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Introduction

This thesis is a presentation of the research I have done during the last three years in colla-
boration with Driss Essouabri, Bruno lochum and Andrzej Sitarz.

Noncommutative geometry is a vast field of mathematics which aims at extending classical
geometry in a noncommutative setting. Specifically, using functional analysis, operator algebras,
spectral theory and spin geometry, noncommutative geometry extends for instance concepts of
locally compact topological space, and spin Riemannian manifold.

The interest for this mathematical field goes beyond the purely mathematical. There are
profound physical motivations behind the concepts of noncommutative geometry, which suggest
that it can be a used to describe the basic elements of physics such as spacetime and quantum
fields. More specifically, noncommutative geometry appears, as a mathematical framework, well-
suited to a geometric formulation of quantum concepts.

One may consider that noncommutative geometry was born with the following theorem of
Gelfand—Naimark: any commutative C*-algebra is isomorphic to the C*-algebra of continuous
functions on a compact space, namely the space of characters of the algebra. Since all the topo-
logical information of a space is contained in the set of continuous functions on the space, we can
see that the notion of C*-algebra is a generalization of the notion of compact topological space.

From this fundamental result, it has been possible to go beyond purely topological concepts
and construct a full noncommutative Riemannian differential geometry, with its own version
of differential and integral calculus, fiber bundles, measures, spin manifolds, etc... This colossal
work has been pioneered and essentially done by Alain Connes [26-30)].

Noncommutative geometry makes us change our point of view: it is not the set of points (the
topological space) that is fundamental, but the set of functions (defined on the set of points).
While equivalent in the commutative world, these two points of view are unequivalent in the
noncommutative world.

Noncommutativity and this change of point of view are two crucial characteristics of the
fundamental structure of quantum physics. Indeed, in quantum physics, observables do not always
commute, contrarily to the case of classical physics. Moreover, f(x), namely the evaluation of
an observable f at a point z, is not defined. However, the notion of observable still exists and
z(f) has a meaning, provided that x is a state, a noncommutative equivalent of the notion of
character of an algebra that can evaluate the observables f.

This striking similarity between noncommutative geometry and quantum theory is very im-
portant and constitutes a source of the development of noncommutative geometry and its ap-
plications in physics. In fact, any C*-algebra (commutative or not) is isomorphic to a closed
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subalgebra of the algebra of bounded operators on a Hilbert space. This shows that noncommu-
tative geometry is well suited to the formalism of quantum physics.

Noncommutative geometry provides new mathematical notions that can be used to extend
the fundamental aspect of noncommutativity of observables to spacetime itself. The two theories
of fundamental interactions, namely quantum field theory (standard model) for the strong and
electroweak interactions and general relativity for the gravitational interaction, are not based on
the same mathematical formalism. The first one is based on a quantum point of view, while the
latter one is classical. Moreover, spacetime itself is not considered the same way by these two
theories. In quantum field theory, spacetime is fixed (Minkowskian flat spacetime) while in general
relativity, spacetime is dynamical and gravitational effects are consequences of the curvature of
the spacetime metric. These fundamental differences are not problematic if we study a physical
phenomenon for which gravitational interaction can be neglected or inversely for which quantum
effects can be neglected. Indeed, both theories are very powerful in their respective domain of
application.

However, for the study of phenomena that manifestly involve all known interactions (compact
objects, black holes, big-bang), it is necessary to make these theories compatible, and to reunite
them under a unique coherent mathematical formalism. The main idea that has been conside-
red by theoretical physicists is to develop a generalization of quantum field theory in order to
incorporate gravitation, or in other words, to quantize gravity.

The pursuit of this goal has been realized through various approaches. One of these approaches
is string theory, which is based on an increase in the number of dimensions, certain dimensions
being compactified, and another approach is loop quantum gravity, which uses a spin foam
structure for spacetime without using a background spacetime metric, contrarily to string theory.
None of these theories have been confirmed by experiments yet, and theoretical predictions are
difficult to obtain.

The approach suggested by noncommutative geometry is based on a noncommutative gene-
ralization of the Lorentzian manifold which represents spacetime. By introducing noncommuta-
tivity at the spacetime level, this approach allows to apprehend the impossibility of spacetime
continuity, as suggested by quantum mechanics, and the intrinsic limit associated to Planck

length [, = \/g ~ 10733 cm. Actually, this approach successfully unified, at the classical level,
the three interactions of the standard model with gravitation, and provided a geometric inter-
pretation of the Higgs mechanism in particle physics. The fundamental object at the interface
between noncommutative geometry and quantum field theory is the notion of spectral triple,
which is a noncommutative generalization of the notion of spin Riemannian manifold, the star-
ting point for the construction of physical theories. By considering an “almost commutative”
spectral triple, that is to say the product of a commutative spectral triple (a compact Rie-
mannian spin manifold, describing the “continuous” spacetime), by a zero dimensional spectral
triple (based on a matricial algebra), it is possible to simultaneously recover the standard model
and general relativity. The fundamental ingredient in this unifying theory is the Chamseddine—
Connes spectral action S = Tr ®(D/A), which is an action functional defined on the preceding
almost commutative spectral triple and which is defined through the spectrum of the Dirac ope-
rator D associated to this spectral triple, where ® is a cut-off function and A is a mass scale
parameter. Specifically, the spectral action unifies the electroweak, strong and gravitational in-
teractions [17,21-25,33,37,86,87,131,136], and corresponds to the number of eigenvalues of the
Dirac operator that are less or equal to a given mass scale A. By proceeding to a fluctuation
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of the metric, that is to say, a generalized gauge transformation associated to the unitary ele-
ments of the spectral triple algebra, it is possible, by expanding the spectral action in powers
of A, to recover the standard model Lagrangian, coupled to the Einstein—Hilbert gravitational
Lagrangian.

Another very important question associated to applications in physics of noncommutative
geometry concepts concerns the renormalization in quantum field theory. Renormalization is a
fundamental mathematical process that extracts physical information (finite numerical quanti-
ties) from mathematical expressions corresponding to infinite quantities. It has been shown [35,95]
that the combinatorics of the perturbative renormalization in quantum field theory are related
to the theory of Hopf algebras, which are the noncommutative Lie groups of symmetry in the
language of noncommutative geometry. Moreover, Dixmier trace and Wodzicki residue, which
are related to renormalization, have been extended by Connes [28,29| in the noncommutative
setting of spectral triples. Thus, we expect that conceptual aspects of renormalization can be
incorporated in a noncommutative formalism of quantum field theory.

In this thesis, we discussed certain mathematical issues related to the computation of the
spectral action on some fundamental noncommutative spectral triples, such as the noncommu-
tative torus and the quantum 3-sphere SU,(2). We also studied the question of existence of
tadpoles (linear terms in the potential A of the fluctuation of the metric in the spectral action)
in the case of commutative Riemannian geometries, and the construction of a symbolic global
pseudodifferential calculus allowing a generalization of the Weyl-Moyal product on a Schwartz
space of rapidly decaying sections on a cotangent bundle of a manifold with linearization.

This text is divided into 5 chapters.

The first and second chapters present the work done in collaboration with Driss Essouabri,
Bruno Iochum and Andrzej Sitarz in the paper Spectral action on noncommutative torus [53].

The first chapter is a review of definitions and properties about spectral triples, pseudodif-
ferential calculus and spectral action. We establish in section 1.3 some results about residues of
zeta functions (p, that will be used subsequently in chapter 2, 3. We also see some properties
about linear terms in spectral actions (tadpoles) which will be used in chapter 4.

We compute, in the second chapter, the spectral action on noncommutative torus through
heat kernel expansion and residues of Hurwitz—Epstein zeta functions. The computation is based
on expansions of terms f [D4| ™%, ¢(p,(0), as noncommutative integrals of certain pseudodifferen-
tial operators. We applied these results to the n-noncommutative torus (COO(TC]}), H, D), which
is a simple spectral triple. The full spectral action obtained on the noncommutative torus is, in
dimension 4,

S(Da, ®, A) = 872 Dy At — 4T &(0) 7(F,, F™) + O(A72),

which shows that a new noncommutative Yang-Mills term 7(F),, F*”), where F,, := 0,(A,) —
0u(Ay) — [Au, Ay, replaces the standard one. For the computation, we had to investigate holo-
morphic continuation of certain series of zeta functions. In particular, we saw that a Diophantine
constraint on the © matrix of deformation naturally appears as crucial in the computation of the
spectral action, when the reality operator J is taken into account. In other words, a Diophantine
condition on © appears when the perturbation D — D + A + eJAJ ™! is considered, but is not
needed for a perturbation of the type D — D + A, where A is a selfadjoint one form.

The third chapter presents the work done in collaboration with Bruno Iochum and Andrzej
Sitarz in the paper Spectral action on SU,(2) [82]. The spectral triple based on the SU,(2)
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quantum group can be seen as g-deformed noncommutative 3-sphere [48]. We compute the full
spectral action on SU,(2) by taking into account the real structure J. The dimension spectrum of
SU,(2) being a finite set, there is only a finite number of terms in the spectral action expansion.
Moreover, it appears that tadpoles exist on SU,(2). We show that the action depends on ¢ and
the limit ¢ — 1 does not exist automatically. When it exists, such limit does not lead to the
associated action on the commutative sphere S®. On SU,(2), we show that the sign F of the
Dirac operator has very special properties: first, it commutes modulo OP~% with the algebra,
and second, it can be seen as a selfadjoint one-form, giving terms which are independent of ¢ in
the spectral action. In order to obtain the spectral action, we used the previous pseudodifferential
calculus defined in chapter 1 and a Poincaré—Birkhoff-Witt decomposition of 1-forms. It appears
that a very special multiplicative behavior of noncommutative integrals with the real structure
J holds on SU,(2): indeed, we show in section 2.4.6 that

][AJBJ‘1|D]_3 = 5][A|D|—3][B|Dy3

where A and B are ¢-1-forms (linear combinations of terms of the form a[|D|, b] with a,b € A).
These results prove that the spectral action on SU,(2) is completely determined by the terms

][AqIDI_”, 1<¢g<p<3,

where A is a §-1-form. We then tackle the precise computation of these noncommutative integrals.
In order to realize these computations, we establish a differential calculus up to some ideal R in
pseudodifferential operators.

The fourth chapter presents the work done in collaboration with Bruno Iochum in the paper
Tadpoles and commutative spectral triples [83]. In quantum field theory, a tadpole is a one-loop
Feynman diagram with one external line, giving a contribution to the vacuum expectation value
of the field. In the setting of noncommutative geometry, these diagrams are represented by linear
terms in the Chamseddine-Connes spectral action. We show in this chapter that there are no
tadpoles of any order in the spectral action of compact spin manifolds without boundary, and no
tadpoles of order less that 5 on manifolds with boundary with chiral boundary condition. Using
pseudodifferential techniques and Wodzicki residue, we track zero terms in spectral actions of
compact spin manifolds. We expect that most of these results can be extended to manifolds with
boundary under very general boundary conditions.

The fifth chapter presents a work [101] about global pseudodifferential calculus on manifold
with linearization. In [59], Gayral et al. have established a remarkable link between deformation
quantization and Connes’ noncommutative geometry. It has been proven that Moyal planes are
(noncompact) spectral triples. The Moyal product is a star-product defined on the Schwartz space
S(R?") and yields a Fréchet pre-C*-algebra structure on that space. The noncompact spectral
triple described in [59] was built on this algebra.

We propose in this chapter the construction of a global pseudodifferential calculus that allows
to extend the construction of the Moyal product to more general spaces, the main goal being the
construction of new noncommutative spectral triples based on deformation quantization star-
products. Specifically, the Moyal product that we obtain is defined on the Schwartz space of
rapidly decaying functions on the cotangent bundle of a manifold. It corresponds to the transfer
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in the symbol space of the kernel convolution product through a quantization isomorphism.
We consider the case of manifolds M with linearization in the sense of Bokobza-Haggiag [9],
such that the associated (abstract) exponential map provides global diffeomorphisms of M with
R™ at any point. Cartan—-Hadamard manifolds are special cases of such manifolds. The abstract
exponential map encodes a notion of infinity on the manifold that allows, modulo some hypothesis
of Sy-bounded geometry, to define the Schwartz space of rapidly decaying functions, globally
defined Fourier transformation and classes of symbols with uniform and decaying control over
the x variable. Given a linearization on the manifold with some properties of control at infinity,
we construct symbol maps and A-quantization, explicit Moyal star-product on the cotangent
bundle, and classes of pseudodifferential operators. We show that these classes are stable under
composition, and that the A-quantization map gives an algebra isomorphism (which depends
on the linearization) between symbols and pseudodifferential operators. We study L?-continuity
and give some examples. We show in particular that the hyperbolic 2-space H has a S1-bounded
geometry, allowing the construction of a global symbol calculus of pseudodifferential operators,
and an intrinsic Moyal product on S(H).

A summary in French of this thesis is given in appendix.
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Chapitre 1

Spectral action on spectral triples

1.1 Introduction

The spectral action introduced by Chamseddine-Connes [21] plays an important role in non-
commutative geometry. More precisely, given a spectral triple (A, H, D) where A is an algebra
acting on the Hilbert space H and D is a Dirac-like operator (see [28,68]), they proposed a
physical action depending only on the spectrum of the covariant Dirac operator

Dop:=D+A+eJAJ ! (1.1)

where A is a one-form represented on H, so has the decomposition
A= Zai[D, bi], (1.2)
i

with a;, b; € A, J is a real structure on the triple corresponding to charge conjugation and
e € {1,—1} depending on the dimension of this triple and comes from the commutation relation

JD =€eDJ. (1.3)

In this chapter, we revisit the notions of pseudodifferential operators on spectral triples,
zeta functions, noncommutative integral, dimension spectrum and spectral action. The reality
operator J is incorporated and we pay a particular attention to kernels of operators which can
play a role in the constant (scale invariant) term of the spectral action.

1.2 Noncommutative integration on a simple spectral triple

1.2.1 Pseudodifferential operators on spectral triples

Noncommutative geometry, with its notion of spectral triple, provides a minimal data which
allows to start doing quantum field theory.

Definition 1.2.1. A triplet (A, H, D) is called a spectral triple if A is a unital *-algebra faithfully
represented as bounded operators on the Hilbert space H, and D is a selfadjoint operator with
compact resolvent such that all commutators [D, a] are bounded for a € A.

A spectral triple is finitely summable, with dimension n, if the resolvent set of D has charac-
teristic values \; = O(j /") when j — co.

A spectral triple is said regular if A and [D, A] are in Nyeny Dom 6% where §(T') := [|D|, T).

15
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If n is even, we shall suppose that there is a Z/2-grading x (the chirality operator) which
commutes with any element of .4 and anticommutes with D. In this formalism, D plays the role
of the Dirac operator in classical Riemannian spin geometry. In other words, D! will represent
the (Euclidean) fermion propagator. In order to have a charge conjugation in our theory, one
adds a real structure, which brings an antiunitary operator J which commutes or anticommutes
with D. In this setting, the gauge bosons will be seen as inner fluctuation of the Dirac operator
D —Dy:=D+A+eJAJ !, where A is a selfadjoint 1-form, which is an operator of the form
> a; [D,b;], where a; and b; are in A.

The notion of real structure on a finite summable spectral triple is related to real K-homology,
and is defined by:

Definition 1.2.2. A real structure J on a finitely summable spectral triple (A, H, D) of dimen-
sion n is an antilinear isometry J such that JD = ¢eD.J, J? = ¢, Jx = ¢”xJ (even case), where
g,e’,e” € {—1,1} and satisfy the following table

n mod 8 0o 1 2 3 4 5 6 7
JP=%1 |+ + - - - - + +
JD=+xDJ | + - + + + — + +
Jx ==xxJ | + — + —

Moreover, any element of JAJ ™! commutes with any element of AU [D, AJ.
A spectral triple (A, H, D) endowed with a real structure J is called a real spectral triple.

Remark that the notion of spectral triple can actually be extended to the framework of von
Neumann algebras [6].

For a given 1-form A on a spectral triple (A, H, D), we will have to compare here the kernels
of D and D4. Note first that they are finite dimensional:

Lemma 1.2.3. Let (A, H,D) be a spectral triple with a reality operator J and chirality x. If
Ae Q%) is a one-form, the fluctuated Dirac operator

Dya:=D+ A+ eJAJ !

is an operator with compact resolvent, and in particular its kernel Ker D 4 is a finite dimensional
space. This space is invariant by J and x.

Proof. Let T be a bounded operator and let z be in the resolvent set of D + T and 2’ be in the
resolvent set of D. Then

(D+T—2)t=D-)1-T+7-2)(D+T-27".

Since (D — 2/)~! is compact by hypothesis and since the term in bracket is bounded, D + T has
compact resolvent. Applying this to T = A + eJAJ ™!, D4 has a finite dimensional kernel (see
for instance |91, Theorem 6.29]).

Since according to the dimension, J? = 41, J commutes or anticommutes with y, x commutes
with the elements in the algebra A and Dy = —xD (see [30] or [68, p. 405]), we get Dax = —xDa
and D4J = +JD,4 which gives the result. ]
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We now set (A, D, H, J) a given real regular spectral triple of dimension n and A a selfadjoint
one-form. We denote

Py the projection on KerD, P4 the projection on KerDy4,
D =D+ Fy,Dy:=Dsp+ Py4.

Py and P4 are thus finite-rank selfadjoint bounded operators. Remark that D and D4 are
selfadjoint invertible operators with compact inverses.

Remark 1.2.4. Since we only need to compute the residues and the value at 0 of the (p, (p,
functions, it is not necessary to define the operators D' or D;ll and the associated zeta functions.
However, we can remark that all the work presented here could be done using the process of Higson
in [79] which proves that we can add any smoothing operator to D or D such that the result
is invertible without changing anything to the computation of residues (see also [37], where this
question is considered).

Define for any o € R

OP" :={T : t— F,(T) € C*°(R,B(H))},
OP*:={T : T|D|"* € OP" }.

where Fy(T) := 1Pl T =PI = Pl T ¢ =Pl since |D| = |D| + Py. Define

§(T) = [|D|, T,
V(T) := [D?,T],
os(T) := |D|*T|D|"%, s € C.

It has been shown in [38] that OP° = p>o Dom(67). In particular, OPY is a subalgebra of B(H)
(while elements of OP® are not necessarily bounded for a@ > 0) and A C OPY, JAJ~1 C OP°,
[D, A] € OPY. Note that Py € OP~> and §(OP") C OP°.

For any ¢ > 0, D! and |D|* are in OP! and for any a € R, D* and |D|® are in OP%. By
hypothesis, |D|~" € L1:°°)(H) so for any a >n, OP~* C L'(H).

Lemma 1.2.5. [38/
(i) For any T € OP° and s € C, o5(T) € OP°.
(ii) For any o, 3 € R, OP*OP? C OP**5,
(iii) If a < 3, OP* C OPP.
(iv) For any o, 6(OP*) C OP.
(v) For any o and T € OP%, V(T) € OP**!.

Proof. (i) We have |D|T|D|™! = T + §(T)|D|=! and |D|7'T|D| = T — |D|7'6(T). A recur-
rence proves that for any k € N, |D|*T|D|=F = Z];:o () 64(T)|D|~? and we get |D|~*T|DJ* =
> a=o(=1)7({) |DI716%(T).

As a consequence, since T, |D|~% and §9(T) are in OPY for any ¢ € N, for any k € Z,
|IDI*T|D|=% € OP°. Let us fix p € Ny and define F,(s) := 6°(|D|*T|D|~*) for s € C. Since for
k € Z, Fy(k) is bounded, a complex interpolation proves that Fj(s) is bounded, which gives
|D|*T|D|=% € OPY.
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(ii) Let T € OP* and T' € OPP. Thus, T|D|~®, T'|D|™" are in OP°. By (i) we get
|D|PT|D|=%|D|~# € OP°, so T'|D|~?|D|°T|D|~#~* € OP°. Thus, T'T|D|~(*+%) ¢ OP".

(iii) For T € OP®, |D|*=# and T|D|~® are in OP°, thus T|D|=% = T|D|~®|D|*=# € OP".

(iv) follows from 6(OPY) C OP°.

(v) Since V(T') = 6(T)|D|+ |D|6(T") — [Po, T, the result follows from (i7), (iv) and the fact that
Py isin OP~°, ]

Remark 1.2.6. Any operator in OP%, where o € R, extends as a continuous linear operator
from Dom |D|**! to Dom | D| where the Dom |D|* spaces have their natural norms (see [38,79]).

We now introduce a definition of pseudodifferential operators in a slightly different way than
in [29,38,79] which in particular pays attention to the reality operator J and the kernel of D
and allows D and |D|™! to be pseudodifferential operators. It is more in the spirit of [22].

Definition 1.2.7. Let us define D(A) as the polynomial algebra generated by A, JAJ ! D
and |D].
A pseudodifferential operator is an operator 1" such that there exists d € Z such that for any
N € N, there exist p € Ny, P € D(A) and R € OP~" (p, P and R may depend on N) such that
PD7? ¢ OP% and
T=PD *+R.

Define W(A) as the set of pseudodifferential operators and ¥(A)¥ := ¥(A) N OP*.

Note that if 4 is a 1-form, A and JAJ ! are in D(A) and moreover D(A) C Upen, OPP.
Since |D| € D(.A) by construction and Py is a pseudodifferential operator, for any p € Z, |DP is
a pseudodifferential operator (in OPP). Let us remark also that D(A) C W(A) C UrezOP*.

Lemma 1.2.8. [29,38] The set of all pseudodifferential operators W(.A) is an algebra. Moreover,
if T € (A and T € U(A)Y, then TT' € U(A)H .

Proof. The non-trivial part of the proof is the stability under the product of operators. Let
T,T" € U(A). There exist d,d’ € Z such that for any N € N, N > |d| + |d'|, there exist P, P" in
D(A), p,p € Ng, Re OP~ N4 R' ¢ OP~N~4 guch that T = PD"%* + R, T' = P’ D% + R,
PD? ¢ OP? and P'D~%' ¢ OP?.

Thus, TT' = PD-*P'D~%' + RP'D~%' + PD-%R' + RR'.

We also have RP'D~%' ¢ Op~N-4+d" — Op~N and similarly, PD2’R’ € OP~N. Since
RR' € OP72N | we get

TT ~ PD™?P'D~%" mod OP7V.

If p =0, then TT' ~ QD~%" mod OP~N where Q = PP’ € D(A) and QD% ¢ Op*+e,
Suppose p # 0. A recurrence proves that for any q € Ng,

q
D72P ~ Y (-D)FVHP)DT 2 4 ()T DAV (P)D T2 mod OPT.
k=0
By Lemma 1.2.5 (v), the remainder is in OP¥+2'~4=3 gsince P’ € OP¥ 2’ Another recurrence
gives for any g € N,

q
D=2 p Z (_1)|k|1v|k|1(p’)D—Q\kh—?p mod O P +2r'—a—1-2p
k‘ly"'ka:O
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Thus, with gy = N +d+d — 1,

an
TT ~ Z (= 1)l pylkly pryp=2khi=2+e) - poq 0PN,
ke kip=0

The last sum can be written QnD~2"N where ry := pqy + (p + p'). Since Qn € D(A) and
QND~2N € OP™4 | the result follows. O

It is convenient to also introduce

Definition 1.2.9. Let D;(A) be the algebra generated by A, JAJ ! and D, and ¥;(A) be the
set of pseudodifferential operators constructed as before with D;(A) instead of D(.A). Note that
W (A) is subalgebra of ¥(A).

Remark that ¥;(.A) does not necessarily contain operators such as |D|¥ where k € Z is odd.
This algebra is similar to the one defined in [22].

1.2.2 Zeta functions, noncommutative integral and spectral action
For any operator B and if X is either D or D4, we define

{(s) = Tr (BIX|™),
Cx(s):=Tr (\X|75).

The dimension spectrum Sd(A,H,D) of a spectral triple has been defined in [29, 38]. It is
extended here to pay attention to the operator J and to our definition of pseudodifferential
operator.

Definition 1.2.10. The spectrum dimension of the spectral triple is the subset Sd(A, H, D) of
all poles of the functions §g : s+— Tr (P|D]_s) where P is any pseudodifferential operator in
OP°. The spectral triple (A, H, D) is simple when these poles are all simple.

Remark 1.2.11. If Sp(A, H, D) denotes the set of all poles of the functions s — Tr (P|D|~*)
where P is any pseudodifferential operator, then, Sd(A, H,D) C Sp(A, H, D).

When Sp(A, H,D) =7, SA(A,H,D) = {n—k : k € Ny }: indeed, if P is a pseudodifferential
operator in OP°, and q € N is such that ¢ > n, P|D|™* is in OP~RG) 50 is trace-class for s in
a neighborhood of q; as a consequence, q cannot be a pole of s — Tr (P\D]*s).

Remark 1.2.12. Sp(A, H,D) is also the set of poles of functions s — Tr (B|D|_S_2p) where
p €Ny and B € D(A).

Introducing the notation (recall that V(T') = [D?,T]) for an operator T,
e(T) := V(T)D™2,

we get from [22, (2.44)] the following expansion for T' € O P4

N
o(T) ~ Y g(z,r)e"(T) mod OP~N-1H4 (1.4)
r=0
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where g(z,7) == 5(%)--- (5 - (r—1)) = (2742) with the convention ¢(z,0) := 1.

rl
We define the noncommutative integral by

][T := Res (H(s) = Res Tr (T|D| 7).
s=0 s=0
The noncommutative integral plays the role of the Wodzicki residue in a spectral triple setting.

Proposition 1.2.13. [38] If the spectral triple is simple, f is a trace on ¥(A).

Proof. Let P € OP*, Q € OP* € U(A). With [Q,|D|™*] = (Q — 0_4(Q)) |D|~* and the
equivalence Q — o_4(Q) ~ = SN g(—s,7) £"(Q) mod OP~N=1+k2 we get

N
P[Q,|D[*] ~ = g(—s,7) Pe"(Q)|D|™* mod OP~N~1Hhith =)

r=1
which gives, if we choose N =n + ki + ko,

n+k1+ka
Res Tr (P[Q,|D|™"]) = ~ 2_:1 Res g(—s, ) Tr (P"(Q)|D| ).

By hypothesis s — Tr (PsT(Q)|D]_5) has only simple poles. Thus, since s = 0 is a zero of the
analytic function s — g(—s,r) for any r > 1, we have Reos g(—s,r) Tr (Pe"(Q)|D|~*) = 0, which
s=

entails that R_eg Tr (P[Q,|D|*]) = 0 and thus

][PQ = Res Tr (P|D|*Q) .

When s € C with R(s) > 2max(k; + n + 1, k), the operator P|D|~%/? is trace-class while
|D|~#/2Q is bounded, so Tr (P|D|~*Q) = Tr (|D|~*/2QP|D|~*/2) = Tr (0_4/»(QP)|D|~*). Thus,
using (1.4) again,

n+k1+ka

E{:eg. Tr (P|D|*Q) :][QP + Z:l E{:eg. g(—s/2,7) Tx (" (QP)|D|™*).

As before, for any r > 1, Reg g(—s/2,7) Tr ("(QP)|D|~*) = 0 since g(0,r) = 0 and the spectral
s=
triple is simple. Finally,

Res Tr (PID|*Q) :][QP.
which yields the result. O

On a spectral triple (A, H, D), the role of the action is played by the “spectral action” as
introduced by A. Chamseddine and A. Connes:

S(Dy, P, A) :="Tr (‘I)(DA/A)) (1.5)



1.3. Residues of (p, for a spectral triple with simple dimension spectrum 21

where @ is any even positive cut-off function which could be replaced by a step function up
to some mathematical difficulties investigated in [54] and A fixes the mass scale. This means
that S counts the spectral values of |D4| less than the mass scale A (note that the resolvent set
of Dy is compact since, by assumption, the same is true for D, see Lemma 1.2.3 below). The
Chamseddine—Connes spectral action principle asserts that (see [37, p. 197|) the spectral action
is the fundamental action functional S that can be used both at the classical level to compare
different geometric spaces and at the quantum level in the functional integral formulation, after
Wick rotation to Fuclidean signature. In other words, the functional S(D4, ®, A) which is related
to the spectrum of the Dirac operator D, contains all physical information of the (geometrized)
quantum field theory associated to the triple (A, H, D). It is therefore crucial to be able to
compute it on some fundamental examples. This spectral action is known on few examples:
[17,22,24,37,53,60-62,69,93|. We will study the case of the noncommutative torus in chapter
2, and the case of SU,(2) in chapter 3. We shall investigate in chapter 4 some questions about
tadpoles, which are the linear terms in A in the spectral action. In the case of a spectral triple
with simple dimension spectrum, we have (see for instance |37, Theorem 1.145])

S(Da,®,A) = Y @ Ak][ [Dal™* + ®(0) (p, (0) + O(A™), (1.6)
O0<keSd*

where @) = % fooo D(t) th/2=1 dt and Sdt is the strictly positive part of the spectrum dimension
of (A,’H,D). Thus, the main problem is the computation of the f|Da|™*, ¢p,(0) terms. We
consider this question in the following section.

1.3 Residues of (p, for a spectral triple with simple dimension
spectrum

We fix a regular real spectral triple (A, H, D, J) of dimension n and a self-adjoint 1-form A.
Recall that

Dy =D+ A where A := A—i—eJAJ_l,
Dy :=Dyg+ Py

where Py is the projection on Ker D4. Remark that A € D(A) N OP° and Dy € D(A) N OPL.
We denote
Vai=Py — F.
As the following lemma shows, V4 is a smoothing operator:
Lemma 1.3.1. (i) (> Dom(D4)k C Ni>1 Dom | D|*.
(ii) Ker Dy C (>, Dom [D|.
(iii) For any a, 8 € R, |D|PP4|D|® is bounded.
(tv) Py € OP™°.
Proof. (i) Let us define for any p € N, R, := (Da)? — DP, so R, € OPP~! and R,(Dom |D[F) C
Dom |D| (see Remark 1.2.6).
Let us fix k € N, k > 2. Since Dom D4 = Dom D = Dom |D|, we have

Dom(D4)* = {¢ € Dom |D| : (D! +Rj)¢ € Dom|D|, Vj 1<j<k—1}.



Chapitre 1. Spectral action on spectral triples

Let ¢ € Dom(D4)*. We prove by recurrence that for any j € {1,--- ,k— 1}, ¢ € Dom |D|/*!:

We have ¢ € Dom |D| and (D+R1) ¢ € Dom |D|. Thus, since R ¢ € Dom |D|, D¢ € Dom |D|,
which proves that ¢ € Dom |D|?. Hence, case j = 1 is done.

Suppose now that ¢ € Dom |D["*! foraj € {1,--- ,k—2}. Since (D1 +R; 1) ¢ € Dom |D],
and R;+1 ¢ € Dom |D|, we get D' ¢ € Dom |D|, which proves that ¢ € Dom |D|/*2.

Finally, if we set j = k — 1, we get ¢ € Dom |D|*, so Dom(D4)* C Dom |D|*.

(i) follows from Ker Dy C ().~ Dom(Dy4)* and (i).

(4ii) Let us first check that |D|*Py is bounded. We define Dg as the operator with domain
Dom Dy = Im P4 N Dom |D|* and such that Dy ¢ = |D|* ¢. Since Dom Dy is finite dimensional,
Dg extends as a bounded operator on ‘H with finite rank. We have

sup [[D1*Paol| < sup I1DI% 6l = | Do]| < o0
¢€Dom D] Py, ||¢]|<1 g€Dom D, [|¢]<1

so |D|“Py4 is bounded. We can remark that by (i7), Dom Dy = Im P4 and Dom |D|*P4 = H.
Let us prove now that P4|D|® is bounded: Let ¢ € Dom P4|D|* = Dom |D|%. By (ii), we
have Im P4 C Dom |DI|* so we get

[PalDI* ¢ < sup | < |D[*¢>|<  sup [ <|D|%,¢ > |
YEIm Py, [[9]I<1 PEIm Py, [[P[<1
< sup  [IDI*¢]{loll = [[Doll |l -

Pelm Py, |lv||<1

(iv) For any k € Ng and t € R, §¥(P4)|D|* is a linear combination of terms of the form
|D|®P4|D|®, so the result follows from (iii). O

Remark 1.3.2. We will see later on the noncommutative torus example how important is the
difference between Dy and D+ A. In particular, the inclusion Ker D C Ker D + A is not satisfied
since A does not preserve Ker D contrarily to A.

The coefficient of the nonconstant term A* (k > 0) in the expansion (1.6) of the spectral
action S(Da, P, A) is equal to the residue of {p,(s) at k. We will see in this section how we can
compute these residues in term of noncommutative integral of certain operators.

Define for any operator T', p € N, s € C,

KylTs) = (=37 [ o (T) -0 (T) dt
0<ty < <ty<1

with dt := dty - - - dt,.
Remark that if '€ OP?, then o.(T) € OP® for z € C and K,(T,s) € OP?.
Let us define

X :=D% —D? = AD + DA + A2,
Xy =X + Vy,

thus X € D;(A) N OP! and by Lemma 1.3.1,

Xy ~X mod OP™™. (1.7)
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We will use
Y :=log(D?%) — log(D?)

which makes sense since D} = D% + P4 is invertible for any A.
By definition of Xy, we get

Y = log(D? + Xy) — log(D?).

Remark that most of the results that we will present here are based on the fact that D4 — D is
a pseudodifferential operator of order 0.

Lemma 1.3.3. [22/
(i) Y is a pseudodifferential operator in OP~' with the following expansion for any N € N

N N—p
3 3 SRR ET XV )0 mod 0P
p=1 -, kp=0

(t3) For any N € N and s € C,

N
[Da| ™ ~ D[+ > K,(Y,s)|D|™" mod OP~NTIHE), (1.8)
p=1

Proof. (i) We follow [22, Lemma 2.2|. By functional calculus, Y = [ I()) dA, where

N
I(A) ~ Z( VPP ((D? + M) 7P Xy)P (D + N mod OPN 73,
p=1

y (L.7), (D +X)7'Xv)" ~ (D*+ A)7'X)” mod OP~ and we get

N
I) ~ ) (1P (D + 1) 7' X) (D + )t mod 0PV,
p=1
We set Ay(X) := (D2 +A)71X)?(D?2 + A)~!and L := (D*+ \)~! € OP~2 for a fixed \. Since

[D? + X X] V(X) mod OP~%°, a recurrence proves that if 7" is an operator in OP", then, for
q € N,

A(T)=LTL ~ Z T)L*2? mod OP" 9%,

With A,(X) = LXA,_1(X), another recurrence gives, for any ¢ € Ny,

q
Ap(X)~ > ()R (XVER (L XVR(X) ) LR med OP TIPSR,
k1, ,kp=0
which entails that
N N—p
I~ (=0t > ()R XV (- XVR(X) <)) LFPEL med 0PN,
p=1 ki, kp=0
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With [;°(D? + )~ (khtr ) g\ = mD_2(|k|l+p), we get the result provided we control the
remainders. Such a control is given in [22, (2.27)].
(ii) We have |D4|~* = eB=(5/2Y =B | D|=% where B := (—s/2) log(D?). Following [22, Theorem
2.4], we get

DA™ = D[+ Kp(Y,5)|D|*. (1.9)
p=1

and each K,(Y,s) is in OP7P. O
Corollary 1.3.4. For anyp € N and ry,--- ,17, € Ng, e (Y)---e"(Y) € U1 (A).

Proof. If for any g € N and k = (k1,- -+, kq) € Ni,

(_1)Ik\1+q+1

k —
I'y(X) == g

Vka(XVk-1 (... XV (X)),

then, I'*(X) € OPIFi+a, For any N € N,

N N—q
Y~> Y THX)D?FF) med 0PN (1.10)
q=1 k1, kq=0

Note that the F';(X) are in D;(A), which, with (1.10) proves that Y and thus €"(Y) =
V"(Y)D~?, are also in ¥1(A). O

We remark, as in [32], that the fluctuations leave invariant the first term of the spectral action
(1.6). This is a generalization of the fact that in the commutative case, the noncommutative
integral { |[D|™™, where n is the dimension of the manifold, only depends on the principal symbol
of the Dirac operator D and this symbol is stable by adding a gauge potential like in D + A.
Note however that the symmetrized gauge potential A + eJAJ ! is always zero in this case for
any selfadjoint one-form A.

Lemma 1.3.5. If the spectral triple is simple,

n

0a(0) = o(0) = 3° " f(AD e (1.11)

g=1

Proof. Since the spectral triple is simple, equation (1.9) entails that
CDA (O) - CD(O) = TI'(Kl(Y, S)|D’_S)|s:0 :

Thus, with (1.4), we get {p,(0) — (p(0) = —%fY. Replacing A by A, the same proof as in [22]
gives

—;][Y =y e ][(Zpl)q. O
q=1
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Lemma 1.3.6. For any k € Ny,

k
Res CDA( ) = RestD +Z Z Res h(s,r,p) Tr (" (Y)---"»(Y)|D|™*),

s=n—k s=n— s=n—k
p=171,- ,7p=0

where
h(s,rp) = (—s/2) / g(—sty,r) - g(—styyry) dt
0<ty < <tp<1

Proof. By Lemma 1.3.3 (i1), |Da|™* ~ |D|™% + Zgzl K,(Y,s)|D|=* mod OP~*+)=R()  where
the convention )y = 0 is used. Thus, we get for s in a neighborhood of n — F,

k
DAl = [D|7* =Y K,(Y,)|D|"* € OP~*H=R0) € £1(1)
p=1

which gives

Res (p,(s) = Res (p(s +Z Res Tr (K, (Y, 5)|D|~°). (1.12)

s=n—k s=n—k

Let us fix 1 <p <k and N € N. By (1.4) we get

N
Ky (Y,s) ~ (—5)P /0 S st ) gl—sty )

Sh<-tp<l, 0

e(Y)---e™(Y)dt mod OP~N-P~L

(1.13)
If we now take N = k — p, we get for s in a neighborhood of n — k
k—p
Kp(Y,s)[ D™= Y h (s,r,p)e™(Y)---e(Y)|D|™* € OPF1-%() C £} (K)
Tl Tp=
o (1.12) gives the result. O

Our operators |D A\k are pseudodifferential operators:
Lemma 1.3.7. For any k € Z, |D4|F € Wk(A).

Proof. Using (1.13), we see that K,(Y, s) is a pseudodifferential operator in OP~?, so (1.8) proves
that |Da|* is a pseudodifferential operator in OP*. O

The following result is quite important since it shows that one can use { for D or Dy:
Proposition 1.3.8. If the spectral triple is simple, Reos Tr (P|DA]_S) = { P for any pseudodif-
s5=

ferential operator P. In particular, for any k € Ny

][‘DA’—(n—k’) - ngfk Cp4(8).
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Proof. Suppose P € OP* with k € Z and let us fix p > 1. With (1.13), we see that for any
N e N,

N
PE,(Y,s)|D[* ~ Y h(s,r,p) Pe" (V) - £"(Y)|[D|™* mod OP~ NP1k,

le"'zrp:O
Thus if we take N =n —p+ k, we get

n—p+k
Rf:g Tr (PK,(Y, s)|D|™*) = Z ng h(s,r,p) Tr (Pe"™(Y)---"(Y)|D|™®).

r1,,rp=0

Since s = 0 is a zero of the analytic function s — h(s,r,p) and s — Tr Pe"(Y)---&™(Y)|D|~*
has only simple poles by hypothesis, we see that Reg h(s,r,p) Tr (Ps’"1 (Y)-- -5TP(Y)]D\*S) =0
s=

and
Res Tr (PK,(Y,s)|D|™®) =0. (1.14)

Using (1.8), P|Da|™ ~ P|D|™* + Y k7 PK,(Y,5)|D|=* mod OP~""1=%() and thus,

k+n
Res Tr(P|Dal ™) = ][P + 3 Res Tr (P, (Y, 5)| D] ). (1.15)
S= p:1 S=

The result now follows from (1.14) and (1.15). To get the last equality, one uses the pseudodif-
ferential operator |D 4|~ (%), O

Proposition 1.3.9. If the spectral triple is simple, then

Fioar = Lo (1.16)

Proof. Lemma 1.3.6 and previous proposition for k = 0. O

Lemma 1.3.10. If the spectral triple is simple,

() f1Dal 0 = f Do — o) f x|,
(if) ][ D~ = ][ D]~ (=) n2( ][ X|D|" + ][ X?|D| 2 ")

Res CDA( ) —<Cp(s) = s:Rne§1 (=s/2)Tx (Y|D| %) = =251 1;{265 Tr (Y!D|f(n71)|D’fs>

where for the last equality we use the simple dimension spectrum hypothesis. Lemma 1.3.3 (7)
yields Y ~ X D=2 mod OP~2 and Y|D|~( ~ X|D|7""! mod OP~~! C L}(H). Thus,

Res Tr (Y[D|~"""V|D|™*) = Res Tr (X|D|™""![D| ™) :][X\Drn—l.
s= S=
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(7i) Lemma 1.3.6 (i7) gives

1
Res CDA( )_ Res cD( )+ Res Zh (s,m,1) Tr ("(Y)|D| %) + h(s,0,2) Tr (Y?|D|%).

s=n—2 s=n—2
r=0

We have h(s,0,1) = —%, h(s,1,1) = 3(£)? and h(s,0,2) = 1(£)?. Using again Lemma 1.3.3 (i),
Y ~XD?-iv(X)D™* - 1X?D™* mod OP>.
Thus,

Res_ Tr (Y|D| ) ][X\D| ”—][( (X)+ X?)|D|2 ™,

Moreover, using f V(X)|D|™* = 0 for any k > 0 since { is a trace,
Res Tr (e(Y)|D|%) = Res Tr (V(X)D™4D| %) = ][V(X)|D\_2_" =0
Similarly, since Y ~ XD72 mod OP~2 and Y? ~ X2D~* mod OP~3, we get
Res Tr (Y?|D| %) = Res Tr (X2D~*|D|™*) ][X21D\2“.
Thus,

R0, 60a(8) = SREEQCD(SH(—”E?)(][X!D\" - 5][(V(X) +X2)[D| 72
Fhegyf veot s o fxort

Finally,

Res_(p,(s) = Res (p(s)+ (—22)( ][X|D|_”— ][X2|Dy T2 4 (n52) ][X2|D| —2mn
s=n—2 s=n—2
and the result follows from Proposition 1.3.8. O

Corollary 1.3.11. If the spectral triple is simple and satisfies f|D\_(”_2) = fZD|D|_” =
fDA|D|™™ =0, then

][ D[~ = 22 ][ ADAD|D| "2 4 2 ][ A?|D[m).

Proof. By previous lemma,

Res (p,(s) = 3% ][A2D|‘" ”][(ZDAD+DZDZ+ZD2E+DE2D)D|—"—2).

s=n—2

Since V(ﬁ) € OP!, the trace property of f yields the result. O
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1.4 Noncommutative integrals and tadpoles

Let (A, D, H,J) be a real regular spectral triple of dimension d. Recall that a one-form A is
a finite sum of operators like a1[D, as] where a; € A. The set of one-forms is denoted by Q1 (A).

Lemma 1.4.1. Let (A, D, H) be a spectral triple and X € W(A). Then

frfr

If the spectral triple is real, then, for X € W(A), JXJ ' € U(A) and

][JXJ—1 :][X* :][X.

Proof. The first result follows from (for s large enough, so the operators are traceable)

Te(X°[D|~*) = Tr ((|D|)X)") = (/D[ *X) = Te(X[D[ 7).

The second result is due to the anti-linearity of .J, Tr(JY J~!) = Tr(Y), and J|D| = |D|J, so

Te(X[D|™%) = Te(JX|D|~5J 1) = Tr(JXJ -1 D|75). O

Corollary 1.4.2. For any one-form A = A*, and for k, | € N,
][Al D* e R, ][(AD_l)k €R, ][Al D% € R, ][XAl D% e R, ][AZD|D|—’f eR.

In [37], is introduced the following

Definition 1.4.3. In (A, H, D), the tadpole Tadpya(k) of order k, for k € {d—1 : 1 € N} is
the term linear in A = A* € QL in the A* term of (1.6) (considered as an infinite series) where
Ds =D+ A

If moreover, the triple (A, M, D, J) is real, the tadpole Tad, ;(k) is the term linear in A,
in the AF term of (1.6) where Dy = D + A.

Proposition 1.4.4. Let (A, H, D) be a spectral triple of dimension d with simple dimension
spectrum. Then

Tadpya(d — k) = —(d — k)][AD|D|—<d—k>—2, Wk £ d, (1.17)
Tadp;a(0) = —][Apl. (1.18)

Moreover, if the triple is real, TadDJrg =2Tadp4a.

Proof. By Lemma 1.3.6 and Proposition 1.3.8, we have the following formula, for any k£ € N,

k—p

k
F0a = f DY ST Res hlsrp) T (€ (1) (1)),
p=1ri, =

-, rp=0
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where
h(s,r,p) = (—8/2)’”/ g(=sti, 1) -~ g(=stp,mp) di,
0<ty < <tp<1
e"(T) :=V(T)D™ %, V(T) := [DQ,T],
g(z,r) = (%2) with g(z,0) :
N N—q
Y ~ Z Z Fk 20kh+9)  mod OP™N=! for any N € N*,

X = Z’D—i—Dg—i— KQ,Z:: A+eJAT L,
Vha (XYt (- XVR(X) 1)), Vg e N* k= (ki, -, kg) € N

_1)\k|1+q+1

k _(
Fq(X) - |kl1+q

As a consequence, for k # n, only the terms with p = 1 contribute to the linear part:
k—
Tadp, 5(d— k) = LinA(][ Dy |k Z Res h(s,r,1) Tr (e"(Lina(Y))[D|7*).
r=0
We check that for any N € N*,

N-1
Ling(Y) ~ Y T{(AD + DAD2) mod 0PN,
=0

Since T, (AD + DA) = (l+1) V{(AD + DA) = l+1 {Vl( A), D}, we get, assuming the dimension
spectrum to be simple
k—1
Tadp, 5(d—k) = S_RC?skh(s,r,p) Tr (¢"(Lina(Y))|D| %)
r=0"
k—1 k—1—r b
=Y h(d—kr1) D G Res Tr (" ({V'(A), D)D)
r=0 1=0 =
k— k—1—r
— Z d k,r, 1 (l_—&—ll)l ][vr—H(K)D‘D‘—(d—k+2(r+l))—2

=—(d— k)][AD]D](dk)2,

because in the last sum, only the case r + 1 = 0 remains, so r = [ = 0.
Formula (1.18) is a direct application of (1.11).
The link between TadD A and Tadpy 4 follows from JD = ¢DJ and Lemma 1.4.1. O

Corollary 1.4.5. In a real spectral triple (A, H,D), if A = A* € QL(A) is such that A =0,
then Tadpya(k) =0 for any k € Z, k < d.

Remark 1.4.6. Note that A = 0 for all A = A* € Q} L, when A is commutative and JaJ ' = a*,
for all a € A, see (4.10), so one can only use Dy = D + A.
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But we can have A commutative and JaJ ' # a* [33, 94]:
Let A1 = C @ C represented on Hy = C? with, for some complex number m # 0,

by 0 0
mi(a) := 0 by 0 |, fora= (b1, b)) €A
0 0 b
0 m m 1 0 0 1 0 0
Dy = m 0 0 , X1 = 0 -1 0 , Jii= 0 0 1 o cc
m 0 b 0 0 -1 010

where cc is the complex conjugation. Then (A1, Hi, D1) is a commutative real spectral triple of
dimension d = 0 with non zero one-forms and such that Jymi(a)J;t = m1(a*) only if a = (by, by).

Take a commutative geometry (.Ag = C®(M), H = L*(M, S), Da, x2, Jg) defined in 4.3.1
where d = dimM is even, and then the tensor product of the two spectral triples, namely A =
A1 @Ay, H=H1QHo, D=D1 @ x2+ 1R D3, x = x1 ® x2 and J is either x1J1 ® Jo when
de{2,6} mod 8 or Ji @ Jy in other cases, see [33, 140].

Then (A, H, D) is a real commutative triple of dimension d such that A % 0 for some
selfadjoint one-forms A, so is not exactly like in definition 4.3.1.

The vanishing tadpole of order 0 has the following equivalence (see [22])
][AD1 =0,VA € Qh(A) —= ][ab :][aa(b), Ya,b € A, (1.19)

where a(b) := DbD~!, equivalence which can be generalized as

Lemma 1.4.7. In a spectral triple (A, H, D), for any k € N,
k k
][(AD‘l)” _ 0, VA€ QL(A), Vne {1, k} ][Haja(bj) ZJ[Hajbj, Va,, by € A.
j=1 j=1

Proof. Note that a[D,bD~! = a &(b) where &(b) := a(b) — b.
Assuming the left hand-side, we get

0= ][(AD_I)W' == ][ald(bl) e ajd(bj) e and(bn)
:][ald(bl) e aja(bj)aj+1d(bj+1) e akd(bk) —][ald(bl) e ajbjaj+16<(bj) e an&(bn)
Vaj;, bj € A. But the last term is zero if f(AD_l)nfl = 0 for all A. By induction, we end

up with 0 = faja(b) - an—10(bp-1) and(by,). Varying n between 1 and k, we get the right
hand-side. ]
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Chapitre 2

Spectral action on noncommutative
torus

2.1 Introduction

In [60], the spectral action on NC-tori was only computed only for operators of the form
D + A and computed for Dy in [62]. It appears that the implementation of the real structure via
J, does not change the spectral action, up to a coefficient, when the torus has dimension 4. Here
we prove that this can be also directly obtained from the Chamseddine—Connes analysis of [22]
that we follow quite closely. Let us recall that

SDye A = Y ¥ A"’][|DA\_'“+<I>(O) (p,(0) + O(AY)
0<keSd+

where D4 = Dy + P4, Pa the projection on Ker Dy, &5 = %fooo D) th/2=1 gt and Sdt is the
strictly positive part of the spectrum dimension of (A, H, D).

In section 2, all previous technical points are widely used for the computation of terms in
(1.6) or (1.11) on noncommutative torus. Most of the terms are based on residues of certain zeta
functions and series of zeta functions that are studied in section 4. We show in particular that
the vanishing tadpole hypothesis is satisfied on the torus.

The spectral action is obtained in section 3 and we conjecture that the noncommutative
spectral action of D4 has terms proportional to the spectral action of D+ A on the commutative
torus.

Since the computation of zeta functions is crucial here, we investigate in section 4 residues
of series and integrals. This section contains independent interesting results on the holomorphy
of series of holomorphic functions. In particular, the necessity of a Diophantine constraint is
naturally emphasized.

All these results on spectral action are quite important in physics, especially in quantum field

theory and particle physics, where one adds to the effective action some counterterms explicitly
given by (1.11), see for instance [17,21,22,24,58,60,62,66,93,135,142-144|.



Chapitre 2. Spectral action on noncommutative torus

2.2 The noncommutative torus

2.2.1 Notations

Let C*°(7&') be the smooth noncommutative n-torus associated to a non-zero skew-symmetric
deformation matrix © € M,(R) (see [26], [115]). This means that C°°(7J') is the algebra gene-
rated by n unitaries u;, ¢ = 1,...,n subject to the relations

S}

U Uj = '©ii Uuj Uj, (2.1)

and with Schwartz coefficients: an element a € C°°(7Z) can be written as a = Y, 7n ax Uy,

where {ax} € S(Z") with the Weyl elements defined by U := e ahxk ult b ke zm,
relation (2.1) reads

UpU, = e~ 3k-0q Uk+q, and UyUy = e h-Oa UUy, (2.2)

where y is the matrix restriction of © to its upper triangular part. Thus unitary operators Uy
satisfy Uy = U_y and [Uy, Uj] = —2isin(3k.01) Uyy.

Let 7 be the trace on C°°(7§) defined by T(Zkezn ay, Uk) := ag and H, be the GNS
Hilbert space obtained by completion of C*°(7Z') with respect of the norm induced by the scalar
product (a,b) := 7(a*b). On Hy = {> jcpn ar Ux : {ar}r € 1*(Z™) }, we consider the left and
right regular representations of C*°(7Z') by bounded operators, that we denote respectively by
L(.) and R(.).

Let also 6, p € {1,...,n}, be the n (pairwise commuting) canonical derivations, defined by

5,(Ux) = ik, Uy, (2.3)

We need to fix notations: let Ag := C*®(7&) acting on H := H, ® C>" with n = 2m or
n=2m+1 (ie., m = [ §] is the integer part of 5), the square integrable sections of the trivial
spin bundle over 7".

Each element of Ag is represented on H as L(a) ® 1am where L (resp. R) is the left (resp.
right) multiplication. The Tomita conjugation Jyo(a) := a* satisfies [Jy,0,] = 0 and we define
J := Jo ® Cy where Cy is an operator on C2". The Dirac operator is given by

D= —id, @", (2.4)

where we use hermitian Dirac matrices . It is defined and symmetric on the dense subset of ‘H
given by C*(7§) ® C?™. We still note D its selfadjoint extension. This implies

Co’ya = —E'yO‘C’o, (2.5)
and
D U, ®e; = kU ® YHe;,

where (e;) is the canonical basis of C2". Moreover, C2 = £19m depending on the parity of m.
Finally, one introduces the chirality (which in the even case is x := id ® (—i)™y! - --4™) and this
yields that (Aeg,H, D, J, x) satisfies all axioms of a spectral triple, see [28, 68].

The perturbed Dirac operator V,,DV,j by the unitary

Vi i= (L(w) @ lom)J (L(u) @ 19m)J 1,
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defined for every unitary u € A, uu* = u*u = Uy, must satisfy condition (1.3) (which is equivalent
to H being endowed with a structure of Ag-bimodule). This yields the necessity of a symmetrized
covariant Dirac operator:

Dy:=D+A+eJAJ!
since Vi, DV;; = Dr(w)@1,m[D,L(u*)21,m]: iD fact, for a € Ag, using JoL(a)Jy ' = R(a*), we get
eJ(L(a) ®7*)J ' = —R(a*) ®+*
and that the representation L and the anti-representation R are C-linear, commute and satisfy
[0a, L(a)] = L(0aqa), [0a, R(a)] = R(daa).
This induces some covariance property for the Dirac operator: one checks that for all k& € Z™,
L(Uk) © 19m[D, L(Ug) ® 1am] = 1@ (=kun"), (2.6)
so with (2.5), we get Ux[D, U}] + eJU[D,Uf]J ' = 0 and
Vi, DV, = D = DL0,)@1ym [D.L(U} ) ®1am] - (2.7)
Moreover, we get the gauge transformation:
VuDaV, =D, (a) (2.8)
where the gauged transform one-form of A is
Yu(A) = u[D,u*] + uAu™, (2.9)

with the shorthand L(u) ® 1om — u.
As a consequence, the spectral action is gauge invariant:

S(Da,®,A) = S(D,,4), P, A).
An arbitrary selfadjoint one-form A, can be written as
A= L(_iAa) ®7a7 Ag = _AZ € Ao, (2'10)

thus
Da = —i (0o + L(Aa) — R(Ad)) ® 7~ (2.11)

Defining
A, = L(A,) — R(Ay),

we get D4 = —g*1°2(8ay + Aay )Gy + Any) @ lom — 2010, ® 7192 where
70102 1= (yMy0? — 40290,
QC¥1C!2 = [501 + Aal’ 66!2 + Aaz] = L(Fmaz) - R(Fmaz)
with
Foya; = 0y (Aaz) — Oay (Aal) + [AOélvAOQ]' (2.12)
In summary,
=302 (80, + L(Aa,) = R(Aa,)) (0 + L(Aay) = R(Aay)) @ 1pm
% (L(FOCIOCQ) - R(FOCIOCQ)) ® ’YalaQ' (2'13)
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2.2.2 Kernels and dimension spectrum
We now compute the kernel of the perturbed Dirac operator:

Proposition 2.2.1. (i) KerD = Uy ® C*", so0 dim Ker D = 2™.
(ii) For any selfadjoint one-form A, KerD C KerDy4.
(i4) For any unitary u € A, Ker D, (4) = Vi, Ker Da.

Proof. (i) Let 1 =37 ek j Uy®e; € KerD. Thus, 0 = D% = D ki cr,;|k|?> Ux ® e which entails
that ckyj\k|2 =0 for any k € Z" and 1 < j < 2™. The result follows.
(4i) Let ¢ € KerD. So, 1 = Uy ® v with v € C2" and from (2.11), we get

Dath =D+ (A+ eJAT VY = (A+ eJAT Y = —i[An, Ul @40 =0

since Uy is the unit of the algebra, which proves that ¢ € Ker D 4.
(737) This is a direct consequence of (2.8). O

Corollary 2.2.2. Let A be a selfadjoint one-form. Then Ker D4 = Ker D in the following cases:
(i) Ay = L(u) ® 1om [D, L(u*) ® 1om| when u is a unitary in A.
(i) || Al < 5.
(iii) The matriz %@ has only integral coefficients.

Proof. (i) This follows from previous result because V, (U ® v) = Uy ® v for any v € C2".

(i) Let ¢ = > i ck,j Uy @ ej be in KerDa (so 3, ek j1? < o0) and ¢ = >-i ¢, U ®ej.
Thus ¢/ := 1 — ¢ € Ker Dy since ¢ € KerD C Ker D4 and

1Y arghaUr@y%ll> = [IDY|]P = || = (A+eJAT |2 < 4||AIP([W]17 < [1/].
0£kEZ™, j
Defining Xy, := Y, kaYas X,% = >, |ka|? 12m is invertible and the vectors { Uy ® Xye; Yotkezn,
are orthogonal in H, so
2

S O kal) lenslP < D ery

0#£keZ™,j o 0#kEZ™, j

which is possible only if ¢ j = 0, Vk, j that is ' =0 et ¢ = ¢ € Ker D.
(ii7) This is a consequence of the fact that the algebra is commutative, thus A 4 eJAJ ! =
0. O

Note that if A, := A, + eJA,J L, then by (2.6), Ay, = 0 for all k € Z" and ||Ay, || = |k,
but for an arbitrary unitary u € A, A, # 0 so Dy, # D.

Naturally the above result is also a direct consequence of the fact that the eigenspace of
an isolated eigenvalue of an operator is not modified by small perturbations. However, it is
interesting to compute the last result directly to emphasize the difficulty of the general case:

Let ¢ = 3 cpn 1<jcom i U ® €5 € KerDa, 80 3 jcpm 1<j<om |c1.j|? < co. We have to show
that ¢ € Ker D that is ¢; ; = 0 when [ # 0.

Taking the scalar product of (U ® e;| with

0=Dyy = Z Cl,j(laUl — i[Aa, Ul]) ®’}/a€j,

l7 a7]
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we obtain

0= Z 017]'([0‘(5]@’[ — Z(Uk, [Aa, Ul]>)<ei77aej>'

Lo, j

If Ao =3, 100, U ® 7 with {aa, b1 € S(Z7), note that (U}, Up] = —2i sin(11.0m) Upjp, and

Uk [Aa, Ul) = > aqu(—2isin(31.00) Uy, Upiq) = —2i aq s sin(3k.01).
l/eZn

Thus

n 2™m
0= Z Z ch,j(la(sk,l — QCLa’k,l sin(%k.@l)) (ei,'yaej>, VkeZ" Vi, 1 <i<2™, (2.14)
l€Zn a=1 j=1

We conjecture that Ker D = Ker Dy at least for generic ©s:

the constraints (2.14) should imply ¢;; = 0 for all j and all [ # 0 meaning ¢ € Ker D. When
%@ has only integer coefficients, the sin part of these constraints disappears giving the result.
We shall use the following

Definition 2.2.3. (i) Let § > 0. A vector a € R” is said to be j—diophantine if there exists
¢ > 0 such that |g.a —m| > c|q|™%, Vg € Z"\ {0} and Vm € Z.
We note BV(6) the set of —diophantine vectors and BY := Us~oBV(0) the set of diophantine
vectors.

(ii) A matrix © € M, (R) (real n x n matrices) will be said to be diophantine if there exists
w € Z™ such that '©(u) is a diophantine vector of R".

Lemma 2.2.4. If %6 is diophantine, Sp(COO(TéL),H,D) = 7Z and all these poles are simple.
Proof. Let B € D(A) and p € Ny. Suppose that B is of the form
B = arerqTfl ‘D‘pr*lar_lbr_l ...Dn |D|p1a1b1
where r € N, a; € A, b; € JAJ L, gi,p; € Ng. We note a; =: Y, a;; U; and b; =: >, b;; U;. With
the shorthand ky, .. 1= Ky, -+~ ky,, and 0l = Aoyl we get
DD arby Uy ® ej = Z al,hbl,l’l Uy, UkUl/l |k + 0+ 0GP (k+ 1 + lll),ul,uql ® yHtHare;
L,
which gives, after r iterations,
» r—1 R R e -
BUy@e; = > abUi, - UpUpUy, - Uy [ [ b4 lA-BP (bt Ti+1)) 1y s @411 Hirot o oqfhbae,
Ll i=1

where Zil =Aarg o Gpl, and Zl/ = bLl/l s bryllr'
~ ~ ~ -~ r—1 r—1
Let us note F,(k,1,1') := [[\2} |k +1i +l§|pi(k+li+lg)u§,ug. and y# 1= M1 M1 .'7”%’“51,
Thus, with the shorthand ~. meaning modulo a constant function towards the variable s,

Tr (BIDI %) ~e 30 by 7 (U403, - U UpUy -+~ Uy ) Blbd) Tu(y#).
koLl
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Since U, --- Uy, U, = U U, - - - Ulle_izgli@k we get
(U_xUy, - - Uy, UpUy, -+ Uy) = 57 1,4+12,0 et (Ll) o—i3 07 1i-Ok

where ¢ is a real valued function. Thus,

— 99— / : ’ ~> F k‘,l,l/ —iy71;.0k
Tr (B|D) 2p $) ~e Z Z 1ol Osr 1,21,0 by u( ‘k);‘imp 1 Tr(+*)
EoLU

~e fu(s) Tr(+").

The function f,,(s) can be decomposed has a linear combination of zeta function of type described
in Theorem 2.4.16 (or, if = 1 or all the p; are zero, in Theorem 2.4.4). Thus, s — Tr (B\D|’2p’s)
has only poles in Z and each pole is simple. Finally, by linearity, we get the result. O

The dimension spectrum of the noncommutative torus is simple:

Proposition 2.2.5. (i) If %@ 1s diophantine, the spectrum dimension of (COO(TéZ),H,D) 18
equal to the set {n —k : k € Ng} and all these poles are simple.
(ii) ¢p(0) = 0.

Proof. (i) Lemma 2.2.4 and Remark 1.2.11.

(14) Cp(8) = Lpezn 21<j<om Uk @5, [D| Uk @ ¢j) = 2’"(2;6271 |k1|s +1) =2"(Zn(s) +1).
By (2.42), we get the result. O

We have computed (p(0) relatively easily but the main difficulty of the present work is
precisely to calculate {p,(0).

2.2.3 Noncommutative integral computations

We fix a self-adjoint 1-form A on the noncommutative torus of dimension n.

Proposition 2.2.6. If %@ is diophantine, then the first elements of the expansion (1.6) are
given by

][|DA]_” :][|D\—" = omHlgn/2p(y-l, (2.15)
][|DA|”_’“ =0 for k odd.

][|DA’n2 =0.

We need few technical lemmas:

Lemma 2.2.7. On the noncommutative torus, for any t € R,

][ZDD\_t :JZDZ\DW =0.
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Proof. Using notations of (2.10), we have
A ! . —s o
Tr(AD|D| %) ~ Z]—ka’f @ ej, —iky k|7 [Aa, Ur] © 7v"e;)
. @, / —S
~e —i Tr(y%y )Zkku|k| (Uk [Aa, Uk]) = 0

since (U, [Aa, Ug]) = 0. Similarly
~ /
Tr(DA|D[™?) ~e ZjZka ® ej, \k|_szlaa,z 2sin E2L(1 + k) Upr ® 777%€;)

!/
~e 2Te(y*y") Y D dagsin B2 (L4 k) K| Uk, Ursr) = 0. O

Any element h in the algebra generated by A4 and [D, A] can be written as a linear combination
of terms of the form a1 - - - a,,P~ where a; are elements of A or [D, A]. Such a term can be written
as a series b := )Y a1, - g agt,Ul Ui, ® ¥ -7 where a;q, are Schwartz sequences
and when a; =: ), qiU; € A, we set a; 1 = a;; with v* = 1. We define

L(b) = T(Zlal,al,h g, U - Up,) Tr(7% - y%9),
By linearity, L is defined as a linear form on the whole algebra generated by A and [D, A].
Lemma 2.2.8. If h is an element of the algebra generated by A and [D, A],
Tr (h|D|™*) ~e L(h) Zn(s).
In particular, Tr (h|D|_8) has at most one pole at s =n.
Proof. We get with b of the form Y a1, -+ g,a,0,Us, -+ - U, @ ¥ -+ -y,

!
Tr (b‘DrS) ~e Z (Uk, Z A1,a1,ly " 'aq,anqul T Uquk> Te(y® )|k
kezn l

~c T(Z Al,aq,l *° 'aquq,quh T Ulq) Tr(y* - -v) Zy(s) = L(b) Zn(s).
!

The results follows now from linearity of the trace. O

Lemma 2.2.9. If %@ is diophantine, the function s — Tr (eJAJ T A|D|™*) extends meromor-
phically on the whole plane with only one possible pole at s = n. Moreover, this pole is simple
and

Res Tr (eJAJTA|D| %) = agoa§ 2" 72T (n/2) .

s=n

Proof. With A = L(—iA,) ® v, we get eJAJ ! = R(iA,) ® 7%, and by multiplication
eJAJ YA = R(Ag)L(A,) ® 4 y%. Thus,

Tr (eJAT P AIDI) ~o S (Uny AaUp Ag) K]~ Te(7799%)
kGZ"

! .
~e SO0 angag €O k|7 Te(r )
kezn l

/ .
~e 2™ Z Z gy a®; e*O k|75

kez™ 1
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Theorem 2.4.4 (i) entails that > ) zn > @aya®; e®®! |k|=* extends meromorphically on the
whole plane C with only one possible pole at s = n. Moreover, this pole is simple and we have

/ .
Res D aar a2 ™ k™ = aa af Res Zn(s)
kez™ 1

Equation (2.41) now gives the result. O

Lemma 2.2.10. If %@ is diophantine, then for any t € R,
][ XD = 6 2" (=3 0%+ apag) 2072 0(n/2) ")
l

where X = AD + DA + A2 and A =: —i Y00 U@~

Proof. By Lemma 2.2.7, we get f X|D|™" = Res;s— Tr(A2|D|~57). Since A and eJAJ ™! com-
mute, we have A2 = A%2 + JA?2J 1 4 2eJAJ ' A. Thus,

Tr(A%|D| ™57t = Tr(A%|D| =57t + Te(JA2J Y D=5 + 2 Tr(e JAJ L A|D|~571).
Since |D| and J commute, we have with Lemma 2.2.8,
Tr (A%|D|™57Y) ~e 2L(A2) Zn(s + 1) + 2 Tr (eJATLAID| 7).
Thus Lemma 2.2.9 entails that Tr(A2|D|~5~*) is holomorphic at 0 if ¢ # n. When ¢ = n,

Res Tr (A2|D|~57t) = 2mF1(— Zl:aa,l a®, + agoad ) 2n"2T(n/2)71, (2.16)

which gives the result. O

Lemma 2.2.11. If %@ is diophantine, then
][EDZD|D|—2—” = —"7;2][,12|D|—“.
Proof. With DJ = eJD, we get
][EDED\DH” = 2][ADAD]D|2" + 2][5JAJ1DAD]D|2”.
Let us first compute f ADAD|D|~2~". We have, with A =: —iL(A4,) ® v* =1 =iy, aa, U3 ® 72,

_5—9— / k+l1
Tr (ADADID™727) e =33 a1y Gan ity (U kUL UL Ur) 402 To(yo)
kol

where y®H := y*2yH2yY1 1 Thus,

Y, "k k
][ ADAD|D| 2" = — Z% -ro ey (57 ) oo™
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We have also, with eJAJ ™! = iR(A,) ® 7%,

- -5 k+1
Tr (e JAJ 'DAD|D| =572~ n) Z Zaamaal 0T k%%%)%ﬂ( o),
l1,l2
which gives
T AT DADIDI " = 00 R (3 80) Trr ).
s=
k

Thus,

AD A —2— ! Kk
%][ADAD|D| = (aa%oaaho - Z aaz,—laahl) Ress—o ( \k\usl-kz;fn) Tr(y™*).
! k

With > éf‘;_f;fn = %T”Zn(s +n) and Cy, := Resy—g Zn(s 4+ n) = 20™/2I'(n/2)~! we obtain
%][Z’DZDID‘QH = (aOéQ,OaOtlyO - Z aag,flaal,l) % Tr(’YaQ’V#’Yal’YM)'
!

