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Thesis

Explicit consideration of anticipatory mechanisms, as observed in music 
cognition, within a computational framework, could

Address “complex” problems in computer music,
Reduce complexity of computation and design,
and Provide access to temporal structures of music information as they 
unfold in (real) time, for creative applications (computer music).
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Motivations

Role of expectations in musical experience

• In listening experience
Expectations imply mental representations in which our daily musical 
experience is being examined and updated.
Major responsibility for musical emotions

• In musical creativity
Meyer (1954):  composition = choreography of musical expectations
Huron (2006):  Demonstrates explicit cases of these “choreographies”
Grisey (1987): “A composer’s reflections on musical time”

The skin of time
From the time of music to the music of time...

• No major consideration for expectation in computer music
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Approach

• A voyage from the domain of natural science to the
science of the artificial 

Define and clear out the context
From modeling anticipation to anticipatory modeling
Modeling anticipation:  Research in music cognition literature for the study 
of musical behavior pertaining to expectations
Anticipatory modeling:  A cognitive design principle for modeling artificial 
systems.

• Propose anticipatory models addressing three main preoccupations of 
musical expectations:

What to expect
How to expect
When to expect

4From the time of music to the music of time



“I think that the search for a universal answer to
the questions raised by musical experience will
never be completely fulfilled; but we know that a
question raised is often more significant than the
answer received. Only a reckless spirit, today,
would try to give a total explanation of music,
but anyone who would never pose the problem
is even more reckless.”

Remembering the future
Luciano Berio

vii

From Modeling Anticipation to 
Anticipatory Modeling

Music Cognition

Modeling 
Investigations

Anticipatory Modeling

PART (I)

Artificial Science

Natural Science
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Anticipation, Expectation, Prediction

Definitions?

• Prediction:  Act of forecasting based on previously gained knowledge 
from an environment.

• Expectation: “a form of mental or corporeal belief that some event 
or class of events is likely to happen in the future.” (Huron 2006)

• But anticipation...
Huron (2006):  Anticipation is “a sub-product of expectation when the 
sense of appraisal for the expected future event is high.”
Bharucha (96) calls this yearning.
Narmour (90) calls this implication.
Schmuckler (97):  “Expectation is an anticipation of upcoming events based 
on information from past and present.”

6
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Psychology of Musical Expectation

Fact Constitution
1. Expectations entail mental representations, whether partial, accurate or 

fallible.
2. Expectations are learned through interactions with a surrounding 

environment (auditory learning)
The determinant factor for learning auditory phenomena is their stability in 
the surrounding environment
Statistical nature of auditory learning

3. Concurrent and Competitive Representations
Listeners appear to possess multiple representations for the same 
phenomena (concurrency)
Expectations are differentially favored depending on their predictive success 
(competitive)

4. Expectations lead to predictions, which by themselves evoke actions 
(physiological, mental or physical)

Expectations are always coupled with their consequent actions
In theory and also in practice... .

7Part I.  From modeling anticipation to anticipatory modeling
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What is Anticipation?

We study the activism aspect of expectation under the term Anticipation:

• Implications:
Expectations demand constant adaptation and interaction with an 
environment
Anticipation is an activity of coupling with the environment.
Anticipation is not a process in the brain, but a kind of skillful activity and a 
mode of exploration of the environment.

8Part I.  From modeling anticipation to anticipatory modeling

Definition Anticipation is an action, that a system takes as a result of pre-
diction, based on current belief or expectations, including actions on its own
internal state or belief.
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Modeling Investigations

• What is modeling?
In natural sciences, by modeling musical expectations researchers aim at

assessing a theory regarding one among many aspects of the psychology of 
musical expectations

• Things to be aware of...
(A) Imperfect Heuristics

Recall “fact 1”: Consequent mental representations out of auditory learning 
can be fallible.

We are selective and imperfect learners, constrained by all problems of induction.

Biological goal of expectation vs. Musical goal of expectation
Biological goal: Faulty heuristics          Potential danger
Musical goal: Every danger is... welcome! 

Our senses are biased through the world!

9
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Modeling Investigations

• Things to be aware of...
(B) Naive Realism

Naive Realists consider senses as unbiased windows through the real world.
A sobering point for music theorists!

Considering that the structures seen in notations are the ones we experience, 
and what is experienced is what is seen in the notation.
The majority of music theoretic models of expectation undergo naive realism. 

