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Domaine : MATHÉMATIQUES
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Juan-Pablo ORTEGA Chargé de Recherches CNRS Examinateur

Jean-Claude SAUT Professeur des Universités Paris XI Président

Nikolay TZVETKOV Professeur des Universités Lille I Rapporteur
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qui ont accepté de faire partie de mon jury.

Je remercie également Frédéric Pascal pour les conseils qu’il m’a donnés dans le cadre de mon

monitorat.

Passer mon doctorat au sein du CMLA m’a permis de bénéficier d’excellentes conditions de
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Résumé

Cette thèse porte sur la stabilité des ondes solitaires et plus précisément sur les applications de

l’indice de Maslov au problème de la stabilité spectrale des ondes solitaires unidimensionnelles.

Dans le premier chapitre, nous montrons comment la stabilité peut être liée à l’étude d’une

famille d’équations aux dérivées ordinaires linéaires hamiltoniennes. Il est alors possible de définir

un indice de Maslov pour les ondes périodiques et les ondes solitaires. Nous calculons ensuite la

limite de l’indice de Maslov d’une suite d’ondes périodiques approchant une onde solitaire et la

comparons à l’indice de Maslov de l’onde solitaire.

Dans le second chapitre, nous décrivons un algorithme utilisant l’algèbre extérieure pour cal-

culer l’indice de Maslov.

Dans le troisième chapitre, nous étudions l’indice de Maslov et la stabilité des ondes périodiques

et des ondes solitaires de l’équation de Kawahara.

Le quatrième chapitre traite de l’indice de Maslov d’ondes solitaires apparaissant dans un

modèle pour l’interaction entre ondes longues et ondes courtes.

Le sujet du dernier chapitre, un peu différent de celui du reste de la thèse, est la stabilité de

solutions stationnaires apparaissant dans l’équation de Korteweg-de Vries avec forçage.

Mots clés : Stabilité, Équations aux Dérivées Partielles Hamiltoniennes, Indice de Maslov,

Fonction d’Evans, Algèbre extérieure, Analyse numérique.
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Abstract

This thesis is devoted to the stability of solitary waves, and more precisely to the applications

of the Maslov index to the spectral stability problem.

In the first chapter, we show how the stability problem can be generically related to a family

of linear Hamiltonian ODE. It is then possible to define a Maslov index for periodic waves and

solitary waves. We compute the limit, when it exists, of the Maslov index of a sequence of

periodic waves which converges to a solitary wave and compare the limit with the Maslov index

of the solitary wave.

In the second chapter, we describe how exterior algebra can be used to compute the Maslov

index, both in the periodic and solitary wave cases.

In the third chapter, we study the Maslov index and the stability of solitary waves and periodic

waves arising in the Kawahara equation.

In the fourth chapter, we look at the Maslov index of solitary waves arising in a longwave-

shortwave interaction system.

The last chapter deals with the stability of stationary solutions of a model for flows over a

non-uniform bottom.

Keywords: Stability, Hamiltonian Partial Differential Equations, Maslov index, Evans func-

tion, Exterior Algebra, Numerical Analysis.
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Introduction

When looking at linear waves in an homogeneous medium, Fourier analysis shows that there are

two possible phenomena which are likely to destroy a wave packet:

• Dissipation: Fourier components are damped.

• Dispersion: Fourier components of the wave do not travel at the same speed.

It is also possible that the opposite phenomenon to dissipation occurs: Fourier components

grow exponentially.

Because of these two effects, linear theory leads to the same conclusion as Airy on water-

waves: localized solutions travelling at a constant speed, called solitary waves, cannot exist in a

dissipative or dispersive medium.

However, solitary waves occur in several areas such as an-harmonic nonlinear lattices, gas

dynamics, hydromagnetic waves, ion-acoustic waves in cold plasma and hydrodynamics. But

the most spectacular observation of solitary waves goes back to the nineteenth century, with the

observation on horseback by Lord Scott Russell of a wave in a barge channel persisting for at

least one hour.

Boussinesq [18], Korteweg and de Vries [83] derived from the full incompressible Euler

equations with a free surface a one-dimensional model with third order derivatives, by making

the shallow-water hypothesis (e.g. that the wavelength is much greater than the depth) and

assuming a one-way propagation:

ut = 6uux − uxxx. (0.0.1)

This equation is non-linear and dispersive. The non-linearity can counteract the dispersion,

and (0.0.1) admits a solitary wave solution u(x) = − c
2 sech2(1

2

√
c(x − ct)). This equation has

later been used in the great variety of domains mentioned earlier.

In the wake of Fermi, Pasta, & Ulam studies on an-harmonic lattices, Zabusky and

Kruskal[130] performed numerical experiments which showed that, despite non-linearity, if

solitary waves collide with each other, they emerge back again with the same shape and a phase

shift. To emphasize the analogy of these waves with interacting particles, they coined the term

soliton, often used as a synonym for solitary wave.

This caused an increasing interest for this equation. Theoretical advances using Sturm-

Liouville theory and inverse scattering theory were made. One of the most striking results

is the integrability of the Korteweg de Vries equation, proved by Zakharov & Fadeev [131].

13



14 INTRODUCTION

This is closely related to the existence of N -soliton solutions, which describe analytically the

evolution of N colliding solitary waves observed in the numerical experiments.

However, if a Korteweg de Vries model is taken with a non-linearity which is not quadratic or

cubic, the equation is no longer integrable and inverse scattering cannot be used. In that case

there are still solitary wave solutions, often in the form Asechp(b(x− ct)).

In order to be observed, a solitary wave solution needs to be orbitally stable. Let E be a

suitable Banach space of distributions over R. Let u(x, t) = φ(x−ct) be a solitary wave solution,

with φ ∈ E. Then, u is said to be orbitally stable if and only if:

• The Cauchy problem admits a unique solution over R+ for any initial condition located in

a neighborhood of φ.

• For any ε > 0, there exists a neighborhood U of u(·, 0) such that for any solution v with

v(·, 0) ∈ U , we have supt∈R+ infα∈R ‖v(·, t) − φ(α+ .)‖ ≤ ε.

Orbital stability is usually proved by finding a conserved quantity which traps neighboring

solutions, for example H + cP , where H is the Hamiltonian of the solitary wave and P its

momentum.

Bona & Sougadinis & Strauss [15] present a review of results of solitary waves of KdV-type

equations.

While Korteweg-de Vries solitary waves and their stability are now well understood, this is

not yet the case for other dispersive equations like Kawahara equation:

∂u

∂t
− c

∂u

∂x
+
∂

∂x

(
uq+1

)
+ P

∂3u

∂x3
− ∂5u

∂x5
= 0 , q ≥ 1 . (0.0.2)

This equation is relevant when the cubic dispersion is low. It was introduced in [80] to take

into account higher order dispersive terms. These additional terms can be relevant for water

waves in presence of capillarity, since particular values of capillarity can annihilate the third

order dispersive term.

Qualitatively, this equation is different from Korteweg-de Vries since it admits solitary wave

solutions with oscillating tails and multi-pulse solutions. N -pulse solutions have N pulses which

travel at the same speed. These solutions should not be confused with the N -soliton solution,

where the N colliding solitons usually have a different velocity.

While one-pulse may be treated with much the same tools as for the Korteweg-de Vries equation

(see [20, 89]), this is not the case for multi-pulse orbits whose existence has been proved by using

bifurcation theory ([27, 34]) rather than minimization under constraint, which is the case for uni-

modal solution ([27, 70]). Buryak & Champneys [30] and later Chugunova & Pelinovsky

[42] applied the method of Ostrovsky & Gorshkov [67] to predict the stability of 2-pulse.

The idea is to prove that when P → 2−, the two bumps behave approximately like a two-particle

system with an interaction potential. In this framework, each 2-pulse solution corresponds to

an equilibrium of the two particle system. It is then possible to get some information on the

stability of the 2-pulse by looking at the stability of the corresponding equilibrium.

Another way to study the stability problem is to linearize the non-linear equation near the

stationary solution φ̂. Let φ̂+φ be a solution of equation (0.0.2), with φ a small function. Then,
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at the first order, φ is the solution of the following equation:

∂

∂t
φ = Lφ (0.0.3)

with Lφ = d
dx(φxxxx − P φxx + cφ− (q + 1)φ̂(x)q φ). Of course, this can be generalized to other

non-linear dispersive equations.

If we look for solutions φ(x, t) = f(x)g(t) with separation of variables of this equation, then

φ(x, t) = e
bλtf(x) with Lf = λ̂f . Since only L2 solutions are relevant, it enforces f ∈ L2(R).

Definition 1 A solitary wave φ̂ is said to be weakly spectrally stable if the spectral problem

Lu = λ̂u does not admit any solution such that u ∈ L2(R) and ℜ(λ̂) > 0.

Orbital stability implies weak spectral stability but the reverse is false.

The discrete spectrum of L can be computed by using the Evans function, studied in [1, 21, 62,

23, 101] for example. The spectral problem Lu = λ̂ can indeed be rewritten as a n-dimensional

first-order differential system:

Ux = A(x, λ̂)U, lim
x→±∞

A(x, λ̂) = A∞(λ̂). (0.0.4)

When iR∩Sp(A∞(x, λ̂)) = ∅, a condition equivalent to λ̂ /∈ σess (where σess denotes the essential

spectrum), there exists u1(x, λ̂), . . . , uk(x, λ̂) and v1(x, λ̂), . . . , vn−k(x, λ̂) solutions of (0.0.4) such

that:

• Let u(x) be a solution of equation (0.0.4). Then limx→−∞ u(x) = 0 if and only if u(x) ∈
Span(u1(x, λ̂), . . . , uk(x, λ̂)). Otherwise, limx→−∞ ‖u(x)‖ = +∞.

• Let u(x) be a solution of equation (0.0.4). Then limx→+∞ u(x) = 0 if and only if u(x) ∈
Span(v1(x, λ̂), . . . , vn−k(x, λ̂)). Otherwise, limx→+∞ ‖u(x)‖ = +∞.

.

Span(u1(x, λ̂), . . . , uk(x, λ̂)) and Span(v1(x, λ̂), . . . , vn−k(x, λ̂)) are called the unstable space

and the stable space respectively.

Knowing this, it is evident that λ̂ is in the discrete spectrum, e.g. that there exists a solution

in L2(R) of (0.0.4) if and only if:

Span(u1(x, λ̂), . . . , uk(x, λ̂)) ∩ Span(v1(x, λ̂), . . . , vn−k(x, λ̂)) 6= {0}.
This condition is equivalent to:

D(λ) = 0

where D(λ), called the Evans function is defined as:

D(λ) := e−
R

x
0

trace A(y,λ)dy(x, λ) det(u1(x, λ̂), . . . , uk(x, λ̂), v1(x, λ̂), . . . , vn−k(x, λ̂)).

It is possible to choose the vectors ui and vi analytically with respect to λ̂. If chosen this way,

D(λ) is an analytic function1. Alexander, Gardner & Jones [1] proved that the zeros of D

1Analytic continuation of the Evans function beyond the essential spectrum is often possible, as shown by

Gardner & Zumbrun [65]. Though this is often useful, we will not need it in this thesis.
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with multiplicity are the eigenvalues of L with multiplicity, by using a topological object called

the Chern complex. Bridges, Derks & Gottwald [21] later provided an algorithm based on

exterior algebra to compute numerically the Evans function. By using argument principle, they

were able to count numerically eigenvalues inside a path.

Another approach developed in [42, 41, 82, 78] is to use the Hamiltonian structure of the

Kawahara equation to link the number of negative eigenvalues of the Hessian of the Hamiltonian

and the number of eigenvalues in the right-half plane.

This idea also applies to other Hamiltonian evolution equations in one space dimension, such

as the nonlinear Schrödinger (NLS) equation and the longwave-shortwave resonance (LW-SW)

equations but also to gradient flow-type system, like the Swift-Hohenberg equation or some

reaction-diffusion systems. As explained in chapter 1, solitary wave solutions can be characterized

as homoclinic orbits of a Hamiltonian ordinary differential equation (ODE). The spectral problem

associated with the Hessian of the Hamiltonian (or the functional from which the gradient flow

is derived) about a given homoclinic orbit, then leads to a parameter-dependent family of non-

autonomous linear Hamiltonian systems. The advantage of these Hamiltonian structures is that

the linear and nonlinear Hamiltonian systems have global geometric properties that aid in proving

existence of the basic solitary wave and in understanding its stability as a solution of the time-

dependent equation. Our interest in this thesis is in a particular geometric invariant – the Maslov

index of homoclinic orbits.

The study of the stability of solitary waves using the Maslov index was pioneered in the papers

by Jones [77] and Bose & Jones [16]. The linear stability of steady standing wave solutions of

a spatially-dependent NLS equation is studied in [77]. The linearization about a steady solution

results in a linear λ−dependent Hamiltonian system of the form (0.0.6) (see below) with n = 2

and λ a spectral parameter. Geometric methods are then used to determine the Maslov index,

and it is used to prove an instability result. Gradient parabolic partial differential equations

(PDE) of the form

ut = d1uxx + fu(u, v)

vt = d2vxx + fv(u, v)
(0.0.5)

are considered in [16], where d1 and d2 are positive parameters, f(u, v) is a given smooth function

with gradient (fu, fv). Linearizing about a steady solution (û(x), v̂(x)), and introducing a spec-

tral parameter leads to a pair of linear second-order ODEs which can be put into the standard

form (0.0.6) with n = 2, with the asymptotic property (0.0.9) and λ the spectral parameter.

Since the PDE is a gradient system it is sufficient to restrict the spectral parameter to be real.

Singular perturbation methods are then used to determine the Maslov index, which in turn is

related to stability. A key feature of this work is the analysis of the induced system on the

exterior algebra space
∧2

(R4).

Many of the most interesting solitary waves are only known numerically and therefore a nu-

merical approach to the Maslov index is of interest. It is the aim of chapter 2 to develop a

numerical framework for computing the Maslov index of homoclinic orbits. Once the solitary

wave solution is known, analytically or numerically, it is the linearization about that solitary

wave which encodes the Maslov index. Therefore, the starting point for developing the theory is
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the following class of parameter-dependent Hamiltonian systems

Jux = C(x, λ)u , u ∈ R2n , x ∈ R , λ ∈ R , (0.0.6)

where J is the standard symplectic operator on R2n

J =

[
0 −I

I 0

]
, (0.0.7)

and B(x, λ) is a symmetric matrix depending smoothly on x and λ. Let

B(x, λ) = J−1C(x, λ) . (0.0.8)

The fact that B(x, λ) is obtained from the linearization about a solitary wave suggests the

following asymptotic property:

B∞(λ) = lim
x→±∞

B(x, λ) , (0.0.9)

and that B∞(λ) is strictly hyperbolic (e.g has no imaginary eigenvalue) for an open set of λ

values that includes 0.

The Maslov index is a winding number associated with paths of solutions of (0.0.6), in partic-

ular paths of Lagrangian planes. A Lagrangian plane is an n−dimensional subspace of R2n, say

span{z1, . . . , zn}, satisfying

〈J zi, zj〉 = 0 , ∀ i, j = 1, . . . , n ,

where 〈·, ·〉 is a standard inner product on R2n.

Suppose λ is fixed and on the interval a ≤ x ≤ b consider a path of Lagrangian planes

[a, b] 7→ Z(x, λ) = [z1(x, λ) | · · · | zn(x, λ)] ∈ R2n×n ,

satisfying Zx = B(x, λ)Z for a ≤ x ≤ b. The Maslov index of this path is a count of the number

of times this path of Lagrangian planes has a non-trivial intersection with a fixed reference

Lagrangian plane. A precise definition is given in chapter 1. This index is of interest since it

can count the solutions of the spectral problem for quite general systems. A proof based on

comparison arguments is given in Appendix C. Hence, the Maslov index is directly related to

stability.

We will first study the Maslov index of a sequence of periodic orbits which converges to

a homoclinic orbit. The Maslov index for periodic orbits has indeed been widely developed

because of its interest in semi-classical quantization (e.g. [71, 46, 90, 111, 104, 98] and references

therein). Furthermore, any homoclinic orbit of Hamiltonian system can be approximated by

such a sequence of periodic orbits (see [120]).

In section 1.3.1, we prove under suitable hypotheses that if the periodic orbit is asymptotic to

a homoclinic orbit, the Maslov index converges to the Maslov index of the limiting homoclinic

orbit.

We then compare this limit with the definition that is used by Jones [77] and Bose &

Jones [16] but also Chen & Hu [40], taking the Lagrangian path to be a path of unstable

subspaces and taking the reference plane to be the stable subspace at infinity. We will extend
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this definition by introducing an explicit and computable formula for the intersection index. This

theory is developed in §1.1.2.

In chapter 2, we give an algorithm to compute the Maslov index both in the periodic and

the homoclinic case. From the numerical point of view, the exterior algebra formulation is also

advantageous. We give formulas for different representations of the Maslov index for Lagrangian

planes on
∧n

(R2n) for any n, and present a general algorithm that works – in principle – for any

dimension n. However, the dimension of
∧n(R2n) increases rapidly with n and so the algorithm

is most effective for low dimensional systems. The algorithm is constructed so that the manifold

of Lagrangian planes is attracting. A tutorial example on R2 is available in Appendix E, where

the details can be given explicitly. It is a scalar-reaction diffusion equation with an explicit

localized solution.

In chapter 3, we apply the framework to the periodic waves and solitary waves of the afore-

mentioned Kawahara equation. We also make some remarks on the behaviour of the Maslov

index near bifurcation points: Consider a solitary-wave solution of (0.0.2). Then, if we change

the parameter P , the homoclinic orbit may undergo a bifurcation. We observe that the value

of the Maslov index changes at these points. Finally, we study directly the spectrum of L by

computing its associated Evans function.

In chapter 4, the computational framework for the Maslov index is illustrated by an application

to the LW-SW wave resonance equations, which has exact solitary-wave solutions. These equa-

tions arise in fluid mechanics and consist of a NLS equation coupled to a KdV equation. This

example has two new interesting features: it is six-dimensional, and for appropriate parameter

values has a Maslov index which is a non-monotone function of λ.

In the last chapter, we study the stability of stationary solutions of a model for a flow over

a non-uniform bottom, the Korteweg-de Vries equation with a forcing term. In this case, space

translational invariance is lost and therefore stationary solutions can be stable in the usual sense

(u is said to be stable if the Cauchy problem admits a unique solution over R+ in a neighborhood

of u(·, 0) and if for all ε > 0, there exists a neighborhood U of u(·, 0) such that if v is a solution and

v(·, 0) ∈ U , then supt∈R+ ‖v(·, t) − u(·, t)‖ < ε). Again, this study is based on the Hamiltonian

structure of the PDE and the 2-dimensional version of the Maslov index theory, i.e. Sturm-

Liouville theory.

Remarks:

• There is an index of definitions and notations in Appendix H.

• The work on the numerical computation of the Maslov index of periodic orbits has already

been published in [37].

• The content of section 1.3.1 has been published in [35].

• The description on how to compute the Maslov index in dimension 4 has been published

in [38]. It includes the longwave-shortwave example.

• The work on the Maslov index of multi-pulse solitary waves has been published in [39].
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Introduction

Many physical models can be formulated as Hamiltonian systems or gradient flows.

Hamiltonian systems are problems consisting of finding Z : [a, b] →M such that

∀t ∈ [a, b]∀δv
〈(

δH
δu

)

Z(t)

, δv

〉
= ωZ(t)

(
dZ

dt
(t), δv

)
(1.0.1)

where M is a manifold and ω is a non-degenerate antisymmetric bilinear form over the tangent

space of M and H : M × R → R is a functional called the Hamiltonian. For example, the

following systems can be put under an Hamiltonian form (in these cases, ω does not depend on

Z, and therefore the Z-dependency is dropped out):

19
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• N-body problem: H(p, q) = V (q) + p2

2m and

ω((q1, p1), (q2, p2)) = 〈p1, q2〉 − 〈q1, p2〉, where 〈·, ·〉 is the standard scalar product on R3N .

• Korteweg-de Vries equation: H(u) =
∫
u2

x + α
q+2u

q+2 and ω(u, v) =
∫

R
u(x)(∂x)−1v(x)dx

• Kawahara equation: H(u) =
∫

R

(
1
2u

2
xx + P

2 u
2
x − 1

q+2u
q+2 + c

2u
2
)

dx

• Non-linear Schrödinger equations: H(φ) =
∫

R

(
|φx|2 ± |φ|4dx

)
and ω(φ, ψ) =

∫
R

Im(φψ̄)dx

• Longwave-shortwave resonance equations:

H(u, v, w) =
∫ (
u2

x + v2
x + 1

2w
2
x − w(w2 + u2 + v2) + 1

2cw
2 + ν(u2 + v2)

)
dx,

ω((u1, v1, w1), (u2, v2, w2)) =
∫

R

(
u1v2 − u2v1 + w1(∂x)−1w2

)
dx.

If the functional H is time-independent, then H(Z(.)) is a conserved quantity. Furthermore,

an equilibrium of the system is then a critical point of H.

Gradient-type1 systems can be written as ut = ∇F (u). They include for example:

• Reaction-diffusion systems (including the Fitzhugh-Nagumo equations): F (u) =
∫
uT

xAux+

f(u) with 〈u, v〉 =
∫
uv as a scalar product.

• Swift-Hohenberg equation: F (u) =
∫
u2

xx + Pu2
x + αu2 + βu3 + γu4 with 〈u, v〉 =

∫
uv as

a scalar product.

In this case, F (u(t)) is a decreasing function of time. As for Hamiltonian systems, stationary

solutions are critical points of F . Besides, the linearization of a gradient-flow system near a

stationary solution φ is ut = ∇2
φFu.

Hence, in these two cases, searching for a stationary solution is equivalent to look for a critical

point of an action:

S(φ) =

∫

I

l

(
φ, . . . ,

dkφ

dtk
, t

)
dt (1.0.2)

where S is a Hamiltonian or the functional from which derives the gradient flow.

It is then possible to obtain Euler-Lagrange differential equations. Then, by making a change

of variables, these equations can be put into an Hamiltonian form (see appendix B).

An interesting question concerning solutions of Euler-Lagrange equations is to determine what

kind of critical points (e.g. minima, saddle, ...) of the functional S are obtained. The Maslov

index, introduced in this chapter, can give the number of negative eigenvalues of the Hessian of

S at the critical point.

The Maslov index is a generalization of the number of intersections of Sturm-Liouville’s theory

to systems with more than one degree of freedom. It is sometimes referred as the Conley-Zehnder

index, which is defined for symplectic matrices ( i.e. a matrix M such that M tJM = J . More

details on symplectic matrices are given in Appendix A), whereas the Maslov index is usually

defined for Lagrangian planes. It is used in a wide range of physical applications: semi-classical

quantization, quantum chaology, classical mechanics [6], etc.

1 Hamiltonian systems can be seen as gradient-type systems. In that case the gradient is constructed from the

symplectic form rather than from the scalar product.
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The Maslov index has also been used in [77, 16] to determine the stability of travelling waves of

Schrödinger or Fitzhugh-Nagumo equations. A Maslov index can be defined for one-dimensional

solitary waves (but also periodic waves and fronts) when they are critical points of some functional

S.

According to [82, 42, 78], the number of negative eigenvalues of the second variation D2H of

the Hamiltonian near φ is related to the number of unstable modes near the solitary wave φ. In

the gradient-flow case, the Morse index of D2F gives the exact number of unstable modes.

Suppose that we want to solve the following spectral problem:

Find δu such that ∀v δ2Sφ(δu, δv) = λ

∫

I

δuδv (1.0.3)

Then, by using the set of coordinates introduced in appendix B, the above problem can be

written as:

∀δZ2

∫

I

(
ω(

dδZ1

dx
, δZ2) −D2H(δZ1, δZ2)

)
dx+ boundary terms = λ

∫

I

δZ1DδZ2

with D a positive semi-definite matrix and ω the standard symplectic form (J is the matrix

defined by equation (0.0.7).) on R2n:

ω(x, y) = xTJ y. (1.0.4)

If we denote C(x, λ) = D2Hφx
+ λD, then ∂λC(x, λ) = D is a positive semi-definite matrix

and δZ1 is a solution of the following linear Hamiltonian system:

J zx = C(x, λ)z (1.0.5)

However, not every solution z corresponds to an eigenvector of the spectral problem since u

and therefore z must satisfy some boundary conditions.

In fact, the boundary conditions on z are often equivalent to the fact that z belongs simul-

taneously to two Lagrangian planes R1(x, λ) and R2(x, λ) of solutions. This is the case for the

solitary wave problem and for the separated boundary conditions problem discussed in appendix

G.

Definition 2 A n-dimensional subspace G of R2n is said to be a Lagrangian space if:

∀x, y ∈ G ω(x, y) = xTJ y = 0

The great interest of Lagrangian planes lies in the following:

Proposition 1 Let V (t) be a space of solutions of the linear Hamiltonian system J x′ = C(t)x,

where C(t) is a symmetric matrix.

If V (t0) is Lagrangian, then V (t) is Lagrangian for any t.

Definition 3 Λ(n) is the set of all Lagrangian subspaces included in R2n.
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By looking at the paths made by x 7→ R1(x, λ) and x 7→ R2(x, λ), it is possible to count the

eigenvalues of the problem (1.0.3).

In this chapter, we will first recall the definition of the Maslov index of paths. Then, we will

define the Maslov index of hyperbolic periodic systems and study the convergence of the Maslov

index when a sequence of periodic orbits is asymptotic to an homoclinic orbit and use it to

define the Maslov index of homoclinic orbit. This limit is of interest, since Vanderbauwhede

& Fiedler [120] proved that any homoclinic of an Hamiltonian system can be approximated by

such a sequence of periodic orbits. Finally, we will compare this limit to the definitions of the

Maslov index given by Bose and Jones [16] and Chen and Hu [40].

1.1 The Maslov index of paths

In this section, we recall the definition of the Maslov index of paths with respect to a Lagrangian

plane. Here, we use the identification of Λ(n) with U(n)/O(n) to define it.

Then, we define the Maslov index of a pair of elements of the universal covering Λ̃(n) with

respect to a Lagrangian plane.

The latter definition will be useful to compare this work with [40, 16].

1.1.1 The Lagrangian manifold Λ(n)

Here, we describe the Lagrangian manifold Λ(n) as a quotient space of two sets of matrices.

Definition 4 The k-th Grassmannian Gk(E) of a vector space is defined as the set of k-dimensional

subspaces of E.

Λ(n) is a subset of Gn(R2n).

Let τ :






{2n× n-matrices of rank n} → Gn(R2n)

C1 . . . Cn



 7→ Range







C1 . . . Cn







 = span(C1, . . . , Cn)
.

τ is onto but not one-to-one. In fact:

τ(A) = τ(B) ⇔ ∃P ∈ GLn(R) AP = B

Now, let us characterize matrices whose range is a Lagrangian space:

Range(

(
X

Y

)
) ∈ Λ(n) ⇔

(
X

Y

)T

J
(
X

Y

)
= 0 ⇔ XTY = Y TX (1.1.6)

Definition 5 Xn = {
(
X

Y

)
∈M2n,n(R) | XTY = Y TX and

(
X

Y

)
has rank n}

Definition 6 The train Λ(U) of a Lagrangian plane U is defined as the set of Lagrangian planes

not transverse to U .
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Range(A) and Range(B) are transverse if and only if det
(
A B

)
6= 0.

Let Z =

(
X

Y

)
∈ Xn.

Then ZtZ is a real symmetric positive definite matrix and (X+iY )(ZtZ)−
1
2 is unitary. There-

fore:

Proposition 2 θ :






U(n) → Λ(n)

Z 7→ Range

((
Re(Z)

Im(Z)

))
is a well-defined and onto mapping.

Furthermore:

θ(Z1) = θ(Z2) ⇔ ∃P ∈ O(n) Z1P = Z2

Hence: Λ(n) = U(n)/O(n) (and Λ(n) = Xn/GLn(R)).

Furthermore, Λ(n) is a differentiable manifold of dimension n(n+1)
2 .

1.1.2 The Maslov index of paths

Here, we define the Maslov index by using the eigenvalues of a matrix.

Let ψ :






(Xn)2 → GLn(C)((
W

Z

)
,

(
X

Y

))
7→ (X − iY )−1(W − iZ)(W + iZ)−1(X + iY )

.

The image of ψ is included in the set of symmetric (not Hermitian) matrices. ψ(A,B)∗(AtA)ψ(A,B) =

AtA and AtA is a real positive definite matrix. Therefore ψ(A,B) is unitary with respect to the

scalar product (x, y) → y∗(AtA)x. Consequently, ψ(A,B) is similar to a diagonal matrix whose

diagonal elements are of modulus one.

Besides, if Range(A) = Range(B) and Range(W ) = Range(Z), then ψ(A,W ) and ψ(B,Z) are

similar and their eigenvalues are the same. The following mappings on Λ(n) are therefore well

defined:

Definition 7 The Maslov determinant is defined as s :






Λ(n) → U

Range(A) 7→ detψ(A,

(
I

0

)
)

.

Definition 8 KRange(Z) :

{
Λ(n) → Un/ ∼
Range(A) 7→ Eigenvalues of ψ(A,Z)

where ∼ is the relation of

equivalence defined by:

(x1, x2, . . . , xn) ∼ (y1, y2, . . . , yn) ⇔ ∃σ one-to-one (x1, x2, . . . , xn) = (yσ(1), yσ(2), . . . , yσ(n))

Both s and KRange(Z) are continuous functions (this can be checked by taking a local set of

coordinates in Λ(n)) which are dependent on the choice of a basis.

For convenience, we will not mention again the quotient for K.

Proposition 3 The dimension of U ∩W is equal to the number of elements of KU (W ) equal

to 1.
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Definition 9 Let W be a Lagrangian space and γ : [0, 1] → Λ(n) be a continuous path and let

κ : [0, 1] → R be a continuous function such that eiκ(x) = s(γ(x)).

Let α1, α2, . . . , αn−a ∈]0, 2π[, β1, β2, . . . , βn−b ∈]0, 2π[ such that

KW (γ(0)) = (eiα1 , eiα2 , . . . , eiαn−a , 1, . . . , 1) and KW (γ(1)) = (eiβ1 , eiβ2 , . . . , eiβn−b, 1, . . . , 1).

Then, the Maslov index mW (γ) of γ with respect to W is defined as:

mW (γ) =
κ(1) −∑n−b

i=1 βi

2π
− κ(0) −∑n−a

i=1 αi

2π
+

1

2
(b − a)

Remark: Depending on the author, the term 1
2 (b − a) might be replaced by −a or b. The

convention we use comes from Robbin & Salamon [108].

