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Résumé des travaux de thèse

Nota Bene: This is an ”extended summary” of the document, in french, which is
mandatory since the thesis is written in english.

La vérification de systèmes informatiques complexes est actuellement un domaine de
recherche très actif en informatique fondamentale. En témoigne la récente attribution
du prix Turing à trois chercheurs de ce domaine : Edmund Clarke, Allen Emerson et
Joseph Sifakis.

La vérification des systèmes dits infinis est un problème ardu, car il s’agit de déter-
miner quels sont les comportements possibles d’un système ayant un nombre très grand,
voire infini, de configurations possibles. Pour déterminer ces comportements, on est
amené à calculer, à partir d’un ensemble de configurations de départ C0, l’ensemble
des configurations accessibles en une étape, Post(C0), puis en un nombre d’étapes quel-
conque, Post∗(C0), appelé ensemble d’atteignabilité.

Plusieurs types de méthodes symboliques sont utilisées pour vérifier, ou tenter de
vérifier, ces systèmes infinis. Nous en détaillerons deux. La première, ce sont les
techniques d’accélération. À la fin des années 1990, elles ont été utilisées pour vérifier
des systèmes avec des files de communication, avec un certain succès. Toutefois, elles
ont le défaut de ne proposer que des semi-algorithmes, c’est-à-dire des algorithmes qui
donnent le bon résultat, quand ils terminent, sachant que leur terminaison n’est pas
garantie. Nous détaillerons plus loin ces techniques d’accélération pour les systèmes
communiquant par files avec une politique FIFO (first in - first out).

La seconde famille de techniques est appelée l’interprétation abstraite. On part du
constat que l’ensemble Post∗(C0) s’exprime comme étant le plus petit point-fixe de la
fonction X 7→ C0 ∪ Post(X). L’idée est alors de calculer une approximation de cet
ensemble non pas dans l’ensemble des ensembles d’états (le treillis concret), mais dans
un ensemble plus simple, appelé treillis abstrait. Il est parfois nécessaire de disposer,
dans ce treillis abstrait, d’un opérateur d’élargissement ∇.

Le principal sujet de recherche de cette thèse est de vérifier des systèmes infinis
avec des files FIFO ou des piles par interprétation abstraite. Les systèmes avec file
FIFO seront modélisés par des automates communicants (CFSM en anglais), comme
par exemple celui représenté sur la figure 1.

7



8 Résumé

0

1

1!open 1!close

2?disconnect

close open

disconnect

0

1

1?open 1?close

2!disconnect

(a) Client (b) Files (c) Serveur

Figure 1: Exemple d’automates communicants (CFSM).

Vérification des systèmes à files FIFO avec les techniques
d’accélération

Principe des techniques d’accélération

Les techniques d’accélération partent du constat que, lorsque l’on veut faire une ex-
ploration de l’espace des états d’un CFSM1, la principale difficulté est de prendre en
compte l’effet d’une boucle de la structure de contrôle. En effet, la partie “linéaire”de la
structure de contrôle ne peut engendrer qu’un nombre fini de configurations, borné par
la taille de la structure. Par contre, une boucle peut générer un ensemble de plus en plus
grand de configurations. Le raisonnement qui sous-tend les techniques d’accélération
est le suivant :� On part d’une représentation exacte de l’ensemble initial de configurations. Cette

représentation est choisie dans une certaine classe, par exemple c’est un langage
régulier L0.� On prouve que, pour tout ensemble L de configurations appartenant à cette classe,
l’ensemble des configurations pouvant être atteintes en itérant la boucle θ un
nombre arbitraire de fois, Post∗θ(L), appartient à cette même classe. En général,
cette preuve est constructive et fournit un moyen de calculer, pour tout langage
L et toute boucle θ, le langage Post∗θ(L).� On explore l’ensemble des états en remplaçant, lorsque l’on rencontre une boucle
θ, l’ensemble L des configurations déjà atteignables par Post∗θ(L).

Le nom d’accélération se justifie car, en ajoutant en une seule opération tous les états
de Post∗θ(L), on accélère considérablement l’exploration de l’ensemble des états. Cette
exploration peut toutefois ne pas terminer. En effet, si on a un nombre infini de boucles,
même en sachant accélérer chaque boucle, on peut avoir toujours avoir de nouvelles
boucles à accélérer.

L’exemple de la figure 2 illustre ce problème. On représente le contenu de la file
par un langage régulier. Une boucle est une série d’émissions de a ou de b. Aussi,

1Les techniques d’accélération s’appliquent également à d’autres types de systèmes infinis, par ex-
emple les automates à compteurs. On ne détaillera ici que les techniques d’accélération conçues pour
l’analyse des systèmes FIFO.
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pour tout langage régulier et toute boucle θ, on a Post∗θ(L) = L.θ∗. On peut imaginer
que l’on commence par accélérer selon la boucle élémentaire !a; on obtient un ensemble
de configurations L1 = a∗. Puis on accélère selon la boucle élémentaire !b; on obtient
L2 = a∗.b∗. Ensuite, on accélère selon la boucle !a!b, on obtient L3 = a∗.b∗.(a.b)∗. On
peut ainsi continuer indéfiniment sans pour autant obtenir l’ensemble des configurations
accessibles, (a + b)∗, sauf à procéder plus astucieusement, en remarquant par exemple
que l’on peut permuter les deux boucles !a et !b.

!a!b

Figure 2: Automate avec des boucles imbriquées.

Cette limitation est commune à toutes les techniques d’accélération. En outre,
chaque technique est limitée par sa représentation de l’ensemble des configurations.
Nous allons maintenant détailler les différentes représentations utilisées pour faire de
l’accélération pour des systèmes FIFO, qui sont :� les Queue-Contents Decision Diagrams (QDD),� les Constrained Queue-contents Decision Diagrams (CQDD),� les Simply Regular Expressions (SRE),� les Semi-Linear Regular Expressions (SLRE).

Queue-Contents Decision Diagrams (QDD)

Les diagrammes de décision pour les contenus de file, ou QDD en anglais, sont des
automates finis représentant le contenu de plusieurs files à la fois. Ils ont été introduits
par [BGWW97]. Un QDD reconnâıt des mots qui sont la concaténation du contenu des
N files : w1♯w2♯ . . . ♯wN . L’ordre des files est arbitraire, et n’a aucune influence sur la
puissance expressive du QDD.

L’intérêt d’utiliser les automates finis pour représenter les contenus de file est que
l’envoi ou la réception d’un message est une opération assez simple sur un automate
fini. Nous reprendrons ces opérations, que nous détaillons sur la figure 3, pour définir
la sémantique abstraite des CFSM.

Les QDD permettent d’accélérer une boucle dont les opérations concernent une
seule file ; si θ est une suite d’émissions et de réceptions affectant une seule file, et L
un langage représentable par un QDD, alors Post∗θ(L) est représentable par un QDD.

En revanche, quand une boucle affecte le contenu de plusieurs files, il n’est pas
toujours possible de représenter l’ensemble des états accessibles après une itération
d’un nombre arbitraire de fois de la boucle. La raison est qu’une telle itération peut
générer un langage non-régulier, comme par exemple le langage {an♯bn|n ≥ 0}. Par
contre, on peut accélérer une boucle qui ne fait pas office de compteur.
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b

a c

b

a c

a

a

Avant l’envoi de a Après l’envoi de a
Langage: a + b + b.c Langage: a.a + b.a + b.c.a

b

a c

b

a c

Avant la réception de a Après la réception de a
Langage: a + b + b.c Langage: ε

Figure 3: Opérations !a et ?a sur un QDD avec une seule file.

On ne peut guère espérer de meilleurs résultats, car on est limité aux ensembles
réguliers. Pour pouvoir accélérer n’importe quelle boucle, il faut utiliser des automates
capables de représenter des ensembles non-réguliers, par exemple les CQDD.

Constrained Queue-Contents Decision Diagrams (CQDD)

Un diagramme de décision des contenus de file contraint, CQDD en anglais [BH99],
associe des automates ”simples” et des formules de l’arithmétique de Presburger. Les
variables de ces formules comptent le nombre de fois où on passe dans une boucle de
l’automate. Par exemple, la figure 4 représente un CQDD reconnaissant l’ensemble
non-régulier {an.bn|n ≥ 1}.

0 1 2a b

a b

F : x(1,a,1) = x(2,b,2)

Figure 4: Exemple de CQDD.

Un CQDD est en fait un ensemble fini de composantes, chaque composante étant:� N automates simples (un par file), et� une formule de Presburger, dont les variables sont associées aux transitions de
tous ces automates.
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Une configuration (c, L1, . . . , LN ) est acceptée par un CQDD si une de ses composantes
reconnâıt les langages L1, . . . , LN en prenant les transitions des automates un nombre
de fois compatible avec la formule de Presburger de cette composante.

L’avantage des CQDD est qu’ils permettent d’accélérer n’importe quelle boucle.
Si un ensemble de configurations L est accepté par un CQDD, alors pour n’importe
quelle boucle θ dans la structure de contrôle d’un CFSM, Post∗θ(L) est aussi accepté
par un CQDD, et on peut le calculer (la preuve de ce théorème donne la construction
de Post∗θ(L)).

Simply Regular Expressions

Contrairement aux deux représentations précédentes, qui étaient basées sur des auto-
mates, les expressions simplement régulières [ABJ98], ou SRE, sont des expressions
régulières ainsi formées :� un atome est une expression (a + ε) avec a ∈ Σ, ou (a1 + a2 + · · · + am)∗ avec

m > 1 et chaque ai étant un lettre de l’alphabet ;� une SRE est une somme de produits d’atomes.

Les SRE sont utilisées pour représenter des contenus de files d’un lossy channel
system, c’est-à-dire d’un CFSM dans lequel les message en transit peuvent être perdus.
Cette propriété justifie que l’on change de représentation, les QDD et CQDD n’étant
pas adaptés à ce type de modèle. Cette représentation permet d’accélérer n’importe
quelle boucle [ABJ98].

Semi-Linear Regular Expressions

Enfin, notons qu’il existe également une représentation basée sur les expressions
régulières pour les CFSM classiques, sans perte de message : les expressions régulières
semi-linéaires [FIS03] :� une expression régulière linéaire est une expression régulière de la forme

x0.y
∗
0 .x1.y

∗
1 . . . xn−1.y

∗
n−1.xn, avec xi des mots sur l’alphabet des messages Σ et yi

des mots non vides;� une expression régulière semi-linéaire est une somme finie d’expressions régulières
linéaires.

Ces expressions permettent de représenter des langages qui sont représentables à la
fois par un QDD et par un CQDD. Il s’agit donc de la représentation la moins expressive
des trois, et elle ne permet pas d’accélérer n’importe quelle boucle.

Bilan des techniques d’accélération pour les systèmes FIFO

Les représentations proposées permettent donc d’accélérer n’importe quelle boucle de la
structure de contrôle, que ce soit pour les CFSM ou les lossy channel systems. C’est un
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résultat satisfaisant, mais qui ne permet toutefois pas de dépasser la limite commune à
toutes les techniques d’accélérations, à savoir l’impossibilité d’obtenir un algorithme qui
termine à coup sûr. Même si, dans certains cas, on peut garantir la terminaison de ces
semi-algorithmes, il serait intéressant d’avoir, en plus de ces techniques d’accélération,
une méthode qui termine dans tous les cas, quitte à devoir faire des approximations.

Un treillis abstrait basé sur les langages réguliers

Le treillis abstrait des langages réguliers

Nous proposons un treillis abstrait, basé sur les automates finis, pour abstraire des
contenus de files. Ce treillis permet d’utiliser les analyses classiques, définies dans le
cadre de l’interprétation abstraite, pour l’analyse des CFSM. On obtiendra alors un
algorithme qui termine toujours, qui permet de vérifier des propriétés de sûreté mais
qui procède à des sur-approximations au cours des calculs ; aussi on pourra, au mieux,
déterminer qu’une propriété est vérifiée, ou répondre qu’on ne sait pas si elle est vérifiée
ou non.

L’intérêt d’utiliser les automates finis est que les algorithmes codant les opérations
ensemblistes (union, intersection, test d’inclusion, test du vide) sont bien connus, et que
l’émission et la réception d’un message se traduisent par des opérations assez simples
sur les automates, comme pour les QDD.

Cependant, ce treillis est de hauteur infinie, c’est-à-dire qu’il contient des suites
infiniment croissantes. Il est alors nécessaire de définir un opérateur d’élargissement.

Opérateur d’élargissement

Le principe de cet opérateur d’élargissement est de fusionner certains états de
l’automate A = (Q,Σ, Q0, Qf , δ) équivalents pour la relation ≈col

k définie récursive-
ment par :� q1 ≈

col
0 q2 si col(q1) = col(q2), où col : Q→ [1..Ncol] est une fonction de coloriage.� q1 ≈
col
k+1 q2 si q1 ≈

col
k q2 et :

∀a ∈ Σ,∀q′1 ∈ Q, q1
a
→ q′1 =⇒ ∃q′2 ∈ Q : q2

a
→ q′2 ∧ q′1 ≈

col
k q′2

∀a ∈ Σ,∀q′2 ∈ Q, q2
a
→ q′2 =⇒ ∃q′1 ∈ Q : q1

a
→ q′1 ∧ q′1 ≈

col
k q′2

L’opération de quotient A/ ≈col
k a pour résultat l’automate A/ ≈col

k =
〈Σ, Q,Q0, Qf , δ〉 :� Q ⊆ ℘(Q) est l’ensemble des classes d’équivalence, notées q̄ ⊆ Q,� Q0 , {q̄ | q̄ ∩Q0 6= ∅},� Qf , {q̄ | q̄ ∩Qf 6= ∅},� δ = {(q̄, a, q′) | (q, a, q′) ∈ δ}.
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La fonction de coloriage permet de distinguer certains états. Par défaut, nous
prendrons une fonction de coloriage standard qui différencie les états initiaux et finals
du reste des états. Ainsi, nous avons l’assurance de conserver, lors de l’élargissement,
le même ensemble de préfixes (de longueur 1) et les suffixes (de longueur k).

Cette opération sur les automates définit une opération sur les langages réguliers,
en identifiant L et sa représentation canonique sous forme d’automate minimal AL.
On définit ρcol

k (L) , AL/ ≈col
k et L1∇kL2 , ρk(L1 ∪ L2), en utilisant la fonction de

coloriage standard.

∇k est un opérateur d’élargissement. La preuve de ce théorème repose sur le fait
que le nombre d’états de l’automate AL/ ≈col

k est borné par un nombre indépendant
de l’automate AL. Par conséquent il n’y a qu’un nombre fini d’automates de ce type.

Analyse approchée des CFSM

Il s’agit d’une analyse “en avant”. On part d’un état initial où les files sont vides, qui
est représenté par le langage L0. On attribue une valeur à k puis on calcule la suite
croissante de langages définie par Li+1 = Li∇kPost(Li), jusqu’à convergence de cette
suite. On obtient alors une sur-approximation de l’ensemble d’atteignabilité.

S’il n’y a qu’une seule file, il suffit d’utiliser les opérateurs définis précédemment.
En revanche, lorsque le CFSM a N files, nous avons le choix entre utiliser N automates
pour représenter séparément le contenu de chaque file, ou d’utiliser un seul automate,
style QDD, pour représenter le contenu de toutes les files. Si on utilise un QDD,
on veillera à identifier les parties de l’automate qui reconnaissent chaque file et à ne
pas fusionner des états qui appartiennent à des parties différentes, lorsque l’on fait
l’opération d’élargissement. Il suffit pour cela de modifier la fonction de coloriage
standard, et de veiller à ce que deux états de deux parties différentes n’aient pas la
même couleur. À part cette modification, la définition de l’opérateur d’élargissement
est identique à celle des CFSM avec une seule file.

Dans le premier cas, on parlera d’analyse non-relationnelle. Dans le second cas,
l’analyse sera dite relationnelle car elle permet de conserver certaines relations entre
les contenus des différentes files. L’analyse relationnelle est plus précise, mais plus
coûteuse, que l’analyse relationnelle, comme l’illustre l’exemple du protocole de con-
nexion/déconnexion représenté sur la figure 5.

0

1

1!open 1!close

2?disconnect

close open

disconnect

0

1

1?open 1?close

2!disconnect

(a) Client (b) Files (c) Serveur

Figure 5: Le protocole de connexion/déconnexion.
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Les résultats de l’analyse d’accessibilité, avec k = 2, sont donnés ici :

analyse non-relationnelle analyse relationnelle

0, 0 o∗ + o∗.c.(o+.c)∗.o∗ d∗

1, 0 o∗ + o∗.c.(o+.c)∗.o+ d∗

0, 1 o∗ + o∗.c.(o+.c)∗.o∗ d∗

1, 1 o+ + o∗.c.(o+.c)∗.o+ d∗

0, 0 (o.c)∗#ε
+ (o.c)∗#ε
+ (c.o)∗.o.c.(o.c)∗#ε
+ c.(o.c)∗#d

1, 0 ε#d
+ o#ε
+ (o.c)∗.o#ε
+ (c.o)∗#d
+ (c.o)∗.o.(c.o)∗#ε

0, 1 c.(o.c)∗#ε

1, 1 ε#ε
+ (c.o)∗#ε

Dans le cadre de l’analyse relationnelle, on peut montrer que la seconde file contient au
plus un message d, ce que l’analyse non-relationnelle ne détecte pas.

Bilan de l’analyse des CFSM par interprétation abstraite

Le treillis abstraits des langages réguliers permet d’obtenir des analyses d’accessibilité
relativement précises, qui sont même exactes sur les quelques exemples de protocoles
de communication que nous avons examinés. Et, contrairement aux semi-algorithmes
d’accélération, nous pouvons garantir la terminaison de notre algorithme.

Nous aimerions effectuer un travail similaire pour un modèle plus complexe que celui
des CFSM, dans lequel les automates peuvent contenir des variables et les messages
peuvent porter des valeurs. Mais pour un tel modèle, les langages réguliers ne suffisent
plus, aussi nous utiliserons des automates plus complexes, les automates de treillis.

Les automates de treillis

Les automates de treillis sont conçus pour manipuler facilement des langages définis
sur un alphabet infini.

Définition et discussion

Les automates de treillis sont des automates finis dont les transitions sont étiquetées
par les éléments d’un treillis atomique et non d’un alphabet fini. Ce treillis est supposé
avoir un nombre infini d’atomes, qui constituent alors les lettres d’un alphabet infini.

Par exemple, l’automate de treillis représenté sur la figure 6 reconnâıt les séquences
de nombres x0 . . . xn−1 telles que :� n est impair,
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[0, 1]

[1, 2]

Figure 6: Exemple d’automate de treillis.

La définition simple des automates de treillis pose toutefois plusieurs problèmes.
En particulier, on peut avoir deux automates de treillis équivalents en terme de
langage mais dont les transitions sont incomparables. Par exemple, la figure 7
montre deux automates qui reconnaissent le même ensemble de mots à une lettre2

L = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0), (3, 1)}, mais qui sont in-
comparables: les transitions ne sont ni égales, ni incluses les unes dans les autres.

-1 0 1 2 3 4

-1

0

1

2

3

1 2

{0 ≤ x ≤ 3,
0 ≤ y ≤ 1 }

{0 ≤ x ≤ 1,
1 < y ≤ 2 }

1 2

{1 < x ≤ 3,
0 ≤ y ≤ 1 }

{0 ≤ x ≤ 1,
0 ≤ y ≤ 2 }

-1 0 1 2 3 4

-1

0

1

2

3

Figure 7: Deux automates de treillis équivalents mais incomparables.

Pour faciliter les opérations sur les automates de treillis, on introduit une partition
finie de l’ensemble des atomes, donnée par une certaine fonction π : Σ → Λ, où Σ est
un ensemble fini et Λ notre treillis atomique. Les transitions seront alors fusionnées
pour ne garder qu’une seule transition par classe d’équivalence. Cette fusion des tran-
sitions engendre une sur-approximation du langage reconnu. Par exemple, la figure 8
illustre l’automate obtenu quand on fusionne les transitions d’un des deux automates
précédents. Le treillis utilisé est celui des polyèdres convexes [CH78].

1 2

{0 < x ≤ 3,
0 ≤ y ≤ 2,
x + 2y ≤ 5}

-1 0 1 2 3 4

-1

0

1

2

3

Figure 8: Automate de treillis fusionné selon la partition triviale σ0 → R2.

Cette notion d’automates de treillis partitionnés (PLA) permet aussi de définir
la “forme” d’un automate A, shape(A), qui est l’automate fini obtenu en remplaçant
chaque transition par la classe d’équivalence à laquelle elle appartient. Cette forme

2Ici, les atomes sont les couples d’entiers.
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1 2 3

4 5

[3, 5] [−7,−5] [4, 6]

[1, 2]

[−3,−1]

[3, 5]

2,4 3,5

1,2 3

[1, 5]

[−7,−1]

[−7,−5]

[3, 6]

[4, 6]

2,4

1,2 3,5

[1, 5] [−7,−1]

[−7,−5]
[3, 6]

(a) Automate (b) Automate (c) Automate
de départ déterministe minimal

Figure 9: Déterminisation et minimisation d’un automate de treillis avec la partition
{]−∞, 0], [0,+∞[}.

servira aux opérations de déterminisation et de minimisation, ainsi qu’à la définition
d’un opérateur d’élargissement.

Opérations de déterminisation et de minimisation

L’algorithme de déterminisation des automates de treillis est semblable à celui des au-
tomates finis : on considère les ensembles d’états de l’automate de départ et, à chaque
étape, on regarde pour chaque classe d’équivalence σ ∈ Σ l’ensemble des états pouvant
être atteints par une transition étiquetée par un élément de cette classe d’équivalence.
La seule différence est que l’on fusionne au cours de ce processus, les transitions ap-
partenant à la même classe d’équivalence. L’algorithme de minimisation suit le même
principe : on minimise la forme de l’automate de treillis, en fusionnant au besoin les
transitions. La figure 9 donne un exemple d’application de ces deux algorithmes.

Ces algorithmes engendrent des sur-approximations : les automates det(A)
et min(A) reconnaissent des langages plus grands que A. Cependant, ces sur-
approximations sont optimales au sens où :

Pour tout automate fusionné et déterministe A′ basé sur la même partition
que A, A ⊑ A′ =⇒ det(A) ⊑ A′.

On a un résultat similaire pour la minimisation. Pour tout PLA A, il y a un unique
automate minimal Â basé sur la même partition π tel que :

1. A ⊑ Â,

2. pour tout automate minimal A′ basé sur la même partition π, A ⊑ A′ =⇒ Â ⊑
A′.

Nous avons alors une représentation canonique des langages reconnus par auto-
mates de treillis, sous forme d’automates minimaux, appelés Normalized Lattice Au-
tomata (NLA). Nous allons utiliser cette représentation pour définir un opérateur
d’élargissement.
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Opérateur d’élargissement

Pour définir un opérateur d’élargissement sur les automates de treillis, nous supposons
que le treillis Λ est muni d’un opérateur d’élargissement ∇Λ. On va alors combiner cet
opérateur avec l’opérateur ρk étendu aux automates de treillis.

Cet opérateur ρk consiste, comme pour les automates finis, à fusionner les états
équivalents pour la relation ≈k. La relation ≈k est calculée sur la forme de l’automate
de treillis, et lors du quotient, on fusionne les transitions selon la partition π : Σ→ Λ.

Enfin, si A1 et A2 sont deux NLA définis sur la même partition, avec A1 ⊑ A2, on
définit l’opérateur d’élargissement ∇k ainsi :

A1∇kA2 =

{
ρ̂k(A2) si shape(A1) 6= shape(ρk(A2))
A1 ր A2 sinon (ce qui signifie shape(A1) = shape(A2))

où A1 ր A2 est le NLA A qui a le même ensemble d’états que A1 et A2, et des
transitions définies par :

σ ∈ Σ (q, λ1, q
′) ∈ δ1 (q, λ2, q

′) ∈ δ2 λ1, λ2 ⊑ π(σ)

(q, (λ1∇Λλ2) ⊓ π(σ), q′) ∈ δ

Bilan des automates de treillis

Les automates de treillis permettent de représenter assez simplement des langages
réguliers sur les alphabets infinis. Ils étendent des abstractions, par exemples une
abstraction des nombres entiers, à des séquences finies de nombres entiers. Nous pou-
vons ainsi vérifier des systèmes communiquant par files où les messages, dans les files,
portent des valeurs que l’on sait abstraire.

Vérification des Symbolic Communicating Machines et analyse
inter-procédurale

Vérification des Symbolic Communicating Machines

Le modèle des automates communicants symboliques (SCM) est une extension du mod-
èle des CFSM ; les automates peuvent avoir un nombre fini de variables, et les messages,
dans les files, sont aussi paramétrés. C’est un modèle assez proche de ceux proposés
dans la littérature, comme par exemple [HSS+93, LRMS96]. La figure 10 est une mod-
élisation d’un protocole de fenêtre glissante, exprimé dans le formalisme des SCM.

Dans la suite, on supposera que le SCM a n variables et p paramètres, que l’on
suppose tous de type identique. Cette supposition sert à simplifier un peu l’écriture
de la sémantique et ne restreint en rien la généralité de l’approche. On va utiliser
le treillis des polyèdres convexes (ou tout autre treillis abstrait adapté aux domaines
des variables), avec la notation V (n) = Pol(Qn). Une valeur abstraite sera un couple
formé d’un polyèdre de dimension n, pour les valeurs des variables, et d’un automate
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error

run

s:=0
a:=0

s<a+10
1!data(s)
s:=s+1

p=a+1
2?ack(p)
a:=a+1

p>a+1
2?ack(p)

data(1) data(0)

ack(0) ack(1)
wait ack

v:=0

1?data(p)
v:=p

p=v
2!ack(p)

(a) Émetteur (b) Files (c) Receveur

Figure 10: Protocole à fenêtre glissante simplifié

de treillis construit sur le treillis V (p) = Pol(Qp), représentant le contenu possible des
files.

La sémantique abstraite des SCM sera donnée naturellement, pour une transition,
par la suite d’opérations suivante :

1. On fait l’intersection de la garde avec la valeur abstraite courante, obtenant ainsi
les valeurs possibles des paramètres ;

2. On modifie alors l’automate de treillis représentant le contenu des files, de la
même manière que pour les automates finis. On conserve ainsi, dans les files, les
valeurs des paramètres ;

3. On répercute l’effet des affectations sur le polyèdre qui abstrait les valeurs des
variables.

Cette sémantique“standard”a cependant un défaut : elle ne conserve aucun lien en-
tre la valeur des paramètres (abstraites dans l’automate de treillis) et la valeur des vari-
ables. Ce qui donne, en pratique, des résultats assez mauvais quand il s’agit d’analyser
des protocoles où la valeur des variables dépend fortement des valeurs passées dans les
files.

Pour pallier à ce défaut, nous définissons une sémantique“non-standard”dans laque-
lle on conservera, dans l’automate de treillis, la valeur des variables et la valeurs des
paramètres. Autrement dit, on aura un automate bâti sur le treillis V (n+p) au lieu du
treillis V (p).

Avec une telle sémantique, il faut veiller à ce que les valeurs des variables, dans
les files, correspondent bien aux affectations que l’on fait. Aussi la sémantique d’une
affectation modifiera non seulement le polyèdre “à l’extérieur” de l’automate de treillis,
mais aussi chaque transition de cet automate. Les opérations abstraites sont donc plus
coûteuses, mais cela en vaut la peine, car cette sémantique permet d’obtenir de bien
meilleures approximations.
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Analyse inter-procédurale

L’analyse des SCM était la première motivation de notre travail sur les automates de
treillis. Toutefois, nous estimons que ce type d’automates est aussi adapté à l’analyse
inter-procédurale, où on tient compte non seulement du point de retour, mais aussi
des valeurs des variables locales (paramètres) passées dans la pile lors de l’appel à des
procédures.

Plus formellement, un programme est défini comme un ensemble de procédures ;
chaque procédure Pi a un ensemble de variables locales LVar i, un ensemble de
paramètres d’appel ~fpi ⊆ LVar i et un ensemble de paramètres de retour ~fr i ⊆ LVar i.
Lors de l’appel d’une procédure, on empilera un registre d’activation 〈k, e〉 ∈ Act =
K × LEnv qui contient l’adresse de retour k ∈ K, et un environnement attribuant
une valeur aux variables locales passées en paramètre. La pile sera donc un mot sur
l’alphabet infini des registres d’activation.

Si l’on a une abstraction des environnements ℘(LEnv) −−→←−− Λ, on peut abstraire
un ensemble de valeurs possibles de la pile d’appel par un automate de treillis, selon
l’abstraction :

℘(Act+) −−−→←−−−α
γ

K → Λ×Reg(K × Λ)

Pour le choix de la partition de K × Λ, on peut prendre tout naturellement π(k) =
{k} × ⊤Λ.

La sémantique abstraite se définit alors classiquement en empilant ou dépilant la
valeur des registres d’activation. Ainsi, si on a une valeur abstraite (Y, F ) ∈ Λ ×
Reg(K×Λ), après un appel au point de contrôle c, on aura une nouvelle valeur abstraite
(Y ′, ({c}, Y ) · F ).

Avec cette sémantique, on peut faire des analyses en avant ou des analyses en arrière,
grâce à un calcul de point-fixe. Contrairement à l’analyse des SCM, on n’a pas besoin
ici d’une sémantique non-standard ; en effet, on utilise à la place l’égalité des valeurs
entre paramètres formels et paramètres effectifs.

Bilan de la vérification des SCM et de l’analyse inter-procédurale

Une fois que l’on a défini les automates de treillis, il est assez facile de les employer pour
vérifier des systèmes à files ou à pile avec des alphabets infinis. Pour les systèmes à
files, à notre connaissance, il n’y a pas d’autres méthodes capables de traiter ce genre de
systèmes avec des approximations comparables. Pour les systèmes avec piles d’appels,
la possibilité de jouer avec les paramètres de l’opérateur d’élargissement en fait un outils
très souple et capable de faire des analyses précises.

Un analyseur a été programmé pour faire de telles analyses, et est détaillé au
chapitre 6. Il emploie une bibliothèque d’automates de treillis, programmée en Ob-
jective CAML.
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Conclusion

Dans cette thèse, nous avons proposé des treillis abstraits, basés sur des langages
réguliers, pour vérifier des systèmes communiquant par files.

Nous avons d’abord considéré les CFSM, qui ont un alphabet fini de messages,
et nous avons utilisé un treillis basé sur les automates finis. L’analyse par inter-
prétation abstraite des CFSM offre alors une alternative intéressante aux techniques
d’accélération.

Puis nous avons étendu ces travaux à l’analyse des SCM, en utilisant des automates
de treillis pour représenter les contenus de file, qui ont alors un alphabet infini de
messages. Ces automates de treillis se sont également révélés utiles pour l’analyse
inter-procédurale.

Nos travaux en cours portent sur :� l’amélioration de l’analyseur, pour le rendre plus simple d’emploi et faire des
analyses plus puissantes ;� la synthèse de contrôleurs pour des systèmes à files, en utilisant les abstractions
définies dans la thèse ;� et l’utilisation des outils développés dans un cadre autre que l’interprétation ab-
straite. Par exemple, on peut réutiliser l’opérateur ρk défini pour les langages
réguliers pour faire du raffinement d’abstractions.



Introduction

How can we trust a machine ? This simple question is, for several reasons, an important
issue of fundamental computer science. The first reason is that nowadays, computers
and other electronic devices are omnipresent: they are present, sometimes hidden,
in cars, planes, trains, credit cards, mobile phones, etc. Our banking system, our
telecommunication networks, our society relies on computers, on softwares, on machines
so complex that they can only be conceived by teams of engineers.

The second reason is that those machines are sensitive to the smallest mistake.
Unlike the humans, who can understand their mistakes and correct them, a computer
does not think, does not wonder whether what it is currently doing is right or wrong.
Since the cost of a single bug can be greater than 100 millions dollars, like the one that
caused the explosion of the fist Ariane 5 rocket, one cannot tolerate the slightest bug
in a critical system.

The third reason is that human beings cannot check a software without the help of
an automatic tool, since a software may contain thousands or millions of instructions,
each one being a possible cause of a bug. This justifies the development of some tools,
which can check automatically all the instructions of a software.

When conceiving automatic verification tools, one is confronted to a theoretical
limitation found by Alan Turing. He imagined a programmable machine, later called
a Turing machine, and demonstrated that we cannot write a program determining if
any other program terminates. The consequences of this theorem is that there is no
hope of finding a program that can automatically verify a Turing-powerful system, i.e.
a system that can do the same functions as a Turing machine. Examples of Turing-
powerful systems are the computers, if we consider they have an infinite memory.

So, computer scientists and engineers have developed some automatic or semi-
automatic techniques ensuring that the considered system behaves as expected. The
first method is to perform a lot of tests on the system. The tests may be either man-
ually or automatically generated. Testing is useful at detecting bugs, but cannot give
a proof of correctness of the system. This proof is given by a formal verification of the
system, like model checking.

In the early eighties, Edmund Clarke, Allen Emerson and Joseph Sifakis introduced
model checking, and recently won the Turing Award for this work. The model checking
framework provides the algorithmic means to determine whether an abstract model,
i.e. a formal description of the system, satisfies a specification, i.e. a formal expression
of the expected behavior of the system (cf. Section 1.2). It relies on an exhaustive
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exploration of the state space of the model, and its result is the guarantee that the
model satisfies its specification, or a counter-example. The principal limitation of this
method is its complexity, leading to the state explosion problem on larger systems. The
model checking techniques were improved by some efficient symbolic representation of
the set of states, like BDDs [MO83]. But even with those improvements, the verification
of infinite systems is only possible if one impose restrictions:� on the model (e.g. we restrict ourselves to finite systems, or to well-structured

systems), or� on the kind of properties we can check.

Another approach to the verification of infinite systems is the one based on the
abstract interpretation framework [CC77a]. The principle of abstract interpretation is
to consider an abstraction of the state space, called an abstract domain, which has a
lattice structure. In this abstract domain, we can easily obtain an over-approximation
of the behavior of the system. A widening operator (cf. Section 1.4) ensures that this
computation terminates, usually in only a few computation steps.

Compared to model checkers, the analyzers based on abstract interpretation are
thus generally less costly, but can only answer “yes” or “I don’t know” to the question
“does this system satisfy this property?”. This is due to the over-approximations made
by the static analyzers (cf. Section 1.4). Static analyzers are generally employed to
optimize compilers or to certify softwares.

The abstract interpretation theory is the framework of this thesis. But instead of
verifying classical softwares, we aim at the verification of communication protocols and
other asynchronous systems. Communication protocols are employed by the large-scale
communication networks, like the Arpanet/Internet. [BZ83] introduced the model of
Communicating Finite-State Machines (CFSMs) to model this kind of protocols.

This model, among other ones like Petri nets [NPW81], FIFO nets [FM82], or
Message Sequence Charts (MSCs) [ITU99], is a formal description of the behavior of
two (or more) machines communicating through unbounded FIFO queues. However,
[BZ83] also proved that this model is Turing-powerful if there are at least two queues,
which implies that most verification problems are undecidable when applied to a CFSM.

Despite this theoretical limitation, some researchers proposed some semi-algorithms
for the verification of safety properties of FIFO channel systems. Those algorithms rely
on the principle of loop acceleration: they first compute in what configuration we are
after taking a given loop θ an arbitrary number of times. If this computation is possible
for any loop of the transition system, then we have an efficient semi-algorithm aiming
at model checking the FIFO channel system. The acceleration techniques for FIFO
channel systems are detailed in Chapter 2.

However, this method can only give exact semi-algorithms, i.e. algorithms which
may not terminate, but which give the exact result if they eventually terminate. One
purpose of this thesis was to find an algorithm that always terminates but may only
return an over-approximation of the actual result (cf. Chapter 3). This method is
based on the abstract interpretation framework.
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The main idea of this method is to represent all possible contents of the queues by
regular languages. The actual symbolic representation of the queue content is a finite
automaton. With this representation, the operations involving the queues are quite
easy: sending a message in a queue, or receiving a message from the queue is simply
adding or removing some states and/or transitions in the automaton representing the
content of this queue. So, the collecting semantics (where one reasons in terms of set
of configurations) of a CFSM is defined by a small set of automata operations (cf.
Chapter 3).

The originality of this method is to define a widening operator adapted to the regular
languages representing the queue contents. The principle of this operator is to merge
states of the automaton that are equivalent with respect to the k-depth bisimulation
relation.

This approximate reachability analysis gave good results when we tested it on some
examples, but we want to tackle more challenging protocols. The CFSM processes
admit only a finite control structure, whereas real protocols often have integer/real
variables and timers. So we looked at an extension of the CFSM model: the Symbolic
Communicating Machines (SCMs) model.

An algorithm aiming at the verification of SCMs has to deal not only with the same
issues as the ones for CFSMs, but also with the following particularity of the SCM
model. While the alphabet of messages of a CFSM is finite, the messages of a SCM can
carry the value of an integer parameter (or other types of parameters). The content of
the queues is therefore a finite word over the infinite domain of the parameters DP .

The classical approach to words over an infinite alphabet is to restrict the kind of
operations on the infinite part (e.g. the only operation allowed is to test whether two
values are equal) and to define operators (like “next letter” or “previous letter”) so that
the logic is decidable [NSV01].

We choose a different approach. Since there are well-known lattices to abstract DP ,
like the lattice of intervals or the lattice of convex polyhedra, we wonder whether we
can combine those classical abstract lattices with the regular languages, so that we have
an abstraction of L(DP ) = 2(D∗

P ) by a new kind of regular languages:

DP
γ
←− Λ

⇓

L(DP )
Γ
←− new kind of regular languages ?

We introduce the lattice automata to define this new abstract domain. A lattice
automaton is like a finite automaton, except that the transitions are labeled by ele-
ments of a lattice Λ instead of letters of a finite alphabet Σ. The operations on lattice
automata are similar to the ones on finite automata (cf. Chapter 4). Some classical
operations, like determinization and minimization, are not always feasible, depending
on the lattice Λ. If Λ is an atomic lattice (cf. Section 1.3), we can define “determiniza-
tion” and “minimization” algorithms, using a partition of the atoms of Λ. Using the
minimization algorithm, we can normalize any lattice automaton A, and give a canon-
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ical representation of the language recognized by A. The actual abstract lattice we
consider is the lattice of normalized lattice automata (NLAs).

