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Chapter 1

Introduction

1.1 One dimension

The work presented in this manuscript is devoted to the physics of one-dimensional

(1D) systems. 1D systems have often been used as toy models, in an attempt to

provide a simplified physical picture of higher-dimensional problems. However, the

reduction of dimensionality opens the door to a wide range of new phenomena that

do not take place in higher dimensions. These unique properties of 1D systems are

primarily related to the unique role of quantum fluctuations, which are so strong in

1D that the intuition based on the free-particle picture and the mean-field theory

very often fails, and the effects of strong correlations become important [1, 2].

What, in particular, are the main features that make the 1D systems so dif-

ferent from the systems in two and three dimensions? First of all, in contrast

with the 2D and 3D cases, the particles in a 1D configuration can be labelled in

a unique way: particle one is at the left of particle two, which is at the left of

particle three, and so on. In such a configuration, a particle cannot go around its

neighbour but it has to pass through it.

Another peculiar feature of the one-dimensional systems is that they become

more interacting the more diluted they are. In the mean-field weakly interacting

regime, the interaction energy per particle can be written as Eint ≃ ng, where

1
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n = N/L is the 1D density and g is the interaction strength. Meanwhile the

typical kinetic energy is Ek ≃ ~
2n2/m, since the mean interparticle separation

in one dimension is 1/n. Thus, the ratio of the interaction to kinetic energy

is γ ∼ g/n. This is the parameter that characterises the interaction regime in

1D. It increases with decreasing density, showing a related increase in the role

of interactions. One-dimensional systems are more strongly interacting the more

dilute they are.

One-dimensional systems are characterised by strong thermal fluctuations.

This is due to the fact that in one dimension, if the temperature is not zero,

disorder is in favour of order. Therefore, in one-dimension ordered phases only

exist at zero temperature. If we want to study phase transitions in one dimension

we need to look only at the ground state. On the contrary, in higher dimensions

phase transitions at higher temperatures occur.

Another striking property of one-dimensional systems is that two-body colli-

sions cannot lead to thermalisation of a gas of identical particles. In order for

a system to thermalise one needs a transport process leading to the appearance

of a heat flow. In one dimension, when two identical particles collide they only

acquire a phase shift (or classically, a time delay). For this reason after such a

collision takes place we cannot tell whether the two particles have collided or just

have passed through each other. Therefore, the momentum distribution of a 1D

ensemble of particles will not be altered by such pair-wise collisions. Thus, in

order to reach thermalisation in 1D we need to rely on three-body collisions or

many-body processes. In higher dimensions, on the contrary, we cannot deter-

mine the outcome of a two-body collision from the knowledge of the two incoming

momenta of the particles.

One can use different techniques to study one-dimensional systems. Because

of their strong fluctuations the mean field theory, which is of so much utility in

two and three dimensions, has a rather limited applicability. This requires the

adoption of a different set of techniques. In cases where the system is integrable

we can use the exact technique of the Bethe ansatz [3]. Despite its complicated
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structure, the Bethe ansatz is a useful exact method that provides results free of

uncontrollable approximations, and works for any coupling strengths. Alternative

approaches include effective field theory (in particular the bosonisation technique

[1, 2]), perturbation theory, as well as numerical methods such as density-matrix

renormalisation group [4, 5].

One-dimensional systems are not any more a theoretical artefact, but they are

created in the laboratories. Experiments include quasi-one-dimensional organic

conductors [6, 7, 8], carbon nanotubes [9, 10, 11], quantum wires [12], quasi-one-

dimensional systems made of cold atoms [13], etc. Among these systems, low-

dimensional cold gases play a special role. These systems are composed of atoms

that have been cooled down to nanokelvin temperatures and trapped into quasi-

one-dimensional geometries using magnetic fields or optical lattices. Compared

to the systems in solid state physics they present at least three main advantages.

First of all, they are clean systems, that is, they are free of impurities, and they are

very well isolated systems. Second, their trapping potentials are well known and

the interaction between atoms is well understood. Third, many of their parameters

can be experimentally tuned, such as the strength of the interaction or the mean

interparticle separation. These advantages facilitate an in-depth study of these

systems and a more accurate comparison of experiments with theory. Moreover,

atomic systems offer different internal degrees of freedom that can lead to states

of matter which do not have obvious counterparts in the usual solid-state physics

of interacting electrons.

1.2 Integrability

In this manuscript we focus on exactly solvable quantum models. The concept of

integrability is not straightforward in quantum theory. In this section we give a

short introduction to the notion of integrability in quantum theory, as well as the

main procedures that allow us to determine whether a system is integrable or not.

Let us consider the general Hamiltonian for a system of N particles interacting
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via the momentum-independent scattering potential v:

H =
1

2

N
∑

j=1

p2
j +

N
∑

j=1,j<k

v(xk − xj), (1.1)

where xi and pi are the coordinates and momenta of the N particles, and we set

~ = 1 and m = 1. We will see that in this situation integrability can be viewed

as scattering without diffraction, that is, the scattering of any number of particles

does not change the set of their momenta [14].

We first consider the scattering of two identical particles. When two identi-

cal particles interact via an elastic potential the total momentum and energy are

conserved. Hence, after a collision the particles have either interchanged their mo-

menta or retained the same. In the asymptotic region, where all the interparticle

separations are larger than the range of the potential, the wave function is that of

free particles and it can be written as a product of plane waves. Therefore, after

the collision, the wave function is expressed as

Ψ(x1, x2) = ei(k1x1+k2x2) − e−iθ(k1−k2)+i(k2x1+k1x2)

= ψ(12)ei(k1x1+k2x2) + ψ(21)ei(k2x1+k1x2), (1.2)

where we put x1 < x2, and k1 > k2 are the incoming momenta of the particles

in the asymptotic region. The function θ is the two-body phase-shift that the

particles acquire after scattering on each other, and it can be calculated from

the two-body potential v. Due to Galilean invariance it can only depend on the

momentum difference k = k1 − k2, and reversing the collision we see that it is

antisymmetric, θ(−k) = −θ(k). In the lower line of Eq. (1.2) we write the wave

function in a more efficient notation: ψ(12) = 1 and ψ(21) = −e−iθ(k1−k2). We can

calculate the wave function in the other sector, where x2 < x1, using the exchange

statistics of the particles, odd for fermions and even for bosons.

Let us consider now the scattering of three particles, N = 3, with x1 < x2 < x3.

In this case, the two conservation laws do not restrict the three momenta to be

a rearrangement of the three incoming ones, k1 > k2 > k3, and thus the wave
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function after the collision can be written as

Ψ(x1, x2, x3) =
∑

P

ψ(P )ei(kP1x1+kP2x2+kP3x3) (1.3)

+

∫∫∫

k′
1<k′

2<k′
3

K,Efixed

dk′1dk
′
2dk

′
3S(k′1, k

′
2, k

′
3)e

i(k′
1x1+k′

2x2+k′
3x3).

Here P denotes the permutations of the N momenta over the N particles, similar

to equation (1.2), and we have to sum over all the different orderings of the

three particles. In the first term of the wave function the 3! amplitudes ψ(P ) are

determined only considering the scattering between pairs of particles, and like in

the case with N = 2 we have ψ(jik) = −ψ(ijk) exp(−iθ(ki − kj)). In a more

general way we write

ψ(P ′) = −ψ(P )e−iθ(k−k′), (1.4)

where P and P ′ are two permutations exchanging the momenta k and k′. The

construction of the scattering phase factors is such that all different combinations

of two-body scattering events leading to the same final rearrangement of the par-

ticles have the same phase factor. For example the following two paths lead to the

same final order of the three particles:

ψ(123) → ψ(213) → ψ(231)

↓ ↓ (1.5)

ψ(132) → ψ(312) → ψ(321).

Following any of the two paths we obtain the same relation between the ampli-

tudes, ψ(321) = −ψ(123)e−i(θ(k1−k2)+θ(k2−k3)+θ(k1−k3)).

The first part of the wave function of Eq. (1.3),

Ψ(~x) =
∑

P

ψ(P )ei
PN

i=1 kPixi , (1.6)

is what constitutes the Bethe ansatz. The second term in the wave function

represents the real three-body scattering and is the diffractive part. This part

cannot be factorised in terms of collisions involving only two particles, and contains
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a spherical portion. The three-body scattering conserves the total momentum

K and the total energy E, this restricts the choice of outcoming momenta k′.

However, if we want to be able to express the outcoming momenta as a simple

permutation of the incoming ones, and thus have the second part of the wave

function Eq. (1.3) equal to zero, we need a third quantity to be conserved. If there

is diffraction, such independent quantity does not exist. This kind of scattering is

precisely what we need in order to get thermalisation in one-dimension. On the

contrary, if such a third conserved quantity exists, then the system is very likely to

be non-diffractive, since with a third equation of conservation we would probably

be able to fix the three outcoming momenta as permutations of the three incoming

ones. This reasoning can be generalised to N particles.

Let us now find the meaning of scattering without diffraction in a classical

picture. Diffraction is a concept related to waves, and thus to quantum mechanics.

However, the classical trajectory of a wave can be obtained as rays of the wave

function. In this sense classical mechanics is somewhat analogous to geometrical

optics. To see this more clearly consider the scattering of three particles, x1, x2

and x3. Performing the change of coordinates x = (x1 − x3)/
√

2, y = (2x2 − x1 −
x3)/

√
6, X = (x1 + x2 + x3)/3 and integrating out the centre of mass X, we can

Figure 1.1: Scattering in the plane x = (x1−x3)/
√

2, y = (2x2−x1−x3)/
√

6. The

straight lines are the boundaries given by the potential and the arrow represents

a particular trajectory of three particles (x1, x2, x3) interacting via the potential.

Figure from B. Sutherland [14].
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plot a classical trajectory of the three particles in the plane (x, y) (Fig. 1.1). If we

then take a collection of trajectories that share the same asymptotic momenta but

have slightly different initial conditions (the equivalent to a monochromatic light

beam) and plot their trajectories under the effect of a given scattering potential,

we say that the scattering is non-diffractive if the beam stays collimated and

the front is a straight line. Fig. (1.2, top) shows an illustration of such a non-

diffractive scattering, while Fig. (1.2, bottom), in contrast, provides an example

of the diffractive case. Non diffraction is equivalent in optics to specular reflections

from mirrors.

Now we know how to define integrability, but how can we show that a system

is integrable? There is no standard procedure for doing so, but there are several

methods to determine whether a model is integrable or not. In this manuscript

we use the method of “try and see”, since it leads to the Bethe ansatz: for a given

Hamiltonian, we guess that the solution is non-diffractive everywhere so that the

wave-function is assumed to be of the form Eq. (1.6). Then, we check if this form

is indeed a solution of the Schrödinger equation for the particular potential. This

method is called the Bethe ansatz, and it was first used by Bethe in 1931 to solve

the model of the one-dimensional Heisenberg magnet [3].

To show non-integrability, on the contrary, is very easy. All we are required

to do is to show the consistency conditions or Yang-Baxter equations (Eq. 1.8)

that are necessarily satisfied in systems that show non-diffractive scattering. If

these conditions are violated there is no need to try to proof integrability. On the

other hand, if these conditions are fulfilled we are still left with the task to proof

integrability (since they are necessary conditions but not sufficient). The consis-

tency conditions are easily obtained considering the scattering of three particles

on a ring, no matter if they are identical or not. The scattering operator S can be

calculated from the potential v(xi − xj). The first two particles, with momenta

k1 and k2, scatter via the two-body scattering operator S1(k1, k2), the next two

particles, with momenta k2 and k3, scatter via S2(k2, k3), and so on.

Remember that the coefficients of the wave function Eq. (1.6) are charac-
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Figure 1.2: Top: non-diffractive scattering in the x = (x1 − x3)/
√

2, y =

(2x2−x1−x3)/
√

6 plane for an integrable potential (inverse-sinh-square or hyper-

bolic potential). After the scattering the beams stay collimated. Bottom: diffrac-

tive scattering in the x, y plane for a non-integrable potential (inverse-cosh-square

potential). The wave front is not a straight line after the scattering. Figures from

B. Sutherland [14].



1.2. INTEGRABILITY 9

terized by the permutation of the particles P . We define now the permutation

operator of the i-th pair of particles, αi: α1(123) = (213), α2(123) = (132).

Obviously, α1α2α1 = α2α1α2, since (321) = α1α2α1(123) = α2α1α2(123); thus

(α1α2)
2 = I. Since the scattering operator also represents permutations among

particles, we have a similar equation for the coefficients of the wave function:

ψ(213) = S1(k1, k2)ψ(123), ψ(132) = S2(k2, k3)ψ(123), etc. However, there are

several different sequences of two-body scattering events that lead to the same set

of amplitudes, which is equivalent of saying that there are several sequences of

two-body permutations that lead to the same final arrangement of the particles

(see Eq. (1.5)). For the permutations of the three particles on the ring we have

the equality

ψ(321) = S1(k2, k3)S2(k1, k3)S1(k1, k2)ψ(123)

= S2(k1, k2)S1(k1, k3)S2(k2, k3)ψ(123). (1.7)

Since the incoming amplitudes can be arbitrary we have a matrix equation for the

consistency of the non-diffractive wave function:

S1(k2, k3)S2(k1, k3)S1(k1, k2) = S2(k1, k2)S1(k1, k3)S2(k2, k3). (1.8)

In Fig. (1.3) we find a graphical explanation of these consistency conditions, also

called Yang-Baxter equations.

Their generalisation to N body systems is straightforward: the permutation

group for N particles is generated by the permutation operators αi, with i =

1, . . . , N − 1. They obey the analogous relation

(αjαk)
njk = I, (1.9)

where njk = 1 if j = k, njk = 3 if |j − k| = 1 and njk = 2 if |j − k| > 1. For the

case j = k it is evident that S2
j = Sj(k

′, k)Sj(k, k
′) = I, this is the condition of

unitarity. For |j − k| > 1, the relation Eq. (1.9) implies that scattering of disjoint

pairs commute, which is also evident. Finally, for |j − k| = 1 we arrive at the

consistency conditions Eq. (1.8), with 1 ≡ i, 2 ≡ j.
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k kk
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Figure 1.3: Graphical caption of condition Eq. (1.8).

1.3 Bethe ansatz

As we have seen in Section 1.2, the Bethe ansatz is the method of “try and

see” that allows us to determine whether a system is integrable or not. Since the

present work focus on the Bethe ansatz, it is instructive to provide a more detailed

summary of this technique.

We have seen that when the scattering is non-diffractive the wave function

is written as a superposition of plane waves, Eq. (1.6). This constitutes the

starting point of the Bethe ansatz. Therefore, a system is solvable by the Bethe

ansatz if we can prove that the wave-function Eq. (1.6) is an eigenfunction of

its Hamiltonian. Although this method can also be applied to certain finite-

range interacting models, such as the hyperbolic model [15, 16] and the Calogero-

Sutherland model [17, 18, 19, 20, 21, 22, 23, 24], where the solution only has the

form of Eq. (1.6) in the asymptotic region, we will consider here only models with

short-range interaction, where the asymptotic region is everywhere.

It is indeed easy to understand that in the case of a short-ranged potential,

and for a given order of the N particles 0 < x1 < x2 < · · · < xN < L, we

can treat the particles as free, since they are far away enough from each other

not to “feel” the interaction potential. We can then write their wave function
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as a superposition of N plane waves, Eq. (1.6). The interaction among them

reduces to a scattering condition every time that two particles coincide in space.

To summarise: N particles in the sector 0 < x1 < · · · < xN < L with Hamiltonian

H =
1

2

N
∑

j=1

p2
j +

N
∑

j=1,j<k

v(xk − xj) (1.10)

are equivalent to N free particles with wave function

Ψ(x) =
∑

P

ψ(P )ei
PN

j=1 xjkPj (1.11)

and Hamiltonian

H =
1

2

N
∑

j=1

p2
j , (1.12)

with boundary conditions at vanishing inter-particle separations xj → xi.

Consequently, the Hamiltonian reduces to the kinetic energy part, while all

the information about the interaction is expressed in terms of two-body scattering.

Equation (1.6) can be generalised to include complex momenta which will describe

bound states.

Let us now impose boundary conditions on our system. Since the choice of

boundary conditions will be irrelevant once we will go to the thermodynamic

limit, let us consider periodic boundary conditions. We now allow a particle with

momentum pj to scatter all the other N − 1 particles and return to its initial

position. In the asymptotic region the phase factor after this sequence of two-

body scatterings is
N
∏

k=1,k 6=j

e−iθ(pj−pk). (1.13)

Since the particle with momentum pj is back to its initial position, due to periodic

boundary conditions it has also acquired an extra phase exp(iLpj). Finally, the

periodicity of the wave function requires the total phase to be equal to unity,

arriving at the fundamental relation

1 = eiLpj

N
∏

k=1

e−iθ(pj−pk). (1.14)



12 CHAPTER 1. INTRODUCTION

Taking the logarithm of the previous equation we find

pjL = 2πIj +

N
∑

k=1,k 6=j

θ(pj − pk), j = 1, ...N, (1.15)

where Ij are called the quantum numbers. This set of N equations, one for each

particle in the system, are the Bethe ansatz equations for the system of N identical

particles in a ring of length L. Keeping in mind that now the Hamiltonian of the

system contains only the kinetic energy term, and that the eigenfunction is given

by a superposition of plane waves (Eq. 1.6), we can calculate very easily the total

energy and momentum of the system, given by

P =
N
∑

j=1

pj and E =
1

2

N
∑

j=1

p2
j . (1.16)

It is worth noticing that if the asymptotic momentum set contains two equal

momenta then the wave-function Eq. (1.6) is equal to zero. This property prevents

the formation of a true BEC in one-dimensional systems.

Let us look at the case of bosons interacting via a δ-function potential as an

example. This model is called Lieb-Liniger model for the repulsive interaction [25]

and McGuire model for the attractive one [26]. The Hamiltonian reads

H =
1

2

N
∑

j=1

p2
j + c

N
∑

j=1,j<k

δ(xj − xk). (1.17)

Taking as a solution the symmetric wave-function, integrating the Schrödinger

equation across the origin, where the delta potential is located, and imposing

the continuity of the wave function, we can write the following condition at the

boundaries:
(

∂

∂xj
− ∂

∂xj+1

)

Ψ|xj+1−xj→0+ = cΨ|xj+1=xj
, (1.18)

for j = 1, ..., N − 1. This condition should be fulfilled in order to say that the

system is solvable by the Bethe ansatz. Let us show that it is indeed the case.

The N ! terms in the linear superposition in the wave-function can be rear-

ranged in pairs of particles that have been interchanged,

Ψ = · · · + ψ(P )ei(···+pxj+qxj+1+···) + ψ(P ′)ei(···+qxj+pxj+1+···) + · · · , (1.19)
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where P and P ′ are two permutations with only j and j + 1 interchanged (Pj =

P ′(j + 1), P (j + 1) = P ′j), and p = kPj and q = kP ′j. Each pair of terms has

to fulfil individually the boundary condition Eq. (1.18) since they are linearly

independent. We thus obtain for the amplitudes of the wave function:

ψ(P ′)
ψ(P )

=
p− q − ic

p− q + ic
≡ −e−iθ(p−q), (1.20)

which coincides with the expression for the two-body scattering amplitude, or

phase factor, for a δ-function potential, which is derived in Appendix A. When

two particles collide the wave-function acquires this phase factor. This proofs that

the system is solvable by the Bethe ansatz.

Imposing periodic boundary conditions we arrive at the Bethe ansatz equations

for the system of interacting bosons:

Lpj = 2πIj − 2
N
∑

i=1

arctan

(

pj − pi

c

)

, (1.21)

where Ij is a set of N integers (half-odd-integers) for the number of particles N

being odd (even). They are called the quantum numbers. Each set I determines

a single state. The ground state wave-function corresponds to the Fermi sea,

in which all asymptotic momenta lie between p1 = −pF and pN = pF , where

pF is the Fermi momentum. They correspond to the quantum numbers Ij =

{−N−1
2 ,−N−1

2 + 1, . . . , N−1
2 }.

In the case where the system is composed of a mixture of different particles

the situation is more complicated. In this case, the scattering depends on whether

it occurs between two identical particles or two different ones. At the same time,

by giving identities to the particles, we open the possibility for transmission and

reflection. When writing down the equivalent to the condition Eq. (1.14) we will

have to keep this in mind. Examples on how to solve the Bethe ansatz problem

for a multicomponent system will be presented in Sections 2.1.3 and 3.1.3 for the

two-component Fermi gas with δ-function interaction and for the Hubbard model,

respectively.
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1.4 Cold atoms

Experiments with ultra-cold atoms have proved to be great means to create one

dimensional (or, to be more rigorous, quasi-one dimensional) systems. As it was

already pointed out above, in these systems our understanding of properties such

as the trapping potential or the interaction between particles is very advanced.

At the same time, the experimental parameters can be well controlled. Moreover,

the coupling of these systems to the “outside world” can be virtually eliminated.

For these reasons, ultra-cold atoms can be used to make nearly perfect models of

one-dimensional systems.

In order to have a cloud of ultra-cold atoms that is effectively one-dimensional

it has to be trapped into an atom waveguide. The latter is a potential that tightly

confines the particle motion in two transverse directions, while leaving it free in

the third direction. In order to have a true one-dimensional dynamics in such a

configuration all the characteristic energies of the system should be smaller than

the energy needed to excite states in the transverse directions. This means that,

even though the atom wave function is three-dimensional, it only has dynamics

in one of its dimensions. This situation is called quasi-one-dimensional, and the

only difference from the purely one-dimensional system is that now the effective

one-dimensional interaction between particles depends on the confinement. It

is interesting to note that the one-dimensional interaction is independent of the

momentum of the particles.

Generally, the trapping potential is modelled by a harmonic potential,

Vext(~r) =
1

2
mω2

⊥r
2 +

1

2
mω2

zz
2, (1.22)

where r =
√

x2 + y2. In this configuration, in order to have one-dimensional dy-

namics we impose Ec ≪ ~ω⊥, where ω⊥ is the trapping frequency in the transverse

direction and Ec is the characteristic energy in the system. If this relation is ful-

filled, the transverse motion can be frozen to zero-point oscillations, while keeping

the longitudinal motion. In order to reach 1D we thus should have very anisotropic

traps, such that the ratio of the longitudinal to transverse trapping frequency is
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ωz/ω⊥ ≪ 1. For trapped fermions or strongly interacting bosons the characteristic

energy is the Fermi energy, Ec = EF = N~ωz/2, therefore ωz/ω⊥ ≪ 1/N . For

weakly interacting bosons the characteristic energy is Ec = ng, therefore the con-

dition that has to be fulfilled is milder. Overall, if the temperature is non-zero, in

order to reach the 1D regime it has to fulfil kBT ≪ ~ω⊥.

Such anisotropic traps can be magnetic or optical traps. For magnetic trap-

ping there is need of not axially symmetric magnetic fields. In the case of the

Ioffe-Pritchard trap [27], for example, the longitudinal and transversal spring con-

stants can be tuned separately. Another way to create such a trap is using wires

on a chip, Fig. (1.4, top) [28, 29, 30]. In this case, the potential is very weak

longitudinally along most of its length and becomes very steep at its ends. Ex-

periments performed using these kinds of traps include the formation of dark and

bright solitons [31, 32, 33], the one-dimensional Bose-Fermi mixtures [34], studies

of the phase and density fluctuations [35, 36, 37, 38], etc.

Optical lattices are also used to generate one-dimensional traps [39], see Fig.

(1.4, bottom). Applying counter-propagating laser beams to a cloud of ultra cold

atoms one obtains a collection of one-dimensional arrays, organised into a square

lattice of tubes. If the lattice is made deep enough such that the tunnelling time

Figure 1.4: Top: two one-dimensional arrays on a chip. Bottom: set of one-

dimensional arrays generated by applying a two-dimensional optical lattice.
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between tubes is bigger than the typical time of the experiment, then each tube

acts as an independent one-dimensional system. These devices permit to reach

deeper into the one-dimensional regime, because the transverse length scale of each

tube is very small. Optical lattices have been used in experiments in order to study

the phase coherence [40] and pair correlations [41], the three-body association

[42], the creation of Tonks-Girardeau gas [43, 44], the dipole oscillation damping

[45],the creation of confined-induced molecules [46], the p-wave interactions [47]

and to study the effects of integrability and thermalisation in one-dimensional

systems [48].

