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Chapter 1Introdu
tionAlthough the very idea that the positive 
harge of an atom 
ould be 
on
entrated in asmall volume at its 
enter was �rst proposed by Nagaoka [Nag04℄, it was Rutherford[Rut11℄ who gave eviden
e for this by interpreting the experimental results whi
hGeiger and Marsden obtained by impinging alpha parti
les on a gold foil [Gei09℄.From this point on, the physi
s of atomi
 nu
lei progressively emerged as a distin
tdomain from atom physi
s. However, knowledge of the true 
omposition of nu
lei
ould not be a
hieved before the dis
overy of the neutron by Chadwi
k [Cha32℄.A subsequent step was made with the dis
overy of nu
lear �ssion [Mei39℄, whi
hshowed that quantum tunneling 
ould happen for heavy systems, and gave rise to thedes
ription of nu
lei and their motion through the liquid drop model [Boh39℄. Thenu
leus was thus understood as a system dominated by 
olle
tive behavior. Thisview was supported by the saturation of binding energies per parti
le, indi
atingthat the intera
tion between nu
leons was short-ranged and extremely strong. Asa 
onsequen
e, quantum 
orrelations were expe
ted to be important. Indeed, afterYukawa's seminal work [Yuk35℄, the nu
lear intera
tion appeared, in addition to be-ing parti
ularly di�
ult to understand from �rst prin
iples, as a non-trivial potentialexhibiting a repulsive 
ore even stronger than the attra
tive part and important spindependen
e [Ma
89b℄.However, it also be
ame known that some nu
lei were more bound than theirneighbors, 
ausing irregularities on the mass table at well-de�ned neutron and protonnumbers. These �magi
 numbers�, as Wigner 
alled them [Mos96℄, were explainedby Goeppert Mayer via an independent-parti
le shell model relying on strong spin-orbit 
oupling for the reprodu
tion of their experimental sequen
e [GM48, GM49℄,a
hieving as well to explain the majority of nu
lear spins known at the time [GM50a,GM50b℄.The me
hanism by whi
h a hard-
ore intera
tion 
an bind many-body systemswas due to Brue
kner [Bru54b, Bru54a, Bru55b℄, Bethe and Goldstone [Bet56,Bet57, Gol57℄. The re
on
iliation of 
olle
tive and single-parti
le approa
hes tonu
lear stru
ture ensued through the de�nition of an e�e
tive intera
tion arisingin the medium from short-range quantum 
orrelations and useable in a mean-�eld pi
ture [Fo
30℄, where ea
h parti
le moves independently in the potential
reated by the average e�e
t of the others a
ting through the e�e
tive intera
-tion [Bru55
℄. The linked-
luster expansion [Bru55a, Bra67℄ 
ould then extend themean-�eld pi
ture to in
lude 
orrelations not re-summed in the e�e
tive intera
tion,and be in
orporated in the general framework of many-body perturbation theory11
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http://dx.doi.org/10.1103/RevModPhys.39.771


12 CHAPTER 1. INTRODUCTION[Hug57, Abr63, Noz63, Fet71℄ to provide, in prin
iple, an ab-initio des
ription ofboth single-parti
le motion and many-body, 
olle
tive e�e
ts in nu
lear stru
ture.From then on, distin
t approa
hes to independent-parti
le models for nu
learstru
ture emerged. First, models for the nu
leon-nu
leon intera
tion in the va
-uum were gradually improved [Ham62, Rei68, La
80, Wir84, Ma
87℄ and used inBrue
kner 
al
ulations of nu
lei [Be
68, Be
74℄ as well as Brue
kner and variational
al
ulations of nu
lear matter [Day78℄. Nu
lei proved stubborn in their habit of
oming underbound and too small out of these 
al
ulations, while the saturationpoint of nu
lear matter was similarly underbound and o

urred at too high a den-sity 
ompared to its empiri
al position. Coester et al. [Coe70℄ proved that two-bodypotentials adjusted on the same nu
leon-nu
leon s
attering data 
ould not reprodu
ethe empiri
al saturation point. The missing pie
e was later identi�ed as the three-nu
leon for
e [Pan79, Lag81, Fri81℄, the existen
e of whi
h had been previouslyexpe
ted from �eld-theoreti
al 
onsiderations [Loi67℄.Se
ond, shortly after Brue
kner's papers, appeared the idea that one 
ould de-vise simpler e�e
tive intera
tions based on more phenomenologi
al grounds. Skyrmeproposed su
h an e�e
tive Hamiltonian 
onsisting of a two-body, velo
ity-dependent
onta
t intera
tion and a mat
hing three-body 
onta
t intera
tion [Sky56, Bel56,Sky58a, Sky58b℄. The latter was supposed to mimi
 the medium dependen
e ofBrue
kner's e�e
tive for
e more than to reprodu
e the physi
s of a bare three-bodyfor
e. However, Skyrme's idea 
ame to use only later [Vau72℄, being quantita-tively motivated as an approximation to a more realisti
 e�e
tive intera
tion by thedensity-matrix expansion method [Neg72, Neg75℄.Attempts were also made at �nding a potential whi
h 
ould bind nu
lei and pro-vide saturation of nu
lear matter without needing a hard 
ore for that task [Tab64,Bri67, Gog70℄. Su
h a potential 
ould be employed dire
tly in an independent-parti
le framework, or in a low-order perturbative expansion where 
orrelationswould bring a mere 
orre
tion to the nu
lear wave fun
tion, binding energy andother observables. This idea, in the form then envisioned, rea
hed its limits. How-ever, a soft for
e, augmented by a term depending on the density, was proposed asan approximation to an in-medium e�e
tive intera
tion by Gogny et al. [Gog75a,De
80, Ber91℄. It be
ame the other highly su

essful non-relativisti
 nu
lear mean-�eld model, if less widely used than Skyrme's one, due mainly to its higher numeri
al
ost.An a

ount of nu
lear mean-�eld models would not be 
omplete without a men-tion of approa
hes involving e�e
tive relativisti
 Lagrangians, initiated by Wale
ka[Wal74℄. In this model, nu
leons intera
t by ex
hanging pions and the semi-phen-omenologi
al sigma meson. Other degrees of freedom have sin
e been added, aimingat providing better nu
lear phenomenology.Let us now 
ome ba
k to Skyrme's intera
tion. The latter in
luded quadrati
velo
ity-dependent terms to simulate the range and non-lo
ality of the in-mediume�e
tive intera
tion, and its spin-isospin 
ontent was 
ontrolled by spin-ex
hangeoperators, spin-orbit and tensor terms. A number of parameters thus had to bedetermined. Given the rather s
hemati
 link between a mi
ros
opi
 e�e
tive inter-a
tion and Skyrme's one, a
hieving predi
tive power required �tting the parameterson a set of relevant data. Early 
hoi
es in
luded the binding energies of stableor exoti
 nu
lei [Bei75b, Ton83, Dob84℄ and the energies of ex
ited states su
h as
olle
tive vibrations [Kri80, VG81℄ or �ssion barriers [Bar82a℄. Indeed, Skyrme's
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http://www.sciencedirect.com/science/article/B6TVB-471YM2S-5C/2/56e976c5e956b69c9306b49896788b4f


13intera
tion 
ould be su

essfully used not only to 
al
ulate stati
 observables butalso 
olle
tive ex
itations and nu
lear rea
tions [Eng75, Neg82, Kim97℄.The 
on
ept of radioa
tive ion beams, �rst pioneered by Kofoed-Hansen andNielsen [KH51℄, was later implemented in in
reasingly 
apable and numerous fa
ili-ties, starting from ISOLDE at CERN, a
tivated in 1967, and 
ulminating with themany dedi
ated resear
h 
enters a
tive today, whi
h employ either isotope separa-tion on line (ISOL) or in-�ight fragment separation te
hniques to produ
e beams ofshort-lived isotopes. Work performed at these fa
ilities allowed to measure proper-ties of in
reasingly unstable nu
lei. Naturally, these new data spurred theoreti
iansto improve the predi
tive power of available models by adjusting new parameter sets[Rei95, Rei99, Bro98℄. With the growing attention paid to the neutron-ri
h side ofthe 
hart of nu
lides, it was also realized that experimental data alone 
ould notbring enough 
onstraints on models and that ab-initio 
al
ulations 
ould supplementthem, when available, for experimentally unrea
hable systems su
h as neutron mat-ter [Wir88, Akm98℄, whi
h, together with data measured for stable nu
lei, exerts astrong lever arm on properties of the most neutron-ri
h ones. Parametrization ofSkyrme's intera
tion built a

ording to these prin
iples by the Sa
lay-Lyon 
ollab-oration [Cha97, Cha98℄ are still widely used today.Nowadays, the steady progress of available 
omputational power allows to per-form 
al
ulations extending the mean-�eld framework and 
onsidering 
olle
tive 
or-relations in ground and ex
ited states [Bon90, Taj93b, Val00℄ on a more systemati
basis [Ben06a, Ber07, Ter08℄. One might thus expe
t an in
rease of a

ura
y, whi
h,however, is taking a long time to 
ome. Contemporary use of Skyrme-mean-�eldtheory is itself put into question 
on
erning its very interpretation as relying on aBrue
kner-like e�e
tive intera
tion. Strong resemblan
es have been found, indeed,with density fun
tional theory, a powerful tool 
ommonly used in 
ondensed-matterphysi
s, whi
h allows in prin
iple to re-sum all quantum 
orrelations present in arange of many-parti
le systems within a universal fun
tional, giving rise to an ef-fe
tive theoreti
al des
ription by means of independent parti
les. Using su
h a for-malism for nu
lei, though, involves extending it to self-bound, symmetry-breakingsystems where single-parti
le and 
olle
tive motion are tightly intertwined and bothhave to be treated expli
itly. As a result, in parallel to studies aiming at improvingthe agreement of the model with experimental data and/or ab-initio 
al
ulations, amore formal work is underway to �nd a rigorous and 
onsistent formal motivationof the method.The present work is an attempt at improving the predi
tive power of the �Skyrmeintera
tion� model of nu
lear stru
ture. More spe
i�
ally, our aim is to use the ever-growing amount of data, 
oming either from experiments, �rst-prin
iple 
al
ulationsor mi
ros
opi
 theory of the nu
lear intera
tion itself, to devise new inputs and
onstraints to be used in the 
onstru
tion of the next generation of models. Mostof the following will stay at the mean �eld level, the pre
ise meaning of whi
h isspe
i�ed in 
hapter 2, but we shall, as mu
h as possible, try to keep in mind thene
essity to extend our 
al
ulations by the addition of 
olle
tive 
orrelations.In a �rst part, we fo
us on the physi
al meaning and e�e
t of parti
ular parame-ters of the Skyrme for
e, dealing �rst, in 
hapter 3, with the momentum-dependen
eof the mean �eld and its evolution in neutron-ri
h nu
lei. The spin-isospin 
ontent ofthe for
e is also studied at this point, both stati
ally, by examining the 
ontributionof di�erent 
hannels of the intera
tion to the binding energy, and dynami
ally, by

http://www.sciencedirect.com/science/article/B6TVB-473DHYW-JW/2/d66e9cc71feb049f39679e7148dc5d55
http://dx.doi.org/10.1103/RevModPhys.54.913
http://stacks.iop.org/0954-3899/23/1267
http://dx.doi.org/10.1103/PhysRev.82.96.2
http://www.sciencedirect.com/science/article/B6TVB-3YYTK8P-H/1/5a92a21a15875f611e71efa9fcfc351f
http://dx.doi.org/10.1103/PhysRevC.60.014316
http://dx.doi.org/10.1103/PhysRevC.58.220
http://dx.doi.org/10.1103/PhysRevC.38.1010
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://www.sciencedirect.com/science/article/B6TVB-4730YF8-76/1/8b24096ab457bb9f5417c385bea263a2
http://www.sciencedirect.com/science/article/B6TVB-473FPJ7-4F/1/5b06b8d2062385a02ff55c0bdfca4937
http://www.sciencedirect.com/science/article/B6TVB-406VMP3-9/1/d340db1688585173d131be8af0d2b4f8
http://link.aps.org/abstract/PRC/v73/e034322
http://dx.doi.org/10.1103/PhysRevLett.99.032502


14 CHAPTER 1. INTRODUCTIONstudying the response of in�nite matter, used as a model system, to various pertur-bations. In will be shown that pathologies of the model 
an thus be pointed out, andsolutions will be proposed. Then, in 
hapter 4, we add a tensor intera
tion to themodel and study the impa
t of its parameters on nu
lear observables. Single-parti
leenergies, total binding energies and density distributions are 
onsidered.In a se
ond part, we fo
us on the des
ription of pairing in our model, by makinga dire
t 
onne
tion with the bare nu
lear intera
tion. In 
hapter 5, after a briefreview of the matter, we detail the formalism and intera
tion model we use. Thenin 
hapter 6, we perform and study systemati
 
al
ulations of spheri
al nu
lei a
rossthe nu
lide 
hart, dis
ussing the 
omparison of our results with experimental pairinggaps, giving 
lues as to the physi
al origin of nu
lear pairing in terms of many-bodytheory, assessing the importan
e of the Coulomb intera
tion in this spe
i�
 
ase aswell as the 
are needed when using various bare nu
lear-intera
tion models as aninput to our 
al
ulations.



Chapter 2Overview of Nu
lear Stru
tureTheory
2.1 Mi
ros
opi
 theory of nu
lear stru
tureAlthough e�e
tive and empiri
al models have known some su

ess in the theory ofatomi
 nu
lei, the quest for a des
ription of the latter from �rst prin
iples is both along-standing and 
urrent topi
 of resear
h. As the fo
us of nu
lear theory is, morethan ever, on the des
ription of nu
lei lying at the fringe of experimental 
apabilities,the motivation for a
hieving this is strong.Let us �rst spe
ify what we 
all �rst prin
iples. The most mi
ros
opi
 theory
on
eptually appli
able to nu
lei is the relativisti
, non-perturbative Lagrangian ofquantum 
hromodynami
s (QCD) ruling all hadroni
 systems. The latter is mostuseful, however, at energies above the GeV s
ale, where asymptoti
 freedom makesperturbation theory useful again, and for systems made of a few valen
e quarks whi
h
an be simulated thanks to latti
e te
hniques. At lower energies, an e�e
tive theory
an be built whi
h involves only the physi
al, observable (i.e. 
olorless) degrees offreedom: baryons (nu
leons and their ex
itations) and mesons.This brief foray into the realm of parti
le and hadron physi
s allows us to dis
ussthe very �rst di�
ulty fa
ed by the study of nu
lear stru
ture as an appli
ation ofquantum many-body theory: the basi
 Hamiltonian. Pra
ti
al appli
ations requireto treat neutrons and protons as pointlike parti
les (further redu
ing them to di�er-ent states of a single obje
t, the nu
leon) intera
ting via some potential, the theoryof whi
h, owing to the 
ompositeness of hadrons and the 
omplexity of their stru
-ture and dynami
s, is the subje
t of vast literature. Let us simply mention severalrelevant fa
ts and assumptions.2.1.1 The Nu
lear HamiltonianThe notion of a Hamiltonian a
ting on the sole nu
leoni
 degrees of freedom relieson the hypothesis that the stru
ture of the nu
leons, as well as the details of thepro
esses generating the intera
tion between them, are irrelevant for the study oflow-energy pro
esses. Also, the assumption is made that a non-relativisti
 des
rip-tion of the system, negle
ting anti-nu
leon degrees of freedom and assuming theusual quadrati
 expression for the kineti
 energy, is valid. The latter is reasonablefor 940 MeV-mass parti
les evolving at about 50 MeV kineti
 energy in the nu
leus.15



16 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYApart from a kineti
 term, a realisti
 Hamiltonian also 
omprises, at least, two-and three-body intera
tion terms. The basi
 experimental input used to determinethe two-nu
leon intera
tion is nu
leon-nu
leon s
attering di�erential 
ross se
tions.A large amount of data are available for neutron-proton and proton-proton s
attering[SAI, Nij℄, while some essential features of the neutron-neutron intera
tion 
an beobtained in more model-dependent ways. The assumption is made that isospinsymmetry is weakly broken, i.e. the potential 
an be des
ribed by a �rst part whi
his the same for all 
ombinations of nu
leons (Vnn = Vpp = Vnp) to whi
h one addsa 
orre
tion breaking 
harge independen
e (Vnn = Vpp 6= Vnp) and an even weaker
orre
tion breaking 
harge symmetry (Vnn 6= Vpp). The probability amplitude ofa transition from initial relative momentum k′ to �nal relative momentum k for apair of nu
leons at energy E is expressed by the T -matrix obeying the Lippmann-S
hwinger (LS) equation ([Bro76℄, see also appendix D.1.2).The 
urrent leading potential models rely on an e�e
tive meson-nu
leon La-grangian. The potential is de�ned, in this 
ase, as the sum of diagrams entering thes
attering amplitude whi
h are irredu
ible by 
utting a pair of nu
leon propagationlines [Ma
89b℄. The repulsive 
ore is either produ
ed by heavy-meson ex
hange[Ma
01℄ or modeled by phenomenologi
al terms [Wir95℄. S
attering data suggestthat the intera
tion is attra
tive at low energy, while repulsion dominates the s
at-tering of parti
les having a kineti
 energy in the laboratory frame Elab = ~2k′2/m >
250 MeV, where m is the nu
leon mass. At Elab > 350 MeV, pion produ
tion be-
omes signi�
ant, whi
h indi
ates that the nonrelativisti
 NN Hamiltonian pi
ture isinappropriate. Hard-
ore potentials, however, have non-vanishing matrix elementswell into this domain, whi
h is a 
onsequen
e of the requirement to keep a (mostly)lo
al, i.e. velo
ity-independent potential. Is is thus obvious that this part of theintera
tion models is purely e�e
tive. In fa
t, the 
hoi
e of high-momentum matrixelements of a potential is quite arbitrary and weakly 
onstrained: models of the NNintera
tion having di�erent matrix elements due to varying 
hoi
es for the repulsivepart yield the same low-energy s
attering observables, having been �tted to them.The above 
onsiderations have led to devise a method to produ
e a universalpotential that would not involve any un
ontrolled high-energy physi
s. This wasa
hieved using renormalization group equations [Bog01℄, and will be further studiedin 
hapter 5. Moreover, a new approa
h to building NN potentials has been putforward, relying on 
hiral e�e
tive �eld theory (EFT) [Ent03, Epe05℄, i.e. an e�e
tiveLagrangian in
luding nu
leon-pion, pion-pion and nu
leon-nu
leon 
onta
t terms,
onstrained by 
hiral symmetry, an essential feature of QCD. This approa
h allows asystemati
, stepwise 
onstru
tion of the potential through a perturbative expansion,whi
h allows to 
ontrol its a

ura
y. Moreover, this method has the advantage ofnaturally produ
ing 
onsistent two-, three- and four-body potentials.Indeed, a 
omplete des
ription of the nu
lear Hamiltonian must in
lude a short-range three-body (NNN) intera
tion, whi
h is ne
essary, as a 
omplement to theNN intera
tion obtained from s
attering analysis, to obtain 
orre
t saturation prop-erties of nu
lear matter [Lag81℄ and a

urate spe
tros
opy of light nu
lei [Pud95,Pie01b℄. Several models thus exist also for the three-nu
leon intera
tion [Gra89,Lej00, Pie01a℄, while 
urrent work on the subje
t fo
uses on obtaining NNN poten-tials 
onsistent with the �eld-theoreti
al 
ontent of NN ones [Epe07, Li08℄.Starting from the Hamiltonian detailed above, an ab-initio resolution of the manyproblem 
an be undertaken for light and, nowadays, some medium-mass nu
lei. For

http://link.aps.org/abstract/PRC/v63/e024001
http://link.aps.org/abstract/PRC/v51/p38
http://arxiv.org/abs/nucl-th/0111042
http://link.aps.org/abstract/PRC/v68/e041001
http://www.sciencedirect.com/science/article/B6TVB-4DN0XC1-1/1/5a8ce26894005fea170313c283ab316e We consider the two-nucleon system at next-to-next-to-next-to-leading order (N3LO)
in chiral effective field theory. The two-nucleon potential at N3LO
consists of one-, two- and three-pion exchanges and a set of contact
interactions with zero, two and four derivatives. In addition, one
has to take into account various isospin-breaking and relativistic
corrections. We employ spectral function regularization for the multi-pion
exchanges. Within this framework, it is shown that the three-pion exchange
contribution is negligibly small. The low-energy constants (LECs) related
to pion-nucleon vertices are taken consistently from studies of pion-nucleon
scattering in chiral perturbation theory. The total of 26 four-nucleon
LECs has been determined by a combined fit to some np and pp phase
shifts from the Nijmegen analysis together with the nn scattering length.
The description of nucleon-nucleon scattering and the deuteron observables
at N3LO is improved compared to the one at NLO and NNLO. The theoretical
uncertainties in observables are estimated based on the variation of
the cut-offs in the spectral function representation of the potential
and in the regulator utilized in the Lippmann-Schwinger equation.
http://www.sciencedirect.com/science/article/B6TVB-4731236-TJ/1/a6126b32d77d40976ea54d39f01d83a0
http://link.aps.org/abstract/PRL/v74/p4396
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1103/PhysRevC.40.1040
http://dx.doi.org/10.1016/S0370-2693(00)00211-2
http://link.aps.org/abstract/PRC/v64/e014001
http://link.aps.org/abstract/PRC/v77/e034316


2.1. MICROSCOPIC THEORY OF NUCLEAR STRUCTURE 17systems of three and four nu
leons, the Faddeev and Faddeev-Yakubovsky equations
an be employed, while A ≤ 12 systems 
an be treated using quantum Monte-Carlotheory [Pud95, Pie01b℄, while the no-
ore shell model, i.e. diagonalization in afull A-body model spa
e [Bog08a℄, rea
hes A = 16, (or A = 40 [Rot07a℄ with adisputed approximation). Finally, the 
oupled-
luster method has been employedin doubly-magi
 nu
lei up to A = 48 [Hag07, Hag08℄.Intera
ting shell model 
al
ulations, whi
h des
ribe 
orrelations expli
itly al-beit in a redu
ed model spa
e, implying to �freeze� deeply-bound nu
leons [Cau05℄,are based on mi
ros
opi
ally-derived e�e
tive Hamiltonians. However, they requireslight readjustments of the latter to be
ome a

urate [Hon02, Bro06b℄, and are lim-ited to nu
lei up to the fp-shell or lying in the vi
inity of 
losed shells [Cor02℄.Beyond lies the realm of e�e
tive models. Energy density fun
tional modelsbased on empiri
al e�e
tive intera
tions allow to treat the majority of nu
lides and
al
ulate a variety of observables with a single, redu
ed parameter set. However,their e�e
tive nature means that the meaning of some of the results obtained withthem leaves room for interpretation. It is thus useful to put forward some elementsof 
omparison with mi
ros
opi
 many-body theory.2.1.2 Single-parti
le Green's fun
tionA re
urrent subje
t of dis
ussion in the following of this work will be single-parti
leenergies. As this se
tion deals with mi
ros
opi
 many-body theory, let us give ashort overview of single-parti
le motion in 
orrelated systems, as understood fromGreen's fun
tions, and the assumptions underlying EDF theory.Let us de�ne Fo
k-spa
e operators ĉ†k 
orresponding to a an arbitrary set ofsingle-parti
le basis states |k〉 (whi
h 
an 
orrespond to 
oordinate-, momentum or
on�guration-spa
e, but 
ontain all degrees of freedom in
luding spin and isospin �the latter shall not be made expli
it or dis
ussed in this part), and their Heisenberg-representation 
ounterpart ĉ†k(t), with
ĉ†k(t) ≡ eiĤt ĉ†k e

−iĤt, (2.1)These operators allow to de�ne a single-parti
le Green's fun
tion (or propagator)written as a matrix in the above representation
G(kt; lt′) ≡ i

〈
Φ0(A)

∣∣∣T
[
ĉk(t) ĉ

†
l (t

′)
]∣∣∣Φ0(A)

〉
, (2.2)

T being the time-ordering operator, and |Φ0(A)〉 the ground state of the 
onsidered
A-body system (we shall not go into the details of working with two parti
le spe
iesin this se
tion). An important property is the relation between G(kt; lt′) and thedensity matrix,

G(k0; l0+) = G(k0−; l0) = −iρkl, (2.3)
G(k0; l0−) = G(k0+; l0) = i(δkl − ρkl), (2.4)The time variable introdu
ed above is of little use for stationary problems. In this
ase, G depends on t − t′ only and one 
an perform the Fourier transform to theenergy representation. As of now, we shall measure energies from the Fermi level λde�ned as a 
hemi
al potential

λ =
δE0(A)

δA
. (2.5)

http://link.aps.org/abstract/PRL/v74/p4396
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nucl.51.101701.132506
http://www.sciencedirect.com/science/article/B6TVB-4RGFCWR-1/1/43d0ea0079338458c1a70de9dc11993a
http://dx.doi.org/10.1103/PhysRevLett.99.092501
http://link.aps.org/abstract/PRC/v76/e044305
http://dx.doi.org/10.1103/PhysRevLett.101.092502
http://dx.doi.org/10.1103/RevModPhys.77.427
http://dx.doi.org/10.1103/PhysRevC.65.061301
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.65.051306


18 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYThe transform reads
G(k, l;ω) =

∫
dt G(kt; lt′) ei(λ+ω)(t−t′), (2.6)

G(kt; lt′) =

∫
dω

2π
G(k, l;ω) e−i(λ+ω)(t−t′). (2.7)The single-parti
le Green fun
tion des
ribes the propagation, in the 
onsidered sys-tem, of an additional parti
le or of the hole produ
ed by the removal of a parti
le. Itthus 
ontains information on the ex
itation spe
trum of A+1 and A−1-parti
le sys-tems. This 
an be made expli
it thanks to the spe
tral, or Lehmann representationof G. De�ning the parti
le and hole spe
tral fun
tions, respe
tively,

S+(k, l;ω) =
∑

ν

〈Φ0(A)|ĉk|Φν(A+ 1)〉 〈Φν(A+ 1)|ĉ†l |Φ0(A)〉

× δ (Eν(A+ 1) − E0(A) − ω − λ) , (2.8)
S−(k, l;ω) =

∑

ν

〈Φ0(A)|ĉ†l |Φν(A− 1)〉 〈Φν(A− 1)|ĉk|Φ0(A)〉

× δ (Eν(A− 1) − E0(A) − ω − λ) , (2.9)where we introdu
e Φν(A ± 1) as the νth ex
ited state of the system with A ±
1 parti
les, Eν(A ± 1) being the 
orresponding energy, allows to write the Greenfun
tion as

G(k, l;ω) = i

∫
dω′
[
− S+(k, l : ω′)

ω − ω′ − i0−
− S−(k, l : ω′)

ω + ω′ − i0+

]
, (2.10)The ground-state wave fun
tion of an A-body system ruled by a single-parti
leHamiltonian (let us write it Ĥ0) is a Slater determinant, i.e. an antisymmetrizedprodu
t of o

upied (hole) states. These hole states belong to the eigenstates of Ĥ0,whi
h also 
omprise empty (parti
le) states. Let us 
hoose, as the representation

|k〉 used above, the eigenstates of Ĥ0. Adding or removing a parti
le on su
h a stateyields another eigenstate of Ĥ0. It is easy to see that the spe
tral fun
tions then areDira
 fun
tions, and that the Green fun
tion reads
G(k, l;ω) = δkl

[
− δk(p)

ω − ε0
k − i0−

− δk(h)

ω − ε0
k − i0+

]
, (2.11)where δk(p) = 1 if |k〉 is a parti
le state, 0 otherwise, the 
onverse being true of δk(h),and the single-parti
le energy ε0

k used in the denominator is given by the 
ondition
Ĥ0|k〉 = ε0

k|k〉, while ε0k = ε0
k − λ.If the Hamiltonian Ĥ 
ontains an intera
tion term, its ground state 
an beexpe
ted to 
ontain 
orrelations 
orresponding to the 
oherent motion of the inter-a
ting parti
les. In this 
ase, the analyti
al stru
ture of the Green fun
tion is non-trivial, yet it 
an be expressed in a 
ompa
t form by introdu
ing the mass operator[Noz63℄, or proper self-energy [Fet71℄ Σ(k, ω) (hereafter 
alled simply �self-energy�),for whi
h approximations will be dis
ussed below. For the sake of simpli
ity, weassume that there exists a representation where the Green fun
tion is diagonal forall energies. It is the 
ase in in�nite nu
lear matter (momentum representation),but the 
ase of �nite nu
lear systems may be more 
ompli
ated. This is, anyhow,



2.1. MICROSCOPIC THEORY OF NUCLEAR STRUCTURE 19beyond the s
ope of the present dis
ussion. Therefore, let us give the expression of
G in this 
ase:

G(k, l;ω) = δkl

[
− δk(p)

ω − ε0
k − Σ(k, ω) − i0−

− δk(h)

ω − ε0
k − Σ(k, ω) − i0+

]
. (2.12)The mass operator is, in general, a 
omplex fun
tion. The pole of G(k, k;ω) thuso

urs for ω = ωk = εk − iΓk, whi
h is a solution of ωk = ε0

k + Σ(k, ωk). In in�nitematter, the Green fun
tion 
an be de
omposed into a pole part and a ba
kgroundpart
G(k, l;ω) = −δkl

z(k)

ω − ωk

+GBG(k, l;ω) (2.13)where z(k) is the residue of G at ωk,
z(k) =

[
1 − ∂ Σ(k, ω)

∂ω

∣∣∣∣
ω=ωk

]−1

. (2.14)The imaginary part Γk is a measure of the 
orrelations present in the system insofaras its non-vanishing value means that no single-parti
le state ĉ†k|Φ0〉 is an eigenstateof Ĥ. As for the elementary ex
itation spe
trum, it is given by the real part εk.Negle
ting the imaginary part of Σ(k, ω) (along with setting z(k) = 1) thus allowsto re
over the quasiparti
le pi
ture.Single-parti
le spe
trum and e�e
tive massThe single-parti
le spe
trum of a nu
leus usually has a non-trivial stru
ture. Aessential feature, though, is its density, i.e. the number of levels per unit energy. Thisis related to the dispersion relation of parti
les in the medium, whi
h depends onthe momentum- and energy-dependen
e of the self-energy. This is measured by theLandau mass m∗, usually expressed in in�nite matter (k then being the momentumof the parti
le and ε0
k its kineti
 energy), whi
h des
ribes the derivative of the single-parti
le energy (s.p.e.) with respe
t to the single-parti
le (s.p.) momentum.

m∗

m
≡

[
1 +

m

k

d ℜΣ(k, ωk)

dk

]−1

, (2.15)where ℜ denotes the real part. This quantity integrates the e�e
ts of the expli
itmomentum-dependen
e of the self-energy, des
ribed by the k-mass m̃,
m̃

m
≡

[
1 +

m

k

∂ ℜΣ(k, ω)

∂k

∣∣∣∣
ω=ωk

]−1 (2.16)and its energy-dependen
e, 
hara
terized by the e-mass m,
m

m
≡ 1 − ∂ ℜΣ(k, ω)

∂ω

∣∣∣∣
ω=ωk

= z(k)−1 (2.17)where zk has been introdu
ed above. Both 
ontribute to m∗ through
m∗

m
=

m

m
· m̃
m
. (2.18)
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trum density is thus a 
onsequen
e of both the momentum-dependen
eof the �mean �eld�, or self-energy, and its energy dependen
e. The latter arises fromquantum 
orrelations present in the system, whi
h will not be expli
itly in
luded (byde�nition) in the independent-parti
le pi
ture ne
essary to des
ribe heavy nu
lei.2.1.3 Perturbation theory (or la
k thereof)A

ording to the Gell-Mann-Low theorem [GM51℄, an eigenstate |Φ〉 of a Hamilto-nian
Ĥ = Ĥ0 + V̂ (2.19)
an be obtained from an eigenstate |Φ0〉 of Ĥ0 by applying the perturbing operator

V̂ adiabati
ally, i.e.
|Φ〉 =

U I
ǫ (0,−∞)|Φ0〉

〈Φ0|U I
ǫ (0,−∞)|Φ0〉

∣∣∣∣
ǫ→0

, (2.20)where U I
ǫ (t, t′) is the time-evolution operator in the intera
tion pi
ture for the Hamil-tonian Ĥǫ(t) = Ĥ + exp(−ǫ|t|) V̂ .The evolution operator U I

ǫ (t, t′) 
an in prin
iple be expanded in powers of theintera
tion V̂ , whi
h is the basis of diagrammati
 analysis te
hniques [Noz63, Fet71℄.However, this expansion diverges for lo
al NN potentials due to their repulsive 
ore,iterated tensor 
omponent and bound state.The Brue
kner-Bethe-Goldstone (BBG) approa
h 
an be formulated as a re
astof the perturbative expansion in terms of an e�e
tive NN vertex [Jeu76, Bal07a℄.Indeed, the problemati
 short-range properties of the intera
tion 
an be taken intoa

ount by performing the re-summation of diagrams whi
h des
ribe the s
atteringof a pair of parti
les in the medium. Compared to the va
uum 
ase, the latter is mod-i�ed by the Pauli ex
lusion prin
iple, whi
h blo
ks the lowest-energy intermediatestates, the individual intera
tion of parti
les with the medium in the intermediatestates, and the three-body for
e, whi
h is usually treated by averaging over the thirdparti
le, yielding a medium-dependent two-body intera
tion.An alternative s
heme employed in self-
onsistent Green fun
tion approa
hes tonu
lear matter is the Feynman-Galitskii T-matrix approximation [Mut05℄, whi
hdi�ers from the BBG s
heme by the re-summation of hole-hole s
attering pro
esses,as shown on Fig. 2.1.Both s
hemes, be
ause of the intermediate parti
le/hole propagation lines, yieldresults depending on the starting energy. This means, in parti
ular, that an energy-dependen
e is present, e.g. in the self-energy Σ(k, ω) whenever su
h an e�e
tivevertex is used.On
e the re-summation underlying the s
heme 
hosen has been performed, di-agrammati
 analysis 
an be performed with the e�e
tive intera
tion used as anelementary NN vertex, attention being paid to double-
ounting of diagrams gener-ated by the BBG or Feynman-Galitskii expansion. Fig. 2.2 displays several possiblediagrams entering the self-energy. The �rst line 
ontains the �rst diagrams of thehole-line expansion pra
ti
ed in BBG theory. The �rst term of ea
h series is akin tothe Hartree-Fo
k self-energy (hen
e the name Brue
kner-Hartree-Fo
k approxima-tion, or BHF), but it must be kept in mind that the G-matrix is energy-dependent.

http://dx.doi.org/10.1103/PhysRev.84.350
http://dx.doi.org/10.1016/0370-1573(76)90017-X
http://stacks.iop.org/0954-3899/34/R243
http://link.aps.org/abstract/PRC/v72/e054313


2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 21

Figure 2.1: S
hemati
 presentation of diagrams re-summed in a Brue
kner G-matrixand Feynman-Galitskii T-matrix e�e
tive intera
tions. Whereas theG-matrix only sums parti
le-parti
le �ladders�, the T-matrix treatsparti
le-parti
le and hole-hole s
attering on an equal footing, yieldingadditional diagrams.The two-hole-line diagram for the parti
le self-energy is 
ommonly referred to as arearrangement term, sin
e it 
an be obtained by 
utting an intermediate propagationline in the BHF total energy diagram.The se
ond line of Fig. 2.2 gives diagrams des
ribing the 
oupling of parti
leswith 
olle
tive vibrations des
ribed by the polarization propagator (or response fun
-tion) Π, here de�ned in the ring, or random-phase approximation (RPA), whi
hshall be dis
ussed in 
hapter 3. This whole 
ontribution is usually not taken intoa

ount in in�nite matter studies, where the three-hole-line approximation yieldswell-
onverged results [Son98℄ but has been shown to modify the single-parti
lespe
trum signi�
antly in �nite nu
lei, where surfa
e vibrations play a parti
ularrole [Ber80, Lit06℄.2.2 Energy Density Fun
tional formalismThe Energy Density Fun
tional (EDF) method is frequently 
ited as the most generaltheoreti
al tool in low-energy nu
lear physi
s. Indeed, it is a mi
ros
opi
 tool, in thesense that it fully takes into a

ount the quantal shell stru
ture of the nu
leus, aswell as 
olle
tive e�e
ts when extended to its multi-referen
e variant. At the sametime, it is tra
table for nu
lei going from medium masses to the heaviest ones, aswell as nu
lei in the 
rust of neutron stars, the same values of the redu
ed parameterset asso
iated with the fun
tional being useable for all these systems.Let us �rst des
ribe the mean-�eld approximation whi
h serves as a formal basis,then the EDF method itself.2.2.1 Mean-�eld theory and pairingIt has been known, sin
e the work of Bohr, Mottelson and Pines [Boh58℄, thatnu
lei have 
ommon features with super
ondu
tors, and that the 
lear signatures forpairing between nu
leons of the same spe
ies abound, from the odd-even staggering

http://dx.doi.org/10.1103/PhysRevLett.81.1584
http://www.sciencedirect.com/science/article/B6TVB-473120F-SV/2/30ebce6b37d2f470d1fc79c2eb0fd697
http://link.aps.org/abstract/PRC/v73/e044328
http://link.aps.org/abstract/PR/v110/p936
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Figure 2.2: S
hemati
 presentation of diagrams entering the self-energy Σ(k, ω). (a)One-hole-line (BHF) and two-hole-line 
ontributions for parti
le states,(b) same for hole states. (
) Parti
le-vibration 
oupling 
ontribution.The polarization propagator Π is de�ned in (d); for parti
le states, these
ond-order term has to be substra
ted, being already in
luded in theBHF self-energy.of binding energies to rotational properties.In this se
tion we shall des
ribe the Hartree-Fo
k-Bogolyubov formalism, whi
hallows to des
ribe pairing in a mean-�eld approa
h and is the starting point of theEDF method. We dire
t the reader to 
lassi
 textbooks [Rin00, Fet71℄ for a dis
us-sion of the Hartree-Fo
k (HF) method it extends and the various derivations andinterpretations of the latter. A more thorough dis
ussion of pairing, super�uidity,asso
iated nu
lear observables as well as the relevant mi
ros
opi
 theory is 
ontainedin 
hapter 5.Bogolyubov transformationOur basi
 tool to des
ribe the pair 
ondensation phenomenon, while remaining in aframework as easily tra
table as the independent-parti
le (HF) approximation, is thegeneralized quasiparti
le (q.p.) 
on
ept. Following the introdu
tion of the Bardeen-Cooper-S
hrie�er (BCS) formalism [Bar57a, Bar57b℄, Bogolyubov and Valatin pro-posed a 
anoni
al transformation whi
h allows to treat elementary ex
itations of asuper�uid state as individual degrees of freedom [Bog58, Val58℄. The fully pairedground state of the system is thus a va
uum with respe
t to the operators
β̂†

k =
∑

l

Uk
l ĉ

†
l + V k

l ĉl (2.21)
β̂k =

∑

l

Uk∗
l ĉl + V k∗

l ĉ†l (2.22)where ĉl and ĉ†l are the annihilation and 
reation operators 
orresponding to anarbitrary representation, as already mentioned in the last se
tion.The ve
tors Uk
l and V k

l fully parametrize the quasiparti
le states as well as theva
uum |Φ0〉 de�ned by the requirement that ∀k β̂k|Φ0〉 = 0. In the 
ase of vanishing

http://link.aps.org/abstract/PR/v106/p162
http://link.aps.org/abstract/PR/v108/p1175
http://dx.doi.org/10.1007/BF02745585
http://dx.doi.org/10.1007/BF02745589


2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 23pairing 
orrelations, we have Uk = 0 for hole states and V k = 0 for parti
le states.Otherwise, pairing 
orrelations are introdu
ed by mixing parti
les and holes. In the
ase of a 
ontinuous spe
trum, this results in the vanishing of the dis
ontinuity ofo

upation probabilities at the Fermi level.It is useful to examine the stru
ture of the Bogolyubov transformation. Let uswrite it under matrix form, arranging the operators β̂k and ĉk into ve
tors, then�super-ve
tors� 
ontaining both 
reation and annihilation operators:
(

β̂

β̂†

)
= W†

(
ĉ
ĉ†

)
. (2.23)The transformation matrix W 
an be de
omposed, a

ording to the Blo
h-Messiah-Zumino theorem [Blo62℄, as

W =

(
D 0
0 D∗

)(
U V
V U

)(
C 0
0 C∗

)
. (2.24)This expression involves two transformations of 
reation and annihilation operatorsamong themselves. The �rst one, D, transforms the initial basis into the set of
anoni
al states among whi
h the Bogolyubov transformation takes a simple form.The matri
es U and V , have, themselves, the stru
ture

U =

(
u 0
0 u

)
, V =

(
0 v
−v 0

) (2.25)where we split the 
anoni
al basis in two halves. Hereafter the states belonging tothe two halves will be distinguished by the notation ǩ for the �rst and k̂ for these
ond one, when ne
essary. The notation k will refer to the state asso
iated with
|k〉 in the Cooper pair. The se
ond blo
k of the W-transform performs the mixingof parti
les and holes to generate a set of quasiparti
les de�ning the va
uum |Φ0〉.The sub-matri
es u and v are diagonal, we 
all uǩ and vǩ their eigenvalues, with
U ǩǩ = uǩ = Ukk = uk and V ǩk = vǩ = −V kǩ = −vk.Finally, the C transformation produ
es a di�erent set of quasiparti
les. This lasttransformation 
an be used to diagonalize a single-quasiparti
le Hamiltonian, as willbe dis
ussed in the following.In the representation ĉk, the density matrix of the system, as well as the parti
lenumber, read

ρkl = 〈Φ0|ĉ†l ĉk|Φ0〉 =
∑

m

V m∗
k V m

l ,

N = Tr(ρ̂) =
∑

km

V m∗
k V m

k . (2.26)We see that ea
h quasiparti
le gives a (generally fra
tional) 
ontribution to the par-ti
le number given by the norm of the 
orresponding V k ve
tor. This allows todistinguish between hole-like (|V k|2 > 1/2) and parti
le-like (|V k|2 < 1/2) quasipar-ti
les.The addition of pairing in the quasiparti
le pi
ture involves the de�nition of thepair tensor, or anomalous density matrix
κkl = 〈Φ0|ĉlĉk|Φ0〉 =

∑

m

V m∗
k Um

l , (2.27)

http://dx.doi.org/10.1016/0029-5582(62)90377-2
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h is nonzero only for states mixing di�erent parti
le numbers, whi
h is 
ausedby mixing parti
les and holes in the Bogolyubov transformation.One 
an easily infer from the de�nition of ρ̂ and κ̂ that ρ̂† = ρ̂, and κ̂† =
−κ̂∗ hen
e κ̂T = −κ̂, where κ̂T denotes matrix transposition. Additionally, the
onservation of fermioni
 anti
ommutation rules for the quasiparti
les β̂k, β̂

†
k implyrelations between U and V ve
tors

∑

k

(Um∗
k Un

k + V m∗
k V n

k ) = δmn,
∑

m

(Um
k U

m∗
l + V m∗

k V m
l ) = δkl,

∑

k

(Um
k V

n
k + V m

k Un
k ) = 0,

∑

m

(Um
k V

m∗
l + V m∗

k Um
l ) = 0, (2.28)whi
h translate into the following relationship between ρ̂ and κ̂

ρ̂ ρ̂− κ̂ κ̂∗ = ρ̂. (2.29)This expression generalizes the 
ondition that the density matrix of a Slater deter-minant (vanishing pairing limit of the above) is idempotent, i.e. ρ̂ρ̂ = ρ̂.Let us now 
onsider the properties of the 
anoni
al basis. From the stru
ture of
U and V matri
es, we 
an see that

ρkl = v2
kδlk, κkl = ukvkδlk. (2.30)These expressions allow for an e�
ient 
onstru
tion of lo
al and quasi-lo
al densities,as well as a simple expression for the parti
le number (expressed here for a singlespe
ies, sums and the tra
e being understood a

ordingly),

N = 〈Φ0|
∑

k

ĉ†kĉk|Φ0〉 = Tr(ρ̂) =
∑

k

v2
k. (2.31)They imply, moreover, that in the 
anoni
al basis the Bogolyubov q.p. va
uumtakes the BCS form. Additional properties of this 
ase are dis
ussed in 
hapter 5.Time-reversal symmetryThe Bogolyubov transformation involves a pairwise 
oupling of single-parti
le states.For ea
h quasi-parti
le β̂k, the states |l〉 and |l〉 are taken in two di�erent halves ofthe basis. The distin
tion is made a

ording to symmetries of the intera
tion whi
hprodu
es pair 
ondensation and quantum numbers of the Cooper pair. Pairing be-tween parti
les of the same spe
ies, being the most important and readily observableform o

urring in nu
lei, involves pairs having total spin and angular momentumzero. A

ordingly, paired states are related by time-reversal symmetry [And59℄. The
orresponding operator is antiunitary [Mes58℄. Its a
tion on a single-parti
le wavefun
tion expressed in 
oordinate (r), spin (σ = ±1/2) and isospin (q = ±1/2) spa
eyields

(T̂ ϕ)(rσq) = (−1)1/2−σϕ∗(rσq), (2.32)with σ ≡ −σ. Moreover the property T̂ 2 = −1 holds in the spa
e of states with oddparti
le number, while T̂ 2 = 1 when applied on states with even parti
le-numberparity. For a time-reversal-invariant state, i.e. if T̂ |Φ0〉 = |Φ0〉, the time-reversed

http://www.sciencedirect.com/science/article/B6TXR-46MF54X-5R/1/34d931874a2eaaeba09a0a84cf3f68f4
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h 
anoni
al (basis) state 
an be found in the same basis, whi
h gives aformal de�nition to the 
orresponden
e k → k. It is easy to show that
T̂ |k〉 = ηk|k〉, T̂ |k〉 = −η∗k|k〉, (2.33)with |ηk| = 1. We 
an then 
hoose the states |k〉 and |k〉 so that ηk = 1 and, by
onvention, store the state |k〉 in the �rst half of the basis, i.e. |k〉 = |ǩ〉. This fullyspe
i�es the two halves through ηǩ = 1 and ηk̂ = −1.It may then be interesting to de�ne an anomalous density matrix ρ̃ [Dob84℄,

ρ̃kl = ηlκkl, (2.34)whi
h is Hermitian for time-reversal-invariant systems. In parti
ular, this anomalousdensity 
an be expressed in 
oordinate spa
e, where it has a nonvanishing lo
al(diagonal) 
omponent. The 
orresponding lo
al anomalous density o

urs naturallyin lo
al pairing density fun
tionals for spin-singlet pairing.Time-reversal symmetry requires the pairwise symmetry between quasiparti
les,i.e. Uk = Uk, V k = −V k. The resulting va
uum is a sum of Slater determinantshaving di�erent, but all even, parti
le numbers. It also implies that time-reversalpartner states have the same o

upan
y. Su
h a many-body state 
an thus onlydes
ribe nu
lei with even parti
le numbers. Odd-mass and odd-odd nu
lei requireto break this symmetry by 
reating one or two (unrelated) quasiparti
les on top ofthe fully paired va
uum. Su
h an operation amounts to repla
ing the 
orresponding
β̂k operator in the set de�ning |Φ0〉 (through β̂k|Φ0〉 = 0 ) by β̂†

k, de�ning a newva
uum. The latter is said blo
ked sin
e the 
ontributions of the (β̂k, β̂k) q.p. pairto the pair tensor then vanish.From the de�nition of β̂k and β̂†
k, Eq. (2.22), we see that this operation amountsto ex
hanging

Uk ↔ V k∗, V k ↔ Uk∗. (2.35)The variations of ρ̂ and κ̂ 
orresponding to a one-q.p. addition 
an be dedu
ed fromtheir de�nitions. In parti
ular, the variation of the parti
le number is given by
δN =

∑

l

(
Uk

l U
k∗
l − V k∗

l V k
l

)
, (2.36)whi
h is not, in general, an integer number: in order to obtain this way a reasonablewavefun
tion or density matrix for the intended odd nu
leus, a readjustment has tobe made to the parti
le number of the underlying fully-paired va
uum.Hartree-Fo
k-Bogolyubov equationsThe Hartree-Fo
k-Bogolyubov method [Rin00℄ uses the Bogolyubov quasiparti
leva
uum as a variational ansatz for the wavefun
tion of a super�uid system. Con-sidering a system ruled by a Hamiltonian 
ontaining a kineti
 term and two-bodyintera
tion,

Ĥ = T̂ + V̂ =
∑

kl

tklĉ
†
kĉl +

1

4

∑

klmn

vklmnĉ
†
kĉ

†
l ĉnĉm, (2.37)

http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4
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tion matrix element
vklmn = 〈kl|V̂ |mn〉 − 〈kl|V̂ |nm〉. (2.38)The energy of a 
on�guration |Φ〉 reads

E [Φ] = 〈Φ|Ĥ|Φ〉 =
∑

kl

tklρlk +
1

2

∑

klmn

vklmn

(
ρmkρnl +

1

2
κ∗klκmn

)
, (2.39)where we take advantage of the antisymmetry of v. The fa
t that the q.p. va
uumin
ludes two-body 
orrelations is exhibited by the additional κ∗κ term extendingthe fa
torization of the two-body density matrix 〈ĉ†kĉ

†
l ĉnĉm〉 pertaining to a normalSlater determinant.The HFB approximation for the ground state wave fun
tion 
an be obtained byapplying the Ritz variational prin
iple. As already mentioned, however, the Bo-golyubov transformation yields a state whi
h mixes wave fun
tions having di�erentparti
le numbers. It is possible, however, to 
onserve the average parti
le number byapplying a 
onstraint by introdu
ing Lagrange parameters relative to neutron andproton numbers. The variational pro
edure 
an then be applied to the expe
tationvalue of the modi�ed Hamiltonian,

Ĥ = Ĥ − Λ̂ = Ĥ − λnN̂ − λpẐ, (2.40)(2.41)where N̂ and Ẑ are the neutron and proton number operators, respe
tively. Theexpe
tation value of Ĥ 
orresponds to the shifted energy
E [Φ] = 〈Φ|Ĥ|Φ〉 = E − λnN − λpZ, (2.42)This formulation applies, naturally, when no mixing of the two spe
ies is 
onsidered.The quantities λn and λp 
an be formally de�ned as

λn =
δE
δN

, λp =
δE
δZ

, (2.43)whi
h exhibit their role as 
hemi
al potentials, and the fa
t that the HFB/BCSformalism is initially intended to des
ribe systems large enough to be amenable toa statisti
al treatment or 
oupled to an external reservoir of parti
les.Minimizing the shifted energy Eq. (2.42) with respe
t to quasiparti
le degrees offreedom yields the equations
(
h− λ ∆
−∆∗ −h∗ + λ

)(
Uk

V k

)
= Ek

(
Uk

V k

) (2.44)whi
h involves the parti
le-hole mean �eld h and the parti
le-parti
le or pairing �eld
∆, expressed as matri
es between single-parti
le basis states,

hkm = tkm +
∑

ln

vklmnρnl, ∆kl = −1

2

∑

mn

vklmnκmn. (2.45)In the above expression, λ is a diagonal matrix in isospin spa
e, having diagonalmatrix elements λn between neutron states and λp between proton states. The
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an be obtained by iterating until self-
onsisten
y isrea
hed.The ket |Φ0〉 being the state whi
h yields minimal energy E = E0, the modi�edHamiltonian 
an be rewritten, by expressing parti
le operators through quasiparti
leones and normal-ordering, as [Rin00℄
Ĥ = E0 +

∑

k

Ek β̂
†
kβ̂k + Ĥint, (2.46)where Ĥint is the residual intera
tion between quasiparti
les, whi
h is negle
ted atthe present mean-�eld level. It is a sum of produ
ts of four β̂ or β̂† operators, ea
h ofthese produ
ts being normal-ordered with respe
t to the Bogolyubov q.p. va
uum

|Φ0〉. As a result, it is easy to 
he
k that its expe
tation values in |Φ0〉 and theelementary ex
ited states β̂†
k|Φ0〉 vanishes. The shifted energy of a one-q.p. state isthus

Ek = 〈Φ0|β̂kĤβ̂
†
k|Φ0〉 = E0 + Ek. (2.47)The non-shifted energy 
an be re
overed by adding ba
k the 
ontribution of the
onstraining term, whi
h yields

Ek = 〈Φ0|β̂kĤβ̂
†
k|Φ0〉 = E0 + Ek + λq

∑

l

(
Uk

l U
k∗
l − V k∗

l V k
l

)
, (2.48)

λq being the 
hemi
al potential of the spe
ies relevant to quasiparti
le k, with q = nor p.As mentioned in se
tion 2.2.1, the one-q.p. state does not have an integer,odd parti
le number as is pra
ti
ally required. To obtain the latter, the 
hemi
alpotential has to be adjusted a

ordingly. As a �rst-order approximation, though,one 
an 
onsider that the resulting energy is Ek ≃ E0 +Ek ± λq, depending whetherthe q.p. k is hole-like (−) or parti
le-like (+).2.2.2 Density fun
tional theoryThe ele
tron gas present in solids and mole
ules is another example of a 
orrelatedfermion system. It was demonstrated by Hohenberg and Kohn that the wave fun
-tion of this system, hen
e all its properties, 
ould be expressed as a fun
tional of thelo
al ele
tron density [Hoh64℄. In parti
ular, the energy of the 
orrelated ele
trongas 
an be expressed as a fun
tional of the density, this fun
tional being universal,i.e. valid for all ele
tron numbers and external (ioni
) potentials the ele
trons 
ouldbe pla
ed in. The density and energy of the ground state 
an thus be obtained byminimizing the energy fun
tional with respe
t to the density (taken in the manifoldof densities generated from a sensible many-body state).This result, known as the Hohenberg-Kohn variational prin
iple, was �rst in-tended at semi
lassi
al implementations. However, the most su

essful embodimentof this prin
iple was proposed by Kohn and Sham [Koh65℄, who suggested generatingthe density from an auxiliary Slater determinant. The method was later extendedto involve the non-lo
al density matrix [Gil75℄ as well as spin and 
urrent densities.It was also shown that super
ondu
tivity 
ould be taken into a

ount by in
ludinga dependen
e on the anomalous density in the fun
tional [Oli88, Kur99℄. The most

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.12.2111
http://dx.doi.org/10.1103/PhysRevLett.60.2430
http://dx.doi.org/10.1103/PhysRevLett.83.2628


28 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYgeneral formulation of density fun
tional theory (DFT) was proposed by Valiev andFernando [Val97℄, who showed that one 
ould build a fun
tional of any family ofobservables 
orresponding to Hermitian operators.We restri
t this short dis
ussion to one-body operators, making the distin
tionbetween parti
le-hole and parti
le-parti
le ones. Following the extended Hohenberg-Kohn pro
edure, the energy fun
tional of a super�uid system 
an thus be formallyde�ned as
E [ρ̂, κ̂, κ̂∗] = F [Q,P, P ∗] = min

Φ→Q,P
〈Φ|Ĥint + V̂ext|Φ〉 (2.49)where we make the distin
tion between the intrinsi
 Hamiltonian Ĥint and an ex-ternal potential V̂ext, and Φ → Q,P means that the sear
h is performed over trialwave fun
tions Φ whi
h yield the spe
i�ed input normal and anomalous densities,de�ned through the operators

Q̂(x) =
∑

kl

q(x)kl ĉ
†
kĉl, (2.50)

P̂ (x) =
1

2

∑

kl

(
p(x)kl ĉ

†
kĉ

†
l + p(x)∗kl ĉlĉk

)
, (2.51)

q(x) and p(x) being Hermitian and skew-symmetri
 matri
es, respe
tively, while xis a set of 
oordinates and indi
es ne
essary to spe
ify ea
h density. We then have
Q(x) = Tr

(
Q̂(x)ρ̂

)
=
∑

kl

q(x)klρlk, (2.52)
P (x) = Tr

(
P̂ (x)κ̂

)
=
∑

kl

p(x)klκlk. (2.53)The fun
tional of Eq. (2.49) is universal in the sense that it is valid for all parti
lenumbers and external potentials of the form V̂ext = v · Q̂ + w · P̂ , v and w beingfun
tions of x and · the s
alar produ
t de�ned by v · Q̂ =
∫
dx v(x)Q̂(x).In the original formulation of DFT, Q(x) is the lo
al parti
le density. It istempting to generalize this in order to extra
t more information from the auxiliarystate and potentially improve the predi
tive power of the fun
tional more e�
ientlythat with a re-summation of all missing e�e
ts in the lo
al fun
tional. In addition,a broader range of observables 
an be 
ontrained this way. However, it should bestressed that in prin
iple, no Kohn-Sham approa
h 
an depend on the full densitymatrix, as it is guaranteed that the latter, being a proje
tor, 
an not be mat
hedwith the exa
t density matrix of a 
orrelated state (the 
ase being less 
lear for thegeneralized density matrix whi
h appears with pairing).Given the exa
t fun
tional of Eq. (2.49), the ground state energy and densities
an be obtained as

E0 = min
ρ,κ,κ∗

E [ρ, κ, κ∗] (2.54)
= min

Q,P,P ∗

F [Q,P, P ∗]. (2.55)Several remarks are in order 
on
erning the transposition of su
h a formalismto nu
lear stru
ture as is 
urrently envisioned. The �rst 
on
ern to be raised is

http://arxiv.org/abs/cond-mat/9702247


2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 29related to symmetries of the underlying Hamiltonian. Indeed, any relevant Ĥ must
ommute with operator su
h as total A-body linear and angular momentum, andparti
le numbers. A nu
leus being a self-bound system, 
ontrary to the ele
tron gasin a solid, it has to be 
onsidered isolated, without any external potential a
tingon it. Its wave fun
tion then fa
torizes into a 
enter-of-mass part and an intrinsi
part, and the density 
orresponding to the ground state in the laboratory frame is,trivially, a 
onstant [Kre01℄.The intrinsi
 density, on the other hand, is an A-body operator. However, asshown by Engel for a model system, [Eng07℄ a useful approximate Kohn-Sham fun
-tional of the intrinsi
 density 
an be built. Formally adding an external potentialterm a
ting only on the 
enter of mass, in order to obtain a lo
alized state amenableto a DFT des
ription has also been proposed [Gir07, Gir08a℄. The 
ase of rotationis more 
ompli
ated, due to the 
oupling between 
olle
tive and intrinsi
 motionas well as the di�
ulty to properly de�ne angular 
oordinates, to the point that itwas suggested to work only with spheri
ally-symmetri
 states and densities [Gir08b℄.Also, the pair tensor is non-zero only for states mixing di�erent parti
le numbers.The �exa
t� pair density should thus be de�ned from transition matrix elementsbetween A and A± 2 states, or before proje
ting onto good parti
le numbers in ana

urate perturbative s
heme.Moreover, sin
e DFT makes no dire
t referen
e to the system's wave fun
tionwhatsoever (the Kohn-Sham Slater determinant should not be taken as su
h), ex-pli
it restoration of broken symmetries fails to �nd a pla
e in its framework. Moregenerally, pra
ti
al appli
ations of Eq. (2.49) require to build a fun
tional of therelevant densities Q and P able to in
lude all 
orrelations. This implies missing theexpli
it des
ription of 
olle
tive e�e
ts su
h as shape 
oexisten
e, whi
h is known tobe essential for understanding the stru
ture and spe
tros
opy of many nu
lei, su
has 72,74Kr [Kor04, Ben06b℄, 100Zr [Woh86, Ma
89a, Ska93℄ or neutron-de�
ient leadisotopes [Dug03, Ben04℄.No extension of DFT, in the form of a Hohenberg-Kohn existen
e theorem, ableto provide a �rm formal ground to 
al
ulations �beyond the mean �eld� has beenproposed yet. The de�nition of the EDF method pro
eeds by analogy with the self-
onsistent mean �eld method, performed with a density-dependent intera
tion, andits extensions su
h as the generator 
oordinate method (GCM) and the random-phase approximation (RPA).2.2.3 Single- and multi-referen
e EDF methodsThe single-referen
e (SR) EDF method uses a Bogolyubov quasiparti
le va
uumas a referen
e state to generate the density matrix ρ and pair tensor κ enteringthe expression for the energy fun
tional, the densities Q and P being in prin
iplemat
hed with their values in the nu
leus's rest frame. The approa
h 
onsisting inwriting down the fun
tional and �xing its parameters dire
tly has been attemptedon several o

asions [Neg72, Fay98, Fay00, Per04, Bal07b, Kor08℄. Herafter we shalladopt the more 
onventional s
heme where the fun
tional is expressed as the result ofnormal and anomalous 
ontra
tions of distin
t e�e
tive, density-dependent verti
esfor the parti
le-hole (p-h) and parti
le-parti
le (p-p) 
hannels, whi
h 
orrespond,respe
tively, to 
ouplings of Q-densities only, and 
ouplings involving P -densities.

http://dx.doi.org/10.1103/PhysRevLett.86.2984
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http://dx.doi.org/10.1103/PhysRevC.69.064303
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30 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYThe following general expression for the energy fun
tional results,
E [ρ̂, κ̂, κ̂∗] =