The next step is to define a proper widening operator, which is mandatory since
the lattice of NLAs is of infinite height (cf. Section 1.4). This widening operator is
presented in Chapter 4. Its principle is to combine the widening operator defined in
Chapter 3, and the widening operator of the lattice Λ.

We then define an approximated reachability analysis on some SCMs, employing
this newly defined widening operator. The results are presented in Chapter 5. The
experiments showed that with the standard abstract semantics of SCMs, the analysis
was too imprecise. This is the reason why we defined a more sophisticated abstract
semantics, where the abstract values, in the queues, are approximations of the values
of the variables and of the parameters.

Chapter 5 also presents an inter-procedural analysis based on lattice automata.
“Inter-procedural analysis” means that we can verify properties on programs with pro-
cedures calls. When a procedure is called, the return address3 and the local variables
of this procedure are pushed onto the stack. We can thus represent the content of this
call stack by a finite word over the infinite alphabet K × LEnv , where K is the set of
control points of the program (the return address) and LEnv is the set of environments,
which give the values of the local variables. We then abstract words representing stack
contents in the same way as what we did for words representing queue contents.

Finally, Chapter 6 presents an implementation of lattice automata and of the ana-
lyzer employed for the experiments of Chapter 5. The lattice automata library and the
analyzer are written in the Objective CAML language.

3The return address is the control point of the program that comes just after the procedure call.
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Preliminaries

This chapter presents the key notions needed for the understanding of the sequel of the
thesis.

We first present the model of transition systems and the model of Communicat-
ing Finite-State Machines (CFSMs). Transition systems are employed in all fields of
fundamental computer science, whereas CFSMs are a useful model for communication
protocols and asynchronous systems. CFSMs will be employed in Chapters 2 and 3,
and an extension of this model, the Symbolic Communicating Machines, in Chapter 5.

We then explain, with some examples, how one can verify whether a transition
system satisfies a safety property. In the following chapters, we only deal with safety
properties.

We remind the definition of partial orders and lattices, and introduce the abstract
interpretation framework. Abstract interpretation is the main framework of the meth-
ods developed in this thesis.

Finally, we briefly talk about regular languages and finite automata. Finite au-
tomata, as a canonical representation of regular languages, are employed in Chapters
2 and 3. We also define a new kind of finite-state automata in Chapter 4.

1.1 Transition Systems and Communicating Finite-State

Machines

1.1.1 Transition Systems

Definition. The model of transition system is widely employed by computer scien-
tists. It assumes that the modeled system has some identifiable states (or configura-
tions) and can go from one configuration to another according to a transition rule. This
discrete model1 gives a mathematical description of the behavior of automata, robots
and other machines, and computer programs. For example, we can model the behavior

of a lamp with two configurations (on and off ) and two transitions (off
switch on
−→ on

1The word “discrete” means that the systems has not a continuous evolution but “jumps” from one
configuration to another.
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and on
switch off
−→ off ). Figure 1.1 depicts a transition system modeling the behavior of

the lamp.

off on
switch on

switch off
Figure 1.1: Modeling of a lamp

In the lamp example, transitions are labeled by events: it is a discrete event system,
because the system changes when a discrete event occurs. The following definition
formalizes this notion.

Definition 1.1 (Transition system) A discrete transition system is a tuple
〈C,C0,→〉 where:� C is a countable set of configurations,� C0 ⊆ C is a set of initial configurations,� →⊆ C × C is a transition relation.

A labeled transition system (or discrete event system) is a transition system 〈C,Σ, c0,→
〉 with a set of labels Σ and a transition relation →⊆ C × Σ× C.

A (labeled) run c0
(σ1)
→ c1

(σ2)
→ c2

(σ3)
→ . . .

(σn−1)
→ cn−1

(σn)
→ cn starts in an ini-

tial configuration c0 ∈ C0 and respects the transition relation: ∀i, (ci, ci+1) ∈→, or
(ci, σi+1, ci+1) ∈→ if the transition system is a labeled one. For a labeled transition
system, its traces are the words w = σ1.σ2 . . . σn, where σ1, σ2, . . . , σn are labels of a

run c0
σ1→ c1

σ2→ c2
σ3→ . . .

σn−1
→ cn−1

σn→ cn. A run may be either finite or infinite.
This model is quite general and can be used to define the semantics of some high-

level models such as the next model we present, the Communicating Finite State Ma-
chines. Before defining this model, we introduce the notion of reachability.

Reachability. Let us consider a set of configurations S ⊆ C. The functions Post :
2C → 2C and Pre : 2C → 2C are defined by the transition relation as:

Post(S) = {c ∈ C|∃c′ ∈ S, c′ → c}
Pre(S) = {c ∈ C|∃c′ ∈ S, c→ c′}

The configurations in Post(S) are the immediate successors of the configurations S,
while the configurations in Pre(S) are the immediate predecessors of the configurations
S. The sets of all successors and of all predecessors are given by the reflexive and
transitive closure of →, →∗, which is defined recursively by:

1. ∀c ∈ C, (c, c) ∈→∗,

2. (c1, c2) ∈→
∗ if and only if ∃c′1 ∈ C, (c1, c

′
1) ∈→ ∧(c′1, c2) ∈→

∗.
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Definition 1.2 (Reachability) Let c and c′ be two configurations of the transition
system 〈C,C0,→〉. s′ is reachable from s (resp. co-reachable from s) if s→∗ s′ (resp.
s′ →∗ s). The set Post∗(S) (resp. Pre∗(S)) is thus the set of configurations that are
reachable (resp. co-reachable) from S. In other words:

Post∗(S) = {c ∈ C|∃c′ ∈ S, c′ →∗ c}
Pre∗(S) = {c ∈ C|∃c′ ∈ S, c→∗ c′}

The reachability set of the transition system is defined as Post∗(C0).

Remark 1.1 Post∗(S) is also the least fix-point of the function:

F : 2C → 2C

X 7→ Post(X) ∪ S

One of the main objectives of this thesis is to solve this fix-point equation, when the
transition system represents the semantics of a Communicating Finite State Machine.

1.1.2 Communicating Finite-State Machines

The model of Communicating Finite-State Machines (CFSMs) is a quite simple model
to describe distributed systems exchanging messages over an asynchronous network.
This model consists in finite-state processes that exchange messages via N unbounded
FIFO queues. For example, a communication protocol describing the communication
between two computers can be modeled by a CFSM: the behavior of each computer
is modeled by a finite-state process and the FIFO queues model the communication
channels as well as the different buffers.

Formal definition. There are several definitions of this model in the literature. Some
consider explicitly the different processes, whereas others use a global control structure.
There are also some internal actions, i.e. transitions that are neither an input or an
output. We present here a definition of the CFSM model with a global control structure
and no internal actions, but the examples will detail explicitly the different processes.

Definition 1.3 A Communicating Finite-State Machine with N channels is given by
a tuple M = 〈C,Σ, c0,∆〉 where:� C is a finite set of locations (control states);� Σ = Σ1 ∪ Σ2 ∪ · · · ∪ ΣN is a finite alphabet of messages, where Σi denotes the

alphabet of messages that can be stored in queue i;� c0 ∈ C is the initial location;� ∆ ⊆ C ×A×C is a finite set of transitions, where A =
⋃

i{i} × {!, ?} ×Σi is the
set of actions. An action can be either:

– an output i!m: “the message m is sent to the queue i”, or
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0

1

1!open 1!close

2?disconnect

close open

disconnect

0

1

1?open 1?close

2!disconnect

(a) Client (b) Queues (c) Server

0,0

1,0 0,1

1,1

2!d
1?c
2?d

1!c

2?d 1!c
2!d1?c

1!o

1?o

1?o

1!o

close open

disconnect

(d) Global CFSM: product of client and server processes

Figure 1.2: The connection/disconnection protocol

– an input i?m: “the message m is received from the queue i”.

The control structure (C, c0,∆) of Definition 1.3 corresponds to an asynchronous
product of some finite-state machines. Figure 1.2 depicts an example of CFSM, with
graphical representation of the two processes and a representation with a single global
control structure.

Example 1.1 The connection/disconnection protocol [JR87] between two machines is
the following (Figure 1.2): the client can open a session by sending the message open

to the server. Once a session is opened, the client may close it on its own by sending
the message close or on the demand of the server if it receives the message disconnect.
The server can read the request messages open and close, and ask for a session closure.

Semantics. The semantics of a CFSM (C,Σ, c0,∆) is given as a labeled transition
system (LTS) 〈Q,Q0, A,→〉 where:� Q = C × Σ∗

1 × · · · × Σ∗
N is the set of states;� Q0 = {〈c0, ε, . . . , ε〉} is the set of initial states;� A is the alphabet of actions (cf. Definition 1.3).� → is defined by the two rules:

(c1, i!m, c2) ∈ ∆ w′
i = wi.m

〈c1, w1, . . . , wi, . . . , wN 〉
i!m
→ 〈c2, w1, . . . , w

′
i, . . . , wN 〉

(c1, i?m, c2) ∈ ∆ wi = m.w′
i

〈c1, w1, . . . , wi, . . . , wN 〉
i?m
→ 〈c2, w1, . . . , w

′
i, . . . , wN 〉
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A global configuration of a CFSM is thus a tuple 〈c, w1, . . . , wN 〉 ∈ C ×Σ∗
1 × · · · × Σ∗

N

where c is the current location and wi is a finite word on Σi representing the content
of queue i. At the beginning, all queues are empty, so the initial configuration is
〈c0, ε, . . . , ε〉.

A configuration 〈c, w1, . . . , wN 〉 is thus reachable if 〈c0, ε, . . . , ε〉 →
∗ 〈c, w1, . . . , wN 〉.

The reachability set is defined as usual. Computing this set is the purpose of the
reachability analysis and the core of the verification of safety properties.

1.2 Verification of Safety Properties

The purpose of this section is not to give an exhaustive survey of verification techniques,
but to explain, as simply as possible, how one can check whether a transition systems
satisfies a safety property. A safety property is, intuitively, a property ensuring there
is no critical failure.

We first discuss the verification of invariance properties, i.e. properties defined by
a set of configurations. We then explain how to verify safety properties given by a
finite automaton called an observer. Finally, we mention other kinds of properties,
expressed in a temporal logic. In later chapters, we will focus on the verification of
safety properties.

1.2.1 Invariance Properties

Let us consider a transition system 〈C,C0,→〉 and a partition of the configurations
C = Cgood ⊎ Cbad. The system satisfies the invariance property if all runs stay in the
set of ”good” configurations Cgood. Note that this property is given by a set of states
instead of a set of allowed runs. The allowed runs are simply the runs of the transition
system 〈Cgood, C0 ∩ Cgood,→/Cgood×Cgood

〉.

Indeed, the verification of an invariance property consists in computing the reach-
ability set Post∗(C0) and in checking one of the two equivalent conditions:

1. all the reachable configurations are ”good”: Post∗(C0) ⊆ Cgood, or,

2. none of the ”bad” configurations is reachable: Post∗(C0) ∩ Cbad = ∅.

There is also a choice between a forward analysis and a backward analysis, as we
can either:

1. go forward: we compute Post∗(C0) and then determine whether Post∗(C0)∩Cbad

is empty, or

2. go backward: we compute Pre∗(Cbad) and then determine whether Pre∗(Cbad)∩C0

is empty.

The main issue is the effective computation of Post∗(C0) (or of Pre∗(Cbad)).
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Forward analysis. The computation of Post∗(C0) is indeed the computation of the
least fix-point of the function:

2C → 2C

X 7→ C0 ∪ Post(X)

The computation of this fix-point is usually iterative: we start form C0, then com-
pute C0 ∪ Post(C0), C0 ∪ Post(C0) ∪ Post(Post(C0)), ... This is a forward analysis2,
i.e. we start from an initial set of configurations, and we look forward to add more and
more configurations.

Termination issues. If C is finite, the computation of Post∗(C0) will eventually
terminate, as there is at most 2|C| sets of configurations. When C is infinite or simply
too big, the computation of Post∗(C0) does not terminate in general. Chapter 2 presents
some symbolic methods to compute the reachability set when the system is a CFSM.
In this section, we simply assume that one can effectively compute Post∗(C0) and thus
check any invariance property. Let us emphasize on properties that are not simply
invariance properties, but given by an observer.

1.2.2 Observers

A safety property φ may expressed by a set of runs: if the system S enables such a
run, then it violates the property φ. The set of “bad runs” can be given by a transition
system O¬φ with a set of configurations labeled by “violate”. This transition system is
called an observer of the property φ.

When we have an observer O and a transition system S, we identify the bad con-
figurations of S by computing the synchronous product O × S of the two transition
systems.

Definition 1.4 The synchronous product of two labeled transition systems S1 =
〈C1,Σ1, C1

0 ,→1〉 and S2 = 〈C2,Σ2, C2
0 ,→2〉 is the labeled transition system S =

〈C,Σ, C0,→〉 where:� C = C1 × C2,� Σ = Σ1 ∪ Σ2,� C0 = C1
0 × C2

0 ,� → defined by the rules:

1. a common action a ∈ Σ1 ∩ Σ2 occurs when it may occur in both systems:

a ∈ Σ1 ∩Σ2, (c1, a, c′1) ∈→
1

∧
(c2, a, c′2) ∈→

2

((c1, c2), a, (c′1, c
′
2)) ∈→

2On the contrary, the backward analysis starts from a given set of states X0 and computes X0 ∪

Pre(X0), X0 ∪ Pre(X0) ∪ Pre(Pre(X0)), etc.
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2. other actions occur according to the transition relation of one of the two
systems:

a ∈ Σ1 \ Σ2, (c1, a, c′1) ∈→
1

∀c2 ∈ C2, ((c1, c2), a, (c′1, c2)) ∈→

and the symmetrical rule:

a ∈ Σ2 \ Σ1, (c2, a, c′2) ∈→
2

∀c1 ∈ C1, ((c1, c2), a, (c1, c
′
2)) ∈→

Note that when Σ1 = Σ2, the behavior of the resulting system is the intersection
of the behavior of each system. A observer is built so it does not interfere with the
functioning of the observed system. Therefor, the observer must be complete, i.e. any
sequence of events generated by S must be also allowed by the observer O.

The bad configurations are then identified as the configurations c × cviolate where
c is any configuration of the system S and cviolate is any configuration of O labeled
by “violate”. Once bad configurations have been identified, we reduce the problem of
checking whether φ is satisfied to the verification of an invariance property.

1.2.3 Beyond Safety Properties

We present here not only safety properties, but also more general properties that cannot
be violate by a finite run of the system. One often expresses such properties by a formula
of a temporal logic.

Formalization of a property in a temporal logic. Since we consider transition
systems, we use temporal logic, like Linear Temporal Logic (LTL) [Pnu77] or Compu-
tational Tree Logic (CTL) [EC82], instead of a classical logic, because one wants to
express properties on the evolution of the system. We introduce here a fragment of
the Linear Temporal Logic to show how one can express more general properties on a
transition system.

LTL is a logic operating on traces. We consider traces that are words over a finite
alphabet Σ = {σ1, . . . , σN} and the following logical operators:� the classical boolean operators: φ1 ∨ φ2, φ1 ∧ φ2,¬φ, φ1 ⇒ φ2� some temporal operators: Xφ,Gφ,Fφ, φ1Uφ2

The temporal operators are needed to express properties that hold not at the current
step of the trace, but at a future step. The meaning of the temporal operators is:� Xφ, (Next): φ has to hold at the next step of the trace.� Gφ, (Globally): φ has to hold on the remaining of the trace.� Fφ, (Finally): φ eventually has to hold somewhere on the subsequent trace.� φ1Uφ2, (Until): φ1 has to hold until φ2 holds.
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This set of operators is generally sufficient to formalize the expected behavior of a
transition system; for example, we can express a causality: ”a is finally followed by b”
(a⇒ Fb), or ”a immediately follows b or c (b∨c⇒ Xa). There is indeed a classification
of logical properties in two kinds.

Safety and liveness properties.

1. Safety properties are intuitively the properties expressing that the system never
goes wrong: it means that a bad event cannot occur, an “error” configuration
cannot be reached, etc. For example, if σerror is a property attached to a failure
signal, then G¬σerror is a safety property expressing that this error never occurs.

2. Liveness properties are intuitively the properties expressing that the system will
eventually go right: a procedure will terminate, a non-deterministic system is fair,
etc. For example, if σsuccess is an event considered as a success, then G(Fσsuccess)
is a liveness property expressing that this successful event can always happen.

The reasons for this distinction are:

1. This arguably corresponds to two kinds of expected behaviors of a system: we
first expect the system does nothing wrong, and we also expect that it will finally
perform its task.

2. The verification of safety properties are technically easier than the verification
of liveness properties. Indeed, one can demonstrate that a safety property is
violated by exhibiting a finite run, whereas liveness properties can be violated
only by infinite runs.

3. A logical property can always be split between a safety part and a liveness part,
and each part can be checked separately.

In the following, we will focus on the verification of a safety property on a labeled
transition system 〈C,Σ, C0,→〉 with a finite alphabet Σ, and show how it can be reduced
to the verification of an invariance property.

Example. We consider the set of atomic propositions Σ = {p, q, r}, the LTL formula
φ = G(p ⇒ Xq) and the transition system depicted on Figure 1.3. φ means that the
following property should always hold: if a transition is labeled by p, then one of its
successors must be labeled by q. We can see that the considered property is satisfied
as long as the system does not reach one of the two configurations 4 and 5. So one can
perform a reachability analysis which demonstrates that those two configurations are
not reachable, thus the transition system is a model of the LTL formula φ.

1.2.4 Summary

Model Checking is the category of algorithmic tools and theoretical techniques aimed at
determining whether a model satisfies a property described by a formula of a temporal
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Figure 1.3: Example of transition system with atomic propositions

logic, or any similar formalism. We explained how one can check a safety property in
three steps: the construction of an observer, the identification of the ”bad configura-
tions” and finally the reachability analysis. There are other kinds of properties and
other verification methods, but the verification guideline presented here is the frame-
work of the methods we present in Chapter 2 and close to the abstract interpretation
framework.

1.3 Partial Orders and Lattices

We first recall some basic results on lattices and then introduce the abstract interpre-
tation theory.

Let S be a set. A relation R is a subset of S × S. We note xRy for (x, y) ∈ R. A
partial order is a relation R ⊆ S × S satisfying three properties:� reflexivity: ∀x ∈ S, xRx,� antisymmetry: if xRy and yRx then x = y,� transitivity: if xRy and yRz then xRz.

Classical examples of partial orders are:� ≤ and ≥ on N,� ⊆ on a power-set 2S .

In the sequel, we use the generic notation ⊑ to denote a partial order.
Let S be a set and ⊑ a partial order on S. Let X ⊆ S. y ∈ S is an upper

bound (resp. lower bound) of X if ∀x ∈ X, x ⊑ y (resp. y ⊑ x). z is the least upper
bound (lub) of X if it is an upper bound and, for any other upper bound y, z ⊑ y.
The least upper bound does not always exist, but is unique when defined. The greatest
lower bound (glb) is defined in the same way.

Definition 1.5 (S,⊑) is a lattice if, for any pair of elements x, y ∈ S the lub and the
glb of the set {x, y} ⊆ S are defined (x⊔y denotes the lub and x⊓y the glb). A lattice is
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bounded if S has a bottom element ⊥ and a top element ⊤ satisfying ∀x ∈ S, ⊥ ⊑ x ⊑ ⊤
and is complete if for any subset X ⊆ S, the lub and glb of X, denoted by ⊔X and ⊓X,
exist.

Classical examples of lattices are:� the power-set lattice: if E is a set, then (2E ,⊆) is a lattice.� the lattice of intervals: we define I = {[a, b]|a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a <
b}

⋃
{∅}; (I,⊆) is a lattice.

These two lattices are both bounded and complete. In the sequel, we will consider only
bounded lattices.

Fix-points. x ∈ S is a fix-point of f : S → S if f(x) = x. The least fix-point (lfp) of
f is the greatest lower bound of the fix-points of f , and the greatest fix-point (gfp) of f
is the lowest upper bound of the same set. x is a post fix-point (resp. a pre fix-point)
if x ⊒ f(x) (resp. x ⊑ f(x)).

As we explained in the previous section, the reachability set Post∗(C0) is the least
fix-point of the function X 7→ Post(X)∪C0, which is a function on the complete lattice
(2C ,⊆).

We can compute the least fix-point of f thanks to the two following theorems.

Tarski’s and Kleene’s theorems. In this paragraph, we assume that (S,⊑) is a
complete lattice.

Definition 1.6 Let f : S → S be a function.� f is monotonic if:

∀x, y ∈ S, x ⊑ y ⇒ f(x) ⊑ f(y)� f is continuous if:

∀X ⊆ S, f(⊔X) = ⊔{f(x)|x ∈ X} and f(⊓X) = ⊓{f(x)|x ∈ X}

Note that if f is continuous, then it is monotonic because if x ⊑ y, then y = x ⊔ y and
so f(y) = f(x) ⊔ f(y) ⊒ f(x).

Theorem 1.1 (Knaster-Tarski theorem) 3 Assuming that f is a monotonic func-
tion, then:

lfp(f) = ⊓{x | x ⊒ f(x)}

3This is only a part of the “real” Knaster-Tarski theorem, the one we will employ in the sequel.
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Proof: We consider D = {x | x ⊒ f(x)} and l = ⊓D, which exists since (S,⊑) is a
complete lattice.

For any x ∈ D, we have x ⊒ l, so x ⊒ f(x) ⊒ f(l) because f is monotonic. So f(l)
is a lower bound of D. By definition of l, we have f(l) ⊑ l. We re-apply the monotonic
function f : f(f(l)) ⊑ f(l). f(l) ∈ D which means l ⊑ f(l) ⊑ l. So l is a fix-point of f
and, since all fix-points of f are in D, l is the least fix-point of f . 2

In other word, the least fix-point of f is lesser than any post fix-point of f . This
theorem does not provide an effective computation of lfp(f), unlike the following one:

Theorem 1.2 (Kleene’s theorem) Assuming that f is a continuous function, lfp(f)
is the limit of the sequence:

u0 = ⊥
un+1 = un ⊔ f(un)

Proof: The limit of this sequence is formally defined as x =
⊔

n fn(⊥). Thus x is a
fix-point of f , because:

f(x) = f (
⊔

n fn(⊥))
=

⊔
n f(fn(⊥)) f is continuous

=
⊔

n fn+1(⊥)
= ⊥ ⊔

⊔
n≥1 fn+1(⊥)

=
⊔

n′ fn′

(⊥) renaming n′ ← n + 1
= x

x is a fix-point, let us demonstrate that it is the least fix-point. Let y be another
fix-point of f . Since ⊥ ⊑ y, we have f(⊥) ⊑ f(y) = y. By induction, we obtain
∀n, fn(⊥) ⊑ y, so x =

⊔
n fn(⊥) ⊑ y. 2

This theorem gives a naive iterative algorithm for the computation of the least fix-
point of f , without any guarantee of termination. Indeed, this computation may not
terminate when the lattice (S,⊑) does not satisfy the ascending chain condition, i.e.
each ascending sequence u0 ⊑ u1 ⊑ · · · ⊑ un ⊑ . . . is stationary after a finite number
of steps. This is the reason why we must perform some kind of approximations.

1.4 Abstract Interpretation

Abstract interpretation is a verification technique dealing with an abstract semantics
rather than the concrete semantics of a program or a model of a system. Most veri-
fication issues can be reduced to the computation of the least fix-point of a function
F in a semantic domain S, which has a lattice structure. Since this fix-point is often
not computable, one may choose to compute an over-approximation of the fix-point,
that may be sufficient to prove that a systems satisfies a safety property ; we explained
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previously how the verification of a safety property can be reduced to a reachability
analysis. So if no configuration of the over-approximation of the reachability set is
forbidden, the property is satisfied. Otherwise, we can’t tell if the property is violated
or if the approximations made are too rough.

Principles of abstract interpretation. Two kinds of approximations are employed,
in the abstract interpretation theory, to over-approximate the least fix-point of a func-
tion F :

1. Static approximations: instead of searching the least fix-point of F in the original
lattice (Γ,⊑), we compute the least fix-point of its abstraction F ♯ in an abstract
lattice (Λ,⊑♯), linked to Γ thanks to a Galois connection (see below). The abstract
lattice is chosen so that the computation of a fix-point in this lattice is easier than
in the original lattice.

2. Dynamic approximations: when the abstract lattice does not satisfy the ascend-
ing chain condition, we try to “guess” the limit of the sequence (un)n∈N with a
widening operator which ensures the termination of the computation at the cost
of some approximation.

We detail both approximations, from a mathematical point of view.

Galois connection. The function F is given by the semantics of the considered
system. For example, the computation of the reachability set is the least fix-point of
the function:

F : 2C → 2C

X 7→ C0 ∪ Post(X)

In this example, the concrete lattice is the 2C , and we want to abstract sets of config-
urations by elements of a simpler abstract lattice.

We assume that the concrete lattice (Γ,⊑) is a complete lattice, and that the abstract
lattice (Λ,⊑♯) is also a complete lattice. A Galois connection is given by two functions
α : Γ → Λ, called the abstraction function, and γ : Λ → Γ, called the concretization
function, satisfying:

∀s ∈ Γ,∀a ∈ Λ, α(s) ⊑♯ a⇔ s ⊑ γ(a)

This Galois connection is noted:

(Γ,⊑) −−−→←−−−α
γ

(Λ,⊑♯)

Then F ♯ is defined as F ♯ , α ◦ F ◦ γ, with the property:

lfp(F ) ⊑ γ(lfp(F ♯))

So the computation of lfp(F ♯) gives an over-approximation of lfp(F ).
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Example 1.2 (2Z,⊆) is a complete lattice. The lattice of intervals (I,⊆) is also a com-

plete lattice. We have a Galois connection (2Z,⊆) −−−→←−−−α

γ
(I,⊆), where the abstraction

function is α(P ) = [min(P ),max(P )] and the concretization function is the identity.
Elements of the abstract lattice can be easily manipulated; but there are still infinitely
increasing sequences, like ([−n, n])n∈N. So the fix-point computation

⋃
n∈N

fn(⊥) may
not terminate, unless we use a widening operator.

Widening operator. A widening operator ∇ extrapolates the limit of an increasing
sequence from a finite number of terms, usually two, as in the following definition:

Definition 1.7 Let (Λ,⊑) be a lattice. ∇ : Λ× Λ→ Λ is a widening operator if:

1. ∀x, y ∈ Λ, x ⊑ x∇y ∧ y ⊑ x∇y,

2. if x0 ⊑ x1 ⊑ · · · ⊑ xn ⊑ . . . is an increasing sequence, the increasing sequence
defined as y0 = x0 and yn+1 = yn∇xn+1 is stationary after a finite number of
steps.

The first condition ensures that the widening is an over-approximation of the least
upper bound, and the second one ensures the termination of the computation of the
fix-point computation. Thus we have:

Theorem 1.3 [CC77a] Let (Λ,⊑♯) be a complete abstract lattice, and f : Λ→ Λ be a
function. The sequence defined as:

u0 = ⊥
un+1 = un∇f(un)

is stationary after a finite number of steps and its limit u∞ ⊒
♯ lfp(f).

Example 1.3 The standard widening operator of the lattice of intervals (I,⊆) is de-
fined as [a1, b1]∇[a2, b2] =� [a1, b1] ⊔ [a2, b2] if [a1, b1] 6⊆ [a2, b2],� [a, b] otherwise, with a = a1 if a1 = a2 and a = −∞ if a1 > a2, and b = b1 if

b1 = b2 and b = +∞ if b1 < b2.

The principle of this widening operator is to consider that if the interval grows, it may
grow indefinitely.

This approximation is often not accurate, but it can be improved, by setting a priori
a finite number of values v1 < v2 < vk. In the definition of the widening , if b1 < b2,
then b is the smallest value vi > b2 or +∞ if b2 > vk.

This improved widening is called the widening threshold.
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Representations framework. The previous Galois connection framework assumes
that the abstract lattice is complete. Some abstract lattices, like the lattice of convex
polyhedra, are not complete. In these cases, one may employ the weaker representa-
tions framework of [Bou92] instead of a classical Galois connection to formalize the
abstraction. We recall the main results and invite the reader to see [Bou92] for more
details.

Let (Λ,⊑) be a partially ordered set with a smallest element ⊥Λ, and γ : Λ → Γ a
concretization function (i.e. γ is monotone and γ(⊥Λ) = ⊥Γ).

Let ∇ : Λ× Λ→ Λ be an operator satisfying:

1. ∀a, a′ ∈ Λ, a ⊑ a∇a′ and a′ ⊑ a∇a′ (∇ is an upper bound operator);

2. ∀(ai)i∈N ∈ ΛN such that ∀i ≥ 0, ai ⊑ ai+1, the sequence (ai)i∈N defined as a′0 = a0

and a′i+1 = a′i∇ai+1 has a greatest element a∞ (thus obtained after a finite number
of steps).

Here ∇ replaces both the least upper-bound and the widening operator. The main
preservation theorem is the following one:

Theorem 1.4 Let F : ℘(S) → ℘(S) be a monotonic function and F ♯ : Λ → Λ a
monotonic function such that γ ◦ F ♯ ⊇ F ◦ γ. The sequence (ai)i∈N defined by:

{
a0 = ⊥

ai+1 = ai∇F ♯(ai)

has a greatest element a∞, which is a post fix-point of F ♯. Moreover, γ(a∞) is a post
fix-point of F .

We give here a simple proof of this theorem. [Bou92] gave a proof of a more general
theorem; in our case, Thm. 1.4 is sufficient.

Proof: We first prove that the sequence (ai)i∈N has a greatest element. If for some i,
F ♯(ai) ⊑ ai, then ai is the limit of the sequence and a post fix-point of F ♯.

We assume by contradiction that (ai)i∈N has no greatest element. Then we have
∀i : ai+1 = ai∇F ♯(ai) ⊒ ai, and (ai)i∈N is an increasing sequence. Moreover, a0 = ⊥ ⊑
F ♯(a0) and the monotonicity of F ♯ implies that:

a′0 = a0

a′i+1 = F ♯(ai)

is an increasing chain. The definition of the widening operator ensures that:

a′′0 = a0

a′′i+1 = a′′i∇a′i+1
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has a greatest element a∞. Then we show by induction on i that ∀i ≥ 0, a′′i = ai: this
is obvious for i = 0 and

a′′i+1 = a′′i∇a′i+1

= ai∇a′i+1 (induction hypothesis)
= ai∇F ♯(ai) (definition of a′i+1)
= ai+1

Consequently, the sequence (ai)i∈N has a greatest element. This is a contradiction of
the first assumption.

We now check that γ(a∞) is a post fix-point of F .

F (γ(a∞)) ⊆ γ(F ♯(a∞)) (assumption on F ♯)
⊆ γ(a∞) by F ♯(a∞) ⊑ a∞ and monotonicity of γ

2

Computation of a reachability set. We aim at computing an over-approximation
of the reachability set Post∗(S), in other words the least fix-point of the function:

F : 2C → 2C

X 7→ Post(X) ∪ S

This is a monotonic function and the lattice 2C is complete. According to the Knaster-
Tarski theorem, the set of configurations lfp(F) is included in any post fix-point of F .
Thm. 1.4 gives such a post fix-point; we only need those two results to ensure that we
effectively compute an over-approximation of the reachability set.

The representations framework will be the theoretical foundation of our abstrac-
tions, instead of the Galois connection, because the abstract lattice of regular languages
is not complete (cf. Chapter 3).

1.5 Regular Languages and Finite Automata

This section is not an exhaustive presentation of the well-known theory of regular
languages and finite automata. It focuses on the definition of finite automata and
the presentation of three operations: the determinization, the minimization and the
quotient of a finite automaton by an equivalence relation on states. The reason for
this presentation is that we will define similar algorithms for lattice automata (cf.
Chapter 4). The reader can refer to [HJU79] for more details on finite automata and
regular languages.

Words and languages. Let Σ be a finite set, called an alphabet ; elements of Σ
are called letters. Σ∗ is the free monoid on Σ, i.e. the set of finite words (finite
concatenation of letters). ε is the empty word and a word w of length n will be written
w = a1.a2 . . . an. We focus on the simplest languages: the regular languages, which can
be recognized by finite automata.
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Finite automata. A finite automaton is a tuple A = 〈Σ, Q,Q0, Qf , δ〉 where:� Σ is a finite set (the alphabet),� Q is a finite set of states,� Q0 ⊆ Q is the set of initial states,� Qf ⊆ Q is the set of final states,� δ ⊆ Q× Σ×Q is the set of transitions.

We note q
a
→ q′ if (q, a, q′) ∈ δ. A finite word w = a0.a1 . . . an ∈ Σ∗ is recognized by A if

there exists n + 1 states: q0
a1→ q1

a2→ . . .
an→ qn with q0 ∈ Q0 and qn ∈ Qf . L(A) ⊆ Σ∗ is

the language recognized by the automaton A. A language is regular if it is recognized
by a finite automaton. Reg(Σ) is the set of regular languages.

Classical set operations like union or intersection can be easily implemented in terms
of automata operations. For example, the union of two regular languages L1 and L2

recognized by two automata A1 = 〈Σ, Q1, Q1
0, Q

1
f , δ1〉 and A2 = 〈Σ, Q2, Q2

0, Q
2
f , δ2〉 is

recognized by the automaton A3 = 〈Σ, Q3, Q3
0, Q

3
f , δ3〉, where:� Q3 = Q1 ∪Q2 assuming the two sets of states are distinct,� Q3

0 = Q1
0 ∪Q2

0,� Q3
f = Q1

f ∪Q2
f ,� δ3 = δ1 ∪ δ2.

The finite automaton representation is not canonical, i.e. a same regular language
can have several different automata representations, which may be an issue for the
definition of more complex operations. Hopefully, regular languages have a canonical
representation in terms of minimal deterministic automata (MDAs).

Deterministic finite automata. A finite automaton A = 〈Σ, Q,Q0, Qf , δ〉 is deter-
ministic if:

1. there is a single initial state: card(Q0) = 1,

2. for any state q ∈ Q and any letter a ∈ Σ, if q
a
→ q1 and q

a
→ q2, then q1 = q2.

A classical algorithm transforms a non-deterministic automaton A = 〈Σ, Q,Q0, Qf , δ〉
into a deterministic finite automaton A′ = 〈Σ,X,X0,Xf ,∆〉 recognizing the same
language, with:� X = 2Q,� X0 = {Q0},� Xf = {E ⊆ Q|E ∩Qf 6= ∅},



Regular Languages and Finite Automata 41� ∆ = {(E1, a, E2)|∃q1 ∈ E1, q2 ∈ E2, (q1, a, q2) ∈ δ}

This algorithm is exponential because each state x ∈ X of the resulting automaton
corresponds to a set of states x ∈ 2Q of the initial automaton.

When an automaton is deterministic, its transitions set δ defines a transition func-
tion (also called δ):

δ : Q× Σ → Σ
(q, a) 7→ q′ where q′ is the only state such that (q, a, q′) ∈ δ

The transitive closure of this function is defined recursively as:

δ∗ : Q× Σ∗ → Σ
(q, ε) 7→ q
(q, a.w) 7→ δ∗(δ(q, a), w) with a ∈ Σ and w ∈ Σ∗

This definition gives a simpler characterization of the language recognized by a de-
terministic finite automaton ; a word w ∈ Σ∗ is recognized by a deterministic automaton
A = 〈Σ, Q, {q0}, Qf , δ〉 if δ∗(q0, w) ∈ Qf .

Deterministic finite automata are not a canonical representation of regular lan-
guages, since two different deterministic automata can recognize the same regular lan-
guage. This canonical representation is the result of an operation called minimization.

Minimal deterministic automata. A deterministic automaton A =
〈Σ, Q,Q0, Qf , δ〉 is minimal if any other deterministic automaton A′ =
〈Σ, Q′, Q′

0, Q
′
f , δ′〉 recognizing the same language L(A) has more states:

card(Q) ≤ card(Q′). For a given language L, there is a unique minimal deter-
ministic finite automaton (MDA) recognizing it (up to isomorphism). One obtains this
automaton by quotienting the automaton by the Myhill-Nerode equivalence relation.

First we present the quotient operation, for any equivalence relation ≡ ; this oper-
ation consist roughly in merging states belonging to the same equivalence class:

Definition 1.8 (Quotient of an automaton) Let A = 〈Σ, Q,Q0, Qf , δ〉 be a finite
automaton and ≡⊆ Q × Q an equivalence relation. The quotient automaton A/≡ =
〈Σ, Q,Q0, Qf , δ〉 is defined as:� Q ⊆ 2Q is the set of equivalence classes of≡. The class of a state q ∈ Q is q̄ ⊆ Q,� Q0 , {q̄ | q̄ ∩Q0 6= ∅},� Qf , {q̄ | q̄ ∩Qf 6= ∅},� δ = {(q̄, a, q′) | (q, a, q′) ∈ δ}.

Note that L(A) ⊆ L(A/≡), no matter the equivalence relation ≡ is. With a proper
equivalence relation, A/≡ is minimal and deterministic if A is deterministic.
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Considering a deterministic automaton A = 〈Σ, Q,Q0, Qf , δ〉, we can define an
equivalence relation ≡⊆ Q×Q: q ≡ q′ if and only if:

∀w ∈ Σ∗,





δ∗(q, w) is defined whenever δ∗(q′, w) is defined
and
δ∗(q, w) ∈ Qf ⇔ δ∗(q′, w) ∈ Qf

This is obviously an equivalence relation, called the Myhill-Nerode equivalence relation.

Proposition 1.1 If A is deterministic, with all states reachable from Q0 and co-
reachable from Qf , and ≡ is the Myhill-Nerode equivalence relation, then A/≡ is min-
imal and deterministic and L(A) = L(A/≡).