Proposition 4

• m is invariant by a symplectic change of coordinates, i.e. by a left multiplication of the

Lagrangian planes by a symplectic matrix.

• Two paths γ, δ with the same endpoints are homotopy-equivalent if and only if there exists

W s.t. mW (γ) = mW (δ).

In that case, for all W ∈ Λ(n), we have mW (γ) = mW (δ).

• If γ : [0, 1] → Λ(n) is a closed path, e.g. γ(0) = γ(1), and if κ is a continuous function

such that eiκ(x) = s(γ(x)), then mW (γ) is independent of the choice of W and:

mW (γ) =
κ(1) − κ(0)

2π
.

Definition 10 If γ is a closed path in Λ(n), its Maslov index m(γ) is defined as m(γ) = mW (γ),

where W is any element of Λ(n).

Definition 11 Suppose that γ = Range ◦A intersects non trivially W = Range(U) at t0 and

that γ(t0) intersects W trivially in [t0 − ε, t0 + ε] − {t0}. Let r = dim(γ(t0)).

Let κ1, κ2, . . . , κn be continuous functions such that eiκ1(t), eiκ2(t), . . . , eiκn(t) are the eigenval-

ues of ψ(U,A(t)) and κi(t0) = 0 for i ∈ {1, . . . , r}.
The sign of the intersection of γ with W at t0 is defined as:

sign(γ, t0,W ) =
1

2
(sign+(γ, t0,W ) + sign−(γ, t0,W ))

with

•
sign+(γ, t0,W ) = limt→t+0

#{i ∈ {1, . . . , r}|κi(t) > 0}
− limt→t+0

#{i ∈ {1, . . . , r}|κi(t) < 0}

•
sign−(γ, t0,W ) = limt→t−0

#{i ∈ {1, . . . , r}|κi(t) < 0}
− limt→t−0

#{i ∈ {1, . . . , r}|κi(t) > 0}
Proposition 5 Let γ : [a, b] → Λ(n).

Suppose that γ(t) intersects W non-trivially only a finite number of times. Then:

mW (γ) =
1

2
sign+(γ, a,W ) +

∑

a<t<b

sign(γ, t,W ) +
1

2
sign−(γ, b,W )
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1.1.3 Intersection of Lagrangian planes in the differentiable case

Another interesting case is when the path is differentiable. When the derivative satisfies some

non-degeneracy conditions, it is possible to compute the intersection sign from the derivative of

the path.

Let γ : t 7→ Range

((
X

Y

))
a path in Λ(n) and Range(W ) ∈ Λ(n). Denote U =

(
X

Y

)
.

Suppose that dim(γ(0) ∩ Range(W )) = k.

Then there exists a n × k matrix G such that γ(0)G spans Range(W ) ∩ Range ◦γ(0). Then

Y (0)G = 0.

Define:
q = GTU ′(0)TJU(0)G+GTU(0)TJU ′(0)G

= GT (X ′TY − Y ′TX)G+GT (XTY ′ − Y TX ′)G

Let (r+, r−) be the signature2 of q. (r+, r−) is independent of G.

Proposition 6 The crossing of Range ◦γ with Range(W ) at 0 is said to be regular if r++r− = k.

In that case, we have:

sign+(γ, t0,Range(W )) = sign−(γ, t0,Range(W )) = sign(γ, t0,Range(W )) = r+ − r−

Besides, there exists ε > 0 such that if t ∈]s− ε, s+ ε[−{s}, γ(t) ∩W = {0}.

The proof of this proposition can be found in [93]. The great advantage of this formula

is that it uses an expression which only relies on the symplectic structure of R2n. Besides,

this characterization is useful to prove that the Maslov index is an eigenvalue counter (see

Appendix C).

1.1.4 The universal cover of Λ(n)

While we will mainly use the Maslov index of paths in the sequel, the Maslov index for elements

of the universal cover is useful to compare with prior work. Now, let us construct a universal

cover of Λ(n).

Definition 12 Λ̃(n) = {(κ, U) ∈ R × Λ(n) such that eiκ = s(U)}

p :

{
Λ̃(n) → Λ(n)

(κ, U) 7→ U

Proposition 7 Λ̃(n) is a universal cover3 of Λ(n), i.e.:

• Λ̃(n) is simply connected.

• If Ũ ∈ Λ̃(n), there exists a neighborhood Ω of Ũ such that p|Ω is an homeomorphism.

For U ∈ Λ(n), p−1(Λ(n) − Λ(U)) is composed of an infinity of connected components. The

Maslov index can label them.

2The signature of a real symmetric matrix q is defined as the pair of integers (r+, r−), where r+ is the number

of strictly positive eigenvalues of q and r− is the number of strictly negative eigenvalues.
3The universal cover of a topological space is unique up to a homeomorphism.
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Definition 13 Let (α,A), (β,B) ∈ Λ̃(n), C ∈ Λ(n), and rA = dim(A∩C), rB = dim(B∩C). Let

α1, α2, . . . , αn−rA
∈]0, 2π[, β1, β2, . . . , βn−rB

∈]0, 2π[ such that KC(A) = (eiα1 , eiα2 , . . . , eiαn−rA , 1, . . . , 1)

and KC(B) = (eiβ1 , eiβ2, . . . , eiβn−rB , 1, . . . , 1).

Define

mC((α,A), (β,B)) =
β −∑n−rB

i=0 βi

2π
− α−∑n−rA

i=0 αi

2π
+

1

2
(rB − rA)

There is an obvious link between the Maslov index for elements of the universal cover and the

Maslov index for paths:

Proposition 8 Let W be a Lagrangian space and γ : [0, 1] → Λ(n) be a continuous path and let

κ : [0, 1] → R be a continuous function such that eiκ(x) = s(γ(x)). Then,

mW (γ) = mW ((κ(0), γ(0)), (κ(1), γ(1))).

Proposition 9 Let (α,U), (β, V ) ∈ Λ̃(n) and W ∈ Λ(n). Then:

• Ci,(α,U) = {Ã ∈ p−1(Λ(n) − Λ(U)) s.t. mU ((α,U), Ã) = i}, with i ∈ n
2 + Z, are the

connected components of p−1(Λ(n) − Λ(U)),

• If dim(U ∩ V ) = k, then (β, V ) ∈ ⋂k
j=1 Cj+mU ((α,U),(β,V ))−k+1

2 ,(α,U).

m has a property of additivity:

Proposition 10 Let Ũ , Ṽ , W̃ ∈ Λ̃(n) and Z ∈ Λ(n). Then

• mZ(Ũ , Ṽ ) ∈ 1
2Z

• mZ(Ũ , W̃ ) = mZ(Ũ , Ṽ ) +mZ(Ṽ , W̃ )

• mZ(Ũ , Ũ) = 0.

Finally, m has also a kind of continuity.

Proposition 11 Suppose that (Ũr)r∈N, (Ṽr)r∈N ∈ Λ̃(n)
N

and (Zr)r∈N ∈ Λ(n)N converge respec-

tively to Ũ , Ṽ and Z and that:{
limr→∞ dim(p(Ũr) ∩ Zr) = dim p(U) ∩ Z
limr→∞ dim(p(Ṽr) ∩ Zr) = dim p(V ) ∩ Z

Then:

lim
r→∞

mZr
(Ũr, Ṽr) = mZ(Ũ , Ṽ )
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1.2 The Maslov index of periodic waves

We have now defined the Maslov index of paths and are therefore able to extend it to hyperbolic

periodic waves. In section 1.3, we study the limit when the periodic wave converges to a solitary

wave. In chapter 2, a numerical algorithm is given to compute this quantity and a numerical

example is given in section 3.7.

Suppose that the 1D traveling L-periodic wave φ is a solution of an autonomous non-linear

Hamiltonian system:

Jux = ∇uH H : R2n → R (1.2.7)

Suppose now that we look for the solutions of the following spectral problem:

zx = B(x, λ)z , B(x, λ) = −JC(x, λ) , J =

(
0 −I

I 0

)
, z ∈ R2n

z is bounded.

(1.2.8)

where C(x, λ) is a symmetric matrix which usually satisfies:

C(x, 0) = D2Hφ(x). (1.2.9)

The latter formula means that, for λ = 0, system (1.2.8) is the linearization of system (1.2.7).

This spectral problem can also be reformulated in terms of Floquet multipliers. Consider the

flow matrix Φ(x1, x2, λ) defined by:

Φ(x1, x1, λ) = I2n,
∂Φ

∂x1
(x1, x2, λ) = B(x1, λ)Φ(x1, x2, λ)

Define the monodromy matrix at 0 as:

M(λ) = Φ(0, L, λ) (1.2.10)

Taking for the monodromy matrix Φ(x, x + L, λ) would lead to a similar matrix. The eigen-

values of M(λ) are therefore an invariant for the periodic system, they are called the Floquet

multipliers of the system.

The set of λ such that the problem (1.2.8) has a non-trivial z solution is called the spectrum,

which we denote by σ:

σ = {λ | M(λ) has at least an eigenvalue on the unit circle.}. (1.2.11)

It is composed of closed intervals called bands and has no isolated points.

Definition 14 The unstable space U(·, λ) of system (1.2.8) is defined as the set of solutions of

(1.2.8) which decay to 0 exponentially at −∞ (Its dimension may vary with λ).

Suppose that the studied wave is L-periodic. Then, C(x, λ) is L-periodic with respect to x.

When dim(U(·, λ)) ∈ {n− 1, n}, there are two cases when a Maslov index can be defined:

• The unstable space U(·, λ) is a n-dimensional space. This is equivalent to λ /∈ σ. The

periodic system is said to be strictly hyperbolic.



28 CHAPTER 1. THE MASLOV INDEX FOR SOLITARY WAVES

Definition 15 When U(·, λ) is a n-dimensional space, it is also Lagrangian. The Maslov

index at λ of system (1.2.8) is defined as m(U(·, λ)), where U(·, λ) is taken over [0, L].

• The L-periodic travelling wave φ is a solution of (1.2.7) and the linear system (1.2.8) at

λ = 0 is the linearization of system (1.2.7). φx is then a solution of the linear system at

λ = 0 and therefore, U(·, 0) is not n-dimensional. However, if it is n− 1-dimensional, the

following definition can be used:

Definition 16 If the dimension of the space R(x) = U(x, 0) of solutions of J zx = D2Hφz

decaying to 0 at −∞ is n − 1, then (Rφx ⊕ R)|[0,L] is a closed path over one period in

the Lagrangian manifold and the Maslov index of φ at 0 is defined as Iper(φ) = m((Rφx ⊕
R)|[0,L]).

When the system is not hyperbolic, there are alternative definitions [118, 104] of the Maslov

index which include corrections for the case of Floquet multipliers on the unit circle.

1.3 The Maslov index of solitary waves

Consider now a solitary wave φ which decays exponentially at ±∞ which is a solution of an

autonomous non-linear Hamiltonian system:

Jux = ∇uH H : R2n → R (1.3.12)

Suppose now that we look for the solutions of the following spectral problem:

zx = B(x, λ)z , B(x, λ) = −JC(x, λ) , J =

(
0 −I

I 0

)
, z ∈ R2n

lim|x|→∞ z(x) = 0

(1.3.13)

where C(x, λ) is a symmetric matrix which usually satisfies:

C(x, 0) = D2Hφ(x). (1.3.14)

The latter formula means that, for λ = 0, system (1.3.13) is the linearization of system (1.2.7).

In this section, we first compute the limit of the Maslov index of a sequence of periodic orbits

approximating an homoclinic one. This leads to an unambiguous definition of the Maslov index

when λ is out of the spectrum.

The situation λ = 0 is also studied and we give the limit when it exists from the energy of the

periodic solutions.

Unfortunately, the hypotheses for the λ = 0 case are too stringent as we shall see in section 3.7.

However, Bose & Jones [16] and later Chen & Hu [40] proved that it was possible to define

a Maslov index with an intersection-based definition for the λ = 0 case.
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1.3.1 The limit of the Maslov index of a sequence of periodic orbits

approximating an homoclinic one

General hypotheses made on the homoclinic orbit

We suppose now that φ is a solitary wave and we consider a sequence φα approximating φ.

To determine the limits of α→ Iper(φ
α, λ) and α→ Iper(φ

α), some hypotheses will be needed.

These two limits will in fact be handled separately.

However, the two cases share common hypotheses:

Hypothesis 1 • B(x, λ) is a smooth function with respect to x and analytic with respect to

λ.

• There exists B∞(λ), γ > 0 and F > 0 such that ∀x, λ ‖B(x, λ) − B∞(λ)‖ ≤ Fe−γ|x|.

• The open set X = R−σess of real numbers is not empty, where the essential spectrum σess

is defined as:

σess = {λ ∈ C | B∞(λ) is not hyperbolic}

= { λ ∈ C : det[B∞(λ) − iκI] = 0 for some κ ∈ R } .
(1.3.15)

• The discrete spectrum

σp = {λ ∈ X|System (1.2.8) admits a non-trivial bounded solution} (1.3.16)

is a strict subset of X.

The discrete spectrum4 only contains isolated points (see [64, 1]). σ = σess ∪ σp is called the

spectrum.

Define the stable and unstable subspaces of B∞(λ) by

Es(B∞(λ)) := {u ∈ R2n : lim
x→+∞

eB∞(λ)xu = 0}

and

Eu(B∞(λ)) := {u ∈ R2n : lim
x→−∞

eB∞(λ)xu = 0}

Es(B∞(λ)) (Eu(B∞(λ))) is also the direct sum of the generalized eigenspaces associated with

the eigenvalues of B∞(λ) with negative (positive) real part.

Assume λ ∈ X.

Since JB∞(λ) is symmetric, dimEu(B∞(λ)) = dimEs(B∞(λ)). Therefore Eu(B∞(λ)) and

Es(B∞(λ)) have the same dimension: n.

Therefore, we can write: R2n = Eu(B∞(λ)) ⊕ Es(B∞(λ)).

Moreover, U(x, λ) has dimension n, is Lagrangian and limx→−∞ U(x, λ) = Eu(B∞(λ)). Sym-

metrically, the set of solutions that decay as x → +∞, which is called the stable space S(x, λ),

is Lagrangian and limx→+∞ S(x, λ) = Es(B∞(λ)).

4The fact that σp is only made of isolated points is a consequence of the analyticity of the Evans function,

defined in section 2.4.1. In spectral theory, the discrete spectrum of an operator L is usually defined as the set of

isolated points λ of the spectrum of the operator such that L−λ has a finite-dimensional kernel. The complement

in the spectrum is referred as the essential spectrum. Here, the two definitions match.
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As we wish to define the Maslov index as a limit of the periodic case, we will also suppose

that there is a family of periodic waves φα which approaches the solitary wave φ. More precisely,

consider a family of systems parametrized by α ∈ [0, α0]:

J zx = Cα(x, λ)z (1.3.17)

We suppose that:

Hypothesis 2 • Cα(x, λ) is a smooth function with respect to x and α, and analytic with

respect to λ and C0(x, λ) = C(x, λ).

• Cα(·, λ) is Lα-periodic when α > 0 and limα→0+ Lα = +∞.

• ∀M > 0 limα→0 supx∈[−Lα
2 , Lα

2 ],λ∈X,|λ|<M ‖Cα(x, λ) − C(x, λ)‖ = 0.

Maslov index for solitary waves when λ ∈ X − σp

In this section, we will extend definition 15 and suppose that λ ∈ X − σp.

By hypothesis, the space of solutions decaying both at −∞ and +∞ is reduced to {0}.
Then limx→+∞ U(x, λ) = Eu(B∞(λ)) (lemma 3.7 in [1]).

Therefore, x 7→ U(x, λ) is a closed path in Λ(n) over R for each λ ∈ X − σp.

The quantity m(U(·, λ)) is therefore well defined. Let us now show that it is the limit5 of

m(Uα(·, λ)) when α→ 0.

Let d(·, ·) be a metric on Λ(n) compatible with its compact manifold structure (It can be

obtained by embedding Λ(n) in RN ).

Now, use lemma 2.11 p.172 of Gardner [64]:

Theorem 1 (Gardner) If hypotheses 1,2 are satisfied, let λ ∈ X − σp. Then, for α small

enough, the space Uα(·, λ) of solutions of (1.3.17) decaying at −∞ is n-dimensional and converges

x-uniformly to U(·, λ):
lim
α→0

sup
x∈[−Lα

2 , Lα
2 ]

d(Uα(x, λ),U(x, λ)) = 0 . (1.3.18)

Corollary 1 Let λ ∈ X − σp. For α small, Iper(φ
α, λ) is well-defined and equal to m(Uα(·, λ)).

Corollary 2 limα→0 supx/∈[−Lα
2 , Lα

2 ] d(Uα(Lα

2 , λ),U(x, λ)) = 0.

Proof.

By using the triangle inequality,

d(Uα(Lα

2 , λ),U(x, λ)) ≤ d(Uα(Lα

2 , λ),U(Lα

2 , λ))+d(U(Lα

2 , λ), Eu(B∞(λ)))+d(Eu(B∞(λ)),U(x, λ)).

Using lim|x|→∞ U(x, λ) = Eu(B∞(λ)), corollary 2 is immediate.

Now define: Vα(x, λ) =

{
Uα(x, λ) if x ∈ [−Lα

2 ,
Lα

2 ]

Uα(Lα

2 , λ) if x /∈ [−Lα

2 ,
Lα

2 ]
.

From (1.3.18) and corollary 2, we get: limα→0 supx∈R d(Vα(x, λ),U(x, λ)) = 0.

5Of course, as m is an integer-valued function, it means that m(Uα(·, λ)) is equal to m(U(·, λ)) for small

enough α.
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Λ(n) is compact and therefore s is uniformly continuous over it. Consequently:

lim
α→0

sup
x∈R

|s(Vα(x, λ)) − s(U(x, λ))| = 0 .

Hence, if κ and κα are continuous such that U = eiκ and Vα = eiκα , then

lim
α→0

sup
x∈R

|κα(x, λ) − κα(0) − κ(x, λ) + κ(0)| = 0.

Therefore:

lim
α→0

|m(U(·, λ)) −m(Vα(·, λ))| =

lim
α→0

∣∣∣∣ lim
x→∞

κ(x, λ) − lim
x→−∞

κ(x, λ) − lim
x→∞

κα(x, λ) + lim
x→∞

κα(x, λ)

∣∣∣∣ = 0.

This proves that the limit of Iper(φ
α, λ) = m(Vα(·, λ)) = m(Uα(·, λ)) as α→ 0 exists. �

This limit is the basis for our definition of the Maslov index:

Definition 17 The Maslov index of system (1.3.13) for λ ∈ X − σp is defined as Ihom(φ, λ) =

m(U(·, λ)).

The limit of the Maslov index when the system is also the linearization of an au-

tonomous system (λ = 0)

Using equations (1.2.7)-(1.2.9), it is easy to see that φx is a solution of system (1.3.13) at λ = 0

and therefore 0 ∈ σp.

Let Mα(λ) be the matrix such that z(Lα) = Mα(λ)z(0) for any z solution of J zx = Cα(x, λ)z.

To determine limα→0 Iper(φ
α), make the following additional hypothesis:

Hypothesis 3 • There is a unique family of Lα-periodic waves φα solutions of (1.2.7) such

that φα converges to φ and Cα(x, 0) = D2Hφα(x).

• The functions h(α) = H(φα) and l(α) = Lα are differentiable and in ]0, α0[, we have

h′ 6= 0, l′ < 0.

• ∂λC
α(·, λ) is nonnegative-definite6 in the sense of symmetric matrices.

• 0 ∈ X and the space of bounded solutions of the linear system (1.3.13) at λ = 0 is equal to

Rφx.

• For small enough α, Mα(0) has only two eigenvalues at +1, the others being off the unit

circle.

To determine the value of Iper(φ
α), it is useful to study the behaviour of the two critical Floquet

multipliers near λ = 0, which are equal to 1 when λ = 0. It turns out that this behaviour is

governed by the sign of h′(α), as summarized in figure 1.1.

According to hypotheses 3, Rα = Uα(·, 0) has dimension n− 1 and Iper(φ
α) is well-defined.

Let first assume that h′(α) > 0. Then there exists a basis (x, y) of E1(M
α(0)) and γ > 0 such

that T yJx = 1 and

(
1 γ

0 1

)
is the matrix of Mα(0)|E1(Mα(0)) in (x, y).

6The case ∂λC
α(·, λ) nonpositive-definite can be handled similarly, by replacing λ by −λ.
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Negative Krein
signature.

Increasing Hamiltonian.

λ=0
f ’ > 0.

Increasing Hamiltonian.

signature.
Positive Krein

λ=0
f ’ < 0.

Figure 1.1: Position of the two critical eigenvalues of Mα(λ) in the case where λ is close to 0

and ∂λC
α(·, ·) is positive semi-definite.

For λ near 0+, there is one pair of eigenvalues of Mα(λ) on the unit circle, the upper eigenvalue

having a positive Krein signature7.

For λ near 0−, all the eigenvalues of Mα(0) are off the unit circle, the unstable space Uα(·, λ)
has dimension n and limλ→0− Uα(·, λ) = Rφα

x ⊕Rα, x-uniformly.

If h′(α) < 0, then the sign of γ and the Krein signature are reversed, and the two critical

eigenvalues are on the unit circle when λ is close to 0− and limλ→0+ Uα(·, λ) = Rφα
x ⊕ Rα,

x-uniformly.

Therefore, for small enough α, the Maslov index of φα is

Iper(φ
α) =

{
limλ→0− Iper(φ

α, λ) if h′(α) > 0

limλ→0+ Iper(φ
α, λ) if h′(α) < 0

.

Therefore, we define the Maslov index in the periodic limit of the solitary wave φ as:

Iper→hom(φ) =

{
limλ→0− Ihom(φ, λ) if h′|]0,α0[

> 0

limλ→0+ Ihom(φ, λ) if h′|]0,α0[
< 0

.

Unfortunately, this limit cannot be a basis for the Maslov index for all homoclinic orbits,

because there are some cases where hypothesis 3 is not satisfied, like in section 3.4.

1.3.2 An intersection-based Maslov index when λ ∈ X − σess

In this section, we assume that hypothesis 1 holds.

Since the Maslov index is supposed to count the λ such that S(x, λ) ∩ U(x, λ) 6= {0}, it is

natural to look at the Maslov index of the path U(·, λ) with respect to S∞(λ). When λ /∈ σ, we

have:

mS∞(λ)(U(·, λ)) = m(U(·, λ)) = Ihom(φ, λ)

When λ ∈ σp, the situation is more subtle because limx→∞ U(x, λ) may no longer exist. Bose

& Jones defined in [16] the Maslov index by using ω-limit sets in Λ̃(n).

Definition 18 The ω-limit set ω(f) of the mapping f : R → E is defined as:

ω(f) = {a ∈ E|∃(xn)n∈N lim
n→∞

xn = +∞ & lim
n→∞

f(xn) = a}

7Suppose eiα, with 0 < α < π, is a simple eigenvalue of M
α(λ) with eigenvector ξ, then the Krein signature

of eiα is

sign (−iξ∗J ξ) ,

where ∗ indicates complex conjugate transpose. More details about Krein signature are given in appendix A.
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Chen & Hu later found a definition without using ω-limit sets in [40].

Definition 19 Suppose λ /∈ σess. Let Ũ(x, λ) be a lift of U(x, λ) in Λ̃(n). The Maslov index

Ihom(φ, λ) is defined as:

Ihom(φ, λ) = mS∞(λ)( lim
x→−∞

Ũ(x, λ), Ã) for Ã ∈ ω(Ũ(·, λ)) (Bose and Jones),

or equivalently as:

Ihom(φ, λ) = lim
x0→+∞

mS(x0,λ)( lim
x→−∞

Ũ(x, λ), Ũ(x0, λ)) (Chen and Hu).

or:

Ihom(φ, λ) = mS(x,λ)(S̃(x, λ), Ũ(x, λ))

−mS∞(λ)(limy→−∞ Ũ(y, λ), limy→+∞ S̃(y, λ))
(Chen and Hu modified).

Remark: This definition is dependent on the convention chosen for m.

Proof of well-definedness :

In the following paragraph, we prove that Chen-Hu’s definition makes sense. Then we prove

that Bose-Jones’s definition is equivalent.

Let S̃(x, λ) be a lift of S(x, λ) in Λ̃(n).

We have U∞(λ) ∩ S∞(λ) = ∅. Therefore dist(U∞(λ),Λ(S∞(λ))) > ε.

For x0 large enough, we have dist(U∞(λ),Λ(S(x0 , λ))) >
ε
2 .

Therefore, mS(x0,λ)(limx→−∞ Ũ(x, λ), S̃(x0, λ)) is constant when x0 is large enough.

Now, since S(x, λ) and U(x, λ) are the space of solutions of the same differential equation,

mS(x,λ)(S̃(x, λ), Ũ(x, λ)) is constant.

Therefore limx0→+∞mS(x0,λ)(limx→−∞ Ũ(x, λ), Ũ (x0, λ)) is well-defined since

mS(x0,λ)(limx→−∞ Ũ(x, λ), Ũ (x0, λ)) is constant for x0 large enough. This proves that Chen-Hu’s

definition makes sense.

Now, let us prove that Bose-Jones’ definition is equivalent. Let us prove that:

∀Ã ∈ ω(Ũ(x, λ)) mS∞(λ)(limx→−∞ Ũ(x, λ), Ã)

= limx0→+∞mS(x0,λ)(limx→−∞ Ũ(x, λ), Ũ(x0, λ)) = c

Let k = dim(S(x, λ) ∩ U(x, λ).

Let W(x) a Lagrangian plane such that:

• dim(W(x) ∩ U(x, λ)) = n− k

• W(x) ∩ S(λ, x) = {0}

Then, limx→∞ W(x) = U∞(λ).

Let xn → ∞ such that limn→∞ Ũ(xn, λ) = Ã.

Since dimW (xn) ∩ U(xn, λ) = n− k, we have dimU∞(λ) ∩A ≥ n− k.

In the mean time dimS∞(λ) ∩ A ≥ k since dim(S(xn, λ) ∩ U(x, λ)) = k.

Besides U∞(λ) ∩ S∞(λ) = {0} and dim(A) = k + n− k, therefore dimS∞(λ) ∩ A = k.

From proposition 11, we have:

limn→∞mS(xn,λ)(S̃(xn, λ), Ũ(xn, λ)) = limx0→∞mS(x0,λ)(limx→−∞ Ũ(x, λ), Ũ (x0, λ))

= mS∞(λ)(S̃∞(λ), Ã)
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�

The following proposition is a nice characterization of definition 19, which is based on the s

function and a suitable set of coordinates.

Proposition 12 Suppose that the set of coordinates8 is such that Range(

(
0

I

)
) = S∞(λ) and

Range(

(
I

0

)
) = U∞(λ).

Let κ(x) such that s(U(x, λ)) = eiκ(x). Then:

Ihom(φ, λ) = lim
x→∞

κ(x) − κ(−x)
2π

Proof:

Let (κ(x),U(x, λ)) be a lift of U(x, λ) in Λ̃(n).

Let xn → ∞. Then there exists φ : N → N strictly increasing such that (κφ(n),U(xφ(n), λ))

converges to (β,A), with (β,A) ∈ Λ̃(n).

Now, dim(A) ∩ dim(S∞(λ)) = k and dim(A) ∩ dim(U∞(λ)) = n− k. Therefore:

KS∞(λ)
(A) = (1, . . . , 1,−1, . . . ,−1)

Therefore: mS∞(λ)((0,S∞(λ)), (β,A)) = β−(−(n−k)π)
2π − n

2 + k
2 = β

2π

KS∞(λ)
(U∞(λ))) = (−1, . . . ,−1,−1, . . . ,−1), therefore:

mS∞(λ)((0, (limx→−∞ κ(x),U∞(λ)))) = limx→−∞ κ(x)−(−nπ)
2π − nπ = limx→−∞ κ(x)

As a consequence:

limn→∞ κxφ(n)
= Ihom(φ, λ) + limx→−∞ κ(x)

As a consequence, limx→∞ κ(x) exists and:

limx→+∞ κ(x) = 2πIhom(φ, λ) + limx→−∞ κ(x) �

Using appendix C, it is easy to prove that Ihom(φ, b)− Ihom(φ, a) counts the number of eigen-

values in the interval [a, b] and the following proposition.

Proposition 13 Assume that hypotheses 1,2,3 hold. Then:

Iper→hom(φ) = Ihom(φ, 0) +
1

2
lim
α→0

sign(h′(α))

1.4 Conclusion

We constructed the Maslov index for solitary waves and showed that its definition is consistent

with the limit Maslov index of periodic waves. Besides, from appendix C, we know that it counts

eigenvalues as expected. It is now possible to apply the theory to partial differential equations

(see appendix E for a simple example). However, to be able to do some numerical calculations,

we will need to develop some numerical algorithms, which is done in the next chapter.

8Let U, V be two Lagrangian planes. There exists a symplectic change of coordinates such that Range(

 

0

I

!

) =

U and Range(

 

I

0

!

) = V
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Introduction

In the previous chapter, we have only used matrices to describe the Lagrangian manifold. This

approach can sometimes be tedious. When integrating the equation M ′ = AM , all the columns

of M can be attracted in the same direction. Hence, the other directions are lost unless orthog-

onalization (see [88, 25]) or high-precision arithmetic is used. To counterbalance this problem,

exterior algebra has already been used to compute Lyapunov exponents and the Evans function

(see Allen & Bridges [5, 4], Bridges, Derks & Gottwald [21]).

Let E be a n-dimensional vector space and (e1, . . . , en) be a basis of E.

35
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The kth wedge product of E is denoted by
∧k

E. The nonzero and distinct members of the

set

{ei1 ∧ . . . ∧ eik
, 1 ≤ i1 < . . . < ik ≤ n} (2.0.1)

form a basis for the vector space
∧k E, with exactly d = n!

(n−k)!k! distinct elements.

Choose an ordering such as a standard lexical ordering and label the nonzero distinct elements

in the set (2.0.1) by E1, . . . ,Ed. Then, any element U ∈ ∧k
E can be represented as U =∑d

j=1 Uj Ej .

In this basis, the wedge product of k elements of E can be written as:




Ek → ∧k
E

(b1, b2, . . . , bk) = (
∑n

j=1 a1,jej ,
∑n

j=1 a2,jej, . . . ,
∑n

j=1 ak,jej)

7→ b1 ∧ b2 ∧ . . . ∧ bk =
∑

1≤i1<...<ik≤n

∣∣∣∣∣∣∣∣∣∣∣

ai1,i1 ai1,i2 . . . ai1,ik

ai2,i1 ai2,i2 . . . ai2,ik

...
...

