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sur la Théorie des Jeux Non-coopératifs
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Abstract

In this thesis, we present an axis of research where non-cooperative game theory is applied as
a framework to model and analyze selfish and malicious behaviors in wireless networks. More
specifically, the following selfish and malicious behaviors are systematically studied:

• Selfish behaviors

– MAC layer selfish behaviors in IEEE 802.11 wireless networks

– Non-cooperative power and rate control in IEEE 802.11 wireless networks

– Cooperative relaying in wireless networks with selfish users

• Malicious behaviors and defense strategies

– Intrusion detection in heterogenous networks

– Jamming attacks in wireless networks and defense strategy

– Multihop routing amid malicious attackers in wireless networks

By employing non-cooperative game theory as a line of research, for each selfish/malicious
behavior, we formulate the corresponding non-cooperative game in the specific context of that
problem. The resulting Nash equilibrium (NE) is then derived, followed by an analysis on the key
properties of the game solution, i.e., the existence, uniqueness of the NE, the convergence to the
NE and the efficiency of the system at the NE. Concerning selfish behaviors, this analysis serves
as foundations for the further design of incentive-compatible protocols and pricing mechanisms
to fill the gap between the inefficient NE and the global optimal or quasi-optimal point. In the
study of malicious behaviors, this analysis leads to the development and validation of new defense
mechanisms seeking to eliminate the unfavorable NE from the defender’s perspective if multiple
NEs exist and limit the damage caused by malicious attackers at the remaining NE.

The first part of the thesis is dedicated to selfish behaviors and defense strategies. We start
by addressing the selfish MAC layer behavior in IEEE 802.11 networks where each node can
configure its contention window value to maximize its payoff. By establishing a non-cooperative
game theoretic model and analyzing the derived solution of the game, we show that selfishness does
not always lead to network collapse. On the contrary, selfishness can help the network operate at
an equilibrium which is glomal optimal or quasi-optimal under the condition that players are long
sighted and follow the TIT-FOR-TAT (TFT) strategy. We then present a game theoretic study
on the power and rate control problem in IEEE 802.11 WLANs where network participants choose
appropriate transmission power and data rate in a selfish and non-cooperative way to achieve
maximum throughput with minimum energy consumption. Three specific games are analyzed: the
fixed-rate power control game, the fixed-power rate control game and the joint power rate control
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game. Motivated by the fact that only the last game achieves the social optima at the NE, we
propose a joint power and rate control procedure whose convergence to the NE is demonstrated both
analytically and numerically. Finally, we end this part by addressing the cooperation incentive in
cooperative relaying. A pricing framework is proposed based on the idea of “pay for cooperation”
to encourage the relay nodes to cooperate. By formulating the cooperative relaying under the
proposed pricing framework as a Stackelberg game and deriving the resulting equilibrium of the
game, we demonstrate that in general, a Stackelberg Nash equilibrium is guaranteed to exist.
By numerical experiments, we further show via several typical scenarios that the equilibria are
reasonably efficient.

In the second part of the thesis, we extend our efforts to malicious behaviors. We set out by
providing a game-theoretic framework on the network intrusion detection problem in heterogenous
environments where network nodes possess different security assets. Under the framework, we
derive the expected behaviors of malicious attackers and the optimal strategy of the defenders.
We also provide two case studies to illustrate how our game theoretic framework can be applied
to configure the intrusion detection strategies in wireless networks. We then focus on jamming, a
easily mountable attack with detrimental effects on the victim wireless network. Motivated by the
high energy-consuming nature of jamming, we propose our defense strategy to defeat the jammer
by draining its energy as fast as possible. To gain an in-depth insight on the jamming and to eval-
uate the proposed defense strategy, we model the interaction between the jammer and the victim
network as a non-cooperative game which is proven to admit two equilibria. We demonstrated
mathematically that the propose defense strategy can eliminate the undesirable equilibrium from
the network’s point of view and increase the energy dispense of the jammer at the other equi-
librium without degrading the network performance. To incorporate the specific constraints of
wireless networks, we develop a distributed update mechanism for players to adjust their strategies
to converge to the equilibrium based on only observable channel information. Finally, we address
the challenging task of routing amid malicious attackers in multihop wireless networks with unreli-
able links. We formulate the multipath routing problem as specific optimization problems. Game
theoretic tools are employed to solve the problem and derive heuristic algorithms to compute the
optimal path set with polynomial time complexity. As another contribution, we establish the rela-
tionship between the security risk and worst-case route availability, which gives the theoretic limit
of node-disjoint multipath routing in multihop wireless networks.
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Chapter 1

Introduction

1.1 Background and Motivation

The last two decades have witnessed an unprecedented success of wireless networks due to the
proliferation of inexpensive, widely available wireless devices. With such an explosive growth, the
traditional paradigm of centralized, fixed networks can no longer satisfy the dramatically increasing
demand for wireless services and connections, which poses imminent challenges on network man-
agement and control. As a consequence, various networking architectures and techniques have been
proposed or refined in recent years to provide more open and flexible network access, more efficient
spectrum usage and better network performance. Among them, IEEE 802.11 WLANs provide a
cost-effective way of accessing to the Internet via hotspots in public area like libraries, airports,
hotels, etc. Mobile ad hoc networks (MANETs) extend the wireless connection to multi-hop sce-
narios by a set of mobile nodes without centralized architecture or fixed network infrastructure.
Cooperative transmission at the physical (PHY) or medium access control (MAC) layer offers an
opportunity for users to cooperate with each other to get a better performance in terms of channel
capacity, energy consumption and packet delivery delay.

In such open, dynamic and distributed environments as wireless networks, security is a primary
concern (see [BH07] for a detailed survey on the security issues in wireless networks).

On one hand, today’s wireless networks are becoming more and more open, with network par-
ticipants belonging to different organizations. Consequently, network nodes may tend to behave
selfishly by maximizing his own benefit. In this context, the central questions are: How the indi-
vidual selfish behaviors influence the network performance? Do they lead to network collapse? If
yes, how to avoid such collapse and encourage the selfish nodes to behave cooperatively? Albeit the
large body of works in existing literature, the answer of the posed questions is far from completion
and some remains open, especially for PHY and MAC layer selfish behaviors which is one of the
focus of this thesis. We believe that an in-depth investigation on the above fundamental problems
will provide insightful guidance for the proper design of modern wireless networks.

On the other hand, the unique characteristics of nowadays wireless networks, such as distributed
and dynamic network architecture, broadcast nature of wireless medium and stringent resource con-
straints of wireless devices, makes them extremely attractive and vulnerable to malicious attacks,
ranging from the easily mountable jamming attacks to the sophisticated manipulation of routing
information. With this recognition, we argue that significant efforts should be directed to, on
one side, characterize and analyze malicious behaviors under a well established quantitative model
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3 Chapter 1. Introduction

incorporating the specific features of wireless networks, and on the other side, design and refine
defense mechanisms based on the analytical results. This motivates the other facet of our thesis
work.

1.2 Thesis Methodology

The goal of this thesis is to bring forth the understanding of the selfish and malicious behaviors
in wireless networks as well as the design of efficient protocols based on the understanding to cope
with them. To this end, we introduce and present an axis of research where the non-cooperative
game theory is applied as a systematic framework to model and analyze the selfish and malicious
behaviors. The motivation of tackling the security problems in wireless networks from the (non-
cooperative) game theoretic perspective is three-fold:

• Game theory is a powerful tool to model the interactions of decision makers with mutually
conflicting objectives, e.g., the interaction among selfish nodes and that between the malicious
attackers at one side, the defender or the victim network at the other side.

• Non-cooperative game theory can model the features or constraints of wireless networks such
as lack of coordination and network feedback. In fact, in such environments, non-cooperative
behavior is much more robust and scalable than any centralized cooperative control, which
is very expensive or even impossible to implement.

• Game theory can serve as a validation tool to evaluate the proposed solutions.

Naturally, the thesis is divided into two parts, respectively dedicated to selfish and malicious
behaviors. Here, without going into analytical details, we give a overview of the methodology
employed in both parts.

In the first part, the network is considered as a site where each selfish node adjust its strategy
under the non-cooperative paradigm to maximize its own payoff. In such game theoretic studies,
the central issue is to derive and characterize the resulting equilibria, termed as Nash equilibrium
(NE) in game theory, where no one has incentive to deviate unilaterally. Studies on the existence,
uniqueness and the efficiency of NE provide internal structure of the selfish behaviors. If the NE
does not coincide with the social optima, incentive mechanisms such as pricing and the Tit-For-Tat
(TFT) strategy are then employed in the design of distributed algorithms incorporating the specific
features of wireless networks to steer the selfish nodes toward the global optima.

In the second part, two-person non-cooperative games are formulated between the malicious
attackers at one side aiming at maximizing the damage caused to the victim network, and the
defenders or the victim network at the other side aiming at minimizing the damage. Studies
conducted with this game theoretic model provide a quantitative framework to predict attackers
behaviors at the resulting NE and serves as foundations for the design and validation of new defense
mechanisms that seeks to eliminate the unfavorable NE from the defender’s perspective if multiple
NEs exist and limit the damage caused by malicious behaviors at the resulting NE.

In summary, this thesis addresses a topic at the nexus of wireless networking, distributed
system, security, mathematical modeling and economics. Concave and non-concave optimization
techniques are applied solving the formulated optimization problems and analyzing the structural
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properties of the solutions and the correspondent tradeoffs; Dynamical system analysis and dis-
tributed computation methods are employed in the investigation of the convergence and stability
of the proposed algorithms and mechanisms; Economic techniques such as pricing play an essen-
tial role in providing the selfish nodes the incentive to behave socially; In fact, our work in this
thesis can be regarded as the application of various specific tools in different disciplines under the
non-cooperative game theoretic umbrella to address a cross-disciplinary topic.

1.3 Summary of Contributions

Our contributions lie in both the non-cooperative game theoretic modeling and analysis on the
selfish and malicious behaviors and the practical protocol/mechanism design and validation to
address the challenges raised in Section 1.1 upon theoretically grounded measurement, modeling
and simulation techniques. More specifically, we provide a systematic study on the following
pressing selfish/malicious behaviors in wireless networks under the non-cooperative game theoretic
framework:

• Selfish behaviors

– MAC layer selfish behaviors in IEEE 802.11 wireless networks

– Non-cooperative power and rate control in IEEE 802.11 networks

– Cooperative transmission in wireless networks with selfish users

• Malicious behaviors

– Intrusion detection in heterogeneous networks

– Jamming attacks in wireless networks and defense strategy

– Multihop routing amid malicious attackers in wireless networks

Figure 1.1: Thesis organization
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Fig. 1.1 illustrates the organization of the thesis. The main results of this thesis are presented
in Chapters 2-7. We adopt a modularized structure to present the results such that the chapters are
arranged as independent modules, each dedicated to a specific topic outlined above. In particular,
each chapter has its own introduction and conclusion sections, describing the related work and the
importance of the results with the specific context of that chapter. For this reason, we are not
providing a detailed background, or a survey of past work here. Moreover, the thesis assumes the
knowledge of the basic notions and concepts of game theory, as detailed in the textbook [OR94] and
the tutorial [FH06] with the emphasis on its application in wireless networks. Finally, we conclude
this section of introduction with a summary of contributions and the outline of the thesis.

MAC layer selfish behaviors in IEEE 802.11 wireless networks

The IEEE 802.11 DCF (Distributed Coordination Function), the most popular MAC layer protocol
of ad hoc networks, requires all network participants to respect the rules of the protocol. However,
network adapters are becoming more and more programmable, which makes a selfish node ex-
tremely easy to tamper the wireless interface, especially modifying the Contention Window (CW)
value, to maximize its own benefit. Under this circumstance, a natural and crucial question we pose
is that how well or how bad IEEE 802.11 DCF performs if all nodes are selfish. More specifically, in
such distributed environment as wireless networks where coordination or punishment mechanisms
are expensive or even impossible to implement, can IEEE 802.11 DCF survive or does it lead to
network collapse? Do we have to modify or even redesign the protocol? In Chapter 2, we study
these questions by modeling the selfish MAC protocol as a non-cooperative repeated game where
players follow the TIT-FOR-TAT (TFT) strategy which is regarded as the best strategy in such
environments. We show for single-hop wireless networks the game admits a unique NE maximizing
both local and global payoff. We then extend our efforts to multi-hop case by showing that the
network converges to a NE which may not be globally optimal but quasi-optimal in the sense that
the global payoff is only slightly less than the optimal case. As main results, we answer the posed
questions by showing that selfishness does not always lead to network collapse. On the contrary,
selfishness can help the network operate at a NE which is glomal optimal or quasi-optimal under
the condition that players are long-sighted and follow the TFT strategy.

Non-cooperative power and rate control in IEEE 802.11 networks

In Chapter 3, we present a game theoretic study on the power and rate control problem in IEEE
802.11 WLANs where network participants choose appropriate transmission power and data rate
in a selfish and non-cooperative way to achieve maximum throughput with minimum energy con-
sumption. In such game theoretic study, the central issues are the existence, uniqueness of the NE,
the convergence to the NE and the system performance at the NE. We conduct our study for three
specific games: the fixed-rate power control game GNPC , the fixed-power rate control game GNRC

and the joint power rate control game GNJPRC . The first two games correspond to the classical
power control and rate adaptation problem, respectively. We make two main contributions. Firstly,
we establish a non-cooperative game theoretic framework for the power and rate control in IEEE
802.11 WLANs, based on which we study the existence, uniqueness and convergence of the NE
for the three games. In GNRC where the NE is inefficient, we provide pricing scheme to improve
the efficiency. Secondly, we propose a joint power and rate control procedure to approach the NE
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of GNJPRC which is proven to be social optimal. The procedure is distributed in nature and can
be incorporated into the IEEE 802.11 MAC protocol easily. We also show that in this context,
providing more flexibility in parameter configuration to non-cooperative players in fact helps the
system operate optimally rather than lead to system collapse.

Cooperative relaying in wireless networks with selfish users

Extensive research in recent years has shown the benefits of cooperative relaying in wireless net-
works, where a transmission between two nodes is overheard and relayed by a common neighbor.
However, most existing studies on the topic tackle the problem from an optimization perspective,
assuming that the relay nodes are willing to help the source and ignoring the issue of their cooper-
ation incentive. This assumption is inadequate for networks with selfish nodes, which are generally
not willing to forward packets of other nodes. In Chapter 4, we propose a pricing framework
based on the idea of “pay for cooperation” to encourage cooperation by relay nodes. Under this
framework, a relay node is offered a payment by the source in exchange for a cooperative trans-
mission that allows the destination to successfully decode the transmitted packet. We formulate
the resulting scenario as a Stackelberg game, in which the source nodes set the payment rates they
offer for cooperation, and the relay nodes respond by choosing their cooperation strategies. We
provide a systematic analysis of the game, focusing on the fundamental structural properties of
the equilibrium. We further demonstrate by a numerical study that the resulting equilibria are
reasonably efficient in several typical scenarios.

Intrusion detection in heterogeneous networks

We then set out to extend our game theoretic analysis to malicious behaviors in wireless networks.
Today’s wireless networks are becoming more and more dynamic, distributed and heterogeneous,
which increases significantly the security risk by making the network control and management
much more challenging than ever. In such context, the intrusion detection system (IDS) is widely
deployed as a complementary line of defense to the classical security approaches aiming at removing
the vulnerabilities which may not be very effective or even fail to function in some cases. In almost
all contemporary networks, network nodes (targets from the attackers’s point of view) usually have
different sensibility levels or possess different security assets depending on their roles and the data
or information they hold, i.e., they are heterogeneous in terms of security. Some targets are more
“attractive” to attackers than others. These targets are usually also better protected and are thus
more difficult or costly to attack. In such heterogeneous environments, two natural but crucial
questions are: What are the expected behaviors of rational attackers? What is the optimal strategy
of the defenders (IDSs)? This is the topic of Chapter 5, in which we provide a game theoretic
framework on the network intrusion detection problem by analyzing the equilibria of the game
in different settings and investigating the engineering implications behind the analytical results.
Under the framework, we derive the expected behaviors of malicious attackers and the optimal
strategy of the defenders. We also provide two case studies to illustrate how our game theoretic
framework can be applied to configure the intrusion detection strategies in realistic scenarios.
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Analysis of jamming attacks and defense strategy

It is widely recognized that the broadcast nature of the shared wireless medium makes wireless
networks extremely vulnerable to various attacks. In Chapter 6, we focus on an easily mountable
malicious attack that exploit the wireless medium to cause detrimental damage to the victim net-
work, jamming, alternatively termed Denial-of-Service (DoS). Existing defense strategies against
jamming mainly consist of retreating from the jammer after detecting the jamming attacks or
rerouting traffic around the jammed area. We take a different approach. Motivated by the high
energy-consuming nature of jamming, we propose our defense strategy to defeat the jammer by
draining its energy as fast as possible. To gain an in-depth insight on the jamming and to evalu-
ate the proposed defense strategy, we model the interaction between the jammer and the victim
network as a non-cooperative game which is proven to admit two equilibria. We demonstrated
mathematically that the propose defense strategy can eliminate the undesirable equilibrium from
the network’s point of view and increase the energy dispense of the jammer at the other equilibrium
without degrading the network performance. To incorporate the specific constraints of wireless net-
works, we develop a distributed update mechanism for players to adjust their strategies to converge
to the equilibrium based on only observable channel information. Despite the limitations discussed
in Chapter 6, we believe that the proposed defense strategy provides an alternative and active line
of defense whose effectiveness is well demonstrated both analytically and numerically.

Multi-hop routing amid malicious attackers

In Chapter 7, we address the challenging task of routing amid malicious attackers in multi-hop
wireless networks with unreliable links, such as ad hoc networks. Here, the fundamental and crucial
problem is how to choose secure and reliable paths among exponentially many candidates and how
to allocate traffic among them. We formulate the multi-path routing problem as three specific
optimization problems. In the first problem, we study the multi-path routing solution minimizing
the security risk, i.e., the probability that a packet is captured by the attacker under the condition
that the attacker makes all its efforts to maximize this probability. We model such multi-path
routing problem as an minimaximization problem and formulate it as a maximum flow problem
in lossy networks based on which a routing algorithm with polynomial time complexity is derived
to solve it. While the obtained solution provides the most security routes, which is crucial for
security sensitive applications, the availability is another important issue that definitively cannot
be ignored, especially in wireless networks with instable links. To this end, in the second problem,
we investigate the multi-path routing solution maximizing the worst-case route availability, i.e., the
packet survival probability under the condition that the attacker makes all its efforts to minimize
this probability. Game theoretic tools are employed to derive an heuristic algorithm computing
the optimal path set with polynomial time complexity. In the third problem, we seek a tradeoff
between the route security and availability by deriving the routing solution maximizing the route
availability while limiting the security risk under given threshold. As another contribution, we
establish the relationship between the security risk and worst-case route availability, which gives
the theoretic limit of node-disjoint multi-path routing in multi-hop wireless networks.

We conclude the thesis in Chapter 8 by summarizing the overall results and the methods used
to obtain them, and providing possible directions for future research.
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In Appendix, we present a secure time synchronization protocol for wireless ad hoc networks
that may serve as a building block for the protocols proposed in this thesis, e.g., the synchronized
version of the power/rate control protocols to converge to the unique NE. In a broader sense, time
synchronization is a key function in wireless networks, from power management, QoS support to
realization of cryptography and authentication processes. The two key properties of the proposed
time synchronization protocols are the resilience to malicious attackers and the scalability, which
make them especially suitable in the context of the thesis.

Part of our research work presented in this thesis is published or to be published in various
journals and conferences. Specifically, our work on the MAC layer selfish behaviors in IEEE 802.11
wireless networks was presented in the 27th International Conference on Distributed Computing
Systems (ICDCS), June, 2007, Toronto [CL07c]. Our work on the non-cooperative power and
rate control in IEEE 802.11 WLANs was presented in part in the 16th International Conference
on Computer Communications and Networks (ICCCN), August, 2007, Hawaii [CL07b], the 15th
International Conference on Network Protocols (ICNP), October, 2007, Beijing [CL07a] with the
extended version to be published in IEEE Journal on Selected Areas in Communication (JSAC),
special issue on Game Theory in Communication Systems [CL08]. Our work on the intrusion de-
tection in heterogeneous networks is currently under revision of IEEE Transaction on Information
Forensics and Security. Our work on the secure time synchronization protocol for wireless ad hoc
networks was published in Computer Communication (ComCom), Elsevier [CL07d].
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As mentioned in the section of introduction, a fundamental security issue in modern wireless
networks with selfish participants is how these selfish nodes interact with each other and what is
the impact of their selfish behaviors on the network performance.

In this part, we address this challenge by provide a systematic study on the selfish behaviors
where non-cooperative game theory is employed as a basis for analysis. Delving into existing
literatures, we find a large body of work on the cooperation enforcement/stimulation for packet
forwarding in autonomous wireless networks such as MANETs (see [BH03], [FHB06], [SNCR03]
and the references in them), most of which are pricing-based and reputation-based mechanisms.
However, selfish behaviors at physical and MAC layers are much less addressed except for some
specific areas such as the power control in CDMA networks, even though the answer of the posed
challenge is far from completion and some essential questions remains open. Our work in this
thesis tries to fill this gap by investigating several PHY/MAC layer selfish behaviors. Chapter 2
focuses on the MAC layer selfish behaviors in IEEE 802.11 ad hoc networks. Chapter 3 focuses on
the non-cooperative power and rate control in IEEE 802.11 networks. Chapter 4 focuses on the
cooperative relaying in wireless networks with selfish users.

As main results, we show that selfishness does not always lead to network collapse. On the
contrary, selfishness can help the network operate efficiently under certain conditions. Moreover,
in our analysis, we also incorporate the specific constraints posed by wireless networks which may
render the classic game theoretic analysis unrealistic in our context. For example, the best response
strategy and the better response strategy elaborated in the thesis can be seen a “limited memory”
interpretation [Rub98] of bounded rationality, where players only remember situations in recent
iterations. As another example, a tolerated version of the TFT strategy is applied in our context
to take into account the various factors in wireless networks that influence the observation of the
opponents’ actions.



Chapter 2

Modeling Selfish MAC Layer

Behaviors in IEEE 802.11 Wireless

Networks

2.1 Introduction

For wireless networks where the communication medium is shared by all network participants,
medium access control (MAC) plays a key role of transmission coordination and determines the
most fundamental performance of data transmission, such as fairness, social optimality and sta-
bility. In recent years, with the rapid deployment of wireless infrastructures based on the IEEE
802.11 standard [80299], IEEE 802.11 DCF (Distributed Coordination Function) has become one
of the most popular and de facto MAC layer protocols for wireless networks. To ensure an efficient
and fair usage of the wireless channel among network participants, IEEE 802.11 DCF requires all
participants to respect its rules. However, this assumption is not always valid, especially in today’s
open environments where network users do not belong to a single authority. Moreover, network
adapters are becoming more and more programmable, which makes a selfish user extremely easy
to tamper the wireless interface to maximize its own benefit. Under this circumstance, a natural
and crucial question is how well or how bad IEEE 802.11 DCF performs if all network participants
are selfish. Can IEEE 802.11 DCF survive or does it lead to network collapse?

In this chapter, we answer the question by establishing a non-cooperative game theoretic model
of IEEE 802.11 DCF and investigating the network performance at the Nash Equilibria (NE). We
show both analytically and numerically that selfishness does not always lead to network collapse.
On the contrary, it can help the network operate at an efficient NE globally optimal or quasi-
optimal under the condition that players are long-sighted and follow the TIT-FOR-TAT (TFT)
strategy which is regarded as one of the best strategies in non-cooperative environments.

The rest of this chapter is organized as follows. In Section 2.2, we briefly review the related
work. In Section 2.3, we model the selfish behavior in IEEE 802.11 DCF by extending Bianchi’s
model to selfish environments where network nodes may operate on different Contention Window
(CW) values. Based on this model, we formulate the non-cooperative multi-stage MAC game in
Section 2.4. In Section 2.5, we solve the game by showing the existence of NE and performing
NE refinement to eliminate the inefficient NEs. We then extend our work to multi-hop wireless
networks in Section 2.6. Section 2.7 provides numerical results. Section 2.8 discusses some related

12
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issues. Section 2.9 concludes the chapter.

2.2 Related Work

As a powerful tool in modeling interactions among self-interested users and predicting their choice of
strategies, game theory is widely employed to study the non-cooperative behaviors on the network
and transport layers, particularly the non-cooperative flow control and non-cooperative routing
(see [Lib] for a detailed survey on them). In contrast, much less work has been done on the
MAC layer, among which [JK02] studies the non-cooperative equilibria of Aloha networks for
heterogeneous users. [MW03] studies the stability of multi-packet slotted Aloha with selfish users
and perfect information, [AEAJ03] reconsider the same Aloha game with partial information, where
the transmission probability is adapted according to collision feedback.

In the context of IEEE 802.11 MAC protocol, [TG05] shows that IEEE 802.11 DCF leads
to inefficient equilibria if users configure their packet size and data rate to maximize their own
throughput. [CGAH05] shows that the existence of small population of selfish nodes leads to
network collapse. The authors thus propose a penalizing scheme to guide the selfish nodes to a
Pareto optimal NE.

Existing work shows that without coordination among nodes, selfish behaviors degrade the
network performance or even paralyze the system. Thus punish or incentive mechanisms are needed
to encourage nodes to adopt socially optimal behaviors. However, in our work, by introducing the
TFT strategy, a natural strategy in non-cooperative environments, we show that even without any
coordination or incentive mechanisms which may be expensive or even impossible to implement
in some cases such as ad hoc networks, selfishness does not lead to network collapse. On the
contrary, selfishness can help the network operate at an equilibrium which is globally optimal or
quasi-optimal under the condition that players are long-sighted and follow the TFT strategy.

2.3 Modeling IEEE 802.11 DCF with Selfish Nodes

We consider a wireless network consisting of a set N = {1, 2, · · · , n} of selfish nodes within the
same communication range, i.e., each node can hear any other node. By selfish we mean that each
node can configure its own CW value and CWmin = CWmax, i.e., network nodes do not double
their CW value upon a collision. We assume that the network is saturated, i.e., each node always
has packets to send and the packets are of the same size.

In this context, let Wi denote the CW value of node i, τi denotes the transmission probability
of i in a random slot, pi denotes the collision probability of i when it transmits a packet in a
random slot, based on the Bianchi’s Markov chain model [Bia00] of IEEE 802.11 DCF, we have:





τi =
2

Wi + 1
pi = 1−

∏

j∈N ,j 6=i

(1− τj)
∀i ∈ N . (2.1)

As an application, (2.1) can be used to calculate the normalized network throughput S, defined
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as the fraction of time the channel is used to successfully transmit packets:

S =
Sslot

Tslot
=

PsPtrE[P ]
(1− Ptr)σ + PtrPsTs + Ptr(1− Ps)Tc

,

where Sslot is the time to successfully transmit a packet, Tslot is the average slot length, E[P ] the
average packet size, Ptr = 1−∏

j∈N (1−τj) is the probability that there is at least one transmission

in the considered slot time, Ps =

∑
i∈N τi

∏
j∈N ,j 6=i(1− τj)
Ptr

is the probability that exactly one node

transmits on the channel conditioned by at least one node transmits. The average length of a slot
time is obtained considering that, with probability 1−Ptr, the slot time is empty, with probability
PtrPs, it contains a successful transmission, and with probability Ptr(1−Ps), it contains a collision.
In the formula, Ts is the average time the channel is sensed busy due to a successful transmission,
Tc is the average time the channel is sensed busy by each node during a collision. σ is the duration
of an empty slot time. In basic IEEE 802.11 DCF access mechanism without the RTS/CTS dialog,
assuming that the packet size is the same for all packets, let H denote the time to transmit the
packet header including the PHY and MAC header and P denote the time to transmit a packet,
neglecting the propagation delay, we have:





Ts = H + P + SIFS + ACK + DIFS

Tc = H + P + SIFS
. (2.2)

2.4 Game theoretic model and problem formulation

In this section, we establish a non-cooperative game theoretic model on the selfish IEEE 802.11
MAC behavior in which all network nodes are selfish, rational and do not cooperative in managing
their communication. Each node i chooses its CW value Wi to maximize its own benefit described
by a utility function defined as

ui =
τi[(1− pi)gi − ei]

Tslot
, (2.3)

where gi is the gain of node i when successfully transmitting a packet, ei is the cost of transmitting
a packet, Tslot is the average slot length. ui, expressed as the expected gain during a slot time
divided by the slot length, can be regarded as the expected payoff per unit time. To simplify the
problem, we assume that gi and ei are the same for all i ∈ N , denoted respectively as g and e.
Throughout this chapter, we assume that e ¿ g. Next we introduce the non-cooperative IEEE
802.11 MAC game.

We model the IEEE 802.11 MAC protocol with selfish nodes as a repeated non-cooperative
game GMAC with unpredictable end time, meaning that the players cannot predict the end time
of the game. This is often the case in strategic interactions, in particular networking operations.
In game theory this can be modeled as an infinite multi-stage game with discount. The discount
factor is usually very close to 1, indicating that the players are in general long-sighted. The game
starts at time 0 and each stage lasts T . In our context, the players of the game are all the nodes
in the network. The strategy set of the players is the CW value set W = {1, 2, · · · , +∞}. The
strategy profile Wk played in stage k is thus the n-tuple consisting of each player’s stage game
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strategies1, i.e.,
Wk = (W k

1 , · · · ,W k
n ) W k

i ∈ W.

We denote the correspondent transmission probability profile and collision probability profile in
stage k as τk = (τk

1 , · · · , τk
n) and pk = (pk

1, · · · , pk
n).

In GMAC , each player i chooses its CW value W k
i ∈ W for stage k at the beginning of the stage

and operates on W k
i for the whole stage. The decision of W k

i is made based on previous actions of
other players. In the following, we give the formal definition of GMAC .

Definition 2.1. The non-cooperative IEEE 802.11 MAC game GMAC is a 4-tuple (P,S,U , δ),
where P = N is the player set, S = ×i∈PW is the strategy space, U={U1, · · · , Un} is the utility

function space where Ui =
+∞∑

k=0

δkU s
i (Wk) is the utility function expressed as the sum of the utility

in each stage k, U s
i (Wk) = ui(Wk)T is the stage utility function, δ is the discounting factor which

is close to 1 for long-sighted players.

In GMAC , players are self-interested and rational, thus they adopt the strategy that maximizes
their own payoff. In this chapter, we focus on the TFT strategy, a well known strategy in game
theory which is regarded as one of the best strategies in non-cooperative environments and is the
root of an ever growing amount of other successful strategies. The core idea of TFT is to cooperate
for the first stage and then follow the opponent’s last move for the coming stage. Before tailoring
the TFT strategy for our context and describing how i adjusts its strategy W k

i according to it, we
introduce the following lemma to get a more in-depth insight on the stage payoff Us.

Lemma 2.1. For any two players i, j, if W k
i > W k

j , then it holds that pk
i > pk

j , τk
i < τk

j and
U s

i (W k) < U s
j (W k).

Proof. The lemma follows straightforwardly from (2.1), (2.3) noticing that e ¿ g.

Now we are ready to introduce the following TFT strategy in our context:

• In each stage k, each player i measures the CW value of any other player j in the last stage2

• Set W k
i = minj∈N {W k−1

j }

The engineering implication behind the above TFT strategy is that in non-cooperative envi-
ronments each rational player is expected to take action to increase its payoff if any other player
gets more and will follow the previous action if no player get more payoff than itself. The above
introduced TFT strategy in GMAC has the following desirable properties:

• The decision is made solely on local measurement.

• It is simple to implement and only the measurement of the last stage needs to be stored.

• It is especially suitable for wireless networks in that the broadcast nature makes the obser-
vation feasible in promiscuous mode.

1Throughout the thesis, we use boldface letters (e.g., a) to denote vectors and matrixes. The inequality between
two vectors is defined as the inequality in all components of the vectors. We also use {ai} to denote a vector with
the ith component being ai, i ∈ N .

2How to observe the CW values in saturated networks is addressed in [KV03].
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• It ensures the fairness among players in that by applying it all players converge to the same
CW value, otherwise the players with greater CW values will decrease them according to
their measurement in order not to be disfavored. Thus within finite number of stages all
players will operate on the same CW value which yields the same utility and throughput.

In practice, taking into account the various factors influencing the measurement, a more tolerant
version of the TFT strategy called the Generous TFT strategy (GTFT) can be applied, as shown
in the following:

• Each player i measures the CW value of any other player in the last r0 stages from stage

k − r0 to stage k − 1 and calculates W j
4
=

1
r0

k−1∑

r=k−r0

W r
j , ∀j ∈ N

• If there exists player l such that W l < βW i, then set W k
i = minj∈P{W j}

• Otherwise set W k
i = W k−1

i

β < 1 is the tolerance parameter close to 1. By increasing r0 or decreasing β, the derived
GTFT strategy becomes more tolerant.

2.5 Solving the IEEE 802.11 MAC Game GMAC

2.5.1 Nash Equilibrium Analysis

Game theoretic models are often analyzed using the concept of NE, which can be seen as optimal
“agreements” between the opponents of the game. The NE concept offers a predictable, stable out-
come of a game where multiple agents with conflicting interests compete through self-optimization
and reach a point where no player wishes to deviate. However, such an equilibrium point does not
necessarily exist. First, we investigate the existence of NE in GMAC .

As discussed in last section, all players converge to the same CW value after sufficient long
time. Assume that from the stage t0, the CW values of all nodes converge to Wc. The transmission
probability of all nodes converges to τc, i.e., τk

i = τi = τc for all i ∈ N when k ≥ t0. The utility
function of i can be expressed as a function of τi:

Ui =
+∞∑

k=0

δkUk
i T =

t0−1∑

k=0

δkUk
i T +

+∞∑

k=t0

δkUk
i T =

t0−1∑

k=0

δkUk
i T +

δt0T

1− δ

τi[(1− pi)g − e]
Tslot

.

Noticing that in our study, δ is close to 1 for long-sighted players, we can ignore
t0−1∑

k=0

δkUk
i T in

the utility function. After some mathematic operations calculating Tslot, we obtain

Ui(τi) =
δt0T

1− δ

τi

n∏

j=1,j 6=i

(1− τj)g − τie

n∏

j=1

(1− τj)σ +
n∑

j=1

τj

n∏

k=1,k 6=j

(1− τk)(Ts − Tc) +


1−

n∏

j=1

(1− τj)


Tc

. (2.4)

The following lemma studies the basic structural property of Ui.
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Lemma 2.2. Let Γc
4
= {τi = τc, ∀i ∈ N}, it holds that Ui(Γc) admits a unique maximizer τc = τ∗c

and 0 < τ∗c < 1. Moreover, Ui is monotonously increasing in τc before it is maximized and
monotonously decreasing after that.

Proof. Please refer to Section 2.10.1 for the detailed the proof.

Noticing the relation between Wc and τc, we have the following lemma.

Lemma 2.3. Let Wc
4
= {Wi = Wc, ∀i ∈ N} and regard Ui as a function of Wc, it holds that

Ui(Wc) admits a unique positive maximizer Wc = W ∗
c . Moreover, Ui is monotonously increasing

in Wc before it is maximized and monotonously decreasing after that.

Proof. It follows from (2.1) that
∂τc

∂Wc
< 0. Noticing that

∂Ui

∂Wc
=

∂Ui

∂τc

∂τc

∂Wc
, Lemma 2.3 is proven.

The following theorem characterizes the NEs of GMAC .

Theorem 2.1. Let W0
c
4
= {W 0

c } where Ui(W 0
c , · · · ,W 0

c ) > 0 and Ui(W 0
c − 1, · · · ,W 0

c − 1) < 0,
any strategy profile Wc = {Wc} satisfying W 0

c ≤ Wc ≤ W ∗
c consists of a NE of GMAC .

Proof. The proof consists of showing that no player has incentive to deviate from Wc. Please refer
to Section 2.10.2 for the detailed proof.

Recall the assumption e ¿ g, we have Ui({W ∗
c }) > 0. It follows from Theorem 2.1 that GMAC

has (W ∗
c − W 0

c + 1) NEs. Usually not all of them are good. Our next step is to remove those
NEs that are less less efficient to achieve a socially desirable result. This is achieved by the NE
refinement elaborated in the next subsection.

2.5.2 Nash Equilibrium Refinement

In this subsection, we perform NE refinement by imposing the following optimality criteria: fair-
ness, social optimality and Pareto optimality.

• Fairness: It is clear that all the NEs Wc ensure fairness among players due to the TFT
strategy in that each player chooses the same CW value and gets the same payoff after the
convergence.

• Social Optimality : A social optimal strategy profile maximizes the global payoff. Among the
NEs, Lemma 2.3 shows that {W ∗

c } maximizes both individual payoff Ui and the global payoff∑
i∈P Ui = nUi. In fact it is the only NE maximizing the global payoff.

• Pareto Optimality: It is easy to check that {W ∗
c } is the only Pareto optimal NE. All other

NE are not Pareto optimal in that for any Wc 6= W ∗
c , Ui({Wc}) < Ui({W ∗

c }).

The NE refinement leads to a unique efficient NE {W ∗
c } maximizing both local and global

payoff.
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2.5.3 Approaching the Efficient Nash Equilibrium

In this section, we address the issue on how to reach the efficient NE {W ∗
c }. If the number of

the nodes n in the network is known to players, the task becomes trivial in that the CW value of
the efficient NE can be computed given n3. In many cases, the network participants do not know
the number of nodes in the network, so they cannot directly calculate W ∗

c . In this subsection, we
provide a simple algorithm to approach to the efficient NE without the knowledge of n.

The core idea of the proposed algorithm is that one node l starts the search and then all nodes
search for the CW value that maximizes l’s payoff under the condition that they operate on the
same CW value. According to the previous analysis, this value is W ∗

c . We would like to point out
here that the algorithm requires all players to act cooperatively. This does not contradict to the
selfish nature of players in that players are selfish in the sense that their goal is to maximize their
own payoff, thus they have incentive to act cooperatively to reach the efficient NE maximizing
both their own payoff and the global payoff.

Algorithm 1 Approaching the efficient Nash Equilibrium {W ∗
c }

1: Any node l sends a message Start-Search containing the CW value of the starting point Wl =
W0 and starts the search.

2: Right-Search: l increases Wl by 1 and sends a message Ready including the new Wl. Other
nodes set their CW values to Wl when receiving the message Ready.

l waits a short period of time t for others to change their CW values and measures its payoff
in the following tm time. The payoff can be calculated as follows: Ul = (nsg − nee)/tm, where
ns is the number of packets successfully emitted, ne is the number of packets emitted. If the
payoff is greater than the last measured payoff with the old Wl, l continues the search until
the payoff decreases. l notes the last CW value Wm before decreasing.

3: Left-Search: If Wm 6= W0 + 1, skip Left-search. Otherwise l decreases Wl by 1 and sends the
message Ready including the new Wl. Others set their CW values to Wl when receiving the
message Ready.

l waits a short period t of time for other nodes to change their CW values and measures its
payoff in the following tm time. If the payoff is greater than the last measured payoff, l continues
the search until the payoff decreases. l notes the last CW value Wm before decreasing.

4: l broadcasts Wm as the CW value of the efficient NE.

Remark 1: In the proposed algorithm, one may ask what is the consequence if l broadcasts
W ′

m 6= Wm = W ∗
c while operates on W ∗

c itself. Actually l has no incentive to broadcast Wm < W ∗
c

since this will lead the players to operate on Wm according to the TFT strategy. As a result, l

gets less payoff compared with the case where it reports W ∗
c and operates on W ∗

c . If l broadcasts
Wm > W ∗

c while operating on W ∗
c , the CW values will converge to W ∗

c . The only benefit of l is
that it may get certain amount of payoff before the convergence. However, for long-sighted players,
the payoff obtained before the convergence is negligible compared with the total payoff.

Remark 2: The analysis up to now neglects the cases where W ∗
c is not an integer. In such cases,

if Ui({bW ∗
c c})4 = Ui({bW ∗

c c + 1}), then GMAC has two efficient NEs {bW ∗
c c} and {bW ∗

c c + 1}.
Algorithm 1 will find one of them. If Ui({bW ∗

c c}) 6= Ui({bW ∗
c c+ 1}), then GMAC has one efficient

NE {bW ∗
c c} if Ui({bW ∗

c c}) > Ui({bW ∗
c c+1}) and {bW ∗

c c+1} otherwise. Algorithm 1 will find the
3W ∗

c can be solved by combining the equation Q(τc) = 0 in the proof of Lemma 2.3 with (2.1).
4bW ∗

c c denotes the largest integer not larger than W ∗
c .
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unique efficient NE in this case.

2.5.4 Impact of Short-sighted (Myopic) Players

In previous sections a basic assumption is that all players are long-sighted (δ → 1). In this section
we relax this assumption to study the impact of short-sighted players on the network performance.
We first introduce the following lemma as the basis of the analysis in this subsection.

Lemma 2.4. Let W
4
= {W} and W′ denote the strategy profile in which player i deviates from

W to W ′, while other players stick to W , it holds that

1. W ′ > W =⇒ U s
i (W′) < U s

i (W) < U s
j (W′), ∀j ∈ N , j 6= i;

2. W ′ < W =⇒ U s
j (W′) < U s

i (W) < U s
i (W′), ∀j ∈ N , j 6= i.

Proof. Please refer to Section 2.10.3 for the detailed proof.

We consider the scenario where there is one short-sighted player s with the discount factor δs.
s operates on Ws < W ∗

c rather than W ∗
c to get more payoff.

We also assume that other nodes need m stages (m ≥ 1) to react according to the TFT/GTFT
strategy to set their CW value to Ws. Thus the game GMAC in this new context becomes the
following: in the first m stages s operates on Ws while others on W ∗

c ; in the following stages, all
players operate on Ws. Thus the payoff of s is:

Us =
m−1∑

r=0

U s
s (W ∗

c , · · · , Ws, · · · ,W ∗
c ) +

∞∑
r=m

U s
s (Ws, · · · ,Ws)

=
1

1− δs

[
(1− δm

s )U s
s (W ∗

c , · · · , Ws, · · · ,W ∗
c ) + δm

s U s
s (Ws, · · · ,Ws)

]
.

On the other hand, if s operate on W ∗
c for all stages, its payoff is:

U ′
s =

U s
s (W ∗

c , · · · ,W ∗
c )

(1− δs)
.

We consider the following two cases:

• If s is extremely short-sighted, we have δs → 0, then according to Lemma 2.4, we have

Ws < W ∗
c −→ U s

s (W ∗
c , · · · , Ws, · · · ,W ∗

c ) > U s
s (Wc, · · · ,Wc).

Noticing δs → 0, it follows that Us > U ′
s. Hence by operating on Ws, s gets more payoff at

the expense of others and the sub-optimality of the network as a whole.

• If s is long-sight (δs → 1), then it will choose Ws to maximize δm
s us(Ws, · · · ,Ws) where W ∗

c

is the unique maximizer.

Generally, given δs, s can configure Ws to maximize its payoff by imposing
∂Us

∂Ws
= 0. To con-

clude, a short-sighted player has negative impact on the network as it can degrade the performance
or even lead to network collapse.
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2.5.5 Impact of Malicious Players

Unlike selfish players, the malicious players aim at collapsing the network. Hence they have no
incentive to operate on the efficient NE W ∗

c . To this end, they will surely deviate from W ∗
c to fulfill

their goal.
We consider the scenario where malicious player i operates on Wi < W ∗

c . Under this condition,
other players will decrease their CW values to Wi based on the TFT strategy. As consequence,
the network performance is degraded as the global payoff decreases. If Wi is sufficiently small, the
network is paralyzed.

2.5.6 RTS/CTS Case

Our analysis for basic case is also applicable in the RTS/CTS case. What differs in the RTS/CTS
case is that collisions occur on RTS frames, thus

{
T ′s = RTS + SIFS + CTS + H + P + SIFS + ACK + DIFS

T ′c = RTS + DIFS
.

By performing the same analysis as the basic case, we derive the same results for RTS/CTS case.

2.6 Multi-hop Case

In this section, we extend our previous work to multi-hop wireless networks. More specifically, we
consider a connected multi-hop wireless network operating under the RTS/CTS access mechanism.
We assume that network nodes know the number of neighbor nodes5.

2.6.1 Model Adaptation

We need to modify the model on selfish nodes derived in Section 2.3 to extend it to multi-hop case.
First, under the assumption that the channel states sensed by the neighbors of a node is the same
as that sensed by the node, we can rewrite the second equation in (2.1) as

pi ≈ 1−
∏

j∈Mi,j 6=i

(1− τj), (2.5)

where Mi denotes the neighbor set of i.
We then modify the utility function as following to take into account the hidden-node problem

of multi-hop wireless networks:

ui =
τi[(1− pi)pi

hnui − ei]
Tslot

,

where pi
hn is the degradation factor indicating that 1 − pi

hn% of transmitted packets experience
collisions at the receivers due to the hidden-node problem. The stage and total utility function
is derived in the same way as single-hop case. A key approximation in our model is that pi

hn is
independent of the CW values of players. We will show in next section via simulation that this
approximation is accurate when n is large enough and CW values are not too small. Note that
we cannot solve pi in multi-hop case without the knowledge of the network topology. However, as

5The neighbor information can typically be obtained via routing protocols or MAC layer beacons
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shown in the following demonstration, we can still establish the NE of the game in the multi-hop
case using the adapted model, which is our goal.

2.6.2 Formulating and Solving the Game

The non-cooperative IEEE 802.11 MAC game in the multi-hop case, denoted as G′
MAC , can be

formulated in the same way as its counterpart in the single-hop case GMAC . However, it is obvious
that the solution of GMAC is no more applicable for G′

MAC . Nevertheless, as long as players in
G′

MAC follow the TFT strategy, their CW values will converge to the smallest one of all players
after sufficiently long time although the converged value may not be optimal for all players. This
can be shown intuitively: consider player s operates on the smallest CW value Ws. The neighbor
of s will decrease their CW values to Ws if they operate on higher values according to the TFT
strategy. Once their CW values are decreased, they have no incentive to increase it any more.
Then the CW values of the two-hop neighbors of s will converge to Ws. As a result, as long as the
network is not partitioned, the CW values of all players will converge to Ws after sufficiently long
time.

In multi-hop case, it is not possible to apply Algorithm 1 to reach an equilibrium point due
to the fact that the optimal CW value of l may not be optimal for other players. Thus they have
no incentive to operate on this CW value or will not even participate in the search. Instead, any
player i relies solely on local information to choose its CW value Wi. Under such circumstance, a
natural way is to choose the initial value of Wi that maximizes its payoff assuming its neighbors
also operate on Wi and to follow the TFT strategy in following stages. Taking into consideration
the approximation that pi

hn is independent of CW values and g À e, Wi is obtained by maximizing
τi(1− pi)ui

Tslot
, which is the same utility function in the single-hop game GMAC analyzed previously.

Hence, Wi is set to the CW value at the efficient NE of the single-hop game GMAC in which the
players are i and its neighbors6. The result is not surprising in that in multi-hop environments
without coordination among nodes, the best strategy for a rational player is to operate on local
optimal point based on local information. Under this circumstance, after sufficient long time, the
CW value will converge to Wm = min

i∈N
Wi. In the following theorem we prove that all players

operating on Wm constitutes of a NE of G′
MAC .

Theorem 2.2. In G′
MAC , the CW values of all players converge to Wm = mini∈NWi, where Wi

is i’s CW value at the efficient NE of the single-hop game GMAC in which the players are i and
its neighbors. It holds that Wm = {Wm} is a NE of G′

MAC .

Proof. Please refer to Section 2.10.4 for the detailed proof.

Furthermore it can be shown that the above NE is Pareto optimal, but not necessarily globally
optimal. Nevertheless, we will show in next section via simulation that the NE is quasi-optimal in
the sense that the global payoff is only slightly outweighed by the optimal case and the fairness
of the NE is ensured in the sense that each player gets almost the same payoff as the maximum
payoff it can get.

6Here we implicitly assume that if node i and its neighbor nodes operate on the same CW values, they have the
same collision probability pi. This assumption is accurate if n is sufficiently large and the density of the network
does not vary too much.
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2.7 Numerical Results

In this section we present the numerical results on our game theoretic model. The network param-
eters are listed in Table 2.1.

