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General idea

WDM (Wavelength Division Multiplexing) networks
1 wavelength (or frequency) = up to 40 Gb/s
1 fiber = hundreds of wavelengths = Tb/s

Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

−→ we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

Objectives:
Better use of bandwidth
Reduce the equipment cost (mostly given by electronics)
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Definitions

Request (i , j): two vertices (i , j) that want to exchange
(low-speed) traffic

Grooming factor C:

C =
Capacity of a wavelength

Capacity used by a request

? Typical values of the grooming factor:
SDH: 4, 16, 64, 256, . . .

SONET: 3, 12, 48, . . .

Example:
Capacity of one wavelength = 2.5 Gb/s
Capacity used by a request = 640 Mb/s ⇒ C = 4

load of an arc in a wavelength: number of requests using this arc
in this wavelength (≤ C)
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ADM and OADM

OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength

ADM ADM ADM

OADMOADM OADM

We want to minimize the number of ADMs
We need to use an ADM only at the endpoints of a request
(lightpaths) in order to save as many ADMs as possible
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To fix ideas...

Model:

Topology → graph G
Request set → graph R
Grooming factor → integer C
Wavelength → Subgraph of R
Requests in a wavelength → edges in a subgraph of R
ADM in a wavelength → vertex in a subgraph of R

A fundamental case is when G =
−→
C n (unidirectional ring)

It is also natural to consider symmetric requests
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Unidirectional ring with symmetric requests

Symmetric requests: whenever there is the request (i , j), there is
also the request (j , i).

(i,j)

(j,i)

i
j

i
j

W.l.o.g. requests (i , j) and (j , i) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor C ⇔ each subgraph has ≤ C edges.
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Statement of the problem

Traffic Grooming in Unidirectional Rings (with symmetric requests)

Input An undirected graph R on n nodes (request set);
A grooming factor C.

Output A partition of E(R) into subgraphs
R1, . . . ,RW with |E(Ri)| ≤ C, i=1,. . . ,W.

Objective Minimize
∑W

i=1 |V (Ri)|.
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Example (unidirectional ring with symmetric requests)

0 1

23

n = 4
R = K4
C = 3
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Example (unidirectional ring with symmetric requests)

0 1

23

n = 4
R = K4
C = 3

0 1

23

0 1

2

0 1

23

0 1

23

8 ADMs

7 ADMs

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 9 / 54



Graph of the thesis

Degree-constrained
subgraph problems

Traffic
grooming

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 10 / 54



Graph of the thesis

Degree-constrained
subgraph problems

Traffic
grooming

Hardness and
approximation

Part

Subpart (chapter)

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 10 / 54



Graph of the thesis

Degree-constrained
subgraph problems

Traffic
grooming

Hardness and
approximation

approximation
algorithms

hardness of
approximation

Part

Subpart (chapter)

Techniques used

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 10 / 54



Preliminaries: approximation algorithms

Given a (typically NP-hard) minimization problem Π, ALG is an
α-approximation algorithm for Π (with α ≥ 1) if for any instance I of Π,

ALG(I) ≤ α ·OPT (I).

Class APX (Approximable):

an NP-hard optimization problem is in APX if it can be approximated
within a constant factor.

Example: MINIMUM VERTEX COVER has a 2-approximation.

Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be approximated
within a constant factor 1 + ε, for all ε > 0
(the best one can hope for an NP-hard problem).

Example: MAXIMUM KNAPSACK.
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Hardness of RING TRAFFIC GROOMING

1 NP-complete if C is part of the input
[Chiu and Modiano. IEEE JLT’00]

2 Not in APX if C is part of the input
[Huang, Dutta, and Rouskas. IEEE JSAC’06]

3 Remains NP-complete for fixed C ≥ 1
(the proof assumes a bounded number of wavelengths)

[Shalom, Unger, and Zaks. FUN’07]

F Open problem: inapproximability for fixed C?
Conjecture: Not in PTAS for fixed C.