If the effective one-dimensional regime is reached, the low-energy scattering

properties of the system can be modelled by an effective contact interaction in one

dimension U(z) = g1Dδ(z) [49] with the coupling parameter

g1D =
−2~

2

ma1D
=

2~
2a3D

ma2
⊥

(

1 −C
a3D

a⊥

)−1

, (1.23)

where a⊥ =
√

~/mω⊥ is the transverse oscillation length, a1D is the effective 1D

scattering length, C = 1.0326... is a numerical parameter and a3D is the three-

dimensional scattering length. In order to derive this result, even in the situation

where there are no real transverse excitations, it is necessary to take into account

virtual excitations of the transverse modes. The one-dimensional interaction is

attractive for g1D < 0 and repulsive for g1D > 0.

By using an external magnetic field the 3D scattering length can be changed

continuously [50, 51, 52, 53, 54]. Hence, the one-dimensional interaction strength

can take different values. It can in particular be tuned from a repulsive interaction

(g1D > 0) to an attractive one (g1D < 0). In Fig. (1.5) we see g1D and a1D

versus the three-dimensional scattering length a3D; the latter can be changed

continuously applying a magnetic field and so the sign of the one-dimensional

scattering length changes from repulsive to attractive. This phenomenon opens

up the possibility to explore experimentally different regimes, and even allows one

to change the parameters during an experiment.
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Figure 1.5: Effective one-dimensional coupling constant g1D (solid lines) and effec-

tive one-dimensional scattering length a1D (dotted line) versus the three dimen-

sional scattering length. Courtesy of G. Astrakharchik.

1.5 Overview of the thesis

In the following we briefly discuss the contents of this thesis. In the second chapter

we present a study on the ground state of a system of two-component fermions in

one dimension under harmonic confinement. We begin the chapter with reviewing

some of the main properties of the two-component Fermi gas with repulsive δ-

function interaction, and give a reminder of the Bethe ansatz solution for its

Hamiltonian. Later on this solution is used to calculate the phase diagram of the

system in the homogeneous case. Adding a harmonic confinement and using local

density approximation we calculate the properties of the system in the trapped

configuration. We show that for the harmonically confined case the atoms are

distributed in a two-shell structure: the partially polarised phase is located in

the inner shell and the fully polarised phase sits at the edges of the trap. The

radii of the inner and outer shell are calculated as functions of the polarisation.

We calculate the dependence of the magnetisation imbalance on the polarisation,

showing that the system always has a finite susceptibility.
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In the third chapter we study the finite size effects for the gap of the quasi-

particle excitation spectrum in the one-dimensional Hubbard model with on-site

attraction. First, as an introduction, we review important known results for the

Hubbard model. After that we present a general approach for finding finite size

corrections to the ground state energy and to the gap. Two type of corrections to

the result of the thermodynamic limit are obtained. First of all, there is a power

law correction due to gapless excitations which behaves as 1/Na, where Na is the

number of lattice sites. Second, we obtain an exponential correction related to the

existence of gapped excitations. In the weakly interacting regime this correction

can dominate over the power law correction. We show our numerical simulations

which support these analytical results. We finally present a perturbative approach

for solving the Bethe ansatz equations in the limiting case of weak interactions.

In chapter four we study the response of a highly excited 1D gas to a periodic

modulation of the coupling constant. We calculate the corresponding dynamic

structure factors and show that they differ dramatically for the two considered

cases: the integrable Lieb-Liniger model and the non-integrable model of a single

mobile impurity in a Fermi gas. The non-integrable system is sensitive to exci-

tations with frequencies as low as the mean level spacing, which is exponentially

small, whereas the threshold frequency in the integrable case is much larger and

scales polynomially with the size of the system. This effect can be used as a probe

of integrability for mesoscopic 1D systems, and can be observed experimentally

by measuring the heating rate of a parametrically excited gas.



Chapter 2

Two-component repulsive

Fermi gas with population

imbalance in elongated

harmonic traps

2.1 Overview

In this chapter we consider a system of two-component fermions in one dimen-

sion under harmonic confinement. The interaction between fermions of different

components is symmetric (analogue of the zero-range s-wave interactions in two

and three dimensions) and is modelled with a δ-function potential. On the con-

trary, the scattering between identical fermions is antisymmetric (analogue of the

p-wave scattering in two and three dimensions) and the corresponding interaction

is omitted in the considered ultra-cold limit.

We study the exact ground state at zero temperature for a two-component

1D Fermi gas with repulsive inter-component interaction. We consider a gas of

fermionic atoms, the two components being two different hyperfine states of the

same atom, such that they have the same mass m. The two hyperfine states are

19
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labelled by their isospin projections. For simplicity we call them up-spin (↑) and

down-spin (↓) particles. We will show that for the harmonically confined case

the atoms are distributed in a two-shell structure: the partially polarised phase is

located in the inner shell and the fully polarised phase sits at the edges of the trap.

The radii of the inner and outer shell are calculated as functions of the polarisation.

We calculate the dependence of the magnetisation imbalance on the polarisation,

showing that the system always has a finite susceptibility. We begin with reviewing

some of the main properties of the system under consideration and give a reminder

of the Bethe ansatz solution for the Hamiltonian of the two-component Fermi gas

with a delta-function repulsive interaction. This solution is used to calculate

the phase diagram of the system in the homogeneous case. Adding a harmonic

confinement and using local density approximation we calculate the properties of

the system in the trapped configuration. These results are presented in reference

[55].

2.1.1 The Hamiltonian

The Hamiltonian of the system under consideration is

H =
~

2

2m



−
N
∑

i=1

∂2

∂z2
i

+ c
∑

i<j

δ(zi − zj)



+ Vext(z), (2.1)

where c is related to the 1D effective interaction coefficient (Eq. 1.23) by

c =
mg1D

~2
=

2

a1D
. (2.2)

The first term in the Hamiltonian is the kinetic energy, the second one is the

two-body δ-function interaction, and the last one describes the interaction of the

particles with the harmonic trapping potential (Eq. 1.22). This model is the dilute

limit of the Hubbard model, and the Hamiltonian Eq. (2.1) can be obtained from

the Hubbard model Hamiltonian (Eq. 3.1) in the limit of low densities, as it is

shown in Appendix B.

As already mentioned in the introduction (Section 1.1), in one dimension the

interactions are measured through a dimensionless coupling constant γ = c/n,
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where n = N/L is the density of particles. The limit γ ≪ 1 corresponds to the

weakly interacting regime, while γ ≫ 1 stands for the strongly interacting one.

Remember that in one dimension the gas becomes more interacting when lowering

its density. For two fermions with different isospin projections one finds a bound

state in one-dimension for the attractive case (g1D < 0), with the binding energy

ǫB = −~
2/ma2

1D and with a size ∼ a1D. For the repulsive case (g1D > 0) there is

no bound state [49, 56]. We will consider the case with repulsion only.

As pointed out previously, due to the Pauli exclusion principle the delta-

function interaction only occurs between particles with opposite isospins. We

label the total number of particles by N = N↑ + N↓, where Nσ is the number of

particles in each component, σ =↑, ↓.
The Hamiltonian Eq. (2.1) has an obvious symmetry under exchange of up-

spin and down-spin particles, N↑ ↔ N↓. Without loss of generality we can then

assume thatN↓ ≤ N/2. We will call the particles with up (down) spin the majority

(minority) component.

The model under consideration can be solved analytically in the limiting cases

of zero interactions and infinite interactions. The former is the limiting case of

free fermions, and the wave-function of the system is a Slater determinant. The

latter limit corresponds to the so-called fermionic Tonks-Girardeau regime, and it

is a singular limit since the infinite repulsion between fermions mimics the Pauli

principle. Therefore, the different fermionic components cannot be differentiated

any more. These two limits, free and Tonks-Girardeau, are somehow connected:

infinitely interacting two-component fermions behave in a similar way as free one-

component fermions.

2.1.2 Excitation spectrum

For the case of repulsive inter-species interactions and in the homogeneous configu-

ration the excitation spectrum of the gas of two-component fermions is described

by the fermionic Luttinger Liquid theory [57]. It predicts a two-fold excitation

spectrum: there is a linear excitation spectrum for the fluctuations of the total
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density (charge), ǫc(p) = vcp, and another linear spectrum for the fluctuations of

the density difference (spin), ǫs(p) = vsp. The velocities for each excitation, called

charge and spin respectively, are generically not the same. This model is a form of

spin-charge separation, which has been verified experimentally in semiconductor

quantum wires [58]. In the context of ultra-cold gases in harmonic traps, one can

verify the spin-charge separation observing the collective excitation frequencies

[59] or by looking at the propagation of wave-packets [60].

For the case with attractive inter-species interaction in the homogeneous con-

figuration the model is explained by the Luther-Emery liquid theory [61]. In this

case, the excitation spectrum for the charge part is also linear, ǫc(p) = vcp , but the

spin part has a gap in the excitation spectrum : the origin of this gap is the appear-

ance of bound states formed by pairs of fermions with opposite spin. The spectrum

in this sector is similar to the one in BCS theory, ǫs(p) =
√

(∆s/2~)2 + (vsp)2.

Actually, the two-component spin gas behaves in a similar way as the electron

gas in solids. The value of the gap in the spectrum, for weak coupling, has a

similar form as the one in the BCS theory, but the prefactor now depends on the

interaction, ∆s = 16Ef/π
√

|γ|/πexp(−π2/2γ). In this case, however, the weak

coupling is reached at high densities. In the dilute case of strong interaction the

gap approaches the value of the two-body bound state energy, ∆s → ǫB = ~
2c2

4m ,

and thus a pair of fermions can be treated as a bosonic molecule. This gas of

molecules behaves like a hard-core Bose gas. Therefore attractive fermions in one

dimension evolve from a fermionic Luther-Emery liquid into a gas of repulsive

bosons. This evolution is a crossover, not a transition, and is called BEC-BCS

crossover [62, 63, 64, 65, 66]. It can be solved exactly using the Bethe ansatz

technique [67, 68].

In the case where the system is not perfectly one-dimensional another quantity

has to be taken into account, the transverse oscillator length l⊥ =
√

~/mω⊥, which

is related to the tightness of the transverse confinement. In this configuration the

scattering always exhibits a two-body bound state, irrespectively of the sign of

the scattering length. So tuning the scattering length from the negative side to
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the positive one by using a Feshbach resonance, the bound pairs of atoms survive.

These bound states are called confinement-induced molecules [49, 56, 69, 46, 70].

In order to have a “real” repulsive gas, without the presence of bound states, the

atoms should be cooled without interaction (a = 0) and after that the repulsive

interactions have to be switched on.

For the attractive case the ground state has also been found for the situation

with population imbalance, n↑ 6= n↓ [71] (see [72, 73] for the harmonically con-

fined situation). For an applied magnetic field smaller than a critical value, the

ground state is a superfluid with equal densities of up and down spins. However,

above the critical field hc = ∆s/2 the paired ground state is destroyed (Clogston-

Chandrasekhar limit) [74, 75]. Inside a harmonic trap, and because the gap be-

comes larger at low densities, the superfluid phase appears at the edges of the

trap while at the centre remains the partially polarised phase. This phase is said

to behave like an FFLO state (Fulde-Ferrel-Larkin-Ovchinnikov) [76, 77], having

an oscillating superfluid order parameter. The harmonically confined case with

population imbalance for the repulsive interactions is

2.1.3 The Bethe ansatz solution

In the homogeneous case, without the harmonic confinement, the Hamiltonian Eq.

(2.1) is exactly solvable by the Bethe ansatz. It was solved by C.N. Yang in 1967

[78] using for the first time the technique of the so-called nested Bethe ansatz.

Before this solution there were studies by J.M. McGuire [79] who considered the

system of only one down-spin particle, N↓ = 1, embedded into a system of N up-

spin particles, and by Lieb and Flicker [80] who studied the case with two down

spins, N↓ = 2. Later on, Sutherland generalised Yang’s solution to the case with

M different species of particles [81].

The starting point of Yang’s solution is the Bethe ansatz (see Section 1.3). In

a given sector 0 < xQ1 < xQ2 < · · · < xQN < L the wave function of the system
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ψ(12|21)

ψ(12|12)

ψ(21|21) e

ψ(21|12)

22

ei(k x +k x )1 2 e 1 1
i(k x +k x )

x−x2 1Q=(21) Q=(12)

i(k x +k x )
1 1

2 1

e 2 1
i(k x +k x )

1 2

2 2

Figure 2.1: Picture of the scattering of two particles with k1 > k2. The two

different regions in space, Q = (12) for x2 > x1 and Q = (21) for x1 > x2 are

indicated, as well as the incoming and outgoing waves.

can be written as

Ψ =
∑

P

ψ([Q,P ])exp[i(pP1xQ1 + · · · + pPNxQN )], (2.3)

where p1, . . . , pN are a set of N unequal numbers, and P = (P1, P2, . . . , PN) gives

a permutation of the momenta k. Since now there is a mixture of different types of

particles we need to assign each of them an identity. Thus, Q = (Q1, Q2, . . . , QN)

is a permutation of the identity of the particles: x1 represents particle 1, which is

the number j in the line if Qj = 1. Then, there are no restrictions on the range of

xi. ψ([Q,P ]) is a matrix with N ! ×N ! coefficients, and each of its columns gives

a set of N ! amplitudes for fixed P and permuting Q.

We have two different types of particles and consequently if there is a scattering

process between them there will be reflected and transmitted parts of the wave

function. Remember that in the case where all the particles are identical the

scattering only generates a phase factor (see Section 1.3). Let us consider first the

scattering of two particles in the two regions of spaceQ = (1, 2), which corresponds

to x2 > x1, and Q = (2, 1), corresponding to x1 > x2. They have momenta

k1 > k2, and the wave function of the system is given by Eq. (2.3). The scattering

process will be
(

ψ(Q = (1, 2)|P = (2, 1))

ψ(Q = (2, 1)|P = (2, 1))

)

=

(

R21 T21

T21 R21

)(

ψ(Q = (1, 2)|P = (1, 2))

ψ(Q = (2, 1)|P = (1, 2))

)

, (2.4)
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in Fig. (2.1) we find a graphical picture of this process. In the case of a δ-function

interaction, the transmission and reflection amplitudes are given by (see Appendix

A)

R(∆k) =
−ic

∆k + ic
, T (∆k) =

∆k

∆k + ic
, (2.5)

and the scattering operator (in the reflection-diagonal representation) is

S(∆k) =

(

R(∆k) T (∆k)

T (∆k) R(∆k)

)

= R(∆k) + T (∆k)P̂ , (2.6)

where P̂ is the operator that permutes two particles. One can easily verify that a

solution of Eq. (2.4) is given by

ψ(1, 2|1, 2) = k1 − λ− ic/2; ψ(2, 1|1, 2) = −(k2 − λ+ ic/2);

ψ(1, 2|2, 1) = −(k2 − λ− ic/2); ψ(2, 1|2, 1) = k1 − λ+ ic/2, (2.7)

where λ is an auxiliary variable.

Let us have a look now at the 3-body case. The wave function is given by

equation (2.3) with 3! × 3! different coefficients ψ(Q|P ). The relation between

the coefficients ψ(Q|123) and ψ(Q|213) is given by the 3!× 3! scattering operator

S12
21 = R21I+T21P

12, whereR21 = −ic
k2−k1+ic , T21 = k2−k1

k2−k1+ic and P 12 is the operator

that permutes particles 1 and 2:




















ψ(123|123)

ψ(132|123)

ψ(321|123)

ψ(213|123)

ψ(231|123)

ψ(312|123)





















=





















R21 0 0 T21 0 0

0 R21 0 0 0 T21

0 0 R21 0 T21 0

T21 0 0 R21 0 0

0 0 T21 0 R21 0

0 T21 0 0 0 R21









































ψ(123|213)

ψ(132|213)

ψ(321|213)

ψ(213|213)

ψ(231|213)

ψ(312|213)





















. (2.8)

There are five other scattering relations for the rest of the coefficients.

In general, for arbitrary N , the scattering operator is a N !×N ! operator acting

on the N ! vector of amplitudes in the following way:
















ψ(Q1|P )

ψ(Q2|P )

ψ(Q3|P )
...

ψ(QN !|P )

















= (RjiI + TjiP̂
ij)

















ψ(Q1|P ′)

ψ(Q2|P ′)

ψ(Q3|P ′)
...

ψ(QN !|P ′)

















, (2.9)
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where Q1 = (1, 2, 3, · · · , N), Q2 = (2, 1, 3, · · · , N), and so on, are the permu-

tation for the identities of the particles; and P = (1, · · · , i, · · · , j, · · · , N) and

P ′ = (1, · · · , j, · · · , i, · · · , N) are two different permutations for the momenta. The

operator P̂ ij is the (N ! × N !)-dimensional permutator of particles i and j. One

can verify that the scattering operator Sab
ij = Rij + TijP̂

ab fulfils the Yang-Baxter

conditions (1.8):

Sab
ij S

ab
ji = 1

Sab
jkS

bc
ikS

ab
ij = Sbc

ijS
ab
ikS

bc
jk. (2.10)

Thus, knowing the coefficients ψ(Qi|P ) in the sector P all the rest are uniquely

determined by the scattering. In the N -body case, the relation between the coef-

ficients of the wave function Eq. (2.3) following from Eq. (2.9) is

ψ(Q|P ) = Rl+1,l ψ(Q|P (l, l + 1)) + Tl+1,l ψ(Q(l, l + 1)|P (l, l+ 1)), (2.11)

where P (l, l + 1) and Q(l, l + 1) are the permutations interchanging the elements

l and l + 1, and Rl+1,l = −ic
kP (l+1)−kPl+ic and Tl+1,l =

kP (l+1)−kPl

kP (l+1)−kPl+ic .

Let us assume that, for the case of three particles, particles 1 and 2 have spin

up and particle 3 has spin down. Then the antysymmetry under permutation of

two identical fermions leads to the relations ψ(123|P ) = −ψ(213|P ), ψ(321|P ) =

−ψ(312|P ) and ψ(132|P ) = −ψ(231|P ). Therefore we need to determine only

6 × 3 coefficients:

Φ(1|P ) = ǫPψ(312|P ), Φ(2|P ) = ǫPψ(231|P ), Φ(3|P ) = ǫPψ(123|P ), (2.12)

where Φ(y|P ) is the amplitude of the wave function with the down-spin particle at

position y and ǫP is the sign of the permutation P . Hence the relations between

the coefficients Φ are:

Φ(y|P ) = Φ(y|P (l, l + 1)), if y 6= l, l + 1, (2.13)

Φ(l|P ) = R̃P (l+1),P l Φ(l|P (l, l + 1)) + T̃P (l+1),P l Φ(l + 1|P (l, l + 1)),

Φ(l + 1|P ) = R̃P (l+1),P l Φ(l + 1|P (l, l + 1)) + T̃P (l+1),P l Φ(l|P (l, l + 1)),
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where the new transmission and reflexion coefficients are R̃l+1,l = −Rl+1,l and

T̃l+1,l = Tl+1,l. The change of sign in R̃ is due to the new permutation symmetry

of the particles: the antisymmetry under exchange of identical fermions is already

taken into account in the definition of Φ. A solution to equations (2.13) is:

Φ(1;P ) = A (kP2 − λ− ic/2)(kP3 − λ− ic/2),

Φ(2;P ) = A (kP1 − λ+ ic/2)(kP3 − λ− ic/2),

Φ(3;P ) = A (kP1 − λ+ ic/2)(kP2 − λ+ ic/2), (2.14)

where A is a coefficient. One can easlily generalise to the case with N particles

and one down spin, M = 1:

Φ(y;P ) = A FP (y, λ), FP (y, λ) =

y−1
∏

j=1

(kPj − λ+ ic/2)

N
∏

l=y+1

(kP l − λ− ic/2).

(2.15)

For a general number of particles N and a general number of down spins M we

have to consider the amplitudes Φ(y1, y2, . . . , yM |P ), where y1 < y2 < · · · < yM

are the positions of the down-spin particles along the chain. The relations among

these amplitudes are:

Φ(y1, y2, . . . , yM |P ) = Φ(y1, y2, . . . , yM |P (l, l+ 1)), for yα 6= l, l+ 1;

Φ(y1, y2, . . . , yM |P ) = Rl,l+1Φ(y1, y2, . . . , yα, . . . , yM |P (l, l+ 1)) +

Tl,l+1Φ(y1, y2, . . . , yα + 1, . . . , yM |P (l, l + 1)), for yα = l and yα 6= l+ 1;

Φ(y1, y2, . . . , yM |P ) = Rl,l+1Φ(y1, y2, . . . , yα, . . . , yM |P (l, l+ 1)) +

Tl,l+1Φ(y1, y2, . . . , yα − 1, . . . , yM |P (l, l + 1)), for yα 6= l and yα = l+ 1;

Φ(y1, y2, . . . , yM |P ) = Φ(y1, y2, . . . , yM |P (l, l+ 1)), for yα = l and yα = l + 1.

(2.16)

A solution to these equations is given by the generalised Bethe ansatz:

Φ(y1, y2, . . . , yM |P ) =
∑

R

A(R) FP (y1, λR1)FP (y2, λR2) . . . FP (yM , λRM ), (2.17)

where R is the permutation of the M down-spin particles. Using the relations Eq.

(2.16) with R′ = R(α,α+ 1) and P ′ = P (yα, yα + 1), we can write

A(R) FP (yα, λRα)FP (yα + 1, λR(α + 1)) +A(R′) FP (yα, λR(α+1))FP (yα + 1, λRα) =
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A(R) FP ′(yα, λRα)FP ′ (yα + 1, λR(α + 1)) +A(R′) FP ′(yα, λR(α+1))FP ′ (yα + 1, λRα),

therefore,

A(R)(λR(α+1) − λRα − ic) +A(R′)(λRα − λR(α+1) − ic) = 0. (2.18)

This condition is satisfied by

A(R) = ǫR
∏

j<l

(λRj − λRl − ic). (2.19)

The wave function (2.17) is the solution to the Hamiltonian of the problem, Eq.

(2.1).

We will now impose periodic boundary conditions. Let us first look at the case

with two particles only. In this case Ψ(x1 + L, x2) = Ψ(x1, x2) with x1 + L > x2

(Q = (2, 1)) for the l.h.s and x1 < x2 (Q = (1, 2)) for the r.h.s.:

Ψ(x1 + L, x2) = ψ(21, 12)eix1k2+ix2k1eiLk2 + ψ(21, 21)eix1k1+ix2k2eiLk1 =

= Ψ(x1, x2) = ψ(12, 12)eix1k1+ix2k2 + ψ(12, 21)eix1k2+ix2k1. (2.20)

We also have Ψ(x1, x2 + L) = Ψ(x1, x2), with x2 + L > x1 (Q = (1, 2)) for the

l.h.s and x2 < x1 (Q = (2, 1)) for the r.h.s.,

Ψ(x1, x2 + L) = ψ(12, 12)eix1k1+ix2k2eiLk2 + ψ(12, 21)eix1k2+ix2k1eiLk1 =

= Ψ(x1, x2) = ψ(21, 12)eix1k2+ix2k1 + ψ(21, 21)eix1k1+ix2k2. (2.21)

We therefore have for the scattering process:

(

ψ(1, 2|1, 2)

ψ(2, 1|1, 2)

)

eik2L =

(

T R

R T

)(

ψ(1, 2|1, 2)

ψ(2, 1|1, 2)

)

;

(

ψ(1, 2|2, 1)

ψ(2, 1|2, 1)

)

eik1L =

(

0 1

1 0

)(

R T

T R

)−1(
ψ(1, 2|2, 1)

ψ(2, 1|2, 1)

)

. (2.22)

Equations (2.22) tell us that after scattering around the ring and returning to its

initial position a particle acquires a phase exp ikjL.

In the case with N particles the periodic boundary condition reads for the wave

function Ψ(xN − L, x1, . . . , xN−1) = Ψ(x1, x2, . . . , xN ). Therefore for each of the
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coefficients of this wave function we have Ψ(Q|P ) exp(ikPNL) = Ψ(Q′|P ′), with

Q=(Q1, Q2, . . . , QN) andQ′=(QN,Q1, . . . , Q(N−1)); and P =(P1, P2, . . . , PN)

and P ′=(PN,P1, . . . , P (N − 1)). After scattering of one particle with the N − 1

others it will return to its initial position with an extra phase λj = exp(ipjL). In

terms of the function Φ we can write

Φ(y1, y2, . . . , yM ;P )eikPN L = Φ(y1 + 1, y2 + 1, . . . , yM + 1;PN,P1, . . . , P (N − 1)),

Φ(y1, y2, . . . , yM−1, N + 1;P ) = Φ(1, y1, y2, . . . , yM−1;P ). (2.23)

We have two different situations, for yM = N and for yM 6= N . Let us first take

into account the case with yM 6= N . Using the solution of the wave function Eq.

