	0,020	0, 142
	Spl 0.0	0,156	40,8	27,1	16,25	0,182	15,6	0,001	0,005	0,160	100,6	0.002	0,049	1,187	0,788	0,777	0,010	0,590	0,000	0,003	0,009	0,251
lherz) m	Cpx 53.7	0,401	5,01	1,44	2,16	0,048	14,7	20,8	2,15	0,034	100.5	0.270	0,031	0,233	0,227	0,064	0,018	0,135	0, 178	0,037	0,020	0,397
06LI9 (1 20ci	Opx 57.0	0,090	2,33	0,357	6,21	0,153	34,5	0,429	0,051	0,049	101,2	0.580	0,018	0,727	0,152	0,115	0,024	0,484	0, 154	0,033	0,021	0,183
	OI 41,4	0,001	0,003	0,004	9,38	0,126	49,9	0,003	0,002	0,415	101,2	0.124	0,001	0,002	0,005	0,078	0,020	0,106	0,003	0,003	0,018	0,156
	Spl 0.0	0,103	43,4	24,3	16,23	0, 179	15,8	0,006	0,015	0,156	100,5	0.012	0,040	2,997	3,013	0,087	0,011	0,193	0,004	0,012	0,017	0,252
(harz) m	Cpx 53.4	0,419	5,30	1,57	2,18	0,061	14,5	20,8	2,27	0,045	100,5	0.130	0,050	0,165	0,080	0,054	0,006	0,066	0, 164	0,048	0,017	0,286
06LI4 (20c	Opx 57.3	0,077	2,47	0,383	6,17	0,123	34,6	0,329	0,032	0,081	101,5	0.315	0,024	0,366	0,059	0,045	0,025	0, 198	0,061	0,012	0,008	0,052
	01 41.3	0,000	0,004	0,001	9,42	0,136	50,0	0,014	0,003	0,416	101,3	0.171	0,001	0,004	0,001	0, 141	0,021	0, 127	0,008	0,004	0,019	0,117
	Spl 0.0	0,123	31,8	35,9	18,82	0,270	13,0	0,006	0,008	0,100	100,4	0.008	0,018	2,649	2,424	0,720	0,025	0,574	0,006	0,002	0,016	0,244
(harz) 1	Cpx 54.2	0,202	4,55	1,63	2,21	0,076	15,0	20,1	2,33	0,043	100,4	0.228	0,021	0,098	0,218	0,071	0,003	0,592	0,261	0,118	0,026	0,383
06LI5a 1m	Opx 57.2	0,038	2,08	0,424	6,00	0,137	34,7	0,464	0,049	0,074	101,1	0.079	0,022	0,124	0,009	0,041	0,024	0,123	0,201	0,012	0,018	0,099
	01 41.4	0,009	0,004	0,004	9,18	0,146	50,0	0,013	0,004	0,418	101,1	0.078	0,009	0,004	0,003	0,086	0,016	0,195	0,008	0,003	0,017	0,119
	Spl 0.0	0,142	30,6	37,0	18,97	0,232	13,1	0,001	0,006	0,094	100,5	0.003	0,003	1,641	1,881	0,338	0,041	0,337	0,001	0,000	0,020	0,445
(harz) m	Cpx 54.3	0,219	4,55	1,62	2,44	0,052	15,6	19,4	2,29	0,040	100,6	0.299	0,034	0,279	0,283	0,433	0,015	1,715	I, 777	0,212	0,011	0,247
06LJ5b 1.3j	Opx 57.3	0,031	2,17	0,403	6,10	0,153	34,4	0,320	0,032	0,069	101,0	0.171	0,007	0,207	0,046	0,020	0,013	0,109	0,050	0,012	0,018	0,182
	01 41.5	0,006	0,003	0,003	9,18	0,135	50,0	0,011	0,004	0,407	101,2	0.099	0,010	0,003	0,004	0,081	0,014	0,054	0,010	0,006	0,041	0,181
Sample listance from contact	iiO2 (wt. %)	TiO ₂	A1 ₂ O ₃	Dr ₂ O ₃	ieO	VInO	MgO	CaO	Va ₂ O	ViO	Fotal	iiO 2 (wt. %)	7i0 2	11203	$2r_2O_3$	Oa_{t}	0uh	NgO	2aO	Va 2 O	<i>ViO</i>	^r otal

Spl 0,1 0,051 46,6 22,2 14,10 0,168 0,168 0,168 0,168 0,168 0,003 0,218 0,218	0,010 0,025 2,387 2,387 0,631 0,013 0,013 0,016 0,005 0,005 0,005 0,005
(harz) Cpx Cpx Cpx Cpx Cpx 4,03 4,03 0,984 1,45 1,45 0,082 1,45 0,043 99,1	0,430 0,517 0,517 0,517 0,005 0,006 0,100 0,110 0,110 0,019 0,019
06LF4- 3n 56,3 56,3 56,3 56,3 5,82 5,82 5,82 5,82 5,82 5,82 5,82 0,145 33,7 0,488 0,024 0,024 0,024 0,024	0,464 0,015 0,502 0,111 0,012 0,317 0,271 0,271 0,214 0,014
01 40,8 0,011 0,011 8,85 8,85 8,85 1,121 49,1 0,010 0,010 0,010 0,010	0,135 0,013 0,006 0,014 0,009 0,003 0,003 0,003 0,023 0,150
Spl 57,0 57,0 19,1 19,1 19,1 0,002 0,003 0,339 0,339	0,008 0,016 0,323 0,323 0,477 0,233 0,021 0,021 0,203
(lherz) Cpx C5x5 0,642 6,525 6,525 0,801 14,3 2,32 0,088 14,3 21,2 1,99 0,031 100,4	0,287 0,024 0,379 0,056 0,056 0,170 0,170 0,012 0,012
06L117 (00px 50n 56,2 0,107 3,50 0,151 3,55 6,69 0,151 3,57 0,265 0,151 3,57 0,043 0,043 0,079 101,1	0,674 0,019 0,722 0,023 0,023 0,035 0,035 0,013 0,284
OI 41,2 0,000 0,003 0,152 49,3 0,012 0,012 0,012 0,012	0,104 0,000 0,005 0,005 0,172 0,172 0,010 0,010 0,010 0,270
Spl 57,0 57,0 10,1 19,0 0,002 0,002 0,002 0,002	0,013 0,012 0,502 0,502 0,003 0,003 0,015 0,161
lherz) Cpx 52,3 0,763 6,83 6,83 14,1 14,1 21,1 21,1 21,1 21,1 100,4	0,168 0,039 0,110 0,102 0,028 0,063 0,017 0,013 0,013
06L112 (5m 56,4 0,123 3,30 0,165 0,165 3,40 0,165 3,40 0,019 0,019 0,019	0,186 0,007 0,167 0,003 0,003 0,003 0,003 0,003 0,003 0,003 0,200
OI 41,4 0,011 0,005 10,19 0,148 49,4 49,4 0,003 0,003 0,408 101,6	0,069 0,010 0,007 0,022 0,054 0,005 0,005 0,005 0,002 0,161
Spl 0,0 62,0 5,33 10,18 0,092 20,5 0,000 0,011 0,469 98,7	0,004 0,001 0,334 0,104 0,109 0,000 0,000 0,000 0,000 0,256
herz) C.p.x 52,4 0,760 7,31 0,518 0,518 2,16 0,081 14,1 14,1 21,2 1,99 0,039 100,5	0,474 0,059 0,053 0,097 0,097 0,181 0,181 0,181 0,118
06L11 (1 3m 56,3 0,106 3,47 0,171 3,47 0,171 3,41 0,171 3,41 0,171 3,41 0,171 0,326 0,018	0,546 0,020 0,016 0,015 0,013 0,013 0,013 0,022 0,262
OI 41,5 0,007 0,004 9,47 49,7 0,145 0,004 0,003 0,469 0,003	0,162 0,006 0,001 0,007 0,111 0,007 0,003 0,003 0,136
Spl 0,000 47,1 20,7 114,20 0,175 17,2 0,005 0,005 0,005 0,005	0,005 0,029 1,411 1,415 0,591 0,021 0,002 0,002 0,020
herz) 52,7 52,7 52,7 5,23 5,23 5,23 1,32 1,32 1,32 2,13 2,13 2,13 2,13 2	0,052 0,041 0,105 0,048 0,014 0,087 0,033 0,003 0,109
06112 (1 2m 56,9 0,113 2,47 0,113 2,47 0,113 2,47 0,1142 3,42 0,138 0,038 0,038 0,058	0,670 0,042 0,807 0,123 0,123 0,026 0,098 0,004 0,004 0,262
01 41,3 0,002 0,015 9,43 9,43 49,6 0,006 0,001 101,0	0,156 0,170 0,170 0,170 0,189 0,189 0,189 0,189 0,189 0,005 0,001 0,193
ample istance from contact iO ₂ (wt. %) iO ₂ t ₁₂ O ₃ eO fnO fnO fnO iO iO iO iO iO	10 2 (wt. %) 10 2 1 2 0 3 1 2 0 3 1 2 0 1 2 0
ANNONARCAHS AN	S F A O F A O N N F

	Spl 0.2	0,032	63,1	4,49	10,66	0,093	19,9	0,003	-0,004	0,517	99,0	1100	0,011	0,011	1,016	1,038	0,273	0,007	0,244	0,002	0,003	0.039	0,278
' (webst) n	Cpx 52.0	0,575	7,36	0,422	2,35	0,096	13,8	20,9	2,01	0,035	9,66	2010	CU1,U	0,046	0,347	0,041	0,048	0,017	0,159	0,179	0,091	0,009	0,101
06LF26W 301	Opx 55.7	0,094	4,07	0,162	6,80	0,152	32,6	0,337	0,020	0,097	100,0	0110	0,220	0,014	0,459	0,010	0,119	0,012	0,259	0,048	0,010	0,016	0,283
-	0 40,9	0,005	0,010	-0,005	10,43	0,158	47,8	0,014	-0,009	0,419	99,7	361.0	CC1,U	0,021	0,007	0,008	0, 184	0,013	0,073	0,005	0,010	0,013	0,186
	Spl 0.1	0,051	58,0	9,95	12,24	0,121	18,8	0,006	-0,008	0,381	99,7	1000	0,021	0,016	2,438	2,778	0,529	0,012	0,432	0,002	0,004	0.057	0,405
(lherz) n	Cpx 52.6	0,594	6,40	0,929	2,31	0,068	14,2	20,7	2,17	0,039	100,0	3710	0,140	0,036	0,323	0,119	0,087	0,013	0,218	0,294	0,094	0.010	0,058
06LF26L 30n	Opx 56.1	0,117	3,60	0,325	6,74	0,156	32,9	0,397	0,053	0,077	100,5	2110	0,410	0,015	0,372	0,056	0,033	0,005	0,279	0,024	0,004	0,016	0,295
	OI 41.2	0,004	-0,003	-0,003	10,15	0,146	48,1	0,015	-0,003	0,390	100,0	2000	CU2,U	0,008	0,011	0,016	0,118	0,012	0,113	0,002	0,002	0,007	0,203
	Spl 0.1	0,031	58,8.	9,11	11,67	0,115	19,1	0,005	-0,005	0,388	99,3	2100	0100	0,005	0,185	0,067	0,133	0,011	0,129	0,004	0,004	0.014	0,176
(lherz)	Cpx 52.5	0,635	7,13	0,793	2,34	0,082	13,7	20,9	2,15	0,029	100,3	1000	U,404	0,019	0,158	0,035	0,038	0,008	0,088	0,223	0,019	0,008	0,281
06LF25 (20m	Opx 55.3	0,134	3,98	0,307	6,52	0,158	32,4	0,526	0,059	0,086	99,5	1 537	770,0	0,023	0,742	0,079	0,159	0,011	0,475	0,387	0,045	0,015	0,134
	0 40,9	-0,002	0,003	0,002	10,00	0,141	47,9	0,014	0,005	0,402	99,5	C2C 0	0,212	0,012	0,007	0,007	0,154	0,012	0, 124	0,003	0,006	0,016	0,393
	Spl 0.1	0,032 -	60,5	7,56	11,13	0,107	19,3	0,007	-0,002	0,419	99,1	0.010	<i>c10</i> ,0	0,014	0,111	0,263	0,128	0,009	0,115	0,004	0,008	0,023	0,118
lherz)	Cpx 51.9	0,682	7,22	0,683	2,24	0,077	13,9	20,8	2,15 -	0,025	7,99	2110	0,410	0,020	0,337	0,029	0,153	0,008	0,217	0,271	0,115	0.014	0,167
06LF3L (4m	0px 55.4	0,127	3,65	0,224	6,48	0,155	32,9	0,324	0,019	0,090	99,4	2260	007'0	0,019	0,433	0,059	0,053	0,008	0,213	0,034	0,016	0.013	0,260
	OI 40.8	0,001	-0,004	0,004	9,97	0,142	48,0	0,017	-0,001	0,424	99,4	0100	0,210	0,012	0,016	0,015	0,170	0,019	0,201	0,002	0,009	0,013	0,146
	Spl 0.2	0,137 -	42,9 -	25,8	13,63	0,183	16.5	0,018	0,008 -	0,211	99,5	0000	0,009	0,036	2,267	2,362	0,469	0,021	0,600	0,022	0,017	0.013	0,367
(harz)	Cpx 53.2	0,346	4,10	1,30	1,83	0,067	15,2	21,8	1,59 -	0,034	99,5	621.0	0,1/2	0,022	0,132	0,117	0,023	0,008	0,122	0,134	0,086	0.019	0,226
06LF27 4m	Opx 57.1	0,095	2,08	0,298	5,53	0,145	34,0	0,391	0,025	0,075	99,8	0110	0,120	0,016	0,262	0,067	0,088	0,011	0,171	0,037	0,005	0,016	0,148
	01 41.5	0,005	0,005	-0,006	8,31	0,126	49,3	0,018	0,003	0,421	99,7	3210	C/1'n	0,010	0,012	0,015	0,130	0,010	0,170	0,005	0,011	0,007	0,357
ltact				•																			
Sample distance from con	SiO ₂ (wt. %)	TiO ₂	Al ₂ O ₃	Cr_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	NiO	Total	(70 117 010	DIU 2 (WL. 70)	TiO_2	AI_2O_3	$Cr_{2}O_{3}$	FeO	Outo	MgO	CaO	Na 2 O	0i0	Total