Example:  The story of post-skip reversal
Common perception pattern among western-listeners
Adopted by many music theory researchers as an “rule”
underlying melodic expectation (Narmour, Lerdahl, Margulis).
Not true! 

Von Hipple and Huron (2000) show that post-skip reversal in music scores is 
the result of a less exciting phenomena.
Except in the music of Giovanni Palestrina, the initiator of the rule.

10Part I.  From modeling anticipation to anticipatory modeling

So... Should we “model” anticipation?
Revise the question!
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Modeling Investigations

Reactive Frameworks

• Computational models based on causality 
Action is the result of a belief based on the past and present
A universal framework: 
Given any mode of system behavior which can be described sufficiently accurately, there 
is a purely reactive system which exhibits precisely this behavior

Practical problems for modeling cognitive behavior
Representations are fallible! (no accurate description)
Not all forms of cognitive interactions can be transcribed or assumed as 
disposed
would not necessarily generalize to unknown situations.

11Part I.  From modeling anticipation to anticipatory modeling
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Anticipatory Modeling

Definition

• Anticipatory behavior: 
A process or behavior that does not only depend on the past and 
present but also on predictions, expectations or beliefs about the future.

• Anticipatory Modeling is the design process for anticipatory systems:

• In contrast to Modeling Anticipation:
No attempt to provide a universal framework for anticipatory behavior, but 
to provide models that anticipate.
Considers Anticipation as the fore-front concept in cognitive system design 
to achieve complex systems.

12Part I.  From modeling anticipation to anticipatory modeling

Definition An Anticipatory System is a system containing a predictive model
of its environment, which allows it to change state at an instant in accord with
the model’s predictions pertaining to a later instant.
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Anticipatory Modeling

Modeling Anticipation vs. Anticipatory Modeling

• Modeling Anticipation:  An effort to explain musical behavior, as in natural 
sciences.

• Anticipatory Modeling :
A design process that addresses anticipatory behavior observed in music. 
Complexity a result of adaptation... .
To avoid naive realism, and problems of imperfect heuristic

13Part I.  From modeling anticipation to anticipatory modeling
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Music Information Geometry

Motivations

• To represent relevant and stable part of information arriving from the 
environment

• Classical Information Theory
Few answers to the representation and fidelity concerns 

• Advances in Machine Learning
MIR Techniques based on measures of self-similarity
Lack of consideration for time

• Bring the two literatures together
    Information Geometry

15Part II.  What to Expect
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Information Geometry

Motivation
Consider the problem of extracting structures of musical information:

Extracting this kind of information from a symbolic score is trivial, but a difficult 
problem in the signal domain.

Specially with no a priori knowledge of music
Worse in real time!

Goal:  To make this possible and more...
To obtain methods of access to structures of music signals
A general framework to fill in the following gap for musical applications:

16Part II.  What to Expect
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Intuition

• Consider the following geometry:
Points are probability distributions              (instead of dots)
Distance between two points is some measure of information between them

• Welcome to the world of Information Geometry!
Geometric manifolds with information metrics on probability space

Marriage of Differential Geometry, Information Theory, and Machine Learning

Considering probabilistic representations as well-behaved geometrical objects, 
with intuitive geometric properties

Spheres, lines (geodesics), rotations, volumes, lengths, angles, etc.

• Getting real...
Riemannian Manifolds over probability spaces with Fisher Information measure
Characterized by the type of employed distance (called divergences)
Our interest, canonical elements:  

Space of exponential distributions 
with Bregman divergences

Bijection between the two

Information Geometry

17
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Information Geometry

Elements of Bregman Geometry

• Bregman Centroids
Significant property (Thm 4.1)

The “right type” centroid is independent
of the choice of Bregman divergence and is equal 
to the mean:

• Bregman Balls
In analogy to Euclidean geometry, we can define balls using Bregman divs, 
centered at     with radius     

• Bregman Information of a random variable X
Defined as the expectation over divergences 
of all points from the centroid
Special cases: variance, mutual information

18Part II.  What to Expect

The centroid in Euclidean geometry

Given a point set P = {p1, ..., pn} of Ed , the centroid c̄ :

Is the center of mass: c̄ = 1
n

∑n
i=1 pi ,

Minimizes minc∈Rd

∑n
i=1

1
n ||cpi || 2 :

MINAVG squared Euclidean distance optimization,

Plays a central role in center-based clustering methods
(k-means of Lloyd’1957)

Frank Nielsen and Richard Nock The Centroids of Symmetrized Bregman Divergences

µk Rk

(a) (b) (c)

Figure 5: Bregman balls for the Itakura-Saito divergence. The (convex) ball (a) of the first
type BF (c, r), (b) the ball of the second type B′

F (c, r) with the same center and radius, (c)
superposition of the two corresponding bounding spheres.