...
...

aik,i1 aik,i2 . . . aik,ik

∣∣∣∣∣∣∣∣∣∣∣

ei1 ∧ . . . ∧ eik

The wedge product is not an onto mapping: e1∧ e2 + e3∧ e4 cannot be put into the form a∧ b.
k-linear forms which are equal to a wedge product a1 ∧ a2 ∧ . . . ∧ ak of k vectors a1, . . . , ak are

said to be purely decomposable.

Suppose that U is a k-dimensional subspace of E. Let a1, . . . , ak be a basis of U .

Then, we say that U = a1 ∧ . . .∧ ak represents the subspace U . This representation is unique

up to a multiplicative constant, i.e. if (b1, b2, . . . bk) is another basis of U , there exists a scalar

such that a1 ∧ . . . ∧ ak = αb1 ∧ . . . ∧ bk.

Stated differently, the following mapping is one-to-one (though not onto):{
Gk(E) → P(

∧k
(E))

Span(b1, . . . , bk) 7→ b1 ∧ . . . ∧ bn
where P(

∧k
(E)) is the projectivization1 of

∧k
E.

In this chapter we first study the induced system on exterior algebra. We then give a char-

acterization of the linear forms which represent Lagrangian planes and a way to compute the

functions K, s sign± from the exterior algebra representation of Lagrangian planes.

Then, we give an algorithm for computing the Maslov index of periodic waves and solitary

waves.

2.1 The multi-alternate product and induced system on∧k E

Suppose that we want to find the k-dimensional subspace V (t) of solutions of the following

system:

x(0) ∈ V0, x′ = B(t)x (2.1.2)

1The projectivization of a vector space F is defined as the quotient of F − {0} by the relation of equivalence

x ∼ y ⇔ ∃α 6= 0 x = αy.
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where V0 is a k-dimensional subspace. Let Φ(t, u) be the flow associated to the system, e.g:

Φ(u, u) = I,
∂Φ(t, u)

∂t
= B(t)Φ(t, u)

If a1(t), a2(t), . . . ak(t) is a basis of V (t), then:

(a1 ∧ a2 ∧ . . . ∧ ak)′ =

k∑

i=1

a1 ∧ . . . ∧Bai ∧ . . . ∧ ak

(a1 ∧ a2 ∧ . . . ∧ an)(t) = Φ(t, u)a1(u) ∧ . . . ∧ Φ(t, u)an(u)

The two previous equations can be interpreted as a multi-alternate product:

Definition 20 Let M1,M2, . . . ,Mk : F → E be linear mappings.

Then, the multi-alternate product M1 ⊙M2 ⊙ . . .⊙Mk :
∧k

F → ∧k
E of M1,M2, . . . ,Mk is

defined as the linear mapping such that:

M1 ⊙M2 ⊙ . . .⊙Mk(a1 ∧ a2 ∧ . . . ak)

= 1
k!

∑

σ∈Σk

Mσ(1)a1 ∧Mσ(2)a2 ∧ . . . ∧Mσ(k)ak

where Σk is the set of permutations of {1, . . . , k}.

Definition 21 Let A : E → E be a linear mapping.

The mapping A[k] induced on
∧k E by A is defined as:

A[k] = A⊙A⊙ . . .⊙A

The compound mapping is defined as:

A(k) = k(A⊙ Id . . .⊙ Id)

In terms of multi-alternate product, we can rewrite the previous systems as:

(a1 ∧ a2 ∧ . . . ∧ ak)′(t) = B(k)(t)(a1 ∧ . . . ∧ ak)(t)

(a1 ∧ a2 ∧ . . . ∧ an)(t) = Φ[k](t, u)(a1 ∧ . . . ∧ an)(u)

Now, let us give the elements and eigenvalues of A(k) and A[k] as a function of elements and

eigenvalues of A.
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In the standard basis {ei1 ∧ . . . ∧ eik
, 1 ≤ i1 < . . . < ik ≤ n}, the matrices2 of these two map-

pings are:

(A[k])1≤i1<...<ik≤n,
1≤j1<...<jk≤n

=

∣∣∣∣∣∣∣∣∣∣

ai1,j1 ai1,j2 . . . ai1,jk

ai2,j1 ai2,j2 . . . ai2,jk

...
...

...
...

aik,j1 aik,j2 . . . aik,jk

∣∣∣∣∣∣∣∣∣∣

(2.1.3)

(A(k))1≤i1<...<ik≤n,
1≤j1<...<jk≤n

=






0 if #({i1, . . . , ik} ∪ {j1, . . . , jk}) > n+ 1

(−1)r+sair ,js
if {ir, js} = {i1, . . . , ik}∆{j1, . . . , jk}

k∑
r=1

air ,ir
if {i1, . . . , ik} = {j1, . . . , jk}

(2.1.4)

where ∆ is defined as V∆W = (V ∪W ) − (V ∩W ).

From (2.1.3) and (2.1.4), we deduce that (see [115]):

Proposition 14 Let A ∈Mn(C) be a matrix.

Let P ∈ GLn(C) such that P−1AP is an upper triangular matrix.

Let α1, . . . , αn be the diagonal elements of P−1AP .

Then (P [r])−1A(r)P [r] = (P−1AP )(r) and (P [r])−1A[r]P [r] = (P−1AP )[r] are upper triangular

matrices whose diagonal elements are respectively (
∑r

k=1 αik
)1≤i1<...<ir≤n and (

∏r
k=1 αik

)1≤i1<...<ir≤n

2.2 Computing the Maslov index of paths on
∧n(R2n)

In this section, we first make some comments on which n-forms are representative of Lagrangian

space. Then we show how we can compute s,K from the exterior algebra representation.

2.2.1 The Lagrangian manifold Λ(n) as a submanifold of P(
∧n(R2n))

Case n = 2

Take R4 with its standard basis and symplectic and volume forms

ω = e∗1 ∧ e∗3 + e∗2 ∧ e∗4, ω̄ = e1 ∧ e3 + e2 ∧ e4, and vol = 1
2 ω ∧ ω . (2.2.5)

The vector space
∧2

(R4) is six-dimensional, and the orthonormal basis induced from the basis

of R4 is
E1 = e1 ∧ e2 , E2 = e1 ∧ e3 , E3 = e1 ∧ e4 ,

E4 = e2 ∧ e3 , E5 = e2 ∧ e4 , E6 = e3 ∧ e4 .
(2.2.6)

2The matrix of the general multi-alternate product is (M1 ⊙ . . . ⊙ Mk)1≤i1<...<ik≤n,
1≤j1<...<jk≤n

=

1
k!

P

σ∈Σn

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

(Mσ(1))i1,j1 (Mσ(1))i1,j2 . . . (Mσ(1))i1,jk

(Mσ(2))i2,j1 (Mσ(2))i2,j2 . . . (Mσ(2))i2,jk

..

.
..
.

..

.
..
.

(Mσ(k))ik,j1 (Mσ(k))ik,j2 . . . (Mσ(k))ik,jk

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

.
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Any U ∈ ∧2
(R4) can be represented in the form

U =

6∑

j=1

Uj Ej . (2.2.7)

U represents an element of the Grassmannian G2(R
4) if and only if:

0 = U ∧U = I1 vol , I1 := U1U6 − U2U5 + U3U4 . (2.2.8)

In that case, the space represented by U is Lagrangian if and only if

0 = ω̄ ∧ U = I2 vol , I2 := U2 + U5 . (2.2.9)

The Lagrangian-GrassmannianΛ(2) is isomorphic to the three dimensional submanifold of P

(∧2(R4)
)

defined by I1 = I2 = 0.

Let V ∈ ∧2
(R4) be a fixed Lagrangian plane. Then

Λ1(2) = { U ∈ ∧2(R4) ∩ Λ(2) : U ∧ V = 0 } ,

is a codimension one submanifold of Λ2(2) [6]. We have a sequence of manifolds:

Manifold
∧2

(R4) P

(∧2
(R4)

)
G2(R

4) Λ(2) Λ1(2)

Dimension 6 5 4 3 2

General case

In the general case, the decomposability of one k-form is more difficult to establish. However,

we have:

Proposition 15 Let U be a k-linear form and ρU :

{
E → ∧k+1

E

x→ x ∧ U
. Then U is purely-

decomposable if and only if k ≤ dim(ker ρU).

In that case, there are u1, . . . , uk such that:

ker(ρU) = span(u1, . . . , uk), U = u1 ∧ . . . ∧ uk

If we look for an algebraic condition on the coordinates of U, one may use the minors of the

mapping ρU since:

dim(ker ρU) ≥ k ⇔ dim(Range(ρU)) ≤ dim(E) − k ⇔ (ρU)[dim(E)−k+1] = 0.

Now, consider R2n with its standard basis and symplectic and volume forms

ω̄ =

n∑

i=1

e∗i ∧ e∗i+n, ω̄ =

n∑

i=1

ei ∧ ei+n and vol =
1

n!
ω̄ ∧ . . . ∧ ω̄ . (2.2.10)
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Proposition 16 Assume that U is a purely decomposable n-form. Then the space kerρU (e.g

the space represented by U) is Lagrangian if and only if:

ω̄ ∧ U = 0 (2.2.11)

To prove this proposition, we will need the following lemma:

Lemma 1 Let U be a n-dimensional subspace of R2n. There exists a basis (g1, . . . , gn, f1, . . . , fn)

of R2n and k ∈ {1, . . . , ⌊n
2 ⌋} such that:

• ω̄ =
∑k

i=1(gi ∧ gi+k + fi ∧ fi+k) +
∑n

i=2k gi ∧ fi,

• span(g1, . . . , gn) = U .

Proof: Let U⊥ = {u|∀v ∈ U ω(u, v) = 0}.
Let k = n−dim(U⊥∩U)

2 .

Let W such that (U ∩ U⊥) ⊕W = U .

ω|W×W has full rank. Therefore, there exists a basis (g1, . . . , g2k) of W such that ω(gi, gj+k) =

δij for i, j ∈ {1, . . . , 2k}.
Let W ′ such that U ∩ U⊥ ⊕W ′ = U⊥.

ω|W ′×W ′ has full rank. Therefore, there exists a basis (f1, . . . , f2k) ofW ′ such that ω(fi, fj+k) =

δij for i, j ∈ {1, . . . , 2k}.
Let g2k+1, . . . , gn be a basis of U⊥∩U and W ′′ ⊂ (W ⊕W ′)⊥ such that W ′′⊕(U+U⊥) = R2n.

Let φ :

{
W ′′ → (U ∩ U⊥)∗

x→ (y → ω(x, y))
. φ is a bijective mapping (Otherwise, we would have dim(U⊥ ∩

U) + dim((U⊥ ∩ U)⊥) 6= 2n).

Let (r2k+1, . . . , rn) be the dual basis of (g2k+1, . . . , gn) in U⊥ ∩ U . Now set fi = φ−1(ri) for

2k + 1 ≤ i ≤ n. (f2k+1, . . . , fn) is a basis of W ′′.

Then (g1, . . . , gn, f1, . . . , fn) is a basis of R2n = W ⊕ (U ∩ U⊥) ⊕W ′ ⊕W ′′ and we have:

• span(g1, . . . , gn) = U

• ω(gi, gj+k) = δij for i, j ∈ {1, . . . , k},

• ω(gi, gj) = 0 if j ∈ {2k + 1, . . . , n},

• ω(gi, fj) = 0 if i ∈ {1, . . . , 2k},

• ω(gi, fj) = δij for i, j ∈ {2k + 1, . . . , n},

• ω(fi, fj+k) = δij for i, j ∈ {1, . . . , k},

• ω(fi, fj) = 0 if j ∈ {n− 2k + 1, . . . , n}.

Otherwise stated, the matrix of ω in this basis is:
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g1 . . . gk gk+1 . . . g2k g2k+1 . . . gn f1 . . . fk fk+1 . . . f2k f2k+1 . . . fn







g1
... 0 I 0 0 0 0

gk

gk+1

... −I 0 0 0 0 0

g2k

g2k+1

... 0 0 0 0 0 I

gn

f1
... 0 0 0 0 I 0

fk

fk+1

... 0 0 0 −I 0 0

f2k

f2k+1

... 0 0 −I 0 0 0

fn

We have therefore ω̄ =
∑k

i=1(gi ∧ gi+k + fi ∧ fi+k) +
∑n

i=2k gi ∧ fi. �

Proof of proposition 16:

There exists a basis (g1, . . . , gn, f1, . . . , fn) of R2n and k ∈ {1, . . . , ⌊n
2 ⌋} such that:

• ω̄ =
∑k

i=1(gi ∧ gi+k + fi ∧ fi+k) +
∑n

i=2k gi ∧ fi,

• span(g1, . . . , gn) = kerρU

There exists α such that U = αg1 ∧ . . . ∧ gn.

ω̄ ∧ U = α
(∑k

i=1(gi ∧ gi+k + fi ∧ fi+k) +
∑n

i=2k+1 gi ∧ fi

)
∧ g1 ∧ . . . ∧ gn

= α
∑k

i=1 fi ∧ fi+k ∧ g1 ∧ . . . ∧ gn

Therefore ω̄ ∧ U = 0 if and only if k = 0, e.g. ω|U×U = 0. �

Even in the case n = 3, there is still much to understand. For example, we do not have useful

representations of G3(R
6) or Λ(3) on

∧3
(R6). These would be useful for proving that Λ(3) is an

invariant manifold, and for understanding the numerical properties of the induced ODE (2.4.31)

on Λ(3). Some results about
∧3(R6) and Λ(3) can be found in Chapter 8 of the book [84].

Nevertheless, we can still compute the Maslov index in this case.
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2.2.2 Computing s on
∧n(R2n)

While the Maslov index is invariant with respect to a symplectic change of coordinates, this is

not the case of s whose definition depends on the euclidean structure of R2n.

For this reason, we first introduce the induced inner product. Then we give a general formula

for s in
∧n

(R2n).

The induced inner product on
∧k

(R2n)

The inner product 〈·, ·〉 on R2n induces an inner product on each vector space
∧k

(R2n) as follows.

Let

U = u1 ∧ · · · ∧ uk and V = v1 ∧ · · · ∧ vk , ui,vj ∈ R2n , ∀ i, j = 1, . . . , k ,

be any decomposable k-forms. A k−form is decomposable if it can be written as a pure form: a

wedge product between k linearly independent vectors in R2n. The inner product of U and V is

defined by

[[U,V]]k := det




〈u1,v1〉 · · · 〈u1,vk〉

...
. . .

...

〈uk,v1〉 · · · 〈uk,vk〉



 , U,V ∈ ∧k
(R2n) . (2.2.12)

Since every element in
∧k

(R2n) is a sum of decomposable elements, this definition extends by

(multi)-linearity to any k-form. Using the orthonormality of the induced basis

[[Ei,Ej]]k =

{
1 if i = j

0 if i 6= j
,

the inner product between two elements U =
∑d

i=1 UiEi and V =
∑d

j=1 VjEj is

[[U,V]]k =
[[∑d

i=1 UiEi,
∑d

k=1 VjEj

]]

k
=
∑d

i=1

∑d
j=1 UiVj [[Ei,Ej]]k

=
∑d

i=1 UiVi := 〈U,V〉d ,

yielding the equivalent representation

[[U,V]]k = 〈U,V〉d , U,V ∈ ∧k
(R2n) . (2.2.13)

Maslov angle – general formula on
∧n

(R2n)

In R2, the Maslov angle is just the angle associated with the polar representation of a vector in

R2 as shown in §E.0.1. In higher dimension there is still a well-defined angle associated with any

Lagrangian plane [93]. Consider the Lagrangian plane which is the range of a 2n× n matrix Z:

Z =

(
X

Y

)
= [ z1 | · · · | zn ] , with 〈J zi, zj〉 = 0 , for i, j = 1, . . . , n .

The exterior algebra representation of the Lagrangian plane is then just obtained by the mapping

(z1, . . . , zn) 7→ z1 ∧ · · · ∧ zn ∈ ∧n
(R2n) .
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Denote the exterior algebra representation by

U = z1 ∧ · · · ∧ zn .

Proposition 17 There exists a constant n−form C,

C = C1 + iC2 , with C1,C2 ∈ ∧n(R2n) ,

such that

det[X− iY]vol = C ∧U .

It follows from this proposition that there exists a scalar complex-valued function G such that

C ∧U = G(U)vol. A formula for the Maslov angle is then immediate.

Proposition 18

eiκ = G/G .

It remains to prove Proposition 17. The proof is by explicit construction. Let

cj = ej − iJ ej , j = 1, . . . , n .

Then

X − iY =

(
I

−iI

)T (
X

Y

)
= [c1 | · · · | cn]T [ z1 | · · · | zn ] =




〈c1, z1〉 · · · 〈c1, zn〉

...
. . .

...

〈cn, z1〉 · · · 〈cn, zn〉



 , (2.2.14)

and so, using the induced inner product3 on
∧n(R2n) (see section 2.2.2)

det[X− iY]vol = det




〈c1, z1〉 · · · 〈c1, zn〉

...
. . .

...

〈cn, z1〉 · · · 〈cn, zn〉



 vol = [[c1 ∧ · · · ∧ cn,U]]nvol .

This gives a formula for G,

G(U) = [[c1 ∧ · · · ∧ cn,U]]n .

It is not necessary to give an expression for C since in the computations it is G that is needed.

However, for completeness it is given. Let C be an n−form satisfying

c1 ∧ · · · ∧ cn ∧ C = [[c1 ∧ · · · ∧ cn, c1 ∧ · · · ∧ cn]]n vol . (2.2.15)

Then

G(U)vol = det[X − iY]vol = C ∧ U .

The n−form C is in fact the Hodge star of c1∧· · ·∧cn although the details of that characterization

are not needed.

3A real inner product is used throughout the paper. Complexification is used so rarely that a Hermitian inner

product is not necessary. One just needs to keep track of the complex conjugations.
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In standard coordinates, this can also be written as:

G(U) = det(X − iY) =
∑

({i1...in},r)
i1<...<in

{i1,...,ir ,ir+1−n,...,in−n}={1,...,n}

in−r(−1)
Pr

j=1 ij−jUi1,...,in
.

s(Range(Z)) = G(U)G(U)
−1

= det(X − iY)−1det(X − iY).

(2.2.16)

The Maslov angle on
∧2(R4)

On R4 with the standard basis,

c1 ∧ c2 = (e1 − iJ e1) ∧ (e2 − iJ e2)

= (e1 − ie3) ∧ (e2 − ie4)

= e1 ∧ e2 − ie1 ∧ e4 + ie2 ∧ e3 − e3 ∧ e4 .

Therefore, if U =
∑6

j=1 UjEj, with E1, . . . ,E6 the standard basis on
∧2

(R4), the expression for

G(U) and the Maslov angle are:

G(U) = [[c1 ∧ c2,U]]2 = U1 − iU3 + iU4 − U6 ,

eiκ =
U1 − U6 − iU3 + iU4

U1 − U6 + iU3 − iU4
. (2.2.17)

This expression is equivalent to the formula derived in equation (22) of [16].

A straightforward calculation shows that

C = −e1 ∧ e2 + e3 ∧ e4 + i(e1 ∧ e4 − e2 ∧ e3) .

The Maslov angle on
∧3

(R6)

On R6 with the standard basis

c1 ∧ c2 ∧ c3 = (e1 − iJ e1) ∧ (e2 − iJ e2) ∧ (e3 − iJ e3)

= (e1 − ie4) ∧ (e2 − ie5) ∧ (e3 − ie6) ,

or
c1 ∧ c2 ∧ c3 = e1 ∧ e2 ∧ e3 − e1 ∧ e5 ∧ e6 + e2 ∧ e4 ∧ e6 − e3 ∧ e4 ∧ e5

−ie1 ∧ e2 ∧ e6 + ie1 ∧ e3 ∧ e5 − ie2 ∧ e3 ∧ e4 + ie4 ∧ e5 ∧ e6 .

Now take a standard lexical ordering for the 20−dimensional basis

∧3(R6) = span{e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, . . . , e3 ∧ e5 ∧ e6, e4 ∧ e5 ∧ e6} , (2.2.18)

and express an arbitrary element U ∈ ∧3
(R6) in the form U =

∑
i,j,k Pijkei ∧ ej ∧ ek. Then

G = [[c1 ∧ c2 ∧ c3,U]]3
= P123 − P156 + P246 − P345 − iP126 + iP135 − iP234 + iP456 ,
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and so the expression for the Maslov angle is

eiκ =
P123 − P156 + P246 − P345 − iP126 + iP135 − iP234 + iP456

P123 − P156 + P246 − P345 + iP126 − iP135 + iP234 − iP456
. (2.2.19)

In this case the definition (2.2.15) gives

C = e4 ∧ e5 ∧ e6 − e2 ∧ e3 ∧ e4 + e1 ∧ e3 ∧ e5 − e1 ∧ e2 ∧ e6

+i(e3 ∧ e4 ∧ e5 − e2 ∧ e4 ∧ e6 + e1 ∧ e5 ∧ e6 − e1 ∧ e2 ∧ e3) .

2.2.3 K function over
∧n(R2n)

Let Z =

(
X

Y

)
∈ Xn be a Lagrangian frame on R2n. Then the matrix

ψ(Z,

(
I

0

)
) = Q = (X − iY)(X + iY)−1 ,

is a unitary and symmetric (but not Hermitian) matrix.

Let eiκj , j = 1, . . . , n with κj real, the n eigenvalues of Q. These eigenvalues are the elements

of KE(Z) (where E = Range(

(
I

0

)
))

Then:

s(Range(Z)) = eiκ1 eiκ2 . . . eiκn .

These angles can be computed in the exterior algebra framework: eiκr are the roots of the

following polynomial:

P (λ) = det((X − iY) − λ(X + iY))

The coefficients of P are antisymmetric n-linear functions of Z. As a consequence, they can

be expressed as a linear combination of the minors of Z.

Thus, the angles associated to a Lagrangian space can be computed from any representation

in Λn(R2n).

The case n = 2 is treated with much detail below.

Eigenvalues of the unitary matrix Q on
∧2

(R4)

Let Z =

(
X

Y

)
∈ X2 be a Lagrangian frame on R4. Let Q be the matrix:

Q = ψ(Z,

(
I

0

)
) = (X − iY)(X + iY)−1 ,

In this section, we give an expression for the eigenvalues eiκj (j = 1, 2 with κj real) of Q.

Let c1 and c2 be as defined in §2.2.2. Then, as shown there,

det[X− iY] = G(U) := [[c1 ∧ c2,U]]2 = U1 − iU3 + iU4 − U6 ,
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for
∧2

(R4) ∋ U =
∑6

j=1 UjEj . Hence

det(Q) = G/G . (2.2.20)

In this paragraph the following formula for Trace(Q) is proved,

Trace(Q) =
2

G
(U1 + U6) . (2.2.21)

Use (2.2.14) to relate the columns of Z to the X− Y decomposition

X + iY =

[
〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉

]
.

Hence

Q =
1

G

(
〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉

)[
〈c2, z2〉 −〈c1, z2〉
−〈c2, z1〉 〈c1, z1〉

]
,

and so

Trace(Q) = 1
G

(〈c1, z1〉 〈c2, z2〉 − 〈c1, z2〉 〈c2, z1〉 − 〈c2, z1〉 〈c1, z2〉 + 〈c2, z2〉 〈c1, z1〉) ,

= 1
G

(
det

[
〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉

]
+ det

[
〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉

])
,

= 1
G

([[c1 ∧ c2, z1 ∧ z2]]2 + [[c1 ∧ c2, z1 ∧ z2]]2)

= 1
G

([[c1 ∧ c2 + c1 ∧ c2, z1 ∧ z2]]2)

. = 2
G

([[e1 ∧ e2 + e3 ∧ e4, z1 ∧ z2]]2)

= 2
G

(U1 + U6) ,

using

Re (c1 ∧ c2) = Re ((e1 − ie3) ∧ (e2 + ie4)) = e1 ∧ e2 + e3 ∧ e4 ,

proving (2.2.21).

Given a path U ∈ ∧2(R4) the eigenvalues of Q can be computed using (2.2.20) and (2.2.21),

det(µI − Q) = µ2 − Trace(Q)µ+ det(Q) ,

where µ has unit modulus,

µ1,2 := eiκ1,2 =
U1 + U6 ±

√
4U1U6 + 2U3U4 − U2

3 − U2
4

U1 + iU3 − iU4 − U6
.

Using the fact U2 + U5 = 0 and U1U6 − U2U5 + U3U4 = 0, we can obtain

µ1,2 := eiκ1,2 =
U1 + U6 ± i

√
4U2

5 + (U3 + U4)2

U1 + iU3 − iU4 − U6
.
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2.3 Computing the Maslov index for periodic orbits

In this section, we consider problem (1.2.8).

We provide an algorithm to compute:

• Iper(λ, φ) when λ is not in the spectrum,

• Iper(φ) when φ is an hyperbolic periodic orbit.

To obtain the unstable space, one generally computes Floquet multipliers and their associated

eigenvectors. Here, we proceed differently, by integrating a random space over several periods to

obtain the unstable space. As we shall see, this method is equivalent to a power method.

Computing Iper(φ, λ) on
∧n

(R2n) when λ /∈ σ

Assume that λ /∈ σ.

There is an induced Floquet theory on the exterior algebra space. For a hyperbolic linear

system (1.2.8) there are n Floquet multipliers with modulus greater than one, and n with modulus

less than one.

If µ1, . . . , µn are any n Floquet multipliers and ζ1, . . . , ζn the corresponding eigenvectors of

M(λ), then clearly:

M[n](λ)(ζ1 ∧ · · · ∧ ζn) = σ (ζ1 ∧ · · · ∧ ζn) , with σ =
n∏

j=1

µj .

Since the system is hyperbolic, there is a unique simple Floquet multiplier of largest modulus

of M[n] obtained by taking {ζ1, . . . , ζn} to be a basis for the unstable subspace. Denote this

Floquet multiplier by σ+. It is always simple and real, even if some of the Floquet multipliers

are complex.

Consider the induced system

Ux = B(n)(x, λ)U , U(0) = ζ1 ∧ · · · ∧ ζn ,

with {ζ1, . . . , ζn} a basis for the unstable subspace. Then

U(L) = σ+ (ζ1 ∧ · · · ∧ ζn) ;

that is, U(0) and U(L) are colinear. Hence, U(x + L) = U(x) on P(
∧n

(R2n)). In practice, the

numerical integration is performed on
∧n

(R2n) and the formula for the Maslov angle automati-

cally factors out the length.

In practice the unstable subspace, span{ζ1, . . . , ζn}, need not be computed explicitly. When

the induced system on
∧n(R2n) is integrated in space, any randomly-chosen initial condition will

be attracted to the most unstable direction. Hence, the Floquet multipliers or their eigenvectors

do not need to be computed explicitly. It is sufficient to know that the linear system is hyperbolic.

This strategy is equivalent to the power method for computing the eigenvalue of largest modulus

of a matrix [74].

The rate of convergence of this version of the power method depends on the distance between

the largest (in modulus) Floquet multiplier of M[n] and the next largest Floquet multiplier.
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Explicitly, let µ1, µ2, . . . , µn be the unstable Floquet multipliers with multiplicities sorted so that

1 < |µ1| ≤ |µ2| ≤ . . . ≤ |µn|. Then the stable Floquet multipliers are 1
µ1
, . . . , 1

µn
. With these

conditions, the two eigenvalues of largest modulus of M[n](λ) are µ1µ2 · · ·µn and µ−1
1 µ2 · · ·µn.

The ratio of the second largest to the largest (in modulus) is

µ−1
1 µ2 · · ·µn

µ1µ2 · · ·µn
=

1

µ2
1

,

and by construction this ratio has modulus strictly less than one. However the size of the ratio

depends on the distance between µ1 and the unit circle.

The Floquet multiplier of largest modulus µ1µ2 . . . µn is a simple and therefore real eigenvalue.

Denote the right eigenvector by ξ ∈ ∧n
(R2n) and let η represent the left eigenvector, normalized

so that 〈η, ξ〉 = 1.

The solution of the initial-value problem for the induced system

Ux = B(n)(x, λ)U , U ∈ ∧n
(R2n) ,

with a random initial condition U(x0) = U0 is of the form

U(x) = Φ(n)(x, 0, λ)U0 .

But Φ(L, t0) = M[n] and so

U(kL) =
(
M[n]

)k

U0 , k = 0, 1, . . . .

The effect of
(
M[n]

)k
on the randomly chosen initial condition can be computed by the power

method.

Let U0 := ζ0 be any randomly chosen vector such that 〈η, ζ0〉 6= 0. Generically, almost every

starting vector will satisfy this condition. Define the sequence {ζk} by ζk+1 = M[n]ζk. Then,

from results on the power method, it follows that there exists a constant C > 0, for any ε > 0,

such that ∥∥∥∥
1

〈η, ζk〉
ζk − ξ

∥∥∥∥ ≤ C(|µ1|2 − ε)−k , k = 0, 1, 2, . . . .

This result shows that the power method produces log10(|µ1|2−ε) correct digits at each iteration.

When |µ1| is close to one, log10(|µ1|2 − ε) ∼ 2
loge 10 (|µ1| − 1). The parameter ε can be set to 0

if the eigenvalue µ−1
1 µ2 · · ·µn is semi-simple. This result ensures that a random initial condition

will be globally attracted to the unstable subspace, when the linear system is hyperbolic. It also

demonstrates the failure of convergence in the case where the periodic orbit is not hyperbolic,

e.g. when |µ1| = 1.

If we now sum up the algorithm, we get:

• Choose a random n-form U0 ∈ ∧n
(R2n).

• Integrate equation Ux = B(n)(x, λ)U , U(0) = U0 until:

– Either ζk = U(kL) is nearly colinear to ζk+1 = U((k + 1)L), e.g. there exists α s.t.

‖ζk − αζk+1‖ ≤ ε‖ζk‖ where ε is a small number.
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– Or a maximal number of iterations is reached. In this case, the system is considered

as non-hyperbolic and Iper(φ, λ) is not defined.

• Compute eiκ(x) = s(U(x, λ)) = G(U(x)) using equation (2.2.16) over the interval [kL, (k+

1)L], assuming that U(x) is representation of U(x, λ) over [kL, (k + 1)L]

• Compute κ(x) over [kL, (k+1)L] such that eiκ(x) = s(U(x, λ)) and |κ(x+∆x)−κ(x)| < π,

where ∆x denotes the step-size.

• Return the Maslov index: Iper(φ, λ) = κ((k+1)L)−κ(kL)
2π .

This algorithm was implemented with MatlabTM. The code is given in Appendix I.3 in the

case of the Kawahara equation.

Computing Iper(φ) when dim(U(x, 0)) = n− 1.