Since Tr(y*2yHy*1y,) = 2™(2 — n)d*> !, we get

;][KDED‘D’_Z_H =2"(—as0a5 + Z% ~aft) SR,

Lemma 2.2.10 now proves the result. ]

Lemma 2.2.12. If %@ is diophantine, then for any P € U1(A) and ¢ € N, q odd,

][P|D|("q) =0.

Proof. There exist B € D1(A) and p € Ny such that P = BD~?’ + R where R is in OP~9" 1.
As a consequence, fP|D|_(”_‘J) = fB|D\_"_2p+q. Assume B = a,b,D¥ta,_1b,_1---D%ayb;
where r € N, a; € A, b; € JAJ ™Y, ¢; € N. If we prove that {f B|D|7"~%%4¢ = 0, then the general
case will follow by linearity. We note a; =: >, a;; U; and b; =: ), b;; U;. With the shorthand
kﬂl’ﬂqi = k#l e k/‘qi and MG = APyl we get

D% a1bUy ® e = Z a1, bl,l’l UllUkUl’l (k+1 + lll)uhuql @ yHtbae;
I

which gives, after iteration,
_ r—1 . L
BU,®ej = ZalblUlr U Uply, -+ Uy H(k + L4 )MPW @AM Lug Lyt e
LI i=1
where @; 1= ay, - - -arlr and gl/ i= by -+ byyy. Let’s note Qu(k,1l) = H::_ll(k 1+ lA)
'r 1 r—

1,1
and y# = 41 i ~yHHar. Thus,

/ P /
][B |D|7"2te = E{ESZ > Gy (U, - Uy UpUy, - Uy V;ﬁg% Tr(y") .
koLl
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Since U, --- Uy, U, = U U, - - - Ulle_izgli@k, we get
T(U—k:Ul,. U UgUyy - Ul’r) = Oy 1410 o) =321 1Ok

where ¢ is a real valued function. Thus,

/ . ~ Na—iNT L Ok
—n—2p+q __ 7 l,l/ ~ Qb(k,l,l )e 1%
][B [ DI = Res > > by o @by S — Tr(Y)
kLl

=t Res fu(s) Tr(+%).

We decompose Q(k,1,1') as a sum >, o My ,(1,1') Qp (k) where Qp ,, is a homogeneous
polynomial in (ki,-- -, kn) and My ,(1,') is a polynomial in ((11)1,- -+, (Ir)ns ()15, (I)n)-

Similarly, we decompose f,(s) as Y ¢ fnu(s). Theorem 2.4.4 (i7) entails that f, ,(s) extends
meromorphically to the whole complex plane C with only one possible pole for s+2p+n—q = n+d
where d := deg Q. In other words, if d + ¢ —2p # 0, fj, 4(s) is holomorphic at s = 0. Suppose
now d + g — 2p = 0 (note that this implies that d is odd, since ¢ is odd by hypothesis), then, by
Theorem 2.4.4 (i)

Res () = V / Qnp () dS (u)

uesSn—1
where V' := 37, ey Mp (1, 1) ete(hl) 5211#12,0&}&/ and Z := {I,I' : >/ ,1; = 0}. Since d is
odd, Qnu(—u) = —Qnp(u) and [, gu—1 Qn () dS(u) = 0. Thus, I;{Zeg fnu(s) =0 in any case,
which gives the result. O

As we have seen, the crucial point of the preceding lemma is the decomposition of the nume-
rator of the series f,(s) as polynomials in k. This has been possible because we restricted our
pseudodifferential operators to Wy (A).

Proof of Proposition 2.2.6. The top element follows from Proposition 1.3.9 and according to
(2.41),

_ _g— gm+1 n/2
][’D‘ "= Res Tr (|D|™7") = 2" Res Zu(s + 1) = “rjy -

For the second equality, we get from Lemmas 2.2.8 and 1.3.6
k k—p
- — —(n—k)
Res (o, ()= Y hln—korp) f () (1) D],
p=1 71, ,rp=0
Corollary 1.3.4 and Lemma 2.2.12 imply that f&™ (V) ---"»(Y)|D|~™*) = 0, which gives the

result.
Last equality follows from Lemma 2.2.11 and Corollary 1.3.11. O

2.3 The spectral action

Here is the main result:
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Theorem 2.3.1. Consider the n-NC-torus (C*(1%),H,D) where n € N and 5-0© is an x n
skew-symmetric real diophantine matriz, and a selfadjoint one-form A = L(—iAy) @ v*. Then,
the full spectral action of Dy =D+ A+ eJAJ 1 is
(i) forn =2,

S(Dy, ®,A) = 4w Dy A% + O(A72),

(7i) forn =4,

2

S(Da, @, A) = 87° &y A — 2= ®(0) 7(F,, F"™) + O(A™?),

(ii7) More generally, in
S(Dy, ®,A) = Z@n,k cn_i(A)A"F 4+ O(AY),
k=0

cn—2(A) =0, ¢p—(A) =0 for k odd. In particular, co(A) = 0 when n is odd.

This result (for n = 4) has also been obtained in [62] using the heat kernel method. It
is however interesting to get the result via direct computations of (1.6) since it shows how this
formula is efficient. As we will see, the computation of all the noncommutative integrals require a
lot of technical steps. One of the main points, namely to isolate where the Diophantine condition
on O is assumed, is outlined here.

Remark 2.3.2. Note that all terms must be gauge invariants, namely, according to (2.9), in-
variant by Aq — Yu(Aa) = uAou® + ude(u*). A particular case is u = Uy where Updo(Uf) =
—ikoUp.

In the same way, note that there is no contradiction with the commutative case where, for
any selfadjoint one-form A, Dy = D (so A is equivalent to 0!), since we assume in Theorem
2.3.1 that © is diophantine, so A cannot be commutative.

Conjecture 2.3.3. The constant term of the spectral action of D on the noncommutative n-
torus is proportional to the constant term of the spectral action of D + A on the commutative
n-torus.

Remark 2.3.4. The appearance of a Diophantine condition for © has been characterized in
dimension 2 by Connes [27, Prop. 49] where in this case, © = 9(91 é) with 8 € R. In fact, the
Hochschild cohomology H(Ae, Ae*) satisfies dim HI(Ag, Ae*) =2 (or 1) for j =1 (orj=2)
if and only if the irrational number 0 satisfies a Diophantine condition like |1— ™|~ = O(n¥)
for some k.

Recall that when the matriz © is quite irrational (see [68, Cor. 2.12]), then the C*-algebra
generated by Ag is simple.

Remark 2.3.5. [t is possible to generalize above theorem to the case D = —igt,d, ® " instead
of (2.4) when g is a positive definite constant matriz. The formulae in Theorem 2.3.1 are still
valid.



42

Chapitre 2. Spectral action on noncommutative torus

2.3.1 Computations of

In order to get this theorem, let us prove a few technical lemmas.

We suppose from now on that © is a skew-symmetric matrix in M, (R). No other hypothesis
is assumed for O, except when it is explicitly stated.

When A is a selfadjoint one-form, we define forn € N, g€ N, 2<¢g<nand o € {—,+}¢

At .= ADD2,
A™ :=eJAJ 'DD2,
A% = A% ... AL

Lemma 2.3.6. We have for any q € N,

][(Zwl)q —][(ZmD2)q = > }q][A".

oce{+,—
Proof. Since Py € OP~°, D~' = DD~2 mod OP~> and f(AD~1)? = f(ADD~?)1. O

Lemma 2.3.7. Let A be a selfadjoint one-form, n € N and ¢ € N with 2 < g < n and o €

{—,+}2. Then
][ A% = ]l A,

Proof. Let us first check that JPy = PyJ. Since DJ = &JD, we get DJPy = 0 so JPy =
PyJPy. Since J is an antiunitary operator, we get PyJ = PyJ Py and finally, PyJ = JFy. As a
consequence, we get JD? = D%J, JDD™2 =¢DD2J, JATJ ' =A~ and JA~J 1 = AT,

In summary, JA% J~1 = A7,

The trace property of f now gives

][A" :][A"q-~-A"1 :][JAqul.--JMljl][A% ATl :][A". O

Definition 2.3.8. In [22] has been introduced the vanishing tadpole hypothesis:
][AD1 =0, for all A € Q}L(A). (2.17)

By the following lemma, this condition is satisfied for the noncommutative torus, a fact more
or less already known within the noncommutative community [137].

Lemma 2.3.9. Let n € N, A = L(—iAy) @ 7% = =i ) jcpn @01 Uy @7%, Aq € Ao, {aa1 }1 €
S(Z™), be a hermitian one-form. Then,

(i) f APD™7 = f(eJAJYYPD™7 =0 forp > 0 and 1 < q < n (case p = q¢ = 1 is tadpole
hypothesis).

(i) If %@ is diophantine, then f BD™9 =0 for 1 < ¢ < n and any B in the algebra generated
by A, [D, Al, JAJ™! and J[D, AlJ L.
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Proof. (i) Let us compute
][ AP(eJAJ YW D™,
With A = L(—iA,) @ v* and eJAJ ! = R(iA,) ® 7%, we get
AP = L(_Z'Aal) . L(_Z‘Aap) ® ,yOél .. .,-yap

and /
(eJAT VW = R(iAny) - R(iAy ) @7 -4
P

We note aqa, = aay 1y *** Qay,,- Since

L(—iAn) - L(—=iAq, )R(iAy ) -~ R(1Ay )Up = (—0)P 4 Zaa 1oy Uy - U UUyp - -
1 o ; ; P v

/ 1
LU

and '
Uy U, Uy = UgUy, -+ Uy, e i 1)-Ok

we get, with
Uy :=Up, - UlpUy .. 'Ul’
/ ik.©Y l; kuy-ku
gma’a/(s, kL1 ) =e' Z r;{‘.l|57+2q Qq,l ao/ I,
o

/ya’a/’lu‘ = fyal 7 P/yall fy pfy/‘l‘l .../ylu‘q’

AP(eJ AT D7D Uy ® €; ~e (=i i guaar (5., 1,1) Ul @ v He;.
LU

Thus, f AP(eJAJ )P’ D1 = R_eg f(s) where
f(s) : = Tr (AP(eJAT Y D=9 D|?)
~c (_Z)p ip, Z ,<Uk‘ & e, Z g,u,a,a’(sa ka l) l/)UkUl,l’ & r}/a’a/7uei>

kezZmn LU
~e (_Z)p Z’p/ Z / T( Z glha?a/(s, k, l, l/)UlJ’) Tr(’y“’a’a/)
kezZm Ly
ZI’ Z Zg“ao‘ sk, LI T (Ul l/) Tr(y u,a,a’)‘
kez™ LU

It is straightforward to check that the series Z;,z,z/gu,a,a/ (s, k,1,1") T(Uul) is absolutely summable
if R(s) > R for a R > 0. Thus, we can exchange the summation on k and [,!’, which gives

F(8) ~e (=P 3 S g (8,1, L 1) 7 (Ur) Te (7).

Ll kez™

If we suppose now that p’ = 0, we see that,

k a /
_Z Z Z |k|s+2‘; aal(szp OTr('y’“O‘va)

l kezm



44 Chapitre 2. Spectral action on noncommutative torus

which is, by Proposition 2.4.15, analytic at 0. In particular, for p = ¢ = 1, we see that f AD™! = 0,
i.e. the vanishing tadpole hypothesis is satisfied. Similarly, if we suppose p = 0, we get

P kg kg ~ o0
(=) E : E: kT2 o O ﬂlli’OTl"(W“ )
U kez»

which is holomorphic at 0.
(71) Adapting the proof of Lemma 2.2.12 to our setting (taking ¢; = 0, and adding gamma
matrices components), we see that

iy 1;.0k

ok .
][ D1 = Res Z Z id(Ll) 52 L0 aa . bﬁ i k- 7;@;-&-2(1 Tr(,y(.“,aﬁ))
Ll

where (#®%) is a complicated product of gamma matrices. By Theorem 2.4.4 (ii), since we
suppose here that %@ is diophantine, this residue is 0. ]

Even dimensional case

Corollary 2.3.10. Same hypothesis as in Lemma 2.5.9.
(i) Case n = 2:

][AqD_q = —0g24m T(AaAa) .
(it) Case n = 4: with the shorthand u, .. 1y = OpipsOpaps + Opr s Opopa + Ot jraOpopus »

][AqD T =0ga 7% 127 (Aa1 v 'Aa4) Tr(y ™ ey ™yt ) -

Proof. (i,ii) The same computation as in Lemma 2.3.9 (i) (with p’ =0, p = ¢ = n) gives
_ : Ty oo B, ., .
][A”D n— 1}55(—@)"(2 ) (Y AagUl - Ur,) Te(y™ -t oytin)
kezn le(zn)n
and the result follows from Proposition 2.4.15. O

We will use few notations:
IfneN g>21:=(, ,li-1) € (Z" ' a:= (a1, - ,ay) € {1, -+ ,n}, k € Z"\{0},
o€ {—,+}, (ai)i<i<n € (S(ZM))",

lq = E lj, )\a = (—i)q H 05, aa’l = Aoyl - - .aamlq N

1<j<q-1 j=l..q
Go(k,l) = > (05— kOL+ > oj(li+...+11).0l,
1<j<q-1 2<j<q—1

(S k‘ l) L k,ul(k+ll)u2~~~(k+ll+-~~+lq71)uq
LR IR L T P L

with the convention 22<j<q_1 = 0 when ¢ = 2, and g,(s,k,1) = 0 whenever I; = —k for a
1<i<q-—1. o
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Lemma 2.3.11. Let A = L(—iAy) @Y = —i ) 1cpn @0, Ui @ v where Ay = —A}, € Ao and
{aa,; }1 € S(Z"), with n € N, be a hermitian one-form, and let 2 < g <n, o € {—,+}1.
Then, f A7 = R_eg f(s) where

f(s) = Z Z,)‘U o3 %0 (kD) 9u(8, k1) Toy Tr(y@angha .. y@1qk1y,

le(Zrya—1 keZr
Proof. By definition, f A7 = R_eg f(s) where

Tr(A% - - - A% D|7%) ~, Z ,<Uk ®e'|k[TFAT AT ® €) = f(s).
kezn

Let r € Z" and v € C?". Since A = L(—iA,) ® 7%, and eJAJ ! = R(iA,) ® v*, we get
ATU, @v=ADD?U, ® v = Appts—Ur @90 =
AU, @v=eJAJ'DD72U, @ v = eJAJ !

\\2+50AU®7’Y“

Ur @Y = i—£—U, Aq @ v¥~vH0.

Ir\2+5 0 Ir\2+5 0

i
With U;U, = eir'elUTH and U, U =e —g" lUTH, we obtain, for any 1 < j < g,

) r@l T
A%V, @ v = Z( 0j)ie’l 2 |r\2—f§ o Gl Ur1 @ Y*v*v.
lezn

We now apply ¢ times this formula to get

7
k[ PA%T AT U @ e = A Y €220 g (5, k,1) Gy Uppy 1, @709 y™1ye

le(zn)e
with
ok, 1) :=01kOlL +02(k+11).Ola+...+0,(k+11+...+14-1).0l,.
Thus
F)= 3 700 32 390D (s, k1) g Uss, 1, e25OT01) Tr(yoato ... qo190)
kezr le(zn)a
Z Ao Z e2¢"kl) (s, k1) aalézl ) Tr(y¥aqha ... y¥1yHt)
kezr  le(zn)d J
- Z Ao Z e§¢a(kﬁl) 9u(5, K, 1) Gog Tr(yanta .. y@1y)
kezZn  le(zn)at

where in the last sum [, is fixed to — Z1§j§q71 l; and thus,
dok,l) = Y (05—0g)kOL+ > oj(li+...+1;-1).0l;
1<j<q-1 2<j<q—1

By Lemma 2.4.9, there exists a R > 0 such that for any s € C with R(s) > R, the family

560 (k1 a
(29759 gu(s, k1) ad) g peqzm oy ez

is absolutely summable as a linear combination of families of the type considered in that lemma.
As a consequence, we can exchange the summations on k and [, which gives the result. O
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In the following, we will use the shorthand

Lemma 2.3.12. Suppose n = 4. Then, with the same hypothesis of Lemma 2.5.11,

(i) ;][(A+)2 _ ;][(A)Q =03 Gay g a1 (190192 — Go102]12).

lez4
. 1 3 1 - .61
(i) — 3 ][(A+) = —3][(A ) =4c Z Aoy, 11—y al2 Aoy, SID 252175,
l;ez*
1 +\4 1 —\4 __ a1 Qo s l1.9(l2+13) : 12.0l3
(113) 4][(A )t = 4][(A )" =2c Z Aoy, —1y—ly—ls Qo I O, @y ° SN 5 sin 2572
1;,€74

(iv) Suppose 5O diophantine. Then the crossed terms in f(AT + A™)9 vanish: if C is the
set of all 0 € {—,+}9 with 2 < q < 4, such that there exist i,j satisfying o; # o;, we have

ZO’GC fAU =0.
Proof. (i) Lemma 2.3.11 entails that f AT = Res > ez —f(s,1) where

D kpy (kD) ~ _
f(s,0) := 7|k‘|§+z|k+‘”22 Ao, Tr(y?2y2y My and Gy i= Gyl Gag,—1 -
keZm

We will now reduce the computation of the residue of an expression involving terms like |k+1|? in
the denominator to the computation of residues of zeta functions. To proceed, we use (2.37) into
an expression like the one appearing in f(s,l). We see that the last term on the righthandside
yields a Z,(s) while the first one is less divergent by one power of k. If this is not enough, we
repeat this operation for the new factor of |k + I|* in the denominator. For f(s,l), which is
quadratically divergent at s = 0, we have to repeat this operation three times before ending with
a convergent result. All the remaining terms are expressible in terms of Z, functions. We get,
using three times (2.37),

1 1 2kIHE | CRIHP)Z (2k04]12)3
TP S E T RE T e =i (2.18)
Let us define
l Z Eup (kD) g ~
fa,u S, \k\5+2\k+l|2 Qql
kezmn

so that f(s,1) = fau(s,1) Tr(y*2yH2y*1yH1) Equation (2.18) gives
foc,u(sa l) = fl(sa l) - f2(87 l) + f3(87 l) - T(S7 l)

with obvious identifications. Note that the function

Ty (kD) o (2K14H]1)12)3 ~
_ © w
r(s,) =) AR Gal
kezn

is a linear combination of functions of the type H(s,l) satisfying the hypothesis of Corollary
2.4.12. Thus, r(s,1) satisfies (H1) and with the previously seen equivalence relation modulo
functions satisfying this hypothesis we get fo . (s,1) ~ fi(s,1) — fa(s,1) + f3(s,1).
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Let’s now compute fi(s,1).

Doy (kD) g ~ Tk k
fi(s, ) = g u1|k|s+4u2 Aol = ol E |Z|lsf42

keZm kezn

1kpq

|k|b+4 is holomorphic at 0. Thus, fi(s,[) satisfies (H1),

Proposition 2.4.1 entails that s — >, ;. =

and fo,u(s, 1) ~ —fa(s,1) + fa(s,1).
Let’s now compute fa(s,l) modulo (H1). We get, using several times Proposition 2.4.1,

fa(s,1) = Thpy (kD) g (RIHI) ~ " (2K Ky kg + (2K Ky Lo Uk kg g 1Py~
2(S,t) = PR Aol = BRE Qq,l
kezn kezn
P2k kg Ly ~ U2k Ky ~
~ 0+ si16 k2 Qay,l + EHSHQ Qq,l +0.
|| |k
kezZm kezmn

Recall that > 7n |:|§k+6 — %y 2 Zn(s +4). Thus,

i1 o~ Oin ~
Jol(5,0) ~ 20,1500 223 Zy (5 + 4) + 12 G 2222 Z,, (5 + 4).

Finally, let us compute f3(s,!) modulo (H1) following the same principles:

Ty (B g (2K14H]1)2)2 ~
fg(S,l) = Z o |]g|25+8 Qa,l

kezn
B 1 (2K) 2Ry Fpuy (20 2Ry Ly 1 Ry Koy 11 Ry Ly (ARD) 12Ky Koy +(ARD 2Ry Ly ~
= K]+ T8 Aol

kezZm

- ! kikjhp Ky
~ 41"V Z ‘k‘ij‘-&l-su l+0
keZm
In conclusion,
! W Ly + |12 6,01 )A0 i Z 4) + 41 G Thikihi by l
fa,u(S, )~ ( w1 bus + 1] muz)aa,l n(s+4)+ Qa,l [k[++8 ga,u(sv )-
keZm

Proposition (2.4.1) entails that Z,(s 4+ 4) and s +— Zkezn’% extend holomorphically in

a punctured open disk centered at 0. Thus, ga (s, !) satisfies (H2) and we can apply Lemma
2.4.13 to get

+\2 _ _ 4 _.
—][(A )P =Res 3 f(s.0) = D Res gayu(s,1) Tr(y*29#2y19#) = ) Res g(s,1).
lezn lezm lezm

The problem is now reduced to the computation of R_eg g(s,1). Recall that Ress—g Z4(s+4) = 272
by (2.41) or (2.38), and

! kikjkikm w2
Ress—o Z ‘kj‘s-ls-s (6135lm + 6zl5jm + 5lm6jl) 13-

Thus,

2~
5265 gay#(s’ l) = —73 Qo (lulluz + %’”25#1!!2)'
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We will use

Tr(*y“l eyt = Tr(l) Z s(P) 5#131#192 6#P3NP4 T 5MP2j,1 KPy; (2'19)
all pairings of {1--25 }

where s(P) is the signature of the permutation P when Pa,;,—1 < Pay, for 1 < m < n. This gives

Tr(y22yH2 @i yht) = 2M(§O2H2 G — §OI02GH | §O2H G201 ) (2.20)
Thus,
Res g(s,1) = =T (s lpy + 5|10y ) (094261 — 251201 - §o2in giec)
= —2cTa, (1°11%% — §*1°2|1)2).
Finally,

é][(AJF)Q = %][(A_F —c Z oyl Qg —1 (171192 — 52192[1|?).

lezn

(i) Lemma 2.3.11 entails that f ATT+ = 1;{:63 2 a)e@my2 f(8,1) where

/ 7 7
. 21101y kuq (b+)pg (k+l2)ug ~ Q3 3 A Q2 o 42 QL 1 ]
s, ) = i1e2 =23 g T
fls,0) =) Kb P God TE(7*0nfyaytey iyt
kezm

=: fau(s,1) Tr(y@3yHsyo2yhzy@ 1)

and Qo1 = Gy 1y Gy lo N with ls := 11 + [s.

We use the same technique as in (7):

11 2khin | (2kh|nf?)?
N ERGzRERE
1 L kB, kDB
|k+l2|2 ‘k|2 |k|4 |k5|4|k+l2|2
and thus,
11 2kl 2kb y popg -
|k+l1|2|k+12|2 [k[* kO %6 + ( s ) ( ) )

where the remain R(k,!l) is a term of order at most —6 in k. Equation (2.21) gives

fau(s,l) = fi(s, 1) +r(s,1)

where r(s,[) corresponds to R(k,1). Note that the function

1oL By (k40) 0o (k+12) pa R(ED) ~
r(s’l): E 16211®l2 g ( )#‘2k(|s+22)u3 ( )aa,l

keZm

is a linear combination of functions of the type H(s,!) satisfying the hypothesis of Corollary
(2.4.12). Thus, r(s,[) satisfies (H1) and fq ,(s,1) ~ fi(s,1).
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Let us compute fi(s,!) modulo (H1)

l Oly kuq (k+11) (k+12 ~ l Ol ku, (k+101) (k+lg) (2k.11+2k. lg) ~
fi(s ) = E i |k|5—20—6 - § “32 B - |k|s+§3 Al
kezZm kezm
s kps lo +hky kol ~ ku,kuoky, (2k.014+2k.12) ~

~ E ’ ztel@lQ n1 Rpo QTi\Hgl 13 t1pg _ Z Z6211912 11 Rug tizl(HSl 1) Gl

kEZ" kezm
— llel2 7 1 [ 7 /klll kug ku3 ki

=ie2 ((l1u25u1u3 + l2,u35H1M2) 124(5 + 4) - 2( 1+ l2) Z |k|s+87)

kezm

=: Ja,u(s,1).

Since ga,pu(s,1) satisfies (H2), we can apply Lemma 2.4.13 to get

fant=re > s

T (1 l)E(zm)?

= > RSSga#(s,l)Tr(va?’v“?"y”v”v“w“l)ZZZXI-
(1la)e(zry?

Recall that lg := —l; — ly = —l5. By (2.38) and (2.40),

l16)l2

Res Gau(S, l)zeQ a,l (2(_% + lz)%( 2 Opizi + Opu s Opini + OpiyiOpuopis )

2
+ (Mg Opirpis = 131150y pin) ) -

l1®l2

We decompose X; in five terms: X; = 2™ ”2 1e2 al (T1 +To + T3 + Ty + T5) where

TO = %(_ll + lé)(du,yépz + 6“/)51/1' + 6;1,1'51/;)) + llydup - l3p6p,1/7
(5o¢3p5agu(5a1u §aspga2ar guv 4 5a3p5a2u5a1u)TO’
( 5203 GV SO |y §O208 SOUP SUV 5&2&36pu5a1V)T0’
T3 (5a3v(5a2ﬂ5a1u §asy goapsoam 4 5043V5PN50£1012)T0’
(=
= (

ﬁ
i

FOIOBFOP GV 4 §O1OB GV FOUL _ 5O1O3 GO OV
5&3#5012P5011V 503,#5/11’5&1&2 +5C¥3H5041P5042V)T0.
With the shorthand p := —l; — 2l3, ¢ := 2l; + I3, r :== —p — ¢ = —11 + I3, we compute each Tj,
and find
3T1 — 5a1a2 (2 _ 2m)pa3 + 5a3a1qa2 _ 5042041q043 + 5a3a2qa1 + 50430427,041 _ 501201174043 + 5&3&17,0127
3T2 — (2m _ 2)5&2&3])&1 _ 2m5a2a3qa1 _ 2m50¢20¢3,},,041
3T _ 60{10&3 a9 60&20&3]9061 _"_ 5a1a2pa3 + 2m50¢20¢1qa3 _"_ 6@3062 (0%] 60[30[174(12 + 50(10(2,r0é3,
3T4 — _50(10(327’!7,[)042 _ 5a1a32mqa2 + 60(10&3 (2m _ 2),,,,0(2’
3T5 — 50[10[3p(12 _ 60&10&2p063 _|_ 50[30{2p0t1 + 50&30&2(]0[1 _ 5a1a2qa3 + 50[30[1(]0[2 + (2 _ 2771)6()(1()[2,',,(13.

Thus, ‘
X, =2m %Z e%ll~@l2 aa,l (qa35a1a2 4 po2§0108 4 o1 5a2a3) (222)



Chapitre 2. Spectral action on noncommutative torus

and
][(A+)3 =1i2c(S1 + Sy + S3),

where S7, So and S5 correspond to respectively #3512, r®*2§®13 and p*1§*2*3, In Sy, we
permute the [; variables the following way: Il — I3, I3 +— 1, I3 — l5. Therefore, [3.01; — (3.0
and ¢ — r. With a similar permutation of the «;, we see that S; = So. We apply the same
principles to prove that S; = S5 (using permutation Iy — la, Iy +— I3, I3 +— [1). Thus,

3 ][(AJF)?’ =12c Zaa,l e211-:0%2 (I1 —12)*#6%1%* = Sy — S5,
l;

where Sy correspond to [; and S5 to lo. We permute the [; variables in S5 the following way:
[1 — lg, lo — 11, I3 — I3, with a similar permutation on the «;. Since 1.0y — —[1.0 1y, we
finally get

1 +\3 _ l @l asg sajo
3 ][(A )? = —4cZaa1 I Gagly Qag,—ly—ly SN 572 [ %,
l;

(¢ii) Lemma 2.3.11 entails that f ATT++ = 1}265 D o ts)e@nys Juals, 1) Ty where

0 :=1,.0ls + [1.6l3 + [5.0l3,
Tr g o= Tr(yinhiytinghinazyhytiyin),

Lo ky, (k41 k+l1 k+1 ~
fM (S l) — 620 11 ( 1) g ( 22\#3( 3)#4 dels
: 2 2 e Pt e 0o

keZn

Aal = Qo ly Qaglz Cag,ls Coy,—11—lo—l3-

Using (2.37) and Corollary 2.4.12 successively, we find

Z
5 Ky kg kg kuy ~ *9 kmkuzku:a kg ~
Fual Z e2’ TR T2 R P[0 Ha P [T Ha a2 Gaul ™ Z [Bjs¥8 Qo
kEZn kEZn

i ~ . .
Since the function Zkezn/629 k‘”k'“k'?# aq, satisfies (H2), Lemma 2.4.13 entails that

faryi= 3 eba e S bt e < 3 X,
l

(l1,l2,l3)€(Z)3 kezn

Therefore, with (2.40), we get X; = ”—2~ 1 e (A+ B+ C), where

Tr (v 4y Sy Y22y ),
Tr(y Ay oy Sy 2y 2y, v Vs ),
C:= Tr(vvvvwvvv)
Using successively {v#,~7"} = 20" and ~#v,, = 2™ 1om, we see that
A=C =4 Tr(y*y*3y32y*)]
B = —4 (Tr(y*1y™y*192) 4 Tr(y™y*2y%59™)).
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o1

Thus, A+ B+ C = § 2m (540350200 4 §oac §oscs _ 95oacz§osar) and

X, = % om 6%0 Tl (5a4a35a2a1 4 fac gazaz 25&40125013011). (2‘23)
By (2.23), we get
f(A+)4 =2c (—2T1 + 15 + T3),

where
i
- 50 iy sasa
Ty = 5 Qoy,ly Qag,lz Qag,lo G by €2 50»Z¢li e
I1,005la
[
._ E 50 Qiag s
Ty := Aoy ly Gzl Gas,ly Qay,l €2 6O,Zili GHLAs g
[1,005la
%
- 50 aqo) Sasa
T3 := g Aoy ly Gzl Gas,lo Qay,l €2 5O,Zili oA g3,
I1,005la

We now proceed to the following permutations of the [; variables in the T} term : Iy — o, I3 +— [y,
I3 — 14, Iy — l3. While ), [; is invariant, 6 is modified : § — l2.011 +12.014+1,.014. With 502%
in factor, we can let Iy be —Il1 — lo — I3, so that 8 — —f#. We also permute the «; in the same
way. Thus, ‘
1
—26
Ty = Z Qag,ls Aay,ly Car,l; Cag,ls € 2 50:22‘ l; gasen joacz,
I1,005la
Therefore,
2Ty =2 Z Aoy ly Aag,lz Cag,le Caq,ly COS% 50122‘11' gAAR §asa, (2'24)
U1y.la
The same principles are applied to T3 and T5. Namely, the permutation l; — Iy, ls +— I3, I3 — o,
l4 — 1y in Ty and the permutation lj +— Iy, Iy — I3, I3 +— 11, Iy — l4 in T3 (the a; variables are
permuted the same way) give

7
5 (o7 Yo% a3
Iy = E Aoyl Caz,lz Aoz ,la ol €2¢ 50721'11‘ O 9,

l1,..,l4
7
-5 (e %Yo’ a3
15 = E , Aoy ly Caz,lz Aag,ly Gag,ly € 2% 6072ili gz g
l1,..,0a

where ¢ :=1,.0 I3 + 1.0 I3 — [5.0 [3. Finally, we get

+\4 o] ¢ [
][(A ) =4c Z Aay,ly Qon,lz a121 a112 50,Zi l; (COS 5 — CO8 §)

l1,..504

. ar as i 11.O9(2+13) . 15.0l3
= 8¢ E Aoy ,—1y —ly—l3 Qo l3 O, Gy, Sin 5 sin 2572, (2.25)

Iyl

(tv) Suppose ¢ = 2. By Lemma 2.3.11, we get

][A" = Res IZZ Ao fau(s, 1) Tr(y*2f2q®4H1)
E n
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where
"y (k+Dpy ink.©L ~
e 1 po ink.
foz,,u(57 l) = |k|5+2|k+l|2 € aa,l
keZn

and 7 := %(01 —o9) € {—1,1}. As in the proof of (i), since the presence of the phase does not
change the fact that r(s,[) satisfies (H1), we get

fa,u(s’l) ~ fl(svl) - fQ(Sal) + f3(8’l)

where

Ty (B+Dpy ink.OL~
fl(S,l) = Z Hl‘k‘8+4u2 e Qa,l,

kezn
j{:’k (k+0) po (kI ink.OL ~
f2(87 l) = = "I:ﬁ+6 6“7 aa7l7
kezn
Ty (B0 ug kA1) in k.01~
f3(s,1) = E o |Z|23+8 e Qo1
kezn

Suppose that [ = 0. Then fa(s,0) = f3(s,0) = 0 and Proposition 2.4.1 entails that

/ kukpo ~
fi(s,0) =" 2T

kezn |K|

is holomorphic at 0 and so is fa,u(s,0).
Since %@ is diophantine, Theorem 2.4.4 3 gives us the result.
Suppose ¢ = 3. Then Lemma 2.3.11 implies that

o _ H3 Q3 | AH1LA Q1

where

/ . 3
. ik.O(e1l14e2l2) ,50201.0l2 kpy (k) py (B+Hl+l2) g ~
fu,a(sy 1) = § keZ"/\ae e2 RS2kl 2 TE a2 Pl

and g; := 3(0; — 03) € {—1,0,1}. By hypothesis (1,e2) # (0,0). There are six possibilities
for the values of (e1,e2), corresponding to the six possibilities for the values of o: (—, —, +),
(= +,4+), (+,—+), (+,+,—), (—,+,—), and (+,—, —). As in (ii), we see that

l leik‘@(51l1+52l2)k‘ul (k+l1)u2(k+/l\2)ilz3
Jua(s 1) ~ ( § [k[s+0

keZn

Z leik-O1litenln) b, (k1) g (k42) g (2k.11 +2k.12)

4
~ 50201.01
BEE Ag Qg €270,

kezn
With Z := {(l1,l2) : e1ly + e2lp = 0}, Theorem 2.4.4 (ii7) entails that ;¢ zn)2\ 7 fua(s, ) is
holomorphic at 0. To conclude we need to prove that
D 9(0) =) > fuals ) Tr(y#sq02 - 4#190)
o o leZ

is holomorphic at 0. By definition, A, = io10203 and as a consequence, we check that

g(_7 _7+) = _g(+7+7 _)7 g(+7 _7+) = _g(+7 _7_)7 g(_7+7+) - _g(_7+7 _)7
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which implies that ) _ g(c) = 0. The result follows.
Suppose finally that ¢ = 4. Again, Lemma 2.3.11 implies that

][A” Res Z fua(s,1) Tr(yFay®s ... qH1ya1)

s=0

le(zn)3

where

f 8 l Z Ao Zk oy ? &l (0211 Bla+os(l1+12).013) kuy (k+l1)py (ki +l2) ps (bl +Ho+3) 1y, a
pocx (k[ P2kt 2[k+ 1+ |2kl Fla a2 Tl
kezZm

and ¢; := 3(0; — 04) € {—1,0,1}. By hypothesis (e1,e2,€3) # (0,0,0). There are fourteen possi-
bilities for the values of (e1,€9,¢€3), corresponding to the fourteen possibilities for the values of
o: (_7 EREE) +)7 (_7 K] +7 +)7 (_7 +7 ) +)7 (+7 R +)7 (_) +7 +7 +)7 (+7 _7 +7 +)7 (+7 +) ) +)7
(+7 +> +a _)a (_7 ) +) _)7 (_7 +7 ) _)7 (+a RS _)7 (_7 +7 +> _)7 (+7 Rl +7 _) and (+7 +7 ) _)
As in (i), we see that, with the shorthand 6, := 09l1.Oly + o3(l1 + 12).Ol3,

/ . 3 7
EOS3 il 205 kuikuskugk
f#,a(& l) ~ E k:eZn)\o el i Eili e2 |u|2 +M83 Ha ol = g”’a(s’ l) .

With Z, = {(I1,12,13) : Y., &il; = 0}, Theorem 2.4.4 (iii), the series 2ie@mz, Tumals,l) is

holomorphic at 0. To conclude, we need to prove that
Zg ZRes Zg#asl ) Tr(yH4y®t - 4H1421) = 0.
o l€eZs

Let C' be the set of the fourteen values of ¢ and C'7 be the set of the seven first values of o given

above. Lemma 2.3.7 implies
S g0 =2 ¢(0)

oeC oeCy
Thus, in the following, we restrict to these seven values. Let us note F,(s) := 3"} czn W%m
so that ‘
L0, ~ a for
9(0) = Res Fu(s) Ao Y 2% gy Tr(y#y%t - yt1y™).
= €20
Recall from (2.23) that

Res F Tr(~AH4~y4 .. Ay HLAOL) — 9p(§Oa0s jo20n 4 goaon §aszaz _ 9 goucs §a3ar)
Res F,(s) Tr(y"9™ - y™) = 2 + )
As a consequence, we get, with 5(11 = Gagly Qo lss

g(o) =2cAs Y e2% Gy O 0Oy (674086201 4 goacagasez _ gguanzgaset)
le(zn)4
=: QCAU(Tl =+ TQ — 2T3)
We proceed to the following change of variable in T1: Iy +— Iy, lo — I3, I3 — o9, 4 — 4. Thus, we

get O, — Y, := 09l1.0l3 + O'3(l1 + lg).@lg, and Z?:l gili ¥ e1l1 + e3ls + e9l3 =: ua(l). With a

similar permutation on the «;, we get

i
5 -~ (o7 Ye% a3Q
g 321% Gq,l 52?:111.70 5€1l1+5312+€213,05 12,
le(zn)*
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We proceed to the following change of variable in Tg: [1+— 1y, lo— I3, I3 +— 11, l4 — l4. Thus, we
get 0, — o 1= 03l2.013 + o3(ly + 13).0l;1, and Zle gili — e3ly + e1la + ealz =: v, (1). After a
similar permutation on the «a;, we get

[
_ E ' 5% Qg a3
T2 = le(zn)s e27° Qg (52?:1 1,0 65311+8112+5213,0 1) ) .

Finally, we proceed to the following change of variable in T5: Iy — ls, lo — I, I3 — Iy, 14 — 3.
Thus, we get 6, — —0,, and Z?:l gil; — (g9 —e3)l1 + (1 — e3)la — 3l =: wy(1). With a similar
permutation on the «;, we get

05044042 s

1
_ ~ip,
T3 = E :le(Z")4 € 27 oy 622 11,0 O(ea—ea)l1+(e1—e3)la—esls,

As a consequence, we get

g(a) - QCzle(Zn)4 (ll, la, ZB) Gq,l 52 5044042 5a3a1

where K, (l1,12,1l3) = As (65% Ouy(1),0 T e2% v (1),0 — e2% 5 5 cili0 — e 2% 5%(1),0).

The computation of K,(l1,ls,l3) for the seven values of o yields

K1 (I1,12,13) = 01, 413,0 + Olo+13,0 = Ol +12,0 = Ol 412,05

( ) =

Kt (I, 12,13) = 013415,0 + 01y +12,0 = O1y+15,0 — O13+15,05

Ko—iy(l,lal3) = 5l2+13,0 + 011 415,0 — 5l2+l3, — 0154130,
( )=

l2 @l15

L1010 L1,.00 11,.01,
Kol byl ( 52 Li 0—|—€2 621 11170_62 Yoy L0 —e2 61370)’

l3 ®l26 + eglg.@ll(s _ 6512.9135 _ e%lg.@llé
ly, 12,0 11,0 12,0)>5

K—+++(lla l27 l3

7 [ [ 1
5101.01 5102.01 5101.01 513.01
Ky (linla,ls) = — (270200 + €22 508, 0 — €250, g — €232, o),

iy 11,01 11,01 11,01
Ky y(l1,lo,13) = PR G1,,0 + €22 TR0y 0 — €2 TR0, 0 — €22 0 ).

i=1 Y
Thus,

D Kol lg, 13) = 20010 — 0523y, 0)sin Lok
oeCy -

and

_ _ i 1.0l ~ Qg2 Szl
> glo)=ide Y (d0 0528 1,0) SN TG Ao Ot g, o 042077
oeCy le(zn)4

The following change of variables: I — o, Iy — lo, I3 — 14, l4 — 3 gives

Q400 O30 o 11.9ls ~ a0 sa3on
Z 523 1.0 sin -9k 5 1 5241 0 1) 1) = — Z 015,0 SIn 572 G 52411%0 1) 1)
lG(Zn le(Zn)Al

Z =18¢ Z 8150 sin !

oeCy le(zn)4

SO
a2 sazan

Ol ~
Aol 52% 1;,0
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Finally, the change of variables: Iy +— l4,14 — lo gives

Z 8150 sin 1 l2 o 52%%0 Soaoz gazan Z 81,0 Sin l1.2®lz ot 52411%0 Joaaz gazan
le(zm) le(zr)*
which entails that » ... g(o) = 0. O

Lemma 2.3.13. Suppose n =4 and %@ diophantine. For any self-adjoint one-form A,

(pA(0) = ¢p(0) = =7 (Fay 0, ).

Proof. By (1.11) and Lemma 2.3.6 we get

SRORAUES SIS DI ¥

¢=1 ce{+-}o

By Lemma 2.3.12 (iv), we see that the crossed terms all vanish. Thus, with Lemma 2.3.7, we get

2y ][ (2.26)
By definition,

q=1
Foja, = ZZ (Gars b oy = Gk Fay) Uk + Z Qay ks Qo i [Uk, Ul]
k k1

= ZZ [(GOCQJC koq — Qayk kaz) —2 Z Aoy k—1 Qag,l Sin(le)] Uk
k l

CDA (

Thus

T(Faja, F41?) = Z Z [(aom,k kay = oy kay) — 2 Z Gay k=1 Qg l/ Sin(k.Tel/)]

ay,as=1 kec74 oyt
[(GQQ’_k kal = Qay,—k k:OéQ) -2 Z Qoy,—k—1” Ay l” Sln(@ﬂ .
l77€Z4

One checks that the term in a? of 7(Fy, o, F*1*2) corresponds to the term f(A1)? given by Lemma
2.3.12. For ¢ = 2, this is

—2 Z Aoyl Ao, —1 (lallaz — Oayas ’”2)'
€74, a1, as

For ¢ = 3, we compute the crossed terms:

i (Gank kay = Gay i kas) afit af? (Ux[Uss, 1] + [Up, U U,
kKl

which gives the following a3-term in 7(F,q, F912)

l@l «
-8 E Aoy, —11—1s al2 Ay, Sin L2 172,

l;
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For ¢ = 4, this is

11.9(l2+13) Ol3
2 2

sin f-

—4 Z Aoy, 11—l —I3 Qag,ls alcél alof sin
l;
which corresponds to the term f(A*)%. We get finally,
n
—1)4
S ][(A+)q = — 7 (Fay 0y F102). (2.27)
q=1

Equations (2.26) and (2.27) yield the result. O

Lemma 2.3.14. Suppose n = 2. Then, with the same hypothesis as in Lemma 2.3.11,

i =fwr-o

(ii) Suppose %@ diophantine. Then

][A+A_ = ][A_A+ =0.

Proof. (i) Lemma 2.3.11 entails that f AT = R_Gg > iez2 —f(s,1) where

! Ky (k+1 ~
fls,0) = Zke%% Qo] Tr(y®2af2yiaft) = fu,a(svl) Tr(y* 22y iyht)

and G, = Gq, | Gy, —1- This time, since n = 2, it is enough to apply just once (2.37) to obtain
an absolutely convergent series. Indeed, we get with (2.37)

Tk (k+0)py ~ T kg (k40 g (2k14H]12) ~
_ E w I § u b
fu,a(sv l) = W Aol — 1 \k\3+42\k+l|2 Qoy,l-

kez? keZ?

. ’ Ky (k40 RkH]1?) ~ . . . .
and the function r(s,1) := > o LERETE Gq, is a linear combination of functions of

the type H (s,l) satisfying the hypothesis of Corollary 2.4.12. As a consequence, r(s,1) satisfies
(H1) and

Thpy (k4D py ~ Ty kpy ~
kez? kez?
Note that the function (s,1) — hyo(s,1) = 22622% Qg satisfies (H2). Thus, Lemma 2.4.13
yields

%ﬂwzéﬁwMMﬁwwwww

By Proposition 2.4.15, we get Reos hya(8,1) = 0y ps T Gayr- Therefore,
s§=

][ AT = =Y " Gg Tr(y*2 9" ) = 0
lez?
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according to (2.20).
(ii) By Lemma 2.3.11, we obtain that fA~" = 1326521622 Ao fou(8,1) Tr(y@2yt2y@1ykt)

where \, = —(—i)? =1 and

" kpy (k+Dus ink.OL~
._ H1 nay ink.
foz,,u(syl) = BERIEE € Qq,l
kez?

and n := %(01 —o039) = —1. As in the proof of (i), since the presence of the phase does not change
the fact that r(s,!) satisfies (H1), we get

Tkpy (k41 ink.©l ~
Fau(s,0) o Y Bl (kO G m g (5,0).
kez?

Since i@ is diophantine, the functions s +— ZZGZQ\ (0} Ga,u(8,1) are holomorphic at s = 0 by

Theorem 2.4.4 3. As a consequence,

— Tkpy kg ~
][ ATT =Res ga(5,0) Te(y*29" 29 9") = Res ) SR a0 Te(y729129%191).
kez?

Recall from Proposition 2.4.1 that Ress—o >z “ﬁkrfkj; = 0;; m. Thus, again with (2.20),

][A_+ = Q07 Tr(y*2yHy*y,) = 0. O
Lemma 2.3.15. Suppose n = 2 and %@ diophantine. For any self-adjoint one-form A,

(p4(0) = ¢p(0) = 0.
Proof. As in Lemma 2.3.13, we use (1.11) and Lemma 2.3.6 so the result follows from Lemma
2.3.14. O
Odd dimensional case

Lemma 2.3.16. Suppose n odd and %@ diophantine. Then for any self-adjoint 1-form A and
oe{—,+} with2<qg<n,
][ AT =0.

Proof. Since A7 € ¥;(A), Lemma 2.2.12 with k = n gives the result. O

Corollary 2.3.17. With the same hypothesis of Lemma 2.5.16, for any self-adjoint one-form A,
(p4(0) =¢p(0) = 0.

Proof. As in Lemma 2.3.13, we use (1.11) and Lemma 2.3.6 so the result follows from Lemma
2.3.16. O
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2.3.2 Proof of the main result

Proof of Theorem 2.5.1. (i) By (1.6) and Proposition 2.2.6, we get
S(D4,®,A) = dndy A? + &(0)¢p, (0) + O(A™?),

where ®y = £ [ ®(t)dt. By Lemma 2.3.15, (p,(0) — (p(0) = 0 and from Proposition 2.2.5,
(p(0) =0, so we get the result.

(i4) Similarly, S(Da, ®,A) = 872 @4 A* + ©(0)(p,(0) + O(A™?) with &4 = § [ P(t) tdt.
Lemma 2.3.13 implies that (p,(0) — (p(0) = —c7(F,, F*) and by Proposition 2.2.5, (p,(0) =
—c71(F,, F*) leading to the result.

(7i7) is a direct consequence of (1.6), Propositions 2.2.5, 2.2.6, and Corollary 2.3.17. O

2.4 Holomorphic continuation and residues of series of zeta func-
tions

In the following, the prime in Y_" means that we omit terms with division by zero in the
summand. B" (resp. S"71) is the closed ball (resp. the sphere) of R” with center 0 and radius 1
and the Lebesgue measure on S™~! will be noted dS.

For any = = (z1,...,2,) € R" we denote by |z| = /2] +--- + 22 the euclidean norm and
|z o= |1 4+ -+ |znl

N = {1,2,...} is the set of positive integers and Ny = NU{0} the set of non negative integers.

By f(z,y) <y g(x) uniformly in z, we mean that |f(z,y)| < a(y)|g(x)| for all z and y for
some a(y) > 0.

2.4.1 Residues of series and integral

In order to be able to compute later the residues of certain series, we prove here the following

Theorem 2.4.1. Let P(X) = Z;'l:o P;(X) € C[Xy, -, Xy] be a polynomial function where P;
is the homogeneous part of P of degree j. The function

/

Pry . P(k
¢ (s) = Zkezn#’ seC

has a meromorphic continuation to the whole complex plane C.
Moreover (¥ (s) is not entire if and only if Pp := {j : Juegn—1 Pi(u)dS(u) # 0} # @. In
that case, C¥ has only simple poles at the points j +n, j € Pp, with

€S PS: \u u).
Res (") = [ Pwas

s=j+n

The proof of this theorem is based on the following lemmas.

Lemma 2.4.2. For any polynomial P € C[X1, ..., X,] of total degree §(P) := " | degx, P and
any o € N, we have

o (P(x)|$|_s) <Pa,n (1 + |8|)|a‘1|1‘|_a_|0¢|1+5(P)

uniformly in x € R™ verifying |x| > 1, where o = R(s).
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Proof. By linearity, we may assume without loss of generality that P(X) = X7 is a monomial.
It is easy to prove (for example by induction on |a;) that for all « € Nj and « € R™ \ {0}:

—s\ _ —s5/2 \ (Blit+[p]1)! s
0 (|x’ s)—a! Z (|m1i/|u|1) ,é! ﬁl |x|a+2<fﬁ|l+|ull>'

B,neNy
B+2u=a

It follows that for all a € Njj, we have uniformly in € R" verifying |z| > 1:
0% (| ~*) <am (L +[s])*|z|7o7o0 (2.28)

By Leibniz formula and (2.28), we have uniformly in z € R" verifying |z| > 1:

0“ (x’7|x]—s) — Z (g) P (z7) 2" (|CC|_S)
BLa
<y,a,n Z 7P (1_’_|8’)‘O‘|1*‘f6|1 \$|7U*‘°‘|1+\5|l
BLa; By
Lryam (14 |s))leh |g|mo—lelithh, -

Lemma 2.4.3. Let P € C[X1,...,X,] be a polynomial of degree d. Then, the difference

NV Pk _ P(z)
Ap(s) =D il / e 42
which is defined for R(s) > d + n, extends holomorphically on the whole complex plane C.

Proof. We fix in the sequel a function 1) € C*°(R™,R) verifying for all z € R”
0<e¢(z)<1l, YPx)=1if|z]>1 and ¢(z)=0if|z|] <1/2.

The function f(z,s) := ¥(z) P(x) |z|7*, 2 € R" and s € C, is in C*(R"™ x C) and depends
holomorphically on s.

Lemma 2.4.2 above shows that f is a “gauged symbol” in the terminology of [73, p. 4].
Thus [73, Theorem 2.1| implies that Ap(s) extends holomorphically on the whole complex plane
C. However, to be complete, we will give here a short proof of Lemma 2.4.3:

It follows from the classical Euler—-Maclaurin formula that for any function h : R — C of class
CNFL verifying limyy— o h¥)(t) = 0 and [, |h®)(t)| dt < +oo for any k=0..., N + 1, that we
have

> h(k) :/Rh(t)+((]\,1+)g,/RBN+1(t) AT (1) dt

kEZ

where By 1 is the Bernoulli function of order N + 1 (it is a bounded periodic function).
Fix m’ € Z"! and s € C. Applying this to the function h(t) := ¢(m/,t) P(m/,t) |(m/,t)|~*
(we use Lemma 2.4.2 to verify hypothesis), we obtain that for any N € Ny:

Z Y(m/,my) P(m/,my) |(m!,my,)|~° = /Rw(m',t) P(m/,t) |[(m/,t)|7° dt+Rn(m';s) (2.29)

mn€Z
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AN +1

_1\N
where Ruy (m';5) 1= {5y J By1(8) 52w ((m',8) P(m!, 1) |(m',8)|~%) dt.

By Lemma 2.4.2,

dt <pnn (1+[s)NFL (Jm| +1)70 N+,

[ |Braa(v) 5255 (o' t) Pt (o 017)

Thus >, /czn1 Rn(m;s) converges absolutely and define a holomorphic function in the half
plane {o = R(s) > 6(P)+n — N}.
Since N is an arbitrary integer, by letting N — oo and using (2.29) above, we conclude that:

s Z Y(m',my) P(m',my) [(m',my)|~*— Z /w(m'»t) P(m’,t) |(m',t)| 7" dt
(! ;mn)EZP—1xZ mrezn—1YR

has a holomorphic continuation to the whole complex plane C.
After n iterations, we obtain that

s 30 () Plm) | = [ () Pla) o] da

has a holomorphic continuation to the whole C.
To finish the proof of Lemma 2.4.3, it is enough to notice that:

e )(0) =0 and ¢(m) =1, Ym € Z™ \ {0};

o5 [p,¥(x) P(x) |z|~° do = f{xGR”:1/2§|m|§1} Y(x) P(x) |x|~® dz is a holomorphic
function on C. O

Proof of Theorem 2.4.1. Using the polar decomposition of the volume form dz = p"~'dpdS in
R™, we get for R(s) > d + n,

Pz %0 jitn—1
/R"\Bn |?L~(\S)dg; = /1 P = /Sn_1 Pj(u)dS(u) = 5= /Sn_1 Pj(u) dS(u).

Lemma 2.4.3 now gives the result. O

2.4.2 Holomorphy of certain series

Before stating the main result of this section, we give first in the following some preliminaries
from Diophantine approximation theory:

Let us recall Definition 2.2.3. Let § > 0. A vector a € R" is said to be d—diophantine if there
exists ¢ > 0 such that |g.a —m| > clq| ™%, Vg € Z" \ {0} and ¥m € Z. We note BV(§) the set of
d—diophantine vectors and BY := UssoBV(J) the set of diophantine vectors.

A matrix © € M, (R) (real n x n matrices) will be said to be diophantine if there exists
u € Z™ such that '©(u) is a diophantine vector of R™.

Remark. A classical result from Diophantine approximation asserts that for all § > n, the
Lebesgue measure of R™ \ BV(9) is zero (i.e almost any element of R™ is §—diophantine).

Let © € M, (R). If its row of index 7 is a diophantine vector of R™ (i.e. if L; € BY) then
tO(e;) € BY and thus O is a diophantine matrix. It follows that almost any matrix of M, (R) ~
R™ is diophantine.

The goal of this section is to show the following
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Theorem 2.4.4. Let P € C[Xy,---,X,] be a homogeneous polynomial of degree d and let b be
in S(Z™" x -+ x Z™) (q times, g € N). Then,
(i) Let a € R". We define fuo(s) ==Y jepm Iljk(ﬁ) e?mik-a
1. If a € Z", then fq, has a meromorphic continuation to the whole complex plane C.
Moreover fq is not entire if and only if [ _g.—s P(u)dS(u) # 0. In that case, f, has only a

simple pole at the point d + n, with Edef fa(s) = [,egn-1 P(u) dS(u).

2. If a € R"\ Z", then fo(s) extends holomorphically to the whole complex plane C.
(i1) Suppose that © € M, (R) is diophantine. For any (g;); € {—1,0,1}9, the function

9() 1= 31 gya PO fo 2,20, ()

extends meromorphically to the whole complex plane C with only one possible pole on s = d+n.
Moreover, if we set Z :={l € (Z")7 : Y1 el =0} and V := 3",z b(l), then
L IfV [gno1 P(u)dS(u) # 0, then s = d +n is a simple pole of g(s) and

Res g(s) =V P(u)dS(u).
s=d+n uesn—1

2. If V [gu-1 P(u) dS(u) = 0, then g(s) extends holomorphically to the whole complex plane

C.
(#ii) Suppose that © € M, (R) is diophantine. For any (;); € {—1,0,1}4, the function

go(s) = Zle(Z")q\Z b(l) fo >4 6il,-(5)
where Z :={l € (Z")1 : Y1, &l = 0} extends holomorphically to the whole complex plane C.

Proof of Theorem 2.4.4: First we remark that

If a € Z"™ then f,(s) = Z;EZ"%' So, the point (i.1) follows from Theorem 2.4.1;

9(s) == Yeamnz b() fo v, e (s) + (>1ez b(D) Z;Ezn%. Thus, the point (i7)
rises
easily from (7i7) and Theorem 2.4.1.
So, to complete the proof, it remains to prove the items (.2) and (ii7).
The direct proof of (i.2) is easy but is not sufficient to deduce (ii7) of which the proof is more
delicate and requires a more precise (i.e. more effective) version of (i.2). The next lemma gives
such crucial version, but before, let us give some notations:

F .= {(XIQ+---11(§((,%+1)T/2 : P(X) € C[Xy,...,X,] and 7 € Ng}.
. _ _ — P(X)
We set g =deg(G) =deg(P) — r € Z, the degree of G = T X212 cF.

By convention we set deg(0) = —o0.

Lemma 2.4.5. Let a € R". We assume that d (a.u,Z) := inf ez [a.u —m| > 0 for some u € Z™.
For oll G € F, we define formally,

Fo(G;a;s) := Zkezn |]§|S) ™R and  Fy(Ga;s) == Zkeane%m a
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Then for all N € N, all G € F and all i € {0,1}, there exist positive constants C; :=
Ci(G,N,u), B; :== B;(G,N,u) and A; := A;(G,N,u) such that s — F;(G;a;s) extends holo-
morphically to the half-plane {R(s) > —N} and verifies in it:

Fi(G;a;s) < Ci(1+ |s|) P (d(a.u,Z) )_Ai.

Remark 2.4.6. The important point here is that we obtain an explicit bound of F;(G;«;s)
in {N(s) > —N} which depends on the vector a only through d(a.u,Z), so depends on u and
indirectly on a (in the sequel, a will vary). In particular the constants C; := C;(G, N,u), B; =
Bi(G,N) and A; :== A;(G,N) do not depend on the vector a but only on w. This is crucial for
the proof of items (ii) and (iit) of Theorem 2.4.4!

Proof of Lemma 2.4.5 for i = 1:

Let N € Ny be a fixed integer, and set go :=n + N + 1.
We will prove Lemma 2.4.5 by induction on g =deg(G) € Z. More precisely, in order to prove
case i = 1, it suffices to prove that:
Lemma 2.4.5 is true for all G € F verifying deg(G) < —go.
Let g € Z with g > —gp + 1. If Lemma 2.4.5 is true for all G € F such that deg(G) <
g—1
then it is also true for all G € F satisfying deg(G) = g.
e Step 1: Checking Lemma 2.4.5 for deg(G) < —go := —(n+ N + 1).
Let G(X) = (XIQJF_Z())%H)TQ € F verifying deg(G) < —gp. It is easy to see that we have
uniformly in s =0 4+ 47 € C and in k € Z™:

|G (k) e*mik-a] [P (k)| 1 1 1
(k2+10)e72 — ([k[2+1)(+o)/2 <a ([k|2+1)(rFo—deg(P))/2 <@g ([k]2+1)(o—deg(@))/2 <a (Jk2+1)(eF90)/2

It follows that F1(G;a;8) = ez Wg@&% e?mik-a converges absolutely and defines a holomor-

phic function in the half plane {o > —N}. Therefore, we have for any s € {R(s) > —N}:

. 1 1
|F1(Gsa;8)| <a Z e~z <a Z wEez <a L.
kezn kezn

Thus, Lemma 2.4.5 is true when deg(G) < —go.

e Step 2: Induction.
Now let g € 7Z satisfying ¢ > —go + 1 and suppose that Lemma 2.4.5 is valid for all G € F
verifying deg(G) < g — 1. Let G € F with deg(G) = g. We will prove that G also verifies
conclusions of Lemma 2.4.5:
There exist P € C[X7,...,X,] of degree d > 0 and r € Ny such that G(X) = (XIQJF._i(;TQ)LJrl)T/Q
and g =deg(G) =d —r.
Since G(k) < (|k|? 4 1)9/2 uniformly in k € Z", we deduce that Fi(G;a;s) converges absolutely
in {o =R(s) >n+ g}
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Since k — k + u is a bijection from Z" into Z", it follows that we also have for ®(s) >n+g¢

ca:s) = _ Pk)  2mika _ _ P(ktu)  omi(k+u).a
Fl(G7 a; 8) - Z (‘k‘2+1)(s+7‘)/2 € - Z (|k+u|2+1)(s+7‘)/2 €

kezn kezm
o e27riu.a Z P(k+u) 2rik.a
= (kP 2kt [uP+ 1) 772
keZm
_ 627riu.a u 0“P(k) e27rik:.a
Z al Z (|k|2 42k ud-|u|24-1) (s+r)/2

a€Nyslali=a1+-+an<d  kEZ"

27rzua 0P (k) 2kut|ul®\—(s+7)/2 2mik.a
Z ol Z |k|2+1)<8+r>/2( + (\kl2+1)) € '
|ah<d kezmr

Let M :=sup(N + n + g,0) € Ny. We have uniformly in k € Z"

M

2k.ut|ul?\ —(s+7)/2 —(sr) /2 (2k.ud|ul? I 14]s[)M+1
(1+ Ty) => (5 )W + Onsu (e eyt )

J=0

Thus, for o = R(s) > n+d,

o - 27r7,ua 9 P( 2k.ut|u?2\—(s+7)/2 2mik.a
P (Ga;s) = dow D (*P+1) e (1+ Py €
lal1<d kezn

_ 27r7,ua Z Z (s+7“)/2 Z aap(k)(Qk'u+|“‘2)J 2mik.a
= (FRP+1) G2/ ©
kezm

|a\1<d] =0

+O0c (1 + |s]) M+ Z (|k|2+1)<0‘1”‘”1*9)/2)' (2.30)
kezn
Set I :={(a,j) € Ny x{0,...,M} | |ajy <d} and I* :=1\{(0,0) }.
« utlul?)’
Set also G4 jy.u(X) = 00 POO(2X urtful?) € F for all (a,j) € I*.

(IXP2+D)r+2)/2
Since M > N + n + g, it follows from (2.30) that

(1 — 2™ Fy(G;a;s) = 2™ we Z ur(” (S+T)/2)F1 (Glajyui @ 8) + By (Giasu;s) (2.31)
(a,4)EI*
where s — Ry (G} a;u; s) is a holomorphic function in the half plane {o = R(s) > —N}, in which

it satisfies the bound Ry (G;a;u;s) g N 1.
Moreover it is easy to see that, for any («,j) € I*,

deg(G(aJ);u) =deg(0*P)+j—(r+2j)<d—|ah+j—(r+2j)=9g—|ah—j<g-1
Relation (2.31) and the induction hypothesis imply then that
(1 — e?™®) Fy(G;a;s) verifies the conclusions of Lemma 2.4.5. (2.32)

Since |1 —e?™ 4| = 2| sin(7u.a)| > d (u.a,Z), then (2.32) implies that F(G;a; s) satisfies conclu-
sions of Lemma 2.4.5. This completes the induction and the proof for ¢ = 1.
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Proof of Lemma 2.4.5 for 7 = 0:

Let N € N be a fixed integer. Let G(X) = (Xlg+.__]1(§%+1)r/2 € Fand g =deg(G) =d—r
where d > 0 is the degree of the polynomial P. Set also M := sup(N + g + n,0) € Np.

Since P(k) < |k|? for k € Z™\ {0}, it follows that Fy(G;a;s) and Fi(G;a;s) converge
absolutely in the half plane {o = R(s) > n + g}.
Moreover, we have for s = o 4 i7 € C verifying 0 > n + g¢:

e G(k) orik.a )] 1 —5/2 i k.a
FolGiais) = 30 g et = 3 il (1o wha) e

keZm\{0} kezn
M
_ ! —s/2 j G(k) 2mi k.
- Z Z( 3'/ )(=1) (P Gr2n/z € .
kezZ™ j=0

G(k
+On (1 + [s])MH! Z (\k\2+1‘ (£+)2\M+2)/2)

M
Z 3/2 —1Y F1(G;a; 5 + 27)
7=0

G(k)
+Om [( + |s]) M+1 1+ Z |k|2+1| (a+2IM+2)/2)] (2.33)
kezn

In addition we have uniformly in s = o 4 i7 € C verifying 6 > —N,

k|9 !
Z (lk‘2+1)(0+2]\1+2)/2 < Z |k|2+1)(—N+2M+2)/2 < Z |k|n+1 < 4o00.
kezn kezn

So (2.33) and Lemma 2.4.5 for ¢ = 1 imply that Lemma 2.4.5 is also true for ¢ = 0. This completes
the proof of Lemma 2.4.5. ]

Proof of item (i.2) of Theorem 2.4.4:

Since a € R™ \ Z", there exists ig € {1,...,n} such that a;, ¢ Z. In particular d(a.e;,,Z) =
d(aiy,,Z) > 0. Therefore, a satisfies the assumption of Lemma 2.4.5 with u = e;,. Thus, for all
N €N, s — fq(s) = Fo(P;a;s) has a holomorphic continuation to the half-plane {f(s) > —N}.
It follows, by letting N — oo, that s — f,(s) has a holomorphic continuation to the whole
complex plane C.

Proof of item (iii) of Theorem 2.4.4:

Let © € M,(R), (¢ ) € {-1,0,1}7 and b € S(Z"™ x Z™). We assume that © is a diophantine
matrix. Set Z = {l = (l1,...,lq) € (Z")? : Y ,el; =0} and P € C[Xy,...,X,] of degree
d > 0.

It is easy to see that for o > n + d:
P(k)| | 2mik. el !
S b SR e e Rt < S ()] Y ke <o > B
le(Zn)a\2 kezm le(zn)a\2 kezm le(Zn)a\2
< +o00.
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So

W)= > b fox auls)= D b(l) Y femiko Nt

le(zn)a\2 le(zmya\2  kezn

converges absolutely in the half plane {R(s) > n + d}.
Moreover with the notations of Lemma 2.4.5, we have for all s = o +i7 € C verifying 0 > n+d:

gos)= > bWfoy. cu(s)= Y b(l)FO(P;GZieili;S) (2.34)

le(Zn)a\2 le(Zn)a\2
But © is diophantine, so there exists u € Z™ and 4, ¢ > 0 such
lg.'0u—m| > c(14|q))™°, Vg € Z"\ {0}, Vm € Z.

We deduce that Vi € (Z™)9\ Z,

1(©)  eili)u—m| =D &) ' Ou—m|>c(l+ |Z,giz,-\)‘5 >c(1+I)7°.
It follows that there exists u € Z™, § > 0 and ¢ > 0 such that
Vi€ (ZM)I\Z, d((©) eli)wZ) >c(l+]l)7°. (2.35)

Therefore, for any | € (Z™)1\ Z, the vector a = © ). &l; verifies the assumption of Lemma
2.4.5 with the same w. Moreover 6 and c in (2.35) are also independent on .

We fix now N € N. Lemma 2.4.5 implies that there exist positive constants Cy := Cy(P, N, u),
By := B;(P,N,u) and Ag := Ao(P, N,u) such that for all [ € (Z")?\ Z, s — Fo(P;0 ), €il;; s)
extends holomorphically to the half plane {(s) > —N} and verifies in it the bound

Fo(P;© Y eiliis) < Co(1+[s)™ (0D =ili)u; z)~.

