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Abstract

The topic of this thesis are compactifications in string theory and supergravity. We study
dimensional reductions of type II theories on backgrounds with fluxes, using the techniques
of Hitchin’s generalized geometry.
We start with an introduction of the needed mathematical tools, focusing on SU(3)×SU(3)
structures on the generalized tangent bundle T ⊕ T ∗, and analyzing their deformations.
Next we study the four dimensional N = 2 gauged supergravity which can be defined
reducing type II theories on SU(3)×SU(3) structure backgrounds with general NSNS and
RR fluxes: we establish the complete bosonic action, and we show how its data are related
to the generalized geometry formalism on T ⊕ T ∗. In particular, we derive a geometric
expression for the full N = 2 scalar potential. Then we focus on the relations between
the 10d and 4d descriptions of supersymmetric flux backgrounds: we spell out the N = 1
vacuum conditions within the 4d N = 2 theory, as well as from its N = 1 truncation, and
we establish a precise matching with the equations characterizing the N = 1 backgrounds
at the ten dimensional level. We conclude by presenting some concrete examples, based
on coset spaces with SU(3) structure. We establish for these spaces the consistency of
the truncation based on left-invariance, and we explore the landscape of vacua of the
corresponding theory, taking string loop corrections into account.

Résumé

Cette thèse porte sur les compactifications en théorie des cordes et supergravité. Nous
étudions les réductions dimensionnelles des théories de type II sur des fonds avec flux, en
utilisant les techniques de la géométrie généralisée de Hitchin.
Nous commençons en introduisant les outils mathématiques nécessaires : nous nous con-
centrons sur les structures SU(3)×SU(3) sur le fibré tangent généralisé T⊕T ∗, en analysant
leurs déformations. Ensuite nous étudions la théorie de supergravité N = 2 quadri-
dimensionnelle définie par réduction des théories de type II sur des fonds à structure
SU(3)×SU(3) avec flux généraux de NSNS et RR: nous établissons l’action bosonique
complète, et nous montrons comment ses donées sont reliées au formalisme de la géométrie
généralisée sur T ⊕ T ∗. En particulier, nous trouvons une expression géométrique pour le
potentiel scalaire N = 2. Puis nous nous concentrons sur les relations entre les descriptions
à 10d et à 4d des fonds supersymétriques avec flux: nous dérivons les conditions de vide
N = 1 dans la théorie N = 2 à 4d, ainsi que dans sa troncation N = 1, et nous prouvons
une correspondance précise avec les équations qui caractérisent les vides N = 1 au niveau
dix-dimensionnel. Nous terminons en présentant des exemples concrets, basés sur des es-
paces quotients avec structure SU(3). Nous établissons pour ces espaces la cohérence de la
troncation basée sur l’invariance gauche, et nous explorons les vides de la théorie associée,
en prenant en compte les corrections des boucles des cordes.
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Riassunto

Argomento di questa tesi sono le compattificazioni in teoria di stringa e supergravità.
Studiamo le riduzioni dimensionali delle teorie di tipo II su dei backgrounds con flussi,
utilizzando le tecniche della geometria generalizzata di Hitchin.
La tesi si apre con un’introduzione agli strumenti matematici necessari. Ci interessiamo
in particolare alle strutture SU(3)×SU(3) sul fibrato tangente generalizzato T ⊕ T ∗, ed
all’analisi delle loro deformazioni. In seguito studiamo la supergravità N = 2 gauged
definita tramite riduzione delle teorie di tipo II su dei backgrounds a struttura SU(3)×SU(3)
in presenza di un sistema generale di flussi NSNS e RR: stabiliamo l’azione bosonica com-
pleta, e mostriamo in che modo i suoi elementi costitutivi sono in relazione con il for-
malismo della geometria generalizzata su T ⊕ T ∗. In particolare, troviamo un’espressione
geometrica per il potenziale scalare N = 2. Ci volgiamo poi allo studio delle relazioni
tra le descrizioni 10d e 4d dei backgrounds supersimmetrici con flussi: scriviamo le con-
dizioni di vuoto N = 1 che discendono dalla teoria N = 2 a 4d, cos̀ı come dalla sua
troncazione N = 1, e dimostriamo una precisa corrispondenza con le equazioni caratteriz-
zanti i backgrounds N = 1 a livello dieci-dimensionale. Concludiamo presentando alcuni
esempi concreti, basati su degli spazi quoziente con struttura SU(3). Dimostriamo per
questi spazi la consistenza della troncazione basata sulla left-invariance, ed esploriamo i
vuoti della teoria corrispondente, includendo le correzioni di loop di stringa.
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Résumé détaillé

Compactifications avec flux en théorie des cordes,

et géométrie généralisée

Cette thèse porte sur les théories des cordes et de supergravité. Ces théories jouent un
rôle fondamental dans la physique théorique contemporaine. La théorie des cordes, qui in-
terprète les constituants élementaires de la matière comme des petits objets unidimension-
nels (les cordes) et non ponctuels, est considérée comme la meilleure candidate pour fournir
une description unifiée de toutes les forces connues dans la nature. En particulier, elle com-
prend en un seul cadre cohérent à la fois la gravité et la mécanique quantique. Strictement
reliées à la théorie des cordes sont les théories de supergravité, qui sont des théories de
la gravité incorporant la relativité générale mais ayant une symétrie supplémentaire: la
supersymétrie.

Pour des raisons de cohérence mathématique les théories des cordes, ainsi que les
théories de supergravité associées, sont normalement formulées en dix dimensions d’espace-
temps. Une théorie qui décrit la physique dans les quatre dimensions d’espace-temps
usuelles peut être obtenue grâce à la procédure de compactification, dans laquelle six di-
mensions spatiales sont “enroulées” en un volume d’espace extrêmement petit, et ainsi
invisibles.

Ce travail de thèse s’insère dans les développements les plus récents de ce sujet: dans
les dernières années, des nouveaux outils mathématiques sophistiqués ont permis d’étudier
le problème des compactifications de façon plus systématique, et le pouvoir prédictif de la
théorie a été ainsi perfectionné. Notamment, la géométrie généralisée de Hitchin permet
d’étudier les reductions dimensionnelles des théories de type II sur des fonds avec flux:
nous nous intéressons aux conditions qui permettent de définir une théorie de supergravité
N = 2 en quatre dimensions. Nous nous concentrons sur les espaces six-dimensionnels dits
à structure SU(3)×SU(3), en étudiant les relations entre leurs proprietés géométriques et
la théorie de supergravité à quatre dimensions issue de la compactification.

La thèse est ainsi structurée.
Nous commençons dans le chapitre 2 par une introduction aux outils mathématiques

nécessaires pour l’analyse des compatifications. L’ansatz spinoriel lié aux compactifications
qui présèrvent N = 2 à quatre dimensions nous amène à traiter les G-structures sur la
variété six-dimensionnelle compacte. Ensuite, en étendant la notion de G-structure à la
somme T ⊕ T ∗ des fibrés tangent et cotangent, on introduit la géométrie généralisée de
Hitchin. Notamment, nous nous concentrons sur la notion clé de structure SU(3)×SU(3),
qui décrit tous les degrés de liberté NSNS sur la variété compacte. Dans la perspective
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d’une étude des termes cinétiques scalaires en quatre dimensions, nous considérons la
métrique sur l’espace des paramètres des champs NSNS internes. Cette dernière peut être
reformulée en termes des déformations des spineurs purs du groupe O(6, 6) qui caractérisent
la structure SU(3)×SU(3) . Cela permet de faire émerger une structure spéciale Kähler,
définie localement sur la variété compacte. Ce résultat, auquel nous avons contribué, se
développe en parallèle avec la structure de l’espace des modules des variétés Calabi-Yau,
que l’on présente aussi.

Dans le chapitre 3 nous considérons l’étude des compactifications des théories de type
II sur des fonds avec flux qui admettent une structure SU(3)×SU(3). On commence par
une revue rapide de la formulation ‘démocratique’ de la supergravité de type II [48], qui est
adaptée aux applications en géométrie généralisée. Ensuite nous présentons les réductions
dimensionnelles sur les variétés Calabi-Yau, qui représentent le modèle de référence pour
les développements successifs. Nous discutons les relations entre flux et jaugeages. La tron-
cation de la supergravité de type II est effectuée sur des fonds à structure SU(3)×SU(3) à
l’aide d’un développement des champs dix-dimensionnels sur une base finie de formes dif-
ferentielles sur la varieté compacte. La compatibilité avec la supergravité N = 2 en quatre
dimensions impose sur cette base une série de contraintes géométriques assez restrictives.
Celles-ci ont été identifiée dans [45, 46, 49], et nous les réécrivons d’une façon differente.
Puis on déduit l’action bosonique complète à quatre dimensions. En particulier, nous nous
concentrons sur la façon dont ses donées sont déterminés par la géométrie généralisée.

Premièrement nous établissons la réduction du secteur NSNS de la supergravité de type
II. On fait le lien avec l’espace des déformations étudié dans le chapitre précédent. Ensuite,
nous étudions le rôle de l’opérateur Hodge-∗ deformé par le champ B. En particulier, nous
montrons comment son action sur la base des formes differentielles généralise au contexte
des structures SU(3)×SU(3) l’expression pour l’action de l’opérateur Hodge-∗ usuel sur les
3–formes harmoniques d’une variété Calabi-Yau. Ceci nous permet d’obtenir une formule
pour les matrices des périodes de la géométrie spéciale Kähler N = 2. Ensuite, nous nous
focalisons sur le potentiel scalaire en quatre dimensions: nous demontrons une formule qui
exprime la courbure de Ricci de la variété compacte en termes des données de la géométrie
généralisée. Puis nous utilisons cette formule afin d’obtenir une expression géométrique
pour le potentiel scalaire. Une fois écrite en termes des variables quadri-dimensionnelles,
celle-ci donne l’expression précédemment trouvée en [50] en utilisant exclusivement des
méthodes de supergravité N = 2 quadri-dimensionnelle.

Dans la dernière partie du chapitre nous passons au secteur RR, en nous concentrant
sur la supergravité du type IIA. Plutot que de réduire directement l’action, nous choisis-
sons de réduire les équations du mouvement. En vertu d’une contrainte d’auto-dualité,
celles-ci peuvent aussi être vues comme des indentités de Bianchi. Le développement du
champ de RR sur la base de formes internes introduit automatiquement des formes de
tous degrés dans l’espace-temps quadri-dimensionnel. On interprète un sous-ensemble des
équations de RR réduites comme des identités de Bianchi; leur solution donne un système
de champs fondamentaux à quatre dimensions. Les équations restantes sont interprétées
comme équations du mouvement, à partir desquelles on reconstruit l’action réduite.

Dans le chapitre 4 nous discutons plus en détail la cohérence entre le résultat de la
réduction dimensionnelle et le formalisme de la supergravité N = 2 jaugée. Une formula-
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tion cohérente en présence d’un système général de flux exige l’introduction de multiplets
tensoriels. Nous analysons en particulier les quantités qui déterminent le jaugeage. En-
suite, en considerant les expressions des prépotentiels de Killing, et en utilisant des résultats
généraux concernant la supergravité N = 2 avec multiplets tensoriels, nous dérivons les
shifts fermioniques associés aux variations de supersymétrie à quatre dimensions.

Dans la deuxième partie du chapitre nous faisons une comparaison entre l’approche
quadri-dimensionnelle et celle dix-dimensionnelle des vides supersymétriques avec flux.
Au niveau dix-dimensionnel, les équations pour le vide N = 1 ont été reformulées dans
le langage de la géométrie généralisée en [26, 27]. Afin d’effectuer une comparaison avec
les contraintes définies en quatre dimensions, nous réécrivons ces équations en termes de
variables quadri-dimensionnelles, et nous intégrons sur la variété interne. Successivement,
nous trouvons les conditions du vide N = 1 définies dans la théorie N = 2 à quatre dimen-
sions, en imposant l’annulation des shifts fermioniques sous une seule transformation de
supersymétrie. En utilisant les propriétés de la géométrie spéciale Kähler, nous établissons
une correspondance précise avec la version intégrée des équations de [26, 27]. Nous ef-
fectuons aussi une analyse similaire en considérant la supergravité quadri-dimensionnelle
définie par une troncation de la théorie N = 2 précédemment analysée. Pour cela, on
trouve les expressions pour le superpotentiel et les D-termes et on impose les conditions
de F-flatness et de D-flatness.

Enfin, dans le chapitre 5, on présente des exemples concrets de compactifications N = 2,
basés sur des espaces quotients avec structure SU(3). Cela peut être considéré comme une
application de l’étude générale présentée dans les chapitres précédents. Le contrôle précis
sur la géométrie que la structure de l’espace quotient comporte, nous permet une analyse
explicite. En particulier, on établit la cohérence de la réduction dimensionnelle basée sur un
ansatz invariant à gauche. On explore les vides supersymétriques et non-supersymétriques
associés à la compactification, en paramétrant la solution en termes des flux. En utilisant les
contraintes imposées par la supersymétrie N = 2, on étudie les corrections des boucles des
cordes au potentiel scalaire quadri-dimensionnel, et on esquisse une recherche préliminaire
de solutions de Sitter.

Dans le chapitre 6 on tire nos dernières considérations.
On destine quelques discussions techniques aux appendices. L’appendice A résume nos

conventions. L’appendice B donne quelques détails sur le ‘Mukai pairing’ et la ‘Clifford
map’ utilisés dans les calculs en géométrie généralisée. L’appendice C présente la relation
entre la formulation démocratique et celle standard de la supergravité de type II. Nous
discutons aussi quelques subtilités dues à la présence des flux. Les appendices D et E
donnent la définition et certaines propriétés respectivement des variétés ‘spéciale Kähler’
et ‘quaternionic-Kähler’, qui jouent en rôle central dans la supergravité N = 2. Enfin, les
appendices F et G réunissent du matériel liés aux réductions dimensionnelles des espaces
quotients du chapitre 5.
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Chapter 1

Introduction

The Standard Model of elementary particles represents our current paradigm for under-
standing the weak, electromagnetic and strong interactions. Successfully tested to impres-
sively high precision up to an energy scale of the order of 100 GeV [1], it has conferred to
quantum field theory based on the gauge principle a central role in the description of the
fundamental laws of nature.

However, the Standard Model cannot be regarded as the ultimate theory of fundamental
interactions. Indeed, as a first thing it has the drawback of being a rather ad hoc construc-
tion, involving a relevant number of parameters which are not fixed by the model itself:
from a theoretical viewpoint, it would be much more appealing to dispose of a derivation
from first principles, in which the various parameters are dynamically determined. Sec-
ondly, it does not at all include gravity, which is instead described by Einstein’s general
relativity. Though it shares with the Standard Model the fact of being a field theory,
general relativity is based on completely independent conceptual grounds, dealing with the
intimate dynamics of spacetime, and the interaction of its geometry with the distribution
of matter. Furthermore, it is a classical theory, i.e. the principles of quantum mechanics
do not enter in its formulation.

Now, for the purpose of describing the interactions of microscopic particles at relatively
low energy scales, ignoring gravity is a perfectly sensible approximation, since at such
scales this force is much weaker than the remaining three. However, as one approaches the
scale of 1019 GeV, known as the Planck scale, the strength of gravity becomes comparable
to the one of the other forces, so that it cannot be neglected anymore. Also general
relativity has its own regime of application: it works very well at long distances, where
gravity, being always attractive, dominates over the other forces; for this reason, it is the
relevant theory for the explication of large-scale astrophysical phenomena, where indeed
it has proved very successful. However, general relativity breaks down at short distances,
where quantum effects become important. In fact, from a field theory perspective gravity
is non-renormalizable, and all attempts to quantize it in this scheme have failed. The scale
at which general relativity breaks down is again the Planck scale. We can conclude that
the picture of two distinct theories – the Standard Model and general relativity – being
based on independent conceptual schemes, and describing different kinds of phenomena,
seems itself an effective description, valid at the energy scales we are used to, but breaking
down at higher energies.
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Even if 1019 GeV is an extremely high energy scale, far beyond the reach of any con-
ceivable experiment, still the question of a possible unification of the quantum theory of
elementary particles with general relativity is not just of aesthetical value: indeed, un-
derstanding the quantum nature of gravity could provide the missing tools for describing
the very early universe and other extreme regimes like the physics of black holes, where
such scale of energies is relevant. Furthermore, since the time of Newton’s intuition that
the gravitational force governing the fall of an apple is the same force that ties the plan-
ets to their orbits, the unification of different conceptual schemes has often led to deep
breakthroughs in physics.

For these and other reasons, while the Standard Model was so accurately tested in
experiments, theoreticians pushed forward their imagination, speculating on its possible
extensions at higher energies, and elaborating new, bold ideas. Part of these ideas is now
coming to be probed at the Large Hadron Collider (LHC) experiment, whose (re-)start is
scheduled for the next few months. It is believed that new physics will appear at the LHC
scale of 1−10 TeV, and it is likely that this will discriminate among the plethora of existing
possible extensions of the Standard Model, or even stimulate totally new elaborations (see
e.g. [2]). There is also the hope that LHC might provide indirect hints of the physics at
even higher scales.

One of the most urgent questions that theoreticians would like to be answered by LHC
is whether nature is supersymmetric. Supersymmetry is a powerful and very constrain-
ing symmetry which extends the Poincaré spacetime symmetry of relativistic quantum
field theories via fermionic generators, so that it transforms any bosonic particle into a
fermionic partner, and vice-versa. Actually, it has to transform any observed (bosonic or
fermionic) particle into a never-observed one. Indeed, as a first thing one notices that exact
supersymmetry implies that the superpartners be mass degenerate, and this is in obvious
contradiction with the observations. Hence, if supersymmetry exists, then it has to be re-
alized in a broken phase. However, even assuming broken supersymmetry, it turns out that
due to a mismatch of quantum numbers no known particles can be mutual superpartners.
It remains the possibility that the superpartners be hidden at higher energies, and it is
here that LHC enters into the game. We conclude that supersymmetry basically doubles
the number of elementary particles.

Despite these awkward features, there are several strong reasons to consider attractive
the supersymmetric extension of the Standard Model. For instance, as a consequence
of a non-renormalization theorem, supersymmetry protects the Higgs mass against large
quantum corrections, stabilizing the weak scale even within a theory having a higher scale
cutoff. Furthermore, supersymmetry provides a natural candidate for explaining the dark
matter problem. Finally, it determines a highly non-trivial fact: with supersymmetry, the
running coupling constants of the electromagnetic, weak and strong interactions strikingly
meet at at the ‘Grand Unification’ scale of 1016 GeV. This is interpreted as a hint of the
important role that supersymmetry may play in embedding the Standard Model into a more
fundamental theory. More in general, and independently of the phenomenological purposes,
it has been learned over the years that supersymmetry nicely improves the tractability of
quantum field theories.

Even though the supersymmetric extension of the Standard Model does not describe
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gravity either, supersymmetry and general relativity are not unrelated. Indeed, by applying
the gauge principle, supersymmetry can be made local. Since it contains the Poincaré
symmetry, and since invariance under local translations leads to general relativity, we have
that the latter is naturally incorporated in a theory of local supersymmetry, which has
therefore been named supergravity.

Despite the initial hope that the addition of supersymmetry might cure the problem of
divergencies in general relativity and make it renormalizable as a quantum field theory, this
turns out not to be the case (at least not for the realistic models with a minimal amount of
supersymmetry – for the maximal N = 8 supergravity recent developements suggest that
it might actually be finite). Hence the mere fact of making supersymmetry local does not
solve the problem of quantizing gravity, but can nevertheless be interpreted as a first step
towards a unified theory. Indeed, if supersymmetry is relevant for the Standard Model,
then it is very likely that the associated theory of gravity also be supersymmetric. Now,
an ultraviolet completion of supergravity exists and is string theory.

String theory [3, 4] arises from the simple but radical idea of replacing the point particles
of ordinary field theory with one-dimensional objects, the strings. These can be open
strings, with the topology of a segment, or closed strings, with the topology of a circle. For
each of the these topologies, the quantized string has a discrete spectrum of vibrating modes
which, at distances much larger than the characteristic string length ℓs =

√
α′ (which is

usually assumed tiny, with 1/
√
α′ not too far from the Planck scale), can effectively be

interpreted as different point particles. The spectrum of oscillations is formed by an infinite
tower, whose lowest-lying states are massless, while the upper levels are massive, with a
spacing of 1/

√
α′. Among the massless states of a closed string there is one that has spin 2;

by identifying it with the graviton, it follows that string theory automatically incorporates
gravity. Actually, it proposes itself as a consistent theory of quantum gravity: indeed,
the minimal length of the string provides an ultraviolet regularization of the graviton
scattering amplitudes, whose badly divergent behaviour in quantum field theory is due to
the point-like nature of the interaction.

The dimensionful parameter α′ is the only free parameter entering in the definition of
string theory. Consistency conditions at the quantum level impose further, strong con-
traints. For instance, certain tachyonic instabilities can be avoided by including super-
symmetry; the resulting formulation is known as superstring theory. Furthermore, a Weyl
anomaly cancellation condition implies that the spacetime in which superstrings propagate
has to be ten-dimensional. The existence of extra-dimensions is no doubt one of the most
striking predictions of string theory. Taking all the consistency conditions into account,
it turns out that there are only five possible superstring theories; these are termed type
IIA, type IIB, type I, heterotic SO(32) and heterotic E8 × E8. Over the years, it has been
understood that these different formulations are related to each other by various duali-
ties, which, beside the strings, involve further dynamical multidimensional objects, called
the branes. These interconnections among the different superstring theories might be the
signal of an underlying more fundamental theory, which is conjectured to live in eleven
spacetime dimensions, and has been given the name of M-theory.

As mentioned above, the limit α′ → 0 is a low energy limit where string theory is
approximated by a theory of massless point particles. Not too surprisingly, the latter
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turns out to be supergravity: specifically, the low energy limit of type IIA and type IIB
superstring theories corresponds to type IIA and type IIB supergravity, while taking the
low energy limit of type I and of heterotic strings one obtains type I supergravity, coupled
to a super Yang-Mills theory with gauge group SO(32) or E8 × E8. These are the only
ten-dimensional supergravity theories which are also anomaly-free. Furthermore, the low
energy limit of M-theory is defined to be the unique supergravity theory existing in eleven
dimensions. In this limit, the branes contained in string theory are identified with certain
solitonic solutions of supergravity.

Superstring theory not only offers a way to quantize gravity, but, since its massless
spectrum also contains gauge bosons, it is also a promising candidate for a unified the-
ory of all the fundamental interactions. Taking seriously this hypothesis, an immediate
question which arises is how to pass from a fundamental theory formulated in ten space-
time dimensions to the four-dimensional world we have experience of. This has been one
of the major areas of research in string theory since about twenty-five years. The most
studied way to achieve this reduction from ten to four dimensions is by a compactification
procedure. In this approach, one assumes that the ten-dimensional spacetime has only
four extended spacetime dimensions, which are identified with our world; the remaining
six spatial dimensions are instead wrapped to form a compact space, which is chosen very
small in order to explain why we don’t have access to it (actually, there are some hopes to
gain indications of these extra dimensions from LHC; see e.g. [5] for an account). In other
words, the background spacetime is chosen with a topology of the type M10 = M4 ×M6,
where M4 can for instance be Minkowski4, while M6 is a compact, ‘internal’ manifold. The
subsequent step is to ‘integrate’ the ten dimensional theory over the internal space M6, in
order to be left with an effectively four dimensional theory.

The properties of the lower-dimensional theory crucially depend on the geometry chosen
for the compact space. On the one hand, this is an attractive feature, because it provides a
very elegant and controllable way to build lower-dimensional theories. On the other hand,
it is a drawback: even if the higher-dimensional theory is unique, the compactification
reintroduces a large amount of arbitrariness in the determination of the four-dimensional
physics.

One of the main features that are studied is the amount of supersymmetry preserved
by the compactification. For phenomenological purposes, the most desiderable situation
is a compactification preserving just a minimal fraction of the supersymmetry of string
theory: indeed, the supersymmetric extension of the Standard Model, to which one would
like to make contact (the scale of supersymmetry breaking is usually assumed well below
the compactification scale), requires just a minimal amount of supersymmetry. The non-
complete breaking of supersymmetry is also technically convenient, since the constraints
imposed by supersymmetry allow a good control on the compactified theory. Indeed,
the conditions dictated by supersymmetry of the background translate into differential
conditions for the spinors existing on the compact manifold, and this strongly constrains
the geometry. In a very popular case, the supersymmetry condition requires the compact
space to be Calabi-Yau, namely a 6d compact manifold with SU(3) holonomy [6]. Now, it
turns out that there is an enormous number of allowed Calabi-Yau manifolds, so that the
choice of the supersymmetric background is far from being unique.
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In spite of this freedom inherent to the compactification, and though many progresses
have been made, it has to be said that a consistent embedding of the (supersymmetric
extension of the) Standard Model into string theory has not been achieved in a fully
satisfactory way yet. A further physical quantity that one would hope to derive from a
theory combining gravity and particle physics is a realistic cosmological constant (realistic
means very small and positive, the observed value being Λ ≃ 10−120M4

P , where MP is the
Planck scale). This involves one of the main unsolved hierachy problems in contemporary
theoretical physics, and its solution presumably requires a better understanding of quantum
effects in gravity.

Initially, the efforts to build realistic compactification models where concentrated on
the heterotic and type I string theories (see e.g. [3, vol. 2]), because these come already
endowed with a large, non-abelian gauge group, while this is not the case for type II
theories. Dramatically new perspectives have been opened by the discovery of D-branes in
type II theories [7], which also support non-abelian gauge groups, even in a very flexible
way. Furthermore, gauge groups can also arise directly from the geometry of the compact
manifold.

We see that the modern approach to model building via compactifications involves
several ingredients. These include fairly complicated, curved compact spaces, as well as
localized objects like D-branes, which typically are taken intersecting among them. For
various reasons, to these one is also led to add other tools like orientifold planes, fluxes of
the higher-dimensional fields and non-perturbative quantum effects. Clearly, it is very hard
to have full control on all these ingredients at once, so that often one prefers to concentrate
on certain aspects of the whole picture. In this thesis, we will focus on the interrelations
between geometry and supersymmetry in compactifications of type II theories.

1.1 Compactifications, fluxes and generalized geometry

The idea that the unification of the fundamental interactions may be related with the
existence of supplementary spacetime dimensions is old, and dates back to the works of
Kaluza and Klein [8], who derived Einstein’s general relativity together with Maxwell’s
electromagnetism in four dimensions from a pure gravity action defined in five dimensions.
Furthermore, many supergravity theories in diverse dimensions are related by compact-
ification. In fact, since the early ages of supergravity, dimensional reductions have also
served as a powerful tool to construct lower-dimensional supergravity theories starting
from higher-dimensional ones, whose field content is simpler. A first, prominent example is
the Cremmer-Julia derivation of the complete 4d maximal N = 8 supergravity [9], starting
from eleven-dimensional supergravity [10].

In order to illustrate some general features of compactifications, we now briefly review
the Kaluza-Klein model in arbitrary dimension, following [11].

We wish to reduce a (d + 1)-dimensional theory of pure gravity to d dimensions, by
performing a compactification on a circle S1, of radius L. Calling y the coordinate along
the circle, the (d+1)-dimensional coordinates zM split as zM = (xµ, y), where M = 0, . . . , d
and µ = 0, . . . , d− 1. We start from the usual Einstein-Hilbert action for the metric field
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ĝMN(x, y):

Ŝ =
1

2κ̂2

∫
dd+1z

√
−ĝ R̂ ,

where the hat symbol denotes quantities in d+ 1 dimensions. Since the metric tensor has
to be periodic along the circle, we can expand it in Fourier series as

ĝMN(x, y) =
∑

n

g
(n)
MN(x) einy/L .

In principle we could simply substitute this into the action Ŝ, and integrate over the
compact space S1 in order to define a d-dimensional action. However, in doing this we
would obtain a theory containing an infinite number of fields, labeled by the Fourier mode
number n. In order to define a lower-dimensional theory with a finite number of fields,
we need to perform a truncation of the spectrum of ĝMN . The criterium to define the
truncation in this case is readily available. Indeed, it turns out that the modes of ĝMN with
n = 0 are massless from the d-dimensional viewpoint, while those with n 6= 0 are massive,
with a mass of the order of |n|/L. This can be seen by linearizing the Einstein equation
R̂MN = 0 for small fluctuations around the flat vacuum solution given by Minkowskid×S1:

〈ĝMN〉dzMdzN = ηµνdx
µdxν + (dy)2 ,

where here we are choosing 〈gdd〉 = 1. If we choose a circle with a very small radius L,
the states with n 6= 0 will be very massive, so that they can be neglected in a low energy
approximation. We conclude that one can define a truncation to d-dimensional massless
modes by taking all the fields independent of the compact coordinate y. Now, the most
convenient way to identify the field content of the d-dimensional theory is to parameterize
the generic higher-dimensional metric (independent of y) as

ĝMN(x)dzMdzN = e2αφ(x)gµν(x)dx
µdxν + e2βφ(x)(dy + A)2 ,

where A = Aµ(x)dxµ is a 1–form, and α and β 6= 0 are arbitrary constants. The vacuum
solution written above is obviously recovered setting 〈gµν〉 = ηµν , 〈A〉 = 0 and 〈eφ〉 = 1 .

Substitution in the higher-dimensional action Ŝ and integration over S1 yield the d-
dimensional action

S =
1

2κ2

∫
ddx
√−g

(
R− 1

2
(∂µφ)2 − 1

4
e−2(d−1)αφFµνF

µν

)
,

where the d-dimensional gravitational coupling constant is κ2 = κ̂2/2πL, and we defined
the field strength Fµν = 2∂[µAν]. Furthermore, in order to get canonically normalized
kinetic terms the constants α and β have been chosen appropriately in terms of d [11]. We
conclude that by reducing a theory of pure gravity on S1 one obtains a Maxwell-Einstein
theory, also involving a scalar field φ. From the metric ansatz above we see that the gauge
symmetry of the Maxwell field A → A + dλ(x) is inherited from the invariance under
x-dependent reparameterizations of the circle coordinate y.

Nowadays, the example illustrated here should be regarded just as a toy model, and
typically the techniques required in supergravity and string theory compactifications are
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much more involved (both because the higher-dimensional action is not just pure gravity,
and because the compactification manifold is not simply S1). However, in the following
we highlight a couple of points, which have general validity and will be important in the
remainder of this thesis.

As a first thing, we observe that if we wish that the higher-dimensional theory be
compactified to a lower-dimensional theory which has a finite number of fields (as it is
always the case), a truncation of the modes of the higher-dimensional fields on the internal
space is always required. We will call the prescription selecting the degrees of freedom to be
kept the truncation ansatz. In the example above, the appropriate truncation ansatz was
not hard to identify. However, in general, things are not that easy, and different approaches
can be adopted.

A physically well motivated prescription, relevant if one is interested in describing the
low-energy physics around a given ground state, is the so called Kaluza-Klein ansatz (see
e.g. [12] for a review), whose identification proceeds through the following steps:

i) choose a ground state of the higher-dimensional theory displaying a ‘spontaneous
compactification’, namely a solution which is a direct product of two independent spaces.

ii) linearize the higher-dimensional equations of motion by considering small field fluc-
tuations around the chosen vacuum, and identify the contributions to be interpreted as
mass terms from the lower-dimensional viewpoint. Generically, these mass terms will
include wave operators on the compact manifold, arising from the splitting of the higher-
dimensional kinetic terms in a 4d spacetime part and an internal part.

iii) expand the higher-dimensional fields in a basis of eigenmodes of the identified mass
operators; then truncate the spectrum, keeping just the lightest modes (typically, the
massless ones).

In our example, the truncation ansatz valid at linear order around the Minkowskid × S1

ground state has been easily extended to non-linear order simply by asking independence
of the circle coordinates, but already considering slightly more complicated spaces, like e.g.
higher-dimensional spheres, this step would become highly non-trivial, if not impossible.
As a consequence, in general the outcome of a Kaluza-Klein analysis is limited to a chosen
vacuum, and describes the physics of small field fluctuations around it.

A different approach to dimensional reductions would be to define a truncation ansatz
by requiring the preserved degrees of freedom to be invariant under some given symmetry.
For instance, one can demand invariance under the action of (a subgroup of) the isometry
group of the internal manifold. A typical case in which this alternative approach can be
pursued is a dimensional reduction on group manifolds or coset spaces. Notice that, since
S1 ∼= U(1), actually the simple dimensional reduction described above is an example of
this second approach as well: indeed, demanding independence of the internal coordinates
corresponds to keep only the singlets under the action of U(1). This kind of truncation
ansatz is not always physically motivated, in that the obtained lower-dimensional theory
does not necessarily capture the complete low energy physics. On the other hand, it is
independent of the choice of a vacuum, is perfectly well-defined from the mathematical
viewpoint, and has the advantage of yielding consistent reductions, where by definition a
reduction is called consistent if all solutions (not only the vacua) of the lower-dimensional
theory lift to solutions of the original, higher-dimensional theory. In this thesis we will
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discuss an explicit example of this second approach in chapter 5.

As a second point concerning our example above, let us consider the role of the scalar
field φ. If we restrict to linear order in the field fluctuations, this is a free, massless field,
whose propagation describes the variation of the size of the circle S1 along the d-dimensional
space. Its presence in the massless spectrum is not accidental, but is a consequence of the
fact that its vev, describing the size of the circle in the Minkowskid × S1 solution, is arbi-
trary. In fact, this is a characteristic feature of compactifications: it often happens that
the compactification background displays a continuous degeneracy, whose parameters are
called moduli; these include the allowed variations in shape and size of the compact mani-
fold. In particular, typically the supersymmetric Calabi-Yau string backgrounds mentioned
above come with a large number of moduli. In the lower-dimensional theory, the moduli
always appear as massless scalar fields. Now, from a phenomelogical perspective these are
unwelcome, and determine one of the major problems of compactifications, known as the
moduli problem. Indeed, these massless scalar fields would carry long range interactions,
which are not observed in the real world. Furthermore, the various couplings in the low
energy 4d effective action depend on the vevs of the moduli; since these are undetermined,
the theory loses most of its predictive power. It follows that string compactifications, and
specifically Calabi-Yau compactifications, will not be fully satisfactory until this problem
is solved.

A way out to the moduli problem would be to generate a non-trivial scalar potential
in the 4d action, having the twofold effect of stabilizing the vevs and of providing mass
terms for the moduli. In the last years, it has been realized that a promising mechanism to
generate a potential for the moduli can be obtained by considering string theory compacti-
fications with fluxes [13] (see [14, 15] for previous work). Since then, flux compactifications
have been the object of an intense research activity. Some very nice recent reviews on the
subject are [16, 17, 18].

Fluxes are associated with a nonvanishing background value of the p-form field-strengths
which are contained in the higher-dimensional supergravity theories (notice that, as far as
one takes the typical length of the compactification manifold well below the string scale ℓs,
it is justified to work in the supergravity approximation to string theory). More precisely,
let Fp be a p-form field strength, satisfying the Bianchi identity dFp = 0, and let Σp be a
non-trivial p-cycle of the compact manifold. Then one has a flux of Fp threading Σp if

∫

Σp

Fp = n 6= 0 .

As for Dirac’s magnetic monopole, fluxes are subject to quantization conditions, so that
in a quantum mechanical picture n can take just discrete values.

The reason why fluxes generate a 4d potential for the parameters controlling the com-
pact geometry is apparent by considering the kinetic term for the internal field strength
Fp in the higher-dimensional action. This reads

S =

∫

M4

. . .

∫

M6

F ∧ ∗F
︸ ︷︷ ︸

V

,
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Figure 1.1: A schematic representation of a compactification with fluxes.

where M6 is the compact manifold, and V is a function of the geometric moduli, since Fp

couples with the metric on the compact manifold through the Hodge-∗. In particular, the
potential V will depend on the parameters controlling the size of the cycles threaded by
the flux.

Moduli stabilization is not the only motivation for studying flux compactifications.
Indeed, fluxes are also naturally sourced by the spacetime-filling D-branes which are con-
sidered in the modern approach to realistic compactifications. Furthermore, non-vanishing
background values of the supergravity field strengths open new perspectives in the study
of the geometry of string theory vacua. Indeed, they yield a nonvanishing contribution to
the energy-momentum tensor of the higher-dimensional Einstein equation; it follows that
the empty-space Ricci-flatness condition is removed. For instance, Calabi-Yau manifolds
are no more available solutions (indeed, SU(3) holonomy implies Ricci-flatness). In some
cases the backreaction due to the fluxes is mild, and one can still work with an underlying
Calabi-Yau geometry [13], while in other situations it can be more drastic, and strongly
deform the compact geometry (see e.g. [19] for an early example). In order to achieve a
deeper understanding of the structure of string theory, and its relations with the lower-
dimensional world, it becomes therefore very interesting to explore, and eventually classify,
the possible compactifications with fluxes.

A systematic study of compactifications with fluxes is a challenging goal which requires
new mathematical techniques. For this task, supersymmetry is again a powerful ally.
Indeed, even though in the presence of fluxes the differential conditions for supersymmetric
backgrounds become more involved, still one finds interesting underlying structures. In
particular, one is led [20] to consider six-dimensional manifolds whose structure group
lies in SU(3) [21]. Manifolds with SU(3) structure share with Calabi-Yau manifolds the
existence of a globally defined and nowhere vanishing spinor, but are more general since
the latter needs not being covariantly constant in the Levi-Civita connection. This global
spinor is required in order to properly decompose the spinorial generators of the higher-
dimensional supersymmetry transformations.

Actually, type II theories – on which this thesis focuses – involve two spinorial pa-
rameters, so that there is also the possibility to employ a pair of internal spinors in the
decomposition associated with the compactification. This yields an enhanced freedom in
the study of compactifications preserving a minimal fraction of supersymmetry. As we will
discuss in detail in chapter 2, a suitable formalism for studying these compactifications is
provided by generalized geometry, introduced in the mathematical literature by Hitchin in
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2002 [22], and further developed in [23, 24, 25]. Generalized geometry deals with structures
defined on T ⊕ T ∗, the sum of the tangent and cotangent bundle of the compact manifold.

