N
N

N

HAL

open science

Microscopic and Beyond-Mean-Field Constraints for a
New Generation of Nuclear Energy Density Functionals

Thomas Lesinski

» To cite this version:

Thomas Lesinski. Microscopic and Beyond-Mean-Field Constraints for a New Generation of Nuclear
Energy Density Functionals. Nuclear Theory [nucl-th]. Université Claude Bernard - Lyon I, 2008.

English. NNT: . tel-00413766v2

HAL Id: tel-00413766
https://theses.hal.science/tel-00413766v2
Submitted on 21 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-00413766v2
https://hal.archives-ouvertes.fr

N° d’ordre 141-2008 Année 2008

THESE

présentée devant

PUNIVERSITE CLAUDE BERNARD ~ LYON 1

préparée a I'Institut de Physique Nucléaire de Lyon
(UMR 5822 CNRS/IN2P3 — Université Lyon 1)

pour l'obtention du

DIPLOME DE DOCTORAT
(arrété du 7 aout 2006)

Spécialité : Physique Théorique

Présentée et soutenue publiquement le 24 septembre 2008

par

M. Thomas LESINSKI

TITRE:

Microscopic and Beyond-Mean-Field Constraints
for a New Generation of Nuclear Energy Density
Functionals

Directeur de these: M. Jacques MEYER

JURY: M. Guy CHANFRAY Président
M. Jacek DOBACZEWSKI
M. Hubert FLOCARD
Mme Héloise GOUTTE
M. Jacques MEYER Directeur
M. Karim BENNACEUR Co-Directeur
M. Michael BENDER } Tnvités
M. Thomas DUGUET

} Rapporteurs






Ackowledgements / Remerciements

I would first like to thank my advisors, Karim Bennaceur and Jacques Meyer, for
their support and the freedom that I enjoyed during the three years I spent as a
graduate student in Lyon. I should add Michael Bender and especially Thomas
Duguet to complete the list of people who provided me with an open, stimulating
and high-level work environment, however geographically scattered. A very special
mention should be made at this point of the quality and huge quantity of work
performed by Vincent Rotival, whom research will definitely miss, and which eased
my way through the work presented in Chapter 5 of the present (highly collective)
manuscript. I should also acknowledge Scott Bogner for his valuable help regarding
the work presented in the aforementioned chapter.

I also wish to thank every member of the Jury, especially its President Guy
Chanfray, Referees Hubert Flocard and Jacek Dobaczewski, and of course Héloise
Goutte, for taking the time of an in-depth reading and returning suggestions for
improvement. Let me here thank MM. Duguet and Bender a second time and apol-
ogize for their “guest” status, due to an optimization performed under administrative
constraints.

This thesis was prepared among the Theory group of the Institut de physique
Nucléaire de Lyon, whom I am grateful for their hospitality. The same applies to
the Espace de Structure Nucléaire Théorique at the Service de Physique Nucléaire
of CEA-Saclay, as well as the Theory group of the National Superconducting Cy-
colotron Laboratory at Michigan State University, which both welcomed me on the
occasion of several extended stays. Thanks for their time and hospitality go to the
nuclear theory group at INFN Milan, especially Alessandro Pastore.

Bien évidemment, je me dois de remercier toutes les personnes qui font tourner
I'TPNL, notamment Lucille Chosson (en lui souhaitant une bonne retraite) et Sylvie
Florés, souligner en particulier I'efficacité et la disponibilité du groupe Informatique,
notamment Clément, Thierry Olivier, et les “fréres Grid” Yoan et Guillaume. Mon
expérience a I'TPNL n’aurait pas été la méme sans la bonne humeur de ses Thésards,
toutes generations confondues. Un grand merci, donc, a Charbel, Clément (x2),
David, Elizabeth, Emilie, Fabien, Federica, Hubert, Olivier, Thibaut, Thomas, et
ceux et celles que j’ai oublié !

Cette thése fut financée par une allocation de recherche du Ministére de 'Edu-
cation Nationale, de la Recherche et de la Technologie, augmenté d'une allocation
de monitorat de I'Université Claude Bernard Lyon 1, ainsi qu'un AP théorie de
I'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3).






Contents

[1_Introduction 11

[2 Overview of Nuclear Structure Theory 15
i i 15

15

[2.1.2  Sinele- r)artl('le Green S fun(‘tloﬂ ................. 17
[2.1.3  Perturbation theory (or lack thereof) . . . . . .. .. .. ... 20

2.2 Enerev Density Functional formalisml . . . . . . . . . . . . . . .. .. 21
2.2.1  Mean-field theorv and pairing . . . . . « o oo 21
[2.2.2  Density functional theorsd . . . . .. . . . . ... ... . ... 27
[2.2.3  Sinele- and multi-reference EDF methodd . . . . . .. . .. .. 29

i jonal . ... ... ... .. ... 34

Quasi-local energy density functiopal . . . . . . ... ... .. 34

12.3.2 _Skvrme energy functional in spherical symmetryl ........ 40

13.1 Constraining the isovector effective masd . . . . . . . . . . . . .. .. 46
B.1.1 _Fitting protocal . . . . . . ... 48
13.1.2  Elementary properties of studied functionald . . . . . . . . .. 48

ter BQS . . . ... 50
3.1.4 FEffects on properties of nucled . . . . . . . . . . ... ... .. 51

3.2 Further study of infinite matted . . . . . . . . .. . ... ... ... . 56

13.2.1 %narahon of the EOS 1n’r0 (S, T) (‘hanneH ........... 56

4.2.1  Properties of tensor terms in spherical svmmetrd . . . . . . . 73
14.2.2 A brief history of tensor terms in the central Skyrme EDH . . 75
423 Generalvemarkd . . . . ... 77
4.2.4 The fit protocol and procedurd . . . . . . . . 77
14.2.5 General properties of the fitd . . . . . . . . . ... ... ... 80
K43 Resultsand discussioll . . . ... ... ... 82
14.3.1 _Spin-orbit currents and potentialsl ................ 82
14.3.2  Sinele-particle energied . . . . . . ..o 87




6 CONTENTS

5 Ab-Initio D Y f Nucl E..l 117

5.1 Pairing and superfluidity in many-fermion systemsl ........... 117
5.1.1  BCS theory . . . . . . . 118
5.1.2 Experimental evidence and observabled . . . . ... ... ... 120
15.1.3 Trends in pairing qapsl ...................... 124
5.1.4 _ Microscopic theorst . . . . . . ... ... 124

5.2 Ab-initio input for the pairing EDH . . . . . . . ... ... ... ... 129

5.2.1 _The View low-momentum NN interactionl . . . . . ... ... 130
5.2.2 _Separable representation and finite nuclei . . . . . . . ... .. 131
|5.3 A Separable Representation of the NN 1Qrcd .............. 134
5.3.1 _Parametrization and fit procedurd . . . . . . . ... ... ... 134
B3o Fitd ... 137

5.3.3  Separable approximation of the Coulomb interaction . . . . . 140

6NN Pairing: Bare Force at First Qrdex 143
6.1 Firstresultd . . . . ... 144

I6.2  Charge symmetrv and Coulomb interaction . . . . . . . . . . . . . .. 146

6.3 Effect of View s renormalization scald . . . . . o oo 148
|ﬁ._4 Summary and QnLIQle .......................... 152

I7_Conclusion 155

Appendix 159
mmnngmmmf_wnﬂ 161
IB_Separation of the energy into (S,7) channels 165

|C_P-H Potentials and Residual Interaction 167
IC1 Principld . . . .., 167
[C2 Definitiond . . . . . . .. 168
IC.3_Potential and Residual Interaction . . . . . . o v oo 170

IC.3.1  Local. densitv-dependent terms . . . . . . . . . . . ... ... 171
IC.3.2 Non-local (effective-mass and current) termd . . . . . . .. .. 171
[C4 Infinite matted . . . . . . . .. 172
IC.4.1 _Parameterization of the residual interaction . . . .. ... .. 172




CONTENTS 7

IF_Separable Force in Spherical Symmetry 185
. . - ; 185

187
187
187
i 188

IF.2.4 Pairing fieldd . . .. ... ... .. ... 190

IF.3_Evaluation of Bessel-form factor integrald . . . . . . . . ... ..... 191
|F 3.1 Simple Gaussian form facto;l ................... 191

IF.3.2  Gaussian x polvnomial form factod . . . . . . . . . .. . ... 191
IF.3.3 Coulomb expansion form factod . . . . . . . . . . . ... ... 192

|E 4 Some useful expressignsl ......................... 192
|G _Spherical Bessel Function Basis 195




CONTENTS



List of Abbreviations

ANM
BCS
BHF
COM
CSB
DBHF
DFT
DME
EBHF
EDF
EOS
GCM
GDR
GMR
HF
HFB
INM
ISGMR
IVGMR
IVGDR
LCS
LDA
MR-EDF
NN
NNN
OES
PNM
QRPA
RG
RH
RMF
RPA
SR-EDF
SNM
TRK
VCS

Asymmetric nuclear matter
Bardeen-Cooper-Schrieffer
Brueckner-Hartree-Fock

Center-of-mass

Charge-symmetry breaking
Dirac-Brueckner-Hartree-Fock

Density functional theory

Density matrix expansion

Extended Brueckner-Hartree-Fock
Energy Density Functional

Equation of state

Generator coordinate method

Giant dipole resonance

Giant monopole resonance

Hartree-Fock

Hartree-Fock-Bogolyubov

Infinite nuclear matter

Isoscalar giant monopole resonance
Isovector giant monopole resonance
Isovector giant dipole resonance

Lowest canonical state

Local density approximation
Multi-reference energy density functional
Nucleon-nucleon (interaction/scattering)
Three-nucleon (interaction/scattering)
Odd-even staggering (of binding energies)
Pure neutron matter

Quasiparticle random-phase approximation
Renormalization group

Relativistic Hartree

Relativistic mean field

Random-phase approximation
Single-reference energy density functional
Symmetric nuclear matter
Thomas-Reiche-Kuhn

Variational chain summation



10

CONTENTS



Chapter 1

Introduction

Although the very idea that the positive charge of an atom could be concentrated in a
small volume at its center was first proposed by Nagaoka [Nag04], it was Rutherford
[Rutil] who gave evidence for this by interpreting the experimental results which
Geiger and Marsden obtained by impinging alpha particles on a gold foil [Gei09].
From this point on, the physics of atomic nuclei progressively emerged as a distinct
domain from atom physics. However, knowledge of the true composition of nuclei
could not be achieved before the discovery of the neutron by Chadwick [Cha32].

A subsequent step was made with the discovery of nuclear fission [Mei39], which
showed that quantum tunneling could happen for heavy systems, and gave rise to the
description of nuclei and their motion through the liquid drop model [Boh39]. The
nucleus was thus understood as a system dominated by collective behavior. This
view was supported by the saturation of binding energies per particle, indicating
that the interaction between nucleons was short-ranged and extremely strong. As
a consequence, quantum correlations were expected to be important. Indeed, after
Yukawa’s seminal work [Yuk35], the nuclear interaction appeared, in addition to be-
ing particularly difficult to understand from first principles, as a non-trivial potential
exhibiting a repulsive core even stronger than the attractive part and important spin

dependence [Mac89D).

However, it also became known that some nuclei were more bound than their
neighbors, causing irregularities on the mass table at well-defined neutron and proton
numbers. These “magic numbers”, as Wigner called them [Mos96], were explained
by Goeppert Mayer via an independent-particle shell model relying on strong spin-
orbit coupling for the reproduction of their experimental sequence [GM48] [GM49],
achieving as well to explain the majority of nuclear spins known at the time [GM50al,
[GM50D).

The mechanism by which a hard-core interaction can bind many-body systems
was due to Brueckner [Bru54b, Brub54a, Bru55b], Bethe and Goldstone [Bet56,
Bet57, [Gol57]. The reconciliation of collective and single-particle approaches to
nuclear structure ensued through the definition of an effective interaction arising
in the medium from short-range quantum correlations and useable in a mean-
field picture [Foc30], where each particle moves independently in the potential
created by the average effect of the others acting through the effective interac-
tion [Bru55d|. The linked-cluster expansion [Brub5al, Bra67] could then extend the
mean-field picture to include correlations not re-summed in the effective interaction,
and be incorporated in the general framework of many-body perturbation theory
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[Abr63, Noz63|, [Fet71] to provide, in principle, an ab-initio description of
both single-particle motion and many-body, collective effects in nuclear structure.
From then on, distinct approaches to independent-particle models for nuclear
structure emerged. First, models for the nucleon-nucleon interaction in the vac-
uum were gradually improved [Ham62, [Rei68), [Lac80L Wir84, [Mac87| and used in
Brueckner calculations of nuclei [Bec68, Bec74] as well as Brueckner and variational
calculations of nuclear matter [Day78|. Nuclei proved stubborn in their habit of
coming underbound and too small out of these calculations, while the saturation
point of nuclear matter was similarly underbound and occurred at too high a den-
sity compared to its empirical position. Coester et al. [Coe70] proved that two-body
potentials adjusted on the same nucleon-nucleon scattering data could not reproduce
the empirical saturation point. The missing piece was later identified as the three-

nucleon force [Pan79, [FTi81], the existence of which had been previously
expected from field-theoretical considerations [Loi67].

Second, shortly after Brueckner’s papers, appeared the idea that one could de-
vise simpler effective interactions based on more phenomenological grounds. Skyrme
proposed such an effective Hamiltonian consisting of a two-body, velocity-dependent
contact interaction and a matching three-body contact interaction [Sky56], Bel56]
[Sky58al, Sky58b]. The latter was supposed to mimic the medium dependence of
Brueckner’s effective force more than to reproduce the physics of a bare three-body
force. However, Skyrme’s idea came to use only later [Vau72|, being quantita-
tively motivated as an approximation to a more realistic effective interaction by the

density-matrix expansion method [Neg72l, [Neg75|.
Attempts were also made at finding a potential which could bind nuclei and pro-

vide saturation of nuclear matter without needing a hard core for that task [Tab64,
Bri67, [Gog70]. Such a potential could be employed directly in an independent-
particle framework, or in a low-order perturbative expansion where correlations
would bring a mere correction to the nuclear wave function, binding energy and
other observables. This idea, in the form then envisioned, reached its limits. How-
ever, a soft force, augmented by a term depending on the density, was proposed as
an approximation to an in-medium effective interaction by Gogny et al. [Gog75al
Dec80), Ber91]. It became the other highly successful non-relativistic nuclear mean-
field model, if less widely used than Skyrme’s one, due mainly to its higher numerical
cost.

An account of nuclear mean-field models would not be complete without a men-
tion of approaches involving effective relativistic Lagrangians, initiated by Walecka
[Wal74]. In this model, nucleons interact by exchanging pions and the semi-phen-
omenological sigma meson. Other degrees of freedom have since been added, aiming
at providing better nuclear phenomenology.

Let us now come back to Skyrme’s interaction. The latter included quadratic
velocity-dependent terms to simulate the range and non-locality of the in-medium
effective interaction, and its spin-isospin content was controlled by spin-exchange
operators, spin-orbit and tensor terms. A number of parameters thus had to be
determined. Given the rather schematic link between a microscopic effective inter-
action and Skyrme’s one, achieving predictive power required fitting the parameters
on a set of relevant data. Early choices included the binding energies of stable

or exotic nuclei [Bei75bl [Ton83) [Dob8&4] and the energies of excited states such as
collective vibrations [Kri80L [VGS8I]| or fission barriers |[Bar82a]. Indeed, Skyrme’s
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interaction could be successfully used not only to calculate static observables but

also collective excitations and nuclear reactions [Eng75], Neg82], [Kim97].

The concept of radioactive ion beams, first pioneered by Kofoed-Hansen and
Nielsen [KH51], was later implemented in increasingly capable and numerous facili-
ties, starting from ISOLDE at CERN, activated in 1967, and culminating with the
many dedicated research centers active today, which employ either isotope separa-
tion on line (ISOL) or in-flight fragment separation techniques to produce beams of
short-lived isotopes. Work performed at these facilities allowed to measure proper-
ties of increasingly unstable nuclei. Naturally, these new data spurred theoreticians
to improve the predictive power of available models by adjusting new parameter sets
[Re195] [Rei99, Bro98|. With the growing attention paid to the neutron-rich side of
the chart of nuclides, it was also realized that experimental data alone could not
bring enough constraints on models and that ab-initio calculations could supplement
them, when available, for experimentally unreachable systems such as neutron mat-
ter [Wir88, [AkmO98], which, together with data measured for stable nuclei, exerts a
strong lever arm on properties of the most neutron-rich ones. Parametrization of
Skyrme’s interaction built according to these principles by the Saclay-Lyon collab-

oration [Cha97, [Cha98] are still widely used today.

Nowadays, the steady progress of available computational power allows to per-
form calculations extending the mean-field framework and considering collective cor-

relations in ground and excited states [Bon90), [Taj93b| [Val00] on a more systematic
basis [Ben06al, Ber(7, [Ter08]. One might thus expect an increase of accuracy, which,
however, is taking a long time to come. Contemporary use of Skyrme-mean-field

theory is itself put into question concerning its very interpretation as relying on a
Brueckner-like effective interaction. Strong resemblances have been found, indeed,
with density functional theory, a powerful tool commonly used in condensed-matter
physics, which allows in principle to re-sum all quantum correlations present in a
range of many-particle systems within a universal functional, giving rise to an ef-
fective theoretical description by means of independent particles. Using such a for-
malism for nuclei, though, involves extending it to self-bound, symmetry-breaking
systems where single-particle and collective motion are tightly intertwined and both
have to be treated explicitly. As a result, in parallel to studies aiming at improving
the agreement of the model with experimental data and/or ab-initio calculations, a
more formal work is underway to find a rigorous and consistent formal motivation
of the method.

The present work is an attempt at improving the predictive power of the “Skyrme
interaction” model of nuclear structure. More specifically, our aim is to use the ever-
growing amount of data, coming either from experiments, first-principle calculations
or microscopic theory of the nuclear interaction itself, to devise new inputs and
constraints to be used in the construction of the next generation of models. Most
of the following will stay at the mean field level, the precise meaning of which is
specified in chapter Bl but we shall, as much as possible, try to keep in mind the
necessity to extend our calculations by the addition of collective correlations.

In a first part, we focus on the physical meaning and effect of particular parame-
ters of the Skyrme force, dealing first, in chapter B, with the momentum-dependence
of the mean field and its evolution in neutron-rich nuclei. The spin-isospin content of
the force is also studied at this point, both statically, by examining the contribution
of different channels of the interaction to the binding energy, and dynamically, by
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studying the response of infinite matter, used as a model system, to various pertur-
bations. In will be shown that pathologies of the model can thus be pointed out, and
solutions will be proposed. Then, in chapter @l we add a tensor interaction to the
model and study the impact of its parameters on nuclear observables. Single-particle
energies, total binding energies and density distributions are considered.

In a second part, we focus on the description of pairing in our model, by making
a direct connection with the bare nuclear interaction. In chapter Bl after a brief
review of the matter, we detail the formalism and interaction model we use. Then
in chapter [6l we perform and study systematic calculations of spherical nuclei across
the nuclide chart, discussing the comparison of our results with experimental pairing
gaps, giving clues as to the physical origin of nuclear pairing in terms of many-body
theory, assessing the importance of the Coulomb interaction in this specific case as
well as the care needed when using various bare nuclear-interaction models as an
input to our calculations.



Chapter 2

Overview of Nuclear Structure
Theory

2.1 Microscopic theory of nuclear structure

Although effective and empirical models have known some success in the theory of
atomic nuclei, the quest for a description of the latter from first principles is both a
long-standing and current topic of research. As the focus of nuclear theory is, more
than ever, on the description of nuclei lying at the fringe of experimental capabilities,
the motivation for achieving this is strong.

Let us first specify what we call first principles. The most microscopic theory
conceptually applicable to nuclei is the relativistic, non-perturbative Lagrangian of
quantum chromodynamics (QCD) ruling all hadronic systems. The latter is most
useful, however, at energies above the GeV scale, where asymptotic freedom makes
perturbation theory useful again, and for systems made of a few valence quarks which
can be simulated thanks to lattice techniques. At lower energies, an effective theory
can be built which involves only the physical, observable (i.e. colorless) degrees of
freedom: baryons (nucleons and their excitations) and mesons.

This brief foray into the realm of particle and hadron physics allows us to discuss
the very first difficulty faced by the study of nuclear structure as an application of
quantum many-body theory: the basic Hamiltonian. Practical applications require
to treat neutrons and protons as pointlike particles (further reducing them to differ-
ent states of a single object, the nucleon) interacting via some potential, the theory
of which, owing to the compositeness of hadrons and the complexity of their struc-
ture and dynamics, is the subject of vast literature. Let us simply mention several
relevant facts and assumptions.

2.1.1 The Nuclear Hamiltonian

The notion of a Hamiltonian acting on the sole nucleonic degrees of freedom relies
on the hypothesis that the structure of the nucleons, as well as the details of the
processes generating the interaction between them, are irrelevant for the study of
low-energy processes. Also, the assumption is made that a non-relativistic descrip-
tion of the system, neglecting anti-nucleon degrees of freedom and assuming the
usual quadratic expression for the kinetic energy, is valid. The latter is reasonable
for 940 MeV-mass particles evolving at about 50 MeV kinetic energy in the nucleus.

15
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Apart from a kinetic term, a realistic Hamiltonian also comprises, at least, two-
and three-body interaction terms. The basic experimental input used to determine
the two-nucleon interaction is nucleon-nucleon scattering differential cross sections.
A large amount of data are available for neutron-proton and proton-proton scattering
[SAIL Nij], while some essential features of the neutron-neutron interaction can be
obtained in more model-dependent ways. The assumption is made that isospin
symmetry is weakly broken, i.e. the potential can be described by a first part which
is the same for all combinations of nucleons (Vi, = V,, = Vip) to which one adds
a correction breaking charge independence (Vi, = V},, # V;,) and an even weaker
correction breaking charge symmetry (o, # V,p). The probability amplitude of
a transition from initial relative momentum k' to final relative momentum k for a
pair of nucleons at energy FE is expressed by the T-matrix obeying the Lippmann-

Schwinger (LS) equation ([Bro76], see also appendix [D.1.2]).

The current leading potential models rely on an effective meson-nucleon La-
grangian. The potential is defined, in this case, as the sum of diagrams entering the
scattering amplitude which are irreducible by cutting a pair of nucleon propagation
lines [Mac89b]. The repulsive core is either produced by heavy-meson exchange
[Mac01] or modeled by phenomenological terms [Wir05]. Scattering data suggest
that the interaction is attractive at low energy, while repulsion dominates the scat-
tering of particles having a kinetic energy in the laboratory frame FEi,, = h*k"?/m >
250 MeV, where m is the nucleon mass. At FEj,, > 350 MeV, pion production be-
comes significant, which indicates that the nonrelativistic NN Hamiltonian picture is
inappropriate. Hard-core potentials, however, have non-vanishing matrix elements
well into this domain, which is a consequence of the requirement to keep a (mostly)
local, i.e. velocity-independent potential. Is is thus obvious that this part of the
interaction models is purely effective. In fact, the choice of high-momentum matrix
elements of a potential is quite arbitrary and weakly constrained: models of the NN
interaction having different matrix elements due to varying choices for the repulsive
part yield the same low-energy scattering observables, having been fitted to them.

The above considerations have led to devise a method to produce a universal
potential that would not involve any uncontrolled high-energy physics. This was
achieved using renormalization group equations [Bog01], and will be further studied
in chapter Bl Moreover, a new approach to building NN potentials has been put
forward, relying on chiral effective field theory (EFT) [Ent03, [Epe03], i.e. an effective
Lagrangian including nucleon-pion, pion-pion and nucleon-nucleon contact terms,
constrained by chiral symmetry, an essential feature of QCD. This approach allows a
systematic, stepwise construction of the potential through a perturbative expansion,
which allows to control its accuracy. Moreover, this method has the advantage of
naturally producing consistent two-, three- and four-body potentials.

Indeed, a complete description of the nuclear Hamiltonian must include a short-
range three-body (NNN) interaction, which is necessary, as a complement to the
NN interaction obtained from scattering analysis, to obtain correct saturation prop-
erties of nuclear matter [Lag81] and accurate spectroscopy of light nuclei [Pud95,
[Pie01D]. Several models thus exist also for the three-nucleon interaction [Gra89,
[Pie0Tal, while current work on the subject focuses on obtaining NNN poten-
tials consistent with the field-theoretical content of NN ones [Epe07], [Li08].

Starting from the Hamiltonian detailed above, an ab-initio resolution of the many
problem can be undertaken for light and, nowadays, some medium-mass nuclei. For
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systems of three and four nucleons, the Faddeev and Faddeev-Yakubovsky equations
can be employed, while A < 12 systems can be treated using quantum Monte-Carlo
theory [Pud9d, Pie01b|, while the no-core shell model, i.e. diagonalization in a
full A-body model space [Bog08a], reaches A = 16, (or A = 40 [Rot07a] with a
disputed approximation). Finally, the coupled-cluster method has been employed
in doubly-magic nuclei up to A = 48 [Hag07, [Hag08].

Interacting shell model calculations, which describe correlations explicitly al-
beit in a reduced model space, implying to “freeze” deeply-bound nucleons [Can05],
are based on microscopically-derived effective Hamiltonians. However, they require
slight readjustments of the latter to become accurate [Hon02) BroO6h|, and are lim-
ited to nuclei up to the fp-shell or lying in the vicinity of closed shells [Cor(2].

Beyond lies the realm of effective models. Energy density functional models
based on empirical effective interactions allow to treat the majority of nuclides and
calculate a variety of observables with a single, reduced parameter set. However,
their effective nature means that the meaning of some of the results obtained with
them leaves room for interpretation. It is thus useful to put forward some elements
of comparison with microscopic many-body theory.

2.1.2 Single-particle Green’s function

A recurrent subject of discussion in the following of this work will be single-particle
energies. As this section deals with microscopic many-body theory, let us give a
short overview of single-particle motion in correlated systems, as understood from
Green’s functions, and the assumptions underlying EDF theory.

Let us define Fock-space operators éL corresponding to a an arbitrary set of
single-particle basis states |k) (which can correspond to coordinate-, momentum or
configuration-space, but contain all degrees of freedom including spin and isospin —
the latter shall not be made explicit or discussed in this part), and their Heisenberg-

representation counterpart éL(t), with
et = ettt el e At (2.1)

These operators allow to define a single-particle Green’s function (or propagator)
written as a matrix in the above representation

Gkt 1t = i <<I>0(A) ‘T [ék(t) é}(t/)] ) <I>0(A)> , (2.2)

7 being the time-ordering operator, and |®(A)) the ground state of the considered
A-body system (we shall not go into the details of working with two particle species
in this section). An important property is the relation between G(kt;[t') and the
density matrix,

G(k0;107) = G(k0~;10) = —ip, (2.3)
G(k;O,lO*) = G(/{?0+,l0) = i<5kl_pkl)7 (24)

The time variable introduced above is of little use for stationary problems. In this
case, G depends on t — t' only and one can perform the Fourier transform to the
energy representation. As of now, we shall measure energies from the Fermi level A
defined as a chemical potential

0&0(A)

e (2.5)



http://link.aps.org/abstract/PRL/v74/p4396
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nucl.51.101701.132506
http://www.sciencedirect.com/science/article/B6TVB-4RGFCWR-1/1/43d0ea0079338458c1a70de9dc11993a
http://dx.doi.org/10.1103/PhysRevLett.99.092501
http://link.aps.org/abstract/PRC/v76/e044305
http://dx.doi.org/10.1103/PhysRevLett.101.092502
http://dx.doi.org/10.1103/RevModPhys.77.427
http://dx.doi.org/10.1103/PhysRevC.65.061301
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.65.051306

18 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORY
The transform reads
Gk, liw) = / dt G(kt; It') A=) (2.6)
G(kt;lt") = / ;l—i: Gk, I; w) e”{OF)E=t), (2.7)

The single-particle Green function describes the propagation, in the considered sys-
tem, of an additional particle or of the hole produced by the removal of a particle. It
thus contains information on the excitation spectrum of A+1 and A— 1-particle sys-
tems. This can be made explicit thanks to the spectral, or Lehmann representation
of G. Defining the particle and hole spectral functions, respectively,

Stk Lw) = D (Po(A)|éx] @, (A + 1)) (0, (A+1)[¢]|Bo(A))

v

X 8 (E,(A+1) — E(A) —w — A), (2.8)
STk Lw) = > (Bo(A)[e]|D,(A = 1)) (D, (A — 1)|cx|Do(A))
B S(ENA=1)=E(A) —w—N), (2.9)

where we introduce ®,(A #+ 1) as the v excited state of the system with A &
1 particles, £,(A £ 1) being the corresponding energy, allows to write the Green
function as

. . ' STk, 1w S™(k,1:w)
Gk, w) = z/dw [_w—w'—i() -l (2.10)

The ground-state wave function of an A-body system ruled by a single-particle
Hamiltonian (let us write it Hy) is a Slater determinant, i.e. an antisymmetrized
product of occupied (hole) states. These hole states belong to the eigenstates of ﬁo,
which also comprise empty (particle) states. Let us choose, as the representation
|k) used above, the eigenstates of H,. Adding or removing a particle on such a state
yields another eigenstate of Hy. It is easy to see that the spectral functions then are
Dirac functions, and that the Green function reads

N Or(p) Or(h)
Gk, lw) = 0 Wi w—2—i0ot]’ (2.11)
where 0y, = 1 if |k) is a particle state, 0 otherwise, the converse being true of 5,
and the single-particle energy £ used in the denominator is given by the condition
Hylk) = £9|k), while &) = £ — \.

If the Hamiltonian H contains an interaction term, its ground state can be
expected to contain correlations corresponding to the coherent motion of the inter-
acting particles. In this case, the analytical structure of the Green function is non-
trivial, yet it can be expressed in a compact form by introducing the mass operator
INoz63|, or proper self-energy [Fet71] X(k,w) (hereafter called simply “self-energy”),
for which approximations will be discussed below. For the sake of simplicity, we
assume that there exists a representation where the Green function is diagonal for
all energies. It is the case in infinite nuclear matter (momentum representation),
but the case of finite nuclear systems may be more complicated. This is, anyhow,
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beyond the scope of the present discussion. Therefore, let us give the expression of
G in this case:

N Ok (p) 3 Ok(n)
w—=gp—Y(kw)—i0"  w-—2 —3(kw)—i0t

G(k,l;w) = 5kl . (212)
The mass operator is, in general, a complex function. The pole of G(k, k;w) thus
occurs for w = wy, = & — i['y, which is a solution of wy, = €} + X(k,wy). In infinite
matter, the Green function can be decomposed into a pole part and a background
part

2(k)

W — Wk

Gk, lw) = —6n + Gga(k, l;w) (2.13)

where z(k) is the residue of G at wy,

) = ll_az(k;,w)

-1
o w:wj . (2.14)

The imaginary part I'y is a measure of the correlations present in the system insofar
as its non-vanishing value means that no single-particle state é,t|(1>0) is an eigenstate
of H. As for the elementary excitation spectrum, it is given by the real part g.
Neglecting the imaginary part of X(k,w) (along with setting z(k) = 1) thus allows
to recover the quasiparticle picture.

Single-particle spectrum and effective mass

The single-particle spectrum of a nucleus usually has a non-trivial structure. A
essential feature, though, is its density, i.e. the number of levels per unit energy. This
is related to the dispersion relation of particles in the medium, which depends on
the momentum- and energy-dependence of the self-energy. This is measured by the
Landau mass m*, usually expressed in infinite matter (k then being the momentum
of the particle and £? its kinetic energy), which describes the derivative of the single-
particle energy (s.p.e.) with respect to the single-particle (s.p.) momentum.

(2.15)

m* 1 m d RE(k, w,) -
k dk ’

m

where R denotes the real part. This quantity integrates the effects of the explicit
momentum-dependence of the self-energy, described by the k-mass m,

3=

_ m 0 RE(k,w)
= [H?T

]_ (2.16)

and its energy-dependence, characterized by the e-mass m,

ORT(k,w)

= 1
ow

= z(k)™! (2.17)

313

(2.18)
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The s.p. spectrum density is thus a consequence of both the momentum-dependence
of the “mean field”, or self-energy, and its energy dependence. The latter arises from
quantum correlations present in the system, which will not be explicitly included (by
definition) in the independent-particle picture necessary to describe heavy nuclei.

2.1.3 Perturbation theory (or lack thereof)
According to the Gell-Mann-Low theorem [GM51], an eigenstate |®) of a Hamilto-
nian

H = Hy+V (2.19)

can be obtained from an eigenstate |®0) of H, by applying the perturbing operator
V' adiabatically, i.e.

U/ (0, —00)| %)
(PUL(0, —00)|9%) [y

e—0

D) (2.20)

where U;(t, t') is the time-evolution operator in the interaction picture for the Hamil-
tonian H(t) = H + exp(—e€|t]) V .

The evolution operator U!(t,#') can in principle be expanded in powers of the
interaction V, which is the basis of diagrammatic analysis techniques INoz63, [Fet1].
However, this expansion diverges for local NN potentials due to their repulsive core,
iterated tensor component and bound state.

The Brueckner-Bethe-Goldstone (BBG) approach can be formulated as a recast
of the perturbative expansion in terms of an effective NN vertex [Jeu76l, [Bal(O7al.
Indeed, the problematic short-range properties of the interaction can be taken into
account by performing the re-summation of diagrams which describe the scattering
of a pair of particles in the medium. Compared to the vacuum case, the latter is mod-
ified by the Pauli exclusion principle, which blocks the lowest-energy intermediate
states, the individual interaction of particles with the medium in the intermediate
states, and the three-body force, which is usually treated by averaging over the third
particle, yielding a medium-dependent two-body interaction.

An alternative scheme employed in self-consistent Green function approaches to
nuclear matter is the Feynman-Galitskii T-matrix approximation [Mut05|], which
differs from the BBG scheme by the re-summation of hole-hole scattering processes,
as shown on Fig. 211

Both schemes, because of the intermediate particle/hole propagation lines, yield
results depending on the starting energy. This means, in particular, that an energy-
dependence is present, e.g. in the self-energy X (k,w) whenever such an effective
vertex is used.

Once the re-summation underlying the scheme chosen has been performed, di-
agrammatic analysis can be performed with the effective interaction used as an
elementary NN vertex, attention being paid to double-counting of diagrams gener-
ated by the BBG or Feynman-Galitskii expansion. Fig. displays several possible
diagrams entering the self-energy. The first line contains the first diagrams of the
hole-line expansion practiced in BBG theory. The first term of each series is akin to
the Hartree-Fock self-energy (hence the name Brueckner-Hartree-Fock approxima-
tion, or BHF), but it must be kept in mind that the G-matrix is energy-dependent.
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Figure 2.1: Schematic presentation of diagrams re-summed in a Brueckner G-matrix
and Feynman-Galitskii T-matrix effective interactions. Whereas the
G-matrix only sums particle-particle “ladders”, the T-matrix treats
particle-particle and hole-hole scattering on an equal footing, yielding
additional diagrams.

The two-hole-line diagram for the particle self-energy is commonly referred to as a
rearrangement term, since it can be obtained by cutting an intermediate propagation
line in the BHF total energy diagram.

The second line of Fig. gives diagrams describing the coupling of particles
with collective vibrations described by the polarization propagator (or response func-
tion) II, here defined in the ring, or random-phase approximation (RPA), which
shall be discussed in chapter This whole contribution is usually not taken into
account in infinite matter studies, where the three-hole-line approximation yields
well-converged results [Son98| but has been shown to modify the single-particle
spectrum significantly in finite nuclei, where surface vibrations play a particular
role [Ber80), [Lit06].

2.2 Energy Density Functional formalism

The Energy Density Functional (EDF) method is frequently cited as the most general
theoretical tool in low-energy nuclear physics. Indeed, it is a microscopic tool, in the
sense that it fully takes into account the quantal shell structure of the nucleus, as
well as collective effects when extended to its multi-reference variant. At the same
time, it is tractable for nuclei going from medium masses to the heaviest ones, as
well as nuclei in the crust of neutron stars, the same values of the reduced parameter
set associated with the functional being useable for all these systems.

Let us first describe the mean-field approximation which serves as a formal basis,
then the EDF method itself.

2.2.1 Mean-field theory and pairing

It has been known, since the work of Bohr, Mottelson and Pines [Boh58§|, that
nuclei have common features with superconductors, and that the clear signatures for
pairing between nucleons of the same species abound, from the odd-even staggering
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Figure 2.2: Schematic presentation of diagrams entering the self-energy 3 (k,w). (a)
One-hole-line (BHF) and two-hole-line contributions for particle states,
(b) same for hole states. (c) Particle-vibration coupling contribution.
The polarization propagator II is defined in (d); for particle states, the
second-order term has to be substracted, being already included in the
BHF self-energy.

(c) (d)

of binding energies to rotational properties.

In this section we shall describe the Hartree-Fock-Bogolyubov formalism, which
allows to describe pairing in a mean-field approach and is the starting point of the
EDF method. We direct the reader to classic textbooks [Rin00} [Fet71] for a discus-
sion of the Hartree-Fock (HF) method it extends and the various derivations and
interpretations of the latter. A more thorough discussion of pairing, superfluidity,
associated nuclear observables as well as the relevant microscopic theory is contained
in chapter Bl

Bogolyubov transformation

Our basic tool to describe the pair condensation phenomenon, while remaining in a
framework as easily tractable as the independent-particle (HF) approximation, is the
generalized quasiparticle (q.p.) concept. Following the introduction of the Bardeen-
Cooper-Schrieffer (BCS) formalism [Bar57al Bar57h|, Bogolyubov and Valatin pro-
posed a canonical transformation which allows to treat elementary excitations of a
superfluid state as individual degrees of freedom [Bog58| [Val58|. The fully paired
ground state of the system is thus a vacuum with respect to the operators

Bo= Surd+vta (221)
!
B = Y UMa+ Ve (2.22)
l
where ¢; and élT are the annihilation and creation operators corresponding to an
arbitrary representation, as already mentioned in the last section.

The vectors UF and V}* fully parametrize the quasiparticle states as well as the
vacuum |®¢) defined by the requirement that Vk §;|®¢) = 0. In the case of vanishing
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pairing correlations, we have U* = 0 for hole states and V¥ = 0 for particle states.
Otherwise, pairing correlations are introduced by mixing particles and holes. In the
case of a continuous spectrum, this results in the vanishing of the discontinuity of
occupation probabilities at the Fermi level.

It is useful to examine the structure of the Bogolyubov transformation. Let us
write it under matrix form, arranging the operators ﬁAk and ¢, into vectors, then
“super-vectors” containing both creation and annihilation operators:

~

(ﬁﬁT) :WT(;T). (2.23)

The transformation matrix VW can be decomposed, according to the Bloch-Messiah-
Zumino theorem [Blo62], as

D 0 UV c 0
W‘(o D*)(VU)(O C*)' (224)
This expression involves two transformations of creation and annihilation operators
among themselves. The first one, D, transforms the initial basis into the set of

canonical states among which the Bogolyubov transformation takes a simple form.
The matrices U and V, have, themselves, the structure

U:<82), V:<—ng) (2.25)

where we split the canonical basis in two halves. Hereafter the states belonging to
the two halves will be distinguished by the notation k& for the first and k for the
second one, when necessary. The notation k will refer to the state associated with
|k) in the Cooper pair. The second block of the W-transform performs the mixing
of particles and holes to generate a set of quasiparticles defining the vacuum |®y).
The sub-matrices v and v are diagonal, we call u; and v; their eigenvalues, with
Upp = up = Up, = up and Vig = v = =V = —vp.

Finally, the C' transformation produces a different set of quasiparticles. This last
transformation can be used to diagonalize a single-quasiparticle Hamiltonian, as will
be discussed in the following.

In the representation ¢, the density matrix of the system, as well as the particle
number, read

pr = (Doléfen|®o) = D> VIV,
N = Tr(p) = > V"™V (2.26)
km

We see that each quasiparticle gives a (generally fractional) contribution to the par-
ticle number given by the norm of the corresponding V* vector. This allows to
distinguish between hole-like (|V*|> > 1/2) and particle-like (|]V*|*> < 1/2) quasipar-
ticles.

The addition of pairing in the quasiparticle picture involves the definition of the
pair tensor, or anomalous density matrix

ki = (Qoléid o) = > V" UM, (2.27)
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which is nonzero only for states mixing different particle numbers, which is caused
by mixing particles and holes in the Bogolyubov transformation.

One can easily infer from the definition of p and & that p' = p, and AT =
—#* hence &7 = —#&, where &7 denotes matrix transposition. Additionally, the
conservation of fermionic anticommutation rules for the quasiparticles Bk, BZ imply
relations between U and V' vectors

SWUFUR V) = Gy Y UPUM V™) = b,

k m
S (UMVEHVIUY) =0, S UMV VUM =0, (2.28)
k m

which translate into the following relationship between p and &

pp—RR = p. (2.29)
This expression generalizes the condition that the density matrix of a Slater deter-
minant (vanishing pairing limit of the above) is idempotent, i.e. pp = p.
Let us now consider the properties of the canonical basis. From the structure of
U and V matrices, we can see that

Prl — Uzélka Rgl = ukvkélg. (230)

These expressions allow for an efficient construction of local and quasi-local densities,
as well as a simple expression for the particle number (expressed here for a single
species, sums and the trace being understood accordingly),

N = (o] Y éfer|®o) = Tr(p) = > 1. (2.31)

k

They imply, moreover, that in the canonical basis the Bogolyubov q.p. vacuum
takes the BCS form. Additional properties of this case are discussed in chapter

Time-reversal symmetry

The Bogolyubov transformation involves a pairwise coupling of single-particle states.
For each quasi-particle (3, the states |I) and |I) are taken in two different halves of
the basis. The distinction is made according to symmetries of the interaction which
produces pair condensation and quantum numbers of the Cooper pair. Pairing be-
tween particles of the same species, being the most important and readily observable
form occurring in nuclei, involves pairs having total spin and angular momentum
zero. Accordingly, paired states are related by time-reversal symmetry [And59]. The
corresponding operator is antiunitary [Mes58]. Its action on a single-particle wave
function expressed in coordinate (r), spin (0 = £1/2) and isospin (¢ = £1/2) space
yields

(Ty)(roq) = (=1)"* 9" (xaq), (2.32)

with & = —o. Moreover the property 72 = —1 holds in the space of states with odd
particle number, while 72 = 1 when applied on states with even particle-number
parity. For a time-reversal-invariant state, i.e. if 7|®g) = |®¢), the time-reversed
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state of each canonical (basis) state can be found in the same basis, which gives a
formal definition to the correspondence k£ — k. It is easy to show that

with |n:| = 1. We can then choose the states |k) and |k) so that 1, = 1 and, by
convention, store the state |k) in the first half of the basis, i.e. |k) = |k). This fully
specifies the two halves through n; = 1 and 7, = —1.

It may then be interesting to define an anomalous density matriz p [Dob8&4],

Pl = TR, (2.34)

which is Hermitian for time-reversal-invariant systems. In particular, this anomalous
density can be expressed in coordinate space, where it has a nonvanishing local
(diagonal) component. The corresponding local anomalous density occurs naturally
in local pairing density functionals for spin-singlet pairing.

Time-reversal symmetry requires the pairwise symmetry between quasiparticles,
i.e. UF = U*, V¥ = —V* The resulting vacuum is a sum of Slater determinants
having different, but all even, particle numbers. It also implies that time-reversal
partner states have the same occupancy. Such a many-body state can thus only
describe nuclei with even particle numbers. Odd-mass and odd-odd nuclei require
to break this symmetry by creating one or two (unrelated) quasiparticles on top of
the fully paired vacuum. Such an operation amounts to replacing the corresponding
3y, operator in the set defining |®,) (through 3|®,) = 0 ) by ﬁ,i, defining a new
vacuum. The latter is said blocked since the contributions of the (ﬁk, ﬁ—) q.p. pair
to the pair tensor then vanish.

From the definition of 3, and B,Z, Eq. (Z22]), we see that this operation amounts
to exchanging

Ur e Ve VR o Uk (2.35)

The variations of p and & corresponding to a one-q.p. addition can be deduced from
their definitions. In particular, the variation of the particle number is given by

N = > (Uf U=V V), (2.36)
!

which is not, in general, an integer number: in order to obtain this way a reasonable
wavefunction or density matrix for the intended odd nucleus, a readjustment has to
be made to the particle number of the underlying fully-paired vacuum.

Hartree-Fock-Bogolyubov equations

The Hartree-Fock-Bogolyubov method [Rin00] uses the Bogolyubov quasiparticle
vacuum as a variational ansatz for the wavefunction of a superfluid system. Con-
sidering a system ruled by a Hamiltonian containing a kinetic term and two-body
interaction,

H = T+V = Z tklckcl + = Z vklmnckcl CnCms (2.37)

klmn
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where Uy, is the antisymmetrized interaction matrix element
Tkt = (KI|V|mn) — (kI|V|nm). (2.38)

The energy of a configuration |®) reads

A 1 1
E[®] = (P|H|P) = ;tklplk + B Z Vklmn (pmkpnl + ilﬁzlﬁmn) , (2.39)

klmn

where we take advantage of the antisymmetry of ©. The fact that the q.p. vacuum
includes two-body correlations is exhibited by the additional x*x term extending
the factorization of the two-body density matrix (é,ié}éné@ pertaining to a normal
Slater determinant.

The HFB approximation for the ground state wave function can be obtained by
applying the Ritz variational principle. As already mentioned, however, the Bo-
golyubov transformation yields a state which mixes wave functions having different
particle numbers. It is possible, however, to conserve the average particle number by
applying a constraint by introducing Lagrange parameters relative to neutron and
proton numbers. The variational procedure can then be applied to the expectation
value of the modified Hamiltonian,

where N and Z are the neutron and proton number operators, respectively. The
expectation value of H corresponds to the shifted energy

S[@] = (B[H|®) = & —M\N — N7, (2.42)

This formulation applies, naturally, when no mixing of the two species is considered.
The quantities A\, and A, can be formally defined as

o0& o0&

A = —, Ap = —, 2.43

ON P 0z (2.43)
which exhibit their role as chemical potentials, and the fact that the HFB/BCS
formalism is initially intended to describe systems large enough to be amenable to
a statistical treatment or coupled to an external reservoir of particles.

Minimizing the shifted energy Eq. (2242]) with respect to quasiparticle degrees of

freedom yields the equations

(h__AA _hiA)(g:) :Ek(g];) (2.44)

which involves the particle-hole mean field ~ and the particle-particle or pairing field
A, expressed as matrices between single-particle basis states,

_ 1 _
hkm = tkm + Z VklmnPnl, Akl = _5 ; VklmnBlmn- (245)

in

In the above expression, A is a diagonal matrix in isospin space, having diagonal
matrix elements A, between neutron states and A, between proton states. The
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solution of the above equations can be obtained by iterating until self-consistency is
reached.

The ket |®;) being the state which yields minimal energy £ = &, the modified
Hamiltonian can be rewritten, by expressing particle operators through quasiparticle
ones and normal-ordering, as [Rin00]

~

H = &+ ) BB+ H, (2.46)
k

where Hiy is the residual interaction between quasiparticles, which is neglected at
the present mean-field level. It is a sum of products of four B or BT operators, each of
these products being normal-ordered with respect to the Bogolyubov q.p. vacuum
|®g). As a result, it is easy to check that its expectation values in |®g) and the
elementary excited states BZ\@O) vanishes. The shifted energy of a one-q.p. state is
thus

Ek = (®o|BHB|®o) = Eo+ By (2.47)

The non-shifted energy can be recovered by adding back the contribution of the
constraining term, which yields

E = (DolBHBlP0) = E+ B+ X > (UFUF =V VE), (248
!

Aq being the chemical potential of the species relevant to quasiparticle k, with ¢ =n
or p.

As mentioned in section E2ZT], the one-q.p. state does not have an integer,
odd particle number as is practically required. To obtain the latter, the chemical
potential has to be adjusted accordingly. As a first-order approximation, though,
one can consider that the resulting energy is &, ~ & + Ej, £ )\, depending whether
the q.p. k is hole-like (—) or particle-like (+).

2.2.2 Density functional theory

The electron gas present in solids and molecules is another example of a correlated
fermion system. It was demonstrated by Hohenberg and Kohn that the wave func-
tion of this system, hence all its properties, could be expressed as a functional of the
local electron density [Hoh6G4]. In particular, the energy of the correlated electron
gas can be expressed as a functional of the density, this functional being universal,
i.e. valid for all electron numbers and external (ionic) potentials the electrons could
be placed in. The density and energy of the ground state can thus be obtained by
minimizing the energy functional with respect to the density (taken in the manifold
of densities generated from a sensible many-body state).

This result, known as the Hohenberg-Kohn variational principle, was first in-
tended at semiclassical implementations. However, the most successful embodiment
of this principle was proposed by Kohn and Sham [KohG5], who suggested generating
the density from an auxiliary Slater determinant. The method was later extended
to involve the non-local density matrix [GiI75] as well as spin and current densities.
It was also shown that superconductivity could be taken into account by including
a dependence on the anomalous density in the functional [OIi88 [Kur99]. The most
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general formulation of density functional theory (DFT) was proposed by Valiev and
Fernando [Val97|, who showed that one could build a functional of any family of
observables corresponding to Hermitian operators.

