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a V.

”...la differenza tra bufalo e locomotiva salta agli occhi:

la locomotiva ha la strada segnata, mentre il bufalo può scartare di lato...

...e cadere...“

FdG

”Los amigos son como las estrellas

No siempre los ves pero siempre estàn ahí“

Anonimous
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Introduction

In this thesis we describe a new theoretical approach to the problem of non-Fermi liquid

behavior in heavy fermion systems.

For almost forty years our comprehension of the metallic behavior in many materials has

been founded on the Landau physical intuition about interacting Fermi systems [6, 69]. The

idea of Landau, that interacting fermions could be regarded as free particles with renormalized

parameters, is at the basis of the standard picture of the solids in terms of single independent

electrons delocalized throughout the systems. The extraordinary success of this scenario is

demonstrated by the impressive number of predictions and results, on which has root a large

part of the actual technology.

The Fermi-liquid concept has been also extended to systems showing a strong electron-

electron interaction, i.e. strongly correlated electrons systems. Under suitable conditions the

low temperature metallic properties of these systems can be interpreted in terms of renormal-

ized quasiparticles.

Nevertheless, recent experiments on some strongly correlated materials have shown re-

markable deviations from the Fermi liquid predictions concerning different physical observ-

ables, such as specific heat C, resistivity ρ or susceptibility χ [94].

The theoretical understanding of the breakdown of the Fermi liquid paradigm observed

heavy fermion systems or in high Tc superconductors is one of the open challenges in the cor-

related electrons physics.

Many ideas have been put forward to explain the observed non-Fermi liquid behavior,

without finding an absolute consensus so far. Among them we can distinguish three main di-

rections: overscreening in Kondo models, Kondo disorder and quantum criticality [70, 62, 94].

A common feature can be recognized among some of these ideas, namely the existence of a

physical mechanism pushing to zero the coherence temperature below which the Fermi liquid

forms. In one case (Kondo disorder) this mechanism is associated to the presence of a certain

degree of disorder [62]. However, a more widely accepted mechanism for the formation of a
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non-Fermi liquid state is the proximity to a quantum phase transition (QPT) or to a quantum

critical point (QCP) [14].

Within this scenario the breakdown of the Fermi liquid properties occurs in the neighbor-

hood of T = 0 transition between a magnetically ordered phase (e.g. antiferromagnetic) and

a paramagnetic one. In this regime the strong coupling between the fluctuations of the order

parameter and the electrons may prevent the formation of a Fermi liquid phase with long-lived

quasiparticles.

Among the different approach to non-Fermi liquid problem based on quantum criticality

we can mention the Hertz-Millis theory, where the paramagnons of the ordered phase “dress”

the conduction electrons to produce the NFL behavior [35, 61]. Another approach is the lo-

cal quantum critical theory [88, 87], in which the competition between local Kondo screening

and long wavelength magnetic fluctuations drives the system into a critical regime where non-

Fermi liquid properties can arise. This approach is based on a suitable extension of the dynami-

cal mean-field theory. However, local quantum criticality, even providing useful insights to the

non-Fermi liquid problem, recquires some simplifying approximations to solve the mean-field

equations, spoiling DMFT approach of many of its benefits.

Dynamical Mean Field Theory is a powerful theoretical tool to investigate strongly cor-

related electrons systems [31, 52]. Among other things, this method has permitted to obtain

a satisfactory description of the Mott metal-insulator transition in simplified models, such as

Hubbard [75, 76, 78, 100]. Lately, the application to realistic calculations, thru an ab-initio plus

DMFT algorithm, has greatly increased our knowledge about real materials [51].

At the heart of the DMFT approach are the simplifications on the lattice quantum many-

body problem arising in the limit of infinite dimension [60, 59]. These simplifications permit

to map the lattice problem onto an effective single impurity problem, that has to be solved in a

self-consistent way. In this respect DMFT can be considered as the quantum generalization of

the classic mean-field theory, introduced so far to deal with spin models.

In this thesis we shall show that a new approach to the heavy fermions physics can be based

on the DMFT solution of one of the canonical model of this area, namely the periodic Anderson

model. In particular we demonstrate that, contrary to conventional expectations, a non-Fermi

liquid state is readily obtained from this model within the DMFT framework. In agreement

with the quantum criticality scenario, this novel NFL state is located in the neighborhood of

a quantum phase transition, but unlike the standard quantum criticality scenario sketched be-

fore, the relevant quantum transition here is a Mott transition. Thus, the present study sheds a

different light onto the NFL problem, showing that the coupling to long wavelength magnetic

fluctuations (absent in DMFT) is not a prerequisite for the realization of a NFL scenario. Local

temporalmagnetic fluctuations alone can provide sufficient scattering to produce an incoherent
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metallic state. The presence of such large local magnetic fluctuations in our model has origin in

the competition between magnetic interactions, namely the super-exchange antiferromagnetic

interaction between the correlated electrons and the ferromagnetic interaction indirectly driven

by the delocalization of the doped charges.

Thus, we are able to obtain a DMFT description of the non-Fermi liquid phase in heavy

fermion systems which is based on the proximity to a Mott point, i.e. Mottness scenario. Our

study shows that the PAM, solved within DMFT, may be considered as a “bare bones” or min-

imal approach able to capture the physical scenario for the formation of a NFL state and that is

in qualitative agreement with some observed phenomenology in heavy fermion systems.

The entire thesis is structured as follows.

• In the first chapter we review briefly the Landau theory of Fermi liquid and we give

an overview on the heavy fermion phenomenology under both the theoretical and the

experimental point of view. In particular, we present briefly some experimental evidences

for the non-Fermi liquid phase in heavy fermions materials. Finally we discuss the main

theoretical ideas proposed to explain the breakdown of the Fermi liquid paradigm.

• In the second chapterwe introduce the theoretical tool used throughout this thesis, namely

the DMFT. We derive the basic equations of the theory, step by step comparing with the

well known classical mean-field theory (reviewed in the first part of the same chapter).

An overview of the main techniques used to solve the DMFT equations is presented at

the end of the chapter.

• In the third chapter we introduce the periodic Anderson model. After having studied

the solvable limits of the model we proceed by deriving the related DMFT equations

and briefly discuss the algorithm used to obtain their solution. Next, we illustrate the

derivation of the internal energy expression for the PAM in the framework of DMFT. This

will be used later on to obtain the thermodynamical properties of the model. Finally, we

extend the DMFT equations to deal with long range magnetically ordered phases.

• In the fourth chapter we discuss the various parameter regimes of the model respect to

the so-called ZSA diagram. We will demonstrate numerically the existence of a Mott in-

sulating state for large values of the correlation, in two physically relevant regimes. Then

we will study the Mott metal-insulator transitions driven by doping. In particular we

show the existence of two different transition scenarios, each of which will be discussed.

One of the two transitions will constitute the framework for the derivation of the Mot-

tness scenario, that is the subject of the next chapter.

• In the fifth chapter we shall demonstrate the existence of a non-Fermi liquid state in the
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neighborhood of aMott point. Then, we show the existence of a crossover regime towards

a Fermi liquid phase for temperatures exponentially small in the doping. This coherence

temperature scale is estimated and discussed in terms of the exhaustion problem [68, 67].

Next, we study the magnetic properties of the non-Fermi liquid regime. The main find-

ing being the stability of this phase respect to the magnetic order. We present a study of

the thermodynamical properties of the system, such as entropy of specific heat, finding

for this latter remarkable evidences of logarithmic divergences, in agreement with exper-

imental observations [94]. Finally we shall summarize the results in two phase diagrams

that are in qualitatively accord with the observed phenomenology of heavy fermions sys-

tems.

6



Chapter 1
Non-Fermi liquid behavior in

d/ f -electrons metals

Contents

1.1 A (brief) introduction to the Fermi liquid theory . . . . . . . . . . . . . . . . . . . 8

1.2 The heavy fermions problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Phenomenology of the heavy fermions . . . . . . . . . . . . . . . . . . . . . 15

1.3 Fermi or non-Fermi? Some experimental facts . . . . . . . . . . . . . . . . . . . . . 18

1.4 Schematic overview on NFL phase description . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Multi-channel Kondo model . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Kondo disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.3 Quantum criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Deviations from Fermi liquid theory predictions, as observed in many d- or f -electrons

compounds, have recently attracted a great deal of attention [94]. These systems show metal-

lic phases with anomalous low temperature properties, characterized by some critical power

law behavior of physical observables such as resistivity or specific heat. The large variety of

physical regimes and situations in which non-Fermi liquids are observed, is one of the reasons

making this area of research particular appealing for both the theoretical and experimental

condensed matter physics community.

After the precursor works of Hertz [35] and Nozières-Blandin [70], many different ideas

have been proposed over recent years of intense work, without finding a general consensus,

so that a model accounting for the different aspects of this interesting subject is still lacking.

Recently, has been proposed that non-Fermi liquid behavior can be associated to “nearness” to
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1. Non-Fermi liquid behavior in d/ f -electrons metals

some magnetic instabilities in the phase diagram [94, 14]. Many ideas along this line have as

a central point the proximity to a Quantum Phase Transition (QPT) or to a Quantum Critical

Point (QCP) [80]. The main reason is that due to some competing mechanism the critical tem-

perature of a magnetic transition can be pushed to zero, preventing the formation of a Fermi

liquid phase. The presence of such a zero temperature phase transition is rather usual in heavy

fermion systems. These compounds are in fact highly magnetic or can be driven into magnetic

phases by tuning some external parameters, such as pressure, doping or magnetic field. This

characteristics is related to the strong correlation effects originated from the local nature of the

d/ f -orbital electrons.

The chapter is organized as follow: in Sec. 1.1 we will briefly introduce the main ideas

of Landau’s Fermi liquid theory, that is the standard underlying physical theory for a large

class of metals. In Sec. 1.2 we give an overview of the heavy fermion phenomenology. Then,

in Sec. 1.3 we review some experimental results about heavy fermions, focusing on the many

different aspects these compounds show. In particular we discuss the evidences for the non-

Fermi liquid behavior in some heavy fermion compounds. Finally, in Sec. 1.3 we discuss the

main theoretical ideas proposed to explain the breakdown of the Fermi liquid paradigm.

1.1 A (brief) introduction to the Fermi liquid theory

Since its introduction [53, 54] (!), Landau’s phenomenological theory of interacting Fermi sys-

tems has been used as the paradigm for the understanding of metallic behavior. At the heart

of this theory is the rather simple, but strong, idea of adiabatic continuity between the non-

interacting and the interacting system. Landau’s argument was that it is possible to construct

a one-to-one correspondence between the states of the non-interacting system and the states of

the interacting one, upon adiabatic turning on of the interaction itself Fig. 1.1. Moreover Lan-

dau guessed that the interacting states can be labelled with roughly the same quantum num-

bers of the non-interacting ones. This assumption, to be justified a posteriori, may be naively

rephrased by saying that the label of the states, i.e. the quantum numbers used to classify the

states, are stronger than the eigenstates themselves with respect to the presence of an interac-

tion. Although its apparent simplicity the adiabatic continuity hypothesis is in reality a strong

constraint on the interaction. For example attractive interactions, even very weak, leading to

the formation of composite objects should be excluded.

As a direct consequence of the Landau’s assumption it follows that the interacting system

can be described, near the ground state, in terms of elementary electronic excitations, having

well defined physical properties, i.e. the so-called “quasi-particles”. This concept is intimately

connected with the quantum mechanical nature of the interacting system, being related to the
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1.1. A (brief) introduction to the Fermi liquid theory

(a) adiabatic correspondence of the electronic levels

(b) Fermi sphere in momentum space

Figure 1.1: (a) States of the interacting Fermi liquid may be put in one-to-one correspondence

with the non-interacting Fermi gas, in the limit of adiabatic turning on of the interaction. (b)

The Fermi sphere in momentum space for the free (isotropic homogeneous) Fermi gas.
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1. Non-Fermi liquid behavior in d/ f -electrons metals

possibility of the liquid to form resonances that are not eigenstates of the system, but that can

live for a sufficiently long time to be regarded as single-particle states. So, one can readily

convince oneself that the momentum distribution function of the quasi-particles has the same

functional form of that of the non-interacting system nF(k) [69]. Similarly to the ground state

distribution of the ideal Fermi gas, this function is characterized by a (renormalized) jump at

the Fermi level, making possible to give a meaning to the Fermi surface even in the interacting

system, Fig. 1.3.

For the Landau adiabatic correspondence to work it is necessary that the rate R at which

the interactions is turned on, fulfills the following two conditions [3]:

• Considering low energy excitation (of order T) from the Fermi surface, i.e. particle or hole

excitation with δE ∼ T, then

R << T

will ensure the correct energy resolution for the quasi-particle picture to be valid.

• If τ is the life-time of the quasi-particle, i.e. the time it takes to decay into exact eigenstates,

then R should be such that:

R >> 1/τ .

Thus for sufficiently low temperature:

τ >>
1
T

This condition fixes the validity of Landau’s theory of Fermi liquids by asserting that quasi-

particles are well defined only near the Fermi surface (being excitations with respect to the

Fermi energy) and that they have infinite life-time only at the Fermi surface. The justification

of the previous condition rely on some phase-space restrictions on scattering processes in in-

teracting Fermi systems. Using these constraints it is possible to show that the life-time of the

quasiparticles decay as the inverse of the square of the temperature: τ ∝ T−2.

the previous condition is satisfied for low enough temperatures.

To demonstrate this it is sufficient to study the simplest scattering process (cf. Fig. 1.2),

namely that in which a particle 1 with momentum k excite a particle 2 out of the Fermi sea,

into an empty state 4, being itself scattered to a state 3. If q is the transferred momentum and

the energies are all measured from the Fermi surface εk = Ek − E f , then we have the following

relation for this process:

εk1 + εk2 = εk3 + εk4

k1 − k3 = k4 − k2 = q
(1.1)

The scattering rate of this second order process can be evaluated as follow. The total contri-

bution includes the square of the scattering potential (i.e. two vertices in the related Feynman
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1.1. A (brief) introduction to the Fermi liquid theory

Figure 1.2: The scattering process of a quasiparticle with energy ε above the Fermi surface. The

process involve the formation of a particle-hole excitation.

diagrams), one integral over the internal momentum q and, by means of momentum conser-

vation, one other integral over momentum k2 of the inverse of the energy change ω, with:

ω = ε4 + ε3 − ε1 − ε2

such that:
1
τ

= lim
η→0

∫
d3q d3k2 |V(q)|2 Im

(
1

ω − iη

)

=
∫

d3q d3k2 |V(q)|2 δ(ω)

(1.2)

corresponding to the Fermi golden rule for this process. The delta function under the integral

will give a finite contribution only if the three excitations energy εk4, εk3 and −εk2 will be less

than εk1. The accessible part of the energy space is thus of the order εk1, which also restrict the

available momentum space for the previous integrations. With this restriction the integral will

contribute to the inverse scattering rate with an ε2. Then supposing the scattering potential to

be, in the liquid phase, smaller than the Fermi energy, one finds the following expression for

the inverse life-time:
1
τ

= C1

(
ε

εF

)2

with C1 an unessential constant. For excitations of the order T this expression imply the pre-

vious T−2 behavior for the quasiparticles life-time. The inverse scattering rate decreases faster

than the excitation itself.

An important parameter of interacting Fermi system that can be obtained from Landau’s

theory is the quasiparticle weight Z [69]. This constant, bounded between zero and one, de-

scribes the previously discussed discontinuity at the Fermi level in the momentum distribution

function Fig. 1.3(b). The physical meaning of Z can be understood as describing the fraction

of bare electronic states that are “contained” in the quasiparticle, i.e. the resonating states in

which the quasiparticles eventually decays.
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1. Non-Fermi liquid behavior in d/ f -electrons metals

(a) (b)

Figure 1.3: Momentumdistribution function at T = 0 for (a) non-interacing electrons or Landau

quasiparticles in a Fermi liquid, (b) electrons in the interacting Fermi liquid. The discontinuity

at the Fermi level εF remains in the interacting systems though with a reduced size Z.

The analogy between the non-interacting Fermi system and the Fermi liquid can be pushed

forward by introducing one of the key concept of the Landau’s theory, namely the effective mass

m∗. This is intimately connected with the quasiparticle energy εk, that can be written as a

linearization of the quadratic dispersion near the Fermi surface, namely:

εk = εF +
(h̄k)2

2m
− (h̄kF)

2

2m

= εF + vF(k− kF)

=
h̄kF

m∗ (k− kF)

(1.3)

where we have defined the effective mass m∗ as the mass of the quasiparticle at the Fermi

surface. In terms of the density of quasiparticles at the Fermi level (fixing the Fermi energy)

N(εF) the effective mass can be rewritten as:

m∗ =
π2N(εF)

h̄

The knowledge of the effective mass is sufficient to determine the behavior of some of the

most important macroscopic functions, such as the specific heat, the entropy or the spin sus-

ceptibility. Regarding the first it is sufficient to recall that Cv = δE/δT, where δE is the variation

of the liquid energy. If n0(k) is the zero temperature Fermi distribution (i.e. the step function at

kF), δE can be written to the first order in δn = n(k)− n0(k) as:

δE = ∑
k

εkδn(k)

12



1.2. The heavy fermions problem

Then with straightforward calculations (making use of chain property of derivatives and Som-

merfeld expansion [1]) one obtains the following expression of the specific heat in terms of the

quasiparticles density of states ν(ε):

Cv =
1
3

π2Tν(µ)

where µ is the chemical potential. In the case of the isotropic Fermi liquid the previous relation

reads [38]:

Cv = T
kFm

∗

3h̄3

Thus, the specific heat coefficient γ = Cv/T is proportional to the effective mass of the charge

carriers in the metals. It is worth to observe that while the Fermi energy is almost of the same

order of magnitude in many metals, changes in the effective mass can strongly influence the

specific heat behavior. Landau’s theory can explain experimental observations of large specific

heat in some correlated metals. A similar calculation permits to derive an expression for the

spin susceptibility:

χ =
m∗κF

4π2(1 + F0)

where F0 is one Landau’s parameter measuring the “polarizability” of the system. Thus, the

spin susceptibility of interacting Fermi systems at low enough temperature is fixed by a costant

depending on the value of the effective mass m∗.

Finally, another particularly important quantity can be obtained within Landau theory: the

resistivity ρ(T). In particular it is possible to show, integrating the inverse scattering time

expression over the incoming energy ε1, that the resistivity has a characteristic T2 behavior,

namely:

ρ(T) = C2

(
T

εF

)2

where C2 is a given constant.

The Landau theory predictions about Fermi liquids have been the corner stone of solid

state theory of metals, establishing a paradigmatic behavior for many thermodynamical and

transport quantities. Roughly speaking the main result of the Fermi liquid theory has been that

of explaining how a single particle picture comes out from a quantummany body systemwith

rather strong interactions.

1.2 The heavy fermions problem

1.2.1 Introduction

Most of the metals are extraordinarily well described by the independent particle approxima-

tion, despite the strong electron-electron interactions that are expected to be present in these
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1. Non-Fermi liquid behavior in d/ f -electrons metals

materials. As we have seen in the previous section, the underlying justification for this highly

non trivial result rely on Landau’s description of Fermi liquids. The standard picture of metals

is that of single particles carrying charge and moving in a periodic potential induced by the

ions (band theory) [6].

Nevertheless, there is a class of materials in which the strong Coulomb interaction is not

sufficiently screened, so that single particles may feel a strong interaction between themselves,

making the previous picture not applicable to any purpose. The great interest around these

strongly correlated systems rely on the several new physical effects they show and that puzzle

the condensed matter physics community. Significant examples are either the transition in-

duced by correlation from metallic to insulating state in systems with half-filled valence band

(Mott transition), or the large critical temperature below which some materials enter a super-

conductive state, that is (paradoxally) originated from the strong electronic repulsion. None

of these effects can be explained by the standard one-particle picture of metals. The origin of

the strong correlation is related to the presence in these materials of electrons from transition

metals, rare-earth or actinides. These electrons, in the incomplete d/ f -orbitals, are extremely

localized and, under particular circumstances, not well screened, so that the Coulomb interac-

tion between them becomes important.

A rather wide class of metallic compounds showing strong correlation is represented by the

so-called heavy fermion systems [15]. These systems are alloys containing rare-earths or actinides

such as Ce, U or Yb. Recently there have been strong indications for heavy fermion behavior

also in some early transition metal oxides, such as LiV2O4 [5, 46, 86]. Historically the first

observed compound showing such heavy fermion behavior has been CeAl3 [15, 36]. Other

examples are CeCu2Si2, UPt3, U2Zn17, YbCuAl. In Fig. 1.4 other heavy fermion compounds

are reported together with some of their characteristic parameters.

Many of these compounds show ordinary Fermi liquid metallic behavior for temperatures

smaller than a characteristic scale. Nevertheless, the electronic specific heat γ and the spin

susceptibility χ correspond to values of the effective mass of the charge carriers much larger

than that of the free electrons: m∗/m ≃ 102 − 103. This fact justifies the terminology “heavy

fermions” used to indicate these compounds.

Rare-earths in heavy fermion materials tend to donate some electrons to the conduction

bands, remaining with f -orbital valence electrons only. Because of the small extension of the

f -orbital and as a result of screening effects of outer electrons, the f -orbital electrons are highly

localized and may feel a large local Coulomb repulsion, giving rise to strong correlation effects.

Thus, in heavy fermion systems delocalized conduction band electrons coexist with large mag-

netic moments from f -orbital electrons. The interplay between the itinerant character of the

conduction band electrons and the more localized nature of the correlated f -orbital electrons,
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1.2. The heavy fermions problem

Figure 1.4: Examples of heavy fermion compounds. For each entry it has been reported crystal

structure (2nd column), crystalline field (3rd), Nèel temperature for magnetic ordering (4th) and

Sommerfeld specific heat constant (5th) [15].

is considered to be at the origin of the unusual low temperature behavior of the heavy fermion

systems.

1.2.2 Phenomenology of the heavy fermions

In this scenario it is natural to expect the Kondo physics to play a major role. At high tem-

perature heavy fermion systems show a “decoupling” between the conduction electrons and

the local moments. The former propagate in the systems with normal values of the electronic

mass, corresponding to a small Fermi volume. Nevertheless, the presence of local moments is

evident from the Curie-Weiss behavior of the susceptibility. At lower temperature the two elec-

tronic species start interacting via standard magnetic exchanges. At low enough temperatures

magnetic interactions may lead to the compensation of the local moments from the conduction

band electrons, that gain energy by a local binding mechanism (Kondo effect). This permits the

f -orbital electrons to participate in the conduction process, with the consequent formation of

heavy quasiparticles masses and large Fermi volume. In this latter regime the heavy fermions

present peculiar metallic properties.

The resistivity has a slowly decreasing behavior upon cooling down the system from high

temperature down to a characteristic value, where a minimum is attained. The increasing be-
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1. Non-Fermi liquid behavior in d/ f -electrons metals

(a) (b)

Figure 1.5: (a) Resistivity of CeAl3 heavy fermion systems as a function of the temperature.

Inset: low temperature quadratic behavior. [71] (b) Effective mass m∗ as a function of the

electronic specific heat γ [19, 20]

havior is inverted only upon further lowering the temperature down to a critical value T∗,

where Fermi liquid behavior is reached: ρ(T) = ρ0 + AT2 (cf. Fig. 1.5(a)).

The specific heat behavior is non universal among the heavy fermion class till a tempera-

ture of the order T∗ is reached. For temperatures lower than this value T < T∗ the specific

heat becomes linear, as predicted by Fermi liquid theory. However, the Sommerfeld coefficient

γ = C(T)/T has values of the order 1J/molK2, that is at least 103 times bigger than ordinary

metals Fig. 1.5(b). On the very same line the spin susceptibility, which has Curie-Weiss behav-

ior at high temperature, saturates at low temperature T < T∗ taking the expected Fermi-liquid

Pauli behavior. The existence of a minimum in the resistivity behavior as a function of the

temperature and of a “coherence” temperature scale below which a compensation mechanism

seems to take place, are two main features of Kondo physics.

The Kondo problem goes back to the discovery of a minimum in the resistivity of metal-

lic systems hosting dilute magnetic impurities. One of the model originally introduced to

explain this behavior is the Kondo (or s-d) model, describing a single magnetic impurity in-

teracting thru magnetic exchange with electrons in a conduction band. Using a third order

perturbation theory Kondo was able to explain the existence of a minimum in the resistivity.

A slightly more general model has been proposed by Anderson, i.e. the single impurity An-
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derson model. This latter describes an impurity that is localized as effect of the correlation

U and that hybridize with conduction band electrons. A canonical transformation permits to

obtain the Kondo model from the Anderson model in the large U limit (Schrieffer-Wolff) [84].

The properties of the Anderson model have been investigated during almost 30 years of in-

tense work, culminated with the introduction of the Wilson’s Renormalization Group and the

solution of the model [36]. The standard scenario that bears out from this solution, describes

the formation of singlet states between the conduction band electrons and the local spin of the

impurity for temperatures smaller than a critical value TK, i.e. the Kondo temperature. The

key point to underline and that made so difficult to achieve a solution of this model, is the

non-perturbative nature of the Kondo problem (asymptotic freedom). The Kondo perturbative

calculation is plagued by a logarithmic divergence at zero temperature. The coupling J be-

tween the magnetic impurity and the conduction band electrons becomes non-perturbatively

large upon decreasing the temperature/energy (IR limit), such that perturbation theory breaks

down at a scale corresponding to the Kondo temperature TK ≃ Ce−1/ρ(EF)J . In this IR limit

the conduction electrons magnetic moment is tightly bounded to the impurity to form a non-

magnetic state. It is possible to show the Fermi liquid nature of the model solution in this low

temperature T < TK regime. In this respect the Anderson model realizes one paradigmatic

example of (local) Fermi liquid system.

The dilute impurity picture, corresponding to the scenario presented above, can explain

some properties of heavy fermion compounds like LaCe or CuFe. Nevertheless, most of the

heavy fermion systems recquire a rather more complicated approach, as the number of local-

ized magnetic moments can be comparable with the number of lattice sites. Systemswith more

concentrated impurities are described by lattice extension of the Kondo or the Andersonmodel.

The Kondo Lattice Hamiltonian reads:

HKL = ∑
k,σ

ǫ(k)c+k,σck,σ + J ∑
i,αβ

Si · (c+i,ασαβci,β) (1.4)

The first term of HKL describes the electrons in the conduction band, while the second one

models, via a suitable coupling costant J, the magnetic interaction between the local moments

located at each site of a lattice and the conduction band electrons moments. The Kondo lattice

model can be obtained, via a suitable Schrieffer-Wolff transformation, from theAnderson lattice

(or periodic Anderson model) in the limit of large correlation. On a general ground one may

expect the physics of the concentrated systems to be different in many aspects from that of the

dilute models.

One important feature to consider is the role of the inter-moments magnetic interactions

and their interplay with the Kondo screening. These interactions are not taken explicitly into

account in the Kondo lattice model, but can be derived from the periodic Anderson model.
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1. Non-Fermi liquid behavior in d/ f -electrons metals

Their importance is confirmed by the large variety of magnetic orders observed in many heavy

fermion systems. To the lowest order intersites magnetic correlations are modeled by the

Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction [79]. The physical mechanism is that of

a conduction electron undergoing a two scattering process onto localized f -moments, medi-

ating an indirect moment-moment magnetic interaction. The temperature scale below which

these processes become effective is of order TRKKY ≃ J2ρ(EF), where ρ(EF) is the conduction

band density of states at the Fermi energy and J the local Kondo coupling. The intermoment

magnetic interactions, favoring the formation of magnetic orders, are in competition with the

Kondo coupling, favoring the formation of a local Fermi liquid state [21]. In particular the pres-

ence RKKY interactions may lead to a reduction of the Kondo temperature. In fact, if the local

moments are magnetically ordered, then Kondo screening leading to local moment compensa-

tion, may reduce the intersite magnetic energy.

A rather different and important feature to consider when dealing with impurity lattice

models, is the so called “exhaustion” phenomenon, first introduced by Nozières [68, 67]. The

screening electronic cloud involved in the singlet formation process in the Kondo effect, can

be thought to be spatially extended over a distance of the order λ ≃ vF/(kBTK). In systems

with a large concentration of local moments this imply the possibility for the Kondo effect to

be non-local. In other words the same screening cloud is required to compensate several local

moments, with the consequent reduction of the coherence scale [9]. We shall come back to this

problem in the following of this thesis.

Finally it is worth to consider another important aspect of impurity lattice models physics,

namely the existence of multiple relevant temperature/energy scales. In dilute impurity prob-

lems and in the Kondo limit (T < TK) all the physical quantities scale with TK, that defines a

single universal energy scale. In contrast, within concentrated systems the Kondo temperature

may not be the only relevant scale of the problem [9]. Thus, the existence of other energy scales,

driving the behavior and the coherence of the system, have to be taken into account.

1.3 Fermi or non-Fermi? Some experimental facts

Beside the unusual low temperatures below which heavy fermion systems acquire normal

metallic properties, the interest around these systems is justified by some other intriguing facts

too. For example many of the heavy fermion compounds at low enough temperatures either

order magnetically, become superconductors, or more surprisingly do not show Fermi liquid

properties. In the following we briefly review some experimental observations about heavy

fermion compounds. The main goal is to put in evidence the rich variety of low temperature

behaviors and the different properties that can be found among the heavy fermion compounds.
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(a) (b)

Figure 1.6: (a) Phase diagram of CePd2Si2. At very low temperatures a superconductive dome

appears at the end of the Nèel temperature line [58]. (b) Specific heat jump at the superconduc-

tive transition (Tc = 0.9K) of the heavy fermion compound UBe13. The solid line corresponds

to BCS theory fit, [36].

Thus, the term heavy fermions refers to a wide class of systems sharing the characteristic fea-

ture of having a large electronic specific heat at very low temperature.

Superconductivity in heavy fermion compounds has been discovered in 1979 in CeCu2Si2 at

TC = 0.6K by Steglich et al. [92]. Later on many other compounds have been found to become

superconductors, all with critical temperatures around 1K, like UBe13 (Tc = 0.9K), UPt3 (Tc =

0.5) or CePd2Si2, see Fig. 1.6(a) [93]. The rather small values of the critical temperatures for the

superconductive transition in these systems can be related to the presence of large magnetic

moments. While at the beginning the strong magnetism of heavy fermions was considered

to be in strong competition with superconductivity, nowadays some interesting ideas have

been proposed to explain the pairing mechanism as mediated by magnetic interactions (cf.

concluding remarks and perspectives 5.8). Many of the heavy fermions superconductors show

a large specific heat anomaly ∆Cv at the superconductive transition, signalling that the heavy

quasiparticles are directly involved in the superconductive process (cf. Fig. 1.7).

Inmany cases the transition to superconductive phase appears at the boundary of amagnet-

ically (AFM or FM) ordered phase, so that coexistence of magnetic order and superconductivity

can be observed. This is the case for example for UPd2Al3, CeCoIn5 Fig. 1.7(a) (antiferromag-
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1. Non-Fermi liquid behavior in d/ f -electrons metals

(a) (b)

Figure 1.7: (a) Phase diagram for doped CeCoIn5 with both Cd and Sn. The plot illustrates

the possible coexistence of antiferromagnetic order in the superconductive phase. (b) Elec-

tronic specific heat C/T as a function of the square of the temperature for the heavy fermion

compound URu2Si2. The figure shows the large specific heat anomaly at the “hidden order”

transition.

netic order), UGe2 (ferromagnetic) or for the case of the so-called “hidden order” compound

URu2Si2 [23]. This latter undergoes a transition at TN = 17K to an antiferromagnetic phase

characterized by a very small value of the magnetic moment, that is in contrast with the rather

large value of the observed specific heat jump, cf. Fig. 1.7(b). The system presents a super-

conductive transition at Tc = 6K, with some indications for the coexistence of such a weak

magnetic ordering and superconductivity [22].

Heavy fermions are often associated to compoundswith a nearly integer valence, i.e. Kondo

lattices. However, it is worth to observe that anomalous rare-earths like Ce, Yb or Sm appear

with different valencies, giving rise tometallic alloys with a pronouncedmixed-valence charac-

ter, such as CeAl2, YbCuAl. These systems can have electronic specific heat values much larger

than normal metals, i.e. γ . 400mJ/moleK2 [36], but still slightly smaller than the values usu-

ally observed in other heavy fermion compounds. Nevertheless, mixed-valence compounds

show interesting heavy fermion behaviors at low temperature, with somemarked peculiarities.

One example is the intermediate valence transition, in which the compound (e.g. YbInCu4) un-

dergo a sharp transition associated with a sudden change of its valence as a function of external

parameters [15].

One of the most striking and interesting feature of heavy fermions is the deviation at low

temperatures from the Fermi liquid predictions, as observed in an increasing number of com-
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pounds [94]. Systems showing such a behavior can be roughly grouped under the name of

non-Fermi liquids. First evidences for breakdown of Fermi liquid properties in heavy fermions

have been put in evidence in specific heat and resistivity measurements on the Y1−xUxPd3

compound around 1991 [85]. Later on many other compounds have shown a behavior not

compatible with the Fermi liquid predictions, such as UCu5−xPdx (cf. Fig. 1.8(a)), Ce7Ni3 (cf.