One of the main applications of the generalized geometry formalism in string theory
has been an elegant reformulation of the supersymmetry conditions for type II flux vacua
[26, 27]. These take the form of differential equations for the differential forms which
characterize the generalized geometry, and can in part be understood as an integrabil-
ity condition for structures on T ⊕ T ∗. Subsequent related work, employing generalized
geometry for the study of flux backgrounds, can be found in [28]–[40]. In physics, general-
ized geometry has also been applied to the study of supersymmetric worldsheet σ-models,
starting with [42, 43]; see e.g. [44] for a review of this topic.

In compactifications, the study of the ground state is usually understood as a first
(essential) step towards the determination of the lower-dimensional theory. At the level of
the action, the minimal amount of supersymmetry preserved by type II pure supergravity
compactifications is N = 2 in four dimensions. Reductions preserving just N = 1 are
possible if one adds further ingredients, like certain projections induced by localized sources,
relating the two ten-dimensional supersymmetry parameters. On the same footing as for
the background, the best studied case of compactification leading to an N = 2 supergravity
action in 4d again involves Calabi-Yau manifolds. As we will see, possible deformations
of the Calabi-Yau dimensional reductions can be studied using the tools of generalized
geometry. A program in this direction was started in [45] and pursued in [46], as a natural
consequence of the previous studies of reductions on SU(3) structure manifolds, pionereed
in [47].

In this thesis, we will build on this line of research to further study a general procedure
for truncating type II theories to N = 2 supergravity in four dimensions. As it is generically
the case when considering compactifications with fluxes, we will be led to study gauged
N = 2 supergravities, which as an essential feature involve a scalar potential.

1.2 Outline of the thesis

The main aim of this thesis is to study dimensional reductions of type II theories leading
to N = 2 supergravity in four dimensions. In doing this, we allow for a general set
of background fluxes. The principal tools that are employed throughout the work are
generalized geometry and gauged N = 2 supergravity.

The thesis is structured as follows.
We start in chapter 2 with an introduction to the mathematical notions necessary

for the analysis of the compactification. The spinor ansatz for dimensional reductions
preserving N = 2 in 4d leads us to discuss G-structures on the 6d compact manifold.
Then, by extending the notion of G-structure to the generalized tangent bundle T ⊕ T ∗,
we introduce Hitchin’s generalized geometry. In particular, we focus on the key notion of
SU(3)×SU(3) structure, which encodes all the NSNS degrees of freedom on the compact
manifold. In view of the study of the scalar kinetic terms in 4d, we consider the metric on
the parameter space of the internal NSNS fields. The latter can be reformulated in terms
of deformations of the O(6,6) pure spinors which characterize the SU(3)×SU(3) structure,
and this allows to highlight an underlying special Kähler geometry, defined locally on the
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internal manifold. This result, to which we give original contributions, parallels to some
extent the structure of the Calabi-Yau moduli space, which we also review.

In chapter 3 we turn to the study of type II compactifications on flux backgrounds
admitting SU(3)×SU(3) structure. We start with a brief review of the ‘democratic’ ver-
sion of type II supergravities [48], which is particularly suitable for generalized geometry
applications. We also discuss dimensional reductions on Calabi-Yau manifolds, which rep-
resent the model of reference for the subsequent developements. We illustrate the relation
between fluxes and gaugings.

The truncation of type II supergravity is implemented on general SU(3)×SU(3) struc-
ture backgrounds via the expansion of the higher-dimensional fields in a finite basis of
differential forms on the compact manifold. Compatibility with N = 2 supergravity in 4d
requires this basis to respect a restrictive set of geometrical constraints, which have been
identified in [45, 46, 49], and which we revisit. Then we fill a gap existing in the literature
by deriving via dimensional reduction the complete four-dimensional bosonic action. In
particular, we focus on the way its data are determined by generalized geometry, and we
establish various results.

First we deal with the reduction of the NSNS sector of type II supergravity. We make
the link with the space of deformations studied in the previous chapter. Then we study
the role of a B-twisted Hodge star operator, and in particular we show how its action on
the basis of forms generalizes to the SU(3)×SU(3) context the well-known expression for
the usual Hodge-∗ acting on the harmonic three-forms of a Calabi-Yau manifold. This
allows to derive a formula for the period matrices of the N = 2 special Kähler geometry.
Next we focus on the 4d scalar potential: we prove a formula expressing the internal Ricci
curvature in terms of the generalized geometry data, and we apply it to deduce a geometric
expression for the scalar potential. Once restated in terms of 4d variables, this gives back
the symplectically invariant and mirror-symmetric expression found in [50] by means of
purely 4d gauged supergravity methods.

In the last part of the chapter we move to the RR sector, with a focus on type IIA.
Instead of directly reducing the action, we choose to reduce the equations of motion. As
a consequence of a self-duality constraint, these can also be read as Bianchi identities.
The expansion of the democratic RR field on the internal basis automatically introduces
forms of all possible degrees in the 4d spacetime. We interpret a subset of the reduced RR
equations as 4d Bianchi identities; by their solution we define the 4d fundamental fields.
The remaining equations are seen as 4d equations of motion, from which we reconstruct
the reduced action.

In chapter 4 we illustrate further the consistency between the outcome of the dimen-
sional reduction and the formalism of gauged N = 2 supergravity. A consistent formulation
in the presence of a complete set of fluxes requires the introduction of tensor multiplets.
We focus on the quantities determining the gauging, whose associated charges are gener-
ated by the NSNS, RR and geometric fluxes. Then, starting from the expression of the
N = 2 Killing prepotentials, and using some general results about N = 2 supergravity
with tensor multiplets, we deduce the fermionic shifts in the 4d supersymmetry variations.

In the second part of the chapter we confront the 4d and 10d approaches to the N = 1
flux backgrounds. At the 10d level, we adopt the generalized geometry reformulation of
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the equations for an N = 1 vacuum found in [26, 27]. In order to perform a comparison
with the 4d supersymmetry conditions, we rephrase these equations in a 4d framework
performing the integral over the internal manifold. Next we derive the N = 1 vacuum
conditions within the 4d N = 2 theory, by imposing the vanishing of the fermionic shifts
under a single susy transformation. Exploiting the properties of special Kähler geometry,
we establish a precise matching with the integrated version of the pure spinor equations.
We also perform a similar study by considering the 4d N = 1 supergravity which arises as
a truncation of the previously analyzed N = 2 theory: we derive the expressions for the
superpotential and D-terms, and we impose the F-flatness and D-flatness conditions; again
we find precise correspondence with the 10d equations.

Finally, in chapter 5 we present some concrete examples of N = 2 compactifications,
based on coset spaces with SU(3) structure. To some extent, these can be seen as an appli-
cation of the general study done in the previous chapters. Thanks to the full control on the
geometry allowed by the coset structure, we can perform an explicit analysis. In particular,
we establish the consistency of the dimensional reduction based on a left-invariant trun-
cation ansatz. This gives a solid justification to the choice of the expansion forms. Then
we explore the supersymmetric and non-supersymmetric backgrounds associated with the
compactification, parameterizing the solutions in terms of the fluxes. Exploiting the con-
straints imposed by N = 2 supersymmetry, we study the string loop corrections to the 4d
scalar potential, and we perform a preliminary search of de Sitter extrema.

In chapter 6 we draw our final considerations.
We relegate some technical discussions to the appendix. Appendix A summarizes our

conventions. Appendix B gives some details about the Mukai pairing and the Clifford map
used in the generalized geometry computations. Appendix C discusses the relation between
the democratic and the standard formulation of type IIA supergravity, clarifying some sub-
tleties related to the presence of fluxes. Appendices D and E give the definition and some
properties respectively of special Kähler manifolds and of quaternionic-Kähler manifolds,
which play a central role in N = 2 supergravity. Finally, appendix F collects some details
of the coset space dimensional reductions discussed in chapter 5, and appendix G derives
the string loop corrections to the associated 4d, N = 1 vacua.

This thesis is based on the following papers:

[P1 ] D. Cassani and A. Bilal, Effective actions and N=1 vacuum conditions from
SU(3)× SU(3) compactifications, JHEP 0709 (2007) 076 [arXiv:0707.3125 [hep-th]].

[P2 ] D. Cassani, Reducing democratic type II supergravity on SU(3) × SU(3) structures,
JHEP 0806 (2008) 027 [arXiv:0804.0595 [hep-th]].

[P3 ] D. Cassani and A. K. Kashani-Poor, Exploiting N=2 in consistent coset reductions
of type IIA, Nucl. Phys. B 817 (2009) 25 [arXiv:0901.4251 [hep-th]].



Chapter 2

Generalized structures in type II
supergravity

In this chapter the needed mathematical notions are introduced. The spinor
ansatz for dimensional reductions preserving N = 2 in 4d leads us to discuss
SU(3)×SU(3) structures on the generalized tangent bundle. These conveniently
encode all the NSNS degrees of freedom on the internal manifold. In view of the
derivation of the lower dimensional scalar kinetic terms, we study deformations
of SU(3)×SU(3) structures, and discuss their special Kähler geometry.

2.1 Motivation

We are interested in dimensional reductions preserving a fraction of supersymmetry. As a
first consequence, we restrict our attention to internal spaces supporting spinors, namely
spin manifolds.1 Next, in order to determine the amount of supersymmetry preserved by
the compactification, we have to exhibit a truncation ansatz for the spinorial parameters
appearing in the higher dimensional supersymmetry transformations. Indeed, assuming a
spacetime topology of the form MD = Md ×MD−d (where Md is a Lorentzian spacetime
and MD−d is a Riemannian compact manifold), each of these parameters decomposes under
Spin(D − 1, 1) → Spin(d − 1, 1)×Spin(D − d), and its expansion in a given number of
internal spinors defines the possible susy parameters of the would-be lower dimensional
theory. Calling ǫ the higher dimensional susy parameter, its decomposition generically
reads

ǫ =
N∑

k=1

εk ⊗ ηk ,

where εk are (anticommuting) Spin(d− 1, 1) spinors on the d dimensional spacetime, and
ηk are (commuting) Spin(D − d) spinors on the compact manifold. The latter are usually
required to be globally defined, and have to satisfy some specified condition. The numberN
of independent spinors fulfilling such condition determines the number of independent lower

1A manifold M is spin if it admits a spin structure. This is possible if and only if M is orientable and
w2(T (M)) = 0, where w2 ∈ H2(M,Z2) is the second Stiefel-Whitney class. Examples of manifolds which
are orientable but not spin are provided by the even complex projective spaces CP

2n.
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dimensional supersymmetry transformations, with parameter εk. For instance, consider
the dimensional reduction of 11d supergravity on the torus T 7, leading to the maximal
4d N = 8 supergravity [9]. The Kaluza-Klein ansatz, guaranteeing a truncation to the
massless 4d fields only, prescribes a decomposition of the Majorana 11d susy parameter ǫ
in which the ηk are chosen to be constant. Since on T 7 there is the maximal number - i.e.
eight - of independent constant spinors, we see that precisely the eight 4d supersymmetry
parameters of N = 8 supergravity are defined.

Since now on we will focus on dimensional reductions of type II theory leading to
four dimensional supergravity. The higher dimensional spacetime M10 is chosen to be
topologically a product M10 = M4 × M6, where M4 is the 4d spacetime and M6 is an
‘internal’ 6d compact manifold. This implies a breaking of the local Lorentz SO(9,1)
invariance to SO(3,1)×SO(6). It follows that at each point of M10 the Spin(9,1) spinor
representation decomposes according to Spin(9,1)→ Spin(3,1)× Spin(6).

Our task is to study general type II compactifications preserving the minimal N = 2
off-shell supersymmetry in 4d. Let us call ǫ1 and ǫ2 the two supersymmetry parameters as-
sociated with the left-moving and the right-moving sector of the type II superstring. Their
expansion in a given number of internal Spin(6) spinors defines the 4d susy parameters.
The general spinor ansatz possibly preserving N = 2 in 4d is [45]

ǫ1(x, y) = ε1(x)⊗ η1
∓(x, y) + c.c.

ǫ2(x, y) = ε2(x)⊗ η2
+(x, y) + c.c. , (2.1)

where x and y are coordinates on M4 and M6 respectively, and the upper/lower sign in the
first line refer to type IIA/IIB. The Spin(3,1) Weyl spinors ε1, ε2 have positive-chirality,
and parameterize the eight supercharges of 4d N = 2 local supersymmetry. In our choice of
the spinor algebra conventions (see appendix A.3 for a detailed account), if ε is a Spin(3,1)
Weyl spinor with positive chirality (γ5ε = ε), then its complex conjugate ε∗ is again a
Weyl spinor, with negative chirality. The Spin(6) spinors in eq. (2.1) are Weyl spinors;
η1

+ has positive chirality, while η1
− ≡ (η1

+)∗ has negative chirality, and analogously for η2
±

(again, we refer to appendix A.3 for details). It follows that the Spin(9,1) spinors ǫ1, ǫ2 are
Majorana-Weyl, as required by type II supergravity. Note that ǫ1 has negative/positive
chirality respectively for type IIA/IIB, while ǫ2 has always positive chirality.

Ansatz (2.1) includes as a particular case the spinor decomposition associated with
compactifications on Calabi-Yau 3–folds, which is obtained by taking η1

+ = η2
+ ≡ η+,

where η+ is the unique (up to constant rescalings) covariantly constant spinor with positive
chirality existing on any Calabi-Yau manifold. See section 2.3 for an introduction to Calabi-
Yau geometry. However, ansatz (2.1) is more general than the the Calabi-Yau one, since
η1

+ and η2
+ are not necessarily proportional; moreover, at this stage we don’t require the

internal spinors to satisfy any differential condition. The only condition we impose is that

η1
+, η2

+ be globally defined and nowhere vanishing on the compact manifold M6.

This ensures that the reduction ansatz is everywhere well-defined. As we will discuss
below, this is a non-trivial topological requirement, constraining the structure group of
the compact manifold M6. It allows to employ the formalism of G-structures, reviewed in
section 2.2 below, for a systematic study of flux compactifications.
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Clearly, the existence of globally defined nowhere vanishing spinors alone does not
automatically imply the dimensional reduction to yield an N = 2 supergravity. For this
to be possible, further conditions need to be imposed. While these further constraints
will be discussed in chapter 3, in this chapter we study the general consequences arising
by the mere existence of the globally defined nowhere vanishing spinors η1 and η2. We
will see in subsection 2.2.2 that any globally defined nowhere vanishing chiral spinor η+

on M6 identifies a subgroup SU(3) of the generic structure group SU(4)∼= Spin(6) of the
principal spin bundle, and this determines an SU(3) structure on M6, meaning that the
transition functions of the frame bundle are constrained to lie in SU(3)⊂ SU(4). One
therefore deduces that the decomposition (2.1) implies the existence of a pair of SU(3)
structures (namely, two different embeddings of SU(3) in SU(4)), one for each of the two
globally defined spinors η1

+, η2
+. Now, different situations can occur, corresponding to the

different possible intersections of the two SU(3) subgroups of Spin(6). If the spinors η1
+ and

η2
+ are everywhere parallel, then the two SU(3) subgroups actually coincide, determining

what we will call a strict SU(3) structure on M6. However, generically we will consider the
two spinors being independent almost everywhere, and becoming parallel at some points:
in this situation locally η1

+ and η2
+ identify an SU(2) subgroup of SU(4), but this fails at

the points where the spinors become linearly dependent. Nowhere parallel η1
+ and η2

+ select
an SU(2) everywhere on M6, defining in this way an SU(2) structure.2

In section 2.4 we will see how the aforementioned different situations concerning the
internal spinors can be conveniently described in a unified fashion by considering gener-
alized structures on TM6 ⊕ T ∗M6, the sum of the tangent and the cotangent bundles of
M6. After having introduced and reviewed the relevant notions of the generalized structure
formalism, in the second part of section 2.4 we will discuss how the spinor ansatz (2.1) can
be associated with the existence of an SU(3)×SU(3) structure on TM6 ⊕ T ∗M6. As we
will illustrate, SU(3)×SU(3) structures also provide an useful description of the full NSNS
sector of type II supergravity on the compact manifold. In section 2.5 we turn to study
deformations of SU(3)×SU(3) structures, investigating their special Kähler geometry prop-
erties. In particular, having in mind the application to the problem of compactifications,
to be implemented in chapter 3, we establish the relation between the deformation space
of SU(3)×SU(3) structures, and the space of parameters of a metric g and a 2–form b on
M6. Section 2.6 closes the chapter with an overview and further comments.

2.2 G-structures

Motivated by the above arguments, we now start introducing the mathematical notions
that we’ll need in the next chapters to study compactifications of type II theories. While
we save the study of generalized structures for the second part of this chapter, in this
section we focus on a prerequisite, namely the notion of G-structure.

Starting from [20, 47, 52], over the last few years the G-structure formalism has been
fruitfully applied to flux compactifications. In particular, [47] pionereed the use of this
technology to approach the problem of deriving the 4d effective actions associated with

2In this last case the spinor ansatz (2.1) might also be extended to possibly define N = 4 compactifi-
cations, since each of the 10d susy parameters can be decomposed on either η1

+ and η2
+, see e.g. [51].
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Figure 2.1: On the left: The generic structure group of the frame bundle of a Riemannian
manifold Md is O(d). Its action sends the orthonormal frame at a point of a patch into the
corresponding orthonormal frame on an overlapping patch. On the right: a simple example of
reduction of the structure group, induced by the existence of a globally defined nowhere vanishing
vector. Frames can be chosen in such a way that the vector takes the same form everywhere; this
constrains the transition functions on patch overlaps to lie in O(d− 1).

certain non-Calabi-Yau compactifications. In the context of flux compactifications, the
main advantage of the G-structure formalism is that it allows for a systematic analysis.
This is made possible by the fact that the various higher dimensional fields, including the
fluxes, decompose in irreducible representations of the structure group G characterizing
the G-structure on the internal manifold. It follows that the terms in the equations of
motion and/or in the supersymmetry conditions transforming differently under G decouple,
and can be considered separately. This clearly facilitates the analysis and provides a
classification of the possible solutions.3

It is time to come to the proper definition of a G-structure. Recall first that the
frame bundle of a d-dimensional manifold M is the principal bundle over M whose fibre
at any point p ∈ M is made of all ordered bases - the frames - of the tangent space TpM .
Generically the fibre can be identified with GL(d,R).

Now, let G be a Lie subgroup of GL(d,R). Then a G-structure on M is a principal
subbundle of the frame bundle, with fibre G. In other words, we have a G-structure when
the generic GL(d,R) structure group of the frame bundle is reduced to a subgroup G. We
see that the notion of G-structure is topological in nature.

Several well-known geometric structures on Md can be seen as G-structures. This is
related to the fact that reductions of the generic GL(d,R) structure group are characterized
by the existence of tensors on Md which are globally defined and nowhere degenerate.
Indeed, given a globally defined non-degenerate tensor, frames can be chosen in such a way
that this takes the same fixed form everywhere on the manifold. This amounts to state
that the tensor is invariant under the action of the transition functions gluing the frames
on two overlapping patches of Md. The transition functions are then constrained to be in
a subgroup G of GL(d,R), and a G-structure is determined.

3See e.g. [16] for a review of these applications of the G-structure formalism. A more mathematically
oriented, but still pedagogical, discussion of G-structures can be found in [58]. Both these reviews discuss
generalized geometry as well.
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Riemannian manifold. For instance, if Md admits a Riemannian metric g, on each
patch frames can be chosen in such a way that in frame indices g reads as the identity
matrix. This condition is preserved just by the transition functions of the frame bundle
living in O(d) ⊂GL(d,R), hence an O(d) structure is determined. The converse is also
true: a reduction of the GL(d,R) structure to O(d) amounts to fix a Riemannian metric.

In the following we discuss further examples of the correspondence betweenG-structures
and interesting global non-degenerate tensors on Md. All our examples are summarized in
table 2.1. Figure 2.1 depicts the notion of O(d) structure, and its further reduction due to
a globally defined nowhere zero object (in the case of the figure, a vector).

Oriented manifold. A globally defined and nowhere zero d–form on Md (i.e. a volume
form) is the same as an SL(d,R) structure. This fixes an orientation for Md. If the volume
form is associated with a Riemannian metric, then we have a further reduction to an SO(d)
structure.

Parallelizable manifold. The maximal possible reduction, i.e. a trivial {e}-structure,
corresponds to the trivialization of the frame bundle induced by a global frame. A manifold
with trivial frame bundle is called parallelizable. Beside all the Lie groups, an example of
parallelizable manifold which is particularly relevant for supergravity compactifications is
the 7–sphere S7.

Almost symplectic manifold. A non-degenerate real 2–form J determines an Sp(d,R)
structure. Non-degeneracy requires d even.4 Setting n = d/2, a volume form is then de-
termined by

vold =
1

n!
Jn , (2.2)

where Jn = J ∧ . . . ∧ J︸ ︷︷ ︸
n times

.

Almost complex manifold. An almost complex structure on Md is a globally defined
map

I : TMd → TMd such that I2 = −1 . (2.3)

A necessary condition for its existence is that the dimension of the manifold be even:
d = 2n. I splits the complexified tangent bundle TM ⊗C into +i and −i eigenbundles, of
equal complex dimension n; vector fields of these subbundles are called of type (1, 0) and
type (0, 1) respectively. This decomposition implies that the structure group of the frame
bundle is reduced to GL(n,C). Indeed, given an n × n complex matrix transforming the
(1, 0)–frames on patch overlaps, the transformation of the (0, 1)–frames is determined by
the complex conjugate matrix.

From the (1, 0)– and (0, 1)–vectors, by duality one can define the (1, 0)– and (0, 1)–
forms on T ∗M ⊗C, and then build (p, q)–forms by wedging. Calling Ωk(M,C) the space of
complex k–forms on M , and Ω(p,q)(M) the space of (p, q)–forms, one has the decomposition

Ωk(M,C) =
⊕

p+q=k

Ω(p,q)(M) .

4The symplectic group Sp(2n,R) is the Lie group of real 2n × 2n matrices A preserving the matrix
S =

(
0 1n

−1n 0

)
, i.e. satisfying ATSA = S. Its dimension is n(2n+ 1).
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Global, non-degenerate tensors G-structure

Riemannian metric g O(d)

volume form SL(d,R)

volume form associated with g SO(d)

global frame {e}
real 2–form J (⇒ d even) Sp(d,R)

almost complex structure I (⇒ d even) GL(d/2,C)

decomposable d/2–form Ω (⇒ d even) SL(d/2,C)

J and I, with ITJI = J and g := JI > 0

I and g, with ITgI = g (⇒ J = −gI)
g and J, with JTg−1J = g (⇒ I = −g−1J)





U(d/2)

J and Ω, with J ∧ Ω = 0 and g := JI > 0 SU(d/2)

Table 2.1: G-structures on a d-dimensional manifold Md induced by globally defined non-
degenerate tensors. One can also think in the other way around: given a G-structure, one
or more invariant tensors are determined.

In particular, it follows that locally one can always define an (n, 0)–form, but in general
this won’t be a global section of ∧(n,0)T ∗M . If this is the case, the GL(n,C) structure
is further reduced to SL(n,C). Indeed, an (n, 0)–form is left invariant precisely by the
GL(n,C) transformations having unit determinant.

Actually, the existence of a global, non-degenerate, complex decomposable5 n–form
Ωn already determines an SL(n,C) structure. It follows that Ωn has to define an almost
complex structure I on Md, with respect to which it is of type (n, 0). For d = 6 (the case
of interest for us) the explicit formula for I is [53]

Im
n = 4

ReΩ3 ∧ dym ∧ ι∂n
ReΩ3

iΩ3 ∧ Ω̄3

, (2.4)

where at each point of Md we define the ratio of two top–forms by the ratio of their unique
elements.

Almost hermitian manifold. This corresponds to a U(n) structure, where again the
dimension of M is d = 2n. Since U(n) is the intersection of the groups GL(n,C), O(2n) and
Sp(2n,R), this structure incorporates a Riemannian metric g, an almost complex structure
I and an almost symplectic structure J . Actually,

U(n) = GL(n,C)∩O(2n) = O(2n)∩ Sp(2n,R) = Sp(2n,R)∩GL(n,C)

(see figure 2.2 for a pictorial representation). It follows that two out of the three tensors I, g
and J determine the remaining one, provided a certain compatibility condition is satisfied.

5A p–form is decomposable if locally it can be written as the wedging of p complex 1–forms.
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Figure 2.2: The intersection of two of the three groups GL(n,C), O(2n), Sp(2n,R) is equal
to the intersection of all the three, and coincides with U(n).

Hence we have three possible ways to define a U(n) structure via invariant tensors, see
table 2.1. Here we discuss the case in which I and J are given. The compatibility relation
they have to satisfy is

ITJI = J . (2.5)

This says that J is (1, 1) with respect to I and, together with (2.3), implies that the tensor

g := JI (2.6)

is symmetric. In order to have a U(n) structure, and not a U(p, n − p) one, we also need
to require that g be positive, i.e. that it is a Riemannian metric.

Note that g is automatically hermitian:

ITgI = g .

SU(n) structure. If the almost complex structure I of an almost hermitian 2n-
dimensional manifold is determined by the globally definite, non-degenerate, decomposable
n–form Ωn introduced above, then the U(n) structure is further reduced to SU(n). The
compatibility relation (2.5) can now be rephrased as

J ∧ Ωn = 0 . (2.7)

Indeed, since Ωn is (n, 0) with respect to I, eq. (2.7) is equivalent to say that the real
2–form J is (1, 1). One also imposes the top-form normalization condition

(−1)n(n−1)/2(i/2)nΩn ∧ Ωn = Jn/n! ≡ vol2n , (2.8)

which is also another way of stating the non-degeneracy of J and Ωn.
SU(n) structures (or subgroups thereof) are particularly interesting for supergravity

applications, because they imply the existence of globally defined and nowhere vanishing
spinors. In the forthcoming subsection 2.2.2 we discuss in detail the 6-dimensional case.
Before however we introduce the concept of integrability.
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2.2.1 Integrability

The geometric structures discussed above are all topological notions. To the ones denoted
with ‘almost’ it is possible to associate a differential geometric notion, holding if a certain
integrability condition is satisfied. The latter is a differential condition on the tensors defin-
ing the structure, and can be seen as a vanishing torsion requirement for the corresponding
G-structure (see e.g. [54] for details). If the integrability equation is satisfied, then one
can drop the ‘almost’ in the denomination of the geometric structure. In particular:

• a symplectic manifold is an almost symplectic manifold with dJ = 0.

• A complex manifold is an almost complex manifold whose associated Nijenhuis tensor,
defined as

N p
mn := Ip

q∂[mI
q
n] + ∂qI

p
[mI

q
n] ,

vanishes.

• Further, a hermitian manifold is an almost hermitian manifold with integrable almost
complex structure.

• If also the almost symplectic structure J of a hermitian manifold is integrable (namely,
closed), then we have a Kähler manifold. In this case, J is called the Kähler form. A
Kähler manifold has holonomy Hol(g) ⊆U(n). An important property characterizing
Kähler manifolds is their metric can locally be derived from a Kähler potential K via
the relation gi̄ = ∂i∂̄K (here i, ̄ label complex coordinates on the manifold).

• Finally, a compact manifold admitting a torsionless SU(n) structure is a Calabi–Yau
n-fold; as it will be discussed further for n = 3 in the next subsection, the no-torsion
requirement is expressed in terms of J and Ωn by

dJ = 0 , dΩn = 0 ,

and coincides with the usual SU(n) holonomy condition. We will give more details
on Calabi-Yau geometry in the forthcoming subsection 2.3.

2.2.2 SU(3) structures and spinors

In view of the applications to supergravity, we are interested in manifolds supporting
spinors. A first result in this sense, involving G-structures, is the following [54, prop.3.6.2]:
suppose that a manifold M of dimension d ≥ 3 admits a G-structure, where G is a con-
nected, simply-connected subgroup of SO(d). Then M is spin.

In the following we will consider just manifolds satisfying these requirements, so that
the spin property doesn’t need to be imposed separately.

Actually, as discussed in section 2.1, we wish to study compact six dimensional mani-
folds admitting at least one globally defined nowhere vanishing spinor. It is at this point
that G-structures, in particular SU(3) structures, enter into the game in an essential way.
Indeed, the existence of a globally defined and nowhere vanishing spinor is equivalent to a
reduction of the structure group to SU(3). To see this, assume we have a global non-zero



2.2 G-structures 21

spinor η+, with positive chirality. In order to discuss spinors, we have to preliminarly re-
quire an SO(6) structure – i.e. a metric and an orientation – to be defined on Md ; then the
structure group of the spin bundle is the double cover of SO(6), i.e. Spin(6) ∼= SU(4), and
positive chirality spinors transform in its fundamental representation on patch overlaps.
By a suitable choice of frame, we can set η+ = (0, 0, 0, z)T everywhere. Then the SU(4)
elements leaving η+ invariant are of the form

(
U 0
0 1

)
, the 3 × 3 matrix U being in SU(3).

Conversely, suppose an SU(3) structure is defined on M6. The fundamental representation
of SU(4) decomposes under SU(3) as 4→ 3⊕1. The fact that the decomposition contains
a singlet means that there is an invariant spinor η+. Because η+ is invariant, it has to
be globally defined and nowhere vanishing. Of course the same argument applies to the
conjugate spinor η− = η∗+, this time starting from the 4̄ of SU(4).

The method of decomposing a given SO(6) representation in irreps of the structure
group G ⊂ SO(6) in order to identify the invariant objects is general, the latter always
corresponding to the singlets of the decomposition. For instance, the forms J and Ω3

introduced above (in the following Ω3 will be called simply Ω) correspond to the singlets
appearing in the decomposition under SU(3) respectively of the 15 and of the 20 antisym-
metric tensor representations of SO(6).

Since the spinor η+, together with a metric g, determines an SU(3) structure, then it
has to define J and Ω too. Indeed, assuming η†+η+ = 1, these are given by the bilinears

Jmn = −iη†+γmnη+ , Ωmnp = −iη†−γmnpη+ . (2.9)

Notice that the metric g plays a role here, since it enters in the definition of the gamma-
matrices with curved indices. In section A.4 of the appendix we collect some further
relations satisfied by the SU(3)-structure invariant objects.

The decomposition in irreducible representations of SU(3) can also be used to classify
the different possible SU(3) structures. This is done evaluating the intrinsic torsion of
the SU(3) structure, defined as the measure of the failure of J and Ω to be closed.6 The
decomposition of dJ and dΩ in SU(3) irreps yields five torsion classes Wi [21]:

dJ =
3

2
Im(W̄1Ω) +W4 ∧ J +W3

dΩ = W1 ∧ J ∧ J +W2 ∧ J + W̄5 ∧ Ω , (2.10)

where W1 is a complex scalar, W2 is a complex primitive (1,1)–form (primitive means
W2∧J ∧J = 0), W3 is a real primitive (1,2) + (2,1)–form (primitive⇔ W3∧J = 0), W4 is
a real 1–form, and W5 is a complex (1,0)–form. The Wi transform differently under SU(3)
(see e.g. [16] for more details), and classify the SU(3) structure. For instance, recalling
the definitions of subsection 2.2.1, we see that an SU(3) structure manifold is

• symplectic if W1 = W3 = W4 = 0;

• complex when W1 = W2 = 0. Indeed, if the manifold is complex then dΩ has to be a
(3,1)–form; it follows that in eq. (2.10) only the term containing W5 is allowed, the

6The intrinsic torsion can equivalently be defined as the failure of the spinor η+ to be covariantly
constant in the Levi-Civita connection.
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other two being (2,2). The converse is also true, i.e. the vanishing of the (2,2) terms in
dΩ sets to zero the Nijenhuis tensor associated with the almost complex structure I.

• Kähler if W1 = W2 = W3 = W4 = 0.

• Finally, a Calabi-Yau 3–fold is a compact manifold admitting an SU(3) structure
with vanishing torsion: Wi = 0 ∀i.

In chapter 5 we will discuss explicit constructions of SU(3) structures on coset spaces,
having W3 = W4 = W5 = 0.

2.3 Calabi-Yau manifolds and their moduli space

Before moving to the study of generalized structures, we consider in more detail the geom-
etry of Calabi-Yau n-folds. Compactification on Calabi-Yau 3-folds represents by far the
best studied case of dimensional reduction of type II theory leading to N = 2 supergravity.
For this reason, in the next chapter we will use it as a guiding example for developing
dimensional reductions on more general spaces.

2.3.1 Definition and properties

Above we introduced Calabi-Yau 3–folds as compact 6-dimensional manifolds admitting
an SU(3) structure with vanishing torsion. This characterization can be generalized to
arbitrary even dimension, and is equivalent to the following definition, close to the one
given in [54, 55]: let M be a compact Kähler manifold of complex dimension n, with
complex structure I and Kähler metric g. Then (M, I, g) is a Calabi-Yau n-fold if g has
SU(n) holonomy.

In the following it will always be understood that the holonomy coincides with the full
group SU(3), and not a subgroup thereof.

The SU(n) holonomy condition implies that the Kähler metric is Ricci-flat. If the
manifold is simply connected, the converse is also true.

Moreover, Ricci-flatness implies the vanishing of the first Chern class c1(M), which on
compact Kähler manifolds (M, I, g) with Ricci tensor Rmp(g) can be seen as the cohomology
class of the Ricci form, divided by 2π:

c1(M) =

[
1

2π
R
]
, where R =

1

2
Rmndy

m ∧ dyn, with Rmn = RmpI
p
n .

The converse statement follows from a conjecture formulated by Calabi in 1954, and even-
tually proved by Yau in 1976 in a celebrated theorem. The latter implies that if M is a
compact complex manifold with c1(M) = [0] ∈ H2(M,R), then every Kähler class on M
contains a unique Ricci-flat Kähler metric.7 Beside explaining the naming ‘Calabi-Yau’,

7The Kähler class [J ] ∈ H1,1(M,R) is the cohomology class of the Kähler form J . In complex co-
ordinates µ, ν, the Kähler form and the Kähler metric are related by Jµν̄ = igµν̄ . Concerning complex
coordinates, see the remark below eq. (2.12).
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this property also justifies an alternative definition which is often adopted, by which a
Calabi-Yau n-fold is a compact Kähler manifold of vanishing first Chern class.

Below we collect some further well-known facts about Calabi-Yau manifolds.
A Calabi-Yau n-fold admits a globally defined, nowhere vanishing, covariantly constant

holomorphic (n, 0)-form Ωn, that is unique up to multiplication by a non-zero complex
number. Imposing relation (2.8) fixes Ωn up to a constant overall phase.

We see therefore that Calabi-Yau n-folds admit an SU(n) structure (J,Ωn) such that
dJ = 0 and dΩn = 0. The converse is also true: for n = 3, we saw above that an SU(3)
structure manifold with dJ = 0 and dΩ = W̄5 ∧ Ω is Kähler, hence it has U(n) holonomy.
If on top of this W5 = 0, i.e. Ω is closed, then one has a reduction of the holonomy to
SU(3) (or a subgroup thereof). Analogous arguments hold for n 6= 3.

The SU(3) invariant spinor η+ associated with the torsionless SU(3) structure is covari-
antly constant, i.e. it satisfies

Dmη+ = 0 .

Finally, we briefly recall the cohomology properties of Calabi-Yau 3–folds. As we will
review in section 3.2, these play a crucial role in determining the lower dimensional effective
theory arising from string compactification on Calabi-Yau manifolds.

On any Kähler manifold M , the de Rahm cohomology groups decompose in Dolbeault
cohomologies Hp,q(M). Their dimensions are the Hodge numbers hp,q, arranging in the
Hodge diamond (here presented for a manifold of complex dimension n = 3)

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

.

By complex conjugation, one has hp,q = hq,p, and by Poincaré duality hp,q = h3−p,3−q.
Furthermore, one always has h0,0 = h3,3 = 1. For a Calabi-Yau 3-fold the Hodge diamond
is restricted even further. Provided the 3–fold has strict SU(3) holonomy, it takes the form

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(2.11)

The fact that h3,0 = 1 means that there exists a unique (up to constant rescalings) holo-
morphic (3,0)–form.
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2.3.2 The moduli space of Calabi-Yau 3-folds

Knowledge of the possible metric deformations of a given class of manifolds is crucial
in compactifications of higher dimensional gravity theories. Indeed, in this context the
parameters describing the space of possible internal metrics are promoted to dynamical
scalar fields propagating along the uncompactified directions. Hence, the moduli space of
the metric on the compact manifold is interpreted as a target space in which the scalars
take value. The metric on the moduli space provides then the kinetic terms for these
scalars.

In the following we give a brief account of the results presented in the classic paper [56],
where the moduli space of Calabi-Yau 3–foldsM is shown to locally split in a product of two
factors, respectively describing deformations of the complex structure and of the Kähler
structure on M . Both these factors display a special Kähler structure, meaning that the
the geometry is governed by a Kähler potential which is itself determined by a certain
holomorphic function, named the prepotential. As we will see, here differential forms, and
in particular the cohomology representatives, play a crucial role in describing the metric
deformations of a Calabi-Yau manifold.

We start observing that, once a given topology is assigned, the local structure of the
moduli space of Calabi-Yau 3-folds can be explored by deforming the Ricci-flat Calabi-Yau
metric g, and requiring that Ricci-flatness be preserved, i.e.

Rmn(g + δg) = 0 .

At first order in the deformation, this condition takes the form

∇p∇pδgmn + 2R p q
m n δgpq = 0, (2.12)

known as the Lichnerowicz equation. This is best seen in complex coordinates. In this
section, and only here, we will label the complex coordinates on the Calabi-Yau manifold
M6 with greek letters µ, ν, . . . (while in the remainder of the thesis, these label real coordi-
nates on the 4d spacetime). In complex indices, (2.12) splits in two independent equations
for the ‘pure type’ metric deformations δgµν and the ‘mixed type’ deformations δgµν̄ . One
finds that

• δgµν satisfies (2.12) if and only if the complex (2,1)–form

δχ := −1

4
δgµ̄ν̄ Ων̄

κλdȳ
µ̄ ∧ dyκ ∧ dyλ (2.13)

is harmonic.

• δgµν̄ satisfies (2.12) if and only if the real (1,1)–form

δJ = iδgµν̄dy
µ ∧ dȳν̄ (2.14)

is harmonic.
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While δgµν̄ clearly corresponds to a deformation of the Kähler class,8 δgµν is associated
with a variation of the complex structure of the Calabi-Yau. Indeed, the only way to
recast the new metric gµν̄ + δgµν in hermitian form is by a non-holomorphic coordinate
transformation, which is allowed only if the complex structure is modified.