Proof:� [A/≡ is deterministic] We first prove that A/≡= 〈Σ, Q,Q0, Qf , δ〉 is determin-
istic if A = 〈Σ, Q,Q0, Qf , δ〉 is deterministic.

1. Since A is deterministic, Q0 = {q0} so Q0 = {q0},

2. If we have two transitions (q̄, a, q1), (q̄, a, q2) ∈ δ, it means that we have
two transitions (q, a, q1), (q

′, a, q2) ∈ δ with q ≡ q′. We show that q1 ≡ q2.
Let w ∈ Σ∗ such that δ∗(q1, w) is defined. So δ∗(q, a.w) is defined and
δ∗(q′, a.w) = δ∗(q2, w) is as well defined, because q ≡ q′. For the same
reason δ∗(q1, w) ∈ Qf ⇔ δ∗(q2, w) ∈ Qf .

It means that A/≡ is deterministic.� [A/≡ recognizes the same language as A] By construction, L(A) ⊆ L(A/≡).
Let us prove the converse by a recurrence. Let w = a1 . . . an be a word recognized
by A/≡; there are n + 1 states of A/≡ such that q0

a1→ q1
a2→ . . .

an→ qn accepts

the word w. We must prove that there is a run q0
a1→ q1

a2→ . . .
an→ qn of A with

q0 ∈ Q0 and qf ∈ Qf .

– There is qn ∈ qn being an final state of A, according to the construction of
A/≡,

– We assume that there is a path qi
ai+1
→ qi+1

ai+2
→ . . .

an→ qn of A with ∀j ≥
i, qj ∈ qj and qn ∈ Qf . Since q0

a1→ q1
a2→ . . .

an→ qn is a path accepting w in
A/≡, the definition of A/≡ states that there are two states q′i−1 ∈ qi−1 and

q′i ∈ qi such that q′i−1
ai→ q′i is a transition of A. Since qi ≡ q′i, there is a path

q′i
ai+1
→ q′i+1

ai+2
→ . . .

an→ q′n of A with ∀j ≥ i, q′j ∈ qj and q′n ∈ Qf .

By induction we prove that there is a run q0
a1→ q1

a2→ . . .
an→ qn with qn ∈ Qf and

q0 ∈ q0. So w is recognized by A; L(A/≡) ⊆ L(A).
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automaton A′ recognizing the same language as A with strictly less states than
A/≡. According to the two previous parts of the proof, A′/≡ is a deterministic
automaton recognizing the same language as A′. It also has less states than A′,
and thus strictly less states than A/≡. For each state q of A/≡, there is a word wq

leading to this state from the initial states. Those words also lead to some states
in A′/≡, and since this automaton has strictly less states, at least two words wq1

and wq2
lead to the same state of A′/≡. Thus q1 ≡ q2, which is impossible.

So no deterministic automaton can have strictly less states than A/≡.

2

This unique automaton representation allows the effective manipulation of regular
languages; a function applying to automata also defines a function applying on regular
languages.

1.6 Conclusion

The chapter presented the basic definitions and results needed in the following chapters:
we presented the CFSM model studied in Chapter 2, the principle of the verification of
safety properties and the theoretical framework of our work presented in Chapters 3, 4
and 5: the abstract interpretation.

We also recalled some notions of the lattice theory and the finite automata theory.
The main issue of the verification of safety properties is, for the systems we consider,

to have an efficient representation of the set of configurations and, more generally, to
compute the limit of an increasing sequence of regular sets of configurations, coded by
finite automata. We focus on this issue in the following chapter.
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Chapter 2

Acceleration Techniques for
FIFO Channel Systems and
Extrapolations of Sequences of
Automata

This chapter presents some work in the field of acceleration techniques for the analysis
of FIFO channel systems, modeled by a CFSM.

In Section 1.1, we gave the semantics of a CFSM; a configuration of the system is
given by a control point and the content of all queues. We want to have an efficient rep-
resentation of sets of configurations and a reachability algorithm, so that we can check
whether a given safety property holds (cf. Section 1.2). The acceleration techniques we
present in this chapter provide reachability semi-algorithms. Other techniques, which
were not initially aimed at the verification of FIFO channel systems, are useful since
they can compute the limit of a sequence of symbolic values, when those values are
represented by automata.

In Section 2.1, we explain the principle of acceleration techniques, which aim at
computing, in a single step, the configurations reachable from a set of configurations
S by iterating a loop θ an arbitrary number of times. The efficiency of acceleration
techniques highly depends on the expressive power of the symbolic structure employed
to represent sets of configurations. We detail what the acceleration techniques can do
when one represents the queue contents by:� a Queue-Contents Decision Diagram (QDD),� a Constrained Queue-Contents Decision Diagram (CQDD),� a Simply Regular Expression (SRE),� a Semi-Linear Regular Expression (SLRE).

The second section emphasizes on some methods to guess the limit of a sequence of
symbolic values represented by a sequence of automata. The aim is usually to compute

45



46 Chapter 2

a representation of the set of states Post∗(S) (resp. Pre∗(S)) reachable (resp. co-
reachable) from a regular set of configurations S, i.e. to compute the limit of the
sequence defined as:

U0 = S
Ui+1 = Post(Ui) ∪ Ui

where each term Ui is represented by an automaton.

In some cases, this computation can be done without any approximation: for ex-
ample, the computation of Pre∗(S), where S is a regular set of configurations of a
Pushdown System (PDS) is exact [BEM97].

But in the general case, this exact computation is not feasible and we have the
choice between:� a method trying to build a finite automaton, which is exact but may not terminate,

or� an extrapolation method, which terminates but often computes an over-
approximation of the limit of the sequence of finite automata.

We present one exact method and two extrapolation methods ; the automata con-
sidered in this last section will be either transducers1 or synchronous observers2.

2.1 Accelerations Techniques for the Analysis of FIFO
Channels Systems

2.1.1 Principle of Acceleration Techniques

We first present the principles of acceleration techniques. Acceleration is a verification
technique for transition systems which have an infinite set of configurations but a finite
control structure. For example, a CFSMM = 〈C,Σ, c0,∆〉 has a finite control structure
C but defines an infinite transition system (cf. Section 1.1).

The core of acceleration techniques is to consider the loops of the control
structure. A loop of the transition system is a sequence of transitions θ =
(c0, a0, c1), (c1, a1, c2), . . . (cn, an, c0). We write (p0, w0) →θ (p0, wn) if there is a se-

quence of configurations satisfying :((c0, w0)
a0→ (c1, w1)

a1→ . . .
an→ (c0, wn). Given a set

of configurations S = {(c0, w)}, we want to compute Post∗θ(S) = {(c0, w
′)|∃(c0, w) ∈

S, (c0, w)→∗
θ (c0, w

′)}. This computation raises several issues.

Representations. The first issue is to find a symbolic representation of the set of
configurations S that can also represent Post∗θ(S). This representation must also be
manageable, i.e. the algorithms needed for the computation of Post∗θ(S) must have a
reasonable complexity.

1A transducer is an automaton transforming a word into another word. In this chapter, they are
employed to encode a transition function.

2See Section 1.2.
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In practice, we restrict ourselves to a class C of sets of configurations, such as regular
sets, that can be represented by automata. The chosen class C shall be stable for Post∗θ,
if possible, which means: ∀S ∈ C,∀θ,Post∗θ(S) ∈ C. Generally, the proof of this property
is constructive and gives the algorithm computing Post∗θ(S) for any set S and any loop
θ.

Loop acceleration. The computation of Post∗θ(S) starts by the computation of the
first steps Postθ(S), Postθ(S) ∪ Postθ(Postθ(S)), ... If a property ensures that the se-
quence (

⋃
i≤n Posti

θ(S))n∈N is eventually stationary, then one can compute this sequence
until the limit is reached.

However, in the general case, one has to find automatically the limit of this sequence.
An acceleration algorithm can compute directly

⋃∞
i=0 Posti

θ(S) after looking at the first
terms of the sequence. Each class C of sets of configurations has its own acceleration
algorithm.

Such algorithms may assume some restrictions on θ, i.e. some loops cannot be
accelerated. This is the case of the QDD representation. Other acceleration algorithms,
like the one for CQDDs, work without any restriction on θ.

Termination. Since there are potentially an infinite number of loops, the computa-
tion of a reachability set with an acceleration method may not terminate even if the
effect of each loop can be effectively computed. The problem is to choose what set of
loops must be accelerated, and in what order the acceleration must be applied.

This issue is illustrated on Figure 2.1. We represent the queue contents by regular
languages. The two elementary loops labeled by !a and !b can be easily accelerated,
generating the languages a∗ and b∗ respectively; in the general case, if w ⊆ {a, b}∗

is a loop, the language generated is simply Postw∗(L) = L.w∗. The language of the
whole system, (a + b)∗, cannot however be obtained by the acceleration of a loop.
This example shows how a nested loop may be an obstacle an analysis based on the
acceleration principle cannot overcome without a transformation of the automaton.

!a!b

Figure 2.1: Nested loops

In the following, we detail some acceleration techniques based on different symbolic
representations, aimed at the analysis of CFSMs:

1. the Queue-Contents Decision Diagrams (QDDs),

2. the Constrained Queue-Contents Decision Diagrams (CQDDs),

3. the Simple Regular Expressions (SREs),

4. the Semi-linear Regular Expressions (SLREs).



48 Chapter 2

2.1.2 Queue-Contents Decision Diagrams

A Queue-Contents Decision Diagram (QDD) [BG97, BGWW97] is simply a finite au-
tomaton recognizing concatenations of words w1♯w2♯ . . . ♯wN , so a regular set of config-
urations sharing the same control point can be represented by a QDD. This allows to
encode some relations between the contents of several queues.

Example 2.1 Considering a system with two queues with alphabets Σ1 = {a, b} and
Σ2 = {c, d}. The QDD depicted on Figure 2.2 defines the language L = a∗♯(c + d)∗ +
a∗b(a + b)∗♯c∗d(c + d)∗ and encodes the relation “if there is at least one b in the first
queue, then there is at least one d in the second queue”.

ba a,b

# #

c
d

d
c

c,d

c,d

Figure 2.2: Example of QDD

Language recognized by a QDD. The ordering of the queues may be arbitrary,
it does not alter the expressive power of the QDDs ; QDDs recognize languages of the
form: ⋃

1≤j≤k

∏

1≤i≤N

Li,j

where Li,j ∈ Reg(Σi) is a regular set built on the alphabet Σi.

Remark 2.1 The name “QDD” refers to the famous Binary Decision Diagrams
(BDDs)[MO83]; like the BDDs, the QDDs decide the value of the queue contents in
a fixed order.

Some conditions on the loop θ (see below) ensure that this set is stable for Post∗θ.
We now give an overview of the acceleration algorithm, with some assumptions on θ.

Loops involving a single FIFO channel. When all the operations of a loop θ
involve a single queue, the computation of Post∗θ(L), where L is a regular set represented
by a QDD, is performed by adding states and transitions, and modifying the set of
initial and final states of the automaton representing L.
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We give here the sketch of the algorithm, the reader can refer to [BGWW97] for
more details. One can first compute the QDD representing Postθ(L): sending a message
a adds a new final state and some transitions labeled by a to the automaton whereas
receiving a message modifies the set of initial states (Figure 2.3). One can compose
these modifications and obtain the QDD recognizing Postθ(L).

b

a c

b

a c

a

a

Before sending a After sending a
Language: a + b + b.c Language: a.a + b.a + b.c.a

b

a c

b

a c

Before receiving a After receiving a
Language: a + b + b.c Language: ε

Figure 2.3: Send and Receive operations on a QDD with a single queue

The principle of the acceleration of QDDs is that multiple applications of Postθ

generate some periodicity in the states and transitions added by the ”send” operations.
Once a periodicity is detected, a loop is generated in the QDD, simulating the appli-
cation of Post any number of times.

This algorithm also gives the constructive proof of the following theorem:

Theorem 2.1 If θ is a sequence of operations affecting a single queue qi, and L a
regular language on Σi, then Postθ(L) and Post∗θ(L) are regular.

Remark 2.2 A QDD can represent any regular language built on the alphabet of a
single queue, but not all regular languages built on the alphabet of several queues. For
example, if a ∈ Σ1 and b ∈ Σ2, there is no QDD representing the regular language
(a♯b)∗.

Loops involving several channels. When there are several channels involved, there
is no hope of having a similar result, since Post∗θ(L) may be non-regular. For example,
the sequence θ = 1!a, 2!b generates a non-regular set: Post∗θ({ε}) = {an♯bn|n ∈ N}.

Definition 2.1 Let θi be the sequence of operations of θ affecting only the queue qi,
θi! (resp. θi?) the sequence of outputs (resp. inputs) of θ involving the queue i. θi is
counting if either:� |Σi| > 1 and |θi!| > 0,
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θ is counting if one of the θi’s is counting.

Such a sequence is counting because there are some regular languages L such that
we know how many times the loop was executed just by looking at the result of the
execution, i.e. ∀k, l ≥ 0,Postk

σi
(L) 6= Postl

σi
(L) =⇒ k 6= l.

Example 2.2 Let θ be a loop consisting in sending 2 messages a and receiving one
message a in the first queue, and sending a message b in the second queue: θ = 1!a ·
1!a·1?a·2!b. This loop is counting since it verifies the second condition. We can also see
that, if we take L = {ε}, then Postk

θ(L) = {ak♯bk}, and so Postk
σi

(L) 6= Postl
σi

(L) =⇒
k 6= l.

[BGWW97] gives an acceleration algorithm to compute Post∗θ(L) if L is a regular
language and θ is not a counting loop. There is no hope to do better with a QDD
representation, because QDDs can only represent regular sets and Post∗θ(L) may be
non-regular if θ is a counting loop. If one wants to accelerate any loop, one must
choose a more expressive representation, for example the CQDDs.

2.1.3 Constrained Queue-Contents Decision Diagrams

A Constrained Queue-Contents Decision Diagram (CQDD)[BH99] associates simple
automata, which are finite automata with explicit loops, and Presburger formulas, the
variables of which counting how many times each loop of the simple automata is taken.

Example 2.3 A CQDD representing the set {an.bn|n ≥ 1} is composed of the simple
automaton depicted in Figure 2.4 and of the Presburger formula x(1,a,1) = x(2,b,2).

0 1 2a b

a b

F : x(1,a,1) = x(2,b,2)

Figure 2.4: Example of a CQDD

More formally, a simple automaton is a finite automaton 〈Σ, Q,Q0, Qf , δ〉 where:

1. Q = {q0, q1, . . . , qm} ∪
⋃m

i=0 Pi; The states {q0, q1, . . . , qm} are the entry points of

the loops: qi
ai,1
→ p1

i

ai,2
→ . . .

ai,li→ pli
i

ai,li+1

→ qi. Pi is the set of states of loop number

i, except qi: Pi = {p1
i , . . . , p

li
i },
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2. Q0 = {q0},

3. Qf = {qm},

4. δ is composed of loop transitions (at most one loop for each qi: qi
ai,1
→ p1

i

ai,2
→

. . .
ai,li→ pli

i

ai,li+1

→ qi) and exactly one transition between each couple (qi, qi+1).

The loop on the final state qm is special; it can be either a single loop of length greater
than 1, or multiple loops of length 1. A simple automaton is restricted if there is no
loop of length 1 on qm.

The words accepted by a restricted simple automaton are of the form
u1v

∗
1u2v

∗
2 . . . umv∗mum+1 where ui’s and vi’s are non-empty words, except u1 and um+1

which may be empty.
A CQDD is given by a finite set of accepting components, each accepting component

being:

1. a set of deterministic restricted simple automata (one for each queue of the
CFSM);

2. a formula of Presburger arithmetics, with variables corresponding to the transi-
tions of the automata.

Even if the variables of the Presburger formula can correspond to any transitions, they
are only useful when each variable corresponds to one loop of a simple automaton, as
shown in Example 2.3.

CQDDs can represent non-regular sets, like the previous example, and therefore can
handle sets of configurations a QDD cannot represent. However, the opposite is also
true. Some sets of configurations can be represented by a QDD, but not by a CQDD,
because some regular sets are not representable by simple automata. For example, the
set (ab∗c)∗ is a regular set a simple automaton cannot represent.

Representation of a set of configurations. Intuitively, each components of a
CQDD recognize a set of configuration (c, L1, . . . , LN ) sharing the same control point.

A set of configurations (c, L1, . . . , LN ) sharing the same control point is accepted
(resp. reverse accepted) by a CQDD if one of its components 〈(A1, . . . ,AN ), f〉 recog-
nizes the multi-language (L1, . . . , LN ) (resp. (Lr

1, . . . , L
r
N ) ). A set of configurations C is

CQDD representable (resp. CQDD reverse representable) if there is a CQDD accepting
(resp. reverse accepting) exactly the configurations of C.

Acceleration with CQDDs. The CQDD representation relies on a Presburger for-
mula constraining the values of the variables corresponding to the transitions of each
automaton. If C is a set of configurations represented by a CQDD, computing Post∗θ(C)
is quite easy. We introduce a new parameter n, counting how many times the loop θ is
executed. Let us consider a CQDD with N queues and a single accepting component
〈(A1, . . . ,AN ), f〉. After n executions of θ, the set of reachable configurations is rep-
resented by N automata (A′

1, . . . ,A
′
N ), with N constraints g1, . . . , gN expressing the
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relation between the variables corresponding to the transitions of Ai and the ones of
A′

i, depending on n. Then Post∗θ(C) =
⋃

n∈N
Postn

θ (C) is represented by the CQDD

〈(A1, . . . ,AN ), f ∧
∧N

i=1 gi〉, n being a free variable of the formula f ∧
∧N

i=1 gi.
This forms the sketch of the proof of the following theorem:

Theorem 2.2 [BGWW97] For every CQDD representable (resp. reverse repre-
sentable) set of configurations C, and every loop θ of the control structure, the set
of configurations Post∗θ(C) (resp. Pre∗θ(C)) is CQDD representable (resp. reverse rep-
resentable) and effectively constructible.

2.1.4 Simply Regular Expressions

[ABJ98, AAB99] develop an acceleration technique for the analysis of lossy channel
systems. We remind that a lossy channel system is a CFSM where message can be lost
at any time in the queues. Queue contents are represented by simply regular expressions.

Definition 2.2 (Simply regular expressions) An atomic expression over a finite
alphabet Σ is a regular expression of the form:� (a + ε) with a ∈ Σ, or of the form� (a1 + a2 + · · ·+ am)∗ with m > 1 and ∀1 ≤ i ≤ m,ai ∈ Σ

A product p over Σ is a (possibly empty) concatenation e1 · e2 · · · · · en of atomic
expressions over Σ.

A simple regular expression (SRE) over Σ is a sum p1 + · · · + pn of products over
Σ.

Each SRE represents the content of one queue at a given control point. For a CFSM
M = 〈C,Σ, c0,∆〉 with N queues, a symbolic state is a mapping of the form c 7→
(e1, . . . eN ), where e1, . . . , eN are SREs. Unlike the QDDs and CQDDs, this symbolic
representation is a non-relational one, because one cannot link the content of one queue
with the content of another one.

Despite this limitation, SREs are an effective representation of queue contents: there
is a normal form, which can be computed in linear time. Moreover, entailment3 among
SREs can be computed in quadratic time, whereas checking language inclusion of two
automata may be exponential [ABJ98].

Another advantage of SREs is that the set of configurations reachable from a given
configuration c is representable by a SRE. However, this does not mean that one can
always compute the SRE representing this set of reachable states. Indeed, [CFI96]
demonstrated that there is no such algorithm in general.

This limitation explains why one should use a semi-algorithm based on acceleration.
Acceleration with lossy channel systems is quite easy with an SRE representation, since
it can handle any loop of the control structure.

3This operation checks the language inclusion.
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Theorem 2.3 [ABJ98] Let θ be a loop of the control structure and E a regular set
of configurations represented by a SRE e. The SRE e′ representing Post∗θ(E) can be
computed in quadratic time.

2.1.5 Semi-Linear Regular Expressions

[FIS03] gives a survey of acceleration techniques for CFSM and proposes its own repre-
sentation of queue contents: the Semi-Linear Regular Expressions (SLREs). Like SREs,
the SLREs represent regular sets of words with a particular type of regular expressions.

Definition 2.3 Let Σ be a finite alphabet.

1. A Linear Regular Expression is a regular expression of the form
x0.y

∗
0 .x1.y

∗
1 . . . xn−1.y

∗
n−1.xn, where each xi is a word on Σ and each yi is

a non-empty word on Σ.

2. A Semi-Linear Regular Expression is a finite sum of linear regular expressions.

SLREs are expressive enough to represent languages that can be both represented
by QDDs and CQDDs. According to [FIS03], this property indicates that SLREs are
the core of known representations for FIFO channel contents.

The SLRE representation has the same property as QDDs: one can always accel-
erate a loop involving a single channel, and a loop involving several channels can be
accelerated if and only if it is not counting.

Note that SLREs is not an extension of SREs; even if those two representations look
similar, their expressive power is incomparable and SLREs are harder to manipulate:
deciding the inclusion is a co-NP complete problem whereas its complexity is linear for
the SREs.

2.2 Extrapolation of a Sequence of Automata

In this part, we present some techniques not directly aimed at the verification of CFSMs,
but sharing the same idea of computing the limit of a sequence of symbolic values
represented by some automata.

2.2.1 Verification of Pushdown Systems

A Pushdown System (PDS) is an automaton with a finite set of locations and an
unbounded stack. Its semantics is given by an infinite transition system.

Definition 2.4 A Pushdown System (PDS) P is a tuple 〈P,P0Γ,∆〉 where:� P is a finite set of control states (locations),� P0 is the set of initial location� Γ is a finite stack alphabet,
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The rules of ∆ are written (q, γ) →֒ (q′, v), with q, q′ ∈ P , γ ∈ Γ and v ∈ Γ∗.
In our context, one of the uses of Pushdown Systems is to model programs with

procedure calls. In this case, the valuations of the global variables is encoded in the
control structure P , and Γ is the set of the control points of the procedures. We label
transition rules with actions, i.e. the instruction of the program in each control point.
For example, the instruction a at control point p0 (next control point is p1) is modeled

by the rule: (x, p0)
a
→֒ (x′, p1), where x is the value of the global variables before the

instruction a, and x′ the value of the variables after the instruction a.

Example 2.4 The procedure m (main) can either perform the action a and call the
procedure p, or call the procedure q. The procedure p performs the action b and calls
the procedure q. The procedure q performs the action c and stops (Figure 2.5). In this
example, there is no global variable, so the PDS will have a single control location x0.

The three procedures are modeled by the following PDS P = 〈P,Γ,∆〉:� P = {x0}� Γ = {m0,m1,m2,m3, p0, p1, q0, q1},� ∆ is given by the rules:

1. intra-procedure rules:

(x0,m0)
a
→֒ (x0,m1)

(x0, p0)
b
→֒ (x0, p1)

(x0, q0)
c
→֒ (x0, q1)

2. call rules:

(x0,m0)
call q
→֒ (x0, q0.m2)

(x0,m1)
call p
→֒ (x0, p0.m3)

(x0, p1)
call q
→֒ (x0, q0.p2)

3. return rules:
(x0, q1) →֒ (x0, ε)
(x0, p2) →֒ (x0, ε)

Semantics. A configuration of a PDS is given by a location and the content of the
stack. At the beginning, the system is in a location p0 with an empty stack. P defines
an infinite transition system 〈C, c0,→〉 where C = P × Γ∗, c0 = (p0, ε) is the initial
configuration and → is defined by the rule:

(q, γ)
a
→֒ (q′, v) u ∈ Γ∗

(q, γ.u)
a
→ (q′, v.u)
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m0 p0 q0

m1 p1 q1

m2 m3 p2

a

call q

call p

b

call q

c

Figure 2.5: The three procedures m, p and q

P-automata. A P-automaton represents a regular set of configurations of the PDS P.
It is a finite automaton A = 〈Q,Γ, P,Qf 〉, the initial states of which are the locations of
P. A configuration (p,w) belongs to the set represented by A if the word w is accepted
by A starting from the initial state p.

This P-automaton is a finite representation of a possibly infinite set of configu-
rations. Moreover, if S is a regular set of configurations represented by A, one can
transform A so that it represents Pre∗(S), the set of predecessors of S. Another trans-
formation gives the P-automaton representing Pre∗(S).

Computation of Pre∗(S). Let S be a regular set of configurations represented by a
P-automaton. We want to compute the P-automaton representing Pre(S). [BEM97]
presents an algorithm for the automaton transformation. We give here the general idea
of this algorithm.

If (q, γ) →֒ (q′, v) is a rule of the PDS P and (q′, v.u) is a configuration of S, then
(q, γ.u) is a configuration of Pre(S). Considering the automaton representing S, there
is a run labeled by v.u, starting from the state q′ and ending to some final state qf . We

split this run as q′
v
→

∗
q′′

u
→

∗
qf . So, if we add a transition (q, γ, q′′), then the word γ.u

is recognized starting from state q. We repeat this operation for all rules and all initial
states, and we obtain an automaton representing Pre(S).

We iterate this operation and we obtain P-automata representing Pre2(S), Pre3(S),
etc, until there is k ∈ N so that Prek(S) = Prek+1(S). The existence of this stabilization
of the sequence is guaranteed because the number of states of the P-automata is fixed,
so we cannot add transitions indefinitely. We thus obtain the P-automaton representing
Pre∗(S).

Computation of Post∗(S). A P-automaton representing Post∗(S) may be computed
in a similar way. The only difference is that we may add some states before performing
the algorithm. For each rule (q, γ) →֒ (q′, v) with v = γ1.γ2 . . . γn, we add n−1 states to

the automaton representing S: q1
γ2
→ q2

γ3
→ . . .

γn−1
→ qn−1. Then if there is a configuration

(q, γ.u) in S, then there is a transition (q, γ, q′′) in the P-automaton recognizing S. We
add two transitions (q, γ1, q1) and (qn−1, γn, q′′): the configuration (q′, v.u) of Post(S)
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is recognized by the new P-automaton.

2.2.2 Transducers and Regular Model Checking

We consider a labeled transition system 〈C,Σ,→〉, with C = E∗. A transducer is an
automata encoding the transition relation →⊆ E∗ × E∗.

Definition 2.5 A transducer is an automaton T = 〈Q,E,Q0, Qf , f : Qf → Σ,∆〉
where f maps each final state with a label σ ∈ Σ and ∆ ⊆ Q× (E × E) ×Q is the set
of transitions4.

So a transducer is a finite automaton, with an alphabet E × E and a label in the set
Σ attached to all final states. It encodes a set of transitions →⊆ E∗ × Σ × E∗ as:

(wi, σ, wo) ∈→ if there is a path of the transducer q0
ai,1/ao,1
→ q1

ai,2/ao,2
→ . . .

ai,n/ao,nqn
→

with:

1. q0 ∈ Q0,

2. wi = ai,1.ai,2 . . . ai,n,

3. wo = ao,1.ao,2 . . . ao,n,

4. qn ∈ Qf and f(qn) = σ.

The labeling function f is optional, existing only when the transition system is labeled
by Σ.

Example 2.5 Some processes access a common resource via a token. One and only
one process can have this token: each process has two states: 1 and 0, depending whether
the process has the token or not. At the beginning, the first process has the token, and
a transition of the system is informally: “a process can give the token to the following
process”. A configuration of this transition system is encoded by a word w ∈ {0, 1}∗,
and the transition function by the transducer depicted in Figure 2.6.

1/0 0/1

0/0 0/0

Figure 2.6: Example of a transducer

4We consider only length-preserving transducers: the input word and the output one have the same
length.
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Since the transducer T encodes the transition relation, seen as a relation T ⊆
E∗ × E∗, we want to have some algorithms operating on the transducer, computing:� the reachability set T ∗(S), where S is a regular set of configurations,� the transitive closure T+.

The transitive closure of the relation T directly give the reachability set, but has other
applications, like the detection of a loop ; a configuration c is part of a loop if (c, c) ∈ T+.

Regular Model Checking. [BJNT00] solves both issues, with two different tech-
niques:� An automata theoretical construction of the transitive closure, in other words a

representation of T+.� A widening based technique which aims at computing T ∗(S) for a regular set of
configurations S.

Construction of T+ The first technique relies on the construction of column trans-
ducer, the states of which are sequences of states of the original transducer T =
〈Q,Q0, Qf , δ〉. The name “column transducer” comes from the construction T+ =
〈Q+, Q+

0 , Q+
f , δ+〉. The idea is the following: if two configurations (w,w′) ∈ E∗ × E∗

belong to T+, then there are m + 1 configurations w = w0, w1, . . . , wm = w′ with
(wi, wi+1) ∈ T . We write wi = ai

1 . . . ai
n. Since (wi, wi+1) is accepted by the transduc-

ers, we can find m accepting runs of the original transducer, that define a single run of
the column transducer:

q1
0

(a0
1,a1

1)
−→ q1

1

(a0
2,a1

2)−→ q1
2 . . . q1

n−1

(a0
n,a1

n)
−→ q1

n

q2
0

(a1
1,a2

1)
−→ q2

1

(a1
2,a2

2)−→ q2
2 . . . q2

n−1

(a1
n,a2

n)
−→ q2

n
...

...
...

qm
0

(am−1
1 ,am

1 )
−→ qm

1

(am−1
2 ,am

2 )
−→ qm

2 . . . qm
n−1

(am−1
n ,am

n )
−→ qm

n

The states of the column transducer are the columns q1
0q

2
0 . . . qm

0 , q1
1q

2
1 . . . qm

1 , ...,

q1
nq2

n . . . qm
n , and the transitions are defined as q1

i−1 . . . qm
i−1

(a0
i .am

i )
−→ q1

i . . . qm
i if there are m

transitions of the original transducer q1
i−1

(a0
i ,a1

i )
−→ q1

i , q2
i−1

(a1
i ,a2

i )
−→ q2

i , ... , qm
i−1

(am−1
i ,am

i )
−→ qm

i .

In this example, the accepting run is thus q1
0 . . . qm

0

(a0
1.am

1 )
−→ · · ·

(a0
n.am

n )
−→ q1

n . . . qm
n .

This definition, however, may generate an infinite number of states and transitions.
One can attempt to “minimize” this transducer, but without guarantee of termination
in general. [JN00] gives a sufficient condition of termination: if T has local depth k (it
never needs to rewrite any letter of a word more than k times to relate two words),
then the transitive closure T+ can be recognized by a transducer of size exponential
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in k. Since the CFSMs are Turing-powerful, we can always find, for any bound k, a
CFSM generating a transducer that has not local depth k.

We now focus on the second technique, which relies on a regular extrapolation of
the growth of a set of configurations.

Extrapolation technique. Let S ⊆ E∗ be a set of configurations and T a regular re-
lation represented by a transducer. The problem is how to guess an over-approximation
of T ∗(S) in a few computation steps. The principle of this extrapolation is to compare
S and T (S) in order to identify a growth of the set of configurations, and then repeat
this growth.

The extrapolation assumes that the two conditions are satisfied:

• (C1): S = S1.S2 and T (S) = S1.I.S2,

• (C2): S1.I
∗.S2 = T (S1.I

∗.S2) ∪ S.

The first condition means that we can identify an increment in T (S), compared to S.
The second condition ensures that S1.I

∗.S2 is a fix-point of the function X 7→ T (X)∪S,
thus T ∗(S) ⊆ S1.I

∗.S2.
The extrapolation algorithm simply consists in determining, in the automaton rep-

resenting T (S), the three parts S1, I and S2, then adding transitions to repeat the in-
crement part and finally checking whether the modified automaton satisfies the second
condition. Some heuristics help the identification of the three parts of the automaton,
like cutting the automaton between two strongly connected components.

This extrapolation is sometimes exact, i.e. T ∗(S) = S1.I
∗.S2: if T is a simple

relation [BJNT00] and C1 and C2 hold, then T ∗(S) = S1.I
∗.S2.

Abstract Regular Model Checking. The two methods presented here work if the
relation encoded by the transducer T is a simple relation or has a local depth k, but their
complexity may be exponential or relies on heuristics to find an increment in the trans-
ducer. The use of some finite abstractions can reduce the complexity of the algorithm,
if one do not worry about the exactness of the analysis. [BHV04] proposes to collapse
the states of a transducer according to an equivalence relation. The equivalence relation
must have a finite number of equivalence classes; this bound on the number of states of
the collapsed automaton ensures that the computation will eventually terminate. The
paper proposes two equivalence relations:

1. One based on a finite set of predicates P. Each predicate P ∈ P defines a language
L(P ). For any state q, L(T, q1) is the language the transducer T would recognize
if q was its unique initial state. Two states q1 and q2 of the transducer T are
equivalent if for any predicate P , (L(P )∩L(T, q1) 6= ∅)⇔ (L(P )∩L(T, q2) 6= ∅).

2. The other one based on finite-length languages. Two states q1 and q2 are equiv-
alent if the languages the transducer T would recognize if q1 (resp. q2) were
its unique initial state have the same set of words of length lesser or equal to a
parameter k. In other words, q1 and q2 are equivalent if: L≤k(T, q1) = L≤k(T, q2).
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Both abstractions are parametric and may be applied to classical finite automata in-
stead of transducers, and are an alternative to the operator ρk we present in Chapter 3.

2.2.3 Extrapolation of an Increasing Sequence of Transducers

[BLW03] proposes an extrapolation method for transducers which can be applied to
finite automata. This extrapolation applies to an increasing sequence of transducers,
in terms of language inclusion, and relies on two equivalence relations, one forward, the
other backward, between the states of a transducer T i and its successor T i+1.

The principle of this extrapolation is to detect which part of T i+1 can be seen as an
increment to T i. Assuming this increment can be repeated infinitely often, one may add
transitions to capture this regular incrementation. The detection of this incremental
part of the automaton is determined by some equivalence relation between the states
of T i and the states of T i+1.

Equivalence relations. We consider a sequence of deterministic and minimal trans-
ducers T 0, T 1, . . . with T i = 〈Qi,Σ × Σ, qi

0, Q
i
f , δi〉. The forward equivalence re-

lation Ei
f ⊆ Qi × Qi+1 is defined by the language recognized by T i and T i+1

when their initial state is altered: (q, q′) ∈ Ei
f if T̃ i = 〈Qi,Σ × Σ, {q}, Qi

f , δi〉 and

T̃ i+1 = 〈Qi+1,Σ× Σ, {q′}, Qi+1
f , δi+1〉 recognize the same language.

The backward equivalence relation Ei
b ⊆ Qi × Qi+1 is defined by the language

recognized by T i and T i+1 with a single final state: (q, q′) ∈ Ei
b if T̃ i = 〈Qi,Σ ×

Σ, qi
0, {q}, δ

i〉 and T̃ i+1 = 〈Qi+1,Σ× Σ, qi+1
0 , {q′}, δi+1〉 recognize the same language.

Definition 2.6 (incrementally larger) T i+1 is incrementally larger than T i if the
two relations Ei

f and Ei
b cover all states of T i: ∀q ∈ Qi,∃q′ ∈ Qi+1 such that (q, q′) ∈

Ei
f

∨
(q, q′) ∈ Ei

b.

Note that, in this case, the unicity of the state q′ can be proved since both T i and
T i+1 are minimal, the equivalence relation thus defines two functions, also noted Ei

b

and Ei
f : Qi → Qi+1. In the following, we assume that for each i, T i+1 is incrementally

larger than T i.

Identification of the different parts of the transducer. With this condition,
we note Qi

1 the set of states of Qi covered by Ei
f and Qi

2 the other states, which are

covered by Ei
b since Qi+1 is incrementally larger than Qi. The two functions Ei

b and
Ei

f , applied to the sets Qi
1 and Qi

2, define what the increment part of the transducer

T i+1 is. Precisely, we have a partition of Qi+1 of size three defining an increment:� The head part Qi+1
H = Ei

b(Q
i
2),� The tail part Qi+1

T = Ei
f (Qi

1) \Qi+1
H ,� The increment part Qi+1

I (the other states).
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We now consider T i+2 ; a similar partition of size four is obtained by:� Qi+2
H = Ei

b(Q
i+1
H ),� Qi+2

T = Ei
f (Qi+1

T ),� Qi+2
I0

= Ei+1
b (Qi+1

I ),� Qi+2
I1

= Ei+1
f (Qi+1

I )5.

Each computation step generates a new increment part: T i+j has a head part Qi+j
H , a

tail part Qi+j
T and j increment parts Qi+j

I0
. . . Qi+j

Ij−1
.

Extrapolation. The principle of the extrapolation is to add transitions from Qi+j
H ∪

Qi+j
I0

to other increments parts ; if there is a transition (q, a, q′) with q ∈ Qi+j
H ∪Qi+j

I0

and q′ ∈ Qi+j
Ik

, then one adds k transitions from q labeled by a to states corresponding

to q′6 in each increment parts Qi+j
l with 0 ≤ l ≤ k. Note that if q ∈ Qi+j

I0
, then the

extrapolation adds a self-loop on q. We denote by T ∗
e this extrapolated transducer.

Example 2.6 Let us consider some processes P 0, P 1, P 2, . . . sharing a common re-
source. Access to this resource is modeled by a token. At the beginning, P 0 has access
to the resource, then it gives the token to P 1, then P 1 gives the token to P 2 etc. We
consider the following encoding: a global state of this system is modeled by a finite word
w = x0 . . . xn ∈ {0, 1}

∗, xi = 1 if P i has the token and xi = 0 otherwise.
At the beginning, the global state is thus 1000 . . . . The token then goes from one

process to the following: 0100 . . . , 0010 . . . , etc. The transition function is represented
by the initial transducer T 0 depicted on Figure 2.7. The computation of the transitive
closure of this transition function is the computation of the sequence of transducers
T 0, T 1 = T 0 ∪T 0 ◦T 0, T 2 = T 1 ∪T 0 ◦T 1, . . . , T i+1 = T i ∪T 0 ◦T i, . . . . Without extrap-
olation, this computation does not terminate if the number of processes is unbounded.

The two first steps of the computation, T 1 and T 2, are depicted on Figure 2.7. The
extrapolation of T 2 gives the least upper bound of the sequence, T ∗

e .