Fig. 1.8(b)), YbRh2Si2. The classification of such systems in general categories is a rather com-

plicated task, due to the wide range of physical regimes in which non-Fermi liquid behavior

has been observed.

Breakdown of the Fermi liquid properties in many heavy fermions appear in the proximity

of a magnetic transition. Experimentally such a transition can be induced by either chemical

substitution (doping), applying pressure, or varying external magnetic field. The competition

between different magnetic interactions often push to zero the critical temperature associated

with suchmagnetic transition, as well illustrated by the Doniach diagram [21]. Thus, the break-

down of Fermi liquid properties is usually associated to the existence of a quantum phase tran-

sition or a quantum critical point in the phase-diagram. However, other reasons (e.g. disorder)

have also been proposed to explain the non-Fermi liquid behavior in heavy fermions.

The deviations from Fermi liquid paradigm are most of the times characterized measuring

the specific heat or the resistivity behavior. As discussed in the first section of this chapter in

fact, Landau theory of Fermi liquids predicts precise behavior for the these quantities, (i.e. a

linear specific heat and a quadratic resistivity). Thus, anomalous behaviors in the resistivity

and/or in the specific heat are considered hallmarks of non-Fermi liquid phase.

In particular, many measurements report for the resistivity a behavior, down to very low

temperatures, of the form

ρ(T) − ρ0 ≃ ATα

where the constant A can be either positive or negative and the non-universal exponent α is

such that 1 ≤ α < 2. Non-Fermi liquid behavior is generally observed over a temperature

range of two or more decades near zero temperature, although in some cases only a smaller

temperature range is accessible.

Deviations from the linear specific heat behavior at low temperatures are usually charac-

terized in terms of temperature dependence for the Sommerfeld parameter γ = C/T (constant

in the Fermi liquid theory). Many measurements report a characteristic log-divergent behavior

for this quantity :

C/T ≃ − log(T)

that is protracted over at least two decades of temperature. More severe divergences than the

logarithmic one can be observed in some compounds, such as UCu3.5Al1.5 or YbRh2Si2, while
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(a) (b)

Figure 1.8: (a) electronic specific heat C/T as a function of log T for the heavy fermions

UCu5−xPdx [82]. (b) The same quantity for Ce7Ni3 [97]. Both the figures present the log-

divergent behavior of the specific, corresponding to a significant deviation from the Fermi

liquid metallic state.
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in some systems a weak temperature dependence of γ is reported, which can be fitted by a

square root term: C/T = γ0 − A
√
T.

Another quantity that provides some additional insights into the nature of the observed

non-Fermi liquid behavior is the entropy. Most of the studied compounds show a small resid-

ual entropy at a low fixed temperature, that can be expressed as “renormalized” unquenched

spin entropy S ≃ B log(2), with B going from values below 0.2 to about 0.9. This is a direct in-

dication of the presence of electrons with unscreened magnetic moment actively participating

in the non-Fermi liquid behavior.

1.4 Schematic overview on NFL phase description

On a theoretical ground the first result relevant for the non-Fermi liquid problem is [35], ex-

tending the Ginzburg-Landau-Wilson theory to quantum phase transition. Later, some results

about non-Fermi liquid behavior were obtained in [70] considering a suitable generalization of

the Kondo problem. After these two early works many other ideas have been put forward to

try to explain the origin of the breakdown of the Fermi liquid paradigm in certain classes of

materials (including heavy fermion systems). The many ideas elaborated so far can be roughly

grouped into three categories [94]: i) overcompensation of the local moments (multi-channel

Kondomodel), ii) disorder effects (Kondo disorder), and finally iii) neighborhood to somemag-

netic instability at zero temperature (quantum criticality). We shall now briefly review themain

aspects of these three groups. More attention will be dedicated to the quantum criticality ap-

proach, motivated by both the increasing interest this is attracting nowadays and its affinity

with the central result of this thesis.

1.4.1 Multi-channel Kondo model

This approach to the derivation of non-Fermi liquid properties follows the initial work of Noz-

ières and Blandin[70], concerning a generalization of the Kondo model, namely the multi-

channel Kondo model. This model describes a single impurity bearing a spin S coupled via

a constant J > 0 to N degenerate-orbital conduction electrons, i.e. N channel conduction band.

Depending on the number of conduction “channels” and the value of the spin of the local im-

purity one can distinguish three different regimes:

• N < 2S The number of available conduction electron channels is trivially too small to

compensate the local spin of the impurity and to form a singlet state.

• N = 2S This case corresponds to the “standard” Kondo model, prototype of the local

Fermi liquid state. The number of conduction electrons is just sufficient to screen the local
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(a) (b)

Figure 1.9: (a) Probability distribution of the Kondo temperature [7]. (b) Disorder and competi-

tion between magnetic interaction [13]: a schematic phase diagram. It is of interest to compare

this with Fig. 5.21

impurity compensating its spin. The main energy scale is fixed by TK and the behavior of

the macroscopic quantities follow the Fermi liquid prediction at T < TK.

• N > 2S The spin of the local impurity is over-screened by the available conduction elec-

trons channel. This lead to a non-Fermi liquid ground state and to a critical power law (or

logarithmic) behavior of somemeasured quantities at zero temperature and zero external

field.

The exact solution of the multi-channel Kondo model has been obtained by different author,

e.g. [4], but the application of this model to heavy fermion systems is not completely clear. The

2-channel Kondo model (N = 2 and S = 1/2) describes a non-Fermi liquid state whose critical

behavior near T = 0 and zero applied magnetic field (H = 0) is characterized by a logarithmic

divergent electronic specific heat at low temperature, C/T ∼ − log(T/TK), and a square root

behavior of the resistivity ρ ∼ ρ0 + AT0.5 [81].

1.4.2 Kondo disorder

In the single impurity Kondo model the Fermi liquid formation requires temperatures smaller

than a characteristic energy scale, fixed by the coupling constant and the density of states at

the Fermi level by TK ≃ De−1/n(0)J. Thus, it is straightforward to realize that if the Kondo

temperature is, even locally, driven to zero by some physical mechanism, a breakdown of

the Fermi liquid properties should be observed. This is briefly the key concept behind the
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Kondo disorder approach to the non-Fermi liquid phase in heavy fermions. Disorder allows

for an inhomogeneous “distribution” (with a probabilistic meaning) of the Kondo temperatures

throughout the lattice, leading to a breakdown of the expected Kondo screening. Some results

for the UCu5−xPdx compounds have been obtained assuming a phenomenological Gaussian

distribution for the random variable ζ = n(EF)J [7]. This assumption determines a distribu-

tion function P(TK) (cf. Fig. 1.9(a)) for the Kondo temperatures, giving finite probability to the

zero Kondo temperature event: P(TK = 0) 6= 0.

Another approach to Kondo disorder has been introduced in [62, 63, 64]. In this work the

coupling between strong correlation and disorder is studied usingAnderson lattice. Disorder is

introduced assuming random distributions for the energy level of the correlated electrons and

for their hybridization with the conduction band. This is sufficient to determine a probability

distribution of the Kondo temperature. Following this approach it has been possible to derive

a linear temperature behavior for the electric resistivity. The solution of this model did not take

into account the presence of inter-moments correlations (RKKY). Finally a somewhat different

approach along this line has been proposed in [13]. This work stem from the observation that

both disorder and neighborhood to magnetic instabilities can be considered as concauses of

the breakdown of the Fermi liquid paradigm. It is worth to mention that in both these two ap-

proaches the low temperature physics is dominated by the tail around zero temperature of the

Kondo temperature distribution, corresponding to the finite probability of having unquenched

spins (Griffith phase).

1.4.3 Quantum criticality

Many instances of the deviations from Fermi liquid theory in heavy fermion systems are ob-

served in the proximity of a quantum critical point, i.e. a magnetic transition with an ordering

temperature that is pushed to zero by competing magnetic interactions, [21]. The presence of

a quantum critical point in the phase diagram strongly affects the properties of the system at

finite temperature. In the context of heavy fermions this corresponds to a failure in the con-

struction of a Fermi liquid state at very low temperatures.

In the classic (as opposed to quantum) phase transition scenario the temperature plays the

role of an external parameter driving the approach to the transition. The couplings that ap-

pear in the free energy functional implicitly depends on the temperature and their behavior

in the neighborhood of the critical temperature T = Tc fixes the nature of the transition (crit-

ical exponents). At the critical point the correlation length diverges and the order parameter

φ has fluctuations at all scales, making the system scale-independent. It is possible to show

that in a number of dimensions D = 4 the fluctuations of the order parameter are Gaussian

(upper critical dimension). Time fluctuations of φ can be associated with a frequency ωφ, that
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Figure 1.10: Qualitative phase diagram in the neighborhood of a quantum critical point. The

tuning parameter is r = g− gc. Shaded line above the QCP is the quantum critical region. Solid

line indicate the transition towards ordered phase across which classical thermal fluctuations

dominate. For low temperature and away from the critical point the systems is dominated by

quantum fluctuations by is not ordered (e.g. Fermi liquid).

has a vanishing behavior approaching the critical point. A system undergo a classical phase

transition if kBTc >> h̄ωφ. In the opposite case the transition has a quantum nature.

Quantum phase transitions are driven by some external parameter g, different from the

temperature. This parameter is often identifiedwith the pressure, magnetic field or doping. An

useful quantum-classical mapping can be exploited to describe the approach at the quantum

critical point g = gc. This mapping permits to extend the use of methods already available for

the investigation of classical critical phenomena. As already pointed out in [35], in quantum

phase transitions static and dynamic degrees of freedom can not be decoupled, as happen in the

classical case. Thus, the quantum-classical mapping can only relate a d-dimensional quantum

system to a d + z = D-dimensional classical system, where z is a dynamical exponent. This

latter describes the scaling of the fluctuation length on the imaginary axis, i.e. the correlation

time ξτ , with respect to the correlation length ξ:

ξτ ∼ ξz ∼ |g− gc|−zν

where |g − gc| define the “distance” from the critical point and ν is the correlation-length ex-

ponent. The specific value of the dynamical exponent z depends on the detailed form of the

correlation function of the order parameter.

Using scaling arguments only it is possible to derive a schematic phase diagram in the prox-
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Figure 1.11:

imity of a quantum critical point, Fig. 1.10 [56]. A continuous finite temperature transition line,

ending in a QCP, is the boundary of an ordered phase (T < Tc and g − gc < 0). Across this

line the physics is dominated by thermal fluctuations (“thermally disorder”). At low temper-

ature and for g − gc > 0 thermal effects are negligible with respect to quantum fluctuations

(“quantum disorder”). This regime is characterized by the formation of quasiparticle excita-

tions. At high temperature above the critical point is the quantum critical region. Here both

thermal and quantum fluctuations are important. The physical properties of this region are de-

termined by the thermal excitations of the quantum critical ground state, that are not associated

to quasiparticle-like excitations. This behavior is reflected in critical power-law dependencies

of physical quantities.

The investigation of quantum phase transition in Fermi liquids was started in [35], later

retrieved and extended by Millis [61] and other authors. The main model consist in a quan-

tum mechanical generalization of the Landau free energy functional and describes the spin

fluctuations physics near a magnetic transition. To the second order the (effective) action is ex-

pressed in terms of the inverse dynamical susceptibility χ(k,ωn), the exact expression of which

may vary from case to case. Because the dynamic exponent for magnetic transitions is z = 2

(AFM) or z = 3 (FM), the effective dimensionality often exceeds the upper critical dimension:

d+ z > 4. Thus the theory can only account for corrections to Gaussian (Fermi liquid) behavior.

For example in three-dimensional antiferromagnetic transition this theory predict a non-Fermi

liquid specific heat behavior C/T = γ0 + A
√
T.

A further improvement of the Hertz-Millis theory has been put forward in [65]. This ap-

proach describes weakly interacting spin fluctuations by means of self-consistent renormal-
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ization. The key assumption is to replace the quartic interaction term by a phenomenological

constraint on the dynamic susceptibility. This approach works also above the upper critical

dimension Because the spin fluctuations mode-mode coupling depends on the temperature,

the physical observables show at T = 0 the same non-Fermi liquid behavior as obtained in the

Hertz-Millis analysis. Nevertheless, at low temperature the increasing strength of the coupling

give rise to a log-divergent electronic specific heat, C/T ∼ − log(T), and a linear behavior for

the resistivity ∆ρ ∼ AT.

Lately another approach based on quantum criticality has been proposed to explain non-

Fermi liquid behavior [88, 87, 90]. The central idea is that breakdown of the Kondo screening

is a spatially local phenomenon (local quantum critical theory). This approach starts from

the Kondo lattice model (cf. (1.4)) with an additional term expressing the moment-moment

magnetic interaction. The solution of the model is achieved using an extension of Dynamical

Mean Field Theory (cf. Chap. 2), termed EDMFT. Within this method the Kondo lattice model

is mapped onto an effective Bose-Fermi Kondo model, in which a single impurity is coupled to

an electronic reservoir representing the conduction electrons and to a bosonic bath that models

the effects of magnetic fluctuations due to the RKKY interaction. A local quantum critical point

originates from the competition of the Kondo screening and and the RKKY interactions [21].

In the neighborhood of this QCP fluctuating magnetic field drives the Kondo effect critical,

preventing the conduction electrons from screening the local moments. At the critical point

this theory predict a critical power-law frequency dependence of the dynamic susceptibility:

χ(q,ω)−1 ≃ f (q) + A(ω/Λ)α, with a non-universal anomalous exponent α, that can fit with

some experimental data.

The theoretical predictions obtained from the presented different approaches to non-Fermi

liquid physics can hardly account for the large variety of behaviors observed in the experi-

ments, cf. [94]. This reveals how far we are from obtaining a general and accurate theoretical

description of the breakdown of the Fermi liquid paradigm.
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Chapter 2
Theoretical framework: DMFT
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In the last two decades a big advance in the understanding of the strongly correlated physics

has been possible with the introduction of a powerful theoretical tool, namely Dynamical Mean

Field Theory (DMFT) [52]. In this part of the thesis we shall present the main ideas at the heart

of this tool and derive the correspondant equations in the simple, but rather illustrative case

of the Hubbard model [31]. DMFT is the natural quantum extension of the classical mean field

theory, introduced so far to study magnetic properties of spin models, such as Ising. The key

idea of this method is that of replacing the quantum many body problem on a lattice with that

of a single site coupled to an effective bath, representing the lattice electronic degrees of free-

dom, supplemented by a self-consistent condition. The mapping becomes exact in the limit of

infinite coordination number, z → ∞. This is consequence of the great simplifications, namely

29



2. Theoretical framework: DMFT

the locality of the theory, this limit brings in the quantum many-body problem. Thus, DMFT

provides a controlled approximation scheme that retains the full local quantum nature of the

initial problem, in contrast with Hartree-Fock or Slave Bosons mean field [57, 50], and neglects

spatial fluctuations.

Even if the infinite coordination number limit could appear somehow “unphysical”, spe-

cially when we refer to it as infinite dimensionality limit, this is in reality perfectly justified in

many cases. To this end it may be sufficient to consider, for example, the number of nearest

neighbor in a 3-dimensional fcc-lattice that is of order z ∼ O(10). On the other hand approxi-

mations making use of the locality of the theory have been introduced even before, the z → ∞

limit was studied, specially in the context of heavy fermion physics, where the local nature of

the correlated electrons makes this approach particularly suitable.

This chapter is organized as follow: in Sec. 2.1 we review the derivation of the classical

mean field theory for the (ferromagnetic) Ising model using the cavity method. This pave the

way to the derivation of the dynamical mean field equations for the Hubbard model, presented

in Sec. 2.2, and permit us to better understand the conceptual analogies between the two meth-

ods. To gain some physical insight about the nature of this approximation scheme we present

in Sec. 2.4 its connection with an effective single impurity problem and discuss the related

physical interpretation. In Sec. 2.5 we illustrate the general (iterative) method of solution of the

DMFT equations and we review some of the numerical methods that can be used to this end.

2.1 Insights from mean-field theory: the Ising model

To simplify the introduction of the DMFT, we review in this section the classical mean field

theory of spin models. These have been initially introduced to study spontaneous magnetiza-

tion in metallic materials, like Fe or Ni, displaying strong ferromagnetism below some critical

temperatures. The approach to the problem was to imagine the full system as made of small

domains bearing an mean local moment/spin S pointing in some direction and that could cou-

ple to external magnetic field. To model this idea one can write down models describing spins

organized on a lattice structure and interacting with some short range potential. The most rel-

evant and studied model is without any doubt the Ising model. On an arbitrary lattice with

coordination z, the (ferromagnetic) Ising Hamiltonian reads:

HIM = −∑
ij

Jij SiSj −∑
i

hiSi (2.1)

where Jij = J > 0. Despite its apparent simplicity the problem posed by the solution of this

model, could be highly non-trivial [38, 24]. Many different approximation scheme has been put

forward to study the problem posed by paramagnetic-ferromagnetic phase transition, among
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2.1. Insights from mean-field theory: the Ising model

which a time-honored place is occupied by mean field theory. After its introduction in the con-

text of spin models, this method has been extendend in many directions and in other different

areas, thus constituting one of the building block of modern physics.

The key idea is very simple: one focus on a given arbitrary spin of the lattice and assume

that the neighboring spins act on the chosen one as an averaged “molecular” magnetic field.

The great simplification arise from neglecting the non local fluctuations of the acting field.

The accuracy of this method obviously increases when the number of neighbor spins is large

enough and the interaction term Jij is non zero only among nearest neighbor. It can be rigor-

ously proved that the mean field approximation becomes exact in the limit of infinite coordina-

tion number (or dimension).

To easily derive the mean field equation one should first observe that the magnetic field

acting on the tagged spin (say i = 0) as effect of the neighboring sites is (magnetic moment is

set equal to 1):

h = −∂HIM

∂S0
= h0 + ∑

j

J0jSj

The fluctuations of this magnetic field are obtained by averaging the previous expression. In

doing this one can assume the translational invariance of the local magnetization: 〈Sj〉 = 〈Si〉 =

〈m〉:
〈h〉 = h0 + ∑

j

J0j〈Sj〉 = h0 + zJm

In the mean field approximation the fluctuations of h with respect to its average value are

neglected, so: h ≃ 〈h〉 = he f f . This can be rephrased by saying that the actual average value of

the effective magnetic field acting on the chosen spin is independent by the instantaneous con-

figuration of one neighboring spin. In the mean field approach we can thus define an effective

Hamiltonian:

Heff = −he f fS0

and easily evaluate the local magnetization:

〈m〉 = ∑
S0=±1

S0e
βhe f f S0/ ∑

S0=±1
eβhe f f S0 = tanh (β(h0 + zJm))

This transcendental equation for the magnetization is then used to “self-consistently” deter-

mine this quantity. Varying the external magnetic field and the temperature the solution of this

equation in fact describes the possible phases of the system. Moreover it becomes immediately

evident the fact that the coupling costant J should be rescaled as

J −−→
z→∞

J/z

in the limit of infinite coordination number to keep the solution meaningful and the effective

field finite.
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2. Theoretical framework: DMFT

We can now turn to a different, slightly more elaborated, derivation of the mean field equa-

tion for Ising model, making use of the cavity method. This latter is a general method that we

will use in the following to derive the DMFT equations. As before, we shall focus on a given

(arbitrary) site of the lattice, say i = 0, but now we proceed to integrate out the degrees of

freedom of all sites different from 0, in order to obtain the effective Hamiltonian for the cavity

0. This Hamiltonian is defined by the formula:

e−βHeff =
∑Sii 6=o e

−βH

∑Si
e−βH

. (2.2)

To perform the sum at numerator we split the Hamiltonian (2.1) into three terms: H = Ho +

H(o) + ∆H, where

Ho = −hoSo

H(o) = − ∑
ij 6=o

JijSiSj − ∑
i 6=o

hiSi

∆H = −∑
i

JoiSoSi

(2.3)

Ho is the Hamiltonian of the tagged site 0, decoupled from the lattice, H(o) is the “ cavity”

Hamiltonian, i.e. the Hamiltonian describing the properties of the system with one site re-

moved, and finally ∆H is the interaction term between the site 0 to the rest of the system.

In particular this last term connect the removed site with its former nearest neighbors. We can

rewrite this last term in a more suitable way introducing sources ηi = J0iS0. With this notation

it is easy to recognize that the initial sum is ultimately reduced to the average of the exponen-

tial of the interaction respect the cavity Hamiltonian, that is the generating functional of the

connected correlations. Thus the effective Hamiltonian reads:

Heff = const.− h0S0 −
∞

∑
n=1

∑
i1···in

1
n!

ηi1 · · · ηin〈Si1 · · · Sin〉c(o) (2.4)

As we have noticed in the previous derivation, the limit of infinite dimension should imply

a rescaling of 1/z|i−j| of the spin coupling Jij. With such a rescaling it is straightforward to

autoconvince that the only surviving term in (2.4) in the limit z → ∞ is that with n = 1. The

effective Hamiltonian reduce to:

Heff = −heffS0 (2.5)

where we have introduced the effective field with rescaled coupling:

heff = h0 + ∑
i

Joi〈Si〉(o) (2.6)

At this point the solution of the problem flow in the very same way as already presented above.

That is, one need to relate the effective magnetic field to a local correlation function of the
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2.2. Dynamical Mean Field Theory

original lattice. Observing that in the limit of infinite coordination number removing one spin

has an effect of order 1/z, one immediately deduce that the local magnetization of the cavity

Hamiltonian H(o) is identical the local magnetization of the original Hamiltonian 〈Si〉(o) =

〈Si〉 = 〈S0〉 = m. Thus the effective Hamiltonian (2.5) becomes:

Heff = −heffS0 = −(h + Jm)S0 (2.7)

While the average local magnetization is given by:

m = 〈S0〉 = tanh(βheff) (2.8)

The last two equations form the mean-field equation for the Ising model. The cavity method

permits to formulate the classical mean field theory for Ising spin models exploiting the limit

of infinite nearest neighbor and the resulting scaling of correlation functions.

2.2 Dynamical Mean Field Theory

This section is entirely devoted to the derivation of the DFMT equations for the one band Hub-

bard model. Suitable extensions of the method to deal with other, more complicated, models

are quite straightforward [31, 32]. In the following section we shall derive the DMFT equation

corresponding to the main model studied in this thesis in the next chapter.

DMFT equations could be derived following different approaches, nevertheless the cavity

method derivation is particularly simple and illustrative. Moreover it permits an immediate

comparison with classical Weiss mean field theory, introduced in the previous section. Simi-

larly to this latter method, the main idea is to obtain an effective local problem averaging out

all the degrees of freedom of the lattice problem but those referred to a particular arbitrary site.

Aswewill see in the following, in the case of amany-fermions problems, this procedurewill

generate a localWeiss field G0 corresponding to the effectivemagnetic field heff of classical mean

field theory. G0 defines the main unknown of the theory. A relation that connect the Weiss field

to local observables is then constructed to close the equations and self-consistently determine

the solution of the problem. This will be done by mean of the large connectivity limit and

the simplification it brings into the problem. As well as the classical mean field theory, DMFT

becomes exact in the limit of infinite dimension. We illustrate the cavity method construction

of the effective model in Fig. 2.1.

2.2.1 Effective action

The Hubbard model Hamiltonian on an arbitrary lattice reads:

H̃HM = HHM − µN = − ∑
<ij>σ

tij(d
+
iσdjσ + d+

jσdiσ) − µ ∑
iσ

d+
iσdiσ + U∑

i

ndi↑ndi↓ (2.9)
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BATH

Figure 2.1: Schematic representation of the cavity method construction of the effective impurity

problem. One (arbitrary) site is picked out of the lattice and embedded in a self consistent bath

obtained by integrating out the remaining degrees of freedom in the lattice. From [28].

where the operators diσ and d+
iσ destroy and create electrons with spin σ at site i. The electrons

form a band with hopping parameter tij = tδij. U is the energy cost of double occupy any site in

the lattice, modeling the strong repulsion originated from electron-electron Coulomb interac-

tion. µ is the chemical potential. To fix ideas we will consider throughout the rest of this section

the paramagnetic phase of the model. The partition function of the model can be easily written

down in a fermionic functional integral formalism introducing a set of Grassmann variables

diσ(τ), d+
iσ(τ) that for brevity’ sake we will indicate with the same symbols as the Hamiltonian

operators.

Z =
∫

D[d+, d]e−S (2.10)

where we have introduced one of the following two functional “measures” (normalized by Z

and Ze f f ):

D[d+, d] = ∏
i

D d+
iσD diσ

D(0)[d
+, d] = ∏

i 6=0
D d+

iσD diσ

and where the action S is given by

S =
∫ β

0
dτ

(

∑
iσ

d+
iσ(τ) (∂τ − µ) diσ(τ) + H(d+

iσ, diσ)

)

=
∫ β

0
dτ

(

∑
iσ

d+
iσ(τ) (∂τ − µ) diσ(τ) − ∑

<ij>σ

tij(d
+
iσ(τ)djσ(τ) + d+

jσ(τ)diσ(τ))

+U∑
i

ndi↑(τ)ndi↓(τ)

)
(2.11)
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2.2. Dynamical Mean Field Theory

The effective action for a particular arbitrary site, say i = 0, is obtained integrating out

the fermionic degrees of freedom at all the lattice sites but the tagged one. This idea can be

mathematically formulated as follow:

1
Zeff

e−Seff[d
+
oσ,doσ] =

1
Z

∫
D(0)[d

+, d]e−S. (2.12)

Here Zeff is the partition function corresponding to Seff. In order to obtain a formal expression

for Seff we proceed as done in the case of the Ising model, that is by splitting the action (2.11)

into three terms: S = S0 + S(o) + ∆S:

S0 =
∫ β

0
dτ

(

∑
σ

d+
oσ(τ) (∂τ − µ) doσ(τ) +U no↑(τ)no↓(τ)

)

S(o) =
∫ β

0
dτ

(

∑
i 6=o,σ

d+
iσ(τ) (∂τ − µ) diσ(τ) − ∑

i,j 6=o,σ
tij

(
d+
iσ(τ)djσ(τ) + d+

jσ(τ)diσ(τ)
)

+U ∑
i 6=o

ni↑(τ)ni↓(τ)

)

∆S = −
∫ β

0
dτ ∑

iσ

(
tiod

+
iσ(τ)doσ(τ) + toid

+
oσ(τ)diσ(τ)

)

= −
∫ β

0
dτ ∑

iσ

(
d+
iσ(τ)ηi(τ) + η+

i (τ)diσ(τ)
)

(2.13)

where S0 is the action of the site 0 decoupled from the rest of the lattice; S(o) is the action of the

lattice in which the site 0 has been removed together with all the bonds connecting 0 to other

sites , i.e. it is the “cavity” action; ∆S is the “interaction” between the tagged site 0 and the other

sites. The formal integration in (2.12) can be performed to obtain:

Seff = const.+ So + ln〈e−
∫ β
0 dτ∆S〉S(o) (2.14)

The last term in this equation is the generating functional of the connected Green’s function

of the cavity, as can be recognized by substituting the expression for ∆S and using the linked

cluster theorem. This general theorem permits to express the average of the exponential in

terms of the exponential of the series of the connected Green’s functions of the cavity problem.

Therefore we end up with the following formal expression for the effective action

Seff = const.+ So −
∞

∑
n=1

∑
i1···in
j1 ···jn

∫ β

0
dτi1 · · · dτindτj1 · · · dτjn

η+
i1

(τi1) · · · η+
in

(τin)ηj1(τj1) · · · ηjn(τjn )G
(o)
i1···in
j1···jn

(τi1 · · · τin , τj1 · · · τjn )

(2.15)

While previous expression can appear quite obscure, the cavity Green’s functions have a trans-

parent physical interpretation: it describes the delocalization processes of a d electron leaving
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the site 0, propagating in the lattice, and returning back to the site 0. It is worth to observe that

up to now no approximation have been done on the problem. The formulation of the Hubbard

model in terms of the effective action we derived is exact. The calculation of the cavity Green’s

functions is in fact a problem as difficult as the initial one.

2.2.2 Limit of infinite coordination number

To make further progress in the solution of the model one should adopt a useful approxima-

tion scheme. The large dimensionality limit appears to be a very good candidate, as one can

easily argue following the discussion about the exactness of Weiss mean field theory for Ising

spin in the same limit. Despite some of the simplifications this limit brings into the problem

were already know and used in physics, it is widely accepted that the introduction and the

systematic derivation of its consequences in strongly correlated model was by [60]. Metzner

and Vollhardt have shown in particular that for this limit to be non trivial, a rescaling of the

hopping amplitude tij as (1/
√
d)|i−j| is required, in a similar way of what if required in the con-

text of Ising model case for the coupling J. A straightforward consequence of this scaling of the

hopping parameter is that all the higher orders cavity Green’s functions vanish in the infinite

connectivity limit, such that only the first term in the sum (2.15) survives [31, 59]. An heuristic

justification of this can be given with the following argument. Let’s consider the scaling of the

first few terms in the sum (2.15).

By the tij scaling it follows that the connected 2-point Green’s function G
(o)
ij scales as d−|i−j|/2

and so the first term is of order 1, provided i = j. The second term involves a connected 4-point

function G
(o)
ijkl which falls off as (1/d)|i−j|/2 (1/d)|i−k|/2 (1/d)|i−l|/2. When i 6= j 6= k 6= l, one

should deal with four sums contributing with a d4 term, with four factors of t contributing

with 1/d2 and finally with a factor 1/d3 from G(o) since |i− j|, |i− k| and |i − l| are at least 2.

Thus the net result has a leading order 1/d ans vanish in the infinite dimensional limit. When

i = j 6= k 6= l, there are three sums which give d3, but four factors of t giving 1/d2 and a factor

1/d2 from G(o) (i − l and k− i are at least 2). The leading order result is again 1/d. The same

argument can be generalized to higher order. The goal is to show that contributions connecting

vertices’s (i, j) with more than 2 lines vanish unless i = j (local contribution).

Therefore the infinite coordination number limit brings a dramatic simplification in the so-

lution of the problem defined by (2.15). In full analogy with the classical mean field theory,

all the contribution with n > 1 will vanish at least as 1/d. The effective action Se f f reduce to
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(neglecting unessential constants and explicitly writing S0):

Se f f =
∫ β

0
dτ

(

∑
σ

d+
oσ(τ) (∂τ − µ) doσ(τ) + Uno↑(τ)no↓(τ)

)

+
∫ β

0
dτdτ′ d+

oσ(τ)doσ(τ′) ∑
ij

tiotoj G
(o)
ij (τ, τ′)

(2.16)

We can now introduce theWeiss field:

G−1
0 (τ, τ′) = − (∂τ − µ) δτ,τ′ − ∑

ij

tiotoj G
(o)
ij (τ, τ′) (2.17)

that reads in frequency space:

G−1
0 (iωn) = iωn + µ − ∑

ij

tiotoj G
(o)
ij (iωn) (2.18)

This function is the quantum analogous of the effective magnetic field introduced so far in the

context of Ising model. Nevertheless and unlike the classical case, in DMFT the Weiss field is

not a number, but a function of the frequency, taking into account the all local quantum fluc-

tuations. DMFT, as any mean-field theory, neglects spatial fluctuations in the system, focusing

on the local physics at one (arbitrary) site. But in contrast to other mean field approaches, like

Hartree-Fock or slave bosons, it retains all the information about the local quantum dynamics.

In other words DMFT describes as a function of the imaginary time the quantum fluctuations

this site undergoes between the quantum states |0〉, | ↑〉, | ↓〉, | ↑↓〉 by exchanging electrons

with the external effective bath representing the rest of lattice. In terms of the local Weiss field

the effective action Se f f take the simple form:

Se f f = −
∫ β

0
dτdτ′ d+

oσ(τ) G−1
0 (τ, τ′) doσ(τ′) +

∫ β

0
dτ Uno↑(τ)no↓(τ) (2.19)

The effective action describes the local physics of a site 0 including correlation U and coupling

to an external electronic environment. The connection with this external bath is described by

the, unknown, Weiss field G−1
0 (iωn).

2.2.3 Self-consistency

In the effective action (2.19) there is another function to be determined, namely: G
(o)
ij (τ, τ′),

i.e. the Green’s function that describes the propagation of the electrons in the lattice with cav-

ity. The last step to the construction of the theory is to relate the Weiss field G−1
0 (iωn) to local

quantities one can evaluate from the effective action Se f f . This procedure would be the quan-

tum analog of themagnetization calculation that inWeissmean field theory produce an implicit

relation for the magnetization itself.
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To obtain such a self-consistency relation we start observing that translational invariance

of the problem (required by arbitrary choice of tagged site) impose to the correlation functions

of the single site to be equal to the local correlation functions of the lattice model. Thus, we

should relate the cavity Green’s function G
(o)
ij (τ, τ′) to the lattice Green’s function Gij. This can

always be done by some geometrical relation. In d → ∞ , and for a general lattice this can be

done by equating the cavity Green’s function to the lattice one and subtracting the contribution

of the paths visiting the tagged site 0, i.e. :

G
(o)
ij = Gij − GioG

−1
oo Goj (2.20)

where Goo is the local Green’s function of the site 0. The contribution of the paths visiting site

0 is proportional to GioGoj, while site 0 loop should be subtracted. This is achieved dividing by

the local Green’s function Goo. This will assure to count only once the contribution of the paths

leaving and returning to site 0.