Spl 0,1 0,1 0,37 57,3 57,3 10,9 111,18 0,111 19,3 0,009 0,000 0,365 0,365	0,012 0,009 0,266 0,204 0,208 0,008 0,002 0,007 0,005 0,005
n Cpx 51,9 0,599 6,62 0,904 14,2 14,2 14,2 20,9 20,9 99,4	0,172 0,107 0,107 0,007 0,087 0,171 0,154 0,187 0,087 0,261
06LF16 80r 55,3 0,116 3,78 3,78 0,351 5,95 0,142 33,1 0,407 0,040 0,040	0,284 0,014 0,024 0,009 0,002 0,010 0,010 0,229 0,229
01 41,0 0,002 -0,008 9,16 0,136 48,8 48,8 0,013 0,013 0,013 0,013 0,013	0,080 0,003 0,005 0,007 0,009 0,009 0,008 0,008 0,152
Spl 0,1 0,1 56,3 56,3 56,3 11,9 11,0 18,7 0,004 0,109 18,7 0,004 0,004 0,004 0,004 0,004	0,013 0,015 0,476 0,478 0,124 0,125 0,003 0,005 0,016
(lherz) n Cpx 0,519 6,11 14,4 14,4 14,4 14,4 14,4 14,4 198 0,077 0,077 14,4 198 0,028 99,7	0,358 0,333 0,751 0,159 0,010 0,116 0,123 0,123 0,123
06LF15 80r 55,5 0,104 3,71 0,316 6,31 0,151 33,0 0,030 0,030 0,038 0,038 0,038 0,038 0,038 0,038 0,078	0,219 0,008 0,068 0,055 0,019 0,010 0,010 0,010 0,010
01 40,9 0,002 0,005 9,54 0,140 48,4 48,4 0,000 0,000 0,000 0,000	0,140 0,006 0,009 0,013 0,128 0,008 0,012 0,012 0,012 0,012
Spl 0,1 0,1 59,1 8,62 19,5 0,105 19,5 0,004 0,005 0,005 0,005	0,011 0,009 0,250 0,489 0,116 0,157 0,157 0,004 0,009 0,015 0,169
n Cpx Cpx 0,679 6,71 6,71 14,1 2,20 2,20 2,20 2,20 2,202 0,078 14,1 21,2 2,02 99,4	0,126 0,172 0,172 0,025 0,025 0,014 0,013 0,127 0,011 0,294
06LF11- 80r 56,0 56,0 0,106 2,85 0,171 6,42 0,171 6,42 0,164 33,3 0,032 0,032 0,032 0,036	0,440 0,024 0,024 0,042 0,024 0,017 0,022 0,014 0,014 0,016 0,016 0,016
01 40,9 0,001 0,009 9,63 0,146 48,4 48,4 0,016 0,016 0,016 0,016 0,016 0,016	0,206 0,012 0,004 0,008 0,110 0,110 0,018 0,008 0,008 0,018
Spl 0,2 0,2 0,030 61,9 5,65 10,71 0,096 20,0 0,007 0,007 0,002 0,002 0,002	0,017 0,020 0,593 0,593 0,730 0,447 0,017 0,017 0,017 0,017 0,017
(lherz) n Cpx 51,6 0,550 0,084 13,8 1,99 0,043 99,2	0,347 0,035 0,035 0,028 0,028 0,114 0,213 0,009 0,263
06LF23 · 06LF23 · 06LF23 · 00r 70n 56,2 2,98 56,2 2,98 6,57 6,57 6,57 6,57 33,0 0,165 33,0 0,017 0,016 0,017 0,086 99,6	0,657 0,030 0,905 0,031 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037
01 40,9 0,017 0,018 0,018 9,93 0,144 47,1 0,018 0,002 0,002 0,405 98,5	0,193 0,015 0,018 0,018 0,195 0,012 0,014 1,387 1,387
Spl 0,126 0,0126 58,9 58,9 9,05 11,9 0,111 19,0 0,003 0,004 0,003 0,004	0,018 0,0757 0,757 0,966 0,204 0,177 0,002 0,019 0,283
Iherz) n Cpx 0,52,5 0,52,5 0,52,5 6,70 6,70 14,1 14,1 14,1 14,1 21,0 2,08 0,038 0,038	0,220 0,033 0,051 0,042 0,066 0,151 0,162 0,162 0,162 0,199 0,099
06LF9 (501 55,7 55,7 55,7 0,111 3,78 0,156 0,156 0,156 0,156 0,156 0,041 0,088 0,041	0,464 0,019 0,514 0,057 0,057 0,018 0,038 0,011 0,011 0,244
OI 41,4 0,002 0,007 0,006 10,19 0,142 48,1 0,015 0,015 0,015 0,015	$\begin{array}{c} 0,158\\ 0,006\\ 0,008\\ 0,008\\ 0,008\\ 0,0113\\ 0,014\\ 0,019\\ 0,236\end{array}$
Sample distance from contact distance from contact SiO ₂ (wt. %) TiO ₂ Al ₂ O ₃ PacO MnO VacO VacO VacO VacO VacO VacO VacO Vac	SiO 2 (wt. %) TiO 2 41 2 0 3 FeO 3 MnO MgO Va2 0 ViO ViO ViO
LI DI ICHARONAF	

ō	6LF3W ((webst)			06LF8 (301	webst) n			06LF17	(webst) m			06LF20 100	(webst))m	
	Opx	Cpx	Spl	ō	Opx	Cpx	Spl	ō	Opx	Cpx	Spl	ō	Opx	Cpx	Spl
	54,9	51,4	0,2		55,7	51,9	0,2		55,8	52,1	0,2		54,9	51,8	0,2
0),122	0,668	0,039		0,119	0,744	0,056		0,102	0,548	0,032		0,096	0,538	0,023
	4,53	7,38	59,4		3,90	7,42	60,6		3,72	7,19	59,7		5,30	8,04	64,0
~	0,291	0,676	8,51		0,225	0,650	7,60		0,235	0,711	8,03		0,157	0,352	3,73
_	6,51	2,23	10,98		6,49	2,18	10,47		6,45	2,25	10,76		6,97	2,25	10,19
~),149	0,084	0,106		0,156	0,073	0,101		0,160	0,084	0,095		0,173	0,093	0,107
5	32,5	13,7	19,6		32,7	13,7	20,0		33,0	13,9	19,9		31,8	13,5	20,4
4),393	20,8	0,003		0,354	20,8	0,003		0,313	20,9	0,004		0,352	21,2	0,003
с Э	0,052	2,13	-0,005		0,032	2,17	-0,002		0,016	2,03	-0,009		0,026	1,99	0,002
~),096	0,044	0,434		0,086	0,032	0,458		0,089	0,024	0,426		0,072	0,031	0,443
~	9,66	99,1	99,2		99,8	99,7	99,5		6,99	99,8	99,1		9,99	99,8	99,1
9 0	,453	0,151	0,025		0,577	0,236	0,019		0,462	0,085	0,017		0,245	0, 146	0,011
80	,021	0,018	0,009		0,018	0,053	0,011		0,024	0,013	0,013		0,024	0,050	0,010
40	,555	0, 143	2,046		0,766	0,392	0,837		0,548	0,247	0,379		0,535	0,088	0,240
1 0	,039	0,026	2,212		0,056	0,051	0,884		0,050	0,024	0,268		0,028	0,037	0,210
40	,107	0,077	0,478		0,090	0,046	0,321		0,079	0,089	0,292		0,115	0,049	0,158
40	013	0,020	0,018		0,007	0,011	0,017		0,015	0,006	0,011		0,011	0,014	0,013
50	,313	0,089	0,493		0,378	0,133	0,225		0,319	0,324	0,133		0,338	0,133	0,123
00	,155	0,077	0,006		0,069	0,243	0,006		0,028	0,193	0,004		0,075	0, 181	0,004
8	035	0,061	0,007		0,024	0,093	0,013		0,019	0,107	0,014		0,026	0,084	0,006
9	,014	0,005	0,046		0,010	0,014	0,054		0,013	0,010	0,019		0,010	0,014	0,028
5 0	,203	0,243	0,186		0,197	0,351	0,172		0,23I	0,145	0,155		0,262	0,096	0,055

Table 2: Major and minor elements mineral compositions of harzburgites (harz), lherzolites (lherz) and websterites (webst) from the Lherz massif. Ol= olivine; Opx= orthopyroxene; Cpx= clinopyroxene; Spl= spinel. In each thin section, at least 5 analyses per mineral were performed (minimum of. 20 analyses per section). Analyses have been performed with CAMECA SX 100 (Géosciences Montpellier and GEMOC ARC National Key Centre).

05LE3 lherz.	44,4 2.95	0,353	7,79	39,6	2,46	0,130	0,251	0,200	0,120	1,43	99,7	98,3		45,2	3,00	0,359	7,92	40,3	2,50	0,132	0,255	0,203	0,122	100,0
05LA15 lherz.	46,9 4.03	0,386	7,29	36,4	3,31	0,130	0,209	0,260	0,160	0,82	96,8	0,06		47,3	4,07	0,390	7,36	36,7	3,34	0,131	0,211	0,263	0,162	100,0
05LA8 lherz.	45,4 3.53	0,394	8,26	37,2	3,42	0,140	0,243	0,290	0,140	1,04	100,1	0,66		45,9	3,56	0,398	8,34	37,5	3,45	0,141	0,246	0,293	0,141	100,0
05LA6 lherz.	44,8 3.01	0,341	8,63	38,6	2,20	0,140	0,246	0,200	0,100	1,33	9,66	98,2		45,6	3,06	0,347	8,78	39,3	2,24	0,142	0,250	0,204	0,102	100,0
05LA5 lherz.	46,2 4.97	0,463	7,43	34,9	4,70	0,130	0,232	0,360	0,200	0,48	100,0	99,5		46,4	5,00	0,465	7,47	35,0	4,72	0,131	0,233	0,362	0,201	100,0
05LA4 harz.	41,5 0.700	0,230	7,84	43,0	0,440	0,120	0,299	0,070	0,040	5,73	6,99	94,2		44,0	0,743	0,245	8,33	45,6	0,467	0,127	0,317	0,074	0,042	100,0
05LA3 harz.	41,4 1.26	0,596	7,85	42,0	0,470	0,120	0,297	0,070	0,050	5,95	100,0	94,1		44,0	1,34	0,634	8,34	44,6	0,500	0,128	0,316	0,074	0,053	100,0
05LA12 harz.	42,2 2.46	1,06	7,80	40,5	1,90	0,120	0,267	0,160	0,060	3,41	100,0	96,6		43,7	2,55	1,10	8,08	42,0	1,97	0,124	0,276	0,166	0,062	100,0
05LA9 harz.	41,9 0.98	0,299	6,85	40,8	0,580	0,120	0,283	0,060	0,030	7,83	99,8	91,9		45,6	1,07	0,325	7,45	44,4	0,631	0,131	0,308	0,065	0,033	100,0
05LA16 harz.	42,3 0.64	0,304	7,94	44,4	0,320	0,120	0,290	0,080	0,050	3,48	6,99	96,4		43,9	0,66	0,315	8,23	46,0	0,332	0,124	0,301	0,083	0,052	100,0
05LA1 harz.	43,1 0.88	0,293	7,43	43,9	0,500	0,120	0,296	0,070	0,060	3,85	100.5	96,6		44,6	0,91	0,303	7,69	45,4	0,518	0,124	0,307	0,072	0,062	100,0
05LA2 harz.	44,7 1.87	0,796	7,31	41,9	0,730	0,130	0,263	0,090	0,040	2,93	100,8	97,9		45,7	1,91	0,814	7,47	42,9	0,746	0,133	0,268	0,092	0,041	100,0
05LD4 distal harz.	42,1 0.920	0,437	7,59	43,1	0,610	0,120	0,313	0,060	0,020	4,46	9,66	95,2	_	44,2	0,967	0,459	7,97	45,2	0,641	0,126	0,329	0,063	0,021	100,0
05LD1 distal harz.(39,2 0.170	0,094	7,82	45,5	0,280	0,120	0,370	0,050	0,030	6,44	100,1	93,6	without LO	41,8	0,182	0,101	8,35	48,6	0,299	0,128	0,395	0,053	0,032	100,0
Sample	Si02 A1203	Cr203	FeO	MgO	CaO	MnO	NiO	Na2O	Ti02	LOI	TOTAL	total-LOI	recalculated	SiO2	A12O3	Cr203	FeO	MgO	CaO	MnO	NiO	Na2O	TiO2	total

Table 3 - Whole-rock chemical compositions – major and minor elements (ppm)

t 05L3	lherz.	44,1	2,99	0,342	7,91	38,7	2,69	0,130	0,260	0,210	0,130	2,62	100,0	97,4		45,2	3,07	0,351	8,12	39,7	2,76	0,133	0,267	0,216	0,133	0.001
04LH04	lherz.	44,3	3,15	0,377	7,87	39,3	2,66	0,132	0,240	0,216	0,131	1,75	100,1	98,3		45,0	3,21	0,383	8,00	39,9	2,71	0,134	0,244	0,220	0,134	0001
04LH07	lherz.	40,9	1,87	0,547	7,72	40,2	2,01	0,124	0,284	0,185	0,082	1,23	95,1	93,9		43,5	1,99	0,582	8,22	42,9	2,14	0,132	0,303	0,197	0,087	0.001
04LH815	lherz.	43,8	3,40	0,356	7,57	38,3	3,26	0,129	0,243	0,290	0,153	0,35	97,9	97,6		44,9	3,48	0,365	7,76	39,3	3,34	0,133	0,249	0,297	0,157	0.001
04LH08	lherz.	43,9	2,10	0,461	7,65	41,9	2,18	0,125	0,260	0,219	0,124	0,68	7,99	0,66		44,4	2,12	0,466	7,73	42,4	2,20	0,126	0,263	0,221	0,125	
04LH11	harz.	41,9	0,539	0,274	7,87	44,2	0,382	0,121	0,292	0,058	0,017	4,10	7,99	95,6		43,8	0,564	0,286	8,23	46,2	0,400	0,127	0,306	0,061	0,017	0 001
04LH14	harz.	41,5	0,444	0,223	7,88	43,8	0,319	0,119	0,299	0,045	0,016	4,49	99,1	94,6		43,8	0,470	0,235	8,33	46,3	0,337	0,126	0,316	0,047	0,017	0.001
04LH12	harz.	41,5	0,450	0,252	7,71	43,4	0,351	0,118	0,298	0,040	0,012	5,23	99,4	94,1	_	44,1	0,478	0,268	8,19	46,1	0,373	0,126	0,316	0,042	0,012	0.001
04LH13	harz.	41,3	0,439	0,287	7,70	43,8	0,358	0,118	0,296	0,048	0,010	4,81	99,1	94,3	without LO	43,8	0,465	0,305	8,16	46,4	0,380	0,125	0,314	0,051	0,011	0 001
Sample		Si02	A12O3	Cr203	FeO	MgO	CaO	MnO	NiO	Na2O	TiO2	IOI	TOTAL	total-LOI	recalculated	SiO2	A12O3	Cr203	FeO	MgO	CaO	MnO	NiO	Na2O	Ti02	-

