# Optimization in Graphs Under Degree Constraints. 

## Application to Telecommunication Networks

Ignasi Sau Valls<br>Mascotte - MA4

Advisors:
Jean-Claude Bermond, David Coudert, Xavier Muñoz

October 16, 2009

## Outline of the talk

| Traffic <br> grooming |
| :---: | :---: | :---: |

## Outline of the talk

## Traffic

Degree-constrained subgraph problems

- Motivation
- Overview of the results
- Motivation
- Overview of the results


## Outline of the talk

| Traffic <br> grooming |
| :---: |

- Motivation
- Overview of the results
- Some details on one aspect
- Motivation
- Overview of the results
- Some details on one aspect


## Outline of the talk

## Traffic grooming

## General idea

- WDM (Wavelength Division Multiplexing) networks
- 1 wavelength (or frequency) = up to $40 \mathrm{~Gb} / \mathrm{s}$
- 1 fiber = hundreds of wavelengths $=\mathrm{Tb} / \mathrm{s}$
- Traffic grooming consists in packing low-speed traffic flows into higher speed streams
$\longrightarrow$ we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)
- Objectives
- Better us $€$ of bandwidth
- Reduce the equipment cost (mostly given by electronics)


## General idea

- WDM (Wavelength Division Multiplexing) networks
- 1 wavelength (or frequency) = up to $40 \mathrm{~Gb} / \mathrm{s}$
- 1 fiber = hundreds of wavelengths $=\mathrm{Tb} / \mathrm{s}$
- Traffic grooming consists in packing low-speed traffic flows into higher speed streams
$\longrightarrow$ we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)
- Objectives:
- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)


## General idea

- WDM (Wavelength Division Multiplexing) networks
- 1 wavelength (or frequency) = up to $40 \mathrm{~Gb} / \mathrm{s}$
- 1 fiber = hundreds of wavelengths $=\mathrm{Tb} / \mathrm{s}$
- Traffic grooming consists in packing low-speed traffic flows into higher speed streams
$\longrightarrow$ we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)
- Objectives:
- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)


## Definitions

- Request $(i, j)$ : two vertices $(i, j)$ that want to exchange (low-speed) traffic
- Grooming factor $C$ :

Capacity of a wavelength
Capacity used by a request

Example:
Capacity of one wavelength $=2.5 \mathrm{~Gb} / \mathrm{s}$
Capacity used by a request $=640 \mathrm{Mb} / \mathrm{s}$

## Definitions

- Request $(i, j)$ : two vertices $(i, j)$ that want to exchange (low-speed) traffic
- Grooming factor $C$ :

$$
C=\frac{\text { Capacity of a wavelength }}{\text { Capacity used by a request }}
$$

## Typical values of the grooming factor: <br> SDH: 4, 16, 64, 256, <br> SONET: 3, 12, 48,

## Example:

Capacity of one wavelength $=2.5 \mathrm{~Gb} / \mathrm{s}$ Capacity used by a request $=640 \mathrm{Mb} / \mathrm{s}$

- load of an arc in a wavelength: number of requests using this arc


## Definitions

- Request $(i, j)$ : two vertices $(i, j)$ that want to exchange (low-speed) traffic
- Grooming factor $C$ :

$$
C=\frac{\text { Capacity of a wavelength }}{\text { Capacity used by a request }}
$$

* Typical values of the grooming factor:

$$
\begin{aligned}
& \text { SDH: } 4,16,64,256, \ldots \\
& \text { SONET: } 3,12,48, \ldots
\end{aligned}
$$

Example:
Capacity of one wavelength $=2.5 \mathrm{~Gb} / \mathrm{s}$
Capacity used by a request $=640 \mathrm{Mb} / \mathrm{s} \quad \Rightarrow C=4$

- load of an arc in a wavelength: number of requests using this arc in this wavelength $(\leq C)$


## Definitions

- Request $(i, j)$ : two vertices $(i, j)$ that want to exchange (low-speed) traffic
- Grooming factor $C$ :

$$
C=\frac{\text { Capacity of a wavelength }}{\text { Capacity used by a request }}
$$

* Typical values of the grooming factor:

$$
\begin{aligned}
& \text { SDH: } 4,16,64,256, \ldots \\
& \text { SONET: } 3,12,48, \ldots
\end{aligned}
$$

Example:
Capacity of one wavelength $=2.5 \mathrm{~Gb} / \mathrm{s}$
Capacity used by a request $=640 \mathrm{Mb} / \mathrm{s} \quad \Rightarrow C=4$

- load of an arc in a wavelength: number of requests using this arc in this wavelength $(\leq C)$


## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

- We want to minimize the number of ADMs
- We need to use an ADM only at the endpoints of a request


## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

- We want to minimize the number of ADMs
- We need to use an ADM only at the endpoints of a request (lightpaths) in order to save as many ADMs as possible


## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

- We want to minimize the number of ADMs
- We need to use an ADM only at the endpoints of a request (lightpaths) in order to save as many ADMs as possible


## To fix ideas...

- Model:
Topology
Request set
Grooming factor Wavelength
Requests in a wavelength ADM in a wavelength
$\rightarrow$ graph $G$
$\rightarrow$ graph $R$
$\rightarrow$ integer $C$
$\rightarrow$ Subgraph of $R$
$\rightarrow$ edges in a subgraph of $R$
$\rightarrow$ vertex in a subgraph of $R$
- A fundamental case is when $G=\vec{C}_{n}$ (unidirectional ring)
- It is also natural to consider symmetric requests


## To fix ideas...

- Model:

- A fundamental case is when $G=\vec{C}_{n}$ (unidirectional ring)
- It is also natural to consider symmetric requests


## To fix ideas...

- Model:

- A fundamental case is when $G=\vec{C}_{n}$ (unidirectional ring)
- It is also natural to consider symmetric requests


## Unidirectional ring with symmetric requests

- Symmetric requests: whenever there is the request $(i, j)$, there is also the request $(j, i)$.

- W.l.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph each pair of symmetric requests induces load 1


## Unidirectional ring with symmetric requests

- Symmetric requests: whenever there is the request $(i, j)$, there is also the request $(j, i)$.

- W.l.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph $\rightarrow$ each pair of symmetric requests induces load 1


## Unidirectional ring with symmetric requests

- Symmetric requests: whenever there is the request $(i, j)$, there is also the request $(j, i)$.

- W.l.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph $\rightarrow$ each pair of symmetric requests induces load 1


## Unidirectional ring with symmetric requests

- Symmetric requests: whenever there is the request $(i, j)$, there is also the request $(j, i)$.

- W.l.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph $\rightarrow$ each pair of symmetric requests induces load 1
$\rightarrow$ grooming factor $C \Leftrightarrow$ each subgraph has $\leq C$ edges.


## Statement of the problem

## Traffic Grooming in Unidirectional Rings (with symmetric requests)

Input
An undirected graph $R$ on $n$ nodes (request set); A grooming factor $C$.

Output A partition of $E(R)$ into subgraphs

$$
R_{1}, \ldots, R_{W} \text { with }\left|E\left(R_{i}\right)\right| \leq C, \quad \mathrm{i}=1, \ldots, \mathrm{~W} .
$$

Objective Minimize $\sum_{i=1}^{W}\left|V\left(R_{i}\right)\right|$.

## Example (unidirectional ring with symmetric requests)



## Graph of the thesis



## Graph of the thesis



## Graph of the thesis



## Preliminaries: approximation algorithms

- Given a (typically NP-hard) minimization problem $\Pi$, $A L G$ is an $\alpha$-approximation algorithm for $\Pi$ (with $\alpha \geq 1$ ) if for any instance / of $\Pi$,

$$
A L G(I) \leq \alpha \cdot O P T(I)
$$

- Class Apx (Approximable):
an NP-hard ontimization problem is in APX if it can be approximated within a constant factor.

Example: Minimum Vertex Cover has a 2-approximation.
Class PTAS (Polynomial-Time Approximation Scheme):
an NP-hard ontimization nroblem is in PTAS if it can be annroximated within a constant factor $1+\varepsilon$, for all $\varepsilon>0$ (the best one can hope for an NP-hard problem). Examole: MAXIMUM KNAPSACK

## Preliminaries: approximation algorithms

- Given a (typically NP-hard) minimization problem $\Pi$, ALG is an $\alpha$-approximation algorithm for $\Pi$ (with $\alpha \geq 1$ ) if for any instance / of $\Pi$,

$$
A L G(I) \leq \alpha \cdot O P T(I)
$$

- Class Apx (Approximable):
an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: Minimum Vertex Cover has a 2-approximation.

- Class PTAS (Polynomial-Time Approximation Scheme):
an NP-hard optimization problem is in PTAS if it can be approximated
within a constant factor $1+\varepsilon$, for all $\varepsilon>0$
(the best one can hope for an NP-hard problem).
Example: Maximum Knapsack.


## Preliminaries: approximation algorithms

- Given a (typically NP-hard) minimization problem $\Pi$, ALG is an $\alpha$-approximation algorithm for $\Pi$ (with $\alpha \geq 1$ ) if for any instance / of $\Pi$,

$$
A L G(I) \leq \alpha \cdot O P T(I)
$$

- Class Apx (Approximable):
an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: Minimum Vertex Cover has a 2-approximation.

- Class PTAS (Polynomial-Time Approximation Scheme): an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1+\varepsilon$, for all $\varepsilon>0$ (the best one can hope for an NP-hard problem).

Example: Maximum Knapsack.

