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INTRODUCTION

The physics of ultra-cold atoms is a very rich area of investigation, where atomic, condensed

matter, and many body physics meet together. The study of ultra-cold gases began more than

twenty years ago, with a search for Bose-Einstein Condensation (BEC) in spin-polarized atomic

hydrogen. The discovery of BEC in trapped clouds of alkali atoms (Rb [1], Na [2], Li [3]) in

1995 stimulated a tremendous boost in the field, as testified by the award of the 2001 Noble Prize

to Eric Cornell, Wolfgang Ketterle and Carl Wieman. This very active field of research is the

meeting point of several communities. The first generation of BEC experiments revealed that the

behavior of dilute Bose-Condensed gases was governed by a unique matter wave-function. For

the first time, it was possible to transpose to matter waves the concepts of spatial and temporal

coherence, originally introduced to describe the properties of laser light. At present, experiments

are to a large extent concentrated on the investigation of phenomena based on phase coherence.

The present thesis aims at contributing to this field by creating advanced systems with the possi-

bility of experimentally addressing fundamental questions of atomic physics. The work achieved

during the time of this thesis was performed at the Australian National University in Canberra

and at the Laboratoire Kastler-Brossel (ENS) in Paris. Consequently, the body of the thesis has

two parts. First, the production of a 87Rb atom laser, a matter wave of high brightness and coher-

ence, opens the route towards atom interferometry experiments. Second, a BEC of metastable

Helium atoms is planned to be transferred into a three-dimensional optical lattice, with the goal

of studying the real-time dynamics of the quantum phase transition occurring in such a system.

The two parts are motivated by a common theme, to provide advanced ultra-cold atom sources

for precision measurement and for investigations in fundamental physics.

1. Atom Interferometry

The quest for more precise measurements is at the heart of the technological revolution expe-

rienced in the last half-century, and is mainly based on the manipulation of laser light. After opti-

cal lasers were first demonstrated in 1960 [4], they rapidly revolutionized many fields of physics

such as optics and precision measurement. The main reasons for the importance of optical lasers

are their unique coherence properties and high brightness, which offer significant advantages

over thermal light sources, allowing precision interferometry experiments to be performed. They

enabled non-linear optics and quantum optics as well as experimental investigations of quantum
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information, quantum computing and quantum cryptography to name but a few. Technologies

reliant on lasers are now an integral part of the lives of billions of people. One can think of the

application of lasers as optical storage devices such as CDs and DVDs, fiber-optic communica-

tion or laser surgery.

Over the last decade, a somewhat similar level of control was gained over atoms. Compared

to photons, atoms offer the advantage of having an intrinsically richer structure and of responding

far more strongly to gravity, rotations and external fields. Consequently, matter-wave interferom-

etry was envisaged for its potential to be an extremely sensitive probe for inertial forces [5] and

inertial sensors like gyroscopes and accelerometers started to develop. In 1991, atom inteference

techniques were used in proof-of-principle work to measure rotations [6] and accelerations [7].

Atom interferometry is nowadays one of the most promising candidates for precision measure-

ment and several groups are developing instruments for practical experiments. For instance, there

has been a number of fundamentally important experiments making use of the atomic mass to

measure the Newtonian gravitational constant G [8, 9] and the fine structure constant α [10, 11].

These experimental measurements were conducted with thermal atoms. Alternatively, atom in-

terferometer gyroscopes and accelerometers have been produced from laser-cooled atoms in a

magneto-optical trap and improved sensitivities have been achieved [12, 13]. Moreover, the re-

alization of BEC and atom lasers has produced the matter-wave analog of the laser in optics and

has opened new avenues to explore. Like the revolution brought by lasers in optical interferom-

etry, it is expected that the use of condensed atoms will bring the science of atom optics, and in

particular atom interferometry, to an unprecedented level of accuracy. For example, in a Mach-

Zehnder gyroscope rotating at a frequency Ωr, the phase shift between two interfering particles

after propagating half of the loop is given by [14]

∆φ =
4πΩrA

vλ
(1)

where A is the area enclosed by the interferometer, v is the velocity of the particles (either atoms

or photons) and λ is the particle wavelength. For photons, vλ = cλ with λ the wavelength of

the laser beam, whereas for atoms, the relation vλ = h/m defines the De Broglie wavelength of

the matter-wave with m the mass of the atom and h Planck’s constant. Therefore, for an interfer-

ometer of fixed area and a fixed number of round trips, the inherent sensitivity of a matter-wave

gyroscope (e.g. with alkali atoms) will exceed that of a (e. g. visible) photon-based system by a



ix

factor of mc2/h̄ω ∼ 1011, where ω is the photon angular frequency (ω = 2πc/λ ) and h̄ = h/2π .

In comparing the sensitivity of two interferometers, the signal to noise ratio per root Hertz of

measurement bandwidth (SNR/
√

Hz) is the critical parameter. To improve this quantity, one

must either increase the measured signal or decrease the noise from the measurement process.

Ultimately, the noise in any interferometric measurement utilizing either an optical or an atom

laser scales as the square root of the particle flux (
√

N if N is the flux of particles). The phase

sensitivity of an interferometric measurement is thus given by ∆φmin = 1/
√

N radians per root

Hertz of measurement bandwidth. This minimum measurable phase decreases as the flux in-

creases, scaling inversely as the square root of N. For instance, 1 W of visible light is roughly

1018 photons per second and the smallest rotation that could be measured is on the order of 10−9

rad/Hz1/2. Comparatively, the flux from present day atom lasers is 12 orders of magnitude lower,

with N ∼ 106 atoms.s−1. The smallest phase shift that can be measured is thus ∆φmin ∼ 10−3

rad/Hz1/2. In comparison with the photon interferometer, the atom laser looses 6 orders of mag-

nitude in sensitivity due to lower flux, but gains 11 orders of magnitude in signal, making it 5

orders of magnitude more sensitive provided similar enclosed area and number of round trips

can be achieved. Although optical gyroscopes are realized with enclosed areas orders of magni-

tude larger than atomic gyroscopes, advances towards truly continuous atom laser beams could

narrow this existing gap. Higher precision gyroscopes could find practical applications in navi-

gation, analysis of earth structures, in geophysical studies and also in tests of general relativity.

Given that atomic beams offer enhanced sensitivity for many precision measurements, there still

remains the option of using either thermal beams, laser cooled atoms, or atom lasers derived

from a Bose-Einstein condensate. State selected thermal beams and laser cooled atoms have

the advantage of relatively high flux, roughly three orders of magnitude higher than has been

achieved with BEC sources [15, 16]. However, the narrow transverse velocity distribution in an

atom laser combined with the low velocity of the atoms offer the possibility of a large momentum

transfer beam splitting and a relatively large enclosed area in a compact device. Furthermore, in

theory, the inherent non-linearity in an atomic beam (resulting from atom-atom interactions) can,

if properly controlled through a Feshbach resonance, squeeze the shot noise or quantum noise

on the beam through the atomic equivalent of the Kerr effect [17]. With current fluxes available

in a standard BEC experiment (∼ 106 atoms per second), the potential improvement in signal to

noise through squeezing is 3 orders of magnitude, at least in theory. It is the potential increase

in sensitivity of precision interferometric measurements performed with an atom laser, that mo-
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tivated the ANU group to study and further develop the atom laser towards a source that could

be useful for precision interferometric measurement.

Six groups have carried out most of the experimental work on atom lasers so far. The MIT

group led by Wolfgang Ketterle produced the first Radio-Frequency (RF) output-coupled atom

laser [18]. The NIST group led by Bill Phillips produced and studied the first Raman output-

coupled atom laser [19]. In the Institut d’Optique in Orsay, Alain Aspect’s group made the

first measurements of the transverse spatial mode of RF output-coupled atom lasers [20] and

developed theory to describe and analyse this spatial mode [21]. The Orsay group has also stud-

ied guided atom lasers [22]. The ETH group at Zurich led by Tilman Esslinger measured the

linewidth of RF out-coupled atom lasers [23]. In recent times, the ETH group has also concen-

trated on the quantum properties of the atom laser [24–26] and have measured the second order

correlation function of an RF outcoupled atom laser [27]. Before commencing the work pre-

sented in this thesis, the ANU group concentrated on understanding the classical noise properties

of high flux atom lasers [28–30] with the aim of developing the atom laser to a device that is

truly useful. In more recent times, the ANU group has produced and studied the first pumped

atom laser [31]. The LKB group led by David Guery Odelin have also made contributions to the

investigation of the pumped or continuous atom laser [32–34]. The research presented in the first

part of this thesis builds on the earlier work of these groups.

2. He BEC in optical lattices

The realization of BEC has enabled many fascinating experiments in which fundamental

quantum mechanics was studied from a macroscopic system where the weakly interacting con-

densed atoms can be described by a single wave-function. Similarly, the atom laser, introduced in

the previous section, can be described by a single macroscopic wave-function which can be pre-

cisely probed experimentally in interference experiments. Important advances towards control

of atoms occurred when one started loading BECs into light-induced periodic potentials which

exploit the interference pattern created by two or more overlapping laser beams and the resulting

dipolar force exerted on the atoms. To transfer a Bose-Einstein condensate from a magnetic trap

to an optical lattice, the condensate is illuminated by 1, 2 or 3 pairs of counter-propagating beams

to form 1, 2 or 3D lattices respectively. Matter waves inside 3D optical lattices share many fea-

tures with electrons in crystal lattices and form a model crystal. Optical lattices, however, have

the major advantage that a large number of real-time lattice parameters can be controlled, mak-
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ing them a versatile tool to study atomic physics properties in analogy with quantum phenomena

predicted in solid state physics. The physics of BEC in optical lattices provides a rich play-

ground for both theory and experiments [35, 36]. It has opened new views on solid state physics,

fermion-boson mixtures [37, 38], vortices in lattices [39] and quantum computation [40]. In

1998, P. Zoller et al. suggested that it should be possible to convert a weakly interacting Bose

gas (Superfluid) into a strongly interacting quantum state (Mott insulator) by loading atoms into

an optical lattice [36]. A real breakthrough occurred with the experimental observation of this

Superfluid-Mott insulator quantum phase transition by Greiner et al. [41, 42]. In the regime

where the inter-atomic interaction in a lattice site is small compared to the tunneling process

across the lattice, each atom is delocalized over the entire lattice characterizing a superfluid state.

In this case, the atoms exhibit long-range phase coherence and can be described by a macro-

scopic wave-function. However, in the regime where the atom-atom interaction on a lattice site

is no longer weak compared to the tunneling coupling, each atom is localized to a lattice site

and the long-range phase coherence vanishes so that the atoms can no longer be described by a

macroscopic wave-function. In this case, a novel quantum system of strongly correlated atoms is

created which is well described by a Bose-Hubbard model.

Optical lattices have also been used to investigate various intriguing aspects of 1D quantum

gases. The dimensionality of a macroscopic quantum system can have a large impact on its

physical behavior, and it is therefore crucial to understand the role and effects of reduced di-

mensionality, which is made possible by the flexibility of optical lattices. The group of Tilman

Esslinger in Zurich demonstrated that 1D quantum gases with extreme aspect ratios can be cre-

ated and compared the oscillations of such clouds [43, 44]. In parallel, the group of Bill Phillips

at NIST studied the initial effects on 1D quantum gases as they become more strongly interacting

[45]. As 1D bosonic quantum gases become even more strongly interacting, it is possible to enter

the regime of a Tonks-Girardeau gas [46] where repulsive interactions tend to separate individual

atoms, causing the bosonic particles to exhibit fermionic properties. In addition to displaying

novel quantum phases of many-body states, BEC in optical lattices also offer great opportunity

for quantum information processing. Atoms in a Mott insulating state can be viewed as a natural

quantum register in which each quantum bit is represented by a single atom and an interesting

challenge is to construct quantum logic gates between atoms trapped in different lattice sites.

In our group at LKB, we plan to load optical lattices using metastable helium atoms. In the

case of helium, Penning collisions produce helium ions (He+ or He2+) and an electron (e−),
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providing a sensitive method to detect the atomic collisions using a channel electron multiplier

(channeltron). This represents a substantial advantage by comparison with alkali atoms, com-

monly detected by destructive optical observation methods (absorption or fluorescence). In par-

ticular, we aim at using Penning ionization to perform a real-time detection and study the kinetics

of the Superfluid-Mott insulator transition.

3. Outline of the thesis

1. The first part of my thesis work presents the work achieved in the group of John Close at

ANU between 2005 and 2007 using 87Rb atoms to create atom laser beams as an advanced

ultra-cold source for atom interferometry and precision measurement applications.

• The first chapter is an introductory study defining the basic concepts of ‘atom lasers’.

A general overview on various techniques which can be used to create such beams of

atoms from an initially trapped Bose-Einstein Condensate is given. Technical aspects

of the out-coupling process are also discussed.

• Chapter 2 presents a detailed description of the third generation of the BEC machine

which co-workers and myself achieved during the first year of my time at ANU. The

apparatus is based on a double Magneto-Optical Trap structure and involves physical

transport of the atoms. This is followed by a presentation of a Raman optical setup

which I implemented in order to transfer the trapped atoms into the atom laser mode.

• In Chapter 3 I describe the production of a high flux atom laser beam with a nearly-

Gaussian spatial mode using a Raman out-coupling technique. In contrast to a stan-

dard RF out-coupling method, the initial momentum transfer imparted to the atoms

by the two optical Raman lasers reduces the divergence of the atomic beam and im-

proves its spatial profile. The quality factor of a Raman atom laser (factor M2 defined

similarly as in optics) is shown to be largely improved compared to RF out-coupling,

which is an important requirement for interferometric applications.

• In chapter 4, a stable and efficient beam splitter for atom laser interferometry is im-

plemented in a straightforward experimental setup. It is based on a Bragg diffraction

process where the grating arises from each of the Raman beams (independently) and

from a very small fraction of back-reflected light. Such beam-splitters are impor-
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tant tools in any atom interferometry experiment and the one I present here has the

advantage to be extremely simple and versatile.

• In the last chapter of the first part (Chapter 5), I investigate theoretically the dynamics

of several atom laser systems out-coupled by an RF technique. For that purpose, I use

a 1-dimensional model based on solving the Gross-Pitaevski equations. I validate the

model by comparing the theoretical predictions to previous experiments carried out

in our lab. I use it further to investigate important parameters of an atom laser such

as population evolution, spatial dynamics and density fluctuations.

2. The second part of the thesis presents the work achieved in the group of Michèle Leduc at

LKB-ENS between 2007 and 2009 with the aim of manipulating optically 4He metastable

atoms for the investigation of atomic physics.

• Chapter 6 presents a detailed description of the machine used to produce a BEC

of metastable helium atoms. Co-workers and myself have achieved major improve-

ments from the previously existing setup. In particular, a Channel Electron Multiplier

was added in the Science cell where the BEC is produced, providing a non-destructive

real-time detection method. The optical setup was also redesigned and entirely fiber-

coupled in order to improve the stability of the system.

• In Chapter 7, I summarize the general principle and properties of optical trapping

of neutral atoms. This is followed by a description of the laser configuration which

we are currently implementing on our setup. Several experiments are planned using

an optical dipole trap, in particular a measurement of inelastic rate constants in a

gas of spin-polarized metastable helium, which I present with regard to theoretical

predictions by Shlyapnikov et al.

• Finally, chapter 8 opens a perspective for loading metastable helium atoms in 3-

dimensional optical lattices. The aim of our group is to investigate the dynamics of

the Superfluid-Mott insulator quantum phase transition occurring in such a system.

For that purpose, I describe the design of a new type of magnetic trap which we

conceived and constructed in order to allow for atomic Bose-Einstein condensation

to be compatible with in-situ loading of the condensed gas into the lattice.





CHAPTER 1

EXPERIMENTAL AND THEORETICAL BACKGROUND OF ATOM LASERS

This chapter summarizes the basic concepts of atom lasers. First, a brief description on the

atom laser is given in analogy to the well-known optical laser. This is followed by a discussion

on the different out-coupling methods which can be used to extract atoms from a magnetically

trapped ultra-cold sample. Finally, the last two sections concentrate on important technical as-

pects, determined by the Rabi frequency, which should be considered when producing an atom

laser beam.

1.1 GENERAL OVERVIEW OF ATOM LASERS

1.1.1 Background

In 1923, Louis De Broglie extended the particle-wave duality of light to any massive particle,

defining the De Broglie wavelength of a particle as

λdB =
h

p
(1.1)

where h is the Planck constant and p is the momentum of the particle. His intuition was later

verified by the experiments of Davisson and Germer [47] who performed diffraction of electrons

on a crystal. In the case of a gas in thermodynamic equilibrium, the mean quadratic velocity of

the atoms is related to the temperature of the cloud T and the thermal De Broglie wavelength can

be written as :

λdB =

√

2π h̄2

mkBT
(1.2)

where m is the atomic mass, kB the Boltzmann constant and h̄ = h/2π . λdB is commonly thought

of as the spatial spread, or coherence length, of the atomic wave-packet with respect to the

velocity distribution of the gas. Cooling of atoms therefore appears very appealing: first, it

can reduce the velocity dispersion (divergence) of a sample of atoms and increase the coherence

of the source; second, by increasing the atomic wavelength, wave effects are emphasized. It is

only after 1980 that the new field of atom optics started to be developed, taking advantage of the
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advent of optical lasers to provide efficient cooling of thermal clouds.

In 1995, a new state of matter was observed [1–3] from cooling an atomic sample to ex-

tremely low temperatures. This Bose-Einstein Condensate (BEC) was predicted theoretically by

A. Einstein [48] 70 years before its experimental realization. The theory of BEC is centered

around the statistical mechanics of an ideal monoatomic gas and was inspired by the work of

S. Bose on photon (which is a boson) statistics and the Planck radiation distribution law [49].

Following De Broglie’s work, Einstein claimed that any bosonic particles should thus obey the

same statistics as photons. As a result, the Bose-Einstein distribution function was formulated

for a system of N non-interacting, indistinguishable bosonic atoms, giving the mean number of

particles in the ith energy state as

ni =
1

e(εi−µ)/kBT −1
(1.3)

where εi is the particle energy in the ith state and kB is the Boltzmann constant. The chemical

potential µ and the temperature T reflect the constraints on the total number of particles N and

the total energy E in the system [50, 51]. Below a certain critical temperature Tc, the lowest

energy state of the system becomes macroscopically occupied. For a uniform Bose gas of non-

interacting particles confined in a trap, the transition temperature at which this effect begins is

Tc =
h̄ω̄

kB

[

N

ζ (3)

]1/3

(1.4)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies and ζ is the Riemann

zeta function. The number of particles in the lowest energy state can finally be written as

N0 = N[1− (T/Tc)
3/2]. (1.5)

In a BEC, a large number (N0 ∼ 106) of ultra-cold dilute neutral atoms is confined by either

a magnetic or an optical trapping potential and undergo a dramatic transition to quantum degen-

eracy. Consequently, a macroscopic fraction of the atoms occupy the same coherent quantum

state (usually the ground state of the trap). In this case, the De Broglie wavelength of each in-

dividual atom becomes comparable to the size of the condensate so that the atoms are no longer

indistinguishable but rather acquire collective properties which can be described by a unique

wavefunction.
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Figure 1.1: Demonstration of Bose-Einstein Condensation in a dilute alkali gas of 87Rb atoms
in the ANU experiment. The density distributions of each image are obtained from absorption
imaging. The image on the right shows a thermal cloud of atoms just prior to condensation. The
central image displays a characteristic change in the density distribution indicating the onset of a
BEC. The left image shows an almost pure BEC.

A demonstration of Bose-Einstein condensation in a dilute alkali gas of 87Rb atoms generated

in our lab at ANU is shown figure 1.1 for a typical final temperature of T = 200 nK.

A consequence of Bose-Einstein condensation is that a matter-wave can be released from

the trap without disturbing the initial coherence between the atoms. Due to the gravitational

acceleration that they experience, a directional, bright and spectrally narrow beam of coherent

out-coupled atoms can thus be created, which is commonly called an ’Atom Laser’ (see figure

1.2). In this regime, the energy of the atoms, and thus the wavelength λAL of the atomic beam,

far from the BEC after the initial mean-field driven acceleration, is dominated by the effect of

gravity following
h̄2k2

AL

2m
= mg∆z (1.6)

where kAL = 2π/λAL is the atom wave number and ∆z the distance over which the atoms have

fallen. Finally, λAL = h/(m
√

2g∆z). The wavelength of the atom wave decreases as the atoms

propagate under gravity so that it is only defined locally.
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g Bose-Einstein฀Condensate

Atom฀Laser฀Beam

Figure 1.2: Atom laser produced in our lab after a long (10 ms) pulse of out-coupling. The atoms
have fallen under gravity creating an atom laser beam 0.5 mm long. At the top of the figure is
the BEC. The time of flight for imaging the system was on the order of 3 ms.

1.1.2 An Analogy with Optical Lasers

In the very general picture depicted in figure 1.3, the atom laser can be thought of as an

analog to the well-known optical laser. The following points briefly outline this analogy:

• Just as the lasing mode in an optical laser is a source of coherent photons, the lasing mode

of an atom laser is a BEC, a source of coherent atom waves.

• In an optical laser, the photons are held within a cavity created from two optical mirrors.

Similarly, for an atom laser, the BEC is constrained by either a magnetic or an optical

trapping potential.

• In an optical laser, the extraction of the beam can be achieved as one of the mirrors forming

the cavity has been carefully chosen to partially transmit the light. Comparatively, atom

laser beams are usually extracted by transferring the atoms from their initial magnetically

trapped internal state into a state that does not interact with the trapping field, leading the
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Figure 1.3: Physical elements constituting an optical laser (a) and an atom laser (b). In both
cases, the lasing mode has a macroscopic population of bosons. In an optical laser, the lasing
mode is multiple wavelengths long. In an atom laser, the lasing mode is the ground state of the
trap. Both lasers rely on an irreversible stimulated process to populate the lasing mode.

way for atoms to fall away under gravity. This extraction process can be applied either as

short or long (quasi-continuous) pulses.

• Both optical and atom lasers are extracted from a macroscopically populated mode of the

cavity (or the trap). In the case of optical lasers, this mode is highly excited and multiple

wavelengths long whereas in the case of an atom laser it is the lowest energy mode (usually

the ground state of the trap).

• Finally, in order to maintain the production of a laser beam, one has to continuously refill

the lasing mode as it is depleted. In an optical cavity, a gain medium of atoms is pumped by

some source of energy in order to sustain a population inversion that coherently amplifies

the lasing mode via stimulated emission of photons. Pumping (or refilling) of an atom

laser is nowadays a real challenge in the field of atom lasers. Recently, a method has been

demonstrated in our group [31] to out-couple an atom laser beam while simultaneously

and irreversibly pumping new atoms from a physically separate cloud into the trapped

Bose-Einstein condensate that forms the laser source.
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1.1.3 Definition of an ’Atom Laser’

The term ’atom laser’ has become widely used in the last decade and it is therefore important

to have a more rigorous definition of what really defines an atom laser. For Wiseman [52], a

general laser is a device containing a highly populated mode of a boson field. This so-called

‘laser mode’ is continuously replenished so that the output continues indefinitely. The output

beam is formed via an out-coupling mechanism and is well approximated by a classical wave

of fixed amplitude and phase. This definition leads to four properties defining the atom laser, in

analogy with optical lasers :

1. The output beam must be highly directional, clearly defining a longitudinal direction along

which propagation and dispersion occur and two transverse directions along which diffrac-

tion may occur. The directionality condition does not necessarily imply that the laser out-

put must travel in free space and wave-guides have been proved to be useful for atom lasers

to support against gravity, prevent spreading due to diffraction, and also improve the spatial

profile [53].

2. The beam must be narrow in linewidth. There is a limit on the uncertainty δk of the

longitudinal spatial frequency of the output such that δk ≪ kAL = 2π/λAL, where kAL is

the wave vector of a boson in the output which, as mentioned earlier, continuously changes

during the propagation.

3. The output beam must have a well defined phase, implying that phase fluctuations in the

output beam are small. This condition can be expressed quantitatively using Glauber’s

normalized first order coherence function [54] defined by

G(1)(τ) = 〈Ψ†(t + τ)Ψ(t)〉 (1.7)

or its normalized form

g(1)(τ) =
〈Ψ†(t + τ)Ψ(t)〉
〈Ψ†(t)Ψ(t)〉 (1.8)

where Ψ(t) is the complex amplitude of the field. For τ = 0, |G(1)(τ)| is simply the mean

intensity 〈I〉 of the field. However, as τ increases, |G(1)(τ)| decreases as the phase of
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the field gradually becomes decorrelated from its value at time t with |G(1)(τ)| → 0 when

τ → ∞. By contrast, an ideal first order coherent source will have g(1)(τ) = 1 for all τ . In

practice, the phase of an atom laser, and hence G(1)(τ), will remain constant over a long

period (tcoh) before significantly decaying and this coherence time is defined by

tcoh =
∫ +∞

0
|g(1)(τ)|dτ. (1.9)

The first order temporal coherence of an atom laser was demonstrated in [55] where the

authors showed that the linewidth of the atom laser, defined as Γ = 1/tcoh, was Fourier

limited (by the out-coupling duration and the detection resolution) giving an upper limit

on the phase fluctuations of the atom laser. The first order spatial coherence of an atom

laser beam was also demonstrated experimentally [56, 57] by observing high contrast in-

terference patterns from two interfering atom laser beams that were phase related (created

from the same initial source).

4. Finally, the output beam must have a well defined intensity. Like the previous condition,

this can be expressed in terms of correlation functions. The second order normalized cor-

relation function is given by

g(2)(τ) =
〈Ψ†(t + τ)Ψ†(t)Ψ(t + τ)Ψ(t)〉

〈Ψ†(t)Ψ(t)〉2
(1.10)

which is also commonly written as

g(2)(τ) =
〈: I(t + τ)I(t) :〉

〈I(t)〉2
(1.11)

where I = Ψ†(t)Ψ(t) is the intensity of the field and 〈::〉 denotes normal ordering (i.e.

all creation operators to the left of all annihilation operators). For fields that are second

order coherent, the intensity fluctuations are small in the sense that |g(2)(τ)−1|2 ≪ 1 and

the only intensity noise contribution is quantum noise (also called shot noise). Second

order coherence of an atom laser has been demonstrated experimentally using a Hanbury

Brown-Twiss type experiment where the second order correlation function was measured

to be g(2)(τ) = 1.00±0.01 [27].
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It is important to note that the use of the term ’atom laser’ in the literature has not followed

completely Wiseman’s definition. Indeed, it has been widely used for out-coupled beams which

are either short or long-pulsed but not rigorously continuous since the condensate (i.e. the laser

source) was not continuously replenished. In our experiment, the atomic beams are almost always

long-pulsed (quasi-continuous) unless specified otherwise. The notion of short and long atomic

pulses will be described in section 1.4.3. For consistency with the literature the term ’atom

laser’ will be used although the condensate is never replenished and the output cannot continue

infinitely.

1.2 ATOM LASER OUT-COUPLING TECHNIQUES

Although all atom lasers produced to date utilize a Bose-Einstein condensate as a source (or

reservoir) to populate the atomic beam, they can be distinguished by the different techniques

used to out-couple the atoms. There are many ways of coherently transferring atoms from a

condensate into the propagative matter-wave of the laser. These methods can be classified in two

main groups namely the non-state changing and the state changing out-coupling techniques. A

non-state changing out-coupling technique is a method where the internal state of the atoms is

not modified during the out-coupling process. Conversely, a state changing out-coupling process

couples the magnetically trapped atoms out of the condensate by transferring them into a different

internal state which is magnetically un-trapped and falls under gravity. To do so, one can use

either a radio-frequency (RF) (or microwave) field, or alternatively an optical Raman field. Both

techniques are described in detail in the following sections.

1.2.1 Non-State Changing Out-coupling

Although the majority of the experimentally demonstrated out-coupling mechanisms are

based on either Raman or RF transfer of atoms from a magnetically trapped into an un-trapped

Zeeman state, it is interesting to mention a few examples of non-state changing out-coupling

techniques.

The first atom laser beam was created when the first time-of-flight measurement of a con-

densate was performed after switching off the magnetic trap. The pulse of atoms falling under

gravity can be considered as forming a coherent matter-wave. This is analogous to the optical

‘cavity dumping’ where all the photons in a cavity would be extracted at once. This very simple
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technique is also very limited since, by definition, it is a short-pulse method, with the repetition

rate being the time it takes to create a new BEC (typically a few tens of seconds) and the linewidth

of the beam being very broad, on the order of the full width of the condensate (see section 1.3.2).

The second technique was a quantum tunneling effect demonstrated by Anderson and Kase-

vich [58]. In this experiment, a condensate was loaded into the top of a vertical array of optical

traps created by a standing wave. Acceleration due to gravity induced tunneling between the

traps and constructive interference between the lattice sites resulted in falling pulses of atoms.

The size of the pulses could be adjusted by altering the depth of the optical wells. However,

this outcoupling technique has important limitations. First, the atomic beam is again inherently

pulsed and cannot work in a continuous regime. Second, the density of these pulses is limited as

for large densities, mean-field interactions cause significant dephasing between lattice sites, thus

degrading the interference process. No further consideration was given to this technique in the

development of an atom laser.

A further unconventional form of an atom laser was produced in [59], again using an optical

method. In this experiment, a single spin state condensate was produced in a strongly focused

optical trap by applying a magnetic field gradient stronger than the transverse optical confining

force. All atoms were removed by this field gradient, except those in the magnetically insensitive

(mF = 0) state which stayed confined in the optical dipole trap. Here mF is the projection of

the total angular momentum F of the hyperfine atomic state that is considered. An atom laser

was finally produced by smoothly lowering the optical trapping potential so that atoms from the

condensate could fall under gravity. The benefits of this scheme are that the outcoupling is not

limited by the stability of magnetic fields. It is dependent only on the laser intensity fluctuations

but stabilizing laser intensities is technically easier than eliminating stray magnetic fields and

producing a highly stable magnetic trap. However, magnetic fields are still required to produce

cold atoms that will continuously replenish the condensate. Moreover, the use of strong magnetic

field gradients and shallow optical potentials could make it difficult to extend this method in the

case of a pumped atom laser.

1.2.2 State Changing Out-coupling

In order to illustrate the state changing out-coupling process, the atomic spectroscopy of

the 87Rb ground state is presented in figure 1.4. It has two distinct hyperfine states of total

angular momentum F = 1 and F = 2 characterized by Landé factors of gF =−1/2 and gF = 1/2
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Figure 1.4: Atomic spectroscopy of the ground state of 87Rb in a small bias field.

respectively. In most experiments, and in particular in ours, the BEC is trapped in a magnetic

potential. In the bias field at the minimum of the trap, a hyperfine level is split into 2F +1 non-

degenerate Zeeman states. For weak magnetic fields, in which the Zeeman effect is small and

may be treated as a perturbation, the splitting between two Zeeman states characterized by their

projection mF and m′
F can be approximated as

h̄δZeeman = ∆mFgF µB|B| (1.12)

where ∆mF = m′
F − mF , µB is the Bohr magneton and |B| is the magnetic field amplitude.

Zeeman states experience differently the magnetic trapping potential. In the case of 87Rb, the

|F = 2,mF = 2〉, |F = 2,mF = 1〉 and |F = 1,mF = −1〉 states are trapped and can poten-

tially form the condensate. Any mF = 0 state is un-trapped and insensitive to the magnetic

field (under the first order Zeeman effect), whereas the |F = 2,mF =−2〉, |F = 2,mF =−1〉 and

|F = 1,mF = 1〉 states are anti-trapped and quickly expelled from the magnetic field region. A

state changing process will coherently couple two Zeeman states that can be either inside a given

hyperfine state (this is the case of RF and the Raman out-coupling used in our experiment) or from

two distinct hyperfine states (which is the case of microwave or sometimes Raman out-coupling).
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1.2.3 Radio-Frequency Output Coupling

Mewes et al. [18] demonstrated the first pulsed atom laser output coupler based on the appli-

cation of pulsed radio-frequency (RF) fields, before continuous output coupling was achieved by

Bloch et al. [60].

m฀m฀F฀F฀=฀0=฀0

m฀F฀=฀1

m฀m฀F฀F฀=฀-฀1=฀-฀1

F฀=฀1

ω฀ω฀RFRFδ฀Zeeman

Trapped฀stateTrapped฀state

Un-trapped฀stateUn-trapped฀state

Spin฀flip

g

Atom฀Laser

(a) (b)

Atom฀Laser

Figure 1.5: The scheme (a) shows the basic principle of RF out-coupling which is applied to the
case of the F=1 manifold (b) in our experiment.

Radio-frequency output coupling consists of applying a monochromatic RF magnetic field B

of given amplitude BRF and frequency ωRF in order to induce controlled spin flips between adja-

cent Zeeman states. The aim is to resonantly and coherently transfer the atoms from their initial

magnetically trapped state into a state which is insensitive to magnetic fields. Consequently,

the atoms are no longer trapped and will be extracted from the BEC due to gravity, as shown

in figure 1.5a. Experimentally, a BEC is produced in the F = 1 manifold and the magnetically

trapped |F = 1,mF = −1 > atoms are transferred to the |F = 1,mF = 0〉 state (in which they

no longer interact with the magnetic potential). The process is resonant provided the frequency

of the field satisfies ωRF ∼ δZeeman = µBB/(2h̄) (figure 1.5b). Because the first order Zeeman

shift symmetrically splits adjacent Zeeman states, all 2F +1 sublevels are coupled, producing a

multi-state atom laser beam. For instance in the F = 2 manifold, the condensate atoms initially

in the |F = 2,mF = 2〉 trapped state are transferred, via the |F = 2,mF = 1〉 state, into the mF = 0

un-trapped state but can also populate the anti-trapped |F = 2,mF = −1,−2〉 states.
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Microwave out-coupling is a similar technique with the difference that it couples two Zeeman

levels of different hyperfine states, producing a single-state atom laser.

1.2.4 Raman Output Coupling

The outcoupling mechanism used in most of the experiments described in the thesis is also

a state changing technique but utilizes an optical Raman transition. It was originally suggested

as a mechanism for atom laser outcoupling by Moy et al. [61] and first demonstrated experi-

mentally by Hagley et al. [19] who produced a quasi-continuous multi-state atomic beam. The

scheme (figure 1.6a) is based on the absorption and stimulated emission of photons from two

optical laser beams, again transferring the atoms from a magnetically trapped to an un-trapped

state. The process is coherent and inherently controllable. However, the main difference with

the previously described RF coupling technique is that the atom laser is produced with an ini-

tial momentum kick in any chosen direction defined by the incoming directions of the two laser

beams. Experimentally, this two photon transition is applied on the F = 1 manifold, as shown in

figure 1.6b. An atom in the trapped mF =−1 state coherently absorbs a photon from a beam with

frequency ω1 and is stimulated to emit into the other beam with a frequency ω2 thus changing its

internal state to an un-trapped magnetic level (mF = 0).