We restrict this short discussion to one-body operators, making the distinction
between particle-hole and particle-particle ones. Following the extended Hohenberg-
Kohn procedure, the energy functional of a superfluid system can thus be formally
defined as

Ep.k,#7] = FIQ.P,P] = min (®Hin + Vext|®) (2.49)

d—Q,P

where we make the distinction between the intrinsic Hamiltonian f]im and an ex-
ternal potential Vext, and & — (@), P means that the search is performed over trial
wave functions ® which yield the specified input normal and anomalous densities,
defined through the operators

Q(z) = ZQ( Vit €41, (2.50)
P(z) = - Z ( o) el + p(a)iy élék) ; (2.51)

q(x) and p(z) being Hermitian and skew-symmetric matrices, respectively, while x
is a set of coordinates and indices necessary to specify each density. We then have

Qz) = Tr (Q)p) = Zq( kP (2.52)
P(z) = Tr< "%> ZP T ) ki Kik- (2.53)

The functional of Eq. ([2:49) is universal in the sense that it is valid for all particle
numbers and external potentials of the form Vi = v - Q +w- P, vand w being
functions of x and - the scalar product defined by v - Q = [ dx o )Q(x)

In the original formulation of DFT, @Q(x) is the local particle density. It is
tempting to generalize this in order to extract more information from the auxiliary
state and potentially improve the predictive power of the functional more efficiently
that with a re-summation of all missing effects in the local functional. In addition,
a broader range of observables can be contrained this way. However, it should be
stressed that in principle, no Kohn-Sham approach can depend on the full density
matrix, as it is guaranteed that the latter, being a projector, can not be matched
with the exact density matrix of a correlated state (the case being less clear for the
generalized density matrix which appears with pairing).

Given the exact functional of Eq. (2249)), the ground state energy and densities
can be obtained as

& = min E[p, K, k"] (2.54)
Py, K*
= erlljlg FlQ, P, P*]. (2.55)

Several remarks are in order concerning the transposition of such a formalism
to nuclear structure as is currently envisioned. The first concern to be raised is
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related to symmetries of the underlying Hamiltonian. Indeed, any relevant H must
commute with operator such as total A-body linear and angular momentum, and
particle numbers. A nucleus being a self-bound system, contrary to the electron gas
in a solid, it has to be considered isolated, without any external potential acting
on it. Its wave function then factorizes into a center-of-mass part and an intrinsic
part, and the density corresponding to the ground state in the laboratory frame is,

trivially, a constant [Kre01].

The intrinsic density, on the other hand, is an A-body operator. However, as
shown by Engel for a model system, [Eng07] a useful approximate Kohn-Sham func-
tional of the intrinsic density can be built. Formally adding an external potential
term acting only on the center of mass, in order to obtain a localized state amenable
to a DFT description has also been proposed [Gir(7, [Gir08a]. The case of rotation
is more complicated, due to the coupling between collective and intrinsic motion
as well as the difficulty to properly define angular coordinates, to the point that it
was suggested to work only with spherically-symmetric states and densities [GirO8D].
Also, the pair tensor is non-zero only for states mixing different particle numbers.
The “exact” pair density should thus be defined from transition matrix elements
between A and A 4 2 states, or before projecting onto good particle numbers in an
accurate perturbative scheme.

Moreover, since DFT makes no direct reference to the system’s wave function
whatsoever (the Kohn-Sham Slater determinant should not be taken as such), ex-
plicit restoration of broken symmetries fails to find a place in its framework. More
generally, practical applications of Eq. (Z49) require to build a functional of the
relevant densities ( and P able to include all correlations. This implies missing the
explicit description of collective effects such as shape coexistence, which is known to
be essential for understanding the structure and spectroscopy of many nuclei, such

as ">™Kr [Kor04, Ben06b], °°Zr [Woh86, Mac89al [Skad3] or neutron-deficient lead
isotopes [Dug03|, [Ben04].

No extension of DFT, in the form of a Hohenberg-Kohn existence theorem, able
to provide a firm formal ground to calculations “beyond the mean field” has been
proposed yet. The definition of the EDF method proceeds by analogy with the self-
consistent mean field method, performed with a density-dependent interaction, and
its extensions such as the generator coordinate method (GCM) and the random-
phase approximation (RPA).

2.2.3 Single- and multi-reference EDF methods

The single-reference (SR) EDF method uses a Bogolyubov quasiparticle vacuum
as a reference state to generate the density matrix p and pair tensor k entering
the expression for the energy functional, the densities () and P being in principle
matched with their values in the nucleus’s rest frame. The approach consisting in
writing down the functional and fixing its parameters directly has been attempted
on several occasions [Neg72} [Fay98] [Fay00, Per04, Bal07h, [Kor(8]. Herafter we shall
adopt the more conventional scheme where the functional is expressed as the result of
normal and anomalous contractions of distinct effective, density-dependent vertices
for the particle-hole (p-h) and particle-particle (p-p) channels, which correspond,
respectively, to couplings of ()-densities only, and couplings involving P-densities.
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The following general expression for the energy functional results,

Aa Ak 1 — ~ 1 —KK [ A] ¥
S[p7 K, K ] = ; tklplk + 5 Z Umen[/)]/)mkPnl + Z Z vklmn[p]"ikl’%mn (256)

klmn klmn

where ty,; is the kinetic Hamiltonian (with an effective correction for spurious center-
of-mass motion, see Ref. [Ben(03b|), and ©7°[p] and v"*[p] are effective, medium-
dependent particle-hole and particle-particle interactions, respectively (regulariza-
tion subtleties may actually arise in the definition of the particle-particle functional,
section [2.7]).

Initially, both are devised to match as close as possible the physical content of an
effective interaction based on the re-summation of (classes of) diagrams in perturba-
tion theory. The trial state could then be understood as an unperturbed state used
as a starting point for the perturbative expansion. This is less clear in the case of
a DFT-oriented interpretation, however, and the rather simple effective interactions
used up to now lack prominent characteristics of microscopic ones such as energy
dependence, or finite range and non-locality, which makes a direct link between one
and the other rather difficult. As a side note, notice that perturbation theory pro-
vides the energy of a system as a functional of the Green function (restricted to the
single-particle G for two-body interactions) [Noz63|] of which DFT could be formally
seen as a special case.

If v = " and the corresponding interaction matrix elements are antisym-
metric with respect to interchanging the two particles or holes, the above energy
reduces to the standard HFB expression. Nonetheless, perturbative approaches to
superfluidity indicate that the effective vertices in the two channels should be dif-
ferent (see chapter Bl). Moreover, the antisymmetry of the particle-hole interaction
is often broken, either for practical or physical reasons, as this may enable to ad-
just useful degrees of freedom in the parametrization of the functional. Typical
examples are the independent adjustment of isoscalar and isovector spin-orbit terms
[Rei95] [Rei99], or the use of Landau parameters to fix independently the spin-isospin
terms of the functional [Ben02] [Zdu05].

Minimizing Eq. (256]) yields HFB-like equations, Eq. (Z44]), with the potentials
h and A redefined as

5E 5E
hy = — Ay = 22
kil 5plk kl 5/{7]?

(2.57)

Again, these expressions reduce to the HFB potentials, Eq. (2:45]), when the energy
of Eq. ([Z350]) corresponds to the HFB energy. In general, additional rearrangement
terms arise in Eq. (Z21) from the functional derivation of the interactions themselves
with respect to the density. This will be of some importance in the discussion of
single-particle energies below.

Multi-reference (MR) EDF calculations extend SR ones by allowing to mix differ-
ent reference states (usually obtained from separate SR-EDF calculations). Again,
this requires to attribute a certain meaning to the wave functions obtained from the
SR-EDF calculations. Just as the wave function used in SR-EDF is the same as
in the HFB method, The MR-EDF ansatz is inspired by the generator coordinate
method (GCM) |Rin00],

By) = / da f(a)|D2) (2.58)
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where |®%) is a Bogolyubov quasiparticle vacuum obtained by a constrained calcula-
tion (for configuration mixing) or by a group transformation (for symmetry restora-
tion), a being a (set of) collective coordinate(s) and/or order parameters pertaining
to the breaking of given symmetries. The mixing is implemented by the weight
function f(a), which is given by a group transformation in the case of symmetry
restoration, otherwise it is a solution of the Hill-Wheeler equation [Hil53| [Rin00]

/ db [H(a,b) — EY® T(a,5)] f,(5) = O, (2.59)
where EMR is the energy of the mixed state described by f,, Z is the overlap kernel

Z(a,b) = (DY Ph), (2.60)

and H the “Hamiltonian” kernel, which, once more, reduces in the Hamiltonian
(HFB/GCM) case to the non-diagonal matrix element

H(a,b) = (DYH|DY). (2.61)
When working with a generalized energy functional, H is redefined as
H(a,b) = E[p™, i, &, (2.62)

where the densities obtained in the q.p. vacuum have been replaced by the following
transition densities,

o = GRS Kb = (@G |eick | 25) Fab = W (2.63)
(PG|PE) (PG|®0) (5]25)

One last time, this choice is consistent with the special HFB/GCM case. In the
most complete and involved applications to nuclear structure, a is a set of coordi-
nates corresponding to the gauge angles relative to particle-number symmetry, Euler
angles and deformation coordinates, the weight function f, being partly determined
by symmetries and partly by the Hill-Wheeler equation. Symmetry restoration and
configuration mixing are thus performed simultaneously [Mey95|, yielding a multi-
dimensional problem [Ben08|. The full variational problem would require simulta-
neous optimization of f, and of the states |®¢). In practice, |®§) is optimized with
respect to the MR energy functional only when f, is known a priori, which leads to
the variation-after-projection (VAP) approach used in the case of particle-number
restoration [She(0, [Sto07].

A major difficulty arises, though, in the above definitions: the transition densities
diverge for orthogonal states. While this is not a concern in the Hamiltonian case
[Ang01b], since the corresponding contributions to the energy cancel out, the general
EDF kernel ‘H will indeed diverge. A well-understood case where this can happen
is particle-number projection of a wave function where a single-particle level crosses
the chemical potential [Dob(7]. The terms responsible for this divergence have been
recently identified as those contributing to self-interaction and self-pairing, and a
correction scheme derived [LacO8]. This correction remains limited, however, to
low-order polynomial density dependences in the effective interactions.

The straight generalization of the Hamiltonian “mean field and beyond” picture
to a density-functional-inspired one is thus rather tricky. In this work, we shall not
perform MR-EDF calculations, yet our results will be analyzed, whenever possible,
with the underlying physics in mind.
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EDF and single-particle energies

In Kohn-Sham DFT, single-particle (or quasiparticle) energies obtained from the
auxiliary potentials (iz, A) have a priori no particular meaning. However, the
prospect of obtaining single-particle spectra from such calculations is of great in-
terest. This has been studied in semiconductors, where, for example, it would
allow to extract band gaps [Sha85]. A proper determination of s.p. energies as
defined from Green functions, however, involves solving a modified Dyson equation
[Sha85l [Bha05], i.e. going back to perturbation theory.

On the other hand, provided one can build a functional which is valid not only
for the ground state, but also for a sufficient number of excited ones, elementary
excitations become a starting point for the general discussion of the excitation spec-
trum [Gor96]. A first step in this direction is the control of the effective mass, hence
the density of s.p. states, through non-local terms [Bha(5]. Excited state energies
can then be calculated by applying a constraint or adding quasiparticle excitations,
which is a rigorous approach when the calculations are performed self-consistently.
Physical single-particle energies are thus mass differences between the ground state
of the A-nucleon system, and ground or excited states in A + 1-nucleon ones.

In the very end, nothing prevents us from trying to adjust parameters of the
functional to match s.p. energies in addition to other observables. If eigenenergies
of the EDF potentials are used, care must be taken to make an explicit link with
self-consistent mass differences. For quasi-particles added on top of spherical nuclei,
a small rearrangement contribution can be expected in the SR framework [Rut98,
Zal0g).

Further comments are in order, though, concerning the microscopic definition of
s.p. energies and their calculation in a MR-EDF scheme. Nuclear single-particle en-
ergies can be measured by stripping and pickup reactions. Such experiments usually
yield a non-trivial spectrum where s.p. levels are fragmented due to correlations,
i.e. measured states are not pure, single quasiparticles but result from the coupling
of the q.p. to other degrees of freedom.

This is commonly discussed in the framework of the interacting shell model
as a coupling of several elementary excitations. In such a picture [Cau05|, which
amounts to decomposing the Hamiltonian into an effective single-particle (monopole)
part and a residual interaction acting in a reduced model space, the single-particle
energy can be recovered from the spectrum using spectroscopic factors. A similar
effect is obtained when performing particle-vibration coupling [Ber80), [Lit06] using
the (quasiparticle) random phase approximation [Bla77 [Sev02]| for the collective
vibrations. In these cases, the coupling to collective modes fragments the single-
particle strength (measured in terms of spectroscopic factors, or spectral functions,
Eqgs. (2.8) and (29)) and yields a lowest fragment with an energy lowered compared
to the initial s.p.e. (thus closer to the Fermi level), which translates into a denser
spectrum and higher effective mass.

Such a particle-vibration coupling scheme can be understood as an approxi-
mation of the full MR-EDF calculation of the odd nucleus, which we take as an
idealized standard. Indeed, RPA, or in its EDF-based embodiment, linearized time-
dependent EDF [Ben03b], can be considered as a low-amplitude-motion limit of a
MR-EDF formalism [Jan64l, [Sev06].

The EDF method thus has the potential to give a faithful account of single-
particle motion, subject to the condition that all relevant collective degrees of free-
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dom are taken into account by symmetry restoration and configuration mixing. This
clearly remains to be implemented in full-fledged form and on a systematic footing.

Single-particle energies and mass differences

In order to calculate a mass difference between two adjacent nuclei (of masses A
and A + 1), we have to create a quasiparticle on top of the A-body ground state
(possibly with a particle number adjusted to obtain the right number of particles
in the one-q.p. state, see Eq. (248]) and chapter [), then resume self-consistent
minimization. Further, it should be ultimately possible to perform a full MR-EDF
calculation of the odd system.

In order to understand the workings of the SR-EDF method in this respect, let
us express the energy of a the system following the addition of a single quasiparticle
(without any self-consistent rearrangement of the nucleus) with an expansion up to
second order in the corresponding variation of the density matrix and pair tensor:

Elp+0p,k+ 0k, K"+ 0Rk"] = Elp, R, K]
1 * *
+ hidpr + 5 (Apdng, + Ay k)
1 1
+ évlglhmnépmkapnl + §v£fmnél{2l5/{’mn
o0& o0&
—_— K‘I —_—
5plk5/‘€;m e 5plk:5"inm
T (2.64)

*

1
_5 5 nm
T 0P K

The first line in Eq. ([Z64) is the fully paired ground state energy, while the second
line corresponds to the quasiparticle energy, as in the HFB case, Eq. (Z48). The
third line involves the particle-hole and particle-particle residual interactions,

oh o0& o0&
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In the strict HFB case, these are (up to a factor) the antisymmetrized interaction
Hamiltonian, i.e. vP! =7, vPP = 7/2. In this case the third line vanishes, since

1 *
vklmnépmk 5pnl + évklmndﬁkl(sﬁmn

1
- §Eklmn [5pmk5pnl - 5pm15pnk + 5/{215/{77171] = 07 (266)

as can be verified by writing down the density variations in terms of quasiparticle
U and V vectors. In the general EDF case, the vertices are different, density-
dependent (which introduces non-antisymmetric rearrangement terms, which allow
the (A+1)™ particle to modify the interaction energy of the A core particles by alter-
ing the density on which the interactions depend) and may be non-antisymmetrized.
The cancellation of second-order terms does not occur anymore. The energy of a
one-(.p. state thus contains a self-interaction contribution (direct terms not can-
celled by exchange ones) and a self-pairing one [Lac08|. The latter corresponds to
terms of the form v77 -, which can be interpreted as the scattering of a pair of
particles onto the same state, which gives a spurious pairing energy contribution
since it is not cancelled by the opposite particle-hole term arising in strict HFB. As
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there is some freedom in the distribution of non-cancelled terms between the two
contributions, we may refer to their sum as quasiparticle self-interaction (QSI). The
same argument can be put forward for the fourth line, i.e. rearrangement terms
of the particle-particle interaction, which vanish in the Hamiltonian case and for
density-independent pairing interactions. These can, in any case, be expected to be
small.

Also, not included in the above expressions and discussion is the variation of the
center-of-mass correction with mass number A [Zal(08|, which results in a slight and
systematic variation of single-particle level spacings.

Self-consistent minimization of the energy will thus yield an energy lower than
Eq. (Z&4), but the position of the resulting minimal energy with respect to the
starting one can not be inferred a priori. The fact that QSI occurs in part due to
different particle-particle and particle-hole interactions is puzzling, as the latter is
required by diagrammatic analysis. One may wonder whether such a self-pairing
effect may be found in the latter method, and if it is the case, what kind of physics
may be contained therein. This question unfortunately belongs to the list of concerns
too involved to be addressed in this manuscript.

Although self-interaction contributions to one-quasiparticle state energies are
non-vanishing, they are, qualitatively, effects of order 1/A compared to bare q.p.
energies generated by the interaction with all nucleons. Depending on the situation,
this will have to be compared with the magnitude of the effects under investigation.

2.3 Skyrme energy density functional

The usual ansatz for the Skyrme effective interaction [Cha97, [Cha98| leads to an
energy density functional which can be written as the sum of a kinetic term, the
Skyrme potential energy functional that models the effective strong interaction in
the particle-hole channel, a pairing energy functional corresponding to a density-
dependent contact pairing interaction, the Coulomb energy functional (calculated
using the Slater approximation [Sla51]) and correction terms to approximately re-
move the excitation energy from spurious motion caused by broken symmetries
[Ben03b],

&= gkin + SSkyrme + SCoulomb + Spairing + Scorr . (267)

In this section we focus on the particle-hole part of the functional consisting of
all the terms mentioned above except the pairing part, which will be the subject of
the next section.

2.3.1 Quasi-local energy density functional

Throughout this work, we will use an effective Skyrme energy functional that cor-
responds to an antisymmetrized density-dependent two-body vertex in the particle-
hole channel of the strong interaction, that can be decomposed into a central, spin-
orbit and tensor contribution

,USkyrme — 'UC + 'Ut + ULS ) (268)

Other choices for the writing of the Skyrme energy functional are possible and have
been made in the literature, which might affect the form of the effective interaction,
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its interpretation and the results obtained from it. We will come back to that in
section [4.2.2] below.

The Skyrme energy density functional is a functional of local densities and cur-
rents

€Skyrme = /dg’r HSkyrme(r) s (269)

which has many technical advantages compared to finite-range forces such as the
Gogny force. All exchange terms have the same structure as the direct terms, which
greatly reduces the number of necessary integrations during a calculation.

Local densities and currents
The general density matrix, expressed in coordinate, spin and isospin variables,
reads

Sy

p(roq.v'o'q) = (el Croq). (2.70)

Throughout this manuscript we will assume that we have pure proton and neutron
states, except for the calculation of the residual interaction, in appendix [C.3], where
the general framework leads to more compact formulae. The formal EDF framework
for the general case including proton-neutron mixing is discussed in Ref. [Per04]. As
of now, let us consider that the matrix can be written independently for neutrons
and protons,

p(roq,v'o’q) = py(ro,x'o’) d,y, (2.71)
and separate the spin part [Dob00]
pa(ro, o) = (el treq) = Lpg(r,x)000 + Esy(r, 1) - (0'|G|0)  (2.72)

where

prt) = S ptore),  s,rr) = 3 por'd) (ol6lo). (2.73)

The Skyrme energy functional up to second order in derivatives that we will intro-
duce below can be expressed in terms of seven local densities and currents [Per04]
that are defined as

(r) = pylr,x)| _,
(r) = sy(r,v)|,_,
,(r) = V-V p,r, r’)}r:r,
(r) = V-V s, r')}r:r,
(r) (V= V') py(r, )] _,
(r) (Vi = V,,) squ(r, 1),

N[ N

=r/

e
=
—~
=
~—
I
N[

> (VWY + ViV, seu(r,r)] (2.74)

which are the density p,(r), the kinetic density 7,(r), the current (vector) density
jq(r), the spin (pseudovector) density s,(r), the spin kinetic (pseudovector) den-
sity Ty(r), the spin-current (pseudotensor) density J, . (r), and the tensor-kinetic
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(pseudovector) density F,(r). The densities p,(r), 7,(r) and J, ., (r) are time-even,
while s,(r), Ty(r), j,(r) and F,(r) are time-odd. For a detailed discussion of their
symmetries see Ref. [Dob00]. There are other local densities up to second order
in derivatives that can be constructed, but when constructing an energy functional
they either cannot be combined with others to terms with proper symmetries or
they lead to terms that are not independent from the others [Dob96al.

The Cartesian spin-current pseudotensor density J,, can be decomposed into
pseudoscalar, (anti-symmetric) vector and (symmetric) traceless pseudotensor parts,
all of which have well-defined transformation properties under rotations

z

Jur (1) = 50 TOM) + 53 € IO () + IO (x), (2.75)

R=X
where 0,, is the Kronecker symbol and ¢,,, the Levi-Civita tensor. The pseu-
doscalar, vector and pseudotensor parts expressed in terms of the Cartesian tensor
are given by

T = 3 ), (2.76)

z

Jlgl) (I') = Z S qu<r)7

nv=z
JAE) = 1) + Tulr) laﬂyzjm

The vector spin current density JM(r) = J(r) is often called spin-orbit current,
as it enters the spin-orbit energy density. Some authors, though, call J(r) spin
density, which is ambiguous when discussing the complete energy density functional
including terms that contain the time-odd s(r).

For the formal discussion of the physical content of the Skyrme energy functional
it is of advantage to recouple the proton and neutron densities to isoscalar and
isovector densities, for example

po(r) = pul(r) +pp(r),  pi(r) = pa(r) —pp(r) (2.77)
and similarly for all other ones. As we assume pure proton and neutron states, only
the T, = 0 component of the isovector density is non-zero, which we have exploited
to drop the index 7T, from the isovector densities pi7, (r), etc.

Skyrme’s central force

In each part of this work, we will use different parametrizations of the density-
dependent central Skyrme interaction. The number of density-dependent terms will
be chosen as one or two depending on specific requirements. The most general (for
our purpose) central Skyrme interaction reads

°(R,r) = to(1+zoP,) o(r)
Lts(1+a3b)p ( ) 6(r)
Lt6 (1+ 26P,) p” (R) 8(x
Lty (1+ 21 P,) [K? 6(r) + 6(r) K?
> (1+22P,) K -6(r) k

+ o+ + o+

(2.78)
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where we use the shorthand notation
r = r|—7ry, R = %(r1+r2), (2.79)
while k is the usual operator for relative momenta
k=-1(V,—V,) (2.80)

and k' its complex conjugate acting on the left. Finally, P, is the spin exchange
operator that controls the relative strength of the S = 0 and S = 1 channels for a
given term in the two-body interaction

P,=1(1+6, 6,). (2.81)

As said above, we restrict ourselves to a parametrization of the Skyrme energy
functional as obtained from the average value of an effective two-body vertex in
the reference quasiparticle vacuum. We decompose the isoscalar and isovector parts

of the resulting energy density functional H¢ into a part H;**" that is composed

entirely of time-even densities and currents, and a part Hf’Odd that contains terms
which are bilinear in time-odd densities and currents and vanishes in intrinsically

time-reversal invariant systems

Ho(r) = Y [HE™"(r) + HPY ()] (2.82)
t=0,1
Both H®" and H° are of course constructed such that they are time-even; they
are given by [Eng75, [Per(4]

Hg,even = A’[po] P? + AtAp peApe + A pii — A? Z Tty Tt s

w V=2
H = Aflpolst — A3+ AR s - Asp+ Al'sy - T, (2.83)

where A?[pg] and A$[p] are density dependent coupling constants that depend on
the total (isoscalar) density. The detailed relations between the coupling constants
of the functional and the central Skyrme force are given in appendix[Al The notation
reflects that two pairs of terms in HS ™" and HS* are connected by the requirement

of local gauge invariance of the Skyrme energy functional [Dob95al.

Zero-range spin-orbit force

The spin-orbit force used with most standard Skyrme interactions
D"S(r) = iW, (61 + 63) - K x 6(r) k (2.84)

is a special case of the one proposed by Bell and Skyrme [Bel56, [Sky58b|. As above,
the corresponding energy functional [Eng75| [Per04] can be separated into a time-
even and a time-odd term

HS) = D [ + 15 )] (2.85)
t=0,1
where
HtLS’even = AtV'J otV - Jy, HtLS’Odd = AtVJ St -V X ji (2.86)

which share the same coupling constant as, again, both terms are linked by the local
gauge invariance of the energy functional. The relation between the AY/ and the
one coupling constant of the two-body spin-orbit force W, is given in appendix [A]
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Skyrme’s tensor force

Although rather uncommon in the Skyrme parametrizations published so far, the
tensor force has been the subject of renewed attention, and will be the main topic
of chapter [l

By convention, the tensor operator in the tensor force is constructed using the
unit vectors in the direction of the relative coordinate e, = r/|r| and subtracting
6'1 . 6'2 R

512:3(&1'87)(&2'67,)—6’1'6'2, (287)
such that its mean value vanishes for a relative S state, which decouples the central
and tensor channels of the interaction. The operator Slg commutes with the total
spin [Slg, SQ] = 0, therefore it does not mix partial waves with different spin, i.e. spin
singlet and spin triplet states. In particular, it does not act in spin singlet states at
all, as S12Pg_o = 0 (see section 13.6 of Ref. [Nil95]). As a consequence, there is no
point in multiplying a tensor force with an exchange operator (1 —i—xtf?o) as done for
the central force, as this will only lead to an overall rescaling of its strength.

The derivation of the general energy functional from a zero-range two-body ten-
sor force is discussed in detail in Refs. [Flo75l [Per04]. We repeat here the details
relevant for our discussion, starting from the two zero-range tensor forces proposed
by Skyrme [Sky56 [Sky58a

otr) = 1t {[3 (61 -K) (69 K) — (61 62) K?

K

+0(x) [3(61-K) (62 K) — (61 - 62) K] }

" {3 (61 -K)6(r) (82 -K) — (01 - 00) K - 6(r) 1;} (2.88)

where r, k and k' are defined as above, Eqgs. (Z79) and ([Z3J0). The corresponding

energy density functional can again be decomposed in a time-even and a time-odd
part

M) = 3 [ + )] (2:89)
t=0,1
with [Per(4]
z < 2 z
H‘;,even _ _BtT Z Jt#w]t,uu — %BtF (ZJt7MM> — %BtF Z Jt,;uu]t,uu
w,v=x H=x py==
‘;,odd _ BtT s, - T, + Bf s, - F, + BtAs st - As; + BtVS (V-s0)?, (2.90)

where we already used the local gauge invariance of the energy functional [Per04] for
the expressions of the coupling constants. The actual expressions for the coupling
constants expressed in terms of the two coupling constants ¢, and ¢, of the tensor
forces are given in appendix [Al

The “even” term proportional to ¢, in the two-body tensor force (Z88) mixes
relative S and D waves, while the “odd” term proportional to ¢, mixes relative
P and F' waves. Thus, due to the fact that both act in spin-triplet states only,
antisymmetrization implies that the former acts in isospin-singlet states (and hence
contributes to the neutron-proton interaction only) and the latter in isospin-triplet
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states (contributing both to the like-particle and neutron-proton interactions). The
central and spin-orbit interactions as we use them, however, do not contain D or
F wave interactions. From this point of view, one might suspect a mismatch when
combining the various interaction terms. From the point of view of the energy
functional ([Z90), however, all contributions from the zero-range tensor force are of
the same second order in derivatives as the contributions from the non-local part of
the central Skyrme force (2.83) and from the spin-orbit force ([2Z.80]).

In the time-even part of the energy functional H,*"®", there appear three dif-
ferent combinations of the Cartesian components of the spin current tensor. The
term proportional to B/ contains the symmetric combination .J,,.J,, as it already
appeared in the energy functional from the central Skyrme interaction ([2:83]), while
the term proportional to Bl contains two different terms, namely the antisymmetric
combination J,,J,,, and the square of the trace of J,,.

Combining central and tensor interactions

The Skyrme energy functional representing central, tensor, and spin-orbit interac-
tions is given by

€Skyrme - 5 +€LS +5t
= /d3 Z {Cp pol o7 + C7 (o = 37) + CPpi Ay

t=0,1

+ C}[po] s? + C’tvs(V -5¢)% 4 CtAsst - As,

+ CtT (St Ty — zz: Jt,;th,;w>

w,v=x
+cf [st Fy — %(Z Jw>2 -1y Jt,WJW]
n=x w,v=x
+ C¥ (V- T +8 -V % jt)} : (2.91)

This functional contains all possible bilinear terms up to second order in the deriva-
tives that can be constructed from local densities and that are invariant under spatial
and time inversion, rotations, and local gauge transformations [Per04].

Some of the coupling constants are completely defined by the standard central
Skyrme force, i.e. Cf = A?, CF = As, C7 = A7, and C~* = A", two by the
spin-orbit force, CV7 = AY”, others by the tensor force, CI' = B’ and CY* = BY*,
while some are the sum of coupling constants from both central and tensor forces,
CI = AT + BT and CA* = A2s + BAs,

The three terms bilinear in J,, can be recoupled into terms bilinear in its pseu-
doscalar, vector, and pseudotensor components J(©, JU and J?), Eq. ([E76), which
is preferred by some authors [Per(4]

Z Jt,;u/t]t,,uu = %(J(O 1']2_'_ Z tuu tuu (292)

M7V:$ M?V z

(S ) + 3 ] = 2O 1T S I, (299
p=x

M?V:x l”’7V x
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After combining ([Z91]) with the kinetic, Coulomb, pairing and other contributions
from (267), the mean-field equations are obtained by standard functional deriva-
tive techniques from the total energy functional, see section 2.2 appendix and
Refs. [Ben03b, [Per(4].

The complete Skyrme energy functional (2X91]) has quite complicated a structure,
and in the most general case leads to seven distinct mean fields in the single-particle
Hamiltonian [Per04]. In the present manuscript, we enforce spherical symmetry
which removes all time-odd densities and all but one out of the nine components of
the spin-current tensor J,, as will be outlined in section BTl

2.3.2 Skyrme energy functional in spherical symmetry

For the rest of this manuscript, we will concentrate on spherical nuclei, enforcing
spherical symmetry of the (A)-body wave functions. As a consequence, the canonical
single-particle wave functions ¢; can be labeled by j;, ¢; and m;. The index n; labels
the different states with same j; and ¢;. The functions ¢; separate into a radial part
u;(r) and an angular and spin part, represented by a tensor spherical harmonic Q;4,,

Pnjem(r) = . Qjem(7), (2.94)
Qiem(7) = Y _(tmysaljm) Yy, (0,0) |so),

with s = 1/2. Spherical symmetry also enforces that all magnetic substates of ¢;,em
have the same occupation probability v7.,,, = v, for all —j <m < j. For a static
spherical state, all time-odd densities are zero s,(r) = T,(r) = j,(r) = F,(r) = 0,
as are the corresponding mean fields in the single-particle Hamiltonian.
Altogether, the Skyrme part of the energy density functional in spherical nuclei

is reduced to

R = Z{Cf (o] 7 + 77 iy

t=0,1
+CTpm+ 102+ OV p V- Jt} , (2.95)

where we have introduced an effective coupling constant C; of the J? tensor terms
at sphericity.

2.4 Local pairing functional

For our EDF to be fully defined, we need to specify its essential pairing part. In
this section we focus on local pairing functionals formally generated from zero-range
effective pairing interactions, and specific issues associated with them. A different
kind of pairing functional will be presented in chapter (Bl

Let us write down the coordinate-space expression of the pair density matrix,

ﬁ(rlu 01,4;Y2,09, Q) = <_)1/2+02 <ér252qér101q>7 (296)

as well as the local pair density,

) = Yotroqrog) = S() Rt 0 gr7q). (2.0

ez
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The pairing functional commonly used in conjunction with the Skyrme-interaction-
derived particle-hole functional can be formally derived as the particle-particle con-
traction of a local, zero-range density-dependent delta interaction (DDDI),

air air Po 1-F,
v (r) = VP (1 — cpsat) 5 i(r), (2.98)

which is here defined by a strength V;’air and a parameter ¢ which determines the
density dependence and hence the localization of the pairing field, in the volume of
the nucleus (for ¢ = 0) or at the surface (¢ = 1) [JDOI]. The corresponding pairing
functional reads

Sl = [ 5Ol 7, (2.99)
where the coupling constant is density-dependent and given as
~ Vpair
cr o= q—(l—cpo). (2.100)
4 Psat

Unfortunately, such a theory diverges. Indeed, the pairing field derived from
such a functional is local,

A(r105g;12029) = Uy(r1) 8(r1 —12) (=)/2520,,5,,
3 SE .
U,(r) = = 2CP"(r) py(r 2.101
q( ) 5ﬁ;(r) q ( )pq( 1) ( )
which means that matrix elements of A, i.e. pairing gaps are essentially independent
from the momentum or energy of single-particle states.
It is useful at this point to make use of the BCS gap equation in infinite matter,
which is further discussed in chapter

ke k2dk! . A (K
A(k) = —/ 2 oF) : (2.102)
e 2\/eb + Ag(K)?

It follows immediately that A, (k') is in fact a constant. With g, = A?k?/2m, this
expression diverges linearly when k. — oo.

Summing over quasiparticles with non-bounded q.p. energy yields a pair density
which diverges as 1/|r; — rp| for r; — ry — 0 [Bru99, Bul02al, making the pairing
energy undefined [Dob96b|. It is thus necessary to regularize p, as well as all den-
sities. This can be achieved by substracting the contributions to the density and
pair tensor of states lying outside of a pairing window defined as an energy interval
in the single-particle (HF), canonical or quasiparticle spectrum. A truncation of
single-particle bases is necessary for practical applications whatever the functional
used, however for a local pairing functional no convergence of observables is obtained
with respect of this truncation, which has to be defined as a part of the model.

As an example and to be more specific, let us give the expressions for the case
where the cutoff is implemented in the quasiparticle basis,

P = (q)o‘é}ék‘q)@ = me vy,

Ky o= (ol ®o) = Y fh ViU, (2.103)

m


http://dx.doi.org/10.1007/s100530050587
http://dx.doi.org/10.1103/PhysRevC.65.051305
http://dx.doi.org/10.1103/PhysRevC.53.2809

42 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORY

where f,, and f/ are equal to one at the Fermi level, and put to zero for states
outside a given energy window (which has an upper bound only for f;, and may
also have a lower one for f/ ). In practice, a smooth cutoff is implemented, which
alleviates convergence issues due to transitions of ¢.p. states in and out of the
window during iterations:

1 1

Jm = 1+ expl(em —et)/ea)’ for = 1+ exp[—(em +&7)/ed]

, (2.104)

where ¢, is the single-particle equivalent energy of quasiparticle k& [Ben05), e. the
cutoff energy and g4 a diffuseness parameter, typically of the order of 1 MeV.

Thus, the functional actually used involves not the strict local pair density, but
a regularized one, the other densities (including in the particle-hole channel) being
replaced by their regularized counterparts as well. Such a pairing functional is
not, strictly speaking, the expectation value of the effective interactions given thus
far, which serves only as a formal intermediate. In addition to the parameters of
Eq. (298), the functional needs a cutoff energy to be fully defined. Moreover, the
strength parameter has to be adjusted consistently with the cutoff, which underlines
the fact that & is not only a numerical parameter, but an integral part of the model.

As shown by Matsuo [Mat06], the energy cutoff employed in a local pairing
functional plays a role similar to the range of a finite-range interaction with respect
to the structure of the non-local pair density, and can be adjusted so as to control
the latter rather precisely. The value of £f that was found appropriate in this
respect was of the order of 50 MeV. The fact that a (regularized) local functional
can describe nuclear pairing with a satisfactory accuracy comes from the fact that the
spatial extension of the Cooper pair wave function (defined, up to a normalization
factor, as the non-local part of p) is typically larger than the range of the underlying
interaction, implying that the spatial dependence of the latter is not resolved.

The local or non-local pair density, however, is not an observable, and the fact
that an additional parameter is introduced may seem unsatisfactory. To address
this issue, Bulgac and Yu [Bul02b] introduced a method to regularize the pair den-
sity and obtain a cutoff-independent functional (for sufficiently large cutoffs). The
divergence in the pair density is of ultraviolet character, caused by the accumulation
of contributions from high-momentum continuum states, for which a local density
approximation is reasonable. One can indeed obtain an accurate analytical expres-
sion for the divergent part of the pair density at each point r and for each species
q by studying a uniform gas subject to a potential U,(r), a pairing field Uq(r), an
effective mass m(r) and a chemical potential \,. The regularized pair density then
reads

P = 4 O, Y (kg ko), (2.105)

where the function Y (kg,, kc) is given by

my ke kg kg + ke
Vikro ko) = 5o [1 o (m)} ’ (2100

which involves the position-dependent quantities my, kr, and k., defined by

n2k2 h2k,
FU = A 2m

U, = . 2.107
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Here, we consider only an upper bound for the pairing window, with e, = —oo. The
local effective Fermi momentum kp, may be an imaginary number where \, < U,,
but it is easy to check that Y stays real in that case. The regularized density
is independent from e when the latter is taken sufficiently large. One requires,
moreover, that observables computed with the regularized functional are also cutoff-
independent. Being closely linked with odd-even mass differences, the pairing field
U is such a quantity. The pairing functional being quadratic in j, we must then
have

q 5p

e
q

" 5
U £ _ 9aPyg (2.108)

g, being a position/density-dependent but cutoff-independent quantity. One may
rewrite the above as

. ren ~ 1 1
Uy = 9q4°Pg> ﬁ = g_q_Y(quvkc)- (2.109)

We finally rewrite the pairing energy functional as

Salpo ] = [aelyiy = [dra i g,

= /d3rgq 0y oy (2.110)
_ _ g2
= [rcpa a0 = S = ali-aY ek
q

We see that the pairing energy is not cutoff-independent; in fact, it is a divergent
quantity. However, it is not an observable. The total energy, in turn, is cutoff-
independent thanks to a cancellation between the divergent contributions of the
pairing and kinetic energies (including effective-mass terms), which behave similarly
for large k. [Bul02al.
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Chapter 3

New Constraints for the Nuclear
Energy Density Functional

The accuracy and predictive power of EDF models needed for unknown regions of
the nuclear chart still leave a lot of room for improvement. The phenomenological
nature of Skyrme functionals makes their ability to faithfully predict observables or
phenomena not linked with those used for their construction quite weak. Indeed,
the limited number of adjustable parameters (compared to the wealth of nuclear ob-
servables to be matched) turns fitting a Skyrme functional into an overconstrained
problem (which, of course, does not prevent some parts of it from being undercon-
strained).

As a direct consequence, many properties of existing parametrizations are biased
to the fitting procedure and the limited analytical form of the Skyrme interaction,
rather than to physical reasoning. A well-known example is the equation of state
(EOS) of Pure Neutron Matter (PNM), which is sometimes subject to a pathological
collapse at high density when not explicitly constrained. This is problematic insofar
as one of the major challenges of contemporary nuclear theory is to predict properties
of very isospin-asymmetric nuclear systems, i.e. neutron rich nuclei and matter in
neutron stars. Experimental data being unavailable in this domain of isospin, one
has started relying on ab-initio theoretical results to constrain isovector properties
of the functional. It has led to the construction of the “Saclay-Lyon” SLy series of
parametrizations [Cha97, [Cha98| by fitting (among other quantities) a theoretical
equation of state of neutron matter.

Isovector features of the nuclear EOS are crucial for a good understanding
of neutron stars, exotic nuclear collisions produced at radioactive beam facilities
and to describe the structure of exotic nuclei. For instance, the density depen-
dence of the volume symmetry energy determines the proton fraction in g equi-
librium in neutron stars, which ultimately drives the cooling rate and neutrino
emission [Lat04]. The high-density part of the symmetry energy, which happens
to be strongly model dependent, also influences significantly the isospin diffusion in
heavy-ion collisions [Che05]. Finally, the low-density part of the symmetry energy
is correlated with the size of neutron skins in finite nuclei [TypO1].

Beyond global isospin-dependent properties of the EOS, the isovector part of
nucleon-dependent quantities may influence the behavior of the above mentioned
systems. Thus, collision observables depend on the momentum dependence of the
mean-field, in particular on its isovector component [Li04al [Li04D]. Also, some
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properties of neutron stars require a precise knowledge of isoscalar and isovector
nucleon effective masses [Bet90, [Far01]. The latter, which drives the splitting of
neutron and proton effective masses with neutron/proton asymmetry, will serve as
a starting point for the study presented in this chapter. Indeed, a lot of efforts has
recently been devoted to the microscopic characterization of neutron and proton
effective masses in infinite Asymmetric Nuclear Matter (ANM) [Bom91l [Kub97,

[Z1099, [Gre01l, Hof01) Liu02, [Riz04, Ma04, Dal05a, Sat06]. Either in ANM or in

nuclei, the two species acquire different effective masses. This property is quantified
by the difference Am*(I) = m;(I) — m5(I), where I = (py — pp)/(pn + pp) is the
isospin asymmetry while p, and p, denote neutron and proton densities, respectively.
Note that the different effective masses m* discussed in the following always refer
in fact to the ratio m*/m, where m is the bare nucleon mass. The latter is taken to
be the same for neutrons and protons.

This effective-mass splitting, though, is only one of a wealth of quantities which
can be subject to comparison between ab-initio predictions and EDF models. In
this chapter we present results of a classical yet long unused test: the separation of
infinite Symmetric Nuclear Matter (SNM) potential energy per particle into spin-
isospin channels.

We shall also pay particular attention to controlling instabilities (i.e. non-
physical spontaneous breaking of spin, isospin and/or spatial symmetries), and cor-
relate Am*(I) with vector properties of the functional. We thus investigate the
behavior of the latter with respect to the breaking of time-reversal invariance and
the onset of spin polarization, looking for an overall consistency check of its spin-
isospin content. Indeed, such properties will become more and more important as
one attempts to use full-fledged Skyrme functionals to study odd-mass nuclei, calcu-
late rotational properties through self-consistent cranking calculations, or use more
general dynamical methods [Ben(2].

This chapter is organized as follows: in section B.I]l we present the set of Skyrme
parametrizations used and examine basic properties of nuclear matter and finite
nuclei. From then on, in section we perform a more detailed study of the spin-
isospin content of the functionals and of their stability against finite-size spin and

isospin perturbations using response functions in the random-phase approximation
(RPA).

3.1 Constraining the isovector effective mass

As mentioned in section 1], the nucleon effective mass m* is a key property charac-
terizing the propagation of (quasi)nucleons through the nuclear medium [Jeu76]. It
is a reminder of the non-locality and energy dependence of the nucleon self-energy
Y (k,w), themselves originating from the finite range and non-locality in time and
space of the in-medium effective nucleon-nucleon interaction. Mean-field-like theo-
ries of finite nuclei or infinite matter rely on a quasiparticle approximation, and thus
include only a limited part of the effects associated with the energy dependence of
Y (k,w), while neglecting fragmentation of the spectroscopic strength. In this con-
text, either microscopic [Bal99] or making use of phenomenological interactions or
functionals [Ben03b], EDF methods do not correspond to a naive Hartree-Fock the-
ory and always amount to renormalizing a certain class of correlations into the
effective vertex. However, the energy dependence of the self-energy arising from the
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correlations only influences the position of the quasi-particle peak energy.

Let us recall that our approach of the nuclear EDF method is to aim, ultimately,
at building functionals which reproduce desired observables at the multi-reference
level (MR-EDF), i.e. “beyond the mean field”. We thus have to “leave room” for
corrections arising from correlations added on top of the single-reference (SR) cal-
culations which we use as an exploration tool.

Thus, the effective mass adjusted at the pure mean-field level is not expected
to generate single-particle spectra matching exactly experimental data extracted
through binding energy differences from neighboring odd-mass nuclei. In particu-
lar, the coupling of single-particle motion to surface vibrations in closed-shell nuclei
is known to increase the density of states at the Fermi surface and thus the ef-
fective mass [Ber80), [Lit06 [Gor03]. An isoscalar effective mass m? lying in the
interval 0.7/0.8 in SNM, is able to account for a good reproduction of both isoscalar
quadrupole giant resonances data in doubly closed-shell nuclei [Liu76] and of single-
particle spectra in neighboring ones provided particle-vibration coupling has been
properly included. When the latter coupling is taken into account, the effective
mass becomes greater than one for states near the Fermi surface. Certainly, a lot
remains to be done to understand these features microscopically in more involved
cases [ChaO6bh]. This is not only true for mid-shell nuclei where the coupling to both
rotational and vibrational states can be important, but also for exotic nuclei where
the coupling to the continuum becomes crucial and where shape coexistence and/or
large amplitude motion appear more systematically.

In very exotic systems, the isovector behavior of mys and mj should play an im-
portant role. However, so far, no experimental data from finite nuclei has allowed
a determination of the effective mass splitting as a function of neutron richness.
In this context, ab-initio calculations of ANM are of great help. Non-relativistic
Brueckner-Hartree-Fock (BHF) calculations, with or without three-body force, and,
with or without rearrangement terms in the self-energy, predicted Am*(I) to be
such that mj > mj in neutron-rich matter, that is, for / > 0. Such a conclusion was
also reached by calculating the energy dependence of the symmetry potential (the
Lane potential [Lan62]) within a phenomenological formalism [[i04a]. The latter
result was confirmed by microscopic Dirac-Brueckner-Hartree-Fock (DBHF) calcu-
lations [Sam05]. The situation regarding the prediction of the effective mass splitting
was complexified due to an apparent contradiction between results obtained from
BHF [Bom91l Zu099] and DBHF calculations [Hof01]. However, the situation was
finally clarified in Refs. [Ma04l [Dal05a] where the importance of the energy depen-
dence of the self-energy and the need to compare the non-relativistic effective mass
with the vector effective mass in the relativistic framework [Jam89] were pointed
out.

Thus, the sign of the splitting is rather solidly predicted. However, its amplitude
is subject to a much greater uncertainty. Starting from that observation, the goal of
the present section is to study the impact of the effective-mass splitting on properties
of exotic nuclei predicted by Skyrme-EDF calculations. As far as the effective-
mass splitting is concerned, one expects consequences onto structure properties of
neutron-rich nuclei. As a relatively large asymmetry may be necessary to reveal the
influence of the splitting, data from nuclei not yet studied experimentally should
provide crucial information in that respect. As the effective mass governs the density
of states at the Fermi surface (together with the spin-orbit and the tensor forces),
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the amplitude of the splitting may influence properties such as masses and single
particle properties of exotic nuclei, the evolution of isotopic shifts across neutron-rich
closed-shell nuclei or shell corrections in superheavy nuclei around the (N = 184, Z =
120) island of stability [Ben99al [KruO0, Ben01) Ber01]. Also, neutron and proton
correlations beyond the mean-field should develop rather differently depending on
the direction and amplitude of the effective-mass splitting. This could be true for
static and dynamical pairing correlations as well as for the coupling to vibrational
and rotational states. Finally, the effective mass splitting should leave its fingerprint
onto the characteristics of isovector vibrational states of different sorts in neutron-
rich nuclei [Paa05].

3.1.1 Fitting protocol

Trying to keep a coherence, throughout this work, in the way we construct Skyrme
functionals, we take the fitting protocol used to define the SLy functionals [Cha97,
Cha98| as a basis for the present Study. Also, we pay attention to the fact that any
improved or complexified functional includes all features validated by the SLy ones.

We presently take the SLy5 parametrization as a starting point. Thus, the two-
body part of the center of mass correction is omitted whereas the J? terms are fully
kept. The spin-orbit term is the standard one, with a single parameter adjusted on
the splitting of the 3p neutron level in 2%Pb.

Within this general scheme, we have built a series of three new Skyrme interaction
parametrizations, denoted hereafter f_, fy and f.. The departures from the SLy
protocol considered presently are (i) a better control of spin-isospin instabilities via
Landau parameters (ii) the use of two density-dependent zero-range terms [Coc04]
(iii) a constraint on the isovector effective mass, such that, in neutron-rich systems,
my < mg for f_, my =my for fo and mj > mg for f,.

With two density dependent terms, the compressibility and the isoscalar effective
mass are no longer bound together and can be chosen independently. However, this
is not directly used here and an isoscalar effective mass of m’ = 0.7, close to the SLy5
value, is chosen for the three parametrizations f_, fy, f+. The additional freedom
brought about by the second density-dependent term is only used to adjust more
easily the high-density part of the PNM EOS (see below). In the end, the only
parameter subject to variation between f_., fy and f, is the isovector effective mass
m’ which, m} being constant, drives the splitting Am*(I).

In the present work, we use the SLyb interaction as a reference, and include a
comparison with the LNS parametrization [Cao06] which was also built to match
the splitting of effective masses and the neutron matter EOS predicted by BHF
calculations. The SkP interaction [Dob84], initially built for the study of pairing
effects, will be used for a special purpose in the discussion about instabilities.

3.1.2 Elementary properties of studied functionals

As we focus on the behavior of effective masses m; with isospin asymmetry, we recall
that these quantities are related to the dependence of the energy density functional,


http://dx.doi.org/10.1103/PhysRevC.60.034304
http://dx.doi.org/10.1103/PhysRevC.61.034313
http://dx.doi.org/10.1016/S0370-2693(01)00863-2
http://dx.doi.org/10.1016/S0375-9474(01)00524-3
http://dx.doi.org/10.1016/j.physletb.2004.12.011
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.015
http://dx.doi.org/10.1103/PhysRevC.73.014313
http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4

3.1. CONSTRAINING THE ISOVECTOR EFFECTIVE MASS 49

Table 3.1: Infinite nuclear matter properties of the Skyrme functionals quoted in
the text. The quantities pg,y and £/A denote the density and energy per
particle at saturation in SNM. The symmetry energy and the compress-
ibility (for symmetric matter) are respectively 32 MeV and 230 MeV for
SLy5 and all f, parametrizations. In the case where m; ~ 0.7, kg ~ 0.43,
so we have Am* > 0 if k, = 0.43.