The Bregman balls of the first type are convex while this is not necessarily true for the balls
of the second type as shown in Fig. 5 for the Itakura-Saito divergence (defined in Table 1).
The associated bounding Bregman spheres are obtained by replacing the inequalities by
equalities.

From Lemma 3, we deduce that

B′
F (c, r) = ∇−1F (BF ∗(c′, r)). (9)

Let us now examine a few properties of Bregman spheres using a lifting transformation that
generalizes a similar construct for Euclidean spheres (see [10, 33]).

Let us embed the domain X in X̂ = X ×R ⊂ Rd+1 using an extra dimension denoted by the
Z-axis. For a point x ∈ X , recall that x̂ = (x, F (x)) denotes the point obtained by lifting x
onto F (see Figure 1). In addition, write ProjX (x, z) = x for the projection of a point of X̂
onto X .

Let p ∈ X and Hp be the hyperplane tangent to F at point p̂ of equation

z = Hp(x) = 〈x− p,p′〉+ F (p),

and let H↑
p denote the halfspace above Hp consisting of the points x = [x z]T ∈ X̂ such that

z > Hp(x). Let σ(c, r) denote either the first-type or second-type Bregman sphere centered
at c with radius r (i.e., ∂BF (c, r) or ∂B′

F (c, r)).

The lifted image σ̂ of a Bregman sphere σ is σ̂ = {(x, F (x)),x ∈ σ}. We associate to a
Bregman sphere σ = σ(c, r) of X the hyperplane

Hσ : z = 〈x− c, c′〉+ F (c) + r, (10)

parallel to Hc and at vertical distance r from Hc (see Figure 6). Observe that Hσ coincides
with Hc when r = 0, i.e. when sphere σ is reduced to a single point.

17
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Music Information Geometry

General Framework

• Points = time domain windows of audio signal     , represented by their 
frequency distributions

Arriving incrementally / in real time
Corresponding to normalized log-scale 
Fourier transform amplitudes
Mapped to Multinomial points in the
information geometry (one-to-one)

Corresponding Bregman divergence is
Kullback-Leibler divergence
Therefore, Bregman Information is equivalent
to mutual information

Goal:  To capture, represent and qualify the information structure of audio 
data streams.

19Part II.  What to Expect
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Approach

• Do not formalize information content!

• Control changes of information content instead
Using some metric d, that gives rise to the notion of similarity:

• Candidates for d(.,.):
Information Rate (IR) of Dubnov (2005,2008)

Data-IR: For stationary signals
Model-IR: Between sub-sets of quasi-stationary signals 
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Music Information Geometry

20Part II.  What to Expect

Definition Two entities θ0,θ1 ∈ X are assumed to be similar if the information
gain by passing from one representation to other is zero or minimal; quantified
by dX(θ0,θ1) < ε which depends not on the signal itself, but on the probability
functions pX(x;θ0) and pX(x;θ1).



Appoach

• Proposal: Use the bijected Bregman divergence of the information 
geometry of audio data streams

• Data-IR:
Is proven (mathematically) to be equal to Bregman Information

• Model-IR:
Requires segmenting audio stream into chunks.
Proposal:

Modeling Musical AnticipationArshia Cont
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Definition Given a dual structure manifold (S, g, ∆D,∆D∗
) derived on a reg-

ular exponential family formed on data-stream Xk, a model θi consist of a set
Xi = {xk|k ∈ N ,N ⊂ N} that forms a Bregman Ball Br(µi, Ri) with center µi

and radius Ri.

Music Information Geometry

21Part II.  What to Expect

Imaginary Bregman Geometry
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Music Information Geometry

From Divergence to Similarity Metric

• Further requirements for d: 
symmetric 
and to hold the triangular inequality 

to obtain equivalent classes.

• Problem:  Bregman divergences are neither symmetric, nor hold the 
triangular inequality!

• Solutions:  (Nielsen and Nock, 2007)

a. Triangular inequality hold IFF y is the 
geometric projection of x onto the tangent plane 
passing through zy.

b. In our geometry, the notions of max. likelihood and projection are 
equivalent! (Proposition 4.1)

c. Symmetrize Bregman divergence using a max. likelihood formulation!