Correctness. This extrapolation, which consists in adding transitions and thus re-
peating increments, is safe (i.e. L(

⋃
i≥0 T i) ⊆ L(T ∗

e ) ) if the extrapolated transducer
T ∗

e satisfies : L(T ∗
e ◦ T ∗

e ) ⊆ L(T ∗
e ) [BLW03].

Adaptation to the Analysis of FIFO channel systems. Even if we do not use a
transducer to model the transitive function induced by a CFSM, the same extrapolation
may give an over-approximation of the limit of an increasing sequence of automata
representing the queue contents, defined recursively by Ai+1 = Post(Ai)∪Ai, assuming
the function Post is monotonic.

5The actual partition is indeed defined by removing from Qi+2

I0
the states belonging to Qi+2

H , etc.
6this correspondence is built during the detection of the increment. For example,if k = 1 the state

corresponding to q′ ∈ Q
i+j
I1

in Q
i+j
I0

is E
i+j
b ((Ei+j

b )−1(q′)).
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1/0 0/1
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0/0 0/1

Initial transducer T 0 First computation step T 1

1/0 0/1

0/0
0/0

0/0 0/1

0/0

0/1

1/0 0/1

0/0
0/0

0/0 0/1

0/0

0/1

0/0

Second computation step T 2 Extrapolation T ∗
e

Figure 2.7: Computation of the transducers

2.2.4 Verification of Linear Networks of Processes

[LHR97], which analyzes linear networks of processes, introduces another widening-
like operator for finite automata. The goal of that paper is the model checking of
regular networks of processes of unknown sizes. Each process is a finite-state machine.
The global state of a network of size k is represented by a word of size k, each letter
representing the state of a process. Regular sets of states are thus represented by regular
languages.

A synchronous observer is here a Mealy machine (a finite automaton with outputs)
that can emit an error signal. Transitions are labeled by an input letter and an output,
which can be either nothing or an error signal α. The observer defines a regular set of
traces violating a safety property.

The paper focuses on under-approximations of greatest fix-points in the lattice
of sets of regular traces, and defines an extrapolation operator which works like a
widening operator, trying to guess the limit of a decreasing sequence of sets of traces
T0 ⊇ T1 ⊇ · · · ⊇ Tn ⊇ . . . .

The principle of this binary operator is the following. For two sets of traces T ⊇ T ′,
the synchronous observer AT ′ recognizing T ′ emits an error signal more often than
AT , the one recognizing T . In some states of the observer AT×T ′, the error signal can
be emitted by AT ′ but not by AT . Theses states are the parts of the automata that
change from one step to another. The extrapolation operator anticipates the future
changes by suppressing those states and redirecting the transitions leading to one of
the deleted states to a state where both automata can emit an error signal. This
operation generates some loops in the automata, as shown in the following example.
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Example 2.7 Let T = (a + b)(a + b + c)∗ and T ′ = (a + b(a + b))(a + b + c)∗ be two
regular sets of traces such that T ⊇ T ′. Observers recognizing T and T ′ are depicted
on Figure 2.8, and the synchronous observer AT×T ′ is depicted on Figure 2.9. The
state 1 of AT×T ′ is a state where AT ′ can emit an error message on a c input whereas
AT cannot. This state is therefore removed, and the transition leading to that state,
labeled by b is rerouted to the state 0 where both AT and AT ′ can emit an error signal
α Figure 2.9.

0 1

c/ α

a

b
b

c

a

0 1 2

c / α′ c / α′

a

b

a

b
b

c

a

AT AT ′

Figure 2.8: Observers AT and AT ′

0 1 2

c / αα′ c / α′

a

b

a

b
b

c

a

0 1 2

c / αα′

a

b

b

c

a

AT×T ′ AT∇T ′

Figure 2.9: Synchronous product AT×T ′ and widening AT∇T ′

Application to the extrapolation of a sequence of automata. This work is not
aimed at the verification of FIFO channel systems, however it introduces an extrap-
olation operator which can also be employed on a synchronous observer representing
queue contents.

This observer is defined like an automaton recognizing the queue content L, and
outputs the error signal when a word is in L. However, this assumes that L is prefix-
closed, a false assumption since the language of a queue is not prefix-closed. This is
the reason why this approach is not adapted to the kind of systems we focus on in the
following chapters.
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2.3 Conclusion

The first section of this chapter was a presentation of the acceleration techniques for the
analysis of FIFO channel systems. Those techniques, using symbolic representations
like QDDs, CQDDs, SREs or SLREs, have a common drawback: even when they can
compute Post∗θ(S) for any loop θ and any set of configurations S, the computation of
the set of the reachable states may not terminate.

We want to keep a representation of the queue contents by an automaton, but with
a guarantee that the reachability analysis terminates. So we looked at other techniques,
not directly aimed at the analysis of CFSMs, but designed to compute the limit of a
sequence of automata.

[BJNT00] presented two techniques to obtain the limit of a sequence of transducers:
one is exact, but does not terminates for any system modeled by a CFSM. The other
is an extrapolation which consists in guessing what part of the transducer represent
an increment, and then in adding transitions so that this increment can be repeated
infinitely often.

A similar idea was developed in [BLW03]: the authors detect the increment parts
by partitioning the states of each transducer, and then add loops in the transducer.

In the next chapter, we will develop a slightly different approach. Instead of de-
tecting an increment and repeating it, we use a quotient operation, which merges some
states of the automata according to an equivalence relation, as in [BHV04]. We will
explain how this simple operation is sufficient to obtain a regular over-approximation
of the limit of the sequence of automata.
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Chapter 3

Regular Languages as an
Abstract Lattice

The previous chapter presented the acceleration techniques for the verification of FIFO
channel systems, and their limitations due to the undecidability issue. In this chapter,
we propose an approximated reachability analysis of FIFO channel systems. When
analyzing CFSMs, this consists in replacing in dataflow equations, sets of FIFO channel
configurations by an element of an abstract lattice. Such a transformation results in
conservative approximations: we will be able to prove that a safety property is satisfied,
or that a state is non-reachable, but not to prove that a property is not satisfied or
that a state is effectively reachable.

The abstractions we propose in this chapter are based on regular languages, which
exhibit, among nice properties, the closure under all Boolean operations, and a canon-
ical representation: the deterministic and minimal finite automata (MDAs).

All standard operations on sets, such as language union, intersection or inclusion
are performed on automata. Moreover, we need a widening operator ∇, since this
lattice is of infinite height; this operator is also performed on automata. We discuss the
properties and the effects of ∇, with some examples. Finally, we apply this analysis on
some examples of communication protocols and compare our results with acceleration
techniques.

3.1 The Lattice of Regular Languages

The representation of queue contents of CFSMs in terms of languages was discussed in
the previous chapter. We focus here on the abstraction of queue contents in terms of
regular languages. We remind that the set of regular languages over an alphabet Σ,
Reg(Σ), with the partial order defined by the inclusion, is a lattice where:� the least upper bound is the union of two regular languages,� the greatest lower bound is the intersection of two regular languages,� the bottom element is the empty language,

65



66 Chapter 3� the top element is the regular language Σ∗.

3.1.1 Classical Operations and Abstraction

As mentioned in Section 1.5, regular languages are represented by finite automata.
The minimal deterministic finite automata recognizing a language L is its canonical
representation. The operation ∪,∩ as well as the inclusion test ⊆ are performed on the
automata, and their complexity is recalled in Figure 3.1, assuming the automata have n
states and m transitions. The result of an union is a non-deterministic automaton and
the result of the intersection is deterministic, but not minimal (assuming the original
automata are deterministic and minimal). Figure 3.1 also presents two operations
needed for the definition of the abstract semantics of a CFSM: the left derivation and
the right concatenation.

The left derivation [Brz64] of a regular language L is performed w.r.t. a letter a:

L/a = {w ∈ Σ∗|a.w ∈ L}

It defines the abstract semantics of an input transition of a CFSM. The result is a
non-deterministic automaton.

The right concatenation of a regular language L and a letter a is the language:

L.a = {w.a|w ∈ L}

It defines the abstract semantics of an output transition of a CFSM. The result is
a deterministic automaton (assuming the original automaton was deterministic and
minimal) but not minimal.

Algorithm Worse Case Complexity (time)

inclusion test 1 O(2n)
inclusion test 2 O(n log n)
determinization O(2n)
minimization3 O(n log n)
union4 O(n + m)
intersection O(n2 + m2)
left derivation4 O(n + m)
right concatenation4 O(n + m)

Figure 3.1: Complexity of the operations on finite au-
tomata

1 General case,
2 If the input automata are in canonical form,
3 The input automaton is assumed to be deterministic,
4 The complexity is due to the building of a new automaton, not

the operation itself.

Those operations are similar to the ones for QDDs, presented in Chapter 2. In
this chapter, we also investigate how one can abstract a queue content L by a regular
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language L′ ⊇ L. However, there is no real Galois connection since the abstract lattice
is not complete.

Proposition 3.1 (Reg(Σ),⊆) is of infinite height, and is not complete.

Proof: Let us consider the sequence of regular languages (Ln)n∈N:

∀n ≥ 0, Ln =
⋃

k≤n

{ak.bk}

Since ∀n ≥ 0, Ln ⊆ Ln+1, this sequence is an infinite increasing chain. Thus (Reg(Σ),⊆
) is of infinite height. Moreover,

⋃

n∈N

Ln = {ai.bi | i ∈ N}

is not a regular language; so (Reg(Σ),⊆) is not complete. 2

This example also raises the issue of the existence of an abstraction function, the
decreasing languages sequence Lk = ε + a.b + a2.b2 + · · · + ak.bk + · · · + ak.a∗.bk.b∗ is
a sequence of regular over-approximation of the non-regular language (an.bn), which
is the limit of this sequence; so there is no “best regular over-approximation” for this
language.

This is the reason why we employ the representation framework, presented in Sec-
tion 1.4, instead of a Galois connection:

(L(Σ),⊆) −−→←−−
γ

(Reg(Σ),⊆)

with the concretization function γ = Id .

Prop. 3.1 also justifies the definition of a widening operator, because of the infinite
height of this abstract lattice.

3.1.2 The Widening Operator ∇k

Principles of this widening operator. Since a regular language has a canonical
automaton representation, we can define the widening operator as an automata oper-
ation. In [Fer01], a widening operator for regular languages was mentioned but not
developed. We adapted this operator to regular languages representing the content of a
FIFO channel. Because of the FIFO operations, the widening operator should remain
precise for both the beginning and the end of the queue.

The main idea is to merge some “equivalent” states (w.r.t. a particular equivalence
relation) of the automaton, obtaining a new automaton recognizing a greater language,
with a known bound on the number of states. This ensures that this operator respects
the definition of a widening operator.
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Definition of the equivalence relation. This equivalence relation may be viewed
as the refinement of an initial equivalence relation given by a color function. The
refinement relies on a bounded bisimulation relation.

Definition 3.1 (Bisimulation of depth k) Let (Q,Σ, Q0, Qf , δ) be a minimal deter-
ministic automaton, and col : Q → [1..Ncol] a color function defining an equivalence
relation q1 ≈col q2 ⇔ col(q1) = col(q2). For k ≥ 0, the bisimulation of depth k finer
than ≈col is defined inductively by: ∀q1, q2 ∈ Q,

q1 ≈
col
0 q2 iff q1 ≈col q2

q1 ≈
col
k+1 q2 iff





q1 ≈
col
k q2

∀a ∈ Σ,∀q′1 ∈ Q, q1
a
→ q′1 =⇒ ∃q′2 ∈ Q : q2

a
→ q′2 ∧ q′1 ≈

col
k q′2

∀a ∈ Σ,∀q′2 ∈ Q, q2
a
→ q′2 =⇒ ∃q′1 ∈ Q : q1

a
→ q′1 ∧ q′1 ≈

col
k q′2

In the sequel, we consider the following standard color function, which separates initial
and final states from other states:

col(q) =





1 if q ∈ Q0 ∩Qf ,
2 if q ∈ Qf \Q0,
3 if q ∈ Q0 \Qf ,
4 otherwise

This standard color function ensures that initial states and final states cannot be merged
by a quotient operation. This operation was defined in Section 1.5, and defines an
operator ρk.

a
a b

b a b
b b

a a

4 4 2

1

4 4 2

a
a b

b a b
b b

a a

(a) automaton (b) colored states

II III V

I

II IV VI

a
a b

b a b

b
b

a a

(c) classes of the ≈2 equivalence relation

Figure 3.2: Example of the equivalence classes of ≈2

Definition and properties of the operator ρcol
k . This operator is simply the quo-

tient of an automaton by the equivalence relation ≈col
k .
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Definition 3.2 (Operator ρcol
k ) Given a bisimulation relation ≈col

k of depth k the op-
erator ρcol

k : Reg(Σ)→ Reg(Σ) is defined by quotienting M(L), the MDA of L:

ρcol
k (L) = L(M(L)/ ≈col

k )

ρcol
k is extensive, i.e. L ⊆ ρcol

k (L), as being defined by a quotient automaton, and it is
idempotent as a consequence of ≈col

k : since each state ofM(L)/ ≈col
k corresponds to an

equivalence class of ≈col
k , this automaton equals to its quotient by ≈col

k .
As ≈col

k+1 is a refinement of ≈col
k , we also have ∀L ∈ Reg(Σ) : ρcol

k+1(L) ⊆ ρcol
k (L).

Note that ρk is a particular case of ρcol
k , with col being the standard coloring function.

Definition of the widening operator ∇k. This operator is the application of the
previous operator ρcol

k to the union of two languages:

Definition 3.3 (Widening operator ∇col
k ) Given an integer k ≥ 0 and a color func-

tion col, we define a binary operator ∇col
k : Reg(Σ)×Reg(Σ)→ Reg(Σ):

L1∇
col
k L2 , ρcol

k (L1 ∪ L2)

Proposition 3.2 ∇col
k is a widening operator for Reg(Σ) in the sense of [CC92]:

1. L1 ∪ L2 ⊆ L1∇
col
k L2;

2. For any increasing chain (L0 ⊆ L1 ⊆ . . . ), the increasing chain defined by L′
0 =

L0, L′
i+1 = L′

i∇
col
k Li+1 is not strictly increasing (it stabilizes after a finite number

of steps).

∇k is just a particular case of ∇col
k , with col being the standard coloring function.

Proof: Since ρcol
k is extensive, we have L1 ∪ L2 ⊆ L1∇

col
k L2. We just have to prove

that card(Q/ ≈col
k ) is lesser or equal to a constant depending on k and |Σ|. Thus the

set {ρcol
k (L) |L ∈ Reg(Σ)} is finite.

For a state q, we consider the “execution tree of depth k”:

1. each node is labeled with a triple (a, x, i), with a ∈ Σ ∪ {−}, x ∈ Q and i ≥ 0;

2. the root is labeled with (−, q, k);

3. if there is a node labeled with (l, x, i), with i > 0, l ∈ Σ and a transition (x, a, y) ∈
δ, we create a son labeled by (a, y, i − 1).

We color a node labeled by (a, x, i) with col(x). According to the definition of ≈col
k ,

two states q1 and q2 are in the same equivalence class if they have the same colored
execution tree. So there are as many equivalence classes as colored execution trees.

Since the maximum branching degree of this tree is |Σ|, there are at most 2|Σ|k un-
colored trees (proof by induction on k), each tree has at most |Σ|k+1 nodes, so each tree

can be colored in at most N
|Σ|k+1

col ways. Thus, we have card(Q/ ≈col
k ) ≤ N

|Σ|k+1

col ×2|Σ|k .
2



70 Chapter 3

Remark 3.1 When the notion of widening operator was introduced in the seven-
ties [CC77a], the idea was to guess the limit of a post-fix-point computation. However,
our “widening operator” ∇k doesn’t try to guess the limit of a sequence of languages.
Even if ∇k satisfies the mathematical properties of a widening operator, one may argue
that it must be considered as an upper bound operator rather than a genuine widening
operator.

3.1.3 Effects of the Widening Operator

With the formal definition given above, the reader may have some difficulties to fancy
the effects of the widening operator. Let L be a regular language describing a queue
content, k a given integer. We want to give an intuition of the shape of the language
ρk(L). We illustrate by some examples the approximations we make.

Let us consider M(L) the minimal deterministic automaton that recognizes the
language L. For each example, we depict:

1. M(L),

2. the partition of states generated by ≈k,

3. the quotient automaton M̃L recognizing ρk(L).

Number of messages. The multiple repetition of the same message aa . . . a may be
over-approximated by an infinite repetition of the same message a∗. If the analyzed
system allows arbitrary-long channel contents, this approximation can guess the limit
of the fix-point computation.

Example 3.1 The language L = {aaaa} is recognized by the automatonM(L) depicted
in Figure 3.3. The two states marked with an X (Figure 3.4) are in the same equivalence
class (with k = 1), so they are merged. Here, the effect of the operator ρk is to create
a loop: ρ1L = {ai|i ≥ 3} (Figure 3.5). In this example, the information we loose is the
number of messages ’a’.

Sum of languages. If L = L1 + L2, the widening operator may merge some words
of L1 with words of L2. This approximation may simplify the automaton.

Example 3.2 The language L = {aac + bad} is recognized by the automaton M(L)
depicted in Figure 3.6. The two states marked with an X (Figure 3.7) are in the
same equivalence class (with k = 1), so they are merged. The result is the language
∇1L = {(a+ b)a(c+ d)} (Figure 3.8. In this example, we loose the property “if we have
an ’a’ at the beginning of the queue, then we have a ’c’ at the end, else a ’d’ ”.

Suffixes and prefixes. Due to the FIFO structure of the communication channels,
our approximation must be more precise at the beginning and the end of the words
representing the queue-contents. The following proposition guarantees that the prefixes
and suffixes are preseserved when applying ρk to a language.
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a a a a

Figure 3.3: Automaton recognizing L = {aaaa}
a a a a

x x

Figure 3.4: Equivalence classes of ≈1
a a a

a

x

Figure 3.5: Automaton recognizing ρ1(L) = {aaaa∗}

Proposition 3.3 Let L be a regular language and k a fixed integer. Then L and ρk(L)
have the same set of prefixes of length 1 and the same set of suffixes of length less than
or equal to k.

Proof: Let M = (Q,Q0, Qf , δ) be the minimal deterministic automaton recognizing
L and (Q̃,Σ, Q̃0, Q̃f , δ̃) the quotient automaton. Since L ⊆ ρk(L), the prefixes (and
suffixes) of L are also prefixes (and suffixes) of ρk(L). We must prove the converse.

If a ∈ Σ is a prefix of length 1 of a word of ρk(L), then there is q0 ∈ Q̃0 q ∈ Q̃ such
that (q0, a, q) ∈ δ̃. The definition of the standard color function ensures that q0 is also
an initial state of M, so a is a prefix of length 1 of L.

To finish the proof, we prove by induction that, if there is a sequence q1
a1→ q2

a2→
. . .

al→ qf allowed by the quotient automaton, with qf ∈ Q̃f and l ≤ k, then there are

l + 1 states q1 ∈ q1, q2 ∈ q2, . . . , qfqf such that: q1
a1→ q2

a2→ . . .
ak→ qf is allowed by M

(obvious for k = 0).

Let q1
a1→ q2

a2→ . . .
al→ qf be a sequence verifying the conditions. Then there are

l states q2 ∈ q2, . . . , qf ∈ qf such that: q2
a2→ . . .

al→ qf is allowed by M (induction
hypothesis).

Moreover, ∃q′1 ∈ q1, q
′
2 ∈ q2, q′1

a1→ q′2 (definition of the quotient automaton). So
we have two states q2 ≈k q′2 According to the definition of ≈k, since |a2 . . . al| ≤ k,

∃q′3 ∈ q3 . . . q′f ∈ qf such that q′2
a2→ . . .

al→ q′f is allowed byM. So q′1
a1→ q′2

a2→ . . .
al→ q′f .

2

Monotonicity. We give here a negative result:

Proposition 3.4 If k ≥ 1, ρk is not monotonic.
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b a d

aa c

Figure 3.6: Automaton recognizing L = {aac + bad}
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x

Figure 3.7: Equivalence classes of ≈1
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Figure 3.8: Automaton recognizing ρ1(L) = {(a + b)a(c + d)}

This proposition is proved by the following counter-example. Let L1 = a.a.ak+1 and
L2 = a.(a+b).ak+1 be two regular languages, with L1 ⊂ L2. We have ρk(L1) = a∗.ak+1

and ρk(L2) = a.(a + b).ak+1 = L2.

Remark 3.2 ρ0 is monotonic.

This negative result does not matter in the abstract interpretation framework (some
classical widening operators are also not monotonic, like the one of the lattice of convex
polyhedra [CH78]. However, this is something we must keep in mind when re-using ρk

in another framework.

3.2 Approximated Reachability Analysis of CFSMs

The analysis of CFSMs was the first motivation of this work on the lattice (Reg(Σ),⊆) .
In this section, we explain how we may obtain an approximated reachability analysis
of CFSMs. The first step is the analysis of CFSMs with a single queue.

3.2.1 Analysis of CFSMs with a Single Queue

When a CFSM has a single queue, its state space is ℘(C ×Σ∗), where C represents the
set of control states and Σ the alphabet of messages. This state space is isomorphic to
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?b!b

abb

!a ?a

Figure 3.9: The infinite buffer model

C → ℘(Σ∗). The reachability set is the least fix-point of a function F (L) = L0∪Post(L),
where L0 = {ε} is the initial content of the queue.

Example 3.3 The CFSM depicted in Figure 3.9 models the “infinite buffer” protocol:
a sender process can store a message in the queue, and a receiver process can read
messages. In this example, there are only two kinds of messages: a and b.

The CFSM resulting of the product of the two automata has a single control state.
The reachability set of this CFSM is the least fix-point of the semantic function:

F : ℘(Σ∗) → ℘(Σ∗)
L 7→ ε ∪ J!aK(L) ∪ J?aK(L) ∪ J!bK(L) ∪ J?bK(L)

We remind the definition of the semantic functions J!aK and J?aK:

J!aK : ℘(Σ∗) → ℘(Σ∗)
L 7→ L.a = {w.a|w ∈ L}

J?aK : ℘(Σ∗) → ℘(Σ∗)
L 7→ L/a = {w|a.w ∈ L}

Example of reachability analysis. We detail step by step in Figure 3.10 the com-
putation of the least fix-point of the function F defined in Example 3.3. This fix-point
is found after three computation steps and one widening step, with a parameter k = 0.

first step second step third step widening step

a, b a, b a, b a, b
a, b

L0 = ε L1 = ε + (a + b) L2 = ε + (a + b) + (a + b)(a + b) L3 = (a + b)∗

Figure 3.10: Computation of the least fix-point of F

After the third computation step, we apply the widening operator which merges the
last two states of the automaton representing the set of queue-contents. As a result,
the computation stops and the language L3 of Figure 3.10 is the exact reachability set.
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This example illustrates the abstractions of queue contents, as well as the effects of
the widening operator. However, most CFSMs modeling real protocols have at least
two FIFO channels.

3.2.2 Analysis of CFSMs with Several Queues

Representations. In the case of a single queue system, the content of the queue is
represented by a finite word, and a set of contents by a language. When there are
several queues, we must choose a way to represent the multiple queue-contents by a
single representation.

We may choose to represent N words w1, . . . , wN by:

1. a vector of words 〈w1, . . . , wN 〉

2. a concatenation of words w1♯ . . . ♯wN , where ♯ is a special letter separating the
different queue contents.

3. an “interlaced” word formed by the sequence first letter of w1, first letter of w2

..., first letter of wN , second letter of w1, second letter of w2, etc. If the N words
have different length, we use a special “blank” letter −. For example, we have
three words w1 = aba, w2 = c and w3 = deef , we will represent them by the word
w = (acd)(b − e)(a− e)(− − f)

The three representations are equivalent in terms of expressiveness. The two first
representations will be the basis of two kinds of analysis. The third one may be used for
the representation of sets of integer vectors (e.g. within the NDD framework [WB95]),
but we discard it because it introduces some “blank” letters each time a message is sent
or received, it thus complicates the computation of the bisimulation relation.

Relational and non-relational lattices So far, we defined an abstract lattice for
the representation a single queue-content. When there are N queues, we must choose
whether we analyze each queue independently or we analyze all the queues together. In
the first case, we may re-use N times the previous lattice. In the second case, we must
find a proper abstract lattice. This is a general issue when using abstract interpretation
techniques. We only need a non-relational lattice (i.e. a lattice without any relation
between the contents of the different queues) in the first case, whereas a relational
lattice (i.e. a lattice that keeps some relations between the contents of the different
queues) is needed in the second case. For example, for the analysis of a program with
several integer variables, one can use a non-relational lattice based on intervals [CC77a],
or a relational one based on convex polyhedra [CH78].

The non-relational analysis is easier, but less precise. In our case, we use N “small”
automata to represent the queue contents independently. For the relational analysis,
we use one “big” automaton to represent all the queue contents. Thus the analysis will
preserve some relationships between the different queue-contents. The reason why the
non-relational analysis will be faster is that the operations we use are not linear (they
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may be exponential) so it is faster to do N times those operations on small automata
rather than one time on a big automaton.

3.2.3 A Non-Relational Lattice

Considering a system with N queues, we can represent the contents of all queues by a
vector of finite words 〈w1, . . . , wN 〉. Generally speaking, a set of vectors X ⊆ EN can
be approximated by a single vector 〈X1, . . . ,XN 〉 ∈ ℘(E)N , where Xi is the projection
of X on the dimension i. Moreover, a language L ∈ L(Σ) is approximated by a vector
of languages α(L) = 〈L1, . . . , LN 〉 where Li is the projection of L on the alphabet of
the queue i, Σi.

Example 3.4 Considering a set of 3 vectors of words v1 = 〈aa, cd〉 , v2 = 〈ab, cd〉
and v2 = 〈aa, cc〉, we over-approximate it by the vector of languages 〈L1, L2〉 with
L1 = {aa + ab} and L2 = {cd + cc}.

Thus we first abstract the lattice L(Σ) by L(Σ1)×· · ·×L(ΣN ), loosing all relations
between the contents of the different queues. Then we can reuse the regular languages
lattice and we obtain the following connection:

℘(Σ∗
1 × . . . × Σ∗

N) −−−→←−−−
αc

γc

L(Σ1)× · · · × L(ΣN )
γ
←− Reg(Σ1)× · · · × Reg(ΣN )

The operations in this lattice are the same as the operations on regular languages. For
the widening operator, given a fixed integer k, we may extend the former definition to:

〈L1, . . . , LN 〉
−→
∇〈L′

1, . . . , L
′
N 〉 , 〈L1∇L′

1, . . . , LN∇L′
N 〉

If needed, we can also define
−→
∇ with different values of k (one value for each single

queue content).

Remark 3.3 In this lattice, the upper bound (“the union”) is no longer exact, because
of the Cartesian product. For example, the upper bound of the languages 〈a, c〉 and
〈b, d〉 is the language 〈a + b, c + d〉

3.2.4 A Relational Lattice

The QDD representation. We introduce a special letter ♯, and represent the con-
tents of all queues by a concatenation of words separated by ♯.

Example 3.5 Considering three queue contents represented by the words abaa ∈ Σ∗
1,

cdec ∈ Σ∗
2 and fgg ∈ Σ∗

3, we represent all the contents by a single word abaa♯cdec♯fgg ∈
Σ∗.

Since QDDs are finite automata, the abstract lattice (Reg(Σ),⊑♯) can be defined
as before, except that the widening operator ∇ must avoid merging the different queue
contents.



76 Chapter 3

Effective representation and manipulation of QDDs. A QDD is a finite au-
tomaton with a special character ♯. This character marks the separation between
two queue-contents. Let M = (Q,Σ, Q0, Qf ) be a QDD. A word w = w1w2 . . . wN

is effectively accepted by a QDD if ∃q0 ∈ Q0, qf ∈ Qf , δ(q0, w
′) = qf where

w′ = w1♯w2♯ . . . ♯wN .
Thus each state q ∈ Q of the QDD can be associated to one (and only one) queue-

content. This association is given by a function a : Q → [1 . . . N ]. On the other
hand, for an integer i, we can define Qi = {q ∈ Q|a(q) = i}. The sub-automaton
Mi = (Qi,Σi, Q0,i, Qf,i, δ/Qi×Qi

) recognizes the projection on the alphabet Σi of the
language recognized byM.

A state q ∈ Qi is initial for a queue i if a separation transition leads to this state

(i.e. ∃q′ ∈ Qi−1, q
′ ♯
→ q). The initial states for the first queue are the initial states of

the automaton. A state q ∈ Qi is final for a queue i if a separation transition starts

from this state (i.e. ∃q′ ∈ Qi−1, q
♯
→ q′). The final states for the last queue are the final

states of the automaton.

Concerning the standard operations (⊔, ⊓, Send, Receive), and inclusion test ⊆,
they are natural extension of their counterpart for an automaton representing a single
queue. In particular, they do not induce any approximation.

The widening operator for QDDs. We will use the same widening operator as
before, but using 4n colors instead of 4. For a state q, we define its color c(q) as:� c(q) = 4 ∗ a(q) if q is both an initial and a final state for the queue a(q),� c(q) = 4 ∗ a(q) + 1 if q is a final (but not initial) state for the queue a(q),� c(q) = 4 ∗ a(q) + 2 if q is an initial (but not final) state for the queue a(q),� c(q) = 4 ∗ a(q) + 3 otherwise.

A natural question arises: is such an operator invariant w.r.t. the ordering of queues
? The answer is unfortunately negative, as illustrated by the following example.

Example 3.6 Let us consider a CFSM with 2 channels, Σ1 = {a, b}, Σ2 = {c, d},
and the language: L = aaaac + baaad. This language L1 is recognized by a QDD
(Figure 3.11). Choosing k = 2 for our widening operator, the two states marked with
an “x” are merged, as well as the two states marked with a “y”. Thus ρ2(L1) = (a +
b)aa(c + d). If we change the order, we start from the language L′ = caaaa + dbaaa
recognized by a second QDD (Figure 3.12), which gives after widening ρ2(L

′) = L′. In
this case, the second ordering preserve the information, unlike the first one.

Consequently, the precision of our analysis depends on the ordering. From a“philosoph-
ical” point of view, a widening operator which would be independent of the order would
have been more satisfactory, but we did not find out yet such a widening operator, with
good properties w.r.t. precision and efficiency. In a different setting however, where
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Figure 3.11: Equivalence classes for the first QDD

#

#

c

d

a

b

a a a

Figure 3.12: Equivalence classes for the second QDD

the aim is not to approximate but to compress the size of the representation, notice
that the BDD representation for Boolean functions strongly depends on the order of
variables.

If we relax efficiency, we may obtain such a widening operator by considering all
the permutations on queues. We would apply the widening on each representation, and
then take the intersection of all the results. We conjecture that the obtained operator
would have the property of a widening operator. Notice however that the number of
permutations is exponential, and that such a solution would imply the ability to convert
from the representation with one order to a representation with a different order. If
we consider again the similarity with BDDs, such a reordering would be certainly more
complex in our case than for BDDs, as we have cyclic graphs while BDDs are acyclic
graphs.

3.3 Applications

In this section, we detail some examples of reachability analyses of FIFO channel sys-
tems, and compare the results with acceleration techniques. Most examples come from
the modeling of simple communication protocols, or are toy examples designed to illus-
trate the properties of our approach.
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0
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1!open 1!close

2?disconnect

close open

disconnect

0

1

1?open 1?close

2!disconnect

(a) Client (b) Queues (c) Server

0,0

1,0 0,1

1,1

2!d
1?c
2?d

1!c

2?d 1!c
2!d1?c

1!o

1?o

1?o

1!o

close open

disconnect

(d) Global CFSM: product of client and server processes

Figure 3.13: The connection/disconnection protocol

3.3.1 Examples of Protocols and their Analyses

The connection/disconnection protocol. We remind the definition this protocol,
which was first given in Chapter 1.

Example 3.7 The connection/disconnection protocol [JR87] between two machines is
the following (Figure 3.13): the client can open a session by sending the message open

to the server. Once a session is opened, the client may close it on its own by sending
the message close or on the demand of the server if it receives the message disconnect.
The server can read the request messages open and close, and ask for a session closure.

This protocol is a good example of what happens when the contents of the different
channels strongly depend on each other; in this case, the non-relational analysis is worse
(both for precision and efficiency) than the relational one. We choose k = 2 to define
the ∇ operator in both cases.
Here is the result of the relational analysis (7 iteration steps):

0, 0 (o.c)∗#ε
+ (o.c)∗#ε
+ (c.o)∗.o.c.(o.c)∗#ε
+ c.(o.c)∗#d

1, 0 ε#d
+ o#ε
+ (o.c)∗.o#ε
+ (c.o)∗#d
+ (c.o)∗.o.(c.o)∗#ε

0, 1 c.(o.c)∗#ε

1, 1 ε#ε
+ (c.o)∗#ε
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Here is the result of the non-relational analysis (8 iteration steps):

0, 0 o∗ + o∗.c.(o+.c)∗.o∗ d∗

1, 0 o∗ + o∗.c.(o+.c)∗.o+ d∗

0, 1 o∗ + o∗.c.(o+.c)∗.o∗ d∗

1, 1 o+ + o∗.c.(o+.c)∗.o+ d∗

The first analysis (but not the second one) shows that there is at most one d in the
second queue, and that there is the same number of o and c (+/- 1) in the first queue1.

The reason why the non-relational analysis is far worse in this case is that it cannot
detect that there is at most one d in the second queue, thus many non-reachable states
are explored by this analysis.

A toy example. The previous example shows that the non-relational analysis may
be longer than the relational one. However, this is an exception. In general, this
kind of analysis is faster. We provide an example where the non-relational analysis is
much faster than the relational one. This toy example (Figure 3.14) is a CFSM with 4
queues, where we can only add messages. We can prove that the content of the queues
is ana♯bnb♯cnc♯dnd , with na = nb and nc = nd. If we choose k = 5 (for the widening
definition), the non-relational analysis stops in about one second and leads to the result
(a∗, b∗, c∗, d∗).

1!b 3!d

0!a 2!c

Figure 3.14: A toy example

The relational one takes several minutes for a similar result. In fact, the relational
analysis will consider all the languages Li,j = {ai#bi#cj#dj} with i, j = 1..5 before
performing any widening operation.

The Alternating Bit Protocol. The Alternating Bit Protocol (ABP) is a data-
transmission protocol, between a sender S and a receiver R. S transmits some data
package m through a FIFO channel C2, and R and S exchange some information (one-
bit messages) through two channels K and L (Figure 3.15).

1Indeed, this protocol is a faulty one, there is a correct version available in [JR87]. This correct
version can be easily analyzed, since the length of the queue-content is bounded.

2This transmission is often modeled by two abstract actions SEND and RECEIVE instead of this
third channel C.
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C!m

L?1

K!1

L?0

L?0

K?1

L!1
K?0

C?mC?m

K?1
K?0

L!0

Figure 3.15: The Alternating Bit Protocol

We performed a relational analysis of the CFSM modeling this protocol:

Sender Receiver Contents K#L#C

0 0 1∗#1∗#ε

0 1 ∅

0 2 ∅
0 3 ∅
1 0 1∗0∗#1∗#m

1 1 0∗#1∗#m

1 2 0∗#1∗0∗#ε

1 3 ∅
2 0 ∅
2 1 ∅
2 2 0∗#0∗#ε

2 3 ∅
3 0 1∗#0∗1∗#ε

3 1 ∅
3 2 0∗1∗#0∗#m

3 3 1∗#0∗#m

This result was obtained in 8 iteration steps,using ρ0 to define the widening operator.
It shows that the control states (0, 1), (0, 2), (0, 3), (1, 3), (2, 0), (2, 1), (2, 3) and (3, 1)
are not reachable and that there is at most one message in data channel C. Comparing
this result with the experimental results given in [BG97, AAB99] shows that we obtain
the exact result.

A non-regular example. Our abstraction can deal with cases where the reachability
set is not regular. Let us consider the CFSM depicted in Figure 3.16. Each process can
send a message a or c, and a synchronization is guaranteed by the messages b and d.

In location (0/0), the content of the queues will be an♯ε♯cn♯ε with n ≥ 0. This set
is non-regular, and thus cannot be represented by a regular expression. Our method
will find an over-approximation of the exact reachability set. In location (0/0) the
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2!b

4?d
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2?b

3!c

4!d

Figure 3.16: A non-regular protocol

queue-content we found, with ∇1, is represented by the language:

L(0/0) = ε♯ε♯ε♯ε + a♯ε♯c♯ε + aaa∗♯ε♯ccc∗♯ε

This example shows that our method may give a good over-approximation of a non-
regular reachability set.

A protocol with nested loops. Figure 3.17 depicts a protocol, which is an abstrac-
tion of systems exchanging frames composed of several packets.

0 1
!start

!end

!a

0
?a

?start

?end

Sender Receiver

Figure 3.17: Nested loop

The sender first sends a start message, then sends any number of a messages and
ends the frame with an end message. The receiver can read any message at any time.

Our analysis, with ∇1, shows that, when the sender is in location 0, the content of
the queue is:

L0 = ε + (s + ε)a∗e(sa∗e)∗

Here the ability of representing regular expressions with nested Kleene’s closures is
important; in this case we even obtain the exact reachability set.

Lossy channels. Even if we built our analysis for CFSMs with perfect channels, it
can also deal with lossy channels.

First, we can define an operator on automata simulating the possible lost of mes-
sages. This operator is simply adding an epsilon transition between states linked with a
normal transition. Since we often need to determinize the automata, this introduction
of so many epsilon transitions is really a burden.

So we simulate the loose of messages by altering the semantics of the send operation:
J!aK(L) = L ∪ L.a. With only this alteration, we have a system equivalent to a lossy
channel system, i.e. any state reachable with the lossy semantics is also reachable with
this semantics perfect’, which is identical to the semantics of perfect FIFO channel
systems, excepted that a message can be lost when it is inserted in a queue.

Proposition 3.5 Let S be a set of configurations where all lossy channels are empty.
Then Post∗lossy (S) = Post∗perfect ′(S)
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Proof: Post∗perfect ′(S) ⊆ Post∗lossy (S) because the loss of a message is possible only
when the message is inserted, whereas the lossy semantics allows this loss to happen at
any time.