∑

kl

tklρlk +
1

2

∑

klmn

vρρ
klmn[ρ̂]ρmkρnl +

1

4

∑

klmn

vκκ
klmn[ρ̂]κ∗klκmn (2.56)where tkl is the kineti
 Hamiltonian (with an e�e
tive 
orre
tion for spurious 
enter-of-mass motion, see Ref. [Ben03b℄), and vρρ[ρ̂] and vκκ[ρ̂] are e�e
tive, medium-dependent parti
le-hole and parti
le-parti
le intera
tions, respe
tively (regulariza-tion subtleties may a
tually arise in the de�nition of the parti
le-parti
le fun
tional,se
tion 2.4).Initially, both are devised to mat
h as 
lose as possible the physi
al 
ontent of ane�e
tive intera
tion based on the re-summation of (
lasses of) diagrams in perturba-tion theory. The trial state 
ould then be understood as an unperturbed state usedas a starting point for the perturbative expansion. This is less 
lear in the 
ase ofa DFT-oriented interpretation, however, and the rather simple e�e
tive intera
tionsused up to now la
k prominent 
hara
teristi
s of mi
ros
opi
 ones su
h as energydependen
e, or �nite range and non-lo
ality, whi
h makes a dire
t link between oneand the other rather di�
ult. As a side note, noti
e that perturbation theory pro-vides the energy of a system as a fun
tional of the Green fun
tion (restri
ted to thesingle-parti
le G for two-body intera
tions) [Noz63℄ of whi
h DFT 
ould be formallyseen as a spe
ial 
ase.If vρρ = vκκ and the 
orresponding intera
tion matrix elements are antisym-metri
 with respe
t to inter
hanging the two parti
les or holes, the above energyredu
es to the standard HFB expression. Nonetheless, perturbative approa
hes tosuper�uidity indi
ate that the e�e
tive verti
es in the two 
hannels should be dif-ferent (see 
hapter 5). Moreover, the antisymmetry of the parti
le-hole intera
tionis often broken, either for pra
ti
al or physi
al reasons, as this may enable to ad-just useful degrees of freedom in the parametrization of the fun
tional. Typi
alexamples are the independent adjustment of isos
alar and isove
tor spin-orbit terms[Rei95, Rei99℄, or the use of Landau parameters to �x independently the spin-isospinterms of the fun
tional [Ben02, Zdu05℄.Minimizing Eq. (2.56) yields HFB-like equations, Eq. (2.44), with the potentials

h and ∆ rede�ned as
hkl =

δE
δρlk

, ∆kl =
δE
δκ∗lk

. (2.57)Again, these expressions redu
e to the HFB potentials, Eq. (2.45), when the energyof Eq. (2.56) 
orresponds to the HFB energy. In general, additional rearrangementterms arise in Eq. (2.57) from the fun
tional derivation of the intera
tions themselveswith respe
t to the density. This will be of some importan
e in the dis
ussion ofsingle-parti
le energies below.Multi-referen
e (MR) EDF 
al
ulations extend SR ones by allowing to mix di�er-ent referen
e states (usually obtained from separate SR-EDF 
al
ulations). Again,this requires to attribute a 
ertain meaning to the wave fun
tions obtained from theSR-EDF 
al
ulations. Just as the wave fun
tion used in SR-EDF is the same asin the HFB method, The MR-EDF ansatz is inspired by the generator 
oordinatemethod (GCM) [Rin00℄,
|Φ0〉 =

∫
daf(a)|Φa

0〉 (2.58)

http://dx.doi.org/10.1103/RevModPhys.75.121
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2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 31where |Φa
0〉 is a Bogolyubov quasiparti
le va
uum obtained by a 
onstrained 
al
ula-tion (for 
on�guration mixing) or by a group transformation (for symmetry restora-tion), a being a (set of) 
olle
tive 
oordinate(s) and/or order parameters pertainingto the breaking of given symmetries. The mixing is implemented by the weightfun
tion f(a), whi
h is given by a group transformation in the 
ase of symmetryrestoration, otherwise it is a solution of the Hill-Wheeler equation [Hil53, Rin00℄

∫
db
[
H(a, b) − EMR

ν I(a, b)
]
fν(b) = 0, (2.59)where EMR

ν is the energy of the mixed state des
ribed by fν , I is the overlap kernel
I(a, b) ≡ 〈Φa

0|Φb
0〉, (2.60)and H the �Hamiltonian� kernel, whi
h, on
e more, redu
es in the Hamiltonian(HFB/GCM) 
ase to the non-diagonal matrix element

H(a, b) ≡ 〈Φa
0|Ĥ|Φb

0〉. (2.61)When working with a generalized energy fun
tional, H is rede�ned as
H(a, b) = E [ρ̂ab, κ̂ab, κ̂

ab
], (2.62)where the densities obtained in the q.p. va
uum have been repla
ed by the followingtransition densities,

ρab
kl ≡ 〈Φa

0|ĉ†l ĉk|Φb
0〉

〈Φa
0|Φb

0〉
, κab

kl ≡ 〈Φa
0|ĉlĉk|Φb

0〉
〈Φa

0|Φb
0〉

, κab
kl ≡ 〈Φa

0|ĉ†kĉ
†
l |Φb

0〉
〈Φa

0|Φb
0〉

. (2.63)One last time, this 
hoi
e is 
onsistent with the spe
ial HFB/GCM 
ase. In themost 
omplete and involved appli
ations to nu
lear stru
ture, a is a set of 
oordi-nates 
orresponding to the gauge angles relative to parti
le-number symmetry, Eulerangles and deformation 
oordinates, the weight fun
tion fa being partly determinedby symmetries and partly by the Hill-Wheeler equation. Symmetry restoration and
on�guration mixing are thus performed simultaneously [Mey95℄, yielding a multi-dimensional problem [Ben08℄. The full variational problem would require simulta-neous optimization of fa and of the states |Φa
0〉. In pra
ti
e, |Φa

0〉 is optimized withrespe
t to the MR energy fun
tional only when fa is known a priori, whi
h leads tothe variation-after-proje
tion (VAP) approa
h used in the 
ase of parti
le-numberrestoration [She00, Sto07℄.A major di�
ulty arises, though, in the above de�nitions: the transition densitiesdiverge for orthogonal states. While this is not a 
on
ern in the Hamiltonian 
ase[Ang01b℄, sin
e the 
orresponding 
ontributions to the energy 
an
el out, the generalEDF kernel H will indeed diverge. A well-understood 
ase where this 
an happenis parti
le-number proje
tion of a wave fun
tion where a single-parti
le level 
rossesthe 
hemi
al potential [Dob07℄. The terms responsible for this divergen
e have beenre
ently identi�ed as those 
ontributing to self-intera
tion and self-pairing, and a
orre
tion s
heme derived [La
08℄. This 
orre
tion remains limited, however, tolow-order polynomial density dependen
es in the e�e
tive intera
tions.The straight generalization of the Hamiltonian �mean �eld and beyond� pi
tureto a density-fun
tional-inspired one is thus rather tri
ky. In this work, we shall notperform MR-EDF 
al
ulations, yet our results will be analyzed, whenever possible,with the underlying physi
s in mind.
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32 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYEDF and single-parti
le energiesIn Kohn-Sham DFT, single-parti
le (or quasiparti
le) energies obtained from theauxiliary potentials (ĥ, ∆̂) have a priori no parti
ular meaning. However, theprospe
t of obtaining single-parti
le spe
tra from su
h 
al
ulations is of great in-terest. This has been studied in semi
ondu
tors, where, for example, it wouldallow to extra
t band gaps [Sha85℄. A proper determination of s.p. energies asde�ned from Green fun
tions, however, involves solving a modi�ed Dyson equation[Sha85, Bha05℄, i.e. going ba
k to perturbation theory.On the other hand, provided one 
an build a fun
tional whi
h is valid not onlyfor the ground state, but also for a su�
ient number of ex
ited ones, elementaryex
itations be
ome a starting point for the general dis
ussion of the ex
itation spe
-trum [Gor96℄. A �rst step in this dire
tion is the 
ontrol of the e�e
tive mass, hen
ethe density of s.p. states, through non-lo
al terms [Bha05℄. Ex
ited state energies
an then be 
al
ulated by applying a 
onstraint or adding quasiparti
le ex
itations,whi
h is a rigorous approa
h when the 
al
ulations are performed self-
onsistently.Physi
al single-parti
le energies are thus mass di�eren
es between the ground stateof the A-nu
leon system, and ground or ex
ited states in A± 1-nu
leon ones.In the very end, nothing prevents us from trying to adjust parameters of thefun
tional to mat
h s.p. energies in addition to other observables. If eigenenergiesof the EDF potentials are used, 
are must be taken to make an expli
it link withself-
onsistent mass di�eren
es. For quasi-parti
les added on top of spheri
al nu
lei,a small rearrangement 
ontribution 
an be expe
ted in the SR framework [Rut98,Zal08℄.Further 
omments are in order, though, 
on
erning the mi
ros
opi
 de�nition ofs.p. energies and their 
al
ulation in a MR-EDF s
heme. Nu
lear single-parti
le en-ergies 
an be measured by stripping and pi
kup rea
tions. Su
h experiments usuallyyield a non-trivial spe
trum where s.p. levels are fragmented due to 
orrelations,i.e. measured states are not pure, single quasiparti
les but result from the 
ouplingof the q.p. to other degrees of freedom.This is 
ommonly dis
ussed in the framework of the intera
ting shell modelas a 
oupling of several elementary ex
itations. In su
h a pi
ture [Cau05℄, whi
hamounts to de
omposing the Hamiltonian into an e�e
tive single-parti
le (monopole)part and a residual intera
tion a
ting in a redu
ed model spa
e, the single-parti
leenergy 
an be re
overed from the spe
trum using spe
tros
opi
 fa
tors. A similare�e
t is obtained when performing parti
le-vibration 
oupling [Ber80, Lit06℄ usingthe (quasiparti
le) random phase approximation [Bla77, Sev02℄ for the 
olle
tivevibrations. In these 
ases, the 
oupling to 
olle
tive modes fragments the single-parti
le strength (measured in terms of spe
tros
opi
 fa
tors, or spe
tral fun
tions,Eqs. (2.8) and (2.9)) and yields a lowest fragment with an energy lowered 
omparedto the initial s.p.e. (thus 
loser to the Fermi level), whi
h translates into a denserspe
trum and higher e�e
tive mass.Su
h a parti
le-vibration 
oupling s
heme 
an be understood as an approxi-mation of the full MR-EDF 
al
ulation of the odd nu
leus, whi
h we take as anidealized standard. Indeed, RPA, or in its EDF-based embodiment, linearized time-dependent EDF [Ben03b℄, 
an be 
onsidered as a low-amplitude-motion limit of aMR-EDF formalism [Jan64, Sev06℄.The EDF method thus has the potential to give a faithful a

ount of single-parti
le motion, subje
t to the 
ondition that all relevant 
olle
tive degrees of free-
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2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 33dom are taken into a

ount by symmetry restoration and 
on�guration mixing. This
learly remains to be implemented in full-�edged form and on a systemati
 footing.Single-parti
le energies and mass di�eren
esIn order to 
al
ulate a mass di�eren
e between two adja
ent nu
lei (of masses Aand A ± 1), we have to 
reate a quasiparti
le on top of the A-body ground state(possibly with a parti
le number adjusted to obtain the right number of parti
lesin the one-q.p. state, see Eq. (2.48) and 
hapter 5), then resume self-
onsistentminimization. Further, it should be ultimately possible to perform a full MR-EDF
al
ulation of the odd system.In order to understand the workings of the SR-EDF method in this respe
t, letus express the energy of a the system following the addition of a single quasiparti
le(without any self-
onsistent rearrangement of the nu
leus) with an expansion up tose
ond order in the 
orresponding variation of the density matrix and pair tensor:
E [ρ̂+ δρ̂, κ̂+ δκ̂, κ̂∗ + δκ̂∗] = E [ρ̂, κ̂, κ̂∗]

+ hklδρkl +
1

2
(∆klδκ

∗
lk + ∆∗

klδκlk)

+
1

2
vphklmnδρmkδρnl +

1

2
vppklmnδκ

∗
klδκmn

+
1

4
δρlk

[
δE

δρlkδκ∗nm

δκ∗nm +
δE

δρlkδκnm

δκnm

]

+ . . . (2.64)The �rst line in Eq. (2.64) is the fully paired ground state energy, while the se
ondline 
orresponds to the quasiparti
le energy, as in the HFB 
ase, Eq. (2.48). Thethird line involves the parti
le-hole and parti
le-parti
le residual intera
tions,
vphklmn =

δE
δρmkδρnl

, vppklmn =
δE

δκ∗klδκmn

. (2.65)In the stri
t HFB 
ase, these are (up to a fa
tor) the antisymmetrized intera
tionHamiltonian, i.e. vph = v, vpp = v/2. In this 
ase the third line vanishes, sin
e
vklmnδρmkδρnl +

1

2
vklmnδκ

∗
klδκmn

=
1

2
vklmn [δρmkδρnl − δρmlδρnk + δκ∗klδκmn] = 0, (2.66)as 
an be veri�ed by writing down the density variations in terms of quasiparti
le

U and V ve
tors. In the general EDF 
ase, the verti
es are di�erent, density-dependent (whi
h introdu
es non-antisymmetri
 rearrangement terms, whi
h allowthe (A+1)th parti
le to modify the intera
tion energy of the A 
ore parti
les by alter-ing the density on whi
h the intera
tions depend) and may be non-antisymmetrized.The 
an
ellation of se
ond-order terms does not o

ur anymore. The energy of aone-q.p. state thus 
ontains a self-intera
tion 
ontribution (dire
t terms not 
an-
elled by ex
hange ones) and a self-pairing one [La
08℄. The latter 
orresponds toterms of the form vκκ
kkkk

, whi
h 
an be interpreted as the s
attering of a pair ofparti
les onto the same state, whi
h gives a spurious pairing energy 
ontributionsin
e it is not 
an
elled by the opposite parti
le-hole term arising in stri
t HFB. As



34 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYthere is some freedom in the distribution of non-
an
elled terms between the two
ontributions, we may refer to their sum as quasiparti
le self-intera
tion (QSI). Thesame argument 
an be put forward for the fourth line, i.e. rearrangement termsof the parti
le-parti
le intera
tion, whi
h vanish in the Hamiltonian 
ase and fordensity-independent pairing intera
tions. These 
an, in any 
ase, be expe
ted to besmall.Also, not in
luded in the above expressions and dis
ussion is the variation of the
enter-of-mass 
orre
tion with mass number A [Zal08℄, whi
h results in a slight andsystemati
 variation of single-parti
le level spa
ings.Self-
onsistent minimization of the energy will thus yield an energy lower thanEq. (2.64), but the position of the resulting minimal energy with respe
t to thestarting one 
an not be inferred a priori. The fa
t that QSI o

urs in part due todi�erent parti
le-parti
le and parti
le-hole intera
tions is puzzling, as the latter isrequired by diagrammati
 analysis. One may wonder whether su
h a self-pairinge�e
t may be found in the latter method, and if it is the 
ase, what kind of physi
smay be 
ontained therein. This question unfortunately belongs to the list of 
on
ernstoo involved to be addressed in this manus
ript.Although self-intera
tion 
ontributions to one-quasiparti
le state energies arenon-vanishing, they are, qualitatively, e�e
ts of order 1/A 
ompared to bare q.p.energies generated by the intera
tion with all nu
leons. Depending on the situation,this will have to be 
ompared with the magnitude of the e�e
ts under investigation.2.3 Skyrme energy density fun
tionalThe usual ansatz for the Skyrme e�e
tive intera
tion [Cha97, Cha98℄ leads to anenergy density fun
tional whi
h 
an be written as the sum of a kineti
 term, theSkyrme potential energy fun
tional that models the e�e
tive strong intera
tion inthe parti
le-hole 
hannel, a pairing energy fun
tional 
orresponding to a density-dependent 
onta
t pairing intera
tion, the Coulomb energy fun
tional (
al
ulatedusing the Slater approximation [Sla51℄) and 
orre
tion terms to approximately re-move the ex
itation energy from spurious motion 
aused by broken symmetries[Ben03b℄,
E = Ekin + ESkyrme + ECoulomb + Epairing + E
orr . (2.67)In this se
tion we fo
us on the parti
le-hole part of the fun
tional 
onsisting ofall the terms mentioned above ex
ept the pairing part, whi
h will be the subje
t ofthe next se
tion.2.3.1 Quasi-lo
al energy density fun
tionalThroughout this work, we will use an e�e
tive Skyrme energy fun
tional that 
or-responds to an antisymmetrized density-dependent two-body vertex in the parti
le-hole 
hannel of the strong intera
tion, that 
an be de
omposed into a 
entral, spin-orbit and tensor 
ontribution

vSkyrme = v
 + vt + vLS . (2.68)Other 
hoi
es for the writing of the Skyrme energy fun
tional are possible and havebeen made in the literature, whi
h might a�e
t the form of the e�e
tive intera
tion,
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2.3. SKYRME ENERGY DENSITY FUNCTIONAL 35its interpretation and the results obtained from it. We will 
ome ba
k to that inse
tion 4.2.2 below.The Skyrme energy density fun
tional is a fun
tional of lo
al densities and 
ur-rents
ESkyrme =

∫
d3r HSkyrme(r) , (2.69)whi
h has many te
hni
al advantages 
ompared to �nite-range for
es su
h as theGogny for
e. All ex
hange terms have the same stru
ture as the dire
t terms, whi
hgreatly redu
es the number of ne
essary integrations during a 
al
ulation.Lo
al densities and 
urrentsThe general density matrix, expressed in 
oordinate, spin and isospin variables,reads

ρ(rσq, r′σ′q′) = 〈ĉ†r′σ′q′ ĉrσq〉. (2.70)Throughout this manus
ript we will assume that we have pure proton and neutronstates, ex
ept for the 
al
ulation of the residual intera
tion, in appendix C.3, wherethe general framework leads to more 
ompa
t formulae. The formal EDF frameworkfor the general 
ase in
luding proton-neutron mixing is dis
ussed in Ref. [Per04℄. Asof now, let us 
onsider that the matrix 
an be written independently for neutronsand protons,
ρ(rσq, r′σ′q′) = ρq(rσ, r

′σ′) δqq′, (2.71)and separate the spin part [Dob00℄
ρq(rσ, r

′σ′) = 〈ĉ†r′σ′q ĉrσq〉 = 1
2
ρq(r, r

′)δσσ′ + 1
2
sq(r, r

′) · 〈σ′|σ̂|σ〉 (2.72)where
ρq(r, r

′) =
∑

σ

ρq(rσ, r
′σ), sq(r, r

′) =
∑

σσ′

ρq(rσ, r
′σ′) 〈σ′|σ̂|σ〉 . (2.73)The Skyrme energy fun
tional up to se
ond order in derivatives that we will intro-du
e below 
an be expressed in terms of seven lo
al densities and 
urrents [Per04℄that are de�ned as

ρq(r) = ρq(r, r
′)
∣∣
r=r′

sq(r) = sq(r, r
′)
∣∣
r=r′

τq(r) = ∇ · ∇′ ρq(r, r
′)
∣∣
r=r′

Tq,µ(r) = ∇ · ∇′ sq,µ(r, r
′)
∣∣
r=r′

jq(r) = − i
2
(∇ − ∇

′) ρq(r, r
′)
∣∣
r=r′

Jq,µν(r) = − i
2
(∇µ −∇′

µ) sq,ν(r, r
′)
∣∣
r=r′

Fq,µ(r) = 1
2

z∑

ν=x

(
∇µ∇′

ν + ∇′
µ∇ν

)
sq,ν(r, r

′)
∣∣
r=r′

(2.74)whi
h are the density ρq(r), the kineti
 density τq(r), the 
urrent (ve
tor) density
jq(r), the spin (pseudove
tor) density sq(r), the spin kineti
 (pseudove
tor) den-sity Tq(r), the spin-
urrent (pseudotensor) density Jq,µν(r), and the tensor-kineti
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36 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORY(pseudove
tor) density Fq(r). The densities ρq(r), τq(r) and Jq,µν(r) are time-even,while sq(r), Tq(r), jq(r) and Fq(r) are time-odd. For a detailed dis
ussion of theirsymmetries see Ref. [Dob00℄. There are other lo
al densities up to se
ond orderin derivatives that 
an be 
onstru
ted, but when 
onstru
ting an energy fun
tionalthey either 
annot be 
ombined with others to terms with proper symmetries orthey lead to terms that are not independent from the others [Dob96a℄.The Cartesian spin-
urrent pseudotensor density Jµν 
an be de
omposed intopseudos
alar, (anti-symmetri
) ve
tor and (symmetri
) tra
eless pseudotensor parts,all of whi
h have well-de�ned transformation properties under rotations
Jµν(r) = 1

3
δµν J

(0)(r) + 1
2

z∑

κ=x

ǫµνκ J
(1)
κ (r) + J (2)

µν (r) , (2.75)where δµν is the Krone
ker symbol and ǫµνκ the Levi-Civita tensor. The pseu-dos
alar, ve
tor and pseudotensor parts expressed in terms of the Cartesian tensorare given by
J (0)(r) =

z∑

µ=x

Jµµ(r) , (2.76)
J (1)

κ (r) =
z∑

µ,ν=x

ǫκµν Jµν(r) ,

J (2)
µν (r) = 1

2
[Jµν(r) + Jνµ(r)] − 1

3
δµν

z∑

κ=x

Jκκ(r) .The ve
tor spin 
urrent density J(1)(r) ≡ J(r) is often 
alled spin-orbit 
urrent,as it enters the spin-orbit energy density. Some authors, though, 
all J(r) spindensity, whi
h is ambiguous when dis
ussing the 
omplete energy density fun
tionalin
luding terms that 
ontain the time-odd s(r).For the formal dis
ussion of the physi
al 
ontent of the Skyrme energy fun
tionalit is of advantage to re
ouple the proton and neutron densities to isos
alar andisove
tor densities, for example
ρ0(r) = ρn(r) + ρp(r) , ρ1(r) = ρn(r) − ρp(r) (2.77)and similarly for all other ones. As we assume pure proton and neutron states, onlythe Tz = 0 
omponent of the isove
tor density is non-zero, whi
h we have exploitedto drop the index Tz from the isove
tor densities ρ1Tz(r), et
.Skyrme's 
entral for
eIn ea
h part of this work, we will use di�erent parametrizations of the density-dependent 
entral Skyrme intera
tion. The number of density-dependent terms willbe 
hosen as one or two depending on spe
i�
 requirements. The most general (forour purpose) 
entral Skyrme intera
tion reads
v̂
(R, r) = t0 (1 + x0P̂σ) δ(r)

+ 1
6
t3 (1 + x3P̂σ) ργ(R) δ(r)

+ 1
6
t6 (1 + x6P̂σ) ργ′

(R) δ(r)

+ 1
2
t1 (1 + x1P̂σ)

[
k̂′2 δ(r) + δ(r) k̂2

]

+ t2 (1 + x2P̂σ) k̂′ · δ(r) k̂ (2.78)
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2.3. SKYRME ENERGY DENSITY FUNCTIONAL 37where we use the shorthand notation
r = r1 − r2 , R = 1

2
(r1 + r2) , (2.79)while k̂ is the usual operator for relative momenta

k̂ = − i
2
(∇̂1 − ∇̂2) (2.80)and k̂′ its 
omplex 
onjugate a
ting on the left. Finally, P̂σ is the spin ex
hangeoperator that 
ontrols the relative strength of the S = 0 and S = 1 
hannels for agiven term in the two-body intera
tion

P̂σ = 1
2
(1 + σ̂1 · σ̂2) . (2.81)As said above, we restri
t ourselves to a parametrization of the Skyrme energyfun
tional as obtained from the average value of an e�e
tive two-body vertex inthe referen
e quasiparti
le va
uum. We de
ompose the isos
alar and isove
tor partsof the resulting energy density fun
tional H
 into a part H
,even

t that is 
omposedentirely of time-even densities and 
urrents, and a part Hc,odd
t that 
ontains termswhi
h are bilinear in time-odd densities and 
urrents and vanishes in intrinsi
allytime-reversal invariant systems

H
(r) =
∑

t=0,1

[
H
,even

t (r) + H
,odd
t (r)

]
. (2.82)Both H
,even

t and H
,odd
t are of 
ourse 
onstru
ted su
h that they are time-even; theyare given by [Eng75, Per04℄

H
,even
t = Aρ

t [ρ0] ρ
2
t + A∆ρ

t ρt∆ρt + Aτ
t ρtτt − AT

t

z∑

µ,ν=x

Jt,µνJt,µν ,

H
,odd
t = As

t [ρ0] s
2
t −Aτ

t j2t + A∆s
t st · ∆st + AT

t st · Tt , (2.83)where Aρ
t [ρ0] and As

t [ρ0] are density dependent 
oupling 
onstants that depend onthe total (isos
alar) density. The detailed relations between the 
oupling 
onstantsof the fun
tional and the 
entral Skyrme for
e are given in appendix A. The notationre�e
ts that two pairs of terms inH
,even
t andH
,odd

t are 
onne
ted by the requirementof lo
al gauge invarian
e of the Skyrme energy fun
tional [Dob95a℄.Zero-range spin-orbit for
eThe spin-orbit for
e used with most standard Skyrme intera
tions
v̂LS(r) = iW0 (σ̂1 + σ̂2) · k̂′ × δ(r) k̂ (2.84)is a spe
ial 
ase of the one proposed by Bell and Skyrme [Bel56, Sky58b℄. As above,the 
orresponding energy fun
tional [Eng75, Per04℄ 
an be separated into a time-even and a time-odd term

HLS(r) =
∑

t=0,1

[
HLS,even

t (r) + HLS,odd
t (r)

] (2.85)where
HLS,even

t = A∇·J
t ρt∇ · Jt, HLS,odd

t = A∇·J
t st · ∇ × jt (2.86)whi
h share the same 
oupling 
onstant as, again, both terms are linked by the lo
algauge invarian
e of the energy fun
tional. The relation between the A∇·J

t and theone 
oupling 
onstant of the two-body spin-orbit for
e W0 is given in appendix A.
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38 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYSkyrme's tensor for
eAlthough rather un
ommon in the Skyrme parametrizations published so far, thetensor for
e has been the subje
t of renewed attention, and will be the main topi
of 
hapter 4.By 
onvention, the tensor operator in the tensor for
e is 
onstru
ted using theunit ve
tors in the dire
tion of the relative 
oordinate er = r/|r| and subtra
ting
σ̂1 · σ̂2

Ŝ12 = 3(σ̂1 · er)(σ̂2 · er) − σ̂1 · σ̂2 , (2.87)su
h that its mean value vanishes for a relative S state, whi
h de
ouples the 
entraland tensor 
hannels of the intera
tion. The operator Ŝ12 
ommutes with the totalspin [Ŝ12, Ŝ
2] = 0, therefore it does not mix partial waves with di�erent spin, i.e. spinsinglet and spin triplet states. In parti
ular, it does not a
t in spin singlet states atall, as Ŝ12P̂S=0 = 0 (see se
tion 13.6 of Ref. [Nil95℄). As a 
onsequen
e, there is nopoint in multiplying a tensor for
e with an ex
hange operator (1+xtP̂σ) as done forthe 
entral for
e, as this will only lead to an overall res
aling of its strength.The derivation of the general energy fun
tional from a zero-range two-body ten-sor for
e is dis
ussed in detail in Refs. [Flo75, Per04℄. We repeat here the detailsrelevant for our dis
ussion, starting from the two zero-range tensor for
es proposedby Skyrme [Sky56, Sky58a℄
v̂t(r) = 1

2
te

{[
3 (σ̂1 · k′) (σ̂2 · k̂′) − (σ̂1 · σ̂2) k̂′2 ] δ(r)

+ δ(r)
[
3 (σ̂1 · k̂) (σ̂2 · k̂) − (σ̂1 · σ̂2) k̂2

]}

+to

[
3 (σ̂1 · k̂′) δ(r) (σ̂2 · k̂) − (σ1 · σ2) k̂′ · δ(r) k̂

] (2.88)where r, k̂ and k̂′ are de�ned as above, Eqs. (2.79) and (2.80). The 
orrespondingenergy density fun
tional 
an again be de
omposed in a time-even and a time-oddpart
Ht(r) =

∑

t=0,1

[
Ht,even

t (r) + Ht,odd
t (r)

] (2.89)with [Per04℄
Ht,even

t = −BT
t

z∑

µ,ν=x

Jt,µνJt,µν − 1
2
BF

t

( z∑

µ=x

Jt,µµ

)2

− 1
2
BF

t

z∑

µ,ν=x

Jt,µνJt,νµ

Ht,odd
t = BT

t st · Tt +BF
t st · Ft +B∆s

t st · ∆st +B∇s
t (∇ · st)

2 , (2.90)where we already used the lo
al gauge invarian
e of the energy fun
tional [Per04℄ forthe expressions of the 
oupling 
onstants. The a
tual expressions for the 
oupling
onstants expressed in terms of the two 
oupling 
onstants te and to of the tensorfor
es are given in appendix A.The �even� term proportional to te in the two-body tensor for
e (2.88) mixesrelative S and D waves, while the �odd� term proportional to to mixes relative
P and F waves. Thus, due to the fa
t that both a
t in spin-triplet states only,antisymmetrization implies that the former a
ts in isospin-singlet states (and hen
e
ontributes to the neutron-proton intera
tion only) and the latter in isospin-triplet
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2.3. SKYRME ENERGY DENSITY FUNCTIONAL 39states (
ontributing both to the like-parti
le and neutron-proton intera
tions). The
entral and spin-orbit intera
tions as we use them, however, do not 
ontain D or
F wave intera
tions. From this point of view, one might suspe
t a mismat
h when
ombining the various intera
tion terms. From the point of view of the energyfun
tional (2.90), however, all 
ontributions from the zero-range tensor for
e are ofthe same se
ond order in derivatives as the 
ontributions from the non-lo
al part ofthe 
entral Skyrme for
e (2.83) and from the spin-orbit for
e (2.86).In the time-even part of the energy fun
tional Ht,even

t , there appear three dif-ferent 
ombinations of the Cartesian 
omponents of the spin 
urrent tensor. Theterm proportional to BT
t 
ontains the symmetri
 
ombination JµνJµν as it alreadyappeared in the energy fun
tional from the 
entral Skyrme intera
tion (2.83), whilethe term proportional to BF

t 
ontains two di�erent terms, namely the antisymmetri

ombination JµνJνµ and the square of the tra
e of Jνµ.Combining 
entral and tensor intera
tionsThe Skyrme energy fun
tional representing 
entral, tensor, and spin-orbit intera
-tions is given by
ESkyrme = E
 + ELS + Et

=

∫
d3r

∑

t=0,1

{
Cρ

t [ρ0] ρ
2
t + Cτ

t (ρtτt − j2t ) + C∆ρ
t ρt∆ρt

+ Cs
t [ρ0] s

2
t + C∇s

t (∇ · st)
2 + C∆s

t st · ∆st

+ CT
t

(
st ·Tt −

z∑

µ,ν=x

Jt,µνJt,µν

)

+ CF
t

[
st · Ft − 1

2

( z∑

µ=x

Jt,µµ

)2

− 1
2

z∑

µ,ν=x

Jt,µνJt,νµ

]

+ C∇·J
t (ρt∇ · Jt + st · ∇ × jt)

}
. (2.91)This fun
tional 
ontains all possible bilinear terms up to se
ond order in the deriva-tives that 
an be 
onstru
ted from lo
al densities and that are invariant under spatialand time inversion, rotations, and lo
al gauge transformations [Per04℄.Some of the 
oupling 
onstants are 
ompletely de�ned by the standard 
entralSkyrme for
e, i.e. Cρ

t = Aρ
t , Cs

t = As
t , Cτ

t = Aτ
t , and C∆ρ

t = A∆ρ
t , two by thespin-orbit for
e, C∇J

t = A∇J
t , others by the tensor for
e, CF

t = BF
t and C∇s

t = B∇s
t ,while some are the sum of 
oupling 
onstants from both 
entral and tensor for
es,

CT
t = AT

t +BT
t , and C∆s

t = A∆s
t +B∆s

t .The three terms bilinear in Jµν 
an be re
oupled into terms bilinear in its pseu-dos
alar, ve
tor, and pseudotensor 
omponents J (0), J (1), and J (2), Eq. (2.76), whi
his preferred by some authors [Per04℄
z∑

µ,ν=x

Jt,µνJt,µν = 1
3

(
J

(0)
t

)2
+ 1

2
J2

t +

z∑

µ,ν=x

J
(2)
t,µνJ

(2)
t,µν (2.92)

1
2

[( z∑

µ=x

Jt,µµ

)2

+

z∑

µ,ν=x

Jt,µνJt,νµ

]
= 2

3

(
J

(0)
t

)2 − 1
4
J2

t + 1
2

z∑

µ,ν=x

J
(2)
t,µνJ

(2)
t,µν . (2.93)

http://link.aps.org/abstract/PRC/v69/e014316
http://link.aps.org/abstract/PRC/v69/e014316


40 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYAfter 
ombining (2.91) with the kineti
, Coulomb, pairing and other 
ontributionsfrom (2.67), the mean-�eld equations are obtained by standard fun
tional deriva-tive te
hniques from the total energy fun
tional, see se
tion 2.2, appendix C.3 andRefs. [Ben03b, Per04℄.The 
omplete Skyrme energy fun
tional (2.91) has quite 
ompli
ated a stru
ture,and in the most general 
ase leads to seven distin
t mean �elds in the single-parti
leHamiltonian [Per04℄. In the present manus
ript, we enfor
e spheri
al symmetrywhi
h removes all time-odd densities and all but one out of the nine 
omponents ofthe spin-
urrent tensor Jµν as will be outlined in se
tion 4.2.1.2.3.2 Skyrme energy fun
tional in spheri
al symmetryFor the rest of this manus
ript, we will 
on
entrate on spheri
al nu
lei, enfor
ingspheri
al symmetry of the (A)-body wave fun
tions. As a 
onsequen
e, the 
anoni
alsingle-parti
le wave fun
tions ϕi 
an be labeled by ji, ℓi and mi. The index ni labelsthe di�erent states with same ji and ℓi. The fun
tions ϕi separate into a radial part
ui(r) and an angular and spin part, represented by a tensor spheri
al harmoni
 Ωjℓm

ϕnjℓm(r) =
unjℓ(r)

r
Ωjℓm(r̂), (2.94)

Ωjℓm(r̂) =
∑

mℓσ

〈ℓmℓsσ|jm〉 Y ℓ
ml

(θ, φ) |sσ〉,with s ≡ 1/2. Spheri
al symmetry also enfor
es that all magneti
 substates of ϕnjℓmhave the same o

upation probability v2
njℓm ≡ v2

njℓ for all −j ≤ m ≤ j. For a stati
spheri
al state, all time-odd densities are zero sq(r) = Tq(r) = jq(r) = Fq(r) = 0,as are the 
orresponding mean �elds in the single-parti
le Hamiltonian.Altogether, the Skyrme part of the energy density fun
tional in spheri
al nu
leiis redu
ed to
HSkyrme =

∑

t=0,1

{
Cρ

t [ρ0] ρ
2
t + C∆ρ

t ρt∆ρt

+ Cτ
t ρtτt + 1

2
CJ

t J2
t + C∇·J

t ρt∇ · Jt

}
, (2.95)where we have introdu
ed an e�e
tive 
oupling 
onstant CJ

t of the J2
t tensor termsat spheri
ity.2.4 Lo
al pairing fun
tionalFor our EDF to be fully de�ned, we need to spe
ify its essential pairing part. Inthis se
tion we fo
us on lo
al pairing fun
tionals formally generated from zero-rangee�e
tive pairing intera
tions, and spe
i�
 issues asso
iated with them. A di�erentkind of pairing fun
tional will be presented in 
hapter 5.Let us write down the 
oordinate-spa
e expression of the pair density matrix,

ρ̃(r1, σ1, q; r2, σ2, q) = (−)1/2+σ2〈ĉr2σ2q ĉr1σ1q〉, (2.96)as well as the lo
al pair density,
ρ̃q(r) =

∑

σ

ρ̃(r, σ, q; r, σ, q) =
∑

σ

(−)1/2+σκ(r, σ, q; r, σ, q). (2.97)
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2.4. LOCAL PAIRING FUNCTIONAL 41The pairing fun
tional 
ommonly used in 
onjun
tion with the Skyrme-intera
tion-derived parti
le-hole fun
tional 
an be formally derived as the parti
le-parti
le 
on-tra
tion of a lo
al, zero-range density-dependent delta intera
tion (DDDI),
vpairq (r) = Vpair

q

(
1 − c

ρ0

ρsat) 1 − Pσ

2
δ(r), (2.98)whi
h is here de�ned by a strength Vpair

q and a parameter c whi
h determines thedensity dependen
e and hen
e the lo
alization of the pairing �eld, in the volume ofthe nu
leus (for c = 0) or at the surfa
e (c = 1) [JD01℄. The 
orresponding pairingfun
tional reads
Epair[ρ̃, ρ̃∗] =

∫
d3r C ρ̃

q ρ̃
∗
q ρ̃q (2.99)where the 
oupling 
onstant is density-dependent and given as

C ρ̃
q =

Vpair
q

4

(
1 − c

ρ0

ρsat) . (2.100)Unfortunately, su
h a theory diverges. Indeed, the pairing �eld derived fromsu
h a fun
tional is lo
al,
∆(r1σ2q; r2σ2q) = Ũq(r1) δ(r1 − r2) (−)1/2+σ2δσ1σ2

,

Ũq(r) =
δE

δρ̃∗q(r)
= 2Cpair

q (r) ρ̃q(r1) (2.101)whi
h means that matrix elements of ∆, i.e. pairing gaps are essentially independentfrom the momentum or energy of single-parti
le states.It is useful at this point to make use of the BCS gap equation in in�nite matter,whi
h is further dis
ussed in 
hapter 5.
∆q(k) = −

∫ k

0

k′2dk′

2π3
Vpair

q

∆q(k
′)

2
√
ε2

k′ + ∆q(k′)2
. (2.102)It follows immediately that ∆q(k

′) is in fa
t a 
onstant. With εk = ~2k2/2m, thisexpression diverges linearly when k
 → ∞.Summing over quasiparti
les with non-bounded q.p. energy yields a pair densitywhi
h diverges as 1/|r1 − r2| for r1 − r2 → 0 [Bru99, Bul02a℄, making the pairingenergy unde�ned [Dob96b℄. It is thus ne
essary to regularize ρ̃, as well as all den-sities. This 
an be a
hieved by substra
ting the 
ontributions to the density andpair tensor of states lying outside of a pairing window de�ned as an energy intervalin the single-parti
le (HF), 
anoni
al or quasiparti
le spe
trum. A trun
ation ofsingle-parti
le bases is ne
essary for pra
ti
al appli
ations whatever the fun
tionalused, however for a lo
al pairing fun
tional no 
onvergen
e of observables is obtainedwith respe
t of this trun
ation, whi
h has to be de�ned as a part of the model.As an example and to be more spe
i�
, let us give the expressions for the 
asewhere the 
uto� is implemented in the quasiparti
le basis,
ρ
kl = 〈Φ0|ĉ†l ĉk|Φ0〉 =

∑

m

fm V m∗
k V m

l ,

κ
kl = 〈Φ0|ĉlĉk|Φ0〉 =
∑

m

f ′
m V m∗

k Um
l , (2.103)
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http://dx.doi.org/10.1103/PhysRevC.65.051305
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42 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYwhere fm and f ′
m are equal to one at the Fermi level, and put to zero for statesoutside a given energy window (whi
h has an upper bound only for fk, and mayalso have a lower one for f ′

m). In pra
ti
e, a smooth 
uto� is implemented, whi
halleviates 
onvergen
e issues due to transitions of q.p. states in and out of thewindow during iterations:
fm =

1

1 + exp[(εm − ε+
 )/εd] , f ′
m = fm

1

1 + exp[−(εm + ε−
 )/εd] , (2.104)where εk is the single-parti
le equivalent energy of quasiparti
le k [Ben05℄, εc the
uto� energy and εd a di�useness parameter, typi
ally of the order of 1 MeV.Thus, the fun
tional a
tually used involves not the stri
t lo
al pair density, buta regularized one, the other densities (in
luding in the parti
le-hole 
hannel) beingrepla
ed by their regularized 
ounterparts as well. Su
h a pairing fun
tional isnot, stri
tly speaking, the expe
tation value of the e�e
tive intera
tions given thusfar, whi
h serves only as a formal intermediate. In addition to the parameters ofEq. (2.98), the fun
tional needs a 
uto� energy to be fully de�ned. Moreover, thestrength parameter has to be adjusted 
onsistently with the 
uto�, whi
h underlinesthe fa
t that ε±
 is not only a numeri
al parameter, but an integral part of the model.As shown by Matsuo [Mat06℄, the energy 
uto� employed in a lo
al pairingfun
tional plays a role similar to the range of a �nite-range intera
tion with respe
tto the stru
ture of the non-lo
al pair density, and 
an be adjusted so as to 
ontrolthe latter rather pre
isely. The value of ε+
 that was found appropriate in thisrespe
t was of the order of 50 MeV. The fa
t that a (regularized) lo
al fun
tional
an des
ribe nu
lear pairing with a satisfa
tory a

ura
y 
omes from the fa
t that thespatial extension of the Cooper pair wave fun
tion (de�ned, up to a normalizationfa
tor, as the non-lo
al part of ρ̃) is typi
ally larger than the range of the underlyingintera
tion, implying that the spatial dependen
e of the latter is not resolved.The lo
al or non-lo
al pair density, however, is not an observable, and the fa
tthat an additional parameter is introdu
ed may seem unsatisfa
tory. To addressthis issue, Bulga
 and Yu [Bul02b℄ introdu
ed a method to regularize the pair den-sity and obtain a 
uto�-independent fun
tional (for su�
iently large 
uto�s). Thedivergen
e in the pair density is of ultraviolet 
hara
ter, 
aused by the a

umulationof 
ontributions from high-momentum 
ontinuum states, for whi
h a lo
al densityapproximation is reasonable. One 
an indeed obtain an a

urate analyti
al expres-sion for the divergent part of the pair density at ea
h point r and for ea
h spe
ies
q by studying a uniform gas subje
t to a potential Uq(r), a pairing �eld Ũq(r), ane�e
tive mass m∗

q(r) and a 
hemi
al potential λq. The regularized pair density thenreads
ρ̃regq = ρ̃
q + Ũq Y (kFq, k
), (2.105)where the fun
tion Y (kFq, k
) is given by

Y (kFq, k
) =
m∗

qk

2π2~2

[
1 − kFq

2k
Ln(kFq + k

kFq − k
)] , (2.106)whi
h involves the position-dependent quantities m∗

q , kFq and k
, de�ned by
~2k2

Fq

2m∗
q

+ Uq = λq,
~2k

2m∗

q

+ Uq = ε+
 . (2.107)
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2.4. LOCAL PAIRING FUNCTIONAL 43Here, we 
onsider only an upper bound for the pairing window, with ε−
 = −∞. Thelo
al e�e
tive Fermi momentum kFq may be an imaginary number where λq < Uq,but it is easy to 
he
k that Y stays real in that 
ase. The regularized densityis independent from ε+
 when the latter is taken su�
iently large. One requires,moreover, that observables 
omputed with the regularized fun
tional are also 
uto�-independent. Being 
losely linked with odd-even mass di�eren
es, the pairing �eld
Ũ is su
h a quantity. The pairing fun
tional being quadrati
 in ρ̃, we must thenhave

Ũq =
δE
δρ̃∗q

= gqρ̃
reg
q (2.108)

gq being a position/density-dependent but 
uto�-independent quantity. One mayrewrite the above as
Ũq = gregq ρ̃q,

1

gregq
=

1

gq
− Y (kFq, k
). (2.109)We �nally rewrite the pairing energy fun
tional as

Epair[ρ̃, ρ̃∗] =

∫
d3r Ũq ρ̃


∗
q =

∫
d3r gregq ρ̃
∗q ρ̃
q

=

∫
d3r gq ρ̃


∗
q ρ̃regq (2.110)

=

∫
d3r C ρ̃

q ρ̃
reg∗
q ρ̃regq , C ρ̃

q =
g2

q

gregq
= gq[1 − gqY (kFq, k
)].We see that the pairing energy is not 
uto�-independent; in fa
t, it is a divergentquantity. However, it is not an observable. The total energy, in turn, is 
uto�-independent thanks to a 
an
ellation between the divergent 
ontributions of thepairing and kineti
 energies (in
luding e�e
tive-mass terms), whi
h behave similarlyfor large k
 [Bul02a℄.

http://dx.doi.org/10.1103/PhysRevC.65.051305
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Chapter 3New Constraints for the Nu
learEnergy Density Fun
tionalThe a

ura
y and predi
tive power of EDF models needed for unknown regions ofthe nu
lear 
hart still leave a lot of room for improvement. The phenomenologi
alnature of Skyrme fun
tionals makes their ability to faithfully predi
t observables orphenomena not linked with those used for their 
onstru
tion quite weak. Indeed,the limited number of adjustable parameters (
ompared to the wealth of nu
lear ob-servables to be mat
hed) turns �tting a Skyrme fun
tional into an over
onstrainedproblem (whi
h, of 
ourse, does not prevent some parts of it from being under
on-strained).As a dire
t 
onsequen
e, many properties of existing parametrizations are biasedto the �tting pro
edure and the limited analyti
al form of the Skyrme intera
tion,rather than to physi
al reasoning. A well-known example is the equation of state(EOS) of Pure Neutron Matter (PNM), whi
h is sometimes subje
t to a pathologi
al
ollapse at high density when not expli
itly 
onstrained. This is problemati
 insofaras one of the major 
hallenges of 
ontemporary nu
lear theory is to predi
t propertiesof very isospin-asymmetri
 nu
lear systems, i.e. neutron ri
h nu
lei and matter inneutron stars. Experimental data being unavailable in this domain of isospin, onehas started relying on ab-initio theoreti
al results to 
onstrain isove
tor propertiesof the fun
tional. It has led to the 
onstru
tion of the �Sa
lay-Lyon� SLy series ofparametrizations [Cha97, Cha98℄ by �tting (among other quantities) a theoreti
alequation of state of neutron matter.Isove
tor features of the nu
lear EOS are 
ru
ial for a good understandingof neutron stars, exoti
 nu
lear 
ollisions produ
ed at radioa
tive beam fa
ilitiesand to des
ribe the stru
ture of exoti
 nu
lei. For instan
e, the density depen-den
e of the volume symmetry energy determines the proton fra
tion in β equi-librium in neutron stars, whi
h ultimately drives the 
ooling rate and neutrinoemission [Lat04℄. The high-density part of the symmetry energy, whi
h happensto be strongly model dependent, also in�uen
es signi�
antly the isospin di�usion inheavy-ion 
ollisions [Che05℄. Finally, the low-density part of the symmetry energyis 
orrelated with the size of neutron skins in �nite nu
lei [Typ01℄.Beyond global isospin-dependent properties of the EOS, the isove
tor part ofnu
leon-dependent quantities may in�uen
e the behavior of the above mentionedsystems. Thus, 
ollision observables depend on the momentum dependen
e of themean-�eld, in parti
ular on its isove
tor 
omponent [Li04a, Li04b℄. Also, some45
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46 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDFproperties of neutron stars require a pre
ise knowledge of isos
alar and isove
tornu
leon e�e
tive masses [Bet90, Far01℄. The latter, whi
h drives the splitting ofneutron and proton e�e
tive masses with neutron/proton asymmetry, will serve asa starting point for the study presented in this 
hapter. Indeed, a lot of e�orts hasre
ently been devoted to the mi
ros
opi
 
hara
terization of neutron and protone�e
tive masses in in�nite Asymmetri
 Nu
lear Matter (ANM) [Bom91, Kub97,Zuo99, Gre01, Hof01, Liu02, Riz04, Ma04, Dal05a, Sat06℄. Either in ANM or innu
lei, the two spe
ies a
quire di�erent e�e
tive masses. This property is quanti�edby the di�eren
e ∆m∗(I) = m∗
n(I) −m∗

p(I), where I = (ρn − ρp)/(ρn + ρp) is theisospin asymmetry while ρn and ρp denote neutron and proton densities, respe
tively.Note that the di�erent e�e
tive masses m∗ dis
ussed in the following always referin fa
t to the ratio m∗/m, where m is the bare nu
leon mass. The latter is taken tobe the same for neutrons and protons.This e�e
tive-mass splitting, though, is only one of a wealth of quantities whi
h
an be subje
t to 
omparison between ab-initio predi
tions and EDF models. Inthis 
hapter we present results of a 
lassi
al yet long unused test: the separation ofin�nite Symmetri
 Nu
lear Matter (SNM) potential energy per parti
le into spin-isospin 
hannels.We shall also pay parti
ular attention to 
ontrolling instabilities (i.e. non-physi
al spontaneous breaking of spin, isospin and/or spatial symmetries), and 
or-relate ∆m∗(I) with ve
tor properties of the fun
tional. We thus investigate thebehavior of the latter with respe
t to the breaking of time-reversal invarian
e andthe onset of spin polarization, looking for an overall 
onsisten
y 
he
k of its spin-isospin 
ontent. Indeed, su
h properties will be
ome more and more important asone attempts to use full-�edged Skyrme fun
tionals to study odd-mass nu
lei, 
al
u-late rotational properties through self-
onsistent 
ranking 
al
ulations, or use moregeneral dynami
al methods [Ben02℄.This 
hapter is organized as follows: in se
tion 3.1 we present the set of Skyrmeparametrizations used and examine basi
 properties of nu
lear matter and �nitenu
lei. From then on, in se
tion 3.2 we perform a more detailed study of the spin-isospin 
ontent of the fun
tionals and of their stability against �nite-size spin andisospin perturbations using response fun
tions in the random-phase approximation(RPA).3.1 Constraining the isove
tor e�e
tive massAs mentioned in se
tion 2.1, the nu
leon e�e
tive mass m∗ is a key property 
hara
-terizing the propagation of (quasi)nu
leons through the nu
lear medium [Jeu76℄. Itis a reminder of the non-lo
ality and energy dependen
e of the nu
leon self-energy
Σ(k, ω), themselves originating from the �nite range and non-lo
ality in time andspa
e of the in-medium e�e
tive nu
leon-nu
leon intera
tion. Mean-�eld-like theo-ries of �nite nu
lei or in�nite matter rely on a quasiparti
le approximation, and thusin
lude only a limited part of the e�e
ts asso
iated with the energy dependen
e of
Σ(k, ω), while negle
ting fragmentation of the spe
tros
opi
 strength. In this 
on-text, either mi
ros
opi
 [Bal99℄ or making use of phenomenologi
al intera
tions orfun
tionals [Ben03b℄, EDF methods do not 
orrespond to a naive Hartree-Fo
k the-ory and always amount to renormalizing a 
ertain 
lass of 
orrelations into thee�e
tive vertex. However, the energy dependen
e of the self-energy arising from the
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3.1. CONSTRAINING THE ISOVECTOR EFFECTIVE MASS 47
orrelations only in�uen
es the position of the quasi-parti
le peak energy.Let us re
all that our approa
h of the nu
lear EDF method is to aim, ultimately,at building fun
tionals whi
h reprodu
e desired observables at the multi-referen
elevel (MR-EDF), i.e. �beyond the mean �eld�. We thus have to �leave room� for
orre
tions arising from 
orrelations added on top of the single-referen
e (SR) 
al-
ulations whi
h we use as an exploration tool.Thus, the e�e
tive mass adjusted at the pure mean-�eld level is not expe
tedto generate single-parti
le spe
tra mat
hing exa
tly experimental data extra
tedthrough binding energy di�eren
es from neighboring odd-mass nu
lei. In parti
u-lar, the 
oupling of single-parti
le motion to surfa
e vibrations in 
losed-shell nu
leiis known to in
rease the density of states at the Fermi surfa
e and thus the ef-fe
tive mass [Ber80, Lit06, Gor03℄. An isos
alar e�e
tive mass m∗
s lying in theinterval 0.7/0.8 in SNM, is able to a

ount for a good reprodu
tion of both isos
alarquadrupole giant resonan
es data in doubly 
losed-shell nu
lei [Liu76℄ and of single-parti
le spe
tra in neighboring ones provided parti
le-vibration 
oupling has beenproperly in
luded. When the latter 
oupling is taken into a

ount, the e�e
tivemass be
omes greater than one for states near the Fermi surfa
e. Certainly, a lotremains to be done to understand these features mi
ros
opi
ally in more involved
ases [Cha06b℄. This is not only true for mid-shell nu
lei where the 
oupling to bothrotational and vibrational states 
an be important, but also for exoti
 nu
lei wherethe 
oupling to the 
ontinuum be
omes 
ru
ial and where shape 
oexisten
e and/orlarge amplitude motion appear more systemati
ally.In very exoti
 systems, the isove
tor behavior of m∗

p and m∗
n should play an im-portant role. However, so far, no experimental data from �nite nu
lei has alloweda determination of the e�e
tive mass splitting as a fun
tion of neutron ri
hness.In this 
ontext, ab-initio 
al
ulations of ANM are of great help. Non-relativisti
Brue
kner-Hartree-Fo
k (BHF) 
al
ulations, with or without three-body for
e, and,with or without rearrangement terms in the self-energy, predi
ted ∆m∗(I) to besu
h that m∗

n ≥ m∗
p in neutron-ri
h matter, that is, for I ≥ 0. Su
h a 
on
lusion wasalso rea
hed by 
al
ulating the energy dependen
e of the symmetry potential (theLane potential [Lan62℄) within a phenomenologi
al formalism [Li04a℄. The latterresult was 
on�rmed by mi
ros
opi
 Dira
-Brue
kner-Hartree-Fo
k (DBHF) 
al
u-lations [Sam05℄. The situation regarding the predi
tion of the e�e
tive mass splittingwas 
omplexi�ed due to an apparent 
ontradi
tion between results obtained fromBHF [Bom91, Zuo99℄ and DBHF 
al
ulations [Hof01℄. However, the situation was�nally 
lari�ed in Refs. [Ma04, Dal05a℄ where the importan
e of the energy depen-den
e of the self-energy and the need to 
ompare the non-relativisti
 e�e
tive masswith the ve
tor e�e
tive mass in the relativisti
 framework [Jam89℄ were pointedout.Thus, the sign of the splitting is rather solidly predi
ted. However, its amplitudeis subje
t to a mu
h greater un
ertainty. Starting from that observation, the goal ofthe present se
tion is to study the impa
t of the e�e
tive-mass splitting on propertiesof exoti
 nu
lei predi
ted by Skyrme-EDF 
al
ulations. As far as the e�e
tive-mass splitting is 
on
erned, one expe
ts 
onsequen
es onto stru
ture properties ofneutron-ri
h nu
lei. As a relatively large asymmetry may be ne
essary to reveal thein�uen
e of the splitting, data from nu
lei not yet studied experimentally shouldprovide 
ru
ial information in that respe
t. As the e�e
tive mass governs the densityof states at the Fermi surfa
e (together with the spin-orbit and the tensor for
es),
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48 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDFthe amplitude of the splitting may in�uen
e properties su
h as masses and singleparti
le properties of exoti
 nu
lei, the evolution of isotopi
 shifts a
ross neutron-ri
h
losed-shell nu
lei or shell 
orre
tions in superheavy nu
lei around the (N = 184, Z =
120) island of stability [Ben99a, Kru00, Ben01, Ber01℄. Also, neutron and proton
orrelations beyond the mean-�eld should develop rather di�erently depending onthe dire
tion and amplitude of the e�e
tive-mass splitting. This 
ould be true forstati
 and dynami
al pairing 
orrelations as well as for the 
oupling to vibrationaland rotational states. Finally, the e�e
tive mass splitting should leave its �ngerprintonto the 
hara
teristi
s of isove
tor vibrational states of di�erent sorts in neutron-ri
h nu
lei [Paa05℄.3.1.1 Fitting proto
olTrying to keep a 
oheren
e, throughout this work, in the way we 
onstru
t Skyrmefun
tionals, we take the �tting proto
ol used to de�ne the SLy fun
tionals [Cha97,Cha98℄ as a basis for the present Study. Also, we pay attention to the fa
t that anyimproved or 
omplexi�ed fun
tional in
ludes all features validated by the SLy ones.We presently take the SLy5 parametrization as a starting point. Thus, the two-body part of the 
enter of mass 
orre
tion is omitted whereas the J2 terms are fullykept. The spin-orbit term is the standard one, with a single parameter adjusted onthe splitting of the 3p neutron level in 208Pb.Within this general s
heme, we have built a series of three new Skyrme intera
tionparametrizations, denoted hereafter f−, f0 and f+. The departures from the SLyproto
ol 
onsidered presently are (i) a better 
ontrol of spin-isospin instabilities viaLandau parameters (ii) the use of two density-dependent zero-range terms [Co
04℄(iii) a 
onstraint on the isove
tor e�e
tive mass, su
h that, in neutron-ri
h systems,
m∗

n < m∗
p for f−, m∗

n = m∗
p for f0 and m∗

n > m∗
p for f+.With two density dependent terms, the 
ompressibility and the isos
alar e�e
tivemass are no longer bound together and 
an be 
hosen independently. However, thisis not dire
tly used here and an isos
alar e�e
tive mass ofm∗

s = 0.7, 
lose to the SLy5value, is 
hosen for the three parametrizations f−, f0, f+. The additional freedombrought about by the se
ond density-dependent term is only used to adjust moreeasily the high-density part of the PNM EOS (see below). In the end, the onlyparameter subje
t to variation between f−, f0 and f+ is the isove
tor e�e
tive mass
m∗

v whi
h, m∗
s being 
onstant, drives the splitting ∆m∗(I).In the present work, we use the SLy5 intera
tion as a referen
e, and in
lude a
omparison with the LNS parametrization [Cao06℄ whi
h was also built to mat
hthe splitting of e�e
tive masses and the neutron matter EOS predi
ted by BHF
al
ulations. The SkP intera
tion [Dob84℄, initially built for the study of pairinge�e
ts, will be used for a spe
ial purpose in the dis
ussion about instabilities.3.1.2 Elementary properties of studied fun
tionalsAs we fo
us on the behavior of e�e
tive masses m∗

q with isospin asymmetry, we re
allthat these quantities are related to the dependen
e of the energy density fun
tional,

http://dx.doi.org/10.1103/PhysRevC.60.034304
http://dx.doi.org/10.1103/PhysRevC.61.034313
http://dx.doi.org/10.1016/S0370-2693(01)00863-2
http://dx.doi.org/10.1016/S0375-9474(01)00524-3
http://dx.doi.org/10.1016/j.physletb.2004.12.011
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.015
http://dx.doi.org/10.1103/PhysRevC.73.014313
http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4


3.1. CONSTRAINING THE ISOVECTOR EFFECTIVE MASS 49Table 3.1: In�nite nu
lear matter properties of the Skyrme fun
tionals quoted inthe text. The quantities ρsat and E/A denote the density and energy perparti
le at saturation in SNM. The symmetry energy and the 
ompress-ibility (for symmetri
 matter) are respe
tively 32 MeV and 230 MeV forSLy5 and all fx parametrizations. In the 
ase where m∗
s ∼ 0.7, κs ∼ 0.43,so we have ∆m∗ > 0 if κv & 0.43.Parametrization ρsat E/A m∗

s κv m∗
v ∆m∗SLy5 0.161 -15.987 0.697 0.25 0.800 -0.182

f− 0.162 -16.029 0.700 0.15 0.870 -0.284
f0 0.162 -16.035 0.700 0.43 0.700 0.001
f+ 0.162 -16.036 0.700 0.60 0.625 0.170LNS 0.175 -15.320 0.825 0.38 0.727 0.227SkP 0.170 -16.590 1.030 0.32 0.760 0.418Eqs. C.29�C.32, on kineti
 densities τq, as

~2

2m∗
q(I)

=
∂H
∂τq

=
~2

2m
+ Cτ

0 ρ0 + qI Cτ
1 ρ0

m

m∗
q(I)

≡ m

m∗
s

+ qI

(
m

m∗
s

− m

m∗
v

) (3.1)where ρ0 is the s
alar-isos
alar density and q = +1,−1 respe
tively for neutrons andprotons. The splitting of e�e
tive masses, quanti�ed by
∆m∗(I)

m
=

m∗
n(I)

m
−
m∗

p(I)

m
, (3.2)is governed by the isos
alar and isove
tor e�e
tive masses

m

m∗
s

= 1 + 2m
~2 Cτ

0 ρ0 ≡ 1 + κs, (3.3)
m

m∗
v

= 1 + 2m
~2 (Cτ

0 − Cτ
1 ) ρ0 ≡ 1 + κv. (3.4)We use the usual 
onvention for the isove
tor e�e
tive mass, whi
h stems fromits de�nition through the enhan
ement fa
tor κv of the Thomas-Rei
he-Kuhn sumrule [Boh79℄. However, m∗

v and κv are not isove
tor quantities in the sense ofisove
tor 
ouplings of the fun
tional.In the following, we shall dis
uss the value of ∆m∗(I) at I = 1, whi
h we note
∆m∗ in the following, for the sake of brevity. We have

∆m∗

m
=

2(κv − κs)

(1 + κs)2 − (κv − κs)2
, (3.5)su
h that ∆m∗ > 0 for κv > κs, or equivalently m∗

v < m∗
s , or Cτ

1 < 0.Bulk properties of fx parametrizations are displayed in Table 3.1. We note that,while the position of the saturation point varies little between our parametrizations

http://dx.doi.org/10.1016/0370-1573(79)90079-6
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onsisten
y is lost in the 
ase of LNS and SkP. These propertiesdepend on the observables used in the �tting pro
edure. In the 
ase of LNS, thesaturation point relates to an Extended Brue
kner-Hartree-Fo
k (EBHF) 
al
ula-tion [Zuo99℄, predi
ting values of (E/A)sat and ρsat whi
h are larger than empiri
alones. A similar but lesser trend is observed for SkP. In this 
ase it seems to be 
orre-lated with the 
hoi
e of e�e
tive masses and their interplay with other parameters ofthe intera
tion. Indeed, binding energies 
omputed with SkP 
ompare satisfa
torilywith experimental ones, while LNS su�ers in this respe
t from the la
k of readjust-ment of the saturation point on nu
lear data. As it has been shown in Ref. [Ber05℄,nu
lear binding energies are highly sensitive to the 
hoi
e of the energy at satura-tion, whi
h is therefore 
onstrained to a very tight interval if one wants to reprodu
esu
h quantities. This 
onstraint is espe
ially tight 
ompared to the un
ertainty ofab-initio predi
tions. Despite the �t of surfa
e properties (C∆ρ
0 parameter) on a setof nu
lear data, the a

ura
y of binding energies predi
ted by LNS is of the orderof 5%, to be 
ompared with less than 1% for SLy5.3.1.3 Properties of the nu
lear matter EOSIt is interesting to note that SLy parametrizations were �tted to PNM EOS withthe idea of improving isospin properties of the fun
tionals. One 
onsequen
e wasto generate fun
tionals with ∆m∗ < 0, in opposition to ab-initio predi
tions. Onthe other hand, older fun
tionals su
h as SIII [Bei75a℄ and SkM∗ [Bar82b℄, whi
hwere not �tted to PNM, had ∆m∗ > 0. The same exa
t situation happens forthe Gogny intera
tion [Cha06a℄. Thus, improving global isove
tor properties (EOS)seems to deteriorate those related to single-parti
le states (m∗
v) with 
urrently usedfun
tionals. This 
an be better understood by examining the expressions for SNMand PNM EOS:

E
A

(ρ0, I = 0) =
3

5

~2

2m

(
3π2

2

)2/3

ρ
2/3
0 + Cρ

0 (ρ0) ρ0 + Cτ
0

3

5

(
3π2

2

)2/3

ρ
5/3
0 , (3.6)