This and (2.35) imply that for any compact set K included in the half plane {f(s) > —N},
there exist two constants C' := C(P,N,c¢,0,u, K) and D := D(P,N,c,6,u) (independent on
l€(Z")?\ Z) such that

Vs€ K and Vi€ (Z")\ 2, Fyp(P;© ) eili;s) < C(1+1)7. (2.36)

It follows that s — 3 e znya\ z O(1) Fo(P; © ;€403 5) has a holomorphic continuation to the half
plane {R(s) > —N}.

This and ( 2.34) imply that s — go(s) = >21cznya\z 0(1) fo v, ¢,1,(s) has a holomorphic conti-
nuation to {R(s) > —N}. Since N is an arbitrary integer, by letting N — oo, it follows that
s — go(s) has a holomorphic continuation to the whole complex plane C which completes the
proof of the theorem. O

Remark 2.4.7. By equation (2.32), we see that a Diophantine condition is sufficient to get
Lemma 2.4.5. Our Diophantine condition appears also (in equivalent form) in Connes [27, Prop.
49] (see Remark 4.2 below). The following heuristic argument shows that our condition seems to
be necessary in order to get the result of Theorem 2.4.4:



Chapitre 2. Spectral action on noncommutative torus

For simplicity we assume n =1 (but the argument extends easily to any n).
Let § € R\ Q. We know (see this reflection formula in [52, p. 6]) that for any | € Z \ {0},

I _2miflk s—1/2
goi(s) == Z 6|T|5 = 17;(175) (3) hoi(1 — s) where hg(s Z |0l+k|5'
kez 2 kez

So, for any (a;) € S(Z), the existence of meromorphic continuation of go(s) := >z a1 ga(s) is
equivalent to the existence of meromorphic continuation of

Z ai hoi(s Z a Z o

IEZ l€Z keZ

So, for at least one og € R, we must have % = O(1) uniformly in k,l € Z*.

It follows that for any (a;) € S(Z), |01 + k| > |ay|"/?° uniformly in k,l € Z*. Therefore, our
Diophantine condition seems to be necessary.

Commutation between sum and residue

Let p € N. Recall that S((Z")P) is the set of the Schwartz sequences on (Z")P. In other
words, b € S((Z")P) if and only if for all r € No, (1 + [l1[* + - |1p,[*)" [b(l1, - -+, 1,)|* is bounded
on (Z")P. We note that if Q € R[Xy,---, X,,| is a polynomial, (a;) € S(Z")P, b € S(Z") and ¢
a real-valued function, then [ := (I1,---,1y) — a(l) b(—lAp) Q(1) €*") is a Schwartz sequence on
(Z™)P, where

a(l) :==a(lr) - ap(lp),
Z\z:ll—l——l-lz

In the following, we will use several times the fact that for any (k,1) € (Z™)? such that k # 0
and k # —[, we have
1 1 2k.1+ |I[?
= = TH_ 2.37
i kR R P (237
Lemma 2.4.8. There exists a polynomial P € R[X1,---,Xp] of degree 4p and with positive
coefficients such that for any k € Z", and | := (l1,--- ,1p) € (Z™)P such that k # 0 and k # —;
for all 1 <4 <p, the following holds:

1 1
- — < P(|la], - L))
e+ 112k + 1,2~ |k (1 )

Proof. Let’s fix i such that 1 < i < p. Using two times (2.37), Cauchy—Schwarz inequality and
the fact that |k + [;|* > 1, we get

1 1 20|l +112 | (2lkllL |+|l *)?
lk+1;2 = k[ TR k|4 |k+l |2
2 13 =4
<+ el + (e + ) G2 + gl + el
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Since |k| > 1, and [I;J7 < [I;]* if 1 < j < 4, we find

~ p

\k+112|2 <Y Il < () < (L a_ Y,
p

(1 +4(Zj:1 151)*)".

Taking P(X1,- -+, Xp) := 5P (1 + 4( ?ZlXj)‘l)p now gives the result. O

[+ 2.0 ke 2 |k+lp\2 - |

Lemma 2.4.9. Let b € S((Z")?), p € N, P; € R[Xy,---,X,] be a homogeneous polynomial
function of degree j, k € Z", 1 := (I1,--- ,lp) € (Z")P, r € Ny, ¢ be a real-valued function on
7" x (Z"Y and

b By (k) €k
CRLERACER AR AL
with h(s, k,l) := 0 if, for k # 0, one of the denominators is zero.

For all s € C such that R(s) > n+ j —r — 2p, the series

!/
H(s) := Z (k,l)e(Z")PHh(S’ k1)

1s absolutely summable. In particular,

Z > h(s, k1) = ZZhskl

kezZ™ le(Zn)p le(Zn)p kez™

h(s, k1) =

Proof. Let s =0 + i1 € C such that ¢ > n+ j —r — 2p. By Lemma 2.4.8 we get, for k& # 0,
(s, k, D) < [b(1) P(k)| [k 7772 P(1),

where P(I) := P(|li|,---,|lp]) and P is a polynomial of degree 4p with positive coefficients.
Thus, |h(s,k,1)] < F(I)G(k) where F(I) := [b(])| P(I) and G(k) := |P;(k)||k|""~7 2. The
summability of 3¢ zn), F/(I) is implied by the fact that b € S((Z")P). The summability of
Z;eZnG(k) is a consequence of the fact that ¢ > n + j — r — 2p. Finally, as a product of two
summable series, >, ,F'(1)G(k) is a summable series, which proves that >, ;h(s, k,1) is also
absolutely summable. 7 O

Definition 2.4.10. Let f be a function on D x (Z™)P where D is an open neighborhood of 0 in
C.
We say that f satisfies (H1) if and only if there exists p > 0 such that
(i) for any [, s — f(s,l) extends as a holomorphic function on U,, where U, is the
open disk of center 0 and radius p,
(i) the series Yyezny 1H (2Dl
sup,cy, [H(s, D).
We say that f satisfies (H2) if and only if there exists p > 0 such that
(i) for any [, s — f(s,[) extends as a holomorphic function on U, — {0},
(ii) for any ¢ such that 0 < § < p, the series 3¢ (znyp [[H (-, 1) || 5, is summable, where

”H(7 l)”oo,&p = Sup§<‘s‘<p |H(S, l)‘

is a summable series, where [H(,l)|, =
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Remark 2.4.11. Note that (H1) implies (H2). Moreover, if f satisfies (H1) (resp. (H2) for
p > 0, then it is straightforward to check that f : s — Zle(zn)p f(s,1) extends as an holomorphic
function on U, (resp. on U, \ {0}).

Corollary 2.4.12. With the same notations of Lemma 2.4.9, suppose that r +2p — j > n, then,
the function H(s,1) := >} cpnh(s,k,1) satisfies (H1).

Proof. (i) Let’s fix p > 0 such that p < r+2p—j —n. Since r+2p —j > n, U, is inside the half-
plane of absolute convergence of the series defined by H(s,1). Thus, s — H(s,) is holomorphic
on U,,.

(i) Since ‘|k:|_5’ < |k|? for all s € U, and k € Z™ \ {0}, we get as in the above proof

(s, k, D] < [b(1) Py (k)| K772 P(Jlal, - (1))
Since p < r+2p — j — n, the series >_; 5. |P;(k)||k|~"TP~2P is summable.
Thus, |H(-1)| ., < K F(l) where K = 3",'|P;(k)||k|7"T°=2P < co. We have already seen

oop —

that the series ), F'(I) is summable, so we get the result. O

We note that if f and g both satisfy (H1) (or (H2)), then so does f + g. In the following, we
will use the equivalence relation

[ ~g<= f— g satisfies (H1).

Lemma 2.4.13. Let f and g be two functions on D x (Z™)P where D is an open neighborhood
of 0 in C, such that f ~ g and such that g satisfies (H2). Then

Restsl ZResgsl
le(zn)p le(zn)p

Proof. Since f ~ g, f satisfies (H2) for a certain p > 0. Let’s fix  such that 0 < n < p and
define (), as the circle of center 0 and radius 7. We have

R_eg, g(s,l) = Res f(s,1) 27”7{ f(s,0) ds-/ (t,0)dt .

where I = [0,27] and u(t, 1) := stne f(ne,1). The fact that f satisfies (H2) entails that the
series D e (znyp ||f(~,l)Hoo’C’7 is summable. Thus, since [[u(-,1)|| = 5=7 ||f(-,l)HOO7C777 the series

Zle(zn)p |u(-,1)]|o is summable, so, as a consequence, [; Zle(zn)p u(t,l)dt = Zle(Zn)p Jru(t,l)dt
which gives the result. O

2.4.3 Computation of residues of zeta functions

Since, we will have to compute residues of series, let us introduce the following

Definition 2.4.14.
[o¢]
S
n=1
!
Zn(s) =Y |k|™*,

kezn

n

/ kfl...kg
Cpryepn (8) 1= Z BT TR for p; € N,
=
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where ((s) is the Riemann zeta function (see |76] or [51]).

By the symmetry k& — —k, it is clear that these functions (p, .., all vanish for odd values
of Di-

Let us now compute (... 0,1;,0--,0,1;,0--,0(5) in terms of Z,(s):
Since Co,-,0,1;,0-,0,1;,0--,0(5) = A;(s) dsj, exchanging the components k; and k;, we get

5,
€0, ,0,15,0-,0,1;,0-,0(8) = < Zn(s — 2).

Similarly,

L 1 1 NV K
Zzn [k[sT8 — n(nfl)Zn(S + 4) - n—lzZn [k|s+8

but it is difficult to write explicitly (p,, . p,(s) in terms of Z, (s —4) and other Z,,(s — m) when
at least four indices p; are non zero.

When all p; are even, (p, .. p, (s) is a nonzero series of fractions Pk((z) where P is a homogeneous
polynomial of degree p; + - -- 4+ p,. Theorem 2.4.1 now gives us the following

Proposition 2.4.15. (,, ., has a meromorphic extension to the whole plane with a unique
pole at n+ p1 + -+ 4+ pn. This pole is simple and the residue at this pole is

+1 n+1
r(P5=)r(P)

8:n+1;:‘3_5m+pn Cpryenpn (5) = 2 F(W) (2.38)

when all p; are even or this residue is zero otherwise.
In particular, for n = 2,

>y
ljzeg ‘klsﬁ4 = 67;]' ™, (239)
kez?
and for n =4,
/
kikj ¢ n2
hes 3 bt = 6%
kez*
! sksikikm 2
Res > s = (0ij0um + udjm + dimdj1) T3 - (2.40)
- kezA

Proof. Equation (2.38) follows from Theorem (2.4.1)

= D1, .. [Pn
XS G (8) /k o kit kb dS(k)

and standard formulae (see for instance [133, VIII,1;22]). Equation (2.39) is a straightforward
consequence of Equation (2.38). Equation (2.40) can be checked for the cases i = j # [ = m and
i=j=1l=m. O

Note that Z,(s) is an Epstein zeta function associated to the quadratic form ¢(z) := 22 +
.+ 22, 80 Z, satisfies the following functional equation

Zn(s) = 7720 (n)2 — s/2)T(s/2) " Zn(n — s).
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Since m°~"/2I'(n/2—5/2)T'(s/2)~" = 0 for any negative even integer n and Z,(s) is meromorphic
on C with only one pole at s = n with residue 27"/ 2I'(n/2)~! according to previous proposition,
so we get Z,(0) = —1. We have proved that
Res Zy(s +n) = 212 T(n/2)7 1, (2.41)
s=

Zn(0) = —1. (2.42)

2.4.4 Meromorphic continuation of a class of zeta functions

Let n,g €N, ¢>2,and p= (p1,...,pg-1) € Ng_l.
Set I :={i | p; # 0} and assume that I # () and

7= {a = (ai)iel ’ Viel a; = (Oéi,ly e ,Oém,i) S Ngl} = HNgl
el
We will use in the sequel also the following notations:

-for z = (z1,...,2¢) € R recall that |z|; = |z1|+ - +|z¢| and |z]| = /27 + - + 23
- for all o = (a)icr € T = [Lier NP,

lafy = Z a1 = Zﬁ: |aij| and (142) = H (lo{f) = H ﬁ (01/3)

iel iel j=1 i€l iel j=1

A family of polynomials

In this paragraph we define a family of polynomials which plays an important role later.

Consider first the variables:

- for Xy,..., X, weset X = (Xq,...,Xn);

- for any ¢ = 1,...,2q, we consider the variables Y;,...,Y;, and set Y; := (Yi1,...,Yin)
and Y := (Y1,...,Y%);

-for Y = (Y1,...,Ys,), we set for any 1 < j <g, }73 =Y+ + Y+ Yo 4+ + Y

We define for all & = (a;)ier € Z = [];¢; Nj)’ the polynomial

Pu(x. ) = T T[0T + T, (2.43)
el j=1

It is clear that P, (X,Y) € Z[X,Y], degx Py < |a|1 and degy P, < 2|a];.
Let us fix a polynomial @ € R[Xy,---,X,] and note d := deg@. For a € Z, we want to
expand P,(X,Y) Q(X) in homogeneous polynomials in X and Y so defining

L(a) == {8 e NP 18], — ds < 2|y and dg < |af; +d}
where dg := Y] (i, we set

(P)P(X.Y)QX) = > capXPYP
BeL(a)

where o5 € R, X9 = X X and Y2 = Y, 20" By definition, X7 is a

homogeneous polynomial of degree in X equals to dg. We note

Mo 5(Y) = capY".
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Residues of a class of zeta functions

In this section we will prove the following result, used in Proposition 2.2.5 for the computation
of the spectrum dimension of the noncommutative torus:

Theorem 2.4.16. (i) Let 5= be a diophantine matriz, and a € S((Z")?7). Then

s f(s) = Z al Z H\k+l\pl|k| S Q(k) Ok

le[(zn)a)2  keZn i=1

has a meromorphic continuation to the whole complex plane C with at most simple possible poles
at the points s =n +d + |p|1 —m where m € No.

(ii) Let m € Ng and set I(m) = { (o, 8) € Tx NS+ B € L(a) and m = 2|al; —ds+d}.
Then I1(m) is a finite set and s =n+d + |p|y —m is a pole of [ if and only if

EDN DY Maﬂ(n /EsnluﬁdS(u) #£0,

leZ (a,B)el(m

with Z :={l : Y 11; = 0} and the convention Yy = 0. In that case s = n+d+ |p|1 —m is a
simple pole of residue ld%els‘ f(s)=C(f,m).
s=n+d+|pj1—m

In order to prove the theorem above we need the following

Lemma 2.4.17. For all N € N we have

q—1
[Tk + 0 = > (") st + Ow (k| =(072)
i=1 a:(ai)ielenigl{Or":N}pi

uniformly in k € Z" and | € (Z™)?% verifying |k| > U(l) := 36 (Z?i{l#q |13])*.

Proof. For i =1,...,q — 1, we have uniformly in k € Z" and | € (Z")?? verifying |k| > U(1),

|2k, )+ 132 U 1
FE S < (244)

In that case,
=~ . ~ 12\ 1/2 2k, 1) +|1:|%\ 1/2 = i
k4T = (B +20k5) + L))" = \k|(1+%) =3 () = Pik D)
u=0
where for all i =1,...,¢g — 1 and for all u € Ny,
PZ(’M) = (2<k7l~l> + ’l~l|2)u7

with the convention Pi(k,l) :=1
In particular Pi(k,l) € Z[k,1], degy, P: < u and deg; P! < 2u. Inequality (2.44) implies that
foralli=1,...,¢g—1 and for all u € N,

i [Pk, D] < (2/1k1)
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uniformly in k € Z" and [ € (Z")?¢ verifying |k| > U(I).
Let N € N. We deduce from the previous that for any k € Z" and [ € (Z")% verifying
|k| > U(l) and for alli =1,...,q — 1, we have

N
k+ 1| = Z (") = Pk, D)+ O~ R VIRD ™)

u>N

I
Mz u

(1/2) |k|2“ lpl(k l) + ON(‘k‘l(N 1)/2)

e
I
o

It follows that for any N € N, we have uniformly in k € Z" and [ € (Z")* verifying |k| > U(l)
and for all 7 € I,

7P — 1/2 i
[+ L = Z (o{) |k|2la1u—pi Po.(k,1) + On (Ikl(“%/?‘“)
aie{ov"'7N}pi

where P! (k,1) = g‘” (k,1) for all oy = (vi1,...,06p,) €1{0,..., N}P and

] 1

Tipi 1/2
Il‘k‘*lﬂp = j{: (é)|kmaﬁ—mnfﬁ(kJ)4‘ChV(WKN+$m—wu)
el a=(a;)€]];¢1{0,...,N}Pi

where Pa(k,1) = TTie; Pi, (k1) = [, T2, P, (k). O

Proof of Theorem 2.4.16.
(i) Alln, ¢, p= (p1,...,pg—1) and a € S ((Z")*) are fixed as above and we define formally
for any [ € (Z™)*

q—1
)= 3 T Ik + 0P Q(k) e O Xt . (2.45)
kezn =1
Thus, still formally,
fls):= > @ F(l,s). (2.46)
lE(Zn)Zq

It is clear that F'(I,s) converges absolutely in the half plane {o = R(s) > n + d + |p|1} where
d=degQ.

Let N € N. Lemma 2.4.17 implies that for any [ € (Z")?? and for s € C such that o >
n+ |pl +d,

Z H \k‘—l—l Pi Q Zk-@Z?ZJ k|~
k|<U (1) i=1
+ Z (1(42) Z mpa(k, Z)Q(k) eik'azglj + GN(Z, S).
a=(as)ier€lT,e {0, N}Pi kI>U ()

where s — G (1, s) is a holomorphic function in the half-plane Dy := {0 > n+d + |p|; — 252}

and verifies in it the bound Gn(l,s) <n,s 1 uniformly in I.
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It follows that
F(l,s) = > Hu(l,s) + Rn(l,s), (2.47)
OCZ(OLZ')ie]EHiE[{O,...,N}pi
where
"1/2 k0391,
Ho(ls) = Y (') rmerr Pa (k) Q(k) e ROl
kezn
/ q_l ~
Ry(,s) = Y [+ Quk)e®Oxil k=
|kl<U(1) =1
! 2\ Pa(kl ik.©Y 71
- > ) ("2 ‘k‘s+2\‘(34|12\17|1 Qk) 0210 + Gy (1 5).

[k|<U(1) a=(a;)ier€] ;e {0;....N}Pi

In particular there exists A(N) > 0 such that s — Rx(l,s) extends holomorphically to the
half-plane Dy and verifies in it the bound Ry(l,s) <y, 1+ [I[[*?) uniformly in 1.
Let us note formally

ha(s) == @ Ha(l,s).
l
Equation (2.47) and Ry(l,s) <no 1+ [[[AN) imply that

f(s) ~n > ha(s), (2.48)

a=(a;)ier€]l,;¢{0,...,N}Pi

where ~p means modulo a holomorphic function in Dy.

Recall the decomposition (142) Pa(k, 1) Q(k) = > gera) Ma,p(l) k% and we decompose si-
milarly ha(s) = > gcr(q) fta,8(s). Theorem 2.4.4 now implies that for all a = (qi)icr €
[Lic/{0,...,N}Pi and 8 € L(«),

- the map s — hq (s) has a meromorphic continuation to the whole complex plane C with
only one simple possible pole at s = n + |p[1 — 2|a|; + dg,
- the residue at this point is equal to

Res hap(s) =Y a My s(l / uPdS(u 2.49

s=n+|p|1—2|a|1+dg ﬂ( ) lGZZ 5() uesgn—1 ( ) ( )

where Z := {l € (Z)")?? : > 91; = 0}. If the right hand side is zero, h, (s) is holomorphic on
C.

By (2.48), we deduce therefore that f(s) has a meromorphic continuation on the halfplane
Dy, with only simple possible poles in the set {n + |p|1 + k : —2N|p|; < k < d}. Taking now
N — oo yields the result.

(73) Let m € Ny and set I(m) := { (o, 3) € IXN(()QQH)” : f e L(a) and m =2|al; —dg+d }.
If (o, B) € I(m), then |a[s < m and |B|; < 3m +d, so I(m) is finite.

With a chosen N such that 2N|p|y + d > m, we get by (2.48) and (2.49)

Res f(s) = Zfil Z Maﬂ(l)/ 1 u? dS(u) = C(f,m)
(m) ueS™—

—ntd+|pli—
s=ntd+|ph—m €2 (aB8)el

with the convention ) 4 = 0. Thus, n+d+ |p|1 —m is a pole of f if and only if C'(f,m) # 0. O
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Chapitre 3

Spectral action on SUy(2)

3.1 Introduction

The quantum group SU,(2) has already a rather long history of studies [92] being one of
the finest examples of quantum deformation. This includes an approach via the noncommutative
notion of spectral triple introduced by Connes [28,37] and various notions of Dirac operators
were introduced in [8,18,20,31,67|. Finally, a real spectral triple, which was exhibited in [48],
is invariant by left and right action of U,(su(2)) and satisfies almost all postulated axioms of
triples except the commutant and first-order properties. These, however, remain valid only up to
infinitesimal of arbitrary high order. The last presentation generalizes in a straightforward way
all geometric construction details of the spinorial spectral triple for the classical three-sphere. In
particular, both the equivariant representation and the symmetries have a ¢ — 1 proper classical
limit.

The goal of this chapter is to obtain the spectral action on SU,(2) which is a spectral triple
with an invertible Dirac operator, with the control of the differential calculus generated by the
Dirac operator arising as the main difficulty. This issue of computing the spectral action was
addressed in the epilogue of [137]. In the case of SU,(2), we have Sdt = Sd = {1,2,3}, so

SDu®A) = 3 @Ak ][ DAl + B(0) Cp, (0). (3.1)

1<k<3

Note that in the case of SU,(2) there are no terms in A% k > 0 because the dimension
spectrum is bounded below by 1.

To proceed with the computation of (3.1), we introduce two presentations of one-forms. The
main ingredient is F' = sign (D) which appears to be a one-form up to OP~°.

In section 2, we discuss the spectral action of an arbitrary 3-dimensional spectral triple using
cocycles.

In sections 3 and 4 we recall the main results on SU,(2) of [48] and show that the full spectral
action with reality operator given by (1.6) is completely determined by the terms

][Aq\D\_p, 1<g<p<3.

where A is a linear combination of terms of the form a[|D|, b] with a,b € A.
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In section 5, we establish a differential calculus up to some ideal in pseudodifferential operators
and apply these results to the precise computation of previous noncommutative integrals.

Section 6 is devoted to explicit examples, while in next section are given different comparisons
with the commutative case of the 3-sphere corresponding to SU(2).

3.2 Spectral action in 3-dimension

3.2.1 Tadpole and cocycles

Let (A, H, D) be a spectral triple of dimension 3. We refer to [22,37] for the definition of the
OP® spaces and the algebra of pseudodifferential operators ¥(.A) on a spectral triple.
For n € N* and a; € A, define

Onlag, -+ ,an) ::][ao[D, a]D7 - [D,a,) DL

We also use notational integrals on the universal n-forms Q'(A) defined by

/ apday - - - day, := ¢p(ap, a1, -+ ,an).

n

and the reordering fact that (dag)a; = d(apay) — apda.
We use the b — B bicomplex defined in [28]: b is the Hochschild coboundary map (and b’ is
truncated one) defined on n-cochains ¢ by

b(b(ao, ey an+1) = b/¢(a0, NN ,an+1) + (—1)"+1¢(an+1a0, A1y ..oy an),
b/(b(a/()? ey an-‘rl) = Z(_1>]¢<a07 L1 S PR an-‘rl)'
7=0

Recall that By is defined on the normalized cochains ¢,, by

Boopn(ag, a1, ... an—1) = én(l,a0,...,a,-1), thus / dw = / w for w € Qz_l(.A).
n B0¢n

Then B := N By, where N := 1+ A+... A" is the cyclic skewsymmetrizer on the n-cochains and
A is the cyclic permutation A@(ao, ..., an) = (—=1)"¢(an, ag, . .., an_1).
We will also encounter the cyclic 1-cochain N¢:

No1(ao, a1) := ¢1(ag,ar) — ¢1(a1, ap) and /N¢> apdai = No¢1(ag,ar).

Remark 3.2.1. Assume the integrand of f is in OP73. Since [D',a] = —D7'[D,a]D™! €
OP™2, this commutator introduces an integrand in OP~* so has a vanishing integral: under the
integral, we can commute D™' with all a € A, but not with one-forms. Note also that since
Py € OP™°°, any integrand containing Py has a vanishing integral.
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Lemma 3.2.2. We have

() b1 = — 2.

(i) bds =0,

(iii) by = 0.

(iv) B¢y =0.

(v)  Bogz=—(1—-A)¢r.
(vi)  bBop2 = 2¢2 + Bogs.
(vit) Bge = 0.
(viti) Bods = NV 1.
(ir)  Bgs = 3Bo¢s.

b1 (ao, ai, a2) :][aoal [D, &Q]D_l —][(lo ((ll[D, ag] + [D, al]ag) D! +][a2a0[’D, al]D_l

:][aO[D, a1] (D7 'ay —asD™Y) = —][aO[D, a1]D7'[D, as) D!

= *QZSQ(CLO, ag, (12)

where we have used the trace property of the noncommutative integral.
(ii) boa(ao, a1, az,az)

- ]l a0ar[D, as) DD, as) D! — ][ a0 (a1[D, a2 + [P, ar)az) DD, as) D!

+][a0[D,a1]D_1(a2[D,a3] +[D, as)as) D! —][agao[D, a1)D~'[D, as) D!
:][ao[D,aﬂ (D7 'ay — asD7') [D,a3] D! +][a0[2>, a1])D 7D, as] (asD™! — D™ 'a3)
= —][ao[D, a1]D7YD, as) D7D, az) D! +][ao[D,a1}D—1[D, as)D7YD, a3) D!

=0.

(i4i) Using Remark 3.2.1, we get ¢3(ao, a1, az,as) = f ao[D, a1][D, a2][D, a3]|D| 3, so similar
computations as for ¢o gives bgsz = 0.
(i’U) Boqbl(ao) :f[D,ao]D_l :f (DCLQD_l — ao) = 0.

(v)  Boga(ag,ar) :][[D, ag]D7Y[D,a D! = ][aOD—l[D, a] —][aO[D, ay] D71
:][aoal —][aoDlaﬂD —][aO[D, a;| D71
- —][al[D, a6 D! —][ao[D,al]D_l — —1(a1, a0) — 1 (ag, a1).
(vi) Since —bA1(ag, a1, a2) = ¢1(az, apar) — ¢1(arasz, ag) + ¢1(a1, azap), one obtains that

—b)\¢1(a0, ay, CLQ) :][aoalD_lagD + a(]D_chlDaQ — CLQD_lalCZQD — apai1ag.
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So by direct expansion, this is equal to —f agD ™D, a1]D~[D, as] which means that

—bA¢1(ao, a1, as) Z][[D_ljao][p,al]D_l[D, as] — ao[D,a1|D "' [D,as)D™!
= —Bo¢s(ag, a1, a2) — ¢2(ao, a1, az).

Now the result follows from (1), (v).
(vii) Bepa = NBopa = —N(1 — N)¢1 = 0 since N(1 — \) = 0.

(vi)  Busa(an,1,2) = (D2 o] DD, x| DD, axf D
:][aOD_l[D, a1]D7[D, a5 —][aO[D, a1]D7'[D, as) D~
:][aoalD_l[D, as) —][agD_lal [D, as] —][ag[D, a1]D7[D, ap] D!
:][aoalag —][aoalD_lagD —][aoD_chlDag —i—][aoD_lalagD
—][ag[D, a1)D7'[D, as) D~
:][CLQCL1CL2 — agDalaonl + alagDaonl + agDagalDfl

— (aoDalangl — aODalDfl — agalDangl + aoalag) .
Expanding (id + X + A2)b'¢1(ag, a1, az), we recover previous expression.
(iz) Consequence of (viii). O
3.2.2 Scale-invariant term of the spectral action

We know from [22] that the scale-invariant term of the action can be written as

¢p,(0) —¢p(0) = —][AD1 + é][ADlADl — g][ADlADlADl. (3.2)
In fact, this action can be expressed in dimension 3 as contributions corresponding to tadpoles

and the Yang-Mills and Chern—Simons actions in dimension 4:

Proposition 3.2.3. For any one-form A,
¢p,(0) —¢p(0) = —;/ A+ ;/ (dA + A?) — ;/ (AdA + 24%). (3.3)
Ne¢y 2 @3

To prove this, we calculate now each terms of the action.

Lemma 3.2.4. For any one-form A, we have

(i) Jo, AA= [y, A= = J5, A Jrg, A
(ii) f AD™! = f¢1 A= %me A— %f@ dA.
(iii) f ADT'AD™! = — [ AdA+ [, A®.
(iv) f AD"'AD"'AD™" = [, A%,
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Proof. (i) and (i7) follow directly from Lemma 3.2.2 (v).
(737) With the shorthand A = a,;db; (summation on 7)

][AD_lAD‘l :][aO[D, bo]Dtai[D, b D!

= — AdA +][a0[D, bo]allefl —][ao[D, bg]alDilbL
¢3

We calculate further the remaining terms
][ao[’D, bo]alle_l —][CL()[D, bo]alD_lbl = ][(I(]Dboalle_l —][aoboDalle_l
—][(L()Dboallel +][a0b0Da1D1b1,

which are compared with f¢2 A? = f¢2 ao(dbp)aydby = f¢2 aod(boay )dby — agbodaydby:

| 22 = f alp.bar D' .00}D™ - [ aobo[D. s D2, a] D
2
= ][aonoalle_l —][aonoalD_lbl —][aoboalDle_l +][a0b0a1b1
— ][ apbgDa;by D! + ][ apbgDa; D~ tby + ][ apboa1 Dby D~ — ][ apboaiby
= ][ agDboa;by D! — ][ biagDboay D! — ][ apbgDa;by D! + ][ biagbgDa; D~ L.
(iv) Note that
/ A3 = / ag(dbo)ay (dby)azdby = / apd(boay)d(biag)dbs — apbpdayd(byag)dbs
3 3— apd(boa1by)d(agdby + ao(;ls)?;d(albl)dazdbg
= ][aO[D, boa1]D 7D, bias] DD, by] D™t — agby[D, a1]D LD, bias] D7D, by] D71
— ao[D, boarb | D™D, az) D7D, ba] D™t + agho[D, a1b1) D [D, as) DD, o) DL

Summing up the first two terms and the last two ones gives
/ A3 = ][ ao[D, bola1 DD, bias] DD, ba) D~ — ag[D, bolarbi DD, azs) D™D, by] D1
3
Using Remark 3.2.1, we can commute under the integral D~! with all a € A and similarly
][AD1AD1AD1 = ][ao[D, bolar D7D, bi]ae D7D, by] D!

which proves (iv). O

We deduce Proposition 3.2.3 from (3.2) using the previous lemma.
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3.3 The SU,(2) triple

3.3.1 The spectral triple

We briefly recall the main facts of the real spectral triple (A(SUq(2)),H,D) introduced
in [48], see also [18,19,31].

The algebra:
Let A := A(SU4(2)) be the *-algebra generated polynomially by a and b, subject to the
following commutation rules with 0 < ¢ < 1:

ba = qab, b*a = qab*, bb* = b*b, a*a+q¢*b*b=1, aa*+bb*=1. (3.4)
We recall the following lemma from [153, Lemma A2.1]:
Lemma 3.3.1. For any representation w of A,
Spect(m(bb*)) = {0, ¢* ||k eNY orw(b) =0,
Spect(rm(aa*)) = {1,1 - ¢* |k € N} or w(b) = 0 and n(a) is a unitary.

This result is interesting since it shows the appearance of discreteness for 0 < ¢ < 1 while for
q=1, SU,(2) = SU(2) ~ S? and the spectrum of the commuting operator 7(aa*) and m(bb*)
are equal to [0,1]. Moreover, all foregoing results on noncommutative integrals will involve ¢>
and not q.

Any element of A can be uniquely decomposed as a linear combination of terms of the form
a“b’b*7 where o € Z, 3,7 € N, with the convention

af‘al = a*IO".

The spinorial Hilbert space:
H = H' @ H' has an orthonormal basis consisting of vectors | j iunt) with j = 0,1 5,1

w=—j,....j and n = —j*,...,] , together with |jun]) for j = § Lo, p=—4,...,J and
n=—j",...,5 (here z* :=x £ 1).
It is convenient to use a vector notation, setting:
: — (lipn1)
jun)) == (mmw) (3.5)

and with the convention that the lower component is zero when n = +(j + %) or j =0.

The representation ™ and its approximate m:
It is known that representation theory of SU,(2) is similar to that of SU(2) [153]. The
representation 7 given in [48] is:

m(a) |jun)) = o, |7t ut ) +aj,, [imutnt),
w(b) [jun)) = ﬂjtm G ) + B 15 ),
w(a*) |jun) = &5, [T n7) +a ;m i),
w(0%) ljpn) == B, it ) + B, 15 nt) (3.6)
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where
q_j_1/2 \/W 0
+ ptn—1/2[; 2j+2
=g Al P e v R sy
PZERIP7ER) N SR PYES
1V l—n+1/2] g0/ [i+nt1/2)
o = \/qu+n+1/2[ | 25+1] 7 [PAES)
T 0 qj+1/2 vV [j—[;]—l/ﬂ ’
j
V [J['—n+]3/2] 0
+ ptn—1/2[; 2542
B =1 N WP rev YAV sy
-4 i+ ¢ [2j+1]
,1/2 V0itnt1/2] i 4/[i—n+1/2]
Br = \/qwrn—l/z [ — [25+1] T2+
jun 0 R /[j-',[-n]—l/Q}
2j
with awn : (a;F P ), ﬁji“n = wﬁu*n*)* and with the g-number of o € R be defined as
[a] = L4

For the purpose of this chapter it is sufficient to use the approximate spinorial *-representation
m of SU,(2) presented in [48,138] instead of the full spinorial one .
This approximate representation is

m(a):=ay +a—, x(b):=by+0b_
with the following definitions, where ¢, := /1 — ¢2":

ar ljpn) = gy (Ve O e,

a_ [jun)) = g trints (@ 0) ),
b+ jpn)) = g7t 2qj++u+ (8 NNiTptn7),
- ’j/’bn» = _qJJr,u (qj+0+nq.,+ ) |j*u+n7». (37)
J n

All disregarded terms are trace-class and do not influence residue calculations. More precisely,
m(z) — n(z) € Ky where I is the principal ideal generated by the operator

Jglipn)) = ¢’ |jpn). (3.8)

Actually, Ky is independent of ¢ and is contained in all ideals of operators such that j,, = o(n™?)
(infinitesimal of order «) for any o > 0, and Ky C OP~°.

We define the alternative orthonormal basis vfi ! and v’ l and the vector notation
i ]T 1 . 4 7l . . L
UmJ = ( ;ﬁ ) wherev |]7 _]71_] 7T>7 Umyl = |jam_]vl_.] 7~L>

ml
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Hereje%N,O§m§2j,()§l§2j+1andv#bjliszerowheneverj:0orl:2j0r2j—|—1.

The interest is that now, the operators a4 and b4 assume simpler form:

. " . _
i J i mAl4l g
a4 Um7l = dm+1qi+1 Um+1jl+1 y  a— UmJ =q UmJ )
Joo_ 1 it Jo_ m J-
by V) =@ Gmt1 Uy i bovp =—4" vy, -
Thus
* 0 J~ * J _  ml4+1 Gt
ay Um,l =d4dmd Umfl,lfl ) a_ vm,l =9 Um,l ’
S J « 7 _ _.m gt
by Vot = 4 Gm Vg g b= Uy = =4 Q1 Vg1 -
Moreover, we have
aay =q ara_, boby=qbib_, byay =qayby, b_a_=gqa_b_,
atar =q¢*aya’, a‘a_=a_a*, a*by =qbra®, a*b_=qb_a",
ata_ =q*a_al, b by =0bib", b ar =qa b*, a by =qbra_.
Note for instance that
« . j 2 2 j * i 2 2
A0y Uy 1 = Al Vipgs G404 Vi1 = 19041 U g
« 7 _ 21 2 7 * 202 J
b+b+ Ut =4 9m V1> b+b+ Ut =4 9m+1Ym 15

so applied to vin ;» We get the first relation (and similarly for the others)

a*ay —qtasa’ + ¢ (biby —bybt) =1- ¢,

aral +a—a’ +by bl +b_b" =1,

a*ar+ata_ +q* (bLby +b7b) =1,

a*a_ —q?a_at + b b — @b b* =0,

ara’ +0* by =0, a*ay +q*b by =0,
a_a’ + b b_ =0, ata_+¢*bib_ =0,
bybl — b by +0_b" —b"b_ =0,

qgayb_ —b_ay +qa_by —byra_ =0.

And two others:

(3.10)

(3.11)

Note that we also use two other infinite dimensional *-representations 7+ of A on ¢?(N)

defined as follows on the orthonormal basis {&, : n € N} of £2(N) by

74(a) En = Qnt1Enti, w1 (b) ey, i =+q" ey .

These representations are irreducible but not faithful since for instance 74 (b — b*) = 0.

The Dirac operator:

(3.20)
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It is chosen as in the classical case of a 3-sphere with the round metric:

. 243 0y, .
D|jlun>> = (0] 32‘7'_1) ‘]Nn»’ (321)
2
. .. 3 )
which means, with our convention, that vanl = (§]+32j72) Ufnl. Note that this operator is
2

invertible (and thus D = D, Py = 0). Moreover, it is asymptotically diagonal with linear spectrum
and
the eigenvalues 27 + % for j € %N, have multiplicities (25 + 1)(2j + 2),
the eigenvalues —(2j + %) for j € %N*, have multiplicities 25(25 + 1).
So this Dirac operator coincides exactly with the classical one on the 3-sphere (see [4, 80])
with a gap around 0.
Let D = F|D| be the polar decomposition of D, thus

. diy Oy (. ,
[Dlljpn) = (" ) linn),  dj =2+ 3, (3.22)
Fljpm) = (o ) lipn), (3.23)
and it follows from (3.7) and (3.23) that

F commutes with a4, by. (3.24)

The reality operator:
This antilinear operator J is defined on the basis of H by

J |j) M, 1, T> = i2(2j+u+n) |j’ — M, —N, T>7 J |.]7 H, 1, l> = i2(2j_#_n) |ja — M, —T, l) (325)
thus it satisfies

J'=—J=J"and DJ = JD,

il 2(m+l)—1, 51 gl =2(m+0)+1, 1
Juy, =1 Vo5 —m,2j4+1—1° Jvy, =1 V9 —m,2j—1-1"

We denote
B the *-subalgebra of B(H) generated by the operators in §*(m(A)) for all k € N,
WH(A) the algebra generated by 6*(m(A)) and 6*([D, 7(A)]) for all k € N,
X the *-subalgebra of B(H) algebraically generated by the set { ax,by }.
Note that W)(A) is a subalgebra of WY(A) (the space of pseudodifferential operators of order
less or equal to zero).

The Hopf map r
For the explicit calculations of residues, we need a *~homomorphism r : X — 74 (A)@7_(A)
defined by the tensor product in the sense of Hopf algebras of representations 7 and w_:

r(ay) == mi(a) @ 7 (a), r(a-) = —qmy(b) @ m_(b"),
r(by) = —7my(a) @ m_(b), r(b-) = —my(b) @ m_(a"). (3.26)
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In fact, A is a Hopf *-algebra under the coproduct A(a) := a®a—qb0b*, A(b) := a®@b+bRa*.
These homomorphisms appeared in [153] with the translation a <> a*, v <> —b. In particular, if

U:= (—21)* Z*) is the canonical generator of the K1 (A)-group (Aa, Ab) = (a, b))®@ U where the

last ® means the matrix product of tensors of components.

The grading:

According to the shift j — j* appearing in formulae (3.9), (3.10), we get a Z-grading on X
defined by the degree +1 on ay,by,a_*,b_* and —1 ona_,b_,a,*, b "

Any operator T' € X can be (uniquely) decomposed as T' = ;-7 T where T is homoge-
neous of degree j.

For T' € X, T° will denote the 0-degree part of T" for this grading and by a slight abuse of
notations, we write r(7")° instead of r(7°).

The symbol map:

We also use the *-homomorphism o: 74 (A) — C°°(S1) defined for z € S* on the generators
by

o(me(a))(2) =2, o(rx(a"))(z):=2, o(ms(b))(2) =o(m+(b"))(2) :=0.

The application (0 ® o) o r is defined on X (and so on B) with values in C*(S1) @ C>°(S!).

We define
dT :=[D,T] and o(T) := [|D|, T].

Lemma 3.3.2. a4, by are bounded operators on 'H such that for all p € N,
(i) 6(ax) = taxr, O(bs)= £by,
(ii) " (x(a) = ay + (~)Pa_, (x(b)) = by + (~1)%_,
(iii) 0(ak) = £pal, o(Vy) = £pbh.

Proof. (i) By definition, a+ |jun)) = (¢* ,@2) |7EputnT) where the numbers ay and S+ depend
on j, u, n and g, so we get by (3.22)

. d. « 0 . d. o 0 .
Sas)lguml) = (G Q) ) = (G L) et

+ . .
(oaiigz) |Jiﬂ+"+>> = Fag |jun))

and similar proofs for b4.
(74) and (i77) are straightforward consequences of (i) and definition of . O

Remark 3.3.3. By Lemma 3.5.2, we see that, modulo OP~*°, X is equal to B and in particular
contains m(A).
Using (3.24), we get that B C W)(A) C algebra generated by B and BF.

Note that, despite the last inclusion, F is not a priori in W)(A).
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3.3.2 The noncommutative integrals

Recall that for any pseudodifferential operator T, fT := Reg(%(s) where (L(s) =
S=
Te(T|D|™).
Theorem 3.3.4. The dimension spectrum (without reality structure given by J) of the spectral

triple (A(SU4(2)), H, D) is simple and equal to {1,2,3}.
Moreover, the corresponding residues for T € B are

F TIPS = 2r 0 m) (7)),

][T|D|_2 =2(n®mn+mnen)rT)°),
][T\D\l =(2n®mn—inen)(FD)°),
][FTD\_3 =0,

][FTD\_2 =0,

][FTD\1 = (@ —n&mn)rT)°),

where the functionals 19, 71 are defined for x € w1 (A) by

2 )
(@) = lim (Texz— (N 4+ )n(@), () ::2;/0 o () () do),

N—o00
with Try z = Zg:()(&?n, TEp).
Proof. Consequence of [138, Theorem 4.1 and (4.3)]. O

Remark 3.3.5. Since F' is not in B, the equations of Theorem 3.3.4 are not valid for all T €
TY(A).

But when T € W3(A), {T|D|™* =0 for k ¢ {1,2,3} since the dimension spectrum is {1,2,3}
[158].

Compared to [138] where we had
Tg(x) = ]\}EHOO Tryz — (N + 2) 1 (2), Té(d}) = lim Tryz — (N + 1) (),

N—o0

we replaced them with 7y:

T 1 ! 1
To =T0— 571, Tog =70+ 571

Note that 71 is a trace on m4(A) such that 71(1) = 1 and 71 (74 (aa*)) = 5 f027r 1d6 = 1, while
7 is not since 79(1) = 0 and

o0}

o(m(aa®)) = lim Y (1-¢") = (N +1) = -2, (3.27)

N—oo
n=0

so, because of the shift, the substitution a <« a* gives

T0 (7T:|: (a*a)) =¢n (Wi(aa*)). (3.28)
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3.3.3 The tadpole

Lemma 3.3.6. For SU,(2), the condition of the vanishing tadpole (see [37]) is not satisfied
Proof. For example, an explicit calculation gives f 7(b)[D, n(b*)| D~ = %
Let x,y € ©(A). Since [F,z] = 0, we have

Falp.yo ! = f s = 7' (r(ad))

where 7/ :=270®@ 70 — 371 ® 7.
By Lemma 3.3.2, 7(b)6 (z(b*))

= (by+b-)((b-)*— (b+)*) = —bpby b b T +bib T —b_ by
Since only the first two terms have degree 0, we get, using the formulae from Theorem 3.3.4

7' (r(=bpby ™)) = =7 (74 (aa®) @ T_(bb*))
—279 (74 (aa™)) 7o (7
(bb*)) = 0. Similarly, using (3.28)

L) + (s () ()
and 71 (Tr,

7' (r(b=b-")) = 279 (74 (bb*)) 10 (7 (a*a)) = 2q27'0(
Since 7o (74 (bb*)) = Tr (w4 (bb*)) = Yoo ¢*"

][ﬂ(b) [D,7n(b*)D! =24

1 2 -1 1 2
1_q2 1_q2 + 2(1 1_q2 1_q2 1_q2 . D

In particular the pairing of the tadpole cyclic cocycle ¢ with the generator of Ki-group is
nontrivial:

7_(aa*)) 7o (74 (bb*).
= ﬁ and (3.27),

Remark 3.3.7. Other examples: with the shorthand x instead of m(x)
(m ®@71)r(ad(a*)®) = -1,

(m@m)r(a*d(a)®) =
(o ® To)r(a5(a*)°) = qgal , (10 ® 70) ( (a O) 2 1
N -~ 2
][aa(a )ID| ™ = 5y ][ 5(a)| D! = 5ty
][b(s(b)myl =

][b*a(b*)u)yl =0,
][bé )P = 24

Framprt =4

In particular, N¢1 does not vanish on 1-forms since fN¢ ada* = N¢i(a,a*)

) = —1.
Let U be the canonical generator of the K (.A)-group, U = (—Zb* Z) acting on H®C?. Then
for Ay := > 1 ,_ 7(Up) dm(U*}y), using above remark, f¢ Ay = —2 as obtained in [138, page
391]: in fact, with P := (1 + F),

(U, U7) = QZ][Ukﬁ(ng)P!D!_l —][Ukl52(U§z)P!D!_2 + g][Ukﬁg(Uﬁz)P!D!_
ol

satisfies ¢1 (U, U*) = 23", f Uud(Upy) P|D| ™ = o, Av-
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3.4 Reality operator and spectral action on SU,(2)

3.4.1 Spectral action in dimension 3 with [F, A] € OP~°

Let (A, H,D) a be real spectral triple of dimension 3. Assume that [F, A] € OP~°°, where
F := D|D|~! (we suppose D invertible). Let A be a selfadjoint one form, so A is of the form
A =", a;db; where a;,b; € A.
Thus, A ~ AF mod OP~*° where A := ), a;0(b;) is the d-one-form associated to A. Note
that A and F' commute modulo OP~°.
We define
Dp =Dy + Py, Pa the projection on Ker Dy,
Dp:=D+A, A:=A+JAJ

Theorem 3.4.1. The coefficients of the full spectral action (with reality operator) on any real
spectral triple (A, H, D) of dimension 8 such that [F, A] € OP~>

W fioart =i
Gy f1oat=fior-afapr
(i) ][uml :][|z>|1 _ 2][A|D|2 + 2][A2|D|3 + 2][AJAJ1D\3

(iv) ¢p,(0) = ¢p(0) — 2][A|D|_1 +][A(A + JAJ H|D| 2 +][5(A)(A + JAJ H|D|3
- §J[A3\D\3 - 2][A2JAJ1]D]3.

Proof. (i) We apply Proposition 1.3.9. N o

(ii) By Lemma 1.3.10, we have {|Ds|™? = {|D|=2 — f(AD + DA + A?)|D|~*. By the
trace property of the noncommutative integral and the fact that .&2|D|_4 is trace-class, we get
f1D4|72 = f|D|72 = 2f AD|D|=* = §|D|72 — 4 AD|D|~*. Since AD ~ A|D| mod OP~>, we
get the result.

(797) By Lemma 1.3.10 (4i), we have

][]DM ! ][|D| 1 ][(AD+DA+A2)\D\ 34 ][(AD+DA+A2) |D| 5.
Following arguments of (i), we get
][(&D + DA+ A%)|D| 3 = 4][A|D|_2 + 2][A2|D|_3 + 2][AJAJ_1|D|_3,
][(AD + DA+ A??D| % = 8][A2|D|_3 + 8][AJAJ—HD;—3,

and the result follows.

(iv) By (1.11). Cp, (0) = 353, 5" f(AD )7

Moreover, the following holds: fAD 1 = 2fAD|7! and f&D_ = Qf A|D|_1)
2 A|D|71JAJT1D|7t. Since §(A) € OPY, we can check that fA|D| 2 = fA?%D|~2
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f6(A)A|D|™® and, with the same argument, that {f A|D|='JAJLD|~t = f AJATYD|2 +
f6(A)JAJ Y D|73. Thus, we get

][(&91)2 _ 2][A(A + JAT Y D2 + 2][6(A)(A + JAT YD, (3.29)
The third term to be computed is
][(A'D—l)3 = 2][(A|D|‘1)3 + 4][(A|D|—1)2JAJ—1\D\—1 + 2][A[D]‘lJAJ_1|D|‘1A]D]‘1.
Any operator in OP~* being trace-class here, we get
][(A’D—lﬁ _ 2][A3|D|‘3 + 4][A2JAJ—1|D|—3 + 2][AJAJ‘1A|D]‘3. (3.30)

Since f ATAJYA|D|™3 = f A2JAJ1|D| =3 by trace property and the fact that 6(A) € OPY, the
result follows then from (3.29) and (3.30). O

Corollary 3.4.2. For the spectral action of A without the reality operator (i.e. Dy = D + A),

we get
][|DA|—2 =][|D|—2 - 2][A|D|-3,
][uml - ][ DIt - ][ AID|? ¢ f A%D| 3,

(b, (0) = Cp(0) — ]Z ADI™ 4} ]1 A%D[2 4 ] ][ S(A) AP — 1 ][ A3D|3,

3.4.2 Spectral action on SU,(2): main result

On SU,(2), since F' commutes with a4 and by, Theorem 3.4.1 can be used for the spectral
action computation.
Here is the main result of this section

Theorem 3.4.3. In the full spectral action (1.6) (with the reality operator) of SUq(2) for a
one-form A and A its associated §-one-form, the coefficients are:

][ Dul ™ =2,
Fipar2 =1 fapi,
][|DA|—1 — 14 2<][A2|D|—3 —][AD—z) + !][Amr?*ﬁ,

(b, (0) = —2 ][ AD| + ][ A%D[2 2 ][ A%D|?

+f a3 f apr - f 42019 + 4 f a2 f app-e.

In order to prove this theorem (in section 4.7), we will use a decomposition of one-forms in
the Poincaré-Birkhoff-Witt basis of A with an extension of previous representations to operators
like TJT'J~" where T and T" are in X.
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3.4.3 Balanced components and Poincaré—Birkhoff-Witt basis of A

Our objective is to compute all integrals in term of A and the computation will lead to
functions of A which capture certain symmetries on A.

Let A = Y. w(x%)dn(y’) on SU,(2) be a one-form and A the associated d-one-form. The 2
and 7® are in A and as such they can be uniquely written as finite sums 2* = o x m® and
Y= Zﬁ y%mﬁ where m® := a®b*b**? is the canonical monomial of A with o, € Z x N x N
based on a fixed Poincaré-Birkhoff-Witt type basis of A.

Remark 3.4.4. Any one-form A = Y, m(z")dn(y") on SU,(2) is characterized by a complex
valued matriz A5 = > x! yzg where o, B € Z x N x N. This matriz is such that

A=A Mg

where Mg := m(m®)s (m(m?)).
In the following, we note
A= AP Mg
so for any p € N, f A|D|™P = { A|D|~P.

This presentation of one-forms is not unique modulo O P~ since, as we will see in section 5,
F =%, x;dy; where x;,y; € A, thus for any generator z, [F, z] =), x;d(y;2) —x;yidz —zx;dy; = 0
mod OP~*°. We do not know however if this presentation is unique when the OP~%° part is
taken into account.

The §-one-forms M 5 are said to be canonical. Any product of n canonical d-one forms, where
n € N* is called a canonical §"-one-form. Thus, if A is a d-one-form, A" = (A")g Mg‘ where
(n—1)

a=(a,o,- 2" D) 3=(6,0,---, 6"V are in Z" x N* x N, (A”)g = AD. "Af[(nq) and
M g‘ is the canonical §"-one form equal to M g -Mg((::ll)).
Definition 3.4.5. A canonical §™-one-form is a-balanced if it is of the form

(n—1) (n—1)
a®§(a®)---a®r 6 )

where Y77} ozgi) + ﬁfz) =0. i
For any d-one-form A, the a-balanced components of A™ are denoted Ba(A”)g.

Note that B
00
Ba(A)g = Aélﬁloo Oc1+61,0 Oaz+as+B2-+33,0-

Definition 3.4.6. A canonical é™-one-form is balanced if it is of the form

)

where 3217 o” + 81" = 0 and 350 o) + 5 = £ o) + 557, ,
For any §-one-form A, the balanced components of A™ are denoted B (A")g

(n—=1)

me§(m?)- - ma("71)5(m’3
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Note that ~
B(A)g = A[ilﬁ%oigag Oa1+61,0 5042-%—52,0634-63'

As we will show, a contribution to the k**-coefficient in the spectral action, is only brought by
one-forms A such that A* is balanced (and even a-balanced in the case k = 1).

Note also that if A is balanced, then AF for k > 1 is also balanced, whereas the converse is
false.

3.4.4 The reality operator J on SU,(2)
Let for any n,p € N,

Gn = V1 — ¢, G_n:=0if n >0,

@y = Gnt1 Gntp s Ghp = n " Gn(p—1) »
with the convention qIL’O = q}w := 1. Thus, we have the relations
mi(a?) en = quL,p En+p s m+(a*?) &, = qub,p €n—p,
w1 (P) e, = (£¢")P en, 7+ (b*P) e, = (£¢")? en,

where ¢, := 0 if k < 0.
The sign of x € R is denoted 7. By convention, a; := a, a+ j := a+ if j > 0 and a; := a*,
a4 j := a} if j < 0. Note that, with convention

Ta . Ta .
Qnyp = qu, if oy >0, gnp = q,lhp if oy <0, and q,TL?p =1,

we have for any a1 € Z and p < ay, 7y(ah,)en = q,Tfpl Entna, p-
Recall that the reality operator J is defined by

Jvﬂ,l — j2m+D)—1,51 Jvﬁ,l _ —2(mA+D)+1, 51

V2j—m,2j+1—1° ¢ V95 —m,2j—1-1"
thus the real conjugate operators
~ -1 7 . -1
a4+ = JaxJ , by :=JbysJ
satisfy
; . i+ ; : 2j+2-1 -
~ J . q2j+2—1 O J ~ 7 ._ _ 2j-m (q 0 J
A4V = Q2J+1—m( 0 qzj,l) m,l -V = —4 ( 0 g2l )”m—l,l—lv
~ 2j+1-1 i+ ~ . . -
J oo J J . _2j-m (@2j41—1 O J
by U, = 92j+1-m ( 0 qzj—l—l) U415 b Ui = —4 ( 0 qu_l_l) Um—1,1"

So the real conjugate operator behaves differently on the up and down part of the Hilbert space.
The difference comes from the fact that the index [ is not treated uniformly by J on up and
down parts. R

We denote X the algebra generated by { @y, by }, X the algebra generated by { a+, b, Zii,gi }
and H' := (?(N) ® ¢>(Z) and we construct two *-representations 7+ of A:

The representation 7, gives bounded operators on H’ while 7_ represents A into B(H' @ C?).



3.4. Reality operator and spectral action on SU,(2)

The representation 7 is defined on the generators by:
(@) em ® €25 '= q2j+1-m Em @ €2j+1, T+ (b)em ® €9j 1= —qzj_m Em+1 @ €2541
while 7_ is defined by:

T_(a)er ®e2j ® ey 1= —Q2j+141-161 ® €241 ® €1

2j+1—1

T(b)er®ey ®ep) 1= —q E141 ® €2j41 @ €7y,

where ¢4 is the canonical basis of C? and the + in + corresponds to T in T].

The link between 7+ and w4 which explains the notations about these intermediate objects
and the fact that 74 are representations on different Hilbert spaces, is in the parallel between
equations (3.26), (3.31) and (3.32).

Let us give immediately a few properties (zg equals z if the sign g is positive and equals z*
otherwise)

Ty (ap)’ em @ €95 = q;f_m,p Em @ €2j4ngp
T_(ag)P e ®eg; ® ey = (—1)° qgfilfl,p €1 ® e2jtngp D 1Y,

Ty (bg)P em @ g5 = (—1)P ¢ P e ® s
%_(bﬁ)p €1 Qe Qe = (=1)? q(2ji171)p Eltngp @ E2j4ngp @ 7| -

Note that the T4 representations still contain the shift information, contrary to representa-
tions 4. Moreover, 74 (b) # 74 (b*) while 74 (b) = w4 (b*).
The operators d+, b+ are coded on H' @ H' ® C? as the correspondence

i —— 74(a) ®7_(a), A —— —q7(b") @7 (b"),
by — —74(a) @ 7_(b), b —s 7, (b*) @ F_(a®). (3.31)

We now set the following extension to B(H') of ;. and to B(H' ® C?) of n_ by

m(a)i=7m(a) @V, 7, (b):=7m(b)®V  (Vis the shift of (*(Z)),
7 (a)=7m_(a) @V @1y, 7 (b):=71_(b)®@V ® 1.

So, we can define a canonical algebra morphism p from X into the bounded operators on HeoH @
C2. This morphism is defined on the generators part {a, b+ } of X by preceding correspondence
and on the generators part { at,by } by —see (3.26):

ar o 7 a) @7 (), 0 g () 0 7 (),
by — —7 (a) @ 7_(b), b —— =7l (b") @ 7_(a"). (3.32)

We denote S the canonical surjection from H’ ® H’ ® C? onto H. This surjection is associated
to the parameters restrictions on m, 7,1, j'. In particular, the index j’ associated to the second
?2(N) in H' ® H' ® C? is set to be equal to j. Any vector in H’ ® H’ ® C? not satisfying these
restrictions is sent to 0 in H.

Denote by I the canonical injection of H into H' ® H' ® C? (the index j is doubled). Thus,
Sp(+)I is the identity on X.
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In the computation of residues of (% functions, we can therefore replace the operator T' by
Sp(T)I.
We now extend 7y on 7/, (A)74(A): For z,y € A, we set

Tey (T (@07 (1) == 3 (em @ e, 7 (@F 4 1) em G o),

1= 3=

Tl (7 (@)7-(y) =Y (a1 @eno1@er, T (2)7-(y) a1 @ en—1 D er)

o~
I
o

Ty (7 (0)7-(0) = Y (@ ®enp ©c), (@R (W) @ e ey).

NE

N
I
o

Actually, a computation on monomials of A shows that Tr]lv (' (z)7_(y)) = Tr}\, (7 (z)7_(y)).
For convenience, we shall note Try (7’ (x)7_(y)) this functional.

Lemma 3.4.7. Let x,y € A. Then,
(i) To(m(2)7+(y)) = limy—oo Un exists where

Uy =Ty (7 (2)72(y)) — (N + )71 (72 () 71 (72 (y)).
(it) Un = 7o(ml (2)T+(y)) + O(NF) for all k > 0.

Proof. (i) We can suppose that x and y are monomials, since the result will follow by linearity.
We will give a proof for the case of the w4 representations, the case m_ being similar, with minor
changes.

We have 74 (y) = (Rrag,) 1 (710)% (710*)%. A computation gives
(_1)/32+ﬁ3 (2j—m)(B2+03)

T (y) em @ €95 = q2] m,|B1| Em—Bs+B2 & €2j—B3+B2+51

and with the notation tojm, := (ep ® €25, T (2)T+(y) em ® £25) and Tyj 1= Zi{:o tojm, we get

tojm = (_1)ﬁ2+ﬁ3 q(QJ m)(B2+083) T31 Tay (m+B2—0B3) (2 +as)

G5 i8] Tt Bosfon | 9 S+~ 3,0

X 5—063-1—042-&-,3170
2i_ _ 15 Ta
_ (_l)oa q( j—m)(B2+03)+(m—a1)(az2+as) q2jim,|ﬁ1| qmia1,|a1| (50114_52_53,0 5a2—o¢3+ﬁ1,0

25 41 29K 4!

= fop €7 U9 m = fap 7" 252j-m
where
/ L A Tﬁ Ta
t2j,m T qm(n ) Qle m |/31| qm 1a1,|a1| 5 (333)
" L A— TB Ta
t;m o= ") By 111 925 —m—ar Jan | (3.34)
with A := G5+ 83 > 0 and k := as + a3 > 0. We will now prove that if A # &, then (Ty;) is a
convergent sequence. Suppose k£ > A. Let us note Uéj = Em 0 t’QJ m- Since the t’2j7m are positive
and ty; 1, > t5; ,, for all j,m, Uy, is an increasing real sequence. The estimate

A)
U2J<qu1£ S qK‘>\<OO
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proves then that Uéj is a convergent sequence. With Ty; = f, 3 g Uéj, we obtain our result.

Suppose now that A > x. Let us note Uy, := S ty;m- Since the t5,  are positive and
t”

" . "o : : .
9j+1,m = o;m for all j,m, Uy is an increasing real sequence. The estimate

2j
A— 1
Ugj S Z qm( K) S l—q)"” < o0
m=0

proves then that Uy} is a convergent sequence. With Th; = fo 3 g2 Uy, we have again our result.
Moreover, note that if A and x are both different from zero, the limit of (75;) is zero and more
precisely,

Ty; = O(¢¥M) if k > XA >0, (3.35)
To; = O(¢* %) if A > K > 0. (3.36)

Suppose now that A = k # 0. In that case, (T3;) also converges rapidly to zero. Indeed, let us fix
g < e < 1. we have e %A Ty; = ngzo cmdaj—m = ¢ x d(2]) where ¢, := fo(q/e)™™ qTal

m—ai,|a|
and dp, == (q/ 5)/\qu£1| 5,|- Since both > mCm and > d,, are absolutely convergent series, their

Cauchy product Zgj g= A Ty; is convergent. In particular, lim;_, g2 Ty; =0, and
Ty; = O(e¥?). (3.37)

Finally, T5; has a finite limit in all cases except possibly when A = x = 0, which is the case when
a1 =g = a3 = 1 = B2 = B3 = 0. In that case, t3j,, = 1.

A straightforward computation gives 7 (7Ti (x)) T (ﬂ'i(y)) = 01,0 081,0 902,0 085,0 03,0 9350

Thus,

Usj = Taj = (27 + 1)0a1,0 98,0 02,0 65,0 Oars,0 035.0

has always a finite limit when j — oo.

(73) The result is clear if A = x = 0 (in that case Uy = 179 = 0). Suppose A or k is not zero.
In that case Uy; = T5;. By (3.36), (3.35) and (3.37), we see that if A\ >k >0orx > X >0 or
k = A, (Ty;) converges to 0 with a rate in O(¢*¥%) where a > 0 and ¢ < & < 1. Thus, it only
remains to check the cases (k > 0,A = 0) and (x = 0, A > 0). In the first one, we get from (3.33),

Usj = fa3 Z%:O qm"‘qgfl_mmﬂ. If 81 =0, we are done.

Suppose 31 > 0. We have qg?im,\ﬁﬂ = Z;io g™ @IPh@i=m) where p = (p1,--- ,pg,) and
l, = (—1)‘1"1 (é), rp = 2p1 + -+ + 201ps,. Thus, cutting the sum in two, we get, noting Lo; :=
Jas Z%:O qm",

2j
4lpl13 _g(25+1)n—2lp| ; _
Usj = Loj = fap Y, bpa" "o+ fas D, lpd™q" Py gm2i),
Ipl1>r/2 0#£|pl1 <r/2 m=0

Since ZO¢|p|1<n/2 g™ gphi 233:0 gm™(E=2ph) g in Oj—oo(iq¥), we have, modulo a rapidly
decreasing sequence,

T gAPlii —q(2i+1)r—2lply

Uyj — Laj ~ fap Z lpq g7l =t fo,30°" V2,
Ipl1>k/2
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with

2j
o rp 1—qlPl1—r)(2j+1) rp (2lpli—r)m
Voj= 3 b g = Y > bava .

Ipl1>#/2 lpl1>r/2 m=0

The family vy, , == (I, ¢"” q(2|p‘1_“)m)(p,m)g, where I = {(p,m) € N x N : [p|; > s/2} is
(absolutely) summable. Indeed |vn, | < [Ip|q"" ¢ SO |V p| is summable as the product of two
summable families. As a consequence, lim;_., V2; exists and is finite, which proves that (q? Vo),
and thus (Us; — La;) converge rapidly to 0.

|
Suppose now that 8; < 0. In that case, q251—m,\ﬁ1\ = qéj—mlﬁﬂ = q;j—(m+|ﬁ1|),\ﬁ1|

(3.33), we get Usj = fap Zn{:(} qmﬁq%—(mﬂﬁﬂ)»Wﬂ = fa,59 1Bl an:"gll“ quQ;’_mvwl‘a so the
same arguments as in case 1 > 0 apply here, the summation on m simply shifted of |3].

and by

The same proof can be applied for the other case (k = 0, A > 0). This time, we only need to
use (3.34) instead of (3.33) and the preceding arguments follow by replacing x by A and (3 by
. O]

Remark 3.4.8. Contrary to the preceding 1, the new functional contains the shift information.
In particular, it filters the parts of nonzero degree.

T eXX, ) T) e (A7 (A @r_ (A7_(A).
For notational convenience, we define 71 on 7'y (A)74(A) as

71 (Wl(x)%i(y)) =T (ﬂ'j:(x)) T1 (ﬂ'ﬁ:(y))‘
In the following, the symbol ~, means equals modulo a entire function.

Theorem 3.4.9. Let T € XX. Then

(i) B(s) ~e2(n@m) (pT)) (s —2) + 2@ m +71®@7) (A(T)) ¢(s — 1)
+2(np @10 — 311 @) (p(T)) ¢(s),
(i) TIDI = 2n 0 ) (D)),

i) fTIDI = 2m @i +m @ m) (5T)),
(iv) ][T|D|_1 =2(rp® 10 — %Tl ® 1) (ﬁ(T))
Proof. (i) Since T € XX, p(T) is a lincar combination of terms like ! ()T (y) @ 7 (2)7_ (1),

where x,y, z,t € A. Such a term is noted in the following T} ® T_. Linear combination of these
term is implicit. With the shorthand T, ... o, := (¢, ® -+ - ® £, Tee; @ - -+ @ €,), recalling that
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vfr’fl is 0 when j =0, or [ > 27, we get

o 2§ 2j+1

Gl =32 D SR SETI () i+ () SATI (D)) d;

A m m,l
2j=0m=0 =0

0o 2j 2j+1 o 25 2j—1
= Z Z Z P(T)m 250,251 453 + Z Z Z P(T)m 250,25, dj°
2j=0m=0 1=0 2j=1m=0 1=0
oo
- Z (Tro; (T4) Tr£j+1(T—) + Traj1(T4) Tr%j(T—)) dy
2j=0

By Lemma 3.4.7 (i), for all & > 0,

Trgj(T:t) = (2] + %)Tl(Ti) -+ T()(T:t) — %Tl(Ti) + O((2j)7k),
Troji1 (Te) = (2 + $)(Te) + 70(T4) + 371 (T2) + O((25)7F) -

The result follows by noting that the difference of the Hurwitz zeta function ((s, %) and Riemann
zeta function ((s) is an entire function.
(41,141, 1v) are direct consequences of (7). O

3.4.5 The smooth algebra C*(SU,(2))

In [31,138], the smooth algebra C*°(SU,4(2) is defined by pulling back the smooth structure
C"X’(Dgi) into the C*-algebra generated by A, through the morphism p and the application A
(the compression which gives an operator on H from an operator on I2(N) ® I?(N) ® [2(Z) ® C?).
The important point is that with [31, Lemma 2, p. 69|, this algebra is stable by holomorphic
calculus. By defining p := poc and A(:) := S(-)I, the same lemma (with same notation) can be
applied to our setting, with ¢ := w(z) — = (z) and

€= C®(D2,) © C=(8") © C%(DE,) © C%(5") & My (C)

as algebra stable by holomorphic calculus containing the image of p. Here, we use Schwartz
sequences to define the smooth structures. We finally obtain C*°(SU,(2)) with real structure as
a subalgebra stable by holomorphic calculus of the C*-algebra generated by 7(A) U Jr(A)J !
and containing 7(A) U Jr(A)J 1.