Then we consider a configuration (c, w1, . . . , wN ) ∈ Post∗lossy(C). We have a
sequence of operations (c, ε, . . . , ε) → · · · → (c, w1, . . . , wN ). Each steps is either an
input or an output, and the loss of some messages. Since the queues are empty at the
beginning, we take exactly the same operation, but without inserting the messages that
are later lost in the queues. This lead to the same final configuration (c, w1, . . . , wN ). 2

This semantics is not exactly equivalent to a lossy channel system, because we
must assume the queues are empty at the beginning. However, this assumption holds
when we perform a standard reachability analysis and it is far less costly than the first
method. Moreover, we can define CFSMs with both perfect channels and lossy ones.
This is the reason why we implemented this altered semantics.

3.3.2 Comparison with Acceleration Techniques

Compared to acceleration techniques, the main advantage of the method based on
abstract interpretation is that our analysis will always terminate. But the guarantee of
termination is useless if the result (an approximation of the exact result) is not precise
enough.

The abstract values are regular languages; so our representation of queue contents is
as expressive as all the representations based on regular languages (the QDDs) or regular
expressions (SLREs). The only representation that is incomparable is the CQDDs. The
expressiveness of the representation, however, is only one of the aspects of the precision
of the analysis. We must also take into account the approximation we make during the
computation, or, in the case of acceleration techniques, the kind of CFSM we are able
to analyze.

In Tab. 3.1 we compare the techniques mentioned in the previous chapter, with our
non-relational and relational analysis, on some examples of communication protocols:
the ABP and the connection/disconnection protocol, and two toy examples: the non-
regular one and the one with nested loop. We did not consider the method of [ABJ98],
which assumes lossy channels.� yes means that the reachability analysis gives the exact result.� no means that the reachability analysis does not terminate.� approx means that the reachability analysis gives an over-approximation of the

reachability set.

The only case where our relational method gives less satisfactory results than another
method, which is also the only case where the result is not exact, is the Non-Regular
protocol. On this protocol, the CQDD method can compute the exact reachability
set

⋃
n≥0 an♯ǫ♯cn♯ǫ, whereas we approximate it, using ∇k, by

⋃
0≤n≤k+2 an♯ǫ♯cn♯ǫ ∪
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Acceleration techniques Regular languages with widening
Example SLRE [FIS03] QDD [BG97] CQDD [BH99] non-relational relational

(1) ABP yes yes yes yes yes

(2) Conn./disconn. yes yes yes approxa yes

(3) Non-regular noa,b noa,b yes approxb approxb

(4) Nested loops nob yes nob yes yes

(a) counting loops [BG97] that cannot be accelerated
(b) exact set not representable

Table 3.1: Comparison of acceleration techniques with abstract interpretation-based
analyzes

ak+2a∗♯ǫ♯ck+2c∗♯ǫ, which is not so bad. On the other hand, none of the other methods
delivers results for all the examples.

3.3.3 Beyond Reachability Analysis

Observers. As we explained it in Section 1.2, we can verify safety properties when we
are able to compute the reachability set, or an over-approximation of the reachability
set. We first take the observer O¬p, and do the synchronous product Op ×M. We
then compute the reachability set to know ifM violates p. Unlike what is presented in
Section 1.2, the observer is a CFSM instead of a transition system. We give here the
definition of the synchronous product of two CFSMs.

Definition 3.4 (Synchronous product of two CFSMs) LetM1 = 〈C1,Σ, c1
0,∆

1〉
andM2 = 〈C2,Σ, c2

0,∆
2〉 be two CFSMs. The synchronous productM1×M2 is defined

as M = 〈C,Σ, c0,∆〉:� C = C1 × C2,� c0 = (c1
0, c

2
0),� ∆ is defined by the rules:

(q1, act, q′1) ∈ ∆1 (q2, act, q′2) ∈ ∆2

((q1, q2), act, (q′1, q′2)) ∈ ∆

where act is an input i?m or an output i!m.

Remark 3.4 If JM1K (resp. JM2K) is the transition system that gives the semantics
of M1 (resp. M2), then JM1 ×M2K = JM1K× JM1K.

In general, the behavior of the synchronous product is a restriction of the behavior of
each CFSM. Since the observer is not allowed to alter the behavior of a system, it must
be complete, i.e. it must accept any sequence of transitions of the observed CFSM.
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Verdicts. In our case, we only have an over-approximation of the reachability set.
On one hand, this is a drawback, because we cannot be sure the property is violated.
On the other hand, if the result of our analysis shows that no bad state is reachable,
we are sure that the protocol does not violate the property p. In the first case, we may
refine the abstraction in order to be more precise, and perform a new analysis.

Example 3.8 Let us take back the example of the connection/disconnection protocol.
The observer in Figure 3.18 checks the property “there is never more than one message
in the first queue”; it is basically a counter with a sink state. The transitions labeled by
∗ are any transition not explicitly mentioned on the observer.

The reachability analysis show that this property might be violated. Since we know
that our analysis corresponds to the result of the acceleration techniques on this example,
it is thus exact and we are sure the property is violated. This example illustrates the
interest of combining acceleration techniques with our method, in order to prove that a
property is violated.

0,0

1,0 0,1

1,1

2!d
1?c
2?d

1!c

2?d 1!c
2!d1?c

1!o

1?o

1?o

1!o

A

B

C

1!o
1!c 1?c

1?o

1!o
1!c

∗

∗

∗

(a) CFSM S (b) Observer O

Figure 3.18: CFSM and its observer

3.4 Conclusion

In this chapter, we detailed the abstract lattice of regular languages, and showed how to
perform reachability analysis of CFSMs using this lattice. We analyzed some classical
examples of communication protocols, and compared our method to the acceleration
techniques.

The lattice of regular languages is indeed well-known, except the widening opera-
tor. As we said, a similar operator was mentioned in [Fer01]. We adapted it to the
analysis of FIFO channel systems, and studied its properties. This widening is also
parametric, depending on an initial partition and on an integer parameter k. It might
be employed for the analysis of systems using stacks; with a representation of a stack
by a finite word, pushing or popping elements are simple automata operations. In this
case, the suffix conservation property guarantees that the widening does not induce
some approximation on the last pushed elements. We will discuss this possibility in
Chapter 5.
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Compared to other automatic analyzes of CFSMs, our method has significant ad-
vantages. First, it can be applied to any CFSM and always terminates. It is technically
simple, based on standard abstract interpretation techniques and well-known concepts
like regular languages and bisimulation of depth k. Despite its simplicity, that we
consider as a strength, our method is often as accurate as acceleration techniques on
standard examples, and it can deal with counting loops [BG97]. It is however unable
to certify by itself whether the obtained result is exact or not (which is a limitation
common to abstract interpretation techniques). Last but not least, this approach is
more amenable to the combination of FIFO channels with other unbounded datatypes,
like counters, in the spirit of [JHR99] (see the following chapters). Indeed, it seems very
difficult to accelerate loops where FIFO operations are guarded by numerical tests on
counters and where counters are conversely updated depending on the FIFO channel
contents.

For CFSMs, our method is a good alternative to acceleration based techniques.
The two approaches may actually be seen as complementary. Typically, one can first
try to get the exact reachability set using acceleration techniques and then apply our
method in case of failure. A more interesting combination consists in using acceleration
techniques to add meta-transitions in the original model, when possible, and to apply
our method to the augmented system. Since we have a QDD representation, we can
reuse the QDDs acceleration technique in this context.

The examples of protocols are quite simple, but complex protocols often have integer
and boolean variables, and parametrized messages, which are not easily handled by the
CFSM model. This is the reason why we extend this work to more complex models, in
Chapter 5. This extension needs a representation of regular languages over an infinite
alphabet: the lattice automata.
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Chapter 4

Lattice Automata

This chapter introduces the notion of lattice automata, an abstract representation for
languages over infinite alphabets. The notion of lattice automata emerged when we
wanted to generalize the verification of communicating protocols to the ones where
messages carry integer values. If one wants to perform an approximated reachability
analysis like the one presented in the last chapter, there are two possibilities:

1. to choose a finite abstraction of the values of the parameters, and perform the
same analysis as before,

2. to define a similar abstract lattice, but over an infinite alphabet instead of a finite
one.

We preferred the second approach, which is more generic, and defined an automata
representation on languages over infinite alphabets. The main idea is quite simple:
instead of labeling each transitions by an element of a finite alphabet Σ, each transition
is labeled by an element of an atomic lattice, representing a possibly infinite set of
atoms. This definition of lattice automata enables finite automaton-like manipulations
of regular languages over an infinite alphabet.

Some other researchers introduced automata working on an infinite alphabet, like
register automata [KF94], pebble automata [MSV00] or data automata [BMS+06].
They are associated to some decidable logic, with the idea that a word with data
satisfies the logical formula if it is recognized by the corresponding automata. Since
our aim is to extend the analysis of Chapter 3, those automata are not adapted to our
needs.

Outline. We first formally define the lattice automata, and we advocate the idea of
using a partition of the lattice in order to define a projected finite automaton which
acts as a guide for defining determinization and minimization operations. We motivate
our choices and show that they lead to a robust notion of approximation, in the sense
that normalization is an upper-closure operation and can be seen as a best upper-
approximation in the lattice of normalized lattice automata. We then define the other
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classical operations such as union and intersection, before defining a suitable widening
operator which allows to consider lattice automata as a fully equipped abstract domain.

4.1 Definition and Discussion

Lattice automata are finite automata, the transitions of which are labeled by elements
of an atomic lattice (Λ,⊑) instead of elements of a finite and unstructured alphabet.
We remind that an atomic lattice (Λ,⊑) is a lattice with a set of atoms At(Λ) ⊆ Λ
such that:� each atom a is greater only to ⊥: λ ⊑ a =⇒ λ = a ∨ λ = ⊥,� each element λ, except ⊥, is the upper bound of the atoms lesser than itself:

λ =
⊔
{a ∈ At(Λ)|a ⊑ λ}.

Most abstract domains used in the abstract interpretation framework are atomic:
for example, the lattice of intervals is atomic : its atoms are the singletons [x, x] with
x ∈ Q and we have [a, b] = ⊔{[x, x] | a ≤ x ≤ b}.

Example 4.1 A simple non-atomic lattice is the one defined by the set {⊥,⊤, a, b} and
the partial order: ⊥ ⊑ a ⊑ b ⊑ ⊤ Figure 4.1. The only atom of this lattice is a, and
⊔{λ ∈ At(Λ) | λ ⊑ b} = a 6= b.

⊤
|
b
|
a
|
⊥

Figure 4.1: Example of a non-atomic lattice

Lattice automata recognize languages on atomic elements of this lattice. For in-
stance, the interval automaton of Fig. 4.2 recognizes all sequences of rational numbers
x0 . . . xn−1 where n is odd, x2i ∈ [0, 1] and x2i+1 ∈ [1, 2]. Such an automaton can be
used to represent possible contents of a queue containing rational numbers.

[0, 1]

[1, 2]

Figure 4.2: An interval automaton

However, the classical operations on finite automata cannot be extended as is on
lattice automata. It is the case of the determinization and minimization operations.
Consequently, we propose another notion of determinization which is in some sense an
optimal approximation of the classical operation.
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4.1.1 Basic Definition

Definition 4.1 (Lattice automaton) A lattice automaton is a tuple
〈Λ, Q,Q0, Qf , δ〉 where:� Λ is an atomic lattice, the order of which is denoted by ⊑;� Q is a finite set of states;� Q0 ⊆ Q and Qf ⊆ Q are the sets of initial and final states;� δ ⊆ Q× (Λ \ {⊥})×Q is a finite transition relation.1

A finite word w = a0 . . . an ∈ At(Λ)∗ is accepted by the lattice automaton if there exists
a sequence q0, q1, . . . , qn+1 such that q0 ∈ Q0, qn+1 ∈ Qf , and ∀i ≤ n, ∃(qi, λi, qi+1) ∈
δ : ai ⊑ λi.

The set of words recognized by a lattice automaton A is denoted by LA. The inclusion
relation between languages induces a partial order on lattice automata:

Definition 4.2 (Partial order ⊑ on lattice automata) The partial order ⊑ be-
tween lattice automata is defined as A ⊑ A′ iff LA ⊆ LA′ .

Remark 4.1 (Downward closure of transitions) With the Definition 4.1, if there
exists a transition (q, λ, q′) in δ, then any (q, λ′, q′) with λ′ ⊑ λ may be added without
modifying the recognized language. Hence, such transitions are redundant.

From now on, we assume that all transitions of a lattice automaton are maximal in the
following sense: (q, λ, q′) ∈ δ ∧ (q, λ′, q′) ∈ δ implies that λ and λ′ are not comparable.

Remark 4.2 (Words on atoms) We restrict the recognized words of a lattice au-
tomaton to be composed of atoms because we want the two automata of Fig. 4.6 to
be equivalent in terms of their recognized languages. If words were composed of any
elements of the lattice, the word composed of the single element {0 ≤ x ≤ 3, 0 ≤ y ≤ 1}
would be recognized by the first automaton but not the second one. In the same spirit,
we require that the lattice Λ is atomic, so that any element λ ∈ Λ labeling a transition
is isomorphic to the set of atoms it dominates.

Remark 4.3 (Status of ⊥) ⊥ cannot label a transition, not only as a consequence of
the previous remark, but also because this corresponds to the intuition that ⊥ does not
represent any element and denotes a notion of emptiness.

Definition 4.3 A lattice-based regular language is a language recognized by a lattice
automaton A. We denote by Reg(Λ) the set of lattice-based regular languages.

1No transition is labeled with the bottom element ⊥.
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4.1.2 Discussion

Definition 4.1 raises however a number of problems. We expose them before introducing
our solution to them. The first problem is related to the bounded branching degree
property: in a deterministic finite automaton, there are at most |Σ| transitions outgoing
from a state. However, with definition 4.1, the branching degree of lattice automata is
not bounded because the number of atoms is possibly infinite, as shown in Fig. 4.3.

[0, 0]

[2, 2]

[2k, 2k]

Figure 4.3: A family of interval automata Ak with unbounded branching degree

The second problem is related to the notion of determinism. The classical notion
of determinism can be extended in a straightforward way as follows:

Definition 4.4 (Deterministic lattice automaton) A lattice automaton
〈Λ, Q,Q0, Qf , δ〉 is deterministic if it has a unique initial state and if
(q, λ1, q1) ∈ δ ∧ (q, λ2, q2) ∈ δ =⇒ λ1 ⊓ λ2 = ⊥.

Can now any lattice automaton be made deterministic while still recognizing the same
language ? The answer is negative, as illustrated by the example of Figure 4.4, which
uses the lattice of affine equalities [Kar76].

1 2
y=0

x=0 1 1,2

2
“y=0 ∧ x 6= 0”

“x=0 ∧ y 6= 0”
x=0 ∧ y=0

“x=0 ∧ y 6= 0”

x=0 ∧ y=0

(a) non-deterministic (b) deterministic
automaton automaton ?

Figure 4.4: Attempt to determinize a lattice automaton on the lattice of affine equalities

Example 4.2 The lattice of affine equalities, which could also be called the lattice of
affine subspaces, is the lattice formed by the conjunctions of affine equalities on the
space Rn ; Given a finite set of variables {x1, . . . , xn}, an element of the lattice of
affine equalities is defined by a conjunction of linear equalities a1x1 + · · · + anxn = 0,
with a1, . . . , an ∈ R. The lattice of affine equalities is also called the lattice of affine
subspaces. It is an atomic lattice, ordered by the classical ⊆, and the atoms are the
elements of Rn.
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The automaton depicted on Figure 4.4 recognizes the words p1 . . . pm where
p1 . . . pm−1 belongs to the line define by x = 0 and pm to the one defined by y = 0.
This automaton is non deterministic because in state 1, the atom {(0, 0)} can trigger
both transitions.

An attempt to determinize this automaton would be to split the transitions, and
take into account the case x = 0 ∧ y = 0. However, the other transitions would be
defined by linear inequalities instead of linear equalities. Thus, there is no hope to find
a deterministic lattice automaton accepting exactly the same language.

The problem here is that elements of an atomic lattice cannot be complemented
in general. With some lattices, like the lattice of intervals where an element can be
complemented by a finite union of intervals, this problem can be overcome by splitting
transitions, cf. Fig. 4.5, but we are back then to the branching degree problem.

⊤

b c

a0 a1 a2 a3 a4

⊥

1 2
c

b
1,2

1

2

a0

a1

a2

a0
a1

a2

a3

a3
a4

(a) Lattice (b) non-deterministic (c) acceptable
automaton deterministic automaton

Figure 4.5: Attempt to determinize a lattice automaton

Example 4.3 Figure 4.5 illustrates another attempt to determinize a lattice automa-
ton. The lattice is depicted on Figure 4.5(a) and the automaton on Figure 4.5(b). This
automaton is non-deterministic because in location 1, the atom a2 can trigger both tran-
sitions. We split the two transitions and obtain the automaton depicted on Fig. 4.5(c).
Each transition is thus an explicit union of atoms, not the least upper bound.

Moreover, using such explicit unions may be problematic to define minimization
and canonical form. For instance, how to choose between the two automata of Fig. 4.6
? The problem here is that there is no canonical representation for unions of convex
polyhedra.

Example 4.4 Figure 4.6 depicts two automata recognizing the same set of one-letter
words L = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0), (3, 1)}. The transi-
tions of the two automata are however not comparable.

4.1.3 Partitioned Lattice Automata

The solution we propose to fix these problems is to use a finite partition of the lattice
Λ, which allows to decide when two transitions should be merged using the least upper
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-1 0 1 2 3 4

-1

0

1

2

3

1 2

{0 ≤ x ≤ 3,
0 ≤ y ≤ 1 }

{0 ≤ x ≤ 1,
1 < y ≤ 2 }

1 2

{1 < x ≤ 3,
0 ≤ y ≤ 1 }

{0 ≤ x ≤ 1,
0 ≤ y ≤ 2 }

-1 0 1 2 3 4

-1

0

1

2

3

Figure 4.6: Two deterministic convex polyhedra automata that are equivalent

bound operator. The fusion of transitions will induce in general an over-approximation,
controlled by the fineness of the partition. The gain is that the projection of labels onto
their equivalence classes produces a finite automaton on which we can reuse classical
notions.

Definition 4.5 (Partitioned lattice automaton (PLA)) A partitioned lattice au-
tomaton (PLA) A is a lattice automaton A = 〈Λ, π,Q,Q0, Qf , δ〉 equipped with a par-
titioning function π : Σ→ Λ such that Σ is a finite alphabet and the transition relation
δ satisfies:

∀(q, λ, q′) ∈ δ, ∃σ ∈ Σ : λ ⊑ π(σ)

Precision on the partitionning function. We consider n elements λ1, . . . , λn of
the atomic lattice Λ verifying:

1. if i 6= j, then λi ⊓ λj = bot;

2. for any atom a ∈ At(Λ), there is one element λi ⊒ a. The first property ensure
that this element λi is unique.

So this set λ1, . . . , λn defines a partition P1, . . . , Pn of At(Λ), with Pi = {a ∈ At(Λ) | a ⊑
λi}. A function π : Σ→ Λ is a partitionning function if the elements π(σ1), . . . , π(σn)
define such a partition. The definition of the PLA expresses that each label of a
transition belongs to a single equivalence class of the partition.

A PLA is merged2 if there is at most one transition per equivalence class betwwen
two states, in other words if:

∀q, q′, λ1, λ2, (q, λ1, q
′) ∈ δ ∧ (q, λ2, q

′) ∈ δ =⇒ π−1(λ1) ∩ π−1(λ2) = ∅

Definition 4.6 (Shape automaton and Shape equivalence) Given a PLA
A = 〈Λ, π,Q,Q0, Qf , δ〉, its shape automaton shape(A) is a finite automaton
(Σ, Q,Q0, Qf ,→) obtained by projecting the transition relation δ onto the equivalence
classes:

(q, λ, q′) ∈ δ

(q, π−1(λ), q′) ∈→

2The term “merged” comes from the merging operation needed to build a merged PLA from a given
PLA.
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Two PLAs are shape-equivalent if their two shape automata recognize the same lan-
guage3.

Example 4.5 Figure 4.7 depicts an interval automaton A, and its shape automaton
shape(A). The partition is given by the function π : a 7→]−∞, 0[ , b 7→ [0,+∞[.

1 2 3

4 5

[3, 5] [−7,−5] [4, 6]

[1, 2]

[−3,−1]

[3, 5]

1 2 3

4 5

a b a

a

b

a

Lattice automaton A Finite automaton shape(A)

Partition : { ]−∞, 0[ , [0,+∞[ }
{b , a}

Figure 4.7: An interval automaton and its shape

Two transitions of a PLA labeled by elements belonging to different equivalence
classes cannot be merged and are always kept separate, whereas they might be merged
in the opposite case. Deterministic merged PLAs have the finite branching degree
property: their states can have at most |Σ| outgoing transitions.

From an expressiveness point of view, PLA are as expressive as lattice automata.

Proposition 4.1 (Equivalence between lattice automata and PLA) Given a
lattice automaton A = 〈Λ, Q,Q0, Qf , δ〉 and a partitioning function π : Σ → Λ, there
exists a partitioned lattice automaton A′ = 〈Λ, π,Q,Q0, Qf , δ〉 recognizing the same
language (this relies on the atomic lattice assumption).

Proof: A′ is obtained from A by replacing each transition (q, λ, q′) of A by at most
|Σ| transitions (q, λi, q

′), where λi = λ ⊓ π(σi) if λi 6= ⊥. 2

However, for a given partition, merged PLAs are strictly less expressive, as shown on
Fig. 4.6 and 4.8 with the trivial partition of size 1. Moreover, if one considers the lattice
of affine equalities, which can be partitioned only with the trivial partition of size 1, the
automaton of Fig. 4.4(a) shows that in general merged PLA are strictly less expressive
than PLA.

Proposition 4.2 Let A be a PLA. If shape(A) is deterministic, then A is determin-
istic.

3In the following, shape automata are simply called ”shapes”.
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1 2

{0 < x ≤ 3,
0 ≤ y ≤ 2,
x + 2y ≤ 5}

-1 0 1 2 3 4

-1

0

1

2

3

Figure 4.8: A merged PLA with the one-element partition

Proof: Let (q, λ1, q1) and (q, λ2, q2) be two transitions of A, and (q, σ1, q1) and (q, σ2, q2)
be the two corresponding transitions of shape(A). Since shape(A) is deterministic, π−1(λ1) ∩
π−1(λ2) = ∅. Since π is a partitioning function, we have :

1. λi ⊑ π(σi)

2. π(σ1) ⊓ π(σ2) = ⊥

So λ1 ⊓ λ2 = ⊥. And then A is deterministic. 2

The converse is false in general. This property leads us to define a stronger notion of
determinism :

Definition 4.7 (Strong determinism) A PLA A is strongly deterministic if
shape(A) is deterministic.

This notion of determinism is useful since it is defined on the well-known finite au-
tomata, and is a guideline for the definition of a determinization algorithm. Therefore,
in the sequel, “deterministic” means “strongly deterministic”.

With all those definitions, we will be able to define a normalized form for lattice-
based regular language L. This normalization will exploit the following lemma :

Lemma 4.1 (Testing language inclusion) Let A = 〈Λ, π,Q,Q0, Qf , δ〉 and A′ =
〈Λ, π,Q′, Q′

0, Q
′
f , δ′〉 be two merged PLAs with the same partitioning function4. Then

A ⊑ A′ iff there is a simulation relation R ⊆ ℘(Q)× ℘(Q′) verifying :

1. Q0RQ′
0

2. ∀X ⊆ Q,∀Y ⊆ Q′ : XRY =⇒
[
(X ∩Qf 6= ∅) =⇒

(
Y ∩Q′

f 6= ∅
)]

3. Let X ⊆ Q and Y ⊆ Q′ such that XRY . For any atom a ∈ At(Λ), there are two
sets Xa ⊆ Q and Ya ⊆ Q′ such that XaRYa and:

(∃(qx, λx, q′x) ∈ δ : qx ∈ X ∧ a ⊑ λx)
⇓(

∃(qy, λy, q
′
y) ∈ δ′ : qy ∈ Y ∧ a ⊑ λy ∧ (q′x ∈ Xa ∧ q′y ∈ Ya)

)

This lemma gives the proof of the inclusion test algorithm Figure 4.9: the loop
invariant of the algorithm is, as long as is included is true: if (X,Y ) ∈ ToDo, then
XRY .

4We also assume that all states are useful, i.e. all states of the automata are reachable from an
initial state and coreachable from a final state. This assumption holds for all the algorithms of this
chapter.
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Proof: On one hand, if there is a simulation like this one, it is obvious that LA ⊆ LA′ ,
because of the definition of a language recognized by a lattice automaton.

On the other hand, if LA ⊆ LA′ , we can build R starting from Q0RQ′
0 and using

the same construction as the one of Figure 4.9. Indeed, this algorithm tries to build R
as long as is included is true. The sets Xa and Ya are set of states reachable from X
and Y by a transition labeled by λ ⊒ a.

So the loop invariant of our construction is if (X,Y ) ∈ ToDo, then XRY . We
suppose that we have XRY and, there is one atom a ∈ At(Λ) so that there is not
any sets of states Xa and Ya verifying the conditions imposed by R. It means we have
either:� at least one transition (qx, λx, q′x) ∈ δ : qx ∈ X ∧ a ⊑ λx and no transition

(qy, λy, q
′
y) ∈ δ′ : qy ∈ Y ∧ a ⊑ λy, or� a state q′x ∈ Qf and no state q′y ∈ Q′

f .

In both case, we have at least a word recognized by A and not recognized by A′, which
violates the hypothesis LA ⊆ LA′ . The assumption that all states of the two automata
are reachable from an initial state and co-reachable from a final state ensures that, in
the first case, we will eventually find such a word. 2

Note that the algorithm for inclusion test does not need any determinization step.
This determinization is implicitly performed on the fly during the algorithm.

4.2 Normalization of PLAs

Normalization of partitioned lattice automata will be obtained by merging, determiniz-
ing and minimizing PLA. These operations provide a canonical form for PLA. Although
this normalization induces an upper-approximation of the recognized language, this is
a robust notion in the sense that the approximation is optimal.

4.2.1 Merging

Any PLA A = 〈Λ, π,Q,Q0, Qf , δ〉 recognizing a language L can be transformed into
a merged PLA Am = 〈Λ, π,Q,Q0, Qf , δm〉 ⊒ A recognizing a language Lm ⊇ L by
merging transitions as follows:

q, q′ ∈ Q σ ∈ Σ λm =
⊔
{ λ ⊓ π(σ) | (q, λ, q′) ∈ δ}

(q, λm, q′) ∈ δm

The upper-approximation on the recognized language comes from the use of the lub op-
erator. For instance, with a single equivalence class on R2, the merged PLA associated
to any automaton depicted on Fig. 4.6 is depicted on Fig. 4.8.



96 Chapter 4

Algorithm: Inclusion test for two PLAs
Input: two PLAs A = 〈Λ, π : Σ→ Λ, Q, Q0, Qf , δ〉 and A′ = 〈Λ, π : Σ→ Λ, Q′, Q′

0, Q
′
f , δ′〉

Output: a boolean is included
begin

is included := true ;
R := {(Q0, Q

′
0)};

ToDo := {(Q0, Q
′
0)};

while ToDo 6= ∅ ∧ is included do
(X, Y ) := pickAndRemoveElement(ToDo);
for all a ∈ At(Λ) do 1

Xa := ∅; Ya := ∅;
for all (qx, λx, q′x) ∈ δ such that qx ∈ X and a ⊑ λx do

Xa := Xa ∪ {q′x};
endfor
for all (qy, λy, q′y) ∈ δ′ such that qy ∈ Y and a ⊑ λy do

Ya := Ya ∪ {q′y};
endfor

is included := is included ∧ (Ya = ∅ =⇒ Xa = ∅) ∧
(
Xa ∩Qf 6= ∅ =⇒ Ya ∩Q′

f 6= ∅
)

;

if (Xa, Ya) /∈ R then
R := R ∪ (Xa, Ya) ;
ToDo := ToDo ∪ (Xa, Ya) ;

endif
endfor

endwhile
return is included ;

end

1 The number of atoms may be infinite. So an implementation would manipulate elements λx ⊓λy for all
outgoing transitions (qx, λx, q′x) ∈ δ, qx ∈ X and (qy , λy, q′y) ∈ δ′, qy ∈ Y .

Figure 4.9: Inclusion test algorithm for a merged PLA

4.2.2 Determinization

We give here an algorithm to obtain a deterministic automaton det(A) from a PLA A =
〈Λ, π,Q,Q0, Qf , δ〉. This algorithm mimics the determinization of the shape automaton
using the subset construction on states and is illustrated on Fig. 4.10. The difference
is that the transitions are merged in the course of the algorithm when they are labeled
with values belonging to the same equivalence class. det(A) = 〈Λ, π,X ,X0,Xf ,∆〉 is
characterized by:� X = 2Q,� X0 = {Q0},� Xf = {X ⊆ Q | X ∩Qf 6= ∅},� ∆ is the set of transitions (X1, λ,X2), defined for a couple X1,X2 ⊆ Q and
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(a) original (b) deterministic (c) minimal
automaton automaton automaton

Figure 4.10: Determinization and minimization of an interval automaton with the
partition ]−∞, 0] ⊔ [0,+∞[

λ ⊑ π(σ) as:

λ = ⊔{λ | (q1, λ, q2) ∈ δ ∧ q1 ∈ X1 ∧ q2 ∈ X2 ∧ λ ⊑ π(σ)}

The full algorithm is given in Fig. 4.11. The resulting automaton det(A) is optimal
in terms of language inclusion:

Proposition 4.3 (Determinizing PLA is a best upper-approximation) Let A
be a PLA and det(A) the PLA obtained with the algorithm of Fig. 4.11. Then det(A)
is the best upper-approximation of A as a merged and deterministic5 PLA:

1. A ⊑ det(A);

2. For any merged and deterministic PLA A′ based on the same partition as A,
A ⊑ A′ =⇒ det(A) ⊑ A′.

Proof: The result is a merged and deterministic PLA because the algorithm determinizes the
shape and performs merging of new transitions. It is also clear that the resulting automaton
recognizes a greater language than the original one. We must prove the third point of the
proposition.

Let A = 〈Λ, π, Q, Q0, Qf , δ〉 be the initial PLA, det(A) = 〈Λ, π,X , X0, Xf , ∆〉 the result
of our algorithm and A′ = 〈Λ, π, Q′, Q′

0 = {q′0}, Q
′
f , δ′〉 a merged and deterministic PLA such

that LA ⊆ LA′ . As usual, we suppose that, in these automata, all states are reachable from
the initial states and co-reachable form the final states.

We can build a simulation relation R on ℘(Q)×Q′6 defined as:� At the beginning, (Q0, q
′
0) ∈ R.� If we have (Qx, qx) ∈ R then for all σ ∈ Σ, we consider Qy = {qy ∈ Q|∃(qx, λ, qy) ∈

δ ∧ qx ∈ Qx ∧ λ ⊑ π(σ)}. Since LA ⊆ LA′ and A′ is deterministic, there is a unique
q′y ∈ Q′ verifying (qx, λ′, q′y) ∈ δ′ ∧ λ′ ⊑ π(σ), thus we add (Qy, q′y) ∈ R. By construction
of det(A), there is also a transition (Qx, λdet, Qy) ∈ ∆ with λdet =

⊔
{λ|∃(qx, λ, qy) ∈

δ ∧ qx ∈ Qx ∧ λ ⊑ π(σ)} ⊑ λ′.

5Remember that “deterministic” means strongly deterministic.
6We remind that X = ℘(Q).
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Algorithm: Determinization of a PLA
Input: a PLA A = 〈Λ, π : Σ→ Λ, Q, Q0, Qf , δ〉 whose states are co-reachable
Output: a merged deterministic PLA A′ = 〈Λ, π, X, X0, Xf , ∆〉
begin

X := {Q0}; X0 := {Q0}; Xf := ∅;
∆ := ∅;
ToDo := {Q0};
while ToDo 6= ∅ do

x := pickAndRemoveElement(ToDo);
for all σ ∈ Σ do

λu := ⊥; x′ := ∅;
for all (q, λ, q′) ∈ δ such that q ∈ x and λ ⊓ π(σ) 6= ⊥ do

λu := λu ⊔ (λ ⊓ π(σ)); x′ := x′ ∪ {q′};
endfor
if λu 6= ⊥ then

∆ := ∆ ∪ {(x, λu, x′)};
if x′ 6∈ X then

X := X ∪ {x′};
if x′ ∩Qf 6= ∅ then Xf := Xf ∪ {x′};
ToDo := ToDo ∪ {x′};

endif
endif

endfor
endwhile

end

Figure 4.11: Determinization algorithm for a merged PLA

We extend this simulation relation R to a simulation R′ ⊆ ℘(X ) × ℘(Q′) satisfying the

hypothesis of Lemma 4.1. Thus Ldet(A) ⊆ A
′ according to this lemma. 2

Corollary 4.1 (The determinisation operation is an upper-closure operation)
The operation det : PLA → PLA is an upper-closure operation: it is (i) extensive:
det(A) ⊒ A; (ii) monotonic: for any A, A′ defined on the same partition,
A ⊑ A′ ⇒ det(A) ⊑ det(A′); and (iii) idempotent: det(det(A)) = det(A).

Proof: The extensivity has already been shown. We have A ⊑ A′ ⊑ det(A′). det(A)
being the best approximation of A as a deterministic merged PLA, det(A) ⊑ det(A′),
which proves the monotonicity. The idempotence is a trivial consequence of Prop. 4.3.
2

Corollary 4.2 If A1 and A2 are two merged PLAs recognizing the same language L,
then det(A1) and det(A2).
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Proof: det(A2) is a merged and deterministic PLA and LA1
= L ⊆ Ldet(A2), so we

have Ldet(A1) ⊆ Ldet(A2). The same holds when switching A1 and A2, so det(A1) and
det(A2) are two deterministic automata recognizing the same language. 2

4.2.3 Minimization

We use for PLA a notion of minimization based on its shape automaton, in the same
spirit as for the notion of determinism.

Definition 4.8 A PLA is minimal or normalized if it is merged and if its shape
automaton is minimal and deterministic. A normalized PLA will be also called a
NLA (normalized lattice automaton).

The algorithm to minimize a PLA consists in removing its unconnected states, in de-
terminizing it according to the previous algorithm and in quotienting it w.r.t. the
equivalence bisimulation relation, as defined on the states of its shape automaton (cf.
Chapter 1). However, when quotienting the states of a PLA, transitions labeled with
elements belonging to the same equivalence class are merged, which may induce an
over-approximation of the recognized language, as shown on Fig. 4.10.

Definition 4.9 (Quotient PLA) Given a merged PLA 〈Λ, π : Σ → Λ, Q,Q0, Qf , δ〉
and an equivalence relation ≈ on the set of states Q, the quotient automaton A/ ≈=

〈Λ, π, Q̃, Q̃0, Q̃f , δ̃〉 is defined by:� Q̃ = Q/ ≈, the set of equivalence classes;� Q̃0 = {q̃|q ∈ Q0} and Q̃f = {q̃|q ∈ Qf};� δ̃ is defined by the rule:

σ ∈ Σ λu =
⊔
{λ ⊑ π(σ) | ∃q0 ∈ q̃,∃q′0 ∈ q̃′ : (q0, λ, q′0) ∈ δ}

(q̃, λu, q̃′) ∈ δ̃

Note that the quotient automaton is a merged PLA.

Theorem 4.1 (Minimizing PLA is a best upper-approximation) For any
PLA A, there is a unique (up to isomorphism) NLA Â based on the same partition π
such that

1. A ⊑ Â,

2. for any NLA A′ based on the partition π, A ⊑ A′ =⇒ Â ⊑ A′.
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Proof: The minimization algorithm consists first in determinizing the automaton,
and then, in quotienting the result by the largest bisimulation relation on its states
induced by its shape automaton. The result is merged and deterministic and the
quotient operation ensures that its shape is minimal and deterministic. Thus it is
minimal according to Def. 4.8.

Then we show that if two automata A1 and A2 recognize the same language L then
Lmin(A1) = Lmin(A2). According to Corollary 4.2, det(A1) and det(A2) recognize the
same language, and so does shape(det(A1)) and shape(det(A2)).

Moreover shape(min(A1)) and shape(min(A2)) are isomorphic, because there is at
most one minimal deterministic automaton and the minimization of the automaton is
also a minimization of its shape.

We extend this isomorphism to min(A1) and min(A2), and, using the definition of
the Myhill-Nerode equivalence relation and the fact that Ldet(A1) = Ldet(A2), we prove
the equality of languages. 2

Definition 4.10 Let us fix a partitioning function π : Σ → Λ. For any language
L ∈ Reg(Λ) recognized by a lattice automaton A, L̂ will denote the language recognized
by the unique NLA Â verifying the properties of Thm. 4.1.

Corollary 4.3 (The normalisation operation is an upper-closure operation)
The function ·̂ : PLA → NLA ⊆ PLA is an upper-closure operator: it is extensive,
monotonic (given a fixed partition) and idempotent.

Proof: Based on the same principle as Corollary 4.1. 2

Corollary 4.4 For any languages L1 and L2,

L̂1 ∪ L̂2 ⊆ L̂1 ∪ L2 (4.1)

L̂1 ∩ L2 ⊆ L̂1 ∩ L̂2 (4.2)

The inclusion is strict, because of the use of least upper bounds during normalization.
To see this, consider the lattice of intervals on rationals, partitioned with the trivial
partition of size 1. Take L1 = 0, L2 = 2. One has L̂1 = L1, L̂2 = L2, L̂1∪L̂2 = 0+2, but
L̂1 ∪ L2 =

∑
x∈[0,2] x. Take now L1 = 0 + 2 and L2 = 1 + 3. One has L̂1 =

∑
x∈[0,2] x,

L̂2 =
∑

x∈[1,3] x, L̂1 ∩ L̂2 =
∑

x∈[1,2] x, but L̂1 ∩ L2 = ∅.