When φ is a L−periodic solution of an autonomous Hamiltonian system (e.g. equation (1.2.7)),

the linearization of the Hamiltonian system about this periodic orbit can be cast into the standard

form (1.2.8) where C(x, 0) is the Hessian of H evaluated at φ(x).

At λ = 0, the system will have two Floquet multipliers at +1 since φx(L) = M(0)φx(0) = φx(0)

and the orbit φ is supposed to be hyperbolic.

If we assume dim(U(x, 0)) = n − 1, then there are n − 1 Floquet multipliers with modulus

strictly greater than one. Therefore, there are exactly two Floquet multipliers on the unit circle.

E1(M(0)) is two-dimensional and contains the vector φx(0).

If we ignore the fact that the linearized system is not hyperbolic and apply the same algorithm

as in the previous section, there are two cases:

• M(0)
∣∣
E1(M(0))

is the identity and then taking a random starting point will not lead to

convergence to a form representing U(x, 0) ⊕ φx(x) in general.

• M(0)
∣∣
E1(M(0))

is not the identity and then it will generally converge to U(x, 0) ⊕ φx(x)

with the difference between U(x, 0) ⊕ φx(x) and the kth approximation behaving like 1
1+k .

Hence, if there is convergence, it is very slow. Instead of using an n-dimensional random

Lagrangian space for initial data, we can take advantage of the fact that we generally know what

φx is and:

• choose a n-dimensional Lagrangian space which already contains the φx vector.

• choose an (n− 1)-dimensional subspace.

These two approaches have the same rate of convergence, namely C 1
(|µ2|−ε)r at the rth iteration.

For the first one, the setup is nearly identical to what has been done in the previous sections:

we just pick φx and n− 1 other random vectors ξ1, . . . , ξn−1 and compute φx(0)∧ξ1 ∧ · · · ∧ξn−1

for initial data.

For the second approach, we integrate until we get U(x, 0). Knowing φx(x), it is then possible

to compute s(U(x, 0) ⊕ φx(x)). Moreover, the dimension of the space to integrate is smaller.

Another approach is to add an external parameter that perturbs the +1 Floquet multipliers off

the unit circle. In the application to stability of waves in §3.7.1 and §3.7.1 the spectral parameter

λ plays precisely this role (see Figures 3.19 and 3.23).
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2.4 Computing the Maslov index in the homoclinic case.

In this section, we assume that hypothesis 1 of chapter 1 holds.

We first give the definition of the Evans function which is an analytic function of the spectral

parameter λ whose zeros with multiplicities are the eigenvalues of the spectral problem with

multiplicity.

Then we give an algorithm to compute Ihom(x, λ) when λ /∈ σ. This formulation enables to

give a condition for the Maslov index to tend to 0 when |λ| → 0.

Finally we discuss how to compute Ihom(x, λ) when λ ∈ σp.

2.4.1 The Evans function of the self-adjoint system

In order to compare the number of eigenvalues of (1.3.13) with the Maslov index, we will use the

Evans function to determine eigenvalues using the setup in Alexander, Gardner & Jones [1],

adapted to the symplectic setting in Bridges & Derks [23].

Consider the linear system of ODEs,

ux = B(x, λ)u , u ∈ R2n , (2.4.22)

where B(x, λ) = J−1C(x, λ) and C(x, λ) is symmetric and depends smoothly on x and λ. In

general λ can be complex but here it will be restricted to be real. Assume that B(x, λ) tends

exponentially fast to a matrix B∞(λ) when x→ ±∞.

We will assume throughout that σess is real and λ /∈ σess.

Let
∧n

(R2n) be the vector space of n−vectors in R2n. There is an induced system from (2.4.22)

Ux = B(n)(x, λ)U , U ∈ ∧n
(R2n) . (2.4.23)

Let u1(x, λ), u2(x, λ), . . . , un(x, λ) and s1(x, λ), s2(x, λ), . . . , sn(x, λ) such that:

U(x, λ) = span(u1(x, λ), . . . , un(x, λ))

S(x, λ) = span(s1(x, λ), . . . ∧ sn(x, λ)

Now, define:

U(x, λ) = u1(x, λ) ∧ . . . ∧ un(x, λ),

S(x, λ) = s1(x, λ) ∧ . . . ∧ sn(x, λ).

Let σ+(λ) be the sum of the eigenvalues of B∞(λ) with positive real part, and let σ−(λ) be

the sum of the eigenvalues with negative real part. σ+(λ) (resp. σ−(λ)) is also the eigenvalue of

B
(n)
∞ (λ) with greatest (resp. smallest) real part of B∞(λ).

Then U(x, λ) and S(x, λ) are solutions of (2.4.23) with maximal decay as x goes to −∞ and

+∞ respectively satisfying

limx→−∞e−σ+(λ)xU(x, λ) = ζ+(λ) ∈ ∧n
(R2n) , (2.4.24)

and

limx→+∞e−σ−(λ)xS(x, λ) = ζ−(λ) ∈ ∧n
(R2n) , (2.4.25)
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where ζ±(λ) are eigenvectors

B(n)
∞ (λ)ζ±(λ) = σ±(λ)ζ±(λ) . (2.4.26)

A value λ ∈ R \σess is called an eigenvalue if the stable S(x, λ) and unstable solutions U(x, λ)

have nontrivial intersection. Eigenvalues are detected by the Evans function [1] which is defined

by

D(λ) vol = S(x, λ) ∧ U(x, λ) ∈ ∧2n(R2n) . (2.4.27)

To obtain a unequivocally defined function, a normalisation condition is needed. Here, since the

systems at −∞ and at +∞ are the same, we have ζ+(λ)∧ζ−(λ) 6= 0. A convenient normalization

that we will use from now on is:

ζ+(λ) ∧ ζ−(λ) = vol (2.4.28)

The Evans function is independent of x and is an analytic function of λ [1]. Analyticity assures

that the zeros of D(λ) are isolated. In the definition (2.4.27) the fact that trace(B(x, λ)) = 0

has been used.

Furthermore, the Evans function is invariant under exponential scaling of the following form:

Û(x, λ) = e−σ+(λ)xU(x, λ) ,

Ŝ(x, λ) = e−σ−(λ)xS(x, λ) .

Then the scaled functions satisfy

Ûx = [B(n)(x, λ) − σ+(λ)I]Û ,

Ŝx = [B(n)(x, λ) − σ−(λ)I]Ŝ ,

but the Evans function becomes

D(λ) vol = e(σ−(λ)+σ+(λ))xŜ(x, λ) ∧ Û(x, λ) = Ŝ(x, λ) ∧ Û(x, λ) ,

since σ−(λ) + σ+(λ) = Trace(B∞(λ)) = 0.

Proposition 19 Let λ 6∈ σ and assume that (2.4.28) holds, then:

sign(D(λ)) = (−1)Ihom(φ,λ)

Proof:

Let λ /∈ σ.

Let κ be such that ei
κ(x)

2 = G(U)
|G(U)| . Then (κ(x),U(x, λ)) is a lift of U(x, λ).

We have limx→+∞G(Û(x, λ)) = D(λ) limx→−∞G(Û(x, λ)).

Therefore ei
limx→+∞ κ(x)

2 = sign(D(λ))ei
limx→−∞ κ(x)

2 .

Therefore (−1)Ihom(λ,φ) = eiπ
limx→+∞ κ(x)−limx→+∞ κ(x)

2π = sign(D(λ)).

�
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2.4.2 Computation of Ihom(φ, λ) when λ /∈ σ.

Fix λ and a basic periodic solution, which is an approximation to a solitary wave. The steps in

the algorithm are as follows.

1. Choose a large enough interval [−L,L].

2. Compute the eigenvalue with largest real part of B
(n)
∞ (λ), denoted by σ+(λ), and its asso-

ciated eigenvector ζ+(λ).

3. Integrate equation

Û = [B(n)(x, λ) − σ+(λ)I]Û , (2.4.29)

on [−L,L], taking ζ+(λ) as initial condition at x = −L, using any standard numerical

integration scheme. The justification for the arbitrariness in choice of numerical scheme is

given below in this section.

4. Û(L, λ) and Û(−L, λ) are nearly colinear, and an approximation to the Evans function is

determined from their ratio
bU(L,λ)

bU(−L,λ)
. (The error is smaller than machine precision.)

5. Compute eiκ(x) = s(U(x, λ)) = G(Û(x, λ))G(Û(x, λ))
−1

using equation (2.2.16) or an

analogous representation.

6. Compute a lift of κ(x) and assume that |κ(x+ ∆x) − κ(x)| < π where ∆x is the step-size.

7. Return the Maslov index Ihom(φ, λ) = κ(L)−κ(−L)
2π .

There are several sources of error in the algorithm. Two parameters have to be chosen: L and

the step size ∆x. The choice of the step size is a familiar source of error. The consistency error

of the numerical integration scheme will be of the form C ∆xp, for some natural number p, at

each step, where C is a constant depending on the derivatives of B. The choice of the numerical

scheme will also impose some stability condition.

By choosing a finite value of L there will be some error introduced in the initial condition at

x = −L. Choosing ζ+ as an approximation of U(−L, λ) will induce a relative error of

2Z

∫ L/2

−∞
‖B(n)(x, λ) − B(n)

∞ (λ)‖dx ,

where

Z = sup
x∈R+

‖ex(B(n)
∞

−σ+I)‖ .

An initial perturbation will be multiplied by at most:

Z eZ
R

R
‖B(n)(x,λ)−B∞(λ)‖dx .

Since the Maslov index is an integer, the proposed scheme will give the Maslov index if the

relative error on U(·, λ) is small enough. However, if supR ‖Û(·, λ)‖ is very small (for example

when the Evans function is small), the relative error may be too big and lead to a miscomputed

Maslov index. This is the case when λ is an eigenvalue or near an eigenvalue.
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Attractivity of the Lagrangian Grassmannian Λ(2)

One of the advantages of subtracting off the growth rate at infinity in the equations on
∧2

(R4),

as in (2.4.31), is that the Lagrangian Grassmannian becomes an attracting invariant manifold.

When Λ(2) is attractive, one has greater freedom in choosing the numerical integration scheme.

To prove attractivity, consider the integration of the 2−form representing the unstable subspace

U(x, λ)

d

dx
U = B(2)(x, λ)U U ∈ ∧2

(R4) − L < x < +L .

Introduce the transformation

U(x, λ) = eσ+(λ)x Û(x, λ)

where σ+(λ) is the sum of the eigenvalues of B∞(λ) with positive real part. Then Û satisfies

d

dx
Û = [B(2)(x, λ) − σ+(λ)I]Û − L < x < +L (2.4.30)

The Lagrangian Grassmannian is the set

Û ∧ Û = 0 and ω ∧ Û = 0 .

When evaluated on the differential equation (2.4.30) these invariants satisfy

d
dxÛ ∧ Û = d

dxÛ ∧ Û + Û ∧ d
dxÛ

= B(2)Û ∧ Û + Û ∧ B(2)Û − 2σ+ Û ∧ Û

= Trace(B) Û ∧ Û − 2σ+ Û ∧ Û

= −2σ+ Û ∧ Û ,

since Trace(B) = 0. A similar calculation with ω ∧ Û yields

d

dx
ω ∧ Û = ω ∧ (B(2) − σ+I)U = −B(2)ω ∧ U − σ+ ω ∧ Û = −σ+ ω ∧ Û ,

using the fact that B(2)ω = 0, which is proved in Appendix D. This proves that

Û ∧ Û(x) = e−2σ+xÛ ∧ Û

∣∣∣∣
x=−L

and ω ∧ Û(x) = e−σ+xω ∧ Û

∣∣∣∣
x=−L

, for x > −L .

The eigenvalue σ+ is real and positive. Hence when integrating the unstable subspace U along

the Lagrangian Grassmannian, both Û∧ Û and ω∧ Û(x) are exponentially attracted to the zero

set. Therefore a special integrator is not required for maintaining the constraints; a standard

Runge-Kutta algorithm is quite satisfactory.

This proof holds only in the case n = 2. The difficulty with proving it in higher dimensions is

that we do not have a nice characterization of the Lagrangian Grassmannian. However, numerical

results for the case n = 3 show similar stabilizing behaviour in the integration.
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The Maslov index when λ is large

When λ → +∞ (or λ → −∞ if the essential spectrum extends to minus infinity) we expect

the Maslov index to stabilize. This property is similar to the property of the Evans function for

large λ. The hypotheses are based on the analogous result of [103], adapted to the setting of the

Maslov index.

Hypothesis 4 • Suppose there exists λ0 ∈ R such that σess is empty for all λ > λ0

• For large enough λ, B∞(λ) has no pure imaginary eigenvalue.

• Let V(λ) be a symplectic 2n×2n matrix depending analytically on λ whose first n columns

are a basis for Eu(B(x, λ)) and whose last n columns are a basis for Es(B(x, λ)) Define

F(x, λ) = V−1(λ)(B(x, λ) − B∞(λ))V(λ) .

• Suppose that, for large enough λ:

∫
R
|F(x, λ)|dx is bounded, uniformly in λ∫

|x|>x0
|F(x, λ)|dx tends to 0 when x0 → ∞, uniformly in λ

∫
R
|F(n)(x, λ)e1|dx tends to 0 .

If there exists λ0 such that σess is empty for all λ < λ0 the above hypotheses can be modified

accordingly.

Proposition 20 Assume that hypothesis 4 is met by B(x, λ), then

lim
λ→−∞

D(λ) = 1 , and lim
λ→−∞

Ihom(φ, λ) = 0 .

Following the argument in Proposition 1.17 in Pego & Weinstein [103] and the Appendix

of Bridges & Derks [23], we can prove (V [n](λ))−1Y (·, λ) converges, uniformly in x, to the

constant vector e1 when λ → −∞. Then, for large enough λ, (V [n](λ))−1Y (·, λ) has a null

Maslov index and so does Y (·, λ). In appendix F.2, we describe how to apply this proposition to

the Kawahara equation.

2.4.3 Computing Ihom(φ, λ) when λ ∈ σp

When λ ∈ σp, D(λ) = 0. As a consequence supx∈R
‖Û(x, λ)‖ = 0.

Therefore, the algorithm of section 2.4.2 will fail to converge.

If dim(U(x, λ) ∩S(x, λ)) is known and ∂λC(x, λ) is positive, then we can use proposition 3 to

compute Ihom(x, λ) and we have:

Ihom(φ, λ) =
Ihom(φ, λ + ε) + Ihom(φ, λ− ε)

2

whenever

Ihom(φ, λ+ ε) − Ihom(φ, λ− ε) = dim(U(x, λ) ∩ S(x, λ)).

So here is how Ihom(φ, λ) can be computed
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1. Choose a ε > 0.

2. Compute Ihom(φ, λ+ ε) − Ihom(φ, λ − ε), choosing suitably the step size and L.

3. If Ihom(φ, λ + ε) − Ihom(φ, λ − ε) = k, then return Ihom(φ,λ+ε)+Ihom(φ,λ−ε)
2 . Otherwise set

ε := ε
2 and go to Step 2.

2.4.4 Tracking intersections of U(x, λ) with S∞(λ)

The algorithm in §2.4.2 gives little information about where intersections of U(x, λ) with S∞(λ)

occur.

Besides, the path made by the unstable space in the case of a dark solitary wave or a front is

not generically closed. To extend the definition of the Maslov index to these cases, tracking the

intersections would be mandatory.

The algorithm of this section is quite similar except that the computation of the angle κ(x) is

replaced by the computation of the angles κ1, . . . , κn.

The initial algorithm can be modified as follows:

1. Choose a large interval −L ≤ x ≤ L. Initialize Maslov (the counter used to determine

Ihom(φ, λ)) to 0.

2. Find a symplectic matrix R(λ) such that R(λ)

(
I

0

)
and R(λ)

(
0

I

)
represent the stable

and unstable spaces of B∞(λ).

R(λ) define a symplectic change of coordinates in which the coordinates of stable and

unstable spaces in the exterior algebra are respectively S0 =





1

0
...

0




and V0 =





0
...

0

1




.

3. Compute the eigenvalue with largest real part, σ+(λ), of B
(n)
∞ (λ).

4. Integrate the equation

R[n](λ)−1Ux = R[n](λ)−1([B(n)(x, λ) − σ+(λ)I])R[n](λ)R[n](λ)−1U , (2.4.31)

in the new system of coordinates on [−L,L], taking U0 as initial condition for R[n](λ)−1U

at x = −L and using any standard numerical integration scheme.

5. Compute the angles (κ1, κ2, . . . , κn) corresponding to the eigenvalues of ψ(R(λ)−1U,

(
I

0

)
)

over [−L,L]. If a κi crosses 2πZ between x and x + ∆x, update the value of the Maslov

index to:

Maslov 7→ Maslov + sign (κi(x+ ∆x) − κi(x)) .

Intersection list = Intersection list ∪ {(x, sign (κi(x+ ∆x) − κi(x)))}
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6. Return R[n](λ)−1U(L, λ) ∧ S0 as an approximation to the Evans function.

7. At x = +L, return Ihom(φ, λ) = Maslov and Intersection list.

This algorithm was implemented with MatlabTM. The code is given in Appendix I.4 in the

case of the Kawahara equation.

2.5 Conclusion

We have obtained numerical algorithms to compute the Maslov index of periodic waves and of

solitary waves. We are now going to apply these algorithms to waves arising in several partial

differential equation models.
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Introduction

In this chapter, we first recall the physical context in which the Kawahara equation arises. Then

we make some comments on the structure of the ODE satisfied by travelling waves. Then, we

discuss the Maslov index of the solitary waves and the implication for their stability and what

occurs at bifurcation points, e.g. points where several branches of solutions merge. Finally, we

look at the Maslov index of some periodic waves which converge to a solitary wave.

57
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Figure 3.1: Water-strider (Gerrida) taking advantage of surface tension to counterbalance gravity.

3.1 Physical context

We consider a two-dimensional inviscid, incompressible, irrotational fluid, subject to capillarity

and gravity.

Let

• x be the horizontal variable and z the vertical one.

• (x,B(x)) be the bottom of the fluid.

• (x, η(x, t)) be the free surface of the fluid.

• φ(x, z, t) be the velocity potential. φ is a function such that ∇φ is the velocity of the fluid.

• g be the acceleration due to gravity.

Then, the two-dimensional Euler equations can be written as:

∂2φ
∂x2 + ∂2φ

∂z2 = 0 when B(x) < z < η(x, t)
∂φ
∂z = ∂B

∂x
∂φ
∂x at z = B(x)

∂φ
∂z = ∂η

∂x
∂φ
∂x + ∂η

∂t at z = η(x, t)

∂φ
∂t + 1

2

((
∂φ
∂x

)2

+
(

∂φ
∂z

)2
)

+ gη = σ
ρ

∂2η

∂x2

( ∂η
∂x

2
+1)

3
2

at z = η(x, t)

(3.1.1)

Now, we assume that the bottom of the fluid is flat, e.g. B(x) = −H .

The dispersion relation for the linearized equations near the constant state φ = 0 and η = 0 is

(see [123]):

ω2 = gk(1 +
σH2

ρ
k2) tanh(kH) (3.1.2)

The phase and group velocity are therefore:

c(k) =
ω

k
= ±

√(
g

k
+
σH2

ρ
k

)
tanh(kH) (3.1.3)
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cg(k) =
dω

dk
= ±1

2
c(k)

(
ρg + 3σk2

ρg + σk2
+

2kH

sinh(2kH)

)
(3.1.4)

If we make the Taylor expansion of ω2, then one gets:

ω2 = Hgk2 +

(
3H3gσ −H3gρ

)
k4

3ρ
−
(
5H5gσ − 2H5gρ

)
k6

15ρ
+ 0(k8)

While the Korteweg-de Vries approximation only recovers the first terms of the dispersion

relation, the Kawahara equation takes in account the next term.

Let

• c0 =
√
gH be the speed of long-waves,

• η0 be the characteristic height of the wave,

• L be the characteristic length of the wave.

Let us introduce the following dimensionless quantities

• B = σ
ρgH2 the Bond number,

• ε = η0

H the non-linearity parameter,

• µ = H
L the long-wave parameter.

ε and µ are assumed to be small quantities.

The Euler equations can be put into an non-dimensional form by choosing the following set of

variables:

µx = Hx̃, z = Hz̃, µt = H(gH)−
1
2 t̃,

µφ = εH(gH)
1
2 φ̃, η = εHη̃.

Assume that ε = µ4 and that the wave under consideration is propagating to the right. Let

α =
B− 1

3

µ2 . Then, at order ε2, η̃ is a solution of the Kawahara equation [80, 82, 52, 34, 20, 53, 21]:

η̃t̃ − η̃x̃ + ε

(
α

2
η̃x̃x̃x̃ − 1

90
η̃x̃x̃x̃x̃x̃ − 3

2
η̃η̃x̃

)
= 0

Via another change of the variables, it is possible to put the previous equation into the form:

∂u

∂t
− c

∂u

∂x
+
∂

∂x

(
uq+1

)
+ P

∂3u

∂x3
− ∂5u

∂x5
= 0 , q = 1 . (3.1.5)

A further scaling can be introduced so that c = 1, but including c is useful for comparing with

results in the literature on the Kawahara equation. In fact, q is a third parameter, which can be

useful to set to other values than 1 in some applications of the Kawahara equation, e.g. plasmas

physics. Here, we will restrict to integer values of q.

Saut and Tzvetkov [114] proved the well-posedness of a Kawahara-KP model in L2 for a

torus and R2, which is the natural extension of the Kawahara equation to the three-dimensional

water-wave problem.
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The Kawahara equation can be put into a Hamiltonian form by taking:

ω(u, v) =

∫

R

u(x)(∂x)−1v(x)dx (3.1.6)

H(u) =

∫

R

(
1

2
u2

xx +
P

2
u2

x − 1

q + 2
uq+2 +

c

2
u2

)
dx (3.1.7)

as symplectic form and Hamiltonian.

3.2 The steady problem

The steady part of the Kawahara equation can be written as:

uxxxx − Puxx + cu− uq+1 = 0. (3.2.8)

This ODE also arises in a number of physical examples. For instance, it is also the steady part

of the one-dimensional Swift-Hohenberg equation

φt = −φxxxx + Pφxx − φ+ φ1+q (3.2.9)

The same equation arises in the study of beam buckling. A history with references is given by

Champneys [34].

The ODE (3.2.8) has been extensively studied and many solitary wave solutions have been

found; a classification is given in [27].

The linearization of uxxxx − Puxx + cu − uq+1 = 0 near φ = 0 is uxxxx − Puxx + cu = 0. If

φ = ekx is a solution to the linear equation, then k must satisfy the equation k4 − Pk2 + c = 0.

Solutions of this polynomial equation are:

1. Imaginary if Pc−
1
2 < −2. There cannot be solitary wave solutions to the non-linear ODE

with exponentially decaying tails.

2. Complex and non-real, not imaginary if −2 < Pc−
1
2 < 2. Solitary waves with oscillating

tails have been found.

3. Real if 2 < Pc−
1
2 . Solitary waves with non-oscillating tails can be found.

There are some special cases where explicit solitary wave solutions have been found. An

example is the explicit solution φ̂(x) =
(

(q+4)(3q+4)
8(q+2)

)1/q

sech4/q
(
xq
√

1
8(q+2)

)
which exists when

q ≥ 1 and P = q2+4q+8
2(q+2) . However, the interesting solutions of (3.2.8) need to be computed

numerically. They can be computed using a spectral method (approximate the solitary wave

by a periodic function of large wavelength and then use Fourier series to represent it), or in

the case of symmetric solitary waves a shooting algorithm can be used. We used both methods

to compute solitary waves. Symmetric solutions are computed numerically using a shooting

method: the starting point is an element of the tangent space of the unstable manifold and the

ending point is a symmetric point. We chose the fourth order Runge-Kutta method as integrator

and a space step equal to 1
1000 . With this space step, the error was close to the machine error



3.2. THE STEADY PROBLEM 61

−30
−20

−10
0

10
20

30

−2

−1

0

1

2

3
−0.5

0

0.5

1

1.5
φ

P

x

Figure 3.2: Numerically computed unimodal solitary waves for the Kawahara equation for the

case q = 1, c = 1 and −2 < P < 3.

precision. More details about the spectral and the shooting methods, as well as a MatlabTMcode,

are given in Appendix I.1 and Appendix I.2 respectively. An example of the family of unimodal

solitary waves as a function of P , computed using a spectral method, is shown in Figure 3.2.

Although these solitary waves are solutions of the model ODE, they are representative of

solutions of the full water-wave problem. Dias, Menasce & Vanden-Broeck [55] have found

large-amplitude branches of these solutions in the full water-wave equations.

Stationary wave solutions u are critical points of the Hamiltonian of the Kawahara equation.

Therefore, equation (3.2.8) can be put into a spatial Hamiltonian system. Here, we choose the

following set of coordinates:






q1 = u

q2 = uxx

p1 = uxxx − Pux

p2 = ux

.
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In this set of coordinates, the reversibility of (3.2.8) can be expressed as:





q1(t)

q2(t)

p1(t)

p2(t)




is a solution ⇔ R





q1(−t)
q2(−t)
p1(−t)
p2(−t)




is a solution,

with R =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1





. (3.2.10)

The spatial Hamiltonian in the original coordinates is:

E(u) = 1
2u

2
xx + 1

2Pu
2
x − 1

2cu
2 +

1

q + 2
uq+2 − uxuxxx .

It satisfies dE
dx = 0 along solutions of (3.2.8). Physically, for the Kawahara equation, this quantity

is associated with the momentum flux.

The system (3.1.5), linearized about a solitary wave φ̂(x) solution of (3.2.8), takes the form

∂φ

∂t
=
∂

∂x
(L φ) ,

with

L φ := φxxxx − P φxx + cφ− (q + 1)φ̂(x)q φ . (3.2.11)

There are two spectral problems:

L φ = λφ and Lφ = λ̂φ , Lφ :=
d

dx
L . (3.2.12)

The operator L is self-adjoint (in a suitable Hilbert space) and so λ ∈ R. On the other hand,

L is not self-adjoint, and λ̂ which is the stability exponent, can in general be complex. The

relationship between these two eigenvalue problems is discussed in §3.5.1. First, we study the

Maslov index of the spectral problem L φ = λφ, which can be put in the form (1.2.8,1.3.13):

J zx = C(x, λ)z , z :=





w

wxx

wxxx − Pwx

wx




,

with J in the standard form (A.0.1) and

C(x, λ) =





a(x) − λ 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 P




, a(x) = 1 − (p+ 1) φ̂(x)q . (3.2.13)
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3.3 The Maslov index of solitary waves of the Kawahara

equation

In this section we study the Maslov index as a function of λ for the ODE eigenvalue problem

φxxxx − Pφxx + a(x)φ = λφ , (3.3.14)

where φ(x) is scalar valued, P is a real parameter and a(x) is a localized function which satisfies

a(x) → a∞ as x→ ±∞, with exponential decay of a(x) at infinity. For definiteness it is assumed

that a∞ > 0. The ODE (3.3.14) can be put in the form (1.2.8). The spectrum of the system at

infinity B∞(λ) = J −1C∞(λ) has the characteristic polynomial

det[B∞(λ) − µI] = µ4 − Pµ2 + a∞ − λ . (3.3.15)

With a∞ > 0 and λ = 0 the four roots are hyperbolic for all P such that

P + 2
√
a∞ > 0 ,

which is assumed to be satisfied henceforth. When λ 6= 0 the essential spectrum will form the

boundary of the hyperbolic region. The essential spectrum is

σess = {λ ∈ R : λ = a∞ + Pk2 + k4 , k ∈ R} .

When

λ < λedge = a∞ − 1

8
P (P − |P |) ,

the spectrum of B∞(λ) is hyperbolic. Hence, all the hypotheses for the existence of the Evans

function and the Maslov index are satisfied. We will apply this theory to determine the Maslov

index of a class of multi-pulse homoclinic orbits.

Furthermore, using Proposition 20 and the proof in Appendix F.2, it follows that the Kawahara

system satisfies hypothesis 4 and thereforeD(λ) → 1 and the Maslov index tends to 0 as λ→ −∞.

Spectral problems of the form (3.3.14) also arise in the physical examples mentioned above

in section 3.2. In the case of the one-dimensional Swift-Hohenberg equation, ∂φ
∂t = −L φ is the

linearization about the localized solutions. −λ in (1.3.13) is then the spectral parameter for the

stability of localized solutions.

3.4 The Maslov index of unimodal solitary waves

First consider the case P = 13
6 , q = 1 and c = 1 where the unimodal solitary wave is given

explicitly. The lifts κ(x) of the Maslov angle for this system are plotted as a function of x in

Figure 3.3 for various values of λ. In Figure 3.4, the corresponding Maslov indices have been

plotted as a function of λ. The Evans function shows that L has exactly three eigenvalues in

this case. Denote these eigenvalues by

λ1 < λ2 = 0 < λ3 .
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Figure 3.3: κ as a function of x for the following values of λ:−2,−1.9, . . . , 0.9. κ is λ-growing.

The parameter values are P = 13
6 , c = 1 and q = 1.

The qualitative behaviour of the Maslov index in this case is similar to the example on R2 in

Appendix E. The values of the Maslov are shown in the table below. The Maslov index in this

case is computed using the Maslov angle, and this Maslov index is denoted by Ihom(φ, λ).

λ λ < λ1 λ1 < λ < λ2 λ2 < λ < λ3 λ > λ3

Ihom(φ, λ) 0 1 2 3

Note that the Maslov index in each region predicts the number of eigenvalues of L in each λ

interval.

λ region λ < λ1 λ < λ2 λ < λ3 λ < λedge

# Eigs(L ) 0 1 2 3

It is immediate from this table that

Ihom(φ, 0) =
limλ→0+ Ihom(φ, λ) + limλ→0+ Ihom(φ, λ)

2
= 1 +

1

2
.

The operator L has exactly one negative eigenvalue in this case. Our calculations indicate that

this is the case for all the unimodal homoclinic orbits. It is easy to show analytically that the
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wave solution when P = 13
6 , c = 1 and q = 1



66 CHAPTER 3. THE KAWAHARA EQUATION

−40 −30 −20 −10 0 10 20 30 40
−19

10

−17
10

−15
10

−13
10

−11
10

−9
10

U^U

−40 −30 −20 −10 0 10 20 30 40
−13

10

−10
10

−7
10

−4
10

−1
10

2
10

φ

Figure 3.5: The decomposability of a 2-form is equivalent to I1 = 0 where I1 is defined in

(3.4.16). The upper figure shows the logarithm of the difference between a(x) and its limit a∞,

and the lower figure shows the logarithm of the value of I1 when q = 1, P = 13
6 , λ = −10 and

when the space step in the algorithm to compute the Maslov index is equal to dx = .01. The

fast oscillations are associated with round-off errors.