E
A

(ρ0, I = 1) =
3

5

~2

2m

(
3π2
)2/3

ρ
2/3
0

+ [Cρ
0 (ρ0) + Cρ

1 (ρ0)]ρ0 + [Cτ
0 + Cτ

1 ]
3

5

(
3π2
)2/3

ρ
5/3
0 . (3.7)If Cρ

t (ρ0) 
oe�
ients only 
ontain one low power of the density (∝ ρ
1/6
0 ), thelatter in�uen
es low-density parts of the EOS more than high-density ones. Thee�e
tive mass term then determines the high-density part of the EOS. In SNM,this translates into the well-known relation between m∗

s and the in
ompressibility
K∞ [Cha97, Cha98℄. In the 
ase of PNM, the EOS above ρsat is then mostly �xed bythe term proportional to Cτ

0 + Cτ
1 in Eq. (3.7), and any attempt to use the densitydependen
e to 
ountera
t its e�e
ts, results in a very strong 
onstraint on the latter.This in turn degrades the behavior of the fun
tional at and below saturation densityand the �t to properties of �nite nu
lei. We re
all at this point that the 
ondition

∆m∗ > 0 
orresponds to Cτ
1 < 0, whi
h drives the high-density PNM EOS downand explains why usual Skyrme fun
tionals predi
t either a 
ollapse of the PNMEOS if ∆m∗ > 0, or, like the SLy fun
tionals �tted to PNM EOS, the wrong signof the e�e
tive mass splitting in neutron ri
h matter.

http://dx.doi.org/10.1103/PhysRevC.60.024605
http://dx.doi.org/10.1103/PhysRevC.71.054311
http://dx.doi.org/10.1016/0375-9474(75)90338-3
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Figure 3.1: SNM and PNM EOS as given by Skyrme fun
tionals presently dis-
ussed (see text), 
ompared with VCS results by Akmal et al. [Akm98℄(×: PNM, +: SNM).If Cρ
t (ρ0) 
oe�
ients 
ontain an additional density dependen
e with a higherpower, the previous dis
ussion does not apply: using two density-dependent termsin the fun
tional (∝ ρ

1/3
0 ; ρ

2/3
0 ) [Co
04℄ allowed us to 
onstru
t (f−, f0, f+) witha good �t to PNM EOS, a free 
hoi
e of e�e
tive masses and satisfa
tory nu
learproperties.The previous dis
ussion already shows the type of problems and informationarising from our attempt to improve on the �tting proto
ol of SLy fun
tionals byusing more inputs from ab-initio 
al
ulations. Now, Fig. 3.1 shows SNM and PNMEOS as obtained from (f−, f0, f+, SLy5) and as predi
ted by Variational ChainSummation (VCS) methods [Akm98℄. At this point, one 
an see that the fourparametrizations (f−, f0, f+, SLy5) reprodu
e both mi
ros
opi
 EOS with the samea

ura
y. However, it remains to be seen whether or not this translates into identi
alglobal spin-isospin properties and into similar nu
lear stru
ture properties.3.1.4 E�e
ts on properties of nu
leiWe now study the e�e
ts of the variation of the isove
tor e�e
tive mass on sele
tedproperties of spheri
al nu
lei. We start with HF single-parti
le energies, then bindingenergies, ending with a short sum-rule based analysis of isove
tor giant resonan
es.For 
omputations of open-shell nu
lei, we use, in the parti
le-parti
le 
hannel, alo
al fun
tional with a density dependent form fa
tor (mixed surfa
e and volume,i.e. c = 1/2 in Eq. (2.98)). The lo
al HFB equations are renormalized following thepro
edure developed by Bulga
 and Yu.The strength V0 is adjusted to the mean pairing gaps of six semi-magi
 nu
lei(neutron gaps in 120Sn, 198Pb, 212Pb and proton gaps in 92Mo, 144Sm and 212Rn). In

http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.015
http://dx.doi.org/10.1103/PhysRevC.58.1804
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Figure 3.2: Single-parti
le energies [MeV℄ in 132Sn and 208Pb 
omputed with indi-
ated intera
tions. Thi
k lines indi
ate the Fermi level εF .this pro
edure we 
ompute theoreti
al spe
tral gaps de�ned as
〈∆〉th =

[
∑

k

∆kkukvk

]
/

[
∑

k

ukvk

]
, (3.8)

∆kk being a pairing �eld matrix element between 
anoni
al states and uk, vk the 
or-responding quasiparti
le amplitudes, and adjust ea
h of them upon an experimentalgap extra
ted through a �ve point di�eren
e formula from masses of neighboringnu
lei, as suggested in Ref. [Dug01b℄.Single-parti
le energiesE�e
tive masses are known to 
ontrol the average density of single-parti
le states.It is thus interesting to 
he
k to what extent su
h statement applies to neutron-ri
h nu
lei when varying m∗
v. In this part of the study, we are mainly interested inevaluating the 
hange in the single-parti
le energies generated by the fun
tional fordi�erent splittings and not dire
tly by a 
omparison with experimental results.Single-parti
le energies in 132Sn and 208Pb are plotted on Fig. 3.2. The generaltrend followed by neutron states with in
reasing ∆m∗ (from f− to f+) 
orrespondsto an in
rease of the density of neutron states: they tend to 
ome 
loser to theFermi energy εF; notable ex
eptions being both neutron 1i levels in 208Pb. Theopposite behavior is observed in proton levels, whi
h spread away from εF within
reasing ∆m∗ (ex
ept for the proton 1h11/2 level). However, these trends are rathermarginal, whi
h 
an be linked with the moderate bulk asymmetry of these nu
lei(I = (N − Z)/A = 0.24 for 132Sn and 0.21 for 208Pb). This moderate asymmetrymeans that the isove
tor term in the de�nition of the e�e
tive mass (Eq. (3.1)) isweakly probed.Let us therefore examine similar spe
tra for more neutron-ri
h nu
lei, i.e. 78Ni(I = 0.28, experimentally observed [Hos05℄) and 156Sn (I = 0.36). The nu
leus 156Snis used as an example of an extremely asymmetri
 system, even beyond the rea
hof planned radioa
tive beam fa
ilities [sp206℄. We observe on the rightmost panelof Fig. 3.3 that the e�e
t of ∆m∗ on proton single-parti
le energies at Z = 50 ismore pronoun
ed in 156Sn than it was in 132Sn. The modi�
ation of level densitiesappears quite 
learly in 78Ni also, while neutron levels around εF in 156Sn are shiftedin a slightly more disordered way.High-ℓ/low-n orbitals (n, ℓ being respe
tively the prin
ipal and orbital quantumnumbers) are in fa
t more sensitive to variations of the spin-orbit �eld than to ∆m∗

http://link.aps.org/abstract/PRC/v65/e014311
http://dx.doi.org/10.1103/PhysRevLett.94.112501
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Figure 3.3: Same as Fig. 3.2 in 78Ni and 156Sn.be
ause of their spatial lo
alization near the surfa
e of the nu
leus. The spin-orbit�eld is modi�ed between fun
tionals by the interplay between J2-term 
oe�
ientsand e�e
tive mass parameters, sin
e these both depend on the same non-lo
al termsof the Skyrme intera
tion [Dob06℄. The spin-orbit intera
tion (ρ∇ · J terms in theEDF), whi
h is subje
t to a slight readjustment, does a�e
t the spe
tra as well.We observed, overall, a marginal in
rease of the spin-orbit �eld strength when goingfrom f− to f+. This implies that while the global e�e
t of modifying the level densityis quite 
learly observed when we alter the e�e
tive mass parameters, details of thespe
tros
opy are at least as sensitive to the terms 
onne
ted to the spin-orbit �eld.Pairing gapsAs an example, neutron spe
tral gaps are plotted on Fig. 3.4 for Sn and Pb series,up to the drip line, against experimental gaps extra
ted through �ve-point massformulas [Dug01a, Dug01b℄. The slight 
hange in the level density translates into amodi�
ation of the pairing gaps: a higher neutron e�e
tive mass (f+) 
orrespondsto a denser spe
trum and higher gaps. The e�e
t, whi
h in
reases with asymmetry,remains however very small, be
ause of the limited alteration of single-parti
le levelsseen on Figs. 3.2 and 3.3.In the end, the e�e
t is negligible and would be overwhelmed by any othermodi�
ation of the parti
le-hole part of the fun
tional. For example, variations inthe detailed level s
heme, 
ould alter the shape of gaps. The pairing fun
tionalitself is a subje
t of 
urrent debate regarding its density dependen
e, regularizations
heme and �nite-range 
orre
tions, while the 
hoi
e of observables to be 
ompared(de�nition of theoreti
al an experimental gaps) 
an be improved. Most of theseissues will be addressed in the following of this manus
ript.Binding energiesLet us now study the e�e
t of the aforementioned variation of level densities andpairing gaps on binding energies. On Fig. 3.5 we show the binding energy residuals
Eth −Eexp for Sn and Pb isotopes and N = 50 and N = 82 isotones. The evolutionof Eth −Eexp along su
h 
hains is usually plagued by an underbinding of open-shellnu
lei with respe
t to 
losed-shell ones whi
h translates into an ar
h shape of E-residual 
urves. Although the variation of m∗

v seems to impa
t the ar
hes, again, thee�e
t is negligible 
ompared to the absolute value of deviations from experiment,ex
ept in the N = 82 series where open-shell nu
lei tend to be more underbound in

http://link.aps.org/abstract/PRC/v65/e014310
http://link.aps.org/abstract/PRC/v65/e014311
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Figure 3.4: Neutron spe
tral gaps 
omputed in Sn (bottom) and Pb (top) 
hainswith parametrizations f−, f0, f+, as a fun
tion of asymmetry. Experi-mental ∆(5) gaps extra
ted from masses [Aud03℄ are plotted with errorbars.the 
ase of f+.Isove
tor giant resonan
esThe isove
tor e�e
tive mass is usually de�ned from the energy-weighted sum rule m1(the Thomas-Rei
he-Kuhn sum rule [Boh79℄) of the isove
tor giant dipole resonan
e(IVGDR):
m1(E1 ; T = 1) =

~2

2m

NZ

A
(1 + κv) =

~2

2m

NZ

A

m

m∗
v

, (3.9)whi
h exhibits its link with the strength distribution of isove
tor 
olle
tive modes.We perform here a s
hemati
 overview of dynami
al properties of f−, f0, f+ by meansof results derived in Ref. [Col95℄. Thanks to RPA sum rules similar to Eq. (3.9),it is possible to �t an a

urate parametrization of the energy E1 = m1/m−1 ofisove
tor giant resonan
es in a given nu
leus as a fun
tion of Skyrme parameters.Results for GDR (L = 1) and isove
tor giant monopole (IVGMR, L = 0) modes in
208Pb are shown in Table 3.2, 
ompared to experimental energies (respe
tively fromRefs. [Rit93℄ and [Ere86℄ and 
orre
ted, as suggested in [Col95℄, for the shift dueto the spreading of the strength by damping e�e
ts: 2 MeV for GMR, 1 MeV forGDR).While f− predi
ts both energies lower than experimental ones, values for f0 and
f+ are 
ompatible with experiment for the L = 0 mode, and only f+ approa
hes theexperimental value for the L = 1 mode. This suggests that values of κv 
orrespond-ing to a positive value of ∆m∗ (equal to, or higher than 0.43 in our 
ase) betterdes
ribe isove
tor dynami
s than lower values.As a summary, the e�e
t of the splitting of neutron and proton e�e
tive masseswith isospin asymmetry on single-parti
le energies, pairing gaps and binding en-

http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/0370-1573(79)90079-6
http://dx.doi.org/10.1016/0370-2693(95)01217-E
http://dx.doi.org/10.1103/PhysRevLett.70.533
http://dx.doi.org/10.1103/PhysRevC.34.1822
http://dx.doi.org/10.1016/0370-2693(95)01217-E
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Figure 3.5: Binding energy residuals 
omputed with intera
tions f−, f0 and f+ forsemi-magi
 series of nu
lei, as indi
ated.
Table 3.2: E1 energies of 208Pb isove
tor giant resonan
es 
omputed thanks to asum-rule parametrization (see text), 
ompared to experimental energy
entroids. Experimental un
ertainties are as indi
ated. We infer from�gures in Ref. [Col95℄ the a

ura
y of theoreti
al energies 
omputed withthe �ts in that referen
e, with respe
t to full RPA 
al
ulations, to be ofthe order of 1 MeV.

κv E1(L = 0, T = 1) E1(L = 1, T = 1)

f− 0.15 24.55 12.68
f0 0.43 26.43 13.60
f+ 0.60 27.25 14.01exp. 
entroid 26.3 ± 1.1 14.3 ± 0.1

http://dx.doi.org/10.1016/0370-2693(95)01217-E
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eable and 
onsistent, yet limited and thus hardly meaningful when
ompared to the overall (in)a

ura
y of the predi
tions made by the 
urrent nu
learEDF. In fa
t, the main reason for not seeing a dramati
 modi�
ation of EDF pre-di
tions when altering ∆m∗ is the limited amount of strongly asymmetri
 nu
learmatter at high enough density in the ground state of nu
lei with realisti
 isospin asalready suggested in [Gor03℄. This makes the e�e
t of the isove
tor e�e
tive massrather marginal. Giant isove
tor resonan
es are 
ertainly more fruitful to seek foran e�e
t of a modi�
ation of ∆m∗. Indeed, a sum-rule-based analysis of isove
tor
olle
tive modes allows a slightly more 
lear-
ut 
on
lusion, with a tenden
y to favor
∆m∗ & 0. The 
on
lusion of the phenomenologi
al study done in this se
tion is that,while no observable listed here strongly ask for ∆m∗ > 0, there is no reason to omitthis 
onstraint in future fun
tionals, sin
e, as already stated, ab-initio predi
tionsfor the sign of ∆m∗ are solid. There remains to 
he
k the intrinsi
 
onsisten
y ofthe fun
tional in terms of other ab-initio inputs and stability 
riteria, whi
h, as willbe dis
ussed below, we have found to be a 
on
ern.3.2 Further study of in�nite matter3.2.1 Separation of the EOS into (S, T ) 
hannelsIn this se
tion, we dis
uss the 
ontributions to the potential energy of SNM fromthe four two-body spin-isospin (S, T ) 
hannels. We 
ompare our results with thosepredi
ted by BHF 
al
ulations [Bal06℄ using the Argonne v18 [Wir95℄ two-bodyintera
tion and a three-body for
e 
onstru
ted from meson ex
hange theory [Gra89,Lej00℄.Using proje
tors on spin singlet and triplet states, respe
tively

P̂S=0 =
1

2
(1 − P̂σ), P̂S=1 =

1

2
(1 + P̂σ), (3.10)where P̂σ is the spin-ex
hange operator, and similar expressions for isospin proje
tors

P̂T using the isospin ex
hange operator P̂τ , yields the potential energy in ea
h (S, T )
hannel
EST

pot =
1

2

∑

kl

〈
kl
∣∣∣V P̂SP̂T

∣∣∣ kl
〉
ρkkρll, (3.11)where the sum on k, l runs over all HF single-parti
le eigenstates whereas ρkk des-ignates the diagonal one-body density matrix. The notation |kl〉 denotes a non-normalized but antisymmetrized two-body state. In order to 
ompare di�erentmany-body approa
hes (ab-initio or EDF), we use the �potential energy� whi
hrefers to the total binding energy from whi
h is subtra
ted the kineti
 energy of thenon-intera
ting parti
le system.Note that due to the zero-range 
hara
ter of the Skyrme intera
tion, togetherwith at most se
ond-order derivative terms, only L = 0, 1 partial waves o

ur ex-pli
itly whereas higher partial waves 
ontribute to the ab-initio EOS. We �nd, for

http://link.aps.org/abstract/PRC/v68/e054325
http://link.aps.org/abstract/PRC/v51/p38
http://dx.doi.org/10.1103/PhysRevC.40.1040
http://dx.doi.org/10.1016/S0370-2693(00)00211-2
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E00

pot

A
=

3

160
t2(1 − x2)

(
3π2

2

)2/3

ρ
5/3
0 , (3.12)

E10
pot

A
=

3

16
t0(1 + x0)ρ0 +

3

96
t3(1 + x3)ρ

1+γ
0 +

3

96
t6(1 + x6)ρ

1+γ′

0

+
9

160
t1(1 + x1)

(
3π2

2

)2/3

ρ
5/3
0 , (3.13)

E01
pot

A
=

3

16
t0(1 − x0)ρ0 +

3

96
t3(1 − x3)ρ

1+γ
0 +

3

96
t6(1 − x6)ρ

1+γ′

0

+
9

160
t1(1 − x1)

(
3π2

2

)2/3

ρ
5/3
0 , (3.14)

E11
pot

A
=

27

160
t2(1 + x2)

(
3π2

2

)2/3

ρ
5/3
0 , (3.15)where (ti, xi) are 
oe�
ients of the Skyrme intera
tion as de�ned in Eq. (2.78).The 
oe�
ients o

urring in Eqs. (3.12)�(3.15) stem from the antisymmetrization
ondition (−)L+S+T = −1, the relative angular momentum L being even for t0i and

t1 (k2) terms and odd for t2 (k′ ·k) terms. The expression of the potential energy in
hannels (S, T ) = (0, 0) and (1, 1) is very simple sin
e only the t2 term 
ontributes.For
e vs. fun
tionalPrevious statements, however, apply only to the 
ase where the EDF is 
omputed asthe expe
tation value of an (antisymmetrized) e�e
tive intera
tion. In the more gen-eral 
ase, it is still possible to de�ne (S, T ) 
hannels starting from any Hartree-likefun
tional. Indeed, the fun
tional 
an always be expressed in terms of an e�e
tivenon-antisymmetrized vertex and one 
an still plug a proje
tor in the 
al
ulation ofits matrix elements. In the pure fun
tional 
ase, there is however no more 
learde�nition of partial waves, and spin-isospin 
hannels emerge from the balan
e be-tween 
oe�
ients of (iso)s
alar/(iso)ve
tor 
ouplings (see appendix B for the formalde�nition).As long as there are not enough inputs to 
onstrain all degrees of freedom of ageneral fun
tional, the e�e
tive-intera
tion approa
h remains as an a

eptable path,and hen
e shall be used in the following.ResultsResults are plotted against BHF predi
tions on Fig. 3.6. First, one 
an observe thatresults are rather s
attered. Se
ond, the main sour
e of binding, from (S, T ) = (0, 1)and (1, 0) 
hannels, is not well des
ribed and the detailed saturation me
hanism isnot 
aptured. It is 
lear that, even though all four fun
tionals reprodu
e perfe
tlyPNM and SNM EOS, they do not have the same spin-isospin 
ontent, and that thelatter is in general rather poor. Thus, �tting the global EOS is an important elementbut it does not mean that spin-isospin properties of the fun
tional are �xed on
eand for all. One needs to do more and �tting ab-initio predi
tions of E(S,T )
pot seemsto be a good idea in the near future. However, one needs to make sure that thetheoreti
al un
ertainty of the data used is smaller than the expe
ted a

ura
y of the
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Figure 3.6: Energy per parti
le in ea
h (S, T ) 
hannel for SNM, as a fun
tion ofdensity. Crosses refer to the BHF 
al
ulations [Bal06℄.�t to them. This 
alls for predi
tions from other ab-initio methods using the sametwo-body plus three-body Hamiltonian. Then, those ab-initio 
al
ulations shouldbe repeated using di�erent sets of two-body plus three-body Hamiltonians in orderto provide a theoreti
al error bar on those predi
tions.The most obvious dis
repan
y appears in 
hannels (0, 0) and (1, 1) where Skyrmeand BHF data have opposite signs above saturation density. The SLy5 parameter setshows a parti
ular behavior in 
hannel (1, 1) due to the 
hoi
e of x2 = −1 to preventferromagneti
 instabilities in PNM. Note that in the Skyrme fun
tional, these two
hannels 
ontain 
ontributions, of the density-independent P -wave term only. Theupper-right panel of Fig. 3.6 points out the tenden
y of Skyrme parametrizations tobe attra
tive in polarized PNM, and hen
e to 
ause a 
ollapse of its EOS at highdensity. At lower densities, BHF data show a distin
tive behavior, being slightlyattra
tive below ρsat and repulsive above. This feature 
annot be mat
hed by thestandard Skyrme fun
tional whi
h exhibits a monotonous behavior as a fun
tion ofdensity in this 
hannel, regardless of the value of (t2, x2).It is also worth noti
ing that the failure in 
hannel (1, 1) be
omes more and moreprominent as one makes ∆m∗ 
loser to the ab-initio predi
tions (parametrization
f+). The e�e
tive masses being governed by the momentum-dependent terms ofthe intera
tion, it is not a surprise that the modi�
ation of the former impa
ts
hannels (0, 0) and (1, 1). What 
hanges in the 
oe�
ients entering Eqs. (3.12-3.15) stems only from the variation of m∗

v and the asso
iated rearrangement ofparameters in the fun
tional, most notably the C∆ρ
0,1 
oe�
ients 
losely related tosurfa
e and surfa
e-symmetry energies. The relatively tight requirements on the



3.2. FURTHER STUDY OF INFINITE MATTER 59latter imply that the four parameters of the non-lo
al terms in the standard Skyrmeenergy fun
tional would be dramati
ally over
onstrained if we were to add the (S, T )-
hannel de
omposition in the �tting data.In the end, the rather poor properties of the fun
tional in 
hannels (0, 0) and
(1, 1), the degradation of the latter as the e�e
tive mass splitting is improved, theidea of using ab-initio (S, T ) 
ontributions in the �t, 
all, at least, for a re�nementof the odd-L term in the sense either of a density dependen
e or of a higher-orderderivative term. The latter being prone to numeri
al instabilities and interpreta-tion problems, a density-dependent k′ · k term remains as one of the next poten-tial enhan
ements to be brought to the Skyrme EDF (density-dependent derivativeterms have been 
onsidered already, but with a fo
us on even-L terms of the form
t4(k

2 + k′2)ρβ
0 [Far97℄).Phenomenologi
al 
onstraints on gradient terms are mainly related to the surfa
eof nu
lei, i.e. low-density regions. One 
an expe
t that, to �rst order, BHF data in
hannel (S, T ) = (1, 1) 
an be mat
hed with an extended fun
tional while retaininga good agreement with other (experimental) data. It is less 
lear in 
hannel (0, 0)but further exploration of the extended parameter spa
e may bring Skyrme andBHF data in better agreement.3.2.2 RPA linear response fun
tions and the diagnosis of in-stabilities1We attempt here to study general stability 
onditions of SNM with respe
t to �nite-size density, spin, isospin and spin-isospin perturbations. Our basi
 ingredient isthe RPA response fun
tion [Fet71℄ derived analyti
ally by Gar
ia-Re
io et al. inRef. [GR92℄ for the 
entral part of the Skyrme intera
tion. Re
ent work was doneto in
orporate the e�e
t of the spin-orbit part, whi
h was found to be quite neg-ligible [Mar06℄, and will be omitted in the present work. One starts by de�ning aone-body perturbing operator

Q(α) = e−iωt
∑

a

eiq·ra Θ(α)
a , (3.16)where a indexes parti
les in the system. The one-body spin-isospin operators Θ

(α)
aare de�ned as

Θss
a = 1a, Θvs

a = σ̂a, Θsv
a = τ̂a, Θvv

a = σ̂aτ̂a, (3.17)where we use the denomination of (iso-)s
alar (s) and (iso-)ve
tor (v) 
hannels in or-der to distinguish the parti
le-hole spin-isospin 
hannels from the two-body-
oupled(parti
le-parti
le) (S, T ) 
hannels dis
ussed in the previous se
tion. In Eq. (3.17)and the following, the �rst (se
ond) subs
ripts denotes the spin (isospin). We then1This 
hapter is an adapted and 
orre
ted version of Ref. [Les06℄. Indeed, an an error was madein the derivation of the RPA residual intera
tion, whi
h, when 
orre
ted, yields an additional
ontribution to the terms dis
ussed. The magnitude of this 
ontribution (and its variation) issmaller than the one dis
ussed but not 
ompletely negligible. The quantitative results are modi�edin a way whi
h does not a�e
t the validity of the method proposed for diagnosing �nite-sizeinstabilities. Details of the dis
ussion have been updated a

ordingly.

http://dx.doi.org/10.1016/S0375-9474(96)00453-8
http://dx.doi.org/10.1016/S0003-4916(05)80003-X
http://dx.doi.org/10.1103/PhysRevC.74.015805
http://link.aps.org/abstract/PRC/v74/e044315
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h type of perturbation separately through the responsefun
tions
Π(α)(ω,q) =

1

Ω

∑

ν

|〈ν|Q(α)|0〉|2
(

1

ω −Eν0 + iη
− 1

ω + Eν0 − iη

)
, (3.18)at the RPA level, where Ω stands for a normalization volume and |ν〉 is an ex
itedstate of the system, Eν0 being the 
orresponding ex
itation energy. Sin
e the 
entralresidual intera
tion does not 
ouple the 
hannels de�ned through Eq. (3.17) in SNM,we 
an indeed 
onsider ea
h 
hannel separately.The response fun
tion Π(α) 
an be seen as the propagator of the 
olle
tive per-turbation, or polarization propagator, i.e. the positions of its poles in the (q, ω)plane yield the dispersion relation of the mode. In this formalism, the onset of anunstable mode is marked by the o

urren
e of a pole in Π(α) at ω = 0, 
orrespondingto zero ex
itation energy. Su
h a pole marks the transition between stable (with our
onvention, Π(α) < 0) and unstable (Π(α) > 0) domains. Unstable modes of in�nitewavelength (q = 0) are those traditionally dis
ussed in terms of Landau parameters.A pole at �nite q 
hara
terizes a system whi
h is unstable with respe
t to the ap-pearan
e of a spatial os
illation of a given type (density, spin, isospin or spin-isospin)with a given wavelength λ = 2π/q. In unstable domains, an imaginary-energy modeappears.The evaluation of response fun
tions 
alls for the residual intera
tion V̂ ph, de�nedas the se
ond-order fun
tional derivative of the energy with respe
t to the densitymatrix. Its momentum-spa
e matrix elements 
an be written, using total momentum
onservation, as [GR92℄:

V̂ ph(q1,q2,q) = 〈q1 q2 + q| V̂ ph |q1 + q q2〉,
= Ŵ1(q) + Ŵ2(q) (q1 − q2)

2, (3.19)with
Ŵ1(q) =

1

4
[ W ss

1 (q) +W vs
1 (q) σ̂1 · σ̂2 +W sv

1 (q) τ̂1 ◦ τ̂2
+ W vv

1 (q) σ̂1 · σ̂2 τ̂1 ◦ τ̂2 ], (3.20)and a similar expression for Ŵ2. We �nd, as an expression for W1 fun
tions (seealso appendix C.3),
W ss

1 (q)

4
= 2Cρ,0

0 + Cρ,γ
0 (γ + 2)(γ + 1)ργ

0 + Cρ,γ′

0 (γ′ + 2)(γ′ + 1)ργ′

0

−
[
2C∆ρ

0 +
1

2
Cτ

0

]
q2, (3.21)

W vs
1 (q)

4
= 2Cs,0

0 + 2Cs,γ
0 ργ

0 + 2Cs,γ′

0 ργ′

0 −
[
2C∆s

0 +
1

2
CsT

0

]
q2, (3.22)

W sv
1 (q)

4
= 2Cρ,0

1 + 2Cρ,γ
1 ργ

0 + 2Cρ,γ′

1 ργ′

0 −
[
2C∆ρ

1 +
1

2
Cτ

1

]
q2, (3.23)

W vv
1 (q)

4
= 2Cs,0

1 + 2Cs,γ
1 ργ

0 + 2Cs,γ′

1 ργ′

0 −
[
2C∆s

1 +
1

2
CsT

1

]
q2, (3.24)

http://dx.doi.org/10.1016/S0003-4916(05)80003-X
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oupling 
onstants Cρ
t (ρ0) and Cs

t (ρ0) followingthe model Cρ
t (ρ0) = Cρ,0

t + Cρ,γ
t ργ

0 + Cρ,γ′

t ργ′

0 , and for W2 fun
tions,
W ss

2 (q)

4
= Cτ

0 ,
W vs

2 (q)

4
= CsT

0 ,

W sv
2 (q)

4
= Cτ

1 ,
W vv

2 (q)

4
= CsT

1 . (3.25)Given the above expression for the residual intera
tion, one 
an 
al
ulate the re-sponse fun
tion, whi
h reads
Π(α)(ω,q) = 4Π0


 1 −W

(α)
1 Π0 − 2W

(α)
2 k2

F

(
q2 − ν2

1 − m∗k3

F

3π2 W
(α)
2

)
Π0

+ 2W
(α)
2 k2

F(2q2 Π0 − Π2) (3.26)
+ (W

(α)
2 k2

F)2

(
Π2

2 − Π0Π4 + 4q2ν2Π2
0 −

2m∗kF

3π2
q2Π0

) 

−1

,where q = q/2kF, ν = ωm∗
s/qkF and Π0,2,4 are generalized Lindhard fun
tions, seeRef. [GR92℄.As already said, the limit q → 0 
orresponds to perturbations of in�nite wave-length, keeping the system homogeneous. In this limit, the residual intera
tion isuniquely determined by Landau parameters Fl, F

′
l , Gl, G

′
l, with l = 0, 1, and wellknown stability 
onditions are obtained under the form [Mig67℄:

1 +
Xl

2l + 1
> 0, (3.27)whereXl represents any of the Landau parameters. We have used this 
riterion in the�t of our parametrizations fx, ensuring that no spin or spin-isospin instability wouldo

ur below 2ρsat. We observe that, from the point of view of Landau parameters,the most 
riti
al 
hannel is the ve
tor-isove
tor one, with asso
iated instabilities atdensities as low as 2ρsat (see the upper-right panel of Fig. 3.9). This behavior islinked to the attra
tive 
hara
ter of the fun
tional in 
hannel (S, T ) = (1, 1) whi
hgives rise to a 
ollapse of spin-polarized PNM, and a

ordingly, a vanishing spin-isospin symmetry energy. Therefore, better reprodu
ing the de
omposition into

(S, T ) 
hannels of EOS obtained from ab-initio methods is not only a matter ofmi
ros
opi
 motivation, but also a ne
essity to avoid unwanted instabilities.Beyond in�nite-wavelength instabilities, we also aim at demonstrating that amore general treatment is needed to fully des
ribe and 
ontrol unstable modes whi
harise in the Skyrme EDF framework. Thus, 
ontributions to the residual intera
tion
oming from fun
tional terms of the form ρ∆ρ are zero for q = 0, whereas su
hterms drive �nite-size instabilities.Indeed, we have observed that existing (SkP) or new parametrizations builtwith a high value of κv in order to reprodu
e the mi
ros
opi
 splitting of e�e
tivemasses, tend to spatially separate protons from neutrons in spheri
al mean-�eld
al
ulations, where enough iterations lead to states with strongly os
illating densitiesand a diverging energy. Following a preliminary phenomenologi
al reasoning, we
ould relate this e�e
t to the C∆ρ
1 ρ1 ∆ρ1 term in the fun
tional, as this term 
an

http://dx.doi.org/10.1016/S0003-4916(05)80003-X


62 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDFTable 3.3: Values of the e�e
tive mass splitting (in nu
leon mass units), and Cτ
1 and

C∆ρ
1 
oe�
ient, in MeV fm5.

f− SLy5 f0 f+ LNS SkP
∆m∗ -0.284 -0.182 0.001 0.170 0.227 0.418
Cτ

1 22.9 23.8 -0.2 -22.0 -19.5 -41.9
C∆ρ

1 5.4 16.7 21.4 29.4 33.75 35.0energeti
ally favor strong os
illations of the isove
tor density ρ1 whi
h arise in the
ase of su
h a spatial n-p separation.Moreover, Eqs. (3.21-3.25) show that su
h a term 
an yield an attra
tive 
ontri-bution to the residual intera
tion in the 
ase of a short-wavelength (high q) pertur-bation. We found empiri
ally that parameter sets for whi
h this instability arises are
hara
terized by a high value of C∆ρ
1 , that is C∆ρ

1 & 30. However, the term propor-tional to q2 in the expression for the residual intera
tion 
ontains 
ontributions fromboth the isove
tor gradient and e�e
tive mass (Cτ
1 ) terms, indi
ating that ∆m∗ mayalso have a dire
t e�e
t on the phenomenon, whi
h is less intuitive. As seen fromTable 3.3, these parameters are strongly 
orrelated together and with the e�e
tivemass splitting ∆m∗ in su
h a way that for more positive splitting 
orresponds tomore negative Cτ

1 (whi
h follows from the de�nition of e�e
tive masses, Eq. (3.1))and more positive C∆ρ
1 . Given the weighting of both 
ontributions to the residualintera
tion, we see that it is the attra
tive (and destabilizing) one from the gradientterm whi
h dominates. The e�e
t of the isove
tor e�e
tive mass alone, when goingtowards mi
ros
opi
 values, is a stabilizing one, and the sole rearrangement of theisove
tor gradient term is the 
ause of the fa
t that a positive splitting, as requiredby ab-initio predi
tions, tends to favor instabilities.Whereas with our �tting proto
ol we were unable to provide both a fully 
on-verged (and hen
e physi
ally meaningful) and 
learly unstable fun
tional to illustratethe previous statements, we found that 
ertain fun
tionals available in the litera-ture present the aforementioned behavior. For example, 
onvergen
e problems havearisen (and have already been pointed out in another study [Ter07℄) for the SkP pa-rameter set [Dob84℄. The nature of the instabilities dis
ussed here is illustrated onthe left panels of Fig. 3.7, where neutron and proton densities are plotted at variousstages of exe
ution of a self-
onsistent iterative pro
edure with SkP in 56Ni. We seethat strong, opposing os
illations of neutron and proton densities are formed, andsteadily in
rease with iterations. Su
h a behavior happens after a seemingly 
on-verged situation for whi
h the relative energy variation is small but almost 
onstantover a large number of iterations and the evolution of the energy is monotonous.The study of the linear response fun
tion in the s
alar-isove
tor 
hannel allowsus to provide a more quantitative ground to the previous observation. By plotting
riti
al densities (lowest density ρ
 of o

urren
e of a pole in Π(α)(ω = 0, q)) for agiven q on Fig. 3.8, we see that these 
riti
al densities 
an be lower for q ≈ 2.5 to

3 fm−1 than for q = 0, rea
hing down to about 0.22 fm−3, whi
h is quite near to thesaturation density. This is the 
ase for SkP and LNS, with SkP having also lower
riti
al densities at lower values of q. A

ordingly, SkP is the most prone to a la
kof 
onvergen
e in HF 
al
ulations.

http://dx.doi.org/10.1103/PhysRevC.76.044320
http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4
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Figure 3.7: Neutron and proton densities in 
entral regions of 56Ni (left panels)and 40Ca (right panels) plotted for a fully 
onverged 
omputation usingthe SLy5 intera
tion (solid line; relative variation of energy betweeniterations less than 10−14) and along a series of iterations done with SkP(for 56Ni) and LNS (for 40Ca). The number of iterations 
orresponding toea
h 
urve is indi
ated in key. In both 
ases the 
ollapse happens after aseemingly 
onverged situation (∼ 10−9 relative energy variation, steadyover a large number of iterations indi
ating a nearly linear evolution ofthe energy), whi
h 
an be mistaken for an energy minimum if too loosea 
onvergen
e 
riterion is used.
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Figure 3.8: The lowest density of o

urren
e of a pole in Πsv(ω = 0,q) is plottedagainst the wave-number q of the s
alar-isove
tor perturbation. The
urves end at q = 2kF sin
e the ground state 
an not 
ouple to ex
ita-tions with ω = 0, q > 2kF .The link between response fun
tions and 
onvergen
e problems 
an indeed beunderstood by 
lassifying them by their magnitude: in 
ase of a stable but verysoft mode, la
k of 
onvergen
e arises from the existen
e of a 
ontinuum of quasi-degenerate mean-�eld states, among whi
h no minimization or self-
onsisten
y al-gorithm shall be able to de
isively �nd an energy minimum without a 
onsiderableamount of iterations. If the soft mode be
omes unstable, it 
auses a divergen
e ofthe energy and of other observable su
h as the densities. We see in the agreementbetween the RPA study of SNM and the observation of unstable HF 
al
ulationsof nu
lei a qualitative validation of our lo
al-density approximation (LDA)-basedtreatment of instabilities: soft or unstable modes o

urring in INM at densities inthe vi
inity of the saturation density, happen for the same parameter sets in �nitenu
lei.On the other hand, self-
onsistent 
al
ulations of nu
lei diverge although nounstable mode appears stri
tly at saturation density, whi
h shows the limits of thetransposition of results from INM to nu
lei in a LDA s
heme: it seems that nu
leiprobe properties of the fun
tional up to higher densities and momenta than o

urin INM at saturation.The large number of iterations needed for the divergen
e to o

ur on Fig. 3.7 isa 
onsequen
e of the limiting 
ase embodied by SkP, su
h that the existen
e of ade�nite instability is highly dependent on �nite-size e�e
ts (
hoi
e of the nu
leus)and dis
retization details in the numeri
al pro
edure. If SkP is a limiting 
ase,LNS also displays a low 
riti
al density in the s
alar-isove
tor 
hannel (Fig. 3.8). Inthis 
ase, we observed proton-neutron separation in 40Ca and for small mesh steps(0.1 fm) only (see Fig. 3.7), while it is more frequent with SkP. Our fun
tional f+,with a 
riti
al density of 0.30 fm−3, whi
h is barely lower than SLy5, while beingslightly higher that SkP and LNS, su

essfully passed the test of 
omputing a setof 134 spheri
al nu
lei. This again demonstrates that testing �nite-size instabilities
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tions 
onstitutes an a

urate tool. The 
riti
al density (and itsproximity to ρsat, keeping in mind that values whi
h yield instabilities in 
al
ulationsof �nite nu
lei have been here seen to rea
h 0.22 fm−3) appears as a good measureof the gravity of the problems one might en
ounter in �nite nu
lei. Although thea
tual o

urren
e of instabilities is subje
t to details of the numeri
al treatment, itis now 
lear that their origin 
an be tra
ed ba
k to the 
hoi
e of parameters in thefun
tional itself.Nevertheless, even if a fun
tional does not display 
lear instabilities but onlyspurious soft 
olle
tive modes, 
onvergen
e di�
ulties shall arise in SR-EDF 
al-
ulations while su
h a mode will translate into a non-physi
al low-lying spe
trumin a multi-referen
e framework. This 
an then yield ex
essive 
orrelation energiesif one systemati
ally in
ludes 
orrelations in the ground state e.g. in (Q)RPA orGCM-based methods. One should thus make sure that no spurious (even remotely)soft mode o

urs at saturation density in order to prevent su
h problems.Having demonstrated the importan
e of �nite-size instabilities, let us go ba
kto dis
ussing our original set of fun
tionals and perform a generalization to otherspin-isospin 
hannels.Criti
al densities are plotted on Fig. 3.9 for the four 
hannels de�ned in Eq. (3.17).The upper-left panel shows that, while no unstable mode o

urs at q = 0 thanks to�tting PNM EOS to relatively high density, s
alar-isove
tor instabilities may hap-pen little above ρsat for q ≈ 2.5 to 3 fm−1. In addition, there is a 
lear trend forlowering the 
riti
al density when ∆m∗ is in
reased, in agreement with the prelimi-nary phenomenologi
al reasoning on C∆ρ
1 . The fa
t that 
riti
al densities for SLy5lie in the lower range of values obtained with our new parametrizations, despite thenegative value of ∆m∗ it exhibits, must then be attributed to the slightly di�erent�tting proto
ol involving a single density-dependent term.Spin 
hannels have been taken 
are of during the �t thanks to Landau param-eters, whi
h des
ribe the residual intera
tion at q = 0. The result 
an be seen onthe right panels of Fig. 3.9, where the 
riti
al densities of instability are plotted forspin-�ip modes (isos
alar and isove
tor). As previously stated, the most dangerous

q = 0 instability is found in the ve
tor-isove
tor 
hannel. By looking at the upper-right panel of Fig. 3.9 one 
an see that the 
riti
al density is however in
reased athigher q for our parameter sets.An even more prominent �nite-size e�e
t 
an be observed in the isos
alar spin-�ip 
hannel (lower-right panel of Fig. 3.9) where, while no instability o

urs at q = 0as in the 
ase of most Skyrme fun
tionals, �nite-size instabilities o

ur at densitieslower than observed in the s
alar-isove
tor 
hannel for pathologi
al parametrizations.These instabilities are linked to the C∆s
0 s0 · ∆s0 term whi
h makes the ve
tor-isos
alar Vp−h attra
tive at large q whereas it is repulsive at q = 0. Values of

C∆s
0 , indeed, are as high as 45.85 and 47.32 for SLy5 and f−, respe
tively. As a
onsequen
e, one 
an expe
t divergen
es in 
al
ulations of odd or rotating nu
leiwith the latter fun
tionals if the aforementioned terms are in
luded. In this 
ase,though, in
reasing ∆m∗ pushes the 
riti
al density farther from ρsat: f0 and f+fun
tionals are thus the only ones to be free from instabilities near ρsat, f0 being onthe edge of the dangerous region and f+ well above.The previous dis
ussion is valid if the full time-odd fun
tional is taken into a
-
ount. This must be stressed sin
e s0 · ∆s0 terms, whi
h drive the most 
riti
al,�nite-size instabilities, have never been in
luded in self-
onsistent mean �eld 
al
u-
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Figure 3.9: Same as Fig. 3.8, for all spin-isospin 
hannels. The lower-left panel showsthe region of spinodal instabilities below ρsat. The domain of q 
overedin this 
ase determines the size of stru
tures formed, while the regionbetween 0.1 and 0.16 fm−1 appears as metastable.lations employing the SLy series of parametrizations. However, RPA 
al
ulations are
ommonly performed by 
omputing the residual intera
tion matri
es dire
tly fromthe antisymmetrized intera
tion (plus rearrangement terms), whi
h amounts to im-pli
itly in
luding the 
ontribution to Vp−h from all terms in the fun
tional [Ter05a℄.The latter �ndings �nalize the pi
ture of a 
ompetition between spin and isospininstabilities. All in all, the strong interplay between the various quantities linked tothe four parameters of the non-lo
al terms in the Skyrme intera
tion does not seemto allow for a fully satisfa
tory 
ompromise between stability 
riteria and ab-initio
onstraints on ∆m∗. Again, we see that the non-lo
al part of the Skyrme intera
tionis too simplisti
 to 
ontrol all relevant properties. An extension with density- andmomentum-dependent terms, allowing the �ne-tuning of the fun
tional at variousdensities, 
ombined with the formal 
he
ks advo
ated in this paper, 
ould prove tosigni�
antly improve the predi
tive power of Skyrme EDF.3.3 SummaryWe have built a series of Skyrme energy density fun
tionals to study the e�e
tof a variation of the splitting of neutron and proton e�e
tive masses with isospinasymmetry on properties of this EDF model. Thanks to the use of a se
ond density-dependent term in the underlying e�e
tive intera
tion, we 
ould 
over a wide rangeof e�e
tive mass splittings (∆m∗) with a satisfa
tory �t to nu
lear properties. In-deed, nu
lear observable predi
ted by our fun
tionals f−, f0 and f+ show a remark-

http://dx.doi.org/10.1103/PhysRevC.71.034310


3.3. SUMMARY 67able similarity, pointing out that spe
tra, pairing gaps and masses of bound nu
leiare weakly sensitive to ∆m∗, mostly due to their relatively low isospin asymme-try. Although observable were a�e
ted in a noti
eable and 
onsistent way, no 
learimprovement was seen when altering ∆m∗ either way.Beyond this phenomenologi
al study, we have 
ompared the splitting of the equa-tion of state of symmetri
 in�nite matter into spin-isospin 
hannels provided by ourfun
tionals and by ab-initio Brue
kner-Hartree-Fo
k 
al
ulations. Su
h a 
ompar-ison showed an obvious dis
repan
y in (S, T ) = (0, 0) and (1, 1) 
hannels, whereenergies predi
ted by Skyrme fun
tionals and by BHF 
al
ulations have oppositesigns. The in
onsisten
y in 
hannel (S, T ) = (1, 1), where the Skyrme fun
tional isattra
tive, translates into a 
ollapse of polarized neutron matter EOS, related to theonset of spin-isospin instabilities at quite low density (2ρsat). In this 
hannel, ab-initio predi
tions 
annot be mat
hed (in the Skyrme e�e
tive-intera
tion approa
h)without an extension of the P-wave term. We also identi�ed �nite-size isospin in-stabilities 
aused by strong isove
tor gradient terms, whi
h prevent the 
onvergen
eof SR-EDF 
al
ulations. We were able to provide a �rm and quantitative basis tothese observations through an analysis of �nite-size instabilities by use of RPA linearresponse fun
tions in SNM. The latter showed that �nite-size e�e
ts in the analysisof instabilities tend to always dominate.The present study leads us to propose the systemati
 in
lusion of 
onsisten
y
he
ks with ab-initio predi
tions of spin-isospin properties in the 
onstru
tion of ourfuture fun
tionals, as well as a systemati
 diagnosis of �nite-size instabilities.Whereas e�e
tive masses are key parameters in the dis
ussion of nu
lear single-parti
le spe
tra, the latter are determined by the parti
le-hole potential derived fromthe whole p-h fun
tional. Most notably, spin-orbit splittings, an essential feature ofnu
lear stru
ture, are another example of quantity to investigate and 
ontrol in thequest for better predi
tive power. This is the subje
t of the next 
hapter.
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Chapter 4Tensor Part of the Skyrme EnergyDensity Fun
tional
4.1 Introdu
tionThe strong nu
lear spin-orbit intera
tion in nu
lei is responsible for the observedmagi
 numbers in heavy nu
lei [GM48, Hax49, Fee49, GM49℄. While a simple spin-orbit intera
tion allows for the qualitative des
ription of the global features of shellstru
ture, the available data suggest that single-parti
le energies evolve with neutronand proton number in a manner that 
annot be related to the geometri
al growthof the single-parti
le potential with N and Z. Many anomalies of shell stru
turehave been identi�ed that do not �t into simple experimental systemati
s, and that
hallenge any global model of nu
lear stru
ture.The evolution of shell stru
ture with N and Z as a feature of self-
onsistentmean-�eld models has been known for long. To quote the pioneering study of shellstru
ture in a self-
onsistent model performed by Beiner et al. [Bei75b℄, the �moststriking e�e
t is the appearan
e of N = 16, 34 and 56 as neutron magi
 numbersfor unstable nu
lei, together with a weakening of the shell 
losure at N = 20 and28�. Various me
hanisms that modify the appearan
e of gaps in the single-parti
lespe
tra have been dis
ussed in detail in the literature. The two most prominentones that were worked out by Doba
zewski et al. in Ref. [Dob94℄, however, playmainly a role for weakly-bound exoti
 nu
lei far from stability, as they are dire
tly orindire
tly related to the physi
s of loosely bound single-parti
le states, namely thatthe enhan
ement of the di�useness of neutron density distribution redu
es the spin-orbit 
oupling in neutron-ri
h nu
lei on the one hand, and the intera
tion betweenbound orbitals and the 
ontinuum results in a quen
hing of shell e�e
ts in light andmedium systems on the other hand. The former e�e
t was also extensively dis
ussedin the framework of relativisti
 models by Lalazissis et al. [Lal98a, Lal98b℄, whilethe latter triggered a number of studies that dis
ussed the potential relevan
e of thisso-
alled �Bogolyubov enhan
ed shell quen
hing� to explain the abundan
e patternfrom the astrophysi
al r-pro
ess of nu
leosynthesis [Che95, Dob95b, Pea96, Pfe97℄.These two e�e
ts take pla
e in neutron-ri
h nu
lei. In proton-ri
h nu
lei, theCoulomb barrier suppresses both the di�useness of the proton density and the 
ou-pling of bound proton states to the 
ontinuum. But the Coulomb intera
tion itself
an also modify the shell stru
ture: for super-heavy nu
lei, it begins to destabi-lize the nu
leus as a whole. Mean-�eld models predi
t that it ampli�es the shell69
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illations of the densities for in
omplete �lled os
illator shells, whi
h leads tostrong variations of the density pro�le that feed ba
k onto the single-parti
le spe
-tra [De
99, Ben99b℄.Interestingly, most theoreti
al papers about the evolution of shell stru
ture fromthe last de
ade have spe
ulated about new e�e
ts that mainly a�e
t neutron shellsin nu
lei far from stability in the anti
ipation of the rare-isotope physi
s that mightbe
ome a

essible with the next generation of experimental fa
ilities. The knownanomalies, some of whi
h have been known for a long time, and many more havebeen identi�ed re
ently, 
on
ern also proton shells and already appear su�
iently
lose to stability that �exoti
 phenomena 
an be ruled out for their explanation� inmost 
ases, to paraphrase the authors of Ref. [Lan03℄. By 
ontrast, this suggests thatthere exists a me
hanism that indu
es a strong evolution of single-parti
le spe
traalready in stable nu
lei that has been overlooked for long.There is a prominent ingredient of the nu
leon-nu
leon intera
tion that has beenignored for de
ades in virtually all global nu
lear stru
ture models for medium andheavy nu
lei, be it ma
ros
opi
-mi
ros
opi
 approa
hes or self-
onsistent mean-�eldmethods. It is only very re
ently, that the systemati
 dis
repan
ies between modelpredi
tions and experiment have triggered a renaissan
e of the tensor for
e in thedes
ription of �nite medium- and heavy-mass nu
lei.The tensor for
e is a 
ru
ial and ne
essary ingredient of the bare nu
leon-nu
leonintera
tion [Wir95, Ma
01℄, and 
onsequently is 
ontained in all ab-initio approa
hesthat are available for light, mainly p-shell nu
lei [Pie01b, Nav03℄. One of the �rstexperimental signatures of the tensor for
e was the small, but �nite quadrupole mo-ment of the deuteron. In a boson-ex
hange pi
ture of the bare nu
leon-nu
leon in-tera
tion, the tensor for
e originates from the ex
hange of pseudos
alar pions, whi
hhave both 
entral and tensor 
ouplings, see for example se
tion 2.3 in Ref. [Eis72℄or appendix 13A of Ref. [Nil95℄. In a nu
lear many-body system, the bare tensorfor
e indu
es a strong 
orrelation between the spatial and spin orientations in thetwo-body density matrix. For two nu
leons with parallel spins, the tensor for
eenergeti
ally favors the 
on�guration where the distan
e ve
tor is aligned with thespins, while for anti-parallel spins the tensor for
e prefers when the distan
e ve
toris perpendi
ular to the spins, see the dis
ussion of Fig. 13 in Ref. [Nef03℄ and ofFig. 3 in Ref. [Rot04℄. The authors of these papers also demonstrate very ni
elythe well-known fa
t [Bet68, Neg70℄ that in an approa
h that starts from the barenu
leon-nu
leon intera
tion, nu
lei are not bound without taking into a

ount thetwo-body 
orrelations indu
ed by the tensor for
e.In a perturbation-theory interpretation of the EDF s
heme, most of the e�e
t ofthe bare tensor for
e on the binding energy is integrated out through the renormaliza-tion of the 
oupling 
onstants asso
iated with a 
entral e�e
tive vertex, in a similarfashion as the tensor part of the bare intera
tion is renormalized into the 
entralone when going from the bare nu
leon-nu
leon for
e to a Brue
kner G matrix. Thetensor terms of the EDF relate to a residual tensor vertex, in terms of many-bodyperturbation theory, that gives nothing but a 
orre
tion to the spin-orbit splittings,whi
h for light p-shell nu
lei might be of the same order as the 
ontribution from thegenuine spin-orbit for
e. The interplay of spin-orbit and tensor for
es in the mean�eld of medium and heavy nu
lei was explored in Refs. [S
h76, Goo78, Zhe91℄, wherethe parti
ular role of spin-unsaturated shells was pointed out.Despite the quite re
ent 
hara
ter of the emphasis seen in the literature on the
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4.1. INTRODUCTION 71tensor part of nu
lear EDF models, the e�e
tive zero-range non-lo
al intera
tion pro-posed by Skyrme in 1956 [Sky56, Sky58a, Bel56, Sky58b℄ already 
ontained a zero-range tensor for
e. The �rst appli
ations of Skyrme's intera
tion in self-
onsistentmean-�eld models that be
ame available around 1970, however, negle
ted the tensorfor
e, and the simpli�ed e�e
tive Skyrme intera
tion used in the seminal paper byVautherin and Brink [Vau72℄ soon be
ame the standard Skyrme intera
tion that wasused in most appli
ations ever sin
e. Until very re
ently, there was only very littleexploratory work on Skyrme's tensor for
e. In their early study, Stan
u, Brink andFlo
ard [Sta77℄, who added the tensor for
e perturbatively to the SIII parametriza-tion, pointed out that some spin-orbit splittings in magi
 nu
lei 
an be improvedwith a tensor for
e. A 
omplete �t in
luding the terms from the tensor for
e that
ontribute in spheri
al nu
lei was attempted by Tondeur [Ton83℄, with the relevant
oupling 
onstants of the spin-orbit and tensor terms adjusted to sele
ted spin-orbitsplittings in 16O, 48Ca and 208Pb. Another 
omplete �t of a generalized Skyrmeintera
tion in
luding a tensor for
e was performed by Liu et al. [Liu91℄, but the au-thors did not investigate the e�e
t of the tensor for
e in detail, nor was the resultingparametrization ever used in the literature thereafter.Similarly, the seminal paper by Gogny [Gog75b℄ on the evaluation of matrixelements of a �nite-range for
e of Gaussian shape in an harmoni
 os
illator basis
ontains the expressions for a �nite-range tensor for
e, whi
h, however, was omit-ted in the parametrizations of Gogny's for
e adjusted by the Bruyères-le-Châtelgroup [De
80℄. It were Onishi and Negele [Oni78℄ who �rst published an e�e
tiveintera
tion that 
ombined a Gaussian two-body 
entral for
e, a �nite-range tensorfor
e with a zero-range spin-orbit for
e and a zero-range non-lo
al three-body for
e,whi
h, however, also fell into oblivion.The role of the tensor for
e is slightly di�erent in Skyrme and Gogny intera
-tions. In the Gogny for
e, the 
ontributions from the 
entral and tensor parts remainexpli
itly distin
t, although, of 
ourse, this does not prevent a 
ertain entanglementof their physi
al e�e
ts. In the 
ontext of Skyrme's fun
tional, however, the 
ontri-bution of a zero-range tensor for
e to the spheri
al mean-�eld state of an even-evennu
leus has exa
tly the same form as a parti
ular ex
hange term from the non-lo
alpart of the 
entral Skyrme for
e.Thus, one must always keep in mind that both the 
entral and tensor part of thee�e
tive vertex 
ontribute to the J2
t �tensor� terms of the fun
tional, as they will bereferred to in this 
hapter.In the 
ontext of relativisti
 mean-�eld models, the equivalent of the non-relat-ivisti
 tensor for
e appears as the ex
hange term of e�e
tive �elds with the quantumnumbers of the pion, whi
h by 
onstru
tion do not appear in the standard relativisti
Hartree models. Only relativisti
 Hartree-Fo
k models 
ontain this tensor for
e, withthe �rst predi
tive parametrizations be
oming available re
ently [Lon06℄.We also mention that there is a large body of work on the tensor for
e in the inter-a
ting shell model, see Ref. [Fay97℄ for a review, that 
on
entrates on a 
ompletelydi�erent aspe
t of the tensor for
e, namely its unique 
ontribution to ex
itationswith unnatural parity.The re
ent interest in the e�e
t of the tensor for
e in the 
ontext of self-
onsistentmean �eld models was triggered by the observed evolution of single-parti
le levelsof one nu
leon spe
ies in dependen
e of the number of the other nu
leon spe
ies.Otsuka et al. [Ots05℄ proposed that at least part of the e�e
t is 
aused by the proton-
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72 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALneutron tensor for
e from pion ex
hange. Many groups attempt now to explainknown, but so far unresolved, anomalies of shell stru
ture in terms of a tensor for
e.A parti
ularly popular playground is the relative shift of the proton 1g7/2 and 1h11/2levels in tin isotopes, whi
h is interpreted as the redu
tion of the spin-orbit splittingsof both levels with their respe
tive partners with in
reasing neutron number [S
h04℄.Otsuka et al. [Ots06℄ added a Gaussian tensor for
e, adjusted on the long-rangepart of a one-pion+ρ ex
hange potential, to a standard Gogny for
e. After a 
on-sistent readjustment of the parameters of its 
entral and spin-orbit parts, they wereable to explain 
oherently the anomalous relative evolution of some single-parti
lelevels without, however, being able to des
ribe their absolute distan
e in energy.Doba
zewski [Dob06℄ pointed out that a perturbatively added tensor intera
tionwith suitably 
hosen 
oupling 
onstants in the Skyrme energy density fun
tional doesnot only modify the evolution of shell stru
ture, but does also improve the des
rip-tion of nu
lear masses around magi
 nu
lei. Then, 
on
entrating of single-parti
leenergies, Zalewski et al. [Zal08℄ adjusted the tensor and spin-orbit parameters ofthe Skyrme EDF on spin-orbit splittings in the Ca-Ni region, negle
ting somewhatthe reprodu
tion of binding energies, whi
h will be dis
ussed in this study. Ko-rtelainen et al. [Kor08℄ performed a singular-value de
omposition analysis of the�t to single-parti
le energies of a general quasi-lo
al fun
tional, impli
itly in
lud-ing the degrees of freedom asso
iated with the tensor in an intera
tion-derived EDF.Brown et al. [Bro06a℄ �tted a Skyrme intera
tion with added zero-range tensor for
ewith emphasis on the reprodu
tion of single-parti
le spe
tra. While the authors ap-pre
iated the qualitatively 
orre
tly des
ribed evolution of relative level distan
es,they pointed out that the 
ombination of zero-range spin-orbit and tensor for
esdoes not and 
an not 
orre
tly des
ribe the ℓ-dependen
e of spin-orbit splittings.Colò et al. [Col07℄, and Brink et al. [Bri07℄ added Skyrme's tensor for
e perturba-tively to the existing standard parametrization SLy5 [Cha97, Cha98℄, and to theSIII [Bei75b℄ one, respe
tively. They investigated some single-parti
le energy dif-feren
es: the 1h11/2 and 1g7/2 proton states in tin isotopes as well as 1i13/2 and
1h9/2 neutron states in N = 82 isotones and proposed similar parameters as inRef. [Bro06a℄. The e�e
t of the tensor for
e on the 
entroid of the GT giant reso-nan
e was also estimated by Colò et al. using a sum-rule approa
h and found to besubstantial. Long et al. [Lon08℄, demonstrated that the tensor for
e that emergesnaturally in relativisti
 Hartree-Fo
k also improves the relative shifts of the proton
1g7/2 and 1h11/2 levels in tin isotopes.Many studies on the tensor for
e published so far aim at an optimal singleparametrization, that establishes a best �t to either the underlying bare tensorfor
e [Ots06, Bro06a℄ or empiri
al data [Ton83, Dob06, Col07℄. The published re-sults, as well as our �rst exploratory studies, however, suggest that adding a tensorfor
e to the existing mean-�eld models gives only a lo
al improvement of the relative
hange of 
ertain single-parti
le energies, but not ne
essarily a global improvementof single-parti
le spe
tra or other observables. In the framework of the Skyrme EDF,there is also the already mentioned ambiguity that the 
ontribution from the tensorfor
e to spheri
al nu
lei has the same stru
ture as a term from the 
entral for
e. Inview of this situation, we will pursue a di�erent strategy and investigate the e�e
tof the tensor terms on a multitude of observables in nu
lei though a set of Skyrmeintera
tions with systemati
ally varied 
oupling 
onstants of the tensor terms.The present study was motivated by the �nding that the performan
e of the
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4.2. THE FITS 73existing Skyrme-type e�e
tive intera
tions for masses and spe
tros
opi
 propertiesis limited by systemati
 de�
ien
ies of the single-parti
le spe
tra [Ben06a, Ben03a,Ben06b, Cha06
℄ that seem to be impossible to remove within the standard Skyrmeintera
tion. The details of single-parti
le spe
tra were so far somewhat outsidethe fo
us of self-
onsistent mean-�eld methods, on the one hand as they do not
orrespond dire
tly to empiri
al single-parti
le energies (we will 
ome ba
k to thatbelow), and on the other hand be
ause many of the observables that are usually
al
ulated with self-
onsistent mean-�eld methods are not very sensitive to the exa
tpla
ement of single-parti
le levels. By 
ontrast, there is an enormous body of workthat examines the in�nite and semi-in�nite nu
lear matter properties of the e�e
tiveintera
tions that are the analog of liquid-drop and droplet parameters in great detail.The reason is, of 
ourse, that the global trends over the whole 
hart of nu
lei haveto be understood before one 
an look into details. The last few years have seen anin
reasing demand on predi
tive power. Moreover, beyond-mean-�eld approa
hesof the proje
ted generator 
oordinate method (GCM), or Bohr-Hamiltonian type,have be
ome widely used tools to analyze and predi
t spe
tros
opi
 properties inmedium and heavy nu
lei, employing either Gogny or Skyrme intera
tions. Theunderlying single-parti
le spe
tra thus now deserve more attention, as many of thespe
tros
opi
 properties of interest turn out to be extremely sensitive to even subtledetails of the single-parti
le spe
tra. As the tensor for
e is the most obvious missingpie
e in all standard mean-�eld intera
tions, it is the natural starting point for thesystemati
 investigation of possible generalizations with the ultimate goal to improvethe predi
tive power of the intera
tions for spe
tros
opy.In the present 
hapter, we will des
ribe the �t of the parametrizations, analyzethe role of the tensor terms for single-parti
le spe
tra, then masses and radii ofspheri
al even-even nu
lei.4.2 The �ts4.2.1 Properties of tensor terms in spheri
al symmetryAs dis
ussed in se
tion 2.3, in time-reversal-invariant systems, only the J2 termsof the fun
tional generated by the tensor for
e remains. Furthermore, enfor
ingspheri
al symmetry greatly simpli�es the spin-
urrent tensor, Eq. (2.76), as boththe pseudos
alar and pseudotensor parts of Jµν vanish. From the ve
tor spin-orbit
urrent, only the radial 
omponent is non-zero, whi
h is given by [Vau72℄
Jq(r) =