Complexity. Let A be a lattice automaton with n states, m transitions and a par-
tition of size p (i.e. |Σ| = p). The complexity of the previous algorithms is given on
Tab. 4.12, where the operations on Λ are considered as atomic.
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Algorithm Complexity (time) Complexity (space)

inclusion test 1 O(22n ·m2) O(2n)
inclusion test 2 O(n log n + m) O(n log n)
merging O(m · p) O(n + m)
determinization O(2n ·m) O(2n)
quotienting3 O(n + m) + merging O(n + m) + merging
minimization4 O(n log n) + quotienting O(n log n) + quotienting
normalization determinization + minimization determinization + minimization

Figure 4.12: Complexity of the basic operations on PLAs, where n is the number of
states of the automaton an m the number of transitions

1 Algorithm presented in Figure 4.9,
2 Algorithm operating on minimal deterministic automata,
3 If ≈ is known,
4 The input automaton is assumed to be deterministic.

Proof: The inclusion algorithm described in Figure 4.9 operates on couples of sets
of states, so the while loop is iterated at most 2n × 2n′

times, where n (resp. n′) is
the number of states of the first automaton (resp. the second automaton). Assuming
n > n′, the memory needed is O(2n). In each loop, the actual algorithm considers all
couples of transitions (qx, λx, q′x) ∈ δ and (qy, λy, q

′
y) ∈ δ′. The worse case complexity

is thus O(22n ·m2).

If the automata are minimal, we re-employ the inclusion test algorithm for finite
automata ; one first check the inclusion of the shape automata and, if the answer is
positive, one can check the matching transitions.

Merging is just splitting each transition according to the partition of size p.

The determinization algorithm is detailed in Figure 4.11. Like the algorithm for
finite automata, the states of det(A) are sets of states of A, thus it needs at most
O(2n) memory space. There are at most O(2n) iterations of the while loops, and the
for loop is iterated at most m times.

The quotient creates at most n new states and m new transitions and merge the
new automaton. The minimization of a deterministic automaton is done by computing
the classes of equivalence of the auto-bisimulation (complexity: O(n log n)) and then
quotienting the automaton. 2

Thm. 4.1 defines a normalization for languages recognized by PLA. The set of NLA
defined on Λ with the partition π will be denoted by Reg(Λ, π), which denotes also the
corresponding set of recognized languages.

Having defined a normal form for PLA, we can now specify classical operations on
languages recognized by NLA by defining them on their automata. But first, we study
how to refine the partitioning function π.
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4.2.4 Refinement of the Partitioning Function

In the previous paragraphs, the partitioning function π : Σ → Λ was fixed. The
precision of the approximations made during the merging, determinization and mini-
mization operations depends on the fineness of the partitioning function. For example,
all outgoing transitions from a given state would be merged during the determinization
algorithm employed with the trivial partition of size 1.

Definition 4.11 A partitioning function π2 : Σ2 → Λ refines a partitioning function
π1 : Σ1 → Λ if:

∀σ2 ∈ Σ2,∃σ1 ∈ Σ1 : π2(σ2) ⊑ π1(σ1)

Let A1 = 〈Λ, π1 : Σ1 → Λ, Q,Q0, Qf , δ1〉 be a PLA. The automaton A2 = 〈Λ, π2 : Σ2 →
Λ, Q,Q0, Qf , δ2〉 refines A1 if π2 refines π1 and the transitions of δ2 are obtained by:

(q, λ1, q
′) ∈ δ1 σ2 ∈ Σ2 λ2 = λ1 ⊓ π2(σ2)

(q, λ2, q
′) ∈ δ2

Refining an automaton does not modify immediately the recognized language, but leads
to a more precise upper-approximation in merging, determinization and minimization
operations.

Proposition 4.4 Let A1 be a PLA and A2 a PLA refining A1. Then:

1. LA1
= LA2

,

2. merge(A1) ⊒ merge(A2),

3. det(A1) ⊒ det(A2),

4. Â1 ⊒ Â2.

Proof:

1. Since (Λ,⊑) is an atomic lattice, we do not loose any atoms when splitting the
transitions.

2. For two states q, q′ ∈ Q and for any σ1 ∈ Σ1, σ2 ∈ Σ2 such that π2(σ2) ⊑ π1(σ1),
we have :

λm2
=

⊔
{ λ ⊓ π2(σ2) | (q, λ, q′) ∈ δ1} ⊑ λm1

=
⊔
{ λ ⊓ π1(σ1) | (q, λ, q′) ∈ δ1}

where λmi
labels the transition obtained by merging the transitions between q1,

q2 labeled with elements in πi(σi).

3. Idea of the proof : during each iteration of the while loop, the determinization of
the automaton A2 merges less states and less transitions than the determinization
of the automaton A1.
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4. Idea of the proof : the equivalence class of the bisimulation relation (for the
quotienting algorithms) are also more precise with π2, so both determinization
and quotienting merge less states and transitions of the original automaton.

2

Refining the partition π makes the class of normalized languages Reg(Λ, π) more
expressive.

Corollary 4.5 Let π1 and π2 be two partitioning functions for Λ, with π2 refining π1.
Then any language recognized by a NLA built on the partition π1 is also recognized by
a NLA built on the partition π2: Reg(Λ, π1) ⊆ Reg(Λ, π2).

Proof: Let A1 ∈ Reg(Λ, π1) be a NLA. Its refinement A2 according to π2 (cf.
Def. 4.11) is normalized, and thus A2 ∈ Reg(Λ, π2). 2

Choosing an adequate partitioning function is thus important. For the analysis of
SCMs, where data messages are usually composed of a message type and some parame-
ters, the type of the message defines a natural partition. When this standard partition
is not sufficient for the analysis, it can be refined to a more adequate partition. In this
sense, the abstraction refinement techniques based on partitioning (see for instance
[Jea03, MR05]) are applicable to lattice automata.

4.3 Operations on PLAs

After the definition of a robust normalization concept, we can now define the classical
operations on languages (union, intersection, . . . ) by defining them on lattice automata.
The set operations (inclusion, union and intersection) and the normalization of their
result define respectively the partial order, the least upper bound and the greatest lower
bound of the lattice of NLAs. We also present operations like the concatenation or the
left derivation ; those operations define the abstract semantics of the model presented in
Chapter 5. Finally, we define a widening operator, which guarantees that the analysis
presented in Chapter 5 terminates.

4.3.1 Set Operations

Inclusion test. Two PLAs that are not normalized can be compared for language
inclusion using a simulation relation taking into account the partial order of the lattice,
cf. lemma 4.1. If they are normalized, one can first compare for inclusion their shape
automata, and in case of inclusion, one can compare the labels of matching transitions.
If they are not normalized, the previous inclusion test algorithm works, but is more
expensive.
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Λ =
({a, b, c, d} × I(Q)

ordered by
(x1, I1) ⊑ (x2, I2)

⇔
x1 = x2 ∧ I1 ⊆ I2

and partitioned
with
π :

x ∈ {a, b, c, d}
7→

(x, [−∞,+∞])

(a, [0, 0])

(b, [0, 0])

(d, [0, 0])

(d, [2, 2])

(c, [0, 0])

(a, [0, 0])

(b, [0, 0])

(d, [0, 0])

(d, [2, 2])

(c, [0, 0])

(Deterministic but not
minimal)

(a, [0, 0])

(b, [0, 0])

(d, [0, 0])

(d, [2, 2])

(Deterministic and minimal)

(a, [0, 0])

(b, [0, 0])
(d, [0, 2])

(a) Lattice (b) The two minimized automata (c) Intersection
to be intersected and its approximation

Figure 4.13: Intersection of normalized PLAs and its upper-approximation

Union and least upper bound. The exact union of two PLAs Ai =
〈Λ, π,Qi, Qi

0, Q
i
f , δi〉 can be computed very simply as the disjoint union of the two

PLAs; this produces the PLA:

A = 〈Λ, π,Q1 ∪Q2, Q1
0 ∪Q2

0, Q
1
f ∪Q2

f , δ1 ∪ δ2〉

which is not deterministic.
Normalizing A transforms the exact union operation into an upper bound operator

⊔ defined as follows: A1 ⊔ A2 = Â1 ∪ A2. As a corollary of Theorem 4.1, this upper
bound operator is actually a least upper bound operator on the set of NLA ordered by
language inclusion.

Intersection and its normalized upper-approximation. The exact intersection
of two PLAs Ai = 〈Λ, π,Qi, Qi

0, Q
i
f , δi〉 can be computed as a product of the two PLAs;

this produces a PLA A = 〈Λ, π,Q1 ×Q2, Q1
0 ×Q2

0, Q
1
f ×Q2

f , δ〉 where δ is defined by:

(q1, λ1, q
′
1) ∈ δ1 (q2, λ2, q

′
2) ∈ δ2 λ1 ⊓ λ2 6= ⊥

((q1, q2), λ1 ⊓ λ2, (q′1, q
′
2)) ∈ δ

We implicitly remove unconnected states in A. If the input automata are normalized, A
is merged and deterministic, but not necessarily minimal. Minimizing it may induce an
upper-approximation, as shown by Fig. 4.13. Thus, NLAs are not closed under (exact)
intersection.

These operations allow to equip the set of NLAs with a join semi-lattice structure.
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Proposition 4.5 (NLAs as a join semilattice) The set of NLA defined on an
atomic lattice Λ with a fixed partition π, ordered by language inclusion, is a join semi-
lattice: it has bottom and top elements, and a least upper bound operator.

If the standard lattice operations on Λ are computable, so are the corresponding opera-
tions on the join semi-lattice of NLA.

Proof: It is clear that the bottom and top elements of this semi-lattice are respec-
tively the empty automaton 〈Λ, π,Q = ∅, Q0 = ∅, Qf = ∅, δ = ∅〉 recognizing no words,
and the universal automaton 〈Λ, π,Q = {q}, Q0 = Q,Qf = Q, δ =

⋃
σ∈Σ(q, π(σ), q)〉

recognizing any word on the alphabet At(Λ). The least upper bound operator is the
operator ⊔ on NLA defined above. Last, we have also given algorithms for testing
inclusion and for computing the least upper bound. 2

Remark 4.4 (Deterministic merged PLA as a full lattice) If we consider the
set of deterministic and merged (but not necessarily minimal) PLA, then this set par-
tially ordered by language inclusion has a true lattice structure, instead of just the join
semi-lattice structure of NLA. Indeed, Proposition 4.3 may be used to prove that the
determinization of the exact union is a least upper bound operation, and as the exact
intersection of two deterministic merged PLAs is a deterministic merged PLA, this
intersection is trivially a greatest lower bound.

One could manipulate deterministic merged PLA instead of NLA. But there may be
several deterministic merged PLA recognizing the same language, hence the isomor-
phism between languages and automata is lost. The other drawbacks of such a choice
is that testing inclusion is more expensive and that one cannot extend the widening
operation on finite automata defined in Chapter 3.

4.3.2 Other Language Operations

We define here some language operations that will be employed in the next chapter.
They are similar to the ones defined for finite automata in Chapter 3.

Language concatenation. Language concatenation on deterministic PLA is per-
formed exactly as for finite automata, by substituting to the final states of the first
automaton a copy of the initial state of the second automaton. The obtained automa-
ton is non-deterministic in general and requires normalization. Language concatenation
can also be computed on non deterministic PLA, by using ǫ transitions and ǫ-closure
to remove them.

Left derivation. In the finite case, the left derivation [Brz64] of a finite automaton
is performed w.r.t. a letter. The corresponding operation would consist in deriving a
PLA according to an equivalence class. However, the partition is a way to control the
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precision of the approximations performed by the various operations on PLA, and it
does not have a semantic meaning.

As a consequence, we define a more general left derivation L/λ operator as follows:

·/· : Reg(Λ)× Λ → Reg(Λ)
(L, λ) 7→ {ω ∈ At(Λ)∗ | ∃a ⊑ λ : a · ω ∈ L}

We clearly have the identity L/λ =
∑

a∈At(λ) L/a, from which we can deduce the
following proposition:

Proposition 4.6 Let λ ∈ Λ and (λσ)σ∈Σ be the projection of λ on the partition defined
by π : Σ→ Λ. Then L/λ =

∑
σ∈Σ L/λσ.

The left derivation can be implemented exactly on a deterministic PLA A =
〈Λ, π,Q,Q0 = {q0}, Qf , δ〉 as follows:

·/· : PLA× Λ → (Σ→ PLA)
(L, λ) 7→ ( σ 7→ A/(λ ⊓ π(σ)) )

where A/(λ ⊓ π(σ)) is the empty automaton if λ ⊓ π(σ) = ⊥, and the deterministic
PLA 〈Λ, π,Q,Q0 = {δ(q0, σ)}, Qf , δ〉 otherwise. One obtains a finite set of deterministic
automata instead of a single one. This set can be of course upper-approximated by the

least upper bound deterministic PLA, denoted by Â/λ =
⊔

σ∈Σ(A/λ)(σ).

“First” and “Pop” operations. In addition to the left derivation, it may also be
useful to extract the letters beginning the words of a language as follows:

first : Reg(Λ) → ℘(At(Λ))
L 7→ {a ∈ At(Λ) | ∃w ∈ At(Λ)∗, a · w ∈ L}

The equivalent algorithmic definition on a deterministic PLA A = 〈Λ, π,Q,Q0 =
{q0}, Qf , δ〉 is:

first : PLA → (Σ→ Λ)
A 7→ (σ 7→ first(A)(σ))

where for each σ ∈ Σ, first(A)(σ) is the label of the unique transition (q0, λ, q) ∈ δ
with λ ⊑ π(σ), if it exists, and ⊥ otherwise. It is clear that the set of atoms covered
by first(A) is exactly first(LA):

⋃

σ∈Σ

{a ∈ At(Λ) | a ⊑ first(A)(σ)} = first(LA)

The first operation can be combined with the left derivation in order to imple-
ment the pop operation, which extracts the first letters and derives the corresponding
“residue” automaton:

pop : PLA× Λ → (Σ→ Λ× PLA)

(A, λ) 7→
(
σ 7→

(
λ ⊓ first(A)(σ) , A/(λ ⊓ π(σ))

))

The complexity of the previous operations is summarized on Tab. 4.1.
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NLA operation complexity resulting PLA exact operation ?
inclusion test O(n · log n) — yes
union O(1) non-deterministic yes
intersection O(n2 + m2) deterministic, non minimal yes
language concatenation O(n · p) non-deterministic yes
letter right-concatenation O(n) non-deterministic yes
letter left-concatenation O(1) normalized yes
left derivation O(p) non-deterministic yes
right derivation O(n · p) deterministic, non minimal yes
first O(p) — yes
pop O(p) non-deterministic yes
normalized union (⊔) O(2n) normalized no
normalized intersection (⊓) O(n2 log n) normalized no
normalized pop O(p · 2n) normalized no

Table 4.1: Complexity of various operations on a NLA. We assume that the NLA has
n states, m transitions and a partition of size p, and that the operations on Λ have a
fixed cost. (i.e. |Σ| = p)

4.3.3 Widening on NLAs

The widening on NLAs we define here combines the widening on finite automata of
Chapter 3 with the standard widening operator ∇Λ : Λ × Λ → Λ that we assume for
the atomic lattice Λ. If a widening operator is not strictly required for Λ (because
Λ satisfies the ascending chain condition), then ∇Λ can be defined as the least upper
bound ⊔.

We first extend the ρk operator defined on finite automata in Chapter 3.

Definition 4.12 (Operator ρk on NLAs) Let A = (Λ, π,Q,Q0, Qf ,∆) be a NLA,
shape(A) = (Σ, Q,Q0, Qf , δ) its shape automaton. Let k ≥ 0 be an integer and ≈k the
k-depth bisimulation relation on Q induced by the partition of Q into Q0∩Qf , Q0 \Qf ,
Qf \Q0 and Q \ (Q0∪Qf ) and the transition relation δ ⊆ Q×Σ×Q. We define ρk(A)
as the quotient PLA A/ ≈k.

The widening operator we suggest consists in applying the operator ρk when the two
argument automata have a different shape automaton, and to apply the widening op-
erator of the lattice Λ on their matching transitions when the two argument automata
have the same shape automaton, as illustrated by Fig. 4.14.

Definition 4.13 (Widening on NLAs) Let A1 and A2 be two NLA defined on the
same partition π with A1 ⊑ A2. The widening operator ∇k is defined as :

A1∇kA2 =

{
ρ̂k(A2) if shape(A1) 6= shape(ρk(A2))
A1 ր A2 otherwise (which implies shape(A1) = shape(A2))

where A1 ր A2 is the NLA A which has the same set of states as A1 and A2 and the
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[−7,−5]
∇0

[−9,−2] [6, 9]
=

[−9,−2]
[6, 9]

[−9,−5]

[5, 10]

∇0

[−9,−3]

[5, 12]

=

[−9, 0[

[5,+∞]

Figure 4.14: Widening on interval PLA, with a partition [−∞, 0[⊔[0,+∞] and k = 0

set of transitions δ defined by the rule:

σ ∈ Σ (q, λ1, q
′) ∈ δ1 (q, λ2, q

′) ∈ δ2 λ1, λ2 ⊑ π(σ)

(q, (λ1∇Λλ2) ⊓ π(σ), q′) ∈ δ

If A1 6⊑ A2, then A1∇kA2 , A1∇k(A1 ⊔ A2).

Notice that with the other hypothesis, the condition shape(A1) 6= shape(ρk(A2))
is equivalent to shape(A1) ( shape(ρk(A2)), and its negation shape(A1) =
shape(ρk(A2)) ⊇ shape(A2) implies shape(A1) = shape(A2).

Theorem 4.2 ∇k is a proper widening operator:

1. For any NLAs A1,A2 defined on the same partition such that A1 ⊑ A2, A2 ⊑
A1∇kA2;

2. If there is an increasing chain of NLAs A0 ⊑ A1 ⊑ . . . ⊑ An ⊑ . . ., the chain
A′

0 ⊑ A
′
1 ⊑ . . . ⊑ A′

n ⊑ . . . defined as A′
0 = A0 and A′

i+1 = A′
i∇k(A

′
i ⊔ Ai+1) is

not strictly increasing.

Proof:

1. We have A1 ⊑ A2 by hypothesis. If shape(A1) 6= ρk(shape(A2)) =

shape(ρk(A2)), A1∇kA2 = ρ̂k(A2) ⊒ A2. If shape(A1) = shape(A2) =
ρk(shape(A2)), A2 ⊑ A1 ր A2 because for each pair of matching transitions
(q, λ1, q

′) and (q, λ2, q
′) with λ1, λ2 ⊑ π(σ), we have λ2 ⊑ (λ1∇Λλ2) ⊓ π(σ) (as

∇Λ is a widening operator on Λ).

2. (A′
i)i≥0 is an increasing chain of NLAs because of the first property. Thus, (S′

i =
shape(A′

i))i≥0 is an increasing chain of finite automata. Moreover, by definition
of ∇k on NLAs, S′

i+1 = S′
i∇k(S

′
i ⊔ Si+1) = ρk(S

′
i ⊔ Si+1). As ∇k as defined

on finite automata is a widening operator, the chain (S′
i)i≥0 becomes stationary

at some rank N . The chain (A′
i)i≥N is thus an increasing sequence of NLAs

with identical shape automaton S. For each transition (q, σ, q′) ∈ δS , one can
extract the corresponding transition sequence (q, λ′

i, q
′) ∈ δA

′

i with λ′
i ⊑ π(σ).

The sequence (λ′
i)i≥N converges after a finite number of steps, because ∇Λ is a

widening operator. As there is only a finite number of transitions in the shape
automaton S, the sequence (A′

i)i≥N also converges after a finite number of steps.

2
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4.3.4 NLAs as an Abstract Domain

Normalized lattice automata allows to define an abstract domain functor which lifts
abstract domains for some set to abstract domains for languages on this set. More
precisely, given an atomic abstract lattice Λ

γΛ−→ ℘(S) for some set S with the con-
cretization function γΛ, and a partitioning function π for Λ, Reg(Λ, π) can be viewed
as an abstract domain for L(S) = ℘(S∗), the languages on elements of S, with the
concretization function

γ : Reg(Λ, π) → ℘(S∗)
A 7→ {s0 . . . sn ∈ S∗ | a0 . . . an ∈ LA ∧ ∀i : si ∈ γΛ(ai)}

and the widening operator of Def. 4.13. Reg(Λ, π) is a non-complete join semi-lattice
of infinite height, so we do not have a Galois connection.

We have in addition the following monotonicity result for Reg(Λ, π) seen as a func-
tor.

Theorem 4.3 Let γi : Λi → ℘(S), i = 1, 2 be two abstract domains for ℘(S) such that
Λ2 refines Λ1, with γ12 : Λ1 → Λ2 such that γ1 = γ2 ◦γ12. Let π1 a partitioning function
for Λ1, and π2 a partitioning function for Λ2 refining γ12 ◦ π1. The abstract domain
Reg(Λ2, π2) refines Reg(Λ1, π1).

This theorem is illustrated by Figure 4.15.

Λ1 Λ2

℘(S)

γ12

γ1 γ2
⇒

Reg(Λ1, π1) Reg(Λ2, π2)

℘(S∗)

Γ12

Γ1 Γ2

Figure 4.15: Refinement of abstract domains

Proof: Let Γi : Reg(Λi, πi) → ℘(S∗) be the two concretization functions induced by
the functions γi. LetA1 ∈ Reg(Λ1, π1) be a NLA. We can build a NLAA2 ∈ Reg(Λ2, π2)
such that γ2(A2) = γ1(A1).

We first build and automaton A′
2 which has the same states as A1, and a set of

transitions defined by the rule:

(q, λ1, q
′) ∈ δ1 λ2 = γ12(λ1)

(q, λ2, q
′) ∈ δ′2

Since there is σ1 such that λ1 ⊑ π1(σ1), then λ2 ⊑ γ12 ◦ π1(σ1). The set of elements
in S “covered” by the two labels is clearly the same. The resulting automaton A′

2 thus
satisfies Γ2(A

′
2) = Γ1(A1). Moreover, A′

2 is a NLA belonging to Reg(Λ2, γ12 ◦ π2). We
now define A2 as the refinement of A′

2 w.r.t. the refined partition π2, which recognizes
the same language according to Prop. 4.4.

This transformation from A1 to A2 defines a function Γ12 : Reg(Λ1, π1) →
Reg(Λ2, π2) such that Γ1 = Γ2 ◦ Γ12. 2
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Most language operations can be efficiently abstracted in Reg(Λ, π). This is in
particular the case of language operations corresponding to the operations offered by
the FIFO queue or stack abstract datatypes. Hence, Reg(Λ, π) is a suitable abstract
domain for FIFO queues or stacks on elements of S, as it is shown in the following
chapter.

4.4 Conclusion

The lattice automata, as defined in this chapter, are a suitable representation for regular
languages over an infinite alphabet which is given a lattice structure. We explained
the need for a given partition of the atoms, due to some annoying aspects of the
basic definition of lattice automata. For example, “normal” lattice automata have an
unbounded branching degree whereas partitioned lattice automata have a branching
degree at most equals to m× n, where m is the size of the partition and n the size of
the automaton.

We defined a determinization algorithm that mimics the determinization of finite
automata. The result of this algorithm is a deterministic merged PLA, which is optimal
with regard to the partial order on lattice automata ⊑. The minimization algorithm
works in the same way, and is also optimal for ⊑.

Note that all classical operations on lattice automata like merging, determinization,
minimization, inclusion tests, etc are performed with almost the same complexity as
their equivalent algorithms for finite automata, assuming the operations on the under-
lying lattice have a constant cost.

Moreover, if the underlying lattice has a widening operator, we can define a widening
operator based on both :� the k-bounded bisimulation,� the widening operator ∇ of the underlying lattice.

In other words, we can see the lattice automata as a “functor”, defining a new abstract
lattice (Reg(Λ),⊑,∇) from the underlying abstract lattice (Λ,⊑,∇).

A static analysis relying on the lattice (Reg(Λ),⊑) (cf. Chapter 5) is thus modular,
parametrized by (Λ,⊑), and we can easily change this abstract lattice without changing
the analysis.

This is indeed one of the possibilities to improve the accuracy of a static analysis
based on lattice automata. Other possibilities are:� to increase the value of k: the higher k is, the more precise ∇k is;� to refine the partition π : Σ→ Λ;� to replace the operator ρk by another widening operator on finite automate7.

7We did not experiment this possibility.
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This modularity is not the only advantage of lattice automata. The simplicity of
their definition provides an effective representation of sets of words over an infinite
alphabet. This is the reason why we tried to make the operations on lattice automata
as general as possible, even if lattice automata were initially introduced to help the
verification of communication protocols using integer parameters, which is the main
application described in the following chapter.
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Chapter 5

Applications : Verification of
Symbolic Communicating
Machines and Interprocedural
Analysis

We illustrate in this chapter the application of the abstract domain Reg(Λ, π) defined
in the previous chapter to the analysis of Symbolic Communicating Machines (SCMs).
The SCM model is an extension of the CFSM model, with explicit variables. The values
of those variables determine which transitions can be triggered. One can easily model
communication protocols using integer variables in terms of SCMs, whereas CFSMs
cannot describe this kind of protocols.

We define the SCM model and its straightforward abstract semantics, and give an
example of analysis using the standard abstract semantics. This example highlights the
need for a more sophisticated, non-standard abstract semantics. We define this new
semantics and give some examples of analyses.

We also show how we can build an interprocedural analysis based on the abstract
domain of lattice automata.

5.1 Verification of Symbolic Communicating Machines

5.1.1 Symbolic Communicating Machines

Symbolic Communicating Machines (SCMs) are Communicating Finite-State Machines
extended with a finite set of variables V , the values of which can be sent into FIFO
queues, cf. Figure 5.1. A transition is triggered when a condition (“guard”) on the value
of the variables is satisfied. In such a case, the machine can first send or receive values
from a FIFO queue, then modify the values of variables, and last make the control jump
to the destination location. This model is similar to other models like Extended Com-
municating Finite-State Machines [HSS+93] or Parametrized Communicating Extended
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error

run

s:=0
a:=0

s<a+10
1!data(s)
s:=s+1

p=a+1
2?ack(p)
a:=a+1

p>a+1
2?ack(p)

data(1) data(0)

ack(0) ack(1)
wait ack

v:=0

1?data(p)
v:=p

p=v
2!ack(p)

(a) Sender (b) Queues (c) Receiver

Figure 5.1: A simple sliding window protocol

Finite-State Machines [LRMS96].

Definition 5.1 A SCM with N queues is defined by a tuple 〈C, V, c0,Θ0, P,∆〉 where:� C is a nonempty finite set of locations (control states).� V = {v1, . . . , vn} is a finite set of variables. The domain of values of a variable v
is denoted by Dv, and the set of valuations of all variables in V by DV .� c0 ∈ C is the initial control state, and Θ0 ⊆ DV , a predicate on V , is the initial
condition.� P = {p1, . . . , pl} is a finite set of formal parameters that are used to send/receive
values to/from FIFO queues. We assume that all queues use the same set of
parameters DP .� ∆ is a finite set of transitions. A transition δ is either an input 〈c1, G, i?~p,A, c2〉
or an output 〈c1, G, i!~p,A, c2〉 where:

1. c1 and c2 are resp. the origin and destination locations;

2. i ∈ [1..N ] is a queue number;

3. ~p is the vector of formal parameters, which holds the values sent or received
to/from the queue i;

4. G(~v, ~p) ⊆ DV ×DP is a predicate on the variables and the formal parameters
(also called guard);

5. A is an assignment of the form ~v′ := A(~v, ~p), where A : DV × DP → DV ,
which defines the values of the variables after the transition.

Compared to the definition of Extended Communicating Finite-State Machines
[HSS+93], the values sent to queues may be of any type. Indeed, our model is closer
to the Parametrized Communicating Extended Finite-State Machines model [LRMS96]
(although there is no major difference between the three models).

In this model, the alphabet of “messages” is DP . We assume that this alphabet is
not finite.



Verification of Symbolic Communicating Machines 115

Standard Operational semantics. The standard operational semantics (SOS) of
a SCM is defined in the same ways as the one of a CFSM, i.e. by an infinite transition
system. The semantics of the SCM 〈C, V, c0,Θ0, P,∆〉 is given as a labeled transition
system 〈Q,Q0,→〉 where:� Q = C ×DV ×

(
(DP )∗

)N
is the set of states;� Q0 = {〈c0, ~v, ε, . . . , ε〉 |~v ∈ Θ0} is the set of initial states;� → is defined by the two rules:

(c1, G, i!~p,A, c2) ∈ ∆ w′
i = wi · ~p G(~v, ~p) ~v′ = A(~v, ~p)

〈c1, ~v, w1, . . . , wi, . . . , wN 〉 → 〈c2, ~v′, w1, . . . , w
′
i, . . . , wN 〉

(c1, G, i?~p,A, c2) ∈ ∆ wi = ~p.w′
i G(~v, ~p) ~v′ = A(~v, ~p)

〈c1, ~v, w1, . . . , wi, . . . , wN 〉 → 〈c2, ~v′, w1, . . . , w
′
i, . . . , wN 〉

A global state of a SCM is thus a tuple 〈c, ~v,w1, . . . , wN 〉 ∈ C×DV ×(DP )∗×· · ·×(DP )∗

where c is a control state, ~v is the current value of the variables and wi is a finite word
on DP representing the content of queue i.

The concrete collecting semantics of a SCM depicted on Fig. 5.3 is deduced from the
operational semantics. It is a bit more complex because the model involves symbolic
operations.

5.1.2 SCMs with a Single Queue: a Straightforward Approach

There are classical solutions to the abstraction of scalar variables. Consequently, the
main issue of applying abstract interpretation techniques on this model is the abstrac-
tion of the queue contents. Whereas queue contents in the CFSM model are abstracted
by regular languages, queue contents in the SCM model are abstracted using the ab-
stract domain of lattice automata.

If there is a single queue, the concrete set of states associated to each control point
c ∈ C has the structure ℘(DV × (DP )∗): one associates to each control point the set of
possible configurations for the variables of the communicating machine and its FIFO
queue.

The concrete lattice ℘(DV × (DP )∗) can be abstracted with ℘(DV ) × L(DP ) by
projecting the two components. This allows to abstract ℘(DV ) using classical abstrac-
tions for variables of the environment, and to use lattice automata for abstracting the
domain of queue contents L(DP ).

For the sake of simplicity, and as an example, we will assume in the sequel that all
variables and parameters are of rational type, and that sets of valuations are abstracted
using the lattice of convex polyhedra V (k) = Pol(Qk). We have the abstraction

℘(Qn × (Qp)∗) −−→←−− ℘(Qn)× L(Qp) ←− V (n) × Reg(V (p))

As the atoms of the lattice V (p) = Pol(Qp) are precisely the elements of Qp, the con-
cretization function of Reg(V (p)) is just the identity. The induced abstract semantics
is given on Fig. 5.4.
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Parameterized Domains

Concrete domain C(n) = ℘(Qn × (Qp)∗)

Abstract domain for variables V (n) = Pol(Qn)

Abstract domain for one FIFO queue L = Reg(V (p))

Abstract domain Λ(n) = V (n) × L

Figure 5.2: Semantic domains

Concrete collecting semantics

guard G(~v, ~p) JGK : ℘(Qn) → ℘(Qn+p) by extension JGK : C(n) → C(n+p)

assignmentA(~v, ~p) JAK : ℘(Qn+p) → ℘(Qn) by extension JAK : C(n+p) → C(n)

output 1!~p J1!~pK : C(n+p) → C(n+p)

X 7→ {(~v, ~p, ω · ~p) | (~v, ~p, ω) ∈ X}

input 1?~p J1?~pK: C(n+p) → C(n+p)

X 7→ {(~v, ~p, ω) | (~v, ~p, ~p · ω) ∈ X}

transition t JtK : C(n) → C(n)

X 7→





JAK ◦ JGK if t = (G,−−, A)
JAK ◦ J1!~pK ◦ JGK if t = (G, 1!~p,A)
JAK ◦ J1?~pK ◦ JGK if t = (G, 1?~p,A)

The semantics of a transition is defined as follows: first the queue variables ~p
are introduced, and then constrained by the guard (semantics of guards). A
push or pop operation is possibly performed. Last, the assignment updates
the value of state variables. For push and pop, the value ~p is defined by a
kind of unification between the guard and the queue content.

Figure 5.3: Concrete collecting semantics

Example 5.1 We consider the protocol presented in the introduction (Figure 5.1). For
the purpose of the analysis, we make the asynchronous product of the two automata.
The result is a control structure with four states, labeled 00, 01, 10 and 11, with the
following convention: the SCM is in the “xy” state if the sender is in the “x” state and
the receiver is in the “y” one.

The example was modeled by a system of equation and we solved the reachability
analysis using a generic fix-point calculator. We used the polyhedra abstract lattice as
implemented in the APRON library [APR]. No partitioning of the alphabet lattice was
employed in this example. We obtained the result of Fig. 5.5.

The result of this analysis is disappointing: one cannot prove that the messages con-
tained in the queues are indexed by integers that are lower than the variable s. This
is not due to the queue abstraction, nor due to the variables abstraction, but to the
coupling of the two abstractions. The following section gives a solution to this problem.
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Standard abstract semantics

guard G(~v, ~p) JGK♯ : V (n) → V (n+p) by extension JGK♯ : Λ(n) → Λ(n+p)

assignmentA(~v, ~p) JAK♯ : V (n+p) → V (n) by extension JAK♯ : Λ(n+p) → Λ(n)

output 1!~p J1!~pK♯ :V (n+p) × L → V (n+p) × L
(Y, F ) 7→ (Y, F · (∃~v : Y ))

input 1?~p J1?~pK♯:V (n+p) × L → V (n+p) × L
(Y, F ) 7→

⊔
σ(Y ⊓ Embed ◦ first(F )(σ), (F/(∃~v : Y ))(σ))

with Embed : V (p) → V (n+p) a canonical embedding function

transition t JtK♯ : Λ(n) → Λ(n)

X 7→





JAK♯ ◦ JGK♯ if t = (G,−−, A)
JAK♯ ◦ J1!~pK♯ ◦ JGK♯ if t = (G, 1!~p,A)
JAK♯ ◦ J1?~pK♯ ◦ JGK♯ if t = (G, 1?~p,A)

Figure 5.4: Standard abstract semantics

5.1.3 SCMs with a Single Queue: Linking Messages and State Vari-
ables

The idea to improve on the previous abstraction is to use an augmented semantics to
link the message variables contained in queues with the state variables of the machines.

The proposal of this section is to put into queues not only the queue content itself,
but also (a subset of) the environment. This allows not only to establish relations
between messages in queues and the current environment, but also to indirectly establish
relations between the messages contained in different queues. For instance, the abstract
value

(
s ∈ [8, 9], data({s − p = 3}) · data({s − p = 2}) · data({s − p = 1})

)

represents the two concrete states:

(s = 8, data(5) · data(6) · data(7))

and
(s = 9, data(6) · data(7) · data(8))

This is to be compared with the standard abstraction of these two states:
(
s ∈ [8, 9], data(p ∈ [5, 6])) · data(p ∈ [6, 7]) · data(p ∈ [7, 8])

)

which represents 24 = 16 concrete states.

Non-standard abstract semantics. The formalization of this technique requires
slightly heavier notations. We assume that we put all the environment in the queue.
The abstract lattice is then:

Λ(n) = V (n) × L with L = Reg(V (n+p))
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Control Abstract Value
00 [|s ≥ 0; a ≥ 0|]

(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

01 [|v ≥ 0; s ≥ 0; a ≥ 0|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

10 [|s ≥ 0; a− 2 ≥ 0|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

11 [|v ≥ 0; s ≥ 0; a− 2 ≥ 0|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

Figure 5.5: Analysis of the
sliding window example with
the standard approach

with the concretization function:

γ(Y, F ) = {(~v, ω = ω0 . . . ωk) ∈ Qn × (Qp)∗ | ~v ∈ Y ∧ (~v, ω0) . . . (~v, ωk) ∈ F}

The partitioning function π : Σ→ V (p) used in PLA is implicitly extended to π : Σ→
V (n+p). Λ(n) may be seen as a reduced product of the two interacting components V (n)

and Reg(V (n+p)).

Abstract operations. The abstract semantics of guards now involves both the ab-
stract environment and the queue:

JGKr : V (n) × Reg(V (n+p)) → V (n+p) ×Reg(V (n+p))
(Y, F = 〈Λ, π,Q,Q0, Qf , δ〉) 7→ (JGK♯(Y ), F ′ = 〈Λ, π,Q,Q0, Qf , δ′〉)

with δ′ = { (q1, λ
′, q2) | (q1, λ, q2) ∈ δ ∧ λ′ = λ ⊓ (∃~p : G)}.

The abstract semantics of assignments is more complex:

JAKr : V (n+p) × Reg(V (n+p)) → V (n) × Reg(V (n+p))
(Y, F = 〈Λ, π,Q,Q0, Qf , δ〉) 7→ (Y ′, F ′ = 〈Λ, π,Q,Q0, Qf , δ′〉)

where Y ′ = JAK♯(Y ) and δ′ = {(q1, λ
′, q2) | (q1, λ, q2) ∈ δ ∧ λ′ defined as below }.

λ′(~v, ~p0) is obtained from λ(~v, ~p0) by the following operations:

1. We build φ(~v, ~p, ~v′, ~p0) = λ(~v, ~p0)∧ ~v′ = A(~v, ~p)∧Y (~v, ~p), where ~v′ is the value of
the state variables after the assignment, ~v and ~p are the current value of state and
message variables, and ~p0 is the value of the message variable in the transition of
the lattice automaton.