We can approach both notions of symmetry and triangular inequality.

22Part II.  What to Expect

d(x,y) = d(y,x)
d(x,y) ≤ d(x,z) + d(z,y)

x

y=x*

z
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Music Information Geometry

Model Formation

• Incrementally segment information regions into quasi-stationary chunks
A model is a Bregman ball whose information radius reveals the maximum 
distance in terms of mutual information within the ball.
Detect balls with jumps in information distance between a new point and a 
forming ball
Assume a fixed information radius R to detect jumps and account for 
continuity of information change.
Computationally cheap: Only comparing with the last 

...Simulation...

23Part II.  What to Expect
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Music Information Geometry

Incremental Segmentation

24

θ

Imaginary Bregman Geometry

REALTIME Scheduler
Time = 1
No event!

: Moving Centroid

Part II.  What to Expect
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Music Information Geometry

Incremental Segmentation

25

θ

Imaginary Bregman Geometry

REALTIME Scheduler
Time = 2

: Moving Centroid

Part II.  What to Expect
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Music Information Geometry

Incremental Segmentation

26

θ

Imaginary Bregman Geometry

REALTIME Scheduler
Time = 3

: Moving Centroid

Part II.  What to Expect
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Music Information Geometry

Incremental Segmentation

27

θ

Imaginary Bregman Geometry

REALTIME Scheduler
Time = 7

: Moving Centroid
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Music Information Geometry

Incremental Segmentation

28

θ

Imaginary Bregman Geometry

REALTIME Scheduler
Time = 8

: Moving Centroid
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Music Information Geometry

Incremental Segmentation

29

θ

Imaginary Bregman Geometry

REALTIME Scheduler
Time = 8

Model Formation

S1
: Moving Centroid

Part II.  What to Expect
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Music Information Geometry

Incremental Segmentation

• Sample Result: Beethoven’s first piano sonata, first movement
performed by Friedrich Gulda (1958)

30Part II.  What to Expect
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Methods of Information Access

Incremental Structure Discovery

• Idea:  The models in music information geometry provide instantaneous 
similarities between consequent models. 

What about similarities between subsets of models at different time 
intervals?
What about grabbing long term regularities in the music signal?

• Literature of Audio Structure Discovery algorithms: Usually off-line and/or 
incorporate a priori beliefs over music structure

• Our goal:
Do it online and incrementally as audio signals arrive
Grab and learn regularities on-the-fly from the signal itself and without a 
priori knowledge
Key for Anticipatory Modeling: Grabbing stabilities and regularities of 
information in the environment

31Part II.  What to Expect
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Methods of Information Access

Incremental Structure Discovery

• Proposal:   Extend an existing algorithm in the symbolic domain to the 
continuous audio domain by passing through information geometry and 
Models.

• Point of departure:  Factor Oracles
Used primarily on text and DNA data to detect repeating structures.
A finite-state automaton learned incrementally.
A state-space representation of repeating structures in a sequence

Provides forest of suffix tree structures

The beauty of MIG
Keep the algorithm, replace symbols by models or points and equivalence by 
similarity in a music information geometry!
         Audio Oracle

32Part II.  What to Expect
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Methods of Information Access

• Audio Oracle results
On points:   (each state=one analysis window)

Natural bird uttering (natural repetition)
Using MFCC audio features on Multinomial music information geometry

33Part II.  What to Expect
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Methods of Information Access

• Audio Oracle results:
On models

Beethoven’s first Piano Sonata, Third Movement  (Gulda, 1958)
Using Constant-Q amplitude spectrum on Multinomial music information geometry

150 seconds, > 9500 analysis frames, resulting to 440 states 

34Part II.  What to Expect

A A B B C C D D A B

C C

Recall 
Structure

Recall 
Length
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Methods of Information Access

Fast Information Retrieval

• Proposal: Compile an search engine over a database of audio and using an 
outside audio query

That is also capable of recombining/reassembling chunks of audio within a 
large target, to reconstruct the query.

• Related works:  Concatenative Synthesis, Unit Selection

• Idea:  Do not search on the audio itself but on audio structures
Audio Oracle as Meta data
(ab)use the long-term structures of Audio Oracle to maintain perceptual 
continuity of the results (access to long term structures)

• Simple Dynamic Programming algorithm:
Follow the forest of suffix tree structures to find the longest and best possible 
result
Maintains all the results (paths) at all times!