Parametrization Psat EJA me Ky me Am*

SLyb5 0.161 -15.987 0.697 0.25 0.800 -0.182
fo 0.162 -16.029 0.700 0.15 0.870 -0.284
fo 0.162 -16.035 0.700 0.43 0.700 0.001
fa 0.162 -16.036 0.700 0.60 0.625 0.170
LNS 0.175 -15.320 0.825 0.38 0.727 0.227
SkP 0.170 -16.590 1.030 0.32 0.760 0.418

Eqs. [C29HC.32] on kinetic densities 7,, as

h? OH h?
= — = — +(C7 I1CT
QmZ(I) o, 2m o potal Crpo
m m m m
= I — 3.1
ma) o (m;f m:) (31)

where pq is the scalar-isoscalar density and ¢ = +1, —1 respectively for neutrons and
protons. The splitting of effective masses, quantified by
Am*(I) mi(I)  my(I)

= M) 3.2
- o o (3:2)

is governed by the isoscalar and isovector effective masses

m

= 1422 C7 po = 1+ kg, (3.3)
Tn’s 2m T T —
m ]_ + 7 (CO — Cl) po = 1 + Ry - (34)

We use the usual convention for the isovector effective mass, which stems from
its definition through the enhancement factor s, of the Thomas-Reiche-Kuhn sum
rule [Boh79]. However, m’ and k, are not isovector quantities in the sense of
isovector couplings of the functional.
In the following, we shall discuss the value of Am*(I) at I = 1, which we note
Am* in the following, for the sake of brevity. We have
Am* 2(Ky — Kg) (3.5)

m (14 k)2 — (Ky — Kg)2’

such that Am* > 0 for k, > kg, or equivalently m? < m?, or CT < 0.
Bulk properties of f, parametrizations are displayed in Table Bl We note that,
while the position of the saturation point varies little between our parametrizations
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(SLy5 and f,), this consistency is lost in the case of LNS and SkP. These properties
depend on the observables used in the fitting procedure. In the case of LNS, the
saturation point relates to an Extended Brueckner-Hartree-Fock (EBHF) calcula-
tion [Zu099|, predicting values of (£/A)s and pgyy which are larger than empirical
ones. A similar but lesser trend is observed for SkP. In this case it seems to be corre-
lated with the choice of effective masses and their interplay with other parameters of
the interaction. Indeed, binding energies computed with SkP compare satisfactorily
with experimental ones, while LNS suffers in this respect from the lack of readjust-
ment of the saturation point on nuclear data. As it has been shown in Ref. [Ber03l,
nuclear binding energies are highly sensitive to the choice of the energy at satura-
tion, which is therefore constrained to a very tight interval if one wants to reproduce
such quantities. This constraint is especially tight compared to the uncertainty of
ab-initio predictions. Despite the fit of surface properties (C’OAP parameter) on a set
of nuclear data, the accuracy of binding energies predicted by LNS is of the order
of 5%, to be compared with less than 1% for SLy5.

3.1.3 Properties of the nuclear matter EOS

It is interesting to note that SLy parametrizations were fitted to PNM EOS with
the idea of improving isospin properties of the functionals. One consequence was
to generate functionals with Am* < 0, in opposition to ab-initio predictions. On
the other hand, older functionals such as SIII [Bei75a] and SkM* [Bar82b|, which
were not fitted to PNM, had Am* > 0. The same exact situation happens for
the Gogny interaction [Cha06a]. Thus, improving global isovector properties (EOS)
seems to deteriorate those related to single-particle states (m?*) with currently used

functionals. This can be better understood by examining the expressions for SNM
and PNM EOS:

£ 3 K2 /372\ %3 3 /372\ %3
(P, 1=0) = o~ (—> Py + Chipo) po+ Coz (—> >, (3.6)

A 52 2 2
E 3 h? 2/3 2/3
(o, I=1) = =om (37%) oy
3
+ [C8lpo) + Cpo)lpo + (G5 +CF) £ (30°) 3. (37)

If C{(po) coefficients only contain one low power of the density (o ,0(1]/6), the
latter influences low-density parts of the EOS more than high-density ones. The
effective mass term then determines the high-density part of the EOS. In SNM,
this translates into the well-known relation between m} and the incompressibility
K [Cha97, [Cha98]. In the case of PNM, the EOS above pg, is then mostly fixed by
the term proportional to C§ + C7] in Eq. (B), and any attempt to use the density
dependence to counteract its effects, results in a very strong constraint on the latter.
This in turn degrades the behavior of the functional at and below saturation density
and the fit to properties of finite nuclei. We recall at this point that the condition
Am* > 0 corresponds to C] < 0, which drives the high-density PNM EOS down
and explains why usual Skyrme functionals predict either a collapse of the PNM
EOS if Am* > 0, or, like the SLy functionals fitted to PNM EOS, the wrong sign
of the effective mass splitting in neutron rich matter.
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Figure 3.1: SNM and PNM EOS as given by Skyrme functionals presently dis-
cussed (see text), compared with VCS results by Akmal et al. [Akm98)|
(x: PNM, +: SNM).
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If Cf(po) coefficients contain an additional density dependence with a higher
power, the previous discussion does not apply: using two density-dependent terms
in the functional (o ,0(1]/3;03/3) [CocO4] allowed us to construct (f_, fo, fi) with
a good fit to PNM EOS, a free choice of effective masses and satisfactory nuclear

properties.

The previous discussion already shows the type of problems and information
arising from our attempt to improve on the fitting protocol of SLy functionals by
using more inputs from ab-initio calculations. Now, Fig. Bl shows SNM and PNM
EOS as obtained from (f_, fo, fi, SLy5) and as predicted by Variational Chain
Summation (VCS) methods [Akm98|. At this point, one can see that the four
parametrizations (f_, fo, f4, SLy5) reproduce both microscopic EOS with the same
accuracy. However, it remains to be seen whether or not this translates into identical
global spin-isospin properties and into similar nuclear structure properties.

3.1.4 Effects on properties of nuclei

We now study the effects of the variation of the isovector effective mass on selected
properties of spherical nuclei. We start with HF single-particle energies, then binding
energies, ending with a short sum-rule based analysis of isovector giant resonances.

For computations of open-shell nuclei, we use, in the particle-particle channel, a
local functional with a density dependent form factor (mixed surface and volume,
ie. ¢c=1/21in Eq. (298)). The local HFB equations are renormalized following the
procedure developed by Bulgac and Yu.

The strength V4 is adjusted to the mean pairing gaps of six semi-magic nuclei
(neutron gaps in 2°Sn, %¥Pb, 212Pb and proton gaps in “>Mo, *4Sm and #'?Rn). In
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Figure 3.2: Single-particle energies [MeV] in 132Sn and 2*Pb computed with indi-
cated interactions. Thick lines indicate the Fermi level .

this procedure we compute theoretical spectral gaps defined as

ZAkEUlﬂ)k] / [Z Ukvk] ) (3.8)

A,z being a pairing field matrix element between canonical states and ug, vy, the cor-
responding quasiparticle amplitudes, and adjust each of them upon an experimental
gap extracted through a five point difference formula from masses of neighboring
nuclei, as suggested in Ref. [Dug01b].

(A =

Single-particle energies

Effective masses are known to control the average density of single-particle states.
It is thus interesting to check to what extent such statement applies to neutron-
rich nuclei when varying m. In this part of the study, we are mainly interested in
evaluating the change in the single-particle energies generated by the functional for
different splittings and not directly by a comparison with experimental results.

Single-particle energies in '32Sn and 2°®Pb are plotted on Fig. B2l The general
trend followed by neutron states with increasing Am* (from f_ to f,) corresponds
to an increase of the density of neutron states: they tend to come closer to the
Fermi energy ep; notable exceptions being both neutron 1i levels in 2°Ph. The
opposite behavior is observed in proton levels, which spread away from ep with
increasing Am* (except for the proton 1hi1/2 level). However, these trends are rather
marginal, which can be linked with the moderate bulk asymmetry of these nuclei
(I = (N —Z)/A = 0.24 for '¥Sn and 0.21 for 2®Pbh). This moderate asymmetry
means that the isovector term in the definition of the effective mass (Eq. BI)) is
weakly probed.

Let us therefore examine similar spectra for more neutron-rich nuclei, i.e. "Ni
(I = 0.28, experimentally observed [Hos03]) and '5Sn (I = 0.36). The nucleus '%5Sn
is used as an example of an extremely asymmetric system, even beyond the reach
of planned radioactive beam facilities [sp206]. We observe on the rightmost panel
of Fig. that the effect of Am* on proton single-particle energies at Z = 50 is
more pronounced in ®°Sn than it was in *?Sn. The modification of level densities
appears quite clearly in "®Ni also, while neutron levels around e in '°Sn are shifted
in a slightly more disordered way.

High-¢/low-n orbitals (n, ¢ being respectively the principal and orbital quantum
numbers) are in fact more sensitive to variations of the spin-orbit field than to Am*
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Figure 3.3: Same as Fig. B2 in ™Ni and '°°Sn.

because of their spatial localization near the surface of the nucleus. The spin-orbit
field is modified between functionals by the interplay between J?-term coefficients
and effective mass parameters, since these both depend on the same non-local terms
of the Skyrme interaction [Dob06]. The spin-orbit interaction (pV - J terms in the
EDF), which is subject to a slight readjustment, does affect the spectra as well.
We observed, overall, a marginal increase of the spin-orbit field strength when going
from f_ to f.. This implies that while the global effect of modifying the level density
is quite clearly observed when we alter the effective mass parameters, details of the
spectroscopy are at least as sensitive to the terms connected to the spin-orbit field.

Pairing gaps

As an example, neutron spectral gaps are plotted on Fig. B4l for Sn and Pb series,
up to the drip line, against experimental gaps extracted through five-point mass
formulas [Dug01a), [Dug0OTh]. The slight change in the level density translates into a
modification of the pairing gaps: a higher neutron effective mass (f;) corresponds
to a denser spectrum and higher gaps. The effect, which increases with asymmetry,
remains however very small, because of the limited alteration of single-particle levels
seen on Figs. and B3]

In the end, the effect is negligible and would be overwhelmed by any other
modification of the particle-hole part of the functional. For example, variations in
the detailed level scheme, could alter the shape of gaps. The pairing functional
itself is a subject of current debate regarding its density dependence, regularization
scheme and finite-range corrections, while the choice of observables to be compared
(definition of theoretical an experimental gaps) can be improved. Most of these
issues will be addressed in the following of this manuscript.

Binding energies

Let us now study the effect of the aforementioned variation of level densities and
pairing gaps on binding energies. On Fig. we show the binding energy residuals
Ei — Eexp for Sn and Pb isotopes and N = 50 and N = 82 isotones. The evolution
of Eiy, — Eeyp along such chains is usually plagued by an underbinding of open-shell
nuclei with respect to closed-shell ones which translates into an arch shape of F-
residual curves. Although the variation of m} seems to impact the arches, again, the
effect is negligible compared to the absolute value of deviations from experiment,
except in the N = 82 series where open-shell nuclei tend to be more underbound in
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Figure 3.4: Neutron spectral gaps computed in Sn (bottom) and Pb (top) chains
with parametrizations f_, fy, fi, as a function of asymmetry. Experi-
mental A®) gaps extracted from masses [Aud03] are plotted with error
bars.

the case of f,.

Isovector giant resonances

The isovector effective mass is usually defined from the energy-weighted sum rule my
(the Thomas-Reiche-Kuhn sum rule [Boh79]) of the isovector giant dipole resonance
(IVGDR):
h? NZ h? NZ m
m(El; T=1)= o A (14 ky) = %7%,
which exhibits its link with the strength distribution of isovector collective modes.
We perform here a schematic overview of dynamical properties of f_, fy, f+ by means
of results derived in Ref. [Col95]. Thanks to RPA sum rules similar to Eq. (83,
it is possible to fit an accurate parametrization of the energy F; = m;/m_; of
isovector giant resonances in a given nucleus as a function of Skyrme parameters.
Results for GDR (L = 1) and isovector giant monopole (IVGMR, L = 0) modes in
208Ph are shown in Table B2l compared to experimental energies (respectively from
Refs. [Rit93] and [Ere86] and corrected, as suggested in [Col95], for the shift due
to the spreading of the strength by damping effects: 2 MeV for GMR, 1 MeV for
GDR).

While f_ predicts both energies lower than experimental ones, values for f, and
f1 are compatible with experiment for the . = 0 mode, and only f, approaches the
experimental value for the . = 1 mode. This suggests that values of x, correspond-
ing to a positive value of Am* (equal to, or higher than 0.43 in our case) better
describe isovector dynamics than lower values.

As a summary, the effect of the splitting of neutron and proton effective masses
with isospin asymmetry on single-particle energies, pairing gaps and binding en-

(3.9)
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Figure 3.5: Binding energy residuals computed with interactions f_, fy and f, for
semi-magic series of nuclei, as indicated.

Table 3.2: E; energies of 2°®Pb isovector giant resonances computed thanks to a
sum-rule parametrization (see text), compared to experimental energy
centroids. Experimental uncertainties are as indicated. We infer from
figures in Ref. [Col95] the accuracy of theoretical energies computed with
the fits in that reference, with respect to full RPA calculations, to be of
the order of 1 MeV.

ke FE(L=0T=1) E(L=1T=1)

f 0.15 24.55 12.68
fo 0.43 26.43 13.60
o 0.60 27.25 14.01

exp. centroid 263 £ 1.1 143 £ 0.1
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ergies, is noticeable and consistent, yet limited and thus hardly meaningful when
compared to the overall (in)accuracy of the predictions made by the current nuclear
EDEF. In fact, the main reason for not seeing a dramatic modification of EDF pre-
dictions when altering Am* is the limited amount of strongly asymmetric nuclear
matter at high enough density in the ground state of nuclei with realistic isospin as
already suggested in [Gor03]. This makes the effect of the isovector effective mass
rather marginal. Giant isovector resonances are certainly more fruitful to seek for
an effect of a modification of Am*. Indeed, a sum-rule-based analysis of isovector
collective modes allows a slightly more clear-cut conclusion, with a tendency to favor
Am* 2 0. The conclusion of the phenomenological study done in this section is that,
while no observable listed here strongly ask for Am* > 0, there is no reason to omit
this constraint in future functionals, since, as already stated, ab-initio predictions
for the sign of Am* are solid. There remains to check the intrinsic consistency of
the functional in terms of other ab-initio inputs and stability criteria, which, as will
be discussed below, we have found to be a concern.

3.2 Further study of infinite matter

3.2.1 Separation of the EOS into (5,7) channels

In this section, we discuss the contributions to the potential energy of SNM from
the four two-body spin-isospin (S,7") channels. We compare our results with those
predicted by BHF calculations [Bal06] using the Argonne vz [Wir95] two-body
interaction and a three-body force constructed from meson exchange theory [Gra89,
Lej00].

Using projectors on spin singlet and triplet states, respectively

A A ~

. 1
PS:O — 5(1—P0), PS:l — 5(1—|—P0), (310)

where P, is the spin-exchange operator, and similar expressions for isospin projectors
Pr using the isospin exchange operator P, yields the potential energy in each (S, T")
channel

1 LA —
Epot = 2 > < ki ’VPSPT’ ki >PkkPu, (3.11)
K

where the sum on £,/ runs over all HF single-particle eigenstates whereas pgi des-
ignates the diagonal one-body density matrix. The notation |kl) denotes a non-
normalized but antisymmetrized two-body state. In order to compare different
many-body approaches (ab-initio or EDF), we use the “potential energy” which
refers to the total binding energy from which is subtracted the kinetic energy of the
non-interacting particle system.

Note that due to the zero-range character of the Skyrme interaction, together
with at most second-order derivative terms, only L = 0,1 partial waves occur ex-
plicitly whereas higher partial waves contribute to the ab-initio EOS. We find, for
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SNM,
% - %tz(l — ) (3%2)2/3 p”, (3.12)
%?t = 1—36t0(1 + x0)po + 93—6t3(1 +23)p "+ 9_?:3%@ + 376)/)(1)”,
- %tl(l + 77) (37“2)2/3 o3, (3.13)
% - %to(l — To)po + 93_6753(1 —a3)p T+ 9:))_6t6(1 —we)ppt”
+ F?Otl(l — 1) (3771-2) i 08/3, (3.14)

where (t;,x;) are coefficients of the Skyrme interaction as defined in Eq. (275).
The coefficients occurring in Eqs. (B12)—(3I3) stem from the antisymmetrization
condition (—)5*+5*T = —1, the relative angular momentum L being even for to; and
t; (k?) terms and odd for ¢, (k' - k) terms. The expression of the potential energy in
channels (S,7T) = (0,0) and (1, 1) is very simple since only the ¢y term contributes.

Force vs. functional

Previous statements, however, apply only to the case where the EDF is computed as
the expectation value of an (antisymmetrized) effective interaction. In the more gen-
eral case, it is still possible to define (S,7T) channels starting from any Hartree-like
functional. Indeed, the functional can always be expressed in terms of an effective
non-antisymmetrized vertex and one can still plug a projector in the calculation of
its matrix elements. In the pure functional case, there is however no more clear
definition of partial waves, and spin-isospin channels emerge from the balance be-
tween coefficients of (iso)scalar/(iso)vector couplings (see appendix [B] for the formal
definition).

As long as there are not enough inputs to constrain all degrees of freedom of a
general functional, the effective-interaction approach remains as an acceptable path,
and hence shall be used in the following.

Results

Results are plotted against BHF predictions on Fig. B.6l First, one can observe that
results are rather scattered. Second, the main source of binding, from (S,7) = (0, 1)
and (1,0) channels, is not well described and the detailed saturation mechanism is
not captured. It is clear that, even though all four functionals reproduce perfectly
PNM and SNM EOS, they do not have the same spin-isospin content, and that the
latter is in general rather poor. Thus, fitting the global EOS is an important element
but it does not mean that spin-isospin properties of the functional are fixed once
and for all. One needs to do more and fitting ab-initio predictions of Elf,i;T) seems
to be a good idea in the near future. However, one needs to make sure that the
theoretical uncertainty of the data used is smaller than the expected accuracy of the
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Figure 3.6: Energy per particle in each (S,7) channel for SNM, as a function of
density. Crosses refer to the BHF calculations [Bal06].

fit to them. This calls for predictions from other ab-initio methods using the same
two-body plus three-body Hamiltonian. Then, those ab-initio calculations should
be repeated using different sets of two-body plus three-body Hamiltonians in order
to provide a theoretical error bar on those predictions.

The most obvious discrepancy appears in channels (0,0) and (1, 1) where Skyrme
and BHF data have opposite signs above saturation density. The SLy5 parameter set
shows a particular behavior in channel (1, 1) due to the choice of 25 = —1 to prevent
ferromagnetic instabilities in PNM. Note that in the Skyrme functional, these two
channels contain contributions, of the density-independent P-wave term only. The
upper-right panel of Fig. points out the tendency of Skyrme parametrizations to
be attractive in polarized PNM, and hence to cause a collapse of its EOS at high
density. At lower densities, BHF data show a distinctive behavior, being slightly
attractive below pg,; and repulsive above. This feature cannot be matched by the
standard Skyrme functional which exhibits a monotonous behavior as a function of
density in this channel, regardless of the value of (5, x2).

It is also worth noticing that the failure in channel (1, 1) becomes more and more
prominent as one makes Am* closer to the ab-initio predictions (parametrization
f+). The effective masses being governed by the momentum-dependent terms of
the interaction, it is not a surprise that the modification of the former impacts
channels (0,0) and (1,1). What changes in the coefficients entering Eqs. (12
BI0) stems only from the variation of m? and the associated rearrangement of
parameters in the functional, most notably the C’(ff coefficients closely related to
surface and surface-symmetry energies. The relatively tight requirements on the



3.2. FURTHER STUDY OF INFINITE MATTER 59

latter imply that the four parameters of the non-local terms in the standard Skyrme
energy functional would be dramatically overconstrained if we were to add the (S, T')-
channel decomposition in the fitting data.

In the end, the rather poor properties of the functional in channels (0,0) and
(1,1), the degradation of the latter as the effective mass splitting is improved, the
idea of using ab-initio (S,7") contributions in the fit, call, at least, for a refinement
of the odd-L term in the sense either of a density dependence or of a higher-order
derivative term. The latter being prone to numerical instabilities and interpreta-
tion problems, a density-dependent k' - k term remains as one of the next poten-
tial enhancements to be brought to the Skyrme EDF (density-dependent derivative
terms have been considered already, but with a focus on even-L terms of the form
ty(k* + k’2)pg [Far97]).

Phenomenological constraints on gradient terms are mainly related to the surface
of nuclei, i.e. low-density regions. One can expect that, to first order, BHF data in
channel (S,7) = (1,1) can be matched with an extended functional while retaining
a good agreement with other (experimental) data. It is less clear in channel (0, 0)
but further exploration of the extended parameter space may bring Skyrme and
BHF data in better agreement.

3.2.2 RPA linear response functions and the diagnosis of in-
stabilities]

We attempt here to study general stability conditions of SNM with respect to finite-
size density, spin, isospin and spin-isospin perturbations. Our basic ingredient is
the RPA response function [Fet7I] derived analytically by Garcia-Recio et al. in
Ref. [GR92| for the central part of the Skyrme interaction. Recent work was done
to incorporate the effect of the spin-orbit part, which was found to be quite neg-
ligible [Mar(6], and will be omitted in the present work. One starts by defining a
one-body perturbing operator

Q) = e Y Celare 9, (3.16)

where a indexes particles in the system. The one-body spin-isospin operators el
are defined as

oY =1, O =0, O) =17, O} =0,7, (3.17)

where we use the denomination of (iso-)scalar (s) and (iso-)vector (v) channels in or-
der to distinguish the particle-hole spin-isospin channels from the two-body-coupled
(particle-particle) (S,T') channels discussed in the previous section. In Eq. (BIT)
and the following, the first (second) subscripts denotes the spin (isospin). We then

!This chapter is an adapted and corrected version of Ref. [Les06]. Indeed, an an error was made
in the derivation of the RPA residual interaction, which, when corrected, yields an additional
contribution to the terms discussed. The magnitude of this contribution (and its variation) is
smaller than the one discussed but not completely negligible. The quantitative results are modified
in a way which does not affect the validity of the method proposed for diagnosing finite-size
instabilities. Details of the discussion have been updated accordingly.
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study the response to each type of perturbation separately through the response
functions

1 1
w—FEyoy+im w+Emy—m

w0 = & Yo ( ). e

at the RPA level, where Q) stands for a normalization volume and |v) is an excited
state of the system, E,q being the corresponding excitation energy. Since the central
residual interaction does not couple the channels defined through Eq. (BI7) in SNM,
we can indeed consider each channel separately.

The response function II(®) can be seen as the propagator of the collective per-
turbation, or polarization propagator, i.e. the positions of its poles in the (g,w)
plane yield the dispersion relation of the mode. In this formalism, the onset of an
unstable mode is marked by the occurrence of a pole in II®) at w = 0, corresponding
to zero excitation energy. Such a pole marks the transition between stable (with our
convention, I1(® < 0) and unstable (II'® > 0) domains. Unstable modes of infinite
wavelength (¢ = 0) are those traditionally discussed in terms of Landau parameters.
A pole at finite ¢ characterizes a system which is unstable with respect to the ap-
pearance of a spatial oscillation of a given type (density, spin, isospin or spin-isospin)
with a given wavelength A = 27 /¢. In unstable domains, an imaginary-energy mode
appears.

The evaluation of response functions calls for the residual interaction VP!, defined
as the second-order functional derivative of the energy with respect to the density
matrix. Its momentum-space matrix elements can be written, using total momentum
conservation, as [GR92]:

Vph(QhQ%Q) = (a1 92 +q| veh a1 + 9 q2),
Wi(q) + Wa(q) (a1 — q2)?, (3.19)

with

[Wi*(a) + Wi™(q) 6162+ Wi¥(q) 7107
—|—W1VV<Q) &1'6’2 7:107:2], (320)

| =

Wl(‘l) =

and a similar expression for W5. We find, as an expression for W; functions (see
also appendix [C.3)),

W%@ = 2020 + CPY(y 4+ 2) (v + )pl + CEY (v +2)(v + 1)pl

- {QCOA” + %Cg} @, (3.21)
W%@ = 2050 4205757 + 2057 pY — {QCOAS n %CST] @ (3.22)
Wf;(CI) — 2000 4 2007 7 4 2007 g — [QClAp N %C{} <. (3.23)
Wf;(CJ) — 2050 4 20 4205 [QClAs N %CTT} <. (3.24)
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where we split the density-dependent coupling constants C¥(pg) and C;(pg) following
the model C?(py) = CP° + CPpl + CP7 p', and for W, functions,

W) _ -~ W59

5 % oA
WSV WVV

Given the above expression for the residual interaction, one can calculate the re-
sponse function, which reads

2
N(w,q) = 4l | 1— W, — 2W k3 (a? -— ) I,
1— mFkg W(a)
372 2
+ WSR2 (2 T — T,) (3.26)

-1

2m*k
+ (W3 k)2 (H% — oIy + 4q°V°11; — T;TQF§2H0) ;

where § = ¢/2kp, v = wm/qkr and Il 4 are generalized Lindhard functions, see
Ref. [GR92].

As already said, the limit q — 0 corresponds to perturbations of infinite wave-
length, keeping the system homogeneous. In this limit, the residual interaction is
uniquely determined by Landau parameters Fj, F],G;, G}, with [ = 0,1, and well
known stability conditions are obtained under the form [Mig67|:

X

1
T

> 0, (3.27)

where X, represents any of the Landau parameters. We have used this criterion in the
fit of our parametrizations f,, ensuring that no spin or spin-isospin instability would
occur below 2pg,;. We observe that, from the point of view of Landau parameters,
the most critical channel is the vector-isovector one, with associated instabilities at
densities as low as 2p (see the upper-right panel of Fig. B3). This behavior is
linked to the attractive character of the functional in channel (S,7") = (1, 1) which
gives rise to a collapse of spin-polarized PNM, and accordingly, a vanishing spin-
isospin symmetry energy. Therefore, better reproducing the decomposition into
(S,T) channels of EOS obtained from ab-initio methods is not only a matter of
microscopic motivation, but also a necessity to avoid unwanted instabilities.

Beyond infinite-wavelength instabilities, we also aim at demonstrating that a
more general treatment is needed to fully describe and control unstable modes which
arise in the Skyrme EDF framework. Thus, contributions to the residual interaction
coming from functional terms of the form pAp are zero for q = 0, whereas such
terms drive finite-size instabilities.

Indeed, we have observed that existing (SkP) or new parametrizations built
with a high value of x, in order to reproduce the microscopic splitting of effective
masses, tend to spatially separate protons from neutrons in spherical mean-field
calculations, where enough iterations lead to states with strongly oscillating densities
and a diverging energy. Following a preliminary phenomenological reasoning, we
could relate this effect to the C’lAppl Ap; term in the functional, as this term can
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Table 3.3: Values of the effective mass splitting (in nucleon mass units), and C7 and
CP? coefficient, in MéV fm?,

f-  SLy5 fy f+ LNS SkP
Am* -0.284 -0.182 0.001 0.170 0.227 0.418
CT 229 238 -0.2 -22.0 -19.5 -41.9
C* 54 167 214 294 3375 35.0

energetically favor strong oscillations of the isovector density p; which arise in the
case of such a spatial n-p separation.

Moreover, Eqs. (B2IH320) show that such a term can yield an attractive contri-
bution to the residual interaction in the case of a short-wavelength (high ¢) pertur-
bation. We found empirically that parameter sets for which this instability arises are
characterized by a high value of C’lAp, that is ClAp 2 30. However, the term propor-
tional to g2 in the expression for the residual interaction contains contributions from
both the isovector gradient and effective mass (C7) terms, indicating that Am* may
also have a direct effect on the phenomenon, which is less intuitive. As seen from
Table B3] these parameters are strongly correlated together and with the effective
mass splitting Am* in such a way that for more positive splitting corresponds to
more negative CT (which follows from the definition of effective masses, Eq. (B1]))
and more positive C’lAp. Given the weighting of both contributions to the residual
interaction, we see that it is the attractive (and destabilizing) one from the gradient
term which dominates. The effect of the isovector effective mass alone, when going
towards microscopic values, is a stabilizing one, and the sole rearrangement of the
isovector gradient term is the cause of the fact that a positive splitting, as required
by ab-initio predictions, tends to favor instabilities.

Whereas with our fitting protocol we were unable to provide both a fully con-
verged (and hence physically meaningful) and clearly unstable functional to illustrate
the previous statements, we found that certain functionals available in the litera-
ture present the aforementioned behavior. For example, convergence problems have
arisen (and have already been pointed out in another study [Ter(7]) for the SkP pa-
rameter set [Dob84]. The nature of the instabilities discussed here is illustrated on
the left panels of Fig. 37 where neutron and proton densities are plotted at various
stages of execution of a self-consistent iterative procedure with SkP in *Ni. We see
that strong, opposing oscillations of neutron and proton densities are formed, and
steadily increase with iterations. Such a behavior happens after a seemingly con-
verged situation for which the relative energy variation is small but almost constant
over a large number of iterations and the evolution of the energy is monotonous.

The study of the linear response function in the scalar-isovector channel allows
us to provide a more quantitative ground to the previous observation. By plotting
critical densities (lowest density p. of occurrence of a pole in II™(w = 0, q)) for a
given ¢ on Fig. [3.8 we see that these critical densities can be lower for ¢ ~ 2.5 to
3 fm~! than for ¢ = 0, reaching down to about 0.22 fm™®, which is quite near to the
saturation density. This is the case for SkP and LNS, with SkP having also lower
critical densities at lower values of q. Accordingly, SKP is the most prone to a lack
of convergence in HF calculations.
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Figure 3.7: Neutron and proton densities in central regions of **Ni (left panels)
and “°Ca (right panels) plotted for a fully converged computation using
the SLy5 interaction (solid line; relative variation of energy between
iterations less than 1071%) and along a series of iterations done with SkP
(for ®Ni) and LNS (for “°Ca). The number of iterations corresponding to
each curve is indicated in key. In both cases the collapse happens after a
seemingly converged situation (~ 1079 relative energy variation, steady
over a large number of iterations indicating a nearly linear evolution of
the energy), which can be mistaken for an energy minimum if too loose
a convergence criterion is used.
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Figure 3.8: The lowest density of occurrence of a pole in II*(w = 0,q) is plotted
against the wave-number ¢ of the scalar-isovector perturbation. The
curves end at ¢ = 2kp since the ground state can not couple to excita-
tions with w = 0,q > 2kp.

The link between response functions and convergence problems can indeed be
understood by classifying them by their magnitude: in case of a stable but very
soft mode, lack of convergence arises from the existence of a continuum of quasi-
degenerate mean-field states, among which no minimization or self-consistency al-
gorithm shall be able to decisively find an energy minimum without a considerable
amount of iterations. If the soft mode becomes unstable, it causes a divergence of
the energy and of other observable such as the densities. We see in the agreement
between the RPA study of SNM and the observation of unstable HF calculations
of nuclei a qualitative validation of our local-density approximation (LDA)-based
treatment of instabilities: soft or unstable modes occurring in INM at densities in
the vicinity of the saturation density, happen for the same parameter sets in finite
nuclei.

On the other hand, self-consistent calculations of nuclei diverge although no
unstable mode appears strictly at saturation density, which shows the limits of the
transposition of results from INM to nuclei in a LDA scheme: it seems that nuclei
probe properties of the functional up to higher densities and momenta than occur
in INM at saturation.

The large number of iterations needed for the divergence to occur on Fig. B is
a consequence of the limiting case embodied by SkP, such that the existence of a
definite instability is highly dependent on finite-size effects (choice of the nucleus)
and discretization details in the numerical procedure. If SkP is a limiting case,
LNS also displays a low critical density in the scalar-isovector channel (Fig. B.8). In
this case, we observed proton-neutron separation in *°Ca and for small mesh steps
(0.1 fm) only (see Fig. B7), while it is more frequent with SkP. Our functional f,,
with a critical density of 0.30 fm ™2, which is barely lower than SLy5, while being
slightly higher that SkP and LNS, successfully passed the test of computing a set
of 134 spherical nuclei. This again demonstrates that testing finite-size instabilities
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through response functions constitutes an accurate tool. The critical density (and its
proximity to pg.s, keeping in mind that values which yield instabilities in calculations
of finite nuclei have been here seen to reach 0.22 fm_?’) appears as a good measure
of the gravity of the problems one might encounter in finite nuclei. Although the
actual occurrence of instabilities is subject to details of the numerical treatment, it
is now clear that their origin can be traced back to the choice of parameters in the
functional itself.

Nevertheless, even if a functional does not display clear instabilities but only
spurious soft collective modes, convergence difficulties shall arise in SR-EDF cal-
culations while such a mode will translate into a non-physical low-lying spectrum
in a multi-reference framework. This can then yield excessive correlation energies
if one systematically includes correlations in the ground state e.g. in (Q)RPA or
GCM-based methods. One should thus make sure that no spurious (even remotely)
soft mode occurs at saturation density in order to prevent such problems.

Having demonstrated the importance of finite-size instabilities, let us go back
to discussing our original set of functionals and perform a generalization to other
spin-isospin channels.

Critical densities are plotted on Fig. B9 for the four channels defined in Eq. (B17).
The upper-left panel shows that, while no unstable mode occurs at ¢ = 0 thanks to
fitting PNM EOS to relatively high density, scalar-isovector instabilities may hap-
pen little above pg, for ¢ &= 2.5 to 3 fm~'. In addition, there is a clear trend for
lowering the critical density when Am™* is increased, in agreement with the prelimi-
nary phenomenological reasoning on ClAp. The fact that critical densities for SLy5
lie in the lower range of values obtained with our new parametrizations, despite the
negative value of Am™* it exhibits, must then be attributed to the slightly different
fitting protocol involving a single density-dependent term.

Spin channels have been taken care of during the fit thanks to Landau param-
eters, which describe the residual interaction at ¢ = 0. The result can be seen on
the right panels of Fig. B0 where the critical densities of instability are plotted for
spin-flip modes (isoscalar and isovector). As previously stated, the most dangerous
q = 0 instability is found in the vector-isovector channel. By looking at the upper-
right panel of Fig. one can see that the critical density is however increased at
higher ¢ for our parameter sets.

An even more prominent finite-size effect can be observed in the isoscalar spin-
flip channel (lower-right panel of Fig. B.9]) where, while no instability occurs at ¢ =0
as in the case of most Skyrme functionals, finite-size instabilities occur at densities
lower than observed in the scalar-isovector channel for pathological parametrizations.
These instabilities are linked to the C’OAS So - Asy term which makes the vector-
isoscalar V,,_, attractive at large ¢ whereas it is repulsive at ¢ = 0. Values of
C5¢ indeed, are as high as 45.85 and 47.32 for SLy5 and f_, respectively. As a
consequence, one can expect divergences in calculations of odd or rotating nuclei
with the latter functionals if the aforementioned terms are included. In this case,
though, increasing Am* pushes the critical density farther from pg: fo and fi
functionals are thus the only ones to be free from instabilities near pg,, fo being on
the edge of the dangerous region and f* well above.

The previous discussion is valid if the full time-odd functional is taken into ac-
count. This must be stressed since sy - Asy terms, which drive the most critical,
finite-size instabilities, have never been included in self-consistent mean field calcu-
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Figure 3.9: Same as Fig.[B.8 for all spin-isospin channels. The lower-left panel shows
the region of spinodal instabilities below pg.;. The domain of ¢ covered
in this case determines the size of structures formed, while the region
between 0.1 and 0.16 fm™! appears as metastable.

lations employing the SLy series of parametrizations. However, RPA calculations are
commonly performed by computing the residual interaction matrices directly from
the antisymmetrized interaction (plus rearrangement terms), which amounts to im-
plicitly including the contribution to V,_}, from all terms in the functional [Ter(5al.

The latter findings finalize the picture of a competition between spin and isospin
instabilities. All in all, the strong interplay between the various quantities linked to
the four parameters of the non-local terms in the Skyrme interaction does not seem
to allow for a fully satisfactory compromise between stability criteria and ab-initio
constraints on Am*. Again, we see that the non-local part of the Skyrme interaction
is too simplistic to control all relevant properties. An extension with density- and
momentum-dependent terms, allowing the fine-tuning of the functional at various
densities, combined with the formal checks advocated in this paper, could prove to
significantly improve the predictive power of Skyrme EDF.

3.3 Summary

We have built a series of Skyrme energy density functionals to study the effect
of a variation of the splitting of neutron and proton effective masses with isospin
asymmetry on properties of this EDF model. Thanks to the use of a second density-
dependent term in the underlying effective interaction, we could cover a wide range
of effective mass splittings (Am*) with a satisfactory fit to nuclear properties. In-
deed, nuclear observable predicted by our functionals f_, f; and f, show a remark-
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able similarity, pointing out that spectra, pairing gaps and masses of bound nuclei
are weakly sensitive to Am*, mostly due to their relatively low isospin asymme-
try. Although observable were affected in a noticeable and consistent way, no clear
improvement was seen when altering Am* either way.

Beyond this phenomenological study, we have compared the splitting of the equa-
tion of state of symmetric infinite matter into spin-isospin channels provided by our
functionals and by ab-initio Brueckner-Hartree-Fock calculations. Such a compar-
ison showed an obvious discrepancy in (S,7) = (0,0) and (1,1) channels, where
energies predicted by Skyrme functionals and by BHF calculations have opposite
signs. The inconsistency in channel (S,T) = (1, 1), where the Skyrme functional is
attractive, translates into a collapse of polarized neutron matter EOS, related to the
onset of spin-isospin instabilities at quite low density (2psa). In this channel, ab-
initio predictions cannot be matched (in the Skyrme effective-interaction approach)
without an extension of the P-wave term. We also identified finite-size isospin in-
stabilities caused by strong isovector gradient terms, which prevent the convergence
of SR-EDF calculations. We were able to provide a firm and quantitative basis to
these observations through an analysis of finite-size instabilities by use of RPA linear
response functions in SNM. The latter showed that finite-size effects in the analysis
of instabilities tend to always dominate.

The present study leads us to propose the systematic inclusion of consistency
checks with ab-initio predictions of spin-isospin properties in the construction of our
future functionals, as well as a systematic diagnosis of finite-size instabilities.

Whereas effective masses are key parameters in the discussion of nuclear single-
particle spectra, the latter are determined by the particle-hole potential derived from
the whole p-h functional. Most notably, spin-orbit splittings, an essential feature of
nuclear structure, are another example of quantity to investigate and control in the
quest for better predictive power. This is the subject of the next chapter.
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Chapter 4

Tensor Part of the Skyrme Energy
Density Functional

4.1 Introduction

The strong nuclear spin-orbit interaction in nuclei is responsible for the observed
magic numbers in heavy nuclei [GM48] [Hax49. [Fee49, [(GM49]. While a simple spin-
orbit interaction allows for the qualitative description of the global features of shell
structure, the available data suggest that single-particle energies evolve with neutron
and proton number in a manner that cannot be related to the geometrical growth
of the single-particle potential with N and Z. Many anomalies of shell structure
have been identified that do not fit into simple experimental systematics, and that
challenge any global model of nuclear structure.

The evolution of shell structure with N and Z as a feature of self-consistent
mean-field models has been known for long. To quote the pioneering study of shell
structure in a self-consistent model performed by Beiner et al. [Bei75b|, the “most
striking effect is the appearance of N = 16, 34 and 56 as neutron magic numbers
for unstable nuclei, together with a weakening of the shell closure at N = 20 and
28”. Various mechanisms that modify the appearance of gaps in the single-particle
spectra have been discussed in detail in the literature. The two most prominent
ones that were worked out by Dobaczewski et al. in Ref. [Dob94], however, play
mainly a role for weakly-bound exotic nuclei far from stability, as they are directly or
indirectly related to the physics of loosely bound single-particle states, namely that
the enhancement of the diffuseness of neutron density distribution reduces the spin-
orbit coupling in neutron-rich nuclei on the one hand, and the interaction between
bound orbitals and the continuum results in a quenching of shell effects in light and
medium systems on the other hand. The former effect was also extensively discussed
in the framework of relativistic models by Lalazissis et al. [Lal98al, [Lal98b|, while
the latter triggered a number of studies that discussed the potential relevance of this
so-called “Bogolyubov enhanced shell quenching” to explain the abundance pattern
from the astrophysical r-process of nucleosynthesis [Che95, [Dob95bl [Pead6, [Pfe97].

These two effects take place in neutron-rich nuclei. In proton-rich nuclei, the
Coulomb barrier suppresses both the diffuseness of the proton density and the cou-
pling of bound proton states to the continuum. But the Coulomb interaction itself
can also modify the shell structure: for super-heavy nuclei, it begins to destabi-
lize the nucleus as a whole. Mean-field models predict that it amplifies the shell
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oscillations of the densities for incomplete filled oscillator shells, which leads to
strong variations of the density profile that feed back onto the single-particle spec-
tra [Dec99, Ben9ah].

Interestingly, most theoretical papers about the evolution of shell structure from
the last decade have speculated about new effects that mainly affect neutron shells
in nuclei far from stability in the anticipation of the rare-isotope physics that might
become accessible with the next generation of experimental facilities. The known
anomalies, some of which have been known for a long time, and many more have
been identified recently, concern also proton shells and already appear sufficiently
close to stability that “exotic phenomena can be ruled out for their explanation” in
most cases, to paraphrase the authors of Ref. [Lan03|. By contrast, this suggests that
there exists a mechanism that induces a strong evolution of single-particle spectra
already in stable nuclei that has been overlooked for long.

There is a prominent ingredient of the nucleon-nucleon interaction that has been
ignored for decades in virtually all global nuclear structure models for medium and
heavy nuclei, be it macroscopic-microscopic approaches or self-consistent mean-field
methods. It is only very recently, that the systematic discrepancies between model
predictions and experiment have triggered a renaissance of the tensor force in the
description of finite medium- and heavy-mass nuclei.

The tensor force is a crucial and necessary ingredient of the bare nucleon-nucleon
interaction [Wir93, [Mac01]], and consequently is contained in all ab-initio approaches
that are available for light, mainly p-shell nuclei [Pie01b, Nav03]. One of the first
experimental signatures of the tensor force was the small, but finite quadrupole mo-
ment of the deuteron. In a boson-exchange picture of the bare nucleon-nucleon in-
teraction, the tensor force originates from the exchange of pseudoscalar pions, which
have both central and tensor couplings, see for example section 2.3 in Ref. [Eis72]
or appendix 13A of Ref. [NiI95]. In a nuclear many-body system, the bare tensor
force induces a strong correlation between the spatial and spin orientations in the
two-body density matrix. For two nucleons with parallel spins, the tensor force
energetically favors the configuration where the distance vector is aligned with the
spins, while for anti-parallel spins the tensor force prefers when the distance vector
is perpendicular to the spins, see the discussion of Fig. 13 in Ref. [Nef03] and of
Fig. 3 in Ref. [Rot04]. The authors of these papers also demonstrate very nicely
the well-known fact [Bet68), that in an approach that starts from the bare
nucleon-nucleon interaction, nuclei are not bound without taking into account the
two-body correlations induced by the tensor force.

In a perturbation-theory interpretation of the EDF scheme, most of the effect of
the bare tensor force on the binding energy is integrated out through the renormaliza-
tion of the coupling constants associated with a central effective vertex, in a similar
fashion as the tensor part of the bare interaction is renormalized into the central
one when going from the bare nucleon-nucleon force to a Brueckner G matrix. The
tensor terms of the EDF relate to a residual tensor vertex, in terms of many-body
perturbation theory, that gives nothing but a correction to the spin-orbit splittings,
which for light p-shell nuclei might be of the same order as the contribution from the
genuine spin-orbit force. The interplay of spin-orbit and tensor forces in the mean
field of medium and heavy nuclei was explored in Refs. [Sch76, [Goo78| [Zhe91], where
the particular role of spin-unsaturated shells was pointed out.

Despite the quite recent character of the emphasis seen in the literature on the
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tensor part of nuclear EDF models, the effective zero-range non-local interaction pro-
posed by Skyrme in 1956 [Sky56l, [Sky58al, [Bel56, already contained a zero-
range tensor force. The first applications of Skyrme’s interaction in self-consistent
mean-field models that became available around 1970, however, neglected the tensor
force, and the simplified effective Skyrme interaction used in the seminal paper by
Vautherin and Brink [Vau72| soon became the standard Skyrme interaction that was
used in most applications ever since. Until very recently, there was only very little
exploratory work on Skyrme’s tensor force. In their early study, Stancu, Brink and
Flocard [Sta77|, who added the tensor force perturbatively to the SIII parametriza-
tion, pointed out that some spin-orbit splittings in magic nuclei can be improved
with a tensor force. A complete fit including the terms from the tensor force that
contribute in spherical nuclei was attempted by Tondeur [Ton83|, with the relevant
coupling constants of the spin-orbit and tensor terms adjusted to selected spin-orbit
splittings in 190, ®Ca and 2°*Pb. Another complete fit of a generalized Skyrme
interaction including a tensor force was performed by Liu et al. [Liu91], but the au-
thors did not investigate the effect of the tensor force in detail, nor was the resulting
parametrization ever used in the literature thereafter.

Similarly, the seminal paper by Gogny on the evaluation of matrix
elements of a finite-range force of Gaussian shape in an harmonic oscillator basis
contains the expressions for a finite-range tensor force, which, however, was omit-
ted in the parametrizations of Gogny’s force adjusted by the Bruyéres-le-Chatel
group [Dec80]. It were Onishi and Negele [Oni78] who first published an effective
interaction that combined a Gaussian two-body central force, a finite-range tensor
force with a zero-range spin-orbit force and a zero-range non-local three-body force,
which, however, also fell into oblivion.

The role of the tensor force is slightly different in Skyrme and Gogny interac-
tions. In the Gogny force, the contributions from the central and tensor parts remain
explicitly distinct, although, of course, this does not prevent a certain entanglement
of their physical effects. In the context of Skyrme’s functional, however, the contri-
bution of a zero-range tensor force to the spherical mean-field state of an even-even
nucleus has exactly the same form as a particular exchange term from the non-local
part of the central Skyrme force.

Thus, one must always keep in mind that both the central and tensor part of the
effective vertex contribute to the J? “tensor” terms of the functional, as they will be
referred to in this chapter.

In the context of relativistic mean-field models, the equivalent of the non-relat-
ivistic tensor force appears as the exchange term of effective fields with the quantum
numbers of the pion, which by construction do not appear in the standard relativistic
Hartree models. Only relativistic Hartree-Fock models contain this tensor force, with
the first predictive parametrizations becoming available recently [Lon06].

We also mention that there is a large body of work on the tensor force in the inter-
acting shell model, see Ref. for a review, that concentrates on a completely
different aspect of the tensor force, namely its unique contribution to excitations
with unnatural parity.

The recent interest in the effect of the tensor force in the context of self-consistent
mean field models was triggered by the observed evolution of single-particle levels
of one nucleon species in dependence of the number of the other nucleon species.
Otsuka et al. [Ofs05] proposed that at least part of the effect is caused by the proton-
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neutron tensor force from pion exchange. Many groups attempt now to explain
known, but so far unresolved, anomalies of shell structure in terms of a tensor force.
A particularly popular playground is the relative shift of the proton 1g7/» and 159
levels in tin isotopes, which is interpreted as the reduction of the spin-orbit splittings
of both levels with their respective partners with increasing neutron number [Sch04].

Otsuka et al. [Ots06] added a Gaussian tensor force, adjusted on the long-range
part of a one-pion-+p exchange potential, to a standard Gogny force. After a con-
sistent readjustment of the parameters of its central and spin-orbit parts, they were
able to explain coherently the anomalous relative evolution of some single-particle
levels without, however, being able to describe their absolute distance in energy.
Dobaczewski [Dob06] pointed out that a perturbatively added tensor interaction
with suitably chosen coupling constants in the Skyrme energy density functional does
not only modify the evolution of shell structure, but does also improve the descrip-
tion of nuclear masses around magic nuclei. Then, concentrating of single-particle
energies, Zalewski et al. [Zal08] adjusted the tensor and spin-orbit parameters of
the Skyrme EDF on spin-orbit splittings in the Ca-Ni region, neglecting somewhat
the reproduction of binding energies, which will be discussed in this study. Ko-
rtelainen et al. [Kor(8§] performed a singular-value decomposition analysis of the
fit to single-particle energies of a general quasi-local functional, implicitly includ-
ing the degrees of freedom associated with the tensor in an interaction-derived EDF.
Brown et al. [Bro06a] fitted a Skyrme interaction with added zero-range tensor force
with emphasis on the reproduction of single-particle spectra. While the authors ap-
preciated the qualitatively correctly described evolution of relative level distances,
they pointed out that the combination of zero-range spin-orbit and tensor forces
does not and can not correctly describe the /-dependence of spin-orbit splittings.
Colo et al. [Col07], and Brink et al. [Bri07] added Skyrme’s tensor force perturba-
tively to the existing standard parametrization SLy5 [Cha97, [Cha98|, and to the
SIIT [Bei75bh] one, respectively. They investigated some single-particle energy dif-
ferences: the 1hy;/ and 1g7/, proton states in tin isotopes as well as 1ii3/, and
Lhg/2 neutron states in N = 82 isotones and proposed similar parameters as in
Ref. [Bro06al. The effect of the tensor force on the centroid of the GT giant reso-
nance was also estimated by Colo et al. using a sum-rule approach and found to be
substantial. Long et al. [Lon08|, demonstrated that the tensor force that emerges
naturally in relativistic Hartree-Fock also improves the relative shifts of the proton
1g7/2 and 1hyy /5 levels in tin isotopes.