The process is reversible and un-trapped atoms can be coherently transferred back into the

condensate. In order for this scheme to be efficient, one has to create the following conditions :

1. The two laser beam polarizations must be chosen to allow optical transitions between the

Zeeman sublevels. In figure 1.6b, one laser beam is thus linearly (π) polarized whereas

the other one has a σ− circular polarization where the polarization is defined in terms of

absorption.

2. The frequency difference between the two lasers (δ = ω2−ω1) has to be adjusted to satisfy

energy and momentum conservation. An atom, initially at rest, gains a momentum kick

p = h̄(k2 −k1) following momentum conservation upon absorption and emission of each

photon. Here k1,2 are the wavevectors of the lasers of the two laser beams. When the beams

make an angle θ and are produced from the same laser source of wavevector k (which is

always the case in our experiments), one can write :

p = 2h̄ksin

(

θ

2

)

. (1.13)
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Figure 1.6: Schematic showing the basic principle of Raman out-coupling (a) as well as the
restrictions of energy and momentum conservation on a two photon Raman transition in the F=1
manifold of our experiment (b). The parabolas correspond to the kinetic energy of the atoms,
equal to p2/2m.

In theory, the laser geometry can range from co- to counter-propagating beams and will

determine the magnitude and the direction of the momentum kick received by the atoms.

Thus the momentum transfer will be maximum for counter-propagating (θ = π) beams.

Energy conservation requires that the detuning of the lasers accounts for the total change

in energy of the atom and the frequency difference between the two laser beams must

consequently correspond to the Zeeman plus kinetic energy difference between the initial

and final states of the two-photon process following:

h̄δ = h̄δzeeman − h̄δrecoil (1.14)

where

δrecoil =
p2

2mh̄
=

2h̄k2sin2(θ
2 )

m
. (1.15)
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The recoil frequency depends on the half angle between the two Raman beams. It is

zero if the beams co-propagate (θ = 0◦) and is maximum if the beams counter-propagate

(θ = 180◦) with δrecoil ∼ 2π × 10 kHz (in the case of Rb atoms and laser beams with

λ ∼ 780 nm).

Combining the energy and momentum conservation equations finally results in the reso-

nance condition :

h̄δ = ∆mFgF µBB− p2

2m
(1.16)

which, in the case of the F = 1 manifold, can be written as

h̄δ =
µBB

2
− 2h̄2k2sin2(θ

2 )

m
. (1.17)

3. The transition must be highly detuned by a frequency ∆ from the one-photon atomic tran-

sition (see figure 1.6a) in order to suppress the population in the upper state and thereby

suppress spontaneous emission.

For the case of the 4 photon transition represented in figure 1.7, the outcoupled atoms end up

with twice the momentum p = 4h̄ksin(θ
2 ). Since gF = 1/2 and ∆mF =−2 in the F = 2 manifold,

the resulting resonance condition now satisfies :

h̄δ = µBB− 4h̄2k2sin2(θ
2 )

m
. (1.18)

The two photon resonance condition is no longer satisfied and less coupling is expected

to occur to the intermediary mF = 1 state (as shown in figure 1.7), and similarly to the anti-

trapped states (mF = −1,−2). However, coupling to these states can still occur depending on

the frequency width of the condensate as well as the width of the Raman transition. This point is

described in the next section.

In the Raman out-coupling scheme, the directional momentum kick received by the atoms

produces a number of effects which are not present in the RF output coupler. First, the output

coupler does not require gravity or guiding to operate and hence the atoms can be pushed in any

direction. Second, the momentum kick will reduce the interaction time between output coupled

atoms and the condensate, leading to a significantly reduced transverse momentum width in the



16

mF=2
mF=1

Δ

mF=0

Atom฀Laser

g

π
π

σ -

σ -

Figure 1.7: The four photon Raman outcoupling scheme in the F = 2 manifold

atom laser [19]. This last point will be experimentally studied in more detail in chapter 3.

1.3 RESONANT WIDTH OF THE CONDENSATE

The resonant out-coupling frequencies required in either Raman or RF out-coupling tech-

niques depend on the value of the external magnetic field experienced by the atoms. Since the

condensate has a certain size (or width), atoms located at different positions inside the BEC will

experience a different magnetic field and, as a consequence, will be out-coupled for different

resonance frequencies. This section determines the range of frequencies (or ‘resonant width’)

which allow out-coupling of atoms, taking into account the effect of gravity, inducing a vertical

displacement (or ‘sag’) of the BEC away from the magnetic field minimum.

1.3.1 Gravitational Sag

Any state changing mechanism described above is dependent on the energy spacing of the

coupled Zeeman states since it depends on the value of the magnetic field. In particular, the

presence of the trapping magnetic field introduces a spatial resonance associated with a given

resonance frequency allowing the centre of the resonance to be tuned within and around the

condensate. The resonance condition is thus satisfied on the surface of an ellipsoid centered

around the minimum of the magnetic field. Without gravity, the resonance condition for a state
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changing out-coupling mechanism would be satisfied on an ellipsoid of constant magnetic field

B0. However, gravity introduces an asymmetry which displaces the condensate away from the

magnetic field minimum. This displacement (or sag) is found by equating the force of grav-

ity in the downwards direction (Fg = mg) with the upwards force (Fmag) due to the magnetic

field minimum. Here m is the atomic mass and g the acceleration due to gravity. The trapping

potential in the direction of gravity is given by V = mω2
z z2/2 (see section 2.1.8) where ωz is

the radial trapping frequency of the |F,mF〉 state given by ωz =
√

µBgFmFB′′
z /m with B′′

z the

second derivative (or curvature) of the magnetic field with respect to the spatial coordinates.

Consequently, Fmag = dV
dz

= mω2
z z. The displacement down from the centre of the magnetic field

minimum is finally given by zsag = g/(ω2
z ). It is important to notice that that radial trapping

frequency (and thus the sag) depends on the mF Zeeman state that is considered. For instance, in

the F=2 manifold, the radial frequency of the |F = 2,mF = 2〉 state is
√

2 times bigger than the

one of the |F = 2,mF = 1 > state. Consequently, atoms in the |F = 2,mF = 1〉 state are displaced

from the magnetic field minimum by twice as much as atoms in the |F = 2,mF = 2〉 state.

In our experiment (see chapter 2), 87Rb atoms are condensed in the |F = 1,mF = −1〉 state

and in a trap with typical radial frequency of ωz = 2π × 130 Hz which corresponds to a sag of

zsag ∼ 15 µm. Out-coupling will consequently occur at the intersection of the displaced conden-

sate with the surface of an ellipsoid as shown in figure 1.8.

BECOut-coupling฀resonance

zsag

∆zBEC

z

Figure 1.8: The sag of the condensate due to gravity, viewed orthogonal to the weak trapping
axis. The red ellipse represents the condensate and the blue contour lines show the magnetic field
magnitude, increasing away from the central minimum. An out-coupling frequency resonance is
depicted by the thick, black line.

1.3.2 Resonant Frequency Width

In order to estimate the spatial range over which out-coupling should be expected, one has to

determine the resonant width of the condensate. Assuming the kinetic energy may be neglected
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compared to the interaction energy (Thomas Fermi approximation) [62], the size ∆zBEC of the

condensate in the vertical direction is given by:

∆zBEC = 2

√

2µ

mω2
z

(1.19)

where µ is the chemical potential which represents the amount by which the energy of the system

would change if an additional particle were introduced. A quantitative value for the chemical

potential is determined by considering the constraint on the total number of particles:

N =
∫

n d3x (1.20)

where n is the density of particles. Including the effects of interactions and trap confinement

gives

µ =
1

2
(15ah̄2√mω̄3N)2/5 (1.21)

where a = 5.77 nm is the scattering length and ω̄ the mean geometric trapping frequency. In

our experiment (N ∼ 5×104 atoms, ωρ = ωx = ωz ∼ 2π ×130 Hz, ωy ∼ 2π ×13 Hz) ∆zBEC is

typically of order of 10 µm.

The frequency width of a condensate is usually given by the chemical potential following

∆ω = µ/h̄ ∼ 2π ×1 kHz. However, in a magnetic trap, the sag of the BEC into regions of higher

magnetic field gradient modifies the resonance. Assuming that the resonance is centered on the

condensate, the resonant width of the BEC is found by considering the difference in resonant

frequencies between the upper edge of the condensate, located at zup = g/ω2
z −∆zBEC/2 and

the lower edge at zdown = g/ω2
z +∆zBEC/2. As mentioned before, the resonant frequency at any

point in the vertical direction can be written as ωBEC = µBB/2h̄, where B is the magnetic field of

expression B = B0 +
mω2

z

2gF mF µB
z2 in the z-direction. Thus, the resonant width for the |F = 1,mF =

−1〉 state is given by

∆ωBEC =
mω2

z

2h̄
(z2

down − z2
up) =

mg

h̄
∆zBEC (1.22)

which can be re-written as

∆ωBEC =
2g

h̄ωz

√

2mµ (1.23)
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In our experiment, the range of resonant out-coupling frequencies is ∆ωBEC ∼ 2π×10 kHz which

is much larger than the ‘bare’ frequency width ∆ω of the condensate when no sag is considered.

1.4 RABI-FREQUENCY AND THE DIFFERENT OUT-COUPLING REGIMES

Rabi frequency is an important parameter when producing an atom laser because both the

strength and the relative time scales of the out-coupling process can be described in terms of

this parameter. The aim of this section is to qualitatively distinguish between two out-coupling

regimes (weak or strong) of an atom laser depending on the value of the Rabi frequency.

1.4.1 Output Coupling Strength

The strength of the out-coupling is determined by the Rabi frequency. For RF out-coupling,

the Rabi frequency is given by

ΩRF =
gF µBBRF

2h̄
(1.24)

where BRF is the amplitude of the applied magnetic field. For a two photon Raman out-coupling,

the Rabi frequency can be written as

ΩRaman =
Ω1Ω2

2∆
(1.25)

where ∆ is the detuning to the atomic transition and Ω1 and Ω2 are the one photon Rabi fre-

quencies of the coupling introduced by each laser, with Ω1α
√

I1 and Ω2α
√

I2 if I1 and I2 are the

intensities of each laser beam respectively.

1.4.2 Pulsed and Quasi-Continuous Output Coupling

In section 1.3.2 we estimated the spatial range over which out-coupling could be expected by

calculating the resonant width of the condensate in the vertical direction:

∆zBEC = 2

√

2µ

mω2
z

(1.26)
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Similarly, one can define the spatial extent of a resonant output coupling pulse following equation

1.23 as:

δ zres =
h̄

mg
δωres (1.27)

where δωres is the frequency width of the out-coupling resonance. For a pulse of length τout ,

the frequency width is determined by the larger of the power broadened width given by Ω or the

natural width of the pulse 4π/τout .

We will define quasi-continuous coupling as the regime where the width of the out-coupling

region is significantly narrower than the width of the condensate (δ zres < ∆zBEC). Conversely,

short pulse output coupling is characterized by a large frequency width of the output coupling

resonance and occurs over a large region in space (δ zres > ∆zBEC). This is illustrated in figure

1.9a) and 1.9b) respectively.

1.4.3 Out-coupling regimes

In an out-coupling process, the BEC can be thought of as a discrete state coupled to a contin-

uum of un-trapped states, resulting in a width broadening Γ and a time scale 2π/Γ characterizing

the dynamics of the system. In order to characterize the out-coupling regime, one can compare

this time scale to the memory time tm of the continuum [63] which is defined as the characteristic

time for an out-coupled atom to loose the initial information of the condensate. In the case where

only the gravitational continuum is considered, a classical interpretation of this memory time can

be thought of as the time it takes for an atom to leave the region of the condensate, leading to

tm ∼ 2π/∆ωBEC [64].

If Γtm/2π ≪ 1 the out-coupled atomic wave has lost the memory of the condensate during

the time scale 1/Γ. This regime characterizes a weak out-coupling where it is appropriate to

calculate the atomic output rate from the Fermi golden rule as described in [65]. The validity of

this regime implies that

Γ ≪ ∆ωBEC (1.28)

or equivalently

Γ ≪ m

h̄
g∆zBEC (1.29)
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In the first order perturbation theory, the typical broadening Γ can be expressed as [63]:

Γ ∼ h̄Ω2

mg∆zBEC

(1.30)

leading to a similar condition over the Rabi frequency to characterize the weak out-coupling

regime:

Ω ≪ m

h̄
g∆zBEC (1.31)

We can point out that, since Ω ≪ mg∆zBEC/h̄ in the weak coupling regime, the spatial region

where out-coupling takes place (δ zres ∼ h̄Ω/mg) is very thin compared the the BEC size, as

pictured in figure 1.9a).

Conversely, for Γtm/2π > 1, the atom laser will be considered in a regime of strong coupling.

In this case, only a small fraction of the condensate is coupled to the atom laser beam and the

initial wave-function of the condensate is preserved in the process. The coupling rate is such that

the output-coupled atoms do not have time to propagate while the coupling is in progress and

increasing the out-coupling time will result in Rabi oscillations to be observed in the condensate,

as described in [18].

Figure 1.9: Schematics of the model for weak (a) and strong (b) out-coupling regimes.
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1.5 CONCLUSION

In this chapter, a general overview on atom lasers in analogy to optical lasers was given. Sev-

eral techniques to out-couple the atoms from the BEC source were described and the advantages

of an optical Raman out-coupling over an RF method were also introduced. Additionally, the res-

onant width of a condensate, with respect to the gravitational sag, and the different out-coupling

regimes of an atom laser were discussed. The ANU part of this thesis mainly focusses on the

state-changing Raman method in the weak out-coupling regime in order to create an atom laser.

The following chapter presents the experimental layout which we use to produce both the Rb

BEC and the optical Raman beams.





CHAPTER 2

RUBIDIUM CONDENSATE AND RAMAN BEAMS

The source of the atom laser is a Bose-Einstein condensate (BEC). The first Rb BEC achieved

in our lab was in 2001 [66], before a major improvement of the experiment was undertaken in

2002 [67]. This chapter is split into 2 different sections. The first part describes the third genera-

tion of our BEC machine which allows us to repeatedly produce condensates of constant number

of atoms in a very stable magnetic trap. The apparatus is based on a double Magneto-Optical

Trap (MOT) structure (see figures 2.1 and 2.2) where a 3D MOT is loaded from a 2D MOT using

a push beam. The system also involves a physical transport of the atoms in a strongly confin-

ing magnetic field from the 3D MOT to a quadrupole-Ioffe configuration (QUIC) magnetic trap

where Bose-Einstein condensation occurs. The second part describes and discusses the optical

setup used to produce the optical Raman beams.

Raman฀Beams

Production฀of
฀฀฀a฀2D฀MOT

Water฀cooling QUIC฀trap

Translation฀stage

Ti-sub฀pump

Production฀of
฀฀฀a฀3D฀MOT

Figure 2.1: Picture of the BEC machine. One can see the location of the 2D and 3D MOT as
well as the translation stage used to transport the atoms from the 3D MOT to the QUIC trap. The
output of the optical fibers used for the Raman beams can also be seen.
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2D฀MOT3D฀MOT(Movable฀Magnetic฀Trap)
Translation฀StageQUIC฀Trap

x
y

z

x y
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Figure 2.2: Experimental machine used to produce the Bose-Einstein condensate. Optical laser
beams are not shown. The 2D MOT cools the atoms from room temperature in both transverse di-
rections. The 3D MOT is loaded in an ultra-high vacuum from the 2D MOT by a near-resonance
laser push beam. The 3D MOT coils are mounted on a translation stage. They not only provide
confinement for the 3D MOT stage but they are also used to transport the atoms across to the
QUIC trap where they are transferred and condensed after evaporative cooling.
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2.1 EXPERIMENTAL SETUP TO PRODUCE BEC

In the following sections, the laser and vacuum systems are described yielding an overview

of the entire experimental setup. Each step of the experiment is then briefly discussed, starting

from the 2D MOT to the production of a BEC in the QUIC trap.

2.1.1 Atomic structure of 87Rb

Alkali atoms (Li[3], Na[2], K[68, 69], Rb[1], Cs[70]) are often used in BEC experiments

due to their advantageous atomic properties. 87Rb is the most popular choice. It was the first

atomic species condensed and hence expertise was built up rapidly and is now widely available.

Additionally, Rb atoms have large elastic cross-sections at low temperatures which allow effi-

cient evaporative cooling. Also, optical transitions from the Rb 52S1/2 ground state are easily

accessible using commercially available, relatively cheap lasers.

The atomic spectroscopy of 87Rb is presented in figure 2.3 showing both the D1 and D2 op-

tical transitions and the relevant optical splitting. In particular, the two hyperfine levels of the

atomic ground state are split by ∼ 6.8 GHz and can be split further by the Zeeman effect in the

presence of a magnetic field. Various optical frequencies are required to cool and manipulate the

atoms on the path to BEC. The cooling is performed on the 52S1/2,F = 2 → 52P3/2,F
′ = 3 tran-

sition. However, approximately one in every thousand atoms will be excited to the 52P3/2,F
′ = 2

state and one in every two of these atoms will decay to the 52S1/2,F = 1 state, taking the atoms

out of resonance with the cooling laser. Consequently, in order to avoid a loss of atoms, a second

laser, known as the repump, is used to repopulate the 52S1/2,F = 2 state via the 52P3/2,F
′ = 2

state. Finally, an optical pumping beam driving the 52S1/2,F = 2 → 52P3/2,F
′ = 2 transition is

used to polarize the atoms in order to achieve an efficient transfer of the atoms from the 3D MOT

into a magnetic trap (see section 2.1.6).

2.1.2 Laser system

The schematics of the laser system, which involves three independent diode lasers to produce

the required optical beams, is shown in figure 2.4. Each laser and its function in the setup are

independently described in the following points:

1. A Toptica-TA 100 provides a maximum power of 330 mW at 780 nm. A small amount
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Figure 2.3: Atomic structure of 87Rb. Several hyperfine levels of the D2 optical transition are
used to cool and image the atoms.

of light (∼ 1 mW) is sent to a saturated-absorption locking circuit and the laser is locked

to the F = 2 → F ′ = 1,3 cross-over [67] which is shown at the top of figure 2.4. Two

independent acousto-optic modulators (AOM, 110± 20 MHz) are aligned in double-pass

configuration in order to up-shift the light frequency on resonance to the F = 2 → F ′ = 3

transition. One of the AOMs provides the 3D MOT beams whereas the second AOM

creates the imaging light and the push beam. In addition, the 0-order of the second AOM

single-passes through a 60 MHz AOM which down-shifts the light on resonance to the

F = 2 → F ′ = 2 transition for optical pumping. Each laser beam injects independent

single-mode polarization-maintaining (SM-PM) fibers which are sent to the BEC table.
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Figure 2.4: Laser system. The top pictures show the spectroscopy relevant to the experiment,
together with a theoretical plot of the saturated absorption spectrum which is used to lock the
light frequency. The bottom diagram represents the optical setup used to produce the beams to
cool, pump, image, and push the atoms.
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Accounting for the important losses through the AOMs and optical fibers, a total of ∼ 100

mW of light is available for the 3D trapping, imaging, optical pumping and push beams.

Note that the intensity balance between the imaging and push beams can be adjusted on

the BEC table using a controllable liquid-crystal half wave-plate that can shunt the light

from one beam to the other.

2. A Toptica-DLX 100 provides a maximum power of 500 mW at 780 nm which is used to

produce the 2D MOT beams. A small amount of the light (∼ 1 mW) is double-passed

through an AOM (110±20 MHz) which down-shifts its frequency. This light is sent to a

saturated-absorption locking circuit and locked on the F = 2 → F ′ = 1,3 cross-over. As a

result, the frequency of the 2D MOT beam is set close to resonance of the F = 2 → F ′ = 3

transition. However, the frequency of the beam cannot be easily tuned without affecting

the locking circuit, and the light must be switched on and off using a mechanical shut-

ter. The 2D MOT beam is sent to the BEC machine in free space with a total power of

approximately 480 mW onto the atoms.

3. A Toptica-DL 100 provides a maximum power of 90 mW at 780 nm which is used to

produce the repump beams for both the 2D and 3D MOT. A small amount of the light

is locked to the F = 1 → F ′ = 2 transition which is shifted off the natural resonance by

∼ 20 MHz using a Zeeman shift on the saturated absorption cell. The repump light is sent

to the BEC table using SM-PM optical fibers and is split equally to provide independent

repumping beams for the 2D and 3D MOT. In particular, the 2D MOT repump is combined

with the push beam whereas the 3D MOT repump is mixed with each of the 3D MOT

beams.

2.1.3 Vacuum system

A schematic of the vacuum system is shown in figure 2.5. It consists of two vacuum cham-

bers, a Creation and a Science chamber, which are connected through a differential pumping

tube.

The Creation chamber is a quartz cell of 3.6×3.6×20 cm dimension with a wall thickness of

approximately 4 mm. Two ‘Alvasource’ dispensers (from Alvatec), based on stable intermetallic

compounds, contain the 87Rb natural isotope. Each dispenser is 115 mm long with a 4 mm

diameter and has a capacity of 50 mg. The Rb metal is initially protected in a sealed stainless
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steel housing which makes it chemically stable under ambient air. The sealing can melt under a

thermal activation process, which is done during the baking of the vacuum system. Under normal

operation, the dispensers are run continuously and a heating current controls the amount of pure

87Rb released in the chamber so that the vapor cell can be filled up close to the saturated vapor

pressure of rubidium (∼ 1×10−7 Torr at 20◦C). The only pumping of the vapor cell is achieved

through a differential pumping tube, consisting of a 14 cm long stainless steel cylinder (external

diameter 10 mm, internal diameter 7 mm).
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Figure 2.5: Schematic of the vacuum system. The Collection chamber is pumped by a 40 l.s−1

ion pump running continuously. Two titanium-sublimation pumps were also used a few times in
order to improve the ultra-high vacuum in the BEC Chamber. The Creation chamber is pumped
through a differential pumping tube and holds a vapor pressure of Rb atoms which are produced
by two dispensers.

The ultra-high vacuum (UHV) Science chamber consists of two parts. The first is the Collec-

tion chamber which collects the atoms from the Creation cell and holds a 3D-MOT in the center.

The frame of this chamber is a 316 stainless-steel (non-magnetic) standard hexagon. It has eight

3.5 cm diameter windows on the side providing a large optical access whereas two large diameter
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windows offer additional optical access in the vertical direction. This chamber is pumped by a

40 l.s−1 ion pump which is connected by a high conductance metal tube. The pump magnet is

located 90 cm away from the chamber, thus avoiding any fringing field to distort the magnetic

trapping field in the UHV chamber. The pumping efficiency is also enhanced by two titanium

sublimation (Ti-Sub) pumps which were run three times in total to improve the pressure in the

UHV chamber. The final pressure in the UHV chamber (∼ 5× 10−11 Torr) was measured by

a pressure gauge as well as from the lifetime of the 3D MOT. The second is the BEC chamber

which is a quartz cell of 3.6× 3.6× 20 cm dimension and is directly attached to the Collection

chamber. A translation stage (see section 2.1.7) transports the atoms from the Collection chamber

to the end of the glass cell where the sample is transferred into a magnetic trap and condensed.

2.1.4 2D MOT

In the Creation chamber, the atoms released by the two dispensers are confined and cooled

in a 2D MOT. A radial laser-cooling is performed by two orthogonal pairs of retro-reflected

beams (2 cm diameter, ∼ 500 mW of laser power in total) with opposite polarization σ+/σ−

(see figure 2.6). Four magnetic coils (see figure 2.2) provide a radial quadrupolar trapping field

with the zero of the magnetic field along the axial y-direction. Consequently, a beam of atoms

is created along the y-direction. The atoms are transferred to the Collection chamber through

the differential pumping tube by a low power push beam (∼ 200 µW). The tube is attached by

stainless steel nuts to the gaskets. It is cut at a 45◦ angle at one end and holds a polished mirror

which has a 1 mm hole in its center. Initially, this mirror was planned to retro-reflect a laser

beam in order to provide additional laser-cooling along the axial x-direction. However, a single

push beam is used in our experiment to transfer the atoms from the Creation to the Collection

chamber. Finally, the flux of atoms is optimized by adjusting the heating current applied to the

dispensers.

2.1.5 3D MOT

In the Collection chamber, three orthogonal pairs of retro-reflected beams (1.4 cm diameter,

∼ 30 mW of laser power in total) with opposite polarization σ+/σ− provide a cooling in three

directions. Two internally water-cooled quadrupole coils, which were operated by using 60 A

currents in opposite directions, provided confinement for the atoms. These quadrupole coils
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Figure 2.6: Arrangement of the optical beams onto the atoms. The imaging beam, the push beam,
two pairs of 3D MOT beams as well as a pair of 2D MOT beams are represented by the red lines
in the xy-plane. The red dots on the 2D and 3D MOT clouds represent the additional pair of 2D
and 3D MOT beams respectively, along the vertical z-direction.

are mounted on a translation stage which can be moved all the way to the end of the BEC cell

(see section 2.1.7). The 3D MOT is typically loaded in 10 s with a rate of ∼ 5×109 atoms.s−1,

resulting in approximately 5×1010 atoms to be trapped in the 3D MOT. Note that the laser beams

of both the 2D and 3D MOTs are slightly focussed in order to account for absorption and to keep

the intensity constant as the beams go through the atomic clouds. A 10 ms compressed MOT

(CMOT) stage is performed by attenuating the repump beam and ramping up the current in the

magnetic coils. The MOT lasers are then far-detuned from the F = 2 → F ′ = 3 atomic transition

by ∼ 40 MHz and the magnetic trap is abruptly switched off in ∼ 100 µs, followed by 10 ms of

Polarization Gradient Cooling (PGC) [71].
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2.1.6 Transfer to a magnetic trap

In a magneto-optical trap, atoms are generally distributed approximately equally across all

hyperfine states. In contrast, pure magnetic trapping requires the atoms to have gFmF > 0 [72].

For the two hyperfine states of 87Rb, where gF=2 = 1/2 and gF=1 =−1/2, the only magnetically

trappable Zeeman sub-states are thus: |F = 2,mF = 2〉, |F = 2,mF = 1〉 and |F = 1,mF = −1〉.
Consequently, in order to achieve high transfer efficiencies from a 3D MOT to a magnetic trap,

the atoms must initially be spin polarized in one of these states. For that purpose, all laser beams

are turned off and an optical pumping cycle, illustrated schematically in figure 2.7, is applied

to the atoms. To transfer the atoms to the |F = 2,mF = 2〉 state (see figure 2.7a), the repump

light is switched on and a σ+ polarized light drives the S1/2,F = 2 → P3/2,F
′ = 2 transition.

Once the atoms are pumped into the magnetically trapped |F = 2,mF = 2〉 dark state they are no

longer interacting with the pumping laser and remain in a dark state. Alternatively, it is possible

to transfer the atoms to the |F = 1,mF = −1〉 state (see figure 2.7b) using a σ− polarized light

to drive the S1/2,F = 2 → P3/2,F
′ = 2 transition and a short repump pulse. This process is less

efficient than pumping the |F = 2,mF = 2〉 state since the |F = 1,mF =−1〉 state is not dark when

the repump is on and other Zeeman sub-states can also be populated in this scheme. However, by

choosing appropriate timing and laser power for both the optical pumping and repump beams, a

transfer of up to 80% of the atoms into the |F = 1,mF =−1〉 state was performed experimentally.
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Figure 2.7: Schematics of optical pumping cycles to polarize the atoms in a) the |F = 2,mF = 2〉
state or b) the |F = 1,mF = −1〉 state using σ+ or σ− light respectively. In (b), the dashed line
for the repump illustrates that it is a short pulse which is switched off before the end of the optical
pumping sequence.
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In early experiments carried out in our group, the atoms were transferred to the |F = 2,mF = 2〉
dark state as the process is the most efficient and the characteristic trapping frequency is

√
2 larger

than that for the other states, leading to higher collision rates which are advantageous for evapo-

rative cooling. However, when working with atom lasers, it is more appropriate for the source of

atoms to be in the |F = 1,mF = −1〉 state in order to increase the flux and decrease the classical

noise in the atom laser beam (see chapter 5).

2.1.7 Transport by a Translation Stage

In order not to make any compromise on the creation of a large MOT and on the efficiency

of the magnetic trapping of the condensate, the setup is designed so that the positions of the 3D

MOT and the final location of the magnetic QUIC trap do not coincide (see figure 2.2). Conse-

quently, the atoms are transported from the Collection to the BEC chamber using the technique

developed at JILA [73]. Following the 3D MOT and optical pumping stages, all optical beams

are switched off and the current in the quadrupole coils is ramped up from 0 to 360 A in 10 µs in

order to strongly confine the spin-polarized atoms. The coils, which are mounted on a computer

controlled 25 cm high precision linear translation stage (PI M-521), subsequently transport the

atoms all the way to the BEC cell. Figure 2.8 shows the position of the quadrupole transport

coils at different locations, from their initial position around the 3D MOT (1) to their final posi-

tion where the atoms are transferred to a QUIC trap (3). In order to minimize losses or heating of

the atoms, a smooth transport of the magnetic coil is achieved in 7 s. The first second of transport

consists of a very smooth acceleration to reach a constant velocity, whereas the last second is

a very smooth deceleration to zero velocity. All magnetic coils are water-cooled and have an

interlock which switches the power supplies off if any overheating is detected.

2.1.8 QUIC Trap

2.1.8.1 Transfer to the QUIC Trap

Following the transport of the atoms, the imaging beam (∼ 15 mW), which is resonant with

the F = 2 atoms, is applied for about 50 µs in order to blow away any residual atoms in the

|F = 2,mF = 2〉 state. The |F = 1,mF = −1〉 atoms are subsequently transferred from the

magnetic quadrupole trap into a Ioffe-Pritchard type QUIC trap. The QUIC trap consists of three

magnetic coils: two quadrupole coils are placed horizontally, above and underneath the glass cell
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Figure 2.8: Transport of the magnetically trapped atoms by a translation stage. The quadrupole
coils, initially above the Collection chamber (1), are moved across the frame (2) to the far end of
the BEC chamber (3).

(see figure 2.2), whereas a Ioffe coil is positioned vertically, on the side of the cell. The resulting

magnetic field of such a configuration is presented in more detail in section 6.2.8 and can be

approximated as:

B(x,y,z) = B0 +
B′′

2
y2 +

(

B′2

2B0
− B′′

4

)

(x2 + z2) (2.1)

where only the second order terms are significant in the three spatial directions and where B0,

B′ and B′′ are the bias, gradient and curvature of the magnetic field respectively. The trapping

frequencies in the axial and radial directions are given by:

ωy =

√

gFmF µBB′′

m
and ωρ = ωz = ωx =

√

gFmF µB

m

(

B′2

B0
− B′′

2

)

. (2.2)

respectively. gF = 1/2 is the Landé factor of the F hyperfine state, mF is the projection of the

total angular momentum, µB is the Bohr magneton and m is the mass of the atom. The transfer is

achieved in 500 ms by ramping up the current (∼ 16 A) in the two quadrupole coils of the QUIC

trap and simultaneously ramping down the current in the transport coils. Finally, the current in

the Ioffe coil is ramped up in 1 s. Additional cooling of the atoms down to the critical temperature

for Bose-Einstein condensation is achieved after an evaporative cooling stage by applying an RF

field whose frequency is ramped over 25 s from 30 MHz to ∼ 1.4 MHz (which corresponds to
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a magnetic bias field of B0 ∼ 2 G). During evaporation, the number of atoms decreases from

5×109 to a final value of ∼ 106 condensed atoms.

2.1.8.2 Optical Imaging

With our current setup it is possible to image the condensate along two axes (x and y) as

shown in figure 2.6. Along the x-axis, an imaging beam passes all the way through the vacuum

system and images the BEC in the yz-plane onto a CCD camera. The camera is a 12 bit Photo-

metrics SenSys with a 786×512 array of 9 µm square pixels and a quantum efficiency of 42%. It

is mounted on a stabilized x,y,z translation stage to allow precise positioning at the image plane.

This imaging beam is used to image the 3D MOT as well as the combined weak and strong axes

of the condensate in the plane of the Raman beams (see section 2.2 and chapter 4).

Along the y-axis, an imaging beam passes across the QUIC trap through the Ioffe coil and

images the BEC in the xz-plane on a 16 bit frame transfer camera which has the ability to take

very fast sequences of images. This imaging beam is used in chapter 3 to measure the divergence

of the atom laser.

2.1.8.3 Trap Frequencies

To measure the trap frequencies, it is possible to study the sloshing mode of the atoms

[62, 74]. A cloud of atoms is preliminarily cooled to a temperature of ∼ 1 µK by ramping

the frequency of the RF cut down to ∼ 1.6 MHz. The axial and radial oscillations of the cloud

are then driven by modulating the current of the trapping potential. The following measurements

were performed for a sample of atoms polarized in the |F = 2,mF = 2〉 state. The trapping fre-

quencies of a sample spin-polarized in the |F = 1,mF = −1〉 state are easily deduced since they

are smaller by a factor
√

2.

To measure the radial trapping frequency, an additional coil is placed in the horizontal plane,

between the glass and a quadrupole coil, approximately 3 cm away from the atoms. A small

alternating current (0.08 A - 200 Hz) is applied for 100 ms so that the center of the trap is moved

sinusoidally, causing the atoms to oscillate. The position of the atomic center-of-mass (xρ ) is

measured after a variable delay time which is varied in steps of 200 µs from 0 to 12 ms (see

figure 2.9a) and can be fitted to an exponentially damped sinusoidal function following:
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xρ(t) = a+bexp(−t/τ)sin(ωρt +ϕ)). (2.3)

In this equation, b is the amplitude of the oscillation around the offset value a, τ is the damp-

ing time and ϕ a phase factor. The result from the fit yields to a radial trapping frequency of

ωρ = ωx = ωz = 2π ×204.6 Hz.

To measure the trapping frequency in the axial direction, a similar approach was first at-

tempted by adding an additional coil along the axis of the Ioffe coil. However, because the

divergence of the field from the Ioffe coil is large and because only a small coil could be added

close enough to the cell, the position of the trap could not be changed significantly in order for

the atoms to oscillate. Alternatively, an extra current (0.3 A) is ramped up directly into the Ioffe

coil, displacing the minimum of the trap away from its original position. The current is suddenly

turned off, allowing the atoms to freely oscillate in the trap. The same imaging technique is used

and an absorption picture taken after a delay time, varying from 0 to 90 ms in steps of 2 ms (see

figure 2.9(b)). The same fitting routine yields a measurement of the axial trapping frequency

ωy = 2π ×20.4 Hz.
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Figure 2.9: Trap oscillations of the cloud center-of-mass. The measurements (circles) are fitted
to an exponentially damped sinusoidal function (solid lines). For atoms in the F = 2,mF = 2
state, a radial frequency of ωρ = 2π x 204.6 Hz (a) and an axial frequency of ωy = 2π ×20.4 Hz
(b) are measured.
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2.2 EXPERIMENTAL SETUP TO PRODUCE RAMAN BEAMS

As previously explained in chapter 1, it is possible to couple atoms out of the Bose-Einstein

condensate using a two-photon Raman transition. Under appropriate optical conditions, the

atoms can be transferred from their initial magnetically trapped state to a state that does not

interact with the magnetic field and consequently falls under gravity. This section presents the

optical layout producing optical Raman beams for our experiment. In chapter 3, these beams

are used as a state changing out-coupler to create a Raman atom laser with low divergence and

improved spatial profile. Alternatively, in chapter 4, each Raman beam is used independently as

a beam splitter diffracting up to 60% of an incoming beam of atoms.