(2.17) we have the relation

eikPN L =

M
∏

α=1

kPN − λα + ic/2

kPN − λα − ic/2
. (2.24)

In the case yM = N , using the equation above we get

Φ(y1, . . . , N ;P )

M
∏

α=1

kPN − λα + ic/2

kPN − λα − ic/2
= Φ(1, y1 + 1, . . . , yM−1 + 1;P ′), (2.25)

where P ′ = (PN,P1, P2, . . . , P (N − 1). This relation is satisfied by

A(R) = A(RM,R1, . . . , R(M − 1))

N
∏

j=1

kPj − λRM − ic/2

kPj − λRM + ic/2
; (2.26)

substituting the expression for A(R) we get the second relation

N
∏

j=1

kj − λRM + ic/2

kj − λRM − ic/2
= −

M
∏

α=1

λRM − λα − ic

λRM − λα + ic
. (2.27)

Taking the logarithm of equations (2.24) and (2.27) we have

pjL = 2πIj − 2

N↓
∑

β=1

arctan

(

pj − λβ

c/2

)

, (2.28)

πJα −
N
∑

j=1

arctan

(

pj − λα

c/2

)

=

N↓
∑

β=1

arctan

(

λα − λβ

c

)

.
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These two equations are the Bethe ansatz equations for a system of N fermions

with M down-spin particles. When taking the logarithm, care has to be taken to

add 2πin terms, with n being an integer. Taking this into account, we see that

the N numbers Ij are integer for even number of down-spin particles and half-

odd-integer for odd number of down-spin particles, Ij ≡
(

N↓

2

)

mod(1); and the

set of N↓ numbers Jα are integers if the combination N −N↓ is an odd number,

or half-odd-integers if it is even, Jα ≡
(

N−N↓+1
2

)

mod(1). The energy reads:

E =
~

2

2m

N
∑

j=1

p2
j , (2.29)

where L is the length of the system; the total momentum is P =
∑N

j=1 pj =

2π (
∑

Ij +
∑

Jα)/L.

Thus an eigenstate of the Hamiltonian Eq. (2.1) is characterized by a set of N

density quantum numbers Ij, (j = 1, . . . , N), and N↓ spin quantum numbers Jα,

(α = 1, . . . , N↓), which define a set of N quasi-momenta pj and N↓ spin rapidities

λα: they satisfy the set of Bethe ansatz coupled equations. The ground state, forN

even and N↓ odd, is given by the set of quantum numbers Ij =
{

−N−1
2 , . . . , N−1

2

}

and Jα =
{

−N↓−1
2 . . . ,

N↓−1
2

}

. If we want to construct the ground state for a

different combination of N and N↓ other than even/odd we will not be able to

satisfy
∑

Ij = 0 and
∑

Jα = 0 and the ground state will have a current.

Taking the thermodynamic limit N → ∞ and L→ ∞, keeping n = N/L and

n↓ = N↓/L constant, we define the densities of p and λ as ρ(p) = L−1 ∂I
∂p and

σ(λ) = L−1 ∂J
∂λ . Then the Bethe ansatz equations become:

ρ(p) =
1

2π
+

1

π

∫ B

−B

2

1 + 4(p − λ)2
σ(λ)dλ,

σ(λ) =
1

π

∫ Q

−Q

2

1 + 4(p − λ)2
ρ(p)dp

− 1

π

∫ B

−B

1

1 + 4(λ− λ′)2
σ(λ′)dλ′, (2.30)

where we have rescaled all the parameters by c: λ = λ/c, p = p/c, B = B/c,

Q = Q/c. The cut-offs B and Q are determined by fixing the number of particles
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of the system

n

c
=

∫ +Q

−Q
ρ(p)dp;

n↓
c

=

∫ +B

−B
σ(λ)dλ. (2.31)

The expression for the energy reads

E(n, s) =
~c3

2m

∫ Q

−Q
p2ρ(p)dp; (2.32)

and the magnetisation is defined as s = n↑−n↓. The coupling strength is controlled

by the parameter γ−1 = n/c, Eq. (2.31), the weak coupling regime corresponding

to n/c≫ 1, and the strong coupling one to n/c≪ 1.

2.2 Phase diagram

We now construct the ground state phase diagram of the system under consid-

eration. This is done by analysing the integral equations that determine the

distribution of Bethe ansatz roots in the ground state, Eq. (2.30). The different

phases are identified by considering the integration boundaries Q and B as control

parameters, and the phase diagram is given as a function of the chemical potential

µ and the magnetic field h. Since there is a coexistence of two components we can

rewrite the total chemical potential and magnetic field as

µ =
µ↑ + µ↓

2
h =

µ↑ − µ↓
2

, (2.33)

where µ↑,↓ are the chemical potentials relative to each component.

For two-component fermions with repulsive δ-function interactions three phases

appear: a balanced phase, where the number of up and down spin particles is the

same, n↑ = n↓ or equivalently the magnetisation is zero, s = 0; a fully polarised

phase for which the density of spin-down particles vanishes and there is only ma-

jority component, n↓ = 0, or equivalently n↑ = n = s; and a partially polarised

phase, that contains an imbalanced mixture of up and down spins 0 < s < n.

Next, we calculate the boundaries between the three phases.
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2.2.1 Balance

In the balanced phase the number of up spin particles equals the number of down

spin ones, and so the magnetisation is zero, s = 0. Note that the system under

consideration is gapless, therefore any applied magnetic field breaks the balance

between up and down spins. Consequently, the balanced phase exists only without

the presence of an external magnetic field. Thus in the (h, µ) plane the balanced

phase is located at the line h = 0. The border between this phase and the partially

polarised one is the line h = 0 for any chemical potential µ.

2.2.2 Saturation

The saturation line in the phase diagram is the one below which the systems

becomes fully polarised. This happens when the number of down-spin particles

becomes zero, n↓ = 0, which is equivalent to s = n. We want to calculate the

border between the partially polarised phase and the fully polarised one. There

is a small parameter in this limit, n− s ∼ 0, which in the Bethe ansatz equations

(2.31) translates to B ∼ 0.

In order to calculate the magnetic field and the chemical potential at saturation

we can follow two different schemes. In the first one we will calculate the magnetic

field and the chemical potential from the Bethe ansatz equations (2.30), and after

doing so we will take the saturation limit. In the second approach, we will calculate

directly the expression for the energy close to saturation and then, taking its

derivatives, we obtain the magnetic field and chemical potential at saturation.

In the first approach, we write the expressions for the chemical potential and

magnetic field from Eq. (2.32) as:

h =
∂E(n, s)/L

∂s
=

~
2c3

2m

∂

∂s

∫ Q

−Q
p2ρ(p)dp =

=
~

2c3

2m

(

∂

∂Q

∫ Q

−Q
p2ρ(p)dp

∂Q

∂s
+

∂

∂B

∫ Q

−Q
p2ρ(p)dp

∂B

∂s

)

;

µ =
∂E(n, s)/L

∂n
=

~
2c3

2m

∂

∂n

∫ Q

−Q
p2ρ(p)dp =
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=
~

2c3

2m

(

∂

∂Q

∫ Q

−Q
p2ρ(p)dp

∂Q

∂n
+

∂

∂B

∫ Q

−Q
p2ρ(p)dp

∂B

∂n

)

. (2.34)

From the equations for the number of particles, Eq. (2.31), we can obtain the

derivatives of the density of particles n and the magnetisation s with respect to

the cut-offs Q and B in the limit B = 0:

∂n

∂Q

∣

∣

∣

∣

B=0

=
c

π
;

∂n

∂B

∣

∣

∣

∣

B=0

=
4c

π3
arctan2(2Q);

∂s

∂Q

∣

∣

∣

∣

B=0

=
c

π
;

∂s

∂B

∣

∣

∣

∣

B=0

= arctan(2Q)

(

4c

π3
arctan(2Q) − 4c

π2

)

, (2.35)

and by inverting the Jacobian, the derivatives of Q and B with respect to n and

s become:

∂Q

∂n

∣

∣

∣

∣

B=0

= −π
c

(

arctan(2Q)

π
− 1

)

;
∂Q

∂s

∣

∣

∣

∣

B=0

=
1

c
arctan(2Q);

∂B

∂n

∣

∣

∣

∣

B=0

=
π2

4 arctan(2Q)
;

∂B

∂s

∣

∣

∣

∣

B=0

= − π2

4c arctan(2Q)
. (2.36)

On the other hand, in this particular limit the derivatives of the energy Eq. (2.32)

are

∂E(n, s)/L

∂Q

∣

∣

∣

∣

B=0

=
~

2c3

2m

Q2

π
;

∂E(n, s)/L

∂B

∣

∣

∣

∣

B=0

=
~

2c3

2m

arctan(2Q)

π3
(2Q− arctan(2Q)). (2.37)

Combining equations (2.34), (2.36) and (2.37) we obtain the values of the magnetic

field and chemical potential at saturation:

hs = 2ǫB

(

Q2
0

π
arctan(2Q0) −

Q0

2π
+

arctan(2Q0)

4π

)

,

µs = −h+ 2ǫBQ
2
0, (2.38)

where ǫB = ~
2c2/4m is the binding energy andQ0 = nπ/c is the Fermi momentum.

Note that the saturation line crosses the point (0, 0), which is a consequence of

the fact that there is no gap in the excitation spectrum of the system.
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For the strongly interacting regime, where Q0 → 0 or equivalently h≪ ǫB , the

chemical potential tends to zero as

hs

ǫB
=

8Q3

3π
;

µs

ǫB
= −8Q3

3π
+ 2Q2

⇒ µs

ǫB
= −hs

ǫB
+ 2

(

3π

8

hs

ǫB

)2/3

. (2.39)

For the weakly interacting regime we have Q0 → ∞ or equivalently h ≫ ǫB , in

this case the chemical potential diverges:

hs

ǫB
= Q2 − 2Q

π
+

1

4
− 1

6πQ
;

µs

ǫB
= Q2 +

2Q

π
− 1

4
+

1

6πQ

⇒ µs

ǫB
=
hs

ǫB
+

4

π

√

hs

ǫB
+

(

4

π2
− 1

2

)

. (2.40)

An alternative approach to calculate the magnetic field and chemical potential

at saturation involves an expansion of the energy in the small parameter (n− s).

In order to calculate the magnetic field and chemical potential we should know

the energy up to the first order in (n− s). We compute it up to the second order,

which allows us to also compute also the magnetic susceptibility in this regime.

From equations (2.30) and (2.31) we can eliminate the density of rapidities

σ(λ) using the relation
∫ B

−B
f(λ)σ(λ)dλ = f(λ∗)

∫ B

−B
σ(λ)dλ, −B < λ∗ < B, (2.41)

and we obtain an equation for the number of particles and for the energy:

E(n, s)

L
=

~
2c3

2m

(

Q3

3π
+
n− s

c

1

2π

∫ Q

−Q

2p2

1 + 4p2
dp

)

=

=
~

2c3

2m

[

Q3

3π
+

(n− s)

c

1

2π

(

Q− 1

2
arctan(2Q)

)]

, (2.42)

Q =
nπ

c
+
n− s

c

1

π
arctan(2Q). (2.43)

We can solve the equation for Q up to second order in (n − s) making a Taylor

expansion:

Q = Q0 +
∂Q

∂(n − s)

∣

∣

∣

∣

0

n− s

c
+

1

2!

∂2Q

∂(n − s)2

∣

∣

∣

∣

0

(n− s)2

c2
+ · · · . (2.44)
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Taking the derivatives in (n− s) from equation (2.43) we obtain for Q:

Q = Q0 −
n− s

c
arctan(2Q0) +

(n− s)2

c2
arctan(2Q0)

1 + 4Q2
0

. (2.45)

Then we can calculate the energy from equation (2.42) substituting the expression

for Q. Taking the derivatives with respect to s and m we obtain for the magnetic

field and chemical potential at saturation:

hs = 2ǫB

(

Q2
0

π
arctan(2Q0) −

Q0

2π
+

arctan(2Q0)

4π

)

,

µs = −h+ 2ǫBQ
2
0, (2.46)

which are again equations (2.38). The two approaches are equivalent, but the

second one allows us to calculate in a straightforward way the susceptibility at

saturation, taking the second derivative of the energy with respect to the mag-

netisation:

χ−1
s = ∂2E(n,s)

∂s2

∣

∣

∣

s=n
=

2ǫB
c

(

2Q0

π
arctan2(2Q0)

)

. (2.47)

We see that the susceptibility only diverges in the limit of the empty band (Q0 = 0)

and in the limit of infinite interaction, and remains finite otherwise.

We finally want to compare the results of the mean-field approximation with

the exact ones. In the mean field approach we can write the energy of the ground

state for a two-component Fermi gas as E(n↑, n↓) = gn↑n↓ +~
2/2m(n3

↑ +n3
↓)π

2/3.

Taking the derivatives of the energy with respect to the total density n and the

magnetisation s we obtain in this approximation

hs

ǫB
= Q2 − 2Q

π
;

µs

ǫB
= Q2 +

2Q

π
, (2.48)

which is the same result as equation (2.40), up to a constant value. Therefore, we

see how the mean-field approach gives a reasonable approximation for the weakly

interacting regime in one dimension.

This phase transition is of the commensurate-incommensurate type, since the

system goes from a non-gapped phase to a phase containing a gap in the excitation
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spectrum. All the calculations have been performed for the case with a fixed

number of particles, which in experiments with ultra-cold atoms is more relevant

than the case with a fixed chemical potential. In this case one does not expect any

divergence due to the flat band, since the constraint of a fixed number of particles

does not allow the system to populate all the states available at the bottom of the

band when approaching saturation. In other words, the van Hove singularity is

not present and so we do not expect a divergence of the magnetic susceptibility

at saturation.

2.2.3 Vacuum

The vacuum corresponds to the absence of any particles, n = 0. Consider first the

inequality n↓ < n↑, which means that unless we consider the balanced case, we first

reach n↓ = 0 rather than n↑ = 0. We are therefore concerned with the situation

where n↑ becomes zero, which is equivalent to imposing the chemical potential

for the majority component to become zero, µ↑ = 0. Thus, in the chemical

potential versus magnetic field phase diagram the boundary for the vacuum state

(µv) corresponds to:

µ↓ =
h+ µv

2
= 0 −→ µv = −h. (2.49)

The vacuum line Eq. (2.49) never crosses the saturation line Eq. (2.38),

meaning that there is no boundary between the partially polarised phase and the

vacuum, except for the case of balance. This implies that for any imbalance the

system cannot have a direct transition from the partially polarised phase to the

vacuum without crossing the fully polarised phase.

2.2.4 Results

The phase diagram of the system is presented in Fig. (2.2). We can recognise

here the different phases of the system. The balanced phase exists only at the

boundary h = 0 and thus is not present in the plot. The partially polarised

phase appears between the balanced one and the fully polarised one. The border

between the partially polarised phase and the fully polarised one is the saturation
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Figure 2.2: Phase diagram in the plane µ/ǫB and h/ǫB . The partially polarised

phase (PP), fully polarised phase (FP) and vacuum (V) are displayed. The dashed

lines correspond to the asymptotes discussed in the text.

line Eq. (2.38), and the dashed lines in the plot are the asymptotes discussed

above, Eq. (2.39) and (2.40). Finally, the vacuum phase is also displayed. Note

that there is no boundary between the partially polarised phase and the vacuum.

We also note that the saturation line crosses the point (h = 0, µ = 0) giving

evidence for the absence of a gap in the system.

2.3 Trapped density profiles

We consider now the system in an external trapping potential. We take the

trapping potential as a harmonic potential, Vext = mω2
zz

2/2, because this is the

case in most experimental set-ups. Under these circumstances the system is non-

homogeneous, and therefore is not exactly solvable any more. Despite this fact,

using the theory of the local density approximation (see Appendix C), in certain

cases we can approximate very well the features of the cloud in the inhomogeneous
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configuration. This allows us to write the local equilibrium conditions

µ↑(n↑(z), n↓(z)) = µ0
↑ − Vext, µ↓(n↑(z), n↓(z)) = µ0

↓ − Vext. (2.50)

In order to be able to apply the local density approximation treatment we need the

size of the cloud to be much bigger than the characteristic length of the potential

az =
√

~/mωz.

We have a system of two-components that we label by their spin indices, and

we define the total chemical potential and the magnetic field as

µ(n↑(z), n↓(z)) =
µ↑(n↑(z), n↓(z)) + µ↓(n↑(z), n↓(z))

2

h(n↑(z), n↓(z)) =
µ↑(n↑(z), n↓(z)) − µ↓(n↑(z), n↓(z))

2
, (2.51)

where n↑,↓(z) is the local density of each of the two atomic components. Therefore,

the chemical potential and the magnetic field depend on the position z through

the local densities. Since we consider the two components as being two different

hyperfine states of the same atom, the external potential acts in the same way on

both, µ↑,↓ = µ0
↑,↓ − 1

2mω
2
zz

2. We can rewrite the chemical potential and magnetic

field as

µ(n↑(z), n↓(z)) = µo − 1

2
mω2

zz
2, h(n↑(z), n↓(z)) = ho, (2.52)

where µo and ho have been defined as µ0 = (µo
↑ + µo

↓)/2 and h0 = (µo
↑ − µo

↓)/2.

We see from Eq. (2.52) that the local magnetic field h(z) is kept constant inside

the trap, while the local chemical potential µ(z) decreases as we approach the

boundaries of the cloud. In Fig. (2.3) the vertical arrow in the phase diagram

follows the variation of the local chemical potential and local magnetic field inside

the trap, and at the origin they take the values h(0) = ho, µ(0) = µo.

The total number of particles, N = N↑ + N↓, and the total magnetisation

S = N↑ − N↓, like in Eq. (C.10) from the Appendix C, are the two conserved

quantities that fix the value of the normalisation constants µo and ho, i.e. the

value of the chemical potential and magnetic field in the centre of the trap. In the

trapped configuration they are given by

N =

∫ R

−R
n(z)dz and S =

∫ R

−R
s(z)dz. (2.53)
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In order to calculate the density profiles we solve numerically Eqs. (2.52) for

a given pair µo and ho, i.e. for a fixed total number of particles and imbalance,

with z ranging from z = 0 in the centre of the cloud to z = Rout at the edges.

For convenience, we define the dimensionless quantities z̃ = za1D/
√

2a2
z, ñ = n/c,

s̃ = s/c, and

N
a2

1D

a2
z

= 2
√

2

∫ R̃

−R̃
ñ(z̃)dz̃, S

a2
1D

a2
z

= 2
√

2

∫ R̃

−R̃
s̃(z̃)dz̃. (2.54)

Numerically, we start by fixing N and S, i.e. B and Q, and we solve the

Bethe ansatz equations (2.30) in the centre of the trap. In this way we obtain

the normalisation constants µo and ho. Then, we start moving towards the edges

of the trap, by lowering the chemical potential µ = µo − mω2
zz

2/2 and making

sure that we keep h(z) = ho constant, i.e. following the arrow in Fig. (2.3).
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Figure 2.3: Phase diagram in the plane µ/ǫB and h/ǫB . The arrow follows the

variation of h(z) and µ(z) inside of the trap. Since h(z) is constant the arrow is

a vertical line. In the centre of the trap h = h0 and µ = µ0, when the line crosses

the saturation line h = hs and µ = µs, given by Eq. (2.38), and when the arrow

crosses the vacuum line h = hv and µ = µv, given by Eq. (2.49).
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For each position z we solve the Bethe ansatz equations and thus calculate the

corresponding total density n(z), density of up-spin particles n↑(z), density of

down-spin particles n↓(z), magnetisation s(z), etc. The density profiles for two

different values of the polarisation P = (N↑ −N↓)/N are shown in Fig. (2.4).

We can understand the density profile as follows: when moving along the trap,

the chemical potential difference h(z) remains constant while the chemical poten-

tial µ(z) decreases parabolically and so does the one-dimensional local density.

The interaction strength γ(z) = c/n(z) increases while we move away from the

centre of the cloud, since it is inversely proportional to the one-dimensional local

density. This explains why moving from the centre of the trap towards the edges

of the cloud we find two different phases: at the centre we have an imbalanced

mixed phase for any magnetic field h, while at the edges, where the two species

become more repulsive, we find a fully polarised phase. We can see that there al-

ways exists a “slice” of fully polarised phase between the partially polarised phase

and the vacuum. Since the system is gapless any applied magnetic field leads to

the appearance of magnetisation and to the presence of a mixture of up and down

spins, s 6= 0.

In three dimensions, the density profiles at a weak interaction strength present

a similar qualitative structure [82]. However, when increasing the interaction

strength in three dimensions a symmetry breaking occurs, driven by the competi-

tion between the repulsive interaction energy and the kinetic energy. As a result,

the phase separation occurs: the minority component is pushed to the edges of the

trap while the majority component accommodates in the centre. In one dimension

we can calculate the limit of infinite inter-species interaction exactly by means of

the exact mapping onto a fermionic Tonks-Girardeau gas (two-component Fermi

gas with hard-core inter-species interaction) for which the density profile is known

to be equivalent to that of N = N↑ +N↓ bosons with Tonks-Girardeau point-like

interaction [83, 84]. Therefore we expect no phase-separation in this limit in the

one-dimensional configuration, which is consistent with our numerical calculations.



2.3. TRAPPED DENSITY PROFILES 41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

n/
(N

1/
2 /a

z)

z/(N1/2az)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

n/
(N

1/
2 /a

z)

z/(N1/2az)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

n/
(N

1/
2 /a

z)

z/(N1/2az)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

n/
(N

1/
2 /a

z)

z/(N1/2az)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2

n/
(N

1/
2 /a

z)

z/(N1/2az)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2

n/
(N

1/
2 /a

z)

z/(N1/2az)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2

n/
(N

1/
2 /a

z)

z/(N1/2az)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2

n/
(N

1/
2 /a

z)

z/(N1/2az)

Figure 2.4: Density profile for polarisation P = 0.7 (top) and P = 0.15 (bottom)

for N(a2
1D/a

2
z) = 1. The solid line is the total density n(z)/(

√
N/az), the dotted

line is the density of up spins n↑(z)/(
√
N/az), the dashed line is the density

of down spins n↓(z)/(
√
N/az) and the dashed-dotted line is the magnetisation

m(z)/(
√
N/az). We can see the two shells: the inner one contains an imbalanced

mixture of up and down spins, while the external shell is fully polarised.
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Figure 2.5: Radius of the inner (inferior line) and the outer (superior line)

shells; for N(a2
1D/a

2
z) = ∞ (solid line), N(a2

1D/a
2
z) = 10 (dashed-dotted line),

N(a2
1D/a

2
z) = 1 (dotted line) and N(a2

1D/a
2
z) = 0.1 (dashed line).

2.3.1 Size of the cloud

We can calculate the radii of the two shells of the cloud, similar to Eq. (C.10)

from Appendix C. From Fig. (2.3) we see that the radius of the inner shell is

determined by the point where the value of the the chemical potential coincides

with the saturation line, µ(Rin) = µs = µo −mω2
zR

2
in/2. Therefore we have

a1D

a2
z

Rin =

√

2

(

µo

ǫB
− µs

ǫB

)

. (2.55)

Similarly the radius at the boundary of the cloud is given by the crossing of the

vacuum line, µ(Rout) = µv = µo −mω2
zR

2
out/2,

a1D

a2
z

Rout =

√

2

(

µo

ǫB
− µv

ǫB

)

. (2.56)

Fig. (2.5) displays the variation of the radii of the inner and outer shells versus

the polarisation P for different values of the coupling strength. We see that for a
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fully polarised system, P = 1, the radius of the inner shell vanishes and the radius

of the outer shell takes the value
√

2Naz, which is the Thomas-Fermi radius for

the cloud of N free fermions. In the other limit, where P = 0, the radii of the

inner and the outer shells coincide, since the number of up-spin and down-spin

atoms is the same.