2.7.1 Single-hop Case

We first study the efficient NE when the CW value of all players is converged. We conduct
simulation in NS-2 and compare simulation results with our analytical results. Table 2.2 and 2.3
show the main results in which W ∗

c is the efficient NE according to our theoretic model, W ∗
c is the

average CW values of each node that maximizes its own payoff in the simulation, V ar(W ∗
c ) is the

variance of W ∗
c . We can see that in both cases, the simulation results coincide with the analytical

results quite well.

Packet size 8184 bits
MAC header 272 bits
PHY header 128 bits

ACK 112 bits + PHY header
RTS 160 bits + PHY header
CTS 112 bits + PHY header

Channel bit rate 1 Mbits/s
σ 50µs

SFIS 28µs
DIFS 128µs

g 1
e 0.01
T 10s
δ 0.9999

Simulation time 1000s

Table 2.1: Network parameters

n W ∗
c W ∗

c V ar(W ∗
c )

5 79 78.4 3.41
20 342 343.4 2.92
50 886 888.7 2.72

Table 2.2: NE: basic case

n W ∗
c W ∗

c V ar(W ∗
c )

5 23 23.7 1.57
20 50 49.2 1.79
50 121 119.4 1.71

Table 2.3: NE: RTS/CTS case

We also plot the global payoff as a function of CW values base on our model in Figure 2.1,

where the Y-axis is U/C where U denotes the global payoff and C =
gT

σ(1− δ)
is a constant. From

the results, especially the CTS/RTS case, we can see that operating at W ∗
c also achieves the global

social optimality. Furthermore, the efficient NE is quite robust in the sense that the CW values
near W ∗

c yield almost the same global and local payoff. Consequently, a rational players should
be satisfied as long as it operates not too far from W ∗

c . This robust and tolerant feature may
significantly facilitate the design and implementation of TFT/GTFT strategy and the algorithm
to reach W ∗

c .
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Figure 2.1: Global payoff versus CW value, left: basic case; right: RTS/CTS case

2.7.2 Multi-hop Case

We simulate for 1000s a network of 100 nodes with the same transmission range of 250m moving at a
speed randomly picked from [0,5m/s] according to the random way-point model in a 1000m×1000m
area. Each node has information of its neighbors from which it calculates the local optimal CW
value.

We simulate the converged case by setting the converged CW value to the smallest one among
the nodes. This value, 29 in our scenario, is the NE according to our analytical model. We then
vary CW values to simulate both local and global payoff and compare the results with that at NE.
We report that operating at NE, each node gets at least 96% of the maximal local payoff it can get
by varying its CW value and the global payoff is only 3% less than the maximal global payoff. We
also observe from the simulation that both the local and global payoff in RTS/CTS case is almost
independent with respect to CW values when n is large enough in both single-hop and multi-hop
cases. This independence justifies our key approximation in Section 2.6.1.

The above numerical results show that selfishness leads to a NE which is at least quasi-optimal
if not optimal in the sense that the both local and global payoff is only slightly outweighed by the
optimal case.

2.8 Discussion

In the section of Related Work, we mentioned that [CGAH05] shows the existence of even a small
population of selfish nodes leads to network collapse. Their results seem contradictory to ours. In
fact their results are coherent to ours. The point is that in their work, the players are selfish and
short-sighted, thus they set their CW values to small values to maximize the short-term payoff.
In our work, we provide a more generic analysis in both single-hop and multi-hop networks: we
first assume that the players are selfish and long-sighted and show that selfishness does not lead to
network collapse; we then study the impact of the short-sighted players on the network performance
in Section 2.5.4 and obtain the same result as [CGAH05].

In our work, we choose a generic utility function and do not take into account the packet delay
and other factors. As a result, the CW value of NE may seem too long in some cases. To derive
a more desirable NE, more factors need to be considered depending on the target application and
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other requirements.

2.9 Conclusion

In this chapter, we focus on the posed question: how well or how bad does IEEE 802.11 DCF
perform if all nodes are selfish? We proceed our analysis under a non-cooperative game theoretic
framework. Our main results are as follows:

• In single-hop wireless networks, selfishness does not always lead to network collapse. On the
contrary, it can help network operate at an efficient NE which is also global optimal under
the condition that players are long-sighted and follow the TFT strategy.

• We provide a simple algorithm to approach the efficient NE.

• In multi-hop case, under the same condition, the network operates on a NE not necessarily
globally optimal. However, we show by numerical results that the NE is quasi-optimal in the
sense that the global payoff is only slightly less than the optimal case.

Furthermore, we believe that the game theoretic model proposed in this chapter is a general
framework that can be extended to model other selfish behaviors such as rate control by redefining
the proper utility function.

2.10 Proofs

This section completes the detailed proofs omitted from the main text.

2.10.1 Proof of Lemma 2.2

Injecting Γc into (2.4), recall the assumption e ¿ g, we can derive Ui(Γc) for τc > 0 as

Ui(Γc) =
τc(1− τc)n−1g − τce

(1− τc)nσ + nτc(1− τc)n−1(Ts − Tc) + [1− (1− τc)n]Tc

' τc(1− τc)n−1g

(1− τc)nσ + nτc(1− τc)n−1(Ts − Tc) + [1− (1− τc)n]Tc

=
g

n(Ts − Tc) +
(1− τc)nσ + [1− (1− τc)n]Tc

τc(1− τc)n−1

After some straightforward mathematic manipulations,
∂Ui

∂τc
can be calculated as

∂Ui

∂τc
=

g

{
(1− τc)nσ − [nτc + (1− τc)n]Tc + Tc

}

{
n(Ts − Tc) +

(1− τc)nσ + [1− (1− τc)n]Tc

τc(1− τc)n−1

}2

τ2
c (1− τc)n
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Let Q(τc)
4
= (1− τc)nσ − [nτc + (1− τc)n]Tc + Tc, we have

Q′(τc) = −(n− 1)(1− τc)n−1σ − Tcn + (n− 1)(1− τc)n−1Tc < −Tcn + Tc(n− 1) < 0

Hence, Q(τc) is monotonously decreasing in τc. Noticing that Q(0) = σ > 0 and Q(1) =

−(n − 1)Tc < 0, there exists a unique 0 < τ∗c < 1 satisfying Q(τ∗c ) = 0 and
∂Ui

∂τc

∣∣∣∣∣
τc=τ∗c

= 0.

Moreover, for τc < τ∗c , both Q(τc) and
∂Ui

∂τc
is positive, Ui is monotonously increasing in τc; for

τc > τ∗c , both Q(τc) and
∂Ui

∂τc
is negative, Ui(Γc) is monotonously decreasing. Hence, τ∗c is the

unique maximizer of Ui(Γc).

2.10.2 Proof of Theorem 2.1

We prove the theorem by showing that no player has incentive to deviate from W 0
c ≤ Wc ≤ W ∗

c .

• If any player i increases its CW value to W ′
c > Wc, it will get less payoff7 and set its CW

value back to Wc according to the TFT strategy.

• On the other hand, if i decreases its CW value to W ′
c < Wc, other players will react by

decreasing their CW values to W ′
c based on the TFT strategy, leading to the decrease of the

payoff for all players including i in the following stages due to the fact that Ui is monotonously
increasing in Wc before W ∗

c . Recall the assumption that the players are long-sighted, the
decrease of payoff in the following stages, as will be shown in Section 2.5.4 in a similar
scenario, outweighs the gain obtained during the stages when i operates on W ′

c while others
on Wc. Thus i gets less overall payoff by decreasing its CW value from Wc.

We then show that any strategy profile {Wc} with Wc < W 0
c or Wc > W ∗

c is not a NE of GMAC .

• Operating on {Wc} where Wc < W 0
c leads to a negative payoff noticing that U s

i ({Wc}) ≤
U s

i ({Wc − 1}) < 0 (Lemma 2.3), hence any player is better off setting its CW value to +∞,
indicating that {Wc} cannot be a NE.

• For {Wc} where Wc > W ∗
c , from Lemma 2.4, any player gets more payoff by decreasing its

CW value to W ∗
c , hence {Wc} cannot be a NE.

Combining the above analysis concludes our proof.

2.10.3 Proof of Lemma 2.4

It follows from (2.1) that





W ′ > W =⇒ τ ′i < τi = τj = τ ′j
W ′ < W =⇒ τ ′i > τi = τj = τ ′j

.

7This is formally proved in Lemma 2.4. Since the results of Lemma 2.4 are also used in Section 2.5.4, we present
the lemma there in the main text to maintain the presentation continuity and clarity.
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Noticing that under the condition e ¿ g, Us can be rewritten as follows:

Us =

τi

n∏

j=1,j 6=i

(1− τj)g − τie

n∏

j=1

(1− τj)σ +
n∑

j=1

τj

n∏

k=1,k 6=j

(1− τk)(Ts − Tc) +


1−

n∏

j=1

(1− τj)


Tc

=
g

∑

j∈N

τj(1− τi)
τi(1− τj)

(Ts − Tc) + σ
1− τi

τi
+

[
1−∏n

j=1(1− τj)
]
Tc

τi
∏n

j=1,j 6=i(1− τj)

,

we have:





U s
i (W) =

g

n(Ts − Tc) +
1− τi

τi
σ +

[1− (1− τi)n]Tc

τi(1− τi)n−1

U s
i (W′) =

g[
1 + (n− 1)

τ ′j(1− τ ′i)
τ ′i(1− τ ′j)

]
(Ts − Tc) +

1− τ ′i
τ ′i

σ +
[1− (1− τ ′i)(1− τ ′j)

n−1]Tc

τ ′i(1− τ ′j)n−1

U s
j (W′) =

g[
(n− 1) +

τ ′i(1− τ ′j)
τ ′j(1− τ ′i)

]
(Ts − Tc) +

1− τ ′j
τ ′j

σ +
[1− (1− τ ′i)(1− τ ′j)

n−1]Tc

τ ′j(1− τ ′i)(1− τ ′j)n−2

. (2.6)

In IEEE 802.11 DCF, it holds that Ts > Tc. It then follows from (2.6) that





W ′ > W =⇒ τ ′i < τi = τj = τ ′j =⇒ U s
i (W′) < U s

i (W) < U s
j (W′)

W ′ < W =⇒ τ ′i > τi = τj = τ ′j =⇒ U s
i (W′) > U s

i (W) > U s
j (W′)

,

which concludes our proof.

2.10.4 Proof of Theorem 2.2

We prove the theorem by showing that any node j has no incentive to deviate from Wm. If Wm

is node j’s efficient NE of local single-hop game, it is clear that j has no incentive to deviate from
Wm. In other cases, j has no incentive to increase its CW value in that it will be dragged back
to Wm according to the TFT strategy when j meets players operating on Wm; If j decrease its
CW value to W ′

j < Wm, then according to the TFT strategy, other nodes also decrease their CW
values to W ′

j . It follows from Lemma 2.3 that under the condition that all players choose the
same CW value, the payoff of j is monotonously increasing until it is maximized at Wj . Since
W ′

j < Wm = mini∈N Wi < Wj , the payoff of j operating on W ′
j is less than that on Wm. Hence j

has no incentive to decrease its CW value from Wm to W ′
j . Wm is thereby a NE of G′

MAC .
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Chapter 3

Non-cooperative Distributed Power

and Rate Control in IEEE 802.11

WLANs

3.1 Introduction

In today’s wireless networks, most network nodes, such as laptops, PDAs and palmtops, are battery
powered and thus limited in their energy supply. Therefore, it is natural and important for selfish
nodes to adopt the most energy-efficient transmission strategy. In this chapter, we investigate such
selfish behavior in IEEE 802.11 WLANs that network participants choose their transmission power
and data rate in a non-cooperative (selfish) way to maximize their own throughput with minimum
energy consumption.

3.1.1 Background and Motivation

Such power and rate control problem have been widely investigated in cellular networks under both
optimization and game theoretic frameworks [SMG02a], [ABD06], [HA04], [Yat95]. The seminal
paper [SMG02a] studies the power control in a single-cell CDMA network and introduces pricing
to improve the efficiency of the equilibrium, but even with pricing, the game is still unable to
achieve a socially optimum solution. [HA04] addresses the joint power and rate control in CDMA
networks and models the problem as two games. All nodes first find the data rate and then apply
power control to allocate the powers.

In the context of IEEE 802.11 WLANs using contention based medium access mechanism, the
power and rate control problem is by nature different in that:

• In cellular networks, the transmission of one node interferes those of others, but IEEE 802.11
WLANs1 are interference-free environments where there is no interference during a successful
transmission.

• The contention based medium access control of IEEE 802.11 creates an important feature
which we refer to as data rate interference that does not exist in cellular networks, i.e., the
data rate (PHY layer) of one node not only determines its own throughput (MAC layer), but
also influences the throughput of others, as will be shown in Section 3.2.1.

1In our work, we consider the single hop, single channel case.

28
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Therefore, there is a need for a quantitative model for the power and rate control in such
environments as IEEE 802.11 WLANs.

There exist a number of power control and rate adaptation mechanisms proposed for IEEE
802.11 WLANs to achieve high performance at lower level of energy consumption, [HVB01],
[QCJS03]. However, most of them rely on simulation and experimental results. To our knowl-
edge, very little work has been done on modeling the power and rate control in IEEE 802.11
WLANs although the problem in this context is by nature different from that in cellular networks.
Among them, [TG05] shows that in a non-cooperative environment under IEEE 802.11 DCF (Dis-
tributed Coordination Function), a selfish node may achieve higher throughput by transmitting
at lower data rate at the expense of reducing overall network throughput. In [TG05], the energy
consumption is not taken into account when maximizing the node’s throughput. [EAV05] restud-
ies the problem using both cooperative and non-cooperative approach. The emphasis is on the
cooperative control and little analysis is done on the non-cooperative control. Our previous work
[CL07b] studies rate control assuming that power consumption can be approximated by a linear
function of the data rate. However, this assumption does not hold in general case. None of them
performs a profound study on the power and rate control for IEEE 802.11 WLANs based on a
well-established model.

3.1.2 Summary of Contributions

In this chapter, motivated by the need of a quantitative model for the power and rate control
in IEEE 802.11 WLANs and the lack of related work in the literature, we address the problem
by establishing a quantitative game theoretic framework. Our motivation of using game theoretic
approach rather than global optimization approach is two-fold:

• Game theory is a powerful tool to model selfish behaviors and their impact on the system
performance in distributed environments with self-interested players.

• Game theory can model the features or constraints of IEEE 802.11 WLANs such as lack of
coordination and network feedback.

In fact in such environments, due to the distributed nature, selfish behavior is much more robust
and scalable than any centralized cooperative control, which is very expensive or even impossible
to implement.

We investigate three specific games in this chapter. In GNPC and GNRC , players choose their
transmission power/rate under fixed transmission rate/power to maximize their payoff. These two
games correspond to the classical power control and rate adaptation problem, respectively. In the
third game GNJPRC , we address the general case, joint power and rate control, where players can
adjust both data rate and transmission power. For the three games, a Nash equilibrium (NE) is
defined as a set of strategies at which no player can improve its utility by deviating unilaterally.

In our work, we are interested in the following questions. Do there exist NEs for the three
games (existence of NE)? If so, is it unique and can players converge to the NE (uniqueness and
convergence to NE)? Moreover, is the NE efficient (social optimality at NE)? If not, how to improve
the efficiency? Our work contributes to existing literature as follows:

• Game theoretic framework: We establish a game theoretic model for the power and rate
control in IEEE 802.11 WLANs, based on which we study the existence, uniqueness and
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convergence of the NE for the three games. In GNRC where the NE is inefficient, we provide
a pricing scheme to improve the efficiency.

• Joint power and rate control procedure: We propose a joint power and rate control procedure
to approach the NE of GNJPRC which is proven to be social optimal. The procedure is
distributed in nature and can be incorporated into the IEEE 802.11 MAC protocol easily.

3.2 Problem Formulation

3.2.1 IEEE 802.11 Medium Access Control

We consider a saturated IEEE 802.11 WLAN of n nodes, denoted as N , using IEEE 802.11 DCF
with RTS/CTS dialog as the MAC layer protocol. Recent work of Kumar et al. [KAMG05] has
shown that (under decoupling assumptions) the IEEE 802.11 DCF can be modelled by the following
fixed point equation





θ = 1− (1− τ)n−1

τ =
1 + θ + · · ·+ θK

b0 + b1θ + · · ·+ bKθK

,

where θ is the collision probability observed by a given node, τ is the transmission attempt prob-

ability, bi = min
{

2iCWmin + 1
2

,
CWmax + 1

2

}
.

Applying the above model, assuming that all nodes use the same back-off parameters and the
packets are of the same size L, the expected throughput of node i can be calculated as

Si =
τ(1− τ)n−1L

Tslot
=

τ(1− τ)n−1L

1 + nτ(1− τ)n−1(To − Tc + 1
n

∑n
j=1

L
Cj

) + (1− (1− τ)n−1)Tc

, (3.1)

where Tslot is the average virtual slot length, Ci is the data rate of i. To is the transmission overhead
in slots (SIFS/DIFS, etc), Tc is the fixed overhead for an RTS collision. (3.1) shows clearly that
the contention based medium access control creates the data rate interference: the data rate of
node i Ci not only determines its own throughput Si, but also influences the throughput of other
nodes j 6= i. In other words, node i’s throughput depends not only on its own data rate Ci, but
also on the data rate of other network participants Cj . Note that (3.1) can be extended to basic
access cases by modifying To and Tc.

Furthermore, let Ps denote the frame success rate (FSR), the probability of correct reception
of a frame at its destination. The effective throughput of i Seff

i can be expressed as Seff
i = PsSi.

Assuming perfect error detection and no error correction, we have Ps = (1−Pe)L, where Pe is the
bit error rate (BER). Pe is a function of Eb/N0, the bit-energy-to-noise ratio of the received signal.
Typical Pe for different modulation schemes are shown in Table 3.1. Assuming an additive white

Gaussian noise (AWGN) channel, in our context, the bit-energy-to-noise ratio of i

(
Eb

N0

)

i

of the

received signal is derived from the SNR (Signal-to-Noise Ratio) as follows:

(
Eb

N0

)

i

= SNR
Bt

Ci
=

hiPi

σ2

Bt

Ci
=

hiBt

σ2

Pi

Ci
,

where Ci is the bit rate of the modulation scheme and Bt is the unspread bandwidth of the signal,
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Pi is the transmission power of i, hi is the channel gain from the sender i to the receiver and σ2 is

the AWGN power at the receiver. Let γi
4
=

hiBt

σ2

Pi

Ci
, we can express the FSR of i as a function of

γi: Ps = fi(γi)
In our work, in order to perform a closed-form analysis on the power and rate control, we

assume that each user applies the non-coherent FSK modulation scheme where fi(γi) = f(γi) =(
1− 1

2
e−γi/2

)L

. However, our analysis is applicable for other forms of f(γi).

Modulation BER (Pe)
BPSK Q(

√
2Eb/N0)

DPSK 1
2e−Eb/N0

Coherent FSK Q(
√

Eb/N0)
Non-coherent FSK 1

2e−Eb/2N0

Table 3.1: BER (Pe) for various modulation schemes

Generally, we observe the following features on f(γi) which is easy to check.

Lemma 3.1. For the FSR function f(γi), if L is sufficiently large, it holds that

• f(0) → 0, f(∞) → 1. f(γi) is monotonously increasing w.r.t γi;

• f ′(0+) → 0, f ′(∞) → 0, f ′(γi) has a unique maximizer f ′ and f ′(γi) is monotonously
increasing w.r.t γi before reaching f ′ and monotonously decreasing after that;

• For γi ∈ (0, +∞), f ′′(γi) is first positive and f ′′(γi) = 0 at γ′′i = 2ln(L/2) then turns negative
in (γ′′i , +∞);

We now turn to the energy consumption of frame transmission. Consider a virtual slot time
Tslot, the possibility of transmitting a frame with success for i is Ptr = τ(1 − τ)n−1, the frame
transmission time is L/Ci; the possibility of collision is Pc = 1 − (1 − τ)n − nτ(1 − τ)n−1, the
collision duration is the RTS frame duration tRTS ¿ L/Ci. Thus the expected energy consumption
per unit time for transmission of i is

Qi =
PiPtr

L
Ci

+ PctRTS

Tslot
' PiPtr

L
Ci

Tslot
=

τ(1− τ)n−1LPi

CiTslot
.

3.2.2 Utility Function

In game theory, the utility function is used to describe the satisfaction level of the player as a result
of its actions. In an IEEE 802.11 WLANs, the objective of a node is to achieve maximum effective
throughput and meanwhile minimize the energy consumption. This is a typical multi-objective
optimization (MOP) problem: maxPi,Ci [S

eff
i ,−Qi]. A standard technique for MOP as above is to

maximize a positively weighted sum of the objectives, i.e.,

max
Pi,Ci

α1
i S

eff
i − α2

i Qi α1
i , α

2
i > 0.

In our context, α1
i can be interpreted as the reward of successfully transmitting one bit information,

α2
i can be interpreted as the cost of dispensing one Joule energy for the transmission. From a

monetary point of view, the unit for α1
i , α2

i can be euro/bit and euro/Joule. α1
i S

eff
i − α2

i Qi is
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thus the net benefit per unit time that node i enjoys by operating on (Pi, Ci). Different players may
have different value of α1

i and α2
i depending on its own evaluation. Based on the above analysis,

let ζi = α2
i /α1

i represent the player’s individual preference between the reward and energy cost, we
define the utility function of node i as:

Ui = Seff
i − ζiQi =

τ(1− τ)n−1Lfi(γi)− ζiPiτ(1− τ)n−1 L
Ci

1 + τ(1− τ)n−1


n(To − tc) +

n∑

j=1

L

Cj


 + [1− (1− τ)n−1]Tc

=
f(γi)− kiγi

q2

q1
+

∑

j∈N

1
Cj

,

where q1
4
= τ(1− τ)n−1L, q2

4
= 1 + nτ(1− τ)n−1(T0 − Tc) + (1− (1− τ)n) Tc, ki

4
=

σ2

hiBt
ζi.

In our game theoretic model, players are self-interested and rational that they would never
accept the negative utility. We thus define the rational feasible set or simply feasible set as the
strategy space that leads to non-negative utility. To avoid the trivial case where the rational
feasible set is empty, we assume that (Ui)max > 0. A necessary condition for (Ui)max > 0 is
f ′i > ki. Moreover, if (Ui)max > 0, the following lemma is immediate:

Lemma 3.2. ∀i ∈ N , there exist 0 < γmin
i < γmax

i such that Ui(0) = Ui(γmin
i ) = Ui(γmax

i ) = 0,
Ui(γi) > 0 for γmin

i < γi < γmax
i and Ui(γi) < 0 for 0 < γi < γmin

i , γmax
i < γi.

Compare the proposed utility function with the traditional utility function in the literature
expressed as the ratio between the data rate and power consumption, indicating the transmitted
bits per Joule of energy expended, we introduce the parameter ζi that reflects the user’s individual
preference between the transmission reward and energy cost. Moreover, instead of regarding the
PHY rate as throughput as in cellular networks, we model the gain in the utility function by the
effective MAC layer throughput, which reflects the actual benefit of players since a node can never
attain its PHY layer rate as throughput in an IEEE 802.11 WLAN. We argue that this cross-layer
modelling is more suitable in our context.

3.2.3 Non-cooperative Power and Rate Control Game

In this chapter, we model the power and rate control in IEEE 802.11 WLAN as non-cooperative
games where players choose their transmission power and/or data rate to maximize the utility
function defined previously. We conduct an in-depth study on three specific games. In GNPC

and GNRC , players choose their transmission power/rate under fixed transmission rate/power
to maximize their utility. These two games correspond to the classical power control and rate
adaptation problem, respectively. In the third game GNJPRC , we address the general case, joint
power and rate control, where players can adjust both transmission power and rate.

For non-cooperative games, the most important concept is NE, a strategy profile form which
no player has incentive to deviate. We use the concept of social optimality, formally defined in the
following in our context, to characterize the efficiency of strategy profiles.

Definition 3.1. The strategy profile s is social optimal if it maximizes the aggregated payoff∑

i∈N
α1

i S
eff
i − α2

i Qi =
∑

i∈N
α1

i Ui. Social optimality implies Pareto-optimality.
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3.3 Non-cooperative Fixed-rate Power Control Game

We first study the non-cooperative fixed-rate power control game GNPC . This corresponds to
the power control problem where players select their transmission power to maximize their payoff

under fixed data rate. Noticing that γi =
hiBt

σ2

Pi

Ci
, GNPC can be formally expressed as:

GNPC : max
γmin

i ≤γi≤γmax
i

Ui(γi, γ−i), i ∈ N .

The following theorem studies the NE of GNPC .

Theorem 3.1. GNPC admits a unique NE {γi = γ∗i } or
{

Pi =
σ2Ciγ

∗
i

hiBt

}
, where γ∗i is the root of

f ′(γi) = ki in (γmin
i , γmax

i ).

Proof. Please refer to Section 3.8.1 for the detailed proof.

It can be further shown that at the unique NE derived above, the aggregated utility
∑

i∈N
α1

i Ui

is also maximized. The NE is thereby Pareto-optimal and social optimal under given data rate
configuration {Ci}.

3.4 Non-cooperative Fixed-power Rate Control Game

In this section, we study the non-cooperative rate control game under fixed transmission power
GNRC . This corresponds to the rate adaptation problem where players select their data rate to
maximize their payoff under fixed power {Pi}. GNRC can be formally expressed as:

GNRC max
γi∈[γmin

i ,γmax
i ]

Ui =
f(γi)− kiγi

q2

q1
+

∑
j∈N

σ2

hjBt

γj

Pj

, i ∈ N

3.4.1 Best Response Strategy

In order to solve GNRC , we introduce the best response strategy. At the NE, the action chosen
by a rational self-interested player constitutes the best response to the action currently chosen by
other players. In GNRC , player i’s best response function bi : γ−i → γi is defined as follows:

bi = argmax
γmin

i ≤γi≤γmax
i

Ui(γi, γ−i).

In GNRC , the best response of each player i is obtained by imposing
∂Ui

∂γi
= 0, which equals to

solving the following equation

Pi
hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pi

Pj

hi

hj
γj =

f(γi)− kiγi

f ′(γi)− ki
− γi. (3.2)

Lemma 3.3. ∀i ∈ N , the best response function defined in (3.2) has a unique solution γ̃i = bi(γ−i)
in the rational feasible set and it holds that γmin

i < γ̃i < γ∗i
2.

Proof. Please refer to Section 3.8.2 for detailed proof.
2γ∗i is defined in Theorem 3.1
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The following corollary based on the best response function is immediate.

Corollary 3.1. If {γi} updated according to {bi(γ)} converges to γ = {γi}, then γ is a NE.

Consider GNRC is played repeatedly, choosing the best response at each stage consists of a
natural and rational strategy called the best response strategy where each player updates its data
rate for the next time stage such that it maximizes its utility based on the data rate of opponents
in the current time stage. It is commonly used to study the stability of NE.

3.4.2 Nash Equilibrium Analysis

The existence of NE in GNRC follows the fact that the action set Ai is a nonempty compact convex
subset of Euclidian space and Ui is continuous and quasi-concave in γi on Ai.

The following theorem studies the uniqueness of the NE and the convergence to the NE under
the best response strategy.

Theorem 3.2. If ∀i ∈ N , ki >
1

2ln(L/2)
and

ki − f ′(γmin
i )

Pihif ′′(γmin
i )

∑

j∈N ,j 6=i

1(
Bt
σ2

q2

q1
+

∑
j∈N

γmin
j

Pjhj

) < 1,

then it holds that

1. The game GNRC admits a unique NE.

2. Starting from any initial point, the iteration defined by best response function converges to
the unique NE.

Proof. Please refer to Section 3.8.3 for detailed proof.

Remark: Theorem 3.2 establishes the sufficient condition for the uniqueness and convergence
of the NE in GNRC . It follows straightforwardly that under the condition, the unique NE is also
stable in that any deviated point from the NE will be dragged back to the NE under best response
strategy.

There are several interesting engineering implications in the above analysis:

• Theorem 3.2 provides a simple way to calculate the NE, i.e., to find the fixed point of the
best response function, which can be solved recursively.

• It quantifies the relation between the NE and the various parameters, based on which the
stability of the rate control scheme can be checked.

• It provides guidelines to configure the parameters to ensure system stability: e.g., with a
larger value of L and Pi, the stability and the convergence to the NE is more likely to be
guaranteed.

From an economic point of view,
ki

q2

q1
+

∑
j∈N

σ2

hjBt

γj

Pj

can be regarded as the price for player i

operating on γi. The NE is the point where the marginal effective throughput
∂Seff

i

∂Ci
equals to the

price. From the players’s point of view, operating at larger γi increases the effective throughput
at the expense of paying more in terms of energy. Hence, to search the NE is actually to seek a
compromised point between the gain (effective throughput) and the cost (energy consumption).
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3.4.3 Inefficiency of the Nash Equilibrium

The obtained NE provides a solution where no player can increase its utility any further through
individual effort. It is an outcome obtained as a result of distributed decision taking which may be
less efficient than cooperative rate configuration among players. In some cases such as GNPC , the
NE is also the social optimal point, but in many cases, the NE does not coincide with the social
optimal point. In fact, it is well known that in general the NE are inefficient. In this section, we
will show that the NE of GNRC is inefficient and in next section we will propose a pricing scheme
to improve the efficiency of the NE.

Let γ̂ = {γ̂i} denote the social optimal point of GNRC maximizing the aggregated utility
∑

i∈N
α1

i Ui mentioned in Section 3.2, by imposing
∂

∑
i∈N α1

i Ui

∂γi
= 0, we obtain,

Pi
hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pihi

Pjhj
γj =

∑

j∈N

α1
j

α1
i

[
f(γj)− kjγj

]

f ′(γi)− ki
− γi (3.3)

Compare (3.3) with the best response function of GNRC (3.2) and performing similar analysis, we
have the following theorem on the social optimal point.

Theorem 3.3. Regard (3.3) as the best response update scheme to maximize the global payoff,
under the same condition as Theorem 3.2, it holds that:

1. There exists a unique fixed point in the update scheme (3.3) which is also the unique maxi-
mizer of

∑

i∈N
α1

i Ui.

2. Starting from any initial point, the iteration defined by best response function (3.3) converges
to the unique fixed point.

Proof. Please refer to Section 3.8.3 for the detailed proof.

Theorem 3.3 provides a distributed way to converge to the social optimal point. Furthermore,
we have the following corollary on the relation between the NE of GNRC γ = (γ1, · · · , γn) and the
global optimal point:

Corollary 3.2. On the NE of GNRC γ = {γi} and the global optimal point γ̂ = {γ̂i}, it holds that
γi > γ̂i, ∀i ∈ N .

Proof. Please refer to Section 3.8.4 for the detailed proof.

Corollary 3.2 shows that the NE is not social optimal. If all players switch from the NE to the
global optimal point, the aggregated utility increases. This is due to the fact of lack of cooperation
and the incentive to operate at social optimal point. The most important result in this subsection
is summarized by the following theorem.

Theorem 3.4. In GNRC , the unique NE is inefficient.
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3.4.4 Improving the Efficiency of NE in GNRC

Having shown the inefficiency of the NE in GNRC , we turn to pricing, a technique widely used in
game theory, to improve the efficiency of the NE. In our case, noticing that at the NE, players
tend to transmit at lower rate than the transmission rate at the social optimal point (γi > γ̂i),
we encourage the players to increase their transmission rate via pricing to approach the NE to the
social optimal point. In this new context, we develop a non-cooperative game with pricing GNRCP

with the utility function U ′
i defined as U ′

i = Ui + τi(γ), where τi(γ) is the pricing function. In our
study, we propose the following non-linear pricing function

τi(γ) = −piSiγi = − piγi

q2

q1
+

∑

j∈N

σ2

hjBt

γi

Pj

,

where pi > 0 is the pricing factor used to encourage the players to transmit at a higher data rate
(smaller γi). Let k′i = ki + pi, the utility function of GNRCP is

U ′
i =

f(γi)− k′iγi

q2

q1
+

∑
j∈N

σ2

hjBt

γj

Pj

.

Performing the same analysis for GNRCP as in GNRC , we have the following theorem.

Theorem 3.5. If ∀i ∈ N , k′i >
1

2ln(L/2)
and

k′i − f ′((γmin
i )′)

Pihif ′′((γmin
i )′)

∑

j∈N ,j 6=i

1(
Bt
σ2

q2

q1
+

∑
j∈N

(γmin
j )′

Pjhj

) <

1, where (γmin
j )′ is the smaller one of the two non-zero roots of f ′(γi) = k′i, then it holds that

1. The game GNRCP admits a unique NE.

2. Starting from any initial point, the iteration defined by best response function converges to
the unique NE.

Remark: In GNRCP , pi should be chosen such that (U ′
i)max > 0 to ensure that the feasible

strategy set for a rational self-interested player is not empty. This also implicitly guarantees that
f ′(γ) = k′i has two non-zero roots (γmin

i )′ and (γmax
i )′.

In the analysis of GNRC , we can interpret
ki

q2
q1

+
∑

j∈N
σ2

hjBt

γj

Pj

as the price for player i operating

on γi. In GNRCP , the above price increases to
k′i

q2

q1
+

∑
j∈N

σ2

hjBt

γj

Pj

. As the price increases, each

player i tends to decrease its γi at the NE.
The gain of applying pricing in our context is indeed two-fold:

• It leads the game to a more efficient NE.

• It provides a tunable parameter pi to control the stability (existence and convergence of NE)
of the system.

One crucial issue concerning the proposed pricing scheme is that the pricing factor pi should be
carefully tuned such that each user’s self interest leads to overall improvement of the system. How
to choose pi is not trivial at all and depends very much on the system parameters. In practice,
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noticing that finding the optimal pricing factor may be impractical or even impossible, we propose
the following adaptive search method to find the locally optimal value of pi. We will evaluate the
proposed method via simulation in Section 3.6.

Algorithm 2 Adaptive Search Method of pi

1. Set ∆p, ε to some small values. Initialize p0
i = 0, ∀i ∈ N .

2. At each iteration t, measure the effective network throughput Seff (t).
If Seff (t) > Seff (t− 1), set pt+1

i = pt
i + ∆p, ∀i ∈ N .

If Seff (t) < Seff (t− 1), set pt+1
i = pt

i −∆p, ∀i ∈ N .
3. Stop until |Seff (t)− Seff (t− 1)| < εSeff (t).

3.5 Joint power and rate Control Game

In this section, we turn to the general and the most flexible case where each player can configure
both its transmission power Pi and data rate Ci to maximize its payoff: the non-cooperative joint
power and rate control game GNJPRC . It is clear that GNJPRC is not decomposable, i.e.,

max
Ci,Pi

Ui 6= max
Ci

max
Pi

Ui and max
Ci,Pi

Ui 6= max
Pi

max
Ci

Ui.

We thus consider the following game G′
NJPRC defined as

G′
NJPRC : max

γmin
i ≤γi≤γmax

i ,

Cmin
i ≤Ci≤Cmax

i

Ui =
f(γi)− kiγi

q2

q1
+

∑
j∈N

1
Cj

, i ∈ N .

It is obvious that G′
NJPRC is equivalent to GNJPRC . The following theorem studies the NE of

G′
NJPRC .

Theorem 3.6. There exists a unique efficient NE in G′
NJPRC , where Ci = Cmax

i , γi = γ∗i ∀i ∈ N .

The proof follows the same way as Theorem 3.1. It is further easy to show that the NE
of G′

NJPRC is also social optimal and Pareto optimal. Compared with GNPC of which the NE
maximizes the global payoff at given data transmission rate configuration and GNRC of which the
unique NE is not efficient, G′

NJPRC achieves the global optimality. In our context, providing more
flexibility in parameter configuration to selfish players in fact helps the system operate optimally
rather than lead to system collapse.

3.5.1 Subgradient Update: Better Response Strategy

In this section, motivated by the fact that G′
NJPRC achieves the global optimality at its unique

NE, we perform an in-depth study on how to reach the unique efficient NE. One might propose to
trivially set Ci = Cmax

i and γi = γ∗i . However, in practice, it is not easy for a player to calculate γ∗i .
Moreover, best response strategy often leads to large fluctuations that may cause temporary system
instability. Next we propose an alternative update scheme to approach the NE: the subgradient
update scheme, consisting of

1. Setting Ci = Cmax
i
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2. Updating γi as γt+1
i = γt

i +λ
∂Ui(γi)

∂γi

∣∣∣
γi=γt

i

, where λ is the step size usually sufficiently small.

At each iteration of the subgradient update scheme, each player takes a step in the direction
of the positive subgradient. The engineering implication behind is that if the marginal effective
throughput outweighs the price, player i increases its γi, otherwise it decreases γi. By setting the
step size sufficiently small, the subgradient update experiences a smooth trajectory.

We now study the convergence of the subgradient scheme to the unique NE. Our analysis
follows the technique in [ABD06]. We first define a function xi(τ) : [0, 1] → R for player i as

xi(τ) = τγt
i + (1− τ)γ∗i + λ

∂Ui(γi)
∂γi

∣∣∣∣∣
γi=τγt

i+(1−τ)γ∗i

,

where the unique NE γ∗i is the fixed point of the mapping γt
i → γt+1

i . Noticing that
∂Ui(γi)

∂γi

∣∣∣
γ∗i

= 0,

we have

|γt+1
i − γ∗i | = |xi(1)− xi(0)| =

∣∣∣∣∣
∫ 1

0

dxi(τ)
dτ

dτ

∣∣∣∣∣ ≤
∫ 1

0

∣∣∣∣∣
dxi(τ)

dτ

∣∣∣∣∣dτ ≤ max
τ∈[0,1]

∣∣∣∣∣
dxi(τ)

dτ

∣∣∣∣∣.

Noticing that λ is usually sufficiently small, we have

∣∣∣dxi(τ)
dτ

∣∣∣∣∣ =
(

1 + λ
∂2Ui(γi)

∂γ2
i

) ∣∣∣
γi=γt

i

· ∣∣γt
i − γ∗i

∣∣ =

(
1 + λ

f ′′i (γt
i )

q2

q1
+

∑
j∈N

1
Cj

)
· |γt

i − γ∗i |.

Under the condition f ′′i (γi) < 0, γmin
i ≤ γi ≤ γmax

i , ∀i ∈ N , we have

∣∣γt+1
i − γ∗i

∣∣ ≤ ρi

∣∣γt
i − γ∗i

∣∣ ,

where ρi = 1 + λ
maxγi∈[γmin

i ,γmax
i ] f

′′
i (γi)

q2

q1
+

∑
j∈N

1
Cmin

< 1. It follows that starting from any initial value γ0
i ,

lim
n→+∞ γt

i = γ∗i . In the proof of Theorem 3.2 presented in Section 3.8.3, we have shown that

ki >
1

2ln(L/2)
=⇒ f ′′i (γi) < 0, γmin

i ≤ γi ≤ γmax
i .

It thus follows that if ki >
1

2ln(L/2)
,∀i ∈ N , the subgradient update scheme converges to the

unique NE.

One issue left is how to calculate
∂Ui(γi)

∂γi

∣∣∣∣∣
γi=γt

i

. In fact, assuming after sufficient long time,

each player operates on Cmax
i according to the subgradient update scheme,

∂Ui(γi)
∂γi

∣∣∣∣∣
γi=γt

i

can be

estimated by
Ui(γt

i )− Ui(γt−1
i )

γt
i − γt−1

i

. Noticing Pi =
σ2

hiBt
Ciγi is a linear function of γi, we have the

following theorem:

Theorem 3.7. In G′
JNRPC , if ki >

1
2ln(L/2)

, ∀i ∈ N , then the following subgradient update

scheme converges to the unique NE Ci = Cmax
i , Pi =

σ2

hiBt
Ciγ

∗
i :
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1. Set Ci = Cmax
i

2. At iteration t + 1, set P t+1
i = P t

i + λ
Ui(P t

i )− Ui(P t−1
i )

P t
i − P t−1

i

In the above subgradient update scheme, each player updates its γi at the same time instance.
A natural and more practical generalization is the asynchronous subgradient update scheme where
only a random subset of players perform update at a given time instance. This scheme is actually
more realistic in that it is difficult for the players to synchronize their update in a practical
implementation. In our context, concerning the convergence of the asynchronous subgradient
update scheme, we have the following theorem.

Theorem 3.8. In G′
NJPRC , under the same condition as in Theorem 3.7, the asynchronous sub-

gradient update scheme converges to the unique NE.

Proof. Please refer to Section 3.8.6 for detailed proof.

3.5.2 Game Theory Based Joint power and rate Control Procedure for IEEE

802.11 WLAN

In this section, we provide a practical procedure of the joint power and rate control based on The-
orem 3.8. From the game theoretic point of view, the proposed procedure consists of a distributed
strategy update scheme to achieve the NE which is social optimal, too. The convergence of the
procedure to the NE is proven in Section 3.5.1 under certain conditions. In the procedure, each
user updates its transmission power according to the subgradient update scheme.

Algorithm 3 Game Theory Based Joint Power and Rate Control Procedure
Sender side:

Initiation:
Set the initial power to random value P 0

i

Schedule the power update at time t1, t2, · · ·
At tm

Calculate Ui(Pm−1
i ) as Ui(Pm−1

i ) =
NsucL− ζiP

m−1
i Nsent

L
Ci

tm − tm−1

Update Pi as Pm
i = Pm−1

i + λ
Ui(Pm−1

i )− Ui(Pm−2
i )

Pm−1
i − Pm−2

i
Set the flag in RTS frame informing the receiver the new iteration begins at next frame

Receiver side:
When receiving RTS with flag set, include Nsuc in CTS, then set Nsuc to 0
At the reception of each frame, if the frame is not erroneous, Nsuc ← Nsuc + 1

The proposed joint power and rate control scheme has the following desirable properties:

• No system-dependent parameters are needed to approach the NE, such as f(γi), hi. The
proposed scheme is thus totally transparent for users.

• Only minor changes are needed to incorporate the proposed procedure into the IEEE 802.11
MAC protocol.
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• Each user only needs to temporarily buffer the number of frames sent during last iteration
Nsent, the utility of the last two iterations and the number of frames received without error
during the last iteration Nsuc.

• The update can be performed asynchronously among users. No network-wide synchronization
is required.

3.6 Numerical Results

In this section, we present numerical results for the investigated three non-cooperative games. The
following parameter setting is used in our experiments: L = 12000 bits (1500 bytes), hi = d−4

ij

where dij is the distance between the source i and the destination j, CWmin = 32, CWmax = 1024,
K = 10, the slot size is 20µs, the data frame transmission overhead To = 52 slots, the RTS
collision overhead Tc = 17 slots. We simulate a WLAN of 10 nodes randomly distributed in the
100m× 100m field. α1

i is set to 1 for all nodes. ζi is randomly distributed in [0.01, 0.05]Mb/Joule
if not explicitly stated. The noise is set to −174dBm/Hz.

We first plot the NE of GNPC under the fixed data rate Ci = 10Mbps for all players in
Figure 3.1 with five different ζ value settings. For setting k (k = 1, · · · , 5), ζi is randomly chosen
from [0.01 ∗ k, 0.05 ∗ k]Mb/Joule. We can see from the result that the NE is almost the same for
different ζ values. However, the power value at the NE is significantly different among players.
This interesting fact is due to the fact that in our scenario, the NE is much more sensible to the
parameters such as h than ζ. The following two points can be drawn:

• Power control is in deed necessary in that the player’s transmission power at NE differs
significantly from one to another and depends very much on some system parameters and
configurations such as h in our case.

• In general cases, how a player weighs the cost of energy consumption w.r.t. its gain in terms
of effective throughput does not have significant impact on the transmission power at NE.
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Figure 3.1: NE of GNPC
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Figure 3.2: Trajectory of GNRC under the best
response strategy

We then study GNRC under fixed transmission power Pi = 100mW for all players i. Figure 3.2
and 3.3 show the trajectories of the data rate of players under best response strategy without and
with pricing (pi = 0.02). Figure 3.4 shows the trajectory under (3.3) to approach the social optimal
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point. In all cases, the data rate converges. According to our analysis, the converged data rate in
Figure 3.2 and 3.3 is the unique NE. We can check that the sufficient condition of the convergence
under the best response strategy does not hold in our scenario. However, The best response update
scheme converges, indicating that the conditions in Theorem 3.2 are only sufficient conditions for
the convergence and may be too stringent in some cases.
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Figure 3.3: Trajectory of GNRC with pricing
under best response update
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Figure 3.4: Approaching the social optimal
point applying Theorem 3.3

Figure 3.5 studies GNJPRC under the subgradient update scheme. Cmax is set to 50Mbps for
all players. As mentioned in the analysis, under the subgradient update scheme, the convergence
to the NE achieves in a smooth way. As price, the convergence is achieved much more slowly. Once
again, the transmission power converges although the sufficient condition does not hold. According
to the analytical model, the converged value is the unique NE of GNJPRC .
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Figure 3.5: Trajectory of GNJPRC under the subgradient update scheme

Finally, we study the efficiency of the NE of three specific games analyzed in this chapter. The
game parameters are the same as the scenarios in Figure 3.1–3.5: ζi ∈ [0.01, 0.05]Mb/Joule, for
GNPC , Ci is set to 10Mbps; for GNRC , Pi is set to 100mW; for GNJPRC , Cmax is set to 50Mbps.
The result is shown in Table 3.2. We can see that the NE of GNJPRC shows the best system-wide
performance. For GNRC , the system is sub-optimal. We then apply the adaptive search method
proposed in Section 3.4 (∆p = 0.002, ε = 0.01) to choose a local optimal pricing factor popt. By
applying the pricing technique, the performance of GNRC is significantly ameliorated, although
still not optimal, as shown in the table. The numerical result confirms our analysis in Section 3.5
that providing more flexibility in parameter configuration to non-cooperative players in fact helps
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the system operate optimally rather than leads to system collapse in our context.

Game Aggregated utility
∑

i∈N
α1

i Ui

GNPC 6.9 ∗ 107

GNRC 4.3 ∗ 107

GNRCP (pi = 0.01) 4.5 ∗ 107

GNRCP (pi = popt) 6.1 ∗ 107

GNJPRC 2.5 ∗ 108

Table 3.2: NE efficiency for three games

3.7 Conclusion

In this chapter we formulated the power and rate control problem in IEEE 802.11 WLANs as three
specific non-cooperative games: the fixed-rate power control game GNPC , the fixed-power rate
control game GNRC and the joint power and rate control game GNJPRC .

We demonstrated analytically that GNPC admits a unique efficient NE under the given data
rate configuration. For GNRC , under certain conditions, the existence and the uniqueness of the
NE is guaranteed. The convergence to the unique NE is also ensured under best response strategy.
However, the unique NE is inefficient. We then propose a pricing scheme to improve the efficiency,
but how to choose the pricing factor is not trivial. In contrast, GNJPRC is shown to admit a
unique NE which is also the system-wide optimal point. Motivated by this analysis, we proposed
the game theory based joint power and rate control procedure, a distributed algorithm that can be
incorporated into existing IEEE 802.11 MAC protocol easily to approach the NE. Both analytical
and numerical results show that the proposed procedure can achieve system optimality. We also
show that in our context, providing more flexibility in parameter configuration to non-cooperative
players in fact helps the system operate optimally rather than lead to system collapse.

3.8 Proofs

This section completes the detailed proofs omitted from the main text.

3.8.1 Proof of Theorem 3.1

It can be verified that the strategy set Ai = {γi|γmin
i ≤ γi ≤ γmax

i } of each player i is a nonempty
compact convex subset of Euclidian space and the utility function Ui is quasi-concave in γi on Ai.
Hence, by Theorem 1 in [Ros65], GNPC is a n-person game and has a NE.

In GNPC , each player aims at maximizing its utility function Ui. We begin by checking the local

maximizer by imposing
∂Ui

∂γi
= 0, or f ′(γi) = ki. Following Lemma 3.1 and the assumption f ′i > ki,

it holds that f ′(γi) = ki has two roots γ0
i and γ∗i . Without loss of generality, assume γ0

i < γ∗i ,
applying Lagrange interpolation theorem, we have 0 < γ0

i < γmin
i < γ∗i < γmax

i . Furthermore, it
holds that f ′(γi) < ki when γi < γ0

i , γi > γ∗i and f ′(γi) > k when γ0
i < γi < γ∗i . It then follows

that γ0
i is the local minimizer of Ui and γ∗i is the local maximizer. Since at the border point γmin

i
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and γmax
i , Ui = 0, γ∗i is thus the unique global maximizer: i.e.,

Ui(γi, γ−i) > Ui(γ′i, γ−i), γ′i ∈ [γmin
i , γmax

i ], γ′i 6= γ∗i .

