

Design of CMOS analog integrated circuits as readout electronics for high- $T_{\rm C}$ superconductor and semiconductor terahertz bolometric sensors

Vratislav Michal

Supervisors:

Prof. Alain Kreisler, Laboratoire de Génie Electrique de Paris-Supélec, UPMC-P6 **Assoc. Prof. Jiří Sedláček**, DTEEE - Brno University of Technology

Gif, June 10th 2009

CCII

THz detection and imaging

Research applications

Cosmic Microwave background exploring [COBE-Nobel prize in physics 2006]

Other fields of applications:

Spectroscopy Civil security, medical Military application etc...

Civil applications

High voltage insulator under discharge [ulis-ir website]

(THz) Bolometric detectors

Summary

Characterization of new generation THz detectors: A CRUCIAL ROLE OF ELECTRONICS

Research objectives of PhD thesis

- Cryogenic integrated analog electronics for THz detection chain
- New structures of fixed-gain CMOS differential amplifiers; compatible with bolometric detectors at room and cryogenic temperatures
- High dynamic range signal processing: developpement of frequency filters with high attenuation rate

II. Differential amplifiers for cryogenic and room temperature instrumentation

Summary

SPECIFICATIONS

Wide temperature range CMOS differential amplifiers for:

- i) Room temperature (semiconducting bolometers)
- ii) Cryogenic temperatures (high-T_c superconducting bolometers)

Low noise differential CMOS amplifier

Requirements:

- 40dB, accurate gain,
- 70K to 300K temperature range,
- Differential gain BW: DC to several MHz,
- Low noise operation,
- Low power consumption,
- > High (> 100k Ω) input impedance.

Summary

MOS cryogenic modeling

Measured I-V characteristics for a PMOS 400/8 μ m

Measurement results obtained in L2E UPMC – Paris 6 and CEA-INAC Grenoble → Low field surface mobility:

$$\mu(T) = \mu(T_0) \left(\frac{T}{T_0}\right)^{-1}$$

Threshold voltage:

$$V_{TH}(T) = V_{TH}(T_0) \left[1 + \alpha_{THX} \cdot (T - T_0) \right]$$

Analytical temperature model

$$I_D = \frac{KP}{2} \left(\frac{T}{T_0}\right)^{-x} \frac{W}{L} \cdot \left[V_{GS} - V_{TH}(T_0) \left[1 + \alpha_{THX} \left(T - T_0\right)\right]\right]^2$$

Other effects: Kink effect, mobility degradation electron freeze-out

 V_{GS} [M] \rightarrow

Least squares empirical model

 $KP_{P}[A/V^{2}]$ 20.6×10⁻⁶ 21.6×10⁻⁶ 72.4×10⁻⁶ $V_{TH}[V]$ -0.96V -0.95V -1.405V

	X	α_{THX}	V _{TH} shift
Model coefficients	0.90	-2.16 mK ⁻¹	-2.1 mV/K

Verification of model: different run

DC BIAS, CONFIGURATION

- (+) simple architecture
- (+) low noise
- (-) single-ended output
- (-) DC operating point
- (-) dynamic range

differential read-out amplifier in CMOS

adopted solution

Single-ended amplifiers [*] [*] PhD theses: F. Voisin, 2005, D. Prêle, 2006, L2E UPMC-P6

Differential OA

Summary

Differential amplifiers

Instrumentation amplifier

- High input impedance
- Very high accuracy
- Higher input referred noise
- Low bandwidth

Low input impedance

High accuracy

Solution: feedback-free amplifier

* Bolometer noise voltage is neglected

No resistors in the structure

simplification, reduced noise, and Iq, silicon surface save

Output Service Absence of compensation

improves time characteristics (no stability problems) and allows to reach higher BW