06LF8 webst.	48,9	6,04	0,544	6,16	31,3	5,82	0,120	0,500	0,280	1,15	100,8	9,66		49,1	6,06	0,546	6,18	31,4	5,84	0,120	0,502	0,281	100,0
06LF17 webst.	44,6	5,64	0,583	7,16	35,2	4,74	0,120	0,350	0,180	1,67	100,2	98,5		45,3	5,72	0,592	7,26	35,7	4,81	0,122	0,355	0,183	100,0
06LF28L lherz.	43,8	3,57	0,359	7,31	37,9	2,91	0,130	0,190	0,120	3,60	6,66	96,3		45,5	3,71	0,373	7,59	39,3	3,02	0,135	0,197	0,125	100,0
06LE7 lherz.	45,5	3,37	1,04	6,39	37,7	3,28	0,110	0,270	0,140	2,40	100,2	97,8		46,5	3,45	1,07	6,53	38,5	3,35	0,112	0,276	0,143	100,0
06LE6W lherz.	45,3	2,79	1,05	6,46	38,1	4,00	0,110	0,300	0,100	3,22	101,4	98,2		46,1	2,84	1,07	6,58	38,8	4,07	0,112	0,306	0,102	100,0
06LE6 harz.	41,3	1,28	0,690	7,21	41,7	0,800	0,120	0,050	0,040	6,58	8,66	93,2		44,3	1,37	0,740	7,74	44,8	0,858	0,129	0,054	0,043	100,0
06LF11 lherz.	44,2	0,750	0,356	7,73	45,0	0,680	0,120	0,060	0,000	1,80	100,7	98,9		44,7	0,758	0,360	7,81	45,5	0,687	0,121	0,061	0,000	100,0
06LD6 harz.	43,0	3,39	0,294	7,25	37,3	2,80	0,130	0,210	0,150	5,81	100,3	94,5		45,5	3,59	0,311	7,68	39,5	2,96	0,138	0,222	0,159	100,0
06LF14 lherz.	45,6	3,88	0,357	8,00	37,5	3,21	0,130	0,270	0,160	1,09	100,2	99,1		46,0	3,92	0,360	8,07	37,9	3,24	0,131	0,272	0,161	100,0
06LF15 lherz.	44,4	2,95	0,377	7,82	39,8	2,77	0,130	0,220	0,110	1,78	100,3	98,6		45,0	2,99	0,383	7,94	40,4	2,81	0,132	0,223	0,112	100,0
06LF20 webst.	47,3	12,80	0,596	5,44	24,7	8,38	0,130	0,640	0,300	1,01	101,3	100,3		47,2	12,76	0,594	5,42	24,6	8,36	0,130	0,638	0,299	100,0
06LF25 lherz.	44,7	3,14	0,325	7,99	39,6	2,35	0,130	0,200	0,140	1,83	100,3	98,5		45,3	3, 19	0,330	8,11	40,2	2,39	0,132	0,203	0,142	100,0
06LF16 lherz.	45,2	3,19	0,373	6,90	37,9	3,04	0,120	0,240	0,130	3,43	100,5	97,0	_	46,6	3,29	0,384	7,11	39,0	3,13	0,124	0,247	0,134	100,0
06LF27 harz.	44,1	1,11	0,313	7,29	43,6	0,810	0,120	0,080	0,050	3,31	100,7	97,4	without LO	45,2	1, 14	0,322	7,48	44,7	0,832	0,123	0,082	0,051	100,0
Sample	Si02	A12O3	Cr203	FeO	MgO	CaO	MnO	Na2O	TiO2	IOI	TOTAL	total-LOI	recalculated	SiO2	A12O3	Cr203	FeO	MgO	CaO	MnO	Na2O	Ti02	total

48,5 46,0
8,59 5,09
0,350 1,00
5,75 5,90
27,4 33,9
8,68 5,0
0,120 0,11
0,600 0,31
0,300 0,25
0,940 2,47
101,2 100,
100,3 97,6
48,3 47,
8,57 5,2
0,350 1,00
5,74 6,0
27,3 34,
8,66 5,19
0,120 0,11
0,598 0,318
0,299 0,25
100,0 100,

Table 3: Major and minor elements compositions of whole-rocks harzburgites (harz.), lherzolites (lherz.) and websterites (webst.) from the Lherz massif. Analyses were performed on whole-rocks powders (obtained in Geosciences Montpellier) by GEOLABS, Canada.

5L3 05LE3	0,005 0,002	0,072 0,052	0,326 0,437	0,006 0,003	,003 0,091	0,105 0,104	,408 0,380	0,075 0,070	3,728 8,090	,516 0,473	610 4,499	0,131 0,120	0,205 0,189	0,089 0,076	,362 0,317	0,068 0,061	,512 0,447	,669 2,502	0,111 0,101	,338 0,310	,335 0,308	0,059 0,056
05LD4 (0,004 0	0,045 0	0,560 0	0,009 0	0,003 0	0,027 0	0,055 0	0,007 0	1,100 8	0,036 0	0,204 4	0,007 0	0,011 0	0,003 0	0,011 0	0,002 0	0,013 0	0,061 2	0,003 0	0,009 0	0,020 0	0,004 0
05LD1	0,000	0,007	0,069	0,005	0,002	0,020	0,042	0,006	0,921	0,027	0,087	0,002	0,009	0,002	0,007	0,001	0,007	0,025	0,001	0,004	0,008	0,002
05LA16	0,002	0,018	0,418	0,019	0,002	0,101	0,207	0,023	1,778	0,118	0,750	0,020	0,027	0,008	0,032	0,005	0,044	0,206	0,009	0,032	0,037	0,008
05LA15	0,004	0,128	0,820	0,012	0,006	0,208	0,669	0,122	13,458	0,724	6,137	0,168	0,268	0,114	0,445	0,081	0,611	3,191	0,132	0,415	0,404	0,070
05LA12	0,003	0,046	0,401	0,007	0,003	0, 199	0,486	0,067	11,376	0,403	2,669	0,057	0,126	0,051	0,178	0,032	0,215	1,050	0,045	0,134	0,131	0,023
05LA9	0,003	0,029	1,026	0,004	0,001	0,027	0,074	0,010	1,098	0,042	0,167	0,003	0,010	0,003	0,010	0,002	0,017	0,122	0,005	0,017	0,034	0,007
05LA8	0,005	0,083	0,912	0,009	0,003	0,204	0,745	0,134	14,420	0,836	7,293	0, 196	0,319	0,136	0,527	0,097	0,715	3,868	0,160	0,469	0,464	0,080
05LA6	0,003	0,062	0,894	0,026	0,005	0,191	0,624	0,105	8,455	0,632	4,520	0,113	0,211	0,083	0,324	0,059	0,441	2,288	0,096	0,307	0,297	0,052
05LA5	0,004	0,109	0,430	0,002	0,001	0,154	0,651	0,133	14,737	0,927	8,027	0,220	0,381	0,166	0,662	0,126	0,945	4,949	0,204	0,637	0,584	0,097
05LA4	0,003	0,027	1,009	0,003	0,001	0,025	0,075	0,012	2,051	0,091	0,710	0,019	0,033	0,012	0,043	0,007	0,057	0,275	0,013	0,038	0,045	0,009
05LA3	0,008	0,027	1,612	0,040	0,001	0,431	0,799	0,095	3,214	0,415	0,716	0,019	0,084	0,022	0,078	0,011	0,061	0,278	0,012	0,037	0,047	0,009
05LA2	0,003	0,039	0,304	0,002	0,001	0,014	0,040	0,007	1,014	0,044	0,243	0,004	0,018	0,007	0,025	0,005	0,046	0,303	0,012	0,046	0,070	0,014
05LA1	0,001	0,018	0,136	0,002	0,001	0,012	0,026	0,005	0,861	0,031	0,511	0,009	0,017	0,008	0,029	0,006	0,056	0,344	0,015	0,048	0,067	0,013
	\mathbf{Cs}	Rb	Ba	Π	D	La	Ce	Pr	\mathbf{Sr}	рŊ	Zr	Ηf	Sm	Eu	Gd	Tb	Dy	Υ	Но	Er	Чh	Lu

Table 4 - Whole-rocks chemical compositions – trace elements (ppm)