## Hardness of Ring Traffic Grooming

( NP-complete if $C$ is part of the input [Chiu and Modiano. IEEE JLT'OO]
(2) Not in Apx if $C$ is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]

## Hardness of Ring Traffic Grooming

(1) NP-complete if $C$ is part of the input [Chiu and Modiano. IEEE JLT'OO]
(3) Not in APX if $C$ is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06] (3) Remains NP-complete for fixed $C \geq 1$ (the proof assumes a bounded number of wavelengths) [Shalom, Unger, and Zaks. FUN'07]

## Hardness of Ring Traffic Grooming

(1) NP-complete if $C$ is part of the input
[Chiu and Modiano. IEEE JLT'00]
(2) Not in APX if $C$ is part of the input
[Huang, Dutta, and Rouskas. IEEE JSAC'06]
(3) Remains NP-complete for fixed $C \geq 1$
(the proof assumes a bounded number of wavelengths) [Shalom, Unger, and Zaks. FUN'07]

## Hardness of Ring Traffic Grooming

(1) NP-complete if $C$ is part of the input
[Chiu and Modiano. IEEE JLT'00]
(2) Not in Apx if $C$ is part of the input
[Huang, Dutta, and Rouskas. IEEE JSAC'06]
(3) Remains NP-complete for fixed $C \geq 1$
(the proof assumes a bounded number of wavelengths)
[Shalom, Unger, and Zaks. FUN'07]

* Open problem: inapproximability for fixed C? Conjecture: Not in PTAS for fixed C.


## Hardness of Ring Traffic Grooming

(1) NP-complete if $C$ is part of the input
[Chiu and Modiano. IEEE JLT'00]
(2) Not in APX if $C$ is part of the input
[Huang, Dutta, and Rouskas. IEEE JSAC'06]
(3) Remains NP-complete for fixed $C \geq 1$
(the proof assumes a bounded number of wavelengths)
[Shalom, Unger, and Zaks. FUN'07]
$\star$ Open problem: inapproximability for fixed $C$ ?
Conjecture: Not in PTAS for fixed C.
[Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]
[Chow and Lin. Networks'04]

## Hardness of Ring Traffic Grooming

(1) NP-complete if $C$ is part of the input
[Chiu and Modiano. IEEE JLT'OO]
(2) Not in Apx if $C$ is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
(3) Remains NP-complete for fixed $C \geq 1$
(the proof assumes a bounded number of wavelengths)
[Shalom, Unger, and Zaks. FUN'07]
$\star$ Open problem: inapproximability for fixed $C$ ?
Conjecture: Not in PTAS for fixed $C$.
[Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]
[Chow and Lin. Networks'04]


## Hardness of Ring Traffic Grooming

(1) NP-complete if $C$ is part of the input
[Chiu and Modiano. IEEE JLT'OO]
(2) Not in APX if $C$ is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
(3) Remains NP-complete for fixed $C \geq 1$
(the proof assumes a bounded number of wavelengths)
[Shalom, Unger, and Zaks. FUN'07]
$\checkmark$ Open problem: inapproximability for fixed $C$ ?
Conjecture: Not in PTAS for fixed $C$.
[Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]
[Chow and Lin. Networks'04]

## Theorem (Amini, Pérennes, and S.)

Ring Traffic Grooming is not in PTAS for any fixed $C \geq 1$.

## Hardness of Ring Traffic Grooming

(1) NP-complete if $C$ is part of the input
[Chiu and Modiano. IEEE JLT'OO]
(2) Not in APX if $C$ is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
(3) Remains NP-complete for fixed $C \geq 1$
(the proof assumes a bounded number of wavelengths)
[Shalom, Unger, and Zaks. FUN'07]
$\checkmark$ Open-problem: inapproximability for fixed $C$ ?
Conjecture: Not in PTAS for fixed $C$.
[Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]
[Chow and Lin. Networks'04]

## Theorem (Amini, Pérennes, and S.)

Ring Traffic Grooming is not in PTAS for any fixed $C \geq 1$. Path Traffic Grooming is not in PTAS for any fixed $C \geq 2$.

## Approximation of RING TrafFIC GROOMING

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ ) (2) $\mathcal{O}(\log C)$-approximation algorithm, with running time [Flammini et al. ISAAC'05, JDA'08]

## Approximation of RING TrafFIC GROOMING

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(3) $\mathcal{O}(\log C)$-approximation algorithm, with running time [Flammini et al. ISAAC'05, JDA'08]
(8) But in backbone networks, it is usually the case that $C$

## Approximation of RING TrafFIC GROOMING

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(2) $\mathcal{O}(\log C)$-approximation algorithm, with running time $\mathcal{O}\left(n^{C}\right)$ [Flammini et al. ISAAC'05, JDA'08]

## (3) But in backbone networks, it is usually the case that $C \geq n$.

 Open problem: approximation algorithm in poly-time in both $C$ and $n$ and with annroximation factor indenendent of $C$
## Approximation of Ring Traffic Grooming

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(2) $\mathcal{O}(\log C)$-approximation algorithm, with running time $\mathcal{O}\left(n^{C}\right)$ [Flammini et al. ISAAC'05, JDA'08]
(3) But in backbone networks, it is usually the case that $C \geq n$.

Open problem: approximation algorithm in poly-time in both $C$ and $n$, and with approximation factor independent of $C$.

## Approximation of Ring Traffic Grooming

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(2) $\mathcal{O}(\log C)$-approximation algorithm, with running time $\mathcal{O}\left(n^{C}\right)$ [Flammini et al. ISAAC'05, JDA'08]
(3) But in backbone networks, it is usually the case that $C \geq n$.

Ł Open problem: approximation algorithm in poly-time in both $C$ and $n$, and with approximation factor independent of $C$.
$\square$
There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor

Outline of the algorithm:

## Approximation of Ring Traffic Grooming

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(2) $\mathcal{O}(\log C)$-approximation algorithm, with running time $\mathcal{O}\left(n^{C}\right)$ [Flammini et al. ISAAC'05, JDA'08]
(3) But in backbone networks, it is usually the case that $C \geq n$.
$\checkmark$ Open problem: approximation algorithm in poly-time in both $C$ and $n$, and with approximation factor independent of $C$.

## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.

## Outline of the algorithm:

(1) partition the requests into groups of similar length
(2) in each group, extract "dense" subgraphs greedily using an algorithm for
the DENSE $k$-SUBGRAPH problem

## Approximation of Ring Traffic Grooming

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(2) $\mathcal{O}(\log C)$-approximation algorithm, with running time $\mathcal{O}\left(n^{C}\right)$ [Flammini et al. ISAAC'05, JDA'08]
(3) But in backbone networks, it is usually the case that $C \geq n$.
$\checkmark$ Open problem: approximation algorithm in poly-time in both $C$ and $n$, and with approximation factor independent of $C$.

## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.

Outline of the algorithm:
(1) partition the requests into groups of similar length
(2) in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE $k$-SUBGRAPH problem

## Approximation of Ring Traffic Grooming

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(2) $\mathcal{O}(\log C)$-approximation algorithm, with running time $\mathcal{O}\left(n^{C}\right)$ [Flammini et al. ISAAC'05, JDA'08]
(3) But in backbone networks, it is usually the case that $C \geq n$.
$\checkmark$ Open problem: approximation algorithm in poly-time in both $C$ and $n$, and with approximation factor independent of $C$.

## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.

Outline of the algorithm:
(1) partition the requests into groups of similar length [factor $\log \mathbf{n}$ ]
(2) in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE $k$-SUBGRAPH problem

## Approximation of Ring Traffic Grooming

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(2) $\mathcal{O}(\log C)$-approximation algorithm, with running time $\mathcal{O}\left(n^{C}\right)$ [Flammini et al. ISAAC'05, JDA'08]
(3) But in backbone networks, it is usually the case that $C \geq n$.
$\checkmark$ Open problem: approximation algorithm in poly-time in both $C$ and $n$, and with approximation factor independent of $C$.

## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.

Outline of the algorithm:
(1) partition the requests into groups of similar length [factor $\log \mathbf{n}$ ]
(2) in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE $k$-SUBGRAPH problem [factor $\log n$ ]

## Approximation of Ring Traffic Grooming

(1) $\sqrt{C}$-approximation is trivial (in poly-time in both $n$ and $C$ )
(2) $\mathcal{O}(\log C)$-approximation algorithm, with running time $\mathcal{O}\left(n^{C}\right)$ [Flammini et al. ISAAC'05, JDA'08]
(3) But in backbone networks, it is usually the case that $C \geq n$.
$\checkmark$ Open problem: approximation algorithm in poly-time in both $C$ and $n$, and with approximation factor independent of $C$.

## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.

Outline of the algorithm:
(1) partition the requests into groups of similar length [factor $\log \mathbf{n}$ ]
(2) in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE $k$-SUBGRAPH problem [factor $\log n$ ] [factor $n^{1 / 3}$ ]

## Graph of the thesis



## Graph of the thesis



## Graph of the thesis



## New model of traffic grooming

- In the literature so far: place ADMs at nodes for a fixed request graph.

New modell [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support any request graph with maximum degree at most $\Delta$.

## New model of traffic grooming

- In the literature so far:
place ADMs at nodes for a fixed request graph.
$\rightarrow$ placement of ADMs a posteriori.
- New model [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support any request graph with maximum degree at most $\Delta$.


## New model of traffic grooming

- In the literature so far:
place ADMs at nodes for a fixed request graph.
$\rightarrow$ placement of ADMs a posteriori.
- New model [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support any request graph with maximum degree at most $\Delta$.
symmetry we place the same number of ADMs at each node.