2.2.1 Optical setup

The optical setup used to produce the two optical beams for Raman out-coupling is shown in

figure 2.10.

A single tunable high power single mode diode laser (DLX110 from Toptica) provides an

output beam of about 700 mW in the TEM0,0 mode. The light is red-detuned by 300 GHz from

the D2 transition of 87Rb in order to suppress any heating due to spontaneous emission. The laser

power in the rest of the setup can be turned on or off in less than 200 ns using a fast switching

110 MHz AOM in a double pass configuration. In order to control the switching AOM, a pulse

generator (Agilent) produces a pulse of variable width and variable delay time which is sent to the

switching AOM amplitude. The light is subsequently split into two independent beams which are

double-passed through separate 80 MHz AOMs. Having the AOMs in double-pass configuration

allows the frequency of each laser beam to be shifted by a few MHz without deviating the laser

beam paths throughout the optics. The AOMs are driven by two phase locked Agilent 80 MHz

function generators operated in external amplitude control mode from a single oscillator. By

measuring the beat note on a spectrum analyser, the frequency difference between the two beams

was inferred to be stable to at least 10 Hz which is the resolution of the spectrum analyser. It

is likely that the frequency difference is actually stable to 6 µHz (which is the precision of the

function generators) although the use of additional optics will be a limiting factor. As mentioned

in the previous chapter, the frequency difference between the AOMs must correspond to the

Zeeman plus kinetic energy difference between the initial and final states of the two-photon

Raman transition. This value depends on the magnetic field bias as well as on the angle between
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Figure 2.10: Optical setup used to prepare the laser beams for Raman outcoupling. A fast AOM
can switch the Raman beams in less than 200 ns with an extinction ratio greater than 60 db. The
frequency difference between the two Raman beams is tuned using two distinct AOMs. The light
is fiber-coupled and sent to the BEC machine where the polarization of each beam is adjusted
(figure 2.11).

the two Raman beams and is typically on the order of 1 MHz in our experiment. However, the

frequency difference between the two Agilent function generators is only set to ∼ 0.5 MHz in

order to allow for the double-pass configuration of the AOMs. Both Raman beams are separately

coupled to a SM-PM optical fiber and sent to the BEC table. They pass through independent

collimating lenses to provide collimated beams of about 500 µm radius on the atoms. One of

the beams also passes through a quarter wave-plate in order to adjust its polarization (see section

2.2.2). Upon reaching the condensate, the maximum intensity in each beam is measured to be

approximately ∼ 2500 mW/cm2 and the extinction ratio of the setup is greater than 60 dB. The

two optical Raman beams propagate in the vertical plane defined by gravity and the magnetic

bias field. They are symmetric with regard to the y-direction with a separation θ between them.

Because of spatial restrictions due to the presence of magnetic coils, vacuum system and other
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optics, only two configurations with θ = 30◦ and θ = 140◦ were achieved (see figure 2.11) so

that the atoms could be out-coupled with a momentum kick given by 2h̄ksin(θ/2), equivalent to

initial velocities of 0.3 cm.s−1 and 1.1 cm.s−1 respectively.
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Figure 2.11: Optical layout used to illuminate the BEC with the two Raman beams of appropriate
polarization. In our setup two configurations are used with the angle between the beams being
set to 30◦ or 140◦.

2.2.2 Adjusting the polarization of each of the beams

In order to drive the Raman transition, optical polarization is critical. Both laser beams

are linearly polarized at the output of the optical fiber. However, in order to drive the Raman

transition in the F = 1 manifold with a downward kick transferred to the atoms, the upward

propagating beam must have a circular σ+ polarization. Consequently, this beam additionally

passes through a quarter wave plate which is adjusted to produce the appropriate polarization.

With the Raman beams at an angle to the magnetic field bias (which defines the quantization

axis), it is necessary to consider the projection of the polarization upon the axis of the bias field
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rather than along the axis of the beam. In our setup, the magnetic field bias is along the axis of

the Ioffe coil. For a laser beam of linearly polarized light, propagating at an angle θ to the field

axis and with a polarization orthogonal to the plane defined by the bias field axis and gravity,

the projected polarization is independent of the angle θ . However, for light linearly polarized in

the opposite direction (i.e. in the plane of the page), the amplitude of the linearly polarized light

with respect to the field axis is reduced by a factor of cos(θ). Therefore, circularly polarized

light, which is a combination of the two orthogonal linear polarizations, will be projected as

an elliptical polarization with an eccentricity of sin(θ). Thus, in order to approach a circularly

polarized light along the field axis, it is necessary to input elliptically polarized light along the

beam path. Experimentally, estimating the appropriate eccentricity of an elliptically polarized

beam is rather difficult and the quarter wave-plate is simply rotated until the maximum out-

coupling efficiency is obtained.

2.3 CONCLUSION

In this chapter, the entire experimental setup used to produce our Bose-Einstein condensates

of up to 106 Rb atoms is presented. The machine separates the UHV Collection region from

the BEC cell, allowing an improved optical access along all primary axes of the BEC. We took

advantage of this configuration to implement two high power optical Raman beams in the system.

These beams are used in the next chapter to investigate the divergence properties of a Raman atom

laser compared to the atom laser extracted with the widely used RF method.



CHAPTER 3

DIVERGENCE OF AN ATOM LASER

Atom laser beams show great promise for studies of fundamental physics and in high preci-

sion measurements [75] due to atoms responding far more strongly than light to gravity, rotations

and external fields. For all applications based on these properties it is crucial to develop atom

lasers with output modes that are simple and as clean as possible in both amplitude and phase in

order to allow stable mode-matching to other beams or cavities just as it was crucial for optical

lasers. The aim of this chapter is to compare the quality of Raman and RF out-coupled atom laser

beams. The quality factor of an atom laser is defined in analogy to optical lasers. The importance

of out-coupling the atoms from the center of the BEC is also discussed. Experimental results on

the improved divergence of a Raman atom laser are finally presented and discussed with regard

to a theoretical model.

3.1 M2 QUALITY FACTOR

In order to quantitatively measure the atom-laser beam quality, it is tempting to take advan-

tage of the methods that were developed in optics to deal with non-ideal laser beams above the

diffraction limit. In analogy to optical lasers, a beam quality factor M2 was introduced for atom

lasers [21] to measure how far an atomic beam deviates from the Heisenberg limit. This M2

factor is defined as :

M2 =
2

h̄
∆x0∆p0x

(3.1)

where ∆x0 is the beam width of the atom laser, measured at the waist, and ∆p0x
is the transverse

momentum spread. Equation 3.1 plays the same role as the Heisenberg dispersion relation : it

expresses how much the beam deviates from the diffraction limit. In analogy to a Gaussian opti-

cal beam, an ideal atom laser beam will therefore have M2 = 1 along both its principal transverse

axes, whereas any other non-ideal atomic beam will have M2 > 1. It has already been shown in

a number of experimental and theoretical works [20, 21, 76–78] that the beam quality factor of

an atom laser is strongly affected by the interaction of the out-coupled atoms with the BEC from

which it is produced. Therefore, as the atoms fall through the condensate, the repulsive interac-
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tion they experience acts as a diverging lens to the out-coupled atoms, leading to a divergence in

the atom laser beam. Also, because the BEC can be considered as a non-ideal lens, the transverse

beam profile will be of poor quality. Such behavior may cause problems in mode matching the

atom laser beam to another atom laser, to a cavity or to a waveguide. Alternatively, experiments

on atom lasers in waveguides have produced beams with improved spatial profile [22]. However,

precision measurements with atom interferometry are likely to require propagation in free space

in order to avoid introducing noise from the fluctuations in the waveguide itself [79]. The exper-

imental results presented in the following are obtained in free space using the experimental setup

described in the previous chapter.

3.2 OUT-COUPLING FROM THE CENTER OF THE BEC

The quality of a free space radio-frequency atom laser can be greatly improved by setting the

out-coupling cut at the lower edge of the condensate, as demonstrated experimentally by Riou

et al. [21]. Indeed in this case, the out-coupled atoms only experience the mean-field repulsive

interaction over a short time, thus reducing the divergence of the atomic beam. However, when

creating an atom laser beam, one needs to worry about the flux, fluctuations and lifetime of the

beam as essential parameters for any useful application. Consequently, there are many reasons

why it is actually much more desirable to produce an atom laser while out-coupling from the

center of the condensate:

1. Flux: The output flux of the atom laser beam can be approximated by multiplying the

number of atoms in the coupling region of interest by the Rabi frequency [30] following

F ∼ Nδ zres
(N,Ω)Ω (3.2)

where N is the total number of atoms in the condensate, Nδ zres
(N,Ω) is the number of atoms

within the out-coupling region δ zres and Ω is the Rabi frequency. It appears from equation

3.2 that increasing the Rabi frequency can potentially improve the flux in the atomic beam.

However, the classical noise level of an atom laser is also determined by Ω [28] and is

inherent to the state-changing out-coupling process. Thus, the flux is somehow limited by

the maximum possible Rabi frequency allowing the atom laser to work in a quiet regime.

Consequently, for a given classical noise level, the highest possible output flux will be
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obtained when out-coupling the atoms from the region where the density is the greatest,

which is the center of the BEC.

2. Operating time: Any quasi-continuous atom laser beam operates on a limited time-scale

since the source of atoms is not continuously replenished during the draining process.

Moreover, due to the mean field interactions, the BEC progressively shrinks towards its

center as the total number of atoms decreases inside the condensate. As a result, out-

coupling from the edge of the condensate requires that the resonance frequency is con-

tinuously swept to smaller values in order to permanently address the BEC. Alternatively,

out-coupling from the center of the cloud allows the longest operating time, draining the

whole condensate for a fixed frequency.

3. Sensitivity to fluctuations: Finally, out-coupling from the center also minimizes the sensi-

tivity of the output coupling to external fluctuations since the atomic density is maximum.

This can be understood from the density profile showed in figure 3.1b. It is clear that

small variations around the central out-coupling frequency will not affect the out-coupling

process much if the frequency is set at the center of the BEC (indicated by the arrow).

This is no longer the case when out-coupling from the edges, since small variations of the

out-coupling frequency can shut-off completely the output of the atomic beam.

As mentioned before, out-coupling from the center of the BEC using an RF out-coupling

technique dramatically degrades the transverse profile of the atomic beam [21]. However, a

substantial improvement is expected to arise from Raman out-coupling because the momentum

kick imparted to the atoms allows them to leave the condensate much more quickly, thus reducing

the adverse effects due to the mean-field repulsion from the condensate.

In order to set the output-coupling resonance at the center of the BEC, a spectroscopy of

the condensate is performed. The condensed atoms are initially produced in the |F = 1,mF =

−1〉 state following the experimental procedure described in the previous chapter. A weak RF

output-coupling is applied on the BEC for ∼ 100 ms and the number of atoms remaining in the

condensate is measured after the out-coupling time for different frequencies of the RF field. The

resonance frequency addressing the center of the BEC, where the atom density is the greatest,

is given by the point of maximum out-coupling rate. The system is observed using standard

absorption imaging along the y (weak trapping) direction as shown in figure 3.1a. The imaging

beam frequency is tuned to the F = 2 → F ′ = 3 transition (see chapter 2) and an initial 200
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(b)(a)

Figure 3.1: (a) Represents a cross-section of the condensate along the two directions of strong
confinement. The long axis is along the y direction and the BEC has a cigar shape with an aspect
ratio of about 10. The dashed line is the out-coupling cut at the center of the condensate. (b)
Shows a typical RF output coupling spectroscopy of the BEC from which the operating point at
the center of the condensate (designated by the arrow) is determined. The solid line is only to
guide the eye. Error bars are based upon typical standard deviation.

µs pulse of repumping light (F = 1 → F ′ = 2) is applied 1 ms prior to imaging in order to

transfer the atoms into the F = 2 hyperfine state. A typical calibration curve is shown in figure

3.1b where RF output coupling was used. Both RF and Raman output-couplers are operated at

the frequency indicated by the arrow which gives the maximum out-coupling rate. The Raman

two-photon detuning is smaller than the RF frequency by the kinetic energy of the momentum

recoil (see equation 1.17). However, it remains almost the same as the RF resonance frequency

since the maximum recoil energy 2h̄2k2/m (obtained when θ = 180◦) is on the order of h× 16

kHz ≪ µBB0/2 ∼ h× (1.3− 1.4) MHz. In order to further check this optimal frequency for

both RF and Raman out-coupling, we ensure that a continuous beam can still be produced when

the initial condensate is made very small (by lowering the frequency of the evaporation cooling

ramp), which only happens when out-coupling from the center of the BEC.
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3.3 REDUCING THE DIVERGENCE OF THE ATOM LASER

We compare experimentally the divergence properties of atom laser beams of both RF and

Raman out-coupling techniques, always setting the resonance frequency to out-couple from the

center of the condensate. The initial BEC contains approximately 5× 105 atoms in the |F =

1,mF =−1 > state and is trapped in a magnetic potential of axial and radial frequencies of ωy =

2π×13 Hz and ωρ = 2π×130 Hz respectively. The resulting chemical potential is µ/h̄∼ 2π×3

kHz. The cloud is cigar-shaped with a size of ∆zBEC ∼ 13 µm in the direction of gravity with

an aspect ratio of about 10. We produce an atom laser beam by continuously transferring the

atoms to the magnetically un-trapped |F = 1,mF = 0 > state over 10 ms. The results are shown

in figure 3.2.

In figure 3.2a, the atoms are transferred to the magnetically un-trapped |F = 1,mF = 0 >

state after a spin flip process induced by RF out-coupling. They fall under gravity with no initial

velocity since this coupling implies only a negligible momentum transfer to the atoms. In figure

3.2b-c, the atom laser beams were produced using a Raman two-photon transition where the

angle between the Raman beams was changed from θ = 30◦ to θ = 140◦ respectively. Such

configurations correspond to momentum transfer of 0.5h̄k and 1.9h̄k respectively and the out-

coupled atoms thus leave the condensate with an initial velocity of vi = 0.3 cm.s−1 and vi = 1.1

cm.s−1 respectively. Qualitatively, the divergence of the laser beam is clearly reduced and the

beam profile improved as the momentum kick is increased. At the bottom of the pictures we show

a comparison of experimental and theoretical beam transverse intensity profiles at a distance 500

µm below the BEC (indicated by the horizontal dashed line). The theoretical plots were obtained

from the model described in the following section whereas the experimental data simply represent

the number of atoms across a horizontal slice of the atomic beam.

From the images, we can extract the rms width of the atom laser as a function of the falling

distance, which will be used to calculate the M2 quality factor of the atom laser. The experimental

results are represented by the dots in figure 3.3. Each dot was obtained by measuring the rms

width of a transverse intensity profile at a given position along the z-axis. Theoretical predictions

are used to fit the experimental data and will be briefly described in the following section. This

theoretical work was performed by M. Jeppesen and detailed explanations can be found in his

PhD thesis [80]. Therefore, only an overview of the work is given on how we obtained the value

of M2 quality factor of an atom laser.
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Figure 3.2: The top images show a sequence of atom laser beams produced using RF (a) and
Raman (b and c) transitions with the out-coupling cut set at the center of the BEC and imaged
after a 3 ms time-of-flight. The angle between the Raman beams was θ = 30◦ in (b) and θ =
140◦ in (c), corresponding to momentum kicks of 0.5 h̄k (0.3 cm.s−1) and 1.9 h̄k (1.1 cm.s−1)
respectively. The out-coupling rate differs between each atom laser and the time-off-flight was set
to approximately 3 ms. One can see the improved beam profile of a Raman atom laser. Note that
the fringes that can be observed in the condensates are an imaging artifact due to interferences
on the CCD cover plate. The bottom plots show a comparison of experimental (dashed) and
theoretical (solid) beam profiles at a distance 500 µm below the BEC (indicated by the horizontal
dashed line). The heights have been normalized and each theoretical curve has been scaled to
match the experimental data.
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Figure 3.3: The top figure illustrates the paraxial regime in which the atoms propagate at some
distance below the BEC. In the bottom graph, the dots represent experimental measurements of
the width of the atom laser as a function of the position below the BEC. Solid curves show a com-
parison to our theoretical predictions. Note that observations at distances less than 300 µm are
prevented by the condensate expansion after trap switch-off. At distances greater than 700 µm,
the density in the atomic beam gets low and measurements are less accurate. The vertical dashed
line represents the position considered in figure 3.2.

3.4 THEORETICAL MODEL OF THE EXPERIMENT

Calculating the quality factor M2 of the atom laser directly from 3.1 requires measurement

of the beam width at the waist (∆x0) as well as the transverse momentum (or velocity) spread.

However, because the BEC acts as a diverging lens on the atom laser, the beam waist is virtual and
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located above the BEC. Therefore, it is not possible to solely do an experimental measurement

of the beam quality M2 using equation 3.1. Consequently, a complementary theoretical model is

required.

3.4.1 The model

To model the atom laser spatial mode, a three-step method was used following the work of

Riou et al. [21]. At each step, the atom laser beam propagates in different regions of space and

an appropriate description was used as follows :

1. Inside the condensate, we perform a Wentzel-Kramers-Brillouin (WKB) approximation

[81–83] by finding the classical trajectories of the atoms inside the condensate, from where

they are produced to where they leave the BEC. This is done by integrating the phase

along the classical trajectories of the atoms moving in the Thomas-Fermi potential of the

condensate (which is an inverted parabola) [77]. In the WKB approximation, the atom

laser wavefunction on the edge of the condensate (ψ(r f )) can be related to the one on the

out-coupling surface (ψ(ri)) by :

ψ(r f ) =

√

∣

∣

∣

∣

∂ (ri)
∂ (r f )

∣

∣

∣

∣

exp



i

∫

C

k.dr



 exp(ik0.ri) ψ(ri) (3.3)

where r f and ri are the coordinate of the atoms on the edge of the condensate and on

the out-coupling surface respectively, with the origin being at the center of the BEC. C

is the classical atomic trajectory to go from ri to r f . k is the atomic wave-vector (k =

p/h̄) of the condensate atoms along C and k0 is the initial momentum kick imparted to

the atoms.
∣

∣

∣

∂ (r f )
∂ (ri)

∣

∣

∣
is the Jacobian determinant and the wavefunction on the out-coupling

surface ψ(ri) is proportional to the condensate wavefunction ψc(ri) in the weak coupling

limit which is considered in this model. The condensate wave-function is easily calculated

in the Thomas-Fermi approximation by solving

|ψc(x)|2 =
m

4π h̄2a
(µ −Ve f f ((x)) (3.4)

where µ is the chemical potential of the system and Ve f f includes the gravitational, mag-

netic, and mean-field terms of the Hamiltonian.
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The atom laser wavefunction and its gradient on the edge of the condensate are finally

derived [80] as:

ψ(r f ) =
1

cosh(ωρte)
eiφ exp(

imvizi

h̄
)

√

1− |ri|2
R2

(3.5)

and

∇ψ(r f ) ≈ i
m

h̄
v(r f )ψ(r f ) (3.6)

In these equations, ωρ is the strong trapping frequency, te is the escape time for the atoms

to reach the edge of the BEC, m is the mass of an atom, vi is the velocity kick due to the

photon recoil (in the case of a Raman out-coupling), and R is the size of the condensate

(Thomas-Fermi radius). Finally, φ represents the phase determined from the integral of the

de Broglie wavelength along the classical trajectory (φ =
∫

C

k.dr).

2. Outside the condensate we propagate the atom laser wavefunction using a Kirchoff-Fresnel

diffraction integral over the surface of the condensate and using the Green’s function for the

gravitational potential. This technique allows to solve homogeneous differential equations

of some function in space given values of the function and its gradient on the boundary of

space, following:

ψ(r) =
∫

S

dS′.[G∇′ψ −ψ∇′G] (3.7)

In this expression, S is the entire region outside the condensate with the boundaries being

the edge of the condensate and an imaginary surface at infinity where the atom laser and its

derivatives vanish. The values of the function ψ and its gradient ∇′ψ are obtained from the

previous expressions 3.5 and 3.6. G = G(r,r’) is the Green’s function for the Hamiltonian

in the gravitational potential Vgrav(r) = −mgz only [84]. Therefore, the model includes

only interactions inside the BEC between condensate atoms and beam atoms. In particular,

interactions between atoms within the beam (that have left the condensate) are ignored

(they are negligible for the very dilute beam constituting the atom laser). The integral in

equation 3.7 is formally a two-dimensional surface integral over the whole condensate.
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However, following [21], we can neglect divergence in the weak trapping axis and only

consider the dynamics of cross sections in the plane of the two strong trapping axes. In

this case, the integral becomes one dimensional.

3. Finally, the third region is where the atom laser has accelerated sufficiently under gravity to

have entered the paraxial regime where the M2 factor can be calculated away from the waist

as it becomes a constant of propagation. In this regime, the transverse part (ψ⊥(x,z, t)) of

the atom laser wavefunction can be calculated from the equation of propagation. Assuming

an envelope varying slowly along z and in the paraxial approximation, the equation of

propagation can be expressed as [80]:

ih̄
p(z)

m

∂ψ⊥
∂ z

= − h̄2

2m

∂ 2ψ⊥
∂x2

(3.8)

where p(z) =
√

2m(E −Vgrav(z)) is the classical momentum and E the total energy. The

solutions can be expressed in terms of Hermite-Gauss polynomials and the lowest order

Gaussian mode is given by

ψ⊥(x, t) =

(

2

πw2
0

)1/4

exp

(

− x2(1+2ih̄t/(mw0))

w2
0(1+4h̄2t2/(m2w2

0))

)

(3.9)

From there, the M2 factor can be calculated equivalently to 3.1 at some height z below the

BEC, following :

(

M2

2

)2

=
m2

h̄2 [∆x(z)]2[∆vx(z)]
2 −C(z)2 (3.10)

where ∆x(z) is the beam width and ∆vx(z) is the velocity spread of the atom laser wave-

function. C(z) is the curvature-beam width product [? ] given by :

C(z) =
i

2

∞
∫

−∞

x

(

ψ
∂ψ∗

∂x
−ψ∗ ∂ψ

∂x

)

dx (3.11)

The model ignores the effects of the magnetic field on the atom laser. Indeed, the atom laser

state mF = 0 is unaffected to first order by the magnetic field and is only weakly anti-trapped due

to the second-order Zeeman effect with an effective trapping frequency of ω2nd = 2π × 2.6 Hz.
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The transverse position of an atom in such a potential is given by [80]

x(t) = x0.cosh(ω2ndt) ≈ x0(1+ω2
2ndt2/2) (3.12)

For a propagation over 1 mm (∼ 14ms), the transverse position will be affected by less than

3%. We also ignored the ac Stark effect of the Raman optical beams because the intensity of

the beams does not change significantly over the 1 mm propagation. Finally, the validity of the

model was checked against a solution of the full 3D Gross-Pitaevskii (GP) equation including

beam-beam interactions. The GP model was transferred to a freely falling frame after the atom

laser had reached a steady state, in order to find the atom laser wavefunction at large distances

below the condensate. The two models gave good agreement and the results of this comparison

can be found in the thesis of M. Jeppesen.

The results of the calculated quality factor M2 of an atom laser are shown (solid line) in

figure 3.4 as a function of the momentum recoil k0 received by the atom. The following sub-

section explains how it is possible to compare these theoretical predictions to the experimental

measurements of figure 3.3.

3.4.2 Data analysis

It is not possible to get the M2 beam quality factor using equation 3.1 since the beam waist

is located at a virtual position above the BEC and thus cannot be measured. Equation 3.10 was

given as an alternative method to calculate the M2 factor in the paraxial regime where it remains

constant. In practice, it is however difficult to measure the wavefunction phase, and hence, C(z).

Consequently, this quantity will always be derived from our calculations. In the paraxial regime,

the beam width can be written as

[∆x(t)]2 = (∆x0)
2 +(∆vx)

2(t − tw)2 (3.13)

where tw is the time when the beam is at its waist, and ∆x0 is the beam waist. It is interesting to

note that the beam waist is not necessarily the BEC itself. In principle, M2 may thus be deter-

mined simply from measuring the beam width at different heights. However, in our experiment,

we can only measure the beam width in the far field, at distances greater than 300 µm below the

condensate as shown in figure 3.3. Observations at distances less than 300 µm are prevented by

the very fast condensate expansion directly after trap switch-off.
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Figure 3.4: Calculated and measured quality factor M2 of an atom laser. The solid line is the
theoretical prediction whereas the three dots are the experimental measurements obtained after
RF or Raman out-coupling at 2 different angles. The discrepancy between theory and experiment
seems to be due to systematic errors which we attribute to the second order Zeeman effect,
ignored in the model. The theoretical line does not converge towards M2 = 1 but rather M2 = 1.3
due to the Thomas-Fermi initial state of the condensate.

Since in the far field the second term of equation 3.13 dominates, only the velocity spread

(∆vx) can be determined experimentally by fitting equation 3.13 to the experimental data of figure

3.3. Therefore, we must calculate ∆x0 and tw from the model. tw is obtained by calculating

the curvature beam-width product following tw = h̄C(z)/(m∆v2
x). Since the waist is virtual and

located above the BEC, tw is negative. Values of M2 are finally derived from combining the

experimental result on ∆vx with the calculated C(z) and ∆x to give the three dots in figure 3.4.

We find that the beam quality is improved and the beam divergence is reduced as the momentum

kick increases. For our parameters, an RF atom laser is produced with M2 = 2.4 whereas we can

reach M2 = 1.4 with the maximum two-photon kick of a Raman atom laser (p = 2h̄k). We see that

as the kick increases M2 continues to improve and approaches the Heisenberg limit of M2 = 1.

However, it is asymptotic to a limit slightly above 1, which is equal to 1.3 with our parameters.

In this limit reached for large kicks, the interaction of the out-coupled atoms with the condensate

becomes negligible. Thus, the transverse atom laser wave-function is approximately the free

space evolution of the condensate wave-function along the out-coupling surface. It is therefore
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limited by the non-ideal (non-Gaussian) condensate wave function itself.

3.5 DEPENDENCE ON TRAPPING FREQUENCIES

In addition, the simulations show that it is possible to reach the limit due to the Thomas-Fermi

initial state (M2 = 1.3) even for much tighter trapping potentials, using the maximum two-photon

kick. This result is presented in figure 3.5 where we plot the theoretical evolution of the M2 factor

when increasing the radial trapping frequency up to ωρ = 2π × 300 Hz. Again, the calculation

is performed assuming the out-coupling cut is set at the center of the condensate. As the trap

frequency increases, the M2 factor deteriorates to M2 = 14 in the case of RF output coupling.

For the maximum Raman two-photon kick, the increase is limited to only M2 = 1.7. Traps of

less than 50 Hz trapping frequencies must be used to maintain the quality factor of an RF output

coupler within 5% of the quality factor of a Raman coupler. For any other trapping frequencies,

a Raman out-coupler will be a significant improvement on the atom laser divergence.
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u
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Figure 3.5: Comparison of the calculated beam quality factor M2 as a function of the trapping
frequency for RF and Raman out-coupling. The simulation always assumes out-coupling from
the centre of the condensate. Whereas both techniques are comparable for small trapping fre-
quencies, one can see the large improvement of using Raman out-coupling over RF in the case of
large trapping frequencies.



55

3.6 CONCLUSION

In this chapter, experimental results on the divergence properties of a Raman atom laser were

presented and compared to an RF technique. Compared to RF, the Raman out-coupling system

used in our experiment can improve the beam quality factor M2 of an atom laser by 50% down to

a factor of 1.4 above the Heiseinberg limit (see figure 3.4). For a given initial BEC, such an atom

laser has the highest possible flux, longest operating time and lowest sensitivity to any excitation

or external fluctuations since it is out-coupled from the center of the condensate. Only in the

case of a Raman out-coupler, the limit of interactions can be approached nearly independently

of the trapping frequencies (see figure 3.5). It should be possible to approach this limit even for

experiments with tightly confining traps of several kilohertz using higher order Raman transitions

where the detuning is set so that more than two photons are required to transfer the atoms to an un-

trapped state [85]. It should also be possible to reach the ultimate Heisenberg limit by completely

removing the atomic interaction which can be done using Feshbach resonances. Finally, one

could also prevent populating any anti-trapped state using Raman lasers that are phase locked to

the 6.8 GHz hyperfine splitting (see figure 2.3), thus creating a two-state atom laser [78, 86, 87].

Such lasers, combined with the high quality transverse mode of Raman atom lasers could be

used in a continuous version of the atomic Mach-Zehnder Bragg interferometer [88] and are very

promising in the development of atomic local oscillators [89].



CHAPTER 4

COHERENT ATOM BEAM SPLITTING

The high phase-space density and coherence properties of Bose-Einstein condensates allow

for atom-optic experiments that have previously only been performed with optical lasers [75].

Among these, atom-laser interferometers are of particular interest because of their potentially

high sensitivity. In order to utilize high quality atom lasers (such as those described in chapter

3) in the same way as one utilizes optical lasers, atom-wave versions of optical elements, such as

mirrors or 50/50 beam splitters, are needed. Reflection, beam splitting and diffraction of atoms

can actually be thought of as mechanisms that change the momentum of atoms from a given

initial value to either a single final value or a superposition of momenta. It is important that the

coherence of the atoms is preserved during their manipulation. For that purpose, momentum-

transfer between laser light and atoms can assure coherent interactions, provided the frequencies

of the optical laser beams are detuned far enough from atomic resonance in order to avoid spon-

taneous emission which would lead to decoherence. One way to manipulate atoms is based on

Bragg diffraction from an optical standing wave [90, 91], which coherently splits matter waves

with unidirectional momentum transfer. Bragg diffraction preserves the coherence properties of

the condensate while providing efficient, selectable momentum transfer.

In this chapter experimental results are obtained by taking advantage of the Raman beams

described in section 2.2 to perform coherent atom beam splitting following a Bragg diffraction

process. A brief overview on Bragg diffraction is firstly given. This is followed by a description

of the atomic diffraction process observed in our experiment. It is demonstrated to arise from

an optical grating created from each of the Raman beams (independently) and from a very small

fraction of back-reflected light. The process is shown to be velocity resonant and a diffraction

efficiency of approximately 60% is measured, which is sufficient for applications such as atomic

beam-splitters.

4.1 OVERVIEW ON BRAGG DIFFRACTION

Diffraction of atoms from an optical grating has led to a wealth of insights into atomic

physics, and to practical applications such as coherent beam splitting for precision atom interfer-
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ometry [8, 91, 92]. Bragg diffraction of thermal atomic beams has been done mostly under nearly

normal incidence to the optical grating [90, 93–95]. In the experiments recalled here, great care

had to be taken to meet the Bragg condition by precisely matching the angle of the optical grating

to the velocity of the atoms. The process is analogous to the diffraction of electrons by a crystal

lattice and the Bragg relation is given by

λLsin(θn) = nλdB (4.1)

where λdB is the de Broglie wavelength of the atoms scattered from a standing light wave of

wavelength λL and θn is the Bragg angle at which nth order scattering occurs.

With the advent of dilute gas BEC [1, 2], a source of cold atoms emerged that is ideal for

studying and utilizing atom-light interactions in a highly controllable way. BEC diffraction using

short pulses of light at normal incidence was investigated and led to the observation of periodic

focusing, collimation and the atomic Talbot effect [96, 97]. It was soon realised that control-

lable Bragg diffraction could also be generated in a stationary condensate by applying an optical

running wave [85], similarly to what had been achieved with thermal clouds. In these experi-

ments, energy and momentum conservation for Bragg diffraction were met by precisely setting

the frequency difference between the two incident lasers which is equivalent to satisfying the

Bragg condition on the angle of incidence in atomic beam experiments. In this case, the Bragg

condition is given by

(nprecoil)
2

2m
= nh̄δn (4.2)

where precoil = 2h̄ksin(θ/2) is the recoil momentum from a two-photon process involving Raman

beams separated by the angle θ , k = 2π/λ is the wavevector of the light and δn is the frequency

difference between the two lasers in order for the nth order Bragg diffraction process to be res-

onant. Bragg diffraction from two detuned optical beams became a very powerful tool. It has

been used as a coherent beam splitter in interferometry [8, 91, 92], as a spectroscopic probe of a

BEC [98, 99], as the basis for demonstrating superradiance and matter wave amplification [100–

103], as a tool to measure the relative phase between two BECs [104], and as a mechanism for

producing [19] and manipulating [105, 106] an atom laser.
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4.2 DIFFRACTION FROM A SINGLE LASER BEAM

In section 3, the Raman beams were used as an out-coupler to extract a collimated beam

of atoms from the condensate. It appears very appealing to take advantage of these two optical

beams to simultaneously manipulate the atoms using Bragg diffraction. Two optical standing

waves can potentially be created, from each of the Raman laser beams, provided an additional

counter-propagating laser beam is aligned on each Raman beam. However, in our setup arrange-

ment, at small angles between the beams, the Ioffe coil is in the way of the lasers so that any

addition of a counter-propagating beam is ruled out. Moreover, the coil is too close to the glass

cell to implement a mirror which would retro-reflect the incident beam (see figure 4.1). Simi-

larly, for larger angles, the quadrupole coils are in the way of the beams after they have passed

the glass cell nearby.

θ/2฀∼฀15°))
Ioffe฀Coil

) θ/2฀∼฀70°

Quadrupole฀Coil

θ฀=฀180°

θ฀=฀0°

θ฀=฀45°B0

Figure 4.1: Experimental setup showing the position of the magnetic coils with respect to the
glass cell. Two sets of optical Raman beams hitting the coils after they have passed through the
BEC are also represented at small and larger incidence angles θ/2. Note that due to the magnetic
field from the Ioffe coil the condensate does not sit at the center of the glass cell but is displaced
towards the Ioffe coil.
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Only for a small range of angles the beams can pass through the atoms without clipping the

apparatus, typically when θ ∼ 0◦, θ ∼ 45◦ and θ ∼ 180◦. For θ ∼ 0◦ a Raman out-coupling can

be achieved simultaneously to a diffraction grating but only with a negligible momentum kick

which would increase the divergence of the resulting atomic beams (see chapter 3). If the angle

is set to θ ∼ 180◦ the out-coupling process is inefficient for reasons of polarization: in this case,

each optical laser beam is orthogonal to the quantization axis (defined by the direction of the

magnetic bias field ~B0), preventing any circular σ+ polarization to be experienced by the atoms.