        Guidage

35Part II.  What to Expect
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Methods of Information Access

Guidage Results

• Self-Similarity test
Task: Search for the first theme of the first Beethoven’s sonata in the entire 
sonata.

Query: Audio of the first theme
Target: The entire first sonata’s Audio Oracle (650 states)

36Part II.  What to Expect
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Methods of Information Access

Guidage Results

• Database Search
Task: Find audio, or a recombination within a file that are similar to query

Query:  African drum sample
Database:  Loop database (Kontakt)140 audio files, 200Mb, Mean duration 7s

Convergence time: 20s in Matlab on a 2.3Ghz unicore Intel machine

37Part II.  What to Expect
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Adaptive and Interactive Learning

How what?

• We just saw how in interaction with an environment,
We can capture the regularities in the information structure,
represent it,
and have (fast) access to it.

• Anticipation is expectations or beliefs of a system bound to actions
We need to know how to act
We need to learn interactively the consequence of actions in the 
environment, take lessons, and adapt ourselves to new situations

39Part III.  How to Expect
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Adaptive and Interactive Learning

Automatic Improvisation

• We showcase this part on the problem of Automatic Improvisation and 
Style imitation

Existing systems are based on predictions on learned context models
We extend this to Anticipation through anticipatory modeling
DISCLAIMER:

No interest in imitating or recreating Bach!
To show that anticipatory learning provides ways to learn and act to gain long-
term complex structures
With no a priori knowledge or incorporated rules
With presence of little data
With relative cheap computation and design

• In this part, we focus on symbolic data (MIDI signals, scores)

40Part III.  How to Expect
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Adaptive and Interactive Learning

General Framework

• The system comprises of agents and its environment, interacting at all 
times.  At each interaction cycle,

The system perceives the state of the environment
Select actions based on some belief
Based on this action, the environment might change state
and a reward/punishment signal might be sent to the agent.

• Design elements: 
Agent:  Computer improvisor,  

Multiple agents [fact 3]

Environment: Human performer/Music Score
Dynamics of the environment          state transitions
Interactions           rewards/guides for learning

Actions: Music generations by the computer
Policies: Values associated to state-actions 

used during generation/decision-making, learned during interactions

41Part III.  How to Expect
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Adaptive and Interactive Learning

General Framework

• Problems to solve:
1. How to represent the environment (memories/musical representations)?

Use Factor Oracles (symbolic data), Audio Oracle (continuous data) to model 
regularities in the environment

2. How to incorporate interaction? (rewards)
Use Guidage to reinforce recurrent structures and retrieve regularities

At each interaction, reinforce the states in the memory that are factors of the 
new incoming sequence (from the environment).

3. How to learn?
a. Learning the dynamics of the environment

Use the Oracle incremental updates

b. Learning policies for action decisions
Active Learning algorithm... .

42Part III.  How to Expect



1. Musical Representation

• Using multiple attributes each treated as an independent sequence:

Modeling Musical AnticipationArshia Cont
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Quantization 
and Parsing

Feature 
Calculation

Adaptive and Interactive Learning

Part III.  How to Expect

Event Number It I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

MIDI Pitch (i1t ) 0 51 63 62 63 0 65 0 67 67 63 68 68 58 60
Harmonic Interval 0 0 0 0 24 0 0 0 4 5 0 8 6 0 0
Duration (i3t ) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
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1. Musical Representation

Adaptive and Interactive Learning

Part III.  How to Expect

Event Number It I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

MIDI Pitch (i1t ) 0 51 63 62 63 0 65 0 67 67 63 68 68 58 60
Harmonic Interval 0 0 0 0 24 0 0 0 4 5 0 8 6 0 0
Duration (i3t ) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
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2

51.0

3

63.0
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62.0
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65.0

9
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68.0

14

58.0

15

60.0

51.0

65.0

67.0

63.0 62.0

68.0

6

0.0

5
63.0

8
0.0

11

63.0

10
67.0

58.0

13
68.0 60.065.00.0 67.0 68.063.0 58.0
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1. Musical Representation

Adaptive and Interactive Learning

Part III.  How to Expect

Event Number It I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

MIDI Pitch (i1t ) 0 51 63 62 63 0 65 0 67 67 63 68 68 58 60
Harmonic Interval 0 0 0 0 24 0 0 0 4 5 0 8 6 0 0
Duration (i3t ) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
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24.0