06Li7 06Li12	0,002 0,003	0,019 $0,062$	1,051 2,159	0,016 0,004	0,004 $0,002$	0,070 0,044	0.005 0.001	100,0 000,0	0,073 0,058	0,073 0,058 0,058 0,107 0,275	0,073 0,058 0,107 0,275 0,011 0,072	0,0073 0,058 0,107 0,275 0,011 0,072 1,575 6,772	0,073 0,058 0,107 0,275 0,011 0,072 1,575 6,772 0,046 0,482	0,000 0,058 0,073 0,058 0,011 0,072 1,575 6,772 0,046 0,482 0,322 5,368	0,000 0,058 0,107 0,275 0,011 0,072 1,575 6,772 0,046 0,482 0,322 5,368 0,007 0,175	0,000 0,058 0,107 0,275 0,011 0,072 1,575 6,772 0,046 0,482 0,322 5,368 0,007 0,175 0,014 0,231	0,000 0,058 0,107 0,275 0,011 0,072 1,575 6,772 0,046 0,482 0,322 5,368 0,007 0,175 0,014 0,231 0,004 0,092	0,000 0,058 0,0107 0,058 0,011 0,072 1,575 6,772 0,046 0,482 0,322 5,368 0,007 0,175 0,014 0,231 0,004 0,092 0,014 0,231	0,000 0,058 0,0107 0,058 0,011 0,072 1,575 6,772 0,046 0,482 0,322 5,368 0,007 0,175 0,014 0,231 0,004 0,092 0,014 0,368 0,002 0,068	0,000 0,058 0,0107 0,058 0,011 0,072 1,575 6,772 0,046 0,482 0,004 0,175 0,014 0,231 0,004 0,175 0,014 0,092 0,014 0,092 0,014 0,068 0,002 0,068	0,000 0,005 0,007 0,058 0,011 0,072 1,575 6,772 0,046 0,482 0,007 0,175 0,014 0,231 0,004 0,175 0,014 0,231 0,002 0,068 0,016 0,482 0,016 0,482 0,016 0,482	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,000 0,058 0,107 0,058 0,011 0,072 1,575 6,772 0,046 0,482 0,007 0,175 0,014 0,231 0,004 0,023 0,014 0,038 0,016 0,482 0,016 0,482 0,016 0,482 0,016 0,482 0,016 0,482 0,016 0,482	0,000 0,058 0,0107 0,058 0,011 0,072 1,575 6,772 0,046 0,482 0,007 0,175 0,014 0,231 0,004 0,023 0,014 0,038 0,014 0,038 0,016 0,482 0,016 0,482 0,016 0,482 0,016 0,482 0,016 0,482 0,010 0,0318
06Li17	0,004	0,056	0,625	0,003	0,002	0,033	0,003		0,112	0,112 0,430	0,112 0,430 0,090	0,112 0,430 0,090 7,780	0,112 0,430 0,090 7,780 0,551	0,112 0,430 0,090 7,780 0,551 4,545	0,112 0,430 0,090 7,780 0,551 4,545 0,142	0,112 0,430 0,090 7,780 0,551 4,545 0,142 0,142	0,112 0,430 0,090 7,780 0,551 4,545 0,142 0,142 0,142 0,093	0,112 0,430 0,090 7,780 0,551 4,545 0,142 0,142 0,142 0,093 0,0369	0,112 0,430 0,090 7,780 0,551 4,545 0,142 0,142 0,142 0,093 0,068	0,112 0,430 0,090 7,780 0,551 4,545 0,142 0,142 0,142 0,068 0,068 0,068 0,0478	0,112 0,430 0,090 7,780 0,551 0,551 4,545 0,142 0,142 0,093 0,068 0,068 0,068 0,478 0,478	0,112 0,430 0,090 7,780 0,551 0,551 0,551 0,551 0,551 0,551 0,142 0,142 0,068 0,068 0,068 0,478 0,478 0,111	0,112 0,430 0,090 7,780 0,551 0,551 0,551 0,551 0,551 0,551 0,551 0,142 0,142 0,033 0,068 0,068 0,068 0,078 0,111 0,111 0,331	0,112 0,430 0,090 7,780 0,551 0,551 0,551 0,551 0,551 0,551 0,142 0,142 0,033 0,068 0,068 0,068 0,078 0,111 0,331 0,333
06Li6	0,006	0,044	0,993	0,017	0,005	0,097	0,015		0,151	0,151 0,282	0,151 0,282 0,032	0,151 0,282 0,032 2,236	0,151 0,282 0,032 2,236 0,122	0,151 0,282 0,032 2,236 0,122 0,668	0,151 0,282 0,032 2,236 0,122 0,668 0,018	0,151 0,282 0,032 0,032 0,122 0,122 0,668 0,018	0,151 0,282 0,032 2,236 0,122 0,122 0,68 0,018 0,018	0,151 0,282 0,032 2,236 0,122 0,68 0,122 0,018 0,018 0,028 0,009	0,151 0,282 0,032 2,236 0,122 0,122 0,128 0,018 0,009 0,005 0,005	0,151 0,282 0,032 2,236 0,122 0,122 0,128 0,018 0,009 0,005 0,005 0,005	0,151 0,282 0,032 2,236 0,122 0,122 0,028 0,009 0,005 0,005 0,005 0,005 0,005	0,151 0,282 0,032 2,236 0,122 0,122 0,028 0,009 0,005 0,005 0,005 0,170 0,006	0,151 0,282 0,032 2,236 0,122 0,122 0,028 0,009 0,005 0,005 0,005 0,005 0,006 0,006	0,151 0,282 0,032 2,236 0,122 0,122 0,028 0,009 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005
06Li16	0,001	0,014	0,251	0,008	0,003	0,028	0,004		0,081	0,081 0,226	0,081 0,226 0,036	0,081 0,226 0,036 4,390	0,081 0,226 0,036 4,390 0,167	0,081 0,226 0,036 4,390 0,167 0,567	0,081 0,226 0,036 4,390 0,167 0,567 0,009	0,081 0,226 0,036 4,390 0,167 0,567 0,567 0,009	0,081 0,226 0,036 4,390 0,167 0,167 0,567 0,567 0,009 0,038	0,081 0,226 0,036 4,390 0,167 0,167 0,567 0,009 0,009 0,038 0,039	0,081 0,226 0,036 0,167 0,167 0,167 0,167 0,009 0,009 0,014 0,014 0,006	0,081 0,226 0,036 0,167 0,167 0,167 0,038 0,009 0,038 0,014 0,034 0,006	0,081 0,226 0,036 4,390 0,167 0,167 0,038 0,009 0,014 0,038 0,034 0,034 0,034 0,034 0,034	0,081 0,226 0,036 4,390 0,167 0,167 0,009 0,009 0,014 0,038 0,006 0,034 0,007 0,007	0,081 0,226 0,036 4,390 0,167 0,167 0,009 0,003 0,014 0,038 0,005 0,005 0,007 0,007 0,007 0,007	0,081 0,226 0,036 4,390 0,167 0,167 0,038 0,009 0,014 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,032 0,022 0,022
06Li3	0,002	0,037	0,507	0,006	0,003	0,020	0,018		0,055	0,055 0,179	0,055 0,179 0,031	0,055 0,179 0,031 2,767	0,055 0,179 0,031 2,767 0,164	0,055 0,179 0,031 2,767 0,164 1,425	0,055 0,179 0,031 2,767 0,164 1,425 0,041	0,055 0,179 0,031 2,767 0,164 1,425 0,041 0,061	0,055 0,179 0,031 2,767 0,164 1,425 0,041 0,041 0,051	0,055 0,179 0,179 2,767 0,164 1,425 0,041 0,041 0,051 0,020 0,069	0,055 0,179 0,031 2,767 0,164 1,425 0,041 0,041 0,051 0,020 0,069 0,012	0,055 0,179 0,031 2,767 0,164 1,425 0,041 0,041 0,051 0,069 0,002 0,082	0,055 0,179 0,031 2,767 0,164 1,425 0,041 0,069 0,005 0,002 0,082 0,082 0,082	0,055 0,179 0,031 2,767 0,164 1,425 0,041 0,020 0,020 0,020 0,012 0,012 0,012 0,019	0,055 0,179 0,031 2,767 2,767 0,164 1,425 0,041 0,051 0,069 0,002 0,082 0,082 0,019 0,019	0,055 0,179 0,031 2,767 2,767 0,164 1,425 0,041 0,020 0,020 0,020 0,082 0,082 0,082 0,019 0,019
06Li15	0,001	0,008	0,149	0,002	0,001	0,019	0,000		0,008	0,008 0,015	0,008 0,015 0,002	0,008 0,015 0,002 0,912	0,008 0,015 0,002 0,912 0,011	0,008 0,015 0,002 0,912 0,011 0,097	0,008 0,015 0,012 0,011 0,011 0,003	0,008 0,015 0,002 0,912 0,011 0,003 0,003	0,008 0,015 0,012 0,912 0,912 0,01 0,003 0,003	0,008 0,015 0,012 0,011 0,011 0,003 0,004 0,001	0,008 0,015 0,002 0,912 0,011 0,004 0,004 0,001 0,001	0,008 0,015 0,012 0,912 0,011 0,004 0,004 0,001 0,001 0,005	0,008 0,015 0,012 0,011 0,017 0,004 0,004 0,001 0,001 0,005 0,005	0,008 0,015 0,002 0,912 0,004 0,004 0,004 0,001 0,001 0,005 0,005	0,008 0,015 0,012 0,012 0,011 0,003 0,004 0,001 0,001 0,002 0,002 0,002 0,002	0,008 0,015 0,012 0,011 0,011 0,003 0,004 0,001 0,002 0,005 0,005 0,002 0,002 0,002 0,002
06Li3 (dup)	0,002	0,027	1,071	0,008	0,003	0,021	0,001		0,061	0,061 0,191	0,061 0,191 0,034	0,061 0,191 0,034 2,992	0,061 0,191 0,034 2,992 0,187	0,061 0,191 0,034 2,992 0,187 1,556	0,061 0,191 0,034 2,992 0,187 1,556 0,044	0,061 0,191 0,034 2,992 0,187 1,556 0,044 0,061	0,061 0,191 0,034 2,992 0,187 1,556 0,044 0,044 0,021	0,061 0,191 0,034 2,992 0,187 0,187 0,044 0,044 0,021 0,076	0,061 0,191 0,034 2,992 0,187 0,1556 0,044 0,044 0,021 0,014	0,061 0,191 0,034 2,992 0,187 0,1556 0,044 0,044 0,021 0,014 0,014 0,090	0,061 0,191 0,034 2,992 0,187 0,1556 0,044 0,044 0,021 0,014 0,014 0,090 0,568	0,061 0,191 0,034 2,992 0,187 0,1556 0,044 0,044 0,021 0,014 0,014 0,016 0,020	0,061 0,191 0,034 2,992 0,187 0,014 0,044 0,021 0,014 0,014 0,014 0,020 0,020 0,064	0,061 0,191 0,034 2,992 0,187 0,1556 0,044 0,044 0,021 0,014 0,014 0,014 0,020 0,064 0,082 0,082
06Li5b	0,002	0,020	0,581	0,015	0,004	0,047	0,014		0,162	0,162 0,357	$0,162 \\ 0,357 \\ 0,042$	$0,162 \\ 0,357 \\ 0,042 \\ 2,468$	0,162 0,357 0,042 2,468 0,154	0,162 0,357 0,042 2,468 0,154 0,933	0,162 0,357 0,042 2,468 0,154 0,033 0,014	0,162 0,357 0,042 2,468 0,154 0,013 0,014 0,028	0,162 0,357 0,042 2,468 0,154 0,033 0,014 0,014 0,009	0,162 0,357 0,042 2,468 0,154 0,154 0,033 0,014 0,028 0,009 0,029	0,162 0,357 0,042 2,468 0,154 0,154 0,033 0,014 0,009 0,005 0,005	0,162 0,337 0,042 2,468 0,154 0,154 0,033 0,014 0,028 0,009 0,005 0,005	0,162 0,357 0,042 2,468 0,154 0,014 0,014 0,028 0,009 0,005 0,005 0,005 0,005	0,162 0,357 0,042 2,468 0,154 0,014 0,028 0,009 0,002 0,00	0,162 0,357 0,042 2,468 0,154 0,014 0,028 0,009 0,002 0,00	0,162 0,357 0,042 2,468 0,154 0,154 0,028 0,009 0,002 0,002 0,002 0,002 0,002 0,002 0,003 0,004 0,003 0,004 0,003 0,000 0,003 0,000 0,003 0,000 0,003 0,000 0,003 0,000 0,000 0,003 0,000000
06Li9	0,002	0,024	2,029	0,009	0,003	0,021	0,002	0.074	4/0,0	0,074	0,0/4 0,236 0,041	0,074 0,236 0,041 2,583	0,074 0,236 0,041 2,583 0,226	0,074 0,236 0,041 2,583 0,226 1,794	0,074 0,236 0,041 2,583 0,226 1,794 0,049	0,074 0,236 0,041 2,583 0,226 1,794 0,049 0,068	0,074 0,236 0,041 2,583 0,226 1,794 0,049 0,049 0,068	0,074 0,236 0,041 2,583 0,226 1,794 1,794 0,049 0,049 0,068 0,023 0,079	0,074 0,236 0,041 2,583 0,226 1,794 0,049 0,049 0,049 0,068 0,023 0,079 0,013	0,074 0,0236 0,0241 0,226 1,794 0,048 0,048 0,068 0,079 0,013	0,074 0,236 0,2583 0,226 1,794 0,048 0,048 0,068 0,073 0,073 0,073 0,073 0,073 0,073 0,073 0,073	0,074 0,0236 0,0241 2,583 0,226 1,794 0,049 0,068 0,007 0,007 0,007 0,008 0,008 0,008 0,008 0,009	0,004 0,0236 0,024 0,2583 0,2583 0,049 0,049 0,068 0,003 0,003 0,008 0,0019 0,000 0,000 0,000 0,000	0,004 0,235 0,2583 0,2583 0,2568 0,049 0,068 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,0060 0,0060 0,0060
06Li1	0,009	0,128	1,909	0,013	0,005	0,065	0,006	0.131	6 -	0,610	0,610 0,150	0,610 0,150 12,252	0,610 0,150 12,252 1,019	0,150 0,150 12,252 1,019 8,167	0,150 0,150 12,252 1,019 8,167 0,282	0,150 0,150 12,252 1,019 8,167 0,282 0,454	0,150 0,150 12,252 1,019 8,167 0,282 0,454 0,454	0,150 0,150 12,252 1,019 8,167 0,282 0,454 0,186 0,186	0,150 0,150 12,252 1,019 8,167 0,282 0,454 0,186 0,137 0,137	0,610 0,150 1,2,252 1,019 8,167 8,167 0,282 0,454 0,137 0,137 0,965	0,610 0,150 0,150 1,2252 1,019 8,167 8,167 0,282 0,454 0,137 0,137 0,965 0,965 5,671	0,610 0,150 12,252 1,019 8,167 8,167 0,282 0,454 0,137 0,137 0,137 0,965 5,671 0,220	0,610 0,150 12,252 1,019 8,167 8,167 0,282 0,454 0,137 0,137 0,137 0,137 0,965 5,671 0,220 0,644	0,610 0,150 12,252 1,019 8,167 8,167 0,282 0,454 0,137 0,137 0,137 0,137 0,965 5,671 0,220 0,644 0,596
06Li4	0,001	0,015	0,553	0,009	0,003	0,027	0,011	0.067		0,197	0,197 0,033	0,197 0,033 2,271	0,197 0,033 2,271 0,171	0,197 0,033 2,271 0,171 1,302	0,197 0,033 2,271 0,171 1,302 0,032	0,197 0,033 2,271 0,171 1,302 0,032 0,053	0,197 0,033 0,033 0,171 1,302 0,032 0,053 0,053	0,197 0,197 0,033 0,171 1,302 1,302 0,032 0,032 0,053 0,061	0,197 0,197 0,033 2,271 0,171 1,302 0,032 0,032 0,053 0,019 0,010	0,197 0,197 0,033 2,271 0,171 1,302 0,013 0,010 0,010 0,010	0,197 0,197 0,033 2,271 0,171 1,302 0,013 0,010 0,005 0,0065 0,010 0,0065	0,197 0,197 0,033 2,271 0,171 1,302 0,013 0,010 0,010 0,010 0,015 0,015	0,197 0,197 0,033 2,271 0,171 1,302 0,032 0,032 0,019 0,010 0,015 0,015 0,015 0,015	0,197 0,197 0,033 2,271 0,171 1,302 0,032 0,032 0,032 0,019 0,010 0,015 0,015 0,015 0,045
06Li2	0,004	0,032	0,790	0,030	0,009	0,080	0,006	0.213		0,720	0,720	0,720 0,147 11,091	0,720 0,147 11,091 0,867	0,720 0,147 11,091 0,867 6,940	0,720 0,147 11,091 0,867 6,940 0,220	0,720 0,147 0,147 0,867 0,867 6,940 0,220 0,351	0,120 0,147 11,091 0,867 0,867 0,220 0,220 0,134	0,720 0,147 11,091 0,867 6,940 0,220 0,351 0,134 0,1134	0,720 0,147 11,091 0,867 6,940 0,220 0,351 0,134 0,134 0,517	0,720 0,147 11,091 0,867 6,940 0,220 0,351 0,134 0,134 0,517 0,091	0,720 0,147 11,091 0,867 6,940 0,351 0,134 0,134 0,517 0,091 0,602 3,306	0,720 0,147 0,147 0,867 6,940 0,351 0,351 0,134 0,517 0,602 3,306 0,131 0,131	0,720 0,147 0,147 0,867 0,867 0,867 0,351 0,134 0,134 0,517 0,091 0,602 0,602 0,131 0,602 0,131 0,602	0,720 0,147 0,147 0,867 0,867 0,867 0,351 0,351 0,134 0,517 0,091 0,602 0,602 0,131 0,0367 0,326
06Li8	0,001	0,011	0,495	0,008	0,003	0,020	0,001	0.058	0,000	0,166	0,166 0,028	0,166 0,028 1,819	0,166 0,028 1,819 0,147	0,000 0,166 0,028 1,819 0,147 0,747	0,028 0,166 1,819 0,147 0,747 0,011	0,000 0,166 0,028 1,819 0,147 0,747 0,011 0,036	0,008 0,166 0,028 1,819 0,147 0,747 0,011 0,013	0,028 0,166 0,147 0,147 0,747 0,011 0,013 0,013 0,039	0,003 0,166 0,028 1,819 0,147 0,147 0,014 0,013 0,003 0,003 0,007	0,007 0,028 0,028 0,147 0,747 0,011 0,013 0,013 0,013 0,013	0,166 0,028 1,819 0,147 0,747 0,011 0,036 0,013 0,013 0,013 0,013 0,013	0,009 0,028 0,028 0,147 0,028 0,011 0,026 0,013 0,013 0,007 0,007 0,009	0,009 0,0016 0,028 0,1147 0,011 0,0136 0,013 0,007 0,007 0,007 0,0029 0,029	0,009 0,002 0,028 0,116 0,028 0,011 0,036 0,036 0,039 0,007 0,0029 0,029 0,038 0,039 0,038 0,038 0,039 0,039 0,039 0,039 0,039 0,038 0,038 0,038 0,039 0,039 0,038 0,039 0,039 0,038 0,038 0,038 0,038 0,038 0,038 0,039 0,038
06Li5a	0,002	0,021	0,525	0,015	0,004	0,063	0,016	0 165	0,102	0,343	0,343 0,039	0,343 0,343 2,416	0,343 0,339 2,416 0,164	0,100 0,343 0,039 2,416 0,164 0,164	0,100 0,343 0,039 2,416 0,164 0,811 0,811	0,343 0,339 0,039 0,164 0,111 0,017 0,017	0,343 0,343 0,039 0,164 0,811 0,017 0,017 0,009	0,343 0,039 0,164 0,164 0,017 0,017 0,009 0,009	0,343 0,039 0,164 0,164 0,017 0,017 0,026 0,009 0,009	0,343 0,039 0,039 0,164 0,116 0,017 0,017 0,017 0,026 0,009 0,002 0,003 0,031	0,343 0,039 0,039 0,164 0,164 0,017 0,017 0,017 0,026 0,009 0,002 0,003 0,017	0,343 0,039 0,039 0,039 0,017 0,017 0,017 0,026 0,009 0,009 0,003 0,001 0,001 0,001	0,343 0,039 0,039 0,039 0,017 0,017 0,017 0,026 0,009 0,002 0,003 0,003 0,003 0,003	0,343 0,039 0,039 0,039 0,017 0,017 0,026 0,009 0,002 0,003 0,003 0,003 0,003 0,003 0,003
06Li10a	0,005	0,053	1,174	0,015	0,006	0,072	0,013	0.170	01160	0,367	0,367 0,046	0,367 0,046 2,183	0,367 0,046 2,183 0,178	0,367 0,367 0,046 2,183 0,178 1,091	0,367 0,046 2,183 0,178 1,091 0,018	0,367 0,367 2,183 0,178 1,091 0,018 0,031	0,367 0,046 2,183 0,178 0,178 0,018 0,018 0,011	0,367 0,046 0,178 0,178 1,091 0,018 0,011 0,031 0,030	0,367 0,046 0,046 0,178 0,178 1,091 0,018 0,011 0,011 0,004	0,367 0,046 2,183 0,178 0,178 0,018 0,018 0,018 0,011 0,011 0,004	0,367 0,046 2,183 0,178 0,178 0,178 0,018 0,018 0,018 0,011 0,027 0,027 0,178	0,367 0,046 2,183 0,178 0,178 0,178 0,018 0,011 0,018 0,011 0,027 0,004 0,006	0,367 0,046 2,183 0,178 0,178 0,018 0,018 0,011 0,011 0,011 0,027 0,027 0,020	0,367 0,046 2,183 0,178 0,178 0,018 0,011 0,018 0,011 0,018 0,027 0,020 0,020
	Cs	Rb	Ba	Th	D	ЧN	Та	E I	ľ	Ce	Pr Ce	Sr Pre	Nd Pr Ce	Zr Nd Ce	H Zr Nd	Sm Pr Ce	Eu Shr Sr Sr Eu	Ce Eu Gd	Tb Sr Pr Ce Tb Ge Eu Alt Tr Ce	Dy Beur S. Hr. S. S. Pr. Ce. Dy Dy Gd	Y D T G E S H T Z Z S S F C C Z	Hoven and the second se	Er H Y D J G E E S H Y Z N S P C C	Y E H Y D B E E N H Z N S P C C Z

Table 4: Trace elements concentrations (ppm) in Lherz peridotites obtained by ICPMS at Geosciences Montpellier (05LA series) and GEMOC ARC National Key Centre (06Li series).