1

4πr3

∑

n,j,ℓ

(2j + 1) v2
njℓ

[
j(j + 1) − ℓ(ℓ+ 1) − 3

4

]
u2

njℓ(r) (4.1)so that there is only one out of the nine 
omponents of the spin-
urrent tensor densitythat 
ontributes in spheri
al nu
lei. Unlike the total density ρ and the kineti
 density
τ , that are bulk properties of the nu
leus and grow with the size of the nu
leus, thespin-orbit 
urrent is a shell e�e
t that shows strong �u
tuations. Assume the twoshells with same n and ℓ whi
h are split by the spin-orbit intera
tion, one 
oupledwith the spin to j = ℓ + 1

2
, the other to j = ℓ − 1

2
. It is easy to verify that their
ontributions to Jq(r) are equal but of opposite signs su
h that they 
an
el when(i) both shells are 
ompletely �lled and (ii) their radial wave fun
tions are identi
al
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ψn,ℓ+1/2,ℓ = ψn,ℓ−1/2,ℓ. Although the latter 
ondition is never exa
tly ful�lled, thisdemonstrates that the spin-orbit 
urrent is not a bulk property, but a shell e�e
tthat strongly �u
tuates with N and Z. It nearly vanishes in so-
alled spin-saturatednu
lei, where all spin-orbit partners are either 
ompletely o

upied or empty, and itmight be quite large when only the j = ℓ+1/2 level out of one or even several pairsof spin-orbit partners is �lled.In spheri
al symmetry, the 
ontribution to the energy fun
tional of the J2 termsis

Ht =
∑

t=0,1

1
2
CJ

t J2
t =

∑

t=0,1

(
−1

2
CT

t + 1
4
CF

t

)
J2

t . (4.2)The e�e
tive 
oupling 
onstants 
an be separated ba
k into 
ontributions from thenon-lo
al 
entral and tensor for
es
CJ

t = AJ
t +BJ

t (4.3)whi
h are given by
AJ

0 = 1
8
t1
(

1
2
− x1

)
− 1

8
t2
(

1
2

+ x2

)

AJ
1 = 1

16
t1 − 1

16
t2

BJ
0 = 5

16
(te + 3to) = 5

48
(T + 3U)

BJ
1 = 5

16
(to − te) = 5

48
(U − T ) , (4.4)where we also give the expressions using the notation T = 3te and U = 3to employedin [Flo75, Sta77, Col07℄.For the following dis
ussion it will be also illuminating to re
ouple this expressionto a representation that uses proton and neutron densities, where we use the notationintrodu
ed in Ref. [Sta77℄

Ht = 1
2
α (J2

n + J2
p) + β Jn · Jp , (4.5)with

α = CJ
0 + CJ

1 , β = CJ
0 − CJ

1 ,

CJ
0 = 1

2
(α + β) , CJ

1 = 1
2
(α− β) . (4.6)The proton-neutron 
oupling 
onstants α = αC +αT and β = βC + βT 
an again beseparated into 
ontributions from 
entral and tensor for
es

αC = 1
8
(t1 − t2) − 1

8
(t1x1 + t2x2) ,

βC = −1
8
(t1x1 + t2x2) ,

αT = 5
4
to = 5

12
U ,

βT = 5
8
(te + to) = 5

24
(T + U) . (4.7)As 
ould be expe
ted, the isospin-singlet tensor for
e 
ontributes only to the proton-neutron term, while the isospin-triplet tensor for
e 
ontributes to both.The spin-orbit potential of the neutrons is given by

Wn(r) =
δE

δJn(r)
· er =

W0

2

(
2∇ρn + ∇ρp) + α Jn + β Jp . (4.8)
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4.2. THE FITS 75The expression for the protons is obtained ex
hanging the indi
es for protons andneutrons. In spheri
al symmetry, the tensor for
e gives a 
ontribution to the spin-orbit potential, but does not alter the stru
ture of the spin-orbit terms in the single-parti
le Hamiltonian as su
h. This will be di�erent in the 
ase of deformed mean�elds [Per04, Ben09℄.The dependen
e of the spin-orbit potentialWq(r) on the spin-orbit 
urrent Jq(r)through the tensor terms is the sour
e of a potential instability. When the spin-orbitsplitting be
omes larger than the splitting of the 
entroids of single-parti
le stateswith di�erent orbital angular momentum ℓ, the reordering of levels might in
reasethe number of spin-unsaturated levels, whi
h in
reases the spin-orbit 
urrent Jn andfeeds ba
k on the spin-orbit potential by in
reasing it even further, whi
h ultimatelyleads to an unphysi
al shell stru
ture.4.2.2 A brief history of tensor terms in the 
entral Skyrmeenergy fun
tionalFor the interpretation of the parametrizations we will des
ribe below it is impor-tant to point out that within our 
hoi
e of the e�e
tive Skyrme intera
tion as anantisymmetrized vertex the two 
oupling 
onstants of the 
ontribution from the
entral for
e to HT , Eq. (4.2), either represented through AJ
0 , AJ

1 or through αC ,
βC , are not independent from the 
oupling 
onstants Aτ

0, Aτ
1 , A∆ρ

0 , and A∆ρ
1 , thatappear in Eq. (2.95). Through the expressions given in appendix A, all six of themare determined by the four 
oupling 
onstants t1, x1, t2, and x2 from the 
entralSkyrme for
e, Eq. (2.78). As a 
onsequen
e, a tensor for
e is absolutely ne
essaryto de
ouple the values of the CJ

t from those of the Cτ
t and C∆ρ

t , whi
h determinethe isos
alar and isove
tor e�e
tive masses and give the dominant 
ontribution tothe surfa
e and surfa
e asymmetry 
oe�
ients, respe
tively.This interpretation of the Skyrme intera
tion is, however, far from being 
om-mon pra
ti
e and a sour
e of 
onfusion and potential in
onsisten
ies in the lit-erature. Many authors have used parametrizations of the 
entral and spin-orbitSkyrme energy fun
tional with 
oupling 
onstants that in one way or the other donot exa
tly 
orrespond to the fun
tional obtained from Eqns. (2.78) and (2.84),whi
h, depending on the point of view, 
an be seen as an approximation to ora generalization of the original Skyrme intera
tion. As the most popular mod-i�
ation 
on
erns the tensor terms, a few 
omments on the subje
t are in or-der. Again, the pra
ti
e goes ba
k to the seminal paper by Vautherin and Brink[Vau72℄, who state that �the 
ontribution of this term to [the spin-orbit poten-tial℄ is quite small. Sin
e it is di�
ult to in
lude su
h a term in the 
ase ofdeformed nu
lei, it has been negle
ted�. This 
hoi
e was further motivated bythe interpretation of the e�e
tive Skyrme intera
tion as a density-matrix expan-sion (DME) [Neg70, Neg72, Neg75, Cam78℄. All early parametrizations as SI andSII [Vau72℄, SIII-SVI [Bei75b℄, SkM [Kri80℄ and SkM∗ [Bar82a℄ followed this exam-ple and did not 
ontain the J2 terms. Beiner et al. [Bei75b℄ weakened the 
ase for J2terms further by pointing out that they might lead to unphysi
al single-parti
le spe
-tra. During the 1980s and later, however, it be
ame more popular to in
lude them,for example in SkP [Dob84℄, the parametrizations T1-T9 by Tondeur et al. [Ton84℄,Eσ and Zσ by Friedri
h and Reinhard [Fri86℄. Some of the re
ent parametrizations
ome in pairs, where variants without and with J2 terms are �tted within the same
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ol, for example (SLy4, SLy5) and (SLy6, SLy7) in Ref. [Cha98℄, or (SkO,SkO') in Ref. [Rei99℄.Interestingly, all but one parametrization of the 
entral Skyrme intera
tion foundin the literature set the 
oupling 
onstants of the J2 terms either to their Skyrmefor
e value (A.1) or stri
tly to zero. The ex
eption is Ref. [Ton83℄ by Tondeur,where an independent �t of the 
oupling 
onstants of the J2 terms was attempted,making expli
it referen
e to a DME interpretation of the energy fun
tional.Setting the 
oupling 
onstants of a term to zero when one does not know howto adjust its parameters is of 
ourse an a

eptable pra
tise when permitted bythe 
hosen framework. For Skyrme intera
tions �tted without the J2 terms, thesituation be
omes 
onfusing when one looks at deformed nu
lei and any situationthat breaks time-reversal invarian
e. First of all, Galilean invarian
e of the energyfun
tional di
tates that the 
oupling 
onstant of the s · T terms is also set to zero,as already indi
ated by the presentation of the energy fun
tional in Eq. (2.91).Se
ond, using a DME interpretation of the Skyrme energy fun
tional in one pla
e,but the interrelations from the two-body Skyrme for
e in all others is not entirelysatisfa
tory. Many authors who drop the J2 terms rarely show s
ruples to keepmost of the time-odd terms in the Skyrme energy fun
tional (2.91) with 
oupling
onstants As
t and A∆s

t from (A.1), although they are not at all 
onstrained in the
ommon �t proto
ols employing properties of even-even nu
lei and spin-saturatednu
lear matter. For a list of ex
eptions see Se
t. II.A.2.d of Ref. [Ben03b℄. Analternative is to set up a hierar
hy of terms, as it was attempted by Bon
he, Flo
ardand Heenen in their mean-�eld and beyond 
odes, whi
h set A∆s
t = 0 in additionto the 
oupling 
onstant of the J2 terms, as all three terms have in 
ommon thatthey 
ouple two Pauli matri
es with two derivatives in di�erent manners, see thefootnote on page 129 of [Bon87℄.There are also in
onsistent appli
ations of parametrizations without J2 − s · Tterms to be found in the literature. For example, almost all appli
ations of Skyrmeintera
tions to the Landau parameters gℓ and g′ℓ and the properties of polarizednu
lear matter, in
lude the 
ontribution from the s · T terms, although it shouldbe dropped for parametrizations �tted without J2 terms. Similarly, most RPA andQRPA 
odes in
lude them for simpli
ity, see the dis
ussion in Refs. [Eng99, Ben02,Ter05b℄.As it is relevant for the subje
t of the present paper, we also mention another gen-eralization of the Skyrme intera
tion that invokes the interpretation of the Skyrmeenergy fun
tional in a DME framework. The spin-orbit for
e (2.84) �xes the isospinmix of the 
orresponding terms in the Skyrme energy fun
tional (2.91) su
h that

A∇J
0 = 3A∇J

1 (A.2). There are a few parametrizations as MSkA [Sha95℄, SkI3 andSkI4 [Rei95℄, SkO and SkO' [Rei99℄ and SLy10 [Cha98℄ that liberate the isospindegree of freedom in the spin-orbit fun
tional. A DME interpretation of the energyfun
tional is mandatory for this generalization. It is motivated by the better per-forman
e of standard relativisti
 mean-�eld models for the kink of the 
harge radiiin Pb isotopes. Note that the standard RMF models are e�e
tive Hartree theo-ries without ex
hange terms, and that the standard Lagrangians have very limitedisove
tor degrees of freedom [Ben03b℄, both of whi
h suppress a strong isospin de-penden
e of the spin-orbit intera
tion. It is interesting to note that the existing �tsof Skyrme energy fun
tionals with generalized spin-orbit intera
tion do not improvespin-orbit splittings [Ben99b℄.
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4.2. THE FITS 774.2.3 General remarksIn order to study the e�e
t of the J2 terms, we have built a set of 36 e�e
tive intera
-tions that systemati
ally 
over the region of 
oupling 
onstants CJ
0 and CJ

1 that, in apreliminary exploration of this parameter spa
e, gave a reasonable des
ription of �-nite nu
lei in 
onne
tion with the standard 
entral and spin-orbit Skyrme for
es. Atvarian
e with the perturbative approa
h used in Refs. [Sta77, Col07℄, ea
h of theseparametrizations has been �tted separately, following a pro
edure nearly identi
alto that used for the 
onstru
tion of the SLy parametrizations [Cha97, Cha98℄, aswell as that used in the pre
eding 
hapter, so that we 
an keep the 
onne
tion be-tween the new �ts with parametrizations that have been applied to a large varietyof observables and phenomena.The region of e�e
tive 
oupling 
onstants (CJ
0 , C

J
1 ) of the J2 terms a
ting inspheri
al nu
lei, as de�ned in Eq. (2.95), that we will explore, is shown in Fig. 4.1.The parametrizations are labeled TIJ , where indi
es I and J refer to the proton-neutron (β) and like-parti
le (α) 
oupling 
onstants in Eq. (4.5) su
h that

α = 60 (J − 2) MeV fm5,

β = 60 (I − 2) MeV fm5. (4.9)The 
orresponding values of CJ
t 
an be obtained through Eq. (4.6) or from Fig. 4.1.On the one hand, we 
over the positions of the most popular existing parametriza-tions of the Skyrme intera
tion that take the J2 terms from the 
entral for
e intoa

ount, whi
h are SLy5 [Cha98℄, SkP [Dob84℄, Zσ [Fri86℄, T6 [Ton84℄, SkO' [Rei99℄and BSk9 [Gor05b℄. On the other hand, among re
ent parametrizations in
luding atensor term, i.e. Skxta [Bro06a℄, Skxtb [Bro06a, Bro07℄ as well as those publishedby Colò et al. [Col07℄ and Brink and Stan
u [Bri07℄, most fall in a region of negative

CJ
1 and vanishing CJ

0 , that is to the lower left of Fig. 4.1. Parametrizations of thisregion, whi
h also in
ludes a part of the triangle advo
ated in the perturbative studyof Stan
u et al. [Sta77℄, gave unsatisfa
tory results for many observables. Moreover,when attempting to �t parametrizations with large negative 
oupling 
onstants, wesometimes obtained unrealisti
 single-parti
le spe
tra or even ran into the insta-bilities already mentioned. Parametrizations further to the lower and upper rightalso have unrealisti
 deformations properties. The 
ontribution from the J2 termsvanishes for T22, whi
h will serve as the referen
e point. For the parametrizationsT2J , only the proton-proton and neutron-neutron terms in Ht are non-zero (β = 0),while for the parametrizations TI2, only the proton-neutron term in Ht 
ontributes(α = 0). Note that the earlier parametrizations T6 and Zσ have a pure like-parti
le
J2 terms as a 
onsequen
e of the 
onstraint x1 = x2 = 0 employed for both (andmost other early parametrizations of Skyrme's intera
tion).4.2.4 The �t proto
ol and pro
edureThe list of observables used to 
onstru
t the 
ost fun
tion χ2 minimized during the�t (see Eq. (4.1) in Ref. [Cha97℄) reads as follows: binding energies and 
harge radiiof 40Ca, 48Ca, 56Ni, 90Zr, 132Sn and 208Pb; the binding energy of 100Sn; the spin-orbit splitting of the neutron 3p state in 208Pb; the empiri
al energy per parti
leand density at the saturation point of symmetri
 nu
lear matter; and �nally, theequation of state of neutron matter as predi
ted by Wiringa et al. [Wir88℄.

http://www.sciencedirect.com/science/article/B6TVN-486T324-28/2/cff836369d16bc1cfe44972964a4d537
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4
http://link.aps.org/abstract/PRC/v33/p335
http://www.sciencedirect.com/science/article/B6TVB-4731NDN-YX/2/958be53298d17745af8dd9b7401ae72d
http://dx.doi.org/10.1103/PhysRevC.60.014316
http://www.sciencedirect.com/science/article/B6TVB-4F94G78-1/2/1e73cd9ea8bfe26b22d78616823758d9
http://dx.doi.org/10.1103/PhysRevC.74.061303
http://dx.doi.org/10.1103/PhysRevC.74.061303
http://dx.doi.org/10.1103/PhysRevC.75.064311
http://www.sciencedirect.com/science/article/B6TVN-486T324-28/2/cff836369d16bc1cfe44972964a4d537
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://dx.doi.org/10.1103/PhysRevC.38.1010
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Figure 4.1: Values of CJ
0 and CJ

1 for our set of parametrizations (
ir
les). Diag-onal lines indi
ate α = CJ
0 + CJ

1 = 0 (pure neutron-proton 
oupling)and β = CJ
0 − CJ

1 = 0 (pure like-parti
le 
oupling). Values for 
las-si
al parameter sets are also indi
ated (dots), with SLy4 representingall parametrizations for whi
h J2 terms have been omitted in the �t.Re
ent parametrizations with tensor terms are indi
ated by squares.



4.2. THE FITS 79Furthermore, some properties of in�nite nu
lear matter are 
onstrained throughanalyti
 relations between 
oupling 
onstants in the same manner as they were inRefs. [Cha97, Cha98℄: the in
ompressibility modulus K∞ is kept at 230 MeV, whilethe volume symmetry energy 
oe�
ient aτ is set to 32 MeV. The isove
tor e�e
tivemass, expressed through the Thomas-Rei
he-Kuhn sum rule enhan
ement fa
tor κv,is taken su
h that κv = 0.25.When using a single density-dependent term in the 
entral Skyrme for
e (2.78),the isos
alar e�e
tive mass m∗
s 
annot be 
hosen independently from the in
om-pressibility modulus for a given exponent γ of ρ0. We follow here the pres
riptionused for the SLy parametrizations [Cha97, Cha98℄ and use γ = 1/6, whi
h leadsto an isos
alar e�e
tive mass 
lose to 0.7 in units of the bare nu
leon mass for allTIJ parametrizations. Using su
h a proto
ol we 
annot, 
ontrary to the proto
olused in 
hapter 3, reprodu
e the isove
tor e�e
tive mass 
onsistent with re
ent ab-initio predi
tions. Regarding the present exploratory study of the tensor terms thisis not a 
riti
al limitation, in parti
ular as the in�uen
e of this quantity on stati
properties of �nite nu
lei, as found previously, turns out to be small.There are three modi�
ations of the �t proto
ol 
ompared to [Cha97, Cha98℄.The obvious one is that the values for CJ

0 and CJ
1 are �xed beforehand as the pa-rameters that will later on label and 
lassify the �ts. The se
ond is that we haveadded the binding energies of 90Zr and 100Sn to the set of data. Indeed, we ob-served that the latter nu
leus is usually signi�
antly overbound when not in
ludedin the �t, as 
an be seen on the upper-left panel of Fig. 3.5. The third is that wehave dropped the 
onstraint x2 = −1 that was imposed on the SLy parametriza-tions [Cha97, Cha98℄ to ensure the stability of in�nite homogeneous neutron matteragainst a transition into a ferromagneti
 state. On the one hand, this stability 
ri-terion is 
ompletely determined by the 
oupling 
onstants of the time-odd termsin the energy fun
tional [Ben02℄, that we do not want to 
onstrain here, a

eptingthat the parametrizations might be of limited use beyond the present study. On theother hand, the tensor for
e brings many new 
ontributions to the energy per parti-
le of polarized nu
lear matter that lead to a mu
h more 
omplex stability 
riterion.The entire dis
ussion 
on
erning the stability with respe
t to spin polarization inthe presen
e of a tensor for
e shall not be in
luded in this work, as we expe
t thataddressing �nite-size instabilities will be ne
essary, and the 
orresponding response-fun
tion formalism has not been derived yet, to our best knowledge. It also has tobe stressed that the a
tual stability 
riterion, as all properties of the time-odd partof the Skyrme energy fun
tional, depends on the 
hoi
es made for the interpretationof its 
oupling 
onstants, i.e. antisymmetrized vertex or density fun
tional [Ben02℄.The properties of the �nite nu
lei entering the �t are 
omputed using a Slater de-terminant without taking pairing into a

ount. The 
ost fun
tion χ2 was minimizedusing a simulated annealing algorithm. The annealing s
hedule was an exponen-tial one, with a 
hara
teristi
 time of 200 iterations (also referred to as �simulatedquen
hing�) Thus, assuming a reasonably smooth 
ost fun
tion, we strive to ob-tain satisfa
tory 
onvergen
e to its absolute minimum in a single run, allowing asystemati
 and straightforward produ
tion of a large series of for
es. The 
oupling
onstants for all 36 parametrizations 
an be found in Table A.1.Figure 4.2 displays the value of χ2 after minimization as a fun
tion of the re-
oupled 
oupling 
onstants α and β. The �rst striking feature is the existen
e of a�valley� at β = 0, i.e. a pure like-parti
le tensor term ∼ (J2

n + J2
p). The abrupt rise

http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1103/PhysRevC.65.054322
http://dx.doi.org/10.1103/PhysRevC.65.054322
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Figure 4.2: Values of the 
ost fun
tion χ2 as de�ned in the �t pro
edure, for the setof parametrizations TIJ . The label �T11� indi
ates the position of thisparametrization in the (α,β)-plane as obtained from Eqs. (4.9). Contourlines are drawn at χ2 = 11, 12, 15, 20, 25, and 30. The minimum valueis found for T21 (χ2 = 10.05), the maximum for T61 (χ2 = 37.11).of χ2 around this value 
an be attributed to the term depending on nu
lear bindingenergies, as sharp variations of energy residuals 
an be seen between neighboringmagi
 nu
lei with fun
tionals of the T6J series (β = 240). For example, 48Ca and
90Zr tend to be signi�
antly overbound in this 
ase. We will 
ome ba
k later todis
ussing the impli
ations for the quality of the fun
tionals.4.2.5 General properties of the �tsThe 
oupling 
onstants of the energy fun
tional for spheri
al nu
lei (2.95) obtainedfor T22 are very similar to those of SLy4, ex
ept for a slight readjustment 
omingfrom the in
lusion of the binding energies of 90Zr and 100Sn in the �t as well asthe abandoned 
onstraint on x2. With its value of −0.945, the x2 obtained for T22still stays 
lose to the value −1 enfor
ed for SLy4, whi
h 
on�rms that this is nottoo severe a 
onstraint for parametrizations without e�e
tive J2 terms at spheri
ity.In
reasing the e�e
tive tensor term 
oupling 
onstants CJ

t , however, the values for
x2 start to deviate strongly from the region around −1, whi
h is to a large extentdue to the feedba
k from the 
ontribution of the J2 terms to the surfa
e and surfa
esymmetry energy 
oe�
ients in the presen
e of 
onstraints on isos
alar and isove
tore�e
tive masses, all of whi
h also depend on x2.From the 
onstrained 
oupling 
onstants CJ

0 and CJ
1 , the respe
tive 
ontributions

BJ
0 and BJ

1 from the tensor for
e 
an be dedu
ed afterwards using the expressionsgiven in se
tion 2.3.2. Their values, shown in Fig. 4.3, are less regularly distributed,whi
h is a 
onsequen
e of the non-linear interdependen
e of all 
oupling 
onstants.Still, a general trend 
an be observed, su
h that all parametrizations are shiftedtowards the �south-west� 
ompared to Fig. 4.1. In turn, this indi
ates that the
ontribution from the 
entral Skyrme for
e always stays in the small region outlinedby SkP, SLy5, Zσ, et
 in Fig. 4.1, with values that range between 28 and 104 MeV fm5for AJ
0 and between 38 to 62 MeV fm5 for AJ

1 , respe
tively. This justi�es a posteriorito use the tensor for
e as a motivation to de
ouple the J2
t terms from the 
entral part
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Figure 4.3: The 
ontributions from the tensor for
e BJ
0 and BJ

1 to the e�e
tive
oupling 
onstants of the J2 term at spheri
ity. Diagonal lines as inFig. 4.1. The diagonal where BJ
0 + BJ

1 = αT = 0 (pure proton-neutron
ontribution) additionally 
orresponds to an isospin-singlet for
e with
to ≡ U = 0.
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Figure 4.4: Value of spin-orbit 
oupling 
onstant W0 for ea
h of the parametriza-tions TIJ , vs. indi
es I and J (The �(T11)� label indi
ates the positionof this parametrization in the (α, β)-plane). The 
ontour lines di�er by20 MeV fm5. The values plotted here range from 103.7 MeV fm5 (T11)to 195.3 MeV fm5 (T66).of the e�e
tive Skyrme vertex. We note in passing that all our parametrizations TI4
orrespond to an almost pure proton-neutron or isospin-singlet tensor for
e, i.e. theterm ∝ te in Eq. (2.88), as they are all lo
ated 
lose to the αT = 0 line.We also �nd a parti
ularly strong and systemati
 variation of the 
oupling 
on-stant W0 of the spin-orbit for
e, whi
h varies from W0 = 103.7 MeV fm5 for T11 to
W0 = 195.3 MeV fm5 for T66, see Fig. 4.4. This variation is of 
ourse 
orrelated tothe strength of the tensor for
e. As already shown, the tensor for
e has the tenden
yto redu
e the spin-orbit splittings in spin-unsaturated nu
lei. To maintain a givenspin-orbit splitting in su
h a nu
leus, the spin-orbit 
oupling 
onstant W0 has to bein
reased.4.3 Results and dis
ussionThe 
al
ulations presented below in
lude open-shell nu
lei treated in the Hartree-Fo
k-Bogolyubov (HFB) framework. In the parti
le-parti
le 
hannel, we use a zero-range intera
tion with a mixed surfa
e/volume form fa
tor. The HFB equations wereregularized with a 
uto� at 60 MeV in the quasiparti
le equivalent spe
trum (seeRef. [Ben05℄ and se
tion 2.4). The pairing strength was adjusted in 120Sn withthe parti
le-hole mean �eld 
al
ulated using the parameter set T33. The resultingstrength was kept at the same value for all parametrizations, whi
h is justi�ed bythe fa
t that the e�e
tive mass parameters are the same. Moreover, we thus avoidin
luding, in the adjustment of the pairing strength, lo
al e�e
ts linked with 
hangesin details of the single-parti
le spe
trum.4.3.1 Spin-orbit 
urrents and potentialsAs a �rst step in the analysis of the role of the tensor terms and their interplaywith the spin-orbit intera
tion in spheri
al nu
lei, we analyze the spin-orbit 
urrent

http://www.sciencedirect.com/science/article/B6TJ5-4G24XK6-1/2/8b4c3242e0201a862f312ee1324a3298
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Figure 4.5: Radial 
omponent of the neutron spin-orbit 
urrent for the 
hain of Niisotopes, plotted against radius and neutron number N . The solid lineon the base plot indi
ates the radius where the total density has half itssaturation value.density and its relative 
ontribution to the spin-orbit potential. We 
hoose the 
hainof ni
kel isotopes, Z = 28, as it 
overs the largest number of spheri
al neutron shellsand subshells (N = 20, 28, 40 and 50) of any isotopi
 
hain, two of whi
h are spin-saturated (N = 20 and 40), while the other two are not. Figure 4.5 displays theradial 
omponent of the neutron spin-orbit 
urrent Jn for isotopes from the protonto the neutron drip-lines. The 
al
ulations are performed with T44, but the spin-orbit 
urrent is fairly independent from the parametrization. Starting from N = 20,whi
h 
orresponds to a 
ompletely �lled and spin-saturated sd-shell, the next magi
number at N = 28 is rea
hed by �lling the 1f7/2 shell, whi
h leads to the steeplyrising bump in the plot of Jn in the foreground, peaked around r ≃ 3.5 fm. Then,fromN = 28 toN = 40 the rest of the fp shell is �lled, whi
h �rst produ
es the smallbump at small radii that 
orresponds to the �lling of the 2p3/2 shell, but ultimatelyleads to a vanishing spin-orbit 
urrent when the 1f and 2p levels are 
ompletely�lled for the N = 40 isotope, visible as the deep valley in Fig. 4.5. Adding moreneutrons, the �lling of the 1g9/2 shell leads again to a strong neutron spin-orbit
urrent at N = 50. For the remaining isotopes up to the neutron drip line, theevolution of Jn is slower with the �lling of the 2d and 3s orbitals.A few further 
omments are in order. First, the spin-orbit 
urrent 
learly re�e
tsthe spatial probability distribution of the single-parti
le wave fun
tion in pairs ofunsaturated spin-orbit partners. Within a given shell, the high-ℓ states 
ontributeat the surfa
e, represented by the solid line on the base of Fig. 4.5, while low-ℓstates 
ontribute at the interior. The peak from the high-ℓ orbitals, however, isalways lo
ated on the inside of the nu
lear surfa
e, as de�ned by the radius of halfsaturation density. Se
ond, within a given shell, the largest 
ontributions to thespin-orbit 
urrent density obviously 
ome from the levels with largest ℓ, as theyhave the largest degenera
y fa
tors in (4.1), and be
ause they do not have nodes,whi
h leads to a single, sharply peaked 
ontribution. Third, the spin-orbit 
urrentis not exa
tly zero for nominally �spin-saturated� nu
lei, exempli�ed by the N = 20
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Figure 4.6: Contribution from the tensor terms (left panel) and the spin-orbit term(right panel) to the neutron spin-orbit potential for the 
hain of Niisotopes as obtained with the parametrization T44. The solid line onthe base plot indi
ates the radius where the isos
alar density ρ0 
rosseshalf its saturation value.and N = 40 isotopes in Fig. 4.5, as the radial single-parti
le wave fun
tions are notexa
tly identi
al for all pairs of spin-orbit partners, whi
h is a ne
essary requirementto obtain Jn = 0 at all radii (
f. the example of the ν 2d states in 132Sn in Fig. 4.12below). Fourth, pairing and other 
orrelations will always smooth the �u
tuationsof the spin-orbit 
urrent with nu
leon numbers, as levels in the vi
inity of the Fermienergy will never be 
ompletely �lled or empty.Next, we 
ompare the 
ontributions from the tensor terms and from the spin-orbit for
e to the spin-orbit potentials of protons and neutrons, Eq. (4.8). The
ontributions from the tensor for
e to the spin-orbit potential are proportional tothe spin-orbit 
urrents of protons and neutrons. For the Ni isotopes, the proton spin-orbit 
urrent is very similar to that of the neutrons at N = 28 displayed in Fig. 4.5.For the parametrization T44 we use here as an example, we have 
ontributions fromboth proton and neutron spin-orbit 
urrents, whi
h 
ome with equal weights. Their
ombined 
ontribution to the spin-orbit potential of the neutron Wn might be aslarge as 4 MeV, whi
h is more than a third of the maximum 
ontribution from thespin-orbit for
e to Wn (see Fig. 4.6). The latter is proportional to a 
ombination ofthe gradients of the proton and neutron densities, 2∇ρn(r) + ∇ρp(r), see Eq. (4.8).As a 
onsequen
e, it has a smooth behavior as a fun
tion of parti
le number, withslowly and monotoni
ally varying width, depth and position. Only limited lo
alvariations 
an be seen on the interior due to small variations of the density pro�leoriginating from the su

essive �lling of di�erent orbits. Furthermore, one 
an easilyverify that the 
ontribution from the spin-orbit for
e is peaked at the surfa
e of thenu
leus (the solid line on the base plot). The strongest variation of the depth ofthis potential o

urs just before the neutron drip line at N = 62, where is be
omeswider and shallower due to the development of a di�use neutron skin, whi
h redu
esthe gradient of the neutron density [Dob94, Lal98a, Lal98b℄.Adding the 
ontributions from the proton and neutron tensor terms to that

http://dx.doi.org/10.1103/PhysRevLett.72.981
http://www.sciencedirect.com/science/article/B6TVN-3SYXM6Y-2/2/bc560d8a7f15a33ac99999b4c99a901b
http://www.sciencedirect.com/science/article/B6TVB-3T0XR5K-3/2/719c3043312d1ae0173bf408684416a5
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Figure 4.7: Total neutron (left panel) and proton (right panel) spin-orbit potentialsfor the 
hain of Ni isotopes as obtained with the parametrization T44.The solid line on the base plot indi
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alardensity ρ0 
rosses half its saturation value.
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Figure 4.8: Single-parti
le spe
tra of neutrons (upper panels) and protons (lowerpanels) for the 
hain of Ni isotopes, as obtained with the parametrizationT22 with vanishing 
ombined J2 terms (left) and T44, with proton-neutron and like-parti
le tensor terms of equal strength (right). Thethi
k solid line in the upper panels denotes the Fermi energy for neutrons.



86 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALfrom the spin-orbit for
e, the total neutron spin-orbit potential for neutrons in Niisotopes is shown on the left panel of Fig. 4.7. For the parametrization T44 usedhere (and most others in the sample of parametrizations used in this study) thedominating 
ontributions from the spin-orbit and tensor for
es to the spin-orbitpotential are of opposite sign. For Ni isotopes, Jp is always quite large, while Jnvaries as shown in Fig. 4.5. Notably, both are peaked inside of the surfa
e. Whenexamining the 
ombined 
ontribution from the spin-orbit and tensor for
es to thespin-orbit potential (4.8), one must keep in mind that they are peaked at di�erentradii. Moreover, the variation of tensor-term 
oupling 
onstants among a set ofparametrizations implies a rearrangement of the spin-orbit term strength, as will bedis
ussed later. As a 
onsequen
e, taking into a

ount the tensor for
e modi�es thewidth and lo
alization of the spin-orbit potentialWq(r) mu
h more than it modi�esits depth through the variation of the spin-orbit 
urrents.Our observations also 
on�rm the �nding of Otsuka et al. [Ots06℄ that the spin-orbit splittings might be more strongly modi�ed by the tensor for
e than they areby neutron skins in neutron-ri
h nu
lei through the redu
tion of the gradient of thedensity.The right panel of Figure 4.7 shows the spin-orbit potential of the protons for the
hain of Ni isotopes. Here, the 
ontribution from the spin-orbit for
e has a larger
ontribution 
oming from the gradient of the proton density that just grows with themass number, without being subje
t to varying shell �u
tuations. The same holdsfor the proton 
ontribution from the tensor terms. Only the neutron 
ontributionfrom the tensor terms varies rapidly, proportional to Jn displayed in Fig. 4.5, whi
hhas a very limited e�e
t on the total spin-orbit potential, though.With that, we 
an examine how the tensor terms a�e
t the evolution of single-parti
le spe
tra. To that end, Fig. 4.8 shows the single-parti
le energies of protonsand neutrons along the 
hain of Ni isotopes for the parametrization T22 with vanish-ing 
ombined tensor terms, whi
h will serve as a referen
e, and for the parametriza-tion T44 with proton-neutron and like-parti
le tensor terms of equal strength. Forthe latter, the variation of the neutron spin-orbit 
urrent with N in�uen
es bothneutron and proton single-parti
le spe
tra. The e�e
t of the tensor terms is subtle,but 
learly visible: for T22, the major 
hange of the single-parti
le energies is their
ompression with in
reasing mass number, while for T44 the level distan
es os
illateon top of this ba
kground 
orrelated to the neutron shell and sub-shell 
losures at
N = 20, 28, 40 and 50. As shown above, the neutron spin-orbit 
urrent vanishesfor N = 20, where it 
onsequently has no e�e
t on the spin-orbit potentials andsplittings. By 
ontrast, the neutron spin-orbit 
urrent is large for N = 28 and 50,where its 
ontribution to the spin-orbit potential redu
es the splittings from thespin-orbit for
e.The strong variation of the spin-orbit 
urrent with nu
leon numbers is typi
alfor light nu
lei up to about mass 100. For heavier nu
lei, its variation be
omes mu
hsmaller. This is exempli�ed in Fig. 4.9 for the neutron spin-orbit 
urrent in the 
hainof Pb isotopes. There remain the fast �u
tuations at small radii whi
h we alreadysaw for the Ni isotopes and that re�e
t the subsequent �lling of low-ℓ levels withmany nodes, but whi
h have a very limited impa
t on the spin-orbit splittings whenfed into the spin-orbit potential. The dominating peak of the spin-orbit 
urrent,just beneath the surfa
e shows only small �u
tuations, as the overlapping spin-orbitsplittings of levels with di�erent ℓ never give rise to a spin-saturated 
on�guration

http://link.aps.org/abstract/PRL/v97/e162501
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Figure 4.9: Radial 
omponent of the Neutron spin-orbit 
urrent for the 
hain of Pbisotopes plotted in the same manner as in Fig. 4.5.in heavy nu
lei.Note that both the spin-orbit 
urrent J and the spin-orbit potential are exa
tlyzero at r = 0 as they are ve
tors with negative parity.4.3.2 Single-parti
le energiesAs a next step, we analyze the modi�
ations that the presen
e of J2 terms bringsto single-parti
le energies in detail. Before we do so, let us re
all that we ulti-mately expe
t our fun
tional to be used in a multi-referen
e EDF framework, whi
hhas impli
ations on the 
omparison between single-parti
le energies obtained at thesingle-referen
e level and experimental mass di�eren
es whi
h will be used in thisse
tion. In essen
e, single-parti
le spe
tra of nu
lei su�
iently magi
 and robustwith respe
t to 
olle
tive motion are expe
ted to see their density renormalized by
orrelations, with an in
rease of the e�e
tive mass. Care should be taken not toin
lude data too strongly a�e
ted by deformation of the odd nu
leus, or the frag-mentation of spe
tros
opi
 strength due to parti
le-vibration 
oupling.It should be kept in mind that the obvious, 
oarse dis
repan
ies between the
al
ulated spe
tra of ǫµ and the empiri
al single-parti
le energies are often largerthan the un
ertainties 
oming from the missing 
orrelations, as long as one observessome elementary pre
autions. We took 
are to ensure that the states used in theanalysis below were one-quasiparti
le states weakly 
oupled to 
ore phonons. First,we 
he
ked that the even-even nu
leus of interest 
ould be des
ribed as spheri
al,indi
ated by a su�
iently high-lying 2+ state. Se
ond, we avoided all levels whi
hwere obviously 
orrelated with the energies of 2+ states in the adja
ent semi-magi
series, as this indi
ates strong 
oupling with 
ore ex
itations. Finally, we 
arefullyexamined states, lying above the 2+ energy and/or twi
e the pairing gap of adja-
ent semi-magi
 nu
lei, in order to eliminate those more a

urately des
ribed as anelementary 
ore ex
itation 
oupled to one or more quasiparti
les, whi
h generally ap-pear as a multiplet of states. We did not attempt to use energy 
entroids 
al
ulatedwith use of spe
tros
opi
 fa
tors, as these are not systemati
ally available. Indeed,



88 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALour requirement is that if some 
olle
tivity is present, it should be similar amongall nu
lei 
onsidered, in order to be easily subtra
ted out. Empiri
al single-parti
lelevels shown below are determined from the lowest states having given quantumnumbers in an odd-mass nu
leus.Spin-orbit splittingsThe primary e�e
t one expe
ts from a tensor term is that it a�e
ts spin-orbit split-tings by altering the strength of the spin-orbit �eld in spin-unsaturated nu
lei, a
-
ording to Eq. (4.8). One should remember, though, that the spin-orbit 
ouplingitself is readjusted for ea
h pair of 
oupling 
onstants CJ
0 , and CJ

1 . The e�e
t of thisreadjustment is generally opposite to that of the variation of the isos
alar tensorterm 
oupling 
onstant. It should thus be stressed that the e�e
ts des
ribed resultfrom the balan
e between the variation of tensor and spin-orbit terms, whi
h formost of our parametrizations pull into opposite dire
tions.Common wisdom states that the energy spa
ing between levels that are bothabove or both below the magi
 gap are not mu
h a�e
ted by 
orrelations, even whentheir absolute energy 
hanges; hen
e it is 
ommon pra
ti
e to 
onfront only the spin-orbit splittings between pairs of parti
le or hole states with 
al
ulated single-parti
leenergies from the spheri
al mean �eld. The left panel of Fig. 4.10 shows the relativeerror of single-parti
le splitting of su
h levels for doubly-magi
 nu
lei throughoutthe 
hart of nu
lei. The 
al
ulated values are typi
ally 20 to 60 % larger than theexperimental ones, with the ex
eption of 16O, where the splittings of the neutronand proton 1p states are a

eptably reprodu
ed at least for the parametrizationsT22, T24 and T42, i.e. those with the weakest tensor terms in the sample.It is noteworthy that the 
al
ulated splittings depend mu
h more sensitively onthe tensor terms for light nu
lei with spin-saturated shells (protons and neutrons in
16O, protons in 90Zr) than for the heavy doubly-magi
 132Sn and 208Pb, whi
h arequite robust against a variation of the tensor terms. The reason will be
ome 
learbelow.Conne
tion between tensor and spin-orbit termsThe �nding that our parametrizations systemati
ally overestimate the spin-orbitsplittings deserves an explanation. It was earlier already noted that all standardSkyrme intera
tions, in
luding the SLy parametrizations that share our �t pro-to
ol, have an unresolved trend that overestimates spin-orbit splittings in heavynu
lei [Ben99b, Ben03b, LQ00℄. Adding the tensor terms, however, further deteri-orates the overall des
ription of spin-orbit splittings, instead of improving it. It isparti
ularly disturbing that the spin-orbit splitting of the 3p level in 208Pb that wasused to 
onstrain W0 in the �t is overestimated by 30 to 40%, whi
h is larger thanthe relative toleran
e of 20% in
luded in the �t proto
ol. In fa
t, it turns out thatthe 
oupling 
onstant W0 of the spin-orbit for
e is more tightly 
onstrained by thebinding energies of light nu
lei than by this or any other spin-orbit splitting. Inthe HF approa
h used during the �t, the stru
ture of 40Ca, 48Ca, and 56Ni di�ersby the o

upation of the neutron and proton 1f7/2 levels. First, we have to notethat the terms in the energy fun
tional that 
ontain the spin-orbit 
urrent play animportant role for the energy di�eren
e between 40Ca and 56Ni. The 
ombined 
on-tribution from the tensor and spin-orbit terms varies from a near-zero value in the

http://dx.doi.org/10.1103/PhysRevC.60.034304
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/PhysRevC.61.064321


4.3. RESULTS AND DISCUSSION 89spin-saturated 40Ca to about −60 MeV in 56Ni for all our parametrizations, whi
his a large fra
tion of the −142 MeV di�eren
e in total binding energy between bothnu
lei. The Z = 40 subshell and Z = 50 shell are another example of abrupt varia-tion of the spin-orbit 
urrent with the �lling of the 1g9/2 level, whi
h strongly a�e
tsthe relative binding energy of N = 50 isotones 90Zr and 100Sn. Se
ond, the �t tophenomenologi
al data 
an take advantage of the large relative variation of theseterms to mo
k up missing physi
s in the energy fun
tional that should 
ontribute tothe energy di�eren
e, but that is absent in it. The 
onsequen
e will be a spuriousin
rease of the spin-orbit and tensor term 
oupling 
onstants. The resulting energyfun
tional will 
orre
tly des
ribe the mass di�eren
e, but not the physi
s of thespin-orbit and tensor terms.In order to test the above interpretation, we performed a re�t of sele
ted TIJparametrizations without taking into a

ount the masses of 40Ca, 48Ca, 56Ni and 90Zrin the �t pro
edure. In the resulting parametrizations, the spin-orbit 
oe�
ient W0is typi
ally 20 % lower than in the original ones. As a 
onsequen
e, the empiri
alvalue for the spin-orbit splitting of the neutron 3p level in 208Pb is met well withintoleran
e, at the pri
e of binding energy residuals in light nu
lei being una

eptablylarge, i.e. 56Ni being underbound by 5 MeV while 40Ca and 90Zr are overbound byup to 10 MeV. While the global trend of the spin-orbit splittings shown in Fig. 4.10is enormously improved with these �ts, in parti
ular for heavy nu
lei, the overallagreement of the single-parti
le spe
tra with experiment is not, so that we had todis
ard these parametrizations. This �nding hints at a deeply rooted de�
ien
yof the Skyrme energy fun
tional. The spin-orbit and, when present, tensor termsindeed do simulate missing physi
s of the energy fun
tional at the pri
e of unrealisti
spin-orbit splittings. This also hints why perturbative studies, as those performedin [Sta77, Col07℄ give mu
h more promising results than what we will �nd belowwith our 
omplete re�ts. We will dis
uss mass residuals in more detail in Se
t. 4.3.3below.During the �t, the masses of light nu
lei do not only 
ompromise the spin-orbit splittings, they also establish a 
orrelation between W0 and CJ
0 in all ourparametrizations. The 
ombined spin-orbit and spin-
urrent energy of a given spher-i
al nu
leus (N,Z) is given by (keeping only the isos
alar part sin
e we shall fo
uson the N = Z nu
lei 40Ca and 56Ni)

Espin
0 (N,Z) = C∇J

0 I∇J
0 (N,Z) + CJ

0 IJ
0 (N,Z) (4.10)with

I∇J
0 (N,Z) =

∫
d3r ρ0∇ · J0, IJ

0 (N,Z) =

∫
d3r J2

0 . (4.11)The di�eren
e of Espin
0 between 56Ni and 40Ca

Espin
0

(
56Ni)−Espin

0

(
40Ca) = ∆Espin (4.12)turns out to be fairly independent from the parametrization. Averaged over all 36parametrizations TIJ used here, ∆Espin has a value of−58.991 MeV with a standarddeviation as small as 3.202 MeV, or 5.4%.The integrals in Eqs. (4.11) are fairly independent from the a
tual parametriza-tion. For a rough estimate, we 
an repla
e them in Eq. (4.10) by their average

http://www.sciencedirect.com/science/article/B6TVN-486T324-28/2/cff836369d16bc1cfe44972964a4d537
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Figure 4.10: Left panel: relative error of the spin-orbit splittings in doubly-magi
nu
lei for ℓ ≤ 2 levels. Right panel: Spin-orbit splittings of high-ℓlevels in magi
 nu
lei, 
orresponding to s.p.e. di�eren
es a
ross theFermi energy. The 
al
ulated values are less robust against 
orrelatione�e
ts than those shown on the left panel and have to be interpretedwith 
aution (see text).
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4.3. RESULTS AND DISCUSSION 91values. Plugged into Eq. (4.12) this yields
C∇J

0 =
∆Espin − CJ

0 〈IJ
0 (56Ni) − IJ

0 (40Ca)〉
〈I∇J

0 (56Ni) − I∇J
0 (40Ca)〉 . (4.13)Figure 4.11 
ompares the values of C∇J

0 as obtained through (4.13) with the valuesfor the a
tual parametrizations. The estimate works very well, whi
h demonstratesthat C∇J
0 = −3

4
W0 and CJ

0 are indeed 
orrelated and 
annot be varied independentlywithin a high quality �t of the energy fun
tional (2.95). As the 
ombined strengthof the spin-orbit and tensor terms in the energy fun
tional is mainly determined bythe mass di�eren
e of the two N = Z nu
lei 40Ca and 56Ni, the spin-orbit 
oupling
onstant W0 depends more or less linearly on the isos
alar tensor 
oupling 
onstant
CJ

0 , while for all pra
ti
al purposes it is independent from the isove
tor one, see alsoFig. 4.4 above.Splitting of high-ℓ states and the role of the radial form fa
torAs stated above, it is 
ommon pra
ti
e to 
onfront only the spin-orbit splittings be-tween pairs of parti
le or hole states with 
al
ulated single-parti
le energies from thespheri
al mean �eld. The spin-orbit splitting of intruder states is rarely examined.The right panel of Fig. 4.10 displays the relative deviation of the spin-orbit splittingsof the intruder states with ℓ ≥ 3 that span a
ross major shell 
losures and are thusgiven by the energy di�eren
e of a parti
le and a hole state. These splittings arenot �safe�, i.e. they 
an be expe
ted to be strongly de
reased by polarization and
orrelation e�e
ts [Rut98, Ber80, Lit06℄. To leave room for this e�e
t, a mean-�eld
al
ulation should overestimate the empiri
al spin-orbit splittings. We observe, how-ever, that mean-�eld 
al
ulations done here give values that are quite 
lose to theexperimental ones, or even smaller for parametrizations with large positive isos
alartensor 
oupling (
f. the evolution from T22 to T66).This means that the spin-orbit splittings are not too large in general, as mightbe 
on
luded from Fig. 4.10, but that there is a wrong trend of the splittings with ℓwith the strength of the spin-orbit potential establishing a 
ompromise between thein-shell splittings of small ℓ orbits that are too large and the a
ross-shell splittingsof the intruders that are tentatively too small. In fa
t, the levels in the right panelof Fig. 4.10 obviously have in 
ommon that their radial wave fun
tions do not havenodes, while the levels on the left panel have one or two nodes, with the notableex
eption of the 1p levels in 16O, for whi
h we also �nd smaller deviations of thespin-orbit splittings than for the other ℓ ≤ 2 levels.Underestimating the spin-orbit splittings of intruder levels has immediate andobvious 
onsequen
es for the performan
e of an e�e
tive intera
tion, as this 
losesthe magi
 gaps in the single-parti
le spe
tra and 
ompromises the predi
tions fordoubly-magi
 nu
lei, as we will demonstrate in detail below. By 
ontrast, the spin-orbit splittings of the low-ℓ states within the major shells have no obvious dire
timpa
t on bulk properties. Their deviation from empiri
al data is less dramati
,as the typi
al bulk observables dis
ussed with mean-�eld approa
hes are not verysensitive to them. It is only in appli
ations to spe
tros
opy that their de�
ien
iesbe
ome evident. It is noteworthy that the parametrization T22 without e�e
tivetensor terms at spheri
ity provides a reasonable 
ompromise between the tentativelyunderestimated splittings of the intruder levels and the tentatively overestimated

http://www.sciencedirect.com/science/article/B6TVB-3TC1VWR-5/2/e01f1d5798ebd759408df952d850d58d
http://www.sciencedirect.com/science/article/B6TVB-473120F-SV/2/30ebce6b37d2f470d1fc79c2eb0fd697
http://link.aps.org/abstract/PRC/v73/e044328
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Figure 4.12: Neutron spin-orbit potential (top) and the radial wave fun
tion ofsele
ted orbitals (bottom) in 132Sn.splittings of the levels within major shells, both shown in Fig. 4.10 above, while forparametrizations with tensor terms this balan
e is lost.There 
learly is a proton-neutron staggering in Fig. 4.10, su
h that 
al
ulatedproton splittings are relatively smaller than the neutron ones. The e�e
t appearsboth when 
omparing proton and neutron levels with di�erent ℓ in the same nu
leus,and when 
omparing proton and neutron levels with the same ℓ in the same ordi�erent nu
lei (see the 1h levels in 132Sn and 208Pb). The staggering for the intruderlevels is even ampli�ed for parametrizations with large proton-neutron tensor term,as T62, T64 or T66. The e�e
t is parti
ularly prominent for the heavy 132Sn and
208Pb with a large proton-to-neutron ratio N/Z, whi
h might hint at unresolvedisospin dependen
e of the spin-orbit intera
tion, although alternative explanationsthat involve how single-parti
le states in di�erent shells should intera
t throughtensor and spin-orbit for
es are possible as well, see also the next paragraph.Note that also the spin-orbit splittings of the low-ℓ levels shown in Fig. 4.10exhibit a staggering, whi
h is of smaller amplitude, though. It has been pointedout by Skalski [Ska01℄, that an exa
t treatment of the Coulomb ex
hange term(
ompared to the Slater approximation used here and nearly all existing literature)does indeed slightly in
rease the spin-orbit splittings of protons a
ross major shells.This e�e
t might give a 
lue to the staggering observed for the N = Z nu
leus 56Ni,but the magnitude of the e�e
t reported in Ref. [Ska01℄ is too small to explain thelarge staggering we �nd for the heavier N 6= Z nu
lei.Next, we use the example of 132Sn to demonstrate why the spin-orbit splittingsof nodeless high-ℓ states are more sensitive to the tensor terms than low-ℓ stateswith one or several nodes, see Fig. 4.12. The lower panel shows the neutron spin-orbit potential in 132Sn for four di�erent parametrizations, while the upper panelshows sele
ted radial single-parti
le wave fun
tions. The ν 1h11/2 and π 1g9/2 levelsgive the main 
ontribution to the neutron and proton spin-orbit 
urrents in thisnu
leus, and 
onsequently to the tensor 
ontribution to the spin-orbit potential.Indeed, the largest di�eren
es between the spin-orbit potentials from the 
hosen

http://dx.doi.org/10.1103/PhysRevC.63.024312
http://dx.doi.org/10.1103/PhysRevC.63.024312
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Figure 4.13: Single-parti
le energies in 132Sn for a subset of our parametrizations.We also show the 
entroid of the intruder levels, de�ned throughEq. (4.14) Top panel: neutron levels, bottom panel: proton levels.A thi
k mark indi
ates the Fermi level.parametrizations are 
aused by the varying 
ontribution from the tensor terms andappear for the region between 3 and 6 fm, where the wave fun
tions of the 1g and
1h states are peaked. This region 
orresponds to the inner �ank of the spin-orbitpotential well, while the outer �ank is mu
h less a�e
ted. While the 1g and 1hwave fun
tions are peaked at the inner �ank, the 2d orbitals have their node in thisregion. Consequently, the splittings of the 1g and 1h levels are strongly modi�ed bythe tensor terms, while those of the 2d orbitals are quite insensitive.As a rule of thumb, the tensor 
ontribution to the spin-orbit potential in doubly-magi
 nu
lei 
omes mainly from the nodeless intruder states, whi
h, when present,in turn mainly a�e
t their own spin-orbit splittings, leaving the splittings of thelow-ℓ states with one or more nodes nearly un
hanged for reasons of geometri
aloverlap.We note in passing that the slightly di�erent radial wave fun
tions of the 2d or-bitals demonstrate ni
ely that their 
ontribution to the spin-orbit 
urrent, Eq. (4.1),
annot 
ompletely 
an
el.In fa
t, when regarding more spe
i�
ally the evolution of the spin-orbit potentialbetween the parametrizations T22 and T66, it is striking that for T66 it is essentiallynarrowed and its minimum slightly pushed towards larger radii, while its depthremains unaltered. Re
alling that T66 shows a pathologi
al behavior of too weakspin-orbit splitting of the intruder states, it appears that a 
orre
t ℓ-dependen
eof spin-orbit splittings might require to modify the radial dependen
e of the spin-orbit potential su
h that it be
omes wider towards smaller radii. This un
alled-formodi�
ation of the shape of the spin-orbit �eld has previously been put forwardby Brown et al. [Bro06a℄ as an argument for a negative like-parti
le J2 
oupling
onstant α. However, as will be dis
ussed in paragraph 4.3.2 below, the evolutionof single-parti
le levels along isotopi
 
hains 
alls for α > 0, see also [Bro06a℄.Single-parti
le spe
tra of doubly-magi
 nu
leiAfter we have examined the predi
tions for spin-orbit splittings, we will now turn tothe overall quality of the single-parti
le spe
tra of doubly-magi
 nu
lei. Figure 4.13shows the single-parti
le spe
trum of 132Sn. It is evident that as a 
onsequen
eof the underestimated spin-orbit splittings of the intruder levels that we dis
ussedin the last se
tion, the spe
trum is deteriorated for large positive isos
alar tensor

http://dx.doi.org/10.1103/PhysRevC.74.061303
http://dx.doi.org/10.1103/PhysRevC.74.061303
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Figure 4.14: Same as Fig. 4.13 for 208Pb.term 
oupling 
onstants CJ
0 (see T66), as, for example, a de
rease of the spin-orbit splitting of the neutron 1h shell pushes the 1h11/2 further up, 
losing the

N = 82 gap. As a 
onsequen
e, the presen
e of the tensor terms 
annot remove theproblem shared by all standard mean-�eld methods that always wrongly put theneutron 1h11/2 level above the 2d3/2 and 3s1/2 levels [Ben03b℄, whi
h 
ompromisesthe des
ription of the entire mass region. For the same reason, the proton spe
trumof 132Sn also ex
ludes intera
tions with large positive CJ
0 , whi
h redu
es the Z = 50gap between the 1g levels to una

eptable small values.Figure 4.13 also shows the energy 
entroids of the ν 1h and π 1g levels, de�nedas

ε
entqnℓ =
ℓ+ 1

2ℓ+ 1
εqnℓ,j=ℓ+1/2 +

ℓ

2ℓ+ 1
εqnℓ,j=ℓ−1/2 . (4.14)The position of the 
entroid is fairly independent from the parametrization. Assum-ing that the 
al
ulated energy of the 
entroid of an intruder state is more robustagainst 
orre
tions from 
ore polarization and parti
le-vibration 
oupling that itsspin-orbit splitting, we see that the ν 1h 
entroid is 
learly too high in energy byabout 1 MeV. In 
ombination with its tentatively too small spin-orbit splitting,see Fig. 4.10, this o�ers an explanation for the notorious wrong positioning of the

ν 1h11/2, 2d3/2 and 3s1/2 levels in 132Sn [Ben03b℄. The near-degenera
y of the ν 2d3/2and 3s1/2 levels is always well reprodu
ed, while the 1h11/2 
omes out mu
h too high.As the 1h11/2 is the last o

upied neutron level, self-
onsisten
y puts it 
lose to theFermi energy, whi
h, in turn, pushes the 2d3/2 and 3s1/2 levels down in the spe
trum.The overall situation is similar for 208Pb, see Fig. 4.14. Again, the high-ℓ intruderstates move too 
lose to the Z = 82 and N = 126 gaps for large positive CJ
0 . Thee�e
t is less obvious than for 132Sn as the intruders and their spin-orbit partnersare further away from the gaps. Still, the level ordering and the size of the Z = 82gap be
ome una

eptable for parametrizations with large tensor 
oupling 
onstants.For strong tensor term 
oupling 
onstants (both like-parti
le and proton-neutron),a Z = 92 gap opens in the single-parti
le spe
trum of the protons that is alsofrequently predi
ted by relativisti
 mean-�eld models [Rut98, Ben99b℄ but absentin experiment [Hau01℄.The single-parti
le spe
tra for the light doubly magi
 nu
lei 40Ca (Fig. 4.15),

48Ca (Fig. 4.16), 56Ni (Fig. 4.17), 68Ni (Fig. 4.18) and 90Zr (Fig. 4.19), all havein 
ommon that the relative impa
t of the J2 terms on the ordering and relativedistan
e of single-parti
le levels is even stronger than for the heavy nu
lei dis
ussedabove. But not all of the strong dependen
e on the 
oupling 
onstants of the J2terms that we see in the �gures is due to the a
tual 
ontribution of the tensor

http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://www.sciencedirect.com/science/article/B6TVB-3TC1VWR-5/2/e01f1d5798ebd759408df952d850d58d
http://dx.doi.org/10.1103/PhysRevC.60.034304
http://link.aps.org/abstract/PRL/v87/e072501
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Figure 4.15: Same as Fig. 4.13 for 40Ca.
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Figure 4.16: Same as Fig. 4.13 for 48Ca.terms to the spin-orbit potential. This is most obvious for 40Ca, where protonsand neutrons are spin-saturated so that the J2 terms do not 
ontribute to the spin-orbit potentials. Still, in
reasing their 
oupling 
onstants in
reases the spin-orbitsplittings, whi
h manifests the readjustment of the spin-orbit for
e to a given set of
CJ

0 and CJ
1 (see Fig. 4.4). The evolution of the spin-orbit splittings in 40Ca visiblein Fig. 4.15 is the ba
kground whi
h we have to keep in mind when dis
ussing theimpa
t of the tensor terms on nu
lei with non-vanishing spin-orbit 
urrents. Notethat the spin-orbit 
oupling 
onstant W0 is 
orrelated with isos
alar tensor 
oupling
onstant CJ
0 , su
h that the single-parti
le spe
tra obtained with T24 and T42 arevery similar, as they are for T26, T44 and T62.For 48Ca, Fig. 4.16, the protons are still spin-saturated with vanishing protonspin-orbit 
urrent Jp, while for neutrons we have a large Jn. Depending on the natureof the tensor terms in the energy fun
tional � i.e. like-parti
le or proton-neutron ora mixture of both � the spin-orbit 
urrent will either 
ontribute to the spin-orbitpotential of the neutrons or that of the protons or both, see Eq. (4.8). For theparametrizations with dominating like-parti
le J2 term, for example T24 and T26,the situation for the protons is the same as for 40Ca: there is no 
ontribution from thetensor terms to the proton spin-orbit splittings, but 
ompared to T22 the proton Z =

20 gap is redu
ed through the readjustment of the spin-orbit for
e, leading to valuesthat are too small. For the same parametrizations, the large 
ontribution from Jn to
Wn opens up the N = 20 gap to values that are tentatively too large, as it redu
esthe neutron spin-orbit splittings and thereby 
ompensates, even over
ompensates,the e�e
t from the readjustment of the spin-orbit for
e. At the same time the
N = 28 gap is redu
ed. The opposite e�e
t is seen for parametrizations with largeproton-neutron tensor term, for example T42 or T62. For those, the proton spin-
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Figure 4.17: Same as Fig. 4.13 for 56Ni.
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Figure 4.18: Same as Fig. 4.13 for 68Ni.orbit splitting is redu
ed, opening up the Z = 20 gap 
ompared to T22, whilethe neutron spin-orbit splittings are in
reased by the ba
kground e�e
t from thereadjusted spin-orbit for
e.For 56Ni, Fig. 4.17, we have large Jn and Jp. In this N = Z nu
leus, the like-parti
le or proton-neutron parts of the tensor terms 
annot be distinguished. Thespe
tra depend only on the overall 
oupling 
onstant of the isos
alar tensor term
CJ