Hence, {γi = γ∗i } is the unique NE of GNPC .

3.8.2 Proof of Lemma 3.3

Let g(γi) denote the right hand side (RHS) of (3.2), we have

g′(γi) = −(f(γi)− kiγi)f ′′(γi)
(f ′(γi)− ki)2

Noticing the fact that f(γi)−kiγi > 0 for γi ∈ (γmin
i , γmax

i ) and applying Lemma 3.1, we have,
for γi ∈ (γmin

i , γmax
i ):

1. if γ′′i ≤ γmin
i , then g(γi) is monotonously increasing in γi.

2. if γmin
i < γ′′i < γmax

i , then g(γi) is first monotonously decreasing till γ′′i and then monotonously
increasing.

Note that γ′′i ≥ γmax
i is not possible since f ′′(γi) < 0 at γ∗i

3, thus γ′′i < γ∗i < γmax
i . In either

case 1 or case 2, following that





g(γmin
i ) = 0 < Pi

hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pi

Pj

hi

hj
γj

lim
ε→0

g(γ∗i − ε) → +∞ > Pi
hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pi

Pj

hi

hj
γj

γmin
j ≤ γj ≤ γmax

j , ∀j ∈ N , j 6= i

and g(γi) < 0 for γi > γ∗i , it holds that (3.2) always admits a unique solution γmin
i < γ̃i < γ∗i .

3.8.3 Proof of Theorem 3.2

It follows from ki >
1

2ln(L/2)
,∀i ∈ N that kiγ

′′
i > 1 > f(γ′′i ) = (1 − 1

2
e−γ′′i /2)L, leading to

Ui(γ′′i ) < 0. Noticing that Ui(γi) ≥ 0 for γi ∈ [γmin
i , γmax

i ] and it is impossible that γ′′i ≥ γmax
i

4,
we have γ′′i < γmin

i . It then follows from Lemma 3.1 that f ′′(γi) < 0 for γi ∈ [γmin
i , γmax

i ].
We now turn to prove the uniqueness of the NE and the convergence to the unique NE under

best response strategy. By definition, the NE has to satisfy γ= b(γ), where γ= (γ1, · · · , γn) and
b(γ) = (b1(γ), b2(γ), · · · , bn(γ)) is the best response vector of all players. We use the following
theorem in game theory concerning the uniqueness of NE [AC]:

Lemma 3.4. If the best response function is a contraction, then the game admits a unique NE;
Starting from any initial point, the iteration under the best response converges to the unique NE.

The contraction is defined in [AC] as follows: let (X, d) be a metric space, f : X → X is a
contraction if there exists a constant k ∈ [0, 1) such that ∀x, y ∈ X, d(f(x), f(y)) ≤ kd(x, y), where
d(x, y)

4
= ||x− y|| = maxi ||xi − yi||.

3This can be shown by noticing that f ′(γi) is monotonously decreasing w.r.t. γi at γ∗i , which is proven in the
proof of Theorem 3.1 in Section 3.8.1.

4See the proof of Lemma 3.3 in Section 3.8.2
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The key point to establish the uniqueness of the NE of GNRC is to show b(γ) is a contraction.
We have:

d(f(x), f(y)) = ||f(x)− f(y)|| ≤
∣∣∣∣
∣∣∣∣
∂f

∂x

∣∣∣∣
∣∣∣∣ · ||x− y|| =

∣∣∣∣
∣∣∣∣
∂f

∂x

∣∣∣∣
∣∣∣∣ d(x, y).

Thus if the Jacobian
∣∣∣∣
∣∣∣∣
∂f

∂x

∣∣∣∣
∣∣∣∣ ≤ k, then f is a contraction.

Next, we show that the best response function b(γ) is a contraction by proving ||J ||∞ ≤ k,

where J
4
= {Jij} is the Jacobian of b(γ) defined by Jij

4
=

∂γt+1
i

∂γt
j

.

Rewrite (3.2) at iteration t (t ≥ 0), we have

Pi
hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pihi

Pjhj
γt

j =
f(γt+1

i )− kiγ
t+1
i

f ′(γt+1
i )− ki

− γt+1
i . (3.4)

From Lemma 3.3, we have

γmin
i < γt

i < γ∗i ∀i ∈ N , t ≥ 1.

Moreover, by partially deriving both sides of (3.4) w.r.t. γt
j , j ∈ N , Jij can be solved as

Jij =




− Pihi

Pjhj

(f ′(γt+1
i )− ki)2

(f(γt+1
i )− kiγ

t+1
i )f ′′(γt+1

i )
i 6= j

0 i = j

.

It follows that

||J ||∞ = max
i∈N





∑

j∈N ,j 6=i

Pihi

Pjhj

∣∣∣∣
(f ′(γt+1

i )− ki)2

(f(γt+1
i )− kiγ

t+1
i )f ′′(γt+1

i )

∣∣∣∣



 .

From (3.4), we have

f(γt+1
i )− kiγ

t+1
i = (f ′(γt+1

i )− ki)


Pi

hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pihi

Pjhj
γt

j + γt+1
i




> (f ′(γt+1
i )− ki)


Pihi


Bt

σ2

q2

q1
+

∑

j∈N

1
Pjhj

γmin
j





 .

It follows that:

||J ||∞ < max
i∈N





∑

j∈N ,j 6=i

1
Pihi

1(
Bt
σ2

q2

q1
+

∑
j∈N

γmin
j

Pjhj

)
∣∣∣∣
f ′(γt+1

i )− ki

f ′′(γt+1
i )

∣∣∣∣





.

Let Ri(γt+1
i )

4
=

f ′(γt+1
i )− ki

f ′′(γt+1
i )

, we have

R′
i(γ

t+1
i ) =

(f ′′(γt+1
i ))2 − f ′′′(γt+1

i )(f ′(γt+1
i )− ki)

(f ′′(γt+1
i ))2

.
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Let y
4
=

1
2
e−

γt+1
i
2 , we have





f ′(γt+1
i ) =

1
2
Ly(1− y)L−1

f ′′(γt+1
i ) = −1

4
Ly(1− Ly)(1− y)L−2

f ′′′(γt+1
i ) =

1
8
Ly(1− y)L−3(L2y2 − (3L− 1)y + 1)

.

If f ′′′(γi) > 0, noticing L À 1, we have

(f ′′(γi))2 − f ′′′(γt+1
i )(f ′(γt+1

i )− ki) > (f ′′(γi))2 − f ′′′(γt+1
i )f ′(γt+1

i )

=
1
64

L2y2(1− y)2L−4(L− 1)y > 0.

If f ′′′(γi) ≤ 0, we have

(f ′′(γi))2 − f ′′′(γt+1
i )(f ′(γt+1

i )− ki) ≥ (f ′′(γi))2 > 0.

Hence, we always have R′
i(γ

t+1
i ) > 0. Ri(γt+1

i ) is thus monotonously increasing in γt+1
i . On the

other hand, in the beginning of the proof, we have shown that under the condition ki >
1

2ln(L/2)
,

f ′′(γi) < 0 for γi ∈ [γmin
i , γmax

i ]. Noticing Ri(γ∗i ) = 0, we have

max
γi∈(γmin

i ,γ∗i )

∣∣Ri(γt+1
i )

∣∣ < −Ri(γmin
i ) =

ki − f ′(γmin
i )

f ′′(γmin
i )

.

Therefore, ||J ||∞ < max
i∈N





∑

j∈N ,j 6=i

1
Pihi

ki − f ′(γmin
i )(

Bt
σ2

q2

q1
+

∑
j∈N

γmin
j

Pjhj

)
f ′′(γmin

i )





.

Let k
4
= max

i∈N





∑

j∈N ,j 6=i

1
Pihi

ki − f ′(γmin
i )(

Bt
σ2

q2

q1
+

∑
j∈N

γmin
j

Pjhj

)
f ′′(γmin

i )





, if the condition in the theorem

is met, i.e., k < 1, then we have ||J ||∞ < k < 1, the best response function b is a contraction.
Both the uniqueness and the convergence is guaranteed.

3.8.4 Proof of Theorem 3.3

Following the same way as Lemma 3.3, we can prove that at each iteration, the update function
(3.3) admits a unique solution γi ∈ (γmin

i , γ∗i ).
Moreover, following the same mathematical operation as that in Theorem 3.2, we can calculate

the Jacobian of (3.3) J ′ = {J ′ij} as

J ′ij =





− Pihi

Pjhj

(f ′(γt+1
i )− ki)2[ ∑r 6=i

r∈N
α1

r

α1
i
(f(γt

r)− kiγt
r) + f(γt+1

i )− kiγ
t+1
i

]
f ′′(γt+1

i )
i 6= j

0 i = j

.

Noticing that f(γt
r)− kiγ

t
r > 0 for γr ∈ (γmin

r , γ∗r ), ∀r ∈ N , it holds that 0 < J ′ij < Jij for i 6= j,
where {Jij} = J is the Jacobian of (3.4) derived in Section 3.8.3. It follows that ||J ′||∞ < ||J ||∞.
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If the condition of Theorem 3.2 holds, ||J ′||∞ < ||J ||∞ < k < 1. (3.3) is a contraction. Theorem
3.3 is proven.

3.8.5 Proof of Corollary 3.2

We rewrite the best response function for γi and γ̂i as





Pi
hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pihi

Pjhj
γt

j =
f(γt+1

i )− kiγ
t+1
i

f ′(γt+1
i )− ki

− γt+1
i

4
= g(γt+1

i )

Pi
hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pihi

Pjhj
γ̂j

t =
f(γ̂i

t+1)− kiγ̂i
t+1 +

∑
j∈N ,j 6=i

α1
j

α1
i
(f(γt

j)− kjγ
t
j)

f ′(γ̂i
t+1)− ki

− γ̂i
t+1 4

= ĝ(γt+1
i )

.

As in the proof of Lemma 3.3, we can show that under the condition of Theorem 3.2, both
g(γi) and ĝ(γi) is monotonously increasing in γi and g(γi) < ĝ(γ̂i) if γi = γ̂i. Moreover, in the
same way as Lemma 3.3, we can prove that γmin

i < γ̂i < γ∗i , ∀i ∈ N .
We now prove by contradiction that if γt

j ≥ γ̂j
t, ∀j ∈ N , j 6= i, then γt+1

i > γ̂i
t+1. Otherwise,

assume by contradiction that γt
j ≥ γ̂j

t, ∀j ∈ N , j 6= i and γt+1
i ≤ γ̂i

t+1. It follows that g(γt+1
i ) <

ĝ(γt+1
i ) < ĝ(γ̂i

t+1), thus we have

Pi
hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pihi

Pjhj
γt

j < Pi
hiBt

σ2

q2

q1
+

∑

j∈N ,j 6=i

Pihi

Pjhj
γ̂j

t,

which contradicts with the assumption that γt
j ≥ γ̂j

t, ∀j ∈ N , j 6= i.
Therefore, starting with the same initial value γ0 = γ̂0, at each iteration t, it holds that γt

i > γ̂i
t.

Consequently, we have
γi = lim

t→∞ γi ≥ lim
t→∞ γ̂i

t = γ̂i ∀i ∈ N .

Furthermore, noticing that it is impossible that γ̂ = γ for γ̂i, γi ∈ (γmin
i , γ∗i ), it then holds that

γi > γ̂i, ∀i ∈ N .

3.8.6 Proof of Theorem 3.8

For a sequence of non-empty sets {X(k)} with

· · · ⊂ X(k + 1) ⊂ X(k) ⊂ · · · ⊂ X

satisfying the following two conditions:

• Synchronous Convergence Condition: We have f(x) ∈ X(k + 1), ∀k and x ∈ X(k).

Furthermore, if {yk} is a sequence such that yk ∈ X(k) for every k, then every limit point
of {yk} is a fixed point of f .

• Box Condition: For every k, there exists sets Xi(k) ⊂ Xi such that

X(k) = X1(k)×X2(k)× · · · ×Xn(k)

and x(0) = {xi(0), i = 1, 2, · · · , n} ∈ X(0), the Asynchronous Convergence Theorem [BT97] states
that every limit point of {x(t)} is a fixed point of f .
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Applying the above results in our context, let X(k)
4
= ×i∈N [x∗i − δ(k), x∗i + δ(k)] where δ(k) =

maxi∈ |γk
i − γ∗i |, f denote the mapping from {γt

i} to {γt+1
i } in the subgradient update scheme,

Xi = [γmin
i , γmax

i ], i ∈ N , we can verify that {X(k)} satisfies the box condition. Moreover, in
the analysis in Section 3.5.1, we have shown that δ(k) is monotonously decreasing in k under the
condition in Theorem 3.7, thereby the synchronous convergence condition is also satisfied. Hence
following from the asynchronous convergence theorem, γi converges to γ∗i . Noticing that Ui is
independent to P−i and Pi is a linear function of γi, the subgradient update scheme defined in
Theorem 3.7 converges to the unique NE, which is also the social optimal point.



Chapter 4

A Pricing Framework for Cooperative

Relaying in Wireless Networks with

Selfish Nodes1

4.1 Introduction

Cooperative relaying has emerged in recent years as an important technique for wireless networks
with unstable links. Cooperative relaying takes advantage of the broadcast nature of the wireless
medium and provides additional diversity against link outages (caused, e.g., by dynamic fading
or shadowing effects) by allowing nodes in the vicinity of the link endpoints, which overhear
the transmitted signal, to make additional transmissions to assist in delivering the data to its
destination. The extensive research on the topic has resulted in a wide variety of proposed co-
operation methods. For a single relay, these range from simple decode-and-forward of the data
packet itself [NHH04, LLG06] to coded cooperation where the relay transmits additional error-
correcting code bits rather than retransmitting the original data [HN06]. Similar ideas have been
extended to multiple-relay cooperation, where the receiver decodes the data by combining the
relayed signals received either over separate multiplexed subchannels (e.g. CDMA [SEA03] or
TDMA [LTW04]), or over the same subchannel with multiple receiving antennas using space-time
codes [LW03, JHHN04].

Despite the ample research literature on cooperative relaying, virtually all studies in this area
have tackled the issue from an optimization perspective, assuming that the relay nodes are will-
ing to help the source and ignoring the issue of cooperation incentive for the relay nodes. This
assumption is clearly inadequate in networks with selfish nodes, which may not be willing to relay
packets for other nodes, e.g. due to the energy cost they incur in the process. In light of the
established importance of cooperative relaying for enhancing throughput and reliability in wireless
environments with unstable links, it is imperative to attend to the question of how to provide the
necessary incentives for selfish relay nodes to take part in cooperative relaying.

Motivated by the above observation, we propose a pricing framework based on the idea of
“pay for cooperation” to encourage cooperation by relay nodes. Under this framework, each flow
(corresponding to a source-destination pair) offers a payment per successfully received packet,
which is shared equally among all cooperative nodes that participated in the relaying of that

1Part of the work in this chapter was done while visiting NICTA.
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packet. Hence, the utility of a relay node is defined as its share of received payment minus its
own cost of cooperation (e.g. due to energy spent for relaying). For a flow, the utility is defined
as a generic concave function of the packet delivery rate minus the cost paid to the relay nodes.
We model the resulting scenario as a Stackelberg game [Mye91], in which the relay nodes are the
followers that respond to payment rates set by the flows (i.e. each relay chooses which flow or mix
of flows to serve so as to maximize its utility, given the payment rates offered by the flows and
the actions of its competing peers); and the flows are the leaders that set the payment rates to
maximize their own utility in anticipation of the Nash equilibrium (NE) response of the followers.

The idea of pricing as a control mechanism, to encourage selfish network users to make decisions
resulting in a social benefit for the entire network, has a long history. Its greatest success has been
in the so-called Network Utility Maximization (NUM) framework, which originally developed from
the seminal work by Kelly et al [KMT98] and has since been widely used in the contexts of
congestion control and routing in the Internet (cf. [TWSC07, WLLD03] and references therein),
as well as power and rate control in wireless networks [SMG02b, CL08]. In NUM, the network
sets shadow prices for using its resources, while the users respond to those prices by adjusting
their actions (e.g. flow rates). In many scenarios, the prices can be set in such a manner that the
resulting individual optimization by the selfish users coincides with the distributed optimization of
the network operating point. However, the NUM framework cannot be easily extended to ad hoc
wireless networks with selfish nodes, since there is no independent entity of a “network” that can
set prices for using its resources; rather, the network itself is comprised of the selfish nodes, and
the distinction between the network “resources” and “users” is blurred.

Accordingly, the research on incentives in ad hoc networks has predominantly focused on en-
couraging honest forwarding of other nodes’ packets through reputation and credit-based schemes
(cf. [JS07] and references therein). Such schemes can be enforced in a traditional forwarding
context, where node can detect whether their neighbors are honest simply by overhearing the re-
spective transmissions. However, reputation-based methods are largely unsuitable in the context
of cooperative relaying used to provide diversity against unstable links, since it is impossible to
distinguish between a neighbor’s selfish failure to relay a packet and an “innocent” case of a bad
channel to that neighbor.

On the other hand, only a handful of recent studies have considered pricing in the context of
ad hoc networks with selfish nodes, where nodes are paid for forwarding other nodes’ packets and
in turn pay their neighbors to forward theirs, with the payment rate determined by an auction or
market-based scheme [MQ05, ZLLY07a, XY08]. These studies, as well as the one in this chapter,
can be seen as adaptations of the “smart-market” mechanism originally proposed in [MMV94]
in the context of Internet congestion management, where sources of flows bid for the amount
they are willing to pay to have them delivered, so that the limited shared network resources (e.g.
congested links in the Internet or relay nodes in ad hoc networks) are used to serve the highest
bidders. However, to the best of our knowledge, the pricing framework we study in this chapter
is the first to be applied to the cooperative relaying context, which introduces several important
original features that distinguish it from any related methods studied in the past. First, unlike
most pricing methods in existing literature that only involve one kind of selfish players, in our
framework there are two types of players (the relay nodes and the flows), each of which is not
only in competition with its peers but also with players of the other type, resembling a commodity
market with multiple providers and clients. Furthermore, in most existing studies on pricing, the
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expected utility of a player depends only on its own strategy once the prices are set, whereas in
our case the payment from a flow is shared among all relay nodes participating in the relaying
of that flow. As a result, a node’s utility depends on the strategies of its peers, which leads to a
competition scenario with more complex interactions among the players. Finally, we point out that
the sharing of payment leads to relay utility functions that are non-concave, requiring an original
study of the game equilibrium properties that cannot draw on existing well-known results.

Our contribution is twofold. First, we present a detailed study of the Stackelberg game involving
the flows and relay nodes and its equilibrium properties. Specifically, we establish that the followers’
game admits two types of Nash equilibria, including a unique symmetrical NE where all relay nodes
play the same strategy (i.e. relay the same mix of flows), and a boundary NE where each relay
node is fully dedicated to a single flow. We further establish that, from the leaders’ perspective, a
Stackelberg equilibrium does not exist if the followers play the boundary NE, yet it always exists if
the followers converge to the symmetrical NE. We emphasize that these properties are substantially
different from any other pricing method proposed in the literature. We then conduct a numerical
study that demonstrates the prices and utilities achieved in several scenarios, and show that the
equilibrium in general is reasonably efficient (i.e. has a low “price of anarchy” [Pap01]).

The rest of this chapter is structured as follows. Section 4.2 presents our system model and
pricing framework and formulates the Stackelberg cooperative relaying game. Section 4.3 analyzes
the properties of the followers’ game and the corresponding equilibria, while Section 4.4 investigates
the existence of an equilibrium in the leaders’ game. Section 4.5 demonstrates the efficiency of the
resulting equilibria with a numerical study of several scenarios. Finally, the chapter is concluded
in Section 4.6.

4.2 System Model and Pricing Framework

4.2.1 Wireless network model

We consider a set F of flows in a synchronized slotted wireless network. We use Sf and Df to
denote the source and destination of flow f ∈ F , respectively. Each flow transmits a continuous
stream of packets, where each packet from any flow takes an identical transmission time (a slot). A
setR of relay nodes, with |R| = R ≥ 2, serve as potential cooperative relays that may assist packets
to reach their destinations by retransmitting them. We assume that the different flows coexist on
different “channels” in the network, which can be, e.g., CDMA or FDMA. Thus, if relay node
i ∈ R decides to cooperate with flow f , it must tune itself to receive the packets from Sf ; a node
cannot overhear multiple flows simultaneously. All nodes cooperating with flow f relay each packet
from that flow to Df immediately after receiving the packet, i.e. simultaneously to each other. We
assume that the different relay signals do not mutually interfere; e.g., they can be multiplexed
on separate sub-channels (as in [SEA03, LTW04]) or based on space-time coding with multiple
antennas at the receiver [JHHN04]. Therefore, the packet is considered successfully received if it
can be decoded error-free from at least one of the relay transmissions. (We do not consider coded
cooperation in this chapter, where relay transmissions consist of error-correcting code bits rather
than the packet data itself, so that the packet can be recovered from the combination of relay
signals even if no individual one is error-free; this extension is left to future work.)

Accordingly, we consider a simple channel model in which any channel is either “good”, which
allows the transmitted packet to be decoded without error, or “bad” otherwise. We assume channels
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between different pairs of nodes are mutually independent, which is realistic in most practical
scenarios as long as nodes are spaced sufficiently far apart (i.e. by more than a wavelength of the
carrier frequency). For the sake of simplicity, the analysis in this chapter assumes channels that
are memoryless on the packet time scale (i.e. probability of being in the “good” state is fixed and
independent between subsequent packet transmissions) We denote this probability by P f

sn for the
channel between Sf and any relay node, and P f

nd for the channel between any relay node and Df .
Thus, we assume a symmetrical setting where channel probabilities are identical a priori among
all relays (though not necessarily among all flows). The extension of our analysis to asymmetrical
relay nodes is left for future work.

4.2.2 Pricing framework

We denote the cost (e.g. in terms of energy) for a relay node to transmit a packet from flow f

by ef . For a selfish relay node to make a cooperative transmission, it must expect to receive a
payment in return that is greater than its energy cost. Each flow f offers a payment of Cf per
successful packet, where Cf is decided by the flow itself (i.e. Cf is the strategy) of f). Hence, the
utility function of flow f ∈ F is defined as the net payoff f gets per slot:

Uf , uf (P f
suc)− CfP f

suc, (4.1)

where P f
suc = 1−∏

i∈R(1− P f
snP f

ndr
f
i ) is the probability that a packet of f successfully arrives at

its destination, with rf
i being the probability that relay node i cooperates with f . The function

uf (P f
suc) characterizes the application payoff (e.g. satisfaction level) of f from a delivery probability

of P f
suc. We assume uf (P f

suc) is continuously differentiable, strictly increasing and weakly concave
in P f

suc (i.e. u′′f (P f
suc) ≤ 0), with uf (0) = 0.

We now turn to the utility function of the relay nodes. If a packet is successful, the payment
of Cf is shared equally among all nodes that successfully relayed it to Df .2 We denote by rf

i the
probability of relay i to retransmit a packet from flow f ; thus, the vector ri =

{
rf
i , f ∈ F

}
, where

∑
f rf

i ≤ 1, is the strategy of relay node i. For brevity, we henceforth denote Kf , P f
snP f

nd. Thus,
the expected payoff for a relay node i in a slot is

Vi ,
∑

f∈F
CfKfrf

i

R−1∑

l=0

P f (l)
l + 1

− efrf
i , (4.2)

where
P f (l) ,

∑

T ⊆R−{i}
|T |=l

∏

j1∈T
Kfrf

j1

∏

j2 /∈T
j2 6=i

(1−Kfrf
j2

)

is the probability that there are l additional nodes beside i that successfully relay the packet of f

to its destination as well.
2We assume that the flow endpoints are honest, and indeed make the payments in equal shares to all successful

relay nodes, as detected by Df . We do not consider further the issue of payment enforcement, which may require a
separate mechanism e.g. via a reputation-like metric where the relay nodes monitor the payment rate over time, and
refuse to cooperate with flows that deviate too much from the value to be expected from the channel characteristics.
The investigation of such payment enforcement schemes is beyond the scope of our work in this chapter.
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4.2.3 Stackelberg game formulation

We model the cooperative relaying with pricing as a Stackelberg game, in which the leaders choose
their strategy first, and the followers respond by choosing their strategies accordingly, knowing
the leaders’ strategies [Mye91]. In our setting, the game is defined as follows.

Follower’s Problem:

Each follower (relay node i) chooses its strategy ri to maximize its utility Vi in response to the
given leaders’ strategies C , {Cf , f ∈ F} and the strategies of its peers r−i , {rj, j 6= i}. Thus,
each relay node i solves the following problem:

r∗i (r−i,C) = argmaxVi(ri, r−i,C), (4.3)

and a vector of followers’ strategies is a Nash equilibrium (NE) if it corresponds to a fixed point
of (4.3).

Leader’s Problem:

Each leader (source-destination pair corresponding to a flow f) chooses its strategy Cf to max-
imize its utility function Uf , given the strategies of its peers C−f , {Cf ′ , f ′ 6= f} and anticipating
that the followers will eventually respond with strategies that result in an NE according to (4.3).
Thus, the leader’s problem is described as

Cf ∗ = argmaxUf (Cf ,C−f , r∗i (〈Cf ,C−f 〉)). (4.4)

The solution of the game is characterized by the Stackelberg-Nash equilibrium (SNE), a strategy
profile from which no player (leader or follower) has incentive to deviate unilaterally.

4.3 Equilibrium Analysis of the Followers’ Game

The goal of our subsequent analysis is to find and characterize the properties of the SNE of the
above game. To that end, we first study the followers’ game and obtain the best response strategies
and equilibrium properties for a given vector of leaders’ strategies C. Before proceeding, we point
out that there exist generic well-known properties (e.g. equilibrium existence and uniqueness) for
games with concave utility functions, which do not hold in our case since, in general, the relay
utility Vi is not concave. To see this, consider the simple example of a single flow served by three
nodes over perfectly reliable links (Kf = 1) with Cf = 1 and ef = 0. Then, the utility function of
relay node 1 reduces to

V1 = r1

[
(1− r2)(1− r3) +

r2 + r3 − 2r2r3

2
+

r2r3

3

]
,

which is in fact non-concave; for example, V1

(
r1=1

r2=0.5
r3=0.5

)
= 7

12 < 1
2

[
V1

(
r1=1
r2=0
r3=0

)
+ V1

(
r1=1
r2=1
r3=1

)]
= 2

3 . As a
result, we resort to establishing the game properties using a direct analysis, without drawing on
any prior theoretical results.

Before proceeding, we present a simple yet insightful example that demonstrates some of the
properties to be rigorously proved later.

Example 1. Consider a system with two flows offering identical payments of C1 = C2 = 1,
e1 = e2 = 0, and two relay nodes with perfectly reliable links. In this system, there are three



53 Chapter 4. A Pricing Framework for Cooperative Relaying in Wireless Networks with Selfish Nodes

equilibria in the followers’ game:

• r1 = r2 = (1
2 , 1

2) (i.e. each node allocates half of its cooperation to each of the flows). To see
that this is an NE, note that, for r2 fixed at (1

2 , 1
2), the utility function of node 1 reduces to

V1 = (r1
1 + r2

1) · (1
2 + 1

4), which is maximized by any strategy with r1
1 + r2

1 = 1 (intuitively, the
node maximizes the received payment by increasing its cooperation effort to the maximum,
and is indifferent between the two flows). The same logic holds for node 2 with r1 fixed. We
refer to this NE, where all nodes apply an identical strategy, as the symmetrical NE

• r1 = (1, 0), r2 = (0, 1) or vice versa (two equilibria that are identical up to permutation of
the nodes). Indeed, when each node cooperates with one flow, there is no incentive for any
of them to deviate by shifting some of the cooperation probability to the other flow, where the
expected payment rate is lower due to competition with the other node. We refer to such an
NE, where every node cooperates only with one flow, as a boundary NE.

It is easily confirmed that no other equilibria exist in this system.
As we prove below, this simple system is indicative of the followers’ game properties in general.

Indeed, the main result of this section is that, in any system and for any vector C, the game always
admits a unique symmetrical equilibrium, as well as at least one boundary equilibrium.

4.3.1 Symmetrical Equilibria

We focus first on symmetrical strategy profiles, where all nodes use identical strategies. To that
end, we define the function

gf (x) , ∂Vi

∂rf
i

∣∣∣∣∣
rf
j =x,∀j∈R

(4.5)

(note the index i is dropped from the function definition since it does not depend on the choice of
any specific i). This can be simplified as

gf (x) = CfKf
R−1∑

l=0

1
l + 1

(
R− 1

l

)
(Kfx)l(1−Kfx)R−1−l − ef = Cf 1− (1−Kfx)R

Rx
− ef . (4.6)

In particular, we note that gf (0) = CfKf − ef and gf (1) = Cf Kf

R − ef . For convenience, we also
define hf (x) , 1−(1−Kf x)R

Rx ; thus gf (x) = Cfhf (x)− ef .
We state some monotonicity properties that will be useful in several subsequent proofs.

Lemma 4.1. The following monotonicity properties hold:

• gf (x) and hf (x) are strictly decreasing in x;

• h′f (x) = dhf (x)
dx is strictly increasing in x;

• h′f (x)
[hf (x)]2

is strictly decreasing in x.

Proof. Please refer to Section 4.7.1 for the detailed proof.

We now state the first major result of this subsection.
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Theorem 4.1. For any vector of flow prices C, there exist {ρf , f ∈ F} such that the symmetrical
strategy profile rf

j = ρf , ∀j ∈ R is a Nash equilibrium. Furthermore, there exist λ ≥ 0,{µf ≥ 0, f ∈
F}, such that:

gf (ρf ) = λ− µf ∀f ∈ F (4.7)

λ


∑

f∈F
ρf − 1


 = 0 (4.8)

µfρf = 0 ∀f ∈ F (4.9)

Proof. First, we show that a set of {ρf}, λ, and {µf} satisfying conditions (4.7)-(4.9) exists. To
that end, define the function V (x), where x =

(
x1, . . . , x|F|

)
, as follows: V (x) ,

∑
f∈F

∫ xf

0 gf (ξ)dξ.
Consider the following optimization problem:

max
x

V (x) s.t.
∑

f∈F
xf ≤ 1 and xf ≥ 0, ∀f ∈ F

Since V (x) is obviously continuously differentiable, the above constrained optimization problem
(defined over a compact region) must have a solution, which can be denoted by {ρf , f ∈ F}. This
solution must satisfy the corresponding Kuhn-Tucker conditions, which are precisely the conditions
listed in (4.7)-(4.9).

Next, we show that the strategy profile defined by the above conditions corresponds to an NE,
i.e., {ρf} is the best-response strategy for any node i if all other nodes play the same strategy.
Accordingly, consider the corresponding optimization problem from the perspective of node i, with
the strategy ri =

(
r1
i , . . . , r

|F|
i

)
:

max
ri

Vi(ri, r−i) s.t.
∑

f∈F
rf
i ≤ 1 and rf

i ≥ 0.∀f ∈ F (4.10)

We note from (4.2) that, for a fixed r−i, the target function Vi(ri, r−i) is linear in ri (indeed,
the coefficient of each rf

i is constant). This implies that the first-order Kuhn-Tucker conditions

corresponding to problem (4.10) are sufficient for optimality. However, since ∂Vi

∂rf
i

∣∣∣∣
rf
i =ρf ,r−i

=

gf (ρf ) at the symmetrical strategy profile, these Kuhn-Tucker conditions coincide with those stated
by (4.7)-(4.9). Hence, {ρf , f ∈ F} is indeed the best-response strategy for any node i, and therefore
it is an NE.

We now proceed to the second major result of this subsection, namely, the uniqueness of the
symmetrical equilibrium.

Theorem 4.2. For any vector of flow prices C, the symmetrical equilibrium in the corresponding
followers’ game is unique.

Proof. By definition, an equilibrium strategy profile must solve the optimization problem defined
in (4.10) for each relay node i. Since Vi is continuously differentiable in rf

i , it follows that the
first-order Kuhn-Tucker conditions are necessary for optimality. Thus, there must exist λi ≥ 0 and
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{µf
i ≥ 0, f ∈ F} such that the following conditions are satisfied:

∂Vi

∂rf
i

= λi − µf
i ∀f ∈ F (4.11)

λi


∑

f∈F
rf
i − 1


 = 0 (4.12)

µf
i rf

i = 0 (4.13)

We now show by contradiction that there exists at most one symmetrical equilibrium. Sup-
pose that, to the contrary, there exist two different sets {ρf

a , f ∈ F} 6= {ρf
b , f ∈ F} such that

the assignments of either rf
i = ρf

a ,∀i ∈ R, ∀f ∈ F or rf
i = ρf

b , ∀i ∈ R,∀f ∈ F both satisfy condi-
tions (4.11)–(4.13). Since the equilibria are symmetrical, the Lagrange multipliers must be identical
for all relay nodes, therefore the node index may henceforth be dropped. Accordingly, we denote
the Lagrange multipliers corresponding to the two equilibria by λa, λb, {µf

a}, {µf
b }, respectively.

Without loss of generality, assume that ρf1
a > ρf1

b for some f1 ∈ F . Then, by (4.13), we have
µf1

a = 0, and by (4.11),

λa −
(
λb − µf1

b

)
=

∂Vi

∂rf1
i

∣∣∣∣∣
rf=ρf

a

− ∂Vi

∂rf1
i

∣∣∣∣∣
rf=ρf

b

= gf1

(
ρf1

a

)
− gf1

(
ρf1

b

)
< 0,

where the last inequality is due to the monotonicity of the function gf1 (Lemma 4.1). Therefore,
λb > λa. Conversely, by the same token, ρf2

a < ρf2

b for some f2 ∈ F results in λa > λb. Since both
cannot occur simultaneously, we conclude that ρf1

a > ρf1

b for some f1 ∈ F implies ρf
a ≥ ρf

b for all
f ∈ F . However, λb > λa ≥ 0 implies

∑
f∈F ρf

b = 1 by (4.12), which leads to the conclusion that∑
f∈F ρf

a > 1. Since this is impossible, we conclude that more than one symmetrical equilibrium
cannot exist.

4.3.2 Boundary Equilibria

We now turn our attention to boundary strategy profiles, where all strategy components rf
i are

equal to either 0 or 1 for all i ∈ R, f ∈ F . Our main result in this subsection concerns the existence
of boundary equilibria.

Theorem 4.3. For any vector of flow prices C, there exists a boundary equilibrium in the corre-
sponding followers’ game.

Proof. First, we introduce a “dummy” flow f0 with Cf0 = 0 and ef0 = 0, such that any node
with less than full allocation of cooperation (i.e.

∑
f∈F rf

i < 1 will be indifferent to allocating any
part of the remaining slack to the dummy flow, since the utility from cooperation with that flow
is always 0. The purpose of introducing the dummy flow is to allow consistent notation in the
following proof. Thus, if a node’s best strategy is not to cooperate with any flow at all because all
flows offer negative expected utilities (i.e. payments that are lower than the energy cost), then the
node can instead be said to be fully cooperating with the dummy flow.

We now construct a simple algorithm that finds a boundary equilibrium, as follows. Initially,
start with the strategy rf

i = 0 for all i ∈ R,f ∈ F . Thereafter, proceed with R iterations to assign
the relay nodes to flows, where in each iteration k = 1, . . . , R,
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• denote Rf =
∑

i r
f
i , f ∈ F , to be the number of nodes assigned to flow f so far;

• find the flow f∗ such that setting rf∗
k = 1 maximizes Vk;

• assign rf∗
k = 1.

We elaborate on the second step in the above. From (4.2), if node k is assigned to flow f in the
iteration where Rf other nodes already allocate a strategy probability of 1 to that flow, then the
node’s utility will be

CfKf
Rf∑

l=0

1
l + 1

(
Rf

l

)
(Kf )l(1−Kf )Rf−l − ef = Cf · 1− (1−Kf )Rf+1

Rf + 1
− ef , (4.14)

and the flow f∗ to which node k should be assigned is thus the one that maximizes (4.14) among
all flows (including the dummy flow, if necessary) in the iteration.

We now show by induction that after each iteration k, the assignments so far {rf
i } constitute

an equilibrium among relay nodes i = 1, . . . , k. This is clearly true for k = 1. Assume that it is
true for k = n, and consider iteration n+1. Let fn+1 be the flow chosen by relay node n+1. Then,
by construction, relay node n + 1 has been allocated to the flow offering the maximum expected
payment share, and has no incentive to deviate any probability to other flows where the expected
payment is smaller. Since the relay nodes are symmetric, the same holds for any other node that is
assigned to flow fn+1 before iteration n+1. Now, consider any node j assigned to a flow fj 6= fn+1.
Note that the only change from iteration n to n + 1 is that Rfn+1 has increased (i.e. fn+1 now
offers an even lesser payment share per node than before, as (4.14) is decreasing in Rf ), and the
iteration made no impact on other flows. Therefore, if j had no incentive to deviate from fj after
iteration n, then j will certainly have no incentive to deviate after iteration n + 1. Therefore, the
strategies after each iteration are in equilibrium among the nodes assigned so far, and eventually
result in a boundary equilibrium after all R nodes are assigned.

We point out that, unlike the symmetrical equilibrium, the boundary equilibrium is not guar-
anteed to be unique (even after allowing for permutation of the nodes). The reason for this is
that the flow f∗ maximizing expression (4.14) in a particular iteration need not be unique. For
example, consider again the system described in Example 1, except that now C1 = 2 and C2 = 1.
Applying the algorithm from the proof of Theorem 4.3, the first node is assigned to flow 1, and
thereafter, the second node becomes indifferent between the two flows (it can either cooperate with
flow 2 and receive the full payment of C2 = 1, or cooperate with flow 1 and receive half of the
payment of C1 = 2, with the other half going to the first node). Consequently, r1 = (1, 0) and
either r2 = (1, 0) or r2 = (0, 1) are boundary equilibria (in fact, r2 = (r1

2, r
2
2) with any r1

2 + r2
2 = 1

will bring about an equilibrium, albeit not a boundary one).

4.4 Analysis of the Leaders’ Game

In this section, we study the properties of the leaders’ game and its equilibrium (corresponding to
the Stackelberg-Nash equilibrium of the overall system). Our task is complicated by the findings
of section 4.3, namely, that once the leaders’ strategies C are set, the followers’ equilibrium is not
unique. To get around this complication, we first analyze the leaders’ game under the assumption
that the followers will always respond by playing their symmetrical equilibrium (which is always
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unique), and establish the existence of an equilibrium of the leaders’ game for any R, {Kf} and
{ef}, f ∈ F . We then show that the existence property may no longer hold if the followers may
play any other equilibrium rather than the symmetrical one; in particular, we establish that the
leaders’ game never possesses an equilibrium at all if the followers always respond by playing their
boundary equilibrium.

4.4.1 Followers play symmetrical equilibrium

We focus on the followers’ symmetrical equilibrium defined in Theorem 4.1, and study its depen-
dence on the payment rate Cf of a specific flow f ∈ F , with all other rates (C−f ) fixed. To
streamline the discussion, we view the value of ρf in the equilibrium corresponding to a setting of
Cf as a function ρf = F (Cf ) (a scalar function, since we focus only on ρf and are not interested
in the values of ρ for flows other than f). We shall also be interested in the value of λ that satisfies
condition (4.8) in the equilibrium, and denote the respective function as λ = Λ(Cf ).

We begin by exploring these functions for extreme values of Cf . Clearly, with Cf = 0, the
utility of cooperating with flow f for any relay node is non-positive, implying ρf = F (Cf = 0) = 0.
Denote λ0 = Λ(Cf = 0); then, if Cf is gradually increased, the equilibrium remains unchanged as
long as gf (0) = KfCf − ef ≤ λ0, since condition (4.7) can still be satisfied with some µf ≥ 0. We
conclude that ρ(Cf ) = 0 and Λ(Cf ) = λ0 for all Cf ≤ Cf

min , λ0+ef

Kf .

On the other hand, if Cf is very large (more precisely, Cf ≥ Cf
max ,

[(
maxf ′ 6=f Cf ′Kf ′ − ef ′

)
+ ef

]
R

Kf ,

which implies that gf (1) = Kf Cf

R −ef ≥ gf ′(0) = Cf ′Kf ′−ef ′ for any f ′ 6= f), then the equilibrium
conditions will be satisfied by ρf = F (Cf ) = 1 and λ = Λ(Cf ) = gf (1), with µf ′ > 0 and therefore
ρf ′ = 0 for all f ′ 6= f . Intuitively, if Cf is so large that even a share of 1

R of the payment from f

is larger than the payment from any other flow, then no node will deviate from cooperating fully
with f .

We now proceed to explore the behavior of F (Cf ) and Λ(Cf ) between these extremes, i.e. in
the range Cf

min ≤ Cf ≤ Cf
max.

Lemma 4.2. The function Λ(Cf ) is continuous and non-decreasing in Cf .

Proof. Please refer to Section 4.7.2 for the detailed proof.

Lemma 4.3. The function F (Cf ) is continuous, and, in the range Cf
min ≤ Cf ≤ Cf

max, strictly
increasing in Cf .

Proof. Again, the continuity of ρf with respect to Cf is immediate from the continuity of gf and
conditions (4.7)-(4.9). We now prove the monotonicity. For convenience, we denote the function
gf (·) corresponding to Cf

1 and Cf
2 by gf

1 (·) and gf
2 (·), respectively. Now, consider the following

alternatives.

• Λ(Cf
2 ) = 0. By lemma 4.2, this implies Λ(Cf

1 ) = 0 as well. In both equilibria (corresponding
to Cf

1 and to Cf
2 ), since gf (0) ≥ 0 (by the definition of Cf

min and the fact that both Cf
min ≤ Cf

1

and Cf
min ≤ Cf

2 ), it follows that condition (4.7) cannot be satisfied with g(ρf ) < 0 (since that
would require ρf > 0 and therefore µf = 0). Hence, gf (ρf ) = 0 in both equilibria. It follows
that

Cf
1 Kf 1− (1−Kfρf

1)R

RKfρf
1

= Cf
2 Kf 1− (1−Kfρf

2)R

RKfρf
2

,

which, if Cf
1 < Cf

2 , implies ρf
1 < ρf

2 (see proof of lemma 4.1).
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• Λ(Cf
1 ) = Λ(Cf

2 ) > 0. Thus, in both equilibria,
∑

f ′∈F ρf ′ = 1; moreover, by the definition of
Cf

max, the set F ′ = {f ′|ρf ′ > 0} contains at least one flow f ′ 6= f , and all flows f ′ ∈ F ′ \ {f}
satisfy gf ′(ρf ′) = Λ(Cf

1 ) = Λ(Cf
2 ), i.e. they have identical ρf ′ in both equilibria. It follows

that ρf must be identical in both equilibria as well. Now, since gf
1 (ρf ) < gf

2 (ρf ) ≤ Λ(Cf
2 ), it

follows that the first equilibrium must have µf > 0 and therefore ρf = 0, contradicting the
definition of Cf

min.

• Λ(Cf
1 ) < Λ(Cf

2 ). Thus, in the second equilibrium,
∑

f ′∈F ρf ′ = 1, and once again, by the
definition of Cf

max, the set F ′ = {f ′|ρf ′ > 0} contains at least one flow f ′ 6= f , and all flows
f ′ ∈ F ′ satisfy gf ′(ρf ′) = Λ(Cf

2 ) > Λ(Cf
1 ). Since the functions gf ′ for all flows f ′ ∈ F ′ \ {f}

are unchanged between the equilibria and are strictly decreasing in the respective ρf ′ , it
follows that ρf ′ in the second equilibrium must be lower than in the first for all f ′ ∈ F ′ \{f}.
This immediately implies that ρf = 1−∑

f ′ 6=f ρf ′ must be greater in the second equilibrium
than in the first.

Lemma 4.4. The function F (Cf ) is concave in Cf in the range Cf
min ≤ Cf ≤ Cf

max.

Proof. Please refer to Section 4.7.3 for the detailed proof.

We now proceed to study the properties of the best-response function of flow f , defined as
Bf (C−f ) = argmaxCf Uf (Cf ,C−f ).

Consider the derivative of the flow utility function with respect to Cf , assuming that the
followers respond with a symmetrical equilibrium as per the above analysis:

∂Uf

∂Cf
=

[
u′f (P f

suc(ρ
f ))− Cf

] ∂P f
suc(ρf )
∂ρf

∂ρf

∂Cf
− P f

suc(ρ
f ), (4.15)

where ρf = F (Cf ). Since uf (P f
suc) is concave by assumption, Psuc(ρf ) = 1 − (1 − Kfρf )R is

concave in ρf , and ρf is concave in Cf by lemma 4.4, it follows that ∂Uf

∂Cf is non-increasing in Cf ,
i.e. the utility function is concave in Cf .

Lemma 4.5. The best-response function of flow f is bounded by 0 ≤ Bf (C−f ) ≤ u′f (0).

Proof. We notice that Uf can be written as

Uf =

[
uf (P f

suc)

P f
suc

− Cf

]
P f

suc.

Obviously, in the best response, the utility is nonnegative (a utility of 0 can always be obtained by
Cf = 0). Accordingly, if Cf = Bf (C−f ), then 0 ≤ Cf ≤ max

P f
suc

u(P f
suc)

P f
suc

. However, the assumption

about the concavity of uf (P f
suc) and uf (0) = 0 implies that uf (P f

suc)

P f
suc

≤ u′f (0) for any 0 ≤ P f
suc ≤ 1,

and the lemma follows.

From lemma 4.5, we conclude that if u′(0) ≤ Cf
min = Λ(Cf=0)+ef

Kf , then the flow can never
achieve a positive utility. The strategy Cf used in this case is immaterial, since no node will
cooperates with f under any 0 ≤ Cf ≤ u′(0), and, therefore, the payment of f to the nodes is 0



59 Chapter 4. A Pricing Framework for Cooperative Relaying in Wireless Networks with Selfish Nodes

in any case. Nevertheless, to maintain the continuity of the best-response function with respect to
C−f (through Λ(0)), we set Bf (C−f ) = u′(0).

Otherwise, if u′(0) > Cf
min, the optimal Cf is obtained by solving ∂Uf

∂Cf = 0. Due to the concavity
of Uf (Cf ) (established above), a unique solution is guaranteed; furthermore, we observe that if uf

is continuously differentiable, then the best response function is continuous as well.
Finally, we state the main result of this subsection.

Theorem 4.4. If the followers always respond by playing in their (unique) symmetrical equilibrium,
then there exists an equilibrium in the leaders’ game (which is an SNE for the system as a whole).

Proof. We define the mapping B(C) =
{
Bf (C−f ), f ∈ F}

to be the collection of best-response
functions to the respective strategy vectors of other flows. Since each component of B(C) is
continuous and bounded (Lemma 4.5), the entire mapping is continuous and bounded. Therefore,
it has a fixed point, which is an equilibrium of the leaders’ game.

4.4.2 Followers play boundary equilibrium

In this subsection, we show that the SNE existence property established in Theorem 4.4 does not
extend in general to the case that the followers’ response may be any other than the symmetrical
equilibrium, and, in particular, if the followers are assumed to always respond in a boundary
equilibrium. In fact, a stronger property is stated in the following lemma.

Theorem 4.5. If relay nodes always respond to flow price settings by playing a boundary equilib-
rium, then at any SNE:

1. if Rf denotes the number of nodes cooperating with flow f , then either the set F ′ =
{

f ′|Rf ′ = 0
}

is nonempty or the utility of every relay node is 0;

2. the utility values of all relay nodes are identical and equal to Hth , maxf ′∈F ′
[
uf ′(Kf ′)− ef ′

]

(or 0 if Hth is negative).

Proof. To show the first property, assume to the contrary that the set F ′ is empty (i.e. Rf > 0 for
all f ∈ F). The utility of each node cooperating with f is given by

Hf (Rf ) ,
Cf

[
1− (1−Kf )Rf

]

Rf
− ef . (4.16)

Consider the flow f ∈ F for which Hf (Rf ) is the highest, and assume that Hf (Rf ) > 0. Then,
since Hf (Rf ) ≥ Hf ′(Rf ′) > Hf ′(Rf ′ + 1) for any f ′ ∈ F , there exists an ε > 0 by which Cf can
be reduced such that the new Hf (Rf ) is still both positive and higher than Hf ′(Rf ′ + 1) for any
f ′ ∈ F , and, therefore, no node will have incentive to deviate from cooperating with f . Therefore,
Cf cannot be the best-response strategy of f .