Inserting (2.20) into (3.26) and Fourier transforming to Matsubara frequencies, the Weiss

field takes the form:

G−1
0 (iωn) = iωn + µ −∑

ij

tiotoj G
(o)
ij (iωn)

= iωn + µ −∑
ij

tiotoj

[
Gij(iωn) − Gio(iωn)G

−1
oo (iωn)Goj(iωn)

] (2.21)

To compute the last two terms in the equation above it is convenient to Fourier transform to

k-space:

Gij(iωn) = ∑
k

eik·Rij G(k, iωn) (2.22)

The reciprocal lattice Green’s function is

G(k, iωn) =
1

iωn + µ − ǫ(k) − Σ(k, iωn)
(2.23)

where ǫ(k) = ∑j tije
ik·(Ri−Rj) is the non-interacting dispersion relation and Σ is the self-energy

of the lattice. The key mathematical simplification arising from the d → ∞ limit is the locality

of the theory. In particular the self-energy lose its k-dependence:

Σ(k, iωn) −−→
z→∞

Σ(iωn)

The sum in the r.h.s of (2.21), converted in sum over the wave vector k, can be evaluated

as energy integrals introducing the non-interacting density of states: ρ0(ε) = ∑k δ(ε − ǫ(k)).

Introducing the abbreviation ζ = iωn + µ − Σ(iωn), (2.21) becomes:

G−1
0 (iωn) = iωn + µ −

∫ +∞

−∞
dε

ρ0(ε)ε2

ζ − ε
−
(∫ +∞

−∞
dε

ρ0(ε)ε

ζ − ε

)2 / ∫ +∞

−∞
dε

ρ0(ε)

ζ − ε
(2.24)
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Using the following algebraic relations:

∫ +∞

−∞
dε

ρ0(ε)ε2

ζ − ε
= ζ

∫ +∞

−∞
dε

ρ0(ε)ε

ζ − ε
(2.25)

∫ +∞

−∞
dε

ρ0(ε)ε

ζ − ε
= −1+ ζ

∫ +∞

−∞
dε

ρ0(ε)

ζ − ε
(2.26)

we finally obtain:

G−1
0 (iωn) = iωn + µ + G−1(iωn) − R [G(iωn)] (2.27)

where G(iωn) is the interacting local Green’s function, i.e. G(iωn) = Goo(iωn), and R [G(iωn)]

is the reciprocal function of the Hilbert transform of the density of states corresponding to the

lattice:

D̃(ζ) =
∫ +∞

−∞
dε

ρ0(ε)

ζ − ε
, R

[
D̃(ζ)

]
= R [G] = ζ (2.28)

Equation 2.27 defines the self-consistency condition for the impurity problem. The original lat-

tice structure information is hidden in the reciprocal function of the Hilbert transform, thru the

non interacting density of states. Some simplifications can be obtained using lattice structures

admitting a closed form for the reciprocal Hilbert transform R [G].

Particularly relevant is in this sense the case of the Bethe lattice (or Cayley tree), that is a

lattice with sites connected to z neighbors by only one path. A rather schematic representation

of this lattice is shown in Fig. 2.2. In the limit of large connectivity and for nearest-neighbor

hopping tij = t/
√
z, its density of states reads

ρ0(ε) =
1

2πt

√
4t2 − ε (2.29)

and corresponds to a semicircular density of states. The energy unit of the problem is set by

the half-bandwidth of this density of states, i.e. D = 2t = 1. On the Bethe lattice, the relation

(2.20), connecting the cavity Green’s function to the local Green’s function of the original lattice,

is rather simple. The simplification comes from the fact that the cavity Green’s function G
(o)
ij is

diagonal and, so, identical to the local Green’s function of the lattice:

G
(o)
ij = G

(o)
ij δij = Gii = Goo. (2.30)

The first equality, G(o)
ij = G

(o)
ij δij = G

(o)
ii follows from the special topology of the lattice. Once

the site 0 has been removed its neighbors are completely disconnected and the only allowed

process is that connecting one site i with itself, thus G(o)
ij becomes diagonal.

The second equality in (2.30), G(o)
ii = Gii, is only true in d → ∞ . Removing the site i = 0 has

the effect of locally change the topology: each neighbor j of i = 0 has now only z− 1 nearest

neighbors, instead of not z. In d → ∞ , this is a 1/z effect, and thereforewe can identify the local
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2. Theoretical framework: DMFT

Figure 2.2: Schematic representation of the Bethe lattice with connectivity z = 3 and down to

the third order.

Green’s function with site i = 0 removed, G(o)
ii , to that of the full lattice Gii. Finally translational

invariance assure that Gii = Goo,

Then it is straightforward to check that, for any ζ ∈ C:

D̃(ζ) =
2
(

ζ − s
√

ζ2 − D2
)

D2 (2.31)

with s = sign (Im(ζ)). Thus:

R [G] =
D2

2
G− 1/G

Substituting this expressions in (2.20) and taking toi = tio = t yields the effective quantum

impurity action on Bethe lattice:

Seff = ∑
σ

∫ β

0
dτ
∫ β

0
dτ′d+

oσ(τ)G−1
0 (τ − τ′)doσ(τ′)

+U
∫ β

0
dτ no↑(τ) no↓(τ)

(2.32)

with

G−1
0 (iωn) = iωn + µ − t2G(iωn) (2.33)

Eqs. (2.32) and (2.33) are the dynamical mean-field equations for the Hubbard model on the

Bethe lattice. The former equation corresponds to the so called associated impurity problem of

the model. The latter is the self-consistency condition for the impurity problem.
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2.3. Connection with quantum impurity problem

2.3 Connection with quantum impurity problem

As we have shown in previous section, the effective action (2.19) describes the local quantum

dynamics of a single site of the lattice, coupled to an effective electronic bath. The coupling

is encoded in the Weiss field G−1
0 (τ − τ′) in terms of a retardation effect. Because of this it is

not possible to get an Hamiltonian formulation in terms of local operators only. Nevertheless

such a formulation of the problem is made possible by simply reintroducing a description of

the effective bath via auxiliary degrees of freedom. The general point of view would then be to

associate the tagged site to a local impurity and looking at the effective bath as a “conduction

band”, i.e. realzing an effective single impurity Anderson model (SIAM) [2, 36].

We shall now show the formal equivalence between the Anderson impurity model action

and (2.19), provided an additional self-consistency condition is satisfied [29]. The Hamiltonian

formulation of the problem in terms of a SIAM permits us to get some useful physical insight

into the problem as well as to perform some practical calculation. It is worth to stress that,

being the Hamiltonian representation somehow arbitrary, other Hamiltonians can also be used

to represent the problem.

The Hamiltonian of the single Anderson impurity model reads,

HAIM = ∑
kσ

εkp
+
kσpkσ + ∑

kσ

Vk(p
+
kσdσ + d+

σ pkσ) + εd ∑
σ

d+
σ dσ +U nd↑ nd↓ (2.34)

where the operators dσ and d+
σ destroys and creates electrons in the impurity with energy εd,

while piσ, p+
iσ destroys and creates bath electrons with energies εk. The impurity orbital is

hybridized with each conduction electrons with an amplitude Vk, and a Coulomb interaction

on the impurity site is modeled by the Hubbard term in U. The action corresponding to this

Hamiltonian is given by

S =
∫ β

0
dτ ∑

kσ

p+
kσ(τ) (∂τ + εk − µ) pkσ(τ) + Vk

(
p+
kσ(τ)dσ(τ) + d+

σ (τ)pkσ(τ)
)

+ ∑
σ

d+
σ (τ) (∂τ + εd) dσ(τ) +U nd↑(τ) nd↓(τ)

(2.35)

We can split the action into two parts: a purely local part, So, describing the d electrons only

So =
∫ β

0
dτ

(

∑
σ

d+
σ (τ) (∂τ + εd) dσ(τ) +U nd↑(τ) nd↓(τ)

)
(2.36)

and a part ∆S describing the conduction electrons and their interaction with the impurity site:

∆S =
∫ β

0
dτ ∑

kσ

[
p+
kσ(τ)(∂τ + εk − µ)pkσ(τ) + Vk

(
p+
kσ(τ)dσ(τ) + d+

σ (τ)pkσ(τ)
)]

(2.37)
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2. Theoretical framework: DMFT

Integrating out the conduction electrons, we obtain an action for the d-electrons,i.e. the im-

purity, that reads:

Se f f =
∫ β

0
dτdτ′ ∑

σ

d+
σ (τ) G−1

0 ,And(τ, τ′) dσ(τ′) +
∫ β

0
dτ U nd↑(τ) nd↓(τ) (2.38)

where G0 is the non-interacting (U = 0) Green’s function of the single impurity Anderson

model:

G−1
0 ,AND(iωn) = iωn + µ − εd −

∫

R

dω
∆(ω)

iωn − ω
(2.39)

and

∆(ω) = ∑
k

V2
k δ(ω − εk)

is the retarded hybridization function of the impurity with the bath of conduction electrons.

Equation (2.38) supply a representation of the effective action (2.19) only provided the spec-

tral function ∆(ω) is determined as to replicate the local physics of the lattice. This ultimately

means that the two set of parameters {Vk, εk}k=1,...,N , describing the hybridization of the impu-

rity with the bath levels and their energies, are self-consistently determined. The hybridization

function can be approximated, in a very goodway, with a finite number of poles, corresponding

to a finite representation of the bath:

∆(iωn) = ∑
k

V2
k

iωn − εk
(2.40)

It is worth to stress that the hybridization Vk and the energies of the levels εk are the (unknown)

parameters of the effective SIAM and does not in any case describe analogous quantities of the

lattice.

Equating now the Weiss function (2.27) and (2.40), we can reformulate the self-consistency

condition in terms of the hybridization function ∆(iωn):

∆(iωn) = iωn + µ − Σ(iωn)− G−1(iωn) (2.41)

In the case of the Bethe lattice, we can obtain a simplified the self-consistency condition, that

reads:

∆(iωn) = t2 G(iωn) (2.42)

In the following this relation will be extensively used to implement the self-consistency condi-

tion in exact diagonalization based algorithm.

2.4 Solution of DMFT equations

TheDMFT equations, despite their formal simplicity, can not (yet?) be solved analytically. Nev-

ertheless the connection with SIAM permits to profit of the several different techniques, that
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2.4. Solution of DMFT equations

Figure 2.3: Iteration-substitution algorithm used to solve the dynamical mean-field equations.

Starting from an initial guess for G0(iωn), one can solve the associated local impurity problem

(top arrow) by using a suitable method. This permits the evaluation of a local Green’s function

G(iωn). The update of theWeiss filed Gnew
0 (iωn) is then performed by using the self-consistency

condition (bottom arrow). This procedure is iterated until the convergence is attained.

have been developed so far to study quantum impurity problem [36]. In practice the solution

of DMFT equation can be achieved with a iteration-substitution algorithm. This is graphically

illustrated in Fig. 2.3 [31].

An initial guess for the Weiss field G0(iωn) fixes the effective impurity problem. This can

be treated as an independent problem, described by (2.32), whose “bare” part is known and

that can be tackled using any available method, e.g. perturbation theory. In particular the local

Green’s function G(iωn) can be evaluated. This amount to construct the following correlation

function:

G(τ − τ′) = −〈Td(τ)d+(τ′)〉Se f f (2.43)

The connection with quantum impurity model it is often used to obtain the local Green’s

function from the impurity one. A local self-energy is defined via Dyson equation:

Σ(iωn) = G−1
0 (iωn) − G−1(iωn) (2.44)

In the most general case the local Green’s function should be evaluated from the knowledge

of the self-energy (obtained from SIAM solution) via the integral over the density of state ρ0(ε)

(or summing over wave-vectors):

G(iωn) =
∫

R

dε
ρ0(ε)

iωn + µ − Σ(iωn) − ε
(2.45)

As we have seen in previous section in the special case of the Bethe lattice this integral can

be analytically performed and yields a closed expression for the local Green’s function in terms
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2. Theoretical framework: DMFT

of the self-energy.

G(iωn) =
2

iωn + µ − Σ + sign(iωn)
√

(iωn + µ − Σ(iωn)2 − D2
(2.46)

Once G(iωn) and Σ(iωn) have been evaluated, them are used to update the Weiss field

G−1
0 (iωn) using self-consistency condition (2.33). This step produce a new impurity problem

to be solved, thus the entire procedure is iterated until convergence is reached, using a suitable

convergence criteria.

At the self consistency point the impurity Green’s function G(iωn) corresponds to the local

Green’s function of the original lattice model.

It remains to show how the impurity Green’s function can be practically obtained, i.e. how

to solve (2.43). We shall present in what follow a rather brief overview of some methods that

can be used to this end. Some methods are adapted from techniques originally developed

to study impurity models, as the SIAM is. Among the many available we largely used the

following: iterated perturbation theory (IPT), Hirsch-Fye quantum Monte Carlo (QMC), com-

plete and Lanczos exact diagonalization (ED) and the density matrix renormalization group

(DMRG). Using different methods has the advantage to permit a crosscheck of the results and

in particular to overcome the problems due to their own range of applicability, that can be

somehow complementary.

2.4.1 Iterated perturbation theory

The first and perhaps most simple method we shall describe, termed iterated perturbation the-

ory, is based on perturbative expansion of the effective action. Regarding the effective impurity

problem as an independent one, the easiest approach one can try is to solve it perturbatively

with respect to the local interaction term. Using the Yamada-Yoshida perturbation theory one

can readily obtain the second approximation for the impurity self-energy [29, 105, 45, 102]. The

contribution is expressed as a two vertex Feynman diagram connected by three “bare” propa-

gators. Thus, for a given Weiss field G0, this second order self-energy reads:

Σ [G0] (τ) = −U2G3
0(τ) (2.47)

The IPT algorithm is formulated as a self-consistent determination of the couple (G0,G).

The general iteration can be sketched as follow:

G0(iωn) → Σ(iωn) = FT
[
−U2G3

0 (τ)
]
→ G(iωn) → Gnew

0 (iωn) (2.48)

where FT indicates the Fourier transformation to Matsubara frequencies. A zero temperature

calculation can be done using the real frequency Green’s function.

44



2.4. Solution of DMFT equations

Though this method is actually based on a perturbative expansion, thus it is valid at small

U by construction, it turns out that the second order expression of Σ also capture the large

U/t limit, in the half-filled Hubbard model [105]. In this latter limit, the Weiss field becomes

G−1
0 (iωn) ≈ iωn and thus the self-energy reads

Σ(iωn) =

(
U

2

)2 1
iωn

(2.49)

Now, in the atomic limit, the exact expression of the local Green’s function is given by

G(iωn) =
1/2

iωn −U/2
+

1/2
iωn + U/2

(2.50)

for which the self-energy is identical to (2.49). Therefore, the IPT approximation provides an

interpolation scheme between the week and the strong coupling limits.

2.4.2 QuantumMonte Carlo

Quantum Monte Carlo is a finite temperature calculation, exact in the statistical sense, based

on a suitable sampling of the phase space. The associated impurity problem defined by (2.32) is

solved using the standard Hirsch-Fye QMC algorithm [37]. Within this method the imaginary

time interval [0, β] is discretized in L time-slices of width ∆τ = β/L (where β is the inverse

temperature, and kB = 1). The resulting discretized partition function reads

Z =
∫

D[d+, d]e∑τ,τ′ d
+
σ (τ)G−1

0 (τ,τ′)dσ(τ′)+U ∑τ n↑(τ)n↓(τ) (2.51)

A discrete Hubbard-Stratonovich transformation is performed to decouple the quartic term, at

the cost of introducing a set of auxiliary variables, namely the pseudo-spins:

e
∆τU

(
n↑n↓+

1
2(n↑+n↓)

)

= 1
2 ∑
s=±1

eλs(n↑−n↓) (2.52)

the parameter λ = arccosh(e∆τ/2) is fixed by the transformation, while the discrete variable

s is an Ising-like spin variable taking the values ±1. The main advantage of performing this

transformation at every imaginary time slice is that the action reduces to a quadratic form:

Z = ∑
sτ=±1

∫
D[d+, d]e− ∑τ,τ′ d

+
σ (τ)G−1

0 (τ,τ′)dσ(τ′)+λ ∑τ sτ(n↑(τ)−n↓(τ))

= ∑
sτ=±1

∫
D[d+, d]e− ∑τ,τ′ d

+
σ (τ)G−1

σ (τ,τ′)dσ(τ′)
(2.53)

where

G−1
σ (τl , τ′

l ) = G−1
0 (τl, τ′

l ) + σλslδl,l′+1 (2.54)

is the inverse Green’s function for a given fixed pseudo-spins configuration (s1, . . . , sL). It is

worth noting that the introduction of this set of spin variables produce an enlargement of the
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Hilbert space. We will denote throughout this section a spin configuration with the symbol

{s} = (s1, · · · , sL). Tracing out the Grassmann variables leave us a partition function expressed

in terms of the Ising spin variables only:

Z = ∑
{s}

det
[
G−1
↑ ({s})

]
det

[
G−1
↓ ({s})

]

= ∑
{s}

ρ({s})
(2.55)

wherewe have introduced theweight for a given pseudo-spin configuration {s}, ρ = detG−1
↑ detG−1

↓ .

It is then straightforward to realize that the impurity Green’s function can be computed as

the weighted average over all possible Ising configurations:

Gσ =
1
Z ∑

{s}
ρ({s})Gσ({s}) (2.56)

This calculation requires a sum over 2L configurations, and each term of the sum needs the

inversion of an L× Lmatrix (cf. (2.54)). If the temperature is small or high precision is required,

then the number of time slices could become large and so the dimension of phase space of the

Ising spins, making impossible to perform previous sums. In practice one often deal with L of

the order of 10, thus already in the simplest case previous sum can not be exactly evaluated. To

overcome this problem one can evaluate the sum using a Monte Carlo method. This basically

consist in a Markovian sampling of the phase space. A random spin configuration is gener-

ated in the first step, then a random process is built attempting successive spin flips of Ising

variables. To generate a Markov process from the spin flip procedure a transition probability

should be defined, with the only requirement to satisfy the detailed balance. The most used

transition probability used so far are the Metropolis or the heat-bath algorithms:

heath− bath : P(s → s′) =
ρ′

ρ + ρ′
(2.57)

Metropolis : P(s → s′) =

{
1 if ρ′ > ρ
ρ′

ρ′ otherwise
(2.58)

in both cases, the transition probability P(s → s′) from a configuration {s} to {s′} is a function

of the ratio of the two determinants of G({s}) and G({s′}). The ergodicity of the Markov

process assure then to visit with equal probability the entire phase space.

The implementation of this algorithm requires now the evaluation of the determinant ap-

pearing in the proability weight ρ({s}) as well as the inversion of the pseudo-spin Green’s

function. The key aspect pointed out by Hirsch and Fye [37] is that the non-linearity intrinsic in

the expression of the impurity Green’s function lead to the existence of a Dyson-like equation,

46



2.4. Solution of DMFT equations

which relates pseudo-spin Green’s function of two different spin configurations G = G({s})
and G′ = G({s′}):

G′ = G + (G− 1)(eV−V′ − 1)G′ (2.59)

where eV is the diagonal matrix whose elements are eσλs. If we rewrite this equation as

AG′ = G

A = 1+ (1− G)(eV−V′ − 1)
(2.60)

we can recognize that the Green’s function G′, corresponding to a pseudo-spin configuration

({s′}), can be obtained from G by inverting the L× L matrix A, thus defining a CLEAN updat-

ing procedure for the Markov process.

A further simplification arises if the Ising configurations {s} and {s′} differs only for one

spin (corresponding the so called single spin-flip process). In this case we can obtain G′ from G

without computing the inverse of the matrix A:

G′
l1l2

= Gl1l2 + ∑
l

(Gl1l − δl1l) (eV
′−V

ll − 1)Gll2

1+ (1− Gll)(e
V′−V
ll − 1)

(2.61)

This corresponds to a DIRTY updating procedure. The Dyson-like equation (2.59) also allows

us to calculate the determinant of A, needed to evaluate the transition probability from {s} to

{s′}:
detA = 1+ (1− Gll)(e

V′−V − 1) (2.62)

Successive dirty updates can lead to a degradation of the solution corresponding to the gen-

eration of long range correlations. To avoid numerical instabilities due to the error propagation,

we perform a regular inversion of the matrix A (clean update) every hundreds fast inversions,

i.e. dirty updates. To limit systematic errors introduced by the Trotter decomposition we also

setU∆τ < 1. The precision of the calculations then basically depends on two remaining factors,

the statistical error and the criterion for the convergence of the solution of the DMFT equations.

For the former, we typically perform 105 sweeps. When required, we may do up to 106 sweeps,

such as near the Mott transition, or to compute the analytic continuation of data to the real axis

using the maximum entropymethod [33]. The convergence of the solution is indeed controlled

by monitoring the behavior with DMFT iteration number of G(iω1), the imaginary part of the

Green’s function at the first Matsubara frequency, which shows the largest variations. We stop

the DMFT iterations when the fluctuations of this quantity become of the order of the QMC

statistical error and remains stable for a few more iterations.

2.4.3 Exact diagonalization

A different approach to the solution of the DMFT equations is based on the exact diagonaliza-

tion of the finite size representation of the effective problem [31]. The associated single impurity

47



2. Theoretical framework: DMFT

Anderson model is composed of infinitely many sites forming the conduction band, and thus

the effective bath. In practice nevertheless only a finite number of sites can be handled. Within

this method the effective bath is described by a number ns of atomic sites and the correspond-

ing problem is diagonalized exactly. It is worth to stress that even if the diagonalization is exact

(and in many cases complete) the finite approximation of the effective problem introduce a (in

principle big) error in the solution. It turns out that in many cases just a few bunch of sites

are sufficient to obtain a good description of the solution. Due to the exponential growth of

the Hilbert space dimension, only a number of sites less than 12 can be exactly diagonalized.

To this end it is of high importance do adopt a smart strategy to describe the environment.

A couple of methods have been developed so far, namely the “chain geometry” [89]and the

“star geometry” [11, 77]. In both cases the effective impurity problem consists of a central im-

purity site, describing the correlated d−orbital, connected with the bath sites. The topology

of this connection distinguish the different approaches. The different atomic arrangements in

these two cases are schematically depicted in Fig. 2.4. In this section we shall briefly review ED

method, focusing in particular on the star geometry case. The linear chain geometry will be

detailed in the next section where the Density Matrix Renormalization Group method will be

illustrated.

The star geometry ED provides an adaptive algorithm for the determination of the bath site

energies {εk} and the hybridization {Vk}, thus fixing the effective single impurity Anderson

model correctly describing the solution of the initial problem. In a rather general way two dis-

tinct approach can be distinguished: a) complete diagonalization at finite temperature, b) Lanc-

zos diagonalization at zero temperature. These two methods share as a common feature the

determination of the Hamiltonian parameters, i.e. the implementation of the self-consistency,

performed as a minimization of the impurity Green’s function respect to the Anderson one.

The distance to minimize is often chosen to have the following χ2 expression:

χ2 =
nmax

∑
n=0

∣∣∣G−1
0 (iωn)− G−1

0 ,And(iωn)
∣∣∣
2

(2.63)

where the Weiss field self-consistently obtained from the evaluated impurity Green’s function

is minimized against the single impurity Anderson model non-interacting Green’s function,

having the form:

G−1
0 ,And(iωn) = iωn + µ − εd −

∫ ∞

−∞
dω′ ∆(ω′)

iωn − ω′ (2.64)

corresponding in the finite size approximation of the impurity problem to:

G−1
0 ,And(iωn) = iωn + µ − εd −

ns

∑
l=2

V2
l

iωn − ε l
(2.65)

The χ2 minimization, implemented using some powerful conjugate gradient routines, amount
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Figure 2.4: Star (a) and linear chain geometry (b) used to represent the effective conduction bath

in the exact diagonalization method. Filled circle denotes the impurity site, and open circles

are the sites of the bath.

to fit with a finite number of rational functions the Weiss field thus determining the Hamilto-

nian parameters {Vl, ε l}l=1,...,ns
.

The iterative solution of DMFT equation is implemented as follow: I) The paramaters

{Vl, ε l} are guessed, from scratch or reading the solution of a previous calculation. The Hamil-

tonian matrix is constructed exploiting all the possible symmetries of the problem in order to

reduce it to a block form. II) The Hamiltonian matrix is diagonalized in each sector, the tar-

get states are obtained (depending on the adopted technique) and impurity Green’s function is

evaluated. These operations can be performed in two rather general way:

a) Lanczos We are interested in the zero temperature solution of the problem, thus only the

ground state has to be determined. Lanczos method is used to accomplish this goal. It

amount to a fast and reliable evaluation of the ground state. This method is based on

the recursive determination of an orthonormal basis on which the sector Hamiltonian

assume a tri-diagonal form. The approximation rely on the fact that this basis is in fact

smaller than the full dimension of the sector. The recursion guarantees nevertheless the

convergence of the largest eigenvalues of the matrix, thus the ground state [16]. The

method starts with the guess of a random state, that it is supposed to have non zero

projection onto the ground state, this hypothesis can be tested a posteriori. If N is the

dimension of the Hilbert space of the problem, {|i〉}
i=1,...,N is the basis, where i is an index

for all the quantum numbers of the operators commuting with H and {li}i=1,...,N is a set of
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random numbers, the initial state is:

| f 〉 =
N
∑
i=1

li|i〉

a Krylov basis Kn(H, | f 〉) = {| f 〉,H| f 〉, . . . ,Hn| f 〉} is then constructed and orthonormal-

ized with Gram-Schmidt procedure, ending in the following recursion relation for the

determination of the basis vectors:

| fn−1〉 = H| fn〉 − an| fn〉 − b2n| fn−1〉 (2.66)

where

an =
〈 fn|H| fn〉
〈 fn| fn〉

b2n =
〈 fn| fn〉

〈 fn−1| fn−1〉
, b0 = 0

(2.67)

On this basis the sector Hamiltonian has a tri-diagonal form with parameters {an} on the

main diagonal and {bn} on the over- and sub-diagonal.

H =




a0 b1

b1 a1 b2 0

b2 a3
. . .

0
. . . . . . bn

bn an




The diagonalization of the (approximate) Hamiltonian is then straightforward and gives

an approximated ground state |gs〉. This can be used as a starting vector for a successive

iteration of the full procedure until convergence to the largest eigenvalue of the sector

Hamiltonian is reached by construction. Once the ground state |gs〉 has been determined

correctly, one can proceed to the evaluation of the impurity Green’s function. This require

the application of a second Lanczos procedure. The idea is to get the Green’s function

G(z) = G>(z) +G<(z), with G> and G< describing the particles and the holes excitations

with respect to the ground state energy E0:

G>(z) = 〈gs|d 1
z− (H − E0)

d+|gs〉

G<(z) = 〈gs|d+ 1
z + (H − E0)

d|gs〉
(2.68)

using Lanczos technique to reduce the resolvent operator to a tri-diagonal form. This can

be done using alternatively as a starting vector the state obtained applying the construc-

tion and the destruction operator to the ground state:

| f>0 〉 = d+|gs〉
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2.4. Solution of DMFT equations

| f<0 〉 = d|gs〉

Using Lanczos method again lead to the following expression of the Green’s functions in

the form of continued fraction expansions, with paramaters determined in the previously

discussed recursion formula:

G>(z) = 〈 f>0 | 1
z− (H − E0)

| f>0 〉 =
〈 f>0 | f>0 〉

z + E0 − a>

0 − b>2
1

z+E0−a>

1 −
b>2
2

z+E0−a>2 −

G<(z) = 〈 f<0 | 1
z + (H − E0)

| f<0 〉 =
〈 f<0 | f<0 〉

z− E0 − a<

0 − b<2
1

z−E0−a<

1 −
b<2
2

z−E0−a<2 −

(2.69)

b) Complete diagonalization We are in this case interested in getting the finite temperature

solution of the problem. To this end a complete diagonalization of the Hamiltonian is

required [31]. Once a proper vector basis is constructed, typically using the number op-

erator N and the spin operator Sz quantum numbers as well as the multiplicity g to label

the states:

|i〉 = |n, sz, g〉

the Hamiltonian matrix is constructed in each sector. Its full diagonalization provides

all the eigenvalues λi and the eigenvectors |λi〉 with i = 1, . . . , dimH(n, sz). Iterating the

diagonalization over all the sectorwill then determine the full spectrumof the problem. It

is worth to stress that to overcome difficulties due to memory storing of the eigenvectors

(that in each sector have dimension dimH(n, sz) ×N , with N = 4ns) high optimization

of the calculation is almost mandatory. The ground state can then be easily determined

comparing the eigenenergies corresponding to all sectors. The impurity Green’s function

is readily obtained using its spectral decomposition (or Kallen-Lehman formalism) [57]:

G(iωn) =
1
Z ∑

n,m

〈m|d+|n〉
(
e−βEm + e−βEn

)

iωn − (Em − En)
(2.70)

where

Z =
N
∑
n=1

〈n|e−βHAnd|n〉 =
N
∑
n=1

e−βEn

Despite its simplicity the evaluation of this sum is the bottleneck of the full procedure.

It in fact requires the construction, in each sector, of the matrix element of the impurity

construction operator, that involve the analysis and sum of a huge amount of states (with

their decomposition along the Hilbert space basis). Beside the impurity Green’s function

basically all the desired functions can be evaluated using the same technique, aka the

spectral decomposition. It is worth to underline the for β → ∞ the exponential terms in
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2. Theoretical framework: DMFT

the sum kill the contribution of the high energy states. Thus at very low temperature only

few states effectively contribute to the Green’s function. Recently an extendend Lanczos

technique has been developed to construct to solve the impurity problem at very low

temperature scales [12].

III) The update of the Weiss field is performed thru self-consistency condition. As pointed out

above this step is achieved by χ2 fit of the impurity Green’s function and lead to the deter-

mination of a NEW set of Hamiltonian parameters {Vl, ε l}. In full diagonalization case the fit

is performed on the Matsubara imaginary axis at a inverse temperature β, while within the

Lanczos diagonalization a fictitious inverse temperature β̃ should be introduced to perform

the fit. Once the new set of parameters {Vl , ε l} is obtained, the full procedure is iterated until

convergence is reached.

2.4.4 Density Matrix Renormalization group

As we have shown in the previous section, exact diagonalization based algorithms are greatly

limited by the exponential growth of the Hilbert space dimension. Thus a substantial improve-

ment can be achieved supplementing these with a renormalization group based algorithm,

limiting the growing process. On a very general ground in fact numerical RG can be viewed as

a procedure providing a scale by scale cutting scheme for the Hilbert space. This scheme in the

Wilson RG is implemented by retaining at each step of the RG flow, them lowest eigenstates ob-

tained by exact diagonalization of the effective Hamiltonian on that scale. This procedure thus

permits to perform the a multi scale analysis without the plague of the exponential growth of

the dimension of the problem. Recently have been realized that theWilson numerical RG, even

being perfect suitable to the analysis of Kondo impurity problems, can gives wrong answers

when applied quantum lattice models. On a general ground this can be traced back to the

fact that the decimation procedure fails in such cases where the blocks are correlated. This is

well illustrated in the case of 1-dimensional particle in the box (or tight-binding) [74]. Let’s

suppose that we are interested in the ground state of the problem or equivalently in the few

low-lying eigenstates. In any given block Bn tailing the 1-dimensional interval the ground state

is described by the zero internal node wave function ψ0(x). By mean of boundary conditions

this function is zero at the borders of the block. This is illustrated in Fig. 2.5. By decimation

procedure one can then imagine to construct the ground state for a bigger block Bn+1 using the

results obtained from the single blocks Bn. Thus the resulting ground state wave function, be-

ing the tensor product of the block wave functions, has an internal node in the (n + 1)-interval

(cf. Fig. 2.5). Obviously this lead to a wrong description of the Bn+1 ground state, that is known

to have no internal node.
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2.4. Solution of DMFT equations

Figure 2.5: Lowest eigenstates for an 8-site blocks ( ) and for the 16-sites block (�), for the 1-

dimensional tight-binding model. The product of the smaller block eigenstates badly describes

the eigenstate of the larger block.

Figure 2.6: DMRG superblock representation. The superblock SB is formed by the block B and

its environment E . This overcome the idea of isolated blocks of NRG and lead to the correct

solution of quantum lattice models.

Wilson himself proposed that any new RG scheme should be able to obtain the correct

solution when applied to the 1-dimensional particle in the box problem. A solution to this

failure of the numerical RG has been found by 1992 by White [101]. He proposed a different

renormalization scheme, thus a different algorithm to “cut” the Hilbert space size, that is based

on the analysis of the reduced density matrix for the SB. For this the method is called Density

Matrix Renormalization Group. The central idea realized by White is that the building blocks

used in the RG procedure have to be considered as related to their environment instead of

isolated objects. This lead to the idea of superblock SB that describes together the block B and

its environment E , as illustrated in Fig. 2.6 [34].