We now discuss two limiting cases, namely c = 0 and c = ∞, for which we

know an exact analytical result. In the case of free fermions, c = 0, we can treat

the two clouds as being independent and we have to calculate the radius of each

cloud following the theory of free fermions in a harmonic trap. The energy in this

situation reads

E =

kF
∑

k=−kF

~
2k2

2m
=

L

2π

~
2

2m

∫ kF

−kF

k2dk =
L

3π

~
2k3

F

2m
, (2.57)

where the Fermi momentum kF is given by counting the number of available states

N =
L

2π

∫ kF

−kF

dk ⇒ N

L
= n =

kF

π
⇒ kF = nπ. (2.58)

Applying the local density approximation condition Eq. (C.3) for a harmonic

potential V (x) = mωzx
2/2, and with µ = ∂E/∂N = ~

2k2
F /2m, we find

~
2k2

F (x)

2m
+ V (x) = µo ⇒ kF (x) =

√

2m

~2
(µo − V (x)) ⇒

n(x) =
1

π

√

2m

~2
(µo −

1

2
mx2ω2

z =

√

2µom

π2~2

(

1 − mω2
z

2µo
x2

)1/2

⇒

n(x) = n(0)

(

1 − x2

R2
TF

)1/2

. (2.59)

Here n(x) is the so-called Thomas-Fermi profile, and the Thomas-Fermi radius is

defined as R2
TF = 2µo/mω

2
z . The density in the centre of the cloud is given by

n(0) =
√

2µom/π2~2 . Using the known result for the chemical potential inside the

harmonic trap, µ = Nωz~, the Thomas-Fermi radius can be expressed in a more

convenient way as R2
TF = 2Na2

z, where a2
z = ~/mωz is the characteristic length of

the potential. In terms of the polarisation P = (N↑ −N↓)/N , the Thomas-Fermi
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radii for each component are given by

R↑√
Naz

=
√

1 + P ,
R↑√
Naz

=
√

1 − P . (2.60)

They are plotted in Fig. (2.5) as solid lines.

The limit of infinitely repulsive fermions, c = ∞, is a singular limit, since

the infinite repulsion between fermions mimics the Pauli principle, and the two-

component cloud of fermions can be imaged as the cloud of N = N↑+N↓ spin-less

fermions. This limit is called the fermionic Tonks-Girardeau regime. In this case

the two species of fermions cannot be distinguished from each other any more,

and the density profile of the mixture is equivalent to that of N Tonks-Girardeau

bosons trapped in the same potential [84]. Therefore there is just one shell in the

density profile. The radius of the cloud is thus given by the Tomas-Fermi radius

R√
Naz

=
√

2 (2.61)

for any value of the polarisation. As we can see, the numerical results shown in

Fig. (2.5) agree with these two limiting results.

2.3.2 Magnetic field versus polarisation

We finally calculate the behaviour of the magnetic field versus the polarisation

for different values of the interaction strength and for a fixed number of particles,

shown in Fig. (2.6). The onset of magnetisation occurs at h = 0, which is

consistent with the absence of a gap in the system: for any applied magnetic field

the system acquires polarisation. We observe that the slope of the magnetisation

at the onset of polarisation is linear. This slope is sensitive to the rate at which

the gas polarises. The slope remains close to a constant throughout the regime

0 < h < hs, showing that the polarisability of the system (the capacity of the

system to polarise) is very weakly affected by extra imbalanced particles. Even

though there is a discontinuity in the slope of the polarisation versus the magnetic

field at the saturation point, from the value of the susceptibility at saturation, Eq.

(2.47) we do not expect a divergence of the magnetic susceptibility at saturation.
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Figure 2.6: Phase diagram in the plane P and h/ǫB ; for N(a2
1D/a

2
z) = ∞ (solid

line), N(a2
1D/a

2
z) = 10 (dashed-dotted line), N(a2

1D/a
2
z) = 1 (dotted line) and

N(a2
1D/a

2
z) = 0.1 (dashed line).

In the limit of free fermions, where c = 0, the magnetic field versus the po-

larisation can be calculated very easily. In this case, the energy can be simply

written as E = (N↑µ↑ + N↓µ↓)/2, where again the chemical potential is given

by µ = Nωz~. Taking the derivative with respect to S = N↑ − N↓ we find the

variation of the magnetic field versus the polarisation

h =
∂E

∂S
= ~ωz

N↑ −N↓
2

⇒ h

ǫB
=
N↑ −N↓

2

a2
1D

a2
z

= N
a2

1D

a2
z

P

2
, (2.62)

which is independent of a1D. It is displayed in Fig. (2.6) as a solid line.

2.4 Conclusions

In conclusion in this chapter we have calculated the ground state phase diagram

for a system of two-component fermions interacting via a repulsive δ-function

interaction. For the homogeneous case we give the exact result for the ground-

state phase diagram in terms of the chemical potential and magnetic field. We

see that four phases appear: the balanced phase, the fully polarised phase, the

partially polarised phase and the vacuum. The boundaries between the phases, as
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well as the susceptibility at saturation, are calculated analytically.

Next, we consider the harmonic trapping potential, which leads to inhomo-

geneities in the system. Applying the local density approximation we calculate

numerically the density profiles of the cloud in the trap. For any imbalance we

observe the emergence of a two-shell structure: the partially polarised phase is

located at the centre of the trap, while the fully polarised phase appears at the

edges. We find that there is no direct transition from the partially polarised phase

to the vacuum. We compute the radii of the two shells for different values of the

imbalance in relative concentrations of up-spin and down-spin particles, finding a

perfect agreement with the limiting cases of free fermions and fermionic Tonks-

Girardeau regime (hard-core fermions). We also calculate the magnetic field versus

polarisation.

This model is experimentally accessible. Present techniques allow to cool

fermionic atoms till the temperature needed to reach quantum degeneracy [85,

86, 87]; then using radio-frequency pulses it is possible to prepare spin mixtures of

the atoms in two different spin states, for example for 40K one can select the two

hyperfine states |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉, with different

concentrations. Adiabatically superposing a 2D optical lattice leads to arrays of

nearly identically parallel 1D traps.



Chapter 3

Finite size effects for the gap in

the excitation spectrum of the

one-dimensional Hubbard

model

3.1 Overview

The Hubbard model describes a system of itinerant interacting particles on a

lattice and it has long been important in solid state physics. In this model, one

visualises the electrons in a narrow energy band hopping between the Wannier

states of neighbouring lattice sites, and with on-site interaction. In the frame

of ultra-cold atomic physics this model is essential for the description of a two-

component Fermi gas in the lattice. The Hubbard model is the lattice version

of the two-component Fermi gas in the continuum with short-range interactions,

discussed in Chapter 2. The Hamiltonian in the latter case can be obtained form

the Hubbard Hamiltonian for a small filling factor (see appendix B).

In this chapter we study the finite size effects for the gap of the quasiparticle

excitation spectrum in the one-dimensional Hubbard model with on-site attrac-

47
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tion. First, as an introduction, we review important known results for the Hubbard

model. After that we present a general approach for finding finite size corrections

to the ground state energy and to the gap. Two type of corrections to the result

of the thermodynamic limit are obtained. First of all, there is a power law correc-

tion due to gapless excitations which behaves as 1/Na, where Na is the number

of lattice sites. Second, we obtain an exponential correction related to the exis-

tence of gapped excitations. In the weakly interacting regime this correction can

become important compared to the power law correction. We show our numerical

simulations which support these analytical results. We finally present a perturba-

tive approach for solving the Bethe ansatz equations in the limiting case of weak

interactions.

The literature devoted to the Hubbard model is so extensive that it would be

impossible to give an exhaustive compendium in this Thesis. We will however try

to present some of the main results that will be useful for the consistency of the

calculations. For an in-depth review on the subject, see for example [88, 89].

3.1.1 Hamiltonian: the Hubbard model

The Hamiltonian of the one-dimensional Hubbard model has the form

H = −t
Na
∑

σ=↑,↓;j=1

(c†σ,jcσ,j+1 + c†σ,j+1cσ,j) + U

Na
∑

j=1

nj,↑nj,↓ (3.1)

where Na is the number of lattice sites, t is the amplitude of hopping between

neighbouring sites, and U is the on-site interaction, that can be attractive (U < 0)

or repulsive (U > 0). c†i,σ and ci,σ are the creation and annihilation operators

of a particle with spin projection σ, and nj,σ = c†j,σcj,σ. We impose periodic

boundary conditions, cL+1,σ = c1,σ, and the Hamiltonian is invariant under cyclic

permutations of lattice sites.

The operators c and c† are fermionic operators and they satisfy the anticom-

mutation relations

{ci,σ, cj,σ′} = {c†i,σ, c
†
j,σ′} = 0,

{ci,σ, c†j,σ′} = δijδσσ′ , (3.2)
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for all i = 1, . . . , L and σ =↑, ↓. The empty state (vacuum state) of the Hilbert

space is defined by

ci,σ|0〉 = 0, i = 1, . . . , Na; σ =↑, ↓ . (3.3)

The creation operator c†i,σ generates the space of states for the Hubbard model

acting on the vacuum:

|i, σ〉 = c†i,σ|0〉 −→ |~x, ~σ〉 = c†xN ,σN
. . . c†x1,σ1

|0〉. (3.4)

Here ~x = {x1, . . . , xN} and ~σ = {σ1, . . . , σN}, where the xi are the lattice sites,

xi ∈ {x1, . . . , xN}, and σi = {↑, ↓}. The states |~x, ~σ〉 are called Wannier states and

they form a basis of the space of states of the Hubbard model. We understand

them as states where particles with spin projection σi occupy the lattice sites xi.

Each site has four available states: the empty state |0〉, the spin-up state c†i,↑|0〉,
the spin-down state c†i,↓|0〉, and the doubly occupied state c†i,↑c

†
i,↓|0〉. Since due to

the Pauli exclusion principle electrons with the same spin projection cannot occupy

the same site, we have (c†i,σ)2 = 0. Thus, the dimension of the Hilbert space is

4Na .

The operator ni,σ = c†i,σci,σ is the local particle number operator because

ni,σ|~x, ~σ〉 =
N
∑

j=1

δi,xj
δσ,σj

|~x, ~σ〉. (3.5)

Therefore, ni,σ|~x, ~σ〉 = |~x, ~σ〉 if the site i is occupied by the σ spin, and is equal to

zero otherwise. It satisfies [ni,σ, c
†
j,σ′ ] = δijδσσ′c†j,σ′ , and ni,σ|0〉 = 0. The quantities

N↑ =
∑

j

c†j,↑cj,↑, N↓ =
∑

j

c†j,↓cj,↓, (3.6)

are the total number of up-spin particles and down-spin particles respectively, and

the total number of particles is N = N↑ +N↓.

In order to have a deeper understanding of the Hubbard model Hamiltonian,

let us look at the two limiting cases, t = 0 and U = 0. In the U = 0 case the
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Hamiltonian is called the tight-binding Hamiltonian and it can be replaced by an

effective Hamiltonian, Hat, for each single atom localized on a lattice site. This is

possible when the eigenfunction of each single atom is very small at distances of the

order of the lattice spacing, and thus the lattice sites can be treated independently.

The Hamiltonian is translationally invariant and therefore it can be diagonalized

by a discrete Fourier transformation:

H = −2t
L−1
∑

k=0

∑

σ

cos(Φk)ñk,σ, (3.7)

where c̃†k,σ = 1√
L

∑L
j=1 exp(iΦkj)c†j,σ and c†j,σ = 1√

L

∑L−1
k=0 exp(−iΦkj)c̃†k,σ , for

k = 0, . . . , L − 1 and j = 1, . . . , L, respectively. We put Φ = 2π/Na. The

Fourier transformation leaves the anticommutation relations (3.2) invariant, and

ñk,σ = c̃†k,σc̃k,σ. This Hamiltonian is diagonal in the basis of Bloch states,

|~q, ~σ〉 = c̃†kN ,σN
. . . c̃†k1,σ1

|0〉, (3.8)

which are eigenstates of the lattice momentum operator with ~q = {q1, . . . , qN} =

Φ (k1, . . . , kN ). Thus, they represent states with a definite momentum but delo-

calised in space. The tight binding Hamiltonian acts on this basis as

H|~q, ~σ〉 = −2t
N
∑

j=1

cos(qj)|~q, ~σ〉, (3.9)

describing non-interacting particles with a cosine dispersion of width 4t.

Let us look now at the other limit, t = 0. In this case the Hamiltonian contains

only the density part, which is diagonal in the Wannier basis of states:

L
∑

j=1

nj,↑nj,↓|~x, ~σ〉 =

N
∑

i,j=1

δxi,xj
δ↑,σi

δ↓,σj
|~x, ~σ〉 =

=
∑

1≤i<j≤N

δxi,xj
(δ↑,σi

δ↓,σj
+ δ↓,σi

δ↑,σj
)|~x, ~σ〉 =

=
∑

1≤i<j≤N

δxi,xj
(δ↑,σi

+ δ↓,σi
)(δ↑,σj

+ δ↓,σj
)|~x, ~σ〉 =

=
∑

1≤k<l≤N

δxk,xl
|~x, ~σ〉. (3.10)
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This limit is called the atomic limit since it describes particles localised in lattice

sites x1, . . . xN .

The two parts of the Hubbard Hamiltonian, the tight-binding part and the

density part, do not commute with each other, and the Hamiltonian cannot be

diagonalised neither in the Wannier basis nor in the Bloch basis. Therefore, the

physics of the model can be understood as the competition between the two effects:

one tends to delocalise the particles while the other one tries to localise them. The

parameter that measures the relative contribution of the two terms is

u =
U

4t
, (3.11)

and it represents the dimensionless coupling constant for the Hubbard model.

3.1.2 Symmetries

The Hubbard model has certain symmetries which are worth pointing out since

they will be used in the following discussion. One of these symmetries is the

particle-hole symmetry. Let us divide the lattice into two sub-lattices, such that

the nearest neighbours of a particle in sub-lattice A belong always to sub-lattice

B. Then we perform the following transformation for the spin operators

a†i,σ = ci,σ, ai,σ = c†i,σ for i ∈ A

a†i,σ = −ci,σ, ai,σ = −c†i,σ for i ∈ B, (3.12)

which transforms the vacancies into occupied sites and vice-versa. This is why this

transformation is called the particle-hole symmetry. Under this transformation the

Hamiltonian remains unchanged up to terms equivalent to one-body fields, i.e. the

chemical potential, but the numbers of particles change in the following way:

N↑ → Na −N↑, N↓ → Na −N↓. (3.13)

We can also exchange particles by holes only for one type of particles, for

example for the spin up:

a†i,↑ = ci,↑, ai,↑ = c†i,↑ for i ∈ A

a†i,↑ = −ci,↑, ai,↑ = −c†i,↑ for i ∈ B, (3.14)
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while ci,↓ remains unchanged. In this case the sign of the interaction will be

reversed, U → −U . Like before we also obtain extra one-body fields which can be

absorbed in the chemical potential. Under this transformation the Hamiltonian

for attraction transforms into the one for repulsion and vice-versa. For the number

of particles we have the following relation

N↑ → Na −N↑, N↓ → N↓. (3.15)

The Hamiltonian of the Hubbard model also has the obvious SU(2) symmetry

under exchange of up-spin and down-spin particles. There are further symmetries,

but I will not mention them here because they are irrelevant for the subsequent

discussion.

For the ground state energy, the discussed symmetries are catalogued in the

following way:

ENa(N↑, N↓;U) = −(Na −N↑ −N↓)U + ENa(Na −N↑, Na −N↓;U)

= N↑U + ENa(N↑, Na −N↓;−U)

= N↓U + ENa(Na −N↑, N↓;−U) (3.16)

where ENa(N↑, N↓;U) is the ground state energy for a system with N↑ up-spins

and N↓ down-spins in a lattice with Na lattice sites and interaction strength U .

These symmetries tell us that it is sufficient to work in a determined sector of

the space of parameters, since then the results can be extended to the other ones

using relations Eq. (3.16). Therefore, without loss of generality, we can assume

N↓ ≤ N↑ and U > 0.

3.1.3 The Bethe ansatz solution

The Hubbard Model is exactly solvable in one dimension. It was first solved in

1968 by E.H. Lieb and F.Y. Wu [90] using the Bethe ansatz technique. They

reduced the problem to solving a set of algebraic equation known as the Lieb-Wu

equations. The derivation of these equations is done for the case of the model

with repulsion and is very similar to the one for fermions in the continuum with
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short-rang interactions that was presented in Section 2.1.3. The energy for the

case with attraction can be calculated using Eq. (3.16).

The lattice sites for a one-dimensional system can be labelled consecutively

from 1 to Na. In this case we have spin-up and spin-down particles: the down-

spins are located in sites x1, . . . , xN↓
and the up-spin in xN↓+1, . . . , xN . We define

Ψ(x1, . . . , xN↓
|xN↓+1, . . . , xN ) as the eigenfunction of the system for this particular

order of up and down spins. Then, the Hamiltonian (3.1) acts on Ψ in the following

way:

ĤΨ = −
N
∑

i=1

∑

s=±1

Ψ(x1, . . . , xi+s, . . . , xN ) + 4u
∑

i<j

δ(xi − xj)Ψ(x1, . . . , xN )

= EΨ(x1, . . . , xN ), (3.17)

where δ(xi − xj) = 1 for xi = xj and is zero otherwise. The operators of particles

with the same spin projection anticommute with each other, and we thus need Ψ

to be antisymmetric in the first N↓ coordinates and in the last (N − N↓) ones.

Applying the Bethe ansatz we write the wave function Ψ as

Ψ(x1, . . . , xN↓
|xN↓+1, . . . , xN ) =

∑

P

ψ(Q,P )ei
PN

j=1 kPjxQj , (3.18)

for xQ1 ≤ xQ2 ≤ . . . ≤ xQN . P and Q are two permutations of the num-

bers 1, . . . , N : P = (P1, . . . , PN) and Q = (Q1, . . . , QN). The momenta k =

k1, . . . , kN are a set of N unequal numbers, and the total energy and momentum

are given by

E = −2

N
∑

j=1

cos(kj) K =

N
∑

j=1

kj . (3.19)

The coefficients ψ(Q,P ) can be regarded as the components of a N ! × N !

matrix. These coefficients have to be antisymmetric under exchange of the spin-

up particles and under exchange of spin-down ones. In order to determine the

values of these coefficients we have to look at the two-body scattering process,
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similar to Eq. (2.9):

















ψ(Q1|P )

ψ(Q2|P )

ψ(Q3|P )
...

ψ(QN !|P )

















= (RjiI + TjiP̂
ij)

















ψ(Q1|P ′)

ψ(Q2|P ′)

ψ(Q3|P ′)
...

ψ(QN !|P ′)

















, (3.20)

where P = (1, · · · , i, · · · , j, · · · , N) and P ′ = (1, · · · , j, · · · , i, · · · , N) are two permu-

tations of the momenta. The reflection and transmission coefficients are calculated

from the Hubbard model Hamiltonian (see Appendix A):

R(sin(kn) − sin(km)) =
−2iu

sin(kn) − sin(km) + 2iu
,

T (sin(kn) − sin(km)) =
sin(kn) − sin(km)

sin(kn) − sin(km) + 2iu
, (3.21)

where we used Eq. (3.11). The scattering operator fulfills the Yang-Baxter equa-

tions (1.8).

Note that equations (3.20) and (3.21) are the same as those for the two-

component fermions in the continuum with δ-function interaction, Eqs. (2.9) and

(2.5), except for the different dispersion relation, which implies the replacement

of k by sin k. We can therefore write the ansatz for the wave-function in the same

way as in Section 2.1.3:

ψ(y1, y2, . . . , yN↓
|P ) = ǫQ,P

∑

R

ARFP (λR1, y1)FP (λR2, y2) · · ·FP (λRN↓
, yN↓

),

(3.22)

where we labelled the positions of the down-spin particles by 1 ≤ y1 < y2 <

. . . yN↓
≤ N , and ǫQ,P is the sign of the permutations Q and P . It takes care of

the antisymmetry under interchange of theN↓ down-spin particles and interchange

of the N↑ up-spin ones. With this ansatz we find

F (y, λ) =

y−1
∏

j=1

(sin(kPj) − λ+ iu)

N
∏

l=y+1

(sin(kP l) − λ− iu),

AR = ǫR
∏

j<l

(λRj − λRl − 2iu). (3.23)
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Here λi is a set of N↓ different auxiliary variables. Applying periodic boundary

conditions we get the Bethe ansatz equations

eikjNa =

N↓
∏

β=1

sin(kj) − λβ + iu

sin(kj) − λβ − iu

N
∏

j=1

λα − sin(kj) + iu

λα − sin(kj) − iu
= −

N↓
∏

β=1

λα − λβ + 2iu

λα − λβ − 2iu
, (3.24)

and taking the logarithm of these equations we get

N
∑

j=1

2 arctan
λα − sin kj

u
= 2πJα +

M
∑

β=1

2 arctan
λα − λβ

2u
, α = 1, ...M, (3.25)

Nakj = 2πIj −
M
∑

β=1

2 arctan
sin kj − λβ

u
, j = 1, ...N. (3.26)

These are the Bethe ansatz equations for the Hubbard model, also called Lieb-Wu

equations. When taking the logarithms one has to add a constant 2πin term, with

n being integer. The quantum numbers Ij are integers (half-odd integers) for even

(odd) N↓, I =
N↓

2 (mod 1); and the quantum numbers Jα are integers (half-odd

integers) for odd (even) N − N↓, J =
N−N↓+1

2 (mod 1). The total momentum

can be written as K = 2π/Na(
∑

Ij +
∑

Jα). For the ground state the quantum

numbers Ij and Jα are consecutive half-odd integers and integers, respectively,

centred around the origin:

Jα = {−N↓ − 1

2
, ...,−1, 0, 1, ...,

N↓ − 1

2
},

Ij = {−N − 1

2
, ...,−1

2
,
1

2
, ...,

N − 1

2
}. (3.27)

The choice of these quantum numbers for the ground state implies that N is even

and N↓ is odd. If we want to construct the ground state for a different combination

we will not be able to satisfy
∑

Ij = 0 and
∑

Jα = 0, and the ground state will

have a current.

In the thermodynamic limit, when N → ∞ and Na → ∞ keeping the density

n = N/L constant, we can define the density of momenta k and the density of
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rapidities λ as ρ(k) = L−1 ∂I
∂k and σ(λ) = L−1 ∂J

∂λ , respectively. Then, the Bethe

ansatz equations become

σ(λ) +
1

π

∫ B

−B

2u

4u2 + (λ− λ′)2
σ(λ′)dλ′ =

1

π

∫ Q

−Q

u

u2 + (λ− sin k)2
ρ(k)dk, (3.28)

ρ(k) =
1

2π
+

cos k

π

∫ B

−B

u

u2 + (λ− sin k)2
σ(λ)dλ, (3.29)

where the constants B and Q are given by fixing the filling factor n and the

down-spin density n↓,

N

Na
= n =

∫ Q

−Q
ρ(k)dk,

N↓
Na

= n↓ =

∫ B

−B
σ(λ)dλ. (3.30)

The energy in the thermodynamical limit is given by

E = −2Na

∫ Q

−Q
ρ(k) cos kdk. (3.31)

In the case of a half-filled band, and for a ground state without magnetisation,

for which N = Na, N↓ = N↑ = N/2, or equivalently B = ∞, Q = π, equations

(3.28) and (3.29) can be solved exactly using Fourier transform, and we can express

the densities of momenta and rapidities as

ρ(k) =
1

2π
+

cos k

2π

∫ ∞

0

cos(ω sin k)e−ωu

coshωu
J0(ω)dω, (3.32)

σ(λ) =
1

2π

∫ ∞

0

cosωλ

coshωu
J0(ω)dω. (3.33)

Using these expressions the energy in this case reads

ENa

(

Na

2
,
Na

2
;U

)

= −4Na

∫ ∞

0

J0(ω)J1(ω)dω

ω
(

1 + exp
(

ωU
2

)) , (3.34)

where J0 and J1 are Bessel functions.

The results obtained above are valid for all U > 0. They can be written for

the case U < 0 using the symmetry relations (3.16) for the energy. In the case of

attraction the momenta of some particles becomes complex, which is the sign of

the formation of bound states. In particular, the Bethe ansatz equations change
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in the following way: the equations for the λ’s remain unchanged, while the set of

N momenta k is replaced by another set in which N − 2N↓ momenta are real and

2N↓ momenta are complex [91]. The real k satisfy the same Bethe ansatz equation

as in the repulsive case, Eq. (3.26), while the complex momenta are coupled in

pairs (k+, k−) that satisfy:

sin k+
α = λα + iu+O

(

e−L
)

, sin k−α = λα − iu+O
(

e−L
)

, (3.35)

and therefore can be calculated with exponential accuracy from the value of the

λ’s, Eq. (3.25) [91, 71].

3.1.4 The excitation spectrum

The simplest excitations for the ground state of the Hubbard model are single

particle excitations: we can add a particle to the ground state and create a “par-

ticle” excitation or remove a particle from it and create a “hole” excitation. The

excited states of the Hubbard model are combinations of particle-hole excitations

for the ground state. Their energy is the sum of the contributions of the particle

excitations and the hole ones.