If F ′ is nonempty, consider the flow f /∈ F ′ with the highest Hf (Rf ) among all flows with
Rf > 0. We observe that, if Hf (Rf ) > Cf ′Kf ′ − ef ′ for all f ′ ∈ F ′, then, again, Cf is not the
best-response strategy for f since it can be reduced by some ε > 0 without triggering a deviation
of any relay node. On the other hand, if there exists any flow f̂ /∈ F ′ with H f̂ (Rf̂ ) < Hth, then
it follows that there exists a f ′ ∈ F which can “pull” one of relay nodes currently cooperating

with f̂ and obtain a positive utility, by setting Cf ′ =
uf ′ (K

f ′ )
Kf ′ − ε for some sufficiently small ε > 0.
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Combining the above observations, we conclude that, if Hth ≥ 0, then H(Rf ) = Hth for any f /∈ F ′,
i.e. all relay nodes receive an identical utility of Hth.

Corollary 4.1. In a system with two symmetrical flows (i.e. with identical uf (·) and Kf for
f ∈ {1, 2}) and ef = 0, f ∈ {1, 2}, an SNE does not exist.

Proof. Consider the options allowed by theorem 4.5. If the utility of all nodes is 0, then, with
ef = 0, this implies Cf = 0 for both flows. Clearly, this is not an SNE since each flow has an
incentive to increase its Cf to a small positive value so as to encourage the nodes to cooperate
with it and thereby obtain a positive utility.

On the other hand, if all nodes receive a positive utility of Hth > 0, the first property of the
theorem implies that one of the flows (say, flow 2) does not have any nodes cooperating with it,
and therefore, the other flow (say, flow 1) is bearing the payment for all the nodes, i.e.,

C1

[
1− (1−Kf )R

]

R
= Hth = uf (Kf ).

The utility of flow 1 is therefore

U1 = uf

(
1− (1−Kf )R

)
− C1

[
1− (1−Kf )R

]
=

uf

(
1− (1−Kf )R

)
−R · uf (Kf ) < uf

(
R ·Kf

)
−R · uf (Kf ) ≤ 0

where the inequalities follow from the monotonicity and concavity of uf and the fact that R ≥ 2.
It follows that the first flow cannot be in a best-response strategy. Therefore, no SNE is possible
in this system.

Remark: The fact that R ≥ 2 is crucial in the proof of the corollary above. If R = 1, i.e. there
is only one relay node in the network, then the “followers’ equilibrium” degenerates simply to that
node cooperating with the flow f that provides the highest Hf (1) = CfKf − ef , assuming that it
is nonnegative (or not cooperating at all otherwise), resulting in P f

suc = Kf for that flow. It can
be seen that a vector C that satisfies the following conditions is then a system SNE:

• 0 < C f̂ ≤ uf (K f̂ )/K f̂ and C f̂K f̂ − ef̂ ≥ 0 for one particular f̂ ∈ F ;

• for all other f ′ 6= f̂ , uf ′(Kf ′)− ef ′ ≤ C f̂K f̂ − ef̂ ;

• for at least one f ′ 6= f̂ , uf ′(Kf ′)− ef ′ = C f̂K f̂ − ef̂ .

In particular, such a vector always exists for symmetrical flows with ef = 0 for all f ∈ F , by setting
Cf = uf (Kf )

Kf for all flows. In the corresponding equilibrium, the relay node will then cooperate
with one of the flows f̂ , yet the utility of all flows is 0 and cannot be improved: flow f̂ cannot
reduce its C f̂ by any amount since that will cause the node to switch to a different flow, while any
attempt to increase the offered payment by another flow will only result in a negative utility for
that flow.

4.5 Numerical Examples

In this section, we demonstrate some of the theoretical results obtained previously and gain further
insight on the behavior of the game via a numerical study. More specifically, we show two simple
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scenarios, which are nevertheless indicative of the typical interactions among the players in the
game. We use these examples in particular to comment on the issue of equilibrium efficiency, which
was not explicitly addressed in the analytical part of the chapter.

4.5.1 Competition between heterogeneous flows: Single relay

We start with a degenerate scenario consisting of two flows and single relay node (F = {1, 2},R =
{1}). For the flows, we adopt a linear utility function, as follows: uf (P f

suc) = mfP f
suc, f ∈ F . In the

following, we fix m1 = 1 and vary m2 to study how the game results depend on the heterogeneous
flow utilities. We set P 1

sn = P 1
nd = 0.8 and P 2

sn = P 2
nd = 0.4 (which translates to K1 = 0.64 and

K2 = 0.16), reflecting a difference in channel qualities between the endpoint pairs of the flows and
the relay. Finally, we assume ef = 0 for both flows. It is easily verified that the socially optimal
operating point (i.e. one that maximizes the total utility of all flows) is achieved if the relay node
cooperates entirely with the flow with the higher utility, i.e. r = (1, 0) if m1K

1 ≥ m2K
2, and

r = (0, 1) otherwise; therefore, the total maximum social utility is Umax = max(0.64, 0.16m2).
Figure 4.1 plots the flow strategies C1, C2 in the resulting SNE as a function of m2. Clearly,

the relay node serves the more profitable flow with probability 1 at the equilibrium. Figure 4.2
illustrates the utility for the flow side (U1 + U2) and the relay side (V1), as well as the maximum
social utility Umax. It is evident that Umax = V1 + U1 + U2, i.e., the SNE always coincides with
the socially optimal operating point. In other words, the proposed pricing mechanism and the
resulting competition between the flows guides the relay node to operate efficiently without any
information on the flows’ utilities.
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Figure 4.1: Prices C1, C2 at the SNE (single
relay case)
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Figure 4.2: Utility partition among flows and
relay

It is interesting to observe how the total system utility gets divided between the flows and the
relay node. If m2 is small, flow 1 can obtain the relay service for a very cheap cost, since flow 2 is
limited in the price it can offer due to its own low utility. The full utility is thus retained by flow 1.
As m2 increases, flow 1 must increase its price so as to remain just slightly more attractive to the
relay than the maximum offer flow 2 is able to make. Thus, the relay node gets paid more for its
service, while the utility retained by the flow decreases. At m2 = K1

K2
= 4, the price war between

the flows is at its peak, and the entire system utility of 0.64 is enjoyed by the relay node. For
m2 > 4, the first flow can no longer compete with the price able to be offered by flow 2; therefore,
flow 2 can secure the service of the relay node by matching (or offering just slightly above) the
maximum of flow 1, i.e. C2 = 4. From that point, the utility retained by the relay node is constant,



Chapter 4. A Pricing Framework for Cooperative Relaying in Wireless Networks with Selfish Nodes 62

and all further increases in m2 are reflected in the utility of flow 2.

4.5.2 Two flows and two relay nodes

We now consider a scenario with two flows and two relay nodes, which is more representative of the
interactions among players in a multiple-flow and multiple-relay system. Apart from the second
relay, all parameters are set to the same values as before. The results (for the case where the relay
nodes play the symmetrical equilibrium) are shown in Figure 4.3 and 4.4. Figure 4.3 shows the
prices offered by the flows in the SNE. Figure 4.4 displays the equilibrium efficiency as the “Price
of Anarchy” [Pap01], defined as the ratio between the optimal social utility and the system utility
achieved at the equilibrium.
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Figure 4.3: Prices C1, C2 at SNE (2-relay sce-
nario)
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Figure 4.4: Price of Anarchy for 2-relay scenario

From the results, we observe that the price of anarchy tends to 1 when the flows are heteroge-
neous, i.e. when m2 is either very small or very large. This is explained by the fact that, in those
extremes, both the equilibrium strategy and the global optimum then require the relay nodes to
cooperate fully with only one of the flows, respectively. Otherwise, for intermediate ranges of
m2, the SNE is less efficient since the symmetrical followers’ equilibria tend to assign a nonzero
cooperation probability to each of the flows, as neither flow is in a position to offer a price large
enough to attract both relays entirely to itself. Nevertheless, we observe that even the worst price
of anarchy is only slightly greater than 1. This suggests that, at least for the scenarios considered,
the proposed pricing framework can bring about a reasonably efficient equilibrium, with only a
small system utility loss due to players’ selfishness.

4.6 Conclusion

We have proposed a market-based pricing framework for wireless networks with autonomous nodes
in the context of cooperative relaying. An important difference between our model and other
similar studies that feature payment for packet forwarding is that a packet may be relayed by
several nodes simultaneously, and, therefore, the payment is shared among several nodes that have
participated in its delivery. We have shown that this variation leads to substantially different
properties of the resulting game model. In particular, we have established that the game among
the relay nodes (followers) possesses several kinds of Nash equilibria (NE), including a unique
symmetrical NE and at least one boundary NE. Furthermore, we have established that the game



63 Chapter 4. A Pricing Framework for Cooperative Relaying in Wireless Networks with Selfish Nodes

among the flows (leaders) always possesses a Stackelberg equilibrium if the followers respond in their
symmetrical NE, but an equilibrium may not exist if the followers play in a boundary NE. Finally,
we demonstrated that the resulting equilibrium is reasonably efficient from a social perspective,
particularly when the flows have very heterogeneous utilities.

4.7 Proofs

This section completes the detailed proofs omitted from the main text.

4.7.1 Proof of Lemma 4.1

For convenience, we introduce a variable change of y , 1 −Kfx, and slightly abuse notation by
referring to gf (y) and hf (y) as functions of y.

We compute the derivatives of hf (y):

dhf (y)
dy

=
Kf

R(1− y)2
[
1 + (R− 1)yR −RyR−1

]
; (4.17)

d2hf (y)
dy2

=
Kf

R(1− y)3
[
2− (R− 1)(R− 2)yR + 2R(R− 2)yR−1 −R(R− 1)yR−2

]
. (4.18)

Denote the expressions in brackets in (4.17) and (4.18) by A1(y) and A2(y), respectively. Then:

• Since A1(1) = 0 and dA1(y)
dy = −R(R− 1)yR−2(1− y) < 0 for R > 1 and 0 < y < 1, it follows

that A1(y) is strictly positive for all 0 < y < 1. Hence, hf (y) is strictly increasing in y, i.e.
hf (x) (and therefore gf (x) as well) is strictly decreasing in x;

• Since A2(1) = 0 and dA2(y)
dy = −R(R − 1)(R − 2)yR−3(1− y)2 < 0 for R > 1 and 0 < y < 1,

it follows that A2(y) is strictly positive for all 0 < y < 1. Hence, dhf (y)
dy is strictly increasing

in y, which implies that dhf (x)
dx = −dhf (y)

dy is strictly increasing in x.

To show that h′f (x)
[hf (x)]2

is decreasing in x, or, equivalently, that dhf (y)/dy
[hf (y)]2

is decreasing in y, it suffices

to show that hf (y)d2hf (y)
dy2 − 2

(
dhf (y)

dy

)2
< 0. By a straightforward calculation, this is shown to be

equivalent to
(R + 1)y + (R− 1)yR+1 − (R + 1)yR − (R− 1) < 0. (4.19)

Denote A3(y) to be the expression on the left-hand side of (4.19). Since A3(1) = 0 and dA3(y)
dy =

(R + 1)
[
1 + (R− 1)yR −RyR−1

]
= (R + 1)A1(y) > 0 for all 0 < y < 1, the proof is complete.

4.7.2 Proof of Lemma 4.2

The continuity of λ with respect to Cf is immediate from conditions (4.7)-(4.9) and the continuity
of gf . To establish the monotonicity, suppose to the contrary that λ1 = Λ(Cf

1 ) > Λ(Cf
2 ) = λ2

for some Cf
1 < Cf

2 . Then, λ1 > λ2 ≥ 0 implies that, in the first equilibrium (i.e. corresponding
to Cf

1 ),
∑

f ′∈F ρf ′ = 1. Therefore, there is a non-empty set of flows F ′ = {f ′|ρf ′ > 0}, and all
flows f ′ ∈ F ′ satisfy gf ′(ρf ′) = λ1 (since ρf ′ > 0 implies µf ′ = 0). In the second equilibrium
(corresponding to Cf

2 ), since λ2 < λ1, it follows that each gf ′(ρf ′) must be smaller than in the
first equilibrium. However, we note that for any f ′ 6= f the function gf ′ has not changed, and
for f itself the function gf even increased (since Cf

1 < Cf
2 ). Since gf ′(ρf ′) are strictly decreasing
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functions (Lemma 4.1), it follows that ρf ′ must have strictly increased in the second equilibrium
for all f ′ ∈ F ′, which is obviously impossible.

4.7.3 Proof of Lemma 4.4

From lemma 4.3, it follows that, for every 0 < ρf < 1, there exist unique Cf = F−1(ρf ), λ, and
{ρf ′ , f ′ 6= f} that define a symmetrical equilibrium together with ρf . Therefore, we can view these
quantities as functions of ρf , and consider their derivatives with respect to ρf .

We rewrite condition (4.7) as follows:

Cfhf (ρf ) = λ + ef (4.20)

and, for any flow f ′ 6= f such that ρf ′ > 0,

Cf ′hf ′(ρf ′) = λ + ef ′ . (4.21)

Taking the derivative of both sides in (4.20) and (4.21) with respect to ρf , we obtain, respectively,

dCf

dρf
hf (ρf ) + Cf dhf (ρf )

dρf
=

dλ

dρf
(4.22)

Cf ′ dhf ′(ρf ′)
dρf ′

dρf ′

dρf
=

dλ

dρf
(4.23)

or, rearranging (4.23),
dρf ′

dρf
=

dλ
dρf

Cf ′ dhf ′

dρf ′
. (4.24)

We now distinguish between two sub-regions of λ. If ρf +
∑

f ′ 6=f ρf ′ < 1, then λ = 0 in some
small vicinity of ρf . Thus, dλ

dρf = 0; also, gf (ρf ) = Cfhf (ρf )−ef = 0. From (4.22), we thus obtain

dCf

dρf
= −Cfdhf (ρf )/dρf

hf (ρf )
= −efdhf (ρf )/dρf

[hf (ρf )]2
, (4.25)

which, by lemma 4.1, is increasing in ρf .
Otherwise, if ρf +

∑
f ′ 6=f ρf ′ = 1, then

∑
f ′

dρf ′

dρf = −1 in the vicinity of ρf . Together with (4.24),
this implies

dλ

dρf
= −

∑

f ′ 6=f

Cf ′ dhf ′(ρf ′)
dρf ′ (4.26)

which can be fed back into (4.22) to yield

dCf

dρf
= − 1

hf (ρf )


Cf dhf (ρf )

dρf
+

∑

f ′ 6=f

Cf ′ dhf ′(ρf ′)
dρf ′


 =

− (λ + ef )dhf (ρf )/dρf

[hf (ρf )]2
− 1

hf (ρf )

∑

f ′ 6=f

Cf ′ dhf ′(ρf ′)
dρf ′ . (4.27)

We observe that, since λ is increasing in ρf and gf ′(ρf ′) is decreasing in ρf ′ , it follows that each

ρf ′ is decreasing in ρf . Therefore, dhf ′ (ρf ′

dρf ′ , which is increasing in ρf ′ by lemma 4.1, is decreasing
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in ρf . It follows that (4.27) is increasing in ρf in this case as well.
Combining our findings that both (4.25) and (4.27) are increasing in ρf , and noticing that the

jump in dCf

dρf at the boundary between the two sub-regions (namely, the difference between (4.27)
at λ = 0 and (4.25)) is positive, we conclude that the function Cf = F−1(ρf ) is convex, and,
therefore, F (CF ) is concave in the entire range Cf

min ≤ Cf ≤ Cf
max.
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Playing with Enemy
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Part II of the thesis is dedicated to the malicious behaviors in wireless networks. In this part,
we present a line of research where game theory is used as a tool for analyzing malicious behaviors
and developing, implementing, validating new defense mechanisms. The first major contribution
we make in this part is the formal quantitative analysis of security under game theoretic framework,
based on which we derive the attackers’ strategy at the NE, the optimal defending strategies and
the maximum possible damage that the attackers can cause. Armed with the analytical results, we
make our second contribution by designing effective defense strategies to fight against malicious
attackers and exploring the tradeoffs and corresponding optimization problems that the defenders
face.

Chapter 5 presents a comprehensive game theoretic model on the intrusion detection problem
in the heterogenous networks consisting of nodes with different security assets. The expected
behaviors of malicious attackers and the optimal strategy of the defenders are elaborated. Chapter
6 addresses the jamming attack in wireless networks and propose an active defense strategy by
draining the jammer’s energy. The effectiveness and the limitation of the proposed strategy is
evaluated using game theory. In Chapter 7, we address the multi-path routing in wireless multi-
hop networks. Specific optimization problems are formulated and game theory is applied to derive
their solutions and correspondent routing algorithms. The tradeoff between route security and
availability is also investigated.



Chapter 5

On Intrusion Detection in

Heterogenous Networks

5.1 Introduction

Today’s computer and communication networks especially wireless networks are becoming more
and more dynamic, distributed and heterogenous, which, combined with the complexity of underly-
ing computing and communication environments, increases significantly the security risk by making
the network control and management much more challenging than ever. Consequently, nowadays
networks are much more vulnerable to various attacks such as TCP SYN flooding, SSPing and DoS
attack, etc. The last few years have witnessed significant increase of attacks and their damages.
In such context, the intrusion detection system (IDS) is widely deployed as a complementary line
of defense to the classical security approaches aiming at removing the vulnerabilities which may
not be very effective or even fail to function in some cases.

In almost all contemporary networks, network nodes (targets from the attackers’s point of view)
usually have different sensibility levels or possess different security assets depending on their roles
and the data or information they hold. In other words, the networks are usually heterogenous in
terms of security. More specifically, some targets are more “attractive” to attackers than others.
Examples of such targets include the servers containing sensible secret information, high hierarchy
nodes in military networks, etc. These targets are usually also better protected and are thus more
difficult or costly to attack. In such heterogenous environments, two natural but crucial questions
are: What are the expected behaviors of rational attackers? What is the optimal strategy of the
defenders (IDSs)?

In this chapter, we answer the posed questions by developing a non-cooperative game the-
oretic model of the network intrusion detection problem, analyzing the resulting equilibria and
investigating the engineering implications behind the analytical results. We then derive optimal
strategy for the defender side and the guidelines for IDS design and deployment. Our study in this
chapter is generic such that no specific context of attacks and networks is assumed in the analysis.
Nevertheless, as we will show later via case study, the model established in this chapter is partic-
ularly suitable in wireless networks where the interaction between the attackers and defenders is
much more complicated than in the traditional wired environments and the best strategy for the
defenders consists of a tradeoff of various factors.

Our main contributions of this chapter can be summarized as follows:

68
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• We provide a game theoretic framework of intrusion detection in heterogenous networks
where targets have different security assets.

• Under the framework, we derive the expected behaviors of rational attackers, the minimum
monitor resource requirement of the defenders and the optimal strategy of the defenders.

• We provide two case studies to illustrate how our game theoretic framework can be applied
to configure the intrusion detection strategies in realistic scenarios for wireless networks.

This chapter proceeds as follows. Section 5.2 briefly presents related work and compares our
work with existing work. In Section 5.3, we formulate the non-cooperative intrusion detection
game. In Sections 5.4 and 5.5, we study the NE of the game in the case of single and multiple
attacker(s)/defender(s), respectively. Based on our analysis, we derive optimal defender strategy
and guidelines for IDS design and deployment. In Section 5.6, we show how our game theoretic
framework can be applied to configure the intrusion detection strategies via two case studies.
Section 5.7 discusses some variants and extensions of the game. Section 5.8 provides numerical
results of the game theoretic framework. Section 5.9 concludes the chapter.

5.2 Related Work

Intrusion detection has been an active research field for a long time. Most research efforts address
the problem of how to improve the performance of IDSs: e.g., increase coverage of attack types,
boost detection rate and keep false alarm rate low, etc [MP02], [MST98], [LSM00]. In [ZL00],
Zhang et al. proposed a distributed cooperative IDS, in which a node detecting an intrusion with
low confidence can initiate a global intrusion detection procedure through a cooperative detection
engine. The local detection engine is built on the rule-based classification algorithm. In a later
paper [HFLY03], Yi et al. extended the previous work on local anomaly detection and conducted
a cross-feature analysis to explore the correlations between each feature and other features using
decision-tree based classification algorithm. An intrusion detection method based on the analysis is
proposed for detecting ad hoc routing anomalies. In [SSA06], Subhadrabandhu et al. took another
line of research by applying theories of hypothesis testing and approximation algorithms to develop
a statistical framework for intrusion detection in ad hoc networks.

Recently, several game theoretic approaches have been proposed to model the interaction be-
tween the attackers and IDSs. Kodialam et al. [KL03] proposed a game theoretic framework to
model the intrusion detection game between the service provider and the intruder. The objective
of intruder is to minimize the probability of being detected by choosing a set of paths to inject
malicious packets, and the objective of the service provider is to sample a set of links to maximize
the detection probability. The equilibrium strategy of both players is to play the minmax strategy
of the game. Alpcan and Basar [AB04] model the intrusion detection as a noncooperative non-
zero-sum game with both finite and continuous-kernel versions. In their model a fictitious player
is added to the game to represent the output of the IDS sensor network. The authors showed the
existence and uniqueness of the NE and studied the dynamics of the game. Liu et al. [LCM06]
studied the problem using Bayesian game theory in the context of ad hoc networks where both
players update their strategies based on their observation of previous results. A Bayesian hybrid
detection system is proposed based on the analytical results for the defender to strike a balance
between its energy costs and monitoring gains. Agah et al. [ADBA04] and Alpcan and Basar
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[AB03] reconsidered the problem in sensor networks where each player’s optimal strategy depends
only on the payoff function of the opponent. A two-player non-cooperative game is thus formulated
between the attacker and the defender (network), and the analysis on the resulting NE leads to
a defense strategy for the network. Patcha and Park [PP06] modeled the interaction between an
attacker and an individual node as a non-cooperative signaling game where the sender is either of
type Attacker or Regular. The receiver with IDS detects the attack with a probability depending
on its belief which is updated according to the “message” it has received.

Despite the substantial work on the intrusion detection in the literature, none of them addresses
the problem in heterogenous environments. Motivated by this observation, our work contributes to
the existing literature by providing a game theoretic framework of the network intrusion detection
problem in heterogenous environments consisting of targets with different security assets. By
characterizing the resulting NE, we further derive the minimum monitor resource requirement and
the optimal strategy of the defender side in such environments.

Moreover, existing game theoretic work on the intrusion detection is mainly theoretic work
based on highly abstract models. In our work, besides providing the theoretic quantitative frame-
work, we also illustrate the application of the proposed framework in real scenarios via case studies,
which is absent in existing work. Our work can thus serve as a building block to guide the design
and evaluation of the intrusion detection systems.

5.3 Network Intrusion Detection Game Model

We consider a network N = (SD,SA, T ) where SD is the set of agents equipped with the IDS
module which we refer to as defenders throughout the chapter, SA is the set of attackers and
T = {1, 2, · · · , N} is the set of network nodes which may be attacked by the attackers, referred
to as targets. We start with the simplest case where there are only one attacker and one de-
fender. We model the interactions between them as a non-cooperative game. The objective of
the attacker is to attack the targets without being detected. To this end, it chooses the strategy
p = {p1, p2, · · · , pN} which is the attack probability distribution over the target set T where pi is
the probability of attacking target i.

∑

i∈T
pi ≤ P ≤ 1 represents the attacker’s resource constraint.

This constraint can be relaxed if the attacker can attack multiple targets simultaneously, e.g.,
broadcasting malicious packets to attack many network nodes at the same time. This case will be
addressed in later sections. For the defender, in order to detect the attacks, it monitors the targets
with the probability distribution q = {q1, q2, · · · , qN}, where qi is the probability of monitoring
target i. Here monitor means that the defender collects audit data and examines them for signs
of security problems. Similarly, we have

∑

i∈T
qi ≤ Q ≤ 1 that represents the defender’s monitor

resource constraint.
We assume that each target i ∈ T processes an amount of security asset denoted as Wi,

representing the loss of security when the attacks on i are successful, e.g., loss of reputation or
data integrity, cost of damage control, etc. The security assets of the targets depend on their
roles in the network and the data or information they hold. In practice, the security assets are
evaluated in the risk analysis/assessment phase using formal analysis or specific tools before the
IDS deployment. If the attack on target i is not detected, then the attacker gets payoff Wi while
the defender gets payoff −Wi. Otherwise, the payoff for the attacker and defender is −Wi and
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Wi, respectively. Other payoff formulations are also possible. In those cases, our analysis in this
chapter can be extended by modifying the utility function of the attacker and defender.

Throughout this chapter, we assume that the security assets of different targets are independent.
We argue that this assumption holds in many scenarios such as ad hoc networks where no hierarchy
or infrastructure is available and each node operates independently of others. A limitation of
our work in this study is the static full information game formulation. However, despite these
simplification and limitation, the results and its implications are far from trivial. In fact, our
model presented here can serve as a theoretic basis for further more sophisticated game models on
the intrusion detection problem tailed to specific scenarios.

Table 5.1 illustrates the payoff matrix of the attacker-defender interaction on target i in the
strategic form. In the matrix, a denotes the detection rate of the IDS module of the defender,
b denotes the false alarm rate (i.e., false positive rate), and a, b ∈ [0, 1]. The cost of attacking
and monitoring (e.g., energy cost) target i ∈ T are also taken into account in our model and are
assumed proportional to the security asset of i, denoted by CaWi and CmWi, respectively. CfWi

denotes the loss of a false alarm. In our study, we implicitly assume that Ca < 1, otherwise the
attacker has no incentive to attack, similarly Cm < 1.

Monitor Not monitor
Attack (1− 2a)Wi − CaWi, −(1− 2a)Wi − CmWi Wi − CaWi,−Wi

Not attack 0,−bCfWi − CmWi 0, 0

Table 5.1: Strategic form of the game for target i

The overall payoff of the attack and defender, defined by the utility functions UA and UD, is
as follows:

UA(p,q) =
∑

i∈T
piqi [(1− 2a)Wi − CaWi] + pi(1− qi)(Wi − CaWi)

=
∑

i∈T
piWi(1− 2aqi − Ca)

UD(p,q) =
∑

i∈T
piqi(−(1− 2a)Wi − CmWi)− pi(1− qi)Wi − (1− pi)qi(bCfWi + CmWi)

=
∑

i∈T
[qiWi [pi(2a + bCf )− (bCf + Cm)]− piWi]

We conclude this section with the definition of the network intrusion detection game with one
attacker/defender.

Definition 5.1. The intrusion detection game with one attacker/defender G is defined as follows:
Players: Attacker, Defender
Strategy set: Attacker: AA = {p : p ∈ [0, P ]N ,

∑

i∈N
pi ≤ P}

Defender: AD = {q : q ∈ [0, Q]N ,
∑

i∈N
qi ≤ Q}

Payoff: UA for attacker, UD for defender
Game rule: The attacker/defender selects its strategy p/q ∈ AA/AD to maximize UA/UD
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5.4 Solving the Intrusion Detection Game with one Attacker/Defender

For non-cooperative games as G, the most important solution concept is the Nash equilibrium
(NE), where no player has incentive to deviate from its current strategy. In the case of G, we have
the following definition of NE.

Definition 5.2. A strategy profile (p∗,q∗) is said to be a NE of G if neither the attacker nor the
defender can improve its utility by unilaterally deviating its strategy from it.

5.4.1 Sensible Target Set

In G, since the attacker has limited attack resource, a natural question is whether a rational attacker
will focus on some targets or allocate its attack resource to all targets to reduce the probability of
being detected. Next we study this question before delving into the analysis of the NE. To facilitate
the analysis, we sort the targets based on their security asset Wi as: W1 ≥ W2 ≥ · · · ≥ WN . We
then define the sensible target set and the quasi-sensible target set as follows:

Definition 5.3. The sensible target set TS and the quasi-sensible target set TQ are defined such
that:





Wi >
|TS | · (1− Ca)− 2aQ

(1− Ca)(
∑

j∈TS
1

Wj
)

∀i ∈ TS

Wi =
|TS | · (1− Ca)− 2aQ

(1− Ca)(
∑

j∈TS
1

Wj
)

∀i ∈ TQ

Wi <
|TS | · (1− Ca)− 2aQ

(1− Ca)(
∑

j∈TS
1

Wj
)

∀i ∈ T − TS − TQ

. (5.1)

where |TS | is the cardinality of TS , T − TS − TQ denotes the set of targets in the target set T but
neither in TS nor in TQ.

The following lemma further characterizes TS and TQ:

Lemma 5.1. Given a network N , both TS and TQ are uniquely determined. TS consists of NA

targets with the largest security assets such that:

1. If WN >
N(1− Ca)− 2aQ

(1− Ca)
∑N

j=1
1

Wj

, then NA = N , TQ = Φ.

2. If WN ≤ N(1− Ca)− 2aQ

(1− Ca)
∑N

j=1
1

Wj

, NA is determined by the following equations:





WNA
>

NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

WNA+1 ≤ NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

. (5.2)

TQ consists of the target(s) i such that Wi =
NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

.

Proof. Please refer to Section 5.10.1 for detailed proof.
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Remark: It follows straightforwardly from Lemma 5.1 that NA ≥ 1. Given the performance
parameter of IDS and the attack cost, TS depends on the security assets of targets and the monitor
resource of the defender. |TS | is non-decreasing in Q. If 2aQ ≥ N(1 − Ca), |TS | = N or TS = T .
We investigate the following three typical scenarios to gain a more in-depth insight on TS :

• In the degenerate case where N = 1, NA = 1.

• In the homogeneous case where Wi = Wj , ∀i, j ∈ T , NA = N .

• In an extremely heterogeneous case where W1 ' · · · ' Wk À Wk+1 ≥ · · · ≥ WN , NA = k.

TQ can be regarded as the border set between TS and T − TS and may be empty.
We now study the security implications of TS in the following theorem.

Theorem 5.1. A rational attacker has no incentive to attack any target i ∈ T − TS − TQ.

Proof. Please refer to Section 5.10.2 for the detailed proof.

Remark: Theorem 5.1 is a powerful result in that it shows that focusing only on the targets
in TS and TQ is enough to maximize the attacker’s payoff. Other targets are “self-secured” such
that they are not “attractive” enough to draw the attacker’s attention due to their security assets
and the monitor resource constraint of the defender, even these targets are not monitored by the
defender.

Noticing the utility function of the defender, if the attacker does not attack the target i, then
the defender has no incentive to monitor i, either. The following guideline for the defender is thus
immediate:

Guideline 1: A rational defender only needs to monitor the targets in TS + TQ.

5.4.2 Nash Equilibrium Analysis

In this subsection, we derive the NE of the intrusion detection game G. We can easily check that
G is a two-person game defined in [Ros65] and thus admits at least one NE following Theorem 1
in [Ros65]. Moreover, let (p∗,q∗) denote the NE of G, it holds that

0 ≤ (1− 2aq∗i − Ca)Wi = (1− 2aq∗j − Ca)Wj

≥ (1− 2aq∗k − Ca)Wk ∀i, j, k ∈ T , p∗i , p
∗
j > 0, p∗k = 0. (5.3)

(5.3) can be shown noticing the attacker’s utility function UA: if (1− 2aq∗i − Ca)Wi < 0, then
the attacker has incentive to change p∗i to 0; if (1− 2aq∗i − Ca)Wi < (1− 2aq∗j − Ca)Wj , then the
attacker has incentive to decrease p∗i and increase p∗j ; if (1− 2aq∗i − Ca)Wi < (1− 2aq∗k − Ca)Wk,
then the attacker gets more payoff by set p∗k = p∗i and p∗i = 0. In the same way, noticing the
defender’s utility function UD, it holds that

0 ≤ Wi[p∗i (2a + bCf )− (bCf + Cm)] = Wj [p∗j (2a + bCf )− (bCf + Cm)]

≥ Wk[p∗k(2a + bCf )− (bCf + Cm)] ∀i, j, k ∈ T , q∗i , q
∗
j > 0, q∗k = 0. (5.4)

Note the resource constraint of the players, we consider the following cases
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Case 1:
∑

i∈T q∗i = Q and
∑

i∈T p∗i = P . In this case, combining (5.3) and (5.4) leads to

p∗i





=
PA

Wi
∑NA

j=1
1

Wj

−

 NA

Wi
∑NA

j=1
1

Wj

− 1


 bCf + Cm

2a + bCf
i ∈ TS

∈

0,

PA

Wi
∑NA

j=1
1

Wj

−

 NA

Wi
∑NA

j=1
1

Wj

− 1


 bCf + Cm

2a + bCf


 i ∈ TQ

= 0 i ∈ T − TS − TQ

q∗i =





1
2a


1− Ca − NA(1− Ca)− 2aQ

Wi
∑NA

j=1
1

Wj


 i ∈ TS

0 i ∈ T − TS

where PA >


NA −WNA

NA∑

j=1

1
Wj


 bCf + Cm

2a + bCf
, and

∑

i∈T
p∗i = P . The necessary condition for the

solution to be a NE is




Wi[p∗i (2a + bCf )− (bCf + Cm)] ≥ 0, PA ≤ P

(1− 2aq∗i − Ca)Wi ≥ 0
i ∈ TS =⇒





ND ≥ NA

NA(1− Ca) ≥ 2aQ
,

where ND =

⌊
(2a + bCf )P
bCf + Cm

⌋
, where bnc denotes the largest integer not more than n.

Case 2:
∑

i∈T q∗i < Q and
∑

i∈T p∗i = P . In this case, noticing UD, we have

Wi[p∗i (2a + bCf )− (bCf + Cm)] = 0 ≥ Wj [p∗j (2a + bCf )− (bCf + Cm)] ∀i, j ∈ T , q∗i > 0, q∗j = 0

Otherwise the defender will increase q∗i to get more payoff. Combining the above equation with
(5.3) and (5.4), we can thus solve p∗, q∗ as

p∗i





=
bCf + Cm

2a + bCf
Wi > WND+1

∈
[
0,

bCf + Cm

2a + bCf

]
Wi = WND+1

= 0 Wi < WND+1

q∗i =





1− Ca

2a

(
1− WND+1

Wi

)
Wi > WND+1

0 Wi ≤ WND+1

where
∑

i∈T
p∗i = P . The necessary condition for the derived solution to be a NE is

∑

Wi>WND+1

q∗i < 1 =⇒ ND < WND+1

∑

Wi>WND+1

1
Wi

+
2aQ

1− Ca
=⇒ ND < NA (From (5.2) in Lemma 5.1)

Particularly, if ND = 0, then q∗i = 0, ∀i ∈ T ,

p∗i

{
∈ [0, P ] Wi = W1

= 0 Wi < W1

where
∑

i∈T ,Wi=W1

p∗i = P .
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Case 3:
∑

i∈T q∗i < Q and
∑

i∈T p∗i < P . In this case, we have





(1− 2aq∗i − Ca)Wi = 0

Wi[p∗i (2a + bCf )− (bCf + Cm)] = 0
i ∈ T =⇒





p∗i =
bCf + Cm

2a + bCf

q∗i =
1− Ca

2a

i ∈ T .

The necessary condition of
∑

i∈T q∗i < Q and
∑

i∈T p∗i < P is ND ≥ N and N(1 − Ca) ≥ 2aQ.
Moreover, from Lemma 5.1, in this case, it holds that NA = N .

The following theorem summarizes the above analysis results on the NE of G.

Theorem 5.2. The strategy profile (p∗,q∗) is a NE of G if and only if it holds that

1. If ND < NA, then

p∗i





=
bCf + Cm

2a + bCf
Wi > WND+1

∈
[
0,

bCf + Cm

2a + bCf
δ

]
Wi = WND+1

= 0 Wi < WND+1

q∗i =





1− Ca

2a

(
1− WND+1

Wi

)
Wi > WND+1

0 Wi ≤ WND+1

where
∑

i∈T
p∗i = P .

2. If ND ≥ NA and NA(1− Ca) > 2aQ, then

p∗i





=
PA

Wi
∑NA

j=1
1

Wj

−

 NA

Wi
∑NA

j=1
1

Wj

− 1


 bCf + Cm

2a + bCf
i ∈ TS

∈

0,

PA

Wi
∑NA

j=1
1

Wj

−

 NA

Wi
∑NA

j=1
1

Wj

− 1


 bCf + Cm

2a + bCf


 i ∈ TQ

= 0 i ∈ T − TS − TQ

q∗i =





1
2a


1− Ca − NA(1− Ca)− 2aQ

Wi
∑NA

j=1
1

Wj


 i ∈ TS

0 i ∈ T − TS

where PA >


NA −WNA

NA∑

j=1

1
Wj


 bCf + Cm

2a + bCf
, and

∑

i∈T
p∗i = P .

3. If ND ≥ NA and NA(1− Ca) ≤ 2aQ, in this case ND = NA = N and

p∗i =
bCf + Cm

2a + bCf
, q∗i =

1− Ca

2a
i ∈ T .

Remark 1: In Case 1 of Theorem 5.2, the attacker disposes limited attack resource such that
the defender does not use up all its monitor resource or even does not monitor at all. This may
also be due to that the monitor cost is too high or the detection rate a is too low. The valuable
information that can be drawn is that in some cases where the attack intensity is low, it is a waste
of resource for the defender to monitor all the time. If the monitor cost outweighs the gain, the
defender is better off to keep silent.
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Remark 2: In Case 2, both the attacker and defender use up all their resource to attack and
monitor. In other words, the attacker’s resource P and the defender’s resource Q are constrained
in the sense that at the NE, the payoff UA/UD is monotonously increasing in P/Q, i.e., given more
resource, both players can increase their payoff, as shown in the following:





UA(p∗,q∗) = P
NA · (1− Ca)− 2aQ∑NA

j=1
1

Wj

UD(p∗,q∗) = Q


P (2a + bCf )∑NA

j=1
1

Wj

− NA(bCf + Cm)∑NA
j=1

1
Wj




− PNA∑NA
j=1

1
Wj

+
N2

A∑NA
j=1

1
Wj

bCf + Cm

2a + bCf
− bCf + Cm

2a + bCf

NA∑

j=1

Wj

. (5.5)

In this case, the game G can be regarded as a resource allocation problem that each player tries to
choose the most profitable strategy under the resource constraint. The following corollary further
highlights the NE in this case.

Corollary 5.1. In Case 2 of Theorem 5.2, for ∀p′ 6= p∗, ∀q′ 6= q∗, let p̂ = argmaxp∈AA
UA(p,q′),

q̂ = argmaxq∈AD
UD(p′,q) it holds that UD(p∗,q∗) > UD(p̂,q′) and UA(p∗,q∗) > UA(p′, q̂).

Proof. Please refer to Section 5.10.3 for the sketch of proof.

Corollary 1 implicates that if the defender does not operate on the NE q∗, since the attacker
chooses its strategy p̂ that maximizes its payoff UA, as a result, the defender gets less payoff than
operating at q∗. This also holds for the attacker. Hence, the NE not only corresponds to an
equilibrium which is acceptable for both players such that they have no incentive to deviate, but
consists of the optimal choice for both players. From the defender’s point of view, operating on q

is the optimal strategy in the worst-case scenario where the attack has sufficient attack resource.
Remark 3: In Case 3, both the attacker’s resource P and the defender’s resource Q are suf-

ficient to attack and defend. In this case, the sensible target set TS = T , i.e., all targets are
attacked/monitored. However, both the attacker and the defender do not use up the total resource
to attack/defend, but rather reach an intermediate compromise at the NE which is unique. In such
context, the situation can be regarded such that the attack and the defender are playing N atomic
intrusion detection games G (N = 1) on each of the N target. Moreover, at the NE, we have





UA(p∗,q∗) = 0

UD(p∗,q∗) = −bCf + Cm

2a + bCf

N∑

j=1

Wj
. (5.6)

The implications behind (5.6) are:

1. Disposing more attack or monitor resource does not influence the NE and the payoff of both
players at the NE.

2. For the attacker, decreasing the attack cost will not increase its utility at the NE since the
defender will increase its monitor probability which will further drag U∗

A to 0.

3. For the defender, protecting more valuable targets represents more risk.
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Given the security assets of the targets, improving the performance of the IDS module (increasing
a and/or decreasing b) or/and decreasing the monitor cost/false alarm cost can increase its utility
and alleviate the attack intensity at the NE.

5.4.3 Further Security Implications Behind NE

Theorem 5.2 quantifies the behavior of a rational attacker and defender at the NE from which
no player has incentive to deviate. In some cases, the attacker’s strategy at the NE p∗ is not
unique, but all p∗ yields the attacker the same payoff. In contrast, the defender’s strategy at the
NE q∗ is unique in all cases. From Theorem 5.2, we can see that a rational attacker will never
choose the extreme strategies such as attacking the target with the largest security asset, or evenly
distributing its attack resource. Such strategies can be easily defended by the defender and thus
cannot bring the most payoff to the attacker. Hence the attacker focuses its attack on TS and
TQ with the probability distribution p∗. With this information in mind, we provide the following
guidelines for the defender:

Guideline 2: The defender should choose the monitor probability distribution q∗ according
to Theorem 5.2. Under such context, the attacker gets the same payoff by attacking any monitored
targets and gets less payoff by attacking any non-monitored targets.

In fact, to equalize the attacker’s payoff of attacking any monitored targets turns to be the best
choice since otherwise, the attacker will attack the least protected target i where (1−Ca−2aqi)Wi

is maximized to gain extra payoff and the defender’s payoff decreases accordingly.
We then study the impact of the monitor resource constraint on the system to gain a more

in-depth insight on the NE. To this end, we compare the defender’s payoff at the NE of Case 2
where the monitor resource is constrained and Case 3 where defender disposes sufficient resource.

From (5.5) and (5.6), we can see that the resource constraint has a significant negative impact
on the system when P is large: for the attacker, it cannot get any profit if the defender has
enough resource to monitor (UA = 0), on the contrary if the monitor resource is not sufficient, the
attacker’s payoff reaches O(Wi); at the defender side, we can quantify the payoff loss due to the
lack of monitor resource as:

L = −Q


P (2a + bCf )∑NA

j=1
1

Wj

− NA(bCf + Cm)∑NA
j=1

1
Wj


 +

PNA∑NA
j=1

1
Wj

− N2
A∑NA

j=1
1

Wj

bCf + Cm

2a + bCf
−

bCf + Cm

2a + bCf

N∑

j=NA+1

Wj .

We can see that with the increase of P , the loss turns positive and may raise to O(Wi).
Following the above analysis, the necessary conditions to limit the damage caused by the

attacker are disposing sufficient monitor resource and operating on q∗ of Case 3 of Theorem 5.2 in
that the attacker’s payoff drops to 0 at the NE regardless of the attack resource P .

Until now, our analysis was based on the condition that there is one defender, i.e., Q ≤ 1. In
case where N(1− Ca) > 2a, one defender is not enough to maintain the favorable NE. Obviously
more than one defender is needed. Hence, a natural question we pose is that under such context,
how much monitor resource Q, or moreover, how many defenders are needed to achieve system
optimality in terms of security? How to configure them to maximize UD?



Chapter 5. On Intrusion Detection in Heterogenous Networks 78

5.5 Intrusion Detection Game with Multiple Attackers/Defenders

In this section, we extend our efforts to the intrusion detection game with multiple attack-
ers/defenders to study the posed questions. To this end, we relax the resource constraint P ≤ 1
and Q ≤ 1. We base our study on the following assumptions:

1. The attacker side disposes sufficient attack resource P .

2. The attackers can communicate and cooperate among themselves to launch attacks and so
do the defenders to arrange their monitoring.

3. The attack gain on the same target is not cumulative, i.e., if attackers Ai and Aj attack
the same target m simultaneously with success, the attack gain is Um

A = (1 − Ca)Wm, not
2(1− Ca)Wm.

Assumption 3 is a simplified scenario. In fact, the attack gain may range from (1 − Ca)Wm

to min{2(1 − Ca)Wm,Wm} depending on the specific scenarios, noticing that target m cannot
lose more than the security asset Wm it holds even in the worst case. Here in order to perform
a closed-form analysis, we focus on the simplified scenario where the gain of multiple attacks on
the same target is not cumulative. We consider it a reasonable assumption when the attackers
can communicate among them and multiplying attacks does not increase the chance of success or
decrease the attack cost. In other scenarios, the assumption does not hold. However, our analysis
in the simplified case can be adapted to investigate these cases by modifying the attackers’ utility
function to take into account the cumulative effect of the attacks on the attack gain and cost.

At the defender side, having multiple defenders monitor the same target influences the detection
and the false alarm rate, thereby may change the final payoff. We thus conduct our analysis for
the following two cases. In the first case, each target is monitored by at most one defender at any
time. In the second case, we allow one target to be monitored by several defenders simultaneously
and their results are combined to further detect possible attacks.

5.5.1 Case 1

Since the attack gain is not cumulative, the attackers will never attack the same target simulta-
neously. In this subsection, we address the case where any target is monitored by at most one
defender at any time. The intuition of adopting this strategy is to use the monitor resource in
an economic way, i.e., to cover the most targets possible with the monitor resource Q. In such
context, our previous analysis can be applied with slight modification on the notation pi and qi:
now pi denotes the total attack resource from the attackers spent to attack the target i; similarly,
qi denotes the total monitor resource from the defenders spent to monitor the target i. Apply
Theorem 5.2, the NE (p∗,q∗) can be derived as:

1. If 2a ≤ 1−Ca, then p∗i = 1 and q∗i = 1, ∀i ∈ T . In this case, the IDS modules of the defenders
are not efficient enough to thwart attacks. The payoff of the players at the NE is





UA(p∗,q∗) = (1− Ca − 2a)
∑

i∈T
Wi

UD(p∗,q∗) = −(1− 2a + Cm)
∑

i∈T
Wi
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2. If 2a > 1 − Ca, then p∗i =
bCf + Cm

2a + bCf
, q∗i =

1− Ca

2a
, i ∈ T . The correspondent payoff is:

UA(p∗,q∗) = 0 and UD(p∗,q∗) = −
∑

i∈T

bCf + Cm

2a + bCf
Wi.

Here we implicitly assume that Cm ≤ 2a in that Cm > 2a leads to q∗i = 0, which is the trivial
case where the defender side do not monitor any target due to the high monitor cost.

For Case 1, it is clear that the number of defenders required to maintain the above NE is

Nmin = N . For Case 2, at the NE,
∑

i∈T
qi =

N(1− Ca)
2a

. Noticing that each defender disposes at

most qi = 1 as monitor resource, we need at least Nmin =
⌈

N(1− Ca)
2a

⌉
defenders to maintain the

above NE under the condition that the defenders can cooperate among them to arrange their
monitoring, where dne denotes the smallest integer not less than n. Following the condition

2a > 1− Ca, we have Nmin ≤ N and if Ca ¿ 1, Nmin ∼ N(1− Ca)
2a

∼ N

2a
>

N

2
.

The intuition behind the above results is that if the detection rate of the defenders is not high
enough to thwart the attacks, then each target should be monitored as much as possible to decrease
the damages caused by the attackers as much as possible. On the other hand, if the defenders are
efficient enough in terms of the detection rate, then less monitor resource is required because in
such context, the attacker side does not attack on the maximum intensity.

Can we improve the results by letting multiple defenders monitor the same target simultane-
ously and combine the monitor results to make the final decision? We answer this question by
performing the following analysis.

5.5.2 Case 2

The intuition of adopting this strategy is to combine the monitor results of multiple defenders to
achieve better performance. As price, the monitor cost is higher.

Consider the case where x defenders monitor the same target simultaneously and the attack is
said to be detected if it is detected by at least y (1 ≤ y ≤ x, referred to as detection threshold) out
of the x defenders. The aggregate detection rate ay

x and false alarm rate by
x can be computed as:





ay
x =

x∑

i=y

(
x

i

)
ai(1− a)x−i

by
x =

x∑

i=y

(
x

i

)
bi(1− b)x−i

where a and b is the detection and false alarm rate of the individual defender. The following
straightforward lemma studies ay

x and by
x.

Lemma 5.2. ∀x, y ∈ Z+, y ≤ x and 0 < a, b < 1, it holds that:

• Both ay
x and by

x is monotonously decreasing w.r.t. y given x and w.r.t. x given y (y ≤ x).

• If x > 1, then ay
x < xa, by

x < xb.