Corollary 3.4.10. The dimension spectrum of the real spectral triple (C*(SUq(2)), H, D) is
simple and given by {1,2,3}. Its KO-dimension is 3.

Proof. Since F' commutes with m(A), the pseudodifferential operators of order 0 (without the
real structure) are exactly (modulo OP~°) the operators in B + BF. From Theorem 3.3.4 we
see that the dimension spectrum of SU,(2) without taking into account the reality operator .J is
{1,2,3}, in other words, the possible poles of (% : s — Tr(bF¢|D|~%) (with ¢ € {0,1}, b € B)
are in {1,2,3 }. Theorem 3.4.9 (i) shows that the possible poles are still { 1,2,3 } when we take
into account the real structure of SU,(2), that is to say, when B is enlarged to BJB.J ~1 Indeed,
any element of BJBJ ! is in X X and it is clear from the preceding proof that adding F' in the
previous zeta function do not add any pole to { 1,2,3 }.
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All arguments go true from the polynomial algebra A(SU,(2)) to the smooth pre-C*-algebra
05U, (2).

KO-dimension refers just to J> = —1 and DJ = JD since there is no chirality because
spectral dimension is 3. ]

3.4.6 Noncommutative integrals with reality operator and one-forms on
SU,(2)

The goal of this section is to obtain the following suppression of J:

Theorem 3.4.11. Let A and B be §-one-forms. Then
() ][AJBJ_lD\_3 = ;][Ayp—?’][BDw,

(i) ][AJBJ‘1|D|‘2 = ;][A\D\—2][B|D|—3 + ;fA|D|—3][B\D\—2,
(i) ][AQJBJ1|D]3 _ ;][A21D13][B\D\—3,
(i) ][5(A)A|z>|—3 - ][5(A)JAJ_1|D|—3 o,

We gather at the beginning of this section the main notations for technical lemmas which
will follow.

For any pair (k,p) € N3 x N3 such that k; < |, p; < |Bi], where a, 3 € Z x N x N, we define

s 2= 90) (1) gres () (22) (511 oy (G2) () (vt g,

hip =01 + g — a3 — 2(Na, k1 + k2 — k3) + 9(p) ,

9(p) == B + B2 — B3 — 2(np,p1 +p2 — p3),

Ohp =k +p1+ 04, + 0k,

ot = kiko — k3 (k1 + ko) + g, Brlkl1 + Ba(lkl1 + p1) — Ba(kl1 +p1 +p2),

Ok p = (k3 +mg, D1 — p2 + p3) (k1 + ko + ks) — ka(ky + k2) + (p1 + B2) (—p2 + p3) + Daps,

ki k2 vk aléll aP? *P3 plkh+lph :

tk,P = aa1

o El xko k3 D1 *P2 p3 |E|1+‘5|1
Ukp = Qg @~ Q" 0Ag a7 04 b )

where we used the notation
ki := |ou| — ki, Di := |Bi| — i,
s00 <k < lail, 0 < i < |Bs]. We will also use the shorthand k := (kl,Eg,Eg).
For 81 € Z and j € N, we define

N agn |
wi(B,4) =Y (67™(a,75,)7 = di0),

n=0

wg =201 q51(2a3+537ﬂ2) w1 (61, a3 + B3).
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We introduce the following notations:

q = g (ktph) o q 7 Ts, g g
k.p,n netr —nay kik n—ks+ng Pi+Pa—ps,ka n+ng, Pr+P2—Pa.ks M HP2—P3,P1 in—ps.p2=n.p3’
. g (Rl 1Pl g e 7 4 e 7 4
k.p,n ntrg —1ay k1,k1 1R+, D1—p2+p3,k2 Intng, P1—p2+ps,ks Tn—p2+ps,pr ntps.p2An.ps

% (_1)\k|1+|p|1’

T[::p = nalkl + k2 - k3 + /rlﬁ1i)\1 +ﬁ2 - ﬁ37

Tp = Nark1 — k2 + ks + 13, D1 — p2 +p3.

Thus, 7 (tkp)en ' and 7_(uy p)e

qk Dy n+r n = qk,p,ngn—i-r,;p'

Lemma 3.4.12. We have
r((M§)°) = Ony 0 Vkp T4 (thp) @ 7 (g )
k,p

where the summation is done on ki, p; in N such that k; < |oy|,p; < |G| forie {1,2,3}.

Proof. Since w(m®) = (a4 + a—)* (b + b_)*2(b%. + b*)*3, with vy, : (‘Z‘l‘) 21y (‘;;) (zg),
E(ma) _ Zkvk ¢, where ¢, := a‘—flolq k1 k1 o¢1 baz ) bkz b* az—ks bt k3

By Lemma 3.3.2 (iii) we see that §(z(m?)) = >_p Wp dp where we introduce
ﬁ — — —p-
1= (2 2, (2)(2) s dy o= glp) 257 a1 630702 082 o e,
As a consequence, (Mg)° =3}  Onkp)0 9(p) vk wpckp Where

T o pha px ks px k3 p1
e

Crp=al b2 bP? b P P (3.38)

SR
With (3.38), we get r(cy,) = (—1)Ftritastastfhotls ghtvim, (1 ) @7 (u), ) where

thp = agll bir ke pke g *h bk3ap1 bPL aP2 pP2 q*P3 P3|
uf,p = afl bR bRz q*R2 pRagha oBL pp1 P2 P2 e gPe
A recursive use of relation ba; = ¢ a;b yields the result. ]

Lemma 3.4.13. We have
(i) (Tl 029 Tl)(T(ME)O) =t 50&17751 5042,0 5013,0 65270 5ﬁ3,0 :

(ii) (Tl X700+ T0 X 7'1)(7'<ME‘)O) = 50[1’,51 5a2+52’a3+53 wg.
In particular, if A is a §-one-form, we have

- 00
][A‘D‘ 3 = 261 Aﬂlgloo ,
][A|D|_2 = 2w} B(A)

where we implicitly summed on all o, B indices.
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Proof. See Appendix A. O

With notations of Lemma 3.4.12, it is direct to check that for given & = (o, - ,a(”_l))
and /8 - (ﬁ?ﬁ/7 e 75(n71))7

r((Mg)O) — Z 5hK,P70 VK, P 7T+(tK7p) (4 TF,(UK’p) (3.39)
K.P

Where K = (kvkla T k(n_l))a P = (p7p/7 e 7p(n_1)) Wlth O S ki‘j) S ’agj)|7 0 S p»E]) S |,82(])‘,

tK,P = tk,p tk",p’ cee tk(n_l)m(n_l) 5 UK,P ‘= Uk pUk' p * uk(n_n’p(n—n 5
VK,p ‘= Uk,p Uk;’,p’ . 'Uk(nfl),p(nfl) y hKJD = hk7p + hk/,p/ + - hk(n—1)7p(n71) .
(n—1)

In the following, we will use the shorthands A; := o +a}+---+a; ,Bi=0i+0+-+
ﬂi(nfl)'

_ + _ * + + A
In the case n = 2, we also note TP =Tkp T Ty and UK pp = qk,p nqk p7n+rk/ ,
. _
Thus, we have 7y (tx p)em = UK P Emtr and 7_(ug, p)em = dg.pn€ S—

We also introduce, still for n = 2,

o)

N I4+2nj ' —B1—e1-B1 Tﬂ T/ Tﬁ/ )
V8, a0, (L J) 1= 2;) (a qn+ﬁ1+a1+ﬂ1,|ﬁ1+a1+ﬁ1|qn+ﬁl+a1,lﬁl|qn+ﬂ1,|a1|q 154 = dj0),
n—=

VS =281 8] + (B2 — B3) (B3 — B5)] ¢*™¢ (ko) +20; (0 Fe)
X Vg, or g (02 + Bo + as + B3) (o) + B1), As + Bs).
Lemma 3.4.14. We have
(i) (m@m) (r(MgMG)°) = 1B} 0a,-B) 64200450 08200850
i) (n@m+70mn) (r(MFMS)°) = 64,4545+ 850415, V5 -
i) (m1@71) (r(MgMg Mg,)°) = BiB1BY 64,,-B, 04300450 532 00B5.0-
iv) (m@mn) (r6(Mg)MG)°) = —(a + B1)B1BY 4By 642,0645,0085,0085,0-

(
(
(
(v) In particular, if A is a §-one-form,

F 4717 = 268, Bu(4%)].

][AQ\D\_Q =2V B(4%)2,

][ A%D|73 = 26,81} Ba(A%)],

][<5(A)A|D|3 =][A5(A)\D\3 -

Proof. See Appendix B. O

For a given §-1-form A, we say that A is homogeneous of degree in a equal ton € Z if it is a
linear combination of Mg such that a; + 1 = n. From Lemma 3.4.14 (iv) we get,
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Corollary 3.4.15. Let A, A’ be two §-1-forms, then

feapity = f o2,

][A|D|_1A’|D|_1 = ][AA'|D|_2 - n][AA’|D|_3, when A" homogenous of degree n.

Lemma 3.4.16. We have
(i) (1 ©71) p(MGIMG T 1) = P18} Gay,— 8y Ot~ 042,0 045,0 08,0085 -
(i) (10 @ 71 + 71 @ 70) p(MGIMG T~ = 5a1, ﬁl Ot 5 (B1WE 00 +8)+aly+3,,0 O+ 2,05+ B3

—|—ﬂ1w5/ ag+pP2+as+83,0 50‘ +627O‘3+ﬂ3)
(’iii) (Tl & 7'1) ﬁ(MgMg’ JME// J_l) = ﬁlﬂiﬁg ar+of,—pf1—0] 5 i 5A2 0 5‘43’0 532 0533 0
(iv) (v © 1) FOME)IMG T) = — (0} + )58 das -y G-y D120 940 05,008,

(v) In particular, if A and A’ are §-one forms,
][ AJA DI = 2(8 AT ) (B A7),
f ATATNDI™ = 281 2500 (Wi BA)) + 2081 A7) (wf BAY)),
][ A2TATYD| = 2(8 47500 (8181 Ba(A2)2),
][5(A)JAJ1 = 0.

Proof. See Appendix C. O
Lemma 3.4.17. Let 3,3 € Z. Then,

27 00 00
lim > (@50 ) = 1) = D (0702 = 1) + 3 ((@]s)? = 1).

2j—00
m=0 m=0 m=0

Proof. See Appendix D.
Proof of Theorem 3.4.11. The result follows from Lemmas 3.4.13, 3.4.14 (v) and 3.4.16 (v). O

3.4.7 Proof of Theorem 3.4.3 and corollaries

Lemma 3.4.18. We have on SU4(2),
(i) fIDI7? =2.
(i) f|D|7*=0.
(iii) fID|™"=—3.
(iv) ¢p(0) =0.
Proof. (iv) We have by definition

oo 27 2541

(p(s) =Te(ID|*) = > > > (), D7), ).

2j=0m=0 1=0
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. e d a0 1 .
Since |D| Svﬁn’l = (07+ d‘s) Uﬁn,l where dj := 2j + %, we get

J

CD(S):Z(2j+1)(2J+2)d1+Z 2j +1)(2j)d Z2J+1 (25) d;°.
2j=0 2j=1 =0

With the equalities (2j +1)(2j) = d? — 1 and ((s,3) = (2° = 1)((s) (here ((s,z) ==, cn m
is the Hurwitz zeta function and ((s) := ((s, 1) is the Riemann zeta function) we get

(p(s) = 2(2°7% = 1)¢(s = 2) — 5(2° = 1)¢(s) (3.40)

which entails that (p(0) = 0.
(i,1i,1i1) are direct consequences of equation (3.40). O

Proof of Theorem 8.4.3. 1t is a consequence of Lemma 3.4.18 and Theorems 3.4.1, 3.4.11. O

As we have seen, the computation of the noncommutative integral on SU,(2) leads to cer-
tain functions of A which filter some symmetry on the degree in a, a*, b, b* of the canonical
decomposition. Precisely, it is the balanced features that appear and the following functions of

A" ne{1,2,3}:

][A"\D\_p (3.41)
where 1 < n < p < 3. In the next section, we describe a method to compute these integrals.

Corollary 3.4.19. Let u be a unitary in C*°(SU4(2)) and vu(A) := 7(w)An(u*) + m(u)dr(u*)

be a gauge-variant of A. Then the following terms of Theorem 3.4.3 are gauge invariant

][ AID|3, ][ A% — ][ AD2, 2 ][ AID| + ][ A2 2 ][ A3D| 3,

Proof. Tt is sufficient to remark that all terms { |Dy|7% and (p, (0) in the spectral action (1.6)
are gauge invariant. This can also be seen via the computation D, y) = V, DV + V., RV,; where

Py is the projection on Ker D and V,, = m(u)Jw(u)J ! and |Dg|" % = Resy—yp_r Tr (|DA\”*’“)
(see Proposition 2.2.1 (4i7) and Proposition 1.3.8). O

Corollary 3.4.20. In the case of the spectral action without the reality operator (i.e. Dy =
D+ A), we get

][|DA|—3=2, ][|DA|—2=—2][A|D|—3, ][|DA|—1=—5—][A|D|—2+][A2|Dr—3,
(b, (0 ][ AD| + ][ A%D|2 — ][ A3D|?.

As a consequence, if A is a one-form such 1thath\D\*:3 = 0, then the scale invariant term of
the spectral action with or without J is exactly the same modulo a global factor of 2.
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3.5 Differential calculus on SU,(2) and applications

3.5.1 The sign of D

There are multiple differential calculi on SU,(2), see [92,153]. Due to [121, Theorem 3|, the 3D
and 4D differential calculi do not coincide with the one considered here: the right multiplication
of one-forms by an element in the algebra A is a consequence of the chosen Dirac operator which
was introduced according to some equivariance properties with respect to the duality between
the two Hopf algebras SU,(2) and U, (su(2)).

It is known that the Fredholm module associated to (A, H, D) is one-summable since [F, 7(z)]
is trace-class for all 2 € A. In fact, more can be said about F'!:

Proposition 3.5.1. Since

= (x(a”) dn(a) + ¢° (b) dn(b") + ¢ n(a) dn(a*) + ¢° =(b*) dz (b)) = F, (3.42)

F is a central one-form modulo OP~°.
Proof. Forgetting m, this follows from

a*da+ ¢>bob* + ¢*ada* + ¢>b* 5b
= (a® +a*)(ay —a-) +¢* (by +0_)(b" —b%) +¢* (ay +a_)(a* —at)
R+ b (b — b
= [a*ar —¢®ara’ + @ biby — P bybi ]+ R=(1-¢*) + R (3.43)

by (3.12) where we check that the remainder R is zero:

R=—la%a_ +¢bib_]+[a*as +¢* b by] —[a"a_ —q*a_a® +¢*b b —g*b_b"]
+(q®aral +¢° ¢*by) — (aa + ¢*bibo),

thus, applying (3.15), (3.16), (3.17), R = +(¢*aya* + ¢*q¢*by) — (aa— + ¢* b4 b_) = 0 using
commutation relations (3.11).

Now, replacing § by d in (3.43) gives (3.42) since F' commute with ay, by and F' is central
by (3.24). O

Proposition 3.5.2. The one-form in (3.42) is in fact exactly a function of the Dirac operator
D:

m(a*) dr(a) +¢* 7(b) dn(b*) + ¢° m(a) dr(a*) + ¢* mw(b*) dr(b) = &(D) = F&(|D]),  (3.44)

2s]—2s
where &4(s) = QM%W'

Moreover, F' = limg_,0&,(D).

1. Note that a similar result for a different spectral triple over SU4(2) when ¢ = 0 was obtained in [31, eq.

(48)]
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Proof. First, let us observe that the one-form w in (3.44) is invariant under the action of the
Uy(su(2)) x Ug(su(2)): h>w = e(h)w for any h € Uy(su(2)) x Uy(su(2)). For instance, using
notations of [4§]

1 * 2 l—1 _1 * —1—l
ebw=q2a"db+q° | —q2 "bda* + q 2bda* —q " 2a"db ) =0 = €(e) w.
Therefore, since both the representation 7 as well as the operator D are equivariant, the image
of w must be diagonal in the spinorial base. A tedious computation with the full spinorial repre-
sentation 7 given in (3.6) yields

IT oy — €90 (45+43) O+ (85+6) g (45+3) g2 g2 +1 _ 43
(Vppy W) = (TF—1) (U F2=1) =&(27 +35),

il ity — —a R (45+1) gV (8542) gV 24 (4541) ¢V 4P -1 Sy
(V1> W Upp) = @TT2-1) (¢ 1) ==& (2] + 3)-

These expressions have a clear ¢ = 0 limit equal respectively to 1 and -1, sow — F asq¢q — 0. O

In the ¢ = 1 limit, these expressions yields identically 0, which is confirmed by the fact that
all one-forms are central, it could be expressed as d(aa* + bb*) = d 1.

Note that since the invariant one-form we constructed differs by OP~° from F, hence any
commutator with it will be itself in OP~°.

We do not know if a central form w is automatically invariant by the action of both U, (su(2)),
that is: h>w = e(h)w.

Proposition 3.5.3. The order one calculus up to OP~%° is not universal.

Proof. Let us take the one-form wp from (3.42), which gives F'. Then, for any z € A(SU4(2))
we have 7(2wp — wpz) = 0. O

Note that since wp ~ (1 — ¢*)"'w mod OP~>, we get 1 ~ (1 — ¢*)71&,(|D|) mod OP~*°.
Corollary 3.5.4. Still modulo OP~>°, 1 € 7(Q2(A)).
Proof. 1 = F? is by definition in m(Q2(A)). O
In fact, one checks, using (3.12), (3.15), (3.18) that
¢*dada* — da*da =1 — ¢° (3.45)

showing again that 1 € m(Q2(A)).
Similarly, using (3.11) and (3.13), (3.18), (3.19), we get still up to OP~°

gdadb = dbda, gdadb® = db* da,
da* db = gdbda”, da* db* = qdb* da*
db db* = db* db, da da™ + dbdb* = —1. (3.46)

The use of the last equality of (3.46) and (3.45) gives

Proposition 3.5.5. Up to OP~°, F is not a (universal) closed one-form, as

da* da + ¢* dada* + ¢® db* db+ ¢®> dbdb* = —1 — ¢°. (3.47)
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3.5.2 The ideal R

In order to perform explicit calculations of all terms of the spectral action, we observe that
each d-one-form could be expressed in terms of zd(z)y, where z is one of the generators a, a*, b, b*
and x,y are some elements of the algebra A(SU,(2)).

Then, for the computation of f xdzy|D|~! we can use the trace property of the noncommu-
tative integral to get:

Fate D1 = f yod ) [D] + f 28(2) D] 5(0) DI .

Therefore, the problem of calculating the tadpole-like integral could be in effect reduced to
the calculation of much simpler integrals: f 6(2)|D|~! for all generators z and the integrals of
higher order in |D| ™.

However, it appears that the calculations of higher-order terms simplify a lot, when we further
restrict the algebra by introducing an ideal, which is invisible to the parts of integral at dimension
2 and 3. For instance, consider the space of pseudodifferential operators 7' € W°(A) of order less
or equal to zero (see [38]), which satisfy

][Tt ID| 2 :][tT|D|_2 :][Tt|D|_3 :][tT|D|_3 =0, Vt € T)(A). (3.48)

The elements a—, b_by, b_0} and their adjoints are in this space up to OP~°°: this is due to the
fact that in Theorem 3.3.4, 7y @ 71 (r(z)) = 0 when r(z) € m4(A) ® 7+ (A) mod OP~> contains
tensor products of 74 (b) or 74 (b*) since these elements are in the kernel of o.

Definition 3.5.6. Let R be the kernel in X of (0 ® o) o r where r is the Hopf-map defined in
(3.26) and o is the symbol map and let R be the vector space generated by R and R F.

Note that R is a *-ideal in X and
a—, b_bi(=q*byb_), b_b% arein R.

By construction and Theorem 3.3.4, any T € R satisfies (3.48) and R is invariant by F.

Moreover, by (3.15), [b_,b*] € R, so by (3.12) and (3.18), a®ay — ¢*ata’ — (1 —¢*) € R
and by (3.19), gatb_ —b_ay € R.

It is interesting to quote, thanks to Theorem 3.3.4 that if € R, then f F z ID|~! = 0 while
a priori, {2 |D|7! #£ 0.

Note that F' € W0(A) also satisfies (3.48) by Theorem 3.3.4 while F ¢ R since F? = 1.

Moreover other elements are in R like for instance d(b*b) = d(bb*):

d(bb*) = —=6(aa*) = —daa” —ada* = —(ay —a_)(a} +a* ) — (ay +a_)(a” —a})

=2(aqa” —a_al)

is in R since a_ € R yielding d(bb*) € R F.
We do not know if R is equal to the subset of the algebra generated by B and B F' satisfying
(3.48).

Lemma 3.5.7. R is a *-ideal in WO(A) which is invariant by F, d, §.



104 Chapitre 3. Spectral action on SU,(2)

Proof. Since R is an ideal in X = B mod OP~>° (see Remark 3.3.3), R appears to be an ideal in
UO(A) C algebra generated by B and B F. Since R is invariant by F, its invariance by d follows
from its invariance by § which is true on the generators of R. O

Note that, according to Theorem 3.4.13, f da|D|=2 = f da |D|™3 = 0 while { a*da |D|™3 = 2
which emphasizes the importance the quantifiers "for all" in (3.48).
Lemma 3.5.8. For any t € ¥)(A) and T € R, we have { t T |D|~ ={Tt|D|~%.

Proof. For any t € B, we have {Tt|D|™! = ftT|D|~! + fT|D|7'6(t)|D|~' and moreover
fT|D|715(t) D7t = FT5(t) |D|~2 — T 52(t) |D| =3 which comes from

[DI18()|DI™ = 6()IDI* + (1D, 6()]|DI™" = 6()[DI7* — |D| 6% (1)| D~
=6(t)D7* = 8*()|D|° + DI 1% (1)|D] .
So we get the result because T satisfies (3.48). O

Lemma 3.5.9. If ~ means equality up to the ideal R, the following rules with d(.) = [D,.] of
the first-order differential calculus hold (suppressing m)

ada ~ daa, a*da ~ —da* a, bda ~ qgdab, b* da ~ g dab*,
ada* ~ —daa*, a*da* ~ da*a*, bda* ~q 'da*b, b*da* ~ ¢~ da* b*,
adb~q 'dba, a*db ~ qgdba*, bdb ~ dbb, b* db ~ dbb* ~ —bdb*,

adb* ~ g ldb*a, a*db* ~ qdb*a*, bdb* ~ db*b~ —b*db, b*db* ~ db*b*.
Moreover
a*da — ¢*daa* ~ (1 — ¢*) F, ?ada* —da*a~(1-¢*)F. (3.49)

Proof. The table follows from relations (3.4) and Lemma 3.3.2 with (3.24) (one can also use
(3.11)). For instance, since a_ € R, using the fact that R is invariant by F,

bda = (by +b_)(ay —a_)F ~ (bt +b_)(ayr +a_)F =baF =qabF ~q(ay —a_)Fb
=gqdab

or similarly, a* da = (a*. +a*)(ay —a_)F ~ (a} —a* )(ay +a_)F = —da*a.
The second equivalence of (3.49) is just the adjoint of the first one that we prove now:

a*da — ¢*daa* = (a* +a*)(ay —a_)F — ¢*(ay —a_)F(a’ +a*)
~ (a% +a*)(ar +a_)F — ¢* (as +a_)(a’ +a*)F = (a*a — ¢* aa*) F
=(1-¢F. O
Remark 3.5.10. The rule written above remains if dx is replaced by 6(xz) and F by 1.
Working modulo R simplifies the writing of a one-form:
Lemma 3.5.11. (i) Every one-form A can be, up to elements from R, presented as
A~zx,da+da” Tor + xp db + db* T,

where all . are the elements of A.
(ii) When A is selfadjoint, A can be written up to R (not in a unique way, though) as

A~ z,da—da* (xg)" + xpdb — db™ ()",

where x4,y are arbitrary elements of A.
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Proof. (i) A basis for one-forms consists of the following forms: a®b®(b*)? d (ao‘/bﬁ,(b*)'yl), where
a,o’ € Z and 3,v,3,7 € N.

Using the Leibniz rule and the commutation rules within the algebra (up to the R according
to Lemma 3.5.9), we reduce the problem to the case of the forms: (a®b%(b*)7) dz (ao‘,bﬁ/(b*)yl),
where x can be either of the generators a,a*,b,b*. If x = b or x = b*, the straightforward
application of the rules of the differential calculus leads to the answer that the one-form could
be expressed as: a®b®(b*)Y db and db* a®b®(b*)".

Similar considerations for the case x = a, a* lead to the remaining terms.

Note that the presentation is not unique, since there still might remain terms, which are in
R, for example: b*db + db*b = d(bb*) € R.

(1) is direct. O

Next we can start explicit calculation of the integrals, beginning with the tadpole terms.

Application of the Leibniz rule yields a presentation of one-forms which is different from the
one of the previous lemma. Each d-one-form could be expressed, as a finite sum of the terms
xd(2)y, where z is one of the generators a,a*,b,b* and x,y are some elements of the algebra

A(5U4(2)).

Proposition 3.5.12. For all z,y € A(SUy(2)) and z € {a,a*,b,b*} we have

][ £8(2)y D] :][ yé(2)[D ! + ][ 28(2)3(y) | D% — f 28(2)8%(y) [D| %,

Proof. This is just the application of the trace property of the noncommutative integral, together
with the identity: [D|~16(2)|D|~t = — [|D| 1, 2]. O

Remark 3.5.13. The computation of tadpole-like integrals is reduced to the following integrals:
f26(2)[D|7t for all generators z and the integrals of higher order in |D|=2. However, the calcu-
lations of higher-order terms simplify a lot when we use the relations which hold up to the ideal
R: this erases parts of the integral depending on |D|=2 and |D|=3. Thus, beside f x5(z) |D|71,
we only need to compute §x6(2)8(2") |D|~? where z and z' are generators, since all the |D|™3
integrals have already been explicitly computed in section 4.6 (these integrals do not depend on
q)-

Besides the tadpole, the only integrals that need to be computed are {f A|D|=2 and f A% |D|~2
where A is a d-1-form. Working modulo R and using again Leibniz rule, we only need to compute
f28(2) D2 and the previous integrals f x5(2)5(2") |D|~2.

Operators L, and M,

In the notation vlj m of H, we have already used the j dependence in (3.8) with .J, vfnl =
j 0]
q’ vm,l'
Let L, and M, be the similar diagonal operators

Joo._ 2,7
Lq vm,l =4q vm,l )
Joo._ . 2m,J
M, Uyt =47 Uy -

We immediately get
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Lemma 3.5.14. Forn € N*, {(Ly)" |[D7?| = f(My)" |D7?| = =2 -

Proof. We have

o 25 2j+1

Tr (L7|D|7%7%) = Z Z Z(U;,Z,LQ\D —2—8%1>

2j=0m=0 [=0

o0
1_q2n(2j+2) 2n(2j+2) _9_g
2n d ]

o
= (25 + 1)1_7(12ndj_+2_s + Z (27 +1) 1_({_(] j
2j=0 2j=0
1

~0 g (G5 +1,5) +C(s +1,5) ~e 7mC(s +1).

where ~( means modulo a function holomorphic at 0. This gives the result for Ly and a similar
computation can be done for M. O

The interest of these operators stems from

Lemma 3.5.15. We have L,M,; € R. Moreover,

bob* =~ M, — Lo, b*0be~ Ly — M,, bb* =~ L, + M,,

ad(a*) ~ —aa* ~ Ly + M, —1, a*da~a*a~1—q¢*(L,+ M,),
dada® ~ Ly, + My, —1, da*da~ qZ(Lq + M,) -1,

VEb*) dbdb =~ (Ly)™ + (M,)",

B () dbdb ~ —(Ly)" — (M,)",

b (b*)" 2 db* db* ~ (L))" + (M,)"™.

Proof. Since LyM, = ¢>a_a* € R, we compute up to the ideal R
bob* = (by +b_)(b* — b%) ~ —bybf +b_b" = My — Ly + LgMy(1 — ¢*) ~ My — L,

and similarly for the other relations. O

Automorphisms of the algebra and symmetries of integrals

Proposition 3.5.16. For any n € N*,
*\1 - —2(1+¢*"
oy ot = B,
][(bb*)”b* 6b|D|~1 :][(bb*)"b " D! = =

][ (bb*)"ada* [D|7F = =207 2247 2> 17 +64"

(1_q2n)2(1_q2n+2) 9

* * _ 2n+2_o 2n_ o, 2
Fowryaralp| = e

Note that the knowledge of these integrals is enough for the computation of any term of the
form f x0(2)|D| ™1, where z is a generator, since any other d-one-form will be unbalanced.
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To show this proposition, we will use few symmetries, properties of the ideal R and replace-
ment of J-one-forms in terms of L4, M, as above.
Let U be the following unitary operator on the Hilbert space:

Uvll = (—1ymHod L ol = (1t T

Ilym

Then, by explicit computations we have
U*aU = a, U*a*U = a”, U*bU = b*, U*b*U = b, and U*DU = —D.

Lemma 3.5.17. Each noncommutative integral (3.41) of an element of the algebra or differential
forms is (up to sign) invariant under the algebra automorphism p defined by

pla) :==a, p(a”) :=a*, p(b):="b", p(b7):=b. (3.50)
Proof. For any homogeneous polynomial p and any k € N,
][ p(a,a*,b,b*, D)D~* = ][ U*p(a,a*,b,b*, D) D~*U
= (—1)k][p(U*aU, U*a*U, U*bU, U*b*U, U*DU) D~ *
= (—1)k+d][p(p(a), p(a*), p(b), p(t*), D) D~F,
where d is the degree of p with respect to D. O

Corollary 3.5.18. For any n € N, £(bb*)" b*dbD~1 = f(bb*)" bdb* D~ 1.

Lemma 3.5.19. For any z,y € V°(A),

@ fouiDl = f yalD "+ f ab@)DI - fate) DI

(44) ][ZCL'D_lyD_l :][zxyD_Q, if z € A contains b or b*.

Proof. (i) is direct consequence of the trace property of f and the fact that OP~* operators are
trace-class.
(73) We calculate:

][zacD_lyD_l :][zx (yD_l — D7D, y] D_l) Dl = ][zgr:yD_2 —][sz_l[D,y] D2

:][zznyD_2.

The last step is based on the observation that any integral with D=3 vanishes if the expression
integrated contains b or b*. O
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Lemma 3.5.20. For any n € N,
(1) ][(bb*)” b dbDT = e -
(i4) ][ (bb*)"d(bb*) D! = 0.
... K\ _ — 2n
(io)f @It = )
Proof. (i) With n > 1, we begin with fd ((bb*)") D! = 0, which follows directly from the trace

property of the noncommutative integral. Expanding the expression using the Leibniz rule and

the commutation
eD ' =D e + DD, 2]D 7!, (3.51)

we obtain

=

n—

0= ][bkdbb” F=1(p*)" D™ +Z][b" (b*)* db* (b1 pt

k=0
=n <][ Vo) db D +][b”(b*)”1 db* D1>
n—1
+ Z][ (bk dbD—ld(bn—k—l(b*)n)D—l + bn(b*)k db* D—ld((b*)n—k—l)p—l) .
Using Lemma 3.5.19,
0 :n][(bb*)”l(b* db+bdb*) D!
+][ (An(n — D" 2(b*)" dbdb + n*" 1 (b*)" L dbdb* + in(n — 1)b"(b*)" 2 db* db*) D2

The integrals with D=2 could be easily calculated when we restrict ourselves to calculations
modulo the ideal R:

n][(bb*)”—l(b* db+bdb*) D! = =2 (n(n —1) = 2n* +n(n — 1)) {—m = 4nq—,

Hence f(bb*)" 1 (b*db+ bdb*) D! = ‘é%, which together with Corollary 3.5.18 proves ().
(44) In a similar way, f(bb*)"~d(bb *)D L=0=f(bb*)""1d(aa*) D! implies:

n—1

0= (b0")" *td(bb*)(bb*)* D

k=0

(Ob*)"1d(b*) D! + In(n — 1) ][ (bb*)"~2d(bb*) d(bb*) D2

y
S

(bb*)"Ld(bb*) D71,

where in the last step we used that d(bb*) € R. The identity (i7) now follows from the equality
aa* =1 — bb*.
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(747) Using Lemma 3.5.19, we get

Ay = ][(bb*)”Dl - ][(bb*)”(aa* + bb*)[D| !
and we push now a* through |D|~! and from cyclicity of the trace through (bb*)™,
= Auir + f 65)' e a DI+ f @) ad(a”) DI
the last term being calculated explicitly, since up to ideal R, ad(a™) ~ L, + M, — 1,

= App1(1= ") + ¢ Ap + 4 (1—q%n+2 - 17112”> ’

which leads to
An(1—¢"") + ﬁ = An(1-¢"") + 1_;% .

2
Assuming A, = (1_{]#)2 we have fj;‘;ﬁ = {f;ﬁff; , and taking into account that Ay = —2(11%72)2,
2n
we obtain A,, = —2(11:;%)2 ) O

Finally, to get Proposition 3.5.16, it remains to prove

Lemma 3.5.21. Forn > 1,

A\ * -1 _ _2q4n+2_2q4n_2q2n+2+6q2n
][(bb) ada D - (17q2n)2(17q2n+2) 9

Fovyra dapt = e,
Proof. First, using the Leibniz rule, (3.51) and Lemma 3.5.19 we have (for n > 1)
][ (bb*)"ada* D! = —¢*" ][ (bb*)"a* da — ][ (bb*)"da da* D2,
Further, we use the identity (3.42):
][(bb*)" (a* da + ¢*ada* + ¢*bdb* + ¢*b* db) D' = (1 — q2)][(bb*)” |D| L.

taking into account that F'D = |D|.
These equations give together a system of linear equations

][(bb*)na da* D*l + q27l][(bb*)na* daD’l = —4 <1—q%”+2 — 1_];12,”) y

*\ 1 * y— *\TL * — 2n 2
7 f o0 rada D f ()0t da D = —2(1 - ) -

which is solved by the expressions stated in the lemma. O
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The noncommutative integrals at |D| ™2

We need to separate this task into two problems. First, we shall calculate all integrals of the
type f x §(2)|D| 72, with = € A(SU,(2)) and z being one of the generators. The second problem
is to calculate f  §(y) 6(z) |D|~2, with both y and z being the generators {a,a*,b,b*}.

Lemma 3.5.22. The only a priori non-vanishing integrals of the type fx8(z)|D|~% are for
n € N:

][ (bb")"b*6(b) |D| 2 = ][ (B6")"b6(b%) |D| 2 = 0,
2n(1_ 42
][(bb*)naé(a*) |D|_2 = % , n>0
_ 2
f 0 a@) 1P = (gt
Proof. Since ad(a*) ~ Ly + My — 1 and (bb*)" =~ Ly + M}, we get

(bb*)"ad(a”) ~ Ly ™t + My™t — Ly — My

and the second result is obtained from Lemma 3.5.14. The other integrals are computed in a
similar way. 0

Lemma 3.5.23. The only a priori non-vanishing integrals of the type f z dy dz |D|~2 are for
n € N:

Fowy @ )Ravas o] = b,

Fowy dvas 11 = b,

][(bb*)" (a*b*)(da db) |D|~2 = 0,

][ (b6)" (ab*)(da* db) |D|"2 = 0,

][(bb*)” (a*b)(da db*) |D|~2 = 0,

]l (bb")" (ab) (da* db*) |D|2 = 0,

*\T * _ 2n+2_ 2n
][(bb) (dada™) [D|* = F2rnstos, n>0

][(bb*)n (da* da) ‘D|72 — ( 4(q2—1)

=)= °

Proof. This follows from Lemma 3.5.14 with the equivalences up to R gathered in Lemma 3.5.15.
O
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3.6 Examples of spectral action

It is clear from Theorem 3.4.3 that any one-form of the form ada, bdb, adb, a*db, etc... do not
contribute to the spectral action. Indeed, only the balanced parts of one-forms give a possibly
nonzero term in the coefficients. We give in the following table the values of the terms { A™|D|™P
and the full {p, (0) for a few examples.

TABLE 3.1 — Values of noncommutative integrals

A fADIT fA2DI° fAYIDIT fAIDI? fA?D|7* FADITT (p,(0)

da 2 : I N e
* —4 —2 4q

’ dli ’ ’ _04 4(%:?1) ﬁ 13 44({;%1%11

ada —2 2 —2 q>—1 q-1 2(qq271) q3(q4§ql)
bdb* 0 0 0 0 | s qiiq_ -

1) Clearly the spectral action depends on ¢: for instance,

2 4 2
S(Dardas @, 8) = 23 A% — 8P A* + FH05 &1 A 4 HIEITED (0).
2) Moreover, for B := ada* and A := B + B*, we get since B ~ B* mod R,
][AP|D|_'“ = QPJ[BP|D|_k, 1<p<k<3. (3.52)

Thus the spectral action of the selfadjoint one-form A := ada* + (ada*)* is

S(Da, @A) = 205 A% + 165y A% 4 JA=25 @; AL 4 2242 (),

3) When B,, := (bb*)" bdb*, then by Lemma (3.5.15), B,, ~ B}, so for A, := B, + B}, the

n’

equation (3.52) is still valid and f B}, |D|~* are all zero but { B, |D|~! = 1_(}% and f B2 |D|72 =

4
1_q4n+4 I 50

S(Da,, ®,A) = 205 A% — L o1AT + 55 ©(0). (3.53)

T+q2n+e

Remark that this spectral action still exists as ¢ — 1!
Note however that the symmetrization process (3.52) does not work in general, for instance if

B:=adband A := B+ B*, then f A>|D|™ = % while f B2|D|~! = 0 or f[B, B*||D|™! =
4

-
4) The spectral action can be also independent of ¢: for instance, if A =
dependent selfadjoint one-form given in (3.44), then,

ﬁﬁ(@) is the ¢-

S(DA7¢7A) = 2@3A3—8¢2A2+%@1A1_ 1373
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3.7 The commutative sphere S?

Since SU(2) ~ S?, we get a concrete spinorial representation of the algebra A := C*°(S?) on
the same Hilbert space H and same Dirac operator D with (3.6) where ¢ = 1 which means that
g-numbers are trivial: [a] = a. So

(a) |jpm)) = o, \J+ N+ ag, i ),
m(b) [jun)) == ﬂjtm G TN A B 3T,
m(a®) [jpn)) i= &, [T nT) +a ;m lJ" ),
w(0%) ljpn) == B, it ) + B, 1 n ) (3.54)
where
Vijt+n+3/2 0
v o aoad 2712
O = VIt p+1 Vient1/2  fj4n+1/2 |
RiT1)(25+2 21
Vi—nt1/2 \fitn+1/2
o =j—p 27 2j (% +1)
jun 0 Vi-n—1/2 ’
%j
Vi—n+3/2 0
e T ES)
Bjun = Vi+n+1 \/jj+n+1/2 Vi—nti2 |
- (27+D)(25+2) 2j+1
Vitn+1/2 Vi—n+1/2
B =l —p IS | T 2525+
jum . Jitn-if2
27
F 3t ._ (53F *
with a]un = (Oéj Tpu—n— ) aﬁjun _( jiu*n"’) .

Note that the representation on the vectors vin ; is not as convenient as in (3.7).
One can check that the generators 7(a), 7(b) and their adjoint commute and that [z, [D, y]] =
0 for any z, y € A.

3.7.1 Translation of Dirac operator

In general the Dirac operator is defined in a more symmetric way than what we did. So,
although not absolutely necessary here, we define for the interested reader the unbounded self-
adjoint translated operator D’ on H by the constant \ as

D =D+ \
For instance, this gives for A = —1 in the case of S, see [80], D’ v’ vy, = (274 1)( O)Ufnl S0 Ufnl
is an cigenvector of |D’|. We define D := D + Py and D’ := D' + P}, where Py is the projection
on Ker D and Fj is the projection on Ker D'.
As the following lemma shows, the computation of the noncommutative integrals involving
D can be reduced to the computation of certain noncommutative integrals involving D’:
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Lemma 3.7.1. ]ff/T = Ress:OTr(T]D’|_5), then for any 1-form A on a spectral triple of
dimension n,

/ / /
][A|D|—(n—2) :][ A|D/|—(n—2) + )\(TL _ 2)][ AD/|D/‘—7L + )\2 (n1)2(n2)][ A ’D,|_n,
/ / /
—(n—2 —(n—2 —(n—1 2 (n—1)(n—2 —n
][AD( ):][AD’( )+>\(n—2)][AD’( ) 4 2 (p=)(n2) )][AD’ .
Proof. Recall from Proposition 1.3.8 that for any pseudodifferential operator P,
][P]D\_r = Res,— Tr (P|D|"|D'|7*).

Moreover by Lemma 1.3.3, for any s € C and N € N*

N
DI = |D'|™°+) K, Y?|D'|"* mod OP~N~17H() (3.55)
p=1

where Y = Z,]fv:l (71]);“ (=2AD'+22)*D'=%* mod OP~N~! and K, ; are complex numbers that
can be explicitly computed. Precisely, we find K, s = (—35)P V(p) where V (p) is the volume of the

p-simplex. Since the spectral dimension is n, we work modulo OP~("+1) and for s = n — 2, we
get from (3.55): |D|~(""2) = | D/|~("=2) 4 \(n—2)D/|D'| 7" 4 N2 =12 pr e 04 O P (0D,
As a consequence, we have for P € OP° (the OP? spaces are the same for D or D),

/ / /
][P|D|_("‘2) :][ PID'|==2) 4 A(n — 2)][ PD'|D'|™" + AQ("‘”Q("‘?)][ P|D'|™".
Since A and AF are in OP?, we get both formulae. O

3.7.2 Tadpole and spectral action on S?

We consider now the commutative spectral triple (C*°(S?), H, D). It is 1-summable since
(jpns|[F,m(z)]|juns) = 0 when z = a,a”, b, b" for any j, p, n, s =1, .
All integrals of above lemma are zero for S3:

Proposition 3.7.2. There is no tadpole of any order on the commutative real spectral triple
(C>=(S?), H, D). More generally, for any one-form A, f AF|D|™P =0 for p € N.

Proof. Since the representation is real, that is any matrix elements of the generators are real, so
must be the trace of AF|D|P. Hence f AF|D|™P = { A*F|D| P,

The reality operator J introduced in (3.25) satisfies, when ¢ = 1, the commutative rela-
tion JzJ ! = z* for x € A. Thus JAJ™! = —A* and fAF|D|™? = {J(A*F|D|™P)J~! =
—fAF|D|7P and f AF|D|P = 0. O

For any selfadjoint one-form A, Dy := D + A=D. Thus, the spectral action for the real
spectral triple (C*(S?), H, D) for Dy is trivialized by

S(Da, ®,A) = 205 A% — L& A+ O(ATH). (3.56)
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But it is more natural to compare with the spectral action of D+ A. This is obtained respectively
from Lemma 3.4.18 and general heat kernel approach [65]:

S(D+ A, ®,A) = 203 A3 +][ D+ AT e A FOATY

since all terms of (1.6) in A"~* are zero for k odd and (p;4(0) = 0 when n is odd: as a verification,
fID + A|~2 is zero according to Lemma 1.3.10, Lemmas 3.4.18 and Proposition 3.7.2. Similarly,
(p+a(0) = 0 because in (1.11), all terms with k£ odd are zero (same proof as in Proposition 3.7.2)
but for k even, it is not that easy to show that f AD"IAD~! = 0.

Moreover, the curvature term does not depend on A:

Lemma 3.7.3. For any one-form A on a commutative spectral triple of dimension n based on a
compact Riemannian spin® manifold without boundary, we have

][\D+Ay—(n—2> :][ypy—<"—2>. (3.57)

Proof. Follows from [68, first formula page 511] with p := A = A*, N(p) = p (the constraint
JpJ ! = %p is not used).
One can also use [37, Proposition 1.149]. O
From Lemma 1.3.10, f |D + A|~("=2) = §|D|=(n=2) 4 2(n=2) (7 p)2|p|=3 4 (=27 [ 42)p|-3
using X := AD + DA + A? and [|D|,A] € OP?, but again, it is not that easy to show that the
last two terms cancel: for instance here, for B = b[D, b*], we obtain by direct computation (using
the easiest translated Dirac operator D')

Tr (B*D'| %) = Tr (B*)*|D'| %) = 1 Tr (BB*|D'|*%) =

_ 4 j+1
=3 E : EESHRAER
2jEN

3 Tr (B*B|D'| )

so { B?|D'|=% = 2. Similarly, one checks that f(BF)?/D|=% = ;fBFB*F|D|~® = —2. Thus if
A:=B+B*, fA*D|3 = fAYD/|73 = 4 and f(AF)?|D|~3 = —% which yields (3.57).
Thus for any one-form A on the 3-sphere,

S(D+A,Q,A) =203A° — L0 A' + O(AT1,A)

which as (3.56) is not identical to (3.53) which contains a nonzero constant term A° for ¢ = 1.

3.8 Appendix
A. Proof of Lemma 3.4.13

(i) Using same notations of Lemma 3.4.12, we obtain by definition of 7,

7174 (thp)) = 010 0p,0 O +ova—crs+1-+52—B3.0 » (3.58)
71 (7 (tkp)) = 07 050 Oas—as+as+1—B2+:.0 - (3.59)
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We get 7y (7r+(tk,p)) el (7r, (Uk,p)) = 01,0 9p,0 02,0 93,0 085,0 085,0 Oy ,— 3, S0 Lemma 3.4.12 gives
the result.

(i) Since T4 (tgp)en = qi pnCntrf, and w_(ugp)en = q£p7n5n+rgp, we get,
7o (7T+ (tkp - 5r;€" 0 Z qk’p n — 0k,0 0p,0 5a1+a2—a3+ﬁ1+ﬁ2—[33,0) ’ (3.60)
70 (77— (Uk,p)) = 67’;;,;70 Z (q];p,n - 5E,0 05,0 5a1—a2+a3+ﬂ1—ﬂ2+[33,0) . (3.61)
’ n=0
With (3.58) and (3.61) we get
o
71 (74 (b p)) 70 (T (Ukp)) = 0k,0 0.0 Oyt Bo.ces 85 O~ D (k0 0p.0 Qi ppy — Oees 485.0)

n=0

= 0k,0 0p,0 Oy + 3,03+ 83 Oarr,— 41 W1 (B1,a3 + B3).

Using (3.59) and (3.60),

[e.e]

70 (74 (thp)) 1 (7= (Whp)) = 67 850 ozt a s 4 5 Oan 1 D (5.0 050 G — Oars55,0)
n=0

= 5%,0 5ﬁ,0 Ocs+Ba,as+8s Oar,— B W1 (B1, a3 + B3).

Lemma 3.4.12 yields the result.

B. Proof of Lemma 3.4.14

We have
1 (77-"- (tK,P)) = 5K70 5-’370 5A1+A2—A3+B1+Bz—33,0 ) (3'62)
Ti(m—(uk,p)) =0 0p o OA1—As+As+B1—Ba+B3,0 - 3.63)
and
To(me (tr.p)) = 0,4 o Z (4. pn — OK.00P0 041+ Ay Ag 4 BitBr—B5.0) » (3.64)
To(m- (UKP TK p0 Z qK Pn K 0 5}3,0 5A1—A2+A3+31—B2+B370) . (3'65)

(i) Equations (3.62) and (3.63) give (11 @ 71) 7(AA)° = 64,.—B,045.0045,008,.00B5.0 Mo,0- A com-
putation of vg o with d4, —B, 04,,0045,00B,,00B5,0 = 1 gives the result.
(77) Equations (3.62) and (3.65) yield

(T4 (tk,p)) To(m—(uK,P)) = OK,00P0 04+ B, As+Bs 0A1,— By
X vg, ot g1 (@2 + Ba + az + B3) () + B1), A3 + Bs).
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Equations (3.64) and (3.63) yield

10(m4(tr p)) Ti(m—(uK,p)) = 05 00p.00A2+B2,A3+B3 041~ B,
X vg, o1 g1 (a2 + B2 + a3 + B3)(a) + B1), A3 + Bs)
and the result follows.
(731) With (3.39) a direct computation gives
71 (74 (tx,P)) = 0K,00P,0 04+ Ay— A+ By +Bs— B30 (3.66)
Ti(m—(uk,p)) = 0 (0p o OA1—As+As+Bi—Ba+B3,0 (3.67)

Using (3.66) and (3.67), (11 ® 71) (r(A A" A”)°) = 64,,—B, 645,0 643,0 85,0 0B5,0 v0,0. A computa-
tion of v g With 04, B, 04,,0045,00B,,00B;,0 = 1 gives the result.

(iv) We have 5(Mg)M§,/ = 6(x)8(y)2'6(y') + x6%(y)2'5(y') where z,2’,y,y" are monomials
(w omitted). Since

n(e) = Y (F)aki,a p00 B0 = 3 (R,

k k

we get d(m(z)) = 355, 9(k) (}) cx
Similarly, 6(z(y)) = Z g(p )( )Cp and 52@(9)) = Zp 9(1’)2(5)%

Thus, with cx p 1= ¢k cp cpr ¢

3(x)d(y)x's(y") = Z g(k) 9) 90 () (7) exc.p
3752 Z g(p (5) CK,P

r(6(Mg)Mg/)° Z Shiep0(9(k) + 9(0)) 9(p) 90 () (2) r(cxp) = > Ak.p r(ck.p).
K,P

Since r(cg) = (fq)kl(fl)a2+o‘37r+(tk) ® m_(ug) with tg, ug defined by
b 1= aFL 651 aF? b2 R b and wy o= aFt bR bR R R b,
we get

r(6(Mg)Mg)° Z Mg, p (—q)Fr TR PP () At At Bt Bs (4 p) @ 7 (uge p)

where tx p = tptptirty and ug p = ugupugu,y . Direct computations yield
1 (7T+ (tK,P)) = 0K,00P,0 04, +A2—A3+B1+B2—B3,0 »
71 (7T_ (UKJD)) = 5}?’0 51570 6A1—A2+A3+B1—B2+B370 :

The result follows.
(v) For the last equality, note that by (iv)

—_ 00 3700
][5(A)A\D\ =2 Y (dh+ 8BS AT At 00 o +ay+614+8,0-
a1,04,61,61

The following change of variables oy < «f, /1 < [}, implies by symmetry that this is equal to
ZEro.
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C. Proof of Lemma 3.4.16
(7) Following notations of Lemma 3.4.12, we have
MEIME T = Y v cuprd ™
K,P

where K = (k, k'), P = (p,7), Ax,p = 9(p)g(p’)vpvprwpw, . Thus,

POMGIME ) = (1) At Bs B S (gt komivl e b T L 0 Ty

K,P
where TI"(F’P = 74 (tktp) T+ (tirty ) and Ty p = 7’ (ugup)T—(upruy ) with
ty = algéll b*];ll akz b*kQ a*k3bk3,

Uy = algéll b*];ll br2 g k2 prks ks

A direct computation leads to

+ —
71 (TK,P) =0K00P0 501+O¢2—043+ﬂ1+52—ﬂ370 50/1+a’27a’3+ﬁ1+ﬁé7ﬂé,0 )
T1(Tg,p) = 05 0050 So1—aztastBy—BatBs.0 O, —al+al+B] —Bs-+B,.0

which gives the result.

(73) Using the commutation relations on A, we see that there are real functions of (K, P),
denoted ot , and 0% , such that

t ~
TI?,P = ¢71P  (trp) Tt (b ),
TI;P — qU}LQP 7-‘-/_ (uk‘,p)%f (ukﬂp’)’

ki k2
a1

a a*k‘s P1 D2 (*P3 b*1;11 b*}ﬂji b*k2+P2bk3+p3’

ag,

k1 ko ks D1 _*p2  p3 pxki pxp1 Eg—i—f)z */753+f)3
oy @A ag a™a b b b b .

tk7p =a
Ukp =0
We have, under the hypothesis 71 (T p) = 1,
= (W 2iemN e Tef
T ( k’,p’)5m,2j =(-1)"q q2j7m73+ﬂ1’|a/1| qzj,m,&m“ Em+s,25 »
si=—aptay—fy+ = ol +
Ni=ah+as+ 685+ 35,
A=z +as+ B2+ O3
T1(TH p) = 0x00x0 -

and then,

¢ A Al 27—m /\’+m)\ E FI (;4 B .(
( K,] )m,QJ q K ( ) 2( ’ ) " 9 ' v
2J—m T qzj —1M— a/17|a/1‘ QZJ m all 17‘ i' ’

F, = oy

81
Dn—ai,ar|9m—B1—a1,|81]
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Following the proof of Lemma 3.4.7, we see that 7o(T} ) is possibly nonzero only in the two
cases ' =0 or A =0.
Suppose first A = X = 0. In that case, we have

+ B1 8 B1 81 2
70Tk p) = 2311—I>noo Z ((q,, 181192 -m Ib’l N Z Iﬁl -1+ Z Wl -1
m=0 m=0 m=0

where the second equality comes from Lemma 3.4.17.
In the case (A =0,\ > 0), we get oj = —f] and thus,

4 gt A, Ts T 2
(T, p)m.2i =q"Pq"™ (g 1\61\q2j mlﬁll) Qo1 +61.0-

2j Ts Tar 2j Ts
Let us note Uy = .7 _o¢™ (qmjqujimw)? and Loj = S50 g™ (qm,llﬁll)Q'

Suppose ] > 0. Since (q;ji—m,lﬂil)Z -1 = Z‘pll;ﬁo,pie{o’l}(_1)|P|1qrp q2@2i=m)lph where we
have r, = 24 --- +20]. As in the proof of Lemma 3.4.7 (i), we can conclude that Us; — Lo;
converges to 0. The case 3] < 0 is similar.

In the other case (A > 0,\" = 0), the arguments are the same, replacing A by X and aq, 5
by o}, 1. Finally,

TO(T[Jg,P)Tl (T[;P) = 5[},0 51370 5041,—61 50/1,—ﬂi (5/\’,0 5042-&-52,043—1—5;3 Sa,B T 5)\,0 604 b+ o+ Saf ,ﬂ’)a
S
_ T
Sap = qﬁl(a3 a2) (qm)\ (qnﬁgﬂ)z - 5/\,0) .
m=0

A similar computation of 7o(T p) can be done following the same arguments. We find eventually

71Ty p)70(Tk p) = 65,0 0P0 O~y St 31 (On.0 Oory 4 o cus+85 5,8 + 0.0 O3 043, S0 6)

and the result follows.
(7i7) The same arguments of (i) apply here with minor changes.
(1v) follows from a slight modification of the proof of Lemma 3.4.14 (iv).
(v) is a straightforward consequence of (i, ii, i, iv).

D. Proof of Lemma 3.4.17
We give a proof for 8 and 3’ > 0, the other cases being similar.
1 T T m
Since (qm@,w')2 = Zpie{ojl}(—l)“"lq rg?Phm where p = (p1,--+ ,pg) and rp == 2(p1 + -+ +

Bps), we get, with the notations X,y := (—=1)lPtP g+ and Usj = Ziz:o( Tﬁ‘mq;, " |ﬁ,‘)z -
1,

2j
UQjZZ Z Ap p g2t 21e' 1 (25=m)

m=0 |p+p'|1>0

_ ) /
= E Ao Vojpp + E : )‘P»P’VQj,p,p’
[pl1>[p|1,Ip[1>0 Ipl1<|p’[1,lp'[1>0
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where
2j 2j
_ A5lp'h 2(lpli—|p'|1)m / _ Ajlph 2(]p'|1—|pl1)m
Vajpp = a jlp'| E g (Iph=lp'T)m Viipw = Jlpl E q (Il =lpl1)m
m=0 m=0

It is clear that V5, ,» has 0 for limit when j — oo when [p’|; > 0, and V., has 0 for limit

2,p,p
when j — oo when |p|; > 0. As a consequence,

Uzj= > MoVojpo+ Y AopVajop +o0(1).

[p[1>0 |p’|1>0

The result fol%ows as '
2 . 2 y !
> m=0 ((qniw)Q -1) = Z\pl1>0 ApoVajpo and 350 ((qnimq)z -1) = le’|1>0 )\Ovp/‘/QIj,O,p"
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Chapitre 4

Tadpoles and commutative spectral
triples

4.1 Introduction

The history of the noncommutative residue is now rather long [89], so we sketch it only brie-
fly: after some approaches by Adler [2] and Manin [103] on the Korteweg-de Vries equation using
a trace on the algebra of formal pseudodifferential operators in one dimension, and of Guillemin
with his "soft" proof of Weyl’s law on the eigenvalues of an elliptic operator [72], the noncom-
mutative residue in any dimension was essentially initiated par Wodzicki in his thesis [150]. This
residue gives, up to a multiplicative factor, the unique non-trivial trace on the algebra of pseu-
dodifferential operators. Then, a link between this residue and the Dixmier trace was given by
Connes in [25]. Thanks to Connes again [28,29], the setting of classical pseudodifferential opera-
tors on Riemannian manifolds without boundary was extended to a noncommutative geometry
where the manifold is replaced by a not necessarily commutative algebra A plus a Dirac-like ope-
rator D via the notion of spectral triple (A, H, D) where H is the Hilbert space acted upon by
A and D. The previous Dixmier trace is extended to the algebra of pseudodifferential operators
naturally associated to the triple (A, H, D). This spectral point of view appears quite natural in
the general framework of noncommutative geometry which goes beyond Riemannian geometry.
From a physicist’s point of view, this framework has many advantages: the spectral approach
is motivated by quantum physics but not only since classical observables and infinitesimals are
now on the same footing and even Dixmier’s trace is related to renormalization. It is amazing to
observe that most of classical geometrical notions like those defined in relativity or particle phy-
sics can be extended in this really noncommutative setting. Among others, some physical actions
still make sense as in [25] where Dixmier’s trace is used to compute the Yang-Mills action in
the context of noncommutative differential geometry. Another example is the Einstein—Hilbert
action: on a compact spin Riemannian 4-manifold, fD_Q coincides (up to a universal scalar)
with the Einstein—Hilbert action, where f is precisely the noncommutative residue, a point first
noticed by Connes; then, there was a brute force proof [90] and generalization [88] (see also [1])
of this fact which is particularly relevant here.

Since then, the case of compact manifolds with boundary has been studied, making clearer
the links between noncommutative residues, Dixmier’s trace and heat kernel expansion. This
was achieved using Boutet de Monvel’s algebra [55,71,124|, in the case of conical singularities
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[99,123] or when the symbols are log-polyhomogeneous [98]. Besides, there are some applications
of noncommutative residues for such manifolds to classical gravity [147] and to the unification
of gravity with fundamental interactions [23]. Needless to say that in field theory, the one-loop
divergencies, anomalies and different asymptotics of the effective action are directly obtained
from the heat kernel method [141], so all of the above quoted mathematical results have profound
applications to physics.

We are interested in possible cancellation of terms in the Chamseddine—Connes spectral action
formula (1.6). We focus essentially on commutative spectral triples, for which we show that there
are no tadpoles (see Definition 1.4.3). In particular, terms like f AD~! are zero: in field theory,
D! is the Feynman propagator and AD~! is a one-loop graph with fermionic internal line and
only one external bosonic line A looking like a tadpole. More generally, the tadpoles are the
A-linear terms in (1.6).

Dfl
: A

In [114], computations of  |D|7* for some values of k are presented and formula like (1.11)
also appear in [100] in the context of pseudodifferential elliptic operators. As a starting point,
we investigate in section 4.2 the existence of tadpoles for manifolds with boundaries, considering
following Chamseddine and Connes [23| the case of a chiral boundary condition on the Dirac
operator. One of their original motivations was to show that the first two terms in the spectral
action come with the right ratio and sign for their coefficients as in the modified Euclidean action
used in gravitation. We generalize this approach to the perturbed Dirac operator by an internal
fluctuation, ending up with no tadpoles up to order 5.

However, this approach stems from explicit computations of first heat kernel coefficients, so
we cannot conclude that other integrals of the same type as tadpoles are zero. It is then natural
to restrict to manifolds without boundary via a different method.

After some useful facts using the link between, we conclude in section 4.3, and using the
results of section 1.4 and pseudodifferential techniques, that a lot of terms in (1.6) are zero.

4.2 Tadpoles and compact spin manifolds with boundary

Let M be a smooth compact Riemannian d-dimensional manifold with smooth boundary
OM and let V' be a given smooth vector bundle on M. We denote dz (resp. dy) the Riemannian
volume form on M (resp. on OM).

Recall that a differential operator P is of Laplace type if it has locally the form

P =—(g"0,0, + A0, +B) (4.1)

where (¢"")1<uv<da is the inverse matrix associated to the metric g on M, and A* and B are
smooth L(V)-sections on M (endomorphisms). A differential operator D is of Dirac type if D?
is of Laplace type, or equivalently if it has locally the following form

D = —iry"0, + ¢

where (7#)1<,<q gives V a Clifford module structure: {v#,4" } = 2¢g" Idy,, (v*)" = ~*.
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A particular case of Dirac operator is given by the following formula
D = —iy"(0u + wp) (4.2)

where the w,, are in C*°(L(V)).

If P is a Laplace type operator of the form (4.1), then (see |65, Lemma 1.2.1]) there is an
unique connection V on V' and an unique endomorphism E such that P = L(V, E) where by
definition

L(V,E) = —(Try V2 + E), VX(X,Y):=[Vx,Vy] = Vygy,
X,Y are vector fields on M and V9 is the Levi-Civita connection on M. Locally
Try V? := g (V,V, =T, V,)

where T, are the Christoffel coefficients of V9. Moreover (with local frames of T*M and V),
V =daz* ® (0 + wy) and E are related to g"”, A* and B through

Wy = %gVﬂ(Au + gUEI\gE Id) ) (43)
E =B - g"(Oywy +wpwy —wsI7,). (4.4)

Suppose that P = L(V,E) is a Laplace type operator on M, and assume that x is an
endomorphism of Vys so that x? = Idy. We extend x on a collar neighborhood C of M in
M with the condition Vg (x) = 0 where the d*-coordinate here is the radial coordinate (the
geodesic distance of a point in M to the boundary 0M).

Let Vi := IILV be the sub-bundles of V on C where 11y := %(Idv +x) are the projections
on the £1 eigenvalues of x. We also fix an auxiliary endomorphism S on V,,5,, extended to C.

This allows to define the mixed boundary operator B = B(x, S) as

Bs =1 (Vq+ S)lisign @M _sgpr, s€C(V). (4.5)

These boundary conditions generalize Dirichlet (IT_ = Idy ) and Neumann—Robin (IT;. = Idy)
conditions.

We define Pg as the realization of P on B, that is to say the closure of P defined on the space
of smooth sections of V satisfying the boundary condition Bs = 0.

We are interested in the behavior of the heat kernel coefficients aq_, defined through its
expansion as A — oo (see [65, Theorem 1.4.5|)

Te(e ™ *P5) ~ 3 AT ag_u(D, B)
n>0

where D is a self-adjoint Dirac type operator. Moreover, we will use a perturbation D — D+ A,
where A is a 1-form (a linear combination of terms of the type f[D, g], where f and g are smooth
functions on M). More precisely, we investigate the linear dependence of these coefficients with
respect to A. It is clear that, since A is a differential operator of order 0, a perturbation D +— D+ A
transforms a Dirac type operator into another Dirac type operator.

This perturbation has consequences on the E and V terms:
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Lemma 4.2.1. Let D be a Dirac type operator locally of the form (4.2) such that V,, := 0, +wy,
is connection compatible with the Clifford action . Let A be a 1-form associated to D, so that
A is locally of the form —iy*a, with a, € C*°(U), (U,x,) being a local coordinate frame on M.
Then (D + A)? = L(VA, E4) and D? = L(V, E) where,
A _ A _
wy, =wp+ay, thus V,, =V, +a, ldy,
EA=FE+ i[’?ua'YV]Fum E= %')’M'YV[VW Volo Fu = 0u(ay) — Ou(ay)

Moreover, the curvature of the connection V4 is Qﬁl, = Qu + Fu, where Qu, = [V, Vo |.
In particular Tr B4 = Tr E.

Proof. This is quoted in [141, equation (3.27)].
(D+A)? = L(VA EY) = —g’“’(VﬁVf - Fﬁny) — E4 and we get with V;:‘ =V, +a,ldy:

—(D + A)? = VIV = AV AV Ay VA
= VY0 + 5(FY ) VAV + 37 [V V)
= VYT Vi + g Vavy + 399 [V + auIdy, V, + a 1dy]. (4.6)

Since I, = T, we get by comparison,

B4 = 14V + a, 1dy, Vo + ay 1dv] = 39797 (Y0, Vo] + Ou(an) — 0ulay))
= 319" [V, Vil + 0" (9u(an) — D (ap).- O

Remark that even if quadratic terms in A? appear in the local presentation of the perturbation
D? — (D + A)? (in the b term), these terms do not appear in the invariant formulation (V, E)
since they are hidden in VﬁVf of (4.6).

In the following, D and A are fixed and satisfy the hypothesis of Lemma 4.2.1. Indices 4, j,
k, and [ range from 1 through the dimension d of the manifold and index a local orthonormal
frame {ey, ..., eq} for the tangent bundle. Roman indices a, b, ¢, range from 1 through d — 1 and
index a local orthonormal frame for the tangent bundle of the boundary dM. The vector field
eq is chosen to be the inward-pointing unit normal vector field. Greek indices are associated to
coordinate frames.

Let Rijri, pij := Rigk; and 7 := p;; be respectively the components of the Riemann tensor,
Ricci tensor and scalar curvature of the Levi-Civita connection. Let Ly, := (Ve ep,€q) be the
second fundamental form of the hypersurface OM in M. Let “;” denote multiple covariant diffe-
rentiations with respect to V4 and “” denote multiple covariant differentiations with respect to
V and the Levi-Civita connection of M.

We will look at a chiral boundary condition. This is a mixed boundary condition natural to
consider in order to preserve the existence of chirality on M and its boundary OM which are
compatible with the (selfadjoint) Clifford action: we assume that the operator y is selfadjoint
and satisfies the following relations:

{X,'yd}:(), x,7']=0,Vae{1,---,d—1}. (4.7)

This condition was shown in [23| a natural assumption to enforce the hermiticity of the
realization of the Dirac operator. It is known [65, Lemma 1.5.3] that ellipticity is preserved.
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Since v? is invertible, dim V; = dim V_ and Trx = 0.
For an even-dimensional oriented manifold, there is a natural candidate x satisfying (4.7),

namely
X = Xonr = (=1)"* 7 y(er) - v(ea1) -

This notation is compatible with (4.9). Recall that
Tr(y" - -426+1) =0, Vk €N, Tr(y9?) = dimV 6% . (4.8)

The natural realization of this boundary condition for the Dirac type operator D + A is the
operator (D + A), which acts as D + A on the domain {s € C°°(V) : II_s5py = 0}. It turns
out (see [12, Lemma 7]) that the natural boundary operator B;? defined by

B;‘s =1 (D + A)sjon © U519
is a boundary operator of the form (4.5) provided that S = JI1, (—i[y%, A] — Laax)IL;.

Lemma 4.2.2. Actually, S and x., are independent of the perturbation A:
(i) S = —3Lag I .
(ii) X;a = X:a-

Proof. (i) Since A is locally of the form —iv/a; with a; € C*°(U), we obtain from (4.7),

X Al = —ia;x[v A = =i Y aixv A =1 ai v A Ix = [ Alx
j<d j<d

and the result as a consequence of I [y?, A] = [y¢, A]II_ and TI.TI_ = 0.