For the model with repulsion at half filling there is a gap for excitations that

carry charge, while spin excitations are gapless. Away from half filling both spin

and charge excitations are gapless. For the model with attraction, which can

be obtained from the repulsive model using the relations (3.16), the low lying

excitations are gapless charge excitations and gapped spin excitations.

Let us start with the repulsive model at half filling. The half filled ground state

is characterized by the set of integers (3.27), with N = Na and N↓ = Na/2. We

first consider a spin excitation, that leaves the total number of particles unchanged

but decreases the number of down spins by one, N↓ = Na/2 → Na/2 − 1, and

increases the number of up spins by one, N↑ = Na/2 → Na/2 + 1. The quantum

numbers become (remember that I =
N↓

2 (mod 1) and J =
N−N↓+1

2 (mod 1)):

Jα = −Na
4
, . . . ,

Na

4
− s− 1,

Na

4
− s+ 1, . . . ,

Na

4
− r − 1,

Na

4
− r + 1, . . . ,
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Na

4
− 1,

Na

4
, 0 ≤ r < s ≤ Na

2
;

Ij = −Na − 2

2
, . . . ,

Na − 2

2
,
Na

2
. (3.36)

We see that there are two holes in the distributions of J , each of them being

called spinon. The total momentum for this state is K = 2π/Na(r+ s), while the

energy of this excitation is obtained by solving the Bethe ansatz equations for this

particular combination of quantum numbers [88]:

∆E = ǫ(λr) + ǫ(λs), with

ǫ(λ) =
1

2u

∫ π

−π
dk cos2 k sech

[

π(λr − sin k)

2u

]

. (3.37)

The change in momentum can be rewritten as

K = q(λr) + q(λs), with q(λ) = 2π

∫ ∞

λ
dx

∫ π

−π

dk

2π

1

4u
sech

[

π(x− sin k)

2u

]

. (3.38)

From equations (3.37) and (3.38) one can calculate the group velocity for the spin

excitations,

vs = 2
I1
(

π
2u

)

I0
(

π
2u

) , (3.39)

where I0, I1 are modified Bessel functions.

Let us now turn to the charge excitations, for which N = Na − 1 and N↓ =

Na/2 − 1. The quantum numbers are given by

Jα = −Na/2 − 1

2
, . . . ,

Na/2 − 1

2
− s− 1,

Na/2 − 1

2
− s+ 1, . . . ,

Na/2 − 1

2

Ij = −Na

2
+ 1, . . . ,

Na

2
− r − 1,

Na

2
− r + 1, . . . ,

Na

2
− 1,

Na

2
. (3.40)

There is a hole in the distribution of Ij called holon and a hole in the distribution

of Jα called spinon. The total momentum of this state is K = 2π/Na[r+s−(Na−
2)/4]. Solving the Bethe ansatz equations for this distributions of Ij and Jα we

find for the energy of this excitation

∆E = 2u+ 2cos kr + 4

∫ ∞

0

J1(ω) cos(ω sin kr)

ω (e2uω + 1)
dω, (3.41)
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the difference in momentum can be reexpressed as

∆K = q(λs) + 2π

∫ π

kr

ρ(k)dk − π

2
. (3.42)

The charge excitation spectrum possesses a gap since there is a non-zero minimum

value of ∆E. This minimum takes place at the points kr = ±π, λs = ±∞.

Therefore, the energy gap of charge excitations in the half-filled state is

∆ = 2u− 2 + 4

∫ ∞

0

J1(ω)dω

ω (1 + e2ωu)
(3.43)

which is the so-called Lieb-Wu gap [90].

One can also think of the Lieb-Wu gap as the difference in energy in the

ground state when adding and removing a particle, which can be rewritten as

∆ = (µ+ − µ−), with

µ+ = E (M + 1,M ;U) − E (M,M ;U) , µ− = E (M,M ;U) − E (M − 1,M ;U) ,

(3.44)

where we put M = Na/2. Here the mean-field effects have been compensated

adding an extra particle and removing it.

The value of the gap is positive for all U > 0, and the half-filled state is

an insulator state. The insulating nature of the half-filled ground state in the

repulsive Hubbard model is driven entirely by interactions, since there is no band

gap in the excitation spectrum of the Hubbard model. This type of insulator is

called Mott insulator. From the expression for the gap (3.43) it follows that

lim
u→0

∆ = 0. (3.45)

One then can conclude that the ground state for the half-filled band is insulating

for any non-zero U , and conducting for U = 0. That is to say, there is no Mott

transition for non-zero U .

In the case of less than half-filled band for the model with repulsion we see that

µ+ = µ−, using the relations (3.16). Therefore, there is no gap in the spectrum.

In the case for the model with attraction at half filling, using relations (3.16),

we see that the value of the gap, this time in the spin sector, takes the same form



60 CHAPTER 3. FINITE-SIZE EFFECTS FOR THE HUBBARD MODEL

as the one for the charge sector in the case with repulsion. However, in order to

compute the value of the gap far from the half-filled case we have to follow another

strategy. The general expression for the energy of the gap in this case reads

∆ = µ+ − µ−, (3.46)

µ+ = ENa(N↑ + 1, N↓;U) − ENa(N↑, N↓;U), (3.47)

µ− = ENa(N↑, N↓;U) − ENa(N↑ − 1, N↓;U). (3.48)

Some values of the gap out of half-filling have been obtained in some limiting cases,

for example by Krivnov and Ovchinnikov [92] in the cases close to half filling and

close to zero filling, or by Larkin and Sak [93] for all fillings but in the case of

small interaction.

3.1.5 Conformal field theory and finite size corrections

One-dimensional models that have a critical point at zero temperature have cor-

relation functions that decay asymptotically as powers of the distance, due to

scale invariance. This critical behaviour does not depend on the details of the

microscopic theory, but belongs to a universality class of critical theories. Lorentz

invariant systems with critical points at zero temperature are conformally invariant

[94, 95, 96, 97]. These systems belong to a class of universality that is determined

by a single dimensionless number, the central charge c of the underlying Virasoro

algebra. The finite size corrections to the energy of the ground state in these

models have then the structure [94, 95, 96, 97]

E0 − Lǫ0 = − π

6Na
vc+ o

(

1

L

)

, (3.49)

where E0 is the ground state energy for the system of size N , and ǫ0 is the ground

state density of energy in the thermodynamic limit, v is the Fermi velocity and c

is the conformal charge. This result holds for periodic boundary conditions. For

the energy of the low-lying excited states the following formula holds for the finite

size corrections [98]

EN+,N−

n − E0 =
2πv

Na
(xn +N+ +N−) + o

(

1

L

)

, (3.50)
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where N+ and N− are two non-negative integers and xn is the scaling dimension

of the scaling operators. Thus, for a conformally invariant system, if we are

interested in determining the power law 1/N corrections to the thermodynamic

energy we should know the Fermi velocity v, the central charge c of the theory

and the scaling dimensions of the operators.

Consider the situation of free fermions on a lattice (U = 0), this simple example

is useful to get an intuition about the origin of the 1/Na structure. The energy

spectrum is given by E = −2t
∑

cos(kj), with kj = 2πnj/Na. We consider a

lowest energy particle-hole excitation on top of the the ground state. The excess

of energy due to this excitation is ∆E = −2t
(

cos
(

2π
Na

(N
2 + 1)

)

− cos
(

2π
Na

N
2

))

≃
2t sin

(

πN
Na

)

sin
(

2π
Na

)

. Using the definition of the sound velocity we write the

variation of energy as ∆E ≃ 2π
Na
v, which is the conformal correction for c = 1.

For a system with several critical degrees of freedom with different Fermi ve-

locities, the concept of conformal invariance is not directly applicable. This is

the case of the Hubbard model, because generally both the charge and the spin

degrees of freedom are critical (gapless) and have different sound velocities. There

are two particular cases where there is only one critical excitation. This is the case

at half-filling where only one mode is critical, and the case with a strong magnetic

field where the spin-density waves have a gap.

The finite size conformal corrections to the energy of the repulsive Hubbard

model at half filling, where the charge mode possesses a gap, were determined

by Woynarovich and Eckle [99]. The central charge is equal to one, c = 1, and

the scaling dimensions of the scaling operators in the critical spin sector are xs =

S2/2, where S is the magnetisation of the corresponding excited state. The Fermi

velocity is given by Eq. (3.39). Woynarovich and Eckle calculated the finite size

corrections for the Hubbard model, which are equal to

E0 − Lǫ0 = − πvs

6Na

(

1 + 0.3433
1

ln3(NaI0(π/2u))
+ · · ·

)

,

Es − Lǫ0 =
πS2vs

Na

(

1 − 1

2

1

ln(NaI0(π/2u))
+ · · ·

)

. (3.51)

Away from half filling the system is no longer conformally invariant, because
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the two degrees of freedom are critical and have different sound velocities. It is

however possible to treat the two sectors as being described by two independent

conformal theories. Even though these two contributions are not independent,

because the scaling dimensions in both sectors depend on the state of both Fermi

seas, they can nonetheless be treated as such, and one obtains:

E0 − Lǫ0 = − π

6Na
vc −

π

6Na
vs. (3.52)

This situation has been studied by Woynarovich [100] who found that the validity

of Eq. (3.52) requires the number of particles and the filling to meet several special

conditions.

3.2 Finite size effects in the energy of the gap

In this section we develop a technique for solving the Bethe ansatz equations of

the Hubbard model in the situation where the system is finite. Later, we will use

these results to calculate the finite size corrections for the ground state energy and

the gap. This will allow us to access the finite size corrections in the gapped sector

of the spectrum, which are believed to be non-universal and cannot be calculated

using conformal field theory. Finally we present the numerical results and show

their agreement with our predictions.

3.2.1 General approach

In order to calculate the finite size corrections to the energy and to the gap of the

Hubbard model from the Bethe ansatz equations we follow the scheme proposed

by de Vega and Woynarovich [101]. This scheme consists of writing the Bethe

ansatz equations (3.26) and (3.25) in the form:

Zs(λ) =
1

Na

N
∑

j

1

π
arctan

λ− sin kj

u
− 1

Na

M
∑

β

1

π
arctan

λ− λβ

2u
,

Zs(λα) =
Jα

Na
;



3.2. FINITE SIZE EFFECTS IN THE ENERGY OF THE GAP 63

Zc(k) =
k

2π
+

1

Na

M
∑

α

1

π
arctan

sin k − λα

u
,

Zc(kj) =
Ij
Na

. (3.53)

We then define the densities of momenta k and rapidities λ for a finite size system

as

σN (λ) ≡ dZs

dλ
=

1

2πNa

N
∑

j=1

K1(λ− sin kj) −
1

2πNa

M
∑

β=1

K2(λ− λβ),

ρN (k) ≡ dZc

dk
=

1

2π
+

1

Na

cos k

2π

M
∑

α=1

K1(sin k − λα), (3.54)

where K1(x) = 2u/(u2 + x2), and K2 = 4u/(4u2 + x2). The densities satisfy the

relations:
∫ Λ+

Λ−

σN (λ)dλ =
M

Na
,

∫ Q+

Q−

ρN (k)dk =
N

Na
, (3.55)

where Q±, Λ± are determined from the equations

Zc(Q+) =
I+
Na

=
Imax + 1/2

Na
; Zs(Λ+) =

J+

Na
=
Jmax + 1/2

Na
. (3.56)

We define the functions XN ,

Xc
N (k) =

1

Na

Na
∑

j=1

δ(k − kj) − ρN (k), (3.57)

Xs
N (λ) =

1

Na

Na/2
∑

α=1

δ(λ − λα) − σN (λ), (3.58)

that will allow us to write an integral equation for the densities at a finite N :

σN (λ) =
1

2π

∫ Q+

Q−

K1(λ− sin k)ρN (k)dk − 1

2π

∫ Λ+

Λ−

K2(λ− µ)σ(µ)dµ

+
1

2π

∫ Q+

Q−

K1(λ− sin k)Xc
N (k)dk − 1

2π

∫ Λ+

Λ−

K2(λ− µ)Xs
N (µ)dµ,(3.59)

ρN (k) =
1

2π
+

1

2π

∫ Λ+

Λ−

K1(sin k − λ) cos k σN (λ)dλ

+
1

2π

∫ Λ−

Λ−

cos kK1(sin k − λ)Xs
N (λ)dλ. (3.60)
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The finite size corrections to the ground state energy, which are the difference

between the energy in the thermodynamic limit and the energy for the finite

system, are given by

δEN = EN − E∞,N = −2Na

∫ Q+

Q−

ρN (k) cos k dk + 2Na

∫ Q+

Q−

ρ∞,N(k) cos k dk,

(3.61)

where we put EN ≡ ENa(N −M,M, |U |).

3.2.2 Corrections

We now calculate the finite size corrections to the energy of the gap, ∆, in the

Hubbard model with attraction:

2∆ = ENa(N↑ + 2, N↓, U) + ENa(N↑ − 2, N↓, U) − 2ENa(N↑, N↓, U), (3.62)

with N↑ = N↓ = Na/2 = M . This definition of the gap is convenient since it

conserves the parity of N , N↑ and N↓. Using the symmetry relations Eq. (3.16)

it can be rewritten through the energies of the repulsive model:

2∆ = 2|U | + ENa−2(M − 2, Na −M, |U |) + ENa−2(Na −M − 2,M, |U |)
− 2ENa(M,Na −M, |U |). (3.63)

For the half-filled case (N = 2M = Na), Eq. (3.63) takes the form:

∆ = |U | + ENa−2(Na/2, Na/2 − 2, |U |) − ENa(Na/2, Na/2, |U |). (3.64)

Therefore, in order to calculate the finite size corrections to the gap energy we

have to calculate ENa(Na/2, Na/2; |U |) and ENa(Na/2, Na/2 − 2; |U |).
In the first case we have N = Na and N↑ = N↓ = Na/2 = M , and the quantum

numbers Eq. (3.27) for the ground state are

Jα = {−M − 1

2
, ...,−1, 0, 1, ...,

M − 1

2
},

Ij = {−N − 1

2
, ...,−1

2
,
1

2
, ...,

N − 1

2
}. (3.65)
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Therefore, from Eq. (3.56) we have

Jmax =
Na/2 − 1

2
→ J+ =

Na

4
,→ Zs(∞) =

N

2Na
− M

2Na
=

1

4
,→ Λ+ = ∞,

Imax =
Na − 1

2
,→ I+ =

Na

2
,→ Zc(Q+) =

1

2
,→ Q+ = π. (3.66)

We re-write the equations (3.59) and (3.60) for N = Na:

σNa(λ) =
1

2π

∫ π

−π
K1(λ− sin k)ρNa(k)dk − 1

2π

∫ ∞

−∞
K2(λ− µ)σNa(µ)dµ

+
1

2π

∫ π

−π
K1(λ− sin k)Xc

Na
(k)dk − 1

2π

∫ ∞

∞
K2(λ− µ)Xs

Na
(µ)dµ, (3.67)

ρNa(k) =
1

2π
+

1

2π

∫ ∞

−∞
K1(sin k − λ) cos k σNa(λ)dλ

+
1

2π

∫ ∞

−∞
cos k K1(sin k − λ)Xs

Na
(λ)dλ, (3.68)

with the quantities Xs
Na

and Xc
Na

defined from Eqs. (3.57) and (3.58),

Xc
Na

(k) =
1

Na





Na
∑

j=1

δ(k − kj)



− ρNa(k), (3.69)

Xs
Na

(λ) =
1

Na





Na/2
∑

α=1

δ(λ − λα)



− σNa(λ). (3.70)

The solution of the Bethe ansatz equations is known in the thermodynamic limit,

Eqs. (3.32) and (3.33). Integrating the density of momenta ρ(k) in Eq. (3.32)

over dk we obtain

Zc
Na

(k) =
k

2π
+

1

2π

∫ ∞

0

sin(ω sin k)e−ωu

ω coshωu
J0(ω)dω. (3.71)

Next, we consider the situation forN = Na−2, N↑ = Na/2, andN↓ = Na/2−2.

We should remove two particles from the system with N = Na or add two holes

with momenta kh = {k1, kNa} and spin rapidities λh = {λ1, λNa/2} in order to

satisfy the conditions Q± = ±π and Λ± = ±∞. The Bethe ansatz equations in

the discrete case read

Na
∑

j=1

2 arctan
λα − sin kj

u
= 2πJα +

Na/2
∑

β=1

2 arctan
λα − λβ

2u
(3.72)



66 CHAPTER 3. FINITE-SIZE EFFECTS FOR THE HUBBARD MODEL

+
∑

kh

2 arctan
λα − sin kh

u
−
∑

λh

2 arctan
λα − λh

2u
, α = 1, ...Na/2,

Nakj = 2πIj −
Na/2
∑

β=1

2 arctan
sin kj − λβ

u
+
∑

λh

2 arctan
sin kj − λh

u
, j = 1, ...Na.

Note that we added only 4 additional equations for defining the numbers kh, λh.

Other equations are exactly the Bethe Ansatz equations for Na − 2 particles. The

sets Jα, Ij are the same as for the ground state of Na particles.

We re-write the equations (3.59) and (3.60) for N = Na − 2,

σNa−2(λ) =
1

2π

∫ π

−π
K1(λ− sin k)ρNa−2(k) dk −

1

2π

∫ ∞

−∞
K2(λ− µ)σNa−2(µ) dµ

+
1

2π

∫ π

−π
K1(λ− sin k)Xc

Na−2(k) dk −
1

2π

∫ ∞

−∞
K2(λ− µ)Xs

Na−2(µ) dµ

− 1

2πNa

∑

kh

K1(λ− sin kh) +
1

2πNa

∑

λh

K2(λ− λh), (3.73)

ρNa−2(k) =
1

2π
+

1

2π

∫ ∞

−∞
K1(sin k − λ)σNa−2(λ) cos k dλ (3.74)

+
1

2π

∫ ∞

−∞
K1(sin k − λ)Xs

Na−2(λ) cos k dλ− 1

2πNa

∑

λh

K1(sin k − λh) cos k,

where the functions Xs,c
Na−2 are given by

Xs
Na−2(λ) =

1

Na

Na/2
∑

α=1

δ(λ− λα) − σNa−2(λ), (3.75)

Xc
Na−2(k) =

1

Na

Na
∑

j=1

δ(k − kj) − ρNa−2(k), (3.76)

where the summation over kj , λα includes the additional numbers kh, λh.

Then, in the thermodynamic limit we have for the densities of a system with

Na − 2 particles

σ∞,Na−2 = σ∞,Na − 1

2πNa

∑

kh

π

2u

1

cosh π
2u(λ− sin kh)

+
1

2πNa

∑

λh

∫ ∞

0

cosω(λ− λh)

coshωu
e−ωu, (3.77)
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ρ∞,Na−2 = ρ∞,Na − cos k

2πNa

∑

kh

∫ ∞

0

cosω(sin k − sin kh)

coshωu
e−ωu

− cos k

2πNa

∑

λh

π

2u

1

cosh π
2u(sin k − λh)

, (3.78)

and

Zc
Na−2(k) = Zc

Na
(k) − 1

2πNa

∑

kh

∫ ∞

0

sin(ω(sin k − sin kh))e−ωu

ω coshωu
dω

− 1

2πNa

∑

λh

2 arctan[tanh(
π

4u
(sin k − λh)]. (3.79)

For calculating the finite size corrections we should find the differences between

the densities ρNa(k), σNa(λ), σNa−2(λ), ρNa−2(k) and their thermodynamic limits

values. Subtracting the equations of the thermodynamic limit from Eqs. (3.67)

and (3.68) for the case N = Na we obtain:

δσNa(λ) = σNa(λ) − σ∞,Na(λ) =
1

2π

∫ π

−π
K1(λ− sin k)δρNa(k) dk

− 1

2π

∫ ∞

−∞
K2(λ− µ)δσNa(µ) dµ+

1

2π

∫ π

−π
K1(λ− sin k)Xc

Na
(k) dk

− 1

2π

∫ ∞

−∞
K2(λ− µ)Xs

Na
(µ) dµ, (3.80)

δρNa(k) = ρNa(k) − ρ∞,Na(k) =
1

2π

∫ ∞

−∞
K1(sin k − λ) cos k δσNa(λ) dλ

+
1

2π

∫ ∞

−∞
cos k K1(sin k − λ)Xs

Na
(λ) dλ. (3.81)

Equations (3.80) and (3.81) lead to algebraic equations for the Fourier transforms

of δσNa(λ) and δρNa(k), which yields:

δσNa(λ) =

∫ π

−π

π

2u

1

cosh [π(λ− sin k)/2u]
Xc

Na
(k)

dk

2π

−
∫ ∞

−∞
dµ

∫ ∞

0

cos[ω(λ− µ)]

cosh(ωu)
exp(−ωu)Xs

Na
(µ)

dω

2π
, (3.82)

δρNa(k) = cos k

∫ ∞

0

dω

2π

∫ π

−π

exp(−ωu)
cosh(ωu)

cos[ω(sin k − sin q)]Xc
Na

(q) dq

+
cos k

2π

∫ ∞

−∞

π

2u

1

cosh [π(sin k − λ)/2u]
Xs

Na
(λ) dλ. (3.83)
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Equations for δσNa−2(λ) and δρNa−2(k) are obtained in a similar way taking into

account that in the thermodynamic limit kh = ±π and λh = ±∞. This gives Eqs.

(3.80), (3.81) and (3.82), (3.83) where Na is replaced by Na − 2 and Xs,c by X̃s,c.

The quantity X̃s
Na−2 is given by Eq. (3.75) in which the values of λh are put equal

to +∞ and −∞:

X̃s
Na−2(λ) =

1

Na

Na/2−2
∑

α=1

δ(λ− λα) − σNa−2(λ), (3.84)

and X̃c
Na−2 by Eq. (3.76) where the values kh are put equal to +π and −π:

X̃c
Na−2(k) =

1

Na





Na−2
∑

j=1

δ(k − kj) + δ(k − π) + δ(k + π)



− ρNa−2(k). (3.85)

In order to calculate the corrections to the energy of the gap we need to

calculate the corrections to the ground state energies for the considered states,

which are equal to

ENa = −2

Na
∑

1

cos kj, ENa−2 = −2

Na
∑

1

cos kj + 2
∑

kh

cos kh. (3.86)

Using Xc
Na

from Eq. (3.57) these relations can be rewritten in an integral form as

ENa

Na
= −2

∫ π

−π
ρNa(k) cos k dk − 2

∫ π

−π
Xc

Na
(k) cos k dk, (3.87)

ENa−2

Na
= −2

∫ π

−π
ρNa−2(k) cos kdk − 2

∫ π

−π
Xc

Na−2(k) cos k dk + 2
∑

kh

cos kh

Na

= −2

∫ π

−π
ρNa−2(k) cos k dk − 2

∫ π

−π
X̃c

Na−2(k) cos k dk − 4

Na
. (3.88)

The finite size corrections to the ground state energy are given by (Eq. (3.61))

δEN = EN − E∞,N , (3.89)

where the energies E∞,N in the thermodynamic limit are

E∞,Na

Na
= −2

∫ π

−π
ρ∞,Na(k) cos k dk, (3.90)
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E∞,Na−2

Na
= −2

∫ π

π
ρ∞,Na−2(k) cos k dk − 4

Na
, (3.91)

with ρ∞,Na(k) given by Eq. (3.32) and ρ∞,Na−2(k) by Eq. (3.78) with kh = ±π
and λh = ±∞.

Using Eqs. (3.87), (3.88), (3.85), (3.83), and Eq. (3.91) with ρ∞,Na and

ρ∞,Na−2 following from Eqs. (3.32) and Eq. (3.78), we obtain

δENa

Na
= −

∫ π

−π
ǫc(k)X

c
Na

(k) dk −
∫ ∞

−∞
ǫs(λ)Xs

Na
(λ) dλ, (3.92)

δENa−2

Na
= −

∫ π

−π
ǫc(k)X̃

c
Na−2(k) dk −

∫ ∞

−∞
ǫs(λ)Xs

Na−2(λ) dλ, (3.93)

where

ǫc(k) = 2 cos k + 2

∫ ∞

0

J1(ω) exp(−ωu)
ω cosh(ωu)

cos(ω sin k) dω, (3.94)

ǫs(λ) = 2

∫ ∞

0

J1(ω)

ω cosh(ωu)
cos(ωλ) dω, (3.95)

and we used the fact that ǫs(±∞) = 0, so that X̃s
Na−2(λ) can be replaced by

Xs
Na−2(λ) in Eq. (3.93).

For the repulsive Hubbard model at half filling, the gap is in the charge sector

and the spin sector is gapless. Accordingly, the first term in the right-hand side of

Eq. (3.92) describes the contribution of gapped charge excitations, and the second

term is due to the contribution of gapless spin excitations.