Extending Theorem 5.2, at the NE (p∗,q∗), we have:
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1. If 2ayi
xi ≤ 1− Ca, then p∗i = 1, q∗i = 1,∀i ∈ T ,





UA(p∗,q∗) = (1− Ca − 2ayi
xi

)
∑

i∈T
Wi

UD(p∗,q∗) = −(1− 2ayi
xi

+ xiCm)
∑

i∈T
Wi

2. If 2ayi
xi > 1− Ca, then p∗i =

byi
xiCf + xiCm

2ayi
xi + byi

xiCf
, q∗i =

1− Ca

2ayi
xi

, i ∈ T . The correspondent payoff is

UA(p∗,q∗) = 0 and UD(p∗,q∗) = −
∑

i∈T

byi
xiCf + xiCm

2ayi
xi + byi

xiCf
Wi.

where xi denotes the number of defenders simultaneously monitoring the target i with the detection
threshold yi, pi denotes the total attack resource from attackers spent to attack the target i, qi

denotes the monitor resource of each of the xi defenders spent to monitor the target i.
The previous subsection where each target is monitored by at most one defender at any time can

be regarded as the degenerate case xi = yi = 1. For Case 1, we have Nmin = N at xi = yi = 1. For

Case 2, if xi = 1, Nmin = N ; If xi > 1, it follows from Lemma 5.2 that Nmin =

⌈∑

i∈T
xi

(1− Ca)
2ayi

xi

⌉
>

⌈
N(1− Ca)

2a

⌉
.

Compare the above analysis with the results in Section 5.4.1 where each target is monitored by
one defender, if each target is monitored by multiple defenders simultaneously, more defenders are
usually needed to maintain the NE although the detection rate may be higher. Hence, to minimize
the required number of defenders, the monitor resource should be used in an economic way such
that each target is monitored by at most one defender at any time.

However, if the objective of the defender side is not to maintain the NE with minimum number
of defenders, but rather to maximize its payoff at the NE, e.g., if there is sufficient monitor resource,
then the answer may be different. In such context, the defender side needs to solve the optimization
problem max1≤yi≤xi UD(p∗,q∗), as summarized in the following theorem:

Theorem 5.3. The optimal strategy for the defender side is to let each target be monitored by x∗

defenders simultaneously with the detection threshold y∗:

(x∗, y∗) =





argmin
1≤y≤x, 2ay

x≤1−Ca

1− 2ay
x + xCm C1 < C2

argmin
1≤y≤x, 2ay

x>1−Ca

by
xCf + xCm

2ay
x + by

xCf
C1 ≥ C2

where




C1 = min
1≤y≤x

1− 2ay
x + xCm s.t. 2ay

x ≤ 1− Ca

C2 = min
1≤y≤x

by
xCf + xCm

2ay
x + by

xCf
s.t. 2ay

x > 1− Ca

Remark: The above optimization problem can be solved numerically. The choice of x∗ consists
of searching a tradeoff between the amount of observation based on which the final decision is
made and the monitor cost. The choice of y∗ consists of searching a tradeoff between the detection
rate and the false alarm rate: with a larger y, the false alarm rate by

x decreases, but the detection
rate ay

x also decreases. A bad choice of y may lead to significant sub-optimality at the defender
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side even if it disposes sufficient monitor resource. We will show this point via numerical study in
Section 5.7.

At the optimal configuration, at least Nmin =

⌈
Nx∗(1− Ca)

2
∑x∗

i=y∗ Ci
x∗a

i(1− a)x∗−i

⌉
defenders are needed

to achieve the system optimality in terms of security.
Based on the results in this section, we have the following guidelines for the defenders:

Guideline 3: In any case, at least
⌈

N(1− Ca)
2a

⌉
defenders are needed in order to effectively

monitor the targets.
Guideline 4: In some cases, having multiple defenders monitoring the targets simultaneously

and combining their results helps the defenders achieve optimal protection performance.

5.6 Model Application: Case Study

In this section, we provide two case studies to show how our game theoretic framework can be
applied in the IDS configuration and deployment for wireless networks.

5.6.1 Case Study 1

In [RB06], Abderrezak and Abderrahim propose a secure architecture for mobile ad hoc networks.
Their approach divides the ad hoc network into clusters and implements a decentralized certification
authority. Each cluster has a cluster head (CH). The private key of the certification authority (CA)
is distributed over CHs using threshold cryptography where every CH holds a fragment of the whole
key. Each cluster is managed by the CH in the cluster which plays the role of certifying public
keys of the cluster’s member nodes and a set of nodes called Registration Authority (RA), which
are nodes with high trust level. The role of RAs is to filter and analyze certificate requests before
forwarding them to the CH and monitor the cluster’s member nodes by rating each of its neighbor
nodes with the reputation rate which reflects the trust level of the monitored node. The cluster’s
member nodes with sufficiently high reputation rate are elected as RAs if necessary.

In the proposed security architecture, a crucial issue is to determine the monitor strategy of
the RAs. To this end, we apply our game theoretic framework. The solution procedure can be
summarized in three steps:

1. Determine the security assets of the targets

2. Compute the sensible target set TS based on Lemma 5.1

3. Apply Theorem 5.2 to determine the monitor strategy q

In the studied scenario, we consider the reputation rate of a node as its security asset, i.e.,
Wi = Ri for node i whose reputation rate is Ri. We consider the worst-case scenario where the
attacker side disposes sufficient attack resource. In ad hoc networks, it is usually extremely easy to
launch attacks. It follows that Ca ¿ 1. To calculate the sensible target set TS , we sort the nodes
by their security assets as: W1 ≥ W2 ≥ · · · ≥ WN and apply Lemma 5.1 to compute NA by the
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following inequalities:





WNA
>

NA − 2a∑NA
j=1

1
Wj

WNA+1 ≤ NA − 2a∑NA
j=1

1
Wj

.

In the last step, we apply Theorem 5.2 to compute the monitor strategy q:

q∗i =





1
2a


1− NA − 2a

Wi
∑NA

j=1
1

Wj


 i ≥ NA

0 i < NA

.

5.6.2 Case Study 2

In [SSA06], Subhadrabandhu et al. postulate that the wireless ad hoc networks in near future will
consist of two classes of nodes: (1) inside nodes communicate using the network and at the same
time perform system tasks like relaying packets, discovering routes, securing communication, etc;
(2) outside nodes only communicate using the network. Examples of inside nodes include pre-
deployed terminals, access points and trusted users. Outside nodes are usually common users and
visitors. In such architecture, to ensure the security of the network, a subset of inside nodes are
equipped with IDS modules. Such inside nodes are called IDS capable inside nodes. Operating in
promiscuous mode, the IDS capable inside nodes monitor the outside nodes in their neighborhood
in order to isolate any malicious attackers. Due to the coverage redundancy, each outside node is
monitored by multiple IDS capable inside nodes, which may decide differently base on their own
observations. These different decisions are further combined to make the final decision. In such
context, the task for the IDS designer is to determine how many IDS capable inside nodes are
needed to monitor efficiently the outside nodes and how to configure them.

Theorem 5.3 can be applied to answer the above question. More specifically, by solving the
optimization problem max

1≤x≤y
UD(p∗,q∗), we obtain x∗ and y∗. The resulting optimal strategy is thus

to let x∗ IDS capable insides nodes monitor one outside node simultaneously with the detection
threshold y∗. The choice of x∗ consists of searching a tradeoff between the amount of observation
based on which the final decision is made and the monitor cost. The choice of y∗ consists of
searching a tradeoff between the detection rate and the false alarm rate. Moreover, let No be the

number of outside nodes to be monitored in the network,

⌈
Nox

∗(1− Ca)
2

∑x∗
i=y∗

(
x∗
i

)
ai(1− a)x∗−i

⌉
IDS capable

inside nodes are needed to efficiently monitor the outside nodes in the network. In other words,

each outside node should be monitored by at least

⌈
x∗(1− Ca)

2
∑x∗

i=y∗
(
x∗
i

)
ai(1− a)x∗−i

⌉
IDS capable inside

nodes.
After dimensioning the IDS capable inside nodes, the next step is to select the IDS capable inside

nodes among all inside nodes. The goal of this step is to minimize the number of IDS capable nodes

under the constraint that each outside nodes is monitored by at least

⌈
Nox

∗(1− Ca)
2

∑x∗
i=y∗

(
x∗
i

)
ai(1− a)x∗−i

⌉

IDS capable inside nodes. The heuristic algorithm MUNEN proposed in [SSA06] can be applied
here to select IDS inside nodes.

It is interesting to compare our work with that in [SSA06] where the authors propose a statistical
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framework for intrusion detection for ad hoc networks. They focus on minimizing the monitor
resource consumption subject to limiting the security risk under given threshold. Our work, on the
other hand, focuses on finding the optimal strategy for the defenders to achieve system optimality
in terms of security. These two solutions actually address the intrusion detection problem from
two different angles, that in [SSA06] from an optimization angle while ours from a game theoretic
angle.

5.7 Network Intrusion Detection as a Stackelberg Game

In the previous sections, we focused on the intrusion detection game where both the attacker
and the defender side take the decision locally at the same time. However, in many cases, the
attackers may launch attacks based on the strategy of the defenders or conversely, the defenders
decide the strategy based on the attackers strategy. In this subsection, we address these cases by
modeling the interaction between the attackers and the defenders as a Stackelberg game [OR94], in
which a “leader” chooses a strategy and then a “follower”, informed of the leader’s choice, chooses
its strategy accordingly such that both sides try to maximize their payoff. We thus formulate
a noncooperative Stackelberg game for the intrusion detection GS as follows. In the following
formulation, the attacker side plays the role of leader, the counterpart case where the defender side
plays the role of leader can be formulated in the same way.

Players: Leader: attacker side; Follower: defender side
Strategy: p ∈ AA and q ∈ AD

Payoff: UA for leader and UD for follower
Game rule: the leader decides p first, the follower decides q after knowing p

Follower’s Problem:
The follower is given the leader’s chosen strategy. It then chooses its strategy to maximize its

payoff. Formally, for any given p ∈ AA, the follower solves the following optimization problem:

q(p) = argmax
q∈AD

UD(p,q)

Leader’s Problem:
The leader knows that the follower will choose its strategy to greedily maximize its payoff.

Therefore, the leader chooses its strategy which will maximize its payoff, given the follower will
subsequently choose its strategy to maximize its payoff. Formally, the leader solves the following
optimization problem:

p(q) = argmax
p∈AA

UD(p,q(p))

The Stackelberg game is often solved by backwards induction: First solve the follower’s problem
for every possible strategy taken by the leader; The solution consists of the best response strategy
of the follower as a function of the leader’s strategy; Then the leader decides its optimal strategy
according to the follower’s best response strategy. The obtained solution is often referred to as a
Stackelberg equilibrium (SE) or Stackelberg-Nash equilibrium (SNE).

Next we study the SNE of GS for the case where the attacker side is the leader and the follower,
respectively. In the following study, we focus on the scenario where 2a > 1 − Ca, Cm, Ca ¿ 1,
both the attacker and the defender side process sufficient attack and monitor resource P and Q
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respectively, and each target is monitored by at most one defender at any time. However, our
study is also applicable in other cases although the result may be different.

5.7.1 Leader: Attacker Side; Follower: Defender Side

In this case, the attacker side is the leader. By performing backwards induction, we can solve the
best response of the follower as:

qi(p)





= 0 pi <
bCf + Cm

2a + bCf

∈ [0, 1] pi =
bCf + Cm

2a + bCf

= 1 pi >
bCf + Cm

2a + bCf

.

Noticing the payoff of the leader is
∑

i∈T
piWi(1−Ca − 2aqi(p)), we obtain the SNE (pS,qS) as

follows




pS
i =

bCf + Cm

2a + bCf
i ∈ T

qS
i = 0 i ∈ T

.

The corresponding payoff of the leader and follower is as follows





UA(pS,qS) =
bCf + Cm

2a + bCf
(1− Ca)

∑

i∈T
Wi

UD(pS,qS) = −bCf + Cm

2a + bCf

∑

i∈T
Wi

.

However, the above obtained SNE is a weak equilibrium in that UD(pS,qS) = UD(pS,q′),∀q′ ∈
AD, hence the leader is not sure whether the follower will operate on qS or not. This may have
detrimental effect on the payoff of the leader: e.g., if the follower sets qi = 1 for all target i instead

of qi = 0, then UA =
bCf + Cm

2a + bCf
(1 − Ca − 2a)

∑

i∈T
Wi < 0, as consequence, the leader get negative

payoff. This is clearly not desirable for the leader (attacker) in that its payoff is 0 when doing
nothing.

To push the follower to choose the desired qS from the leader’s perspective, the leader has

incentive to set pi = pS
i −ε =

bCf + Cm

2a + bCf
−ε where ε is a small positive number. Under such context,

the follower will operate on qS. For the leader, its payoff is
bCf + Cm

2a + bCf
(1−Ca)− ε(1−Ca)

∑

i∈T
Wi,

only slightly less than its desired payoff at the SNE if ε is sufficiently small, which we argue is
acceptable for the leader.
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Lead (pL) Follow (pF)

Lead UA = −bCf + Cm

2a + bCf
δ
∑

i∈T
Wi UA = 0

(qL) UD = −
[
bCf + Cm

2a + bCf
+

1− Ca

2a
(2a + bCf )ε− ε

] ∑

i∈T
Wi UD = −

(
1− Ca

2a
+ δ

)
(bCf + Cm)

∑

i∈T
Wi

Follow UA =
(

bCf + Cm

2a + bCf
− ε

)
(1− Ca)

∑

i∈T
Wi UA = 0

(qF) UD = −
(

bCf + Cm

2a + bCf
− ε

)
(1− Ca)

∑

i∈T
Wi UD = 0

Table 5.2: Payoff Matrix of the lead-or-follow game

5.7.2 Leader: Defender Side; Follower: Attacker Side

The above analysis can be applied in this symmetrical case where the leader is the defender side.
The SNE (pS,qS) is:





pS
i = 0 i ∈ T

qS
i =

1− Ca

2a
i ∈ T .

To push the follower to choose the desired pS from the leader’s point of view, the leader sets

qi = qS
i − δ =

1− Ca

2a
+ δ where δ is a small positive number. Under such context, the follower

will operate on pS. For the leader, its payoff is −1− Ca

2a
(Cm + bCf )

∑

i∈T
Wi − δ(Cm + bCf )

∑

i∈T
Wi,

only slightly less than its desired payoff at the SNE if δ is sufficiently small.

5.7.3 Lead or Follow

We next consider an interesting scenario where the attack/defender side decides whether to be the
leader (pick the leader’s strategy obtained previously) or the follower (pick the follower’s strategy)
without the knowledge of its opponent’s choice. In such context, does the strategy to be the
leader dominate the strategy to be the follower in that according to our analysis, the leader may
“control” the behavior of the follower to some extent, but does it hold in the scenario considered
in this subsection?

We study the following “lead or follow” intrusion detection game to answer the posed question:
the players are the attacker and the defender side; they choose either the leader strategy (denoted
by pL and qL, respectively) or the follower strategy (denoted by pF and qF, respectively) to
maximize their payoff UA and UD defined previously. ∀i ∈ T , we have





pL
i =

bCf + Cm

2a + bCf
− ε

qL
i =

1− Ca

2a
+ δ





pF
i = 0

qF
i = 0

.

The payoff of the attacker and the defender side is depicted in Table 5.2. Since both ε and δ

are sufficiently small, the terms containing εδ are ignored in the table.
Recall that we consider the scenario where 2a > 1 − Ca and Cm, Ca ¿ 1. From the point of

view of the defender side, the first line is strictly dominated by the second line, indicating that the
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defender side is always better off choosing to be the follower. Moreover, there exists a unique NE
for the lead-or-follow game which is (pL,qF), i.e., the attacker side is the leader and the defender
sides follows.

The obtained NE of the “lead or follow” game seems to be more favorable to the attacker side
since it can control the strategy of the follower, the defender side, by being the leader and push the
follower to keep silent. However, in fact the defender side also “control” the attacker side by being
the follower: this can be shown by the fact that the leader’s strategy and payoff at the unique
NE depend uniquely on the parameters of the defender. That is to say, the follower can exert its
influence on the leader via its performance parameters, e.g., if b, Cm ¿ a, both pi and UA are very
small at the NE.

According to our model, an efficient defender system can not only achieve high detection rate,
but also significantly limit the attack probability and consequently limit the harm that the attacker
may do on the system. To let multiple defenders monitor one target simultaneously, as discussed
in Section 5.4, is one way to increase the efficiency of the defender system, e.g., the defender side

sets x, y such that UD = −
(

by
xCf + Cm

2ay
x + by

xCf
− ε

)
(1− Ca)

∑

i∈T
Wi is maximized.

One issue we would like to mention is that the above analysis is based on the condition that
both the attacker and the defender side have sufficient attack and monitor resource. The defender
side being the follower (qF

i = 0) does not mean that no defender is needed to maintain the NE.
On the contrary, the NE can be viewed as an optimal “agreement” between the two players such
that before reaching the “agreement”, the players may try different strategies to choose one that
maximize their payoff. If, for example, the defender side does not have enough monitor resource,
the attacker will not choose the strategy pL, instead, it may operate on pi = 1 to maximize its
payoff. Thus the sufficiency of resource is the necessary condition of the NE outcome.

5.8 Numerical Study

In this section, we perform numerical study on two typical scenarios to validate our analytical
results.

We first consider a network with high requirement on security, e.g., military networks usually
require a high level of confidentiality and need to be resistant to various attacks. In such scenario,
the security assets of targets Wi (i ∈ T ) are much higher than the related cost: i.e., Ca, Cm, Cf ¿
1. We set Ca = Cm = 0.001 and Cf = 0.01. The defenders are usually equipped with high-
performance IDS modules with powerful processing capability. Hence a relatively large value
a = 0.9 and small value b = 0.05 are chosen in our study.

The second scenario we consider is at the other end of the spectrum where the attack/monitor
cost is important (we set Ca = Cm = 0.1 and Cf = 0.3 in this case), e.g., a WLAN at the airport
where both attackers and defenders have limited battery and processing capability. The defender
in such cases are usually not so efficient. We thus set a = 0.4 and b = 0.2. In both scenarios, there
are 10 targets with normalized security assets: Wi = (11− i) ∗ 0.1 (i = 1, 2, · · · , 10).

5.8.1 One Attacker, One Defender

We start with the network intrusion detection game with one attacker/defender. The attack
resource P and the monitor resource Q are both set to 1. Table 5.3 shows the NE (p∗,q∗)
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calculated using our analytical model. As shown in the analytical results, both the attack and
defender focus only on the targets in the sensible target set (Target 1-6 for scenario 1 and target
1-4 for scenario 2).

Scenario 1 Scenario 2
p∗1 = 0.118, q∗1 = 0.279 p∗1 = 0.239, q∗1 = 0.394
p∗2 = 0.131, q∗2 = 0.249 p∗2 = 0.245, q∗2 = 0.313
p∗3 = 0.147, q∗3 = 0.211 p∗3 = 0.253, q∗3 = 0.212
p∗4 = 0.161, q∗4 = 0.169 p∗4 = 0.262, q∗4 = 0.081
p∗5 = 0.197, q∗5 = 0.096 p∗5 = 0, q∗5 = 0
p∗6 = 0.236, q∗6 = 0.004 p∗6 = 0, q∗6 = 0

p∗7 = 0, q∗7 = 0 p∗7 = 0, q∗7 = 0
p∗8 = 0, q∗8 = 0 p∗8 = 0, q∗8 = 0
p∗9 = 0, q∗9 = 0 p∗9 = 0, q∗9 = 0

p∗10 = 0, q∗10 = 0 p∗10 = 0, q∗10 = 0
U∗

A = 0.459, U∗
D = −0.460 U∗

A = 0.585, U∗
D = −0.800

Table 5.3: NE

Scenario 1 Scenario 2
(UD)max −0.561 −0.965

UD −0.823 −1.265
(U∗

D)min −0.461 −0.801

Table 5.4: Payoff degradation due to deviation from NE

To further evaluate our analytical results and proposed design guidelines, we investigate the
cases where the defender does not operate on the NE. We thus simulate 300 random strategies for
the defender and we calculate the correspondent payoff UD under the condition that the attacker
chooses its strategy to maximize its payoff. Table 5.4 shows the results: (UD)max denotes the
maximum payoff of the defender with the simulated 300 random strategies, UD denotes the average
payoff of the defender, (U∗

D)min denotes the minimum payoff of the defender under the condition
that the defender operate on q∗ and the attacker choose its strategy to maximize its payoff.
Comparing the above numerical results, we can see that in the simulated scenarios, the NE consists
of the optimal choice for the defender under the condition that the attacker is intelligent to choose
its strategy maximizing its payoff. The above numerical result confirms the proposed guideline 1
and 2 in the analytical model.

In practice, the detection rate a and the false alarm rate b usually cannot be accurately measured
or estimated. To evaluate the impact of the defender’s estimation error of a and b on the utility
of players, we conduct a sensitivity analysis. More specifically, we vary the error |∆a|/a and
|∆b|/b and let the defender operate on the NE strategy based on the inaccurate estimation. At
the attacker side, it chooses its strategy to maximize UA. Figure 5.1 plots the increase of UA

and the degradation of UD w.r.t. UA and UD without estimation errors as functions of the relative
estimation error |∆a|

a and |∆b|
b in both scenarios. The results show that the impact on the estimation

error of b is negligible. In contrast, the impact of the estimation error of a on the players’ payoff
varies from 5 − 11% when the error reaches 25%. We also observe that over estimating a always
leads to more increase (decrease) of UA (UD) than under estimating it.
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Figure 5.1: Sensitivity analysis on the error of a (left) and b (right)

5.8.2 Multiple Attackers/Defenders

We then study the case of multiple attackers/defenders and investigate the optimal strategy for
the defender side. Figure 5.2 plots −UD at the NE for the studied scenarios with different x, y.
Table 5.5 shows the optimal strategy for the defender side according to the analytical model.
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Figure 5.2: −UD as function of x, y, left: scenario 1; right: scenario 2

Scenario 1 Scenario 2
x∗ = 1, y∗ = 1 x∗ = 2, y∗ = 1

p∗i = 0.00083, q∗i = 0.556 p∗i = 0.237, q∗i = 0.703
Nmin = 6 Nmin = 15

U∗
A = 0, U∗

D = −0.0046 U∗
A = 0, U∗

D = −1.22

Table 5.5: Optimal strategy for defenders

For scenario 1, the optimal strategy for the defender side is to let each target to be monitored by
at most one defender simultaneously at the probability 0.556. The minimum number of required
defenders is 6. For scenario 2, the optimal strategy for the defender side is to let each target
to be monitored by 2 defenders simultaneously at the probability 0.703. In such case, we have
a(x = 2, y = 1) = 0.64, the minimum number of required defenders is 15 according to Theorem
5.3.
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From the above results, we can see that the optimal strategy for the defender side depends
very much on the parameters such as a, b etc. The payoff UD in scenario 1 is much less sensitive
w.r.t. y especially when y ≤ x − 2 then in scenario 2. This can be explained by the fact that
ay

x(by
x respectively) is less sensible w.r.t. y given x when a(b) is close to 1 or 0. As a consequence,

for scenario 2, deviating from the optimal strategy causes much more severe utility degradation
than scenario 1. Another valuable information we can draw from the result is that appropriately
configuring the defense system (e.g., setting x, y) is so important that a bad configuration not only
is a waste of resource, but causes significant security damage to the system. This result confirms
our remark of Theorem 5.3.

We then study the impact of lack of monitor resource on the network security. The following
two cases are simulated: 1). There are Nmin defenders operating at q∗; 2). There are Nmin − 1
defenders choosing random monitor strategies. 300 random strategies are simulated for this case.
In case 2, we set x = y = 1 for scenario 1 and x ≤ 2, y = 1 for scenario 2: i.e., for scenario 1, each
target is monitored by at most 1 defender at a time; for scenario 2, each target may be monitored
by 1 or 2 defenders simultaneously with detection threshold set to 1. This is a reasonable setting
noticing the resource and the performance parameters of the scenarios. In both cases, the attacker
side chooses its strategy that maximizes its payoff and the attack resource P is set to 10. Table 5.6
shows the payoff degradation due to the lack of sufficient monitor resource.

Scenario 1 Scenario 2
U1

D −0.0045 −1.24
(U2

D)max −0.37 −2.98
U2

D −1.3 −16.85

Table 5.6: Payoff degradation due to resource constraint

In Table 5.6, U1
D denotes the payoff of the defender side at the NE, (U2

D)max and U2
D denote

the maximum and average payoff of the defender side choosing the simulated random strategies.
The results show that lack of monitor resource degrades significantly the system security. This
degradation becomes more severe if the attacker side disposes more attack resource. This can be
seen comparing the numerical results in Table 5.6 (P = 10) and Table 5.4 (P = 1). Therefore,
sufficient resource and appropriate configuration at the defender side are two necessary conditions
of efficiently protecting the network from being attacked, which confirms the guideline 3 and 4 in
the analytical model.

5.9 Conclusion

This chapter addresses the intrusion detection problem in heterogenous networks consisting of
nodes with different security assets. We formulated the interaction between the attacks and the
defenders as a non-cooperative game and performed an in-depth analysis on the NE and the engi-
neering implications behind. Based on our game theoretic analysis, we derived expected behaviors
of rational attackers. We showed that sufficient monitor resource and appropriate configuration
at the defender side are two necessary conditions of efficiently protecting the network. We then
derived the minimum monitor resource requirement and the optimal strategy of the defender side
to achieve system optimality. We also provide two case studies to show how our game theoretic
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framework can be applied to configure the intrusion detection strategies in realistic scenarios.

5.10 Proofs

This section completes the detailed proofs omitted from the main text.

5.10.1 Proof of Lemma 5.1

The proof consists of first showing that TS is composed of n targets with largest security assets
and then proving n = NA by showing that neither n < NA nor n > NA is possible. It follows
obviously that TQ is also uniquely determined.

Here we prove Case 2 of the lemma because Case 1 holds straightforwardly. It is obvious that
NA targets with the largest security assets satisfying (5.2) consists of a sensible target set TS in
that (5.1) holds in such case. We then need to prove that TS is unique.

We first show that if i ∈ TS , then ∀j < i (Wj ≥ Wi), it holds that j ∈ TS , if not, there exists

j0 < i (Wj0 ≥ Wi) such that j0 ∈ T − TS . It follows that Wj0 ≤
|TS | · (1− Ca)− 2aQ

(1− Ca)
∑

k∈TS
1

Wk

. On the

other hand, from Definition 5.3, we have Wi >
|TS | · (1− Ca)− 2aQ

(1− Ca)
∑

k∈TS
1

Wk

. It follows that Wi > Wj0 ,

which contradicts with Wj0 ≥ Wi. Hence TS is composed of n targets with largest security assets.
We then prove n = NA by showing that it is impossible that n < NA or n > NA. If n < NA,

from (5.2), we have

WNA
>

NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

=⇒ WNA
(

NA∑

j=1

1
Wj

) >
NA · (1− Ca)− 2aQ

1− Ca
= NA − 2aQ

1− Ca

=⇒ WNA
(

NA∑

j=1

1
Wj

)− (NA − n) > n− 2aQ

1− Ca

Noticing WNA
≤ Wi,∀i ≤ NA and n < NA (i.e. Wn+1 ≥ WNA

), we have

Wn+1(
n∑

j=1

1
Wj

) ≥ WNA
(

n∑

j=1

1
Wj

) = WNA
(

NA∑

j=1

1
Wj

)−WNA
(

NA∑

j=n+1

1
Wj

)

≥ WNA
(

NA∑

j=1

1
Wj

)− (NA − n) > n− 2aQ

1− Ca

Hence Wn+1 >
n · (1− Ca)− 2aQ

(1− Ca)
∑n

j=1
1

Wj

. On the other hand, from Definition 5.3, we have Wn+1 ≤

n · (1− Ca)− 2aQ

(1− Ca)
∑n

j=1
1

Wj

. This contradiction shows that it is impossible that n < NA. Similarly we can

show that it is impossible that n > NA. Hence, n = NA is uniquely determined, so is TS . It follows
obviously that TQ is also uniquely determined. This concludes our proof.
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5.10.2 Proof of Theorem 5.1

The proof consists of showing that regardless of the defender’s strategy q, for any p ∈ AA such that
∃i ∈ T −TS −TQ, pi > 0, we can construct another strategy p′ such that p′i = 0, ∀i ∈ T −TS −TQ
and UA(p,q) < UA(p′,q).

If WN ≥ NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

, T − TS − TQ = ∅, the theorem holds evidently. We now prove

the case where WN <
NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

, in other words, T − TS − TQ 6= ∅.

Consider a vector q0 = (q0
1, q

0
2, · · · , q0

N ) where

q0
i =





1
2a


1− Ca − NA · (1− Ca)− 2aQ

Wi
∑NA

j=1
1

Wj


 i ∈ TS

0 i ∈ T − TS

It holds that q0
i ≥ 0 and

NA∑

i=1

q0
i = Q. Let q = (q1, q2, · · · , qN ) denote the monitor probability

distribution of the defender, by the Pigeon Hole Principle, it holds that
NA∑

i=1

qi ≤ Q, thus ∃m ∈ TS
such that qm ≤ q0

m.
We now consider any attacker strategy p = (p1, p2, · · · , pN ) ∈ AA satisfying

∑
i∈T −TS−TQ pi >

0, i.e., the attacker attack at least one target outside the sensible target set with non-zero proba-
bility. We construct another attacker strategy profile p′ based on p such that

p′i =





pi i ∈ TS and i 6= m

pm +
∑

j∈T −TS−TQ pj i = m

pi i ∈ TQ
0 i ∈ T − TS − TQ

By comparing the attacker’s payoff at p and p′, noticing that Wi <
NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

, ∀i ∈
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T − TS − TQ, we obtain:

UA(p)− UA(p′) =
∑

i∈T
piWi(1− 2aqi − Ca)−

∑

i∈T
p′iWi(1− 2aqi − Ca)

=
∑

i∈T
piWi(1− 2aqi − Ca)−

( ∑

i∈TS+TQ,i6=m

piWi(1− 2aqi − Ca) +


pm +

∑

i∈T −TS−TQ
pi


Wm(1− 2aqm − Ca)

)

=
∑

i∈T −TS−TQ
piWi(1− 2aqi − Ca)−

∑

i∈T −TS−TQ
piWm(1− 2aqm − Ca)

≤
∑

i∈T −TS−TQ
piWi(1− 2aqi − Ca)−

∑

i∈T −TS−TQ
piWm(1− 2aq0

m − Ca)

=
∑

i∈T −TS−TQ
piWi(1− 2aqi − Ca)−

∑

i∈T −TS−TQ
pi

NA · (1− Ca)− 2aQ∑NA
j=1(1− Ca) 1

Wj

≤
∑

i∈T −TS−TQ
piWi −

∑

i∈T −TS−TQ
pi

NA · (1− Ca)− 2aQ∑NA
j=1(1− Ca) 1

Wj

=
∑

i∈T −TS−TQ
pi


Wi − NA · (1− Ca)− 2aQ∑NA

j=1(1− Ca) 1
Wj


 < 0

Hence, operating at p′ gives the attacker more payoff than operating at p. As a result, a
rational attacker has no incentive to choose p compared with p′.

5.10.3 Proof Sketch of Corollary 5.1

It follows from
∑

i∈T q∗i = Q and q′ 6= q∗ that ∃m ∈ TS such that q′m < q∗m. We can solve p̂ as

p̂i

{
∈ [0, P ] i ∈ TM
= 0 i ∈ T − TM

where TM consists of target i such that (1 − 2aq′i − Ca)Wi is maximized,
∑

i∈TM p̂i = P . It
follows immediately that q′i < q∗i , ∀i ∈ TM. Noticing the defender’s utility function UD, we have
UD(p̂,q∗) > UD(p̂,q′).

Moreover, following the definition of NE, we have UD(p∗,q∗) ≥ UD(p̂,q∗). It follows that
UD(p∗,q∗) > UD(p̂,q′). Symmetrically, we can prove that UA(p∗,q∗) > UA(p′, q̂).
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Chapter 6

A Defense Strategy against Jamming

Attack in Wireless Networks

6.1 Introduction

It is widely recognized that the broadcast nature of the shared wireless medium makes wireless
networks extremely vulnerable to various attacks ranging from the passive eavesdropping to the
sophisticated manipulation of routing information, among which an easily mountable one with
detrimental effects on the victim network is jamming, alternatively termed Denial-of-Service (DoS).
Jamming is a malicious attack whose objective is to disrupt the communication of the victim
network by intentionally causing interference or collision at the receiver side. Usually launched
at the PHY and MAC layers, jamming requires no special hardware and can virtually paralyze
any wireless networks. [XTZW05] provides a taxonomy of different types of jamming in wireless
networks.

The defense strategies in existing literature mainly consist of retreating from the jammer after
detecting jamming or rerouting traffic around the jammed area. In [XWTZ04], Xu et al. propose
two strategies to evade jamming. The first strategy, channel surfing, is a form of spectral evasion
that involves legitimate wireless devices changing the channel that they are operating on. The
second strategy, spatial retreats, is a form of spatial evasion whereby legitimate devices move away
from the jammer. In [WSS03], Wood et al. present a distributed protocol to map the jammed region
so that the network can avoid routing traffic through it. The solution proposed by Cagalj et al.
[CCH07] uses different wormholes (wired wormholes, frequency-hopping pairs, and uncoordinated
channel hopping) that lead out of the jammed region to report the alarm to the network operator.
In [WSZ07], Wood et al. investigate how to deliberately avoid jamming in IEEE 802.15.4-based
wireless networks.

Despite the different techniques used in existing solutions, they usually require frequency hop-
ping capability or sufficient node mobility to avoid confronting the jammer. Such requirements
might be too expensive to implement or even impractical in some scenarios, e.g., single-channel
WLANs. Moreover, their effectiveness may be significantly reduced if the jammer is strategic, e.g.,
mapping the jammed area becomes more difficult if the jammer keeps moving in an unpredictable
fashion.

In this chapter, we tackle the problem of defeating jamming from a different angle. Our work
is motivated by the observation that although a jamming packet of a few bits suffices to disrupt

94
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a transmitted packet, as argued in [LN05], yet continuously transmitting the jamming packets is
energy-consuming and may quickly drain the energy of the jammer with limited battery supply.
In other words, a jammer with limited energy resource can never succeed jamming the victim
network for any extended period of time. This is especially the case where the jammer is restricted
to a configuration similar to that of ordinary network nodes with limited energy resource such
as laptops. Given the above argument, an alternative defense strategy against jamming besides
passively retreating, especially when it is impossible to move away from the jammer, is to actively
fight the jammer face-to-face by draining its energy as fast as possible.

Following the above line of defense, we proceed our analysis as follows. Firstly, we formulate
jamming as an optimization problem for the jammer whose goal is to block the communication of
the victim network as long time as possible under its energy constraint. To this end, it controls the
probability of transmitting jamming packets to strike a balance between keeping a high jamming
probability and limiting the energy consumption. On the network side, each node adapts its channel
access probability to maximize its utility under the jamming attack. We model the interaction
between the jammer and the network as a non-cooperative game G. We show that G has two
Nash equilibria (NE) and at one of them, the jammer can paralyze the network with little energy
consumption. To avoid this inefficient NE for the network, we propose our defense strategy by
introducing the anti-jammer, a special node dedicated to draining the jammer’s energy. To achieve
its goal, the anti-jammer configures the probability of transmitting bait packets to attract the
jammer to transmit. We then formulate the new jamming game G′ with the anti-jammer and
show that G′ admits a unique NE where if the anti-jammer chooses its strategy wisely, the network
utility remains the same as that in G, but the jammer’s energy consumption increases significantly.
Next, we extend our efforts to investigate the dynamics of G′ by developing the update mechanisms
in which the anti-jammer and network nodes adjust their transmission strategies based on only
observable channel information.

Recently, applying game theory in different areas of wireless communication has attracted
considerable research attention. Concerning jamming, Mallik et al. [MSP00] model the problem of
a victim node and a jammer transmitting to a common receiver in an on-off mode as a two-person
zero-sum noncooperative dynamic game. Structures of steady-state solutions to the game are then
investigated. Sagduyu et al. [SE07] model DoS attacks as stochastic games among non-cooperative
selfish nodes that randomly transmit packets to a common receiver and malicious nodes with the
dual objectives of blocking the packet transmissions of the other selfish nodes as well as optimizing
their individual performance. The resulting equilibria are analyzed and the network performance
is compared with the cooperative equilibrium. In [LKP07], Li et al. formulate the jamming attack
as optimization problem as well as max-min problem and derive the optimal attacking strategy for
the jammer to maximize the duration before being detected and the optimal defense strategy for
the defender to alleviate the attack damage.

Compared with existing work, the focus of our work is not only to alleviate the damage caused
by the jammer, but also to fight the jammer actively by draining its energy as quickly as possible.
The main contributions of our work can be summarized as follows:

• Game theoretic framework: We establish a game theoretic model between the victim network
and the energy-limited jammer and derive resulting equilibria.

• Active defense strategy: We propose an active defense strategy against jamming and demon-
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strate its benefits via both mathematical analysis and numerical experiment.

• Distributed strategy update mechanism: We derive distributed update mechanisms in which
the anti-jammer and network nodes adjust their strategies based on observable channel in-
formation.

The rest of this chapter is organized as follows. Section 6.2 introduces the network model
and discusses the assumptions made in our work. Section 6.3 formulates the jamming game and
derives the resulting NEs. Section 6.4 presents and analyzes our defense strategy. Section 6.5
and 6.6 focus on the distributed update mechanisms and the implementation issues. Section 6.7
presents a numerical study to evaluate the performance of the proposed defense strategy. Finally,
the chapter is concluded in Section 6.8.

6.2 Network Model and Problem Formulation

We consider a single-hop wireless network consisting of a set N = {1, 2, · · · , n} (n > 1) of nodes
operating on the following generalized version of the slotted-Aloha protocol to access the shared
wireless medium: Time is divided into synchronized slots. Each node can send one packet in a
slot. If a node has a packet to send, it transmits during the next slot with probability p called
channel access probability. Since the above generalized slotted-Aloha scheme is the root of various
medium access control protocols widely used nowadays, basing our analysis on it makes our results
a generic framework easily extensible to other protocols.

In our study, we focus on the extreme case where all network nodes are continuously backlogged,
i.e., they always have packets to transmit. The transmission is successful if there is no collision
with other transmissions.

As discussed in Introduction, jamming is a DoS attack at the PHY/MAC layer whose goal is
to disable the communication of the victim network by intentionally causing collisions. To mount
such attack, the jammer senses the wireless channel and transmits a jamming packet colliding with
legitimately transmitted packets if the channel is not free. In this chapter, we focus on energy-
limited strategic jammer aiming at keeping the communication of the victim network blocked
as long time as possible under its energy budget. To this end, it configures the probability of
transmitting jamming packets to strike a balance between keeping a high jamming probability
and limiting the energy consumption. Mathematically, the jammer’s strategy is modeled by the
following optimization problem PJ

PJ : max0≤θ≤1 TJ s.t. S ≤ S0,

where θ denotes the jammer’s strategy, i.e., the probability of transmitting jamming packets, TJ

denotes the expected time during which the communication of the victim network is blocked by
the jammer, S denotes the throughput of the victim network, S0 denotes the threshold of effective
jamming from the jammer’s perspective, i.e., to block the communication of the victim network,
it has to limit S not to exceed S0.

Let p denote the channel access probability of the network nodes, the network throughput can
be expressed as S = np(1− p)n−1(1− θ). PJ can thus be translated to the following optimization
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problem P′
J:

min0≤θ≤1 UJ = [1− (1− p)n]θ

s.t. np(1− p)n−1(1− θ) ≤ S0.

UJ can be seen as the expected energy consumption of the jammer per slot, given that the energy
of transmitting one jamming packet is normalized to 1. As mathematically characterized by P′

J, a
strategic jammer searches to block the victim network while minimizing its energy consumption.

At the victim network side, it reacts strategically to operate the most efficiently possible under
jamming. Specifically, the network nodes adapt their channel access probability p to maximize the
utility function UN that reflects the difference between the throughput reward and the transmission
cost, i.e.,

UN = np(1− p)n−1(1− θ)− npc,

where the throughput reward is normalized to 1 and c ≤ 1 denotes the transmission cost. To
simplify our study, we assume that the transmission cost is the same for all packets. Moreover,
throughout this chapter, to avoid the trivial case where the jammer has no incentive to launch
jamming attack, we impose the following assumption on S0:

S0 < np̂(1− p̂)n−1, (6.1)

where p̂ = argmax0≤p≤1 np(1− p)n−1 − npc. Generally, for the jamming to be effective, S0 should
be sufficiently small. The smaller S0 is, the more effective the jamming is (also the more aggressive
the jammer is). In this chapter, we are especially interested in the aggressive case with small S0.

To concentrate on the essential properties of jamming and the proposed defense strategy, we
limit our study to jamming at PHY/MAC layers. The jammer does not interpret the semantics
of the packets to determine which packet to jam. Interested readers are referred to [LN05] for
such intelligent jamming attacks in IEEE 802.11 DCF, which are out of the scope of this chapter.
Despite some simplifications made in our model, the analysis of the jamming attacks and the
derived defense strategy are far from trivial and indeed provide valuable insight on the topic, as
shown in the reminder of the chapter.

6.3 Jamming Game Analysis

We model the interactions between the jammer and the victim network as a non-cooperative
jamming game G, defined as follows

Definition 6.1. The non-cooperative jamming game G is a 3-tuple (P,A,U), where P = {J ,N}
denotes the player set consisting of the jammer J and the victim network N , A = [0, 1] × [0, 1]
denotes the strategy space, U = {UN , UJ} denotes the utility function set. The player J (N ) selects
its strategy θ (p) to minimize (maximize) its utility UJ (UN ).

The solution of the jamming game G is characterized by one or more Nash equilibrium (NE),
a strategy profile from which no player has incentive to deviate unilaterally. Formally, if (p∗, θ∗) is
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a NE of G, it holds that




UN (p∗, θ∗) ≥ UN (p′, θ∗) ∀0 ≤ p′ ≤ 1

UJ(p∗, θ∗) ≤ UJ(p∗, θ′) ∀0 ≤ θ′ ≤ 1
.

Our focus in this section is to derive and analyze the resulting NE of G.

Theorem 6.1. Let k
4
=

S0

c
and A(k)

4
=

√
(1 + k)2 − 4

n
k, the jamming game G admits two NEs:

p∗1 = 0, θ∗1 = 1 and p∗2 =
1 + k −A(k)

2
, θ∗2 = 1− 2nS0

n(1 + k −A(k))(1− k + A(k))n−1
.

Proof. Please refer to Section 6.9.1 for the detailed proof.

As an important implication of Theorem 6.1, the network is paralyzed (S = 0) at the border
NE where the jammer adopts the most aggressive strategy by setting θ∗ to 1 and the network
nodes keep silent.

In contrast to the common sense that the jamming attack is usually very energy consuming,
Theorem 6.1 shows that the jamming attack is very cost-effective at the border NE. This is due
to the fact that any rational node in the victim network, aware of the existence of the jammer,
will not attempt to send any packet, which brings no gain but a waste of energy. Take the IEEE
802.11 WLAN as an example, the rationality of nodes leads to doubling the value of the contention
window (CW) after each collision. In such context, the jammer makes the network node repeatedly
double the CW value until finally the transmission attempt is given up, which corresponds to the
border NE in Theorem 6.1. Consequently, the jammer can disrupt the communication of the victim
network with little energy consumption.

6.4 Proposed Jamming Defense Strategy

Motivated by the analytical results of previous section, especially the detrimental damage caused
by the jammer at the border NE, we propose our jamming defense strategy in this section. Different
form existing solutions that retreat from the jammed area or switch to other channels to avoid
being jammed, our approach tackles the problem from a new angle, which is inspired from the
following philosophy:

The best defense is an offense.
Applying the above philosophy in our context, we propose our jamming defense strategy con-

sisting of actively fighting the jammer face-to-face by draining its energy as fast as possible. The
task of fighting against the jammer is designated to a special network entity referred to as anti-
jammer. Several practical implementations are possible: e.g., the anti-jammer can be a network
node disposing a large amount of energy; or, the role of the anti-jammer can be assigned to all
network participants in a distributed way, i.e., each node serves as the anti-jammer for a certain pe-
riod of time for the interests of the whole network. With the goal of draining the jammer’s energy,
the anti-jammer transmits a bait packet indistinguishable from legitimate packets at probability q

at each slot to attract the jammer to emit the jamming packet.
In the sequel, we formulate the new jamming game G′ with the anti-jammer and characterize

the resulting NE. The central questions we pose in order to study the performance of the proposed
defense strategy are: 1). Does there exist NE in G′? 2). If so, is it unique and can players converge
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to the equilibrium? 3). How does the NE compare with the NEs in Theorem 6.1? Is it more
desirable for the network?

6.4.1 Jamming Game with Anti-jammer

In this subsection, we study the jamming game G′ consisting of the victim network of n nodes, a
jammer and an anti-jammer. The network model is the same as in G, the only difference is that
the anti-jammer is introduced operating on q to fight against the jammer. In this new context, the
network throughput becomes S = np(1− p)n−1(1− q)(1− θ). The utility function of the network
can be written as:

UN = np(1− p)n−1(1− q)(1− θ)− npc.

The jammer’s optimization problem P′
J becomes

min0≤θ≤1 UJ = [1− (1− p)n(1− q)]θ

s.t. np(1− p)n−1(1− q)(1− θ) ≤ S0.

The following theorem establishes the NE of G′.

Theorem 6.2. If q > 0, G′ admits a unique NE (p∗, θ∗).

1. If the following condition holds

n(1− q)(1 + k −A(k))(1− k + A(k))n−1 > 2nS0, (6.2)





p∗ =
1 + k −A(k)

2
θ∗ = 1− 2nS0

n(1− q)(1 + k −A(k))(1− k + A(k))n−1

(6.3)

2. If the condition (6.2) does not hold,





p∗ = argmax
p

(1− q)p(1− p)n−1 − cp

θ∗ = 0
(6.4)

Proof. Please refer to Section 6.9.2 for the detailed proof.

Theorem 6.2 establishes the existence and uniqueness of the NE and quantifies the relation
between different parameters (S0, c and q) and the resulting NE. Theorem 6.2 implies that by
properly setting q, the border NE in Theorem 6.1 where the jammer can paralyze the network
with little energy consumption can be eliminated in G′ and the game reaches a more desirable NE
(6.3) from the network’s perspective. In this regard, the anti-jammer plays the role of refining NE
by eliminating the undesirable equilibrium.

In the following corollary, we provide a simplified necessary condition on q to ensure that the
unique NE is the non-border NE derived in (6.3).
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Corollary 6.1. G admits a unique non-border NE (p∗, θ∗) given by (6.3) if the following sufficient
condition holds:

(1− q)k
1 + k

[
1− k

n(1 + k)

]n−1

> S0

Proof. Please refer to Section 6.9.3 for the detailed proof.

Corollary 6.1 provides a guideline for the anti-jammer on how to choose its strategy q to avoid
the less desirable NE. In the asymptotic scenario where n À 1, noticing that k = S0/c, after some
mathematical arrangement, the sufficient condition in Corollary 6.1 can be further simplified to
q < 1− (S0 + c)e

k
1+k .

6.4.2 NE Analysis: Comparison with G

After solving the NE of G′, it is natural and interesting to compare the non-border NE of G′ given
in (6.3) with the non-border NE of G derived in (6.13). As can be seen from (6.13) and (6.3), the
network utility UN is the same at the two non-border NEs. In the following theorem, we investigate
the jammer’s utility UJ at the non-border NE of G and G′.

Theorem 6.3. By wisely choosing q, the anti-jammer can increase the jammer’s energy consump-
tion at the non-border NE if and only if the following condition holds:

S0 < np∗(1− p∗)2n−1, (6.5)

where p∗ =
1 + k −A(k)

2
.

Proof. Please refer to Section 6.9.4 for the detailed proof.

In the following corollary, we provide a simplified sufficient condition under which the result of
Theorem 6.3 holds.

Corollary 6.2. If S0 + c <

(
1− 1

n

)2n−1

, or when n À 1, if S0 + c < 1/e2, then the anti-jammer

can increase the jammer’s utility at the NE by wisely choosing q.

Proof. Please refer to Section 6.9.5 for the detailed proof.