Alternatively, for a large range of angles, it is possible to take advantage of the laser beams

hitting the coils in order to create Bragg diffraction gratings. In this case, the optical standing

wave is formed by a single Raman beam together with its diffuse back-scattered light from the

coils. Diffracted atomic beams from these gratings are shown in the absorption image of figure

4.2a where atoms have been Raman out-coupled for 20 ms and simultaneously split under Bragg

diffraction. The splitting, as opposed to the output coupling, is induced by the interaction of

the out-coupled atoms with each of the Raman beams separately: the upward propagating laser

imparts a momentum into the laser direction resulting in the atom beam on the left of the pic-

ture, whereas the downward propagating laser imparts a momentum against the laser direction

resulting in the atom beam on the right. It is also possible, from the picture, to distinguish second

order atomic beams on the right or on the left of the central atom laser beam. These higher order

structures appear for high laser intensities only and were too weak to be used for a quantitative

study. For this reason, only the first order atomic splitting will be considered in the following.

Further checks were made to show that the diffraction process is not a consequence of the

Raman out-coupling technique but really is due to diffuse light. The initial check was done for

a small range of angles where the laser beam passes through the atoms without clipping the

apparatus (θ ∼ 45◦). In this case, no measurable transfer into the momentum side-mode can be

observed. However, deliberately placing black cardboard as a diffuse scatterer in the path of the

laser, after it has passed through the glass cell, always brings the diffraction back. A final check

was performed by decoupling the extraction of atoms and the splitting process. This was done by

creating an atom laser pulse by RF out-coupling (instead of the optical Raman method). The RF

out-coupled atom laser pulse was then illuminated with only one of the laser beams. After 20 ms

of free fall, absorption images revealed two separate momentum components, either on the left

of the extracted atoms (figure 4.2b) when the pulsed RF atom laser was exposed to the upward

beam only or on the right (figure 4.2c) when only the downward propagating laser illuminated
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the extracted atoms. Consequently, a single laser beam can drive a Bragg diffraction process,

independently of the Raman out-coupling process.

Figure 4.2: (a)Absorption image (360× 1100µm2) of a multibeam atom laser after 20 ms of
long-pulsed Raman out-coupling with an angle θ = 30◦ between the Raman beams (which are
symmetric with respect to the horizontal). Each Raman beam contributes to creating an atomic
beam diffracted to the left (right) by the upward (downward) laser beams. (b) and (c) are ab-
sorption images of a short-pulsed RF atom laser exposed to the upward (b) or downward (c)
propagating Raman laser only. The image size is 540×320µm2.

4.3 A VELOCITY RESONANT PROCESS

A characteristic of Bragg diffraction is that it is a resonant process which depends on the

velocity of the atoms or on the frequency and geometry of the laser beams. In our setup, the

frequency of both Raman laser beams is far-detuned from the atomic transition and will be con-

sidered fixed in this chapter. Only the angle between the two beams can be adjusted, although

it is experimentally difficult to align the Raman beams onto the BEC. Alternatively, this sec-

tion characterizes the velocity resonance of the process when falling atoms are illuminated by

the grating, first theoretically from a simple model, and second experimentally by performing a

time-resolved measurement.
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4.3.1 Theoretical Model

Diffraction from a standing wave occurs from absorption and emission of a photon, leading

to a momentum transfer of 2h̄~k. Consequently, the first condition fulfilled by the atoms is simply

given by

~p f =~pi +2h̄~k (4.3)

where~pi and~p f are the momentum of the atoms before and after they are diffracted respectively.

The energy of the absorbed and emitted photon is the same and there is no change in the internal

state of the diffracted atoms. Consequently, the kinetic energy of the atom remains unchanged

during the process leading to

|~p f |2
2m

=
|~pi|2
2m

. (4.4)

Both conditions are simultaneously fulfilled and the Bragg diffraction occurs only when the

atoms reach the resonance velocity

vres =
h̄k

msin(θ/2)
(4.5)

where m is the atomic mass and π/2−θ/2 is the angle of the single laser beam with the propa-

gation direction (~u) of the atoms. For a given angle θ , one can distinguish 3 cases depending on

the initial velocity of the atoms leaving the condensate (see figure 4.3).

• If the atoms are dropped with no initial velocity (figure 4.3(a)), they will simply accelerate

under gravity, and diffraction will be achieved for any value of the angle θ at a time t =

vres/g when they are z = v2
res/2g below the condensate.

• If the atoms are launched with an initial velocity vi smaller than the resonance velocity

(vi < vres), the atoms will be diffracted at a position that depends on the direction of their

initial velocity (figure 4.3b). This is equivalent to having an upper limit on the angle θ/2,

namely sin(θ/2) < h̄k/(mvi).

For the Raman out-coupler of our experiment where the lasers are symmetric with respect

to the horizontal, the initial downward velocity is given by vi = 2h̄ksin(θ/2)/m and the

resulting upper limit on θ is θ/2 < 45◦. Consequently, in this case, the Bragg diffraction
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Figure 4.3: Position of the velocity resonance for Bragg diffraction after (a) RF and (b) Raman
out-coupling. (c) Illustrates the case of our experimental trap switch-off (see section 4.3.2) where
the atoms are initially launched upwards. Note that there are 2 velocity resonances in the latter
case, first when the atoms propagate upwards, and then after they have turned back and propagate
downwards.

would happen at a time t = (vres − vi)/g when the atoms are located at z = (v2
res − v2

i )/2g

below the condensate.

If the atoms are sent upwards with vi < vres (which is the case in 4.4.1) they will not pass

through a resonance velocity during their upwards propagation but only on their way down

t = (vres + vi)/g ms after trap switch-off, at z = (v2
res − v2

i )/2g below the condensate.

• If the atoms are launched with an initial velocity larger than the resonance velocity (vi >

vres), they will not be diffracted unless they are sent in the upwards direction (figure 4.3c).

In the particular case of an upward initial momentum, the atoms can be diffracted twice,

first during their deceleration down to a zero-velocity, and second when they are subse-

quently accelerated downwards under gravity. Both diffraction effects take place at the

same position in space (z = (v2
i − v2

res)/2g above the condensate) but for different times of

t1 = (vi − vres)/g and t2 = (vi + vres)/g respectively.
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4.3.2 Experimental measurement

The mechanism responsible for the continuous coherent splitting is investigated in order to

verify that it is indeed Bragg diffraction. For that purpose, the angle of each Raman beam is

set to be θ/2 = 70◦ with respect to the horizontal which corresponds to a resonance velocity

of vres ∼ 0.6 cm.s−1. In order to achieve a time resolution sufficient to measure the velocity

resonance, short pulses of atoms must be out-coupled. For the best signal-to-noise ratio, the

flux of out-coupled atoms was maximized by dropping the entire condensate (atoms in the |F =

1,mF =−1 > state) after a magnetic trap switch-off. Upon trap switch-off the atoms are launched

upwards due to transient magnetic field gradients. In order to determine the launching velocity

(vi), the difference in position between the condensate and a pulse of atoms that have been RF

out-coupled in the mF = 0 un-trapped state is measured. The condensate was launched with the

initial upward velocity vi and imaged at a time τim after trap switch-off. The out-coupled atoms,

falling with no initial velocity, were imaged at a similar time τim after the start of the out-coupling

process. The launching velocity can thus be determined by

vi =
zi − z0
√

2z0/g
(4.6)

where zi and z0 are the positions of the condensate and the RF out-coupled atoms at the time

τim after trap switch-off or out-coupling pulse respectively. A launching velocity of vi ∼ 1.0

cm.s−1>vres is found and the atoms are thus expected to experience two velocity resonances

(similarly to figure 4.3c) after t1 = 0.4 ms and t2 = 1.6 ms respectively.

In order to probe the resonances, a short pulse (∼ 300 µs) from one of the Raman lasers is

applied after a variable delay time and keeping the laser power and pulse duration fixed. The

atoms of different momentum components are then allowed to separate in free fall before an ab-

sorption image is taken 22 ms after the magnetic trap switch-off. The experimental measurement

is shown in figure 4.4. The atoms go through two velocity resonances. The first diffraction occurs

when the atoms are traveling upwards, 0.4 ms after the trap switch-off as predicted under Bragg

diffraction. The second velocity resonance is when the atoms travel downwards, about 1.6 ms

after the trap switch-off. The value of the velocity resonance can be increased by decreasing the

angle θ . For θ/2 < 35◦ the resonance velocity becomes smaller than the initial upward velocity

of the atoms. Consequently, the atoms move upwards too slowly to be diffracted and are only

diffracted during their downward trajectory as illustrated in figure 4.3(b).
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Figure 4.4: Number of diffracted atoms as a function of pulse delay relative to trap switch-off.
Upon trap switch-off, the entire BEC was released with an initial velocity in the upward direction
due to remnant magnetic fields (see figure 4.3c)). Shown are the two possible velocity resonances
for the atoms traveling upwards (circles) and then traveling downwards (crosses). Pulse duration
is 300 µs (the delay is given from the start of the pulse) and θ/2 = 70◦. The insets show the
corresponding images, each 480×890 µm2. The lines are interpolations to guide the eye.

4.4 BRAGG DIFFRACTION EFFICIENCY

4.4.1 Measurement

In order for Bragg diffraction to be used for interferometric applications, efficiency is a cru-

cial parameter. If a diffraction efficiency of 50% can be reached, the tool can be of potential

use as a 50-50 beam splitter. Similarly, a diffraction efficiency close to 100% would make it

appropriate as a mirror to reflect the atoms.

Bragg diffraction can be considered as a transfer of atoms from one initial state to another

after a two-photon transition inducing a momentum difference 2h̄~k. It is thus driven by the two-

photon Rabi frequency Ω = Ω1Ω′
1/2∆, where Ω1 and Ω′

1 are the one-photon Rabi frequencies

of the Raman laser beam and its retro-diffused light respectively. In our Raman out-coupling ex-

periments (see section 3), where both Raman lasers are applied to the condensate with maximum

intensity, a two-photon Rabi frequency of Ω = 2π ×40 kHz is achieved. For the Bragg diffrac-

tion process, the back-scattered intensity I′1 is estimated to be between 0.01% and 0.06% of the
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incoming intensity I1. Because the single-photon Rabi frequency scales with the square-root of

the light intensity (Ω′
1α
√

I′1), the combination of the incident laser and the diffuse back-scattered

light should be able to drive a two-photon Rabi frequency of Ω ≈ 2π × (0.4 → 1.0) kHz. In the

naive model where the atoms are assumed to Rabi-flop between the two momentum components,

the time-dependent population of a Rabi-flopping state is given by sin2(Ωt) and a laser pulse on

the order of ms could realize the population transfer from one state to the other.

un-diffracted฀atoms

diffracted฀atoms

Figure 4.5: Diffraction efficiency as a function of laser intensity for a fixed pulsed duration of 2
ms. The laser beam is at an angle of θ/2 = 15◦ to the horizontal. The entire BEC is released
after trap switch-off and the laser pulse is applied after 3.4 ms. The relative number of diffracted
and un-diffracted atoms is measured after absorption imaging and is represented by the blue dots
and red crosses respectively.

In order to study experimentally the diffraction efficiency as a function of laser intensity

(proportional to the two-photon Rabi frequency), the delay time and angle of the laser beam are

chosen so that the atoms are resonantly diffracted. In order to have a single resonance velocity,

an angle of θ/2 = 15◦ is chosen, corresponding to a resonance velocity of vres = 2.3 cm.s−1 >

vi, and the delay time after trap switch-off is consequently chosen to be t = 3.4 ms. The pulse

duration is set to 2 ms and the intensity of the laser beam is varied from 0 to its maximum value.

The results are shown in figure 4.5 where the relative number of both diffracted and un-diffracted

atoms is plotted against to the laser intensity. A maximum transfer efficiency of approximately

60% is measured into the momentum side-mode. In particular, one can see that it is possible to
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operate the grating as a 50-50 beam splitter by choosing the appropriate laser intensity.

4.4.2 Theoretical Model

The simple model, described in the previous section, of a Rabi-flopping between the two

momentum states is useful to determine a rough estimate of the pulse duration needed to drive an

efficient Bragg diffraction. However, it does not consider the velocity selectivity of the process.

A more accurate description results in a situation equivalent to an avoided crossing between the

diffracted and un-diffracted atoms. The diffracted atoms can be considered to be in a distinct state

from the un-diffracted atoms because their momentum difference (2h̄k ∼ 2×10−27 kg.m.s−1) is

significantly greater than the momentum width of the falling atoms (∆p = mg∆t ∼ 5× 10−28

kg.m.s−1 where ∆t ∼ 0.5 ms is the width of the diffracted pulse of atoms, obtained from figure

4.4). The un-diffracted and diffracted atom states are coupled by the diffraction grating leading

to an avoided crossing in momentum space. As the atoms are in free fall, their momentum

varies linearly in time and so does the energy difference between the diffracted and un-diffracted

atoms. Consequently, it is possible to apply the Landau-Zener theory to the system which gives

a diffraction probability of

P = 1− exp

(

−πΩ2

|~k.~g|

)

(4.7)

where Ω is the two-photon Rabi frequency and~g is the acceleration due to gravity. Hence, for

a sufficiently high two-photon Rabi frequency (Ω ≫
√

|~k.~g|/π), equation 4.7 predicts a perfect

transfer of atoms from the un-diffracted state to the diffracted state as shown in figure 4.6. The

model does not consider a second diffraction of the diffracted pulse or diffraction into higher

orders because they occur at different resonance velocities which are not reached during the 2 ms

when an optical grating is present.

The validity of the Landau-Zener model was verified by solving the Gross-Pitaevskii equation

for several two-photon Rabi frequencies for the diffracted and un-diffracted atomic state, includ-

ing the effect of s-wave scattering between the atoms. The data points are superimposed on the

Landau-Zener model in figure 4.6. The results from both approaches agree well and reproduce

the general shape of the experimental data, in particular the plateau towards high Rabi frequen-

cies. The simulations also confirm our estimate that the very small intensity of the reflected

light (resulting in a Rabi frequency of about 2π × 1kHz) can create a strong Bragg diffraction
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Figure 4.6: Theoretical predictions of the efficiency of the Bragg diffraction process showing the
number of diffracted and un-diffracted atoms as a function of the two-photon Rabi frequency.
Solid lines are the predicted Landau-Zener transition probabilities whereas the symbols are the
results from a Gross-Pitaevskii simulation. The angle between the laser beam and the horizontal
is θ/2 = 15◦.

grating. However, the model shows some discrepancy in the maximum transfer probability since

only approximately 60% of the atoms are diffracted in our measurement. This difference can

be attributed to the fact that the diffuse nature of the reflection is not taken into account in the

calculations. Moreover, for high Rabi frequencies it can be seen that the transition probability

from the GP simulation (discrete points in figure 4.6) departs the Landau-Zener theory (solid

lines in figure 4.6) due to power broadening causing the state changing process to begin closer to

the BEC where the inter-particle interactions are non-negligible.

4.5 CONCLUSION

It is possible to achieve high efficiency atomic Bragg diffraction from a single laser together

with its own diffuse backscattering. The process is suitable for use in an atom interferometer as

the ability to vary the scattering probability with the laser intensity allows us to operate our grat-

ing either as a 50-50 beam splitter or as a (partially) reflecting mirror. The very large detuning of

the laser beam forming the grating ensures negligible spontaneous emission so that coherence is

maintained during the Bragg process. The method is an experimentally simple and versatile tool
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for atom optics and presents the significant experimental simplification that only a single laser

beam is involved. In vacuum systems which do not allow optical access from two sides, it may

be the only possibility to implement an atomic beam splitter. The direction of the momentum

transfer can also be controlled, together with the resonance velocity and thus the resonance posi-

tion, by the angle of the incident laser beam. For future atom interferometry applications Raman

out-coupled atom laser beams, as presented in the previous section, are well suited since they

offer large brightness and an improved beam profile. Our setup has the advantage that it can run

the Raman output coupler in a regime where it serves at the same time as two beam splitters, thus

significantly simplifying the experimental demands.





CHAPTER 5

RF OUT-COUPLING FROM TWO- AND MULTI-LEVEL SYSTEMS

When creating an atom laser beam, from either RF or Raman output-coupling techniques,

it is important to consider the quality of the beam as a critical parameter for any applications.

This chapter compares theoretically the atom laser output of several atomic systems out-coupled

using an RF technique. The first part of the chapter presents a one-dimensional (1D) numerical

model which is used to investigate the spatial structure and temporal dynamics created in a Bose-

Einstein Condensate by an RF output-coupling on five-, three- and two-level atom laser systems.

The five- and three-state systems correspond to the experimentally relevant Zeeman levels of the

F = 2 and F = 1 ground states of 87Rb (see figure 2.3) and the two-state simulations to the recent

experiments of Y. Le Coq et al. [20] and A. Öttl et al. [78]. The 1D model is validated by

comparing the theoretical predictions on the bound state and spatial structure of an atom laser

to previous experiments carried out in our lab [29]. Finally, the results of the simulations are

described and some of the properties of two- and multi-state systems are compared with respect

to experimentally important properties. In particular, the population and spatial dynamics were

investigated as well as the peak homogeneous output flux and classical density fluctuations in

the atomic beam. The question which is answered here is whether the significant amount of

experimental effort required to make a ‘true’ two-state system has an actual influence on the

quality of the atom laser.

5.1 THEORETICAL MODEL

5.1.1 Time-dependent Gross-Pitaevskii Equations (GPE)

The theoretical model presented here is meant to describe the dynamics of RF out-coupling

on two- and multi-level systems and is based on solving the GPE of the system.

5.1.1.1 GPE for a condensate

From the development of many-body quantum mechanics [107] the Hamiltonian of a weakly

interacting Bose gas confined by an external potential Vtrap can be written down in terms of

creation and annihilation field operators for bosons [62] in second quantisation formalism. In



71

general, the field operators can be written as a sum of single-particle wavefunctions and their

respective annihilation operators as :

ˆΨ(r, t) = ∑
α

Ψα(r, t)âα , (5.1)

where the summation is carried out over all single-particle states α , and where âα lowers the

atom number in mode Ψα by 1. However, because BEC occurs when the number of particles in a

single ground state becomes very large compared to the occupation of other states, the condensate

contribution to the field operator can be separated out as follows :

ˆΨ(r, t) = φ(r, t)+ ĉ(r, t), (5.2)

where φ(r, t) ≡ 〈 ˆΨ(r, t)〉 and ĉ(r, t) is the annihilation operator for uncondensed particles which

has the property that 〈ĉ(r, t)〉 = 0. The function φ(r, t) is a complex scalar field constituting

an order parameter for the condensate. The atoms in a BEC are essentially all in the same

quantum mechanical state and can be thought of as forming a macroscopic coherent system.

Thus, to describe the condensate mathematically, it is not necessary to keep track of the individual

wavefunctions of the atoms forming the condensate. Rather, it is usually sufficient to describe

the whole condensate in terms of a single wavefunction defined by the order parameter φ(r, t)

and from which the density of atoms can be calculated as |φ(r, t)|2.

To a very good approximation, the dynamics of such a BEC can be modeled in terms of the

time-dependent GPE for the macroscopic wavefunction of the condensate [108–110] which is

commonly written as :

ih̄
∂φ(r, t)

∂ t
= − h̄2∇2

2m
φ(r, t)+Vtrap(r)φ(r, t)+Uφ(r, t)|φ(r, t)|2 (5.3)

In this equation, U = 4π h̄2a/m is the interaction potential (also called two-body interaction

strength), with m the mass of an atom and a the s-wave scattering length of the atoms form-

ing the condensate. Vtrap(r) is the external trapping field which is usually of the form :

Vtrap(r) = V0 +
m

2
(ω2

x x2 +ω2
y y2 +ω2

z z2) (5.4)

where ωx,y,z are the characteristic frequencies of the harmonic trap along the corresponding axes

and V0 represents the bottom of the trap.
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As it is derived from a nonlinear Schrödinger equation involving a macroscopic wavefunc-

tion, this theoretical model takes into account not only the density properties but also the coher-

ence inherent to Bose condensates. The GP equation has also been very successful in describing

the macroscopic dynamics of trapped and un-trapped Bose condensates in a variety of experi-

mental situations [62].

5.1.1.2 GPE for a multi-level system

Approximately 10 years ago, Ballagh et al. [111] introduced a generalization of the GPE as

an effective tool for investigating a system of trapped and un-trapped states coupled via an RF

field, within the semi-classical mean-field approximation. Provided a coherent coupling mecha-

nism is used to extract atoms from the condensate, the macroscopic behavior of the output beam

constituting the atom laser can also be described by a spatio-temporal evolution equation similar

to equation 5.3. In the case of RF coupling all the 2F + 1 mF Zeeman states are coupled by the

magnetic dipole interaction via the oscillating RF magnetic field B = BRFcos(ωRFt). The Zeeman

states can be either trapped, un-trapped or even anti-trapped and will thus experience different

trapping potentials. Consequently, in order to generalize the GPE to multi-level systems, a sys-

tem of 2F +1 generalized Gross-Pitaevskii equations is to be considered, where each component

can be written as :

ih̄
∂φmF

(r, t)
∂ t

=

(

− h̄2∇2

2m
+VmF

(r)− h̄mFωRF +U |φ(r, t)|2
)

φmF
(r, t)

+ h̄Ω∑
m′

F

(cm′
F
δmF ,m′

F+1 + cmF
δmF ,m′

F−1)φm′
F
(r, t)

(5.5)

This equation is derived from 5.3 by applying the transformation φ(r, t) → e−imF ωRF tφ(r, t) and

a rotating wave approximation. φmF
is the macroscopic wavefunction of a given mF Zeeman

sublevel mF ∈ {−F, ...,F} and |φ(r, t)|2 = ∑mF
|φmF

(r, t)|2. We assume the interaction potentials

between two Zeeman sub-states (UmF ,m′
F
) are all approximately constant and equal to U . The ex-

ternal potentials VmF
are due to the trapping magnetic field and the gravitational field experienced

by each of the mF Zeeman sub-states. They can be written as

VmF
= sgn(gF)mF

(

V0 +
m

2
(ω2

x x2 +ω2
y y2 +ω2

z z2)
)

−mgz (5.6)
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where V0 = µBB0/2 is the potential at the bottom of the trap (B0 is the bias field). Finally, Ω

is the RF Rabi frequency (h̄Ω = gF µBBRF/2) which describes the spin-flip transitions between

the different Zeeman sub-levels. The cmF
coefficients are the matrix elements of the angular

operators F± [112] and are represented by cmF
=
√

F(F +1)−mF(mF +1) in equation 5.5.

Consequently, for the F = 2 manifold:

• φ2 is only coupled to φ1 with c1 = 2.

• φ1 is coupled to both φ2 and φ0 with c1 = 2 and c0 =
√

6 respectively.

• φ0 is coupled to both φ1 and φ−1 with c0 =
√

6 and c−1 =
√

6 respectively.

• φ−1 is coupled to both φ0 and φ−2 with c−1 =
√

6 and c−2 = 2 respectively.

• φ−2 is only coupled to φ−1 with c−2 = 2.

5.1.1.3 Dimensionality reduction

A number of groups found good agreement between theory and experiment using similar

3D mean-field models of the RF out-coupled atom laser described above [112–114]. However,

Ioffe-type traps often used in experiments are usually elongated in the horizontal plane and axial-

symmetric in the remaining directions. Moreover, the atomic laser beam extracted from the

trapped condensate is always directed downwards in the privileged vertical z-direction of gravity.

In order to simplify the numerics, it is therefore possible to transform a true 3D model into a

system of lower dimensions (1D along z), still taking into account part of the physics involved

in the other two dimensions. This dimensionality reduction can be performed non rigorously by

writing an equivalent equation for the system in the dimension(s) of interest [112]. The F = 2

(five-state) GP model [28] of an RF atom laser in one dimension (z, the coordinate over which

gravity acts) can thus be re-written as:

iφ̇2(z, t) = (L + z2 +Gz−2∆)φ2(z, t)+2Ωφ1(z, t)

iφ̇1(z, t) = (L +
1

2
z2 +Gz−∆)φ1(z, t)+2Ωφ2(z, t)+

√
6Ωφ0(z, t)

iφ̇0(z, t) = (L +Gz)φ0(z, t)+
√

6Ωφ1(z, t)+
√

6Ωφ−1(z, t)

iφ̇−1(z, t) = (L − 1

2
z2 +Gz+∆)φ−1(z, t)+2Ωφ−2(z, t)+

√
6Ωφ0(z, t)

iφ̇−2(z, t) = (L − z2 +Gz+2∆)φ−2(z, t)+2Ωφ−1(z, t) ,

(5.7)
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These equations have been made dimensionless for simplicity. They are exactly derived from 5.5

with the following dimensionality reduction:

• ∆ and Ω are respectively the detuning of the RF field from the bottom of the trap (h̄∆ =

h̄ωRF −V0), and the Rabi frequency. They are both measured in units of the radial trapping

frequency ωz of the F = 2,mF = 1 state obtained in [29], with ωz = 2π × 260√
2

Hz.

• The time and spatial coordinates are measured in units of ω−1
z and (h̄/mωz)

1/2 respectively

in order to make the equations dimensionless. We will thus define the dimensionless spatial

coordinate in the vertical z direction by z̃ = z/(h̄/mωz)
1/2.

• Each of the five Zeeman sub-levels of the F = 2 manifold are represented by a GP function

φmF
(mF = {−2, ...,2}) measured in units of (h̄/mωz)

−1/4.

• G is gravity measured in units of (m/h̄ωz)(h̄/mωz)
1/2. With our parameters, the dimen-

sionless gravity is G = 9.24.

• Finally, L ≡−1
2

∂ 2

∂ z2 +U(Σ2
i=−2|φi|2) where U is the interaction strength coefficient, mea-

sured in units of (h̄ωz)
−1(h̄/mωz)

−1/2. This nonlinear interaction strength is determined

similarly to Schneider et al. [112] by requiring that the 1D and 3D Thomas-Fermi chemical

potentials are equal leading to U = 6.6×10−4.

Since the gF factors for the F = 2 and F = 1 ground states of 87Rb are the same except for a

change of sign (see figure 1.4), the three-state and two-state atom laser systems of equations are

simply subsets of the five-state equations presented above. The only difference comes from the

modification of the Rabi-frequency coupling ’pre-factors’ (cmF
) which are always equal to

√
2:

iφ̇−1 = (L +
1

2
z2 +Gz−∆)φ−1 +

√
2Ωφ0

iφ̇0 = (L +Gz)φ0 +
√

2Ωφ−1 +
√

2Ωφ1

iφ̇1 = (L − 1

2
z2 +Gz+∆)φ1 +

√
2Ωφ0

(5.8)

and

iφ̇−1 = (L +
1

2
z2 +Gz−∆)φ−1 +

√
2Ωφ0

iφ̇0 = (L +Gz)φ0 +
√

2Ωφ−1

(5.9)
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There are no free parameters in the model and, as mentioned before, all numerics are done

in dimensionless units although data will be presented in the International System of Units for a

better understanding. The Rabi frequency is varied in the range Ω = 0−14, which corresponds

to Ω = 0−16 kHz. The RF coupling resonance is also set to be at the centre of the trapped BEC

by selecting an appropriate value for the detuning ∆. Therefore, the appropriate detuning in a

five-state system will be different from the detuning in the three- or two-state systems because of

the different sag and trapping frequencies experienced by the F = 2 and F = 1 hyperfine states.

The effective potentials experienced by an atom in the mF state can be expressed as:

VmFe f f
= gFmFz2 +Gz−2gFmF∆ (5.10)

where z is the distance below the center of the condensate. The appropriate detuning for each F

hyperfine state is obtained by imposing that the center of the BEC coincides with the intersection

VFe f f = V0e f f , as shown in figure 5.1. For N = 5× 104 atoms, the detunings are found to be

∆ = 10.7 and ∆ = 43 for the F = 2 and F = 1 states respectively.
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Figure 5.1: Thomas-Fermi profile of the BEC and effective potentials experienced by the atoms
for the F = 2 state (a) and F = 1 state (b) where the detunings have been set to 10.7 and 43
respectively in order for the out-coupling resonance to be at the center of the BEC. N = 5×104

atoms.



76

5.1.1.4 Initial conditions

In addition to solving the time-dependent GP equations for the atom laser, the time-independent

GP equations are used to provide accurate initial conditions for our simulations. For the five-state

system described above, the time-independent GP equation is derived by substituting φ2(r, t) =

ϕ(r)eiµt in Eq.5.7 and can be written as

µ2 =

(

−1

2

∂ 2

∂ z2
+U2|φ2|2 + z2

)

φ2. (5.11)

The exact ground state numerical solution to this equation (for our trapping parameters and con-

densate atom number) is found by a relaxation technique [115] and used as the initial condition

in Eq.5.7.

Similarly the solution of the time-independent equation :

µ1 =

(

−1

2

∂ 2

∂ z2
+U1|φ−1|2 +

1

2
z2

)

φ−1. (5.12)

is used as the initial condition in the case of two- or three state systems.

5.1.2 Numerical method

5.1.2.1 The grid

Our simulations were performed using the commercially available and widely used MatlabTM

software packaging. Our program uses a Fourier based, symmetric split step algorithm [67].

Investigating the behavior of the out-coupled laser beam faces some numerical difficulties. An

initial problem is that numerical descriptions of an atom laser within the mean-field frame work

are complicated by the large velocities that atoms reach when falling in gravitational potentials.

The resultant small de Broglie wavelengths require very fine temporal and spatial numerical grids

in order to control numerical instabilities and accurately follow the dynamics. Additionally, since

the atomic beam travels away from the condensate, one needs to increase the numerical grid size.

Indeed, if the beam interacts with the boundaries of the grid, the numerical scheme will break

down as it requires periodic boundary conditions.

In order to solve these problems and run simulations that reflect experiments on a time scale

longer than a few milliseconds, an apodising mechanism must be introduced to absorb the beam.

For that purpose, a boundary absorber is included. This is a numerical device that reduces the
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field to zero as it approaches the boundary of the spatial grid, without affecting accurate solutions

of the system away from the boundary. In our model, apodising boundaries for each state have a

simple exponential form and are positioned in order that no spatial aliasing occurs. The strength

of the absorber can be varied and also its position. Using this method, our numerical grid can be

restricted to a region around the condensate while still being able to observe the behavior of both

the BEC and the laser mode. For this work, a 2048 point spatial grid was used from -40 to 40

with the equilibrium position of the condensate at 20 and a temporal resolution of 10−4. However,

although apodising boundaries are used in the numerical simulations, one can keep track of the

total population in each state by calculating at each time step the 1D flux passing through a point

on the numerical grid, provided this point is located below the trapped condensate and above the

apodising boundary. Hence, our numerical grid can be thought of as two distinct sections : above

and below the detection point. Thus, at any time during the simulation the total number of atoms

in a particular Zeeman state can be determined by summing the number of atoms still on the grid

above the detector with the number of atoms that have already passed through it. An interesting

feature of this method is that it allows us to monitor the normalization of the numerics.

5.1.2.2 Results of the simulations

The raw data obtained from our simulations are the GP functions φmF
(z, t) (for a given Rabi-

frequency Ω) from which all the results described in the latter part of this chapter are derived:

• The density of atoms in a given Zeeman state on the spatio-temporal grid is simply given

by |φmF
(z, t)|2.

• In order to calculate the temporal evolution of the number of out-coupled atoms, a position

(zD) is chosen for the detector on the grid. The total number of atoms in a given Zeeman

state is the sum of the number of atoms still on the grid above the detector after the out-

coupling time tout and the flux of atoms that have passed through the detector during tout :

NmF
=
∫ 40

z̃D

|φmF
(z, tout)|2dz+

∫ tout

0
JmF

(zD, t)dt (5.13)

In this equation, JmF
(zD, t) is the 1D flux passing through zD as a function of time, given

by

JmF
(zD, t) = − i

2

(

φ ∗
mF

(zD, t)∇φmF
(zD, t)−∇φ ∗

mF
(zD, t)φmF

(zD, t)
)

(5.14)
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5.2 EXPERIMENTAL COMPARISON OF THE MODEL

In order to guide theoretically future atom laser experiments, it is important to validate the

1D mean-field model described in the previous section. Because the five-state system is the most

computationally and physically complex of the five-, three-, and two-state atom lasers, it can be

used to confirm the accuracy of the model by comparing our numerical simulations of a five-

state atom laser with experimental data for the F = 2,mF = 2 system. The experimental system

to which our five-state system is compared is described in large detail in previous work from

our group [29]. 87Rb condensates of around 5× 104 atoms are produced in a highly stabilized

magnetic trap which enables precise, repeatable and highly calibrated RF output-coupling of the

condensate. The radial trapping frequency of the system is ωz(F=2)
= 2π × 260 Hz and the axial

trapping frequency is ωy(F=2)
= 2π ×20 Hz at a bias field of B0 = 0.25 G.

5.2.1 Bound state of an atom laser

A number of theoretical works [116–118] have suggested that, under given out-coupling

conditions, a large fraction of the condensate could remain magnetically trapped and would not

populate the atom laser beam. This theory of a ’bound state’ for the atom laser is based on the

existence of coupling between a single trap mode and a continuum of un-trapped states. Further-

more, it has been shown that trapping of all mF states is a natural consequence of combining RF

coupling with a dc magnetic trap [119, 120]. This trapping can be understood by considering

the ‘dressed-state’ basis in which the RF coupling and dc potentials seen by the atoms are diago-

nalised. In this basis, the dressed eigenstates are linear combinations of the bare Zeeman states,

trapped in effective potentials created by the avoided crossings. Assuming a strong coupling

regime and a sudden non-adiabatic projection onto the dressed-states, diagonalization yields a

prediction of up to 62.5% of the initial condensate atoms remaining trapped for the F = 2 atom

laser (four of the five dressed-states allow some trapping).

In figure 5.2, a measurement (open circles) of the total atomic population in the mF = 2 and

mF = 1 trapped states after t f = 100 ms of output coupling is displayed as the angular Rabi

frequency is scanned from weak to strong out-coupling regime. This population is given by
∫ 40
−40(|φ2(z, t f )|2 + |φ1(z, t f )|2)dz. One can see that the condensate is progressively depleted at

increasing, but weak, Rabi frequencies until no remaining atoms can be observed in the magnetic

trap. As the Rabi frequency is increased further, atoms start to reappear before the atom number
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Figure 5.2: Total atomic population remaining in the magnetic trap after 100 ms of output cou-
pling as a function of Rabi frequency for both our numerical model (solid line) and previous
experimental measurements performed by our group [29] (open circles).

stabilizes to about 70% of the initial condensate number which is consistent with the previously

mentioned theoretical predictions although the discrepancy suggests some degree of adiabatic

transfer. Similar behavior can be observed for out-coupling durations as short as 50 ms. For

shorter out-coupling times the condensate is not fully depleted before the onset of the bound

state. The experimental data were collected in a way that ensured no systematic shifts occurred

in the trap bias field. For every ten data points, five runs were made at coarsely separated Rabi

frequencies and compared with a reference set which was taken at the beginning of the data

collection. 10 ms out-coupling runs were also performed periodically to locate the bottom of

the trap as mentioned in the previous chapter. The error bars in the figure were produced from

averaging four successive data sets taken after 100 ms of out-coupling.