0 , on the one hand dire
tly through the 
ontribution of the tensor terms to thespin-orbit potentials, and on the other hand through the ba
kground readjustmentof W0 that is 
orrelated to CJ
0 as well. As already mentioned, results for T24 andT42 are very similar, as they are for T26, T44 and T62. All parametrizations have in
ommon that the proton and neutron gaps at 28 are too small. The variation of thesingle-parti
le spe
tra among the parametrizations is smaller than for 40Ca, mainlybe
ause the tensor terms 
ompensate the ba
kground drift from the readjustmentof W0.The slightly neutron-ri
h 68Ni 
ombines a spin-saturated sub-shell 
losureN = 40that gives a vanishing neutron spin-orbit 
urrent with the magi
 Z = 28 that givesa strong proton spin-orbit 
urrent. The variation of the single-parti
le spe
tra independen
e of the 
oupling 
onstants of the tensor terms is similar to those of 48Ca,with the roles of protons and neutrons ex
hanged.The nu
leus 90Zr 
ombines the spin-saturated proton sub-shell 
losure Z = 40with the major neutron shell 
losure N = 50. The high degenera
y of the o

upied

ν 1g9/2 level leads to a very strong neutron spin-orbit 
urrent, while the protonspin-orbit 
urrent is zero. Even in the absen
e of a tensor term 
ontributing to theirspin-orbit potential for parametrizations with pure like-parti
le tensor terms, theproton single-parti
le spe
tra are dramati
ally 
hanged by the feedba
k e�e
t from
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Figure 4.19: Same as Fig. 4.13 for 90Zr.the readjusted spin-orbit for
e; see the evolution from T22 to T26. The π 1g9/2 
omesdown, and 
loses the Z = 40 sub-shell gap. For parametrizations with pure proton-neutron tensor term, one has the opposite e�e
t, this time be
ause the 
ontributionfrom the tensor terms over
ompensates the ba
kground e�e
t from the spin-orbitfor
e. The e�e
t of the tensor terms on the neutron spin-orbit splittings is lessdramati
, but still might be sizable.We have to point out that the 
al
ulations displayed in Fig. 4.19 were per-formed without taking pairing into a

ount, as the HFB s
heme breaks down in theweak pairing regime of doubly magi
 nu
lei. For some extreme (and unrealisti
)parametrizations, however, the gaps disappear whi
h, in turn, would lead to strongpairing 
orrelations if the 
al
ulations were performed within the HFB s
heme. Thishappens, for example, for neutrons in 90Zr when using T26 and T46. Interestingly,the pairing 
orrelations for neutrons break the spin saturation, whi
h leads to asubstantial neutron spin-orbit 
urrent Jn. As these parametrizations use values ofthe like-parti
le 
oupling 
onstant signi�
antly larger than the neutron-proton one,
Jn feeds ba
k onto the neutron spin-orbit potential only, Eq. (4.8). As the 
orre-sponding 
oupling 
onstant α is positive for T26 and T46, the 
ontribution fromthe tensor terms redu
es the spin-orbit splittings, in parti
ular those of the 1g9/2and 1f5/2. As a result, this 
ountera
ts the redu
tion of the N = 40 gap predi
tedby T26 and T46 in 
al
ulations without pairing. Moreover, if pairing sets in, therelevant quantities to be 
ompared to odd-even mass di�eren
es are quasiparti
leenergies, instead of HF single-parti
le ones. A 
ontribution from the pairing gapthus supplements the shell gap. Su
h a strong redu
tion of a gap a
ross the Fermilevel is thus unlikely to be observed.Evolution along isotopi
 
hains: np 
ouplingIn the pre
eding se
tions, we have analyzed 
hara
teristi
s of the single-parti
le spe
-tra for isolated doubly-magi
 nu
lei. We found that larger tensor terms do not leadto an overall improvement of the single-parti
le spe
tra. However, we also arguedthat it might be essentially due to de�
ien
ies of the 
entral (and possibly spin-orbit)intera
tions and that it should not be used to dis
ard the tensor terms as su
h. Inany 
ase, the results gathered so far on single-parti
le spe
tra of doubly-magi
 nu-
lei do not permit to narrow down a region of meaningful 
oupling 
onstants of thetensor terms. The analysis must be 
omplemented by looking at other observables.A better suited observable is provided by the evolution of spin-orbit splittings alongan isotopi
 or isotoni
 
hain, whi
h ideally re�e
ts the nu
leon-number-dependent
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Figure 4.20: Left panel: Distan
e of the proton 1h11/2 and 1g7/2 levels (top) and ofthe proton 2d5/2 and 1g7/2 levels (bottom), for the 
hain of tin isotopes.Right panel: Distan
e of the proton 1f5/2 and 2p3/2 in the 
hain ofNi isotopes. The �best� parametrization 
annot and should not bedetermined with a χ2 
riterion, see text.
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ontribution from the J2 terms to the spin-orbit potentials. Unfortunately, safe ex-perimental data for the evolution of spin-orbit partners are s
ar
e; hen
e, one hasto 
ontent oneself to the evolution of the energy distan
e of levels with di�erent ℓ,assuming that the e�e
t is primarily 
aused by the evolution of the spin-orbit split-tings of ea
h level with its respe
tive partner. A popular playground for su
h studiesis the 
hain of Sn isotopes, where two su
h pairs of levels have gained attention; the
π 2d5/2 and π 1g7/2 on the one hand, and the π 1g7/2 and π 1h11/2 on the otherhand. The left panel of Figure 4.20 shows these two sets of results for a sele
tion ofour parametrizations.Experimentally, the 2d5/2 and 1g7/2 levels 
ross between N = 70 and 72, su
hthat the 2d5/2 provides the ground state of light odd-A Sb isotopes, and 1g7/2 thatof the heavy ones, see for example Ref. [She05℄. The 
rossing as su
h is predi
tedby many mean-�eld intera
tions and most of the parametrizations of the Skyrmeintera
tion we use here. It has also been studied in detail with the standard Gognyfor
e (without any tensor term) using elaborate blo
king 
al
ulations of the odd-Anu
lei [Por05℄. The 
rossing, however, is never predi
ted at the right neutron num-ber, see Fig. 4.20. As we have learned above, we should not assume that the absolutedistan
e of the two levels will be 
orre
tly des
ribed by any of our parametrizations(as the 
entroids of the ℓ shells will not have the proper distan
e and the spin-orbitsplittings have a wrong ℓ dependen
e within a given shell). Hen
e, the neutronnumber where the 
rossing takes pla
e 
annot and should not be used as a quality
riterion. What does 
hara
terize the tensor terms is the bend of the 
urves inFig. 4.20, as ideally it re�e
ts how the spin-orbit splittings of both levels 
hange inthe presen
e of the tensor terms. Similar 
aution has to be exer
ised in the analy-sis of the unusual relative evolution of the proton 1g7/2 and 1h11/2 levels that wasbrought to attention by S
hie�er et al. [S
h04℄. Their spa
ing has been investigatedin terms of the tensor for
e before [Ots05, Ots06, Bro06a, Col07℄. Again, we payattention to the qualitative nature of the bend without fo
using too mu
h on thepre
ise value by whi
h the splitting 
hanges when going from N ≈ 58 to N = 82.Indeed, the mat
hing of the lowest proton fragment with quantum number 1h11/2seen experimentally with the 
orresponding empiri
al single-parti
le energy is unsafebe
ause of the fra
tionization of the strength as dis
ussed in Ref. [Bro06a℄.For both pairs of levels, the evolution of their distan
e 
an be attributed to thetensor 
oupling between the proton levels and neutrons �lling the 1h11/2 level belowthe N = 82 gap. Unfortunately, this introdu
es an additional sour
e of un
ertainty:as 
an be seen in Fig. 4.13, the ordering of the neutron levels in 132Sn is not properlyreprodu
ed by any of our parametrizations, with the 1h11/2 level being predi
tedabove the 2d3/2 level, while it is the other way round in experiment. This meansthat in the 
al
ulations, the 
ontribution from the 1h11/2 level to the neutron spin-orbit 
urrent builds up at larger N than what 
an be expe
ted in experiment. As a
onsequen
e, the predi
tion for the relative evolution of the levels might be shiftedby up to four mass units to the right 
ompared to experiment for both pairs of levelswe examine here.In the end, the trend of both splittings is best reprodu
ed when using a positivevalue of the neutron-proton Jn · Jp 
oupling 
onstant β su
h that the �lling of theneutron 1h11/2 shell de
reases the spin-orbit splittings of the proton shells. Theparametrizations from the T4J and T6J series indeed do reprodu
e the bend ofempiri
al data, with, however, a 
lear shift in the neutron number where it o

urs,

http://link.aps.org/abstract/PRC/v71/e064323
http://dx.doi.org/10.1140/epja/i2005-10137-8
http://link.aps.org/abstract/PRL/v92/e162501
http://link.aps.org/abstract/PRL/v95/e232502
http://link.aps.org/abstract/PRL/v97/e162501
http://dx.doi.org/10.1103/PhysRevC.74.061303
http://dx.doi.org/10.1103/PhysRevC.74.061303
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ted from the previous dis
ussion. A value of β = 120 MeV fm5, whi
h
orresponds to the series of T4J parametrizations, mat
hes its magnitude best (seefor example T44).A similar analysis 
an be performed for the proton 1f5/2 and 2p3/2 levels in the
hain of Ni isotopes, see the right panel of Fig. 4.20. This 
ase is interesting asno distin
tive feature 
an be observed in the empiri
al spe
tra, yet the standardparametrizations without tensor terms like T22 do not reprodu
e them. In fa
t, tokeep the 1f5/2 and 2p3/2 at a 
onstant distan
e, two 
ompeting e�e
ts have to 
an
el.First, the in
reasing di�useness of the neutron density with in
reasing neutron num-ber diminishes the proton spin-orbit splittings through its redu
ed gradient in theexpression for the proton spin-orbit potential when going from N = 32 to N = 40.Se
ond, the �lling of the neutron 1f5/2 state redu
es the neutron spin-orbit 
urrentwhi
h in turn in
reases the proton spin-orbit splittings for intera
tions with sizableproton-neutron tensor 
ontribution to the proton spin-orbit potential when goingfrom N = 32 to N = 40. The former e�e
t 
an be 
learly seen for parametrizationsT2J with vanishing proton-neutron tensor term, β = 0. Again, parametrizations ofthe T4J series seem to be the most appropriate to des
ribe the evolution of theselevels.The evolution of single-parti
le levels is the tool of 
hoi
e to determine the signand magnitude of the proton-neutron tensor 
oupling 
onstant. The value whi
h wefavor, as a result of our semi-qualitative analysis is β = 120 MeV fm5. This value isonly slightly larger than the value of 94 to 96 MeV fm5 advo
ated by Brown et al.in Ref. [Bro06a℄, whi
h was adjusted to theoreti
al level shifts in the 
hain of tinisotopes obtained from a G-matrix intera
tion. We 
an 
onsider this as a reasonableagreement.Let us defer the dis
ussion of this value to the end of this se
tion and study inthe next paragraph the like-parti
le tensor-term 
oupling 
onstant α.Evolution along isotopi
 
hains: nn 
ouplingIn order to narrow down an empiri
al value for the neutron-neutron tensor 
oupling
onstant, the ideal observable would be the evolution of neutron single-parti
le levelsalong an isotopi
 
hain. Unfortunately, these are only a

essible at the respe
tiveshell 
losures. We shall therefore 
ompare neutron single-parti
le spe
tra of pairs ofdoubly-magi
 nu
lei belonging to the same isotopi
 
hain. Again, the ne
essity toextra
t pure single-parti
le e�e
ts 
alls for pre
autions. We 
hoose pairs of parti
leor hole levels whi
h are 
lose enough in energy that their absolute spa
ing is notmu
h a�e
ted by parti
le-vibration 
oupling. Of 
ourse, one also has to be 
arefulif both states appear at relatively high ex
itation energy in the neighboring oddisotope be
ause the fra
tionization of their strength 
ould again interfere with theanalysis. In the following, we 
hoose pairs of orbitals whi
h are as safe as possible.To remove the un
ertainties from the de�
ien
ies of the 
entral and spin-orbitparts of the e�e
tive intera
tion that we have identi�ed above, we will look ata double di�eren
e, where, �rst, we 
onstru
t the energy di�eren
e between theneutron 1d3/2 and 2s1/2 levels separately for 40Ca and 48Ca, and then 
ompare thevalue of this di�eren
e in both nu
lei
δCa =

(
ε

48Ca
1d3/2

− ε
48Ca
2s1/2

)
−
(
ε

40Ca
1d3/2

− ε
40Ca
2s1/2

)
. (4.15)

http://dx.doi.org/10.1103/PhysRevC.74.061303
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Figure 4.21: Shift of the distan
e between the neutron 1d3/2 and 2s1/2 levels whengoing from 40Ca to 48Ca, Eq. (4.15) (top) and of the neutron 1f5/2 and
2p1/2 levels when going from 56Ni and 68Ni, Eq. (4.16) (bottom).Assuming that the problems from the 
entral and spin-orbit for
es dis
ussed inSe
ts. 4.3.2 and 4.3.2 have the same e�e
t in both nu
lei, they will 
an
el out in δCa.The interesting feature of this pair of states is that they are separated by morethan 2 MeV in 40Ca, while they are nearly degenerate in 48Ca, see Figs. 4.15 and 4.16.Su
h a shift 
an only be reprodu
ed with a positive (140-180 MeV fm5) value of α,whi
h de
reases the splitting of the neutron 1d shell when the neutron 1f7/2 level is�lled.A similar analysis 
an be performed for the 1f5/2 and 2p1/2 neutron states in theNi isotopes 56Ni and 68Ni

δNi =
(
ε

68Ni
1f5/2

− ε
68Ni
2p1/2

)
−
(
ε

56Ni
1f5/2

− ε
56Ni
2p1/2

)
. (4.16)Going from 56Ni to 68Ni, the neutron 1f5/2 level 
omes further down in energythan the 2p1/2 level for parametrizations without tensor terms (T22), see Figs. 4.17and 4.18. The reason for this trend is the geometri
al growth of the nu
leus, whi
hon the one hand lowers the 
entroid of the 1f levels in the widening potentialwell, and on the other hand pushes the spin-orbit �eld to larger radii, whi
h hasopposite e�e
ts on the splittings of 2p and 1f states. The like-parti
le tensor terms
an 
ompensate this trend through a redu
tion of the spin-orbit splitting of the 1flevels. The observed downward shift by 0.3 MeV 
an be re
overed with a value of αaround 120 MeV fm5, see Fig. 4.21.It is also gratifying to see that the analysis of Ca and Ni isotopes suggests nearlythe same value for the like-parti
le tensor term 
oupling 
onstant α.



102 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONAL4.3.3 Binding energiesOur ultimate goal, although far beyond the s
ope of the present paper, is the 
on-stru
tion of a universal nu
lear energy density fun
tional that simultaneously de-s
ribes bulk properties like masses and radii, giant resonan
es, and low-energy spe
-tros
opy, su
h as quasiparti
le 
on�gurations and 
olle
tive rotational and vibra-tional states. To 
ross
he
k how our �ndings on single-parti
le spe
tra and spin-orbitsplittings translate into bulk properties, we will now analyze the evolution of massresiduals and 
harge radii along isotopi
 and isotoni
 
hains. It has been repeatedlynoted in the literature that the mass residuals from mean-�eld 
al
ulations show
hara
teristi
 ar
hes [Dob84, Fri86, Cha98, Pat99, Ben03b, Lun03, Dob04, Ben06a℄,where heavy mid-shell nu
lei are usually underbound 
ompared to the doubly magi
ones that are lo
ated at the bottom of deep ravines. For light nu
lei, the patternsare often less obvious. Part of this e�e
t 
an be explained and removed takinglarge-amplitude 
orrelations from 
olle
tive shape degrees of freedom into a

ountthrough suitable beyond-mean-�eld methods. In turn, this means that the massresiduals should leave room for the extra binding of mid-shell nu
lei from 
orrela-tions. However, it turns out that for typi
al e�e
tive intera
tions the amplitude ofthe ar
hes is larger than what is brought by 
orrelations [Ben06a℄. Furthermore,this e�e
t seems not to be of the same size for isotopi
 and isotoni
 
hains, whi
haltogether hints at de�
ien
ies of the 
urrent e�e
tive intera
tions.Re
ently, Doba
zewski pointed out [Dob06℄ that the strongly �u
tuating 
on-tribution brought by the J2 terms to the total binding energy 
ould remove atleast some of the ravines found in the mass residuals around magi
 numbers. Thehypothesis was motivated by 
al
ulations that evaluate the tensor terms either per-turbatively, or self-
onsistently, using in this 
ase an existing standard parametriza-tion without tensor terms for the rest of the energy fun
tional. Our set of re�ttedparametrizations with varied 
oupling 
onstants of the tensor terms gives us a toolto 
he
k how mu
h of the argument persists to a full �t.Semi-magi
 
hainsFigure 4.22 displays binding energy residuals along various isotopi
 and isotoni

hains of semi-magi
 nu
lei for a sele
tion of our parametrizations: T22 is the refer-en
e with vanishing J2 terms at spheri
ity; T24 has a substantial like-parti
le 
ou-pling 
onstant α and vanishing proton-neutron 
oupling 
onstant β, whi
h is similarto most of the published parametrizations whi
h take the J2 terms from the 
en-tral Skyrme for
e into a

ount; T42 and T62 are parametrizations with substantialproton-neutron 
oupling 
onstant β and vanishing like-parti
le 
oupling 
onstant;T44 has a mixture of like-parti
le and proton-neutron tensor terms that is 
lose towhat we found preferable for the evolution of spin-orbit splittings above; and T46 isa parametrization that gives the best root-mean-square residual of binding energiesfor spheri
al nu
lei, as we will see below. Finally, T66 is a parametrization withlarge and equal proton-neutron and like-parti
le tensor-term 
oupling 
onstants.Tensor terms have opposite e�e
ts in light and heavy nu
lei: The 
urves obtainedwith T22, the parametrization without J2 term 
ontribution at spheri
ity, are rel-atively �at for the light isotopi
 and isotoni
 
hains, but show very pronoun
edar
hes with an amplitude of 5 or even more MeV for the heavy Sn and Pb isotopi

hains. By 
ontrast, the most striking e�e
t of the J2 terms is that they indu
e

http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4
http://link.aps.org/abstract/PRC/v33/p335
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1103/PhysRevC.59.704
http://dx.doi.org/10.1103/RevModPhys.75.121
http://link.aps.org/abstract/RMP/v75/p1021
http://dx.doi.org/10.1063/1.1805914
http://link.aps.org/abstract/PRC/v73/e034322
http://link.aps.org/abstract/PRC/v73/e034322
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 nu
lei for the parametrizations as indi
ated. Positive valuesof Eth − Eexp denote underbound nu
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Figure 4.23: Evolution of spin-orbit 
urrent (J2
t ) energy (bottom panels, zero by
onstru
tion for T22) and spin-orbit energy (top panels) with neutronnumber N in the 
hain of Ca isotopes (Z = 20, left) and Sn isotopes(Z = 50, right).large �u
tuations of the mass residuals in light nu
lei, while they �atten the 
urvesin the heavy ones.The strong variation between the parameter sets for light nu
lei are of 
oursethe dire
t 
onsequen
e of the strong variation of the spin-orbit 
urrent J that entersthe spin-orbit and tensor terms when going ba
k and forth between nu
lei where the
on�guration of at least one nu
leon spe
ies is spin-saturated. The variations seenare a result of the modi�
ations of tensor-term 
oupling 
onstants and the asso
i-ated readjustment of the spin-orbit strength W0. For example, 48Ca is overboundwith respe
t to 40Ca and 56Ni for parametrizations with a proton-neutron 
oupling
onstant β > 0, while the like-parti
le 
oupling 
onstant α has a more limited ef-fe
t. Sin
e only the neutron 
ore is spin-unsaturated in this nu
leus, this must beattributed to the in
rease in the readjusted spin-orbit strength W0 (
orrelated with

CJ
0 = 1

2
(α+β)) whi
h dominates when β is in
reased and α kept at zero, and 
oun-terbalan
es the e�e
t of α when the latter varies. See the parameter sets T62 andT66 in Figures 4.22 and 4.23. The large overbinding of nu
lei around 90Zr (Z = 40,

N = 50) for parametrizations with large proton-neutron tensor 
oupling 
onstanthas the same origin. For a given parametrization and a given nu
leus, the energygain from the spin-orbit term seems to be almost always larger than the energy lossfrom the J2 one, see Fig. 4.23 for Ca and Sn isotopes. Of 
ourse, other terms inthe energy fun
tional 
ompensate for a part of the gain from the spin-orbit term,but the overall trends of the mass residuals suggest that the spin-orbit energy has a
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h larger 
ontribution to the di�eren
es between the parametrizations visible inFig. 4.22 than the J2 terms.We have to note that the spin-orbit 
urrent does not 
ompletely vanish for thenominally proton and neutron spin-saturated 40Ca for parametrizations with large
oupling 
onstants of the J2 terms. For those, the gap at 20 is strongly (and non-physi
ally) redu
ed, see Fig. 4.15. The small gap at 20 does not suppress pairing
orrelations anymore in our HFB approa
h. The resulting s
attering of parti
lesfrom the sd shell to the fp shell breaks the spin-saturation, su
h that there is a�nite, in some 
ases quite sizable, 
ontribution from the spin-orbit term to the totalbinding energy. Owing to the 
ompensation between all 
ontributions, the totalenergy gain 
ompared to a HF 
al
ulation without pairing is usually small and restson the order of 200 keV for the parametrizations shown in Fig. 4.22.It is also important to note that some of the light 
hains in Fig. 4.22 are su�-
iently 
lose to or even 
ross the N = Z line that they are subje
t to the Wignerenergy, whi
h still la
ks a satisfying explanation, not to mention a des
ription inthe framework of mean-�eld methods [Sat97℄. The Wigner energy is not takeninto a

ount in our �ts, while it turned out to be a 
ru
ial ingredient of anyHFB [Ton00, Sam02, Gor03℄ or other mass formula. In fa
t, as shown in Fig. 14 ofRef. [Ben06a℄, the missing Wigner energy 
learly sti
ks out from the mass residualsfor SLy4 (whi
h is very similar to T22) when they are plotted for isobari
 
hains.This lo
al trend around N = Z is, however, overla
ed with a global trend with massnumber, su
h that the missing Wigner energy 
annot be spotted anymore whenlooking at the mass residuals for the isotopi
 
hain of Ca isotopes, similar to what isseen for T22 in Fig. 4.22. Within our �t proto
ol, the 
orrelation between the massesof 40Ca, 48Ca and 56Ni, that is brought by the spin-orbit for
e (see Se
t. 4.3.2) doesnot tolerate a 
orre
tion for the Wigner energy for standard 
entral and spin-orbitSkyrme for
es, as this will lead to an una

eptable underbinding of 48Ca. This,however, might 
hange when the J2 terms are added. Indeed, Fig. 4.22 suggeststhat adding a phenomenologi
al Wigner term around 40Ca and 56Ni to a parameterset like T44, whi
h is 
onsistent with the evolution of single-parti
le levels, would�atten the 
urves for the mass residuals in the Ca, Ni and N = 28 
hains. Themass residuals for the 
hain of oxygen isotopes that are not shown here would beimproved in a similar manner. However, extreme 
aution should be exer
ised beforejumping to premature 
on
lusions, as the spin-orbit splittings and level distan
es inlight nu
lei are far from realisti
 for all our parametrizations; as a 
onsequen
e it isdi�
ult to judge if the room we �nd for the Wigner energy is fortuitous or indeed afeature of well-tuned J2 terms. Note that the HFB mass formulas that do in
ludea 
orre
tion for the Wigner energy side-by-side with the J2 terms from the 
entralSkyrme for
e give satisfying mass residuals for light nu
lei [Ton00, Sam02, Gor03℄,but have nu
lear matter properties that are quite di�erent from ours; 
f. BSk1 andBSk6 with SLy4 in Table I of Ref. [Rei06℄. Our 
onstraints on the empiri
al nu
learmatter properties (same as those on SLy4) that are absent in these HFB mass �tsmight be the deeper reason for this 
on�i
t.Large tensor-term 
oupling 
onstants straighten the ar
hes in the mass residualsin the heavy Sn and Pb isotopi
 
hains, but the improvements are not 
ompletelysatisfa
tory. Large, 
ombined proton-neutron and like-parti
le 
oupling 
onstantstend to transform the ar
h for the tin isotopi
 
hain into a an s-shaped 
urve, whi
his not very realisti
 from the standpoint of expe
ted 
orre
tions through 
olle
tive

http://www.sciencedirect.com/science/article/B6TVN-3SR4317-3M/2/5b286150d7bfc690fbecfede5bcb2837
http://link.aps.org/abstract/PRC/v62/e024308
http://www.sciencedirect.com/science/article/B6TVB-447NRTC-1/2/067d060dbc19c707cd0c4618c065dc71
http://link.aps.org/abstract/PRC/v68/e054325
http://link.aps.org/abstract/PRC/v73/e034322
http://link.aps.org/abstract/PRC/v62/e024308
http://www.sciencedirect.com/science/article/B6TVB-447NRTC-1/2/067d060dbc19c707cd0c4618c065dc71
http://link.aps.org/abstract/PRC/v68/e054325
http://link.aps.org/abstract/PRC/v73/e014309
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Figure 4.24: Two-neutron separation energy along the 
hain of isotopes (Z = 50).e�e
ts. It 
an again be assumed that the de�
ien
ies of the single-parti
le spe
trapointed out in Fig. 4.13 are responsible, where the ν 1h11/2 and π 1g9/2 are pla
edtoo high above the rest of the single-parti
le spe
tra in heavy Sn isotopes. ForPb isotopes, large values of the tensor terms tend to overbind the neutron-de�
ientisotopes. It is noteworthy that the tensor terms seem to not mu
h a�e
t the massresiduals of the heavy Pb isotopes above N = 126, whi
h are on the �ank of a verydeep ravine that be
omes visible when going towards heavier elements, 
f. the SLy4results in Ref. [Ben06a℄.It has been often noted that e�e
tive intera
tions that give a similar satisfyingdes
ription of masses 
lose to the valley of stability give diverging predi
tions whenextrapolated to exoti
 nu
lei. The standard example is the two-neutron separationenergy S2n(N,Z) = E(N,Z − 2) − E(N,Z) for the 
hain of Sn isotopes. Resultsobtained with a subset of our parametrizations are shown in Fig. 4.24. It is note-worthy that the di�eren
es for neutron-ri
h nu
lei beyond N = 82 are not largerthan those for the isotopes 
loser to stability. Around the valley of stability, in
reas-ing the 
oupling 
onstants of tensor terms, in parti
ular the like-parti
le ones, tiltsthe 
urve, pushing it up for light isotopes and pulling it down it for heavy ones,whi
h re�e
ts of 
ourse the position of the ν 1h11/2 level that is pushed into the
N = 82 gap, see Fig. 4.13. For the neutron-ri
h isotopes, small di�eren
es appeararound N = 90, whi
h re�e
ts the 
hange of level stru
ture above the ν 2f7/2 leveland at the drip line, but they are mu
h smaller than the di�eren
es seen betweenparametrizations obtained with di�erent �t proto
ols, see Fig. 5 of Ref. [Ben03b℄.Systemati
sIn the pre
eding se
tion we showed how the J2 terms in the energy fun
tional modifythe trends of mass residuals along isotopi
 and isotoni
 
hains, in parti
ular theamplitude of the ar
hes between doubly-magi
 nu
lei. In this se
tion, we want toexamine how this translates into quality 
riteria for the overall performan
e of theparametrizations for masses.Figure 4.25 displays the root-mean-square deviation of the mass residuals for allour 36 parametrizations, evaluated for a set of 134 nu
lei predi
ted to have spheri
almean-�eld ground states when 
al
ulated with the parametrizations SLy4 [Ben06a℄.

http://link.aps.org/abstract/PRC/v73/e034322
http://dx.doi.org/10.1103/RevModPhys.75.121
http://link.aps.org/abstract/PRC/v73/e034322
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Figure 4.25: Root-mean-square deviation from experiment of the binding energiesof a set of 134 spheri
al nu
lei, for ea
h of the for
es TIJ , vs. α and β(The �(T11)� label indi
ates the position of this parametrization in the(α, β)-plane). Contour lines at ∆Erms = 2.0, 2.25, 2.5, 3.0, 3.5, 4.0 MeV.The minimal value is found for T46 (∆Erms = 1.96 MeV).One observes a 
lear minimum around T46, i.e. (α, β) = (240, 120), with (Eth −
Eexp)r.m.s. = 1.96 MeV, 
ompared with 3.44 MeV for T22 (α = β = 0). We foundeven slightly better values with even more repulsive isos
alar and isove
tor 
oupling
onstants, but the single-parti
le spe
tra of these intera
tions turn out to be quiteunrealisti
, 
f. Se
t. 4.3.2. This already demonstrates that in the presen
e of the J2terms a good �t of masses does not ne
essarily lead to satisfa
tory single-parti
lespe
tra.Figure 4.26 demonstrates how the distribution of the mass residuals Eth − Eexpa�e
ts the evolution of their r.m.s. value for a subset of 9 parametrizations. ForT22 (α = β = 0), the distribution is 
entered at positive mass residuals, with onlyvery few nu
lei being overbound. In
reasing β to 120 MeV fm5 (T42) or even 240MeV fm5 (T62) shifts the median of the distribution to smaller values, whi
h yieldsmore and more overbound nu
lei. For large values of β, the distribution spreads outmore, whi
h diminishes the improvement from 
entering the distribution 
loser tozero. For given β, in
reasing α mainly shifts the median of the distribution withoutspreading out its overall shape, whi
h is preferable to optimize the r.m.s. value.These 
onsiderations, however, have to be taken with 
aution. As said above,we aim at a model where 
ertain 
orrelations beyond the mean-�eld are treatedexpli
itly, whi
h asks for a distribution of mean-�eld mass residuals with an asym-metri
 distribution towards positive mass residuals, and a width that is similar tothe di�eren
e between the maximum and minimum 
orrelation energies to be found.
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4.3. RESULTS AND DISCUSSION 1094.3.4 RadiiThe evolution of nu
lear 
harge radii along isotopi
 
hains re�e
ts how the mean�eld of the protons 
hanges when neutrons are added in the system. In the simplisti
liquid-drop model, it just follows the geometri
al growth of the nu
leus ∼ A1/3, butdata show that there are many lo
al deviations from this global trend. On the onehand, radii are of 
ourse subje
t to 
orrelations beyond the mean �eld [Rei79, Gir82,Bon91, Hee93, Ben06a℄ On the other hand, they are also sensitive to the detailed shellstru
ture, whi
h, in turn, might be in�uen
ed by tensor terms. We will 
on
entratehere on two anomalies of the evolution of 
harge radii, both of whi
h are not mu
hin�uen
ed by 
olle
tive 
orrelations beyond the mean-�eld (at least in 
al
ulationswith the Skyrme intera
tion SLy4) [Ben06a℄: that the root-mean-square (r.m.s.)
harge radius of 48Ca is almost the same as the one of the lighter 40Ca or possiblyslightly smaller, and the kink in the isotopi
 shifts of mean-square (m.s.) 
hargeradii in the Pb isotopes, where Pb isotopes above 208Pb are larger than what 
ouldbe expe
ted from liquid-drop systemati
s. In both 
ases it is plausible that shelle�e
ts are the determining fa
tor, although alternative explanations that involvepairing e�e
ts have been put forward for the latter 
ase as well [Taj93a, Fay00℄.Charge radii have been 
al
ulated with the approximation used in Ref. [Cha97℄1and derived from Ref. [Ber72℄
r2
ch = 〈r2〉p + r2

p +
N

Z
r2
n +

1

Z

(
~

mc

)2∑

i

v2
i µqi

〈σ · ℓ〉i , (4.17)where the mean-square (m.s.) radius of the point-proton distribution 〈r2〉p is 
or-re
ted by three terms: the �rst two estimate the e�e
ts of the intrinsi
 
hargedistribution of the free proton and neutron (with m.s. radii r2
p and r2

n) and the thirdadds a 
orre
tion from the magneti
 moments of the nu
leons. Sin
e we will 
onsiderthe shift of 
harge radii for di�erent isotopes of the same series, the a
tual valueof r2
p 
an
els out. For the se
ond 
orre
tion term, whi
h is independent from theintera
tion, we take r2

n = −0.117 fm2 [Ben03b℄. Finally, the magneti
 
orre
tion
an only depend weakly on the details of the intera
tion through the o

upationfa
tors v2
i when non-magi
 nu
lei are 
onsidered. The same expressions had beenused during the �t of our parametrizations.We begin with the Ca isotopes. Most parametrizations of Skyrme's intera
tionare not able to reprodu
e that the 
harge radius of 48Ca has about the same sizeas that of 40Ca, see Fig. 11 in Ref. [Ben03b℄. The middle panel of Fig. 4.27 showsthe di�eren
e of the m.s. radii of 48Ca and 40Ca in dependen
e of the tensor term
oupling 
onstants α and β. First, this di�eren
e is almost independent of α, thestrength of the like-parti
le tensor terms. Se
ond, it is strongly 
orrelated with β, thestrength of the proton-neutron tensor term, with large positive values of β bringingthe di�eren
e of radii into the domain of experimentally a

eptable values [Ott89℄or even below, with a best mat
h obtained for β = 80 MeV fm5. This e�e
t 
an beexplained by looking at the proton single-parti
le spe
tra of 40Ca (Fig. 4.15) and

48Ca (Fig. 4.16). Indeed, one observes that a positive neutron-proton tensor 
oupling
onstant de
reases the strength of the proton spin-orbit �eld in 48Ca, whi
h in turn1There is a typographi
al error in Eq. (4.2) in Ref. [Cha97℄, that was 
opied to Eq. (110) inRef. [Ben03b℄: the ~/mc fa
tor should be squared, as is trivially found by dimensional analysisand 
on�rmed by Ref. [Ber72℄.

http://www.sciencedirect.com/science/article/B6TVB-46YCYHV-C/2/4355bc000763c90474fd160ca033c3f7
http://www.sciencedirect.com/science/article/B6TVB-473ND3P-8H/2/b5815882d20ffd428bf70cadce1198b3
http://link.aps.org/abstract/PRC/v73/e034322
http://link.aps.org/abstract/PRC/v73/e034322
http://www.sciencedirect.com/science/article/B6TVB-473FPJ7-4G/2/0929c104ed702b25be1e61d62bb47097
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVN-46YSMRX-JJ/2/53378c236c47e944326f63087f911847
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://dx.doi.org/10.1103/RevModPhys.75.121
http://www.sciencedirect.com/science/article/B6TVN-46YSMRX-JJ/2/53378c236c47e944326f63087f911847
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Figure 4.27: Middle panel: Di�eren
e of mean-square 
harge radii between 40Ca and
48Ca as a fun
tion of the proton-neutron tensor term 
oupling 
onstant
β for three values of α. The experimental value (with error bar) isrepresented by the two horizontal bla
k lines. Bottom panel: Root-mean-square 
harge radii of 40Ca and 48Ca. Top panel: Contributionof the single-parti
le proton states to the di�eren
e of the 
harge radii(mean square radius of the point proton distribution, see Eq. (4.17)).



4.3. RESULTS AND DISCUSSION 111lowers the π 1d3/2 level in 48Ca (
ompare the parametrizations TIJ in Fig. 4.16with in
reasing I for given J). As a 
onsequen
e, the m.s. radius of this statede
reases as it sinks deeper into the potential well of 48Ca. At the same time, thislevel is pushed up in 40Ca, whi
h slightly in
reases the 
ontribution of this stateto the 
harge m.s. radius of this nu
leus. This e�e
t is demonstrated in the toppanel of Fig. 4.27, whi
h displays the degenera
y-weighted and normalized 
hangeof the m.s. radii of proton hole states between 40Ca and 48Ca as a fun
tion of theproton-neutron tensor term 
oupling 
onstant β for for
es with a like-parti
le tensorterm 
oupling 
onstant α = 120 MeV fm5. Indeed, the de
reasing 
ontribution fromthe π1d3/2 state to the m.s. radius signi�
antly de
reases the isotopi
 shift betweenboth Ca isotopes. It has to be noted that the m.s. value of the 
harge radii of 40Caand 48Ca are almost independent of alpha and that their absolute values are notreprodu
ed for any of our parametrizations.The latter study demonstrates the 
orrelation between the isotopi
 shift of m.s.
harge radius between 40Ca and 48Ca and the absolute single-parti
le energy ofthe proton 1d3/2 state. This level 
an be moved around within the single-parti
lespe
trum with the J2 terms. However, the agreement of the 
al
ulated single-parti
leenergy of the proton 1d3/2 state in both nu
lei with experiment is not ne
essarilyimproved for the parametrizations that reprodu
e the isotopi
 shift of the m.s. 
hargeradius. Furthermore, a good reprodu
tion of the isotopi
 shift does not guaranteethat the absolute values of the 
harge radii are well reprodu
ed, see the bottom panelin Fig. 4.27. In fa
t, they are predi
ted too large for all of our parametrizations,whi
h again points to de�
ien
ies of the 
entral �eld. Altogether, this suggests thatin spite of its sensitivity to the 
oupling 
onstants of the J2 terms, the isotopi
 shiftof m.s. 
harge radius between 40Ca and 48Ca should not be used to 
onstrain thembefore one has gained su�
ient 
ontrol over the 
entral intera
tion.A few further words of 
aution are in pla
e. The 
harge radii of all light nu-
lei are signi�
antly in
reased by dynami
al quadrupole 
orrelations, see Fig. 23 ofRef. [Ben06a℄. Correlations beyond the stati
 self-
onsistent mean �eld are also atthe origin of the ar
h of the ms 
harge radii between 40Ca and 48Ca that is neitherreprodu
ed by any pure mean-�eld model, see again Fig. 11 in Ref. [Ben03b℄, norby the beyond-mean-�eld 
al
ulations with SLy4 of Ref. [Ben06a℄, while the shellmodel allows for a satisfa
tory des
ription [Cau01℄.Many explanations have been put forward to explain the kink in the isotopi
shifts of Pb radii. As it qualitatively appears in relativisti
 mean-�eld models, butnot in non-relativisti
 ones using the standard spin-orbit intera
tion (2.84), it hasbeen used as a motivation to generalize the isospin mix of the standard spin-orbitenergy density fun
tional, Eq. (2.86), to simulate the isospin dependen
e of therelativisti
 Hartree models [Sha95, Rei95℄. The resulting parametrizations are not
ompletely satisfa
tory, as the pri
e for the improvement of the radii is a furtherdeterioration of spin-orbit splittings [Ben99b℄, while the relativisti
 mean �eld givesa satisfa
tory des
ription of both. Some standard Skyrme intera
tions that take thetensor terms from the 
entral Skyrme for
e into a

ount also give a kink, but it isby far too small to reprodu
e the experimental values [Cha98℄.Plotting the m.s. radii along the 
hain of Pb isotopes as a fun
tion of N , theslopes are nearly linear when looking separately at the isotopes below and above
208Pb. We will 
on
entrate on the 
hange in the slope at 208Pb that is brought bythe tensor terms, whi
h 
an be quanti�ed through the se
ond �nite di�eren
e of the

http://link.aps.org/abstract/PRC/v73/e034322
http://dx.doi.org/10.1103/RevModPhys.75.121
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http://www.sciencedirect.com/science/article/B6TVB-3YYTK8P-H/1/5a92a21a15875f611e71efa9fcfc351f
http://dx.doi.org/10.1103/PhysRevC.60.034304
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
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Figure 4.28: Change of slope in the m.s. 
harge radii∆2r2
h around 208Pb, Eq. (4.18),in fm2 as a fun
tion of α for three values of β. The experimental valueis about one and a half times as large as the largest theoreti
al valueshown here, see text.m.s. radii at 208Pb
∆2〈r2
h〉(208Pb) = 1

2

[
r2
h(206Pb) − 2 r2
h(208Pb) + r2
h(210Pb)

]
. (4.18)There are two 
on�i
ting values to be found in the literature, either 46.4 ± 1.4 fm2[Ott89℄ and the signi�
antly larger 59±3 fm2 [Ang04℄. Figure 4.28 shows the 
hangeof slope around 208Pb as de�ned through Eq. (4.18) as a fun
tion of the like-parti
letensor 
oupling 
onstant α and for three di�erent values of β. It is striking to see thatthis quantity is almost independent of the neutron-proton tensor 
oupling 
onstant

β, so the 
hange is mainly indu
ed by the tensor intera
tion between parti
les of thesame kind. It has been noted before that the kink in the isotopi
 shift of the 
hargeradii in Pb isotopes is 
orrelated to the single-parti
le spe
trum of neutrons above
N = 126, in parti
ular the position of the 1i11/2 level. (This has to be 
ontrastedwith the Ca isotopi
 
hain dis
ussed above, where the di�eren
e of 
harge radiibetween 40Ca and 48Ca appears to be parti
ularly sensitive to the single-parti
lespe
trum of the protons.) The 
loser the 1i11/2 level is to the 2g9/2 level that is �lledabove N = 126, the more the 1i11/2 be
omes o

upied through pairing 
orrelations.Through the shape of its radial wave fun
tion, the partial �lling of the nodeless 1i11/2in
reases the neutron radius faster than �lling only the 2g9/2, and in parti
ular fasterthan for the isotopes below N = 126. As the protons follow the density distributionof the neutrons, the 
harge radius grows rapidly beyond N = 126. This o�ersan explanation why the kink in
reases with the like-parti
le tensor term 
oupling
onstant α: for large values of the weight α of the neutron spin-orbit 
urrent in theneutron spin-orbit potential, Eq. (4.8), the spin-orbit splitting of the ν 1i levels isredu
ed su
h that the 1i11/2 approa
hes the 2g9/2 level in 208Pb, see Fig. 4.14.While the kink is 
learly sensitive to the tensor terms, they 
annot be responsi-ble for the entire e�e
t, as even for extreme parametrizations that give unrealisti
single-parti
le spe
tra the 
al
ulated kink hardly rea
hes about three quarters of itsexperimental value.



4.4. SUMMARY AND CONCLUSIONS 1134.4 Summary and 
on
lusionsIn this 
hapter, we have reported a systemati
 study of the e�e
ts of the J2 (tensor)terms in the Skyrme energy fun
tional for spheri
al nu
lei. The aim of the presentstudy was not to obtain a unique best �t of the Skyrme energy fun
tional with tensorterms, but to analyze the impa
t of the tensor terms on a large variety of observablesin 
al
ulations at a pure SR-EDF level and to identify, if possible, observables thatare parti
ularly, even uniquely, sensitive to the J2 terms. To rea
h our goal, we havebuilt, using a proto
ol very similar to that of the SLy parametrizations, a set of 36parametrizations that 
over the two-dimensional parameter spa
e of the 
oupling
onstants of the J2
t terms that does not give obviously unphysi
al predi
tions fora wide variety of observables we have looked at. The parametrizations were �ttedindependently on the same set of data, in order to keep an agreement with thephysi
s asso
iated with the latter.As a result of our study, we have obtained a long list of potential de�
ien
ies ofthe Skyrme energy fun
tional, most of whi
h 
an be expe
ted to be related to theproperties of the 
entral and spin-orbit intera
tions used. In fa
t, these de�
ien
iesbe
ome more obvious the moment one adds a tensor for
e, as it appears that thepresen
e of a tensor for
e unbalan
es a deli
ate 
ompromise within various terms ofthe Skyrme intera
tion that permits to get the global trend of gross features of theshell stru
ture right.Our 
on
lusions, however, have to be taken with a grain of salt. On the one hand,some might depend on the �t proto
ol; and on the other hand, we have to stress that(within the framework of our study � and all others available so far using mean-�eldmethods) the 
omparison between 
al
ulated and empiri
al single-parti
le energiesis not straightforward and without the risk of being misled.However, without even looking at single-parti
le spe
tra, we �nd that a strongrearrangement of the spin-orbit terms o

urs, linked with a strong 
onstraint 
omingfrom the �t to the masses of Ca and Ni nu
lei. The latter, again, appears to bemodel-dependent and linked with the spe
i�
ities of the 
entral and spin-orbit terms.The rearrangement of the spin-orbit strength with the isos
alar tensor 
ouplingmeans that single-parti
le spe
tra of spin-saturated nu
lei are strongly a�e
ted bythe latter, whi
h 
an lead to unrealisti
 situations.Besides, the parti
ular 
onstraints used in our proto
ol, fo
used on doubly-magi
nu
lei, favor parametrizations with a vanishing neutron-proton tensor 
oupling β.By 
ontrast, the mass residuals of a test set of 134 spheri
al even-even nu
lei areminimized for intera
tions with large α (like-parti
le) and β 
ouplings. Finally,tensor terms were shown to have an in�uen
e, through single-parti
le level shifts,on the di�eren
e of 
harge radii between 40Ca and 48Ca. The 
orresponding spe
-tra, however, are not fully satisfa
tory, whi
h is another example of in
ompatible
onstraints.Con
erning the global properties of the spin-orbit 
urrent J and its 
ontribution,through the tensor terms, to the spin-orbit potential, we have shown that it wasdominated, in spin-unsaturated nu
lei, by single intruder orbitals, whi
h implies aspe
i�
 lo
alization in regions just below the nu
lear surfa
e, slightly di�erent fromthe lo
alization of the spin-orbit 
ontribution to the spin-orbit �eld.The main motivation to add J2 terms is of 
ourse to improve the single-parti
lespe
tra. All observations and 
on
lusions 
on
erning those have to be taken with



114 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONAL
are, however, due to the 
aveat already mentioned and repeated. When lookingat the single-parti
le spe
tra in doubly-magi
 nu
lei (or semi-magi
 nu
lei 
om-bined with a strong subshell 
losure of the other spe
ies) we �nd that, as a 
onse-quen
e of the lo
alization of the spin 
urrent density, state-dependent modi�
ationsof spin-orbit splittings o

ur when varying tensor parameters, due to the 
ouplingof nodeless intruder states to themselves being maximized. The addition of tensorterms thus modi�es the dependen
e with prin
ipal and/or orbital quantum numberof spin-orbit splittings in disagreement with experimental input, as shown alreadyin Ref. [Bro06a℄. The isospin dependen
e of spin-orbit splittings, moreover, hasbeen found to be a�e
ted by the spe
i�
 lo
alization of the spin-orbit �eld in anon-physi
al and model-dependent way. In addition, the dis
ussion of splittingsstemming from the 
omparison of theoreti
al and experimental spe
tra of heavy nu-
lei is impeded by the position of spin-orbit doublet 
entroids, whi
h lie tentativelytoo high 
ompared to levels of the nearest shells. This is unambiguously a defe
t ofthe 
entral potential and 
orresponding part of the fun
tional.The prin
ipal e�e
t of the tensor terms, that most of the re
ent studies 
on
en-trate on, is the evolution of spin-orbit splittings with N and Z. Unfortunately, thereare no data for the splittings themselves, su
h that one relies on data for the evolu-tion of the distan
e of two levels with di�erent ℓ. The 
omparison is 
ompromisedby the global de�
ien
ies of single-parti
le spe
tra listed above.Still, a 
areful 
omparison of 
al
ulations and experiment suggests that the evo-lution of the proton 1h11/2, 1g7/2 and 2d5/2 levels in the 
hain of Sn isotopes andthat of the proton 1f5/2 and 2p3/2 levels in Ni isotopes 
all for a positive proton-neutron tensor 
oupling 
onstant β with a value around 120 MeV fm5, 
onsistentwith the �ndings of Refs. [Bro06a, Col07, Bri07℄. Meanwhile, The evolution of theneutron 1d3/2 and 2s1/2 levels between 40Ca and 48Ca 
alls for a like-parti
le tensor
oupling 
onstant α with a similar value around 120 MeV fm5. This it at varian
eto the �ndings of the aforementioned papers, but in qualitative agreement with theparametrization skxta of Brown et al. [Bro06a℄ for whi
h the tensor terms were de-rived from a mi
ros
opi
 intera
tion but disregarded thereafter be
ause of its poordes
ription of spin-orbit splittings. We expe
t this mismat
h to be alleviated if theposition of doublet 
entroids is kept under 
ontrol.This parti
ular study is only a limited 
ontribution to the improvement of theSkyrme energy density fun
tional. Also, it does not exhaust the range of studiesto be performed in order to understand the role of tensor terms in this model.The study of deformation properties of sele
ted parametrizations TIJ , for example,should allow to distinguish between the e�e
ts of 
entral and tensor 
ontributionsto J2 terms, whi
h are no longer identi
al when breaking spheri
al symmetry. Thiswork will be published in the near future [Ben09℄.Moreover, the in�uen
e of the terms depending on time-odd densities and 
ur-rents in the 
omplete energy fun
tional (2.91) on nu
lear matter and �nite nu
lei(rotational bands et
) is under investigation as well. The existing stability 
riteriaof polarized matter have to be generalized as the tensor for
e introdu
es new uniqueterms, for example in the Landau parameters [Hae82℄.It is evident that improvements of the 
entral and spin-orbit parts of the energydensity fun
tional are ne
essary, whi
h will require a generalization of its analyti
alform. This 
on�rms and extends the 
on
lusions of 
hapter 3. Furthermore, asystemati
 implementation of MR-EDF 
al
ulations will be needed, so as to assess

http://dx.doi.org/10.1103/PhysRevC.74.061303
http://dx.doi.org/10.1103/PhysRevC.74.061303
http://dx.doi.org/10.1103/PhysRevC.75.064311
http://dx.doi.org/10.1103/PhysRevC.74.061303


4.4. SUMMARY AND CONCLUSIONS 115not only the variation of single-parti
le spe
tra, but also the e�e
t of 
orrelationson the ensuing odd-nu
leus ex
itation spe
trum. Parti
le-vibration 
oupling in therandom-phase approximation should thus be an invaluable tool.These 
omments 
lose the �rst part of this manus
ript. As we have in mindthe properties and, unfortunately, limitations of the parti
le-hole part of the nu
learEDF derived from a Skyrme e�e
tive intera
tion, let us shift the dis
ussion to theparti
le-parti
le part.
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Chapter 5Ab-Initio Des
ription of Nu
learPairing
5.1 Pairing and super�uidity in many-fermion sys-temsThe stru
ture and dynami
 properties of a nu
leus greatly depends on the parityof its neutron and proton numbers. It was realized soon that an empiri
al massformula had to take into a

ount an additional binding energy 
ontribution for nu
leiwith even N or Z, 
ompared to those with odd N or Z, of the order of 12A−1/2MeV [Boh98℄. Moreover, ex
itation spe
tra of even-even nu
lei show a distin
t gapbetween the ground and �rst ex
ited states, a feature absent in nu
lei with an odd
N or Z. These observations were explained by Bohr, Mottelson and Pines [Boh58℄,who made the link between them and the pair 
ondensation me
hanism, whi
h hadbeen put forward as a model for ele
troni
 super
ondu
tivity by Bardeen, Cooperand S
hrie�er (BCS) [Bar57a, Bar57b℄, then for the super�uidity of Helium-3.In BCS theory, fermion pair 
ondensation is explained by an attra
tive intera
-tion between parti
les at the Fermi surfa
e of an otherwise non-intera
ting gas. Inthis sense, it remains within the mean-�eld s
heme, and 
an be formulated withina density fun
tional theory formalism [Oli88℄. A more fundamental and general ap-proa
h to pair 
ondensation has sin
e been derived within the framework of many-body perturbation theory [Noz63, Abr63℄.Generally speaking, pair 
ondensation 
onsists in the appearan
e of a two-bodybound state in the medium. Besides, the possibility, for arbitrarily weak attra
tiveintera
tions, to form a two-ele
tron bound state (so-
alled �Cooper pair�) near theFermi surfa
e of an ele
tron gas, [Coo56℄, was fundamental in the derivation ofthe BCS formalism [Bar57a℄. In an in�nite system, su
h a bound state will be
learly distin
t from the 
ontinuum of s
attering states 
orresponding to elementaryex
itations, whi
h is the origin of a gap in the elementary ex
itation spe
trum. Inother words, building an ex
itation �rst requires breaking a pair into independentparti
les before ex
iting one of them. This is the main 
ause of the spe
i�
 propertiesof super�uid/super
ondu
ting media. 117
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118 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRING5.1.1 BCS theoryThe BCS ansatz for the wave fun
tion of a system of fermions 
ondensed into a su-per�uid phase 
onsists of a 
oherent superposition of Slater determinants di�eringby the addition of pairs of parti
les or holes, 
reated in pairs of single-parti
le basisstates. States in a su
h a pair belong to two di�erent �halves� of the basis, and areasso
iated a

ording to symmetries of the system and properties of the intera
tion.The quantum numbers upon whi
h the distin
tion between single-parti
le states ismade are related to those of the Cooper pair. In the 
ase of spin-singlet, or S = 0pairing, S being here the total spin of the Cooper pair, states asso
iated in theBCS wave fun
tion are related by time-reversal symmetry [And59℄ whi
h, e.g. inin�nite systems, asso
iates the state |kσ〉, k being the momentum and σ the spin ofthe parti
le, to |-k-σ〉. This is the 
onventional 
hoi
e in BCS theory, appropriatefor most super
ondu
tors, low-density neutron matter and the des
ription of same-spe
ies nu
leon pairing, in the 1S0 state, whi
h is the dominant pro
ess in nu
lei.In the spin-triplet 
ase, a similar role seems to be played by parity [And84℄, whi
htransforms |kσ〉 into |-kσ〉. This spin-triplet pairing o

urs in exoti
, high-TC su-per
ondu
tors [Gor85℄, neutron-proton pairing in symmetri
 nu
lear matter as wellas high-density neutron matter where neutron pairs form in the 3P − F2 state.Hereafter we shall deal with spin-singlet (S = 0), isospin-triplet (T = 1, like-parti
le) nu
lear pairing, yet the expressions put forward will usually stay as generalas possible.In a �rst step, we shall work with an arbitrary single-parti
le basis |k〉. We notewith a ˇ sign (|ǩ〉) single-parti
le states belonging to the �rst half and with a ˆ sign(|l̂〉) s.p. states belonging to the se
ond half. The state asso
iated with |ǩ〉 in a pairoperator is written |k〉, omitting the ˇ sin
e no ambiguity should o

ur. The sameprin
iple applies for |l̂〉. States without a ˇ or ˆ symbol 
an belong to either half ofthe basis. We will mostly work with 
reation/annihilation operators 
orrespondingto the single-parti
le states, i.e. |k〉 = ĉ†k|−〉, where |−〉 is the bare va
uum.The BCS wavefun
tion 
an be expressed as
|Φ0〉 =

∏

ǩ

(u2
ǩ
+ v2

ǩ
ĉ†
ǩ
ĉ†
k
)|−〉. (5.1)Bogolyubov [Bog58℄ and Valatin [Val58℄ introdu
ed the 
anoni
al transformation(whi
h transforms the initial fermion operators into quasiparti
le operators 
onserv-ing the fermioni
 anti
ommutation rules)

α̂k = ukĉk − vkĉ
†
k

(5.2)
ĉk = ukα̂k + vkα̂

†
k

(5.3)with uk = uk, vk = −vk. The new quasiparti
le basis de�nes the BCS state as aquasiparti
le va
uum with αk|Φ0〉 = 0 for all k. One 
an 
he
k that for the state
|Φ0〉 to be normalized, one must have

u2
k + v2

k = 1. (5.4)Another important property is the probability that a (pair of) s.p. state(s) is o

u-pied, i.e. the diagonal density matrix element 〈 Φ0

∣∣∣ĉ†kĉk
∣∣∣Φ0

〉
= v2

k. Summing v2
kover all s.p. states thus yields the parti
le number.

http://www.sciencedirect.com/science/article/B6TXR-46MF54X-5R/1/34d931874a2eaaeba09a0a84cf3f68f4
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5.1. PAIRING AND SUPERFLUIDITY IN MANY-FERMION SYSTEMS 119The energy of the system is de�ned as the fun
tional of uk and vk parameters[Bar57a℄
E0 ≡ Es.p. + Epair, (5.5)

Es.p. ≡
∑

k

εkv
2
k, (5.6)

Epair ≡ 1

4

∑

kl

vkkll ukvk ulvl, (5.7)where Es.p. is the sum of single-parti
le energies εk of the parti
les, and Epair is thepairing energy 
orresponding to the anomalous 
ontra
tions of the pairing intera
-tion [Rin00℄.The energy Epair is nonzero only for a state whi
h breaks parti
le-number 
on-servation. The wave fun
tion Eq. (5.1), indeed, does not 
onserve parti
le number,whi
h is 
hara
teristi
 of a �nite-order perturbative treatment of pair 
ondensation.In order to determine the parameters uk and vk , we should minimize E . However,sin
e we no longer work in a manifold of Slater-determinant eigenstates of the par-ti
le number operator N̂ , we have to apply a 
onstraint, at least, on the averageparti
le number. This is done through the use of a Lagrange multiplier, de�ning thequantities
E0 ≡ E0 − λN = E s.p. + Epair, (5.8)

Es.p. =
∑

k

εkv
2
k − λ

∑

k

v2
k =

∑

k

εkv
2
k, (5.9)

εk ≡ εk − λ, (5.10)
λ ≡ ∂E

∂N

∣∣∣∣
N=N0

, (5.11)
εk is thus the single-parti
le energy measured from the 
hemi
al potential λ, whi
his set so as to ensure the 
onservation of the average parti
le number at its targetvalue N0.Minimizing E yields the equation

2 ε̃kukvk + ∆k(v
2
k − u2

k) = 0, (5.12)with
ε̃k ≡ 1

2
(εk + εk), ∆k ≡ −1

2

∑

l

vkkll ulvl, (5.13)where ε̃k is a s.p. energy averaged over partner states (whose energies 
an be di�erentin the most general 
ase), whereas ∆k is the gap parameter. Eqs. (5.12) and (5.4)allow one to determine uk and vk as
v2

k =
1

2

(
1 − ε̃k

Ek

)
, u2

k =
1

2

(
1 +

ε̃k

Ek

)
, (5.14)where Ek ≡

√
ε̃2

k + ∆2
k is the quasiparti
le energy. Indeed, in the 
ase where εk = εk,one 
an show that |Φ0〉 is the ground state of the single-(quasi)parti
le Hamiltonian[Noz63℄

ĤBCS =
∑

ǩ

{
εǩ

(
ĉ†
ǩ
ĉǩ + ĉ†

k
ĉk

)
+ ∆ǩ(ĉ

†
ǩ
ĉ†
k
+ ĉkĉǩ)

} (5.15)

http://link.aps.org/abstract/PR/v106/p162


120 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGwith energy E0. One then has, for one-quasiparti
le states, the property
ĤBCS |Φk〉 ≡ ĤBCS α̂k|Φ0〉 = E0 + Ek |Φk〉. (5.16)By plugging ba
k Eq. (5.14) into the de�nition of ∆k, Eq. (5.13) one obtains theBCS gap equation

∆k = −1

2

∑

l

vkkll

∆l

El

, (5.17)whi
h 
an be solved by self-
onsistent iterations to obtain all other quantities pre-sented in this se
tion.Quasiparti
le energies Ek =
√
ε̃2

k + ∆2
k, in the 
ase of nonvanishing pairing gap

∆k, are themselves nonzero even for states whose energy is in the vi
inity of the
hemi
al potential λ. This is at the origin of a staggering of binding energies betweennu
lei with odd and even parti
le number in an isotope or isotone 
hain. Indeed,whereas the BCS wave fun
tion, Eq. (5.1) is not an eigenstate of the parti
le numberoperator, it only has 
omponents with even parti
le numbers. Thus, a system withan odd number of parti
les shall be better des
ribed as a one-quasiparti
le state
α†

k|Φ0〉 whi
h exhibits an ex
ess energy with respe
t to the even-number paritystate it is built upon.The quasiparti
le operator α†
k annihilates the parti
le in state |k〉 and 
reatesone in state |k〉, with 
orresponding amplitudes, respe
tively, vk and uk. The 
orre-sponding variation of parti
le number equals u2

k − v2
k. Adding ba
k the 
onstrainingterm λN to the Hamiltonian ĤBCS, one obtains the energy of the one-quasiparti
lestate

Ek = E0 + Ek + λ(u2
k − v2

k), (5.18)i.e. the energy gained is equal to Ek only if the quasiparti
le |k〉 
orresponds toa s.p. level whose energy is equal to the 
hemi
al potential λ. The quasiparti
leenergy 
orresponds to the pairing gap ∆k in the same 
onditions.It should be noted, though, that this perturbative s
heme for the des
ription ofan odd-parti
le-number state is ina

urate. Indeed, 
reating a single quasiparti
lebreaks the symmetry between the two halves of the basis (time-reversal symmetryin nu
lear 1S0, T = 1 pairing) sin
e α̂k and α̂k are distin
t operators. This isnegligible for in�nite systems, but for �nite nu
lei this symmetry breaking lifts thedegenera
y of pairs of s.p. states. Whereas in the theory of super
ondu
tors it isgenerally believed that exa
t time-reversal symmetry is ne
essary for the onset of
S = 0 pairing (the large number of parti
les making a single non-paired parti
leirrelevant), in nu
lei the addition of a single quasiparti
le is a signi�
ant but weakenough perturbation to allow pairing to be maintained. However, the des
ription ofsu
h a system has to use the full time-reversal-symmetry-breaking HFB s
heme, i.e.the variation of the s.p. states on top of whi
h the BCS state is built. Expressionsfor the latter and the gap equation then hold in the 
anoni
al basis.5.1.2 Experimental eviden
e and observablesFermion pairing 
auses the appearan
e of a 
ondensed phase having properties verydi�erent from those of a non-intera
ting gas. In in�nite matter, as the bound state
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learly separated from the 
ontinuum of free elementary ex
itations, ex
ited statesbreaking the symmetries of the ground state require a �nite energy to be rea
hed.This makes the super�uid irrotational (states with non-vanishing angular momen-tum are pushed to higher energies) and prevents dissipation in hydrodynami
 �ows.In atomi
 nu
lei, manifestations of pairing mainly 
onsist of spins of even andodd nu
lei, energy gaps in the spe
tra of even-even nu
lei, moments of inertia lowerthan their rigid-body 
ounterparts, and odd-even staggering of binding energies.The ground state of even-even nu
lei 
an be des
ribed as a fully-paired va
uum,i.e. all parti
les parti
ipate to forming pairs. The ne
essity for this behavior waspointed as early as 1950 by Goeppert Mayer [GM50a, GM50b℄ as an explanation, inthe 
ontext of the shell model, for the spin 0 observed in these nu
lei. Moreover, thelatter exhibit an ex
itation spe
trum where no ex
itation of an individual 
hara
terexists below an energy of several hundred keV to several MeV. Thus, low-lying statesin su
h a nu
leus have a highly 
olle
tive 
hara
ter, i.e. 
orrespond to the re
ouplingof a large number of quasiparti
le ex
itations. As a result, the lowest ex
ited states ofa spheri
al even-even nu
leus is most often a 2+ quadrupole-vibrational state, whilelow-energy ex
itation spe
trum of a deformed one is dominated by a rotational band.To the 
ontrary, low-lying quasiparti
le stru
ture, asso
iated with ex
itations of thesingle non-paired parti
le, is visible in nu
lei with odd N and/or Z at energy s
alesof 100 keV.Moments of inertia extra
ted from low-energy rotational spe
tra were immedi-ately noti
ed as being lower than those expe
ted from a supposedly rigid rotatingquantum system [Boh55, Ald56℄. Only later was the link made with a possible su-per�uid behavior of the nu
leons [Boh58℄. Another signi�
ant e�e
t asso
iated withpair 
ondensation is the possibility to break pairs, yielding a higher moment of iner-tia. Whereas at low angular momentum broken-pair states lie higher in energy thanthe fully-paired quasiparti
le va
uum, their higher moment of inertia means thatthey gain energy more slowly with angular momentum. This implies that energy vs.angular momentum 
urves for rotational bands 
orresponding to these di�erent 
on-�gurations will eventually 
ross [Joh71℄. Another way to interpret the phenomenonis by studying the 
oupling of nu
leon spins to the rotation of the nu
lear referen
eframe via the Coriolis e�e
t [Mot60℄. A distin
t signature of this phenomenon is theba
kbending e�e
t [Ste72℄.More re
ently, the advent of radioa
tive ion beam fa
ilities, together with thedevelopment of supernova simulations in 
omputational nu
lear astrophysi
s, hasshifted the fo
us of nu
lear-stru
ture resear
h to neutron- and proton-ri
h nu
lei.Su
h nu
lei present parti
ular 
hallenges to many-body theory due to the low neu-tron (or proton) separation energy, whi
h implies the existen
e of low-lying ex
i-tations of nu
leons to 
ontinuum, s
attering states. Pre
autions 
on
erning thedis
retization of the 
ontinuum have to be taken when 
omputing su
h systems, seeRefs. [Dob84, Ben99
, Dob96b℄. One prominent e�e
t o

urring at the drip lines isthe presen
e of halos. Following the dis
overy of this phenomenon in 11Li [Tan85b℄,halos have been observed in several other light nu
lei [Tan85a, Tan88, Rii94℄. Inmedium-mass and heavy ones, though, no experimental eviden
e exists of the pres-en
e of halos, and theory has to rely on the EDF method. Pairing is espe
ially im-portant in this 
ase, as it hinders the appearan
e of a halo by modifying the asymp-toti
 behavior of the density [Ben00℄. Re
ent studies performed in single-referen
e[Rot07
, Rot07b℄ and multi-referen
e [S
h08℄ EDF frameworks indeed 
on�rm that
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122 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGthe appearan
e of a halo is sensitive to details of the pairing s
heme used, as areother properties of nu
lei at the neutron drip line.Finally, the most prominent signature of pairing is the large odd-even staggering(OES) of nu
lear masses: odd nu
lei are found to have an energy systemati
allyhigher than the mean energies of the neighboring even nu
lei, i.e. they lie on di�erentsmooth E vs. N (Z) 
urves [Hei32℄. As a measure of this e�e
t, the quantities
∆(3)

n (N,Z) =
(−1)N

2
[E(N − 1, Z) − 2E(N,Z) + E(N + 1, Z)] , (5.19)and ∆

(3)
p , obtained by ex
hanging the roles of N and Z, are most often used. Theyhave positive values for both odd and even N (Z). In a BCS-like quasiparti
lepi
ture, the ex
ess energy found in an odd nu
leus 
orresponds to the energy of thequasiparti
le 
reated in order to obtain a one-q.p. (�blo
ked�) odd-number-paritystate.Eq. (5.19) is the di�eren
e between separation energies of 
onse
utive nu
lei. In aself-
onsistent mean-�eld/EDF s
heme without pairing, due to Koopmans' theorem[Koo34℄, it measures the spa
ing of single-parti
le levels, i.e. (in the 
ase of neutrons)