The general DMRG procedure can then be summarized as follow:
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2. Theoretical framework: DMFT

the superblock SB is analyzed and a target state, typically the ground state, is obtained. The

“most probable” block B states that fit the target state are obtained via the reduced density

matrix ρ by using its first m eigenstates as a reduced Hilbert space basis (thus defining a

cutting procedure).

The general DMRG algorithm, suitable to solve 1-dimensional lattice problems, consists in the

following procedure: [83, 74]:

• Form a superblock SB with a number of sites sufficiently small such that it can be exactly

diagonalized.

• Construct the Hamiltonian for the new larger system starting from the knowledge of

HB,E .

• obtain (iteratively) the full system Hamiltonian H. Diagonalize it and get the ground

state |gs〉.

• Form the reduced density matrix ρ = Tr |E
|gs〉〈gs| diagonalize it, retain the first m eigen-

states and eigenvalues, form the rotation matrix O. Rotate all the operators to the new

basis. A
′
= O+AO.

• Rename the SB Hamiltonian and restart from point 1

In the recent time several ED-DMRG procedures have been developed for the solution of

the DMFT equations [74, 25, 27]. DMRG can in fact be readily adapted to be used as impurity

solver in the linear chain geometry scheme. This method permits to grow the linear chain,

representing the effective bath, without being plagued by the exponential growth of the Hilbert

space dimension of the impurity problem [25]. The key idea of the DMRGmethod as impurity
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2.4. Solution of DMFT equations

solver in DMFT is in fact to start with a small system (i.e. a bath with a small number of sites

ns) and then systematically increase its size up to an arbitrary length. The effective model

Hamiltonian should be first rewritten as a linear chain problem:

Heff =
ns

∑
i=−ns,i 6=0

σ

ai d
+
iσdiσ +

ns

∑
i=−(ns−1),i 6=0,−1

σ

(
bi d

+
iσdi+1σ + h.c.

)

+ ∑
σ,i=±1

b0
(
d+

σ diσ + h.c.
)
+U n↑n↓

(2.71)

Heff describes an impurity connected to two chains (one for describing particle excitations

and one hole excitations), each with site energies {a>/<

i } and hopping amplitudes {b>/<

i }.
In Fig. 2.4 (b) we have schematically depicted the effective Hamiltonian. DMRG is used to con-

struct iteratively the effective bath. We shall now present the algorithm used to obtain DMFT

solution in a rather schematic way, that can be more suitable to organize the several different

steps leading to the solution of the effective problem.

1. In the starting situation we have 1 impurity site I connected to two left and right blocks

B>, B< thru two left and right dots sites D>, D<. In the DMRG terminology blocks,

superblocks and dots are constituted of sites with 4 states. Each site but the impurity

represents the effective bath. The basic bricks of the methods, i.e. the I operators and

Hilbert space together with the blocks and dots operators and Hilbert spaces HB≷ , HD≷

2. Construct the left and right superblock SB>, SB< Hilbert space as a tensor product of

the Hilbert spaces of blocks and dots:

HSB≷ = HB≷ ⊗HD≷

This amount to obtain the Hilbert space for each chain (left and right) connected to the

impurity site, thus permitting to construct the superblock Hamiltonian operator, in a ar-

bitrary sector (guessing where the ground state is) as well as any other operator needed

to get the solution of the problem.

3. Construct the full systemHilbert space starting from the result of previous steps:

H = HSB> ⊗HI ⊗HSB<

as well as the system Hamiltonian and any other operators,

H = HSB> + HI + HSB< + HSB>−I + HI−SB<
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2. Theoretical framework: DMFT

The most general state of the system can then be expressed in terms of the label corre-

sponding to each part of the system. It is worth to recall that these latter are classified in

terms of quantum numbers of operators commuting with the Hamiltonian (typically N

and Sz).

|l〉 = |i, imp, j〉 for |i〉 ∈ HSB> , |imp〉 ∈ HI , |j〉 ∈ HSB<

4. Diagonalize the system Hamiltonian H and obtain the target states, e.g. the ground state

|gs〉 plus a bunch of few low-lying states. To this end Lanczos or other more refined

techniques, such as Block Lanczos, Davidson, etc, should be used.

|gs〉 =
dimH
∑
l=1

rl |l〉

5. Compute the impurity Green’s function G(z) using a second Lanczos procedure of the

very same type as explained in the previous section about ED algorithm. The Green’s

function is obtained in the following continued fraction form:

G(z) = G>(z) + G<(z) =
〈gs|cc† |gs〉

z− a>

0 − b>2
1

z−a>

1 −...

+
〈gs|c†c|gs〉

z− a<

0 − b<2
1

z−a<

1 −...

6. For each superblock in the system construct the reduced density matrix ρi,i′ by tracing

over the impurity and remaining superblock the density matrix:

ρi,i′ = Tr |Env |gs〉〈gs| = ∑
imp,j

〈gs|i, imp, j〉〈i′ , imp, j|gs〉

The reduced density matrix is the fully diagonalized to obtain it eigenvectors and eigen-

values. After ordering them the first m eigenstates are retained such that to fullfill the

following relation:
dim(ρ)

∑
n>m

λn(ρ) < ε ∼ O
(
10−10

)

The first m eigenvectors form a suitable (orthonormal) basis for the corresponding su-

perblock SB≷ that best describes the target state. In Fig. 2.7 this concept is illustrated and

compared with Wilson RG algorithm.

7. Obtain the transformation matrix O having as columns the components of the first m

eigenvectors of ρ. This matrix it is used to rotate all the operators, the Hamiltonian of

each superblock in particular, to the new basis:

A′ = O†AO
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Figure 2.7: The target state description obtained projecting via the density matrix, i.e. using the

reduced density matrix eigenstates as a basis, is a better approximation with respect to the RG

lowest eigenstates construction.

8. Add 1 site, namely the dot D, per side such that L′ = L + 2. Rename the superblocks in

blocks and restart from point 3 with a larger chain and using the information collected at

each step.

9. When L = Lmax, fixed a priori get the ground state in the adjacent sectors with one more

and one less particle in the chain N = n± 1 and with spin up and down. If the ground

state energy in one of these sectors is smaller, move to that changing the initial particle

number and restart the full calculation. Else exit the iteration of the chain length.

The DMFT self-consistency is then achieved cutting the impurity Green’s function, obtained

with an arbitrary number of continued fraction parameters, to the actual number of sites in the

chain, such that the following relation between continued fractions is fullfilled:

t2G(z) = ∆(z)

It is worth to observe that DMRG algorithm is in reality embedded in two outer loops,

namely the DMFT loop and a loop on the adiabatic increasing of the maximum length of the

chain Lmax (finite size algorithm). We shall also point out that the ED-DMRG method makes

no a priori approximations and is only limited by the number of sites in the effective bath that

can be handled, for calculation time reasons. In practice, we use up to 50 sites to represent the

bath.

2.5 Conclusions

In this chapterwe have introduced themain theoretical tool used throughout this thesis, namely

the Dynamical Mean Field Theory (DMFT). This method was developed in the last 20 years to
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2. Theoretical framework: DMFT

deal with strongly correlated electron models.

Before entering in the details of this theory, we reviewed classical Weiss mean field theory

for spin models, focusing on the ferromagnetic Ising model. We derived the main equations

for this theory using first standard heuristic arguments and, later, using the so-called cavity

method construction.

In the next part of the chapter we introduced the main concepts of DFMT. Using the cav-

ity method we derived the expression of the effective action describing the local physics of a

tagged single site interacting with the an effective electronic bath replacing the initial many-

body problem. To close the DMFT equation, i.e. to determine the local Weiss field describing

the single site quantum fluctuations, we have derived the self-consistency condition, connect-

ing the Weiss field to the local lattice Green’s functions. The derivation of this relation was

made possible by the use of the infinite dimensionality limit, that is necessary to reduce the full

many-body problem to a local one.

We have illustrated then the intimate connection of the obtained local problem with quan-

tum impurity models. This was used to obtain a simple physical interpretation of the theory,

in terms of an effective quantum impurity interacting with conduction electrons. Finally we

explained the iterative algorithm that should be used to obtain the solution of the DMFT equa-

tions and reviewed several techniques implementing this algorithm.
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Periodic Anderson Model
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Heavy fermion compounds are metallic alloys formed by rare-earths or actinides, e.g. Ce,

U or Yb. One of the characteristic features of these compounds is the presence of large local

magnetic moments from the f -orbitals and wide conduction bands formed by the s/p-orbital

electrons. Being the number of local moments often of the same order of the lattice sites, the

microscopic derivation of the heavy fermion description should be based on suitable extensions

of the single impurity models, e.g. the Kondo lattice model (KL). This latter represents the most

natural generalization of the Kondo impurity model to concentrate systems [36]. In its simplest

form the KL model describes electrons in a conduction band locally coupled to the magnetic

moments of a lattice of impurities. Within this model a first description of the competition

betweenmagnetic orders and local Kondo effect has been achieved and summarized in the well

known “Doniach” diagram [21]. The Kondo lattice picture is neverthelessmore appropriate for

nearly integer valence systems, inwhich the f -orbital electron are extremely localized. Relaxing

this hypothesis would lead us to consider a more general model, namely the periodic Anderson
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3. Periodic Anderson Model

model. The Kondo lattice model can be thought as the large U effective model of the PAM.

More formally it is possible to deduce the KL model from the PAM using a suitable extension

of the Schrieffer-Wolff transformation, holding for the single impurity Anderson model [84].

With respect to the KL, periodic Anderson model is able to capture the essential physics of

heavy fermions compounds having also more mixed-valence character. Its great generality is

accompanied by awide class of behavior and regimes, that up to nowhave not been completely

cleared out.

In Sec. 3.1 we shall introduce and discuss the periodic Anderson model, namely the main

model used in this thesis. After having derived the general equations of the model, we will

discuss two non-trivial solvable limits. In Sec. 3.2 we will present the derivation of the Dynam-

ical Mean Field equations for the paramagnetic periodic Anderson model. In Sec. 3.3 we shall

obtain an expression for the internal energy of the model, in the framework of DMFT. This will

be used in the following chapters to get some thermodynamical quantities such specific heat.

The extension of the mean field equations to the case of long range magnetic ordering or in

presence of external magnetic field are briefly discussed in Sec. 3.3. Finally an overview of the

main concepts introduced in this chapter is given in section Sec. 3.4

3.1 Periodic Anderson Model and some solvable limits

Periodic Anderson model is one among the simplest strongly correlated electrons model. In

its minimal form PAM describes one conduction band formed by independent electrons with

dispersion ǫ(k), hybridizing thru an amplitude Vpd with a lattice of non-dispersive electrons

experiencing a strong on-site repulsion due to Coulomb interaction U. The periodic Anderson

model Hamiltonian can be written as:

H̃ = H − µN =− ∑
<ij>σ

tij(p
+
iσpjσ + h.c.) +

(
ǫp − µ

)
∑
iσ

npiσ

+ (ǫd − µ) ∑
iσ

ndiσ + Vpd ∑
iσ

(
d+
iσpiσ + p+

iσdiσ
)

+ U∑
i

(
ndi↑ − 1

2

) (
ndi↓ − 1

2

)
(3.1)

Note that, despite the fact we shall deal with heavy fermion systems (usually involving p-

and f -orbital electrons), we are using here a transition metal oxides notation. So that piσ and

p+
iσ are the destruction and creation operators corresponding to the conduction band electrons.

These electrons have an energy ǫp and an hopping amplitude tij. For sake of simplicity we will

assume that the hopping is isotropic and homogeneous, tij = tδij. The operators diσ and d+
iσ

destructs and creates electrons in the d-orbital with an energy ǫd. Without any loss of gener-

ality we will assume throughout this work that ǫd = 0. The strong local Coulomb interaction
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3.1. PAM and solvable limits

Figure 3.1: Schematic representation of the periodic Andersonmodel on a Bethe lattice with z =

3. Each lattice site (full black circles) hybridizes locally with the on-site d-orbital (gray circle).

The hybridization is indicated with the double dotted-dashed red line while the amplitude is

indicated with V. Two electrons on the d-orbital experience a Coulomb repulsion U, while the

hopping amplitude between the p-orbitals at neighboring sites (black lines) i and j is tij = tδij.

experienced by the more localized electrons is modeled by the Hubbard term in U, express-

ing the cost of double occupy d-sites. Vpd is the hybridization amplitude between the p- and

d-orbitals, namely it express’ the probability for a conduction band electron to hop in to the

localized d-orbital and vice-versa. It is worth to note that the interaction term used here has the

so-called “magnetic” form. This is particularly suitable to study the physics at or near the Mott

transition. In such a regime in fact this term approximately vanish at the Hartree-Fock level. In

Fig. 3.1 we show a schematic 3-dimensional representation of the PAM on the Bethe lattice.

An important paramater used to characterize the various regimes of the PAM is the energy

separation between the conduction band and the d-orbital energy level. This quantity defines

the bare charge-transfer energy ∆0 = |ǫp − ǫd| of the model. We shall see in the following, that

this value is modified as effect of finite hybridization, so that even in the non interacting limit

∆0, does not provide a good estimate for the charge-transfer energy and should be substituted

with a more appropriate expression.

In order to obtain the general expression of the PAM Green’s function let us introduce the

self-energy matrix Σ̂(k, iωn). In the normal phase and in presence of only one interaction term,
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this matrix reads:

Σ̂(k, iωn) =

(
Σdd(k, iωn) 0

0 0

)
. (3.2)

Then, we observe that in the operator basis corresponding to the pure (i.e. non-mixed) elec-

tronic state described by the operators piσ, p+
iσ and diσ, d+

iσ the non-interactingmatrix propagator

is non diagonal and reads:

Ĝ−1
0 (k, iωn) =

(
iωn + µ − ǫd Vpd

Vpd iωn + µ − ǫp − ǫ(k)

)
(3.3)

where ǫ(k) is the band dispersion, defined as the Fourier transform of the hopping term tij:

ǫ(k) = ∑
|i−j|

e−ik·|i−j|tij .

Lattice Green’s functions are obtained making use of the Dyson equation:

Ĝ(k, iωn)
−1 = Ĝ−1

0 (k, iωn)− Σ̂(k, iωn) (3.4)

that component by component reads:

G−1
pp (k, iωn) = iωn + µ − ǫp − ǫ(k) −

V2
pd

iωn + µ − ǫd − Σ(k, iωn)

G−1
dd (k, iωn) = iωn + µ − ǫd − Σ(k, iωn) −

V2
pd

iωn + µ − ǫp − ǫ(k)

G−1
pd (k, iωn) = G−1

dp (k, iωn) =
(iωn + µ − ǫd − Σ(k, iωn))

Vpd
G−1

pp (k, iωn)

Note that, being interested here in the paramagnetic phase of the model, all the spin indices

have been dropped.

Beside these quantities it is worth to define an “effective” self-energy for the conduction

band electrons Σpp(k, iωn). This function describes the interaction processes that the p-electrons

undergo through the hybridization with the correlated d-electrons:

Σpp(k, iωn) =
V2
pd

iωn + µ − ǫd − Σ(k, iωn)
(3.5)

It is important to stress that this quantity does not define an independent self-energy, even if

it formally satisfies a Dyson equation. Fixed the self-energy corresponding to the interaction

term in the Hamiltonian, this function is uniquely determined.

The local lattice Green’s functions are obtained performing the summation over momenta

k. This sum can be transformed into an energy integral introducing the non-interacting density

of states ρ0(ε) = ∑k δ(ε − ǫ(k)):

Gαα(iωn) =
1
N ∑

k

Gαα(k, iωn) =
∫

ρ0(ε)Gαα(ǫ, iωn)dε (3.6)

with αα = pp, dd.
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3.1.1 Non-interacting limit

We start this brief analysis of the solvable limits of the model with the simple case of no in-

teraction, i.e. U = 0. The solution of the model in this limit is rather simple, consisting in the

diagonalization of Hamiltonian (3.1). This can be done in any dimension and for any lattice

structure. The non-interacting model describes a system of two hybridized one-particle bands,

determined by the eigenenergies of the model Hamiltonian:

E±(k) =
1
2

(
ǫd + ǫp + ǫ(k) − 2µ ±

√
(ǫ(k) − ∆0)2 + 4V2

pd

)

In Fig. 3.2 we present a summary of the solution of the model in the 1-dimensional case with

cosine dispersion, while in Fig. 3.3 we report the k-dispersion of the spectral density. It is

interesting to observe that the spectral weight is redistributed among the two hybridized bands

in such a way that near the indirect gap the solution has more d-character, cf. Fig. 3.3.

As effect of the hybridization the “bare” charge-transfer energy ∆0 is renormalized to a

greater value, that can be estimated as the difference between the centers of mass of the two

hybridized bands: ∆ ∼ E+ − E− > ∆0. This should be kept in mind at the time of studying the

effects of the correlation.

The Green’s functions of both the electronic species can be obtained form the expressions

already derived in the previous section and read (z ∈ C and αα = pp, dd):

Gαα(k, z) =
Zαα,+(k)

z + µ − E−(k)
+

Zαα,−(k)

z + µ − E−(k)

where the “residues” at the poles Zαα,σ have the form:

Zdd,±(k) = Zpp,∓(k) =
1
2


1∓ ǫ(k) − ∆0√

(ǫ(k) − ∆0)2 + 4V2
pd




The non-interacting limit of the periodic Anderson model can be used as a basic model to de-

scribe the renormalization of the effective mass due to the hybridization. The analytic solution

(in the infinite dimension limit) will be of much important in the following of this thesis.

3.1.2 Atomic limit

The second solvable limit consist in the solution of the periodic Anderson model with a van-

ishing hopping of the conduction electrons (atomic limit): tij = 0, or in the limit t/U → 0.

In this limit the model reduce to a set of disconnected “dimers” (two sites model) formed by

one p-orbital hybridizing with a d-orbital thru an amplitude Vpd. A correlation term U is also

present on sites d.
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Figure 3.2: The figure illustrates the non-interacting solution of the PAM in 1-dimension and

with a dispersion ǫ(k) = −2 cos(k). Top left panel: solid lines are the two eigenenergies

E±(k) for U = 0, ∆0 = 0.25, tpd = 0.5. Dashed lines correspond to the bare dispersion of the

conduction band and the correlated electrons level for tpd = 0. Top right panel: density of

states for the p and d electrons, red and black line resp. for the same model parameters as in

the left panel and a value of the chemical potential such that np + nd = 3. At the boundary

of the DOS van-Hove singularities are well evident. Note that the hybridized bands are now

separated by a large gap ∆ > ∆0 = |ǫp − ǫd|. Bottom panel: particle occupation nd (black line),

np (red) and ntot (green) as a function of the chemical potential for U = 0, ∆0 = 0.25, tpd = 0.5.
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-2 -1 0 1E(k)

-π

π
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Figure 3.3: Evolution of the spectral density of the non-interacting model in 1-dimension with

cosine dispersion as a function of k. The figure shows in a direct way how the correlated

character is redistributed among the two hybridized bands E±(k). The larger renormalization

of the mass, as effect of the hybridization only, corresponds to more the pronounced peak

appearing where the bands are more flat.
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3. Periodic Anderson Model

In this limit, a four dimensional Hilbert space is associated to each site of the dimer. Thus,

the total Hilbert space has dimension N = 16. The model Hamiltonian is represented by a

sparse 16× 16 matrix, that can be solved with no effort by any mathematical software.

Nevertheless, as the model Hamiltonian commutes with the total number of particle op-

erator N̂, with the total spin operator Ŝ and with the spin projection operator Ŝz it can be

represented in a blocks form, each of which corresponds to a sector of the Hilbert space with a

given set of quantum numbers, [66].

We shall adopt the following shorthand notation to indicate the state vectors:

|d↑d↓; p↑p↓〉 = d+
↑ p+

↑ d
+
↓ p

+
↓ |0〉

thus, for example the state with two electrons in the d-orbital and one electrons with spin ↑ in

the p-orbital reads:

| ↑↓; ↑〉 = d+
↑ p+

↑ d
+
↓ |0〉

• N=0, N=4

The model reduce in both cases to a one-dimensional problem. The empty case has zero

energy E = 0 and the eigenstate is |0〉. The completely filled case has E = 2ǫp + 2ǫd + U

while the eigenstate is | ↑↓; ↑↓〉.

• N=1

The one-particle sector has dimension 2, states are classified in a doublet with Sz = ±1/2.

The matrix Hamiltonian is represented in this sector as:

H =

(
ǫd Vpd

Vpd ǫp

)
(3.7)

The eigenenergies are obtained solving the secular equation: H|d; p〉 = E
(1)
± |d; p〉

E
(1)
± =

1
2

[
ǫp + ǫd ±

√
∆2
0 + 4V2

pd

]

The corresponding eigenstates are expressed as suitable linear combination of the one p-

or one d-electron states with suitable spin value:

|E(1)
+ , σ〉 =

1
N (1)

[
−γ(1)|σ; 0〉 + |0; σ〉

]
(3.8)

|E(1)
− , σ〉 =

1
N (1)

[
|σ; 0〉 + γ(1)|0; σ〉

]
(3.9)

with

γ(1) =
2Vpd

∆0 +
√

∆2
0 + 4V2

pd

, N (1) =

√
1+ γ(1)2
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3.1. PAM and solvable limits

• N=3

The solution of the model in this sector proceeds in the very same way as the previous

case with N = 1. The three-particles (one-hole) sector has dimension 2 and the states can

be classified in a doublet. The matrix is reduced to a 2× 2 matrix of the form:

H =

(
ǫp + 2ǫd + U Vpd

Vpd 2ǫp + ǫd

)
(3.10)

The eigenenergies are:

E
(3)
± =

1
2

[
3ǫp + 3ǫd + U ±

√
(∆0 + U)2 + 4V2

pd

]

while the eigenstates are obtained as linear combination of the three electron states:

|E(3)
+ , σ〉 =

1
N (3)

[
−γ(3)| ↑↓; σ〉 + |σ; ↑↓〉

]
(3.11)

|E(3)
− , σ〉 =

1
N (3)

[
| ↑↓; σ〉 + γ(3)|σ; ↑↓〉

]
(3.12)

where the coefficients are expressed as:

γ(3) =
2Vpd

∆0 −U +
√

∆2
0 + 4V2

pd

, N (3) =

√
1+ γ(3)2

• N=2

The spin symmetry can be used to classify the states within this sector. Total spin operator

has eigenvalues s = 0, 1 thus the states can either be triplets or singlets. In the former case

the spin part of the wave-function is symmetric, thus the interactionU play no role in the

system, i.e. double occupancy of d-orbital is forbidden by Pauli principle. The S = 1

Hamiltonian reads:

H =




ǫp + ǫd 0 0

0 ǫp + ǫd 0

0 0 ǫp + ǫd


 (3.13)

The eigenstates are all degenerate with an energy E = ǫp + ǫd, but they can be labelled

by the spin projection quantum number:

|n = 2, sz = −1〉 = | ↓; ↓〉 (3.14)

|n = 2, sz = 0〉 =
1√
2

[| ↑; ↓〉 − | ↓; ↑〉] (3.15)

|n = 2, sz = 1〉 = | ↑; ↑〉 (3.16)
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3. Periodic Anderson Model

On the other hand the case S = 0 is more interesting. The representation of the Hamilto-

nian is a 3× 3 matrix of the form:

H =




2ǫd + U
√
2Vpd 0√

2Vpd ǫp + ǫd
√
2Vpd

0
√
2Vpd 2ǫp


 (3.17)

Eigenenergies are obtained solving a third order secular equation. of the form:

E3 + aE2 + bE + c = 0

that after some length but straightforward algebra can be re-expressed in the form:

z3 + pz = q

with z = x+ a/3, p = b− a2/3 and q = 2a3/27− ab/3+ c. Now imposing that p/3 = uv

and that z− u− v the equation assume the, more natural, form: u3 − v3 = q or:





u6 − qu3 −
( p
3

)3
= 0

v =
p

3u

(3.18)

having the following, formal, solutions:

u =

(
q

2
±
√( q

2

)2
+
( p
3

)3
)1/3

(3.19)

The eigenenergies E(2)
1 , E(2)

2 , E(2)
3 are the 3 solutions from (3.19) and one can suppose to

order them such that E(3)
1 ≤ E

(2)
2 ≤ E

(2)
3 . The eigenstates can then be written as a linear

combination of basis vector of the singlet subspace:

|E(2)
k 〉 = α

(2)
k | ↑↓; 0〉 − β

(2)
k (| ↑; ↓〉 − | ↓; ↑〉) + γ

(2)
k |0; ↑↓〉

where k = 1, 2, 3 and the coefficients are, [66]:




α
(2)
k =

2Vpdβ
(2)
k

E
(2)
k − 2ǫd −U

β
(2)
k =



(

2Vpd

E
(2)
k − 2ǫd −U

)2

+

(
2Vpd

E
(2)
k − 2ǫp

)2

+ 2



−1/2

γ
(2)
k =

2Vpdβ
(2)
k

E
(2)
k − 2ǫp

(3.20)
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3.2. DMFT solution of PAM

3.2 DMFT solution of PAM

There are several different approach one can use to tackle the problem of the solution of the

periodic Anderson model, such as perturbative expansions in terms of the hybridization, or

mean-field approaches like slave-bosons or furthermore variational based calculations. All

these approaches have different drawbacks that make sometime the solution available only

under particular regimes. In recent years a powerful technique has been developed to solve

strongly correlated electron model, based on the expansion around the infinite coordination

number limit, z → ∞, of 1/z. In particular it can be demonstrated the locality, i.e. momentum

independence, of the irreducible self-energy [60]:

Σ(k, iωn) −−→
z→∞

Σ(iωn) (3.21)

It is worth to note that, despite the advantages one can obtain from using the infinite con-

nectivity limit, local interactions like Hubbard U term remain non trivial and thus interesting.

Based on (3.21), Dynamical Mean Field Theory provides a set of closed equation to solve the

interacting problem in a well defined approximation scheme.

The main idea of DMFT is to map the quantum many-body problem posed by (3.1) onto

an effective quantum impurity problem for the correlated d-electrons, supplemented by a self-

consistency condition fixed by requiring to the effective model to replicate the physics of the

original lattice model. The effective problem describes the local quantum fluctuations at an ar-

bitrary d-orbital of the original lattice problem, but neglects all spatial fluctuations. The DMFT

equations for the periodic Andersonmodel can be derived using the same technique presented

in Chap. 2 for the Hubbard model [43, 44, 31]. To simplify the notation let us introduce the

following set of Grassman variables: ψ+
iσ = {p+

iσ, d
+
iσ} and ψiσ = {piσ, diσ}. The action corre-

sponding to the model Hamiltonian (3.1) reads:

S =
∫ β

0
dτ

(

∑
iσ

ψ+
iσ(τ) (∂τ − µ) ψiσ(τ) + H(ψ+

iσ,ψiσ)

)
(3.22)

We shall now derive the effective action for the PAM using the cavity method. We pick out

one single site/dimer of the lattice, say i = 0, and integrate out all the remaining electronic

degrees of freedom. To take advantage of the matrix notation introduced above, we perform

this integration in two steps. First we integrate out all the lattice degrees of freedom with the

exception of single tagged “dimer”. Later we shall integrate out the non-correlated orbital

degrees of freedom to obtain a single site effective theory. The first integration reads:

1
Zeff

e−S′eff[ψ
+
oσ,ψoσ] =

1
Z

∫
∏
i 6=o,σ

Dψ+
iσDψiσe

−S (3.23)
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3. Periodic Anderson Model

Proceeding as done for the Hubbard model we separate the action (3.22) in three terms:

S = So + S(o) + ∆S, respectively the action of the local site (dimer), the action of the lattice

without the tagged site and the terms connecting the site with the rest of the lattice.

So =
∫ β

0
dτ ∑

σ

ψ+
oσ(τ)

(
∂τ + ǫp − µ Vpd

Vpd ∂τ + ǫd − µ

)
ψoσ(τ) +

∫ β

0
dτ Uñdo↑(τ)ñdo↓(τ)

S(o) =
∫ β

0
dτ ∑

i 6=o,σ
ψ+
iσ(τ)

(
∂τ + ǫp − µ Vpd

Vpd ∂τ + ǫd − µ

)
ψiσ(τ)

−
∫ β

0
dτ ∑

i,j 6=o,σ
ψ+
iσ(τ)

(
tij 0

0 0

)
ψjσ(τ) + h.c. +

∫ β

0
dτ U ∑

i 6=o

ñdi↑(τ)ñdi↓(τ)

∆S = −
∫ β

0
dτ ∑

iσ

ψ+
iσ(τ)

(
tio 0

0 0

)
ψoσ(τ) + h.c.

= −
∫ β

0
dτ ∑

iσ

(
c+iσ(τ)ηi(τ) + η+

i (τ)ciσ(τ)
)

(3.24)

where ñdiσ = ndiσ − 1/2. Using this decomposition, the equation (3.23) becomes formally

identical to the corresponding expression obtained in Chap. 2 for the Hubbard model. Thus,

the same considerations apply taking the infinite coordination number limit. We obtain the

following expression for the effective action S′eff:

S′eff = −
∫ β

0
dτ
∫ β

0
dτ′ ∑

σ

ψ+
oσ(τ)G−1

0 (τ, τ′) ψoσ(τ′) + U
∫ β

0
dτ ñdo↑(τ)ñdo↓(τ) (3.25)

On the Bethe lattice the matrix G−1
0 reads:

G−1
0 (iωn) =

(
iωn + µ − ǫp − t2 Gpp(iωn) Vpd

Vpd iωn + µ − ǫd

)
(3.26)

Where Gpp(iωn) is the local Green’s function of the conduction band electrons, describing the

quantum fluctuations of the p-electrons at a given lattice site.

Finally we can obtain the single orbital effective action integrating out the contribution of

the non-correlated p-orbital. This integration is straightforward and gives:

Seff = −
∫ β

0
dτ
∫ β

0
dτ′ ∑

σ

d+
σ (τ)G−1

0 (τ − τ′)dσ(τ′) + U
∫ β

0
dτ
[
nd↑(τ) − 1

2

] [
nd↓(τ) − 1

2

]
(3.27)

The action (3.27) is written in terms of the operators corresponding to the d-orbital of an arbi-

trary site of the lattice. The bare propagator G−1
0 (iωn) in (3.27) represents the local Weiss field,

describing the quantum fluctuations at the correlated orbital of an arbitrary site of the lattice.
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3.2. DMFT solution of PAM

This function is the main unknown of the DMFT scheme and its functional expression depends

on the initial lattice structure. In the case of the Bethe lattice this function reads:

G−1
0,dd(iωn) = iωn + µ + ǫd −

V2
pd

iωn + µ + ǫp − t2Gpp(iωn)
(3.28)

The previous expression of the Weiss field put in evidence the relation between the d-orbital

and the conduction band electrons at the p-orbitals. The electrons at the correlated orbitals can

delocalize thru the lattice only hybridizing with the conduction band electrons. It is worth to

recognize in the denominator in the r.h.s of (3.28) the “Weiss field of the p-electrons”. Thus, in

terms of the effective single impurity Anderson model, the following relation holds:

∆(iωn) =
V2
pd

iωn + µ + ǫp − t2Gpp(iωn)

It remains to obtain an expression for the conduction band electron local Green’s function.

This can be readily done using relations (3.4), (3.5) and the non-interacting Bethe lattice DOS

ρ0(ǫ) = 1
2πt2

√
4t2 − ǫ2:

Gpp(iωn) =
∫

R

ρ0(ε)dε

iωn + µ − ǫp − Σpp(iωn) − ǫ

= D̃
(
iωn + µ − ǫp − Σpp(iωn)

) (3.29)

The p−electron local Green’s function Gpp(iωn) indirectly depends on the local self-energy

Σ(iωn). Thus, to close the DMFT equation it is necessary to obtain the solution of the effective

impurity problem defined by (3.27) and to determine the local self-energy:

Gdd(iωn) = −〈d(iωn)d
+(iωn)〉Seff

Σ(iωn) = G−1
0 (iωn) − G−1

dd

The iterative solution of theDMFT equations startswith a guess on theWeiss field G−1
0 (iωn),

this fixes the effective quantum impurity problem to solve. The solution of this problem,

achieved using an appropriate solver (cf. Chap. 2), permits to get the local Green’s function of

d-orbital electrons Gdd and the local self-energy Σ(iωn) using the Dyson equation. The knowl-

edge of this latter function is sufficient to determine the p-electron local Green’s function and

finally to update the Weiss field (3.28). The process should be iterated until convergence to a

self-consistent solution is achieved. Convergence is in fact a highly non trivial problem to an-

alyze. The iteration-substitution scheme used to obtain DMFT solution defines a discrete non-

linear dynamical system, whose convergence should in principle checked each time by small

changing the initial conditions (i.e. the guess). In practice the method is sufficiently stable and

reliable to require this analysis only near critical regimes, i.e.where locating the local minima of
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3. Periodic Anderson Model

the free energy can be numerically hard to accomplish. At the self-consistent point the Green’s

functions of the effective impurity model should correspond to the local Green’s functions of

the original lattice problem. In a more schematic fashion the DMFT iterative solution scheme

is resumed in Fig. 3.4.