Maslov index of a unimodal homoclinic orbit is greater than or equal to 1 + 1
2 . An elementary

proof is given in Appendix F.1. The fact that #L − = 1 is proved in [42, 70]. This result has

implications for the stability of the solitary waves as solutions of the Kawahara equation and it

is discussed in §3.5.1.

3.4.1 Numerical tests on the accuracy of the algorithm

To test how accurately the Lagrangian Grassmannian is preserved by the numerical scheme, the

values of

I1 = U ∧ U and I2 = ω ∧U , (3.4.16)

are computed as a function of x. In these calculations the standard explicit fourth-order Runge-

Kutta algorithm is used. The value of I1 is shown in Figure 3.5 and shows that the error is of

order of the machine accuracy, except for a small region around zero, but the error there is still

exceptionally small. Concerning I2, it is in fact exactly preserved, even numerically: if the value

of U2 + U5 is the machine zero, it remains at the machine zero.
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2π when q = 1, P = −1.5, and λ = 0 as defined in section 2.4.4. Each

intersection of κ1 with 0 corresponds to a non-trivial intersection of U(x, λ) with S∞(λ).

3.5 Multi-pulse solutions

The ODE (3.2.8) has a family of solutions φP defined for P ∈ [−2,∞[ with a symmetric point

at x = 0 (i.e. φ′P (0) = φ′′′P (0) = 0) which is the unique maximum when P > 2. For any

ε ∈ [−2 + ε, 2[, it can be proved that there is an infinity of families of homoclinic solutions made

of copies of the unimodal solutions. See [27] and references therein for a classification of these

solutions.

These families can be classified in the following manner by looking at their behaviour near

P = 2−. A family ψP of solutions is said to have a mode at sP if

lim
P→2+

(ψP (sP ), ψ′
P (sP ), ψ′′

P (sP ), ψ′′′
P (sP )) = (φ2(0), φ′2(0), φ′′2(0), φ′′′2 (0)) .

A multi-pulse homoclinic family orbit is said to have type n(ℓ1, ℓ2, . . . , ℓn) if it has n modes at

the points s1,P , s2,P , . . . , sn,P , and

lim
P→2+

si+1,P − si,P = ∞ ,

and the number of zeros of 1
2ψ

′′2
P − 1

2ψ
2
P + 1

3ψ
3
P in [si,P , si+1,P ] is equal to 2ki. It has been conjec-

tured that there is a unique family of each type, up to a space translation. This classification has

been introduced in [27]. These solutions can be computed using shooting, or by approximating

them by periodic solutions and using a spectral method. Examples of bimodal solutions are

shown in Figure 3.7. An example of asymmetric solutions, of type 3(3, 1) is shown in Figure 3.8.
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Figure 3.7: Bimodal solutions when q = 1, c = 1 and P = −1.5.
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These multi-modal orbits occur only for P satisfying −2 < P < +2 and therefore they have

oscillatory tails.

The value of the Maslov index for solitary waves of various families when λ = 0 is given in the

following table.

Family

1 1

2(1) 3

2(2) 2

2(3) 3

2(4) 2

2(5) 3

2(6) 2

2(7) 3

2(8) 2

2(9) 3

2(10) 2

Family

3(2, 1) 4

3(3, 1) 5

3(1, 1) 5

3(2, 2) 3

3(3, 3) 5

3(4, 4) 3

3(5, 5) 5

3(6, 6) 3

4(3, 1, 3) 7

4(3, 2, 3) 6

4(3, 3, 3) 7

Family

4(3, 4, 3) 6

4(3, 5, 3) 7

4(3, 6, 3) 6

5(3, 1, 1, 3) 9

5(3, 2, 2, 3) 7

5(3, 3, 3, 3) 9

6(3, 2, 1, 2, 3) 9

6(3, 2, 2, 2, 3) 8

6(3, 2, 3, 2, 3) 9

Value of Ihom(φ, 0) − 1
2 for the different families of solitary waves.

From this table, we see that there is a pattern between the type n(ℓ1, ℓ2, . . . , ℓn−1) and the

Maslov index. We find the remarkable conjecture that the value of the Maslov index is predicted

by the type, determined by the following formula

Ihom(φ, 0) − 1

2
= neven + 2nodd + 1 (3.5.17)

where neven is the number of even indices among (ℓ1, ℓ2, . . . , ℓn−1) and nodd the number of odd

ones.

Computing the Evans function for multi-pulse orbits

To see the connection between the number of eigenvalues of L and the Maslov index for multi-

pulse, the Evans function for multi-pulse orbits is computed for an example. Consider the

multi-pulse orbit of type 5(3, 1, 1, 3) at P = −1.5, c = 1 and q = 1. It is shown in Figure 3.9.

The computed Maslov index and Evans function for this case as a function of λ are shown in

Figure 3.10. From this result and the previous calculations it appears that the number of negative

eigenvalues of L is predicted by the Maslov index with the formula

#L
− = Ihom(φ, 0) − 1

2
. (3.5.18)

This formula is of interest when we consider the relation between the spectrum of L, which

determines the stability of solutions of the Kawahara equations and the spectrum of L .

Then, it appears that (3.5.17) is consistent with Pelinovsky & Chugunova [42] results in

the case of a 2(i) pulse since they found that #L − = 3 if i is odd and #L − = 2 is even.
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Figure 3.9: A multi-pulse solitary wave of type 5(3, 1, 1, 3) at P = −1.5 and q = 1.

3.5.1 Spectrum of L and the stability of solitary waves for the Kawa-

hara equation

One of the intriguing properties of the Maslov index is its connection with the number of eigen-

values in subsets of the λ space, and subsequently the relationship with the stability of waves.

For the Swift-Hohenberg equation (3.2.9), the connection between the spectrum of L and

unstable eigenvalues is exact: #L −, the number of negative eigenvalues of L , is equal to the

number of unstable eigenvalues associated with the basic steady solution of (3.2.9).

On the other hand, the connection between stability and #L − for the Kawahara equation is

not as direct. For unimodal solitary-wave solutions of Kawahara, Kodama & Pelinovsky [82]

have studied this connection. Suppose the following integral exists

N(P, c) =

∫

R

φ̂(x, c, P )2dx ,

and is a differentiable function of c. Define

r =

{
0 if ∂N

∂c (1, P ) < 0

1 if ∂N
∂c (1, P ) > 0

.

The functional N(P, c) is sometimes called the momentum of the solitary wave. In [82] it

is argued (see proposition 3.8 there) that a unimodal solitary wave is stable if r = +1 and

#L − = 1. This result assumes that there are no pure imaginary eigenvalues of L. Hence, in

this case the stability of the solitary wave is determined by the sign of dN
dc . This observation
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Figure 3.10: The computed Evans function and Maslov index associated with the multi-pulse

solitary wave in Figure 3.9.
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is consistent with the theory of [20] where instability results for a class of unimodal solitary

waves were obtained. Some later results about values of ∂N
∂c , which have been published by

Lewandosky [89], can be seen on figure 3.11.

More refined results on stability of two-pulse solitary waves were obtained by Pelinovsky &

Chugunova [42]. They relate #L − with the complex eigenvalues of L, where L is defined in

(3.2.12). Consider a symmetric solitary wave and suppose that L has only simple eigenvalues

except a double eigenvalue at 0 and suppose ∂N
∂c (1, P ) 6= 0. In [42], it is proved that

Nunst = #L
− − r −N−

imag , (3.5.19)

where Nunst is the number of eigenvalues with strictly positive real part of L and N−
imag is the

number of pure imaginary eigenvalues of L with negative Krein signature1. Combining with

(3.5.18) gives

Nunst = Ihom(φ, 0) − 1

2
− r −N−

imag .

It is immediate from this formula that if N−
imag = 0 and Ihom(φ, λ) − 1

2 = 1 then the basic state

is stable if dN
dc > 0 and unstable if dN

dc < 0.

These observations are consistent with the results of Buryak & Champneys [30]. They

consider the stability of 2−pulse solutions of the form 2(ℓ), ℓ = 1, . . . , 9. They find that the

solutions of the type 2(ℓ) with ℓ odd are stable and those with ℓ even are unstable.

Using the formula (3.5.17) and the fact that N−
imag is even, we conclude that any solution such

that Ihom(φ, λ) − 1
2 − r is odd is unstable.

3.5.2 Evolution of the Maslov index near bifurcation points

Iooss & Pérouème [76] proved the existence of two even solutions near P = −2+ and there

is numerical evidence that these two solutions correspond to 1 and 2(2) (see also Dias &

Iooss [52]).

Due to the existence of an horseshoe map (proved by Devaney [50]), there exists an infinity

of homoclinic orbits for any P ∈] − 2, 2[. However, Buffoni, Champneys & Toland [27, 34]

presented numerical evidence that each multi-pulse n(i1, i2, . . . , in−1) orbit which is not 2(2)

ceases to exist at a point Pn(mi1 ,mi2 ,...,min−1
).

It turns out that branches of multipulse orbits connect to each other at P = Pcrit in two

different manners:

• Coalescence (corresponding to figure 3.14):

When P < Pcrit, no orbit exists.

When P = Pcrit, there is one non-transverse homoclinic orbit, e.g. an orbit for which

dim(U(x, 0) ∩ S(x, 0)) > 1.

When P > Pcrit, there are two homoclinic orbits converging to the non-transverse orbit

when P → P+
crit.

1Let u be the eigenfunction associated to the purely imaginary simple eigenvalue iθ. Then, the Krein signature

of iθ is defined as the sign of 〈u,Lu〉. More details about the Krein signature in finite dimension is given in

Appendix C.
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Figure 3.11: Unimodal case. Top, values of dN
dc as a function of P for several values of q. Bottom,

stability domain of the unimodal solution in the (P, q)-plane.
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Figure 3.12: Orbits 2(4) and 3(2, 2) when P = −1.5. These two orbits coalesce when P =

−1.79047. The difference in the Maslov index between these two orbits is one.
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Figure 3.14: The bifurcation diagram near a coalescence. At the coalescence, the Maslov index

jumps by one.

• Pitchfork bifurcation (corresponding to figure 3.15):

When P < Pcrit, there is one symmetric orbit.

When P = Pcrit, there is one symmetric non-transverse orbit.

When P > Pcrit, there are one symmetric orbit and two asymmetric orbits. The two

asymmetric orbits are image of one another by a reflection (e.g if φl is one of the asymmetric

orbits, the other is φr(x) = Rφl(−x)).

Several immediate remarks can be made:

• The Maslov index can jump by at most one. Otherwise, the intersection of the stable space

and of the unstable space would be strictly greater than 2 for the orbit corresponding to

jump.

• If φl(x) = Rφr(−x), then φl and φr have the same Maslov index.

We observed that:

• The Maslov index of the homoclinic orbit jumps by one when changing of branch in the

coalescence case.

• Let us now study the pitchfork bifurcation case:

Let P1 < Pcrit < P2.

Let φsym,1 be the symmetric orbit when P = P1.

Let φsym,2 be the symmetric orbit when P = P2 and let φl and φr be the two asymmetric

orbits when P = P2.

Then the Maslov index has the following behaviour:
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Figure 3.15: The bifurcation diagram near a pitchfork bifurcation and the Maslov index

Ihom(0, φsym,1) = Ihom(0, φl) = Ihom(0, φr),

and

|Ihom(0, φsym,1) − Ihom(0, φsym,2)| = 1.

That means that a bifurcation point may be the place of an exchange of stability. Besides,

taking into account formula (3.5.17), the Maslov index can be useful to determine which orbits

connect each other.

3.6 Direct study of the spectrum of L = ∂xL

In this section, we use the algorithm presented by Bridges, Derks & Gottwald [21] to look

at the spectrum of L.

The spectral problem Lu = λu can be put into a first-order system:

ux = A(x, λ)u,

A(x, λ) =





0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−a(x) 0 P 0 1

λ 0 0 0 0




, a(x) = 1 − (p+ 1) φ̂(x)q (3.6.20)

The essential spectrum of L is:

σess = {λ | ∃κ ∈ R det(A∞(λ) − iκ) = 0} = iR
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Therefore σess splits C into two parts.

Then, it is possible to construct an Evans function for L on {λ ∈ C|Re(λ) > 0} like in

section 2.4.1:

Let U(x, λ) and S(x, λ) be solutions of Ux(x, λ) = A(2)(x, λ)U(x, λ) and Sx(x, λ) = A(3)(x, λ)S(x, λ)

with maximal decay as x goes to −∞ and +∞ respectively satisfying

limx→−∞e−σ+(λ)xU(x, λ) = ζ+(λ) ∈ ∧2
(C5) , (3.6.21)

and

limx→+∞e−σ−(λ)xS(x, λ) = ζ−(λ) ∈ ∧3
(C5) , (3.6.22)

where ζ±(λ) are eigenvectors

A
( 5
2± 1

2 )
∞ (λ)ζ±(λ) = σ±(λ)ζ±(λ) . (3.6.23)

A value λ ∈ C \σess is called an eigenvalue if the stable and unstable solutions have nontrivial

intersection. Eigenvalues are detected by the following Evans function:

E(λ) vol = S(x, λ) ∧ U(x, λ) ∈ ∧5
(C5) . (3.6.24)

where vol is the standard volume form over R5. As in section 2.4.1, we use the fact that

trace(A(x, λ)) = 0. Again, the following normalization is chosen:

ζ+(λ) ∧ ζ−(λ) = vol (3.6.25)

The numerical computation of the Evans function works as follow:

• Initialize Û(−L, λ) to ζ+(λ) and Ŝ(−L, λ) to ζ−(λ) with ζ+(λ) ∧ ζ−(λ) = vol.

• Integrate Ux(x, λ) = (A(2)(x, λ) − σ+(λ)I)U(x, λ) and Sx(x, λ) = (A(3) − σ−(λ)I)S(x, λ)

over [−L, 0] and [0, L] using any standard integrator2.

• Return E(λ) such that Ŝ(0, λ) ∧ Û(0, λ) = E(λ) vol.

Once the Evans function is computable, one can:

• Compute the Evans function over α+ iR. Then the number of eigenvalues with a real part

greater than α is the number of loops made by t→ E(α+ it) around 0.

• Use the secant method to locate eigenvalues.

Buryak & Champneys theory predicts that two-pulse solutions with an odd index have an

unstable real eigenvalue. Now consider the n(i1, i2, . . . , in−1) pulse. One could conjecture that

each odd index iα should be associated to a real eigenvalue, i.e. neven = Nreal when r = 1. This

prediction is consistent with the Evans computations we performed.

However, we find for most cases that there is a pair of complex eigenvalues with a small real

part associated to each even index. Dividing by two the step and multiplying by two the length

of the interval did not shift significantly the eigenvalue. Hence, this suggests N−
imag 6= 2nodd.

2Here, the fourth-order Runge-Kutta method was used.
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Figure 3.16: Eigenvalue of L = ∂xL in the case of the bimodal solitary wave 2(1), when

P ∈ [−1.8, 1]. The real part of this eigenvalue seems to vanish for a value of P close to −0.666.

This means that a lot of multi-pulse solutions with only odd indices might be unstable. We

also tried to track these eigenvalues when P is varied. Some of the results are presented in

figure 3.16 and 3.17.

According to the estimates of Chugunova & Pelinovsky [42], when P is close to 2, these

eigenvalues should tend to 0, their real part tending to zero much faster than their imaginary

part. While we were not able to confirm this prediction for the solitary wave 2(1) (it would be

needed to go further than P = 1 to observe this convergence), this seems to be confirmed for

2(3). The difference in the speed of convergence may be due to:

• the fact that the real part of the eigenvalue of 2(1) is already small,

• the fact that the two pulses of 2(1) remain close to each other much longer that the two

pulses of 2(3).

An intriguing phenomenon is that in the case of the solitary wave 2(1), there is a value of P

(i.e. P ≈ −0.666) for which the real part of the complex eigenvalue seems to vanish (the smallest

real part observed was 10−12, which is quite close to the machine error). For this value of P , the

solitary wave would be stable. A similar pattern was also observed for other solitary waves with

a 1 in their classifying sequence.
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Figure 3.17: Eigenvalue of L = ∂xL in the case of the bimodal solitary wave 2(3), when P is in

[−1.5, 0.65]. The eigenvalue tends to 0 when P → 2.

3.7 The Maslov index of periodic waves of the Kawahara

equation

In this section, we study the Maslov index of spatially-periodic waves approximating the unimodal

homoclinic orbit. The existence of such periodic orbits have been proved by Vanderbauwhede

& Fiedler [120]. Two cases emerge:

• The homoclinic orbit has non-oscillating tails, e.g. P ∈ [2,∞[.

• The homoclinic orbit has oscillating tails, e.g. P ∈] − 2, 2[.

The goal of this study was to test the numerical algorithm presented in section 2.3 on a concrete

example and to try to give an intrinsic definition of the Maslov index of homoclinic orbits at

λ = 0. As we shall see for the case where P ∈] − 2, 2[, this attempt failed, since the energy of

these periodic orbits can oscillate.

Finally, we make some remarks on the stability of these periodic orbits.

3.7.1 Periodic solutions when P > 2

In this section, we study numerically the periodic solutions for P ∈]2,∞[. They approximate the

unimodal solution, which has in this case non-oscillating tails.

In Figure 3.18 examples of periodic solutions of (3.2.8) are shown for the case of q = 1 and

P = 13
6 . These solutions have been computed numerically.
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Elements λ in the spectrum of L satisfy Lw = λw with w bounded for x ∈ R and, since

L is self-adjoint as a mapping from D(L ) → L2(R), the spectrum is real3. For operators with

periodic coefficients, the discrete spectrum is empty, and the spectrum consists of a sequence of

bands [128].

When λ = 0 and φ(x) is periodic, this system is not hyperbolic because it is the linearization

about an autonomous ODE. But when λ is perturbed away from zero the two Floquet multi-

pliers at +1 move, becoming either elliptic4 or hyperbolic5. At other values of λ, there can be

bifurcations of Floquet multipliers as well; indeed, such bifurcations can be expected due to the

band structure of the spectrum of L . These issues will appear in the numerics.

In the following figures, the results of our calculations of the Maslov index are shown, for

periodic solutions of (3.2.8) with periods L = 4π, 8π, 16π, 20π. For each of the four cases, two

figures are shown. The first figure shows the number of iterations for the algorithm of section 2.3

to converge (an iteration is an integration from x = (r−1)L to x = rL for some integer r). When

the system is hyperbolic, the Maslov index converges fast, and in the spectral bands the algorithm

generally fails to converge. However, as shown in the second plot for each case, the Maslov index

at bifurcation points is easily determined by computing in a left or right neighborhood of the

bifurcation points. The Maslov index shows its expected behavior for values of λ less than ≈ 1.

The fluctuations in the region λ greater than ≈ 1 are due to the appearance of spectral bands.

When entering a band, as λ is varied, at least two Floquet multipliers (one inside the circle and

the other outside) collide on the unit circle. Then they move along the unit circle. When leaving

the band, Floquet multipliers collide again and leave the circle. When λ is in a band, there are

Floquet multipliers on the unit circle and hyperbolicity is lost. Hence when λ is in a band the

algorithm should not (and does not) in general converge.

The bands can be observed in the numerical results: the non-convergence can be used as an

indication of the presence of spectrum. If the number of iterations necessary for convergence

exceeded 100, it was considered an indication that the value λ was in a spectrum band or close

to it. Another indication of a band, where some Floquet multipliers are on the unit circle, is the

change in the value of the Maslov index: between two real numbers where the Maslov index is

different, there is at least a band.

A lower bound for all the bands can be computed which is valid for all finite wavelengths. If λ

is in a band, then there exists w and γ such that Lw = λw, ∀x w(x+L) = γw(x) and |γ| = 1.

Multiply Lw − λw by w(x) and integrate over a period:

∫ L

0

|wxx|2 dx+ P

∫ L

0

|wx|2 dx− 2

∫ L

0

|φ(x)|2|w|2 dx+

∫ L

0

|w|2 dx = λ

∫ L

0

|w|2 dx .

Now use the fact that P > 0 and |φ(x)| ≤ φmax for all x ∈ R to obtain

λ ≥ 1 − 2|φmax|2 .

With |φmax| ≈ 1.4 (from Figure (3.18)), we obtain a lower bound of approximately −3. This is

3D(L ) is the domain of the operator L and can be taken to be the Hilbert space H4(R) in this case.
4 An eigenvalue of a symplectic matrix is said to be elliptic if it is on the unit circle. See Appendix A.
5An eigenvalue of a symplectic matrix is said to be hyperbolic if it is a real strictly positive number. See

Appendix A.
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Figure 3.19: Maslov index Iper(φ, λ) of the 4π-periodic solution as a function of λ and position of

the Floquet multipliers of the system. The classification of the Floquet multipliers is explained

in definition 26 of Appendix A.1.
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Figure 3.21: Maslov index of the 16π-periodic solution as a function of λ.
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Figure 3.22: Maslov index of the 20π-periodic solution as a function of λ.
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Figure 3.23: Position of the Floquet multipliers when going from λ < 0 to λ > 0 when q = 1 and

P = 13
6

consistent with the numerical computations which indicate that the lowest band is at approxi-

mately −1.25.

When the period of the periodic state φ(x) tends to ∞, the width of the bands contracts, and

in the limit the continuous spectrum is limited to the one band λ ∈ [1,∞), of infinite length,

and the band near zero contracts to the point λ = 0.

Consider now the case when λ is near zero. In this case the system is hyperbolic on only one

side of λ = 0. When λ = 0 there are two Floquet multipliers at +1 and two hyperbolic Floquet

multipliers as shown schematically in the middle figure in Figure 3.23.

It is clear from Figure 3.19 that there is a band for λ = 0− and for λ = 0+ the system is

hyperbolic, as shown schematically in Figure 3.23. Our theory applies for λ = 0+ which gives a

Maslov index of Iper(φ) = 2. The energy of the periodic waves is plotted as a function of k on

figure 3.24. In this case the energy is a monotone function of wave number and the convergence

k → 0 is rapid. According to section 1.3.1, there should be a band on the left if E′(k) > 0 and

on the right if E′(k) < 0. The fact that E′(k) > 0 is consistent with the fact that the spectrum

band is on the left.

Iper→hom(φ), introduced in section 1.3.1, seems therefore to be well-defined. Its value would

be 2.

3.7.2 Periodic solutions when −2 < P < 2

Keeping q = 1 but decreasing P to P = −1, then the energy of the periodic solutions as function

of the wave number k begins to show oscillations indicative of a Shilnikov-type bifurcation as

shown in Figure 3.25. Decreasing P further to P = −1.9 shows more dramatically the Shilnikov-

type oscillations. Each point on this diagram where E′(k) = 0 corresponds to a saddle-centre

bifurcation of Floquet multipliers. There are always two Floquet multipliers at +1 due to the fact

that (3.2.8) is autonomous. When E′(k) = 0, two additional Floquet multipliers coalesce at +1.

Therefore, for some orbits on the branch, the spectrum band extends on both sides of 0. Each one

of these saddle-centre bifurcations of the branch of periodic orbits leads to a secondary homoclinic

bifurcation [24]. So, in addition to the limiting homoclinic orbit that we are principally interested

in, there is a countable number of other orbits generated along the branch, which are homoclinic

to the branch of periodic orbits. Although there is an infinite number of bifurcations along the

branch we will see that the Maslov index of the limiting homoclinic orbit is finite.

It follows that when −2 < P < 2, Iper→hom(φ) is ill-defined.

It is also possible to compute periodic approximations to multi-modal solutions. The same

phenomenon as for uni-modal solutions takes place: families of periodic orbits approaching mul-
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Figure 3.24: Energy of the 2π
k -periodic solutions as function of k for q = 1 and P = 13

6 .

timodal solutions have an oscillating Hamiltonian with respect to the period as shown in Fig-

ures 3.25 and 3.26.

3.7.3 Remarks concerning the stability of the periodic waves

Define the unbounded operators Lθ and Lθ over L2
per([0, L]) as:

Lθφ := (∂x + i
θ

L
)Lθφ (3.7.26)

Lθφ := (∂x + i
θ

L
)4φ− P (∂x + i

θ

L
)2φ+ cφ− (q + 1)φ̂(x)q φ . (3.7.27)

Lθ and Lθ have only point spectrum.

According to Bloch wave decomposition, we have:

specL =
⋃

θ∈[0,2π[

specLθ

spec L =
⋃

θ∈[0,2π[

spec Lθ

If 0 /∈ spec Lθ, then, according to results of [42, 41, 75] we have:

Nunst(θ) +N−
imag(θ) = n−(θ)
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with:

• Nunst(θ) the number of unstable modes of Lθ,

• N−
imag(θ) the number of oscillatory modes of Lθ with negative energy, e.g. 〈u,Lθu〉 < 0,

• n−(θ) the number of strictly negative eigenvalues of Lθ.

N−
imag(θ) is an even number, and except for isolated values of θ, we will have 0 /∈ spec Lθ.

Assume that we are in one of the following two cases:

• the periodic orbit is not hyperbolic and there exists θ 6= 0[π] such that 0 ∈ spec(Lθ).

• the periodic orbits have an odd Maslov index (1 in this case).

For each P ∈] − 2, 2[, there exists an infinity of periodic solutions in this situation.

Then there exists θ such that 0 /∈ specLθ and n−(θ) is odd. Therefore, Nunst(θ) is odd and

there will be at least a real unstable eigenvalue for Lθ. As a consequence, these solutions are not

spectrally stable.

That means that a lot of periodic orbits in the oscillating case are spectrally unstable.

When P ∈]2,+∞[, the periodic orbits are hyperbolic and their Maslov index is two. Hence we

have:

• n−(θ) = 2 and 0 /∈ spec Lθ if θ 6= 0[2π],

• n−(0) = 1.

As a consequence, we have:

∀θ 6= 0[2π] Nunst(θ) +N−
imag(θ) = 2.

Hence, this does not give enough information to conclude on stability. However, taking into

account that the limiting homoclinic orbit is stable, these orbits are likely to be stable.

3.8 Conclusion

We found an interesting relationship (3.5.17) between the classification of multi-pulse solitary

waves and their Maslov index. The Maslov index provides valuable information on the stability

of Kawahara solitary waves: when Ihom(φ, 0) − 1
2 is even (assuming that r = 1), the solitary

wave is unstable. This is sufficient to recover the instability results in [30, 42] concerning the

two-pulse solitary waves, e.g. that the solutions 2(2i) are unstable. Besides, it gives the maximal

number of unstable eigenmodes.

In the periodic case, we make the observation that a non-hyperbolic orbit and hyperbolic orbits

with an odd Maslov index cannot be stable with respect to localized perturbations. From this

observation, we are able to conclude on the instability of some periodic waves, when P ∈]− 2, 2[.

The numerical computation of the Evans function revealed an unexpected behaviour: it seems

that all multi-pulse solitary waves are unstable, including those of type 2(2i+1). This new kind

of instability is however very weak, especially when P → 2−, and these multi-pulse solutions

might be observed in a transitional manner.
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Introduction

In this chapter, we study the Maslov index of solitary waves arising in a model PDE for the

long-wave short-wave resonance. It serves as a test case for the computation of the Maslov index

in 6-dimensional case. Secondly, we study an operator, which has been inspired by the long-wave

short-wave equations, with a non-monotone Maslov index. It highlights the importance of the

semi-definiteness ∂λC(x, λ), which is not automatic for spectral problems which do not come

from the Hessian of a functional.

91
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4.1 A model PDE for long-wave short-wave resonance

In this section the Maslov index is computed numerically for a class of solitary waves which

arise in a model PDE for long-wave short-wave (LW-SW) resonance (cf. Kawahara et al. [81],

Ma [91], Benilov & Burtsev [12], Latifi & Leon [86]). The LW-SW equations are a coupled

system with one equation of nonlinear Schrödinger type and the other of KdV type. A typical

form is
Et = i(Exx + ρE − νE)

ρt = ∂x(ρxx − cρ+ 3ρ2 + |E|2) , (4.1.1)

were ρ(x, t) is real valued, E(x, t) is complex valued, and c, ν are considered to be positive real

parameters. In real coordinates, E = u+ iv and ρ = w, the above equations can be written:

ut = −vxx − vw + νv

vt = uxx + uw − νu

wt = wxxx − cwx + 6wwx + 2uux + 2vvx .

(4.1.2)

This system can be expressed as a Hamiltonian system in time.

Let:

ω((u1, v1, w1), (u2, v2, w2)) =

∫

R

(
2(u1v2 − u2v1) + w1(∂x)−1w2

)
dx

H(Z) =

+∞∫

−∞

(
u2

x + v2
x +

1

2
w2

x − w(w2 + u2 + v2) +
1

2
cw2 + ν(u2 + v2)

)
dx,

with Z = (u, v, w).

Then the previous system is equivalent to a Hamiltonian system, with ω as the symplectic

form and H as the Hamiltonian.

If we set:

K =




0 1

2 0

− 1
2 0 0

0 0 −∂x



 ,

then the system becomes

Zt = K∇H(Z) ,

∇H(Z) =




Hu

Hv

Hw



 =




−2uxx − 2uw + 2νu

−2vxx − 2vw + 2νv

−wxx + cw − 3w2 − u2 − v2



 .

If we look for solitary wave solutions, the Euler-Lagrange equations give:

−2uxx − 2uw + 2νu = 0

−2vxx − 2vw + 2νv = 0

−wxx + cw − 3w2 − u2 − v2 = constant .

(4.1.3)
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Using equation (B.2.3), one can cast this system into an Hamiltonian form, by choosing the

following set of coordinates:





u

v

w
∂l

∂ux
∂l

∂vx
∂l

∂wx





=





u

v

w

2ux

2vx

wx





(4.1.4)

where l(u, v, w, ux, vx, wx) = u2
x + v2

x + 1
2w

2
x − w(w2 + u2 + v2) + 1

2cw
2 + ν(u2 + v2).

Solitary waves satisfy the steady equations where the signs and coefficients are modified to

ensure that they are the Euler-Lagrange equation associated with the Hamiltonian function

H(Z). Exact solutions of this problem are known [91]; for example,

u(x) = A sech(
√
ν x) , v(x) = 0 and w(x) = 2ν sech2(

√
ν x) , (4.1.5)

with constant = 0 and A2 = 2ν (c− 4ν), and the existence condition c− 4ν > 0.

To study the Maslov index of these solutions, linearize the steady equations about the basic

solitary wave and introduce a spectral parameter: LZ = λZ with L = D2H(Ẑ). Written out,

this equation is

−2uxx − 2ŵu− 2ûw + 2νu = λu

−2vxx − 2ŵv − 2v̂w + 2νv = λv

−wxx + cw − 6ŵw − 2ûu− 2v̂v = λw.