2. We then build φ′(~v′, ~p0) = ∃~v∃~p : φ by eliminating variables in the current
environment.
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Control Abstract Value
00 [|0 ≤ a ≤ s ≤ a + 10|]

(d, [|0 ≤ a ≤ s− 1 ≤ a + 9; 0 ≤ p ≤ s− 1|])∗

(a, [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ p ≤ s− 1; 0 ≤ v ≤ s− 1|])∗

01 [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ v ≤ s− 1|]
(d, [|0 ≤ a ≤ s− 1 ≤ a + 9; 0 ≤ p ≤ s− 1|])∗

(a, [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ p ≤ s− 1; 0 ≤ v ≤ s− 1|])∗

10 [|0 ≤ a ≤ s− 3 ≤ a + 7; 0 ≤ v ≤ s− 1|]
(d, [|0 ≤ a ≤ s− 1 ≤ a + 9; 0 ≤ p ≤ s− 1|])∗

(a, [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ p ≤ s− 1; 0 ≤ v ≤ s− 1|])∗

11 [|0 ≤ a ≤ s− 3 ≤ a + 7; 0 ≤ v ≤ s− 1|]
(d, [|0 ≤ a ≤ s− 1 ≤ a + 10; 0 ≤ p ≤ s− 1|])∗

(a, [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ p ≤ s− 1; 0 ≤ v ≤ s− 1|])∗

Figure 5.6: Analysis of the sliding window example
with the non-standard approach

3. Last we perform a renaming: λ′(~v, ~p0) = φ′(~v′, ~p0)[~v ← ~v′].

The application of the assignment to a NLA produces a NLA; in particular, as the
partitioning function involves only the message parameters, and JAK♯ modifies only the
state variables, the lattice automaton remains well-partitioned.

The semantics of message outputs and inputs are in some way simpler than with
the previous abstract semantics:

J1!~pKr(Y, F ) = (Y, F · Y )

J1?~pKr(Y, F ) = (Y ⊓ first(F ), F̂/Y )

The semantics of transitions remains similar to that of Fig. 5.4.

Example 5.2 We performed a new analysis based on these non-standard semantics on
the same example as before. A “widening threshold” operator was used instead of the
standard widening on polyhedra [HPR97b]. We obtained the better result of Fig. 5.6.

This analysis is quite accurate, since it shows that :� 0 ≤ a ≤ s ≤ a + 10, i.e. the sliding window property is satisfied,� 0 ≤ p ≤ s− 1, i.e. the number of a message is strictly lesser than the number of
the next message to be sent,� 0 ≤ v ≤ s − 1, i.e. the number of the last received message is lesser than the
number of of the next message to be sent.

Remark 5.1 (Efficiency of the approach.) It should be noted that the abstraction
of this section is much more expensive than the abstraction of Sect. 5.1.2, because guards
and assignments do not apply only on the abstract value representing state variables,



120 Chapter 5

but also on the abstract values labeling the transitions of the automata. This suggests
the use of a small partition π of the lattice Λ and the use of a small parameter k in the
widening, in order to keep the lattice automata reasonably small.

In general, the most natural choice for the analysis of SCMs is to partition the
alphabet according to the different kinds of messages exchanged (transmission, retrans-
mission, acknowledgment, . . . ).

5.1.4 SCMs with Several Queues

As in Chapter 3, there are mainly two ways to analyze systems with several queues.
One can follow:� a non-relational, attribute-independent method, in which an abstract configura-

tion is defined by a polyhedron representing the values of the state variables and
N lattice automata, each representing a queue content,� or a relational, attribute-dependent method, in which a single lattice automaton
recognizes concatenated words w = w1♯w2♯ . . . ♯wN , where each subword wi rep-
resents the content of the queue i and ♯ is a special separating character [BG97].

The extension to lattice automata of these two variants discussed in Chapter 3 for finite
automata is straightforward. In the previous subsections, the analyzed example, which
has two FIFO queues, was implicitly analyzed with a non-relational approach. The
implementation of lattice automata provides both representations (see Chapter 6).

5.1.5 Lossy Channels and Timers in the SCM Model

The opportunity of having variables in the SCM model makes the modelization of
communication protocols with timers quite easy. Even when the messages do not carry
any value, the method developed to verify SCMs helps the verification of communication
protocols with timers.

We can model SCMs with lossy channels in the same way we modeled CFSM with
lossy channel systems. The introduction of variables also adds the possibility to model
channels that sometimes loose messages. For example, if we want to model a channel
that looses at most one message out of ten, we simply add a variable error, which is
increased each time a message is sent. When error ≥ 10, the message that is about to
be sent is discarded and error is reset to 1.

Example. Here is another simplified version of the sliding window protocol. In this
example, messages may be lost (one out of 4 data messages is lost, and one out of seven
acknowledgment/error messages). The SCM is written in a language of description of
SCMs, presented in Chapter 6.

Like the previous sliding window protocol, the sender can transmit some data, as
long as there are no more than 10 messages sent but not acknowledged. The variable
s is the number of new data to be sent, and a is the last acknowledgment received.
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When an acknowledgment with a number greater than a + 1, or an error message, is
received, it means there was a retransmission error. Then the variable s is reset to the
last non-acknowledged message and the sender goes to a special state, meaning there
was a transmission error. If there are two consecutive transmission errors, it goes to an
error state and stops.

The receiver has variable v, which is the number of the next expected data. If a
data message has a greater value, the message is discarded, and the receiver asks for a
retransmission of the message. There is also a counter modeling a timer: when a wrong
message is received, it is increased by one.

The variable er, in both automata, is the counter telling when a message is lost.

scm sliding_window_lossy :

nb_channels = 2 ;

parameters :

int data ;

int ack ;

int error ;

automaton sender :

int er = 1;

int s = 0 ;

int a = 0 ;

initial : 0

state 0 :

to 0 : when s < a+10 and s == data and er <4, 0 ! data with s = s+1, er = er+1 ;

to 0 : when s < a+10 and er == 4, with s = s+1, er = 1 ;

/* the data message sent is lost */

to 0 : when a == ack, 1 ? ack with a = a+1 ;

to 1 : when a < ack, 1 ? ack with s = a ;

to 1 : when true, 1 ? error with s = a ;

state 1 :

to 1 : when s < a+10 and s == data and er <4, 0 ! data with s = s+1, er = er+1 ;

to 1 : when s < a+10 and er == 4, with s = s+1, er = 1 ;

/* the data message sent is lost */

to 0 : when a == ack, 1 ? ack with a = a+1 ;

to 2 : when a < ack, 1 ? ack ;

to 2 : when true, 1 ? error ;
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state 2 : /* error */

automaton receiver :

int v = 0 ;

int er = 1;

int t = 0 ;

initial : 0

state 0 :

to 0 : when v != data and t <10, 0 ? data with t = t+1 ;

to 1 : when v == data , 0 ? data ; /*transmision OK */

to 2 : when t == 10 , with t=0;

state 1 : /* Ok */

to 0 : when er <7 and ack == v, 1 ! ack with er = er+1 , v = v+1 ;

to 0 : when er == 7 and ack == v , with er = 1 , v = v+1 ;

state 2 : /* transmission error */

to 0 : when er <7 and err == v, 1 ! error with er = 1 ;

to 0 : when er == 7 and err == v , with er = 1 ;

5.2 Application to Interprocedural Analysis

The analysis of symbolic communicating machines was the initial motivation for the
study of lattice automata in Chapter 4. However, lattice automata can also be applied
to precise interprocedural analysis, where one can use lattice automata for abstracting
call-stacks. This allows both to simplify and to improve the abstraction proposed in
[JS04]. One can also see this application as an extension to infinite state programs of
[ES01a] which uses pushdown automata to model finite-state recursive programs and
finite automata for representing (co-)reachable sets of configurations.

5.2.1 Program Model and Semantics

Program syntax. This program model is similar to the PDS model, presented in
Section 2.2.1, extended with a set of variables.

A procedure Pi = 〈~fpi,
~fr i,

~loci, Gi〉 is defined by its input parameters ~fpi, its output
parameters ~fr i, its local variables ~loci, and Gi, its intraprocedural control flow graph
(CFG). We also assume that input parameters are not modified during the execution
of the procedure. This assumption is made solely for convenience, and involves no loss
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of generality because it is always possible to copy input parameters to additional local
variables.

The intraprocedural CFG Gi is a graph Gi = 〈Ctrl i, Ii〉 where Ctrl i is the set of
control points of Pi and Ii : Ctrl i×Ctrl i → Inst defines the instruction(s) lying between
two control points between control points. Gi contains exactly one start point si and
exactly one exit point ei. We distinguish two kinds of instructions: (i) intraprocedural
instructions, denoted as 〈R〉, that are specified as a relation R ⊆ LEnv2 describing the
transformation of the local environment; (ii) procedure calls 〈~y := Pj(~x)〉, where ~x and
~y are the vectors of actual input and output parameters. We require the graph Gi to
be deterministic for procedure calls, i.e. if Ii(c, c

′) is a call then there exists no c′′ such
that Ii(c, c

′′) or Ii(c
′′, c′) is a call.

A program is defined by a set (Pi)0≤i≤p of procedures. Since we specify the initial
states of an analysis separately, there is no particular “main” procedure. The interpro-
cedural CFG (G, I) of the program is the union of the intraprocedural CFG (Gi)0≤i≤p

of the different procedures, with the following modification: each procedure call edge
linking a call-site point c and return-site point r, with Ii(c, r) = 〈~y := Pj(~x)〉 is replaced
by

1. a call-to-start edge from c to the start point sj of the called procedure, labeled
by 〈call~y := Pj(~x)〉;

2. an exit-to-return-site edge from the exit point rj of the called procedure to r,
labeled by 〈ret ~y := Pj(~x)〉;

Thus there are three kinds of instructions in interprocedural CFGs: intraprocedural in-
structions, procedure calls and procedure returns, see the factorial program beside Ta-
ble 5.7. The functions call and ret record matching call and return-site nodes: call(r) = c
and ret(c) = r. We assume that a start point has no incoming edges except call-to-start
edges.

~fpi : Formal input parameters of Pi

~fr i : Formal output parameters of Pi

~loci : Local variables of procedure Pi

LVar i : ~fpi ∪ ~fr i ∪ ~loci

Gi = 〈Ctrl i, Ii〉 : Flow graph of Pi

si, ei ∈ Ctrl i : Entry and exit points of Pi

G = 〈Ctrl , I〉 : Flow graph of the program

Figure 5.7: Syntactic domains.

The syntactic domains are summarized on Figure 5.7.

Operational Semantics. The semantic domains are summarized in Table 5.9.
The standard operational semantics (SOS) is given by a transition system (State ,→).

States are stacks of the form Γ = 〈c0, ǫ0〉·. . .·〈cn, ǫn〉 of activation records (i.e. pairs of
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s

c2

c1 c3

c4

e

〈(n = 0)?〉

〈r := 1〉

〈(n > 0)?〉

〈x := n−1〉

〈ret r := f(x)〉

〈call r :=
f(x)〉

〈r := r∗n〉
〈r := f(x)〉

Figure 5.8: CFG of the Factorial Program

v ∈Value : values
ǫi ∈LEnv i = LVar i → Value : local environments for Pi

ǫ ∈LEnv =
⋃

i LEnv i : local environments
〈c, ǫ〉 ∈Act = Ctrl × LEnv : activation record

Γ ∈ State = Act+ : stacks/program states

Figure 5.9: Semantic domains

a control point ci and an environment ǫi). 〈cn, ǫn〉 is the current activation record or
top of Γ; the tail of Γ is Γ without its top, i.e. 〈c0, ǫ0〉 · . . . · 〈cn−1, ǫn−1〉. Environments
map variables to values; their update is written ǫ[x 7→ v]. The transition relation
→ ⊆ State × State is defined (in SOS-style) by the rules in Figure 5.10. As long as
a variable is not initialized, it holds nondeterministically any value in its domain, cf.
rule (Call). As usual, →∗ denotes the reflexive-transitive closure of →.

I(c, c′) = 〈R〉 R(ǫ, ǫ′)

Γ · 〈c, ǫ〉 → Γ · 〈c′, ǫ′〉
(Intra)

I(c, sj) = 〈call ~y := Pj(~x)〉 ∀k : ǫj(~fp
(k)

j ) = ǫ(~x(k))

Γ · 〈c, ǫ〉 → Γ · 〈c, ǫ〉 ·〈sj , ǫj〉
(Call)

I(ej , c) = 〈ret ~y := Pj(~x)〉 ǫ′ = ǫ[~y(k) 7→ ǫj(~fr
(k)

j )]

Γ · 〈call(c), ǫ〉 ·〈ej , ǫj〉 → Γ · 〈c, ǫ′〉
(Return)

Figure 5.10: SOS rules defining →

Standard Collecting Semantics. The forward collecting semantics describes the
set of reachable states of a program. It is the natural choice for expressing and
verifying invariance properties and is derived from the operational semantics by col-
lecting the states belonging to executions of the program. We define the function
Reach : ℘(State)→ ℘(State) computing the states reachable from a set of initial states
X0 as:

Reach(X0) , {q | ∃q0 ∈ X0 , q0 →
∗ q} = lfp(F [X0])
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where lfp is the least fix-point operator, F [X0](X) , X0 ∪ post(X) and post(X) =
{q′ | ∃q ∈ X : q → q′} is the forward transfer function. Figure 5.11 gives the
decomposition of Post according to the transitions of the CFG, i.e. Post(X) =
⋃

(c,c′)∈Ctrl×Ctrl Post(c
I(c,c′)
−−−−→ c′)(X).

Post(c
〈R〉
−−→ c′)(X) =

{
Γ · 〈c′, ǫ′〉

∣∣ Γ · 〈c, ǫ〉 ∈ X ∧R(ǫ, ǫ′)
}

Post(c
〈call ~y:=Pj(~x)〉
−−−−−−−−−−→ sj)(X) =

{
Γ · 〈c, ǫ〉 ·〈sj, ǫj〉

∣∣Γ · 〈c, ǫ〉 ∈ X ∧ ǫj(~fp
(k)

j ) = ǫ(~x(k))
}

Post(ej
〈ret ~y:=Pj(~x)〉
−−−−−−−−−→ c)(X) =

{
Γ · 〈c, ǫ′〉

∣∣∣∣∣
Γ · 〈call(c), ǫ〉 ·〈ej , ǫj〉 ∈ X

ǫ′ = ǫ
[
~y(k) 7→ ǫj(~fr

(k)

j )
]

}

Figure 5.11: Forward transfer function Post

Since F [X0] is monotonic and continuous, Kleene’s fix-point theorem allows us to
compute the forward collecting semantics by iterated application of F [X0] starting from
∅:

Reach(X0) = lfp(F [X0]) =
⋃

n≥0 (F [X0])
n(∅)

The collecting semantics can also be considered backward, yielding the set of states
X from which a given set of final states X0 is reachable. In this case we call X the set
of co-reachable states of X0. We get the following definitions:

Pre(X) = {q | ∃q′ ∈ X : q → q′}

Coreach(X0) = lfp(G[X0]) with G[X0](X) = X0 ∪ Pre(X)

Properties of the stacks in the standard semantics. The assumption that formal
input parameters are read-only variables induces strong properties on stacks which are
the basis of our stack abstractions. A necessary condition for q = Γ · 〈c, ǫ〉 to lead
to q′ = Γ · 〈c, ǫ〉 · 〈c′, ǫ′〉 (where c is a call site to Pproc(c′)) is that the values of actual
input parameters in ǫ have to match those of the formal input parameters in ǫ′. This
is formalized by the following definition.

Definition 5.2 (valid calling activation record) 〈c, ǫ〉 is a valid calling activation
record (or valid) for 〈c′, ǫ′〉 if
(i) c is a call site for procedure Pj : ∃j : c′ = sj ∧ I(c, sj) = 〈call~y := Pj(~x)〉;

(ii) actual and formal parameters are equal: ∀k : ǫ(~x(k)) = ǫ′(~fp
(k)

j ).

Extending Definition 5.2, we call a stack 〈c0, ǫ0〉 . . . 〈cn, ǫn〉 consistent if 〈ci, ǫi〉 is valid
for 〈ci+1, ǫi+1〉 (∀0 ≤ i<n).

We define the function φ : ℘((K × LEnv)+) → ℘((K × LEnv)+) as the function
which extracts from its argument the subset of consistent stacks.

This notion of consistency guides the concretization of our abstractions of stacks,
based on lattice automata.
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(k1, . . .) (k,X1)

(k2, . . .) (k,X2)
(a) top on the right

(k,X1 ⊔X2)
(k1, . . .)

(k2, . . .)

(b) top on the left

Figure 5.12: Top of the stack (control point c) on the right versus on the left

5.2.2 Abstracting Call-Stacks with Lattice Automata

According to Figure 5.9, the concrete lattice of properties of the imperative programs
considered is ℘((K × LEnv)+). We assume that we have an atomic abstract lattice
LEnv ♯ for environments, with a concretization function γe : LEnv ♯ → ℘(LEnv). By
noticing the isomorphism ℘(K × LEnv) ≃ K → ℘(LEnv), we extend this abstraction
to activation records:

γe : (K → LEnv ♯) −→ (K → ℘(LEnv)) ≃ ℘(K × LEnv)
e♯ 7−→ γe ◦ e♯

(5.1)

We now instantiate Eqn (5.1) by taking S = (K×LEnv)+ and A = K → LEnv ♯. We
thus abstract sets of call-stacks with Reg((K → LEnv ♯), π). The canonical partitioning
function π we will use is the function separating abstract environments according to
their attached control point: π : K → LEnv ♯ defined by π(k) = ⊤LEnv♯ .

A first important point is to decide whether the top of the stack is on the right
(initial states) or on the left (final states). This choice is not neutral, as determinism in
automata is oriented to the left (and normalization of automata induces a loss of preci-
sion). If we want to perform polyvariant analyses, where several abstract environments
may be associated to the same control point depending on the calling context, as in
Figure 5.12.(a), we should put the top of the stack on the right. Indeed, if we reverse
the deterministic automaton of Figure 5.12.(a) and if we normalize it, Figure 5.12.(b),
then X1 and X2 will be merged, which is not the desired behavior. As a consequence,
we adopt the convention where the top of the stack is on the right, which is moreover
in accordance to the notation used in the concrete and abstracts semantics of programs
described in Section 5.2.1.

A second point is to exploit the fact that call-stacks should be consistent (cf. Sec-
tion 5.2.1). Thus the concretization function γseq of Reg((K → LEnv ♯), π) will be
combined with a function φ filtering out non-consistent stack, resulting in the con-
cretization function γcs = φ◦γseq . This will be exploited in abstract transfer functions,
which should approximate correctly αcs ◦F ◦γcs where F is a concrete transfer function.

Abstract transfer functions. We need now to define the abstract postcondition on
Reg((K → LEnv ♯), π). A procedure call (corresponding to a push) involves parameter
passing between the current activation record and the newly added activation record.
A procedure return (corresponding to a pop) also involves a combination of the first
two activation records on the top of stack.
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(k0, . . .)

(k0, . . .)

(k,X1)

(k1, . . .) (k,X2)

(a) Before the instruction

(k0, . . .)

(k0, . . .)

(k′,X ′
1)

(k1, . . .) (k′,X ′
2)

(b) After the intruction

Figure 5.13: Abstract transfer function for an intraprocedural instruction τ = k
〈R〉
−−→ k′,

with X ′
i = post ♯

f (τ)(Xi)

(k0, . . .)

(k0, . . .)

(k,X1)

(k1, . . .)

(k,X3)

(k,X2)

(a) Before the call

(k0, . . .)

(k0, . . .)
(k,X1) (sj ,X

′
1)

(k1, . . .)

(k,X3)
(k,X2) (sj ,X

′
2)

(sj ,X
′
3)

(b) After the call

Figure 5.14: Abstract transfer function for a procedure call τ = k
〈call ~y:=Pj(~x)〉
−−−−−−−−−−→ sj,

where X ′
i = post ♯

f (τ)(Xi)

We have detailed on Figure 5.11 the concrete forward transfer function. We describe
here how we defined and implement their abstract counterpart on lattice automata. For
all type of instructions, we consider the PLA A(k) representing the reachable stacks
associated to the control point k, in which all the transitions reaching a final states are
labeled by abstract activation records of the form (k,X), with X ∈ A is an abstract
environment.1

The case of an intraprocedural instruction τ = k
〈R〉
−−→ k′ is the easiest and is

illustrated on Figure 5.13. In the PLA A(k), no final state can have an outgoing
transition, because k cannot be a call-site. This means that the transitions reaching a
final state represent necessarily the top of the (abstract) stack. In this situation, the

image of A can be obtained by replacing transition l
(k,X)
−−−→ l′ where l′ is a final state by

transitions l
(k′,post♯

f (τ)(X))
−−−−−−−−−−→ l′. This may result in a non-deterministic PLA, for instance

if k′ = k0 on Figure 5.13.(b).

The case of a procedure-call instruction τ = k
〈call ~y:=Pj(~x)〉
−−−−−−−−−−→ sj is also easy and is

illustrated on Figure 5.14. For each transition of A(k) of the form l
(k,X)
−−−→ l′, where l′

is a final state, we add a transition l′
(sj ,post♯

f
(τ)(Xi))

−−−−−−−−−−→ lf , with lf the new and unique
final state.

We consider now the case of a procedure-return instruction τ = ej
〈ret ~y:=Pj(~x)〉
−−−−−−−−−→ k′,

1as we never merge final states with non-final ones in widening, this invariant will be preserved.
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(k0, . . .)

(k2, . . .)

(k0, . . .)
(k,X1) (ej ,X

′
1)

(k1, . . .)

(k,X3)
(k,X2)

(ej ,X
′
2)

(ej ,X
′
3)

(a) Before the return

(k0, . . .)

(k2, . . .)

(k0, . . .)

(k′,X ′′
1 )

(k1, . . .)

(k,X3)

(k′,X ′′
2 )

(k′,X ′′
3 )

(b) After the return

Figure 5.15: Abstract transfer function for a procedure return τ = ej
〈ret ~y:=Pj(~x)〉
−−−−−−−−−→ k′,

with k = call(k′) and X ′′
i = post ♯

f (τ)(Xi,X
′
i)

illustrated on Figure 5.15. We note k = call(k′) the call-site corresponding to the return-
site k′. Notice that in the PLA A(ej), no final state can have an outgoing transition,
because ej cannot be a call-site. The operation proceeds as follows: for any sequence

of transitions in A(ej) of the form l
(k,X)
−−−→ l′

(ej ,X′)
−−−−→ l′′, where l′′ is a final state, we add

a transition l
(k′,post♯

f (τ)(X,X′))
−−−−−−−−−−−−→ lf , with lf the new and unique final state.

Normalization and widening. In Chapter 4, we defined a normal form for lattice
automata. However, this normalization induces a loss of information, which happens
to be sometimes too strong in the context of interprocedural analysis. We will give ex-
perimental evidence of this problem in the following section. Figure 5.16 illustrates the
problem with a recursive procedure, and normalization at the call-site. Figure 5.16.(a)
gives the possible structure of the postcondition of an intraprocedural instruction lead-
ing to call-site. After determinization, which is the first step of normalization, we obtain
the automaton of Figure 5.16.(b), where the two different environments X1,X2 have
been merged.

1

2

(k,X1)

(k,X2)

(a) Initial stack

1

1,2

(k,X1 ⊔X2)

(k,X1 ⊔X2)

(b) After determinization

Figure 5.16: Loss of information at the call site of a recursive call

As a consequence, we will mostly manipulate non-normalized lattice automata,
and we will rely solely on widening for termination. We illustrate this issue with two
examples of interprocedural analysis, and introduce the polyvariant analysis.
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5.2.3 An Interprocedural Analyzer

5.2.3.1 Implementation in an interprocedural analyzer

We implemented the abstract postcondition on call-stacks represented with lattice au-
tomata defined in Chapters 4, and we have connected this abstract lattice to the aca-
demic Interproc interprocedural analyzer [int]. We also implemented the abstract
precondition which is based on similar principles.

Interproc is an interprocedural analyzer for a small imperative language with re-
cursive procedure calls [int]. It infers invariants on the numerical variables of analyzed
program, by forward analysis. It can also infer necessary conditions to reach a given
control point (by backward analysis), and it can combine both kind of analysis itera-
tively. It exploits the APRON library for abstracting numerical variables [APR] and
the Fixpoint library as a generic fix-point equation solver [Fix].

Interproc has been recently improved by adding Boolean and enumerated vari-
ables to numerical variables (integer, real, or floating-point), and by replacing the
APRON numerical abstract domain by the BDD+APRON domain. This last do-
main abstracts environments belonging to LEnv = V → B ∪ R ≃ Bm ∪ Rn with the
lattice LEnv ♯ = Bm → A[n], where A[n] is one of the abstract lattice for ℘(Rn) provided
by the APRON library. In this lattice, finite-state variables are thus not abstracted,
whereas numerical variables are abstracted as before. Elements of LEnv ♯ are actu-
ally represented with MTBDDs (Multi-Terminal Binary Decision Diagrams), hence the
name BDD+APRON.

All the following experiments have been performed by using convex polyhedra as
the abstract domain for numerical variables.

5.2.3.2 Two toy examples

Polyvariant analysis. Our stack abstraction allows us to implement polyvariant
analysis very easily. In a polyvariant analysis, a function may be analyzed separately
according to calling-context. A very simple example where a polyvariant analysis is
useful is given on Figure 5.17.(a). On Figure 5.17.(b), the result of a standard inter-
procedural analysis with functional abstraction is given in the comments. The analysis
has not captured properly the effect of the abs function, because of the approximation
induced by the use of convex polyhedra: abs is called both with negative and positive
arguments, so the analysis just infers r ≥ −n∧r ≥ n∧n+r ≥ 0 at the exit point of abs.
At the first call-site, we obtain the exact invariant thanks to the relation n+ r ≥ 0, but
at the second call-site in the loop, we do not obtain y = x. On Figure 5.17.(c), we use
the stack abstraction, using a bounded backward bisimulation of depth 1 for normal-
ization, and we give in comments the join of the tops of the reachable stacks. Because
of the join performed on the top of reachable stacks, the invariants of function abs are
not improved, however the invariants of function main are exact, because internally the
full abstract stacks are used to compute the effect of function calls. Figure 5.17.(d)
depicts the reachable stacks associated to the exit point of procedure abs.
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proc abs(n:int) returns

(r:int)

begin

if n>=0 then

r = n;

else

r = -n;

endif;

end

var x:int,y:int;

begin

x = -3;

y = abs(x);

x = 3;

while x>=0 do

y = abs(x);

x = x-1;

done;

end

(a) Program

proc abs (n : int) returns (r : int)

begin

/* (L4 C5) [|-n+3>=0; n+3>=0|] */

if n >= 0 then

/* (L5 C14) [|-n+3>=0; n>=0|] */

r = n; /* (L6 C10) [|-n+r=0; -n+3>=0; n>=0|] */

else

/* (L7 C6) [|-n-1>=0; n+3>=0|] */

r = - (n); /* (L8 C11) [|n+r=0; -n-1>=0; n+3>=0|] */

endif; /* (L9 C8) [|-n+r>=0; -r+3>=0; n+r>=0|] */

end

var x : int, y : int;

begin

/* (L13 C5) top */

x = - (3); /* (L14 C9) [|x+3=0|] */

y = abs(x); /* (L15 C13) [|y-3=0; x+3=0|] */

x = 3; /* (L16 C8) [|-3x+4y-3>=0; -y+3>=0; x+y+1>=0|] */

while x >= 0 do

/* (L17 C15) [|-3x+4y-3>=0; -y+3>=0; x>=0|] */

y = abs(x); /* (L18 C15) [|-x+y>=0; -y+3>=0; x+y>=0|] */

x = x - 1; /* (L19 C12) [|-x+y-1>=0; -y+3>=0; x+y+1>=0|] */

done; /* (L20 C7) [|-x-1>=0; -y+3>=0; x+y+1>=0|] */

end

(b) Forward analysis with functional abstraction

proc abs (n : int) returns (r : int) var ;

begin

/* (L4 C5) [|-n+3>=0; n+3>=0|] */

if n >= 0 then

/* (L5 C14) [|-n+3>=0; n>=0|] */

r = n; /* (L6 C10) [|-n+r=0; -n+3>=0; n>=0|] */

else

/* (L7 C6) [|n+3=0|] */

r = - (n); /* (L8 C11) [|r-3=0; n+3=0|] */

endif; /* (L9 C8) [|-n+r>=0; -r+3>=0; n+r>=0|] */

end

var x : int, y : int

begin

/* (L13 C5) top */

x = - (3); /* (L14 C9) [|x+3=0|] */

y = abs(x); /* (L15 C13) [|y-3=0; x+3=0|] */

x = 3; /* (L16 C8) [|-3x+4y-3>=0; -y+3>=0; x-y+1>=0|] */

while x >= 0 do

/* (L17 C15) [|-3x+4y-3>=0; -y+3>=0; x-y+1>=0; x>=0|] */

y = abs(x); /* (L18 C15) [|-x+y=0; -x+3>=0; x>=0|] */

x = x - 1; /* (L19 C12) [|-x+y-1=0; -x+2>=0; x+1>=0|] */

done; /* (L20 C7) [|y=0; x+1=0|] */

end

(c) Forward analysis with stack abstraction, bounded backward bisimulation of depth 1

0  0I

2  0

{((L17 C15),[|-3x+4y-3>=0; -y+3>=0;
              x-y+1>=0; x>=0|])}

3  0

{((L14 C9),[|x+3=0|])}

1  0F

{((L9 C8),[|-n+r=0; -n+3>=0; n>=0|])} {((L9 C8),[|r-3=0; n+3=0|])}

(d) Abstract stack at exit point of function abs with stack abstraction, bounded
backward bisimulation of depth 1

Figure 5.17: Example of polyvariant (forward) analysis
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proc abs(n:int) returns

(r:int)

begin

if n>=0 then

r = n;

else

r = -n;

endif;

end

proc f(n:int) returns (r:int)

var x : int;

begin

x = abs(n); x = x+n; r = abs(x);

end

proc g(n:int) returns (r:int)

var x : int;

begin

r = f(n); r = x-r; r = f(r);

end

var x:int,y:int;

begin

x = -3; y = g(x); x = g(y);

end

(a) Program example
0  0I

1  0

{((L25 C19),[|x+3=0; y>=0|])}

10  0

{((L25 C9),[|x+3=0|])}

2  0

{((L20 C20),[|-2n-r+x>=0; n>=0;
              2n+r-x+6>=0|])}

7  0

{((L19 C5),[|n>=0|])}

3  0

{((L14 C22),[|-2n+x>=0; x>=0|])}

5  0

{((L13 C5),top)}

4  0F

{((L8 C8),[|-n+r=0; n>=0|])}

6  0F

{((L8 C8),[|-n+r>=0; n+r>=0|])}

8  0

{((L14 C22),[|-2n+x>=0; n>=0; 2n-x+6>=0|])}

9  0

{((L13 C5),[|n>=0|])}

{((L8 C8),[|-n+r=0; n>=0|])} {((L8 C8),[|-n+r>=0; n-r+6>=0; n+r>=0|])}

11  0

{((L20 C20),[|-r+x=0; n+3=0|])}

12  0

{((L19 C5),[|n+3=0|])}

{((L14 C22),[|-2n+x>=0; x>=0|])} {((L13 C5),top)} {((L14 C22),[|x=0; n+3=0|])} {((L13 C5),[|n+3=0|])}

(b) Abstract stack at exit point of abs, with bounded backward bisimulation of depth
1

0  0

8  0

{((L19 C5),[|n+3=0|])}

11  0

{((L20 C20),[|-r+x=0; n+3=0|])}

1  0

15  0

{((L13 C5),[|n>=0|])}

16  0

{((L14 C22),[|-2n+x=0; n>=0|])}

2  0

17  0F

{((L8 C8),[|-n+r>=0; n+r>=0|])}

3  0

7  0F

{((L8 C8),[|-n+r=0; n>=0|])}

4  0

13  0

{((L13 C5),top)}

14  0

{((L14 C22),[|-2n+x>=0; x>=0|])}

5  0

{((L19 C5),[|n>=0|])}{((L20 C20),[|-2n-r+x=0; n>=0|])}

6  0I

{((L25 C9),[|x+3=0|])} {((L25 C19),[|x+3=0; y>=0|])}

9  0

{((L13 C5),[|n+3=0|])}

10  0

{((L14 C22),[|x=0; n+3=0|])}

12  0F

{((L8 C8),[|r-3=0; n+3=0|])}{((L8 C8),[|r=0; n=0|])}

{((L13 C5),top)} {((L14 C22),[|-2n+x>=0; x>=0|])}

{((L8 C8),[|-n+r>=0; n+r>=0|])} {((L8 C8),[|-n+r=0; n>=0|])} {((L8 C8),[|-n+r=0; n>=0|])}{((L8 C8),[|-n+r=0; n>=0|])}

(b) Abstract stack at exit point of abs, with bounded backward bisimulation of depth
2

Figure 5.18: Stack abstraction and program inlining
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Polyvariant analysis and inlining. An alternative to polyvariant analysis is to first
inline the initial program, and then to perform an ordinary interprocedural analysis.
However, the inlining approach has three drawbacks:

1. As it relies on a combination of program transformation and analysis, it does not
allow us to formalize easily the approximation performed in the analysis, whereas
our approach is in some way an integrated one;

2. It works only for non-recursive programs, whereas our approach works for re-
cursive programs, as illustrated by Section 5.2.3.3. In such cases, the analysis
performs implicitly a bounded inlining of the program.

3. It is not equivalent to the stack abstraction, thanks to the use of bounded bisimu-
lation, as illustrated by the example of Figure 5.18.(a), where the main procedure
calls twice g, calling itself twice f, which last calls twice abs. Figure 5.18.(b) de-
picts the abstract stack at exit point of abs, where several non-final states have
several incoming edges, which means that the automaton does not correspond to
a full tree. To obtain a full tree, we need to use a bounded backward bisimula-
tion of depth 2, see Figure 5.18.(c), where only final states have several incoming
edges, which does not impact the precision).

5.2.3.3 The MacCarthy91 function

We then experimented the analyzer to the well-known MacCarthy 91 function, depicted
on Figure 5.19. The exact semantics of MC is:

∀n ∈ Z : MC(n) =

{
91 if n ≤ 100
n− 10 if n ≥ 101

Applying a standard analysis (based on the functional abstraction αe ◦ αf of Sec-
tion 5.2.1), using polyhedra [Min01], yields to the invariants given in the comments
on Figure 5.20, that do not capture the exact semantics, but its best approximation
with convex polyhedra. On the other hand, if we manually partition the input param-
eter with the condition n>=100, we obtain the program of Figure 5.21, on which the
functional abstraction delivers exact invariants.

We will show that the gain of stack abstraction over the functional abstraction in
term of precision, in the case where we do not partition the values of variable n. In
Tabs.5.1–5.3, “+det” means that determinization is applied, “-det” that it is not, “-
backward n” means that we use bounded backward bisimulation of depth “n” (default
0), and “forward n” means that we use bounded backward bisimulation of depth “n”
(default 0).

Experiment 1. We first try to infer that if we assume x<=100 at beginning of the
main function, we have at the end y=91. The results are depicted on Tab. 5.1. The
functional analysis did not succeed, neither the stack-based analysis with the option
“-backward 0”, which is essentially equivalent to functional analysis, as normalized
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Type of analysis y = 91
and normalization proved ?

functional no
stack -det -backward 0 no
stack -det -backward 1 no
stack -det -backward 2 yes
stack -det -backward 3 yes
stack +det -backward 3 no
stack -det -forward 3 no

Table 5.1: Experiment 1

Type of analysis property on x
and normalization inferred ?

functional ⊤
stack -det -backward 1 x ≥ 102
stack +det -backward 1 ⊤
stack -det -forward 1 ⊤
stack -det -forward 2 ⊤
stack -det -forward 2 ⊤

Table 5.2: Experiment 2: backward analy-
sis
Type of analysis property on x
and normalization inferred ?

functional ⊤
stack -det -backward 1 x ≥ 102
stack +det -backward 1 x ≥ 102
stack -det -forward 1 ⊤
stack -det -forward 2 ⊤
stack +det -forward 2 ⊤

Table 5.3: Experiment 2: backward analy-
sis after forward analysis
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automata have at most 2 states, a final and a non-final one, see Figure 5.22.(a). We
need a depth of 2 or more to prove the property. This means that in this case the
stack abstraction allows to recover the loss of information due to the use of convex
polyhedra. Notice that in this case, the lattice automaton attached to the return point
of function MC is rather complex, see Figure 5.22.(c). Now, if we apply determinization,
the analysis fails, even with a depth of 3. The analysis also fails when using forward
bisimulation.

var x:int, y:int,b:bool;

begin

y = MC(x);

if y>91 then

fail;

endif;

end

Experiment 2. We now assume any input in the
function main when calling the function MC, and we try
to infer a necessary condition on x for having y>91 at
the end of main. This can be done by considering the
function main besides, in which the instruction fail

defines a final control point for backward analysis. The
results are depicted on Tab. 5.2. Here, a depth of 1
only in the bounded backward bisimulation allows to infer the exact condition. If we
perform a forward analysis to select reachable states before performing a backward
analysis on the restricted state-space, we obtained the results of Tab. 5.3. In this case
we succeed to infer the right condition bounded backward bisimulation of depth 1, even
with determinization, thanks to the gain in precision due to the intersection of the two
analyses. Figure 5.23 depicts the abstract call-stack at the end of function MC, after
the forward analysis followed by the backward analysis. One can observe that with a
depth of 1, the call-stack is still quite complex, whereas with a depth 2 the intersection
is much more precise.

As for experiment 1, the use of bounded forward bisimulation does not allow to
obtain the expected results.

5.2.3.4 Discussion

We did not experiment non-toy programs, as we need for this a connection to an existing
programming language, which is not done yet. These preliminary experiments allow
already to draw some conclusions.

First of all, the experiments on the MacCarthy 91 function showed than the normal-
ization of lattice automata in this context should be based on a backward bisimulation
relation, and that it is preferable to work with non-deterministic automata. Second,
these experiments illustrate the fact that lattice automata allow to a implement poly-
variant analysis that performs a partial inlining and works with recursive programs;
the degree of partial inlining is moreover controlled by the depth of the bounded bisim-
ulation relation used for normalization. They also show that the use of abstract stacks
allows to recover partially the loss of information due to the abstraction of the envi-
ronments. We last point out the fact that backward analysis is easily implemented, as
well as its intersection with forward analysis during the fix-point computations.