Figure 3.4: DMFT iterative scheme for periodic Anderson model: starting from a guess for the

Weiss field G−1
0 (iωn) it is possible to solve the (effective) impurity problem. This will produce

an impurity Green’s function Gdd(iωn) and the local self-energy Σ(iωn). This will uniquely

determine the local conduction electrons Green’s functions Gpp(iωn). This latter is needed to

update the Weiss field using the self-consistency relation and restart the full procedure.

3.3 Internal energy

Beside the calculation of local spectral properties, the DMFT approach can also be used to eval-

uate, in the z → ∞ limit, interesting thermodynamical quantities. Thermodynamical observ-

ables can be deduced as derivatives of the internal energy Ω, that can be expressed in terms of

local Green’s functions only. In this respect, the evaluation of the internal energy does not pose

any serious theoretical problem within DMFT framework, being the local Green’s function the

direct output of the DMFT equations.

We shall now derive a suitable expression for the internal energy of the periodic Anderson

model in the infinite dimensions limit [98]. From the definition of internal energy [57, 38] and

the expression of the model Hamiltonian (3.1), one has:

Ω = T lim
η→0+

∑
n

eiωnηE(iωn) (3.30)

where the functional E(iωn) is a shorthand notation for all the lattice sums of the thermal
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averages of the different terms appearing in (3.1). Recalling that

G(k, iωn) =
∫ β

0
dτeiωnτ〈Tτ

(
c+k (τ)ck(0)

)〉 ,

it becomes possible to express E(iωn) as a sum of different contributions, modulo unessential

constants:

E(iωn) = Ekin + Epot + Epot + Eε + Eµ

where, using equation of motions arguments, one has respectively:

Ekin = ∑
k,σ

ǫ(k)Gpp(k, iωn)

Epot = ∑
k,σ

Σ(iωn)Gdd(k, iωn) ≡ U〈nd,↑nd,↓〉 −U〈nd〉/2

Ehyb = ∑
k,σ

tpd
(
Gpd(k, iωn) + Gdp(k, iωn)

)

Eε = ∑
k,σ

ǫpGpp(k, iωn) + ǫdGdd(k, iωn)

Eµ = −∑
k,σ

µ
(
Gpp(k, iωn) + Gdd(k, iωn)

)

(3.31)

The off-diagonal Green’s function Gpd(k, iωn) can be expressed in terms of the p−electron

Green’s function.

Gpd(iωn) =
Vpd

iωn + µ − ǫd − Σ(iωn)
Gpp(k, iωn) (3.32)

We shall now proceed to the evaluation of all the k-sums appearing in (3.31). This will

permit to deal with local quantities only. We start from the hybridization term. Summing the

previous equation (3.32) over the wave-vector k one obtains:

Ehyb = 2Σpp(iω)Gpp(iωn) .

where the factor 2 comes from the equality Gpd(iωn) = Gdp(iωn) and Gpp(iωn) is given by

equation (3.29).

On the other hand the k-sum appearing in the kinetic energy contribution, involving the

dispersion relation, can be evaluated by expressing it in terms of energy integral and the use of

simple algebraic relations to improve convergence of the Matsubara sums (cf. (3.30)):

Ekin =
∫

R

dε
ερ0(ε)

iωn + µ − ǫp − Σpp(iωn)− ε

= iωn(Gpp(iωn)− D̃(iωn)) + (µ − ǫp)Gpp(iωn) +
∫

R

dε
ρ0(ε) ε

iωn − ε

(3.33)

Finally, noting that:

T lim
η→0+

∑
n

eiωnηG(iωn) = n(T)

73
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and that

∑
n

∫

R

dεF(ε)
1

iωn − ε
=
∫

R

dεF(ε) ∑
n

1
iωn − ε

=
∫

R

dεF(ε)nF(ε; T) ,

where nF is the Fermi momentum distribution function, we are able to perform the Matsubara

sums in equation (3.30), term by term obtaining:

E f ree =
∫

R

dερ0(ε) εnF(ε; T)

Ekin = E f ree + (µ − ǫp)np(T) + T lim
η→0+

∑
n

eiωnηiωn(Gpp(iωn) − D̃(iωn))

Ehyb = 4T lim
η→0+

∑
n

eiωnηΣpp(iωn)Gpp(iωn)

Epot = TU〈nd,↑nd,↓〉(T) − 1
2
TUnd(T)

Eε = ǫpnp(T) + ǫdnd(T)

Eµ = −µ(np(T) + nd(T))

(3.34)

The internal energy of the periodic Anderson model in the DMFT framework is given by the

sum of all the terms appearing in (3.34):

Ω = Ekin + Ehyb + Epot + Eε + Eµ

Operatively the evaluation of the previous Matsubara sums in (3.34) may result quite compli-

cated, due to the very slow decay of some functions. Thus it becomes mandatory to use the

largest possible number of Matsubara frequencies to perform the sums, in relation with the

given value of the temperature. Beside this also some other expedients have to be taken into

account to improve the calculation, such as integration of the tails (i.e. mean field subtraction).

3.4 Long range order DMFT equations

3.4.1 Antiferromagnetic order

The DMFT equations are easily extended to cover phases with long range magnetic orders,

such as the antiferromagnetic or the ferromagnetic one. As this latter requires only to include

the linear coupling to the homogeneous magnetic field into the self-consistency condition [31],

we will discuss with more details the case of the antiferromagnetic order.

Let us consider the response of the lattice problem to a staggered magnetic field inducing

an antiferromagnetic order. In the Nèel phase one can consider two nested sublattices A and

B such that conduction electrons on sublattice A hop to sites in sublattice B, vice-versa. In this
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3.4. Long range order DMFT equations

situation the Hamiltonian 3.1 takes the form:

H̃ = H − µN = − ∑
<ij>σ

tij(p
+
AiσpBjσ + h.c.) + ∑

iσα=A,B

(
ǫp − µασ

)
npiσα

+ ∑
iσα=A,B

(ǫd − µασ) ndiσα +Vpd ∑
iσα=A,B

(
d+
iσαpiσα + p+

iσαdiσα

)

+U ∑
iα=A,B

(
ndi↑α − 1

2

) (
ndi↓α − 1

2

)
(3.35)

where the coupling to the staggered magnetic field Bi = ±B (everywhere will be clear its

distinction from the sublattice label), for i ∈ A, B respectively, has been absorbed into the

chemical potential, µσα = µ + σhwith h = gµBB/2 and µB the Bohrmagneton. Then to simplify

the notation one can introduce suitable Grassman variables ψkσ = (pkσA, pkσB, dkσA, pkσB). The

action of the model will reads in terms of these variables as:

SAF =
∫ β

0
dτdτ′ ∑

kσ

ψ+
k,σĜ

−1
0,k,σψk,σ + U

∫ β

0
dτ ∑

i,α=A,B

(
ndi↑α − 1

2

) (
ndi↓α − 1

2

)

Where the bare propagator is represented in matrix form as:

Ĝ−1
0,k,σ =




iωn − ǫp + µAσ −ǫ(k) −Vpd 0

−ǫ(k) iωn − ǫp + µBσ 0 −Vpd

−Vpd 0 iωn − ǫd + µAσ 0

0 −Vpd 0 iωn − ǫd + µBσ




(3.36)

We can proceed in the same way we did for the paramagnetic case to obtain the general form

of the Green’s functions of the model in the antiferromagnetic phase. Let us consider the self-

energy matrix Σ̂σ(k, iωn). In the limit of infinite dimension this function lose its dependence

on the momentum k. Then, the lattice Green’s function are obtained by means of the Dyson

equation:

Ĝ−1
σ (k, iωn) = Ĝ−1

0,σ(k, iωn)− Σ̂σ(iωn) (3.37)

The element by element expressions corresponding to this equation are greatly simplified with

the introduction of the following compact notations:

αA,B = iωn − ǫp + µA,Bσ

γA,B = iωn − ǫd + µA,Bσ − ΣA,B,σ(iωn)

ζA,Bσ = αA,B −
V2
pd

γA,B
= iωn − ǫp + µA,Bσ −

V2
pd

iωn − ǫd + µA,Bσ − ΣA,B,σ(iωn)

(3.38)

The inverting of the matrix defined in (3.37) is straightforward and lead to the following ex-

pression for the lattice Green’s function of the conduction band electrons in a given sublattice,
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3. Periodic Anderson Model

say A:

Gpp,A,σ(k, iωn) =
γA(αBγB −V2

pd)

V4
pd −V2

pd(αAγA + αBγB) + γAγB(αAαB − ǫ(k)2)

=
αB −V2

pd/γB

V4
pd

γAγB
−V2

pd

(
αA
γB

+ αB
γA

)
+ αAαB − ǫ(k)2

=
ζB,σ

ζA,σζB,σ − ǫ(k)2

(3.39)

At this point it is necessary to observe that in the operators base used for the bipartite lattice

structure, a special symmetry for the lattice functions holds. In particular:

ΣA,−σ(iωn) = ΣB,σ(iωn) = Σσ(iωn) (3.40)

and thus:

ζA,−σ = ζB,σ = ζσ .

This symmetrymay be used to restore the “locality” of the equations and permits to deal with a

given sublattice at time (e.g. A), greatly simplifying solution of the problem and the evaluation

of the local Green’s functions.

The conduction band electrons local Green’s function Gpp,σ(iωn) is thus obtained by inte-

grating over all the momenta in the reduced Brillouin zone the expression in (3.39):

Gpp,σ(iωn) =ζ−σ

∫

R

dε
ρ0(ε)

ζσζ−σ − ε

=

√
ζ−σ

ζσ
D̃(
√

ζσζ−σ)

(3.41)

The self-consistency condition finally takes the following expression:

G−1
0 σ (iωn) = iωn + µσ + ǫd −

V2
pd

iωn + µσ + ǫp − t2Gpp−σ(iωn)

3.4.2 AFM order and homogeneous magnetic field

The key aspect used in the previous section to derive DMFT equations for the antiferromagnetic

order is the existence of a lattice symmetry related to the bipartite lattice structure, (cf. (3.40)).

By the way, we are eventually interested in studying the effects of an homogeneous magnetic

field on the antiferromagnetically ordered phase. This requires a slightly different implemen-

tation of the self-consistency, that makes no use of the previous symmetry. In this case the

self-consistency condition will retain the full dependence of the local Green’s functions on the

sublattices.
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Figure 3.5: d-electron particle numbers per spin as a function of the DMFT loop. The two plots

compare the behavior of this quantity as obtained with the two methods discussed in the text.

Let us consider an external homogeneous magnetic field Bext, different from the staggered

one introduced before. Then following the calculations illustrated in the previous section, it

should become immediately clear that antiferromagnetic self-consistency condition in the pres-

ence of such an homogeneous magnetic field will consist in a set of two coupled equations for

the Weiss fields (on each sublattice), namely:

G−1
0 A σ = iωn + µA σ + ǫd −

V2
pd

iωn + µA σ + ǫp − t2Gpp B σ(iωn)

G−1
0 B σ = iωn + µB σ + ǫd −

V2
pd

iωn + µB σ + ǫp − t2Gpp A σ(iωn)

(3.42)

where the modified chemical potential now includes the coupling with the external magnetic

field: µA,B σ = µA,B σ + σµBBext/2.

At zero applied field the solutions corresponding to the different self-consistencies should

agree. This is illustrated in Fig. 3.5, where the behavior of the d-orbital particle number per

spin is reported as a function of the DMFT loop. Data are obtained with complete ED calcu-

lations at 1% doping respect the a Mott insulating state (cf. next chapter 3), at zero applied

field. The figures compare, for two values of the temperature, the solution as obtained with the

“antiferromagnetic self-consistency” derived in the previous section, with that obtained using

the coupled “normal self-consistencies” in (3.42). In this latter case the solution oscillates due

to exchanging roles of the A and B sublattices.

Upon increasing the strength of the external homogeneous magnetic field the solution is

expected to fully polarize. For moderate values of it the competition of the antiferromagnetic

and ferromagnetic orders may drive the system critical (cf. Sec. 5.7).
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3.5 Conclusions

In this chapter we have introduced the main model used throughout the rest of this thesis,

namely the periodic Anderson model. This is particularly suited for its application to the

description of heavy fermion systems. The model describes orbital electrons forming a con-

duction band and hybridizing with a set of non-dispersive electrons also experiencing a local

strong interaction. After having introduced the main model and discussed its physical mean-

ing, we studied its solvable limits, namely the non-interacting limit U = 0 and the atomic one,

i.e.with t/U → 0. The former limit permits us to gain physical insight about the formation of

hybridized bands and the mass renormalization due this effect. The latter gave us useful in-

sight on the model in the limit of strong correlation (e.g. physically corresponding to the Mott

insulating phase) and about the structure of the Hilbert space of the model. In order to solve

the model in some controlled approximation scheme we have derived the DMFT equations

for the model using the cavity method and discussed the iterative scheme used to solve them.

As an immediate application of the DMFT framework for the PAM we have illustrated the

derivation of the internal energy expression. This will be used in the following to study some

thermodynamic properties of the model. As a further step we extended the DMFT equation

for the PAM to magnetically ordered phases. Beside the simple case of ferromagnetic order

that does not require particular modification with respect to the paramagnetic case, we have

presented with some details the derivation of the DMFT equation for the antiferromagnetic

ordered phase. Later we have shown how to re-obtain the equations for the antiferromagnetic

phase by making no a priori assumption on the symmetry of the phase. This lead us to a rather

different formulation of the self-consistency condition, allowing us to handle the effect of an

homogeneous external magnetic field on antiferromagnetic order.
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Chapter 4
Mott insulators and metal-insulator

transitions in the periodic Anderson

model
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Normal metals are usually very well described by a standard tight-binding picture. This

is based on the independent particle approximation, for which electrons are treated as single

particles (with renormalized parameters) moving in the periodic potential of the lattice ions. In

this framework the electron-electron interactions are partially screened and the electrons can

be described as travelling waves. The large overlap of the orbital wave functions give rise to

the formation of broad energy bands, associated with a large value of the kinetic energy. In this

picture metals are described as systems with partially filled valence bands, whereas insulators

corresponds to completely filled (or empty) valence bands.

However, there are some materials for which the independent particle picture of itinerant

electrons does not apply. These systems show rather narrow valence bands, due to the small

overlap of d- or f -orbital wave functions. In this situation the electrons can spend most of
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4. Mott insulators and metal-insulator transitions in the PAM

the time around a given lattice ions, feeling a strong electron-electron Coulomb interaction. In

extreme cases the interaction can be so strong to lead to the localization of the electrons.

Thus, tuning the strength of the Coulomb interaction (respect to the kinetic energy) can

transform a metallic systemwith an half-filled valence band into an insulator, i.e. a Mott metal-

insulator transition.

The metal-insulator transition in strongly correlated systems remains one of the central

problems ofmodern condensedmatter physics. In the last 20 years the development of Dynam-

ical Mean Field Theory (cf. Chap. 2) made possible to greatly increase the general knowledge

about this phenomenon.

The minimal model generally used to tackle this problem is the Hubbard model [39, 40, 41].

This describes the competition between kinetic energy gain of conduction band electrons and

local repulsion due to the strong Coulomb interaction. Despite its simplicity the solution of this

model is not known, with the notable exception of the 1-dimensional case and few other exact

results in two dimensions [55].

The DMFT solution of the Hubbard model has made possible the costruction of a scenario

for the Mott transition, today considered as a standard reference. At low temperatures and

moderate interaction, the half-filled Mott insulator may be driven to a correlated metallic state

through a first order transition [78, 76, 31]. This can occur as a function of the correlation

strength, temperature or doping. The first order line ends at finite temperature in a critical

point and the critical region can be described by a Ginzburg-Landau theory [48, 47].

Motivated by the applicability of the periodic Anderson model as a schematic model for

both heavy fermion systems and transition metal oxides, we want here to investigate the PAM

description of Mott insulating states and of the metal-insulator transitions. We shall see that

DMFT solution of the PAM can capture theMott insulating states in the different regimeswhere

this may occur, in agreement with the Zaanen-Sawatzky-Allen (ZSA) diagram [103].

In this diagram the Mott insulating states are classified as either Mott-Hubbard or Charge-

Transfer. The former regime applies to the early transition metal oxides, such as titanates and

vanadates, but we shall demonstrate in the next chapter that it may also be relevant for heavy

fermions. Instead, the CT regime applies to the cuprates, such as the high Tc superconductors,

or manganites [42].

After having established the existence of the Mott insulating state, we shall focus on the

analysis of the (paramagnetic) metal-insulator transitions occurring upon doping the insulator

in the Mott-Hubbard regime. We will find that the nature of the transition driven by either

positive or negative doping can have a different qualitative scenario with respect to the rather

standard one of the Hubbard model. In particular we shall see that in negative doping case,

dubbed type I transition, the scenario is indeed similar to the one realized in the Hubbard
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4.1. PAM description of Mott insulators

model. In the other case, dubbed type II, the correlated metal can not be associated to the

formation of a narrow Kondo-like resonance at the Fermi level and its mass does not diverge

at the transition. Moreover our results indicate that this metal-insulator transition is of second

order as no signs of coexistent solutions were observed. We shall argue that the correlated

metallic state obtained in this latter case can be interpreted as a liquid of “Zhang-Rice” singlets

[104]. The (anomalous) properties of this metallic state will be studied in the next chapter.

In the Sec. 4.1 of this chapter we present and discuss theMott insulating state obtained from

DMFT solution of PAM, in relation with the ZSA diagram. In Sec. 4.2 we discuss the general

features of the metal insulator transition induced by doping the Mott-Hubbard “parent insula-

tor”, with more details for the type II transition. Finally a summary of the results obtained in

this chapter is given in Sec. 4.3

4.1 PAM description of Mott insulators

4.1.1 Zaanen-Sawatzky-Allen diagram

Systems formed by correlated d/ f -orbital electrons and uncorrelated conduction band elec-

trons, such as transition metal oxides or heavy fermions, can describe two different types of

Mott (i.e. correlation induced) insulators. The classification of these insulators is based on the

nature of the lowest energy excitation of the system. In the context of transition metal oxides

this classification posed a long standing problem, that was tackled mainly using effective one-

bandmodel, such as Hubbard, obtaining wrong results about both the nature of the phases and

the size of the gap. Taking into account a more sophisticatedmodel, including a charge-transfer

energy scale ∆ , Zaanen, Sawatzky and Allen [103] have derived a phase diagram U-∆ for the

classification of the Mott insulating states and/or of the transition metal oxides. The ZSA dia-

gram is shown in Fig. 4.1. It describes the different phases of the transition metal oxides, clas-

sifying the correlated insulators (unshaded regions) and the weakly correlated metallic states

(colored regions). The nature of the different regions appearing in this diagram can be under-

stood in terms of the relative values of the interaction U with respect to the charge-transfer

energy ∆. We shall now discuss briefly the nature of the Mott insulating regimes appearing in

the ZSA diagram.

According to this diagram (cf. Fig. 4.1), and assuming the Fermi level lies above both the

conduction band and the lower Hubbard band, a Charge-Transfer insulator is obtained in the

regime U > ∆. In this case the smallest excitation corresponds to the transfer of a charge from

the conduction band to the upper Hubbard band. It is worth underlining that the insulating

character of the solution is independent of the position of the lower Hubbard band, that can

or can not be overlapped with the conduction band. This in fact would not change the nature
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4. Mott insulators and metal-insulator transitions in the PAM

Figure 4.1: ZSA diagram. The Mott-Hubbard and Charge-Transfer insulating phases are ex-

plicitly indicated in the plot. The d-type metallic state (green) is indicated for small U and the

p-type metal (blue) is indicated for small ∆

of the smallest energy gap, see Fig. 4.2. An estimate of this gap is obtained considering the

excitation process of an electron from the conduction band to the d-band. This will correspond

to the creation of a d-type quasi-particle and a p-type quasi-hole. Their delocalization will lead

to a broadening of the corresponding levels. We indicate with Wd and Wp respectively the

bandwidth of d-type and p-type excitation. The energy cost to pay to transfer a charge from

conduction band to the upper Hubbard band, i.e. the activation energy, is thus:

Ae ∼ ∆ − Wp +Wd

2

where ∆ > ∆0 is the energy distance between the center of the conduction band and the upper

Hubbard band. Late transition metal oxides and in particular the parent insulators of the high

Tc superconductors (cuprates), are classified as charge-transfer insulators.

On the other hand the case U . ∆ describes a system where the Mott gap between the

two Hubbard subbands is the smallest energy gap and thus the insulating state is dubbed

Mott-Hubbard. In such systems the correlated Hubbard bands lie near the Fermi level and are

flanked by wider bands. The energy cost of transferring a charge from the lower to the upper

Hubbard bands is roughly:

Ae ∼ U −Wd
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4.1. PAM description of Mott insulators

Figure 4.2: Schematic electronic structure for charge-transfer insulator (top) andMott-Hubbard

(bottom). Ae indicate the activation energy.

The MH insulating state is often associated with the oxides of the early transition metals, such

as vanadates or titanates, but it is also adequate to describe certain heavy fermion compounds,

as will be demonstrated in this thesis. A cartoon of the two different regimes is shown in

Fig. 4.2.

It is important to stress that both MH and CT insulating states result from the strong cor-

relation, i.e. Mott insulators. Analyzing the ZSA diagram in Fig. 4.1 it possible to note the

existence of two distinct metallic phases. One is the weakly correlated d-type metal, appearing

for U < Wd. In this region the correlations are too small to open a Mott gap, independently

of the position of the conduction band (∆). The other is the p-type metallic state, appearing

for ∆ < (Wp + Wd)/2. In this regime the overlap of the conduction band with upper Hub-

bard band prevents the formation of an insulating state for any value of the correlation. The

qualitative analysis that led to the ZSA diagram is confirmed by experiments. In Fig. 4.3 we

present some results obtained with X-ray photoemeission technique on transition metal oxides

all across the d-series, from Ti to Cu. Based on the correlation and charge-transfer values exper-

imentally observed, the compounds have been placed in a U-∆ phase diagram very similar to

the ZSA one. It is interesting to observe that many compounds believed to be of Mott-Hubbard
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4. Mott insulators and metal-insulator transitions in the PAM

Figure 4.3: U-∆ diagram of oxides of transition metals in the d-orbital series from X-ray pho-

toemission measurements, from [8]

type, appears more near to the separation line U = ∆.

4.1.2 Mott insulator within PAM

In this section we will show how the DMFT solution of the periodic Anderson model can de-

scribe the opening of a Mott gap at the Fermi level, i.e. the formation of a Mott insulator, for

sufficiently large values of the correlationU and for different choices of the other model param-

eters. The results are roughly divided in two parts. The first is dedicated to the Mott-Hubbard

(MH) regime while the second is dedicated to the Charge-Transfer (CT). We shall underline the

existence, in the MH regime, of a symmetry of the model with respect to the sign of the charge-

transfer energy ∆ = ǫp − ǫd. Fixed the position of the d-orbitals level ǫd = 0, this symmetry

will corresponds simply to a reflection of the position of the conduction band:

ǫp → −ǫp
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4.1. PAM description of Mott insulators

provided the value of the chemical potential µ is adjusted to have particle-hole symmetry. We

also recall that, due to the non-magnetic form of the interacting term, one expects for suffi-

ciently large U the spectral densities to split into two Hubbard bands around the Fermi level.

4.1.2.1 Mott-Hubbard regime

To begin with we present the formation of the Mott insulating state in the Mott-Hubbard

regime. We first discuss the scenario obtained placing the conduction band below the Fermi

level, with ∆0 = 1. With this choice the conditions for the MH regime are fullfilled already

for an intermediate value of the correlation U. On the other hand, we do not get a vanishing

effective hopping of the correlated electrons te f f ∼ V2
pd/∆, cf. Chap. 3. The charge-transfer en-

ergy appearing in the previous expression for te f f is ∆ ≥ ∆0, where the equality holds only for

vanishing hybridization and correlation. Thus a too large initial value for ∆0 will lead to a too

small (fixed the hybridization amplitude Vpd) te f f that can be hard to handle numerically. The

non-interacting model describes a system of two hybridized bands, one retaining most of the

d-orbital character that we term correlated band and the other with almost only p-character that

we term uncorrelated band. The chemical potential has been adjusted to keep the total filling of

the narrow correlated band equal to one.

Now, we shall show how the expected scenario for the formation of the Mott gap borne out

from the DMFT solution of the periodic Anderson model. In Fig. 4.4 we present the evolution

of the spectral densities of both orbital electrons for an increasing value of the correlation and

half-filling of the correlated band. This provide us direct insight on the nature of the solution.

In the top panel of the figure we report the non interacting (analytic) solution for Vpd = 0.9 and

µ = 0.529, corresponding to ntot = 3. As can be appreciated from the figure, because of the

strong hybridization the spectral weight is redistributed among the two orbitals, such that the

correlated band lies near the Fermi level and bear most of the d−character, whereas the non

correlated band lies at higher energy and retain most of the p-electrons character. Note that the

center of mass of the uncorrelated band is no more placed at ω = −1, as would for Vpd = 0,

but is placed at ω & −2, such that ∆ & 2 > ∆0.

The central panel of Fig. 4.4report the weakly correlated solution obtained forU = 0.8. The

correlated band shows the development of a three peak structure, formed by a large central

resonance at the Fermi level, flanked by the two precursors of the Hubbard subbands. This is

a clear DMFT hallmark of the correlated metallic nature of this state [31]. The DOS has been

obtained by QMC calculation at T = 1/64 and the analytic continuation has been performed

with Maximum Entropy Method. Surprisingly the resonance and the Hubbard subbands are

well visible also in the p-electron weight of the correlated band (red dashed line). This not

expected result for the non-interacting conduction band electrons should be entirely attributed
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Figure 4.4: Evolution of the p- (dashed red line) and d-electron (solid black line) density of states

as a function of increasing correlation. Data are from QMC at T = 1/64, ntot = 3, Vpd = 0.9,

∆ = 1, ǫp = −1. Top panel: non interacting DOS. Central panel: DOS for intermediate value

ofU. The correlated bands at the Fermi level develop the typical three peaks structure. Bottom

panel: Opening of the Mott gap at the Fermi energy indicating the formation of Mott insulating

state. The mismatch on the position and shape of the non-correlated band at large (negative)

energy should be attributed to failure of MEM to describe high energy features.
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to the strong hybridization with the correlated electrons at the d-sites. Thus, the p-electrons

experience an indirect interaction, leading to the formation of structures that are in principle

expected only for correlated electrons.

Finally in the bottom panel we show how the DMFT model solution capture the formation

of a Mott gap at the Fermi energy when the interaction becomes larger than the effective hop-

ping of the d−electron: U & te f f . In particular the figure reports the DOS for a value of the

interaction U = 2. Note that as effect of hybridization, ∆ > ∆0 but U . ∆. As in the cen-

tral panel of this figure, the results have been obtained with a QMC calculation at T = 1/64,

supplemented by MEM to get real axis data.

In this Mott insulating state the DOS consists of three features. At low energy the plot shows

the splitting of the correlated band around the Fermi level into two Hubbard bands, separated

by aMott gap of the orderU. At higher (negative) energy the contribution of the non correlated

band is still visible. On the same line of what has been found for the weak correlated solution

we observe that , despite the p-electrons are non-interacting, the strong hybridization with the

correlated d-electrons induce a splitting in the p-character of the correlated band DOS. Thus,

the systems shows aMott insulating state in both orbitals (no Orbital Selective Mott transition).

We would now comment shortly on the validity of the Maximum Entropy Method. This

method is widely used to perform analytic continuation from imaginary axis data to real axis,

that is where the observables have a physical meaning. MEM being based on probabilistic

inference is not able to reproduce “quantitatively” all the details of the solution, but has a great

qualitative validity [33]. Moreover the MEM gives a quite poor description of the high energy

features, so the position of the non correlated band is not always efficiently described, as it is

evident by comparing the solutions in the central and bottom panel of Fig. 4.4 with the analytic

solution at U = 0. Nevertheless, this method is able to capture the large difference in the

spectral weight distribution as well as the formation of substructures induced by correlation,

that are both of physical importance.

For completeness and to further stress the generality of this scenario about the formation

of Mott insulating state within the PAM, we show the results for the evolution of the DOS in

the (specular) symmetric regime. This latter has been obtained by inverting the position of the

conduction band and by adjusting the value of the chemical potential µ such as to have an half-

filled correlated band, necessary condition for the Mott insulator to form. In the top panel of

Fig. 4.5 we present the DOS for the non interacting solution of themodel. As can be appreciated

by comparing with the solution in the top panel of Fig. 4.4, the inversion of the position of the

uncorrelated band does not affects the spectral weight distribution among the two orbitals. In

the weakly correlated regime (central panel) the characteristic three peaks structure appears,

similar to that observed in the symmetric case already discussed. A narrow resonance shows
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Figure 4.5: Evolution of the p- (dashed red line) and d-electron (solid black line) density of states

as a function of increasing correlation. Data are from QMC at T = 1/64, ntot = 1, Vpd = 0.9,

∆ = 1, ǫp = 1. Top panel: non interacting DOS. Central panel: DOS for intermediate value of

U. The correlated bands at the Fermi level develop the typical three peaks structure. Bottom

panel: opening of the Mott gap at the Fermi energy for large value of the correlation, indicating

the formation of Mott insulating state.

up at the Fermi level, flanked by two substructures that will develop into the Hubbard bands.

The eventual mismatches between the figures shown here and those obtained in the symmetric

regime for ǫp < 0 (Fig. 4.4), should be related to the use of Maximum Entropy Method. Finally

in the bottom panel of Fig. 4.5 we observe how further increasing the correlation produce the

opening of a Mott gap at the Fermi level. As before the DOS in this plot has been obtained for

U = 2. Again the figure shows the existence of three main features to be associated to the lower

Hubbard band, for ω ≃ −0.5, to the upper Hubbard band for ω ≃ 0.5 and to the uncorrelated

band for 1 . ω . 3.

To overcome the limitations of the MEM and to better clarify the insulating nature of the

model solution obtained for large values of the correlation (cf Fig. 4.4 and Fig. 4.5), we shall

now characterize the insulating state from the behavior of the imaginary part of the one par-

ticle Green’s functions for both d- and p-orbital electrons. In Fig. 4.6(a) we present data from

the exact solution at U = 0 and T = 0 of the model, illustrating the metallic nature of the

non-interacting solution. This is signalled by the finite intercepts of both ImGpp(iωn) and
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Figure 4.6: Behavior of the imaginary part of the Green’s function on Matsubara axis for both

electronic species. Red and black lines correspond to p- and d-electrons respectively. (a) illus-

trate the metallic character of the solution at U = 0, T = 0, (b) shows that the existence of an

insulating solution for large correlation. Data are obtained with QMC at T = 1/128 (# and #

for d- and p-electrons resp.) and DMRG at T = 0for the same model parameters as in Fig. 4.4

ImGdd(iωn) at zero frequency, corresponding to the density of states at the Fermi level. On

the other hand, Fig. 4.6(b) shows the vanishing behavior of the same functions for large value

of the correlation. In this plot a correlation U = 2 has been used, corresponding to the solution

in the bottom panel of Fig. 4.4. Data are obtained from both QMC at T = 1/128 (circles) and

DMRG at T = 0. These latter are plotted on a continuous set of frequencies (solid lines). The

excellent agreement between the two methods, at finite and zero temperatures, underline the

correctness of our solutions.

Finally to remark the insulating character of the model solutions illustrated in the previous

paragraph, we present the behavior of the total filling ntot = np + nd as a function of the chem-

ical potential. The goal is to show that in correspondence with the discussed Mott insulating

states, a plateau appears in the ntot(µ) curves at an odd integer value. Mott-Hubbard insulating

state has been obtained adjusting the chemical potential to keep fixed the total filling at ntot = 3

(or ntot = 1), that is the half-filling of the correlated band. Varying the chemical potential inside

the spectral gap does not produce any change in the occupation number. The presence of such

a region of incompressible states, i.e. with κ = ∂n/∂µ = 0, is illustrated in Fig. 4.7. This plot

report the behavior of the total filling in the non interacting limit (black lines) and for a large

value of the correlation U = 2 (red open symbols). The region of variation of the chemical

potential does not cover the full support of the DOS, but it is restricted to an sufficiently large

interval around the Mott gap. The two plots show how the correlation induces the formation
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Figure 4.7: Formation of the Mott insulating state from the behavior of the total number of

particles as a function of the chemical potential, in a small regime around the Mott gap. The

two panel compare the solution for two value of the correlation U = 0 (black line), U = 2

(�). (a) Non interacting solution goes from the completely empty band ntot = 0 up to the band

insulator (BI) at ntot = 2, corresponding to filling up the correlated band. For large U this band

open a gap as illustrated by the red line and symbols (MI). (b) Non interacting solution goes

from band insulator ntot = 2 to the completely filled regime ntot = 4. The large value of U lead

to the formation of a plateau at ntot = 3 (MI).
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4.1. PAM description of Mott insulators

of a region of incompressible states at an integer odd value of the total filling, corresponding to

the half-filling of the correlated band, i.e. ntot = 1 or ntot = 3 respectively for ǫp > 0 or ǫp < 0.