[Wan, Calinescu, Liu, and Frieder. IEEE JSAC’00]
[Chow and Lin. Networks’04]

Theorem (Amini, Pérennes, and S.)
RING TRAFFIC GROOMING is not in PTAS for any fixed C ≥ 1.
PATH TRAFFIC GROOMING is not in PTAS for any fixed C ≥ 2.
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Approximation of RING TRAFFIC GROOMING

1
√

C-approximation is trivial (in poly-time in both n and C)
2 O(log C)-approximation algorithm, with running time O(nC)

[Flammini et al. ISAAC’05, JDA’08]
3 But in backbone networks, it is usually the case that C ≥ n.

F Open problem: approximation algorithm in poly-time in both C
and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)
There is a polynomial-time approximation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n1/3 log2 n) for any C ≥ 1.

Outline of the algorithm:

1 partition the requests into groups of similar length
2 in each group, extract “dense” subgraphs greedily using an algorithm for

the DENSE k -SUBGRAPH problem
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New model of traffic grooming

In the literature so far:
place ADMs at nodes for a fixed request graph.
→ placement of ADMs a posteriori.

New model [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support any
request graph with maximum degree at most ∆.
→ placement of ADMs a priori.

As the network must support any degree-bounded graph, due to
symmetry we place the same number of ADMs at each node.

The objective is then to minimize this number.
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The parameter M(C, ∆)

∆-graph: graph with maximum degree at most ∆.

C-edge partition of G: partition of E(G) into subgraphs with ≤ C edges.

The problem is equivalent to determining the following parameter:

Therefore, we focus on determining M(C,∆).
W.l.o.g. we can assume that R has regular degree ∆.

Proposition (Lower Bound – Muñoz and S.)

For all C,∆ ≥ 1, M(C,∆) ≥
⌈

C+1
C

∆
2

⌉
.
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Case ∆ ≥ 2 even

Theorem (Li and S.)

Let ∆ ≥ 2 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof.
We have just seen the lower bound. Construction:

Orient the edges of G = (V ,E) in an Eulerian tour.

Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them
into

⌈
∆
2C

⌉
stars with (at most) C edges centered at v .

Each vertex v appears as a leaf in stars centered at other vertices
exactly ∆−∆/2 = ∆/2 times.

The number of occurrences of each vertex in this partition is⌈
∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.
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Case ∆ ≥ 3 odd

Proposition (Upper Bound – Li and S.)

Let ∆ ≥ 3 be odd. Then for any C ≥ 1, M(C,∆) ≤
⌈

C+1
C

∆
2 + C−1

2C

⌉
.

Corollary (Li and S.)

Let ∆ ≥ 3 be odd. Then for any C ≥ 1, M(C,∆) ≤
⌈

C+1
C

∆
2

⌉
+ 1.

Question: is the lower bound
⌈

C+1
C

∆
2

⌉
always attained?

Theorem (Li and S.)

Let ∆ ≥ 3 be odd. If ∆ ≡ C (mod 2C), then M(C,∆) =
⌈

C+1
C

∆
2

⌉
+ 1.
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Open cases

Summarizing, we established the value of M(C,∆) for “almost” all
values of C and ∆, leaving open only the case where:

∆ ≥ 5 is odd; and

C ≥ 4; and

3 ≤ ∆ (mod 2C) ≤ C − 1; and

the request graph does not contain a perfect matching.
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Bidirectional rings
With Jean-Claude Bermond and Xavier Muñoz

Most of the research had been done for unidirectional rings.

We consider the bidirectional ring with
? all-to-all requests.
? shortest path routing.

We provide:

1 Statement of the problem and general lower bounds.

2 Exhaustive study of the cases C ∈ {1,2,3}.
3 Optimal solutions for some infinite families when C = k(k + 1)/2.

4 Asymptotically optimal or approximated solutions.
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Most of the research had been done for unidirectional rings.

We consider the bidirectional ring with
? all-to-all requests.
? shortest path routing.