	05LA1	05LA2	05LA3	05LA4	05LA5	05LA6	05LA8	05LA9	05LA12	05LA15	05LA16	05LD1	05LD4	05L3	05LE3
$\mathbf{C}_{\mathbf{S}}$	0,012	0,046	0,120	0,038	0,057	0,039	0,066	0,036	0,040	0,058	0,023	0,005	0,055	0,071	0,034
Rb	0,028	0,061	0,043	0,042	0,171	0,098	0,131	0,046	0,073	0,201	0,028	0,010	0,071	0,113	0,081
Ba	0,020	0,043	0,231	0,144	0,061	0,128	0,130	0,147	0,057	0,117	0,060	0,010	0,080	0,047	0,063
μŢ	0,019	0,020	0,468	0,033	0,024	0,305	0,103	0,041	0,078	0,146	0,220	0,058	0,107	0,074	0,033
D	0,028	0,033	0,028	0,046	0,043	0,245	0,123	0,069	0,127	0,284	0,078	0,082	0,141	0,122	4,355
La	0,018	0,020	0,628	0,037	0,224	0,278	0,297	0,040	0,290	0,303	0,148	0,029	0,040	0,152	0,151
Ce	0,015	0,023	0,450	0,042	0,367	0,351	0,419	0,042	0,274	0,377	0,117	0,023	0,031	0,230	0,214
\mathbf{Pr}	0,018	0,026	0,345	0,042	0,483	0,380	0,487	0,036	0,242	0,440	0,082	0,020	0,026	0,272	0,253
\mathbf{Sr}	0,041	0,048	0,152	0,097	0,698	0,401	0,683	0,052	0.539	0,638	0,084	0,044	0,052	0,414	0,383
рŊ	0,023	0,033	0,307	0,067	0,685	0,467	0,618	0,031	0,298	0,535	0,087	0,020	0,026	0,381	0,349
Zr	0,046	0,022	0,064	0,063	0,717	0,404	0,651	0,015	0,238	0,548	0,067	0,008	0,018	0,412	0,402
Ηf	0,030	0,014	0,061	0,060	0,712	0,366	0,634	0,011	0,185	0,543	0,065	0,007	0,023	0,424	0,388
Sm	0,039	0,040	0,189	0,074	0,858	0,475	0,718	0,021	0,284	0,604	0,061	0,021	0,025	0,462	0,425
Eu	0,045	0,041	0,132	0,074	0,990	0,491	0.810	0,018	0,306	0,680	0,050	0,013	0,019	0,531	0,450
Gd	0,049	0,041	0,131	0,073	1,111	0,544	0,884	0,017	0,299	0,747	0,054	0,013	0,018	0,608	0,532
Tb	0,060	0,047	0,098	0,069	1,167	0,549	0,897	0,018	0,292	0,751	0,051	0,010	0,016	0,628	0,569
Dy	0,076	0,062	0,083	0,078	1,282	0,598	0,971	0,023	0,292	0,829	0,059	0,009	0,017	0,695	0,606
Υ	0,076	0,067	0,061	0,060	1,088	0,503	0,850	0,027	0,231	0,701	0,045	0,005	0,013	0,587	0,550
Но	0,089	0,072	0,073	0,076	1,247	0,586	0.978	0,031	0,273	0,806	0,056	0,008	0,016	0,677	0,615
Er	0,100	0,095	0,077	0,079	1,328	0,639	0.978	0,036	0,279	0,866	0,066	0,009	0,020	0,705	0,646
Υb	0,136	0,142	0,095	0,092	1,184	0,602	0,941	0,069	0,266	0,820	0,075	0,016	0,040	0,679	0,624
Lu	0,175	0, 192	0,123	0,117	1,309	0,704	1,081	0,095	0,305	0,951	0,107	0,025	0,060	0,793	0,752

Table 5 - Whole-rocks chemical compositions – trace elements normalized to primitive mantle

	06Li10a	06Li5a	06Li8	06Li2	06Li4	06Li1	06Li9	06Li5b	06Li3 (dup)	06Li15	06Li3 (1)	06Li16	06Li6	06Li17	06Li7	06Li12
\mathbf{Cs}	0,065	0,028	0,015	0,049	0,020	0,129	0,029	0,034	0,032	0,007	0,031	0,016	0,085	0,053	0,026	0,040
Rb	0,083	0,033	0,017	0,051	0,024	0,202	0,039	0,032	0,042	0,012	0,058	0,022	0,069	0,089	0,030	0,098
Ba	0,168	0,075	0,071	0,113	0,079	0,273	0,290	0,083	0,153	0,021	0,073	0,036	0,142	0,089	0,150	0,309
Th	0,173	0,173	0,097	0,358	0,110	0,156	0,101	0,173	0,090	0,024	0,067	0,094	0,198	0,033	0,190	0,045
D	0,282	0,209	0,124	0,414	0,124	0,241	0,138	0,205	0,134	0,047	0,145	0,122	0,219	0,075	0,209	0,105
ЧN	0,101	0,089	0,027	0,112	0,038	0,091	0,029	0,066	0,030	0,026	0,028	0,039	0,136	0,046	0,098	0,061
Та	0,321	0,393	0,027	0,158	0,272	0,151	0,060	0,331	0,017		0,428	0,092	0,378	0,071	0,124	0,027
La	0,247	0,240	0,085	0,310	0,097	0,190	0,107	0,236	0,089	0,011	0,081	0,118	0,220	0,163	0,106	0,084
Ce	0,207	0,193	0,093	0,406	0,111	0,344	0,133	0,201	0,107	0,008	0,101	0,127	0,159	0,242	0,060	0,155
\mathbf{Pr}	0,165	0,141	0,101	0,532	0,121	0,542	0,147	0,150	0,124	0,008	0,112	0,129	0,114	0,328	0,041	0,261
\mathbf{Sr}	0,103	0,115	0,086	0,526	0,108	0,581	0,122	0,117	0,142	0,043	0,131	0,208	0,106	0,369	0,075	0,321
рN	0,131	0,121	0,108	0,640	0,126	0,752	0,167	0,114	0,138	0,008	0,121	0,123	0,090	0,407	0,034	0,356
Zr	0,097	0,072	0,067	0,620	0,116	0,729	0,160	0,083	0,139	0,009	0,127	0,051	0,060	0,406	0,029	0,479
Ηf	0,059	0,055	0,036	0,711	0,105	0,913	0,157	0,045	0,143	0,010	0,133	0,029	0,059	0,459	0,023	0,565
Sm	0,071	0,059	0,082	0,791	0,118	1,021	0,153	0,063	0,137	0,009	0,115	0,086	0,064	0,523	0,032	0,521
Eu	0,066	0,053	0,076	0,798	0,115	1,105	0,138	0,056	0,128	0,007	0,120	0,081	0,052	0,555	0,024	0,546
Gd	0,051	0,049	0,066	0,868	0,102	1,259	0,133	0,049	0,128	0,006	0,116	0,066	0,047	0,620	0,024	0,618
Tb	0,039	0,045	0,062	0,840	0,094	1,270	0,121	0,044	0,128	0,006	0,110	0,056	0,042	0,626	0,023	0,628
Dy	0,036	0,043	0,057	0,816	0,088	1,309	0,117	0,043	0,122	0,007	0,111	0,046	0,036	0,649	0,022	0,654
Y	0,039	0,048	0,053	0,727	0,085	1,246	0,111	0,046	0,125	0,010	0,109	0,042	0,037	0,646	0,024	0,636
Но	0,039	0,047	0,054	0,797	0,091	1,343	0,116	0,046	0,124	0,010	0,118	0,044	0,039	0,679	0,023	0,655
Er	0,043	0,057	0,059	0,765	0,094	1,341	0,125	0,056	0,134	0,016	0,129	0,046	0,042	0,690	0,029	0,680
Чþ	0,055	0,079	0,077	0,661	0,115	1,210	0,139	0,076	0,166	0,034	0,146	0,058	0,056	0,655	0,042	0,646
Lu	0,072	0,098	0,088	0,653	0,132	1,203	0,162	0,098	0,186	0,051	0,173	0,067	0,069	0,684	0,056	0,651

Table 5 - continued

Table 5: trace elements concentrations (ppm) normalized to primitive mantle (McDonough and Sun, 1995) in Lherz peridotites obtained by ICPMS at Geosciences Montpellier (05LA series) and GEMOC ARC National Key Centre (06Li series).

Figure 2 - Whole-rocks trace elements normalized to primitive mantle

05LA2 ite harzburgit	66,8 27,7 3,1 2,5 2,1	e harzburgit	70,0 25,0 3,0 2,0 1,5	te Iherzolite 46,0 29,0 20,0 5,0 2,1 2,1
05LA1	76,9 20,3 2,1 0,7 2,1	05LE3 Iherzolit	60,9 25,6 11,3 2,2 2,0 06LF-4	harzburg 75,0 16,5 7,0 1,5 1,9
04LH33 harzburgite	77,6 18,6 2,6 1,2 1,5	05L3 Iherzolite	63,6 22,7 12,0 1,7 2,2 06LF-3W	websterite 46,0 32,0 20,0 2,0 1,7
04LH35 harzburgite	78,8 18,1 2,3 0,8 <i>1</i> ,9	05LD4 harzburgite	79,5 16,8 2,4 1,2 1,8 06LF-26L	61,0 25,0 11,5 1,7 1,7
04LH37 lherzolite	51,5 27,3 18,1 3,1 1,6	05LD1 harzburgite	94,0 4,6 1,2 0,2 <i>I</i> , <i>I</i> 06LF-9	Iherzolite 48,0 35,0 15,0 2,0 <i>1,8</i>
04LH39 lherzolite	53,5 23,5 19,5 3,5 1,6	05LA16 harzburgite	79,5 18,4 1,5 0,6 <i>1</i> ,9 06LF26W	websterite 12,0 34,0 45,0 9,0 2,1
04LH13 harzburgite	82 16 1,4 0,6 <i>1</i> ,9	05LA15 Iherzolite	47,1 34,4 15,7 2,8 2,0 06LF-8	websterite 30,0 39,0 27,0 4,0 <i>I, I</i>
04LH12 harzburgite	82,9 15,3 1,4 0,4 <i>1</i> ,7	05LA12 harzburgite	69,1 16,7 10,7 3,5 2,0 06LF-17	websterite 45,0 28,0 22,5 4,5 1,2
04LH14 harzburgite	84,1 14,1 1,4 1,4 0,4 l,6	05LA9 harzburgite	71,4 25,7 2,3 0,6 2,1 06LF-28L	53,0 53,0 29,0 14,0 4,0 2,1
04LH11 harzburgite	80,4 17,6 1,5 0,5 <i>1,9</i>	05LA8 Iherzolite	54,4 28,4 15,2 2,0 2,2 06LF-11	78,0 78,0 16,0 5,0 1,0 2,0
04LH08 Iherzolite	68,8 19,9 9,7 1,6 2,2	05LA6 Iherzolite	57,3 29,5 10,9 2,3 2,1 2,1	Iherzolite 60,0 55,0 12,5 25,6 12,5 2,5 1,6 63,0 19,0 15,0 3,0
04LH07 Iherzolite	72,6 16,2 9,3 1,8	05LA5 Iherzolite	45,5 28,5 22,7 3,3 2,1 06LF-20	websterite 5,0 46,5 38,5 10,0 1,6 0,1,6 06LD8 harzburgite 76,0 21,0 21,0 2,0 1,8
04LH815 lherzolite	61,6 20,8 14,9 2,7 2,0	05LA4 harzburgite	79,6 17,9 1,9 0,6 2,0 06LF-25	Ilherzolite 65,5 19,0 13,0 2,5 1,9 06LD6 harzburgite 19,0 19,0 2,0 1,0
04LH04 lherzolite	59,9 26,3 11,7 2,1 2,1	05LA3 harzburgite l	75,3 20,8 2,2 1,7 2,1 2,1 06LF-16	Iherzolite \$1,0 \$1,0 \$1,0 \$1,0 \$1,0 \$1,0 \$1,0 \$1,0 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,7 \$1,0 \$1,0 \$1,6 \$1,0 \$1,6 \$1,6
	% olivine % Opx % Cpx % Spl <i>error</i>		% olivine % Opx % Cpx % Spl <i>error</i>	% olivine % Opx % Cpx % Spl error % Olivine % Spl

Table 6 - Modal compositions of Lherz peridotites

Table / - REE clinopyroxenes concentrations (ppm	Table 7 -	• REE clinopyroxenes concentrations (ppm)
--	-----------	---------------------------------------	------