(i) We have V& = V; + a; Idy where A =: —iy7a;, and since (Vix)s = VA (xs) — x(V{s)
for any s € C®°(V), using Lemma 4.2.1, V& (x) = [Vi + a; Idy, x] = [V, x] = Vi(x). O

While S is not sensitive to the perturbation A, the boundary operator B;? depends a priori
on A. We shall denote B, the boundary operator B;? when A = 0.

The coefficients ag_j, for 0 < k < 4 have been computed in [11] for general mixed boundary

conditions in the case of Laplace type operators and in [12, Lemma 8| for Dirac type operators
with chiral boundary conditions. We recall here these coefficients in our setting:

Proposition 4.2.3.

aq(D + A,BY) = (4m) %2 / Try 1dz,
M
ag1(D+ A,B}) =0,

ad_g(D-i—A,B;?) = ﬂ / Try ( GEA +7)dx + Try (2Lgq + 1295) dy},
oM

ag—3(D + A,BY) = % / Try {96XE* + 3L2, + 6L2, + 96SLaq + 19252 — 12x2% } dy,
oM

aq_a(D + A, BY) = UD 2 / Try {60rE* + 180(E4)? + 30(Q))? + 572 — 29> + 2R*} da

+ / Try {180XE +120E4 Lyq + T20SE? + 60xx;aQiy + T} dy }
oM
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where

T := 207 Lq + 4RadadLiy — 12RaapaLap + 4Rabet Lac + 57 (160L3, — 48L2, Lee + 272Lgp Lipe Lac
+ 12078 + 144SL2, 4+ 48SL%, + 480(S? Laq + S®) — 42x%, Lup + 6X:a X6 Lap — 120X2,5)

a
is independent of A.

The following proposition shows that there are no tadpoles up to order 5 in manifolds endowed
with a chiral boundary condition.

Theorem 4.2.4. Let M be an even d-dimensional compact oriented spin Riemannian manifold
with smooth boundary OM and spin bundle V. Let D := —i'ijj be the classical Dirac operator,
and x = xou = (—))¥> 1y(e1) - - - y(ea_1) where (e;)1<i<a is a local orthonormal frame of TM.

The perturbation D — D + A where A = —z"yjaj 1s a I-form for D, induces, under the
chiral boundary condition, the following perturbations on the heat kernel coefficients where we set
ca—k(A) := ag_x(D + A, BL) — ag_i(D, By):

(i) calA) = ca1(A) = ca_a(A) = ca_s(A) = 0.

(i1) cq_4(A) = —W [y F P da.

In other words, the coefficients ag_y for 0 < k < 3 are unperturbed, aq_4 is only perturbed by
quadratic terms in A and there are no linear terms in A in aq—(D + A, B;?) for kE <5.

Remark 4.2.5. When A is selfadjoint, all coefficients ag_(D + A,B;?) and aq_(D,By) are
real while linear contributions in A are purely imaginary, modulo traces of v and x matrices and
their covariant derivatives. Since the invariant terms appearing as integrands of fM and faM
in the coefficients at higher order are polynomial in S, x, R, E* and Q4, and their covariant
derivatives, one expects no linear terms in A at any order.

Proof. (i) The fact that ¢4(A) = cq—1(A) = 0 follows from Proposition 4.2.3.

Since by Lemma 4.2.2, ¢g_o(A) = (47)~%? Jas Trv (EA— E4) dx, we get c4_2(A) = 0 because
Try EA = Try E by Lemma 4.2.1.

From Proposition 4.2.3 and Lemma 4.2.2, we get c¢4_3(A) = %(47r)_(d_1)/2 Jonr Trv {x(E4 —
E)}.

Since Y(EA — E) = (=i)¥241 .. 4371 yI AFFyp, (4.8) yields Try x(E4 — E) = 0 because d
is even.

(4i) Since Try(E4 — E) = 0 and Try x(E* — E) = 0, we obtain Try S(E4 — E) = 0 from
Lemma 4.2.2. Thus, using Proposition 4.2.3 and Lemma 4.2.2,

) —d/2
ca_a(A) = G {/M Try {180((E4)? — E2) + 30((Q4)2 — ()?) } da
+ / Try {180X(E;3 —Eq)+ 60XX;a(Q§d — Quaq)} dy }
oM

We obtain locally Try ((E4)? — E?) = £ Tr([v*,7*][7”,°]) Fw Fe using Lichnérowicz’ formula
E= —%7‘. Since Try ([v*,v*][77,7°]) = 4.2%/2(gho gvP — ghrg¥),

Try (E4)? — E?) = — 29271, Fm.
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V being the spin connection associated to the spin structure of M, we have {);; = %'ykfleijkl.
So Rjji = —Ryji implies Try Q;; = 0. Hence, with Lemma 4.2.1,

Try ((Q0)? — Q%) = 2Y2F2 = 2Y/2F,, Fi .

Moreover, E:?l : [vd + aq, EA] = [vdv E+ %[’}/Z,’Y]]Fm] =E4+ %[vdv [ylﬂ’y]“FlJ
Using [Vi,7"] = v(Vie;) and (4.8),

Try (X(Eﬁ — Eq)) = ()23 Fy Try {4' A4 (9(Vae)V? + 79 (Vaey)) } = 0.

It remains to check that Try (XX:a(Qfd — Qad)) = 0. Let xar = —ixy? be the grading operator
(see (4.9)). Since x s commutes with the spin connection operator V (see [68, p. 396]),

0= [Va,xm) = [Var X7 = X:a7 + X[V 7] = X0 + X7(Vaea)
and thus xx.. = —v(Vaeq)y? = —I‘id'yj'yd, where Fid = —ng since (e;) is an orthonormal
frame. So Try (xx.a) = —Ffldéjd = —Fflld = 0. Finally, the result on ¢4_4 follows from Lemma

4.2.1 as Try (sza(Qfd — Qad)) = Try(xX:a)Fad-

The coefficient ag_5(D + A,B;?) is computed in [13|. One can check directly as above that
linear terms in A are not present. The computation uses the fact that the trace of the following
terms XE;I?ldv EfiS, X(EA)2, BAS?) X.axQ X?GEA, do not have linear terms in A. O

ab’

In the following, we investigate the above conjecture with Chamseddine-Connes pseudodif-
ferential calculus applied to compact spin manifolds without boundary and Riemannian spectral
triples. We also see, using Wodzicki residue, how to compute some noncommutative integrals in
this setting.

4.3 Commutative spectral triples

4.3.1 Commutative geometry

Definition 4.3.1. Consider a commutative spectral triple given by a compact Riemannian spin
manifold M of dimension d without boundary and its Dirac operator D associated to the Levi-
Civita connection. This means (.A = C>®(M), H = L*(M, S), D) where S is the spinor bundle
over M. This triple is real since, due to the existence of a spin structure, the charge conjugation
operator generates an anti-linear isometry J on H such that

JaJ ' =a*, VYae A,
and when d is even, the grading is given by the chirality matrix
X = (=) l2 (4.9)

Such a triple is said to be a commutative geometry (see [33] and [34] for the role of J in the
nuance between spin and spin® manifold).

Since JaJ ! = a* for a € A, we get that in a commutative geometry,

JAJ L = —e A, VA€ Qp(A). (4.10)
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4.3.2 No tadpoles

The appearance of tadpoles never occurs in commutative geometries, as quoted in [37, Lemma
1.145| for the dimension d = 4. This fact means that a given geometry (A, H, D) is a critical
point for the spectral action (1.6).

Theorem 4.3.2. There are no tadpoles on a commutative geometry, namely, for any one-form

A= A" € QL(A), Tadpia(k) =0, for any k € Z, k < d.
Proof. Since A =0 when A = A* by (4.10), the result follows from Corollary 1.4.5. O
There are similar results in the following

Lemma 4.3.3. Under same hypothesis, for any k, | € N
(i) f AD™F = —eb+1l fADF
(ii) f XAD™F = -~k fxAD*
(iid) § A'[D|* = (—e)! f Al|D|,
(iv) FXA'DI™* = (~e)l fxA!ID| .

Proof.
][AD‘k _][JA Dk J-1 _][JAJ—l(ekD—k) = —ekH][A* Dk = —¢t! ][ DA

= —F ! ][AD_k.

The same argument gives the other equalities using yA = —Ay and x|D| = |D|x. O

Lemma 4.3.4. For any one-form A, f (A Dil)k =0 when k € N is odd.

Proof. We have

][(AD‘l)k :][J(ADl)le :][ (JAJ-1JD-1J-1)F = (—1)ke2k][ (Asp-1)"
= (—1)’“][(141)1)’“ (4.11)

(which shows again that f AD™! = 0). O

4.3.3 Miscellaneous for commutative geometries

To show that more noncommutative integrals, where the use of the operator J in the trick
(4.11) is not sufficient, are nevertheless zero, we need to use the Wodzicki residue (see [151,152]):
in a chosen coordinate system and local trivialization (z, ) of T* M, this residue is

wresy(X) == / Tr (0, (z,€)) |d¢] |dxt A -+ A dz?|, (4.12)
S:M

where de (z,€) is the symbol of the classical pseudodifferential operator X in the chosen co-

ordinate frame (z1,---,xz4), which is homogeneous of degree —d := —dim(M) and taken at
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point (z, §) € T*(M), d§ is the normalized restriction of the volume form to the unit sphere
SEM ~ S%1 50 we assume d > 2 to get SZM connected.

This wres,(X) appears to be a one-density not depending on the local representation of the
symbol (see [68,152]), so

Wres(X) = / wres,(X) (4.13)
M
is well defined.
The noncommutative integral f coincides with the Wodzicki residue, up to a scalar: since
both f and Wres are traces on the set of pseudodifferential operators, the uniqueness of the
trace [152] gives the proportionality

][X = cqWres(X) (4.14)

where cq is a constant depending only on d. Computing separately { |D|~? and Wres(|D|~%), we
get ¢qg > 0. (Note that { is not a positive functional, see Lemma 4.3.18.)

Lemma 1.4.1 follows for instance from the fact that [, wres.(X*) = [, wres,(X).

Note that Wres is independent of the metric.

As noticed by Wodzicki, f X is equal to —2 times the coefficient in log ¢ of the asymptotics
of Tr(X e~'P%) as t — 0. It is remarkable that this coefficient is independent of D and this
gives a close relation between the ¢ function and the heat-kernel expansion with Wres. Actually,
by [70, Theorem 2.7]

o o
Tr(X et P%) ~p ot > ay tUmord=D2 LN () Togt + by) 1, (4.15)
k=0 k=0

so f X = 2aj. Since, via Mellin transform, Tr(X D72%) = ﬁ Joo e (X e~ tP*) dt, the non-
zero coefficient al,, k # 0 create a pole of Tr(X D~2%) of order k+ 2 since fol t5Llog(t)k = (;,ﬂklk'

and

Ds) = - +7+59(5) (4.16)

where v is the Euler constant and the function g is also holomorphic around zero.

We have {1 = 0 and more generally, Wres(P) = 0 for all zero-order pseudodifferential
projections [151].

For extension to log-polyhomogeneous pseudodifferential operators, see [98].

When M has a boundary, some aj, are non zero, the dimension spectrum can be non simple
(even if it is simple for the Dirac operator, see for instance [99]).

On a spectral triple (A, H, D), changing the product on A may or not affect the dimension
spectrum: for instance, there is no change when one goes from the commutative torus to the
noncommutative one, while the dimension spectrum of SU,(2) which is bounded from below,
does not coincide with the dimension spectrum of the sphere S corresponding to ¢ =1 .

We first introduce few necessary notations. In the following we fix a local coordinate frame
(U, (xi)1<i<n) which is normal at zp € M, and denote a,i( the k-homogeneous symbol of any
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classical pseudodifferential operator X on M, in this local coordinate frame. The Dirac operator
is locally of the form—compatible with (4.2)

D = —iy(da?) (0 + wj()) (4.17)

where wj is the spin connection, v is the Clifford multiplication of one-forms |68, page 392|. Here
we make the choice of gauge given by h := /g which gives [68, Exercise 9.6

. . ik
wi = =5 (T g = Oy (1) 1) 1 (da?) A(da'), - (da?) = V/g™1 7"

where 77 = «v; are the selfadjoint constant v matrices satisfying {~%,+7} = 6. Thus

— 7k

oP(2,6) = VgL (& —iw;(2)).
We have chosen normal (or geodesic) coordinates around the base point x. Since
9ij(x) = gij(20) + 3 Rijm "2’ + of|||P*),
9" (x) = g"(z0) — 3R a*a’ + o(||] ),
9ij (o) = 85, Tii(zo) =0,
the matrices h(z) and h~!(x) have no linear terms in z. Thus
wi(l‘g) = 0.

We could also have said that parallel translation of a basis of the cotangent bundle along the radial
geodesics emanating from g yields a trivialization (this is the radial gauge) such that w;(zo) = 0.
In particular, using product formulae for symbols and the fact that in the decomposition D =
D+ P, PeOP °, we get for ke N

oP(2,6) = Vg 1" (x) g5 = 7(6), 0P (w0, €) = ¢, (4.18)
od(z,&) = —i g‘ljk(x) Yew; (), o8 (x0,€) = 0, (4.19)
0,107 (20,£) = 0, (4.20)
o (@, €) = Vg (@) vk €] 172, 16112 := % (x) &6 (4.21)
0,07y (w0,€) = 0. (4.22)

We will use freely the fact that the symbol of a one-form A can be written as
oz, €) = ofi(z) = —iag(z) A" (4.23)

with ag(x) € iR when A = A*.

When d is even (so € = 1), remark that for £ = [ and A; = a;[D, b;] and a = Hle a;j, then
by (38, page 231 (actually, x is missing)]|, [113] or [68, p. 479] when k = d, (M is supposed to be
oriented)

][XAI - ARDITR = c;/ AR) R A adby A - A dby,
M
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where A(R) is the A-genus associated to the Riemannian curvature R. Since we have A(R) €
en2 (M, R), § xA¥|D|=* can be non zero only when k = d — 45. For instance in dimension
d =2, for j =0,

A1 AyD2 A1A —2 j
Xyt T (2,8) = 0y (@) oy (,€) = —ai(z) as(z) ngk(x)%'% m~

Thus wres; (xyA1 42D 72) = —2a;(x) az(z) v/det g, Tr(xy/+"), so if v, is the Riemannian density,

folAg D2 =—2¢ Tr(X’yj’yk)/ ajas vg. (4.24)
M
Actually, this last equality is nothing else than Wodzicki-Connes’ trace theorem, see [68, section
7.6, and this is equal to cfi fM aiasdby A dby as claimed above.
We introduce a few subspaces of the pseudodifferential operators space W(M). Let

Be:={PeV¥Y(M): O'jPGEj,VjEZ} e for even,
Bo:={PeV(M): 0ol €0;,Vj€Z} oforodd,

such that, for m = 2[‘1/2],

Ej:={feC®(U xRN0}, Mn(C)) : Z ”5”% , I#0,
ki €N, m'eNd,m—zk:], h-eCOO(UM ©)},

0= { € C®(U xR\{0}, Mun(C)) : ZW rhie) , 1#0,
kieN, B8 e N |8 — (2ki+1) =4, hi € C®(U, M,,(C)) }.

Lemma 4.3.5. For any j, j' € Z and o € N¢,
() E E/ CE+]/ and@?E CE —|afs 8an gEj.
(i) O O i C By anda 0; C O] lals 020; C O;.
(7i7) O E v and E;jO; are mcluded in Ojyjr.
(iv) Be is a sub-algebm of U(M).
(v) BeBe, BoB, are included in Be, and B.B,, BoBe are included in B,.

Proof. (i) Let f € E; and o € N%. We have, if f(z,&) =, ”é‘% hi(x),

%S = Z ||£H2’“ =22 ()oTE )08 gy ) hi()-

i€l v<a
We check by induction that we can write

vl

7P 2]62‘
m(usn% )= ||s||2'%1w+1> ZApr‘?? €]l
p

=1
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where )\, are real numbers, the sum on indices p is finite, and E‘f:‘l (7P = ~. As a consequence,

since Hinkl = (g"(x)&x&)" is a homogeneous polynomial in & of degree 2k;, we get O f € Ejju-
The inclusions E;Ey C Ej 5, 03 E; C Ej are straightforward.
(73) The proof is similar to (i) since by induction

vl

1y 1 B9 2
02 () = e 2 M [T 28 Nl
P Jj=1

where ), are real numbers, the sum on the indices p is finite and Z'fil [IP = 7.

(7i1) Straightforward.

(tv) The product symbol formula for two classical pseudodifferential operators P € WP(M),
Q € V(M) gives

ol (=1)le]
p+q i Z Z il 5 ) 85 p—j+lal+k axaq k- (4.25)

a€Nd k>0, |a|+k<j
The presence of the factor il® that will be crucial in later arguments hke Lemma 4.3.10.
If P,Q € B., we see that by (i), (95 p—jtlal+k € Ep—j+r and Iy oq p € Eq—r. Again by (i),

we obtain 9 Up_j+|a|+k oy aq i € Epyq—j, so the result follows from (4.25).

(v) A similar argument as (iv) can be applied, using (i) to obtain B,B, C B, and (iii) to
get BoBe C By, BB, C B,. O

Be and B, are stable by inverse:

Lemma 4.3.6. Let P € B, (resp. B,) be an elliptic classical pseudodifferential operator in WP (M)
with o’ (z,€) = ||€||%, p € N. Then any parametriz P~ of P is in Be (resp. By).

Proof. Assume P € B, so p is even. From the parametrix equation PP~! = 1, we obtain
Ppl = (o) = ||¢||,” € E_p. Moreover, using (4.25), we see that for any j € N*,
) i=led ) |( 1 )
P~ P-
Top—j = Z —J+k J—p k+ Z Z ¢ p J+lal+k aaa—p—k) (4.26)

0<k<y 0<|a|<j k=0

We prove by induction that for any j € N, of Zp—j € E—p—j: suppose that for a j € N*, we have

for any j/' < j, o —I:j’ € E_,_j. We then directly check with Lemma 4.3.5 and (4.26) that
—1
The case P € B, is similar. O

Lemma 4.3.7. For any k € Z, D* € B, and when k is odd, |D|* € B,.

Proof. Since D € B,, D2 is in B, by Lemma 4.3.6 and 4.3.5 and so 1s Dk,
Using (4.25) for the equation |D||D| = D?, we check that 0 (:p ¢) = ||€]|, and for any
JeN,

J—lal

V2 1 |D D] \a|( 1 lol ey _|D a _|D|
o =apr (08— D oot Y D 00 jardiony) (427)
0<k<yj 0<|a|<j k=0
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|D|

Again, a straightforward induction argument shows that for any j € N, o7_ ; € O1-j, and thus
|D| € B,. The result follows as above. O

In the next four lemmas, we emphasize the fact that only some of the results could be obtained
using the trick (4.11) with the operator .J.

Lemma 4.3.8. (i) If d is odd, then for any P € B, f P = 0.
(ii) If d is even, then for any P € B,, f P = 0.
(iii) For any pseudodifferential operator P € W1 (A),
- when d is odd, then f P =0,
- when d is even, then f P|D|~! = 0.

Bi

Proof. (i) Since 0¥, € E_g, 0¥ )(2,6) = 3,¢; ”5”72,% h;(z) where |3!| are odd. The integration on
the cosphere in (4.12) therefore vanishes. ’

(74) The same argument can be applied.

(7i7) Direct consequence of (i) and (i7). O

Remark 4.3.9. Lemma 4.5.8 (iii) entails for instance that f B|D|~*+1) where B is a polynomial
in A and D and k € N, always vanish in even dimension, while fBD_Ql’C always vanish in odd
dimenston. In other words, fB\D|_(d_q) =0 for any odd integer q.

We shall now pay attention to the real or purely imaginary nature (independently of the

appearance of gamma matrices) of homogeneous symbols of a given pseudodifferential operator.
Let

C:={PeW’(M):0] €l;VjeN}
where I, = I if k is even and I, = I, if k is odd, with

I :={feC®(UxR" Mun(C)) : ="k v, h(x,€) , hreal valued },
I, = {f € COO(U X RnaMm(C)) tf=i Vhy © Vg h(x,{) ; h real Valued}'

Lemma 4.3.10. (i) C is a sub-algebra of W(M).
(ii) If P € C is hypo-elliptic then P~ € C.
(i4i) D* € C and |D|* € C for any k € Z.

Proof. (i) Consequence of (4.25).
(74) Consequence of (4.26).
(#i7) It is clear that D € C and the fact that |D| € C is a consequence of (4.27). O

Lemma 4.3.11. Let k € N odd. Then any element B of the polynomial algebra generated by A
and [D, A] satisfies { B|D|~(4~%) = { BF|D|~(@=%) = 0.

Proof. We may assume that B is selfadjoint so fBD_(d_k) e R.
By Lemma 4.3.10, depf(dfm = aga?cz(dfk) € Ir. Thus f AD™F € 4R and the result follows.
The case f BF|D|~(@=%) is similar. O

We now look at the information given by the gamma matrices.
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Lemma 4.3.12. For any one-form A, f A|D|79 =0, q € N in either of the following cases:
-d#1 mod 8 and d# 5 mod 8,
-(d=1 mod 8 ord=5 mod 8) and (q is even or q > %)

Proof. In the case d #1 mod 8 and d # 5 mod 8, the result follows from the fact that e = 1.

The case d even and ¢ odd or d odd and ¢ even is done by Lemma 4.3.8 (7i1).

Suppose that d is even and ¢ is even. If ¢ = 2k, with a recurrence and the symbol product
formula, we see that O'2Dk2f j and all its derivatives are linear combinations of terms of the form
f(z,&) @491 - - 49i where i is even and less than 2j (with the convention 4/t ---4Ji =1 if = 0).
We call (P;) this property. The parametrix equation D?kD=2F = 1 entails that o Qkk = (o Sjk) 1
and for any j > 1,

7j—1
ID72k: . ID72k: D2k: D— 2k
0 _9k—j = —0_2k ( E O2k—(j—r) O—2k—r
r=max{j—2k,0}
j—lal

el g -
+ > T oen i jan O80Tl ).

1<]a| <2k r=max{j—2k,0}

Note that a?;,:k satisfies (FPp). By recurrence, this formula shows that a?;;f ; satisfies (P;) for

any j € N. In particular, J?;Qk satisfies (P_gg+q) and the result follows then from (4.23) and
the product of an odd number (different from the dimension) of gamma matrices is traceless.
Suppose now that d is odd, ¢ is odd and d > ¢. In that situation, any odd number of gamma
matrices 7' - - - 4% is traceless when r < d.
Using (4.25) for the equation |D|~4|D|~9 = D24, we check that ag‘_q (z,€) = €], and for
any j € N*

J—lal
DI~ __1 (D% Z ID|~¢ |D|~¢ Z Z Jal ( 1)‘“ 5P o \D\
T—q—j ~2ez7 7 (0295 — O gjrkO—g—k T+ Ogo_,_ g+\a|+k8 k)
0<k<y 0<|e|<j k=0

|D| 24

We saw that each 02— satisfies (P;), that is to say, is a linear combination of terms of the
form f(x,€) ® 47t ---4% where i is even and less than 2j. Again, a straightforward induction
argument shows that for any j € N, o/ |7, satisfies (P;). In particular o_g(A|D|79) is a linear

combination of terms of the form f(x, 5) AL 497 where r < 2(d — q) + 1 is odd. This yields
the result. O

The fact that f AD~41 = 0, consequence of Lemmas 4.3.8 and 4.3.11 is also a consequence
of the fact that a?;dﬂ(xo, £) =0:

Lemma 4.3.13. For all k € N*, we have Jl?fl(xo,é) = 0?;1(:50,5) =0.

Proof. We already know that o (79,&) = 0, see (4 19) We proceed by recurrence, assuming

akDfl(zo,ﬁ) =0for k =1,--- ,n. Then o2" i = o0l + oP" 0P — 9, 0P 9,k0F, thus by
(4.19) and (4.20), 62" (0, &) = 0.

Since DD~ = 1 yields 02, ' (zo, &) = —(a?{l UOD)(xo,f) =0, we absume o ,;kl(aso,é“) =0
for k=1,---n. Then o2, = 02 0Py 4+ 02 " 100" —i8:00," d,u0P) . Using (4.22) and

recurrence hypothesis, a?;i; (x0,§) = 0. ]



4.3. Commutative spectral triples 135

Remark 4.3.14. Regularity of (x(s) := Tr(|X|™*) at point 0 when X is an elliptic selfadjoint
differential operator of order one (see [64]):

One checks that (x(s) = S) Joo T Tr(e ~HUX1) dt for R(s) > d. Because of the asymptotic
expansion

Tr(e !X = ¢4 Zt"an |+ O+ (4.28)

and meromorphic extension to the whole complex plane, Rdes Cx(s) = Fa(’&[fq) In particular,
s=d—n

(x(s)=T(s)7! (% + f(s)), where f is holomorphic around s = 0. By (4.16) we get that (x (s)

is regular around zero and (x(0) = aq4[X] if d is even and (x(0) = 0 if d is odd.

Corollary 4.3.15. (p1+4(0) = (p(0) = 0 when d = dim(M) is odd.
When d is even, (p4+a(0) — (p(0) = 2/221 > f(AD1)2*

Proof. The result follows from (1.11) and Lemma 4.3.4. O
A proof of (1.11) also follows from alog(1+AD71) pyad 1 1)k oAD" with log(X) :=

%| _ X7, s0 Wres(log(1+AD™1)) = Zk 1 k (AD™) ) since (AD_l)k has zero Wod-
zicki residue if k > d and moreover (p;4(0) = —Wres(log(D + A)). Actually, the important

point is that det(X) := eWTes(log(X ) is multiplicative (see [100]). Moreover, such determinant is
different from the ¢-determinant e=¢x(%) used for instance by Hawking [77] in his regularization
via the partition function which suffers from conformal anomalies.

The fact that in the asymptotic expansion of the heat kernel (4.28), the term ao[D + A]
depends only on the scalar curvature, so independent of A is reflected in

Lemma 4.3.16. In any spectral triple of dimension 2 (commutative or not) with vanishing
tadpoles of order zero (i.e. (1.19) is satisfied), (p+4(0) = (p(0) for any one-form A.

Proof. Let ay, aa, by, by € A. Then, with Ay = a;1[D, by],

][Al Dl ay[D, by D71 = ][Al[D_l, as][D, by) D! +][A1a21>—1[1>, by D!

The first term is zero since the integrand is in OP~3, while the second term is equal to
f (a1a(braz) — arbia(asz)) (a(b2) — ba), so is zero using a(z)a(y) = a(zy), fry = fza(y) by
(1.19) and the fact that f is a trace. Thus f(AD_1)2 = 0 and Corollary 4.3.15 yields the
result. O

Note that ¢p4+4(0) — (p(0) is usually non zero: consider for instance the flat 4-torus and as
a generic selfadjoint one-form A, take

A=ge02ml' e —in® S aageiOn,
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where a, is in the Schwartz space S(Z*%) and an; = —@q ;. We have by Lemma 2.3.12, (with
c=82 |I]2 = 2,05 and © = 0)

(p+4(0) — ¢p(0) = ][(AD_1)2 =Y oy Gy, (17117 — 5°1°2|1?)
lezA

since f(AD 1)t = 0.
This last equality suggests that Lemma 4.3.16 can be extended:

Proposition 4.3.17. For any one-form A, f (AD™1)? =0 if d = dim(M).

Proof. As in the proof of Lemma 4.3.16, D~! commutes with the element in the algebra as the
integrand is in OP~%. So for a family of a;,b; € A and using a := H?Zl a;,

][ljl (a;i[D,b] D) —][ (Eai) ];[1 ([D,b;] D7) = ][ag (a(b;) — by).

We obtain, since a(b;) —b; € OP™1,

d
d i)—b; a(b;)—b; a(b;
U(idHiﬂa(bl) b a _(bl) bi _ a | | O‘_(bl).

Moreover, al_)i’ip_l(xo,Q = 0: we already know by Lemma 4.3.13 that 02, ' (0, £) = 0, by (4.21)
that 8,x00; (x0,&) = 0 for all k, and oV (x0,€) = bi(xo) of (x0,€) = 0 giving the claim and
the result. O

This proposition does not survive in noncommutative spectral triples, see for instance [82,
Table 1].

Note that for a one-form A, f A4D~4 # f(AD~1)~? = 0: in dimension d = 2, as in (4.24),

][A2 D2 = —2¢ Tr(vk'yl)/ apa vy.
M

It is known (see [37, Proposition 1.153]) that the d —2 term (for d = 4) in the spectral action
expansion f |D + A|7? is independent of the perturbation A. This is why the Einstein-Hilbert
action S(D) = f|D|74*2 = —c [}, 7\/g dx (see [68, Theorem 11.2]) is so fundamental. Here 7 is
the scalar curvature (positive on the sphere) and ¢ is a positive constant.

We give here another proof of this result.

Lemma 4.3.18. We have f |D + A|742 = {|D|=42 = —¢ [, 7\ /g dz with c = 52 {|D|~4.

Proof. We get from Lemma 1.3.10 (4), the following equality, where X := AD + DA + A?:

Froapesz - fippae - @2 4 farppaz - Ly,
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Since the tadpole terms vanish, we have f X|D|® = f A%|D|~%. Moreover, since mod OP!,

X2 = (AD)? + (DA)? + AD?A + DA2D, we get with [D?, A] € OP?,

][XQyDy“ = 2][(,42))2\@\“ + 2][A2|D|d

which yields

f‘D+A|—d+2 _][‘D‘—d—i-Q = dd2) (][(AD>2’D’—d—2 B 22(1][142“)’—(1)_

Thus, it is sufficient to check that

/ Tr (o_a((AD)?|D|42) (0, ) d¢ = 24 / Tr (o_a(A?*|D|™?) (w0, €)) dé.
Sz, M

Sz M

A straightforward computation yields, with A =: —ia,y*, and 0P (29, &) = Y,

/* Ma_d((AD)QIDI_d_Z)(fL‘o@) d¢ = —L ayar Tr(v#477",) Vol(S471),

0o

| oal DI w0, d = ~aua, Trlr#y") Vol(5) .
Sz, M

Now, { |D + A|=4*2 = {|D|~%*2 follows from the equality Tr(y#v"y77,) = (2 —d) Tr(y#~7). The

constant ¢ is given in [68, Theorem 11.2 and normalization (11.2)].

O]

Remark 4.3.19. In [37, Definition 1.143], the above result justifies the definition of a scalar
curvature for (A, H,D) as R(a) := f a|D|~*2 for a € A. This map is of course a trace on A for

a commutative geometry. But for the triple associated to SUy(2), this not a trace since

R(aa*) :][aa* DI = S while R(a’a) = ][a*a Dt = st
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Chapitre 5

Global pseudodifferential calculus on
manifolds with linearization

5.1 Introduction

It has been proven by Gayral et al. in [59] that Moyal planes are (noncompact) spectral
triples. In other words, one can consider Moyal planes as noncommutative Riemannian spin
noncompact manifolds. A bridge between the world of deformation quantization and the world
of noncommutative geometry has thus been constructed. This suggests that the paradigm of
spectral triples is a good environment to deal with quantization problems. The Moyal product
is defined on the Schwartz space S(R?") of rapidly decaying functions by

frg(o)i= (m0)7>" [ dyd f(g)glz) ¥ S (5.1)

where § € R* and S = (01;10”), and gives to S(R?") a Fréchet pre-C*-algebra structure. The
noncompact spectral triple described in [59] is based on this algebra, and extensions to isospectral
deformations have been established [61, 154].

The extension of this remarkable construction to more general symplectic manifolds, for
instance when R?" is replaced by the cotangent bundle T7*M of a general manifold M is an
open problem. We propose here the study of a pseudodifferential calculus that allows to extend
the construction of the Moyal product to more general spaces. The main idea is to use a global
pseudodifferential calculus on a manifold M that gives us a full algebra isomorphism between
symbols and operators.

Classically, a pseudodifferential operator on a (smooth, finite dimensional) manifold is defined
through local charts and the notion of pseudodifferential operator on open subsets of R™ [127,
139]. In this setting, the full symbol of a pseudodifferential operator is a coordinate dependent
notion. However, the principal symbol can be globally defined as a function on the cotangent
bundle. Naturally, the question of a full coordinate free definition of the symbol calculus of
pseudodifferential operators on a manifold has been considered. One approach, based on the ideas
of Bokobza-Haggiag 9], Widom [148,149| and Drager [49] allows such a calculus if one provides
the manifold with a linear connection. Parallel transport along geodesics and the exponential map
to connect any two points sufficiently close on the manifold are then used for the definitions and
properties of local phase functions and oscillatory integrals. Safarov [120] has formulated a version
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of a full coordinate free symbol calculus and A-quantization (0 < A < 1) using invariant oscillatory
integral over the cotangent bundle and determined by the linear connection. Pflaum [111,112]
developed a complete symbol calculus on any Riemannian manifold using normal coordinates and
microlocal lift on the test functions on manifolds with arbitrary Hermitian bundles. Sharafutdinov
[125,126] constructed a similar global pseudodifferential calculus, based on coordinate invariant
geometric symbols. Further results in the same direction, connection to Weyl quantization and
application to physics has been considered in Fulling and Kennedy [57|, Fulling [56] and Giintiirk
[74]. Connection between complete symbol calculus, deformation quantization and star-products
on the cotangent bundle has also been made (see for instance Gutt [75], Bordemann, Neumaier
and Waldmann [10] and Voronov [145,146]). Getzler [63] used a global pseudodifferential calculus
in the context of the Atiyah-Singer index theorem on supermanifolds.

All these pseudodifferential calculi are based on symbol (functions of (x,0) € T*M) estimates
over the covariable 6 while the dependence on the variable z is only controlled locally uniformly on
compact sets. This is well suited for the case of a compact manifold. For non-compact manifolds,
we have to impose a uniform control over z in order to obtain L?(M) continuity of operators of
order 0 and compactness of the remainder operators if the control over x is decaying. In other
words, any global pseudodifferential calculus adapted to non-compact manifolds and sensitive to
non-local effects needs to encode the behaviour “at infinity” of symbols. On the FEuclidean space
R™, several types of pseudodifferential calculi have been defined: standard pseudodifferential
calculus with uniform control over x (see for instance Hérmander [81], Beals [5], Shubin [129]),
isotropic calculus with simultaneous decay of the x and 6 variables (Shubin [127,128], Melrose
[105]), and SG-pseudodifferential calculus with separated decay of the 2 and 6 variables (Shubin
[128], Parenti [109], Cordes [40, 41|, Schrohe [122]), which is invariant under a special class
of diffeomorphisms and can be extended to an adapted class of manifolds, namely the SG-
manifolds (Schrohe [122]). This class of manifolds contains the non-compact manifolds “with
exits” and adapted pseudodifferential calculus has been developed (see for instance Cordes [40],
Schulze [132], Maniccia and Panarese [102]). Another approach, based on Lie structures at infinity,
has been investigated to study the geometry of pseudodifferential operators on non-compact
manifolds. Describing the geometry at infinity of the basis manifold by a Lie algebra of vector
fields, an adapted pseudodifferential calculus has been constructed (see for instance Melrose [106],
Mazzeo and Melrose [104], Ammann, Lauter and Nistor [3]). Let us also mention the groupoid
approach: by associating to any manifold with corners a smooth Lie groupoid and by building a
pseudodifferential calculus on Lie groupoids, the b-calculus of Melrose on manifolds with corners
can be generalized (see Monthubert [107]).

Our purpose is to construct a global pseudodifferential calculus that generalizes the standard
and SG calculi on R”, on manifolds with linearization. These manifolds provide a natural geome-
tric setting to deal simultaneously with the questions of a global isomorphism between symbols
and pseudodifferential operators, and the non-local effects associated to non-compact manifolds.

We define in section 2 a manifold with linearization (or exponential manifold) as a pair
(M, exp) where M is a smooth real finite-dimensional manifold and exp is an abstract exponential
map, a smooth map from the tangent bundle onto M that satisfies, besides the usual properties of
an exponential map associated to a connection V on T'M, the property that at each point x € M,
exp, is a diffeomorphism. Any Cartan-Hadamard manifold with its canonical exponential map
is an exponential manifold. These diffeomorphisms are used to define topological vector spaces of
functions on the manifold (or on TM, T*M, M x M) that generalize, for instance, the notions of
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rapidly decaying function on R" or of tempered distribution, provided that we add a hypothesis
of “Ops-bounded geometry” on the exponential map. In section 3, we use linearizations in the
spirit of Bokobza-Haggiag [9], to define symbol and quantization maps. This leads to topological
isomorphisms between tempered distributional sections on T*M and M x M, if we consider
polynomially controlled (at infinity) linearizations (Ops-linearizations). In particular, we extend
the usual (explicit) Moyal product (or A-product, for the A-quantization) on any exponential
manifold with Ops-bounded geometry on which we set a Op-linearization. We get the following
A-product formula, giving a Fréchet algebra structure to S(T*M),

Tiw / _
aoyb(z,n) = / Ay (€)du(y) / e ,(0,0)) goc € w,s,y("’e’g)a(ygé,ﬂ)b(y;}gﬁ')
T (M)x M VA

z,8,y

where a,b € S(T*M) and the other notations are detailed in Proposition 5.3.11.

In section 4, we define the symbol and amplitudes spaces for our pseudodifferential calculus.
Symbol spaces can be defined in an intrinsic way on the exponential manifold with the help
of "symbol-like" control (S,-bounded geometry, see Definition 5.2.8) of the coordinate change
diffeomorphisms ¢2’:// associated to the exponential map exp on M. For practical reasons the
definition of amplit{ldes here is slightly different from the usual functions of the parameters z,y
and 6. Instead, our amplitudes generalize functions of the form (x,(,¥) — a(x,x + (, 1), where
a is a standard amplitude of the Euclidian pseudodifferential calculus. We establish continuity
and regularity results for operators of the following form (which can be seen, for some forms of
T, as special Fourier integral operators on R"):

(Opr(a), u) = /R OO Ty (alx, ¢ 9) D)” (x, ) dC ) dx

where T is a topological isomorphism on S(R?"*, L(E,)) (here E, is a fixed fiber of the Hermitian
bundle E — M, so L(E.) can be identified with Mgim £, (C)), a is in a Oy , space (see Definition
5.4.13) and v € S(R™, E,). In particular, results of Proposition 5.4.14 and 5.4.17 and Lemma
5.4.18 are believed to be new.

With the help of a hypothesis of a control of symbol type over the derivative of the lineari-
zation (S,-linearizations), we obtain in section 5.4.4 an intrinsic definition (Theorem 5.4.30) of
pseudodifferential operators L™ on M. We see in section 5.4.5 a condition (Hy ) on the lineari-
zation that entails that any pseudodifferential operator on M, when transferred in a frame (z, b),
is a standard pseudodifferential operator on R™. This condition yields a L?-continuity result in
Proposition 5.4.36. The last part of section 4 is devoted to the derivation of a symbol product
asymptotic formula for the composition of two pseudodifferential operators. The main result is
Theorem 5.4.47: under a special hypothesis (C,) on the linearization (see Definition 5.4.37), we
have the following asymptotic formula for the normal symbol (transferred in a frame (z,b)) of
the product of two pseudodifferential operators

00(AB).p ~ Y epcy @5 (alx,9)0% (2PN £)(x, ¢, ¢y Lo (9)) oot ) o
B,yENP

where a := 0¢(A),p, b:= 00(B).p, and other notations are defined in section 5.4.6.
Finally, we give in Section 5.5 two possible settings (besides the usual standard calculus on
the Euclidian R™) in which the previous calculus applies. The first is based on the Euclidian
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space R™, with a “deformed” (non-bilinear, non-flat) S,-linearization. The second example is the
hyperbolic plane (or Poincaré half-plane) H. We prove in particular that H has a S;-bounded
geometry. This allows to define a global Fourier transform, Schwartz spaces S(H), S(T*H),
S(TH), B(H) and the space of symbols Si’m(T*H). Moreover we can then define in an intrinsic
way a global complete pseudodifferential calculus on H, and Moyal product, for any specified
S,-linearization on H.

5.2 Manifolds with linearization and basic function spaces

5.2.1 Abstract exponential maps, definitions and notations

The notion of linearization on a manifold was first introduced by Bokobza-Haggiag in [9] and
corresponds to a smooth map v from M x M into TM such that mov = m, v(z,x) = 0 for any
x € M and (dyv)y—, = Id7, ar. In all the following, we shall work with “global” linearizations, in
the following sense:

Definition 5.2.1. A manifold with linearization (or exponential manifold) is a pair (M, exp)
where M is a smooth manifold and exp a smooth map from TM into M such that:

(i) for any x € M, exp, : TyM — M defined as exp,(§) := exp(z,§), is a global diffeomorphism
between T, M and M,

(79) for any x € M, exp,(0) = z and (dexp,)o = Idz, m-

The map exp will be called the exponential map, and (z,y) — exp;, !(y) the linearization, of the
exponential manifold (M, exp). We shall sometimes use the shorthand €5 := exp, ().

Note that the term “exponential manifold” used here is not to be confused with the notion of
“exponential statistical manifold” used in stochastic analysis. Remark that if exp € C*°(TM, M)
satisfies (i), then defining Exp := expo T where T(x,¢) := exp; ' (z) + (dexp, !).£, we see that
(M, Exp) is an exponential manifold.

We will say that (M,V) (resp. (M, g)) is exponential, where M is a smooth manifold with
connection V on TM (resp. with pseudo-Riemannian metric g), if (M, exp) where exp is the
canonical exponential map associated to V (resp. to g) is an exponential manifold, or in other
words, if for any x € M, exp, is a diffeomorphism from T, M onto M. Note that (M, V) (resp.
(M, g)) is exponential if and only if

— M is geodesically complete

— For any x,y € M, there exists one and only one maximal geodesic v such that (0) = =

and v(1) = y.
— For any x € M, exp,, is a local diffeomorphism.

Remark 5.2.2. R" (with its standard metric of signature (p,n — p)) is an exponential ma-
nifold and any n-dimensional real exponential manifold is diffeomorphic to R™. In particular,
an exponential manifold cannot be compact. A Cartan—Hadamard manifold is a Riemannian,
complete, simply connected manifold with nonpositive sectional curvature. It is a consequence of
the Cartan—Hadamard theorem (see for instance [97, Theorem 3.8]) that any Cartan—Hadamard
manifold is exponential.

Remark 5.2.3. The exponential structure can be transported by diffeomorphism: if (M, expy,)
is an exponential manifold, N a smooth manifold and ¢ : M — N is a diffeomorphism, then
(N,expy := poexpy o T~ 1) is an exponential manifold.



5.2. Manifolds with linearization and basic function spaces 143

Assumption 5.2.4. We suppose from now on that (M,exp) is an exponential n-dimensional
real manifold.

For any x,y € M, we define ., as the curve R — M, t — exp,(texp,ly), and Jy(t) =
Yy (1 —t). Note that 7., (0) = « and 7,y(1) = y. If the exponential map is derived from a linear
connection, we have for any t € R, 7,,(t) = Yzy(t). In the general case, this is only true for t =0
and t = 1.

The abstract exponential map exp provides the manifold M with a notion of “points at
infinity” and “straight lines” (v4y). It can be seen as a generalization to manifolds of the useful
properties of R™ for the study of the behaviour of functions at infinity. The abstract exponential
map exp formalizes the fact that our straight lines never stop and connect any two different
points.

The diffeomorphism exp, !, for a given z € M, is not stricto sensu a chart, since it maps M
onto T, M, which is diffeormorphic but not equal to R™. In order to obtain a chart, one needs
to choose a linear basis of T, M. If z € M and b is a basis of T, M we will call the pair (z,b) a
(normal) frame. For any frame (z, b), we define n® := Lyoexp, ! with Ly the linear isomorphism
from T,M onto R" associated to b. As a consequence, the pair (M,n®) is a chart which is a
global diffeomorphism from M onto R”.

We denote w:::’ =nlo (ng)_1 the normal coordinate change diffeomorphism from R™ onto
R"™ and (8;..p)ien, and (dz"*®);en, (whith N, := {1,---,n}) the global frame vector fields
and 1-forms associated to the chart n®. We also note ng,* the diffeomorphism from 7*M onto
R*" defined by n? (z,0) = (ng(x),ﬁsz(ﬁ)) where (Mf7x(0)i)i€Nn are the components of 6 in
(dz5™");en, and ngT D (2,€) — (n(x), M2, (€)) the diffeomorphism from TM onto R*", where
(M?,(€)i)ien, are the coordinates of £ in the basis (9;:6, )ien,. We have MP, = (dn?), and

2,T
M;x = t(dn?);'. The diffeomorphism from M x M onto R?" defined by (z,y) — (n8(z),n2(y))
will be noted n:Mg.

We denote (0 .p)ieN,, the family of vector fields on T*M (resp. TM, M x M) associated
to the chart ng* (resp. ngT, ng 1y2) onto R?". We suppose in all the following that & is an
arbitrary normed finite dimensional complex vector space. If v is a (2n)-multi-index, we define

the following operator on C*°(T*M, &) (resp. C*°(T'M, ), C°(M x M, €)):

2n

v Vi
z,b H 8k:,z,b'

k=1

If @ and 8 are n-multi-indices, we denote (v, ) the 2n-multi-index obtained by concatenation. If
o is a n-multi-index, 97y is a linear operator on C*°(M, €). We fix the shorcut (x) := (1+ x[|#)1/2
for any x € RP, p € N. We will use the convention x* := x{* ---x?” for x € RP and a p-multi-
index, with 0 := 1. If f is continuous function from RP to a normed vector space and g is a
continuous function from R? to R, we denote f = O(g) if and only if there exist » > 0, C' > 0
such that for any x € RP\B(0,r), ||f(x)|| < Clg(x)|. In the case where g is strictly positive on
RP, this is equivalent to: there exists C' > 0 such that for any x € R?, || f(x)|| < Cg(x). We also
introduce the following shorthands, for given (z,b), z,y € M, 0 € T} (M), § € Tx(M):

(@)sp = (n2(@)), (D)o = (MI,(0)),  (E)spw = (ME,(E)),
(2, 9)z0 = ((S(2),nS(®)),  (2,0)s0 = ((nS(x), MLL(0)), (2,€).6 = ((ni(x), ML ,(€))).
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If f and g are in CO(R?, R”') we denote f = ¢ the equivalence relation defined by: (f) = O({g))
and (g) = O((f))-

5.2.2 Parallel transport on an Hermitian bundle

Let E be an hermitian vector bundle (with typical fiber E as a finite dimensional complex
vector space) on the exponential manifold (M,exp). £ admits a (non-unique) connection V¥
compatible with the hermitian metric [7]. It is a differential operator from C*°(M, E) (the space
of smooth sections of E — M) to C*°(M,T*M ® E) such that for any smooth function f on M
and smooth E-sections v, 1)/,

VE(f) =df @ ¢ + fVF,
d(p|y) = (VEQR) + (¥ VEY),

where (¢|¢)) is the hermitian pairing of ¢» and ¢'. We will note ||? := (1|¢). The sesquilinear
form (-|-); of E, is antilinear in the second variable by convention. The operator V¥ can be
(uniquely) extended as an operator acting on E-valued differential forms on M. If ~y is a curve on
M defined on an interval J and y*E the associated pullback bundle on J, there exists a natural
connection (the pullback of VF) on v*E, noted V¥ ¥ compatible with V¥,

Let us fix z,y € M and v : J — M a curve such that v(0) = = and (1) = y. For any
v € E,, there exists an unique smooth section 3 of v*E — .J such that 3(0) = v and V" ¥ = 0.
Clearly, 5(1) € E, and we can define a linear isomorphism 7, from E, to E, as 7,(v) = 3(1).
The map 7, is the parallel transport map associated to v from E, to F,. The compatibility of
V¥ with the hermitian metric entails that the maps 7y are in fact isometries for the hermitian
structures on £, and E,.

The vector bundle L(E) — M, defined by L(E), := L(E;) (the space of endomorphisms on
E.), is lifted to T*M, TM and M x M by setting the fiber at (z, ) to L(E,) for T*M or TM,
and the fiber at (z,y) to L(Ey, E,) for M x M. The canonical projection from T*M or T'M to
M is noted .

We denote 74y := 7,,. Remark that TaC = We define 7, : x +— 7., and Tz_l s Tl =

Ty zx T
T
If u € C®°(M,E) and z € M, we denote u*(z) := (7} )()forannyMIfalsa
section of L(E) — T*M or L(E) — TM, we denote a® := (7, om)a (1, om). If a is a section
of L(E) — M x M, we denote a*(x,y) = 7, ' (x) a(z,y) . (y ) We also define 7% := (z,y) —
Y y)7(2,y)7.(2) € L(E,). Noting 71 (z,y) := z, ma(z,y) := y, we get a* = (7. L om)a (1, 0ms)
and 77 = (7' om)a (1, omy).

Parallel transport on E has the following smoothness property:

Lemma 5.2.5. (i) The map 7 : (x,y) — Ty (resp. 71 : (2,y) — 7,,}) is a smooth section of
the vector bundle L(E)Y — M x M where the fiber at (z,y) is L(Ey, Ey) (resp. of the vector
bundle L(E) — M x M).

(ii) T, € C°(M, L(E,,E)) and 7,1 € C*°(M, L(E, E.)).

(iii) T € C=(M x M, L(E,)).

Proof. (i) The map G : TM — M x M defined by G(v) := (w(v),exp(v)) is a local diffeo-
morphism since the Jacobian of G' at vg = (20,80) € T'M is equal to the Jacobian of exp,,
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at &. Since it is also bijective (with inverse G=1(z,y) := (x,exp,1(y))), it is a (global) diffeo-
morphism TM — M x M. The map b(x,y,t) := (x,texp,!(y)) is thus a smooth map from
M x M xR to TM, and we get a smooth parametrization by M x M of the following family
of curves: ¢(z,y) — (Vay : t — expb(z,y,t)). This parametrization leads (see [50, p. 17]) to a
smooth bundle homomorphism between ¢*(-)(0)E — M x M and ¢*(-)(1)E — M x M, so a
smooth section 7 : (x,y) — Tuy of L(E,, E;) — M x M. The case of 7! is similar, by taking
b=z, y,t) == b(z,y, 1 —1t).

(7i,1419) are straightforward consequences of (7). O

Corollary 5.2.6. If u is in the space C®°(M,E), then u* € C*(M,E,). Similarly, if a €
C*®(T*M, L(E)) (resp. C*°(T'M,L(E)), C*°(M x M, L(E))), then a* € C*(T*M, L(E,)) (resp.
C>*(TM,L(E.)), C*(M x M,L(E,))).

Remark 5.2.7. The vector bundle E on M is trivializable and the parallel transport provides
a M-indexed family of trivializations, since for any z € M, the pair f, : E +— M X E, (z,v) —
(2,722(v)), Id : M — M, x — x, is a vector bundle isomorphism from E.— M onto M xE — M.
Note that if exp is derived from a connection, T, = Ty for any z,y € M.

5.2.3 O); and S,-bounded geometry

Classically, in Riemannian geometry, bounded geometry hypothesis gives boundedness on the
covariant derivative of the Riemann curvature of the basis manifold. For the following pseudodif-
ferential calculus, we shall need some hypothesis of that kind, formulated not with the curvature
but with the exponential diffecomorphisms (“normal” coordinate transition maps). The hypothesis
that we will need for pseudodifferential symbol calculus is actually not simply the boundedness
condition on the derivatives of the transition maps, which is a classical consequence of bounded
geometry. For symbol calculus, we will require that the n'"-derivatives are not only bounded, but
decrease to zero at infinity as \|:1;||_U("_1) where o is a parameter in [0, 1]. Or, in other words, the
normal coordinate change maps behave as “symbols” or order 1. Thus, we introduce the following

Definition 5.2.8. Let o € [0, 1]. The exponential manifold (M, exp) is said to have a S,-bounded
geometry if for any (z,b), (2/,b’), and any n-multi-index a # 0,

(S,1)  0°e%(x) = O((x)~o(lel=D),

and a Ops-bounded geometry if for any (z,b), (2/, '), and any n-multi-index «, there exist p, > 1
such that

(Ou1)  °P2Y(x) = O((x)P).

We shall be working with Op;-bounded geometry for the definition of function spaces and
Fourier transform and with S,-bounded geometry (for a o € [0, 1]) for pseudodifferential symbol
calculus.

Definition 5.2.9. The triple (M, exp, E) where (M,exp) is exponential and F is a hermitian
vector bundle on M has a S,-bounded geometry if (M, exp) has a Sy-bounded geometry and for
any (z,b), 2/, 2", and any n-multi-index «,

(52 yrstrn(a) = O(();2),
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and a Ops-bounded geometry if (M, exp) has a Oy/-bounded geometry and for any (z, b), (2/, ),
and any n-multi-index «, there exist p, > 1 such that

(Om2) 0247 Tan () = O((2)05) -

Clearly, if 0 < ¢, since (S,/i) = (S5%), we have Sy-bounded = S,-bounded = Oy-bounded.
Note that S,-bounded geometry on the vector bundle entails that the derivatives of the transport
transition maps 7, ', (smooth from M to L(E.:, E,)) are bounded (for Sp-bounded geometry)
or decrease to zero with an order equal to the order of the derivative (for Si-bounded geometry).
Remark also that if F is a trivial bundle and V¥ = d, then (S512) is automatically satisfied since
the maps 7, are all equal to the constant x +— Idg.

Lemma 5.2.10. Let o € [0,1] and (2,b), (2/,b’) be given frames.
(i) If (M,exp) has a Sy-bounded geometry, there exist K,C,C" > 0 such that for any x € R",

P20 = Tdgn and ()20 < K(2)2w (5.2)

Z,2

<9>z b,z < C<9>z’,b’,x and <£>z,h,a} < Cl<£>z’,b’,x7 (53)
and if (M, exp) has a Opr-bounded geometry, there exist K, K', K" C,C" > 0 and ¢ > 1 such
that for anyx € R", x € M, § € TX(M), € € T,(M),

K/<X>1/q < <'¢1:’::(X)> < K”<X>q and < >z b < K< > N (54)
<0>z b,z < C< > / b/<6>z’,b’,w and <§>z b,z < C/< > / b/<£>z’,b’,$7 (55)

(ii) For any given n-multi-indice o, we can write

a f , o’
z,b — a,of Yl !

0<|a’|<]e

where the (fo,o) are smooth real functions on M such that for each n-multi-indices o, o,
(a) if (M,exp) has a Ss-bounded geometry, there exists Co > 0 such that for any x € M,

[faar (@)] < Cala) 507D,
(b) if (M, exp) has a Opr-bounded geometry, there exist Cp, > 0 and qo > 1 such that for any

reM, |fa,a< )| < Cafz)i,

Proof Suppose that (M, exp) has a S,-bounded geometry. Taylor formula implies that
H (25
quence Q,Z)Z Z,( ) = O(||x||) and thus, there is K” > 0 such that <1/JZ ot (X)) < K"(x). The same
argument 7f01" @bg/’b = (@Z)g’:/)_l gives Q,Z)b’b/ Idgn and (z),p < K <7 )2 follows immediately
S 15,70 05,0 o = 2] [,

are bounded functions, (5 3) follows. The case where (M, exp) has a (’)M bounded geometry is
similar.

(71) We have for any f € C*(M, &),

H + Cp ||x|| for any x € R™, where Cj := supXeRn

and © +—

2o(f) = 0°(f o () 1) ol = °(f o ()~ 0wl Y) om?.
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We now apply the multivariate Faa di Bruno formula obtained by G.M. Constantine and T.H.
Savits in [39], that we reformulated for convenience in Theorem 5.2.11. This formula entails that
for any n-multi-index « # 0,

o (fo ) o) = N Paw@) (@Y fo (nl) ) owh?

1<’ <]al

and thus /
b6 / /
?,b = Z (Paor (¢z’7z) © ni’) 3?/,[1/ = Z fa a?/,b’

1<’ |<]q <]’ |<]e

where P, o/(g) is a linear combination of terms of the form szl(a” 9)¥ , where 1 < s < || and
the k7 and I/ are n-multi-indices with |k7| > 0, |I/] > 0, > i1 k| = ]q'\ and > i1 K] = |a.
In the case where (M, exp) has a Sy-bounded geometry, for each s, (k?), (I7), there is K > 0 such
that for any x € R",

|H (@950 ()] < K ()~ S W=D gy =ollal=la’)

which gives the result. The case where (M, exp) has a Op-bounded geometry is similar. O

Theorem 5.2.11. [39] Let f € C*(RP,€) and g € C*°(R",RP). Then for any n-multi-index
v#0,

||

3V(fog): Z a)‘ og Z Z 'Hk]llﬂ \k7| l] )k

1<IA Ly s=1ps(v,\) J=1

where ps(v,\) is the set of p-multi-indices kJ and n-multi-indices IV (1 < j < s) such that
0<1'<--- <15 (1 <1 being defined as “|I| < |I'| or |l| = |I'| and | <1, I"” where <[, is the strict
lexicographical order), |k7| > 0, Py Kkl = X and Py K| = v.

Note that by Lemma 5.2.10, if (M, exp) satisfies (S,1) (resp. (Opr1)), then (502) (resp.
(Om2)) is equivalent to: for any 2/, 2” € M, there exists a frame (z, b) such that g7, Yr(z) =

O((x);zla‘) (resp. O((a:}’z’f“b) for a p, > 1) for any n-multi-index a.
As the following proposition shows, S, or Ops-bounded geometry properties can be trans-
ported by any diffeomorphism.

Proposition 5.2.12. If (M, exp,;) has a S, (resp. Opr) bounded geometry, N a smooth manifold
and ¢ : M — N is a diffeomorphism, then (N,expy = @ oexpy 0 do~ ') has a Sy (resp. Opr)
bounded geometry.

Proof. Let us note z/JZ g = n;N o (ng’N)_l where ni”N := Ly o expy’, and (z,b), (2,0

are two frames on N. Since exp, v = ¢ 0 expys -1, 0(dp~"). and exp]_VIZ = (dp~H;1o

z
exp];[l#}_l(z) o ¢~ !, we obtain w::g’N = wbz’b(z) o1 ()M where b is the basis of T,-1(,)(M) such

that Ly, = Ly o (dp),-1(.). The result follows. O

The following technical lemma will be used for Fourier transform and the definition of rapidly
decreasing section spaces over the tangent and cotangent bundle in section 3. It will also give
the behaviour of symbols under coordinate change.
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Lemma 5.2.13. Let (z,b), (2/,b’) be given frames.
(1) We can express 8£f)‘b’ﬁ) as an operator on C°(T*M, €) (resp. C°(TM,€)) , where (c, 3) is a

2n-multi-index, with the following finite sum:

(a.,B) _ (o’,3")
82 b Z favﬁvalaﬁ/ 82:/&,[]/
(USICIESISICHE]
18’1218

where the fo g8 are smooth functions on T*M (resp. TM ) such that
(a) if (M,exp) has a Sy-bounded geometry for a given o € [0,1], there exists Co 3 > 0 such
that for any (x,0) € T*M (resp. TM),

| fagsor(@,0)] < Capla)Z (1710 ()17 191, (5.6)

z,b,x
(b) if (M,exp) has a Opr-bounded geometry, there exist Co 3 > 0 and qo,p > 1 such that for
any (z,0) € T*M (resp. TM),

[Fasgrr (@, 0)] < Casl@) 257 (60) V. (5.7)
as an operator on C°(M x M, ), with the following finite sum:

ai%»ﬁ) — Z focﬁa,ﬁ’a/b'

0<|a’|<]e
0<|8"1<|8]

(it) We can express 0, ¢

where the fo a3 are smooth functions on M x M such that
(a) if (M,exp) has a Sy-bounded geometry for a given o € [0,1], there exists Cyp g > 0 such
that for any (x,y) € M x M,

\foporp(T,9)] < Copl > o(|e/[=lal) (y>§ﬁlﬁ I=180) (5.8)
(b) if (M,exp) has a Opr-bounded geometry, there exist Co g3 > 0 and qo,q3 > 1 such that
for any (z,y) € M x M,

| fapar (2,9)] < Cap ()25 () 7y (5.9)
Proof. (i) Suppose that (M, exp) has a Sy-bounded geometry. Let us note ), := n2;7* o(n?, )t
and Y = nb, T o (n?;)~t. We have ¢, = (wgf o w1, L) where m; is the projection from R?"
onto the first copy of R” in R?" and L is the smooth map from R?" to R™ defined as L(x,4) :=
t(dqﬁfj::);l(ﬁ) = t(d¢:g)¢::: (X)(ﬁ‘). Noting (L;)1<i<n the components of L, we have L;(x,d) =

Zlépﬁn L; p(x)0p, where L;,, := (81‘1/127’::)13 o w:;:g. As a consequence, for 1 < i < n and «, 3,
n-multi-indices such that |(a, 3)] > 0

(0 )i = 000 Diom, ()i = @I L);,

(O L)i(x,0) = Y (0" Lip)(x) Fpp(¥),

1<p<n
b,b’ b',b .
PLip= > Paw@y?) (01200000 if  |a| >0,

1<]e/[<|e
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where Fj ,(¥) is equal to 9, if 5 =0, to d,, if 5 = e,, and to 0 otherwise. We get from the proof
of Lemma 5.2.10 that (for 1 < |o/| < |a]) Paor (95°)(x) = O((x)oel=1oD) . As a consequence,
using (5.2), we see that 9L, ,(x) = O((x)~?1). Thus, if |3] > 1, 9P, = 0 and

if5=0, (0“%)i(x,9)=0(x)"1) and (0@ ) ui(x9) = O((x)"7()),
if |6 =1, (0“Pp)i =0 and (8 P.)ni(x,0) = O((x) 1),
Similar results hold for ¢, the only difference is that we just have to take L := (d@b:,/’:)x(ﬁ)
instead of L.
We have for any f € C®(T*M, €),
,lz/,b(f) = au(f 0 (ng,*)_l) o ng,* = au(f 0 ( z/ *) © w*) z,* .
Using again the Faa di Bruno formula in Theorem 5.2.11, we get
,lzlyb = Z (PI/,IJ/(w*) © ng,*) ,lz/’,,b’ = Z fu,l/’ a;//:b’
1< I<]v| 1< <]y

where P, ,/(1),) is a linear combination of terms of the form Hj?:l(a” V)¥  where 1 < s < |v],
the k7 and I/ are 2n-multi-indices with |k7| > 0, [I] > 0, > i1 K/ = v and > =1 K|V = .

Let us note I/ =: (1, 192), K/ =: (k7! k%2) where [, 172 k71 k72 are n-multi-indices. Thus,

@) = [T(@" 610"
i=1
and we get, for a given s, (I), (k7) such that (8ljw*)kj #0foralll <j<s,
if 12 =0, (87 ) = O((x) =P I=DIF=alk2] gy K21y

B =0and (9"9.)" = O((x) (VDI

Since k/ # 0 and (6”@[1*)]‘3] # 0, 2 always satisfies |[#?| < 1. By permutation on the j
indices, we can suppose that for 1 < j < j; — 1, we have 172 = 0, for j; < j < s, we have
2| =1, where 1 < j; < s+ 1. Thus,

S

[]@" ) = 0((x) -7 (PI= DIR 5L K921 9y 238 121y
Jj=1
Since, with v = (o, 8), V' = (/, ),

( (8lj w*)n-l—i)k‘z’z

J1—1 s s S
= I - S R = 15 - 3 W =15 18],
Jj=1 Jj=1 J=j1 J=n
(5.6) follows. If we set fy.0,0,0:=1 and fa0,00 := 0 if a # 0, then for any 2n-multi-index (a, 3),
a,B o\p
ai,b )= Z fagarp ‘9(/ Y :
0<|(e,8")|<| (e, 8)]
161>

and the estimate (5.6) holds for any f, g 5. In the case of Op-bounded geometry, the proof is
similar, and we obtain for ar,>1, szl(al’ V) = O((x)™ (9)F1-181) which gives the result.

(i) Replacing v, by @ZJZ LA = ng a2 © (ni’ MQ)_l in (7), we obtain the result by similar argu-

ments. O
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5.2.4 Basic function and distribution spaces

We suppose in this section that F is an hermitian vector bundle on the exponential manifold
(M, exp). Recall that if u € C°(M; E) (resp. C°(M; E)) the Fréchet space of smooth sections
(resp. the LF-space of compactly supported smooth sections) of E — M, we have for any z € M,
uw? =77 1u € C°(M, E,) (resp. C°(M, E,)). We define for any frame (z,b) on M,

T.o(u) :=u®o (n?)~".

Thus, T, sends sections of £ — M to functions from R"™ to E, and is in fact a topological
isomorphism from C*°(M; E) (resp. C2°(M; E)) onto C*°(R™, E,) (resp. C°(R™, E.,)).

In the following, a density (resp. a codensity) is a smooth section of the complex line bundle
over M defined by the disjoint union over x € M of the complex lines formed by the 1-twisted
forms on T, M (resp. T(M)). Recall that a 1-twisted form on a n-dimensional vector space V'
is a function on F' on A, V\{0} such that

F(ev) = |c|F(v) for all v € A,,V\{0} and c € R*.

For a given frame (z,b), let us note |dz*?| the density associated to the volume form on M:
dz®® .= dxb*P A - A dz™®® and |0. | the codensity defined as |01 .6 A -+ A Op 2 pl-

Any density (resp. codensity) is of the form c|dz*?| (resp. c|, p|) where ¢ is a smooth function
on M, and by definition is strictly positive if ¢(xz) > 0 for any € M. For a given strictly positive
density du, we also note by du its associated (positive, Borel-Radon, o-finite) measure on M.
This allows to define the following Banach spaces of (equivalence classes of) functions on M:
LP(M,du) (1 < p < 00). Actually, L*(M) := L*°(M,du) does not depend on the chosen dp,
since the null sets for du are exactly the null sets for any other strictly positive density du’ on
M.

For a given z € M, we denote LP(M, E,,du) (1 < p < oo) and L*°(M, E,) the Bochner
spaces on M with values in F,. E, is a hermitian complex vector space, so we can identify F,
with its antidual E.. There is a natural anti-isomorphism between E’ and the dual of E, but
there is in general no canonical way to identify E, with its dual with a linear isomorphism. Thus,
we shall use antiduals rather than duals in the following. However, E, is anti-isomorphic with
its dual by complex conjugaison on E’. We shall note T the image under this anti-isomorphism
of z € E, and E, the dual of E,.

We denote LP(M;E,du) = {1 section of E — M such that [¢|P € LY(M,du)}/ ~qe.
and L>®(M;E) := {4 section of E — M such that |¢p| € L*®(M)}/ ~ge where ~q the
standard “almost everywhere” equivalence relation. Since the 7., maps are isometries, for any
z € M, the map ¢ — 7, % defines linear isometries: LP(M; E,dy) ~ LP(M,E.,du), and
L*(M;E) ~ L*(M,E,). In particular, LP(M; E,du) and L>®(M;E) are Banach spaces and
L?(M; E,dp) a Hilbert space. Moreover, we can define for any ¢ € L'(M; E,dp) and z € M the
following Bochner integral [ 7. !¢ € E,. We can canonically identify L>°(M; E) as the antidual
of LY(M; E,du) and L?(M; E,dy) as its own antidual. The (strong) antiduals of C2°(M; E) and
C>°(M; E) are noted respectively D'(M; E) and &'(M; E).

We define G, (RP, €) (resp. S,(RP)), where o € [0, 1], as the space of smooth functions g from
RP into € (resp. R) such that for any p-multi-index v # 0 (resp. any p-multi-index v), there exists
C, > 0 such that [|0Vg(v)|| < C,(v)=W"I=D) (resp. |8V g(v)| < C,(v)~7) for any v € RP. We
note Oy (RP, &) the space of smooth E-valued functions with polynomially bounded derivatives.
We use the shorcuts G, (RP) := G,(RP,RP) and Op(RP) := Op(RP, R).
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We have the following lemma which will give an equivalent formulation of .S, or Op;-bounded
geometry.