These experiments also showed that applying lattice automata to interprocedural
analysis of non-toy programs requires a deeper study. For instance, the depth of the
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bounded bisimulation is maybe too rough to tune finely the size of lattice automata. The
implementation could also be more clever, in particular in combined forward/backward
analysis where the present implementation perform a full lattice automata intersection
at each control point.

5.2.4 Related Work

As explained in the introduction, one can distinguish two main approaches to inter-
procedural static analysis, namely the functional and the operational. The functional
approach of [CC77b] has been used for instance to analyze the access to arrays in in-
terprocedural Fortran programs [CI96], using the abstract domain of convex polyhedra
[CH78]. [RHS95] can be seen as an algorithmic implementation of [KS92] using graph
reachability techniques, which can be used with finite lattices and distributive data flow
functions. This technique can be applied to all bit-vector analyses and the Bebop tool
[BR00] is based on it. An extension [SRH96] allows to tackle some finite-height infinite
lattices, like (linear) constant propagation.

In the operational approach, [Bou90] considers more complex Pascal programs with
reference parameter passing, which introduces aliasing on the stack (i.e. several vari-
ables may refer to the same location in the stack), and nested procedure definitions.
Unsurprisingly, the devised solution is quite complex. It has been implemented using
the interval domain for integers [CC77a]. Stacks are collapsed more severely than in
our model. The proposal of [EK99], implemented in Moped [ES01b] and applied to
concurrent programs in [BET03], relies on the result that the set of reachable stacks
of a pushdown automata is a regular language, that can be represented by finite-state
automata. The analyzed program is converted to a pushdown automaton, and is thus
restricted to programs manipulating finite-state variables/properties, or requires the
finite abstraction of data/properties prior the analysis. A recent extension allows the
use of some infinite finite-height lattices [RSJ03] and represents a very interesting mix
of the two approaches: pushdown automata are here extended by associating trans-
formers to transition rules. This allows to encode the control part of the program and
properties belonging to a finite lattice in the pushdown automata, whereas properties
belonging to a finite-height lattice can be handled by the transformers attached to the
transitions. This approach can be applied to infinite-height lattice by patching it with
the use of widening (as done in the experiments of [GR07]), but the elegant theoretical
results are lost. It can also be used for backward analysis and its intersection with for-
ward analysis [LKRT07]. However, in this case the intersection is performed after the
two analyses has been performed independently, which can lead to less precise results
than performing the second analysis on the restricted state-space computed by the first
analysis. A distinguish feature of our approach is to ability to tune the abstraction of
stacks, whereas it is fixed in the analysis of weighted pushdown systems, and defined by
control flow graph of the encoded programs, and possibly by the finite-state variables
that are encoded in the control rather than with the weights attached to transitions.
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5.3 Conclusion

We presented in this chapter the model of Symbolic Communicating Machines (SCMs).
The main interest of this model is to easily describe real communication protocols, which
often manipulate boolean and integer variables.

We illustrated the use of lattice automata for the verification of SCMs, and we
showed the need for a non-standard semantics to couple the abstraction of the state
variables of the machines with the contents of the FIFO queues. To our knowledge,
this is the first verification technique able to deal with message carrying any kind of
values without manual transformation of the model. We also explore the applicability
of lattice automata to interprocedural analysis and compare this solution to related
work.

We discussed the application of lattice automata to interprocedural analysis. With
the abstraction of the stack contents provided by lattice automata, we defined a poly-
variant analysis, where several abstract environments may be associated to the same
control point depending on the calling context. We had to adapt the operations like
“push”and “pop” so they become context-sensitive. We experimented this kind of anal-
ysis and showed that we had to define ρk operator by a backward bisimulation instead
of a forward one. We also need to do as few normalization operations as possible. We
experimented our analyzer on some toy examples, justifying the choice we maid, and
we plan to apply it on more significant examples.

Future work also includes a deeper study of the experimental relevance of lattice au-
tomata to the analysis of SCM. The challenge we would like to take up is the verification
of the SSCOP communication protocol, which is a sliding window protocol from which
our running example is extracted. Previous verification attempts that we are aware
of are either based on enumerated state-space exploration techniques [BFG+00b], or
on the partial use of theorem proving [Rus03]. It would be interesting to study the
application of lattice automata to shape analysis, in the spirit of [BHRV06].
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proc MC(n:int) returns

(r:int)

var t1:int, t2:int;

begin

if n>100 then

r = n-10;

else

t1 = n + 11;

t2 = MC(t1);

r = MC(t2);

endif;

end

var x:int, y:int,b:bool;

begin

y = MC(x);

end

Figure 5.19: MacCarthy91 func-
tion

proc MC (n : int) returns

(r : int)

var t1 : int, t2 : int;

begin

/* (L4 C5) top */

if n > 100 then

/* (L5 C15) [|n-101>=0|] */

r = n - 10; /* (L6 C14)

[|-n+r+10=0; n-101>=0|] */

else

/* (L7 C6) [|-n+100>=0|] */

t1 = n + 11; /* (L8 C17)

[|-n+t1-11=0; -n+100>=0|] */

t2 = MC(t1); /* (L9 C17)

[|-n+t1-11=0; -n+100>=0;

-n+t2-1>=0; t2-91>=0|] */

r = MC(t2); /* (L10 C16)

[|-n+t1-11=0; -n+100>=0;

-n+t2-1>=0; t2-91>=0;

r-t2+10>=0; r-91>=0|] */

endif; /* (L11 C8) [|-n+r+10>=0; r-91>=0|] */

end

var x : int, y : int, b : bool

begin

/* (L15 C5) top */

y = MC(x); /* (L16 C12) [|-x+y+10>=0; y-91>=0|] */

end

Figure 5.20: Reachability analysis
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proc MC (b : bool, n : int) returns (r : int)

var t1 : int, t2 : int, b1 : bool;

begin

/* (L6 C5) { [|n-101>=0|] IF b,

[|-n+100>=0|] IF not b } */

if b != n > 100 then

/* (L7 C24) bottom */

fail; /* (L7 C30) bottom */

endif; /* (L7 C37) { [|n-101>=0|] IF b,

[|-n+100>=0|] IF not b } */

if b then

/* (L8 C11) { [|n-101>=0|] IF b,

bottom OTHERWISE } */

r = n - 10; /* (L9 C14) { [|-n+r+10=0; n-101>=0|] IF b,

bottom OTHERWISE } */

else

/* (L10 C6) { [|-n+100>=0|] IF not b,

bottom OTHERWISE } */

t1 = n + 11; /* (L11 C17) { [|-n+t1-11=0; -n+100>=0|] IF not b,

bottom OTHERWISE } */

b1 = t1 > 100; /* (L12 C17)

{ [|-n+t1-11=0; -n+100>=0; n-90>=0|] IF not b and b1,

[|-n+t1-11=0; -n+89>=0|] IF not b and not b1,

bottom OTHERWISE } */

t2 = MC(b1, t1); /* (L13 C20)

{ [|-n+t2-1=0; -n+t1-11=0; -n+100>=0; n-90>=0|] IF

not b and b1,

[|-n+t1-11=0; t2-91=0; -n+89>=0|] IF not b and not b1,

bottom OTHERWISE } */

b1 = t2 > 100; /* (L14 C17)

{ [|t2-101=0; t1-111=0; n-100=0|] IF not b and b1,

[|-n+t1-11=0; -n+t2-1>=0; -t2+100>=0; t2-91>=0|] IF

not b and not b1,

bottom OTHERWISE } */

r = MC(b1, t2); /* (L15 C19)

{ [|t2-101=0; t1-111=0; r-91=0; n-100=0|] IF not b and b1,

[|-n+t1-11=0; r-91=0; -n+t2-1>=0; -t2+100>=0; t2-91>=0|] IF

not b and not b1,

bottom OTHERWISE } */

endif; /* (L16 C8)

{ [|-n+r+10=0; n-101>=0|] IF b,

[|t2-101=0; t1-111=0; r-91=0; n-100=0|] IF not b and b1,

[|-n+t1-11=0; r-91=0; -n+t2-1>=0; -t2+100>=0; t2-91>=0|] IF

not b and not b1 } */

end

var x : int, y : int, b : bool

begin

/* (L20 C5) top */

b = x > 100; /* (L21 C12) { [|x-101>=0|] IF b,

[|-x+100>=0|] IF not b } */

y = MC(b, x); /* (L22 C14) { [|-x+y+10=0; x-101>=0|] IF b,

[|y-91=0; -x+100>=0|] IF not b } */

end

Figure 5.21: Reachability analysis on a partitioned version
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0  0I

{((L8 C17),[|-n+t1-11=0; -n+100>=0|]);
 ((L9 C17),[|-n+t1-11=0; -n+t2-1>=0;
             t2-91>=0|]);
 ((L16 C16),[|-x+100>=0|])}

1  0F

{((L11 C8),[|-n+r+10>=0; r-91>=0|])}

(a) “-backward 0”

0  0I

2  0

{((L16 C16),[|-x+100>=0|])}

1  0F

{((L11 C8),[|-n+t1-11=0; -n+t2-1>=0;
             t2-91>=0; r-t2+10>=0;
             r-91>=0|])}

3  0

{((L9 C17),[|-n+t1-11=0; -n+t2-1>=0;
             t2-91>=0|])}

4  0

{((L8 C17),[|-n+t1-11=0; -n+100>=0|])}

{((L11 C8),[|-n+r+10>=0; r-91>=0;
             n-91>=0|])}

{((L9 C17),[|-n+t1-11=0; -n+t2-1>=0;
             n-91>=0|])}

{((L8 C17),[|-n+t1-11=0; -n+100>=0;
             n-91>=0|])}

{((L11 C8),[|-n+r+10>=0; r-91>=0|])}

{((L9 C17),[|-n+t1-11=0; -n+t2-1>=0;
             t2-91>=0|])}

{((L8 C17),[|-n+t1-11=0; -n+100>=0|])}

(b) “-backward 1”

0  0I

2  0

{((L16 C16),[|-x+100>=0|])}

1  0F 6  0F

{((L11 C8),[|-n+t1-11=0; r-91=0;
             -t2+101>=0; t2-91>=0|])}

8  0

{((L9 C17),[|-n+t1-11=0; t2-91>=0|])}

10  0

{((L8 C17),[|-n+t1-11=0; -n+100>=0|])}

3  0

{((L11 C8),[|r-91=0; n-101=0|])}

{((L9 C17),[|-n+t2-1=0; -n+t1-11=0;
             -n+100>=0; n-92>=0|])}

4  0

{((L8 C17),[|-n+t1-11=0; -n+100>=0;
             n-92>=0|])}

{((L11 C8),[|-n+t2-1=0; -n+t1-11=0;
             r-91=0; -n+100>=0; 
             n-92>=0|])}

5  0F

{((L11 C8),[|-n+r+10=0; -n+111>=0;
             n-102>=0|])}

7  0

{((L11 C8),[|r-91=0; n-101=0|])}

{((L9 C17),[|-n+t2-1=0; -n+t1-11=0;
             -n+100>=0; n-91>=0|])}

{((L8 C17),[|-n+t1-11=0; -n+100>=0;
             n-91>=0|])}

{((L11 C8),[|-n+t2-1=0; -n+t1-11=0;
             r-91=0; -n+100>=0; 
             n-91>=0|])}

{((L11 C8),[|r-91=0; n-101=0|])}

{((L9 C17),[|-n+t2-1=0; -n+t1-11=0;
             -n+100>=0; n-91>=0|])}

{((L8 C17),[|-n+t1-11=0; -n+100>=0;
             n-91>=0|])}

{((L11 C8),[|-n+t2-1=0; -n+t1-11=0;
             r-91=0; -n+100>=0; 
             n-91>=0|])}

9  0

{((L11 C8),[|-n+r+10=0; -n+111>=0;
             n-101>=0|])}

{((L11 C8),[|-n+t1-11=0; r-91=0;
             -t2+101>=0; t2-91>=0|])}

{((L9 C17),[|-n+t1-11=0; t2-91>=0|])}

{((L8 C17),[|-n+t1-11=0; -n+100>=0|])}

{((L11 C8),[|-n+r+10=0; -n+111>=0;
             n-101>=0|])}

{((L11 C8),[|-n+t1-11=0; r-91=0;
             -t2+101>=0; t2-91>=0|])}

{((L9 C17),[|-n+t1-11=0; t2-91>=0|])}

{((L8 C17),[|-n+t1-11=0; -n+100>=0|])}

(c) “-backward 2”

Figure 5.22: Experiment 1: abstract call-stack at the end of function MC, with option
“stack -det”

0  0I

2  0

{((L15 C5),top)}

1  0F

{((L11 C8),[|-n+r+10>=0; r-92>=0|])}

3  0

{((L9 C17),[|-n+t1-11=0; -n+t2-1>=0;
             t2-91>=0|])}

4  0

{((L8 C17),[|-n+t1-11=0; -n+100>=0|])}

{((L11 C8),[|-n+r+10>=0; r-92>=0;
             n-91>=0|])}

{((L9 C17),[|-n+t1-11=0; -n+t2-1>=0;
             n-91>=0|])}

{((L8 C17),[|-n+t1-11=0; -n+100>=0;
             n-91>=0|])}

{((L11 C8),[|-n+111>=0; r-102>=0|])}

{((L9 C17),[|-n+t1-11=0; -n+111>=0;
             -n+t2-1>=0; t2-91>=0|])}

{((L8 C17),[|-n+t1-11=0; -n+100>=0|])}

(a) “-backward 1”

0  0I

1  0

{((L15 C5),top)}

2  0F

{((L11 C8),[|-n+r+10=0; n-102>=0|])}

(b) “-backward 2”

Figure 5.23: Experiment 2: abstract call-stack at the end of function MC, with option
“stack -det” and combined forward and backward analysis



140 Chapter 5



Chapter 6

Implementation

This chapter describes how we implemented the lattice automata and the algorithms
presented in Chapters 3, 4 and 5. Technically, the implementation of lattice automata
is an Objective CAML library. The CFSMs and SCMs analyzer is a tool also written
in Objective CAML [OCa], using:� the lattice automata library,� the APRON (numerical abstract domains) libraries [APR],� a generic fix-point calculator [Fix].

The APRON library aims at providing several libraries implementing numerical
abstract domains like intervals [CC77a], convex polyhedra [CH78] or octagons [Min01].
Those libraries have a common interface, so we can easily switch between abstract
domains.

We try to make the implementation as modular as possible. So the APRON libraries
are not specifically needed by the SCM analyzer, any abstract domain with an Objective
CAML interface can replace APRON. The experiments, however, were made using only
the APRON libraries.

In the following, we briefly describe the modules of the lattice automata library and
the input language of the analyzer. We also discuss the difference between the theory
and the implementation, and give some examples of analyses.

We also implemented our interprocedural analysis by improving an existing tool,
Interproc, developed by Bertrand Jeannet. The results of the experimentation are
given in Section 5.2.3.

6.1 The Lattice Automata Library

The lattice automata library implements the operations on lattice automata presented
in Chapter 4.
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6.1.1 Description of the Library

The lattice automata library uses some modules of the CamlLib library [CLi], in par-
ticular the representation of graphs. The lattice automata library is composed of the
following modules:� PLattice: module for partitioned lattice;� Regexp: module for regular expressions;� LAutomaton: module for lattice automata, implementing the operations de-

scribed in the previous chapters;� StackQueueN: this module provides the functions needed for the definition of
the semantics of SCMs;� StackQueueNRel: same module as the previous one, except that queues (or
stacks) are represented in a single QDD-like automaton, instead of several au-
tomata.

Remark 6.1 Note that we only implemented the partitioned lattice automata, not the
general lattice automata.

The two last modules have a common interface. So one can easily switch between
a relational analysis and a non-relational one (cf. Chapter 3). They provide functions
operating on stacks and queues.

We now give some details of the implementation, highlighting the differences be-
tween the implementation and the theory.

6.1.2 The Representation of the Partitioned Lattice

Representation of PLAs. A partitioned lattice automaton A = 〈Λ, π,Q,Q0, Qf , δ〉,
as defined in Chapter 4, is represented by a graph with additional informations like the
sets of initial states and the set of final states. The partition π : Σ → Λ is given
by an explicit map, associating each letter σ of the alphabet to the element π(σ).
The module PLattice implements the operations on the partitioned lattice. So the
user must specify, when building an automaton, the whole partition even when some
elements are not employed to label transitions of the automaton.

Remark 6.2 When the lattice Λ is actually of the form Λ = Σ×Λ′, and the partition
given by the function π(σ) = (σ,⊤′) where ⊤′ is the greatest element of the lattice Λ′, the
implementation is simply a map Σ → Λ′, without the letters. This case happens when
we verify SCMs with a partition only based on the type of messages sent or received.
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Manager. The module PLattice is technically a functor, the input of which is a
module implementing the alphabet Σ. The standard operations on the lattice Λ are
provided by an external manager. The type of a partitioned lattice is an open type,
parametrized by the type of the elements of Λ. This manager also requests an element
sep, the value of which does not matter ; this element is employed to label transitions
separating states of different queues, for QDD-like automata.

Functions. The functions provided by this module are:� operations on the partitioned lattice: meet, join, widening, etc ;� some functions to change the partition.

The second kind of functions take a function redefining the partition as an argument,
and applies it to the map representing the partition.

6.1.3 Lattice Automata Modules

Representation of lattice automata. As mentioned previously, a lattice automa-
ton is represented by a graph with additional informations. Our implementation of
lattice automata, like QDDs, represent all the queue contents in a single automaton.
The automata presented in Chapter 4 are indeed the particular case where there is a
single queue. The dimension dim(A) of an automaton is the number of queues.

We identify some sub-automata, each sub-automaton representing the contents of
the queue i (between 0 and dim(A) − 1). So each vertex of the graph carries a queue
number, and each edge of the graph is either:� a set of classical transitions, between two vertices of the same queue i;� a separation transition, between a vertex of the queue i and a vertex of the queue

i + 1.

Edges are labeled by a map Σ → Λ defining the transitions of a merged PLA; for
example, if there is an edge labeled my the map a 7→ [1, 2], b 7→ [−3,−1], it means that
we have two transitions, one labeled by [1, 2] and belonging to the equivalence class a,
the other labeled by [−3,−1] and belonging to the equivalence class b.

Each queue has its own set of initial and final states, stored in two arrays of length
dim(A). Other important informations attached to the graph are the partition and the
lattice1.

Functions of the module LAutomaton. This module implements the algorithms
described in Chapter 4, like inclusion tests, determinization and normalization. It
also implements the language operations like the union and the intersection of two
automata. There are also functions for the concatenation of a letter and the left and
right derivation. Other noticeable functions are:

1There are also some useful informations for the algorithms, like boolean values being true if the
lattice automaton is deterministic or minimal.
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6.1.4 Interfaces for Queues and Stacks

The modules StackQueueN and StackQueueNRel are the modules called by the
analyzer. They may be seen as an interface layer, because they essentially call functions
of the modules LAutomaton and LAutomatonRep. Their role is:� to rename some functions like the left-derivation or the right-concatenation. The

new names (pop/push) are more adapted to the queues or stack terminology, so
the user does not need to remember what language operation corresponds to a
push.� to give the choice between a relational analysis and a non relational one. Since
we have a QDD-like representation of lattice automata, we need a new layer to
implement a non-relational lattice, where N queue-contents are represented by
an array of N lattice automata of dimension 1.

6.2 The SCM Analyzer

The analyzer performs a reachability analysis of a SCM (forward analysis). The an-
alyzer reads the description of a SCM, written in a small input language. It then
generates a system of equations and calls a fix-point calculator[Fix]. At the end of the
computation, we obtain an over-approximation of the reachability set.

6.2.1 Input Language

The input language is a textual description of a SCM. Here is the example of the sliding
window protocol.

scm sliding_window :

nb_channels = 2 ;

parameters :

int data ;

int ack ;

automaton sender :

int s = 0 ;

int a = 0 ;

initial : 0
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state 0 :

to 0 : when s < a+10 and s == data , 0 ! data with s = s+1 ;

to 0 : when ack == a+1 , 1 ?ack with a = a+1 ;

to 1 : when ack > a+1 , 1 ?ack ;

state 1 :

automaton receiver :

real v = 0 ;

initial : 0

state 0 :

to 1 : when true , 0 ? data with v = data ;

state 1 :

to 0 : when ack == v , 1 ! ack ;

Grammar. We remind that <> denotes a non-terminal symbol, [ ] denotes
something optional and the bold words are the key words of the language.

<scm> ::= scm <ident> :
<channels>
[ <lossy> ]
<parameters>
<channels>
{<automaton>}+

<channels> ::= nb channels = <integer> ;
<lossy> ::= lossy : <integer> {,<integer>}∗

<parameters> ::= parameters : {<declaration>}∗

Each SCM has a name, a number of channels (0,1,..., nb channels-1), some param-
eters (being the messages sent in the channels) and at least one automaton. One may
also indicate which channels are lossy. Other channels are considered as perfect FIFO
queues.
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<automaton> ::= automaton <ident> :
{<declaration>}∗

initial : <integer> {, <integer> }∗

{<state>}+

<declaration> ::= <type def> <ident> [= <iexpr>];
<type def> ::= int | real

Each automaton has a name, at least one initial state and may have some local vari-
ables. The local variables may have an initial value, given by an expression.

<state> ::= state <integer> : {<transition>}∗

<transition> ::= to <integer> : when <bexpr>, <action> <assign rule> ;
<assign rule> ::= [ with <assignment>{, <assignment>}∗ ]

<action> ::= [<integer> { ! | ? } <ident>]
<assignment> ::= <ident> = <iexpr>

Each state is identified by an integer. A transition leads to a state, identified by its
integer identifier, when the guard is satisfied. It sends or receives a message, or does
nothing, and may modify the values of variables.
<bexpr> ::= true | false | ( <bexpr> )

| <bexpr> and <bexpr> | <bexpr> or <bexpr> | not <bexpr>
| <iexpr> <const> <iexpr>

<const> ::= == | != | < | <= | > | >=

<iexpr> ::= <float> | <integer> | <ident> | ( <iexpr> )
| <iexpr> + <iexpr> | <iexpr> - <iexpr>
| <iexpr> * <iexpr> | <iexpr> / <iexpr>
| <iexpr> % <iexpr> | - <iexpr>
| sqrt <iexpr>

The syntax of the expressions is rather classical. % is the modulo and sqrt is the square
root.

Observers. The user can specify an observer of the property, using the same input
language. This observer can read the values of variables of the observed SCM, but shall
not modify them. It has its own set of variables.

6.2.2 Description of the Software

The analyzer is written in Objective CAML and his currently available via INRIA
GForge [GFo]. This Gforge project provides the source files of the analyzer and the
source files of all required libraries (called CamlLib, Fixpoint and Apron). See also the
APRON project page (http://apron.cri.ensmp.fr/) for more details.

Use of the APRON library. In the current version of the analyzer, one can only
choose one of the APRON abstract domains as the lattice abstracting the values of the
variables. We are thus limited to integer and floating-point variables. The architecture
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of the software, however, only refers to this library in the file scm_manager.ml. In other
words, if we want to change the abstract domain in the future, we just have to rewrite
this file.

Options of the analyzer. The analyzer is called by the command ./analyzer. The
main options offered to the user are:� -v : displays the version of the analyzer.� -threshold : the analyzer use the widening with thresholds instead of the stan-

dard widening.� -apron name : uses one of APRON abstract domains. Without this option,
the analyzer performs an analysis with finite automata instead of lattice au-
tomata. The available lattices are ”polka” (convex polyhedra), “box” (intervals)
and “oct” (octagons).� -forward k : sets the parameter k for the widening. Default is 0.� -backward k : sets the parameter k for the widening (backward bisimulation).
Default is 0.� -obs filename : reads an observer, which is a SCM described in the file filename.
The result is the reachability analysis of the synchronous product

The SCM is read from the standard input, and the result of the analysis is printed
onto the standard output.

6.2.3 Examples of analyses

We illustrate on some examples the effect of the options of the analyzer.

widening with thresholds. When the option -threshold is active, the analyzer
employs the widening with thresholds [HPR97a], as defined in the APRON library,
instead of the standard widening. We explain the difference between the two widenings
operating on the lattice of convex polyhedra. A convex polyhedron is defined by a
conjunction of linear constraints

∧
1≤i≤m ai,1x1 + . . . ai,nxn ≤ ci. If we have two convex

polyhedra P1 ⊑ P2, then all the constraints satisfied by P2 are also satisfied by P1, but
the contrary is not true.

Let P1 = y ≥ 0 ∧ x ≤ y ∧ x ≤ 4 and P2 = y ≥ 0 ∧ x ≤ y ∧ x ≤ 6 be two convex
polyhedra such that P1 ⊑ P2.� The standard widening consists in removing from P1 the constraints not satisfied

by P2. In this example, P1∇P2 = y ≥ 0 ∧ x ≤ y.
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Thresholds = {ai,1x1 + . . . ai,nxn ≤ ci | 1 ≤ i ≤ p}. We remove the constraints
of P1 not satisfied by P2, but also add the constraints of Thresholds satisfied
by both polyhedra. In this example, if Thresholds = {x ≤ 5, 2y + 7 ≥ x}, then
P1∇P2 = y ≥ 0 ∧ x ≤ y ∧ 2y + 7 ≥ x.

The widening with thresholds is thus more precise than the standard widening, but
we have to guess what are the useful constraints. This set depends on the SCM we
analyzed. In general, the useful constraints are the postcondition of the transitions
of the SCM. When the option -threshold is active, the analyzer generate a set of
constraints based on the postconditions of all transitions of the SCM. The user may
also specify other constraints that will be add to this set.

Example 6.1 Figure 6.1 is taken from the analysis of the sliding window protocol,
presented in Chapter 5. In this case, the transition p == s, !p, s = s + 1 generates
two thresholds p ≤ s − 1 and p ≥ s − 1. Since the first constraint is satisfied by both
polyhedra, the widening with thresholds adds it to the resulting polyhedron.

Standard Semantics

p = 0 p = 1
⇒ widening ⇒ p ≥ 0

Non-Standard Semantics

s= 2
p = 0

s = 2
p = 1

⇒ widening with thresholds ⇒
0 ≤ p ≤ s− 1

s = 2

Figure 6.1: Non-standard semantics: the widening with thresholds

Choice of the lattice. The choice of the abstract lattice determines both the preci-
sion of the analysis and its complexity. The current architecture of the analyzer offers
three possible lattices as an abstraction of the values of the variables x1, . . . xn:� the lattice of intervals (“boxes”) abstracts the values of the variables by n interval

constraints :
∧

1 ≤ i ≤ nai ≤ xi ≤ bi;� the lattice of convex polyhedra employs a conjunction of linear constraints:∧
1≤i≤m ai,1x1 + . . . ai,nxn ≤ ci;� the lattice of octagons is a kind of convex polyhedra, where the coefficients in the

linear constraints are restricted to the set {−1, 1}.
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run

x:=0
y:=0

x<y
1!sendx
x:=x+1

x=y
1!sendy

x:=0,y:=y+1

ack error

x:=0
y:=0

1?sendx
x:=x+1

1?sendy
x:=0,y:=y+1

x>y

(a) Sender (c) Receiver

Figure 6.2: A toy example of SCM

This choice is again a choice between a relational lattice (the convex polyhedra) which
is precise but costly, and a non-relational lattice (the boxes) which is less costly but
also far less precise. The lattice of octagons is a compromise between the two.

Example 6.2 Figure 6.2 presents a simple SCM with a guard x < y. We prove, using
the convex polyhedra, that the state “error” cannot be reached, whereas the same analysis
with intervals is inconclusive.

Conclusion

This chapter describes the current implementation of the lattice automata library and
of the SCM analyzer. While the first one is “complete”, in other words it implements
all the functions we need, the SCM analyzer is still under development.

We plan to improve, in the following months, the interface of our software. We
hope it will eventually take standard formats, like IF [BFG+00a] or SDL [Tur93] files
as input, and give a graphical representation of the output.

Another improvement would be the automatic discovery of abstract counter-
examples and the refinement of the partition when the result of our analysis is that the
“bad configurations” may be reachable.

We also plan to perform backward analyses as well as forward analyses. The oper-
ations needed for a backward analysis are already programmed in the lattice automata
library.

Finally, we want to base our analysis on abstract domains more sophisticated than
the numerical abstract domains of APRON. In particular, we will combine a numeri-
cal abstract domain and a boolean abstract domain in order to verify communication
protocols with integer and boolean variables, like the bounded retransmission proto-
col (BRP).

We hope that, with these improvements, the analyzer will become a useful tool for
the analysis of communication protocols and other FIFO systems.
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Conclusion

When we started this work, our first goal was to employ the abstract interpretation
framework to verify FIFO channel systems. The main scientific issues were:� to define some non-numerical abstract domains adapted to data structures like

queues or stacks. Even if there are a great number of abstract domains, few
domains abstract a sequence of values, and none were conceived specifically for
the analysis of FIFO channel systems.� to show the advantages of using the abstract interpretation framework for the
verification of FIFO channel systems, compared to acceleration techniques.

Contributions

These two scientific concerns lead us to the definition of an abstract domain based
on regular languages, presented in Chapter 3. Our main contribution was to define a
suitable widening operator ∇k, based on the equivalence relation ≈k (bisimulation of
depth k). Its principle is to merge the states of the automaton belonging to the same
equivalence class of ≈k.

From a practical point of view, a static analyzer using ∇k has some advantages
compared to other softwares conceived for the verification of Communicating Finite
State Machines (CFSMs):� ∇k guarantees that we obtain an over-approximation of the least fix-point of the

function Post; the computation usually terminates in only a few steps.� The over-approximation is a regular language. In other approximate algorithms,
the approximations are less precise: they just keep the number of messages, or
their type, loosing the FIFO ordering. Our analysis is arguably precise enough to
obtain the exact reachability set (when possible) for the communication protocols
we studied.� The parameter k determines the precision of the analysis; the higher k is, the more
precise analysis we get. We also have the choice between a relational analysis,
which is precise but may be expensive and a non-relational one, which is less
precise but also less expensive.
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Since the results, presented in [LGJJ06], were satisfying, we extended this method
to the verification of Symbolic Communicating Machines (SCMs). The SCM model is
basically the CFSM model extended with local variables and messages with parameters.
Since the alphabet of messages is infinite in the SCM model, we represent the queues
contents by lattice automata instead of finite automata.

The definition and the main properties of lattice automata are discussed in Chap-
ter 4. We remind here the main results of our work on lattice automata:� We defined the notion of lattice automata, and discussed the need for a partition

of the underlying lattice Λ. With this partition, we can adapt some algorithms
operating on finite automata to lattice automata.� We defined and proved the algorithms for the inclusion test, the determinization
and the minimization. Those algorithms lead to a robust notion of normalization
of lattice automata, which enjoys nice properties.� We studied the possibility to refine the partition of Λ. We demonstrated that this
refinement improves the quality of the abstractions.� We defined a widening operator, based on both the widening operator of the
lattice Λ and the the widening operator of Chapter 3.� We also defined the language operations we needed for the analysis of systems
with stacks and queues.

With those algorithms, we analyzed SCMs in the same way we analyzed CFSMs (cf.
Chapter 5). This task was however a bit more complex than the analysis of CFSMs,
since we must have a symbolic representation of the possible values of the variables as
well as a symbolic representation of the queue contents. We first defined a straightfor-
ward semantics, in which an abstract value is a couple (Y, F ), where Y is an abstraction
of the values of the variables and F an abstraction of the queues contents. The queues-
contents are lattice automata, the underlying lattice of which being an abstraction of
the values of the parameters.

In our experiments, we adopted some well-known abstract domains, like the convex
polyhedra, as an abstraction of the values of both the variables and the parameters.
While experimenting this kind of analysis, we concluded that a good analysis must keep
the link between the values of the parameters and the values of the variables.

We thus introduced a more sophisticated, non-standard semantics that keeps this
link. The abstract values are still couples of the form (Y, F ), but this time, the base
lattice of the lattice automata representing the queues contents is an abstraction of the
values of both the parameters and the variables. We obtain better results with this
new semantics, presented in [LGJ07].

We also studied the adaptation of this method to interprocedural analysis. In this
context, we have a set of procedures, each one having a set of local variables, that can
call each others. Our idea was to abstract all possible values of stack contents by a
lattice automaton.
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We had to do some minor adjustments in order to obtain a useful analysis of stack
contents: the bisimulation is computed backward, the “push” and “pop” operations are
defined to make them context-sensitive , and we tried to avoid normalization as often
as possible. With these adjustments, our experiments show that this interprocedural
analysis is quite precise.

We have implemented the algorithms on lattice automata in an Objective CAML
library. This library provides all the functions needed for the analysis of systems with
queues and stacks. We have also implemented the SCM analyzer described in Chapter 5.
We are still improving this analyzer and making it more user-friendly. We also modified
an existing interprocedural analyzer and we experimented it on some toy examples.

Perspectives

The current version of the SCM analyzer only manipulates numerical abstract domains.
The definition of lattice automata is however not restricted to this particular case. We
plan to use a combination of boolean and numerical abstract domains, like in the
interprocedural analyzer, so that the SCM analyzer can deal with protocols having
boolean variables. Later, we hope to fully exploit the aspect of “abstract lattice functor”
of the lattice automata, and to use any abstract lattice, including the lattice automata
themselves.

As mentioned in Chapters 3 and 5, the SCM analyzer cannot ensure that we get the
exact reachability set. In order to prove that a property is not satisfied, we must have,
in addition to our analyzer, a semi-algorithm able to compute the exact reachability
set. We already discussed the possibility of combining our analysis with the QDDs
acceleration techniques. We can also combine it with an approach based on the counter-
examples guided abstraction refinement [CGJ+00].

This approach consists in considering a finite abstraction of an infinite state-space,
based on a finite set of predicates, and then in employing model checking techniques.
The result is either a proof that the system satisfies a given safety property, or an
abstract counter-example. We then check whether this counter-example is a real one,
and if it is not a real one, we refine the abstraction by adding new predicates. The idea
is to reuse the operator ρk : Reg(Σ) → Reg(Σ), defined in Chapter 3, to generate new
predicates.

Another future research topic is to look at other systems where the configurations
are represented by finite words. An example of such systems was presented in Chapter 2,
when we introduced the transducers: the configurations of some identical processes
sharing a token are represented by finite words over the alphabet Σ = {0, 1}. If the
processes have integer or real variables instead of being finite automata, a configuration
of the system is a finite word over an infinite alphabet. We expect to reuse lattice
automata, or transducers based on the same principle as lattice automata, to analyze
this kind of systems.

We are also studying how to manipulate tree automata containing some lattice ele-
ments, in the same way as we defined the lattice automata of Chapter 4. One possibility
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is to consider the elements of a lattice Λ as ground terms2 of the terms recognized by a
tree automaton [CDG+02, GT95]. In this context, we must define a widening operator
on those tree automata by combining the widening operator ∇Λ with a widening oper-
ator on tree automata. One of the interests of such tree automata is to give an effective
representation of terms containing integers, instead of representing those integers by
terms of the form s(s(s(. . . s(0) . . . ))). This representation will simplify some methods
of verification of cryptographic protocols, like the one of [GK00].

Other ongoing works include the supervisory control of FIFO systems. While ver-
ification techniques can prove that a system satisfies a property, the goal of super-
visory control is to “repair” a faulty system by adding a supervisor. This supervi-
sor can disable some events, thus restricting the behavior of the system. There are
well-know algorithms to synthesize the supervisor when the considered system is fi-
nite [WR87, RW89, CL99]. The events of the system are either controllable or un-
controllable. One of the major difficulties of this synthesis is to compute the set of
states B that violate a given property, and then the states that can lead to B by a
sequence of uncontrollable events. Thus, it is basically a reachability problem. When
the reachability problem is undecidable, classical algorithms cannot be applied directly.

In [LGJM05, LGJM06], we suggested to use abstract interpretation to overcome
the undecidability issue. Since the synthesis involves a fix-point computation, we com-
pute an over-approximation of this fix-point thanks to abstract interpretation methods.
We then obtain a valid supervisor, ensuring the considered property, but also forbid-
ding some non-faulty behaviors. When we proposed this method, we lacked a lattice
abstracting sets of queue contents.

The abstract lattice proposed in this thesis allows us to compute the supervisor of
a FIFO channel system. The computation of a centralized supervisor that can observe
everything is quite easy, but not realistic. When a system is composed of several units
communicating via FIFO channels, we have to solve two problems. First, some parts of
the system (e.g. the FIFO queues) are not observable; so we must study how to define,
within the abstract interpretation framework, the supervisory control of systems under
partial observation. We then expect to have a small supervisor for each unit instead of
a big one for the global system, in other words we want to decentralize the supervisor.

2Assuming we have a set of symbols F , the terms are recursively defined by t = f(t1, . . . , tn) if the
arity of f ∈ F is n and t1, . . . tn are terms already defined. A ground term is a symbol of arity 0.
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Résumé

L’analyse des systèmes communiquant par file a fait l’objet d’études scientifiques nom-
breuses mais qui n’ont pu offrir des solutions totalement satisfaisantes. Nous proposons
d’aborder ce problème dans le cadre de l’interprétation abstraite, en définissant des
treillis abstraits adaptés à ce type de systèmes. Nous considérons d’abord le cas où les
messages échangés sont assimilables à un alphabet fini, puis nous nous attaquons au
cas, plus difficile, des messages portant des valeurs entières ou réelles. Ce problème nous
amène à définir et à étudier un nouveau type d’automate, les automates de treillis. Ces
automates de treillis peuvent également être utilisés pour l’analyses des programmes
utilisant une pile d’appels.

Abstract

Many scientific studies analysed the FIFO channel systems, but none offered a fully
satisfying solution. We propose to tackle this problem within the abstract interpretation
framework, by defining some abstract lattices adapted to this kind of systems. We first
consider systems with a finite alphabet of messages, then we consider more complex
systems, with an infinite alphabet of messages. This leads us to define and to study a
new kind of automata: the lattice automata. Those automata are also useful for the
analysis of programs with a call stack.