05le3 Iherz	150m	150087	66,4	3821,6	258,5	5918,9	16,6	0,021	61,3	19,0	28,7	0,106	0,033	0,069	0,915	3,51	0,64	3,93	1,64	0,700	2,47	0,450	3,43	0,727	2,26	0,321	2,19	0,295	0,985	0,014	0,206	0,021	0,042
05le2 Iherz	150m	152875	70,4	3918,8	275,7	5983,9	17,4	0,036	61,3	19,2	27,4	0,152		0,063	0,902	3,33	0,65	3,89	1,61	0,684	2,53	0,462	3,58	0,752	2,17	0,327	2,12	0,309	0,958	0,018	0,265	0,020	,
05le1 Iherz	150m	148872	66,3	4137,6	263,7	5549,3	17,2	0,053	56,9	20,3	30,1	0,150	0,024	0,082	0,649	2,74	0,604	3,97	1,76	0,728	2,65	0,478	3,65	0,782	2,27	0,335	2,28	0,301	1,01	0,011	0,136	0,030	0,041
0513 Iherz	150m	150445	74,6	3846,3	268,1	6130,8	17,7	0,037	60.5	20,5	30,5	0,116		0,053	0,745	3,03	0,631	3,82	1,64	0,676	2,59	0,475	3,50	0,777	2,31	0,333	2,33	0,323	1,01	0,009	0,127	0,024	0,111
05la15 lherz	5m	149730	66,8	4275,9	250,5	5221,3	17,6	0,036	86,2	20,2	32,0	0,162	0,027	0,043	1,41	4,83	0,867	5,01	1,84	0,785	2,64	0,487	3,66	0,795	2,29	0,334	2,26	0,322	1,01	0,024	0,164	0,079	0,029
051a8 Iherz	5m 1,47	145299	64,6	4131,7	250,4	5469,0	17,2	0,020	79,4	20,0	31,4	0,126		0,050	1,17	4,29	0,751	4,42	1,751	0,733	2,67	0,477	3,60	0,783	2,31	0,340	2,22	0,325	1,04	0,017	0,369	0,052	0,067
051a6 Iherz	3m 0,796	144870	68,4	4511,5	259,4	5337,2	16,8	0,065	78,4	20,7	33,4	0,199	0,061	0,046	1,73	5,67	0,971	5,49	1,93	0,777	2,87	0,499	3,81	0,818	2,36	0,355	2,35	0,337	1,01	0,034	0,232	0, 192	0,055
05la5 Iherz	1.5m 1.48	147872	61,9	4235,2	265,4	4602,2	18,5	0,050	61,9	20,5	25,5	0,040	0,051	0,054	0,655	2,92	0,592	3,80	1,70	0,725	2,63	0,497	3,71	0,798	2,37	0,342	2,30	0,327	0,852	0,004	0,198	0,005	0,054
05la4 harz	5cm 2,00	147800	93,4	2217,1	251,6	10609,7	33,1	0,050	85,4	11,3	25,8	0,297	0,030	0,067	0,913	3,36	0,642	3,97	1,37	0,591	1,84	0,309	2,19	0,453	1,29	0,186	1,21	0,175	0,699	0,063	0,262	0,013	0,037
051a3 harz	10cm 2,66	118855	62,9	1397,7	183,3	9117,4	13,7	0,017	60,6	8,39	19,8	0,207	0,006	0,020	0,625	2,33	0,461	2,98	1,134	0,437	1,39	0,232	1,59	0,330	0,924	0,126	0,875	0,120	0,590	0,052	0,216	0,006	0,012
05la12 harz	10cm	118283	89,2	1967,9	244,1	9235,9	22,3	0,043	74,9	9,51	21,8	0,488		0,420	1,53	4,03	0,598	3,50	1, 14	0,459	1,57	0,252	1,81	0,384	1,11	0,169	1,09	0,159	0,520	0,059	0,158	0,051	0,086
05la9 harz	1m 7,14	159164	63,9	228,1	217,4	9534,0	19,3	0,056	15,3	2,43	3,52	0,341	0,077	0,049	0,761	2,27	0,303	1,12	0,195	0,070	0,210	0,040	0,329	0,091	0,346	0,057	0,467	0,074	0,111	0,044	0, 193	0,138	0,093
05la16 harz	In I	117783	76,4	1303,4	181,7	9610,4	17,2	0,029	82,3	9,51	39,29	0,266		0,093	4,90	10,780	1,41	6,35	1,45	0,433	1,59	0,262	1,78	0,375	1,06	0,151	66660	0,139	0,875	0,063	0,442	0,293	0,034
05la1 harz	3.5m 2.52	150359	67,8	1555,3	200,8	9220,7	18,0	0,036	62,8	13,08	19,74	0,181	0,091	1,09	0,402	1,450	0,285	1,82	0,897	0,384	1,503	0,300	2,23	0,470	1,44	0,199	1,23	0,175	0,553	0,012	0,292	0,014	0,067
051a2 harz	4.5m 5.36	151874	76,6	381,1	228,2	11049,8	20,3	0,127	19,7	7,21	6,35	0,182	0,097	0,148	0,379	1,22	0,232	1,40	0,515	0,214	0,691	0,132	1,12	0,249	0,892	0,143	0,978	0,147	0,103	0,012	0,217	0,015	0,042
051d4 harz	>15m	166668	75,7	322,7	199,9	7132,7	19,6	0,027	33,1	1,56	4,63	0,164	0,014	0,038	0,595	1,49	0,244	1,265	0,353	0,104	0,345	0,043	0,300	0,061	0,219	0,041	0,307	0,050	0,133	0,023	0,089	0,059	0,054
05ld1 harz	>15m	164095	118,1	367,9	227,9	7397,6	19,4	0,057	59,6	2,06	4,58	0,159	0,044	0,051	1,29	3,12	0,396	1,728	0,414	0,143	0,369	0,052	0,350	0,075	0,263	0,055	0,430	0,069	0,049	0,030	0,229	0,038	0,034
Sample	dist. from (Li	Ca	Sc	Ti	V	c	Co	Rb	Sr	Υ	Zr	Nb	Cs	Ba	La	Ce	Pr	PN	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Hf	Та	Pb	Th	N

Sample	04LH12	04LH11	04LH09	04LH08	04LH07	04LH04
-	harz	harz	lherz	lherz	lherz	lherz
dist. from c	1.5m	lm	10 cm	10cm	80cm	1.5m
Li	3,67	2,29	0,930	0,985	1,10	1,69
Be	0,168	0,169	0,190	0,172	0,124	0,077
В	1,38	1,13	1,26	1,34	1,50	1,72
Mg	150721	114975	108290	116185	102884	118125
Si	260954	239749	233712	229384	224733	240954
L	36,4	39,6	55,3	52,7	52,7	56,4
K	14,8					
Ca	149780	150294	149558	150945	151631	153589
Sc	139,4	120,8	107,9	90,5	87,9	73,5
Ti	747,1	1319,4	4042,2	5125,4	4308,8	5078, 6
^	297,6	282,6	293,6	249,4	273,2	258,1
C	12595,8	12741,5	10389,8	8803,6	7761,5	5095,5
ïZ	630,8	240,6	290,4	351,3	265,3	335,7
Cu	4,61	0,410	0,427	1,54	0,385	0,380
Cu	4,99	0,330	0,404	1,61	0,356	0,431
Zn	13,1	6,1	5,8	8,5	8,5	7,9
Rb			0,010	0,006	0,007	0,020
Sr	106,8	111,3	97,6	90,8	70,5	50,3
Υ	6,73	69'6	16,5	18,3	21,2	25,8
Zr	25,1	44,1	47,9	51,1	40,8	39,2
qN	1,67	2,04	0,307	0,233	1,00	0,275
Mo	0,069	0,055	•		0,026	0,025
Cs						0,002
Ba	0,055	0,035	0,433	0,045	0,032	0,123
La	6,78	6,99	2,33	1,59	1,45	0,653
Ce	11,3	13,4	7,6	5,6	3,8	2,7
Pr	1,25	1,41	1,28	1, 14	0,766	0,673
PN	5,47	5,52	6,98	7,24	5,16	5,02
Sm	1,36	1,31	2,27	2,71	2,17	2,29
Eu	0,431	0,456	0,887	1,037	0,852	0,911
Gd	1,37	1,50	2,72	3,49	3,20	3,66
Tb	0,203	0,245	0,454	0,560	0,553	0,649
Dy	1,33	1,74	3,14	3,75	3,99	4,75
Ho	0,262	0,369	0,642	0,729	0,824	1,000
Er	0,768	1,11	1,83	1,99	2,33	2,89
Yb	0,827	1,17	1,77	1,76	2,14	2,71
Lu	0,125	0,175	0,255	0,246	0,299	0,378
Hf	0,439	0,868	1,50	1,601	1,33	1,36
Ta	0,541	0,629	0,055	0,040	0,027	0,013
Pb	0,525	0,197	0,224	0,152	0,159	0,089
Th	0,339	0,254	0,081	0,113	0,131	0,091
D	0,071	0,067	0,026	0,030	0,046	0,023

061111 11,5m 11,5m 11,5m 11,5m 12,50656 1502995 1502995 160,1 14102,3 18,1 19,1 061.12 16.53 16.53 16.53 14.9989 14.9989 14.9989 14.9989 14.9989 14.9989 14.9989 14.57 14.57 15.7 14.998 15.7 17.9 17.7 17.9 17.7 17.7 17.9 17.7 17.9 17.7 06113 0.800 0.800 0.800 0.80056 0.80056 0.80056 0.024 0.0249 0.0250 0.0249 0.0249 0.0250 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0250 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0249 0.0250 0.0249 0.0250 0.0249 0.0249 0.0250 0.0249 0.0249 0.0250 0.0249 0.0250 0.0249 0.0250 0.0249 0.0249 0.0249 0.0250 0.0249 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0210 06L111 0.570 0.570 0.570 0.570 0.570 0.570 0.150 0.110 0.110 0.110 0.114 0 06Ll9 lherz 3.0cm 3.0cm 3.0cm 3.0cm 3.0cm 3.0cm 1.1772 3.66457 1.19726 3.21 9.0, 3.87 0.0256 1.17,2 3.68 3.30,1 1.7,2 3.68 3.20,1 1.7,2 3.66 3.20,1 1.7,2 3.66 0.0256 1.17,2 3.66 0.0256 1.17,2 1.2,2 1.2 061110a harz 16102 16102 16102 16102 16102 162087 115,53 115,53 115,53 115,53 115,53 115,53 115,53 11,55 11, 06LJ7 2m 2m 16312 16312 16322 16322 16322 1779 1779 22290 22290 2229 2226 2223 22177 2216 2223 2226 2223 2275 2 billi6 bi ample

06LF20 webst	100m 4,18	37724	144142	150087	70,1	3023,2	270,9	2265,9	16,0	264,7	3,63	3,73	0,072	73,8	75,1	16,4	20,5	0,058	0,015	0,328	0,798	3,35	0,635	3,65	1,46	0,685	2,17	0,402	2,997	0,653	1,81	0,265	1,80	0,238	0,660	0,010	0,090	0,010 0.003	~~~~~
06LF17 webst	100m 2,76	35475	143657	150087	58,5	2939,4	260,0	4288,9	14,9	247,9	3,59	3,62	0,276	80,9	82,0	15,0	21,2	0,071	0,027	1,050	0,946	3,78	0,728	4,11	1,48	0,666	1,98	0,366	2,607	0,579	1,62	0,239	1,62	0,234	0,648	0,015	0,212	0,013 0.012	417,0
06LF8 webst	30m 2,76	34185	143170	150087	57,3	3913,7	278,5	4368,3	17,5	304,9	4,22	4,38	0,048	43,3	43,6	22,3	28,6	0,074	0,011	0,262	0,508	2,50	0,525	3,14	1,65	0,757	2,57	0,526	3,960	0,888	2,47	0,355	2,34	0,317	1,02	0,009	0,128	0,008 0.049	11000
06LF3W webst	10m 1.59	35274	143241	150087	58,5	3600,7	284,9	3983,3	15,4	300,7	4,32	4,28	,	68,2	69,0	20,7	36,3	0,103			0,896	4,18	0,866	5,10	2,05	0,863	2,89	0,515	3,710	0,807	2,29	0,320	2,19	0,313	1,22	0,018	0,184	0,017	11160
06LF16 lherz	80m 1,70	33178	151236	21	56,2	3196,1	266,0	5630,5	15,6	259,0	3,48	3,55		101.5	101,3	17,4	29,8	0,498	0,015	0,315	1,65	5,75	0,976	5,03	1,76	0,772	2,33	0,428	3,123	0,683	1,92	0,269	1,84	0,257	0,929	0,028	0,230	0,069 0.033	~~~~
06LF15 lherz	80m 1,01	32244	249104 151291	21	59,1	2863,3	270,1	5699,7	18,0	275,0	3,62	3,71		64,6	63,9	16,2	25,6	0,117			0,736	3,20	0,648	3,77	1,52	0,659	2,11	0,400	2,875	0,649	1,78	0,259	1,76	0,245	0,797	0,014	0,134	0,020 0,007	10060
06LF11 lherz	80m 0.81	34709	241/48 144492	150087	62,9	3805,0	266,3	4358,9	15,3	229,2	3,50	3,51		66,0	68,7	21,4	35,5	0,093			0,825	3,74	0,782	4,56	1,83	0,801	2,74	0.510	3,683	0,815	2,29	0,334	2,18	0,319	1,09	0,009	0,101	0,007 0.006	~~~~
06LF23 lherz	70m 2.32	40778	145323	150087	60,4	3422,9	300,9	3289,0	19,7	317,0	4,76	4,94	0,057	61,9	63,1	23,4	28,0	0,065	0,025	0,201	0,972	3,90	0,751	4,09	1,61	0,727	2,50	0,502	3,930	0,898	2,68	0,388	2,64	0,369	0,881	0,012	0,099	0,014 0.004	1.000
06LF9 Iherz	50m 1,04	38799	144842	150087	60,4	3508,3	266,8	4803,4	16,4	255,8	4,12	4,26		8,68	92,2	21,0	39,7	0,308		0,032	3,22	10,05	1,63	7,62	2,25	0,864	2,78	0,503	3,633	0,817	2,30	0,333	2,17	0,314	1,04	0,048	0,271	0,331	1000
06LF26W webst	30m 1.69	35569	141680	150087	58,7	3237,7	295,8	2591,2	15,2	279,3	3,97	4,10	0,033	6'66	101,3	19,2	24,8	0,868		0,123	4,94	8,44	0,961	4,22	1,46	0,678	2,16	0,427	3,227	0,756	2,22	0,321	2,23	0,319	0,630	0,034	0,219	0,775 0.092	41000
06LF26L lherz	30m 1.25	33479	144178	150087	70,4	3267,1	288,6	6161,1	17,3	244,4	3,67	3,67	,	66,4	67,1	18,8	33,6	0,233			0,961	3,59	0,676	3,97	1,50	0,658	2,12	0,400	3,090	0,715	2,05	0,321	2,20	0,307	1,06	0,028	0,077	0,029 0.014	1.176
06LF25 lherz	20m 1,24	34373	143231	150087	6'09	3648,3	286,0	5122,6	15,7	244,5	3,73	3,88	0,031	63,7	64,4	18,9	31,8	0, 193	0,006		0,653	3,09	0,667	4,13	1,77	0,779	2,47	0,471	3,330	0,743	2,11	0,301	2,07	0,292	1,03	0,005	0,168	0,039 0.013	~T~^
06LF3L lherz	4m 1,43	35890	142731	150087	59,5	4120,3	286,1	4095,7	16,2	257,8	4,01	4,20		6'.0	69,4	20,9	33,8	0,082			0,931	4,06	0,842	4,84	1,91	0,847	2,70	0,493	3,627	0,804	2,28	0,323	2,22	0,310	1,07	0,014	0,122	0,013	~~~~
06LF27 harz	4m 2,80	19696	143913	150087	75,7	1920,0	246,7	7717,3	16,2	287,9	1,98	1,93	,	46,4	47,6	14,0	24,6	0,348		0,040	0,734	1,87	0,407	3,04	1,52	0,643	2,12	0,390	2,659	0,564	1,53	0,201	1,21	0,160	1,00	0,026	0,169	0,029 0.014	1.1767
06LF4 harz	3m 2,45	21199	141740	150087	71,2	1458,4	266,0	7985,3	19,4	290,6	2,28	2,36		49,0	49,8	11,1	20,8	0,157			0,522	2,20	0,465	2,80	1,16	0,497	1,46	0,275	1,972	0,430	1,22	0,175	1,16	0,161	0,432	0,018	0,065	0,008 0.005	~~~~~
06L117 Iherz	>15m 1,12	30332	150300	150087	58,8	3332,3	282,0	4836,7	16,8	263,9	3,43	3,51	0,028	52,3	52,9	16,9	28,8	0,078		0,051	0,847	3,79	0,732	3,21	1,65	0,734	2,25	0,411	3,055	0,662	1,87	0,272	1,87	0,265	0,904	0,011	0,201	0,006	~~~~
06L112 Iherz	2m 1,10	36236	149986	150087	62,9	4416,0	284,2	5686,9	17,0	258,8	4,20	4,22		49,7	50,1	22,6	42,2	0,110			0,460	2,67	0,674	4,61	2,09	0,875	3,09	0,563	4,050	0,879	2,43	0,339	2,32	0,329	1,41		0,155	0,011	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
06LJ14 Iherz	$1,8 \\ 0,87$	31868	150921	150087	63,4	4032,8	298,8	4463,2	15,6	245,8	3,72	3,93	,	70,3	70,8	19,5	28,9	0,457			1,75	5,89	0,927	5,16	2,03	0,934	2,60	0.519	3,54	0,779	2,18	0,317	2,31	0,317	0,961	0,053	0,117	0,068 0.036	~~~~~
Sample	dist. from (Li	AI 5:	SI Ca42	Ca43	Sc	Ti	>	Cr	Co	Ni	Ga69	Ga71	Rb	Sr86	Sr88	Υ	Zr	qN	Cs	Ba	La	Ce	Pr	PN	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Чb	Lu	Hf	Ta	Pb	4 =	5

Table 7: REE clinopyroxenes concentrations (ppm). At least 5 clinopyroxenes have been measured in every thin section. The table presents the average of REE concentrations in every thin section.