## New model of traffic grooming

- In the literature so far:
place ADMs at nodes for a fixed request graph.
$\rightarrow$ placement of ADMs a posteriori.
- New model [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support any request graph with maximum degree at most $\Delta$.
$\rightarrow$ placement of ADMs a priori.
- As the network must support any degree-bounded graph, due to symmetry we place the same number of ADMs at each node.


## New model of traffic grooming

- In the literature so far:
place ADMs at nodes for a fixed request graph.
$\rightarrow$ placement of ADMs a posteriori.
- New model [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support any request graph with maximum degree at most $\Delta$.
$\rightarrow$ placement of ADMs a priori.
- As the network must support any degree-bounded graph, due to symmetry we place the same number of ADMs at each node.
- The objective is then to minimize this number.


## New model of traffic grooming

- In the literature so far:
place ADMs at nodes for a fixed request graph.
$\rightarrow$ placement of ADMs a posteriori.
- New model [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support any request graph with maximum degree at most $\Delta$.
$\rightarrow$ placement of ADMs a priori.
- As the network must support any degree-bounded graph, due to symmetry we place the same number of ADMs at each node.
- The objective is then to minimize this number.


## The parameter $M(C, \Delta)$

- $\Delta$-graph: graph with maximum degree at most $\Delta$.
- C-edge partition of $G$ : partition of $E(G)$ into subgraphs with $\leq C$ edges.
- The problem is equivalent to determining the following parameter:


## The parameter $M(C, \Delta)$

- $\Delta$-graph: graph with maximum degree at most $\Delta$.
- C-edge partition of $G$ : partition of $E(G)$ into subgraphs with $\leq C$ edges.
- The problem is equivalent to determining the following parameter:
- Therefore, we focus on determining $M(C, \Delta)$ - W.I.o.a. we can assume that $R$ has reaular dec ree $\triangle$.


## The parameter $M(C, \Delta)$

- $\Delta$-graph: graph with maximum degree at most $\Delta$.
- C-edge partition of $G$ : partition of $E(G)$ into subgraphs with $\leq C$ edges.
- The problem is equivalent to determining the following parameter:
$M(C, \Delta)$ : smallest integer $M$ s.t. any $\Delta$-graph has a $C$ -edge-partition s.t. each vertex appears in $\leq M$ subgraphs.
- Therefore, we focus on determining $M(C, \Delta)$
- W.I.o.g. we can assume that $R$ has reqular dec ree $\triangle$.


## The parameter $M(C, \Delta)$

- $\Delta$-graph: graph with maximum degree at most $\Delta$.
- C-edge partition of $G$ : partition of $E(G)$ into subgraphs with $\leq C$ edges.
- The problem is equivalent to determining the following parameter:
$M(C, \Delta)$ : smallest integer $M$ s.t. any $\Delta$-graph has a $C$ -edge-partition s.t. each vertex appears in $\leq M$ subgraphs.
- Therefore, we focus on determining $M(C, \Delta)$.
- W.l.o.g. we can assume that $R$ has regular degree $\Delta$.



## The parameter $M(C, \Delta)$

- $\Delta$-graph: graph with maximum degree at most $\Delta$.
- C-edge partition of $G$ : partition of $E(G)$ into subgraphs with $\leq C$ edges.
- The problem is equivalent to determining the following parameter:
$M(C, \Delta)$ : smallest integer $M$ s.t. any $\Delta$-graph has a $C$ -edge-partition s.t. each vertex appears in $\leq M$ subgraphs.
- Therefore, we focus on determining $M(C, \Delta)$.
- W.l.o.g. we can assume that $R$ has regular degree $\Delta$.


## Proposition (Lower Bound - Muñoz and S.)

For all $C, \Delta \geq 1, M(C, \Delta) \geq\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$.

## Case $\Delta \geq 2$ even

## Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1, M(C, \Delta)=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$.

## Proof.

- We have just seen the lower bound. Construction:
- Orient the edges of $G=(V, E)$ in an Eulerian tour.
- Assign to each vertex $v \in V$ its $\Delta / 2$ out-edges, and partition them into $\left\lceil\frac{\Delta}{2 C}\right\rceil$ stars with (at most) $C$ edges centered at $v$.
- Each vertex $v$ appears as a leaf in stars centered at other vertices exactly $\Delta-\Delta / 2=\Delta / 2$ times.
- The number of occurrences of each vertex in this partition is


## Case $\Delta \geq 2$ even

## Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1, M(C, \Delta)=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$.

## Proof.

- We have just seen the lower bound. Construction:
- Orient the edges of $G=(V, E)$ in an Eulerian tour.

Assign to each vertex $v \in V$ its $\Delta / 2$ out-edges, and partition them into $\left[\frac{\Delta}{2 C}\right]$ stars with (at most) $C$ edges centered at $v$.

## Case $\Delta \geq 2$ even

## Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1, M(C, \Delta)=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$.

## Proof.

- We have just seen the lower bound. Construction:
- Orient the edges of $G=(V, E)$ in an Eulerian tour.
- Assign to each vertex $v \in V$ its $\Delta / 2$ out-edges, and partition them into $\frac{\Delta}{2 C}$ stars with (at most) $C$ edges centered at $v$.
- Each vertex v appear's as ateailin star's centered at other vertices exactly $\Delta-\Delta / 2=\Delta / 2$ times.


## Case $\Delta \geq 2$ even

## Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1, M(C, \Delta)=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$.

## Proof.

- We have just seen the lower bound. Construction:
- Orient the edges of $G=(V, E)$ in an Eulerian tour.
- Assign to each vertex $v \in V$ its $\Delta / 2$ out-edges, and partition them into $\left\lceil\frac{\Delta}{2 C}\right\rceil$ stars with (at most) $C$ edges centered at $v$.
- Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta-\Delta / 2=\Delta / 2$ times.

The number of occurrences of each vertex in this partition is

## Case $\Delta \geq 2$ even

## Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1, M(C, \Delta)=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$.

## Proof.

- We have just seen the lower bound. Construction:
- Orient the edges of $G=(V, E)$ in an Eulerian tour.
- Assign to each vertex $v \in V$ its $\Delta / 2$ out-edges, and partition them into $\left\lceil\frac{\Delta}{2 C}\right\rceil$ stars with (at most) $C$ edges centered at $v$.
- Each vertex $v$ appears as a leaf in stars centered at other vertices exactly $\Delta-\Delta / 2=\Delta / 2$ times.
- The number of occurrences of each vertex in this partition is


## Case $\Delta \geq 2$ even

## Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1, M(C, \Delta)=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$.

## Proof.

- We have just seen the lower bound. Construction:
- Orient the edges of $G=(V, E)$ in an Eulerian tour.
- Assign to each vertex $v \in V$ its $\Delta / 2$ out-edges, and partition them into $\left\lceil\frac{\Delta}{2 C}\right\rceil$ stars with (at most) $C$ edges centered at $v$.
- Each vertex $v$ appears as a leaf in stars centered at other vertices exactly $\Delta-\Delta / 2=\Delta / 2$ times.
- The number of occurrences of each vertex in this partition is

$$
\left\lceil\frac{\Delta}{2 C}\right\rceil+\frac{\Delta}{2}
$$

## Case $\Delta \geq 2$ even

## Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1, M(C, \Delta)=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$.

## Proof.

- We have just seen the lower bound. Construction:
- Orient the edges of $G=(V, E)$ in an Eulerian tour.
- Assign to each vertex $v \in V$ its $\Delta / 2$ out-edges, and partition them into $\left\lceil\frac{\Delta}{2 C}\right\rceil$ stars with (at most) $C$ edges centered at $v$.
- Each vertex $v$ appears as a leaf in stars centered at other vertices exactly $\Delta-\Delta / 2=\Delta / 2$ times.
- The number of occurrences of each vertex in this partition is

$$
\left\lceil\frac{\Delta}{2 C}\right\rceil+\frac{\Delta}{2}=\left\lceil\frac{\Delta}{2}\left(1+\frac{1}{C}\right)\right\rceil=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil .
$$

## Case $\Delta \geq 3$ odd

## Proposition (Upper Bound - Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1, M(C, \Delta) \leq\left\lceil\frac{C+1}{C} \frac{\Delta}{2}+\frac{C-1}{2 C}\right\rceil$.

## Corollary (Li and S.)

Let $\Delta>3$ be odd. Then for any $C \geq 1, M(C, \Delta)$

Question: is the lower bound
always attained?

## Case $\Delta \geq 3$ odd

## Proposition (Upper Bound - Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1, M(C, \Delta) \leq\left\lceil\frac{C+1}{C} \frac{\Delta}{2}+\frac{C-1}{2 C}\right\rceil$.

## Corollary (Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1, M(C, \Delta) \leq\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil+1$.

Question: is the lower bound $\frac{c+1}{c} \frac{\Delta}{2}$ always attained?

Theorem (Li and S.)


## Case $\Delta \geq 3$ odd

## Proposition (Upper Bound - Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1, M(C, \Delta) \leq\left\lceil\frac{C+1}{C} \frac{\Delta}{2}+\frac{C-1}{2 C}\right\rceil$.

## Corollary (Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1, M(C, \Delta) \leq\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil+1$.
Question: is the lower bound $\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$ always attained?

## Theorem (Li and S.)

Let $\wedge>3$ be odd If $\wedge=C(\bmod 2 C)$, then $M(C, \Delta)=$

## Case $\Delta \geq 3$ odd

## Proposition (Upper Bound - Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1, M(C, \Delta) \leq\left\lceil\frac{C+1}{C} \frac{\Delta}{2}+\frac{C-1}{2 C}\right\rceil$.

## Corollary (Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1, M(C, \Delta) \leq\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil+1$.
Question: is the lower bound $\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil$ always attained? NO!!