The prediction from our 1D model (solid line) qualitatively matches well the behavior of the

experiment with no adjustable parameters. The predicted number of atoms remaining in the trap

lies within the range of the strong coupling estimates but still differs by about 30% from our

experimental results. The quantitative discrepancy between theory and experiment is explained
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by the use of reduced dimensionality of the simulation. A full 3D model is expected to capture

the dynamics of the experiment and improve the quantitative agreement of the numerics with the

measurements. However, such simulations were not achieved in this work but will be part of the

future research in the group.

5.2.2 Spatial structure of an atom laser

Theory and experiment are also compared in terms of the spatial structure of an atom laser for

a short period of continuous output coupling and for different Rabi frequencies, once again with

no free parameters. In figure 5.3(a-d) the spatial structure of the atom laser of [29] is displayed

by plotting the experimental optical depth (dashed lines) integrated across the atom laser beam

profile in the direction perpendicular to gravity. The condensate (about 5×104 87Rb atoms in the

F = 2 state) was trapped in a highly stable magnetic trap of radial and axial trapping frequencies

ωz(F=2) = 2π ×260 Hz and ωy(F=2)
= 2π ×20 Hz respectively with a bias field of B0 = 0.25 G. In

this experiment, a short burst of 3 ms RF output coupling was applied before the system was left

to evolve for a further 4 ms. The magnetic trap was then switched off and 2 ms later the image

was acquired using standard absorption imaging.

Superimposed to the experimental data are the theoretical results (solid lines) showing the

atomic density (|φ0(z, t f )|2) of the atomic beam (mF = 0 state). The results were obtained for

t f = 2.6 ms of output coupling followed by transformation of the numerical data to account for

the 6 ms of free fall. The full 3 ms of output coupling could not be simulated while keeping all

out-coupled atoms on the numerical grid because of the numerical issues discussed earlier.

Since the total time, including the out-coupling process and the free fall under gravity, is

different between theory (8.6 ms) and experiment (9 ms), the corresponding results were plotted

on two slightly different horizontal time scales in order to have a better comparison. The top axis

of each graph represents the position scale of the theoretical results whereas the bottom scale

is displayed for experimental results. The two curves were superimposed by linear adjustment

of the horizontal axis. Finally, although the theoretical data is given in arbitrary units, it was

vertically scaled in order to satisfy the conservation of the number of atoms.

There is a very good qualitative agreement between the experimental results and our numer-

ical model (with no free parameter), validating the 1D mean-field simulations and allowing us,

in the following, to study and compare the qualitative behavior of the different atom laser sys-

tems of interest. However, accurate quantitative measurements cannot be derived from the 1D
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Figure 5.3: Comparison of theoretical (solid lines) and experimental (dashed lines) results show-
ing the spatial structure of an atom laser (atoms in the mF = 0 state) for various Rabi frequencies.
The theoretical simulations were performed with 2.6 ms of RF out-coupling followed by a 6 ms
free fall. The experimental data were obtained after 3 ms of RF out-coupling and again a free evo-
lution of 6 ms. Important parameters are : N = 5×104 atoms, ωz = 2π × 260√

2
Hz, ωy = 2π × 20√

2

Hz, ∆ = 10.7 and U = 6.6×10−4.
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model as there is some discrepancy occurring in the width and amplitude of some of the density

peaks. The width of the peaks is determined by both the natural broadening due to dispersion in

the condensate and broadening due to gravity (which becomes more important as the atoms fall

further away). These two effects are taken into account in the GPE used in our simulations. The

discrepancy is attributed to the fact that our model is one-dimensional and one would expect the

theory to match the experiment better in 3D.

5.3 COMPARISON OF TWO- AND MULTI-STATE SYSTEMS

The sensitivity of precision interferometric devices is ultimately limited by the particle flux.

Previous experiments in our group [28, 29] have shown that there are fundamental limits of

the flux in atom lasers using state changing out-coupling mechanisms like the RF or Raman

techniques. Such limitations are due to the previously described bound state effect as well as a

back-coupling effect occurring when atoms that have made a transition to the un-trapped state

make a transition back into the trapped state before they have time to leave the condensate. As

well as decreasing the flux, this also introduces dynamic fluctuations onto the atom laser beam.

In order to characterize these effects, a comparison of the flux and fluctuation properties between

the experimentally accessible two-, three-, and five-state systems must be performed.

5.3.1 Flux of the atom laser

In figure 5.4, the two-, three-, and five-state systems are compared with respect to the total

number of atoms remaining in the condensate (a) as well as the number of atoms transferred in

the atom laser beam (b), as a function of the Rabi frequency after 15 ms of long-pulsed output-

coupling.

The evolution of the condensate is described by the total number of trapped atoms remaining

after 15 ms of output coupling. It is simply given by the population in the mF = −1 trapped

state (N−1) in the case of three- and two-state systems, and by summing the populations of both

the mF = 2 and mF = 1 magnetically trapped-states (N2 + N1) in the case of a five-state system.

On the other hand, the atom laser is represented by the number of atoms N0 transferred in the

mF = 0 state, again after 15 ms of out-coupling. In each case, a clear peak in the flux of the laser

beam is observed. However, the maximum flux amplitude, as well as the associated out-coupling

strength, are different for each system. The two-state system has the highest coupling efficiency
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Figure 5.4: Comparison of the normalized number of atoms remaining in the condensate (a) and
the number of atoms that have been transferred to the atom laser state (b) for the two-, three, and
five-state systems after 15 ms of output coupling. The initial atom number is N = 5×104 atoms.
Parameters are ωz = 2π × 260√

2
Hz, U = 6.6× 10−4, G = 9.24, and ∆ = 10.7 or ∆ = 43 for the

five-state or three- and two-state respectively.

with a peak flux of about 95 % of the condensate atoms being transferred into the atomic beam

when the out-coupling strength is around Ω/2π = 80 Hz. For the three-state system, the peak

flux is obtained at Ω ∼ 40 Hz where about 80 % of the atoms will populate the atom laser. Less

than 50 % of the atoms can ever populate the atom laser beam in the case of the five-state system

even when working at the resonant out-coupling strength of Ω/2π ∼ 200 Hz. For strong out-

coupling (high Rabi frequency), all systems exhibit a plateau with less than 100% of the atoms

being transferred to the atom laser beam, characteristic of a bound-state of the atom laser. Again

the two- and three-state systems have the maximum flux.

It already appears that two- and three-state systems would always provide the best out-

coupling flux over a five-state system. However, an atom laser beam not only requires the highest

possible flux but also the output beam needs to be homogeneous, meaning having no fluctuations.

It is thus important to study comparatively the dynamics of each output beam in terms of popu-

lation, as well as spatial and density fluctuations, in both cases of weak and strong out-coupling

strengths.
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5.3.2 Population dynamics

5.3.2.1 Five-state system

Population dynamics in the five-state system for weak and strong coupling are presented in

figure 5.5. The RF coupling is turned on at t = 0 and maintained for 15 ms.
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Figure 5.5: Comparison of the population dynamics in the five-state system for (a) weak and (b)
strong coupling. Parameters are N = 5×104 atoms, ωz = 2π× 260√

2
Hz, U = 6.6×10−4, G = 9.24,

and ∆ = 10.7.

Figure 5.5a shows the case of weak coupling. Figure 5.4 was used in order to choose an ap-

propriate coupling strength (Ω/2π=110 Hz) allowing a high efficiency process in the weak cou-

pling regime. Again, the evolution of the condensate atoms is described by summing the number

of trapped atoms in both the mF = 2 and mF = 1 states whereas the anti-trapped atoms include

both the mF = −2 and mF = −1 states. One can see the number of atoms in the condensate

decaying slowly and monotonically with very small modulations introduced by the out-coupling

process itself. Around 50% of the atoms are transferred to the mF = 0 un-trapped state as pre-

viously observed from figure 5.4. Such a smooth behavior is clearly indicative of the weak (or

intermediate) coupling regime in which most experiments are usually operated. In contrast, the

evolution in figure 5.5b, where the coupling is much stronger (Ω/2π=1.1 kHz), is entirely differ-

ent. As soon as the high power RF coupling is switched on, the mF = 2 Zeeman state is projected

onto the new dressed state basis as discussed above. After a short (∼ 1 ms) high frequency ex-

change, a fraction of un-trapped dressed states is ejected [29] and the remnant dressed states are
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left to oscillate in the magnetic trap. The condensate is no longer continuously depleted and the

formation of the bound state appears. Finally, in both cases, a non-negligible fraction of atoms

(∼ 30%) is coupled into one of the anti-trapped states (either mF = −1 or mF = −2) resulting in

a loss in the flux of the atom laser (mF = 0) beam.

5.3.2.2 Three- and two-state systems

The behavior of the three- and two-state population dynamics for weak and strong coupling

regimes is presented in figures 5.6 and 5.7 respectively.
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Figure 5.6: Comparison of the population dynamics in the three-state system for (a) weak and (b)
strong coupling. Parameters are N = 5×104 atoms, ωz = 2π× 260√

2
Hz, U = 6.6×10−4, G = 9.24,

and ∆ = 43.

It is found to be qualitatively similar to the five-state system. For weak coupling strengths (see

figures 5.6a and 5.7a) the condensate decays monotonically with a greater fraction of condensed

atoms being transferred to the mF = 0 un-trapped state. In the case of the three-state system, a

fraction of atoms (∼ 20%) is coupled into the anti-trapped (mF = −1) state, limiting the flux of

atoms into the atom laser (mF = 0) beam to about 70%. In the case of a pure two-state system, the

atoms can only be either trapped or un-trapped so that any atom out-coupled from the condensate

will exclusively populate the atom laser beam. Again figure 5.4 was used in order to choose the

coupling strength (Ω/2π = 60 Hz) providing the highest efficiency process in the weak coupling

regime. In the strong coupling limit (Ω/2π=1.1 kHz), the behavior is again similar to the five-
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  (a) Ω/2π = 60 Hz (b) Ω/2π = 1.1 kHz
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Figure 5.7: Comparison of the population dynamics in the two-state system for (a) weak and (b)
strong coupling. Parameters are N = 5×104 atoms, ωz = 2π× 260√

2
Hz, U = 6.6×10−4, G = 9.24,

and ∆ = 43.

state system (see figures 5.6b and 5.7b), although the cyclic oscillations of atoms between the

different Zeeman states is much cleaner. Again, a percentage of all states remain trapped in the

condensate.

In terms of population dynamics, the three systems studied here have extremely similar be-

haviors, apart from the two- and three-state systems being cleaner in the strong coupling regime.

However, the population dynamics only takes into account the total number of trapped or un-

trapped atoms on the spatial grid and it is thus necessary to consider the details of the spatial

dynamics, i.e. the density of atoms at any point over the spatial grid.

5.3.3 Spatial dynamics

Although the population dynamics in figure 5.5(a) are smooth, we anticipated that the details

of the spatial dynamics would not be. In fact, for the case of a five-state system, atoms trapped in

the mF = 2 state must pass through the mF = 1 state to get to the un-trapped mF = 0 state. Since

atoms in the mF = 1 state have a different equilibrium position to that of the mF = 2 state (the

gravitational sag is different for each state), the mF = 1 atoms start to oscillate in the magnetic

trap. The dynamics of such an oscillation is shown in figure 5.8 where an atom laser beam was
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created after 15 ms of continuous weak output coupling of Rabi frequency Ω/2π = 200 Hz. In

each image, the atomic density of different Zeeman states is shown with the complete spatial grid

and temporal grid in the vertical and horizontal directions respectively. In figure 5.8a, the sum of

the atomic densities in all five Zeeman states is plotted and oscillations in the spatial profile can

be observed. After plotting the contribution of each Zeeman state independently (figure 5.8b-d),

one can see that this effect on the output mode is due to the important sloshing of the mF = 1

state (figure 5.8c). This phenomenon is independent of the output-coupling strength and is also

observed for higher or smaller Rabi frequencies, which indicates that even at low flux a five-state

atom laser system will be modulated by this classical noise.
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Figure 5.8: Spatial profiles of the five-state system after 15 ms of weak (Ω/2π = 200 Hz) output
coupling. Each plot shows the atomic density of atoms with the complete spatial grid in the ver-
tical direction and the temporal grid in the horizontal direction. (a) Represents the total density,
i.e. the sum of the densities in all five Zeeman states, as a function of time. (b) Is the density of
the mF = 2 state, (c) mF = 1 and (d) mF = 0. The color axes are adjusted to give the best contrast
for each of the Zeeman states. N = 5×104 atoms, ωz = 2π × 260√

2
Hz, U = 6.6×10−4, G = 9.24,

and ∆ = 10.7.

In the case of the three- and two-state systems, where a single Zeeman state is confined in the

magnetic trap, the sloshing effect almost disappears in the weak out-coupling regime as shown

in figure 5.9.
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Figure 5.9: Spatial profiles of the three- and two-state systems, after 15 ms of weak
(Ω/2π = 80 Hz) output coupling. (a-b-c) Represents the three-state system with respect to the
total density, the density of the mF = −1 state and the density of the mF = 0 state respectively.
(d-e-f) Represents similarly the two-state system with respect to the total density, the density of
the mF = −1 state and the density of the mF = 0 state respectively. The color axes are adjusted
to give the best contrast for each of the Zeeman states. N = 5× 104 atoms, ωz = 2π × 260√

2
Hz,

U = 6.6×10−4, G = 9.24, and ∆ = 43.

In the strong coupling limit, the oscillatory population dynamics observed in figures 5.5(b),

5.6(b), and 5.7(b) can be explained by these periodic spatial oscillations. A clear example is

shown in figure 5.10 where the population density of the magnetically trapped states (|φ2(z, t)|2 +

|φ1(z, t)|2) of a five-state system is plotted over the entire spatio-temporal grid and for Ω/2π=1.9

kHz. One can see the initial ejection of the un-trapped dressed state early in the simulation (char-

acteristic of a bound state) and then a clean periodic oscillation inside the trap. Two oscillation
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periods are clear from this figure and correspond to the F = 2 and F = 1 radial trapping frequen-

cies. These oscillations have their upper maximum positions at the minimum of the magnetic

trapping potential and hence oscillate up only one side of the potential. The spatial dynamics

imposed on the atom laser beam by this mechanism of the mF = 1 sloshing in the trap are inde-

pendent of the back-coupling dynamics investigated previously in our group [28].

Τ1฀≈฀5.5฀ms
฀νρ1฀=฀180฀Hz

Τ2฀≈฀3.8฀ms
฀νρ2฀=฀260฀Hz

Time฀(ms)

Position฀(µm)

0

15 -30

30
mF฀=฀1

mF฀=฀2

Figure 5.10: Periodic spatial oscillations in the population dynamics of a five-state system for
Ω/2π=1.9 kHz. One can see the early ejection of the un-trapped dressed states as well as both
oscillation periods corresponding to the F = 2 and F = 1 radial trapping frequencies. Note that
the upper edge of the oscillations is at the minimum of the magnetic trap potential. Parameters
are N = 5×104 atoms, ωz = 2π × 260√

2
Hz, U = 6.6×10−4, G = 9.24, and ∆ = 10.7.

5.3.4 Density fluctuations

5.3.4.1 Five-state system

The density fluctuations in the output beam (mF = 0 state) at a given point (zD) in the atomic

beam are simply given by |φ0(zD, t)|2. For instance, density fluctuations in the output beam at
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a point located 30 µm below the condensate are shown as a function of time in figure 5.11, for

different Rabi frequencies. The Rabi frequencies are chosen to be in the very weak coupling

regime, where any classical noise due to the back-coupling dynamics is negligible. One can

see that the fluctuations in the output beam are increasingly severe as the out-coupling strength

is increased, although the atom laser is operated in a weak coupling regime, which shows that

classical noise due to the sloshing of the mF = 1 is inherent to the system.
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Figure 5.11: Density fluctuations in the mF = 0 state of a five-state system at a single point in the
beam as a function of time. The fluctuations due to the sloshing of the mF = 1 are increasingly
severe as the coupling strength is increased. Parameters are N = 5× 104 atoms, ωz = 2π × 260√

2

Hz, U = 6.6×10−4, G = 9.24, and ∆ = 10.7.

5.3.4.2 Three- and two-state systems

The three- and two-level systems offer the possibility of a cleaner output than the five-level

as there is no intermediate state between the trapped condensate (mF = −1 Zeeman state) and

the un-trapped beam (mF = 0). Fluctuations in the output beam will then be solely due to the

back coupling and depletion of atoms to the anti-trapped mF = 1 Zeeman state as observed in

previous work from the group [29]. However, in the limit that the output-coupling is weak, such

effects are expected to be negligible and the system should produce a classically quiet atom laser
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beam. It is even more true in the case of a true two-level system where no anti-trapped state

is involved. As mentioned in the introduction of this chapter, significant effort is required in

order to produce a ’closed’ two-state atom laser as the relevant alkali-metal atom manifolds have

at least three Zeeman states linked by allowed RF transitions. Since back-coupling fluctuations

and the ’bound’ state arise even in the two-level system it is prudent to ask whether the two- and

three-state atom lasers actually differ much, in particular in the weak coupling regime where they

are meant to operate.
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Figure 5.12: (a) Shows a comparison of the time-dependent density of the two- and three-state
atom lasers at a point located 30 µm below the condensate, after 15 ms of output coupling and for
different Rabi frequencies in the low coupling regime. (b) Is the time-dependent density of the
two-state atom laser measured at the same point, at very low intensities, after 100 ms of output
coupling. Parameters are N = 5×104 atoms, ωz = 2π × 260√

2
Hz, U = 6.6×10−4, G = 9.24, and

∆ = 43.

Figure 5.12 shows the comparison in the dynamics of the two- and three-state atom lasers

after out-coupling times of t f = 15 and t f = 100 ms respectively. In 5.12a, the time dependent

densities of the two- (dashed line) and three-state (continuous line) atom lasers are plotted at a

point below the condensate after 15 ms of output coupling and for different Rabi frequencies

in the weak coupling regime. It is remarkable that, for the 1D model described here, the two

systems are essentially indistinguishable. Even when increasing the strength of the coupling,

which results in an increase of the classical noise, the details of the classical fluctuations on the

beam are still mirrored in the two systems. However, a small difference in amplitude is observed
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between the simulations. This difference is accounted for by the loss of atoms to the anti-trapped

Zeeman state in the three-level system. Moreover, in the extremely weak coupling limit, the anti-

trapped atoms are expelled from the system on a time scale much faster than the back-coupling

time (set by the inverse of the Rabi frequency). Thus, they have little effect on the dynamics of

the system. In (b) the density fluctuations are represented as a function of time for the two-state

atom laser after 100 ms of very low output coupling. Even in the weak coupling limit taken here,

the density fluctuations due to back-coupling are a significant contribution to the noise in the

atom laser. For extremely weak out-coupling (Ω/2π = 5 Hz), these fluctuations are negligible,

but at the expense of a high flux in the atom laser beam. This has major implications for the use

of atom lasers in precision measurement systems where high flux and minimal classical noise are

essential features required for the atom beam.

5.3.5 Flux and fluctuations trade-off

Comparing figure 5.4 and 5.12(a) reveals that it is actually not possible to operate the atom

laser near the peak output-coupling rate because of increasingly severe density fluctuations. For

example, the peak in the two-state system is around Ω/2π = 80 Hz. However, density fluctu-

ations are already significant for a Rabi-frequency of Ω/2π = 20 Hz (see figure 5.12(a)). This

means that the peak homogeneous output-coupling rate (meaning the rate for which the atom

laser beam remains classically quiet) achievable in an RF atom laser is significantly lower than

the maximum output-coupling rate. In this homogeneous regime, there is practically no differ-

ence between the three- and two-state atom lasers. The only significant difference of a three-state

atom laser over a two-state one is the creation of a small amount of atoms in the anti-trapped state.

5.4 CONCLUSION

In this chapter, a theoretical model was described and used to study the effect of RF out-

coupling on two- and multi-level systems. The model was validated by comparing the theoretical

results to experimental measurements performed earlier in our goup [29]. Finally, the atom laser

output was characterized depending on the out-coupling strength. In particular crucial experi-

mental properties of an atom laser, such as fluctuations, flux and spatial structure were studied.

On that matter, the five-state system (F = 2) seems clearly inappropriate for any measurement

using atom laser beams, due to the intermediate coupling to the mF = 1 sloshing in the trap and
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disturbing the out-coupling process.

Consequently, a ‘natural’ three-state system can generally be preferred for any classical mea-

surement provided it is performed in the weak out-coupling regime. For example, in the recent

Ramsey interferometer experiment performed in our group [89], it is not essential to have a two

state output coupler. Indeed, if some atoms were coupled into other states, there would only be

a slight loss in flux and therefore minor degradation of the signal to noise ratio when measuring

fringe visibility.

However, it will be more important to have a pure two state output-coupler in any experiment

designed to measure quantum properties (statistics), such as squeezing, of an atom laser beam

using quantum state transfer from an optical beam. In such an experiment it would be important

to have a high efficiency conversion of photons (in a squeezed optical beam) into atoms in a

given internal state (in the squeezed atomic beam). Any atoms that are out-coupled to another

state in such an experiment would degrade the squeezing. Similarly, in the Zurich group [27],

measurements on the g(2) function were performed using RF out-coupling at 6.8 GHz between

the hyperfine levels to ensure a two state system.







CHAPTER 6

HELIUM BEC: EXPERIMENTAL SETUP

This chapter introduces the characteristics of the helium atom followed by a general descrip-

tion of the setup used in our experiment. The method to reach Bose-Einstein Condensation uses

a similar route to that of alkali atoms, namely laser cooling and trapping followed by a final

step of evaporative cooling. However, due to the specificities of He, significant differences will

arise compared to the case of Rb (chapter 2). The experimental setup at ENS has been con-

structed almost 10 years ago and condensation of metastable helium atoms was achieved in 2001

[121]. In 2006, the scattering length of metastable helium atoms was accurately measured, using

a two-photon photo-assocation method [122]. From there, it was decided to largely renew the

experimental setup, in order to make it more reliable in view of a new generation of experiments

where the BEC will be manipulated optically. It is this new setup that is described in this chap-

ter. In particular, a Channel Electron Multiplier was added in the Science cell where the BEC

is produced, providing a non-destructive real-time method to detect ions or electrons resulting

from background or inter-atomic collisions. The optical setup was also redesigned and entirely

fiber-coupled in order to improve the stability when manipulating and cooling the atoms.

6.1 THE METASTABLE HELIUM ATOM 4He∗

6.1.1 The metastable 23S1 triplet state

Like the 87Rb alkali atom studied in the previous chapters, the isotope 4 of helium (4He)

is also a bosonic atom. Its internal structure is much simpler than the one of rubidium since it

involves only two electrons and a zero nuclear spin leading to the absence of hyperfine structure.

As a consequence, 4He is an ideal candidate for theoretical ab initio calculations for atomic or

molecular physics. However, it is interesting to note that only a few groups [121, 123–125] have

produced a BEC using He atoms in a metastable state, compared to the tens of groups working

on BECs of alkali atoms. This results from experimental complications due to the properties of

the helium atom which can be explained from the energy level diagram of He, shown in figure

6.1.

Under typical conditions, 4He is in the 11S0 initial ground state with the closest excited state
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Figure 6.1: Energy levels of 4He. In our experiment, we prepare the atoms in the 23S1 metastable
state which is considered as an effective ground state due to its very long lifetime. We use the
23S1 → 23P2 optical transition at 1083 nm to manipulate and cool the atoms.

being the 23S1 triplet state, 19.8 eV (∼ 60 nm) above. The 11S0 → 23S1 transition is forbidden

optically, and in the far UV regime which is not easily accessible using standard commercial

lasers. The 23S1 state is metastable: the electric dipole transition is prohibited and consequently

its lifetime is extremely long (∼ 7900 s) compared to the typical time scale of laser cooling

experiments. Moreover, optical transitions to other triplet states (23S1 → 23P at 1083 nm and

23S1 → 33P at 389 nm) can easily be driven. These transitions are closed due to the ∆S = 0

selection rule, and any atom excited into these triplet states will preferentially decay back into

23S1. Consequently, one can consider the metastable 23S1 state (He∗) as an effective ground

state for typical laser cooling experiments, with the 23S1 → 23P2 optical transition at 1083 nm

being generally used to manipulate the atoms. The natural linewidth of the 23P2 excited state

is Γ = 2π × 1.62 MHz which corresponds to a lifetime of τ = Γ−1 ∼ 98 ns, and the saturation

intensity of the transition is Isat = 0.16 mW.cm−2.
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The first experimental challenge is thus to create an intense source of He∗ which is done by

applying an electrical discharge to an incoming flux of He gas in the 11S0 ground state. The

atoms are accelerated during this process and, in contrast to 87Rb, an initial cooling stage using

a Zeeman slower is necessary in order to capture the metastable atoms in a MOT.

A specificity of He∗ is its very high internal energy (∼ 19.8 eV). This energy is easily released

when a metastable atom collides with a surface (either metallic or dielectric), ejecting an electron

which can be detected after electron multiplication by a Channel Electron Multiplier (CEM) or

a Microchannel Plate (MCP). Individual atoms can then be monitored with high spatial (a few

10−100 µm) and temporal (a few 10 ns) resolutions. However, the high internal energy of He∗

raises the problem of inelastic Penning collisions between metastable atoms as described in the

next paragraph.

6.1.2 Penning collisions

The metastable nature of He atoms is a major issue for reaching condensation. A pair of He∗

atoms has sufficient energy to ionize one of the partners giving:

He∗ +He∗ 7−→







He+ +He(11S0)+ e−

He+
2 + e−

(a)

(b)
(6.1)

The second reaction (b) is called associative ionization, resulting in an electron and a molecular

ion, and is usually less probable than (a) [126]. The first reaction (a) creates an electron, an ion

and an atom in the 11S0 ground state and is called Penning ionization. The process is extremely

efficient, with an ionization loss rate on the order of ∼ 10−10 cm3.s−1 [127]. However, if both

He∗ atoms are spin polarized (He∗ ↑), the Penning ionization process

He∗ ↑ +He∗ ↑ 7−→ He+ +He(11S0)+ e− (6.2)

is strongly inhibited due to spin conservation rules, with an ionization rate reduced by 4 orders of

magnitude to ∼ 10−14 cm3.s−1 [128, 129]. Indeed, in equation 6.2, the total spin of the reagents

(on the left) is S = 1+1 = 2 whereas it is either 0 or 1 for the products (spin 1/2 for the ion and

the electron and spin 0 for the He atom). The possibility to achieve a He∗ BEC in a magnetic

trap where spins are oriented is a consequence of this inhibition limiting the losses from Pen-

ning ionization. Indeed, such a reaction can only happen if the orientation of the atomic spins
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is not preserved during the collision. If the total electronic spin was always maintained, the re-

action would be completely forbidden. However, the spin can relax due to spin-spin interactions

between the two magnetic moments of the atoms.

Two loss mechanisms of He∗ atoms are induced by spin relaxation and will be described in

more details in the next chapter (section 7.3). The first one is a direct consequence of the spin-

relaxation process: following the collision, one (or both) of the atoms is no longer in the initial

mJ = +1 magnetically trapped state (where mJ is the projection of the total angular moment J of

the atom) and escapes from the trapping potential. The second mechanism is induced by this spin-

relaxation process: during the collision the spin-spin interaction modifies the spin of the atoms

which are thus no longer polarized and can interact following the standard Penning ionization

process of equation 6.1a. This mechanism dominates in the regimes of very low temperatures (<

mK) and small magnetic fields (< 100 G) of usual experiments [128, 129].

6.2 EXPERIMENTAL SETUP

In this section, details on the experimental setup which we use to produce and cool metastable

helium atoms are given. First, the description of the vacuum system and of the optical setup

provide a general overview of the experiment. This optical setup was entirely reconstructed

and largely fiber-coupled. The pumping of the vacuum system was slightly modified with the

use of additional turbopumps to replace previously installed ion pumps and diffusion pumps.

Each experimental step, from producing metastable atoms to reaching BEC, is then discussed

briefly. Additional information on the experimental setup can be found in the thesis of former

PhD students of the group [130–132], except for the optical setup arrangement and the use of a

channeltron which are both original to this thesis and will be largely described.

6.2.1 Vacuum system

The experimental setup can be thought of as 3 distinct vacuum chambers that can be com-

pletely isolated from each other by gate valves with pneumatic actuators, all connected to a safety

system in case the vacuum suddenly fails. Each of the 3 chambers have their own individual pur-

pose (see figure 6.2). The Source Chamber produces a collimated beam of metastable helium

atoms whereas the Zeeman slower stage reduces the longitudinal velocity of the atoms to typi-

cal capture velocities (∼ 130 m.s−1) of a MOT [133]. Finally, the Science Chamber traps and
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Figure 6.2: Experimental setup. The vacuum system is segmented into 3 parts: 1) the Source
Chamber, 2) the Zeeman slower Stage and 3) the Science Chamber. The metastable helium
beam is successively collimated, deflected, decelerated and trapped, in the Science Chamber, a
5cm×5cm×4cm quartz cell.

condenses the atoms in the quartz cell.

1. The Source Chamber: It consists of two distinct chambers physically separated by only

a small hole (skimmer) which allows the atoms to pass through. The first part is the

production chamber where helium atoms are excited in the metastable state via an elec-

trical discharge, whereas the second part is the collimation-deflection chamber, where the

metastable beam is collimated and deflected in order to be aligned to the axis of the Zee-

man slower, and where atoms in the ground state are filtered out. Since the production of

metastable atoms is not an efficient process (see section 6.2.3), a high flux of ground-state

He gas is initially needed. It has to be pumped into the vacuum system so that the pressure

in the experimental setup does not deteriorate. For that purpose, the production chamber is

pumped by a Varian V-3KT turbo pump (Pumping Speed ∼ 2000 l/s for He) which main-

tains a pressure of ∼ 4×10−5 mbar (when the source operates under optimal conditions),

whereas a second turbo pump (Pfeiffer TMH 521 P, Pumping Speed ∼ 500 l/s), together

with the differential pumping induced by the skimmer, allow for a pressure of ∼ 5×10−7

mbar in the collimation-deflection chamber.

2. The Zeeman Slower: A cylindrical differential pumping tube (⊘ = 1cm, L = 10cm) sepa-

rates the collimation-deflection chamber from the Zeeman Slower area where a pressure of

∼ 10−10 mbar is maintained using an additional turbo pump (Pfeiffer TPU 2101 P, Pump-
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ing Speed ∼ 2000 l/s).

3. The Science Chamber: Finally, at the far end of the Zeeman Slower, a quartz cell is ad-

joined where the atoms are trapped, condensed and studied. A final turbo pump (Pfeiffer

TPU 450 H, Pumping Speed ∼ 400 l/s), together with a differential pumping stage through

a second Zeeman slower (see figure 6.2), allow an ultrahigh vacuum (∼ 10−11 mbar) to be

achieved in the quartz cell.

6.2.2 Optical Setup

The optical setup presented here has been completely renewed compared to the pre-existing

scheme described in previous theses from our group [130–132]. In particular, the paths followed

by the different laser beams have been largely fiber-coupled, not only to improve the optical

quality of the beams and the general stability, but also to provide fast and accurate alignment at

each step of the setup. Additionally, the important losses of power through these optical fibers

was balanced by using two high power laser amplifiers, providing a total power of ∼ 6 W of light

at 1083 nm.

1. Light source: The light source of the entire laser system is shown in figure 6.3. The seed

laser is a single mode Diffracted Bragg Reflector (DBR) laser diode emitting at 1083 nm

with a maximum output power of ∼ 10 mW. The linewidth of the laser diode is reduced

from 3 MHz to 300 kHz by an external extended cavity using a semi-reflecting mirror of

80% transmission. The initial elliptical shape of the output light is corrected to a Gaussian

profile by passing through two anamorphic prisms and the diode is protected from potential

back-reflected light using two 30 dB optical isolators. A fraction (∼ 300µW) of the laser

power double-passes an AOM up-shifting the frequency by +240 MHz. The light is then

frequency-locked on the 23S1 → 23P2 atomic transition by saturated absorption in a low

pressure cell of helium where a continuous RF discharge transfers He atoms in the 23S1

metastable state. A photodiode detects the saturated absorption signal and the frequency

locking is achieved by active feedback on the current of the laser diode as well as on the

position of the output mirror of the cavity which is mounted on a piezo-electric support.

The remaining light that doesn’t pass through the AOM and is locked −240 MHz away

from the 23S1 → 23P2 atomic transition, injects a polarization maintaining (PM) fiber-

amplifier from Keopsys (Amplifier 1 INPUT on figure 6.3) providing a collimated output



102

A
O
M

Optical฀Isolator

Saturation
฀฀He*฀฀cell

Laser฀Amplifier฀1
฀฀฀3W฀-฀Keopsys
฀฀฀฀฀฀฀฀฀INPUT

λ/4
฀DBR
Laser
Diode

T=80%

f=3฀cm

λ/4

f=8฀mm

Photodiode

<< <<<<

<<

<<

<<

<<

<<
<<

<<

<<

Anamorphic฀Prisms

Figure 6.3: Schematic of the laser diode setup. The beam frequency is locked −240 MHz away
from the 23S1 → 23P2 atomic transition by saturated absorption and is used as a seed to be
amplified by a 3 W laser-amplifier.

beam of 3W in a TEM00 mode (Amplifier 1 OUTPUT in figure 6.4).

2. Main optical setup: The optical arrangement used to create all the optical beams needed

in the experiment is shown in figure 6.4. It is mainly fiber-coupled for improved stability,

and consequently requires high laser power which is provided by two 3W laser amplifiers

(Amplifiers 1 and 2 on figure 6.4).

The laser output of amplifier 1 is split into several optical beams which are used for:

• the collimation and deflection of the atomic source, which is described in 6.2.4.

• the imaging beam, which is used for absorption and fluorescence detection to image

the cloud of atoms in the quartz cell. The AOM in double-pass configuration tunes

the frequency of the imaging light.
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• the repumping beam which is used to optimize the Zeeman slower stage (see section

6.2.7) and is also double-passed through an AOM to adjust its frequency.

• the input beam of a second 3W (PM) fiber-amplifier (Amplifier 2) from Manlight.

The laser output of amplifier 2 is also split to provide:

• the Zeeman Slower beam which remains at the frequency of the laser diode, shifted

−240 MHz away from the atomic transition (see section 6.2.5).

• the two MOT beams in the z-direction as well as a beam which will be used for the

4 MOT beams in the vertical plane orthogonal to the z-axis (see section 6.2.7). The

frequency of these beams is shifted close to resonance using an AOM.