05le3 150m 150m 150m 150m 2,49 7,71 8,04 8,04 8,04 8,04 8,04 8,04 8,05 9,00 9,00 9,00 7,73	06L15A harz 1,3m 1,3m 22,42 19,97 19,97 15,25 5,35 5,35 5,35 5,35 3,49 3,49 3,74 4,18 3,74 4,18 4,25 4,25	06LF23 Iherz 70m 7,0m 5,48 5,75 5,75 5,75 5,75 8,38 8,38 8,18 8,68 8,18 8,68 10,79 10,55 1
05le2 11berz 150m 150m 2,46 5,47 5,47 5,47 6,547 7,96 6,547 7,96 8,26 8,28 8,28 8,28 8,10 8,17 8,10	06LI5B harz 1,5m 2,1,31 2,05 2,05 1,31 5,70 6,10 6,10 6,10 6,10 5,70 5,70 5,70 5,70 5,70 5,70 5,70 5,7	06LF9 1herz 50m 8,78 8,78 9,74 9,74 9,74 9,55 9,57 9,56 9,53 9,53 8,75 8,25
05lel 116mz 116m 1177 1177 1177 1177 1177 1177 1177	06L110A harz 1m 10,17 5,98 5,98 5,98 5,98 5,98 2,70 2,10 1,76 1,79 1,79 1,79 1,79 2,10 2,10 2,11 2,11 2,11 2,11 2,11	06LF26W webst 30m 13,47 13,47 8,32 5,93 5,93 6,30 7,79 7,79 7,79 7,79 8,47 8,47 8,48 8,47 8,90 8,90 8,90 8,38
0513 150m 150m 150m 150m 1,50m 2,33 2,33 2,33 8,22 8,22 9,09 9,29 9,29 9,29 8,39	06L110B harz 1,3m 29,45 29,45 28,47 24,14 16,68 8,16 8,16 8,16 8,16 3,27 3,27 3,27 3,27 3,12 2,98 3,36 3,36	06LF26L Iherz 30m 3,0m 2,62 2,59 4,94 6,48 6,48 6,92 6,92 6,92 8,11 8,11 8,11 8,10 8,10 8,10 8,10 8,10
051a15 1herz 5,04 5,04 5,04 7,05 9,33 8,64 9,59 9,59 9,21 9,21 9,21 9,21 9,21 8,45	06LJ6 harz 1,8m 1,8m 19,56 19,56 8,53 8,86 6,53 3,54 4,44 4,44 4,44 2,81 2,95 2,95 2,95 2,95 2,95	06LF25 Iherz 20m 1,78 2,87 2,87 2,87 2,87 2,87 8,96 8,74 8,73 8,73 8,73 8,73 8,73 8,73 8,73 8,73
051a8 11herz 5,48 5,48 8,73 8,73 8,73 8,73 8,73 9,44 9,20 9,20 9,27 9,56 8,53 8,53	061.113 harz 1,9m 1,96 11,96 7,34 4,44 7,34 1,92 1,92 1,92 1,76 1,76 1,76 1,76 1,77 1,76 1,77 2,22 2,22 2,22 2,22 2,25 2,25	06LF3L Iherz 4m 2,54 4,12 6,81 6,81 6,81 9,73 8,82 9,52 9,45 9,45 9,45 9,45 9,45 8,20 8,24 8,12 8,12
051a6 1herz 3.m 5.93 5.93 8.8,33 9.99 9.96 9.96 9.96 9.96 9.96 9.96 9.	06L17 harz 2m 7,29 7,29 7,29 2,53 2,53 2,53 1,92 1,92 1,92 1,92 1,92 1,92 1,92 1,92	06LF27 harz 4m 2,00 1,96 1,96 6,60 6,72 6,91 6,53 6,53 6,53 6,64 4,19
051a5 11.5m 1.75 1.75 3.05 5.34 7.34 8.57 9.74 9.50 9.50 9.50 9.50 9.50 9.50	06L18 harz 2,5m 8,67 11,00 11,50 9,16 8,92 6,31 5,01 4,47 5,01 4,47 5,01 4,16 4,22 3,93 3,98	06LF4 harz 3m 3,42 1,42 2,30 5,02 5,17 5,17 5,17 5,17 4,76 4,89 4,89 4,22
051a4 harz 5,58 3,51 6,80 6,03 5,75 5,75 5,75 5,75 5,75 5,75 5,75 5,7	061.115 harz 1.5m 0.51 0.53 0.25 0.25 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28	06L117 lherz >15m 2,31 3,34 5,93 5,93 7,14 8,44 7,14 8,44 7,18 8,01 7,78 8,01 7,55 6,96 6,96
05la3 harz 1.700 1.701 2.43 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.20	061.116 harz 15m 7,96 10,42 110,42 11,23 9,80 6,82 4,53 3,17 1,92 1,82 1,82 1,82 1,82 1,82	06L/12 1herz 2m 2,79 4,92 6,48 6,48 9,05 10,06 10,06 10,09 9,77 9,77 9,52 8,63 8,63
05la12 harz 10cm 4,18 4,21 4,23 5,28 5,28 5,12 5,28 5,12 4,75 4,75 4,75 4,75 4,38 4,18	061.D6 harz >15m 0,30 0,34 0,34 0,27 0,28 0,29 0,29 0,29 0,29 0,28 0,29 0,28 0,28 0,27 0,28 0,79 1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,05	06LI14 llherz 1,8 3,70 5,54 5,54 5,54 5,54 6,67 6,70 6,92 6,70 6,82 6,70 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,71 6,82 6,53 6,5
05la9 harz 10 2,37 2,21 1,57 0,85 0,88 0,88 0,69 0,69 0,69 0,69 0,69 0,69 1,39 1,59 1,59 1,59	04LH04 lherz 1.5m 1.78 2.82 2.82 2.82 4.91 7.05 9.89 9.89 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 12.48 11.75 12.48 11.75 12.48 11.75 12.48 11.75 12.48 11.75 12.65 12.75 12.65 12.55 12.65 12.55 12	06L11 11,5m 11,5m 1,49 1,26 5,24 6,51 8,49 10,08 9,04 9,04 9,04 9,45 9,04 9,45 9,04 8,11
051a16 harz 13.34 11.26 10.32 8.93 8.93 8.93 8.93 6.92 6.97 6.25 4.40 4.25 4.25 4.03 3.64	04LH07 Iherz 80cm 3.98 5.59 9.79 9.79 9.79 9.69 9.69 9.33 9.63 9.33 9.63 7.86	06L12 11,3m 3,74 5,74 5,78 9,06 9,06 9,83 8,25 8,23 8,23 8,23 8,23 8,23 8,23 6,26 6,26
05lal harz 3.5m 1.02 1.52 8.89 5.84 5.84 5.84 5.84 5.84 5.84 5.60 4.97 4.97	041.H08 lherz 10cm 4.34 5.84 5.84 8.29 10,18 11,73 11,73 11,73 11,73 11,73 7,99 8.56 7,99 6.47 7,09 6.47 6.47	06Ll3 1herz 1m 1m 9,34 9,71 11,15 9,71 10,70 9,71 11,15 9,71 10,70 9,71 10,70 6,83 6,83 6,33 6,33 6,31 6,33
051a2 harz 1,5m 1,27 1,69 1,97 2,23 2,28 2,28 2,28 2,28 2,28 2,28 2,28	04LH09 Iherz 10cm 7,03 8,48 10,13 11,27 11,60 9,80 8,42 9,80 8,42 6,99 6,99 6,99 6,61 6,22	06L111 1herz 70cm 7,0cm 7,03 1,77 11,77 16,22 16,22 15,70 15,70 15,70 15,70 11,94 11,94 11,94 11,03 10,35 11,07 10,35 11,07 10,35 11,07 10,07 10,0
051d4 harz >1,55m 1,56 1,78 1,78 1,78 1,78 1,78 1,78 1,78 0,79 0,79 0,77 0,72 0,72 0,72 0,72 1,14 1,24 1,24	04LH11 harz 1m 19,04 19,04 13,97 10,31 7,76 5,65 5,25 5,25 5,25 4,88 4,56 4,56 4,56 4,56 4,56 4,56 4,56 4,56	06LI9 1lherz 3.0cm 5.5,80 9.74 9.44 9.44 7.61 7.61 7.52 7.52 6.27 6,27
051d1 harz >.15m 3.26 3.26 3.26 2.43 1.79 1.64 1.21 0.89 0.92 0.88 0.92 0.88 1.75 1.75 1.75 1.75 1.77 1.77 1.77 1.77	04LH12 harz 1.5m 1.5m 16,07 16,07 16,07 7,01 5,57 7,01 5,57 3,28 3,29 2,99 2,99 2,99 2,99 3,11	06LJ4 harz 30cm 10,37 14,55 14,55 14,55 17,23 17,23 8,12 2,48 8,12 7,48 8,12 7,48 8,12 6,93 6,30 6,30
Sample dist. from contact La Pr Ce Ca Ca Gd Ca Eu Th Yb Yb Lu	Sample Sample Gd dist. from contact Lu Tm T25	Sample dist. from contact La Ce Ce Ce Eu Cd Cd Cd Fu Dy Ho Er Tm Yb

Table 8 - REE clinopyroxenes concentrations normalized to chondrites

Sample	06LF11	06LF15	06LF16	06LF3W	06LF8	06LF17	06LF20
	lherz	lherz	lherz	webst	webst	webst	webst
dist. from contact	80m	80m	80m	10m	30m	100m	100m
La	2,25	2,00	4,49	2,44	1,38	2,58	2,17
Ce	3,90	3,35	6,01	4,37	2,61	3,95	3,50
Pr	5,71	4,73	7,13	6,32	3,83	5,31	4,64
Nd	6,41	5,30	7,07	7,17	4,43	5,77	5,13
Sm	7,90	6,60	7,61	8,89	7,16	6,39	6,32
Eu	9,21	7,57	8,87	9,92	8,70	7,65	7,87
Gd	8,95	6,90	7,64	9,45	8,41	6,47	7,11
dT	8,79	6,90	7,39	8,88	90'6	6,31	6,94
Dy	9,66	7,55	8,20	9,74	10,39	6,84	7,86
Ho	9,58	7,62	8,03	9,48	10,44	6,81	7,67
Er	9,19	7,13	7,73	9,21	9,91	6,50	7,25
Tm	9,38	7,26	7,55	8,98	96,96	6,70	7,46
Yb	8,81	7,08	7,43	8,84	9,41	6,52	7,28
Lu	8,38	6,42	6,74	8,23	8,32	6,15	6,23

Table 8: REE clinopyroxenes concentrations normalized to chondrites after Sun and McDonough (1989). At least 5 clinopyroxenes have been measured in every thin section. The table presents the average of REE concentrations normalized to chondrites in every thin section