## Theorem (Li and S.)

Let $\Delta \geq 3$ be odd. If $\Delta \equiv C(\bmod 2 C)$, then $M(C, \Delta)=\left\lceil\frac{C+1}{C} \frac{\Delta}{2}\right\rceil+1$.

## Open cases

Summarizing, we established the value of $M(C, \Delta)$ for "almost" all values of $C$ and $\Delta$, leaving open only the case where:


- $3 \leq \Delta(\bmod 2 C) \leq C-1$; and
- the request graph does not contain a perfect matching.


## Open cases

Summarizing, we established the value of $M(C, \Delta)$ for "almost" all values of $C$ and $\Delta$, leaving open only the case where:

- $\Delta \geq 5$ is odd; and
- $C \geq 4$; and
- $3 \leq \Delta(\bmod 2 C) \leq C-1$; and
- the request graph does not contain a perfect matching.


## Open cases

Summarizing, we established the value of $M(C, \Delta)$ for "almost" all values of $C$ and $\Delta$, leaving open only the case where:

- $\Delta \geq 5$ is odd; and
- $C \geq 4$; and
- $3 \leq \Delta(\bmod 2 C) \leq C-1$; and
- the request graph does not contain a perfect matching.


## Graph of the thesis



## Graph of the thesis



## Graph of the thesis



## Bidirectional rings

- Most of the research had been done for unidirectional rings.
- We consider the bidirectional ring with
* all-to-all requests.
* shortest path routing.
- We provide:
(1) Statement of the problem and general lower bounds.


## Bidirectional rings

- Most of the research had been done for unidirectional rings.
- We consider the bidirectional ring with
* all-to-all requests.
$\star$ shortest path routing.
- We provide:
(1) Statement of the problem and general lower bounds.
(2) Exhaustive study of the cases $C$


## Bidirectional rings

- Most of the research had been done for unidirectional rings.
- We consider the bidirectional ring with
* all-to-all requests.
$\star$ shortest path routing.
- We provide:
(1) Statement of the problem and general lower bounds.
(2) Exhaustive study of the cases $C \in\{1,2,3\}$.
(3) Optimal solutions for some infinite families when $C$


## Bidirectional rings

- Most of the research had been done for unidirectional rings.
- We consider the bidirectional ring with
* all-to-all requests.
$\star$ shortest path routing.
- We provide:
(1) Statement of the problem and general lower bounds.
(2) Exhaustive study of the cases $C \in\{1,2,3\}$.
(3) Optimal solutions for some infinite families when $C=k(k+1) / 2$.

4 Asymptotically optimal or approximated solutions.

## Bidirectional rings

- Most of the research had been done for unidirectional rings.
- We consider the bidirectional ring with
* all-to-all requests.
$\star$ shortest path routing.
- We provide:
(1) Statement of the problem and general lower bounds.
(2) Exhaustive study of the cases $C \in\{1,2,3\}$.
(3) Optimal solutions for some infinite families when $C=k(k+1) / 2$.
(4) Asymptotically optimal or approximated solutions.


## Bidirectional rings

- Most of the research had been done for unidirectional rings.
- We consider the bidirectional ring with
* all-to-all requests.
$\star$ shortest path routing.
- We provide:
(1) Statement of the problem and general lower bounds.
(2) Exhaustive study of the cases $C \in\{1,2,3\}$.
(3) Optimal solutions for some infinite families when $C=k(k+1) / 2$.
(4) Asymptotically optimal or approximated solutions.


## Graph of the thesis



## Graph of the thesis



## Graph of the thesis



## 2-period traffic grooming in unidirectional rings

- We consider a pseudo-dynamic scenario in unidirectional rings:
- in the 1 st period of time, there is all-to-all traffic among $n$ nodes, each request using $1 / C$ of the bandwidth.
- in the 2nd neriod there is all-to-all traffic among a subset of $n$ nodes, each request using $1 / C^{\prime}$ of the bandwidth, with $C^{\prime}<C$


## 2-period traffic grooming in unidirectional rings

- We consider a pseudo-dynamic scenario in unidirectional rings:
- in the 1st period of time, there is all-to-all traffic among $n$ nodes, each request using $1 / C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n^{\prime}$
nodes, each request using $1 / C^{\prime}$ of the bandwidth, with $C^{\prime}<C$


## 2-period traffic grooming in unidirectional rings

- We consider a pseudo-dynamic scenario in unidirectional rings:
- in the 1st period of time, there is all-to-all traffic among $n$ nodes, each request using $1 / C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n^{\prime}<n$ nodes, each request using $1 / C^{\prime}$ of the bandwidth, with $C^{\prime}<C$.
- The problem consists in finding a $C$-edge-partition of $K_{n}$ that
embeds a $C^{\prime}$-edge-partition of $K_{n^{\prime}}$. Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks'08] They solved the cases $C$


## 2-period traffic grooming in unidirectional rings

- We consider a pseudo-dynamic scenario in unidirectional rings:
- in the 1st period of time, there is all-to-all traffic among $n$ nodes, each request using $1 / C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n^{\prime}<n$ nodes, each request using $1 / C^{\prime}$ of the bandwidth, with $C^{\prime}<C$.
- The problem consists in finding a $C$-edge-partition of $K_{n}$ that embeds a $C^{\prime}$-edge-partition of $K_{n^{\prime}}$.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks'08] They solved the cases $C=2$ and $C=3\left(C^{\prime} \in\{1,2\}\right)$.


## 2-period traffic grooming in unidirectional rings

- We consider a pseudo-dynamic scenario in unidirectional rings:
- in the 1st period of time, there is all-to-all traffic among $n$ nodes, each request using $1 / C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n^{\prime}<n$ nodes, each request using $1 / C^{\prime}$ of the bandwidth, with $C^{\prime}<C$.
- The problem consists in finding a $C$-edge-partition of $K_{n}$ that embeds a $C^{\prime}$-edge-partition of $K_{n^{\prime}}$.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks'08]. They solved the cases $C=2$ and $C=3\left(C^{\prime} \in\{1,2\}\right)$.
- We solve the case $C=4$ (that is, $C^{\prime}$
- In addition, we provide the optimal cost under the constraint of using the


## 2-period traffic grooming in unidirectional rings

- We consider a pseudo-dynamic scenario in unidirectional rings:
- in the 1st period of time, there is all-to-all traffic among $n$ nodes, each request using $1 / C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n^{\prime}<n$ nodes, each request using $1 / C^{\prime}$ of the bandwidth, with $C^{\prime}<C$.
- The problem consists in finding a $C$-edge-partition of $K_{n}$ that embeds a $C^{\prime}$-edge-partition of $K_{n^{\prime}}$.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks'08]. They solved the cases $C=2$ and $C=3\left(C^{\prime} \in\{1,2\}\right)$.
- We solve the case $C=4$ (that is, $C^{\prime} \in\{1,2,3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.


## 2-period traffic grooming in unidirectional rings

- We consider a pseudo-dynamic scenario in unidirectional rings:
- in the 1st period of time, there is all-to-all traffic among $n$ nodes, each request using $1 / C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n^{\prime}<n$ nodes, each request using $1 / C^{\prime}$ of the bandwidth, with $C^{\prime}<C$.
- The problem consists in finding a $C$-edge-partition of $K_{n}$ that embeds a $C^{\prime}$-edge-partition of $K_{n^{\prime}}$.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks'08]. They solved the cases $C=2$ and $C=3\left(C^{\prime} \in\{1,2\}\right)$.
- We solve the case $C=4$ (that is, $C^{\prime} \in\{1,2,3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.


## Graph of the thesis



## Graph of the thesis



- Remember from the first subpart:


## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.


- Remember from the first subpart:


## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.
(1) partition the requests into groups of similar length [factor $\log n$ ]
(2) in each group, extract subgraphs greedily using an algorithm for the Dense $k$-subgraph problem [factor log $n$ ] [factor $n^{1 / 3}$ ]


Summarizing, a $\beta$-approximation for the $D k S$ problems yields a

- Remember from the first subpart:


## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.
(1) partition the requests into groups of similar length [factor $\log n$ ]
(2) in each group, extract subgraphs greedily using an algorithm for the Dense $k$-subgraph problem [factor log $n$ ] [factor $n^{1 / 3}$ ]

DENSE $k$-SUBGRAPH (DkS)
Input: An undirected graph $G=(V, E)$ and a positive integer $k$.
Output: A subset $S \subseteq V$, with $|S|=k$, such that $|E(G[S])|$ is maximized.

- Summarizing, a $\beta$-approximation for the DKS problems yields a $\log ^{2} n$ )-approximation for RING TRAFFIC Grooming.
- Remember from the first subpart:


## Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $\mathcal{O}\left(n^{1 / 3} \log ^{2} n\right)$ for any $C \geq 1$.
(1) partition the requests into groups of similar length [factor $\log n$ ]
(2) in each group, extract subgraphs greedily using an algorithm for the Dense $k$-SUBGraph problem [factor log $n$ ] [factor $n^{1 / 3}$ ]

DENSE $k$-SUBGRAPH (DkS)
Input: An undirected graph $G=(V, E)$ and a positive integer $k$.
Output: A subset $S \subseteq V$, with $|S|=k$, such that $|E(G[S])|$ is maximized.

- Summarizing, a $\beta$-approximation for the DkS problems yields a ( $\beta \cdot \log ^{2} n$ )-approximation for Ring TRAFFIc GRooming.