We deduce that the moduli space locally splits in a tensor product of two subspaces,
respectively associated with complex structure deformations and with Kähler structure
deformations. Since the solutions of the Lichnerowicz equation are in one-to-one corre-
spondence with the complex elements of H2,1(M) and the real elements of H1,1(M), we
conclude that these two independent parameter spaces have real dimensions 2h2,1 and h1,1

respectively.
Next we wish to study the metric on the moduli space of Calabi-Yau 3–folds. As we

will discuss in detail in the next chapter (see section 3.2 and the beginning of section 3.4),
in compactifications of 10d supergravity the fluctuations of the metric g come in pair with
the fluctuations of the NS 2–form b, and the kinetic terms for the associated 4d scalars are
defined by the σ-model metric

ds2 =
1

8
∫
vol6e−2φ

∫

M6

vol6e
−2φgmpgnq(δgmnδgpq + δbmnδbpq) . (2.15)

This expression can be understood as a metric on the space of metrics and b-fields living
on the compact manifold M6. When compactifying on a Calabi-Yau manifold (see sec-
tion 3.2 for details), the dilaton φ is taken constant along M6, and δb is required to be
harmonic, necessarily of type (1,1) since h2,0 = 0. Hence (2.15) can be rewritten in complex
coordinates as

ds2 =
1

4Vol

∫

M

vol6 g
κµ̄gλν̄

[
δgκλδgµ̄ν̄ + (δgκν̄δgλµ̄ + δbκν̄δbµ̄λ)

]
, (2.16)

where Vol =
∫
vol6. Neglecting the term in δb, this is a metric on the moduli space of

Calabi-Yau manifolds. Notice that it is block diagonal, the two blocks corresponding re-
spectively to a metric on the complex structure and on the Kähler class deformation spaces.
The term involving δb can be incorporated by considering variations of a complexified ver-
sion of the Kähler form, namely b+ iJ . The associated parameter space has real dimension
2h1,1. In the following we look deeper into the geometric structure of each of these two
independent deformation spaces, which we call Mcs and Mks respectively.

The complex structure deformations

Let us first consider the piece in (2.16) associated with the complex structure deformations,
i.e. the metric on Mcs. One can show that this can be written as

1

4Vol

∫
vol6 g

κν̄gµλ̄ δgκµδgλ̄ν̄ = −
∫
δχ ∧ δχ̄∫
Ω ∧ Ω̄

, (2.17)

where δχ was defined in (2.13). Calling zi, i = 1, . . . , h2,1 the complex coordinates on Mcs,
we can write δχ = χiδz

i, where the χi = −1
4

∂gµ̄ν̄

∂zi Ων̄
κλdȳ

µ̄ ∧ dyκ ∧ dyλ form a basis for H2,1.

8Indeed (recalling that Jµν̄ = igµν̄) a harmonic deformation δJ = iδgµν̄ dy
µ ∧ dyν̄ obviously changes

the cohomology class of the Kähler form J .
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Therefore, in coordinates the metric on Mcs – call it G cs
i̄ – reads

G
cs
i̄ = −

∫
χi ∧ χ̄̄∫
Ω ∧ Ω̄

. (2.18)

In order to proceed, we need to introduce the Kodaira formula, stating that the variation
of the holomorphic (3,0)–form Ω(z) with respect to the complex structure moduli zi reads

∂Ω

∂zi
= κiΩ + χi i = 1, . . . , h2,1, (2.19)

where κi are coefficients which can depend on z but not on the coordinates of M6, and the
χi coincide with the ones introduced here above. Using (2.19), and recalling that the χi

are of type (2,1), one finds for (2.18):

G
cs
i̄ = − ∂

∂zi

∂

∂z̄ ̄
log i

∫
Ω ∧ Ω̄ . (2.20)

This relation states that Mcs is Kähler, with Kähler potential

Kcs = − log i

∫
Ω ∧ Ω̄ . (2.21)

It can be shown that actually Mcs is a Kähler manifold of special type. To see this, it
is convenient to parameterize Mcs via the periods of the holomorphic (3,0) form Ω. Let
(AI , BJ), I, J = 0, . . . , h2,1 a canonical basis for the homology H3(M,Z), and (αI , β

J) the
dual cohomology basis for H3(M), such that

∫

AJ

αI =

∫

M

αI ∧ βJ = δJ
I ,

∫

BI

βJ =

∫

M

βJ ∧ αI = −δJ
I . (2.22)

Notice that αI and βJ are real forms. Then the periods of Ω are defined as

ZI :=

∫

AI

Ω =

∫

M

Ω ∧ βJ , GI :=

∫

BI

Ω =

∫

M

Ω ∧ αI , (2.23)

and it turns out that GI = GI(Z). Hence we dispose of h2,1 + 1 parameters ZI to describe
a space of dimension h2,1. We notice that a rescaling ZI → λZI by a non-zero λ just
corresponds to a rescaling Ω→ λΩ, and that this does not modify the complex structure.
It follows that the ZI are projective coordinates for Mcs, and that Ω is homogeneous of
degree 1 in these coordinates. A set of coordinates zi on Mcs is defined via zi = ZI/Z0,
for a non-vanishing Z0. The dependence of Ω on the ZI can be read from the expansion

Ω = ZIαI − GI(Z)βI , (2.24)

inferred from (2.23). Notice that, since the basis 3–form (αI , β
I) are defined only up to a

symplectic rotation, the periods (ZI ,GI)
T form a symplectic vector.

From (2.19) it follows that ∫
Ω ∧ ∂Ω

∂ZI
= 0 .
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Substituting (2.24), this yields

GI = ZJ ∂

∂ZI
GJ =

1

2

∂

∂ZI
(ZJGJ) =

∂

∂ZI
G ,

where

G ≡ 1

2
ZIGI .

Thus the GI are derivatives of a function G(Z), which is homogeneous of degree 2 and goes
under the name of the prepotential. This terminology is due to the fact that G determines
the Kähler potential. Indeed, substituting the expansion (2.24) in (2.21), one finds

Kcs = − log i
(
Z̄IGI − ZI ḠI

)
, where GI =

∂G
∂ZI

. (2.25)

An n-dimensional Kähler manifold admitting projective coordinates ZI(z), I = 0, 1, . . . , n,
and for which there exists a holomorphic function G(ZI) of homogeneity degree 2, de-
termining the Kähler potential via a relation of the form (2.25), is called special Kähler.
Sometimes the specification local is added, in order to distinguish this geometry from the
rigid special Kähler geometry which governs the scalar manifolds in rigid supersymmetry.
In appendix D we provide a more intrinsic definition of a local special Kähler manifold,
as well as several notable relations that will be useful in the next chapters. Some of these
relations are expressed in terms of the period matrix of special Kähler geometry, relating
the upper and lower components of the symplectic vector (ZI ,GI)

T . Naming it M, its
definition is

GI =MIJZ
J , DkGI =MIJDkZ

J , (2.26)

where the Kähler covariant derivative Dk acts on the periods as Dk = ∂zk +∂zkKcs . M can
be computed from the prepotential, using formula (D.5). As we will see in next chapter,
M is also an important ingredient of the compactification, and it appears explicitly in the
4d effective action.

The Kähler structure deformations

We have just seen that the space Mcs of complex structures on a Calabi-Yau manifold is
special Kähler. As we now briefly recall, again following [56], the same geometric structure
exists on the parameter space Mks of cohomology classes of the complexified Kähler form

t := b+ iJ .

Let ωa , a = 1, . . . , h1,1 be a real basis for H1,1(M), and expand

b = baωa , v = vaωa ⇒ t = taωa ≡ (ba + iva)ωa . (2.27)

Typically for the ωa one chooses the harmonic representatives of the H1,1 cohomology
classes. The h1,1 complex parameters ta can be seen as complex coordinates on Mks. Now,
the block of the metric (2.16) corresponding to the metric on Mks can be rewritten as

1

4Vol

∫

M

vol6 g
κµ̄gλν̄(δgκν̄δgλµ̄ + δbκν̄δbµ̄λ) =

1

4Vol

∫

M

δt ∧ ∗δt̄ , (2.28)
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depending just on the cohomology class of δt [71]. Hence, with δt = δtaωa, the coordinate
form of the metric on Mks – call it G ks

ab – is

G
ks
ab =

1

4Vol

∫
ωa ∧ ∗ωb . (2.29)

This is a Kähler metric, as it can be derived from the Kähler potential

Kks := − log
4

3

∫
J ∧ J ∧ J (2.30)

via

G
ks
ab =

∂

∂ta
∂

∂t̄b
Kks . (2.31)

The 4/3 factor in Kks doesn’t play any role in the derivation of G ks
ab , and in chosen just for

consistency with the rest of the discussion below.
The manifold Mks is actually special Kähler. In order to see this, one defines a set

of projective coordinates XA = (X0, Xa) (hence A = 0, 1, . . . , h1,1), related to the ta via
ta = Xa/X0. As we will see in the next chapter, in the context of string compactifications
it is natural to identify X0 with e−φ, where φ is the dilaton. However, at this stage X0 can
be considered just as a redundant coordinate, useful to exhibit the special Kähler structure
of Mks. Next one introduces the following function F , holomorphic and homogeneous of
degree 2 in the XA:

F(X) := − 1

3!
Kabc

XaXbXc

X0
, (2.32)

where the Kabc, known as the triple intersection numbers, are defined as

Kabc :=

∫
ωa ∧ ωb ∧ ωc . (2.33)

It is now easy to see that Kks given in (2.30) is precisely reproduced by

Kks = − log i
(
X̄AFA −XAF̄A

)
, where FA =

∂F
∂XA

, (2.34)

and with X0 set to one after differentiation. We conclude therefore that – by the same
token of the complex structure moduli space Mcs – the complexified Kähler structure
moduli space Mks is a special Kähler manifold; its prepotential is the function F , whose
explicit form is given in (2.32).

Again one can introduce a period matrix, which this time we denote by N , defined as

FA = NABX
B , DaFB = NBCDaX

C , (2.35)

where here the Kähler covariant derivative is Da = ∂ta + ∂taKks . The matrix N can be
computed from the prepotential F via eq. (D.5) (translated in the notation for Mks).

This very symmetric structure between the two factors composing the moduli space of
Calabi-Yau manifolds was the main hint suggesting mirror symmetry [57], a duality stating
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that for every Calabi-Yau manifold M there exists a ‘mirror’ Calabi-Yau W having the
complex structure and the Kähler structure moduli spaces interchanged:

Mcs(M) = Mks(W ) , Mks(M) = Mcs(W ) . (2.36)

This implies that if M has Hodge diamond (2.11), with assigned h1,1 and h2,1 numbers,
then the Hodge diamond of W has the h1,1 and h2,1 numbers interchanged. In other words,
mirror symmetry acts on the Hodge diamond as a reflection along its diagonal.

2.4 Generalized structures

As discussed in section 2.1, the spinor ansatz (2.1) for N = 2 reductions requires the
existence of a pair of SU(3) structures onM6, one for each of the two globally defined spinors
η1, η2. In particular, we have two pairs I1, J1 and I2, J2 of almost hermitian structures,
related to the same Riemannian metric g by (2.6). It turns out that these data can be
conveniently repackaged in certain objects defined on TM6⊕T ∗M6, the sum of the tangent
and the cotangent bundles of M6 (generalized tangent bundle in the following). These
objects can be seen as arising from the extension of the standard concept of G-structure to
the generalized tangent bundle, and for this reason we will speak of generalized structures.

Generalized geometry, studying structures on T ⊕ T ∗, has recently been introduced
in a mathematical context by Hitchin [22], and further developed in [23, 24, 25]. Its
formalism was first employed in the derivation of 4d N = 2 supergravities from type II
compactifications in ref. [45]. A physicists’ review of generalized geometry can be found
in [33] (see also [16, 58]). Further related references have been given in section 1.1.

One of the main purposes of this thesis is to study the problem of compactifications
taking the point of view of generalized geometry. In the following of this section we
provide a basic introduction to generalized structures, focusing on the aspects that are
more relevant for this task. Most of the mathematical results we present can be found
in the original works [22, 23]. While they are generically valid for any even dimensional
manifold, here we will restrict to the six-dimensional case.

The bundle TM6 ⊕ T ∗M6 is automatically endowed with an O(6,6) structure. Indeed,
take two vector fields v, w and two 1–forms ζ, ξ on the manifoldM , and build the generalized
vector fields X = v + ζ and Y = w+ ξ on TM ⊕ T ∗M . Then a natural symmetric pairing
I between X and Y is

I(X, Y ) := ξ(v) + ζ(w) = ξmv
m + ζmw

m . (2.37)

Representing a generalized vector in coordinates as (vm, ξm)T , the corresponding matrix
form of I is

I =

(
0 16
16 0

)
. (2.38)

The metric I is globally defined and non-degenerate. Having (6, 6)-signature, it determines
an O(6, 6) structure on TM6 ⊕ T ∗M6.
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A key observation is that the group of O(6, 6) transformations preserving the metric
I contains, beside the diffeomorphisms, a transformation involving a 2–form b, acting on
TM ⊕ T ∗M as

v + ζ 7→ v + ζ + ιvb . (2.39)

This natural incorporation of a 2–form in the generalized geometry formalism is one of
the reasons which make it particularly suitable for string theory applications, where b is
identified with the NS 2–form (sometimes called the B-field in the following).

Analogously to the case of G-structures, reductions of the generic O(6, 6) structure
on the generalized tangent bundle can be induced by globally defined and non-degenerate
objects acting on tensor products of TM6 ⊕ T ∗M6. We call generalized structures such
reductions.

The first reduction we consider is associated with the notion of generalized almost
complex structure. By definition, this is a map

J : TM ⊕ T ∗M → TM ⊕ T ∗M

satisfying
J 2 = −1T⊕T ∗ , (2.40)

as well as the orthogonality condition with respect to I:

J TIJ = I . (2.41)

The analogy with a standard almost complex structure is apparent, and indeed J shares
several features with the latter. For instance, a generalized almost complex structure has
±i eigenvalues, and splits (TM6⊕T ∗M6)⊗C in +i and −i eigenbundles. Furthermore, ob-
structions for finding a generalized almost complex structure J are the same as the ones for
finding a standard almost complex structure I [23, prop. 4.15]. A generalized almost com-
plex structure reduces the structure group on TM6⊕T ∗M6 to U(3, 3) = O(6, 6)∩GL(6,C).
There also exists an integrability condition for J , which, if satisfied, makes the manifold
M generalized complex. This condition can be expressed in terms of the Courant bracket,
replacing the usual Lie bracket for vector fields. Since we will not really need this last
notion in the following, we refer e.g. to [23, 33] for details on this point.

2.4.1 Making up generalized structures

Now, the data contained in the almost hermitian structures I1, J1 and I2, J2, as well as –
this is the bonus of generalized geometry – in the internal NS 2-form b, can all be encoded
in a pair of generalized almost complex structures. Indeed, it is readily checked that each
of the two matrices

J Λ
± Σ =

1

2

(
1 0

−b 1

)( −I1 ± I2 −J−1
1 ∓ J−1

2

J1 ± J2 IT
1 ∓ IT

2

)(
1 0

b 1

)
(2.42)

satisfies (2.40), (2.41). The writing J−1 denotes matrix inversion, and does not involve the
metric on M6. Here and in the following, the indices Λ,Σ = 1, . . . , 12 label the tangent
and cotangent space coordinates; they are raised and lowered with the O(6,6) metric IΛΣ.



2.4 Generalized structures 31

In the case in which J1 = J2 ≡ J , I1 = I2 ≡ I, i.e. when M6 has strict SU(3) structure,
J± in (2.42) reduce to the simpler form (here we also choose b = 0)

J+ =

(
0 −J−1

J 0

)
, J− =

( −I 0

0 IT

)
. (2.43)

We see therefore that the notion of generalized almost complex structure includes as spe-
cial cases the concept of standard almost complex structure as well as the one of almost
symplectic structure. It can also be shown [23] that integrability of J+ and J− in (2.43)
is equivalent to the integrability respectively of J and I discussed in subsection 2.2.1. We
conclude that generalized complex geometry incorporates, and treats on the same footing,
both complex and symplectic geometry. Actually, it can also smoothly interpolate between
the two, as shown in [23, sect. 4.6] via a 4d example based on the K3 surface.

Let’s come back to the J± in (2.42). These define a metric on T⊕T ∗: indeed, observing
that

[J+,J−] = 0 , (2.44)

and recalling (2.40), (2.41), we see that the generalized tensor

G := −IJ+J− (2.45)

is symmetric. Recalling (2.6), from (2.42) we find

G = −IJ+J− =

(
1 −b
0 1

)(
g 0

0 g−1

)(
1 0

b 1

)
=

(
g − bg−1b −bg−1

g−1b g−1

)
, (2.46)

which is positive definite thanks to the positive-definiteness of g.

2.4.2 Extracting data from generalized structures

We have thus seen how the two U(3) structures associated with the spinor ansatz (2.1),
together with the NS 2–form b, can be repackaged in a pair of generalized almost complex
structures, defining a positive definite metric on T ⊕ T ∗. A logically converse approach
would be to define the two U(3) structures, as well as b, via the introduction of generalized
tensors determining the appropriate reduction of the generic O(6,6) structure group on
T ⊕ T ∗. In the following we briefly review how this is achieved. Table 2.2 summarizes
all the various progressive reductions we mention; while in the text we discuss just the
six-dimensional case, there we assume a generic even dimension d for Md.

A positive definite metric G on TM6 ⊕ T ∗M6 satisfying the compatibility condition

GI−1G = I (2.47)

defines a reduction of the O(6,6) structure on TM6 ⊕ T ∗M6 to its maximal compact sub-
group O(6)×O(6). Indeed, (2.47) says that I−1G squares to 1, and therefore splits the
generalized tangent bundle into the two 6d eigenbundles C± associated with its ±1 eigen-
values. Since G is positive definite, again from (2.47) we see that I is positive on C+ and
negative on C−, and this fixes the O(6)×O(6) structure. It can be shown that G always
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Non-degenerate tensors Generalized structure

natural maximally indefinite metric I O(d, d)

generalized almost complex structure J U(d/2, d/2)

globally defined pure spinor Φ SU(d/2, d/2)

positive generalized metric G, with GI−1G = I O(d)×O(d)

J+, J−, with [J+,J−] = 0 and G := −IJ+J− > 0 U(d/2)×U(d/2)

compatible pure spinors Φ+ , Φ− SU(d/2)×SU(d/2)

Table 2.2: Generalized structures on TMd⊕ T ∗Md, for d even, and the associated globally
defined non-degenerate objects. In the main text, we discuss the case d = 6.

takes the form (2.46), where again b is a 2–form, while g is a metric on M6, positive defi-
nite thanks to the assumed positive-definiteness of G. Hence, an O(6)×O(6) structure on
TM6 ⊕ T ∗M6 is equivalent to a metric on M6, together with a B-field.

On the other hand, we saw above that a generalized almost complex structure J induces
a reduction of the generic O(6,6) structure on TM ⊕ T ∗M to U(3, 3). The simultaneous
presence of a positive generalized metric G and of J , satisfying J TGJ = G, yields a
reduction to the maximal compact subgroup U(3)×U(3) ⊂U(3, 3). This can equally well
be described by a compatible pair of generalized almost complex structures J+,J−, where
compatibility means that

i) J+,J− satisfy (2.44), and

ii) the generalized metric G constructed via (2.45) is positive definite.

Now, an U(3)×U(3) structure is equivalent to a pair of U(3) structures on M6, together
with a B-field. Indeed, firstly g and b can be read from (2.45). Secondly, it was shown in
[23] that J± can always be put in the form (2.42), where (Ik, Jk), k = 1, 2, define two almost
hermitian structures, satisfying g = J1I1 = J2I2. These two almost hermitian structures
degenerate into a single one when J+,J− are of the form (2.43).

2.4.3 Description via pure Spin(6,6) spinors: the polyform picture

Generalized almost complex structures can alternatively be described in terms of pure
Spin(6,6) spinors. This alternative representation will lead us to discuss the eventual re-
duction of the T ⊕ T ∗ structure group we are interested in, namely the SU(3)×SU(3)
structure. This is the most relevant for our purposes, since it determines two SU(3) struc-
tures on M6, and therefore a pair of globally defined nowhere vanishing Spin(6) spinors
η1, η2. It also encode the full NSNS sector of type II supergravity.

As a first thing, we recall that the Spin(6,6) spinors are isomorphically mapped to
sections of ∧•T ∗M6, the bundle of forms of mixed degree (polyforms since now on) on M6.
Let X = v+ζ ∈ Γ(TM⊕T ∗M) be a generalized vector field, where, in a standard notation,
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by Γ(E) we denote the space of sections of any given bundle E. Then a Clifford action on
any C ∈ ∧•T ∗M is realized by

X · C = (ιv + ζ∧)C . (2.48)

This is a Clifford action in that it satisfies

(X · Y + Y ·X) · C = I(X, Y )C . (2.49)

As a consequence, the Cliff(6,6) gamma matrices ΓΛ locally can be identified with the
coordinate basis of TpM ⊕ T ∗pM :

ΓΛ =

(
dym∧
ι∂m

)
, {ΓΛ,ΓΣ} = IΛΣ . (2.50)

The Spin(6,6) spinor representation decomposes in two irreducible Weyl representations,
and this is reflected in the splitting ∧•T ∗ = ∧evenT ∗ ⊕ ∧oddT ∗. In this way, an even/odd
form of mixed degree can be regarded as a Weyl spinor of Spin(6,6) with positive/negative
chirality.

A bilinear product between polyforms A,C ∈ ∧•T ∗M6 can be defined through the
Mukai pairing 〈 , 〉 :

〈A ,C〉 :=
[
λ(A) ∧ C

]
top

, (2.51)

where [ ]top picks the 6-form component, while the involution λ acts on a k–form Ak as

λ(Ak) = (−)[ k+1

2
]Ak . (2.52)

In six dimensions 〈 , 〉 is antisymmetric. Further properties are collected in appendix B.
Since it yields a top form, and not a scalar, the Mukai pairing does not exactly corre-

spond to a bilinear product between two Spin(6,6) spinors. The reason can be traced back
to the fact that the isomorphism between the Spin(6,6)-bundle and the bundle of forms
is not canonical, in that it requires the choice of a volume form on M6 (see for instance
[23, 45] for more details). In order to map the result of the Mukai pairing to a scalar, one
has to mod out by a chosen volume form (which exists since we assume the manifold M6

is orientable).
As already mentioned, a prominent role in relation with the generalized almost complex

structures is played by pure Spin(6,6) spinors. In order to define pure spinors, we need
to introduce the notions of isotropic subbundle and of annihilator space. A subbundle
L ⊂ T ⊕T ∗ is isotropic if for any pair of sections X, Y of L one has I(X, Y ) = 0. L is said
maximally isotropic if its fibre has the maximal possible dimension, which is 6 since I has
(6,6) signature. The first isotropic subbundle we are interested in is the annihilator space
LΦ of a complex Spin(6,6) spinor Φ, defined by

LΦ := {X ∈ (T ⊕ T ∗)⊗ C : X · Φ = 0 } , (2.53)

where isotropy follows directly from (2.49). Now, by definition we say that Φ is a pure
spinor if its annihilator space LΦ is maximally isotropic.
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We can now state the relation between complex pure spinors Φ and generalized almost
complex structures J . The key feature to be remarked is that any J is uniquely determined
by its +i eigenbundle, and that this is a maximally isotropic subbundle of (T ⊕ T ∗) ⊗ C.
Isotropy is showed recalling (2.41): indeed, for any pair X, Y of generalized vectors in the
+i eigenbundle of J , one has

I(X, Y ) = I(JX,J Y ) = I(iX, iY ) = −I(X, Y ) .

The isotropic subbundle is maximal since its rank (namely, the dimension of its fibre) is
half the one of (T ⊕ T ∗)⊗ C.

A correspondence between Φ and J is then established by identifying the annihilator
LΦ of Φ with the +i eigenbundle of J . Since the annihilator LΦ determines Φ modulo
rescalings, one actually has a one-to-one correspondence between generalized almost com-
plex structures and complex line bundles of pure spinors; in other words, J defines a pure
spinor modulo rescalings. Moreover, at each point of M6, the pure spinor generating the
complex line has to satisfy the condition 〈Φ, Φ̄〉 6= 0.

An explicit formula for J in terms of Φ that will be useful in the following is [22, 45, 33]

J Λ
Σ = −4

〈ReΦ,ΓΛ
ΣReΦ〉

i〈Φ, Φ̄〉 , (2.54)

where ΓΛΣ denotes the antisymmetrized product of two Cliff(6,6) gamma matrices, and
again the T ⊕ T ∗ indices Λ,Σ are raised and lowered with the metric I. In order to see
that J does not depend on complex rescalings of Φ, one should remark that 〈Φ,ΓΛΣΦ〉 = 0
[22], which implies for the numerator of (2.54):

2〈ReΦ,ΓΛΣReΦ〉 = 〈Φ,ΓΛΣΦ̄〉 .

Beside playing the role of a normalization factor offsetting the real rescalings of Φ, the
denominator of (2.54) also ensures that J doesn’t depend on the choice of the volume
form for M6.

If the line bundle of pure spinors has a global section, i.e. if there is a globally defined
pure spinor, then the U(3, 3) structure group on T ⊕ T ∗ determined by the corresponding
J is reduced to SU(3, 3). This is analogous to the SL(3,C) ⊂GL(3,C) reduction we
discussed in section 2.2. Indeed, there we saw that an almost complex structure I reduces
the generic GL(6,R) structure group of M6 to GL(3,C), and also determines a (3,0) form
Ω, in general only modulo a complex function and hence locally (since on patch overlaps
we are allowed to perform a complex rescaling of Ω). If Ω is instead globally defined, then
we have a further reduction, to SL(3,C). The analogy with the present situation is clear:
J reduces the generic T ⊕ T ∗ structure group O(6, 6) to U(3, 3) = O(6, 6)∩GL(6,C), and
also determines Φ, modulo rescalings. If Φ is globally defined, then one has the reduction
to SU(3, 3). The example involving I and Ω is actually a particular case of this more
general construction, see J− in (2.43) and Φ− in (2.65).

Above we characterized an U(3)×U(3) structure on TM6⊕T ∗M6 via a compatible pair
of generalized almost complex structures J+,J−. Thanks to the correspondence between
generalized almost complex structures and line bundles of pure spinors, an U(3)×U(3)
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structure is equivalently specified by a pair of pure spinors Φ+ and Φ−. Seen as polyforms,
these are sections of (∧evenT ∗)⊗C and (∧oddT ∗)⊗C respectively (so that Φ+ has positive
Spin(6, 6) chirality, while Φ− has negative chirality), satisfying the compatibility relation
[23, 45]

〈Φ+, X · Φ−〉 = 0 = 〈Φ̄+, X · Φ−〉 ∀X ∈ Γ(T ⊕ T ∗) , (2.55)

which is the equivalent of (2.44) – see [35] for a proof. As above, we also require positive-
definiteness of the generalized metric G defined via (2.45). Finally, at each point of M6

the generators of the pure spinor lines need to satisfy 〈Φ±, Φ̄±〉 6= 0. If these conditions
are satisfied, then we say that Φ+,Φ− are compatible (since so are the generalized almost
complex structures J+,J− they determine).

We eventually come to the last generalized structure we wish to introduce, namely the
SU(3)×SU(3) structure, which will be the one of main interest for our purposes. If both
the pure spinor line bundles defining the U(3)×U(3) structure admit a global section, i.e. if
both Φ± are globally defined, then the structure group of TM6⊕T ∗M6 is further reduced to
SU(3)×SU(3). In our definition of SU(3)×SU(3) structure we also include the requirement

〈Φ+, Φ̄+〉 = 〈Φ−, Φ̄−〉 . (2.56)

The pure spinors Φ± are invariant under the action of the SU(3)×SU(3)⊂ Spin(6,6) struc-
ture group they identify, much as a globally defined Spin(6) chiral spinor η± is invariant
under the action of SU(3)⊂ Spin(6).9

An SU×SU(3) structure specifies an SU(3) structure inside each of the two U(3) struc-
tures on M6, and therefore provides two globally defined nowhere vanishing Spin(6) chiral
spinors η1

+, η
2
+, which we employ in our spinor ansatz (2.1) for type II compactifications.

We will discuss further the relation between Spin(6,6) pure spinors and standard Spin(6)
spinors in the next subsection.

Concerning the bosonic degrees of freedom, if an U(3)×U(3) structure already provided
a metric g and a B-field b, the fact that now the pure spinors are globally defined fixes the
missing datum to complete the NSNS sector of type II supergravity, namely the dilaton.
Recalling the comment below eq. (2.52), we define the norm ||Φ|| of a pure spinor Φ by

||Φ||2 vol6 := i〈Φ, Φ̄〉 , (2.57)

where the volume form vol6 we choose in order to extract a scalar from the Mukai pairing
is the natural one associated with the metric g determined by J±. Then the non-zero
equal norms (recall (2.56)) of Φ± define a nonvanishing real scalar function all over M6.
We relate this with the dilaton φ, as follows10

||Φ±||2 = 8e−2φ . (2.58)

We remark that the pure spinor norm is completely independent of J±, and hence of G.
9In the case of η we didn’t need to explicitly ask for purity, since in 6d any chiral spinor is pure.

10More generally, this function can be associated with a combination of the dilaton and the warp factor,
see e.g. [37, 41]. In this thesis, however, the warp factor is always assumed to be trivial. This also justified
by the fact that a non-trivial warp factor appears to explicitly break the N = 2 description to N = 1 [37].
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2.4.4 Spin(6,6) pure spinors and Spin(6) bispinors

In order to make explicit the correspondence between the Spin(6,6) pure spinors Φ+,Φ−
defining an SU(3)×SU(3) structure and the data (g, b, φ, η1

±, η
2
±) on M6, we now review a

direct way to build the former in terms of the latter [26, 28, 27]. This exploits the (vec-
tor space) isomorphism between the exterior algebra of ∧•T ∗M6 and the Clifford algebra
Cliff(6), implemented by the Clifford map “/”:

C =
∑

k

1

k!
Cm1...mk

dym1 ∧ . . . ∧ dymk ←→ /C =
∑

k

1

k!
Cm1...mk

γm1...mk , (2.59)

where the antisymmetrized products of gamma matrices γm1...mk form a basis for Cliff(6).
Notice that the metric g already enters here, since it is needed in order to define the
gamma matrices with curved indices (actually it was already needed for introducing Spin(6)
spinors). Now, out of η1

+, η
2
± one can build the bispinors

�Φ0
± := 8e−φη1

+ ⊗ η2†
± , (2.60)

and map them to polyforms Φ0
± using first the Fierz identity

η1
+ ⊗ η2†

± =
1

8

6∑

k=0

1

k!

(
η2†
± γmk...m1

η1
+

)
γm1...mk , (2.61)

and then (2.59) backwards: �Φ0
± → Φ0

±. In (2.60) we assume the spinors are normalized:

η1†
± η

1
± = η2†

± η
2
± = 1 , (2.62)

and the factor of 8 is introduced just for convenience (it offsets the 1/8 in (2.61)). It is not
difficult to see that Φ0

+ is an even polyform, while Φ0
− is odd. Furthermore, it turns out

that Φ0
± define a compatible pure spinor pair (we will discuss their annihilators in section

2.5. See [33] for further details). Using the image (B.8) of the Mukai pairing under the
Clifford map, one can also see that their norms are equal and satisfy (2.58):

i〈Φ0
± , Φ̄0

± 〉 = 8e−2φ ||η1
±||2||η2

±||2 vol6 = 8e−2φvol6 . (2.63)

We deduce that Φ0
± identify an SU(3)×SU(3) structure on the generalized tangent bundle.

Actually, one can define in this way any SU(3)×SU(3) structure with vanishing b–field.
The latter can be introduced, without losing any of the previous features, by defining the
B-transformed spinors

Φ± = e−bΦ0
± , (2.64)

where e−b ≡ 1 − b + 1
2
b ∧ b − 1

6
b ∧ b ∧ b acts by wedging. In particular, thanks to the

property (B.2) of the Mukai pairing, this transformation does not change the pure spinor
norm. This exhausts the construction of general compatible pure spinor pairs in terms of
(g, b, φ, η1

±, η
2
±).

One can then work out the form of Φ± for the cases of interest. The simplest case is when
there’s just a strict SU(3) structure on M6, i.e. when η1 and η2 are proportional everywhere
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on M6. Taking η1
+ = eiαη+, η

2
+ = eiβη+ for some (possibly coordinate dependent) phase

factors α and β, and recalling relation (2.9) between η± and the SU(3) invariant forms J
and Ω, one gets

Φ+ = s+e
−b−iJ , Φ− = s−Ω , (2.65)

where s+ = e−φ+i(α−β) and s− = −ie−φ+i(α+β) are functions on M6. The pure spinor
compatibility (2.55) reads

J ∧ Ω = 0 = b ∧ Ω , (2.66)

stating that both J and b have to be of type (1,1), while conditions (2.56)–(2.58) become

i

8
Ω ∧ Ω̄ =

1

6
J ∧ J ∧ J = vol6 , (2.67)

which is (2.8) with the choice n = 3. From (2.43), one can also see that in this case
expression (2.54) for J− reduces to (2.4). We conclude that when η1

+ = η2
+, the compatible

pure spinor pair defined by (2.60), (2.64) is equivalent to the SU(3) structure defining forms
introduced in section 2.2, together with the additional data of b and φ.

In the general situation where η1
+ and η2

+ are not proportional, the Φ± obtained starting
from (2.60) can be expressed in terms of the forms characterizing the underlying local
SU(2) structure on M6; we refer e.g. to [33] for details. Further developements on explicit
constructions of general compatible pure spinor pairs can be found in [32, 38, 39].

The ‘bispinor picture’ just described, in which Φ0
± are seen as in (2.60), has the clear

advantage of showing explicitly the way in which the two SU(3) factors of SU(3)×SU(3)
act on the pure spinors: one from the left on η1, the other from the right on η2. The η’s,
and therefore Φ±, are invariant under this action. In the next section we will see that
the same picture for the action of SU(3)×SU(3) can be extended to the whole space of
complex polyforms, which in general transform non-trivially. Thanks to this manageability,
the bispinor picture is often convenient in concrete computations. Some technical details
on this purpose are reported in appendix B. In particular, eq. (B.8) illustrates how to
evaluate the Mukai pairing via bispinors. As an application of this technology, at the
end of appendix B we perform an instructive exercise, checking that the generalized almost
complex structures defined by the pure spinors (2.64) via formula (2.54) correspond exactly
to the matrices J± provided in (2.42).

A final remark is in order. The 2–form b appearing in (2.64) is supposed to be globally
defined. However, this cannot be the case if its field strength H = db is cohomologically
non-trivial, a circumstance of obvious interest for our applications to flux compactifications.
This situation can be taken into account by replacing the generalized tangent bundle made
by the sum of T and T ∗ by an extended bundle where T ∗ is non-trivially fibered over
T , and where on patch overlaps one allows b-shifts by gauge transformations [22, 23, 46].
However, at least for our purposes, this more complicated construction can be avoided by
splitting H as H = Hfl + db, where Hfl is a fixed representative of the cohomology class
of H (‘fl’ stands for ‘flux’), and it is understood that both b and Hfl are globally defined.
The b defined here is identified with the one appearing in (2.64), while the flux piece Hfl

does not enter in the pure spinors (it will be part of a ‘twisted differential’ d−Hfl∧ acting
on them, see subsection 3.3.5).
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2.5 Deformations of SU(3)×SU(3) structures

In this section we study deformations of compatible pure spinors, hence of SU(3)×SU(3)
structures. In particular, we are interested in the SU(3)×SU(3) structure deformations
affecting the generalized metric G. In the context of compactifications, to be explored in
next chapter, the metric on the space of these deformations defines the kinetic terms of
the 4d scalars parameterizing the space of both the internal metrics and b-fields. With
restriction to the strict SU(3) structure case, a similar analysis has been performed in
ref. [45]. Our contribution, developed in [P1, P2], was to extend the results of that paper,
working with a general SU(3)×SU(3) structure on TM6 ⊕ T ∗M6.

11 The mainstay of our
discussion will be Hitchin’s result about the special Kähler geometry property of the space
of pure spinor deformations at a point of M6, discussed in subsection 2.5.2 below.

2.5.1 The generalized diamond

The space of complex Spin(6,6) spinors, or equivalently, the space of complex polyforms
(∧•T ∗M6)⊗C, decomposes in irreducible representations of the subgroup SU(3)×SU(3)⊂
Spin(6, 6) defined by the compatible pair Φ+,Φ−. This is analogous to what seen in sub-
section 2.2.2 when discussing SU(3) structures on M6, where we had a decomposition of
the Spin(6) spinor representation in irreps of the SU(3) subgroup identified by a globally
defined nowhere vanishing ordinary spinor η+. As we will discuss in next subsection, this
decomposition of the space of polyforms is an useful tool for classifying the pure spinor
deformations we wish to analyze.

Following [46], we call Ur,s the subbundle of (∧•T ∗M6)⊗C whose polyforms transform
in the (r, s) representation of SU(3)×SU(3), and we organize the different representations
in a generalized diamond [23, 59]12

U1,1̄

U1,3 U3̄,1̄

U1,3̄ U3̄,3 U3,1̄

U1,1 U3̄,3̄ U3,3 U1̄,1̄

U3̄,1 U3,3̄ U1̄,3

U3,1 U1̄,3̄

U1̄,1

(2.68)

An important difference with respect to the usual (p, q)-decomposition of complex differ-
ential forms is that here the Ur,s are made of forms of mixed degree. It turns out that the
even and the odd polyforms transform differently under SU(3)×SU(3), i.e. the polyforms
in each Ur,s have definite parity. We have:

U1,1̄ ⊕ U1,3̄ ⊕ U3̄,3 ⊕ U3,1̄ ⊕ U3̄,1 ⊕ U3,3̄ ⊕ U1̄,3 ⊕ U1̄,1 = (∧evenT ∗M6)⊗ C

U1,3 ⊕ U3̄,1̄ ⊕ U1,1 ⊕ U3̄,3̄ ⊕ U3,3 ⊕ U1̄,1̄ ⊕ U3,1 ⊕ U1̄,3̄ = (∧oddT ∗M6)⊗ C .

11See also ref. [37] for an independent analysis, focused on N = 1 supergravity.
12

1̄ refers to the singlet coming from the decomposition under SU(3) of the 4̄ of Spin(6).
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The SU(3)×SU(3) singlets Φ±, Φ̄± occupy the vertices of the diamond. More concretely,
Φ+ spans U1,1̄ while Φ− spans U1,1.