We provide:

1 Statement of the problem and general lower bounds.

2 Exhaustive study of the cases C ∈ {1,2,3}.
3 Optimal solutions for some infinite families when C = k(k + 1)/2.

4 Asymptotically optimal or approximated solutions.

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 21 / 54



Bidirectional rings
With Jean-Claude Bermond and Xavier Muñoz
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2-period traffic grooming in unidirectional rings
With J-C. Bermond, C.J. Colbourn, L. Gionfriddo, and G. Quattrocchi

We consider a pseudo-dynamic scenario in unidirectional rings:

in the 1st period of time, there is all-to-all traffic among n nodes,
each request using 1/C of the bandwidth.

in the 2nd period, there is all-to-all traffic among a subset of n′ < n
nodes, each request using 1/C′ of the bandwidth, with C′ < C.

The problem consists in finding a C-edge-partition of Kn that
embeds a C′-edge-partition of Kn′ .

Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks’08].
They solved the cases C = 2 and C = 3 (C′ ∈ {1,2}).

We solve the case C = 4 (that is, C′ ∈ {1,2,3}).

In addition, we provide the optimal cost under the constraint of using the
minimum number of wavelengths.
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From Traffic grooming to degree-constrained subgraph problems

Remember from the first subpart:

Theorem (Amini, Pérennes, and S.)
There is a polynomial-time approximation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n1/3 log2 n) for any C ≥ 1.

1 partition the requests into groups of similar length [factor log n]
2 in each group, extract subgraphs greedily using an algorithm for

the DENSE k -SUBGRAPH problem [factor log n] [factor n1/3]

DENSE k -SUBGRAPH (DkS)
Input: An undirected graph G = (V ,E) and a positive integer k .
Output: A subset S ⊆ V , with |S| = k , such that |E(G[S])| is maximized.

Summarizing, a β-approximation for the DkS problems yields a
(β · log2 n)-approximation for RING TRAFFIC GROOMING.
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There is a polynomial-time approximation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n1/3 log2 n) for any C ≥ 1.

1 partition the requests into groups of similar length [factor log n]
2 in each group, extract subgraphs greedily using an algorithm for

the DENSE k -SUBGRAPH problem [factor log n] [factor n1/3]

DENSE k -SUBGRAPH (DkS)
Input: An undirected graph G = (V ,E) and a positive integer k .
Output: A subset S ⊆ V , with |S| = k , such that |E(G[S])| is maximized.

Summarizing, a β-approximation for the DkS problems yields a
(β · log2 n)-approximation for RING TRAFFIC GROOMING.

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 25 / 54



Finding dense subgraphs is difficult...

Unfortunately, the DkS problem is a very “hard” problem:

Best approximation algorithm: O(n1/3−ε)-approximation.
[Feige, Kortsarz, and Peleg. Algorithmica’01]

Best hardness result: No PTAS, unless P=NP.
[Khot. SIAM J. Comp’06]

What about trying to find dense subgraphs differently?

In DkS, the objective is to maximize the average degree

What about the minimum degree...?
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Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
a (weighted or unweighted) graph G, and
an integer d .

Output:
a (connected) subgraph H of G,
satisfying some degree constraints (∆(H) ≤ d or δ(H) ≥ d),
and optimizing some parameter (|V (H)| or |E(H)|).

Several problems in this broad family are classical widely studied
NP-hard problems.

They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...
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First problem

MINIMUM SUBGRAPH OF MINIMUM DEGREE ≥ d (MSMDd ):

Input: an undirected graph G = (V ,E) and an integer d ≥ 3.

Output: a subset S ⊆ V with δ(G[S]) ≥ d , s.t. |S| is minimum.

For d = 2 it is exactly the GIRTH problem, which is in P.

Therefore, it can be seen as a generalization of GIRTH.

Is it also in P for d ≥ 3 ?
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Hardness and approximation
With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

1 MSMDd is not in APX for any d ≥ 3, using the error amplification
technique:

first we prove that MSMDd is not in PTAS (unless P=NP).

then we prove that MSMDd does not accept any constant factor
approximation.

2 O(n/ log n)-approximation algorithm for minor-free classes of
graphs, using dynamic programming techniques and a known
structural result on graph minors.

(In particular, this applied to planar graphs and graphs of bounded genus.)
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Second problem

MAXIMUM d -DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCSd ):
Input:

an undirected graph G = (V ,E),

an integer d ≥ 2, and

a weight function ω : E → R+.