6.2.3 The source of atoms

In chapter 2, loading a magneto-optical trap directly from a vapor of 87Rb atoms initially in

the ground state is described. However, a somewhat different approach is used to load a MOT of

helium and initially requires creating He∗ metastable atoms. This is performed using an electrical

discharge between an anode and a cathode. The discharge source of atoms is shown in figure 6.5

and consists of a cylindrical gas reservoir of boron nitride, a material with high heat conductivity

as well as high electrical and chemical resistance. The external part of the boron nitride is pressed

into a copper cylinder which is continuously cooled by liquid nitrogen. A copper flange, held

by an electrically isolating support of araldite, closes the reservoir on the backside and serves

as an inlet for the helium gas as well as a mount for the cathode. The front side of the boron

nitride has a 0.4 mm diameter outlet which is directly connected to the anode, an aluminium

plate with a similar 0.4 mm hole in its center. An intense, continuous discharge is produced

between the two electrodes by applying a 2 kV voltage onto the cathode while the anode is kept

at a ground potential. After undergoing electronic collisions, a fraction (between 10−4 and 10−6)

of the helium atoms (in the initial 11S0 ground state) is excited to upper states before decaying

to the long-lived metastable 23S1 state. For efficient production of metastable helium atoms,

many parameters are involved such as the He gas purity, pressure and temperature, the current

of the discharge, the size of the boron nitride outlet, the cleanliness of both the cathode and the

anode, and the respective alignment of the hollowed pieces (boron nitride, anode and skimmer).

All these parameters were previously carefully optimized in our group [134] to obtain a good
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trade-off between the highest flux from the source and moderate heating from the discharge.

Although the source has been taken out and a few pieces have been changed (like the boron

nitride piece or the cathode), optimal parameters remain approximately the same as the ones

previously determined in [134]. In the experiment, the gas reservoir is filled with helium gas to

a pressure of about 4× 10−5 mbar, and a current of 6 mA is chosen for the discharge. Under

optimal conditions, the source ensures a high flux (∼ 1014 atoms.s−1.sr−1) of triplet metastable

helium atoms which are accelerated and escape from the reservoir in a diverging beam with a

mean longitudinal velocity of approximately 1000 m.s−1.

The setup was improved in order for the source to be moved mechanically in all three spatial

directions (x,y,z) with very high accuracy. For that purpose, the araldite support is attached to

three translation stages and micrometric displacement of each translation stage is provided by

rotating flexible cables. The torsion of each cable is controlled independently from outside the

chamber and is converted into translation displacements by toothed wheels meshing with endless

screws. The output of the source can thus be precisely aligned to the skimmer in order for the

atoms to enter the collimation-deflection chamber. A vertically movable Faraday cup (detector

1 in figure 6.2), located 1.2 m away from the skimmer, is used to monitor the intensity of the

metastable helium beam and optimize the alignment of the system as well as other important

parameters. On the surface of the detector, an atom in the 23S1 excited state can release its internal

energy and extract an electron. This process is very efficient and the increase in the metastable

flux is measured from the resulting current on a picoammeter, connected to the Faraday cup.

6.2.4 Collimation-Deflection

The need for ultra high vacuum in BEC experiments requires that the intense He beam of

atoms remaining in the ground state (11S0) is prevented from reaching the quartz cell. Since the

metastable beam (created from the discharge) initially merges with the ground-state beam (which

did not experience the discharge), it is therefore advantageous to spatially separate them. This is

done by taking advantage of the sensitivity of He∗ atoms to resonant light at 1083 nm in contrast

to ground-state He atoms which are insensitive to this wavelength. Consequently, not only is it

possible to collimate the initially diverging beam of metastable atoms using radiation pressure

forces, but one can also deflect the atoms and modify their trajectory. The general principle is

described in figure 6.6. The effusive beam of atoms coming out of the source has a uniform

spatial profile which allows for collimation of only the metastable beam to be performed slightly
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Figure 6.5: Compact discharge source of metastable helium atoms. The top pictures show the
boron nitride reservoir, the cathode and its flange, as well as the discharge, just before the skim-
mer. The bottom drawing represents the discharge source. The boron nitride reservoir as well as
the metallic anode are cooled by liquid nitrogen.

off axis. Two apertures (a 5 mm diameter diaphragm and the 1 cm diameter differential pumping

tube at the entrance of the Zeeman Slower) selectively block the He atoms whereas the He∗ beam

is carefully deflected to enter the Zeeman Slower.

The collimation-deflection optical layout was largely improved from the previous arrange-

ment. In particular, all the optics are now set on a very stable platform attached on top of the
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Figure 6.6: Scheme used for separating the beam of metastable atoms from atoms in the He
ground-state. First, the metastable atoms are collimated to reduce the initial divergence. Second,
the beam of metastable atoms is deflected to enter the differential pumping tube of the Zeeman
Slower whereas atoms in the ground-state are selectively blocked and pumped out of the vacuum
system.

Source chamber and the light is transported from the main optical table using a fiber which re-

duces the propagation in free space and improves the beam profile. A total power of ∼ 700 mW

is extracted from the output light of amplifier 1, which is sent to the collimation-deflection stage

via a PM single-mode (SM) optical fiber. The resulting beam (∼ 350 mW) double-passes an

AOM in order to shift its frequency by +240 MHz, back to resonance with the atomic transition.

The remaining power (∼ 270 mW) is subsequently split in three beams; for vertical collimation,

horizontal collimation and deflection (see figure 6.7).

In order to collimate the atomic beam for each transverse direction, we use a "zig-zag" con-

figuration where the resonant laser beam (P ∼ 50mW and ⊘ = 1 cm) is multi-reflected between

two mirrors (3×15 cm) and crosses the atoms about 10 times. The collimation process is done

slightly off axis (1◦ upwards with respect to the horizontal), as shown in figure 6.6.

To deflect the collimated beam, a cylindrical telescope is used to produce an elongated (2×8

cm) laser beam (P ∼ 100 mW) that is slightly converging in order to account for the change in
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Doppler effect during the deflection process. The deflection angle is given by θ ∼ L/R ∼ 1◦

where R = 5 m is the curvature of the beam and L = 8 cm its longitudinal dimension. The

direction of the propagating beam of metastable helium atoms is consequently brought back to

the horizontal in order for the atoms to pass through the entire Zeeman setup and reach the quartz

cell. A second Faraday cup (detector 2 in figure 6.2), located 2.4 m away from the differential

pumping tube entrance, is used to optimize the flux of the collimated-deflected beam.
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Figure 6.7: Schematic of the optical setup used to create the laser beams for collimation and
deflection. These beams are on resonance with the 23S1 → 23P2 atomic transition.

6.2.5 The Zeeman Slower

As mentioned in section 6.2.3, the beam of He∗ atoms created by the discharge escapes the

reservoir with a typical longitudinal velocity of approximately 1000 m.s−1, which is much higher

than standard capture velocities in a MOT (∼ 100 m.s−1). Consequently, the metastable helium

beam is preliminarily decelerated by a Zeeman slowing technique [135]. For that purpose, a

laser beam enters the quartz cell before propagating in the two Zeeman slowers, anti-parallel to

the atomic beam. To create this Zeeman beam, ∼ 300 mW from the output power of amplifier 2

is used to inject a PM-SM optical fiber (see figure 6.4). The fiber output beam is expanded to a
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diameter of approximately 2 cm before entering the cell. The light polarization is made circular

σ+ in order to induce optical transitions between the two Zeeman sub-levels 23S1,mJ = +1 →
23P2,mJ = +2 when the resonance condition

ωa(z) = ωL −kL ·v(z) (6.3)

is satisfied, with v(z) the velocity vector of an atom, kL and ωL the wave-vector and frequency of

the laser beam and ωa(z) the resonance frequency of the 23S1,mJ = +1 → 23P2,mJ = +2 transi-

tion. During the slowing process, the velocity of the atom is progressively reduced, varying the

Doppler shift and thus changing the resonance condition. It is however possible to compensate

the changes in the Doppler effect by the energy shift due to an external magnetic field B(z). In

such a field, the resonance frequency ωa(z) is shifted from the atomic transition frequency ω0

giving:

ωa(z) = ω0 +(gPmJP
−gSmJS

)
µBB(z)

h̄
(6.4)

where gP = 3/2 and gS = 2 are the Landé factors of the 23P2 excited state and of the 23S1

metastable state respectively and mJP
= +2 and mJS

= +1 the respective magnetic moments of

these two states.

Consequently, the resonance condition to be maintained along a Zeeman slower can be ex-

pressed as:

δZS + kLv(z) =
µBB(z)

h̄
(6.5)

where δZS = ωL−ω0 is the laser detuning from the atomic transition. In our experiment, the laser

detuning is fixed to δZS = −2π × 240 MHz and the initial Doppler shift for atoms entering the

Zeeman slower at vi ∼ 1000 m.s−1 is compensated by a magnetic field Bi = 540 G. Assuming a

constant deceleration a along both Zeeman slowers, the velocity of the atoms can be written as

v(z) =
√

v2
i −2a(z− zi) and a non-homogeneous magnetic field configuration is designed for the

process to be resonant with this condition all along the path as shown in figure 6.8.

In the experiment, the first Zeeman slower is a cylindrical tube (⊘= 2.2 cm, L ∼ 2 m) on top

of which are wound 20 independent layers of copper wire (⊘ = 2 mm) powered by a 3 A current

to create the parabolic magnetic field from 540 to 0 G. The atomic velocity is approximately

reduced to v ∼ 300 m.s−1 before entering the second Zeeman slower tube (⊘ = 40 mm, L = 15
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Figure 6.8: Magnetic field configuration in both Zeeman slowers, calculated from the Biot-Savart
law [130].

cm) on which 10 layers of copper wire are wound and operated by 4 A of current in a direction

opposite to that of the first Zeeman slower, creating the appropriate (B = 0 → −140 G) field

to slow the atoms down to a final velocity of ∼ 40 m.s−1. Finally, a compensation coil (⊘ =

12 cm, 70 turns, 3 A) minimizes the magnetic field leakage (see figure 6.8) from the second

Zeeman slower into the cell region. Control and optimization of the successive decelerations was

performed using the channeltron located in the quartz cell (see following section).

There are three reasons why we use a double-Zeeman configuration with a magnetic field

between 540 and −140 G rather than a single Zeeman slower starting at Bi ∼ 700 G. The first

one is practical and consists of limiting the heating in the coils so that standard water cooling

techniques are still efficient. The second reason relates to the physics of the He atom. It can

be shown that in a magnetic field of 600 G, the transitions 23S1,mJ = +1 → 23P2,mJ = +2

and 23S1,mJ = +1 → 23P1,mJ = 0 are degenerate. Although a σ+ laser polarization should

only allow transitions to the 23P2,mJ = +2 Zeeman sub-state, the laser polarization is never

perfect and possible transitions to the 23P1,mJ = 0 state can complicate the physics of the slowing

process and result in losses in the total number of atoms that can be trapped in the quartz cell.

FInally, using a non-zero field at the end of the second Zeeman slower also allows the Zeeman

beam to be far-detuned from the atomic transition and to limit its effect on the atoms trapped in
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the 3D MOT. Consequently, the use of a second Zeeman slower allows us to work with an initial

magnetic field which is lower than 600 G while keeping an appropriate magnetic gradient along

the path.

6.2.6 Channel Electron Multiplier (Channeltron)

At the end of the Zeeman slower, just before the quartz cell, a channeltron is placed (see fig-

ure 6.9a). Channel Electron Multipliers (CEMs or channeltron) are detectors with a high surface

resistance responding to charged particles (typically ions or electrons). When a potential (∼ 3 kV

in our experiment) is applied between the input and the output end of the CEM, the resistive sur-

face forms a continuous ‘dynode’ which has the property of emitting secondary electrons when

primary particles impinge upon it. This process is called secondary electron emission and allows

the channeltron to detect a single particle that has entered the input aperture. Indeed, any incom-

ing particle will generate secondary electrons that are accelerated down the channel by a positive

bias. Upon striking the interior surface of the channel walls, these electrons generate further

electrons. The resulting avalanche process produces an easily detectable output pulse containing

up to 108 electrons for each incident particle with a duration (Full Width Half-Maximum) of

approximately 8 ns and a dark count rate of less than 0.02 cps. Consequently, individual pulses

produced from the avalanche process can be monitored on an oscilloscope or a photon counter.

A cut view of a typical CEM as used in our experiment is shown in figure 6.9b. The sup-

porting body of the channeltron is made of ceramic material and the black channel is a lead glass

with a secondary electron emitting surface. The electron avalanche generated by a primary par-

ticle follows the channel to the positively charged end and is collected by an anode providing the

output signal. The curvature of the channel is necessary to prevent ion feedback due to the high

electron density at the end of the channel. In a straight channel, ions would acquire too much

kinetic energy and generate additional secondary electrons leading to an unstable operation of

the channeltron.

The channeltron can be used as a very efficient detection method in our experiment where He

ions are easily produced due to Penning or background collisions. First, it is possible to measure

the velocity of the atoms entering the glass cell, taking advantage of the ions produced when a

metastable He atom collides with the walls of the glass cell. Typical experimental signals are

shown in figure 6.10 where a pulse of metastable atoms was sent through the Zeeman slower

stage. Such a pulse of atoms was produced from the discharge by modulating the RF power
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Incoming฀charged฀particles

Figure 6.9: a) Picture of the channeltron, located just before the quartz cell where the atoms are
trapped. b) Cut view of the channeltron, showing the external ceramic structure and the lead
glass channel where the electron avalanche occurs.

of the collimation-deflection AOM. The output signal of the channeltron was monitored on an

oscilloscope and recorded in both cases: when the first Zeeman slower stage is turned on (solid

black curve) or off (solid red curve). The velocity of the atoms can be deduced from each of these

signals by considering a constant deceleration in the Zeeman slower. It is thus possible to control

and optimize the successive decelerations induced by both Zeeman slowers (a similar curve is

obtained when the second Zeeman slower is also switched on). Additionally, in the case of an

atomic cloud which would be confined in either a magnetic or optical trap, it is possible to detect

individual ions emitted from Penning collisions processes. This detection method is planned to

be used for the two experiments described in chapters 7 and 8.

6.2.7 The MOT

• Laser Beam Geometry: Our scheme aims to trap the spin-polarized helium gas (He∗ ↑)

at the center of a quartz cell of dimension 5cm×5cm×4cm (see figure 6.11). The MOT

beams are 3 pairs of counter-propagating laser beams of opposite (σ+/σ−) polarization
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Figure 6.10: Effect of the first Zeeman slower on the atoms, measured using the channeltron.
In red is the atomic signal without Zeeman slowing whereas the black curve corresponds to an
atomic jet which has experienced longitudinal cooling. The shoulder of the black curve represents
a fraction of atoms which do not experience the slowing effect and cannot be trapped in the MOT.

and crossing at the center of the cell. Four of these beams are in a plane orthogonal to the

z-axis of the experiment whereas the two additional MOT beams along the z-direction are

almost superimposed with the Zeeman slowing beam and the atomic beam. A σ+ MOT

beam enters the Zeeman chamber by a side viewport at the entrance of the first Zeeman

slower and is directed towards the +z-direction by a mirror at 45◦ as shown in figure 6.2.

It propagates all the way through both Zeeman slowers before reaching the glass cell. The

σ− MOT beam propagates in the −z-direction after it has been combined with the Zeeman

beam on a polarizing beam-splitter.

The MOT beams are produced from the output of amplifier 2 (see figure 6.4) which is

initially shifted −240 MHz away from the atomic resonance. A fraction of the output

power is used to produce the Zeeman beam (see section 6.2.5) whereas the remaining light

creates the MOT beams after double-passing an AOM in order to shift the laser frequency

closer to resonance (δMOT ∼ −40 MHz). The light is subsequently split into three beams

which inject independent PM single-mode optical fibers. Two of these fibers are redirected

to each end of the Zeeman slower system to produce the two MOT beams along the +z/−
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Figure 6.11: Schematics of the MOT. The 6 optical MOT beams (only 4 are visible in the plane
of the figure) intersect at the center of the quartz cell. The Zeeman and repumping beams are
also shown. The quadrupolar magnetic field is created by the two coils Q1 and Q2.

z-axis respectively. The last fiber is redirected towards the glass cell where an additional

optical setup (see figure 6.12) produces four MOT beams in a vertical plane, orthogonal to

the z axis. All MOT beams are expanded (⊘ = 2 cm) in order to capture a large number of

atoms and their polarization is adjusted to be σ+ or σ− using quarter wave-plates.

In this geometry, both the σ+ and σ− beams along the z-axis can affect the slowing process

as explained in [136]. On one hand, the σ+ MOT beam parallel to the atomic beam (see

figure 6.12), can introduce transitions to the 23P2,mJ = +2 state and thus accelerate the

atoms when they reach the velocity v ∼ 100 m.s−1 (which occurs before the end of the

second Zeeman slower). Consequently, the intensity of the Zeeman slowing beam must be

adjusted in order to be higher than the intensity of the σ+ MOT beam. On the other hand,

the σ− MOT beam can induce transitions to the 23P2,mJ = 0 sub-level, which depolarizes
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Figure 6.12: Schematic of the MOT beams in the vertical xy-plane. The third pair of beams along
the z-direction is not represented. The power balance can be adjusted using half wave-plates and
polarizing beam-splitters. Each MOT beam is expanded 10 times in a telescope.

the atoms if they subsequently decay to the 23S1,mJ = 0 or 23S1,mJ = −1 sub-levels.

The process is resonant when v ∼ 200 m.s−1 which, again, occurs before the end of the

second Zeeman slower. Re-pumping light thus needs to be used in order to optimize the

slowing process [136]. Finally, the MOT beams must be far-detuned (∼ −40 MHz) from

the atomic resonance in order to reduce the process of light induced Penning collisions

[133, 137] which would result in losses of atoms.

• MOT Coils: The magneto-optical trap utilizes magnetic confinement simultaneously to

the optical configuration described above. The magnetic field is created by using two

magnetic coils (Q1 and Q2 in figure 6.11) with currents flowing in opposite directions.

The two cylindrical coils are separated by 5.2 cm along the y-axis and create a quadrupolar

field with a magnetic gradient of 40 G/cm along the symmetry axis for a given current of

5 A.
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6.2.8 Magnetic trap and evaporative cooling

Further cooling is achieved by evaporation after transfer of the atoms in a non-dissipative

magneto-static trap producing a Ioffe-Pritchard type magnetic field [138] similar to the one de-

scribed in chapter 2. The QUIC configuration creating such a field is shown in figure 6.13 and

involves 5 coils: Q1 and Q2 produce a quadrupolar field whereas B3 allows for a non-zero B0

magnetic field at the center of the trap (called the ‘bias field’) and two additional coils H1 and

H2, in a Helmoltz configuration, are used to adjust the bias field B0.

Atomic฀cloud

Atomic฀flux

Q1

Q2

B3

H2H1

Quartz฀cell

z

y

x

Quadrupole฀coils Ioffe฀coil
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Figure 6.13: Schematics of the magnetic trap, where Q1, Q2 and B3 form the Ioffe-Pritchard trap
whereas H1 and H2 are the Helmoltz coils that can compensate the bias field B0.

Atoms with a magnetic moment anti-parallel to the magnetic field (spin mJ = +1) are trapped

in the region of minimal potential whereas atoms with mJ = 0 and mJ = −1 spin states are

respectively un-trapped and expelled from the center of the trap. In the vicinity of the minimum

B0 of the magnetic field produced by these 5 coils, the magnetic field is inhomogenous and can

be written to second order as [139]:
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where only the second order terms are significant in the three spatial directions. B0, B′ and

B′′ are the bias, gradient and curvature of the magnetic field respectively and the field modulus

can be written as:

B(x,y,z) =

√

(

B0 +
B′′

2

(

z2 − 1

2
(x2 + y2)

))2

+B′2(x2 + y2)+O(4).

When B′′z2 ≪ B0 and B′x, B′y ≪ B0 are satisfied, the previous expression can be approxi-

mated by a harmonic anisotropic field following:

B(x,y,z) = B0 +
B′′

2
z2 +

(

B′2

2B0
− B′′

4

)

(x2 + y2) .

If the size of the cloud is small enough compared to the spatial variations of the B field (B0/B′

and
√

B0/B′′), the magnetic field is harmonic close to the center of the trap, and the modulus of

the trapping potential W (~r) = −~µ ·~B(~r) becomes:

W (x,y,z) = gJmJµBB0 +
1

2
mω2

z z2 +
1

2
mω2

ρ(x2 + y2) , (6.7)

with the trapping angular frequencies defined as

ωz =

√

gJmJµBB′′

m
and ωρ =

√

gJmJµB

m

(

B′2

B0
− B′′

2

)

. (6.8)

In these expressions, µ =−gJmJµB is the modulus of the magnetic moment of the atom with

gJ = 2 the Landé factor in the 23S1 state, mJ the projection of the total angular momentum of

the atom and µB the Bohr magneton. m is the mass of the atom. This trapping potential has a

cylindrical shape characterized by the two trapping frequencies ωz and ωρ along the longitudinal

and radial directions respectively.

When the temperature of the cloud gets too high (kBT ≫ µB0) the previous approximation

is not valid and although the trap stays harmonic in the z direction it is linear along x and y.

However, in our experiment the temperature of the cloud is ∼ 10 µK, way below the limit kBT ≃
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µB0 of 400 µK. The trapping frequencies are ωρ ∼ 2π ×800Hz and ωz ∼ 2π ×90Hz with a bias

field of B0 = 3 G and a trap depth in the order of 10 mK. Since ωρ > ωz the confinement is less

important along the z axis and the cloud is elongated in this direction (see figure 6.13). Once

the cloud is transferred from the magneto-optical trap into the magnetic trap, a final evaporative

cooling stage is performed [140]. Trapped atoms (spin mJ = +1) of kinetic energy greater than

kBT are transferred by an RF transition into the mJ = 0 and mJ = −1 states and thus removed

from the trap. The average kinetic energy per atom is reduced and elastic collisions allow the

cloud to rethermalize quickly. By ramping down the frequency of the RF field in about 10 s, we

can condense the sample to typical temperatures of a few µK.

6.3 CONCLUSION

This is the exact setup which will be used to obtain a He∗ BEC. It was largely modified from

the previous arrangement. In particular, the optical layout was entirely renewed and improved

in terms of optical power and stability by using a combination of optical fibers and high power

laser amplifiers. The vacuum system and the source of atoms were also optimized and a new

detection method was added with the implementation of a channeltron. At the time of writing

some progress has been made towards obtaining a He∗ BEC back and a MOT was reproduced

recently. Once the BEC is obtained, an optical dipole trap will be implemented into the system.

This is described in the following chapter.





CHAPTER 7

OPTICAL TRAPPING OF 4HE ATOMS

The need for dense samples of cold atoms for applications such as high precision interfer-

ometry and spectroscopy, or studies of cold atomic collisions, has motivated the development of

controllable trapping of neutral atoms. As presented in previous sections (see chapters 2 and 6),

only atoms with gFmF > 0 (low-seeking states) can be confined in a magnetic trap. Other sub-

states are either un-trapped or anti-trapped and, as a consequence, expelled from the magnetic

region under gravitational and/or magnetic interactions. However, in some experiments, it could

be of great interest to also trap these other sub-states in a conservative potential. On that matter,

an optical trap is capable of confining neutral atoms regardless of their internal state, making it

possible to explore properties of states (or mixtures of states) which cannot be controlled in a

magnetic trap. In this case, the magnetic field is no longer a constraint of the experiment but

rather an experimental parameter than can be freely varied without modifying the trapping con-

ditions, which is another advantage. In this chapter, the general principle and properties of an

optical trap are firstly presented and discussed (a complete review can be found in [141]). This

is followed by a description of the laser configuration, based on a red-detuned dipole trap, which

is currently being characterized in the lab and will soon be implemented on the setup described

in chapter 6. Several experiments with He∗ are planned using an optical dipole trap, in particular

a measurement of characteristic rate constants of inelastic decay processes in a gas of spin-

polarized metastable helium (4He∗ ↑), taking advantage of the freedom to change the external

magnetic field. A brief synopsis on theoretical results predicted by Shlyapnikov et al. [128, 129]

is thus finally summarized, together with an experimental sequence which will be used in order

to achieve these measurements.

7.1 OPTICAL DIPOLE POTENTIALS

Neutral atoms interact with a light field in both dissipative and conservative ways. The dissi-

pative component of the interaction arises from the absorption of photons followed by subsequent

spontaneous emission. The resulting dissipative force on the atoms is caused by the momentum

transfer of the absorbed and spontaneously emitted photons. When the light is close to resonance
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with the optical transition of interest, the resulting force is intense and can be used for laser cool-

ing and magneto-optical trapping as discussed in previous chapters. In contrast, the conservative

component of the atom-light interaction arises from the interaction of the light field with the

light induced dipole moment of the atom. This interaction causes a shift in the potential energy,

also called the ac-Stark shift. For large detunings of the light-frequency away from the atomic

resonance, effects of spontaneous emission can be neglected and the energy shift can be used to

create a conservative trapping potential for neutral atoms [142, 143].

The following sections provide two simple models to understand the conservative optical

dipole trapping of neutral atoms. In a first step, the relevant parameters of a dipole trap (the

dipole potential and the photon scattering rate) can be derived from a simple, classical oscillator

model. Alternatively, a dressed state picture, yielding similar results, can take into account the

multi-level structure of the atom.

7.1.1 Oscillator Model

The origin of the dipolar potential can be thought of in a number of ways. A classical model

is described here, where the atom is considered as a harmonic oscillator driven by a light field

[141]. This simple model is useful to understand the basic physics of dipole trapping.

7.1.1.1 Interaction with a light field

When an atom is placed in a laser light field, the electric field E induces an atomic dipole

moment d that oscillates at the driving frequency ωL of the field. In the usual complex notation

one can write E(r, t) = û E(r)exp(−iωLt)+ c.c. and d(r, t) = û d(r)exp(−iωLt)+ c.c. where û

is the unit polarization vector of the electric field. The amplitude d of the dipole moment and the

amplitude E of the light field are related via

d(r, t) = α(ωL)E(r, t) (7.1)

where α(ωL) is the complex polarizability of the atom. The resulting dipolar potential of the

induced dipole moment d in the driving field E is determined by time averaging of d.E over the

rapid oscillating terms, yielding:

Udip(r) = −1

2
〈d.E〉 = − 1

2ε0c
ℜ(α)I(r). (7.2)



122

In this equation, the factor 1
2 reflects the fact that the dipole moment is induced (not permanent)

and the laser field intensity is defined by I = 2ε0c|E|2 with ε0 the vacuum permittivity. The

potential energy of the atom is thus proportional to the laser intensity as well as the real part of

the polarizability (ℜ(α)).

Alternatively, the power absorbed by the oscillator results from the imaginary part of the

polarizability (ℑ(α)) giving

Pabs(r) = 〈ḋ.E〉 =
ωL

ε0c
ℑ(α)I(r). (7.3)

Considering the light field as a stream of individual photons of energy h̄ωL, the absorption process

can be thought of as absorption-spontaneous emission cycles with a scattering rate defined by

Γsc(r) =
Pabs(r)

h̄ωL

=
1

h̄ε0c
ℑ(α)I(r). (7.4)

7.1.1.2 Atomic Polarizability

The expressions obtained above are very general since they are valid for any polarizable

neutral particle in an oscillating light field. They depend only on the position-dependent intensity

I(r), characterizing the light field, and on the polarizability α(ωL), characterizing the atom. I(r)

is fully determined by the laser configuration (e.g. a focussed Gaussian laser beam in section

7.2.1). Classically, one can calculate α(ωL) using Lorentz’s model of a classical oscillator, where

an electron is considered elastically bound to the core of an atom and where the dipole radiation

of the accelerating electron can be thought of as a damping term (γ). The resulting expression

can be written as [141]:

α(ωL) = 6πε0c3 γ/ω2
0

ω2
0 −ω2

L − i(ω3
L/ω2

0 )γ
. (7.5)

In this equation, ω0 is the resonance frequency of the oscillator model and γ is the on-resonance

classical damping rate due to the radiative energy loss which can be expressed [144] as

γ =
e2ω2

0

6πε0mec3
(7.6)

where me is the electron mass and e is the elementary charge. For many atoms with a strong

dipole-allowed transition, this classical formula usually provides a good approximation to the
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spontaneous decay rate (or natural linewidth Γ) of the excited state and γ ∼ Γ.

An alternative, and more appropriate method to calculate the atomic polarizability is to use

a semi-classical approach where the atom is treated as a two-level quantum system interacting

with a classical field. In this model, one can introduce the saturation parameter s defined as

s =
Ω2/2

(ωL −ω0)2 +Γ2/4
(7.7)

where Γ is the natural linewidth of the transition and Ω = d.E/h̄ is the Rabi frequency. If the

detuning (ωL−ω0) is large enough, saturation effects can be neglected (s≪ 1) and the calculation

yields the same result as equation 7.5. However, in general, the damping rate γ can no longer be

calculated using formula 7.6 but is rather determined by the dipole matrix element between the

ground |g〉 and excited states |e〉 of the two-level atom, corresponding to the spontaneous decay

rate of the excited level, following

Γ =
ω3

0

3πε0h̄c3
|〈e|µ̂|g〉|2 (7.8)

where µ̂ = −er̂ represents the electric dipole operator.

7.1.1.3 Dipole Potential and Scattering Rate

In the case of large detunings and negligible saturation, the dipole potential and the scattering

rate can finally be determined from equations 7.2 and 7.5 yielding

Udip(r) = −3πc2

2ω3
0

(

Γ

ω0 −ωL

+
Γ

ω0 +ωL

)

I(r) (7.9)

Γsc(r) =
3πc2

2h̄ω3
0

(

ωL

ω0

)3(
Γ

ω0 −ωL

+
Γ

ω0 +ωL

)2

I(r). (7.10)

In most experiments, the detuning of the laser frequency from the atomic resonance (∆ = ωL −
ω0) is such that |∆| ≪ ω0. Consequently, one can set ωL/ω0 ≈ 1 and the term in 1/(ωL + ω0)

can be neglected in the rotating-wave approximation. In this case, the general expressions for the

dipole potential and the scattering rate simplify to

Udip(r) ≈
3πc2

2ω3
0

(

Γ

∆

)

I(r) =
h̄Γ2

8∆

I(r)
Isat

(7.11)
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Γsc(r) ≈
3πc2

2h̄ω3
0

(

Γ

∆

)2

I(r) =
Γ3

8∆2

I(r)
Isat

(7.12)

where it can be convenient to introduce the saturation intensity Isat = h̄Γω3
0/12πc2.

The basic physics of dipole trapping in far-detuned fields can be largely understood on the

basis of these two equations:

• The dipole potential scales as I(r)/∆ whereas the scattering rate scales as I(r)/∆2. There-

fore, optical traps generally use large detunings and high laser intensities in order to min-

imize inelastic scattering processes and still create a conservative potential of reasonable

trap depth. Experimentally, the proper detuning depends on the available laser power as

well as the maximum scattering rate which can be tolerated.

• The sign of the detuning determines the sign of the optical dipole potential :

– Blue-detuned trap: Above resonance (ωL > ω0 ⇔ ∆ > 0), the sign of the optical

dipole potential is positive and the dipole interaction repels the atoms out of the field

so that the potential minima correspond to the minima of the intensity. Experimen-

tally it is not simple to surround a spatial region with repulsive laser light and the

development of appropriate methods to produce the required repulsive trapping con-

figurations (e. g. light sheets [145], hollow laser beams [146], evanescent waves

[147]) has played a major role. This trap will not be described any further in the

thesis as it will not be used in our setup.

– Red-detuned trap: Alternatively, below resonance (ωL < ω0 ⇔ ∆ < 0), the sign is

negative and the interaction attracts atoms into the light field so that potential minima

are at positions of maximum intensity. Consequently, a single focused laser beam

already constitutes a dipole trap confining the atoms in the waist region where the

intensity is maximum. Details on the red-detuned laser configuration and of the re-

sulting trapping potential which we plan to use in our experiment are given in section

7.2.

7.1.2 Dressed State Picture

An alternative description of the oscillator model is given by the dressed state picture [148]

where a quantized light field (of n photons) interacts with an atom initially in the ground state
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|g〉. This description is interesting because it can take into account the multi-level structure of

the atom.

7.1.2.1 Two-Level Atom

In order to present the dressed-state picture, one can first consider a two-level atom initially

in the ground state (with a zero internal energy), so that the unperturbed energy of the system is

given by εg = nh̄ωL. When the atom absorbs a photon from the light field, this energy becomes

εe = h̄ω0 + (n − 1)h̄ωL = nh̄ωL − h̄∆ with ∆ = ωL − ω0. The atom-light interaction couples

the atom and the field and can be described by the Hamiltonian Hint = −µ̂E with µ̂ = −er̂

representing the electric dipole operator. The effect of the interaction can be determined with

second order perturbation theory and is characterized by an energy shift of the ith state following

∆Ei = ∑
j 6=i

|〈 j|Hint |i〉|2
εi − ε j

(7.13)

where εi and ε j are the unperturbed energies of the ith and jth states respectively. In the case of a

two-level atom, the energy shift is thus simplified to

∆Eg/e = ±|〈g|µ|e〉|2
h̄∆

|E|2 = ±3πc2

2ω3
0

(

Γ

∆

)

I(r) (7.14)

where the plus and minus signs represent the case of the ground and the excited state respectively

and where we have used the relation I = 2ε0c|E|2 and equation 7.8 to substitute the dipole matrix

element. This perturbative result shows that the optically induced shift (also known as the light

shift or ac Stark shift) of the ground state exactly corresponds to the dipole potential of the two-

level atom in the rotating wave approximation (equation 7.11). For large detunings, where the

atom is almost always in the ground state, the effective dipole potential is consequently given by

Udip = ∆Eg =
3πc2

2ω3
0

(

Γ

∆

)

I(r) (7.15)

which is the same expression as 7.11, obtained from the oscillator model.

7.1.2.2 Multi-Level Atom

The classical oscillator model, or the two-level model described above, does not take into ac-

count the complexity of the real multi-level internal structure of the atom. In fact, from equation
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7.13, one can see that for a given ground state |gi〉, transitions to all excited states |e j〉 should be

taken into account when calculating the ac Stark shift, with dipole matrix elements given by

µi j = 〈ei|µ|g j〉 = ci j||µ||. (7.16)

In this expression, ||µ|| is the reduced matrix element and the ci j coefficients take into account

the coupling strength between specific sub-levels i and j. These coefficients depend on the laser

polarization as well as on the electronic and nuclear angular momenta involved. The resulting

dipole potential is thus given by

U
(i)
dip(r) =

3πc2Γ

2ω3
0

I(r) ·∑
j

c2
i j

∆i j

(7.17)

where ∆i j is the detuning to the specific transition.

In the case of alkali atoms such as Rb, the coupling to the nuclear spin produces a hyperfine

structure and the multi-level structure of the atom must be taken into account [141]. However,

one of the advantages of the metastable helium atom is the absence of hyperfine structure and the

atomic transition 2S → 2P is thus very simple (see figure 6.1). Moreover, since the laser detuning

(|∆| ∼ 1014 Hz in our experiment, see 7.2.1) is very large compared to the typical frequency scale

of the fine structure energy levels (∼ 109 Hz), the latter is not resolved. Therefore the He∗ atom

can be considered as a pure two-level atom coupled via a unique transition, yielding equation

7.15 as exact.