For vanishing b, the SU(3)×SU(3) structure is defined by the Φ0
± given in (2.60). In

this case, an explicit local basis for the whole decomposition (2.68) can be built [27, 33]
by exploiting the correspondence between differential forms and bispinors provided by the
Clifford map (2.59). Indeed, starting from the lowest/highest weight states Φ0

± and Φ̄0
±, and

acting in the bispinor picture with holomorphic/antiholomorphic Cliff(6) gamma matrices
(to be seen as lowering/raising operators), one can reconstruct the whole decomposition
of the space of complex polyforms under SU(3)×SU(3). More specifically, recalling that
the two SU(3) factors of SU(3)×SU(3) act respectively from the left and from the right
on the bispinors �Φ0

± = 8e−φη1
+ ⊗ η2†

± , one defines an action of γi1 , γ ı̄1 from the left and of
γi2 , γ ı̄2 from the right, where γi1 (respectively, γi2) is holomorphic13 with respect to the
almost complex structure I1 (I2) associated with η1

+ (η2
+). Then the 6 annihilators of the

pure spinor �Φ0
+ are

→
γ i1 and

←
γ ı̄2 , while �Φ0

− is annihilated by
→
γ i1 and

←
γ i2 . The conjugate

gamma matrices act as creators. The resulting basis is [33]

Φ0
+

Φ0
+γ

i2 γ ı̄1Φ0
+

Φ0
−γ

ı̄2 γ ı̄1Φ0
+γ

i2 γi1Φ̄0
−

Φ0
− γ ı̄1Φ0

−γ
ı̄2 γi1Φ̄0

−γ
i2 Φ̄0

−
γ ı̄1Φ0

− γi1Φ̄0
+γ

ı̄2 Φ̄0
−γ

i2

γi1Φ̄0
+ Φ̄0

+γ
ı̄2

Φ̄0
+

(2.69)

where we have dropped the slashes on the pure spinors in order not to clutter the notation.
Using the Clifford map backwards, these basis elements can also be seen as polyforms. In
this last case, the Cliff(6) gamma matrices are mapped to elements of T ⊕ T ∗, as shown in
(B.9).

When the SU(3)×SU(3) structure is defined by pure spinors including also the B-field,
namely Φ± = e−bΦ0

±, a basis for the decomposition (2.68) of the space of polyforms under
the action of this different SU(3)×SU(3) is simply obtained by acting with e−b on the
basis (2.69) (in the polyform picture). Indeed, this is just the result of performing a
B-transformation: for the pure spinors one has

Φ0
±

B−transf−→ Φ± = e−bΦ0
± ,

while the raising/lowering operators
→
γ i1 ,

→
γ ı̄1 ,

←
γ i2 ,

←
γ ı̄2 , viewed as elements of T ⊕ T ∗

(recall (B.9)), are shifted as14

→
γ i = P i

1 n(dyn+iJnp
1 ∂p)

B−transf−→ →
γ(b)

i = P i
1 n

(
dyn+iJnp

1 (∂p+bpqdy
q)
) (analogous for

the others).

Here P1 is the holomorphic projector with respect to the almost complex structure I1. We
deduce that, for instance,

→
γ(b)

i Φ̄+ = e−b →γiΦ̄0
+, and similarly for all the other basis elements.

13See appendix A.4 for the expression of these gamma matrices in terms of holomorphic projectors.
14Recall (2.39) for the B-transformation of a generic element v + ζ ∈ T ⊕ T ∗. The sign in front of ιvb is

positive if the pure spinors transform with e−b [23].
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Thanks to the basis for the decomposition in representations (r, s) of SU(3)×SU(3),
it’s now easy to check that the generalized diamond is orthogonal with respect to the
Mukai pairing, i.e. the only nonvanishing pairings are between polyforms transforming in
conjugate representations (r, s) and (r̄, s̄) of SU(3)×SU(3). This is best seen in the bispinor
picture, using the representation (B.8) of the Mukai pairing under the Clifford map.

2.5.2 The space of deformations

Equipped with the technical tools introduced above, we can now discuss the moduli space
of compatible pure spinor pairs, and their relevance for compactifications. Building on
previous work [53] dealing with differential forms of pure degree, in ref. [22] Hitchin shows
that both the spaces of even and odd pure spinors at a point of M6 admit a rigid special
Kähler structure. This result was first transposed in the context of supergravity in [45],
to which we also refer for a review of Hitchin’s work. Here we just recall that starting
from the rigid special Kähler structure defined by Hitchin, one can obtain a local special
Kähler geometry modding out the C∗ action corresponding to a rescaling of the pure
spinors. Clearly, it is this local special Kähler structure that is relevant for the supergravity
applications. Since modding out the rescalings is the same as working with pure spinor
lines, the quotient space corresponds to the deformation space of the generalized almost
complex structure J determined by the pure spinor Φ. The Kähler potentials K± yielding
the local special Kähler metrics on these deformation spaces turn out to be the Hitchin
functions [22, 45]

e−K± = i〈Φ±, Φ̄±〉 . (2.70)

We stress that this result is valid at a point of the 6d manifold M6. Correspondingly, in
(2.70) no integral is performed over the compact space. Put in the context of type II super-
gravity compactifications, this means that at this stage we are keeping a full dependence
of the higher dimensional fields on both the external spacetime coordinates, on which the
moduli depend, and the internal coordinates. We will come back to this issue later on in
this chapter, as well as in the first part of the next one.

In the strict SU(3) structure case, substituting the pure spinors (2.65) into (2.70), one
gets for K± :

e−K+ =
4

3
e−2φJ ∧ J ∧ J , e−K− = ie−2φΩ ∧ Ω̄ , (2.71)

expressions that we have already encountered in subsection 2.3.2 when looking at the
moduli space of Calabi-Yau 3-folds. In that case, J and Ω are closed, and their allowed de-
formations are parameterized by cohomology classes in H2(M) and H3(M) respectively.15

This permits to identify the integrated form of expressions (2.71) as the Kähler potentials
for the moduli space of the full manifold, not just at a point of it. The dimension of the
moduli space is finite since it corresponds to the dimension of the cohomology.

In order to work out the general form of the special Kähler metrics derived from (2.70),
we now discuss deformations of pure spinors. Following Hitchin [22], we write the generic

15In Calabi-Yau compactifications φ is constant along M6, and does not enter in the expression for the
moduli space metric derived from the Kähler potentials.
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purity-preserving infinitesimal variation δΦ of a pure spinor Φ as

δΦ = cΦ + σ · Φ , σ· ≡ σΛΣΓΛΣ ,

where c ∈ C is a (small) complex function on M6, while at each point of M6 σ· is an
element of the complexified Spin(6,6) algebra so(12,C), with infinitesimal parameters σΛΣ .
Recalling (2.50) we can write the ΓΛΣ as

ΓΛΣ =
(
dym ∧ dyn∧ , 1

2
[dym∧, ι∂n

] ,
1

2
[ι∂m

, dyn∧] , ι∂m
ι∂n

)
.

We can also express σ· in terms of a basis of creators and annihilators for Φ. The nonzero
variations are obtained acting with the antisymmetrized product of two creators, or of a
creator and the associated annihilator (in this case the result is proportional to Φ, and we
could absorb it in the parameter c).

Consider now the two pure spinors Φ±, together with the SU(3)×SU(3) structure they
identify. Decomposing their variations δΦ± in representations of SU(3)×SU(3), and refer-
ring to the diamond (2.68), we deduce that

δΦ− ∈ Γ(U1,1 ⊕ U1,3 ⊕ U3̄,3̄ ⊕ U3,1) , δΦ+ ∈ Γ(U1,1̄ ⊕ U1,3̄ ⊕ U3̄,3 ⊕ U3,1̄) .

We also need to require that the deformed pure spinors Φ± + δΦ± again be compatible,
and this imposes constraints on the allowed variations. Indeed, varying the compatibility
condition (2.55), rewritten as 〈Φ+,Γ

ΛΦ−〉 = 〈Φ̄+,Γ
ΛΦ−〉 = 0, we get

〈δΦ+,Γ
ΛΦ−〉+ 〈Φ+,Γ

ΛδΦ−〉 = 0 , 〈δΦ̄+,Γ
ΛΦ−〉+ 〈Φ̄+,Γ

ΛδΦ−〉 = 0 . (2.72)

We eventually rewrite the infinitesimal deformations of Φ± in a notation reminding the
Kodaira formula for the holomorphic 3-form Ω of a Calabi-Yau manifold16

δΦ± = δκ±Φ± + δtrΦ± + δχ± . (2.73)

Let us discuss the different terms in this formula. The δκ± are complex scalars describing
the local pure spinor rescalings. Because of condition (2.56), their real parts need to be
equal (the imaginary parts are instead independent). Anyway, this constraint is ininfluent
for the purpose of describing the deformation space of U(3)×U(3) structures, since in this
case the pure spinor rescalings are modded out.

The independent deformations δχ− and δχ+, are sections respectively of the U3̄,3̄ and
U3̄,3 subbundles defined in subsection2.5. Locally on M6, they can be parameterized using
the basis (2.69) as

δχ± = e−bδχ0
± , with δχ0

+ = (δχ+)ı̄1j2γ
ı̄1Φ0

+γ
j2 , δχ0

− = (δχ−)ı̄1 ̄2γ
ı̄1Φ0
−γ

̄2 .

16The Kodaira formula for Ω was introduced in (2.19); in the present notation it reads δΩ = δκΩ + δχ.
Notice however that here we have an essential limitation. Indeed, the Kodaira formula describes defor-
mations of Ω globally on M6, and these, being parameterized by cohomology, come in a finite number.
On the other hand, here either we work at a point of M6, and then we lose the global description, or
we consider deformations globally on M6, but then the deformation space is infinite-dimensional since we
are not imposing any constraint to the local variations (in particular, here the pure spinors are not even
closed).
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Here and in the following the indices ı̄1, i1 are (anti)holomorphic with respect to the almost
complex structure I1, and analogously for ̄2, j2 with respect to I2. The complex tensors
(δχ+)mn and (δχ−)mn satisfy

P̄ p
1m P

q
2n (δχ+)pq = (δχ+)mn , P̄ p

1m P̄
q

2n (δχ−)pq = (δχ−)mn , (2.74)

where (Pk)
n

m = 1
2
(1− iIk) n

m is the holomorphic projector associated with Ik , k = 1, 2.
The remaining deformations δtrΦ+ and δtrΦ− in (2.73) transform in the SU(3)×SU(3)

‘triplets’ (3,1)⊕(3̄,1)⊕(1,3)⊕(1, 3̄), hence the denomination ‘δtr’. These are precisely the
pure spinor deformations constrained by the compatibility condition (2.55), which requires
them to be performed simultaneously. More specifically, using the basis (2.69), locally on
M6 a parameterization of these simultaneous variations is

δtrΦ+ = e−b
(
δui1γ

i1Φ̄0
− + δv̄ı̄2Φ

0
−γ

ı̄2
)

, δtrΦ− = −e−b
(
δui1γ

i1Φ̄0
+ + δvi2Φ

0
+γ

i2
)
, (2.75)

where

δui1 =
1

2
(1− iI1) m

i1
δum , δvi2 =

1

2
(1− iI2) m

i2
δvm ,

δum and δvm being real and independent small functions on M6. Via the Clifford map,
expression (2.75) can be read either in the bispinor picture, or in the polyform picture

(recall that in this case
→
γ i1 and

←
γ i2 are mapped to elements of (T ⊕ T ∗)⊗C, as in (B.9)).

We now evaluate the holomorphic and antiholomorphic variations of the Kähler poten-
tials (2.70), deriving in this way an expression for the special Kähler metrics on the space
of compatible pure spinor lines (namely, the space of U(3)×U(3) structures) at a point of
M6. Using (2.73) and the fact that Φ± depend holomorphically on their parameters, we
obtain

ds2
± = δholoδantiK± =

〈Φ±, δΦ̄±〉
〈Φ±, Φ̄±〉

〈δΦ±, Φ̄±〉
〈Φ±, Φ̄±〉

− 〈δΦ±, δΦ̄±〉〈Φ±, Φ̄±〉

= −〈δχ±, δχ̄±〉〈Φ±, Φ̄±〉
+ gmn(δumδun + δvmδvn) . (2.76)

Notice that the rescalings of the pure spinors don’t contribute to the metric. The last term
arises from the equal contributions (the computation uses (2.75) and (B.8)):

−〈δtrΦ±, δtrΦ̄±〉〈Φ±, Φ̄±〉
= gmn(δumδun + δvmδvn) .

Since δtrΦ− and δtrΦ+ are not independent, the space of U(3)×U(3) structures at a point
of M6, with metric

ds2 = ds2
+ + ds2

− = −〈δχ−, δχ̄−〉〈Φ−, Φ̄−〉
− 〈δχ+, δχ̄+〉
〈Φ+, Φ̄+〉

+ 2gmn(δumδun + δvmδvn) (2.77)

is not a direct product of J+ and J− deformation spaces.
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2.5.3 Metric deformations

In the following we address the problem of determining which of the SU(3)×SU(3) varia-
tions considered above affect the metric g and the 2–form b on M6, and have therefore a
physical meaning.

As we mentioned in subsection 2.3.2 dealing with Calabi-Yau 3–folds – and as we will
discuss in next chapter – in dimensional reductions of 10d supergravities the kinetic terms
of the 4d scalars describing the fluctuations of the internal metric and B-field are defined by
a σ-model whose target space metric can be written as expression (2.15). With restriction
to the SU(3) structure case, in [45] it was shown that such kinetic terms are reproduced
– with some caveats – by the sum of the special Kähler metrics obtained by variation of
the Kähler potentials (2.71). We now extend this result to the more general SU(3)×SU(3)
structure environment, analyzing the relation between the pure spinor deformations and
the supergravity σ-model (2.15). We will show that the latter can be expressed as the
sum of two independent contributions, which arise by varying either one of the generalized
almost complex structures J+,J− while keeping the other fixed. We will also discuss the
identification with the two special Kähler metrics (2.76).

Starting from (2.46), we observe that the integrand of (2.15) can be written in terms
of fluctuations of the T ⊕ T ∗ metric G as

gmpgnq(δgmnδgpq + δbmnδbpq) = −1

2
Tr
(
δGδG

)
, (2.78)

where the trace is taken over the T ⊕ T ∗ indices. This in turn can be expressed in terms
of deformations of the generalized almost complex structures J±. Indeed, recalling (2.46)
we have

δG = −(δJ+)J− − J+(δJ−) , (2.79)

and hence

Tr(δGδG) = Tr
[(

(δJ+)J− + J+(δJ−)
)(

(δJ+)J− + J+(δJ−)
)]

. (2.80)

We wish to evaluate the variations of J± via the associated pure spinor deformations. From
(2.54) we have (omitting the ± labels for notational clearness):

δJΛΣ = −8〈Re(δΦ),ΓΛΣReΦ〉
i〈Φ, Φ̄〉 − JΛΣ

δ〈Φ, Φ̄〉
〈Φ, Φ̄〉 , (2.81)

where we collected the two terms containing Re(δΦ) using (B.5). From (2.73), we have

Re(δΦ) = Re(δκ)ReΦ− Im(δκ)ImΦ + Re(δtrΦ + δχ) .

Now, in (2.81) the contribution of Re(δκ)ReΦ compensates exactly the term containing
δ〈Φ, Φ̄〉, while it is not difficult to see that Im(δκ)〈ImΦ,ΓΛΣReΦ〉 vanishes. Therefore the
variation of Φ consisting of a rescaling drops out. This was expected, since generalized
almost complex structures are in one-to-one correspondence with complex lines of pure
spinors. Hence we have

δJ±ΛΣ = −8〈Re(δtrΦ± + δχ±) , ΓΛΣReΦ±〉
i〈Φ±, Φ̄±〉

. (2.82)
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Let us now consider the variations induced on the generalized almost complex structures
J+,J− by δtrΦ±, therefore transforming in the ‘triplets’ of SU(3)×SU(3). These are pre-
cisely the deformations of J± which leave invariant the generalized metric G (and so both g
and b). Indeed, paraphrasing [45], on the one hand the two compatible generalized almost
complex structures are invariant under the action of U(3)×U(3)⊂O(6, 6), hence the space

of J+,J− at a point of M6 is the 48-dimensional coset O(6,6)
U(3)×U(3)

. On the other hand, since

G is invariant under the larger subgroup O(6)×O(6)⊂O(6, 6), the space of generalized

metrics G is the 36-dimensional coset O(6,6)
O(6)×O(6)

. The 48 – 36 = 12-dimensional space of

O(6, 6) transformations being in the first and not in the second coset corresponds to the
vector representation of O(6, 6), decomposing under the SU(3)×SU(3) structure group in
the ‘triplets’ (3,1)⊕ (3̄,1)⊕ (1,3)⊕ (1, 3̄).

The argument just exposed can be made more explicit as follows. Consider the pure
spinor variations δtrΦ±, parameterized as in (2.75). Starting from (2.82), we evaluate the
corresponding deformations of the generalized almost complex structures J+ and J−, call
them δtrJ+ and δtrJ−. Performing the computation in the bispinor picture, in particular
using (B.8) to evaluate the Mukai pairing and (B.12) for ΓΛΣ, we find that J+(δtrJ−) =
−(δtrJ+)J−. More in detail, we obtain

−(δtrJ+)J− = +J+(δtrJ−) =

=

(
1 0

−b 1

)(
Im(δuyΩ1 + δvyΩ2)

m
n Im(δuyΩ1 − δvyΩ2)

mn

Im(δuyΩ1 − δvyΩ2)mn Im(δuyΩ1 + δvyΩ2)
n

m

)(
1 0

b 1

)
,

where Ω1 and Ω2 are the invariant (3, 0)–forms of the SU(3) structures associated with η1
+

and η2
+ respectively. Recalling (2.79), we conclude that G is invariant under deformations

of the generalized almost complex structures induced by δtrΦ±.
The only pure spinor deformations which modify the generalized metric G are then δχ±.

We now evaluate (2.80) in terms of these deformations. Since Re(δχ−) ∈ Γ(U3̄,3̄⊕U3,3) and
Re(δχ+) ∈ Γ(U3̄,3⊕U3,3̄), the only nonzero contributions to δJ± come from the components
of ΓΛΣReΦ± being in the same representations. For b = 0 these are of the form γmReΦ0

±γ
n

(see (B.12)), while for nonvanishing b there are extra contributions yielding the matrices(
1 0
−b 1

)
and

(
1 0
b 1

)
, as discussed at the end of appendix B. By a quite long but straightforward

computation we find that the terms in (2.80) mixing the variations of J+ and J− vanish:

Tr
[
J−J+(δJ−)(δJ+)

]
= 0 . (2.83)

The computation is performed first substituting J−J+ = −I−1G, and then going in the
bispinor picture; we find cancellation between all the nonzero terms involved in the trace. It
follows that the metric (2.78) is given by the sum of two contributions, arising from the in-
dependent deformations of J− and J+ (or, equivalently, of the associated polyforms Φ±):

−1

2
Tr(δGδG) = −1

2
Tr
[
J+(δJ−)J+(δJ−)

]
− 1

2
Tr
[
(δJ+)J−(δJ+)J−

]
. (2.84)

Again we can rewrite these terms using the bispinor picture. For the first one we find
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(omitting the slashes in order not to clutter the formulae)

−1

2
Tr
[
J+(δJ−)J+(δJ−)

]
=

1

86
tr [γ(ReΦ0

+)TγmpReΦ0
+] tr [γ(ReΦ0

+)T ReΦ0
+γnq] ·

·tr [γRe(δχ0
−)TγpReΦ0

−γ
n] tr [γRe(δχ0

−)TγmReΦ0
−γ

q]

= 8(δχ−)mn(δχ̄−)pq(g
mp − iJmp

1 )(gnq − iJnq
2 )

= −8
〈δχ−, δχ̄−〉
〈Φ−, Φ̄−〉

. (2.85)

The computation for the term involving the variation of δJ+ is completely analogous.
This concludes the analysis started with eq. (2.78). We have obtained an expression for
the metric on the space of g and b fluctuations at a point of M6 in terms of pure spinor
deformations. This reads

1

8
gmpgnq(δgmnδgpq + δbmnδbpq) = −〈δχ−, δχ̄−〉〈Φ−, Φ̄−〉

− 〈δχ+, δχ̄+〉
〈Φ+, Φ̄+〉

. (2.86)

Since i〈Φ−, Φ̄−〉 = i〈Φ+, Φ̄+〉 = 8e−2φvol6 (recall (2.56)–(2.58)), we can also write the above
relation in the following integrated form:

1

8
∫
e−2φvol6

∫
vol6e

−2φgmpgnq(δgmnδgpq + δbmnδbpq) = −
∫
〈δχ−, δχ̄−〉∫
〈Φ−, Φ̄−〉

−
∫
〈δχ+, δχ̄+〉∫
〈Φ+, Φ̄+〉

.

(2.87)
The separation in two independent contributions is remarkable, and reminds the splitting
of the moduli space of Calabi-Yau manifolds in the direct product Mcs ×Mks of complex
structure and Kähler structure deformation spaces, reviewed in subsection 2.3.2. This is
also consistent with N = 2 supergravity in four dimensions: as we will see in the next
chapter, the two terms in the r.h.s. of (2.86) are naturally associated with the kinetic
terms of the scalars respectively in the vector multiplets and in the hypermultiplets, which
by N = 2 supersymmetry have to be independent. It is equally remarkable that these two
contributions have an underlying special Kähler structure, as they are directly related to
the special Kähler metrics (2.76). Again, this is analogous to the Calabi-Yau case, where
both factors of the moduli space are special Kähler. This fact is also welcome from the 4d
N = 2 supergravity viewpoint, since at least the scalar manifold of the vector multiplets
has to be special Kähler.17

An important precisation is however in order. The analysis done so far is very general
– it just relies on the topological condition that M6 admit an SU(3)×SU(3) structure
on TM6 ⊕ T ∗M6 – and possibly encompasses all N = 2 preserving compactifications.
However, it should be regarded just as a first step towards the definition of an actual four
dimensional theory. Indeed, till now we have not truncated any of the modes of the type II
NSNS fields along the internal manifold. Correspondingly, (2.76), (2.86) can be considered
as deformation space metrics only at a point of M6, and not globally on the manifold.18

17We will discuss the properties of the hyperscalar manifold later on, starting with subsection 3.2.
18Results regarding the global moduli space of manifolds admitting generalized structures are available

for some special classes. In particular, the deformation space of generalized complex manifolds, char-
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In order to obtain an N = 2 theory in 4d, a truncation ansatz selecting a finite set of
modes has to be specified. In the next chapter we will investigate which are the general
constraints that this truncation ansatz should satisfy for the dimensional reduction to go
through, and in particular for the special Kähler geometry properties of the metric on the
deformation space of pure spinors at a point of M6 to be inherited by the 4d theory.

A further, related remark is the following. Eq. (2.86) doesn’t exactly coincide with the
sum of the special Kähler metrics (2.76) on the J+- and J−- deformation spaces, because of
the terms containing δu and δv, which parameterize the simultaneous pure spinor variations
δtrΦ± transforming in the SU(3)×SU(3) triplets (3,1) ⊕ (3̄,1) ⊕ (1,3) ⊕ (1, 3̄), recall
eq. (2.75). It follows that if we wish to have a precise identification between (2.86) and
the sum of the metrics (2.76), then these terms need to be projected out. This extends an
analogous prescription given in ref. [45] for deformations of strict SU(3) structures.

The position we take here concerning the issue just described is the following: after
having chosen a specific class of SU(3)×SU(3) structure manifolds on which to perform
the dimensional reduction, one should specify a truncation ansatz. Once this is done,
one should verify that among the modes one keeps none transform in the O(6, 6) vector
representation. Of course, any truncation ansatz eventually needs a justification: typically,
it is considered acceptable an ansatz which either captures the low energy physics in four
dimensions, or provides a consistent truncation of the higher dimensional theory. The
expansion in harmonic forms for compactifications on Calabi-Yau manifolds with no fluxes,
to be reviewed in section 3.2, is an example of the first kind. As for the second option, we
will discuss a concrete realization in chapter 5.

2.6 Discussion

Let us summarize the eventual outcome of our excursion on the generalized tangent bundle.
We started considering the general spinor ansatz (2.1) for dimensional reductions leading
to N = 2 supergravity in four dimensions, and we saw that this requires the internal
manifold M6 to admit a pair of SU(3) structures. This means that the representation in
which a spinor or tensor field on M6 transforms can be decomposed in irreps of either one
of the two SU(3) groups identified by the spinors η1

+ and η2
+ in (2.1). We also reviewed

how these data are encoded in an SU(3)×SU(3) structure on TM6 ⊕ T ∗M6, characterized
by the compatible pure spinor pair Φ+,Φ−.

Conversely, the specification of an SU(3)×SU(3) structure on TM6⊕T ∗M6 fixes all the
NSNS degrees of freedom on the six dimensional compact space, i.e. it provides a metric
g, a 2–form b and a dilaton φ on M6. It also provides a pair of globally defined nowhere
vanishing Spin(6) spinors (with positive chirality) η1

+ and η2
+, together with their (negative

chirality) conjugates η1
− and η2

−.
This repackaging of the NSNS and spinorial degrees of freedom is useful for several

reasons. In the first instance, the different situations arising from the various possible

acterized by dΦ = (ιv + ζ∧)Φ, was analyzed in [23], while the moduli space of generalized Calabi-Yau
manifolds, defined by dΦ = 0, was studied in [22, 60]. These results have been applied in the context
of supersymmetric string backgrounds in [35, 38], and to the study of the associated N = 1 4d effective
theories in [61].
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intersections of the two SU(3) subgroups of Spin(6) encountered in section 2.1 are now
unified in a single mathematical framework. Furthermore, the description of the internal
NSNS sector in terms of Φ± seems in general more promising than the one in terms of g, b
and φ for the purpose of determining the degrees of freedom to be inherited by a 4d N = 2
effective action. Indeed, it is the description in terms of Φ± that makes a special Kähler
geometry structure emerge on the deformation space, matching the 4d N = 2 supergravity
requirements. This is analogous to the Calabi-Yau case, in which the metric and B-field
deformations are best described by considering variations of the complexified Kähler form
b + iJ and the holomorphic (3,0)–form Ω, whose moduli space exhibits a special Kähler
structure. We will have more to say about these aspects in the next two chapters, where
we’ll also investigate how generalized geometry provides general formulae for the various
4d supergravity data, such as the Kähler potential, the scalar potential, and the Killing
prepotentials.

We close with a comment concerning the RR degrees of freedom. Contrarily to the NS
2–form b, these are not naturally included in the generalized geometry formalism defined
on T ⊕ T ∗, and this is the reason why we have not dealt with them in this chapter.
However, we’d like to mention that progresses towards the ‘geometrization’ of the RR
fields have recently been achieved by considering an extension of the generalized tangent
bundle including higher exterior powers of T and T ∗ [62, 63, 64]. The natural group acting
on this extended bundle is not just O(d, d), but the full U-duality group. In this thesis, we
will not be concerned with these developements any further.





Chapter 3

The dimensional reduction

Equipped with the tools of generalized geometry, in this chapter we study di-
mensional reductions of type II supergravity leading to N = 2 gauged super-
gravity in four dimensions. The background is assumed to admit SU(3)×SU(3)
structure, and we allow for general NSNS and RR fluxes. The truncation is
implemented via the expansion of the higher dimensional fields in a finite basis
of differential forms on the compact manifold, satisfying a system of proper-
ties which we analyze in detail. The complete four-dimensional bosonic action
is derived, and emphasis is given on the way its data are determined by the
generalized geometry formalism. While the NSNS contribution is obtained via
a direct dimensional reduction of the action, the contribution of the RR sector
is computed starting from the democratic formulation of type II theory, and
demanding consistency with the reduced equations of motion.

3.1 Democratic formulation of type II supergravity

We start this chapter by presenting the higher dimensional theory we wish to compactify,
namely type II supergravity. As mentioned in the introduction, this corresponds to the low
energy limit of type II superstring theory. On the same footing as type II strings, it comes
in two manifestations: type IIA and type IIB. These are the unique maximally supersym-
metric supergravity theories in ten dimensions (they are N = 2 in 10d, corresponding to 32
supercharges). This thesis we will be mainly focused on type IIA, but most of the results
can easily be transferred to type IIB as well.

Below we provide a brief review of the ‘democratic’ version of type II supergravity,
established in ref. [48]. This formulation automatically incorporates Romans’ massive
deformation of type IIA [65], and is the most suitable for flux compactifications in the
generalized geometry approach. Its compatibility with the standard formulation of type II
supergravity is illustrated in appendix C.

Before starting the description of the bosonic part of the theory, let us just mention
its fermionic spectrum. This is made of a doublet of Majorana-Weyl spin 3/2 fields, the
gravitini, and a doublet of Majorana-Weyl spin 1/2 fields, the dilatini. In type IIA, the
two gravitini have opposite chirality, while in type IIB they have the same chirality. In
both theories, the dilatini have opposite chirality than the gravitini.
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The bosonic sector of type II supergravity, on which we focus below, splits in an NSNS
and in a RR sector. The field content of the NSNS sector consists of the 10d spacetime
metric, of the NS 2–form B̂ and of a real scalar, the dilaton φ. The corresponding action
has the standard (string frame) form1

SNS =
1

2

∫

M10

e−2φ
(
R̂ ∗ 1 + 4dφ ∧ ∗dφ− 1

2
Ĥ ∧ ∗Ĥ

)
, (3.1)

where R̂ is the Ricci curvature of M10. The 3–form Ĥ is subject to the Bianchi identity

dĤ = 0 , (3.2)

which for topologically trivial configurations is globally solved by Ĥ = dB̂. For more
general topologies the global solution is

Ĥ = Ĥfl + dB̂ , (3.3)

where Ĥfl is a cohomologically non-trivial representative (‘fl’ stands for ‘flux’). Notice
that this splitting of Ĥ allows us to work with globally defined quantities: we could have
insisted in writing Ĥ = dB̂, but in this case generically the form B̂ wouldn’t be globally
defined.

Let us now consider the RR sector. In the democratic approach to type IIA (IIB)
supergravity, it describes the dynamics of a field F̂ consisting of a formal sum of forms of
all possible even (odd) degrees:

F̂ = F̂0 + F̂2 + . . .+ F̂10 in IIA , while F̂ = F̂1 + F̂3 + . . .+ F̂9 in IIB. (3.4)

In order to avoid a doubling of the degrees of freedom with respect to the usual formulation
in which only the forms of lower degree appear, a self-duality constraint is imposed on the
RR field. In our conventions for the Hodge-∗, given in section A.2 of the appendix, this
constraint reads

F̂ = λ(∗F̂) , with λ(F̂k) = (−)[ k+1

2
]F̂k . (3.5)

In the absence of localized sources, the dynamics of the field F̂ is described by the following
equation of motion (EoM from now on):

(d+ Ĥ∧) ∗ F̂ = 0 ⇔ (d− Ĥ∧)F̂ = 0 , (3.6)

where the two expressions are equivalent due to (3.5). The second has the form of a Bianchi
identity; for topologically trivial configurations it is globally solved by

F̂ = (d− Ĥ∧)Ĉ + eB̂F̂0 , (3.7)

where Ĉ is a sum of RR potentials of odd (even) degree for type IIA (IIB), F̂0 is a constant
(present only in type IIA, and to be identified with Romans’ mass parameter [65]), and

eB̂ ≡ 1 + B̂ ∧+1
2
B̂ ∧ B̂ ∧+ . . . .

1Here and in the following, the hat symbol denotes ten-dimensional fields (no hat is needed for the
dilaton). Our conventions concerning the form fields and the Hodge star are spelled out in appendix A.
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Once (3.7) is established, the first expression in (3.6) can be derived by varying the
potentials Ĉ in the following pseudo-action [48]:

SRR = −1

8

∫

M10

[
F̂ ∧ ∗F̂

]
10
, (3.8)

where the notation [ ]10 means that we pick the form of maximal degree 10. The prefix
‘pseudo-’ means that (3.8) contains redundant RR degrees of freedom, and should be
considered just as a device to obtain their EoM. The redundancy is then removed at the
level of the EoM by the self-duality constraint (3.5), which does not descend from (3.8)
and has be imposed by hand. A further peculiarity of this pseudo-action is that it does
not contain any Chern-Simons term, which is instead present in the usual formulations of
type II supergravities (see e.g. [4, vol. 2]).

A bona fide action, containing just the independent degrees of freedom, can be recovered
by breaking the democracy among the RR differential forms: a half of the F̂k has to be
eliminated exploiting the self-duality relation. The choice of the forms to keep is not unique,
and in some cases the presence of localized sources can suggest the most convenient option
[48, 66]. In appendix C we discuss how the action of standard type IIA supergravity
without localized sources can be recovered, also taking into account a deformation of the
Chern-Simons term due to background fluxes.

Beside the RR field EoM seen above, from the complete democratic pseudo-action
SNS + SRR one also derives the EoM for the NSNS degrees of freedom, namely the B-field,
the Einstein and the dilaton equations. After using the first of (3.6), these read

d(e−2φ ∗ Ĥ)− 1

2
[F̂ ∧ ∗F̂]8 = 0 , (3.9)

R̂MN + 2∇̂M∂Nφ−
1

2
ιMĤyιNĤ −

e2φ

4

10∑

k=0

ιM F̂(k)yιN F̂(k) = 0 , (3.10)

R̂− 1

2
ĤyĤ + 4

(
∇̂2φ− ∂Mφ∂̂

Mφ
)

= 0 , (3.11)

where M,N are 10d spacetime indices.

3.2 The archetype: type II on Calabi-Yau 3-folds

One of the main tasks of this thesis is to study general features of dimensional reductions of
type II theories leading to N = 2 supergravity in four dimensions. We approach this prob-
lem endowed with the tools of generalized geometry, introduced in the previous chapter.
The compactification procedure we will develop is modeled on the well-known Calabi-Yau
example, which represents the best studied case of dimensional reduction preserving N = 2
supersymmetry in 4d. For this reason, before dealing with the general case, in the following
we discuss Calabi-Yau compactifications first. This also gives us the opportunity to review
some basic notions of N = 2 supergravity.

Calabi-Yau manifolds, whose geometry and moduli space have been summarized in
section 2.3, are ubiquitous in string theory. One of the main reasons is that these spaces
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support consistent flat vacua of string theory preserving a fraction of supersymmetry [6].
In particular, in type II theories a Minkowski4×CY3 bosonic background, with all the
supergravity field strengths set to zero, preserves eight supercharges, i.e. N = 2 in four
dimensions. The four-dimensional low energy effective theory describing the physics of
massless fluctuations of the higher dimensional fields around this vacuum is an N = 2
supergravity [67, 68, 69, 70], and its properties are governed by the Calabi-Yau topology,
more specifically by its cohomology [71]. The fact that the features of the effective action
don’t depend on the Calabi-Yau metric is particularly welcome, since no Ricci flat metrics
on compact Calabi-Yau manifolds are explicitly known.

In the following we focus for definiteness on type IIA, and briefly comment on type
IIB. Furthermore, as it is often the case in the context of compactifications, we consider
just the bosonic sector of the supergravity theory.2 The fermionic part of the action can
in principle be obtained by acting with the appropriate supersymmetry transformations.

In this fluxless case it is more efficient to compactify type IIA supergravity in its
standard formulation rather than in the democratic version introduced in the previous
section. The latter will instead be advantageous when considering the general case of
SU(3)×SU(3) structure backgrounds with arbitrary fluxes. The standard type IIA theory
has the same NSNS spectrum described above, while the RR field content just amounts
to the gauge potentials Ĉ1 and Ĉ3. The action can be recovered from its democratic
counterpart as illustrated in appendix C, setting to zero the Romans’ mass parameter F0

(cf. eqs. (C.6), (C.7)). It reads

S =
1

2

∫

M10

[
e−2φ

(
R̂∗1+4dφ∧∗dφ− 1

2
Ĥ ∧∗Ĥ

)
− 1

2

(
F̂2∧∗F̂2 + F̂4∧∗F̂4 + B̂∧dĈ3∧dĈ3

)]

(3.12)
with the field strengths being

Ĥ = dB̂ , F̂2 = dĈ1 , F̂4 = dĈ3 − Ĥ ∧ Ĉ1 . (3.13)

The various terms in (3.12) are canonical kinetic terms, except the last one which is a
Chern-Simons topological coupling, required by supersymmetry.

3.2.1 The Kaluza-Klein (on-shell) approach

Let us describe the Kaluza-Klein approach to Calabi-Yau compactifications, which defines
a low energy effective theory for small field fluctuations around a given vacuum (recall the
discussion of section 1.1). One starts from a Minkowski4×CY3 supergravity vacuum, with
a chosen Calabi-Yau metric 〈gmn〉 depending on the internal coordinates only, a constant
dilaton 〈φ〉, vanishing supergravity field strengths, and vanishing fermionic vevs. Then one
linearizes the higher dimensional equations of motion by considering small field fluctuations
around this vacuum, and identifies the degrees of freedom which are massless from the 4d
viewpoint. As it is standard in Kaluza-Klein reductions, these turn out to correspond to
zero modes of appropriate wave operators on the compact manifold. The field content of

2For the heterotic theory, the dimensional reduction of the fermionic supergravity sector on 6d manifolds
with SU(3) structure, hence including Calabi-Yau 3–folds, has been performed in [72].
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the low energy theory is then defined by retaining just these zero modes, the energy gap
between the massless and the massive modes being controled by the inverse length scale
of the compact manifold, assumed to be sufficiently small. More in detail, for the bosonic
spectrum one finds what follows (see e.g. [3, vol. 2] for an extended discussion).