We now return to the equation for the gap, Eq. (3.64), and using Eq. (3.92)

we re-write the finite size corrections to the gap in the form

δ∆ = δENa−2 − δENa = δ∆ng + δ∆g + δ, (3.96)

where

δ∆ng/Na =

∫ ∞

−∞
ǫs(λ)Xs

Na
dλ−

∫ ∞

−∞
ǫs(λ)Xs

Na−2 dλ, (3.97)

is the contribution of the gapless sector,

δ∆g/Na =

∫ π

−π
ǫc(k)X

c
Na

dk −
∫ π

−π
ǫc(k)X

c
Na−2 dk, (3.98)
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is due to gapped excitations, and we used a relation

X̃c
Na−2 = Xc

Na−2 −
1

Na

2
∑

h=1

δ(k − kh) +
1

Na
[δ(k − π) + δ(k + π)] .

The term δ which is present in the gapped sector is given by

δ =
∑

h

ǫ(kh) − ǫ(π) − ǫ(−π) (3.99)

and for Na∆∞ & 1 it reduces to

δ ≈ ǫ′′c (π)(k+
h − π)2,

where k+
h is the value of kh which is close to π at large Na. This term behaves as

1/N2
a for large Na. In the limit of u≪ 1 the value of k+

h can be found from Eqs.

(3.71) and (3.79) using the condition ZNa−2 = 1/2 − 1/2Na. We then obtain

δ

∆∞
=

8π2

[∆∞Na + (16/π) ln 2]2
, (3.100)

where at half filling the gap of the thermodynamic limit ∆∞ is given by

∆∞ = 4u− 4 + 4

∫ ∞

0

exp(−ωu)J1(ω)

ω coshωu
dω (3.101)

at any interaction strength. The origin of the term δ is related to the defini-

tion of the gap. The state with two additional or two missing spin up (or spin

down ) particles contains unpaired fermions with energies above the gap. gapped

excitations of our model are S = 1/2 -solitons which appear only in pairs. We

thus calculate the exact energy of the states with 2 solitons which have different

nonzero momenta and energies near the bottom of the excitation band. The con-

tribution (3.99) takes into account these nonzero kinetic energies of the solitons

and is proportional to the curvature of the excitation spectrum.

Note that the contribution of the gapped charge excitations for the repulsive

Hubbard model corresponds to the contribution of gapped spin excitations for the

attractive model, and the contribution of gapless spin excitations corresponds to

the contribution of gapless charge excitations in the attractive case.
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3.2.3 Exponential corrections for half filling

In this Section we calculate the finite size corrections to the gap originating from

the gapped sector and given by Eq. (3.98). Using the Poisson relation
∑

n δ(x −
n) =

∑

m exp[2πxmi] we reduce each of the terms in the right-hand side of Eq.

(3.98) to the form
∫ π

−π
dkǫc(k)X

c
N (k) = (3.102)

−
∫ π

−π
dkǫc(k)

[

ρN (k)

exp[−2πiNaZ
c
N (k + i0)] + 1

+
ρN (k)

exp[2πiNaZ
c
N (k − i0)] + 1

]

.

To lowest order, we take the functions ρN (k) and Zc
N (k) equal to their values

in the thermodynamic limit, they are given by Eq. (3.32) and Eq. (3.71) for the

case N = Na, and by Eq. (3.78) and Eq. (3.79) forN = Na−2, with kh = ±π and

λh = ±∞. One can show that the integral from −π to π in the right-hand side of

Eq. (3.102) is equal to the integral from (−π+iarcsinhu) to (π+iarcsinhu) for the

first term of the integrand plus the integral from (−π−iarcsinhu) to (π−iarcsinhu)

for the second term. The edge points of the integration (k0 = ±π± iarcsinhu) are

the saddle points at which ρ(k) = dZ/dk|k=k0 = 0. Equation (3.98) then reduces

to

δ∆g

Na
=

∫ π+iγ

−π+iγ

[

ρNa(k)ǫc(k)

1 + exp
[

−2πiNaZ
c
Na

(k)
] − ρNa−2(k)ǫc(k)

1 + exp
[

−2πiNaZ
c
Na−2(k)

]

]

dk

+ c.c. =
1

2πiNa

∫ π+iγ

−π+iγ
ǫ′c(k) ln

(

1 + exp[2πiNaZ
c
Na

(k)]

1 + exp[2πiNaZ
c
Na−2(k)]

)

dk + c.c.,(3.103)

where γ = arcsinhu.

The edge points of the integration k0 = ±π ± iarcsinhu are the saddle points

at which ρNa(k) = dZNa/dk = 0. For sufficiently large Na we may use the saddle

point approximation, and the expression for δ∆g becomes

δ∆g ≈ C
|ǫ′c(k0)|

π
√

Na|ρ′(k0)|
exp[−S0], (3.104)

where

ǫ′c(k0) = i

[

2u− 2
√

u2 + 1

∫

∞

0

J1(ω) tanh(ωu) exp(−ωu) dω

]

, (3.105)
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ρ′(k0) =
i

2π

[

u√
u2 + 1

+ (u2 + 1)

∫

∞

0

ω tanh(ωu) J0(ω) exp(−ωu) dω

]

, (3.106)

S0 = −2πi(Zc
Na

(k0) − 1/2) = Na

[

γ −
∫

∞

0

tanh(ωu) exp(−ωu)

ω
J0(ω)dω

]

,(3.107)

C =

[

1 −
(

Γ(3/4)

2Γ(5/4)

)4
]

, (3.108)

and we used the relation

Zc
Na−2(k0) = Zc

Na

(k0)+
i

πNa

∫

∞

0

tanh(ωu)

ω
exp(−ωu) dω = Zc

Na

(k0)+
2i

πNa

ln

[

2Γ(5/4)

Γ(3/4)

]

.

(3.109)

The saddle point approximation assumes that the exponent in Eq. (3.104) is

large:

S0 ≫ 1. (3.110)

In the case of strong interaction, u≫ 1, Eq. (3.104) gives

δ∆g ≈ 1√
Na uNa−1

, (3.111)

and one sees that in this limit the correction δ∆g is negligible.

The situation changes for u < 1. In the limit of u ≪ 1, from Eq. (3.104) we

obtain:

δ∆g ≈ C

√

2

π

∆∞ exp[−∆∞Na/4]√
∆∞Na

≈ 0.6
∆∞ exp[−∆∞Na/4]√

∆∞Na
, (3.112)

where the gap in the thermodynamic limit, ∆∞, is given by Eq. (3.43). The

criterion (3.110) then becomes Na∆∞ ≫ 1. The obtained relation (3.112) is in

accordance with the universal scaling behavior of the gap in massive quantum field

theories [102], which is expected for the Hubbard model at u≪ 1.

3.2.4 Power law corrections

In this section we rederive the correction to the gap, δ∆ng, provided by the gapless

sector using the conformal field theory 1/N expansion for the energy [99, 100, 103],

Eq. (3.50) and (3.49). For the half-filled case, and to the first order in 1/N , we
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have (Eq. (3.51)),

δ∆ng =
2π

Na

I1
(

π
2u

)

I0
(

π
2u

)

(

1 − 1

2 ln[NaI0(π/2u)]

)

. (3.113)

In the limit of strong coupling this expression becomes:

δ∆ng ≃ π2

2Nau
; u≫ 1, (3.114)

and the power law correction (3.114) always dominates over the negligible expo-

nential correction (3.111). The situation is the same for u ∼ 1. In the limit of

weak coupling, from Eq. (3.113) we obtain:

δ∆ng =
2π

Na
; u≪ 1. (3.115)

Comparing Eq. (3.115) with Eq. (3.112) we see that there is a range of ∆∞ and

Na where the exponential correction is important.

3.2.5 Numerical results

In this Section we present the numerical results for the gap of the Fermi-Hubbard

model in the case of attractive interaction (U < 0). The gap was calculated

directly from Eq. (3.63) (Eq. (3.64) for the half-filled case), where the energies

ENa and ENa−2 were calculated using Eq. (3.19) with momenta kj following from

the Bethe ansatz equations (3.26).

It is convenient to present the ratio δ∆g/∆∞ as a function of Na∆∞. In Fig.

(3.1) we show δ∆g/∆∞ versus Na∆∞ for several values of u, and one clearly sees

that for not very large Na∆∞ this correction becomes significant.

The comparison of δ∆ng/∆∞ (3.113) for u = 1 with the result of exact calcu-

lations from Eq. (3.97) shows the validity of conformal results even for not very

large Na (see Fig. 3.2). For example, at u = 1 even for Na = 10, (Na∆∞ ≈ 13 )

the relative difference is ∼ 15%.

In the limit of strong coupling the power law correction (3.114) always domi-

nates over the negligible exponential correction (3.111). The situation changes for

u < 1. For not very large ∆∞Na, the non-conformal correction δ∆g originating
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Figure 3.1: The correction δ∆g/∆∞ versus Na∆∞. The solid curve is the result

of exact calculations from Eq. (3.98), and the dashed curve represents the result

of Eq. (3.103). In a) u = 1, in b) u = 0.5, and in c) u = 0.25 with the dotted

curve showing the result of Eq. (3.112)
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Figure 3.2: The correction δ∆ng/∆∞ versus Na∆∞ for u = 1. The solid curve

shows the result of exact calculation from Eq. (3.97) and the dashed curve shows

the result of Eq. (3.113).

from gapped excitations becomes comparable with δ∆ng. This is seen from Fig.

(3.3), where we present the two corrections for u = 1, u = 0.5 and u = 0.25. We

also display the correction δ/∆∞ which turns out to be significant for Na∆∞ not

greatly exceeding unity.

In Fig. (3.4) we can see the comparison between the value of the gap calculated

from formula (3.63) and its analytical expression. The crosses show the numerical

results for ∆ as a function of Na at half filling and the solid curve shows the result

of the relation

∆ = ∆∞ + δ∆g + δ∆ng + δ, (3.116)

where the gap in the thermodynamic limit, ∆∞, is given by Eq. (3.101) [90].

The conformal power law correction δ∆ng is given by Eq. (3.113), and the non-

conformal correction δ∆g by Eqs. (3.112). A direct comparison of ∆ with the

gap of the thermodynamic limit ∆∞ (3.101) shows that finite size corrections can

be safely omitted for Na∆∞ > 40. On the other hand, already at Na∆∞ < 10,
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Figure 3.3: The result of exact calculations from Eqs. (3.97), (3.98) and (3.99)

for δ∆ng/∆∞ (solid curve), δ∆g/∆∞ (dashed curve), and δ/∆∞ (dotted curve)

versus Na∆∞. In a) u = 1, in b) u = 0.5, and in c) u = 0.25.
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they dominate the gap. For u = 0.25 where ∆∞ = 5 · 10−3 this occurs already

at Na < 1.5 · 103. For u = 1 we have ∆∞ = 1.28 and finite size corrections are

important only for Na < 30.

It is important that for Na∆∞ ∼ 10 or even somewhat large the non-conformal

corrections originating from the gapped sector become comparable with conformal

corrections. This is seen in Fig. (3.1). For u = 1 even the exponential correction

δ∆g is comparable with δ∆ng. For u = 0.5 and u = 0.25 this is the correction

δ that remains comparable with δ∆ng, whereas the exponential correction δ∆g is

about 10% of δ∆ng.

Qualitatively, the dependence ∆(Na) remains the same for smaller filling fac-

tors. This is seen from Fig. (3.5), where we present our numerical results for

filling factor n = 0.2. For u = 1.25 finite size effects become important only at a

very small number of lattice sites Na < 20. For u = 0.25 the thermodynamic-limit

gap is ∆∞ ≈ 5 · 10−2 and finite size effects are already important for Na ≈ 500.

3.3 Nau ≪ 1 limit

The discussed results were related to the case where Nau ≫ 1. For example, the

inequality (3.110) automatically requires the condition Nau ≫ 1, irrespective of

weather u is large or small. In the opposite limit of Nau ≪ 1, which can be

realised for u ≪ 1, the energy spectrum of the attractive Hubbard Model shows

no exponential gap and both charge and spin sectors are conformal. The analysis

of Lieb-Wu equations for this case has been done in [104, 105], and found correc-

tions ∼ u/Na. This can be understood from the conformal 1/Na expansion as a

consequence of the linear dependence of the velocities of elementary excitations

on the interaction constant u [104, 106].

In this Section we consider the limit of uNa ≪ 1 for completeness and present

first order corrections in u to the ground state energy and to the gap in the

excitation spectrum. As in the previous sections, we calculate the energy for the

Hubbard model in the repulsive case, where the Bethe Ansatz equations are easily

solved, and then restore the energy for the attractive case using the particle-hole
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Figure 3.4: The gap ∆ in units of t versus Na at half filling for u = 1 in a),

u = 0.5 in b), and u = 0.25 in c). The dotted line is the value of the gap in the

thermodynamic limit. The sum δ∆ng +δ∆g +δ+∆∞ (solid line) exactly coincides

with the gap ∆ calculated directly from the Bethe Ansatz equations (3.26) and

(3.25) using Eqs. (3.19) and (3.64) (crosses).
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Figure 3.5: The gap ∆ in units of t versus Na, calculated numerically for u = 1.25

in a), and u = 0.25 in b) for the filling factor n = 0.2.

symmetry.

Consider a system of N particles (N↓ spin-down and N − N↓ spin-up ) with

repulsive interaction. From the Lieb-Wu equation (3.26) we obtain the momenta

kj to first order in u:

eikjNa =

N↓
∏

α=1

sin kj − λα + iu

sin kj − λα − iu
⇒ δkj = kj − k0

j =
1

Na

N↓
∑

α=1

2u

sin k0
j − λ0

α

, (3.117)

where k0 and λ0 are the momenta and rapidities for u→ 0. The energy itself and
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the interaction-induced change of the energy are given by

E = −2

N
∑

j=1

cos kj ⇒ δE = E − E0 =
4u

Na

N
∑

j=1

N↓
∑

α=1

sin k0
j

sin k0
j − λ0

α

, (3.118)

where E0 is the ground state energy for u→ 0.

We now calculate the densities of momenta k and rapidities λ in the thermo-

dynamic limit from Eqs. (3.29) and (3.28). To the lowest order in u, using the

definition of the Dirac delta function limu→0
u

x2+u2 = πδ(x), we obtain:

2σ(λ) =

∫ Q

−Q
δ(λ− sin k)ρ(k)dk

ρ(k) =
1

2π
+ cos k

∫ B

−B
δ(λ− sin k)σ(λ)dλ. (3.119)

The solution of Eq. (3.119) is

σ(λ) =
1

2π

1√
1 − λ2

,

ρ(k) =

{

1/π; k ≤ πn↓

1/2π; πn↓ < k ≤ π(n− n↓),
(3.120)

where we took into account the two regimes Q ≤ π/2 and Q > π/2. Then, using

Eq. (3.30) for the total number of particles and the number of spin-down particles

we find an expression for the integration limits Q and B:

B = sin (πn↓) , Q = π(n− n↓). (3.121)

Note that B ≤ sinQ.

Using Eq. (3.120) we obtain the interaction-induced change of the energy to

first order in u:

δE

Na
= 4u

∫ Q

−Q
dk

∫ B

−B
dλ

sin k

sin k − λ
σ(λ)ρ(k) =

=
4u

π2
(πn↓)

2 +
4u

π2

∫ π(n−n↓)

πn↓

dk

∫ πn↓

0
dq

sin2 k

sin2 k − sin2 q
, (3.122)
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where we made the change of variables λ ⇒ sin q. For the case of attraction

we should substitute n↑ → 1 − n↑, n↓ → n↓, in accordance with the symmetry

properties (3.16), and integrating over dq we find:

δE(−u)
Na

= −4un↓ + 4un2
↓ +

2u

π2

(

2

∫ π/2

πn↓

−
∫ πn↑

πn↓

)

dk tan k ln

(

tan k + tan πn↓
tan k − tan πn↓

)

.

(3.123)

Eq. (3.123) leads to the following result for the interaction-induced change of the

energy to first order in Nau:

δE(−u)
Na

= 4un2
↓ − 4un↓ +

4u

π
arctan πn↓

− u

π2
ln

(

1 + tan2 πn↑
1 + tan2 πn↓

)

ln

(

tan πn↑ + tanπn↓
tan πn↑ − tanπn↓

)

+
2u

π2

(

−ReLi2

(

2 tan πn↓
tanπn↓ − i

)

− ReLi2

(

tan πn↑ + tan πn↓
tanπn↓ − i

)

+ ReLi2

(

tan πn↑ − tanπn↓
− tan πn↓ − i

))

, (3.124)

where Li2 (z) =
∑∞

k=1 z
k/k2 is a polylogarithmic function.

In the limit of small filling factors, N↑ ≪ Na and N↓ ≪ Na, after a straight-

forward algebra we obtain:

δE

Na
≈ u(−4n↓ − 4n↑n↓ + 2n2

↓) (3.125)

The limit of small filling factors in the Hubbard model corresponds to the gas

phase of spin-1/2 fermions. For this case the ground state energy at Nu≪ 1 has

been calculated in Refs. [107, 108, 109], and the result of Eq. (3.125) coincides

with that of Refs. [107, 108, 109] in the attractive case.

Using Eq. (3.62) we then find a small interaction-induced correction to the

gap in the excitation spectrum (n↑ = n↓ = n/2) of the attractive model to the

lowest order in uNa. For small filling factors we have: δ∆ ≈ 4u/Na, and in the

considered limit of Nau≪ 1 this correction is small compared to the level spacing

∼ 1/Na in our finite size system.



82 CHAPTER 3. FINITE-SIZE EFFECTS FOR THE HUBBARD MODEL

3.4 Conclusions

In conclusion, in this chapter we have studied finite size effects for the gap in

the excitation spectrum of the 1D Fermi Hubbard model with on-site attraction.

The approach developed for the situation in which the thermodynamic-limit gap

∆∞ greatly exceeds the level spacing (near the Fermi energy) of the finite size

system leads to two types of finite size corrections. For large interactions (u > 1)

the leading is a power law conformal correction to ∆∞, which behaves as 1/Na

and originates from the gapless sector of the excitation spectrum. We also find a

non-conformal exponential correction originating from the gapped branch of the

spectrum. As found at half filling, in the weakly interacting regime (u ≪ 1) the

non-conformal correction can become of the same order of the conformal one.

For sufficiently small number of lattice sites (particles) the gap ∆ is dominated

by finite size effects. From a general point of view, this happens when ∆∞ < 1/Na,

i. e. ∆∞ is smaller than the level spacing of the finite size system at energies close

to the Fermi energy. Accordingly, for large interactions (u ≫ 1) the finite size

effects are not important as long as Na ≫ 1. However, in the weakly interacting

regime (u < 1) they become dominant already at significantly larger Na than a

simple dimensional estimate 1/∆∞. This is clearly seen from our results in Fig.

(3.3) and Fig. (3.4) for ∆(Na) at half filling.

Our findings are especially important for the studies of the 1D regime with

cold atoms, where the number of particles in a 1D tube ranges from several tens

to several hundreds [110, 111]. For such systems in the weakly interacting regime

one cannot use the result of the thermodynamic limit for the gap.



Chapter 4

Parametric excitation of a 1D

gas in integrable and

non-integrable cases

4.1 Introduction

The field of ultracold gases has progressed enormously towards obtaining quantum

systems with desired densities and types of constituent atoms, trapping geometries,

and well controlled interparticle interactions [112]. In particular, by using either

an optical potential or large magnetic field gradients, one can confine the motion

of atoms to one dimension and create interacting 1D gases of bosons [43, 44,

113, 34, 114, 115] and fermions [46], which can be described by the integrable

Lieb-Liniger [25] and Yang-Gaudin [116, 117] models respectively. The purity and

isolation of such systems from the environment makes them ideal candidates for

studies of fundamental differences between integrable and non-integrable many-

body dynamics. A pioneering experiment on this subject has been performed

recently by Kinoshita and co-workers [48]. They have shown that a 1D Bose gas

initially prepared in a highly excited state does not equilibrate in the lifetime of the

experiment, whereas essentially the same system with a weaker 1D confinement

83
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thermalises much faster.

How do we decide whether a system is integrable or not? Let us put aside

strict mathematical definitions of quantum integrability ([118, 119], see also [14])

and look at the problem phenomenologically. What measurement should we per-

form on a system in order to conclude on its integrability? The field of quantum

chaos suggests to look at the spectrum of the system [120]. More specifically at

its statistics. If energy levels are not correlated (the nearest neighbour spacing

distribution is Poissonian), we are dealing with an integrable or regular system

[121]. If, in contrast, levels repel each other, the system is not integrable [123, 122].

The problem with this criterion is that the density of levels grows exponentially

with the number of atoms and it seems unrealistic to achieve such single level

sensitivity in experiments with ultracold gases.

Another signature of integrability is the localization of eigenstates of a regular

system in a certain physically meaningful basis [124]. Excitations initially local-

ized in this basis will stay localized like an electron below the mobility edge of a

disordered semiconductor. Moreover, one can probe the local density of states by

acting on the system with a localized perturbation. The passage from integrable

to non-integrable behaviour is similar to the localization-delocalisation transition.

The idea of such a transition in the Fock space of many-electron states turned out

to be very successful in understanding the structure of the spectrum of mesoscopic

systems [125, 126]. In the case of the Lieb-Liniger and Yang-Gaudin models the

eigenfunctions of excited states are localized in momentum space. This can be

seen directly from their Fourier transform - in the non-interacting case the eigen-

functions are delta-peaks, and switching on the interaction only slightly delocalises

them.

In this chapter we study the response of a highly excited 1D gas to a periodic

modulation of the coupling constant. We calculate the corresponding dynamic

structure factors and show that they are dramatically different in the two consid-

ered cases: the integrable Lieb-Liniger model and the non-integrable model of a

single mobile impurity in a Fermi gas. The non-integrable system is sensitive to
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excitations with frequencies as low as the mean level spacing, which is exponen-

tially small, whereas the threshold frequency in the integrable case is much larger

and scales polynomially with the size of the system. We argue that this is a clear

manifestation of the localization of the many-particle wave functions of the inte-

grable system in momentum space and is related to the fact that the modulation

of the coupling constant is a localized perturbation in this space. This effect can

be used as a probe of integrability for mesoscopic 1D systems and can be observed

experimentally by measuring the heating rate of a parametrically excited gas.

The chapter is organized as follows. In Section 4.1.1 we briefly review the

theoretical approach for studying the response of a generic system to a weak time-

dependent perturbation. We derive the diffusion equation for the state population

in the case of highly excited (classical) states, discuss how this equation can be used

for calculating the energy absorption rate, and relate the corresponding diffusion

constant to the dynamic structure factor. In Section 4.2 we introduce the 1D

Hamiltonian and the perturbation that we are going to work with. The dynamic

structure factor in the case of a single mobile impurity interacting with two or

three fermionic atoms is calculated in Section 4.3. We also compute the spectrum

and eigenstates of the system and discuss the evolution of the level statistics with

an increase in the number of atoms. The integrable case is discussed in Section 4.4

where we study the spectrum and excitations of the Lieb-Liniger gas and calculate

the dynamic structure factor for three and four bosons. In Section 4.5 we develop a

theoretical model for calculating the dynamic structure factor of the Lieb-Liniger

model in the case of an arbitrary number of atoms and compare the analytical

results with the exact numerical calculation of Section 4.4. We conclude in Section

4.6.