8 Linearity, distortion

Missing architectures in bipolar and CMOS process

Summary

Known structures – low gain

Common source MOS amplifier

OTA-based differential fixed-gain amplifier

The expression of the gain follows a square-root law:

$$G_{0} = \frac{dV_{OUT}}{dV_{GS1}} = -\sqrt{\frac{KP_{N}}{KP_{P}}}\sqrt{\frac{W_{1}/L_{1}}{W_{2}/L_{2}}}$$

Adopted technique: low g_m load

Voltage gain fixed in the structure by the transconductance ratio

Active loads

MOS diode

$$g_m = \sqrt{2KP\frac{W}{L}I_L}$$

 $g'_{m} = \sqrt{2KP \cdot \frac{W_{1}}{L_{1}} (I_{L} - I_{M2})}$

Current difference makes the function very sensitive:

Decreasing the transconductance by current sink PhD F. Voisin, 2005, L2E-LISIF

Proposed low g_m composite transistor

Folded cascode OTA: analysis

DC characteristic:

The stage behaves as a quasi-linear current source

Summary

Proposed 1st folded cascode amplifier

DC transfer characteristic:

$$G_{0} = \frac{dV_{out}}{d\Delta V_{GS}}\Big|_{\Delta V_{GS}=0} = \frac{1}{2}\sqrt{\frac{L_{eff}}{W_{eff}} \cdot \frac{W_{D}}{L_{D}}} \cdot \sqrt{\frac{I_{B}}{2 \cdot I_{L(\Delta V_{GS}=0)}}}, \quad \text{where:} \quad \frac{W_{eff}}{L_{eff}} = \frac{\frac{W_{2}}{L_{2}} \cdot \frac{W_{4}}{L_{4}} \cdot \frac{W_{L}}{L_{4}}}{\frac{W_{3}}{L_{2}} \cdot \frac{W_{5}}{L_{5}}}$$

Noise analysis of folded cascode

The equivalent input noise:

$$\overline{e}_{in}^{2} = \frac{\overline{e}_{OUT}^{2}}{G^{2}} = \frac{8}{3} k_{B} T \left(\frac{1}{2} \cdot \frac{1}{g_{mdiff}} + \frac{1}{4} \cdot \frac{g_{m7}}{g_{mdiff}^{2}} + \frac{g_{m4}}{g_{mdiff}^{2}} \right)$$

A very low thermal noise is observed at cryogenic temperature (T = 77 K): *v*_{n,in} = 1.5 *nVl*√*Hz*.

CCII

Small signal equivalent circuit

Simulated input-referred noise voltage (both amplifiers)

Measurements: wide temperature results

DC transfer characteristic at T = 290K

Temperature function of voltage gain

CMOS: AMS 0.35 µm

Amplifier design

Results DC and AC characteristics

Frequency filters

1st amplifier: summary

- New amplifier architecture for extreme temperature range
- State-of-the-art: low noise and large BW operation (up to 1.7GHz GBW at Iq = 2.1mA)
- Gain is fixed by means of geometric ratio: no variation with temperature
- Sufficient linearity for small signals: DC characteristic ∞√ Vin

V. Michal et al. "*Fixed-gain CMOS differential amplifiers with no external feedback for a wide temperature range*", Cryogenics (2009)

II.2 2st amplifier: linearization and temperature compensation

Introduction

CCII

Summary 24/50

2nd amplifier: new temperature compensation and linearization

Based on cancelling the quadratic terms. The node equation can be written:

$$\frac{\beta_1}{2} \left(V - V_{TH1} \right)^2 = \frac{\beta_2}{2} \left(V_{DD} - V - \left| V_{TH2} \right| \right)^2 + I_0$$

The extraction of output voltage leads to (assuming $\beta_1 = \beta_2$, $V_{TH1} = V_{TH2}$):

$$V = \frac{V_{DD}}{2} + \frac{I_0}{\beta (V_{DD} - 2 \cdot |V_{TH}|)}$$

Summary

Condition: $\beta_1 = \beta_2$, $V_{TH1} = V_{TH2}$: solution

• $\sqrt{(W/L)}_{D}/(W/L)_{eff}$ ratio,

• Technological parameters: $\sqrt{KP_{P}}$, V_{THP} .