The fluctuations of the higher dimensional metric ĝMN(x, y) separate in fluctuations
with purely 4d indices gµν(x, y), with mixed indices gµn(x, y), and with purely internal
indices gmn(x, y); we recall that coordinates along M4 and M6 are denoted by xµ and ym

respectively. From the first kind of fluctuations, one retains the (single) four dimensional
graviton, depending on xµ only. No fluctuations with mixed indices µn are to be included
in the Kaluza-Klein truncation ansatz, since massless 4d fields from these terms would be
in correspondence with continuous isometries, which do not exist on Calabi-Yau manifolds:
indeed, since the latter is compact and Ricci-flat, any Killing vector generating the isome-
try would be covariantly constant, and this is forbidden by strict SU(3) holonomy. Finally,
one considers the fluctuations with purely internal indices mn, i.e. the deformations of the
background Calabi-Yau metric 〈gmn(y)〉. The equation for massless 4d scalar fields aris-
ing from these fluctuations turns out to coincide with the Lichnerowicz equation (2.12).
It follows that the massless deformations of the background metric are the ones which
preserve Ricci-flatness, and therefore the Calabi-Yau condition. By the discussion of sub-
section 2.3.2, these can be rewritten in terms of harmonic deformations of the background
Calabi-Yau Kähler form J and holomorphic (3,0)–form Ω, respectively parameterized by
the moduli va and zi. These parameters are now promoted to scalar fields propagating
along the 4d spacetime. The physical reason why the massless 4d fields arising from the
internal metric fluctuations are in one-to-one correspondence with the Calabi-Yau moduli
is clear: since all Ricci flat metrics on Minkowski4 × CY3 yield equivalent supergravity
solutions, the moduli parameterize the vacuum degeneracy; once a certain vev is assigned,
their fluctuations behave as Goldstone bosons, and are hence massless.

The remaining type IIA supergravity bosonic fields are the differential forms φ, B̂, Ĉ1

and Ĉ3 (here the dilaton φ is seen as a 0–form). The relevant wave operator, whose zero
modes correspond to massless 4d fields, is the Laplacian ∆ = − ∗ d ∗ d − d ∗ d∗ on CY3

(notice that the definition of this operator is metric-dependent, and it is understood that
the involved metric is the background one 〈gmn(y)〉 ). We conclude that fluctuations of
the form fields are to be expanded in harmonic forms on the Calabi-Yau 3–fold. Denoting
these as done for the Calabi-Yau cohomology representatives employed in subsection 2.3.2,
we define

φ = φ(x) , B̂ = B(x) + ba(x)ωa , (3.14)

Ĉ1 = A0(x)ω0 = A0(x) , Ĉ3 − B̂ ∧ Ĉ1 = Aa(x) ∧ ωa + ξI(x)αI − ξ̃I(x)βI ,

where we recall that the range of the indices is: a = 1, 2, . . . h1,1 and I = 0, 1, . . . , h2,1.
Notice that there are no fields with one internal index, since on Calabi-Yau manifolds
h1,0 = 0. The h1,1 + 1 one-forms AA = (A0, Aa) inherit part of the gauge symmetry
associated with the type IIA RR potentials Ĉ1, Ĉ3, and are therefore (abelian) gauge bosons
on the four dimensional spacetime.
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supermultiplets multiplicity spin 2 spin 3/2 spin 1 spin 1/2 spin 0

gravitational 1 gµν ψAµ A0
µ – –

vector h1,1 – – Aa
µ λaA ta = ba + iva

hyper h2,1 + 1 – – – ζI

{
(ϕ, a, ξ0, ξ̃0)

( zi, ξi, ξ̃i )

Table 3.1: N = 2 supermultiplets for type IIA compactifications on Calabi-Yau 3–folds.
Beside the bosonic fields discussed in the text, here we also represent the fermionic content
of each supermultiplet; these additional data will be needed in chapter 4. The index
A = 1, 2 labels the fundamental representation of the SU(2) R-symmetry group rotating
the N = 2 supercharges. The two spin 3/2 fields ψAµ in the gravitational multiplet are
the gravitini. The two spin 1/2 fermions λaA in each vector multiplet are named the
gaugini. Finally, the ζI – living in the hypermultiplets – are called the hyperini. The index
I = 1, . . . , 2h2,1+2 is an Sp(h2,1+1) index, so that we have two hyperini per hypermultiplet.

The 4d fields defined by the above expansion assemble into N = 2 supermultiplets, as
follows:

⋄ The gauge boson A0 enters in the N = 2 gravitational multiplet, together with the
4d metric gµν . For this reason, it is known as the graviphoton.
The gravitational multiplet, containing the metric degrees of freedom, is the hallmark
of any supergravity theory. Here, the presence of a spin 1 field beside the metric is
a consequence of N = 2 supersymmetry.

⋄ The remaining gauge bosons Aa, accompanied by the 4d complex scalars ta = ba+iva

arising from the combination of the Calabi-Yau Kähler structure moduli va with the
NS 2–form parameters ba, define the bosonic content of h1,1 vector multiplets.

⋄ The 10d dilaton φ(x) combines with the Calabi-Yau volume Vol(x) to define the 4d
scalar ϕ := φ − 1

2
log(Vol), called the 4d dilaton. Furthermore, the 2–form B(x) in

4d can be dualized to a scalar a(x). The scalars ϕ and a, together with the scalars
ξ0, ξ̃0 coming from the expansion of Ĉ3 on α0 and β0, define the bosonic part of the
so called universal hypermultiplet. The remaining RR real scalars ξi, ξ̃i pair up with
the Calabi-Yau complex structure moduli zi and define h2,1 hypermultiplets.
We recall that a hypermultiplet is an N = 2 supermultiplet made of matter fields
only; its bosonic content consists of four real scalars.

This N = 2 multiplet structure is summarized in table 3.1. While here above we discussed
the derivation of the bosonic half of the supermultiplets, for completeness in the table we
also include their fermionic counterpart, as resulting from the Kaluza-Klein reduction.

The strategy one adopts in order to derive the 4d effective action governing the dynamics
of these massless excitations is to substitute the ‘vev + massless fluctuations’ Kaluza-Klein
ansatz in the higher dimensional action, and to integrate over the compact space.
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After this step, a standard N = 2 supergravity action, with canonically normalized
Einstein-Hilbert term, is obtained by performing the following Weyl rescaling of the 4d
metric

gnew
µν := e−2ϕgold

µν .

The resulting bosonic action reads [67]:

S(4) =

∫

M4

[ 1

2
R4 ∗ 1 +

1

2
ImNABF

A ∧ ∗FB +
1

2
ReNABF

A ∧ FB

− G
ks
ab dt

a ∧ ∗dt̄b − huvdq
u ∧ ∗dqv

]
, (3.15)

Let us discuss how N = 2 supersymmetry determines the structure of the couplings in S(4).
The first term is a standard 4d Einstein-Hilbert term, while the three following terms in-
volve the vector multiplets. In N = 2 supergravity, the scalars in the vector multiplets
are governed by a σ-model whose target manifold has to be special Kähler [73]. Further-
more, the gauge kinetic and topological terms are fixed respectively by the imaginary and
real parts of the period matrix associated with the special Kähler geometry of the scalar
manifold. In the present type IIA Calabi-Yau compactification, the space spanned by the
scalars ta in the vector multiplets is the complexified Kähler structure moduli space Mks,
whose special Kähler geometry was discussed in subsection 2.3.2. Consistently, the kinetic
matrix of the ta is the special Kähler metric G ks

ab on Mks, and the gauge kinetic terms
involving the field strengths FA = dAA are determined by the period matrix NAB for Mks;
these quantities were given in (2.31) and (2.35) respectively. Notice that here the gauge
group is U(1)h1,1+1.

Finally, let us consider the last term in S(4). We collectively denote by qu, with
u = 1, . . . , 4(h2,1 + 1), the real scalars in the hypermultiplets. In N = 2 supergravity, the
hyperscalar dynamics is governed by a σ-model whose target space is a quaternionic mani-
fold [74], namely a 4n Riemannian manifold whose holonomy is contained in Sp(1)×Sp(n)
(see appendix E for a review of this geometry). This means that the hyperscalar kinetic
matrix huv has to be a quaternionic metric. The Calabi-Yau compactification we are con-
sidering yields

huvdq
udqv = G

cs
i̄ dz

idz̄ ̄ + (dϕ)2 +
e4ϕ

4

(
da− ξIdξ̃I + ξ̃Idξ

I
)2

(3.16)

− e2ϕ

2

[
dξIImMIJdξ

J + (dξ̃I − dξKReMKI)ImM−1 IJ(dξ̃J − ReMJLdξ
L)
]
,

where G cs and M are respectively the special Kähler metric (2.20) and the period ma-
trix (2.26) on the Calabi-Yau complex structure moduli space Mcs introduced in subsec-
tion 2.3.2. It can be shown that this metric is indeed quaternionic [68].

Notice that the quaternionic manifold we are encountering is of a very specific type, in
that its metric is completely determined by the data of the special Kähler submanifold Mcs

spanned by the zi. These particular quaternionic manifolds are termed dual (or special)
quaternionic. In general, a map sending a special Kähler manifold of complex dimension n
to a quaternionic manifold of real dimension 4(n+1) can be algorithmically constructed by
dimensional reduction of 4d, N = 2 supergravity with vector multiplets to three dimensions
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[75, 68]. We will discuss further the quaternionic geometry associated with the metric huv

in subsection 4.1.2 of the next chapter.
This concludes our survey of the action (3.15) stemming from the reduction of type

IIA supergravity on Calabi-Yau 3–folds. Here we will not treat the details of Calabi-Yau
compactifications of type IIB supergravity [69, 70]. Let us just mention that the resulting
4d theory is again an N = 2 supergravity, with the same features seen above for type
IIA. More specifically, the 4d N = 2 effective action for type IIB compactified on a given
Calabi-Yau manifold is obtained from the N = 2 action arising from compactification of
type IIA on the same Calabi-Yau manifold simply by interchanging the roles of the Kähler
structure and the complex structure moduli spaces Mks and Mcs. In particular, the 4d
theory derived from type IIB has h2,1 vector multiplets and h1,1 + 1 hypermultiplets.

3.2.2 Going off-shell, and gauging by fluxes

Let us dwell upon the procedure adopted to derive the action (3.15). The truncation
ansatz was identified by linearizing the higher dimensional equations of motion around
a chosen Minkowski4 × CY3 vacuum, and restricting to the field fluctuations which are
massless in 4d. Then the ‘vev + massless fluctuations’ ansatz is substituted in the higher
dimensional action, and the integration over the compact manifold is carried out. The 4d
effective action obtained in this way refers to the selected vacuum, and is a priori valid
only at quadratic order in the fluctuations. As a consequence, the various kinetic matrices
in (3.15) should be evaluated in the vacuum.3

However, we know that there exists a continuous family of equivalent 10d backgrounds,
parameterized by the vevs of the Calabi-Yau moduli. As a consequence, it would be more
satisfactory to dispose of a 4d effective action having access to all these vacua. In order
to achieve this, one should construct a truncation ansatz valid beyond linear order in
the field fluctuations around a given vacuum. Alternatively, one can try to exhibit an
‘off-shell’ reduction ansatz, which does not refer to a specific vacuum, and which leads
to a 4d theory correctly reproducing the low energy dynamics of the field fluctuations
once a given vacuum has been selected. In general, the identification of such ansätze is
highly non-trivial, but in the Calabi-Yau case this can be achieved: the recipe is to still
expand the higher dimensional fields in harmonic forms as done above, releasing however
the condition that harmonicity be defined with respect to the background metric 〈gmn(y)〉.
In other words, one promotes the expansion forms to be moduli dependent, in such a way
that they be harmonic all over the Calabi-Yau moduli space. Notice that in this way the
expansion forms end up depending on the 4d spacetime coordinates, since the Calabi-Yau
moduli va and zi are dynamical fields in 4d. Despite this non-trivial modification, it turns
out that the reduction goes through anyway, basically thanks to the fact that in the Calabi-
Yau case the various quantities entering in the 4d effective action are determined by the
cohomology classes of the expansion forms (recall subsection 2.3.2). A recent discussion of
how this occurs can be found in [49], where this off-shell reduction was termed ‘base-point
independent’. The resulting 4d effective action still reads as (3.15), but now is not limited

3This does not necessarily hold for the R4 term, since the truncation ansatz ĝµν(x, y) = gµν(x) can
straightforwardly be extended at all orders in the fluctuations.
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to a chosen vacuum. It rather incorporates an infinite family of Poincaré-invariant vacua,
parameterized by arbitrary constant values of the scalar fields. Notice that this feature is
strictly connected with the fact that (3.15) does not contain any scalar potential. Clearly,
all these solutions lift to a solution of the higher dimensional theory. On the other hand, to
our knowledge it has not been demonstrated that any possible solution of the 4d equations
of motion stemming from (3.15) lifts to 10d.

Fluxes and gaugings

The theory (3.15) derived from type II compactifications on Calabi-Yau manifolds is
the most simple example of 4d, N = 2 supergravity coupled to h1,1 vector multiplets and
h2,1 + 1 hypermultiplets.4 Indeed, here the gauge group is abelian, all matter fields are
uncharged, and there is no scalar potential. It follows that, in the guise presented here, this
compactification is not suitable for phenomenology. In chapter 1 we have briefly mentioned
how these issues can be overcome by embedding this supergravity model in a string theory
scenario, where further ingredients like localized sources play a crucial role. While we will
not enter into the details of these constructions, let us come back to the moduli problem.
In section 1.1 we discussed how the presence of massless scalar fields with no preferred
vev is one of the main problems of compactifications, and in particular of Calabi-Yau
compactifications. We also saw that in order to stabilize the moduli one should introduce
a scalar potential, and that a possible way to do this is provided by the introduction of
background fluxes on the compact manifold. Let us now discuss how this fits with the 4d
N = 2 theory presented in this section.

For the four-dimensional N = 2 effective action arising from Calabi-Yau compactifica-
tions, a scalar potential can be introduced at tree level without breaking explicitly N = 2
supersymmetry by performing a gauging of the theory. This is a general technique of ex-
tended supergravity, by means of which a subgroup of the global symmetry group of the
action becomes local (gauged), yielding new interactions among the fields already present
in the spectrum of the theory. For the cases of interest in this thesis, the global symmetries
to be gauged will be the isometries of the hyperscalar quaternionic manifold, discussed in
chapter 4 below. By this gauging procedure, a subset of the previously neutral matter
fields acquire charges under the interaction mediated by (some of) the gauge fields present
in the theory. The introduction of a scalar potential follows by supersymmetry. For a
review of 4d gauged N = 2 supergravity, we refer e.g. to [76].

When the supergravity action is derived from compactification of a higher dimensional
theory, the deformation produced by a gauging can in some cases be understood as the
introduction of background fluxes of the higher dimensional p–form field strengths, thread-
ing cycles of the compact manifold. The flux numbers, given by the integral of the field
strengths over the threaded cycles, provide the charges needed for the gauging. On the
other hand, not all gaugings can be understood as an insertion of fluxes: some gaugings
rather correspond to the replacement of the internal manifold with a completely different

4Notice that the minimal content of a type IIA Calabi-Yau compactification is a single vector multiplet
and a single hypermultiplet. Indeed, h1,1 cannot vanish since the Kähler form J is cohomologically non-
trivial. On the other hand, h2,1 can vanish; in this case, the hypersector is made of just the universal
hypermultiplet.
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manifold. A classical example is the gauging of maximal N = 8 supergravity: the un-
gauged theory can be derived by dimensional reduction of eleven-dimensional supergravity
on the torus T 7 [9], while its SO(8) gauging [77] stems from the reduction on the sphere S7

[78]. Further gaugings of N = 8 supergravity can be understood as reductions on twisted
tori [79, 80]. See e.g. [81] for an introduction to the relation among fluxes, torsion and
gaugings of maximal and half-maximal supergravities. Finally, it is important to remark
that not all gaugings currently have been given a higher dimensional origin.

Let us come back to our Calabi-Yau context, and illustrate with a simple example [82]
the connection between gaugings and fluxes. Consider a flux of the NS 3–form H, defined
by the following expansion in the Calabi-Yau harmonic 3–forms αI :

H = mIαI ,

where the mI are constant parameters, corresponding to flux numbers since5

∫

AI

H =

∫
H ∧ βI = mI ,

where AI denotes a basis for the A–cycles of the third homology, and property (2.22) has
been used. Then look at the component of the RR field strength F̂4 yielding the kinetic
term for the scalars ξI in 4d. Recalling (3.13) and (3.14), before turning on the NS flux
this reads dξI ∧ αI . In the presence of the NS flux, this is modified to

DξI ∧ αI , with DξI = dξI +mIA0 .

Hence we see that the scalars ξI are now charged under the interaction mediated by
the graviphoton A0, the charges corresponding to the flux parameters mI . From the 4d
viewpoint this is a gauging, since the previously global shift symmetry ξI → ξI + λI is
now promoted to a local symmetry, related with the gauge symmetry of the graviphoton
A0 → A0 + dλ(x) by λI = mIλ. We remark that no new 4d fields have been introduced, so
that the supermultiplet structure of the theory, summarized in table 3.1, has not been mod-
ified. Consistently with the N = 2 supersymmetry of the 4d action, the introduction of the
NS flux also induces a nontrivial scalar potential in the 4d theory, as it can be verified by
inspection of the H2 term in the type IIA action (3.12). We will discuss the form of this po-
tential in a much more general setting in the course of this chapter. In fact, already within
Calabi-Yau compactifications, this example can be generalized by considering the presence
of general fluxes for both the NSNS and RR field strengths [14, 15, 82, 83, 84, 85, 86].
Starting with the next section we will study how, allowing the internal manifold to depart
from the Calabi-Yau geometry, and applying the tools of SU(3)×SU(3) structures, one
can obtain even more interesting gaugings. Then, in the next chapter we will enter more
deeply into the gauged supergravity formalism and we will study several properties of the
obtained 4d theories.

The departure from the Calabi-Yau geometry is also motivated by the fact that a
‘Calabi-Yau with fluxes’ background does not solve the higher dimensional supergravity

5As mentioned in section 1.1, quantum conditions require the fluxes to come in a discrete family.
However, at the supergravity level these can consistently be regarded as continuous parameters.
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equations of motion, due to the backreaction on the geometry induced by the flux con-
tribution to the energy-momentum tensor (in particular, this removes the Ricci-flatness
condition). This is also reflected in the scalar potential generated at the 4d level. Indeed,
by ignoring the backreaction of the fluxes one can still expand the higher dimensional fields
in the same Calabi-Yau harmonic forms used in the fluxless case, as we have done in the
example above. However, one can see that the flux-generated 4d scalar potential displays
a runaway behavior corresponding to a decompactification limit, so that the theory does
not have a stable ground state at finite radius.

While in the following we will explore the consequences of abandoning the Calabi-Yau
geometry, let us mention that the situation outlined here above can be improved by passing
from supergravity to string theory, and including in the background further ingredients,
like localized sources. In particular, one is interested in considering orientifold planes,
which have negative tension and can compensate the positive energy density associated
with the fluxes. In this enlarged framework, very interesting consistent backgrounds with
underlying Calabi-Yau geometry can be obtained [13, 87].

3.3 Defining the truncation ansatz

3.3.1 The philosophy

Having reviewed Calabi-Yau compactifications in the previous section, we now wish to
enlarge our horizon, and study the general properties of dimensional reductions of type II
supergravity preserving N = 2 supersymmetry in 4d. In doing this, we allow for arbitrary
NSNS and RR fluxes.

In the previous chapter we discussed how the general spinor ansatz (2.1) for N = 2
reductions requires that the compact manifold M6 admit an SU(3)×SU(3) structure on
TM6 ⊕ T ∗M6. After having introduced the necessary preliminary mathematical notions,
in section 2.4 we studied the relevant properties of SU(3)×SU(3) structures within the
generalized geometry formalism, and in section 2.5 we focused on their deformations. As
anticipated at the end of that section, the next step towards the definition of a 4d theory
with a finite number of degrees of freedom is the truncation of the modes of the higher
dimensional fields along the compact manifold. This is done via the identification of a
reduction ansatz for the higher dimensional fields. Subsequently, one substitutes this ansatz
in the higher dimensional action, and integrates over the compact manifold.

A physically well-motivated reduction ansatz can in principle be derived by a Kaluza-
Klein approach, identifying the low energy physics for small field fluctuations around a
given background. However, switching on fluxes induces several additional terms to the
field equations of motion, and the analysis directed to the determination of the operators
whose zero modes define the light 4d fields becomes very involved (see e.g. [12] for the case
– still relatively simple – of Freund-Rubin compactifications). Furthermore, it is likely that
the characterization of these zero modes be crucially background-dependent.

Given the difficulty to directly identify the light modes to keep, a reasonable way to
proceed which has been carried out in the literature is to adopt an off-shell approach, and
to assume the existence of a generic basis of internal differential forms on which to expand
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the higher dimensional fields. The basis forms are required to satisfy just the minimal
amount of constraints necessary to define a sensible N = 2 supergravity theory in four
dimensions.

This program was first carried out for manifolds admitting strict SU(3) structure: with
restriction to N = 2 reductions of type II, see [47, 88, 89, 90, 45, 91, 92, 49]. For the
particular SU(3) structure class of nearly Kähler manifolds, a satisfactory reduction ansatz
has been implemented in [93]. This case can to some extent be treated analogously to
Calabi-Yau compactifications, since the manifold is still characterized by a real 2–form
J and a complex 3–form Ω. However, crucially now these need not be closed (recall
subsection 2.2.2), hence the basis forms in which they are expanded don’t need to be all
closed either. Rather, the differential relations which are established among them define
a set of ‘geometric charges’ parameterizing the SU(3) torsion classes, and encoding the
departure from the Calabi-Yau geometry.

Subsequently, in [45, 46] this off-shell approach to type II dimensional reductions was
extended to SU(3)×SU(3) structures. In this latter case, since SU(3)×SU(3) structures
are characterized by the polyforms Φ±, it is natural to allow the basis forms to be of mixed
degree as well.

In this context, the safest way to proceed in order that the result of the compactifica-
tion displays the features of an N = 2 supergravity in 4d is to stay as close as possible to
the well-known path of Calabi-Yau dimensional reductions. For example, one of the fea-
tures of Calabi-Yau compactifications one wants to reproduce is the fact that the σ-model
governing the kinetic terms of the scalars associated with the internal metric and B-field
deformations has a target space consisting of the product of two special Kähler manifolds,
to be identified as the scalar manifold for the vector multiplets and the special Kähler
base of the dual quaternionic manifold spanned by the hypermultiplets. As we discussed
in detail in section 2.5, SU(3)×SU(3) structures have this property: the spaces of both
J− and of J+ deformations at a point of M6 admit a local special Kähler structure, and
their metric describes the internal metric and B-field fluctuations. However, as we already
stressed, this result just holds at a point of the internal manifold M6. The constraints
imposed on the basis of expansion forms are aimed to guarantee that this local special
Kähler structure be inherited by the 4d theory for the finite set of modes identified by the
truncation.

In the following of this section, we introduce the basis forms defining the truncation,
and we study the conditions required for the reduction to go through similarly to the
Calabi-Yau case. In the generalized geometry context, these condition were discussed in
[45, 46]. For the SU(3) structure case, a thorough analysis with a complete list of the
constraints on the basis forms was given in [49]. What we provide below is a more explicit,
revisited version of the analysis of [45, 46], based on [P1, P2]. In doing this, we also
stress the relevance of decomposing the pure spinor deformations in representations of
SU(3)×SU(3). Then, in subsection 3.3.4 we study the consequences of demanding closure
of the system of basis forms under the action of a b-twisted Hodge-star operator, while in
subsection 3.3.5 we discuss the differential relations to be satisfied by the expansion forms.
At that point, we will be ready to implement the truncation ansatz to dimensionally reduce
type II supergravity. We will deal in turn with the NSNS sector in section 3.4, and with
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the RR sector in section 3.5.

3.3.2 The basis forms

Let us assume the compact manifold M6 admits SU(3)×SU(3) structure on TM6⊕ T ∗M6,
characterized by a pair of compatible Spin(6,6) pure spinors Φ+,Φ−. We also demand the
existence of a finite basis of differential forms, split in two subsets Σ− and Σ+, composed
of odd and even real forms respectively. A main point is that these forms need not be of
pure degree, i.e. are in general polyforms. In order to preserve the symplectic structure
defined by the Mukai pairing, the basis forms should arrange in symplectic vectors. In the
notation of [46],

ΣA

+ =

(
ω̃A

ωA

)
, ΣI

− =

(
βI

αI

)
, (3.17)

where the range of the indices is: A,B = 0, 1, . . . , b+ and I, J = 0, 1, . . . , b−. We also
introduce the symplectic indices A,B = 1, 2, . . . , 2(b+ + 1) and I, J = 1, 2, . . . , 2(b− + 1).
The actual value of b± is model-dependent, and – contrarily to the Calabi-Yau case – there
are no known general prescriptions to determine it. The pairings of the basis forms are
then required to satisfy the integrated relations

( ∫
〈αI , αJ〉

∫
〈αI , β

J〉
∫
〈βI , αJ〉

∫
〈βI , βJ〉

)
=

(
0 δ J

I

−δI
J 0

)
:= (S−)IJ , (3.18)

( ∫
〈ωA, ωB〉

∫
〈ωA, ω̃

B〉
∫
〈ω̃A, ωB〉

∫
〈ω̃A, ω̃B〉

)
=

(
0 δ B

A

−δA
B 0

)
:= (S+)AB , (3.19)

where S± are the symplectic metrics of Sp(2b± + 2,R). More concisely, we can write

∫

M6

〈ΣA

+,Σ
B

+〉 = (S+)−1 AB ,

∫

M6

〈ΣI

−,Σ
J

−〉 = (S−)−1 IJ . (3.20)

Notice that the integrated Mukai pairing
∫

M6
〈 · , · 〉 naturally provides 4d scalars.

These basis forms will be used to define a truncation ansatz for the higher dimensional
supergravity fields. In particular, we are going to specify the truncation of the internal
NSNS sector by expanding the pure spinors Φ−,Φ+, seen as polyforms, respectively in
Σ− and Σ+. We will denote by M− and M+ the truncated projective spaces of odd and
even pure spinors (i.e., the spaces of pure spinor lines). Their dimensions are b− and b+

respectively.
In subsection 2.5.3 we found that physically relevant pure spinor deformations, i.e. the

ones which modify the internal metric and B-field, are those parameterized by δχ− ∈ Γ(U3̄,3̄)
and δχ+ ∈ Γ(U3̄,3). In order to ensure that M− and M+ describe a subset of just these
deformations, we should require that none of the pure spinor deformations we keep trans-
forms in the (3,1) ⊕ (3̄,1) ⊕ (1,3) ⊕ (1, 3̄) representation of SU(3)×SU(3). A condition
on the expansion forms Σ± guaranteeing this is [46]

〈ωA,Γ
ΛαI〉 = 〈ωA,Γ

ΛβI〉 = 〈ω̃A,ΓΛαI〉 = 〈ω̃A,ΓΛβI〉 = 0 , (3.21)
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where, as in the previous chapter, ΓΛ = (Γm,Γm) = (dxm∧ , ι∂m
). This condition also

ensures that the pure spinor compatibility condition (2.55) is respected already at the level
of the basis forms, preventing in this way a relation between the moduli of Φ+ and Φ−.

Actually, the requirement of dropping the SU(3)×SU(3) triplets doesn’t concern just
the pure spinor deformations, but the full set of type II supergravity polyforms, naturally
decomposing under SU(3)×SU(3) according to (2.68). Indeed, in refs. [45, 46] it was argued
that, if not truncated out, the fields transforming in the O(6, 6) vector representation would
assemble to define spin 3/2 multiplets in 4d, yielding non-standard couplings of N = 2
supergravity. Again, condition (3.21) gets us out of trouble.

We conclude that the SU(3)×SU(3) representations relevant to the definition of the
N = 2 effective action reside in the horizontal and vertical axis of the diamond (2.68).
This is somehow analogous to the Calabi-Yau case, where however the diamond is a true
Hodge diamond, in that it consists of (p, q)-cohomologies.6

3.3.3 Special Kähler geometry on the truncated space of pure
spinors

Special Kähler geometry for M−

Using the basis forms and the Mukai pairing we define the periods of Φ− as

ZI :=

∫
〈Φ−, βI〉 , GI :=

∫
〈Φ−, αI〉 . (3.22)

Then Φ− can be expanded on the basis forms as

Φ− = ZIαI − GIβ
I . (3.23)

When the compact manifold is a Calabi-Yau 3–fold, this expansion corresponds to the
expansion of the Calabi-Yau holomorphic (3,0)–form Ω on a basis for the 3–form real
cohomology, see eqs. (2.23), (2.24); hence in this case M− coincides with the complex
structure moduli space Mcs discussed in subsection 2.3.2. In the strict SU(3) structure
case, one still has Φ− ∼ Ω, but this is generically not closed (recall (2.10)). One can still
expand it in a basis of real 3–forms, but these need not be cohomology representatives.

From (3.22) we see that performing a constant rescaling Φ− → λΦ− implies ZI → λZI

and GI → λGI . We would like to conclude that Φ− is a homogeneous function of degree
1 in the ZI variables, and then see these as projective coordinates for M− . For this
to be true, we need that the ZI , I = 0, 1, . . . , b−, define b− independent functions on
M− (then the GI are holomorphically determined by the ZJ), and that the basis forms,
which in general can be moduli-dependent, be homogeneous of degree 0 in the ZI . Once
this is satisfied, away from the Z0 = 0 locus we can also introduce special coordinates
zi = Zi/Z0, i = 1, 2, . . . , b−, for M− .

Given (3.23), and recalling (3.18), the Kähler potential K− written in (2.70), now
integrated, takes the standard form of (local) special Kähler geometry:

K− ≡ − log i

∫
〈Φ−, Φ̄−〉 = − log i(Z̄IGI − ZI ḠI) . (3.24)

6The diamond of section 2.3.1 displays the dimensions hp,q of the (p, q)-cohomologies Hp,q(M6).
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In the generalized geometry literature, the functional
∫
〈Φ, Φ̄〉, introduced in [53, 22], is

known as the Hitchin functional.
We still have to verify if GI can be obtained by derivation from a prepotential, homo-

geneous of degree 2 in the ZI . In subsection 2.3.2 we saw that in the Calabi-Yau case an
essential tool to show that the space of complex structure deformations is special Kähler is
represented by the Kodaira formula (2.19). Here we rewrite it in a slightly different way.
We start appending some tildes: calling now Ω̃(zi) the Calabi-Yau holomorphic (3, 0)-form,
we rewrite (2.19) as

∂Ω̃

∂zi
= κ̃iΩ̃ + χ̃i i = 1, . . . , h2,1 , (3.25)

where again the κ̃i can depend on z but not on the coordinates of M6, and {χ̃i} is a basis
for the (2, 1)-harmonic forms. Introducing then Ω(ZI) = Z0Ω̃(zi) , we can recast (3.25) in
terms of projective coordinates ZI = (Z0, Zi = Z0zi) as

∂Ω

∂ZI
= κIΩ + χI I = 0, 1, . . . , h2,1 , (3.26)

where κI = (κ0, κi) = 1
Z0 (1 − ziκ̃i , κ̃i) and χI = (χ0, χi) = (−ziχ̃i , χ̃i) . Notice that

χi = χ̃i is homogeneous of degree 0.
We now reconsider deformations of pure spinors, which in subsection 2.5 we wrote in the

form (2.73), and we rephrase them in a form analogous to (3.25) and (3.26). Parameterizing
the truncated projective space of pure spinors M− by the moduli zi, or alternatively by
the projective coordinates ZI , we can write:

∂Φ̃−
∂zi

∼ κ̃−i Φ̃− + χ̃−i , or
∂Φ−
∂ZI

∼ κ−I Φ− + χ−I , (3.27)

where the tildes have the same meaning as above, and the relations between the κI , χI and
the κ̃i, χ̃i are also the same. Referring to the deformations introduced in eq. (2.73), we
identify δκ− = κ̃−i δz

i , δχ− = χ̃−i δz
i , and therefore at each point of M6 we have χ−I ∈ U3̄,3̄ .

Adopting the notation of [46], here and in the following by the symbol ∼ we mean ‘equality
up to terms that vanish in the integrated symplectic pairing’. In the above expression the
∼ is required because in principle the pure spinor variations contain a term transforming in
the triplets of SU(3)×SU(3), and we are preventing its presence in the truncated spectrum
by assumption (3.21).

Since (3.27) does not contain a term proportional to Φ̄−, we have

∫
〈Φ−, ∂IΦ−〉 = 0 (∂I ≡ ∂

∂ZI ) , (3.28)

which indeed is a necessary condition for special Kähler geometry, see eq. (D.2). From the
expansion (3.23) we have

∂IΦ− = αI − ∂IGKβ
K + ZK∂IαK − GK∂Iβ

K , (3.29)

where the last two terms have been taken into account because in general the expansion
forms are moduli dependent. This is true also when considering an off-shell reduction on a
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Calabi-Yau 3-fold (see e.g. [49] for a recent discussion on this point), but in this case ∂IαJ

and ∂Iβ
J are exact and don’t contribute to the integral. In the more general case this is

not automatic, and we are led to require

∫
〈αJ , ∂IαK〉 =

∫
〈αJ , ∂Iβ

K〉 =

∫
〈βJ , ∂Iβ

K〉 = 0 . (3.30)

This also guarantees constancy of the symplectic structure (3.18). Analogously to the
Calabi-Yau case, (3.28) then gives

2GI = ∂I(Z
KGK) , (3.31)

which implies that G := 1
2
ZKGK is a homogeneous function of degree 2 in the Z variables

(the prepotential), and GI = ∂IG. Then GI is homogeneous of degree 1: GI = ZK∂KGI .
We will denote GIJ := ∂IGJ = ∂I∂JG.

We can now derive an useful relation between the coefficient κ−I appearing in (3.27)
and the special geometry data. Assuming that κ−I does not depend on the coordinates of
M6 (this condition is automatically verified in the Calabi-Yau case), we obtain

κ−I =

∫
〈∂IΦ−, Φ̄−〉∫
〈Φ−, Φ̄−〉

=
ImGIJ Z̄

J

ZKImGKLZ̄L
. (3.32)

where for the first equality we used the orthogonality of the different representations in
(2.68). Notice that κ−I = −∂IK− and therefore from (3.27)

χ−I ∼ DIΦ− ∼ DIZ
JαJ −DIGJβ

J ,

where DI = ∂I + ∂IK−. Again, these are direct generalizations of expressions valid in the
Calabi-Yau case (see e.g. [56]).

Provided the whole set of conditions summarized in this subsection is satisfied, we can
conclude that M− has a local special Kähler structure. From (2.76), (2.87) it follows that
the metric G

−
i̄ on M− is given by

G
−
i̄ =

∂

∂zi

∂

∂z̄ ̄
K− = −

∫
〈χ−i , χ̄−̄ 〉∫
〈Φ−, Φ̄−〉

. (3.33)

In the Calabi-Yau case, (3.33) reduces to (2.18), with the χi corresponding to harmonic
(2,1)-forms, recall the discussion of subsection 2.3.2.

Analogously to what we did for the Calabi-Yau complex structure moduli space Mcs,
we can introduce the period matrix relating the upper and lower components of the sym-
plectic vector (ZI ,GI). We continue to callM this matrix, and its formal definition is the
same as in (2.26), where here the Kähler covariant derivative Dk is Dk = ∂zk + ∂zkK− .
As in the Calabi-Yau case, this period matrix is going to play an important role in the
compactification. In the forthcoming subsection we will discuss how it can be derived from
the generalized geometry on the internal manifold. Before doing this we briefly describe
the truncated space M+ of even pure spinors.



3.3 Defining the truncation ansatz 65

Special Kähler geometry for M+

The requirements to be imposed in order to ensure the local special Kähler structure of
M+ are completely parallel to the ones described above for M−. Here we summarize the
important relations, mainly to fix our notation. The periods of Φ+ are defined as

XA :=

∫
〈Φ+, ω̃

A〉 , FA :=

∫
〈Φ+, ωA〉 . (3.34)

Hence Φ+ is expanded on the truncated basis of forms as

Φ+ = XAωA −FAω̃
A . (3.35)

The FA are holomorphic functions of the XA, identified with ∂XAF , where F is the pre-
potential (holomorphic and homogeneous of degree two in the XA). We denote the special
coordinates for M+ as ta = Xa/X0. The Kähler potential K+ is expressed as

K+ = − log i

∫
〈Φ+, Φ̄+〉 = − log i(X̄AFA −XAF̄A) . (3.36)

The metric G
+
ab̄

on M+ can be obtained from K+ by

G
+
ab̄

=
∂

∂ta
∂

∂t̄b̄
K+ = −

∫
〈χ+

a , χ̄
+
b̄
〉∫

〈Φ+, Φ̄+〉
. (3.37)

The period matrix for the special geometry on M+ will be denoted by N . This is the same
symbol used for the period matrix on the Calabi-Yau Kähler structure moduli space Mks,
and its formal definition is the same as in (2.35), with the Kähler covariant derivative here
being given by Da = ∂ta + ∂taK+ .

Refining the description of the Calabi-Yau moduli space

We remark that the formalism developed here above for the even forms can be fruitfully
applied to the Calabi-Yau case. We have already seen around eq. (2.71) that the pure spinor
Φ+ = e−φe−b−iJ yields the correct Kähler potential for the Calabi-Yau Kähler structure
moduli space. It is also straightforward to extend the basis {ωa} for H2(M) employed in
subsection 2.3.2 for the expansion of J and b to a basis Σ+ for the full even cohomology
H0 ⊕H2 ⊕H4 ⊕H6. Given the ωa, one can always choose 4–forms ω̃a spanning H4 and
satisfying (3.19). As for ω0 and ω̃0, we take

ω0 = 1 , ω̃0 =
vol6
Vol

, (3.38)

spanning H0 and H6 respectively. We can then expand Φ+ as [45]

Φ+ = e−φe−b−iJ ∼ e−φ
(
1− taωa +

1

2
Kabct

atbω̃c − 1

6
Kabct

atbtcω̃0
)

(3.39)

where as in subsection 2.3.2 ta = ba + iva, and we used ωa ∧ ωb ∼ Kabcω̃
c as well as

ωa ∧ ωb ∧ ωc ∼ Kabcω̃
0, both satisfied in cohomology (recall that Kabc are the triple inter-

section numbers, defined in (2.33)). Now, (3.39) is just expansion (3.35), with XA =
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(X0, Xa) = (e−φ,−e−φta) and FA = ∂XAF , where F is (minus) the cubic prepotential
given in (2.32). Hence, besides the ta, also X0 and the FA are now read directly from
the differential form encoding the complexified Kähler structure on the Calabi-Yau mani-
fold, which here is the polyform Φ+ = e−φe−b−iJ ; this is in contrast with subsection 2.3.2,
where the prepotential F (and by consequence the FA) was introduced somehow ad hoc.
In other words, here the symplectic Sp(2h1,1 + 2,R) structure of the complexified Kähler
structure moduli space emerge directly from Φ+, analogously to what was manifest for the
holomorphic (3,0)–form Ω already in expansion (2.24). Hence we see that the construction
just decribed, which was in part anticipated in [56, sect. 5] and arises in full naturalness
in the context of generalized geometry, makes even more explicit the symmetry bewteen
the complex structure and the Kähler structure moduli spaces of Calabi-Yau manifolds.
The symplectic sections (ZI ,GI)

T and (XA,FA)T on the two special Kähler manifolds
M− = Mcs and M+ = Mks are just the periods of two geometric objects, the pure spinors
Φ− and Φ+, which are treated on the same footing. Also the Kähler potentials have the
perfectly symmetric expression K± = − log i

∫
〈Φ±, Φ̄±〉, with K− = Kcs, and K+ = Kks.