9

4.0

10
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8.0

13
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24.0

4.0

8.0

2
0.0
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0.0
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0.0 6.0
14

0.0

24.0

4.0

3

0.0

24.0

4.0

4

0.0

24.0

7
0.0

8

0.0

4.0 8.0
15

0.0
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1. Musical Representation

Adaptive and Interactive Learning

Part III.  How to Expect

Event Number It I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

MIDI Pitch (i1t ) 0 51 63 62 63 0 65 0 67 67 63 68 68 58 60
Harmonic Interval 0 0 0 0 24 0 0 0 4 5 0 8 6 0 0
Duration (i3t ) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

0 1
4.0

8

8.0 8.0

2
4.0

9

4.0
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3
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8.0

4
4.0

8.0
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4.0

8.0
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4.0

8.0
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4.0
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4.0

15
4.0
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Adaptive and Interactive Learning

II. Interaction Modes

• Two modes:

“Interaction mode”: (left) interacting with an environment, receiving 
rewards (or guides) and constructing knowledge.
“Self-listening mode”: (right) During automatic generation. Reflecting on 
the changes in the environmental context caused by the system itself.
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Generated 
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Adaptive and Interactive Learning

Anticipatory Learning

• Goal:  To maximize rewards on each action by updating the policy of each 
state-action pair (reinforcement learning).

Rewards on a future horizon:
Predicting possible steps and evaluating them
Similar to the idea of a rehearsing musician

Updates on selected state-actions by Guidage at each interaction cycle

• Competitive and Collaborative Learning
Choose the winning agent at each cycle
Follow the winner for updates during in that episode.
Upon each update, influence relevant states 
in other agents

48Part III.  How to Expect

R(st) =
∑

r(st, at) + γr(st+1, at+1) + · · · + γmr(st+m, at+m) + · · ·



Sample Generation

• Learn sequentially on J.S.Bach’s “Two-part Invention, Book II, Nr. 3”

• Generate (self-listening mode) using the gained knowledge

rewardstate
tr

1tr !

1ts !

ts ta
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Adaptive and Interactive Learning

49Part III.  How to Expect

Improvisation Session after learning on Invention No.3 by J.S.Bach

Piano

ª

4

ª ª
ª

ª

7

11

ª ª

ª

14

Generated 
Phrase

reward
tr

1tr !

ta



Modeling Musical AnticipationArshia Cont

16/10/2008

Adaptive and Interactive Learning

Generalization

• As a result of collaborative learning and generation

50Part III.  How to Expect

Preliminary evidence of long-term 
planning and complex structures
No a priori knowledge of the 
domain
Fast learning and generation 
Little data needed for training
with many questions to ask and 
directions to pursue



When to Expect

PART (IV)
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Anticipatory Synchronization

Motivations

• Technical
Score Following problem

Real Time Audio to Symbolic Score Synchronization
More focus on acoustic features, less emphasis on time

Coordination problem
Musicians employ various sources for synchronization
Expectations about future events play a role as important as the musical events 
themselves.

• Musical
Extend the score following paradigm
At the Time of Composition:  Enable concurrent and flexible representations 
of events/time.
At the Time of Performance:  Bring in the composition on stage by the virtue 
of interpretation of the written score.

    Towards a “writing” of Time and Interaction in Computer 
Music
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General Architecture

• Time of Composition:
One score containing declarative 
instrumental events and electronic 
actions

Concurrent Representations

Concurrent event time-scales

• Time of Performance:
Two collaborative and competitive 
agents: Event Agent and Tempo Agent

Interpreting and giving life to score 
parameters and written time 
structures

Observers

Inference & Decoding

Event Time

Media Streams

Score Position Tempo

Score 
Parser

Score

Score 
Actions

off-line

real-time
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Probabilistic Models of Time

• Concern: Uncertain nature of time occupancy of musical events (neither 
deterministic nor arbitrary)

• Two mainstream views:

1. Non-Parametric Markov Occupancy Models

2. Semi-Markov Occupancy Models

• One (and only one) state per macro-event!

• But with an Explicit distribution          for time occupancy of each event j

54
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Probabilistic Models of Time

Proposal

• Use advantages of both worlds:
Hybrid Markov/Semi-Markov Models

• Collaborative and Competitive Inference
Use predicted tempo to anticipate (and prepare for) future events!
Coupling event (audio) and tempo agents instead of cascading!
Adaptive/online learning

• Advantages:
No need for offline training of the system
Reduce in number of parameters
No need for strong acoustic model!
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Observers

• Are the “eyes and ears” of the system during live performance!