(4.1.6)

When v̂ = 0 this system decouples into a second order equation for v, and a fourth order

coupled system for u,w,

−2uxx − 2ŵu− 2ûw + 2νu = λu

−wxx + cw − 6ŵw − 2ûu = λw.
(4.1.7)

The decoupled equation for v is then

−2vxx − 2ŵv + 2νv = λv. (4.1.8)

This latter system can be analyzed completely and the result in given in section 4.1.1.

Using coordinates (4.1.4), the fourth-order system for u,w (4.1.7) can be written as a standard

Hamiltonian ODE in the form (1.3.13) with n = 2 by taking

u(x, λ) =





u

w

2ux

wx




, B(x, λ) =





λ− 2ν + 2ŵ(x) 2û(x) 0 0

2û λ− c+ 6ŵ(x) 0 0

0 0 1
2 0

0 0 0 1




.

The essential spectrum for this equation is

σess = { λ ∈ R : λ ≥ 2ν and λ ≥ c} .
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Figure 4.1: Longwave-Shortwave problem for the following parameters c = 1, ν = 0.2. Top, the

Maslov index as a function of λ. Bottom: the Evans function as a function of λ.

Adding the condition that c > 4ν, the system at infinity is hyperbolic for all λ ∈ R such that

λ < 2ν.

The Maslov index is computed for the case c = 1 and ν = 0.2 and the results are shown, along

with the Evans function, in Figure 4.1 and tabulated in the table below, where λ1 < λ2 = 0 < λ3

are the three roots of the Evans function.

λ λ < λ1 λ1 < λ < λ2 λ2 < λ < λ3 λ > λ3

Ihom((u,w), λ) 0 −1 −2 −3

4.1.1 The reduced 2 × 2 eigenvalue problem associated with LW-SW

equations

The two-dimensional ODE (4.1.8) that arises in the reduced problem for LW-SW resonance can

be written in the form

vxx + 2ν sech2(
√
νx) v − νv +

1

2
λv = 0 .
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ODEs of this type – with sech2 potential – can be solved explicitly. The essential spectrum related

to this problem is the semi-infinite interval σess(L) = [2ν,+∞[. Now suppose that λ < 2ν. Then

the system at infinity is hyperbolic and one can explicitly construct the solutions (v+, v−) which

give the solutions for the stable and unstable subspaces

v±(x;λ) = e±µ
√

νx(∓µ+ tanh(
√
νx)) , µ =

√
1 − λ

2ν
.

The Evans function can be obtained from

D(λ) =
limx→∞ e−µ

√
νxe+µ

√
νx(−µ+ tanh(

√
νx))

limx→−∞ e−µ
√

νxe+µ
√

νx(−µ+ tanh(
√
νx))

,

from which we obtain

D(λ) =
−µ+ 1

−µ− 1
=

√
1 − λ

2ν − 1
√

1 − λ
2ν + 1

.

The Maslov index can be obtained from

vx(x;λ)

v(x;λ)
= −µ√ν +

1 − tanh(
√
νx)2

µ+ tanh(
√
νx)

.

From this quotient we can get:

Maslov(λ) =

{
0 if µ > 1

−1 if µ < 1
=

{
0 if λ < 0

−1 if λ > 0
.

4.1.2 Computing the Maslov index in the case n = 3.

In the case of the longwave-shortwave resonance equation, the system (4.1.6) can be reformulated

as a coupled system on R6. Define u = (u, v, w, 2ux, 2vx, wx), and

B(x, λ) =





−2ν + λ+ 2ŵ 0 2û 0 0 0

0 −2ν + λ+ 2ŵ 2v̂ 0 0 0

2û 2v̂ λ− c+ 6ŵ 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1





Then (4.1.6) is in the standard form (0.0.6) on R6.

When v̂ = 0 the system decouples into two subsystems as noted in §4.1. In this section, the

full system will be integrated on
∧3

(R6) for the decoupled case. This way the calculation can

be checked against the previous calculation on R4. The reduced two-dimensional system (4.1.7)

can be solved explicitly and the calculation is given in Appendix 4.1.1.

When a system decouples into two subsystems, the Evans function of the full system is the

product of two subsystems and the Maslov index of the full system is the sum of the Maslov

indexes of the two subsystems

I2D ⊕ I4D = I6D .
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Figure 4.2: Maslov index and Evans function as functions of λ associated to the 6 × 6 system

(4.1.6) when q = 1, ν = 0.2 and c = 1.

λ λ < −1 −1 < λ < 0 0 < λ <≈ 0.19 λ >≈ 0.19

I2D
hom(v, λ) 0 0 −1 −1

I4D
hom((u,w), λ) 0 −1 −2 −3

I6D
hom((u, v, w), λ) 0 −1 −3 −4

The induced system B(3) can be constructed using the general formula in § 2.1. An explicit

formula is given in the Appendix of [5]. In the calculations reported here, the Maslov angle and

the algorithm in §2.4.2 are used.

Numerical results are presented in Figure 4.2. The results are in complete agreement with

the product of the Evans function of the subsystems and the sum of the Maslov indices of the

subsystems.

As noted in Appendix 4.1.1 the Maslov index for the reduced system is 0 if λ < 0 and −1 if

λ > 0. Adding these values to the Maslov indices in Figure 4.1 agrees with the Maslov indices

in Figure 4.2. Note also that the Evans function has a double zero at λ = 0 as expected.
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4.2 A non-monotone Maslov index

In the case of systems coming from the second variation of a functional, the Maslov index is a

monotone function of λ (Note however that κ(x) and mS∞(λ)(limy→∞ Ũ(y, λ), Ũ(x, λ)) are not

monotone functions of x.). However, the Maslov index can also be defined for other self-adjoint

operators. Here we show an example where the Maslov index is not a monotone function of

λ. It is a slight modification of the LW-SW resonance equations. In this case the correlation

between the number of roots of the Evans function and the value of the Maslov index is no longer

apparent. Look at the eigenvalue problem

L

(
u

w

)
= λ

(
u

w

)
, with L

(
u

w

)
:=

(
−2uxx − 2ŵ(x)u + 2û(x)w + 2νu

wxx − cw + 6ŵ(x)w + 2û(x)u

)
, (4.2.9)

with c > 4ν > 0,

û(x) = Asech(
√
ν x) and ŵ(x) = 2ν sech2(

√
ν x)

with A2 = 2ν(c− 4ν), and the requirement c > 4ν > 0.

The spectral problem associated to this operator can be expressed in the form (0.0.6) with

n = 2,

u(x) =





u

w

2ux

wx




, and B(x, λ) =





λ− 2ν + 2ŵ(x) 2û(x) 0 0

2û(x) −λ− c+ 6ŵ(x) 0 0

0 0 1
2 0

0 0 0 1




.

The essential spectrum consists of

{λ : −∞ < λ < −c ∪ 2ν < λ < +∞} .

The essential spectrum is unbounded from above and below, hence a Morse index cannot be

defined for L. However, we will still be able to compute a Maslov index. The key property that

leads to non-monotonicity is that the matrix ∂λB(x, λ) is not monotone with respect to λ.

Results for the case c = 1 and ν = 0.21 are tabulated below and shown in Figure 4.3. In this

case there are 5 eigenvalues, but there is no longer a correlation between the Maslov index and

the number of eigenvalues in a subset of λ.

λ −c 0 2ν

D(λ) +∞ + − + 0 − + − −∞
Maslov(λ) −4 −3 −2 −1 −2 −3

4.3 Conclusion

We computed numerically the Maslov index for 6 × 6 system and we could observe that it was

consistent with the results obtained for the two subsystems. From the Maslov index of these

solutions, one should expect that there is at most one unstable mode. To conclude on stability,
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Figure 4.3: Plot of the Maslov index for the non-monotone example (4.2.9) for the case c = 1

and ν = 0.21. The upper figure shows the Maslov index and the lower figure the Evans function.
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it would be necessary to study the matrix (〈ui,Luj〉)1≤i≤k,1≤j≤k , where u1, . . . , uk is a basis of

the generalized kernel of KL.

Concerning the second system, we have exhibited an operator unbounded from both above

and below for which it was possible to compute numerically a Maslov index. This shows that

if one wants to count the eigenvalues of an operator with Maslov index, one has to be careful

about the semidefiniteness of ∂λC(x, λ).
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Introduction

The topic of this chapter is slightly different of the rest of this thesis since it is not about solitary

waves but stationary solutions in a non-homogeneous medium. It uses a special case of the

Maslov index theory: the classical Sturm-Liouville theory.

A forcing disturbance moving steadily in a channel can generate all kinds of interesting flows.

There are two points of view to study this problem: either one considers an obstacle moving at

constant velocity U in a uniform layer of water initially at rest, or one considers an obstacle fixed

in a uniform stream of velocity U . Suppose now that a second obstacle is placed downstream of

the first. Then several flows are possible.

[56] showed that in the presence of an obstacle one can construct mathematically solutions with

a uniform level downstream but waves upstream. We call such solutions generalized hydraulic

falls. Such solutions are not physical in the sense that the radiation condition is not satisfied.

[54] computed new solutions for the flow past two obstacles of arbitrary shape. These solutions

are characterised by a train of waves ‘trapped’ between the obstacles. It was shown that the

generalised hydraulic falls describe locally the flow over one of the two obstacles when the distance

between the two obstacles is large.
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Here, we study the stability of one family of solutions arising past two obstacles. A weakly

nonlinear analysis is used. A forced Korteweg–de Vries equation is integrated numerically.

5.1 The forced Korteweg–de Vries (fKdV) model

The classical KdV equation can be extended to admit arbitrary forcing functions if the forcing

disturbances are limited to unidirectional motion, say

B∗ = B∗(x∗ + Ut∗), (5.1.1)

representing a left-going (or right-going) bathymetry when U is positive (or negative). These

forcing functions are supposed to be sufficiently smooth, localized and to vanish identically for

t∗ < 0. In the derivation of KdV type equations, it is also assumed that the velocity U is

close to critical so that F − 1 = O(ǫ). The small number ǫ is usually defined as the square of

the ratio between the undisturbed water depth H and a typical wavelength λ. Then stretched

coordinates are introduced and asymptotic expansions are assumed. After a few substitutions

and integrations, one obtains the following forced KdV equation as a model for open-channel

flow past an obstruction:

ηt =
1

6
ηxxx +

3

4
(η2)x − (F − 1)ηx +

1

2
Bx, (5.1.2)

where F is the Froude number and B is the forcing term. Let us summarize the link between the

physical variables and the variables appearing in the fKdV model (∗ are used for the physical

quantities).

x =
x∗ + Ut∗

H
, η =

η∗

H
, B =

B∗

H
, t =

c0t
∗

H
.

The speed c0 is the long wave speed

c0 = (gH)
1
2

and the Froude number is defined by

F =
U

c0
.

Only supercritical flows with F > 1 are considered here. The stability of solutions is considered.

But first exact steady solutions are constructed by considering the inverse problem where we look

for bottom shapes providing explicit solutions.

While the stability of solutions arising past single-humped obstacle like

η = A sech2αx, (5.1.3)

has been studied in [32, 31], this is not the case for solutions arising past double-humped obstacle.

Here, we study a family of table-top solutions generated by a double humped obstacle.
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5.2 Hamiltonian structure of the partial differential equa-

tion

The forced Korteweg-de Vries has an Hamiltonian structure which is useful to determine stability.

It can indeed be written as:

ηt = J
δH
δη

(5.2.4)

where J is the following operator:

J =
∂

∂x
(5.2.5)

and H a functional called the Hamiltonian:

H(η̃) =
1

6

∫

R

(
−1

2
η̃2

x +
3

2
η̃3 − 3(F − 1)η̃2 + 3Bη̃

)
dx. (5.2.6)

If we linearize near a stationary solution η equation (5.2.4), one gets:

η̃t =
∂

∂x
Lη̃

where L is the Hessian of the functional H:

Lη̃ =

[
δ2H
δη2

]

η=η

(η̃) =
1

6
(η̃xx + 9(η)η̃ − 6(F − 1)η̃).

As we shall see in the sequel, the spectrum of L is related to the spectrum of ∂xL, and this

relationship is sometimes sufficient to conclude on stability.

5.3 Two obstacles: exact table-top solutions

Assume now that the solitary wave at the surface of the channel is of the form (depicted on

figure 5.1):

ηα,L = A tanhα(x+ L) −A tanhα(x− L), A =
2

3
(F − 1). (5.3.7)

In other words, it is the superposition of two fronts centred at x = L (rising front) and at x = −L
(falling front), where α and L are positive parameters. We look for a corresponding double hump

at the bottom. In order to do this, we substitute (5.3.7) into (5.1.2):

Bα,L =
1

3

(
6(F − 1)ηα,L − 9

2
(ηα,L)2 − (ηα,L)xx

)
.

Now, we are going to study the stability of these solutions. First we study the spectrum of

the Hessian of the Hamiltonian (via Sturm-Liouville theory). Then, we will deduce some cases

of stability and instability.
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Figure 5.1: Table-top solution past two obstacles when L = 20, F = 1.2 and α = −.5.

Spectrum of the Hessian of the Hamiltonian

In this paragraph, we assume that α < 0 and L > 0 and we are interested in the eigenvalues

of the Hessian of the Hamiltonian near η = ηα,L when B = Bα,L.

The Hamiltonian can then be written as:

Hα,L(η̃) =
1

6

∫

R

(
−1

2
η̃2

x +
3

2
η̃3 − 3(F − 1)η̃2 + 3Bα,Lη̃

)
dx

The Hessian of the Hamiltonian is (by taking (u, v) →
∫

R
uv as a scalar product):

Lα,L(η̃) =
1

6
(η̃xx + 9(ηα,L)η̃ − 6(F − 1)η̃)

The spectral problem L can be written as a first-order linear system:

JUx(x) = Cα,L(x, λ)U(x), U(x) =

(
η̃

η̃x

)
, J =

(
0 −1

1 0

)

Cα,L(x, λ) =

(
6(F − 1) − 9ηα,L + 6λ 0

0 −1

)
.

(5.3.8)

The essential spectrum of Lα,L is σess(Lα,L) = [2(F − 1),+∞[ and 0 does not belong to it.

Let n+(α,L) be the number of strictly positive eigenvalues of Lα,L.

n+(α,L) can jump by at most one e.g., if (αm, Lm) converges to (α,L), then there exists m0

such that ∀m ≥ m0 |n+(α,L) − n+(αm, Lm)| ≤ 1. (Assume that it is not the case near (α,L).

Then 0 would be a multiple eigenvalue of Lα,L, which is impossible.)
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If α and x are fixed, then ηα,L(x) is an increasing function of L and

L1 < L2 ⇒ ∀u 〈u,Lα,L1u〉 ≤ 〈u,Lα,L2u〉.
As a consequence, n+(α,L) is an increasing function of L when α is fixed.

When L = 0, η = 0 and therefore n+(α, 0) = 0. Therefore, there exists 0 < L1(α) < L2(α) <

. . . such that n+(α,L) = i if and only if x ∈]Li(α), Li+1(α)], e.g.

n+(α,L) =

+∞∑

i=1

1]Li(α),+∞[(L).

Here are some estimates of Li(α) when F = 1.2 and α = −0.3:

L1(−0.3) 2.36823

L2(−0.3) 3.65133

L3(−0.3) 5.04097

L4(−0.3) 6.46378

L5(−0.3) 7.89555

L6(−0.3) 9.32896

L7(−0.3) 10.7628

L8(−0.3) 12.1967

L9(−0.3) 13.6306

L10(−0.3) 15.0646

Let us now give an estimate of Li+1(α) − Li(α).

Let ζα,L be a solution of system (5.3.8) when λ = 0 such that limx→−∞ ζα,L(x) = 0. n+(α,L)

is equal to twice the number of rotations of ζα,L around zero. If we set ηα,∞ = 4
3 (F − 1), then

Cα,∞(λ) =

(
−6(F − 1) + 6λ 0

0 −1

)
, which is approximately the value of Cα,L(x, λ) when x is

close to 0. When λ = 0, the period of the associated system is 2π√
6(F−1)

(0 is then in the essential

spectrum). Therefore, when 2L increases by T , the flat zone on which Cα,L(x, λ) ≃ Cα,∞(λ)

also increases by T . n+(α,L) should increase by approximately
T2
√

6(F−1)

π . So one could expect

that Li+1(α) − Li(α) ∼i→∞
π

2
√

6(F−1)
(if F = 1.2, π

2
√

6(F−1)
= 1.4339, which is consistent with

the preceding table).

Stability and instability of some table-top solutions.

Assume that 0 /∈ σ(Lα,L), then according to [41], we have the following relationship1 between

the eigenmodes of Lα,L and those of ∂xLα,L:

n+(α,L) = Nunst +N+
imag

where Nunst is the number of unstable modes of ∂xLα,L and N+
imag is the number of oscillatory

modes u of ∂xLα,L such that 〈u,Lα,Lu〉 > 0.

If Nunst 6= 0, the stationary solution is unstable. Otherwise, it is said to be spectrally stable.

Using the previous paragraph, there are two cases for which it is possible to conclude on the

stability of the table-top solutions:

• L ∈ [0, L1(α)[. Then the table-top solution is stable.

1 Chugunova & Pelinovsky [41] only mentioned the solitary wave case. Since the stationary solution is

symmetric, one can do the same proof. Contrary to the solitary wave case, the kernel of ∂xL is empty, and there

is no need to take in account the generalized kernel of ∂xLα,L.
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• L ∈ ∪i∈N]L2i+1(α), L2i+2(α)[. Then the table-top solution is unstable.

In the first case, the lowest eigenvalue of Lα,L is strictly positive. We have therefore Nunst = 0.

From section 5 of Camassa and Wu [31], this also implies the non-linear stability of the

stationary solution.

In the second-case, n+(α,L) is an odd number and there is no zero eigenvalue. Since N−
imag is

even, Nunst is odd and hence non-zero. Therefore, the solution is unstable.

If L ∈ ∪i∈N[L2i+2(α), L2i+3(α)], none of the previous arguments works. However, numerical

simulations seem to indicate that these solutions are unstable (see figure 5.4).

Numerical simulations

We tried to determine the stability of table-top solutions by integrating the fKdV system.

Except for L ∈ [0, L1(α)[, all the table-top solutions we observed were unstable, although some

instabilities were slower to appear than others. In fact, there were two kinds of leading instabil-

ities:

• Some oscillations increased alternatively in the left and in the right of the table-top. This

seems to indicate a leading pair of complex eigenvalues.

• Some oscillations grew rather uniformly on the table-top solution, which seem to indicate

a leading real eigenvalue.

We observed that the period of the oscillations appearing in the table-top could be accurately

predicted by the relation of dispersion of the system when η = ηα,∞ = 2
3 (F − 1).

The relation of dispersion for η = ηα,∞ = 2
3 (F − 1) is indeed:

iω = ik(−k
2

6
+

6

4

4

3
(F − 1) − (F − 1))

or

ω = k(−k
2

6
+ (F − 1)).

If we look for stationary oscillations, then ω = 0. This implies k = 0 or k =
√

6(F − 1), and the

period of the oscillation should be 2π√
6(F−1)

.

As a consequence, one could expect roughly
L
√

6(F−1)

π oscillations developing between the

obstacles and these oscillations were indeed observed.

5.4 Details about the numerical simulations

Suppose that x takes values in the interval [−L L]. In order to work in the interval [−π π], we

use the scaling coefficient S = π/L. In other words

Sx = xnew, xnew ∈ [−π π]

Without changing notation, the equation (5.1.2) becomes

ηt =
1

6
S3ηxxx +

3

4
S(η2)x − (F − 1)Sηx +

1

2
SBx. (5.4.9)
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Figure 5.2: Stable solution when L = 2, α = −0.3 and F = 1.2 (In that case n+(−0.3, 2) = 0).

The initial condition was a perturbation of the stable solution.
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Figure 5.3: Instability developing on the table-top solution when L = 50, α = −0.3 and F = 1.2

(In that case n+(−0.3, 50) = 34). The leading instability seems to be associated to a complex

eigenvalue, since the instability has not a uniform growth rate (the instability appears alterna-

tively on the right and the left of the table-top solution). There are 16 oscillations developing

between the two edges of the solution, which is quite close of the 17 expected oscillations.
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Figure 5.4: Instability developing on the table-top solution when L = 52, α = −0.3 and F = 1.2

(In that case n+(−0.3, 52) = 35). Here, the leading instability seems to be associated to a real

eigenvalue, since it grows rather uniformly. There are 17 oscillations developing between the two

edges of the solution, which is quite close of the 18 expected oscillations.
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The numerical results are produced by using a Fourier spectral method. The forced KdV

equation is solved by converting it into an ordinary differential equation and then discretising

via a fourth order Runge–Kutta scheme.

5.5 Conclusion

It seems that except for low values of L, table-top solutions are unstable. The conclusion is

the same if the two obstacles have a different shape. One should not expect to observe these

solutions except in a transitional manner.



Conclusion

The Maslov index provides a fast way to count the number of unstable modes added to the

number of neutral modes with negative energy. If its value is low enough, it can be possible to

reach a conclusion on spectral stability. Besides, its parity can be enough to prove instability. In

addition to the orientation index (see [3, 2]) and the Chern number (see [1]), the Maslov index

is another tool linking the stationary part of a PDE to its stability. Finally, it can be used to

detect bifurcation points.

However, the dimension of
∧n

(R2n) is Cn
2n and it grows rapidly (for example C8

16 = 12870)

and therefore the practical application of working on exterior algebra spaces is limited to low

dimension. For higher dimension, orthosymplectic integration becomes appealing. In orthosym-

plectic integration, continuous orthogonalization is used and the symplectic structure is retained.

For example, the algorithm proposed in [88] could be adapted to the computation of the Maslov

index. In principle, if the periodic system is hyperbolic, then random orthosymplectic initial con-

ditions can be used. However, special integrators, such as implicit Gauss-Legendre Runge-Kutta

methods, are required in order to preserve symplecticity and orthonormality to high accuracy,

and the ODE is highly nonlinear. On the other hand, orthosymplectic integrators will be essen-

tial for systems of high dimension since the dimension grows only like 2n2 for linear systems of

dimension 2n.

A sketch of how orthosymplectic integration can be used is as follows. Let Φ(x, λ) be a path

of symplectic matrices such that the n first columns of Φ(x, λ) span the unstable subspace and

JΦx(x, λ) = B(x, λ)Φ(x, λ). Decompose Φ(t) following [88],

Φ(x, λ) = Q(x, λ)X(x, λ) , with X(x, λ) =

(
X11(x, λ) X12(x, λ)

0 X22(x, λ)

)
. (5.5.10)

The path of matrices Q(x, λ) is symplectic and orthogonal and X11(x, λ) is an n × n upper

triangular matrix and X22 is an n× n lower triangular matrix.

Since Q is both orthogonal and symplectic, it can be expressed in the form

Q =

(
Q1 −Q2

Q2 Q1

)
, with Q1 + iQ2 unitary .

If k ≤ n, the k first columns of Q span the space spanned by the first k columns of Φ and

therefore when k = n the columns of

(
Q1

Q2

)
span the unstable space. Define κ by eiκ(x,λ) =

det(Q1(x,λ)−iQ2(x,λ))
det(Q1(x,λ)+iQ2(x,λ)) , then the Maslov index is again κ(0,λ)−κ(L,λ)

2π in the periodic case and
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limx→+∞ κ(x,λ)−limx→−∞ κ(x,λ)
2π in the solitary wave case. One still needs to prove that κ(T )−κ(0)

2π is

an integer, even though Φ(t) is not necessarily periodic.

Concerning multi-pulse solutions, it seems that a lot of them are spectrally unstable. However

that does not mean that these solutions are not interesting. First, the instability exponent is

quite low and is even lower when the distance between the pulses is greater, and if they appear,

they can last for quite a long time, as numerical simulations have revealed. Second, collisions

are likely to produce them in a transitional manner.

It would also be interesting to extend the result on the Hessian of the Hamiltonian to the LW-

SW equations. This would produce concluding evidence on the stability of sech2-type solutions.



Appendix A

Modes of finite-dimensional linear

Hamiltonian systems

In this appendix, we describe the eigenmodes of linear Hamiltonian systems.

Let E = R2n. Suppose that there is a symplectic form:

ω : (x, y) 7→ xTJ y with J =

(
0n −In
In 0n

)
(A.0.1)

Consider the following linear system:

u′ = Au (A.0.2)

This system is Hamiltonian if and only if:

JA = (JA)T

The associated Hamiltonian is then H(x) = 1
2x

T (JA)x. This leads to the following definition:

Definition 22 A matrix is said to be Hamiltonian if and only if ATJ + JA = 0, i.e. JA =

(JA)T .

Now, consider the flow of system (A.0.2), i.e. Φ : I2 → GLn(R) such that:

Φ(a, a) = I2n,
∂Φ

∂t1
(t1, t2) = A(t1)Φ(t1, t2) (A.0.3)

Then Φ(t, u) is a symplectic matrix:

Definition 23 A matrix C is said to be symplectic if and only if ∀x, y ω(Cx,Cy) = ω(x, y),

or equivalently if and only if CTJC = J .

Definition 24 The set of symplectic matrices is a Lie group called the symplectic group. It

is denoted as Sp(2n). Its Lie algebra is the space of Hamiltonian matrices. Its dimension is

therefore n(2n+ 1).
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Sp(2n) is connected and therefore any symplectic matrix is the flow of a Hamiltonian system.

Now, to understand the spectral stability of Hamiltonian systems, the eigenvalues of these

matrices are studied. To this end, the notion of Krein signature is introduced.

The theory is then applied to the particular case of orthosymplectic matrices, which will be

useful for the definition of the Maslov Index.

Then these results are transposed to Hamiltonian matrices.

Proposition 32 is of great importance, since it gives a bound on the number of eigenvalues

which are not on the imaginary axis. Hence, the local shape of the Hamiltonian is therefore

linked to the number of unstable modes.

It has been generalized in the infinite-dimensional case by Sandstede & al. [78] and then

by Chugunova & Pelinovsky [41] for symplectic forms like the ones involved in Korteweg-de

Vries and Kawahara equations.

A.1 Eigenvalues of symplectic matrices.

Definition 25 Two spaces E and F are said to be ω-orthogonal if and only if for all x ∈ E and

y ∈ F , ω(x, y) = 0.

Proposition 21 If λ is an eigenvalue of A, then λ̄, 1
λ , 1

λ
are also eigenvalues.

Besides dimEλ = dimEλ = dimE 1
λ

= dimE 1
λ

Let λ is an eigenvalue of A, and u an associated (generalized) eigenvector. Then:

• uTJ −1 is a (generalized) left eigenvector of A associated to 1
λ .

• ū is a (generalized) right eigenvector of A associated to λ.

• ūTJ −1 is a (generalized) left eigenvector of A associated to 1
λ
.

This property leads to classification of the eigenvalues of symplectic matrices:

Definition 26 Let λ be an eigenvalue different from ±1.

• If |λ| = 1, {λ, 1
λ} is said to be an elliptic pair.

• If λ is real positive, {λ, 1
λ} is said to be an hyperbolic pair.

• If λ is real negative, {λ, 1
λ} is said to be an inverse hyperbolic pair.

• If λ 6= 1 |λ| 6= 1, {λ, 1
λ ,

1
λ
, λ̄} is said to be a loxodromic quadruplet.

Let now define S = {λ ∈ C s.t. |λ| ≥ 1 and Imλ > 0}.
For any λ ∈ S, let Fλ = Eλ + E 1

λ
+ Eλ + E 1

λ

. Then:

Proposition 22

R2n =
⊕

λ∈S

Fλ.

This decomposition is ω-orthogonal.
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The direct sum is obvious. ω-orthogonality can be proved by recurrence:

Let us prove by recurrence over k that ∀k ker(A− λ)k ⊥ω ker(A− µ):

• For k = 1:

Let x ∈ ker(A− λ) and y ∈ ker(A− µ) with µλ 6= 1 Then:

ω(x, y) = ω(Ax,Ay) = λµω(x, y)

• If ker(A− λ)k ⊥ω ker(A− µ), then, for x ∈ ker(A− λ)k+1 and y ∈ ker(A− µ):

ω(x, y) = ω(Ax,Ay)

ω(x, y) = ω((A− λ)x+ λx, µy)

ω(x, y) = ω((A− λ)x,Ay) + λµω(x, y) Therefore: (1 − λµ)ω(x, y) = 0.

That concludes the recurrence argument.

From above, we have Eλ ⊥ω ker(A− µ) = 0

Let us prove by recurrence over l that ∀l Eλ ⊥ω ker(A− µ)l:

• Proved for l = 1

• Suppose that Eλ ⊥ω ker(A− µ)l. Let x ∈ Eλ and y ∈ ker(A− µ)l+1:

ω(x, y) = ω(Ax,Ay)

ω(x, y) = ω((A− λ)x, (A − µ)y) + λω(x, (A− µ)y) + µω((A− λ)x, y) + λµω(x, y)

By using the recurrence hypothesis:

ω((A− λ)x, (A − µ)y) = ω((A− λ)x, y) = ω((A− λ)x, y) = 0

That concludes the recurrence argument.

Therefore, Eλ ⊥ω Eµ if λµ 6= 1.

This way, we can prove that if λ, µ ∈ S and λ 6= µ then Fλ ⊥ω Fµ. �

Proposition 23 The dimension of Fλ is even.

When λ 6= 1 and λ 6= −1, dimFλ is obviously even and detA|Fλ
= 1.

Since ω is preserved by A, det =
∧n

k=1 ω is also preserved by A.

Therefore detA = detA|F−1
= 1.

So dimF−1 is even. Therefore dimF1 is even too.

A.2 Krein signature

For A ∈ Sp(2n), let Q be the following symmetric bilinear form:

Q :

{
(R2n)2 → R

(x, y) 7→ 1
2ω(x,Ay) + 1

2ω(y,Ax)
. Its matrix is 1

2JA+ 1
2 (JA)T = 1

2JA+ 1
2 (JA)−1.

Proposition 24 Let λ, µ ∈ S such that λ 6= µ. Then Fλ and Fµ are Q-orthogonal.
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Let x ∈ Fλ and y ∈ Fµ. Then Ax ∈ Fλ and Ay ∈ Fµ.

Q(x, y) = 1
2ω(x,Ay) + 1

2ω(y,Ax) = 0 (by using ω-orthogonality)

Definition 27 Let R be a quadratic form. The signature of R is the couple (p, q) where p is the

number of positive eigenvalues of R and q the number of negative eigenvalues of R.

Proposition 25 Let λ ∈ S such that |λ| > 1 and 2m be the dimension of Fλ. Then the signature

of Q|Fλ
is (m,m).