If the compact manifold has strict SU(3) structure without being Calabi-Yau, we can
still use for the expansion of e−b−iJ a system of forms ωA, ω̃

A analogous to the one intro-
duced above, but generically these will not all be closed. In subsection 3.3.5 below we will
discuss in more detail the general differential conditions to be imposed on the basis forms.

A further constraint on the expansion forms

In order to derive eq. (3.32), together with its analogue on M+, we had to require that
κ−I and κ+

A do not depend on the internal coordinates. A related condition that seems
necessary for the dimensional reduction to proceed analogously to the Calabi-Yau case is
that the ratios

〈ΣA
+,Φ+〉

〈Φ+, Φ̄+〉
and

〈ΣI
−,Φ−〉

〈Φ−, Φ̄−〉
be constant on M6, (3.40)

where as in the previous chapter by the ratio of two top forms we mean the ratio of their
unique elements. Provided that 〈ZJ∂ZIαJ − GJ∂ZIβJ , Φ̄〉 = 0 (and similarly for the even
basis), this indeed implies that

κ+
A =

〈∂XAΦ+, Φ̄+〉
〈Φ+, Φ̄+〉

and κ−I =
〈∂ZIΦ−, Φ̄−〉
〈Φ−, Φ̄−〉

are constant on M6, (3.41)

We notice that conditions (3.40) and (3.41) are satisfied when M6 is a Calabi-Yau 3-fold.
To verify (3.40) one uses a basis Σ± for the Calabi-Yau cohomology made of harmonic
representatives. Recall also that the pure spinors take form Φ+ = e−φe−b−iJ and Φ− =
−ie−φΩ (see (2.65)), where J is the Kähler form of the Calabi-Yau, Ω is the holomorphic
(3, 0) form, and the dilaton φ is constant along M6. For instance, for the harmonic (1,1)–
forms ωa the first expression in (3.40) reads

3
ωa ∧ J ∧ J
J ∧ J ∧ J = ωayJ , (3.42)

where eqs.(A.23) and (A.9) were used. Now, harmonicity of ωa implies ∂m(ωayJ) = 0 [71].
In the general SU(3)×SU(3) structure case (3.40) and (3.41) are non-trivial assumptions,
and we are going to employ them at several points of the dimensional reduction.
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3.3.4 The twisted Hodge star ∗b
In the following we discuss the geometric origin of the period matrices NAB and MIJ

associated with the special Kähler structure of M+ and M− respectively. This important
piece of information about the 4d N = 2 supergravity arising from SU(3)×SU(3) com-
pactifications can be extracted from the study of the 6d b-twisted Hodge star operator
[28, 24, 94]:

∗b := e−b ∗ λ eb , (3.43)

which is the covariant generalization of the usual Hodge ∗ when considering Spin(6,6)
spinors containing the B-field, as Φ± = e−bΦ0

±.
In particular, we are interested in identifying the action of ∗b on the basis of forms Σ±

in terms of the special geometry data. In doing so, we will generalize some well-known
results [95, 96] for the action of the usual Hodge ∗ on the harmonic 3-forms of a Calabi-Yau
3-fold.

We start with a couple of remarks. It is easy to check that (∗b)2 = −id; therefore its
eigenvalues are ±i and an almost complex structure is defined on ∧•T ∗. Using the bispinor
picture, one can readily verify that the Ur,s defined in (2.68) are ±i eigenbundles for ∗b.
This can be seen as follows: in the differential form picture, consider the B-transformed of
(2.69), and act on it with ∗b; then pass to the bispinor picture, using (B.6) to evaluate ∗λ
under the Clifford map. One obtains the eigenvalues7

−i
−i i

−i i −i
−i i −i i

i −i i
−i i

i

(3.44)

In particular, we have ∗bΦ± = −iΦ±, and therefore

∗bRe(Φ±) = Im(Φ±). (3.45)

So we can conclude that once the metric has been fixed, ∗b behaves on pure spinors as
the Hitchin ‘hat operator’ [22], since acting on the real part of the pure spinor it gives its
imaginary part.8

Let us now determine the action of the ∗b operator on the elements of the basis Σ±. As
already mentioned, to achieve this we will generalize the analysis of refs. [95, 96] for the
action of the usual Hodge ∗ on the Calabi-Yau harmonic 3-forms (see also [49] for the SU(3)
structure case). In the Calabi-Yau case, the analysis builds on the simple observation that

7For b = 0, this can be found in [35]. The overall sign difference with respect to that paper is due to
an opposite sign choice we have in the definition of the 6d chirality matrix γ, see (A.12)

8The same holds for the Hitchin hat operator : R̂eΦ = ImΦ. Anyway, the operator defined by Hitchin
is more fundamental in that it does not need the metric. Furthermore, the hat operator acts differently
than ∗b on the other entries of the generalized diamond.
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the Hodge ∗ acts9 as −i on (3, 0)-forms and as +i on the (2, 1)-harmonic forms which
parameterize the complex structure deformations.

Our generalization employs the decomposition of ∧•T ∗ in terms of SU(3)×SU(3) rep-
resentations instead of the (p, q)-decomposition of complex forms of pure degree.

As a starting point we need the assumption that the action of ∗b on the elements of Σ±

can still be expanded on Σ±. Focusing on Σ−, we write

∗bαI ∼ A J
I αJ + BIJβ

J , ∗bβI ∼ CIJαJ +DI
Jβ

J . (3.46)

We also require that the matrices A,B, C,D do not depend on the coordinates of M6. For
a Calabi-Yau, expansion (3.46) is not an assumption but a matter of fact since Σ− consists
of harmonic 3-forms.

Using (3.18) and the fact that for any A,C ∈ ∧•T ∗, 〈A, ∗bC〉 = −〈∗bA,C〉 (this
descends from eqs. (B.2)-(B.4)), we see immediately that (I, J indices are understood)

BT = B =

∫
〈α, ∗bα〉 , CT = C = −

∫
〈β, ∗bβ〉 , −AT = D =

∫
〈α, ∗bβ〉 . (3.47)

Applying ∗b to (3.46), using (∗b)2 = −id and (3.18), one can see that the matrix

M :=

( ∫ 〈α, ∗bβ〉 −
∫
〈β, ∗bβ〉∫

〈α, ∗bα〉 −
∫
〈β, ∗bα〉

)
=

( D C
B A

)
(3.48)

is symplectic (i.e. MT S−M = S−, with S− given in (3.18)) and satisfies M2 = −1.
Now, the key observation is that, as one sees from (3.44), ∗b acts as −i on Φ− ∈ U1,1

and as +i on χ−I ∈ U3̄,3̄, so that, referring to eq. (3.27), we have

∗b(∂IΦ−) ∼ i(∂IΦ− − 2κ−I Φ−) (3.49)

On the other hand, recalling (3.29) and (3.30),

∂IΦ− ∼ αI − GIJβ
J . (3.50)

Substituting (3.50) into (3.49) and using (3.46) we get

(A J
I −GIKCKJ)αJ +(BIJ +A K

J GKI)β
J ∼ i(δ J

I −2κ−I Z
J)αJ− i(GIJ−2κ−I GJ)βJ . (3.51)

Taking the integrated Mukai pairing of this expression with the basis forms α, β, separating
into real and imaginary parts, and using the expression (3.32) for κ−I , we arrive at

CIJ = −(ImG)−1 IJ +
ZIZ̄J + Z̄IZJ

ZKImGKLZ̄L

= (ImM)−1 IJ

A J
I = −[ReG(ImG)−1] J

I +
GIZ̄

J + ḠIZ
J

ZKImGKLZ̄L

= [ReM(ImM)−1] J
I

BIJ = [ImG + ReG(ImG)−1ReG]IJ −
GI ḠJ + ḠIGJ

ZKImGKLZ̄L

= −[ImM+ ReM(ImM)−1ReM]IJ , (3.52)

9See (A.6) for our definition of the Hodge ∗.
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where to write the second equalities we use (D.8). So the matrices A,B, C,D are expressed
in terms of the special Kähler geometry period matrixM, and the result can be summarized
in

M ≡
( ∫

〈α, ∗bβ〉 −
∫
〈β, ∗bβ〉

∫
〈α, ∗bα〉 −

∫
〈β, ∗bα〉

)

=

(
−(ImM)−1ReM (ImM)−1

−ImM− ReM(ImM)−1ReM ReM(ImM)−1

)
. (3.53)

The associated matrix

M̃ := −S−M =

(
1 −ReM
0 1

)(
ImM 0

0 (ImM)−1

)(
1 0

−ReM 1

)
(3.54)

is symmetric and negative definite. The latter property is implied by the negative definite-
ness of ImM, guaranteed by

−(ImM)−1 IJ =

∫
〈βI , ∗bβJ〉 =

∫
〈 ebβI , ∗λ(ebβJ) 〉 =

∑

k

∫
(ebβI)ky(ebβJ)k vol6 ,

where k runs over the different form degrees of the polyform ebβI . The matrix M̃ is an
important piece of information in the definition of N = 2 supergravity by compactification
of type II theories to four dimensions. In particular, for type IIA compactifications it
appears in the kinetic terms for the scalars ξI , ξ̃I coming from the expansion of the RR
potentials. Namely, as we have seen for Calabi-Yau compactifications, it is one of the special
geometry data that determine the quaternionic metric for the N = 2 hypermultiplets σ-
model. While this is familiar for dimensional reductions on a Calabi-Yau, we have shown
that the same structure can be extended to more general settings, for instance to cases in
which the basis forms are not of pure degree. In subsection (3.4.3) below we will see that

M̃ appears in the scalar potential as well.
It is readily checked that when considering Calabi-Yau (or more generally SU(3) struc-

ture [49]) compactifications, (3.53) reduces to the well known expression for the action
of the Hodge ∗ on the Calabi-Yau harmonic 3-forms. Indeed in this case, because of the
constraint b ∧ αI = b ∧ βI = 0, the action of ∗b on Σ− simplifies to the action of the usual
Hodge ∗ , so that

∫
〈α, ∗bβ〉 =

∫
α ∧ ∗β (similarly for the other pairings). Therefore in

this case (3.53) specializes to the result of [95, 96].

One can now proceed in a completely parallel fashion to derive the action of ∗b on the
even basis forms Σ+. In this case, Φ+ ∈ U1,1̄ and its deformations are in U3̄,3 (deformations
in U3,1̄⊕U1,3̄ are assumed to vanish in the Mukai pairing due to condition (3.21)). Again,
these are two eigenbundles of ∗b associated with opposite eigenvalues.
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Repeating the steps done for the odd forms, and adopting analogous assumptions, we find10

N :=

( ∫
〈ω, ∗bω̃〉 −

∫
〈ω̃, ∗bω̃〉∫

〈ω, ∗bω〉 −
∫
〈ω̃, ∗bω〉

)

=

(
−(ImN )−1ReN (ImN )−1

−ImN − ReN (ImN )−1ReN ReN (ImN )−1

)
, (3.55)

where N ∈ Sp(2b+ + 2,R) and satisfies N2 = −1. The analog of (3.54) is

Ñ := −S+N =

(
1 −ReN
0 1

)(
ImN 0

0 (ImN )−1

)(
1 0

−ReN 1

)
, (3.56)

which again is symmetric and negative definite (the argument for the negative-definiteness
of ImN is perfectly analogous to the one for ImM). In type IIA compactifications, ImN
and ReN define the N = 2 gauge vector kinetic and topological terms in 4d. The matrix
Ñ also enters in the scalar potential, see subsection 3.4.3 as well as eq. (3.141) below.

Note that in the particular case of Calabi-Yau 3-folds one can check (3.55) explicitly by
separate evaluation of the two matrices appearing there. In order to evaluate the first line
of (3.55), one can choose the basis for the even cohomology introduced around eq. (3.38),
then expand −b − iJ = Xa

X0ωa and use 1
4Vol

∫
〈ωa, ∗ωb〉 = Gab (recall (2.29)). On the other

hand, the period matrix NAB appearing in the second line can be obtained starting from
(minus) the cubic prepotential (2.32), and applying the special geometry formula (D.5)
(translated in the notation for M+).

3.3.5 Differential conditions on the basis forms

While in the previous subsection we studied the action of the ∗b operator on the basis
forms, in this subsection we deal instead with the action of the exterior derivative. Above
it was essential to require that the system of expansion forms be closed under the action
of ∗b, up to terms vanishing in the integrated Mukai pairing (recall eq. (3.46)). The same
condition will now be needed for the exterior derivative. This subsection mainly follows
refs. [45, 46].

Let us first consider a strict SU(3) structure on the compact manifold M6, characterized
by the complex 3–form Ω and the almost symplectic structure J . As already remarked,
the expansion forms need not be closed. Seeing this as a deformation of the Calabi-Yau
case, one can choose Σ− in (3.17) as composed of 3-forms only. As for Σ+, one takes ω0, ω̃

0

as in (3.38). Given a set of 2–forms {ωa}, a set of 4–forms {ω̃a} satisfying (3.19) can be
built via [49]

ω̃a := −gab ∗ ωb , (3.57)

10For later use we notice that, recalling (3.17), the matrices M and N can be concisely defined via

NA
B :=

∫
〈ΣA

+, ∗bΣ+B 〉 , MI
J :=

∫
〈ΣI

−, ∗bΣ−J 〉 ,

where Σ+B = S+BCΣC
+ and Σ−J = S−JKΣK

− .
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gab being the inverse of the matrix gab =
∫
ωa∧∗ωb, assumed non-degenerate. The analogue

of (3.21) is now ωa ∧αI ∼ 0 ∼ ωa ∧ βI , which implies the usual SU(3) structure constraint
J ∧ Ω = 0. As anticipated at the end of subsection 2.4.4, we separate the internal NS
3-form H (satisfying the Bianchi identity dH = 0) into an exact and a flux piece:

H = Hfl + db . (3.58)

While b enters in the definition of the pure spinors Φ± (in particular, in the strict SU(3)
structure context it pairs up with J to define the complex form b + iJ), the NS flux Hfl

enters in the twisted differential

dHfl := d−Hfl∧ . (3.59)

Expanding it on the basis 3–forms as

Hfl = mI
0αI − eI0β

I , (3.60)

where mI
0, eI0 are constant parameters, and demanding closure of the system of forms Σ±

under the action of dHfl , one is led to assume [47, 45, 90, 89]

dHflαI ∼ eIAω̃
A , dHflβI ∼ mI

Aω̃
A

dHflωA ∼ mI
AαI − eIAβ

I , dHflω̃A ∼ 0 , (3.61)

where we recall that ∼ means equality up to terms vanishing inside the integrated sym-
plectic pairing. The mI

a and eIa are required to be constant parameters, and are sometimes
called ‘geometric fluxes’. They can be put in relation with the torsion classes characteriz-
ing the SU(3) structure under consideration, recall subsection 2.2.2. Note that (dHfl)2 = 0
implies

eIAm
I
B −mI

AeIB = 0 . (3.62)

On backgrounds more general than the strict SU(3) structure case just described, the
basis forms are not necessarily of pure degree. Without needing to specify the details of
the model, we are led to adopt the following general differential conditions for the basis
Σ± [46]:

dHflαI ∼ pA
I ωA + eIAω̃

A , dHflβI ∼ qIAωA +mI
Aω̃

A

dHflωA ∼ mI
AαI − eIAβ

I , dHflω̃A ∼ −qIAαI + pA
I β

I . (3.63)

By introducing the (2b− + 2)× (2b+ + 2) rectangular matrix of constant parameters

Q :=

(
mI

A qIA

eIA p A
I

)
, (3.64)

one can summarize (3.63) in the following relations [46]:

dHflΣ− ∼ QΣ+ , dHflΣ+ ∼ Q̃Σ− . (3.65)

The matrix Q̃ is related to Q in a simple way: indeed, since
∫
〈dHflΣ−,Σ+〉 =

∫
〈Σ−, dHflΣ+〉,

one has
Q̃ = (S+)−1QT S− . (3.66)
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The quadratic relations among the charges arising from (dHfl)2 = 0 here read

Q Q̃ = 0 = Q̃ Q . (3.67)

As it will be apparent in section 3.5, these constraints are fundamental to guarantee the
consistency of the 4d N = 2 supergravity action arising from the dimensional reduction
[97, 98, 50].

The matrix Q encodes both the Hfl and the geometric fluxes. However, in [46] it
was argued that the action of the differential operator dHfl cannot realize all the possible
charges in Q. This can be achieved only on a non-geometric background [99]. On such
backgrounds, the dHfl operator can formally be extended to an operator D, first introduced
in [100], encoding both geometric and non-geometric fluxes:

dHfl → D := dHfl −Q · −Rx , (3.68)

where in the notation of [100] the Q and R operators act on a differential k-form C as

(Q ·C)m1...mk−1
= Qab

[m1
C|ab|m2...mk−1] , (RxC)m1...mk−3

= RabcCabcm1...mk−3
, (3.69)

and so they lower its degree by 1 and 3 respectively. Therefore, D can both increase and
reduce the degree of a form, but still sends odd/even forms into even/odd forms. The
nilpotency condition (dHfl)2 = 0 is now extended to D2 = 0, so that the constraints (3.67)
still hold. When considering the specific case of the SU(3) structure basis described above,
one can identify qIa and pa

I appearing in (3.63) as arising from the action of Q· , while qI0

and p0
I are generated by Rx .

Since in this thesis we are not concerned with nongeometric backgrounds, in the fol-
lowing we will use just the operator dHfl . Even if we have to recall that we cannot realize
all the possible charges in it, we find all the same advantageous to employ the general
symplectically covariant form of Q.

To summarize, in this subsection we required that the system of basis forms Σ± be
closed under the action of the twisted exterior derivative dHfl . The non-closure of the
basis forms introduces a set of parameters – the geometric fluxes – which supplement
the NS 3–form fluxes, and vanish in the Calabi-Yau case. From a 4d viewpoint, to be
developed starting with next section, these parameters will play the role of electric and
magnetic charges assigned to some of the previusly neutral scalar fields in the theory. As
a consequence, the latter will take the form of a gauged N = 2 supergravity.

3.4 Reduction of the NSNS sector

We can now implement the dimensional reduction of type II supergravity, starting from
the NSNS sector. We assume a background topology of the type M10 = M4 ×M6, where
M4 is the 4d ‘external’ spacetime and M6 is a 6d ‘internal’ compact manifold admitting
SU(3)×SU(3) structure on T ⊕ T ∗. Coordinates along M4 and M6 are denoted by xµ

and ym respectively. Furthermore, we assume that the conditions on the expansion forms
spelled above in this chapter are satisfied.
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We start introducing an ansatz for the NSNS fields. For the metric we take

dŝ2 = ĝµν(x)dx
µdxν + gmn(x, y)dymdyn , (3.70)

where the hatted 4d metric ĝµν will be soon Weyl-rescaled. The NS 3–form Ĥ splits as in

(3.3). The cohomologically non-trivial part has just internal indices: Ĥfl ≡ Hfl, while for
the potential B̂ we take

B̂ = B + b , with B = 1
2
Bµν(x)dx

µ ∧ dxν and b = 1
2
bmn(x, y)dym ∧ dyn . (3.71)

Finally, we allow a possible dependence of the 10d dilaton on both external and internal
coordinates:

φ = φ(x, y) . (3.72)

The mode truncation of gmn, bmn and φ will be specified later on, via the expansion of the
pure spinors Φ± on the basis forms described in the previous section. The absence of the
terms with mixed indices gµn and Bµn in the reduction ansatz is a feature typical of Calabi-
Yau compactifications, in which case it is due to the absence of continuous isometries and
of harmonic 1–forms (recall section 3.2). In the general SU(3) and SU(3)×SU(3) structure
context a motivation for not to include gµn and Bµn in the truncation ansatz was given in
[45, 46] by observing that these fields transform in the ‘triplets’ of SU(3)×SU(3) (recall
the discussion in subsection 3.3.2 above). Notice that this ansatz implies that the NSNS
sector will provide no 4d gauge vectors; they will all be supplied by the RR sector.

One can now plug ansatz (3.70)–(3.72) in (3.1) and derive the NSNS sector decompo-
sition. The treatment of the quadratic terms in the dilaton φ and NS 3–form Ĥ appearing
in (3.1) being straightforward, we just have to focus on the Einstein-Hilbert term in the
action. Under (3.70), the higher dimensional Ricci scalar becomes

R̂10 = R̂4 +R6 −
1

4
gmpgnq

(
∂µgmp∂̂

µgnq − 3∂µgmn∂̂
µgpq

)
− gmn∇̂2

4 gmn , (3.73)

where R̂4 and R6 are the Ricci scalars associated with the metrics on (M4, ĝµν) and

(M6, gmn) respectively, while ∇̂2
4 is the Laplacian on (M4, ĝµν). One now proceeds in two

steps. First substitute (3.73) in 1
2

∫
M10

vol10e
−2φR̂10 and perform the integration by parts

(vold is the volume form on Md):

−1

2

∫

M4

vol4

∫

M6

vol6e
−2φgmn∇̂2

4 gmn =
1

2

∫

M4

vol4

∫

M6

∂µ(vol6e
−2φgmn)∂̂µgmn .

Secondly, pass to the 4d Einstein frame by introducing the 4d Weyl rescaled metric (no
rescaling is instead performed on the 6d metric):

gµν := e−2ϕĝµν , (3.74)

where the 4d dilaton ϕ is defined as

e−2ϕ :=

∫

M6

vol6e
−2φ . (3.75)
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For later use, notice from (2.57), (2.58), (3.24), (3.36) and (3.75) that ϕ is related to the
Kähler potentials K± by

e−K+ = e−K− = 8e−2ϕ . (3.76)

Under rescaling (3.74), R̂4 = e−2ϕ(R4 − 6∇2
4ϕ − 6∂µϕ∂

µϕ), where on the r.h.s. the
indices are raised with the Einstein frame metric gµν .

Putting everything together, the decomposition of (3.1) results then in:

SNS =
1

2

∫

M4

vol4
(
R4 − 2∂µϕ∂

µϕ− 1

12
e−4ϕHµνρH

µνρ
)

− 1

8

∫

M4

vol4e
2ϕ

∫

M6

vol6e
−2φgmpgnq

(
∂µgmn∂

µgpq + ∂µbmn∂
µbpq

)

− 1

2

∫

M4

vol4e
2ϕ

∫

M6

vol6e
−2φ∇2

4 log
(
e−2φ√g6

)

−
∫

M4

vol4VNS , (3.77)

where g6 ≡ det(gmn), while VNS is identified with the part of the reduced NSNS sector not
containing any 4d spacetime derivative:

VNS ≡ −
e4ϕ

2

∫

M6

vol6e
−2φ
(
R6 + 4∂mφ∂

mφ− 1

12
HmnpH

mnp
)
, (3.78)

and therefore represents the contribution of the NSNS sector to the 4d scalar potential.11

The first line of (3.77) already contains 4d fields only, and is compatible with 4d N = 2
supergravity. In section 3.2 we saw that in standard fluxless Calabi-Yau compactifications
the four dimensional NS 2–form B is dualized to an axion which, together with the 4d
dilaton ϕ and two further scalars from the RR sector, defines the bosonic part of the
universal hypermultiplet. However, as first observed in [82], in the presence of RR magnetic
fluxes the NS 2–form acquires mass terms and therefore cannot be dualized to a scalar
anymore. Anyway, as shown in [101, 97, 98], (massive) antisymmetric 2–tensors can be
included consistently in an N = 2 supergravity action. We will have more to say about
this in section 3.5.

The subsequent lines in (3.77) still need to be reformulated in terms of a truncated set
of modes of the fields gmn, bmn and φ. For this purpose, in the forthcoming subsections
first we translate these expressions in the language of generalized geometry, relating them
with the SU(3)×SU(3) structure data. Then we implement the expansion in terms of the
truncated set of modes introduced in section 3.3.

Before discussing the relation with SU(3)×SU(3) structures, let’s briefly make the link
with the fluxless Calabi-Yau dimensional reduction of section 3.2. As we discussed in
subsection 2.3.2, by expressing the Calabi-Yau metric and b-field deformations in terms of
harmonic forms, the second line of (3.77) can be reformulated as a σ–model whose metric
splits in the sum of the special Kähler metrics on the spaces of complex– and Kähler–
structure deformations. In section 3.2 we reviewed how these correspond to the kinetic

11A further contribution to the scalar potential is generated from the RR sector and will be derived in
the next section. The total potential of the effective theory will hence be V = VNS + VRR.
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matrices for the scalars in the vector multiplets and for a subset of the scalars in the
hypermultiplets.

The last two lines of (3.77) vanish in Calabi-Yau dimensional reductions. The line
involving ∇2

4 log
(
e−2φ√g6

)
vanishes thanks to the internal coordinate independence of this

last term: passing it out the integral over M6 and recalling (3.75), one is left with the
integral over M4 of a total derivative. The constancy of ∇2

4 log
√
g6 along the Calabi-

Yau can be seen as follows. Recall that
√
g6 depends on the 4d coordinates through the

moduli va(x) parameterizing the Kähler form J = vaωa ( {ωa(v)} is a basis of harmonic
(1,1)–forms): the relevant relation is vol6 = 1

6
J ∧ J ∧ J . Therefore one has12

∂µ log
√
g6 =

∂

∂va
(log
√
g6)∂µv

a = 3
ωa ∧ J ∧ J
J ∧ J ∧ J ∂µv

a = (ωayJ)∂µv
a . (3.79)

The statement then follows recalling that below eq. (3.42) we deduced ∂m(ωayJ) = 0.
VNS is zero due to the Ricci-flatness of Calabi-Yau manifolds, as well as to the closure

of b and φ with respect to the exterior derivative on M6. The absence of a scalar potential
in the 4d effective action (there is no contribution from the RR sector either) is consistent
with the fact that the dimensional reduction is performed on a class of equivalent solu-
tions of the 10d theory (with vanishing 4d cosmological constant), so that the geometrical
moduli correspond to massless 4d scalars with no preferred vev. This is in contrast with
what expected for general SU(3)×SU(3) structure off-shell reductions: as we will show in
subsection 3.4.3, in this case a non-trivial scalar potential is generated.

3.4.1 Scalar kinetic terms

The second line of (3.77) defines kinetic terms for the parameters of the internal metric
and b-field propagating along the 4d spacetime. This has already been translated in the
generalized geometry formalism in section 2.5, where we showed eq. (2.87). Subsequently, in
subsection 3.3.3 we expressed the two addends appearing in the r.h.s. of (2.87) in terms of a
finite set of deformations. These are parameterized by the M− and M+ coordinates zi and
ta, which are scalar fields from the 4d viewpoint. By the discussion of subsection 3.3.3, the
two addends in the r.h.s. of (2.87) take the form (3.33), (3.37), where the Kähler potentials
K± associated with the special Kähler metrics G

−
i̄ and G

+
ab̄

were given in (3.24) and (3.36).
We conclude that the second line of (3.77) yields the kinetic terms for the scalars zi, ta,
and can be rewritten as

e2ϕ

8

∫
e−2φvol6 g

mpgnq(∂µgmn∂
µgpq + ∂µbmn∂

µbpq) = G
−
i̄ ∂µz

i∂µz̄ ̄ + G
+
ab̄
∂µt

a∂µt̄b̄ , (3.80)

where the definition of the 4d dilaton (3.75) has also been used.

3.4.2 Variations of
√
g6 and the dilaton

In the following we discuss the condition under which the variation of log(e−2φ√g6), as
induced by SU(3)×SU(3) structure deformations, is independent of the internal coordi-

12Notice that even if the harmonic forms ωa depend on the moduli, as illustrated in [49, 93] on a
Calabi-Yau one has vb ∂

∂vaωb = 0, and therefore ∂
∂va J = ωa.
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nates. As observed above eq. (3.79), this guarantees vanishing of the third line in (3.77),
in analogy with the Calabi-Yau case.

Recalling the relation (2.58) between the dilaton φ and the pure spinor norm (defined
in (2.57)), we immediately see that under a general pure spinor deformation (2.73) we have

δ log(e−2φ√g6) =
δ〈Φ±, Φ̄±〉
〈Φ±, Φ̄±〉

= 2Re(δκ) ,

where we call Re(δκ) the equal real parts of δκ+ and δκ− (recall (2.56)). Hence the third line
of (3.77) vanishes if the function Re(δκ) associated with pure spinor rescalings is constant
on M6. For the truncated set of modes, this is guaranteed by our assumption (3.41).

In the remainder of this subsection we deal with the following related issue: we know
from subsection 2.5.3 that deformations of the metric on M6 are orthogonal to varia-
tions of the pairing 〈Φ, Φ̄〉; on the other hand, they obviously modify the volume form
vol6 =

√
g6d

6y employed in the definition (2.57) of the pure spinor norm. It follows that
deformations of the metric on M6 affect ||Φ|| and so, by eq. (2.58), the dilaton. However,
it is more natural to keep the deformations of φ and

√
g6 as independent. This can be

achieved by prescribing, simultaneously with a metric deformation, a real rescaling of Φ±,
with δκ = 1

2
δ log

√
g6. It is understood that any other independent pure spinor rescaling

(having Re(δκ) 6= 0) modifies φ without affecting the metric gmn.
For the sake of completeness, in the following we derive the relation between the vari-

ation of
√
g6 and δΦ± in (2.73). Recalling (2.46), and assuming here b = 0 for simplicity,

we have that gmn = Gmn = −(J+J−)mn. Using (2.42) we obtain13,14

2 δ log
√
g6 ≡ gmnδgmn =

1

2

[
(δJ+)mn(J1 + J2)

mn + (δJ−)mn(J1 − J2)
mn
]
, (3.81)

so we see that in general both δJ+ and δJ− will contribute. Now we express δJ± employing
(2.82): as discussed in subsection 2.5.3, δtrJ± drop when computing variations of the
generalized metric G, so we are left with the deformations induced by δχ±. Performing as
usual the computation in the bispinor picture, and recalling (2.74), we arrive at the result

δ log
√
g6 = 4gmnRe(δχ− − δχ+)mn .

All this can be illustrated considering strict SU(3) structures, for which J1 = J2 ≡ J ,
I1 = I2 ≡ I, and J± take the form (2.43). It is immediate to see that the term containing
δJ− doesn’t contribute to (3.81), so that

δ log
√
g6 =

1

2
(δJ+)mnJ

mn = (δJ)yJ .

In particular, only the rescalings δJ = δλJ (where δλ is a function) contribute to (δJ)yJ .
Now we notice that this J–rescaling also implies a rescaling of Φ0

+, which in the SU(3)

13If b = 0 in G, then in general the variation δG will contain a small δb. However, at first order this
doesn’t enter in δGmn, which is then identified with δgmn.

14The supplementary term gmn[(δJ+) p
m J−pn + J+mp(δJ−)p

n] that should enter in (3.81) vanishes be-
cause gnm(δJ+ − δtrJ+) p

m and (δJ− − δtrJ−)p
ng

nm turn out to be symmetric tensors while J−pn and
J+mp are antisymmetric.
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structure case reads Φ0
+ = e−φe−iJ (recall (2.65)). Indeed, at first order we have

δe−iJ =
3

2
δλe−iJ +

1

4
δλ(−6 + 2iJ − J2 + iJ3) , (3.82)

where the second term in the r.h.s. is in the (3̄,3) of SU(3)× SU(3). It is now immediate
to check that, thanks to the presence of the rescaling term in (3.82), it is consistent to keep
the pure spinor norm ||Φ±||, viz. the dilaton, unmodified. Notice also that the condition
Re(δκ) = const in this case also requires δλ to be constant along M6. Choosing the basis of
expansion forms described in ref. [49], we have 3δλ = (δJ)yJ = ωayJδv

a, and we recover
the requirement d(ωayJ) = 0 discussed in that paper. As seen below (3.42), this same
requirement is satisfied on a Calabi-Yau 3–fold.

3.4.3 The scalar potential

In the following, first we derive a formula expressing the Ricci curvature R6 of the compact
manifold (supplemented by terms involvingHmnp and ∂mφ) as a function of the pure spinors
Φ±. Then we apply this result to reformulate the NSNS contribution (3.78) to the 4d scalar
potential. This allows us to make contact with an expression for the potential obtained
via purely 4d gauged supergravity methods in [50].

At the end of this subsection we will prove that under the assumption

〈dHΦ0
+,
→
γ mΦ̄0

+〉+ 〈dHΦ0
−,
→
γ mΦ̄0

−〉 = 0 , 〈dHΦ0
+, Φ̄

0
+

←
γ m〉+ 〈dHΦ̄0

−,Φ
0
−
←
γ m〉 = 0 , (3.83)

constraining a subset15 of the SU(3)×SU(3) triplets in dHΦ0
±, the following formula is valid:

R6 −
1

12
HmnpH

mnp + 4∂mφ∂
mφ− 2e2φ∇2

6 e
−2φ = (3.84)

= −4
〈dHΦ0

+, ∗λ(dHΦ̄0
+)〉

i〈Φ±, Φ̄±〉
− 4
〈dHΦ0

−, ∗λ(dHΦ̄0
−)〉

i〈Φ±, Φ̄±〉
+ 16

∣∣∣〈dHΦ0
+,Φ

0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2

+ 16
∣∣∣〈dHΦ0

+, Φ̄
0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2

,

where ∇2
6 is the Laplacian on M6 and dH = d−H∧, with H = Hfl + d(6)b purely internal.

This completes and generalizes an expression given in the context of SU(3) structures in
footnote 2 of ref. [49], referring to results in [102].

Before plugging (3.84) in the definition (3.78) of VNS, let us comment on some of its
features.

As a first thing, we remark that (3.84) is symmetric under the exchange Φ0
+ ↔ Φ0

−, in
agreement with the formulation of mirror symmetry in the context of generalized structures
[103, 26, 27]. Indeed we have 〈dHΦ0

+,Φ
0
−〉 = 〈Φ0

+, dHΦ0
−〉, thanks to the fact that Φ0

+,Φ
0
−

satisfy (2.55).
Furthermore, notice that while the last two terms in the r.h.s. of (3.84) are positive

definite, the first two are instead negative definite: in fact for any complex polyform
C =

∑
k Ck, one has 〈C, ∗λ(C̄)〉 = vol6

∑
k CkyC̄k. The last two terms of (3.84) vanish

15Here we don’t strictly need the condition projecting out all the SU(3)×SU(3) triplets in dHΦ0
±, which

would read: 〈dHΦ0
+,Γ

ΛΦ̄0
+〉 = 0 = 〈dHΦ0

−,Γ
ΛΦ̄0

−〉 , with ΓΛ = dym∧ or ι∂m
(the analogous relations

containing Φ0
± at the place of Φ̄0

± are automatically satisfied).



78 3. The dimensional reduction

when at least one of the two pure spinors satisfies the condition dHΦ0 = (ιv + ζ∧)Φ0,
where v is a vector and ζ a 1–form; this corresponds to a twisted integrability condition
for the generalized almost complex structure associated with Φ0 [23]. Finally, the r.h.s.
of (3.84) vanishes identically when the pure spinors satisfy the ‘generalized Calabi-Yau
metric’ condition dHΦ0

± = 0 introduced in [23].16 Then for these geometries we have an
expression for the curvature R6 in terms of ∂mφ and Hmnp (playing the role of torsion).

The r.h.s. of (3.84) can also be expressed in terms of the SU(3)×SU(3) torsion classes
introduced in [27, 33]. We refer to the parameterization provided by eqs. (6.14), (6.15) of
ref.[33] (even if written for SU(3) structure pure spinors, that parameterization also applies
to the general SU(3)×SU(3) structure case). Using (B.6), (B.8) we get

r.h.s. of (3.84) =

= 8
(
|W 30|2 + |W 03|2

)
− 16

(
|W 21|2 + |W 12|2 + |W 11|2 + |W 22|2 + |W 10|2 + |W 01|2

)
,

where expressions like for instance |W 12|2 and |W 10|2 mean W 12
i1j2
W

12 i1j2
and W 10

j2
W

10 j2

respectively. Here the indices ı̄1, i1 are (anti)holomorphic with respect to the almost com-
plex structure I1, and analogously for ̄2, j2 w.r.t. I2. Our constraint (3.83), which in terms

of torsion classes reads W 01
ı̄1

+ W 31
ı̄1

= 0 and W 10
j2
−W 20

j2
= 0, has been used to eliminate

W 31 and W 20.

Now we multiply eq. (3.84) with e−2φvol6 and integrate over M6, obtaining in this way
a geometric expression for the NSNS contribution (3.78) to the 4d scalar potential. Using
eqs. (2.57), (2.58), as well as (2.64) and the definition (3.43) of the ∗b operator, we arrive
at

VNS =
e4ϕ

4

∫ [
〈 dHflΦ+, ∗b(dHflΦ̄+) 〉 + 〈 dHflΦ−, ∗b(dHflΦ̄−) 〉

]

− e4ϕ

∫ ∣∣〈dHflΦ+,Φ−〉
∣∣2 +

∣∣〈dHflΦ+, Φ̄−〉
∣∣2

i〈Φ±, Φ̄±〉
. (3.85)

Notice that this is written purely in terms of generalized geometry quantities.
Our next step is to reformulate expression (3.85) for VNS in terms of the 4d degrees of

freedom by substituting the expansions (3.23), (3.35) for Φ±, and exploiting the assumed
properties of the basis polyforms. In order to keep the resulting expressions as compact as
possible, it is convenient to repackage the XA,FA and ZI ,GI appearing in (3.23), (3.35) in
the following symplectic vectors

XA =

(
XA

FA

)
, ZI =

(
ZI

GI

)
, (3.86)

so that the pure spinors can be written as Φ+ = XAS+ABΣB
+ and Φ− = ZIS−IJΣ

J

−. Then,
recalling (3.65), the results of subsection 3.3.4 (condensed in footnote 10) as well as relation
(3.76), we obtain for instance

e2ϕ

∫
〈dHflΦ+, ∗b(dHflΦ̄+)〉 = −8eK+XA(QT M̃Q)ABX̄

B ,

16This condition does not coincide with the notion of generalized Calabi-Yau manifold defined in [22],
see e.g. [60, section 4] for a comparison.