Many studies on the tensor force published so far aim at an optimal single
parametrization, that establishes a best fit to either the underlying bare tensor
force [Ofs06l Bro06al or empirical data [Ton83|, [Dob06], [Col07]. The published re-
sults, as well as our first exploratory studies, however, suggest that adding a tensor
force to the existing mean-field models gives only a local improvement of the relative
change of certain single-particle energies, but not necessarily a global improvement
of single-particle spectra or other observables. In the framework of the Skyrme EDF,
there is also the already mentioned ambiguity that the contribution from the tensor
force to spherical nuclei has the same structure as a term from the central force. In
view of this situation, we will pursue a different strategy and investigate the effect
of the tensor terms on a multitude of observables in nuclei though a set of Skyrme
interactions with systematically varied coupling constants of the tensor terms.

The present study was motivated by the finding that the performance of the
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existing Skyrme-type effective interactions for masses and spectroscopic properties
is limited by systematic deficiencies of the single-particle spectra [BenO6al, [Ben03al,
Ben(6bl, [Cha06¢] that seem to be impossible to remove within the standard Skyrme
interaction. The details of single-particle spectra were so far somewhat outside
the focus of self-consistent mean-field methods, on the one hand as they do not
correspond directly to empirical single-particle energies (we will come back to that
below), and on the other hand because many of the observables that are usually
calculated with self-consistent mean-field methods are not very sensitive to the exact
placement of single-particle levels. By contrast, there is an enormous body of work
that examines the infinite and semi-infinite nuclear matter properties of the effective
interactions that are the analog of liquid-drop and droplet parameters in great detail.
The reason is, of course, that the global trends over the whole chart of nuclei have
to be understood before one can look into details. The last few years have seen an
increasing demand on predictive power. Moreover, beyond-mean-field approaches
of the projected generator coordinate method (GCM), or Bohr-Hamiltonian type,
have become widely used tools to analyze and predict spectroscopic properties in
medium and heavy nuclei, employing either Gogny or Skyrme interactions. The
underlying single-particle spectra thus now deserve more attention, as many of the
spectroscopic properties of interest turn out to be extremely sensitive to even subtle
details of the single-particle spectra. As the tensor force is the most obvious missing
piece in all standard mean-field interactions, it is the natural starting point for the
systematic investigation of possible generalizations with the ultimate goal to improve
the predictive power of the interactions for spectroscopy.

In the present chapter, we will describe the fit of the parametrizations, analyze
the role of the tensor terms for single-particle spectra, then masses and radii of
spherical even-even nuclei.

4.2 The fits

4.2.1 Properties of tensor terms in spherical symmetry

As discussed in section 23] in time-reversal-invariant systems, only the J? terms
of the functional generated by the tensor force remains. Furthermore, enforcing
spherical symmetry greatly simplifies the spin-current tensor, Eq. (276]), as both
the pseudoscalar and pseudotensor parts of J,, vanish. From the vector spin-orbit
current, only the radial component is non-zero, which is given by [Vau72]
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so that there is only one out of the nine components of the spin-current tensor density
that contributes in spherical nuclei. Unlike the total density p and the kinetic density
7, that are bulk properties of the nucleus and grow with the size of the nucleus, the
spin-orbit current is a shell effect that shows strong fluctuations. Assume the two
shells with same n and ¢ which are split by the spin-orbit interaction, one coupled
with the spin to j = ¢ + %, the other to j = ¢ — % It is easy to verify that their
contributions to J,(r) are equal but of opposite signs such that they cancel when

(i) both shells are completely filled and (ii) their radial wave functions are identical
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Unit1/20 = Uny—1720- Although the latter condition is never exactly fulfilled, this
demonstrates that the spin-orbit current is not a bulk property, but a shell effect
that strongly fluctuates with NV and Z. It nearly vanishes in so-called spin-saturated
nuclei, where all spin-orbit partners are either completely occupied or empty, and it
might be quite large when only the j = £+ 1/2 level out of one or even several pairs
of spin-orbit partners is filled.

In spherical symmetry, the contribution to the energy functional of the J? terms

=Y 1C) I =) (3¢l +ich) 37 (4.2)

t=0,1 t=0,1

is

The effective coupling constants can be separated back into contributions from the
non-local central and tensor forces

C/— A+ B (4.3)
which are given by
A = étl(%—xl)—%tz(%Hz)
Af =t — 1ty
Bl = %@—Hﬁ):f%T+3U)
Bf = f(to—t)=5U-T), (4.4)

where we also give the expressions using the notation 7' = 3t, and U = 3¢, employed
in [Flo75, [Sta, [Col07].

For the following discussion it will be also illuminating to recouple this expression
to a representation that uses proton and neutron densities, where we use the notation
introduced in Ref. [Sta77]

H = 1a@2+3)+6T.-73,, (4.5)
with

a=CJ+0f, B=0C -0,
) =Y(atB). Cl=La—p). (1.6

The proton-neutron coupling constants a = a¢ + ar and § = B¢ + Br can again be
separated into contributions from central and tensor forces

ac = §(t—to) = § (hy +tas),

Be = —L(tim+ tm)

ar = %to - % v,

Br s(tett,) = (T+U). (4.7

As could be expected, the isospin-singlet tensor force contributes only to the proton-
neutron term, while the isospin-triplet tensor force contributes to both.
The spin-orbit potential of the neutrons is given by

o0& W
Wa(r) = e = = (2Vpu+ V) tadi . (4.8)
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The expression for the protons is obtained exchanging the indices for protons and
neutrons. In spherical symmetry, the tensor force gives a contribution to the spin-
orbit potential, but does not alter the structure of the spin-orbit terms in the single-
particle Hamiltonian as such. This will be different in the case of deformed mean
fields [Per04], Ben09].

The dependence of the spin-orbit potential W, (r) on the spin-orbit current J,(r)
through the tensor terms is the source of a potential instability. When the spin-orbit
splitting becomes larger than the splitting of the centroids of single-particle states
with different orbital angular momentum ¢, the reordering of levels might increase
the number of spin-unsaturated levels, which increases the spin-orbit current .J,, and
feeds back on the spin-orbit potential by increasing it even further, which ultimately
leads to an unphysical shell structure.

4.2.2 A brief history of tensor terms in the central Skyrme
energy functional

For the interpretation of the parametrizations we will describe below it is impor-
tant to point out that within our choice of the effective Skyrme interaction as an
antisymmetrized vertex the two coupling constants of the contribution from the
central force to H', Eq. ([&Z), either represented through AJ, A or through ac,
fc, are not independent from the coupling constants A7, A7, AOAP, and AlAp, that
appear in Eq. (Z295)). Through the expressions given in appendix [A] all six of them
are determined by the four coupling constants t;, x1, t3, and x5 from the central
Skyrme force, Eq. (ZZ8). As a consequence, a tensor force is absolutely necessary
to decouple the values of the C7 from those of the C7 and C;*, which determine
the isoscalar and isovector effective masses and give the dominant contribution to
the surface and surface asymmetry coefficients, respectively.

This interpretation of the Skyrme interaction is, however, far from being com-
mon practice and a source of confusion and potential inconsistencies in the lit-
erature. Many authors have used parametrizations of the central and spin-orbit
Skyrme energy functional with coupling constants that in one way or the other do
not exactly correspond to the functional obtained from Eqns. (Z78) and (2384,
which, depending on the point of view, can be seen as an approximation to or
a generalization of the original Skyrme interaction. As the most popular mod-
ification concerns the tensor terms, a few comments on the subject are in or-
der. Again, the practice goes back to the seminal paper by Vautherin and Brink
[Vau72], who state that “the contribution of this term to [the spin-orbit poten-
tial] is quite small. Since it is difficult to include such a term in the case of
deformed nuclei, it has been neglected”. This choice was further motivated by
the interpretation of the effective Skyrme interaction as a density-matrix expan-

sion (DME) [Neg70, [Neg72l Neg75], [Cam78]. All early parametrizations as SI and
SIT [Vau2|, SII-SVI [Bei75h], SkM [Kri80] and SkM* [Bar82a] followed this exam-

ple and did not contain the J? terms. Beiner et al. [Bei7hb]| weakened the case for J?
terms further by pointing out that they might lead to unphysical single-particle spec-
tra. During the 1980s and later, however, it became more popular to include them,
for example in SkP [Dob8&4], the parametrizations T1-T9 by Tondeur et al. [Ton8&4],
E, and Z, by Friedrich and Reinhard [ETi86]. Some of the recent parametrizations
come in pairs, where variants without and with J? terms are fitted within the same
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fit protocol, for example (SLy4, SLy5) and (SLy6, SLy7) in Ref. [Cha9§], or (SkO,
SkO’) in Ref. [Rei99].

Interestingly, all but one parametrization of the central Skyrme interaction found
in the literature set the coupling constants of the J? terms either to their Skyrme
force value ([(AJ]) or strictly to zero. The exception is Ref. [Ton83| by Tondeur,
where an independent fit of the coupling constants of the J? terms was attempted,
making explicit reference to a DME interpretation of the energy functional.

Setting the coupling constants of a term to zero when one does not know how
to adjust its parameters is of course an acceptable practise when permitted by
the chosen framework. For Skyrme interactions fitted without the J? terms, the
situation becomes confusing when one looks at deformed nuclei and any situation
that breaks time-reversal invariance. First of all, Galilean invariance of the energy
functional dictates that the coupling constant of the s - T terms is also set to zero,
as already indicated by the presentation of the energy functional in Eq. (291J).
Second, using a DME interpretation of the Skyrme energy functional in one place,
but the interrelations from the two-body Skyrme force in all others is not entirely
satisfactory. Many authors who drop the J? terms rarely show scruples to keep
most of the time-odd terms in the Skyrme energy functional (Z3I) with coupling
constants A3 and A2¢ from ([A]), although they are not at all constrained in the
common fit protocols employing properties of even-even nuclei and spin-saturated
nuclear matter. For a list of exceptions see Sect. II.A.2.d of Ref. [BenO3b]. An
alternative is to set up a hierarchy of terms, as it was attempted by Bonche, Flocard
and Heenen in their mean-field and beyond codes, which set A2* = 0 in addition
to the coupling constant of the J? terms, as all three terms have in common that
they couple two Pauli matrices with two derivatives in different manners, see the

footnote on page 129 of [Bon&7].

There are also inconsistent applications of parametrizations without J?> —s- T
terms to be found in the literature. For example, almost all applications of Skyrme
interactions to the Landau parameters g, and g, and the properties of polarized
nuclear matter, include the contribution from the s - T terms, although it should
be dropped for parametrizations fitted without J? terms. Similarly, most RPA and
QRPA codes include them for simplicity, see the discussion in Refs. Ben02,
[Ter050).

As it is relevant for the subject of the present paper, we also mention another gen-
eralization of the Skyrme interaction that invokes the interpretation of the Skyrme
energy functional in a DME framework. The spin-orbit force ([2.84) fixes the isospin
mix of the corresponding terms in the Skyrme energy functional (Z91]) such that
AY7 = 3AY7 ([A2). There are a few parametrizations as MSkA [Sha95], SkI3 and
SkI4 [Rei95], SkO and SkO’ [Rei99] and SLy10 [Cha98| that liberate the isospin
degree of freedom in the spin-orbit functional. A DME interpretation of the energy
functional is mandatory for this generalization. It is motivated by the better per-
formance of standard relativistic mean-field models for the kink of the charge radii
in Pb isotopes. Note that the standard RMF models are effective Hartree theo-
ries without exchange terms, and that the standard Lagrangians have very limited
isovector degrees of freedom [Ben03bh], both of which suppress a strong isospin de-
pendence of the spin-orbit interaction. It is interesting to note that the existing fits
of Skyrme energy functionals with generalized spin-orbit interaction do not improve

spin-orbit splittings [Ben99b].


http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1103/PhysRevC.60.014316
http://www.sciencedirect.com/science/article/B6TVN-472JP6P-11B/2/4b853f089da5d131baad99311e842d97
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/PhysRevC.65.054322
http://dx.doi.org/10.1103/PhysRevLett.74.3744
http://www.sciencedirect.com/science/article/B6TVB-3YYTK8P-H/1/5a92a21a15875f611e71efa9fcfc351f
http://dx.doi.org/10.1103/PhysRevC.60.014316
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/PhysRevC.60.034304

4.2. THE FITS 77

4.2.3 General remarks

In order to study the effect of the J? terms, we have built a set of 36 effective interac-
tions that systematically cover the region of coupling constants Cy and CY that, in a
preliminary exploration of this parameter space, gave a reasonable description of fi-
nite nuclei in connection with the standard central and spin-orbit Skyrme forces. At
variance with the perturbative approach used in Refs. [Sta77l, [Col(07], each of these
parametrizations has been fitted separately, following a procedure nearly identical
to that used for the construction of the SLy parametrizations [Cha97, [Cha9§|, as
well as that used in the preceding chapter, so that we can keep the connection be-
tween the new fits with parametrizations that have been applied to a large variety
of observables and phenomena.

The region of effective coupling constants (Cg,CY) of the J? terms acting in
spherical nuclei, as defined in Eq. (Z03), that we will explore, is shown in Fig. [l
The parametrizations are labeled TI.J, where indices I and .J refer to the proton-
neutron ((3) and like-particle («) coupling constants in Eq. (£3) such that

a =60 (J —2) MeV fm”,
B =60 (I —2) MeV fm®. (4.9)

The corresponding values of C; can be obtained through Eq. (&) or from Fig. &1l
On the one hand, we cover the positions of the most popular existing parametriza-
tions of the Skyrme interaction that take the J? terms from the central force into

account, which are SLy5 [Cha98], SkP [Dob84], Z, [Fri86], T6 [Ton84], SkO’ [Rei99]

and BSk9 [Gor05b]. On the other hand, among recent parametrizations including a
tensor term, i.e. Skxta [Bro0O6al, Skxtb [Bro06a, Bro07] as well as those published
by Colo et al. [Col07] and Brink and Stancu [Bri(7], most fall in a region of negative
C{ and vanishing C{, that is to the lower left of Fig. LIl Parametrizations of this
region, which also includes a part of the triangle advocated in the perturbative study
of Stancu et al. [Sta77], gave unsatisfactory results for many observables. Moreover,
when attempting to fit parametrizations with large negative coupling constants, we
sometimes obtained unrealistic single-particle spectra or even ran into the insta-
bilities already mentioned. Parametrizations further to the lower and upper right
also have unrealistic deformations properties. The contribution from the J? terms
vanishes for T22, which will serve as the reference point. For the parametrizations
T2J, only the proton-proton and neutron-neutron terms in H' are non-zero (3 = 0),
while for the parametrizations T2, only the proton-neutron term in H' contributes
(a = 0). Note that the earlier parametrizations T6 and Z, have a pure like-particle
J? terms as a consequence of the constraint z; = x5 = 0 employed for both (and
most other early parametrizations of Skyrme’s interaction).

4.2.4 The fit protocol and procedure

The list of observables used to construct the cost function y? minimized during the
fit (see Eq. (4.1) in Ref. [Cha97]) reads as follows: binding energies and charge radii
of 4°Ca, *¥Ca, %Ni, P°Zr, 1¥2Sn and 2°*Pb; the binding energy of °°Sn; the spin-
orbit splitting of the neutron 3p state in 2°*Pb; the empirical energy per particle
and density at the saturation point of symmetric nuclear matter; and finally, the
equation of state of neutron matter as predicted by Wiringa et al. [Wir88§].
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Figure 4.1: Values of CJ and C{ for our set of parametrizations (circles). Diag-
onal lines indicate a = CJ + C{ = 0 (pure neutron-proton coupling)
and 8 = Cf — C{ = 0 (pure like-particle coupling). Values for clas-
sical parameter sets are also indicated (dots), with SLy4 representing
all parametrizations for which J? terms have been omitted in the fit.
Recent parametrizations with tensor terms are indicated by squares.
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Furthermore, some properties of infinite nuclear matter are constrained through
analytic relations between coupling constants in the same manner as they were in
Refs. [Cha97, [Cha98]: the incompressibility modulus K, is kept at 230 MeV, while
the volume symmetry energy coefficient a, is set to 32 MeV. The isovector effective
mass, expressed through the Thomas-Reiche-Kuhn sum rule enhancement factor &,
is taken such that s, = 0.25.

When using a single density-dependent term in the central Skyrme force (278,
the isoscalar effective mass m} cannot be chosen independently from the incom-
pressibility modulus for a given exponent v of py. We follow here the prescription
used for the SLy parametrizations [Cha97, [Cha98] and use v = 1/6, which leads
to an isoscalar effective mass close to 0.7 in units of the bare nucleon mass for all
T1J parametrizations. Using such a protocol we cannot, contrary to the protocol
used in chapter Bl reproduce the isovector effective mass consistent with recent ab-
initio predictions. Regarding the present exploratory study of the tensor terms this
is not a critical limitation, in particular as the influence of this quantity on static
properties of finite nuclei, as found previously, turns out to be small.

There are three modifications of the fit protocol compared to [Cha97, [Cha98§].
The obvious one is that the values for Cj and C{ are fixed beforehand as the pa-
rameters that will later on label and classify the fits. The second is that we have
added the binding energies of °Zr and '°Sn to the set of data. Indeed, we ob-
served that the latter nucleus is usually significantly overbound when not included
in the fit, as can be seen on the upper-left panel of Fig. The third is that we
have dropped the constraint 9 = —1 that was imposed on the SLy parametriza-
tions [Cha97, [Cha98| to ensure the stability of infinite homogeneous neutron matter
against a transition into a ferromagnetic state. On the one hand, this stability cri-
terion is completely determined by the coupling constants of the time-odd terms
in the energy functional [Ben02], that we do not want to constrain here, accepting
that the parametrizations might be of limited use beyond the present study. On the
other hand, the tensor force brings many new contributions to the energy per parti-
cle of polarized nuclear matter that lead to a much more complex stability criterion.
The entire discussion concerning the stability with respect to spin polarization in
the presence of a tensor force shall not be included in this work, as we expect that
addressing finite-size instabilities will be necessary, and the corresponding response-
function formalism has not been derived yet, to our best knowledge. It also has to
be stressed that the actual stability criterion, as all properties of the time-odd part
of the Skyrme energy functional, depends on the choices made for the interpretation
of its coupling constants, i.e. antisymmetrized vertex or density functional [Ben02].

The properties of the finite nuclei entering the fit are computed using a Slater de-
terminant without taking pairing into account. The cost function y? was minimized
using a simulated annealing algorithm. The annealing schedule was an exponen-
tial one, with a characteristic time of 200 iterations (also referred to as “simulated
quenching”) Thus, assuming a reasonably smooth cost function, we strive to ob-
tain satisfactory convergence to its absolute minimum in a single run, allowing a
systematic and straightforward production of a large series of forces. The coupling
constants for all 36 parametrizations can be found in Table [A ]

Figure displays the value of y? after minimization as a function of the re-
coupled coupling constants o and 3. The first striking feature is the existence of a
“valley” at # = 0, i.e. a pure like-particle tensor term ~ (J3 4 J2). The abrupt rise
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Figure 4.2: Values of the cost function x? as defined in the fit procedure, for the set
of parametrizations TI.J. The label “T11” indicates the position of this
parametrization in the («,3)-plane as obtained from Eqs. (@3]). Contour
lines are drawn at y? = 11, 12, 15, 20, 25, and 30. The minimum value
is found for T21 (x? = 10.05), the maximum for T61 (x* = 37.11).

of x? around this value can be attributed to the term depending on nuclear binding
energies, as sharp variations of energy residuals can be seen between neighboring
magic nuclei with functionals of the T6.J series (8 = 240). For example, ¥Ca and
97r tend to be significantly overbound in this case. We will come back later to
discussing the implications for the quality of the functionals.

4.2.5 General properties of the fits

The coupling constants of the energy functional for spherical nuclei (Z93]) obtained
for T22 are very similar to those of SLy4, except for a slight readjustment coming
from the inclusion of the binding energies of %°Zr and !°°Sn in the fit as well as
the abandoned constraint on z,. With its value of —0.945, the x5 obtained for T22
still stays close to the value —1 enforced for SLy4, which confirms that this is not
too severe a constraint for parametrizations without effective J? terms at sphericity.
Increasing the effective tensor term coupling constants C, however, the values for
Zo start to deviate strongly from the region around —1, which is to a large extent
due to the feedback from the contribution of the J? terms to the surface and surface
symmetry energy coefficients in the presence of constraints on isoscalar and isovector
effective masses, all of which also depend on 5.

From the constrained coupling constants Cj and CY, the respective contributions
Bf and By from the tensor force can be deduced afterwards using the expressions
given in section 2232l Their values, shown in Fig. [4.3], are less regularly distributed,
which is a consequence of the non-linear interdependence of all coupling constants.
Still, a general trend can be observed, such that all parametrizations are shifted
towards the “south-west” compared to Fig. LIl In turn, this indicates that the
contribution from the central Skyrme force always stays in the small region outlined
by SkP, SLy5, Z,, etcin Fig. L1l with values that range between 28 and 104 MeV fm?®
for A and between 38 to 62 MeV fm® for A7, respectively. This justifies a posteriori
to use the tensor force as a motivation to decouple the JZ terms from the central part
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Figure 4.4: Value of spin-orbit coupling constant W, for each of the parametriza-
tions T1J, vs. indices I and J (The “(T11)” label indicates the position
of this parametrization in the (a, 3)-plane). The contour lines differ by
20 MeV fm®. The values plotted here range from 103.7 MeV fm® (T11)
to 195.3 MeV fm® (T66).

of the effective Skyrme vertex. We note in passing that all our parametrizations T4
correspond to an almost pure proton-neutron or isospin-singlet tensor force, i.e. the
term o t, in Eq. (Z88)), as they are all located close to the ap = 0 line.

We also find a particularly strong and systematic variation of the coupling con-
stant W, of the spin-orbit force, which varies from W, = 103.7 MeV fm?® for T11 to
Wy = 195.3 MeV fm® for T66, see Fig. B4l This variation is of course correlated to
the strength of the tensor force. As already shown, the tensor force has the tendency
to reduce the spin-orbit splittings in spin-unsaturated nuclei. To maintain a given
spin-orbit splitting in such a nucleus, the spin-orbit coupling constant W, has to be
increased.

4.3 Results and discussion

The calculations presented below include open-shell nuclei treated in the Hartree-
Fock-Bogolyubov (HFB) framework. In the particle-particle channel, we use a zero-
range interaction with a mixed surface/volume form factor. The HFB equations were
regularized with a cutoff at 60 MeV in the quasiparticle equivalent spectrum (see
Ref. [Ben05] and section Z4)). The pairing strength was adjusted in *°Sn with
the particle-hole mean field calculated using the parameter set T33. The resulting
strength was kept at the same value for all parametrizations, which is justified by
the fact that the effective mass parameters are the same. Moreover, we thus avoid
including, in the adjustment of the pairing strength, local effects linked with changes
in details of the single-particle spectrum.

4.3.1 Spin-orbit currents and potentials

As a first step in the analysis of the role of the tensor terms and their interplay
with the spin-orbit interaction in spherical nuclei, we analyze the spin-orbit current
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Figure 4.5: Radial component of the neutron spin-orbit current for the chain of Ni
isotopes, plotted against radius and neutron number N. The solid line
on the base plot indicates the radius where the total density has half its
saturation value.

density and its relative contribution to the spin-orbit potential. We choose the chain
of nickel isotopes, Z = 28, as it covers the largest number of spherical neutron shells
and subshells (N = 20, 28, 40 and 50) of any isotopic chain, two of which are spin-
saturated (N = 20 and 40), while the other two are not. Figure displays the
radial component of the neutron spin-orbit current J, for isotopes from the proton
to the neutron drip-lines. The calculations are performed with T44, but the spin-
orbit current is fairly independent from the parametrization. Starting from N = 20,
which corresponds to a completely filled and spin-saturated sd-shell, the next magic
number at N = 28 is reached by filling the 1f7/5 shell, which leads to the steeply
rising bump in the plot of J, in the foreground, peaked around r ~ 3.5 fm. Then,
from N = 28 to N = 40 the rest of the fp shell is filled, which first produces the small
bump at small radii that corresponds to the filling of the 2p3/, shell, but ultimately
leads to a vanishing spin-orbit current when the 1f and 2p levels are completely
filled for the N = 40 isotope, visible as the deep valley in Fig. Adding more
neutrons, the filling of the 1gg/, shell leads again to a strong neutron spin-orbit
current at N = 50. For the remaining isotopes up to the neutron drip line, the
evolution of J,, is slower with the filling of the 2d and 3s orbitals.

A few further comments are in order. First, the spin-orbit current clearly reflects
the spatial probability distribution of the single-particle wave function in pairs of
unsaturated spin-orbit partners. Within a given shell, the high-¢ states contribute
at the surface, represented by the solid line on the base of Fig. L5, while low-/¢
states contribute at the interior. The peak from the high-¢ orbitals, however, is
always located on the inside of the nuclear surface, as defined by the radius of half
saturation density. Second, within a given shell, the largest contributions to the
spin-orbit current density obviously come from the levels with largest ¢, as they
have the largest degeneracy factors in ([.]l), and because they do not have nodes,
which leads to a single, sharply peaked contribution. Third, the spin-orbit current
is not exactly zero for nominally “spin-saturated” nuclei, exemplified by the N = 20
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Figure 4.6: Contribution from the tensor terms (left panel) and the spin-orbit term
(right panel) to the neutron spin-orbit potential for the chain of Ni
isotopes as obtained with the parametrization T44. The solid line on
the base plot indicates the radius where the isoscalar density p, crosses
half its saturation value.

and N = 40 isotopes in Fig. .0 as the radial single-particle wave functions are not
exactly identical for all pairs of spin-orbit partners, which is a necessary requirement
to obtain J, = 0 at all radii (cf. the example of the v 2d states in ¥2Sn in Fig.
below). Fourth, pairing and other correlations will always smooth the fluctuations
of the spin-orbit current with nucleon numbers, as levels in the vicinity of the Fermi
energy will never be completely filled or empty.

Next, we compare the contributions from the tensor terms and from the spin-
orbit force to the spin-orbit potentials of protons and neutrons, Eq. ([A38). The
contributions from the tensor force to the spin-orbit potential are proportional to
the spin-orbit currents of protons and neutrons. For the Ni isotopes, the proton spin-
orbit current is very similar to that of the neutrons at N = 28 displayed in Fig. E.5l
For the parametrization T44 we use here as an example, we have contributions from
both proton and neutron spin-orbit currents, which come with equal weights. Their
combined contribution to the spin-orbit potential of the neutron W,, might be as
large as 4 MeV, which is more than a third of the maximum contribution from the
spin-orbit force to W,, (see Fig. L6]). The latter is proportional to a combination of
the gradients of the proton and neutron densities, 2V p,(r) + Vp,(r), see Eq. [£SF)).
As a consequence, it has a smooth behavior as a function of particle number, with
slowly and monotonically varying width, depth and position. Only limited local
variations can be seen on the interior due to small variations of the density profile
originating from the successive filling of different orbits. Furthermore, one can easily
verify that the contribution from the spin-orbit force is peaked at the surface of the
nucleus (the solid line on the base plot). The strongest variation of the depth of
this potential occurs just before the neutron drip line at N = 62, where is becomes
wider and shallower due to the development of a diffuse neutron skin, which reduces
the gradient of the neutron density [Doh94, [Lal98al [Lal98b].

Adding the contributions from the proton and neutron tensor terms to that
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Figure 4.7: Total neutron (left panel) and proton (right panel) spin-orbit potentials
for the chain of Ni isotopes as obtained with the parametrization T44.
The solid line on the base plot indicates the radius where the isoscalar
density pg crosses half its saturation value.
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Figure 4.8: Single-particle spectra of neutrons (upper panels) and protons (lower
panels) for the chain of Ni isotopes, as obtained with the parametrization
T22 with vanishing combined J? terms (left) and T44, with proton-
neutron and like-particle tensor terms of equal strength (right). The
thick solid line in the upper panels denotes the Fermi energy for neutrons.
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from the spin-orbit force, the total neutron spin-orbit potential for neutrons in Ni
isotopes is shown on the left panel of Fig. 7. For the parametrization T44 used
here (and most others in the sample of parametrizations used in this study) the
dominating contributions from the spin-orbit and tensor forces to the spin-orbit
potential are of opposite sign. For Ni isotopes, J, is always quite large, while J,,
varies as shown in Fig. Notably, both are peaked inside of the surface. When
examining the combined contribution from the spin-orbit and tensor forces to the
spin-orbit potential (£38]), one must keep in mind that they are peaked at different
radii. Moreover, the variation of tensor-term coupling constants among a set of
parametrizations implies a rearrangement of the spin-orbit term strength, as will be
discussed later. As a consequence, taking into account the tensor force modifies the
width and localization of the spin-orbit potential W, (r) much more than it modifies
its depth through the variation of the spin-orbit currents.

Our observations also confirm the finding of Otsuka et al. [Ots06] that the spin-
orbit splittings might be more strongly modified by the tensor force than they are
by neutron skins in neutron-rich nuclei through the reduction of the gradient of the
density.

The right panel of Figure shows the spin-orbit potential of the protons for the
chain of Ni isotopes. Here, the contribution from the spin-orbit force has a larger
contribution coming from the gradient of the proton density that just grows with the
mass number, without being subject to varying shell fluctuations. The same holds
for the proton contribution from the tensor terms. Only the neutron contribution
from the tensor terms varies rapidly, proportional to J,, displayed in Fig. L3l which
has a very limited effect on the total spin-orbit potential, though.

With that, we can examine how the tensor terms affect the evolution of single-
particle spectra. To that end, Fig. shows the single-particle energies of protons
and neutrons along the chain of Ni isotopes for the parametrization T22 with vanish-
ing combined tensor terms, which will serve as a reference, and for the parametriza-
tion T44 with proton-neutron and like-particle tensor terms of equal strength. For
the latter, the variation of the neutron spin-orbit current with /N influences both
neutron and proton single-particle spectra. The effect of the tensor terms is subtle,
but clearly visible: for T22, the major change of the single-particle energies is their
compression with increasing mass number, while for T44 the level distances oscillate
on top of this background correlated to the neutron shell and sub-shell closures at
N = 20, 28, 40 and 50. As shown above, the neutron spin-orbit current vanishes
for N = 20, where it consequently has no effect on the spin-orbit potentials and
splittings. By contrast, the neutron spin-orbit current is large for N = 28 and 50,
where its contribution to the spin-orbit potential reduces the splittings from the
spin-orbit force.

The strong variation of the spin-orbit current with nucleon numbers is typical
for light nuclei up to about mass 100. For heavier nuclei, its variation becomes much
smaller. This is exemplified in Fig. L9 for the neutron spin-orbit current in the chain
of Pb isotopes. There remain the fast fluctuations at small radii which we already
saw for the Ni isotopes and that reflect the subsequent filling of low-¢ levels with
many nodes, but which have a very limited impact on the spin-orbit splittings when
fed into the spin-orbit potential. The dominating peak of the spin-orbit current,
just beneath the surface shows only small fluctuations, as the overlapping spin-orbit
splittings of levels with different ¢ never give rise to a spin-saturated configuration
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Figure 4.9: Radial component of the Neutron spin-orbit current for the chain of Pb
isotopes plotted in the same manner as in Fig. L0

in heavy nuclei.
Note that both the spin-orbit current J and the spin-orbit potential are exactly
zero at r = 0 as they are vectors with negative parity.

4.3.2 Single-particle energies

As a next step, we analyze the modifications that the presence of J? terms brings
to single-particle energies in detail. Before we do so, let us recall that we ulti-
mately expect our functional to be used in a multi-reference EDF framework, which
has implications on the comparison between single-particle energies obtained at the
single-reference level and experimental mass differences which will be used in this
section. In essence, single-particle spectra of nuclei sufficiently magic and robust
with respect to collective motion are expected to see their density renormalized by
correlations, with an increase of the effective mass. Care should be taken not to
include data too strongly affected by deformation of the odd nucleus, or the frag-
mentation of spectroscopic strength due to particle-vibration coupling.

It should be kept in mind that the obvious, coarse discrepancies between the
calculated spectra of ¢, and the empirical single-particle energies are often larger
than the uncertainties coming from the missing correlations, as long as one observes
some elementary precautions. We took care to ensure that the states used in the
analysis below were one-quasiparticle states weakly coupled to core phonons. First,
we checked that the even-even nucleus of interest could be described as spherical,
indicated by a sufficiently high-lying 2* state. Second, we avoided all levels which
were obviously correlated with the energies of 2% states in the adjacent semi-magic
series, as this indicates strong coupling with core excitations. Finally, we carefully
examined states, lying above the 27 energy and/or twice the pairing gap of adja-
cent semi-magic nuclei, in order to eliminate those more accurately described as an
elementary core excitation coupled to one or more quasiparticles, which generally ap-
pear as a multiplet of states. We did not attempt to use energy centroids calculated
with use of spectroscopic factors, as these are not systematically available. Indeed,
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our requirement is that if some collectivity is present, it should be similar among
all nuclei considered, in order to be easily subtracted out. Empirical single-particle
levels shown below are determined from the lowest states having given quantum
numbers in an odd-mass nucleus.

Spin-orbit splittings

The primary effect one expects from a tensor term is that it affects spin-orbit split-
tings by altering the strength of the spin-orbit field in spin-unsaturated nuclei, ac-
cording to Eq. ([L8)). One should remember, though, that the spin-orbit coupling
itself is readjusted for each pair of coupling constants Cy, and C{. The effect of this
readjustment is generally opposite to that of the variation of the isoscalar tensor
term coupling constant. It should thus be stressed that the effects described result
from the balance between the variation of tensor and spin-orbit terms, which for
most of our parametrizations pull into opposite directions.

Common wisdom states that the energy spacing between levels that are both
above or both below the magic gap are not much affected by correlations, even when
their absolute energy changes; hence it is common practice to confront only the spin-
orbit splittings between pairs of particle or hole states with calculated single-particle
energies from the spherical mean field. The left panel of Fig. [£10 shows the relative
error of single-particle splitting of such levels for doubly-magic nuclei throughout
the chart of nuclei. The calculated values are typically 20 to 60 % larger than the
experimental ones, with the exception of *O, where the splittings of the neutron
and proton 1p states are acceptably reproduced at least for the parametrizations
T22, T24 and T42, i.e. those with the weakest tensor terms in the sample.

It is noteworthy that the calculated splittings depend much more sensitively on
the tensor terms for light nuclei with spin-saturated shells (protons and neutrons in
160, protons in °°Zr) than for the heavy doubly-magic 32Sn and 2°Pb, which are
quite robust against a variation of the tensor terms. The reason will become clear
below.

Connection between tensor and spin-orbit terms

The finding that our parametrizations systematically overestimate the spin-orbit
splittings deserves an explanation. It was earlier already noted that all standard
Skyrme interactions, including the SLy parametrizations that share our fit pro-
tocol, have an unresolved trend that overestimates spin-orbit splittings in heavy
nuclei [Ben99bl, Ben03b, [LQO0]. Adding the tensor terms, however, further deteri-
orates the overall description of spin-orbit splittings, instead of improving it. It is
particularly disturbing that the spin-orbit splitting of the 3p level in 2°Pb that was
used to constrain Wy in the fit is overestimated by 30 to 40%, which is larger than
the relative tolerance of 20% included in the fit protocol. In fact, it turns out that
the coupling constant W, of the spin-orbit force is more tightly constrained by the
binding energies of light nuclei than by this or any other spin-orbit splitting. In
the HF approach used during the fit, the structure of *°Ca, “®Ca, and 5Ni differs
by the occupation of the neutron and proton 1f7/, levels. First, we have to note
that the terms in the energy functional that contain the spin-orbit current play an
important role for the energy difference between “°Ca and Ni. The combined con-
tribution from the tensor and spin-orbit terms varies from a near-zero value in the
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spin-saturated “°Ca to about —60 MeV in *°Ni for all our parametrizations, which
is a large fraction of the —142 MeV difference in total binding energy between both
nuclei. The Z = 40 subshell and Z = 50 shell are another example of abrupt varia-
tion of the spin-orbit current with the filling of the 1gg/o level, which strongly affects
the relative binding energy of N = 50 isotones “°Zr and °Sn. Second, the fit to
phenomenological data can take advantage of the large relative variation of these
terms to mock up missing physics in the energy functional that should contribute to
the energy difference, but that is absent in it. The consequence will be a spurious
increase of the spin-orbit and tensor term coupling constants. The resulting energy
functional will correctly describe the mass difference, but not the physics of the
spin-orbit and tensor terms.

In order to test the above interpretation, we performed a refit of selected TI.J
parametrizations without taking into account the masses of °Ca, 44Ca, *°Ni and *°Zr
in the fit procedure. In the resulting parametrizations, the spin-orbit coefficient W}
is typically 20 % lower than in the original ones. As a consequence, the empirical
value for the spin-orbit splitting of the neutron 3p level in 2°®Pb is met well within
tolerance, at the price of binding energy residuals in light nuclei being unacceptably
large, i.e. %Ni being underbound by 5 MeV while *°Ca and ?°Zr are overbound by
up to 10 MeV. While the global trend of the spin-orbit splittings shown in Fig.
is enormously improved with these fits, in particular for heavy nuclei, the overall
agreement of the single-particle spectra with experiment is not, so that we had to
discard these parametrizations. This finding hints at a deeply rooted deficiency
of the Skyrme energy functional. The spin-orbit and, when present, tensor terms
indeed do simulate missing physics of the energy functional at the price of unrealistic
spin-orbit splittings. This also hints why perturbative studies, as those performed
in [Sta’7, [Col07] give much more promising results than what we will find below
with our complete refits. We will discuss mass residuals in more detail in Sect.
below.

During the fit, the masses of light nuclei do not only compromise the spin-
orbit splittings, they also establish a correlation between W, and Cg in all our
parametrizations. The combined spin-orbit and spin-current energy of a given spher-
ical nucleus (N, Z) is given by (keeping only the isoscalar part since we shall focus
on the N = Z nuclei “°Ca and *6Ni)

EPM(N, Z) = G5V I (N, Z) + CJ T (N, Z) (4.10)
with

Y'(N,2) = /d3rp0V-J0, TJ(N,Z) = /d%«Jg. (4.11)

The difference of E(S]loin between *°Ni and %°Ca
EP™ (ONi) — EgP™ (1°Ca) = AP (4.12)

turns out to be fairly independent from the parametrization. Averaged over all 36
parametrizations TI.J used here, AE*P™™ has a value of —58.991 MeV with a standard
deviation as small as 3.202 MeV, or 5.4%.

The integrals in Eqs. (LI are fairly independent from the actual parametriza-
tion. For a rough estimate, we can replace them in Eq. ([EI0) by their average
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estimated through Eq. (£I3) (see text).
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values. Plugged into Eq. [£12) this yields

AB - G (T (*Ni) ~ T} ("Ca)

vJ
T TN - 2y (9Ca))

(4.13)

Figure compares the values of Cyy” as obtained through ([ZI3) with the values
for the actual parametrizations. The estimate works very well, which demonstrates
that Cy” = —2W, and Cy are indeed correlated and cannot be varied independently
within a high quality fit of the energy functional ([2295]). As the combined strength
of the spin-orbit and tensor terms in the energy functional is mainly determined by
the mass difference of the two N = Z nuclei “°Ca and %Ni, the spin-orbit coupling
constant W, depends more or less linearly on the isoscalar tensor coupling constant
Cy, while for all practical purposes it is independent from the isovector one, see also
Fig. above.

Splitting of high-/ states and the role of the radial form factor

As stated above, it is common practice to confront only the spin-orbit splittings be-
tween pairs of particle or hole states with calculated single-particle energies from the
spherical mean field. The spin-orbit splitting of intruder states is rarely examined.
The right panel of Fig. displays the relative deviation of the spin-orbit splittings
of the intruder states with ¢ > 3 that span across major shell closures and are thus
given by the energy difference of a particle and a hole state. These splittings are
not “safe”, i.e. they can be expected to be strongly decreased by polarization and
correlation effects [Rut98], [Ber80, [Lit06]. To leave room for this effect, a mean-field
calculation should overestimate the empirical spin-orbit splittings. We observe, how-
ever, that mean-field calculations done here give values that are quite close to the
experimental ones, or even smaller for parametrizations with large positive isoscalar
tensor coupling (cf. the evolution from T22 to T66).

This means that the spin-orbit splittings are not too large in general, as might
be concluded from Fig. .10, but that there is a wrong trend of the splittings with ¢
with the strength of the spin-orbit potential establishing a compromise between the
in-shell splittings of small ¢ orbits that are too large and the across-shell splittings
of the intruders that are tentatively too small. In fact, the levels in the right panel
of Fig. 410 obviously have in common that their radial wave functions do not have
nodes, while the levels on the left panel have one or two nodes, with the notable
exception of the 1p levels in 190, for which we also find smaller deviations of the
spin-orbit splittings than for the other ¢ < 2 levels.

Underestimating the spin-orbit splittings of intruder levels has immediate and
obvious consequences for the performance of an effective interaction, as this closes
the magic gaps in the single-particle spectra and compromises the predictions for
doubly-magic nuclei, as we will demonstrate in detail below. By contrast, the spin-
orbit splittings of the low-¢ states within the major shells have no obvious direct
impact on bulk properties. Their deviation from empirical data is less dramatic,
as the typical bulk observables discussed with mean-field approaches are not very
sensitive to them. It is only in applications to spectroscopy that their deficiencies
become evident. It is noteworthy that the parametrization T22 without effective
tensor terms at sphericity provides a reasonable compromise between the tentatively
underestimated splittings of the intruder levels and the tentatively overestimated
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Figure 4.12: Neutron spin-orbit potential (top) and the radial wave function of
selected orbitals (bottom) in !32Sn.

splittings of the levels within major shells, both shown in Fig. above, while for
parametrizations with tensor terms this balance is lost.

There clearly is a proton-neutron staggering in Fig. LT0L such that calculated
proton splittings are relatively smaller than the neutron ones. The effect appears
both when comparing proton and neutron levels with different ¢ in the same nucleus,
and when comparing proton and neutron levels with the same ¢ in the same or
different nuclei (see the 1k levels in '32Sn and 2°*Pb). The staggering for the intruder
levels is even amplified for parametrizations with large proton-neutron tensor term,
as T62, T64 or T66. The effect is particularly prominent for the heavy !32Sn and
208Ph with a large proton-to-neutron ratio N/Z, which might hint at unresolved
isospin dependence of the spin-orbit interaction, although alternative explanations
that involve how single-particle states in different shells should interact through
tensor and spin-orbit forces are possible as well, see also the next paragraph.

Note that also the spin-orbit splittings of the low-£ levels shown in Fig. LI
exhibit a staggering, which is of smaller amplitude, though. It has been pointed
out by Skalski [SkaO1], that an exact treatment of the Coulomb exchange term
(compared to the Slater approximation used here and nearly all existing literature)
does indeed slightly increase the spin-orbit splittings of protons across major shells.
This effect might give a clue to the staggering observed for the N = Z nucleus %°Ni,
but the magnitude of the effect reported in Ref. [Ska(1] is too small to explain the
large staggering we find for the heavier N # Z nuclei.

Next, we use the example of 32Sn to demonstrate why the spin-orbit splittings
of nodeless high-¢ states are more sensitive to the tensor terms than low-¢ states
with one or several nodes, see Fig. The lower panel shows the neutron spin-
orbit potential in 32Sn for four different parametrizations, while the upper panel
shows selected radial single-particle wave functions. The v 1k, and 7 1gg/5 levels
give the main contribution to the neutron and proton spin-orbit currents in this
nucleus, and consequently to the tensor contribution to the spin-orbit potential.
Indeed, the largest differences between the spin-orbit potentials from the chosen
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Figure 4.13: Single-particle energies in 32Sn for a subset of our parametrizations.
We also show the centroid of the intruder levels, defined through
Eq. (@I4) Top panel: neutron levels, bottom panel: proton levels.
A thick mark indicates the Fermi level.

parametrizations are caused by the varying contribution from the tensor terms and
appear for the region between 3 and 6 fm, where the wave functions of the 1g and
1h states are peaked. This region corresponds to the inner flank of the spin-orbit
potential well, while the outer flank is much less affected. While the 1g and 1h
wave functions are peaked at the inner flank, the 2d orbitals have their node in this
region. Consequently, the splittings of the 1g and 1h levels are strongly modified by
the tensor terms, while those of the 2d orbitals are quite insensitive.

As a rule of thumb, the tensor contribution to the spin-orbit potential in doubly-
magic nuclei comes mainly from the nodeless intruder states, which, when present,
in turn mainly affect their own spin-orbit splittings, leaving the splittings of the
low-¢ states with one or more nodes nearly unchanged for reasons of geometrical
overlap.

We note in passing that the slightly different radial wave functions of the 2d or-
bitals demonstrate nicely that their contribution to the spin-orbit current, Eq. (T,
cannot completely cancel.

In fact, when regarding more specifically the evolution of the spin-orbit potential
between the parametrizations T22 and T66, it is striking that for T66 it is essentially
narrowed and its minimum slightly pushed towards larger radii, while its depth
remains unaltered. Recalling that T66 shows a pathological behavior of too weak
spin-orbit splitting of the intruder states, it appears that a correct ¢-dependence
of spin-orbit splittings might require to modify the radial dependence of the spin-
orbit potential such that it becomes wider towards smaller radii. This uncalled-for
modification of the shape of the spin-orbit field has previously been put forward
by Brown et al. [Bro0O6a| as an argument for a negative like-particle J* coupling
constant «. However, as will be discussed in paragraph below, the evolution
of single-particle levels along isotopic chains calls for « > 0, see also [Bro(O6al.

Single-particle spectra of doubly-magic nuclei

After we have examined the predictions for spin-orbit splittings, we will now turn to
the overall quality of the single-particle spectra of doubly-magic nuclei. Figure I3
shows the single-particle spectrum of 32Sn. Tt is evident that as a consequence
of the underestimated spin-orbit splittings of the intruder levels that we discussed
in the last section, the spectrum is deteriorated for large positive isoscalar tensor
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Figure 4.14: Same as Fig. for 208Pb.

term coupling constants Cg (see T66), as, for example, a decrease of the spin-
orbit splitting of the neutron 1A shell pushes the 1h;,,, further up, closing the
N = 82 gap. As a consequence, the presence of the tensor terms cannot remove the
problem shared by all standard mean-field methods that always wrongly put the
neutron 1hq/, level above the 2ds/, and 3sy/o levels [Ben(03h], which compromises
the description of the entire mass region. For the same reason, the proton spectrum
of 132Sn also excludes interactions with large positive C, which reduces the Z = 50
gap between the 1¢g levels to unacceptable small values.

Figure also shows the energy centroids of the v 1h and 7 1g levels, defined

as
cent __ £+ 1 E

T R N

The position of the centroid is fairly independent from the parametrization. Assum-
ing that the calculated energy of the centroid of an intruder state is more robust
against corrections from core polarization and particle-vibration coupling that its
spin-orbit splitting, we see that the v 1h centroid is clearly too high in energy by
about 1 MeV. In combination with its tentatively too small spin-orbit splitting,
see Fig. LI0L this offers an explanation for the notorious wrong positioning of the
v 1hq1/2, 2d3/5 and 3sy 2 levels in *2Sn [Ben03D)]. The near-degeneracy of the v 2ds o
and 3sy /3 levels is always well reproduced, while the 1k, comes out much too high.
As the 1hyy/9 is the last occupied neutron level, self-consistency puts it close to the
Fermi energy, which, in turn, pushes the 2ds,; and 3s; /; levels down in the spectrum.

The overall situation is similar for 2°Pb, see Fig. LT4l Again, the high-£ intruder
states move too close to the Z = 82 and N = 126 gaps for large positive Cy. The
effect is less obvious than for ¥2Sn as the intruders and their spin-orbit partners
are further away from the gaps. Still, the level ordering and the size of the Z = 82
gap become unacceptable for parametrizations with large tensor coupling constants.
For strong tensor term coupling constants (both like-particle and proton-neutron),
a Z = 92 gap opens in the single-particle spectrum of the protons that is also
frequently predicted by relativistic mean-field models [Rut98, Ben99b] but absent
in experiment [Hau0T].

The single-particle spectra for the light doubly magic nuclei °Ca (Fig. ETI3I),
BCa (Fig. ELIA), *Ni (Fig. EIT7), %Ni (Fig. EI8) and *°Zr (Fig. ETIJ), all have
in common that the relative impact of the J? terms on the ordering and relative
distance of single-particle levels is even stronger than for the heavy nuclei discussed
above. But not all of the strong dependence on the coupling constants of the J?
terms that we see in the figures is due to the actual contribution of the tensor

Eqnl,j=t—1/2 - (4.14)
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Figure 4.16: Same as Fig. LT3 for ®Ca.

terms to the spin-orbit potential. This is most obvious for “°Ca, where protons
and neutrons are spin-saturated so that the J? terms do not contribute to the spin-
orbit potentials. Still, increasing their coupling constants increases the spin-orbit
splittings, which manifests the readjustment of the spin-orbit force to a given set of
Cyd and C{ (see Fig. ). The evolution of the spin-orbit splittings in “°Ca visible
in Fig. is the background which we have to keep in mind when discussing the
impact of the tensor terms on nuclei with non-vanishing spin-orbit currents. Note
that the spin-orbit coupling constant W, is correlated with isoscalar tensor coupling
constant C, such that the single-particle spectra obtained with T24 and T42 are
very similar, as they are for T26, T44 and T62.