7.2 RED-DETUNED DIPOLE TRAP FOR HE∗

The dipole potential 7.11 and scattering rate 7.12 depend not only on the properties of the

atom (via the atomic transition ω0 and the lifetime of the excited state Γ) but also on the con-

figuration of the optical field (via the intensity I(r) and the detuning ∆). This section illustrates

the case of optical trapping of He∗ atoms. The optical field confining the atoms can be created

by focussed Gaussian laser beams in both single- and crossed-beam configurations. This point is

first discussed, followed by a description of the experimental layout used to create these optical

beams.
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7.2.1 Single Gaussian Beam

When the light field is tuned below the atomic frequency (red-detuned), the dipole force

points towards increasing intensity, creating an attractive potential where the atoms can be trapped.

Therefore, the focus of a laser beam constitutes a dipole trap as first proposed by Ashkin [149]. In

particular, a confinement in three dimensions can be realized with a tightly focussed laser beam.

The intensity profile of a Gaussian beam is given by

I(r,x) =
2P

πw2(x)
e−2r2/w2(x) (7.18)

where r is the radial dimension and w(x) = w0

√

1+(x/zR)2 is the 1/e2 radius of the beam

along the direction of propagation (x-axis) of the laser beam, with w0 the waist of the beam (see

figure 7.1). The Rayleigh length

zR =
πw2

0

λ
(7.19)

is a measure of the axial extension of the focal region and P is the total laser power. The peak

intensity is given by I0 = 2P/πw2
0 at the center of the optical beam.

x

Figure 7.1: Laser beam profile of a single Gaussian beam of waist w0 and Rayleigh length zR.

In our experimental setup (section 7.2.3.1), a Gaussian beam will be created with the follow-

ing parameters:

• λL = 1560 nm.
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• P = 5 W.

• w0 = 100 µm.

Following equation 7.11, a single Gaussian beam will form a cylindrically symmetric optical

dipole trap given by

U1D
dip(r,x) =

3πc2

2ω3
0

· Γ

∆
· 2P

πw2(x)
.e−2r2/w2(x) (7.20)

which is represented in figure 7.2. In the center of the trap (r = x = 0), the potential depth U0 is

given by

U0 =
3πc2

2ω3
0

· Γ

|∆| ·
2P

πw2
0

. (7.21)

so that

U0 ∼ 36 µK (7.22)

using our laser parameters. Typically, the thermal energy of condensed He atoms (Econd ∼ 1 µK)

and the overall heating due to an absorption-emission cycle (Trec = 2Erec ∼ 4 µK) are much

smaller than the trap depth (Econd ≪ U0 and 2Erec ≪ U0). Consequently, the optical trap is

strongly confining and atoms predominantly reside near the center of the trap. The trapping

potential can thus be considered harmonic when x ≪ zR and r ≪ w0 and approximated by

U1D
dip(r,x) ≈−U0

[

1−2

(

r

w0

)2

−
(

x

zR

)2
]

. (7.23)

The radial and axial trapping frequencies of the potential are obtained from 7.23 and are

given by

ωr =

√

4U0

mw2
0

and ωx =

√

2U0

mz2
R

(7.24)

respectively. Both frequencies increase with a tighter waist. However, in most experiments,

w0 ≪ zR (since λL ≪ w0) so that the radial confinement is much greater than the axial trapping,

and the cloud is elongated along the axial direction. With our experimental parameters,
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Figure 7.2: Dipolar potential experienced by the atoms in the case of a single dipole trap. The
trap depth is characterized by U0 whereas characteristic lengths are given by w0 and zR along the
transverse y-direction and the x-direction of propagation respectively.

ωr = 2π ×865 Hz and ωx = 2π ×3 Hz (7.25)

and the dipole trap is strongly anisotropic and elongated along the axial direction with an aspect

ratio of ωr/ωx =
√

2zR/w0 ∼ 300.

Finally, the maximum scattering rate occurs at the center of the trap and is given by

Γsc(0) =
3πc2

2h̄ω3
0

·
(

Γ

|∆|

)2

· 2P

πw2
0

(7.26)

which gives, with our parameters:

Γsc(0) = 2π ×0.09 Hz. (7.27)

The scattering rate is maximum at the center of the trap where a spontaneous photon is emitted

every 10 seconds by a He atom in the 23P2 state. This is much larger than any characteristic
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time-scale of the experiment and scattering effects can thus be neglected. Γsc is a very important

parameter, especially in the case of metastable helium atoms since spontaneous emission can

leave the atom in any spin state which would lead to Penning ionization and limit the lifetime

of the cloud. For instance, a cloud of un-polarized ultracold He∗ atoms, confined in such an

optical trap with an atomic density of n ∼ 1013 atoms.cm−3, would have a lifetime limited to

(nαin)
−1 ∼ 1 ms ≪ 2 s, where αin = 10−10cm3.s−1 is the Penning collision rate of un-polarized

atoms [127].

7.2.2 Crossed Dipole Trap

In order to create a quasi-isotropic trap it is possible to intersect the foci of two orthogonal

Gaussian beams (see figure 7.3) of identical waist and orthogonal polarization [141].

x

y

Figure 7.3: Laser beam profile of two crossed Gaussian beams intersecting at their foci.

The resulting dipolar potential is shown in figure 7.4. From 7.23, the dipolar potentials created

from the beams propagating along Ox and Oy are respectively given by

U1(x,y,z) ≈−U0

[

1−2

(

y2 + z2

w2
0

)

−
(

x

zR

)2
]

(7.28)

and
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U2(x,y,z) ≈−U0

[

1−2

(

x2 + z2

w2
0

)

−
(

y

zR

)2
]

(7.29)

where we assume the same power for the two laser beams. Since the two polarizations are

considered orthogonal, the dipolar potential in the center (~r =~0) is simply the sum of U1 and U2

which can be written (for w0 ≪ zR) as:

U2D
dip(x,y,z) ≈−2U0

[

1−
(

x2 + y2 +2z2

w2
0

)]

(7.30)
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Figure 7.4: Quasi-isotropic dipolar potential experienced by the atoms in a crossed-beam con-
figuration. The effective trap depth is only U0 because atoms with a higher energy can leave the
trapping region along one of the arms (x- or y-directions) of the laser beams.

The trap depth and scattering rate of such a trap are doubled in comparison with a single

beam. However, the effective depth is only U0 and not 2U0 because atoms with a higher energy

than U0 can leave the region of the intersection along one of the arms of the trap (see figure 7.4).

Finally, although the radial trapping frequency is unchanged (ωr = ωx = ωy =
√

4U0/mω2
0 ), the

axial frequency is strongly increased to ωz =
√

2ωr and the trap is quasi-isotropic.
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7.2.3 Experimental Layout

7.2.3.1 Light Source

A brief schematic of the experimental layout for the laser system is shown in figure 7.5. The

system is designed to produce three high power optical beams with the flexibility to create single

or crossed dipole traps, and ultimately a 3D confinement which will be discussed in chapter 8.

The setup is currently being constructed and characterized in our lab.

Laser฀Source
Coupler
฀Splitter

Laser฀Amplifier

Laser฀Amplifier

Laser฀Amplifier

Fiber฀to฀Fiber฀Adapter

10฀W

10฀W

10฀W

Figure 7.5: Schematic of the experimental layout of the laser system used to produce 1-, 2- or
3-D lattice traps. The laser source is split into three outputs. Each laser amplifier provides a total
power of 10 W at 1560 nm.

The laser source is an Erbium Micro Fiber Module from NP Photonics. The laser uses a

cooled single-mode diode laser, pumping an erbium-doped micro fiber, to provide up to 60 mW

of linearly-polarized light at 1560 nm. The wavelength can be tuned 20 GHz around the central

frequency by changing the temperature of two internal gratings. The output fiber is coupled to

a polarization maintaining single-mode broadband coupler from an Australian company (AFW)

which equally splits the power into three outputs. Each of the output fibers injects an Erbium-

doped laser amplifier from Keopsys providing 10 W of output power in a collimated Gaussian

beam of w ∼ 0.7 mm waist (see section 7.2.3.2). A single amplifier output can be used for

applications where a single dipole trap is required. Alternatively, one or two additional amplifiers

will be used when working on a crossed dipole trap or 3D optical lattices respectively (see chapter

8). The laser amplifier output single-passes through an acousto-optic modulator (see section

7.2.3.3) which is used as a fast switch for the light and can also tune the light frequency. The first

diffracted order passes through a telescope (see figure 7.6) in order to be expanded to a diameter

of ∼ 4 mm. Finally, the beam is focussed by a long focal length converging lens, down to a waist
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of w0 = 100 µm onto the BEC. Note that the laser power of 5 W considered for the calculations

of the previous section accounts for optical losses, mainly when passing through the AOM.

Figure 7.6: Creation of a focussed Gaussian beam. The output beam of the laser amplifier passes
through an AOM which can switch the light on and off and change its central frequency. Finally,
the beam is expanded before being focussed onto the BEC down to a waist of ∼ 100 µm.

7.2.3.2 Output Beam Waist

The output beam from the amplifier can be considered perfectly collimated over short dis-

tances (∼ 1 m) and it is possible to measure the beam waist experimentally. To do so, a razor

blade is placed in a vertical plane at some distance from the fiber output coupler. The total power

received on a detector behind the razor blade is measured when varying the position (d) of the

blade along a transverse axis, from complete extinction to total transmission (dots in figure 7.7).

In the vertical plane, the laser intensity of a Gaussian beam can be written as

I(x,y) =
2P

πw2
exp

(

−2
x2 + y2

w2

)

(7.31)

where P is the total power of the beam and w its waist. Consequently, the power P(d) transmitted

after the razor blade is given by

P(d) =
∫ d

−∞
dx

∫ +∞

−∞
dy I(x,y) =

P√
π

∫ d
√

2/w

−∞
dx e−x2

. (7.32)

This expression can be adjusted to the experimental measurements (solid line in figure 7.7). A

beam waist of w = 0.72±0.02 mm is determined from the fit and is in good agreement with the

value specified by Keopsys (w = 0.75 mm).
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Figure 7.7: Measured laser power (dots) as a function of the position of the razor blade. 10%
error bars are considered to account for experimental uncertainties. The solid line is a fit to an
Error function. A beam waist of w = 0.72±0.02 mm is determined from the fit.

7.2.3.3 AOM efficiency

The light single-passes through an AOM (AA Opto-Electronic, MTS-1550) which allows

for a fast switching on and off (∼ 1 µs) and a given frequency shift. Distinct AOMs are used

in the setup for each of the three high power output beams independently. Indeed, in the case

where optical trapping is performed in two- or three-dimensions (crossed dipole trap or 3D lattice

respectively), it is important for each pair of beams to have slightly different frequencies in order

to avoid any crossed interference between the beams. Consequently, each AOM drives a different

central frequency of 40 MHz, 80 MHz and 110 MHz respectively. The acousto-optic modulators

are made of a TeO2 material and have an active aperture of 3× 3 mm2 which is specified for a

laser beam diameter of 1−2.5 mm. The TeO2 material can withstand a maximum power intensity

of up to 5 W.mm−2 and a maximum RF power of 2.2 W with no obvious heating. In order to

measure the first order diffraction efficiency, the power diffracted in the first order is measured

and compared to the total power sent onto the AOM. Results are shown in figure 7.8 where the

input power was varied from a minimum (∼ 600 mW) to a maximum (∼ 10 W) value by slowly

increasing the pump current of the laser amplifier. The first order efficiency is measured to be

∼ 70% regardless of the input power, which is significantly less than the performance specified
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by AA (∼ 85%) but remains sufficient.
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Figure 7.8: First order efficiency of the acousto-optic modulators. The input power is increased
from minimum to maximum value and compared to the output power diffracted in the first order.
10% error bars are considered to account for experimental uncertainties.

7.2.3.4 Lens focussing

When a collimated Gaussian beam of waist w and wavelength λ is focussed by a lens of focal

length f , its waist w0 can be approximated by:

w0 =
f λ

πw
. (7.33)

In our setup, taking into account space limitations due to nearby optics and magnetic coils, we

estimate that the focussing lens can be positioned at a distance of approximately 40 cm from the

center of the cell. Consequently, it would be possible to focus a Gaussian beam to a waist of

w0 ∼ 100 µm by choosing a converging lens with f = 400 mm, provided the beam is previously

expanded to a diameter of ∼ 4 mm. The Rayleigh length zR = πw2
0/λ ∼ 20 mm is very large

compared to the size of the condensate so therefore the intensity can be considered constant



136

across the sample.

7.2.3.5 Loading an optical dipole trap

There are several ways of loading a dipole trap from a pre-cooled MOT. If the maximum

attainable optical trap depth is deeper than the temperatures routinely achieved with polarization

gradient molasses [71], then a direct loading of the optical trap can be achieved [150]. This

is done by leaving the dipole beams switched on at full power while loading atoms into the

MOT. After a fixed loading time, the MOT beams and magnetic fields are turned off, leaving

the atoms confined solely by the dipole trapping potential. An additional evaporation stage can

then be performed to condense the sample. This is achieved by slowly lowering the depth of the

dipolar potential [151, 152]. Alternatively, if the maximum attainable optical trap depth is low,

the temperature of the atoms has to be further decreased, using evaporative cooling in a magnetic

trap, before they can be efficiently transferred into an optical trap. Stamper-Kurn et al. [153]

transferred Bose-Einstein Condensates of sodium atoms into an optical trap by holding them in

a magnetic trap while adiabatically ramping up the laser power and then suddenly switching off

the magnetic trap.

In our experiment typical temperatures obtained after Polarization Gradient Cooling (∼ 200 µK,

[131]) are higher than the dipole trap depth (U0 ∼ 30 µK). Consequently, we will consider a pre-

liminary transfer of the atoms into a magnetic trap followed by an evaporative cooling stage in

order to lower the temperature of the sample. The transfer into the optical dipole trap will be

achieved similarly to [153] by adiabatically ramping up the laser power before switching off the

magnetic trap.

This is the exact setup that will be implemented in our experiment. Aside from the experi-

mental challenge of trapping metastable atoms in an optical dipole trap in any chosen Zeeman

sub-state, it will be used to measure inelastic collision rates in a BEC of spin-polarized helium

atoms as a function of the magnetic field following the theoretical predictions of Shlyapnikov et

al. [128, 129]. This study is described in the next section.
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7.3 INELASTIC COLLISION RATES IN A GAS OF SPIN-POLARIZED METASTABLE

HELIUM ATOMS

In this section, theoretical predictions by Shlyapnikov et al. [128, 129] are briefly recalled,

formulated in an explicit way and finally discussed in relation to future experiments planned

in our group. In particular, we focus on the calculations of inelastic collision rates in an ultra-

cold gas of spin-polarized metastable helium atoms as a function of an external magnetic field.

Trapping helium atoms in an optical dipole trap will allow us to perform such a measurement

since the magnetic field is no longer a constraint of the trapping but rather a free parameter that

can be varied, independent of the atomic confinement.

7.3.1 Spin-dipole Hamiltonian

The theoretical analysis [128] of the decay kinetics of spin-polarized metastable helium

atoms (4He∗ ↑) at ultra-low temperatures shows that the two-body ionization process

He∗ ↑ +He∗ ↑7−→







He+ +He(11S0)+ e−

He+
2 + e−

. (7.34)

is induced by spin relaxation due to the spin-dipole interaction and is four orders of magnitude

slower than Penning collisions in the un-polarized gas. For a collision between two interacting

4He∗ atoms (noted 1 and 2) the hamiltonian of the spin-dipole interaction can be written ([154],

appendix BXI) as

Ĥsd = − µ0

4π

(gSµB)2

r5

[

3(S1 · r)(S2 · r)− (S1 ·S2)r
2
]

(7.35)

where gS = 2 is the Landé factor for the 23S1 state, S1 and S2 are the spin operators of the two

colliding atoms, and r their internuclear position vector. The initial state i which is considered

here consists of two metastable atoms with spins aligned and is thus characterized by

|Si = 2,MSi
= 2〉 (7.36)

One can show [129, 155] that in a scattering process where the spin-dipole interaction is consid-

ered, the following states:
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|S = 2,MS = 1〉 (7.37)

|S = 2,MS = 0〉 (7.38)

|S = 0,MS = 0〉 (7.39)

are coupled to the initial state.

7.3.2 Spin relaxation

In the presence of spin-dipole coupling, the final states |S f ,MS f
〉 are coupled to the initial

state |Si = 2,MSi
= 2〉 and the scattered wave of atoms for each spin state 7.37 can be written as

ΨS f ,MS f
(r) =

∫

GS f ,MS f
(r,r′)HS f ,MS f

Ψ
(0)
2,2(r

′)dr′. (7.40)

Here, Ψ
(0)
2,2(r

′) is the wave-function of the relative motion of atoms in the initial state i with energy

Ei = h̄2k2
i /2µ . ki is the wave-vector of the collision and µ is the reduced mass of the system.

HS f ,MS f
is the transition matrix element over the spin variables for the spin-dipole operator 7.35.

GS f ,MS f
(r,r′) is the Green function of the Schrödinger equation for the relative motion in the

final-state potential US(R) with energy E f = Ei +EMS f
where

EMS f
(B) = gsµBB(2−MS f

) (7.41)

is the change of the Zeeman energy in the transition. The spin relaxation rates are thus determined

from the radial flux of particles in the scattered wave ΨS f ,MS f
(R), which is given by

JS f ,MS f
= −i

h̄

2µ

(

Ψ∗
S f ,MS f

dΨS f ,MS f

dR
−ΨS f ,MS f

dΨ∗
S f ,MS f

dR

)

. (7.42)

7.3.3 Spin relaxation towards S f = 2

In the case of transitions where S f = Si = 2, the final state of the scattering process remains

in the S = 2 electronic state from which the ordinary Penning ionization is impossible. Moreover,

one can show [129, 155] that the angular dependance of the spin-dipole operator 7.35 implies the

selection rules ℓ′ = ℓ± 2, ℓ′ = ℓ if ℓ 6= 0, and |Mℓ′ −Mℓ| ≤ 2. In the case of ultra-cold atoms,
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the initial wave-function of the relative motion of atoms Ψ2,2 may be represented by the s-wave

contribution (ℓi = 0) and the angular momentum of the scattered wave will satisfy ℓ f = 2 in

accordance with the above selection rule. Consequently, the relative motion of the final state is

described by the interaction potential US f =2(R) [156, 157] with ℓ = 2, which is characterized by

a radius of interaction of Re ∼ 70a0 as illustrated in figure 7.9.

( =0)

Re฀~฀70฀a0

U2=
5Σg

+ ( =2)

฀฀EMSf
=(2-MSf

)g
S
µ

B
B

฀฀Ei

฀฀SPIN฀RELAXATION

[He(23S1)+He(23S1)]

Figure 7.9: Interaction potentials of the initial |Si = 2,MSi
= 2〉 state (black curve) and a final

|S f = 2,MS f
= 0,1〉 state (red curve). The two triplet potentials are coupled by the spin-dipole

hamiltonian and separated by the Zeeman energy EMS f
= gsµBB(2−MS f

). Ei is the initial energy
of two colliding spin-polarized metastable helium atoms and the distance Re is the characteristic
radius of interaction.

Since the probability of Penning ionization in the S f = 2 state is negligibly small, the spin-

relaxation rate in each relaxation channel (MS f
= 0 or 1) is related to the radial flux of particles

in the scattered wave Ψ2,MS f
at R → ∞ following

αrel
2,MS f

=
∫

J2,MS f
(R,ki)R

2|R→∞

dΩidΩR

4π
(7.43)

where dΩi and dΩR are the elements of the solid angle associated with the vectors ki and R and
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where the notation |R→∞ considers the problem at infinity. The spin-relaxation rates αrel
2,1 and αrel

2,0

can be obtained from this calculation using the method described in [128, 129].

7.3.4 Spin relaxation towards S f = 0

In the case of transitions where S f = 0, not only can the final-state spin-relax as described

for S f = 2, but an auto-ionization process can also happen via the ordinary Penning mechanism

since the atoms are no longer spin-polarized. For ultra-cold atoms the initial wave-function of

the relative motion of atoms Ψ2,2 may be represented by the s-wave contribution (ℓi = 0) and

the angular momentum of the scattered wave will satisfy ℓ f = 2 in accordance with the selection

rule presented in the above subsection. Consequently, the relative motion of the final state is

described by the interaction potential US f =0(R) [158] with ℓ = 2. However, according to [158]

the Penning ionization occurs with a probability close to unity at inter-particle distances R . 7a0.

Consequently, in the model of Shlyapnikov et al. a perfectly absorbing boundary is placed at a

distance R0 ∼ 7a0 and the potential is considered purely elastic at larger distances R as illustrated

in figure 7.10. Two distinct regimes can thus occur:

• At distances larger than R0 (R > R0) a spin-relaxation process similar to the case of S f = 2

occurs and the spin-relaxation rate is simply related to the radial flux of particles in the

scattered wave Ψ0,0 at R → ∞ following:

αrel
0,0 =

∫

J0,0(R,ki)R
2|R→∞

dΩidΩR

4π
. (7.44)

• However, when R → R0, the collision involves ‘relaxation-induced’ ionization because this

state will auto-ionize through the ordinary Penning mechanism. The rate of relaxation-

induced ionization is then related to the radial flux of atoms J0,0 where the scattered wave

Ψ0,0(R → R0) is obtained using absorbing boundary at R = R0:

αri
0,0 =

∫

J0,0(R,ki)R
2|R→R0

dΩidΩR

4π
. (7.45)
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฀฀PENNING
IONIZATION

U0=
1Σg

+

฀฀SPIN฀RELAXATION

[He(11S0),฀He+]฀+฀e- [He(23S1)+He(23S1)]

฀฀EM฀Sf
=2฀g

S฀
µ

B฀
B

฀฀Ei

( =2)

( =0)
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R0฀~฀7฀a0

Figure 7.10: Interaction potentials of the initial |Si = 2,MSi
= 2〉 state (black curve) and a final

|S f = 0,MS f
= 0〉 state (red curve). The two triplet and singlet potentials are coupled by the spin-

dipole hamiltonian and separated by the Zeeman energy EMS f
= 2gsµBB. Ei is the initial energy

of two colliding spin-polarized metastable helium atoms and the distance R0 is the approximate
position of the absorbing boundary at which Penning ionization occurs with a probability close
to unity.

7.3.5 Inelastic collision rates and magnetic field dependence

The total spin-relaxation rate can be deduced by summing each of the independent spin-

relaxation rates defined as:

αrel = αrel
2,1 +αrel

2,0 +αrel
0,0 (7.46)

whereas the relaxation-induced collision rate is simply given by:

αri = αri
0,0. (7.47)
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Finally, the total rate of inelastic processes in 4He∗ ↑ entails:

α in = αri +αrel. (7.48)

Both the spin-relaxation and relaxation induced ionization rates depend on the magnetic field

B via the expression of the propagator GS f ,MS f
(r,r′) of the Schrödinger equation for the relative

motion in the final-state potential with energy E f (B). The results obtained in [128] are shown

in figure 7.11 where both the relaxation-induced ionization rate (αri) and the spin-relaxation rate

(αrel) are represented as a function of the magnetic field.
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Figure 7.11: Theoretical results obtained in [128]. The rate constants at T = 0 K for spin re-
laxation (αrel) and relaxation-induced Penning ionization (αri) are given as a function of the
external magnetic field. Solid curves correspond to the final potential U2(R) calculated in [156]
and dashed curves to the same potential multiplied by 1.01. The vertical dashed lines represent
the range of magnetic field values which we plan to sweep experimentally.

Under typical experimental conditions (B . 100 G) the leading mechanism of the process

7.34 is the relaxation-induced ionization which auto-ionizes through the ordinary Penning mech-

anism. In low magnetic fields (B . 100 G) relaxation-induced ionization is field independent

with a rate constant of αri ∼ 10−14 cm3.s−1 Conversely, the relaxation rate constant αrel in-

creases with increasing magnetic fields B, with only a dip for B ∼ 10 G. In higher fields, αri

decreases and relaxation-induced ionization becomes slower than the process of spin-relaxation
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described by αrel . The relaxation rate also decreases with increasing B but remains larger than

the low-field value of the rate constant of relaxation-induced ionization. The results highly de-

pend on the expressions of both interaction potentials U2 and U0. In figure 7.11, calculations

(solid lines) were performed using the U2 potential derived from [156] and the U0 potential of

[158]. However, one can see (dashed lines) that a small change in one of the potentials leads to

substantial differences in the amplitude of both rate constants.

7.3.6 Future experiment

Assuming an ultracold atomic sample of spin-polarized metastable helium atoms is trapped

in an optical dipole trap of effective depth U0 ∼ 30 µK, it would be possible to perform a mea-

surement of the relaxation rates presented above as a function of an external magnetic field.

In order to distinguish between the two loss mechanisms, we will use the channeltron located

in the quartz cell as an additional detection method, in combination with the usual absorption

imaging technique. In figure 7.11, the area between the two vertical dashed lines represents the

range of magnetic field values which we intend to sweep experimentally using the Helmholtz

coils of the present experimental setup (section 6.2.8). The lowest value (B ∼ 1 G) assures a

spin-polarized sample of He∗ atoms. The highest value (B ∼ 300 G) corresponds to the maxi-

mum bias field which can be produced in the current setup. The relaxation-induced ionization

rate (αri) is simply a result of Penning collisions. Consequently, the ions (or electrons) resulting

from the ionization process can be monitored in real-time using the channeltron.

Alternatively, the total rate of inelastic process (α in) can also be obtained experimentally,

by measuring the total atom losses via an optical absorption imaging technique. During a spin-

dipole transition, the change of Zeeman energy is given by EMS f
= 2µBB(2−MS f

), which is

minimum when MS f
= 1 with E1/B ∼ 130 µK.G−1. Consequently, even for magnetic fields on

the order of a few Gauss, the final states of the spin-dipole interaction will acquire sufficient

kinetic energy to escape from the optical trap. Finally, the spin-relaxation rate will be deduced

from αrel = α in −αri.

7.4 CONCLUSION

In this chapter, the general principle and properties of an optical dipole trap are discussed and

applied to the case of our experimental laser configuration. There are a few advantages of optical
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trapping over magnetic confinement. First, neutral atoms can be confined regardless of their

internal state. Second, the external magnetic field is no longer a trapping constraint but a free

parameter which can be freely varied. Various experiments can be considered, taking advantage

of the possibility to detect individual metastable helium atoms in real-time by monitoring the

products (ions or electrons) of Penning ionization processes. In particular, the inelastic collision

rates predicted by Shlyapnikov et al. are presented here and will be verified experimentally.

Alternatively, it would be possible to perform photo-association measurements in a dipole trap or

to drive magnetic or optical Feshbach resonances between the different Zeeman sub-states which

can all be confined in the optical potential.





CHAPTER 8

NOVEL ATOM TRAP FOR HE ATOMS IN OPTICAL LATTICES

The first part of this chapter presents a general overview on 1-, 2- and 3-dimensional optical

lattices, which can confine atoms in wavelength-size regions by means of dipolar forces described

in the previous chapter. Such a structure is analogous in many ways to electrons in crystal lattices

and is well described by the Bose-Hubbard model. By changing the depth of the optical lattice a

phenomenon such as a Superfluid-Mott insulator quantum phase transition is predicted. This was

experimentally achieved for the first time by Greiner et al. [41] using alkali Rb atoms. We plan

to reproduce a similar experiment using metastable helium atoms, taking advantage of Penning

ionization to perform a real-time detection and study the kinetics of the transition.

Experiments with Bose-Einstein condensates using a three-dimensional (3D) optical lattice

requires improved optical access to the BEC. In addition to the 3 optical axes occupied by the

MOT beams, laser light must also be precisely focused onto the condensate from three orthogonal

directions in order to create a three-dimensional periodic trapping potential. Most experiments

working with alkali atoms can provide an improved optical access by transporting the atoms

from the initial MOT stage to the final magnetic trap where condensation occurs and which

is physically separated in space. By contrast, in the case of metastable helium atoms, such a

transport would result in large atom losses since the sample is much more fragile due to Penning

ionization and the strong collisional ionization rate. Consequently, the formation of both the

MOT and the BEC must occur at the same location. However, the current apparatus presented

in chapter 6 does not provide adequate optical access for all beams. In the second part of this

chapter, the design of a new type of magnetic trap is described, to allow for atomic Bose-Einstein

condensation to be compatible with in-situ loading of the condensed gas into a 3D optical lattice.

For that purpose, the coil geometry is designed to simultaneously maximize in-situ the optical

access for the six laser beams of the MOT and independently for the additional six beams of the

optical lattice. Technical details on the arrangement of the magnetic coils are given, as well as a

description of the electric circuitry.
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8.1 PERIODIC LATTICE POTENTIALS

8.1.1 Overview

In 1968, V.S. Letokhov [159] suggested the possibility to create optical lattices by interfering

optical laser beams. By means of the dipole force presented in the previous chapter, atoms can

be confined in the wavelength-size regions of the resulting interference patterns. The simplest

possible lattice is one-dimensional. It is obtained by retro-reflecting a Gaussian laser beam (figure

8.1a) which produces an optical standing-wave potential (figure 8.1b) given by:

U1D
latt(x,y,z) = −Ulatt · cos2(kLx) · e

−2(y2+z2)

w2
0 (8.1)

with the standing wave of wave-vector kL orientated along the x-axis.

Figure 8.1: (a) Retro-reflected Gaussian laser beam propagating along the x-direction. (b) One-
dimensional standing-wave laser field created in the Rayleigh range of the retro-reflected Gaus-
sian laser beam of (a).
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Due to constructive interference, the potential depth Ulatt is four times as large as the corre-

sponding trap depth U0 for a single focused beam without retro-reflection (see section 7.2.1).

Radial confinement is obtained, similarly to the case of a single focused beam, with ωr =
√

4Ulatt/mw2
0 ∼ 2π × 1.5 kHz. However, the axial trapping potential is spatially modulated

with a period of λ/2 and atoms are strongly confined in the anti-nodes of the standing wave.

The tight confinement along the axial direction leads to very large oscillation frequencies ωx =

kL

√

2Ulatt/m ∼ 2π × 500 kHz, resulting in a regular one-dimensional lattice of pancake-like

atomic ensembles.

Periodic potentials in higher dimensions can be easily created by superimposing standing

waves from different directions. A 2D lattice (see figure 8.2c) can be formed by superimposing

the foci of two retro-reflected Gaussian beams orthogonal to each other (see figure 8.2a). If the

polarizations of the two standing waves are chosen to be linear and perfectly orthogonal to each

other, and if the laser frequencies are different for both standing waves, the resulting potential at

the center of the trap has the form

U2D
latt(x,y,z) = −Ulatt

(

cos2(kLx)+ cos2(kLy)
)

(8.2)

forming an array of tightly confining potential tubes. Similarly, a third standing wave, orthogonal

to the other two, can be added (figure 8.2b) to create a 3D arrangement of cubic geometry where

the resulting optical potential depth is proportional to the sum of the intensities of the three

standing-waves [41] following:

U3D
latt(x,y,z) = −Ulatt

(

cos2(kLx)+ cos2(kLy)+ cos2(kLz)
)

. (8.3)

The first 1D optical lattice was accomplished in 1987 with an atomic beam traversing an in-

tense standing wave [160]. Since then, the study of atoms confined in wavelength-size potential

wells has become an important topic in optical control of atomic motion because it opens config-

urations previously accessible only in condensed matter physics. For that purpose, a 3D lattice

configuration forms an intriguing physical system which is closely related to systems of electrons

in crystal lattices. However, in contrast to usual condensed matter objects, the flexibility of such

an optical lattice is remarkable and a large number of real-time parameters can be controlled:

• The potential depth (Ulatt) between adjacent sites can be varied by changing the intensity

of the light field.
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• To some extent, the lattice spacing can be varied by modifying the geometrical configura-

tion of the laser beams creating the lattice.

• Defects and modulations can also be added via the laser frequency.

• It is possible to define 3-, 2-, or 1-dimensional structures by choice of beam geometry.

• Finally, external fields (either magnetic or optical) can be independently added to the trap-

ping lattice in order to drive Feshbach resonances [161, 162] and modify the interaction

strength between the particles.
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Figure 8.2: a) Shows two orthogonal pairs of retro-reflected Gaussian beams which create the 2
dimensional standing wave represented in c). b) Shows a third orthogonal pair of retro-reflected
laser beams. In this case, the resulting 3D confinement has a cubic geometry and is analogous to
electrons in a crystal lattice.

Such artificial solids are very appealing to explore a large variety of physical phenomena. The

physics of BEC in optical lattices provide a rich playground for both theqory and experiments [35,
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36] and has opened new avenues to explore in solid state physics, e.g. studies of fermion-boson

mixtures [39, 40], production of cold molecules [163], vortices in lattices [164] and quantum

computation [165]. A real breakthrough occurred in 2002 when Greiner et al. first reported

evidence of the Superfluid-Mott insulator quantum phase transition with a Rb BEC in an optical

lattice [41, 42], as explained in the next section.

8.1.2 Quantum Phase Transition from a Superfluid to a Mott Insulator

8.1.2.1 Bose-Hubbard Model

Theoretically, the behavior of bosonic atoms with repulsive interactions confined in a lattice

potential is approximately described by a Bose-Hubbard model [166, 167], which is largely used

in solid state physics. The Hamiltonian of the system of interacting bosons in an external trapping

potential is given by

Ĥ =
∫

d3x Ψ̂†(x)

(

− h̄2

2m
∇2 +Ulatt(x)+Vext(x)

)

Ψ̂(x)

+
1

2
· 4πah̄2

m

∫

d3x Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

(8.4)

where Ψ̂(x) is the bosonic field operator, Ulatt(x) is the periodic lattice potential and Vext(x) is

an additional external trapping potential. a and m are respectively the scattering length and the

mass of an atom. For a periodic potential and local atom-atom interactions [168], it is favorable

to work in the Wannier basis where the field operator can be expanded as

Ψ̂(x) = ∑
i

âiw(x−xi) (8.5)

where âi denotes the annihilation operator of a particle in the mode of the Wannier function w(x−
xi), localized to the ith lattice site. Using this expansion and considering a possible tunneling

between adjoining lattice sites, the Bose-Hubbard Hamiltonian 8.4 becomes

Ĥ = −J ∑
〈i, j〉

â
†
i â j +∑

i

εin̂i +
1

2
Un̂i(n̂i −1) (8.6)

where the operators n̂i = â
†
i âi count the number of bosonic atoms at the lattice site i and the
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annihilation and creation operators âi and â
†
i obey the canonical commutation relations [âi, â

†
j ] =

δi j. The Hamiltonian consists of three terms:

1. The first term is the hopping term and describes the tunneling of bosons with the summa-

tion being carried out over neighboring potential wells. The strength of the coupling is

characterized by the tunnel matrix element J between adjacent sites i, j :

J =
∫

d3x w∗(x−xi)

(

− h̄2

2m
∇2 +Vlatt(x)+Vext(x)

)

w(x−x j). (8.7)

2. The second term describes an external confinement which gives rise to an energy offset

εi = Vext(xi) on lattice site i. For a homogenous system, εi = 0.