Traditionally pitch only

Recently: Raw audio (audio matching), gesture (gesture following),  Audio 
features, Video streams, etc.

• Proposal:   Concurrent Observations

• Hard-coded Audio Observer for Polyphonic Events:

Compare real time audio spectrum to pre-constructed harmonic templates 
out of the score.

Normalized Audio Spectrum         Multinomial Dists          Use KL divs
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Antescofo’s Score Semantics

• Simple (and young) text-based and 
declarative language for writing of 
time and interaction

• Important Specificity:
Co-existence of instrumental score 
and electronic actions.

Bridging the gap between the time of 
composition to time of performance

Actions can be written in relative time, 
whose values are evaluated at run-
time (live performance), coupled with 
real-time tempo

Observers

Inference & Decoding

Event Time

Media Streams

Score Position Tempo

Score 
Parser

Score

Score 
Actions

off-line

real-time

57



Modeling Musical AnticipationArshia Cont

16/10/2008

Antescofo

Antescofo has been used...
• “... of Silence”, Marco Stroppa, for Saxophone and chamber electronics 

(Antescofo Premiere)
• “Anthèmes 2”, Pierre Boulez, for Violin and Live electronics
• “... Explosante-Fixe...”, Pierre Boulez for flute, orchestra and electronics

• LA Philharmonic

• “Speakings”, Jonathan Harvey for orchestra and live electronics
• BBC Scotish Orchestra

• and more to come...
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Try: http://cosmal.ucsd.edu/arshia/antescofo/

http://cosmal.ucsd.edu/arshia/antescofo/
http://cosmal.ucsd.edu/arshia/antescofo/
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(a) Waveforms and alignments for accelerating (left) and decelerating (right) tempi
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(b) Estimated and real tempi for acceleration and deceleration in BPM
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(c) Estimation error for acceleration (left) and deceleration (right)

Figure 7.12: Tempo Decoding Evaluation using synthesized score and continu-
ously controlled tempo
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Evaluation

• Tempo Evaluation:
Use synthesized audio from score to attain milli-second tempo precision
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right. This instability leads to a sudden change in the κ parameter that controls
attentional focus. Therefore, κ at the onset following t = 15s is quite low
meaning that important tempo correction is necessary. This process continues
for almost 5 consecutive events until the agent finally locks itself around the
correct tempo which can be observed by looking at direct results converging to
the real tempo, or by observing the decrease in the estimation error, as well as
by observing the increase in the adaptive κ parameter reaching its upper bound
(here set to 15). The mean tempo estimation error is 58ms.

We now take a look at another sample, this time by introducing two tempo
jumps during the life of the synthesized score of figure 7.9. Results are demon-
strated in the same format as above, in figure 7.11. Here, the audio starts with
a different tempo than the one indicated by the score prior, so the κ parameter
starts low in the beginning until stability and undergoes change every time the
system enters inequilibrium as shown in figures 7.11b. The mean estimation
error in the course of this session is 57ms.
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(a) Waveform and alignment result

0 5 10 15 20 25 30
0

5

10

15

!

0 5 10 15 20 25 30
50

55

60

65

70

75

80

B
P

M

Time (sec)

 

 

decoded

real

0 5 10 15 20 25 30
0

50

100

150

200

250

E
s
ti
m

a
ti
o
n
 e

rr
o
r 

(m
s
)

Time (s)

local tempo estimation error, µ= 57.8827ms

(b) Estimated and real tempi for acceleration and deceleration in BPM

Figure 7.11: Tempo Decoding Evaluation using synthesized score and discretely
controlled tempo

The onset estimation error in both examples above vary between 10ms and
30ms with no missed note (as is clear from alignment results in figures 7.10a
and 7.11a). This high precision is not a surprise since here we are dealing with
simple synthetic sounds with rather stationary spectrums.

Discrete Tempo Change during performance:

Accelerandos and decelerandos:
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Evaluation

• Alignment Evaluation:
MIREX 2006-08 Evaluation Campaign for Score Following
Augmented the database to contain polyphonic music

Total Precision obtained = 91.49%
Details in the manuscript
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of music chords of the violin from time to time in the piece, while item 4 is
strictly polyphonic with up to 4 different voices happening at the same time.
This database contains more than 30 minutes of referenced audio/score pairs
and has been chosen to demonstrate the performance of the system on different
musical instruments, and styles (item 1 is in contemporary music style with
unconventional timings) and degree of polyphony. Items 1 to 3 are used in
(ScofoMIREX, 2006) whereas item 4 is aligned using a heavy offline algorithm
reported in (Yeh, 2008) and further enhanced as described in (Yeh et al., 2007).