• Bias current $I_{\rm B}$ and power supply voltage $V_{\rm DD}$.

Summary

Analysis of DC transfer

DC transfer characteristics

	КР	V _{TH}	V _{DD}	I_B	W_D/L_D	WEff/Leff
$S_{x_i}^{G_{\bullet}}$	$-\frac{1}{2}$	$\frac{2 \cdot V_{\mathrm{THP}}}{V_{\mathrm{DD}} - 2 \cdot V_{\mathrm{THP}}}$	$-\frac{V_{DD}}{V_{DD}-2\cdot V_{THP}}$	$\frac{1}{2}$	$\frac{1}{2}$	-1

Biquadratic sections

CCII Summary

27/50

Temperature compensation principle: <u>current / voltage biasing</u>

➔ Voltage gain :

$$G_{0} = \frac{dV_{out}}{d\Delta V_{GS}}\Big|_{\Delta V_{GS}=0} = \frac{1}{2} \cdot \frac{\sqrt{I_{B} \cdot \frac{W_{D}}{L_{D}}}}{\sqrt{KP_{P}} \cdot \frac{W_{eff}}{L_{eff}}} \cdot \left(V_{DD} - 2 \cdot \left|V_{TH,P}\right|\right)$$

We replace the elements without temperature dependence by C:

$$G_0(T) = \frac{C}{\sqrt{KP_P(T)} \cdot \left(V_{DD} - 2 \cdot \left|V_{TH,P}(T)\right|\right)}$$

Which leads to:

$$\frac{G_0(T)}{C} = \frac{1}{\sqrt{\mu_P(T_0) \cdot \left(\frac{T}{T_0}\right)^{-x}} \cdot \left[V_{DD} - 2 \cdot \left|V_{TH,P}(T_0)\right| \left[1 + \alpha_{THX} \cdot \left(T - T_0\right)\right]\right]}$$

Measurements: wide temperature range

DC transfer characteristic at T = 290K

DC transfer characteristic at T = 290 and 77K

CMOS: AMS 0.35 µm

Measurements: wide temperature range

AC transfer @ 2.5V, 290 and 77 K

Temperature gain function for three V_{DD} voltages

2st amplifier: summary

- New amplifier architecture for extreme temperature range
- Wide linear operation, temperature compensation
- Low noise, wide BW achieved with low Iq (Up to 1GHz GBW for 1.3 mA quiescent current)
- Highly competitive with bipolar amplifiers, promising as compact cell for VLSI integration

Layout in CMOS 0.35µm AMS process

V. Michal et al. "*Fixed-gain CMOS differential amplifiers with no external feedback for a wide temperature range*", Cryogenics (2009).

Introduction	Amplifier design	Frequency filters	Biquadratic sections	CCII	Summary	31/50

III. High performance analog frequency filters

Introduction	Amplifier design	Frequency filters	Biquadratic sections	CCII	Summary	32/50
Motivation						

Motivation

- Correct analog processing close to the physical sensor is the best way to condition the signal
- ✤ Noise reduction is based on the spectrum reduction (Lock-in, FFT ...)
- Frequency filters: <u>crucial block</u>

→ Objectives:

- Optimization of the dynamic range (attenuation)
- Mastering of the topic, related work not presented in the thesis (goaldirected lossy active filters [*], adaptive analog signal processing [**], microwave superconducting filters [***])
- [*] V. Michal et al. "Active filters based on goal-directed lossy RLC prototypes ", Speto int conference (2006)
- [**] V. Michal et al. "The analog filter design and Interactive analog signal processing by PC" WSEAS (2005)
- [***] V. Michal et al. "Superconducting NbN band-pass filter and Matching circuit for 30GHz RSFQ Data Converters", IEEE conference Radioelek, 2009

CCII

Real-world frequency filters

Non-ideal passive components:

 f_0, Q inaccuracy, higher order effects, can be compensated [*]

Non ideal active components

 f_0 , Q inaccuracy, DC offset, attenuation

Effect of parasitic zeros in the AC response of frequency filter

[*] Geffe, P. R., IEEE Trans., Vol. CAS-23, pp.45-55, 1976 [**] Schmid, H. Moschytz, G.S. Circuits and Systems, vol.1, 1998, p. 57-60.