As a summary of previous analysis, we have demonstrated via Theorem 6.2 and 6.3 the following
benefits of the proposed defense strategy. Theorem 6.2 states that if q is properly chosen, the
jamming game admits a unique non-border NE given in (6.3). Compared with the non-border
NE in G without anti-jammer, the network gets the same payoff at the non-border NE in G′.
Theorem 6.3 further shows that under the condition (6.5), the jammer consumes more energy. In
this perspective, our solution not only can eliminate the undesirable NE (the border NE in G),
but also can increase the jammer’s energy consumption at the remaining NE. As a result, under
the condition of (6.5) which is especially true for aggressive jammer, our solution can force the
jammer to spend its energy more quickly without degrading the network performance.

Theorem 6.3 quantifies the condition under which UG
J ≥ UG′

J . Next we provide a qualitative
explication on the implication behind. The goal of introducing the anti-jammer is to increase the
jammer’s energy consumption without degrading the network performance. From another angle,
the anti-jammer can be regarded as a jammer that jams the traffic of both the network and the
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jammer, the latter being our objective while the former the side effect. When the condition (6.5)
is met, i.e., S0 + c is sufficiently small, the cost of jamming the network traffic is less than the gain
of jamming the jammer. In contrast, if the condition is not met, the benefit of introducing the
anti-jammer is counter-balanced by its side effect, i.e., the anti-jammer actually helps the jammer
jam the network. In this sense, introducing the anti-jammer to counter jamming is like using a
“double-bladed sword” which brings both benefit and side effect. Therefore, the strategy of the
anti-jammer q should be carefully chosen so as to strike a balance between maximizing the benefit
and limiting the side effect.

In the following subsection, we seek the optimal value of q that achieves the above balance.

6.4.3 Choosing Optimal Value of q

In this subsection, we solve the optimal value of q that maximizes the jammer’s energy consumption
at the non-border NE under the condition (6.5).

Theorem 6.4. Under the condition (6.5), the optimal strategy for the anti-jammer is q∗ = 1 −√
S0

np∗(1− p∗)2n−1
.

Proof. Please refer to Section 6.9.6 for the detailed proof.

6.4.4 Further Discussion and Limitation of Proposed Strategy

It is insightful to note that the interactions among the network, the jammer and the anti-jammer
can be modeled by a Stackelberg game, in which the anti-jammer is the leader, the network and the
jammer are the followers. The followers choose their strategies p and θ to maximize and minimize
their utility function UN and UJ based on the leader’s strategy q. The leader chooses its strategy
q to maximize its utility function (i.e., the jammer’s energy consumption), taking into account
that the followers will subsequently choose their strategy to greedily maximize/minimize their own
payoff. Apply our analysis in this section, the Stackelberg game admits a unique equilibrium
(q∗, p∗, θ∗) under the condition (6.5).

We conclude this section by discussing the limitations of the proposed defense strategy. Firstly,
our solution aims at draining the jammer’s energy rather than coping with jamming. As a result,
although the jammer consumes more energy to mount the jamming attack, yet the communication
of the victim network is disrupted as long as the jammer does not use up its battery. Secondly, as
discussed in the beginning of Section 6.4, the role of anti-jammer can be designated to the network
node disposing a large amount of energy or to all network participants in a distributed way. In
this regard, the altruism of the anti-jammer is implicitly assumed. However, this assumption is not
always valid, especially in open environments where network participants are selfish and have no
incentive to spend their own energy for the interests of the common, including themselves. In such
cases, incentive mechanisms are needed to avoid the above common dilemma. Thirdly, as shown in
Theorem 6.2 and 6.3 as well as the numerical experiments presented later, the proposed solution is
less effective when the jammer acts more mildly by operating on large S0. It is insightful to note
that in such cases, the attack is no more a jamming attack in the strict sense in that the jammer’s
goal is not to block the network communication as that of pure jamming with S0 sufficiently small,
but rather to limit the network throughput with a mild threshold S0.
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6.5 Game Dynamics and Distributed Strategy Update Mecha-

nism

In the previous section, we have studied some structural properties of the NE in the jamming
game with the anti-jammer and demonstrated the benefits of the proposed defense strategy. In
this section, we extend our efforts to study the game dynamics. More specifically, we develop
distributed strategy update mechanisms for players to adjust their strategies to converge to the
equilibrium based on only observable channel information.

We start with the victim network. Noticing that the objective of the network nodes is to
maximize the global network utility under jamming, we propose a distributed update mechanism
of the channel access probability, as shown in the following:

pi(t + 1) =

[
pi(t) + λ

(
(1− q)(1− θ)(1− npi(t))

∏

j∈N ,j 6=i

(1− pj(t))− (1− pi(t))c
)]pmax

0

. (6.6)

where
[
x
]b

a
denotes max{a,min{b, x}}, λ is the step size, pmax ∈ (0, 1) is the system parameter.

Theorem 6.5. Under the condition (6.5), if
(1− q)(1− θ)(1− npmax)

1− pmax
< c < (1 − q)(1 − θ)(1 −

pmax)n−1, the update scheme (6.6) has a unique fixed point, which is also the optimal point where
the global network utility is maximized.

Proof. The proof, detailed in appendix, consists of two steps: we first show that any border point
cannot be a fixed point of (6.6); we then focus on the non-border fixed point and prove that {p̃}
is the only non-border fixed point of (6.6), where p̃ is the root of

(1− q)(1− θ)(1− p)n−2(1− np) = c.

It is easy to see that {p̃} is also the optimal point where the global network utility is maximized.

Remark: (6.6) can be seen as a subgradient strategy update scheme that gradually approaches
the fixed point, which corresponds to the global optima.

We then analyze the jammer’s strategy. Noticing that the jammer’s utility is to minimize its
energy consumption while limiting the network throughput S ≤ S0, its best strategy at iteration
t + 1 θ(t + 1) can be derived by

S0 =
[
1− θ(t + 1)

]
(1− q)

∑

i∈N
pi(t)

∏

j∈N ,j 6=i

(1− pj(t)).

However, in practice, since the jammer cannot distinguish the traffic of the anti-jammer and
that of an ordinary node, it is impossible to compute θ(t + 1) from the above equation. We thus
consider in our study a more practical update scheme for the jammer in which it chooses the
smallest θ such that the aggregated throughput including the anti-jammer’s traffic is no more than
αS0, where α ≥ 1 is a tolerant factor, i.e.,

[
1− θ(t + 1)

][
(1− q)

∑

i∈N
pi(t)

∏

j∈N ,j 6=i

(1− pj(t)) + q
∏

j∈N
(1− pj(t))

]
≤ αS0.
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α = 1 corresponds to the scenario in which the jammer is not aware of the existence of the
anti-jammer or it wants to limit the network throughput regardless of the anti-jammer’s strategy
q. This update scheme can be formally expressed as:

θ(t + 1) =

[
1− αS0

(1− q)
∑

i∈N
pi(t)

∏

j∈N ,j 6=i

(1− pj(t)) + q
∏

j∈N
(1− pj(t))

]1

0

. (6.7)

In the following theorem, we analyze the equilibrium of G′ under the update scheme (6.6) for
the network nodes and (6.7) for the jammer.

Theorem 6.6. The strategy update scheme in which the network nodes follow (6.6) and the jammer
follows (6.7) admits a unique fixed point under the following condition:





αS0

(1− pmax)n
< q ≤ n

n + 1
(n− 1)pmax

1− pmax
+

q

1− q
<

αS0

c
<

pmax(1− pmax)
1− npmax

+
(1− pmax)2

1− npmax

q

1− q

. (6.8)

Specifically, the fixed point coincides with the non-border NE (p∗, θ∗) derived in (6.3) if αS0 =
(1− θ∗)

[
q(1− p∗)n + n(1− q)p∗(1− p∗)n−1

]
.

Proof. Please refer to Section 6.9.8 for detailed proof.

Theorem 6.6 states that G′ has a unique equilibrium under the update scheme (6.6) and (6.7).
In Section 6.7, the game dynamics of G′ (i.e., the convergence to the unique equilibrium) is further
studied via simulation under the above update scheme.

We conclude this section by analyzing the anti-jammer’s strategy q, which should be carefully
tuned in order to achieve a balance between maximizing the benefit and limiting the side effect,
as discussed in the end of Section 6.4.2. Noticing that calculating the optimal value of q requires
the knowledge of α which is not available to the anti-jammer, we propose the following adaptive
recursive search method to find the locally optimal value of q. We will evaluate the proposed
method via simulation in Section 6.7.

1. Set ∆q, ε to some small values, T a sufficient long time for convergence. Initialize q(0) = 0.
Set n = 0.

2. Set n = n + 1, wait time T for the players to converge, then estimate the jammer’s utility
UJ(n).1

(a) If UJ(n) > UJ(n− 1), set q(n + 1) = q(n) + ∆q.

(b) If UJ(n) < UJ(n− 1), set q(n + 1) = q(n)−∆q.

3. Stop until |UJ(n)− UJ(n− 1)| < εUJ(n).
1How to estimate UJ is addressed in Section 6.6.
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6.6 Implementation Issue

Previously, we have investigated the dynamics of G′ and the distributed strategy update scheme
for players to converge to the unique operating point. However, for the network nodes and anti-
jammer, since they usually do not have access to the access probability of others, they cannot
directly implement the discussed update scheme. In this section, we address this implementation
issue, more specifically, how to estimate (1− q)(1− θ)

∏

j∈N ,j 6=i

(1−pj) for node i to compute pi(t) based

on (6.6) and how to estimate UJ for the anti-jammer to update q.
Our solution is based on the Idle Sense approach (see [HRGD05] for a detailed description)

allowing a player to estimate the channel condition by observing the average number of consecutive
idle slots between two transmission attempts. As a desirable property, our solution is based on
only observable information and does not generate any additional message.

We start with the network nodes. Let Pidle = (1 − q)(1 − θ)
∏

j∈N
(1 − pj) be the probability of

an idle slot and nidle be the number of average consecutive idle slots between two transmission

attempts, it holds that nidle =
Pidle

1− Pidle
. It follows that

(1− q)(1− θ)
∏

j∈N ,j 6=i

(1− pj) =
nidle

nidle + 1
· 1
1− pi

.

Since node i knows its own strategy pi(t) and can observe nidle(t), it can compute p(t + 1) based
on (6.6).

We then turn to the anti-jammer who needs to estimate UJ = [1 − (1 − p)n(1 − q)]θ, where
p and θ is the converged value of pi(t), ∀i ∈ N and θ(t). To this end, it estimates the network
throughput as S = Ns

Nt
, where Ns is the number of successful transmission on the channel within

Nt, the measuring period. It then can establish the equation

n(1− q)(1− θ)p(1− p)n−1 =
Ns

Nt
. (6.9)

On the other hand, apply the Idle Sense approach, we have

(1− q)(1− θ)(1− p)n = Pidle =
nidle

nidle + 1
, (6.10)

which is observable to the anti-jammer. By (6.9) and (6.10), the anti-jammer can solve p and θ to
further estimate UJ .

At the end of this section, we take (1 − q)(1 − θ)
∏

j∈N ,j 6=i

(1 − pj) as an example to investigate the

accuracy of the estimation of our solution. Based on the central limit theory, given m samples of
nidle, we have

lim
m→∞P

(∣∣∣∣∣
nidle − Pidle

1−Pidle

σ/
√

m

∣∣∣∣∣ ≤ z

)
=

1√
2π

∫ z

−z
e−r2/2dr,

where σ is the variance of nidle.
Hence, (1 − q)(1 − θ)

∏

j∈N ,j 6=i

(1 − pj) can be precisely estimated if sufficient samples on nidle is

collected. However, this requires long periods of observation and may lead to slower convergence
rate. Therefore, there is a tradeoff between the accuracy of the observation and the delay of
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convergence. Based on the experiments we conduct, m = 10 ∼ 25 achieves fairly good estimation
with a reasonable convergence delay.

6.7 Numerical Results

In previous study, we establish a game theoretic model on jamming with the proposed defense
strategy and perform mathematical analysis on the existence, uniqueness of the NE and the game
dynamics. In this section, we conduct numerical study to gain some more in-depth insight on the
NE and the performance of the proposed defense strategy, which cannot be derived directly from
analytical results.

6.7.1 NE Analysis of G and G′

We start with the numerical analysis of the NE of the jamming game formulated previously, both
with and without anti-jammer. We simulate a single-hop wireless network of 10 nodes. The
transmission cost c is set to 0.01. Figure 6.1 plots the non-border NE of G derived in Theorem 6.1
as a function of S0. Figure 6.2 plots the optimal strategy of the anti-jammer q∗ and the NE of
G′ as a function of S0 when the anti-jammer operates on q∗. As shown in the results for both
cases, when the jammer becomes more aggressive, i.e., S0 becomes smaller, it tends to increase
the jamming probability at the NE. Consequently, the victim network reacts by decreasing their
transmission probability at the NE. The optimal strategy of the anti-jammer also becomes more
aggressive. Moreover, it can be checked that when q → 0+, the condition (6.2) equals to S0 < 0.14.
This is confirmed by the numerical results in Figure 6.2 that q∗ > 0 when approximately S0 < 0.14.
As q∗ tends to 0, the NE of G′ coincides with the non-border NE of G, as shown in Figure 6.1 and
6.2.
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6.7.2 Performance Evaluation of Proposed Defense Strategy

We then evaluate the performance of the proposed defense strategy by comparing the jammer’s
utility UJ at the non-border NE of G and the unique NE of G′, as plotted in Figure 6.3. It is
insightful to notice that the jammer’s energy consumption at the non-border NE of G first increases
sharply w.r.t. S0 and then decreases mildly when S0 is large. In fact, with the increase of S0, p∗

increases and θ∗ decreases. Noticing that UJ is increasing in p∗ and θ∗, the results in Figure 6.3
indicates that UJ is much more sensible to p∗ than to θ∗ with small S0 and less sensible to p∗ with
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large S0. This observation shows that the more aggressive jamming is also more cost-effective in
terms of energy. In this sense, the border NE in G can be regarded as an extreme scenario where
the jammer can paralyze the network with little energy consumption, as discussed in Section 6.3.

In contrast, when the proposed defense strategy is implemented, UJ is monotonously decreasing
in S0 at the NE, as shown in Figure 6.3. As observed from Figure 6.2, the anti-jammer acts more
aggressively when the jammer is more aggressive, i.e., S0 is small. Noticing that UJ is increasing
in q, the interesting observation in Figure 6.3 indicates that the influence of q on UJ outweighs the
that of p on UJ when S0 is small, thus UJ increases when S0 decreases in G′. From Figure 6.3,
we can also see that the jammer consumes more energy at the NE of G′ regardless the value of
S0, which clearly demonstrates the benefits of the proposed defense strategy, especially with the
aggressive jammer.
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Figure 6.4: UJ in G′ as a function of q

We also study the impact of the anti-jammer’s strategy on the jammer’s utility at the NE
by plotting UJ at the NE of G′ as a function of q with different value of S0. As illustrated in
Figure 6.4, UJ is almost the same if q is slightly smaller than the optimal strategy q∗, but chutes
sharply after q reaches q∗, especially under the aggressive jammer with small S0. An important
guideline that can be drawn from the results is that a conservative strategy at the anti-jammer
yields better performance than a too aggressive one.

6.7.3 Game Dynamics

Finally, we study the dynamics of G′ by investigating the strategy update mechanisms proposed
in Section 6.5. Figure 6.5 and 6.6 plot the trajectory of the players’ strategies under the update
mechanism (6.6) for the network nodes and (6.7) for the jammer. The step size λ is set to 0.1. S0

is set to 0.05. pmax is set to 0.1. The anti-jammer’s strategy is set to the optimal value q∗ = 0.44,
as can be observed in Figure 6.2. α is set to 1.87. With this parameter setting, it can be checked
from Theorem 6.6 that the unique fixed point of the strategy update scheme (6.6), (6.7) is the NE
where p∗ = 0.084 and θ∗ = 0.76, as can be estimated from Figure 6.2. As shown in Figure 6.5
and 6.6, if the network nodes follow (6.6) and the jammer follows (6.7), the game converges to the
unique NE.

We conclude this section by evaluating the performance of the adaptive recursive research
method for the anti-jammer to adjust its strategy q. For the parameters: S0 = 0.05, ∆q = 0.005,
ε = 0.01. Figure 6.7 plots the converged value of the network throughput S, the jammer’s utility
UJ and the anti-jammer’s strategy q as functions of α. As illustrated in Figure 6.7, if the jammer
operates on large α, the network throughput exceeds the threshold S0. Thus in order to effectively
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disrupt the network traffic, the jammer has to act aggressively by choosing a small α. As shown
in Figure 6.7, this leads to aggressive strategy of the anti-jammer and the increase of the energy
consumption for the jammer, where the goal of our proposed defense strategy is achieved.
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6.8 Conclusion

We investigated jamming in wireless networks under a game theoretic framework. Based on the
analysis of the jamming game, we propose a defense strategy consisting of actively fighting the
jammer face-to-face by draining its energy. We demonstrated that the proposed defense strategy
can eliminate the undesirable equilibrium and increase the energy consumption of the jammer
at the remaining equilibrium without degrading the network performance. Despite the limitations
discussed in Section 6.4.4, we believe that the proposed defense strategy provides an alternative and
active line of defense whose effectiveness is well demonstrated both analytically and numerically
in the chapter.

6.9 Proofs

This section completes the detailed proofs omitted from the main text.
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6.9.1 Proof of Theorem 6.1

We proceed by distinguishing two cases of NE:
Case 1: the NE is on the border of the strategy space. In this case, it is easy to check that only

p∗ = 0, θ∗ = 1 satisfies the NE definition.
Case 2: the NE is the non-border point of the strategy space: 0 < p∗, θ∗ < 1. In this case, for

the network, the global maximum of its utility function is achieved at inner point where
∂UN

∂p
= 0,

or

(1− p∗)n−2(1− np∗)(1− θ) = c. (6.11)

On the other hand, at the NE it holds that

S = np∗(1− p∗)n−1(1− θ∗) = S0. (6.12)

Otherwise, if S > S0, the jammer has incentive to unilaterally decrease θ∗, which contradicts with
the definition of NE.

Combining (6.11) and (6.12), we can solve p∗ and θ∗ as





p∗ =
1
2

[
1 + k −

√
(1 + k)2 − 4

n
k

]
=

1 + k −A(k)
2

θ∗ = 1− 2nS0

n(1 + k −A(k))(1− k + A(k))n−1

. (6.13)

The following two lemmas guarantee that the derived solution (p∗, θ∗) in (6.13) is a NE. Lemma
6.1 proves that it is an inner point of the strategy space. Lemma 6.2 shows that UN (p∗, θ∗) > 0.

Lemma 6.1. It holds that
k

n(1 + k)
< p∗ < min

{
1
n

,
k

n

}
and 0 < θ∗ < 1.

Proof. To prove
k

n(1 + k)
< p∗ < min

{
1
n

,
k

n

}
, we rewrite p∗ in (6.13) as

p∗ =
1
2

4k
n

1 + k +
√

(1 + k)2 − 4
nk

.

On the other hand, we have:





√
(1 + k)2 − 4

n
k < 1 + k

√
(1 + k)2 − 4

n
k =

√
(1− k)2 + 4

(
1− 1

n

)
k > |1− k|

.

It follows that
k

n(1 + k)
< p∗ < min

{
1
n

,
k

n

}
.

We next prove 0 < θ∗ < 1. It is obvious that θ∗ < 1. Suppose, by contradiction, that θ∗ ≤ 0,
it follows from (6.1) and (6.11) that

np∗(1− p∗)n−1 ≥ np̂(1− p̂)n−1 > S0 ≥ S0

1− θ∗



109 Chapter 6. A Defense Strategy against Jamming Attack in Wireless Networks

which contradicts with (6.12).

Lemma 6.2. It holds that UN (p∗, θ∗) > 0.

Proof. Noticing (6.12), we have

UN (p∗, θ∗) = np∗(1− p∗)n−1(1− θ∗)− np∗c = np∗
S0

np∗
− np∗c = np∗c

(
k

np∗
− 1

)
.

It follows from Lemma 6.1 that UN (p∗, θ∗) > 0.

Combining the above analysis in Case 1 and Case 2, we conclude our proof of Theorem 6.1.

6.9.2 Proof of Theorem 6.2

We distinguish two cases: 1). the NE is the inner point of the strategy space and 2). the NE is at
the border.

We start by examine the inner NE. Let c′ 4=
c

(1− q)
, S′0

4
=

S0

(1− q)
, the non-border NE (p∗, θ∗)

can be derived following exactly the same way as case 2 in the proof of Theorem 6.1. The condition
of the derived solution to be the non-border NE is 0 < p∗, θ∗ < 1, which is satisfied if and only if
(6.2) holds. It can be further shown that in this case, there is no border NE.

On the other hand, if (6.2) does not hold, G′ does not have non-border NE. In this case, by
checking the border of the strategy space, we can show that the only NE is p∗ = argmax

p
(1 −

q)p(1− p)n−1 − cp and θ∗ = 0.

6.9.3 Proof of Corollary 6.1

Following Lemma 6.1, we have

(1− q)np∗(1− p∗)n−1 >
(1− q)k
1 + k

(
1− k

n(1 + k)

)n−1

.

Hence, if
(1− q)k
1 + k

(
1− k

n(1 + k)

)n−1

> S0, it holds that (1 − q)np∗(1 − p∗)n−1 > S0. From

Theorem 6.2, G′ admits a unique non-border NE (6.3).

6.9.4 Proof of Theorem 6.3

Let UG
J and UG′

J denote the jammer’s utility at the non-border NE of G and G′, we have

UG
J = [1− (1− p∗)n]

[
1− S0

np∗(1− p∗)n−1

]

UG′
J = [1− (1− p∗)n(1− q)]

[
1− S0

np∗(1− p∗)n−1(1− q)

]
,

where p∗ =
1 + k −A(k)

2
. After some straightforward mathematic manipulations, we get

UG′
J − UG

J = (1− p∗)nq

[
1− S0

np∗(1− p∗)2n−1(1− q)

]
.
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Under the condition (6.5), if 0 < q < 1− S0

np∗(1− p∗)2n−1
, we have UG′

J > UG
J , i.e., the existence

of the anti-jammer actually can increase the jammer’s energy consumption at the non-border NE.
On the contrary, if S0 ≥ np∗(1− p∗)2n−1, then it follows that

1− S0

np∗(1− p∗)2n−1(1− q)
≤ 1− S0

np∗(1− p∗)2n−1
≤ 0,

i.e., U2
J ≤ U1

J . In this case, regardless of the value of q, the anti-jammer cannot increase the
jammer’s energy consumption.

6.9.5 Proof of Corollary 6.2

Recall Lemma 6.1, we have:

S0 + c <

(
1− 1

n

)2n−1

=⇒ S0
1 + k

k
<

(
1− 1

n

)2n−1

=⇒ S0 < np∗(1− p∗)2n−1.

From Theorem 6.2, this indicates that by choosing proper q, the anti-jammer can increase
the jammer’s utility at the non-border NE. When n À 1, the above sufficient condition becomes
S0 + c < 1/e2.

6.9.6 Proof of Theorem 6.4

From (6.3), at the non-border NE, we have

UG′
J =

[
1− (1− p∗)n(1− q)

][
1− S0

np∗(1− p∗)n−1(1− q)

]
.

By imposing
∂UG′

J

∂q
= 0, the optimal value of q can be solved as

q∗ = 1−
√

S0

np∗(1− p∗)2n−1
. (6.14)

A necessary condition that q∗ given by (6.14) is the optimal value is that G′ has a unique
non-border NE and 0 < q∗ < 1. From Theorem 6.2, this can be translated to check whether the
condition (6.2) holds or not. We proceed our analysis as follows

n(1− q∗)(1 + k −A(k))(1− k + A(k))n−1 > 2nS0

⇐= np∗(1− p∗)n−1(1− q∗) > S0 From (6.14)

⇐=

√
nS0p∗

(1− p∗)
> S0 Noticing p∗ < 1

⇐= np∗(1− p∗)2n−1 > S0 From (6.5)

The above shows that (6.2) holds, q∗ is the optimal strategy to drain the jammer’s energy,
which concludes our proof.
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6.9.7 Proof of Theorem 6.5

Step 1: We show that any border point cannot be a fixed point of (6.6). Assume, by contradiction,
that at the fixed point p̃, p̃i = 0 or p̃i = pmax.

• If p̃i = 0, then it follows from (6.6) that

(1− q)(1− θ)
∏

j∈N ,j 6=i

(1− p̃j)− c ≤ 0,

which, noticing that p̃j ≤ pmax, contradicts with c < (1− q)(1− θ)(1− pmax)n−1.

• If p̃i = pmax, we have

(1− q)(1− θ)(1− npmax)
∏

j∈N ,j 6=i

(1− p̃j)− (1− pmax)c ≥ 0,

which obviously contradicts with c >
(1− q)(1− θ)(1− npmax)

1− pmax
.

Combining the above analysis shows that any border point cannot be a fixed point of (6.6).
Step 2: We show that (6.6) admits a non-border fixed point which maximizes the network utility.
By imposing pi(t) = pi(t + 1) = p̃i, ∀i ∈ N , we obtain n equations

(1− q)(1− θ)
[
1− (n− 1)p̃i

1− p̃i

] ∏

j∈N ,j 6=i

(1− p̃j) = c ∀i ∈ N

which can be further transformed into

(1− q)(1− θ)


 ∏

j∈N
(1− p̃j)




[
1

1− p̃i
− (n− 1)p̃i

(1− p̃i)2

]
= c ∀i ∈ N . (6.15)

Hence, ∀i1, i2 ∈ N , we have

1
1− p̃i1

− (n− 1)p̃i1

(1− p̃i1)2
=

1
1− p̃i2

− (n− 1)p̃i2

(1− p̃i2)2
.

Let g(x)
4
=

1
1− x

− (n− 1)x
(1− x)2

, we have

g′(x) =
1

(1− x)2

[
1− (n− 1)(1 + x)

(1− x)

]
.

It holds that g′(x) < 0, ∀x ∈ (0, 1) and g′(x) = 0 at 0. It follows immediately from (6.15) that
p̃i1 = p̃i2 . Therefore, at the non-border fixed point, we have p̃i = p̃, ∀i ∈ N , where p̃ is the root of

(1− q)(1− θ)(1− p)n−2(1− np) = c.

We now show that the above equation admits a unique solution in (0, pmax). To this end, let
Q(p)

4
= (1− p)n−2(1− np)(1− q)(1− θ)− c. We have

Q′(p) =
[
− n(n− 1)(1− p)n−2 + (n− 1)(n− 2)(1− p)n−3

]
(1− q)(1− θ).
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It can be checked that Q(p) is monotonously decreasing in p in
(

0,
2
n

)
and monotonously increasing

in
(

2
n

, 1
)

. Noticing that Q(0) = 1 − c > 0, Q(1) = −c < 0 and following the condition in the

theorem,

Q(pmax) = (1− q)(1− θ)(1− pmax)n−2(1− npmax)− c < 0.

We can show that Q(p) = 0 admits a unique solution p̃ ∈ (0, pmax). It is further easy to notice
that the network utility n(1− q)(1− θ)p(1− p)n − npc is maximized at p̃.

6.9.8 Proof of Theorem 6.6

Step 1: We show that any border point cannot be a fixed point of (6.6) and (6.7). Assume, by
contradiction, that (p̃, θ̃) is a border fixed point. It follows straightforwardly from the condition
(6.8) that 0 < θ̃ < 1. Hence there exists i such that p̃i = 0 or p̃i = pmax.

• If p̃i = 0, then it follows from (6.6) that

(1− q)(1− θ̃)
∏

j∈N ,j 6=i

(1− p̃j) ≤ c.

Injecting (6.7) into the above inequality leads to

αS0∑
j∈N

p̃j

1−p̃j
+ q

1−q

≤ c,

which, noticing that p̃j ≤ pmax, contradicts with
(n− 1)pmax

1− pmax
+

q

1− q
<

αS0

c
.

• If p̃i = pmax, we have

(1− q)(1− θ)(1− npmax)
∏

j∈N ,j 6=i

(1− p̃j)− (1− pmax)c ≥ 0.

Injecting (6.7) into the above inequality leads to

αS0∑
j∈N

p̃j

1−p̃j
+ q

1−q

≥ (1− pmax)2

(1− npmax)
c,

which contradicts with
αS0

c
<

pmax(1− pmax)
1− npmax

+
(1− pmax)2

1− npmax

q

1− q
.

Combining the above analysis shows that any border point cannot be a fixed point.
Step 2: We show that (6.6) and (6.7) admits a unique non-border fixed point. At the non-border

fixed point, combining (6.6) and (6.7), we obtain n equations:

αS0∑
j∈N

p̃j

1−p̃j
+ q

1−q

=
(1− p̃i)2

1− np̃i
c ∀i ∈ N .
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Noticing that under the condition (6.8), 1−np̃i > 0,
(1− p̃i)2

1− np̃i
is monotonously increasing in p̃i,

following the same analysis as that in Step 2 of the proof of Theorem 6.5, we have p̃i = p̃ ∀i ∈ N ,
where p̃ is the root of

αS0

np̃
1−p̃ + q

1−q

=
(1− p̃)2

1− np̃
c, (6.16)

which can be further arranged as

αS0

c
=

1− p̃

1− np̃

[(
n− q

1− q

)
p̃ +

q

1− q

]
.

Let f(p̃) , 1− p̃

1− np̃

[(
n− q

1− q

)
p̃ +

q

1− q

]
, f(p̃) is monotonously increasing in p̃ when q ≤

n

n + 1
. Moreover, noticing (6.8), we have





f(0) =
q

1− q
<

αS0

c

f(pmax) =
npmax(1− pmax)

1− npmax
+

(1− pmax)2

1− npmax

q

1− q
>

αS0

c

.

Therefore, (6.16) has a unique solution p̃. Noticing that at the non border fixed point, θ̃

is uniquely determined by p̃, it holds that the update scheme (6.6) and (6.7) admits a unique
non-border fixed point.

Specifically, if θ∗ ≤ θmax and αS0 = (1− θ∗)
[
q(1− p∗)n + n(1− q)p∗(1− p∗)n−1

]
, it is easy to

see that (p∗, θ∗) satisfies (6.6) and (6.7), thereby is the unique fixed point.



Chapter 7

On Multipath Routing in Multihop

Wireless Networks: Security,

Availability and Limit

7.1 Introduction

It is widely recognized that the intrinsic nature of wireless networks, such as the broadcast nature of
the wireless channel and the limited resources of network nodes, makes them extremely attractive
and vulnerable to attackers. Routing amid malicious attackers in such environments is a challenging
task. On one hand, the most secure route(s) should be chosen such that the probability of a packet
encountering any attackers is as low as possible. On the other hand, given the instability of
wireless links, the most reliable route(s) should be selected such that the packet arrival probability
at destination is as high as possible.

A natural approach is to use multiple paths to increase the fault tolerance and the resilience
to attackers. However, how to choose the secure and reliable paths among exponentially many
candidates and how to allocate traffic among them remains a difficult but crucial problem.

7.1.1 Chapter Overview

In this chapter, we address the above fundamental routing problem by focusing on two metrics:
route security and availability. We start with the single-attacker case and extend our work to the
multiple-attacker case in Section 7.7.

We first study the multipath routing solution minimizing the security risk, i.e., the probability
that a packet is captured by the attacker under the condition that the attacker makes all its efforts
to maximize this probability. We model such multipath routing problem as an minimaximization
problem and formulate it as the maximum flow problem in lossy networks based on which a routing
algorithm with polynomial time complexity is derived to solve it.

While the obtained solution provides the most security routes, which is crucial for security
sensitive applications, the availability (the probability of a packet arriving at its destination) is
another important issue that definitively cannot be ignored, especially in wireless networks with
instable links. To this end, we investigate the multipath routing solution maximizing the worst-
case route availability under the condition that the attacker makes all its efforts to minimize this

114



115 Chapter 7. On Multipath Routing in Multihop Wireless Networks: Security, Availability and Limit

probability. Noticing that solving this problem requires exponential time complexity, we propose
an heuristic algorithm computing the optimal path set with polynomial time complexity.

Next, we extend our efforts to study a natural problem: how to achieve a tradeoff between the
route security and availability. In this perspective, we derive the routing solution maximizing the
route availability while limiting the security risk under given threshold. Furthermore, as a theoretic
limit of node-disjoint multipath routing, we establish the relationship between the worst-case route
availability a∗ and the security risk r∗ :

a∗ ≤ r∗(|Pnd| − 1),

where |Pnd| is the maximum number of node-disjoint paths in the network.
By simulation, we evaluate the performance of the proposed multipath routing protocols. The

results shows that our solutions show the best worst-case security and availability among the
simulated multipath routing protocols.

7.1.2 Background and Motivation

Multipath routing, as mentioned above, is a promising way to improve route reliability and security.
Past work on multipath routing in wireless networks mainly consists of evaluating the possible paths
via reputation metrics based on security or reliability and distributing traffic among the routes with
highest reputation ratings.

In [PHS02], Papadimitratos et al. proposed an algorithm, called Disjoint Path-set Selection
Protocol (DPSP), to find the maximum number of paths between a source and destination with
the highest reliability. DPSP tries to find maximum number of node-disjoint paths based on the
reliability metric to improve the reliability of communication by increasing the number of used
paths.

In [LLF04], Lou et al. proposed another solution for calculating the maximum number of the
most secure paths called Security Protocol for REliable dAta Delivery (SPREAD). Their solution
relies on previous knowledge of security level of each node and calculates the link costs according
to them. It also exploits secret sharing to spread data over multiple paths and proposes a security
optimized share allocation method.

In [PH06], Papadimitratos et al. proposed and analyzed a routing protocol named Secure
Message Transmission Protocol (SMT) which improves security and reliability of data transmission
through diversity coding of data into multiple symbols and transmitting each symbol over one path
by uniform loading. SMT employs a rating mechanism to select the most reliable paths based on
end-to-end feedback.

Our work in this chapter differs with existing work in that we base our work on the worst-
case scenarios and provide multipath routing solutions with guaranteed security and availability
properties. Our motivation is two-fold: first, in most of the proposed solutions, each path is rated
according to its past performance and the paths with high rate are selected to carry traffic. In
such reputation-based mechanism, the computation of the reputation rates is not trivial at all;
furthermore, this mechanism may fail to provide good paths when facing strategic attackers. For
example, assume that three paths are available and each time the two paths with highest rates
are selected. A strategic attacker can itself do the same rating estimation and attack the two
paths with highest rate. The problem is that the rating mechanism implicitly assumes there exists
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correlation between the history and future performance. With this correlation, one can predict
the attacker’s action to some extent. Unfortunately, a strategic attacker will certainly not take
predictable actions. Instead, in some cases it can even take the advantage of the rating mechanism
to cause more severe damage to the networks. Motivated by the above observation, we believe
that it is crucial to study multipath routing solutions with guaranteed worst-case security and
availability properties, which is the focus of our work.

In terms of the underlying methodology, our work is also related to the min-max optimization
and routing games [BSS02], [HB01], [LMR05], [BHO+02]. In fact, our work can be seen as the
application of this tools in hostile wireless networks with unreliable/lossy links absent in classical
context which pose significant difficulties in solving the problem, as shown in later sections.

7.2 System Model and Assumptions

In our work, we model a multihop wireless network as a directed graph G = (V, E) with n nodes
and m edges. Due to the instability of the wireless medium, each edge e operates with probability
re and fails with probability 1 − re. The failures of the edges are assumed to be statistically
independent. We consider a data session between a single source S and destination T . S routes
its packets along path Pi ∈ P (let P be the set of paths between S and T ) with probability qi.
We assume that there is an attacker M attacking the node v ∈ V with probability pv to cause
the most damage to the communication between S and T . The attacker’s objective can be to
maximize the probability of capturing the packet or to minimize the packet arrival probability at
T . Multiple-attacker case is discussed in Section 7.7. If node v is attacked, all the traffic passing
by it is captured by M during the attack period. We assume that S and T are not attacked by M

during the communication.
In this chapter, we assume that each node knows the link reliability {re}. [WMP05] and

[ZLLY07b] address the issue of how to estimate and collect this information. We also assume
that each node has the knowledge of network topology. This information can be acquired from
any secure link-state routing protocol, e.g. [PH03]. These assumptions allow us to concentrate
on the essential properties of the multipath routing problem and the resulting solutions. Note
that in many cases, the dynamic characteristic of wireless networks makes link reliability and
network topology change frequently, which requires that the update of the multipath set should
be performed periodically or triggered by the change.

7.3 Multipath Routing with Minimum Security Risk

In this section, we study the multipath routing solution minimizing the security risk. We quantify
the security risk by the maximum probability that a packet is captured by the attacker. We start
with the case of single attacker M . In such routing problem, the objective of S is to calculate
q = {qi} to minimize the maximum damage caused by M . Mathematically, the multipath routing
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problem can be formulated as the following minimaximization problem MP1:

r∗ = minq maxp

∑

v∈V


 ∑

v∈P,P∈P
q(P )τ(P, v)ϕ(P, v)


 pv

Subject to
∑

v∈V
pv ≤ 1, pv ≥ 0, ∀v ∈ V

∑

P∈P
q(P ) = 1, q(P ) ≥ 0, ∀P ∈ P

where τ(P, v) =
∏

e∈P,eÂv

re, ϕ(P, v) =
∏

b∈P,bÂv

(1 − pb). a Â b denotes that packets encounter node/edge

a before node/edge b when routed along P . r =
∑

v∈V


 ∑

v∈P,P∈P
q(P )τ(P, v)ϕ(P, v)


pv is the expected

probability that the packet is captured by M . Let r′ =
∑

v∈V


 ∑

v∈P,P∈P
q(P )τ(P, v)


 pv. If M attacks

at most one node per path, then r = r′. In general case, it always holds that r ≤ r′. Noticing that
MP1 is a non-linear optimization problem, we focus on solving MP1

′:

(r′)∗ = min
q

max
p

r′

which is a linear optimization problem. Later in Section 7.3.2 we will show that r∗ = (r′)∗.
Consider the inner maximization problem of MP′

1 for fixed q:

maxp

∑

v∈V


 ∑

v∈P,P∈P
τ(P, v)q(P )


 pv

Subject to
∑

v∈V
pv ≤ 1, pv ≥ 0, ∀v ∈ V

Associating a dual variable y, we obtain the following dual optimization problem:

min y

Subject to y ≥
∑

v∈P,P∈P
τ(P, v)q(P ), ∀v ∈ V

Substituting this minimization problem in MP′
1 leads to the following linear optimization

problem LP′
1:

min y

Subject to
∑

v∈P,P∈P
τ(P, v)q(P ) ≤ y, ∀v ∈ V

∑

P∈P
q(P ) = 1, q(P ) ≥ 0, ∀P ∈ P

The size of LP′
1 grows with the number of possible paths between S and T and can be exponen-

tially large. For this reason we reformulate LP′
1 as the maximum flow problem in lossy networks

which can be solved in a polynomial number of steps.
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In LP′
1, we can interpret q(P ) as a flow on P and y as the capacity of node v. Thus the

constraint
∑

v∈P,P∈P
τ(P, v)q(P ) ≤ y restricts the flow on node v. The constraint

∑

P∈P
q(P ) = 1 states

that one unit of flow is sent from S to T . Assume that the capacity of each node v in the network is
1. LP′

1 equals to determine the smallest scaling factor y on the network nodes such that one unit
of flow can be sent from S to T . In this way LP′

1 can be mapped to the maximum flow problem.
Here we would like to emphasize that the maximum flow problem in our context differs from

the classical maximum flow problem due to the packet loss factor τ(P, v). Indeed our problem can
be seen as the maximum flow problem in lossy networks [Way]. Each link has unlimited capacity
+∞, but has a reliable factor re. If re = 1, ∀e ∈ V, our problem degenerates to the standard
maximum flow problem with node capacity constraint.

7.3.1 Solving the Multipath Routing Problem

We first give the stretch of the solution:

• Perform node splitting to transform the maximum flow problem with node capacity constraint
into the maximum flow problem with link capacity constraint.

• Calculate the maximum flow f∗ in the transformed network after the node splitting procedure.
Decompose the maximum flow into sub-flow on paths P1, P2, · · · , Pl from S to T with flow
fi on Pi respectively.

• S should route its packets along path Pi with probability qi = fi/f∗ to minimize the security
risk. The minimum security risk r∗ is 1/f∗.

• Perform the inverse procedure of node splitting. Map the paths and flows in transformed
graph into the correspondent paths and flows in the original graph.

In the following, we detail the core part of the solution.

Node Splitting

The objective of node splitting is to transform the maximum flow problem with node capacity
constraint into the standard maximum flow problem with link capacity constraint. The key idea
is to replace a node with capacity c with two virtual nodes with a link of capacity c between them.
The detailed transformation procedure is as follows:

• Split each node v ∈ V of capacity cv into two virtual nodes v1 and v2. Add a link (v1, v2)
with the same capacity cv and the reliable factor 1.

• For each link (v, v′) ∈ E of reliability p, replace (v, v′) by a link (v2, v
′) with the same

reliability p and the capacity +∞. For each link (v′′, v) ∈ E of reliability p, replace (v′′, v) by
a link (v, v1) with the same reliability p and the capacity +∞.

Figure 7.1: Node splitting
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Figure 7.1 illustrates the node splitting procedure. After the procedure, node v1 receives all
the input flows of node v; the output flows of node v are sent by the node v2; the added virtual
link (v1, v2) carries the flow from input to the output which is restricted by its capacity cv. Let
G′ denote the resulting network after applying the node splitting process on the original network
G. It is clear that each flow in G is one-to-one mapped into a flow with the same quantity in G′.
Hence it holds that f∗ is the maximum flow in G if and only if f∗ is the maximum flow in G′.

Finding Maximum Flow

Our discussion in this subsection relies on the maximum flow problem in lossy networks. Given
a lossy network, the maximum flow problem is to determine the maximum flow that can be sent
from a source node S to a sink node T subject to the capacity constraints (i.e., each link has flow
bounded by the link capacity) [Way].

Such maximum flow problem in lossy networks is a generalized case of the classical maximum
flow problem. To solve this generalized problem, we run the most-improving augmenting path
algorithm described in [Way], which generalizes the maximum capacity augmenting path algorithm
for the traditional maximum flow problem [RKAO93].

Algorithm 4 Max-flow: Most-Improving Augmenting Path
1: Input: transformed network G′
2: Output: maximum flow f∗

3: repeat
4: f ← CancelCycles(G′)
5: f∗ ← f∗ + f
6: Find a most-improving augmenting path P in G′
7: Augment flow along P and update f∗

8: until f∗ is maximum

In Algorithm 4, the augmenting path has a value, defined as the maximum amount of flow that
can reach the sink, while respecting the capacity limits, by sending excess from the first node of
the path to the sink. A most-improving augmenting path is an augmenting path with the highest
value. The algorithm repeatedly sends flow along most-improving augmenting paths. Since these
may not be highest gain augmenting paths, this may creates residual flow-generating cycles. After
each augmentation, the algorithm cancels all residual flow-generating cycles in CancelCycles(),
so that computing the next most-improving path can be done efficiently. Intuitively, canceling
flow-generating cycles can be interpreted as rerouting flow from its current paths to highest-gain
paths.

An efficient algorithm for computing a most-improving augmenting path based on Dijkstra’s
shortest path algorithm is proposed in [RKAO93] with time complexity O(m + nlogn) when im-
plemented using Fibonacci heaps. We refer readers to [Way] for detailed algorithm and [Shi04] for
a completed survey on the generalized maximum flow problem in lossy networks.

7.3.2 A Game theoretic Interpretation

In this subsection, to gain a more in-depth insight of the internal structure of the obtained multipath
routing solution, we study the multipath routing problem from a game theoretic perspective by
modelling it as a non-cooperative game between S and M , denoted as G1. The objective of S is
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to determine q to minimize its utility function Us = r, which is the security risk. The objective of
M , on the other hand, is to determine p to maximize its utility function Ua = r.

G1 is a classical two person zero-sum game with finite strategy set. Following Proposition 33.1
of [OR94], a Nash equilibrium (mixed strategy) is guaranteed to exist. Based on the result on the
two person zero-sum game (Proposition 22.2 of [OR94]), we have the following theorem on the NE
(Nash equilibrium) of the multipath routing game G1.

Theorem 7.1. At the NE of G1 (p∗,q∗), it holds that

Us(p∗,q∗) = Ua(p∗,q∗) = minqmaxpr = maxpminqr

Theorem 7.1 shows that the solution of MP1 is the most secure routing strategy minimizing the
security risk. The minimized security risk from S’s point is, on the other hand, the upper bound
of the payoff that M can get. Hence, at the NE, the two players reach a compromise through
self-optimization such that neither has incentive to deviate.

We now investigate the attacker’s strategy at the NE. We consider the maximum flow f∗ on
the lossy network G′ which is obtained from G applying the node splitting. Let f∗e be the flow of
f∗ on the edge e. It follows from [MV65] that there exists a cut C separating S and T such that∑

e∈S

f∗e =
∑

e∈S

Ce. In our case, C consists of a subset of virtual links added in the node splitting

process with capacity 1. This can be shown by the fact that the capacity of all other links is +∞.
These virtual links correspond to a set of nodes in the original network, denoted as VC . As a dual
part of the maximum flow problem, at the NE, M attacks every node v ∈ VC with probability
1/|VC | where |VC | denotes the cardinality of VC . At the NE, the probability that a packet passes
the node v ∈ VC is 1/f∗, thus the probability of the packet being captured can be computed as

r∗ =
1
f∗
× 1
|VC | × |V

C | = 1
f∗

which confirms the previous analytical results. Furthermore, it follows that at such NE, M attacks
at most one node per path. This leads to r∗ = (r′)∗, which justifies our operation of solving MP′

1

instead of MP1.

7.3.3 Complexity Analysis

In the solution of the previous multipath routing problem, the complexity of the node splitting and
the inverse procedure is O(n). We now investigate the complexity of Algorithm 4 in the following
theorem.

Theorem 7.2. Let ε0 be the smallest positive number describing all possible values in Algorithm

4, Algorithm 4 terminates within at most
⌊
log m

m−1

f∗

ε0

⌋
+1 iterations, where bnc denotes the largest

integer not larger than n.

Proof. The key idea of the proof is to notice that the maximum flow in lossy networks can be
decomposed into at most m augmenting paths. Algorithm 4 selects the path that generates the
maximum amount of excess at the sink. Thus, each iteration captures at least a 1/m fraction of
the remaining flow. Please refer to Section 7.10.1 for the detail of the proof.
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Note that in Algorithm 4, the time complexity of the CancelCycles subroutine is O

(
mn2log

1
ε0

)

and that of finding the most-augmenting path is O(m + nlogn). Generally, ε0 is sufficiently small.

The total time complexity of the algorithm is thus O

(
mn2log

1
ε0

log
f∗

ε0

)
.

In reality, it is often more practical for S to find the quasi-optimal solution of MP1, i.e., the
flow f̃∗ = (1− ε)f∗ where ε is sufficiently small. In such cases, the time complexity of finding f̃∗ is

O

(
mn2log

1
ε
log

f∗

ε

)
applying the proof of Theorem 7.2. As a result, the proposed solution offers

the flexibility for the source node to balance between the time complexity of the algorithm and the
optimality of the result by tuning the parameter ε.

7.3.4 Discussion

The multipath routing problem investigated in this section is related to the work of inspection
point deployment in [WW95] and intrusion detection via sampling in [KL03] which root from the
drug interdiction problem. Our work differs from theirs in that: firstly, in [WW95] and [KL03],
the strategy of the police and the service provider is to inspect and sample the edges, while in
our problem, the attack is on the nodes, which is more efficient from the attacker’s point of view.
Secondly, in [WW95], [KL03], the network is lossless, while we work on the lossy network, which
is more adapted for wireless networks where packet loss and link instability is one of the major
concerns. Thirdly, since finding the maximum flow in lossy networks is by nature much more
complex to solve than in classical lossless networks, we choose a solution providing the flexibility
for the source node to balance between the time complexity of the algorithm and the optimality
of the result by tuning the parameter ε.