For #Ca, Fig. .16, the protons are still spin-saturated with vanishing proton
spin-orbit current J,,, while for neutrons we have a large J,,. Depending on the nature
of the tensor terms in the energy functional — i.e. like-particle or proton-neutron or
a mixture of both — the spin-orbit current will either contribute to the spin-orbit
potential of the neutrons or that of the protons or both, see Eq. (fS). For the
parametrizations with dominating like-particle J? term, for example T24 and T26,
the situation for the protons is the same as for “°Ca: there is no contribution from the
tensor terms to the proton spin-orbit splittings, but compared to T22 the proton Z =
20 gap is reduced through the readjustment of the spin-orbit force, leading to values
that are too small. For the same parametrizations, the large contribution from J, to
W, opens up the N = 20 gap to values that are tentatively too large, as it reduces
the neutron spin-orbit splittings and thereby compensates, even overcompensates,
the effect from the readjustment of the spin-orbit force. At the same time the
N = 28 gap is reduced. The opposite effect is seen for parametrizations with large
proton-neutron tensor term, for example T42 or T62. For those, the proton spin-
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Figure 4.18: Same as Fig. I3 for %Ni.

orbit splitting is reduced, opening up the Z = 20 gap compared to T22, while
the neutron spin-orbit splittings are increased by the background effect from the
readjusted spin-orbit force.

For *Ni, Fig. ET7, we have large J, and J,. In this N = Z nucleus, the like-
particle or proton-neutron parts of the tensor terms cannot be distinguished. The
spectra depend only on the overall coupling constant of the isoscalar tensor term
Cy, on the one hand directly through the contribution of the tensor terms to the
spin-orbit potentials, and on the other hand through the background readjustment
of Wy that is correlated to Cj as well. As already mentioned, results for T24 and
T42 are very similar, as they are for T26, T44 and T62. All parametrizations have in
common that the proton and neutron gaps at 28 are too small. The variation of the
single-particle spectra among the parametrizations is smaller than for “°Ca, mainly
because the tensor terms compensate the background drift from the readjustment
of WQ.

The slightly neutron-rich *Ni combines a spin-saturated sub-shell closure N = 40
that gives a vanishing neutron spin-orbit current with the magic Z = 28 that gives
a strong proton spin-orbit current. The variation of the single-particle spectra in
dependence of the coupling constants of the tensor terms is similar to those of *Ca,
with the roles of protons and neutrons exchanged.

The nucleus *°Zr combines the spin-saturated proton sub-shell closure Z = 40
with the major neutron shell closure N = 50. The high degeneracy of the occupied
v 1gg/o level leads to a very strong neutron spin-orbit current, while the proton
spin-orbit current is zero. Even in the absence of a tensor term contributing to their
spin-orbit potential for parametrizations with pure like-particle tensor terms, the
proton single-particle spectra are dramatically changed by the feedback effect from
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Figure 4.19: Same as Fig. for 9%Zr.

the readjusted spin-orbit force; see the evolution from T22 to T26. The 7 1gg/, comes
down, and closes the Z = 40 sub-shell gap. For parametrizations with pure proton-
neutron tensor term, one has the opposite effect, this time because the contribution
from the tensor terms overcompensates the background effect from the spin-orbit
force. The effect of the tensor terms on the neutron spin-orbit splittings is less
dramatic, but still might be sizable.

We have to point out that the calculations displayed in Fig. were per-
formed without taking pairing into account, as the HFB scheme breaks down in the
weak pairing regime of doubly magic nuclei. For some extreme (and unrealistic)
parametrizations, however, the gaps disappear which, in turn, would lead to strong
pairing correlations if the calculations were performed within the HFB scheme. This
happens, for example, for neutrons in *°Zr when using T26 and T46. Interestingly,
the pairing correlations for neutrons break the spin saturation, which leads to a
substantial neutron spin-orbit current J,. As these parametrizations use values of
the like-particle coupling constant significantly larger than the neutron-proton one,
J. feeds back onto the neutron spin-orbit potential only, Eq. (A8]). As the corre-
sponding coupling constant « is positive for T26 and T46, the contribution from
the tensor terms reduces the spin-orbit splittings, in particular those of the 1gg/
and 1f5/2. As a result, this counteracts the reduction of the N = 40 gap predicted
by T26 and T46 in calculations without pairing. Moreover, if pairing sets in, the
relevant quantities to be compared to odd-even mass differences are quasiparticle
energies, instead of HF single-particle ones. A contribution from the pairing gap
thus supplements the shell gap. Such a strong reduction of a gap across the Fermi
level is thus unlikely to be observed.

Evolution along isotopic chains: np coupling

In the preceding sections, we have analyzed characteristics of the single-particle spec-
tra for isolated doubly-magic nuclei. We found that larger tensor terms do not lead
to an overall improvement of the single-particle spectra. However, we also argued
that it might be essentially due to deficiencies of the central (and possibly spin-orbit)
interactions and that it should not be used to discard the tensor terms as such. In
any case, the results gathered so far on single-particle spectra of doubly-magic nu-
clei do not permit to narrow down a region of meaningful coupling constants of the
tensor terms. The analysis must be complemented by looking at other observables.
A better suited observable is provided by the evolution of spin-orbit splittings along
an isotopic or isotonic chain, which ideally reflects the nucleon-number-dependent
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Ni isotopes. The “best” parametrization cannot and should not be
determined with a y? criterion, see text.
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contribution from the J? terms to the spin-orbit potentials. Unfortunately, safe ex-
perimental data for the evolution of spin-orbit partners are scarce; hence, one has
to content oneself to the evolution of the energy distance of levels with different ¢,
assuming that the effect is primarily caused by the evolution of the spin-orbit split-
tings of each level with its respective partner. A popular playground for such studies
is the chain of Sn isotopes, where two such pairs of levels have gained attention; the
7 2ds/o and 7 1g7/2 on the one hand, and the 7 1g7/2 and m 1hyy/2 on the other
hand. The left panel of Figure shows these two sets of results for a selection of
our parametrizations.

Experimentally, the 2ds/, and 1g7,5 levels cross between N = 70 and 72, such
that the 2ds/, provides the ground state of light odd-A Sb isotopes, and 1g;/, that
of the heavy ones, see for example Ref. [She05]. The crossing as such is predicted
by many mean-field interactions and most of the parametrizations of the Skyrme
interaction we use here. It has also been studied in detail with the standard Gogny
force (without any tensor term) using elaborate blocking calculations of the odd-A
nuclei [Por05]. The crossing, however, is never predicted at the right neutron num-
ber, see Fig. As we have learned above, we should not assume that the absolute
distance of the two levels will be correctly described by any of our parametrizations
(as the centroids of the ¢ shells will not have the proper distance and the spin-orbit
splittings have a wrong ¢ dependence within a given shell). Hence, the neutron
number where the crossing takes place cannot and should not be used as a quality
criterion. What does characterize the tensor terms is the bend of the curves in
Fig. 20 as ideally it reflects how the spin-orbit splittings of both levels change in
the presence of the tensor terms. Similar caution has to be exercised in the analy-
sis of the unusual relative evolution of the proton 1g;/, and 1h;;/, levels that was
brought to attention by Schieffer et al. [Sch04]. Their spacing has been investigated
in terms of the tensor force before [Ots05 [Ots06lL BroO6al, [Col07]. Again, we pay
attention to the qualitative nature of the bend without focusing too much on the
precise value by which the splitting changes when going from N = 58 to N = 82.
Indeed, the matching of the lowest proton fragment with quantum number 1A/,
seen experimentally with the corresponding empirical single-particle energy is unsafe
because of the fractionization of the strength as discussed in Ref. [Bro06al.

For both pairs of levels, the evolution of their distance can be attributed to the
tensor coupling between the proton levels and neutrons filling the 15,5 level below
the N = 82 gap. Unfortunately, this introduces an additional source of uncertainty:
as can be seen in Fig. ET3 the ordering of the neutron levels in *2Sn is not properly
reproduced by any of our parametrizations, with the 1h;;/, level being predicted
above the 2ds3/, level, while it is the other way round in experiment. This means
that in the calculations, the contribution from the 1h;;/; level to the neutron spin-
orbit current builds up at larger N than what can be expected in experiment. As a
consequence, the prediction for the relative evolution of the levels might be shifted
by up to four mass units to the right compared to experiment for both pairs of levels
we examine here.

In the end, the trend of both splittings is best reproduced when using a positive
value of the neutron-proton J, - J, coupling constant 3 such that the filling of the
neutron 1h;;/, shell decreases the spin-orbit splittings of the proton shells. The
parametrizations from the T4.J and T6J series indeed do reproduce the bend of
empirical data, with, however, a clear shift in the neutron number where it occurs,
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as expected from the previous discussion. A value of 3 = 120 MeV fm®, which
corresponds to the series of T4J parametrizations, matches its magnitude best (see
for example T44).

A similar analysis can be performed for the proton 1f5/» and 2p;3/5 levels in the
chain of Ni isotopes, see the right panel of Fig. 20l This case is interesting as
no distinctive feature can be observed in the empirical spectra, yet the standard
parametrizations without tensor terms like T22 do not reproduce them. In fact, to
keep the 1f5/5 and 2p3/; at a constant distance, two competing effects have to cancel.
First, the increasing diffuseness of the neutron density with increasing neutron num-
ber diminishes the proton spin-orbit splittings through its reduced gradient in the
expression for the proton spin-orbit potential when going from N = 32 to N = 40.
Second, the filling of the neutron 1f5/, state reduces the neutron spin-orbit current
which in turn increases the proton spin-orbit splittings for interactions with sizable
proton-neutron tensor contribution to the proton spin-orbit potential when going
from N = 32 to N = 40. The former effect can be clearly seen for parametrizations
T2J with vanishing proton-neutron tensor term, § = 0. Again, parametrizations of
the T4.J series seem to be the most appropriate to describe the evolution of these
levels.

The evolution of single-particle levels is the tool of choice to determine the sign
and magnitude of the proton-neutron tensor coupling constant. The value which we
favor, as a result of our semi-qualitative analysis is 3 = 120 MeV fm®. This value is
only slightly larger than the value of 94 to 96 MeV fm® advocated by Brown et al.
in Ref. [Bro06al], which was adjusted to theoretical level shifts in the chain of tin
isotopes obtained from a G-matrix interaction. We can consider this as a reasonable
agreement.

Let us defer the discussion of this value to the end of this section and study in
the next paragraph the like-particle tensor-term coupling constant «.

Evolution along isotopic chains: nn coupling

In order to narrow down an empirical value for the neutron-neutron tensor coupling
constant, the ideal observable would be the evolution of neutron single-particle levels
along an isotopic chain. Unfortunately, these are only accessible at the respective
shell closures. We shall therefore compare neutron single-particle spectra of pairs of
doubly-magic nuclei belonging to the same isotopic chain. Again, the necessity to
extract pure single-particle effects calls for precautions. We choose pairs of particle
or hole levels which are close enough in energy that their absolute spacing is not
much affected by particle-vibration coupling. Of course, one also has to be careful
if both states appear at relatively high excitation energy in the neighboring odd
isotope because the fractionization of their strength could again interfere with the
analysis. In the following, we choose pairs of orbitals which are as safe as possible.

To remove the uncertainties from the deficiencies of the central and spin-orbit
parts of the effective interaction that we have identified above, we will look at
a double difference, where, first, we construct the energy difference between the
neutron 1ds/, and 2s o levels separately for *°Ca and **Ca, and then compare the
value of this difference in both nuclei

Ca _ (_*Ca _ _%8Ca\ _ (_%Ca _ _%9Ca
0t = <€1d3/2 8231/2> (51d3/2 5281/2>. (4.15)
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Figure 4.21: Shift of the distance between the neutron 1ds/; and 2s;/; levels when

going from “°Ca to *®Ca, Eq. ([I0) (top) and of the neutron 1 f5/, and
2p1/2 levels when going from 5°Ni and %Ni, Eq. (@I6) (bottom).

Assuming that the problems from the central and spin-orbit forces discussed in
Sects. and B3 2 have the same effect in both nuclei, they will cancel out in §¢?.

The interesting feature of this pair of states is that they are separated by more
than 2 MeV in *°Ca, while they are nearly degenerate in 4*Ca, see Figs. B 15 and 16!
Such a shift can only be reproduced with a positive (140-180 MeV fm®) value of «,
which decreases the splitting of the neutron 1d shell when the neutron 17/, level is
filled.

A similar analysis can be performed for the 1f5/,5 and 2p; » neutron states in the
Ni isotopes *°Ni and %Ni

Ni _ (.68Ni  _68Ni |\ [ _°ONi _ _%ONi
07 = <€1f5/2 821’71/2) <€1f5/2 821’71/2) : (416)

Going from *°Ni to %Ni, the neutron 1f5,, level comes further down in energy
than the 2p; /5 level for parametrizations without tensor terms (T22), see Figs. 1T
and The reason for this trend is the geometrical growth of the nucleus, which
on the one hand lowers the centroid of the 1f levels in the widening potential
well, and on the other hand pushes the spin-orbit field to larger radii, which has
opposite effects on the splittings of 2p and 1f states. The like-particle tensor terms
can compensate this trend through a reduction of the spin-orbit splitting of the 1f
levels. The observed downward shift by 0.3 MeV can be recovered with a value of «
around 120 MeV fm®, see Fig. 211

It is also gratifying to see that the analysis of Ca and Ni isotopes suggests nearly
the same value for the like-particle tensor term coupling constant a.
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4.3.3 Binding energies

Our ultimate goal, although far beyond the scope of the present paper, is the con-
struction of a universal nuclear energy density functional that simultaneously de-
scribes bulk properties like masses and radii, giant resonances, and low-energy spec-
troscopy, such as quasiparticle configurations and collective rotational and vibra-
tional states. To crosscheck how our findings on single-particle spectra and spin-orbit
splittings translate into bulk properties, we will now analyze the evolution of mass
residuals and charge radii along isotopic and isotonic chains. It has been repeatedly
noted in the literature that the mass residuals from mean-field calculations show
characteristic arches [Dob8&4l [Fri86l [Cha98], [Pat99. Ben03b, [Lun03) [Dob04l, Ben06al,
where heavy mid-shell nuclei are usually underbound compared to the doubly magic
ones that are located at the bottom of deep ravines. For light nuclei, the patterns
are often less obvious. Part of this effect can be explained and removed taking
large-amplitude correlations from collective shape degrees of freedom into account
through suitable beyond-mean-field methods. In turn, this means that the mass
residuals should leave room for the extra binding of mid-shell nuclei from correla-
tions. However, it turns out that for typical effective interactions the amplitude of
the arches is larger than what is brought by correlations [BenO6a|. Furthermore,
this effect seems not to be of the same size for isotopic and isotonic chains, which
altogether hints at deficiencies of the current effective interactions.

Recently, Dobaczewski pointed out [Dob06] that the strongly fluctuating con-
tribution brought by the J? terms to the total binding energy could remove at
least some of the ravines found in the mass residuals around magic numbers. The
hypothesis was motivated by calculations that evaluate the tensor terms either per-
turbatively, or self-consistently, using in this case an existing standard parametriza-
tion without tensor terms for the rest of the energy functional. Our set of refitted
parametrizations with varied coupling constants of the tensor terms gives us a tool
to check how much of the argument persists to a full fit.

Semi-magic chains

Figure displays binding energy residuals along various isotopic and isotonic
chains of semi-magic nuclei for a selection of our parametrizations: T22 is the refer-
ence with vanishing J? terms at sphericity; T24 has a substantial like-particle cou-
pling constant a and vanishing proton-neutron coupling constant 3, which is similar
to most of the published parametrizations which take the J? terms from the cen-
tral Skyrme force into account; T42 and T62 are parametrizations with substantial
proton-neutron coupling constant § and vanishing like-particle coupling constant;
T44 has a mixture of like-particle and proton-neutron tensor terms that is close to
what we found preferable for the evolution of spin-orbit splittings above; and T46 is
a parametrization that gives the best root-mean-square residual of binding energies
for spherical nuclei, as we will see below. Finally, T66 is a parametrization with
large and equal proton-neutron and like-particle tensor-term coupling constants.
Tensor terms have opposite effects in light and heavy nuclei: The curves obtained
with T22, the parametrization without J? term contribution at sphericity, are rel-
atively flat for the light isotopic and isotonic chains, but show very pronounced
arches with an amplitude of 5 or even more MeV for the heavy Sn and Pb isotopic
chains. By contrast, the most striking effect of the J? terms is that they induce
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Figure 4.22: Mass residuals Ey, — Fex, along selected isotopic and isotonic chains of
semi-magic nuclei for the parametrizations as indicated. Positive values
of Ein — Fexp denote underbound nuclei, negative values overbound
nuclei.
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Figure 4.23: Evolution of spin-orbit current (J?) energy (bottom panels, zero by
construction for T22) and spin-orbit energy (top panels) with neutron
number N in the chain of Ca isotopes (Z = 20, left) and Sn isotopes
(Z = 50, right).

large fluctuations of the mass residuals in light nuclei, while they flatten the curves
in the heavy ones.

The strong variation between the parameter sets for light nuclei are of course
the direct consequence of the strong variation of the spin-orbit current J that enters
the spin-orbit and tensor terms when going back and forth between nuclei where the
configuration of at least one nucleon species is spin-saturated. The variations seen
are a result of the modifications of tensor-term coupling constants and the associ-
ated readjustment of the spin-orbit strength Wj. For example, *Ca is overbound
with respect to *°Ca and °Ni for parametrizations with a proton-neutron coupling
constant § > 0, while the like-particle coupling constant « has a more limited ef-
fect. Since only the neutron core is spin-unsaturated in this nucleus, this must be
attributed to the increase in the readjusted spin-orbit strength Wy (correlated with
Cy = 3(a+ ) which dominates when {3 is increased and a kept at zero, and coun-
terbalances the effect of a when the latter varies. See the parameter sets T62 and
T66 in Figures and The large overbinding of nuclei around *Zr (Z = 40,
N = 50) for parametrizations with large proton-neutron tensor coupling constant
has the same origin. For a given parametrization and a given nucleus, the energy
gain from the spin-orbit term seems to be almost always larger than the energy loss
from the J? one, see Fig. B23 for Ca and Sn isotopes. Of course, other terms in
the energy functional compensate for a part of the gain from the spin-orbit term,
but the overall trends of the mass residuals suggest that the spin-orbit energy has a
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much larger contribution to the differences between the parametrizations visible in
Fig. 22 than the J? terms.

We have to note that the spin-orbit current does not completely vanish for the
nominally proton and neutron spin-saturated “°Ca for parametrizations with large
coupling constants of the J? terms. For those, the gap at 20 is strongly (and non-
physically) reduced, see Fig. The small gap at 20 does not suppress pairing
correlations anymore in our HFB approach. The resulting scattering of particles
from the sd shell to the fp shell breaks the spin-saturation, such that there is a
finite, in some cases quite sizable, contribution from the spin-orbit term to the total
binding energy. Owing to the compensation between all contributions, the total
energy gain compared to a HF calculation without pairing is usually small and rests
on the order of 200 keV for the parametrizations shown in Fig. {L.22]

It is also important to note that some of the light chains in Fig. are suffi-
ciently close to or even cross the N = Z line that they are subject to the Wigner
energy, which still lacks a satisfying explanation, not to mention a description in
the framework of mean-field methods [Saf97]. The Wigner energy is not taken
into account in our fits, while it turned out to be a crucial ingredient of any
HFB [Ton00, Sam02l [Gor03] or other mass formula. In fact, as shown in Fig. 14 of
Ref. [Ben06al, the missing Wigner energy clearly sticks out from the mass residuals
for SLy4 (which is very similar to T22) when they are plotted for isobaric chains.
This local trend around N = Z is, however, overlaced with a global trend with mass
number, such that the missing Wigner energy cannot be spotted anymore when
looking at the mass residuals for the isotopic chain of Ca isotopes, similar to what is
seen for T22 in Fig.[£221 Within our fit protocol, the correlation between the masses
of °°Ca, “8Ca and ®6Ni, that is brought by the spin-orbit force (see Sect. E3.2) does
not tolerate a correction for the Wigner energy for standard central and spin-orbit
Skyrme forces, as this will lead to an unacceptable underbinding of *8Ca. This,
however, might change when the J? terms are added. Indeed, Fig. suggests
that adding a phenomenological Wigner term around “°Ca and ®°Ni to a parameter
set like T44, which is consistent with the evolution of single-particle levels, would
flatten the curves for the mass residuals in the Ca, Ni and N = 28 chains. The
mass residuals for the chain of oxygen isotopes that are not shown here would be
improved in a similar manner. However, extreme caution should be exercised before
jumping to premature conclusions, as the spin-orbit splittings and level distances in
light nuclei are far from realistic for all our parametrizations; as a consequence it is
difficult to judge if the room we find for the Wigner energy is fortuitous or indeed a
feature of well-tuned J? terms. Note that the HFB mass formulas that do include
a correction for the Wigner energy side-by-side with the J? terms from the central
Skyrme force give satisfying mass residuals for light nuclei [Ton00, Sam02, [Gor03],
but have nuclear matter properties that are quite different from ours; ¢f. BSkl and
BSk6 with SLy4 in Table T of Ref. [Rei06]. Our constraints on the empirical nuclear
matter properties (same as those on SLy4) that are absent in these HFB mass fits
might be the deeper reason for this conflict.

Large tensor-term coupling constants straighten the arches in the mass residuals
in the heavy Sn and Pb isotopic chains, but the improvements are not completely
satisfactory. Large, combined proton-neutron and like-particle coupling constants
tend to transform the arch for the tin isotopic chain into a an s-shaped curve, which
is not very realistic from the standpoint of expected corrections through collective
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Figure 4.24: Two-neutron separation energy along the chain of isotopes (Z = 50).

effects. It can again be assumed that the deficiencies of the single-particle spectra
pointed out in Fig. are responsible, where the v 1hy;/, and 7 1gg/, are placed
too high above the rest of the single-particle spectra in heavy Sn isotopes. For
Pb isotopes, large values of the tensor terms tend to overbind the neutron-deficient
isotopes. It is noteworthy that the tensor terms seem to not much affect the mass
residuals of the heavy Pb isotopes above N = 126, which are on the flank of a very
deep ravine that becomes visible when going towards heavier elements, cf. the SLy4
results in Ref. [Ben0Gal.

It has been often noted that effective interactions that give a similar satisfying
description of masses close to the valley of stability give diverging predictions when
extrapolated to exotic nuclei. The standard example is the two-neutron separation
energy Son(N,Z) = E(N,Z — 2) — E(N, Z) for the chain of Sn isotopes. Results
obtained with a subset of our parametrizations are shown in Fig. 24l It is note-
worthy that the differences for neutron-rich nuclei beyond N = 82 are not larger
than those for the isotopes closer to stability. Around the valley of stability, increas-
ing the coupling constants of tensor terms, in particular the like-particle ones, tilts
the curve, pushing it up for light isotopes and pulling it down it for heavy ones,
which reflects of course the position of the v 1hyy/, level that is pushed into the
N = 82 gap, see Fig. LT3 For the neutron-rich isotopes, small differences appear
around N = 90, which reflects the change of level structure above the v 2f7/5 level
and at the drip line, but they are much smaller than the differences seen between
parametrizations obtained with different fit protocols, see Fig. 5 of Ref. [Ben03b].

Systematics

In the preceding section we showed how the J? terms in the energy functional modify
the trends of mass residuals along isotopic and isotonic chains, in particular the
amplitude of the arches between doubly-magic nuclei. In this section, we want to
examine how this translates into quality criteria for the overall performance of the
parametrizations for masses.

Figure displays the root-mean-square deviation of the mass residuals for all
our 36 parametrizations, evaluated for a set of 134 nuclei predicted to have spherical
mean-field ground states when calculated with the parametrizations SLy4 [Ben0Gal.
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Figure 4.25: Root-mean-square deviation from experiment of the binding energies
of a set of 134 spherical nuclei, for each of the forces TI.J, vs. o and 3
(The “(T11)” label indicates the position of this parametrization in the
(e, §)-plane). Contour lines at AFE, s = 2.0,2.25,2.5,3.0, 3.5,4.0 MeV.
The minimal value is found for T46 (AFE;,s = 1.96 MeV).

One observes a clear minimum around T46, i.e. («, ) = (240,120), with (Ey, —
Eexp)rms. = 1.96 MeV, compared with 3.44 MeV for T22 (o = f = 0). We found
even slightly better values with even more repulsive isoscalar and isovector coupling
constants, but the single-particle spectra of these interactions turn out to be quite
unrealistic, cf. Sect. This already demonstrates that in the presence of the J?
terms a good fit of masses does not necessarily lead to satisfactory single-particle
spectra.

Figure demonstrates how the distribution of the mass residuals Eip, — Eexp
affects the evolution of their r.m.s. value for a subset of 9 parametrizations. For
T22 (« = 8 = 0), the distribution is centered at positive mass residuals, with only
very few nuclei being overbound. Increasing § to 120 MeV fm® (T42) or even 240
MeV fm® (T62) shifts the median of the distribution to smaller values, which yields
more and more overbound nuclei. For large values of 3, the distribution spreads out
more, which diminishes the improvement from centering the distribution closer to
zero. For given (3, increasing a mainly shifts the median of the distribution without
spreading out its overall shape, which is preferable to optimize the r.m.s. value.

These considerations, however, have to be taken with caution. As said above,
we aim at a model where certain correlations beyond the mean-field are treated
explicitly, which asks for a distribution of mean-field mass residuals with an asym-
metric distribution towards positive mass residuals, and a width that is similar to
the difference between the maximum and minimum correlation energies to be found.
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Figure 4.26: Distribution of deviations from experiment of the binding energies of a
set of 134 spherical nuclei (1 MeV bins) for a subset of parametrizations.
Each panel corresponds to a given value of § (from top to bottom:
B =0, 120, 240 MeV fm?).
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4.3.4 Radii

The evolution of nuclear charge radii along isotopic chains reflects how the mean
field of the protons changes when neutrons are added in the system. In the simplistic
liquid-drop model, it just follows the geometrical growth of the nucleus ~ A3, but
data show that there are many local deviations from this global trend. On the one
hand, radii are of course subject to correlations beyond the mean field [Rei79, [Gir82]
Bon91l [Hee93|, Ben06a] On the other hand, they are also sensitive to the detailed shell
structure, which, in turn, might be influenced by tensor terms. We will concentrate
here on two anomalies of the evolution of charge radii, both of which are not much
influenced by collective correlations beyond the mean-field (at least in calculations
with the Skyrme interaction SLy4) [BenO6al: that the root-mean-square (r.m.s.)
charge radius of **Ca is almost the same as the one of the lighter *°Ca or possibly
slightly smaller, and the kink in the isotopic shifts of mean-square (m.s.) charge
radii in the Pb isotopes, where Pb isotopes above 2%*Ph are larger than what could
be expected from liquid-drop systematics. In both cases it is plausible that shell
effects are the determining factor, although alternative explanations that involve
pairing effects have been put forward for the latter case as well [Taj93al, [Fay00].

Charge radii have been calculated with the approximation used in Ref. Im
and derived from Ref. [Ber72]

N 1\
r3 = (r*), + 'ri + ffri + > (%) va,uqi(a ), (4.17)

where the mean-square (m.s.) radius of the point-proton distribution (r?), is cor-
rected by three terms: the first two estimate the effects of the intrinsic charge
distribution of the free proton and neutron (with m.s. radii 7 and 77) and the third
adds a correction from the magnetic moments of the nucleons. Since we will consider
the shift of charge radii for different isotopes of the same series, the actual value
of 7’5 cancels out. For the second correction term, which is independent from the
interaction, we take r2 = —0.117 fm? [Ben03b|. Finally, the magnetic correction
can only depend weakly on the details of the interaction through the occupation
factors v? when non-magic nuclei are considered. The same expressions had been
used during the fit of our parametrizations.

We begin with the Ca isotopes. Most parametrizations of Skyrme’s interaction
are not able to reproduce that the charge radius of **Ca has about the same size
as that of 1°Ca, see Fig. 11 in Ref. [Ben03b]. The middle panel of Fig. shows
the difference of the m.s. radii of “®Ca and “°Ca in dependence of the tensor term
coupling constants « and (3. First, this difference is almost independent of «, the
strength of the like-particle tensor terms. Second, it is strongly correlated with (3, the
strength of the proton-neutron tensor term, with large positive values of 3 bringing
the difference of radii into the domain of experimentally acceptable values [Ott89]
or even below, with a best match obtained for 3 = 80 MeV fm®. This effect can be
explained by looking at the proton single-particle spectra of Ca (Fig. EEI5]) and
48Ca (Fig.[LI8). Indeed, one observes that a positive neutron-proton tensor coupling
constant decreases the strength of the proton spin-orbit field in “8Ca, which in turn

!There is a typographical error in Eq. (4.2) in Ref. [Cha97], that was copied to Eq. (110) in
Ref. [Ben03b|: the h/mc factor should be squared, as is trivially found by dimensional analysis
and confirmed by Ref. [Ber72].
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Figure 4.27: Middle panel: Difference of mean-square charge radii between “°Ca and
48Ca as a function of the proton-neutron tensor term coupling constant
B for three values of a. The experimental value (with error bar) is
represented by the two horizontal black lines. Bottom panel: Root-
mean-square charge radii of *°Ca and “*Ca. Top panel: Contribution
of the single-particle proton states to the difference of the charge radii
(mean square radius of the point proton distribution, see Eq. ([£I7)).
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lowers the m 1dg/s level in **Ca (compare the parametrizations TI.J in Fig.
with increasing I for given J). As a consequence, the m.s. radius of this state
decreases as it sinks deeper into the potential well of “Ca. At the same time, this
level is pushed up in °Ca, which slightly increases the contribution of this state
to the charge m.s. radius of this nucleus. This effect is demonstrated in the top
panel of Fig. 27 which displays the degeneracy-weighted and normalized change
of the m.s. radii of proton hole states between “°Ca and *¥Ca as a function of the
proton-neutron tensor term coupling constant (3 for forces with a like-particle tensor
term coupling constant o = 120 MeV fm®. Indeed, the decreasing contribution from
the mlds/, state to the m.s. radius significantly decreases the isotopic shift between
both Ca isotopes. It has to be noted that the m.s. value of the charge radii of °Ca
and “8Ca are almost independent of alpha and that their absolute values are not
reproduced for any of our parametrizations.

The latter study demonstrates the correlation between the isotopic shift of m.s.
charge radius between “°Ca and #®Ca and the absolute single-particle energy of
the proton 1ds/, state. This level can be moved around within the single-particle
spectrum with the J? terms. However, the agreement of the calculated single-particle
energy of the proton 1ds/, state in both nuclei with experiment is not necessarily
improved for the parametrizations that reproduce the isotopic shift of the m.s. charge
radius. Furthermore, a good reproduction of the isotopic shift does not guarantee
that the absolute values of the charge radii are well reproduced, see the bottom panel
in Fig. In fact, they are predicted too large for all of our parametrizations,
which again points to deficiencies of the central field. Altogether, this suggests that
in spite of its sensitivity to the coupling constants of the J? terms, the isotopic shift
of m.s. charge radius between *°Ca and “*Ca should not be used to constrain them
before one has gained sufficient control over the central interaction.

A few further words of caution are in place. The charge radii of all light nu-
clei are significantly increased by dynamical quadrupole correlations, see Fig. 23 of
Ref. [Ben(6a]. Correlations beyond the static self-consistent mean field are also at
the origin of the arch of the ms charge radii between *°Ca and #8Ca that is neither
reproduced by any pure mean-field model, see again Fig. 11 in Ref. [Ben03b], nor
by the beyond-mean-field calculations with SLy4 of Ref. [BenOGa|, while the shell
model allows for a satisfactory description [Cau01].

Many explanations have been put forward to explain the kink in the isotopic
shifts of Pb radii. As it qualitatively appears in relativistic mean-field models, but
not in non-relativistic ones using the standard spin-orbit interaction (284, it has
been used as a motivation to generalize the isospin mix of the standard spin-orbit
energy density functional, Eq. (286), to simulate the isospin dependence of the
relativistic Hartree models [Sha9%, [Rei95]. The resulting parametrizations are not
completely satisfactory, as the price for the improvement of the radii is a further
deterioration of spin-orbit splittings [Ben99b|, while the relativistic mean field gives
a satisfactory description of both. Some standard Skyrme interactions that take the
tensor terms from the central Skyrme force into account also give a kink, but it is
by far too small to reproduce the experimental values [Cha98].

Plotting the m.s. radii along the chain of Pb isotopes as a function of NN, the
slopes are nearly linear when looking separately at the isotopes below and above
208Ph. We will concentrate on the change in the slope at 2°*Pb that is brought by
the tensor terms, which can be quantified through the second finite difference of the
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Figure 4.28: Change of slope in the m.s. charge radii A?r% around 2**Pb, Eq. [EI]),
in fm? as a function of a for three values of 3. The experimental value
is about one and a half times as large as the largest theoretical value
shown here, see text.

m.s. radii at 2°®Pb

A*(rg,) (*"°Pb) 3 ra(Pb) — 208, (*"Pb) + 15, (*'Pb)] . (4.18)
There are two conflicting values to be found in the literature, either 46.4 4+ 1.4 fm?
[Ot£89] and the significantly larger 594-3 fm? [Ang04]. Figure 28 shows the change
of slope around 2%*Pb as defined through Eq. (EIX) as a function of the like-particle
tensor coupling constant « and for three different values of 3. It is striking to see that
this quantity is almost independent of the neutron-proton tensor coupling constant
[, so the change is mainly induced by the tensor interaction between particles of the
same kind. It has been noted before that the kink in the isotopic shift of the charge
radii in Pb isotopes is correlated to the single-particle spectrum of neutrons above
N = 126, in particular the position of the 1iyy/o level. (This has to be contrasted
with the Ca isotopic chain discussed above, where the difference of charge radii
between “°Ca and *¥Ca appears to be particularly sensitive to the single-particle
spectrum of the protons.) The closer the 1i1y/; level is to the 2gg/, level that is filled
above N = 126, the more the 1i;;/5 becomes occupied through pairing correlations.
Through the shape of its radial wave function, the partial filling of the nodeless 14y /5
increases the neutron radius faster than filling only the 2g9/o, and in particular faster
than for the isotopes below N = 126. As the protons follow the density distribution
of the neutrons, the charge radius grows rapidly beyond N = 126. This offers
an explanation why the kink increases with the like-particle tensor term coupling
constant «a: for large values of the weight a of the neutron spin-orbit current in the
neutron spin-orbit potential, Eq. (£38]), the spin-orbit splitting of the v 1i levels is
reduced such that the 14115 approaches the 2gg /s level in 2®Pb, see Fig. ELT4

While the kink is clearly sensitive to the tensor terms, they cannot be responsi-
ble for the entire effect, as even for extreme parametrizations that give unrealistic
single-particle spectra the calculated kink hardly reaches about three quarters of its
experimental value.
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4.4 Summary and conclusions

In this chapter, we have reported a systematic study of the effects of the J? (tensor)
terms in the Skyrme energy functional for spherical nuclei. The aim of the present
study was not to obtain a unique best fit of the Skyrme energy functional with tensor
terms, but to analyze the impact of the tensor terms on a large variety of observables
in calculations at a pure SR-EDF level and to identify, if possible, observables that
are particularly, even uniquely, sensitive to the J? terms. To reach our goal, we have
built, using a protocol very similar to that of the SLy parametrizations, a set of 36
parametrizations that cover the two-dimensional parameter space of the coupling
constants of the J? terms that does not give obviously unphysical predictions for
a wide variety of observables we have looked at. The parametrizations were fitted
independently on the same set of data, in order to keep an agreement with the
physics associated with the latter.

As a result of our study, we have obtained a long list of potential deficiencies of
the Skyrme energy functional, most of which can be expected to be related to the
properties of the central and spin-orbit interactions used. In fact, these deficiencies
become more obvious the moment one adds a tensor force, as it appears that the
presence of a tensor force unbalances a delicate compromise within various terms of
the Skyrme interaction that permits to get the global trend of gross features of the
shell structure right.

Our conclusions, however, have to be taken with a grain of salt. On the one hand,
some might depend on the fit protocol; and on the other hand, we have to stress that
(within the framework of our study — and all others available so far using mean-field
methods) the comparison between calculated and empirical single-particle energies
is not straightforward and without the risk of being misled.

However, without even looking at single-particle spectra, we find that a strong
rearrangement of the spin-orbit terms occurs, linked with a strong constraint coming
from the fit to the masses of Ca and Ni nuclei. The latter, again, appears to be
model-dependent and linked with the specificities of the central and spin-orbit terms.
The rearrangement of the spin-orbit strength with the isoscalar tensor coupling
means that single-particle spectra of spin-saturated nuclei are strongly affected by
the latter, which can lead to unrealistic situations.

Besides, the particular constraints used in our protocol, focused on doubly-magic
nuclei, favor parametrizations with a vanishing neutron-proton tensor coupling .
By contrast, the mass residuals of a test set of 134 spherical even-even nuclei are
minimized for interactions with large « (like-particle) and 3 couplings. Finally,
tensor terms were shown to have an influence, through single-particle level shifts,
on the difference of charge radii between *°Ca and “8Ca. The corresponding spec-
tra, however, are not fully satisfactory, which is another example of incompatible
constraints.

Concerning the global properties of the spin-orbit current J and its contribution,
through the tensor terms, to the spin-orbit potential, we have shown that it was
dominated, in spin-unsaturated nuclei, by single intruder orbitals, which implies a
specific localization in regions just below the nuclear surface, slightly different from
the localization of the spin-orbit contribution to the spin-orbit field.

The main motivation to add J? terms is of course to improve the single-particle
spectra. All observations and conclusions concerning those have to be taken with
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care, however, due to the caveat already mentioned and repeated. When looking
at the single-particle spectra in doubly-magic nuclei (or semi-magic nuclei com-
bined with a strong subshell closure of the other species) we find that, as a conse-
quence of the localization of the spin current density, state-dependent modifications
of spin-orbit splittings occur when varying tensor parameters, due to the coupling
of nodeless intruder states to themselves being maximized. The addition of tensor
terms thus modifies the dependence with principal and/or orbital quantum number
of spin-orbit splittings in disagreement with experimental input, as shown already
in Ref. [Bro06al. The isospin dependence of spin-orbit splittings, moreover, has
been found to be affected by the specific localization of the spin-orbit field in a
non-physical and model-dependent way. In addition, the discussion of splittings
stemming from the comparison of theoretical and experimental spectra of heavy nu-
clei is impeded by the position of spin-orbit doublet centroids, which lie tentatively
too high compared to levels of the nearest shells. This is unambiguously a defect of
the central potential and corresponding part of the functional.

The principal effect of the tensor terms, that most of the recent studies concen-
trate on, is the evolution of spin-orbit splittings with N and Z. Unfortunately, there
are no data for the splittings themselves, such that one relies on data for the evolu-
tion of the distance of two levels with different ¢. The comparison is compromised
by the global deficiencies of single-particle spectra listed above.

Still, a careful comparison of calculations and experiment suggests that the evo-
lution of the proton 1hyi/2, 1g7/2 and 2ds/, levels in the chain of Sn isotopes and
that of the proton 1f5,5 and 2ps/, levels in Ni isotopes call for a positive proton-
neutron tensor coupling constant 3 with a value around 120 MeV fm?, consistent
with the findings of Refs. [BroO6al [Col07, Bri07]. Meanwhile, The evolution of the
neutron 1ds/s and 2s;/5 levels between *°Ca and **Ca calls for a like-particle tensor
coupling constant o with a similar value around 120 MeV fm?®. This it at variance
to the findings of the aforementioned papers, but in qualitative agreement with the
parametrization skxta of Brown et al. [BroO6a| for which the tensor terms were de-
rived from a microscopic interaction but disregarded thereafter because of its poor
description of spin-orbit splittings. We expect this mismatch to be alleviated if the
position of doublet centroids is kept under control.

This particular study is only a limited contribution to the improvement of the
Skyrme energy density functional. Also, it does not exhaust the range of studies
to be performed in order to understand the role of tensor terms in this model.
The study of deformation properties of selected parametrizations T1.J, for example,
should allow to distinguish between the effects of central and tensor contributions
to J? terms, which are no longer identical when breaking spherical symmetry. This
work will be published in the near future [Ben09].

Moreover, the influence of the terms depending on time-odd densities and cur-
rents in the complete energy functional (Z9I) on nuclear matter and finite nuclei
(rotational bands etc) is under investigation as well. The existing stability criteria
of polarized matter have to be generalized as the tensor force introduces new unique
terms, for example in the Landau parameters [Hae82].

It is evident that improvements of the central and spin-orbit parts of the energy
density functional are necessary, which will require a generalization of its analytical
form. This confirms and extends the conclusions of chapter Furthermore, a
systematic implementation of MR-EDF calculations will be needed, so as to assess
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not only the variation of single-particle spectra, but also the effect of correlations
on the ensuing odd-nucleus excitation spectrum. Particle-vibration coupling in the
random-phase approximation should thus be an invaluable tool.

These comments close the first part of this manuscript. As we have in mind
the properties and, unfortunately, limitations of the particle-hole part of the nuclear
EDF derived from a Skyrme effective interaction, let us shift the discussion to the
particle-particle part.
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Chapter 5

Ab-Initio Description of Nuclear
Pairing

5.1 Pairing and superfluidity in many-fermion sys-
tems

The structure and dynamic properties of a nucleus greatly depends on the parity
of its neutron and proton numbers. It was realized soon that an empirical mass
formula had to take into account an additional binding energy contribution for nuclei
with even N or Z, compared to those with odd N or Z, of the order of 124~1/2
MeV [Boh98|. Moreover, excitation spectra of even-even nuclei show a distinct gap
between the ground and first excited states, a feature absent in nuclei with an odd
N or Z. These observations were explained by Bohr, Mottelson and Pines [Boh58],
who made the link between them and the pair condensation mechanism, which had
been put forward as a model for electronic superconductivity by Bardeen, Cooper
and Schrieffer (BCS) [Bar57al, [Bar57b], then for the superfluidity of Helium-3.

In BCS theory, fermion pair condensation is explained by an attractive interac-
tion between particles at the Fermi surface of an otherwise non-interacting gas. In
this sense, it remains within the mean-field scheme, and can be formulated within
a density functional theory formalism [OIi88|. A more fundamental and general ap-
proach to pair condensation has since been derived within the framework of many-
body perturbation theory [Noz63, [Abr63].

Generally speaking, pair condensation consists in the appearance of a two-body
bound state in the medium. Besides, the possibility, for arbitrarily weak attractive
interactions, to form a two-electron bound state (so-called “Cooper pair”) near the
Fermi surface of an electron gas, [Coo56], was fundamental in the derivation of
the BCS formalism [Bar57a]. In an infinite system, such a bound state will be
clearly distinct from the continuum of scattering states corresponding to elementary
excitations, which is the origin of a gap in the elementary excitation spectrum. In
other words, building an excitation first requires breaking a pair into independent
particles before exciting one of them. This is the main cause of the specific properties
of superfluid /superconducting media.
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5.1.1 BCS theory

The BCS ansatz for the wave function of a system of fermions condensed into a su-
perfluid phase consists of a coherent superposition of Slater determinants differing
by the addition of pairs of particles or holes, created in pairs of single-particle basis
states. States in a such a pair belong to two different “halves” of the basis, and are
associated according to symmetries of the system and properties of the interaction.
The quantum numbers upon which the distinction between single-particle states is
made are related to those of the Cooper pair. In the case of spin-singlet, or S = 0
pairing, S being here the total spin of the Cooper pair, states associated in the
BCS wave function are related by time-reversal symmetry [And59] which, e.g. in
infinite systems, associates the state |ko), k being the momentum and o the spin of
the particle, to |-k-o). This is the conventional choice in BCS theory, appropriate
for most superconductors, low-density neutron matter and the description of same-
species nucleon pairing, in the 1S state, which is the dominant process in nuclei.
In the spin-triplet case, a similar role seems to be played by parity [And84], which
transforms |ko) into |-ko). This spin-triplet pairing occurs in exotic, high-T¢ su-
perconductors [Gor85], neutron-proton pairing in symmetric nuclear matter as well
as high-density neutron matter where neutron pairs form in the 3P — F, state.

Hereafter we shall deal with spin-singlet (S = 0), isospin-triplet (7" = 1, like-
particle) nuclear pairing, yet the expressions put forward will usually stay as general
as possible.

In a first step, we shall work with an arbitrary single-particle basis |k). We note
with a ~ sign (|k)) single-particle states belonging to the first half and with a " sign
(1)) s.p. states belonging to the second half. The state associated with |k) in a pair
operator is written |E), omitting the ~ since no ambiguity should occur. The same
principle applies for |[). States without a ~ or ~ symbol can belong to either half of
the basis. We will mostly work with creation/annihilation operators corresponding
to the single-particle states, i.e. |k) = ¢l |—), where |—) is the bare vacuum.

The BCS wavefunction can be expressed as

@) = [ +victeh)-). (5.1)
k
Bogolyubov [Bog58| and Valatin [Val58| introduced the canonical transformation

(which transforms the initial fermion operators into quasiparticle operators conserv-
ing the fermionic anticommutation rules)

G = upby + Rl (5.3)
with u, = uz, vy = —v;. The new quasiparticle basis defines the BCS state as a

quasiparticle vacuum with ag|®o) = 0 for all k. One can check that for the state
|®g) to be normalized, one must have

up +vp = 1. (5.4)

Another important property is the probability that a (pair of) s.p. state(s) is occu-
pied, i.e. the diagonal density matrix element <q>0 ‘ézék ®y ) = v?. Summing v}
over all s.p. states thus yields the particle number.


http://www.sciencedirect.com/science/article/B6TXR-46MF54X-5R/1/34d931874a2eaaeba09a0a84cf3f68f4
http://link.aps.org/abstract/PRB/v30/p4000
http://dx.doi.org/10.1007/BF02745585
http://dx.doi.org/10.1007/BF02745589

5.1. PAIRING AND SUPERFLUIDITY IN MANY-FERMION SYSTEMS 119

The energy of the system is defined as the functional of w; and v, parameters
[Bar57al

50 = gs.p.+5pair; (55)

5s.p. = Zf‘:kvga (56)
k

1

Z Z @kmz ULVE UV, (57)
kl

gpair

where &, is the sum of single-particle energies ¢, of the particles, and &, is the
pairing energy corresponding to the anomalous contractions of the pairing interac-
tion [Rin00].

The energy &p,ir is nonzero only for a state which breaks particle-number con-
servation. The wave function Eq. (B5J), indeed, does not conserve particle number,
which is characteristic of a finite-order perturbative treatment of pair condensation.
In order to determine the parameters u; and v , we should minimize £. However,
since we no longer work in a manifold of Slater-determinant eigenstates of the par-
ticle number operator N, we have to apply a constraint, at least, on the average
particle number. This is done through the use of a Lagrange multiplier, defining the
quantities

50 = 50—)\N - zs.p.‘i_(‘:paira (58)
Esp. = ZEkvg_)‘sz = ngvi, (5.9)
k k k
5= oA (5.10)
o€
N = — 5.11
ON N:NO’ ( )

€k is thus the single-particle energy measured from the chemical potential A, which
is set so as to ensure the conservation of the average particle number at its target
value Nj.

Minimizing € yields the equation

with

1 _
Er = §(€k+€g), Ak

1
D) Z@kﬁli W, (5.13)

l

where £;, is a s.p. energy averaged over partner states (whose energies can be different
in the most general case), whereas Ay is the gap parameter. Eqs. (E12) and (G54
allow one to determine u; and v, as

1 ék 1 ék
2 _ 1 — 2 _ 1 — 5.14
Uk 2 ( Ek) A G A (5.14)

where By, = /&7 + A7 is the quasiparticle energy. Indeed, in the case where g, =z,
one can show that |®g) is the ground state of the single-(quasi)particle Hamiltonian
[Noz63|

Huos = > {50 (G +éler) + Aueel + e } (5.15)
k
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with energy €. One then has, for one-quasiparticle states, the property
Hpes |r) = Hpes ai|®o) = Eo+ B |®y). (5.16)

By plugging back Eq. (&I4) into the definition of Ay, Eq. (2.I3) one obtains the
BCS gap equation

1 VAV,
Ak = —5 ;vkkll E, (517)

which can be solved by self-consistent iterations to obtain all other quantities pre-
sented in this section.

Quasiparticle energies Ey = /&% + A%, in the case of nonvanishing pairing gap
Ay, are themselves nonzero even for states whose energy is in the vicinity of the
chemical potential A\. This is at the origin of a staggering of binding energies between
nuclei with odd and even particle number in an isotope or isotone chain. Indeed,
whereas the BCS wave function, Eq. (&) is not an eigenstate of the particle number
operator, it only has components with even particle numbers. Thus, a system with
an odd number of particles shall be better described as a one-quasiparticle state
04;2\@0) which exhibits an excess energy with respect to the even-number parity
state it is built upon.

The quasiparticle operator a,z annihilates the particle in state |k) and creates
one in state |k), with corresponding amplitudes, respectively, v; and ug. The corre-
sponding variation of particle number equals u? — v?. Adding back the constraining

term AN to the Hamiltonian Hpcg, one obtains the energy of the one-quasiparticle
state

E = &+ Ep+Mui —v}), (5.18)

i.e. the energy gained is equal to Ej only if the quasiparticle |k) corresponds to
a s.p. level whose energy is equal to the chemical potential A\. The quasiparticle
energy corresponds to the pairing gap Ay in the same conditions.