∆
(3)
n,HF(N,Z) =

(−1)N

2

[
ε(N+1) − ε(N)

]
, (5.20)where ε(N) is the energy of the single-parti
le level on whi
h the N th neutron isadded. Due to the twofold degenera
y of single-parti
le states in even-even nu
leiwhose ground state is invariant under time reversal, one-neutron separation energies
al
ulated at the HF level (i.e., more generally, without pairing) for a N-neutronnu
leus (even N) and its N + 1 neighbor are almost identi
al, while separationenergies for N + 1 and N + 2 are usually di�erent, ex
ept in the 
ase of a largespheri
al j-shell degenera
y. Thus, ∆

(3)
n (N,Z) with even N may 
ontain a signi�-
ant 
ontribution from the splitting of single-parti
le energies, whi
h may explain asigni�
ant part of the odd-even staggering of ∆(3)(N,Z) itself. Satuªa, Doba
zewskiet al. [Sat98, Dob01℄ used this result to propose restri
ting oneself to ∆

(3)
n (N,Z)
al
ulated at odd N values (hereafter 
alled ∆

(3)odd) in the dis
ussion of pairing.However, the twofold degenera
y of single-parti
le levels, and the equality be-tween ε(N+1) and ε(N) for even N , is not exa
t. Indeed, time-reversal symmetrybreaking 
aused by the addition of a single nu
leon lifts this degenera
y in the oddnu
leus, resulting in a rearrangement (or �polarization�) of the nu
leus, whi
h is anu
lear embodiment of the Jahn-Teller e�e
t [Jah37℄. Although the deformationdegree of freedom is mostly blo
ked due to pairing itself [Sat98℄, limiting the magni-tude of the Jahn-Teller 
ontribution to the OES, 
ore polarization 
an de
rease theenergy of the blo
ked 
on�guration. This polarization brings a negative 
ontributionto the OES that Rutz et al. estimated at up to 30 % of the �bare� gap in relativisti
Hartree (RH) models [Rut99℄.Duguet et al. revisited the interpretation of the stru
ture of an odd nu
leus interms of a fully paired BCS/HFB va
uum (with an even number parity and an oddaverage parti
le number) on top of whi
h a quasiparti
le 
orresponding to a s.p.orbital lying 
lose to the 
hemi
al potential was 
reated [Dug01a℄. Starting fromthe 
al
ulation of su
h HFBE (for HFB-Even) states and fully self-
onsistent HFBblo
king 
al
ulations, an analysis of di�erent measures of the pairing gap was made
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5.1. PAIRING AND SUPERFLUIDITY IN MANY-FERMION SYSTEMS 123[Dug01b℄, i.e. a 
omparison of ∆
(3)
n (N,Z) and

∆(5)
n (N,Z) = −(−1)N

8

[
E(N − 2, Z) − 4E(N − 1, Z)

+ 6E(N,Z) − 4E(N + 1, Z) + E(N + 2, Z)
]
, (5.21)whi
h is an average of ∆(3) over a nu
leus and its neighbors. They de
omposedmass-di�eren
e formulae as

∆(n) = ∆
(n)HFBE + ELQP + Epol. (5.22)where ∆

(n)HFBE 
ontains the (n − 1)th-order derivative of the �smooth� part of theenergy 
urve 
orresponding to fully paired, even-number-parity va
ua. The latterhas been veri�ed as being signi�
ant for n = 3, whi
h 
orresponds to a 
urvature dueto non-linear terms in the mass formula su
h as, prin
ipally, the symmetry energy,whereas it vanished almost 
ompletely for n = 5. The 
urvature 
ontribution ∆
(n)HFBEis generally observed to de
rease with mass and, 
ontrary to the HF 
ontribution tothe OES, it has a sizeable value in spheri
al nu
lei. ELQP is a Lowest QuasiParti
leenergy averaged over one or more neighboring nu
lei. This is the quantity that weare attempting to extra
t sin
e the main 
ontribution to its value, for well-pairednu
lei, is the HFB pairing gap (diagonal pairing �eld matrix element) ∆k. Finally,

Epol. is the (similarly averaged) polarization energy, i.e. the di�eren
e betweenthe energy of the odd nu
leus 
al
ulated in a fully self-
onsistent blo
king s
heme,and the perturbative value obtained by adding the quasiparti
le energy to the HFBEground state energy. It was found that, whereas ∆(5) was the most a

urate measureof the sum of pairing and polarization 
ontributions, a 
an
ellation o

urred between
Epol. and ∆

(3)HFBE terms in ∆
(3)odd, whi
h 
on�rms it as a good measure of pure pairinge�e
ts.In the Jahn-Teller me
hanism, a system is expe
ted to lower its energy 
on-sequently to lifting the degenera
y of its ground state. In the HFB method, theunderlying variational prin
iple 
ould be expe
ted to make an odd nu
leus 
al-
ulated in self-
onsistent blo
king follow this s
heme. Therefore, Epol. should benegative, whi
h is the 
ase in the work by Rutz et al. [Rut99℄ but not in those bySatuªa et al. [Sat98℄ and Duguet et al. [Dug01b℄. One possible reason for this isthe self-intera
tion present in an energy density fun
tional when the latter is notstri
tly built as the HFB expe
tation value of a Hamiltonian, or expli
itly 
orre
tedfor self-intera
tion [Per81℄. Despite the in
lusion of time-odd 
omponents of thefun
tional, quasiparti
le self-intera
tion, i.e. self-intera
tion and self-pairing terms[La
08℄ 
an be present and break the link between quasiparti
le energies resultingfrom the HFBE 
al
ulation and the true energy of the one-quasiparti
le state as
al
ulated expli
itly through the fun
tional (see Eq. (2.64) and a

ompanying dis-
ussion). As of this work's writing there is no more a

urate 
he
k of the magnitudeof this e�e
t, though, whi
h might be required if one expe
ts to fully understandthe pre
ise in�uen
e of pairing in the nu
lear EDF.Beyond these qualitative 
onsiderations, performing yet another analysis of thelink between nu
lear masses and pairing gaps is beyond the s
ope of the present work.We shall thus use the rather 
onsensual measure ∆

(3)odd when performing 
omparisonswith experiment. On last remark may be required, i.e. that this quantity should notbe used near shell 
losures (N,Z±2) for the 
omparison with a SR-EDF 
al
ulation,sin
e dynami
al pairing e�e
ts may play a signi�
ant role.
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124 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRING5.1.3 Trends in pairing gapsSeveral studies have dealt with the mass- and isospin-dependen
e of pairing gaps. Asalready mentioned, the A-dependen
e of both proton and neutron gaps was identi�edearly [Boh98℄ as a de
reasing fun
tion. The question of the relative importan
e ofneutron and proton gaps and their dependen
e with respe
t to parti
le numbers ofthe two spe
ies was �rst investigated by �tting simple analyti
 fun
tions of (N,Z)without expli
it knowledge of the quantal stru
ture of nu
lei. It was observed thatneutron and proton gaps were similar for light nu
lei, while proton gaps were slightlylarger than neutron ones in heavy nu
lei, espe
ially in the a
tinide region [Boh98,Nem62℄. As for the neutron-ex
ess dependen
e, simple analyti
 �ts yielded gapsde
reasing with (N − Z)/A for both spe
ies [Vog84, Mad88℄. Later on, Möller andNix [Möl92℄ performed an analysis of gaps a
ross the mass table using a mi
ros
opi
-ma
ros
opi
 approa
h. Pairing was treated in the BCS and BCS-Lipkin-Nogamis
hemes, with a pairing strength parametrized through an �e�e
tive-intera
tion gap�,the 
onne
tion between the latter being made through a 
al
ulation performed ona s
hemati
 s.p. spe
trum with shell 
orre
tions smoothed out. Thus, quantale�e
ts due to (sub-)shell stru
ture and variations of the latter with deformationwere substra
ted. It was found that no expli
it neutron-ex
ess dependen
e wasneeded in the e�e
tive intera
tion to reprodu
e trends observed in the data.Proton and neutron ∆
(3)odd values extra
ted from Ref. [Aud03℄ are plotted onFig. 5.1. We only show mass di�eren
es 
entered on nu
lei with an even number ofparti
les for the spe
ies not under 
onsideration, in order to avoid in
luding in thedata odd-odd nu
lei where the 
oupling between the non-paired proton and neutronmay impede the dis
ussion.As was noted in Ref. [Vog84℄, neutron-ex
ess dependen
e appears most 
learly inthe region of 50 < Z < 82 and 82 < N < 126. The lowest gaps in this region o

urin nu
lei situated in the middle of neutron and proton shells, whi
h 
orresponds tothe limit of known nu
lei on the neutron-ri
h side. As was suggested already inRef. [Nem62℄, these nu
lei are well-deformed and exhibit a low level density at theFermi level due to the presen
e of deformed shell 
losures, resulting in a redu
tionof pairing. Su
h an e�e
t is 
learly visible in a systemati
 
al
ulation su
h as [Hil06,Hil07℄, and 
ould be hinted by the 
res
ent-shaped distribution of higher gaps aroundthe middle of major neutron and proton shells on Fig. 5.1.Thus, the variation of pairing gaps with neutron ex
ess observed more re
ently inthe Hafnium (Z = 72) and Tungsten (Z = 74) 
hains [Lit05℄ 
ould be attributablemainly to lo
al shell e�e
ts. In this 
ase, work on improving models whi
h fail toreprodu
e this variation would bene�t from 
on
entrating on single-parti
le spe
-tros
opy and deformation properties. Also, it would explain why attempts at liquid-drop or LDA-based des
ription of gaps a
ross the mass table [Jen86℄ fail in thisregion.5.1.4 Mi
ros
opi
 theoryNu
lei and nu
lear matter are highly 
orrelated quantum systems. However usefulfor the qualitative understanding of nu
lear pairing and as the basis for pairing-enabled density fun
tional theory, the BCS gap equation is not a rigorous startingpoint for the ab-initio des
ription of super�uidity. Su
h a des
ription has been theaim of many studies performed in the 
ontext of nu
lear or neutron matter [Dea03℄.
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Figure 5.1: Experimental gaps extra
ted from the mass table [Aud03℄ by a three-point �nite di�eren
e formula (∆(3)
q , Eq. (5.19)) 
entered on nu
lei withan odd number of the 
onsidered spe
ies and an even number of theother spe
ies. Top panel: neutron gaps, bottom panel: proton gaps.
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126 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGResults obtained are interesting not only as a theoreti
al input for nu
lear modelsapplied to �nite nu
lei, but also as the sole means of studying the nature of matterin the 
rust of neutron stars.Indeed, super�uidity plays a key role in these 
ompa
t stars, as suggested earlyby Migdal [Mig60℄. Pulsar glit
hes 
ould be related to the pinning of vorti
es tonu
lei in the super�uid neutron matter of their 
rust [Avo07℄. Pairing also has asigni�
ant impa
t on the spe
i�
 heat of the 
rust of neutron stars, whi
h a�e
ts its
ooling rate [Mon07℄. In deeper and denser regions, protons 
ould be
ome super�uidand thus super
ondu
ting, whi
h has strong impli
ations for magneti
 properties,while neutrons would form pairs in the anisotropi
 3P − F2 state [Bal98℄.The self-
onsistent mi
ros
opi
 des
ription of super�uidity in nu
lear matter hasbeen attempted using 
orrelated basis fun
tion, or Monte-Carlo methods [Cha04,Fab05, Gan08℄. However, the most useful method to understand how pairing isbuilt into the 
orrelated ground state is probaby to in
lude 
orrelations step bystep through perturbation theory (or a Brue
kner-Goldstone re
ast thereof). Con-ventional many-body perturbation theory (MBPT) [Hug57, Fet71℄ breaks down forsuper�uid nu
lear systems, as the onset of pairing is approximately related to diver-gen
es o

urring at the Fermi level in the G-matrix [Eme59℄, and exa
tly 
orrespondsto a similar singularity appearing in the Feynman-Galitskii T-matrix [Eme60℄, to-gether with the divergen
e of Weinberg eigenvalues [Ram07℄, whi
h marks the tran-sition to a nonperturbative regime. The same results were obtained in a �nite-temperature formalism [Alm96℄. Indeed, phase transitions su
h as the onset ofpairing are not amenable to a perturbative expansion [Noz63℄. We thus have torede�ne the starting point and work with pair 
ondensation in
orporated at everylevel.Su
h a theory 
an be built as an extension to MBPT, as proposed by Nambu andGorkov [Gor58, Nam60℄, through the de�nition of anomalous propagators [S
h64,Abr63℄.We suppose the system is ruled by a Hamiltonian Ĥ = T̂ + V̂ − λN̂ , where T̂groups all one-body terms (kineti
 term and external potential) and V̂ is a two-bodyintera
tion, while a 
hemi
al potential λ, as in the BCS s
heme, is used to 
onservethe average parti
le number.Following [Noz63℄, we make use of the generalized two-body propagators
F1(k;ω) =

ε0
k + ω + Σ(k;−ω)

D(k;ω)
, (5.23)

F2(k;ω) =
∆(k;ω)

D(k;ω)
, (5.24)

D(k;ω) = [ε0
k

+ ω + Σ(k;−ω)][ε0k − ω + Σ(k;ω)] + ∆(k, ω)2, (5.25)with ε0
k = ε0

k − λ, and ε0
k is the s.p. energy determined by the one-body T̂ (for anin�nite system, the appropriate representation is |k〉 = |kσ〉, and ε0

k = ~2k2/(2m),
k being the s.p. momentum).

F1 
orresponds to the normal propagator, while F2 is de�ned through an anoma-lous 
ontra
tion. Σ(k;ω) is the (proper) self-energy entering the Dyson equation (forthe sake of simpli
ity, we 
onsider Σ to be diagonal in the 
hosen representation, as isthe 
ase in the plane wave basis for in�nite systems). It sums all diagrams whi
h areirredu
ible by 
utting a single one-parti
le propagator line. A standard approxima-

http://link.aps.org/abstract/PRC/v75/e012805
http://dx.doi.org/10.1103/PhysRevC.75.065807
http://dx.doi.org/10.1103/PhysRevC.58.1921
http://www.sciencedirect.com/science/article/B6TVB-4DV08KH-1B/1/c97afddf8fe72c42efbbd1a0e459f68c
http://link.aps.org/abstract/PRL/v95/e192501
http://dx.doi.org/10.1103/PhysRevLett.101.132501
http://www.sciencedirect.com/science/article/B6X42-4DK59KF-32/1/0d0dcb2cc08931c7d7ffff31852e7b35
http://www.sciencedirect.com/science/article/B73DR-473ND53-14/1/03e3d8a4324583cbe6b8c9104e756fcd
http://www.sciencedirect.com/science/article/B73DR-470WB70-Y6/1/7bcd32d5239851be7556006642bbdc5a
http://www.sciencedirect.com/science/article/B6TVB-4PYYTP8-1/1/ecc64f88da0f3d6e113d85ce5f8c06ed
http://dx.doi.org/10.1103/PhysRevC.53.2181
http://link.aps.org/abstract/PR/v117/p648


5.1. PAIRING AND SUPERFLUIDITY IN MANY-FERMION SYSTEMS 127tion used in nu
lear matter is to use for Σ(k;ω) the �rst-order diagram involving theBrue
kner G-matrix, yielding the Brue
kner-Hartree-Fo
k (BHF) approximation.
∆(k, ω), on the other hand, is an anomalous self-energy obtained by solvingthe generalized Bethe-Salpeter equation, whi
h des
ribes the s
attering of a pair ofparti
les, involving generalized propagators. The latter yields, as an equation for ∆,
∆(k;ω) =

∫
dω′

2π

∑

l

I(kkω; llω′) F2(l;ω
′) (5.26)

=

∫
dω′

2π

∑

l

I(kkω; llω′) ∆(l, ω′)

[ε0
l
+ ω′ + Σ(l;−ω′)][ε0

l − ω′ + Σ(l;ω′)] + ∆(l, ω′)2
,(5.27)where the intera
tion kernel I(kkω; llω′) is the sum of diagrams whi
h are irredu
ibleby 
utting a pair of single-parti
le lines [Bog58, Noz63, Hen64, Mig67, Bal90, Elg96℄.Thus, diagrams entering the Brue
kner G-matrix or the T-matrix beyond �rst orderin V are forbidden in I, as they are already generated by the Bethe-Salpeter s
at-tering equation itself: this would lead to double 
ounting. In
luding anyway su
he�e
tive verti
es in the pairing 
hannel [Amu85, Bal90, Wam93℄ yields markedlyin
reased pairing gaps, 
ompared to using the bare NN potential. The lowest-order
ontribution to I(kkω; llω′) is thus the bare intera
tion matrix element Vllkk. In this
ase I, as well as the anomalous self-energy ∆, are energy-independent. At follow-ing orders, we start to sum polarization diagrams 
orresponding to the parti
le-holeindu
ed intera
tion, i.e. the many-body pro
ess of two parti
les intera
ting via theex
hange of medium �u
tuations [Hei00, She03℄.Many-body e�e
ts do impa
t the anomalous self-energy ∆ even if the bare inter-a
tion is taken as a pairing intera
tion kernel. Eq. (5.27) involves a non-trivial energyintegral, whi
h is the manifestation of the potential presen
e of e�e
ts beyond thequasiparti
le pi
ture. The 
omplex values and energy-dependen
e of Σ(k, ω) indi-
ate that quasiparti
le ex
itations have a �nite lifetime, i.e. they are not eigenstatesof the Hamiltonian. It also signals the depletion of the Fermi sea on top of whi
hpairing takes pla
e.Elementary ex
itation energies are given by the poles of the propagator, whi
ho

ur at ω = ±Ek, with

Ek = 1
2
[Σ(k, Ek) − Σ(k,−Ek)]

+
{
[ε0

k + 1
2
(Σ(k, Ek) + Σ(k,−Ek))]

2 + ∆(k, Ek)
2
}1/2

, (5.28)where we keep the energy-dependen
e of ∆ for the sake of generality. We see thatthe energy dependen
e modi�es the BCS expression for the quasiparti
le energy,whi
h is, however, re
overed for an ω-independent self-energy (
on�rming the roleof ∆(k;Ek) as the pairing gap). In the 
ase of vanishing pairing (or for states farfrom the Fermi level where Σ(k, Ek) ≫ ∆(k, Ek)) we have Ek = |εk|, where εk is theon-shell single-parti
le energy. For simpli
ity, we will skip imaginary parts in thefollowing. We thus have
εk = ε0

k + Σ(k, εk). (5.29)Its expli
it energy integral makes Eq. (5.27) quite impra
ti
al. Due to the non-trivial stru
ture of the self-energies, an analyti
al redu
tion 
an only be a
hieved
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128 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGby performing some approximation of the latter. An e�
ient 
hoi
e is the poleapproximation [Bal00a, Bal01, Bal02, Bal07
℄. It 
onsists, �rst, in negle
ting theimaginary part of Σ(k, ω), whi
h is reasonable for states lying next to the Fermi leveland dominating the integrand of the gap equation. Then, the generalized propagatorentering Eq. (5.27) is repla
ed by its pole part. One obtains
∆(k) = −

∑

l

Vkkll zs(l) ∆(l)

2
√

(εsl)2 + ∆(l)2
, (5.30)where εsl is the symmetrized e�e
tive single-parti
le energy

εsk = ε0
k + 1

2
[Σ(k, Ek) + Σ(k,−Ek)], (5.31)and zs(k) is the residue of 1/D(k;ω) at ea
h of its (symmetri
) poles. Near theFermi level and in the ∆ = 0 limit (in nu
lear matter we have ∆ ≃ 3 MeV forkineti
 energies of the order of 50 MeV), zs(k) 
an be identi�ed with the normal-phase z-fa
tor. A further approximation relies on the assumption of a smooth energydependen
e of the self-energy. One then obtains the expression [Bal02, Bal07
,Lom01℄

∆̃(k) = −
∑

l

z(k) Vkkll z(l) ∆̃(l)

2

√
ε2

l + ∆̃(l)2

, (5.32)whi
h involves, this time, the on-shell s.p. energy εk and a renormalized gap ∆̃(k) =
z(k)∆(k). Similar expressions have been obtained in the self-
onsistent Green'sfun
tion approa
h involving T-matrix-derived self-energies [Mut05, Boz99, Boz03℄.To �rst order in ω in the expression of Σ(k;ω), the symmetrized single-parti
leenergy 
an be approximated as

εsk ≃ ε0
k + Σ(k, ω = 0) + O(E2

k). (5.33)Next to the Fermi level the self-energy 
an be expe
ted to vary su�
iently smoothlybetween −Ek and Ek for this approximation to hold. We thus see that Eq. (5.30) in-volves a single-parti
le spe
trum whi
h does not take into a

ount dispersive e�e
ts.The 
orresponding e�e
tive (Landau) mass is the pure k-mass m̃. On the other hand,the on-shell pres
ription for the s.p. energies in Eq. (5.32) implies that both energy-and momentum-dependen
e are taken into a

ount, whi
h the additional z-fa
tor
ompensates for. Indeed, z(k) < 1 at the Fermi level, while energy dependen
e in-
reases the density of the s.p. spe
trum, yielding an e-mass higher than the k-mass.It is interesting to mention some results in the ultraweak-
oupling regime, where ananalyti
al expression for the Fermi-level gap 
an be obtained [Bal01, Bal02℄:
∆(kF) = 8

mEF
m̃(kF) exp

[
− m

π2n0I(kF)m̃(kF)z(kF)

]
, (5.34)where EF is the Fermi kineti
 energy, m̃(kF) is the k-mass at the Fermi level, n0 isthe Fermi gas level density, and I(kF) is the typi
al intera
tion kernel matrix elementbetween states lying at the Fermi level. Be
ause of the propertym∗(k) = m̃(k)/z(k),we see that in this limit, Eqs. (5.30) and (5.32) are indeed equivalent: the pairinggap is determined by the quantity I(kF)m̃(kF)z(kF) = I(kF)m∗(kF)z(kF)2.
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5.2. AB-INITIO INPUT FOR THE PAIRING EDF 1295.2 Ab-initio input for the pairing part of the nu-
lear energy density fun
tionalIn this work, we aim at a
hieving a �rst step leading towards two distin
t goals.First, we expe
t to improve our understanding, in terms of the relative importan
eof di�erent diagrams in the pairing intera
tion kernel I(kkω; llω′), of the mi
ros
opi
origin of pairing between identi
al nu
leons in nu
lei. This requires to go beyondextrapolations of results obtained in nu
lear matter and implement a method to per-form 
al
ulations of �nite nu
lei, building the pairing gaps (i.e. HFB pairing �eld)expli
itly from the bare intera
tion, either at �rst order or in
luding higher-order di-agrams. Su
h 
al
ulations have been attempted, the bare intera
tion being in
ludedto �rst order, for a slab of nu
lear matter [Bal00b, Bal03, Pan06, Pan07℄, howeverself-energy e�e
ts were negle
ted. The few studies performed in a �nite nu
leus untilnow tend to show that the bare intera
tion alone 
an only a

ount for a fra
tion ofexperimental pairing gaps [Bar04, Bar05℄, and that indu
ed intera
tions due to 
ou-pling of individual motion with 
olle
tive modes [Bar99, Ter02, Gio02℄ 
an explainthe remainder [Bar04, Gor05a, Pas08a℄. Due to the 
omplexity of the 
al
ulationsinvolved in the above mentioned works, only a single nu
leus (120Sn) 
ould be stud-ied. We thus hope to bring additional information into the dis
ussion by performinga more systemati
 study of gaps obtained with the �rst-order 
ontribution of thebare NN potential to I, thanks to the method explained below. We shall treat theNN 
ontribution as fully as possible, in
luding the Coulomb intera
tion, however wewill not treat the three-nu
leon intera
tion at this point. We will not, either, extendthis work to in
orporating higher-order 
ontributions, owing to the 
omplexity of�rst 
hoosing then implementing a sound method to do so. We hope, ultimately,to treat indu
ed intera
tions e.g. by in
luding the ex
hange of phonons 
al
ulatedin the RPA approximation using the residual intera
tion dedu
ed from the SkyrmeEDF. Of 
ourse, deriving the residual intera
tion from the bare NN potential wouldbe the most 
onsistent approa
h, and might be
ome possible in the future usinglow-momentum intera
tions.Se
ond, we expe
t to produ
e a pairing fun
tional yielding trustworthy pre-di
tions in regions of the mass table where pairing-related experimental data areunavailable. Indeed, existing lo
al pairing fun
tionals employed in self-
onsistentnu
lear stru
ture 
al
ulations are 
hara
terized by a number of parameters (strengthfa
tor, pairing a
tive window/regularization s
heme, density dependen
e) whi
h arenot all well 
onstrained by available data. In fa
t, models whi
h yield 
onsistentpredi
tions near the valley of stability 
an exhibit very di�erent behaviors whenextrapolated towards the neutron drip-line [Dug05℄. These di�eren
es o

ur despitethe fa
t that, ex
ept for re
ent works [Mar07, Mar08℄, isove
tor-density dependen
eof pairing fun
tionals has not been employed.For this purpose, we shall perform 
al
ulations with our mi
ros
opi
 model a
rossthe mass table, in
luding regions far from the valley of stability. As will be detailedbelow, our method is, for now and within reasonable 
omputing time and storagerequirements, restri
ted to 
al
ulations in spheri
al symmetry. The results thus gen-erated will provide a referen
e for 
omparison with other models useable in moregeneral 
ases su
h as lo
al pairing fun
tionals. Note however that we do not ne
es-sarily expe
t, at this point, to obtain a good agreement with available experimentaldata.
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130 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGOur approa
h to building HFB equations relies on devising a separable represen-tation of the NN intera
tion. This separable intera
tion 
an then be used to build apairing fun
tional having some of the simplifying properties of a lo
al one, allowingfor the e�
ient 
onstru
tion and diagonalization of the HFB matrix. As a startingpoint, we use the Vlow k low-momentum NN intera
tion, whi
h, as will be dis
ussedbelow and in se
tion 5.3.2, lends itself well to separable approximations.5.2.1 The Vlow k low-momentum NN intera
tionSeveral models exist for the nu
leon-nu
leon (NN) intera
tion. The most re
ent ones,either representing a mix of one-boson ex
hange parts and semi-phenomenologi
alshort-range terms [Wir95, Ma
01℄, or 
onsistently built from 
hiral e�e
tive �eldtheory (EFT) [Ent03, Epe05℄, a
hieve an a

urate des
ription of available s
atteringdata for energies rea
hing up to 350 MeV in the laboratory frame. These modelsare 
learly di�erent in terms of their matrix elements. However, it was shown thata universal NN intera
tion 
ould be obtained by applying to either of several re
entNN potentials a renormalization group (RG) transformation eliminating high-energydegrees of freedom [Bog01, Bog03a, Bog03b℄.A NN intera
tion is thus obtained, 
alled Vlow k , whi
h 
ouples only states ofrelative motion below a 
ertain 
uto� momentum, or renormalization s
ale Λ, while
onserving two-body observables in the low-energy domain [Bog07b℄ thanks to thes
ale-invarian
e enfor
ed for the s
attering T -matrix. In parti
ular, it does notpresent the high-energy/short-range repulsion 
hara
teristi
 of the hard 
ore intraditional NN potentials, whi
h makes it suitable for ab-initio nu
lear stru
ture
al
ulations in redu
ed model spa
es via variational [Nog04, Bog06a℄ shell model[Bog02℄, no-
ore shell model [Bog08a℄ or 
oupled 
luster [Hag07℄ methods. Also,the RG transformation yields a NN intera
tion whi
h, below a 
ertain value of Λ,is perturbative, i.e. a perturbative expansion in terms of intera
tion verti
es of thetwo-body s
attering amplitude [Bog06b℄ or many-body ground state [Bog05℄ 
on-verges term-after-term, whereas only the formal re-summation of in�nite series (su
has the Brue
kner G-matrix) yields a de�nite result when using the starting high-momentum potential. This feature is important as it allows to 
ontrol the a

ura
yof su
h perturbative expansions through power 
ounting as is done in 
hiral EFT.The Vlow k approa
h, therefore, opens new ways of studying nu
lear stru
ture.This, however, 
omes at a pri
e. First, the intera
tion resulting from the RG trans-formation 
annot be represented as a lo
al potential anymore: it is a set of numeri
almatrix elements with signi�
ant non-lo
ality. Se
ond, while two-body observablesare 
onserved, it is not true of higher-parti
le-number operators, and 
onservation of
A-body physi
s requires, stri
tly speaking, the introdu
tion of up to A-body inter-a
tions. In pra
ti
e, the importan
e of intera
tions involving higher body numbersis expe
ted to in
rease slowly when running Λ down. Although low-momentumthree-body for
es generated from NN+NNN Hamiltonians through RG equationsare 
urrently unavailable, it is expe
ted that they will show marked resemblan
ewith NNN for
es from 
hiral EFT [Nog04, Bog05℄. Work towards obtaining a 
om-plete Vlow k NN+NNN Hamiltonian is 
urrently underway [Bog07a, Bog08b℄.The RG equation for the Vlow k matrix elements is obtained by introdu
ing a
uto� Λ in the Lippmann-S
hwinger equation and running it down while 
onservingthe half-o�-shell T-matrix (making Vlow k energy-independent) or the fully o�-shell
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5.2. AB-INITIO INPUT FOR THE PAIRING EDF 131one (yielding an energy-dependent Vlow k , whi
h 
an be rendered energy-independentby 
onverting energy- to momentum-dependen
e and hermitizing). The 
uto� 
ana
tually be applied in a smooth manner, yielding an intera
tion with 
ontinuousmatrix elements in the k, k′-plane. Possible 
uto� fun
tions are [Bog07
℄
fsharp(k2) ≡ Θ(Λ2 − k2), (5.35)
fnexp(k2) ≡ exp

[
−
(
k2

Λ2

)n]
, (5.36)

f ǫFD(k2) ≡ 1

1 + exp
(

k2−Λ2

ǫ2

)
,

(5.37)respe
tively 
alled �sharp�, �exponential� and �Fermi-Dira
� regulators. We thenhave
Tlow k(k, k′;E) = f(k2)T (k, k′;E)f(k′2), (5.38)i.e. the T-matrix is 
onserved exa
tly for the sharp 
uto�, and approximately, upto a fa
tor 
orresponding to the regulating fun
tion used, for smooth ones.5.2.2 Separable representation and �nite nu
leiIn atomi
 nu
lei, Cooper pairs are expe
ted to form prin
ipally between nu
leonsof the same spe
ies and in the S = 0, L = 0 state of relative motion. It is aninteresting feature of NN s
attering physi
s that the two-nu
leon system exhibitsin this 
hannel (1S0) a virtual, quasi-bound state at low energy, whi
h translatesinto large attra
tive phase shifts and, 
orrespondingly, a large negative s
atteringlength. S
attering theory [Bro76℄ tells us that the T-matrix 
orresponding to su
h asystem is dominated by a single pole at the energy of the virtual state, whi
h meansthat it is, to a good approximation, separable of rank one 
lose to this energy. Apotential des
ribing the two-body s
attering problem in this energy range may thushave the same stru
ture, i.e. V (k, k′) = λ g(k) g(k′) [Hai84℄. Su
h a potential,however, 
annot des
ribe NN s
attering beyond an energy Elab = 250 MeV due tothe inversion of the sign of phase shifts (and hen
e of diagonal T-matrix elements)at this point. Nevertheless, this property 
ould be used by Duguet [Dug04℄, whobuilt a low-momentum approximation to the Argonne v18 potential having similarproperties with respe
t to pairing in in�nite nu
lear matter. The form of this inter-a
tion was a simple one, and further approximations were proposed in order to makenu
lear stru
ture 
al
ulations feasible. In this work, we aim at extending the workof Ref. [Dug04℄, both by building a

urate separable representations of the Vlow k NNintera
tion and by using them to 
ompute nu
lear properties at the HFB level with-out further assumptions regarding the form of the pairing intera
tion/fun
tional.Even beyond a rank-one approximation, it is a general feature of low-momentumpotentials that they 
an be more easily approximated by separable forms. This 
anbe understood by studying Weinberg eigenvalues, i.e. solutions ηi of the equation

V̂ G0(E) |ψi〉 = ηi |ψi〉, (5.39)where V̂ is the two-body potential, G0(E) the free two-parti
le propagator and |ψi〉the 
orresponding eigenstate. When RG evolution is applied to a NN potential,
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132 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGrunning down the 
uto� Λ drives more and more eigenvalues 
lose to zero, resultingin fewer ones retaining a signi�
ant 
ontribution. The potential not only be
omesperturbative, but it 
an also, then, be approximated through a separable expressionof lower and lower rank [Bog06b℄.An intera
tion a
ting solely in the 1S0 
hannel 
an be de
omposed as
V̂

1S0 = V̂ SP̂S=0, (5.40)where V̂ S is the spatial part a
ting in the L = 0 state of relative motion and P̂S=0is the spin-singlet proje
tor de�ned as
PS =

1 + (−1)S P̂σ

2
, (5.41)

P̂σ being the spin-ex
hange operator. Momentum- and 
oordinate-spa
e matrixelements of the spatial part 
an be expressed, respe
tively, as
〈k1k2|V̂ S|k3k4〉 = V1S0

(k12, k34) (2π)3δ(K12 − K34), (5.42)
〈r1r2|V̂ S|r3r4〉 = V1S0

(s12, s34) δ(R12 − R34). (5.43)The 
enter-of-mass (CoM)/relative 
oordinates are de�ned as: sij = ri − rj , Rij =
(ri + rj)/2, kij = (ki − kj)/2 and Kij = ki + kj . This intera
tion has, in general,a �nite-range and a �nite non-lo
ality. It is true of any �nite-range intera
tionwhen one isolates a single partial wave, whether or not one starts with a non-lo
alintera
tion su
h as Vlow k . The separable approximation to the matrix elementsenters the de�nition of V1S0

fun
tions,
V1S0

(k, k′) =
∑

αβ

gα(k) λαβ gβ(k′), (5.44)
V1S0

(s, s′) =
∑

αβ

Gα(s) λαβ Gβ(s′), (5.45)where 1 ≤ α, β ≤ M , M is the rank of the intera
tion, and gα(k) and Gα(s) areintera
tion form fa
tors in momentum and 
oordinate spa
e, respe
tively; λαβ is astrength matrix.The two representations are linked by the following relation between momentum-and 
oordinate-spa
e form fa
tors:
Gα(s) =

∫
d3k

(2π)3
e−ik·s gα(k) =

1

2π2s

∫
kdk sin(ks) gα(k). (5.46)Given four states ı̌̂ǩl̂ belonging to a single-parti
le basis, with ı̌ and ǩ taken inthe �rst half and ̂ and l̂ in the se
ond half of the basis, as de�ned by the Bogolyubovtransform of the system's referen
e state, one 
an express the 
orresponding matrixelement of the intera
tion as

(v
1S0

sep )ı̌̂ǩl̂ =

∫∫
d3R12d

3R34

∑

αβ

[∫
d3s12 Gα(s12) Ψ∗

ı̌̂(r1, r2)

]

× λαβ δ(R12 − R34)

[∫
d3s34 Gβ(s34) Ψǩl̂(r3, r4)

] (5.47)
(v

1S0

sep )ı̌̂ǩl̂ =

∫
d3R

∑

αβ

Ψ̆α∗
ı̌̂ (R) λαβ Ψ̆β

ǩl̂
(R), (5.48)

http://www.sciencedirect.com/science/article/B6TVB-4K4WG34-2/1/a589739f999d20d1fae2e6132be49551
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Ψ̆α

ı̌̂(R) ≡
∫
d3s Gα(s)Ψı̌̂(R + s/2,R− s/2) (5.49)

=

∫
d3s Gα(s)

∑

σ

(−)s−σ ϕı̌(R + s/2, σ) ϕ̂(R − s/2, σ), (5.50)where Ψı̌̂ is the spin-singlet part of the two-body produ
t wave fun
tion (see ap-pendix F.1). At �rst order in the intera
tion, the pairing energy 
an be written
Epair =

1

4

∑

ı̌̂ǩl̂

(v
1S0

sep )ı̌̂ǩl̂ κı̌̂ κǩl̂ =
1

4

∫
d3R

∑

αβ

λαβ χ̆
∗
α(R) χ̆β(R), (5.51)where κı̌̂ is the pair tensor and the e�e
tive pair densities χ̆α are de�ned as

χ̆α(R) = −
∑

ı̌̂

Ψ̆α
ı̌̂(R) κı̌̂, (5.52)The key point in the above expression is that the pairing energy 
an be written asa fun
tional of pair densities whi
h are lo
al in the sense that they depend on onespatial 
oordinate only. All the range and non-lo
ality of the intera
tion, whi
hwere 
ontained in the Gα(s) fun
tions, are now hidden in the densities de�nedby Eq. (5.52). The elements of the strength matrix λαβ play the role of 
oupling
onstants of the fun
tional. E�e
tive pair densities 
an also be expressed startingfrom the non-lo
al spin-singlet pair density

χ̆α(R) =

∫
d3s Gα(s)ρ̃(R, s), (5.53)

ρ̃(R, s) ≡ −
∑

ı̌̂

Ψı̌̂(R + s/2,R− s/2)κı̌̂, (5.54)whi
h exhibits the non-lo
ality of our fun
tional.Matrix elements of the pairing �eld ∆ in the 
hosen basis 
an be obtained viafun
tional di�erentiation, yielding
∆ı̌̂ =

∑

α

∫
d3R Ψ̆α∗

ı̌̂ (R) ∆̆α(R), (5.55)where we use lo
al intermediate quantities (or e�e
tive �elds) to fully represent thepairing �eld,
∆̆α(R) ≡ −1

2

∑

β

λαβ χ̆β(R). (5.56)This form of a pairing fun
tional allows to build the HFB equations, expressed inthe 
hosen basis representation, with a 
omputational burden similar to the 
ase ofa lo
al fun
tional. Although the expression Eq. (5.51) still does not allow to worke�
iently in an expli
it 
oordinate-spa
e representation, the 
al
ulation of pairingmatrix elements is 
onsiderably faster using Eq. (5.55) (O(n2), n being the typi
alnumber of s.p. basis states in a blo
k of the pair tensor κı̌̂) than when using thematrix elements of the intera
tion dire
tly (O(n4)).
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ulties arise, though, in addition to the workings of a basis-representationSkyrme-HFB 
ode. Indeed, in order to a
hieve the O(n2) s
aling of 
omputational
ost, we have to 
al
ulate and store the Ψ̆α
ı̌̂(R) fun
tions for all pairs of basis statespotentially 
oupled by the pairing �eld given the symmetries 
hosen for the repre-sentation. Storage requirements are thus larger than in the 
ase of a lo
al pairingfun
tional. The se
ond, formal, di�
ulty is to design and implement a 
enter-of-mass/relative 
oordinate separation for use in Eq. (5.50). This is trivial whenworking in Cartesian 
oordinates, but storage and time requirements imply, at leastin a �rst step, to work in spheri
al symmetry.The details of the method we use, being non-essential for the physi
al dis
ussion,are exposed in appendix F.5.3 A Separable Representation of the NN for
eBefore performing 
al
ulations, as des
ribed in the previous 
hapter, employing the

Vlow k intera
tion in the pairing 
hannel, we have to devise a separable representationof it. Several te
hniques have been proposed for building separable approximationsof lo
al or other potentials [Wei63, Ern73, Hai84, Bal86, Bal87℄. Most fo
us onreprodu
ing the low-energy physi
s of the intera
tion, su
h as the M lowest-energypoles of the T-matrix in the 
ase of the Gamow separable approximation [Bal86℄, bydiagonalizing an operator derived from the intera
tion, in some 
ases adding weighton a parti
ular region of the momentum spa
e. Su
h is the 
ase of the Weinbergpro
edure, whi
h, by diagonalizing V G0(E), G0(E) being here the free two-parti
lepropagator in the va
uum, yields a good approximation mainly around the 
hosenenergy E (although in pra
ti
e, the range of a

ura
y of the approximation is moreextended, at least for Vlow k [Bog06b℄). In our 
ase, the fo
us on low-energy degreesof freedom is already taken 
are of by the Vlow k pro
edure. In parti
ular, the matrixelements of Vlow k are of �nite support be
ause of the RG 
uto�. Provided they arealso smooth enough, this guarantees the existen
e of an a

urate, �nite separableexpansion in the whole (k, k′)-plane. Moreover, any analyti
 property of a givens
heme would probably be lost in the pro
ess of devising a parametrization of thenumeri
ally-obtained separable representation.Therefore, the �rst step of our method for produ
ing a separable approximationof Vlow k is even simpler: we diagonalized the potential itself, i.e. its 1S0 matrixelements. Let us note that a similar approa
h was followed in Ref. [Bal98℄ for use inin�nite matter. We then �tted analyti
 formulae to the eigenve
tors, yielding a �rstseparable representation whi
h was improved by re�tting all its parameters, �rst onthe original Vlow k matrix elements, then on half-on-shell T-matrix values 
al
ulatedwith the latter.5.3.1 Parametrization and �t pro
edureWhen 
hoosing the form of the fun
tions gα(k) entering the separable form, the basi
prin
iple was to keep the �t as �linear� as possible in order to have a (
ost/merit)fun
tion 
lose to a quadrati
 form with respe
t to the parameters. We also had toensure the possibility to perform the Bessel-Fourier transform of the momentum-spa
e form fa
tors to their 
oordinate-spa
e equivalent analyti
ally. Several families
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5.3. A SEPARABLE REPRESENTATION OF THE NN FORCE 135of form fa
tors were tested, 
orresponding in ea
h 
ase to a master fun
tion de-termining the range of the 
orresponding intera
tion term (through the only rangeparameter) multiplied by a linear 
ombination of power fun
tions whi
h modulatethe shape of the master fun
tion. The most 
onvenient master fun
tion was foundto be a Gaussian. The form fa
tors gα(k) thus read
gα(k) =

[
m∑

i=0

xαi

(
a2

αk
2

2

)ni
]

exp

(
−a

2
αk

2

2

)
. (5.57)Here the exponents ni take integer values in the range 0 . . . 10. Due to the redun-dan
y between the overall magnitude of gα(k) and the 
oupling 
onstants λαβ, it isne
essary to normalize one of them. Here the gα(k)'s were normalized by setting inea
h 
ase one of the x's to 1 (typi
ally the one 
orresponding to the lowest order

ni, or the largest one if it is signi�
antly larger). The 
orresponding term is thenlabelled with i = 0.The parameters of the for
e (labeled V�t in the following) were adjusted byminimizing a 
hi-square-like quantity, built with toleran
es whi
h re�e
t the desireda

ura
y of the �t to the various quantities involved rather than true un
ertainties.We strive to keep as mu
h of the physi
s 
ontained in the raw data while obtaininga ne
essarily imperfe
t parametrization.The pro
edure we used was stepwise. In a �rst step the matrix Vlow k(ki, kj)was diagonalized, yielding a set of normalized numeri
al form fa
tors gdiagα (ki) and
orresponding 
oupling 
onstants λdiagα . Only the form-fa
tor/
oupling pairs withthe largest |λdiagα | were kept, and analyti
al expressions, Eq. (5.57), were �tted onthe values of 
orresponding gdiagα (ki). This preliminary �t involved a systemati
sear
h of the optimal range aα and 
oe�
ients xn determined by performing a linearleast-squares �t for a number of values of the range and all possible 
ombinations ofexponents n, taken as a �xed number Nn of values pi
ked between 0 and nmax (seebelow for a
tual values). The best parametrization of gα(k) was kept and re�ttedwith respe
t to all its parameters using a standard minimization algorithm.In a se
ond step, raw matrix elements were 
onstrained by minimizing, withrespe
t to all 
ontinuous parameters of the for
e, the quantity
χ2

V =
2

Nk(Nk + 1)

∑

i≥j

(V�t(ki, kj) − Vlow k(ki, kj))
2

σV (ki, kj)2
, (5.58)where i, j are indi
es referring to points on a latti
e in the (k, k′)-plane, with ki = i δkwhile Nk is the number of points in the k or k′ dire
tion (taken the same for both).

V�t(k, k′) was 
omputed thanks to Eqs. (5.44) and (5.57). The toleran
es σ werede�ned as
σV (ki, kj) = σ∆V (ki, kj) × 1 + ν

κ + ν

[
1 + (κ− 1)

∣∣∣∣
ki − kj

ki + kj

∣∣∣∣
ν] (5.59)where κ and ν are parameters whi
h 
ontrol the relative weighting of diagonal ando�-diagonal matrix elements (κ: ratio between toleran
es of the most-o�-diagonaland diagonal points, ν: power law a

ording to whi
h σ varies. The formula herekeeps the average value along the k − k′ dire
tion at σ∆V ), while the σ∆ are given
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σ∆V (ki, kj) =





σmed +
σmax − σmed

∆Vmax ∆V (ki, kj), ∆V (ki, kj) > 0

σmed +
σmin − σmed

∆Vmin ∆V (ki, kj), ∆V (ki, kj) < 0
(5.60)where σmin, σmed and σmax are toleran
es a�e
ted to the points (averaged over the

k − k′ dire
tion) having resp. the lowest(∆Vmin), zero and highest (∆Vmax) values ofthe quantity
∆V (ki, kj) = 4Vlow k(ki, kj) (5.61)

−Vlow k(ki+1, kj) − Vlow k(ki, kj+1) − Vlow k(ki−1, kj) − Vlow k(ki, kj−1),whi
h is simply a �nite-di�eren
e expression for a Lapla
ian of the fun
tion V (k, k′),and expresses the lo
al �
urvature� of the matrix elements. This has been devisedto allow for a lower weighting of regions where Vlow k matrix elements have a highlyangular behavior, whi
h our analyti
al expressions for the matrix elements V�t(k, k′)
annot a

urately mat
h. Su
h an in
reased toleran
e in this region allows to �sa
-ri�
e� them and avoid propagation of the error made there to neighboring regionswhere a mu
h more a

urate �t is possible.As a third step, starting from the previous solution, we minimized the quantity
χ2

V + χ2
T , where

χ2
T =

1

N ′
k(N

′
k + 1)

∑

ij

(
T�t(k′i, k′j;Ek′

j
) − Tlow k(k

′
i, k

′
j;Ek′

j
)
)2

σT (k′i, k
′
j)

, (5.62)
T�t(k′i, k′j;Ek′

j
) being the half-on-shell T -matrix in the 1S0 
hannel 
al
ulated withour model separable intera
tion, while Tlow k(k

′
i, k

′
j) are the 
orresponding valuesobtained from the original Vlow k potential [Rot08a℄, and

σT (k′i, k
′
j) =

σ0
T

k′i + k′j
× 1 + ν ′

κ′ + ν ′

[
1 + (κ′ − 1)

∣∣∣∣
k′i − k′j
k′i + k′j

∣∣∣∣
ν′
]
. (5.63)Again we apply a weighting s
heme whi
h 
onstraints diagonal matrix elements,dire
tly related in this 
ase to phase shifts, more than o�-diagonal ones. The

1/(k′i + k′j) fa
tor make the toleran
es on the diagonal T-matrix elements 
orre-spond to approximately 
onstant toleran
es on phase shifts, sin
e the latter satisfy
T (k, k;Ek) = k cot(δ(k)).We thus have a simple 
onstraint better 
onne
ted with the physi
s of the in-tera
tion and whi
h ensures that not only the matrix elements of our for
e mat
hthose of Vlow k lo
ally, but that an optimum �t of the fun
tion V�t(k, k′) to the wholeset of data is a
hieved. Indeed, physi
al observables, in general, integrate the e�e
tof matrix elements over a signi�
ant portion of the (k, k′) plane, espe
ially phaseshifts, whi
h are known to be 
losely related to pairing gaps.In our pro
edure, the result of step three turned out to be a slight readjustment ofthe result obtained at step two, thus giving us 
on�den
e that we attained a globallyoptimal solution. Moreover, while after step two we generally had χ2

T ≫ χ2
V , stepthree yielded a signi�
ant redu
tion of χ2

T , with only a slightly in
reased χ2
V , whi
hshows that a purely lo
al 
onstraint on V (k, k′) misses important degrees of freedomin the set of matrix elements.



5.3. A SEPARABLE REPRESENTATION OF THE NN FORCE 1375.3.2 FitsWe performed �ts on a range of Vlow k intera
tions built from either the Argonne v18[Wir95℄ or the CD-Bonn [Ma
01℄ potential. The 
hoi
e of whi
h intera
tions wereparametrized stems from requirements of our study: First, we built representationsof Vlow k /Argonne, for Λ = 1.8 and 2.5 fm−1 , in both the neutron-neutron andproton-proton 
hannels. In the latter 
ase, we swit
hed o� the ele
tromagneti
 partof the intera
tion in order to study the e�e
t of 
harge symmetry breaking in thehadroni
 part. Se
ond, we built a set of representations of Vlow k for higher valuesof Λ, in order to study the Λ-dependen
e of pairing at the HFB level. In this 
ase,we had to use the CD-Bonn potential as an input due to numeri
al instabilitiesobserved in the RG evolution of the Argonne potential. All these �ts were based onthe neutron-neutron 
hannel of the intera
tion.The 
uto� fun
tion f(k2) was 
hosen, in ea
h 
ase, as a 
ompromise betweenthe ne
essity to have a 
uto� sharp enough to 
onserve the T-matrix a

urately andthe requirement that it be smooth enough to allow for the reprodu
tion of matrixelements near Λ with an analyti
 fun
tion. We thus used a Fermi-Dira
 fun
tionwith ǫ = 0.5 fm−1 for the lowest 
uto� value (Λ = 1.8 fm−1 ) and an exponentialone in the other 
ases.Finally, we performed a separable parametrization of the 1S0 nn matrix elementsof the Argonne v18 potential. Yielding a rank-9 representation, it lies arguably atthe edge of the 
apa
ities of our method. Nonetheless, this makes it useable insystemati
 
al
ulations using our HFB 
ode. On the other hand, the CD-Bonnpotential 
ould not be a

urately reprodu
ed with a separable form.The parameters used in the �t pro
edure were 
hosen so as to fo
us on diagonalmatrix elements and phase shifts. We used the values κ = ν = 2, κ′ = 3, ν ′ = 2,
σ0

T = 10−2, whi
h translates into a toleran
e on phase shifts of around 0.3◦.We investigated the use of both a diagonal and non-diagonal 
oupling matrix
λαβ in the �nal re�t. The minimization algorithm tends to favor large o�-diagonal
ouplings and similar form fa
tors. In the rank-2 
ase, by diagonalizing the λαβmatrix produ
ed by su
h a �t, one observes that the form fa
tors 
orresponding toits eigenve
tors are the sum and the di�eren
e of the similar-looking form fa
torswhi
h di�er by just slightly di�erent ranges. Su
h a di�eren
e, in the limit offun
tions that are identi
al up to a range parameter, 
orresponds to (η ≪ 1)

f(a(1 + η)x) − f(x) ≃ ηax
df

dx
, (5.64)or in the 
ase of a simple Gaussian,

exp

(
−(a(1 + η)x)2

2

)
− exp

(
−(ax)2

2

)
≃ −η(ax)2 exp

(
−(ax)2

2

)
, (5.65)i.e. the optimization 
ode tries to build a form fa
tor with a higher order in k. Thepurpose of this obviously lies in the reprodu
tion of the quite abrupt variations of

Vlow k matrix elements near the 
uto�. However, su
h a s
heme seems quite arti�
ialand, moreover, one fa
es the problem that the large o�-diagonal 
ouplings are notwell de�ned � it seems impossible to get a �rm 
onvergen
e as the λαβ 's keep growingalbeit for only a slight redu
tion of χ2. Thus, we preferred using only diagonal
ouplings, at the expense of a slightly worse des
ription of the data near the 
uto�,

http://link.aps.org/abstract/PRC/v51/p38
http://link.aps.org/abstract/PRC/v63/e024001
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VNN Λ Cut. fun
tion M Nn Par. nmax σmin,med,max χ2

V χ2
V +TAV18, nn 1.8 FD ǫ = 0.5 2 6 14 6 3, 3, 80 0.10 2.41AV18, nn 2.5 exp. n = 6 3 6 21 10 3, 3, 3 0.26 3.02AV18, pp 1.8 FD ǫ = 0.5 2 6 14 6 3, 3, 80 0.10 1.85AV18, pp 2.5 exp. n = 6 3 6 21 10 3, 3, 3 0.27 2.93CD-B, nn 1.8 FD ǫ = 0.5 2 6 14 6 3, 3, 80 0.10 1.77CD-B, nn 2.5 exp. n = 6 3 5 18 10 3, 3, 3 0.20 2.20CD-B, nn 3.0 exp. n = 6 5 4 25 10 3, 3, 3 0.22 0.66CD-B, nn 4.0 exp. n = 6 5 4 25 10 3, 3, 3 0.22 0.42CD-B, nn 8.0 exp. n = 6 6 5 36 10 3, 3, 3 0.55 1.21CD-B, nn 15.0 exp. n = 6 7 5 42 10 3, 3, 3 0.70 9.55AV18, nn � � 9 5 54 10 3, 3, 3 0.44 1.26Table 5.1: Fitting parameters and resulting χ2 values. VNN: starting bare potential(AV18: Argonne v18, CD-B: CD-Bonn). Λ: RG 
uto�, in fm−1 . Cuto�:
uto� fun
tion in RG equation (Eqs. (5.37) and (5.37)). M : rank ofthe separable representation. Nn: number of values of the exponent

n of (a2
α k2)/2 in ea
h form fa
tor, Eq. (5.57). Par.: total number ofparameters. nmax: maximum value of exponent n. σmin,med,max: toleran
eparameters for potential matrix elements in Eq. (5.60), χ2

V : residual erroron potential matrix elements, Eq. (5.58), χ2
V +T : total residual error onpotential, Eq. (5.58) and T-matrix, Eq. (5.62).but allowing for a redu
ed number of parameters (1 less for rank-2, 3 less for rank-3,et
.).For
es we used as input for �tting, as well as parameters de�ning the formof separable representations we built are summarized in Table 5.1, together withresulting values of χ2

V and χ2
T . The 
omplete set of parameters resulting from the�ts and de�ning these separable representations is given in appendix E.The rank and number of terms in the form fa
tors of the separable for
e, whi
hde�ne the number and type of parameters, were adjusted to obtain a �nal χ2

V + χ2
Tvalue of order unity with as low a number of parameters as possible. This 
ouldbe a
hieved in all 
ases ex
ept for Λ = 15 fm−1 Vlow k /CD-Bonn, whi
h will seemore limited use than the other representations anyway. As expe
ted, though, therank ne
essary for an a

urate reprodu
tion of potential matrix elements and of theT-matrix grows steadily with the 
uto�. In the 
ase of Argonne v18, the number ofparameters in our separable form (54) is larger than in the initial for
e (48). Thishas to be attributed to the pra
ti
al 
onstraints on the analyti
 form taken by ourintera
tion. Sin
e the latter is not 
onne
ted to the form of the original potential,our parameter set 
ontains information 
orresponding to the expression of v18 inaddition to its parameters.Fig. 5.2 displays phase shifts 
al
ulated with our potential parametrizations.The 
uto� is 
learly visible in the 
ollapse of δ(k) at high k. Below Λ, all ourfor
es predi
t similar values despite originating from di�erent hard-
ore potentials,whi
h only signals that the latter have been �tted to the same data. It is worthpointing out, here, that the shape of the smooth 
uto� implies that the 
ollapseo

urs slightly below Λ. Charge-symmetry breaking (left panel) brings only a small
orre
tion to the phase shifts by making the intera
tion marginally less attra
tive.
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Figure 5.2: Phase shifts 
al
ulated from our separable potentials. Left panel: nnand pp Vlow k potentials generated from Argonne v18. Right panel: nn
Vlow k potentials generated from CD-Bonn and separable representationof Argonne v18.
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Figure 5.3: BCS in�nite-matter pairing gaps 
al
ulated with a kineti
 spe
trum fromour separable representations of Vlow k /CD-Bonn potentials and bareArgonne v18. Left panel: Fermi level gaps. Right panel: momentum-dependent gaps at kF = 1.2 fm−1 .Pairing gaps 
al
ulated at the BCS level for a kineti
 spe
trum are shown onFig. 5.3. Whereas gaps 
al
ulated at the Fermi level (left panel) are identi
al to ea
hother, up to �tting errors and a slight Λ-dependen
e (whi
h is known to de
rease gapswith lower Λ), momentum-dependent gaps (right panel) exhibit markedly di�erentstru
tures at high momenta. For Vlow k /CD-Bonn intera
tions, the repulsive 
oredevelops between Λ = 1.8 and 8.0 fm−1 , where gaps are almost identi
al to the
ase Λ = 15.0 fm−1 , signalling a saturation of the RG evolution of this potential.Although we were not able to produ
e a separable representation of CD-Bonn, thispotential, on
e evolved to this range of 
uto�s 
an be treated with our separationmethod and 
an be expe
ted to be very 
lose to the original potential. The Argonnepotential appears to be even more repulsive at momenta larger than 2 fm−1 . Wethus have at hand, with the parametrizations used in the right panel of Fig. 5.3, arange of potentials of various �hardness�, whi
h will be useful for the study of thee�e
t of their high-momentum matrix elements.We have thus built a set of separable parametrizations of the Vlow k intera
tionas well as the Argonne v18 potential. These parametrizations will now allow us to
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 EDF 
al
ulations with the bare NN intera
tion in the pairing
hannel. To obtain a full NN potential, though, there remains to treat the ele
tro-magneti
 intera
tion, whi
h had to be swit
hed o� when treating the proton-proton
hannel, whereas it is, obviously, non-negligible in this 
ase.5.3.3 Separable approximation of the Coulomb intera
tionThe ele
tromagneti
 potential between protons is dominated by the Coulomb for
e,i.e. the ele
tri
 part of the one-photon ex
hange potential. We take the proton
harge distribution as pointlike. Momentum-spa
e matrix elements of the latter inthe S-wave read [Bro76℄
VCoul,ℓ=0(k, k

′) =
4πe2

2kk′
ln

∣∣∣∣
k + k′

k − k′

∣∣∣∣ , (5.66)where e is the ele
tromagneti
 unit 
harge (in MeV fm). They diverge at k = k′,whi
h forbids separable expansions. One 
an devise, though, a separable expansionof an approximate Coulomb potential restri
ted to a �nite range, by setting (in usualnotations)
V aCoul(r) =

{
e2/r for r ≤ a
0 for r > a

, (5.67)
a being a range parameter. Provided a is 
hosen larger than the diameter of the �nitenu
leus, this range trun
ation should yield a satisfa
tory approximation for use inthe proton-proton pairing 
hannel, as the non-lo
al part of the pair density qui
klyvanishes when a parti
le is outside of the nu
leus and, thus, no matrix element ofthe pairing tensor probes the part of the potential that has been put to zero. In anin�nite system, the above approximation should be useful provided a is made mu
hlarger than the 
oheren
e length, whi
h requires the latter to be �nite, and better,not too large.The S-wave part of the above potential 
an be 
al
ulated through its de�nition

V aCoul,ℓ=0(k, k
′) ≡ 4π

∫ a

0

r2dr j0(kr)
e2

r
j0(k

′r), (5.68)
= 4π

e2

2kk′
[Ci(a(k − k′)) − ln(a(k − k′))

−Ci(a(k + k′)) + ln(a(k + k′))
]
, (5.69)

jn being a spheri
al Bessel fun
tion and Ci a 
osine-integral fun
tion. The aboveexpression has a separable expansion1:
V aCoul,ℓ=0(k, k

′) = 2πe2a2
∞∑

n=0

(2n+ 1) j2
n

(
ak

2

)
j2
n

(
ak′

2

)
. (5.70)This 
orresponds to our usual separable form with the de�nitions (α = n+ 1)