CCII

Example: real Sallen-Key filter

LP Sallen-Key biquad [*]

parasitic transfer zeros in the stopband

[*] Sallen.R.P-Key.E.I., Circuit Theory. Vol. 7. 1955

Summary

Real Sallen-Key: compensation

Proposed solution

Removal of the parasitic zeros ensures constant -40dB roll-off

- > Division of the frequency band in two regions:
 - Region up to f₀, where the DC transfer and resonance gain are ensured by the active element
 - Stop-band region, where the high attenuation is ensured by the passive RC filter
- Design rules: Interruption of direct signal way,
 Passive filters containing grounded capacitors

Adopted solution: topological transformation of circuits presented in [*]

[*] Liu, S-I., Tsao,H-W; Wu,J., Tsay, J-H. "*Realizations of the single CCII biquads with high input impedance*", IEEE Symposium on Circuits and Systems, 1991.

Summary

New biquadratic section CCII-

V. Michal et al. "*Low-pass biquadratic filters with high suppression rate*", Electronics Letters, Volume 45, Issue 12, p. 591-593 (2009)

Summary

Summary of achieved features

- The attenuation is only limited by signal leakage
- Does not depend on the f₀
- Using low-performance voltage buffer is allowed
- Direct connection to the DAC input

price and power consumption are reduced

III.2 High performance CCII current conveyor

Design of ultra-low R_{out}

CCII- with very low output resistance voltage buffer

Hassan O. et al, Circuit and Systems II, Vol. 49 (2002)

Performances: state-of-the-art

V _{DD}	+/- 2.5V
Quiescence current	11 mA
Port X,Z voltage swing	+/- 1.5 V
Port X,Z driving capacity	+/- 20 mA
Port Z DC impedance	~7.5 MΩ
Port X offset voltage	2.7 mV
Port Z offset current	2.25 µA
-3dB AC transfer Y→X	~110 MHz

Recently published results on UVC [*]:

terminal	10kHz	1MHz	10MHz
Z+	2.1Ω	10Ω	89Ω
Z-	0.9Ω	8.2Ω	76kΩ

[*] Minarcik, M., Vrba, K. ICN'07

Summary of achieved performances

Experimental result: 1.5MHz LPF

CCII

Summary: example of test facility

Conclusion: scientific contribution

New generation of differential (instrumentation) amplifiers

Feedback-free architecture. State-of-the-art of the performances, competitive with the bipolar technology: high BW, low power consumption, low noise level

<u>Comparison:</u>

	Type I	Type II	AD8045	LT1226 (OA)	INA103 (IA)
				250B stable	
lq	2.1 mA	1.3 mA	19 × 3mA	7 × 3mA	9mA
– 3dB BW (290K)	(GBW=1GHz)	4 MHz	1GHz	1000	0.08
– 3dB BW (77K)	(GBW=1.7GHz)	10 MHz	-	-	-
Noise (290 K)	5 nV/Hz ^½	5 nV/Hz ^½	3 nV/Hz ^½	2,6	1
Noise (290 K)	2 nV/Hz ^½	3 nV/Hz ^½	-	-	-

Cryogenic instrumentation, innovative design approaches

Analytical thermal model of the MOS, hybrid voltage-current biasing method

Analog front-end circuits optimization

New structures with improved behavior in stop-band, large extension of bandwidth

Fabricated circuits ready to be used in the new generation THz detector test set-up

Perspectives: Integration of the electronics in the THz test-bench

Implementation of designed circuits in industrial applications

Porovnání:

Shrnutí doktorské práce

Vývoj nové generace rozdílových zesilovačů pro měřící účely

Struktura v otevřené smyčce ZV, parametry plně porovnatelné s konkurencí i s bipolarnim zesilovači: velká šířka pásma, velmi nízká spotřeba a úroveň šumu

	Туре І	Type II	AD8045 (OA)	LT1226 (OA) 25dB stable	INA103 (IA)
lq	2.1 mA	1.3 mA	19 × 3mA	7 × 3mA	9mA
– 3dB BW (290K)	(GBW=1GHZ)	4 MHz	1GHz	1000	0.08
– 3dB BW (77K)	(GBW=1.7GHZ)	10 MHz	-	-	-
Noise (290 K)	5 nV/Hz ^½	5 nV/Hz ^½	$3 \text{ nV/Hz}^{1/2}$	2,6	1
Noise (290 K)	2 nV/Hz ^½	3 nV/Hz ^½	-	-	-

Obvody pro velmi nízké teploty: nový přístup k návrhu

Analytický model transistoru MOS, hybridní polarisace napětí-proud

Obvody analogového předzpracování signálu

Obvody biquadratických filtrů s vylepšeným potlačení v nepropustném pásmu. Zvýšení maximálího mezního kmitočtu a snížení odběru

Integrované Obvody CMOS byly vyrobeny a jsou připraveny k použití v měřící soustavě pro bolometrické detektory THz

Perspektiva: Integrace zesilovačů v měřící soustavě, optimalizace

Implemenace principů a metod návrhu v návazných průmyslových aplikacích

Contribution scientifique

Nouvelle génération d'amplificateurs différentiels d'instrumentation

Architecture en boucle ouverte, niveau de l'état de l'art. Compétitive avec des technologies bipolaires: grande BP, consommation réduite, bas bruit

<u>Comparison:</u>

	Type I	Type II	AD8045	LT1226 (OA)	INA103 (IA)
			(OA)	25dB stable	
lq	2.1 mA	1.3 mA	19 × 3mA	7 × 3mA	9mA
– 3dB BW (290K)	(GBW=1GHZ)	4 MHz	1GHz	1000	0.08
– 3dB BW (77K)	(GBW=1.7GHZ)	10 MHz	-	-	-
Noise (290 K)	5 nV/Hz ^½	5 nV/Hz ^½	$3 \text{ nV/Hz}^{\frac{1}{2}}$	2,6	1
Noise (290 K)	2 nV/Hz ^½	3 nV/Hz ^½	-	-	-

Instrumentation cryogénique: approche de conception innovante

Modèle analytique de transistor MOS, polarisation hybride tension-courant

Circuiterie d'entrée analogique optimisée

Structures de filtres biquadratiques avec un comportement "hors-bande" amélioré, élargissement considérable de la bande-passante

Circuits fabriqués, prêts à être utilisés en instrumentation THz

<u>Perspectives</u>: Intégration des circuits en question dans un banc de test Mise en œuvre des circuits dans des applications industrielles

Thank you

This research project has been supported by a Marie Curie Early Stage Research Training Fellowship of the European Community's Sixth Framework Program under contract number MEST-CT-2005-020692, and by the Grant Agency of the Czech Republic under Grant 102/03/1181.

Supplementary slides

Concurrence to DSP: YES[*]

[*] V. Michal et al. "The analog Filter Design and Interactive Analog signal Processing by PC" WSEAS (2005)

ers Biquadratic sections

1/20

Accuracy of BSIM-3

Comparison of characteristic obtained by measurements and simulations on a PMOS transistor $W/L=10\mu m / 100 \ \mu m$

DC characteristic, bias point

Simulated and calculated DC transfer characteristics $(V_{DD} = 5 V)$

Diff. pair size

$$\frac{W_{D}}{L_{D}} = 8 \cdot \frac{W_{eff}}{L_{eff}} \cdot \frac{I_{L,Q}}{I_{B}} \cdot G_{0}^{2}$$