It should be noted, though, that this perturbative scheme for the description of
an odd-particle-number state is inaccurate. Indeed, creating a single quasiparticle
breaks the symmetry between the two halves of the basis (time-reversal symmetry
in nuclear 'Sy, T = 1 pairing) since Gy and d; are distinct operators. This is
negligible for infinite systems, but for finite nuclei this symmetry breaking lifts the
degeneracy of pairs of s.p. states. Whereas in the theory of superconductors it is
generally believed that exact time-reversal symmetry is necessary for the onset of
S = 0 pairing (the large number of particles making a single non-paired particle
irrelevant), in nuclei the addition of a single quasiparticle is a significant but weak
enough perturbation to allow pairing to be maintained. However, the description of
such a system has to use the full time-reversal-symmetry-breaking HFB scheme, i.e.
the variation of the s.p. states on top of which the BCS state is built. Expressions
for the latter and the gap equation then hold in the canonical basis.

5.1.2 Experimental evidence and observables

Fermion pairing causes the appearance of a condensed phase having properties very
different from those of a non-interacting gas. In infinite matter, as the bound state
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is clearly separated from the continuum of free elementary excitations, excited states
breaking the symmetries of the ground state require a finite energy to be reached.
This makes the superfluid irrotational (states with non-vanishing angular momen-
tum are pushed to higher energies) and prevents dissipation in hydrodynamic flows.

In atomic nuclei, manifestations of pairing mainly consist of spins of even and
odd nuclei, energy gaps in the spectra of even-even nuclei, moments of inertia lower
than their rigid-body counterparts, and odd-even staggering of binding energies.

The ground state of even-even nuclei can be described as a fully-paired vacuum,
i.e. all particles participate to forming pairs. The necessity for this behavior was
pointed as early as 1950 by Goeppert Mayer [GM50al (GM50D] as an explanation, in
the context of the shell model, for the spin 0 observed in these nuclei. Moreover, the
latter exhibit an excitation spectrum where no excitation of an individual character
exists below an energy of several hundred keV to several MeV. Thus, low-lying states
in such a nucleus have a highly collective character, i.e. correspond to the recoupling
of a large number of quasiparticle excitations. As a result, the lowest excited states of
a spherical even-even nucleus is most often a 2+ quadrupole-vibrational state, while
low-energy excitation spectrum of a deformed one is dominated by a rotational band.
To the contrary, low-lying quasiparticle structure, associated with excitations of the
single non-paired particle, is visible in nuclei with odd N and/or Z at energy scales
of 100 keV.

Moments of inertia extracted from low-energy rotational spectra were immedi-
ately noticed as being lower than those expected from a supposedly rigid rotating
quantum system [Boh55) [ATd56]. Only later was the link made with a possible su-
perfluid behavior of the nucleons [Boh58|. Another significant effect associated with
pair condensation is the possibility to break pairs, yielding a higher moment of iner-
tia. Whereas at low angular momentum broken-pair states lie higher in energy than
the fully-paired quasiparticle vacuum, their higher moment of inertia means that
they gain energy more slowly with angular momentum. This implies that energy vs.
angular momentum curves for rotational bands corresponding to these different con-
figurations will eventually cross [Joh71]. Another way to interpret the phenomenon
is by studying the coupling of nucleon spins to the rotation of the nuclear reference
frame via the Coriolis effect [Mot60]. A distinct signature of this phenomenon is the
backbending effect [Ste72].

More recently, the advent of radioactive ion beam facilities, together with the
development of supernova simulations in computational nuclear astrophysics, has
shifted the focus of nuclear-structure research to neutron- and proton-rich nuclei.
Such nuclei present particular challenges to many-body theory due to the low neu-
tron (or proton) separation energy, which implies the existence of low-lying exci-
tations of nucleons to continuum, scattering states. Precautions concerning the
discretization of the continuum have to be taken when computing such systems, see
Refs. [Dob84, Ben99d, Dob96bh]. One prominent effect occurring at the drip lines is
the presence of halos. Following the discovery of this phenomenon in " Li [Tan85b],
halos have been observed in several other light nuclei [Tan85al, [Tan88. [Rii94]. In
medium-mass and heavy ones, though, no experimental evidence exists of the pres-
ence of halos, and theory has to rely on the EDF method. Pairing is especially im-
portant in this case, as it hinders the appearance of a halo by modifying the asymp-
totic behavior of the density [Ben00]. Recent studies performed in single-reference
[Rot07¢, [Rot07b] and multi-reference [Sch08] EDF frameworks indeed confirm that
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the appearance of a halo is sensitive to details of the pairing scheme used, as are
other properties of nuclei at the neutron drip line.

Finally, the most prominent signature of pairing is the large odd-even staggering
(OES) of nuclear masses: odd nuclei are found to have an energy systematically
higher than the mean energies of the neighboring even nuclei, i.e. they lie on different
smooth € vs. N (Z) curves [Hei32|. As a measure of this effect, the quantities

ABNN,Z) = (_;)N [E(N —1,2) —2E(N,Z)+ E(N +1,2)], (5.19)

and Ag’), obtained by exchanging the roles of N and Z, are most often used. They
have positive values for both odd and even N (Z). In a BCS-like quasiparticle
picture, the excess energy found in an odd nucleus corresponds to the energy of the
quasiparticle created in order to obtain a one-q.p. (“blocked”) odd-number-parity
state.

Eq. (519) is the difference between separation energies of consecutive nuclei. In a
self-consistent mean-field/EDF scheme without pairing, due to Koopmans’ theorem
[Koo34], it measures the spacing of single-particle levels, i.e. (in the case of neutrons)

_1)N
5 ey =] (5.20)

AS,’%IF(Na Z) =

where £y is the energy of the single-particle level on which the N neutron is
added. Due to the twofold degeneracy of single-particle states in even-even nuclei
whose ground state is invariant under time reversal, one-neutron separation energies
calculated at the HF level (i.e., more generally, without pairing) for a N-neutron
nucleus (even N) and its N + 1 neighbor are almost identical, while separation
energies for N + 1 and N + 2 are usually different, except in the case of a large
spherical j-shell degeneracy. Thus, AI(IB’)(N, Z) with even N may contain a signifi-
cant contribution from the splitting of single-particle energies, which may explain a
significant part of the odd-even staggering of A®) (N, Z) itself. Satula, Dobaczewski
et al. [Saf98, [Dob01] used this result to propose restricting oneself to AP (N, Z)

calculated at odd N values (hereafter called A(()?a)d) in the discussion of pairing.

However, the twofold degeneracy of single-particle levels, and the equality be-
tween (1) and e(y) for even NV, is not exact. Indeed, time-reversal symmetry
breaking caused by the addition of a single nucleon lifts this degeneracy in the odd
nucleus, resulting in a rearrangement (or “polarization”) of the nucleus, which is a
nuclear embodiment of the Jahn-Teller effect [Jah37]. Although the deformation
degree of freedom is mostly blocked due to pairing itself [Sat98], limiting the magni-
tude of the Jahn-Teller contribution to the OES, core polarization can decrease the
energy of the blocked configuration. This polarization brings a negative contribution
to the OES that Rutz et al. estimated at up to 30 % of the “bare” gap in relativistic
Hartree (RH) models [Rut99].

Duguet et al. revisited the interpretation of the structure of an odd nucleus in
terms of a fully paired BCS/HFB vacuum (with an even number parity and an odd
average particle number) on top of which a quasiparticle corresponding to a s.p.
orbital lying close to the chemical potential was created [Dug0Olal. Starting from
the calculation of such HFBE (for HFB-Even) states and fully self-consistent HFB
blocking calculations, an analysis of different measures of the pairing gap was made
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[Dug01h], i.e. a comparison of AT (N, Z) and

(=D
8

APNN,Z) = — [E(N —2,Z) —4E(N — 1,2)

+6E(N,Z)—4E(N+1,Z)+ E(N +2,2)], (5.21)

which is an average of A® over a nucleus and its neighbors. They decomposed
mass-difference formulae as

AW = AgLP)‘BE + ELQP + Epol- (5.22)

where AggBE contains the (n — 1)™-order derivative of the “smooth” part of the
energy curve corresponding to fully paired, even-number-parity vacua. The latter
has been verified as being significant for n = 3, which corresponds to a curvature due
to non-linear terms in the mass formula such as, principally, the symmetry energy,
whereas it vanished almost completely for n = 5. The curvature contribution AgLF)BE
is generally observed to decrease with mass and, contrary to the HF contribution to
the OES, it has a sizeable value in spherical nuclei. E;qp is a Lowest QuasiParticle
energy averaged over one or more neighboring nuclei. This is the quantity that we
are attempting to extract since the main contribution to its value, for well-paired
nuclei, is the HFB pairing gap (diagonal pairing field matrix element) A. Finally,
E,ol is the (similarly averaged) polarization energy, i.e. the difference between
the energy of the odd nucleus calculated in a fully self-consistent blocking scheme,
and the perturbative value obtained by adding the quasiparticle energy to the HFBE
ground state energy. It was found that, whereas A®) was the most accurate measure
of the sum of pairing and polarization contributions, a cancellation occurred between
E,o1, and AS’%BE terms in A(()‘?d, which confirms it as a good measure of pure pairing
effects.

In the Jahn-Teller mechanism, a system is expected to lower its energy con-
sequently to lifting the degeneracy of its ground state. In the HFB method, the
underlying variational principle could be expected to make an odd nucleus cal-
culated in self-consistent blocking follow this scheme. Therefore, Epol, should be
negative, which is the case in the work by Rutz et al. [Rut99] but not in those by
Satuta et al. [Sat98] and Duguet et al. [DugOIb]. One possible reason for this is
the self-interaction present in an energy density functional when the latter is not
strictly built as the HFB expectation value of a Hamiltonian, or explicitly corrected
for self-interaction [Per81]. Despite the inclusion of time-odd components of the
functional, quasiparticle self-interaction, i.e. self-interaction and self-pairing terms
[LacO8] can be present and break the link between quasiparticle energies resulting
from the HFBE calculation and the true energy of the one-quasiparticle state as
calculated explicitly through the functional (see Eq. (Z64) and accompanying dis-
cussion). As of this work’s writing there is no more accurate check of the magnitude
of this effect, though, which might be required if one expects to fully understand
the precise influence of pairing in the nuclear EDF.

Beyond these qualitative considerations, performing yet another analysis of the
link between nuclear masses and pairing gaps is beyond the scope of the present work.
We shall thus use the rather consensual measure Ao?d when performing comparisons
with experiment. On last remark may be required, i.e. that this quantity should not
be used near shell closures (N, Z +2) for the comparison with a SR-EDF calculation,
since dynamical pairing effects may play a significant role.
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5.1.3 Trends in pairing gaps

Several studies have dealt with the mass- and isospin-dependence of pairing gaps. As
already mentioned, the A-dependence of both proton and neutron gaps was identified
early [Boh98| as a decreasing function. The question of the relative importance of
neutron and proton gaps and their dependence with respect to particle numbers of
the two species was first investigated by fitting simple analytic functions of (V, Z)
without explicit knowledge of the quantal structure of nuclei. It was observed that
neutron and proton gaps were similar for light nuclei, while proton gaps were slightly
larger than neutron ones in heavy nuclei, especially in the actinide region [Boh98],
Nem62]. As for the neutron-excess dependence, simple analytic fits yielded gaps
decreasing with (N — Z)/A for both species [Vog84l [Mad88|. Later on, Moller and
Nix [M&lI92] performed an analysis of gaps across the mass table using a microscopic-
macroscopic approach. Pairing was treated in the BCS and BCS-Lipkin-Nogami
schemes, with a pairing strength parametrized through an “effective-interaction gap”,
the connection between the latter being made through a calculation performed on
a schematic s.p. spectrum with shell corrections smoothed out. Thus, quantal
effects due to (sub-)shell structure and variations of the latter with deformation
were substracted. It was found that no explicit neutron-excess dependence was
needed in the effective interaction to reproduce trends observed in the data.

Proton and neutron A(()?a)d values extracted from Ref. [Aud03|] are plotted on
Fig. BJl We only show mass differences centered on nuclei with an even number of
particles for the species not under consideration, in order to avoid including in the
data odd-odd nuclei where the coupling between the non-paired proton and neutron
may impede the discussion.

As was noted in Ref. [Vog84|, neutron-excess dependence appears most clearly in
the region of 50 < Z < 82 and 82 < N < 126. The lowest gaps in this region occur
in nuclei situated in the middle of neutron and proton shells, which corresponds to
the limit of known nuclei on the neutron-rich side. As was suggested already in
Ref. [Nem62], these nuclei are well-deformed and exhibit a low level density at the
Fermi level due to the presence of deformed shell closures, resulting in a reduction
of pairing. Such an effect is clearly visible in a systematic calculation such as [Hil06]
Hil07], and could be hinted by the crescent-shaped distribution of higher gaps around
the middle of major neutron and proton shells on Fig. BTl

Thus, the variation of pairing gaps with neutron excess observed more recently in
the Hafnium (Z = 72) and Tungsten (Z = 74) chains [Lit05] could be attributable
mainly to local shell effects. In this case, work on improving models which fail to
reproduce this variation would benefit from concentrating on single-particle spec-
troscopy and deformation properties. Also, it would explain why attempts at liquid-
drop or LDA-based description of gaps across the mass table [Jen86] fail in this
region.

5.1.4 Microscopic theory

Nuclei and nuclear matter are highly correlated quantum systems. However useful
for the qualitative understanding of nuclear pairing and as the basis for pairing-
enabled density functional theory, the BCS gap equation is not a rigorous starting
point for the ab-initio description of superfluidity. Such a description has been the
aim of many studies performed in the context of nuclear or neutron matter [Dea03].
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Figure 5.1: Experimental gaps extracted from the mass table [Aud03| by a three-

point finite difference formula (A, Eq. (519)) centered on nuclei with
an odd number of the considered species and an even number of the
other species. Top panel: neutron gaps, bottom panel: proton gaps.
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Results obtained are interesting not only as a theoretical input for nuclear models
applied to finite nuclei, but also as the sole means of studying the nature of matter
in the crust of neutron stars.

Indeed, superfluidity plays a key role in these compact stars, as suggested early
by Migdal [Mig60]. Pulsar glitches could be related to the pinning of vortices to
nuclei in the superfluid neutron matter of their crust [Avo07]. Pairing also has a
significant impact on the specific heat of the crust of neutron stars, which affects its
cooling rate [Mon(7]. In deeper and denser regions, protons could become superfluid
and thus superconducting, which has strong implications for magnetic properties,
while neutrons would form pairs in the anisotropic 3P — F, state [Bal98].

The self-consistent microscopic description of superfluidity in nuclear matter has
been attempted using correlated basis function, or Monte-Carlo methods [Cha04,
[Fab03l [Gan08]. However, the most useful method to understand how pairing is
built into the correlated ground state is probaby to include correlations step by
step through perturbation theory (or a Brueckner-Goldstone recast thereof). Con-
ventional many-body perturbation theory (MBPT) [Fet71] breaks down for
superfluid nuclear systems, as the onset of pairing is approximately related to diver-
gences occurring at the Fermi level in the G-matrix [Eme59|, and exactly corresponds
to a similar singularity appearing in the Feynman-Galitskii T-matrix [Eme60], to-
gether with the divergence of Weinberg eigenvalues [Ram07|, which marks the tran-
sition to a nonperturbative regime. The same results were obtained in a finite-
temperature formalism [AIm96]. Indeed, phase transitions such as the onset of
pairing are not amenable to a perturbative expansion [Noz63]. We thus have to
redefine the starting point and work with pair condensation incorporated at every
level.

Such a theory can be built as an extension to MBPT, as proposed by Nambu and

Gorkov [Gor58, Nam60], through the definition of anomalous propagators [Sch64,
ABrG3). A

We suppose the system is ruled by a Hamiltonian H = T+V— )\N, where T
groups all one-body terms (kinetic term and external potential) and V is a two-body
interaction, while a chemical potential A, as in the BCS scheme, is used to conserve
the average particle number.

Following [Noz63|, we make use of the generalized two-body propagators

20+ w+ S(k; —w)

Fikw) = D) : (5.23)
B(kw) = %, (5.24)
D(kw) = [Fp+w+ Sk —w)]E) —w+ S(k;w)] + Alk,w)?,  (5.25)

with 20 = 9 — \, and €? is the s.p. energy determined by the one-body 7" (for an
infinite system, the appropriate representation is |k) = |ko), and £ = A?k?/(2m),
k being the s.p. momentum).

Fi corresponds to the normal propagator, while F5 is defined through an anoma-
lous contraction. Y (k;w) is the (proper) self-energy entering the Dyson equation (for
the sake of simplicity, we consider ¥ to be diagonal in the chosen representation, as is
the case in the plane wave basis for infinite systems). It sums all diagrams which are
irreducible by cutting a single one-particle propagator line. A standard approxima-
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tion used in nuclear matter is to use for 3(k; w) the first-order diagram involving the
Brueckner G-matrix, yielding the Brueckner-Hartree-Fock (BHF) approximation.
A(k,w), on the other hand, is an anomalous self-energy obtained by solving
the generalized Bethe-Salpeter equation, which describes the scattering of a pair of
particles, involving generalized propagators. The latter yields, as an equation for A,

Alk;w) = / %Z[(kﬁw;zzw') Fy(l;w) (5.26)

B /d_w’ Z I(kkw; llw') Al w")
B 2m [+ w' + 2(l; —w)][E) — o + 2L w)] 4+ AL W)
(5.27)

where the interaction kernel I(kkw:; llw') is the sum of diagrams which are irreducible
by cutting a pair of single-particle lines Noz63l, Hen64, Bal90l [EIg96].
Thus, diagrams entering the Brueckner G-matrix or the T-matrix beyond first order
in V' are forbidden in I, as they are already generated by the Bethe-Salpeter scat-
tering equation itself: this would lead to double counting. Including anyway such
effective vertices in the pairing channel [Amu85] Bal90, Wam93] yields markedly
increased pairing gaps, compared to using the bare NN potential. The lowest-order
contribution to I(kkw;llw') is thus the bare interaction matrix element Vj;,z. In this
case I, as well as the anomalous self-energy A, are energy-independent. At follow-
ing orders, we start to sum polarization diagrams corresponding to the particle-hole
induced interaction, i.e. the many-body process of two particles interacting via the
exchange of medium fluctuations [Hei00), [She03].

Many-body effects do impact the anomalous self-energy A even if the bare inter-
action is taken as a pairing interaction kernel. Eq. (527]) involves a non-trivial energy
integral, which is the manifestation of the potential presence of effects beyond the
quasiparticle picture. The complex values and energy-dependence of (k,w) indi-
cate that quasiparticle excitations have a finite lifetime, i.e. they are not eigenstates
of the Hamiltonian. It also signals the depletion of the Fermi sea on top of which
pairing takes place.

Elementary excitation energies are given by the poles of the propagator, which
occur at w = £ FE), with

+{[E) + L(S(k, Ex) + S(k, —B))* + Ak, B)?Y? . (5.28)

where we keep the energy-dependence of A for the sake of generality. We see that
the energy dependence modifies the BCS expression for the quasiparticle energy,
which is, however, recovered for an w-independent self-energy (confirming the role
of A(k; Ey) as the pairing gap). In the case of vanishing pairing (or for states far
from the Fermi level where X(k, Ex) > A(k, Ey)) we have Ej, = |g|, where g is the
on-shell single-particle energy. For simplicity, we will skip imaginary parts in the
following. We thus have

gr = &y + S(k,Ep). (5.29)

Its explicit energy integral makes Eq. (&.27) quite impractical. Due to the non-
trivial structure of the self-energies, an analytical reduction can only be achieved
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by performing some approximation of the latter. An efficient choice is the pole
approximation [Bal00a, Bal01l [Bal02, Bal07c]. It consists, first, in neglecting the
imaginary part of ¥(k,w), which is reasonable for states lying next to the Fermi level
and dominating the integrand of the gap equation. Then, the generalized propagator
entering Eq. (521 is replaced by its pole part. One obtains

5 Vs AQ
A= s e s 0

where ] is the symmetrized effective single-particle energy
g, = &+ i3Sk, Ey) + S(k, —Ey)], (5.31)

and z(k) is the residue of 1/D(k;w) at each of its (symmetric) poles. Near the
Fermi level and in the A = 0 limit (in nuclear matter we have A ~ 3 MeV for
kinetic energies of the order of 50 MeV), z(k) can be identified with the normal-
phase z-factor. A further approximation relies on the assumption of a smooth energy
dependence of the self-energy. One then obtains the expression [Bal02l [BalO7d,

[LomOT]

T 2422+ Al)?

which involves, this time, the on-shell s.p. energy g, and a renormalized gap ﬁ(k‘) =
z(k)A(k). Similar expressions have been obtained in the self-consistent Green’s
function approach involving T-matrix-derived self-energies [Mut05], [Boz99, Boz03].

To first order in w in the expression of ¥(k;w), the symmetrized single-particle
energy can be approximated as

g ~ o+ X(k,w=0)+O0O(E}). (5.33)

Next to the Fermi level the self-energy can be expected to vary sufficiently smoothly
between —Ej, and Ej, for this approximation to hold. We thus see that Eq. (£.30) in-
volves a single-particle spectrum which does not take into account dispersive effects.
The corresponding effective (Landau) mass is the pure k-mass m. On the other hand,
the on-shell prescription for the s.p. energies in Eq. (.32]) implies that both energy-
and momentum-dependence are taken into account, which the additional z-factor
compensates for. Indeed, z(k) < 1 at the Fermi level, while energy dependence in-
creases the density of the s.p. spectrum, yielding an e-mass higher than the k-mass.
It is interesting to mention some results in the ultraweak-coupling regime, where an

analytical expression for the Fermi-level gap can be obtained [Bal01l [Bal02]:

mEr m
— ex — — s
wlke) | w2nol (ke)m(ke )2 (ke)

A(kg) = 8 (5.34)
where Ep is the Fermi kinetic energy, m(kg) is the k-mass at the Fermi level, ng is
the Fermi gas level density, and I (kr) is the typical interaction kernel matrix element
between states lying at the Fermi level. Because of the property m*(k) = m(k)/z(k),
we see that in this limit, Eqs. (530) and (232) are indeed equivalent: the pairing
gap is determined by the quantity I(kp)m(kp)z(kp) = I(kp)m*(kp)z(kp)?.
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5.2 Ab-initio input for the pairing part of the nu-
clear energy density functional

In this work, we aim at achieving a first step leading towards two distinct goals.
First, we expect to improve our understanding, in terms of the relative importance
of different diagrams in the pairing interaction kernel I(kkw; llw'), of the microscopic
origin of pairing between identical nucleons in nuclei. This requires to go beyond
extrapolations of results obtained in nuclear matter and implement a method to per-
form calculations of finite nuclei, building the pairing gaps (i.e. HFB pairing field)
explicitly from the bare interaction, either at first order or including higher-order di-
agrams. Such calculations have been attempted, the bare interaction being included
to first order, for a slab of nuclear matter [BalOObl [Bal03l [Pan06, [Pan07], however
self-energy effects were neglected. The few studies performed in a finite nucleus until
now tend to show that the bare interaction alone can only account for a fraction of
experimental pairing gaps [Bar04, Bar(5], and that induced interactions due to cou-
pling of individual motion with collective modes [Bar99, [Ter02) [Gio02] can explain
the remainder [Bar(4], [Gor05al [Pas08al]. Due to the complexity of the calculations
involved in the above mentioned works, only a single nucleus (}**Sn) could be stud-
ied. We thus hope to bring additional information into the discussion by performing
a more systematic study of gaps obtained with the first-order contribution of the
bare NN potential to I, thanks to the method explained below. We shall treat the
NN contribution as fully as possible, including the Coulomb interaction, however we
will not treat the three-nucleon interaction at this point. We will not, either, extend
this work to incorporating higher-order contributions, owing to the complexity of
first choosing then implementing a sound method to do so. We hope, ultimately,
to treat induced interactions e.g. by including the exchange of phonons calculated
in the RPA approximation using the residual interaction deduced from the Skyrme
EDEF. Of course, deriving the residual interaction from the bare NN potential would
be the most consistent approach, and might become possible in the future using
low-momentum interactions.

Second, we expect to produce a pairing functional yielding trustworthy pre-
dictions in regions of the mass table where pairing-related experimental data are
unavailable. Indeed, existing local pairing functionals employed in self-consistent
nuclear structure calculations are characterized by a number of parameters (strength
factor, pairing active window /regularization scheme, density dependence) which are
not all well constrained by available data. In fact, models which yield consistent
predictions near the valley of stability can exhibit very different behaviors when
extrapolated towards the neutron drip-line [Dug05]. These differences occur despite
the fact that, except for recent works [Mar(7, Mar08|, isovector-density dependence
of pairing functionals has not been employed.

For this purpose, we shall perform calculations with our microscopic model across
the mass table, including regions far from the valley of stability. As will be detailed
below, our method is, for now and within reasonable computing time and storage
requirements, restricted to calculations in spherical symmetry. The results thus gen-
erated will provide a reference for comparison with other models useable in more
general cases such as local pairing functionals. Note however that we do not neces-
sarily expect, at this point, to obtain a good agreement with available experimental
data.
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Our approach to building HFB equations relies on devising a separable represen-
tation of the NN interaction. This separable interaction can then be used to build a
pairing functional having some of the simplifying properties of a local one, allowing
for the efficient construction and diagonalization of the HFB matrix. As a starting
point, we use the Vjoy  low-momentum NN interaction, which, as will be discussed
below and in section B.3.2], lends itself well to separable approximations.

5.2.1 The Viow » low-momentum NN interaction

Several models exist for the nucleon-nucleon (NN) interaction. The most recent ones,
either representing a mix of one-boson exchange parts and semi-phenomenological
short-range terms [Wir95, Mac01], or consistently built from chiral effective field
theory (EFT) [Ent03l, [Epe05], achieve an accurate description of available scattering
data for energies reaching up to 350 MeV in the laboratory frame. These models
are clearly different in terms of their matrix elements. However, it was shown that
a universal NN interaction could be obtained by applying to either of several recent
NN potentials a renormalization group (RG) transformation eliminating high-energy
degrees of freedom [Bog01, Bog03al [Bog03h].

A NN interaction is thus obtained, called Vi  , which couples only states of
relative motion below a certain cutoff momentum, or renormalization scale A, while
conserving two-body observables in the low-energy domain thanks to the
scale-invariance enforced for the scattering T-matrix. In particular, it does not
present the high-energy /short-range repulsion characteristic of the hard core in
traditional NN potentials, which makes it suitable for ab-initio nuclear structure
calculations in reduced model spaces via variational [Nog04], [BogO6a] shell model
[Bog02], no-core shell model or coupled cluster [Hag07] methods. Also,
the RG transformation yields a NN interaction which, below a certain value of A,
is perturbative, i.e. a perturbative expansion in terms of interaction vertices of the
two-body scattering amplitude [Bog0O6b| or many-body ground state [Bog05| con-
verges term-after-term, whereas only the formal re-summation of infinite series (such
as the Brueckner G-matrix) yields a definite result when using the starting high-
momentum potential. This feature is important as it allows to control the accuracy
of such perturbative expansions through power counting as is done in chiral EFT.

The Viow  approach, therefore, opens new ways of studying nuclear structure.
This, however, comes at a price. First, the interaction resulting from the RG trans-
formation cannot be represented as a local potential anymore: it is a set of numerical
matrix elements with significant non-locality. Second, while two-body observables
are conserved, it is not true of higher-particle-number operators, and conservation of
A-body physics requires, strictly speaking, the introduction of up to A-body inter-
actions. In practice, the importance of interactions involving higher body numbers
is expected to increase slowly when running A down. Although low-momentum
three-body forces generated from NN+NNN Hamiltonians through RG equations
are currently unavailable, it is expected that they will show marked resemblance
with NNN forces from chiral EFT [Nog04, [Bog05]. Work towards obtaining a com-
plete Vigw x NN+NNN Hamiltonian is currently underway [Bog07al [BogO8b].

The RG equation for the V,, x matrix elements is obtained by introducing a
cutoff A in the Lippmann-Schwinger equation and running it down while conserving
the half-off-shell T-matrix (making Viyy » energy-independent) or the fully off-shell
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one (yielding an energy-dependent Vi,  , which can be rendered energy-independent
by converting energy- to momentum-dependence and hermitizing). The cutoff can
actually be applied in a smooth manner, yielding an interaction with continuous
matrix elements in the k, k’-plane. Possible cutoff functions are [Bog07¢|

fsharp(k:Q) = @(A2 - kz), (535)
o (K?) = exp [— (%) ] (5.36)

€ (12) — 1
fFD(k ) = 1+ exp (k2€_2/\2) ’ (5-37)

7«

respectively called “sharp”, “exponential” and “Fermi-Dirac” regulators. We then
have

Tiow k(b K E) = f(K)T (k, K E) f(K?), (5.38)

i.e. the T-matrix is conserved exactly for the sharp cutoff, and approximately, up
to a factor corresponding to the regulating function used, for smooth ones.

5.2.2 Separable representation and finite nuclei

In atomic nuclei, Cooper pairs are expected to form principally between nucleons
of the same species and in the S = 0, L = 0 state of relative motion. It is an
interesting feature of NN scattering physics that the two-nucleon system exhibits
in this channel (15;) a virtual, quasi-bound state at low energy, which translates
into large attractive phase shifts and, correspondingly, a large negative scattering
length. Scattering theory [Bro76] tells us that the T-matrix corresponding to such a
system is dominated by a single pole at the energy of the virtual state, which means
that it is, to a good approximation, separable of rank one close to this energy. A
potential describing the two-body scattering problem in this energy range may thus
have the same structure, i.e. V(k, k') = X g(k) g(k') [Hai84]. Such a potential,
however, cannot describe NN scattering beyond an energy Fi,, = 250 MeV due to
the inversion of the sign of phase shifts (and hence of diagonal T-matrix elements)
at this point. Nevertheless, this property could be used by Duguet [Dug04], who
built a low-momentum approximation to the Argonne vig potential having similar
properties with respect to pairing in infinite nuclear matter. The form of this inter-
action was a simple one, and further approximations were proposed in order to make
nuclear structure calculations feasible. In this work, we aim at extending the work
of Ref. [Dug04], both by building accurate separable representations of the Vjo,, x NN
interaction and by using them to compute nuclear properties at the HFB level with-
out further assumptions regarding the form of the pairing interaction/functional.
Even beyond a rank-one approximation, it is a general feature of low-momentum
potentials that they can be more easily approximated by separable forms. This can
be understood by studying Weinberg eigenvalues, i.e. solutions 7; of the equation

V Go(E) [i) = mi |vi), (5.39)

where V is the two-body potential, Go(E) the free two-particle propagator and [1);)
the corresponding eigenstate. When RG evolution is applied to a NN potential,
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running down the cutoff A drives more and more eigenvalues close to zero, resulting
in fewer ones retaining a significant contribution. The potential not only becomes
perturbative, but it can also, then, be approximated through a separable expression
of lower and lower rank [Bog0OGb].

An interaction acting solely in the 1S, channel can be decomposed as

Viso = VSPg,, (5.40)

where V5 is the spatial part acting in the L = 0 state of relative motion and Ps_g
is the spin-singlet projector defined as

pg = — "o (5.41)

P, being the spin-exchange operator. Momentum- and coordinate-space matrix
elements of the spatial part can be expressed, respectively, as

<k1k2‘vs|k3k4> = ‘/150(]{712, ]{Z34) (27T)35<K12 — K34)7 (542)
<I'1['2|VS‘I'3I'4> = ‘/150(812, 834) 5<R12 — R34). (543)

The center-of-mass (CoM)/relative coordinates are defined as: s;; =r; —r;, R;; =
(ri+71;)/2, kijj = (k; — k;)/2 and K;; = k; + k;. This interaction has, in general,
a finite-range and a finite non-locality. It is true of any finite-range interaction
when one isolates a single partial wave, whether or not one starts with a non-local
interaction such as Vj,, . The separable approximation to the matrix elements
enters the definition of Vig, functions,

%So(k7 kl) = Z ga(k) )‘aﬁ gﬁ<k/)7 (5'44)
ap

Viso(s,8) = > Gals) dag Ga(s), (5.45)
ap

where 1 < a, 3 < M, M is the rank of the interaction, and g,(k) and G,(s) are
interaction form factors in momentum and coordinate space, respectively; A,z is a
strength matrix.

The two representations are linked by the following relation between momentum-
and coordinate-space form factors:

Ga(s) = /(;lﬁl; e g (k) = 27:28/kdk: sin(ks) ga(k). (5.46)

Given four states ijl%f belonging to a single-particle basis, with 7 and & taken in
the first half and 7 and [ in the second half of the basis, as defined by the Bogolyubov
transform of the system’s reference state, one can express the corresponding matrix
element of the interaction as

(W;‘;S;f)ij;;[ = // d*Riad®Ray Z [/ d*s12 Go(s12) ‘I’%(Tlah)}

af
X )\aﬁ 5(R12 — R34) |:/ d3834 G5(834) \Ifki(rg,r4)] (547)

(T iii = / 'R D UE(R) Aep VL(R), (5.48)
ap
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with
Ue(R) = /d3s Go(s)U5(R +5/2, R —s/2) (5.49)

_ /d3sGC,(s)Z(—)S—O%(RH/Q,U)<pj(R—s/2,a), (5.50)

g

where U;; is the spin-singlet part of the two-body product wave function (see ap-
pendix [EX]). At first order in the interaction, the pairing energy can be written

1
palr = _Z SeS; ikl Ry Rij = /d3R Z)‘aﬁ Xa (R)7 (551)

zgkl

where k;; is the pair tensor and the effective pair densities X, are defined as
— > ULR) kg, (5.52)
7

The key point in the above expression is that the pairing energy can be written as
a functional of pair densities which are local in the sense that they depend on one
spatial coordinate only. All the range and non-locality of the interaction, which
were contained in the G,(s) functions, are now hidden in the densities defined
by Eq. (5.52)). The elements of the strength matrix A,z play the role of coupling
constants of the functional. Effective pair densities can also be expressed starting
from the non-local spin-singlet pair density

Yo(R) = / d*s Go(s)p(R,s), (5.53)
p(R,s) = —Z\I!ij(R—i—s/ZR— s/2) ki, (5.54)

]

which exhibits the non-locality of our functional.
Matrix elements of the pairing field A in the chosen basis can be obtained via
functional differentiation, yielding

Ay=) / IR U (R) AL(R), (5.55)

where we use local intermediate quantities (or effective fields) to fully represent the
pairing field,

= =3 s Xs(R). (5-56)
B

This form of a pairing functional allows to build the HFB equations, expressed in
the chosen basis representation, with a computational burden similar to the case of
a local functional. Although the expression Eq. (&2 still does not allow to work
efficiently in an explicit coordinate-space representation, the calculation of pairing
matrix elements is considerably faster using Eq. (5.53) (O(n?), n being the typical
number of s.p. basis states in a block of the pair tensor x;;) than when using the
matrix elements of the interaction directly (O(n?)).
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Two difficulties arise, though, in addition to the workings of a basis-representation
Skyrme-HFB code. Indeed, in order to achieve the O(n?) scaling of computational
cost, we have to calculate and store the \TI?J(R) functions for all pairs of basis states
potentially coupled by the pairing field given the symmetries chosen for the repre-
sentation. Storage requirements are thus larger than in the case of a local pairing
functional. The second, formal, difficulty is to design and implement a center-
of-mass/relative coordinate separation for use in Eq. (5:50). This is trivial when
working in Cartesian coordinates, but storage and time requirements imply, at least
in a first step, to work in spherical symmetry.

The details of the method we use, being non-essential for the physical discussion,
are exposed in appendix [El

5.3 A Separable Representation of the NN force

Before performing calculations, as described in the previous chapter, employing the
View & interaction in the pairing channel, we have to devise a separable representation
of it. Several techniques have been proposed for building separable approximations
of local or other potentials [Wei63, [Ern73, [Hai84, Bal86l [Bal87]. Most focus on
reproducing the low-energy physics of the interaction, such as the M lowest-energy
poles of the T-matrix in the case of the Gamow separable approximation [Bal86]|, by
diagonalizing an operator derived from the interaction, in some cases adding weight
on a particular region of the momentum space. Such is the case of the Weinberg
procedure, which, by diagonalizing VGy(E), Go(E) being here the free two-particle
propagator in the vacuum, yields a good approximation mainly around the chosen
energy E (although in practice, the range of accuracy of the approximation is more
extended, at least for Vi, r [Bog0O6b]). In our case, the focus on low-energy degrees
of freedom is already taken care of by the Vi, » procedure. In particular, the matrix
elements of V|, . are of finite support because of the RG cutoff. Provided they are
also smooth enough, this guarantees the existence of an accurate, finite separable
expansion in the whole (k, k')-plane. Moreover, any analytic property of a given
scheme would probably be lost in the process of devising a parametrization of the
numerically-obtained separable representation.

Therefore, the first step of our method for producing a separable approximation
of View 1 is even simpler: we diagonalized the potential itself, i.e. its 1S, matrix
elements. Let us note that a similar approach was followed in Ref. [Bal98] for use in
infinite matter. We then fitted analytic formulae to the eigenvectors, yielding a first
separable representation which was improved by refitting all its parameters, first on
the original V],  matrix elements, then on half-on-shell T-matrix values calculated
with the latter.

5.3.1 Parametrization and fit procedure

When choosing the form of the functions g, (k) entering the separable form, the basic
principle was to keep the fit as “linear” as possible in order to have a (cost/merit)
function close to a quadratic form with respect to the parameters. We also had to
ensure the possibility to perform the Bessel-Fourier transform of the momentum-
space form factors to their coordinate-space equivalent analytically. Several families
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of form factors were tested, corresponding in each case to a master function de-
termining the range of the corresponding interaction term (through the only range
parameter) multiplied by a linear combination of power functions which modulate
the shape of the master function. The most convenient master function was found
to be a Gaussian. The form factors g, (k) thus read

galk) = [f;xa (@)] exp (—“32’“2). (5.57)

Here the exponents n; take integer values in the range 0...10. Due to the redun-
dancy between the overall magnitude of g, (k) and the coupling constants \,g, it is
necessary to normalize one of them. Here the g,(k)’s were normalized by setting in
each case one of the z’s to 1 (typically the one corresponding to the lowest order
n;, or the largest one if it is significantly larger). The corresponding term is then
labelled with ¢ = 0.

The parameters of the force (labeled V4, in the following) were adjusted by
minimizing a chi-square-like quantity, built with tolerances which reflect the desired
accuracy of the fit to the various quantities involved rather than true uncertainties.
We strive to keep as much of the physics contained in the raw data while obtaining
a necessarily imperfect parametrization.

The procedure we used was stepwise. In a first step the matrix View k(k;, k;)
was diagonalized, yielding a set of normalized numerical form factors g418(k;) and
corresponding coupling constants A48 Only the form-factor/coupling pairs with
the largest |\3%8| were kept, and analytical expressions, Eq. (B51), were fitted on
the values of corresponding gd18(k;). This preliminary fit involved a systematic
search of the optimal range a,, and coefficients x,, determined by performing a linear
least-squares fit for a number of values of the range and all possible combinations of
exponents n, taken as a fixed number NV, of values picked between 0 and npy,y, (see
below for actual values). The best parametrization of g, (k) was kept and refitted
with respect to all its parameters using a standard minimization algorithm.

In a second step, raw matrix elements were constrained by minimizing, with
respect to all continuous parameters of the force, the quantity

2 2 Z (‘/Yfit(kza k:]) - ‘/IOW k(kia k]))2

_ , 5.58
Xv Ne(Ne + 1) oy (i, k)2 (5.58)

i>j

where i, 7 are indices referring to points on a lattice in the (k, &')-plane, with k; = i 0k
while NV is the number of points in the k or £" direction (taken the same for both).
Vit (k, k') was computed thanks to Eqs. (5:44)) and (51). The tolerances o were
defined as

14+v

ki — k;
Uv(k’z‘,k}j) = O'Av(k'i,k?j) X - J

ki + k;

{1+(/<—1)

} (5.59)

+ v

where k and v are parameters which control the relative weighting of diagonal and
off-diagonal matrix elements (k: ratio between tolerances of the most-off-diagonal
and diagonal points, v: power law according to which ¢ varies. The formula here
keeps the average value along the k& — &’ direction at oay ), while the oa are given
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by
Omea + 5 AV (ki k), AV (ki k) > 0
oav (ki kj) = o™ (5.60)
Omea + 5 AV (ki ky), AV (kiky) <0

where Omin, Omeqa and omay are tolerances affected to the points (averaged over the
k — k' direction) having resp. the lowest(AY ), zero and highest (AY ) values of
the quantity

AV (ki kj) = 4View k(ki, k) (5.61)
_‘/iow k(ki-‘rla k]) - ‘/IOW k(kia kj—i—l) - Viow k(ki—la k]) - ‘/iow k(kia k:j—l)a

which is simply a finite-difference expression for a Laplacian of the function V'(k, k'),
and expresses the local “curvature” of the matrix elements. This has been devised
to allow for a lower weighting of regions where Vi, » matrix elements have a highly
angular behavior, which our analytical expressions for the matrix elements Vi (k, k')
cannot accurately match. Such an increased tolerance in this region allows to “sac-
rifice” them and avoid propagation of the error made there to neighboring regions
where a much more accurate fit is possible.
As a third step, starting from the previous solution, we minimized the quantity
X3 + X4, where
(Zia (k4 ks B ) — Tiowe 1 (K 5 B )

1
2
G N D 2 or (K, k) |

ij v

(5.62)

The (K, K Ek;) being the half-on-shell T-matrix in the 1Sy channel calculated with

1777

our model separable interaction, while Tioy 1 (K, k) are the corresponding values

obtained from the original Vjo  potential [Rot08a], and

o3 1+ kL — k|
or(K), k) T x 1+ (K —1) | —2 (5.63)
J ki + K K+ ki + K}

Again we apply a weighting scheme which constraints diagonal matrix elements,
directly related in this case to phase shifts, more than off-diagonal ones. The
1/(k; + k) factor make the tolerances on the diagonal T-matrix elements corre-
spond to approximately constant tolerances on phase shifts, since the latter satisfy
T(k,k; Ey) = kcot(5(k)).

We thus have a simple constraint better connected with the physics of the in-
teraction and which ensures that not only the matrix elements of our force match
those of Vi k locally, but that an optimum fit of the function Vg (k, k') to the whole
set of data is achieved. Indeed, physical observables, in general, integrate the effect
of matrix elements over a significant portion of the (k,k’) plane, especially phase
shifts, which are known to be closely related to pairing gaps.

In our procedure, the result of step three turned out to be a slight readjustment of
the result obtained at step two, thus giving us confidence that we attained a globally
optimal solution. Moreover, while after step two we generally had x% > 3, step
three yielded a significant reduction of x%, with only a slightly increased %, which
shows that a purely local constraint on V' (k, k') misses important degrees of freedom
in the set of matrix elements.
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5.3.2 Fits

We performed fits on a range of Vi, » interactions built from either the Argonne wvg
[Wir95] or the CD-Bonn [MacOT] potential. The choice of which interactions were
parametrized stems from requirements of our study: First, we built representations
of View k /Argonne, for A = 1.8 and 2.5 fm~! | in both the neutron-neutron and
proton-proton channels. In the latter case, we switched off the electromagnetic part
of the interaction in order to study the effect of charge symmetry breaking in the
hadronic part. Second, we built a set of representations of Vi & for higher values
of A, in order to study the A-dependence of pairing at the HFB level. In this case,
we had to use the CD-Bonn potential as an input due to numerical instabilities
observed in the RG evolution of the Argonne potential. All these fits were based on
the neutron-neutron channel of the interaction.

The cutoff function f(k?) was chosen, in each case, as a compromise between
the necessity to have a cutoff sharp enough to conserve the T-matrix accurately and
the requirement that it be smooth enough to allow for the reproduction of matrix
elements near A with an analytic function. We thus used a Fermi-Dirac function
with € = 0.5 fm~! for the lowest cutoff value (A = 1.8 fm~' ) and an exponential
one in the other cases.

Finally, we performed a separable parametrization of the 1Sy nn matrix elements
of the Argonne v;g potential. Yielding a rank-9 representation, it lies arguably at
the edge of the capacities of our method. Nonetheless, this makes it useable in
systematic calculations using our HFB code. On the other hand, the CD-Bonn
potential could not be accurately reproduced with a separable form.

The parameters used in the fit procedure were chosen so as to focus on diagonal
matrix elements and phase shifts. We used the values kK = v = 2, ¥ = 3,V = 2,
02 = 1072, which translates into a tolerance on phase shifts of around 0.3°.

We investigated the use of both a diagonal and non-diagonal coupling matrix
Aag in the final refit. The minimization algorithm tends to favor large off-diagonal
couplings and similar form factors. In the rank-2 case, by diagonalizing the A,z
matrix produced by such a fit, one observes that the form factors corresponding to
its eigenvectors are the sum and the difference of the similar-looking form factors
which differ by just slightly different ranges. Such a difference, in the limit of
functions that are identical up to a range parameter, corresponds to (n < 1)

df

— .64
2, (564

fla(l+n)z) = f(x) =~ nax

or in the case of a simple Gaussian,

exp (—M) —exp (—M) ~ —nlaz)?exp <—<“§)2) , (5.65)

2 2

i.e. the optimization code tries to build a form factor with a higher order in k. The
purpose of this obviously lies in the reproduction of the quite abrupt variations of
Viow k matrix elements near the cutoff. However, such a scheme seems quite artificial
and, moreover, one faces the problem that the large off-diagonal couplings are not
well defined — it seems impossible to get a firm convergence as the A\,z’s keep growing
albeit for only a slight reduction of x2. Thus, we preferred using only diagonal
couplings, at the expense of a slightly worse description of the data near the cutoff,
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: 2 2
VAN A Cut. function M N, Par. npmax Ominmedmax  Xi  Xiar

AV18, nn 1.8 FDe=05 2 6 14 6 3, 3, 80 0.10 2.41

AV18, nn 2.5 exp. n =06 3 6 21 10 3,3,3 0.26 3.02
AV18, pp 1.8 FDe=05 2 6 14 6 3, 3, 80 0.10 1.85
AV18, pp 2.5 exp. n==06 3 6 21 10 3,3,3 0.27 293
CD-B,nn 1.8 FDe=05 2 6 14 6 3, 3, 80 0.10 1.77
CD-B, nn 2.5 exp. n==6 3 5 18 10 3,3,3 0.20 2.20
CD-B, nn 3.0 exp. n =06 5 4 25 10 3,3,3 0.22 0.66
CD-B, nn 4.0 exp. n =206 5 4 25 10 3,3, 3 0.22 0.42
CD-B, nn 8.0 exp. n =06 6 5 36 10 3,3,3 0.55 1.21
CD-B,nn 15.0 exp. n=6 7 5 42 10 3,3,3 0.70  9.55
AV18, nn — — 9 5 54 10 3,33 0.44 1.26

) )

Table 5.1: Fitting parameters and resulting y? values. Viyy: starting bare potential
(AV18: Argonne v, CD-B: CD-Bonn). A: RG cutoff, in fm~! . Cutoff:
cutoff function in RG equation (Eqs. (5.37) and (537)). M: rank of
the separable representation. N,: number of values of the exponent
n of (a® k*)/2 in each form factor, Eq. (E51). Par.: total number of
parameters. 7ima: maximum value of exponent 7. Omin,med,max: tolerance
parameters for potential matrix elements in Eq. (5:60), x}: residual error
on potential matrix elements, Eq. (58], X%/+T3 total residual error on

potential, Eq. (E58)) and T-matrix, Eq. (62]).

but allowing for a reduced number of parameters (1 less for rank-2, 3 less for rank-3,
etc.).

Forces we used as input for fitting, as well as parameters defining the form
of separable representations we built are summarized in Table Bl together with
resulting values of x%, and x%. The complete set of parameters resulting from the
fits and defining these separable representations is given in appendix [El

The rank and number of terms in the form factors of the separable force, which
define the number and type of parameters, were adjusted to obtain a final x% + x4
value of order unity with as low a number of parameters as possible. This could
be achieved in all cases except for A = 15 fm™! Vi, 1 /CD-Bonn, which will see
more limited use than the other representations anyway. As expected, though, the
rank necessary for an accurate reproduction of potential matrix elements and of the
T-matrix grows steadily with the cutoff. In the case of Argonne v;g, the number of
parameters in our separable form (54) is larger than in the initial force (48). This
has to be attributed to the practical constraints on the analytic form taken by our
interaction. Since the latter is not connected to the form of the original potential,
our parameter set contains information corresponding to the expression of vg in
addition to its parameters.

Fig. displays phase shifts calculated with our potential parametrizations.
The cutoff is clearly visible in the collapse of §(k) at high k. Below A, all our
forces predict similar values despite originating from different hard-core potentials,
which only signals that the latter have been fitted to the same data. It is worth
pointing out, here, that the shape of the smooth cutoff implies that the collapse
occurs slightly below A. Charge-symmetry breaking (left panel) brings only a small
correction to the phase shifts by making the interaction marginally less attractive.
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Figure 5.2: Phase shifts calculated from our separable potentials. Left panel: nn
and pp Viow 1 potentials generated from Argonne v;g. Right panel: nn
Viow 1 potentials generated from CD-Bonn and separable representation
of Argonne v1g.
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Figure 5.3: BCS infinite-matter pairing gaps calculated with a kinetic spectrum from
our separable representations of Viy, r /CD-Bonn potentials and bare
Argonne vig. Left panel: Fermi level gaps. Right panel: momentum-
dependent gaps at krp = 1.2 fm™! .