At the boundaries of the two plots the band insulating states, corresponding to completely

filled or empty bands (ntot = 0, 2, 4), are visible.

4.1.2.2 Charge-Transfer regime

In this work we shall focus mainly on the MH regime, motivated by its application to the

description of heavy fermion systems. Nevertheless, we will show in this section how the

DMFT model solution of the PAM capture the formation of a Charge-Transfer insulator. This

could further underline the goodness and the generality of the model solution. Accordingly

to the previous discussion about the classification of the Mott insulating states in the TMO,

we should set ∆ < U in order to place the model in the CT regime (cf Sec. 4.1). To this end

we fixed ∆0 = 0.25 and Vpd = 0.5. This value of the bare charge-transfer energy reveals to be

sufficiently large to place the system out-side the p-type metallic phase, cf. Fig. 4.1. On the

other hand, in this regime U should overcome the value of the charge-transfer energy ∆, so to

exclude numerical difficulties deriving from a too large value of U, we have chosen ∆0 small

enough.

In Fig. 4.8 we demonstrate the formation of a charge-transfer insulating state by means of

the evolution of the DOS as a function of increasing correlation. In the top panel we reported

the spectral densities of both p- and d-electrons, corresponding to the parameters discussed

above and in the non interacting limit. The solution has been obtained at T = 0 and for a

total filling ntot = 3, corresponding to the half-filling of the correlated band (with the same

meaning discussed in the previous section). The hybridization between the two electron or-

bitals lead to the formation of two bands, separated by the indirect gap ∆ ≃ 1 > ∆0. In the

bottom panel we present the DOS for a large value of the correlation, namely U = 3, large

enough to exceed the charge-transfer gap. The solution has been obtained using ED technique

at zero temperature. Its validity has been benchmarked against similar calculation performed

with ED/DMRG, complete ED and QMC. ED and ED/DMRG methods have been used to

overcome difficulties arising from using MEM in regimes with important features appearing

at high energy. The solution shows the existence of a spectral gap at the Fermi level, similar to

that already observed in the Mott-Hubbard case. Here, nevertheless, the gap is no more placed

between the two high features corresponding to the Hubbard bands, but rather between the

upper Hubbard band and the wide feature corresponding to the non correlated band. This dis-

tance corresponds to the charge-transfer gap. Both p- and d-orbital electrons density of states

present three main structures: at large negative energy the contribution of the lower Hubbard

band is visible with prevalently d-electron character. This feature has been pushed away by
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Figure 4.8: Opening of the Mott gap in the charge transfer regime of the PAM, from the evo-

lution of the DOS. Top panel: non interacting DOS of the two orbitals p (red dashed line) and

d (solid black line), obtained from analytic solution for ∆ = 0.25, Vpd = 0.5, ntot = 3. Bottom

panel: p- and d-electron DOS for U = 3 and all other parameters as in top panel. Data are

obtained from ED-DMRG calculations at T = 0 and thus the curves show the typical structure

with poles due to finite size effect. Poles are broaden with Lorentzian function and indicate

qualitatively the positions of the bands.
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Figure 4.9: Correlation driven metal-insulator transition illustrated with the imaginary part of

the Green’s function of p- (red line) and d-electrons (black line). Model parameters are fixed as

in the previous figure. (a) ImGpp(iωn) and ImGdd(iωn) in the non interacting case.s (b) Same

functions for a large value of the correlation U = 3. Data are from DMRG calculation at T = 0

and show the onset of a Mott insulating state in the charge-transfer regime.

the large value of the correlation. At intermediate energies (−2 . ω . 0) it is possible to dis-

tinguish the contribution of the uncorrelated band, the spectral weight of which is remarkably

large in the p-projection as compared to the d-electron one. Finally above the Fermi level it is

possible to see the contribution of the upperHubbard bandwith mainly d-character. We should

also mention that the apparent multiple peaks structures of the main three features appearing

in the DOS are merely due to the discreteness of the finite number of sites used to describe the

environment in the ED technique. Nevertheless, the splitting of the narrow band at the Fermi

energy with the consequent opening of a large Mott gap ∆M is clearly observed.

On the same line of what has been done before for the MH regime, we shall underline the

insulating nature of the CT regime by means of the imaginary part of the Green’s functions

Gpp(iωn) and Gdd(iωn). In Fig. 4.9(a) we present the behavior of these two functions for the

non interacting solution of the model at T = 0. The metallic character is evident from the

finite intercept of the functions, equal to ρpp(0) and ρdd(0). On the other hand, in Fig. 4.9(b)

we show the behavior of the same functions for U = 3 and zero temperature, from DMRG

calculations. The insulating character of the solution is evident by the vanishing behavior of

the two imaginary parts of the Green’s functions ImGpp(iωn), ImGdd(iωn).

4.1.2.3 Mott gap size

The size of the Mott gap in theMott-Hubbard regime is naively expected of be of orderU, since

it should mostly reflect the energetic cost to doubly occupy the d orbitals. However, our results
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Figure 4.10: Size of theMott gap ∆M as a function of correlationU, for several different position

of the conduction band: ǫp = −1 (black line), −2 (red dotted line), −3 (green dashed line), −6

(blue dot-dashed line), from bottom to top as indicated by the orange arrow.

show that the Mott gap ∆M may be substantially smaller than the bare value U. In Fig. 4.10

we plot ∆M as a function of U, for several values of the bare position of the p−band ǫp, which

amount to increase the charge transfer energy ∆0. As the energy of the p−orbitals is shifted

down to larger (negative) energies, the effective bandwidth of the narrow band at the Fermi

energy decreases. In addition, the p−electron band becomes essentially full with np → 2 as

ǫp → −∞ (and keeping tpd fixed). This implies a decreasing mixed-valence character of the

electrons at the Fermi energy. In this limit the size of the Mott gap approaches the “bare” value

∆M ≈ U. However, it is interesting to observe that the smaller values of ǫp lead to a substantial

renormalization of the size of the expected Mott gap. This effect can be thought as due to an

effective screening the p−electrons provide, or, in more naive terms, because the electrons only

“feel” the repulsive term U during the time they spend on the d−orbital, but not when they

visit the p site. So as the mixed p-d character is increased, the effect of the U is renormalized

downwards.

4.2 Doping driven MIT

So far we have discussed the PAM description of different Mott insulating state. In particu-

lar we have seen in the MH regime that the model solution is characterized, similarly to the

Hubbard model, by the presence of two incoherent Hubbard bands above and below the Fermi
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4.2. Doping driven MIT

energy. However, unlike Hubbard model, the size of the gap, i.e. the separation between the

Hubbard bands, may be substantially smaller thanU if the hybridization is large. In this section

we shall study the metal-insulator transition obtained by doping the “parent” Mott insulator,

with the introduction of a given finite amount of either hole- or electron-type charges. Upon

doping, the insulating state will be destroyed in favor of a correlated metallic state. To remain

on a general ground and to be independent from the symmetry discussed above in section 4.1,

we shall adopt the following definition of the doping parameter:

δ =





ntot − 1 if ǫp > 0

3− ntot if ǫp < 0

As was already reported in [91], we will show that the Mott transition of type I (δ < 0) has

a qualitatively different scenario with respect to the type II transition (δ > 0). The former

will essentially reproduce the known scenario for the Mott MIT that is realized in the DMFT

solution of one band Hubbard model [31, 49, 26, 100]. This was somehow not surprising, since

we have tuned the parameters of themodel to be in a regime where the identification of the low

energy physics of the PAM and the one band Hubbard model was expected to hold. However

we shall see that the type II metal insulator transition shows a qualitatively different scenario.

In particular we shall demonstrate that this transition has a second order character and that it

is nearly temperature independent, at least down to values of the temperatures of the order

T . 10−3D, where D = 2t is the bare half-bandwidth of the conduction band fixing the energy

unit of the problem. The origin of this quite unexpected result is associated to the tendency of

the system, in the δ > 0 regime, to form local singlets, reminiscent of the celebrated Zhang-

Rice singlets introduced in the context of the high-Tc superconductors [104]. In the following

we will briefly review the results for the type I transition and will describe with more details

the scenario for type II metal insulator transition. This latter in fact provide the framework for

the development of a new approach to heavy fermion non-Fermi liquid phase, that will be the

subject of the next part of this thesis.

4.2.1 Type I metal insulator transition: δ < 0

We will describe in this section the metal insulator transition induced by negative doping the

Mott insulating state. We shall demonstrate that the scenario offered by this transition is quali-

tatively identical as that of the single band Hubbard model. To gain some direct insights in the

physics of this transition, we first study the change in the density of states upon tiny negative

doping the Mott insulating state. In Fig. 4.12 we report the DOS of the two orbital electrons

for µ = 1.234, corresponding to a doping of about δ < 5%. The data were obtained from a

high precision QMC calculation at T = 1/80 and are analytically continued on the real axis

95



4. Mott insulators and metal-insulator transitions in the PAM

with MEM. Furthermore the results have been benchmarked with finite temperature ED calcu-

lations and with zero temperature ED/DMRG, finding in both cases a remarkable agreement.

The figure illustrates the presence of a narrow resonance at the Fermi level associated with the

formation of quasi-particles. The peak appears at the edge of the upper Hubbard band and it is

well separated from the lower. Indeed, we have observed that the formation of this quasipar-

ticle peak requires a rather small temperature, that can be interpreted in the DMFT framework

as the temperature scale for the onset of the local Kondo screening. The spectral weight fraction

carried by the coherent quasi-particle peak is about |δ| and it is proportional to the renormal-

ization constant Z. This latter can be obtained from the imaginary part of the self-energy and

indicates an enhancement of the effective mass with respect to the its bare value. The strong

renormalization of this quasi-particles is confirmed by both the width of the resonance at the

Fermi level and by the behavior of the renormalization constant Z (not shown). In the same

figure it is possible to appreciate the huge difference in the spectral distribution of the quasi-

particle weight among the two electron species. The d-electron DOS bears most of the spectral

intensity while the other electron orbital has a reduced weight. This it is interpreted as a first

hint of the fact that the correlated d-electrons “drive” the transitions, as we will explain in the

following.

The nature of the transition has been characterized by studying the behavior of the particle

number as a function of the chemical potential, n(µ). We have shown the existence of a region

of coexistence of the insulating and metallic solutions. At finite temperature the model shows

a discontinuity in the occupation and in other quantities such as double occupancy or moment

formation. This is interpreted as a clear signal of the first order character of the Mott transition.

In the inset of Fig. 4.12 we illustrate this point through the analysis of the d-orbital occupation

nd = Gdd(τ → 0+). The figure shows that the insulating solution (open black circles) can be

continued till a critical value of the chemical potential is reached. Here a sudden breakdown

of the solution appears, with a jump to the same metallic solution one could get for this value

of µ. On the other hand we have observed that the metallic solution can be continued till a

different critical value of chemical potential. Here the solution becomes unstable, in favor of

the insulating state, with a rather small jump in the particle occupation.

This scenario for the metal insulator transition is qualitatively similar to that of the Hub-

bard model. To understand the physical origin of this behavior one should consider that the

p-orbitals are, in this negative doped regime, almost completely occupied (with either particles

or holes), while the correlated orbitals are nearly half-filled nd ∼ 1. This situation however

does not prevent the d-electrons to delocalize by higher order process of superexchange type,

permitted by hybridization with the conduction band. This lead to the formation of a strong an-

tiferromagnetic correlation between neighboring correlated electron and to the onset of Kondo
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Figure 4.11: Density of states of p- and d−-electrons (red and black solid line resp.) for U = 2,

∆ = 1, tpd = 0.9 and T = 1/64, as obtained from QMC calculations. The value of chemical

potential is µ = 1.234 and corresponds to tiny negative doping, i.e. particle doping. Inset:

number of d-electrons as a function of the chemical potential. The hysteresis loop indicated by

the arrows corresponds the coexistence of the metallic (�) and insulating (#) solutions.
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screening process involving d-orbital electrons only. Thus the physical mechanism driving the

Mott transition is almost identical to what can be observed in the DMFT solution of the one

band Hubbard model. Namely a one correlated band of electron with strong antiferromagnetic

correlations between local moments (J ≃ t2e f f/U), undergoing a scattering process that can

lead, in suitable conditions, to the local moment compensation (Kondo effect), giving rise to a

metallic state.

4.2.2 Type II metal insulator transition: δ > 0

This section is devoted to the study of the type II metal insulator transition. Previously we

have shown the existence of a Mott transition, driven by negative doping and having the same

characteristics as the Hubbar model scenario. Thus, based on the often implicit assumption

that the Hubbard model describes the low energy physics of the periodic Andersonmodel, one

can naively expect a particle-hole symmetry to hold. We shall demonstrate in this section that

in fact this is not generally the case [91], and we will discuss the physical reasons behind this

rather surprising result.

Making a parallel with the previous section, we shall start by illustrating the metal insula-

tor transition from the point of view of density of states in the tiny positive doping regime. In

Fig. 4.12 we present our results from high quality QMC calculations, supplemented by MEM

based analytic continuation, at a temperature T = 1/64, keeping fixed all the other model

parameters except the chemical potential. The figure shows the d- and p-electrons DOS for a

doping of the order δ ≃ 5%, corresponding to µ ≃ 0.53. The DOS is characterized by the for-

mation of a strong and narrow resonance at the Fermi level, flanking the lower Hubbard band.

The first striking difference with respect to the negative doping scenario is the relevance of the

p-electron spectral weight compared to the d-electron one. The non correlated orbital shows the

formation of a rather strong resonance, with roughly half the weight of the corresponding peak

in the d-electron DOS. This directly suggest that the solution have an important mixed valence

character, as will be futher stressed in the following of this thesis. A second remark concerns

the width of this resonance that is much more important than what has been observed in the

negative doped case. This hints a completely different origin of the resonance and the fact that

the underlying electronic excitations are not strongly renormalized. A further comment can be

made about the temperature dependence of this resonance. Contrary to what happen in the

negative doped case, where the quasiparticle peak appears at temperatures smaller than a co-

herence scale associated with the local Kondo screening, the present resonance appears already

for large temperatures of the order T . V2
pd/∆, and remain basically unchanged throughout

the studied temperature range.

Useful insights about the nature of the transition are obtained by studying the behavior of
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Figure 4.12: Density of states of p- and d-electrons (red and black solid line resp.) for U = 2,

∆ = 1, tpd = 0.9. Data are obtained from QMC calculations at T = 1/64 and analytically

continued on the real axis with Maximum Entropy Method. Chemical potential is fixed to

µ = 0.529, corresponding to tiny positive doping, i.e. doping with holes, of about δ ≃ 0.05. The

central peak (at the Fermi level) corresponds to the formation of Zhang-Rice like singlets. This

is flanked by Hubbard bands and at high (negative) energy the uncorrelated band is visible.
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the number of particles as a function of both temperature and chemical potential. Motivated by

the presence of an hysteresis loop in the negative doping case, we have first performed a sys-

tematic analysis of the variation of the particle occupation, as a function of chemical potential

at a step by step decreasing temperature. Starting from the insulating phase and continuing

the solution well deep the metallic phase and viceversa, we did not find any trace of coexis-

tent solution neither with QMC nor with ED, down to temperatures of the order β = 1/128,

and with ED/DMRG, thus formally at T = 0. Instead the number of particle has shown to

be nearly temperature independent as a function of chemical potential in this regime. This is

illustrated in Fig. 4.13. In the main plot we present a set of different data, all obtained from

high quality QMC calculations and successively benchmarked with complete ED calculations.

The data were obtained for several decreasing temperatures, in a range of positive doping cov-

ering three order of magnitudes. The results show the independence of the value of the particle

number from the temperature. Data obtained at different temperatures all lie on a single curve

(black dashed line) and accumulate, at vanishing doping, at the insulating value indicated by

the dashed-dotted red line. It is worth to note the high stability of the data, of high importance

considered the statistical nature of QMC based calculations. In order to better compare the re-

sults for the particle number in this regime with what has been found for the negative doping

regime, we present in the inset of Fig. 4.13 the d-orbital occupation as a function of the chemical

potential in a wide range of variation across the Mott insulator and for three different tempera-

tures. The curve n(µ) has a rather strong temperature dependence of the negative doping side

(right) compared to the weak or null dependence in the positive doping side (left).

Up to our current numerical capacity we are led to the conclusion that the metal-insulator

transition driven by positive doping in the Mott-Hubbard regime is a quantum phase transi-

tion, i.e. occurring through a T = 0 and zero doping Mott point. Therefore the δ > 0 metal

insulator transition has a qualitatively different scenario with respect to the δ < 0 case, and,

consequently, also qualitatively different from the Hubbard model scenario.

The physical origin underlying the existence of such a new and different scenario for the

Mott transition can be understood analyzing the moment-moment correlation function be-

tween the two orbital electrons, namely:

〈mz,d ·mz,p〉 = 〈(nd,↑ − nd,↓) · (np,↑ − np,↓)〉

Considering that the correlated d-orbitals are almost half-filled, i.e. nd ≃ 1, one can relate the

main source of difference between the two discussed regimes to the large effect on the transition

of the conduction band electrons. The p-orbitals are almost completely filled (either by particles

or holes) in the Mott insulating state. Upon negative doping (in our notation) an increasing of

their occupancy is observed. The saturation of the occupancy of these orbitals favors the forma-

tion of superexchange-like correlations between d-orbital electrons. In this case the conduction
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Figure 4.13: Main panel: d-electron number of particle as a function of doping in a log-linear

scale and for several decreasing temperatures, T = 1/32 (#), T = 1/40 (▽), T = 1/64 (�),

T = 1/80 (♦), T = 1/128 (△). Data are from QMC calculation. The points all lie almost on

the same curve (black dashed line) and converge towards the value attained in the insulator

(different from the unity). Inset: comparison of the temperature dependence of the d-electron

particle number in the two boundaries of the Mott gap. Data are from QMC at T = 1/16 (blue

dotted line), T = 1/32 (red dashed line) and T = 1/64 (black solid line).
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Figure 4.14: Moment-moment correlation between two orbital electron p and d, as a function of

doping in the positive and negative regions. Data are obtained with ED at T = 1/128 and have

been benchmarked with zero temperature ED and ED-DMRG calculations, finding an almost

perfect agreement. Other model parameter are U = 2, Vpd = 0.9, ∆ = 1.

band electrons do not participate actively to the screening process that lead to the formation of

the metallic state, having as a unique role that of permitting the indirect delocalization of the

correlated d-electrons. On the other hand, in the positive doped regime, a substantial reduc-

tion of the p-orbitals occupation can be observed. This effect is explained observing that the

d-orbitals are quasi half-filled (the difference respect to perfect half-filling being attributed to

the presence of few double occupancies), thus upon positive doping the system will free with

more probability sites in the conduction band. In this way the system can gain a significant

amount of energy by forming local p-d singlet states.

This picture is substantiated by the behavior of the moment-moment correlation as a func-

tion of doping, reported in Fig. 4.14. The figure shows that while on the negative doping side

this correlation is negligible and vanish with increasing doping, on the positive doping side

it has a linear increasing behavior. Thus doped charge carriers into the conduction band anti-

ferromagnetically bind to the (almost) singly occupied d-orbital electrons. The formed singlets

remind the celebrated Zhang-Rice singlet, introduce so far to derive Hubbard model from a

multi band model for copper oxides [104]. The breakdown of the Hubbard scenario in the pos-

itive doping regime is directly related to the formation of these singlets. The d-electrons, in

fact, binding to the doped carriers lose their spin phase information, preventing the formation

of strong antiferromagnetic correlation between neighboring d-moments, that is an essential
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ingredient in the Hubbard scenario recipe.

4.3 Conclusions

We have introduced and discussed the Zaanen-Sawatzky-Allen diagram for the classification

of the Mott insulating states. Then we have shown how these states can be obtained within the

DMFT solution of the periodic Anderson model. In particular this model is able to describe

the onset of an insulating state driven by correlation in both the Mott-Hubbard case, when the

distance between the Hubbard bands defines the smallest gap, and the Charge-Transfer case,

where the smallest energy gap is defined by the distance between a conduction band and upper

Hubbard band. Motivated by the application of this model to the context of the heavy fermions

we concentrated our attention to the Mott-Hubbard regime. This can in fact account for the

configuration often observed in the framework of the heavy fermion systems, where a highly

localized orbital electrons coexist with a wide conduction band. Once the existence of such

insulating states have been demonstrated we have proceeded studying the different types of

metal insulator transitions that can be induced upon doping the “parent” Mott insulating state.

In particular we have shown that type I transition (δ < 0) reproduce the same qualitative

scenario of the well known DMFT solution of the Hubbard model. Whereas the type II tran-

sition obtained upon positive doping the Mott insulator produce a different scenario. In this

latter case in fact the transition has been shown to be of the second order and temperature

independent, i.e. it is a quantum phase transition at zero doping. The former instead show a

first order character, underlined by an hysteresis loop in some physical quantities. We gave a

physical interpretation of the mechanisms leading to the formation of these two different sce-

narios for the doping driven Mott transitions. In particular we have shown that the metallic

state realized in the positive doping case can be interpreted as a liquid of Zhang-Rice singlets,

formed between the doped conduction band particles and the local moment of the correlated

d-orbitals.
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Since the discovery, in 1975, of the heavy fermion behavior in CeAl3, the inter-metallic com-

pounds containing rare-earths or actinides elements have posed a number of serious challenges

to the condensed matter physics community.
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5. Non-Fermi liquid phase and Mottness scenario for Heavy Fermions

(a) Schematic Doniach diagram

These materials are characterized by an extraordinarily large value of the electronic specific

heat constant γ = lim
T→0

C/T ≃ O(1)J/moleK2, reaching values up to three orders of magni-

tude larger than normal metals. Because of this feature these compounds are termed “heavy

fermions”.

As first proposed by Doniach [21], heavy fermions compounds can be regarded as dense

Kondo lattice systems. The f -orbitals brought from the rare-earths/actinides form a lattice of

highly localized magnetic moments “immersed” in a conduction band of itinerant electrons.

In this scenario the formation of heavy electrons is related to the antiferromagnetic in-

teraction between the delocalized electrons and the concentrated local magnetic moments,

i.e. Kondo effect. The Kondo interaction can lead to the formation of two different behavior.

At low temperature it should expected that every local moment get screened by the spin of

the conduction electrons, with the consequent construction of an overall non magnetic singlet

state. On the other the polarization of the conduction band caused by local singlet formation

can cause the formation of indirect moment-moment correlation favoring magnetic ordering,

i.e. RKKY interaction.

The competition between these two tendencies has be qualitatively summarized in the Do-

niach diagram (see figure (a)). For low value of the Kondo exchange integral J, the RKKY

energy scale TRKKY ≃ J2ρ(EF) exceeds the Kondo scale TK ≃ Ce−1/Jρ(EF), thus the systems find

it more convenient to magnetically order (e.g. AFM). On the other side, for large value of J,

TK > TRKKY so that the system gain energy compensating the localized moments and forming
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(b) Formation of the Kondo resonance and of the hybridized bands

a Fermi liquid with strongly renormalized effective mass (heavy fermion).

A renewal of the interest around the heavy fermions physics came in 1991 with the dis-

covery of possible deviations from the Fermi liquid theory predictions in some compounds.

Later on many other heavy fermions systems have been found to show “non-Fermi” liquid

properties [94]. However, the theoretical understanding of the breakdown of the Fermi liquid

paradigm in heavy fermion systems remains one of the open problems of strongly correlated

physics. Among the many ideas put forward to explain this phenomenon, a predominant role

is played by the so-called quantum criticality [35, 61, 88] (cf. Chap. 1). From the point of view

of this approach the breakdown of the Fermi liquid properties in heavy fermion systems is re-

lated to the proximity to a magnetic instability at T = 0, i.e. the existence of a quantum phase

transition or a quantum critical point in the phase diagram.

The existence of a quantum critical point in the heavy fermions phase diagram can be

naively understood from the analysis of the Doniach diagram. The critical temperature associ-

ated with magnetic ordering, say TN , follows at small J the RKKY temperature. Nevertheless,

upon increasing the strength of the exchange integral the ordering temperature can be driven

to zero by the competition with local moment compensation. The point at which TN → 0 is a

quantum critical point separating the magnetically ordered phase from a non-magnetic Fermi

liquid metal. In the region above this QCP the strong coupling of the order parameter fluctu-

ations with the itinerant electrons degrees of freedom can prevent the formation of coherent

electronic excitations (Fermi liquid state).

The usual approach to the microscopic derivation of the heavy fermions behavior is based

on the analysis of the periodic Anderson model (cf. Chap. 3). Because of its generality this

model can capture many of the different regimes in which heavy fermion behavior has been

observed, including the Kondo lattice regime. The presence of localized magnetic moments is

usually taken into account fixing n f = 1. In this regime and for an half-filled conduction band

(np = 1) the model solution describe the formation of two hybridized bands separated by an

indirect gap ∆ind. The Kondo peak at the Fermi level, consequence of the resonant scattering

of the conduction electrons on the localized moment, get splitted in two by the onset of such
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5. Non-Fermi liquid phase and Mottness scenario for Heavy Fermions

indirect gap, see figure (b). A Kondo insulator (i.e. a band insulator with n f + np = 2) appears

placing the chemical potential inside the indirect gap. However, an heavy fermions state is

readily available upon slightly doping this insulating regime, np < 1. The Kondo resonance

get pinned at the chemical potential once this has been placed inside the hybridized band, cf.

figure (b). In this regime the renormalization of the effective mass due solely to the hybridiza-

tion (cf. Chap. 3) sums up with the effects of the correlation, leading to the formation at low

temperatures of a Fermi liquid heavy fermion metal. This concept can be well illustrated using

a qualitative quasiparticle picture (renormalized bands) [36]. This yields for the effective mass:

m∗

m
= 1 +

V2
pd

Z[ǫd + Σ(kF, 0)]2

where Σ(k,ω) is the self-energy, Z = [1− ∂Σ/∂ω]−1 is the renormalization constant and kF is

the Fermi wave-vector.

Changing point of view on the problem, one can recognize that the localization of the f -

orbital electrons is an effect of the strong correlation. Therefore, it may appear more natural

to found the microscopic derivation of the heavy fermion behavior on the proximity to a Mott

insulating state, induced by correlation effect on the half-filled correlated band.

In the last part of this thesis we shall demonstrate that themetallic state obtained by slightly

positive (cf. Chap. 4 for the notation) doping theMott-Hubbard insulator has an heavy fermion

character. Thus, our approach provide a new point of view on the description of the heavy

fermion physics. Furthermore and quite surprisingly, this metallic state shows a breakdown

of the Fermi liquid properties, down to vanishing temperatures. The presence of such small

temperature scales can be traced back to the well known exhaustion problem, [68, 67, 95].

Similarly to the canonical quantum criticality approach to non-Fermi liquids (cf. Chap. 1),

this novel NFL state is located in the neighborhood of a quantum phase transition. Never-

theless, unlike the standard quantum criticality scenario, the relevant transition here is a Mott

metal-insulator transition.

The origin of this novel non-Fermi liquid phase has been associated with the strong fluctu-

ating nature of the local magnetization of the correlated electrons, consequence of competing

magnetic interactions. The local fluctuating magnetization coupling to the electronic degrees

of freedom of the doped charges, prevent the formation of well defined quasiparticles, i.e. of a

Fermi liquid state. Thus, we demonstrate that local temporal fluctuations alone can provide a

sufficient source of scattering to produce an inchoerent metallic state.

We find that the non-Fermi liquid state can be tuned by either doping or magnetic field, in

qualitative agreementwith some non-Fermi liquid phenomenologyobserved in heavy fermions.

The chapter is structured as follow: Sec. 5.1 is dedicated to the study of the correlatedmetal-

lic phase obtained upon tiny positive doping theMott insulator. Wewill show that this metallic
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5.1. Correlated metallic state: a liquid of singlets

state is formed by a liquid of Zhang-Rice singlets and we will review its properties. Moreover

we shall demonstrate that the system is placed in a mixed-valence regime. In Sec. 5.2 we will

report evidences for the breakdown of Fermi liquid properties in the tiny positive dopedmetal.

Wewill show that the resonance at the Fermi level characterizing this metallic state is associated

to short-lived electronic states. Section 5.3 is devoted to the study of the temperature crossover

to a normal Fermi liquid phase. To obtain useful insights about the nature and the origin of

this novel NFL state we shall study in Sec. 5.4 the local spin susceptibility and in Sec. 5.5.1 the

magnetic properties of the NFL phase. In particular we will show that Fermi liquid is restored

by either application of a sufficiently strong external magnetic field or by the onset of order

phase like antiferromagnetic one. Thermodynamic properties of the NFL phase are reported

in Sec. 5.6, where we study the specific heat behavior, and in Sec. 5.7 where we present results

about entropy behavior. Finally in Sec. 5.8 we summarize the results in two phase diagrams

and we discuss the Mottness scenario.

5.1 Correlated metallic state: a liquid of singlets

In this sectionwe present results to illustrate the nature of the correlated metallic state obtained

upon tiny positive doping the Mott-Hubbard insulator, whose existence has been the subject

of the previous chapter 4. To deal with a specific case, we fix the position of the conduction

band to be below the Fermi level, that is below the correlated electron level fixed at ǫd = 0. In

the non interacting and non hybridized limit U = Vpd = 0, the conduction band is completely

filled: np = 2. Nevertheless, finite values of the hybridization Vpd will produce a reduction of

the p-electron filling np < 2, pushing a substantial amount of the p-electron spectral density to

the Fermi level.

Remark 1: In this regime the Mott insulating state occurs at ntot = 3. The non-correlated

band, i.e. the hybridized band whose support contains ǫp < 0 is completely filled, while the

correlated band, i.e. the hybridized band near the Fermi level is half-filled.

Remark 2: All the results reported in this chapter can be extended to the symmetric regime

obtained by placing the conduction band above the Fermi level, i.e.with ǫp > 0.

Remark 3: The initial position of conduction band ǫp respect to the Fermi level is almost irrel-

evant with respect to the results obtained in this thesis, provided the conditions discussed in

chapter 4 for the formation of a Mott-Hubbard insulating state are verified.

To start with we analyze the correlated metallic state, from the point of view of the density

of states. In figure Fig. 5.1 we present the result of a very high quality QMC calculation at

T = 1/128, analytically continued on the real axis using the Maximum Entropy Method. The

figure shows the spectral density of both electronic species, in a small energy region around the
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5. Non-Fermi liquid phase and Mottness scenario for Heavy Fermions

Figure 5.1: Main panel: density of states for the p- (black line and blue filling) and d-electron

(red line and red filling) from QMC calculation at T = 1/128 supplemented by Maximum

Entropy Method analytic continuation. The model parameters are: U = 2, Vpd = 0.9, ∆ = 1,

µ = 0.55 and δ ≃ 0.01. The weight of the two resonances is underlined with color more intense

color filling.
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Figure 5.2: (a) Evolution of the d−orbital electron DOS as a function of increasing doping from

Mott insulator to metallic state (bottom to top). Data are from QMC + MEM at T = 1/64,

Vpd = 0.9, ∆ = 1 and for different values of chemical potential (from bottom to top): µ = 0.83,

0.58, 0.55, 0.53, 0.48, 0.43 corresponding respectively to δ = 0.0, 0.001, 0.01, 0.05, 0.1, 0.15. (b):

imaginary part of the p- (#) and d-electrons (�) Green’s function as obtained from ED solution

of the model at T = 1/300 and µ = 0.53 (δ = 0.05), with the same model parameters as before.

Fermi level. Themain feature is the presence of a broad resonance at the Fermi level for both the

orbital electrons. These resonances flank the lower Hubbard band (placed just below the Fermi

energy) and are well separated from the upper Hubbard band visible at small positive ener-

gies. Thus, the density of states has the typical three peak structure emerging from the DMFT

description of a correlated metal. It is worth to point out that the p-electrons spectral weight

at the resonance is, at least qualitatively, comparable with that of the correlated d-electrons.

This is a first evidence of the mixed-valence character of the solution of the model in this tiny

doped regime. In contrast the p-orbital spectral weight of the quasi-particle peak obtained in

the tiny negative doped regime was drastically reduced with respect to the d-electrons weight

(cf. Chap. 4). The spectral weight of the two resonances has been evidenced by intense color

filling in the figure. Interestingly the resonances show the typical peak-dip-hump structure

well known in the framework of photoemission experiments.

To better illustrate the generality of this scenario as a function of the doping, we show

in Fig. 5.2(a) results about the evolution of the d-electrons projection of the density of states

for several increasing values of the (hole) doping. The figure illustrates the formation and

the evolution of the resonance at the Fermi level. Data are collected from QMC plus MEM

calculations at T = 1/64, U = 2, Vpd = 0.9, ∆0 = 1 and δ = 0.0, 0.001, 0.01, 0.05, 0.1, 0.15. In the

bottom part of the plot we show the DOS corresponding to the Mott insulating solution, with
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5. Non-Fermi liquid phase and Mottness scenario for Heavy Fermions

the two Hubbard bands well separated in energy by a spectral gap at the Fermi level. Placing

the chemical potential slightly inside the lower Hubbard band corresponds to the introduction

into the system of a small number of charge carriers of hole type. The direct result is the

metallization of the solution, with the formation of an electronic resonance at the Fermi level.