Figure 7.2: Limitation

One limitation of the obtained multipath routing solution is that it minimizes the security risk
by choosing appropriate multipaths without taking into account the availability of the selected path
set. Figure 7.2 (the number beside the edge is the reliability of the link) provides an illustrative
example. Based on the proposed solution, S should select the path SAT and SBDT , but it is
clear that the path SCDT is more efficient than SBDT . The problem is that in previous solution,
in some cases, the security is obtained at the price of route availability. This limitation may pose
problem for the applications where the availability of the paths is as important as the security or
even more, such as ad hoc networks for emergency rescue. In such scenarios, it is more important
for S to find the paths with which the packet arriving probability at T (route availability) is
maximized at the presence of M . This motivates us to investigate the multipath routing solution
maximizing the route availability. In Section 7.6, we extend our work to derive the multipath
routing solution to achieve a tradeoff between route security and availability.
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7.4 Multipath Routing with Maximum Availability

In this section, we study the multipath routing solution to maximize the availability at the presence
of the attacker M . In such context, S solves the following maximinimization problem MP2:

a∗ = maxq minp

∑

P∈P
q(P )τ(P, T )

∏

v∈P

(1− pv)

Subject to
∑

v∈V
pv ≤ 1, pv ≥ 0, ∀v ∈ V

∑

P∈P
q(P ) = 1, q(P ) ≥ 0, ∀P ∈ P

where a =
∑

P∈P
q(P )τ(P, T )

∏

v∈P

(1 − pv) is the expected route availability, i.e., the packet survival

probability at T . The engineering implication behind MP2 is that S maximizes the worst-case
route availability under the condition that M arranges its attack to minimize it.

7.4.1 Solving the Maximinimization Problem MP2

The maximinimization problems such as MP2 are usually hard to solve directly. In our study,
in order to make the problem more tractable, we apply game theory by modelling the multipath
routing problem MP2 as a game G2 by following the similar way as in Section 7.3.2. What differs
here is that the objective of S is to maximize its utility function defined as Us = a and that the
objective of M is to minimize Ua = a. Following the same argument, the following theorem is
immediate.

Theorem 7.3. G2 admits at least one NE (p∗,q∗), at which it holds that

Us(p∗,q∗) = Ua(p∗,q∗) = max
q

min
p

a = min
p

max
q

a

Under the game theoretic formulation, solving MP2 consists of solving the multipath routing
game G2, more specifically, finding the NE of G2.

Before delving into the solution, we prove the following useful theorems on the choice of strategy
at the NE for the players S and M :

Theorem 7.4. There exists a NE where the source node S chooses only node-disjoint paths between
S and T .

Proof. The proof consists of showing that if there exists a NE where S routes its traffic on the
paths with common nodes, we can always construct a NE where the source node S chooses only
node-disjoint paths. Please refer to Section 7.10.2 for the detailed proof.

In the following, we focus ourself on finding the NE with node-disjoint paths.

Theorem 7.5. At the NE with only node-disjoint paths, the attacker M attacks at most one node
per path.

Proof. If at such NE, M attacks node V1, · · · , Vn on the same path P with probability p1, · · · , pn,
then the payoff M gets on the path P is

UP = τ(P, T )(1− p1) · · · (1− pn)
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If M uses the same resource to attack only one node on P , say V1, then the payoff it gets on
P is

U ′
P = τ(P, T )(1− p1 − · · · − pn) < UP

which implies that the strategy of attacking more than one node on the same path cannot be a
NE.

Now we are ready to solve the NE. We cite the following well known lemma [OR94] to conduct
further analysis:

Lemma 7.1. Every action in the support of any player’s mixed strategy NE yields that player the
same payoff.

Let P∗ denote the multipath set chosen by S at the NE, qi the probability that S chooses
path Pi ∈ P∗ to route its traffic at the NE, pi the probability that M attacks Pi at the NE,
τi = τ(Pi, T ) =

∏

e∈Pi

re. Apply Lemma 7.1, we have





τi(1− pi) = τj(1− pj)

qiτi = qjτj

∀Pi, Pj ∈ P

The route availability a =
∑

Pi∈P∗
qiτi(1 − pi). Noticing

∑

Pi∈P∗
pi = 1, we have a =

|P∗| − 1∑
Pi∈P∗

1
τi

,

where |P∗| is the number of paths in P∗. Noticing that a is the route availability that S wants

to maximize, solving the NE consists of finding the multipath set P∗ such that
|P∗| − 1∑

Pi∈P∗
1
τi

is

maximized. The maximized value is the solution of MP2. The strategy of S and M at the NE
can be solved as follows:

• S’s strategy: route the packet along path Pi with probability q∗i =
1

τi
∑

Pj∈P∗
1
τj

• A’s strategy: attack path Pi with probability p∗i = 1− |P∗| − 1
τi

∑
Pj∈P∗

1
τj

.

It follows from p∗i ≤ 1, ∀Pi ∈ P∗ that τi ≥ |P∗| − 1∑
Pj∈P∗

1
τj

. This implicates that M only focuses

on a subset of routes to minimize a. Interestingly, S also has incentive to only route its packets
on these paths even though other paths are attack-free due to the fact that the attack-free paths
are very poor in terms of performance. In summary, S should solve the following optimization
problem MP′

2 to find the NE:

a∗ = maxP∗
|P∗| − 1∑

Pi∈P∗
1
τi

Subject to τi ≥ |P∗| − 1∑
Pj∈P∗

1
τj

∀Pi ∈ P∗ (C1)

7.4.2 Heuristic Path Set Computation Algorithm

Although solving MP′
2 is more tractable than solving MP2, yet it requires searching all possible

node-disjoint paths between S and T , which leads to exponential time complexity. In the following,
we propose an heuristic algorithm computing P∗ with polynomial time complexity.



Chapter 7. On Multipath Routing in Multihop Wireless Networks: Security, Availability and Limit 124

The goal of the heuristic algorithm is to find the optimal multipath set P∗ such that a =
|P∗| − 1∑

Pi∈P∗
1
τi

is maximized. We first introduce the two intuitions of the algorithm. Firstly, if we

define τi as the reliability of path Pi, then choosing more reliable paths leads to higher global
route availability. Secondly, if we include more paths in P∗, then |P∗| increases. However, the
denominator of a also increases, especially when τi is small. Thus, the key point of our heuristic
path set computation algorithm is to find as many node-disjoint paths as possible while at the
same time as reliable as possible under the condition that the paths in the multipath set satisfy
the constraint C1 such that the global route availability a is maximized.

In order to change the path reliability from a multiplicative to an additive form, each edge
e ∈ E is assigned a weight we = − log pe. Then the conventional shortest path algorithm such as
Dijkstra algorithm can be applied to find the most reliable path.

Algorithm 5 Heuristic Path Set Computation Algorithm
1: Input: network G
2: Output: multipath set P∗ maximizing a =

|P∗| − 1∑
Pi∈P∗

1
τi

3: Find the most reliable path P1 by Dijkstra algorithm, select P1; Set P∗(1) = {P1}, k = 1,
a = 0.

4: for each path Pi ∈ P∗(k) do
5: Inverse the direction of each edge on Pi, and make its length negative of the original link

cost.
6: Split each node v on Pi (except S and T ) into two nodes v1 and v2; Add an edge (v2, v1)

of cost 0. Replace each edge (v′, v) ∈ E by the edge (v′, v1) without changing its reliability,
replace each edge (v, v′′) ∈ E by the edge (v2, v

′′) without changing its reliability.
7: end for
8: Run the Dijkstra algorithm, find the most reliable path P ′ with reliability τ ′ in the transformed

graph.

9: If τ ′ <
|P∗(k)|

1
τ ′ +

∑
Pj∈P∗(k)

1
τj

, halt by returning P∗.
10: Transform back to the original graph; erase any interlacing edges; group the remaining edges

to form the new path set P∗(k + 1).

11: If a <
|P∗(k + 1)| − 1∑

Pi∈P∗(k+1)
1
τi

, then P∗ = P∗(k + 1), a =
|P∗(k + 1)| − 1∑

Pi∈P∗(k+1)
1
τi

.

12: If no more path can be found in the transformed graph, halt by returning P∗, else k = k + 1
and go to 2.

The heuristic path set computation algorithm, shown as above, is based on the K-node-disjoint
shortest path algorithm [Bha97]. The basic idea of the K-node-disjoint shortest path algorithm is
to add a path in each iteration using graph transformation and link interlacing removal such that
the total cost is minimized. We refer readers to [Bha97] for a detailed description of the algorithm.

Algorithm 5 is a greedy approach finding the most reliable path at each iteration. The iteration
continues as long as: 1) there exist paths in the transformed graph, implying there exist node-
disjoint paths in the original graph; 2) the constraint C1 is satisfied. At the end of the algorithm,
the multipath set P∗ maximizing a is returned. Once P∗ is found, S routes its traffic along Pi with
probability q∗i .

One point concerning the correctness of the heuristic algorithm is that if the most reliable path
found in the transformed graph satisfies the constraint C1 (in the transformed graph), then after
erasing the interlacing edges, all the paths in the newly formed multipath set P∗(k +1) satisfy C1.
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This can be shown by recursively applying the following lemma.

Lemma 7.2. If P2 is the most reliable path in the transformed graph that satisfies the constraint
C1 (in the transformed graph), then after erasing an interlacing edge with another path P1 ∈ P∗,
the resulting path P ′

1 and P ′
2 satisfy C1.

Proof. Please refer to Section 7.10.3 for the detailed proof.

We conclude this subsection by addressing the complexity of Algorithm 5. The worst-case
complexity of the heuristic algorithm is O(n3) in that there are at most ds node-disjoint paths
between S and T , where ds is the number of outgoing edges from S. Since ds ≤ n − 1, the
algorithm iterates n−1 times in the worst-case (S can reach all nodes in the graph in one hop). In
each iteration we run a minimum weight node-disjoint paths algorithm whose complexity is O(n2).
The result is an overall worst-case complexity of O(n3).

7.5 Achieving Security/Availability Tradeoff

In Section 7.3 and Section 7.4, we focus on the multipath routing solution minimizing the security
risk and maximizing the route availability. In fact, security and availability are two important
aspects, of which neither should be ignored. Unfortunately, these two aspects sometimes lead
to divergent routing solutions. Hence a natural next step is to investigate the multipath routing
solution for multihop wireless networks that achieves a good tradeoff between the route security and
availability. We formulated the routing problem in such context as the following maximinimization
problem MP3.

maxq minp

∑

P∈P

∑

v∈P

q(P )τ(P, T )
∏

v∈P

(1− pv)

Subject to
∑

v∈V


 ∑

v∈P,P∈P
q(P )τ(P, v)ϕ(P, v)


 pv ≤ r0

∑

v∈V
pv ≤ 1, pv ≥ 0, ∀v ∈ V

∑

P∈P
q(P ) = 1, q(P ) ≥ 0, ∀P ∈ P

In MP3, S wants to maximize the route availability in the presence of attacker M , while
limiting the security risk at most r0. Directly solving MP3 needs an algorithm of exponential
time complexity. In this section, we propose an heuristic solution based on Algorithm 5 to solve
MP3. As discussed in Section 7.4, maximizing the worst-case route availability equals to solve

max
P∗

|P∗| − 1∑
Pi∈P∗

1
τi

under the constraint C1. The routing strategy for S is to route the packets along

path Pi with probability q∗i =
1

τi
∑

Pj∈P∗
1
τj

. In such context, it is easy to compute the security

risk as r = max
Pi∈P∗

rei
1

τi
∑

Pj∈P
1
τj

where rei
1

is the reliability of the first edge of Pi, since maxp minq r =

minq maxp r, the first constraint of MP3 on the security risk can be transformed into

τi ≥
rei

1

r0
∑

Pj∈P∗
1
τj

, ∀Pi ∈ P∗ (C2)
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Our heuristic solution is extended form Algorithm 5. The key idea is to include enough number
of reliable paths in P∗ to limit the security risk. The intuition behind is that distributing the traffic
among more paths helps limit the security risk. With this in mind, we modify Algorithm 5 such
that the iteration stops until the constraints C1 and C2 are both satisfied or there is no more
node-disjoint path available. In the latter case, the heuristic algorithm fails to find the multipath
routing solution to MP3. This failure may due to the fact that the constraint on the security
risk is too stringent such that no possible multipath set can meet the constraint, or alternatively,
the heuristic algorithm itself cannot find the solution though it does exist. In such cases, possible
solutions include secret sharing and information dispersion in which the key idea is to divide the
packet to N parts and the recovery of the packet is possible only with at least T parts. These
techniques can further decrease the security risk and improve the performance. We refer readers
to [YP01], [PH06] since they are out of the scope of our work.

7.6 theoretic Limit of node-disjoint Multipath Routing

In this section, we establish the relationship between the worst-case route availability a∗ and
security risk r∗ in node-disjoint multipath routing. The relationship gives one important limit of
the node-disjoint multipath routing with the presence of an attacker in the sense that we cannot
find better routing solutions with node-disjoint paths whose security and availability can go beyond
the limit.

Let Pnd be the node-disjoint multipath set selected by S to route traffic, we have shown in
Section 7.4 that

a∗ =
|Pnd| − 1∑

Pi∈Pnd
1
τi

On the other hand, let q0
k =

1
τk

∑
Pj∈Pnd

1
Pj

. We have
∑

Pk∈Pnd

q0
k = 1 =

∑

Pk∈Pnd

qk, where qk is the

probability of routing packets along Pk. From the Pigeon Hole Principle, there exists at least one
path Pm ∈ Pnd such that qm ≥ q0

m. It follows that

r∗ = min
q

max
p

= max
p

min
q
≥ qmrem

1
=

rem
1

τm
∑

Pj∈Pnd
1
τj

where rem
1

is the reliability of the first edge on Pm.
As a result, we get

a∗

r∗
=

(
|Pnd| − 1

) τm

rem
1

≤ |Pnd| − 1 ≤ |Pnd|max − 1

where |Pnd|max is the maximum number of node-disjoint path between S and T .
As a limit of node-disjoint multipath routing, the above relationship shows the intrinsic con-

straint of minimizing r and maximizing a at the same time. More specifically, if we want to
limit the security risk as low as r, it is impossible to achieve a > (|Pnd|max − 1)r; if we want to
guarantee the route availability as high as a, then we should expect the security risk of at least
r/(|Pnd|max − 1). Moreover, given the requirement on the route security and availability, one can
check if it is realizable or too stringent by using the above formula before searching for the routing
solution.
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7.7 Multipath Routing with Multiple Attackers

In this section, we extend our efforts to investigate the case where there are n (n > 1) attackers in
the network.

7.7.1 Minimizing Security Risk

There are various formulations of the multipath routing problem under n attackers to minimize the
security risk, among which we are interested in two typical formulations. In the first formulation,
let ri be the probability that a packet is captured by attacker i, S wants to minimize

∑
ri. This

case can be regarded as the case where S plays the multipath routing game G1 with each of
the attackers. Hence, the solution of MP1 can be applied here. The only difference is that the
resulting minimum security risk is nr∗. However, this does not influence routing strategy of S, in
other words, no matter how many attackers are there, the routing strategy of MP1 provides the
most secure routing strategy minimizing the security risk in this case.

In the second formulation, the security risk is defined as the probability that a packet is captured
by at least one attacker. In this context, the attackers will arrange their attacks such that no more
than one attacker will attack the same node simultaneously, i.e., they try to coverage the most
nodes possible to maximize the probability of capturing the packet. Similar as in Section 7.3.2, we
can show that the attackers attack at most one node per path to maximize the security risk. For
S, to minimize the security risk is to solve the following optimization problem MP4:

minq maxp

∑

v∈V


 ∑

v∈P,P∈P
q(P )τ(P, v)


 pv

Subject to
∑

v∈V
pv ≤ n, 0 ≤ pv ≤ 1, ∀v ∈ V

∑

P∈P
q(P ) = 1, q(P ) ≥ 0, ∀P ∈ P

where pv is the probability that a node v is attacked by any of the n attackers.
MP4 is a linear optimization problem and can be solved by classical linear programming

techniques. However, due to additional constraints pv ≤ 1, MP4 cannot be transformed into
maximum flow problem in lossy networks as MP1 that can be solved in polynomial time. As a
result, solving MP4 may require an algorithm with exponential time complexity.

In the following, we give the upper bound of the security risk under n attackers. To this end,
we relax the constraint pv ≤ 1 and perform variable transformation by letting p′v = pv/n. MP4

after the transformation becomes MP′
4:

minq maxp n
∑

v∈V


 ∑

v∈P,P∈P
q(P )τ(P, v)


 p′v

Subject to
∑

v∈V
p′v ≤ 1, 0 ≤ p′v ≤ 1, ∀v ∈ V

∑

P∈P
q(P ) = 1, q(P ) ≥ 0, ∀P ∈ P

MP′
4 is identical to MP′

1 except for a constant coefficient n. It follows immediately that its
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solution is n/f∗ where 1/f∗ is the maximum flow in MP′
1. Let r′ be the security risk under n

attackers, following the fact that MP′
4 is obtained by relaxing the constraint pv ≤ 1 in MP4, it

holds that r′ ≤ n/f∗. In summary, by increasing the number of attackers from 1 to n, the security
risk increases at most n times.

7.7.2 Maximizing Route Availability

We consider the multipath routing game between S and the attacker side consisting of n attackers.
S tries to maximize the route availability and the attacker side tries to minimize it. It can be shown
that at the NE of the game, no more than one attacker attacks the same node at the same time.
This is because attacking the same node at the same time gives the attacker side the same payoff
as the case where only one attacker attacks the node, which gives the attacker side less payoff than
the case where the attacker side arranges the attack to cover the most number of nodes possible.
With this in mind, by conducting the similar analysis as in Section 7.4.1, the optimization problem
S should solve in multiple-attacker case is MP5

maxP∗
|P∗| − n∑

Pi∈P∗
1
τi

Subject to τi ≥ |P∗| − n∑
Pj∈P∗

1
τj

∀Pi ∈ P∗ (C3)

where P∗ consists of node-disjoint paths. The extension of Algorithm 5 to solve MP5 is straight-
forward.

We now investigate the case where S also wants to limit the security risk as low as r0 at the
same time, as in Section 7.5. Recall that rei

1
denotes the reliability of the first edge of Pi, we

sort the path by
rei

1

τi
, i.e.

rei
1

τi
≤

re1
j

τj
⇐⇒ i ≤ j. The security risk in multiple-attacker case is

n∑

i=1

re1
i

τi
∑

Pj∈P
1
τj

, which is achieved when the n attackers attack the n most profitable paths. To

limit the security risk, the constraint
n∑

i=1

re1
i

τi
∑

Pj∈P
1
τj

≤ r0 should be added to MP5. Algorithm

5 can be extended in a similar way as in Section 7.5 solve it. In the multiple-attacker case, if
|Pnd|max ≤ n, the communication between S and T is paralyzed by the attackers.

7.8 Performance Evaluation

In this section, we evaluate the performance of proposed multipath routing solutions through
simulation using NS 2. Table 7.1 shows the simulation setting. The link reliability of each link is
generated from a normal distribution σ(0.7, 0.2) trunked in [0, 1] interval.

7.8.1 Single-Attacker Case

We start with single-attacker case. Two scenarios are simulated: the attacker launches its attack to
maximize the packet capture probability (scenario 1) or minimize the packet survival probability
at the destination (scenario 2). In both scenarios, we assume that the attacker knows the routing
strategy of S.
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Simulation time 1000s
Number of nodes 100, randomly distributed

Network dimension 1000m× 1000m
Transmission range 200m

Node speed 4m/s, Random waypoint model
Data traffic CBR 4pkt/s 64bytes per pkt

Table 7.1: Simulation Parameters

We compare our solutions with SMT [PH06] and DPSP [PHS02]. To focus on the multipath
routing solution itself and perform a fair comparison, we do not implement the message dispersion
in SMT. Since SMT and DPSP do not specify how to balance traffic among the paths, we let S

chose randomly in the multipath set when having a packet to send.
Let MinSR denote the multipath routing algorithm minimizing the security risk, MaxAV denote

the heuristic multipath routing algorithm maximizing the route availability, MaxAV-SR denote the
heuristic multipath routing algorithm maximizing the route availability while limiting the security
risk under certain threshold (the threshold is set to 16% in out simulation). In MinSR, to balance
the complexity of the algorithm and the solution optimality, we set ε = 0.05. Table 7.2 shows the
simulation results.

Scenario 1 Scenario 2
r ps r ps

MinSR 15.2% 54.2% 13.1% 50.3%
MaxAV 19.1% 62.2% 16.8% 59.0%

MaxAV-SR 15.8% 58.2% 15.3% 54.4%
SMT 32.3% 48.5% 39.8% 36.5%
DPSP 24.1% 49.7% 22.8% 45.3%

Table 7.2: Simulation Results: Single-Attacker Case

The simulation results show that SMT performs poorly in both scenarios. This is due to the fact
that in our simulation, different from the scenarios simulated in the literatures [PH06], [KRMK06],
we simulate the worst-case scenarios where the attacker launches its attack in the unpredictable
way which is not correlated with the history rating. In such context, the attacker can actually
take the advantage of the path rating mechanism to cause more severe damage. DSDP performs
almost the same in two scenarios in that it selects the most reliable multipath set without taking
into consideration of attackers. The resilience to attacks of DPSP is purely due to its multipath
nature.

For our solution MinSR, it achieves the minimum security risk in scenario 2, which confirms
the analytical result in that the upper bound of the security risk r∗ is achieved in scenario 1.
However, the route availability in MinSR is less than that in MaxAV. This is due to the limitation
of MinSR discussed in Section 7.3.4. From the simulation, we can see that the sub-optimality
of MinSR in terms of availability can be rather important compared to MaxAV, which achieves
the best route availability among all the simulated multipath routing solutions. MaxAV-SR, on
the other hand, achieves a tradeoff between the route security and availability, which is shown by
the simulation results that its performance in terms of route security and availability lies between
MinSR and MaxAV. Furthermore, we observe the fact that the number of maximum node-disjoint
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paths in our simulation is around 6. From this observation, we can verify the relation between the
route security and availability using the formula derived in Section 7.6 on the theoretic limit of
node-disjoint multipath routing.

7.8.2 Multiple-Attacker Case

We then evaluate the performance of MaxAV and MaxAV-SR (the security risk threshold r0 is
set to 0.55) in cooperative multiple-attacker case where the attacker side arranges their attacks
on a subset of paths so as to minimize the security risk in scenario 1 and to maximize the route
availability in scenario 2. Figure 7.3 and 7.4 plot a and r as a function of the number of attackers.
SMT is not plotted here since the route availability of SMT drops below 20% even with 2 attackers.
MinSR is not simulated here in that according to our analysis in Section 7.7.1, the first formulation
is simply the aggregated case of the single-attacker case, in the second formulation, no polynomial
routing algorithm exists minimizing the security risk.
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Figure 7.3: Multiple-attacker case: scenario 1
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Figure 7.4: Multiple-attacker case: scenario 2

The results show that the performance degrades significantly with the increase of the number of
attackers. The communication is almost paralyzed with 5 attackers. At the presence of 6 attackers,
MaxAV-SR cannot find routing solution whose security risk is not more than 0.55. Once again,
our results seem very different from those obtained from the literatures. This is because we focus
on the worst-case scenarios throughout this chapter. Unlike the traditional simulation where a
percentage of nodes is assumed to be compromised, we implement much more powerful attackers
with perfect knowledge of the network and the routing strategies. These attackers are able to
launch the most severe attacks which are not predictable nor correlated in time or space. In such
context, our results reflect the lower bound of performance of the simulated routing solutions. We
argue that maximizing this lower bound, as discussed in our work, is of great importance since the
attackers cannot be underestimated in any case. Meanwhile, we can see from the results that our
solutions perform substantially better than DPSP in terms of both route security and availability.

In summary, the simulations show that the proposed multipath routing solutions achieve the
design objective of providing the best performance in terms of security and/or route availability
in the worst-case scenarios.

7.9 Conclusion

In this chapter, we address the fundamental problem of how to choose secure and reliable paths in
multihop wireless networks. We formulate the multipath routing problem as optimization problems
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and propose algorithms with polynomial complexity to solve them. Three multipath routing solu-
tions are proposed: MinSR minimizes the security risk, MaxAV maximizes the route availability
and MaxAV-SR achieves a tradeoff between them by maximizing the route availability while limit-
ing the security risk under given threshold. We also establish the relationship between the security
risk and route availability, which gives the theoretic limit of node-disjoint multipath routing.

The analytical and simulation results in the chapter lead us to the following conclusion:

• Solutions based on path rating which work well in the presence of time or location corre-
lated attacks may fail to provide secure and reliable paths facing strategic attackers with
unpredictable attack patterns.

• Two issues are crucial in multipath routing. Firstly, both the security and availability should
be taken into account when choosing the optimal paths, as in [LLF04] and our work. Sec-
ondly, the traffic should be balanced among paths such that they are equally “attractive” to
attackers.

• Among the proposed multipath solutions, MaxAV-SR achieves good security/availability
tradeoff by choosing sufficient number of mutually disjoint paths with high reliability and
balancing the traffic in the optimal way.

7.10 Proofs

This section completes the detailed proofs omitted from the main text.

7.10.1 Proof of Theorem 7.2

By Corollary 2.3.4 of [Way], the maximum flow in lossy networks can be decomposed into at most
m augmenting paths. Algorithm 4 selects the path that generates the maximum amount of excess
at the sink. Thus, each iteration captures at least a 1/m fraction of the remaining flow. Let fk be
the flow after iteration k, we have:

f1 ≥ 1
m

f∗

f2 ≥ f1 +
1
m

(f∗ − f1)

· · ·
fk ≥ fk−1 +

1
m

(f∗ − fk−1)
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Injecting fk−1, · · · , f2, f1 into fk, we have

fk ≥ fk−1 +
1
m

(f∗ − fk−1) =
1
m

f∗ +
m− 1

m
fk−1

≥ 1
m

f∗ +
m− 1

m
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(
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Algorithm 4 terminates if f∗ −
[
1−

(
m− 1

m

)k
]

f∗ < εo, i.e., k > log m
m−1

f∗

ε0
.

7.10.2 Proof of Theorem 7.4

We have shown that there exists at least one NE in G2. We now show that if the NE consists of
overlapped paths with common nodes, we can construct another NE with node-disjoint paths.

We first give some definitions. For two paths sharing nodes A, B with (A,B) 6= (S, T ), let Q1

and Q2 be the node sequence of the two paths between A and B. Q1, Q2 can be empty, but they
cannot both be empty. Let l(Q) denote the number of nodes in the sequence Q, we call the node
sequence AQ1BQ2A a cycle and define the diameter of the cycle AQ1BQ2A as min{l(Q1), l(Q2)}.

Figure 7.5: Two paths forms a cycle

Assume that at the NE, there exists paths with common nodes. We now study the cycle
containing S with the common nodes S and V with the smallest diameter. Suppose this cycle is
formed by path P1 and P2 with the node sequence L1 ∈ P1 and L2 ∈ P2 between S and V , as
shown in Figure 7.10.2. Without loss of generality, we assume l(L1) ≤ l(L2). It follows that at
the NE, any node Vn ∈ L1 does not belong to the multipath set chosen by the source except P1,
otherwise we find a cycle with smaller diameter, which contradicts our assumption. It then holds
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that at the NE, the attacker has no incentive to attack any nodes on L1 because if it attacks any
node on L1 with probability p, it gets less payoff if it use the same resource attacking V . From the
definition of NE, routing the packets on L1 gives S the same payoff as routing them on L2. Hence,
we can switch all the traffic from L1 to L2 without changing the payoff of S. Moreover, since the
attacker does not attack any node on L1 at the NE, this operation does not change the payoff of
the attacker, either. Therefore, it is easy to verify that the multipath set after the above operation
is also a NE of G2. However, the number of cycles decreases by one. As a result, by recursively
repeating the above process, we can transfer any NE to a NE where the number of cycles is 0.
Such NE consists of only node-disjoint paths between S and T .

7.10.3 Proof of Lemma 7.2

The lemma holds evidently if P2 does not intercross P1. In the following we prove the case where
P2 intercrosses with P1. As illustrated in Figure 7.10.3, P1 is composed of L1

1, e, L
2
1, P2 is composed

Figure 7.6: P1, P2 shares the edge e

of L1
2, e, L

2
2 before erasing the interlacing edge e. Here Lj
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In the same way, we can show τ ′2 = r1
2r

2
1 ≥

|P∗(k)|
1

r1
1r2

2
+ 1

r1
2r2

1
+ Γ

. Noticing that P ′
1, P ′

2 consists of

r1
1r

2
2 and r1

2r
2
1 respectively, it follows that both P ′

1 and P ′
2 satisfy C1, which concludes our proof.
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Chapter 8

Conclusion

8.1 Thesis Summary

This thesis has presented a systematic study on selfish and malicious behaviors in wireless networks
under the non-cooperative game theoretic framework in different context.

• Part I is dedicated to selfish behaviors, with Chapter 2 addressing the selfish MAC layer
behaviors in IEEE 802.11 wireless networks, Chapter 3 focusing on the selfish power/rate
control in the same context, and Chapter 4 proposing a pricing framework for cooperative
relaying to stimulate cooperation among selfish players in non-cooperative wireless networks.
In these wireless resource management problems, we studied the impact of selfishness on
the system performance and in case where the resulting NE is inefficient, we developed
and analyzed specific incentive-compatible protocols and pricing mechanisms to fill the gap
between inefficient NE and the global optimal or quasi-optimal point.

• Part II tackles the malicious behaviors in wireless networks, with Chapter 5 establishing
a generic game theoretic framework on the intrusion detection in heterogeneous networks,
Chapter 6 analyzing the jamming attacks in wireless networks and proposing an active defense
strategy, Chapter 7 addressing the problem of choosing secure and reliable paths in multihop
wireless networks. In such security problems, we applied game theory as a basis for analyzing
malicious attackers’ behaviors, developing and validating new defense strategies to limit the
damage caused by attackers.

By employing non-cooperative game theory as a line of research, in each chapter, we formulated
the corresponding non-cooperative game in the specific context of that chapter. The resulting
NE(s) is then derived, followed by an analysis on the key properties of the game solution, i.e., the
existence, uniqueness of the NE, the convergence to the NE and the efficiency of the system at
the NE. In Part I, this analysis served as foundations for the further design methodologies that
approach the NE to the social optima in case where the NE is shown inefficient. In Part II, this
insight leads to the development and validation of new defense mechanisms seeking to eliminate
the unfavorable NE from the defender’s perspective if multiple NEs exist and limit the damage
caused by malicious attackers at the remaining NE.

In the following, we proceed this conclusion chapter by discussing some key open issues and
outlining some potential directions for further research. Different from the open problems and
possible extensions addressed distributedly in each chapter, which is usually limited to the specific
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context of that chapter, we now take a higher-level view on the extension and generalization our
work in this thesis.

8.2 Open Issues and Directions for Future Research

8.2.1 Non-cooperative Joint MAC/Power/Rate Control

Chapter 2 and 3 focused on the selfish behaviors where players could configure their contention
window and transmission power/rate, respectively. As a natural extension, considering the non-
cooperative joint MAC/power/rate control in IEEE 802.11 networks opens a new dimension to the
problem. In particular, it is interesting to examine whether the results in Chapter 2 and 3 hold in
this new context, and if the game leads to an inefficient NE, how to design pricing functions that
incorporate the MAC protocol parameters (access probabilities), the transmission power and data
rate to increase the efficiency is also worth exploring.

More profoundly, analyzing this new non-cooperative game can provide valuable insight on the
fundamental problem of how to design efficient MAC protocols coupled with power/rate control
for non-cooperative random access wireless networks. We believe that an efficient MAC protocol
should satisfy the following properties:

• Convergence and stability : the protocol should converge to a stable equilibrium.

• Social optimality and fairness: the converged equilibrium should be network-wide optimal
or at least quasi-optimal and each participant should get a fair share of payoff at this point.

• Survivability : the protocol should guide the individual nodes to operate on the designed
equilibrium point even if they are purely self-interested and non-cooperative. In other words,
it consists of a strategy that no selfish node has incentive to deviate.

How the non-cooperative theory and our results can be applied in developing new methodologies
of designing efficient MAC protocols remains an open research problem.

The analysis in Chapter 2 and 3 is based on the saturated traffic model in which all players are
back logged. Although this simplified scenario reflects the extreme case where the impact of the
selfishness on the network performance is maximized and the saturation assumption is reasonable
for a generic study of the corresponding non-cooperative games, we do believe that a thorough
investigation of the same game under more realistic traffic models such as voice, TCP file transfers
and video is of great practical importance. By introducing more sophisticated queue models and
adapting utility functions (e.g., imposing the delay as a hard constraint for delay sensitive traffic
such as VoIP), practical MAC protocols and power/rate control schemes can be developed to
accommodate diverse applications with different Quality-of-Service (QoS) requirements.

8.2.2 Towards a Hybrid Game Theoretic Model

In Part I, we conduct our analysis under a non-cooperative paradigm where all participants in a
wireless network are selfish by aiming at maximizing their own payoff regardless of others. In a
more general context, a more challenging question is how the network performs if some players
are selfish, others are “socially responsible” to different extent. This situation can be modeled as
a hybrid (cooperative and non-cooperative) game where the players’ behaviors range from total
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cooperation, for those that are entirely altruistic and willing to cooperate for an overall optimum,
to pure non-cooperation, for those that are selfish and seek only to maximize its own payoff even
at the price of the sub-optimality of the whole network. Studying such hybrid game involves both
non-cooperative and cooperative game theory. The characterization of the resulting equilibria and
the investigation of the structural properties of the game can provide more insight on the efficiency
and survivability of wireless networks in open, dynamic environments.

• At the first level, a mapping can be established between the degree of altruism/selfish for
each player and its optimal strategy. This may further help us understand and evaluate the
worthwhileness of cooperation as well as the impact of selfishness in a general context.

• At second level, it could suggest new incentive mechanisms to guide the network to a socially
efficient point, e.g., to form a favorable coalition where each player benefits a share of profit
corresponding to its contribution.

Furthermore, incorporating malicious players into the hybrid game by modeling them as “non-
cooperative” players with the goal of paralyzing the network will add a new flavor to the problem.

8.2.3 Limitations of Classical Game Theory

As this thesis uses game theory, mostly classical game theory, as a line of research, we believe that
it is pertinent in this conclusion section to address the limitations of classical game theory when
applied in the engineering fields such as wireless networking in our case and how these limitations
influence our modeling.

A central assumption in classical game theory is the perfect rationality, alternatively termed
intelligence, under which players act as supercomputers with infinite computational capacity and
can always find their best strategy, no matter how complex the game is. This utopian assumption
clearly does not hold in practical games, where players are people or computer agents with limited
computation capacities and where computing the best strategy is extremely costly in terms of
time and resource. To bridge the gap between the “perfect rational man” paradigm and the more
realistic scenario, the concept of bounded rationality is introduced.1 An effective way to bound
rationality is to put constraints or add costs to the information that is used to make the rational
decision, typically in terms of acquisition, memory and communicating.

In our context, two learning mechanisms, best response update and subgradient update (better
response update), are investigated in detail in different problems to study the game dynamics
and the convergence to the equilibrium points. These two update mechanisms can be regarded
as “limited memory” modeling of bounded rationality, where players only remember situations in
the previous iteration. They are also among the simplest learning mechanisms for the players in
a game theoretic environment, and consequently lead to simple network protocols converging to
designed equilibrium points. Another example of bounded rationality can be found in Chapter 7,
where computing the NE strategy (multipath set) is sometimes NP hard. In such cases, it is more
reasonable to assume that the players can content themselves by choosing their strategy based on
the heuristic algorithms, though the strategy may not be optimal in the absolute sense.

In our work of applying non-cooperative game theory in wireless networking problems, we
usually follow the following procedure. First, we formulate the problem to be tackled as a non-

1More detail on this subject can be found in the textbook [Rub98].
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cooperative game where each player have knowledge of the actions of other players based on which
his decision is made and study the corresponding tradeoffs at the NE. This assumption is clearly not
always valid in wireless networks. Hence, we then investigate how the characteristics of wireless
networks influence or affect the decision making process of players and the resulting equilibria.
Some typical ways of analysis are as follows:

• In Chapter 2, the GTFT strategy is introduced as a more robust version of the TFT strategy
in the wireless environments where accurate observation is impossible due to the error-prone
nature of the radio channel. With this more tolerant strategy, the game is actually more
likely to reach a stable equilibrium where the payoff is acceptably optimal for any player.

• In Chapter 3 and 6, specific mechanisms are designed for players to update their strategy
based on only observable information without the knowledge of the actions of other players.
The asynchronous version of the strategy update scheme is also investigated as it is sometime
impractical for players in wireless networks to remain synchronized with each other.

• In Chapter 5, the detection rate a and the false alarm rate b are two crucial parameters that
cannot be exactly estimated in practice. To address this, we conducted a sensitivity analysis
study the impact of inaccurate information of the parameters on the players’ payoff at the
NE.

Despite the efforts in this thesis and elsewhere devoted to adapting the game theory in the
wireless networking field and accessing the impact of its limitations on the final results, we argue
that it remains an open and challenging task to study games with incomplete and imperfect
information in the field of wireless networking with its unique characteristics and constraints.

8.3 Concluding Remark

The key contribution of this thesis is to investigate the selfish and malicious behaviors in wireless
networks, or more generally, to study the interactions among network participants or entities with
conflicting objectives. Although the analysis is conducted for several specific problems ranging from
non-cooperative resource allocation to network intrusion detection, we believe that the methodology
employed in this thesis and its results can have much wider applications in emerging fields of
modern networks and distributed systems beyond the scope of this thesis. Studying cooperation
and security issues arising there is an important development of this thesis, as well as a promising
avenue for further research.



Appendix A

Toward Secure and Scalable Time

Synchronization in MANET

A.1 Introduction

Ad hoc networks are autonomous collections of mobile nodes communicating with each other over
wireless links and cooperating in a distributed manner in order to provide the necessary network
functionality in the absence of a fixed infrastructure. In such environments, time synchronization
is crucial. It is a key function to perform power management and to support the medium access
control protocol in the Frequency Hoping Spread Spectrum version of the physical layer [80299].
It also plays an important role in the support of QoS in ad hoc networks, particularly for real-time
applications. Furthermore, a common view of local clock time is a basic requirement in some ad
hoc routing protocols and cryptography and authentication schemes for detecting out-of-date or
duplicated messages.

The high dynamic nature of ad hoc networks, the nondeterminism of the wireless channel and
the lack of reference nodes make time synchronization a challenging task in ad hoc networks in that
traditional time synchronization techniques for wired networks (e.g., [NTP]) are no more applicable
to ad hoc environment due to their centralized nature and the heavy traffic and computation
overhead they involve. A good synchronization mechanism for ad hoc networks should be robust
to mobility and topology changes, efficient in terms of traffic and processing cost, scalable and
secure.

Here we pay a special emphasis on the security aspect because recently many mechanisms have
been proposed to address the time synchronization problem in ad hoc networks [EGE02], [GKS03],
but most of them do not take into account security, although security is a major challenge in ad
hoc networks. As a result, they are very vulnerable to various attacks ranging from modifying
and replaying a time synchronization message to sending forged time values to desynchronize the
network or disturb the receiver’s clock. [KMR05] shows through simulations that the attacks
against IEEE 802.11 Timing Synchronization Function (TSF) can cause significant damage to a
large number of nodes. Such insecure time synchronization protocols may further cause serious
problems on the applications and protocols based on synchronized time. Nodes may fail to be
activated because of the incorrect time estimation, which may cause serious problems such as
failing to respond to important events and packet loss. Out-of-date and replayed messages cannot
be detected in ad hoc routing protocols or some cryptography and authentication schemes, which
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may lead to many new opportunities for DoS (Deny-of-Service) and replay attacks.
Given the insecurity of existing time synchronization protocols in ad hoc networks and their

detrimental effect on the applications, we propose a novel suite of time synchronization mecha-
nisms for ad hoc networks taking into consideration security, scalability and other challenges. The
proposed mechanisms are based on symmetric cryptography, avoiding the costly digital signature
schemes which may be undesirable for resource constrained environments such as ad hoc networks.

We start by performing an in-depth analysis on the core problems of existing synchronization
mechanisms for ad hoc networks based on which we propose our secure single-hop time synchroniza-
tion procedure (SSTSP). We show by simulation and analytical studies that SSTSP significantly
outperforms existing approaches in terms of scalability, accuracy and security. We then extend
our efforts to the secure time synchronization for multi-hop ad hoc networks. We propose the
multi-hop secure time synchronization procedure (MSTSP), an extended and adapted version of
SSTSP for multi-hop ad hoc networks, and evaluate its performance via simulation. The results
show that the performance of MSTSP is significantly superior to TSF and is among the best of
currently proposed solutions in terms of accuracy and scalability. Besides, MSTSP can maintain
the network synchronized even under malicious attacks.

A.2 Related Work

Time synchronization is the process to ensure that physically distributed processors have a common
notion of time. There are two commonly known approaches for time synchronization [RK04],
centralized and distributed. The centralized approach is also known as master-slave synchronization
where there is one or more accurate clocks (the master(s)) to which all other nodes listen and adjust
their local clocks accordingly. The time synchronization mechanism proposed in [GKS03] for ad hoc
networks belongs to this catalog. The distributed approach is also known as mutual synchronization
where there is no master clock, but instead all clocks cooperate to achieve synchronization in a
distributed manner. IEEE 802.11 TSF in ad hoc mode belongs to this catalog.

For mobile ad hoc networks we argue that the distributed approach is more suitable due to
its robustness, flexibility and adaptability. This motivates us to focus our efforts on the secure
distributed time synchronization mechanism for ad hoc networks. IEEE 802.11 TSF is specified by
IEEE 802.11 standards as an efficient distributed synchronization mechanism for single-hop ad hoc
networks. Other distributed synchronization approaches [SCS04], [RK04] mainly base themselves
on IEEE 802.11 TSF and improve it to achieve better performance or extend it to multi-hop ad
hoc networks.

A.2.1 IEEE 802.11 TSF In Ad Hoc Mode

IEEE 802.11 standards specify the ad-hoc-mode Timing Synchronization Function (TSF) for IEEE
802.11 ad hoc networks (IBSS) [80299] in which time synchronization is achieved by periodical time
information exchange through beacons containing timestamps and other parameters. Each node
maintains a local clock counting in increments of microseconds. All nodes in the IBSS compete
for beacon transmission every Beacon Period (BP). At the beginning of each BP, there is a beacon
generation window consisting of w + 1 slots each of length aSlotT ime, where w is a parameter
defined by system. Each node calculates a random delay uniformly distributed in [0, w]×aSlotT ime

and schedules to transmit a beacon when the delay timer expires. If a beacon is received before
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the random delay timer has expired, the node cancels the pending beacon transmission. Upon
receiving a beacon, the node sets its local clock to the timestamp of the beacon if the value of the
timestamp is later than its local clock.

In spite of its distributed nature and its efficiency in terms of communication cost, IEEE 802.11
TSF has the following problems when applied to large scale or multi-hop ad hoc networks:

• Fastest node asynchronization: As identified in [LZ03], the clock of the fastest node may drift
away, because it may not get a chance to transmit its beacon. Since the fastest node does not
synchronize itself to other nodes, its clock will keep drifting away from others. The problem
becomes more severe when the number of nodes of the network increases.

• Beacon collision: As the number of nodes in the network increases, the synchronization
beacon transmission contentions uprise accordingly. As a result, in a large network, due to
repeated collisions, synchronization beacons can hardly be successfully transmitted and some
nodes may fail to synchronize with others.

• Time partitioning: As identified in [SV04], this problem occurs when TSF is applied to
multi-hop ad hoc networks, where nodes fall into clusters which may be desynchronized
during a long period of time. When the number of nodes increases, the problem has a
more negative impact on the synchronization accuracy. Giving faster nodes higher chance in
beacon transmission will also increases the impact of the time partitioning problem.

A.2.2 Scalable Time Synchronization for Ad Hoc Networks

ATSP was proposed in [LZ03] to solve the fastest node asynchronization problem in IEEE 802.11
TSF. The basic idea is to let the fastest node compete for beacon transmission every BP and let
other nodes compete only every Imax BPs. The parameter Imax should be carefully chosen to reach
a tradeoff between scalability and stability. As an improved version of ATSP, the authors propose
TATSP in which the nodes are dynamically classified into three tiers according to the clock speed.
The nodes in tier 1 compete for beacon transmission in every BP and the nodes in tier 2 compete
once in a while and the nodes in tier 3 rarely compete. SATSF is another synchronization protocol
proposed in [ZL05] compatible with IEEE 802.11 TSF. In SATSF, node i competes for beacon
transmission every FFT (i) BPs. FFT (i) is adjusted at the end of each BP in the way that fast
nodes will gradually decrease their FFT value, thus competing more frequently than slow nodes.

ASP is proposed in [SCS04] to synchronize multi-hop ad hoc networks. The basic idea is to
synchronize the whole network by fulfilling two tasks: to increase the successful transmission prob-
ability for faster nodes and to spread the faster time information throughout the whole network.
The first task is achieved by increasing the beacon transmission priority of a node who has faster
time and by cutting down the priorities of the others. When some slower nodes get enough in-
formation to accomplish synchronization by themselves, their beacon transmission priorities are
increased to carry out the second task.

[RK04] proposes a mechanism which differs from the idea of giving faster nodes higher priorities.
In the mechanism all nodes participate equally in the synchronization of the network. The authors
define a controlled clock, which is an adjusted clock of the real clock, and a parameter s =
controlled clock

real clock
. Each node participate the contention with probability p every T DELAY BPs
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if no beacons are received within last T DELAY beacons. When receiving a beacon, the node
updates s and p to synchronize to the sender of the beacon.

A.2.3 Secure and Fault Tolerant Time Synchronization

In spite of the numerous time synchronization protocols proposed for ad hoc networks, most of
them have not been built with security in mind. To our knowledge, there exist very few proposi-
tions on the secure time synchronization protocols in the literature among which [SZC05] mainly
focus on a specific type of attack called delay attack. The authors propose two approaches to
detect and accommodate the delay attack. One approach uses the generalized extreme studentized
deviate (GESD) algorithm to detect multiple outliers (malicious time offset). The other uses a
threshold based on a time transformation technique to filter out the outliers. [GvHS05] proposes
several protocols for sensor networks to secure pairwise time synchronization over single hop and
multiple hops. The authors further extend their efforts to secure group time synchronization. They
propose the lightweight secure group synchronization protocol to counter external attacks and the
secure group synchronization protocol to counter both external and internal attacks but at the
price of the heavy traffic overhead and the lack of scalability. [SNW06] proposes a fault-tolerant
cluster synchronization protocol for sensor networks in which the hash chain scheme is applied to
achieve local broadcast authentication. All sensors should be initially synchronized to bootstrap
the protocol.

Our proposed time synchronization mechanisms differ from existing schemes in the following
ways

• We take into account the scalability issue in our time synchronization protocols. Our syn-
chronization mechanisms do not operate on synchronization message flooding or exchanging
between each pair of nodes which may pose scalability problem.

• Our synchronization protocols are totally distributed and do not rely on any synchronization
sources or hierarchy. This feature makes our approach robust to topology changes and
network dynamics in ad hoc environments.

A.3 System Model

A.3.1 Clock Model

Each mobile node is equipped with a clock, a time measurement device normally composed of a
hardware oscillator and an accumulator. Mathematically, the measured time T (t) is a function of
real time t:

T (t) =
∫ t

t0
ρ(τ)dτ + T (t0)

where ρ is the nominal frequency of the oscillator, T (t0) is the initial clock offset.
In an ideally synchronized network, for each node i it holds that ρi(τ) = 1 and T (t0) = t0 for

all time long. However, since all hardware clocks are imperfect, the above equations in the ideal
case do not hold. As a result, different clocks may drift away from each other. In our work, we use
the bounded-drift model in which the difference between ρi(τ) and 1 is bounded by ∆ρmax ∼ 10−6,
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meaning that the clock drifts away for several seconds in 10 days (106 seconds). Therefore, the
synchronization process is indispensable and should be executed periodically. We also assume that
during a period of time that is not very long, ρi(τ) does not vary with time. Thus the clock can
be regarded as linear with respect to real time during that period of time.

A.3.2 Time Synchronization Model

Although time synchronization is essential to many applications in ad hoc networks, the require-
ment ranges from extreme strict synchronization to loose coordination. Therefore, there are ac-
tually many different types of synchronization mechanisms based on different criteria such as the
scope and the lifetime of the synchronization [RBM05]. Our mechanism falls into the catalogue of
network-wide, server-less, proactive synchronization, as explained as following:

• Network-wide: The proposed synchronization mechanisms provide network-wide synchro-
nization where all nodes within the network achieve approximately the same clock reading.
The other end of the spectrum is the synchronization among only a subset of nodes in the
network. A typical example is pair-wise synchronization that aims to provide synchronization
between a pair of neighbor nodes.