3.4 Reduction of the NSNS sector 79

To evaluate the second line of (3.85), we need requirement (3.40), implying

〈ΣI
−,Φ−〉

〈Φ−, Φ̄−〉
=

∫
〈ΣI
−,Φ−〉∫

〈Φ−, Φ̄−〉
= −ieK−ZI .

The resulting expression for VNS is symplectically invariant, and reads

VNS = − 2e2ϕ
[
eK+XA(QT M̃Q)ABX̄

B + eK−ZI(Q̃T ÑQ̃)IJZ̄
J

]

− 8e2ϕeK++K−Z̄I(S−Q)IA(XAX̄B + X̄AXB)(QT S−)BJZ
J , (3.87)

where we recall that Q̃ is given by (3.66). Notice that, since Ñ and M̃ are negative
definite, the first line is positive definite, while the second line is obviously negative. Ex-
pression (3.87) for VNS coincides precisely with a formula obtained in [50] by means of
4d gauged supergravity techniques, starting from the 4d effective action associated with
Calabi–Yau compactifications (see next chapter for more details). Here we derived it
directly from the dimensional reduction of the higher dimensional theory on manifolds
admitting SU(3)×SU(3) structure on TM6 ⊕ T ∗M6.

Finally, we remark that the value of expression (3.84) in a vacuum is also related to
the external spacetime Ricci curvature R4. Indeed the string frame 10d dilaton equation
(3.11) evaluated on a 4d×6d background preserving maximal 4d symmetry takes the form

−R4 = R6 −
1

12
HmnpH

mnp + 4∂mφ∂
mφ− 2e2φ∇ 2

6 e
−2φ ,

with no contributions from the RR sector. Acting on this equation with
∫

M6
e−2φvol6 and

rescaling the 4d metric as in (3.74), we obtain R4 = 2VNS. On the other hand, from the
trace of the 4d Einstein equation evaluated on a maximally symmetric vacuum, in general
one has R4 = 4V . Since the total potential of the reduced theory is V = VNS + VRR, then
we can conclude that in a vacuum 2VRR = −VNS, which is the same as V = −VRR. Since
VRR turns out to be positive definite, we conclude that the 4d vacua obtained within this
framework are all AdS. In subsection 5.6.1 we will apply this result to a concrete example
of dimensional reduction.

Proof of relation (3.84)

In the remainder of this section we give an account of the main computational steps
proving eq. (3.84). These are based on the bispinor description of subsection 2.4.4. However
here we relax condition (2.62), i.e. we work with unnormalized spinors, and we reabsorb
the dilaton appearing in (2.60) in the product of the spinor norms. More specifically, we
parameterize ||η1

±|| = |a|, ||η2
±|| = |b| (the latter should not be confused with the internal

NS 2–form, also called b), and we take |ab| = e−φ. Hence in the following computations
the same Φ0

± appearing in eq. (2.60) read �Φ0
± = 8η1

+ ⊗ η2†
± .

We start without imposing any constraint on the SU(3)×SU(3) triplets of dHΦ0
±. The

r.h.s. of (3.84) is evaluated recalling (2.57), (2.58), and using (B.8) for the Mukai pairing
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as well as

1

4
✟✟dHΦ0

± = (�D − 1
4�H)η1

+η
2†
± ± (Dm − 1

4
Hm)η1

+η
2†
± γ

m

± η1
+

[
(�D + 1

4�H)η2
±
]†

+ γmη1
+

[
(Dm + 1

4
Hm)η2

±
]†
, (3.88)

where �D = γnDn , �H = 1
6
Hmnpγ

mnp and Hm = 1
2
Hmnpγ

np. Eq. (3.88) is directly derived

(also recalling (2.60)) from the expressions for �dΦ0
± and ✏✏

✏H ∧Φ0
± given e.g. in appendix A

of ref. [33]. For instance, the second-last term in (3.84) yields

16
∣∣∣〈dHΦ0

+,Φ
0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2

= 4|a|−4
[
(�D − 1

4�H)η1
+

]†
η1
−η

1†
− (�D − 1

4�H)η1
+

= 4|a|−2
∣∣(�D − 1

4�H)η1
+

∣∣2 − 2|a|−4
∣∣η1†

+ γ
m(�D − 1

4�H)η1
+

∣∣2 ,

where in the second equality we used identity (A.18) to reexpress |a|−2η1
−η

1†
− . The com-

putation of the terms in the r.h.s. of (3.84) containing ∗λ is slightly more involved, but
employs the same technique. For the image of ∗λ under the Clifford map we use (B.6).

Resumming all the terms and taking a few cancellations into account we obtain

− 4
〈dHΦ0

+, ∗λ(dHΦ̄0
+)〉

i〈Φ±, Φ̄±〉
− 4
〈dHΦ0

−, ∗λ(dHΦ̄0
−)〉

i〈Φ±, Φ̄±〉
+ 16

∣∣∣〈dHΦ0
+,Φ

0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2

+ 16
∣∣∣〈dHΦ0

+, Φ̄
0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2

=

= |a|−2
[
2Dmη

1†
+ γ

mnDnη
1
+ +

1

8
η1†

+ (HmH
m −�H�H)η1

+ −
1

12
Dm(η1†

+ γ
mnpqη1

+)Hnpq

]

− 4|a|−2Re
[
η1†

+ γ
m(�D − 1

4�H)η1
+

]
∂m log |b| − 2|a|−4

∣∣η1†
+ γ

m(�D − 1
4�H)η1

+

∣∣2

+ η1
+ → η2

+ , |a| ↔ |b| , H → −H (3.89)

where the last line denotes the repetition of the two preceding lines performing the pre-
scribed transformations.

Next we consider our requirement (3.83) on the SU(3)×SU(3) triplets of dHΦ0
±: this

can be translated as17

|a|−2η1†
+ γ

m(�D − 1
4�H)η1

+ + 2Pm
1 n∂

n log |b| = 0 , (3.90)

together with the analogous relation obtained implementing 1→ 2 , |a| ↔ |b| , H → −H.
Here P1 is the holomorphic projector associated with the almost complex structure I1.

Now, constraint (3.90) implies that the two terms in (3.89) containing �D − 1
4�H cancel

each other. Then, using the following relations

[Dm, Dn]η+ =
1

4
Rmnpqγ

pqη+ ⇒ Dmη
†
+γ

mnDnη+ = Dm(η†+γ
mnDnη+) +

1

4
||η+||2R6

HmH
m −�H�H = −1

3
HmnpH

mnp

dH = 0 ⇔ D[mHnpq] = 0 ,

17One can check that in the notation of ref.[33, app.A.4], this constraint corresponds to T 1
ı̄1

+∂ı̄1 log |b| = 0
together with T 2

ı̄2
+ ∂ı̄2 log |a| = 0.
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we rewrite

r.h.s. of (3.89) = R6 −
1

12
HmnpH

mnp + 2|a|−2Dm

(
η1†

+ γ
mnDnη

1
+ −

1

24
Hnpqη

1†
+ γ

mnpqη1
+

)

+ η1
+ → η2

+ , |a| → |b| , H → −H , (3.91)

where only the term involving |a|−2 needs to be repeated with the prescribed substitutions.
Now we observe that the real part of constraint (3.90) can be written as

|a|−2
[
Re(η1†

+ γ
mnDnη

1
+)− 1

24
Hnpqη

1†
+ γ

mnpqη1
+

]
+ ∂m log |ab| = 0 .

Noticing that Dm[Im(η†+γ
mnDnη+)] vanishes identically, and recalling |ab| = e−φ, we can

use this equation, together with the analogous one obtained performing 1 → 2 , |a| ↔
|b| , H → −H, to see that

last two terms in (3.91) = −4∂mφ∂
mφ+ 4∇ 2

6 φ ≡ 4∂mφ∂
mφ− 2e2φ∇ 2

6 e
−2φ .

This proves eq. (3.84).

3.5 Reduction of the RR sector

In this section we reduce the RR sector. Here we will focus on type IIA supergravity;
however the procedure we develop can equally well be applied to type IIB.

We wish to reduce the RR democratic pseudo-action (3.8), also implementing the self-
duality constraint (3.5) in an appropriate way (a direct substitution of (3.5) in (3.8) results
indeed in a vanishing action). In principle we could follow a procedure similar to the one
adopted in [83], and subsequently in [82, 88], to reduce the type IIB action taking into
account the self-duality of the RR 5–form F5. In [83], firstly the electric and magnetic
4d gauge field strengths descending from the expansion of F5 on the Calabi-Yau harmonic
3–forms are regarded as independent and kept in the 4d action. Then, the addition of a
suitable Lagrange multiplier term makes the equations of motion for the magnetic field
strengths precisely correspond to the self-duality constraint. Integrating out the magnetic
field strengths provides thus an action with electric fields only and the self-duality con-
straints correctly implemented. In our context, the generalization of this procedure would
require a first step in which one keeps in the 4d action forms of every degree18 (from 0 to
4) descending from the expansion of the RR field on the internal basis (3.17), and then a
second step in which a subset of these forms is integrated out. However, in our case this
direct approach to the reduction of the action turns out to be quite involved due to the
large amount of fields and constraints, and we find it more efficient to proceed along the
following alternative path.

First we reduce the self-duality constraint (3.5) for the democratic RR field, as well
as its EoM/Bianchi identities (3.6). From the reduced Bianchi identities we isolate and
solve a set of 4d Bianchi identities, defining in this way the fundamental dynamical fields

18It would be interesting to relate this with the tensor hierarchy proposed in [104, 105].
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of the 4d effective theory. Using the relations obtained from the reduction of the 10d
self-duality condition, the remaining 4d equations are interpreted as EoM associated with
the identified dynamical degrees of freedom. The last step consists in the reconstruction
of the four dimensional action leading precisely to such EoM.

We will work with the so-called G–basis for the RR field, defined by [48]:

F̂ ≡ eB̂Ĝ . (3.92)

In this basis, the self-duality constraints (3.5) and the Bianchi identities in (3.6) read
respectively

eB̂Ĝ = λ ∗ (eB̂Ĝ) , (3.93)

(d−Hfl∧)Ĝ = 0 , (3.94)

where as in the previous section we used the decomposition Ĥ = Hfl +dB̂, with B̂ = B+b.
We recall that, due to the self-duality, the RR EoM are equivalent to the Bianchi identities.

3.5.1 Reduction of the RR self-duality constraint

We start expanding the RR field Ĝ on the internal basis polyforms (3.17). Recalling (3.4)
and (3.92), this expansion naturally leads to forms of any degree in the 4d spacetime M4:

2−1/2Ĝ = (GA
0 +GA

2 +GA
4 )ωA−(G̃0A+G̃2A+G̃4A)ω̃A+(GI

1+GI
3)αI−(G̃1I +G̃3I)β

I , (3.95)

where Gp denotes a p–form onM4 depending on the xµ coordinates only. The 2−1/2 factor is
introduced just for later convenience (concerning the relative normalization of the reduced
RR and NSNS sectors). We also introduce the following auxiliary expansion

2−1/2eB̂Ĝ = eb
(
KAωA − K̃Aω̃

A + LIαI − L̃Iβ
I
)
, (3.96)

so that (the indices are understood and B is along M4): L = G1 + (G3 + B ∧ G1) ,
K = G0 + (G2 +BG0) + (G4 +B ∧G2 + 1

2
B ∧BG0), and analogously for K̃ and L̃.

We now reduce the self-duality constraint (3.93). Substituting (3.96), this can be
rewritten as

KAωA−K̃Aω̃
A+LIαI−L̃Iβ

I = −∗λ(KA)∗bωA+∗λ(K̃A)∗b ω̃A−∗λ(LI)∗bαI +∗λ(L̃I)∗bβI

(3.97)
where (A.11) has been used, as well as the definition (3.43) of the 6d operator ∗b . Taking
the Mukai pairings with the basis forms, integrating over M6 and using the results for the
action of ∗b derived in subsection 3.3.4, from (3.97) we get the 4d relations

K̃A = −ImNAB ∗ λ(KB) + ReNABK
B (3.98)

L̃I = −ImMIJ ∗ λ(LJ) + ReMIJL
J . (3.99)

In order to keep the notation of the forthcoming expressions as compact as possible, we
use the symplectic notation already employed above in this chapter, and we define the
symplectic vectors

GA

k =

(
GA

k

G̃kA

)
for k = 0, 2, 4 and GI

k =

(
GI

k

G̃kI

)
for k = 1, 3 .
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Then, separating the different form degrees and rescaling the 4d metric as done in (3.74)
when discussing the reduction of the NSNS sector, eq. (3.98) yields the following relations
among the 4d fields

G̃2A +BG̃0A = ImNAB ∗ (GB
2 +BGB

0 ) + ReNAB(GB
2 +BGB

0 ) , (3.100)

GA

4 +B ∧GA

2 +
1

2
B ∧BGA

0 = e4ϕNA

BG
B

0 ∗ 1 , (3.101)

while from (3.99) we obtain

GI

3 +B ∧GI

1 = −e2ϕMI

J ∗GJ

1 . (3.102)

Eqs. (3.100)–(3.102) represent the 4d remains of the 10d RR self-duality condition (3.93).

3.5.2 Reduction of the equations of motion / Bianchi identities

We now pass to reduce eq. (3.94). This will provide a set of Bianchi identities for the 4d
fields as well as the 4d EoM, once the relations (3.100)–(3.102) imposed by the reduced 10d
self-duality will be used to eliminate the redundant 4d fields. Starting from the expansion
(3.95) for Ĝ, we use the ansatz (3.65) to evaluate dHfl on the internal basis of forms,19 and
then separate the different components by acting with

∫
M6
〈Σ±, · 〉 . The following set of

four-dimensional equations is obtained (recall that Q̃ is related to Q as in (3.66)):

QI

AG
A

0 = 0 (3.103)

dGA

0 − Q̃A

IG
I

1 = 0 (3.104)

dGI

1 + QI

AG
A

2 = 0 (3.105)

dGA

2 − Q̃A

IG
I

3 = 0 (3.106)

dGI

3 + QI

AG
A

4 = 0 . (3.107)

We immediately rewrite eq.(3.107): using (3.101) and (3.102) to eliminate GA
4 and GI

3, also
employing (3.103), (3.105) to simplify the expression, we obtain

−d
(
e2ϕMI

J ∗GJ

1

)
− dB ∧GI

1 + e4ϕ(QN)I

AG
A

0 ∗ 1 = 0 . (3.108)

We also need to reduce the ten dimensional EoM (3.9) for the NS 2–form B̂, which
receives contributions from both the NSNS and the RR sectors. This is an 8–form equa-
tion, and here we consider just its piece with 2 legs along M4 and six legs along M6.

20

Furthermore, recalling (3.93), we rewrite the RR piece of (5.32) as

[F̂ ∧ ∗F̂]8 = [F̂ ∧ λ(F̂)]8 = [Ĝ ∧ λ(Ĝ)]8 . (3.109)

19Due to a possible moduli dependence, the basis forms might not be closed even with respect to the 4d
exterior derivative. However, recall that in subsection 3.3 we assumed that their derivatives with respect
to the moduli vanish in the integrated Mukai pairing.

20See subsection 5.4.3 for a complete analysis of this equation in a concrete example of compactification.
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Using the expansions in subsection 3.5.1, and taking the integral over M6, we arrive at the
4d equation

1

2
d(e−4ϕ ∗ dB) + GA

0 G̃2A − G̃0AG
A
2 + G̃1I ∧GI

1 = 0 , (3.110)

where the 4d metric has been Weyl rescaled as in (3.74). This corresponds to the EoM for
the 2–form B in the reduced 4d theory.

3.5.3 pAI = 0 = qIA case. SU(3) structure

We pursue the analysis by considering first the simpler case in which pA
I = 0 = qIA,

namely, recalling (3.64), QIA = 0. As we will discuss below, this is particularly relevant
for dimensional reductions on SU(3) structure manifolds.

We start by identifying and solving a set of Bianchi identities in the system of equations
(3.103)–(3.107). From the components of (3.104) with upper A–indices we see that

GA
0 = const := mA

RR (3.111)

(these parameters are associated with RR fluxes). Then (3.103) are just constraints among
constants:

mI
Am

A
RR = 0 = eIAm

A
RR . (3.112)

The upper components of (3.106) are solved by GA
2 = dAA, defining the 1–forms AA,

corresponding to (electric) gauge potentials of the 4d theory. Then (3.105) are solved by
GI

1 = dξI −mI
AA

A and G̃1I = dξ̃I − eIAA
A, where ξI and ξ̃I are scalar fields. Finally, using

also the quadratic constraint (3.62), from the lower components of (3.104) we find that

G̃0A = eRRA − ξIeIA + ξ̃Im
I
A , (3.113)

where eRRA are constant RR flux parameters.
At this point the only equations we still have to deal with are eq. (3.107) and the

lower components of (3.106). Employing the relations descending from the RR self-duality
constraint, these will now be interpreted as EoM for the fields ξ̃I , ξ

I and AA. Eq. (3.107)
has already been treated along these lines, yielding eq. (3.108), which we take as the EoM
for the scalars ξI , ξ̃I . Concerning the EoM for AA, we use (3.100) and (3.102) to eliminate
G̃2A, G

I
3 in the lower components of (3.106), and we get:

d[ImNAB ∗ FB + ReNABF
B]− G̃0AdB − e2ϕ(QT M̃)AI ∗GI

1 = 0 ,

where we introduced the modified field strengths FA containing the 2–form B:

FA := GA
2 +GA

0 B = dAA +mA
RRB . (3.114)

One can now check that precisely the equations of motion just obtained, together with
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the EoM for B given in (5.35), can be derived from the 4d action21

S
(4)
RR =

∫

M4

[ 1

2
ImNABF

A ∧ ∗FB +
1

2
ReNABF

A ∧ FB +
e2ϕ

2
M̃IJDξ

I ∧ ∗DξJ

+
1

2
dB ∧

[
ξIS−IJDξ

J + (2eRRA − ξIeIA + ξ̃Im
I
A)AA

]
− 1

2
mA

RReRRAB ∧B

− VRR ∗ 1
]
, (3.115)

where ξI =
(ξI

ξ̃I

)
, and we have introduced the covariant derivatives

DξI ≡ GI
1 = dξI −mI

AA
A , Dξ̃I ≡ G̃1I = dξ̃I − eIAA

A . (3.116)

Furthermore we defined

VRR = −e
4ϕ

2
GA

0 ÑABG
B

0 , (3.117)

where GA
0 , G̃0A are given in (3.111), (3.113). This is the contribution of the RR sector to

the scalar potential of the reduced theory.22 Notice that it is non-negative.
Since it yields the correct reduced EoM, we interpret the action (3.115) as the suitable

one for the reduced type IIA RR sector. To check that S
(4)
RR reproduces the EoM written

above, one needs the consistency constraints (3.67), as well as conditions (3.112).
As mentioned above, the present setting with pA

I = 0 = qIA is relevant for SU(3)
structure compactifications, once the specific basis of forms (of pure degree) described
in the first part of subsection 3.3.5 is adopted. In this context, the parameters eIA,m

I
A

arise from relations (3.60)–(3.62). In fact, the action (3.115), which has the features of an
N = 2 gauged supergravity, is in agreement with all the studies done for N = 2 type IIA
compactifications on SU(3) structures [47, 89, 90, 45, 49, 92, 93].

It can be useful to see how several particular cases already described in the literature
can be recovered. Let’s take mA

RR = 0 first. In this case the 2–form B can be dualized to
a scalar a. The terms in the action (3.115) containing dB, together with the kinetic term
−1

4

∫
e−4ϕdB ∧ ∗dB coming from the NSNS sector (see eq. (3.77)), are then replaced by

Sdual =

∫

M4

−e
4ϕ

4

(
Da− ξIS−IJDξ

J
)
∧ ∗
(
Da− ξIS−IJDξ

J
)
, (3.118)

where
Da = da− (2eRRA − ξIeIA + ξ̃Im

I
A)AA . (3.119)

The term (3.118) contributes to define a quaternionic σ–model for the hyperscalars analo-
gous to the one featured by the standard N = 2 effective action derived from Calabi–Yau

21The term 1
2d(e

−4ϕ ∗ dB) in (5.35) is indeed derived from the piece of the 4d action associated with

the reduction of the NSNS sector, see eq. (3.77). This also fixes the overall normalization of S
(4)
RR.

22We remark that (3.117) contains a term − e4ϕ

2

(
mRR

eRR

)T
Ñ
(
mRR

eRR

)
which does not depend on the RR scalars

ξI , ξ̃I and indeed does not contribute to their EoM. We have added it as the natural completion of the
expression for VRR directly reconstructed from these EoM. The correctness of (3.117) can also be verified
studying the reduced Einstein equations. We will perform this study for a particular case in chapter 5.
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dimensional reductions, reviewed in section 3.2. More specifically, the (RR sector of the)
N = 2 supergravity obtained from Calabi-Yau compactifications with no fluxes is recovered
by setting all the charges eIA,m

I
A, eRRA (as well as mRR) to zero. This is consistent with

the fact that all the basis forms (3.17) are then closed. Allowing for non-vanishing eI0,m
I
0

yields the Calabi-Yau effective action with NS fluxes described in [82].23

Furthermore, taking just e0A 6= 0, we find agreement with the results of [47] for type
IIA reductions on half-flat manifolds (the parameter e00 being associated with an NS flux).

Finally, let’s consider nonvanishing mA
RR. These parameters generate some couplings for

the NS 2–form B, including a mass term: then B cannot be dualized to an axion [82, 45].
If mI

A = 0 = eIA, eq. (3.115) precisely reproduces the RR part of the action derived in [82]
for Calabi-Yau compactifications of type IIA with RR fluxes.

3.5.4 General case

Let us now consider the general charge matrix Q defined in (3.64). An N = 2 lagrangian
including the same set of charges contained in Q was derived in [50] using purely 4d su-
pergravity techniques, and building on results in [89, 97, 98]. Having the N = 2 effective
theory arising from Calabi-Yau compactifications as a starting point (recall the outcome
of section 3.2), the authors of [50] first deformed it by implementing a standard electric
gauging of the quaternionic isometries (see subsection 4.1.2 for more details), and subse-
quently performed a dualization of a subset of the RR axions to antisymmetric 2–tensors
in order to include the magnetic charges. In section 3.4 we found consistency between
this procedure and the dimensional reduction of the NSNS sector, obtaining in particular
eq. (3.87) for the NSNS scalar potential. Here we approach the same question for the RR
sector. As in the previous subsection, we construct a 4d action via the analysis of the
reduced RR EoM/Bianchi identities. A set of 2–form potentials, beside the vector and
scalar fields, will emerge directly from the solution of the selected 4d Bianchi identities.
The outcome of our analysis is summarized in Table 3.2.

Even if for a general Q all the equations (3.103)–(3.107) are symplectically covariant,
we will anyway break this symmetry in order to establish a set of EoM associated with a
4d action written in terms of electric vectors only. For this task we introduce appropriate
projectors with which we will act on eqs. (3.103)–(3.107). In the following computations,
several technical steps are close to the ones employed in [50] for the dualization of the RR
axions to antisymmetric 2–tensors.

We start splitting the charge matrix QI
A in the following (2b−+2)×(b++1) submatrices:

U I

A := QI

A =

(
mI

A

eIA

)
, V IA := QIA =

(
qIA

p A
I

)
. (3.120)

With respect to the gauge vectors with upper indices AA that we are going to define below,
the elements of U are electric charges, while V contains magnetic charges.24

23With respect to [82], we have a sign difference in the definition of the RR scalars ξ̃.
24The latter matrix should not be confused with the scalar potential of the N = 2 theory, also called V .
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Equation yields: Equation yields:

(3.103) constraints among charges (3.106) Bianchi for GA
2 → def.AA

(3.104) expression for GA
0 EoM for AA

(3.105) Bianchi for ĜI
1 → def. ξ̂ I (3.107) Bianchi for Ǧ3A → def. Č2A

EoM for Č2A (rewr. as (3.108)) EoM for ξ̂ I

Table 3.2: Analysis of the reduced RR equations for a general charge matrix Q.

As in [50], we adopt the working assumptions b+ ≤ b−, and that the matrix U has

maximal rank b+ + 1. Then we introduce the matrix ŨA
I , defined by

ŨA
IU

I

B = δA
B , U I

AŨ
A

J = (P 6=0)
I

J , (3.121)

P 6=0 being the projector on the subspace corresponding to the non-vanishing minor of U I
A.

We also define the orthogonal projector (P0)
I
J ≡ δI

J − (P 6=0)
I
J .

An identity we will need is

V = V UT ŨT = UV T ŨT , (3.122)

which is obtained recalling the first of (3.121) and then the first of (3.67). Notice that

(ŨV )AB is then symmetric.

Bianchi identities and fundamental 4d fields

With respect to the analysis of subsection 3.5.3, the presence of the pA
I and qIA charges

makes less trivial the identification and the solution of a set of Bianchi identities for the
fundamental 4d fields. For this purpose we make use of the matrices defined here above.
As we will see, a set of 2–form degrees of freedom will be required.

We start introducing a set of scalar fields. Define [50]:

G

̂
A
1 := ŨA

IG
I

1 , ĜI

1 := P0
I

JG
J

1 , (3.123)

so that
GI

1 = U I

AG

̂
A
1 + ĜI

1 . (3.124)

We want to keep the ĜI
1, while we will deal with G

̂
A
1 in the next paragraph. We act with P0

on eq. (3.105) and we observe that P0Q = 0 , due to the definition of P0 below eq. (3.121)
and to identity (3.122). Then we get

dĜI

1 = 0 ⇒ ĜI

1 = dξ̂ I , (3.125)

with ξ̂ I being a set of real scalars satisfying (P 6=0)
I
J ξ̂

J = 0 and corresponding therefore to
rank(P0) = 2(b− + 1)− (b+ + 1) degrees of freedom.

Recalling (3.124) and (3.67), eq. (3.104) can then be written as

dGA

0 − Q̃A

Idξ̂
I = 0 ⇒ GA

0 = cA + Q̃A

Iξ̂
I , (3.126)
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with cA =
(

mA
RR

eRRA

)
a vector of constant charges, associated with general RR background

fluxes. Again employing (3.67), eq.(3.103) translates in the following consistency condition
among the different parameters [50]:

QI

Ac
A = 0 . (3.127)

Next we define the b+ + 1 combinations

G

̂
3A := −(UT S−)AIG

I

3 . (3.128)

Multiplying eq. (3.107) by UT S− from the left, and recalling (3.67), we get

dG

̂
3A = 0 , (3.129)

which we choose to solve as
G

̂
3A = d(C

̂
2A + ζAB) , (3.130)

where the 2–forms C

̂
2A are new fields, B is the NS 2–form and ζA is a combination of the

scalars ξ̂ I to be specified below. The 2–forms C

̂
2A will be dynamical fields of our eventual

4d action.
Let’s finally turn to gauge vectors. Here we choose to define fundamental vector po-

tentials with upper indices only, so we keep all the GA
2 and dualize all the G̃2A, breaking

in this way the symplectic structure of the 2–forms GA
2 . The components of (3.106) with

upper indices can be read as Bianchi identities for GA
2 , while the dualization of the lower

components will provide the EoM for the associated vector potentials. First we look at the
Bianchi identities, which read

dGA
2 + (V T S−)AIG

I

3 = 0 . (3.131)

Using (3.122) and (3.128), we rewrite this as dGA
2 − (ŨV )ABG

̂
3B = 0. Taking (3.130) into

account, this last equation is solved introducing a set of vector potentials AA:

GA
2 = dAA + (ŨV )AB(C

̂
2B + ζBB) . (3.132)

We now fix the ζA introduced in (3.130). We choose

ζA ≡ (UT S−)AIξ̂
I ,

in such a way that the b+ + 1 two–forms

FA := GA
2 +GA

0 B = dAA + (ŨV )ABC

̂
2B +mA

RRB (3.133)

contain vectors and 2–form potentials only (to obtain this expression recall (3.122) and
(3.126)). Thus the FA are a set of field strengths for the vector potentials AA, modified

by the presence of the 2–forms B and C

̂
A
2 . This modification of the field strengths (3.114)

is required by the non-vanishing magnetic V IA charges, and guarantees compatibility with
the formalism of N = 2 supergravity with tensor multiplets developed in [97, 98, 106, 50].
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Notice that one could also express the C

̂
2A by introducing a redundant set of b− + 1

two-forms CI
2 =

(CI
2

C̃2I

)
and writing, in analogy with (3.128),

C

̂
2A = −(UT S−)AIC

I

2 = CI
2eIA − C̃2Im

I
A.

Then, recalling (3.122), eq. (3.133) would become

FA
2 = dAA + CI

2p
A
I − C̃2Iq

IA +mA
RRB .

However, the propagating degrees of freedom would be just the combinations of CI
2 and

C̃2I equivalent to C

̂
2A [46, 50]. Analogously, as in subsection 3.5.3 we could introduce a

symplectic vector of b− + 1 scalars ξI =
(ξI

ξ̃I

)
such that ξ̂ I = P0

I

Jξ
J . Then the result of

(3.126) would read:

GA
0 = mA

RR + ξIpA
I − ξ̃IqIA and G̃0A = eRRA − ξIeIA + ξ̃Im

I
A . (3.134)

However, in these expressions the ξI actually appear only in the combinations corresponding
to the ξ̂ I.

To summarize, the outcome of this paragraph is a set of fundamental degrees of freedom
ξ̂ I, C

̂
2A and AA, related to ĜI

1, G

̂
3A and GA

2 as in (3.125), (3.130) and (3.132). Furthermore
in (3.133) we defined the proper modified field strengths for AA, and in (3.126) we expressed
GA

0 as a combination of scalars and charges. The charges have to satisfy conditions (3.127).

Equations of motion

We now establish the EoM associated with the identified fundamental 4d fields. For this
purpose, we study the projections of eqs. (3.103)–(3.107), which are independent of the
ones considered in the above study of the Bianchi identities.

The EoM for the vector potentials AA are obtained from the lower components of
(3.106). Using the duality relation (3.100) to eliminate G̃2A, recalling expressions (3.128),
(3.130) as well as the definition of FA in (3.133), and noticing that G̃0A = eRRA + ζA, one
arrives at

d
(
ImNAB ∗ FB + ReNABF

B + C

̂
2A − eRRAB

)
= 0 . (3.135)

Next we find an expression for the G

̂
A
1 defined in (3.123). Multiplying relation (3.102)

by UT S− from the left, substituting (3.124) in it and recalling (3.67), (3.128) as well as the

expressions for G

̂
3A, ĜI

1 and ζA obtained in the study of the Bianchi identities, we get

G

̂
A
1 = −∆−1 AB

[
∗ dC
̂

2B + ζB ∗ dB + e2ϕ(UT M̃)BI dξ̂
I
]
, (3.136)

where we introduced the symmetric matrix [50]

∆AB := e2ϕ(UT ) I

A M̃IJ U
J

B .

In order to get the EoM associated with C

̂
2A, we start acting with Ũ from the left

on eq. (3.105), and exploiting (3.100) to eliminate G̃2A. After some steps involving the
expressions arising from the Bianchi identites above, we obtain

dG

̂
A
1 + dAA + (ŨV )AB

[
ImNBC ∗ FC + ReNBCF

C + C

̂
2B − eRRBB

]
= 0 , (3.137)
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where G

̂
A
1 should be read as (3.136).

The EoM for the scalars ξ̂ I are obtained substituting (3.124) in (3.108), and lowering
the symplectic index with S−:

− d
[
e2ϕM̃IJ ∗ (dξ̂ J + U J

AG

̂
A
1 )
]

+ dB ∧ [ (S−U)IAG

̂
A
1 + (S−dξ̂ )I ]

− e4ϕ(S−QN)IAG
A

0 ∗ 1 = 0 , (3.138)

where again expression (3.136) for G

̂
A
1 should be substituted. Once this is done,25 the piece

of (3.138) associated with a kinetic term for the ξ̂ I reads −d
(
∆̃IJ ∗ dξ̂ J

)
, with [50]:

∆̃IJ = e2ϕ
(
M̃− e2ϕM̃U∆−1UT M̃

)
IJ
.

Finally, we rewrite the EoM for the four dimensional B–field given in (5.35) by substi-
tuting the expressions for the fundamental 4d fields. After some steps we arrive at

1

2
d(e−4ϕ ∗ dB) + mA

RR

(
ImNAB ∗ FB + ReNABF

B
)
− eRRAF

A

− 1

2
dξ̂ IS−IJdξ̂

J + d(ζAG

̂
A
1 ) = 0 . (3.139)

4d action for the reduced RR sector

We can now reconstruct the action yielding the EoM (3.135), (3.137), (3.138) and (3.139),

respectively associated with the fields AA, C

̂
2A, ξ̂ I and B (for this last remind footnote

21). We find:

S
(4)
RR =

∫

M4

{ 1

2
ImNABF

A ∧ ∗FB +
1

2
ReNABF

A ∧ FB +
1

2
∆̃IJdξ̂

I ∧ ∗dξ̂ J

+
1

2
∆−1AB(dC

̂
2A + ζAdB) ∧ ∗(dC

̂
2B + ζBdB)

+ (dC

̂
2A + ζAdB) ∧ (e2ϕ∆−1UT M̃)AIdξ̂

I +
1

2
dB ∧ ξ̂ I S−IJdξ̂

J

+ (C

̂
2A − eRRAB) ∧

[
dAA +

1

2
(ŨV )ABC

̂
2B +

1

2
mA

RRB
]
− VRR ∗ 1

}
. (3.140)

In order to derive the EoM, constraint (3.127) (written in the form UmRR + V eRR = 0)
should be recalled. The RR contribution to the 4d scalar potential is defined as in (3.117):

VRR = −e
4ϕ

2
GA

0 ÑABG
B

0 , (3.141)

25Taking into account the explicit expression for G

̂
A
1 , one can see that the b+ + 1 linear combinations

of the equations (3.138) obtained via multiplication by (UT ) I
A vanish identically, as it should: we have

already exploited these combinations to write (3.129).
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but in the present general case expression (3.126) for GA
0 should be used (alternatively,

expression (3.134) can be adopted). Recalling the results of subsection 3.3.4, eq. (3.141)
can be derived from the geometric formula

VRR =
e4ϕ

4

∫

M6

〈G, ∗bG〉 , (3.142)

where
G :=

√
2(GA

0 ωA − G̃0Aω̃
A) (3.143)

is the formal sum of RR field strengths with all the indices along M6, corresponding to
the purely internal part of the RR field Ĝ, expanded as in (3.95). Notice that VRR is
non-negative.

The dimensionally reduced action (3.140) coincides with the one found in [50] using
purely four dimensional N = 2 supergravity techniques. It contains topological as well as
mass terms for the 2–forms B and C

̂
2A, with mass matrix:

M2 = −
(

mT
RRImNmRR mT

RRImN ŨV
(ŨV )T ImNmRR (ŨV )T ImN ŨV

)
.

3.6 Summary and discussion

In this chapter we established a general framework for dimensional reductions of type II
supergravity leading to N = 2 supergravity in four dimensions. Specifically, we derived
the complete 4d bosonic action associated with N = 2 flux compactifications of type IIA
supergravity on SU(3)×SU(3) structures. This is given by the union of the results of
section 3.4, where the reduction of the NSNS sector is established, and section 3.5, where
we deal with the RR sector.

The dimensional reduction has been implemented by expanding the higher dimensional
fields on a finite basis of differential (poly)forms. As we discussed, for the dimensional
reduction to go through and yield an N = 2 supergravity in 4d, the basis forms need
to satisfy a series of constraints. Though in general these constraints appear to be very
restrictive, in chapter 5 we will exhibit a simple class of examples in which the expansion
forms are well characterized, and the dimensional reduction goes through, even consistently.

The generalized geometry formalism described in the previous chapter played here a
crucial role, especially in the study of the dimensional reduction of the NSNS sector, com-
mon to type IIA and type IIB supergravity. Building on the fact that the full internal NSNS
sector is encoded in the two Spin(6,6) pure spinors Φ± characterizing the SU(3)×SU(3)
structure on TM6⊕T ∗M6, we established the relation between the kinetic terms for the 4d
scalar fields describing the fluctuations of the internal metric and B-field, and the special
Kähler metrics derived from the logarithm of the Hitchin functionals for even/odd pure
spinors. An essential tool used in this analysis was the decomposition of the space of poly-
forms in SU(3)×SU(3) representations, already employed in section 2.5. The same tool
proved very useful for studying the action of the ∗b operator on the expansion forms. This
allowed to derive an expression in terms of internal geometry for the period matrices N



92 3. The dimensional reduction

and M of the special Kähler spaces associated with even and odd pure spinor deforma-
tions. We recall that in type IIA compactifications the matrix N corresponds to the gauge
kinetic matrix of the N = 2 theory, the matrix M contributes to define the quaternionic
metric for the hyperscalar kinetic terms, and finally both N and M appear in the scalar
potential.

The application of the generalized geometry formalism also allowed to derive a geometric
formula for the full 4d scalar potential V = VNS + VRR. By (3.85) and (3.142), this reads

V =
e4ϕ

4

∫ [
〈 dHflΦ+, ∗b(dHflΦ̄+) 〉 + 〈 dHflΦ−, ∗b(dHflΦ̄−) 〉

]

− e4ϕ

∫ ∣∣〈dHflΦ+,Φ−〉
∣∣2 +

∣∣〈dHflΦ+, Φ̄−〉
∣∣2

i〈Φ±, Φ̄±〉
+

e4ϕ

4

∫
〈G, ∗bG〉 .

Expanding the pure spinors as well as the internal RR field strengths in the basis polyforms,
and integrating over the compact manifold, we recovered the symplectically invariant scalar
potential derived in ref. [50]. The NSNS contribution to the potential is mirror symmetric
under the exchange Φ+ ↔ Φ−, while we expect the type IIB RR contribution still read
as the type IIA expression (3.142), modulo the substitution of the even internal RR field
strengths G with the corresponding odd ones. We remark that a thorough understanding
of this scalar potential may open new avenues for the study of non-supersymmetric string
vacua on SU(3)×SU(3) structure manifolds. In [41] this program has been started, taking
also into account a possible non-trivial warp factor, as well as the contributions to V arising
from the addition of localized sources.