This is well illustrated by the second curve from the bottom, corresponding to a doping of the

order 10−3. Upon further increasing the doping the system shows a progressive increasing

of the resonance weight, coming with a transfer of spectral weight from the lower Hubbard

band to the peak at the Fermi level. This is directly related to the fact that this metallic state is

associated with the formation of local singlets, that on its hand is directly proportional to the

number of p-holes freed in the system (doping).

The three peaks structure at low energy is well preserved along all the presented range of

doping as well as the peak-dip-hump feature, indicating that the obtained results are genuine

features and not artifacts of the qualitative method used to perform the analytic continuation.

The metallic character of the solution in the hole doped regime is illustrated also by the

behavior of the imaginary part of the one particle Green’s function. In Fig. 5.2(b) we report the

results of an ED calculation at T = 1/300 for µ = 0.53, δ = 0.05 and both the p- and d-electron

Green’s function. The increasing behavior at low energy of both ImGpp(iωn) and ImGdd(iωn),

showing a finite intercept at zero frequency, further demonstrate the metallic nature of the

solution, beyond the qualitative results already presented.

An interesting aspect of this correlated metallic state is its mixed-valence character. The

Mott insulating state occurs for a sufficiently large value of the correlation and half-filling of

the correlated band. In the present regime this is achieved by fixing ntot = 3. By the way, this

will not imply, as naively one could expect, that nd = 1 and np = 2. The strong hybridization,

mixing the two electronic species, has the effect of pushing the orbitals filling towards non in-

teger values. This behavior implies that the Mott localization does not occurs for the correlated

orbital electrons but rather for a “composite” correlated object retaining part of both the d- and

the p-character. To underline the mixed-valence character of the solution we present in Fig. 5.3

the behavior of the particle numbers as a function of the chemical potential in a very large range

of variation. Data are collected fromQMC calculations at fixed temperature T = 1/64 and have

been benchmarked against similar calculations performed with complete ED and ED/DMRG

at finite and zero temperature respectively.

Starting from the extreme left (far negative value of chemical potential), the figure shows an

increasing behavior of the different fillings for increasing µ, corresponding to the occupation

of the non correlated band. Once this band has been completely filled a band insulating state

shows up at ntot = 2 and for−1 . µ . 0. Further increasing the value of the chemical potential

corresponds to filling up the lower Hubbard band. Thus, we observe an increasing behavior
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Figure 5.3: Total (△) and partial nd (#) and np (�) particle numbers, as a function of the chemi-

cal potential. The data are obtained fromQMC at T = 1/64 and forU = 2,Vpd = 0.9 and ∆ = 1.

The figure shows the behavior of particle numbers in the full range of µ from the completely

empty system regime (µ . 2.5) to the completely filled one (µ > 1.5). A band insulator appear

at ntot = 2 for −1 . µ . 0, corresponding to the completely filled non correlated band regime.

Instead a Mott plateau appears for 0.5 . µ . 1.2 at ntot = 3, thus having half-filled the cor-

related band. Partial fillings in the Mott insulating regime clearly illustrate the mixed-valence

character of the solution.
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Figure 5.4: Left panel: d−electrons local moment 〈m2
z,d〉 from ED (#) and QMC (+), double

occupation 〈d〉 from ED (�) and QMC (×) as a function of doping. The former refers to the

left y-axis while the latter to the right y-axis as indicated the the black arrows. Both data are

from calculations performed at T = 1/64 and U = 2.0, Vpd = 0.9, ∆ = 1. The small mismatch

between the twomethods is due to the finite discretization error in QMC. Right panel: moment-

moment correlation 〈mz,d · mz,p〉 ( ) between the two electron species as a function of doping

δ = 3− ntot, data from ED at T = 1/128.

of the particle numbers. When the total filling reaches the value ntot = 3, corresponding to the

half-filling of the correlated hybridized band, aMott gap opens and a plateau of incompressible

states appears. Identical plateaux are observed for the orbital fillings, but interestingly these

occur at non-integer values nd = 1 + ν and np = 2− ν, with ν ≈ 0.13 for the chosen values

of the model parameter U = 2, Vpd = 0.9, ∆ = 1. This clearly illustrate the mixed-valence

character of the model. The specific value of ν, roughly measuring the strength of the mixed-

valence character, is a general function of the both hybridization, correlation and temperature.

The mixed-valence character of this model solution is more natural than what could be

naively expected. This feature is related to the strong hybridization between the two electronic

species. In this respect removing mixed-valency, without falling into the symmetric regime of

the PAM characterized by the Kondo insulating state, requires suitable limits to be exploited

such as ∆ → ∞, U → ∞ or finally Vpd → 0.
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Before entering into the details of the nature of the correlated metallic state, we shall em-

phasize some properties of the model solution that can be immediately understood from the

analysis of the d-electron local moment 〈m2
z,d〉 = 〈(nd,↑ − nd,↓)2〉 and the double occupancy

〈d〉 = 〈(nd,↑ · nd,↓)〉. The rather large value of the correlation U, with respect to the effective

bandwidth of the correlated band, push the system into a regime in which the occupation of

the d−electrons is nearly close to one (cf. Fig. 5.3). Thus, despite the strong mixed-valency, the

d−electrons magnetic moment is expected to be large. This is well illustrated in the left panel

of Fig. 5.4 where the local magnetic moment of the d−orbital electrons is shown as a function

of doping. The results are obtained from finite temperature ED calculation and are compared

with same temperature QMC calculations. The two sets of data show the same behavior as

a function of carriers concentration, even if a small mismatch between the two calculations is

visible. This systematic error has to be addressed to the discretization of the imaginary time

axis at the heart of the Hirsch and FyeQMC technique. Upon positive doping the local moment

slowly decreases, losing about 20% of its value in the reported doping variation (∆δ & 60%),

remaining sizeable throughout this range.

The screening effect of the doped p-type carriers on the correlated electrons local moment

is at the origin of the decreasing behavior of the d-moment as a function of doping. This effect

is proportional to the value of the doping. On the other hand, doping has a small but finite

probability of removing electrons from the doubly occupied d-orbitals, slightly increasing the

average value of the correlated electrons local moment. This second effect is illustrated in

the bottom part of the left panel of Fig. 5.4, where the double occupancy of the d-orbitals is

reported as a function of the doping. The scale is reported on the right y-axis. The average

double occupation of the correlated orbitals is rather small, due to of the large value of U, but

it is still finite as effect of strong hybridization and finite temperature. Upon increasing the

doping this quantity shows a reduction of about 30% throughout the reported doping range.

The competition between the screening effect and the reduction of the value of the double

occupancy explains the slower decay of the d-electrons local moment. This behavior has a

strong impact in the nature of the correlated metal.

Finally we gain some insights about the nature of this correlated metallic state studying the

moment-moment correlation 〈mz,d · mz,p〉 between the two orbital electrons. The behavior of

this quantity as a function of the doping is reported in the right panel of Fig. 5.4. Data have been

obtained from an ED calculation at T = 1/128. This calculation has been also compared with

similar calculations at T = 0 from both ED and ED/DMRG finding a very good agreement.

The presence of such robust local moments in the system favor the formation of local singlets

by antiferromagnetic binding between the doped p-carriers (holes) and the local d-moments
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Figure 5.5: Imaginary part of the conduction electron self-energy ImΣpp(iωn) in the tiny hole

doped regime, from QMC calculations at T = 1/128, U = 2, Vpd = 0.9, ∆ = 1 and for δ = 0.015

(�), δ = 0.05 ( ), δ = 0.1(N), and µ = 0.58, 0.53 and 0.48 respectively. Solid line show the same

quantity from ED-DMRG calculation for the same model parameters. DMRG data are obtained

for large finite cluster of 40 sites and are plotted down to the smallest energy pole (IR cut-off).

(Kondo effect). The doped p-holes gain an energy roughly of the order:

JZR ≃ ν
V2
pd

∆ − ∆M

where the small number of doped p-holes ν is approximately cancelled by the energy cost in

the denominator. The linear increasing behavior of the moment correlation substantiate this

picture. Thus, the correlated metallic state can be described as a liquid of local singlets.

5.2 Non-Fermi liquid state

As pointed out in the first part of this thesis, in the framework of Fermi liquid theory metal-

lic states are described in terms of electronic excitations having particle-like character. This is

consequence of the particular nature of the fermionic degrees of freedom, imposing severe lim-

itations to the scattering processes that the electrons near the Fermi surface can undergo. These

are expressed in terms of phase-space constraints for the evaluation of the inverse life-time of
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the quasiparticle excitations (cf. Sec. 1.1). Landau’s intuition has been to realize that a 1 to

1 correspondence between the non-interacting and the interacting system was possible, adia-

batically turning on the interaction. The coherent superposition of the interacting states forms

electronic excitations near the Fermi surface that are sufficiently long lived with respect to the

rate of change of the interaction. This justify the interpretation of the Fermi liquid in terms of

“quasi-particles”, i.e. excitations retaining many physical properties of the bare electrons, but

whose effective mass is renormalized by the presence of the interaction.

In the more sophisticated language of Green’s functions, Fermi liquid theory assumption

can be reformulated requiring that the imaginary part of the self-energy vanish near the Fermi

surface as the square of the energy. To make contact with the discussion in Sec. 1.1 it is worth

to recall that the scattering rate of the process discussed there defines the lowest contribution

to the self-energy. Then, by Fermi liquid theory it should be possible to approximate the self-

energy with the following expression:

Σ(ω,kF) ≃ A + Bω + iΓω2 for ω → 0 and A, B, Γ ∈ R .

This means that the decay rate of the excitations near the Fermi surface is much smaller than

their energy. In the finite temperature formalism the Green’s functions and the self-energies

are expressed in terms of Matsubara imaginary frequencies ω → iωn = iπT(2n + 1), so that

a rotation to the imaginary axis is required. In the DMFT framework, where the self-energy

becomes local losing its dependence on the wave-vector k, one expects the imaginary part of

self-energy to linearly vanish as iωn → 0:

Σ(iωn → 0) ≃ iωnα + β with α, β ∈ R

Surprisingly the self-energy corresponding to the correlated metallic state introduced in the

previous section does not share this property. The imaginary part of the conduction electron

self-energy shows, in a finite region of doping, a non vanishing behavior at low frequency

and down to exponentially small temperatures. This imply that the correlated metallic state

obtained upon positive doping the Mott insulator is not associated to long-lived quasiparticles

but rather to incoherent, i.e. short-lived, electronic excitations.

In Fig. 5.5 we present some evidences for this breakdown of the Fermi liquid phase. In this

figure we report the low energy behavior of the imaginary part of the conduction electron self-

energy, ImΣpp(iωn), for three different values of the chemical potential, corresponding to three

values of the doping, such that δ . 10%. The imaginary part of the reported self-energies has

a large finite intercept at zero energy. Interestingly, while for very small doping ImΣpp(iωn)

has a linearly decreasing behavior extrapolating at a finite value at zero energy, for slightly

larger values of the doping the self-energy reaches a minimum and acquires a linearly increas-

ing behavior. Thus, the result shown in Fig. 5.5 reveals the non-Fermi liquid character of the
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Figure 5.6: Scattering rate or inverse scattering time ImΣpp(iωn → 0) as a function of temper-

ature for δ = 0.015 (�), δ = 0.05 ( ), δ = 0.1(N) from ED calculations. Data from QMC are

reported as a reference for the very same values of the doping (+). Data for higher doping

δ = 0.44 (#) and δ = 0.29 (�) are reported to show the crossover to Fermi liquid regime.
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correlated metallic state obtained upon tiny hole doping the Mott insulating state. The DMFT

solution of themodel in this tiny hole doped regimewas obtainedwith both accurate QMC and

ED/DMRG calculations. QMC data have been obtained for temperatures down to T = 1/128

and with a number of sweeps of the order 106 such that to minimize the systematic (statistical)

error, while the T = 0 DMRG results have been obtained describing the effective electronic

bath with up to 30 sites. Due to the existence of an infrared cut-off in the DMRG solution,

connected with the finite size of the bath, the corresponding results are plotted down to the

smallest energy pole. This roughly corresponds to a temperature of the same order of those

accessible within QMC. Further calculations performed at lower temperatures using complete

ED confirm the results shown in this figure. As evident by looking at Fig. 5.5 the accordance

between the two numerical solutions is very satisfactory.

Furthermore,we have studied the stability of this novel NFL regimewith respect to changes

in the model parameters, such as the correlation U, the hybridization Vpd or the charge transfer

energy ∆. In particular, the results show that NFL state persist upon decreasing the correlation

U till the disappearing of the Mott insulating state (U . te f f ).

A more systematic analysis of ImΣpp(iωn) as a function of temperature permits to obtain

useful insights about the scattering rate of the charge carriers as a function of temperature.

This quantity has been obtained as extrapolation of the imaginary part of the self-energy cor-

responding to the DMFT solution for many different temperatures. By definition the finite

intercept of the self-energy describes, for any fixed temperature, the inverse life-time of the

electronic excitations, and thus is directly proportional to the resistivity ρ(T) (cf. Sec. 1.1). In

Fig. 5.6 we report our results about the scattering rate for the same values of the doping as

those used in the previous Fig. 5.5 (filled symbols). The results illustrate the anomalous behav-

ior of the resistivity down to small temperature in the region of doping corresponding to the

observed NFL phase. In the same plot we report the scattering rate behavior corresponding to

larger value of doping (open symbols). For small values of the doping the resistivities show

a minimum as a function of the temperature, after which they acquire a linearly increasing be-

havior with negative slope. This behavior of the resistivity has been observed in some heavy

fermion compounds showing non-Fermi liquid properties. Increasing resistivity behavior as

a function of decreasing temperature is usually associated to systems with a certain degree of

(structural) disorder. The slope of the resistivity behavior as a function of temperature is in fact

believed to mirror the order in the underlying lattice [94].

For larger values of doping the resistivity acquires again the expected behavior of normal

metallic state. ρ(T) has a nearly linear vanishing behavior as a function of decreasing tempera-

ture that eventually turns into a T2 at very low temperature/energy scales as required by Fermi

liquid theory (cf. Chap. 1).
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5.3 Temperature crossover to Fermi liquid

The DMFT solution of a strongly correlated electron model, such as the periodic Anderson

model, entirely rely on the (numerical) solution of the associated effective single impurity An-

derson model (SIAM). Quantum impurity models have received in the past a great deal of

attention and a lot of results are now available by means of powerful non-perturbative meth-

ods. The scenario that borne out from the solution of the SIAM describes the crossover from

the unscreened impurity regime for T > TK ≃ De−1/Jρ(EF), in which the coupling costant J

is small and permits perturbative treatment, to a completely screened regime for T < TK, in

which the impurity local moment has been completely compensated and the coupling costant

J becomes non-perturbatively large. Thus, at low temperature the solution of the Anderson

impurity model describes the formation of a local Fermi liquid state.

Motivated by these remarks one expects the Fermi liquid properties of the DMFT model

solution, in the regime we are looking at, to be restored in the limit of small temperature. Nev-

ertheless, the crossover to a Fermi liquid state may appear at vanishing temperature scales, in

qualitative agreement with the observed behavior in heavy fermion systems. In the following

we shall demonstrate that the non-Fermi liquid state can be driven to a Fermi liquid thru a

crossover at temperatures exponentially small in the doping. Later on we will derive an esti-

mate of the temperature connected with the Fermi liquid formation and we will show how this

can be integrated in a scenario explaining some phenomenology of the heavy fermions.

Numerically speaking the description of the temperature crossover can be, and in fact is, an

extraordinarily difficult task to achieve because of the presence of small energy scales. In this

respect QMC method should be excluded, being strongly limited to solution of DMFT equa-

tions in the large-to-mid (T > 1/160) temperature range, as a consequence of the imaginary

time axis discretization. Instead, complete ED method can accomplish this goal, but this re-

quires in practice an high optimization of the algorithm and the use of rather large number of

sites to describe the effective bath. The agreement between the two methods has been checked

down to the lowest accessible temperature. The issue of the temperature crossover, even if par-

tially clarified by our calculations, remains open to a systematic analysis with other suitable

numerical methods or improvements.

We present in figure 5.7 our results about the temperature crossover to Fermi liquid state.

The figure report the evolution of the imaginary part of the conduction electron self-energy

ImΣpp(iωn) for several decreasing temperatures. Based on the idea that the crossover temper-

ature may be exponentially small, the doping has been chosen sufficiently large (δ ≃ 0.15) to

permit the numerical observation of the crossover at temperatures accessible by our methods.

The figure is divided in panels each of which reports the low energy behavior of ImΣpp(iωn)
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Figure 5.7: Crossover to Fermi liquid metal from the evolution of the low energy behavior of

ImΣpp(iωn). Data are from complete ED and δ ≃ 0.15. For smaller doping crossover could be

observed at a much smaller temperature scale.
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corresponding to a specific temperature (indicated below). The top left panel corresponds to

the highest temperature (T = 1/128, cf. Fig. 5.5). The temperature decreases upon moving to

the right on each row and to the bottom, till lowest value is reached in the bottom right panel

(T = 1/500).

As can be appreciated, the imaginary part of the p-electron self-energy has a finite intercept

at the highest temperatures, cf. Fig. 5.7(a). This behavior persists for slightly smaller tempera-

tures, Fig. 5.7(b), 5.7(c). At lower temperatures the ImΣpp(iωn) starts developing a vanishing

behavior of the scattering rate, Fig. 5.7(d). Nevertheless, the finite intercept is driven to zero

only upon further decreasing the temperature, cf. Fig. 5.7(d) and 5.7(f). Thus the construction

of a local Fermi liquid state, with vanishing imaginary part of the self-energy, takes place over

a long range of temperatures (crossover) and is achieved only at very small temperature scales.

The systematic analysis of the evolution of the low temperature conduction electron self-

energy as a function of doping (where possible) permits to obtain the behavior of the resistivity

in the region of crossover between the non-Fermi and the the Fermi liquid phase.

As follows from the discussion preceding Fig. 5.7, the anomalous linear increasing resistiv-

ity observed in the non-Fermi liquid region, is expected to undergo an inversion of its behavior

when a characteristic crossover temperature is reached. The existence of such a inversion re-

gion in the resistivity behavior is observed in heavy fermion compounds.

In Fig. 5.8 we present some results confirming this expectation. The behavior of the scatter-

ing rate in a region corresponding to very low temperatures is plotted for some values of the

doping in the NFL phase. In the most doped case (δ ≃ 0.15 black diamonds and line) ρ(T) has

a quasi-constant or slowly increasing behavior till a crossover temperature about T ≃ 1/200 is

reached. Below this temperature the scattering rate starts decreasing, signalling the incipient

formation of a Fermi liquid state. For a slightly smaller value of the doping (δ ≃ 0.1 green

circles and line) the resistivity shows a more marked increasing behavior that it is arrested

and converted into a vanishing one only upon lowering the temperature below a scale much

smaller than the previous case, namely T = 1/500. Smaller values of doping are, with respect

to the evaluation of low temperature behavior of the resistivity, almost inaccessible with our

methods. So far, we did not find any trace of Fermi liquid crossover for very small values of

the doping and down to the smallest analyzed temperature. Nevertheless one can reasonably

guess that tiny hole doping region may share the same behavior observed for larger values of

doping.
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5.3. Temperature crossover to Fermi liquid

Figure 5.8: Inverse scattering rate at very low temperatures in the non-Fermi liquid regime.

Data are from finite temperature ED for U = 2, Vpd = 0.9, ∆ = 1 and for µ = 0.43 (♦), µ = 0.48

(#), µ = 0.53 (△), µ = 0.58 (▽), of doping respectively δ = 0.15, 0.10, 0.05, 0.01. The crossover

point is shifted towards zero with decreasing doping. The arrow indicate the direction of in-

creasing doping. Shaded regions underline the changing behavior in the resistivity.
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5.4 Spin susceptibility

5.4.1 Enhanced spin susceptibility

In order to get some insights about the origin of this novel non-Fermi liquid state we shall

study the magnetic properties of the system. The first quantity we are interested in is the local

spin susceptibility, describing the response of the system to a local magnetic field. Local spin

susceptibility is defined as:

χloc(T) =
∫ β

0
〈Sz,d(τ) · Sz,d(0)〉dτ

where the expected value under the integral sign is the imaginary time spin-spin correlation

function. χloc can be easily calculated in QMC by means of the pseudo-spins {σ} representa-

tion, introduced via the Hubbard-Stratonovich transformation (cf Chap. 2):

〈Sz,d(τ) · Sz,d(0)〉 = 〈
(
nd,↑(τ) − nd,↓(τ)

)
·
(
nd,↑(0) − nd,↓(0)

)
〉 =

1
1− e−∆τU

〈σ(τ)σ(0)〉

where all the thermal averages have to be evaluated in the QMC sense, i.e. them are represented

as Markov sampling in the pseudo-spins configuration space. The local spin susceptibility can

also be evaluated within complete ED method using spectral decomposition of the correlation

function χ(τ − τ′) = 〈Sz,d(τ) · Sz,d(τ′)〉, i.e.

χ(τ − τ′) =
1
Z ∑

n,m
e−βEn |〈m|Sz,d|n〉|2 e−(En−Em)(τ−τ′)

In a metallic environment and at high temperature the local spin susceptibility has a typ-

ical Curie-Weiss T−1 behavior. The thermal energy per electron is so large that the electrons

becomes magnetically decoupled and act as free spins. Instead, at low temperature the spin

susceptibility is expected to saturate, showing a weak or constant temperature dependence

(Pauli behavior), in agreement with Fermi liquid theory predictions. In the context of quantum

impurity models this low temperature behavior can be interpreted as the onset of a compen-

sation of the local magnetic moments, carried out by the conduction band electrons. Thus, the

zero temperature limit of the inverse of the local spin susceptibility provide a reliable way to

estimate the Kondo temperature scale, below which a local Fermi liquid state is expected to

form.

In this section we want to demonstrate that throughout the non-Fermi liquid regime (tiny

hole doping) the system remains highly magnetic, having electrons behaving as nearly free

magnetic moments. In correspondence to this the system shows an enhanced low temperature

local spin susceptibility. Normal Pauli behavior is recovered only upon further increasing the

doping.
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Figure 5.9: Local spin susceptibility χloc(T) as a function of temperature for different values of

doping. Data are from both QMC and finite temperature ED, for U = 2, Vpd = 0.9, ∆ = 1 and

for: δ = 0.0(�), δ = 0.01(#), δ = 0.1(♦), δ = 0.15(� from ED and + from QMC), δ = 0.45(#

from ED and + from QMC). The spin susceptibility is strongly enhanced in the tiny doped

regime.

In Fig. 5.9 we present some results about the temperature behavior of the local spin sus-

ceptibility from both QMC and finite temperature ED calculations. As can be appreciated the

two methods have a remarkable accord in the full available temperature range. In particular

this figure shows the behavior of χloc(T) for an increasing value of the doping, from the Mott

insulator to the highly doped metallic state, this latter having Fermi liquid properties. As al-

ready pointed out (cf. Fig. 5.4) in the Mott insulating state the d−orbital electrons bear large

magnetic moments, that are protracted throughout a long range of doping. Correspondingly

the spin susceptibility is expected to have Curie behavior χloc(T) ∝ T−1. Our results actually

confirm this expectation, see Fig. 5.9. The local spin susceptibility of the undoped solution (ma-

genta line and symbols) has a strictly diverging behavior, that can be directly compared with

the 1/4T behavior of free spins shown in the same figure (dashed black line).

On the other hand to the large doping solution of the model corresponds a Pauli-like spin

susceptibility, with a weak temperature dependent behavior (open black circles and orange

crosses). This is associated to the existence of a Fermi liquid metallic state, characterized by

well formed local singlets.

In contrast to the expected Fermi liquid behavior, the local spin susceptibility of the systems
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in the tiny (hole) doped regime has a strong Curie-Weiss χloc ∝ 1/(T + T0) behavior. This

quantity is greatly enhanced at low temperature throughout the non-Fermi liquid region and

does not show any trace of saturation down the smallest analyzed temperature. Thus, the

non-Fermi liquid regime corresponds, in terms of spin susceptibility, to a long crossover region

between Curie-Weiss and Pauli behavior. It is worth to observe that the non-Fermi liquid local

susceptibility χloc(T) has a rather small change in its behavior in correspondence of a large

variation of the (hole) doping ∆δ ≃ 20%. The enhancement of the local spin susceptibility in

the low doping region may be associated to a protracted screening effect of the doped p-holes

to the more localized d-electrons, as already noticed in [95].

5.4.2 Exhaustion and coherence scale

The enhanced local spin susceptibility in the non-Fermi liquid phase should imply the non

“effectiveness” of the Kondo screening of the d-local moments, down to vanishingly small

temperatures. Lack of efficiency of the screening process within impurity lattice problems is

generically associated to the exhaustion phenomenon [67, 9].

Exhaustion is a physical mechanism taking place in situations where the number of active

conduction electrons near the Fermi surface, carrying out the screening of the local magnetic

moments is strongly reduced, i.e. exhausted. This phenomenon has been originally proposed by

Nozières to explain the suppression of the Kondo temperature scale in Kondo lattice systems

[68]. The argument proposed by Nozières was roughly the following. In an exhausted system

and for temperatures smaller than TK (i.e. the Kondo temperature scale) the system is made of

singlets and non screened local moments. The screening electron can visit different local spins

by breaking the formed local singlet state and forming another one at a different lattice site.

Thus the system behaves as an effective Hubbard model for unscreened local moments with

a given hopping constant. One can think at this effective model as describing the dynamics

of the screening clouds. Nevertheless the important point to realize is that the coherence scale

associated to this model is strongly reduced. In fact, in the exhaustion limit the number of

effective available conduction electrons Nc is much smaller than the number of concentrated

impurities Nimp: Nc << Nimp. Thus the coherence scale, estimated by Tcoh ∼ tNc/Nimp, may

be much smaller than the expected Kondo temperature scale.

Recently [95, 96, 99] exhaustion has been invoked in the context of the DMFT solution of

the periodic Anderson model, to explain the protracted screening in a metallic phase realized

upon emptying the conduction band and by fixing the occupation of the correlated orbitals to

one, nd = 1. In this “Kondo lattice regime” a straightforward comparison with the original

argument proposed by Nozières holds.

A natural question to pose, concerning the problem we are studying, is about the relevance
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of the exhaustion in the observed breakdown of Fermi liquid phase. To answer this question

it should be observed that the regime of the PAM in which this novel non-Fermi liquid state

appears is substantially different from theKondo lattice regime, inwhich the exhaustion regime

has been originally associated and studied.

TheDMFT solution of the periodic Andersonmodel in the regimewe are focusing on shows

a strong mixed-valence character, cf. Fig. 5.3. In consequence of this the number of available

conduction band electrons is always finite being np = 2− ν, e.g. ν ≃ 0.14 in the Mott insu-

lating state and with the model parameters previously specified. Nevertheless, because of the

proximity to the Mott metal-insulator transition point, the real number of available carriers is

strongly reduced. This number does not correspond to the nominal filling of the non correlated

band, but rather to the number of doped charge carriers in the system, p-holes in the present

case.

From this point of view the nearness of the system to a Mott transition point naturally (as

opposite to the fine tuning of the conduction band filling in [95]) generates an exhaustion of the

charge carriers. This lead to a lack of effectiveness of the screening process of the doped charge

carriers (p-holes) on the large local d-moments, as a function of both doping and temperature.

A second, a perhapsmore substantial, differencewith respect to standard exhaustion regime

is the magnetic stability of our regime. In the classical picture of exhausted systemsmagnetism

plays in fact a major role. The ratio of the RKKY to Kondo temperature scale is greatly en-

hanced, thus the onset of magnetically ordered phases is generally favored. Instead the non-

Fermi liquid phase observed in the proximity of the Mott transition does not appear to be

screened out by the onset of any magnetic order, as will be proved in the next section.

Having cleared out, with the previous considerations, the role of exhaustion in the non-

Fermi liquid regime, we can now derive an estimate for the coherence temperature of the

model. An universal relation between the local Kondo temperature TK and the temperature

scale below which the screening process becomes effective, say Tcoh, is still lacking. In this

respect some results have been obtained numerically in [95, 96] and analytically in [9], inval-

idating the estimated relation originally proposed by Nozières. Nevertheless, following the

discussion about the physical interpretation of the local spin susceptibility, it appears natural

to use this latter quantity to extrapolate the coherence scale. In particular Tcoh can be computed

by the x−axis intercept of the following fit on the local spin susceptibility

1/χloc(T) ∝ T + Tcoh

The coherence temperature describes the crossover from the non-Fermi liquid to a normal

Fermi liquid phase, being the temperature belowwhich the screening of the local d-moments by

the doped p-type charge carriers becomes effective. We show in Fig. 5.10 the results of the pre-

vious extrapolation of the coherence temperature. Data have been obtained by fitting local spin
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Figure 5.10: Coherence temperature scale as extrapolated from zero temperature limit of the

local spin susceptibility in Fig. 5.8. Data are obtained by both ED (#) and QMC (�) calculations

finding a rather good agreement. Crossover point estimated from the behavior of the imaginary

part of the conduction electron self-energy ImΣpp(iωn) are plotted in the figure. This illustrate

the physical meaning of this energy scale as that of being the temperature below which Fermi

liquid regime is restored in the system. Some temperatures used in the actual calculations are

reported for reference.

susceptibility (cf. Fig. 5.9) from complete ED (dashed black line and circles) and QMC (open

blue squares), finding a remarkable good agreement. The same agreement is found compar-

ing this quantity with the crossover point estimated from the low temperature evolution of the

imaginary part of the conduction electron self-energy (red crosses). This provides a crosscheck

of the estimated coherence temperature against an independent description of the crossover,

validating our physical interpretation of the results.

As shown in Fig. 5.10, Tcoh has an exponential behavior as a function of the doping of the

form Tcoh ≃ e−1/δ. In particular this result imply that the non-Fermi liquid phase may exist

down to vanishingly small temperatures. It is worth to underline that the exponentially small

behavior of the coherence temperature arise despite the model parameters have been initially

chosen order one (in unit of the D = 2t). Thus ruling out the possibility that this could be

related to a “special” choice of the parameter regime. In fact the smallness of the coherence scale

and the consequent breakdown of Fermi liquid phase down to vanishingly small temperatures,

is entirely due to the proximity to theMott transition point, i.e. thus the termMottness proposed
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Figure 5.11: Magnetization as a function of external magnetic field for both orbital electrons d

(a) and p (b). Data are from QMC at temperatures: T = 1/16 ( ), T = 1/32 (�), T = 1/40 (�),

T = 1/64 (N), T = 1/80 (H). Note that p-magnetization is much reduced with respect to the

d-orbital one.

for this scenario.

5.5 Magnetic properties

5.5.1 External magnetic field

Useful information about the nature of the non-Fermi liquid phase are obtained studying the

effects of magnetic ordering. In this section we shall study the response of the system to the

application of an external homogeneous magnetic field Bext. In a conventional Fermi liquid

magnetic fields normally do not have significant impact, they merely produce a small mag-

netic polarization of the carriers. However in the regime we are focusing on, with a strong

magnetic coupling between the light and heavy electrons combined with an enhanced local

spin susceptibility, one may expect the effect of an external magnetic field to be important.

In the parameter regime we are focusing on, the main source of magnetism are the highly

localized d-electrons. This can be easily deduced from the analysis of results shown in Fig. 5.4.

The correlated orbital are nearly half-filled (nd ≃ 1), thus their local moment is large. More-

over, the decreasing behavior of the d-orbital double occupancy as a function of doping and the

lack of efficiency in the screening process both enhance their active role in the magnetism of

the system. On the other hand p-orbitals are almost completely filled, so we expect them to be

almost magnetically inert and to not contribute significantly to the response of the system, see
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Figure 5.12: Main panel: imaginary part of the majority-spin p−electron self-energy under an

external magnetic field h as a function of Matsubara frequency. Data from QMC solution at

T = 1/64 and δ = 0.05 (µ = 0.53). The Bext = 0 paramagnetic NFL state is shown with

circles. The rapid crossover to the Fermi liquid phase is observed as a function of increasing

field strength Bext = 0.0 ( ), 0.02 (H), 0.04 (�), 0.1 (N)

Fig. 5.11. Nevertheless, the conduction band electrons can be indirectly affected by the orien-

tation of the d-electrons local moment, by virtue of the antiferromagnetic binding between the

doped p-holes and local d-moment. In other words we expect the Kondo screening process to

greatly benefit by polarization of the d-moments induced by the action of an external magnetic

field.

In Fig. 5.12 we show results from QMC calculations at T = 1/64 about the low energy

behavior of ImΣpp(iωn) for an increasing strength of the external magnetic field Bext. The other

model parameters are: U = 2, Vpd = 0.9, ∆ = 1 and µ = 0.53 corresponding to a doping

of δ = 0.05. As the figure shows the finite intercept of the imaginary part of the conduction

electron self-energy is driven to zero as a small magnetic field is turned on. Thus the non-

Fermi liquid state is driven towards a normal (Fermi liquid) metallic state, by the action of an

external magnetic field. It is worth noting that the strength of the magnetic field producing this

recovery of the Fermi liquid is about 0.05D, thus of the same order of magnitude compared to
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Figure 5.13: Imaginary part of conduction band electron Green’s function ImGpp,σ(iωn) for

increasing strength of external magnetic field: Bext = 0.0 ( ), 0.02 (H), 0.04 (�), 0.1 (N). The

majority spins (a) increase their metallic character upon polarization of the system. Minority

spins are driven to insulating state (b).

the temperature we are focusing on and two order of magnitude smaller than the bare model

parameters.