## Finding dense subgraphs is difficult...

- Unfortunately, the DkS problem is a very "hard" problem:
- Best approximation algorithm: $\mathcal{O}\left(n^{1 / 3-\varepsilon}\right)$-approximation. [Feige, Kortsarz, and Peleg. Algorithmica'01]
- Best hardness result: No PTAS, unless P=NP. [Khot. SIAM J. Comp'06]
- What about trying to find dense subgraphs differently?
- In DKS , the objective is to maximize the average degree


## Finding dense subgraphs is difficult...

- Unfortunately, the DkS problem is a very "hard" problem:
- Best approximation algorithm: $\mathcal{O}\left(n^{1 / 3-\varepsilon}\right)$-approximation. [Feige, Kortsarz, and Peleg. Algorithmica'01]
- Best hardness result: No PTAS, unless P=NP. [Khot. SIAM J. Comp'06]
- What about trying to find dense subgraphs differently?
- In DkS, the objective is to maximize the average degree
- What about the minimum degree...?


## Finding dense subgraphs is difficult...

- Unfortunately, the DkS problem is a very "hard" problem:
- Best approximation algorithm: $\mathcal{O}\left(n^{1 / 3-\varepsilon}\right)$-approximation. [Feige, Kortsarz, and Peleg. Algorithmica'01]
- Best hardness result: No PTAS, unless P=NP. [Khot. SIAM J. Comp'06]
- What about trying to find dense subgraphs differently?
- In DkS, the objective is to maximize the average degree
- What about the minimum degree...?


## Finding dense subgraphs is difficult...

- Unfortunately, the DkS problem is a very "hard" problem:
- Best approximation algorithm: $\mathcal{O}\left(n^{1 / 3-\varepsilon}\right)$-approximation. [Feige, Kortsarz, and Peleg. Algorithmica'01]
- Best hardness result: No PTAS, unless P=NP. [Khot. SIAM J. Comp'06]
- What about trying to find dense subgraphs differently?
- In DkS, the objective is to maximize the average degree
- What about the minimum degree...?


## Graph of the thesis



## Broad family of problems

## A typical Degree-constrained subgraph problem:

## Input:

- a (weighted or unweighted) graph $G$, and
- an integer $d$.

Output:

- a (connected) subgraph H of G,
- satisfying some degree constraints $(\triangle(H) \leq d$ or $\delta(H) \geq d)$,
$\square$


## Broad family of problems

## A typical Degree-constrained subgraph problem:

## Input:

- a (weighted or unweighted) graph $G$, and
- an integer $d$.


## Output:

- a (connected) subgraph $H$ of $G$,
- satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d)$,
- and optimizing some parameter - Several problems in this broad family are classical widely studied


## Broad family of problems

## A typical Degree-constrained subgraph problem:

## Input:

- a (weighted or unweighted) graph $G$, and
- an integer $d$.


## Output:

- a (connected) subgraph $H$ of $G$,
- satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d)$,
- and optimizing some parameter $(|V(H)|$ or $|E(H)|)$.
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry,


## Broad family of problems

## A typical Degree-constrained subgraph problem:

## Input:

- a (weighted or unweighted) graph $G$, and
- an integer $d$.


## Output:

- a (connected) subgraph $H$ of $G$,
- satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d)$,
- and optimizing some parameter $(|V(H)|$ or $|E(H)|)$.
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...


## First problem

## Minimum Subgraph of Minimum Degree $\geq d$ (MSMD $_{d}$ ):

Input: an undirected graph $G=(V, E)$ and an integer $d \geq 3$.
Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

## First problem

## Minimum Subgraph of Minimum Degree $\geq d$ (MSMD ${ }_{d}$ ):

Input: an undirected graph $G=(V, E)$ and an integer $d \geq 3$.
Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq$ d, s.t. $|S|$ is minimum.

- For $d=2$ it is exactly the GIRTH problem, which is in $\mathbf{P}$. - Therefore, it can be seen as a generalization of GIRTH.


## First problem

## Minimum Subgraph of Minimum Degree $\geq d$ (MSMD $_{d}$ ):

Input: an undirected graph $G=(V, E)$ and an integer $d \geq 3$.
Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

- For $d=2$ it is exactly the GIRTH problem, which is in $\mathbf{P}$.
- Therefore, it can be seen as a generalization of GIRTH.
- Is it also in $\mathbf{P}$ for $d \geq 3$ ?


## First problem

## Minimum Subgraph of Minimum Degree $\geq d$ (MSMD $_{d}$ ):

Input: an undirected graph $G=(V, E)$ and an integer $d \geq 3$.
Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

- For $d=2$ it is exactly the GIRTH problem, which is in $\mathbf{P}$.
- Therefore, it can be seen as a generalization of GIRTH.
- Is it also in $\mathbf{P}$ for $d \geq 3$ ?


## Hardness and approximation

(1) $\mathrm{MSMD}_{d}$ is not in APX for any $d \geq 3$, using the error amplification technique:

- first we prove that $\mathrm{MSMD}_{d}$ is not in PTAS (unless $\mathrm{P}=\mathrm{NP}$ ).
- then we prove that MSMD $_{d}$ does not accept anv constant factor approximation.
(2) $\mathcal{O}(n / \log n)$-approximation algorithm for minor-free classes of graphs, using dynamic programming techniques and a known structural result on graph minors.
(In particular, this applied to planar graphs and graphs of bounded genus.)


## Hardness and approximation

(1) $\mathrm{MSMD}_{d}$ is not in APX for any $d \geq 3$, using the error amplification technique:

- first we prove that $\mathrm{MSMD}_{d}$ is not in PTAS (unless $\mathrm{P}=\mathrm{NP}$ ).
- then we prove that MSMD ${ }_{d}$ does not accept any constant factor approximation.
(2) $\mathcal{O}(n / \log n)$-approximation algorithm for minor-free classes of
graphs, using dynamic programming techniques and a known
structural result on graph minors.
(In particular, this applied to planar graphs and graphs of bounded genus.)


## Hardness and approximation

(1) MSMD ${ }_{d}$ is not in APX for any $d \geq 3$, using the error amplification technique:

- first we prove that $\mathrm{MSMD}_{d}$ is not in PTAS (unless $\mathrm{P}=\mathrm{NP}$ ).
- then we prove that $\mathrm{MSMD}_{d}$ does not accept any constant factor approximation.
(2) $\mathcal{O}(n / \log n)$-approximation algorithm for minor-free classes of graphs, using dynamic programming techniques and a known structural result on graph minors.
(In particular, this applied to planar graphs and graphs of bounded genus.)


## Second problem

## Maximum $d$-Degree-Bounded Connected Subgraph (MDBCS ${ }_{d}$ ): Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.

```
Output:
a. subset of edges E'\subseteqE of maximum weight, s.t. G' }=(V,\mp@subsup{E}{}{\prime}
    - is connected (except isolated vertices), and
    - satisfies A(G')
```

It is one of the classical NP-hard problems of [Garev and Johnson, Computers and Intractabilty, 1979 ].

## Second problem

Maximum $d$-Degree-Bounded Connected Subgraph (MDBCS ${ }_{d}$ ): Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.


## Output:

a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected (except isolated vertices), and
- satisfies $\Delta\left(G^{\prime}\right) \leq d$.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].


## Second problem

Maximum $d$-Degree-Bounded Connected Subgraph (MDBCS ${ }_{d}$ ): Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.


## Output:

a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected (except isolated vertices), and
- satisfies $\Delta\left(G^{\prime}\right) \leq d$.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
If the output subgraph is not required to be connected, the problem is in
$\mathbf{P}$ for any $d$ (using matching techniques). [Lovász, 70's]


## Second problem

Maximum $d$-Degree-Bounded Connected Subgraph (MDBCS ${ }_{d}$ ): Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.


## Output:

a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected (except isolated vertices), and
- satisfies $\Delta\left(G^{\prime}\right) \leq d$.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in $\mathbf{P}$ for any $d$ (using matching techniques). [Lovász, 70's]


## Second problem

Maximum $d$-Degree-Bounded Connected Subgraph (MDBCS ${ }_{d}$ ): Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.


## Output:

a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected (except isolated vertices), and
- satisfies $\Delta\left(G^{\prime}\right) \leq d$.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in
$\mathbf{P}$ for any $d$ (using matching techniques). [Lovász, 70's]
- For fixed $d=2$ it corresponds to the LONGEST PATH problem.


## Example with $d=3, \omega(e)=1$ for all $e \in E(G)$



## Example with $d=3, \omega(e)=1$ for all $e \in E(G)$



## Example with $d=3, \omega(e)=1$ for all $e \in E(G)$



## Example with $d=3, \omega(e)=1$ for all $e \in E(G)$



## Hardness and approximation

(1) not in APX for any fixed $d \geq 2$.
(2) if there is a polynomial time algorithm for $\operatorname{MDBCS}_{d}, d \geq 2$, with performance ratio $2^{\mathcal{O}(\sqrt{\log n})}$, then $\mathrm{NP} \subseteq \operatorname{DTIME}\left(2^{\mathcal{O}\left(\log ^{5} n\right)}\right)$.
( min $\{\mathrm{m} / / \log n$. nd $/(2 \log n)\}$-approximation algorithm for unweighted graphs.

## Hardness and approximation

(1) not in APX for any fixed $d \geq 2$.
(2) if there is a polynomial time algorithm for $\mathrm{MDBCS}_{d}, d \geq 2$, with performance ratio $2^{\mathcal{O}(\sqrt{\log n})}$, then NP $\subseteq \operatorname{DTIME}\left(2^{\mathcal{O}\left(\log ^{5} n\right)}\right)$.
(3) $\min \{m / \log n, n d /(2 \log n)\}$-approximation algorithm for unweighted graphs.