Lemma 5.2.14. (i) Let f € G, (RP, €) (resp. Sy(RP)) and g € G,(R™,RP) such that, if o > 0,
there exists € > 0 such that (g(v)) > e(v) for anyv € R™. Then fog € G,(R"™, €) (resp. S;(R™)).
(ii) The set GX(RP) of diffeomorphisms g on RP such that g and g=1 are in G (RP) is a subgroup
of Diff(RP) and contains GL,(R) as a subgroup.

(11i) We have Op(RP, &) o Op (R, RP) C Op(R™, €). In particular, the space Opr(RP,RP) is
a monoid under the composition of functions. The set of inversible elements of the monoid
O (RP,RP), noted Oy, (RP,RP), is a subgroup of Diff (RP) and contains G5 (RP) as a subgroup.

(iv) (M,exp) has a S, (resp. Opr)-bounded geometry if and only if there exists a frame (zo, bo)
such that for any frame (z,b), P20 € GX(R™) (resp. O (R™,R™)).

(v) The set, noted SX(RP) (resp. O, (RP)), of smooth functions f : RP — R* such that f and
1/f are in So(RP) (resp. Op(RP)) is a commutative group under pointwise multiplication of
functions. Moreover, Sy (RP) < S (RP) < O (RP) if 1 >0 >0’ > 0.

(vi) If g € GZ(RP) (resp. Oy;(RP,RP)) then its Jacobian determinant J(g) is in Sy (RP) (resp.
03 (R?)).

Proof. (i) The Faa di Bruno formula yields for any n-multi-index v # 0,

0"(fog)= Y, (9" f)og Pualg) (5.10)

IS ]

where P, ,(g) is a linear combination (with coeflicients independent on f and g) of functions
of the form szl(aljg)kj where s € {1,---,|v|}. The k% are p-multi-indices and the I/ are n-
multi-indices (for 1 < j < s) such that [E/| > 0, [I7| > 0, Y271 k7 = Aand Y 5_; [K|l/ = v. As
a consequence, since g € G,(R",RP), for each v, A with 1 < |A| < |v| there exists C,, y > 0 such
that for any v € R™,

1Poa(9) (V)] < Cyp(v)=ovI=IAD (5.11)

Moreover, if f € G5(RP,€) (resp. S,(RP)), there is C} > 0 such that for any v € R",
(0 f) o g(v)|| < C4 (v)~o=D (resp. |(0Mf) 0 g(v)| < C4(v)=?). The result now follows
from (5.10) and (5.11).

(ii) Let f and g in GZ(RP). We have ;97! = O(1) for any i € {1,---,p}. Taylor-Lagrange
inequality of order 1 entails that (g1 (v)) = O((v)) and thus there is ¢ > 0 such that {(g(v)) > &(v)
for any v € R™. With (i), we get f o g € G,(RP). The same argument shows that g~ o f~! ¢
G, (RP).

(#i7) Direct consequence of Theorem 5.2.11.

(iv) The only if part is obvious. Suppose then that for any frame (z,b), ¥2°7 € GX(R") (resp.
O (R™, R™). Let (z,b), (2/,b) be two frames. We have T L % So, by (i) (resp.

z,z! 20,2" "
(1it)), w::g e GX(R™) (resp. O;;(R™,R™)), which yields the result.
(v) By Leibniz rule, the spaces S, (RP) and Oj/(RP) are R-algebras under the pointwise product
of functions. The result follows.
(vi) Consequence of (i), (iii), 1/J(g) = J(g~1) o g and the fact that S,(RP) (resp. Ops(RP)) is
stable under the pointwise product of functions. O
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Remark that for any g € G2 (RP), we have g =< Idge. The multiplication by a function
in O3, (R") is a topological isomorphism from the Fréchet space of rapidly decaying E.-valued
functions S(R", E) onto itself. If we denote J. ::Zb,, the Jacobian of 1/}25,/ , then 1/ J:’Zh,, = J:,:’Zbow:::,/
and J:”:// on%(z) = dz®°/da® Y (z) = det MZE’QE(]\IBI’I)_1 = det(M:,/’x)_lMZb’m. We deduce from
Lemma 5.2.14 (vi) that if (M,exp) has a S, (resp. Ops) bounded geometry then J;’:,/ is in
Sy (R™) (resp. O3 (R™)).

Definition 5.2.15. Any smooth function f is in S, (resp. Oyy) if for any frame (z, b), fo(n%)~! €
Sy (R™) (resp. Op(R™)). Similarly, any smooth function f is in S5 (resp. Oy;) if for any frame
(2,0), fo(nd)~" € S (R™) (resp. OF;(R")).

Lemma 5.2.16. If (M, exp) has a S,-bounded geometry then a smooth function f on M is in S,
(resp. SX ) if there exists a frame (z,b) such that fo(n2)~! € Sy(R™) (resp. SX(R™)). Similarly,
If (M, exp) has a Opr-bounded geometry then f is in Opr (resp. Of;) if there exists a frame (z, b)
such that fo (n2)™1 € Op(R™) (resp. OF(R")).

Proof. Let (2,b') be a frame such that fo (n%)~! € S,(R"), and let (2, b) be another frame. By
Lemma 5.2.10 (i4), if (M, exp) has a Sy-bounded geometry then for any n-multi-index o,

P(fomD ™= 3 fawo®@) O fo i) oyl st
0<|e/[<]e|

where (fa,qar © (n®)H(x) = O((X}‘U(‘O‘l_mll)). As a consequence 0%(f o (n?)~1)(x) = O((x)~7lel)

z z
and the result follows. The case of Op; bounded geometry is similar. O

Definition 5.2.17. A smooth strictly positive density du is a S -density (resp. O;;-density) if
for any frame (2, b), the unique smooth strictly positive function f, p such that du = f, p|dz*°| is
in SX (resp. Oy;). In this case, we shall note j, p the smooth stricly positive function in S (R™)
(resp. O3, (R")) such that du = (u,p o n?) |dz™").

We shall say that (M, exp,du) has a S, (resp. Opr) bounded geometry if (M, exp) has a S,
(resp. Opr) bounded geometry and dy is a S (resp. Oj) density.

Lemma 5.2.18. If (M,exp) has a S, (resp. Opr) bounded geometry then any density of the
form won®|dx*®| where u is a smooth strictly positive function in S} (R™) (resp. Opr(R™)) and
(2,b), (¢/,b") are frames, is a S -density (resp. OF,-density).

Proof. Let (2", ") be an arbitrary frame. Noting du := uon¥|dz*®|, we get du = (uonsj)]J:’:,l,,]o
ni’x|d;172//’b“|. We already saw that the function szf,l,/ is in S} (R™) (resp. Oy (R™)). By Lemma
5.2.16, (uo ngj)(|J:’:,,//! on%) is in S (resp. OF;). O

Remark 5.2.19. By taking u := x — 1 in the previous lemma, we see that for any exponential
manifold (M, exp) with Sy (resp. Opr) bounded geometry, we can define a canonical family of
Sy -densities (resp. Of;-densities) on M: D := (|dz*°|)(, per where I is the set of frames on M.
If the map exp s the exponential map associated to a pseudo-Riemannian metric g on M, we
can also define a canonical subfamily of D by Dy := (|dz?|).enr where |dz?| := |dz*°| with b any
orthonormal basis (in the sense g,(b;,b;) = 1n;0;; where n; =1 for 1 < i <m and n; = —1 for
i > m, where g has signature (m,n —m)) of To(M) (|dz?| is then independent of b). A priori,
the Riemannian density does not belong to the canonical M-indexed family Dy .
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We shall need integrations over tangent and cotangent fibers and manifolds. We thus define

dp* = (,u;%, 9)10..6| the codensity associated to du, where 1. b %b and (z,b) is a frame.

Note that since |0, p|/|0.p| = |dz"Y|/|dz*®| = (2 0 n)/(par,i 0 n%), dp* is independent of

(2,b). For a given x € M, the density on T, (M) associated to du is dpy = (p1,5 0 n5(2)) |da®
and the associated density on T (M) is du} = (,uz b 0n5(x))|0.p,|. For a function f defined on
Tp(M) or T(M), we have formally:

| H© ) = pewontia) [ oL dc
(M)
L 100 = onte) [ fo (k) 0)av,
(M)
and it is straightforward to check that these integrals are independent of the chosen frame (z, b).

5.2.5 Schwartz spaces and operators

Assumption 5.2.20. We suppose in this section and in section 5.2.6 that (M, exp, E, du), where
E is an hermitian vector bundle on M, has a Opr-bounded geometry.

The main consequence of the exponential structure is the possibility to define Schwartz func-
tions on M.

Definition 5.2.21. A section u € C°°(M, E) is rapidly decaying at infinity if for any (z, b), any
n-multi-index o and p € N, there exists K, ; > 0 such that the following estimate

Hagjhuz < Ka7p<z>;’; (5.12)

2)|.
holds uniformly in = € M. We note S(M, E) the space of such sections.

With the hypothesis of Oj;-bounded geometry, we see that the requirement “any (z,b)” can
be reduced to a simple existence:

Lemma 5.2.22. A section u € C*°(M, E) is in S(M, E) if and only if there exists a frame (z,b)
such that (5.12) is valid.

Proof. Suppose that (5.12) is valid for (2/,b’) and let (z, b) be another frame. Thus, with Lemma
5.2.10 (i7) and Leibniz rule,

8?,huz($) = Z Z faa ! [,/ (T sz) azﬁ,’b/uz’(l,)‘ (5.13)

0<]o’|<|a| f<a’
Moreover |fq.o ( )80‘, E/ﬁ(T 7)) < Cofz)is for a Cp > 0 and a go > 1. Now (5.12) and
(5.4) entail that for any p € N, there is K > 0 such that ’ 97 pu( H < K(x > . The result
follows. O

Remark 5.2.23. Let v € C®(M,FE) and (z,b) a frame. Then u € S(M E) if and only if
(77 'u) o (n8)~! € S(R™, E,). In other words, if v € S(R", E,) then 1,(von?) € S(M,E).

The following lemma shows that we can define canonical Fréchet topologies on S(M, E).
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Lemma 5.2.24. Let (z,b) a frame. Then
(i) The following set of semi-norms:

Gap(u) == sup ()% |02 yu* ()| -
xeM ?

defines a locally convex metrizable topology T on S(M, E).
(it) The application T,y is a topological isomorphism from the space S(M, E) onto S(R", E.).
(i1i) The topology T is Fréchet and independent of the chosen frame (z,b).

Proof. (i) and (i) are obvious.

(73i) Since T, j is a topological isomorphism, 7 is complete. Following the arguments of the proof
of Lemma 5.2.22, we see that there is r € N* such that for any n-multi-index « and p € N, there
exist Cyp > 0, 7o, € N*, such for any u € S(M, E),

P 20
Q&,bb) (U) < Ca,p qéﬂ“a,;? (’LL) .
1B|<|al
The independence on (z, b) follows. O

Remark 5.2.25. If (M,exp, E,du) has a Sp-bounded geometry, then it is possible to define
the Fréchet space of smooth sections with bounded derivatives B(M,E) by following the same
procedure of S(M, E), with Lemma 5.2.10.

Classical results of distribution theory [139] and the previous topological isomorphisms 77, p
entail the following diagrams of continuous linear injections ((M; E) ommitted and 1 < p < oo):

CPX—=8——= (> /B L
&' >SS ——1 S Lp(d,u) Rl U

The injections S — B — L°° are valid in the case where M has a Sp-bounded geometry. In the
case of a general Ops-bounded geometry, only the injection & — L holds a priori. The injection
from functions into distribution spaces is given here by u +— (u,-) where (u,v) := [(ulv)dp.
Note that the following continuous injections S — &’ and § — LP(du) — §’, (1 < p < o0) have
a dense image.

Using the same principles of the definition of S together with the Op;-bounded geometry
hypothesis and Lemma 5.2.13 (i7), we define the Fréchet space S(M x M, L(E)) such that for any
(z,b) the applications T, p 2 := K +— K% o (ng MQ)*l are topological isomorphisms from S(M x
M, L(E)) onto S(R?*", L(E,)). Noting j,s2 the continous dense injection from S(M x M, L(E))
into its antidual S'(M x M, L(E)) defined as (jpr2(K), K') = [, 0y To(K (2, y)(K'(z,9))*) dp®
du(z,y), we have the following commutative diagram, where j is the classical continuous dense
inclusion from S(R*", L(E,)) into its antidual, and Mg, is the multiplication operator from
S(R*™, L(E.)) onto itself by the O}, (R*") function i, ® i, p:

j]\,{2

S(M x M,L(E)) S'(M x M,L(E))

.
Tz,b,]\/l2l Tz,b,]\/sz

S(R*", L(E.)) S(R*", L(E.)) —> S'(R*", L(E)) .

Muou
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Since S is nuclear, L(S,S") ~ &' (M x M,L(E)) and S(M x M,L(E)) ~ S ® S where S :=
S(M,E). Thus, S'(M x M,L(E)) ~ S'® S', where S’ is the dual of S which is also the antidual
of S. Note that the isomorphism L(S,8’) ~ S8'(M x M, L(E)) is given by

(Ag(v),u) = K(u®7)

where A is operator associated to the kernel K, u,v € S, and 9(y) := v(y). Formally,

(Axe(v),u) = /Mme(x,y)v(ynu(m))dM@W,y), (Ag)( / K (0, 5)0(y)dpu(y).

Thus any continuous linear operator A : § — &’ is uniquely determined by its kernel K4 €
S'(M x M,L(E)). The transfert of A into the frame (z, b) is the operator A, p from S(R™, E,)
into S’'(R", E,) such that

(Az0(0), 0) = (AT, (v)), T, 5 (w).

Thus, if K4 is the kernel of A, we have Ka_, := :yuMz (K4) as the kernel of A, p, where

TZ p,ar2 here is the inverse of the adjoint of T, y ps2. Tz,b, M2 1s a topological isomorphism from

S'(M x M, L(E)) onto S'(R?", L(E.)).

Definition 5.2.26. An operator A € L(S,S’) is regular if A and its adjoint AT send continously
S into itself. An isotropic smoothing operator is an operator with kernel in S(M x M, L(E)). The
space regular operators and the space of isotropic smoothing operators are respectively noted

R(S) and U,

Note that this definition of isotropic smoothing operators differs from the standard smoothing
operators one where only local effects are taken into account, since in this case, a smoothing
operator is just an operator with smooth kernel. Clearly, A is regular if and only if for any frame
(z,b), A,p is regular as an operator from S(R", E.) into S'(R", E.). Remark that the space
of regular operators forms a *-algebra under composition and the space of isotropic smoothing
operators W~ is a x-ideal of this algebra.

Let us record the following important fact:

Proposition 5.2.27. Any isotropic smoothing operator extends (uniquely) as a Hilbert—Schmidt
operator on L*(du).

Proof. An isotropic smoothing operator A (with kernel K') extends as a continous linear operator
from & to S, and thus it also extends as a bounded operator on L?(du). Let (2, b) be a frame. If
U is the unitary associated to the isomorphism L?(du) onto M, p := L*(R", E,, 1, p dx) we have
A =U"A, U where A, is a bounded operator on H,p given by the kernel K# o o (nb,nd)~L
Since this kernel is in H, @ H, p = L*(R*", E,® E, (Mz,b dz)®?), it follows that A, p is Hilbert—
Schmidt on H, , which gives the result. O

5.2.6 Fourier transform

Fourier transform is the fundamental element that will allow the passage from operators to
their symbols. In our setting, it is natural to extend the classical Fourier transform on R™ to
Schwartz spaces of rapidly decreasing sections on the tangent and cotangent bundles of M, and
use the fibers T, (M), T (M) as support of integration.
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Definition 5.2.28. A smooth section a € C*°(T*M, L(FE)) is in S(T*M, L(E)) if for any (z, b),
any 2n-multi-index v and any p € N, there exists K, > 0 such that

H@Z’haz(x,Q)HL(Ez) = Kp7y<x,9>;€ (5.14)

uniformly in (x,0) € T"M. A similar definition is set for S(T'M, L(E)).

Following the same technique as for the space S(M, E), using the coordinate invariance given
by Lemma 5.2.13 we obtain the

Proposition 5.2.29. (i) A section u € C®°(T*M,L(E)) is in S(T*M, L(E)) if and only if there
exists a frame (z,b) such that (5.14) is valid. A similar property holds for S(TM, L(E)).
(ii) There is a Fréchet topology on S(T*M,L(E)) such that each

Topeiars a¥o (nh,)")
is a topological isomorphism from S(T*M,L(E)) onto S(R*, L(E.)). A similar property holds
for S(TM,L(E)) and the applications T, p 1 = a — a* o (ni”T)_l.

Proof. (i,ii) Suppose that (5.14) is valid for (2/,b’) and a € C°(T*M,L(F)) and let (z,b)
another frame. With Lemma 5.2.13 and Leibniz rule, noting v = (a, 3), v/ = (¢/, '), A = (A1, \?)
and p = (p', p?), we get

AL —1 Lo "N gAl—pt 1
P = S S foCun, 0% () 00 0 00 5 (7 ) (5.15)
o<V |<|v| pSAZY!
18>8

where Cyrx, = 05 3205 2 (l;\/) (;‘) Using now the fact that for any x,9 € R?, (x)/2(9)1/2 <
((x,7)) < (x)(09), and (5.4), (5.5), we see that for any 2n-multi-index v, and p € N, there is
ry,p € N* and C,;, > 0 such that q,(,,zl’ob)(a) < Cup 1< qgrfp) (a), where

(2,b) - D v oz
Qp (@) : (zﬁs)lelg)“*M<x’ 0) 6 ”32,!# (x’G)HL(Ez) ’
The results follow, as in the case of S(M, F), by taking the topology given by the seminorms
g5 for an arbitrary frame (z, b). O

Remark 5.2.30. If (M,exp, E) has a Sy-bounded geometry, we saw in Remark 5.2.25 that a
coordinate free (independent of the frame (z,b)) definition of a space of smooth E-sections on
M with bounded derivatives is possible. However, a similar definition cannot be given in the
same manner for L(E)-sections on TM or T*M with bounded derivatives, due to the fact that
the change of coordinates of Lemma 5.2.13 impose an increasing power of (0) (when || > |05]).
Howewver, the independence over (z,b) would still hold for the space of smooth sections of L(E) —
T*M (resp. TM ) with polynomially bounded derivatives.

We note S'(T*M,L(F)) and S'(T'M,L(E)) the strong antiduals of S(T*M,L(E)) and
S(TM,L(E)), respectively. We have the following continuous inclusion with dense image

jrem : S(T*M, L(E)) — S'(T*M, L(E)) (resp. jram : S(TM,L(E)) — 8'(TM, L(E)))
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defined by

Graa)byi= [ @)t (resp. Grw(a),) = [ To(ab)auT)
TM* ™

where dy* is the measure on T*M given by du*(z,0) := du’(0)du(z) and du” is the measure on

TM given by du” (z,€) := dpy(£)du(x). Note that for any (2,b), du*(z,0) = |0.,|(0)|dz*°|(z)

(this is the Liouville measure on T*M) and du” (z,0) = uib o ng(:v)|d$§’b (€)|dx*®|(x). We have

the following commutative diagram, where M2 is the multiplication operator by the (’)]T/[(RQ")

function (x,() — ,ug’b(x),

S(TM, L(E)) T S'(TM, L(E))

Tz,b,Tl TT;,h,T

SR>, L(E)) > S(R™", L(Ez)) —— S'(R*", L(E.))

s
and, in the case of S(T*M, L(F)) a similar diagram is valid if M,,» is replaced by the identity.
Definition 5.2.31. The Fourier transform of a € S(T'M, L(E)) is

F(a): (,0) — o e 208 (2, €) dpa (€) .

Proposition 5.2.32. F is a topological isomorphism from S(T'M,L(E)) onto S(T*M, L(E))
with inverse

Fla) = (2,) — ™08 a(a, 0) dps(6)
Ty (M)

The adjoint F' of F coincides with F on S(TM, L(E)), so we still note F~ by F and F* by F.

Proof. Let (z,b) be a frame. It is straightforward to check that the following diagram commutes

S(TM, L(E)) —Z> S(T*M, L(E))

Tz,h,Tl TTz,bl,*

S(R2n7 L<Ez)) fb) S(R2n7 L(EZ))

where F,p = Fpo M, = M, o Fp, with M, the multiplication operator on S(R*", L(E.,))
defined by M, (a) := (x,() — p2p(x) a(x,() and Fp the partial Fourier transform on the space
S(R?*" L(E,)) (only the variables in the second copy of R” in R?" being Fourier transformed).
It is clear that F,p is a topological isomorphism from S(R?", L(E,)) onto itself with inverse
.7:;; =M, 0 Fp. The fact that F coincides with F on S(T'M, L(E)) is a consequence of the
following equality

/ Tr(a(F(b)*) du’ = / Tr(F(a)b*) du*
TM *M

for any a € S(TM,L(E)) and b € S(T*M, L(E)), that is a direct consequence of the Parseval
formula for Fp. O
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5.3 Linearization and symbol maps

5.3.1 Linearization and the ®,, T; diffeomorphisms

Recall that a linearization (Bokobza-Haggiag [9]) on a smooth manifold M is defined as a
smooth map v from M x M into TM such that 7 ov = m, v(z,2) = 0 for any x € M and
(dyv)y=z = Id7, pr. Using this map, it is then possible by restricting v on a small neighborhood of
the diagonal of M x M, to obtain a diffeomorphism onto a neighborhood of the zero section of T'M
and obtain an isomorphism between symbols (with a local control of the x variables on compact)
and pseudodifferential operators modulo smoothing ideals. These isomorphisms depend on the
linearization, as shown in [9, Proposition V.3]. We follow here the same idea, with a global point
of view, since we are interested in the behavior at infinity. We thus consider, on the exponential
manifold (M, exp, E, du) a fixed linearization 1 that comes from an (abstract) exponential map
Y on M (also called linearization map in the following), so that ¥(x,y) = ¢y, and 1, is a
diffeomorphism from T, M onto M, with ¢,(0) = =z, (dipy)o = Idr,ar. For example, 1) may be
the exponential map exp.

Let A € [0,1] and @) be the smooth map from T'M onto M x M defined by

(I))\ : (xag) = (wm()‘g)vwz(_(l - )‘)5)) :

Assumption 5.3.1. We suppose from now on that whenever the parameters \, X', are in ]0,1],
it is implied that the linearization map 1 satisfies for any x,y € M and t € R, ¥, (tv; (y)) =
Wy ((1 — t)wzjl(:n)). This hypothesis, called (Hy) in the following, is automatically satisfied if the
linearization is derived from a exponential map of a connection on the manifold.

A computation shows that @, is a diffeomorphism with the following inverse <I>;1 Cxyy) —
(1 — A) for A # 0 and oy (z,y) —al,,(0), where agy(t) := ¥.(ty;'(y)). Noting
®3(z,y) =t (malz,y),6(2,y)), we see that ma(z,y) = amy(N) and, if A # 0, &\(z,y) =
%w;zi(:v ) (z), while &(z,y) = —¢;(y). In all the following, we shall use the symbol W (for

Weyl) for the value A = %, so that my = mi, ®y := ®1, and similar conventions for the
other mathematical symbols containing A. Note that m,) is a smooth function from M x M onto
M, with my(z,x) = x for any € M. Moreover, for any z,y € M, my(z,y) = mi_x(y,x),
mw(xz,y) = mw(y,z) (the “middle point” of = and y), &x(z,y) = —&-a(y,2), Ew(z,y) =
—&w(y,x) and = +— @;l(sv,x) is the zero section of TM — M. Noting j the involution on
M x M : (z,y) — (y,x), we have ®) = j o &1_» o — Idzyy.

For any ¢ € [—1,1] (with the convention that if (Hy) is not satisfied, we are restricted to
te{—-1,0,1}), we define,

To: (2,6) = (La(t), Ty e (@)

with the convention 7711/)1;}(@ (z) :=¢ if t =0, so that Yo = Idpps. A computation shows that

T, L' — v, The ®, and Y, diffeomorphisms are related by the following property: for any
AN € 0,1], @;\1 o®y = Ty_). We will use the shorthand Y r(x,§) := %w&;(ta(m), so that

T, = (Q)Z) o tIdTM,Tt,T).

Remark 5.3.2. Note that (Hy) entails that (¢)icr is a one parameter subgroup of Diff (T M).
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Remark 5.3.3. Suppose that i is the e:zponential map associated to a connection V on T M, and
¢ the unique mazimal geodesic such that o, (0) = (z,€). It is a standard result of differential
geometry (see for instance [97, Theorem 3.3, p.206]) that for any v := (z,n) € TM, and £ €
T, (M), there exists an unique curve BU : R — TM such that V ﬁv =0,7o 55 = ay (in other
words, ﬁS is cu-parallel lift of a,) and BS(O) = (z,€). By definition of geodesics, B, = -
Moreover, ﬂgm(l) € Tyn (M), so we can define the following linear isomorphism of tangent fibers:
Poy © To(M) — Tyn(M), &+ B55(1). Note that P;} —wa 1) = =P (em) = Pr_1(a—n)-
The P, ¢ are the parallel transport maps along geodesics on the tangent bundle. These maps are

related to the Yy diffeomorphisms, since a computation shows that for any (x,n) € TM and
teR, Ppn(n) =Ter(z,mn).

If (z,b) is a frame, we define @ . p := ni’ w20 ®ao (nE?T)_1 and we denote J) , p its Jacobian.

We also define Ty, p = ng roTYio (ng +)~ ! and the smooth maps from R?*" to R™:

¢2 : (X’ <) = ng o '(/] © (nE,T)_l(Xa C) )
P2 (%) = MY o)1 © Vi) -1 () © (n2)~'(y)-

I
&
—~~
Re
<
~
£
@
3
<
@
—~
<
N
"
~

Noting 92, (¢) = 42 (X ¢) and $2 (y
shows that for any (x,(,y) € R3",

= ¢? . A computation

q)A,z,b(Xa C) = W?(X’ )‘C)v wf(x, _(1 - )‘)C)) s (I))\i b( 7Y) = (m)\,z,b(x7 Y)7§)\7z,b(xa Y)) (5'16)

where we defined the following functions: m, . p(x,y) := ¥5(x, )ﬂ,[) (%,5))s €0,2,0 := —1/Jb and for
A#0, & zp(x,y) = %wg(mA,z7b(x, y),x). We also obtain for t € [-1,1], (x,¢) € R?",
_ b —1,/6(,/,0 _. b z,b
Tt,z,b(xv C) - (sz (X7 tg)? Td]z (1/),2 (X’ tC)? X)) — (wz (X7 tC)’ Tt,T(Xv C)) ) (517)

and Yo . p = Idg2a. Note that Ty . p(x,0) = (x,0) for any x € R” and Tf’; = %T”{; o I+ where
I, is the diagonal matrix with coefficients I; = r for ¢ < n for 1 < ¢ < n and I;; = r’ for
n+1<73<2n.

5.3.2 (Ojs-linearizations

We intent to use the linearization to define topological isomorphisms between rapidly decaying
section on T'M and M x M. We thus need a control at infinity over the derivatives of the

linearization .

z,b b

We note 7% = 770 (n? , »)~! € C*°(R?", L(E.)). Remark that for any (x,y) € R?", 72°(x,y)
is an unitary operator on F,. We will also need the following functions parametrized by t € R:
Tt(x,n) = 72 (VYz(tn)) for any (x,n) € TM and th’b(x, €)== 728(x, 0 (x, ().

Definition 5.3.4. A linearization ¢ on the exponential manifold (M, exp, F,du) is said to be
a OM-linearization if for any frame (z,b) the functions ¥? and ¢ are in Op;(R?*,R") and the
functions 77 ® and () ©=1 are in Oy (R, L(E.)). We will say that (M,exp, E,du,) has a
Op-bounded geometry, if it the case of (M, exp, E,du) and 1 is a Oyy-linearization.
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Lemma 5.3.5. Suppose that ¢ is a Opr-linearization. Then for any frame (z,b), A € [0,1] and
te[-1,1],

(i) (I))\,z,b S O]T/[(RQn,Rzn) and JA,z,b S O;\}(Rgn),

(i) Yo zp € O (R R?") and J(Yy ) € O (R?™),

(iii) 7% and (77°°)"! are in Oy (R?", L(E,)).

Proof. (i) By (5.16), we have ®y ,p = (¥?o IL/\,wg oIy x—1) and (I);;,b = (M z6,&0,2,0) Where
My sp = P oIy y o (mr,98) and if X\ # 0, & = L¢80 (my .6, 1), while & . p = 8. Thus, the
result is a consequence Lemma 5.2.14 (i4i) and (vi).

(i) By (5.17), we have for t # 0, Ty, p = (Y0 L14, *qu/:bo (¢2 o I1 4,7m1)). The result follows
again from Lemma 5.2.14 (i4i) and (vi).

(7i7) We have th’b = le’b oI and (Tf’b)_1 = (7'f’b)_1 o I1 4 so the result follows from Lemma
5.2.14 (iii). 0

The following lemma shows that we can obtain topological isomorphisms on spaces of rapidly
decaying functions from the functions 74 and ®,.

Lemma 5.3.6. Let p € N*, 7 € O}, (RP,GL(E.)) and ® € O,;(RP,RP). Then the maps L, :=
ur— Tu, R :=uw— ur and Cp := u+— uo ® are topological isomorphisms of S(RP, L(E,)).

Proof. Since L7! = L1, R;! = R.—1 and Cq:l = Cg-1, we only need to check the continuity
of L;, R; and Cg. The continuity of L, and R, is a direct application of Leibniz formula. Let v
be a p-multi-index and r € N. Theorem 5.2.11 implies that for any u € S(RP, L(E,)),

an(wo®) < > sup ()NPA@))][(0u) 0 (x|

L(E
<l <R .

where the functions P, y(®) are such that |P, (®)(x)| < Cy(x)% for a ¢, € N* and a C, > 0.
Since (®71(x)) < C(x)" for a r € N* and a C > 0, we see that there is €/, > 0 such that
qwN(uo®) <Cl 2o A< v 97 (go+N)r (), which gives the result. O

Lemma 5.3.7. If (M, exp, E,du) has a Opr-bounded geometry and v is a linearization such that

there exists (z0,b0) such that the functions ¥, @Eg are in Opr(R¥",R"™) and 77%, (770%)~1

are in Oy (R?™ L(E,,)), then v is a Oys-linearization.

. . —b
Proof. The result is a direct consequence of the formulas ° = E;Eg o wgg o ¢£§’§’T, V. x(y) =
bo,by —1 b0 bo,b _ _ bo,b _
(d¢zg7z )X ! wzo © wZ(?,z,M? (Xv Y) and 720 = (Tz 17_20) 020 (n:M2) ! 72000 o ¢z§7z7M2 (TZOITZ) oMo
(ni”Mg)*l. ]

5.3.3 Symbol maps and A\-quantization

Assumption 5.3.8. We suppose in this section and in section 5.5.4 that (M, exp, E,du, ) has
a Ops-bounded geometry.

The operator F is a topological isomorphism from S'(T'M, L(E)) onto S'(T*M, L(E)). We
shall now introduce a topological isomorphism between S'(M x M, L(E)) and S'(T'M, L(E)).
We define the linear application I'y from C*°(M x M, L(E)) into C*(TM,L(E))):

TA(K):v— K™ o ®,(v).
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As a consequence, I'\(K) = 7')\_1 (Ko <I>,\) Tr—1 and F;l(a) = (7 aT)\:ll) o @;1. For a given frame
(2,b), we denote I'y , p :=T. Tof‘)\oT o2 A computation shows that for any smooth function
u€ O%(R™, L(E.)), Tazp(u) = (13°) " (wo a2 0)T3)

Let us define the smooth strictly positive functions on R?" and M x M respectively:

/‘L)\,z,b(xa Y) = % |<])\ z b| © (I))\z h(X Y) M = KXz O (ngvng) (518)

It is straithtforward to check that py is indeed independent of (z,b). Note that ui_y(z,y) =
p(y, ). Since py . p € O (R?*™), the operator of multiplication M, is a topological isomorphism
on S(M x M, L(E)). Note also that I'y o M, = M, .5, o 's.

Proposition 5.3.9. I'y is a topological isomorphism from S(M x M, L(E)) onto S(TM, L(E)).
Moreover, I'y o jy2 = jrm o'y o My, , where I'y := F_l*

Proof. Let (z,b) be a frame. It suffices to prove that I'y . p is a topological isomorphism from
S(R?*", L(E.,)) onto itself. Since Cyzp= L(Tz,b)_l oR _-» 0Cg, _,, the result follows from Lemma
A A—1 e

5.3.6 and Lemma 5.3.5 (i) and (iii). Let u,v € S(R?", L(E.)). We have (with j the canonical
inclusion from S(R?", L(E,)) into &' (R?", L(E,)):

(Fres 0 4(u))(v) = /R T (uf )T (0)05, 1)) ddy

_ b B
— /]R2n Tr (( )\ ) 1 e} ¢A7]é7b(xay) /LL()(7 y) 'T)Z\_l O @Aé7b(x’y)

vt o q);,lz,b()S Y)) dx dy
— /R% Tr(Tx .. 6(w) (m, Ov*(m, €))| a2 (m, ¢) dm dC

= (oM, . °Txz6(u)(v)

where we used the following change of variables (m, () := q);i p(x,y). Thus, we have f)\,z,b 0j =
jo M‘JM’H oI’y . p- The relation fA o jap2 = jrm o'y o My, now follows since M|JA ol OFA,z,b =
TazooMyy, oot s ThoroioMe = jrmeT or and T2y ypojoMy. ey = jazoTlg e O

As a consequence, r » is a topological isomorphism from the space of tempered distributional
L(E)-sections on M x M, §'(M x M,L(E)) onto S'(TM,L(FE)) and when restricted (in the
sense of the previous continous inclusions) to S(M x M, L(FE)), is equal to I'yo M l;>\1’ so provides
a topological isomorphism from S(M x M, L(E)) onto S(T'M, L(E)). Fourier transform coupled
with 'y lead us to the following natural isomorphism from §'(M x M, L(E)) onto S8'(T*M, L(E)).

Definition 5.3.10. Let A € [0,1]. The A-symbol map is the topological isomorphism from
S'(M x M,L(E)) onto §'(T*M, L(E)): o) := F oT'y. The A\-quantization map is the inverse of
o, noted Op,.

Thus, the data of a tempered distributional section on the cotangent bundle (i.e. an element
of S(T*M,L(FE))) determines in an unique way (for a given \), an operator continuous from
S to &, and vice versa. Remark that oy o jy2 = jrepr 0 F o'y 0o My, and Opy ojr«py =
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Jaz o My, o F;l o F.If (z,b) is a frame then, noting Op, , , := T;[,,Mz oOp, ofz_bl*, we obtain
Opy 0 =13, 60 M, ©Fp so that for any u € S(R*" L(E,)) and b € Oy (R?*™, L(E,)),

(O z,6(0),u) = /R eI T (b, 9) (D (1)) (%, €)) dC d) . (5.19)
where pb : (x,9) — i p(x) b(x, 0).

5.3.4 Moyal product

The applications Opy, Op,, Opyy := Op1 are respectively the normal, antinormal and Weyl
2

quantization maps. Remark that for any T € S'(T*M, L(E)), Op,(T*) = (Op,_,(T)!. In
particular

Opo(T*) = (Opy(T))T, Opw (1) = (Opw (7))

where 1 is the topological isomorphism of (M x M, L(E)) defined as (KT,u) := (K, u* o j)
with j the diffeomorphism on M x M : (z,y) — (y,x) and u € S(M x M, L(FE)). The kernel
of the adjoint A of any operator A € L(S,S’) is (K4)!. As a consequence, oy is a linear
topological isomorphism (and a *-isomorphism in the case of the Weyl quantization) from the
algebra R(S) = L(S,S) N L(S’,S") of regular operators onto its image M), := o) (N(S)). We can
transport the operator composition in the world of functions, by defining the A-product on 91,
as
T o) T = ox(Opx(T) OpA(T"))

so that M forms an algebra, and M} = M;_). In the case of A = %, we recover the Moyal

x-algebra My and the Moyal product oyy. The space W™°(M) ~ S(M x M, L(E)) of isotropic
smoothing operators being an *-ideal of R(S), the space S(T*M, L(E)) = ox(¥~>°(M)) forms
an ideal of M. Since we will focus on the pseudodifferential calculus over M, we shall not
investigate in this chapter the full analysis of the Moyal product over T#M. Note however the
following property on S(T*M) := S(T*M, L(M x C)) ~ S(T*M, C):

Proposition 5.3.11. (S(T*M), o)) is a (noncommutative, nonunital) Fréchet algebra. Moreover,

Tiw / _
aoyb(z,n) = / Ay (€)dp(y) / dit ¢ y(0.0') g2 ¢, 7 mes MO () 0) byl A, ')
Tp(M)x M VA

z,8,y
A — A
where y;\’g = m)\(lp$§7 Z): y;\’g = f)\(z/}.TEv Z) and

V:ég?y = TJ@ ) (M) x T;i—_xg (M), dﬂ;,g,y(ev 9/) = d/JZ;\ c (0) d”;i?g (9/) )
IR
@2y paly 0

w:i\,f,y(na 9’ 9/) = <9ay$,§> - <9/’y‘i7—7)\£> - <na§> :

A
Iagy *

Proof. The product a oy b on S(T*M) is obtained by computation of F oI'y o M, o ((]\/[;1 o

I ' o F(a)) oy (Mo I''o F(b))), where oy is the Volterra product of kernels. Since o is a
topological isomorphism between S(M?) and S(T*M), the continuity of the Moyal product is
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equivalent to the continuity of oy, which is equivalent to the continuity of the following product
on S(R?"):
K- K/(Xa Y) = K(Xat)K(tv}I)lu’z,b(t)dt
Rn

The continuity of this product is obtained by the following estimates

p.(0,8) (K - K') < C @op4),(0,0) K) tp0.0)(K),  gpu(K) :=( S)u% . ((x,7)P10" K (x,y)]
X,y)ER="

where |1, 5(t)] < C1(t)"™ ! and C := Oy [p. ()" + . O

Remark 5.3.12. (S(T*M), ow) is a *-algebra since (aow b)* = b*ow a* for any a,b € S(T*M).
We can also construct another x-algebra on S(T*M) with the product ab:= 1(aogb+ a oy b).
This proves that when (Hy) (see Assumption 5.8.1) is not satisfied (so that no middle point

exist in the classical world) we can still have a canonical star-product on S(T*M) which satisfies
(axb)* =b**a*.

5.4 Symbol calculus of pseudodifferential operators

5.4.1 Symbols

Assumption 5.4.1. Let o € [0, 1]. We suppose in this section that (M, exp, E) has a S,-bounded
geometry.

The algebra R(S) and ¥~ are respectively too big and too small to develop a satisfac-
tory pseudodifferential calculus that allows an efficient utilization of symbol maps. We shall in
this section define some spaces of symbols that will be used to define later special algebras of
pseudodifferential operators that lie between R(S) and ¥~°°.

Definition 5.4.2. A symbol of degree (I,m) € R? of type o, on M is a smooth section a €

C>®(T*M, L(E)) such that for any (z,b) and any n-multi-indices «, (3, there exists K > 0 such
that

is valid for all (z,0) € T*M. The space of symbols of degree (I, m) and type o is noted shm.

(@) 2 < k(o -lal gym=1g]
o a(az,@)HL(Ez)_K<x>Z7b o)) (5.20)

Remark that S(l)’m is independent of [, so we denote this space S}". We note S := ﬂlyme,’m
and in the case o > 0, we define S~ := S;>° = S(T*M, L(E)) (it is independent of o > 0). We
set S° 1= ULmS(l,’m. We define similarly S(l,’fg .= SY™(R2", L(E,)), without reference to a frame.

Since M has a S,-bounded geometry, we get the following coordinate independence of the
previous definition:

Proposition 5.4.3. Let a € C*°(T*M,L(FE)). Then a € SY™ if and only if there exists a frame
(z,0) such that a satisfies (5.20).
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Proof. Suppose that (5.20) is satisfied for (2’,b") and let (z, b) be another frame. For (z,6) € T*M
and a, # two n-multi-indices with v = (a, 3) # 0, we get from Equation (5.15) and Lemma 5.2.13,

vz (lo/|—|a " (A —la
192 pa* (2, 0|, ., <kY Y | | - D<6>fb‘,aclﬂ|<x>z’(,|b/| /)
o B p<A<Y
o(l— 1 m—|3' )\1
X<x>z'(,b/ lp |)<9>z’,b"§c|<x> /(|é)/ [—=I |)

Using (5.2), (5.3) and the fact that || > |p!], we get the result. O

Corollary 5.4.4. If a € C®(T*M,L(E)), then a € skm if and only if for any (z,0),
a? o (n?,)71 € SY™(R?, L(E.)), or equivalently, there exists (z,b) such that a* o (n2,)™! €

Z,% Z,%

Skm(R2 L(E.)).

We see that Sf;m . Sg o - Sf,+l/’m+m/ where - is the composition of sections induced by the
matrix product on the fibers of L(E). Moreover, S(l,’m - S(l,l’ml form < m’and [l <I'. Thus, S is
a x-algebra, which is bigraduated for o > 0 and graduated for o = 0. Remark also that S=>- S
and Sj"-S™°° are included in S™°°. Note that if f € SL™(T* M) (a symbol where M has its trivial

bundle M xC), then ay(x,0) := f(z,0)I1(g,) defines a symbol in SL™ Such symbols will be called
scalar symbols. Note also that if a € S5™, then 8(027’8)a = (Tzow)(a(a’ﬂ) (1, tom) € giledm=18l

If f € Sy(R") then (x,9) — f(x)Idyp) € S¢°(R",L(E.)). In particular (x,9) —
,uié(x) ldyg,) € SoY(R™, L(E.)) if du is a S*-density.

Remark 5.4.5. We note PS5™(R2" L(E.)) the subspace of Sy™(R2™ L(E.)) consisting of
functions of the form 3=, ;< (qim p.)2 Piei where (&) is a linear basis of L(E:) and P; are of
the form 34 cip(x)0° (finite sum over the n-multi-indices 3), where for any i, 3, 0%¢; g(x) =
O((x)7U=1eDY for any n-multi-indices o, and m = max; degy P;. We check that this definition is
independent of the chosen basis (e;).

We call polynomial symbol of order l,m and type o any section of the form (7, o w)(P o
n? (7 om) where P € PSY™R?", L(E.)) and (z,b) is a frame. This definition is independent
of (z,b). We note PSL™ the subspace of shm consisting of polynomial symbols of order I,m and
type 0. Remark that the section I : (z,0) — Ip(g,) is in PS?’O

We now topologize the symbol spaces:
Lemma 5.4.6. The following semi-norms on S(l,’m, for N € N,

o(|lal—1 —m
Gap(@) = sup ()70 o)
(x,0)eT*M

o\

zZ,

’;B)az(gj? 2 HL(EZ)

determine a Fréchet topology on Sf,’m, which is independent of (z,b). The applications T p . are
topological isomorphisms from S&™ onto Scl;m(RZ”, L(E.)). The following inclusions are continous
for these topologies: gkm. glm’ < gltlimtm , gkm ¢ glm (m <m' andl <1') and S;>° C ghm.

Moreover, the last inclusion is dense when Sf,’m has the topology of ng, form<m/ andl <.
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Proof. The independence of the topology for (z,b) follows from the easily checked estimate for
any (o, ), o
Ua@ <Kas 30 a5
0<(a,8)[< (e, 8)]
18’1218l y<o

where K, g > 0. By construction the applications 77, p . are clearly topological isomorphisms from
Sf;m onto Scl;m(RZ”, L(E.)). The continuity of Sf;m . Scl,/’m/ C Sffl/’erm/, S(l,’m C Sg’m/ (m <m’
and [ <1') and S;*° C SL™ are straightforward. Following [105], to prove the density result, we
shall prove the stronger property: for any a € Sf,’m(]R%, L(E,)) the sequence

ap(x,9) = (p(x/p))'~°7° p(9/p) alx, V)

converges to a for the topology of Sg’ml(RQ”,L(EZ)) where m’ > m and I’ > [. Here p €
C>*(R™,[0,1]) with p = 1 on B(0,1) and p = 0 on R™"\B(0,2). First, it is clear that a, €
S-°(R?", L(E,)). Noting Rp(x, ) := (x)eel=) (@Bl=m" |55 (¢ — a,)(x, ﬂ)HL(EZ) for a given
2n-multi-index v := (o, 3), we get with Leibniz rule, for a K > 0 (by convention v/ < v if and
only if v/ < v and v/ # v):

& Byl 9) < Ay, ) ()70 4 37 (077 A x, 0)] ()70 He 1D gymm 3111

v'<v
where A,(x,9) := 1 — (p(x/p))'~°70p(¥/p). Suppose that o = 0. In that case, |A,(x, )| <
Lp 4oo(¥) and if v/ < v,
07 D6, )] < B g p™ 1 1, 0 (9) (5:21)

where 1f, . is the characteristic function of the annulus A, := {9 € R" : r < ||J|| <7’} and

Kp :=supg g Haﬁ_ﬁ/pHoo' As a consequence, for K’ > 0,
& Rp(,0) < ()" 4+ K3 Y Saar Ly (9) p~ I gym=m HBIHFT < J? gy’
v <v

and the result follows. Suppose now o # 0. In that case |A,(x,7)| < 1g,(x,9) where F), :=
R?" — B(0,p)? and if v/ < v, for a constant K, > 0

07 A%, )] < Ko Lisgn(amaryp2p] (%) Lsan(a-gp2p) () 27 (5.22)
As a consequence, for K', K” > 0, and with r := max{m —m/,o(l — ')} <0,
7 Fp(5,0) < (0) + K" D Tsgn(a—ayp2n)(9) Lsgn(a—p2a)(9) ()70 @0)" " < K" (p)’
v'<v
and the result follows. O
Note that S™°° := M, 5,25 = S(T" M, L(E)) and the equality is also valid for the topologies.

The following lemma shows that the symbols of SL™ are tempered distributional sections on

T*M.
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Lemma 5.4.7. The application jp+p 1s injective and continuous from SL™ into S'(T*M,L(E)).

Proof. Since we have the following commutative diagram

s el S'(T*M, L(E))

Tz,b,*i TTZ*,E!,*

S5™(R2", L(E)) — = Our(R*", L(E.)) —— §'(R™", L(E))

where 77, is the adjoint of T, p, on S(T™M, L(E)) and Ou(R?" L(E,)) is the locally convex
complete Hausdorff space of L(E,)-valued functions on R?" with polynomially bounded deriva-
tives, it is sufficient to check that the natural injection i is continuous from S5 (R2", L(E.)) into
Ou(R?" L(E,)). This is obtained by the following estimate, for any ¢ € S(R*") and v = («, 3)
2n-multi-index,

sup |l 8”a(x,9)|| () < Ko av(a)
(x,9)€R2™

where Ky, 1= SUp(y gycren |gp(x7ﬂ)<x>0(l_|a‘)<ﬁ>m—|ﬁ‘|. O

Definition 5.4.8. Let (a;)jen+ be a sequence in S5 where (I;) and (m;) are real strictly
decreasing sequences such that lim; . l; = lim; .., m; = —oo. We say that a is an asymptotic
expansion of (a;);en+ and we denote

00
a ~ E CLj
j=1

ifa € C®°(T*M, L(E)) is such that a—Zf;ll a; € Sk for any k € N with k > 2. In particular,

we have @ € S24™1

We need asymptotic summation of symbols modulo S;*°. The following result of asymptotic
completeness is based on a classical method [127] of approximation of series by weightening
summands a;(x,#) with functions which “cut” a neighborhood of zero in the domain of = (if
o # 0) and 0. The idea is that the part we cut is bigger and bigger when j — oo so that
convergence occurs.

Lemma 5.4.9. Let (a;)jen+ be a sequence in S5 where (I;) and (mj) are real strictly decrea-
sing sequences such that lim; o l[; = lim; o m; = —o0o. Then

(i) There exists a € S such that a ~ > ay-

(i) If another o' satisfies a’ ~ 3772, aj, then a —a' € S7°°.

Proof. (ii) is obvious. Let us prove (i) for a sequence (a;);jen+ in S (R?", L(E.)) and with
an~ Y2 a; € Shomi(R2n LL(E,)). The result will then follows for a sequence (b)) in SL™ by
taking b := T, | (a) where a; := T} p . (b;). Define

z

al(x,9) = Ap, (x,9) a;(x, )
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where A, is defined in the proof of Lemma 5.4.6 and (p;) is a real sequence in [1, +-oo[. For any
jEN, d;—aj; € S-°°(R?", L(E,)). Thus, the result will follow if we prove that for a specified
sequence (p;) and for any N > 0, there exists ko(N) > 2 such that for any k& > ko(N),

> angm (@) < oo (5.23)

j=h+1

where qn 1, my = SUD|y|<N vl my,> A @1, m,, are the semi-norms of Gl (R?" L(E,)). Indeed,

with ‘OVag-Hoo < G tpmy (@) for k> ki (v), @’ = 352 af; is a well defined smooth function

and we have then a’ — Z] 165 € Slemi(R2n [(E,)). Using Leibniz rule, we see that for any
2n-multi-index v := (o, #), and any j € N*, there is K, ; > 0 such that

7 10759y < Dol 9)(x)7li=leD) (gymi—IAl
+ 31077 Ay, 9) ()7 1D gy I8,

v <v
Let us suppose that ¢ = 0. The estimate (5.21) yields for any N >0,k > 2, j > k+ 1,

AN oy (@) < Ky j{py)™i i1

for a constant Ky ; > 0. If we now fix p; as p; = (27 supy<;{ Ky, 1 HY/mi—1=m3) then we see
that for any N >0, k > N +2, 7 > k + 1, we have qN,lhmk(a;) < 277 and (5.23) is satisfied.
Suppose now o # 0. The estimate (5.22) yields for any N > 0,k > 2, j > k+ 1,

AN Jyomy, (05) < Ky i (pj)"

for a constant Ky ; > 0 and with r; := max{m; —m}_,,0(l; —{;_1)} < 0. If we now fix p; as

pj = (2 supy<;{ Ky ;1 })77’;1, then we see that for any N > 0, k > N + 2, (5.23) is satisfied
as for the case 0 = 0. O

5.4.2 Amplitudes and associated operators on S(R", E,)

We shall see in this section amplitudes as generalizations of symbols of the type S(7 2 =
SL™(R2n| L(E.)) where z € M is fixed. For each amplitude, a continuous operator from S(R", E. )
into itself will be defined. Here the spaces L(E,) and E, can simply be considered as M (C)
and C™. The results in this section will be important for pseudodifferential operators on M in
the next section.

Definition 5.4.10. An amplitude of order I, w, m and type o € [0, 1], K > 0, is a smooth function
a € C®(R3", L(E,)) such that for any 3n-multi-index v = (a, 3,7), there exists C, > 0 such
that
(B2 9 H < C, (x)o=lo+B]) g pywtnlats] gym—| 5.24
[ e o), , <0t (©) () (5.24)
for any (x,¢,9) € R3™. We note Hf;},i’fzn = Hf,’fﬁ’m(R?’”, L(E.)) the space of amplitudes of order
l,w,m and type o, k.
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Remark that IIE“™ is independent of I, we denote this space 2™ We note I, os" =

0,K,2 0,K,2
l l — l l
MimIowz . We set 1135, . := Upw mllows and I, := My Uk o . We see that II507" -

! ! I ! ! / ! / !
Hf,j}éiz’m - Hf;f,i,;ww MM and Hff,‘é’zn C ng,’,gigm for m < m/, w <w', and I <1'. Thus, I35, ,
is a x-algebra, which is trigraduated for ¢ > 0 and bigraduated for ¢ = 0. Note also that if
a € TI%™ | then 987 g e TIL et Alwtslotflm=hl

Amplitudes and symbols in S(l,? are related by the following lemma:

Lemma 5.4.11. (i) For any a € Hf,’ff;fzn we have ac—o = (x,7) — a(x,0,9) in Si-’j?
(ii) For any s € Sy7, the function (x,(,9) — s(x,9) is in 55"

0,0,z °
(ii) For any f € So(R"), the function (x,(,9) — f(x)Idr(g,) is in ngg’,g.
Proof. (i) follows from the fact that 9" (a o P) = (9"™)a) o P where P(x,9) := (x,0,9).
(i3) Noting Q(x, ¢, ) := (x,9), the result follows from 9% (s 0 Q) = 650(9%7s) o Q.
(éi7) follows from (4i) and the fact that (x,7) — f(x)Idyg,) € Sod. O

As the spaces of symbols, the Hi,u,i? are naturally Fréchet spaces:

Lemma 5.4.12. The following semi-norms on Hi—ufégl

liw,m (a) ;==  sup <X>U(|a+ﬁ\—l)<C>—w—f<\a+ﬁ|<79>|7|—mHa(aﬂn)a(x’ Cyﬁ)H

Q(Oéﬁﬂ) (x,¢,9)ER3n L(E.)

determine a Fréchet topology on Hi—qﬁ? The following inclusions are continous for these topolo-
/ ! / ! / / / / /

gies: ny’fﬁ’? . Hffﬁz’m C Hé—!_,i7’zw+w mtm ny’fﬁ’g C Hé,’};ﬁz’m (m<m, w<w andl <) and

- - . . / /

Hg,?f;w C Hgf,‘i’,?, Moreover, the last inclusion is dense when Hf}jﬁ:ﬁn has the topology of Hf,;}{””zm

form<m’ andl <.

Proof. The continuity results are straightforward. For the density result, we prove as in Lemma
5.4.6, that for any a € TI;%7" the sequence

ap(x, ¢, 0) := (p(x/p))' 07 p(0/p) a(x, ¢, 9) = (1 = Ay(x,9)) a(x, ¢, D)

converges to a for the topology of Hf,/j}f’m/ (R?" L(E,)) where m’ > m and I’ > [. First note
that the application (x,¢,9) — (p(x/p))*=%0 p(9/p) Idy(g,) is an amplitude in 115", Thus,

0,0,z

l/, , !
(i (@ = ap) =

SUP(x,¢,9)cr3n (X, ¢, ¥), where m' > m and I’ > I. For a given 3n-multi-index v := (a, 3,7), we
get with Leibniz rule, for a K > 0,

(ap)pen+ is a sequence in Il .2". We define the function R, such that ¢

L Ry(x,¢,9) < Ap(x,9) ()7 9y 4 37 197 A (x,9)|
v<v
> <X>0(l—l’+|a+ﬁ|—\a’+ﬁ’l)<<>fe(\a’+ﬁ’|—\a+ﬁl)<19>m—m’+lvl—h’\ )

Suppose that o = 0. In that case, [Ap(x, )| < 1p, 4oof(¥) and if ' < v,

07 Ay, 0)| < Sasar g5 Ky p~ TN, 5 (0).
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As a consequence we find Ry(x,(,9) = Opﬂoo(<p>m_m/), as in Lemma 5.4.6. Suppose now o # 0.
In that case |A,(x,9)| < 1p,(x,9) where F, := R? — B,,(0,p) x B,(0,p) and if v/ < v, for a
constant K, > 0

‘6V_VIAP(X7 V)| < 0p-p 0Ky Lisgn(a—a’)p,2p) (x) Lisgn(v—+")p.2p) (9) p_MHVll :

As a consequence, we find Ry(x,(, V) = Op—oo({p)") where r := max{m —m/,o(l —1")} < 0 and
the result follows. O

We shall note A¢ the differential operator > , 8&. The following formula is valid for any
¥, € R" and p € N,

(9)2Pe2mi00) — (1 — (27)2A e 2mi(9.¢) _ Lp 2mi(9,¢) (5.25)
A computation shows that (1 — (27) 2A¢)P = >_0<|8]<p Cp.B 827 where the summation is on n-

multi-indices 3 and ¢, g := (Ig\) (—1)!8l(27r) 218181, We shall also use the following useful formula
valid for any ¥ € R", ( e R"\{0} and p € N,

e2mi (9,¢) Z )‘ﬁ HC”% aﬁ 27mi(9,¢) _ MPC 2mi(9,¢) (526)
|8l=p

B
where g := B1(2r)~1%lilA. We define tMJ< := ¥, 5_ Ag(—1)P ”gvag.

Definition 5.4.13. We note Oy ., where f1, fa, f3 : N — R, and f := (fi, fo, f3), the space
of smooth functions in C*°(R3", L(E,)) such that for any 3n-multi-index v = (o, 3,7), there is
C,, > 0 such that

18 a(x, ¢, 9) ”L(Ez) <0, <X>f1(u)<<>f2(u) <19>f3(1/)
uniformly in (x, ¢,9) € R3™.

The vector space Oy, has a natural family of seminorms q,],c given by the best constants C), in

the previous estimate. With this family, Oy . is a Fréchet space. Obviously, amplitudes in HQ%T
form an Oy , space where fi(v) := o(l — |a + f]), f2(v) == w+ k| + 5] and f3(v ) — |l
For a given triple f := (f1, f2, f3) and p € R, we will note f3,q~ = supg f3(a, ) - plA|,

f27p,a,ﬁ Sup'y f2( ﬁv ) ,0|'7| and fl,p, e Supy f1(04 ﬁa ) P|’Y|

Proposition 5.4.14. Let I' a continuous linear operator on the space S(R**, L(E.,)), and f :=
(f1, f2, f3) a triple such that there exists p < 1 such that f3 ,00 < co.
(i) For any function a € Oy, the following antilinear form on S(R*", L(E,))

Opp(a).u) = [0 Tela, ¢.0) (0" (s.) d i d

is in S'(R?", L(E,)).
(ii) For any given u € S(R*™, L(E,)), the linear form Ly := a — (Opp(a),u) is continuous on

Oy .. In particular L, is continuous on any amplitude space Hffﬁ;n
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Proof. (i) We have Opp(a) = I(a) o', where I(a) is the antilinear form on S(R?", L(E,)):
(I(a),u) == / 200 Tr(a(x, ¢, 9) u* (%, ¢)) d¢ di) dx .
R3n

We shall prove that I(a) € S'(R?", L(E,)), which will give the result. Let u € S(R?*", L(E.))
and let us fix for now x and ¥ € R™. We can check that the map ¢ — a(x,(,9)u*(x,() is in
S(R™, L(E.)). As a consequence, with (5.25) and integration by parts, we get with R(x,9) :=
Jen €27 Valx, € 9) w (x, Q)

R(x, V) = /R PTG T — (2m) T2 A)” alx, ¢, 9) u (x, () dC
D sy / 200 (90F0) q(x, ¢,9)) (9O~ (x, ¢)) dC .

0<|BI<p B'<26

Thus, for any x,9 € R", we get by fixing p such that 2(p — 1)p + f3 0,0 < —2n (this is possible
since p < 1) that for any N € N,

HR(Xvﬁ)HL(E < Cp(¥ > / (x,¢) N d¢ Z Z qog/ (JN(OQ,B 6’)( u)

0<|8|<p B'<28

for a C, > 0, where r, := max|g|<ap | f1(0,5,0)| + [f2(0,,0)|. If we now fix N such that
—N + 1, < —4n, we see, using the inequality (x,¢) ™2 < (x)7!1(¢)~!, that there is C, f > 0 such

that
[(I(a),w)| < Cpp > > %5/ a) qn,(0,28—p') (1) (5.27)
0<|BI1<p B'<28

which yields the result.

(#) The continuity of L, r on Oy, follows directly from (5.27) since L, r(a) = (I(a),I'(u)).
Since Hiiffé’fzn = Oy, for a triple f = (f1, fa, f3) such that f300 < 00, L, is continous on any
amplitude space. O

For any amplitude a, we will also note Opp(a) the continous linear map from S(R", E,) into
S'(R™, E,), associated to the tempered distribution u — (Opr(a), u).

Remark 5.4.15. If (M, exp, E,du,v) has a Opr-bounded geometry, we saw that for any frame
(2,b) and X\ € [0,1], the T'x.p maps are topological isomorphisms on S'(R**,L(E,)). Thus,
laow,m

Lemma 5.4.14 implies that for a given a € Ig.0% , we can define a family indexed by A € [0,1]
of operators Opr, _ (a) which are continous from S(R", E.) into S'(R™, E).

Remark 5.4.16. Suppose that (M,exp, E,du) has a S, bounded geometry and that v is a
Oy -linearization. We deduce from (5.19) that if s is a symbol in SE™ and X € [0,1], we have
(Opx(8))z6 = Opr, _ (1sz6) where (2,b) is a frame, s.p := Tsp(s) and ps.p = (x,¢,0) —
Hzb(X) S26(x,0) € %™ We will also note s, p(x, ¢, 0) = uz_’%(x)sz,b(x, 9) e T

0,0,z 0,0,z

We now establish a sufficient condition on I" and @ in order to have Opr(a) stable (and
continuous) on S(R™, E). The result will be used to establish regularity of pseudodifferential
operators.
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Lemma 5.4.17. Let T be a continuous linear operator on S(R*", L(E,)) of the form T = L,, o
R, 0 Cg, where 7; € Op(R?" L(E,)) (for 1 <i<2), and ® := (m1,v) € C®(R?**,R?") is such
that ¢ € Op(R2" R™) and there exist c,e,m > 0, such that for any (x,¢) € R?", (¢(x,()) >
c(x)5(C)™" and for any x € R™, there is cx > 0 such that (Y(x,()) > cx(C)¢ uniformly in ( € R™.

Suppose that f = (f1, f2, f3) is such that there exist (p1,p2,p3) € R such that p3 < 1,
(r/e)p1 + p2 < 1 and for any 2n-multi-index p, f1p,, < 00, fo,p5,u < 00, f3,p5u < 00 and for
any n-multi-index o f3 py o = SUD, f3,p5.0,y < 00. Then for any function a € Oy ., the operator
Opr(a) is continuous from S(R™, E,) into itself. In particular, this is the case for any amplitude
a € ngu,i;n

Proof. Let u,v € S(R", E.). By definition, (Opp(a)(v),u) = Opr(a)(u®v) and I'(K) =7 (K o
®) 9. Noting d'(x, ¢, 19) =17 (x, () a(x, (V) 75 (x, (), we obtain

(Opr(a)(v), u) = /R €T (5,6 0) 0@, O) [ulx) ) dC di dx

= /n (g(x)‘u(x))dx

where g(x) i= [pan €200 d/ (x, ¢, 9) v 0 Y(x, () d( do.

A computatlon with the Faa di Bruno formula shows that for any 2n-multi-index v, any N € N
and any x € R" there is Cx v, > 0 such that [[0”(vo¥)(x, )|z < CyNpy ()™ uniformly in

¢ € R™. As a consequence, the map ¢ — 9%0a/(x,¢,9) 3% (v o ) (x,¢) is in S(R™, E,). We
can thus successively integrate by parts in g(x) so that for any p € N*,

o) = [ | )L w0 ). 9) dC .

By taking p such that (p3—1)2p+co < —2n where c¢q = SUp <4 f3,p5.0/, We see that the previous
integrand is absolutely integrable, and we can permute the order of integrations d¢dy — ddd(.
Since all the successive ¥-derivatives of <19>*21”le<7 (@' (vot))(x,(,¥) converge to 0 when (¥) goes
to infinity, we can then integrate by parts in 1 so that for any ¢ € N and p > pg

o) = [ | UG L)LY o ). 9) dC .

Noting hy, 4 the previous integrand, we see that for any n-multi-index o, 9%hy, 4 is a linear com-
bination of terms of the form

2T ()72 () 2= gl B o ga e BBy, o

where |y| < 2p, v/ <, |8] < 2¢, #/ < B and o/ < a. A computation with the Faa di Bruno
formula shows that for any 2n-multi-index v there is r, € N* such that for any N > 0, there
is O,y > 0 such that for any w € S(R™, E,) and any (x,{) € R®", [|0¥(w o )(x, Olg, <
Cy.N (X, ¢y =N (¢)yrvtr/aN ZIV’KIVI q[N/e]+1,/(w). Moreover, we check that there is Ko jp > 0
such that

[ e, 0|, Gy Sem ey emsonaggytess,
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As a consequence, we get the estimate

10%Pp,gll < Copg () Ko tP120=N () Koy (p2= D2t (ION (ycatlos=D2 % " gy gy 4 (v).
v/ |<|v|

or equivalently, replacing Ky, , + p12¢ — N by —N,
10%hp.qll < Capy N<X>—N<<>K&’,p+(pz—1+(r/€)p1)2q+(r/€)N<19>ca+(p3—1)2p

E AUN+K +p12q/e]+1,0 (V) -
v’ |<|v|

Fixing now, for a given N, p such that (p3 —1)2p + co < —2n and g such that Kg , + (p2 — 1+
(r/e)p1)2q + (r/e)N < —2n, we obtain the result. O

The following lemma gives a characterization of smoothing kernels in the cases ¢ = 0 and
o # 0. If s is in a space of symbols and I' is a continuous linear map on S(R?*", L(E.)), we
will note Opr(s) = Opr((x,¢,¥) — s(x,7)). We shall use the Fréchet space Olanj}z of smooth
functions a in C°°(R3", L(E,)) such that for any v := (u,7) € N?* x N*

10 a(x, ¢ D)l .y < G HAUN (RO gy 1500

We will note Oé’?z =: OF, ;. . Clearly, Opr(a) (see Lemma 5.4.14) is defined as an antilinear

form on S(R?", L(E,)) whenever a € (9;? with m + f3(0) < —n. We note F' the set of functions
f2 : N3 — R such that there is p < 1 such that for any (o, 8) € N?" f5 ,, 5:= sup,, fa(a, 3,7) —
ply < oc.

Lemma 5.4.18. Let K € §'(R*", L(E,)), and T a topological isomorphim on S(R*"  L(E,)) of
the form T' = Ly, o R, o Cg with 11,75 € OF,(R*, GL(E,)), ® € O}, (R*",R*"). Then
(i) Case o = 0. The following are equivalent:

(i-1) There is f3 : N** — R such that for any m < —f3(0) — 2n, there exist fom € F,
am € OF, 1, . such that K = Opr(am).

(i-2) K € C*(R*", L(E,)) and for any 2n-multi-index v, N € N, there is C,, y > 0 such that
for any (x,¢) € R*™, ||0¥ Kr(x, e, < Cun{C)™N, where Kp .= Kol =71 K 0 ® 7, |J(®)|.

(i-3) There is s € Sy ° such that K = Opp(s).
(ii) Case o > 0. The following are equivalent:

(ii-1) There is f1, f3 : N> — R such that for any m < — f3(0) — 2n, there exist fo,, € F and
am € OZ}?fz,m,f&z such that K = Opp(am).

(ii-2) K € S(R*" L(E.,)).

(ii-3) There is s € S;°° such that K = Opp(s).

Proof. (i) The implication (i-3) = (i-1) is trivial. We will prove (i-1) = (i-2) = (i-3). Suppose
(i-1). Thus, for any m < —2n — f3(0), there is fo, € F, a, € OF . such that for any
u e S(R*, L(E.)),

(KoT ™1 u) :/ 20 Tr (aym (x, ¢, 9) w*(x,¢)) dC i dx.
RB”
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Since m < —2n — f3(0), the preceding integral is absolutely convergent and we can permute the
order of integration As a consequence, we get (K o I u) = [po, Tr (Un(x, () u*(x,()) d¢ dx
where Uy, = [an €™ {0.0) am(x ¢,9)dd, we check easﬂy that Um is a continous function
on R?", so we deduce that U,, =: U is independent of m and K oI'™" is a distribution which
is continous function equal to U . Noting b, = *™{0:0 ¢ (X ¢, 19) we see that for any 2n-
multi-index p := (o, §), 8}’:<bm = 20,0 > p<p (ﬂ,)(szﬁ)B 7' 9f"0q,, and we have then the
estimates

Haﬂ'bmH S C/J,,m <C>sup6/§,@ f2,m(017ﬁ/’0) <Q9>m+cl—b

where ¢, = supg < f3(a, 8') +[B]. Defining m,, := —2n — sup|,,|<|,| ¢,v, we see that U is smooth
and
MU = by, dV) = E (ﬁﬁ’) (Qﬂi)lﬁ—ﬁ/l 627ri(7974)195—ﬁ'aa”3’,0am“ (x,¢,0) dV
RQn Rn
B'<p

All the ¥-derivatives of ¥ — ﬂﬂﬁ*ﬁ/80‘”8/’00%H (x,,¥) converge to zero when |9 — oo so we can
we integrate by parts in ¥ so that for any p € N:

0" = 37 (5)(2mi)l*P1 [ A0 (L (97 0 O, ) (x, ¢, )
B'<p

Since ap,, € Oz,in,,,f:s,z and f2m, p,.x < 00 for a p, < 1, we see that the integrand h; of the
previous integral satisfies the estimate

th(X, <7 19) ” < Cp,,u <C> —2p+supgr<g f2,muvpu,a,ﬁ’+2ppu <19>*2n .