Temperature evolution of DC output voltage

$$V_{OUT} = V_{DD} - \underbrace{\left| V_{THP} \right| \cdot \left[1 + \alpha_{THX} \cdot \left(T - T_0 \right) \right]}_{V_{THP}(T)} - \underbrace{\sqrt{\frac{2 \cdot I_{D1}}{KP_P \left(T/T_0 \right)^{-x} W_{eff} / L_{eff}}}_{V_{Gm}(T)}$$

Results: wide temperature measurements

Comparison with industrial state of the

art

Key parameters of developed amplifiers

MEASURED PARAMETERS	TYPE <i>I</i> AMPLIFIER	TYPE <i>II</i> AMPLIFIER
Operating supply voltage	4.1 V to 5.5 V	3.6 V to 5.5 V
Quiescent current	2.1 mA	1.3 mA^1
-3 dB bandwidth (T = 290 K)	10 MHz (GBW=1GHZ)	4 MHz at $V_{DD} = 5 V$
= 3 dB bandwidth (T = 77 K)	17 MHz (GBW=1.7GHZ)	10 MHz at V ₅₀ – 5 V
Input noise $(T = 290 \text{ K})$	5 nV/Hz^{2}	$5 \text{ nV/Hz}^{\frac{1}{2}}$
Input noise $(T = 77 \text{ K})$	$2 \text{ nV/Hz}^{\frac{1}{2}}$	$3 \text{ nV/Hz}^{\frac{1}{2}}$
Gain G_0 (T = 290 K)	39.85 dB	39.3 dB at $V_{DD} = 5 V$
Δ Gain 270 K – 390 K	– 0.12 dB	-0.5 dB at $V_{DD} = 4 \text{ V}$
Gain error (at $T = 77 \text{ K}$)	– 1.2 dB	-1.3 dB at $V_{DD} = 4 \text{ V}$
$\mathrm{THD}^2 \left(V_{\mathrm{out}} = 0.3 \mathrm{V}_{\mathrm{pp}} \right)$	1 %	0.03 %

CCII

Industrial differential amplifiers (room temperature)

Туре	Configuration	GBW [MHz]	SR [µV/s]	VDD [V]	lq [mA]	Input noise nV/√Hz	Other
AD8045	OA Bipolar	1000	1350	3.3 - 12	19 × 3	3	
LTC6401-20	Fixed gain 20dB+/-0,6dB Bipolar	1300	4500	2,85-3,5	50 × 3	2,1	R _{in} =200Ω
LT1226	OA Bipolar	1000	400	5-36	7 × 3	2,6	25dB stable
OPA699	OA Bipolar	1000	1400	5-12	22,5 × 3	4,1	12dB stable
OPA2354	OA CMOS	250	150	2,7-5,5	7,5 × 3	6,5	
INA2331	Instrumentation CMOS	50	5	2,5-5,5	0,5	46	
INA103	Instrumentation BIPOALR	80	15	9-25	9	1	

Global performances: state of the art

measured and simulated resistance of output terminal \underline{X}

V _{DD}	+/- 2.5V
Quiescence current	11 mA
Port X,Z voltage swing	+/- 1.5 V
Port X,Z driving capacity	+/- 20 mA
Port Z DC impedance	~7.5 MΩ
Port X offset voltage	2.7 mV
Port Z offset current	2.25 μA
-3dB AC transfer Y→X	~110 MHz
Port X resistance @ DC	2 Ω
Port X impedance @ 1MHz	2.5 Ω
Port X impedance @ 10MHz	8.5 Ω

Summary of achieved performances

measured and simulated AC response of the unity gain voltage buffer

Recently published results on UVC [*]:

terminal	10kHz	1MHz	10kHz
Z+	2.1Ω	10Ω	89Ω
Z-	0.9Ω	8.2Ω	76kΩ

[*] Minarcik,M., Vrba,K. "Continuous-Time Multifunctional Filters with Wide Bandwidth Using Universal Voltage Conveyors " IEEE International Conference on Networking (ICN'07)

AC & DC characteristics, sensitivity