## Hardness and approximation

(1) not in APX for any fixed $d \geq 2$.
(2) if there is a polynomial time algorithm for $\mathrm{MDBCS}_{d}, d \geq 2$, with performance ratio $2^{\mathcal{O}(\sqrt{\log n})}$, then NP $\subseteq \operatorname{DTIME}\left(2^{\mathcal{O}\left(\log ^{5} n\right)}\right)$.
(3) $\min \{m / \log n, n d /(2 \log n)\}$-approximation algorithm for unweighted graphs. $\quad(n=|V(G)|$ and $m=|E(G)|)$
(4) $\min \{n / 2, m / d\}$-approximation algorithm for weighted graphs.
(5) if $G$ has a low-degree spanning tree (in terms of $d$ ) it can be
approximated within a small constant factor.

## Hardness and approximation

(1) not in APX for any fixed $d \geq 2$.
(2) if there is a polynomial time algorithm for $\mathrm{MDBCS}_{d}, d \geq 2$, with performance ratio $2^{\mathcal{O}(\sqrt{\log n})}$, then NP $\subseteq \operatorname{DTIME}\left(2^{\mathcal{O}\left(\log ^{5} n\right)}\right)$.
(3) $\min \{m / \log n, n d /(2 \log n)\}$-approximation algorithm for unweighted graphs.

$$
(n=|V(G)| \text { and } m=|E(G)|)
$$

(4) $\min \{n / 2, m / d\}$-approximation algorithm for weighted graphs.
(3) if $G$ has a low-degree spanning tree (in terms of $d$ ) it can be approximated within a small constant factor.

## Hardness and approximation

(1) not in APX for any fixed $d \geq 2$.
(2) if there is a polynomial time algorithm for $\mathrm{MDBCS}_{d}, d \geq 2$, with performance ratio $2^{\mathcal{O}(\sqrt{\log n})}$, then NP $\subseteq \operatorname{DTIME}\left(2^{\mathcal{O}\left(\log ^{5} n\right)}\right)$.
(3) $\min \{m / \log n, n d /(2 \log n)\}$-approximation algorithm for unweighted graphs.

$$
(n=|V(G)| \text { and } m=|E(G)|)
$$

(4) $\min \{n / 2, m / d\}$-approximation algorithm for weighted graphs.
(5) if $G$ has a low-degree spanning tree (in terms of $d$ ) it can be approximated within a small constant factor.

## Graph of the thesis



## Graph of the thesis



## Graph of the thesis



## Some words on parameterized complexity

- Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a Vertex Cover.

## Some words on parameterized complexity

- Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a Vertex Cover.

- Given a (NP-hard) problem with input of size $n$ and a parameter $k$, a fixed-parameter tractable (FPT) algorithm runs in


## Some words on parameterized complexity

- Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a Vertex Cover.

- Given a (NP-hard) problem with input of size $n$ and a parameter $k$, a fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function $f$. Examples: K-VERTEX COVER, K-LONGEST PATH


## Some words on parameterized complexity

- Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a Vertex Cover.

- Given a (NP-hard) problem with input of size $n$ and a parameter $k$, a fixed-parameter tractable (FPT) algorithm runs in
$f(k) \cdot n^{\mathcal{O}(1)}$, for some function $f$.
Examples: k-Vertex Cover, k-Longest Path.


## Some words on parameterized complexity

- Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a Vertex Cover.

- Given a (NP-hard) problem with input of size $n$ and a parameter $k$, a fixed-parameter tractable (FPT) algorithm runs in
$f(k) \cdot n^{\mathcal{O}(1)}$, for some function $f$.
Examples: $k$-Vertex Cover, $k$-Longest Path.
- Barometer of intractability:



## Some words on parameterized complexity

- Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a Vertex Cover.

- Given a (NP-hard) problem with input of size $n$ and a parameter $k$, a fixed-parameter tractable (FPT) algorithm runs in

$$
f(k) \cdot n^{\mathcal{O}(1)}, \text { for some function } f
$$

Examples: $k$-Vertex Cover, $k$-Longest Path.

- Barometer of intractability:

$$
\mathrm{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq X P
$$

## Parameterized complexity of finding degree-constrained subgraphs

- We have studied the parameterized complexity of finding degree-constrained subgraphs, with
parameter $=$ number of vertices of the desired subgraph
- Namely, given two integers $d$ and $k$, the problems of finding (1) a $d$-regular subgraph (induced or not) with at most $\leq k$ vertices. (2) a subgraph with at most $\leq k$ vertices and of minimum degree


## Parameterized complexity of finding degree-constrained subgraphs

- We have studied the parameterized complexity of finding degree-constrained subgraphs, with parameter $=$ number of vertices of the desired subgraph
- Namely, given two integers $d$ and $k$, the problems of finding
(1) a $d$-regular subgraph (induced or not) with at most $\leq k$ vertices.
(2) a subgraph with at most $\leq k$ vertices and of minimum degree
- We prove that
(1) these problems are $W^{(1 / 1]-h a r d ~ i n ~ g e n e r a l ~ g r a p h s . ~}$


## Parameterized complexity of finding degree-constrained subgraphs

- We have studied the parameterized complexity of finding degree-constrained subgraphs, with

$$
\text { parameter }=\text { number of vertices of the desired subgraph }
$$

- Namely, given two integers $d$ and $k$, the problems of finding
(1) a $d$-regular subgraph (induced or not) with at most $\leq k$ vertices.
(2) a subgraph with at most $\leq k$ vertices and of minimum degree $\geq d$.
- We prove that
(1) these problems are $W[1]$-hard in general graphs.

2. We then provide exnlicit FPT alaorithms to solve both problems in

## Parameterized complexity of finding degree-constrained subgraphs

- We have studied the parameterized complexity of finding degree-constrained subgraphs, with

$$
\text { parameter }=\text { number of vertices of the desired subgraph }
$$

- Namely, given two integers $d$ and $k$, the problems of finding
(1) a $d$-regular subgraph (induced or not) with at most $\leq k$ vertices.
(2) a subgraph with at most $\leq k$ vertices and of minimum degree $\geq d$.
- We prove that
(1) these problems are $W$ [1]-hard in general graphs.
(2) We then provide explicit FPT algorithms to solve both problems in graphs with bounded local treewidth and graphs with excluded
minors, using a dynamic programming approach.


## Parameterized complexity of finding degree-constrained subgraphs

- We have studied the parameterized complexity of finding degree-constrained subgraphs, with

$$
\text { parameter }=\text { number of vertices of the desired subgraph }
$$

- Namely, given two integers $d$ and $k$, the problems of finding
(1) a $d$-regular subgraph (induced or not) with at most $\leq k$ vertices.
(2) a subgraph with at most $\leq k$ vertices and of minimum degree $\geq d$.
- We prove that
(1) these problems are $W[1]$-hard in general graphs.
(2) We then provide explicit FPT algorithms to solve both problems in graphs with bounded local treewidth and graphs with excluded minors, using a dynamic programming approach.


## Graph of the thesis



## FPT and subexponential algorithms

Given a (NP-hard) problem with input of size $n$ and a parameter $k$ :

- A fixed-parameter tractable (FPT) algorithm runs in

$$
f(k) \cdot n^{\mathcal{O}(1)} \text {, for some function } f .
$$

Examples: $k$-Vertex Cover, $k$-Longest Path.

- Problem: $f(k)$ can be huge!!!(for instance, - A subexponential parameterized algorithm is a FPT algo s.t


## FPT and subexponential algorithms

Given a (NP-hard) problem with input of size $n$ and a parameter $k$ :

- A fixed-parameter tractable (FPT) algorithm runs in

$$
f(k) \cdot n^{\mathcal{O}(1)} \text {, for some function } f .
$$

Examples: $k$-Vertex Cover, $k$-Longest Path.

- Problem: $f(k)$ can be huge!!! (for instance, $f(k)=2^{3^{4^{5^{k^{k}}}}}$ )
- A subexponential parameterized algorithm is a FPT algo s.t.

$$
f(k)=2^{o(k)}
$$

## FPT and subexponential algorithms

Given a (NP-hard) problem with input of size $n$ and a parameter $k$ :

- A fixed-parameter tractable (FPT) algorithm runs in

$$
f(k) \cdot n^{\mathcal{O}(1)} \text {, for some function } f .
$$

Examples: $k$-Vertex Cover, $k$-Longest Path.

- Problem: $f(k)$ can be huge!!! (for instance, $f(k)=2^{3^{4^{5^{6^{*}}}}}$ )
- A subexponential parameterized algorithm is a FPT algo s.t.

$$
f(k)=2^{o(k)} .
$$

## FPT and subexponential algorithms

Given a (NP-hard) problem with input of size $n$ and a parameter $k$ :

- A fixed-parameter tractable (FPT) algorithm runs in

$$
f(k) \cdot n^{\mathcal{O}(1)}, \text { for some function } f .
$$

Examples: $k$-Vertex Cover, $k$-Longest Path.

- Problem: $f(k)$ can be huge!!! (for instance, $f(k)=2^{3^{4^{5^{6^{*}}}}}$ )
- A subexponential parameterized algorithm is a FPT algo s.t.

$$
f(k)=2^{o(k)} .
$$

- Typically $f(k)=2^{\mathcal{O}(\sqrt{k})}$.