Given N > 0 and fixing p such that (p, — 1)2p + supg <g fom,ppas < —N, We ﬁnally obtain
that K oI'™! = U is smooth and satisfies for any p € N*® and N > 0, H@“K o' *(x,() HL £.) <
Cyn(¢)™N. We also have for any u € S(R*", L(E.)), (K,u) = (U,T'(v)) = [gan Tr(U’(x,{)u* 0
P(x,())dxd¢ where U'(x,¢) := 77(x,)U(x,()75(x,¢). Using the change of variables provided
by the diffeomorphism ®, we get (K,u) = [pon Tr(K(x,y)u*(x,y))dxdy where K(x,y) :=
(|J(@~H|(x,y))U’ o ®1(x,y). The result follows.

Suppose now (i-2). It is not difficult to see that Fp sends S;7° (seen as a subspace of
S'(R* L(E.))) into So.. - In particular, we have s := Fp(Kr) € S; °. A computation shows
that (K,u) = (Opp(s),u) for any u € S(R*", L(E.)).

(74) Suppose (i-1). Following the proof of (i), we see that it is sufficient to prove that U is in
SR, L(E.)), where U(x, () == [ e7"9a,,(x, (,9) dVY (independent of m). Let us fix N > 0.
For any 2n-multi-index p = (o, ), ax,gbm = 200 > p<p (g,)(QWiﬁ)ﬁ_ﬁlf)a’ﬁ/’oam and we
have the estimates

[0 bll < G () (G 00153 (90 gy
where ¢, = supg <5 f3(o, 3') + |B| and d,, := supg <5 fi(a, §'). Defining

my, N = min{—2n — sup c,,—N/o— sup d,}
' 1<|ul | 1<]ul
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we see that U is smooth and

U = [ 0 = 3 (5P [ 009 g0 0, (.G, 0) d0
B<p

All the ¥-derivatives of ¥ +— ﬁﬁ_ﬁlﬁa’ﬂ,’oamuw (x,(, V) converge to zero when ||J|| — oo so we
can we integrate by parts in 9 so that for any p € N:

MU = Z 27TZ 13—4'] e2mi(0,0) <<>—2pL§ (ﬁﬁ_ﬂlaa’ﬁl’oamw\,) (x,¢,09) dv
B<p e

mu,Nymu,N
O‘7f17f2,mu’N7f37z
hy, of the previous integral satisfies the estimate

Since am, y € and f2.m, v.p.nx < 00 for a p, v <1, we see that the integrand

||hp(X, é_, 19) H < Cp,u,N <X>7N<<->*2p+supﬁ’§5 f2,mu,N,PH,N,a,B’+2pPM7N <Q9>72n )

Fixing p such that (p, n — 1)2p + supg<g f2my noppnap < —N, we finally obtain the follo-
wing estimate [|0"U|;p,) < Cun(x)"N(¢)™", which yields (i-2). The other implications are
straightforward. O

Corollary 5.4.19. Same hypothesis. We have (for o = 0 or 0 > 0), Opr(9;2°) = Nim Uw,k
Opp(Tlyx) = Opr(I, ).

Lemma 5.4.20. Let u € S(R*", L(E,)) and 8 a n-multi-index.
(i) For any triple f := (f1, fa, f3) such that there exists p < 1 such that for any 2n-multi-index
(0,7), f3,p,ay < 00, the following linear forms are continuous on Oy,

Ru:ar | (Pm00 Tr(a(x, ¢, 9) u(x, () d¢ dd dx,
R3n

Sgu:a— (i/27r)‘5| e2mi0:C) Tr(ﬁga(x, ¢, u(x,())d¢dddx.
R3n

(it) Rgy = S on any Hf,u,ézn space.

Proof. (i) The continuity of Rg,, is a direct consequence of Proposition 5.4.14 since Rg,, = L, 5.1d
where ug(x, () == ¢Bu(x, ¢). Suppose that 1 is a 3n-multi-index, we denote f0 := v — f(v+1yp).
A computation shows for any p, and n-multi-indices o, v, f39, . < f3,p.a+a0,7+70 +£|50[- Thus if
there is p < 1 such that for any 2n-multi-index (o, ), f3,p,a0,y < 00, then for any 2n-multi-index
(@, 7)s f3 0y <00 If a€Of, then 8"a € Opw . and the linear map a — 0"°a is continuous.
As a consequence, since Sg, = L, 14 © Dg, where Dg := (i/27r)ﬁ85, the continuity of Sz, on
Oy . follows from Proposition 5.4.14.

(i7) The equality is easily obtained on I, 2" by an integration by parts in ¥ and permutations
of the order of integration d(d¥ — d¥d( in Rg,(a) (authorized for a € I, .5"). The result now
follows from () and the density result of Lemma 5.4.12. O]

l,w,m

If N > 1 and 3,7, n-multi-indices, we denote for any amplitude a € Il .., the smooth

function ag~ N as ag., n(x, ¢, V) fo 087 a)(x,t¢,9) dt. It is straightforward to

: . !
check that the linear map a — ag, n is contlnuous from TT5%™ into T,k wi+slAlm=hl
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The following lemma shows that A-quantization of amplitudes and symbols yields the same
operators. This result of “reduction” of amplitudes to symbols will be important for Theorem
5.4.30 and thus, for a A-invariant definition of pseudodifferential operators.

Lemma 5.4.21. (i) For any a € 1527, (0%FBa)—o € S(ZT’—Zlﬁlvm—lﬁ\ for any n-multi-index 3.

(ii) Let T' be as in Lemma 5.4.18 and let a € Hff,‘é;n Then for any symbol s € SCZ,T? such that
s~ D4 %*l)lm(aoﬁﬂa)czo, there is v € S, 2° such that Opp(a) = Opp(s + 7). In particular
there exists an unique symbol s(a) € 5’},? such that Opr(a) = Opp(s(a)). Moreover, we have

NPT
(iii) Suppose that (M,exp, E,du) has a Sy-bounded geometry and v is a Opr-linearization.
Let a € Hf,’j“féfzn, A € [0,1] and (z,b) be given a frame. Then there exists an unique sym-

bol sx(a) € S¥™ such that Opr, ., (a) = (Opr(sr(a))z,p. Moreover, we have T p(sx(a)) ~
i/j2m)i8l
s ( /26!) p= (%P a) .

Proof. (i) is a direct consequence of Lemma 5.4.11 (7).
(ii) Using a Taylor expansion of a at ¢ = 0, we find that for any v € S(R*", L(E,)), N € N*,
(Opr(a),u) = Zogmgzv I + E|ﬁ|:N+l %Rﬁ,N where

Ig:= /R . ¢ T (007 a)c—o(x, 9)T (u)*(x, ) )dC do) dx
Rg N = (P20 Ty (ago,n(x,¢0) T(w)*(x,¢))d¢ dY dx.
R3n

We get from Lemma 5.4.20 (ii),

Iy = / 204 Ty (V2R (9009 0) o (x, 9T (u)* (x, ) ) dC o dx.
R3n :

Let s € S(l,’z? be a symbol such that s ~ > 4 WT’?‘B‘(GW%)C:O. Then noting sy :=

S = 2o8<N (i/%)w (0%PPa)c—y € Stlyjz(N+1)’m7(N+1), we find with Lemma 5.4.20 (i7) that

Opr(a — s) = Opp(rn) where

e 3 Oy
|BI=N+1

We check that ry € Hi;,.g(ngl)’wN’m_(NH) where wy = |w|+ k(N +1). Corollary 5.4.19 applied to
Opr(a—s) now implies that there is r € S, 2° such that Op(a) = Opp(s+7). As a consequence,
there exists s(a) € Sf,’? such that Opr(a) = (Opr(s(a)). The unicity is a direct consequence of
the fact that Opp = I'* o F}, on §'(R?*", L(E,)).

(¢4i) Direct consequence of (ii) and that fact that (Opy(s)).,6 = Opr, _  (k2,652,6)- O

5.4.3 S,-linearizations

In order to have a full symbol-operator isomorphism, a polynomial control at infinity on the
linearization is not enough. As we shall see, a stronger, “amplitude-like” control on the ¥ maps
and a local equivalent of the P, ¢ parallel transport linear isomorphisms (see Remark 5.3.3)
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appears to be crucial for pseudodifferential calculus on (M, exp, F) and the M-invariance (see
Theorem 5.4.30).

We define Hy',(€) (resp. £y, (€)), where w € R, o0 € [0,1] and x > 0, as the space of
smooth functions g from R?" into & such that for any 2n-multi-index v, there exists C, >
0 such that for any (x,¢) € R?", [|0”g(x,¢)|| < C,(x)~VI=D()ywtslVI=1) (if 1 £ 0) (resp.
1979(x, Ol < Cu ()~ 7H(¢) ). We note Hyn(€) == UperHE(€), Ho(€) := UnzoHo(€),
Eyx(€) = Uyer By o (€) and E,(€) = Uk>0FEy x(€). Remark that by Leibniz rule, F, .(R) and
E; 1 (Mp(R)) are R-algebras (graduated by the parameter w) while Ej ., := Ey (L(E;)) is a
C-algebra (under pointwise matricial product). Thus, if P € Ej ,.(Mp(R)), then det P € E, .(R).
Note also that f € H, . (€) if and only if for any i € {1,---,2n}, 0;f € Ey . (€). In particular,
[ € Hyx(RP) if and only if df := (x,() — (df )x¢ is in Eyx(Mp2,(R)). As a consequence, if
f € Hg(R*), its Jacobian determinant J(g) is in Eq ,(R). Note that any function in EJ (&)
is bounded and if f € HY, (€) then there is C' > 0 such that ||f(x,()lls < C(x,() for any
(x,¢) € R?™. The following lemma will give us the behaviour of the E, . and H, , spaces under
composition.

Lemma 5.4.22. (i) Let f € H;“;(QE) (resp. E;“;((’E)) and g € HY, (R*) such that there exists
Cy,ec > 0, r >0, such that (g1(x,()) > c(x)(C)™" (if 0 # 0) and (g2(x,¢)) < C(() for any
(X7 C) € R2n7 where g = (91792)' Then f °g € Hc‘fﬂﬂ%h-rcr(e) (TGSP‘ Ec‘:,un‘-l-|w|+rcr(€))‘

(it) If P € EY, (Mn(R)), then (x,¢) — Py c(¢) € HYFFHH(R™).

(i) Let f € Go(R",€) and g € H (R") such that there exists ¢ > 0, v > 0, such that, if
o #0, (g(x,¢)) > e(x){C)™" for any (x,¢) € R*™. Then fog € g (&). Moreover,

o,max{ ro,x }+|w|
if f € Go(R™ RP), then df o g € E° (Mpn(R)).

o,max{ro,k }+|w|

Proof. (i) The Faa di Bruno formula yields for any 2n-multi-index v # 0,

0"(fog)= Y (9"f)og P,a(g) (5.28)

IS ]

where P, (g) is a linear combination (with coefficients independent of f and g) of functions of the
form szl(aljg)k] where s € {1, ,|v| }. The k7 and I/ are 2n-multi-indices (for 1 < j < s) such
that |k7| > 0, |I] > 0, > i1 k/ = X and > i1 k7|17 = v. As a consequence, since g € HY, (R?"),
we see that for each v, A with 1 < |A| < |v| there exists C,, y > 0 such that for any (x,() € R",

1Py (9)(x, Q)| < Cyp(x)~o U= (gywirsdlvi=Ix), (5.29)

Moreover, since f € Hg”;(Rzn) (resp. Egj;(R%)), there is C§ > 0 such that for any (x,¢) € R?",
the estimate H((?/\f) o g(x, C)H < C&(X)*U(P"*l)<§)‘wl|+(”+“’)(|”*1) (resp. H(@Af) o g(x, C)H <
C4 (x) Ty W+ (7)Y g valid. We deduce then from (5.28) and (5.29) that f o g belongs to
H T (@) (resp. B! (€)).

o,k+|w|+ro N o,k+|w|+ro
(7) We note P;’]C the matrix entries of Py ¢. Each component (f*)1<;<y of the map f := (x,() —
Py ¢(€) is of the form fi = Z}l:l PUI ;. Tt is straightforward to check that the applications
(x,¢) = ¢; satify for any v € N?", 9¥¢; = O((¢)'~I(x)7(=I"D). The result now follows from an
application of the Leibniz rule.
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(7i7) Following the proof of (i), (5.29) is still valid, this time with A as n-multi-indices and v as
2n-multi-indices with 1 < |\| < |v|. Using the fact that (g(x,()) > c(x){¢)~" for any (x,() € R*",
we obtain the following estimate

[@*£) 0 g(x, Q)| = Catx) 77N < ¢4 () = (N gt re A=)
which, with (5.29) and (5.28), yields f o g belongs to H(‘T n‘laX{ mﬁ}ﬂw‘(@f). The fact that df o g is
in E? max{ro n}+|w|(MP7n(R)) when f € G,(R",RP) is based on the same argument. O

The H, . and E,, spaces are related to the symbol and amplitude spaces by the following
lemma.

Lemma 5.4.23. (i) If f € £, ., then (x,(, ) — f(x,() is in 0.

(ii) Let s € sz, m € Hy (R") such that there exist C,c,r > 0 such that, if o # 0, for

any (x,¢) € R*, ¢(x)(¢)™" < (m(x,€)) < C(x){C)", and P € EJ . (My(R)) such that for any
n Lior|l|,m

(x,C,0) € R, (Pec(9)) > e(9). Then (x,¢,9) = s(m(x,), Puc(9)) is in TLIT

(ii1) If s € So(R"), m € HY (R™) such that, if o # 0, there exists c,m > 0 such that for any

(x,€) € R (m(x,¢)) > e(x)(Q)™", then (x,(,9) = s(m(x, ) My is in TNY - L

(iv) If a € I and P € EQ (Mu(R)) is such that there is ¢ >0 such that for any (x,(,0) €

R, (Pec(0)) > c(9), then ap : (x,,9) — a(x, (, Pyc(¥)) € IGWE

Proof. (i) is straightforward. -

(ii) Let us note g(x, ¢, 9) := (m(x, (), Px¢(9)). For any ij € {1,---,n}, we denote P} the (i, j)
matrix entry of Py . Since P € EJ (M, (R)), we have P* € EJ  (R). Faa di Bruno formula in
Theorem 5.2.11 yields for any v # 0

"(sog)= > (Bulg) (0s)og (5.30)

ISSPYRNY

where P, (g) is a linear combination of terms of the form szl(aljg)kj, where 1 < s < |v|, the
k7 (resp. I7) are 2n-multi-indices (resp. 3n-multi-indices) with |k7| > 0, || > 0, > i k= X
and ijl |k7|l7 = v. Let us note I/ =: (151 172 173), kI =: (K}, k3?) where 17152 73 k)t 32
are n-multi-indices. We have, noting Q(x, (,v) := (x, (),
n n n
@ 9)" =T (Gus 0@ )0 Q"

=1 (2 1 k=

and we get, for a given s, (1), (k%) such that (9 ¢g)¥ #£0forall 1 < j < s,
if 73 =0, (8 ¥ = O((x) oW IF I+ kM ey sIP IR |=alkE Fwlk? ] gy K92
if ’lj’3‘ =1, kil — 0 and (aljg)k:j _ O(<X>—0|lj||k:j\+o|kj\<C>n|lj||kj|—n|kj|> )

The case |[#3| > 1 is excluded since k7 # 0 and (aljg)kj = 0. By permutation on the j indices,
we can suppose as in the proof of Lemma 5.2.13 that for 1 < j < j; — 1, we have I/ = 0 and for
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j1 < j < s, we have |P3| = 1, where 1 < j; < s+ 1. Thus, we get

H (0 ) = O ()i W DIR I 892)

(¢ S RS (0= D+ 9L I20) oy S 92

We check that Zﬂ Yk32| = |A2] — || and ijl(]lj] —1)|k’| = || — |\| where A = (A!, \?) and

v = («, 3,7). As a consequence,
P,(g) = O((x)~oUatBI=IND ey wIN +allatBl=IN) gy W=y (5.31)

Since there exist C,c > 0 such that for any (x,¢) € R?" (m(x,¢)) < C{x){¢)" and (m(x,()) >
c(x){¢)", we see that there is K, > 0 such that for any 1 < || < |v| and any (x,() € R?",
(m(x, )= < K (x)o =MD cyerliteriAl - Ag a consequence, we see that there is Cy, > 0
such that for any 1 < |\ < |v| and any (x,(, ) € R3",

H(B’\s) o g(x, (,z?)” < CV<X>U(1—|A1\)<<>m"ll|+m“|/\1|<19>m—|)\2\_
L(E:)

Thus, since we can reduce the sum in (5.30) to 2n-multi-indices A such that [A\?| > || (and thus

IAY] < o+ B]), we obtain the result from (5.31) and a straightforward verification of the case

v=0.

(iii) is obtain exactly as (i) (with Py ¢ = Id), since (x,() = p,6(x)Idyp,) € S92, The hypo-

thesis m(x, () = O((x)(¢)") is not necessary since [ = 0 here.

(iv) We have, noting g(x,(,9) := (x, ¢, Px¢(?)), for any 3n-multi-indices v # 0, 1 < [/| < |v],

P,./(g) as a linear combination of terms of the form szl(a” g)¥', with > =1 |k7|l) = v and

ijl kI = v/, noting k? = (k91 k7%), 19 = (I7'1,192), where k7! and /! are 2n-multi-indices, we

get, following the proof of (ii),

Py 1 (g) = O((x) -0 llatBI-1a'+3) (yrllactBl—la+8) g/ 1=l
Since Py ¢ = O(1) and (P ¢(¥)) > () we get the result. B

Definition 5.4.24. Let o € [0,1] and ¢ a linearization on (M, exp, E,du). We say that v is a
Sg-linearization if for any frame (z,b), there is £, p > 0 such that

(i) Y2 € Hop, , (R™) with 9(x,¢) = O((x){()") for a > 1 and ¥ € Oy (R*",R")

(ii) there is P*® € C®°(R?",GL,(R)) such that P> and (P*°)~! are in Egﬁz’b(/\/ln(R)), and
for any (x,¢) € R, P22(¢) = T7(x,¢) and PJy = Idgn.

(iii) 2% and (r£°°)~1 are in EQ,  (L(E.)).

0,Kz,b

We shall say that the combo (M, exp, E, du, ) has a S,-bounded geometry if this is the case of
(M, exp, E,du) and 1 is a S,-linearization.

It is clear that a S,-linearization is also a Oj;-linearization. Moreover, in case of S,-bounded
geometry, we check the properties (i), (i7) and (éi7) in just one frame:

Lemma 5.4.25. If (M, exp, E,du) has a Sy-bounded geometry and 1 is a linearization such that

there exists (z0,b0), Kz,p, = 0, such that the functions 2, @23 satisfy (i), (ii) and (iii), then
¥ is a Sy-linearization.
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Proof. This follows from applications of Lemma 5.4.22. O

Remark 5.4.26. The condition (ii) in Definition 5.4.24 encodes an abstract parallel trans-
port isomorphisms in normal coordinates. Indeed, in the case where the linearization v is de-

rived from a connection on M, the GLy(R)-valued smooth functions on R*": P*? := (x,()
Mzb,expo(ngyT)*l(x,C)P(”Z,T)_l(x7c)(Mzb,(ng)*l(x))_l where the applications P, ¢ are the parallel trans-

port isomorphisms on the tangent bundle (see Remark 5.3.8), satisfy for any (x,() € R?",
P;’g(() = Ti;(x, ¢) and P)f”é’ = Idgn. Thus, in this case, (ii) is satisfied if P*>° and (P*%)~!
are in B, (M (R)) for a f,p > 0.

O,kz,b

Remark that for any ¢t € R and (x,¢) € R?, if P> ¢ C®°(R?*",GL,(R)) satisfies (ii), then
Pj’tbc(g) = Tf’;(x, ¢). We shall note Ptz’b = (x,¢) — P>P so that Py ®— Pt and POZ’b = Idgn.

e
Thus, Yy . 6(x,¢) = (¥2(x,t(), Ptszg(o) and we define the following diffeomorphism on R3",
Et,z,b = (Xa C?ﬂ) = (Tt,z,b(xa C) Ptzxtjg(ﬂ)) (532)

~

We also define the R?"-valued function Z; . b :(x,¢,0) — (PO(x, t() txc(ﬁ))' We check that
J(ZEtz0) = J(Tiz0) (det(Pf’ )~Y and J(Z, S ) J(T—t2p) (det(P oT_t,Z’b)). Note also that

for any (x,y) € R, 8(y,x) = — P (08(x,))

Lemma 5.4.27. Let (z,b) be a given frame, A\, X € [0,1] and t € [—1,1]. Suppose also that
(M, exp, E, du,w) has a Sy-bounded geometry. Then
(i) PP, (PP°)"Y are in B2, (Mu(R)), and 77°°, (77°°)~ are in E%,. (L(E.)).

O,Kz.p 0,Kz.b

(1) m Zb =l oly € Hop, ,(R™) and there is ¢ > 0, r > 1 such that for any (x,¢) € R*",
(my” b(X7 Q) = (O

(i4i) There is c,e > 0 such that for any (x,¢) € R?™, (1%(x,¢)) > ()¢ (x) L.

() Pxr.p € Hyp, (R?™). In particular Inzb € Eo e (R).

(v) Tizp € Ho, ,(R*™). In particular J(Yy . p) € Es ., (R). Moreover, there is C > 0 such that
(Y50)(x,Q)) < C(Q) for any (x,¢) € R™™.

(vi) J(Z¢z6) and J(E;zl,b) are in Eq . (R).

Proof. (i) The case t = 0 is obvious. Suppose ¢t # 0. Since Ptz’b = p*bo Iiyand I € HO

the result follows from Lemma 5.4.22 (7). The same argument is applied to (Ptz’b)_l, T #° and
,b

(7)™

(ii) We shall use the shorthand m; := mf’b. In the case t = 0, mg = w1, so we obtain the

result. Suppose ¢ # 0. In that case Lemma 5.4.22 (i) entails that m; € Hoy, ,(R™). Since

Yio0 = (M, Tt;) we see that (Y. p(x,¢)) = O((x)(¢)") for a r > 1. Thus, there is C > 0 such

that for any (x,¢) € R®", we have (my(x,{))(Pixc(¢))" > C(x,(). Since there is K > 0 such

that for any (x,() € R?", <Ptz>’(bc(§)> < K((), we obtain the desired estimate.

(iii) V := (m1,9?) is a diffeomorphism on R?" with inverse V! = (71, @Dz) Since 1? = O((x,y)")
for a 7 > 1 by hypothesis, we see that there is ¢ > 0 such that (x,9°(x,¢)) > ¢(x,¢) for any
(x,¢) € R?™. This yields the result.

(tv) Direct consequence of (i) and the fact that ®y . p = (mx, ma_1).
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(v) follows from a straithforward application of (ii), Lemma 5.4.22 (i7) and the fact that for any
(x,Q) € R, Ty, p(x,¢) = (mu(x, C), tzxtfc(C))

(vi) By (4), (v) and Lemma 5.4.22 (i), tz’ oY .6 € B . (My(R)). Thus the result follows frorn
(), (v), and the formulas J(Z; . p) = J(T¢.20) (det(PtZ’ )~1) and J(E o) =J(Ttzp) (det(Pf
T—t20))- O

5.4.4 Pseudodifferential operators

Assumption 5.4.28. We suppose in this section and until section 5.5 that (M, exp, E,du,1))
has a S,-bounded geometry.

Definition 5.4.29. A pseudodifferential operator of order I,m and type o is an element of
L™ = Op, (S5™), where A € [0, 1].

By Lemma 5.4.7, S5™ can be seen as included in 8'(T*M, L(E)), so Op, (S5™) is well defined.
The following theorem shows that it does not depend on A, and thus justify the notation \I’f,’m
We note TI)%’X = (7')2\’[’)’1 oYy xzb Tf,’h and 7'2’)\’ : (T)\Z,b DG bl Ti’,h_/\. If 1) = exp, we have
Tﬁ,’x = TRN -\ and Tz\’)\, = (TL’N_)\)fl where TLt = Tt lf t # 1 and TLt = (T ’1) oYy 2,6 if

t=1, and TRy := th’h if t # -1 and 7p; := (Tf’b)’l oY _q,pift=—-1.

Theorem 5.4.30. Let \,\ € [0,1] and K = Op,(a), with a € SL™ . Then there exists (an
unique) a' € S5™ such that K = Opy,(a’). Moreover, for any frame (z,b),

i /2m) 101 0,8,8) N _z,b /\X
alp~ Z (@/ g!) (8( ﬁﬁ)TL Z/ Th )gzo
B

where a, p =T, p+(a), a’z’b =T, p.(a), and af’b is the amplitude defined for any t € [—1,1] as

07 (3, G, ) o= PO 72, () (a2 0 B, € 9))
Proof. Let us fix a frame (z,b) and note a,p = T;p«(a). We saw in Remark 5.4.16 that
Opy(a)zp = Opr, _ (Hazp)). Thus, for any v € S(M x M,L(E)), we have with u,p :=
T, o.2(u) € S(R*™, L(E.)),

2,

(K, u) = /]R Oy (pag p(x, 9) (Do p(w0) (x,€))") dC ) dix.

Suppose that m < —2n so that the integral is absolutely convergent. We now proceed to the global
change of variables provided by the diffeomorphism Ei’,i y of R®" (2, . p is defined at (5.32)). We

get (K,u) = <Dp>\/7z7b(,u72)‘ ai,b )\T])%")‘/),uz,b) We check with Lemmas 5.4.27 and 5.4.23 that

M\ zb A l,aw,m .
7" ay_y\Tr” is an amplitude in Il - for a k > 0 and a w € R. We also see that the linear

i !
map a,p — /“'2 A ai,b )\T;;:)\ is continuous on S(l;;", which yields, using Proposition 5.4.14 (i7)

and the density result of Lemma 5.4.6, the equality (K, u) = <DP>«7Z75(/JTL ai,b )\T})%)\) Uzb),

for any order m of the symbol a. The result now follows from Lemma 5.4.21 (4ii). O
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Proposition 5.4.31. For each A\ € [0,1] and [,m € R, oy is a linear isomophism from ghm
onto S5™ and ox(A1) = (o1_x(A))* for any A € V5™ In particular a pseudodifferential operator
A is formally selfadjoint (i.e A = AT as operators on S) if and only if its Weyl symbol oy (A) is
selfadjoint (as a L(E) — T*M section).

Proof. The fact that o) is a linear isomophism from L™ onto SLY™ is a consequence Theo-
rem 5.4.30 and the fact that o) is a topological isomorphism from S'(M x M,L(FE)) onto
S'(T*M,L(E)). We check that for any T € S'(T*M, L(E)), Op,(T)! = Op,_,(T*) which is

a direct consequence of the fact that ®)(z, —§) = j o ®1_»(z, &) where j(x,y) = (y, z). O
Proposition 5.4.32. Any operator in Thm s reqular. Moreover, for any A € U™ and v € S,
we have
Av) 1z du?;(@)/ dpz(€) €709 oo(A) (2, 0) 7 (2, €) v(1,9) -
T (M) T (M)

Proof. Let A € U™ and a := oo(A). Thus, for any frame (z,b), A = Opp, ., (Hap) so by
Lemmas 5.4.17, 5.4.27 (i) and (iii), A, p is continuous from S(R"™, E.) into itself. By Proposition

5.4.31, A" is a pseudodifferential operator in \I/f,lm, so we also obtain (AT) b continuous from
S(R™, E,) into itself. The result follows. O

5.4.5 Link with standard pseudodifferential calculus on R" and L2-continuity

We suppose in this section that E is the scalar bundle. If A € ¥,,, then A, belongs to the
space, noted WU, ,, of regular operators B on S(R"™), of the form

B = [ | 0 a, 0)o(w(x ~))dcd

where a € S°(R?"). We study in this section a sufficient condition on 1, such that this space
VU, is in fact equal to the usual algebra W, 4 pseudodifferential operators on R™ with the
standard linearization ¢(z, () = = + (. Here ¥y o4 corresponds to the Hérmander calculus (81|
on R" and Wy 44 is the SG-calculus on R".

We will note 1 := 92, Vx(¢) := —¢(x, —C) + x, My = [fol 9;(VyH)i(t¢)dt]; j and Ny :=
[ fol 0;Vi(t¢)dt); ;. We consider the following hypothesis, noted (Hy):
(i) there is €,d,n7 > 0 such that for any (x,¢) € R* with ||¢|| < e(x)?", we have det My > §
and det Ny o > 0,
(i3) the functions (dVi)xc and (dVi )¢ are in EX (M, (R)).

Proposition 5.4.33. If the hypothesis (Hy) holds, we have ¥y = W5 oq.

We set xcp(x,() := b(%) where b € C(R, [0,1]) is such that b = 0 on R\] — 1,1[ and
b=1on [-1/4,1/4].

Lemma 5.4.34. Suppose (Hy). If a € Sy™(R2™), then the application

Gy M * (X, ¢, 19) = Xa,n(x7 C)Q(X, Mxﬁﬁ)"](vxil‘(g) (det MX:C)il



182 Chapitre 5. Global pseudodifferential calculus on manifolds with linearization

is an amplitude in Uy, Hf;}f{:T(R‘g”). Stmilarly,

ay.n : (%,6,0) = Xem(X, Qalx, Nec?)[J (V)| (€) (det Nyo) ™!
is in Uy, o o2 (R3).
Proof. The result follows from Lemma 5.4.23 (i7) and applications of Proposition 5.5.4. O

Proof of Proposition 5.4.33. Suppose that a € S(l,’m(RQ”) and define A as the operator in ¥,
with normal symbol a. We obtain for any v € S(R?")

A)(x) := /R N ™00 a(x, D (v (x, —C))dCdD .

We suppose first that a € S °°(R?"). We have after a change of variable, and cutting the integral
in two parts A(v)(x) = A1(v)(x) + Aa(v)(x) where

Ai(v)(x) = / 2T Mec Oy (x, Qalx, 9)| T (Vi HI(Q)v(x — ¢)d¢dd,

R2n
Ax(v)(x) = /R TV (1= ) (x, Oalx, )T (V) (vl = Q)G

In A, we permute the integrations d¢ and d¥ and proceed to a change of the variable ¢, while
in Ay we integrate by parts in ¢ using formula (5.26) so that for any p € N,

M) = [ 0Dy, 0ol - C)dcs.

. —1 -1
Ax(0)(x) = /R TR = e (6,0 M O @) T (VI vl — Qg
As a consequence with Lemma 5.4.34, and with the density of S, °°(R?") in S(l,’m(R%), we see
that A is the sum of two pseudodifferential operators in ¥, q: A = A, + R where R € \IJ;‘;’ ”
and A, has a, y as (standard) amplitude. The implication in the other sense is similar. O

Remark 5.4.35. In the case of pseudodifferential operator with local compact control over the x
variable and with v coming from a connection, by cutting-off in the C-variable or in other words
taking y == ¥(x, —() and x sufficiently close to each other, we have in fact VY, equal to ¥y gq
modulo smoothing elements (see [125]).

As a consequence, we see that if the hypothesis (Hy ) is satisfied for a frame (z,b), then
U, (= W4 aq) is stable under composition of operators and the symbol composition formula is
then given by a quadruple asympotic summation modulo smoothing symbols.

We will show in the next section that we can also obtain stability under composition directly,
without using a reduction to the standard calculus on R™. We shall obtain with this method a
simpler symbol composition formula on ¥, 4, analog to the usual one on ¥, 4.

As a direct consequence of the previous proposition, we have the following L?-continuity
result for pseudodifferential operators on M.

Proposition 5.4.36. If (Hy) is satisfied for the function V"1 in a frame (2,b), then any pseu-
dodifferential operators on M of order (0,0) extends as a bounded operator on L*(M, dyy).

Proof. Since (Hy) is satisfied for V.1, the proof of the previous proposition entails that \112’7% C

\IJO’O

o stq> 50 the result follows from the L2-continuity of standard pseudodifferential operators [81].

O]
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5.4.6 Composition of pseudodifferential operators

The goal of this section is to prove that pseudodifferential operators of W are stable under
composition without using the hypothesis of the previous section, and to obtain an adapated
symbol composition formula. We shall adapt to our situation a technique used for Fourier integral
operators in Coriasco [42], Ruzhansky and Sugimoto [117,119].

Let us note for (x,£) € TM and &' € Tw;E(M), Vpeg = 1[);;5, r2(&,€) =y (Ve ) and
(&, &) = ﬂ}l;lg o (¢;£). We define V,, the 2n dimensional smooth manifold as V, := {(&,¢') €
To(M) x UyenmTy(M) | & € wag(M)}. Each V, manifold is diffeomorphic to R?" via the

ma cnned 1or an Xed Irame (2 n =
p, defined for any fixed frame (z,b), nly. (€,¢') = (ML ,(€), M?

- w—&(fl)), and has a canonical

involutive diffeomorphism R, defined as

R, : (575,) = (r$(§7§,)7qw(£7€/))'

In all the following we fix a frame (z,b), and note also ¢ the function mz_f . We note x¢¢" :=
Y((x,¢), (). For each x € R", Ry := ngv R(ng)_l(x)o(ngv )~!is a diffeomorphism

O
(n2)~1(x) ()10
on R?", and we define R, =: (rx, @x)s 7 = = (x,(, () = (¢, ) and ¢ = ¢*° = (x,(, () —
QX(Ca Cl) Remark that TX(Ca C,) = *#&?(X, XQC,) = ¢xo'¢wx(C)(C/) and qX(C) </) = *Pj’ﬁzb(xg)gl(c)'
The map 7y ¢ : (' — 1r¢((, (') is a diffeomorphism on R™ such that r;é =Ty (OB so that

(de,()E/l = (drﬂ’x(ﬁ)@w(x,g)(X))TX7C(C’)' We will use the shorthand 7 := (777)~1.

We note s(x, ¢, (") :=r(x,¢,¢")—¢. We have s(x, (, (") = sx¢c(¢’) where s ¢ = T_COEXOMJ%(O
is a diffeomorphism on R™ such that sy ¢(0) = 0. We also define

wix,¢) (%)

SOX7C(<,) = TX,C(C/) (- (drx7C)0(C/)

so that ¢y ¢(0) = 0 and (dyx¢)o = 0, and

Vi(x, () = (dryc)er

as a smooth function from R*" into M, (R). We shall note (x,¢) — Ly ¢ := —(dry ¢ )o.

We define Of;fﬁ?ggilgl,c(é), where ¢ € N, I € R, w := (wo,w1) € R%, ¢ := (g0,€1), €0 > 0,
g1 > 0,0 €[0,1] and k > 0, as the space of smooth functions g from R3" into & such that for
any 3n-multi-index v = (u,y) € N?® x N, there exists C,, > 0 such that for any (x, (, (") € R?",
107 g(x, ¢, || < C,(x)oU-lul=erlvle) (¢ywotrlul+eol(¢/ywitklvl Here, we denoted |v]. := 0 if || <
cand |y|. = |y|—cif |y| > ¢. We note Og ;- (€) := chlﬂw(’)f,’f,"m,c(é). We check that for any multi-
indices 7,7 and ¢, € N, [yle + [7'|e = [v +'|eters and [y +7'|c = [7]e + [7]e- Thus, Op . (R),
O re(Mp(R)) and O e, = Ogre(L(E;)) are algebras (graduated by the parameters c, [,
wo and w) and 8*OL% . (€) C Og}lfé';el"Y‘C’w0+n‘“‘+€0M’wﬁﬁ‘y‘(QE). If f e 0%, .(€), then
(x,¢) = f(x,¢,0) € EX(€), and if f € O5% .2, then (x,(,0) — f(x,¢,0) € 552, Remark
that any monomial of the form (x,¢, (') — ¢’® where 3 € N”, is in 02:27,EI|6\(R) for any k > 0
and g9 > 0, &1 > 0.

In the definition of S/ bounded geometry, we only require a polynomial control over the @z
functions. It appears that for the theorem of composition, a stronger control over these functions
is important. We thus introduce the following:
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Definition 5.4.37. We shall say that (C,) is satisfied if there is a frame (z,b), (ky, w,) € R%
with k, > 1, and ¢, €]0, 1], such that
Veoputs L oMa(R), and (dl), (d2,), = O(1). (5.33)

0,Kv,Ev,€v,

In particular (Cy) entails that (dry¢)o and thus L are in EJ . (My(R)).

We note Rovie; (€) (€1 > 0) as the space of smooth functions g such that for any nonzero
v = (,7) € N> x N, 9¥g = O((x)7(-lul=erlrl) (¢ywotrllvI=1) (¢/ywi+s(lI=1)) Tt follows from
(Cy) that r € Uwo,wlRi(:Z;U/Z(R”).

The following lemma will give us the link between the the O, R, H, E spaces and the
behaviour under composition.

Lemma 5.4.38. (i) Let f € H,(€) (resp. B, (€)) and g € Rovet(R?™) such that go(x, ¢, (") =
O((Q)*2(¢)*2) for a (ka, k5) € RY and, if o # 0, (g1(x,¢,¢)) = e(x)(Q)F1(¢) M, for a (k1 k) €
R2 and ¢ > 0. Then, fog € R?,(;;’fii“’wl’“’“?w(@) (resp. (’)gﬁzwjgzo(@)) where Ky == Kk +
max{ |wo + k10 + kak|, |1 + Kjo + kK| } and kg = k+max{ |wo+ k10 + (ks — 1)k|, Jwi + Ko+
(5~ 1w} 0 |

(i1) (x,C,C') = ((x,0), ") € REEL (R2) and (x,C, ") = 3¢ € Ryt for a (g, wy) € RE.
(i41) The functions q, (x,(,¢") — (Pf’lbﬂb(x’o,c,)*1 and (x,(,¢") — det(Pf’lbyw(x’O,C,)*1 are res-
pectively in Ry, 1(R"), 0200 (Mn(R)), and O>2° (R), for a kg > 0. Moreover, there

0,Kq,Kq,1,0 0,Kq,Kq,1,0

exists C > 0 such that for any (x,(, ") € R3, |lg (¢, )| < CC).
(iv) (x,¢,¢) > 7(x8¢, gx(¢, ¢)) s in 0200 for a k. > 0.

o,kr,kr,1,0,2
Proof. (i) If v = (o, 8,7) # 0 is a 3n-multi-index, we have 0" fog = ZlSh”\S\VI P,.(9)(8" f)og,
With‘Pl,j,,:(g) a linear combination of terms of the form szl(ﬁljg)k], with 1 < s < |v],
S1UIK| = v, D1k = V. As a consequence, we get the following estimate for any 1 <
lv| < V], Pyoi(g) = O(x) W I=lul=erhD) (cywol/I+a(vl= 1D (¢rywi V' [+5(vI=1¥])) Moreover, for any
1 < || < |v], there is C, > 0 such that for any (x,(,¢’) € R3", the following estimate is
valid [[(8¢ 1) 0 9(x,€,¢)| < Cufpy= 1= ()b bbam) I =) i1y kg 1) K5y,

‘ (81/]?) 0g(x,¢, ()| < CV<X>7U|V/|<C>(kngrkM)l”lszw<C’>(k/1”+k/2“)|”/‘+k/2w). The result follows.

(ii) By hypothesis, ¢ € Hgf}ﬁw We deduce that (x,¢, (') — ¥(x,() € Rg’ﬁi)’l and the first
0,0

statement now follows from (x,(,¢") — ¢’ € R

The second statement follows from (7).

Ok, 1"
(i17) Since ¢x(¢, (') = —Pf’ﬁw(xycm,(éh’), the fact that ¢« € Rok,,1(R") for a kg > 0 is a conse-
quence of (i), (i) and Lemma 5.4.22 (ii7). We also have by (i) and (i), (Pf’lhw(x 0 <,)71 €

O, o(Ma(R)):.

(iv) Since T € Egﬁ(L(Ez)) for a k > 0, the result follows (¢), (i7), (i73) and the estimate
(6" > e(x) ()R F for ¢, k > 0. O

Lemma 5.4.39. Suppose (C,). Then

(i) s, € (’)gjg’fgm%l(Rn) and p € O;ZZ?&(R") where ws := wy + 1 and wy, := 2+ wy + Ky.
(ii) V = (dry )¢ and (drx7<)5,1 are bounded on R3™.

(iii) The function J(R) : (x,¢,C") — J(Re)(C, ) is i Up g aor.c0.e0 Q0 V0™ ((R) and (x, ¢, ) —

0,K,€0,E1,0
o ~0,0,0
7(x,7%(¢, (")) is in O i pimren /20,5 10T Fir 2 0.
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Proof. (i) We have sy (¢') = >, (! fol Oprrx ¢ (t¢") dt. Since V' € O 0wy o(Mp(R)) each func-

O,Ky,Ev,
tion (x, ¢, (") fo Oprrx ¢ (t¢") dt is in Og g;“gv (R™) and thus, since (X ¢, ¢~ (e OS. 21]178” (R),
we see that s € (9272:,’;’1( ™). We have also ¢y ¢(¢') = 37520 5, fo 1—-1) 8C,rxc(tg ) dt and

each function (x, ¢, (') — fol 1—t) 6?),73{((15( ) dt is in O;Z’J’Z’%’””” (R™). With (x,¢, ") — ()8 €
0%0:2 5(R), we get p € O EvsEu, W (R™).

0, K ,Ev,2 0,Kv,Ev,2

(4i) Direct consequence of (Cg)_alnd the following equalities for any (x, ¢, (') € R, (dryc)er =
(ds) e (A (o)) and (drxc)er = (dby, (¢))wo.r (W), (1)

(7i7) The first statement follows from Lemma 5.4.38 (ii). The second statement follows from

Lemma 5.4.38 (i) and the estimate r4(¢,¢") = O((C)({")“). O

We shall use a generalization to four variables of the Hf,u,iT spaces of amplitude. We define

Héﬁ?ﬁfé’ (0 < 1 < 1) as the space of smooth functions a € C*®°(R*", L(E,)) such that for any
4n-multi-index (v,6) € N3 x N, (with v = (p,7) € N** x N") there is C, 5 > 0 such that for
any (x,¢,¢’,9) € R,

W a(x, ¢, 9 H <c, a(l=|ul=e1|7))  ywortalv] g prywialv] gym—8]

[ a0, < Cust) (ot (¢ryen el )

These spaces have natural Fréchet topologies and form a graded topological algebra under point-
wise composition.

Lemma 5.4.40. (i) Ifa € Hélﬁogflzm then agr—o @ (x,¢,9) — a(x,(,0,9) is in Héqﬁbozm
(i) If h € O™ then (x,¢, ¢ 0) — h(x, ¢, () is in 112 wo,w1.0

0,K,€0,€1,0,27 amax{neo}el, ~
(#i7) There is k=, k1 > 0 such that for any b € SUZ , the application bo =, where Z(x,(, (', 0) :

b Lok |l],ok1|l
(XCC PjLw( ,0),¢! (79))7 i in H0—2~1,|1|,; il

Proof. (i) and (ii) are direct. N N

(10) If p :~(V, §) # 0 is a 4n-multi-index, we have 9#(bo Z) = zlé_lu’lé\u\ P, (E)(0"b) °
with P, ,/(Z) a linear combination of terms of the form H;Zl(ﬁlJE)k], with 1 < s < |u|, V =
(171,172) € N3 x N*, kJ = (k! k9?) € N® x N”, such that /2 = 0 for 1 < j < j; < s, and
STVIKI| = p, Yo7k = p/. We have

(1R

n n n .
(2 = [L0ueo@" )0 [T (30" P o0,
i=1 i=1 k=1
where P are the matrix entries of — Zlb b(xe) ¢ By Lemma 5.4.38 (i4) and (iii), x¢¢ €
Rg’?{z}ll(]l%”) and the P“F are in (’)225 nw,lo( ) for a (ky,wo,w1) € RY. We obtain thus the

following estimate
1P (B)(x, €, ¢ 9)| < Cfo) o W=D g ywolam vl=1a’) (rywnla’ o (lvi=la']) 9y 18113

with g/ =: (¢/, 8). Since b € S5 we also have the estimate
@8 0 Zx.¢,¢)

so the result follows now from the estimate (x$¢)70=1¢'D = O((x)7U=l'D((¢)(¢'))oklti+okla’ly
with kz := Ky + max{ |wo + ok — ky|, (w1 + ok1 — Ky| }. O

< 1, (x8yolt=1al) pgym=19'
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Lemma 5.4.41. Let s € C°(RP,R"™). Then for any p + n-multi-index v = («, ) # 0, we have

al/ﬂei(ﬁ,s(x» = P,(x,9) oH(05(x)

X,

where P, is of the form Z\'YIS\O{I VT, ,(x), and T, ~ is a linear combination of terms of the form
H;’;l(al"s)ﬂj where 1 < m < |v|, (I7) are p-multi-indices and (pi7) are n-multi-indices. Moreover,
they satisfy || > 0, D700 |17 = [y + 18], 252 [WI|P] = |af and if [B] = 0, then |I’| > 0 and
7[> 0.

Proof. We note g(x,9) := (¢, s(x)). By Theorem 5.2.11, we get the following equality for any
v # 0, 9 4056} = P (x,0)e!?5) where P,(x,9) = > 1<k<iy| Pri(g) and P,y is a linear
combination of terms of the form H;":l(aljg)kj such that 7] >0, k¥ >0, 7"k = k and
S K = v. If we suppose that the term 1_[7]7;1((37“5])}“J is non-zero, t‘hen‘|lj\ < 1 and if we
define j; such that for any 1 < j < ji, I72 = 0, we obtain, noting I/ = (I/'1,17:2),

m

Kv

m

alf H 8lﬂl ki H (alj’lsqj)kj
j:l : ]:]1+1
L .om . .
=y e e T e
|y |=k7,1<j<j1 Jj=1 J=j1+1

Thus, we have P = 32115 V" Tl/'yk( x) where T, 1 is a linear combination of terms of
the form H‘“ (0 O )W TTM (07 s9)¥ | where 1 < g <n, 1<j<m< |y, 1< 5 <m,

J=j1+1
Pl e Np ki€ N*, N € N" are such that 337 k9 = k, S0 V|| 4 337 k7|19 +1] = || and
> ji+1 Kk =|B]. The result follows. O

Lemma 5.4.42. Suppose that (Cy) is satisfied. Then
(i) Representing by u the letter s or o, for any 3n-multi-index v = (u,v) € N?" x N, we
have the equality 9y - 2T, (C) = i<ty P Trwu(x, G, ") 21 c () where each term

ool wa‘W+’Y|+f€v|N| |l —evlwtalevlwtyltrolulwe oty |+ lul @
TllUJyS S Oo'lﬂvys'uy€va|w+'y‘ ( ) and Tyw7<p € OU ﬂv75v75’072|w+’y‘ ( ) ]n

particular, it satisfies the following estimate valid for any (x,¢, (") € R3", and any n-multi-index
P

‘ Ty (%, €, C')\ < Cy’w7p<x>—0(|u|+auIpl\wﬂ\)<<>Fvv|u|+av|pl<C/>ws|w+v|+m(\u\+lpl) ’

| VWP( GO < <X>—U(\m+(€u/2)lpl)<<>€u|w+v\+nv|u|+6v|pl<C'>w¢\w+v|+m(lul+lpl)'
(ii) For any n-multi-index 3, we have 5?,62”i<19"px’<(</)> = Pﬁm(x,C,C’,ﬁ)e%iw"px,i(cl)) where
Ps ,(x,¢,¢',9) is a linear combination of terms of the form ¥“(" M, \(x,(, (") where w and A
are n-multi-indices satifying |w| < |B], 2lw| — [8])+ < |A| < |w]|, and t, 5 are functions in

—€v ‘ﬁ|/272€v»w{s
0’7’€U75U78U7|ﬁ‘

|ﬂl(}R). In particular they are estimated by

tur(%,¢,C") = O((x)7oeel81/2 () 2018l ¢ 1ywil Bl

where wy = ws + 2k,. Moreover, (x,(,9) — Pg,(x,(,0,9) g, € Hgi”v@/? <ulBLIAI/2
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(i17) If B € N™ and f € Hf,lﬁogll”z’ then the function

Foot (x,¢,0) o O (270 PclNGO000 f(x, ¢ ¢! L (9))) o1

belongs to Hf;&y\flwﬁmIﬂ\,m—lﬂl/2’ where €| := min{e1/2,£,/2} > 0, k1 := max{ Ky, K }, Ky :=

K+ |ey — K|, and the application f — fg, is continuous.

Proof. (i) By Lemma 5 4.41, if v # 0, we have the following equality, valid for any (x,¢,(’,9) €
R47 8)’(’ e2mi{(¥,ux,¢ (¢ (Zl I<|ul VT, uu(x,¢,¢))e 2mi{¥,ux,¢(¢) where Ty is a linear com-

bination of terms of the form []7 (8“Cu)‘“ with 1 < m < |v|, g # 0, Py ] = |w + 7|
and 37", |1?||l9] = || Since by Lemma 5.4.39 (i), s € O2%"s _ (R"), it is straightforward

0,Kv,Ev,Ev,1

to check that T, ., € O il ol ws|w+7‘+'€“‘”‘(R) Moreover, since ¢ € O 5" (R"), we get

0, Kv,Ev,Ev,|w+Y] O,K0,Ev,E v,
T c0O” [l —evlwtyl e lwty|+rolpl, w«p‘“’+7|+’%|#|
vw,p O,k ,Ev,Ev,2|w+7|

estimate follows from the inequality [w -+ | + |p|ojwiq| = |0l/2.
(i) By Lemma 5.4.41, if 3 # 0, we have for any (x,(,(’,d) € R*" the following re-
lation 3?,62”“19"’*’4(4 = (Xi<jui<1g) P TBw,e (%G, ¢’))e 27”“9%‘ (@) where T34, is a linear
combination of terms of the form szl(ﬁljgox’ W owith 1 < m < |8], W/ # 0, I # 0,
>t || = |w| and Py \17]1] = |B]. Let us reorder the I/ indices so that for any 1<j<q,
|l3| = 1 and for any j > ji + 1, || > 1, where j; € {0,---m}. Thus Hm,l(aljgox W=
((‘3“g0x’¢) 11 > +1(8l Px, )“ and with a Taylor expansion at order 1 of 8" ¢y ¢ in ¢/ around
0 When 1 <j <ji1, we get o Px( = Di<i<n Citm. where tf fo (‘36”'“ ¢(t¢")dt. Thus, using
the fact that ¢ € O2%® 1 (R™), we see that H?;l(ﬁlj 90X7C)M is a hnear comblnatlon of terms

0,Kv,Ev,€v,

of the form ('*Vy where |\| = ?:1 |14 | and

(R). The first estimate is direct and the second

Vy = O({x) 7% i 1171 ¢yeolA+en i W11 1y (Rotws )AL+ it Y

As a consequence, we see that H;-nzl(ﬁlj gpx7<)“j is a linear combination of terms of the form (AW,

where |\| = ;1:1 |7 | and

Wy = O((x) o= UBl=v) ¢y 2eulBl( ¢/ ywsl Bl
where v == Y71 || = |w| — |A|. The first statement now follows from the inequality 2v <
6] = Al

Since ¢y ¢(0) = 0 and (dpxc)o = 0, Pgy(x,(,0,9) is a linear combination of terms of
the form ng?@zl(aOQ,“@(X’C’Q))M with 1 < |w| < |8]/2, 1 < m < |B|, 4w/ # 0, |V] > 2,
> || = |w| and Z;n:l |7 |17 = |B]. We check with Lemma 5.4.39 (i) that any function
of the form Hm_l(ao’o’“ (x,6, )N is in O eolBl/2.2ulBl, (w5/2+ﬁ“)‘6|( R), and thus, (x,¢,9) —

0,Kuv,Ev,|B]/2
T (970 (o, € 0 1,y € T 272570 Since (x,¢, ) = 99 1y, € TGl 2% we ob-
taln ( ,C7’l9) — P@w( ’C’Ojﬂ) 1L(E ) 6 HO—’€|UB,|/2 EU|B| ‘6'/2
(7i7) We have
Fo0(5,C0) = D (50 (270 2xc Ny 90078 f(x, ¢, 0, Ly (1))
B'<pB

= Z (ﬁﬂ’)P/@’,w(Xﬂ ¢, 0, 19) ao’o’ﬁiﬁ/ﬁf(}g ¢, 0, LX,C(ﬁ)) .
B'<p
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Since (x,¢) — Lx¢ € ES,. (My(R)) and L;é = O(1), we deduce from Lemma 5.4.40 (i) and

0,Ky

Lemma 5.4.23 (iv) that (x,¢,0) — 890085 f(x, ¢,0, Ly ¢(¥)) belongs to the amplitude space
Hl_el|B_B/‘aw0+ﬁ‘ﬂ_ﬁ/|zm_

o .max{ s oz 51 The result now follows from (7). O

We now introduce two parametrized cut-off functions that will be used later. Let b €
C°(R,[0,1]) such that b=1on [-1/4,1/4] and b = 0 on R\| — 1, 1[. We define for ¢, d,n1,m2 > 0
with €,0 < 1,

Xe(@,9) = b(Ls),
1112
X6 (%,€, ¢') 1= b srabinier=sms )

Lemma 5.4.43. The cut-off functions x. and x5, are repectively in the spaces C>(R?*"[0,1])
and C*(R3",10,1]) and satisfy:

(i) For any (x,,¢)) € R, if || < 3367 (Q)7, then xsn(x,C,¢') = 1, and if '] >
§(x)TM(C)™2, then Xs,(x, ¢, ¢") = 0. In particular, for any (x,¢) € R*™, x5,(x,(,0) =1 and for
any 3n-multi-index v # 0, (0" xs)(x,¢,0) = 0.

(i4) For any (0,9') € R¥™, if || < ie(9), then x.(9,9) = 1, and if || > (V), then
X:(9,9") = 0. In particular, for any ¥ € R"™, x.(9,0) = 1 and for any 2n-multi-index v # 0,
(0”xe)(9,0) = 0.

(i1i) For any 3n-muti-index v = (a,3,7), we have 8"xs,(x,¢, () = O((x)~lel(¢)=#(¢")=1),
and 0¥ x5.,(x,¢,¢') = (<X>—U\V|<C>(—1+n2/n1)|ﬁl+(n2/m)\7\<§'>(nf1—1)\vl+nfllﬁl), In particular, the
function x5, is in (’)an?n, 1 0( ) for a /<;§7 > 0.

(iv) For any 2n-muti-index v, 0" x-(0,9") = O(9)~ ) and 8" x.(9,9") = O((")~ V).

Proof. (i) and (i) are straightforward. For any v # 0, 9"xs,y = > 1<y<y| P (9) (0”'D) o

where g(x,¢, (') = W We obtain from a direct computation the estimate P, ,/(g) =
O((x)~2emv'=lal(¢y2n2v! _W|<C’>2” —h). Since for any v € N, we have b = O(1) we obtain
0" Xsn = O((x)~12H(¢)=P(¢") =M1 p,) where Dj is the set of triples (x, ¢, (') satifying the inequa-

lities 6/2 < (¢')(x) 7™ (¢)" < /2. The estimates of (i4i) follow. The proof of (iv) is similar. []

We will use in the following lemma the space O (x>0, j € N, (to, 1) € R?) of functions
f € C>®(R*", C) such that for any a € N", there is C, > 0 such that for any (x, ¢, (’,9) € R4,

. - !1ogl sl / Y
08£(x, 6. ¢, 9)] < CaQ)lortmiel(¢ryhtrlel() =27, Clearly, 07O C O and
ag/ozo:tlyj g OZO+K|D‘|7t1+H|a‘7j.

Lemma 5.4.44. . Defining h(x,¢,¢,9) = (1+ |[(dsx.0)er (9)]|” = (i/2m)(9, (Ase ) () ", we

have the following relation, valid for any (x,¢,¢’,9) € R4, p € N,

™05 () = (n(x,¢, ¢ 9) L )P e2mi(0,8x,¢(¢"))

where L =1 — (21)"2Ay. Moreover, if (Cy) holds, there is ky, > 0 such that for any p € N,
there is N, € N*, (h})1<k<n, functions in (’)2me QPHL’p, (ﬂk’p)lngNp n-multi-indices satisfying

|BP| < 2p, such that (L¢ h)P = ZNP hi 8?’ g
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Proof. We obtain LC/eQ’”w’SX’C(C) (1/h)e2™i0:5x.¢()) through a direct computation. Let us
show the remaining statement by induction on p. Note that by Lemma 5.4.39 (ii), we have
11/h| > c(9)2 for a ¢ > 0 and we check that 1/h € Iy i“vlﬁgzz where w], = max{ 2w,, w,+k, }. With
a reccurence or using Proposition 5.5.4, we check that h € (92,?’1 where k7, := max{ 2&,, w] +£, }.
The property is obv1ously true for p = 0. Suppose now that the property is true for p > 0, so that

(L¢r h)P = ng h 86 " with N, € N*, (h})1<k<n, functions in OEPRLZPRLE gn (B%F)1<k<n,
< 2p. We also have

n-multi-indices satlsfylng | 3kP
k,p Bk D _ k,p
(L h)Ph = (Leh) th a5 Zhhpa 2m)"2(A¢r (hhD)0,,
+2 Z Oer (W)L " + hh A0 )

so the property holds for p + 1. O

We note S,..(R3", L(E,)) the space of smooth functions f such that for any N € N* and

= (,7) € N?" x N, 9" f(x,¢,0) = O((x) =N (¢)coterNtealul (9)=N) Tt follows from Lemma

5 4.18 that if f e Sgc(Rgn L(E.)), then Opp(f) € Opr(S,2°). Here and thereafter T' satisfies
the hypothesis of Lemma 5.4.18.

Lemma 5.4.45. Assume that (Cy) holds.
(i) For any l,wy, w1, m, K, Sm,wl(Hﬁ,“;%ﬁ”;’ ) C 8o o(R3™, L(E,)) for a triple ¢ := (co,c1,c2) and
the linear map Sy, © f = Smw (f) is continuous, where

Stmann (£) 05, G0) 1= [ 2 Qenc @D L (), €, ¢ 0") (=) (5, €, ) !

and pp, ., = max{m +2n, [Jwi|] +1+2n}.
(ii) For any u € S(R*", L(E,)), the linear application f + (Opp Smw, (f),u) is continuous.

Proof. We fix N € N*. First note that Sy, ., (f) is well-defined since for any (x, () € R?", there
s g > 0 such that || 25 (7)€, ¢ ) (L= i) o6, C. )| € G ) 72(C) 720, Since

for any n-multi-index 8, 99, M, Py (f) decrease to zero with ¢, we can successively integrate
by parts with (5.26), which is Vahd since 1 — yg,, assures that [|¢'|| > 16 on the domain of
integration. We obtain thus for any ¢ € N*|

Suvan (1) (6. C.0) [ el gt ()1 ) ' !

We note f, the integrand of the previous integral. If v = (a, 5,7) = (i, 7) is a 3n-multi-index,
we see with Lemma 5.4.41 that

8;419]0(] — €2m‘<19/,4/> Z (,lj/) 277“93,(( Z 9T, ws(X ¢, C)
Wsp |w| <]

Z >\5(—1)|5|Wmaxz 95, (F(1 - Xon)) -

|g‘:pm,w+q
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By Lemma 5.4.43 (iii), (x,(,¢",9") = xs5,(%,(,¢") 1, is in 112209 5o the multiplication

FJ 1,20

7! T1hwo, w1,
operator f — f(1— xsy) is continuous from II5 %™ into Igy 12", where £, = max{ &, /ﬁ:l b

Since ||{’|| > /2 in the support of f(1 — xs5,), we get from Lemma 5.4.42 (i) the followmg

estimates, where /i;; = Ky + Ws + Ky,

102 ¢ .£a (%, €, 0, ¢ )| < Copg )@y s =0 37 (ool ot ol
I<M
x (¢!t (ot ws) I |6l = (Pm,w o) +ws 7 ) oli]

< O )Gy () g ym=pmms =3 ¢y 55 =1,
If kK € N*, and if we set g := ¢ such that wy + ngk — Pmaw, — Gk < —2n, we see by applying the

theorem of derivation under the integral sign that Sy, ,,(f) is smooth and for any 3n-multi-index
v = (a,3,7) and ¢ € N*, after integrations by parts in ¢/, with v/ := (¢, ),

0 Sman ()60 =D Y (5')19“/%62”<<0’=<’>+<19,8x,<<<’>>> Tyrs(.€. (')

wSp |l <|w|

w90 F6C Au—p!
gy P gt (1~ ys,)) dO' dC

We note g4(x,¢, ¢, 0) == 2T, | (x,¢,¢)EM, pm wy T4 +¢,¢ 8“ ' (f(1 = xs4))- Using now
Lemma 5.4.44, we get the estimates for any p € N,

|(Zeh)?gq (€, € )| < Gl () (0 QPZHaﬂ " 94(x,, ¢ 9)

Thus, with Lemma 5.4.42 (i), we obtain with ki := ws + ky + Ky + K,

H(chh)pgq(x, ¢, C/ﬂy)H < C}’)<X>U\l\<C/>w1+(2p+|V\)k1—pm,w1—q|u|—q<19>—2p
<19/>2p+m—pm,w1—qwu\—q<c>(2p+lul)k1+wo Z Z Z qw,@g(f(l — Xom)) 1p(x, ¢, )

z 7 ~
|B|<2p # Sh [6|=Pm,wy +qpv+4q

where D = {(x,(,¢') € R?" | ||{'|| > 36(x)7™(¢)~™ }. If we now fix p such that —N — 2 <
—2p+|p| £ —N, we see that by taking g such that A, < —N/m —|l|/m where Ay := w1+ (2p+
[v[)k1 = Py — Q| — ¢+ 2n, and 2p+m — ppw, — qjy| — g < —2n, We can successively integrate
by parts in ¢’ (p times) using the formula of Lemma 5.4.44. We obtain then the estimate for
given constants cg, c1,co > 0,

10¥ S0 (f) (5, G, D) | < Gy (o) =7 (g oterVezlil ) =N

> > Yoo 4y 55— xam)

“ et _
1B1<2p W' SH |5|=pm w, +q,+a

which yields the result.
(74) This statement follows from (i) and Lemma 5.4.14 (i). O
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Lemma 5.4.46. Suppose (C,).
(i) Defining for any f € Hfrzﬁoéﬁl’ ,

T(f): (x,¢0) — [ 20T 0encCN f(x ¢ ¢ 0 + Ly (9)) Xo.(x%, ¢, ¢ dC d

R2n
there is 0,m, such that for any N > |m|, we have II(f) = IIN(f) + IIp n(f) where IIN(f) =
ZOSI[?ISN (i/2r) ‘ﬁlfg@ and there is such that Ilg n(f) satisfies the estimates for any 3n-multi-

index v = (u, ’y) € N* x N,
P n(f) = O(<X>0(l*8’1(N+1))<Qko+k1(N+1+|u|)+sv|’7|<19>m+\u\f(N+1)/2+n)

where €, ko, k1 > 0.
(i) We have for any 3n-multi-index v = (u,~) € N> x N",

OII(f) = O((x)7 Q)6+ H4I+=cbl gy

where kj,ky > 0. In particular, for any v € S(R®",L(E.)), the linear application f
(Opr (f),u) is continuous.

Proof. (i) We proceed to a Taylor expansion of f(x,(,(’,z?’,f}) = f(x,(, ¢, 0 + Ly c(9)) in o

around zero at order N € N* so that

()= Y. FHls(H+ D, ZRen(f) = Tn(f) +Trn(f)

OSI/@\SN |Bl=N+1

where

Is(f) = /]R P Oun MO8 f(x, €, Lue g (9) X (., ) dC'

Rsn(f) = g 98 2mi((0,C) +(0,px,¢ () ro.N.f (%, ¢, ¢ 0, 9) d¢ dY

and rg N f 1= fo Naoooﬂf (x,¢, ¢ 10" + Ly c(9)) dt, fy = fxom € Hf,u,i%’fgl’m By integra-
tion by parts in C’ in the integrals Ig(f), we get

i/2m)181 i /27181
Mn(f)= Y. G0 (2 0encD0000 f(x, ¢ ¢ Luc () g = 3 L5,

0<IBI<N 0<[B|<N

Using integration by parts in ¢/, we obtain Rg n 5 = (z’/27r)|mlf, where for any p € N,
I;(x,(,0) = /R T8 ¢, ) dC

G(X7 ¢, CI7 19/7 79) = 62“@97%(’((CI)>T5,N7f(X7 ¢, Cly 19/7 Q9) .

Using integration by parts in ¢/ and e2™(¢') = (v )*QPLZC’, e2mi(?.¢") we check that T ¢ is smooth
on R3” and if v is a 3n-multi-index, we see that 6”1 ¢ is a linear combination of terms of the form

Iy o= 0” /R 2 2T e NG T, P O 405 15, dC! V)
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where |@] < [¢/], v < v, Y6 = B, 8] = N + 1. We now cut the integral J; in two parts
Jy + Ji—y, where the cut-off function x.(9,?¢') appears in J,.
Analysis of Jy

Using Lemma 5.4.42 (ii) and integration by parts in ¢/, we see that J, is a linear combination
of terms of the form

Jx,w = 19‘:)19"') /]RQ e2ﬂi(<§l7<l>+<'§7(px,C(C/»)(C/>72ptw’>\ 82_61 TI/’,J},Lp a)\//a)igj/ﬁlaﬂdrﬂ,]v,f a)\+p*)\/X5 d(l d'lg/

where p € N, o] < 2p, |w| < |8%], (2Jw| = [52))4 <
€ < ¢/2 where c¢ is a constant such that ¢(9) < (L
Jyw, we have for any t € [0, 1], (t0' + Ly ¢ (9)) > 1
the following estimate:

Al < Jw], N < X+ p. We now fix & such that
< (Lx (). Thus, in the domain of integration of
) > ( ) for a ¢; > 0. As a consequence, we obtain
|03 008 ra.s | < €yt (et s 57

<<’>W1+ﬁn(|u—u’|+|53\)<19>\u—u’\+m—|ﬂ\—|/\’\ .