# Piece name Composer Instr. Files Prefix Events
1 Explosante-Fixe P. Boulez Flute 7 tx -sy 615
2 K. 370 Mozart Clarinet 2 k370 1816
3 Violin Sonata 1 J.S. Bach Violin 2 vs1- 2019
4 Fugue BWV.847 J.S. Bach Piano 1 RA 225

Table 7.4: Evaluation Database Description

Once every piece is ran through the system, we obtain a set of event tags i
with their detection times tdi in milli-seconds. The process of evaluation then,
is to compare the results with the previously prepared references for each piece
with the same tags i and alignment times tri . Evaluation metrics are then the
number of misses, and corresponding statistics on the offset time oi = tdi − tri
between detected time tags and the associated ones in the reference database.
Table 7.5 shows the results of evaluation on each file in the described database,
starting from monophonic scores and going gradually towards the polyphonic
ones. Here FP refers to false positive which are misaligned events and are parts
of the missed events. The Average Offset error is the mean over the absolute
offset values or

∑
i

|oi| where Mean Offset is the regular mean without taking

the absolute value. Given these statistics, the Overall Precision is calculated
as the percentage of total number of events to detect minus the total number
of missed notes whereas the piecewise precision is the mean of the same rate
but over individual files. In (ScofoMIREX, 2006) another metric is proposed
pertaining to latency and defined as the interval between the detection time and
the time the event is reported. This metric was specifically designed for systems
that are real-time but are not necessarily on-line; hence, allowing a delay in
reporting the correct alignment. This is the case for example in (Raphael,
2006). We omit this measure from table 7.5 since our system is strictly on-line
and real-time and thus, this measure is always zero.

Note that since we are in a live performance simulation, meaning that data
is fed incrementally into the system, the system can get lost or get stuck during
performance. The overall high precision rate for each piece shows that this is
not the case and the system has successfully terminated each audio through
its end. In overall, the reported performance in table 7.5 is comparable to
other systems on strictly monophonic pieces. However, we outperform the
two other systems in (ScofoMIREX, 2006) on Bach’s Violin Sonata files which
have light polyphonic and here we report a strictly polyphonic version (for file
RA-C025D). The fact that average offsets and mean offsets are always equal
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Contributions

I. From Modeling Anticipation 
to Anticipatory Modeling

Modeling Anticipation
Anticipatory Modeling

II. What to Expect?
Music Information 
Geometry
Methods of Information 
Access

III. How to Expect?
Anticipatory Learning in an 
environment

IV. When to Expect?
Anticipatory 
Synchronization
Towards a “writing” of time 
and interaction in 
computer music

V. Conclusions

 A formal of definition of anticipation destined for 
computational models of sound and music. 

 A formal definition of anticipatory modeling inspired 
by music cognition. 

{

 A mathematical framework for quantification and 
qualification of music information and content based 
on Information Geometry. 

 An online algorithm for incremental clustering and 
structure discovery of music signals. 

 A fast and online algorithm for unit selection over 
large databases of music based on users’ audio 
query. 

{

 An online adaptive and interactive learning 
framework achieving anticipatory planning strategies, 
based on Active Learning. 

 A preliminary computational anticipatory 
framework for automatic style imitation and automatic 
improvisation.

{

 An anticipatory design for real-time audio to score 
alignment featuring coupled audio/tempo agents and 
capable of decoding real-time position as well as 
tempo of the performer for polyphonic music signals. 

A preliminary framework and language for writing of 
time and interaction destined for interactive mixed 
instrumental and live computer music repertoires

{



Online Manuscript:
http://cosmal.ucsd.edu/arshia/papers/ArshiaCont_PhD.pdf

More Audio Examples:
http://cosmal.ucsd.edu/arshia/

Thank you!

http://cosmal.ucsd.edu/arshia/papers/ArshiaCont_PhD.pdf
http://cosmal.ucsd.edu/arshia/papers/ArshiaCont_PhD.pdf
http://cosmal.ucsd.edu/arshia/
http://cosmal.ucsd.edu/arshia/