## General idea / meta-algorithmic framework

Given a parameter $\mathbf{P}$ defined in a planar graph $G, \quad \mathbf{P}(G) \leq k$ ?
First we compute bw( $G$ ). [Seymour and Thomas. Combinatorica'94]

## General idea / meta-algorithmic framework

Given a parameter $\mathbf{P}$ defined in a planar graph $G, \quad \mathbf{P}(G) \leq k$ ? First we compute $\mathbf{b w}(G)$. [Seymour and Thomas. Combinatorica'94]


## General idea / meta-algorithmic framework

Given a parameter $\mathbf{P}$ defined in a planar graph $G, \quad \mathbf{P}(G) \leq k$ ? First we compute $\mathbf{b w}(G)$. [Seymour and Thomas. Combinatorica'94]
(A) Combinatorial bounds via Graph Minor theorems:

$$
\left.\mathbf{b w}(G) \text { is "big" } \Rightarrow \mathbf{P} \text { is also "big" (typically, } \mathbf{P}=\Omega\left(\mathbf{b w}^{2}\right)\right) \text {. }
$$

- Bidimensionality: use square grids as "certificates" [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]


## General idea / meta-algorithmic framework

Given a parameter $\mathbf{P}$ defined in a planar graph $G, \quad \mathbf{P}(G) \leq k$ ? First we compute $\mathbf{b w}(G)$. [Seymour and Thomas. Combinatorica'94]
(A) Combinatorial bounds via Graph Minor theorems: $\mathbf{b w}(G)$ is "big" $\Rightarrow \mathbf{P}$ is also "big" (typically, $\mathbf{P}=\Omega\left(\mathbf{b w}^{2}\right)$ ).

- Bidimensionality: use square grids as "certificates". [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]

(B)Dynamic programming which uses graph structure If $\operatorname{bw}(G)$ is "small", we decide $P$ by "fast" dynamic programming

## General idea / meta-algorithmic framework

Given a parameter $\mathbf{P}$ defined in a planar graph $G, \quad \mathbf{P}(G) \leq k$ ?
First we compute $\mathbf{b w}(G)$. [Seymour and Thomas. Combinatorica'94]
(A) Combinatorial bounds via Graph Minor theorems:
$\mathbf{b w}(G)$ is "big" $\Rightarrow \mathbf{P}$ is also "big" (typically, $\mathbf{P}=\Omega\left(\mathbf{b w}^{2}\right)$ ).

- Bidimensionality: use square grids as "certificates". [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]
(B) Dynamic programming which uses graph structure: If $\mathbf{b w}(G)$ is "small", we decide $\mathbf{P}$ by "fast" dynamic programming.

Catalan structures
[Dorn, Fomin, Thilikos. ICALP'07, SODA'08]

## General idea / meta-algorithmic framework

Given a parameter $\mathbf{P}$ defined in a planar graph $G, \quad \mathbf{P}(G) \leq k$ ?
First we compute $\mathbf{b w}(G)$. [Seymour and Thomas. Combinatorica'94]
(A) Combinatorial bounds via Graph Minor theorems:
$\mathbf{b w}(G)$ is "big" $\Rightarrow \mathbf{P}$ is also "big" (typically, $\mathbf{P}=\Omega\left(\mathbf{b w}^{2}\right)$ ).

- Bidimensionality: use square grids as "certificates". [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]
(B) Dynamic programming which uses graph structure: If $\mathbf{b w}(G)$ is "small", we decide $\mathbf{P}$ by "fast" dynamic programming.
- Catalan structures.
[Dorn, Fomin, Thilikos. ICALP'07, SODA'08]
* With D.M. Thilikos we have adapted this framework to MDBCS
as well
as for a few variants, introducing some general techniques.


## General idea / meta-algorithmic framework

Given a parameter $\mathbf{P}$ defined in a planar graph $G, \quad \mathbf{P}(G) \leq k$ ?
First we compute bw( $G$ ). [Seymour and Thomas. Combinatorica'94]
(A) Combinatorial bounds via Graph Minor theorems:
$\mathbf{b w}(G)$ is "big" $\Rightarrow \mathbf{P}$ is also "big" (typically, $\mathbf{P}=\Omega\left(\mathbf{b w}^{2}\right)$ ).

- Bidimensionality: use square grids as "certificates". [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]
(B) Dynamic programming which uses graph structure:

If $\mathbf{b w}(G)$ is "small", we decide $\mathbf{P}$ by "fast" dynamic programming.

- Catalan structures.
[Dorn, Fomin, Thilikos. ICALP'07, SODA'08]
$\star$ With D.M. Thilikos we have adapted this framework to MDBCS $_{d}$, as well as for a few variants, introducing some general techniques.


## Graph of the thesis



## Graph of the thesis



## Graph of the thesis



## Surfaces

- Surface: connected compact 2-manifold.



## Handles




## Cross-caps



## Genus of a surface

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere $\mathbb{S}^{2}$ by adding handles and cross-caps.
- Orientable surfaces: obtained by adding $g \geq 0$ handles to the sphere $\mathbb{S}^{2}$, obtaining the $g$-torus $\mathbb{T}_{g}$ with Euler genus $\mathbf{e g}\left(\mathbb{T}_{g}\right)=2 g$.


## Genus of a surface

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere $\mathbb{S}^{2}$ by adding handles and cross-caps.
- Orientable surfaces: obtained by adding $g \geq 0$ handles to the sphere $\mathbb{S}^{2}$, obtaining the $g$-torus $\mathbb{T}_{g}$ with Euler genus $\operatorname{eg}\left(\mathbb{T}_{g}\right)=2 g$.
- Non-orientable surfaces: obtained by adding $h>0$ cross-caps to the sphere $\mathbb{S}^{2}$, obtaining a non-orientable surface $\mathbb{P}_{h}$ with Euler genus eg $\left(\mathbb{P}_{h}\right)=h$.


## Genus of a surface

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere $\mathbb{S}^{2}$ by adding handles and cross-caps.
- Orientable surfaces: obtained by adding $g \geq 0$ handles to the sphere $\mathbb{S}^{2}$, obtaining the $g$-torus $\mathbb{T}_{g}$ with Euler genus $\operatorname{eg}\left(\mathbb{T}_{g}\right)=2 g$.
- Non-orientable surfaces: obtained by adding $h>0$ cross-caps to the sphere $\mathbb{S}^{2}$, obtaining a non-orientable surface $\mathbb{P}_{h}$ with Euler genus $\operatorname{eg}\left(\mathbb{P}_{h}\right)=h$.


## Graphs on surfaces

- An embedding of a graph $G$ on a surface $\Sigma$ is a drawing of $G$ on $\Sigma$ without edge crossings.
- An embedding defines vertices, edges, and faces.
- The Euler genus of a graph $G, \operatorname{eg}(G)$, is the least Euler genus of the surfaces in which $G$ can be embedded.


## Graphs on surfaces

- An embedding of a graph $G$ on a surface $\Sigma$ is a drawing of $G$ on $\Sigma$ without edge crossings.
- An embedding defines vertices, edges, and faces.
- The Euler genus of a graph $G, \operatorname{eg}(G)$, is the least Euler genus of the surfaces in which $G$ can be embedded.


## Dynamic programming for graphs on surfaces

- Let $G$ be a graph on $n$ vertices with branchwidth at most $k$.
- We consider graph problems for which dynamic programming uses tables encoding vertex partitions.

For instance, Our approach applies to MAXIMMUM d-DEGPLE-BOUNDED CONNECTED Subgraph, Maximum d-Degree-Bounded Connected Induced Subgraph and several variants, CONNECTED DOMINATING SET, CONNECTED r-DOMINATION,

## Dynamic programming for graphs on surfaces

- Let $G$ be a graph on $n$ vertices with branchwidth at most $k$.
- We consider graph problems for which dynamic programming uses tables encoding vertex partitions.

For instance, our approach applies to MAXIMUM d-DEGREE-BOUNDED CONNECTED Subgraph, Maximum d-Degree-Bounded Connected Induced Subgraph and several variants, CONNECTED DOMINATING SET, CONNECTED $r$-DOMINATION Connected FVS, Maximum Leaf Spanning Tree, Maximum Full-Degree Spanning Tree, Maximum Eulerian Subgraph, Steiner Tree, Maximum Leaf Tree, For general graphs, the best known algorithms for such problems

## Dynamic programming for graphs on surfaces

- Let $G$ be a graph on $n$ vertices with branchwidth at most $k$.
- We consider graph problems for which dynamic programming uses tables encoding vertex partitions.

For instance, our approach applies to Maximum $d$-Degree-Bounded Connected Subgraph, Maximum $d$-Degree-Bounded Connected Induced Subgraph and several variants, Connected Dominating Set, Connected r-Domination, Connected FVS, Maximum Leaf Spanning Tree, Maximum Full-Degree Spanning Tree, Maximum Eulerian Subgraph, Steiner Tree, Maximum Leaf Tree, ...

- For general graphs, the best known algorithms for such problems run in $k^{\mathcal{O}(k)} \cdot n$ steps.


## Dynamic programming for graphs on surfaces

- Let $G$ be a graph on $n$ vertices with branchwidth at most $k$.
- We consider graph problems for which dynamic programming uses tables encoding vertex partitions.

For instance, our approach applies to Maximum $d$-Degree-Bounded Connected Subgraph, Maximum $d$-Degree-Bounded Connected Induced Subgraph and several variants, Connected Dominating Set, Connected r-Domination, Connected FVS, Maximum Leaf Spanning Tree, Maximum Full-Degree Spanning Tree, Maximum Eulerian Subgraph, Steiner Tree, Maximum Leaf Tree, ...

- For general graphs, the best known algorithms for such problems run in $k^{\mathcal{O}(k)} \cdot n$ steps.