• Server-less: Our proposed synchronization mechanisms are fully distributed without any
server or external time sources as in NTP [NTP]. Each node is synchronized with every
other node with a time which might be different from the real time. Our approach can meet
the need of most applications in ad hoc networks that requires synchronized clock.

• Proactive: The proposed approaches proactive such that the network is maintained syn-
chronized by the repeated execution of the synchronization procedure. In contrast to the
proactive synchronization is the on-demand synchronization in which the synchronization
procedure is triggered by demand or certain events.

A.3.3 Attacker Model

Possible attacks to time synchronization protocols
Synchronization message forgery

Synchronization message alteration
Synchronization message replay

Synchronization message relay (delay)
DoS attack

Table A.1: Synchronization attacks

Attackers may disrupt the operation of the time synchronization protocols by exhibiting ma-
licious behavior: e.g., replay, forge, corrupt synchronization messages to influence the time view
of benign nodes, as shown in Table A.1. The attacks to the synchronization protocols can be
classified as external attacks and internal attacks based on the information the attackers have.
External attacks are launched by external attackers who do not have the cryptographic credentials
(e.g. public/private key pairs, authenticated hash chains) that are necessary to participate in the
synchronization procedure. Internal attacks are launched by internal attackers who have compro-
mised legitimate nodes, and therefore have access to the cryptographic credentials of those nodes.
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Obviously internal attacks are far more difficult to detect and sometimes cannot be countered by
pure cryptographic primitives.

A.4 Single-hop Secure Time Synchronization Procedure

A.4.1 Design Philosophy

Although TSF provides an efficient distributed synchronization mechanism in terms of traffic over-
head, it suffers from the scalability problem due to its beacon contention scheme. Besides, it is
vulnerable to various malicious attacks. In this section we address the above two problems which
are vital to build a scalable and secure synchronization protocol.

First we argue that the root of the scalability problem in TSF lies in the fact that the increase
in the number of nodes in the network decreases the synchronization beacon emission opportunity
of the fastest node or a subset of the fastest nodes. Some protocols improving TSF increase the
successful emission probability of the fastest nodes by attributing them priority with respect to
other nodes in the network. These mechanisms are significantly more scalable than TSF, but since
they follow the same contention mechanism as TSF, the scalability problem is not totally solved.
Furthermore, they usually depend on the observation of the beacons to find and locate the fast
nodes, which may increase the latency of synchronization.

SSTSP, however, addresses the scalability problem from another angle. In SSTSP, all nodes
content to emit the synchronization beacon at the beginning following the contention mechanism
of TSF. The winner becomes the reference node and emits a beacon in the beginning of every BP
without random delay. Other nodes synchronize their local clocks to the reference node until the
reference node leaves the network, when another round of contention begins. To synchronize to
the reference node, a node adjusts its clock parameters to gradually catch up with the pace of the
reference clock in order to avoid backward and uncontinuous leaps in time. All nodes have the
equal chance to become the reference node, but the contention takes place only when the formal
reference node leaves and once the reference node is established, other nodes disable their beacon
emission and synchronize their local clocks to the reference node each BP. The proposed mecha-
nism maintains the distributed nature of the synchronization process while removes the scalability
problem from its root. By making the full use of every received synchronization beacon and adopt-
ing a fine adjustment mechanism, we achieve significantly better synchronization accuracy than
TSF and avoid all the backward or other uncontinuous leaps in local adjusted clock. Furthermore,
by carefully choosing parameters, our mechanism is robust to the change of the reference node and
the loss of synchronization beacons.

Furthermore, our approach can detect malicious synchronization attacks and prevent networks
from being desynchronized by malicious nodes using erroneous time values. To this end, we use
µTESLA [PST+02], a lightweight technique base on one-way hash chain, to protect synchronization
beacons against external attackers. We would like to mention that traditional security mechanisms
based on asymmetric cryptographic operations cannot be applied in our context in that it usually
takes up to hundreds of milliseconds depending on the CPU capacity of the nodes, which may
increase significantly the synchronization error. Furthermore, due to its nature, nodes in ad hoc
networks may be resource constrained. It is sometimes expensive or even prohibited for such nodes
to perform heavy asymmetric cryptographic operations. In contrast, hash functions are three to
four orders of magnitude faster than asymmetric operations and can be performed in an on-the-fly
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way such that it causes almost no additional delay.
Moreover, in our approach, we propose the “clock drift check” to counter the internal attacks

and other attacks such as delay attacks and replay. This mechanism is based on the fact that the
difference between any two clocks cannot drift unboundedly within a certain period of time.

Notations

si: Hash chain seed of node i

n: Hash chain length
T0: Start time of the Hash chain
hj(si): The jth element of node i’s Hash chain
BP : Beacon period, typical value is 0.1s
ti: Local unadjusted time of node i

ci(t): Local adjusted time of node i at local time t. Our goal is to synchronize ci(t)
tji : Local unadjusted time of node i when receiving the beacon in the jth BP
tjref : Local adjusted time of the reference node when emitting the beacon in the jth BP
kj

i , bj
i : Coefficient and offset parameter to be adjusted when receiving the beacon in the jth

BP
ρi: Nominal frequency of node i’s clock, can be regarded as constant during a short period of
time.
ρ′i: Nominal frequency of node i’s adjusted clock, ρ′i = ρi ∗ kj

i in the jth BP
tp: Transmission and propagation delay
Tm: Local expected emission time of the synchronization beacon in the mth BP, Tm = T0 +
m ∗BP if m > 1
tsj

ref : Adjusted timestamp value obtained from the beacon emitted by the reference node in
the jth BP. tsj

ref = tjref + tp. tsj
ref is estimated at the receiver side.

(tji )
∗, (tjref )∗, (tsj

ref )∗: Expected values of tji , tjref , tsj
ref .

ε: Maximum error when estimating tref by tsref , normally ε < 5µs

σ: Maximum synchronization error in SSTSP
δ: Threshold in the “clock drift check”

A.4.2 Assumptions and Requirements

We assume that each pair of nodes shares a pair-wise key which is used to bootstrap the synchro-
nization when a node enters the network. Once the new arriver acquires the initial synchronization,
the pair-wise keys are no more needed for the following phase.

To use one-way hash chains, we need some mechanism for a node to distribute an authenticated
element hn(si) in its hash chain. A traditional approach is to let each node use its public key sign
the hash chain element. Alternatively, a node can securely distribute an authenticated hash chain
element using pair-wise keys [HPJ02] or non-cryptographic approaches [SA02].

We also assume that the synchronization beacons are timestamped below MAC layer. Thus,
we remove the most significant non-deterministic factor of the end-to-end delay of the beacons,
medium access waiting time.
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A.4.3 Synchronization Procedure

Node initiation

Each node i picks a random seed si and generates its hash chain based on si: h(si), h2(si), ...,
hn(si). The last element hn(si) is authenticated and published within the network. The start
time of the hash chain T0 is also published (e.g. T0 can be configured and published by the first
node arriving in the network or be integrated into the synchronization beacons). Suppose the
beacons are expected to be emitted at time T0 + j ∗BP (j = 1, 2, ..., n). Each element of the hash
chain hn−j(si) is used as the key to secure the synchronization beacon sent by node i in the time
interval [T0 + j ∗BP −BP/2, T0 + j ∗BP + BP/2] if node i is the reference node. Node i, in its
synchronization beacon sent in the above time interval, discloses the element hn−j+1(si) (j > 1),
allowing other nodes to authenticate previously received beacons sent by itself in last time interval
[T0 + (j − 1) ∗BP −BP/2, T0 + (j − 1) ∗BP + BP/2].

Figure A.1: Hash chain scheme

Our single-hop secure time synchronization procedure (SSTSP) consists of two phases: the
bootstrapping phase and the synchronization phase.

Bootstrapping phase

When joining the network, the node first enters the bootstrapping phase during the first BP to
acquire the initial synchronization with the rest of the network. This initial synchronization further
enables the application of one-way hash chains to secure the time synchronization procedure in the
synchronization phase that follows the bootstrapping phase.

We adopt the following simple pair-wise synchronization protocol [GvHS05] in this phase:

1. i(tsi ) → j(cr
j): i, j, Ni, SynInit

2. j(cs
j) → j(tri ): cr

j , c
s
j , Ni, SynAck,MACKij{j(tri ): cr

j , c
s
j , Ni, SynAck}

3. If d = (tri − tsi )− (cs
j − cr

j) < β(Tinit + Tack), i sets ti = ti + (cr
j − tsi )− (tri − cs

j)

In the above protocol, i is the new arriver that synchronizes to its neighbor j. i sends a SynInit
message at local time tsi . j receives the message at its local adjusted time cr

j and send back a
SynAck message at cs

j containing the correspondent timestamps protected by the attached MAC.
i then computes the end-to-end delay d and compares d with β(Tinit +Tack) to check if any packet
is delayed or replayed by attacks, where β is a coefficient sightly greater than 1, Tinit and Tack

is the transmission time of the SynInit and SynAck including packet header and preamble. In
normal cases, we have d ∼ Tinit + Tack since the propagation time is negligible and the calculation
of keyed MAC can be processed in the on-the-fly as the packet is being transmitted. If the SynInit
or SynAck packet is replayed or delayed by an attacker, then since the attacker cannot receive and
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emit at the same time, we have d ≥ 2(Tinit + Tack). Next i computes the offset between its local
clock and j’s clock and uses the offset to adjust its clock.

i thus synchronizes itself with a trusted neighbor j or repeats the above protocol with several
neighbors if it does not have any trusted neighbors and further eliminates biased offsets and uses
the averaged of the rest unbiased offset to adjust its local clock. In the bootstrapping phase, ci(ti)
is set to ti. At the end of the bootstrapping phase, i is synchronized with the network and then
enters the following synchronization phase.

Synchronization phase

In this phase, each node competes to be the reference node if it has not heard the synchronization
beacon in the last l BPs. A larger value of l makes the mechanism more robust since the failure
to receive a beacon may be due to collision or temporary wireless channel instability other than
the leave of the reference node. As price, a larger l increases the synchronization error when the
reference node changes. In case of collision, the contention may last several BPs. The contention
mechanism is the same as in IEEE 802.11 TSF. The winner becomes the reference node and
emits a beacon in the beginning of every BP without random delay. Other nodes synchronize
their local clocks to the reference node until the reference node leaves the network, when another
round of contention begins. A node joining the network does not participate in the contention
until it is synchronized with the network. We use µTESLA scheme to protect the beacons. The
synchronization beacon sent by the reference node ref in time interval j is:

< B, j, hn−j
ref (B, j), hn−j+1(sref ) >

where B is the original unsecured synchronization beacon, hn−j
ref (B, j) denotes the HMAC output

using hn−j(sref ) as the key applied to (B, j), hn−j+1(sref ) is the disclosed key corresponding to
the last interval (interval (j − 1)).

Each node i temporarily stores the recently received beacons. Upon receiving a new beacon
from the reference node ref , node i performs the following checks:

• Node i checks whether interval j corresponds to the current time interval.

• If the above check passes, node i further checks the validity of the disclosed key hn−j+1(sref ) in
the beacon by verifying whether hj−1(hn−j+1(sref )) equals to the published element hn(sref ).
In case of success, i checks the authenticity and the integrity of the beacon received in last
interval using disclosed key hn−j+1(sref ). Node i can store previously authenticated disclosed
key hn−j+2(sref ) to reduce processing overhead. In this case only one hash operation is needed
instead of j − 1.

• If the above two checks pass, i performs the “clock drift check” whether |tsj
ref − ci(t

j
i )| < δ,

where the threshold δ is the bound of the clock drift between ci(t
j
i ) and tsj

ref . In case where i

has not received beacons during last l BPs because the reference node changes, δ = (l+2)σ.1

If i has just entered the synchronization phase, δ = σ + 4∆ρmaxBP .2 In other cases, δ = σ.
1See Lemma A.2 for the proof that after the reference node changes, the synchronization error after the change

is (l+2) times as much as the synchronization error before the change.
2It is easy to show that the maximum clock drift during one BP is bounded by 2∆ρmaxBP . When entering the

synchronization phase, the difference between the clock of i and the reference node increases in the beginning 2BP s
before i can adjust its clock using authenticated beacons.



149 Appendix A. Toward Secure and Scalable Time Synchronization in MANET

If the check fails, the beacon may be replayed or delayed or the timestamp is forged by an
internal attacker.

If all the above tests pass, node i then adjusts its local clock using the authenticated beacon
(j − 1) and (j − 2). Note that beacon j cannot be used for clock adjustment until its integrity
is verified. In SSTSP each node i has two clocks: an original clock and an adjusted clock. The
original clock is the hardware clock of the node, e.g. a 64-bit counter with the resolution of 1µs

in the IEEE 802.11 standard. The adjusted clock takes ti, the time of the original clock as input
and adjusts its value ci(ti) according to the following relation:

ci(ti) = kj
i ∗ ti + bj

i j = 1, 2, · · · (A.1)

Our objective is to synchronize the adjusted clocks of all the nodes in the network by repeatedly
adjusting kj

i and bj
i (kj

i = 1, bj
i = 0 if j ≤ 2) at each node when receiving the beacon in the jth

BP from the reference node. Compared with IEEE 802.11 TSF, SSTSP has the following desirable
features:

• SSTSP achieves better accuracy than IEEE 802.11 TSF via a more sophisticated adjustment
scheme in which both the offset and the coefficient parameters are adjusted.

• There is no backwards or other uncontinuous leaps in local clock. This feature is important
in some applications. IEEE 802.11 TSF only guarantees that no backwards leaps exist.

The following equations illustrate the clock adjustment of SSTSP:

kj−1
i ∗ tji + bj−1

i = kj
i ∗ tji + bj

i (A.2)

ci((t
j+m
i )∗) = kj

i ∗ (tj+m
i )∗ + bj

i = (tsj+m
ref )∗ (A.3)

tj−1
i − tj−2

i

tsj−1
ref − tsj−2

ref

=
(tj+m

i )∗ − tj−1
i

(tsj+m
ref )∗ − tsj−1

ref

(A.4)

(tsj+m
ref )∗ = T j+m (A.5)

(A.3) follows the argument that the adjusted clock ci(ti) is continuous at tji . (A.4) indicates
that the adjusted clock of node i is expected to converge to the reference clock at the expected
receiving time of the beacon (j+m). Before the convergence, the synchronization error is expected
to decrease monotonously. m (m > 1) is the parameter of aggressiveness. A larger value of m

increases the synchronization latency since the local clock converges slower to the reference node,
while it avoids the synchronization error to be increased significantly when the reference node
changes. (A.5) establishes the relation of the local clock and the adjusted clock of the reference
node based on the linearity of the clocks. As discussed in Section A.3.1, the original clock is
regarded as a linear function of real time within a short period of time. The adjusted clock is
regarded as linear as long as no adjustment occurs during that period of time. (A.5) follows that
the expected emission time of the (j +m)th beacon is T j+m. By solving the equations (A.3)–(A.5)
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containing 4 variables kj
i , bj

i , (tsj+m
ref )∗ and (tj+m

i )∗, we get:

kj
i =

(T j+m − (kj−1
i ∗ tji + bj−1

i )) ∗ (tsj−1
ref − tsj−2

ref )

(tj−1
i − tj−2

i ) ∗ (T j+m − tsj−1
ref ) + (tj−1

i − tji ) ∗ (tsj−1
ref − tsj−2

ref )

bj
i = kj−1

i ∗ tji + bj−1
i −

(T j+m − (kj−1
i ∗ tji + bj−1

i )) ∗ (tsj−1
ref − tsj−2

ref ) ∗ tji

(tj−1
i − tj−2

i ) ∗ (T j+m − tsj−1
ref ) + (tj−1

i − tji ) ∗ (tsj−1
ref − tsj−2

ref )

By repeatedly updating kj
i and bj

i using received beacons from the reference node, the local
adjusted clock of each node i gradually catches up with the pace of the reference clock and the
network is hence synchronized.

A.4.4 Effectiveness of SSTSP

In this section, we provide analytical analysis on the effectiveness of SSTSP by studying the
synchronization error bound of SSTSP. Lemma A.1 shows that regardless of the initial value, the
adjusted clock of i, ci, converges to the adjusted timestamp of the reference node tsref , where
tsref = tref + tp.

Lemma A.1. For any node i, its local adjusted clock, ci, converges to tsref .

Proof. Please refer to Section A.8.1 for the detailed proof.

Apply lemma A.1 and |tsref − tref | < ε, it is easy to prove that the maximum synchronization
error is bounded by 2ε, typically 10µs.

Lemma A.2 studies the difference between ci and tsref when the reference node changes.

Lemma A.2. For any node i, let D−
i and D+

i be the difference between ci and tsref (ref is the
old reference node) before and after the reference node changes, then D+

i < (l + 2) ∗D−
i .

Proof. Please refer to Section A.8.2 for the detailed proof.

It is further easy to prove that the synchronization error after the change of the reference node

is bounded by
∣∣∣∣
m− l − 3

m

∣∣∣∣ ∗ syn err + 2ε where syn err is the synchronization error before the

reference node changes. Combining Lemma A.1 and Lemma A.2, we have the following theorem
on the synchronization error of SSTSP:

Theorem A.1. The synchronization error of SSTSP σ can be bounded by
∣∣∣∣
m− l − 3

m

∣∣∣∣ · 2ε + 2ε.

From the above theorem, we can see that by carefully configuring the parameters, the synchro-
nization of SSTSP can be controlled under 10µs.

A.4.5 Traffic and Storage Overhead

In terms of traffic overhead, the number of synchronization beacons emitted in SSTSP is the same
as in TSF, while the size of each beacon increases from 56 bytes (24 bytes of preamble and 32
bytes of data) in TSF to 92 bytes (assume 128-bit hash values are used) in SSTSP due to the hash
values and the interval index included to secure the beacons.

Besides, each node is required to store its own hash chain. It can either create the hash chain
all at once and store all the elements or only store the last element and compute the new element
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on demand. [7] proposes a hybrid storage efficient mechanism to reduce storage with a small
recomputation penalty: a one-way hash chain with n elements only requires log2(n) storage and
log2(n) computation to access an element. Each node is also required to buffer temporarily the
synchronization beacons received during last 2 BPs. In most cases 300− 500 bytes of memory can
meet the requirement. We argue that the storage requirement as well as the increase in the beacon
size is reasonable considering the gain in performance and security that SSTSP achieves.

A.4.6 Security Analysis

Synchronization beacon forgery and alteration: Attackers may attack the synchronization
protocols by forging or modifying synchronization beacons. SSTSP uses the µTESLA scheme to
ensure the integrity and authenticity of the synchronization beacons. This prevents the external
attackers from modifying or forging the synchronization beacons or impersonating the reference
node. A more serious case is when an internal attacker becomes the reference node. In this case,
the guard time check serves as a defense line to decrease the effectiveness of the attacks such that
the attacker can only forge timestamps whose difference with the receiver’s local time is within the
guard time, otherwise the beacons containing incorrect timestamps are rejected. We argue that
the impact of this attack is limited in that all nodes are synchronized to a virtual clock that may
be slightly different to the real clock of the reference node. However, the internal attacker cannot
desynchronize the network.

Synchronization beacon replay and relay: Attackers may replay the out-of-date synchro-
nization beacons to deliberately magnify the offset of the time declared in the replayed message and
actual time. As a more delicate version of replay attacks, an attacker may firstly jam the channel
between the reference node and the victim node A, then delay the synchronization beacons from the
reference node and relay it to A later to make A incorrectly estimate the time of the reference node
(This attack is referred to as pulse-delay attack in [GvHS05]). The “clock drift check” can thwart
these attacks. The argument is that in most cases (l < 4), if the beacon is replayed or relayed,
since the attacker cannot receive and emit at the same time, we have |tsj

ref − ci(t
j
i )| > Tbeacon > δ,

where Tbecon is the transmission time of a beacon including the header and preamble (note that
transmitting only the short preamble requires 96µs in IEEE 802.11b, even in IEEE 802.11g ERP-
OFDM, we have Tbeacon = 50.7µs > δ). Even in extreme cases where l ≥ 4, we can add a number
of bits as padding in the beacons (the padding is also included as the HMAC input) to counter the
replay or relay attacks such that after padding, we have Tbeacon > δ.

Deny of Service: Besides the efforts to violate the proper behavior of the synchronization
procedure, attackers can disturb the transmission of synchronization beacons at the beginning of
each BP or simply generate a massive amount of messages to jam the wireless channel, impeding the
traffic including the transmission of time synchronization beacons. Jamming attacks are beyond
the scope of our discussion. Actually under jamming attacks all communications in the network
are disabled.

A.4.7 Performance Analysis

In this section, we analyze the influence of the following factors on the synchronization protocols.
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• Medium access delay: the waiting time at MAC layer before accessing the channel. This
delay is non-deterministic in nature ranging from a few microseconds to a few minutes. In
SSTSP, timestamping the beacons below MAC layer removes this delay, the most significant
factor in the synchronization process.

• Beacon transmission delay: time taken in transmitting the beacon bit-by-bit at the radio
of the sender node. This delay is hundreds of microseconds and deterministic in nature
depending on the beacon size and the radio speed. [SV04] shows that the beacon transmission
delay only adds a few nanoseconds to the synchronization error. Its influence can be annulled
by taking into account the delay when adjusting the local clock.

• Beacon propagation delay: time over the wireless link between the sender and receiver node.
This delay is typically less than 1µs.

A.4.8 Simulation Study

We further evaluate the performance of SSTSP by simulation. We set the relative clock frequency
with respect to real time uniformly distributed in the range of [1− 0.01%, 1 + 0.01%], which is the
worst clock accuracy allowed by the 802.11 standards. We run the simulation for 1000s for OFDM
system with bit-rate of 54Mbps: w = 30, BP = 0.1s, l = 1, the number of nodes N = 100 − 500
and the beacon length is 4 slot time. We also set the packet error rate to be 0.01%. We let 5% of
the stations leave at BP k ∗ 200s ( k > 1 ). They return after 50s. In order to simulate the impact
of changing the reference node, we let the reference node leave at 300s, 500s and 800s.

Figure A.2: Maximum clock difference: IEEE
802.11 TSF, 100 nodes

Figure A.3: Maximum clock difference: IEEE
802.11 TSF, 300 nodes

IEEE 802.11 TSF: Figure A.2 and Figure A.3 show the maximum clock drift of IEEE 802.11
TSF in the network of 100 and 300 nodes. We can see the scalability problem due to the fastest
node asynchronization and the beacon collision problem discussed in Section A.2.

SSTSP: Figure A.4 and Figure A.5 show the maximum clock drift of SSTSP in the network of
500 nodes with m=4 and m=1. We can see that SSTSP significantly outperforms IEEE 802.11
TSF by achieving a very precise synchronization with the maximum clock difference below 15µs

after the protocol stabilizes, which is among the best results of currently proposed solutions (see
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Figure A.4: Maximum clock difference: SSTSP,
500 nodes, m = 4

Figure A.5: Maximum clock difference: SSTSP,
500 nodes, m = 1

[ZL05], [SCS04] for their detailed results). Comparing the two figures, we can see that a larger
m achieves better performance when the reference node changes. Table A.2 studies the maximum
clock difference of different m. We suggest to choose m = 2 or 3 to reach a better tradeoff between
synchronization accuracy and synchronization latency.

m Maximum clock difference
1 12µs

2 7µs

3 6µs

4 6µs

5 6µs

Table A.2: Maximum clock difference Vs m

Performance under attacks: We also simulate IEEE 802.11 TSF and SSTSP in a hostile
environment where an attacker attacks the synchronization protocols during 400s to 600s. The
attacker attacks by deliberately sending the synchronization beacons at each BP without delay
with an erroneous time value slower than its local clock. We carefully configure the erroneous
time values such that they can pass the guard time check in SSTSP. Figure A.6 and Figure A.7
show the synchronization error of IEEE 802.11 TSF and SSTSP under the above attack. The
synchronization error of IEEE 802.11 TSF uprises to 20000µs during the attack. The attacker
always wins the contentions thus disabling the fast nodes from emitting beacons. Other protocols
improving IEEE 802.11 TSF are also vulnerable to the attack because they depend on the fast
nodes to spread the timing information. However, in SSTSP the attacker cannot desynchronize
the network even though it manages to become the reference.

A.5 Multi-hop Secure Time Synchronization Procedure

In the rest of the chapter we consider a more challenging task, secure and scalable time synchroniza-
tion in multi-hop ad hoc networks. Compared with many existing synchronization protocols that
form a synchronization tree in the network, our secure multi-hop time synchronization procedure
(MSTSP) is fully distributed and server-less. The synchronization is done only locally, without
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Figure A.6: Maximum clock difference: IEEE
802.11 TSF, 100 nodes, an attacker

Figure A.7: Maximum clock difference: SSTSP,
500 nodes, an attacker

a global synchronization leader. This feature makes MSTSP robust to topology change and link
failure, which happen frequently in multi-hop mobile ad hoc networks.

A.5.1 Overview

In MSTSP, we extend SSTSP, our secure synchronization mechanism for single-hop networks pre-
sented in Section A.4, to multi-hop networks by fulfilling the following two tasks:

First, we divide the multi-hop network into single-hop clusters by running SSTSP. The clusters
are thus automatically formed and are overlapped by nature. A random delay is added before
each synchronization beacon emission to avoid the collision with the beacon emission of neighbor
clusters. The intra-cluster synchronization is achieved by SSTSP and each node in the overlapping
area randomly chooses the cluster reference node as its reference node and synchronizes to it before
it moves out of the transmission range.

We then synchronize all cluster reference nodes to achieve network-wide synchronization. We
base our design on the topology redundancy, an intrinsic nature of ad hoc networks that can
provide certain level of tolerance to potential attacks. More specifically, we make use of nodes in
the overlapping area that belong to more than one clusters (we refer to them as bridge nodes)
to relay timestamps among the cluster reference nodes. After collecting the timestamps of the
neighbor cluster reference nodes, each cluster reference node synchronizes itself to the fastest
neighbor cluster reference node. We take the advantage of the redundancy of ad hoc networks to
secure the inter-cluster or network-wide synchronization. In MSTSP, the time partitioning problem
is avoided by the periodical exchange of time information among neighbor clusters. As a result,
the network synchronizes to the fastest cluster reference node.

We give a simple motivating example to illustrate the time synchronization between 2 neighbor
cluster reference nodes in MSTSP. Consider Figure A.5.1 where node r1 and r2 are two neighbor
cluster reference nodes with 3 bridge nodes A, B and C in the overlapping area. Assume r1

needs to synchronize to r2 because its clock is slower than that of r2. Suppose A receives the
synchronization beacons from r1, r2 at original time t1, t2 containing timestamps T1, T2. r1 can
estimate the time difference between its adjusted clock and that of r2 using the original time of A

as reference: ∆t12 = (T2 − t2)− (T1 − t1).
Two points worth further explanation: (1) the adjusted clock of A cannot be used as reference
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Figure A.8: Inter-cluster synchronization

because it may be adjusted between t1 and t2. (2) actually ∆t12 is measured in local original clock
of A, the real time difference measured in the adjusted clock of r1 is ∆t′12 = kj

1

ρ1

ρA
∆t12. We have

|∆t′12−∆t12| = |(kj
1

ρ1

ρA
−1)∆t12|. Given that kj

1 ∼ 1,
ρ1

ρA
∼ 1 and ∆t12 is in order of 101−102µs, we

can ignore the difference between ∆t′12 and ∆t12 and use ∆t12 as the estimation of time difference
since ∆t′12 cannot be calculated without the knowledge of ρA and ρ1.

To ensure the integrity of the time values t1, t2, T1, T2, A puts them in the t ex (time exchange)
message: < SB1, t1, SB2, t2, h

n−j
A (t ex), hn−j+1

A (sA) >, where SB1, SB2 are received synchroniza-
tion beacons from r1, r2 containing T1, T2, hn−j

A (t ex) is the HMAC outputs applied to the message
with the Hash chain element of A corresponding to current time interval as key, hn−j+1

A (sA) is the
disclosed key for last time interval.

It is possible that A is compromised and thus may forge t1 and t2. To counter this attack,
r1 estimates ∆t12 via different bridge nodes A, B, C. r1 then eliminates the biased values and
sets ∆t12 to the mean of the rest unbiased values. As a result, if only one of the three nodes
is compromised, its impact on the synchronization can be removed. To avoid the collision of
t ex message transmission, each bridge node should desynchronize its t ex emission (e.g., at time
T0 + n ∗BP + BP/2 + d, where d is randomly chosen in [0, dmax]). To make MSTSP adaptive to
ad hoc networks of different density, each bridge node emits t ex messages with a pre-configured
probability Ps.

A.5.2 MSTSP

Based on the above analysis, we add the following mechanisms to extend SSTSP to multi-hop
networks and build our multi-hop secure time synchronization procedure (MSTSP).

• The reference nodes wait a random delay in the range [0, w]×aSlotT ime before emitting the
synchronization beacon at each BP to avoid the collision with the reference nodes in neighbor
clusters. If a synchronization beacon is heard during the waiting time, the node stop the
pending beacon transmission and synchronizes itself to the sender of the beacon.

• We define a parameter Ps for the bridge nodes as the probability of transmitting the t ex
message in each BP. Ps depends on the density of the network and a larger value of Ps

increases the robustness of MSTSP to internal attacks at the price of higher traffic overhead.
Each bridge node b picks a random number rand from [0, 1] in each BP and compares rand

with Ps. If rand < Ps, it transmits t ex containing all the synchronization beacons received
from the cluster reference nodes during the last BP as well as the timestamps of the local
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original time when it receives them.

t ex :< SB1, t1, SB2, t2, ..., SBn, tn, hn−j
b (t ex), hn−j+1

b (sb) >

Where SBi is the synchronization beacon emitted by the cluster reference node i, ti is the
local original time when receiving SBi containing timestamp Ti, hn−j

b (t ex) is the HMAC
applied to the whole message with the Hash chain element of b corresponding to current
time interval as key, hn−j+1

b (sb) is the disclosed key used in last interval. The transmission is
scheduled at T0 +n∗BP +BP/2+d to asynchronize the transmission of other bridge nodes,
where d is randomly chosen in [0, dmax].

If a bridge node detects that the difference between any two reference nodes i and j is
beyond certain threshold by checking |(Ti − ti)− (Tj − tj)| > 2β∆ρmaxBP (β is the tolerant
coefficient slightly greater than 1), it notifies other nodes by flooding an signed alert with
received beacons as proof. If multiple bridge nodes detect the abnormal difference, the
synchronization process is re-initiated.

• Each cluster reference node A collects the synchronization beacons of the neighbor cluster
reference nodes via bridge nodes and synchronizes itself to the fastest neighbor reference node
by performing the following operations:

1. For the bridge nodes that send t ex message in both current BP and last BP, A uses
the disclosed keys in t ex messages received in current BP to verify the authenticity
and integrity of the t ex messages received in last BP. Moreover, since the received
t ex messages contain the beacons of neighbor cluster reference nodes, A can use the
disclosed keys in the beacons contained in t ex messages received in current BP to verify
the beacons contained in t ex messages received in last BP. Note that A cannot directly
get the disclosed keys of its neighbor cluster reference nodes since A cannot hear them.
However, A can obtain them via bridge nodes in that the synchronization beacons are
included in the t ex messages. By doing so, A thus collect a number of verified t ex
message containing verified beacons sent by neighbor cluster reference nodes.

2. A then uses the timestamps in these verified messages to synchronize its local adjusted
clock to the adjusted clock of the fastest cluster reference node as illustrated in the
example. To this end, A collects all the timestamps in the verified t ex messages con-
taining verified synchronization beacons among which Tr, trb , TA, tAb are respectively the
timestamp in the beacon of the cluster reference r, the original time when the bridge
node b receives the beacon from r, the timestamp in the beacon of A, the original time
when b receives the beacon from A. A then computes ∆trb = (Tr− trb)− (TA− tAb ) which
indicates the approximate time difference between A and r in last BP estimated via b.
By collecting the time difference ∆tbr from different bridge nodes b and eliminating the
outliers, A thus obtains the estimated time difference with r, ∆tr by averaging them. A

then picks ∆t∗ = max(∆tr), the largest value from the time differences with all neighbor
cluster reference node r and adds ∆t∗ to its original clock tA and adjusted clock cA if
∆t∗ > 0.

In the following lemma, we show that in the stablized case, SSTSP is applicable in MSTSP to
achieve intra-cluster synchronization.
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Lemma A.3. SSTSP is applicable in MSTSP to achieve intra-cluster synchronization in the sta-
blized case.

Proof. Please refer to Section A.8.3 for the detailed proof.

Based on lemma A.3, we have the following result on the effectiveness of MSTSP

Theorem A.2. In stablized cases, the time synchronization error of MSTSP can be bounded by
2NBP∆ρ′max + 2ε, where N is the upper bound of the synchronization route (in number of hops)
mentioned in Lemma A.3, ∆ρ′max = max(ρ′i − ρ′j) ∼ 10−6.

Proof. Please refer to Section A.8.4 for the detailed proof.

A.5.3 Security Analysis

In section A.4.6, we have performed the security analysis of SSTSP, showing that SSTSP is power-
ful enough to prevent single-hop networks or clusters from being desynchronized by both malicious
external and internal attackers. In this section we focus on the attack resistance of inter-cluster
synchronization in MSTSP to internal attacks. As attack examples, an internal attacker may forge
t ex messages with incorrect receiving time values of the synchronization beacons from correspon-
dent cluster reference nodes to desynchronize them. Two attackers may collaborate to wormwhole
a cluster reference synchronization beacon to another cluster reference node far away. As another
example, when becoming cluster reference node, an internal attacker may refuse to synchronize to
its neighbor cluster reference node even the latter is fastest. MSTSP provides two defense lines to
ensure the inter-cluster synchronization against these malicious attacks:

• MSTSP takes the advantage of the topology redundancy of ad hoc networks to provide
multiple synchronization paths via different bridge nodes to thwart the attacks to inter-
cluster synchronization.

• The compromised or desynchronized cluster reference nodes can be detected by the bridge
nodes by emitting alert messages when they detect that the clock difference is beyond the
threshold. The synchronization procedure is then re-initiated.

In our approach, a collision of Hash chain elements may cause a security flaw that two or more
nodes share their keys to secure their synchronization beacons. If one of them are malicious, it
can impersonate others without being detected. Hereby we perform an analysis on the collision
probability Pc: let A be the number of Hash chain elements in the element space, for m-bit Hash
chains, A = 2m; let N be the number of nodes in the network; let n be the length of the hash
chains; let M be the total number of Hash chain elements, M = N ∗ n. We thus have

Pc = 1− Prob (no collision) = 1− CM
A ∗M !
AM

= 1− A!
(A−M)!AM

= 1− A− 1
A

A− 2
A

· · · A− (M − 1)
A

= 1−
(

1− 1
A

)(
1− 2

A

)
· · ·

(
1− M − 1

A

)

< 1−
(

1− M − 1
A

)(M−1)

∼ 1−
(

1− (M − 1)2

A

)
∼ M2

A
(M ¿ A)

Using 128-bit Hash chains in an ad hoc network of 1000 nodes using Hash chain containing 106

elements, we have Pc < 10−28, which can be regarded as negligible.
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A.5.4 Performance Evaluation

We evaluate MSTSP by NS-2. The clock parameters and the SSTSP parameters are the same as
those in Section A.4.8. The number of mobile nodes is 200 unless specifically stated. Each of them
is randomly located in a 1000m× 1000m field with a transmission range of 250m. All nodes move
according to the random way-point model with maximum speed 5m/s with the pause time 50s.
Ps is set to 0.6 unless specifically stated. We measure 3 metrics to evaluate the performance of
MSTSP: maximum synchronization error, traffic overhead and synchronization latency.

Maximum synchronization error: IEEE 802.11 TSF is not scalable for multi-hop ad hoc
networks. In the network of 200 nodes, the maximum synchronization error is already nearly
600µs (Figure A.9). In contrast, MSTSP shows much better performance. As shown in Figure
A.10 and Table 3, the maximum synchronization error of MSTSP is about 61µs in the same
scenario. We further vary the network size and simulate MSTSP in these configurations. The
result is shown in Table 3. The average synchronization error of MSTSP is 30µs-50µs. ASP is
reported to achieve 100µs-200µs in terms of synchronization error. The average synchronization
error of the mechanism proposed in [RK04] ranges from 50µs to 200µs depending on the network
size and other parameters. To our knowledge, the accuracy of MSTSP is among the best of
currently proposed solutions.

Figure A.9: Maximum clock difference, IEEE
802.11 TSF

Figure A.10: Maximum clock difference, MSTSP

Number of nodes Maximum synchronization error Average synchronization error
100 55µs 31µs

200 61µs 36µs

500 83µs 49µs

Table A.3: Synchronization error: MSTSP

Traffic overhead: Traffic overhead is a crucial issue for time synchronization protocols in re-
source constrained environments. Some traditional synchronization mechanisms require each node
to diffuse its local time values each synchronization period, resulting o(n2) traffic overhead. IEEE
802.11 TSF is very efficient in traffic cost, but its synchronization error in multi-hop ad hoc net-
works may uprise unboundedly. Figure A.11 shows the traffic overhead (number of synchronization
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beacons plus t ex messages transmitted each BP) of MSTSP as Ps ranges from 0 to 1. When Ps = 0,
no synchronization beacon is relayed in t ex messages, the traffic overhead equals to that of IEEE
802.11 TSF. When Ps = 1, all the bridge nodes relay the synchronization beacons in their t ex
messages. MSTSP is significantly more efficient than traditional approaches. Compared with IEEE
802.11 TSF (Ps = 0), MSTSP generates 2-5 times more overhead when Ps ranges from 0.3-0.7.
We argue that the overhead of MSTSP is acceptable considering the improvement of performance
in terms of synchronization precision and synchronization latency.

Figure A.11: Traffic overhead, MSTSP, 200 nodes Figure A.12: Maximum synchronization error,
MSTSP, 200 nodes, 10% attackers

Synchronization latency: In order to simulate the synchronization latency of MSTSP, we at-
tribute an initial clock offset between [−200µs, 200µs] to each node and measure the time between
the beginning of the simulation and the time when the maximum synchronization error decreases
under 100µs. The result shows that with 100, 200 and 500 nodes in the network, the synchro-
nization latency is under 10µs. Besides, once the network is synchronized, MSTSP shows good
stability without abrupt peaks in the maximum synchronization error as in IEEE 802.11 TSF.

Performance under attacks: Finally we study the performance of MSTSP in a hostile environ-
ment where 10% of nodes are compromised and forge the receiving time values in the t ex messages
they emit when becoming bridge nodes. Figure A.12 shows the maximum synchronization error
of the rest 90% nodes with Ps = 0.6. We can see that with a proper Ps value, MSTSP can main-
tain the network synchronized even in hostile environments under malicious attacks. However, as
discussed earlier in the chapter, such attacks may cause detrimental effect on the performance of
IEEE 802.11 TSF and other insecure synchronization protocols.

A.6 Discussion

It is interesting that our approach uses µTESLA to secure the synchronization process while
µTESLA itself requires a loose synchronization. It is not contradictory in that the bootstrapping
phase allow the new arriver to acquire initial synchronization and enables the application of one-
way hash chains to secure the time synchronization procedure in the synchronization phase. Once
the hash chain scheme is established and the synchronization is secured, we can continue to use the
hash chain scheme based on the synchronized time to further maintain the time synchronization.
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In this chapter, we focus on detecting malicious attacks and preventing the network from
being desynchronized by malicious nodes using erroneous time values. However, we do not provide
recovery mechanisms when an attack is detected. We do not address how to eliminate the attackers
either. We leave them for our future work.

In our approach, the key chain may be used up quickly. In this case, nodes need to re-issue
new hash chains for µTESLA. To achieve this, nodes can broadcast the authenticated last element
of the new hash chain to be used when the current chain is to be used up within a few time
intervals. Better mechanisms include using 2-dimensional hash chain or interleaved hash chain to
achieve seamless hash chain renewal. [Jak02] addresses the hash chain renewal issue by proposing
the infinite hash chain scheme.

A.7 Conclusion

In this chapter, we address the security and the scalability problems of time synchronization
protocols in ad hoc networks. For single-hop ad hoc networks, we propose SSTSP, a scalable
and secure time synchronization procedure that significantly improves the performance of IEEE
802.11 TSF. We base SSTSP on one-way Hash chain, a lightweight mechanism to ensure the
authenticity and the integrity of the synchronization beacons. The “clock drift check” is proposed
to counter replay/delay attacks. We then extend our efforts to the multi-hop case. We propose
MSTSP, a secure and scalable time synchronization mechanism based on SSTSP for multi-hop
ad hoc networks. In MSTSP, the multi-hop network is automatically divided into single-hop
clusters. The secure intra-cluster synchronization is achieved by SSTSP and the secure inter-cluster
synchronization is achieved by exchanging synchronization beacons among cluster reference nodes
via bridge nodes. The proposed synchronization mechanisms are fully distributed without a global
synchronization leader. We further perform analytical studies and simulations on the proposed
approaches. The results show that SSTSP can synchronize single-hop networks with the maximum
synchronization error under 20µs and MSTSP 55µs-85µs for multi-hop networks, which are, to the
best of our knowledge, among the best results of currently proposed solutions for single-hop and
multi-hop ad hoc networks. Meanwhile, our approaches can maintain the network synchronized
even in hostile environments.

A.8 Proofs

This section completes the detailed proofs omitted from the main text.

A.8.1 Proof of Lemma A.1

Let Dn
i be the difference between ci(tni ) and tsn

ref when receiving the nth beacon, i.e.,

Dn
i = ci(tni )− tsn

ref

Let (n + q) ∗BP + dn+q be the time when the reference node emits the (n + q)th beacon (q ≥ 1),
where dn+q is the time elapsed between the scheduled emission time of the beacon and its actual
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emission time. The timestamp in the beacon is adjusted at node i by adding tp to tsn+q
ref :

tsn+q
ref = (n + q) ∗BP + dn+q + tp

By (A.4) we have:

kn
i ∗ (tn+m

i )∗ + bn
i = (tsn+m

ref )∗ = (n + m) ∗BP + tp (A.6)

Apply (A.1) at tni and tn+1
i we get:

ci(tni ) = kn
i ∗ tni + bn

i = tsn
ref + Dn

i = n ∗BP + dn + tp + Dn
i (A.7)

ci(tn+1
i ) = kn

i ∗ tn+1
i + bn

i = tsn+1
ref + Dn+1

i = (n + 1) ∗BP + dn+1 + tp + Dn+1
i (A.8)

By the linearity of the clock we have:

(tn+m
i )∗ − tni

(tsn+m
ref )∗ − tsn

ref

=
(tn+m

i )∗ − tn+1
i

(tsn+m
ref )∗ − tsn+1

ref

(A.9)

Combining (A.6)–(A.9), we get:

Dn+1
i

Dn
i

=
(m− 1) ∗BP − dn+1

m ∗BP − dn
<

{
d

m∗BP−d m = 1
(m−1)∗BP
m∗BP−d m > 1

where d = max(dj), (j > 1). Recursively we get:

Dn+q
i

Dn
i

<

{
( d

m∗BP−d)q m = 1
( (m−1)∗BP

m∗BP−d )q m > 1

Given any synchronization error threshold ∆ and Dn
i , after [log d

(m∗BP−d)

∆
Dn

i
] BPs (if m = 1) or

[log (m−1)∗BP
(m∗BP−d)

∆
Dn

i
] BPs (if m > 1), the difference between the local adjusted clock of node i and the

clock of the reference node will drop below the threshold. The adjusted clock thus converges to
tsref .

A.8.2 Proof of Lemma A.2

It takes (l+3) BPs before node i can re-adjust its local clock to the new reference clock: during the
first (l + 1) BPs, the new reference node is elected via contention; during the following two BPs,
each node validates the timestamp sent by the new reference node in previous BP and gets enough
validated timestamps to adjust its local clock. Let tnref = n ∗ BP + dn

3 be the time when the
last beacon is emitted by the old reference node. The beacon is received by i at local unadjusted
time tni . The difference between ci(tni ) and tsn

ref is D−
i . Let tn+l+3

ref = (n + l + 3) ∗ BP + dn+l+3

be the local time of the old reference node when the new reference node emits its beacon in the
(l + 3)th BP with which node i begins to adjust its local clock to the new reference clock. The
difference between ci(tn+l+3

i ) and tsn+l+3
ref is D+

i . Between tsn
ref and tsn+l+3

ref , the synchronization
error cannot be controlled since no adjustment is done during this period. After tsn+l+3

ref all the
nodes synchronize to the new reference node, and the synchronization error decreases. We prove

3dn is defined the same as in lemma A.1.
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in the following that D+
i < (l + 2) ∗D−

i .
By (A.4) we get:

kn
i ∗ (tn+m

i )∗ + bn
i = (tsn+m

ref )∗ = (n + m) ∗BP + tp (A.10)

Apply (A.1) at tni and tn+l+3
i we get:

ci(tni ) = kn
i ∗ tni + bn

i = tsn
ref + D−

i = n ∗BP + dn + tp + D−
i (A.11)

ci(tn+l+3
i ) = kn

i ∗ tn+l+3
i + bn

i = tsn+l+3
ref + D+

i = (n + l + 3) ∗BP + dn+l+3 + tp + D+
i (A.12)

By the linearity of the clock we have:

(tn+m
i )∗ − tni

(tsn+m
ref )∗ − tsn

ref

=
(tn+m

i )∗ − tn+l+3
i

(tsn+m
ref )∗ − tsn+l+3

ref

(A.13)

Combining (A.10)–(A.13), we get

D+
i

D−
i

=
(m− l − 3)BP − dn+l+3

mBP − dn

Note that dn, dn+l+3 ¿ BP , we have

D+
i

D−
i

=
m− l − 3

m
+ o(1)

We can see from the proof that the optimal value of m in terms of the performance when the
reference node changes is l + 3 in that the adjusted clock of each node is expected to converge to
the same time when a new round of synchronization begins. Even in the worst case where m = 1,
D+

i can be bounded by (l + 2) ∗D−
i .

A.8.3 Proof of Lemma A.3

In the stablized case, each cluster reference node A synchronizes via a synchronization route com-
posed of a suite of cluster reference nodes to the fastest cluster reference node rn:

A, r1, r2, ..., rn−1, rn

On this route, ri−1 adjusts its clock once each BP according to the timestamps in the beacons
emitted by ri. Since the local adjusted clock of rn can be regarded as linear in that no adjustment
is performed at the fastest cluster reference node in MSTSP, the adjusted clock of rn−1 can be
regarded as linear because rn−1 adjusts its clock cn−1 by adding approximately the same time
difference (ρ′n − ρ′n−1) ∗BP in each BP.

Recursively we can prove that the local adjusted time of A, cA, can be regarded as linear. This
makes (A.5) hold and justifies that SSTSP can be applied in the multi-hop case for intra-cluster
time synchronization.

In reality, the mobility of the nodes and the dynamic nature of clusters increase the synchro-
nization error of intra-cluster in a multi-hop network.
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A.8.4 Proof of Theorem A.2

We consider node i who synchronizes via a synchronization route R to the fastest cluster reference
node rn:

r1, r2, · · · , rn−1, rn 1 ≤ n ≤ N + 1

In an m-hop ad hoc network, we have N ∼ O(m). We now study the synchronization error
between two reference nodes in neighbor clusters rj , rj+1. According to MSTSP, in the kth BP, rj

receives the synchronization beacon of rj+1 via bridge nodes containing the disclosed hash element
with which it checks the integrity and authenticity of the beacon sent by rj+1 in the (k − 1)th BP
and adjusts its clock accordingly, thus the difference of the adjusted clock of rj and rj+1 can be
bounded by 2BP∆ρ′max:

|cj(t)− cj+1(t)| < 2BP∆ρ′max

Recursively we get
|c1(t)− cn(t)| < 2nBP∆ρ′max

Since rn is the fastest reference nodes, we have

0 < c1(t)− cn(t) < 2nBP∆ρ′max

Apply Lemma A.1, we have
|ci(t)− c1(t)| < ε

It follows that
2nBP∆ρ′max − ε < ci(t)− cn(t) < 2nBP∆ρ′max + ε

which holds for each node in the network. For any two nodes A and B, applying the above
inequality leads to

|cA(t)− cB(t)| < 2NBP∆ρ′max + 2ε
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