Pairing gaps calculated at the BCS level for a kinetic spectrum are shown on
Fig. Whereas gaps calculated at the Fermi level (left panel) are identical to each
other, up to fitting errors and a slight A-dependence (which is known to decrease gaps
with lower A), momentum-dependent gaps (right panel) exhibit markedly different
structures at high momenta. For V|, /CD-Bonn interactions, the repulsive core
develops between A = 1.8 and 8.0 fm~!, where gaps are almost identical to the
case A = 15.0 fm~!, signalling a saturation of the RG evolution of this potential.
Although we were not able to produce a separable representation of CD-Bonn, this
potential, once evolved to this range of cutoffs can be treated with our separation
method and can be expected to be very close to the original potential. The Argonne
potential appears to be even more repulsive at momenta larger than 2 fm=!. We
thus have at hand, with the parametrizations used in the right panel of Fig. B.3 a
range of potentials of various “hardness”, which will be useful for the study of the
effect of their high-momentum matrix elements.

We have thus built a set of separable parametrizations of the V|, ;. interaction
as well as the Argonne vz potential. These parametrizations will now allow us to
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perform systematic EDF calculations with the bare NN interaction in the pairing
channel. To obtain a full NN potential, though, there remains to treat the electro-
magnetic interaction, which had to be switched off when treating the proton-proton
channel, whereas it is, obviously, non-negligible in this case.

5.3.3 Separable approximation of the Coulomb interaction

The electromagnetic potential between protons is dominated by the Coulomb force,
i.e. the electric part of the one-photon exchange potential. We take the proton
charge distribution as pointlike. Momentum-space matrix elements of the latter in
the S-wave read [Bro76]

2

k+ K
k— K

dre

2Kk

VCoul,Z:0<k7 k/> ) (566)

ln’

where e is the electromagnetic unit charge (in MeV fm). They diverge at k = &/,
which forbids separable expansions. One can devise, though, a separable expansion
of an approximate Coulomb potential restricted to a finite range, by setting (in usual
notations)

e2/r for r<a

Vel = {57 e 1Sh (5.67)

a being a range parameter. Provided a is chosen larger than the diameter of the finite
nucleus, this range truncation should yield a satisfactory approximation for use in
the proton-proton pairing channel, as the non-local part of the pair density quickly
vanishes when a particle is outside of the nucleus and, thus, no matrix element of
the pairing tensor probes the part of the potential that has been put to zero. In an
infinite system, the above approximation should be useful provided a is made much
larger than the coherence length, which requires the latter to be finite, and better,
not too large.

The S-wave part of the above potential can be calculated through its definition

a 2
/ . e .y
Vemamolbi ) = dr [ 12dr jo(kr) < (i), (5.69)
0
— 4n[Cilalk — k) — Inalk — k)
= 72]{;]{;/ 1La nia

—Ci(a(k + k') + In(a(k + ))], (5.69)

Jn being a spherical Bessel function and Ci a cosine-integral function. The above
expression has a separable expansio:

= ak ak’
Viio(k k') = 2mea® ;(271 +1) j2 (7) jn (7) : (5.70)
This corresponds to our usual separable form with the definitions (o« =n + 1)
Aag = Oap (20— 1) €*a?, (5.71)
i) = Vo (), (.72

! Numerically tested, proof pending.
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Figure 5.4: Left panel: S-wave matrix elements of the separable Coulomb potential
with a = 10 fm, Ngo,; = 10. Right panel: Difference between the ex-
act range-truncated Coulomb potential and the latter finite separable
expression.

Truncating the sum in Eq. (BE70) to the first N,y terms yields a separable
potential reproducing the physics of the Coulomb interaction, which can be added
to the hadronic terms and poses no challenge for its implementation in the method
outlined in section

S-wave matrix elements of such a potential with ¢ = 10 fm and N¢o, = 10 are
plotted on Fig. B4l along with matrix elements substracted through truncation of
the sum in Eq. (B70). It is striking that, once the singularity at & = &’ has been
regularized by discarding the long-range part, the largest matrix elements occur
near k = k' = 0. The sum-truncation error only involves matrix elements acting
between high-momentum states, which are small anyway (notice the different scales
between panels of Fig. 0.4 and recall that hadronic matrix elements are typically
of the order of hundreds of MeV.fm3.) Bessel functions j,(z) having, for sufficiently
large n, significant values only for x = n, one can guarantee that neglected terms
only contribute to matrix elements at k, k" > 2n/a, which evaluates to 2 fm~*! for
n = a/fm (this is different from the decimation of high-momentum matrix elements
performed by the Vi, 1 RG evolution, which affects regions with & or k' greater than
A). The assumptions leading to this approximate form of the Coulomb potential
in the S-wave are thus well motivated. They are, moreover, easily controllable by
varying truncation parameters.
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Chapter 6

NN Pairing: Bare Force at First
Order

In this chapter we present the results of the calculations performed with the func-
tional presented in section 5.2, the representation of the bare NN vertex at the origin
of the pairing part of the functional being described in section B3l

The method of solving the HFB-like equations that we use is efficient enough
to perform systematic calculations of large sets of spherical nuclei across the mass
table on single-CPU systems. We take advantage of this feature to investigate trends
with mass, isospin and major single-particle shells, beyond the “local” comparisons
which can be made with a single calculation. Indeed, it is clear that in most nuclei,
the single-particle spectrum determined by the effective s.p. potentials, themselves
derived from the particle-hole part of the functional, only matches gross features of
experimental s.p. energies (see chapter ). Since pairing-related observables depend
on the level density next to the Fermi energy, notably on the magnitude of a sub-
shell gap if present, a direct comparison with experimental data in a single nucleus
can be prone to a model-dependent bias. However, we expect such issues to be less
critical when computing a sufficiently large and dispersed set of nuclei, since then,
besides local fluctuations of pairing gaps, global trends shall depend on the average
density of single-particle energies only.

Results presented in this section have been obtained by performing HFB calcu-
lations in spherical symmetry with the functional SLy4 [Cha98] in the particle-hole
channel. For our purpose, the essential feature of the latter is its isoscalar effective
mass, m*/m = 0.7 at saturation density, which is entirely generated by the nonlo-
cality of the particle-hole potential and thus corresponds to a k-mass. This value
is consistent with k-mass values obtained from BHF calculations [Jeu76l [DalO5b]
at the Fermi level in symmetric nuclear matter at saturation density. The Skyrme
effective mass, contrary to the microscopic case, is momentum-independent, i.e. the
non-locality of the potential acts on the whole spectrum, whereas it is physically
meaningful only around the Fermi level. This implies that only the spectrum close
to the Fermi level should be probed in a scheme building correlations on top of the
independent-particle picture, which is one of the characteristics of the Skyrme func-
tional which confine it to low-energy physics. As a result, the Vi, . NN interaction
is well suited for the application we envision.

The HFB equations were discretized on a set of spherical Bessel functions (see
appendix [G]), which allows for an efficient treatment of separable finite-range and
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Figure 6.1: Lowest Canonical State (LCS) gaps and Lowest QuasiParticle energies.
Top panel: neutron gaps, bottom panel: proton gaps.

non-local potentials in the pairing channel (see appendix [F]).

6.1 First results

One of the questions we would like to address is the proportion of the total pairing
gap which is due to the first-order contribution (“direct term”) of the nucleon-nucleon
interaction.

We use, as a measure of experimental pairing gaps, the quantity Ac(,?’)(N, Z),
Eq. (19), with odd values of the particle number of the species in consideration. As
is reviewed in some detail in chapter [, this gives a good estimate of the pure pairing
contribution to odd-even staggering, i.e. the lowest quasiparticle energy. This energy
is itself approximately equal, in the case of strong pairing and tightly-spaced single-
particle levels (which reduces the s.p.e. contribution &;, to the quasiparticle energy)
to the pairing gap Ay, where k corresponds to the index of the lowest quasiparticle.
For each nucleus and each nucleon species, we call Epqp the lowest quasiparticle
energy and Arcg the pairing potential matrix element of the canonical state with
the lowest quasiparticle energy. We use the canonical basis in this case, since we
found the usual way to compute the quasiparticle pairing gap [Ben03] to yield,
on some occasions, dubious values. Although this reminds somewhat of a BCS
approximation, we should stress that the values presented below come from full
HFB calculations.

Fig. displays values of Ejqp and Arcg computed with the neutron-neutron
part (used in both neutron and proton pairing channels) of the separable Vi, . with
A = 1.8 fm~!, built starting from the Argonne v;g potential. This is the softest
charge-symmetric pairing interaction of our set. The computations were performed
for all major magic isotopic and isotonic chains, between proton and neutron drip
lines. In this case, the HFB equations were solved in a box of 24 fm radius, with a
mesh step of 0.3 fm and a momentum cut-off in the Bessel s.p. basis ket = 4.0 fm !,
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which describes single-particle states up to about 300 MeV.

The evolution of lowest-quasiparticle energies and LCS gaps show characteristic
patterns around magic nuclei, where Apcg collapses due to the depletion of the
spectrum around the Fermi level while Eyqp rises to a value corresponding to half
the single-particle shell gap. Equality (approximately) of the two quantities indicates
that the chemical potential lies in a densely-packed set of s.p. levels, which minimizes
the g;, contribution to Epqp. This is the case where a static SR-EDF description is
the safest.

As expected from the expression of a BCS quasiparticle energy, we have Arcg <
Erqp for most nuclei. Notable exceptions are the neutron-rich sides of tin and lead
chains, where an inversion occurs. This is a signature of the mixing of different
s.p. orbitals by the HFB pairing field, which allows to lower the first quasiparticle
energy below the corresponding canonical quasiparticle-equivalent energy, which is
allowed because of the larger variational space explored by HFB equations compared
to the BCS gap equation. The fact that this signature mainly occurs in regions
approaching the neutron drip line confirms the importance of solving the full HFB
problem for nuclei where the chemical potential lies just beneath the scattering
continuum [Dob8&4].

Fig.[6Talso shows experimental values of the gaps, where available. The method
we have chosen to extract the latter yields data with a general behavior similar to
that of Arcg, which allows for a meaningful comparison . Around shell closures,
though, theoretical gaps increase more slowly away from magic particle numbers
than data, resulting in lower theoretical gaps in these regions. It is known that
particle-number projection, or an approximate variant thereof such as the Lipkin-
Nogami method, increase gaps near shell closures. We can thus blame the pairing
scheme on this inaccuracy. Although the exact shape of the gap curves does not
match the data perfectly, the magnitude of theoretical and experimental pairing gaps
is clearly similar in the case of neutrons. Calcium and nickel chains are especially
well reproduced, probably owing to the simplicity of the underlying single-particle
spectrum. Tin and lead chains, on the other hand, exhibit features in the data
which are absent from the calculation. A depletion of gaps around N = 65 in tin,
for example, suggests the existence of a sub-shell closure not predicted as large by
SLy4. In lead isotopes, the decrease before N = 126 is steeper in the calculated gaps,
which suggests a level density which is too high in the corresponding sub-shell. The
latter is consistent with the v1iy3/5 level lying too high in the s.p. spectrum (see
chapter Hl). Again, except these local defects, which can be rather directly related
to the s.p. structure produced by the functional SLy4, the global magnitude of the
theoretical neutron pairing gaps matches that of the experimental ones very well.

The case of protons is different. We see a general over-estimation of proton gaps
by the calculation performed with a charge-symmetric pairing functional. In fact,
calculated proton gaps are, in the heaviest isotonic chains, higher than neutron gaps
calculated in neighboring magic isotopic chains, with values standing above 1.5 MeV
for protons and between 1 and 1.5 MeV for neutrons. It is known that proton gaps
are similar in magnitude, or marginally larger, than neutron ones in heavy nuclei
[Nem62], yet the difference observed here clearly overestimates the one present in
experimental data.

Given that our pairing functional is charge-symmetric, the charge asymmetry
observed in the results may be traced back to the intrinsic properties of the un-
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derlying NN vertex. Heavy nuclei globally exhibit a neutron excess. Save for a
thin neutron skin, the spatial extension of neutron and proton distributions in these
nuclei are similar, which implies that proton densities are lower than neutron ones.
Consequently, the effective Fermi momentum is also lower for protons than neu-
trons, or, more accurately, momentum-space density distributions corresponding to
states close to the chemical potential are peaked at lower momenta. As a result, the
proton pairing tensor probes more attractive matrix elements of the NN interaction
than the neutron one, which potentially explains the observed difference. The same
effect can be invoked for the neutron-excess-dependence of gaps: neutron A g val-
ues decrease noticeably with N for all four chains present on Fig. 6.1], due to the
increase of the neutron density and effective Fermi momentum with N. Proton gaps
exhibit a less marked decrease with Z, the difference being probably attributable to
the centrifugal effect due to the curvature of the particle-hole Coulomb field.

Agreement with experiment of calculated neutron and proton gaps is very un-
even. We can thus question the validity of using an charge-symmetric pairing func-
tional in our approach. Improving the latter aspect is the matter of the following
section.

6.2 Charge symmetry and Coulomb interaction

Charge-symmetry breaking (CSB) in the nucleon-nucleon interaction has two dis-
tinct origins: the most obvious one is the electromagnetic interaction, which pro-
duces the principal contribution to CSB as the Coulomb interaction between protons.
However, the term CSB is usually used to refer to the hadronic part of the NN in-
teraction, which breaks this symmetry in a more subtle way, being just slightly less
attractive between protons than between neutrons.

We have performed four sets of calculations of the same nuclei as in the previous
section. Keeping the functional SLy4 in the particle-hole channel, we used different
potentials in the particle-particle channel: (i) a charge-symmetric separable Vioy  ,
generated starting from the neutron-neutron part of the Argonne v;g potential, with
A = 25fm™!, (ii) a CSB separable potential with neutron-neutron and hadronic
proton-proton terms generated separately from the corresponding matrix elements
of Vigw k built with the same parameters, (iii) A separable Vju,  potential which is
charge-symmetric except for the addition of a separable truncated Coulomb term
(with 16 terms and a truncation range a = 16 fm; see section BE33)), (iv) A sepa-
rable Vi, 1 potential incorporating both nuclear CSB and Coulomb. Discretization
parameters were otherwise kept from the previous calculation.

Our method for dealing with the electromagnetic part of the proton-proton in-
teraction consists in replacing it with a separable expansion of the 1S, part of a
range-truncated Coulomb potential. Several approximations are thus involved.

First, we neglect the finite size of the proton, which modifies the short-range part
of the electromagnetic potential. Although, due to the relatively small extension of
the nucleon Cooper pair wave function, the effect could be expected to be larger
than in the case of the Hartree term in the particle-hole channel, this only affects
the innermost 1 fm and can thus be considered a higher-order correction. The same
comments apply to the neglected higher-order quantum field theory and nucleon
structure effects (such as magnetic moments) beyond simple one-photon exchange.

Second, neglecting higher partial waves is potentially worse for a long-range
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Figure 6.2: LCS gaps with charge-symmetric Vi, , charge-symmetry breaking
(CSB) included in the nuclear part of the interaction and the Coulomb
interaction included (see key). The neutron-neutron pairing vertex is
the same in all cases, the corresponding curve is given for reference.

interaction than a short-range one. Indeed, the coordinate-space pair tensor does
contain such components, due to the finite size of the nucleus and despite the use of
a pure 1Sy pairing interaction, and these components are peaked at larger relative
separations than the S-wave one. We do not expect this concern to be essential
for the following discussion, but it would have to be checked more accurately if one
aimed at high precision results.

Third, we take the electromagnetic part into account by adding an approximate
Coulomb potential directly to the Vi r interaction without taking into account the
modification of the former through the RG evolution. As explained in section (3.3
the Coulomb interaction is most important for its long-range part, which yields large
matrix elements for very low momenta. Its contribution to matrix elements beyond
k = 2fm~!is minimal and can be expected not to alter the RG evolution and the
resulting Viow  potential. Moreover, the matrix elements remaining beyond the RG
cutoff are negligible for all practical purposes.

Fourth, we use the separable approximation described in section The
accuracy of this approximation is the easiest to assess by performing a benchmark
calculation with higher values of the corresponding parameters (truncation range
a and number of terms Ngoy). With respect to the latter, we have checked that
diagonal pairing matrix elements were converged to better than 100 eV.

Pairing gaps resulting from calculations with functionals (i)-(iv) are displayed
on Fig. 62l The global effect of CSB and the Coulomb interaction of proton gaps
can be assessed quickly, since, as we could have expected, they are clearly of very
different magnitudes. Whereas hadronic CSB only produces a slight shift of gap
curves, Coulomb decreases Ajcg values by 20 to 30% of their original value. In
this case, the magnitude of proton gaps is either well reproduced (N = 28 chain,
N = 50 chain above Zirconium, proton-rich end of N = 82) or slightly overestimated
(N = 50 below Zirconium, N = 82 next to the 50Sn shell closure and N = 126).
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The global agreement is comparable to the one oberved for neutron gaps. In N=>50
isotones, the relative magnitude of gaps below and above Z = 40 is not captured.
This hints that level spacings predicted by SLy4 in this region are inappropriate,
the position of the 1gg/5 state being too high.

We are aware of only one other systematic HFB calculation including the Coulomb
interaction in the proton pairing channel. It was performed by the Madrid group
[AngO1a] with the Gogny D1 and D18 effective interactions, in a triaxial harmonic-
oscillator basis. Although no explicit study has been made of pairing gaps in this
work, it was found that pairing energies were reduced by 30 to as much as 60% (for
semi-magic *°Zr) when including the Coulomb pairing term self-consistently in the
variational procedure. Lowest two-quasiproton energies, which are the most relevant
quantities of this work to be directly compared to pairing gaps, were reduced, in the
same conditions, by 20 to 30% (see Fig. 1 and Tables 1 and 2 in Ref. [Ang0Ta]). The
magnitude of the reduction of proton pairing observed in our results thus confirms
observations of this previous work.

The apparent value of proton gaps would thus be explained by our study as
the result of the cancellation of the effects of the hadronic component of the NN
interaction, which is more attractive at the Fermi level, in heavier nuclei, in the
case of protons than it is for neutrons, and the electromagnetic part, which, being
strictly repulsive, yields lower pairing gaps when taken into account.

This reduction of pairing gaps due to the Coulomb interaction is large enough
for its CSB effect to be systematically taken into consideration in HFB calculations.
In particular, it fully validates using distinct values of neutron and proton pairing
parameters (i.e. isospin dependence) in empirical models based on local pairing
functionals [Gor06].

6.3 Effect of Vj,w 1 renormalization scale

The results we have presented to this point indicate that the magnitude of proton and
neutron pairing gaps in the set of spherical nuclei in consideration can be explained
by the interaction of nucleons at lowest order in the bare NN potential. This is at
variance with results obtained previously through HFB calculations in '?°Sn using
the SLy4 functional together with the Argonne vy4 potential in the neutron particle-
particle channel. In a first work, Barranco et al. |[Bar(4] obtained a pairing gap
of ca. 700 keV. It was concluded that the bare NN interaction could not explain
the magnitude of the experimental pairing gap, which is close to 1.3 MeV in this
nucleus.

However, it should first be noted that this HFB calculation was performed using a
set of single-particle orbitals and energies produced by a modified SLy4 parametriza-
tion of the Skyrme EDF (see reference/note 17 in Ref. [Bar04]). The reduction of
the spin-orbit strength parameter by 15% reduces spin-orbit splittings by, roughly,
the same ratio. More specifically, it significantly reduces the s.o. splitting of the
v1h shell in '2°Sn, which results in the (experimentally spurious) gap between the
v3s1/2 and v2ds/; levels on the one hand, and the v1hiy/5 level on the other hand,
to be increased by 1 MeV. This creates, in fact, an important sub-shell closure in
the neutron spectrum of the nucleus, which results in a partial suppression of pair-
ing. Restoring the original SLy4 EDF yields a Apcg gap slightly larger than 1 MeV
[Pas08al, [PasO8b]. In our calculation, with the Argonne vy4 potential replaced with


http://www.sciencedirect.com/science/article/B6TVB-42815YP-B/1/907d633219fe4bee730fff5047152e5 3
http://www.sciencedirect.com/science/article/B6TVB-42815YP-B/1/907d633219fe4bee730fff5047152e5 3
http://www.sciencedirect.com/science/article/B6TVB-4K426B0-1/1/aecef33b64db81ffe24b7d96ba2fe1bf
http://dx.doi.org/10.1140/epja/i2003-10185-0
http://dx.doi.org/10.1140/epja/i2003-10185-0
http://arxiv.org/abs/0801.1385

6.3. EFFECT OF Viow x RENORMALIZATION SCALE 149

a Viow 1 one evolved to a low renormalization scale A = 1.8 or 2.5 fm~! we con-
sistently find Ajcs ~ 1.45 MeV. There remains, thus, to explain the difference of
roughly 30 % seen between our calculation performed with Vi, » and those using a
hard-core potential.

In order to investigate this issue on a more systematic footing, we have re-
peated the previous calculations with V|,  interactions evolved to higher A val-
ues. Hadronic charge-symmetry breaking was neglected, being largely irrelevant for
the present discussion, while the Coulomb interaction was included in all cases in
the proton pairing channel. These interactions, since they couple low-energy de-
grees of freedom to higher-energy ones, require a larger basis to achieve convergence
of the HFB equations in terms of the truncation of the latter. Barranco et al.
[Bar04] used a HF basis cut off at a s.p. energy of 800 MeV, which corresponds,
approximately, to ket = 6 fm~! in the representation we use. We performed calcu-
lations with Vi, 1 potentials generated from CD-Bonn [MacOI] with RG scales up
to 8.0 fm~!, using bases truncated at k., values equal to 4 fm~! for A < 3 fm~! or
A+1.0fm ! for A >3fm!.

For another calculation, performed with our separable approximation to the
Argonne vig potential, ke, was set to 12 fm~!, which yields s.p. state energies
reaching 3.9 GeV. Indeed, in benchmark calculations of 2°Sn, we observed a rather
slow convergence of gaps with k.., with a value of A cg varying by 76 keV between
kewt = 6 and 8 fm~! . We finally obtained a LCS neutron gap of 925 keV in 12°Sn,
which is about 100 keV smaller than results from Refs. [Pas08al [Pas08b].

To save computing time, we reduced the basis size for high-A forces by using
smaller boxes, checking that no sizeable effect on the calculated gaps occurred near
the valley of stability. The box radius Ry was thus reduced from 24 fm (CD-Bonn,
A=18fm™") to 18 fm (CD-Bonn, A = 8.0 fm™' ) and down to 15 fm for Argonne
vig. Total CPU time for the calculation of the set of 176 nuclei presented in the
figures of this chapter amounts to around 10 hours for the softest forces, up to 100
hours for Argonne vz on a desktop computer.

Values of Ajcg obtained with the set of pairing functionals described above are
plotted on Fig. While the curves for A = 1.8, 2.5 and 3.0 fm~! sit essentially
on top of each other, gaps calculated for A = 4.0 fm~! are slightly lower, while the
Viow k /CD-Bonn at A = 8.0 fm~! and v,5 interactions yield gaps reduced, respec-
tively, by ca. 10-20% and 30% with respect to the latter, indeed below experimental
A(()?;)d data. The latter values apply to mid-shell nuclei with strong pairing, while
gaps are depleted even more at sub-shell closures.

Fig. B dldisplays local and non-local values of the neutron spin-singlet pair density
in 12°Sn. The long-range behavior of this quantity has been analyzed in [Pil(7],
we shall thus focus on the short-range part. First, the local, or zero-range part
(top-left panel) is strongly depleted when increasing A, i.e. going from softer to
harder-core interactions. In the Argonne vy case, the local pair density is almost
completely suppressed. This suppression is, relatively to calculations employing low-
A interactions, much stronger than the one observed for pairing matrix elements.
In fact, an accurate understanding of the situation requires to look at non-local
components, also plotted on Fig. The quantity p(R,s) is, up to a normalization
factor, the spin-singlet part of the Cooper pair wave function. Its s = 0 components,
i.e. the local part usually included in local pairing functionals, are thus linked with
the probability amplitude of observing the paired nucleons in contact. It is therefore
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Figure 6.3: LCS gaps obtained with V|, i interactions obtained from the CD-Bonn
potential at various RG scales A and our separable representation of the
Argonne vz potential.
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Figure 6.5: Neutron-neutron pairing gaps obtained at the Fermi level with the sep-
arable Vi, 1 /CD-Bonn interactions at indicated RG cutoffs, as well as
the Argonne V18 potential, and a s.p. spectrum produced by the SLy4
Skyrme EDF in SNM.

no surprise that a hard-core interaction suppresses this amplitude.

The structure of the non-local part obtained with the various V|,  interactions
used differs mostly in the short-range region (s < 1 fm), where the gradual increase
of A results in a depletion of p(R, s), including in the A < 3 fm~! domain where gaps
are A-independent. The long-range part is essentially unaffected for A < 4 fm~!
whereas in the case of the hardest potentials, there also appears a reduction of p(R, s)
in this region. Recalling the similar behavior of pairing gaps, one can conclude that
their evolution with the “hardness” of the pairing interaction is correlated to the
effect seen on the long-range part of the non-local pair density. It appears that at
a certain point in the RG evolution, short-range physics integrated out by the RG
equations interferes with long-range, low-energy physics, to which the observables
we are interested in belong.

Given that the RG equations conserve two-body observables, this effect must be
specific to the calculation we carried out and the underlying assumptions. We have
seen that at the BCS level, no significant A-dependence occurred when using a free-
particle spectrum. However, the case is different when self-energy effects are taken
into account. Results displayed on Fig. were obtained by performing a BCS
calculation with the pairing interactions used on this section and a single-particle
spectrum obtained from the SLy4 EDF in symmetric nuclear matter. We recall that
this spectrum is determined by a constant effective mass given by

2k3,
3n2’

= (6.1)

m* 2m
m

-1
1+—Cgl)o} ) po =

and independent from the particle’s momentum. Thus, m*/m decreases from 1
in the vacuum down to 0.7 at saturation density. With increasing kg, values of
A(kp, kr) are lowered more and more, for the A = 8.0 fm~! V{,, » and Argonne vy,
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when compared to low-A Vi, » potentials. The amplitude of this reduction, taken
at kp ~ 1.1 fm~! i.e. slightly below saturation density, corresponds for each of these
interactions to the amplitude observed in nuclei. The CD-Bonn interaction evolved
to A = 15 fm~? yields results very similar to the one with A = 8 fm™! , confirming
that (reverse) RG evolution saturates at these cutoffs, which indicates that these
interactions can be expected to yield results comparable to the bare CD-Bonn.

The only parameter which changes between Fig. and Fig. is the effective
mass driving the s.p. spectrum. The observed reduction of pairing gaps must
thus originate from the combination of this modification and the RG evolution of
the potential eliminating high-momentum components. Indeed, whereas the RG
evolution produces interactions yielding the same low-momentum gaps as a solution
of the BCS gap equation solved with a kinetic spectrum, it is not the case with a low
effective mass which reduces the density of states in the high-momentum sector of the
s.p. spectrum, thus reducing their contribution to the pair density. Stated another
way, the quasiparticle energy Fj entering the Ay/Fy factor increases, reducing the
contribution of each state to the gap-equation integrand. With such a spectrum,
the repulsive matrix elements coupling low- and high-momentum states, which are
multiplied by negative gaps in the BCS gap equation, and thus give a positive
contribution to the Fermi-level gap, see their contribution reduced.

Effective masses extracted from self-energies calculated at the (Dirac-)Brueckner-
Hartree-Fock level with hard-core interactions such as CD-Bonn or Argonne v de-
pend on the particle momentum. As seen, for example, from Fig. 3 in Ref. [Dal05b],
they are actually larger at high £ than at the Fermi level. It is thus possible that
the pairing gaps calculated with hard-core interactions and SLy4 in nuclei underes-
timate values stemming from a more microscopic calculation (yet to be performed
as of today) due to the trivial effective mass characterizing the Skyrme EDF. These
results, as well as those of the Milan group concerning pairing gaps calculated with
the bare Argonne vy4, should thus be taken with caution if one expects consistency
with ab-initio theory.

It is not sure, yet, to what extent the low-A potentials are devoid of spurious
effects from the neglected momentum and energy-dependence of self-energies, how-
ever they are potentially less affected by the effective-mass approximation due to
working in a smaller model space where the spectrum density is reasonably under
control. As stated at the beginning of this chapter, the quasi-local Skyrme func-
tional allows to describe low-energy degrees of freedom and should not be expected
to be predictive outside of this domain. We thus have more confidence in the results
obtained with the Vi, » potentials, where a certain consistency between resolution
scales of the p-h and p-p functionals can be expected, than those stemming from
hard-core ones. Beyond this qualitative argument, and short of a complete ab-initio
calculation of self-energies in the finite nuclear medium, a thorough investigation
would involve quantitatively validating in infinite matter the string of approxima-
tions leading to our calculation. This procedure is currently underway [Heb08§], but
beyond the present work.

6.4 Summary and outlook

The fact that the bare NN interaction, used in the pairing channel of a SR-EDF
calculation, yields pairing gaps so close to values extracted from experimental masses
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comes as a surprise, since it was expected from earlier works that effects beyond this
first-order approximation to the pairing interaction kernel would yield significant
contributions. At the present point it can not be completely excluded that this
results from a cancellation of neglected effects, whose individual magnitude is hard
to assess. Nevertheless, already at first order, a firm result that we have obtained
is the significance of the reduction of proton gaps due to the Coulomb interaction,
which is overall consistent with previous works [Ang0Tal.

Beyond that, several ingredients, in principle, are missing in this calculation.

First, our calculations are based on quasiparticle and effective-mass approxima-
tions. The implied re-summation of self-energy effects in the non-locality of the
functional is not quantitatively under control. As already mentioned, this will be
checked in detail.

Second, collective vibrations, in finite nuclei, are expected to enter as an attrac-
tive induced-interaction contribution due to the presence of surface modes [Gio02],
which is the opposite of their effect in infinite matter where spin fluctuations dom-
inate and bring a repulsive contribution [Gor05a]. To provide a clear picture of
effects beyond the first order, a calculation should be made involving the descrip-
tion of collective modes using the same interaction as the one included at first order.
Indeed, just as in the first-order case, a dependence on the renormalization scale
may be encountered in this case. Such a calculation would be much more involved
than the ones presented here, or even those of Refs. [Bar04l [Pas08al which employ
quite a schematic model for the description of phonons.

Also, the three-nucleon force yields repulsive pairing matrix elements when in-
cluded in the gap equation in nuclear matter. Its effect becomes sizeable principally
for proton pairing in highly isospin-asymmetric matter [Bal07c|, which may translate
into a correction to proton gaps in nuclei near the neutron drip-line. Including it in
our scheme is potentially achievable, by devising a separable representation of an in-
medium vertex. The latter should sum a two-body interaction and a three-body one
averaged over the third particle, calculated in infinite matter. The density-dependent
separable representation would then be used with a local density approximation for
the effective three-body part.

Finally, we have only considered the 1S, channel of the interaction. While this
relative-motion state is clearly the main component of the Cooper pair wave function,
the decoupling between partial waves which occurs in infinite matter may not be
as complete in finite systems, resulting in the admixture of higher partial-wave
components to the pair density. Such components, through the corresponding matrix
elements of the interaction, which have been neglected here, will yield a contribution
to the pairing energy and gaps. Including these components in our framework is part
of our plans for the future.

As already stated, systematic calculations are desirable in studies of pairing due
to the sensitivity of the latter to non-controlled details of single-particle spectra.
The present work has been limited, due to technical constraints linked with the
use of a non-local interaction, to spherical nuclei. However, it would be interesting
to investigate the interplay between pairing and deformation in such a microscopic
scheme and across the nuclear chart, in order to see, for example, if the distribution
of gaps mentioned in section can be reproduced. This would require a model
of the NN interaction tractable in deformed calculations, either as a local pairing
functional or the parametrization of a Brink-Boeker-type potential which could be
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used as an input to a Gogny-HFB code. Work along the lines of the latter case is
in progress, the main difficulty being the non-locality of the interaction [RotO8b].

Whereas we have focused on pairing gaps in this study, being mainly concerned
by the origin of nuclear pairing and by providing a benchmark for the construction
of future pairing functionals, other observables of interest will be studied in the near
future, starting with a comparison of binding energies obtained with various pairing
schemes. Quasiparticle spectra will be checked for state-dependent effects linked
with the range of the interaction, among others.

Above all, we intend to undertake a systematic comparison of local and quasi-
local pairing functionals. The range in mass and isospin of the nuclei for which
we were able to perform ab-initio calculations and produce theoretical pseudo-data
will be a key asset in devising a non-empirical, but local pairing functionals. The
fact that our results are compatible with experiment allows to expect direct fits of
such functionals, or a derivation through density-matrix expansion, to yield pair-
ing models with more sound predictive power than current empirical ones. Again,
this does not prevent us from checking the exact origin of this agreement by more
sophisticated calculations.



Chapter 7

Conclusion

Nuclear energy density functional models based on Skyrme effective interactions and
quasi-local functionals are undergoing a deep revision. We have participated in this
process, aiming at a better connection with current knowledge of experimental data,
microscopic interactions and ab-initio calculations. Our envisioned long-term goal
is an improvement of the predictive power of this model and the construction of a
functional accurately describing all known and relevant nuclear observables while
having a solid formal, experimental and theoretical motivation, making it reliable
in extrapolations to exotic nuclear systems. In this work we have studied several
paths to an improved predictive power and given some new (or revised) constraints
to be used in the construction of future density-functional parametrizations.

Although particular attention has been paid in the last decade to the properties
of nuclear energy density functional models with respect to isospin, the spin-isospin
structure of local nuclear functionals is not yet fully under control when deriving the
latter from a Skyrme effective interaction. We have shown, moreover, that various
aspects of this problem, namely the spin-isospin content of the nuclear matter equa-
tion of state and the behavior of nucleon effective masses with isospin, could not be
put in agreement with predictions of ab-initio many-body theory at the same time.
This points to deficiencies of a fifty-year-old model which, despite having known con-
siderable success in several aspects of nuclear structure, remains rather schematic.
We also have pointed out the necessity to fully understand and control the stability
of the functional, i.e. its very ability to yield predictions at all ! We take this as
an example of the amount of attention which must be paid to details of effective
models. However, we also showed the potential of using methods generally employed
a posteriori, with the intent to obtain physical predictions, in the construction and
analysis of a functional. Such is the case of RPA response functions, which give an
efficient, if not straightforward way, to ensure the consistency of ground states and
excitation spectra of nuclei.

The inaccuracies observed in the individual and collective spectroscopy predicted
by SR- or MR-EDF calculations using Skyrme functionals have been largely at-
tributed to the lack of a tensor interaction in the underlying interaction, or equiv-
alently to the lack of attention paid to the quadratic spin-current couplings of the
functional. By performing a systematic exploration of the corresponding parameter
space, including a systematic refit of the functional to basic physical constraints, we
have emphasized the role of the “tensor terms” and devised constraints for them.
We found again that the Skyrme energy functional was limited in terms of the con-
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trol it allowed on the observables under consideration, such as spin-orbit splittings
and binding energies of magic calcium and nickel isotopes, or single-particle spectra
and their evolution along isotopic chains. It was found that the various constraints
on Skyrme EDF parametrizations could not be simultaneously satisfied with the
available parameters.

Therefore, our approach consisted in disentangling as much as possible the effect
of the tensor terms from other parameters and finding the most model-independent
possible constraint. Admittedly, the result was non-optimal with respect to even sim-
ple criteria. We concluded that new terms and parameters had to be found to con-
trol the position of spin-orbit doublet centroids, the state- and isospin-dependence
of spin-orbit splittings, to name a few.

The fact that the Skyrme functional has to be extended and generalized to be-
come really predictive starts to be routinely mentioned in research papers. The
question then becomes, what term to add ? In an scheme based on an effective
interaction, adding density-dependence to non-local terms, including the term pro-
portional to t; acting in the P-wave, would allow to decouple spin-isospin properties
from the equation of state and effective mass parameters, while conserving anti-
symmetry of the nuclear part of the functional. An extended spin-orbit part of the
functional also seems necessary to gain control over spin-orbit splittings.

It is likely, however, that systematic investigations will develop. Investigating the
relevance of the parameters of an extended functional with respect to the reproduc-
tion of available data, aided by rigorous analysis techniques such as singular value
decomposition [Kor(8] seems promising. So does density matrix expansion applied
to an effective vertex deduced from low-momentum interactions [Neg72l [Bog08¢].

The pairing part added to quasi-local particle-hole nuclear functionals has been
largely phenomenological until now. We showed that low-momentum nucleon-nucleon
interactions, as well as any force amenable to a separable approximation, could be
used in an efficient way in the pairing channel of Skyrme-EDF calculations. We
thus performed, for the first time, systematic calculations of pairing gaps using the
bare nucleon-nucleon force as a pairing interaction, also exhibiting the importance
of the Coulomb interaction. The results came surprisingly close to experiment for a
first step. A more thorough study of self-energy effects, partial waves different from
1S, and the three-body force will either show that these contributions cancel out or
demonstrate that yet another ingredient is missing. One will then have to include
many-body effects in the pairing interaction itself, in a scheme to be defined.

There remains to study other observables, such as masses and density distribu-
tions, and to use the large amount of theoretical data generated to build a micro-
scopic local or quasi-local pairing functional. The latter shall be essential for reliably
calculating properties of deformed and odd nuclei far from the valley of stability.
Note however that as long as one keeps spherical symmetry, our method is about
as efficient as a local pairing functional, which might allow to envision MR-EDF
calculations for the study of pair vibrations or pair transfer reactions.

Looking back at this manuscript, the work presented therein may seem un-
finished. Indeed, we have started exploring different directions leading to an in-
creased predictive power for nuclear energy density functionals. We have utilized
phenomenology, and systematic comparison with data, but also microscopic inputs.
These aspects are both essential. A predictive functional first has to reproduce
known observables before allowing for extrapolation into uncharted territory. On
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the other hand, reliable extrapolations can hardly be achieved without a firm con-
nection of the model with underlying physics. Only by combining these aspects can
we expect to build a truly universal nuclear energy density functional.
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Appendix A

Coupling constants of the Skyrme
energy functional

The coupling constants of the central Skyrme energy density functional in terms of
the parameters of the central Skyrme force are given by

A = Bto+ Ztspg(r) + te pg (v)

A7 = —ito(5 + o) = 3its (5 + ws) 3 (x) = 55t6 (5 + w6) p§ ()
Ay = —ito(% - xo) - ﬁt?)(% - $3) po(r) — ﬁt@‘(% — 906) pg/(r)
A7 = —kta— &t () — gkta i ()
4 = b+ (o)
A= “ln(en) +inl b
AF = ) + b+ o)
Al = —f5ti + 15t
R TR TACETS
7 = Bn(tem)+ k() +n)
A = (- o)+ (o)
AP = S+ 4. (A1)

The coupling constants of the spin-orbit energy density functional in terms of the
parameters of the spin-orbit force are given by

Ay = —3Wh, AV = -1w,. (A.2)

4

The coupling constants of the tensor energy density functional in terms of the pa-
rameters of Skyrme’s tensor force are given by (Table I in [Per(4])

Bl =—L(t.+3t,)  B'= L(t.—1,) (A-3)
BY = 3(t.+3t,)  Bf =-3(t.—t,) (A4)
B = X(t.—t,)  BM=-L(3t. +1,) (A.5)
BOVS = ?%(te - tO) BlVS = _Z:’._?’2(3756 + tO) ) (AG)

Skyrme interaction parameters used in Chapters Bland H are given in Table [A1]
Tensor-interaction parameters are given in terms of U and V parameters. For use
in the above formulae, we recall that T' = 3¢, and U = 3t,,.

161


http://link.aps.org/abstract/PRC/v69/e014316

162
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Table A.1: Values of the Skyrme-interaction parameters for fits performed and used
in this manuscript. Omitted values are zero.

Name to tl tg t3 t(;
ZTo T i) T3 Tg
W T U gl ol
f -1847.562 477.387 -495.987 14003.89 -4302.16
0.821426 -0.393945 -0.971838 1.792787 2.622989
133.187 1/3 2/3
fo -1849.082 477277 -412.825 14035.19 -4331.24
0.824349 -0.137469 -0.915580 1.780474 3.295755
129.190 1/3 2/3
f, -1849.486 478.078 -324.437 14050.84 -4351.54
0.826648 0.085961 -0.821841 1.770010 3.932000
127.855 1/3 2/3
T11 -2484.690 480.674 -022.233 13785.81
0.734532 -0.357956 -0.981127 1.195657
103.738 86.322 -114.259 1/6
T12 -2482.571 480.605 -523.692 13762.34
0.741577 -0.357895 -0.984520 1.208913
112.506 38.788 -66.072 1/6
T13 -2481.315 480.343 -531.133 13749.16
0.741208 -0.346965 -0.989822 1.209875
120.411 -6.946 -17.241 1/6
T14 -2479.458 479.870 -530.397 13732.47
0.744308 -0.348138 -0.990900 1.215762
128.506 -95.122 30.824 1/6
T15 -2482.479 478.923 -317.302 13764.91
0.733926 -0.677015 -0.813783 1.196671
136.554 -166.980 57.775 1/6
T16 -2485.640 481.672 -316.779 13791.07
0.736004 -0.680207 -0.805749 1.198185
144.925 -215.394 104.916 1/6
T21 -2486.267 484.633 -445.880 13807.35
0.721464 -0.480492 -0.924422 1.173067
115.277 158.983 -123.119 1/6
T22 -2484.397 484.495 -471.454 13786.97
0.730120 -0.442635 -0.944655 1.188194
123.225 118.685 -72.504 1/6
T23 -2483.501 484.291 -440.089 13776.29
0.732464 -0.492071 -0.924856 1.193100
131.435 61.309 -27.567 1/6
T24 -2482.931 484.346 -433.185 13768.56
0.729639 -0.503889 -0.921044 1.190192
139.272 11.246 19.739 1/6
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Name to tl tg t3
Lo L1 T2 T3
Wo T U y
T25 -2480.434 485.519 -478.822 13735.27
0.754456 -0.439566 -0.956135 1.231884
147.887 -23.126 72.006 1/6
T26 -2476.673 484.490 -482.591 13699.04
0.767612 -0.434554 -0.962725 1.254753
156.146 -69.885 120.698 1/6
T31 -2486.963 490.158 -418.307 13808.78
0.724547 -0.532406 -0.894940 1.178613
126.989 246.186 -127.507 1/6
T32 -2486.155 489.073 -438.565 13804.97
0.712439 -0.499144 -0.912063 1.160360
133.590 204.352 -77.176 1/6
T33 -2486.688 489.683 -405.609 13804.20
0.728149 -0.551901 -0.885872 1.184753
142.019 146.435 -32.623 1/6
T34 -2485.496 488.412 -351.129 13799.05
0.716858 -0.632712 -0.829737 1.167295
149.734 82.186 10.278 1/6
T35 -2483.136 490.586 -377.114 13762.06
0.740390 -0.601400 -0.863924 1.208476
158.994 41.846 60.306 1/6
T36 -2478.946 488.365 -427.188 13729.53
0.752195 -0.522097 -0.912891 1.227180
166.212 9.055 113.945 1/6
T41 -2492.261 494.721 -262.766 13874.45
0.689383 -0.767147 -0.653878 1.117874
138.146 294.978 -144.519 1/6
T42 -2492.153 494.635 -251.272 13869.06
0.690625 -0.785802 -0.630399 1.121129
145.089 243.562 -97.619 1/6
T42 -2492.150 494.635 -251.272 13869.06
0.690625 -0.785802 -0.630399 1.121129
145.089 243.562 -97.619 1/6
T42 -2492.150 494.635 -251.272 13869.06
0.690625 -0.785802 -0.630399 1.121129
145.089 243.562 -97.619 1/6
T43 -2490.275 494.608 -255.534 13847.12
0.698702 -0.781655 -0.646302 1.135795
153.103 196.868 -49.160 1/6
T44 -2485.670 494.477 -337.961 13794.75
0.721557 -0.661848 -0.803184 1.175908
161.367 173.661 7.174 1/6
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Table A.1: Skyrme interaction parameters (continued).
Name to t1 to t3
Lo 21 L2 T3
W T U ¥
T45 -2485.014 492.671 -304.046 13793.28
0.727016 -0.710368 -0.755428 1.182969
168.213 115.642 52.299 1/6
T46 -2484.405 495.225 -356.435 13769.07
0.735176 -0.639443 -0.833399 1.201318
176.279 83.204 104.873 1/6
T51 -2492.672 500.414 -272.332 13871.38
0.691985 -0.760015 -0.663662 1.123486
148.934 393.316 -145.233 1/6
T52 -2494.783 499.204 -141.125 13886.86
0.692186 -0.955937 -0.126512 1.123414
155.371 306.098 -109.968 1/6
T53 -2486.978 499.333 -363.964 13807.83
0.719761 -0.627515 -0.823595 1.171935
163.931 324.972 -39.688 1/6
TH4 -2489.087 497.774 -248.404 13829.43
0.710724 -0.797929 -0.625993 1.156397
170.383 242.449 -2.787 1/6
T55 -2487.084 497.823 -227.658 13815.23
0.711011 -0.829103 -0.567634 1.157022
179.006 188.196 43.100 1/6
T56 -2484.179 497.603 -258.182 13775.24
0.725926 -0.788228 -0.661928 1.185298
185.960 149.446 94.289 1/6
T61 -2494.625 501.033 -125.512 13895.88
0.683145 -0.977518 0.040183 1.107100
156.389 445.173 -160.136 1/6
T62 -2495.048 499.981 -197.374 13901.24
0.690739 -0.868510 -0.431559 1.117413
162.688 418.830 -104.641 1/6
T63 -2492.495 500.627 -121.265 13875.17
0.680914 -0.985108 0.076440 1.105776
171.897 347.945 -64.433 1/6
T64 -2487.323 501.096 -284.539 13818.03
0.705320 -0.746420 -0.694782 1.148322
180.135 348.930 -0.197 1/6
T65 -2489.413 497.528 -194.992 13841.04
0.699857 -0.875605 -0.446926 1.137559
183.698 274.403 39.899 1/6
T66 -2485.363 500.799 -228.479 13794.56
0.715164 -0.832653 -0.566420 1.165944
195.349 236.170 90.314 1/6




Appendix B

Separation of the energy into
spin-isospin channels

When the EDF is defined as the expectation value of an effective Hamiltonian,
separating it into spin-isospin channels is straightforward, as in Eq. (811)). However,
one can extend this definition to the case of any Hartree-like functional: let us start
by recalling that in the case of the Skyrme force, the direct and exchange terms have
the same analytical structure; one thus usually uses the expressions

Epot = %; < kl ’VSkyrme H> Pk Pu; (B.1)

K1) = |kl)—|lk) = (1-B.L,P)[kl), (B.2)

where the last expression uses the position, spin and isospin exchange operators to
define an antisymmetrized and non-normalized two-body state. One then writes
down the antisymmetrized form of the Skyrme interaction and the EDF by using
the definition of densities entering Eqs. (C.29)-(C.32]).

Leaving the antisymmetrized Hamiltonian framework, it is always possible to
define the potential part of the functional as the direct term of the expectation
value of a certain operator, as in

Epot = Z<kl VEDF

kl

kl > Pkk Pl (B.3)

recalling that Vipp = VSkyrme(l —PTPUPT) in the Hamiltonian case. One then defines
the energy per channel as

Ebr = Z < ki ‘VEDF PSPT‘ kl > Prk Pils (B.4)
il

which, with the definitions (C29)-([C.32) for coupling constants, yields (retaining
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only terms acting in infinite matter)

gST

A R O]
HT = [Ch+ (4S — 3)Cy + (4T — 3)Cf + (4S — 3)(4T — 3)Cy]
X 1—16 (25 +1)(2T + 1)p; + (28 — 1)(2T + 1)sg
+ (25 +1)(2T — 1)p,* + (25 — 1)(2T — 1)s,?]
+ [C] + (45 = 3)Cg" + (4T — 3)CT + (45 — 3)(4T — 3)C;"]
X % [(25 + 1)(2T + 1)po7o + (28 — 1)(2T + 1)so - T
+ (25 +1)(2T — )pim + (25 — 1)(2T — 1)s; - T4]. (B.5)



Appendix C

Particle-Hole Potentials and
Residual Interaction from a
Quasi-Local Functional

In this appendix we derive the expression of the particle-hole effective potential and
residual interaction arising from a quasi-local energy density functional. We present
the results in a way which allows them to be directly put to use in the formula for
the response function of Ref. [GR92].

C.1 Principle

Our starting point is a functional of the normal density matrix. Anomalous terms
giving a pairing field and particle-particle residual interaction will not be considered
here. This functional reads

el = FRIU, Q@ = T(Qwp) = Y a@uyes  (C1)
)

where Q)(x) plays the role of one or several “densities” as they are usually called in
the Skyrme EDF, = representing the set of coordinates and discrete indices neces-
sary to fully define each density operator/value. The p;; then are matrix elements
of the density matrix expressed in any complete representation including space, spin
and isospin degrees of freedom, while Q(:c) is a family of local one-body operators
defining the densities, themselves independent from p, and ¢(x);; their matrix ele-
ments. For example, a functional of the local density can be recovered by making
the substitutions (omitting spin and isospin for simplicity)

r — r (C.2)
pij — p(x,x) (C.3)
q(x)y; — O(r—x)d(r—x) (CA4)
Q@) — plr) (C.5)

The effective potential entering the HF /Kohn-Sham equations can be derived as

oF OF 6Q(x) oF
hi = S T j Q@) opy j Q@ 1@ (C6)

. OF
h = jme(x)a (C.7)
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while the particle-hole residual interaction is given by the second functional deriva-
tive. Similarly, we can write

°F P F
v = T = i "7 4(2) .
BT ooy S, 00 o) A IO

ph _*F AW G
' i 50 9Q() “ QW (C8)

where we use the notation Q(l) or Q(z) to indicate that the one-body operator acts
on the first or the second interacting particle, respectively.