Figure 3 - REE clinopyroxenes concentrations normalized to chondrites

CPX	dist.	Rb	Sr	87 Rb/ 86 Sr	⁸⁷ Sr/ ⁸⁶ Sr		Sm	PN	¹⁴⁷ Sm/ ¹⁴⁴ Nd	143Nd/144Nd		Lu	Ηf	176Lu/ ¹⁷⁷ Hf	JH ₁₂₂ Ht/177	
Spinel lher	zolites															
06LI1	1,5	0,0713	55,22	0,0037	0,702809	\pm 7,6E-06	1,973	4,675	0,2526	$0,51278 \pm$	1, IE-05	0,3153	0,951	0,0471	$0,283029 \pm 2,6E-0$	-09
06LI2	2	0,0297	81,72	0,0011	0,703176	± 6,0E-06	2,094	5,340	0,2348	$0,512796 \pm$	8,8E-06	0,2383	1,491	0,0227	$0,282996 \pm 3,2E-0$	-00
06LI3	-	0,0482	105,60	0,0013	0,70297	\pm 1,2E-05	2,245	7,605	0,1768	$0,512854 \pm$	6,3E-06	0,2160	1,337	0,0229	$0,282996 \pm 4,2E-0$	-00
06L19	0,3	0,0260	113,31	0,0007	0,703133	± 6,7E-06	2,451	8,873	0,1654	$0,512802 \pm$	7,0E-06	0,2287	1,230	0,0264	$0,283019 \pm 2,1E-0$	-00
06LI12	2	0,0966	50,11	0,0056	0,70280	$\pm 1,8E-05$	2,091	4,605	0,2719	0,512822 ±	5,7E-06	0,3288	1,410	0,0331	$0,282926 \pm 5,2E-($	-00
06LI17	50	0,0344	62,85	0,0016	0,702562	\pm 9,0E-06	1,649	4,213	0,2344	0,513087 ±	6,0E-06	0,2653	0,904	0,0417	$0,283289 \pm 7,8E-0$	-00
Harzburgit	es															
06LI4	0,3	0,0286	128,63	0,0006	0,702981	$\pm 2,5E-06$	2,920	11,115	0,1573	$0,512847 \pm$	7, 2E-06	0,2400	1,296	0,0263	$0,283159 \pm 6,4E-($	-00
06LI5a	1,3	0,0207	144,63	0,0004	0,702950	$\pm 3,2E-06$	1,243	6,810	0,1093	$0.512706 \pm$	6, 6E-06	0,1599	0,566	0,0401	$0,282832 \pm 7,7E-0$	-00
06LI5b	1,5	0,0171	168,24	0,0003	0,702901	$\pm 3,0E-06$	1,457	8,943	0,0976	$0,512724 \pm$	2,9E-06	0,1436	0,601	0,0339	$0,283492 \pm 5,6E-($	-00
06LI6	1,8	0,0184	132,29	0,0004	0,703276	$\pm 3,0E-06$	1,508	6,298	0,1434	$0,512551 \pm$	2, 4E-06	0,1122	0,626	0,0254	$0,283051 \pm 4,3E-0$	-00
06LI7	7	0,0236	77,92	0,000	0,702875	\pm 3,0E-06	0,646	2,511	0,1540	$0,512818 \pm$	3, IE-06	0,0864	0,318	0,0386	$0,284067 \pm 8,7E-0$	-00
06LI8	2,5	0,0265	127,40	0,0006	0,703024	$\pm 2,8E-06$	2,064	7,973	0,1550	0,512788 ±	2,9E-06	0,1469	0,367	0,0569	$0,283434 \pm 3,3E-0$	-00
06LI10a	1	0,0160	62,36	0,0007	0,702923	$\pm 3,9E-06$	0,625	2,034	0,1839	0,512665 ±	2,5E-06	0,0805	0,283	0,0405	$0,283323 \pm 3,6E-0$	-00
06L110b	1,3	0,0396	174,77	0,0007	0,702963	$\pm 5,2E-06$	1,884	11,863	0,0951	0,512715 ±	2,7E-06	0,1280	1,172	0,0155	$0,283108 \pm 3,4E-0$	-00
06LI15	15	0,0330	14,63	0,0065	0,703046	$\pm 2,6E-06$	0,134	0,516	0,2805	0,512643 ±	8,7E-06	0,0484	0,080	0,0862	$0,28883 \pm 6,3E-0$	-02
06LI16	15	0,0585	181,54	0,0009	0,702944	$\pm 3,0E-06$	1,627	6,965	0,1398	0,512763 ±	3,5E-06	0,0683	0,112	0,0866	$0,28546 \pm 1,6E-0$	-02
WR	dist.	Rb	Sr	87 Rb/ 86 Sr	⁸⁷ Sr/ ⁸⁶ Sr		Sm	PN	¹⁴⁷ Sm/ ¹⁴⁴ Nd	143Nd/ ¹⁴⁴ Nd		Lu	Ηf	176Lu/ ¹⁷⁷ Hf	JH ₁₂₂ HU	
Spinel lher	zolites															
06L11	1,5	0,13	12,14	0,0305	0,70355	\pm 1,0E-05	0,45	1,02	0,2666	$0,513040 \pm$	6,4E-06	0,09	0,28	0,0448	$0,28307 \pm 1,3E-0$	-05
06L.12	7	0,03	10,99	0,0085	0,703610	$\pm 3,0E-06$	0,35	0, 87	0,2426	0,512907 ±	7, 4E-06	0,05	0,22	0,0312	$0,28295 \pm 1,4E-0$	-05
06LI3	1					++				H					Ŧ	
6IT90	0,3	0,02	2,59	0,0273	0,704837	$\pm 2,9E-06$	0,07	0,23	0,18	$0,51283 \pm$	2,0E-05	0,01	0,05	0,0351	$0,28304 \pm 2,5E-($	-05
06LI12	2	0,06	6,81	0,0265	0,704055	± 2,3E-06	0,23	0,48	0,2874	$0,51294 \pm$	1, 4E-05				Ŧ	
06LI17	50	0,06	7,79	0,0209	0,702768	$\pm 3,5E-06$	0,23	0,55	0,2525	0,5129 ±	1,5E-04				Ŧ	
Harzburgite	es															
06LI4	0,3	0,02	2,27	0,0192	0,70403	\pm 4, IE-05				+		0,01	0,03	0,0428	$0,28295 \pm 3,8E-($	-05
06LI5a	1,3	0,02	2,42	0,0253	0,70515	$\pm 1, 4E-05$				+1					Ŧ	
06LI5b	1,5					++				H					Ŧ	
06LI6	1,8	0,04	2,25	0,056	0,704973	\pm 9,0E-06	0,03	0,12	0,1395	$0,5126 \pm$	1,0E-04				Ħ	
06LI7	7					Ŧ				+					Ŧ	
06LI8	2,5					+				+					Ŧ	
06LI10a	-	0,05	2,20	0,0691	0,704825	± 8,9E-06				Ŧ					Ŧ	
06LI15	15					++				+					Ŧ	
06LI16	15	0,01	4,43	0,0092	0,703638	± 6,4E-06				H					Ŧ	

Table 9 - Hf, Nd and Sr isotopic ratios of the Lherz peridotites

Summary of chemical techniques and methods

Preparation of Clinopyroxenes separates

We sampled 16 peridotites in the Lherz massif (Pyrenees, France) from where clinopyroxenes were separated. The rocks have been cut using diamond saw. Once the rims had been removed, the interiors were crushed in a steel crusher, carefully cleaned after each sample to avoid cross-contamination. Aliquots of the crushed samples were ground in agate mortars to produce whole-rocks powders. Another aliquot was sieved. Only fractions of $< 200\mu$ m, $< 250\mu$ m and $< 350\mu$ m were used later on. These fractions have been washed with pure water to remove dust and dried in an oven. Then the minerals were passed through a Frantz magnetic separator, which allows the separation of clinopyroxene from orthopyroxene, olivine and spinel (from the less to the most magnetic mineral). The resulting clinopyroxene-enriched fraction was still mixed with some orthopyroxenes and clinopyroxene aggregates. Pure clinopyroxenes grains, devoid of inclusion and joint grains were carefully handpicked under a binocular microscope. The final 16 clinopyroxenes fractions have been leached in diluted HCl prior to dissolution to remove possible contamination from grain surfaces and cracks. The individual weights of these fractions range between 102 to 222mg.

Hf, Nd, Sr chemical separation

*Weight the clinopyroxene separates in clean beakers, or weight between 150 to 200mg of the sample, if whole-rock powder. Add diluted HNO_3 to the powder to avoid static electricity. Put on the hot plate, lids open.

* Sample dissolution

All acids are Teflon distilled except Hydrofluoric acid where the cleanest grade is purchased.

- Samples were then initially dissolved in 2ml of 27N HF (merck, suprapur grade) and 2ml of HNO_3 (Ajax). The beakers were closed and placed on the hotplate at150°C overnight. The samples were then dried down and the above step was repeated.

- When dry, add 10-15 drops of HCLO₄ (merck suprapur grade) to the samples. The HCLO₄ was then dried down at 150°C for a few hours and then the temperature was slowly increased to 200°C. Once all of the HCLO₄ evaporated, 4ml of 6N HCl (merck) and 200µl of H₂O₂ was added and refluxed for 2 hours at 150°C. This step reduces the Cr⁶⁺ to Cr³⁺. The Cr³⁺ passes through independently of Hf whereas Cr⁶⁺ does not. Also, Cr⁶⁺ sticks to the anion exchange resin and causes a large amount of the Hf to be lost as it damages the resin and competes with complexation sites⁵².

The samples are then dried down at 150°C and then one more dissolution in 6N HCl is carried out, the samples are then dried and 1.4ml of 2.5N HCl / 0.1N HF is added to the samples. Samples are transferred to 2ml microcentrifuge tubes and centrifuged to remove and precipitate prior to column separation.

*Columns (1) – Collect Hf, Sr, Nd

*Hf collection - 5.4ml.

- Samples were loaded into Teflon columns containing Biorad® AG50W-X8 (200-400mesh) cation exchange resin with a bed height of 18cm and an I.D of 6.4mm.
- Once the sample eluted, 1ml of 2.5N HCl/ 0.1N HF was added. This step was carried out a total of 4 times.
- The samples were then dried down and prepared for the second Hf separation column as the Hf in this step was eluted with the bulk of the sample matrix.
- Before Sr could be collected, 21.5ml of 2.5N HCl was added, to remove elements such as Rb and Ca.

*Sr collection – 8ml.

- Strontium was then collected by adding 8ml of 2.5N HCl.

Samples were then dried and had a drop of concentrated HNO_3 added to remove any organics from the resin.

- The dried sample was then ready for analysis on the TIMS instrument.
- Before Nd could be collected, 7ml of 6N HCl was added to elute Lu.

*Nd collection -

Nd was then eluted by adding a 6-7ml of 6N HCl.

- Samples are then dried at 150 $^\circ$ C and then a drop of concentrated HNO₃ is added to remove organics derived from the resin.

This fraction also contains many other REE such as Ce and Sm which then need to be removed by a subsequent column.

* Cleaning columns (1)

- 15ml of 4N HF.

- Backflush with 25ml MQ water.

- 10ml of 6N HCl.

- 15ml of 2.5NHCl/0.1N HF. To recondition the columns.
- 5ml of 2.5N HCl/0.1N HF before loading next sample.

*Columns (2) – Further purification of the Hf fraction.

- The H₂O₂ and 6NHCl step as described above is repeated to reduce chromium.

- The dried down samples then had 1.4ml of 0.5N HCl/0.5N HF ready for the column.

*Cleaning columns (2)

- Full reservoir of 4N HF.
- Full reservoir of 6N HCl.
- Full reservoir of 0.5N HCl/0.5N HF.
- 4ml 0.5N HCl/0.5N HF before loading.

*Washing columns

- Load the 1.4ml samples Biorad® AG1-X8 (100-200 mesh) anion exchange resin.

- 4cm Biorad plastic poly prep columns are used. 2.7ml of resin (wet) is added.

- Add 1ml of 0.5N HCl/0.5N HF in the column and wait until passed through the column. Repeat 2 times.

- Add 16ml of 0.5N HCl/0.5N HF.

*Hf is then collected by adding 10ml of 6N HCl.

- A few drops of HCLO₄ are added to the cut and the samples are put on the hotplate at 170° C until all of the HCLO₄ has dried down. This step is repeated 2 times and then 1.4ml 2.5N HCl is added, ready for the 3rd Hf column.

*Column: 3rd Hf separation column.

- Add some drops of H_2O_2 before loading. (Ti indicator).

- Load the 1.4ml samples in Teflon columns (13cm with 6.4mm ID) with 4.2 ml AG50W-X8 cation exchange resin.

- Add 1ml of 2.5N HCl in the column and wait until passed through the column. Repeat 2 times. A total of 5ml of 2.5N HCl (enough to elute all of the Ti) is added before the Hf is collected.

*Hf collection - 12ml of 2.5N HCl/ 0.1N HF.

- Put 12ml of 2.5N HCl/0.1N HF to collect Hf. Dry on the hot plate at 150°C. Samples are then made up into 2% HNO₃ ready for analysis by MC-ICPMS.

*Cleaning columns (3)

- 10ml of 4N HF.

- Backflushing with 25ml MQ water.

- 15ml of 6N HCl.

- 25ml of 2.5N HCl to recondition columns

- 5 ml of 2.5N HCl before loading.

* Nd specific column (2) –This column will remove the Ba, La, Ce, Pr, and Sm from the samples. Method used is adapted from Pin et al.⁵³. Glass biorad columns (5cm in length) are used. Approximately 5cm of resin (Eichrom® Ln Spec resin) is added (approx. 300mg). The resin is turned into a slurry with 1N HCl and then added to the column.

*Cleaning columns

- Full reservoir of 1N HCl. Repeat 2 times.

- Full reservoir of 0.25N HCl.

*Loading

-The dried fraction from the first column is redissolved in 0.7ml 0.05M HNO₃ and then loaded onto a column containing Eichrom[®] Ln Spec resin. The sample is loaded stepwise in 3x 0.2ml + 1x 0.1ml increments.

- Add 3x0.1ml of 0.25N HCl to wash sample onto resin.
- Add 0.75ml of 0.25N HCl (remove Ba)
- Add 0.75ml of 0.25N HCl (remove La)
- Add 1.25ml of 0.25N HCl (remove Ce)
- Add 0.6ml of 0.25N HCl (remove Pr)

*Nd collection

- 3ml of 0.25N HCl. Dry overnight at 120°C. Sample beakers may be wrapped in aluminium foil to prevent static electricity once the sample has been dried down.

References:

[52] Blichert-Toft, J., *Geostandards Newsletter* 25 (1), 41-56 (2001).
[53] Pin, C. and Zalduegui, J. F. S., *Analytica Chimica Acta* 339, 79-89 (1997).

Résumé

La différenciation du manteau lithosphérique s'est principalement effectuée par fusion partielle et extraction de magmas. Les harzburgites sont généralement considérées comme des résidus de fusion tandis que les lherzolites représentent un manteau originel peu affecté par la fusion. Cependant, certaines péridotites orogéniques montrent des évidences de refertilisation magmatique. Dans ce contexte, ce travail remet en cause la nature primitive des lherzolites de Lherz (Pyrénées), lithotype de la lherzolite.

Les données structurales et géochimiques montrent que ces lherzolites ne représentent pas du manteau préservé mais qu'elles se sont formées par une réaction de refertilisation entre un liquide de type MORB et une lithosphère réfractaire. De plus, les orientations préférentielles de réseau (OPR) des minéraux montrent une forte interdépendance entre la percolation magmatique et la déformation finie observée dans les roches percolées. Les variations d'OPR semblent contrôlées par un équilibre subtil entre fraction de liquide instantanée et taux de déformation local.

Ce travail a également abordé les effets de la percolation magmatique sur la variabilité isotopique des roches mantelliques. Les résultats montrent qu'un fort découplage isotopique peut s'observer dans un front de percolation. Les modèles suggèrent que le découplage des signatures isotopiques se produit pendant la percolation, gouverné par le rapport des concentrations en éléments (magma/matrice), la diffusivité et le processus d'homogénéisation isotopique. Les réactions magma/roche peuvent générer des signatures isotopiques de type intraplaque. Ceci suggère qu'une part des signatures isotopiques des roches ou laves dérivées du manteau pourrait être produite par des processus diffusionnels associés à du transport de magma.

Mots-clés : Massif de Lherz ; refertilisation ; réaction magma/roche ; érosion du manteau lithosphérique ; ségrégation de magmas ; localisation de la déformation ; diffusion ; découplage isotopique ; transport de magmas.

Melt-rock interactions and melt-assisted deformation in the Lherz peridotite, with implications for the structural, chemical and isotopic evolution of the lithospheric mantle

Differentiation of the lithospheric mantle occurred principally through partial melting and extraction of melts. Harzburgites are generally considered as melting residues whereas lherzolites are regarded as pristine mantle weakly affected by melting. However, some orogenic peridotites show evidence of igneous refertilization. In this context, this work re-investigates the nature of the Lherz lherzolites (Pyrenees), type-locality of lherzolites, described as a piece of preserved fertile mantle.

Structural and geochemical data show that these lherzolites are not pristine but formed through a refertilization reaction between MORB-like melts and refractory lithosphere. Moreover, the Lherz peridotites were partly used to infer the composition of the primitive upper mantle and these results may have important implications for the nature of the late veneer.

Additionally, crystal-preferred orientations of minerals (CPO) highlight a strong feedback between melt percolation and finite strain in the percolated rocks. CPO variations are ruled by a subtle balance between instantaneous melt fraction and local strain rate.

This work also investigated the effect of melt percolation on Hf, Nd and Sr isotopes. Isotope systematics in Lherz shows that strong isotopic decoupling may arise in a percolation front. The modelling suggests that decoupled isotopic signatures are generated during porous flow and governed by the melt/matrix elements concentrations, chemical diffusivities or efficiency of isotopic homogenization. Melt-rock interactions can generate "intraplate-like" isotopic signatures. This suggests that a part of isotopic signatures of mantle-related rocks could be generated by diffusional processes associated with melt transport.

Keywords: Lherz massif; refertilization; melt-rock reaction; erosion of lithospheric mantle; melt segregation; strain localization; diffusion; isotopic decoupling; melt transport.

Discipline : Sciences de la Terre

Laboratoire : Géosciences Montpellier (UMR 5243). Place Eugène Bataillon 34095 MONTPELLIER cedex 5. FRANCE