Output:
a subset of edges E ′ ⊆ E of maximum weight, s.t. G′ = (V ,E ′)

is connected (except isolated vertices), and

satisfies ∆(G′) ≤ d .

It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].
If the output subgraph is not required to be connected, the problem is in
P for any d (using matching techniques). [Lovász, 70’s]
For fixed d = 2 it corresponds to the LONGEST PATH problem.
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Example with d = 3, ω(e) = 1 for all e ∈ E(G)
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Hardness and approximation
With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

1 not in APX for any fixed d ≥ 2.

2 if there is a polynomial time algorithm for MDBCSd , d ≥ 2, with
performance ratio 2O(

√
log n), then NP ⊆ DTIME(2O(log5 n)).

3 min{m/ log n, nd/(2 log n)}-approximation algorithm for
unweighted graphs. (n = |V (G)| and m = |E(G)|)

4 min{n/2, m/d}-approximation algorithm for weighted graphs.

5 if G has a low-degree spanning tree (in terms of d) it can be
approximated within a small constant factor.
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Some words on parameterized complexity

Idea: given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

Given a (NP-hard) problem with input of size n and a parameter k ,
a fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.

Barometer of intractability:

FPT ⊆W [1] ⊆W [2] ⊆W [3] ⊆ · · · ⊆ XP
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Parameterized complexity of finding
degree-constrained subgraphs
With Omid Amini and Saket Saurabh

We have studied the parameterized complexity of finding
degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph

Namely, given two integers d and k , the problems of finding
1 a d-regular subgraph (induced or not) with at most ≤ k vertices.

2 a subgraph with at most ≤ k vertices and of minimum degree ≥ d .

We prove that
1 these problems are W [1]-hard in general graphs.

2 We then provide explicit FPT algorithms to solve both problems in
graphs with bounded local treewidth and graphs with excluded
minors, using a dynamic programming approach.
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FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k :

A fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.

Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

A subexponential parameterized algorithm is a FPT algo s.t.

f (k) = 2o(k).

Typically f (k) = 2O(
√

k).
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General idea / meta-algorithmic framework

Given a parameter P defined in a planar graph G, P(G) ≤ k ?
First we compute bw(G). [Seymour and Thomas. Combinatorica’94]

(A) Combinatorial bounds via Graph Minor theorems:
bw(G) is “big” ⇒ P is also “big” (typically, P = Ω(bw2)).

I Bidimensionality: use square grids as “certificates”.
[Demaine, Fomin, Hajiaghayi, Thilikos. SODA’04, J.ACM’05]

(B) Dynamic programming which uses graph structure:
If bw(G) is “small”, we decide P by “fast” dynamic programming.

I Catalan structures.
[Dorn, Fomin, Thilikos. ICALP’07, SODA’08]

F With D.M. Thilikos we have adapted this framework to MDBCSd ,
as well as for a few variants, introducing some general techniques.
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Surfaces

Surface: connected compact 2-manifold.
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Handles
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Cross-caps
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Genus of a surface

The surface classification Theorem: any compact, connected and
without boundary surface can be obtained from the sphere S2 by
adding handles and cross-caps.

Orientable surfaces: obtained by adding g ≥ 0 handles to the
sphere S2, obtaining the g-torus Tg with Euler genus eg(Tg) = 2g.

Non-orientable surfaces: obtained by adding h > 0 cross-caps to
the sphere S2, obtaining a non-orientable surface Ph with Euler
genus eg(Ph) = h.
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Graphs on surfaces

An embedding of a graph G on a surface Σ is a drawing of G on Σ
without edge crossings.

An embedding defines vertices, edges, and faces.

The Euler genus of a graph G, eg(G), is the least Euler genus of
the surfaces in which G can be embedded.
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Dynamic programming for graphs on surfaces
With Juanjo Rué and Dimitrios M. Thilikos

Let G be a graph on n vertices with branchwidth at most k .

We consider graph problems for which dynamic programming
uses tables encoding vertex partitions.