C.2 Definitions

In order to derive the effective potentials and residual interaction from a Skyrme-
like EDF, it is useful to rewrite the densities according to Eq. (CIl), working in
coordinate space. We thus recall the expression of the non-local density matrix

p(xoq,x'd'q) = ZS% X'0'q")or(xoq)v}, (C.9)

where ¢y, is a canonical wave function and v} its occupation probability. Although
the redefinition of densities below may look cumbersome, it allows for a systematic
and straightforward derivation of the fields and residual interaction corresponding
to any quasi-local functional.

We use in the following the operators V and V' (derivation with respect to,
respectively, x and x'), o,, and 74, (Pauli matrices acting in spin and isospin
space).

Let us start by defining the time-even and isoscalar densities,

po(r) = /d3xd3x' Z d(r —x) 0(x' = X) Oyq 00rs P(x0oq,x'd'q), (C.10)
oo’qq’
mo(r) = /d:)’xd3 ' Z d(r—x)d(x' = %) 84006 V' -Vp(xoq,x'd'q), (C.11)
oo'qq’
1
Jo(r) = / xd?x’ Z d(r—x) 0(x' —x) dyq 2—Z,(V' —V)® 04, p(xoq,x'd'q),
oo’qq’
(C.12)
Jo(r) = /d3xd3 ! Z d(r—x)6(x' —x) 8y (—iV) X 04, p(x0q,x'0'q),
oo'qq’
(C.13)

J being the rank-one part of the tensor J.
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Time-even isovector densities, similarly, read

p1(r)

T (I’)

Ji(r)

Jl(r)

|
— — —

= /d3xd3x’ Z d(r — x) §(x' — x)

oa’qq’

d*xd3x’ Z d(r — x) 6(x' — x)
oa’qq’

d*xd’x’ Z d(r — x) §(x' — x)
oo’qq’

d*xd3x’ Z d(r — x) 6(x' — x)

oo’ qq’

while time-odd isoscalar,

= /d3xd3x' Z d(r —x) d(x" — x)

oo’qq’

/d3xd3x’ Z d(r — x) 6(x' — x)

oo’ qq’

/d3xd3x' Z d(r —x) d(x' — x)

oo’qq’

and time-odd isovector densities,

s1(r)

T (r)

ji(r)

/d3xd3x' Z d(r —x) d(x' — x)

oo’qq’

= /d3xd3X' Z d(r —x) d(x" — x)

oo’qq’

/d3xd3x' Z d(r —x) d(x' — x)

oo’qq’

can be subject to the same treatment.
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Toq Vo0 P(X0q,X'0'q’), (C.14)
Teq 000 V' - Vp(xoq,x'd'q"), (C.15)

! )

1 .
Tq'q Z(VI - V)® oy, p(xoq,x'd'q),

(C.16)

Toq (—iV) X 04 p(xoq,x'0'q),

(C.17)
8gq oo P(x0q,%x'0'q), (C.18)
5q’q Os'a v Vﬁ(XG’C], Xlalql)a
(C.19)
1
8¢'q Oo'o 2_2'(V/ — V)p(xoq,x'a'q),
(C.20)
Toq Ooro P(X0q,x'0'q), (C.21)
Teqa 0o V' - Vp(x0q,x'0'q),
(C.22)
]' Iy

T¢'q Oo'o

2_Z<V/ - V)ﬁ(XUQ7X oq )7

(C.23)
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It is equally useful to reexpress the following derivatives of densities

Apy(r) = /d3xd3x' Z d(r —x) 8(x' = x) g 00

oo’qq’
(V?+2V' -V + VH)j(xoq,x'0'q), (C.24)
V. Jy(r) = /d3xd3x' Z d(r —x) §(x' = x) g 0o
oo’qq’
V' (=iV X 0., )p(x0q,x'0'q), (C.25)
Vo) = [ Y 6 x) G %) 8 (V' 9) - i, X
oo’qq’
V X jo(r) = /dgxd?’x’ Z §(r —x) (X' —x) Oy 050 (—1)V' x Vp(x0q,x'0'q).
oa’qq’
(C.26)

The corresponding expressions for Apy, Asg, Asy, V -Jy, V-s; and V x j; can be
deduced from the above immediately, by a simple replacement of spin and isospin
operators.

Let us recall the general form of the energy density (omitting Coulomb and tensor
terms)

2
£ = /d31" (;—mﬁ) +HSkyrme) ; (C.27)
Hsigrme =  HE™ 4+ H™ + HGM 4 HM, (C.28)
with
He'™™ = Chps+ C5 polpy + Cporo + Cy T2 + CY 7 po ¥ - Ty, (C.29)
HY™ = Cfpt+ CrPpio Apy+ Clprom + C{I; +CYpi oV - Ty, (C.30)
HOM = (O824 Ch%sy - Asg+ C5Tsy - Ty + CY3(V -50)% + CI32 + Cyso - (V % o),
(C.31)
H = O5s? 4 CP%sy - oAsy + C5T'sy - 0Ty + OY*(V - 81)2 4+ CI§3 + Csy - o(V X j1).
(C.32)

Let us also recall the constraints imposed between coupling constants due to time-
reversal invariance

Ch=-Cf, Ci=-Ci, O =0y (C.33)

We shall hereafter restrict density-depence to strictly local terms. A single
density-dependent term will be considered, the generalization to two such terms
being straightforward.

Cp = RO CE. Gr o= GO (C.34)

C.3 Potential and Residual Interaction

The coordinate-spin-isospin-space matrix element of the particle-hole residual inter-
action is defined by:

<X:zq;0(/1qubOb|Vph |X0Ga0aXpqb0b) =

VA | 525

5p(Xbqub7 XZUZ,QZ,)(;P(XaUaC]m X:zo-:zq(/z) .

(C.35)
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In the following formulae for the effective potential terms, an identity operator
d(x'—x) 0g4 oo 1s implied, except when spin and/or isospin operators are present,
in which case they should replace the one in the latter expression. If gradient
operators are present, 6(x’ —x) should be placed left of V (which acts on the right)
and right of V' (which acts on the left).

In the corresponding expressions for the residual interaction, we use the sub-
scripts a and b to denote operators acting in the space of the first and second
interacting particle, respectively. This convention has been chosen so as not to
be confused with subscripts corresponding to spatial or isospin-space components.
Similarly, an operator ¢(x;, — X,)d(X}, — X5)0(Xa — Xb) 0g1,4,04;q, 00404907, 1S implied
in each term of the residual interaction, with spin and isospin parts being replaced
by those present in the specific expressions, and the d-functions being inserted so
gradient operators act to the left (V[ ;) or right (V) before them.

Due to the length of the expressions involved, the effective potentials and residual
interaction shall be broken down into terms denoted according to the terms of the
functional they stem from. In any case, the complete expressions for h and VP! can
be recovered by adding all the h- and V-terms, respectively, written down below.

C.3.1 Local, density-dependent terms
W = CyO2p0+CHY (v +2) p3t! (C.36)

Vil = 2C0°+C87 (v +2) (v +1) py

W= (P + O a2 07 + CPypy i (C.37)
V0w = (CF°+ 0P pg) 2 0 fy+ O (2990 pro (Fa+ 1) +7 (v — 1) o 2p})

hy = (C3"+Cy7pd)2s0 - 6 + Cgypd s (C.38)
Vol = (C3% +Cy7p3)264 - 64+ CyY (2900 s+ (6 + 6) +v (v — 1) pi7sp)

izf = (Cf’o +Cypl)281 -G oT + Cls"yfypgflsf (C.39)
Vilw = (CF0+C5p1)26, - 647,07,

+OTY (2900 81 0(6uTa + GuT) + (v = 1) g s1)

C.3.2 Non-local (effective-mass and current) terms

Terms of the form CT(prrr — j2), C5T(sp - Ty — J%)

o 1
Wt = o (pOV' Voo (V' V)) (C.40)

. o 1
= G (Var Vut ¥ Vit (V.- V) (93 V)
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~ -2 1
Ry = Cf <P1V,'V%+T1O%_j1';(V/_V)%) (C.41)

NS 1
VI = C] 70Ty (V; -V,+V, -V, + §(V; —V.) - (V,— Vb)>

A 2 1
T = st (V’ Vs g+ Ty 6= (V= V) - Jy- &) (C.42)
‘A/sTfJQ‘ _ CsT A4 \vZR v/ I 1 I ) o

. 1
peT=T = CfT(V/-Vsl-&o%+T1-&o%—;(V’—V)-Jl-&Of) (C.43)

1 ‘ab -

N 1
Vil = CT 6y 6y 700y (V;-Va+vg~vb+§(vg—va)~(V;,—Vb))

Terms of the form CTAppTApT

he” = C3’ (Apo+ po(V? +2V' -V + V7)) (C.44)
Vi¥lw = Co? (V2+2V, -V, + V) +(VE+2V, -V, + Vi)

WY = O (Aprof+7op(VP+2V -V + V) (C.45)
VA = O 1,0 (V242V, -V, + V) + (V42V} V, + V3))

hys = C2* (Asy-6 +6 -5 (V?+2V' -V +V?) (C.46)
Vil = C3° 646, (VE+2V,-Vo+ Vo) + (V] +2V, -V, + V}))

hds = OP*(Asy 607+ 6-708(V?4+2V -V +V?)) (C.47)
VA = C8 6,64 700 (V2+2V, -V, + V2 + (V2 42V, -V, + V7))

C.4 Infinite matter

C.4.1 Parameterization of the residual interaction

In a translation-invariant system, one can replace gradient operators by the momenta

of s.p. states
Po=—iV,, p, =iV, (C.48)
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and introduce relative momenta of the interacting particles, in the incoming (right)
and outgoing (left) states,

1 1

k = ga—p) K = S0P, —py), (C.49)
while the incoming and outgoing total momenta, in turn, read
K = p.+p, K = p,+p, (C.50)
One can also define the direct and exchange transferred momenta
q = K-k d =¥K+k (C.51)

In an infinite, translation-invariant system, the residual interaction conserves to-
tal momentum. In the case of our functional it is also independent from it (i.e. there
is no non-locality with respect to the center-of-mass coordinate). It is thus enough
to use three quantities to express the momentum-dependence of the interaction. One
can use the notation

/

P, =a1+d, P, = q2, (C.52)
Po = di, Py =d2+4q, (C.53)

where the exchange transferred momentum is ' = q; — qq.

The various terms of the interaction can be regrouped according to their spatial
part on the one hand, and their spin-isospin structure on the other hand. One can
then define four channels corresponding to the operators

% =1, O = 7,0%, OF = 6,-65, OF = 6,-6,7,0%. (C54)
For the spatial part, we group the local, effective mass/current, and pseudo-finite-
range terms

Ve = VIV V4V, (C.55)
VT _ ‘A/'Op’r—j2 + ‘A/'lpT—jQ + ‘A/'OST—J2 + ‘A/'lsT—JQ’ (056)
VAp _ %Ap + vlep + ‘/\/OAS + ‘A/lAs' (057)

Let us first re-label the coupling constants in order to use a compact and general
notation: P — 0070 PO — CS’O PO — CP,O Cr0 — 0870
ss — ~0 vs — Y0 » sv. — Y1 > vw T M1

A A e W i

ngp : C()A’P C\Ep : COAS’ ngp : ClA’P C\gfp : ClAs’

ss Y0 > vs — Y0 » sv. — M1 o vw T M1 ¢

Each of the above contributions can be decomposed according to

(C.58)

~

Vo= 2080+ O (v+2) (v )y + Y 20,8 (O + CRiey)  (C59)
(a)#ss
for the central part and rearrangement terms,

T T Ala [ 1
VTo= Y008 PZ'Pa+PZ'Pb—§(p;+pa)~(p§,+pb)}
(@)

c 1
= Y 0% (i +a) ai+ar (a2 +q) — 5(2a1+a) - (2q2 + Q)}
(o) -

N 1
= > 0oy (@ - @) - 5d’ (C.60)
@ :
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for the non-local part, where the dependence on the exchange transferred momentum
d = qi — g2 arising from the differential non-locality of the functional is pointed
out, with an additional contribution to the g-dependence, and

Ve = Z CRrOW (V2 42V, V,+ V) + (VP +2V, -V, + V})),
= Z C0% (=P + 2P - Pa — P2) + (=P} + 2P, Py — P}))

- ZC@;’O@ (= (@ +a)?+2(q+q)-q — ¢
(@)
— g3+ 2q2- (@2 + q) — (g2 +9)°),

=y - CApOab q, (C.61)
(@)

for the pseudo-finite-range part, where the q-dependence, i.e. the range of VP g
linked to the gradient terms.
We finally write VP! following Ref. [GR92)

Z N (Wla )+W2(a)<Q)<QI_Q2)2)7 (C.62)

with the W functions defined as

7W14(Q) = 20"+ C (v +2) (v + ) g [ 207 + CT} . (C.63)
WiV (g) p,0 2 Lo |
: = 200+ 200308 = | 2005 + 5C0 | & (C.64)
W, (q) ,
A, (C.65)

which generalizes the expression for the residual interaction obtained in Ref. [GR92].
The same expressions are found when replacing the coupling constants by the cor-
responding combinations of parameters of the Skyrme interaction.


http://dx.doi.org/10.1016/S0003-4916(05)80003-X
http://dx.doi.org/10.1016/S0003-4916(05)80003-X

Appendix D

Formal aspects of separable
interactions

D.1 Potentials

Let us consider an arbitrary nucleon-nucleon potential expressed through a set of
coordinate-/momentum-space operators Vsr. The exact expression of the whole
potential involves projectors on spin and isospin space. For example, in each isospin
channel Vi, we can write

~

Vi = pS:O%TTg + pS:l‘A/lTTg (D.1)

where Pg_o = H1—61-062), Ps_i = 1(3+ 61 - 62) are the usual spin projectors,
while the index T refers to the total isospin and 73 the third isospin component
of the pair (T3 = —1,0,+1 resp. for pp, np, nn). For potentials breaking charge
invariance and charge symmetry, one then has to consider the nn, pp and np isospin
channels separately.

In the following we use the usual convention for unnormalized plane waves which
are subject to the following continuum orthonormality relations:

[drerr ewr e Pk-K), (D-2)
3
™

In such a momentum representation, it is useful to extract the center-of-mass motion
from the matrix elements such that

(ki ko|Var|k(Ky) = (k|Ver|K)(27)? 03(K — K') (D.4)

where k = %(kl —ks) is the relative momentum of outgoing particles and K = k;+ko
is the center-of-mass momentum of the outgoing pair, with similar expressions for
the incoming momenta k’ and K'.
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D.1.1 Partial-wave expansion

One can perform a partial-wave expansion of the matrix elements by first expanding
the plane waves,

T = 4rm Zz Y (R) YER) jo(kr), (D.5)

k) = 4WZ i Y5 (k) |klm), (D.6)

where k the norm and k the unit vector (which we use to refer to the angular
coordinates) of k, and |k¢m) is a spherical wave,

(rlktm) = jo(kr) Yo (7), (D.7)
which is in turn unnormalized so that
(ktm|k'l'm/) = / &P YR jo(kr)YE (7 jo (K'r), (D.8)

= 5@(/5mm1/7“2d7“ jg(k”l“)jg(k”l“) = 5@(/57”7” 2kkj’5<k k’) (Dg)

The general expansion of the relative-momentum matrix element thus reads:
(k[Vor[K) = (dm)> > iV (k)Y (K) (ktm|Ver|K'¢'m').  (D.10)
'mm/!
In the absence of a tensor force (or simply if S = 0), Vsr does not couple partial

waves with ¢ £ ¢/, and is independent from the projection of angular momentum,
i.e.

(ktm|Vsp|K'0'm!y = (kO|Var|k'0) St S (D.11)
thus
(k|Vsr|K) = (4n) ZW k)Y 2 (R (k) Vr|K'0) (D.12)
= 47TZ 20 + 1) Py(cos 0) (kt|Vsr|k'0) (D.13)
)4

where 6 is the angle between k and k.
For solving the two-body problem explicitly in momentum space, e.g. computing
the deuteron bound state, one should work with normalized spherical waves, i.e.

|kfm)ny = /2/7|kfm). One then has
A 2 N ,
N{kVsr KOy = ;(k€|VST|k 0) (D.14)

The way we will write our separable interaction for subsequent use in HFB
codes implies dropping all prefactors in Eq. (D.13]), obtaining an expression for the
potential matrix elements directly related to functions Viysr(k, k'):

(k[Vsr[K') = > Vigr(k, k') Py(cos ) (D.15)

One thus has:

Visr(k, k') = 47(20+1) (kl|Var|k'0) (D.16)
7T2<2£ + 1) N</{Z£‘VSTV€/£>N (D17)
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D.1.2 Two-particle scattering and the Lippmann-Schwinger
equation

In discussing the scattering of a pair of particles, it is customary (since useful) to
rephrase the Schrodinger equation in terms of an integral equation for an amplitude
matrix in momentum space which then holds all information about observables such
as cross-sections. We have, in operator form,

T = V4 VG, (D.18)
GO being the free particle pair propagator expressed, in terms of the free Hamiltonian

Hy, = hinQ, as Gy = (E — Hy)™" (One uses the reduced mass p of the NN pair,
2p = m). Plugging closure relations in, one gets

. mo, PPk" (k|Verk") (k"|Tsr(E)|K')

k|Tsr(E)K) = — (k|Vsr|K D.19
({Tsr (EIK) = 5 (Ve + P [ G BB Tt 0.1o)
where E(k”) = h*k"?/m is the energy associated with the intermediate state with
momentum £” and P indicates a principal value integral. Plugging the expansion of
Eq. (DI0) (assuming no coupling between partial waves) into the above expression
yields a set of uncoupled equations for each value of 7,

<k€|TST(E)|k/£> = hQ <M|VST|k’ €>
2 ke Vsr|k"0) (K"€|Top(E)|k'
+—P/k3”2dk”< f|‘/ST| £> < f| ST( )| E) (DQU)
m E — Eun
The scattering phase shift in each partial wave is given by
<k£‘TST(Ek)‘k€> = —tan(égST)/k (D21)

which implies that 7" should be expressed in fm, and justifies the h%/m factor in
Egs. (DI9HD20) since V is in MeV fm3. If V is expressed in fm, the factor before
the Born term should be dropped and E and Ej~ replaced by just k2 and k2.

Assuming that the NN interaction can be expressed as a sum of uncoupled terms
acting each in one partial wave, as in

(k|[Vsr[K') = Visr(k, k) P(cos(k, k') (D.22)

we would like as a first step to represent Vy(k, k') as a sum of separable terms:

Visr(k, k') Zga Aag g5 (k') (D.23)

where the g(k)’s are form factors. In the following sections ¢ST = 001 as we focus
on the 7' =1, 1S, channel.

D.2 Phase shifts
Plugging the separable form of our potential in the LS equation yields
. m
RITsr(BYKO = o 37 galk)Aasgsk)

af

1 o Ga(E) Aapga(K) (K" 0\ Tsr(E)|k'¢
+—2P/k:/2dk:/ (b)es ﬁé_HE(k,‘,)Sﬂ W0 (p.2a)
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It is quite easy to see that the solution has the form

RATsr(E)RD = 3 gulk)ras(B)as(k). (D.25)
ap
We thus have
> 0B Bgs) = o5 3 0uDhasgalk) + 55 3 P [ Kk
af af apyd
o B 4 PIE)

which, assuming the linear independence of our form factors, leads to an equation
for the couplings between form factors in the T-matrix,

o "2 gy gv(kﬂ) gé(k”)
Tog(E) = i hQ Aas 2 22 )\MP/;C/ dk" E—E(k:”)W(E)’ (D.27)

r(E) = 4m2 1 - A\G(E )] A (D.28)

where the matrix G(F) corresponds to
k
Gos(B) = —P/k:2 j; 9ok EC)) (D.29)

The LS equation is thus reduced to some integrals and a (small) matrix inversion.
The phase shifts can then be computed the usual way from the fully-on-shell T-
matrix.

D.3 Gap equation in infinite matter

The pairing problem treated at the BCS appoximation, i.e. including the bare po-
tential in the particle-particle channel, and using a kinetic single-particle spectrum,
is characterized by the standard gap equation

Ak) = — / (‘;Tk)/ (k|V|k’>§gi), (D.30)

where By = /(gx — A\)2 + AZ, ;. being the single-particle energy and A the chemical
potential. We'll take A = e, which modifies the dependence between kp and the
density, albeit too little to be relevant for our qualitative use of the gap equation.
Again, we plug our separable potential in, which selects the 1S, partial wave and
makes all quantities independent from angular coordinates,

1 A(K')

A(k) = —53 K2dk Voo (k, k) T8 (D.31)
A(K

— _Z galk QBQ : /k’Qdk:’ gs(k") QEEM), (D.32)

which shows, examining the k-dependence of the gap, that it can be written as

S0 AL ga(h), (D.33)
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where the A%s become the new unknowns of the problem. They obey a rewritten
gap equation which involves the pair densities Y,

1 y
Ay = ~35 ; Aap X (D.34)
oY e AR

which correspond to the same quantities written in coordinate space for the spher-
ical HFB case. The solution of the BCS gap equation can then be found by start-
ing from some initial values of the A%s, then iterating Eqs. (D.33), (D:33) and
(O.34) until convergence is reached. Note that as is, this procedure will diverge for
non-perturbative interactions [Ram07]. The latter reference thus uses an elaborate
procedure to solve the gap equation, which amounts to separating the potential ma-
trix elements into a separable term and a residual one which vanishes at the Fermi
level. The resulting equations can be solved directly. However, we found that a
simple damping factor modifying the self-consistent equations was enough to obtain
convergence.


http://www.sciencedirect.com/science/article/B6TVB-4PYYTP8-1/1/ecc64f88da0f3d6e113d85ce5f8c06ed

180  APPENDIX D. FORMAL ASPECTS OF SEPARABLE INTERACTIONS



Appendix E

Parameters of separable interactions

The parameters of the separable interactions used in chapter [l are given below, in
Table [EJl For each interaction, a header specifies the starting (hard) interaction,
isospin channel, cutoff function (see Eq. (B:31)), cutoff value (in fm~1), rank M of the
separable representation and number of terms m in each form factor. See Eqs. (5.44))
and (B57) and accompanying discussion for the meaning of the parameters and
fit procedure. The actual separable parameterizations use diagonal couplings, i.e.

)\a,B — )\aéaﬁ-

Table E.1: Parameters defining the separable operator representations of the
hadronic parts of Vi, r and Argonne wvig nucleon-nucleon interactions

used in this work.

o Qg Ao | Mo ny (ns) N9 ns Ny
[fm] | [MeV fm?] Ta1 (Tas) Lo T3 T
Argonne vig, nn, exponential (n =6), A =25 M =3, m=5

1| 1.7400 -983.79 | 0 1 2 4 9
0.41483 0.23365 0.0077974 | -3.66291076

10

2.833510°7
2| 1.6631 0.15436 | 0 6 7 8 9
-0.71971 0.37599 -0.083656 0.0074367

10

-2.2078 104
3| 1.8234 -354.78 | 1 0 3 8 9
-0.033729 0.17602 | 6.73791076 | -7.1010107

10

3.771310° "
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Table E.1: Parameters defining the separable operator representations of interac-

tions (continued).

Argonne v1g, pp, exponential (n =6), A =25 M =3, m=5

1] 1.7415 -978.26 | 0 1 2 4 9
0.41681 0.23341 0.0075925 | -3.7560 10~
10
2.9035107"7
2| 1.6680 0.15743 | 0 6 7 8 9
-0.73884 0.38570 -0.085207 0.0075197
10
-2.2182107*
3| 1.8264 -347.42 1 1 0 3 8 9
-0.042636 0.17591 | 4.9746107% | -6.830710°°
10
3.6046 1077
CD-Bonn, nn, Fermi-Dirac (¢ =0.5), A =18 M =2, m=5
1] 2.1847 -799.96 | 0O 1 3 4 5}
0.91829 0.47722 -0.19001 0.049102
6
-0.0033185
2| 2.5000 -177.29 1 0 1 3 4 5}
-0.21869 0.21610 -0.19555 0.035250
6
-0.0024611
CD-Bonn, nn, exponential (n =6), A =2.5, M =3, m =4
1] 1.7214 -930.12 1 2 5} 7
0.25068 0.22550 0022877 | -5.7267107°
2| 1.7881 32.091 | 1 0 4 9 10
0.0071364 0.13522 | 5.4076107° | -4.0494 106
3| 1.7278 -580.64 | 1 0 3 9 10
0.26980 0.13974 | -2.8858 1076 | 2.325210"
CD-Bonn, nn, exponential (n =6), A =3.0, M =4, m =4
1] 1.0908 -431.50 1 2 3 4
0.35315 0.59492 -0.37945 0.027775
2| 1.1184 3235.3 | 3 1 2 0 4
17.596 -1.9937 0.28038 -8.4643
3| 1.2473 -1371.1 ) 1 0 2 3 4
-0.52693 -0.66651 0.22395 -0.010229
41 1.3007 -1948.6 | 2 1 0 3 4
-1.7907 -0.45939 -0.16783 -0.086305
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Table E.1: Parameters defining the separable operator representations of interac-

tions (continued).

CD-Bonn, nn, exponential (n =6), A =4.0, M =4, m =4
0

11 0.78980 698.80 1 2 3 4
-0.96576 0.87481 -1.9379 0.19910
2| 0.83339 2885.2 | 1 0 2 3 4
-0.030759 -1.9616 2.6650 -0.16114
3| 1.7570 -91.515 | 1 0 2 3 4
-1.4831 0.068112 0.067679 | -0.0093729
4 | 0.89377 -5792.0 | 2 1 0 3 4
-0.57060 | -0.086000 -1.0777 -0.079829
CD-Bonn, nn, exponential (n =6), A =8.0, M =6, m =4
11]0.63814 619.02 | 1 0 3 7 9
0.51263 0.36902 | 4.633010~* | -4.575310°¢
2 | 0.68468 -823.15| 0 1 2 3 7
-0.65990 0.062127 -0.054548 | -3.3780 1076
3 | 0.58589 0.43824 | 2 3 8 9 10
-1.7986 | -0.011990 0.0021446 | -9.3238 10~°
4 10.60762 | -0.026378 | 6 7 8 9 10
-0.95561 0.25908 -0.027532 | 9.3569 1074
51 0.94121 -1059.3 | 1 0 2 3 4
-0.32739 -0.41297 0.14277 -0.032034
6 | 1.58513 -401.24 | 1 0 2 9 10
-0.43268 -0.31717 | -5.6151 10% | 7.6408 10~
Argonne vig, nn, M =9, m =3
1] 0.61544 -503.86 | 0 1 4 10
-1.9502 | -0.052278 | 1.558010°8
2 | 0.62603 169.58 | 0 1 3 7
2.8735 0.90026 | 7.551610~*
3| 0.28021 63.333 | 2 1 0 6
1.9134 0.90423 | -0.0010905
4 | 0.20451 6.0742 | 3 2 1 8
2.1766 1.9611 | 4.8087107°
5| 0.94442 -1131.1 | 1 0 2 10
-0.29080 -0.30625 | 8.507810°%
6 | 0.32235 23871 | 3 2 1 10
-1.0497 | 0.0083717 | -4.219510°¢
7| 1.5158 -451.08 | 1 0 2 10
-0.41003 -0.37097 | 1.262210°7
8 | 0.20000 33.447 | 2 4 6 10
-0.037752 | -0.0044057 | -5.517310°
9 10.75360 | -0.99053 | 2 3 4 10
0.27823 2.6542 | 1.7662107°
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Appendix F

Separable Force in Spherical
Symmetry

In this Appendix, we give the expressions actually used in the numerical implemen-
tation of the Hartree-Fock-Bogolyubov equations in spherical symmetry.

F.1 General expression of interaction matrix ele-
ments

Let us start from a general interaction acting in the 1S, channel :
Vise = VSPg,, (F.1)

where V5 is the spatial part acting in the L = 0 state of relative motion and Ps_
is the spin singlet projector stemming from the definition

. 1+ (-1)%P
Py = M (F.2)

2 )
(F.3)
P, being the spin-exchange operator. First, we express the non-antisymmetrized

matrix elements in coordinate space.

vy = (ig|V' kL) (F.4)

= (ij| PI_ V¥ Ps_o|kl) (F.5)
= /d3T1,2,3,4 <ij|ﬁ;z0|r1r2)(r1r2|VS|r3r4><r3r4|P5:o|kl>, (F.6)

where |ij), |rire), etc. are two-particle direct product states, non-antisymmetrized
and normalized. |7) is a state from the single-particle basis we will be working with,
to be defined later. The index ¢ includes all space, spin and isospin coordinates.
Basis functions are notably considered the same for neutrons and protons, which
shall eventually be treated separately.

The spin-singlet part of the two-body wave function can be expressed as:

Ps—olij) = ZZ/d3r1d3r2

0102 41492

X @i(r101q1) ©j(Ta02qa) [1172) [q1G2) Pso|o102), (F.7)
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with the spin part reduced through

Z @i(r10191) ¥;(r202G2) PS:O|0'10'2>

0109

= Y wtnon) eilro) 5 (9102) ~ lown)), (¥.5)
= Y wlnon) pi(eme) 5 (107~ [70)), (F.9)
= Z ei(rioq1) ¢;(ra0¢s) %(_)SJ (1L =11m), (F.10)

lea

= Y ()77 wilrion) ¢;(r0g) %moy (F.11)

o

We get the expression for the matrix element of Eq. (.4 :

GV = [ drisne 331 plnna) o)

q1q2 01
X Z Z(—)Sﬂ‘q’ or(r303q3) ©i(T403q4)
q3q4 03
1 .
X §<r11‘2|VS|1'3T4> (12]93q4) (F.12)

The antisymmetrized matrix element (containing both direct and exchange terms),
which shall be written

Sy Tkl F.13
Yijet = Yy = (]l kL), (F.13)
= (ij|V'% (1 = P.P,P)kl), (F.14)

vz]iol - ,Uzjsl;% = vz]i(} - v]ﬁc%’ (F15)

(the last equality holds for a Hermitian interaction) reads

Ty = (VS + B)lkD), (F.16)
= /d ri234 ZZ )T i (rio1qr) ¢ (r201ge)
q1492 01
X ZZ(—)#% or(r303q3) ©1(r403q4)
q3q4 O3
1 A N
X §<r1r2|VS|r3r4) <Q1QQ|1 + PT|(]3(]4>. (Fl?)

In the case of isospin-pure states, we can omit isospin indices where they are
contained in the single-particle states ¢, 7, k,[. We obtain :

T = (V0 (1 + B[k, (F.18)
1 R
= /d3F1,2,3,4 \I/:j(rlarQ) §<I‘1F2|VS|I'3T4> ‘I’kz(rs,m)
X (5QiQk5QjQZ + 5‘11"11511ij)’ (F.19)
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where we introduce the spin-singlet part of the two-body wavefunction (non-normalized) :

Uiy(rire) = > (=) @i(rio) ¢;(rs7). (F.20)

o

The latter guarantees the antisymmetry of the matrix element in Eq. (ELI8)): if we
exchange the spin variables,

Uji(r,12) = Y (=) ¢;(r10) i(r:5), (F.21)

= Y eilr0) (7). (F.22)

we get the opposite of the original wavefunction where the coordinates have been
exchanged. If the spatial part of the interaction is symmetric w.r.t. this exchange
(it then selects even-parity states of relative motion), the matrix element is indeed
antisymmetric.

In the case of identical-particle pairing, ¢ = ¢2 = ¢3 = ¢4 and the isospin part
of the antisymmetrized matrix element reduces to a factor 2. We then have :

~ 15,

Vijkl = /d3r172,374 \If;‘j(rl,rg) (r1r2|\75|r3r4) \I/kl(rg,r4), (F23)

where the spin-singlet two-body wave functions take care of the spin part and ex-
change term.

F.2 Computation of the pairing field

F.2.1 General technical aspects

In spherical symmetry, single-particle basis functions are labelled by quantum num-
bers n, ¢, j, m:
Ung; (1)
r

Onpjm(T,0) = (Emwa\jm}Yn‘;Z (7) (F.24)
The effective potentials are rotationally invariant: A (see Eq. (:56)) only depends
on the radial coordinate in use. This isotropy stems from that of the density matrix:
states labelled with the same value of quantum numbers n, ¢, j (and different values
of the projection m) are degenerate, have identical occupancies and have the same
radial dependance. It is thus possible to perform analytical presummations over m
whenever applicable, especially in the calculation of y.

F.2.2 Center-of-mass/relative coordinate separation

The calculation of pairing matrix elements with a non-local separable vertex requires
to perform the transformation of the two-body product wave function from the set
of coordinates (ry,r2) corresponding to the interacting particles to the set (R,s),
where R = 1(r; + ry) is the center-of-mass (COM) coordinate and s = ry; — ry
is the separation vector. Whereas this is immediate in Cartesian coordinates, in
a spherical coordinate system or basis, some algebra is involved to obtain useful
expressions. There are standard techniques to achieve this in a harmonic oscillator
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basis, most based on Brody-Moshinsky coefficients [Mos59]. However, since one of
the purposes of this work is to provide a description of pairing up to the drip-lines,
we used a basis more suited to the treatment of continuum effects. Thus, we used
the coordinate separation method of Sawaguri and Tobocman [Saw67]:

I\/ 1 AN VN
Som(ora+Bry) = D AN (ra,m) Y —=Clm Y (7a) Y (7o) (F.25)
U\ m/“/ 47T

AV

Aﬁ/\ (ra,m) = 8 z'l/_)‘/_g/kzdk: jl/(ak:ra)j)\/(ﬁk:rb)/Ter Je(kr)pe(r) (F.26)

(this expression is readily obtained by rewriting the wave function ¢(r) as the direct-
then-reverse Fourier transform (FT) of itself, replacing r = ar, + fr, in the reverse
F'T part, then replacing the three exponentials by their spherical expansion and
integrating over angular coordinates). Using this expression, we find

Uy mmatim(RyS) = (=) (bmysol| jm) ((ms7 | jm)

myo
oY B,
X Z AL (R 8)AZ A (R, s)
%Y
1 Im, om,
2o i Comias
T T 4] Yy
XY, ()Y ()Y 8V (=9), (F.27)
with
1/ / ! k
AY(R,s) = 84"V / kdk ju (kR)jx (;) Uy (k) (F.28)
(k) = k/rdr Je(kr)une;(r) (F.29)

Multiplying by the separable-interaction form factor G, (s) and integrating over s
yields

Vs imaem(R) = (=) (myso|jm) (tmisa| jm)
myo
9 5% 3%
« 3 / $ds Go(s) AV (R, 5) A% (R, )
B
1

Im im N4/
3 2l O
m’
XY (R)Y2(R), (F.30)

where the integration with respect to the angular coordinates yields the spherical
harmonic coupling coefficients.

F.2.3 Pair densities
Pair densities X, can be expressed as (Eq. (5.52))

%Oé(R) = Z \Pglfljlml,nQbﬁmQ (R) Kny£1j1ma ,noty ji1mme - (F?)]_)

ny,201,.251,2m1 2


http://dx.doi.org/10.1016/0029-5582(59)90143-9
http://adsabs.harvard.edu/abs/1967JMP.....8.2223S
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In spherical systems, the pair tensor x takes the simplified form

_ l—j—m
Rnit151mamalijime = Kngnailig (_) 55152 5j1j2 5m1m27 (F32)

where (—)“~7=™ is the phase 7, acquired by state [nfjm) under a time-reversal
transformation, which determines the splitting in two parts of the single-particle
basis, such that

Z Z Kny ngitj Z (=)~ m\Ifjflzjm nﬂ]m(R) (F.33)

7 ming

Due to the spherical degeneracy of single-particle states and the specific structure of
k, the summation with respect to m can be separated and performed analytically.
It is thus beneficial to define the function

\i,nlﬁj,nzﬁj(R) = Z( )Z - m@zlﬁjmngﬁjm(R>' (F34)

m

In order to express this function, let us first give the result of the reduction of its
algebraic factor:

()T (myso jm) (0T )

mmgpom/ p/

X Ut O ()Y YL (R) Y (R)

l/7l>\/
27+ 120+ 12N +1 ,
- IR DONED poxojos ()Y, (R
which yields
T 2j —|— 1
\I,nlﬁj,ngfj(R) = =

xz / SPds Ga(8) AL (R, $) AL, (R, )
N

S22+ D) (2N + 1

X(—)A ( )( )

41 (I'0N'0]£0)? (F.36)

once this reduction has been made, it is possible to rewrite the radial integral with
respect to s:

! ! 1 /
(1) 54—/3 e 4a2Aﬁlf‘£](R,s)A“‘ (R, s) (F.37)

T nalj

16 . .
= = kvdky ju (ki R) T, (kr) /kzdk& Ju (ko R) 05 (k)

< [ (55) i (%) (F.38)

- /k'ldlﬁ fbmzj(’fl)/k?dkz Uy (ka) DN (K, ks R), (F.39)
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where we introduce the representation-independent functions (mind the small 1)

SN TAV] 16 ) ]
DN (ky ks R) = — Ju(k1R) ju (k2 R)

k k
<[5 Guls) i (;) x (%S) (F.40)
Eé (k1,kas R) = Z @Z)a’l/)\/(k’l, ka; R)
N
o 2U+1)(2N +1)
20+ 1

x (=) (roXN'0]¢0)?.  (F.41)

Using the latter function one can finally write

Ta 27+1
anlﬁj,ngﬁj(R) = -

/k‘ldk’l k’gdk’g Eﬁ (k’l, k’g, R) ﬂnlﬁj(kl) fbnlgj(k'g). (F42)

7

F.2.4 Pairing fields
Matrix elements of the pairing fields are obtained through (Eq. (2.53))

Atsmmtn = 3 / PR, (R) Au(R) (F.43)

=y / R2AR dR VS, 4 noeim(R) Au(R), (F.44)

an expression where the angular integral with respect to the direction R allows one
to reduce the sums involving projection indices, viz.

Y (2) 7 {mesol|jm) (emisa|jm)

mgom/ /!

Xl Ot (=1 [ AR YI(R) Vi (R)

1 N
i 2+ 1)(2N 4+ 1) 9 \
= —(—)" 211 (l/O)\IO‘E(]) 5l’1l’2<_> . (F.45)
Given this expression, one obtains
iem 1
Antjmmatim = — (=) In Z
«3 / R%R / $2ds Go(s) ALY, (R, 5) AV (R, 5)Ra(R)
3%
N <2l, + 1)(2)‘, + 1) N/ 2
— ) F.4
X (=) 11 (I'oX'0[10) (F.46)

It is then useful to use the representation-independent functions (F.39), yielding
Anstjmmatim = —(=)77" / R%*dR A, (R) (F.47)

X /lﬁdlﬁ kadk; Ja,f(kla ko; R) iy (K1) Tinge(ka),
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Eq. (E.42)) allows one to work with any basis for which one can compute u(k)
functions. A particularly simple and efficient choice is to use a basis of spherical
Bessel functions, in this case we have ,,;(k) o 0(k — k;) and the double integral
becomes trivial. See appendix [Gl

F.3 Evaluation of Bessel-form factor integrals

The formulae given above for J and ¥ functions involve an integral of the product
of two Bessel functions, an interaction form factor and a s? weight.

. kis\ . kos
Sy (k1 ka) = /52 Gals) (%) g (%) (F.48)

This section deals with the evaluation of this integral for a number of given form
factors g(k) and their inverse Fourier transforms G(s) (see Eq. (B46)).

F.3.1 Simple Gaussian form factor

For g(k) = ¥ the inverse Fourier transform yields
2

L e (F.49)

N S
(4ma2)3/

G(s) =

In the case where \] = X, = X, the integral (F.48) can be evaluated using an
analytical expression (E70), yielding :

1 a?(k? + k2 a’kik
Ty (ki ko) = - P (—%) by (— ; 2)), (F.50)

where by is a modified spherical Bessel function of the first kind, Eq. (ET7I). If
A1 # Ao, one should use the more general method described below.

F.3.2 Gaussian x polynomial form factor

In fits of an operator representation of the Vi, » interaction, we found the following
form of form factors to be the most useful one:

gal(k) = [;xan (%ﬁ)"] exp (—a32k2). (F.51)

where a, is a range parameter, while the z,,’s control the way the shape of the
Gaussian function is modulated by powers of k2. The inverse Fourier transform
reads

Ga(s) =

S (4 (2) s (2) | 0 (55 ) 30

where He,, .1 is a “probabilist’s” Hermite polynomial [Abr64]. The integral in Eq.
(E48)) can be evaluated by Gauss-Hermite integration [Pre92], which is based on
the formula

1
(27)3/243

/_ h flx)e™ = Zw Flx;) (F.53)
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where the z; are the roots of Hy(z), the (more common) “physicist’s” Hermite
polynomia]ﬁ. To apply the formula above, one needs to perform the change of
variable x = ﬁ, which depends on the range a,. For the sake of performance,
one should use a single variable for all form factors, as the Bessel functions have to
be evaluated for each integration point : different sets of s; stemming from each set
of x; would multiply an important contribution to the CPU time by the number of
form factors. It is advisable to simply re-express G,(s) as

) = s S (1) () e ()]

«

1 1 9 s?
X exp |— 52 " 302 7 exp( —5 3 , (F.54)
(0% max max

S

where amax = max,(as), and use the variable x = - . The sign of the argment
of the first exponential guarantees that it is a well-behiaved function which poses no
problem with the quadrature scheme.

F.3.3 Coulomb expansion form factor

The separable representation for a truncated Coulomb potential involves the form
factor go(k) = v2m j2(%). The inverse Fourier transform yields

1 %Pa (1 — 2(2)2) for s<a
Gals) = 5= { 0 for  s>a (F.55)

where P, is the Legendre polynomial of order a. The integral to be calculated is
thus :

1 e ) kis . kos
Tiglhike) = —— /0 s Po (1-2(2)%) Jj, (7) ix, (7) (F.56)

There is no useful analytical expression for this integral, but it can be evaluated
efficiently by using a Gauss-Legendre integration scheme [Pre92].

F.4 Some useful expressions

Spherical harmonics

We define spherical-harmonic coupling coefficients

(20 + 1)(205 + 1)
Cll{%ﬂng = \/ (2L n 1) <110120|L0> (l1m112m2|LM>, (F57)
which thus follow :
Cllll%IIQmQ = (_)mQCil](Jnllng’ (F58)
= (2)™MCE (F.59)
= <_)l1+l27LCl11/%1l2m27 (F60)

1We shall use only the points x; > 0 to calculate the integral from 0 to co. One can show that

this remains a valid Gauss quadrature scheme, which is equivalent to the Gauss-Laguerre one with

a change of variable u = 2.
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and

e L+
Y G tamaClimttams = ~— GL+ 12) (L10120[L0)*O . Oarnsr- (F.61)

mima2

the later expression involves the coefficient (l,0050|L0), which is non-vanishing only
in the case of even [y + 15 + L.
The following expressions hold:

1

/ B YLEVEOVE ) = —=CE i, (F.62)
Yi(F) = (=)™ YE(F) (F.63)
Yo (=) = (=) YL(7) (F.64)
/ di YE(RYEA(R) = 0w (F.65)
SOVLAYEG) = QZA;IP,(COSQ) (F.66)
N VLHYRE) = 6 ) (F.67)

Im

where P, is the ["M-order Legendre polynomial, § the angle between # and #'; for
=17, B(cosf) = P(1) = 1.

Spherical Bessel functions

The normalization condition for spherical Bessels over a finite interval reads

| e itanitan = 53l (F.68)

where a; is the i'" zero of j;. Additionally, the following integral relations are useful:

T Rdr ki) = sk — K F.
e ki) = st ) (F.69)
> 4 4 T _a’+b? ab

/0 22dz e jy(az)ji(br) = 4—\/6;6 4% by (2_02) (F.70)
where
R m
bi(z) =i 'ji(iz) = 3 [H%(:c) (F.71)

is the modified spherical Bessel function of the first kind.
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Appendix G

Spherical Bessel Function Basis

In the spherical calculations performed in this work, we use a basis of single-particle
states relying on spherical Bessel functions, which correspond to the radial part of
free spherical waves. Labelled j,(kr), these functions are the solutions (non-divergent

at r = 0) of
L%dii (7«2%) + (k:2 - W%I))] Je(kr) = 0. (G.1)

Considering an infinite spherically-symmetric square well (a “box”) of radius Ry,
one can build the sequence of its eigenstates. They are given by Eq. (GJ) with
the boundary condition j,(kRpox) = 0, which produces a discrete spectrum for each
value of /. Let us call k;4,7 = 1... N, the solutions of the above in the interval
[0, keut]. In the case £ =0, jo(kr) = sin(kr)/kr and k; o = i(7/Rpox)-

Actual basis functions are defined in the direct product of three-dimensional coor-
dinate space and spin space, and should be normalized. First in a spin-independent
case, one can check that such a basis can be taken as

2 L o(Kior)Yom, (7), (G.2)

i tmy\ L) = ;
R T T

where jj is the derivative of j, with respect to its argument. Next we apply spin-orbit
coupling to the latter, yielding

Qpiljm(raa) = <£mﬁ80|jm> ¢i7£me(r)’ (GS)

= (tmgsalim) "y (i) (G.4)

2 r . '
() ={Dﬁﬂwmmmﬂ%ﬂ> for 7 < Rpox ©5)

for r > Ryox

Spherical Bessel functions occur naturally in the coordinate separation method
summarized by Eq. (E.42]), which can be simplified when using the basis above. Let
us consider the definition of u functions (Eq. (E.29)), with adapted notation)

Uio(k) = k/OOO rdr jo(kr) wie(r), (G.6)

Replacing v, ¢(r) with Eq. (G3)) yields

2 1 Rpox
Uie(k) = k 2dr Go(kr) go(kigr), G.7
Wl =\t k) k). (@D

195
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which can be evaluated, albeit into a non-trivial function. However, it is possible to
achieve considerable simplification by performing the above integral with an infinite
upper bound. This amounts to continuing the wave function u(r) beyond the limits
of the box. The spherical expansion for the two-body wave function will thus contain
components corresponding to particles outside of the box. Nevertheless, since we
work with finite-range interactions, we are only interested in components with an
interparticle separation less than this range. Consequently, spurious components can
only be expected to have an effect near the box boundary. The pair tensor, in turn,
can be expected to have non-vanishing components only in regions of significant
density in the nucleus, which means the effective pairing fields themselves vanish
outside of the nucleus. This approximation thus seems reasonable, only having to
be confirmed by checking the independence of results with respect to the box radius,
as should always be checked anyway.

Using the normalization condition in the continuum, Eq. (E£9), to evaluate

Eq. (G1), yields

s 1
B = e T Ra)] O R (G8)
Reduced two-body basis functions then read
=i (25 +1) =2 1 —a
Vigjiej(R) = — Vo (Kiy 0, kiy 03 R),

dm 2}%l?)ox |j2(ki17beOX) jé(kiz,beox”
(G.9)

—~«
recalling the expression for ¢, (E.41])

EZ(kl ko; R) = E (_)zfz' (20 4+ 1)(2N + 1)

Uy 20+ 1

X /52 Go(5) jx (%) G (%) (G.10)

The function ¥ can thus be expressed as

(CON0[€0) jy (k1 R) jo(koR)

— (2j+1) 8 1
lg_]y Z]( ) 47T R%OX |jé<kll,£Rb0X) jé(k227ZRbox>|

o RU+1DH2N+1), , ., , ‘
Sy BEE DD r00100)2 o (ki ) (ki )
N

« / 2 Gols) jn (’““;S) iy (kigfs) | (G.11)

The integral can be evaluated with the methods exposed in appendix [E.3] which
completes the set of equations we need to work with a separable, finite-ranged and
non-local force in the particle-particle channel of HFB equations.
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Contraintes microscopiques et au-dela du champ moyen pour une nou-
velle génération de fonctionnelles de la densité nucléaires

La structure nucléaire connait une véritable renaissance liée au développement
des faisceaux d’ions radioactifs (tels les faisceaux SPIRAL 1 et 2 au GANIL). Les
méthodes de champ moyen et/ou de fonctionnelle de la densité sont parmi les outils
les plus généraux et les mieux adaptés pour étudier les noyaux qui sont produits
aupres de tels instruments. Le but du travail présenté est de montrer comment
les fonctionnelles existantes peuvent étre améliorées afin d’avoir un meilleur pouvoir
prédictif dans les régions encore peu explorées de la carte des noyaux. Il est en partic-
ulier proposé de mieux modéliser la dépendance en isospin de l'interaction effective,
et I'intérét d’y ajouter un couplage de type tensoriel est étudié. Nous mesurons
également l'apport de calculs au-dela de 'approximation du champ moyen lors de
la construction de la fonctionnelle. Finalement, nous tentons d’établir le lien avec
I'interaction nue entre nucléons pour la description de 'appariement, participant
ainsi au développement d’une fonctionnelle non-empirique.

Microscopic and Beyond-Mean-Field Constraints for a New Genera-
tion of Nuclear Energy Density Functionals

Nuclear structure is subject to a major renewal linked with the development of ra-
dioactive ion beams (such as the SPIRAL 1 and 2 beams at GANIL). Mean-field and
density-functional methods are among the best suited for studying nuclei produced
at such facilities. The present work aims at demonstrating how existing functionals
can be improved so as to exhibit a better predictive power in little-explored regions
of the nuclear chart. We propose a better description of the isospin-dependence of
the effective interaction, and examine the relevance of adding a tensor coupling. We
also show how a new generation of functionals can be better constrained by consid-
ering results obtained beyond the mean-field approximation. Finally, we attempt
establishing a link with the bare nucleon-nucleon potential for the description of
pairing, thus participating in the construction of a non-empirical functional.
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