λαβ = δαβ (2α− 1) e2a2, (5.71)
gα(k) =

√
2π j2

α−1

(
ak

2

)
. (5.72)1Numeri
ally tested, proof pending.
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Figure 5.4: Left panel: S-wave matrix elements of the separable Coulomb potentialwith a = 10 fm, NCoul = 10. Right panel: Di�eren
e between the ex-a
t range-trun
ated Coulomb potential and the latter �nite separableexpression.Trun
ating the sum in Eq. (5.70) to the �rst NCoul terms yields a separablepotential reprodu
ing the physi
s of the Coulomb intera
tion, whi
h 
an be addedto the hadroni
 terms and poses no 
hallenge for its implementation in the methodoutlined in se
tion 5.2.2.S-wave matrix elements of su
h a potential with a = 10 fm and NCoul = 10 areplotted on Fig. 5.4, along with matrix elements substra
ted through trun
ation ofthe sum in Eq. (5.70). It is striking that, on
e the singularity at k = k′ has beenregularized by dis
arding the long-range part, the largest matrix elements o

urnear k = k′ = 0. The sum-trun
ation error only involves matrix elements a
tingbetween high-momentum states, whi
h are small anyway (noti
e the di�erent s
alesbetween panels of Fig. 5.4, and re
all that hadroni
 matrix elements are typi
allyof the order of hundreds of MeV.fm3.) Bessel fun
tions jn(x) having, for su�
ientlylarge n, signi�
ant values only for x & n, one 
an guarantee that negle
ted termsonly 
ontribute to matrix elements at k, k′ & 2n/a, whi
h evaluates to 2 fm−1 for
n = a/fm (this is di�erent from the de
imation of high-momentum matrix elementsperformed by the Vlow k RG evolution, whi
h a�e
ts regions with k or k′ greater than
Λ). The assumptions leading to this approximate form of the Coulomb potentialin the S-wave are thus well motivated. They are, moreover, easily 
ontrollable byvarying trun
ation parameters.
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Chapter 6NN Pairing: Bare For
e at FirstOrderIn this 
hapter we present the results of the 
al
ulations performed with the fun
-tional presented in se
tion 5.2, the representation of the bare NN vertex at the originof the pairing part of the fun
tional being des
ribed in se
tion 5.3.The method of solving the HFB-like equations that we use is e�
ient enoughto perform systemati
 
al
ulations of large sets of spheri
al nu
lei a
ross the masstable on single-CPU systems. We take advantage of this feature to investigate trendswith mass, isospin and major single-parti
le shells, beyond the �lo
al� 
omparisonswhi
h 
an be made with a single 
al
ulation. Indeed, it is 
lear that in most nu
lei,the single-parti
le spe
trum determined by the e�e
tive s.p. potentials, themselvesderived from the parti
le-hole part of the fun
tional, only mat
hes gross features ofexperimental s.p. energies (see 
hapter 4). Sin
e pairing-related observables dependon the level density next to the Fermi energy, notably on the magnitude of a sub-shell gap if present, a dire
t 
omparison with experimental data in a single nu
leus
an be prone to a model-dependent bias. However, we expe
t su
h issues to be less
riti
al when 
omputing a su�
iently large and dispersed set of nu
lei, sin
e then,besides lo
al �u
tuations of pairing gaps, global trends shall depend on the averagedensity of single-parti
le energies only.Results presented in this se
tion have been obtained by performing HFB 
al
u-lations in spheri
al symmetry with the fun
tional SLy4 [Cha98℄ in the parti
le-hole
hannel. For our purpose, the essential feature of the latter is its isos
alar e�e
tivemass, m∗/m = 0.7 at saturation density, whi
h is entirely generated by the nonlo-
ality of the parti
le-hole potential and thus 
orresponds to a k-mass. This valueis 
onsistent with k-mass values obtained from BHF 
al
ulations [Jeu76, Dal05b℄at the Fermi level in symmetri
 nu
lear matter at saturation density. The Skyrmee�e
tive mass, 
ontrary to the mi
ros
opi
 
ase, is momentum-independent, i.e. thenon-lo
ality of the potential a
ts on the whole spe
trum, whereas it is physi
allymeaningful only around the Fermi level. This implies that only the spe
trum 
loseto the Fermi level should be probed in a s
heme building 
orrelations on top of theindependent-parti
le pi
ture, whi
h is one of the 
hara
teristi
s of the Skyrme fun
-tional whi
h 
on�ne it to low-energy physi
s. As a result, the Vlow k NN intera
tionis well suited for the appli
ation we envision.The HFB equations were dis
retized on a set of spheri
al Bessel fun
tions (seeappendix G), whi
h allows for an e�
ient treatment of separable �nite-range and143

http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1016/0370-1573(76)90017-X
http://link.aps.org/abstract/PRC/v72/e065803
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Figure 6.1: Lowest Canoni
al State (LCS) gaps and Lowest QuasiParti
le energies.Top panel: neutron gaps, bottom panel: proton gaps.non-lo
al potentials in the pairing 
hannel (see appendix F).6.1 First resultsOne of the questions we would like to address is the proportion of the total pairinggap whi
h is due to the �rst-order 
ontribution (�dire
t term�) of the nu
leon-nu
leonintera
tion.We use, as a measure of experimental pairing gaps, the quantity ∆
(3)
q (N,Z),Eq. (5.19), with odd values of the parti
le number of the spe
ies in 
onsideration. Asis reviewed in some detail in 
hapter 5, this gives a good estimate of the pure pairing
ontribution to odd-even staggering, i.e. the lowest quasiparti
le energy. This energyis itself approximately equal, in the 
ase of strong pairing and tightly-spa
ed single-parti
le levels (whi
h redu
es the s.p.e. 
ontribution εk to the quasiparti
le energy)to the pairing gap ∆k, where k 
orresponds to the index of the lowest quasiparti
le.For ea
h nu
leus and ea
h nu
leon spe
ies, we 
all ELQP the lowest quasiparti
leenergy and ∆LCS the pairing potential matrix element of the 
anoni
al state withthe lowest quasiparti
le energy. We use the 
anoni
al basis in this 
ase, sin
e wefound the usual way to 
ompute the quasiparti
le pairing gap [Ben05℄ to yield,on some o

asions, dubious values. Although this reminds somewhat of a BCSapproximation, we should stress that the values presented below 
ome from fullHFB 
al
ulations.Fig. 6.1 displays values of ELQP and ∆LCS 
omputed with the neutron-neutronpart (used in both neutron and proton pairing 
hannels) of the separable Vlow k with

Λ = 1.8 fm−1, built starting from the Argonne v18 potential. This is the softest
harge-symmetri
 pairing intera
tion of our set. The 
omputations were performedfor all major magi
 isotopi
 and isotoni
 
hains, between proton and neutron driplines. In this 
ase, the HFB equations were solved in a box of 24 fm radius, with amesh step of 0.3 fm and a momentum 
ut-o� in the Bessel s.p. basis k
ut = 4.0 fm−1,

http://www.sciencedirect.com/science/article/B6TJ5-4G24XK6-1/2/8b4c3242e0201a862f312ee1324a3298
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h des
ribes single-parti
le states up to about 300 MeV.The evolution of lowest-quasiparti
le energies and LCS gaps show 
hara
teristi
patterns around magi
 nu
lei, where ∆LCS 
ollapses due to the depletion of thespe
trum around the Fermi level while ELQP rises to a value 
orresponding to halfthe single-parti
le shell gap. Equality (approximately) of the two quantities indi
atesthat the 
hemi
al potential lies in a densely-pa
ked set of s.p. levels, whi
h minimizesthe εk 
ontribution to ELQP. This is the 
ase where a stati
 SR-EDF des
ription isthe safest.As expe
ted from the expression of a BCS quasiparti
le energy, we have ∆LCS <
ELQP for most nu
lei. Notable ex
eptions are the neutron-ri
h sides of tin and lead
hains, where an inversion o

urs. This is a signature of the mixing of di�erents.p. orbitals by the HFB pairing �eld, whi
h allows to lower the �rst quasiparti
leenergy below the 
orresponding 
anoni
al quasiparti
le-equivalent energy, whi
h isallowed be
ause of the larger variational spa
e explored by HFB equations 
omparedto the BCS gap equation. The fa
t that this signature mainly o

urs in regionsapproa
hing the neutron drip line 
on�rms the importan
e of solving the full HFBproblem for nu
lei where the 
hemi
al potential lies just beneath the s
attering
ontinuum [Dob84℄.Fig. 6.1 also shows experimental values of the gaps, where available. The methodwe have 
hosen to extra
t the latter yields data with a general behavior similar tothat of ∆LCS, whi
h allows for a meaningful 
omparison . Around shell 
losures,though, theoreti
al gaps in
rease more slowly away from magi
 parti
le numbersthan data, resulting in lower theoreti
al gaps in these regions. It is known thatparti
le-number proje
tion, or an approximate variant thereof su
h as the Lipkin-Nogami method, in
rease gaps near shell 
losures. We 
an thus blame the pairings
heme on this ina

ura
y. Although the exa
t shape of the gap 
urves does notmat
h the data perfe
tly, the magnitude of theoreti
al and experimental pairing gapsis 
learly similar in the 
ase of neutrons. Cal
ium and ni
kel 
hains are espe
iallywell reprodu
ed, probably owing to the simpli
ity of the underlying single-parti
lespe
trum. Tin and lead 
hains, on the other hand, exhibit features in the datawhi
h are absent from the 
al
ulation. A depletion of gaps around N = 65 in tin,for example, suggests the existen
e of a sub-shell 
losure not predi
ted as large bySLy4. In lead isotopes, the de
rease before N = 126 is steeper in the 
al
ulated gaps,whi
h suggests a level density whi
h is too high in the 
orresponding sub-shell. Thelatter is 
onsistent with the ν1i13/2 level lying too high in the s.p. spe
trum (see
hapter 4). Again, ex
ept these lo
al defe
ts, whi
h 
an be rather dire
tly relatedto the s.p. stru
ture produ
ed by the fun
tional SLy4, the global magnitude of thetheoreti
al neutron pairing gaps mat
hes that of the experimental ones very well.The 
ase of protons is di�erent. We see a general over-estimation of proton gapsby the 
al
ulation performed with a 
harge-symmetri
 pairing fun
tional. In fa
t,
al
ulated proton gaps are, in the heaviest isotoni
 
hains, higher than neutron gaps
al
ulated in neighboring magi
 isotopi
 
hains, with values standing above 1.5 MeVfor protons and between 1 and 1.5 MeV for neutrons. It is known that proton gapsare similar in magnitude, or marginally larger, than neutron ones in heavy nu
lei[Nem62℄, yet the di�eren
e observed here 
learly overestimates the one present inexperimental data.Given that our pairing fun
tional is 
harge-symmetri
, the 
harge asymmetryobserved in the results may be tra
ed ba
k to the intrinsi
 properties of the un-

http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4
http://www.sciencedirect.com/science/article/B73DR-470W9JG-RN/1/a320669528fbc11ad7e1417d9025f477
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lei globally exhibit a neutron ex
ess. Save for athin neutron skin, the spatial extension of neutron and proton distributions in thesenu
lei are similar, whi
h implies that proton densities are lower than neutron ones.Consequently, the e�e
tive Fermi momentum is also lower for protons than neu-trons, or, more a

urately, momentum-spa
e density distributions 
orresponding tostates 
lose to the 
hemi
al potential are peaked at lower momenta. As a result, theproton pairing tensor probes more attra
tive matrix elements of the NN intera
tionthan the neutron one, whi
h potentially explains the observed di�eren
e. The samee�e
t 
an be invoked for the neutron-ex
ess-dependen
e of gaps: neutron ∆LCS val-ues de
rease noti
eably with N for all four 
hains present on Fig. 6.1, due to thein
rease of the neutron density and e�e
tive Fermi momentum with N . Proton gapsexhibit a less marked de
rease with Z, the di�eren
e being probably attributable tothe 
entrifugal e�e
t due to the 
urvature of the parti
le-hole Coulomb �eld.Agreement with experiment of 
al
ulated neutron and proton gaps is very un-even. We 
an thus question the validity of using an 
harge-symmetri
 pairing fun
-tional in our approa
h. Improving the latter aspe
t is the matter of the followingse
tion.6.2 Charge symmetry and Coulomb intera
tionCharge-symmetry breaking (CSB) in the nu
leon-nu
leon intera
tion has two dis-tin
t origins: the most obvious one is the ele
tromagneti
 intera
tion, whi
h pro-du
es the prin
ipal 
ontribution to CSB as the Coulomb intera
tion between protons.However, the term CSB is usually used to refer to the hadroni
 part of the NN in-tera
tion, whi
h breaks this symmetry in a more subtle way, being just slightly lessattra
tive between protons than between neutrons.We have performed four sets of 
al
ulations of the same nu
lei as in the previousse
tion. Keeping the fun
tional SLy4 in the parti
le-hole 
hannel, we used di�erentpotentials in the parti
le-parti
le 
hannel: (i) a 
harge-symmetri
 separable Vlow k ,generated starting from the neutron-neutron part of the Argonne v18 potential, with
Λ = 2.5 fm−1, (ii) a CSB separable potential with neutron-neutron and hadroni
proton-proton terms generated separately from the 
orresponding matrix elementsof Vlow k built with the same parameters, (iii) A separable Vlow k potential whi
h is
harge-symmetri
 ex
ept for the addition of a separable trun
ated Coulomb term(with 16 terms and a trun
ation range a = 16 fm; see se
tion 5.3.3), (iv) A sepa-rable Vlow k potential in
orporating both nu
lear CSB and Coulomb. Dis
retizationparameters were otherwise kept from the previous 
al
ulation.Our method for dealing with the ele
tromagneti
 part of the proton-proton in-tera
tion 
onsists in repla
ing it with a separable expansion of the 1S0 part of arange-trun
ated Coulomb potential. Several approximations are thus involved.First, we negle
t the �nite size of the proton, whi
h modi�es the short-range partof the ele
tromagneti
 potential. Although, due to the relatively small extension ofthe nu
leon Cooper pair wave fun
tion, the e�e
t 
ould be expe
ted to be largerthan in the 
ase of the Hartree term in the parti
le-hole 
hannel, this only a�e
tsthe innermost 1 fm and 
an thus be 
onsidered a higher-order 
orre
tion. The same
omments apply to the negle
ted higher-order quantum �eld theory and nu
leonstru
ture e�e
ts (su
h as magneti
 moments) beyond simple one-photon ex
hange.Se
ond, negle
ting higher partial waves is potentially worse for a long-range
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Figure 6.2: LCS gaps with 
harge-symmetri
 Vlow k , 
harge-symmetry breaking(CSB) in
luded in the nu
lear part of the intera
tion and the Coulombintera
tion in
luded (see key). The neutron-neutron pairing vertex isthe same in all 
ases, the 
orresponding 
urve is given for referen
e.intera
tion than a short-range one. Indeed, the 
oordinate-spa
e pair tensor does
ontain su
h 
omponents, due to the �nite size of the nu
leus and despite the use ofa pure 1S0 pairing intera
tion, and these 
omponents are peaked at larger relativeseparations than the S-wave one. We do not expe
t this 
on
ern to be essentialfor the following dis
ussion, but it would have to be 
he
ked more a

urately if oneaimed at high pre
ision results.Third, we take the ele
tromagneti
 part into a

ount by adding an approximateCoulomb potential dire
tly to the Vlow k intera
tion without taking into a

ount themodi�
ation of the former through the RG evolution. As explained in se
tion 5.3.3,the Coulomb intera
tion is most important for its long-range part, whi
h yields largematrix elements for very low momenta. Its 
ontribution to matrix elements beyond
k = 2 fm−1 is minimal and 
an be expe
ted not to alter the RG evolution and theresulting Vlow k potential. Moreover, the matrix elements remaining beyond the RG
uto� are negligible for all pra
ti
al purposes.Fourth, we use the separable approximation des
ribed in se
tion 5.3.3. Thea

ura
y of this approximation is the easiest to assess by performing a ben
hmark
al
ulation with higher values of the 
orresponding parameters (trun
ation range
a and number of terms NCoul). With respe
t to the latter, we have 
he
ked thatdiagonal pairing matrix elements were 
onverged to better than 100 eV.Pairing gaps resulting from 
al
ulations with fun
tionals (i)-(iv) are displayedon Fig. 6.2. The global e�e
t of CSB and the Coulomb intera
tion of proton gaps
an be assessed qui
kly, sin
e, as we 
ould have expe
ted, they are 
learly of verydi�erent magnitudes. Whereas hadroni
 CSB only produ
es a slight shift of gap
urves, Coulomb de
reases ∆LCS values by 20 to 30% of their original value. Inthis 
ase, the magnitude of proton gaps is either well reprodu
ed (N = 28 
hain,
N = 50 
hain above Zir
onium, proton-ri
h end of N = 82) or slightly overestimated(N = 50 below Zir
onium, N = 82 next to the 50Sn shell 
losure and N = 126).



148 CHAPTER 6. NN PAIRING: BARE FORCE AT FIRST ORDERThe global agreement is 
omparable to the one oberved for neutron gaps. In N=50isotones, the relative magnitude of gaps below and above Z = 40 is not 
aptured.This hints that level spa
ings predi
ted by SLy4 in this region are inappropriate,the position of the 1g9/2 state being too high.We are aware of only one other systemati
 HFB 
al
ulation in
luding the Coulombintera
tion in the proton pairing 
hannel. It was performed by the Madrid group[Ang01a℄ with the Gogny D1 and D1S e�e
tive intera
tions, in a triaxial harmoni
-os
illator basis. Although no expli
it study has been made of pairing gaps in thiswork, it was found that pairing energies were redu
ed by 30 to as mu
h as 60% (forsemi-magi
 90Zr) when in
luding the Coulomb pairing term self-
onsistently in thevariational pro
edure. Lowest two-quasiproton energies, whi
h are the most relevantquantities of this work to be dire
tly 
ompared to pairing gaps, were redu
ed, in thesame 
onditions, by 20 to 30% (see Fig. 1 and Tables 1 and 2 in Ref. [Ang01a℄). Themagnitude of the redu
tion of proton pairing observed in our results thus 
on�rmsobservations of this previous work.The apparent value of proton gaps would thus be explained by our study asthe result of the 
an
ellation of the e�e
ts of the hadroni
 
omponent of the NNintera
tion, whi
h is more attra
tive at the Fermi level, in heavier nu
lei, in the
ase of protons than it is for neutrons, and the ele
tromagneti
 part, whi
h, beingstri
tly repulsive, yields lower pairing gaps when taken into a

ount.This redu
tion of pairing gaps due to the Coulomb intera
tion is large enoughfor its CSB e�e
t to be systemati
ally taken into 
onsideration in HFB 
al
ulations.In parti
ular, it fully validates using distin
t values of neutron and proton pairingparameters (i.e. isospin dependen
e) in empiri
al models based on lo
al pairingfun
tionals [Gor06℄.6.3 E�e
t of Vlow k renormalization s
aleThe results we have presented to this point indi
ate that the magnitude of proton andneutron pairing gaps in the set of spheri
al nu
lei in 
onsideration 
an be explainedby the intera
tion of nu
leons at lowest order in the bare NN potential. This is atvarian
e with results obtained previously through HFB 
al
ulations in 120Sn usingthe SLy4 fun
tional together with the Argonne v14 potential in the neutron parti
le-parti
le 
hannel. In a �rst work, Barran
o et al. [Bar04℄ obtained a pairing gapof 
a. 700 keV. It was 
on
luded that the bare NN intera
tion 
ould not explainthe magnitude of the experimental pairing gap, whi
h is 
lose to 1.3 MeV in thisnu
leus.However, it should �rst be noted that this HFB 
al
ulation was performed using aset of single-parti
le orbitals and energies produ
ed by a modi�ed SLy4 parametriza-tion of the Skyrme EDF (see referen
e/note 17 in Ref. [Bar04℄). The redu
tion ofthe spin-orbit strength parameter by 15% redu
es spin-orbit splittings by, roughly,the same ratio. More spe
i�
ally, it signi�
antly redu
es the s.o. splitting of the
ν1h shell in 120Sn, whi
h results in the (experimentally spurious) gap between the
ν3s1/2 and ν2d3/2 levels on the one hand, and the ν1h11/2 level on the other hand,to be in
reased by 1 MeV. This 
reates, in fa
t, an important sub-shell 
losure inthe neutron spe
trum of the nu
leus, whi
h results in a partial suppression of pair-ing. Restoring the original SLy4 EDF yields a ∆LCS gap slightly larger than 1 MeV[Pas08a, Pas08b℄. In our 
al
ulation, with the Argonne v14 potential repla
ed with

http://www.sciencedirect.com/science/article/B6TVB-42815YP-B/1/907d633219fe4bee730fff5047152e5 3
http://www.sciencedirect.com/science/article/B6TVB-42815YP-B/1/907d633219fe4bee730fff5047152e5 3
http://www.sciencedirect.com/science/article/B6TVB-4K426B0-1/1/aecef33b64db81ffe24b7d96ba2fe1bf
http://dx.doi.org/10.1140/epja/i2003-10185-0
http://dx.doi.org/10.1140/epja/i2003-10185-0
http://arxiv.org/abs/0801.1385


6.3. EFFECT OF VLOW K RENORMALIZATION SCALE 149a Vlow k one evolved to a low renormalization s
ale Λ = 1.8 or 2.5 fm−1 we 
on-sistently �nd ∆LCS ≃ 1.45 MeV. There remains, thus, to explain the di�eren
e ofroughly 30 % seen between our 
al
ulation performed with Vlow k and those using ahard-
ore potential.In order to investigate this issue on a more systemati
 footing, we have re-peated the previous 
al
ulations with Vlow k intera
tions evolved to higher Λ val-ues. Hadroni
 
harge-symmetry breaking was negle
ted, being largely irrelevant forthe present dis
ussion, while the Coulomb intera
tion was in
luded in all 
ases inthe proton pairing 
hannel. These intera
tions, sin
e they 
ouple low-energy de-grees of freedom to higher-energy ones, require a larger basis to a
hieve 
onvergen
eof the HFB equations in terms of the trun
ation of the latter. Barran
o et al.[Bar04℄ used a HF basis 
ut o� at a s.p. energy of 800 MeV, whi
h 
orresponds,approximately, to k
ut = 6 fm−1 in the representation we use. We performed 
al
u-lations with Vlow k potentials generated from CD-Bonn [Ma
01℄ with RG s
ales upto 8.0 fm−1, using bases trun
ated at k
ut values equal to 4 fm−1 for Λ < 3 fm−1 or
Λ + 1.0 fm−1 for Λ > 3 fm−1 .For another 
al
ulation, performed with our separable approximation to theArgonne v18 potential, k
ut was set to 12 fm−1 , whi
h yields s.p. state energiesrea
hing 3.9 GeV. Indeed, in ben
hmark 
al
ulations of 120Sn, we observed a ratherslow 
onvergen
e of gaps with k
ut, with a value of ∆LCS varying by 76 keV between
k
ut = 6 and 8 fm−1 . We �nally obtained a LCS neutron gap of 925 keV in 120Sn,whi
h is about 100 keV smaller than results from Refs. [Pas08a, Pas08b℄.To save 
omputing time, we redu
ed the basis size for high-Λ for
es by usingsmaller boxes, 
he
king that no sizeable e�e
t on the 
al
ulated gaps o

urred nearthe valley of stability. The box radius Rbox was thus redu
ed from 24 fm (CD-Bonn,
Λ = 1.8 fm−1 ) to 18 fm (CD-Bonn, Λ = 8.0 fm−1 ) and down to 15 fm for Argonne
v18. Total CPU time for the 
al
ulation of the set of 176 nu
lei presented in the�gures of this 
hapter amounts to around 10 hours for the softest for
es, up to 100hours for Argonne v18 on a desktop 
omputer.Values of ∆LCS obtained with the set of pairing fun
tionals des
ribed above areplotted on Fig. 6.3. While the 
urves for Λ = 1.8, 2.5 and 3.0 fm−1 sit essentiallyon top of ea
h other, gaps 
al
ulated for Λ = 4.0 fm−1 are slightly lower, while the
Vlow k /CD-Bonn at Λ = 8.0 fm−1 and v18 intera
tions yield gaps redu
ed, respe
-tively, by 
a. 10-20% and 30% with respe
t to the latter, indeed below experimental
∆

(3)odd data. The latter values apply to mid-shell nu
lei with strong pairing, whilegaps are depleted even more at sub-shell 
losures.Fig. 6.4 displays lo
al and non-lo
al values of the neutron spin-singlet pair densityin 120Sn. The long-range behavior of this quantity has been analyzed in [Pil07℄,we shall thus fo
us on the short-range part. First, the lo
al, or zero-range part(top-left panel) is strongly depleted when in
reasing Λ, i.e. going from softer toharder-
ore intera
tions. In the Argonne v18 
ase, the lo
al pair density is almost
ompletely suppressed. This suppression is, relatively to 
al
ulations employing low-
Λ intera
tions, mu
h stronger than the one observed for pairing matrix elements.In fa
t, an a

urate understanding of the situation requires to look at non-lo
al
omponents, also plotted on Fig. 6.4. The quantity ρ̃(R, s) is, up to a normalizationfa
tor, the spin-singlet part of the Cooper pair wave fun
tion. Its s = 0 
omponents,i.e. the lo
al part usually in
luded in lo
al pairing fun
tionals, are thus linked withthe probability amplitude of observing the paired nu
leons in 
onta
t. It is therefore

http://dx.doi.org/10.1140/epja/i2003-10185-0
http://link.aps.org/abstract/PRC/v63/e024001
http://arxiv.org/abs/0801.1385
http://dx.doi.org/10.1103/PhysRevC.76.024310
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Figure 6.3: LCS gaps obtained with Vlow k intera
tions obtained from the CD-Bonnpotential at various RG s
ales Λ and our separable representation of theArgonne v18 potential.
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Figure 6.5: Neutron-neutron pairing gaps obtained at the Fermi level with the sep-arable Vlow k /CD-Bonn intera
tions at indi
ated RG 
uto�s, as well asthe Argonne V18 potential, and a s.p. spe
trum produ
ed by the SLy4Skyrme EDF in SNM.no surprise that a hard-
ore intera
tion suppresses this amplitude.The stru
ture of the non-lo
al part obtained with the various Vlow k intera
tionsused di�ers mostly in the short-range region (s < 1 fm), where the gradual in
reaseof Λ results in a depletion of ρ̃(R, s), in
luding in the Λ < 3 fm−1 domain where gapsare Λ-independent. The long-range part is essentially una�e
ted for Λ < 4 fm−1 ,whereas in the 
ase of the hardest potentials, there also appears a redu
tion of ρ̃(R, s)in this region. Re
alling the similar behavior of pairing gaps, one 
an 
on
lude thattheir evolution with the �hardness� of the pairing intera
tion is 
orrelated to thee�e
t seen on the long-range part of the non-lo
al pair density. It appears that ata 
ertain point in the RG evolution, short-range physi
s integrated out by the RGequations interferes with long-range, low-energy physi
s, to whi
h the observableswe are interested in belong.Given that the RG equations 
onserve two-body observables, this e�e
t must bespe
i�
 to the 
al
ulation we 
arried out and the underlying assumptions. We haveseen that at the BCS level, no signi�
ant Λ-dependen
e o

urred when using a free-parti
le spe
trum. However, the 
ase is di�erent when self-energy e�e
ts are takeninto a

ount. Results displayed on Fig. 6.5 were obtained by performing a BCS
al
ulation with the pairing intera
tions used on this se
tion and a single-parti
lespe
trum obtained from the SLy4 EDF in symmetri
 nu
lear matter. We re
all thatthis spe
trum is determined by a 
onstant e�e
tive mass given by
m∗

m
=

[
1 +

2m

~2
Cτ

0 ρ0

]−1

, ρ0 =
2k3

F

3π2
, (6.1)and independent from the parti
le's momentum. Thus, m∗/m de
reases from 1in the va
uum down to 0.7 at saturation density. With in
reasing kF , values of

∆(kF , kF ) are lowered more and more, for the Λ = 8.0 fm−1 Vlow k and Argonne v18,



152 CHAPTER 6. NN PAIRING: BARE FORCE AT FIRST ORDERwhen 
ompared to low-Λ Vlow k potentials. The amplitude of this redu
tion, takenat kF ∼ 1.1 fm−1 i.e. slightly below saturation density, 
orresponds for ea
h of theseintera
tions to the amplitude observed in nu
lei. The CD-Bonn intera
tion evolvedto Λ = 15 fm−1 yields results very similar to the one with Λ = 8 fm−1 , 
on�rmingthat (reverse) RG evolution saturates at these 
uto�s, whi
h indi
ates that theseintera
tions 
an be expe
ted to yield results 
omparable to the bare CD-Bonn.The only parameter whi
h 
hanges between Fig. 5.3 and Fig. 6.5 is the e�e
tivemass driving the s.p. spe
trum. The observed redu
tion of pairing gaps mustthus originate from the 
ombination of this modi�
ation and the RG evolution ofthe potential eliminating high-momentum 
omponents. Indeed, whereas the RGevolution produ
es intera
tions yielding the same low-momentum gaps as a solutionof the BCS gap equation solved with a kineti
 spe
trum, it is not the 
ase with a lowe�e
tive mass whi
h redu
es the density of states in the high-momentum se
tor of thes.p. spe
trum, thus redu
ing their 
ontribution to the pair density. Stated anotherway, the quasiparti
le energy Ek entering the ∆k/Ek fa
tor in
reases, redu
ing the
ontribution of ea
h state to the gap-equation integrand. With su
h a spe
trum,the repulsive matrix elements 
oupling low- and high-momentum states, whi
h aremultiplied by negative gaps in the BCS gap equation, and thus give a positive
ontribution to the Fermi-level gap, see their 
ontribution redu
ed.E�e
tive masses extra
ted from self-energies 
al
ulated at the (Dira
-)Brue
kner-Hartree-Fo
k level with hard-
ore intera
tions su
h as CD-Bonn or Argonne v18 de-pend on the parti
le momentum. As seen, for example, from Fig. 3 in Ref. [Dal05b℄,they are a
tually larger at high k than at the Fermi level. It is thus possible thatthe pairing gaps 
al
ulated with hard-
ore intera
tions and SLy4 in nu
lei underes-timate values stemming from a more mi
ros
opi
 
al
ulation (yet to be performedas of today) due to the trivial e�e
tive mass 
hara
terizing the Skyrme EDF. Theseresults, as well as those of the Milan group 
on
erning pairing gaps 
al
ulated withthe bare Argonne v14, should thus be taken with 
aution if one expe
ts 
onsisten
ywith ab-initio theory.It is not sure, yet, to what extent the low-Λ potentials are devoid of spuriouse�e
ts from the negle
ted momentum and energy-dependen
e of self-energies, how-ever they are potentially less a�e
ted by the e�e
tive-mass approximation due toworking in a smaller model spa
e where the spe
trum density is reasonably under
ontrol. As stated at the beginning of this 
hapter, the quasi-lo
al Skyrme fun
-tional allows to des
ribe low-energy degrees of freedom and should not be expe
tedto be predi
tive outside of this domain. We thus have more 
on�den
e in the resultsobtained with the Vlow k potentials, where a 
ertain 
onsisten
y between resolutions
ales of the p-h and p-p fun
tionals 
an be expe
ted, than those stemming fromhard-
ore ones. Beyond this qualitative argument, and short of a 
omplete ab-initio
al
ulation of self-energies in the �nite nu
lear medium, a thorough investigationwould involve quantitatively validating in in�nite matter the string of approxima-tions leading to our 
al
ulation. This pro
edure is 
urrently underway [Heb08℄, butbeyond the present work.6.4 Summary and outlookThe fa
t that the bare NN intera
tion, used in the pairing 
hannel of a SR-EDF
al
ulation, yields pairing gaps so 
lose to values extra
ted from experimental masses

http://link.aps.org/abstract/PRC/v72/e065803
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omes as a surprise, sin
e it was expe
ted from earlier works that e�e
ts beyond this�rst-order approximation to the pairing intera
tion kernel would yield signi�
ant
ontributions. At the present point it 
an not be 
ompletely ex
luded that thisresults from a 
an
ellation of negle
ted e�e
ts, whose individual magnitude is hardto assess. Nevertheless, already at �rst order, a �rm result that we have obtainedis the signi�
an
e of the redu
tion of proton gaps due to the Coulomb intera
tion,whi
h is overall 
onsistent with previous works [Ang01a℄.Beyond that, several ingredients, in prin
iple, are missing in this 
al
ulation.First, our 
al
ulations are based on quasiparti
le and e�e
tive-mass approxima-tions. The implied re-summation of self-energy e�e
ts in the non-lo
ality of thefun
tional is not quantitatively under 
ontrol. As already mentioned, this will be
he
ked in detail.Se
ond, 
olle
tive vibrations, in �nite nu
lei, are expe
ted to enter as an attra
-tive indu
ed-intera
tion 
ontribution due to the presen
e of surfa
e modes [Gio02℄,whi
h is the opposite of their e�e
t in in�nite matter where spin �u
tuations dom-inate and bring a repulsive 
ontribution [Gor05a℄. To provide a 
lear pi
ture ofe�e
ts beyond the �rst order, a 
al
ulation should be made involving the des
rip-tion of 
olle
tive modes using the same intera
tion as the one in
luded at �rst order.Indeed, just as in the �rst-order 
ase, a dependen
e on the renormalization s
alemay be en
ountered in this 
ase. Su
h a 
al
ulation would be mu
h more involvedthan the ones presented here, or even those of Refs. [Bar04, Pas08a℄ whi
h employquite a s
hemati
 model for the des
ription of phonons.Also, the three-nu
leon for
e yields repulsive pairing matrix elements when in-
luded in the gap equation in nu
lear matter. Its e�e
t be
omes sizeable prin
ipallyfor proton pairing in highly isospin-asymmetri
 matter [Bal07
℄, whi
h may translateinto a 
orre
tion to proton gaps in nu
lei near the neutron drip-line. In
luding it inour s
heme is potentially a
hievable, by devising a separable representation of an in-medium vertex. The latter should sum a two-body intera
tion and a three-body oneaveraged over the third parti
le, 
al
ulated in in�nite matter. The density-dependentseparable representation would then be used with a lo
al density approximation forthe e�e
tive three-body part.Finally, we have only 
onsidered the 1S0 
hannel of the intera
tion. While thisrelative-motion state is 
learly the main 
omponent of the Cooper pair wave fun
tion,the de
oupling between partial waves whi
h o

urs in in�nite matter may not beas 
omplete in �nite systems, resulting in the admixture of higher partial-wave
omponents to the pair density. Su
h 
omponents, through the 
orresponding matrixelements of the intera
tion, whi
h have been negle
ted here, will yield a 
ontributionto the pairing energy and gaps. In
luding these 
omponents in our framework is partof our plans for the future.As already stated, systemati
 
al
ulations are desirable in studies of pairing dueto the sensitivity of the latter to non-
ontrolled details of single-parti
le spe
tra.The present work has been limited, due to te
hni
al 
onstraints linked with theuse of a non-lo
al intera
tion, to spheri
al nu
lei. However, it would be interestingto investigate the interplay between pairing and deformation in su
h a mi
ros
opi
s
heme and a
ross the nu
lear 
hart, in order to see, for example, if the distributionof gaps mentioned in se
tion 5.1.2 
an be reprodu
ed. This would require a modelof the NN intera
tion tra
table in deformed 
al
ulations, either as a lo
al pairingfun
tional or the parametrization of a Brink-Boeker-type potential whi
h 
ould be

http://www.sciencedirect.com/science/article/B6TVB-42815YP-B/1/907d633219fe4bee730fff5047152e5 3
http://link.aps.org/abstract/PRC/v65/e041304
http://link.aps.org/abstract/PRC/v72/e011302
http://dx.doi.org/10.1140/epja/i2003-10185-0
http://arxiv.org/abs/0801.1385
http://link.aps.org/abstract/PRC/v75/e025802


154 CHAPTER 6. NN PAIRING: BARE FORCE AT FIRST ORDERused as an input to a Gogny-HFB 
ode. Work along the lines of the latter 
ase isin progress, the main di�
ulty being the non-lo
ality of the intera
tion [Rot08b℄.Whereas we have fo
used on pairing gaps in this study, being mainly 
on
ernedby the origin of nu
lear pairing and by providing a ben
hmark for the 
onstru
tionof future pairing fun
tionals, other observables of interest will be studied in the nearfuture, starting with a 
omparison of binding energies obtained with various pairings
hemes. Quasiparti
le spe
tra will be 
he
ked for state-dependent e�e
ts linkedwith the range of the intera
tion, among others.Above all, we intend to undertake a systemati
 
omparison of lo
al and quasi-lo
al pairing fun
tionals. The range in mass and isospin of the nu
lei for whi
hwe were able to perform ab-initio 
al
ulations and produ
e theoreti
al pseudo-datawill be a key asset in devising a non-empiri
al, but lo
al pairing fun
tionals. Thefa
t that our results are 
ompatible with experiment allows to expe
t dire
t �ts ofsu
h fun
tionals, or a derivation through density-matrix expansion, to yield pair-ing models with more sound predi
tive power than 
urrent empiri
al ones. Again,this does not prevent us from 
he
king the exa
t origin of this agreement by moresophisti
ated 
al
ulations.



Chapter 7Con
lusionNu
lear energy density fun
tional models based on Skyrme e�e
tive intera
tions andquasi-lo
al fun
tionals are undergoing a deep revision. We have parti
ipated in thispro
ess, aiming at a better 
onne
tion with 
urrent knowledge of experimental data,mi
ros
opi
 intera
tions and ab-initio 
al
ulations. Our envisioned long-term goalis an improvement of the predi
tive power of this model and the 
onstru
tion of afun
tional a

urately des
ribing all known and relevant nu
lear observables whilehaving a solid formal, experimental and theoreti
al motivation, making it reliablein extrapolations to exoti
 nu
lear systems. In this work we have studied severalpaths to an improved predi
tive power and given some new (or revised) 
onstraintsto be used in the 
onstru
tion of future density-fun
tional parametrizations.Although parti
ular attention has been paid in the last de
ade to the propertiesof nu
lear energy density fun
tional models with respe
t to isospin, the spin-isospinstru
ture of lo
al nu
lear fun
tionals is not yet fully under 
ontrol when deriving thelatter from a Skyrme e�e
tive intera
tion. We have shown, moreover, that variousaspe
ts of this problem, namely the spin-isospin 
ontent of the nu
lear matter equa-tion of state and the behavior of nu
leon e�e
tive masses with isospin, 
ould not beput in agreement with predi
tions of ab-initio many-body theory at the same time.This points to de�
ien
ies of a �fty-year-old model whi
h, despite having known 
on-siderable su

ess in several aspe
ts of nu
lear stru
ture, remains rather s
hemati
.We also have pointed out the ne
essity to fully understand and 
ontrol the stabilityof the fun
tional, i.e. its very ability to yield predi
tions at all ! We take this asan example of the amount of attention whi
h must be paid to details of e�e
tivemodels. However, we also showed the potential of using methods generally employeda posteriori, with the intent to obtain physi
al predi
tions, in the 
onstru
tion andanalysis of a fun
tional. Su
h is the 
ase of RPA response fun
tions, whi
h give ane�
ient, if not straightforward way, to ensure the 
onsisten
y of ground states andex
itation spe
tra of nu
lei.The ina

ura
ies observed in the individual and 
olle
tive spe
tros
opy predi
tedby SR- or MR-EDF 
al
ulations using Skyrme fun
tionals have been largely at-tributed to the la
k of a tensor intera
tion in the underlying intera
tion, or equiv-alently to the la
k of attention paid to the quadrati
 spin-
urrent 
ouplings of thefun
tional. By performing a systemati
 exploration of the 
orresponding parameterspa
e, in
luding a systemati
 re�t of the fun
tional to basi
 physi
al 
onstraints, wehave emphasized the role of the �tensor terms� and devised 
onstraints for them.We found again that the Skyrme energy fun
tional was limited in terms of the 
on-155



156 CHAPTER 7. CONCLUSIONtrol it allowed on the observables under 
onsideration, su
h as spin-orbit splittingsand binding energies of magi
 
al
ium and ni
kel isotopes, or single-parti
le spe
traand their evolution along isotopi
 
hains. It was found that the various 
onstraintson Skyrme EDF parametrizations 
ould not be simultaneously satis�ed with theavailable parameters.Therefore, our approa
h 
onsisted in disentangling as mu
h as possible the e�e
tof the tensor terms from other parameters and �nding the most model-independentpossible 
onstraint. Admittedly, the result was non-optimal with respe
t to even sim-ple 
riteria. We 
on
luded that new terms and parameters had to be found to 
on-trol the position of spin-orbit doublet 
entroids, the state- and isospin-dependen
eof spin-orbit splittings, to name a few.The fa
t that the Skyrme fun
tional has to be extended and generalized to be-
ome really predi
tive starts to be routinely mentioned in resear
h papers. Thequestion then be
omes, what term to add ? In an s
heme based on an e�e
tiveintera
tion, adding density-dependen
e to non-lo
al terms, in
luding the term pro-portional to t2 a
ting in the P -wave, would allow to de
ouple spin-isospin propertiesfrom the equation of state and e�e
tive mass parameters, while 
onserving anti-symmetry of the nu
lear part of the fun
tional. An extended spin-orbit part of thefun
tional also seems ne
essary to gain 
ontrol over spin-orbit splittings.It is likely, however, that systemati
 investigations will develop. Investigating therelevan
e of the parameters of an extended fun
tional with respe
t to the reprodu
-tion of available data, aided by rigorous analysis te
hniques su
h as singular valuede
omposition [Kor08℄ seems promising. So does density matrix expansion appliedto an e�e
tive vertex dedu
ed from low-momentum intera
tions [Neg72, Bog08
℄.The pairing part added to quasi-lo
al parti
le-hole nu
lear fun
tionals has beenlargely phenomenologi
al until now. We showed that low-momentum nu
leon-nu
leonintera
tions, as well as any for
e amenable to a separable approximation, 
ould beused in an e�
ient way in the pairing 
hannel of Skyrme-EDF 
al
ulations. Wethus performed, for the �rst time, systemati
 
al
ulations of pairing gaps using thebare nu
leon-nu
leon for
e as a pairing intera
tion, also exhibiting the importan
eof the Coulomb intera
tion. The results 
ame surprisingly 
lose to experiment for a�rst step. A more thorough study of self-energy e�e
ts, partial waves di�erent from
1S0 and the three-body for
e will either show that these 
ontributions 
an
el out ordemonstrate that yet another ingredient is missing. One will then have to in
ludemany-body e�e
ts in the pairing intera
tion itself, in a s
heme to be de�ned.There remains to study other observables, su
h as masses and density distribu-tions, and to use the large amount of theoreti
al data generated to build a mi
ro-s
opi
 lo
al or quasi-lo
al pairing fun
tional. The latter shall be essential for reliably
al
ulating properties of deformed and odd nu
lei far from the valley of stability.Note however that as long as one keeps spheri
al symmetry, our method is aboutas e�
ient as a lo
al pairing fun
tional, whi
h might allow to envision MR-EDF
al
ulations for the study of pair vibrations or pair transfer rea
tions.Looking ba
k at this manus
ript, the work presented therein may seem un-�nished. Indeed, we have started exploring di�erent dire
tions leading to an in-
reased predi
tive power for nu
lear energy density fun
tionals. We have utilizedphenomenology, and systemati
 
omparison with data, but also mi
ros
opi
 inputs.These aspe
ts are both essential. A predi
tive fun
tional �rst has to reprodu
eknown observables before allowing for extrapolation into un
harted territory. On

http://dx.doi.org/10.1103/PhysRevC.77.064307
http://dx.doi.org/10.1103/PhysRevC.5.1472


157the other hand, reliable extrapolations 
an hardly be a
hieved without a �rm 
on-ne
tion of the model with underlying physi
s. Only by 
ombining these aspe
ts 
anwe expe
t to build a truly universal nu
lear energy density fun
tional.
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Appendix ACoupling 
onstants of the Skyrmeenergy fun
tionalThe 
oupling 
onstants of the 
entral Skyrme energy density fun
tional in terms ofthe parameters of the 
entral Skyrme for
e are given by
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t2 . (A.1)The 
oupling 
onstants of the spin-orbit energy density fun
tional in terms of theparameters of the spin-orbit for
e are given by

A∇J
0 = −3

4
W0 , A∇J

1 = −1
4
W0 . (A.2)The 
oupling 
onstants of the tensor energy density fun
tional in terms of the pa-rameters of Skyrme's tensor for
e are given by (Table I in [Per04℄)

BT
0 = −1

8
(te + 3to) BT

1 = 1
8
(te − to) (A.3)

BF
0 = 3

8
(te + 3to) BF

1 = −3
8
(te − to) (A.4)

B∆s
0 = 3

32
(te − to) B∆s

1 = − 1
32

(3te + to) (A.5)
B∇s

0 = 9
32

(te − to) B∇s
1 = − 3

32
(3te + to) . (A.6)Skyrme intera
tion parameters used in Chapters 3 and 4 are given in Table A.1.Tensor-intera
tion parameters are given in terms of U and V parameters. For usein the above formulae, we re
all that T = 3te and U = 3to.161

http://link.aps.org/abstract/PRC/v69/e014316


162 APPENDIX A. COUPLING CONSTANTS OF THE SKYRME EDFTable A.1: Values of the Skyrme-intera
tion parameters for �ts performed and usedin this manus
ript. Omitted values are zero.
Name t0 t1 t2 t3 t6

x0 x1 x2 x3 x6

W0 T U γ γ′f− -1847.562 477.387 -495.987 14003.89 -4302.160.821426 -0.393945 -0.971838 1.792787 2.622989133.187 1/3 2/3f0 -1849.082 477.277 -412.825 14035.19 -4331.240.824349 -0.137469 -0.915580 1.780474 3.295755129.190 1/3 2/3f+ -1849.486 478.078 -324.437 14050.84 -4351.540.826648 0.085961 -0.821841 1.770010 3.932000127.855 1/3 2/3T11 -2484.690 480.674 -522.233 13785.810.734532 -0.357956 -0.981127 1.195657103.738 86.322 -114.259 1/6T12 -2482.571 480.605 -523.692 13762.340.741577 -0.357895 -0.984520 1.208913112.506 38.788 -66.072 1/6T13 -2481.315 480.343 -531.133 13749.160.741208 -0.346965 -0.989822 1.209875120.411 -6.946 -17.241 1/6T14 -2479.458 479.870 -530.397 13732.470.744308 -0.348138 -0.990900 1.215762128.506 -55.122 30.824 1/6T15 -2482.479 478.923 -317.302 13764.910.733926 -0.677015 -0.813783 1.196671136.554 -166.980 57.775 1/6T16 -2485.640 481.672 -316.779 13791.070.736004 -0.680207 -0.805749 1.198185144.925 -215.394 104.916 1/6T21 -2486.267 484.633 -445.880 13807.350.721464 -0.480492 -0.924422 1.173067115.277 158.983 -123.119 1/6T22 -2484.397 484.495 -471.454 13786.970.730120 -0.442635 -0.944655 1.188194123.225 118.685 -72.504 1/6T23 -2483.501 484.291 -440.089 13776.290.732464 -0.492071 -0.924856 1.193100131.435 61.309 -27.567 1/6T24 -2482.931 484.346 -433.185 13768.560.729639 -0.503889 -0.921044 1.190192139.272 11.246 19.739 1/6



163Table A.1: Skyrme intera
tion parameters (
ontinued).Name t0 t1 t2 t3 t6
x0 x1 x2 x3 x6

W0 T U γ γ′T25 -2480.434 485.519 -478.822 13735.270.754456 -0.439566 -0.956135 1.231884147.887 -23.126 72.006 1/6T26 -2476.673 484.490 -482.591 13699.040.767612 -0.434554 -0.962725 1.254753156.146 -69.885 120.698 1/6T31 -2486.963 490.158 -418.307 13808.780.724547 -0.532406 -0.894940 1.178613126.989 246.186 -127.507 1/6T32 -2486.155 489.073 -438.565 13804.970.712439 -0.499144 -0.912063 1.160360133.590 204.352 -77.176 1/6T33 -2486.688 489.683 -405.609 13804.200.728149 -0.551901 -0.885872 1.184753142.019 146.435 -32.623 1/6T34 -2485.496 488.412 -351.129 13799.050.716858 -0.632712 -0.829737 1.167295149.734 82.186 10.278 1/6T35 -2483.136 490.586 -377.114 13762.060.740390 -0.601400 -0.863924 1.208476158.994 41.846 60.306 1/6T36 -2478.946 488.365 -427.188 13729.530.752195 -0.522097 -0.912891 1.227180166.212 9.055 113.945 1/6T41 -2492.261 494.721 -262.766 13874.450.689383 -0.767147 -0.653878 1.117874138.146 294.978 -144.519 1/6T42 -2492.153 494.635 -251.272 13869.060.690625 -0.785802 -0.630399 1.121129145.089 243.562 -97.619 1/6T42 -2492.150 494.635 -251.272 13869.060.690625 -0.785802 -0.630399 1.121129145.089 243.562 -97.619 1/6T42 -2492.150 494.635 -251.272 13869.060.690625 -0.785802 -0.630399 1.121129145.089 243.562 -97.619 1/6T43 -2490.275 494.608 -255.534 13847.120.698702 -0.781655 -0.646302 1.135795153.103 196.868 -49.160 1/6T44 -2485.670 494.477 -337.961 13794.750.721557 -0.661848 -0.803184 1.175908161.367 173.661 7.174 1/6



164 APPENDIX A. COUPLING CONSTANTS OF THE SKYRME EDFTable A.1: Skyrme intera
tion parameters (
ontinued).Name t0 t1 t2 t3 t6
x0 x1 x2 x3 x6

W0 T U γ γ′T45 -2485.014 492.671 -304.046 13793.280.727016 -0.710368 -0.755428 1.182969168.213 115.642 52.299 1/6T46 -2484.405 495.225 -356.435 13769.070.735176 -0.639443 -0.833399 1.201318176.279 83.204 104.873 1/6T51 -2492.672 500.414 -272.332 13871.380.691985 -0.760015 -0.663662 1.123486148.934 393.316 -145.233 1/6T52 -2494.783 499.204 -141.125 13886.860.692186 -0.955937 -0.126512 1.123414155.371 306.098 -109.968 1/6T53 -2486.978 499.333 -363.964 13807.830.719761 -0.627515 -0.823595 1.171935163.931 324.972 -39.688 1/6T54 -2489.087 497.774 -248.404 13829.430.710724 -0.797929 -0.625993 1.156397170.383 242.449 -2.787 1/6T55 -2487.084 497.823 -227.658 13815.230.711011 -0.829103 -0.567634 1.157022179.006 188.196 43.100 1/6T56 -2484.179 497.603 -258.182 13775.240.725926 -0.788228 -0.661928 1.185298185.960 149.446 94.289 1/6T61 -2494.625 501.033 -125.512 13895.880.683145 -0.977518 0.040183 1.107100156.389 445.173 -160.136 1/6T62 -2495.048 499.981 -197.374 13901.240.690739 -0.868510 -0.431559 1.117413162.688 418.830 -104.641 1/6T63 -2492.495 500.627 -121.265 13875.170.680914 -0.985108 0.076440 1.105776171.897 347.945 -64.433 1/6T64 -2487.323 501.096 -284.539 13818.030.705320 -0.746420 -0.694782 1.148322180.135 348.930 -0.197 1/6T65 -2489.413 497.528 -194.992 13841.040.699857 -0.875605 -0.446926 1.137559183.698 274.403 39.899 1/6T66 -2485.363 500.799 -228.479 13794.560.715164 -0.832653 -0.566420 1.165944195.349 236.170 90.314 1/6



Appendix BSeparation of the energy intospin-isospin 
hannelsWhen the EDF is de�ned as the expe
tation value of an e�e
tive Hamiltonian,separating it into spin-isospin 
hannels is straightforward, as in Eq. (3.11). However,one 
an extend this de�nition to the 
ase of any Hartree-like fun
tional: let us startby re
alling that in the 
ase of the Skyrme for
e, the dire
t and ex
hange terms havethe same analyti
al stru
ture; one thus usually uses the expressions
Epot =

1

2

∑

kl

〈
kl
∣∣∣V̂Skyrme

∣∣∣ kl
〉
ρkk ρll, (B.1)

∣∣kl
〉

= |kl 〉 − |lk 〉 = (1 − P̂rP̂σP̂τ ) |kl 〉 , (B.2)where the last expression uses the position, spin and isospin ex
hange operators tode�ne an antisymmetrized and non-normalized two-body state. One then writesdown the antisymmetrized form of the Skyrme intera
tion and the EDF by usingthe de�nition of densities entering Eqs. (C.29)-(C.32).Leaving the antisymmetrized Hamiltonian framework, it is always possible tode�ne the potential part of the fun
tional as the dire
t term of the expe
tationvalue of a 
ertain operator, as in
Epot =

∑

kl

〈
kl
∣∣∣V̂EDF

∣∣∣ kl
〉
ρkk ρll, (B.3)re
alling that V̂EDF = V̂Skyrme(1−P̂rP̂σP̂τ ) in the Hamiltonian 
ase. One then de�nesthe energy per 
hannel as

EST
EDF =

∑

kl

〈
kl
∣∣∣VEDF P̂SP̂T

∣∣∣ kl
〉
ρkk ρll, (B.4)whi
h, with the de�nitions (C.29)-(C.32) for 
oupling 
onstants, yields (retaining165



166APPENDIX B. SEPARATION OF THE ENERGY INTO (S, T ) CHANNELSonly terms a
ting in in�nite matter)
EST

pot =

∫
d3r HST (r),

HST =
[
Cρ

0 + (4S − 3)Cs
0 + (4T − 3)Cρ

1 + (4S − 3)(4T − 3)Cs
1

]

× 1

16

[
(2S + 1)(2T + 1)ρ2

0 + (2S − 1)(2T + 1)s2
0

+ (2S + 1)(2T − 1)ρ 2
1 + (2S − 1)(2T − 1)s 2

1

]

+
[
Cτ

0 + (4S − 3)CsT
0 + (4T − 3)Cτ

1 + (4S − 3)(4T − 3)CsT
1

]

× 1

16

[
(2S + 1)(2T + 1)ρ0τ0 + (2S − 1)(2T + 1)s0 ·T0

+ (2S + 1)(2T − 1)ρ1τ1 + (2S − 1)(2T − 1)s1 · T1

]
. (B.5)



Appendix CParti
le-Hole Potentials andResidual Intera
tion from aQuasi-Lo
al Fun
tionalIn this appendix we derive the expression of the parti
le-hole e�e
tive potential andresidual intera
tion arising from a quasi-lo
al energy density fun
tional. We presentthe results in a way whi
h allows them to be dire
tly put to use in the formula forthe response fun
tion of Ref. [GR92℄.C.1 Prin
ipleOur starting point is a fun
tional of the normal density matrix. Anomalous termsgiving a pairing �eld and parti
le-parti
le residual intera
tion will not be 
onsideredhere. This fun
tional reads
E [ρ] = F [Q[ρ̂]] , Q(x) = Tr

(
Q̂(x)ρ̂

)
=
∑

ij

q(x)ijρji, (C.1)where Q(x) plays the role of one or several �densities� as they are usually 
alled inthe Skyrme EDF, x representing the set of 
oordinates and dis
rete indi
es ne
es-sary to fully de�ne ea
h density operator/value. The ρji then are matrix elementsof the density matrix expressed in any 
omplete representation in
luding spa
e, spinand isospin degrees of freedom, while Q̂(x) is a family of lo
al one-body operatorsde�ning the densities, themselves independent from ρ̂, and q(x)ij their matrix ele-ments. For example, a fun
tional of the lo
al density 
an be re
overed by makingthe substitutions (omitting spin and isospin for simpli
ity)
x → r (C.2)
ρij → ρ(x,x′) (C.3)

q(x)ij → δ(r − x) δ(r− x′) (C.4)
Q(x) → ρ(r) (C.5)The e�e
tive potential entering the HF/Kohn-Sham equations 
an be derived as

hij =
δF
δρji

=
∑∫

x

∂F
∂Q(x)

δQ(x)

δρji
=
∑∫

x

∂F
∂Q(x)

q(x)ij (C.6)
ĥ =

∑∫

x

∂F
∂Q(x)

Q̂(x), (C.7)167
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168 APPENDIX C. P-H POTENTIALS AND RESIDUAL INTERACTIONwhile the parti
le-hole residual intera
tion is given by the se
ond fun
tional deriva-tive. Similarly, we 
an write
V ph

ijkl =
δ2F

δρki δρlj

=
∑∫

xy

∂2F
∂Q(x) ∂Q(y)

q(x)ik q(y)jl

V̂ ph =
∑∫

xy

∂2F
∂Q(x) ∂Q(y)

Q̂(x)(1) Q̂(y)(2), (C.8)where we use the notation Q̂(1) or Q̂(2) to indi
ate that the one-body operator a
tson the �rst or the se
ond intera
ting parti
le, respe
tively.C.2 De�nitionsIn order to derive the e�e
tive potentials and residual intera
tion from a Skyrme-like EDF, it is useful to rewrite the densities a

ording to Eq. (C.1), working in
oordinate spa
e. We thus re
all the expression of the non-lo
al density matrix
ρ̂(xσq,x′σ′q′) =

∑

k

ϕ∗
k(x

′σ′q′)ϕk(xσq)v
2
k, (C.9)where ϕk is a 
anoni
al wave fun
tion and v2

k its o

upation probability. Althoughthe rede�nition of densities below may look 
umbersome, it allows for a systemati
and straightforward derivation of the �elds and residual intera
tion 
orrespondingto any quasi-lo
al fun
tional.We use in the following the operators ∇ and ∇
′ (derivation with respe
t to,respe
tively, x and x′), σσ′σ and τq′q (Pauli matri
es a
ting in spin and isospinspa
e).Let us start by de�ning the time-even and isos
alar densities,

ρ0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q δσ′σ ρ̂(xσq,x′σ′q′), (C.10)
τ0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q δσ′σ ∇
′ · ∇ρ̂(xσq,x′σ′q′), (C.11)

J0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q
1

2i
(∇′ − ∇) ⊗ σσ′σ ρ̂(xσq,x

′σ′q′),(C.12)
J0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q (−i∇) × σσ′σ ρ̂(xσq,x
′σ′q′),(C.13)

J being the rank-one part of the tensor J.
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tor densities, similarly, read
ρ1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) τq′q δσ′σ ρ̂(xσq,x′σ′q′), (C.14)
τ1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) τq′q δσ′σ ∇
′ · ∇ρ̂(xσq,x′σ′q′), (C.15)

J1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) τq′q
1

2i
(∇′ − ∇) ⊗ σσ′σ ρ̂(xσq,x

′σ′q′),(C.16)
J1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) τq′q (−i∇) × σσ′σ ρ̂(xσq,x
′σ′q′),(C.17)while time-odd isos
alar,

s0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q σσ′σ ρ̂(xσq,x′σ′q′), (C.18)
T0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q σσ′σ ∇
′ · ∇ρ̂(xσq,x′σ′q′),(C.19)

j0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q δσ′σ
1

2i
(∇′ − ∇)ρ̂(xσq,x′σ′q′),(C.20)and time-odd isove
tor densities,

s1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) τq′q σσ′σ ρ̂(xσq,x′σ′q′), (C.21)
T1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) τq′q σσ′σ ∇
′ · ∇ρ̂(xσq,x′σ′q′),(C.22)

j1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) τq′q δσ′σ
1

2i
(∇′ − ∇)ρ̂(xσq,x′σ′q′),(C.23)
an be subje
t to the same treatment.



170 APPENDIX C. P-H POTENTIALS AND RESIDUAL INTERACTIONIt is equally useful to reexpress the following derivatives of densities
∆ρ0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ

(∇′2 + 2∇′ · ∇ + ∇
2)ρ̂(xσq,x′σ′q′), (C.24)

∇ · J0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ

∇
′ · (−i∇ × σσ′σ )ρ̂(xσq,x′σ′q′), (C.25)

∇ · s0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q (∇′ + ∇) · σσ′σ ρ̂(xσq,x
′σ′q′)

∇ × j0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ (−i)∇′ × ∇ρ̂(xσq,x′σ′q′).(C.26)The 
orresponding expressions for ∆ρ1, ∆s0, ∆s1, ∇ · J1, ∇ · s1 and ∇× j1 
an bededu
ed from the above immediately, by a simple repla
ement of spin and isospinoperators.Let us re
all the general form of the energy density (omitting Coulomb and tensorterms)
E =

∫
d3r

(
~2

2m
τ0 + HSkyrme

)
, (C.27)

HSkyrme = Heven
0 + Heven

1 + Hodd
0 + Hodd

1 , (C.28)with
Heven

0 = Cρ
0ρ

2
0 + C∆ρ

0 ρ0∆ρ0 + Cτ
0ρ0τ0 + CJ

0 J
2
0 + C∇J

0 ρ0∇ · J0, (C.29)
Heven

1 = Cρ
1ρ

2
1 + C∆ρ

1 ρ1 ◦ ∆ρ1 + Cτ
1ρ1 ◦ τ1 + CJ

1 J
2
1 + C∇J

1 ρ1 ◦ ∇ · J1, (C.30)
Hodd

0 = Cs
0s

2
0 + C∆s

0 s0 · ∆s0 + CsT
0 s0 · T0 + C∇s

0 (∇ · s0)
2 + Cj

0j
2
0 + C∇j

0 s0 · (∇ × j0),(C.31)
Hodd

1 = Cs
1s

2
1 + C∆s

1 s1 · ◦∆s1 + CsT
1 s1 · ◦T1 + C∇s

1 (∇ · s1)
2 + Cj

1j
2
1 + C∇j

1 s1 · ◦(∇ × j1).(C.32)Let us also re
all the 
onstraints imposed between 
oupling 
onstants due to time-reversal invarian
e
Cj

T = −Cτ
T , CJ

T = −CsT
T , C∇j

T = C∇J
T . (C.33)We shall hereafter restri
t density-depen
e to stri
tly lo
al terms. A singledensity-dependent term will be 
onsidered, the generalization to two su
h termsbeing straightforward.