## From <br> cut decompositions

- We build a framework for the design of $2^{\mathcal{O}(k)} \cdot n$ step dynamic programming algorithms on surface-embedded graphs.
- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT'06] Our approach is based on a new type of branch decomposition, called surface cut decomposition.


## From <br> cut decompositions

- We build a framework for the design of $2^{\mathcal{O}(k)} \cdot n$ step dynamic programming algorithms on surface-embedded graphs.
- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT'06]
- Our approach is based on a new type of branch decomposition, called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize

## From <br> cut decompositions

- We build a framework for the design of $2^{\mathcal{O}(k)} \cdot n$ step dynamic programming algorithms on surface-embedded graphs.
- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT'06]
- Our approach is based on a new type of branch decomposition, called surface cut decomposition.
- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica'94]


## From sonere to suriace cut decompositions

- We build a framework for the design of $2^{\mathcal{O}(k)} \cdot n$ step dynamic programming algorithms on surface-embedded graphs.
- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT'06]
- Our approach is based on a new type of branch decomposition, called surface cut decomposition.
- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica'94]


## Nooses

- Let $G$ be a graph embedded in a surface $\Sigma$. A noose is a subset of $\Sigma$ homeomorphic to $\mathbb{S}^{1}$ that meets $G$ only at vertices.


## Nooses

- Let $G$ be a graph embedded in a surface $\Sigma$. A noose is a subset of $\Sigma$ homeomorphic to $\mathbb{S}^{1}$ that meets $G$ only at vertices.


## Nooses

- Let $G$ be a graph embedded in a surface $\Sigma$. A noose is a subset of $\Sigma$ homeomorphic to $\mathbb{S}^{1}$ that meets $G$ only at vertices.



## Nooses

- Let $G$ be a graph embedded in a surface $\Sigma$. A noose is a subset of $\Sigma$ homeomorphic to $\mathbb{S}^{1}$ that meets $G$ only at vertices.


## Nooses

- Let $G$ be a graph embedded in a surface $\Sigma$. A noose is a subset of $\Sigma$ homeomorphic to $\mathbb{S}^{1}$ that meets $G$ only at vertices.


## Nooses

- Let $G$ be a graph embedded in a surface $\Sigma$. A noose is a subset of $\Sigma$ homeomorphic to $\mathbb{S}^{1}$ that meets $G$ only at vertices.


## Nooses

- Let $G$ be a graph embedded in a surface $\Sigma$. A noose is a subset of $\Sigma$ homeomorphic to $\mathbb{S}^{1}$ that meets $G$ only at vertices.



## Sphere cut decompositions

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e). In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?


## Sphere cut decompositions

- Sphere cut decomposition: Branch decomposition where the vertices in each $\operatorname{mid}(e)$ are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?


## Sphere cut decompositions

- Sphere cut decomposition: Branch decomposition where the vertices in each mid $(e)$ are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?


## Sphere cut decompositions

- Sphere cut decomposition: Branch decomposition where the vertices in each $\operatorname{mid}(e)$ are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

- Exactly the number of non-crossing partitions over $\ell$ elements, which is given by the $\ell$-th Catalan number:


## Sphere cut decompositions

- Sphere cut decomposition: Branch decomposition where the vertices in each $\operatorname{mid}(e)$ are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

- Exactly the number of non-crossing partitions over $\ell$ elements, which is given by the $\ell$-th Catalan number:

$$
\mathrm{CN}(\ell)=\frac{1}{\ell+1}\binom{2 \ell}{\ell} \sim \frac{4^{\ell}}{\sqrt{\pi} \ell^{3 / 2}} \approx 4^{\ell} .
$$

## Surface cut decompositions (simplified version)

Let $G$ be a graph embedded in a surface $\Sigma$, with $\operatorname{eg}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of $G$ is a branch decomposition $(T, \mu)$ of $G$ and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

## Surface cut decompositions (simplified version)

Let $G$ be a graph embedded in a surface $\Sigma$, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of $G$ is a branch decomposition $(T, \mu)$ of $G$ and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

## - either $|\operatorname{mid}(e) \backslash A| \leq 2$,

## Surface cut decompositions (simplified version)

Let $G$ be a graph embedded in a surface $\Sigma$, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of $G$ is a branch decomposition $(T, \mu)$ of $G$ and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\operatorname{mid}(e) \backslash A| \leq 2$,
the vertices in $\operatorname{mid}(e) \backslash A$ are contained in a set $\mathcal{N}$ of $\mathcal{O}(\mathbf{g})$ nooses;
these nooses intersect in $\mathcal{O}(a)$ vertices:


## Surface cut decompositions (simplified version)

Let $G$ be a graph embedded in a surface $\Sigma$, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of $G$ is a branch decomposition $(T, \mu)$ of $G$ and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\operatorname{mid}(e) \backslash A| \leq 2$,
- or
* the vertices in $\operatorname{mid}(e) \backslash A$ are contained in a set $\mathcal{N}$ of $\mathcal{O}(\mathbf{g})$ nooses;
these nooses intersect in $\mathcal{O}(\mathrm{g})$ vertices;


## Surface cut decompositions (simplified version)

Let $G$ be a graph embedded in a surface $\Sigma$, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of $G$ is a branch decomposition $(T, \mu)$ of $G$ and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\operatorname{mid}(e) \backslash A| \leq 2$,
- or
* the vertices in $\operatorname{mid}(e) \backslash A$ are contained in a set $\mathcal{N}$ of $\mathcal{O}(\mathbf{g})$ nooses;
* these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;



## Surface cut decompositions (simplified version)

Let $G$ be a graph embedded in a surface $\Sigma$, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of $G$ is a branch decomposition $(T, \mu)$ of $G$ and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\operatorname{mid}(e) \backslash A| \leq 2$,
- or
* the vertices in $\operatorname{mid}(e) \backslash A$ are contained in a set $\mathcal{N}$ of $\mathcal{O}(\mathbf{g})$ nooses;
* these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;
$\star \Sigma \backslash \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.


## How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

## Theorem (Rué, Thilikos, and S.) <br> Given a $G$ on $n$ vertices embedded in a surface of Euler genus g , with $\operatorname{bw}(G) \leq k$, one can construct in $2^{3 k+O(\log k)} \cdot n^{3}$ time a surface cut decomposition $(T, \mu)$ of $G$ of width at most $27 k+\mathcal{O}(\mathrm{g})$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is sinale

## How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

## Theorem (Rué, Thilikos, and S.)

Given a G on $n$ vertices embedded in a surface of Euler genus $\mathbf{g}$, with $\mathrm{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition $(T, \mu)$ of $G$ of width at most $27 \mathrm{k}+\mathcal{O}(\mathbf{g})$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

## How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

## Theorem (Rué, Thilikos, and S.)

Given a $G$ on $n$ vertices embedded in a surface of Euler genus g , with $\mathrm{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition $(T, \mu)$ of $G$ of width at most $27 k+\mathcal{O}(\mathbf{g})$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

$\square$

## How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

## Theorem (Rué, Thilikos, and S.)

Given a G on $n$ vertices embedded in a surface of Euler genus g , with $\operatorname{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition $(T, \mu)$ of $G$ of width at most $27 k+\mathcal{O}(\mathbf{g})$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

## Theorem (Rué, Thilikos, and S.)

Given a problem $P$ belonging to Category (C) in a graph $G$ embedded in a surface of Euler genus g , with $\mathrm{bw}(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve $P$ on a surface cut decomposition of $G$ is bounded above by $2^{\mathcal{O}(k)} \cdot k^{\mathcal{O}(g)} \cdot \mathbf{g}^{\mathcal{O}(\mathbf{g})}$.

[^0]
## How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

## Theorem (Rué, Thilikos, and S.)

Given a $G$ on $n$ vertices embedded in a surface of Euler genus g , with $\mathrm{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition $(T, \mu)$ of $G$ of width at most $27 k+\mathcal{O}(\mathbf{g})$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

## Theorem (Rué, Thilikos, and S.)

Given a problem $P$ belonging to Category (C) in a graph $G$ embedded in a surface of Euler genus g , with $\mathrm{bw}(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve $P$ on a surface cut decomposition of $G$ is bounded above by $2^{\mathcal{O}(k)} \cdot k^{\mathcal{O}(g)} \cdot \mathbf{g}^{\mathcal{O}(\mathrm{g})}$.

This fact is proved using topological graph theory and analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.

## Graph of the thesis



## Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
- Close the complexity gap when $C$ is part of the input.
- In rinas, determine the best routina for each reauest araph.


## Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
- Close the complexity gap when $C$ is part of the input.
- In rings, determine the best routing for each request graph.
- Consider other physical topologies.


## Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
- Close the complexity gap when $C$ is part of the input.
- In rings, determine the best routing for each request graph.
- Consider other physical topologies.
- Where is the limit of generalization?


## Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
- Close the complexity gap when $C$ is part of the input.
- In rings, determine the best routing for each request graph.
- Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems


## Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
- Close the complexity gap when $C$ is part of the input.
- In rings, determine the best routing for each request graph.
- Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems

Better understand the structure and the algorithmic properties of sparse families of graphs.

## Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
- Close the complexity gap when $C$ is part of the input.
- In rings, determine the best routing for each request graph.
- Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.

Graph coloring, probabilistic method,

## Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
- Close the complexity gap when $C$ is part of the input.
- In rings, determine the best routing for each request graph.
- Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.
- Graph coloring, probabilistic method,


## Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
- Close the complexity gap when $C$ is part of the input.
- In rings, determine the best routing for each request graph.
- Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.
- Graph coloring, probabilistic method, ...


## (II) <br> Gràcies! <br> 


[^0]:    This fact is proved using topological graph theory and analytic combinatorics,