The physical interpretation of this crossover to a Fermi liquid state driven by external mag-

netic field it is quite straightforward. Upon increasing the magnetic field, at constant doping,

a larger and larger number of local d-moments get polarized. The few charge carriers, namely

p-holes, are then greatly simplified in the work of screening out the local moments themselves,

leading to a restore of a Fermi liquid metallic phase with coherent motion of the charge carri-

ers. In other words the polarization of d-orbital local moments permits the screening cloud to

dynamically screen the d-electrons local moments, dramatically increasing the coherence scale

of the system. The coherent motion of the doped carriers with majority spins is then balanced

by the insulating nature of the minority spins charge carriers. This phenomena is illustrated in

the Fig. 5.13. There we present the behavior of both spin up and spin down Green’s functions

for the same strengths of the external magnetic field used in previous Fig. 5.12. In particular

Fig. 5.13(a) shows the increasing metallization of themajority spin charge carriers, consequence

of the Fermi liquid crossover already discussed. On the other hand the minority spins are

driven towards an insulating state, characterized by the vanishing behavior of the imaginary

part of their Green’s function as illustrated in Fig. 5.13(b).
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Figure 5.14: Main panel: evolution of the staggered magnetization mAF as a function of tem-

perature, for different values of doping δ = 0 (�), 0.01 (♦), 0.02 (△), 0.03 (#). Data are from

finite temperature ED. Inset: Néel temperature as a function of doping.

5.5.2 Antiferromagnetic ordering

The local spin susceptibility behavior shows that the correlated electrons at the d-orbitals be-

haves as nearly independent spins in the paramagnetic phase. Nevertheless, they can develop

weak antiferromagnetic correlations, resulting from super-exchange mechanism, i.e. magnetic

exchange of neighboring d-electrons thru hybridization with the non correlated p-orbitals. The

presence of such correlations may lead to the formation of antiferromagnetically ordered phase.

In this section we shall present results concerning the onset of an antiferromagnetic order

in the periodic Anderson model and we will discuss the related properties. Most of the pre-

sented calculations have been realized with complete Exact Diagonalization, better designed

to handle the small energy/temperature scales at which the weak antiferromagnetic correla-

tions may become important. The obtained results have been compared, where possible, to

QMC calculations in order to crosscheck their validity. The symmetry breaking in favor of an

antiferromagnetic phase has been studied using the extension of DMFT technique detailed in

Sec. 3.4.

To start with, we report in Fig. 5.14 results about the behavior of the staggered magnetiza-

tion as a function of temperature for several values of the doping. We expect the Nèel temper-

ature to be maximum in the undoped regime, i.e. the Mott insulator. This is because the energy
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Figure 5.15: (a) Comparison between paramagnetic phase (#) and antiferromagnetic phase

(△) ImΣpp,σ(iωn) forU = 2.0, Vpd = 0.9,∆ = 1 and δ = 0.01. (b) Comparison between the same

magnetic phases and model parameters for ImGpp,σ(iωn). The finite doping antiferromagnetic

solution is a metallic state with Fermi liquid properties.

gain in developing antiferromagnetic correlations between neighboring correlated orbitals is

not diminished by local Kondo screening effects. This expectation is confirmed by our calcu-

lations, as it is shown in the main panel of the figure. In the Mott insulating state staggered

magnetization start to deviate from zero at temperatures of the order TNeel ≃ 2 · 10−2. The

transition from paramagnetic to antiferromagnetic phase is rather smooth and take place over

a finite range of temperatures. Slightly increasing the value of the doping produce a shift of

the ordering temperature to lower values. For δ = 0.01 we the transition onset at TNeel ≃ 10−2.

This tendency is confirmed upon further increasing the doping, as demonstrated by the be-

havior of the staggered magnetization corresponding to larger values of the doping δ = 0.02,

0.03. The decreasing behavior of the ordering temperature comes with an increasing sharpness

of the transition, hint of an increasing criticality. At the largest analyzed value of the doping

we observe an increase of the staggered magnetization of about 60% in a temperature range

∆T ∼ 5 · 10−3. Nevertheless, no trace of discontinuity has been observed in the order parame-

ter. The Nèel temperature continue decreasing as a function of increasing doping till it vanishes

for a value of the doping δ ≃ 0.04. This last value has been obtained by extrapolating the finite

temperature curve and crosschecked with zero temperature results obtained from Lanczos ED.

The behavior of TNeel as a function of doping is reported in the inset of Fig. 5.14.

The transition from paramagnetic non-Fermi liquid metallic phase to the antiferromagnetic

metallic phase comes with a restoring of the Fermi liquid properties. This is well illustrated

in Fig. 5.15(a), where the imaginary parts of Σpp(iωn) in the paramagnetic NFL phase (circles)
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and for a value of the doping δ = 0.01, is compared with the corresponding solution in the

antiferromagnetic phase (triangles up). Data in the figure corresponds to a complete ED cal-

culation at T = 1/200. The large finite intercept appearing in the NFL phase is driven to zero

with the onset of ordered phase. The metallic character of the AFM solution is illustrated in

Fig. 5.15(b), where we show the behavior of the imaginary part of the conduction electrons

Green’s functions in both the PM (circles) and AFM phase (triangles up).

The physical interpretation of the metallic character of the AFM phase is straightforward.

In fact as soon as the local moments get ordered in a Nèel state the doped charge carriers

have no problem to form coherent electronic waves (with doubled wave-vector) and to get

delocalized. This is in perfect agreement with what has been found in previous section where

(ferro)magnetic ordering induced by external magnetic field was seen to restore Fermi liquid

properties in the metallic phase.

In the last part of this thesis we shall show that the competition between magnetic interac-

tions, namely the antiferromagnetic exchange introduced above and the ferromagnetic order-

ing indirectly induced by the delocalization of the doped charges, can drive the system critical

and lead to a breakdown of Fermi liquid properties.

5.6 Thermodynamics

5.6.1 Specific heat and effective mass

To better compare our results to experiments and to underline the heavy fermion non-Fermi

liquid character of the solution we shall now study some thermodynamic properties of the

model. In particular we shall devote this and the following section to the analysis of the specific

heat Cv and the entropy S as a function of the temperature. Both these two quantities are

directly related to the effective mass of the charge carriers of system and are commonly used

to determine the nature of the metallic state of the analyzed heavy fermion compound (cf.

Chap. 1).

In order to evaluate the specific heat of the system, one needs to compute the internal en-

ergy Ω of the model. This operation can be achieved using the expression derived in Sec. 3.3

starting from the knowledge of local Green’s functions only. Once the internal energy has been

obtained, specific heat Cv can be derived with (numerical) differentiation with respect to the

temperature:

Cv(T) =
∂Ω(T)

∂T
.

Operatively the evaluation of the internal energy requires some care. The algorithm intro-

duced in Sec. 3.3 has been in fact obtained using finite temperature formalism, thus conver-
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Figure 5.16: Specific heat behavior in the full temperature range and for several different values

of doping, δ = 0.45 (black), 0.29 (red), 0.16 (green), 0.10 (blue), 0.05 (orange), 0.01 (magenta),

0.001 (cyan), 0.0 (purple), corresponding to the following values for the chemical potential

µ = 0.23, 0.33, 0.43, 0.48, 0.53, 0.58, 0.63, 0.83. Data are obtained from numerical differentiation

of finite temperature ED calculations. Several benchmarks have been performed to crosscheck

the validity of the algorithm.

gence of the Matsubara sums should be checked, being the Green’s function slowly decaying

(non-summable) in imaginary frequency. So, in order to get reliable results, some optimization

strategies have to be taken into account. Beside this a huge number Nω ofMatsubara frequency

has to be evaluated at the every temperature Nω ≃ 106, causing a serious slowing down of the

calculation for any fixed set of model parameters. Results for internal energy Ω and specific

heat Cv have been obtained using rather long calculations based on the exact diagonalization

algorithm, with a slowly varying temperature, such that to insure a good numerical differenti-

ation of the energy. The results obtained for several different values of the chemical potential

µ, from the Mott insulating state to the Fermi liquid metallic state at large doping, are shown

in the following Fig. 5.16.

The first striking feature, shared by all the curves obtained for different values of the dop-

ing, is the large contribution at high temperature (T ≃ 0.75D) that corresponds to the thermal
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activation of the non-correlated band contribution at high energy (cf. Fig. 4.12). The long tails,

sizeable till temperature of the order T ≃ 4D (not shown) are reached, have the same origin.

The specific heat at large doping (black and red lines) is characterized by the presence at

low temperatures (T . 0.125) of broad peak contribution. This corresponds to the activation of

the incoherent features at the Fermi level, containing a large number of electronic states, that

characterize the DMFT solution in this metallic regime. This rather large contribution is well

separated, by a dip at about T ≃ 0.2, from the huge contribution at high temperature already

discussed. Upon decreasing the value of the doping, the dip gets slowly filled by transfer of

specific heat contribution from low to high temperature. This corresponds to a reduction of

the number of available low energy states and to the formation of an electronic resonance at

the Fermi level flanking the lower Hubbard band. Thus, we expect an increasing in the very

low temperature contribution to the specific heat, related to the activation of such electronic

excitations at the Fermi level characterizing the correlated metallic state (cf. Fig. 5.1).

Interestingly the specific heat behavior in the non-Fermi liquid phase, corresponding to

small values of the doping, shows a long feature-less behavior from high to low temperature

(blue, orange, magenta and cyan line). This behavior is protracted till a characteristic temper-

ature scale weakly dependent on the doping. This long quasi-linear behavior comes with the

almost complete disappearing of the broad feature at low temperature observed in the Fermi

liquid regime. This behavior of the NFL specific heat is related to two circumstances: i) the

weight of the electronic resonances at the Fermi level is proportional to the value of the doping

(cf. Fig. 5.2(a)), ii) the lack of coherence of these resonances, that characterizes the non-Fermi

liquid state at this range of temperatures and that is recovered only at much lower temperature.

Finally, the specific heat in the Mott insulating state (purple line in Fig. 5.16) shows the

characteristic exponential behavior, corresponding to the presence of a spectral gap at the Fermi

level and to the thermal activation of the Hubbard bands features. This behavior has been

crosschecked with the solution obtained in the atomic limit of the model, finding a remarkable

good agreement.

After having discussed the general behavior of the specific heat on a large temperature

scale, we shall now concentrate on the low temperature regime. The results of our calculations

are shown in Fig. 5.17. This figure shows the evolution of the specific heat for a decreasing

value of doping, from large doping Fermi liquid phase (black line) to the Mott insulating state

(purple line).

The large specific heat contribution characterizing the high doping Fermi liquid metallic

phase (black and red line) acquires a linear behavior C ≃ γT at low temperature, as predicted

by Fermi liquid theory. The electronic specific heat constant γ is directly related to the size

of the effective mass m∗/m. Thus, the large value attained by this constant in the high doping
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Figure 5.17: Specific heat Cv in the low temperature regime and for doping values frommetallic

high doping Fermi liquid region to Mott insulating state. From top to bottom: δ = 0.45 (#),

0.29 (�), 0.16 (#), 0.10 (�), 0.05 (#), 0.01 (�), 0.001 (#), 0.0 (�), corresponding to the following

values for the chemical potential µ = 0.23, 0.33, 0.43, 0.48, 0.53, 0.58, 0.63, 0.83. Data are from

numerical differentiation of finite temperature ED calculations.

metallic phase corresponds to the formation of a Fermi liquid metal with strongly renormalized

masses, i.e. an heavy fermion Fermi liquid state.

The specific heat behavior in the non-Fermi liquid phase is characterized by a large log-

divergent behavior C/T ≃ − log(T). Logarithmic divergences in the specific heat are com-

monly considered as an hallmark of the breakdown of the Fermi liquid properties of the metal-

lic state (cf. Chap. 1). The existence of a crossover to a Fermi liquid phase at very low tempera-

tures (cf. Sec. 5.3), coming with the formation of coherent quasiparticle excitations, hints that at

sufficiently low temperature the specific heat may crossover to the expected linear Fermi liquid

behavior. Thus, the log-divergent behavior may be interpreted as the precursor of the forma-

tion, at low enough temperature of a coherent quasiparticle with a dramatically enhanced effec-

tive mass. Nevertheless, at sufficiently low doping the exponential vanishing of the crossover

temperature can make the linear Fermi liquid behavior unobservable to all purposes.

It is then worth to observe how exhaustion of the charge carriers is reflected on the specific
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heat behavior. The rather smooth formation of the large log-divergence at low temperature and

intermediate doping (green and blue line) assumes a more sudden character upon lowering the

value of the doping. The formation of logarithmic divergence becomes unobservable with our

algorithm at doping smaller than 1%, i.e. very near to theMott metal-insulator transition point.

5.6.2 Entropy

Other useful insights about the microscopic nature of this novel non-Fermi liquid phase and

the formation of an heavy fermion state at very low temperatures can be deduced by examining

the entropy. This quantity may reveals the temperature evolution of the quenching of the local

moments, indicating in particular to what extent they may participate in the breakdown of the

Fermi liquid properties.

Entropy S can be directly evaluated from the knowledge of the specific heat, using the

following thermodynamic relation:

S(T) =
∫ T

0
dT′ Cv(T′)

T′ .

In the very high temperature limit S(T) is expected to saturate to S∞ = log(16). This value

corresponding to the activation of the 4 × 4 degrees of freedom of the two orbitals per site

forming the periodic Anderson model (cf. atomic limit of the model Sec. 3.1). We checked the

existence of this limit both by calculating the entropy from the long tail of the specific heat

shown in Fig. 5.16 and by evaluating the entropy within the atomic limit solution of the model.

This latter has found to be in a remarkable good agreement with the entropy behavior of the

Mott insulating solution.

Exploiting the existence of such an high temperature limit we may rewrite the previous

formula for the entropy as follow:

S(T) = log(16) −
∫ ∞

T
dT′ Cv(T′)

T′

Despite its apparent simplicity this second expression has the main advantage of being inde-

pendent of the details of the specific heat behavior at temperatures smaller to those at which

the entropy is evaluated. Thus the entropy function is obtained by solving the model at very

high temperature and then slowly decreasing it, till breakdown at low temperatures of the al-

gorithm used to get the specific heat . In practice a suitable interpolating scheme has been used

to increase the number of points of the specific heat function and to obtain smoother curves.

In the inset of the next Fig. 5.19 we illustrate the saturation of the entropy to log(16) by

showing the behavior of the entropy for different values of the doping, from the Mott insulator
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Figure 5.18: Qualitative comparison between the electronic specific heat obtained within our

theory and experimental results for an heavy fermion compound.
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Figure 5.19: Entropy S(T) as a function of low temperature and for several different values

of doping across the NFL region. The doping and the colors of the curves are the same as in

Fig. 5.16. Data are obtained by numerical numerical integration of fitting curves of the specific

heat Cv. Inset: high temperature limit of the entropy. The curves show a saturation to log(16)

corresponding to the activation of all degrees of freedom at a single site of the PAM.

to the large doped Fermi liquid, in a wide temperature range. Due the presence of very long

tails in the specific heat behavior, the saturation appears to be effective only for temperatures

of the order T ≃ 5D.

In the main panel of same figure 5.19, we present the results of our calculations, namely the

low temperature behavior of the entropy for the same values of the doping discussed in the

previous section.

The entropy behavior of the Mott insulating state (purple line) shows a residual entropic

contribution of S(T = 0) = log(2). This value is attained at finite temperature and corresponds

to the existence of unquenched spins in the insulating phase. It is interesting to observe that,

despite this Mott insulating state is obtained by localization of a composite object, the behavior

of the residual entropy is in perfect agreement with the results of the one band Hubbard model

[31].

On the opposite side, the Fermi liquid metallic state obtained at large values of the dop-

ing shows a linearly vanishing behavior of the entropy at low temperature (black line). This

behavior corresponds to the formation of heavy effective masses for the charge carriers. The

value of the linear slope becomes larger and larger upon decreasing the doping, signalling the

increasing renormalization effect of the effective masses (red line).
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In correspondence of the logarithmic divergences observed for the specific heat, the entropy

acquire a steeper behavior at low temperature (green and blue lines). Approaching the Mott

insulator this critical behavior of the entropy is enhanced. For doping of about δ ∼ 5% the

entropy S(T) shows the existence of a “plateau” at a value S ≃ C log(2), with C < 1. This can

be associated with the exhausted screening of the unquenched local moments.

The lack of precision of the algorithm used in this work does not permit us to observe the

evolution of such a feature for smaller value of the doping, even if a clear tendency of the

entropy curves to form plateaux below log(2) can be clearly appreciated [10].

From the knowledge of the entropy as a function of temperature other interesting insights

can be obtained, about the formation of the Zhang-Rice singlets. As we have discussed above,

the formation of such states is the result of the Kondo screening process that takes place be-

tween the doped carriers (namely p-holes) and the more localized d-orbital electrons. We have

estimated the coherence temperature below which the liquid of singlets characterizing this

metallic state acquires Fermi liquid properties. Nevertheless no information about the temper-

ature at which the screening process start have been derived. We are now in the position of

filling this hole. The temperature below which the screening process starts taking place can

in fact be estimated as the value of the temperature at which the entropy of the metallic so-

lution attains a value S(Tunq) = log(2). This value corresponds to the presence in the system

of unquenched spin, Thus, the onset of a screening process at temperatures Tq < Tunq should

lead to a smaller value of the entropy S(Tq) < log(2). As one can easily understand from the

analysis of Fig. 5.19 this quantity, estimating from below the TKondo scale for the formation of

local singlets, is a slowly decreasing function of the doping and results to be much larger than

the coherence scale reported in Fig. 5.10.

5.7 Mottness scenario

We shall now summarize the results obtained about this novel heavy fermions non-Fermi liq-

uid state in two phase diagrams. We discuss both the physical origin of the breakdown of the

Fermi liquid properties and how the non-Fermi liquid state can be tuned by either doping or

external magnetic field. The obtained phase diagrams account for some properties of the non-

Fermi liquid phase in heavy fermion systems and are in qualitatively agreement with some of

the NFL phenomenology observed in experiments [94].

5.7.1 T - δ phase diagram

In the previous sections we have shown the existence of a non-Fermi liquid state in the DMFT

solution of the periodic Anderson model. Moreover we have observed the crossover to a nor-
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mal Fermi liquid metallic phase at very low temperature, as well as the formation of an antifer-

romagnetic order for low enough temperature and doping. All these results can be summarized

in a phase diagram temperature versus doping, presented in the following Fig. 5.20. This phase

diagram has been obtained by extrapolating to zero energy of the imaginary part of the con-

duction electron self-energy ImΣpp(ω → 0), i.e. the scattering rate, for many different values of

doping and temperature. The results so obtained have been normalized to the maximum value

attained by each self-energy function: max{ImΣpp(iωn)}.
The figure describes the character of the DMFT solution of the model thru the behavior of

the normalized scattering rate as a function of both doping and temperature. Comparison with

real temperature has been obtained by fixing the energy unit D = 2t, corresponding to the half

bandwidth of the conduction electrons density of states. In the present case we have chosen it

such that D = 1eV ≃ 104K (with kB = 1). This parameter can of course be adjusted in order to

obtain a better comparison with experimental results.

In the phase diagram of Fig. 5.20 we show how cooling down the system may lead to in-

creasing critical character of the DMFT model solution, eventually ending in a breakdown of

the Fermi liquid properties at very low temperatures and small values of doping.

For a large value of the doping and low enough temperatures the solution has Fermi liquid

metallic character. This is illustrated by the wide dark-blue region on the right bottom part of

phase diagram (FL). The triangular shape of this Fermi liquid region underline the fact that

exponentially small temperatures are required at low doping to construct coherent electronic

excitations and to form the Fermi liquid metallic state. This behavior is also underlined by the

coherence temperature Tcoh, indicated in the phase diagram by the dashed blue line and circles.

This line roughly separates the more blueish area corresponding to the Fermi liquid metallic

phase from the critical area in light orange and white where the system shows non-Fermi liquid

properties. The coherence temperature has been obtained by extrapolation to zero temperature

of the local spin susceptibility χloc(T) (cf. Sec. 5.4). The low temperature Fermi liquid region

below the dashed blue line is characterized by an enhanced effective mass, hinted by the steep

linear behavior of the electronic specific heat γ = C/T. Thus, this region corresponds to an

heavy fermion metallic phase.

On the other side of the plot, for low doping (δ < 0.04), it is well visible a second deep-blue

region, corresponding to the antiferromagnetic metallic phase. This region is delimited by the

solid green line indicating the evolution of the Nèel temperature as a function of doping. The

normal metallic behavior in the AFM phase is due to the Nèel ordering of the local moments

permitting to the doped charges to easily delocalize.

In between these two well defined metallic phases the system shows a large region where

Fermi liquid properties breakdown The large finite value of the normalized scattering rate, in
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Figure 5.20: Intensity plot of the scattering rate ImΣpp(ω → 0) as a function of doping δ and T.

For visualization, the scattering rates are normalized to max{ImΣpp(ωn)} at each (δ, T). The

green solid line with square dots at low δ is TNeel and gives the AFM phase boundary (The T=0

data-point is obtained from ED). The blue dashed line with circle dots denotes the numerical

estimate for the crossover scale Tcoh. It is obtained from the extrapolation of the low T behavior

of 1/χloc(T) (cf Sec. 5.4).
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the figure corresponding to the orange-to-white critical region (NFL), indicates the increasing

critical character of the model solution. The fluctuating nature of the local moments of the cor-

related electrons prevents the formation of coherent electronic waves, i.e. long-lived quasipar-

ticles. The non-Fermi liquid character of the solution is underlined, besides the finite scattering

rate, by the log-divergent behavior of the electronic specific heat γ = C/T ≃ − log(T). This

result is in qualitative agreement with many experimental observation of breakdown of the

Fermi liquid properties in heavy fermion systems, cf. Fig. 5.18. At low dopings conventional

Kondo screening becomes effective only at extremely low (i.e. vanishing) temperature. This

behavior is related to the exhaustion problem, induced by the proximity to the Mott transition

point (T = 0, δ = 0).

Interestingly the non-Fermi liquid phase is not screened out from the onset of the AFM

metallic phase. This demonstrates that the non-Fermi liquid state is stabilized by magnetism.

Magnetic stability is a property that is not shared with standard exhaustion scenario. Because

of the presence of large unscreened magnetic moments, exhausted systems are usually found

to be unstable towards magnetic ordering.

Thus, the scenario we propose and that is illustrated by the phase diagram in Fig. 5.20

describes the transition from a paramagnetic non-Fermi liquid state to an antiferromagnetic

metallic one, qualitatively similar to what is often observed in heavy fermion compounds

with non-Fermi liquid properties [94]. Preventing the system to antiferromagnetically order,

e.g. introducing lattice frustration in order to suppress the ordering temperature scale, would

permit to the paramagnetic non-Fermi liquid phase to persist till the boundary with the Mott

insulator at zero doping. In this case we would obtain a scenario for the non-Fermi liquid to

paramagnetic insulator, or spin glass, transition. These type of transitions, far from magneti-

cally ordered phases, are observed in some heavy fermion compounds.

5.7.2 Competing magnetic interactions: T - Bext phase diagram

The stability with respect to magnetic ordering is a strong property of the non-Fermi liquid

phase, which can be traced back to its physical origin . In our scenario the breakdown of the

Fermi liquid properties down to exponentially small temperature is due to the strong magnetic

frustration of the d-electrons local moment. The incoherent nature of these local moments is

consequence of the competition between two different magnetic interactions.

Neighboring localized d-orbital electrons in the Mott insulating state develop sizeable an-

tiferromagnetic correlations, as a results of super-exchange processes induced by the finite hy-

bridization with the conduction band. These can be understood in terms of the mapping of the

correlated band (near the Fermi level) to the Hubbard model. This antiferromagnetic interac-

tion persist in the low doping limit and is responsible for the AFM metallic state observed in
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the phase diagram of Fig. 5.20.

On the other hand it should be realized that at larger values of the doping and low temper-

atures, in a regime dominated by Fermi liquid properties, a competing ferromagnetic interaction

appears. This interaction is indirectly induced by delocalization of the doped charges involved

in the Kondo screening process, with a mechanism reminding the Nagaoka ferromagnetism.

To understandhowdelocalization of the doped p-type carriers (holes) and the Kondo screen-

ing can indirectly lead to the formation of ferromagnetic exchange let’s considering the follow-

ing. The doped carriers, say p-holes, are subject to a strong on-site antiferromagnetic inter-

action with the local d-moments, in terms of impurity model this interaction corresponds to

the local Kondo screening. Nevertheless, the doped carriers also need to delocalize in order to

gain kinetic energy. But each time a p-hole hops from one site to its nearest neighbor it may

break the magnetic bound with the correlated electrons, losing a substantial amount of energy.

Moreover it left a local moment unscreened thus increasing the fluctuating nature of the local

magnetization. Therefore in order to hop, the doped holes need the neighboring local moments

to have the same magnetic orientation as the one on the current site. Thus the system can gain

energy from ordering the local d-moments ferromagnetically. The gain is double: beside the ki-

netic energy gained by delocalization, this process prevent the doped charges to lose the local

Kondo binding energy.

This discussion is substantiated by our study of the response of the system to the application

increasing external magnetic field strength B on the antiferromagnetic metallic phase. The

results of this calculation are reported in the following Fig. 5.21. We mapped out the phase

diagram as a function of temperature and external field B, by analyzing the behavior of the

scattering rate of the system ImΣpp(ω → 0), normalized to the maximum value of the same

function, in a wide range of temperature and forcing field.

At B → 0 the solution corresponds to the antiferromagnetic metallic state at δ = 0.01

already discussed in the previous sections. The Fermi liquid character of the solution cor-

responds in the phase diagram to the small dark region in the bottom left part of the plot,

enclosed by the light green dashed curve.

Upon increasing the external magnetic field the system is driven to a critical/non-Fermi

liquid phase, corresponding to the light orange-to-white region. This calculation demonstrate

that the breakdown of the Fermi liquid properties can be understood as resulting from the

competition between antiferromagnetic correlations driving the AFM phase and the ferromag-

netic interaction, favored by the application of the external magnetic field. Upon increasing

the strength of the external magnetic field the large local magnetic d-moments become strongly

frustrated and act as scattering centers for the motion of the doped charge carriers (p-holes).

From the point of view of the underlying effective impurity model the AFM/FM competition
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Figure 5.21: Intensity plot of the scattering rate ImΣpp(ω → 0) as a function of external mag-

netic field Bext and T, at fixed doping δ = 0.01. For visualization, the scattering rates are

normalized to max{ImΣpp(ωn)} at each (B, T).
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lead to an highly fluctuating local magnetization. The local fluctuating magnetic field couples

to the itinerant degrees of freedomof the doped charges, preventing the formation of a coherent

electronic waves.

For large enough B the magnetic field induces ferromagnetic order to the local d-moments,

thus leading to the formation of a normal polarized metallic state, corresponding in the phase

diagram in Fig. 5.21 to the large blueish region on the bottom right part of the plot and sepa-

rated by the light blue dashed line.

Our results demonstrate that a local fluctuating magnetization, produced by unquenched

moments, acts a sufficient source of scattering for the doped charges in order to prevent the

formation of a Fermi liquid metallic state. The resulting NFL phase can be tuned by both

doping or magnetic field resulting in different phase diagrams. These can account for some of

the many aspects of the non-Fermi liquid phenomenology in heavy fermions systems. Indeed

several scenario for the breakdown of the Fermi liquid phase and its transition to a metallic

phase, such as towards an AFM or a FM or moreover to a Spin Glass state, are readily available

with the DMFT solution of the model.

5.8 Conclusions

In conclusion we have illustrated with the Mottness scenario for non-Fermi liquid in heavy

fermion systems. We have first discussed the properties of the correlated metal, obtained upon

positive doping the Mott insulating state (cf. Chap. 4). This metallic state is formed by a liquid

of local singlets, resulting from Kondo binding between the large magnetic moments of the

correlated electrons and the doped charge carriers (e.g. p-holes).

Surprisingly this correlated metal does not follow, down to vanishing temperature, the

usual Fermi liquid predictions, i.e. can not be described in terms of long-lived electronic ex-

citations. The formation of Fermi liquid state is recovered only cooling down the system to

temperature exponentially small in the doping (coherence temperature Tcoh). The existence of

such a reduced coherence scale, with respect to the rather large Kondo temperature, is an hall-

mark of exhaustion phenomena. The presence of exhaustion in our model solution is related

to the proximity to the Mott insulating state. We underlined the main differences with the

standard exhaustion mechanism, introduced in the context of Kondo lattice problem.

The system in the non-Fermi liquid state recovers the usual Fermi liquid properties by the

application of an external homogeneous magnetic field. On the other hand near the Mott in-

sulating state correlated d-orbitals, bearing large magnetic moments, can develop antiferro-

magnetic correlations. These lead to formation of antiferromagnetic order in the limit of low

doping and low enough temperatures. The physical origin of the observed breakdown of the
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Fermi liquid properties has been traced back to the existence of two competing magnetic inter-

action, namely the antiferromagnetic super-exchange and a ferromagnetic correlation induced

by carriers delocalization. This competition lead to the formation of strongly fluctuating local

magnetization, that prevent the formation of long-live electronic waves, i.e. quasiparticles.
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Concluding remarks and perspectives

The main goal achieved in the work presented in this thesis has been the derivation of the

“Mottness” scenario, i.e. a scenario based on the proximity to a Mott transition, for the non-

Fermi liquid phase of heavy fermion systems. The presented results and phase diagrams are in

qualitatively agreement with the observed non-Fermi liquid heavy fermion phenomenology.

We have also shown that the non-Fermi liquid state can be tuned by either doping or magnetic

field, similarly to what can be observed in the experiments.

The results of this thesis have been obtained in the framework of DMFT solution of a canon-

ical strongly correlated model commonly used to study heavy fermion systems, namely the

periodic Anderson model. We demonstrated that, contrary to conventional expectations, a

non-Fermi liquid state can be readily obtained within DMFT. Moreover, our approach share

an important ingredient with other common approaches to non-Fermi liquid behavior [94, 14],

namely the proximity to a quantum phase transition. But unlike the other approaches, within

the scenario we proposed the relevant quantum transition is a Mott metal-insulator transition.

This approach presents a slightly different point of view on the breakdown of the Fermi

liquid properties in strongly correlated models, showing that coupling to long wavelength

magnetic fluctuations (totally absent in DMFT) is not a prerequisite for the realization of a

non-Fermi liquid scenario. Local temporal magnetic fluctuations alone, in our case originated

by strong competition of magnetic interactions, can provide a sufficient source of scattering in

order to prevent the formation of coherent electronic excitations.

Our results, offering a rather new approach to the challenge posed by non-Fermi liquid be-

havior in correlated systems, is open to further researches in several directions. The first and

probably most interesting direction to follow is to study the possible existence of a supercon-

ductive phase at very low temperature. In fact, at temperatures of the order of the coherence

scale, the ferromagnetic correlations induced by delocalization of the doped charges may pro-

mote the formation of superconductive pairs between doped charges. Thus, the pairing mech-

anism could be induced by magnetic interactions rather than phonons coupling. Interestingly
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the temperature scale below which superconductivity may be effective will be of the same or-

der of magnitude of that generally observed in heavy fermion compounds (i.e. about 1K, cf.

Chap .1).

On the other hand, the connection of our scenario with the recently proposed Kondo break-

downnear selectiveMott transition it is worth to be clarified, looking for possible contact points

[72, 73]. Despite no orbital selective Mott transition is possible in our model, the inclusions of

other terms in the initial Hamiltonian (cf. (3.1)) such as local correlation on the conduction

band, may break this property and lead to an OSMT [18], in the neighborhood of which non-

Fermi liquid state can be observed. Recently some results concerning the existence at zero

temperature of an OSMT in the PAM has been obtained by [17], studing the competion of the

Kondo and RKKY interaction (Doniach diagram) by means of a suitable cluster extension of

DMFT. On this line it would be of some interest to explore the affinity of the Mottness scenario

obtained within DMFT solution of the PAM and the Doniach diagram.

Going back to the ZSA diagram discussed in Sec. 4.1, it is worth to mention that many of the

results presented in this thesis for theMott-Hubbard regime have been extended to the Charge-

Transfer case. Nevertheless the relevance of aMottness scenario for non-Fermi liquid formation

in high Tc superconductors, or other charge-transfer compounds, remains a questionable prob-

lem recquiring further study. In this respect, it may be interesting to study the evolution of

our scenario with the introduction of a non-local hybridization. Simple model containing this

term, e.g. [30], have been studied to investigate the DMFT description of strongly correlated

superconductivity.
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