Cρ
T = Cρ,0

T + Cρ,γ
T ργ

0 , Cs
T = Cs,0

T + Cs,γ
T ργ

0 (C.34)C.3 Potential and Residual Intera
tionThe 
oordinate-spin-isospin-spa
e matrix element of the parti
le-hole residual inter-a
tion is de�ned by:
〈x′

aq
′
aσ

′
ax

′
bq

′
bσ

′
b|V̂ ph|xaqaσaxbqbσb〉 =

δ2E
δρ(xbσbqb,x′

bσ
′
bq

′
b)δρ(xaσaqa,x′

aσ
′
aq

′
a)
. (C.35)



C.3. POTENTIAL AND RESIDUAL INTERACTION 171In the following formulae for the e�e
tive potential terms, an identity operator
δ(x′−x) δq′q δσ′σ is implied, ex
ept when spin and/or isospin operators are present,in whi
h 
ase they should repla
e the one in the latter expression. If gradientoperators are present, δ(x′−x) should be pla
ed left of ∇ (whi
h a
ts on the right)and right of ∇

′ (whi
h a
ts on the left).In the 
orresponding expressions for the residual intera
tion, we use the sub-s
ripts a and b to denote operators a
ting in the spa
e of the �rst and se
ondintera
ting parti
le, respe
tively. This 
onvention has been 
hosen so as not tobe 
onfused with subs
ripts 
orresponding to spatial or isospin-spa
e 
omponents.Similarly, an operator δ(x′
a − xa)δ(x

′
b − xb)δ(xa − xb) δq′aqaδq′bqb

δσ′

aσaδσ′

bσb
is impliedin ea
h term of the residual intera
tion, with spin and isospin parts being repla
edby those present in the spe
i�
 expressions, and the δ-fun
tions being inserted sogradient operators a
t to the left (∇′

a,b) or right (∇a,b) before them.Due to the length of the expressions involved, the e�e
tive potentials and residualintera
tion shall be broken down into terms denoted a

ording to the terms of thefun
tional they stem from. In any 
ase, the 
omplete expressions for ĥ and V̂ ph 
anbe re
overed by adding all the h- and V -terms, respe
tively, written down below.C.3.1 Lo
al, density-dependent terms
ĥρ

0 = Cρ,0
0 2ρ0 + Cρ,γ

0 (γ + 2) ργ+1
0 (C.36)

V̂ ρ
0 |ab = 2Cρ,0

0 + Cρ,γ
0 (γ + 2) (γ + 1) ργ

0

ĥρ
1 = (Cρ,0

1 + Cρ,γ
1 ργ

0)2ρ1 ◦ τ̂ + Cρ,γ
1 γργ−1

0 ρ2
1 (C.37)

V̂ ρ
1 |ab = (Cρ,0

1 + Cρ,γ
1 ργ

0)2τ̂a ◦ τ̂b + Cρ,γ
1

(
2γργ−1

0 ρ1 ◦ (τ̂a + τ̂b) + γ (γ − 1) ργ−2
0 ρ2

1

)

ĥs
0 = (Cs,0

0 + Cs,γ
0 ργ

0)2s0 · σ̂ + Cs,γ
0 γργ−1

0 s2
0 (C.38)

V̂ s
0 |ab = (Cs,0

0 + Cs,γ
0 ργ

0)2σ̂a · σ̂b + Cs,γ
0

(
2γργ−1

0 s0 · (σ̂a + σ̂b) + γ (γ − 1) ργ−2
0 s2

0

)

ĥs
1 = (Cs,0

1 + Cs,γ
1 ργ

0)2s1 · σ̂ ◦ τ̂ + Cs,γ
1 γργ−1

0 s2
1 (C.39)

V̂ s
1 |ab = (Cs,0

1 + Cs,γ
1 ργ

0)2σ̂a · σ̂bτ̂a ◦ τ̂b
+Cs,γ

1

(
2γργ−1

0 s1 · ◦(σ̂aτ̂a + σ̂bτ̂b) + γ (γ − 1) ργ−2
0 s2

1

)C.3.2 Non-lo
al (e�e
tive-mass and 
urrent) termsTerms of the form Cτ
T (ρT τT − j2T ), CsT

T (sT ·TT − J2
T )

ĥρτ−j2

0 = Cτ
0

(
ρ0∇

′ · ∇ + τ0 − j0 ·
1

i
(∇′ − ∇)

) (C.40)
V̂ ρτ−j2

0 |ab = Cτ
0

(
∇

′
a · ∇a + ∇

′
b · ∇b +

1

2
(∇′

a − ∇a) · (∇′
b − ∇b)

)
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ĥρτ−j2

1 = Cτ
1

(
ρ1∇

′ · ∇τ̂ + τ1 ◦ τ̂ − j1 ·
1

i
(∇′ − ∇)τ̂

) (C.41)
V̂ ρτ−j2

1 |ab = Cτ
1 τ̂a ◦ τ̂b

(
∇

′
a · ∇a + ∇

′
b · ∇b +

1

2
(∇′

a − ∇a) · (∇′
b − ∇b)

)

ĥsT−J2

0 = CsT
0

(
∇

′ · ∇s0 · σ̂ + T0 · σ̂ − 1

i
(∇′ − ∇) · J0 · σ̂

) (C.42)
V̂ sT−J2

0 |ab = CsT
0 σ̂a · σ̂b

(
∇

′
a · ∇a + ∇

′
b · ∇b +

1

2
(∇′

a − ∇a) · (∇′
b − ∇b)

)

ĥsT−J2

1 = CsT
1

(
∇

′ · ∇s1 · σ̂ ◦ τ̂ + T1 · σ̂ ◦ τ̂ − 1

i
(∇′ − ∇) · J1 · σ̂ ◦ τ̂

) (C.43)
V̂ sT−J2

1 |ab = CsT
1 σ̂a · σ̂b τ̂a ◦ τ̂b

(
∇

′
a · ∇a + ∇

′
b · ∇b +

1

2
(∇′

a − ∇a) · (∇′
b − ∇b)

)Terms of the form C∆ρ
T ρT ∆ρT

ĥ∆ρ
0 = C∆ρ

0

(
∆ρ0 + ρ0(∇

′2 + 2∇′ · ∇ + ∇
2)
) (C.44)

V̂ ∆ρ
0 |ab = C∆ρ

0

(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)

ĥ∆ρ
1 = C∆ρ

1

(
∆ρ1 ◦ τ̂ + τ̂ ◦ ρ1(∇

′2 + 2∇′ · ∇ + ∇
2)
) (C.45)

V̂ ∆ρ
1 |ab = C∆ρ

1 τ̂a ◦ τ̂b
(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)

ĥ∆s
0 = C∆s

0

(
∆s0 · σ̂ + σ̂ · s0(∇

′2 + 2∇′ · ∇ + ∇
2)
) (C.46)

V̂ ∆s
0 |ab = C∆s

0 σ̂a · σ̂b

(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)

ĥ∆s
1 = C∆s

1

(
∆s1 · σ̂ ◦ τ̂ + σ̂ · τ̂ ◦ s1(∇

′2 + 2∇′ · ∇ + ∇
2)
) (C.47)

V̂ ∆s
1 |ab = C∆s

0 σ̂a · σ̂b τ̂a ◦ τ̂b
(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)C.4 In�nite matterC.4.1 Parameterization of the residual intera
tionIn a translation-invariant system, one 
an repla
e gradient operators by the momentaof s.p. states

pa = −i∇a, p′
a = i∇′

a, (C.48)
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e relative momenta of the intera
ting parti
les, in the in
oming (right)and outgoing (left) states,
k =

1

2
(pa − pb), k′ =

1

2
(p′

a − p′
b), (C.49)while the in
oming and outgoing total momenta, in turn, read

K = pa + pb, K′ = p′
a + p′

b. (C.50)One 
an also de�ne the dire
t and ex
hange transferred momenta
q = k′ − k, q′ = k′ + k. (C.51)In an in�nite, translation-invariant system, the residual intera
tion 
onserves to-tal momentum. In the 
ase of our fun
tional it is also independent from it (i.e. thereis no non-lo
ality with respe
t to the 
enter-of-mass 
oordinate). It is thus enoughto use three quantities to express the momentum-dependen
e of the intera
tion. One
an use the notation
p′

a = q1 + q, p′
b = q2, (C.52)

pa = q1, pb = q2 + q, (C.53)where the ex
hange transferred momentum is q′ = q1 − q2.The various terms of the intera
tion 
an be regrouped a

ording to their spatialpart on the one hand, and their spin-isospin stru
ture on the other hand. One 
anthen de�ne four 
hannels 
orresponding to the operators
Ôss

ab = 1, Ôsv
ab = τ̂a ◦ τ̂b, Ôvs

ab = σ̂a · σ̂b, Ôvv
ab = σ̂a · σ̂b τ̂a ◦ τ̂b. (C.54)For the spatial part, we group the lo
al, e�e
tive mass/
urrent, and pseudo-�nite-range terms

V̂ ρ = V̂ ρ
0 + V̂ ρ

1 + V̂ s
0 + V̂ s

1 , (C.55)
V̂ τ = V̂ ρτ−j2

0 + V̂ ρτ−j2

1 + V̂ sT−J2

0 + V̂ sT−J2

1 , (C.56)
V̂ ∆ρ = V̂ ∆ρ

0 + V̂ ∆ρ
1 + V̂ ∆s

0 + V̂ ∆s
1 . (C.57)Let us �rst re-label the 
oupling 
onstants in order to use a 
ompa
t and generalnotation:

Cρ,0
ss = Cρ,0

0 , Cρ,0
vs = Cs,0

0 , Cρ,0
sv = Cρ,0

1 , Cρ,0
vv = Cs,0

1 ,
Cρ,γ

ss = Cρ,γ
0 , Cρ,γ

vs = Cs,γ
0 , Cρ,γ

sv = Cρ,γ
1 , Cρ,γ

vv = Cs,γ
1 ,

Cτ
ss = Cτ

0 , Cτ
vs = CsT

0 , Cτ
sv = Cτ

1 , Cτ
vv = CsT

1 ,

C∆ρ
ss = C∆ρ

0 , C∆ρ
vs = C∆s

0 , C∆ρ
sv = C∆ρ

1 , C∆ρ
vv = C∆s

1 .

(C.58)Ea
h of the above 
ontributions 
an be de
omposed a

ording to
V̂ ρ = 2Cρ,0

ss + Cρ,γ
ss (γ + 2) (γ + 1) ργ

0 +
∑

(α)6=ss

2Ô(α)
ab (Cρ,0

(α) + Cρ,γ
(α)ρ

γ
0) (C.59)for the 
entral part and rearrangement terms,

V̂ τ =
∑

(α)

Cτ
(α)Ô

(α)
ab

[
p′

a · pa + p′
b · pb −

1

2
(p′

a + pa) · (p′
b + pb)

]

=
∑

(α)

Cτ
(α)Ô

(α)
ab

[
(q1 + q) · q1 + q2 · (q2 + q) − 1

2
(2q1 + q) · (2q2 + q)

]

=
∑

(α)

Cτ
(α)Ô

(α)
ab

[
(q1 − q2)

2 − 1

2
q2

] (C.60)



174 APPENDIX C. P-H POTENTIALS AND RESIDUAL INTERACTIONfor the non-lo
al part, where the dependen
e on the ex
hange transferred momentum
q′ = q1 − q2 arising from the di�erential non-lo
ality of the fun
tional is pointedout, with an additional 
ontribution to the q-dependen
e, and

V̂ ∆ρ =
∑

(α)

C∆ρ
(α)Ô

(α)
ab

(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)
,

=
∑

(α)

C∆ρ
(α)Ô

(α)
ab

(
(−p′2

a + 2p′
a · pa − p2

a) + (−p′2
b + 2p′

b · pb − p2
b)
)
,

=
∑

(α)

C∆ρ
(α)Ô

(α)
ab

(
− (q1 + q)2 + 2(q1 + q) · q1 − q2

1

− q2
2 + 2q2 · (q2 + q) − (q2 + q)2

)
,

=
∑

(α)

−2C∆ρ
(α)Ô

(α)
ab q2, (C.61)for the pseudo-�nite-range part, where the q-dependen
e, i.e. the range of V̂ ph islinked to the gradient terms.We �nally write V̂ ph following Ref. [GR92℄

V̂ ph =
∑

(α)

1

4
Ô(α)

ab

(
W

(α)
1 (q) +W

(α)
2 (q)(q1 − q2)

2
)
, (C.62)with the W fun
tions de�ned as

W ss
1 (q)

4
= 2Cρ,0

ss + Cρ,γ
ss (γ + 2) (γ + 1) ργ

0 −
[
2C∆ρ

ss +
1

2
Cτ

ss

]
q2, (C.63)

W
(α) 6=ss
1 (q)

4
= 2Cρ,0

(α) + 2Cρ,γ
(α)ρ

γ
0 −

[
2C∆ρ

(α) +
1

2
Cτ

(α)

]
q2, (C.64)

W
(α)
2 (q)

4
= Cτ

(α), (C.65)whi
h generalizes the expression for the residual intera
tion obtained in Ref. [GR92℄.The same expressions are found when repla
ing the 
oupling 
onstants by the 
or-responding 
ombinations of parameters of the Skyrme intera
tion.

http://dx.doi.org/10.1016/S0003-4916(05)80003-X
http://dx.doi.org/10.1016/S0003-4916(05)80003-X


Appendix DFormal aspe
ts of separableintera
tions
D.1 PotentialsLet us 
onsider an arbitrary nu
leon-nu
leon potential expressed through a set of
oordinate-/momentum-spa
e operators VST . The exa
t expression of the wholepotential involves proje
tors on spin and isospin spa
e. For example, in ea
h isospin
hannel VT , we 
an write

V̂T = P̂S=0V̂0TT3
+ P̂S=1V̂1TT3

(D.1)where P̂S=0 = 1
4
(1 − σ̂1 · σ̂2), P̂S=1 = 1

4
(3 + σ̂1 · σ̂2) are the usual spin proje
tors,while the index T refers to the total isospin and T3 the third isospin 
omponentof the pair (T3 = −1, 0,+1 resp. for pp, np, nn). For potentials breaking 
hargeinvarian
e and 
harge symmetry, one then has to 
onsider the nn, pp and np isospin
hannels separately.In the following we use the usual 
onvention for unnormalized plane waves whi
hare subje
t to the following 
ontinuum orthonormality relations:

∫
d3r eik·r e−ik′·r = (2π)3 δ3(k − k′), (D.2)

∫
d3k

(2π)3
eik·r e−ik·r′ = δ3(r − r′). (D.3)In su
h a momentum representation, it is useful to extra
t the 
enter-of-mass motionfrom the matrix elements su
h that

〈k1k2|V̂ST |k′
1k

′
2〉 ≡ 〈k|V̂ST |k′〉(2π)3 δ3(K −K′) (D.4)where k = 1

2
(k1−k2) is the relative momentum of outgoing parti
les and K = k1+k2is the 
enter-of-mass momentum of the outgoing pair, with similar expressions forthe in
oming momenta k′ and K′. 175



176 APPENDIX D. FORMAL ASPECTS OF SEPARABLE INTERACTIONSD.1.1 Partial-wave expansionOne 
an perform a partial-wave expansion of the matrix elements by �rst expandingthe plane waves,
eik·r = 4π

∑

ℓm

iℓ Y ℓ∗
m (k̂) Y ℓ

m(r̂) jℓ(kr), (D.5)
|k〉 = 4π

∑

ℓm

iℓ Y ℓ∗
m (k̂) |kℓm〉, (D.6)where k the norm and k̂ the unit ve
tor (whi
h we use to refer to the angular
oordinates) of k, and |kℓm〉 is a spheri
al wave,

〈r|kℓm〉 = jℓ(kr) Y
ℓ
m(r̂), (D.7)whi
h is in turn unnormalized so that

〈kℓm|k′ℓ′m′〉 =

∫
d3r Y ℓ∗

m (r̂) jℓ(kr)Y
ℓ′

m′(r̂) jℓ′(k
′r), (D.8)

= δℓℓ′δmm′

∫
r2dr jℓ(kr)jℓ(kr) = δℓℓ′δmm′

π

2kk′
δ(k − k′). (D.9)The general expansion of the relative-momentum matrix element thus reads:

〈k|V̂ST |k′〉 = (4π)2
∑

ℓℓ′mm′

iℓ
′−ℓY ℓ

m(k̂)Y ℓ′∗
m′ (k̂′)〈kℓm|V̂ST |k′ℓ′m′〉. (D.10)In the absen
e of a tensor for
e (or simply if S = 0), VST does not 
ouple partialwaves with ℓ 6= ℓ′, and is independent from the proje
tion of angular momentum,i.e.

〈kℓm|V̂ST |k′ℓ′m′〉 = 〈kℓ|V̂ST |k′ℓ〉 δℓ′ℓ δm′m (D.11)thus
〈k|V̂ST |k′〉 = (4π)2

∑

ℓm

Y ℓ
m(k̂)Y ℓ∗

m (k̂′)〈kℓ|V̂ST |k′ℓ〉 (D.12)
= 4π

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ)〈kℓ|V̂ST |k′ℓ〉 (D.13)where θ is the angle between k̂ and k̂′.For solving the two-body problem expli
itly in momentum spa
e, e.g. 
omputingthe deuteron bound state, one should work with normalized spheri
al waves, i.e.
|kℓm〉N ≡

√
2/π|kℓm〉. One then has

N〈kℓ|V̂ST |k′ℓ〉N =
2

π
〈kℓ|V̂ST |k′ℓ〉 (D.14)The way we will write our separable intera
tion for subsequent use in HFB
odes implies dropping all prefa
tors in Eq. (D.13), obtaining an expression for thepotential matrix elements dire
tly related to fun
tions VℓST (k, k′):

〈k|V̂ST |k′〉 ≡
∑

ℓ

VℓST (k, k′)Pℓ(cos θ) (D.15)One thus has:
VℓST (k, k′) = 4π(2ℓ+ 1) 〈kℓ|V̂ST |k′ℓ〉 (D.16)

= 2π2(2ℓ+ 1) N〈kℓ|V̂ST |k′ℓ〉N (D.17)



D.2. PHASE SHIFTS 177D.1.2 Two-parti
le s
attering and the Lippmann-S
hwingerequationIn dis
ussing the s
attering of a pair of parti
les, it is 
ustomary (sin
e useful) torephrase the S
hrödinger equation in terms of an integral equation for an amplitudematrix in momentum spa
e whi
h then holds all information about observables su
has 
ross-se
tions. We have, in operator form,
T̂ = V̂ + V̂ Ĝ0T̂ , (D.18)

Ĝ0 being the free parti
le pair propagator expressed, in terms of the free Hamiltonian
Ĥ0 = ~2k2

m
, as Ĝ0 = (E − Ĥ0)

−1 (One uses the redu
ed mass µ of the NN pair,
2µ = m). Plugging 
losure relations in, one gets
〈k|T̂ST (E)|k′〉 =

m

~2
〈k|V̂ST |k′〉 + P

∫
d3k′′

(2π)3

〈k|V̂ST |k′′〉 〈k′′|T̂ST (E)|k′〉
E −E(k′′)

, (D.19)where E(k′′) = ~2k′′2/m is the energy asso
iated with the intermediate state withmomentum k′′ and P indi
ates a prin
ipal value integral. Plugging the expansion ofEq. (D.10) (assuming no 
oupling between partial waves) into the above expressionyields a set of un
oupled equations for ea
h value of ℓ,
〈kℓ|T̂ST (E)|k′ℓ〉 =

m

~2
〈kℓ|V̂ST |k′ℓ〉

+
2

π
P
∫
k′′2dk′′

〈kℓ|V̂ST |k′′ℓ〉 〈k′′ℓ|T̂ST (E)|k′ℓ〉
E −Ek′′

. (D.20)The s
attering phase shift in ea
h partial wave is given by
〈kℓ|T̂ST (Ek)|kℓ〉 = − tan(δℓST )/k (D.21)whi
h implies that T should be expressed in fm, and justi�es the ~2/m fa
tor inEqs. (D.19-D.20) sin
e V is in MeV fm3. If V is expressed in fm, the fa
tor beforethe Born term should be dropped and E and Ek′′ repla
ed by just k2

0 and k′′2.Assuming that the NN intera
tion 
an be expressed as a sum of un
oupled termsa
ting ea
h in one partial wave, as in
〈k|V̂ST |k′〉 ≡

∑

ℓ

VℓST (k, k′)Pℓ(cos(k,k′)) (D.22)we would like as a �rst step to represent V0(k, k
′) as a sum of separable terms:

VℓST (k, k′) =
∑

αβ

gα(k) λαβ gβ(k′) (D.23)where the g(k)'s are form fa
tors. In the following se
tions ℓST ≡ 001 as we fo
uson the T = 1, 1S0 
hannel.D.2 Phase shiftsPlugging the separable form of our potential in the LS equation yields
〈kℓ|T̂ST (E)|k′ℓ〉 =

m

4π~2

∑

αβ

gα(k)λαβgβ(k′)

+
1

2π2
P
∫
k′′2dk′′

gα(k)λαβgβ(k′) 〈k′′ℓ|T̂ST (E)|k′ℓ〉
E − E(k′′)

. (D.24)



178 APPENDIX D. FORMAL ASPECTS OF SEPARABLE INTERACTIONSIt is quite easy to see that the solution has the form
〈kℓ|T̂ST (E)|k′ℓ〉 ≡

∑

αβ

gα(k)ταβ(E)gβ(k′). (D.25)We thus have
∑

αβ

gα(k)ταβ(E)gβ(k′) =
m

4π~2

∑

αβ

gα(k)λαβgβ(k′) +
1

2π2

∑

αβγδ

P
∫
k′′2dk′′

× gα(k)λαγgγ(k
′′) gδ(k

′′)τδβ(E)gβ(k′)

E −E(k′′)
, (D.26)whi
h, assuming the linear independen
e of our form fa
tors, leads to an equationfor the 
ouplings between form fa
tors in the T -matrix,

ταβ(E) =
m

4π~2
λαβ +

1

2π2

∑

γδ

λαγP
∫
k′′2dk′′

gγ(k
′′) gδ(k

′′)

E − E(k′′)
τδβ(E), (D.27)

τ(E) =
m

4π~2
[1 − λG(E)]−1 λ, (D.28)where the matrix G(E) 
orresponds to

Gαβ(E) ≡ 1

2π2
P
∫
k2dk

gα(k) gβ(k)

E − E(k)
. (D.29)The LS equation is thus redu
ed to some integrals and a (small) matrix inversion.The phase shifts 
an then be 
omputed the usual way from the fully-on-shell T -matrix.D.3 Gap equation in in�nite matterThe pairing problem treated at the BCS appoximation, i.e. in
luding the bare po-tential in the parti
le-parti
le 
hannel, and using a kineti
 single-parti
le spe
trum,is 
hara
terized by the standard gap equation

∆(k) = −
∫

d3k′

(2π)3
〈k|V̂ |k′〉∆(k′)

2Ek′

, (D.30)where Ek =
√

(εk − λ)2 + ∆2
k, εk being the single-parti
le energy and λ the 
hemi
alpotential. We'll take λ = εkF, whi
h modi�es the dependen
e between kF and thedensity, albeit too little to be relevant for our qualitative use of the gap equation.Again, we plug our separable potential in, whi
h sele
ts the 1S0 partial wave andmakes all quantities independent from angular 
oordinates,

∆(k) = − 1

2π2

∫
k′2dk′ V001(k, k

′)
∆(k′)

2Ek′

(D.31)
= −

∑

αβ

gα(k)λαβ
1

2π2

∫
k′2dk′ gβ(k

′)
∆(k′)

2Ek′

, (D.32)whi
h shows, examining the k-dependen
e of the gap, that it 
an be written as
∆(k) ≡

∑

α

∆0
α gα(k), (D.33)



D.3. GAP EQUATION IN INFINITE MATTER 179where the ∆0's be
ome the new unknowns of the problem. They obey a rewrittengap equation whi
h involves the pair densities χ̆α,
∆0

α = −1

2

∑

β

λαβ χ̆β (D.34)
χ̆β =

1

2π2

∫
k′2dk′ gβ(k′)

∆(k′)

Ek′

, (D.35)whi
h 
orrespond to the same quantities written in 
oordinate spa
e for the spher-i
al HFB 
ase. The solution of the BCS gap equation 
an then be found by start-ing from some initial values of the ∆0's, then iterating Eqs. (D.35), (D.33) and(D.34) until 
onvergen
e is rea
hed. Note that as is, this pro
edure will diverge fornon-perturbative intera
tions [Ram07℄. The latter referen
e thus uses an elaboratepro
edure to solve the gap equation, whi
h amounts to separating the potential ma-trix elements into a separable term and a residual one whi
h vanishes at the Fermilevel. The resulting equations 
an be solved dire
tly. However, we found that asimple damping fa
tor modifying the self-
onsistent equations was enough to obtain
onvergen
e.

http://www.sciencedirect.com/science/article/B6TVB-4PYYTP8-1/1/ecc64f88da0f3d6e113d85ce5f8c06ed
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Appendix EParameters of separable intera
tionsThe parameters of the separable intera
tions used in 
hapter 5 are given below, inTable E.1. For ea
h intera
tion, a header spe
i�es the starting (hard) intera
tion,isospin 
hannel, 
uto� fun
tion (see Eq. (5.37)), 
uto� value (in fm−1), rankM of theseparable representation and number of termsm in ea
h form fa
tor. See Eqs. (5.44)and (5.57) and a

ompanying dis
ussion for the meaning of the parameters and�t pro
edure. The a
tual separable parameterizations use diagonal 
ouplings, i.e.
λαβ = λαδαβ.
Table E.1: Parameters de�ning the separable operator representations of thehadroni
 parts of Vlow k and Argonne v18 nu
leon-nu
leon intera
tionsused in this work.
α aα λα n0 n1 (n5) n2 n3 n4[fm℄ [MeV fm3℄ xα1 (xα5) xα2 xα3 xα4Argonne v18, nn, exponential (n = 6), Λ = 2.5, M = 3, m = 51 1.7400 -983.79 0 1 2 4 90.41483 0.23365 0.0077974 -3.6629 10−6102.8335 10−72 1.6631 0.15436 0 6 7 8 9-0.71971 0.37599 -0.083656 0.007436710-2.2078 10−43 1.8234 -354.78 1 0 3 8 9-0.033729 0.17602 6.7379 10−6 -7.1010 10−6103.7713 10−7

181



182 APPENDIX E. PARAMETERS OF SEPARABLE INTERACTIONSTable E.1: Parameters de�ning the separable operator representations of intera
-tions (
ontinued).Argonne v18, pp, exponential (n = 6), Λ = 2.5, M = 3, m = 51 1.7415 -978.26 0 1 2 4 90.41681 0.23341 0.0075925 -3.7560 10−6102.9035 10−72 1.6680 0.15743 0 6 7 8 9-0.73884 0.38570 -0.085207 0.007519710-2.2182 10−43 1.8264 -347.42 1 0 3 8 9-0.042636 0.17591 4.9746 10−6 -6.8307 10−6103.6046 10−7CD-Bonn, nn, Fermi-Dira
 (ǫ = 0.5), Λ = 1.8, M = 2, m = 51 2.1847 -799.96 0 1 3 4 50.91829 0.47722 -0.19001 0.0491026-0.00331852 2.5000 -177.29 0 1 3 4 5-0.21869 0.21610 -0.19555 0.0352506-0.0024611CD-Bonn, nn, exponential (n = 6), Λ = 2.5, M = 3, m = 41 1.7214 -930.12 0 1 2 5 70.25068 0.22550 .0022877 -5.7267 10−52 1.7881 32.091 1 0 4 9 100.0071364 0.13522 5.4076 10−5 -4.0494 10−63 1.7278 -580.64 1 0 3 9 100.26980 0.13974 -2.8858 10−6 2.3252 10−7CD-Bonn, nn, exponential (n = 6), Λ = 3.0, M = 4, m = 41 1.0908 -431.50 0 1 2 3 40.35315 0.59492 -0.37945 0.0277752 1.1184 3235.3 3 1 2 0 417.596 -1.9937 0.28038 -8.46433 1.2473 -1371.1 1 0 2 3 4-0.52693 -0.66651 0.22395 -0.0102294 1.3007 -1948.6 2 1 0 3 4-1.7907 -0.45939 -0.16783 -0.086305



183Table E.1: Parameters de�ning the separable operator representations of intera
-tions (
ontinued).CD-Bonn, nn, exponential (n = 6), Λ = 4.0, M = 4, m = 41 0.78980 698.80 0 1 2 3 4-0.96576 0.87481 -1.9379 0.199102 0.83339 2885.2 1 0 2 3 4-0.030759 -1.9616 2.6650 -0.161143 1.7570 -91.515 1 0 2 3 4-1.4831 0.068112 0.067679 -0.00937294 0.89377 -5792.0 2 1 0 3 4-0.57060 -0.086000 -1.0777 -0.079829CD-Bonn, nn, exponential (n = 6), Λ = 8.0, M = 6, m = 41 0.63814 619.02 1 0 3 7 90.51263 0.36902 4.6330 10−4 -4.5753 10−62 0.68468 -823.15 0 1 2 3 7-0.65990 0.062127 -0.054548 -3.3780 10−63 0.58589 0.43824 2 3 8 9 10-1.7986 -0.011990 0.0021446 -9.3238 10−54 0.60762 -0.026378 6 7 8 9 10-0.95561 0.25908 -0.027532 9.3569 10−45 0.94121 -1059.3 1 0 2 3 4-0.32739 -0.41297 0.14277 -0.0320346 1.58513 -401.24 1 0 2 9 10-0.43268 -0.31717 -5.6151 10−6 7.6408 10−7Argonne v18, nn, M = 9, m = 31 0.61544 -503.86 0 1 4 10-1.9502 -0.052278 1.5580 10−82 0.62603 169.58 0 1 3 72.8735 0.90026 7.5516 10−43 0.28021 63.333 2 1 0 61.9134 0.90423 -0.00109054 0.20451 6.0742 3 2 1 82.1766 1.9611 4.8087 10−55 0.94442 -1131.1 1 0 2 10-0.29080 -0.30625 8.5078 10−86 0.32235 2.3871 3 2 1 10-1.0497 0.0083717 -4.2195 10−67 1.5158 -451.08 1 0 2 10-0.41003 -0.37097 1.2622 10−78 0.20000 33.447 2 4 6 10-0.037752 -0.0044057 -5.5173 10−79 0.75360 -0.99053 2 3 4 100.27823 2.6542 1.7662 10−5
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Appendix FSeparable For
e in Spheri
alSymmetryIn this Appendix, we give the expressions a
tually used in the numeri
al implemen-tation of the Hartree-Fo
k-Bogolyubov equations in spheri
al symmetry.F.1 General expression of intera
tion matrix ele-mentsLet us start from a general intera
tion a
ting in the 1S0 
hannel :
V̂

1S0 = V̂ SP̂S=0, (F.1)where V̂ S is the spatial part a
ting in the L = 0 state of relative motion and P̂S=0is the spin singlet proje
tor stemming from the de�nition
P̂S =

1 + (−1)S P̂σ

2
, (F.2)(F.3)

P̂σ being the spin-ex
hange operator. First, we express the non-antisymmetrizedmatrix elements in 
oordinate spa
e.
v

1S0

ijkl = 〈ij|V̂ 1S0 |kl〉 (F.4)
= 〈ij|P̂ †

S=0V̂
SP̂S=0|kl〉 (F.5)

=

∫
d3r1,2,3,4 〈ij|P̂ †

S=0|r1r2〉〈r1r2|V̂ S|r3r4〉〈r3r4|P̂S=0|kl〉, (F.6)where |ij〉, |r1r2〉, et
. are two-parti
le dire
t produ
t states, non-antisymmetrizedand normalized. |i〉 is a state from the single-parti
le basis we will be working with,to be de�ned later. The index i in
ludes all spa
e, spin and isospin 
oordinates.Basis fun
tions are notably 
onsidered the same for neutrons and protons, whi
hshall eventually be treated separately.The spin-singlet part of the two-body wave fun
tion 
an be expressed as :
P̂S=0|ij〉 =

∑

σ1σ2

∑

q1q2

∫
d3r1d

3r2

× ϕi(r1σ1q1) ϕj(r2σ2q2) |r1r2〉 |q1q2〉P̂S=0|σ1σ2〉, (F.7)185



186 APPENDIX F. SEPARABLE FORCE IN SPHERICAL SYMMETRYwith the spin part redu
ed through
∑

σ1σ2

ϕi(r1σ1q1) ϕj(r2σ2q2) P̂S=0|σ1σ2〉

=
∑

σ1σ2

ϕi(r1σ1q1) ϕj(r2σ2q2)
1

2
(|σ1σ2〉 − |σ2σ1〉) , (F.8)

=
∑

σ

ϕi(r1σq1) ϕj(r2σq2)
1

2
(|σσ〉 − |σσ〉) , (F.9)

=
∑

σ

ϕi(r1σq1) ϕj(r2σq2)
1

2
(−)s−σ (| ↑↓〉 − | ↓↑〉) , (F.10)

=
∑

σ

(−)s−σ ϕi(r1σq1) ϕj(r2σq2)
1√
2
|00〉. (F.11)We get the expression for the matrix element of Eq. (F.4) :

〈ij|V̂ 1S0 |kl〉 =

∫
d3r1,2,3,4

∑

q1q2

∑

σ1

(−)s−σ1 ϕ∗
i (r1σ1q1) ϕ

∗
j (r2σ1q2)

×
∑

q3q4

∑

σ3

(−)s−σ3 ϕk(r3σ3q3) ϕl(r4σ3q4)

× 1

2
〈r1r2|V̂ S|r3r4〉 〈q1q2|q3q4〉, (F.12)The antisymmetrized matrix element (
ontaining both dire
t and ex
hange terms),whi
h shall be written

v
1S0

ijkl = v
1S0

ijkl
= 〈ij|V̂

1S0

|kl〉, (F.13)
= 〈ij|V̂ 1S0(1 − PrP̂σP̂τ )kl〉, (F.14)
= v

1S0

ijkl − v
1S0

ijlk = v
1S0

ijkl − v
1S0

jikl, (F.15)(the last equality holds for a Hermitian intera
tion) reads
v

1S0

ijkl = 〈ij|V̂ 1S0(1 + P̂σ)|kl〉, (F.16)
=

∫
d3r1,2,3,4

∑

q1q2

∑

σ1

(−)s−σ1 ϕ∗
i (r1σ1q1) ϕ

∗
j (r2σ1q2)

×
∑

q3q4

∑

σ3

(−)s−σ3 ϕk(r3σ3q3) ϕl(r4σ3q4)

× 1

2
〈r1r2|V̂ S|r3r4〉 〈q1q2|1 + P̂τ |q3q4〉. (F.17)In the 
ase of isospin-pure states, we 
an omit isospin indi
es where they are
ontained in the single-parti
le states i, j, k, l. We obtain :

v
1S0

ijkl = 〈ij|V̂ 1S0(1 + P̂σ)|kl〉, (F.18)
=

∫
d3r1,2,3,4 Ψ∗

ij(r1, r2)
1

2
〈r1r2|V̂ S|r3r4〉Ψkl(r3, r4)

× (δqiqk
δqjql

+ δqiql
δqjqk

), (F.19)
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e the spin-singlet part of the two-body wavefun
tion (non-normalized) :
Ψij(r1, r2) =

∑

σ

(−)s−σ ϕi(r1σ) ϕj(r2σ). (F.20)The latter guarantees the antisymmetry of the matrix element in Eq. (F.18): if weex
hange the spin variables,
Ψji(r1, r2) =

∑

σ

(−)s−σ ϕj(r1σ) ϕi(r2σ), (F.21)
= −

∑

σ

(−)s−σ ϕi(r2σ) ϕj(r1σ), (F.22)we get the opposite of the original wavefun
tion where the 
oordinates have beenex
hanged. If the spatial part of the intera
tion is symmetri
 w.r.t. this ex
hange(it then sele
ts even-parity states of relative motion), the matrix element is indeedantisymmetri
.In the 
ase of identi
al-parti
le pairing, q1 = q2 = q3 = q4 and the isospin partof the antisymmetrized matrix element redu
es to a fa
tor 2. We then have :
V̂

1S0

ijkl =

∫
d3r1,2,3,4 Ψ∗

ij(r1, r2) 〈r1r2|V̂ S|r3r4〉 Ψkl(r3, r4), (F.23)where the spin-singlet two-body wave fun
tions take 
are of the spin part and ex-
hange term.F.2 Computation of the pairing �eldF.2.1 General te
hni
al aspe
tsIn spheri
al symmetry, single-parti
le basis fun
tions are labelled by quantum num-bers n, ℓ, j,m:
ϕnℓjm(r, σ) =

unℓj(r)

r
〈ℓmℓsσ|jm〉Y ℓ

mℓ
(r̂) (F.24)The e�e
tive potentials are rotationally invariant: ∆̆ (see Eq. (5.56)) only dependson the radial 
oordinate in use. This isotropy stems from that of the density matrix:states labelled with the same value of quantum numbers n, ℓ, j (and di�erent valuesof the proje
tion m) are degenerate, have identi
al o

upan
ies and have the sameradial dependan
e. It is thus possible to perform analyti
al presummations over mwhenever appli
able, espe
ially in the 
al
ulation of χ̆.F.2.2 Center-of-mass/relative 
oordinate separationThe 
al
ulation of pairing matrix elements with a non-lo
al separable vertex requiresto perform the transformation of the two-body produ
t wave fun
tion from the setof 
oordinates (r1, r2) 
orresponding to the intera
ting parti
les to the set (R, s),where R = 1

2
(r1 + r2) is the 
enter-of-mass (COM) 
oordinate and s = r1 − r2is the separation ve
tor. Whereas this is immediate in Cartesian 
oordinates, ina spheri
al 
oordinate system or basis, some algebra is involved to obtain usefulexpressions. There are standard te
hniques to a
hieve this in a harmoni
 os
illator



188 APPENDIX F. SEPARABLE FORCE IN SPHERICAL SYMMETRYbasis, most based on Brody-Moshinsky 
oe�
ients [Mos59℄. However, sin
e one ofthe purposes of this work is to provide a des
ription of pairing up to the drip-lines,we used a basis more suited to the treatment of 
ontinuum e�e
ts. Thus, we usedthe 
oordinate separation method of Sawaguri and Tobo
man [Saw67℄:
φℓm(αra + βrb) =

∑

l′λ′

Al′λ′

l (ra, rb)
∑

m′µ′

1√
4π
C lm

l′m′λ′µ′Y l′

m′(r̂a)Y
λ′

µ′ (r̂b) (F.25)
Al′λ′

l (ra, rb) = 8 il
′−λ′−ℓ

∫
k2dk jl′(αkra)jλ′(βkrb)

∫
r2dr jℓ(kr)φℓ(r) (F.26)(this expression is readily obtained by rewriting the wave fun
tion φ(r) as the dire
t-then-reverse Fourier transform (FT) of itself, repla
ing r = αra + βrb in the reverseFT part, then repla
ing the three exponentials by their spheri
al expansion andintegrating over angular 
oordinates). Using this expression, we �nd

Ψn1ℓjm,n2ℓjm(R, s) =
∑

mℓσ

(−)s−σ〈ℓmℓsσ|jm〉〈ℓmℓsσ|jm〉

×
∑

l′
1
l′
2
λ′

1
λ′

2

A
l′
1
λ′

1

n1ℓj(R, s)A
l′
2
λ′

2

n2ℓj(R, s)

× 1

4π

∑

m′

1
m′

2
µ′

1
µ′

2

Cℓmℓ

l′
1
m′

1
λ′

1
µ′

1

Cℓmℓ

l′
2
m′

2
λ′

2
µ′

2

×Y l′
1

m′

1

(R̂)Y
l′
2

m′

2

(R̂)Y
λ′

1

µ′

1

(ŝ)Y
λ′

2

µ′

2

(−ŝ), (F.27)with
Al′λ′

nlj (R, s) = 8 il
′−λ′−l

∫
kdk jl′(kR)jλ′

(
ks

2

)
ǔnlj(k) (F.28)

ǔnlj(k) = k

∫
rdr jℓ(kr)unℓj(r) (F.29)Multiplying by the separable-intera
tion form fa
tor Gα(s) and integrating over syields

Ψ̆α
n1ℓjm,n2ℓjm(R) =

∑

mℓσ

(−)s−σ〈ℓmℓsσ|jm〉〈ℓmℓsσ|jm〉

×
∑

l′
1
l′
2
λ′

∫
s2ds Gα(s)A

l′
1
λ′

n1ℓj(R, s)A
l′
2
λ′

n2ℓj(R, s)

× 1

4π

∑

m′µ′

Cℓmℓ

l′
1
m′λ′µ′C

ℓmℓ

l′
2
m′λ′µ′(−)λ′+µ′

×Y l′
1

m′(R̂)Y
l′
2

m′(R̂), (F.30)where the integration with respe
t to the angular 
oordinates yields the spheri
alharmoni
 
oupling 
oe�
ients.F.2.3 Pair densitiesPair densities χ̆α 
an be expressed as (Eq. (5.52))
χ̆α(R) =

∑

n1,2ℓ1,2j1,2m1,2

Ψ̆α
n1ℓ1j1m1,n2ℓ1j1m2

(R) κn1ℓ1j1m1,n2ℓ1j1m2
. (F.31)

http://dx.doi.org/10.1016/0029-5582(59)90143-9
http://adsabs.harvard.edu/abs/1967JMP.....8.2223S


F.2. COMPUTATION OF THE PAIRING FIELD 189In spheri
al systems, the pair tensor κ takes the simpli�ed form
κn1ℓ1j1m1,n2ℓ1j1m2

= κn1,n2;ℓ1j1 (−)ℓ−j−m δℓ1ℓ2 δj1j2 δm1m2
, (F.32)where (−)ℓ−j−m is the phase ηℓjm a
quired by state |nℓjm〉 under a time-reversaltransformation, whi
h determines the splitting in two parts of the single-parti
lebasis, su
h that̆

χα(R) =
∑

ℓj

∑

n1n2

κn1,n2;ℓj

∑

m

(−)ℓ−j−mΨ̆α
n1ℓjm,n2ℓjm(R) (F.33)Due to the spheri
al degenera
y of single-parti
le states and the spe
i�
 stru
ture of

κ, the summation with respe
t to m 
an be separated and performed analyti
ally.It is thus bene�
ial to de�ne the fun
tion
Ψ̆

α

n1ℓj,n2ℓj(R) =
∑

m

(−)ℓ−j−mΨ̆α
n1ℓjm,n2ℓjm(R). (F.34)In order to express this fun
tion, let us �rst give the result of the redu
tion of itsalgebrai
 fa
tor:

∑

mmℓσm′µ′

(−)ℓ−j−m+s−σ〈ℓmℓsσ|jm〉〈ℓmℓsσ|jm〉

× Cℓmℓ

l′
1
m′λ′µ′C

ℓmℓ

l′
2
m′λ′µ′(−)λ′+µ′

Y
l′
1

m′(R̂) Y
l′
2

m′(R̂)

= −2j + 1

4π

(2l′1 + 1)(2λ′ + 1)

2ℓ+ 1
〈l′10λ′0|ℓ0〉2δl′1l′

2
(−)λ′

, (F.35)whi
h yields
Ψ̆

α

n1ℓj,n2ℓj(R) = −2j + 1

(4π)2

×
∑

l′λ′

∫
s2ds Gα(s)Al′λ′

n1ℓj(R, s)A
l′λ′

n2ℓj(R, s)

×(−)λ′ (2l′ + 1)(2λ′ + 1)

2ℓ+ 1
〈l′0λ′0|ℓ0〉2 (F.36)on
e this redu
tion has been made, it is possible to rewrite the radial integral withrespe
t to s:

(−1)l′−λ′−ℓ 1

4π

∫
s2e

− s2

4α2Al′λ′

n1ℓj(R, s)A
l′λ′

n2ℓj(R, s) (F.37)
=

16

π

∫
k1dk1 jl′(k1R) ǔn1ℓj(k1)

∫
k2dk2 jl′(k2R) ǔn1ℓj(k2)

×
∫
s2 Gα(s) jλ′

(
k1s

2

)
jλ′

(
k2s

2

) (F.38)
=

∫
k1dk1 ǔn1ℓj(k1)

∫
k2dk2 ǔn2ℓj(k2) ψ̌

α,l′λ′

(k1, k2;R), (F.39)



190 APPENDIX F. SEPARABLE FORCE IN SPHERICAL SYMMETRYwhere we introdu
e the representation-independent fun
tions (mind the small ψ)
ψ̌α,l′λ′

(k1, k2;R) =
16

π
jl′(k1R) jl′(k2R)

×
∫
s2 Gα(s) jλ′

(
k1s

2

)
jλ′

(
k2s

2

)
, (F.40)

ψ̌
α

ℓ (k1, k2;R) =
∑

l′λ′

ψ̌α,l′λ′

(k1, k2;R)

× (−)ℓ−l′ (2l
′ + 1)(2λ′ + 1)

2ℓ+ 1
〈l′0λ′0|ℓ0〉2. (F.41)Using the latter fun
tion one 
an �nally write

Ψ̆
α

n1ℓj,n2ℓj(R) = −2j + 1

4π

∫
k1dk1 k2dk2 ψ̌

α

ℓ (k1, k2;R) ǔn1ℓj(k1) ǔn1ℓj(k2). (F.42)F.2.4 Pairing �eldsMatrix elements of the pairing �elds are obtained through (Eq. (5.55))
∆n1ℓjm,n2ℓjm =

∑

α

∫
d3R Ψ̆α

n1ℓjm,n2ℓjm(R) ∆̆α(R) (F.43)
=

∑

α

∫
R2dR dR̂ Ψ̆α

n1ℓjm,n2ℓjm(R) ∆̆α(R), (F.44)an expression where the angular integral with respe
t to the dire
tion R̂ allows oneto redu
e the sums involving proje
tion indi
es, viz.
∑

mℓσm′µ′

(−)s−σ〈ℓmℓsσ|jm〉〈ℓmℓsσ|jm〉

× Cℓmℓ

l′
1
m′λ′µ′C

ℓmℓ

l′
2
m′λ′µ′

(−)λ′+µ′

∫
dR̂ Y

l′
1

m′(R̂) Y
l′
2

m′(R̂)

= −(−)ℓ−j−m (2l′1 + 1)(2λ′ + 1)

2ℓ+ 1
〈l′0λ′0|ℓ0〉2δl′

1
l′
2
(−)λ′

. (F.45)Given this expression, one obtains
∆n1ℓjm,n2ℓjm = −(−)ℓ−j−m 1

4π

∑

α

×
∑

l′λ′

∫
R2dR

∫
s2ds Gα(s)Al′λ′

n1ℓj(R, s)A
l′λ′

n2ℓj(R, s)∆̆α(R)

×(−)λ′ (2l′ + 1)(2λ′ + 1)

2ℓ+ 1
〈l′0λ′0|l0〉2. (F.46)It is then useful to use the representation-independent fun
tions (F.39), yielding

∆n1ℓjm,n2ℓjm = −(−)ℓ−j−m

∫
R2dR ∆̆α(R) (F.47)

×
∫
k1dk1 k2dk2 ψ̌α,ℓ(k1, k2;R) ǔn1ℓj(k1) ǔn2ℓj(k2),



F.3. EVALUATION OF BESSEL-FORM FACTOR INTEGRALS 191Eq. (F.42) allows one to work with any basis for whi
h one 
an 
ompute ǔ(k)fun
tions. A parti
ularly simple and e�
ient 
hoi
e is to use a basis of spheri
alBessel fun
tions, in this 
ase we have ǔniℓj(k) ∝ δ(k − ki) and the double integralbe
omes trivial. See appendix G.F.3 Evaluation of Bessel-form fa
tor integralsThe formulae given above for ψ̌ and Ψ̆ fun
tions involve an integral of the produ
tof two Bessel fun
tions, an intera
tion form fa
tor and a s2 weight.
Iα

λ′

1
λ′

2

(k1, k2) ≡
∫
s2 Gα(s) jλ′

1

(
k1s

2

)
jλ′

2

(
k2s

2

)
. (F.48)This se
tion deals with the evaluation of this integral for a number of given formfa
tors g(k) and their inverse Fourier transforms G(s) (see Eq. (5.46)).F.3.1 Simple Gaussian form fa
torFor g(k) = e−a2k2, the inverse Fourier transform yields

G(s) = 1
(4πa2)3/2

e−
s2

4a2 (F.49)In the 
ase where λ′1 = λ′2 ≡ λ′, the integral (F.48) 
an be evaluated using ananalyti
al expression (F.70), yielding :
Iα

λ′λ′(k1, k2) =
1

4π
exp

(
−a

2(k2
1 + k2

2)

4

)
bλ′

(
−a

2k1k2)

2

)
, (F.50)where bλ′ is a modi�ed spheri
al Bessel fun
tion of the �rst kind, Eq. (F.71). If

λ1 6= λ2, one should use the more general method des
ribed below.F.3.2 Gaussian × polynomial form fa
torIn �ts of an operator representation of the Vlow k intera
tion, we found the followingform of form fa
tors to be the most useful one:
gα(k) =

[
∑

n

xαn

(
a2

αk
2

2

)n
]

exp

(
−a

2
αk

2

2

)
. (F.51)where aα is a range parameter, while the xαn's 
ontrol the way the shape of theGaussian fun
tion is modulated by powers of k2. The inverse Fourier transformreads

Gα(s) =
1

(2π)3/2a3

[
∑

n

xαn

(
−1

2

)n (a
s

)He2n+1

(s
a

)]
exp

(
− s2

2a2
α

)
, (F.52)where He2n+1 is a �probabilist's� Hermite polynomial [Abr64℄. The integral in Eq.(F.48) 
an be evaluated by Gauss-Hermite integration [Pre92℄, whi
h is based onthe formula

∫ ∞

−∞
f(x)e−x2

=

N∑

i=1

wi f(xi) (F.53)



192 APPENDIX F. SEPARABLE FORCE IN SPHERICAL SYMMETRYwhere the xi are the roots of HN(x), the (more 
ommon) �physi
ist's� Hermitepolynomial1. To apply the formula above, one needs to perform the 
hange ofvariable x = s
aα

√
2
, whi
h depends on the range aα. For the sake of performan
e,one should use a single variable for all form fa
tors, as the Bessel fun
tions have tobe evaluated for ea
h integration point : di�erent sets of si stemming from ea
h setof xi would multiply an important 
ontribution to the CPU time by the number ofform fa
tors. It is advisable to simply re-express Gα(s) as

Gα(s) =
1

(2π)3/2a3

[
∑

n

xαn

(
−1

2

)n (aα

s

)He2n+1

(
s

aα

)]

× exp

[
−
(

1

2a2
α

− 1

2a2max) s2

]
exp

(
− s2

2a2max) , (F.54)where amax = maxα(aα), and use the variable x = s
amax√2

. The sign of the argmentof the �rst exponential guarantees that it is a well-behaved fun
tion whi
h poses noproblem with the quadrature s
heme.F.3.3 Coulomb expansion form fa
torThe separable representation for a trun
ated Coulomb potential involves the formfa
tor gα(k) =
√

2π j2
α(ak

2
). The inverse Fourier transform yields

Gα(s) =
1√

2πa2

{
1
s
Pα

(
1 − 2( s

a
)2
) for s ≤ a

0 for s > a
, (F.55)where Pα is the Legendre polynomial of order α. The integral to be 
al
ulated isthus :

Iα
λ′

1
λ′

2

(k1, k2) =
1√

2πa2

∫ a

0

s Pα

(
1 − 2( s

a
)2
)
jλ′

1

(
k1s

2

)
jλ′

2

(
k2s

2

)
. (F.56)There is no useful analyti
al expression for this integral, but it 
an be evaluatede�
iently by using a Gauss-Legendre integration s
heme [Pre92℄.F.4 Some useful expressionsSpheri
al harmoni
sWe de�ne spheri
al-harmoni
 
oupling 
oe�
ients

CLM
l1m1l2m2

=

√
(2l1 + 1)(2l2 + 1)

(2L+ 1)
〈l10l20|L0〉〈l1m1l2m2|LM〉, (F.57)whi
h thus follow :

CLM
l1m1l2m2

= (−)m2C l1m1

LMl2m2
, (F.58)

= (−)m1C l2m2

l1m1LM , (F.59)
= (−)l1+l2−LCLM

l1m1l2m2
, (F.60)1We shall use only the points xi > 0 to 
al
ulate the integral from 0 to ∞. One 
an show thatthis remains a valid Gauss quadrature s
heme, whi
h is equivalent to the Gauss-Laguerre one witha 
hange of variable u = x2.



F.4. SOME USEFUL EXPRESSIONS 193and
∑

m1m2

CLM
l1m1l2m2

CL′M ′

l1m1l2m2
=

(2l1 + 1)(2l2 + 1)

(2L+ 1)
〈l10l20|L0〉2δLL′δMM ′. (F.61)the later expression involves the 
oe�
ient 〈l10l20|L0〉, whi
h is non-vanishing onlyin the 
ase of even l1 + l2 + L.The following expressions hold:

∫
dr̂ Y l1

m1
(r̂)Y l2

m2
(r̂)Y L∗

M (r̂) =
1√
4π
CLM

l1m1l2m2
(F.62)

Y l∗
m (r̂) = (−)m Y l

m(r̂) (F.63)
Y l

m(−r̂) = (−)l Y l
m(r̂) (F.64)∫

dr̂ Y l
m(r̂)Y l′∗

m′ (r̂) = δll′δmm′ (F.65)
∑

m

Y l
m(r̂)Y l∗

m (r̂′) =
2l + 1

4π
Pl(cos θ) (F.66)

∑

lm

Y l
m(r̂)Y l∗

m (r̂′) = δ(r̂ − r̂′) (F.67)where Pl is the lth-order Legendre polynomial, θ the angle between r̂ and r̂′; for
r̂ = r̂′, Pl(cosθ) = Pl(1) = 1.Spheri
al Bessel fun
tionsThe normalization 
ondition for spheri
al Bessels over a �nite interval reads

∫ 1

0

t2dt jl(ait)jl(ajt) = δij
1

2
[j′l(ai)]

2, (F.68)where ai is the ith zero of jl. Additionally, the following integral relations are useful:
∫ ∞

0

r2dr jl(kr)jl(k
′r) =

π

2kk′
δ(k − k′) (F.69)

∫ ∞

0

x2dx e−c2x2

jl(ax)jl(bx) =

√
π

4c3
e
−a2+b2

4c2 bl

(
ab

2c2

) (F.70)where
bl(x) = i−ljl(ix) =

√
π

2x
I
l+

1
2
(x) (F.71)is the modi�ed spheri
al Bessel fun
tion of the �rst kind.
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Appendix GSpheri
al Bessel Fun
tion BasisIn the spheri
al 
al
ulations performed in this work, we use a basis of single-parti
lestates relying on spheri
al Bessel fun
tions, whi
h 
orrespond to the radial part offree spheri
al waves. Labelled jℓ(kr), these fun
tions are the solutions (non-divergentat r = 0) of [
1

r2

d

dr

(
r2 d

dr

)
+

(
k2 − ℓ(ℓ+ 1)

r2

)]
jℓ(kr) = 0. (G.1)Considering an in�nite spheri
ally-symmetri
 square well (a �box�) of radius Rbox,one 
an build the sequen
e of its eigenstates. They are given by Eq. (G.1) withthe boundary 
ondition jℓ(kRbox) = 0, whi
h produ
es a dis
rete spe
trum for ea
hvalue of ℓ. Let us 
all ki,ℓ, i = 1 . . . Nℓ the solutions of the above in the interval

[0, k
ut]. In the 
ase ℓ = 0, j0(kr) = sin(kr)/kr and ki,0 = i(π/Rbox).A
tual basis fun
tions are de�ned in the dire
t produ
t of three-dimensional 
oor-dinate spa
e and spin spa
e, and should be normalized. First in a spin-independent
ase, one 
an 
he
k that su
h a basis 
an be taken as
φi,ℓmℓ

(r) =

√
2

R3box 1

|j′ℓ(ki,ℓRbox)| jℓ(ki,ℓr)Y
ℓ
mℓ

(r̂), (G.2)where j′ℓ is the derivative of jℓ with respe
t to its argument. Next we apply spin-orbit
oupling to the latter, yielding
ϕi,ℓjm(r, σ) = 〈ℓmℓsσ|jm〉 φi,ℓmℓ

(r), (G.3)
= 〈ℓmℓsσ|jm〉 ui,ℓ(r)

r
Y ℓ

mℓ
(r̂), (G.4)

ui,ℓ(r) =

{ √
2

R3box r
|j′ℓ(ki,ℓRbox)| jℓ(ki,ℓr) for r < Rbox

0 for r ≥ Rbox (G.5)Spheri
al Bessel fun
tions o

ur naturally in the 
oordinate separation methodsummarized by Eq. (F.42), whi
h 
an be simpli�ed when using the basis above. Letus 
onsider the de�nition of ǔ fun
tions (Eq. (F.29), with adapted notation)
ǔi,ℓ(k) = k

∫ ∞

0

rdr jℓ(kr) ui,ℓ(r), (G.6)Repla
ing ui,ℓ(r) with Eq. (G.5) yields
ǔi,ℓ(k) =

√
2

R3box 1

|j′ℓ(ki,ℓRbox)|k ∫ Rbox
0

r2dr jℓ(kr) jℓ(ki,ℓr), (G.7)195



196 APPENDIX G. SPHERICAL BESSEL FUNCTION BASISwhi
h 
an be evaluated, albeit into a non-trivial fun
tion. However, it is possible toa
hieve 
onsiderable simpli�
ation by performing the above integral with an in�niteupper bound. This amounts to 
ontinuing the wave fun
tion u(r) beyond the limitsof the box. The spheri
al expansion for the two-body wave fun
tion will thus 
ontain
omponents 
orresponding to parti
les outside of the box. Nevertheless, sin
e wework with �nite-range intera
tions, we are only interested in 
omponents with aninterparti
le separation less than this range. Consequently, spurious 
omponents 
anonly be expe
ted to have an e�e
t near the box boundary. The pair tensor, in turn,
an be expe
ted to have non-vanishing 
omponents only in regions of signi�
antdensity in the nu
leus, whi
h means the e�e
tive pairing �elds themselves vanishoutside of the nu
leus. This approximation thus seems reasonable, only having tobe 
on�rmed by 
he
king the independen
e of results with respe
t to the box radius,as should always be 
he
ked anyway.Using the normalization 
ondition in the 
ontinuum, Eq. (F.69), to evaluateEq. (G.7), yields
ǔi,ℓ(k) =

π√
2R3box 1

ki,ℓ|j′ℓ(ki,ℓRbox)| δ(k − ki,ℓ). (G.8)Redu
ed two-body basis fun
tions then read
Ψ̆i1ℓj,i2ℓj(R) = −(2j + 1)

4π

π2

2R3box 1

|j′ℓ(ki1,ℓRbox) j′ℓ(ki2,ℓRbox)| ψ̌α

ℓ (ki1,ℓ, ki2,ℓ;R),(G.9)re
alling the expression for ψ̌α

ℓ (F.41)
ψ̌

α

ℓ (k1, k2;R) =
16

π

∑

ℓ′λ′

(−)ℓ−ℓ′ (2ℓ
′ + 1)(2λ′ + 1)

2ℓ+ 1
〈ℓ′0λ′0|ℓ0〉2 jℓ′(k1R) jℓ′(k2R)

×
∫
s2 Gα(s) jλ′

(
k1s

2

)
jλ′

(
k2s

2

) (G.10)The fun
tion Ψ̆ 
an thus be expressed as
Ψ̆i1ℓj,i2ℓj(R) = −(2j + 1)

4π

8π

R3box 1

|j′ℓ(ki1,ℓRbox) j′ℓ(ki2,ℓRbox)|
×
∑

l′λ′

(−)ℓ−ℓ′ (2ℓ
′ + 1)(2λ′ + 1)

2ℓ+ 1
〈ℓ′0λ′0|ℓ0〉2 jℓ′(ki1,ℓR) jℓ′(ki2,ℓR)

×
∫
s2 Gα(s) jλ′

(
ki1,ℓs

2

)
jλ′

(
ki2,ℓs

2

)
. (G.11)The integral 
an be evaluated with the methods exposed in appendix F.3, whi
h
ompletes the set of equations we need to work with a separable, �nite-ranged andnon-lo
al for
e in the parti
le-parti
le 
hannel of HFB equations.
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Contraintes mi
ros
opiques et au-delà du 
hamp moyen pour une nou-velle génération de fon
tionnelles de la densité nu
léairesLa stru
ture nu
léaire 
onnaît une véritable renaissan
e liée au développementdes fais
eaux d'ions radioa
tifs (tels les fais
eaux SPIRAL 1 et 2 au GANIL). Lesméthodes de 
hamp moyen et/ou de fon
tionnelle de la densité sont parmi les outilsles plus généraux et les mieux adaptés pour étudier les noyaux qui sont produitsauprès de tels instruments. Le but du travail présenté est de montrer 
ommentles fon
tionnelles existantes peuvent être améliorées a�n d'avoir un meilleur pouvoirprédi
tif dans les régions en
ore peu explorées de la 
arte des noyaux. Il est en parti
-ulier proposé de mieux modéliser la dépendan
e en isospin de l'intera
tion e�e
tive,et l'intérêt d'y ajouter un 
ouplage de type tensoriel est étudié. Nous mesuronségalement l'apport de 
al
uls au-delà de l'approximation du 
hamp moyen lors dela 
onstru
tion de la fon
tionnelle. Finalement, nous tentons d'établir le lien ave
l'intera
tion nue entre nu
léons pour la des
ription de l'appariement, parti
ipantainsi au développement d'une fon
tionnelle non-empirique.
Mi
ros
opi
 and Beyond-Mean-Field Constraints for a New Genera-tion of Nu
lear Energy Density Fun
tionalsNu
lear stru
ture is subje
t to a major renewal linked with the development of ra-dioa
tive ion beams (su
h as the SPIRAL 1 and 2 beams at GANIL). Mean-�eld anddensity-fun
tional methods are among the best suited for studying nu
lei produ
edat su
h fa
ilities. The present work aims at demonstrating how existing fun
tionals
an be improved so as to exhibit a better predi
tive power in little-explored regionsof the nu
lear 
hart. We propose a better des
ription of the isospin-dependen
e ofthe e�e
tive intera
tion, and examine the relevan
e of adding a tensor 
oupling. Wealso show how a new generation of fun
tionals 
an be better 
onstrained by 
onsid-ering results obtained beyond the mean-�eld approximation. Finally, we attemptestablishing a link with the bare nu
leon-nu
leon potential for the des
ription ofpairing, thus parti
ipating in the 
onstru
tion of a non-empiri
al fun
tional.
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