3. The last term describes the interaction of n atoms on the same lattice site i, each atom

interacting with n− 1 other atoms. U quantifies the repulsion between two atoms on a

single lattice site and is given by

U =
4πah̄2

m

∫

|w(x)|4d3x. (8.8)

Due to the short range of the interactions compared to the lattice site spacing, the interac-

tion energy is well described by this term, which characterizes a purely on-site interaction.

This interaction term tends to localize atoms to lattice sites, thus acting contrary to the

hopping term J.

When the depth Ulatt of the optical lattice is increased, the tunneling barrier between adjoin-

ing lattice sites is raised, and the tunneling matrix element J ∝ (Ulatt/Erec)
3/4exp(−2

√

Ulatt/Erec)

[167] strongly decreases (Erec is the photon recoil energy). In contrast, the on-site interaction

term U ∝ (Ulatt/Erec)
3/4 is slightly increased in a deeper lattice due to a tighter confinement of

the wave-function in the lattice site. Therefore, the ratio U/J can be continuously adjusted over

a wide range simply by changing the depth of the lattice potential.

8.1.2.2 Superfluid-Mott Insulator quantum phase transition

The two counteracting terms (U and J) drive distinct ground states in the Bose-Hubbard

Hamiltonian (equation 8.6), depending on their relative interaction strengths [168]:
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1. If the tunneling-coupling is much larger than the on-site interaction (U/J ≪ 1), the first

term in the Bose-Hubbard Hamiltonian, i.e. the tunneling process, is dominant. In the

ground state, each atom is then delocalized over the entire lattice and the system can be

described by a macroscopic wave-function [168]. Therefore, a constant macroscopic phase

is well defined across the lattice and the system is called a ’superfluid’ (SF). In this case,

the number of atoms per lattice site is uncertain and, in a given measurement, a random

atom number would be found in each potential well.

2. In contrast, if on-site interactions between atoms are dominant over tunneling (U/J ≫ 1),

the energy of the system is minimized when each atom is localized to a lattice site. In

this case, the number of atoms per site is exactly determined whereas the phase coherence

vanishes since a matter-wave description of the system is no longer valid. The system is in

a ’Mott-insulator’ (MI) state.

A striking experimental demonstration showed the occurrence of a clear phase transition

between the SF phase and a MI phase when the potential depth was increased above the critical

value where U ∼ J [41, 42]. The phenomenon was monitored by recording absorption images

after releasing the atoms from a 3D lattice. In the SF regime, where all atoms are delocalized

over the entire lattice with equal relative phases between different lattice sites, a high-contrast

three-dimensional interference pattern was obtained, as expected for a periodic array of phase

coherent matter-wave sources. In contrast, as the lattice potential depth was increased above a

critical value, an incoherent background of atoms started to grow until no interference pattern

was visible, characterizing a loss in phase coherence. However, the phase coherence could be

restored very rapidly when the optical potential was lowered again to a value where the ground

state of the system is completely SF. The revival of coherence characterizes a transition via a MI

state.

8.1.3 New insight with metastable helium atoms

In the case of Rb atoms, the density distribution of the atoms in the MI state is organized in

a shell structure where lattice sites located at the center of the lattice contain the highest number

of atoms [169]. However, in the case of metastable helium atoms, Penning ionization will tend

to empty sites containing more than one atom and a completely different organization of the MI

state may be observed. For instance, if the constraint on the polarizing magnetic field is released,
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He∗ atoms in the same lattice site will favorably undergo the Penning ionization process. The

resulting repartition over the lattice would thus consist in a ‘flat’ MI state with either 1 or 0

atoms per site depending on the initial number of atoms in each lattice site. It is interesting to

estimate the characteristic time scales involved when two atoms are located in the same lattice

site. For an atomic sample of density n and collision rate α , typical decay times of the collision

process are obtained as τ ∼ (nα)−1. In the case where a sample of ultra-cold atoms (T ∼ 1 µK)

is confined in the 3D lattice of typical trapping frequencies ω ∼ 2π × 500 kHz, one can notice

that h̄ω/kBT ≫ 1 and the atoms remain in the vibrational ground state of the trap. In this regime

the atomic density in the trap is simply given by n ∼ 2(mω/h̄)3/2. Consequently, in the case

where the atoms are spin-polarized, the characteristic time for Penning ionization (αri ∼ 10−14

cm3.s−1) results in τpol ∼ 8 ms. Alternatively, if the constraint on the polarizing magnetic field

is released, the Penning ionization rate becomes αri ∼ 10−10 cm3.s−1 and a ‘flat’ MI state is

reached extremely fast with τunpol ∼ 0.8 µs.

The true nature of the SF-MI phase transition observed in [41] still remains to be more deeply

investigated and it is a real challenge to understand how the initial quantum coherence of the con-

densate vanishes when one gets deep into the Mott phase. For that reason, it would be important

to study the dynamics of the SF-MI transition which has already been theoretically investigated

[170]. In the particular case of helium, Penning collisions produce helium ions (He+ or He2+)

and an electron (e−), providing a sensitive method to detect the atomic collisions using a channel

electron multiplier (channeltron). This represents a substantial advantage compared with alkali

atoms, commonly detected by destructive optical observation methods (absorption or fluores-

cence). Consequently, in the ‘flat’ MI state described above, Penning ionization resulting from

a tunneling process between two populated adjacent lattice sites can be monitored in real-time

using the channeltron in the quartz cell, making it possible to study the dynamics of the quantum

transition. The tunneling rate can be changed by varying the characteristic depth of the lattice

site. For instance, the appearance of the MI phase is expected to reduce the tunneling between

adjacent lattice sites and the Penning ionization rate measured by the channeltron should conse-

quently decrease as the lattice depth increases. Typical time scale of the tunneling process can

be estimated by τtun ∼ (J/h)−1. This time is strongly dependent on the lattice depth Ulatt [167].

For instance, Ulatt ∼ 10Erec leads to τtun ∼ 5 ms, whereas for Ulatt ∼ 20Erec τtun ∼ 100 ms.
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8.2 NOVEL ATOM TRAP

In this section a new magnetic trap, allowing for loading of a He condensate in-situ into a

3D optical lattice, is presented. It has been designed and partly built during the time of this PhD

and is planned to be implemented in the near future. This original magnetic trap fulfills impor-

tant experimental challenges, providing an improved optical access with adequate confinement

properties.

8.2.1 Experimental challenge

The preparation of a BEC in an optical lattice shares all essential features with usual BEC

experiments, with the transfer into the optical lattice as an additional step. It has already been

achieved by several groups.

A first method was demonstrated by Burger et al. [171] where an atomic sample was cooled

close to condensation in a magnetic trap, before imposing the optical lattice and continuing evap-

orative cooling in the lattice until condensation occurred. Another method used was to first

produce the condensate and then load it adiabatically into the lattice [41]. In these first two ex-

periments, numerous technical difficulties arose from both the complexity of the geometry and

the large number of laser beams required to prepare and probe the ultra-cold atomic sample. The

common starting point (the MOT) requires three orthogonal pairs of counter-propagating laser

beams at a frequency slightly detuned (∼ 10−4 nm) to the red of the atomic frequency and of

opposite polarization σ+/σ− (see sections 6.2.7 and 2.1.5). Creating a 3D optical lattice re-

quires an additional set of three orthogonal pairs of counter-propagating laser beams, with very

different characteristics compared to the MOT beams: the light must be very far-detuned (∼ 100

nm) from the atomic resonance in order to minimize the atom losses through light scattering, and

each laser beam is usually set to have a linear polarization π [41]. As a consequence, superim-

posing the paths of the MOT and the lattice beams poses multiple problems, as for example the

arrangement of waveplates (to generate the individual polarization required for each beam), the

availability of large range anti-reflective coatings (to optimize transmission at each wavelength)

or the difference in the focal lengths of lenses when using two very different wavelengths. These

problems can be partly overcome by aligning each pair of co-propagating MOT and lattice beams

with a small angle between them, or alternatively by using dichroic mirrors which can combine

beams of very different wavelengths. However, such configurations can degrade the polarization
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purity of the transmitted light through the nearby optics. Also, in usual experimental setups,

magnetic coils compete for physical space with the nearby optics thus limiting the use of any

additional component. Finally, although all optical BECs have been successively demonstrated,

they require significant laser power and yield comparatively low atom numbers [37, 38].

A different approach to solving the problem of multiple optical beam paths is to physically

separate in space the positions of the MOT and magnetic trap confining the BEC, similar to the

experimental setup described in chapter 2. In this case, a cold sample is first produced in a region

A and then transported towards another region B (usually referred to as the ‘Science chamber’),

with condensation occurring either in region A or B. The required controlled displacement of the

atoms can be achieved by optical, magnetic or mechanical means, such as:

• The focal point of an optical dipole trap, where a sample of atoms is confined, can be

shifted by physically displacing the focussing optics [172].

• Arrangements of magnetic field coils can be supplied with modulated currents, resulting

in a moving magnetic field minimum [173, 174].

• Magnetic field coils can also be mounted on sledges that are physically displaced [73].

When using a science chamber the positions of the MOT and the BEC are completely separated.

Consequently, no MOT beam is involved in the BEC region, which offers superior optical access

for implementing optical lattices. However, spatial displacement of atoms adds to the complexity

of the setup and occurs at the expense of atom number because of potential atom losses during

transport. In the case of alkali atoms, these losses can be minimized by careful optimization of

the translation process. In contrast, a BEC of metastable helium atoms appears much more fragile

due to Penning ionization and the strong collisional ionization rate. Transport of a sample would

thus result in large atom losses, even if the spin polarization could be well maintained all along

the path. In the following sections, the novel magnetic trap designed in our group is described.

It is compatible with both producing a He BEC and efficiently loading it in-situ into a 3D optical

lattice. The arrangement avoids any transport or any co-propagating optical laser beams. The

beam and coil geometry are presented, together with details about the electric circuitry and the

water-cooling circuit used for the magnetic field coils.
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8.2.2 Optical lattice requirements

The He∗ condensate is intended to be loaded into a 3D lattice, with the goal of studying the

superfluid-Mott insulator quantum phase transition. For confinement in an optical lattice, one

usually considers that a trap depth of Ulatt ∼ 10 Er is required for efficient trapping, whereas

a depth of Ulatt ∼ 20 Er is enough for reaching the Mott-insulator transition [41]. The laser

power will be provided by the three high power (10 W) laser-amplifiers described in the previous

chapter, resulting in about 5 W per laser beam after passing through all optical components

(mirrors, waveplate, AOM). Creating a 3D lattice using gaussian beams with a waist of about 100

µm provides a trap depth of approximately ∼ 200 Erec ≫ 20 Erec. The scattering rate (Γscatt ∼
7 s−1) is negligible compared to typical experimental time-scales to reach the quantum phase

transition. However, implementing the additional set of 6 laser beams to create the lattice is not

feasible in our current setup due to the lack of physical space for extra optical components. The

new setup presented in the following section has been designed to overcome this problem.

8.2.3 Coil and beam geometry

As mentioned in the previous section, using the concept of a ’science chamber’, where the

atoms are transported after an initial MOT stage, is not appealing for helium since atom losses

are not easily controllable. Moreover, due to the large wavelength difference (∼ 500 nm) be-

tween the MOT and the lattice beams, it is very difficult to use the same optical components

for the different sets of beams. The special design developed in the following avoids these two

difficulties. A unique set of coils produces the magnetic field gradients needed for the MOT and

the magnetic trap, while the mechanical arrangement leaves optical access to separately inject

the beams required for the MOT and the lattice.

Our setup (see figure 8.3) is based on the so-called cloverleaf trap geometry [175] which was

modified in order to offer additional corridors for laser beams to pass through. The cloverleaf trap

is a variation of the Ioffe-Pritchard trap, with 12 magnetic coils placed exclusively in two vertical

planes, creating a similar field but with an improved optical access to the trapped atoms. Two

axial coils (the ‘pinch coils’) are arranged in a Helmholtz configuration, producing a magnetic

field which provides axial confinement, with zero gradient near the center of the trap. Each

‘pinch coil’ is surrounded by four ‘cloverleaf’ coils, in the form of planar cloverleaves, providing

radial confinement. These coils are in a anti-Helmholtz configuration and produce a quadrupolar
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waveguide field along the symmetry Y axis. Finally, two larger axial coils (‘the compensation

coils’) are added, creating a quasi-uniform field at the center of the trap, to counter the bias field

without making a large compromise on the confining properties induced by the other coils. The

12 coils of the cloverleaf trap allow independent control over the three important parameters of

the trapping field: axial bias field, axial curvature, and radial gradient.

The geometric distribution of our trap was designed in a commercial computer aided design

software. The arrangements of coils and beams are represented in figures 8.3, 8.4, and 8.5, and

are further described in the following three points respectively:

1. A full overview of the three-dimensional geometry of the setup is given in figure 8.3. The

coordinate system is defined by choosing the Y Z-plane as the horizontal plane, with Z

being along the Zeeman slower, in the direction of the incoming beam of atoms. On the

figure, some coils are sliced open in order to expose their wiring and a view on the glass

cell. The XZ-plane is a plane of symmetry for the coil arrangement and the two sides

are mechanically connected by 4 structural support rods. The geometry carefully avoids

closing any conducting loop in any plane and the rods are also made of non-conducting

material (in our case a 30% glass fiber re-enforced polyamide-nylon). The XZ-plane is

intrinsically free as in the standard cloverleaf-type design, with the exception of 4 small

angular regions that are blocked by the 4 rods. The mechanical arrangement allows for 2

distinct sets of beams for the MOT (M) and the lattice (L). Indeed, the coils are shaped and

positioned to leave enough free space for laser beams to pass along several axes:

• Along the X-direction is the L3 lattice beam.

• Along the Y -direction is the M1 MOT beam.

• Along the Z-direction is the counter-propagating Zeeman beam.

• At ±45˚with respect to these axes are the M2/M3 MOT beams, the L1/L2 lattice

beams and two free additional axes (for observation during lattice alignment or other

laser manipulation).

2. The detail of the coils winding is shown in figure 8.4 where the pinch coils, the compensa-

tion coils and the cloverleaf coils are presented. Each square represents the external profile

of the wires. The coils are made of copper bars with a square cross section of 6×6 mm2
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Figure 8.3: Three-dimensional view of the coil and beam geometry. Some mechanical compo-
nents in the positive Y -direction are sliced open in order to expose the coil wiring. Coils no.1 are
the ‘pinch coils’, coils no.2 are the ‘compensation coils’ and coils no.3 are the ‘cloverleaf coils’,
spaced by 54 mm in the Y direction. Object no.4 is the 40×40×60 mm UHV-glass cell. M grey
bars represent the MOT beams, L black bars represent the lattice beams.

dimension and a 4 mm-diameter central bore that allows cooling water to flow through (see

section 8.2.5.2). The exact number of turns for each coil is reflected in the drawings (e.g.

16 turns for the cloverleaf coils wound in 4 layers of 4 turns each). The pinch coils have

a conical shape with a tunnel at their center in order to leave an optical path for the laser

beams along the Y -axis. In figure 8.4b the UHV glass cell, of dimensions 40× 40× 60

mm, is connected to a DN40CF-flange (Object No. 5) by a metal-glass joint.

3. Finally, all coils on each side of the magnetic trap are supported by a platform with the
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(a) (b)

Figure 8.4: Winding configuration of the pinch coils (No. 1), compensation coils (No. 2) and
cloverleaf coils (No. 3). a) is a view of a cross section in a plane resulting from a rotation of the
Y Z-plane by 45˚around the Y -axis (see figure 8.3). The grey circle (a sphere of 30 mm diameter)
is the largest volume that can be occupied by an atomic cloud trapped in the MOT inside the
glass cell (No. 4). b) is a similar view of a cross section in the Y Z-plane where No.5 is the
DN40CF-flange, connected to the UHV-glass cell by a metal-glass joint.

shape of the letter ‘H’, as shown in figure 8.5. Each platform holds the axes of the 4

cloverleaf coils and 4 support clamps for each of the pinch and compensation coils. In the

figure, M2, M3 and L3 are in the XZ-plane whereas L1 and L2 makes a 45˚angle to it.

8.2.4 Trap simulations

The new magnetic trap presented here should provide trapping parameters on the order of the

ones obtained in our previous setup [132], that is:

• magnetic field bias B0 ∼ 3 G.

• axial curvature coefficient B′′ ∼ 120 G.cm−2.

• radial gradient coefficient B′ ∼ 170 G.cm−1
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Figure 8.5: View of the mechanical support structure from the positive Y -direction. The 4 support
rods are spaced by 270 mm in the X-direction, and 113 mm in the Z-direction.

• axial trapping frequency of ωy =
√

2µBB′′/m ∼ 2π ×90 Hz.

• radial trapping frequency of ωρ =
√

2µB/m · (B′2/B0 −B′′/2) ∼ 2π ×800 Hz.

To achieve high magnetic field gradients, high currents flowing through the coils must be used.

In the cloverleaf configuration presented above, opening gaps between the coils to gain optical

access significantly reduce the efficiency of the magnetic trapping. This defect has to be com-

pensated by increasing further the current in the coils in order to obtain sufficient confinement. A

bias field of B0 ∼ 3 G is always required in the case of He in order to maintain spin polarization

and avoid Penning collisions. However, the aspect ratio (ωρ/ωy = 9 in the previous setup) should
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rather be smaller in order to have better overlap with the quasi-isotropic shape of a crossed dipole

trap or a 3D optical lattice. This can be done by lowering the radial gradient B′ without changing

too much the axial curvature B′′.

The magnetic field configuration is simulated using a commercially available ‘Mathematica’

interface. In order to minimize the programming and computing times, individual turns of coil

(represented in figure 8.4) are re-arranged (in the simulation) into 50 turns (25 on each side) of

larger dimension, as shown in figure 8.6. Additionally, each of the resulting 50 turns is approx-

imated and modeled as a set of 64 short linear segments. The total magnetic field is calculated

by applying the Biot-Savart law to each of the 3200 (50× 64) segments and summing all the

resulting fields created in the quartz cell. The calculation is performed for a current of I = 400

A which is approximately the maximum current provided by two power supplies (see section

8.2.5.1). The resulting field is finally fitted, in the center of the trap, to a Ioffe-Pritchard type

trapping field similar to the one described in section 6.2.8:

B(x,y,z) =

√

(

B0 +
B′′

2

(

y2 − 1

2
(x2 + z2)

))2

+B′2(x2 + z2), (8.9)

All trapping parameters can be deduced from this fit:

• the magnetic field bias is obtained at the center of the trap (x = y = z), with B0 = 2.9 G.

• the axial curvature coefficient is obtained by setting ρ2 = x2 + z2 = 0. Fitting along the y

direction gives B′′ = 86 G.cm−2.

• the radial gradient coefficient is then deduced for y = 0, using the previous value of B′′.

The fit gives B′ = 103 G.cm−1.

• axial and radial frequencies of the harmonic potential in the center of the trap are finally

obtained with ωy = 2π ×80 Hz and ωρ = 2π ×500 Hz respectively, resulting in an aspect

ratio of ωρ/ωy = 6.

8.2.5 Electric circuitry

8.2.5.1 Wiring circuit

The electrical circuitry used to drive the magnetic coils is represented in figure 8.7. The coils

are fed in series, and the path followed by the current is controlled via several insulated gate



162

Figure 8.6: Arrangement of individual turns of coils into larger structures (grey rectangles) for
improved computation time. Each structure is approximated and modeled as a set of 64 short
linear segments.

bipolar transistors (IGBT), which can support high currents of up to 600 A, provided they are

water-cooled. The general schematics of the wiring circuit involves two high current power sup-

plies (Agilent 6690A, 15 V, 440 A) that can be programmed independently. They are represented

by HCS-A and HCS-B in the schematics. The four IGBT components (Dynex-DIM600BSS12)

control the route followed by the current through the different magnetic coils of the setup and the

circuit can run following two distinct configurations. The MOT configuration (8.7a) is used to

create the quadrupolar field required for the magneto-optical trap stage. In this case, the IGBT

components 2 and 3 control the current distribution and HCS-A is set to half the current of HCS-

B so that the same current runs in opposite directions through the two pinch coils. A typical

current of 40 A will provide a field gradient of 15 G/cm at the center of the trap. After the MOT

phase is completed, the circuit can be reconfigured (8.7b) by changing the control voltages of
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the IGBTs so that the IGBT components 1 and 4 take control of the distribution. Both power

supplies are set to identical values and the current runs in the same direction through all the coils

to produce the magnetic trap. A minor amount of current (on the order of 3%) is also diverted

from the compensation coils by a bypass circuit in order to controllably adjust the trap bottom

offset B0. For that purpose, the compensation coils are positioned to overcompensate the field at

the center of the trap so that draining current from them brings the bias field back to a positive

value.

Figure 8.7: Schematics of the coil wiring circuit. HCS-A and HCS-B are two high current power
supplies that can be programmed independently. The thick lines indicate the path followed by
the current in either the MOT configuration a) or the magnetic trap configuration b). The current
route is controlled by adjusting the control voltage of four IGBTs. Capacitors C1 and C2 can
absorb the magnetic field energy thus reducing the voltage spikes during the switching off. The
bypass circuit BP allows for a controllable drain of current from the compensation coils in order
to adjust the level of the bias field B0.

For applications such as studying the momentum distribution of the atomic cloud in free fall,

a fast switch-off of the trap (∼ 100 µs) is needed, shorter than the oscillation periods of the trap.

However, when switch-off occurs, the emitter-collector junction of the IGBTs is blocked and the

large energy stored in the magnetic coils can be driven back into the circuit as a spike of current.

As a result, very large induced voltages can appear, which would cause irreversible damage to

the IGBTs if exceeding the maximum specified collector-emitter voltage of 1200 V. In order to
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divert the spurious pulse from the IGBTs, two alternative paths are added on each side of the

circuit, involving two pre-charged capacitors C1 and C2 (see figure 8.7). When the voltage in the

circuit rises above the initial voltage of the pre-charged capacitors (typically 15 V), any induced

current will be diverted towards the capacitors, thus avoiding going back into the IGBTs. The

pre-charging stage of the two capacitors is necessary in order to prevent the current from flowing

in these alternative paths during normal operation. C1 and C2 are chosen to be large electrolyte

capacitors of 1000 µF which can absorb the entire energy at switch-off. Finally, each capacitor

is slowly depleted in the parallel connected power-supply during the MOT loading phase.

8.2.5.2 Water cooling

A critical point when high currents are running through the circuit is the temperature control

of the magnetic coils. The electrical Joule energy ∆Ee created when a current I runs through a

coil of resistance R during a time ∆t is simply given by ∆Ee = RI2∆t. The resistance of a copper

tube can be written as R = ρCu
L
S
, where ρCu is the electrical resistivity of copper. L is the typical

length of a coil and S = a2−πr2 is the area of the metallic section, with a the external dimension

of the copper bar and r the radius of the internal tube where the water flows. Assuming the

electrical energy is entirely and efficiently transferred to the water, the rise in temperature ∆T

(between the water entering and leaving the tube) is given by

∆T =
RI2

ρQCV m

(8.10)

where ρ and CV m are the density and mass-specific heat capacity of water respectively, and Q is

the volumetric flow rate through the tubes. It is important to note that although the current runs

in series through all the copper tubes, the water flows in parallel in each coil. Consequently, the

typical length that needs to be considered in this cooling estimation is not the total length of the

copper wound on the experiment but only the typical length of a coil.

Typical values are:

• I = 400 A.

• L = 5 m.

• a = 6 mm.

• r = 2 mm.
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• ρCu = 17×10−9 Ω.m.

• ρ = 103 kg.m−3.

• CV m = 4.2×103 J.m−3.K−1.

In order to estimate the value of the volumetric flow rate Q, one has to characterize the regime

in which the water flows through the coils. In the case where velocity fluctuations (e. g. due to

external heating) are taken into account, the Reynolds number can be written as [176]

Re∗ =

√

2∆Pr3

ρν2L
. (8.11)

which gives a rough estimate of whether the regime is laminar (Re∗ ≪ 1) or turbulent (Re∗ ≫ 1).

Here, ∆P is the pressure gradient maintained between the two ends of the tube, and ν = 10−6 m2.s−1

is the kinematic velocity of water. It is possible to work in a closed-circuit configuration using

a commercial chiller (pressurized water pump) providing a pressure gradient of ∆P ∼ 6 bars in

the circuit. The Reynolds number is estimated to be Re∗ ∼ 1500 ≫ 1, characterizing a turbulent

regime where the volumetric flow rate can be calculated as [176]

Q =
πD2

4

√

∆PD

4ρL

(

2.5ln

√

∆PD3

4ρν2L
−0.5

)

. (8.12)

Using experimental parameters gives Q ∼ 10−4 m3.s−1 corresponding to a rise in temperature of

∆T ∼ 1 K which is a negligible heating for usual cooling processes.

8.3 CONCLUSION

The device presented in this chapter can be used for producing the MOT, a magnetic trap

and ultimately an optical lattice loaded with the atomic sample without overlaying any pair of

co-propagating laser beams or physically transporting the sample at any time. All the mechanics

of the system have already been built and assembled. At the time of this writing, the coils are

being ordered. Such a trap could be compatible for the case of alkali atoms such as 87Rb although

a current as high as 1000 A would be required in order to create a harmonic trap with standard

trapping frequencies (ωaxial ∼ 2π ×20 Hz and ωradial ∼ 2π ×300 Hz) and a bias field B0 ∼ 1 G.
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CONCLUSION-OUTLOOK

This thesis presented the work performed jointly between the Department of Quantum Sci-

ence in Canberra, Australia, and the Laboratoire Kastler-Brossel at ENS in Paris, France. It aimed

at providing advanced ultracold atom sources for precision measurement and for investigations

in fundamental physics.

The first part of the thesis described several experimental and theoretical results obtained for

the atom laser. The introductory chapter gave a general overview on atom lasers in analogy to

optical lasers and several techniques to out-couple the atoms from the Bose-Einstein Condensate

(BEC) source were discussed. Our BEC apparatus allowed us to repeatedly produce conden-

sates of approximately 106 87Rb atoms in a stable magnetic trap. The machine is based on a

double-MOT structure and separates the UHV collection region from the BEC cell, resulting in

an improved optical access along all primary axes of the BEC. Two optical Raman beams were

implemented in the setup in order to out-couple atoms from the initial condensate.

For applications based on atom interferometry, it is crucial to develop atom lasers with output

modes that are simple and as clean as possible. These properties are characterized by the M2

quality factor of the atomic beam, defined in analogy to optical lasers. Experimental results on

the divergence properties of the Raman atom laser were presented with respect to this quality

factor and compared to an RF output coupling technique. The main advantage of the optical

Raman coupling lies in the initial momentum transfer imparted to the atoms. The atoms do not

necessarily require gravity to leave the condensate and can be pushed in a chosen initial direction.

Additionally, the time to escape the condensate is strongly reduced, which decreases the effect of

interactions from the BEC experienced by the atom laser. This leads to a significantly improved

transverse profile in the atom laser beam. In our experiment, we reached a quality factor of

M2 = 1.4 for a Raman atom laser compared to M2 = 2.2 when using an RF transition. All the

results were obtained by out-coupling the atoms from the center of the condensate where the

density is greatest, thus providing the highest possible flux, longest operating time and lowest

sensitivity to fluctuations.

We also took advantage of the Raman beams to perform coherent atom beam splitting of an

atom laser. The manipulation of the atoms followed a resonant Bragg diffraction process where

the very large detuning of the laser beams forming the grating ensured negligible spontaneous

emission, so that coherence was maintained during the process. We demonstrated that the diffrac-
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tion grating was produced from each of the Raman beams independently and from a very small

fraction of back-reflected light from the coils. We characterized the velocity resonance condition

driving the Bragg diffraction and we showed that the process was efficient, with up to 60% of the

atoms being diffracted, making it suitable for use in an atom interferometer. Our method is an

experimentally simple and versatile tool for atom optics. An important advantage of our setup

is that the Raman output coupler can run simultaneously in a regime where it serves also as two

beam splitters, thus significantly simplifying the experimental demands.

The last result of the first part of the thesis presented a theoretical model which we used to

study the effect of RF out-coupling on two- and multi-level systems. The model was validated

by comparing the theoretical results to previous experimental measurements performed in our

group. Finally, the atom laser output was characterized depending on the out-coupling strength.

In particular, important experimental requirements of an atom laser, such as flux, fluctuations and

spatial structure were studied. We showed that a five-state system (F = 2 hyperfine state) is inap-

propriate for any measurement using atom laser beams due to intermediate coupling to a Zeeman

sub-level oscillating in the trap and disturbing the extraction process. We concluded that the

‘natural’ three-state system (F = 1 manifold) should be preferred for any classical measurement

since such a system has similar characteristics to a ‘pure’ two-state system and is experimentally

much simpler to achieve.

The atom laser work will continue to be actively pursued in the next years at the Australian

National University and in other laboratories around the world. The ANU group has recently

demonstrated a Ramsey fringe interferometer using an atom laser as the source [89]. Such an

interferometer provides a local oscillator that could be used to detect and exploit a quadrature

squeezed atom laser beam. The ANU group has also recently achieved a 85Rb BEC. 85Rb has

an accessible Feshbach resonance that can be used to tune the atom-atom interactions. An atom

laser derived from this condensate will be combined with high bandwidth single atom cavity

detection (currently in production at ANU) and the local oscillator. This will form the source and

detection scheme necessary for a sub-shot noise limited atom interferometer. A future goal is to

develop high momentum transfer splitting of atom laser beams to enhance the signal to noise in

many interferometric measurements. These future directions and experiments are only possible

if the classical properties of the atom laser have been characterised and optimised. This was one

of the major goals that was achieved through the work presented in the first part of this thesis and

was an essential step along the path to precision measurement at sensitivities exceeding the shot



168

noise limit with atom laser sources.

The second part of the thesis was orientated towards optical trapping of metastable helium

atoms. The initial chapter described the experimental setup, focussing on several improvements

which we achieved recently. Apart from making the optical setup more reliable and stable, a

Channel Electron Multiplier was added, providing a non-destructive real-time method to detect

ions or electrons resulting from Penning collisions involving metastable atoms.

Optical trapping of He∗ atoms is the next experimental step which we are aiming for in our

group. For that purpose, the general principle and properties of an optical trap as well as a

description of the laser layout which we are currently implementing were presented. It is based

on a red-detuned crossed dipole trap and is meant to be initially used to measure characteristic

rate constants of inelastic decay processes in our gas of spin-polarized metastable helium.

Finally, our perspective of trapping a BEC of metastable helium atoms in a 3D optical lat-

tice was described. Amongst many possible experiments, we focussed on briefly presenting the

Superfluid-Mott insulator transition which was previously observed with alkali Rb atoms and

which we intend to reproduce for He taking advantage of Penning ionization to perform a real-

time detection and study the kinetics of the transition. The design of a new and original type of

magnetic trap was also presented. It allows for Bose-Einstein condensation to be compatible with

in-situ loading of the condensed gas into a 3D optical lattice. For that purpose, the coil geometry

was conceived to simultaneously maximize the optical access for six laser beams of the MOT

and independently for the six beams of the optical lattice.

The work done in the second part of this thesis was the necessary step of preparation which

will now allow our team at ENS to undertake a new generation of experiments with condensed

metastable helium gas in either an optical dipole trap or an optical lattice. For instance, photo-

association measurements in a dipole trap can be performed. Alternatively, magnetic or optical

Feshbach resonances can be driven to control the interactions between the different Zeeman

sub-states confined in the optical potential. The flexibility of optical lattices could allow us to

investigate various intriguing aspects of 1D or 2D quantum gases. For example, it is envisaged to

study quantum transitions in the 2 dimensional regime and the modification of Penning ionization

due to the transverse confinement. It would also be interesting to enter the regime of a Tonks-

Girardeau gas in the Mott-insulator state, taking advantage of the very deep potential which can

be achieved with our experimental setup.
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Titre de la thèse : Sources Ultrafroides Avancées pour l’Interféromètrie et la Physique Atomique.

Résumé : Dans ce mémoire nous présentons des sources ultra-froides utilisant des condensats de Bose-Einstein

pour des applications en interféromètrie et physique atomique.

Nous produisons un laser à atomes de 87Rb par couplage optique Raman. Initialement piégés magnétiquement,

les atomes sont transférés dans un état insensible aux champs magnétiques et tombent sous l’effet de la gravité. Nous

montrons qu’à l’inverse d’une méthode d’extraction Radio-Fréquence l’impulsion transférée aux atomes permet de

réduire la divergence et d’améliorer le profil spatial du faisceau atomique. Nous prouvons que chacun des deux

faisceaux Raman peut être utilisé indépendemment pour diffracter le laser à atomes de manière efficace et cohérente

en utilisant une fraction de lumière rétro-diffusée. La dynamique des lasers à atomes extraits par couplage RF est

également étudiée théoriquement.

Nous détaillons ensuite les améliorations apportées au dispositif expérimental permettant de condenser des

atomes d’hélium métastable (4He∗). Nous décrivons l’ensemble du nouveau système laser destiné au piégeage et

au ralentissement des atomes, ainsi qu’à leur transfert dans un piège dipolaire ou un réseau optique. L’ajout d’un

multiplicateur d’électrons fournit une méthode de détection non-destructive en temps réel fondée sur les collisions

Penning. Enfin, nous présentons un nouveau piége magnétique à grande accessibilité optique, conçu et construit pour

produire un condensat d’atomes 4He∗ et le transférer, in-situ, dans un réseau optique à 3 dimensions.

Mots Clés : Atomes ultra-froids, condensat de Bose-Einstein, lasers à atomes, couplage Raman, hélium mé-

tastable, piège optique dipolaire, réseau optique.

Title of the thesis : Advanced Ultracold Sources for Atomic Physics and Atom Interferometry.

Abstract : In this thesis we present ultracold sources using Bose-Einstein Condensates for atom interferometry

and atomic physics applications.

We produce a 87Rb atom laser using an optical Raman out-coupling technique. The atoms are transferred from

their initial magnetically trapped state to a state which is insensitive to magnetic fields and subsequently fall under

gravity. We show that, in contrast to a standard Radio-Frequency (RF) out-coupling method, the initial momentum

imparted to the atoms reduces the divergence and improves the spatial profile of the beam. Alternatively, we demon-

strate that each of the two Raman beams can be used independently to provide efficient and coherent splitting of the

atom laser using a fraction of back-reflected light. We also investigate theoretically the dynamics of RF out-coupled

atom laser systems.

Then we present details of significant improvements on the experimental setup used to condense metastable

helium atoms (4He∗). We present the layout of a new laser system operated for trapping and cooling the atoms, as

well as the optical configuration to transfer them into a dipole trap or an optical lattice. A channel electron multiplier

is added to provide a non-destructive real-time detection method based on Penning collisions. Finally, we describe the

design of a new magnetic trap with improved optical access, which we conceived and constructed to allow for 4He∗

Bose-Einstein condensation to be compatible with in-situ loading of the condensed gas into a 3 dimensional lattice.

Key words : Ultra-cold atoms, Bose-Einstein Condensate, atom lasers, Raman out-coupling, metastable helium,

optical dipole trap, optical lattice.
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