For instance, our approach applies to MAXIMUM d -DEGREE-BOUNDED CONNECTED

SUBGRAPH, MAXIMUM d -DEGREE-BOUNDED CONNECTED INDUCED SUBGRAPH and

several variants, CONNECTED DOMINATING SET, CONNECTED r -DOMINATION,

CONNECTED FVS, MAXIMUM LEAF SPANNING TREE, MAXIMUM FULL-DEGREE SPANNING

TREE, MAXIMUM EULERIAN SUBGRAPH, STEINER TREE, MAXIMUM LEAF TREE, . . .

For general graphs, the best known algorithms for such problems
run in kO(k) · n steps.

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 46 / 54



Dynamic programming for graphs on surfaces
With Juanjo Rué and Dimitrios M. Thilikos

Let G be a graph on n vertices with branchwidth at most k .

We consider graph problems for which dynamic programming
uses tables encoding vertex partitions.

For instance, our approach applies to MAXIMUM d -DEGREE-BOUNDED CONNECTED

SUBGRAPH, MAXIMUM d -DEGREE-BOUNDED CONNECTED INDUCED SUBGRAPH and

several variants, CONNECTED DOMINATING SET, CONNECTED r -DOMINATION,

CONNECTED FVS, MAXIMUM LEAF SPANNING TREE, MAXIMUM FULL-DEGREE SPANNING

TREE, MAXIMUM EULERIAN SUBGRAPH, STEINER TREE, MAXIMUM LEAF TREE, . . .

For general graphs, the best known algorithms for such problems
run in kO(k) · n steps.

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 46 / 54



Dynamic programming for graphs on surfaces
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From sphere to surface cut decompositions

We build a framework for the design of 2O(k) · n step dynamic
programming algorithms on surface-embedded graphs.

In particular, our results imply and improve all the results in
[Dorn, Fomin, and Thilikos. SWAT’06]

Our approach is based on a new type of branch decomposition,
called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize
sphere cut decompositions for planar graphs.
[Seymour and Thomas. Combinatorica’94]
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Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.
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Sphere cut decompositions

Sphere cut decomposition: Branch decomposition where the
vertices in each mid(e) are situated around a noose.

The size of the tables of a dynamic programming algorithm
depend on how many ways a partial solution can intersect mid(e).
In how many ways we can draw polygons inside a circle such that they
touch the circle only on its vertices and they do not intersect?

Exactly the number of non-crossing partitions over ` elements, which is
given by the `-th Catalan number:

CN(`) =
1

`+ 1

(
2`
`

)
∼ 4`

√
π`3/2 ≈ 4`.
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Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with eg(Σ) = g.

A surface cut decomposition of G is a branch decomposition (T , µ) of
G and a subset A ⊆ V (G), with |A| = O(g), s.t. for all e ∈ E(T )

either |mid(e) \ A| ≤ 2,
or

? the vertices in mid(e) \ A are contained in a set N of O(g) nooses;

? these nooses intersect in O(g) vertices;

? Σ \
⋃

N∈N N contains exactly two connected components.
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How to use surface cut decompositions?
Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus g, with
bw(G) ≤ k, one can construct in 23k+O(log k) · n3 time a surface cut
decomposition (T , µ) of G of width at most 27k +O(g).

The main result is that if dynamic programming is applied on surface cut
decompositions, then the time dependence on branchwidth is single
exponential:

Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a
surface of Euler genus g, with bw(G) ≤ k, the size of the tables of a dynamic
programming algorithm to solve P on a surface cut decomposition of G is
bounded above by 2O(k) · kO(g) · gO(g).

This fact is proved using topological graph theory and analytic combinatorics,
generalizing Catalan structures to arbitrary surfaces.
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Further research

Open problems and conjectures in each chapter of the manuscript.

Traffic grooming:

Close the complexity gap when C is part of the input.

In rings, determine the best routing for each request graph.

Consider other physical topologies.

Where is the limit of generalization? algorithmic meta-theorems

Better understand the structure and the algorithmic properties of
sparse families of graphs.

Graph coloring, probabilistic method, . . .
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Gràcies!
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