Proposition 26 Let λ ∈ S such that |λ| = 1, λ2 6= 1 and 2m be the dimension of Fλ. Then

there exists r such that (2r, 2(m− r)) is the signature of Q|Fλ
.

Definition 28 The Krein signature of an eigenvalue λ ∈ S such that |λ| = 1, λ2 6= 1 is defined

as the pair (r−λ , r
+
λ ) such that (2r−λ , 2r

+
λ ) is the signature of Q|Fλ

.

When λ is a simple eigenvalue, its Krein signature is either (1, 0) or (0, 1). Then, the eigenvalue

is said to have a negative or positive Krein signature.

Proposition 27 Let (α, β) be the signature of Q|F1+F−1
.

Let (a, b) be the signature of Q and a+ b = 2n. Then:

a =
∑

λ∈S,|λ|>1 dimFλ + 2
∑

λ∈S,|λ|=1 r
−
λ + α

b =
∑

λ∈S,|λ|>1 dimFλ + 2
∑

λ∈S,|λ|=1 r
+
λ + β

A.3 Krein signature and orthosymplectic matrices

Φ is an orthosymplectic matrix (i.e both orthogonal and symplectic) if and only if it can be

written under the form Φ =

(
X −Y

Y X

)
such that X − iY is a unitary matrix.

Let u1, u2 . . . , un be an orthonormal basis of eigenvectors of X−iY associated to the eigenvalues

µ1, µ2, . . . , µn, which are all of modulus one.

The eigenvalues of

(
X −Y

Y X

)
are µ1, µ2, . . . , µn, µ1, µ2, . . . , µn and the associated eigenvectors

are

(
u1

iu1

)
,

(
u2

iu2

)
, . . . ,

(
un

iun

)
,

(
u1

−iu1

)
,

(
u2

−iu2

)
, . . . ,

(
un

−iun

)
.

The previous family of vectors is a basis, and can be turned into an orthosymplectic basis:(
Reu1

− Imu1

)
,

(
Reu2

− Imu2

)
, . . . ,

(
Reun

− Imun

)
,

(
Imu1

Reu1

)
,

(
Imu2

Reu2

)
, . . . ,

(
Imun

Reun

)
.

Let k ∈ {1, . . . , n}.
Suppose λk 6= ±1.

ω

((
Reuk

− Imuk

)
,Φ

(
Reuk

− Imuk

))
= ω

((
Reuk

− Imuk

)
,

(
Reλk Reuk − Imλk Imuk

Imλk Reuk + Reλk Imuk

))

ω

((
Reuk

− Imuk

)
,Φ

(
Reuk

− Imuk

))
= Imλk(ReuT

k Reuk + ImuT
k Imuk) = Imλk

From this and the symplecticity of the previous basis, we deduce that the Krein signature of

the eigenvalue λ ∈ S will be (#{k|µk = λ},#{k|µk = λ}).
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A.4 Krein signature for Hamiltonian matrices

The eigenvalues of Hamiltonian matrices can be treated in much the same way as symplectic

matrices:

Let M be an Hamiltonian matrix and: Q(x, y) = 1
2ω(x,My) + 1

2ω(y,Mx)

(Note: x 7→ Q(x, x) is the Hamiltonian of the system)

Proposition 28 If λ be an eigenvalue of A, then λ, −λ, −λ̄ are also eigenvalues.

Besides dimEλ = dimEλ = dimE−λ = dimE−λ

Let S = {λ | Reλ ≥ 0 & Imλ ≥ 0}.
For any λ ∈ S, let fλ = Eλ + Eλ̄ + E−λ + E−λ̄.

Then:

Proposition 29

R2n =
⊕

λ∈S
fλ.

This decomposition is ω-orthogonal (and also Q-orthogonal).

Proposition 30 The dimension of fλ is even.

Proposition 31 Let λ ∈ S such that Reλ = 0, λ 6= 0 and 2m be the dimension of fλ. Then

there exists r such that (2r, 2(m− r)) is the signature of Q|fλ
.

Definition 29 The Krein signature of an eigenvalue λ ∈ S such that Reλ = 0, λ 6= 0 is defined

as the pair (r−λ , r
+
λ ) such that (2r−λ , 2r

+
λ ) is the signature of Q|fλ

.

Proposition 32 Let (α, β) be the signature of Q|f0
. Let (a, b) be the signature of Q and a+ b =

2n. Then:

a =
∑

λ∈S,Re λ>0 dimFλ +
∑

λ∈S,Re λ=0 r
−
λ + α

b =
∑

λ∈S,Re λ>0 dimFλ +
∑

λ∈S,Re λ=0 r
+
λ + β
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Appendix B

Euler-Lagrange equations

In this appendix, we show how to transform a variational problem, (like finding a stationary

solution), into an Hamiltonian differential equation. We closely follow the standard procedure.

The interest of this part lies in the fact that this is rarely done for derivatives greater than one.

First, we determine the differential equation satisfied by the critical point as well as the La-

grange multipliers associated with the boundary conditions.

Second, we give an Hamiltonian formulation of the differential equation and a formula for the

second derivative of the action.

B.1 Differential equation version

Let C(φ, a, b) =





a

φ(a)

φ′(a)
...

φ(n−1)(a)

b

φ(b)

φ′(b)
...

φ(n−1)(b)





and S(φ, a, b) =
∫ b

a L(φ, φ′, φ(2), . . . , φ(n), t)dt.

To find the critical point (φ, a, b) of the action S under the constraint C(φ, a, b) = C0 =





α0

α1

...

αn

β0

β1

...

βn





,
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let us compute dS and dC.

The differential of S near the point (φ, a, b) is:

dS(δφ, da, db) =

∫ b

a

n∑

k=0

∂L

∂φ(k)
δφ(k)dt+ L(b)db− L(a)da

Integrating by parts yields:

dS(δφ, da, db) =

∫ b

a

δφ

n∑

k=0

(−1)k dk

dtk

(
∂L

∂φ(k)

)
dt

+

[
n−1∑

k=0

δφ(k)
n∑

r=k+1

(−1)r−k+1 dr−k

dtr−k

(
∂L

∂φ(r)

)]b

a

+L(b)db− L(a)da

(B.1.1)

The differential of C is

dC(δφ, da, db) =





da

δφ(a) + φ′(a)da

δφ′(a) + φ(2)(a)da
...

δφ(n−1)(a) + φ(n)(a)da

db

δφ(b) + φ′(b)db

δφ′(b) + φ(2)(b)db
...

δφ(n−1)(b) + φ(n)(b)db





.

Then, if (φ, a, b) is a critical point of S under the constraint C(φ, a, b) = C0, there exists

Λ =
(
λ0 −λ1 . . . −λn −µ0 µ1 . . . µn

)
such that:

dS = Λ · dC

From this equality, one obtains the Euler-Lagrange equations:

n∑

k=0

(−1)k dk

dtk

(
∂L

∂φ(k)

)
= 0 (B.1.2)

Besides, the Lagrange multipliers are equal to:

λ0 =
∑n

i=1 λiφ
(i)(a) − L(a)

µ0 =
∑n

i=1 µiφ
(i)(b) − L(b)

λi =
∑n

r=k+1(−1)r−k+1 dr−k

dtr−k

(
∂L

∂φ(r)

)
(a) for 1 ≤ i ≤ n

µi =
∑n

r=k+1(−1)r−k+1 dr−k

dtr−k

(
∂L

∂φ(r)

)
(b) for 1 ≤ i ≤ n
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B.2 Hamiltonian formulation

Let:






qk = φ(k−1)

pk =
∑n

r=k(−1)r−k+1 dr−k

dtr−k

(
∂L

∂φ(r)

)

H =
∑n

i=1 pi
d
dtqi − L

. (B.2.3)

If Z = (Q,P ) = (q1, q2, . . . , qn, p1, . . . , pn) expressed as a function of (φ, φ′, . . . , φ(2n−1)) is a

diffeomorphism, then:

S(Z, a, b) =

∫ b

a

(
P

dQ

dt
−H

)
dt (B.2.4)

Define the symplectic form ω as: ω((Q1, P1), (Q2, P2)) = P2Q1 − P1Q2. Then:

dS(δZ, δa, δb) =

∫ b

a

(
ω

(
dZ

dt
, δZ

)
− dH(δZ)

)
dt+ [PδQ]

b
a + [(P

dQ

dt
−H)δt]t=b

t=a (B.2.5)

Suppose that Z is a critical point of S under the constraint C(φ, a, b) = C0, then the Euler-

Lagrange equations can be written as:

∀v dHZ(v) = ω(
dZ

dt
, v) (B.2.6)

In (Q,P ) coordinates, this can be written as:

d

dt
P =

∂H

∂Q
,

d

dt
Q = −∂H

∂P
. (B.2.7)

If we compute the second variation δ2S near a critical point Z, then:

δ2S(δZ1, 0, 0, δZ2, 0, 0) =
∫ b

a ω(dδZ1

dt , δZ2) −D2H(δZ1, δZ2)dt

+[δQ1δP2]
b
a.

(B.2.8)
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Appendix C

Theorems linking the Maslov

index and the number of

eigenvalues

In this appendix, we give a proof of that if λ and µ are not eigenvalues, then I(λ)− I(µ) counts

the number of eigenvalues with multiplicities in [λ, µ].

Proofs of the link between the Maslov index and the number of eigenvalues can be found in

the case of a finite length interval in [7, 17, 60]

The existence of eigenvalues is shown by using the change of topology of the path made by the

unstable space. Bose and Jones [16] were the first to exhibit such an argument which relied

on the fact that κ(x, λ) was increasing with respect to λ.

Chen and Hu [40] proved under some assumptions that the Morse index of an operator is

equal to the Maslov index.

However, proving the monotony of κ is not an easy thing to prove and Chen and Hu [40] proof

is not formulated for the problems we are considering. On the contrary, verifying that ∂λC(x, λ)

is semi-definite is usually straightforward. For example, as mentioned in the introduction of

chapter 1, it is possible to put the spectral problem associated to the Hessian of a functional into

such a form. Furthermore, this property is true for all systems discussed in this thesis, at the

exception of the purposefully crafted example of section 4.2.

The exact count of eigenvalues requires the additional hypothesis that the Hamiltonian is

increasing with λ. To achieve this, we need perturbative arguments and the comparison principle.

C.1 The comparison principle

Proposition 33 For i = 1, 2, let γi be a lift in Λ̃(n) of a Lagrangian plane of solutions of the

system x′ = JHix with Hi symmetric. Let α be a Lagrangian plane of solutions of x′ = JH1x.

Suppose that H1 < H2, then the set I = { t |γ2(t) ∩ α(t) 6= {0}} is discrete and for a < b, we
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have:

mα(b)(γ1(b), γ2(b)) −mα(a)(γ1(a), γ2(a))

= 1
2 dim(α(a) ∩ γ2(a)) +

∑

t∈]a,b[∩I

dim(α(t) ∩ γ2(t)) +
1

2
dim(α(b) ∩ γ2(b))

≥ 0

This comparison theorem can be found in [7] but not the equality. While it is not difficult to

obtain it, we reproduce it here for completeness.

This proposition can be proved by taking a set of coordinates which moves with x′ = JH1x.

Let Φ1(t) be a symplectic matrix such that: Φ′
1(t) = JH1Φ1(t) and α(s) = Range(Φ1(s)

(
I

0

)
).

Let now ξ be a 2n× n-matrix such that: ξ′ = JH2ξ and Range(ξ) = p ◦ γ2.

Now, let Z = Φ−1
1 ξ and E = Range

((
I

0

))
. Then:

mE(Range(Z|[a,b])) = mα(b)(α(b), γ2(b)) −mα(a)(α(a), γ2(a))

dim(E ∩ Range(Z(t))) = dim(α(t) ∩ γ2(t))

Z ′ = Φ−1
1 J (H2 −H1)Φ1Z

Z ′ = J (ΦT
1 )(H2 −H1)Φ1Z

Let t ∈ [a, b].

If k = dim(E ∩RangeZ(t)) > 0, let G be a k× n-matrix of rank k such that Range(Z(t)G) =

E ∩ Z(t).

As H1 −H2 > 0, (ΦT
1 )(H2 −H1)Φ1 > 0.

Therefore GT (Z ′(t)TJZ(t) + Z(t)TJZ ′(t))G = GT (ZT (ΦT
1 )(H2 −H1)Φ1Z)G > 0.

As a consequence, the crossing at t is regular and:

sign±(Range(Z), t, E) = dim(E ∩ Range(Z(t))) = dim(γ2(t) ∩ α(t)).

Therefore, since the crossing points are regular, they are isolated. As a consequence I =

{ t |γ2(t) ∩ α(t) 6= {0}} is discrete. Since [a, b] is also a closed bounded set, there is only a finite

number of crossings in [a, b].

Therefore:

mE(Range(Z|[a,b])) = 1
2 dim(γ2(a) ∩ α(a)) +

∑
t∈]a,b[∩I dim(γ2(t) ∩ α(t))

+ 1
2 dim(γ2(b) ∩ α(b)).

Since Φ−1
1 (t)α(t) and Φ−1(t)γ1(t) are constant in moving frames, mα(t)(α(t), γ1(t)) is constant.

Therefore:
mE(Range(Z|[a,b])) = mα(b)(α(b), γ2(b)) −mα(b)(α(b), γ1(b))

+mα(a)(α(a), γ1(a)) −mα(a)(α(a), γ2(a))

= mα(b)(γ1(b), γ2(b)) −mα(a)(γ1(a), γ2(a))

�.
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C.2 The Maslov index and the number of eigenvalues

Lemma 2 Let µ ∈ σp and a, b /∈ σ such that [a, b] ∩ σ = {µ}. Then the multiplicity of µ is at

least |Ihom(φ, b) − Ihom(φ, a)|.

Let a, b /∈ σ be such that σ ∩ [a, b] = {µ}.
Let ε = 1

2 min (dist(S∞(µ),Λ(U∞(µ))), dist(U∞(µ),Λ(S∞(µ)))).

ε is different of zero because Λ(U∞(µ)) and Λ(S∞(µ)) are closed sets and U∞(µ)∩S∞(µ) = {0}.
Now, let λ1 ∈ [a, µ[ and λ2 ∈]µ, b] such that:

∀λ ∈ [λ1, λ2] dist(U∞(λ),U∞(µ)) < ε and dist(S∞(λ),S∞(µ)) < ε. (C.2.1)

Let x0 be such that:

∀λ ∈ [λ1, λ2], ∀x > x0 dist(S(x, λ),S∞(λ)) < ε

∀x > x0 dist(U(x, λ1),U∞(λ)) < ε and dist(U(x, λ2),U∞(λ)) < ε.
(C.2.2)

U : [λ1, λ2]× [−∞,+∞[→ Λ(n) and S : [λ1, λ2]×]−∞,+∞] → Λ(n) are continuous functions

over simply connected domains. Therefore, they can be lifted in Λ̃(n). Let Ũ and S̃ be their

respective lifts.

By definition, we have Ihom(φ, λi) = mS∞(λi)(Ũ(−∞, λi), Ũ(+∞, λi)) for i = 1, 2.

Using the previous hypotheses:

Ihom(φ, λi) = mS(x0,λi)(Ũ(−∞, µ), Ũ(x0, λi)))

Ihom(φ, λ2) − Ihom(φ, λ1) = mS(x0,λ2)(Ũ(−∞, µ), Ũ(x0, λ2)))

−mS(x0,λ1)(Ũ(−∞, µ), Ũ(x0, λ1)))

Since mS(x0,λ1)(Ũ(−∞, µ), S̃(x0, λ1)) = mS(x0,λ2)(Ũ(−∞, µ), S̃(x0, λ2))):

Ihom(φ, λ2) − Ihom(φ, λ1) = mS(x0,λ2)(S̃(x0, λ2), Ũ(x0, λ2)))

−mS(x0,λ1)(S̃(x0, λ1), Ũ(x0, λ1)))

Except at λ = µ, S(x0, λ) ∩ U(x0, λ) = {0} and therefore mS(x0,λ)(S̃(x0, λ), Ũ(x0, λ)) is con-

stant over [λ1, µ[ and ]µ, λ2] and the jump at µ is equal to Ihom(φ, λ2) − Ihom(φ, λ1).

Since
dim(S(x0, µ) ∩ U(x0, µ)) ≥ limλ→µ+ mS(x0,λ)(S̃(x0, λ), Ũ(x0, λ)))

− limλ→µ− mS(x0,λ)(S̃(x0, λ), Ũ(x0, λ)))
,

we have dim(S(x0, µ) ∩ U(x0, µ)) ≥ Ihom(φ, λ2) − Ihom(φ, λ1).

Therefore, µ is an eigenvalue of multiplicity of at least |Ihom(φ, λ2) − Ihom(φ, λ1)|.
Since I is constant over [a, λ1] and [λ2, b], we have Ihom(φ, λ2) − Ihom(φ, λ1) = Ihom(φ, b) −

Ihom(φ, a).

�

Lemma 3 Suppose that ∂λJA(x, λ) is positive.

Let µ ∈ σ and a, b /∈ σ such that [a, b] ∩ σ = {µ} and a < b. Then, the multiplicity of µ is

Ihom(φ, b) − Ihom(φ, a).

Furthermore, for x0 large enough: mS(x0,µ)(Ũ(−∞, µ), Ũ(x0, µ)) = Ihom(φ,a)+Ihom(φ,b)
2 .

Denote by r the multiplicity of the eigenvalue µ. Then r = dim(U(x, µ) ∩ S(x, µ)).

As for the previous lemma, let us introduce the quantities ε, λ1, λ2, x0.
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We know from lemma 2 that |Ihom(φ, λ1) − Ihom(φ, λ2)| ≤ r. It remains to prove that r ≤
Ihom(φ, λ2) − Ihom(φ, λ2).

Now, consider the slightly perturbed problem:

ux = (A(x, λ) + θ(λ− µ)J )u. (C.2.3)

Since λ1, λ2 are not elements of the spectrum, we have limθ→0+ Ũθ(x0, λi) = Ũ(x0, λi).

For θ small enough, we have:

mS(x0,µ)(S̃(x0, µ), Ũθ(x0, λi)) = mS(x0,µ)(S̃(x0, µ), Ũθ(x0, λi)).

Now, let consider Ũθ,L such that:

• Ũθ,L(−L, λ) = Ũ(−L, µ)

• Uθ,L is a Lagrangian space of solutions of ux = (A(x, λ) + θ(λ− µ)J )u.

From proposition 33 we have:

• mS(x,µ)(Ũ(x, µ), Ũθ,L(x, λ)) ≥ k
2 if x > −L and λ > µ,

• mS(x,µ)(Ũ(x, µ), Ũθ,L(x, λ)) ≤ −k
2 if x > −L and λ < µ.

Besides, limL→∞ dist(Ũθ,L(x0, λ), Ũθ(x0, λ)) = 0 and Uθ(x0, λ) ∩ S(x0, µ) = {0}.
Therefore, for L large enough:

mS(x0,µ)(Ũ(x0, µ), Ũθ,L(x0, λi)) = mS(x0,µ)(Ũ(x0, µ), Ũθ(x0, λi)).

From this, we conclude that:

• mS(x0,µ)(Ũ(x0, µ), Ũ(x0, λ1)) ≤ −k
2 ,

• mS(x0,µ)(Ũ(x0, µ), Ũ(x0, λ2)) ≥ k
2 .

Therefore, we have mS(x0,µ)(Ũ(x0, λ1), Ũ(x0, λ2)) ≥ k.

We have Ihom(φ, λi) = mS(x0,µ)(Ũ(−∞, λi), Ũ(+∞, λi)) andmS(x0,µ)(Ũ(−∞, λi), Ũ(−∞, λ3−i)) =

mS(x0,µ)(Ũ(−∞, λi), Ũ(x0, λi)) = 0, so

Ihom(φ, λ2) − Ihom(φ, λ1) ≥ k.

Using the previous lemma, Ihom(φ, λ2) − Ihom(φ, λ1) = k.

Furthermore, mS(x0,µ)(Ũ(−∞, µ), Ũ(x0, µ)) = Ihom(φ,λ1)+Ihom(φ,λ2)
2 .

�

Proposition 34 Let a, b /∈ σ such that [a, b] ∩ σess = ∅. The number of eigenvalues with multi-

plicity in [a, b] is at least |Ihom(φ, b) − Ihom(φ, a)|.

The number of eigenvalues is finite in [a, b]. Otherwise there would be an accumulation point of

eigenvalues and hence an element of the essential spectrum.

So we can find a = λ1, . . . , λn = b such that {σ ∩ [λi, λi+1]} = {µi}.
Therefore |Ihom(φ, λn)−Ihom(φ, λ1)| ≤

∑n−1
k=1 |Ihom(φ, λk+1)−Ihom(φ, λk)| ≤∑n−1

k=1 multiplicity of µi.

�
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Proposition 35 Suppose that ∂λJA(x, λ) is positive.

Let λ1, λ2 /∈ σ such that [λ1, λ2] ∩ σess = ∅. The number of eigenvalues with multiplicity in

[λ1, λ2] is Ihom(φ, λ2) − Ihom(φ, λ1).

The demonstration is the same as the previous lemma, except that inequalities can be replaced

by equalities and absolute values removed.
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Appendix D

Properties of B(2) on
∧n(R2n)

Proposition 36 The induced matrix B(2) satisfies ωB(2) = 0, where ω is defined in (2.2.5), if

and only if JB is symmetric.

Proof.
ωB(2) = 0 ⇔ ∀x, y ∈ R2n ωB(2)(x ∧ y) = 0

⇔ ∀x, y < ω, (Bx) ∧ y + x ∧ (By) >V2(R2n)= 0

⇔ ∀x, y ω(Bx, y) + ω(x,By) = 0

⇔ ∀x, y (Bx)tJy + ytJ(Bx) = 0

⇔ ∀x, y yt(−(JB)t + JB)y = 0

⇔ (JB)t = JB
�

Let B be an arbitrary 4× 4 matrix with entries bij . Then, with respect to the standard basis

(2.2.6) on
∧2

(R4) the induced matrix is

B(2) =





b11 + b22 b23 b24 −b13 −b14 0

b32 b11 + b33 b34 b12 0 −b14
b42 b43 b11 + b44 0 b12 b13
−b31 b21 0 b22 + b33 b34 −b24
−b41 0 b21 b43 b22 + b44 b23

0 −b41 b31 −b42 b32 b33 + b44





, (D.0.1)

A constructive proof is given in §2 of [4].
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Appendix E

Maslov index theory for a simple

dissipative equation

In this appendix, we consider a simple, exactly computable model which shows how the Maslov

index of homoclinic orbits works and how it can be used to determine the stability of dissipative

structures.

It is a simplified version of the class of nonlinear parabolic PDEs studied in [16].

Consider the nonlinear parabolic PDE

∂φ

∂t
=
∂2φ

∂x2
− φ+ φ2 , x ∈ R , (E.0.1)

for the scalar-valued function φ(x, t). There is a basic steady solitary wave solution

φ̂(x) = 3
2 sech2

(
1
2x
)
, (E.0.2)

which satisfies φ̂xx − φ̂ + φ̂2 = 0. Linearizing (E.0.1) about the basic state φ̂ and looking for

solutions proportional to eλt leads to the spectral problem

L φ = λφ , with L φ :=
d2φ

dx2
− φ+ 2φ̂(x)φ . (E.0.3)

The basic state (E.0.2) is said to be (spectrally) unstable if any part of the spectrum of L is

positive. The spectrum of L can be explicitly constructed. It consists of a branch of essential

spectra and a point spectrum

σ(L ) = σess(L ) ∪ σp(L ) ,

with σess(L ) = {λ ∈ R : λ ≤ −1} and σp(L ) =
{
− 3

4 , 0 , 5
4

}
. The spectrum is illustrated in

Figure E.1.

The point spectrum can be verified by constructing the Evans function. First reformulate

(E.0.3) as a first-order system. Let

u(x, λ) =

(
φ(x, λ)

φx(x, λ)

)
,
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Figure E.1: Plot of the spectrum of L .

then

Jux = C(x, λ)u , u ∈ R2 , λ ∈ R , (E.0.4)

with

C(x, λ) =

[
λ+ 1 − 3sech2(1

2x) 0

0 1

]
.

The eigenvalues of B∞(λ) are real and hyperbolic when λ+1 > 0. In this formulation the stable

(u−) and unstable (u+) subspaces are represented by

u±(x, λ) = e±γs

(
h±

1
2 (h±s ± γh±)

)
,

where s = 1
2x, γ = 2

√
λ+ 1,

h±(s, λ) = ±a0 + a1tanh(s) ± a2tanh2(s) + a3 tanh3(s) ,

and

a0 =
γ

15
(4 − γ2) a3 , a1 =

1

5
(2γ2 − 3) a3 , a2 = −γ a3 , (E.0.5)

and a3 is an arbitrary nonzero real number. The Evans function is then

D(λ) = u−(x, λ) ∧ u+(x, λ) .

Evaluating at x = 0, a straightforward calculation leads to

D(λ) = −2
√
λ+ 1

(
2a3

15

)2

λ (4λ+ 3)(4λ− 5) .

Details of calculations of this type can be found in the Appendix of [22].

For linear Hamiltonian systems on R2 Lagrangian subspaces are just one-dimensional sub-

spaces. The path of unstable subspaces u+(x, λ) is used to define the Maslov index. The natural

one-dimensional subspace to choose for the reference space is Es(B∞(λ)),

Es(B∞(λ)) = span

{(
2

−γ

)}
.

Then, assume simple intersections between Es
∞(λ) and u+(x, λ) – which can be confirmed a

posteriori for the example (E.0.4) – and assume that

lim
x→±∞

span(u+(x, λ))
⋂

Es(B∞(λ)) = {0} .
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This latter assumption is equivalent to assuming that λ is not an eigenvalue. The Maslov index

for this case is

mEs(B∞(λ))(u
+) =

∑

x0

sign 〈Ju+
x ,u

+〉 ,

with x0 the points at which u+(x, λ) ∩ Es(B∞(λ)) is non-trivial.

The path of unstable subspaces is

u+(x, λ) = 1
2eγs

(
2h+

h+
s + γh+

)
. (E.0.6)

The intersection form in this case is

sign(u+,Es(B∞(λ)), x0) = sign

(
〈Ju+

x ,u
+〉
∣∣∣∣
x=x0

)
,

= sign

(
(−u+

1 u̇
+
2 + u+

2 u̇
+
1 )

∣∣∣∣
x=x0

)

= sign

(
[
((u+

2 )2 − λ− 1 + 12 sech2s)(u+
1 )2
] ∣∣∣∣

x=x0

)
.

However, at a point x0 where u+ intersects Es
λ, u+

2 = − 1
2γu

+
1 and so

sign(u+,Es(B∞), x0) = sign(12 sech2 1
2x0 (u+

1 )2) .

Hence Γ(u+,Es) > 0 at each intersection, and the Maslov index is just the sum of the intersec-

tions. An intersection occurs when

ξs ∧ u+ = 0 , where ξs =

(
2

−γ

)
.

Now

ξs ∧ u+ = (2u+
2 + γu+

1 )vol .

The factor eγs is not important and so can be divided out, giving

ξs ∧ u+ ∼ (
dh+

ds
+ 2γh+)vol .

This function has 0, 1, 2 or 3 zeros depending on the value of λ. Each zero corresponds to an

intersection between the unstable subspace with Es(B∞(λ)). The function ξs ∧u+ is illustrated

in Figure E.2 for the case λ = −0.8 where ξs ∧u+ has three zeros indicating three intersections.

A summary of the Maslov index in each region is tabulated below.

λ −1 < λ < − 3
4 − 3

4 < λ < 0 0 < λ < 5
4 λ > 5

4

mEs(B∞(λ))(u
+) 3 2 1 0

We make the following observation about the connection between the Maslov index and the

number of eigenvalues as a function of λ. Let λ0 be any fixed real value of λ such that λ0 > −1

and λ0 is not an eigenvalue, then the value of the Maslov index equals the number of eigenvalues

of L in the set λ > λ0.



134APPENDIX E. MASLOV INDEX THEORY FOR A SIMPLE DISSIPATIVE EQUATION
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Figure E.2: Plot of ξs ∧ u+(x, λ) for the case λ = −0.8.

E.0.1 The Maslov angle in
∧1(R2)

Another way to count intersections between the path u+ and some reference plane is to use s.

In this case the angle κ(x, λ) is just the angle determined by a polar representation of u+

s(u+(x, λ)R) = eiκ(x,λ) :=
u+

1 (x, λ) − iu+
2 (x, λ)

u+
1 (x, λ) + iu+

2 (x, λ)
.

As x→ ±∞
lim

x→±∞
eiκ(x,λ) =

2 − iγ

2 + iγ
.

The Maslov index is then the count of the number of times that κ crosses some reference angle

as x varies, such as the angle associated with the stable subspace.



Appendix F

Technical issues concerning the

Kawahara equation

In this appendix, we prove that:

• L , introduced in (3.3.14), has at least one strictly negative eigenvalue.

• the Maslov index of Kawahara solitary waves Ihom(φ, λ) converges to zero when λ→ −∞.

F.1 The existence of at least one negative eigenvalue

Consider the linear operator

L φ := φxxxx − Pφxx + a(x)φ , (F.1.1)

introduced in (3.3.14) with a(x) = c− (q + 1)φ̂(x)q and φ̂(x) satisfying (3.2.8). Assume

P + 2c ≥ 0 and 0 < c ≤ 1 or P > 0 and c > 0 . (F.1.2)

The essential spectrum for this problem is non-negative. Here it is proved that L has at least

one negative eigenvalue in the point spectrum.

Multiply (3.2.8) by the basic state φ̂(x),

φ̂q+2 = cφ̂2 − P φ̂φ̂xx + φ̂φ̂xxxx

= cφ̂2 − (P + 2c) φ̂φ̂xx + 2cφ̂φ̂xx + φ̂φ̂xxxx

= c(φ̂+ φ̂xx)2 − (P + 2c) φ̂φ̂xx − cφ̂2
xx + φ̂φ̂xxxx .