4.1.1 Linear response

Consider a Hamiltonian which contains a time-independent part H0 and a time-

dependent perturbation V (t). The evolution of the wavefunction is governed by
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the Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = [H0 + V (t)]|Ψ(t)〉, (4.1)

and we look for its solution in the form |Ψ(t)〉 =
∑

ν αν(t) exp(−iǫνt)|ψ0
ν〉, where

|ψ0
ν〉 and ǫν are the eigenfunctions and eigenenergies of H0. Using the orthonor-

mality of the set {|ψ0
ν〉} we obtain the evolution equation for the coefficients αν(t):

α̇ν(t) = −i
∑

µ

〈ψ0
ν |V (t)|ψ0

µ〉αµ(t)e−i(ǫµ−ǫν)t. (4.2)

Assume that the system is initially in the state η of the unperturbed Hamilto-

nian. The initial condition then reads |Ψ(0)〉 = |ψ0
η〉 or, equivalently, αν(0) = δνη ,

and Eq. (4.2) to the first order in V (t) reduces to

α̇(1)
ν (t) = −i〈ψ0

ν |V (t)|ψ0
η〉e−i(ǫη−ǫν)t. (4.3)

Without loss of generality we can now consider the perturbation in the form

V (t) = Fe−iωt + F †eiωt, (4.4)

where the operator F is time independent. The solution of Eq. (4.3) for ν 6= η

with the initial condition αν(0) = 0 reads

αν(t) = −Fνη(e
i(ǫν−ǫη−ω)t − 1)

(ǫν − ǫη − ω)
−
F ∗

ην(ei(ǫν−ǫη+ω)t − 1)

(ǫν − ǫη + ω)
, (4.5)

where Fνη = 〈ψ0
ν |F |ψ0

η〉. As we expect, αν(t) is peaked for the states which are

in resonance with the perturbation: ǫν ≈ ǫη ± ω. The modulus squared of the

coefficient αν determines the probability of diffusion into the state ν. Neglecting

fast oscillating terms it is given by

|αν(t)|2 = |Fνη |2
4 sin2

(

ǫν−ǫη−ω
2 t

)

(ǫν − ǫη − ω)2
+ |F ∗

ην |2
4 sin2

(

ǫν−ǫη+ω
2 t

)

(ǫν − ǫη + ω)2
. (4.6)

Accordingly, the probability for the system to remain in the state η decreases with

the rate

Ω =
d

dt

∑

ν 6=η

|αν(t)|2 = 2π [S(ǫη, ω) + S(ǫη,−ω)] . (4.7)
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In Eq. (4.7) we replaced summation over ν by integration over energy and intro-

duced the dynamic structure factor

S(ǫη, ω) =
∑

ν

δ(ω − ǫν + ǫη)|Fνη |2, (4.8)

which should be understood as the average of |Fνη |2 over (many) final states ν in

a narrow energy interval around ǫη + ω multiplied by the density of states at this

energy ρ(ǫη + ω).

We can now generalize these results to the case where the initial state distri-

bution is given by the probability density f(ǫ). The kinetic equation then reads

∂f(ǫ)

∂t
= 2πS(ǫ− ω, ω)f(ǫ− ω) + 2πS(ǫ+ ω,−ω)f(ǫ+ ω)

− 2πS(ǫ, ω)f(ǫ) − 2πS(ǫ,−ω)f(ǫ), (4.9)

which can be further simplified assuming that f and S are smooth functions of ǫ

on the scale ω. We then arrive to the diffusion equation for the state population

∂f

∂t
= D(ǫ, ω)

∂2f

∂ǫ2
, (4.10)

where the diffusion constant equals

D(ǫ, ω) = 2πS(ǫ, ω)ω2. (4.11)

Equation (4.10) gives the energy transfer per unit time from the external field

(4.4) to the system

dE

dt
=

∫

ǫ
df(ǫ)

dt
dǫ = 2πω2

∫

ǫS(ǫ, ω)
∂2f(ǫ)

∂ǫ2
dǫ. (4.12)

In the same manner one can write down expressions for the rate of change of other

thermodynamic quantities such as entropy or temperature (for systems close to

the thermodynamic equilibrium).

Another fundamental issue that naturally arises from the above discussion is

the question of adiabaticity. Indeed, the asymptotic behaviour of S(ǫ, ω) at small

ω gives the dissipative part of the response of the system to a slow variation
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of its Hamiltonian and, therefore, measures the degree at which this variation

can be assumed adiabatic. Clearly, the more the diffusion constant in Eq. (4.10)

is suppressed at small ω the more adiabatic the passage is. In this chapter we

show that this low-frequency behaviour strongly depends on whether we consider

integrable or non-integrable system.

4.2 Presentation of the problem

Let us consider a system of atoms with short-range interactions on a quasi-1D

ring. If the kinetic energie of the atoms is much smaller than the level spacing in

the direction of tight confinement, then the gas is kinematically one-dimensional

(see Section 1.4). In the case of equal masses of the atoms the corresponding 1D

coupling constant is given by Eq. (1.23) [49]

g1D =
2

ma1D
=

2a3D

ma2
⊥

(

1 − C
a3D

a⊥

)−1

, (4.13)

where a3D is the 3D s-wave scattering length, a⊥ is the oscillator length of the

transversal confinement, and C = 1.0326... is the numerical constant. In the

general case we write the 1D Hamiltonian as

H = −
N
∑

j=1

1

2mj

∂2

∂x2
j

+
∑

i<j

gij
1Dδ(xi − xj), (4.14)

where the interaction strengths gij
1D are related to the one-dimensional scattering

lengths by gij
1D = 1/µija

ij
1D, and the reduced mass is µij = mimj/(mi +mj). We

consider the case of repulsive interactions only, for which gij
1D > 0.

We are interested in the dynamics of the gas under a periodic modulation of

the one-dimensional scattering length:

aij
1D(t) = aij

1D +Aij cos(ωt). (4.15)

This perturbation can be realised by modulating the 3D scattering length by using,

for example, its dependence on the magnetic field near a Feshbach resonance.
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Alternatively, a1D can be modified by changing the oscillator length of the tight

confinement (see Eq. (1.23)). A similar approach for a 3D elongated BEC has

been demonstrated in [127].

In the limit of a weak perturbation, A ≪ a1D, the Hamiltonian (4.14) can be

written in the form H = H0 + V (t), where V (t) is defined by Eq. (4.4) with

F = −
N
∑

j<k

Ajk

2(ajk
1D)2µjk

δ(xj − xk). (4.16)

In the following we will consider two models: (i) a single mobile impurity

interacting with a gas of polarised non-interacting fermions and (ii) the Lieb-

Liniger gas. The former is not integrable if the masses of the impurity and fermions

are different. We will focus on this non-integrable model in the next section and

calculate the dynamic structure factor S(ǫ, ω) with respect to the modulation of

a1D in the three- and four-body cases.

4.3 Non-integrable case

The Hamiltonian of a heavy mobile impurity interacting with two light fermions

is written as

H = − 1

2M

∂2

∂x2
1

−
3
∑

j=2

1

2m

∂2

∂x2
j

+
∑

j=2,3

1

µa1D
δ(x1 − xj), (4.17)

whereM is the mass of the heavy atom, m is the fermion mass, and µ = Mm/(M+

m) is the reduced mass. We use the word “heavy” only for presentation purposes

- the ratio M/m is formally allowed to be smaller than one.

We perform the following change of variables for the coordinates of the three

atoms on the ring,

X = (Mx1 +mx2 +mx3)/(M + 2m),

x = (x2 + x3 − 2x1)/ tan θ,

y = x3 − x2, (4.18)
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Figure 4.1: Mapping of the 1D three-body problem onto a 2D one-body problem.

The shaded triangle corresponds to the region x1 < x2 < x3 < x1 + L.

where θ = arctan
√

1 + 2m/M . In this new coordinates the Schrödinger equation

reads
(

−∇2
X −∇2

x −∇2
y −mE +

2m

µa1D

∞
∑

n=−∞

∑

±
δ(y ± x tan θ + 2nL)

)

Ψ(x, y,X) = 0,

(4.19)

where L is the length of the ring and the summation over n takes into account the

periodicity of the ring. The motion of the centre of mass integrates out and we

will not consider it further. This results in a 2D problem in the xy plane, divided

into triangles by three families of lines,

y = mL, y = ±x tan(θ) + 2nL, m, n integers. (4.20)

The shaded triangle in Fig. (4.1) corresponds to the domain x1 < x2 < x3 <

x1 + L. The knowledge of Ψ(x, y) inside this triangle unambiguously determines

the wavefunction in all other domains (triangles) because of the periodic boundary
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conditions and the symmetry relations:

Ψ(x, y)
x2→x2+L

= Ψ(x+ L/ tan θ, y + L),

Ψ(x, y)
x3→x3+L

= Ψ(x+ L/ tan θ, y − L),

Ψ(x, y) = −Ψ(x,−y). (4.21)

In order to diagonalize the Hamiltonian (4.17) and calculate the matrix ele-

ments Fνη it is convenient to introduce an auxiliary function

f(x) = Ψ(x, x tan θ). (4.22)

Then the Schrödinger equation (4.19) can be rewritten in the form (we assume

that the centre of mass energy is zero):

(−∇2
x −∇2

y −mE)Ψ =
2m

a1Dµ

∞
∑

n=−∞

∑

±
±f(x)δ(y ± x tan θ + 2nL), (4.23)

which we can solve for Ψ using the Green function of the Euler equation

(−∇2
x −∇2

y −mE)GE(x, y) = δ(x)δ(y). (4.24)

For the function Ψ we get

Ψ(x, y) =

∞
∑

n=−∞

2m

a1Dµ

∫

x′

dx′
∑

±
∓GE

(

√

(x− x′)2 + (y ± x′ tan θ + 2nL)2
)

f(x′).

(4.25)

Finally, by setting y = x tan θ in Eq. (4.25) and using Eq. (4.22) we arrive at the

integral equation for the function f(x)

f(x) =

∞
∑

n=−∞

2m

a1Dµ

∫

x′

dx′
∑

±
∓GE

(

√

(x− x′)2 + (tan θ(x± x′) + 2nL)2
)

f(x′).

(4.26)

Equations (4.26) and (4.19) are equivalent, but the former is more convenient

for numerical calculation because of the smaller dimension of the configuration

space (1D instead of 2D). We can in principle obtain the wavefunction Ψ from the

calculated f by using Eq. (4.25). However, for computing Fνη the total information
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on Ψν and Ψη is not necessary. Indeed, the perturbation F given by Eq. (4.16)

is not zero only when the heavy atom is on top of one of the light fermions,

the amplitude of which is nothing else than f (see Eqs. (4.22) and (4.18)). Our

numerical procedure based on the momentum-space equivalent of Eq. (4.26) allows

us to calculate the spectrum and eigenfunctions of the three-body problem for up

to ten thousand levels with a very good accuracy.

It is straightforward to generalize the procedure described above to the case

of one heavy atom and three light fermions. In this case the function f depends

on two spatial coordinates and the size of the configuration space still allows an

accurate calculation of several thousand of states.

As we mentioned in the introduction the degree of integrability or chaoticity

of a quantum system can be understood from the statistics of its energy levels

[121, 122]. Namely, for an integrable system one expects the Poisson distribution,

P (s) = exp(−s), of the nearest neighbour spacings [121]. On the other hand, the

Bohigas-Giannoni-Schmit conjecture [122] suggests that (after a proper rescaling)

the level fluctuations of any chaotic system with time reversal invariance coincide

with the eigenvalue fluctuations of the Gaussian Orthogonal Ensemble (GOE) of

random matrices. The nearest neighbour spacing distribution in this case is well

fitted by the Wigner surmise, P (s) = (π/2)s exp(−πs2/4).

In order to perform this test and compare the spectral fluctuations of our

systems with the Poisson or GOE fluctuations we first unfold the spectrum by

the mapping {ǫν} →
{∫ ǫν

0 ρ(ǫ)dǫ
}

, where ρ(ǫ) is the mean density of states. The

mean level spacing of the unfolded (or rectified) spectrum is equal to unity, d = 1.

In Fig. (4.2) we show the nearest neighbour spacing distribution for a system

consisting of a single bosonic Rb atom and two fermionic K atoms (M/m = 87/40).

We calculated 7 000 energy levels starting from the state number 500 and used

a1D = 0.0023 L. We can clearly see the level repulsion, meaning that the system

is not integrable. On the other hand, the nearest neighbour spacing distribution

is rather far from the random matrix result. We find that it can be well fitted

by the semi-Poisson distribution, typical for pseudo-integrable systems such as
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Figure 4.2: Top: nearest neighbour spacing distribution for 7 000 states starting

from the state 500 for the system of two fermionic Potassium atoms and one Ru-

bidium atom (M/m = 87/40). The dotted line corresponds to the GOE ensemble,

the dashed line to the uncorrelated distribution of levels (Poisson), and the solid

line to the semi-Poisson distribution. Bottom: density plot of the wave function

for three different eigenstates in the xy-plane. On the left: wave function corre-

sponding to the state number 1 835, it displays chaotic behaviour. In the middle:

wave function for the state number 1 296, in it different regions of the xy plane

show regular and chaotic behaviour. On the right: wave function for the state

1 676, it displays a regular behaviour.



94 CHAPTER 4. PARAMETRIC EXCITATION OF A 1D GAS

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

s

P
Hs
L

Figure 4.3: Nearest neighbour spacing distribution for 3 879 states starting from

the state 122 for the system of three fermionic Potassium atoms and one Rubidium

atom. The solid line corresponds to the GOE ensemble and the dashed line to the

Poisson distribution.

triangular billiards [128]. The fact that the system belongs to the intermediate

regime is also confirmed by looking at its wave functions - some of them look

rather regular while others behave chaotically. In Fig (4.2, bottom) we show

three eigenfunctions for different eigenstates, they display chaotic behaviour (left),

regular behaviour (right), or exhibit simultaneously regular and chaotic properties

in different regions of space (middle). The whole area in this figure is the left half

of the shaded triangle in Fig. (4.1). In Fig. (4.3) we show the nearest neighbour

spacing distribution for the rectified spectrum of a system containing a Rubidium

atom and three fermionic Potassium atoms. Here we calculated 3879 levels starting

from the state number 122 and used a1D = 0.0064L. The GOE curve fits the data

with much better accuracy, which allows us to conclude that the four-body system

is closer to the chaotic limit.

Let us now turn to the dynamical properties of these two non-integrable

systems and discuss their response to the periodic modulation of a1D given by
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Eq. (4.15). In order to calculate the dynamic structure factor S(ǫ, ω) we numeri-

cally compute the matrix elements of the perturbation Fνη and average them over

the initial and final states in narrow energy windows around ǫη ≈ ǫ and ǫν ≈ ǫη+ω.

We should then multiply this average by the density of states at the final energy

ρ(ǫ + ω). In Fig. (4.4) we plot S(ǫ, ω) in arbitrary units for the three-atom case

(top) and the four-atom case (bottom). The energy ǫ corresponds to the level

number η ≈ 7000 in the three-body case and η ≈ 2000 in the four-body case. The

values of a1D are 0.0023L and 0.0064L respectively. We observe that S(ǫ, ω) never

vanishes, which means that on average all states are coupled by the perturbation.

In fact, the singularity at small ω reflects the fact that states separated by the

energy of the order of the mean level spacing, d = 1/ρ(ǫ), are strongly coupled by

the perturbation.

The structure of S(ǫ, ω) at large ω is attributed to periodic two-particle orbits

accumulated near the frequency ω ≈ (2π/L)
√

2ǫ/µ in both three- and four-body

cases. We postpone the discussion of the effect of the periodic orbits until Section

4.5.

4.4 Integrable case

Let us consider N identical bosons on a ring of length L. Equation (4.14) then

takes the form of the Lieb-Liniger Hamiltonian

H =
1

2

N
∑

j=1

∂2

∂x2
j

+
2

a1D

∑

j<k

δ(xj − xk), (4.27)

which is solvable by the Bethe ansatz [25] (see Section 1.3). Here, we set m = 1.

The equations for the momenta of the N atoms are given by

Lkj = 2πnj − 2

N
∑

i=1

arctan[(kj − ki)/c], j = 1, . . . , N, (4.28)

where c = 2/a1D and {nj} is a set of N quantum numbers, which are integers in

the case of odd N and half-integers for even N . Each different set {nj} determines
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Figure 4.4: Top: S(ǫ, ω) for the system of two fermionic Potassium atoms and one

Rubidium atom (M/m = 87/40) at the energy ǫ corresponding to the level number

6 850. Bottom: S(ǫ, ω) for three fermionic Potassium atoms and one Rubidium

atom and state number 1500.

a distinct excited state of the system [129]. The total energy and momentum are

E =
1

2

N
∑

j=1

k2
j ; K =

N
∑

j=1

kj =
2π

L

N
∑

j=1

nj. (4.29)

We will be interested in the states with zero total momentum, i.e.
∑N

j=1 nj = 0.

In Fig. (4.5) we plot the nearest neighbour spacing distributions for the rectified
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spectra of N = 3 (top) and N = 4 (bottom) bosons calculated by using Eqs. (4.28)

and (4.29). We counted the first 50 000 states and used a1D = 0.0014 L in the

former case and 50 000 states and a1D = 0.012 L in the latter. Visible regular

deviations from the Poisson distribution originate from the fact that for both

very low and very high energies (Tonks gas and ideal gas limit, respectively) the

spectrum is degeneracy dominated and the distances between the levels are integer

multiples of 2π2. For N = 3 these regularities are more visible because in this case

to rectify the spectrum means to multiply it by the constant density of states.

Let us now discuss the response of these systems to the modulation of a1D. In

this case the operator F which enters in the perturbation V (t) (see Eq. (4.4)) is

written as

F = − A

a2
1D

∑

j<k

δ(xj − xk). (4.30)

In order to calculate the dynamic structure factor with respect to F we use the ex-

plicit expression for the (unnormalised) eigenfunctions of the Lieb-Liniger Hamil-

tonian (4.27) [129, 118]

ψν(x1, ..., xN ) =
∑

P

(−1)[P ]ei
PN

j=1 xjkPj
∏

j>m

(kPj − kPm − ic), (4.31)

where ν denotes the set {nj}, momenta kj are obtained from Eq. (4.28), and [P ] is

the parity of the permutation P . The wavefunction (4.31) is defined in the spatial

domain x1 < x2 < · · · < xN < x1 + L and can be continued by symmetry to the

whole space.

To normalise the eigenfunction (4.31) we multiply it by the normalisation

coefficient Nν satisfying the equation

∂ǫν
∂a1D

= N 2
ν 〈ψν |

∂H

∂a1D
|ψν〉, (4.32)

where ∂H/∂a1D = 2F/A. The left hand side of Eq. (4.32) can be easily calculated

from the Bethe ansatz equations (4.28) and the matrix element on the right hand

side in the case N = 3 and N = 4 is a bulky but manageable analytic function

of momenta and a1D. The same holds for the matrix element Fνµ = 〈ψν |F |ψµ〉
which we can now straightforwardly calculate using the normalised ψν and ψµ.
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Figure 4.5: Nearest neighbour spacing distribution for rectified spectra of three

(top) and four (bottom) identical bosons. Solid line is the Poisson distribution.

In Fig. (4.6) we plot the dynamic structure factor S(ǫ, ω) for three (top) and

four (bottom) identical bosons. The energy ǫ corresponds to the state number

4 000 in the three-body case and 40 000 in the four-body case, d denotes the

three- and four-body mean level spacings at these energies, and a1D = 0.0014 L

and 0.012 L respectively. We see that at large ω the dynamic structure factor
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Figure 4.6: Top: S(ǫ, ω) versus ω for three identical bosons on a ring. Here ǫ

corresponds to the excited state number 4 000, and d = 24
√

3π/L2 is the mean

level spacing. Bottom: the same for four bosons, ǫ corresponds to the state number

40 000, the mean level spacing d = 48
√

2π2/
√
ǫL3.

has more or less the same structure as in the non-integrable case (compare with

Fig. 4.4). In contrast, for small ω we see a remarkable suppression of S(ǫ, ω) for

the integrable systems. This means that Fνµ is suppressed for pairs of states with

close energies. This behaviour is different from the non-integrable cases where
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neighbouring states are strongly coupled by the perturbation.

4.5 Theoretical model for arbitrary N

It is instructive to discuss the asymmetric resonance-like features in the dy-

namic structure factor dependence on ω, which are visible in both non-integrable

(Fig. 4.4) and integrable (Fig. 4.6) cases. Let us first assume that there is no

interaction between the atoms and consider a pair of them having relative velocity

v. This pair can be excited by the modulation of the coupling constant with the

angular frequency ω = 2πlv/L, where l is an integer. When we calculate S(ǫ, ω)

we average over all possible N -body states with the total energy ǫ, and the upper

bound for v is reached when this energy is concentrated in the relative motion

of the two atoms. This explains the abrupt jumps of S(ǫ, ω) at the frequencies

ω∗
l = (2πl/L)

√

2ǫ/µ, where µ is the reduced mass of the two atoms. The threshold

law for ω < ω∗ is governed by the density of states of all other particles (N − 2

degrees of freedom) which share the energy ω∗−ω. In particular, in the three-body

case S(ǫ, ω) ∝ 1/
√
ω∗ − ω and in the four-body case it has a finite discontinuity

at ω∗.

The above picture is based on two assumptions: (i) the modulation of the two-

body interaction potential can excite only two particles at a time, i.e. it cannot

simultaneously change three or more momenta, and (ii) the excited particles go

around the ring without exchanging momenta with the other particles. The former

is obvious from the classical viewpoint and the latter is actually not correct in the

non-integrable case. Indeed, the heavy atom “forgets” its initial momentum after

several collisions with the light atoms. However, the rate of this diffusion is not

universal and can be quite small compared to ω∗. It depends on the number of

particles in the system, their interaction, and the mass ratios.

To see a more universal signature of chaoticity we should give the heavy parti-

cle more time for diffusion, i.e. we should look at the low-frequency behaviour of

S(ǫ, ω). Indeed, the dynamic structure factor has dramatically different asymp-

totes in the non-integrable and integrable situations (compare Figs. 4.4 and 4.6).
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We find that in the non-integrable case S(ǫ, ω) ∝ 1/
√
ω, which is consistent with

the result of Wilkinson [130] based on the Random Matrix Theory.

In order to understand the asymptotic behaviour of the dynamic structure

factor in the integrable case let us translate the semiclassical picture of N atoms

moving along the ring with constant velocities into the language of the Lieb-

Liniger model, where the state of the system is given by the collection of N

quantum numbers, {nj}. Being consistent with the assumptions (i) and (ii),

our calculations in the cases N = 3 and N = 4 show that the matrix elements

Fνµ are the largest for the pairs of states which differ by two quantum numbers:

ν = {n1, ..., ni, ..., nj , ..., nN} and µ = {n1, ..., ni − l, ..., nj + l, ..., nN}. We see that

the perturbation F changes the state of two atoms to a large extent irrespective

of the other particles. Let us now continue this line of reasoning and solve the

N -body problem by separating it into two-body independent pieces: consider a

pair of atoms with coordinates x1 and x2 and calculate the matrix elements of the

perturbation (4.30) between the states {ni, nj} and {ni − l, nj + l}. In the case

|nj − ni| ≫ 1 the wavefunction of the state {ni, nj} is given by

Ψni,nj
(x1, x2) =

1√
2L

(

eikix1+ikjx2 − 1 − ia1D(kj − ki)/2

1 + ia1D(kj − ki)/2
eikix2+ikjx1

)

, (4.33)

where ki ≈ 2πni/L and kj ≈ 2πnj/L. The matrix element 〈Ψni,nj
|F |Ψni−l,nj+l〉

then reads

F{ni,nj},{ni−l,nj+l} = − A

La2
1D

(kj − ki)(k
′
j − k′i)a

2
1D

(1 + ia1D(kj − ki)/2)(1 − ia1D(k′j − k′i)/2)
(4.34)

≈ −(2π)2A

L3

(nj − ni)(nj − ni + 2l)

(1 + iπ(nj − ni)a1D/L)(1 − iπ(nj − ni + 2l)a1D/L)
,

where k′i ≈ 2π(ni − l)/L and k′j ≈ 2π(nj + l)/L. The corresponding energy

difference is

ω = ∆E{ni,nj}→{ni−l,nj+l} ≈ (2π)2[(nj − ni)l + l2]/L2. (4.35)

From Eq. (4.34) we observe that the matrix element F{ni,nj},{ni−l,nj+l} rapidly

grows with nj − ni until it reaches saturation at nj − ni ∼ L/πa1D. Assuming
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that a1D is sufficiently small, the most important contribution to the dynamic

structure factor comes from exciting pairs of atoms with large relative momenta.

Indeed, the perturbation (4.30) probes the local density-density correlations, which

are suppressed at small momenta - a manifestation of the “fermionisation” of 1D

interacting bosons. On the other hand, Eq. (4.35) imposes that the distance

nj −ni can never exceed ωL2/(2π)2. Otherwise, the resonant condition cannot be

satisfied. It is then easy to see that the largest contribution to S(ǫ, ω) comes from

the pairs of states {ni, nj} and {ni − l, nj + l} with a large difference nj − ni and

small l. Then, if ω ≪ 4π/a1DL, we can approximate

|F{ni,nj},{ni−l,nj+l}|2 ≈ (2π)4A2

L6
(nj − ni)

4. (4.36)

In the present case the definition of the dynamic structure factor (4.8) can be

written as

S(ǫ, ω) =
1

ρ(ǫ)

∂2

∂ǫ∂ω

∑

ν:ǫν<ǫ

∑

j>i

—

ωL2

(2π)2(nj−ni)

�

∑

l=1

|F{ni,nj},{ni−l,nj+l}|2, (4.37)

where

ρ(ǫ) =
∂

∂ǫ

∑

ν:ǫν<ǫ

1 (4.38)

is the density of states, index ν stands for the set of quantum numbers {n1, ..., nN},
and ⌊x⌋ denotes the integer part of x.