We also deduce from Lemma 5.4.42 the estimate

It., /\a sl <C(x)" (W [+(e/2IB1+62]) ()220l B 62+ (moteo)lulteo b oy (N4 D Feal]

As a consequence, by taking p sufficiently big, the integrand j(x, ¢, (", 9,v¢') of J,,, satisfies the
estimate, for a ¢{ > 0 and a k1 > 0,

7] < C"<X>U(l—6’1(N+1))<C>wo+k1(N+1+\u\)+avM<C/>—2n<19>m+|u|—(N+1)/2 1p.(9,9")

where D, is the set of (¥,9') in R?" such that ||| < e(9). We deduce finally that for any
veN3",

Jy = @(<X>U(l—6’1(N+1))<C>wo+k1(N+1+\u\)+avlv|<19>m+|u|—(N+1)/2+n) )
Analysis of J1_y
We set w = ((",?Y') + (0, ¢x¢(¢")). By Lemma 5.4.39 (i), 1ox,c(¢1)
C(x)~7= ()1 (¢")2) for C, c1, o > 0. The presence of s, in the integrand of J;_, allows to use
the estimate (¢') < v/28(x)7™M(¢)~™, so that 3, I¢roxc () ‘ < C'2%2/2 5% by taking m; < e,/co

and 19 > ¢1/co. As a consequence, we obtain the following estimate in the domain of integration

of Ji—y,

| <

Veow]? > ||| (1 — L0 2e2/%5%2).
We now fix d such that 30262/2 9 < 1 so that there is & > 0 such that |Vw| > & [|9']|. Noting
Ue = (2mi|Vow]?) ™! >i(0gw)0c we have (see for instance [119]) Upe®™ = 2™ and

(Ue)" = W Z Py,

lol<r

where P7,. is a linear combination of terms of the form (Vclw)’rag,l w- 8g,w with |7| = 2r,

|6¢] > 0 and > i1 |67] + |p| = 2r. We thus obtain after integration by parts in ¢’, for any r € N*,
that Ji_, is a linear combination of integrals of the form

SO ) L
§ete /2 e%mw(tUc/)”(@?, TV/@#PP@:ﬁz,@axcﬁ8gl rﬁ7N,f)(1 _ Xs)d<, v’
R2n
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where @] < [6?|. We noted Py , =: Y5 P@ﬂzwﬁa. By Lemma 5.4.42 (ii), we see that P g2 , €
o132 20 (ap! 2 ~ A
O elF1/2220 L ADIF 1ot us note T = 8?,1TV/@,¢P@732,¢. Lemma 5.4.42 (i) yields T €

075v75v7€v72|ﬁ2‘
- 1, 32
g,,(i:éi?lf,;aaLCJ\OI()WHNH%|7|7CO(|V|+N) (R) for a constant ¢y > 0. With our choice of the parameters

71 and 72, we also have the following estimate, valid in the domain of integration of Jy_,,
X av+e; v v 1—|A
OO 1w = O((Q)" Py bl oy =)
In particular, noting OLT the space of smooth functions f such that for any n-multi-indices A, 7,

(91)9‘,82,]“ = O(({(OH(¢))FrP1(9)™) | we see that |V ow|? € 0%% and for any A € N, Y|V erw| =4
= O((9')~""). Moreover, each term P¥, is in O3 5o that finally, for any A € N®

ag,w’%;;w = O(((CHS )™ (') ™) -

We easily check that if » > 2n, then h := (tUCI)T(8?,1Tv8)’:’z7”1;8§37’57]\77f)(1 — Xe) satisfies the
estimates for any ¢ € N, HLq,h} < CX7<,§/’197q<19’>_2". As a consequence, we can permute the
integration d¢'dy’ — dv¥'d(’ and successively integrate by parts in ¢, so that finally Ji_, is a

linear combination of terms of the form

9o / P Oy e O T O 900 g O (1= Xe)dY' dC
R2n

where Y, X' = X\, [A| < 2¢, >, p' = p, |p| < r. We also have the following estimate for cf, ¢} > 0,

O T 08 g .y = O((x)7EIPD () ()t lnn 111120 )

With Lemma 5.4.43 (iv) we now see that the integrand j’ of the previous integral is estimated
by

H]/H < O<19/>fr+|u|+N+1 <X>a(lfs’1(N+1))<C>ko+k1N+k2r+k3\#\+sv\'y\ (C/>f2q+ko+k1N+k2r+k3\V|
for constants ko, k1, ko, ks > 0. If we now fix r > 2n such that —r + |u| + N + 1 + 2n =

m+ |u] — (N 4+ 1) + n, and g such that —2q + ko + k1N + kaor + ks|v| < —2n we finally obtain
the estimate v € N3",

Jl—x _ O(<X>a(lfs’1(N+1)) <C>k’0+k/1(N+1+|,u|)+sv|7|<Q9>m+\u|f(N+1)+n) )
The result follows now from this estimate and the one obtained for J, .

(74) The estimate is obtained by applying (7) and N + 1 = max{2(n + |u|),|m|}. The second
statement is then a consequence of Lemma 5.4.14 (7). O

Theorem 5.4.47. If (Cy) holds, Y° is a *-subalgebra of R(S). Moreover, if A € \I/g’m/ and

Be \Ili,’m, then AB € \I/?'l/’erm/ with the following asymptotic expansion of the normal symbol
of AB, in a frame (z,b):

00(AB).p ~ D e, 307 (alx, 0)05 (209D @] F)(x,¢, ¢ L)) oge ) e
B,yeN™

where a := 0o(A).p, b= 00(B)..p, cg := (i/2m)°/B! and

fb(X7 Cv Cla 19/) = TX,’!’X,C(C/) b © E(X7 Ca Clv 19/) TX{’CI,QX,g(C/) |J(R) | (X7 <7 C/) | det(Pf’lbﬂ/,(X,C%C/)_” ‘
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Proof. We fix a frame (z,b). We note K4p the kernel of the operator AB. As a consequence of
Proposition 5.4.32 we have for any u,v € S(R", E.), ((KaB)»6,u ®@7) = (Asp(1 B, p(v))|u).
We shall note g := A, p(1u "B, p(v)). A computation shows that for any x € R", g(x) =

Jgn 1a(x,9) b(x, ) d, and

b(x, ) := /R PO (%, O, ) T () dC ' dC

We suppose at first that b € 5’},’;%. Since ¢/ — v(x¢¢") € S(R™, E,), we can permute the order
integration d¢’dy’ — dd¥’d¢’ in b(x,1). Thus, after integrations by parts in ¢/, we get for any
p e N,

b(x,0) = /R . 2T o ( / ) 2 (N2 (LE D) (v(x, €), ¥') ) Ty (x0).0 v(x$<) d¢’ d¢ .

With the estimate (x¢<') > ¢(O)(x)"H¢)~! for a ¢ > 0, we see that for any N € N,
H’U(XC’C)H < engon (V) (x)N(C)N(C) 7N, As a consequence, we get the following estimates for the
integrands by, of g(x, ¥): for any x,(,¢’,9,9, any p € N* and any N € N*, ||by(x,(, ¢, 9,9 <
Cp N (CYN =2 (x)olHN ()l =N (9 =27 Taking N such that o|l| — N < —2n and then taking p
such that N —2p < —2n, we see that (¢, (', () — by(x,(, (', ¥, 9) is absolutely integrable and we
can thus apply the following change of variable (¢, ¢’,9) — (Ry(C, ('), 9') to b(x,d). After rever-
sing the integration by parts in ' and applying the change of variable 9/ = —ﬁf’ﬁ B0, C,(Q?” ),
we get

b(x, 1) = / AT CNHIEN £, €, ¢ 0 08, €)) ' dC
R3n
By Lemma 5.4.40 (i¢3) and (é¢i7), Lemma 5.4.38 (4i7) and (iv) and Lemma 5.4.39 (iii),

we see that f, € ﬁé’f’,ﬁj;ffgm for a (w;,k) € Ri and €1 > 0, and the linear applica-

tion b — f, is continuous on any symbol space S(l,-rzn into ﬁélﬁl;flzm We have g(x) =
Jgn ™) a(x, 9) ep(x, ¢, 9)v(h(x, €) d¢ d9 and (K ap).p,u @ T) = (Opr, ., (db), u @ V) where
dy(x, ¢, V) = pa(x,9) ap(x, ¢, 9) 771 (x,¢) and

p(x, . 0) = /R2 (W NN £ (xc ¢, ¢ 0) d dC

Using now the cut-off function (x, ¢, (") — x5, (x, ¢, (") we see that

Cb(X7 C? 0) = H(fb)(x7 Ca 19) + Sm,wz (fb)(Xv C? 0) .

For this equality, we used the formula of Lemma 5.26 and integration by parts in 9’ in the integral
Jgen 2D (NN £ (%, ¢ ¢ 9 (1 — Xo.(x,¢, (")) d¥ d¢’, which are authorized since b €
Sll;;%’ by hypothesis. In [po., 2T, (NN £ (x, ¢ ¢, V) xsm(x, ¢, (") d¥ d(’, we translated
the ' variable by —Ly ¢(¥) and permuted the order of integration d¥’ d¢’ — d¢’dv’, which is
legal since b € 5(17’;2" and ¢’ — x(x,¢, (') is of compact support. We deduce from Lemma 5.4.45
(¢4) and Lemma 5.4.46 (ii) that b — (Opp, _ (dp),uw ® V) is continuous on S(I;ZL, and thus, by
the density result of Lemma 5.4.6, we have the equality ((Kap)z,6,u ®0) = (Opr, _  (db),u ®7)

even when the hypothesis b € 5(17’7;2” does not hold.
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Let us recall the linear map s : a +— s(a) given in Lemma 5.4.21 (ii) (for I' = I'g . ) which
is such that Dppo’z!b(f) = Opr, ..p(s(f)) for any f € Hﬁ,ﬁ‘é? We define f, 53 1= ua(fb)57¢7*1,
TN = uaHR,N(fb)T_l, S = ,uaSmwl(fb)T_l. We now consider a symbol s, such that

sap ~ Z (i/23w1)w3(fa,b,6)~

BeN”

Such a symbol exists since by Lemma 5.4.42 (ii1), s(fap8) € Si—jrzl/isll|ﬁ|’m+m/7‘m/2

(
5.4.46 (i), we have for any N > |m|, uy := s(ualln(fo)7 1) — sap € S(l;;l/_gll(N+1)’m+m,_(N+1)/2.
Thus, noting So := Opp, _, (S0), which is in Opp, | (S, 2°) by Lemma 5.4.45, Ry := Oprp, ., (7N)
and Uy := Opr, _, (un) we have

. By Lemma

(KaB)=p = Opr, ., (ds) = Opr,_, (s(ually (f5)771)) + Ry + So
= Dpro%b (8a7b> +Unv+Ry+S).

Lemma 5.4.18 and Lemma 5.4.46 (i) now implies that the kernel Uy + Ry (which independent
of N) is in Opp, _,(S,2°). As a consequence, (K4p).p = Opr, ., (Sa,p + 1) Where r € S and
the symbol product asymptotic formula is entailed by Lemma 5.4.21 (). O

5.5 Examples

In order to be able to apply the previous results about the pseudodifferential and symbolic
calculi on some concrete cases, we shall see in this section examples of exponential manifolds
and associated linearizations that satisfy the hypothesis S,-bounded geometry. The Euclidean
space R" seen as exponential manifold, has its own exponential map ¢ := exp(z,§) — z + &
as a Sj-linearization, leading to the usual pseudodifferential SG calculus (if o = 1) or standard
(if o = 0) pseudodifferential calulus on R™. However, we can define other kinds of linearization,
leading to new kind of pseudodifferential and symbol calculi, with a non-bilinear linearization
map. We will see in particular that we can construct on the flat R", a family of S,-linearizations
that generalize the case of the flat euclidian geometry, and we obtain a extension of the normal
(A =0) and antinormal (A = 1) quantization on R"™.

We will also prove that the 2-dimensional hyperbolic space, which is a Cartan—Hadamard
manifold (and thus an exponential Riemannian manifold) has Sj-bounded geometry. This allows
to define a global Fourier transform, Schwartz spaces S(H), S(T*H), S(TH), B(H) and the space
of symbols Si’m(T *H). As a consequence, we can define in an intrinsic way a global complete
pseudodifferential calculus on H, if one chose a fixed S,-linearization ¢ on TH. There are many
possible linearizations, for instance one can take v such that in a frame (z,b) ¥? is the standard
linearization z 4 £ of R™.

5.5.1 A family of S,-linearizations on the euclidean space

Recall that GX(R™) (0 < o < 1) is defined as the subgroup of diffeomorphisms s on R"
such that for any n-multi-index o # 0, there are C,, C, > 0, such that for any x € R",
10%s(x)]| < Colx)?U=leD) and H(’)O‘s_l(x)H < C' (x)70=leD)  GX(R™) contains GL,(R) and the

translations T}, := w — v + w.
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We fix 1 €]0, 1] such that for any matrix A € M,,(R) such that ||A|; <, we have det(I, +
A) > 3, where ||A|; := max; ; |4; j|. Taking now h € Go(R", R") such that for any 1 <i,j < n,
|0;ht| < /16, and g(z) := h(z) — h(0) — dho(x) we see that s := Id +g is a diffeomorphism on
R™ which belongs to G§ (R"™), satisfying s(0) = 0 and dso = Id.
We set, for o € [0, 1],

(@, 8) =2+ &+ (2)7g(
We obtain the following

m)o) =T+ <$>05(<f>a)-

Proposition 5.5.1. (R™,+,d\, ) has a S,-bounded geometry and satisfies (C,) (see Definition
5.4.97).

Proof. A computation shows that ¢ € H,(R") and ¥(x,{) = O({(x)(¢)). We have 9(z,y) =
<x>"s_1(§’ )m) and thus 1 € Oy(R?",R"). Noting §:= go (g +1d)~! o —Id € Go(R"), we also
have

Tir(e, ) = £+ (@)7g(g5) + (. €)7F(((w,€) " (@)7s(155)
= (Id +Vx7€ + Wx,ﬁ)(g)

where V, ¢ := [fol vl (t&)dt]; j, Wyg = [fol ajwi7£(t£)dt]i7j, and v, = Myogo M;', wye :=
My@g)0go MJ&@ o M, oso M1 M, being the multiplication by (x). We get dv, = dgo M *
and dwgy¢ = dg o (Mz;(%pg
that V, ¢ and Wxg are in EJ. Moreover, we have ||V ¢, < 77/2 and [|[Wyel; < n/2, which

proves that P, ¢ := Id +V, ¢ + W ¢ is invertible with det P, ¢ > =. As a consequence its inverse
P 1 = (det Py ¢) 't cof (P, ¢) is also in EY. We deduce then that (R” +,d\, ¢) has a S,-bounded

geometry- With r(2,&,€) = (2, ¥ (d(z, =€), —¢')), we get

r(@,&,¢) = —(@)7s 7 (s(z) + L s(mtae) -
so that (drye)e = (ds™! o w)(ds o u) where w(z,&,&) = s(rfs) + v(@,&€), v(w,£,€) =
I Sy ) W@, €, €) == — gy We check that v satisfies

o)y — O((¢(x, _§)>—Ulvl<x>—a(\u\+1)<g>m\u\<</>\u\+1).

It follows from Peetre’s inequality that for any ¢ € [0,1] and z,y € R", (z + y) > 2_5/2%,
which implies that (¢(z, —¢))° = O((x)77%(£)7¢). As a consequence we get the estimates

) © M, osoM;Y)dso M;!. and thus, after computations we check

)y = (f)(<x>—0(1+\u\+6lvl)<§>m|u|+6lvl+5w,o<C/>|u|+1) ’
)y = @(<x>—a(\u\+flvl)<C>m|u|+sw<§/>l—\w) )
We deduce from this that (C,) is satisfied. O

We also check that the hypothesis (Hy ) of section 5.4.5 is satisfied so that the previous pseu-
dodifferential calculus (for A € {0,1}) is then valid on (R™, +,d\, %), and proves in particular
the space of operators of the form

A(v)(z) = /R O a(z, 0)0((x, —€)) e df = /R e 200 Wha(e, 6)u(y)| (,)|(y) dy b

2n
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where a € S°(R?"), is equal to the standard algebra of pseudodifferential operators R". However,
since (C,) is satisfied, we have now at our disposal a new symbol composition formula given by
Theorem 5.4.47, adapted to the new linearization .

5.5.2 S;-geometry of the Hyperbolic plane

The (hyperboloid model of the) 2-dimensional hyperbolic space is defined as the submanifold
H:= {z = (z1,72,73) € R® : 23+ 23 — 23 = —1 and 23 > 0} of the (2,1)-Minkowski
space R>! with the bilinear symmetric form (v,w)2,1 = viw + vawz —v3ws. The induced metric
on H: ds? = (dz1)? + (dw2)? — (dr3)? is Riemannian and it is known that H is a symmetric
Cartan—Hadamard manifold with constant negative sectional curvature (equal to —1). The map
¢ : R? — H given by

o(z,y) := (sinhx, cosh z sinh y, cosh x cosh y)

is a diffeomorphism with inverse p~!(z1, 72, 73) = (argshzy, argsh( L2 ))) As a conse-

osh(argshz1)
quence we can construct another model of the hyperbolic space, noted R? with domain R? and
metric obtained by pulling back the metric on H onto R?. A computation shows that this metric
is ds® := (dx)? + cosh? z (dy)?. We will note [[]|, the norm on T,R? ~ R? given by this metric,
where p is a point in R?, and |-|| is the Euclidian norm. The geodesic equation on R? leads to
the following system of ordinary differential equations:

2" — coshz sinhz (y)> =0,
y" +2tanhz 2’y =0. (5.34)

For each p = (z,y) € R? and v € R? such that [v][, = 1 there exists an unique solution on R
Ypw = ((t),y(t)) of (5.34) such that 7,,(0) = p and 7, ,(0) = v.

At each point p = (z,y) € R?, we can define the ellipse of unit vectors centered at 0 in
T,R? ~ R? with equation X? + (cosh?2) Y2 = 1. The polar equation of this ellipse is

ep(0) == L

1+4sinh? z sin2 6 '

Thus, any tangent vector v € T,R? with decompostion v = |lv|| (cos,sinf) also admits the
following polar decomposition v = [|v|,, (cos, 8, sin, #) where cos;, 6 := e,(f) cosf and sin, 6 :=
ep(f) sinf. Remark that e, cosy, sin, and |[|-||,, are in fact independent of the second coordinate
y of p. We shall therefore also use the notations e, := e, ) and similarly for cos,, sin, and ||-||,..
Note that for any vector v := |[v|| (cos6,sin ), we have ||v|, = [|v]| /ex(8).

If p€ H and v € R%! are such that (p,v)21 = 0 and (v,v)21 = 1, then the unique geodesic
ap,» on H such that a;,,(0) = p and aj, ,(0) = v is oy, (t) = cosht p+sinht v (see for instance [85,
p.195]). As a consequence, the geodesics 7,, on the R? hyperbolic space can be obtained by
pushing forward the «,,, geodesics with the diffeomorphic isometry ¢. We check after tedious
calculations that for any given p = (z,y) € R? and 6 € R, the following curve

'y;’e(t) = argsh (cosht sinhz + sinh ¢ coshz cos, 6),

2 . cosh ¢ cosh z sinh y+sinht (sinh z sinh y cosy 6+cosh z cosh y sing 0)
Vp,ﬁ(t) - argsh ( R . - = ) ) (535)
cosh ( argsh(cosh ¢t sinh z+sinh ¢ cosh z cosz 0))
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where ¢ € R, is the unique maximal solution of the geodesic system (5.34) satisfying the initial
conditions: 7,,9(0) = p and 7, 5(0) = (cos(¢), sinz(#)). An explicit formula for the exponential
map at any point can therefore be obtained, since we have exp,(v) = yp0(||v]l,) where v €
T,R?* — {0} and 0 € R such that v = ||v|| (cos,sinf). The main interest of this hyperbolic
model with domain equal to R? is that it is possible to find explicitely the logarithmic map (the
inverse of the exponential map) at any point. We find, after an elementary but long computation,
the following inverse, for any p = (z,%) and p’ = (2/,7') € R?,

—1(y — _argch fp(0) —9p(1')
exp, (p) = (Ffo(@))2—1 <coshx’ sechz sinh(y' —y) )’ (5.36)

fp(p") := cosh(z) cosh(y" — y) cosh(z) — sinh(z) sinh(z),
gp(p') := cosh(z’) cosh(y’ — y) sinh(x) — sinh(z’) cosh(z) .

We have Hexp; L Hp = argch fp(p') which is the geodesic distance between two arbitrary points

p,p’ in the R? hyperbolic model. The goal of this section is to prove the following result.
Theorem 5.5.2. H has a S1-bounded geometry.

We note RZ, := R?\] — 00,0] x {0} and R% :=]0, +00[x] — 7, w[. For any € R, the map
Xz 1 RE — R% given by xu(vi,v2) := (||v], ,arctan(vi, v2)) where arctan(vi, vs) is the unique
element 6 of | —, [ such that vy +ivy = ||v|| exp(if), is a diffeomorphism with inverse x; ! (r, 0) =
(rcos, 0, rsin, 6).

Lemma 5.5.3. Let z € R and f € C®°(R%,R) such that f o x; ' € C®(R%,R) satisfies for any
(o, B) € NA{(0,0)}, and (r,0) € R%, |09 f o x;1(1,0)| < Cop(r)1= where Cop > 0. Then
feaG; (RQ,R).

Proof. By Theorem 5.2.11, for any (o, ) € N2\{(0,0)}, 0%°f = Zl§|(o/,,@’)|§|(a,ﬁ)|(8a/ﬂ/f o
Xz 1) © Xz Paparp(xz) on R, where P, g g (Xz) is a linear combination of functions of the
form szl(al’xfﬂ)kj where s € {1, o a+ 3} The kI apd. I/ are 2-multi-indices (for 1 < j <
s) such that [k > 0, 377_ K/ = (o/, ') and 377_, |K |V = (a, ). By definition, x(v) =
(xL(v), x2(v)) = (||v|l, ,arctan(vi, v2)). It is straightforward to check that for any 2-multi-index
v, 10"xL(v)| < Cy ()= and |0\ 2 (v)| < C(v)~" on RZ. As a consequence, for each a, 3, o/, '
with 1 < o/ 4+ 3’ < a + (3 there exists Cy g3 > 0 such that for any v € RZ,

|Pagiar 5 (Xa) (0)] < Corpar,r(0)® P

Moreover, by hypothesis, there is Cyr g > 0 such that for any v € RZ,, |(9*7 fox; 1) o xu(v)| <
Cor g {(0)1 =" This gives f € G1(R%,R). The extension to G1(R? R) is a direct consequence of
the smoothness of f on R? and the fact that R% is dense in R?. O

We shall use the following proposition, which gives a formal expression of the successive
derivatives of the inverse (and its real powers) of a smooth function.

Proposition 5.5.4. Let s > 0 be given. For any nonzero n-multi-index (n € N*) «, there exist a
finite nonempty set J,, nonzero real numbers (As o.p)pet., and n-multi-indices BYPI (with p € Jg,
1 <j <|al) such that

- for any p € Ja, Z1§j§\a| pUPI = a,
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- for any smooth function f € C*°(R™ RY),

|al

0 = e 3 e [10775
j=1

pE€Ja

Proof. The result is true for the case || = 1. Suppose then that the result holds for any n-multi-
index « such that |a] = k, where k € N* and let o/ be a n-multi-index such that |o/| = k + 1.
/

Let ¢ be the smallest element of {1,---,n} such that o, > 1, and set a := (o, ,0_;, & —

Laj,q, -+ ,ay). Thus for any f € C(R",RY), 8‘1/% = 820“#. Since |a| = k, ther.e exist
a finite nonempty set .J,, nonzero real numbers (s qp)pes, and n-multi-indices %P7/ (with
p € Jo, 1 < j < |a]) such that for any p € J,, Zlgjg\a| BPJ = q, and such that for any

f e C®R",RY), 80‘% = 1 > pedo Asap chil 9" f. As a consequence, with the formula

Flal+s
DT g5 = 0%, 1%, 05y, we abtan o amy 1 € C<(R 3.
|| ‘ |o| ‘
/ ,P,J Sy i€i+B%PI
0 % = s (3 ~(lal+ )hsap([ 0" DO+ D0 Nap(J[ P 1)f).
pEJa J=1 (P,q)€JaxNiq| j=1

Thus, if we take Jor = Jo [1(Jo X Njo|); Asarp = —(s +]a))Asap if D=p € Ja, As a5 := As,ap
if p=(p,q) € Jo x Njy|, B4 PI 1= P if p=p e Jyand 1 < j < |af, B¥PI = e; if p=p € Jo
and j = |a| + 1 = |o/|, f¥'PT .= g€ + B8P if p = (p,q) € Ja X Njy and 1 < j < |af and
BRI = 0if p= (p,q) € Ju X Njo and j = |a| + 1 = [/[, the result now holds for . O

In the following we set the convention Jy := {1}, A\s01 := 1 and H2:1 := 1, so that the
formula giving 80‘% in the previous lemma is still valid when o = 0. When s € N*, the result is
also valid for complex valued nowhere zero smooth functions.

We note Hp the space of C°°(R%, R) functions of the form (r,0) — a(6) coshr + b(6) sinhr
where a,b € B(R), and Ap}, the space of functions f € C°°(R%, R) such that for any 2-multi-index
(o, B) with o < k € N, there is C,, 5 > 0 such that for any (r,0) € R%, [0%F f(r,0)| < Cy 5(r)*~2,
and also such that for any 2-multi-index (o, 8) with a > k+1, there is CY, 5 > 0 such that for any
(r,0) € R%, [0%Pf(r,0)| < C;ﬂe*m. Clearly, Apy C Spj where Spy, is the space of functions
f € C®(R%,R) such that for any 2-multi-index (o, 3), there is Cy g > 0 such that for any
(r,0) € R%, |08 f(r,0)| < Cop{r)¥=®. By Leibniz rule, SpxSpy C Spjir. We note Np the
space of functions f € C*°(R%,R) such that for any 2-multi-index («,3) there is Cp 5 > 0
such that for any (r,0) € R%, |0%°f(r,0)] < Cape . If 7o > 0 we define the spaces Hp,,,
Apkro> SPkr, and Np,, exactly as before, except that we now replace the domain pr by
R%m :=|ro, +oo[x] — m, 7.

Lemma 5.5.5. Let f,g,h,w € Hp,, where ro > 0, such that there is ¢ >0, C > 1 such that for
any (r,0) €RY, ., f>C, f>ce and h* + g* > ee*".

(i) The functions (h2+1;’2)3/2, (fQ_“i)
where by, € B(R), are in Np,y,.

(ii) The functions argch \/1 + h? 4+ g2 and argch f are in Apj .
(iii) The functions \/h1;+g2 and \/;‘2’71 are in Apor,-

Zi:% b (9)5167'
((R?+g?)(1+h?+g2))3/27

57z and any function of the form (r,0) —
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Proof. (i) We give a proof for 375 Lhe other cases are similar. By Proposition 5.5.4 and

w
(h?+g?)
Leibniz rule, we have for any 2-multi-index v,

8VW - Z (V)(mf; ;/2+|u'| Z A3/2,7 pHaﬁ v (h? +4%).

v'<v peEJ,,

Note that we have for any 2-multi-index v, 0¥ (h% + g?) = O(e?") and 0w = O(e"). The result
follows.

(i) By (i), since 92 argch \/1 + h2 + g2 is of the form (r,0) — ((hzgg’“*)sz’;ﬁg 5572 where b, €
B(R), and 92 argch f is of the form W where w € Hp,,, we only need to check that for
0 <a<1 and g €N, aaﬁargch V1I+h24+g2 = O((r)t=®) and 0P argch f = ((r}l_o‘)
Since 8, argch /1 + h2 + g2 = —IWh409)9 5 arech f = \/7 g argch /14 h? + g2 =

\/(h2+g (1+h2+¢2)

(9gh)h+(0p9)g Opf X
T (1 he ) and Og argch f = TP the result follows from an application of Proposition
5.5.4.
(7i1) By (i), since O, \/h;UTgQ is of the form W;"W where wy € Hp,,, and 0, \/;‘2’74 is of the
form 7 12)3/2 where wo € Hp,,, we only need to check that for 8 € N, aoﬂ\/ﬁ = 0O(1) and
0757 —
0 T O(1). This is a direct consequence of Proposition 5.5.4. O

Proof of Theorem 5.5.2. By Lemma 5.2.14 (iii) and Proposition 5.2.12, it is sufficient to prove
that for any p := (x,y) € R*\{0}, exp, ' o expy and expy o exp,, are in G1(R?). A computation
based on (5.35) and (5.36) shows that on R%,

eXP;I o expy OXo = (argch f)(\/]mi1 \/)Tl)
expy o exp,, ox, ' = (argch\/1 4 h2 + g2 (\/h2 ),

+92" /I +g?

where

f(r,0) := coshr coshy cosh x — sinh r(sinh z cos § + sinh y cosh zsin ) ,
wi(r, 0) := — coshr cosh y sinh x + sinh (cosh = cos # + sinh y sinh x sin 9) ,
wa(r, #) := — coshrsinh y sech x + sinh 7 sin 6 cosh y sech x ,

h(r,8) := coshrsinh z + sinh 7 cosh z cos, 4,

g(r,0) := coshr cosh z sinh y + sinh r(sinh x sinh y cos,, 6 + cosh = cosh y sin,. 0) .

All these functions belong to Hp and f > 1. Note that f(r,0) = 1 if any only if exp,, Xal(r, 0)=rp
in which case exp;1 0 expyg oxgl(r, 0) = 0, so that (3}{ij1 o expy oxal is well defined as a smooth
function on the whole R%. The same argument holds for exp,, Lo exp, ox, . We check that

(coshz coshy — \/ cosh?zcosh?y — 1)e” < f(r,0) < coshr erech(coshacoshy)

so that by defining rg := log 2/ where 0 < & < min{ 1, $(cosh z coshy — Vcosh? zcosh?y — 1) }
we have for any (r,0) € ]RPTO, f(r,0) > ee” > 2. Note also that for any v € R2, we have
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argch f(xo(v)) = Hengl OeXPO(U)Hp and

argeh /1 + h2(x4(v)) + g2(xz(v)) = Hexpal Oepr(U)Ho :

The first equality entails (since exp,, Loexpy(R%) is a dense open subset of R?) that for any v in
R?, cosh o], < cosh [|expy ! oexpp(v)H0 errech(coshzcoshy) W then obtain for any (r,6) € R%,

1+ h2 + g2 > coshr e~ argch(coshacoshy) 1y particular, defining
g

74 = argch(v/2 exp(argch(cosh z cosh y))),

we get for any r > 7)), the following estimate h? + g2 > %6_2argCh(COSh“OShy)eQT. If we now apply

Lemma 5.5.5 for the space Hp,, where g := max{ro,rj }, we see that exp;, ' o expy oxg ! and
expa1 0 exp,, ox, ! are in Sp;. The result then follows from Lemma 5.5.3. O
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Conclusion

The Chamseddine-Connes spectral action is a fundamental object that lies at the interface
of noncommutative geometry and its applications in particle physics. In this thesis, we stu-
died the spectral action in noncommutative spaces such as the noncommutative torus and the
quantum group SU,(2). We have also been interested in some mathematical questions about
commutative geometries (compact spin manifolds) and deformation quantization on manifolds
with linearization. In all these works, pseudodifferential calculus (on abstract spectral triples or
on manifolds) has played a crucial role. It is with the help of the fundamental notion of pseu-
dodifferential operators that the spectral actions on the noncommutative torus and on SU,(2)
have been computed.

In chapter 2, we presented a computation of the spectral action on the n-noncommutative
torus (C'OO(’ZZ}), H, D), which is a simple spectral triple, even when pseudodifferential operators
take into account the JAJ~! operators. The spectral action in dimension 4 shows that a new
noncommutative Yang-Mills term appears: 7(F,, F*), where F,,, 1= 0,(A,) —6,(A,) — [Au, Al
which extends the usual commutative Fj,, := 6,,(A4,) — 6,(A,). A number theoretical condition
on the deformation matrix O, related to Diophantine approximation theory, is crucial in the
computation of the spectral action, when the perturbation D — D + A +eJAJ ! is considered.
An interesting question remains: is this Diophantine condition really necessary to obtain this
spectral action, with exactly the same Yang-Mills term 7(F),, F'*")? We conjecture that it is, as
suggested by some heuristic arguments (Remark 2.4.7).

We presented in chapter 3 the computation of the spectral action on the spectral triple of [48]
associated to the quantum group SU,(2). Once again, we took into account the real structure J
and used the pseudodifferential techniques previously described in sections 1.2 and 1.3. However,
contrarily to the case of the noncommutative torus, some remarkable new phenomena appear
in this g-deformed noncommutative space. First, the dimension spectrum of SU,(2) is bounded
below, which implies that there is only a finite number of terms in the spectral action expansion.
Moreover, in this space, tadpoles do exist whereas they vanish on the noncommutative torus. We
also found that the limit ¢ — 1 (which corresponds to a limit from the quantum 3-sphere towards
the commutative 3-sphere) of the spectral action does not exist automatically, and when it exists,
such limit does not lead to the associated action on the commutative sphere S3. All these facts
show that there is a “wall” between g-deformed geometries and the commutative world, that is
nonexistent in the ©-deformation of tori or Moyal planes. Naturally, it would be interesting to
investigate other related cases like the quantum projective plane [45], Podles spheres [43,46] or
the Euclidean quantum spheres [47,96], especially the 4-sphere [44].
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In the fourth chapter, we investigated possible cancellations of terms in the Chamseddine—
Connes spectral action formula in commutative Riemannian spectral triples. We showed in par-
ticular that there are no tadpoles, i.e. terms of the form f AD™! are zero. More generally, the
tadpoles are the A-linear terms in the internal fluctuation of the spectral action S(Dg, ®,A).
We considered, after Chamseddine and Connes 23], the case of a chiral boundary condition on
the Dirac operator in a spin manifold with boundary. It turns out that, in this case, there are
no tadpoles up to order 5. However, this approach is based on explicit computations of first
heat kernel coefficients associated to a mixed boundary condition. We expect that there are no
tadpoles at any order for a chiral boundary condition and shall investigate this question, using
a spectral triple approach, in a subsequent paper [84].

We have seen, in chapter 5, certain hypotheses on the geometry (S, or Opr-bounded geo-
metry) of a manifold with linearization that allow a coordinate free definition of most of the
topological vector spaces needed for Fourier analysis and global complete symbol calculus with
uniform and decaying control over the x variable. Given a linearization on the manifold with
some properties of control at infinity, we constructed symbol maps and A-quantization, expli-
cit Moyal star-products on the cotangent bundle, and classes of pseudodifferential operators.
We proved a result of stability under composition, and an associated symbol product asymp-
totic formula under a hypothesis (C,) of control at infinity of the linearization. The calculus
presented here is a generalization of the standard and SG symbol calculi over the FEuclidean
space R™ and can be applied to the hyperbolic 2-space since, as proven in section 5.2, it has
a S1-bounded geometry. L2-continuity of pseudodifferential operators of order (0,0) has been
established in section 5.4.5 under the hypothesis (Hy ). We do not know however if this result
still holds without this hypothesis. The full analysis of the obtained Moyal product on S(T*M)
and spectral properties of pseudodifferential operators in ¥L™ remain to be studied. The main
goal would be the construction of noncommutative noncompact spectral triples based on the
algebra (S(T*M), ow ), which could extend the spectral triple described in [58]. Moreover, ex-
tension and connection of the symbol calculus presented here could be made with Fourier integral
operators [42,117,118|, regularized traces [110] and Gelfand—Shilov spaces [15].

Finally, the spectral actions that we computed are classical, and quantization through func-
tional integration of these actions still remains an open and challenging problem.
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Résumé de la thése en francais

Cette thése constitue un recueil des travaux de recherche que j’ai effectués ces trois derniéres
années en collaboration avec Driss Essouabri, Bruno Iochum et Andrzej Sitarz.

La géométrie non commutative est un vaste domaine des mathématiques dont l'objet est
la généralisation de I’ensemble des concepts apparaissant en géométrie classique. Plus particu-
lierement, & l'aide d’un formalisme issu de I'analyse fonctionnelle, de la théorie des algébres
d’opérateurs, de la théorie spectrale et de la géométrie spinorielle, la géométrie non commu-
tative généralise notamment les concepts d’espace topologique localement compact, de variété
riemannienne orientée compacte & spin et les calculs différentiels et intégraux de la géométrie
différentielle. Au-deld de l'intérét purement mathématique de la géométrie non commutative, il
existe des motivations physiques profondes qui poussent les physiciens théoriciens a utiliser ces
concepts pour décrire les éléments fondamentaux de la physique (I’espace-temps et les champs).
Plus spécifiquement, la géométrie non commutative apparait comme un cadre mathématique
particuliérement adapté a la formulation des concepts quantiques et des processus de quantifica-
tion.

Il est possible de considérer que la géométrie non commutative (ou tout au moins sa compo-
sante topologique) est née lorsqu’a été établi le théoréme suivant (premier théoréme de Gelfand—
Naimark) : toute C*-algébre commutative unifére est isométriquement isomorphe a la C*-algébre
des fonctions continues sur un compact, a savoir l’espace des caractéres sur I’algébre. Etant donné
que toute I'information topologique d’un espace est contenue dans I’ensemble des fonctions conti-
nues sur cet espace, on peut constater que la notion de C*-algébre unifére permet de généraliser la
notion d’espace topologique compact. La généralisation non commutative nous fait donc changer
de point de vue : ce n’est plus I’ensemble des points (I’espace topologique) qui est fondamental,
mais plutdt 'ensemble des fonctions sur ’ensemble des points.

Ce théoréme de Gelfand-Naimark a été le point de départ de la géométrie non commutative. A
partir de ce résultat fondamental, il a été possible d’étendre la généralisation au-deld des concepts
purement topologiques et de construire une véritable géométrie riemannienne non commutative
avec ses propres versions non commutatives des notions classiques de calcul différentiel, de calcul
intégral, de fibré vectoriel, de mesure, de variétés riemanniennes a spin, etc. Ce travail colossal a
été réalisé principalement par Alain Connes [26-30].

Les deux aspects de la géométrie non commutative (non-commutativité et "perte" de la
notion de point) ne sont pas sans rappeler la structure fondamentale de la physique quantique.
En effet, en physique quantique, les observables ne commutent pas forcément et I’évaluation f(x)
d’une observable f en un point x, n’est pas définie. En revanche, la notion d’observable existe
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toujours et x(f) a un sens, pourvu que x soit un état, c’est a dire I’équivalent non commutatif
du caractére (du point) pouvant évaluer les observables f.

Cette ressemblance frappante entre la géométrie non commutative et la structure de la phy-
sique quantique n’est pas anodine et constitue méme la source principale qui a motivé le déve-
loppement de la géométrie non commutative et son application en physique. En particulier, la
géométrie non commutative fournit les concepts permettant d’appliquer 'idée fondamentale de
la non-commutativité des observables & I'espace-temps lui-méme, donnant par 1a méme une de
ses motivations fondamentales & la physique.

Les deux théories des interactions fondamentales, & savoir la théorie quantique des champs
(modeéle standard) pour les interactions électrofaibles et fortes, et la relativité générale pour
I'interaction gravitationnelle, n’utilisent pas le méme formalisme (la premiére est quantique, la
seconde est classique) et ne voient pas l'espace-temps de la méme fagon (celui-ci est fixe et
minkowskien pour la premiére, et dynamique pour la seconde). Ces différences fondamentales ne
sont pas génantes pour ’étude des phénoménes favorisant 'interaction gravitationnelle devant
les autres ou réciproquement, car ces théories ont chacune un grand succés expérimental dans
leur domaine d’application. Cependant, pour I’étude des phénomeénes mettant manifestement en
jeu toutes les interactions (objets compacts, trous noirs, big-bang), il est nécessaire de rendre
compatible ces deux théories, et de les réunir sous un méme formalisme. L’idée généralement
poursuivie par les théoriciens consiste a généraliser le formalisme de la théorie quantique des
champs a la gravitation, autrement dit, réaliser une gravitation quantique. La poursuite de cet
objectif s’est développée a travers plusieurs approches différentes, dont notamment la théorie des
cordes, qui utilise une augmentation du nombre de dimensions, dont certaines sont compactifiées,
et la théorie de la gravité quantique & boucle, qui utilise une structure en "spin foam" pour
I’espace-temps sans utiliser de métrique spatio-temporelle en "background" comme le fait la
théorie des cordes. Aucune de ces théories n’a recu de confirmation expérimentale, les prédictions
théoriques étant elles-mémes difficiles.

L’approche suggérée par la géométrie non commutative consiste a utiliser une généralisation
non commutative de la variété lorentzienne modélisant ’espace-temps. En introduisant la non-
commutativité au niveau méme de la structure de I’espace-temps, cette approche permet d’appré-
hender I'impossibilité de la continuité de I'espace-temps suggérée par la mécanique quantique et

la limite intrinseque que constitue la longueur de Planck [, = \/g ~ 10733 cm. Cette approche a
notamment permis d’unifier, au niveau classique, les trois interactions du modéle standard avec la
gravitation, et d’interpréter géométriquement le mécanisme de Higgs en physique des particules.
L’objet central dans l'interface entre la GNC et la physique fondamentale est celui de triplet
spectral, généralisation non commutative de la notion de variété riemannienne & spin, point de
départ naturel pour I’élaboration de théories physiques. En considérant un triplet spectral dit
“presque commutatif”, ¢’est-a-dire un produit d’un triplet spectral commutatif (variété rieman-
nienne compacte, modélisant 1’espace-temps “continu”) avec un triplet spectral de dimension nulle
(une algebre matricielle), on peut, a I’aide d’une fonctionnelle d’action particuliére sur le produit
obtenu, appelée action spectrale de Chamseddine—Connes, retrouver le modéle standard et la re-
lativité générale. Plus précisément, 'action spectrale S = Tr ®(D/A) permet d’unifier au niveau
classique les interactions électro-faible, forte et gravitationnelle [17,21-25,33,37,86,87,131,136].
Elle est définie & partir du spectre d’un opérateur de Dirac D et correspond au nombre des valeurs
propres de I'opérateur de Dirac inférieures ou égales a une certaine échelle de masse A. En procé-
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dant & une fluctuation de la métrique, c’est-a-dire, au niveau algébrique, & une transformation de
jauge généralisée au groupe des unitaires de ’algébre du triplet spectral, il est possible d’obtenir
le Lagrangien du modéle standard couplé au Lagrangien gravitationnel d’Einstein—Hilbert, en
développant cette fonctionnelle d’action en puissances de A.

Dans cette thése, nous nous sommes intéressés a certaines questions mathématiques associées
au calcul d’action spectrale sur certains espaces non commutatifs tels que le tore non commu-
tatif et la 3-sphére non commutative SU,(2). Nous nous sommes aussi intéressés a 'existence
de tadpoles (termes linéaires associés au potentiel A de la fluctuation métrique dans l'action
spectrale) dans le cas de géométries riemanniennes commutatives et & la construction d’un calcul
symbolique global générant un produit de Wey—Moyal sur les sections rapidement décroissantes
d’un fibré d’une variété avec linéarisation. Dans tous ces travaux, ’outil fondamental a été le
calcul pseudodifférentiel, qu’il soit abstrait (sur un triplet spectral quelconque), ou symbolique
(sur les variétés).

Cette thése est divisée en cing parties. Voici un résumé de chacune de ces parties :

1. Action spectrale sur triplets spectraux

Ce chapitre, ainsi que le chapitre suivant, a fait 'objet de la publication Spectral action
on noncommutative torus [53|, qui est un travail en collaboration avec Driss Essouabri, Bruno
Iochum et Andrzej Sitarz.

Un triplet spectral est la donnée d’une algébre involutive A représentée fidélement par des
opérateurs bornés sur un espace de Hilbert H et d’un opérateur autoadjoint D sur H a résolvante
compacte. On demande d’autre part que les commutateurs de [D,.A] soient bornés. Afin de
pouvoir construire un calcul pseudodifférentiel et une théorie de champ non commutative, il est
utile d’introduire des hypothéses supplémentaires sur le triplet (A, H, D). On dit notamment
que le triplet est de dimension n si les valeurs singulieres (A;); de l'operateur D sont du type
Aj = O~V et qu'il est régulier si A et [D, A] sont dans Ng Dom 6%, ott §(T') := [|D],T] (c’est a
dire, qu’il est possible de "dériver" tout élément de 1’algébre). Afin d’avoir une théorie contenant
un opérateur de conjugaison de charge, il est nécessaire d’introduire une notion de structure réelle
sur le triplet spectral: il s’agit d’un opérateur anti-unitaire J qui commute ou anticommute avec
D, selon la dimension du triplet: DJ = eJD, avec ¢ € {0,1 }. Dans cet environnement, les bosons
de jauge sont vus comme des fluctuations internes de 'opérateur de Dirac (c’est-a-dire, au niveau
classique, de la métrique): D — Dy :=D + A+eJAJ ! oilici A est une 1-forme autoadjointe,
c’est a dire une combinaison linéaire d’opérateurs du type a[D,b], ot a et b sont des éléments de
I’algebre A.

Etant donné un triplet régulier (A, H, D) avec structure réelle .J, un point fondamental pour
faire le lien avec la physique, est d’obtenir une fonctionnelle d’action. Le principe de ’action
spectrale de A. Chamseddine et A. Connes dit que la fonctionnelle suivante

S(Da, ®,A) :=Tr (®(Da/A))

ol @ est une fonction de cut-off et A un paramétre d’échelle de masse, est la fonctionnelle fon-
damentale qui peut étre utilisée a la fois au niveau classique pour comparer différents espaces
géométriques et au niveau quantique dans la formulation par intégrale fonctionnelle, aprés rota-
tion de Wick a partir de la signature euclidienne.
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Afin de pouvoir calculer précisément cette fonctionnelle en fonction de A et en retirer le maxi-
mum d’information, il apparait fondamental de pouvoir développer un calcul pseudodifférentiel
abstrait sur le triplet (A, H, D).

En posant D :=D + Py, ot Py est la projection orthogonale sur Ker D, et

OP" :={T : t— F,(T) € C*(R,B(H))},
OP*:={T : T|D|"®* € OP"},

ot Fy(T) := Pl T =Pl on peut introduire la définition suivante des opérateurs pseudodiffé-
rentiels, qui forment une algébre Z-graduée, en tenant compte a la fois de la valeur absolue de
lopérateur de Dirac, et de la structure réelle J :

Définition. Soit D(A) I'algébre générée par A, JAJ !, D et |D|. Un operateur pseudodifférentiel
est un opérateur 1" tel qu'il existe d € Z tel que pour tout N € N, il existe p € Ny, P € D(A) et
R e OP~ N tels que PD% € OP% et

T=PD % +R.

Il se trouve que si le triplet spectral est simple, c’est dire si les fonctions s — Cg(s) =
Tr(P|D|~*), ou P est un opérateur pseudodifférentiel d’ordre zéro (la structure réelle J étant prise
en compte), sont méromorphes sur C avec uniquement des podles simples, alors la fonctionnelle
suivante (appelée intégrale non commutative)

][P := Ress—o Tr P|D|™*

est une trace sur I’algébre des opérateurs pseudodifférentiels. Etant donné qu’un développement
du type "noyau de la chaleur" (voir par exemple [37, Theorem 1.145|) implique

SOy A) = Y @kA’f][|DA|—k+q>(0)<DA(0)+0(A—1),
0<keSd+

ou®, =35 fo tk/2 Ldt et Sd* est la partie strictement positive du spectre de dimension de
(A, H,D) (ensemble des poles des fonctions ¢ D), la principale difficulté est le calcul des termes
1D A|_k, (p,(0). En utilisant le calcul pseudodifférentiel précédent et le fait que I'intégrale non
commutative est nulle sur 'espace des opérateurs dans £'(#), on peut alors établir les résultats
suivants, en/r210tant A:=A+cJAJ Y, X = {A, D} + A2, V(T) := [D2,T), &(T) := V(T)D 2,
olsr) = (1)

n

(0a(0) = Gp(0) = 3° G f(ADy,
qg=1

][|DA|—<”—’“ =][|D| (n—8) +Z Z Res h(s,r,p) Tr (7 (Y) - (Y)|D|~*) |

s=n—k
p=1ry, ,rp=0

h(s,r,p) := (—s/2)p/ g(—sty,71) - g(—stp,1p)dt,

0<t; <-<tp<1
N N—p

Yy~ 3 S GOk (TR (- XTR(X) ) DM mod 0PN
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2. Action spectrale sur le tore non commutatif

Nous avons appliqué ces résultats au tore non commutatif. Il s’agit du triplet spectral non
commutatif le plus simple possible. Il est basé sur I'algebre C*°(7J') représentée par des fonc-
tions rapidements décroissantes du type Y ;c,n a;U; ot (a;) € S(Z") et les éléments U; sont des
unitaires vérifiant la loi de commutation

UlUk = €_il'ekUkUl

ol O est une matrice antisymétrique de déformation. L’opérateur de Dirac est de la forme
D = —iy*d,, ot les v* sont les matrices gamma usuelles agissant sur 2" ot 0u(Uy) := ik, Uy.
La fonctionnelle 7(a) := ag ot a := ), q;U; génére un espace de Hilbert H de type GNS a
partir duquel un triplet spectral réel régulier de dimension n peut étre construit. Le calcul des
intégrales non commutatives précédentes fait intervenir des termes du type JAJ 1. Il en résulte
que nous sommes alors amenés 4 étudier des résidus de séries de fonctions zéta pondérées par des
suites rapidement décroissantes et faisant intervenir une phase dépendante de la pondération.
Plus précisément, nous avons & étudier du point de vue de 'analyse complexe, les fonctions du

type
g(s) == Zle(zn)q b(l) fo >4 cit; ()

otg; € {—1,1}, b€ SU(ZM)), fa(s) =D tezn }\jk(lks) e?mik-a g € R" et P un polynéme homogeéne
de degré d. Il apparait alors que nous pouvons connaitre précisément les poles de ces fonctions et
calculer précisément les résidus correspondants si nous faisons une hypothése reliée a la théorie
de l'approximation diophantienne sur la matrice de déformation ©. Plus exactement, on établit
que si %@ est une matrice diophantienne, la fonction précédente g est méromorphe sur C, avec

au plus un pole simple en s = d 4+ n. Le résidu en ce pole est (Theorem 2.4.4)

Res g(s) = (300) [ P@dStw) = 3 b Resein fo st 20,5

ez ueSn—t le(zn)a

on Z :={l € (Z™M? : ? el = 0}. Finalement, nous obtenons grace a ces résultats, le
théoréme suivant:

Théoréme. Si i@ est une matrice réelle antisymétrique diophantienne, alors le tore non com-
mutatif (avec structure réelle) est un triplet spectral simple et son action spectrale est:
(i) pour n =2,

S(Dy, ®,A) = 4w &y A2 + O(A72),

(7i) pour n =4,
S(Da,®,A) = 872 Dy At — 4% &(0) 7(Fp, FM) + O(A72),

(ii1) de fagon générale:
S(Da, @A) = > Pppenp(A)A"F+ O,
k=0

0l cp—2(A) =0, ¢h—k(A) =0 pour k impair. En particulier, co(A) =0 quand n est impair.
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Lorsque n = 4, un terme de type Yang-Mills non commutatif apparait au niveau du terme in-
variant d’échelle (en A°): 7(F,, F*), ot F = 8,(A,) — 8, (Au) — [Ay, Ay). La forme de action
spectrale du tore non commutatif est donc trés fortement similaire a celle du tore commuta-
tif, & condition que la déformation © vérifie une condition diophantienne. Nous ne savons pas
cependant si cette condition, bien que suffisante, est effectivement nécessaire pour obtenir une
telle action. Nous conjecturons que c’est bien le cas, comme le suggére un argument heuristique
(Remark 2.4.7).

3. Action spectrale sur SU,(2)

Le troisiéme chapitre correspond & un travail en collaboration avec Bruno Iochum et Andrzej
Sitarz: Spectral action on SU4(2) [82].

L’objectif consiste & appliquer les techniques pseudodifférentielles vues précédemment au cal-
cul de I’action spectrale sur le triplet spectral de Dabrowski et al. [48] basé sur le groupe quantique
SU,(2). Ce groupe quantique (ou algébre de Hopf) peut étre vu comme une ¢g-déformation de la
3-sphére commutative.

L’algebre A := A(SU4(2)) de ce triplet est définie comme étant ’algébre polynomialement
engendrée par deux éléments a et b qui sont assujettis aux régles de commutation suivantes, ot
0<g<l:

ba = qab, b*a = q ab*, bb* = b*b, a*a+¢*bh=1, aa® +bb" =1.

On définit un espace de Hilbert H = H! ®H! avec les bases orthonormales Uil ; et vfnl
0<m<2j,0<1<2j+1etv? estnulsij=0oul=2jor2j+1.
On représente alors A avec 'application 7 initialement définie sur a, b et qui est donnée a la

. . . . . . . . L, + +
section 2.2. Cette représentation faisant intervenir des coefficients assez compliqués « G ﬁj i

et non diagonaux, il apparait trés utile de définir une représentation approximée m telle que

loﬂje%N,

m(a):=ay +a—, x(b):=by+0b_

ou on a posé (ici g, := /1 — ¢*"):

) L ) .
J _ J J _ m+l+1 7

a+ vm,l = qm+1 q1+1 Umn41,14+1 a— vm,l =4 vm7l ’
Joo_ ]l it Joo_ m J-

b+ Uil =49 9m+1V5 011> b- Ui = 4 UV 1 -

Cette approximation ne modifiera pas les calculs d’intégrale non commutative puisque pour tout
z €A, m(x)—m(x) € K4 ou Ky est un idéal inclus dans les opérateurs de type OP~>°. Autrement
dit, m(x) — m(z) est un opérateur pseudodifférentiel régularisant.

i (2543 0
ml (0 72]‘,%
le méme spectre que 'opérateur de Dirac associé a la structure spinorielle de la 3-sphére stan-
dard. Cependant, I'opérateur de Dirac sur SU,(2) posséde une caractéristique trés particuliere
qui n’existe pas sur la 3-sphére commutative: le signe de D, noté F := D|D|~!, commute mo-
dulo OP~%° avec les éléments de l'algebre A. Ceci a pour conséquence que les 1-formes a[D, b]
sont essentiellement équivalentes aux 6-1-formes a[|D], b] dans les calculs d’intégrales non com-
mutatives. On peut construire avec cet opérateur de Dirac un triplet spectral (A, H, D) régulier

L’opérateur de Dirac est défini de la facon suivante: D v ) Uﬁnl' Il posséde donc
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et de spectre de dimension {1,2,3} sur SU,(2). D’autre part, une structure réelle J peut étre
construite sur ce triplet, avec la relation JD = DJ. Cette structure réelle est définie par

J’Uﬁl —_ Z'Q(m—l—l)—l 7T

Jl _ s—2(m+0)+1, 7l
2j—m,2j+1—1° JUm,z =1

Voj—m,2j—1-1"

En utilisant une décomposition de type Poincaré—Birkhoff-Witt sur les §-1-formes pour calculer
les intégrales § |D 4| 7%, nous avons été amenés a étudier certains produits de séries faisant inter-
venir une inversion d’indice m +— 2j —m (sections 2.4.4 et 2.8.C, 2.8.D). Ces résultats ont permis
de montrer que la structure réelle ne modifie pas le spectre de dimension {1,2,3} de SU,(2),
et que Paction spectrale du triplet (A, H, D) qui tient compte de la structure réelle, c’est a dire
associée a la perturbation D — D + A + JAJ !, est totalement déterminée par les intégrales
suivantes (qui ne font plus intervenir la structure réelle J)

][AEIDIP, 1<q¢<p<3,

ol A est une d-1-forme. Afin de calculer précisément ces intégrales, un calcul différentiel sur
SU,(2) modulo un idéal R a été défini. Cet idéal est congu de telle sorte que tout opérateur 7" dans
R est invisible par intégration non commutative avec |D|~2,|D|=3: f T'|D|~2 = f T|D|™3 = 0. Le
calcul d’intégrale du type Ang\_p est alors réduit & certains types particuliers de 0 — 1-formes
Ajs. Par exemple, il est possible d’obtenir toutes ces intégrales avec p = 1 & partir des intégrales
suivantes (Proposition 3.5.16):

(1*(]27‘)2 )
][(bb*)”b* 6b|D| ! —][(bb*)"béb* D™t = =

*\TL * -1 _ _2q4n+2_2q4n_2q2n+2+6q2n
][(bb) ada |D| = (A—¢2n)2(1—¢27F2) ’

][ (bb")"a* da |D| 7t = SRR 2

(1_q2n)2(1_q2n+2)

Ces résultats permettent finalement de retrouver toutes les actions spectrales possibles sur
SU,(2). Nous avons constaté, a l'aide de certains exemples, que les termes de 'action spec-
trale n’ont pas toujours une limite finie lorsque ¢ — 1, c’est & dire lorsque SU,(2) "s’approche"
de la 3-sphére commutative S?. D’autre part, méme lorsque cette limite existe, le terme obtenu
n’est pas égal au terme correspondant & la 3-sphére. Il existe donc un "mur" entre la g-géométrie
de SU,(2) et S? qui n’apparait pas au niveau des déformations du tore ou des plans de Moyal.
Le calcul d’action spectrale sur d’autres géométries, telles que les sphéres de Podles [43, 46|, le
plan projectif [45], ou les g-sphéres euclidiennes [44,47,96] pourrait faire 'objet d’investigations
futures.

4. Tadpoles et triplets spectraux commutatifs

Ce chapitre présente un travail fait en collaboration avec Bruno Iochum: Tadpoles and com-
mutatives spectral triples [83]. Nous nous sommes intéressés a certaines questions concernant
I’annulation d’intégrales non commutatives apparaissant dans ’action spectrale de Chamseddine—
Connes. Plus particuliérement, nous avons étudié les intégrales du type f AD™! (linéaires en A,
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ot A est une 1-forme) qui correspondent, en théorie des champs, & des tadpoles. Ici, D1 est
le propagateur fermionique de Feynman et AD~! est un graphe a une boucle avec une ligne
fermionique interne et une ligne bosonique externe :

Dfl
: A

Plus généralement, on définit un tadpole comme étant un terme linéaire en A apparaissant
dans 'action spectrale S(D + A, ®, A). Si d est la dimension d’un triplet spectral (A, H, D), on
peut montrer que la partie linéaire en A du terme en A%* de Paction spectrale, que on note
Tadpia(d — k) (tadpole d’ordre k) vérifie:

Tadpya(d—k) = —(d — k)][AD\D\—<d—k>—2, Vk # d,
Tadpya(0) = — ][ AD™L

Il apparait alors que pour tout triplet spectral riemannien, c’est & dire du type (A =
C>®(M), H := L*(M,S), D) ol M est une variété compacte sans bord riemannienne & spin
de dimension d, H I'espace de Hilbert des spineurs de carré intégrable et D 'opérateur de Dirac
associé a la structure spin, tous ces termes sont nuls. Cette propriété est basée sur le fait que ce
triplet est réel et commutatif. La structure réelle de (A = C®(M), H := L*(M, S), D) provient
de lexistence de la structure spin, car celle-ci implique 'existence d’un opérateur de conjugaison
de charge J, qui est une isométrie antilinéaire satisfaisant:

JaJ b =a*, Vac A.

De fagon plus générale, on peut montrer, en utilisant le résidu de Wodzicki, que § B|D|*(2k+1),

ou B est un polynéme généré par A et D, est toujours nul si la dimension est paire, alors que
fBD_Zk est toujours nul en dimension impaire. Dit autrement, fB|D|_(d_q) = 0 pour tout q
impair.

Nous nous sommes aussi intéressés au cas d’une variété de dimension paire compacte avec
bord, et d’une condition au bord de type chirale, c’est-a-dire telle que l'opérateur de Dirac
perturbé D + A agit sur le domaine {s € C*(V) : I_sjgpy = 0} ont I := §(1 £ x). Ici x est
un opérateur de chiralité sur le bord, c’est-a-dire tel que x> =1 et

=0,  [x,2=0, Vae{l,---,d—1}.
On obtient alors une condition au bord mixte naturelle sur 'opérateur de type Laplace (D + A)?:
B;?S =1I_ (D + A)28|3M ) H—S\BM .

En se basant sur les formes explicites des coefficients du noyau de la chaleur dans le cadre des
conditions aux bords mixtes [11,12], on peut alors montrer qu’aucun tadpole ne peut exister
dans 'action Tr(®((D + A)2B;21 /A?)), au moins jusqu’a ordre 5. Nous nous attendons & ce que
ceci se généralise & tous les ordres, et & d’autres types de conditions aux bords, notamment
celles d’Atiyah-Patodi-Singer. Une approche de cette question, associée aux triplets spectraux
commutatifs, fait I'objet d’un travail en cours [84].
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5. Calcul pseudodifférentiel global sur variétés avec linéarisation

Le cinquiéme et dernier chapitre présente la construction d’un calcul symbolique et pseudo-
différentiel global sur les variétés avec linéarisation.

Il a été montré par Gayral et al. [59] que les plans de Moyal sont des triplets spectraux non
compacts. En d’autres termes, les plans de Moyal peuvent étre vus comme des variétés a spin non
compactes et non commutatives. Ce lien entre la théorie de la quantification par déformation et
la géométrie non commutative montre en particulier que le paradigme des triplets spectraux est
adapté aux questions de quantification. Le produit de Moyal est défini sur 1'espace de Schwartz
S(R?") des fonctions rapidement décroissantes

frg(a) = (x)~" /}RM dydz f(y) g(z) e (070 Sa=2)

o € R et § = (01;10"), et donne a S(R?") une structure de pré-C*-algébre de Fréchet. Le
triplet spectral décrit dans [59] est basé sur cette algébre. L’extension de cette construction
remarquable & un fibré cotangent T* M d’une variété M non isométrique & R™ reste un probléme
ouvert. Nous proposons dans ce chapitre la construction d’un calcul pseudodifférentiel global afin
d’obtenir un produit de Moyal plus général que celui défini sur S(R?").

Le calcul pseudodifférentiel global [9, 49,148, 149| permet d’établir une notion globale de
symbole total d’un opérateur pseudodifférentiel, modulo I'algébre résiduelle des opérateurs régu-
larisant ~°° (& noyau lisse). Il est basé sur la définition d’une connexion sur la variété (ou plus
généralement, d’une linéarisation [9]), et utilise 'application exponentielle, ainsi que le transport
paralléle sur les géodésiques associées, pour obtenir un isomorphisme global (modulo ¥~°°) entre
les algébres symboliques et opératorielles.

Lorsque la variété M n’est pas compacte, il apparait utile, afin d’avoir une continuité de type
L?(M) pour les opérateurs d’ordre 0, de considérer des espaces de symboles qui controlent & la
fois la variable x et la covariable 6. Ces controles ont été utilisés sur R” dans le cadre du calcul
pseudodifférentiel de type SG (voir par exemple [124]). Nous avons été amenés a définir un tel
calcul dans le cadre des variétés & linéarisation, c’est a dire telles qu’il existe une application
exponentielle abstraite (ou linéarisation) exp : TM — M établissant un difféomorphisme exp, :
T.M — M en chaque point x € M. Ce cadre est suffisamment général pour contenir les variétés
de Cartan-Hadamard, qui sont les variétés simplement connexes, complétes, et de courbure
négative.

L’outil essentiel de la définition du calcul global dans le cadre des variétés a linéarisation est
la combinatoire liée a la formule de Faa-di-Bruno a plusieurs variables [39]. Celle-ci s’exprime de
la fagon suivante: si f € C°(RP) et g € C*°(R",RP) alors pour tout n-multi-indice v # 0,

v s

(fog)= > @Neg > > M Gagmr@9)”

LAy s=lps(r,))  J=1

ot les multi-indices k7, I/ appartenant & I’ensemble p (v, \) vérifient Py kI = et > i1 kI lT =
v. A Taide de cette formule, il est possible de définir, de facon intrinséque et dans le cadre des
variétés a linéarisation, des espaces de Fréchet nucléaires de fonctions rapidement décroissantes
S(M), S(M x M), S(TM), S(T*M) pourvu que l'application exponentielle satisfasse une hy-
pothése de controle a l'infini de type polynomial. Cette hypothése dit plus précisément que les
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applications de changement de coordonnées normales wi’g := Lpexp, L exp, Lb_,1 (on z,2" € M,
b, b’ bases de T, M, T,» M et Ly isomorphisme linéaire associé a b) sont dans 'espace O (R™, R™)
des fonctions (avec leurs dérivées) polynomialement dominées a U'infini.

Il est d’autre part possible de définir, sous ces conditions, des isomorphismes topologiques de
quantifications Op, paramétrés par A € [0, 1] qui permettent de passer de l'espace des opérateurs
(plus exactement des noyaux) (M x M) al’espace des "symboles" S'(T*M). Ces isomorphismes
envoient S(M x M) dans S(T* M) et il apparait alors possible de définir un A-produit (ou produit
de Moyal si A = %) sur S(T*M) simplement par transfert de la convolution de noyau dans
S(M x M). Plus précisément, le produit

Tiw? / _
aoxb(z,n) = / dpie (€)dp(y) / dity e, (0,0') g2 g, € men D a()  0) byl %, 0)
To(M)xM VA

z,8,y

ou les applications V', g, w sont déterminées (Proposition 5.3.11) par I'application exponentielle
et la densité du considérée sur la variété, donne a S(T*M) une structure d’algébre de Fréchet,
et se réduit précisément au produit de Moyal classique lorsque A = % et M =R".

Nous avons ensuite étudié 'extension du SG-calcul sur les variétés a linéarisation. Les es-
paces de symboles S“™ (ayant un controle séparé en z et #) peuvent étre définis si on ren-
force I’hypothése précédente de controle polynomial sur les difféomorphismes wsg Plus préci-

sément, si les applications wg’s,l vérifient (S7), ¢’est-a-dire si pour tout n-multi-indice av # 0 (ici
2
(x) = (14 [Ix]*)'?)
b,b’ -
%% (x) = O((x)' 1)

alors les espaces SY™ de symboles a, définis par les estimations suivantes, pour tout systéme de
coordonées normal (z,b),

0  a(x,0) = O((2)\ 1 o), 7)),

z z,b,x

sont des espaces de Fréchet homéomorphes aux espaces de SG-symboles classiques sur R™.
A partir de ces espaces, on peut définir les opérateurs pseudodifférentiels sur M en posant
whm .= Op, (S%™) pourvu que cet espace ne dépende pas du paramétre de quantification \ et
qu’il stabilise a la fois S(M) et 8'(M). Ceci a été rendu possible par une analyse des espaces
d’amplitudes a et des opérateurs associés

(Opr(a), u) = /R OO Ty (alx, ¢ 9) Pw)” (x, ) dC ) dx

ot I' est un isomorphisme topologique de S(R?") vérifiant certaines hypothéses de controle a
I'infini (Proposition 5.4.14, 5.4.17 et Lemma 5.4.18).

La partie suivante est consacrée & un résultat sur la composition des opérateurs pseudodiffé-
rentiels. Il est établi (Theorem 5.4.47) sous une hypothése particuliére (C,) (Definition 5.4.37)
sur 'application exponentielle, que ¥ := Ul,m\I’l’m est une x-algébre sous la composition d’opé-
rateurs et le symbole (pour A = 0) du produit de deux opérateurs A, B satisfait la relation
asymptotique

00(AB)zp~ D ey (alx, D)L (PN, f) (%, ¢, ¢y L (9))) 1) g
B,yeN™
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ot a := 09(A)6, b := 00(B).,6, €t les termes L, ¢ capturent la "courbure" liée & I'application
exponentielle abstraite exp. Nous montrons en derniére partie que l’espace hyperbolique H de
dimension 2 est une variété avec linéarisation (I’application exponentielle étant celle venant de
la structure riemanienne) vérifiant I’hypothése de controle (S1). Ceci permet de définir de fagon
globale et intrinséque les espaces de Schwartz S(H), S(T*H), S(TH) ainsi que les espaces de
symboles S (T*H).

L’analyse détaillée des A-produits sur S(T*H) (ou plus généralement sur S(T*M), pour
M avec Ops-linéarisation) et les propriétés spectrales associées restent a étudier. Il serait par
exemple intéressant de voir sous quelle condition les algeébres (S(T*M), o)) peuvent générer un
triplet spectral non compact. D’autre part, il est possible d’envisager de connecter ou d’étendre
le calcul symbolique présenté ici avec les opérateurs de Fourier intégraux [42,117,118], les traces
régularisées [110] et les espaces de Gelfand—Shilov [15].
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