Hence integrating, using the fact that φ̂ and its derivatives decay exponentially as x→ ±∞, and

the hypotheses (F.1.2) yields

∫ ∞

−∞
φ̂q+2dx =

∫ ∞

−∞
c(φ̂+ φ̂xx)2dx+ (P + 2c)

∫ ∞

−∞
φ̂2

xdx+ (1 − c)

∫ +∞

−∞
φ̂2

xx dx > 0 , (F.1.3)
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or if P > 0 and c > 0,

∫ ∞

−∞
φ̂q+2dx =

∫ ∞

−∞
(cφ̂2 + Pφ̂2

x + φ̂2
xx) dx > 0 . (F.1.4)

To prove that (F.1.1) has a negative eigenvalue, we will show that the quadratic form 〈u,L u〉
is negative when u = φ̂ where 〈u,L u〉 :=

∫∞
−∞ uL u dx. Now

〈u,L u〉
∣∣
u=bφ

=
∫∞
−∞(φ̂(φ̂xxxx − Pφ̂xx + a(x)φ̂)) dx

=
∫∞
−∞(φ̂2

xx + P φ̂2
x + cφ̂2) dx− (q + 1)

∫∞
−∞ φ̂q+2dx

= −q
∫∞
−∞ φ̂q+2dx ,

using (F.1.4) in the last line. It follows from (F.1.3) or (F.1.4) that 〈φ̂,L φ̂〉 < 0.

F.2 Proof that limλ→−∞ Ihom(φ, λ) = 0 for the Kawahara sys-

tem

Here, we give the details of the proof that B(x, λ) = J−1C(x, λ) for the Kawahara equation,

with C(x, λ) defined in (3.2.13), satisfies Hypothesis 4. Then we can apply proposition 20 and

prove that limλ→−∞ Ihom(φ, λ) = 0.

First set

s =
1

(1 − λ)
1
4

.

When λ is large and negative, s is a small parameter. This parameter will be used to obtain

series expansions of the eigenvectors and of the eigenvalues.

The characteristic polynomial of B∞(λ) is

0 = det[XI− B∞(λ)] = X4 − PX2 +
1

s4
.

This polynomial is a biquadratic and for s small it has four complex roots, one in each quadrant.

Let θ(s) be the eigenvalue in the right-upper quadrant. Its Taylor expansion is:

θ(s) =
1 + i

s
√

2

(
1 − 1

4
iPs2 − 1

32
P 2s4 − 1

128
iP 3s6 +O

(
s8
))

.

The other eigenvalues are θ(s), −θ(s),−θ(s). The eigenvector associated with θ(s) is :

v(s) = s





− 1
s4θ

θ

1

θ2




.

A Taylor expansion of this eigenvector is:

v(s) = sv1 + isv2 +O
(
s6
)
.
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with

v1(s) =





−
(
1/2

√
2 + 1

8

√
2Ps2 − 1

64

√
2P 2s4 + 1

256

√
2P 3s6

)
s−3

1
256

√
2P 3s5 − 1

64

√
2P 2s3 + 1

8

√
2Ps+

√
2

2s

1
1
2P





and

v2(s) =





−
(
−1/2

√
2 + 1

8

√
2Ps2 + 1

64

√
2P 2s4 + 1

256

√
2P 3s6

)
s−3

− 1
256

√
2P 3s5 − 1

64

√
2P 2s3 − 1

8

√
2Ps+

√
2

2s

0

s−2 − 1
8s

2P 2




.

(Re v(s), Im v(s)) is a basis of the unstable space. Let Vunst be the matrix whose columns are

Re v(s) and Im v(s)).

The eigenvector associated to −θ(s) is:

w(s) = s





1
s4θ

−θ
1

θ2





(Rew(s), Imw(s)) is a basis of the unstable space. Let Ust the matrix whose columns are Rew(s)

and Imw(s)).

The matrix
(
Vunst|Ust

)
is not a symplectic matrix but V (s) =

(
Vunst|Vst

)
, with Vst =

−Ust(V
T
unstJUst)

−1, is. Besides, we have:

Vst =





1
2s

− 1
4 s2P− 1

32 P 3s6

s

0
1
2 s2+ 1

16 s6P 2

s
1
4

√
2s3− 1

16

√
2Ps5

s

− 1
4

√
2s3− 1

16

√
2Ps5

s
− 1

4

√
2s+ 1

16

√
2Ps3− 3

128

√
2P 2s5

s

− 1
4

√
2s− 1

16

√
2Ps3− 3

128

√
2P 2s5

s




+O(s6)

We also have V −1 = −J(TV )J since V is a symplectic matrix.

Let

T =





0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0




.

We are now able to evaluate: V −1BV : V −1BV = O
(
s2
)

but also

V −1BV





1 0

0 1

0 0

0 0




= V BVunst = O

(
s2
)
.

Therefore, (V −1BV )(n)e1 = O
(
s2
)
. Therefore, as R(x, λ) = A(x, λ)−A∞(λ) = (1−a(x))B and

as |1 − a(x)| ≤ C1e
−C2|x|, this proves that Hypothesis 4 of Proposition 20 is satisfied.
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Appendix G

Approximating single eigenvalues

for regular Sturm-Liouville

problems with separated

Hermitian boundary conditions

The 1D Sturm-Liouville equation arises in various fields like Quantum Mechanics or the integrable

Korteweg-de Vries equation. The natural generalization of this well-known problem is:

Find λ and u : [a, b] → R2n such that:

• E1u(a) + E2u(b) = 0 with (E2|E2) of full rank and E1JE
∗
1 = E2JE

∗
2 .

• ∀x ∈ [a, b] ux =

(
0 B(x)

−D(x) + λC(x) 0

)
u with B and C symmetric definite positive

and D symmetric. We also suppose that B,C,D are continuous functions.

This class of boundary conditions are called Hermitian. We can see that one cannot always

choose u(a) and u(b) independently. However we will only study the ‘separated’ case where u(a)

and u(b) can be chosen independently:

Find λ and u : [a, b] → R2n such that:

• u(a) ∈ U and u(b) ∈ V , where U and V are Lagrangian planes.

• ∀x ∈ [a, b] ux =

(
0 B(x)

−D(x) + λC(x) 0

)
u with B and C symmetric definite positive

and D symmetric. We also suppose that B,C,D are continuous function.

In any case, all Hermitian boundary conditions can be reduced to separated ones (see [60]).

Dwyer & Zettl [61] have described a method which enables an exact count of the eigenvalues.

However, they have to use the bisection method to locate precisely the eigenvalues.

We use an n-form approach instead.

139



140 APPENDIX G. STURM-LIOUVILLE PROBLEMS

Let U and V be two n-forms which map the Lagrangian spaces.

Suppose that W(x, λ) satisfies Wx(x, λ) = A(x, λ)W(x, λ) and W(a, λ) = U.

Let E(λ) = W(b, λ) ∧ V.

E is a C1 function and its zeros are the eigenvalues of the Sturm-Liouville problem. The zeros

E can be computed by using the secant method. For single zeros, the difference between the

eigenvalue and the n-th iterate is known to be below C(1+
√

5
2 )−n. For multiple ones, convergence

is worse, though geometric.

We try these ideas on the system presented in [61]:

A(x, λ) =





0 0 0 1
2 0 − 3

2

0 0 0 0 1
8 − 1

4

0 0 0 − 3
2 − 1

4 6

−38λ −24λ −12λ 0 0 0

−24λ −18λ −8λ 0 0 0

−12λ −8λ −4λ 0 0 0





and U = V =










0

0

0

u4

u5

u6





,




u4

u5

u6



 ∈ R3






.

We performed the integration over 100 time steps and got the following results:

Exact eigenvalue Zeros of the approximation of E

0.25 0.2500002973

2.25 2.2502709926

6.25 6.2528890688

About eight iterations were required to reach machine precision for these single eigenvalues.

We also tried to reach multiple eigenvalues but it required more iterations than the method

used in [61].



Appendix H

Index of definitions and notations

• TaM is defined as the tangent space of the manifold M at the point a.

• #S is the number of elements in the set S.

• Let U and V two subspaces of a space E and S be a bilinear form over E.

∀u ∈ U, v ∈ V S(u, v) = 0 ⇔def U ⊥S V

In that case, U and V are said to be S-orthogonal.

• U is the set of complex numbers of modulus one.

• Λ(n) is the set of Lagrangian planes in R2n.

• Sn(R) is the set of symmetric n× n-matrices

• Let S ∈ Sn(R), r− the number of strictly negative eigenvalues of S and r+ the number of

strictly positive eigenvalues of S.

The signature of S is defined as (r−, r+).

• Let U be a Lagrangian plane. Λ(U) is the set of Lagrangian planes which are not transverse

to U .

• The k-th Grassmannian of E denoted by Gk(E) is the set of k-dimensional subspaces of

E.

• Sp(2n) is the set of symplectic matrices, e.g. 2n× 2n-matrices such that ATJA = J .

• A is said to be an Hamiltonian matrix if and only if JA = (JA)T .

• O(n) is the set of orthogonal matrices, e.g. real matrices A such that AAt = In.

• SO(n) is the set orthogonal matrices with a determinant equal to 1.

• U(n) is the set of unitary matrices, e.g. complex matrices A such that AA∗ = In.
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• Range : Mk,r(K) → {Subspaces of Kk} is the mapping that associates a matrix to the

space spanned by its columns.

• Xn =

{(
X

Y

)
∈M2n,n(R) | XTY = Y TX and

(
X

Y

)
has rank n

}

• θ :






U(n) → Λ(n)

X + iY → Range(

(
X

Y

)
)

• ψ :






(Xn)2 → GLn(C)((
W

Z

)
,

(
X

Y

))
7→ (X − iY )−1(W − iZ)(W + iZ)−1(X + iY )

• s : Λ(n) → U is defined by s(Range

(
X

Y

)
) = det((X − iY )−1(X + iY )).

• KRange(B) :

{
Λ(n) → Un/ ∼
Range(A) → Eigenvalues of ψ(A,B)

where ∼ is the relation of equivalence

defined by:

(x1, x2, . . . , xn) ∼ (y1, y2, . . . , yn) ⇔ ∃σ one-to-one (x1, x2, . . . , xn) = (yσ(1), yσ(2), . . . , yσ(n)).

• Λ̃(n) is the universal covering of Λ(n).

There is a smooth diffeomorphism between Λ̃(n) and the following closed subset of R×Λ(n):

{(κ, U) s.t. eis(U) = eiκ}

• Let (α,A), (β,B) ∈ Λ̃(n), C ∈ Λ(n), and rA = dim(A ∩ C), rB = dim(B ∩ C). Let

α1, α2, . . . , αn−rA
∈]0, 2π[, β1, β2, . . . , βn−rB

∈]0, 2π[ such that

KC(A) = (eiα1 , eiα2 , . . . , eiαn−rA , 1, . . . , 1) and KC(B) = (eiβ1 , eiβ2 , . . . , eiβn−rB , 1, . . . , 1).

Define

mC((α,A), (β,B)) =
β −∑n−rB

i=0 βi

2π
− α−∑n−rA

i=0 αi

2π
+

1

2
(rB − rA)

• Let W be a Lagrangian space and γ : [0, 1] → Λ(n) be a continuous path and let κ : [0, 1] →
R be a continuous function such that eiκ(x) = s(γ(x)). The Maslov index of γ with respect

to W is

mW (γ) = mW ((κ(0), γ(0)), (κ(1), γ(1))).

If γ(0) = γ(1), m(γ) = mW (γ) = κ(1)−κ(0)
2π .

• Eλ(A) is defined as the generalized eigenspace of A associated to λ, the set of x such that

∃k ∈ N∗ (A− λ)kx = 0.

• Eu(A) = {x : limt→−∞ etAx = 0} and Es(A) = {x : limt→+∞ etAx = 0}.
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• Let U be a k-form. ρU :

{∧k E → ∧k+1E

x→ U ∧ x

• ∧k E denotes the k-th exterior product of the vector space E. ∧ denotes the exterior

product.

• A(k) :
∧k

E → ∧k
E is the k-th compound matrix of A. It is defined as the matrix such

that: A(k)a1 ∧ . . . ∧ ak =
∑k

j=1 a1 ∧ . . . Aaj ∧ . . . ak.

• A[k] :
∧k E → ∧k E is the k-th exterior power of A. It is defined as the matrix such that:

A[k]a1 ∧ . . . ∧ ak = Aa1 ∧ . . . ∧Aak.

• G :
∧n

R2n → C is the linear form over
∧n

R2n such that G




(

X

Y

)[n]


 = det(X− iY) =

KE(Range(

(
X

Y

)
)), with E = Range(

(
I

0

)
)).
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Appendix I

Computer programs

In this section, we give describe the programs we used to make numerical simulations.

I.1 Spectral method to compute the periodic orbits

Main program used to compute periodic solutions:

% differential equation: y’’’’ - P y’’ + c*y - y^(p+1) = 0

%

% at P = -2, the 1:1 resonance occurs

% at P = +2, one has double real eigenvalues

%

% we are interested in the branch of solitary waves

% extending from P = -2 to P = infty

%

% for P = (p^2+4*p+8)/(2(p+2)), this solitary wave can be computed

% explicitly

%

% we use periodic boundary conditions

%eta=10;

c=1;

p=1;

%p=5;

N=2^10

h=2*pi/N;

x=(-pi:h:pi-h)’;

%P=-1

% we now vary the parameter P and etas

Pvalue=[(3:-.1:-1.9)];

etas=(100:-.01:0)’
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%compute exact solution for

P = (p^2+4*p+8)/(2*(p+2));

sol=((p+4)*(3*p+4)/(8*(p+2)))^(1/p)*sech((x*etas(1))*p./sqrt(8*(p+2))).^(4/p);

s=size(etas,1);

t=size(Pvalue,2);

u=sol;

E=zeros(size(sol,1),s);

Energy=zeros(s,t);

ErrE=zeros(s,t);

for jj=1:t,

% u=sol;

for ii=1:s,

[u,err,energy,errE]=solfourier3_KdV(N, etas(ii,1), Pvalue(1,jj), u, p,c);

if (ii==1), sol=u;end;

plot(u)

drawnow

E(:,ii)=u;

Energy(ii,jj)=energy;

ErrE(ii,jj)=errE;

ii

jj

end

end

norm(ErrE,inf)

% waterfall(eta*x, Pvalue, E),

% axis([eta*min(x) eta*max(x) min(Pvalue) max(Pvalue) -1 1.5]);

The auxiliary routine solfourier3 KdV.m is:

function [u,err,energy,errE]=solfourier3_KdV(N, eta, P, u, p,c)

%It finds a periodic solution to the following ODE:

%y’’’’ - P y’’ + c*y - y^(p+1)

%

%The solver does all the inversions in the Fourier domain.

%N is the number of points used by the discretization.

Dfourier=i*[0:(N/2-1),0,(-N/2+1):-1]’*(1/eta);

Dfourier2=-[0:(N/2),(-N/2+1):-1]’.^2*(1/eta^2);

Dfourier3=Dfourier.*Dfourier2;
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Dfourier4=[0:(N/2),(-N/2+1):-1]’.^4*(1/eta^4);

LL=(Dfourier4-P*Dfourier2+c);

Lf=@(x)(x.*LL); %Operator L:y->y’’’’ - P y’’ + c*y in the

%Fourier domain.

Lfinv=@(x)(x./LL); %Inverse of operator L in the Fourier domain.

F=@(u)[real(ifft(Lf(fft(u))))-u.^(p+1)]; %Functional whose zeros

%are the solutions of the ODE.

max_it=20;

h=2*pi/N; x=(-pi:h:pi-h)’;

change=1; it=0;

while change>1e-12*norm(u) & it<max_it

%This loop tries to find the zeros of the functional F.

y=F(u);

Dff=@(x)(Lf(x)-real(fft((p+1)*(u.^p).*ifft(x))));

%Jacobian in Fourier Domain.

unew=u-real(ifft(symmlq(Dff,real(fft(y)),10^(-9),N,Lfinv)));

% Newton iteration. Inversion of the Jacobian

%in the Fourier Domain using Lfinv as a preconditionner.

change = norm(unew-u, inf);

u=unew; it=it+1;

end

err=norm(ifft(Lf(fft(u)))-u.^(p+1));

foD=@(x)(real(ifft(fft(x).*Dfourier))); %1st order derivative.

foD2=@(x)(real(ifft(fft(x).*Dfourier2))); %2nd order derivative.

foD3=@(x)(real(ifft(fft(x).*Dfourier3))); %3rd order derivative.

foD4=@(x)(real(ifft(fft(x).*Dfourier4))); %4th order derivative.

W=foD3(u).*foD(u) ...

-(1/2)*foD2(u).^2 ...

-(1/2)*P*foD(u).^2 ...

+(1/2)*u.^2-(1/(p+2))*u.^(p+2); %Evaluation of the energy.
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energy=sum(W)/N; %Evaluation of the average energy.

errE=norm(W-energy,2)/sqrt(N); %Control of the conservation of the energy.

I.2 Shooting algorithm to obtain symmetric homoclinic so-

lutions

I.2.1 The shooting method

Reversible problems

Let V be an 2n-dimensional system.

Let R be an endomorphism of V such that ker(R + Id) is n-dimensional and R2 = Id.

Let F : V → V be such that:

• R ◦ F = F ◦ R. (Reversibility)

• F (0) = 0 and dF0 has no imaginary eigenvalue. (0 is a hyperbolic equilibrium point.)

We would like to find a symmetric homoclinic solution, i.e. a solution x such that x(0) = Rx(0)

and limt→−∞ x(t) = 0

The shooting algorithm

Let Φ : R × V → V such that ∂Φ
∂t (t, x) = F (t,Φ(t, x)) and Φ(0, x) = x.

The unstable space U and the stable space S of dF0 are n-dimensional (because S ⊕ U = V ,

RU = S and RS = U).

Let T be a large enough positive number.

Let Φ∆t(t, x) be an approximation of the flow Φ∆t(t, x) obtained by using a numerical inte-

grator like the fourth-order Runge-Kutta method.

Then, by using Newton’s method, it is possible to find a zero x0 of the differentiable function

(R− Id) ◦ UT,n : U → ker(R).

Once x0 is obtained, the homoclinic orbit is approximated by




edF0(t+T )x0 if t < −T
Φ∆t(t+ T, x0)x0 if − T ≤ t ≤ 0

RΦ∆t(t+ T, x0)x0 if − T ≤ t ≤ 0

Re−dF0(t−T )x0 if t > T

.

I.2.2 Computer routine

The following program implements the previous algorithm in the case of the stationary part of

the Kawahara equation 



u1

u2

u3

u4





t

=





u2

u3

u4

Pu3 − u1 + up+1
1




.
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The function called homoclinic finds a point u close to xe−back dF0 such that Φ(Ndt, u) =



q1
q2
0

0




and u ∈ Eu(dF0). Φ is computed by using the fourth-order Runge-Kutta scheme. u is

found by using a Newton iteration.

Φ(t, u) for t ∈ [0, 4Ndt] is an approximation of a symmetric homoclinic orbit φ(t − 4Ndt) for

t ∈ [0, 4Ndt].

function[u,dP]=homoclinic(x,back,dt,N)

global P;

A=jac([0,0,0,0]’);

[vn,vp]=eig(A);

if P<2

for i=1:4

if real(vp(i,i)>0)

vec=[real(vn(:,i)),imag(vn(:,i))];

end;

end;

[vn,vp]=eig(A’);

for i=1:4

if real(vp(i,i)>0)

proj=[real(vn(:,i)),imag(vn(:,i))]’;

end;

end;

else

j=1;k=1;

for i=1:4

if real(vp(i,i)>0)

vec(:,j)=vn(:,i);j=j+1;

end;

end;

%x=-x*10^(-2);

[vn,vp]=eig(A’);

j=1;

for i=1:4

if real(vp(i,i)>0)

proj(j,:)=vn(:,i)’;j=j+1;

end;

end;
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end;

A=proj*vec;

vec=vec/A;

B=jac(0)*vec*proj;

x=expm(-B*back)*x;

ret=vec*proj;

x=proj*x;

%x=rot(2.5673859-3.0137255)*x;

err=10;

while abs(err)>10^(-10)

[y,A,dP]=calcul(vec*x,vec,N);

err=[y(2,:);y(4,:)];

dP=[dP(2,1);dP(4,1)];

A=[A(2,:);A(4,:)];

x=x-A\err;dP=A\dP; %Newton iteration

end

u=vec*x;dP=vec*dP;

function[y,A,dP]=calcul(x,A,N)

y=x;

dt=1/1000;

dP=zeros(4,1);

for i=1:N

f1=f(x);

f2=f(x+f1*dt/2);

f3=f(x+f2*dt/2);

f4=f(x+f3*dt);

d1=jac(x)*A;

d2=jac(x+f1*dt/2)*(A+d1*dt/2);

d3=jac(x+f2*dt/2)*(A+d2*dt/2);

d4=jac(x+f3*dt)*(A+d3*dt);

dP1=jac(x)*dP+dfdP(x);

dP2=jac(x+f1*dt/2)*(dP+(dt/2)*dP1)+dfdP(x+f1*dt/2);

dP3=jac(x+f2*dt/2)*(dP+(dt/2)*dP2)+dfdP(x+f2*dt/2);

dP4=jac(x+f3*dt)*(dP+dt*dP3)+dfdP(x+f3*dt);

x=x+(dt/6)*(f1+2*f2+2*f3+f4);

A=A+(dt/6)*(d1+2*d2+2*d3+d4);

dP=dP+(dt/6)*(dP1+2*dP2+2*dP3+dP4);

y=x;

end
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function[y]=f(x)

global P;

global p;

y=[x(2,1),x(3,1),x(4,1),P*x(3,1)-x(1,1)+x(1,1)^(p+1)]’;

end

function[y]=jac(x)

global P;

global p;

a=x(1,1)^p;

y=[[0,1,0,0];...

[0,0,1,0];...

[0,0,0,1];...

[(p+1)*a-1,0,P,0]];

end

I.3 Program to compute the Maslov index of periodic waves

The following routine is the implementation of the algorithm described in section 2.3, applied to

the case of the Kawahara equation.

This routine takes the following inputs:

• h is the λ parameter at which Ihom(φ, λ) is evaluated.

• P is the parameter in Kawahara equation.

• T is the period of the periodic orbit.

• a is a vector containing a(x) = 1 − (q + 1)φ(x)p evaluated at equidistant points over one

period.

The routine returns the following outputs:

• mas is the Maslov index Ihom(φ, λ),

• jj the number of iterations that were necessary to reach the unstable space.

function[mas,jj]=maslov_periodic(h,P,T,a)

%This function computes the Maslov index at h for the operator

%Lu=u_xxxx - P*u_xx + a(x)*u in the periodic case.

%The vector gives the values of a on equidistant points over a period.

%The matrix used to compute A2(x,lambda) was

%[[0,0,0,1];[0,0,1,P];[-a+h,0,0,0];[0,1,0,0]].
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f=rand(6,1);

e=rand(6,1);

s=0;

jj=0;

AA=mmatA2_4(P,a(1,1)-h);

while ((jj<200) & ~iscolinear(e,f))

f=e/norm(e);

e=f;

eka=(e(1,1)+i*e(3,1)-i*e(4,1)-e(6,1));

kappa0=angle(eka);

kappa=kappa0;

n=size(a,1);

dx=T/n;

for ii=1:2:(n-1)

ah=a(ii,1)-h;

AA(4,1)=-(-ah);

AA(6,3)=-ah;

f1=AA*e-s*e;

ah=a(ii,1)-h;

AA(4,1)=-(-ah);

AA(6,3)=-ah;

aux=e+dx*f1;

f2=AA*aux-s*aux;

ah=a(ii,1)-h;

AA(4,1)=-(-ah);

AA(6,3)=-ah;

aux=e+dx*f2;

f3=AA*aux-s*aux;

ah=a(mod(ii+2,n),1)-h;

AA(4,1)=-(-ah);

AA(6,3)=-ah;

aux=e+2*dx*f3;

f4=AA*aux-s*aux;

e=e+(2*dx/6)*(f1+2*f2+2*f3+f4);

ekb=(e(1,1)+i*e(3,1)-i*e(4,1)-e(6,1));
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kappa=kappa+angle(ekb/eka);

eka=ekb;

end

mas=(kappa-kappa0)/(pi);

s=s+log(norm(e)/norm(f))/T;

jj=jj+1;

end;

function[y]=mmatA2_4(P,ah)

y=zeros(6,6);

y(1,2)=1;

y(1,3)=P;

y(1,5)=-1;

y(2,6)=-1;

y(3,1)=1;

y(4,1)=-(-ah);

y(4,6)=-P;

y(5,6)=1;

y(6,3)=-ah;

y(6,4)=-1;

end

function[t]=iscolinear(x,y)

n=size(x,1);

z=x(2:n,1).*y(1:n-1,1)-x(1:n-1,1).*y(2:n,1);

t=(1==0);

if (norm(z)<10^(-14)*norm(x)*norm(y))

t=(0==0);

end;

end

I.4 Program to compute the Maslov index of solitary waves

The following routine is the implementation of the algorithm described in section 2.4.4, applied

to the case of the Kawahara equation.
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This routine takes the following inputs:

• h is the λ parameter at which Ihom(φ, λ) is evaluated.

• P is the parameter in Kawahara equation.

• a is a line matrix containing a(x) = 1 − (q + 1)φ(x)p evaluated every dx.

• ainf is the limit of a(x) when x→ ±∞.

• dx is the step size between each value of a(x).

The routine returns the following outputs:

• ek1,ek2 are the complex numbers (eiκ1 , eiκ2) associated to R[2](λ)−1U,

• mas is the Maslov index Ihom(φ, λ),

• ev is the Evans function.

function[ek1,ek2,mas,ev]=maslov_8(h,P,a,ainf,dx)

%This function computes the Maslov index in h for the operator

%Lu=u_xxxx - P*u_xx + a(x)*u.

%The vector gives the value of a on the interval ]-pi*eta, pi*eta].

%The matrix used to compute A2(x,lambda) was

%[[0,0,0,1];[0,0,1,P];[-a+h,0,0,0];[0,1,0,0]].

%

%mas gives the Maslov index at h.

%ev gives the Evans funtion at h.

%ek1(i) and ek2(i) gives the K function associated to the unstable space at

%x(i).

J=[0,0,1,0;0,0,0,1;-1,0,0,0;0,-1,0,0];

skip=1;

if ((ainf-(P^2/4))>h | (ainf>h & P>0))

[vc,vn]=eig([[0,0,0,1];[0,0,1,P];[-ainf+h,0,0,0];[0,1,0,0]]);

n=size(a,1)-1;

dx=skip*dx;

Ainf=mmatA2_4(P,ainf-h);

[vc,vn]=eig(Ainf);

jj=1;

sigma=zeros(6,6);

sigma(6,1)=1;

sigma(5,2)=-1;

sigma(4,3)=1;
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sigma(3,4)=1;

sigma(2,5)=-1;

sigma(1,6)=1;

% Computation of the eignevectors of the system at infinity //

for ii=1:6

if real(vn(ii,ii))<real(vn(jj,jj));

jj=ii;

end

end

d=vc(:,jj);

jj=1;

for ii=1:6

if real(vn(ii,ii))>real(vn(jj,jj));

jj=ii;

end

end

e=vc(:,jj);

e=e/(transpose(e)*(sigma*d));

s=vn(jj,jj);

AA=Ainf;

stable=d;

CC0=symbase(h,P)^(-1);

CC=eye(6,6)

ek1=(n/2+1:2*skip:(n-1))’*0;

ek2=(n/2:2*skip:(n-1))’*0;

inter1=0;

inter2=0;

f=CC*e;

Delta=sqrt(4*f(1,1)*f(6,1)+2*f(3,1)*f(4,1)-f(3,1)^2-f(4,1)^2);

ek1a=(f(1,1)+f(6,1)+Delta)/(f(1,1)+i*f(3,1)-i*f(4,1)-f(6,1));

ek2a=(f(1,1)+f(6,1)-Delta)/(f(1,1)+i*f(3,1)-i*f(4,1)-f(6,1));

ek1b=ek1a;

ek2b=ek2a;

r=0;



156 APPENDIX I. COMPUTER PROGRAMS

for ii=1:2*skip:(n-1)

ep=e;

inter=transpose(e)*sigma*stable;

ah=a(ii,1)-h;

AA(4,1)=-(-ah);

AA(6,3)=-ah;

f1=AA*e-s*e;

ah=a(ii+skip,1)-h;

AA(4,1)=-(-ah);

AA(6,3)=-ah;

aux=e+dx*f1;

f2=AA*aux-s*aux;

ah=a(ii+skip,1)-h;

AA(4,1)=-(-ah);

AA(6,3)=-ah;

aux=e+dx*f2;

f3=AA*aux-s*aux;

ah=a(ii+2*skip,1)-h;

AA(4,1)=-(-ah);

AA(6,3)=-ah;

aux=e+2*dx*f3;

f4=AA*aux-s*aux;

e=e+(2*dx/6)*(f1+2*f2+2*f3+f4);

r=r+1;

f=CC*e;

Delta=sqrt(4*f(1,1)*f(6,1)+2*f(3,1)*f(4,1)-f(3,1)^2-f(4,1)^2);

ek1b=(f(1,1)+f(6,1)+Delta)/(f(1,1)+i*f(3,1)-i*f(4,1)-f(6,1));

ek2b=(f(1,1)+f(6,1)-Delta)/(f(1,1)+i*f(3,1)-i*f(4,1)-f(6,1));

ek1(r,1)=ek1b;

ek2(r,1)=ek2b;

if (angle(ek1a)*angle(ek1b)<0) & (abs(angle(ek1a))<1)

inter1=inter1+sign(angle(ek1b)); %Intersections associated

%to the first angle.

end

if (angle(ek2a)*angle(ek2b)<0) & (abs(angle(ek2a))<1)
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inter2=inter2+sign(angle(ek2b)); %Intersections associated

%to the second angle.

end

ek1a=ek1b;

ek2a=ek2b;

end

mas=inter1+inter2;

ev=(transpose(e)*(sigma*d));

else

mas=NaN;

ev=NaN;

end

function[y]=mmatA2_4(P,ah)

y=zeros(6,6);

y(1,2)=1;

y(1,3)=P;

y(1,5)=-1;

y(2,6)=-1;

y(3,1)=1;

y(4,1)=-(-ah);

y(4,6)=-P;

y(5,6)=1;

y(6,3)=-ah;

y(6,4)=-1;

end

%Computation of a basis adpated to the stable and the unstable space.

function[y]=symbase(h,P)

J=[0,0,1,0;0,0,0,1;-1,0,0,0;0,-1,0,0];

ainf=1

h=0;

AINF=[[0,0,0,1];[0,0,1,P];[-ainf+h,0,0,0];[0,1,0,0]];

[vn,vp]=eig(AINF);

U=[real(vn(:,1)),imag(vn(:,1))];

S=[real(vn(:,3)),imag(vn(:,3))];

No=(U’*J*S)^(-1);
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V=[U*No,S];

y=zeros(6,6)

r=1;s=1;

for ii=1:4

for j=ii+1:4

for k=1:4

for l=k+1:4

y(r,s)=det(V([ii,j],[k,l]));

s=s+1;

end

end

s=1;r=r+1;

end

end

end

end
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