In the limit (2π)2/L2 ≪ ω ≪ ǫ the sums in Eqs. (4.37) and (4.38) can be substi-

tuted by integrals. Using Eq. (4.36) and the asymptotic formula
∫∞
0 x4⌊ξ/x⌋dx ≈

ξ5ζ(5)/5 valid for large ξ we get

S(ǫ, ω) =
ζ(5)

215/2π6

1

(N − 2)!

A2ω4L4

ρ(ǫ)

∂

∂ǫ
VN−1

(

L
√
ǫ

π
√

2

)

, (4.39)

and

ρ(ǫ) =
1

N !

∂

∂ǫ
VN

(

L
√
ǫ

π
√

2

)

. (4.40)
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The function VN (R) in Eqs. (4.39) and (4.40) denotes the volume of an N -

dimensional hypersphere of radius R:

VN (R) =
πN/2RN

Γ
(

N
2 + 1

) . (4.41)

Finally, putting together Eqs. (4.39) and (4.40) we obtain the dynamic structure

factor

S(ǫ, ω) =
ζ(5)

27π11/2

(N − 1)2Γ(N/2 + 1)

Γ(N/2 + 1/2)

A2ω4L3

√
ǫ

. (4.42)

Equation (4.42) is derived without restricting the centre of mass momentum K to

be zero. Following the same calculation with the restriction n1 + ...+ nN = 0 we

get

SK=0(ǫ, ω) =
ζ(5)

27π11/2

N(N − 2)Γ(N/2 + 1/2)

Γ(N/2)

A2ω4L3

√
ǫ

. (4.43)

In Figs. (4.7) and (4.8) we compare our numerical results for the dynamic

structure factor with the asymptote (4.43) in the cases N = 3 and N = 4. As

we see, Eq. (4.43) works perfectly in the region of its validity, (2π)2/L2 ≪ ω ≪
4π/a1DL. This confirms our initial assumption that pairs of atoms are excited

independently of other atoms. Deviations of the exact S(ǫ, ω) from the expression

(4.43) are expected at frequencies larger than 4π/a1DL and smaller than (2π)2/L2.

Indeed, in the former case Eq. (4.43) overestimates the exact result because of

the breakdown of Eq. (4.36) at nj − ni ∼ L/πa1D corresponding to frequencies

ω ∼ 4π/a1DL. In Fig. (4.8) we plot S(ǫ, ω) in the case N = 4 for different

values of a1D to demonstrate this effect. Concerning the low-frequency limit, from

Eq. (4.35) we see that the lowest possible excitation energy of an atom pair is

∆E ∼ (2π)2/L2, and, therefore, perturbations with lower frequencies are never

resonant. Note, that for N > 3 this gives a gap which is much larger than the

mean level spacing of the many-body problem (with the centre of mass motion

integrated out).
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Figure 4.7: S(ǫ, ω) versus ω for three identical bosons on a ring. The solid line is

given by Eq. (4.43). The energy ǫ corresponds to the excited state number 4 000,

and the mean level spacing is d = 4
√

2π/L2.
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Figure 4.8: S(ǫ, ω) versus ω in the case N = 4 plotted for five different values

of the 1D scattering length a1D. We clearly observe the saturation of S(ǫ, ω)

at ω ∼ 4π/a1DL. The energy ǫ corresponds to the state number 40 000, and

d = 48
√

2π2/
√
ǫL3.
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4.6 Concluding remarks

Validity of Eqs. (4.42) and (4.43) in the case N > 4 seems to be a reasonable

assumption, although it has yet to be confirmed. Nevertheless, let us take it as

a conjecture and discuss its consequences. The most remarkable is, of course,

the frequency dependence of the dynamic structure factor. It is proportional

to ω4, which leads to the strong frequency dependence of the diffusion constant

D(ǫ, ω) ∝ ω6 (see Eq. (4.11)). This scaling significantly differs from the usual law,

D ∝ ω2, which originates from the Kubo formula [131], and suggests a straight-

forward experiment on measuring the heating rate of a 1D gas as a function of the

perturbation frequency.

Related to this is the question of adiabaticity. We note that Eqs. (4.42) and

(4.43) are valid for frequencies smaller than 4π/a1DL, and therefore, a discussion

of the thermodynamic limit would not make much sense. However, the dynamic

structure factor grows only polynomially with L and N [132], which is still surpris-

ing. Indeed, consider a very high-energy eigenstate of N atoms and monitor its

evolution under a slow variation of the coupling constant. In a generic situation

the probability to find the system in the same microscopic state in the end of the

experiment is exponentially small since the density of states grows exponentially

with L and N . In our case, however, the polynomial dependence of the dynamic

structure factor on L and N substituted into Eq. (4.7) gives a polynomial law

for the rate of the diffusion, i.e. it requires only polynomially slow variation of

the parameter to remain in the same state. To emphasize the importance of the

difference between exponential and polynomial dependencies we can make paral-

lels with currently popular topic of adiabatic quantum computing [133], where the

main problem is to change a parameter in the Hamiltonian of a many-body system

keeping the entropy low. If one can do this with a polynomial rate, a number of

NP-complete problems could be solved in a polynomial time.

Microscopic states of the Lieb-Liniger gas which are very close in energy are

very far from each other in the space of quantum numbers and in momentum

space, as can be seen from the shape of the wave functions (Eq. 4.31). On the
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other hand, the perturbation is localized in this space (it can only change the

relative momentum of two atoms). Therefore, it does not couple states with close

energies. In this sense, by perturbing the system we probe the local density of

states which scales only polynomially with the size of the system. In the non-

integrable case the states are delocalized in any space and the perturbation, no

matter localized or not, couples all of them.



Appendix A

Two-body problems

A.1 Two-body scattering

For a generic two-body problem, the Schrödinger equation takes the form

−1

2

(

∂2

∂x2
1

+
∂2

∂x2
2

)

Ψ(x1, x2) + V (x2 − x1)Ψ(x1, x2) = EΨ(x1, x2). (A.1)

Here, we put m1 = m2 = 1, ~ = 1 and the coordinates are taken such that x1 is

the coordinate of particle 1 and x2 the coordinate of particle 2. In the asymptotic

region the momenta are k1 > k2. In the centre of mass reference frame,

R = x1 + x2, r = x2 − x1,

K = k1 + k2, k = k1 − k2, (A.2)

the Schrödinger equation becomes

− ∂2

∂r2
Ψ(r) + V (r)Ψ(r) =

(

k

2

)2

Ψ(r), (A.3)

where we integrated out the centre of mass motion described by the wave function

Ψ(x1, x2) = eiKR/2Ψ(r). The energy reads

E =
k2
1 + k2

2

2
=
K2 + k2

2
. (A.4)

107
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We consider only symmetric potentials such that V (r) = V (−r), so we will have

symmetric and antisymmetric solutions Ψ±(−r) = ±Ψ±(r). After a scattering

process the wave function can be written in the asymptotic region as a superposi-

tion of an incoming and an outgoing wave, with a phase shift between the two of

them, −θ±(k), which depends on the scattering potential V (r):

Ψ±(r) →
{

e−i kr
2 − ei

kr
2
−iθ±(k), r → +∞

±
(

ei
kr
2 − e−i kr

2
−iθ±(k)

)

, r → −∞
. (A.5)

The ± sign in front of the negative asymptotic region takes into account the

symmetry or antisymmetry of the wave function, and the minus sign in front of

the phase shift is taken for convention. The phase shift is an odd (θ±(−k) = θ±(k))

and real (θ∗±(k) = θ±(k∗)) function of k.

In the case of distinguishable particles we can give them identities and intro-

ducing the reflection R and transmission T coefficients we have:

Ψ+(r) + Ψ−(r)

2
→
{

e−i kr
2 +R(k)ei

kr
2 , r → +∞

T (k)e−i kr
2 , r → −∞

, (A.6)

where the scattering coefficients are defined as

R(k) = −e
−iθ+ + e−iθ−

2
, T (k) =

e−iθ− − e−iθ+

2
. (A.7)

In terms of the coefficients of the Bethe ansatz wave function, Eq. (1.6), we get

the following relation for the transmission and reflection coefficients:

Ψ(12|21) = R(k)Ψ(12|12) + T (k)Ψ(21|12),
Ψ(21|21) = R(k)Ψ(21|12) + T (k)Ψ(12|12). (A.8)

Such a process is sketched in Fig. (A.1). In the matrix form we have

Ψ(21) =

(

Ψ(12|21)
Ψ(21|21)

)

=

(

R(k) T (k)

T (k) R(k)

)(

Ψ(12|12)
Ψ(21|12)

)

= Sr(k)Ψ(12), (A.9)

where Sr(k) is the scattering operator in the reflection-diagonal representation.

In the transmission-diagonal representation we have a similar expression:

Φ(21) =

(

Ψ(21|21)
Ψ(12|21)

)

=

(

T (k) R(k)

R(k) T (k)

)(

Ψ(12|12)
Ψ(21|12)

)

= St(k)Ψ(12). (A.10)
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ψ(12|21)

ψ(12|12)

ψ(21|21) e

ψ(21|12)

22

ei(k x +k x )1 2 e 1 1
i(k x +k x )

x−x2 1Q=(21) Q=(12)

i(k x +k x )
1 1

2 1

e 2 1
i(k x +k x )

1 2

2 2

Figure A.1: Picture of the scattering of two particles with k1 > k2. The two

different regions in space, Q = (12) for x2 > x1 and Q = (21) for x1 > x2 are

indicated, as well as the incoming and outgoing waves.

Defining the permutation operator P̂

P̂ =

(

0 1

1 0

)

, (A.11)

we can write these operators as

Sr(k) = R(k) + P̂ T (k), St(k) = T (k) + P̂R(k). (A.12)

In the case where the particles are identical we have P̂ = ±1, the plus sign for

bosons and the minus sign for fermions. Thus, exchanging bosons to fermions is

equivalent to conjugating the representation of the permutation group, P̂ → ¯̂
P =

−P̂ .

Finally we consider the Yang-Baxter consistency conditions. For the scattering

operator in the reflection-diagonal representation, the conditions Eq. (1.8):

S1(k2, k3)S2(k1, k3)S1(k1, k2) = S2(k1, k2)S1(k1, k3)S2(k2, k3) (A.13)

can be written in the following way:

T23R13R12 +R23R13T12 −R12T13R23 = 0, (A.14)

where the subscript ij means (ki − kj).
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A.2 The δ-function potential

The potential we wish to consider is

V = cδ(x). (A.15)

Since the particles can be considered as being free on both sides of the barrier, we

write the wave-function as:

Ψ(x) = 2i sin(kx+ φ). (A.16)

The antisymmetric wave-function vanishes at the origin and so the potential

has no effect there, therefore Ψ−(x) = −2i sin
(

kx
2

)

and θ−(k) = 0.

For the symmetric case the wave function is continuous at the origin and has

a discontinuity in the derivative across the origin,

Ψ+(0−) = Ψ+(0+),
Ψ′

+(r)

Ψ(r)

∣

∣

∣

∣

r=0

=
c

2
. (A.17)

The δ-function potential is a point-like interaction, therefore the asymptotic region

is everywhere except at the origin; we have for the symmetric wave function

Ψ+(r) = −2i sin

(

k|r|
2

− θ+
2

)

. (A.18)

The phase-shift is in this case

θ+(k) = −2 arctan

(

k

c

)

. (A.19)

Using the identity ln
(

1+ix
1−ix

)

= 2i arctan(x) we write

e−iθ+(k) =
c+ ik

c− ik
. (A.20)

A bound state appears for the attractive case c < 0 with wave function Ψ+(r) =

exp(−|cr|).
For the case of identical particles this phase shift is all that is needed. For

fermions we have an antisymmetric wave function whereas for bosons the wave

function is symmetric.



A.3. THE HUBBARD MODEL 111

For different particles we calculate the reflection and transmission coefficients,

Eq. (A.7),

R(k) =
−ic
k + ic

, T (k) =
k

k + ic
−→ St(k) =

k − icP̂

k + ic
. (A.21)

A.3 The Hubbard model

We wish here to calculate the scattering matrix for the Hubbard model, with

Hamiltonian

H = −
Na
∑

σ=↑,↓;j=1

(c†σ,jcσ,j+1 + c†σ,j+1cσ,j) + U

Na
∑

j=1

nj,↑nj,↓. (A.22)

This model is a lattice model, and double occupancy of lattice sites by fermions

with different spin is allowed. The Schrödinger equation reads

EΨ(Q|x1, · · · , xN ) = −
N
∑

j=1

(Ψ(Q| · · · , x+ 1, · · ·) + Ψ(Q| · · · , x− 1, · · ·)) +

+ U
∑

j<l

δ(xj − xl)Ψ(Q|x1, · · · , xN ), (A.23)

where the interaction terms only appear if two atoms sit on the same lattice site.

In the absence of multiple occupation of lattice sites we have only kinetic

energy. The Schrödinger equation for the Hubbard Hamiltonian then reads

EΨ(Q|x) = −
N
∑

j=1

(Ψ(Q| · · · , xj + 1, · · ·) + Ψ(Q| · · · , xj − 1, · · ·)) . (A.24)

Since we consider the wave function of the Bethe ansatz form Eq. (1.6):

Ψ(Q1, . . . , QN |x1, . . . , xN ) =
∑

P

ψ(Q|P )ei
P

j=1 NxjkPj , (A.25)

the energy and momentum are

E = −2
N
∑

j=1

cos kj , K =
N
∑

j=1

kj . (A.26)
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We consider now the case with doubly occupied sites: a site x is occupied

by particles q and q′, so that xj = xj+1 = x. In this case the ordering of the

particles is ambiguous, it can be either Q = (. . . , Qj = q,Qj + 1 = q′, . . .) or

Q = (. . . , Qj = q′, Qj + 1 = q, . . .). Two adjacent sectors have now a common

part, and the continuity requires

Ψ(Q = · · · , q, q′, · · · | · · · , x, x, · · ·) = Ψ(Q′ = · · · , q′, q, · · · | · · · , x, x, · · ·). (A.27)

The Schrödinger equation reads for this doubly occupied site

EΨ(Q| · · · , x, x · · ·) = UΨ(Q| · · · , x, x, · · ·) − Ψ(Q| · · · , x, x+ 1, · · ·)
− Ψ(Q| · · · , x− 1, x, · · ·) − Ψ(Q′| · · · , x+ 1, x, · · ·)
− Ψ(Q′| · · · , x, x− 1, · · ·) + · · · (A.28)

where the dots account for all the other processes involving the rest of the particles

in other sites, that are linearly independent. Note that the third and forth terms

in the right-hand-side belong to a different sector Q′. We will subtract from Eq.

(A.28) the following relation

EΨ(Q| · · · , x, x · · ·) = −Ψ(Q| · · · , x+ 1, x, · · ·) − Ψ(Q| · · · , x− 1, x, · · ·) (A.29)

− Ψ(Q| · · · , x, x+ 1, · · ·) − Ψ(Q| · · · , x, x− 1, · · ·) + · · · ,

which is fulfilled for every amplitude in a given sector, here Q. We then obtain

UΨ(Q| · · · , x, x · · ·) = −Ψ(Q′| · · · , x+ 1, x, · · ·) + Ψ(Q| · · · , x+ 1, x, · · ·)
− Ψ(Q′| · · · , x, x− 1, · · ·) + Ψ(Q| · · · , x, x− 1, · · ·).(A.30)

Substituting the value for the wave function, Eq. (A.25), and grouping terms we

obtain the following relation between the amplitudes:

(ψ(Q′|P ) − ψ(Q|P ′))i(sin k − sin k′) +
U

2
(ψ(Q|P ) + ψ(Q|P ′)) = 0, (A.31)

where the permutations are P = (k, k′) and P ′ = (k′, k). We obtain for the

amplitude in the sector P ′:

ψ(Q|P ′) =
−i(sin k − sin k′)

U/2 − i(sin k − sin k′)
ψ(Q′|P ) +

−U/2
U/2 − i(sin k − sin k′)

ψ(Q|P ).

(A.32)
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Therefore, we can write for the reflection and transmission amplitudes

R(k, k′) =
U/2

i(sin k − sin k′) − U/2
, T (k, k′) =

i(sin k − sin k′)
i(sin k − sin k′) − U/2

,

−→ St(k, k′) =
U
2 P̂ + i(sin k − sin k′)

i(sin k − sin k′) − U/2
. (A.33)
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Appendix B

Continuum limit for the

Hubbard model

The system of fermions interacting via a δ-function potential can be obtained from

the Hubbard model taking the continuum limit. This limit corresponds to take

the site separation a → 0 and the filling ν → 0 while keeping the density finite.It

is also called dilute limit. In this limit, the lattice site index i will be replaced by

the space coordinate x. The number of particles in the system is conserved. In

the Hubbard model we have

N =
∑

j

c†jcj , (B.1)

while in the continuum case, using the continuum operators for the creation and

annihilation of fermions,

N =

∫

dx Ψ†(x)Ψ(x). (B.2)

The conversion from sum to integral is done in the general way
∑

j −→ 1
a

∫

dx

and it gives us the correct dimensionality of the operators,

cj =
√
aΨ(x). (B.3)

In this limit, the length of the system is given by

L = aNa. (B.4)
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We will see how we can convert the Hamiltonian of the Hubbard model

HHM = −t
Na
∑

σ=↑,↓;j=1

(c†σ,jcσ,j+1 + c†σ,j+1cσ,j) + U

Na
∑

j=1

nj,↑nj,↓ (B.5)

into the one of electrons in the continuum

Hcontinuum =
~

2

2m



−
N
∑

i=1

∂2

∂x2
i

+ 2c
∑

i<j

δ(xi − xj)



 , (B.6)

using the transformations (B.3).

We start by looking at the kinetic energy part, where we first rearrange the

terms in the following way

Hk = −t
∑

σ,j

(c†σ,jcσ,j+1 + c†σ,j+1cσ,j) =

= −t
∑

σ,j

(c†σ,jcσ,j+1 + c†σ,j+1cσ,j + c†σ,jcσ,j−1 + c†σ,j−1cσ,j) =

= −t
∑

σ,j

(c†σ,j(cσ,j+1 + cσ,j−1) + cσ,j(c
†
σ,j+1 + c†σ,j−1)). (B.7)

Then we perform the transformations Eq. (B.3), for cj±1 we have

cj±1 =
√
a

(

Ψ(x) ± aΨ′(x) +
a2

2
Ψ′′(x)

)

, (B.8)

and so the kinetic part of the Hamiltonian transforms

Hk = −t
∫

dx

a

(

Ψ†
σ(x)

(

2Ψσ(x) + a2Ψ′′
σ(x)

)

+ Ψσ(x)
(

2Ψ†
σ(x) + a2Ψ′′†

σ (x)
))

a =

= −4tN − ta2

∫

Ψ†
σ

∂2

∂x2
Ψσdx. (B.9)

The first term is a constant and will be absorbed into the chemical potential, while

the second term corresponds to the kinetic energy term in the Hamiltonian for the

fermions in the continuum.

For the interaction part of the Hamiltonian, we have the following straightfor-

ward transformation:

Hint = U
∑

j

nj,↑nj,↓ = U
∑

j

c†j,↑c
†
j,↓cj,↓cj,↑ =

= Ua

∫

dxΨ†
↑(x)Ψ

†
↓(x)Ψ↓(x)Ψ↑(x) (B.10)
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Comparing Eq. (B.9) and Eq. (B.10) to Eq. (B.6) we find the equivalences:

~
2

2m
= ta2,

c~2

m
= g1D = Ua. (B.11)



118 APPENDIX B. CONTINUUM LIMIT FOR THE HUBBARD MODEL



Appendix C

Local density approximation

In most experimental set-ups the system is confined in a spatially inhomogeneous

trapping potential. If the system was exactly solvable in the homogeneous case,

it would not in general be exactly solvable any more when trapped. In general,

the homogeneous solution for a model is no longer valid when we consider the

trapped configuration. However, normally the trapping potentials tend to be very

shallow, such that the variation of the potential in space is smaller than the typical

length of the system. In this case the system can be considered as being “locally

uniform”, and if its equation of state is known in the homogeneous configuration

we can solve it for the trapped situation. In practical set-ups, when the trapping

potential is normally approximated to a harmonic oscillator, Vtrap(~r) = 1
2mω

2r2,

we want the size of the cloud to be much bigger than the harmonic oscillator

length, R≫ az, implying that EF ≫ ~ωz and N ≫ 1.

Suppose that we have the expression of the energy of a system as a function

of the total number of particles E = E(N), or the density of particles E = E(n),

where n = N/L and L is the size of the system. The energy density is ǫ(N) =

E(N)/N and the chemical potential is defined by

µ(n) =
∂

∂N
E(N) =

∂

∂N
(Nǫ(N)) =

(

1 +N
∂

∂N

)

ǫ(N) =

(

1 + n
∂

∂n

)

ǫ(n).

(C.1)

The equation µ = µ(n) (Eq. C.1) is the equation of state of the system.
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Let us suppose now that we have a slowly varying external potential V (r), and

we want to minimize the energy of the system

E(n) =

∫

(nV (r) + nǫ(n) − µon) dr, (C.2)

where the density now depends on the coordinates, n = n(r), and µo is a La-

grangian multiplier used to fix the total number of particles,
∫

n(r) dr = N .

Minimizing the energy we get the relation

δE

δn
= 0 ⇒ µ(n) = µo − V (r), (C.3)

which is physically equivalent to impose a chemical potential that depends on the

position, i.e. a local chemical potential µo − V (r).

Take the harmonic potential V (r) = 1
2mω

2r2 as an example. The chemical

potential in this case reads

µ(n) = µo −
1

2
mω2r2 = µo

(

1 − r2

R2

)

, (C.4)

where R2 = 2µo/mω
2. Inverting equation (C.4) the density and the total number

of particles can be written as

n(r) = µ−1

(

µo

(

1 − r2

R2

))

→ N =

∫

n(r)dr = R

∫ 1

−1
µ−1(µo(1− ξ2))dξ, (C.5)

where ξ = r/R, and we find an equation for µo:

N

√

m

2
ω = µ1/2

o

∫ 1

−1
µ−1(µo(1 − ξ2))dξ ≡ f(µo). (C.6)

Solving f(µo) for a given N we find the chemical potential for the system in the

inhomogeneous configuration.

For a system with two different components the situation is a bit more compli-

cated. The total energy and the density depend now on the number of particles in

each component: E(N1, N2) = (N1 +N2) ǫ(n1, n2); and so we have two equations
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of state, one for each component:

µ1 =
∂E(N1, N2)

∂N1
=

∂

∂N1
[(N1 +N2) ǫ(N1, N2)] =

(

1 + n
∂

∂n1

)

ǫ(n1, n2)

µ2 =
∂E(N1, N2)

∂N2
=

∂

∂N2
[(N1 +N2) ǫ(N1, N2)] =

(

1 + n
∂

∂n2

)

ǫ(n1, n2).(C.7)

Applying an external potential, that can interact differently with each of the com-

ponents, the equations for the minimisation of the energy are (i = (1, 2)):

δE(n1, n2)

δni
=

δ

δni

∫

[n1V1(r)+n2V2(r)+(n1 +n2) ǫ(n1, n2)−µo
1n1−µo

2n2]dr = 0.

(C.8)

We obtain here two “local chemical potentials”, one for each component, but both

of them depending on the densities of all the components:

µ1(n1, n2) = µo
1 − V1(r) and µ2(n1, n2) = µo

2 − V2(r). (C.9)

We have thus in this case two radii R1 and R2, similar to Eq. (C.5), for each

of the given components. Fixing the number of particles in each component we

calculate the value of the two parameters µo
1 and µo

2, in a similar way of that in

equation (C.6):

N1 =

∫ R1

−R1

n1(r)dr and N2 =

∫ R2

−R2

n2(r)dr (C.10)



122 APPENDIX C. LOCAL DENSITY APPROXIMATION



Bibliography

[1] A.O. Gogolin, A.A. Nersesyan and A.M. Tsvelik, Bosonisation and strongly

correlated systems, Cambridge University Press (1998).

[2] T. Giamarchi, “Quantum physics in one dimension”, Oxford University

Press (2003).

[3] Z. Phys. 71, 205 (1931).

[4] S. White, Phys. Rev. Lett. 69, 2863 (1992).
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