A complication arising in the derivation of the lower-domensional action is associated
with the fact that the general system of fluxes we considered yields both electric and
magnetic couplings at the 4d level. This issue is overcome by including a set of 2–forms
in the 4d theory. As we will discuss further in the next chapter, the 4d action we obtain
is consistent with the N = 2 supergravity formalism with tensor multiplets, and coincides
with the one that ref. [50] derived by starting from the Calabi-Yau 4d effective action,
then gauging the quaternionic isometries, and finally dualizing a set of axions in order to
introduce the magnetic charges. However, in our approach to the reduction of the RR
sector we didn’t need to perform any a posteriori dualization of scalars: reducing the RR
EoM/Bianchi identities of democratic type IIA supergravity, we identified and solved a set
of 4d Bianchi identities, already encoding the appropriate degrees of freedom. In particular,
we selected physically propagating degrees of freedom only, and we avoided to introduce
the magnetic counterparts of the electric vector potentials. Then we reconstructed the 4d
action leading to the correct equations of motion, which were also deduced from the higher
dimensional RR EoM/Bianchi identities.

While this chapter was mainly concerned with the dimensional reduction procedure,
and in particular with the relations between the internal geometry and the features of the
lower dimensional N = 2 theory, in the next chapter we will rather concentrate on the
formalism of 4d, N = 2 supergravity, applied to the theory derived here.



Chapter 4

The 4d N = 2 supergravity picture,
and the N = 1 vacuum conditions

In this chapter we clarify the consistency between the theory derived above via
dimensional reduction and the formalism of gauged N = 2 supergravity includ-
ing tensor multiplets. In particular, we focus on the quantities determining the
gauging, and we spell out the fermionic shifts in the supersymmetry variations.
Then we derive the N = 1 vacuum conditions within the 4d N = 2 theory, and
we establish a precise matching with the pure spinor equations characterizing
the N = 1 backgrounds at the ten dimensional level. We also perform a similar
analysis by considering N = 1 truncations of the N = 2 action, and imposing
the F-flatness and D-flatness conditions.

4.1 N = 2 structure of the 4d theory

While in the previous chapter we established the dimensional reduction of type II theory
to 4d N = 2 supergravity with focus on the bosonic sector, in this chapter we turn to the
fermionic side of these theories. In particular, we consider the supersymmetry transfor-
mation rules of the fermions in the 4d N = 2 supergravity. We derive the scalar parts of
these transformations, known as the fermionic shifts, which encode important informations
about the structure of the gauged N = 2 supergravity. For instance, as a consequence of
supersymmetry, the algebraic sum of their squares fixes the scalar potential V . In the
next section, starting from the fermionic shifts discussed here, we will establish the N = 1
vacuum conditions arising within the 4d N = 2 theory, and we will confront them with
the N = 1 background conditions derived at the 10d level using the generalized geometry
formalism [26, 27].

Along the way in this section, we clarify the N = 2 structure of the 4d theory, with
focus on the quantities defining the gauging, namely the Killing vectors of the quaternionic
isometries being gauged, and the associated Killing prepotentials. We also illustrate the
necessity to include antisymmetric rank-2 tensors in the supergravity description, due to
the fact that the general system of fluxes introduced in the previous chapter implies the
simultaneous presence of electric and magnetic charges under the gauge fields appearing
in the 4d action.
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4.1.1 N = 2 Killing prepotentials from the dimensional reduction

The N = 2 fermionic shift we are most interested in is the one in the gravitino susy
transformation, whose relevant part reads [76]

δψAµ = . . .+∇µεA − SABγµε
B, (4.1)

where ψAµ (A,B = 1, 2) are the N = 2 gravitini,1 and εA, εB are the 4d N = 2 susy
parameters. According to a standard notation in 4d N = 2 supergravity, lower indices on
Spin(3,1) spinors denote positive chirality, while upper indices refer to negative chirality.
The spinors ε1, ε2 are related to ε1, ε2 by charge conjugation, which in our conventions
just amounts to complex conjugation (see appendix A.3.2). Moreover, in (4.1) ∇µ is the
usual 4d spacetime covariant derivative for Spin(3, 1) spinors. Both ∇µ and the Cliff(3, 1)
gamma matrix γµ are defined with respect to the 4d Einstein frame metric, introduced by
the Weyl rescaling (3.74). Finally, SAB is the gravitino fermionic shift, also known as the
gravitino mass matrix since it appears as a gravitino mass term in the N = 2 lagrangian.
It contains the triplet of N = 2 Killing prepotentials Px , x = 1, 2, 3, which, as we are
going to see in next subsection, are the building blocks of gaugings. Indeed, its general
form is

SAB =
i

2
e

KV
2 (σx)

C
A ǫBCPx =

i

2
e

KV
2

(
P1 − iP2 −P3

−P3 −(P1 + iP2)

)
, (4.2)

where ǫAB =
(

0 1
−1 0

)
is the SU(2) ∼= Sp(1) metric, (σx)

B
A , x = 1, 2, 3, are the standard

Pauli matrices and KV is the Kähler potential for the scalar manifold of the N = 2 vector
multiplets; for the type IIA compactifications on which we are focusing, KV ≡ K+.

The N = 2 gravitino mass matrix SAB can be considered as the fundamental fermionic
shift, since its derivatives determine the shifts appearing in the supersymmetry transfor-
mations of the remaining N = 2 supergravity fermions (see subsection 4.1.3 below).

The matrix SAB arising from compactifications of type II theory on SU(3)×SU(3) struc-
ture backgrounds was determined in ref. [46] via dimensional reduction of the type II grav-
itino susy variations, generalizing a previous study [45] done for SU(3) structures, and
applying the generalized geometry formalism. For type IIA, the result of that analysis
was2

SAB = ie
K+

2


 e

K−

2
+ϕ
∫
〈Φ+ , dHflΦ−〉 e2ϕ√

8

∫
〈Φ+ , G〉

e2ϕ√
8

∫
〈Φ+ , G〉 −e

K−

2
+ϕ
∫
〈Φ+ , dHflΦ̄−〉


 . (4.3)

Let us discuss the various ingredients in this expression. The flux part Hfl of the NS field
strength is contained in the dHfl operator defined in (3.59), while the remaining piece of the
internal NS 2–form b is included in the pure spinors Φ± as in (2.64). The latter are built
via (2.60) from the two globally defined Spin(6) spinors η1, η2 appearing in the ansatz (2.1)

1Our R-symmetry SU(2) indices are A,B = 1, 2, while we reserved the letters A,B, . . . (running over
0, 1, . . . , b+) for the projective coordinates of M+ .

2A few remarks are in order for the comparison with ref. [46]. Our matrix SAB corresponds to the

matrix called S
(4)
AB(IIA) there. The differences in the numerical factors are due to different choices of

normalization for the pure spinors. Finally, here we have already taken the integral over M6.
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for the susy parameters entering in the type II gravitino variation. Furthermore, G is the
formal sum of purely internal RR field strengths, and the 4d dilaton ϕ was defined in
(3.75); relation (3.76) holds.

Comparing (4.3) with (4.2), one deduces a geometric expression for the Killing prepo-
tentials [46]:

P1 − iP2 = 2e
K−

2
+ϕ

∫
〈Φ+ , dHflΦ−〉 , P1 + iP2 = 2e

K−

2
+ϕ

∫
〈Φ+ , dHflΦ̄−〉

P3 = −e
2ϕ

√
2

∫
〈Φ+ , G〉 . (4.4)

Finally, expanding Φ± and G in terms of the basis forms as in (3.23), (3.35) and (3.143),
and recalling subsection 3.3.5, one obtains the Px in terms of the quantities entering in
the 4d effective action

P1 − iP2 = 2e
K−

2
+ϕ ZI(S−Q)IAX

A

= 2e
K−

2
+ϕ
[
(ZIeIA − GIm

I
A)XA + (ZIpA

I − GIq
IA)FA

]
,

P1 + iP2 = 2e
K−

2
+ϕ Z̄I(S−Q)IAX

A

= 2e
K−

2
+ϕ
[
(Z̄IeIA − ḠIm

I
A )XA + (Z̄IpA

I − ḠIq
IA)FA

]
, (4.5)

P3 = −e2ϕGAS+ABX
B

= e2ϕ
[
(eRRA − ξIeIA + ξ̃Im

I
A)XA − (mA

RR + ξIpA
I − ξ̃IqIA)FA

]
,

where the symplectic vectors XA, ZI were introduced in (3.86). In order to be consistent
with [45, 46, P1], for GA ≡ (GA, G̃A)T we are using expression (3.134), but expression
(3.126) would be equally fine (recall the comment below (3.134)). Furthermore, since here
there is no risk of confusion with other p-forms GA

p , G̃p A on the 4d spacetime, in this
chapter we drop the label 0 appearing in (3.134).

4.1.2 Gauging the quaternionic isometries

In this subsection we discuss how the Killing prepotentials given above fit into the general
formalism of 4d N = 2 gauged supergravity. This will allow us to derive the form of all
the fermionic shifts in the N = 2 theory, given in eqs. (4.18)-(4.21) below. The latter will
be the building blocks to establish the supersymmetric vacuum conditions, to be studied
in section 4.2.

In the previous chapter we investigated the dimensional reduction of type IIA super-
gravity on SU(3)×SU(3) structure backgrounds with fluxes, eventually recovering the 4d,
N = 2 supergravity action constructed in ref. [50] by means of purely 4d supergravity
techniques. In order to clarify the N = 2 structure of this action, let us come back on
the approach followed in [50], already very concisely summarized at the beginning of sub-
section 3.5.4. Here we will highlight the way the Killing prepotentials emerge in that
picture.
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The general framework is the one of gauged N = 2 supergravity with (massive) tensor
multiplets, which was first suggested in [82], and then constructed in [101, 97, 98]. As
above, we will choose a setting corresponding to a type IIA compactification (the discus-
sion for IIB would proceed in a perfectly mirror symmetric way). The strategy adopted
in [50] was to start from an ungauged N = 2 supergravity of the kind obtained in type II
compactifications on Calabi-Yau 3-folds (recall section 3.2), and then deform it by gaug-
ing the abelian isometries of the quaternionic metric huv corresponding to the hyperscalar
kinetic matrix (cf. (3.16)). A second step, allowing to introduce further interactions, was
the dualization of a subset of the hyperscalars to antisymmetric rank-2 tensors.

We recall that the quaternionic manifold which is relevant for the theory under consid-
eration is a special, or dual one: the metric huv is determined by the data of a special Kähler
submanifold, which for a type IIA Calabi-Yau compactification is the complex structure
moduli space Mcs. In the present more general case, it is M−, describing the metric de-
formations of the pure spinor Φ− (the Φ+-moduli ta , a = 1, . . . , b+, enter instead in the
N = 2 vector multiplets). Let us first recall the principal features of this dual quaternionic
manifold. Its coordinates are the scalars qu = (ϕ, a, ξI , ξ̃I , z

i) , u = 1, . . . , 4(b− + 1), repre-
senting the bosonic components of the N = 2 hypermultiplets. The quadruple (ϕ, a, ξ0, ξ̃0)
corresponds to the universal hypermultiplet, where a is the axion coming from the dualiza-
tion of the NS 2-form Bµν extending along the 4d spacetime. As in the previous chapter,
the complex scalars zi are the coordinates of the special Kähler manifold M−. Let us
introduce the 1-forms [68, 50]:

u = ie
K−

2
+ϕZI(dξ̃I −MIJdξ

J)

v =
e2ϕ

2

[
de−2ϕ − i(da+ ξ̃Idξ

I − ξIdξ̃I)
]

E = − i
2
eϕ−K−

2 PI(ImG)−1 IJ(dξ̃J −MJLdξ
L)

e = PIdZ
I , (4.6)

with
PI = (P

j

0 , P
j

i ) = (−e j

i Z
i, e

j

i ) , (4.7)

where e
j

i , (i, j = 1, . . . , b−) are the vielbeine of the special Kähler manifold M− (the
underlined indices are flat), and M is the period matrix on it. The choice of special
coordinates ZI = (1, zi) is assumed.3 The quaternionic metric huv is then given by

huvdq
u ⊗ dqv = ū⊗ u+ v̄ ⊗ v + Ē ⊗ E + ē⊗ e

= G
−
i̄ dz

idz̄ ̄ + (dϕ)2 +
e4ϕ

4

(
da+ dξIS−IJξ

J
)2 − e2ϕ

2
dξIM̃IJ dξ

J , (4.8)

where G
−
i̄ is the metric on M−, M̃ corresponds to the symmetric, negative definite matrix

built in terms ofM in (3.54), and ξI = (ξI , ξ̃I)
T is the symplectic vector of RR scalars. Of

course, when the compact manifold M6 is Calabi-Yau, this is nothing else than the metric
given in (3.16).

3The matrix which in our conventions corresponds to −2ImGIJ was called N in [68, 50].
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As we review in some more detail in appendix E, due to the fact that the holonomy
of the quaternionic manifold is in Sp(1) × Sp(b− + 1), by introducing the Sp(1) ∼= SU(2)
indices A,B = 1, 2 and the Sp(b− + 1) indices I, J = 1, . . . , 2b− + 2, one can define the
natural vielbeine UAI

u , relating the metric huv to the flat Sp(1) and Sp(b− + 1) invariant
metrics ǫAB and S−

IJ
:

huv = UAI

u UBJ

v S−
IJ
ǫAB .

For the metric (4.8), we can choose the vielbein 1-forms:

UAI =
1√
2

(
ū ē −v −E
v̄ Ē u e

)
. (4.9)

As we are going to see below, this will appear in the hyperino mass matrix.
The last ingredient we need is the triplet of connection 1-forms ωx (x = 1, 2, 3) for the

SU(2)-bundle over the quaternionic manifold (again cf. appendix E). In the present case,
these are given by [68, 14, 15]:

ω1 = i(ū− u) , ω2 = u+ ū

ω3 =
i

2
(v − v̄) +

i

2

ZIImGIJdZ̄
J − Z̄IImGIJdZ

J

Z̄KImGKLZL
. (4.10)

Starting from the ungauged N = 2 theory, having the form (3.15) and containing
the quaternionic σ-model outlined above, a first deformation was obtained in [89, 50] by
gauging the global symmetries corresponding to the abelian isometries of the metric (4.8)
generated by the Killing vectors4

kA = (2eRRA − ξIeIA + ξ̃Im
I
A)
∂

∂a
+mI

A

∂

∂ξI
+ eIA

∂

∂ξ̃I
, A = 0, 1, . . . , b+ , (4.11)

where the eRRA, eIA,m
I
A are half of the parameters associated with the general set of fluxes

introduced in subsection 3.3.5. The gauging couples the hyperscalars qu to the gauge fields
AA via a minimal substitution, i.e. the standard differentials dqu appearing in the ungauged
action (3.15) are now replaced by exterior covariant derivatives:

dqu → Dqu = dqu − ku
AA

A .

The resulting N = 2 gauged supergravity action is in agreement with the results of sec-
tions 3.4 and 3.5. In particular, the relevant piece of the action stemming from the type
IIA RR sector is the one worked out in subsection 3.5.3, with the further requirement
mA

RR = 0. The hyperscalar covariant derivatives introduced by the gaugings correspond
exactly to expressions (3.116), (3.119). We conclude that the scalars a, ξI , ξ̃I are electrically
charged under the gauge fields AA, the electric charges being provided by eRRA, eIA,m

I
A.

Let us also describe the consistency with the gravitino mass matrix SAB derived in
the previous subsection. As we review in appendix E, in gauged supergravity to each of
the quaternionic isometries generated by Killing vectors kA is associated a set of three

4The abelianity [kA, kB ] = 0 follows from the quadratic constraints written below eq. (3.17).
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momentum maps Px
A, which actually are the proper Killing prepotentials, related to the

Px appearing in the gravitino mass matrix by Px = Px
AX

A + . . . (see below for the missing
symplectic completion). In our case, these are given by the formula (cf. appendix E.2)

Px
A = ωx

uk
u
A . (4.12)

Plugging (4.10) and (4.11) in (4.12), one obtains

P1
A = 2e

K−

2
+ϕ(ReZIeIA − ReGIm

I
A) , P2

A = −2e
K−

2
+ϕ(ImZIeIA − ImGIm

I
A)

P3
A = e2ϕ(eRRA − ξIeIA + ξ̃Im

I
A) , (4.13)

and we immediately recognize in the sums Px
AX

A the part of the Px in (4.5) containing
the charges eRRA, eIA,m

I
A.

Let us now consider the second half of flux parameters mA
RR, p

A
I , q

IA. In order to
take these into account, the authors of ref. [50] performed a dualization of a subset of
the scalars {ξI , ξ̃I}, together with the axion a, to antisymmetric 2-tensors. Then the
charges mA

RR, p
A
I , q

IA could be introduced as mass terms for these tensors, in a way which
is consistent with N = 2 supersymmetry [97, 98]. The action yielded by this procedure is
the same that in the previous chapter we derived by dimensional reduction; see in particular
the RR piece (3.140), containing a set of undualized RR scalars ξ I and a set of 2–forms

B and C

̂
A
2 . Alternatively, using the ‘redundant’ formalism described in [106], one could

generate the same interactions by performing a gauging involving a set of magnetic gauge
potentials and the quaternionic Killing vectors

k̃A = (2mA
RR + ξIpA

I − ξ̃IqIA)
∂

∂a
− qIA ∂

∂ξI
− pA

I

∂

∂ξ̃I
, (4.14)

and then integrating out the magnetic vector potentials, leaving in this way a theory with
electric vectors and antisymmetric tensors (together with the other fields already present
in the original action). In this sense, the flux parameters mA

RR, p
A
I , q

IA can be interpreted as
magnetic charges from the 4d N = 2 viewpoint, assigned to the same hyperscalars a, ξI , ξ̃I
that are already electrically charged. We can then define the symplectic completion P̃xA

of the Px
A introduced above [15, 106]:

P̃xA = ωx
uk̃

uA , (4.15)

yielding

P̃1A = −2e
K−

2
+ϕ(ReZIpA

I − ReGIq
IA) , P̃2A = 2e

K−

2
+ϕ(ImZIpA

I − ImGIq
IA)

P̃3A = e2ϕ(mA
RR + ξIpA

I − ξ̃IqIA) . (4.16)

It is worth to remark that the combinations of the ξI , ξ̃I entering in P3
A and P̃3A correspond

to the ξ̂ I of subsection 3.5.4, and do not contain the scalars which have been dualized to
antisymmetric tensors.

It is now easy to see that the symplectic invariant expressions

Px = Px
AX

A − P̃xAFA (4.17)

precisely reproduce the full Killing prepotentials (4.5) provided by the compactification.
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4.1.3 N = 2 fermionic shifts with electric and magnetic charges

The N = 2 structure of the theory implies that the same charges introduced above appear
in the fermionic supersymmetry variations of the N = 2 theory [97, 98]. We have already
seen that this is the case for the gravitini, whose fermionic shift SAB was investigated
in subsection 4.1.1. As anticipated in table 3.1, besides the gravitini ψAµ , A = 1, 2,
the (positive chirality) fermions contained in the N = 2 theory under consideration are
the hyperini ζI, labeled by the symplectic index I = 1, . . . , 2b− + 2, and the gaugini λaA,
a = 1, . . . , b+; these are the fermionic components of the hypermultiplets and of the vector
multiplets respectively. To be precise, the ζI are the hyperini of the theory prior to the
dualization of the axions: after the dualization, the ζI belong to a scalar-tensor multiplet
containing the undualized scalars as well as the antisymmetric 2-tensors [98]; however, for
simplicity we will continue to call them hyperini. The N = 2 fermionic transformation
laws read

δψAµ = . . .+∇µεA − SABγµε
B

δζI = . . .+NAI εA (4.18)

δλaA = . . .+W aABεB .

The “. . .” refer to terms which vanish on a bosonic, maximally symmetric spacetime and
which therefore will not be relevant for the supersymmetric vacuum conditions we are going
to analyze in the forthcoming section. We recall that the 4d metric we use here is rescaled
with respect to the original string frame metric ĝµν as in (3.74). Hence, γµ = e−ϕγ̂µ.
Finally, SAB, N

A
I and W aAB are the fermionic shifts, also termed mass matrices because

they appear as fermionic mass terms in the supergravity lagrangian. They contain the
charges provided by the fluxes, and their expression is [98, 15]:

SAB =
i

2
e

K+

2 (σx)
C
A ǫBC(Px

AX
A − P̃xAFA) (4.19)

NAI = 2e
K+

2 UAI u(k
u
AX̄

A − k̃uAF̄A) (4.20)

W aAB = ie
K+

2 G
ab̄
+ (σx)

B
C ǫ
CA(Px

CDb̄X̄
C − P̃xCDb̄F̄C) . (4.21)

Notice that the vielbeine UAI u of the quaternionic manifold prior to the dualization of the
axions appear in the hyperino mass matrix NAI .

Of course all the mass matrices vanish in the absence of fluxes. In this case we would
have a continuum of N = 2 supersymmetric vacuum configurations (with vanishing cosmo-
logical constant), all the scalar fields corresponding to massless moduli. In the presence of
fluxes, the mass matrices (4.19)-(4.21) are non-trivial, and determine a potential for the 4d
supergravity action, in this way lifting a certain number of previously flat scalar directions.
Indeed, a general Ward identity of extended supergravities relates the scalar potential V
to the squares of the fermionic shifts. In the present N = 2 setting, it reads [76, 97, 98]

V δAB = G
+
ab̄
W aCAW

b̄

CB + 2NAI N
I

B − 12S
CA
SCB . (4.22)

Notice that the gaugino and hyperino mass matrices yield a positive contribution to V ,
while the gravitino contribution is negative. From the derivation of [50] it follows that,
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upon substitution of the quantities above, this formula yields the sum of expressions (3.87),
(3.141) which in the previous chapter we derived by dimensional reduction.

4.2 The N = 1 vacuum conditions

This section, based on publication [P1], confronts the 4d and 10d approaches to N = 1
backgrounds.5 In subsection 4.2.1 we consider the equations characterizing the N = 1
vacua at the 10d level, translated in the generalized geometry formalism in [26, 27], and
we rewrite them in a way which is suitable for the comparison with the conditions arising
in the 4d approach. The latter are analyzed in subsection 4.2.2, having as a starting point
the N = 2 theory derived in the previous chapter, and further discussed here above.

Starting from an N = 2 theory, an N = 1 vacuum can be obtained by spontaneous
partial supersymmetry breaking. This is a concrete possibility when considering compact-
ifications with fluxes, since the associated 4d supergravities possess a non-trivial scalar
potential due to the flux-generated gaugings. However, spontaneous partial susy breaking
is non-generic: the old no-go theorem of [107] forbidding such phenomenon on Minkowski
vacua can be circumvented only by the choice of a degenerate symplectic section in the
vector multiplet sector, such that a prepotential doesn’t exist [108]. On the other hand,
the no-go theorem does not constrain AdS vacua, which represent therefore an available
possibility, as we will see in the next chapter.

Such an obstruction for N = 1 solutions with vanishing vacuum energy is somehow
reflected at the 10d level: it is well known that tadpole cancellation in a background with
fluxes consisting of the product of Minkowski4 with a compact M6 manifold requires the
presence of negative tension sources, such as orientifold planes. With an appropriate choice
of the orientifold, the resulting 4d effective theory takes an N = 1 form, and corresponds
to a truncation of the previously N = 2 action. At this point, the N = 1 vacuum condition
amounts just to the requirement of unbroken supersymmetry.6

The two possibilities we have mentioned (spontaneous partial susy breaking and the
N = 2→ N = 1 truncation) are not unrelated, since the physics around an N = 1 vacuum
for energies well below the partial susy breaking scale has to be described by an N = 1
theory (see [109] for a discussion), and in some cases such low energy theory can correspond
to a truncation of the N = 2 action.

Here however we don’t need to specify which is the mechanism leading to the N = 1
vacua, and it will be sufficient to observe that a supersymmetric (bosonic) vacuum is char-
acterized by the vanishing of the fermionic variations under the preserved supersymmetries.
In particular, starting from an N = 2 theory one has an (at least) N = 1 vacuum if such a
condition is satisfied by the variations given by any chosen linear combination of the N = 2
spinorial parameters εA , A = 1, 2. This characterization applies to N = 2→ N = 1 trun-
cations as well, provided the linear combination of the two susy generators under which
the vacuum is required to be invariant coincides with the supersymmetry being preserved
by the truncation at the level of the action.

5See also [37] for an analysis having a similar task, but adopting a different approach to the 4d theory.
6Here we are considering dimensional reductions of 10d supergravity on compact manifolds. Further

possibilities are opened by allowing for a decompactification limit freezing a part of the moduli [86].
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We can therefore proceed introducing a two-component vector nA =
(

ā
b

)
, where a

and b are complex constants,7 satisfying |a|2 + |b|2 = 1. Then, we select the preserved
positive-chirality N = 1 susy parameter ε by

ε = n̄AεA ⇐⇒ εA = nAε , (4.23)

where n̄A =
(

ā
b

)†
, and the two expressions (4.23) are equivalent since we put to zero the

independent linear combination bε1 − āε2. The conjugated spinors εA can be written as
εA = εcn∗A, where εc ≡ ε∗ has negative 4d chirality and n∗A =

(
a
b̄

)
.

Let us reconsider the spinor ansatz (2.1) adopted for the off-shell reduction. For type
IIA, it reads

ǫ1 = ε1 ⊗ η1
− + ε1 ⊗ η1

+

ǫ2 = ε2 ⊗ η2
+ + ε2 ⊗ η2

− . (4.24)

We recall that the Spin(3, 1) spinors (ε1, ε2) have positive chirality, while (ε1, ε2) have
negative chirality; hence the Spin(9, 1) spinor ǫ1 has negative chirality, while ǫ2 has positive
chirality. Now, (4.23) fixes the form of the 10d spinorial parameters in the N = 1 vacuum
to

ǫ1 = ε⊗ āη1
− + εc ⊗ aη1

+

ǫ2 = ε⊗ bη2
+ + εc ⊗ b̄η2

− . (4.25)

Since we wish to describe vacua, we require the 4d spacetime be maximally symmetric.8

This will actually be either Minkowski or AdS, the dS case being ruled out. Hence we can
choose ε to satisfy the Killing spinor equation

∇̂µε =
1

2
µ̄γ̂µε

c , (4.26)

where the hat denotes that here we are using the string frame metric ĝµν . Using the
relation [∇µ,∇ν ]ε = 1

4
Rµνρσγ

ρσε, we see that the complex parameter µ is related to the 4d

spacetime cosmological constant Λ ≡ R̂4/4 by

Λ = −3|µ|2,

so that we have Minkowski4 if µ = 0, and AdS4 otherwise.

7The choice of writing n1 = ā instead of a is dictated by later convenience, see the forthcoming eq. (4.25).
Of course, the a here has nothing to do with the axion considered in subsection 4.1.2. Furthermore, the
parameter b should not be confused with the internal NS 2–form, also called b.

8Requiring maximal symmetry of a d-dimensional Lorentzian spacetime amounts to demand Poincaré
invariance in the flat case, SO(2, d− 1) invariance in the negative curvature case and SO(1, d) invariance
in the positive curvature case.
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4.2.1 N = 1 equations from the ten dimensional analysis

Before establishing the 4d N = 1 vacuum conditions arising from the 4d action, let us
illustrate which is the outcome of the 10d analysis for N = 1 backgrounds.

A supersymmetric background configuration9 of the 10d supergravity with four pre-
served supercharges is obtained by imposing the vanishing of the 10d fermionic transfor-
mations under the supersymmetry parameterized by the spinor ansatz (4.25). Having this
as a starting point, it has been argued in [27] (and further illustrated in [33]) that N = 1
backgrounds of type II theories have an internal manifold whose tangent plus cotangent
bundle admits an SU(3)×SU(3) structure. The supersymmetry equations can then be
rephrased in the framework of generalized geometry as differential conditions for the pair
of Spin(6, 6) pure spinors associated with the SU(3)×SU(3) structure. With reference to
the decomposition (4.25), such pure spinors can be written as the following bispinors:

e−φaη1
+ ⊗ (bη2

+)† =
ab̄

8
Φ0

+ , e−φaη1
+ ⊗ (b̄η2

−)† =
ab

8
Φ0
− , (4.27)

where for Φ0
± we are using definition (2.60). The complex parameters a and b could

in general depend on the internal coordinates, and indeed this would be the case for
supersymmetric solutions on warped backgrounds. However, here we are interested in a
comparison with what results from the effective action approach. For this reason we restrict
ourselves to a vanishing warp factor,10 and we assume both a and b to be constant. In
contrast with [P1], here the 10d dilaton φ is included into Φ0

±, and we don’t explicitly
demand it to be constant along the compact manifold.

Finally, we have to pay attention to the 10d spinor conventions. Indeed, in [27, 33], the
type IIA ‘pure spinor equations’ were derived assigning positive chirality to ǫ1 and negative
chirality to ǫ2, while in (4.25) we have done the opposite choice (following the conventions
of [46]). Furthermore, the conventions we are using here are not precisely the same as the
ones in [27, 33] (the relevant differences are in the choice of the 6d chirality matrix γ, of
the Hodge-∗ and of the involution λ, cf. our appendix A). Taking all this into account, we
find that our type IIA supersymmetry equations for the ansatz (4.25) are obtained from
the ones given in [33] upon implementing the following transformation:

ab̄Φ0
+ → ābΦ̄0

+ , abΦ0
− → −abΦ0

− , H → −H , λ(F ) ↔ F , (4.28)

where the RR field F = F0 + F2 + F4 + F6 is the purely internal part of the democratic
RR field F̂ introduced in section 3.1, while the involution λ is defined in (2.52).

We remark that the type IIA pure spinor equations obtained in this way correspond
precisely to the ones given in [33] for type IIB, provided we exchange the chirality of
the Spin(6,6) pure spinors and of the RR field strengths and we conjugate the complex
parameter µ given in (4.26) (this last transformation is harmless, because it does not modify

9At this stage, we cannot speak of a full solution of the 10d (classical) action, since the supersymmetry
conditions alone do not imply all the equations of motion and Bianchi identities for the bosonic fields. See
e.g. [36] for a recent discussion, with some new results in this sense.

10For recent progresses in the study of dimensional reductions on warped backgrounds see for instance
[110, 111, 112, 37, 113, 61].
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the physical quantity associated with µ, which is the 4d spacetime cosmological constant
Λ = −3|µ|2). So type IIA with the ansatz (4.25) and type IIB with a positive chirality
choice for both ǫ1,2 lead to the same pure spinor equations.

Starting from the pure spinor equations of [33], performing the transformations (4.28)
and taking into account the assumptions on the warp factor, we arrive at:

(d−H∧)(ab̄Φ0
+) = −2µ̄Re(abΦ0

−) (4.29)

(d−H∧)(abΦ0
−) = −3i Im(µab̄Φ0

+) +
1

2

(
c−F − ic+ ∗ λ(F )

)
, (4.30)

where c± = |a|2 ± |b|2. Consistently with our definition of a and b, (see above eq. (4.23)),
we will fix c+ = 1. Of course, any other choice for c+ can be recovered by the redefinition
nold
A = nnew

A /
√
c+.

We now rewrite (4.29) and (4.30) in a form more suitable for the forthcoming com-
parison with the effective theory approach. Separating the background flux and the exact
pieces of the NS 3-form as H = Hfl + db, acting with e−b on the equations, and recalling
defs. (3.59) for dHfl and (3.43) for the twisted Hodge operator ∗b, we get

ab̄ dHflΦ+ = −2µ̄Re(abΦ−) (4.31)

ab dHflΦ− = −3iIm(µab̄Φ+) +
1

2

(
c−G− i ∗b G

)
, (4.32)

where the sum of purely internal RR field strengths G is related to F by G = e−bF
(recall (3.92)), and Φ± := e−bΦ0

± are the same pure spinors appearing in the previous
chapter.11

As already announced, our purpose is to compare these equations with the N = 1
vacuum conditions arising from the 4d effective action. In order to do this, we need only
the pure spinor modes preserved by the truncation defining the 4d theory. Hence, we
can implement here the expansions (3.23), (3.35) of Φ± in terms of the basis forms Σ±,
introduced in (3.17). Using the properties of the basis forms, it is also possible to perform
the integral over the compact manifold M6.

We obtain the version ‘in components’ of the pure spinor equations by taking the
integrated Mukai pairing of the first and the second pure spinor equations – eqs. (4.31)
and (4.32) – with the basis Σ±. Adopting the symplectic notation already used above (see

11Although the pure spinor equations were derived in [27] assuming the background to be fully geometric,
it is formally possible to substitute the differential operator dHfl with the more general operator D defined
in (3.68), containing non-geometric fluxes. This is suggested by what is done in the effective action
approach, along the lines of [46] (see also [34]). We therefore obtain the following generalized version of
the pure spinor equations:

ab̄DΦ+ = −2µ̄Re(abΦ−)

abDΦ− = −3iIm(µab̄Φ+) +
1

2
(c−G− i ∗b G) .

For example, in the SU(3) structure case, in which Φ− = −iΩ, we have (DΩ)0 = RxΩ, (DΩ)2 = Q · Ω ,
(DΩ)4 = dΩ and (DΩ)6 = −Hfl ∧ Ω. While here we will continue to work with the standard operator
dHfl , we actually showed in [P1] that there are no obstructions in performing the extension dHfl → D.

In the context of generalized geometry, the role of the D operator has been investigated in [40].
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in particular (3.18), (3.19) for S±, (3.55) for N, (3.64) for Q, as well as (3.86) for XA, ZI),
by a straightforward computation one can see that

∫
〈 1st pure sp.eq. , Σ− 〉 =⇒ ab̄QI

AX
A = −2µ̄Re(abZI) , (4.33)

∫
〈 2nd pure sp.eq. , Σ+ 〉 ⇒ ab Q̃A

IZ
I = −3iIm(µab̄XA) + c−√

2
GA + i√

2
(NG)A .

(4.34)
where, as above, GA = (GA, G̃A)T , coming from the expansion (3.143) of the sum G of the
purely internal RR field strengths.

In this last derivation, it has been essential to dispose of eq. (3.55), expressing the
action of ∗b in terms of the special Kähler geometry data: it allowed to compute

∫
〈∗bG,ΣA

+〉 = −
√

2 NA

BG
B . (4.35)

4.2.2 N = 1 conditions from the effective action, and matching

We now study the N = 1 vacuum conditions arising from the effective action approach,
showing that they precisely satisfy the integrated version of the pure spinor equations
established here above.

At the end of subsection 4.1.2 we wrote the form of the fermionic susy variations for the
4d N = 2 effective theory corresponding to the type IIA compactification we considered.
As it should be clear from the discussion at the beginning of this section, the 4d N = 1
vacuum conditions amount to the vanishing of these fermionic variations under the single
preserved supersymmetry, parameterized as in (4.23). From (4.18) we read:

〈δεψAµ〉 = 0 ⇐⇒ 2e−ϕSABn
∗B = nAµ̄ (4.36)

〈δεζI〉 = 0 ⇐⇒ NAI nA = 0 (4.37)

〈δελaA〉 = 0 ⇐⇒ W aABnB = 0 . (4.38)

To get condition (4.36) we used (4.26) and γµ = e−ϕγ̂µ. Eq. (4.36) relates the Killing
prepotentials to the spacetime curvature parameter µ. Recalling (4.19) and (4.17), its
explicit form is

ie
K+

2
−ϕ

(
a(P1 − iP2)− b̄P3

−aP3 − b̄(P1 + iP2)

)
=

(
āµ̄
bµ̄

)
. (4.39)

Let us now analyze the implications following from the vanishing of the hyperini vari-
ation, eq. (4.37). Recalling (4.20), this reads

nAUAI u(k
u
AX̄

A − k̃uAF̄A) = 0 .
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Using (4.9) and (4.6), substituting the expressions (4.11), (4.14) for kA and k̃A, and recog-
nizing the form (4.5) of the Px, we obtain the following set of conditions:

a(P1 − iP2)− 2b̄P3 = 0 (4.40)

2aP3 + b̄(P1 + iP2) = 0 (4.41)

b̄PI(ImG)−1 IJ
[
(eJA −MJKm

K
A )XA + (pA

J −MJKq
KA)FA

]
= 0 (4.42)

aP̄I(ImG)−1 IJ
[
(eJA −MJKm

K
A )XA + (pA

J −MJKq
KA)FA

]
= 0. (4.43)

The first two equations come from the vielbeine UAI corresponding to the 1-forms u and
v given in (4.6), while the last two are the conditions involving E (e doesn’t contribute).
The PI are the Kählerian vielbeine, defined in (4.7).

Comparing (4.40) and (4.41) with (4.39) we get

i
a

2
(P1 − iP2) = ib̄P3 = āµ̄eϕ−K+

2 , −ib̄
2

(P1 + iP2) = iaP3 = bµ̄eϕ−K+

2 , (4.44)

which implies (|a|2 − |b|2)µ̄ = 0; then if the vacuum is AdS, necessarily12 |a| = |b|. Fur-
thermore, notice that on a Minkowski vacuum (µ = 0) and for a and b being nonzero we
have Px = 0; therefore the gravitino mass matrix SAB vanishes (see (4.2)) and we cannot
have spontaneous partial susy breaking in the N = 2 theory. In order to obtain N = 1
Minkowski vacua, an N = 2→ N = 1 truncation of the action is required.

From now on we will assume a 6= 0 , b 6= 0. The cases in which a = 0 or b = 0 could be
studied separately; however, they are not relevant for the comparison with the pure spinor
equations of the previous subsection, which were indeed established for nonvanishing a
and b.

Multiply eqs. (4.42) by 1
2
e−K(ImG)−1 LM P̄M and (4.43) by 1

2
e−K(ImG)−1 LMPM , then

use the relations [68]:

1

2
e−K− [(ImG)−1P †P (ImG)−1]LJ = (ImG)−1 LJ + 2eK−ZLZ̄J

= −(ImM)−1 LJ − 2eK−Z̄LZJ

(see (D.8) for the second equality). Recognizing expressions (4.5) for P1 ± iP2, we arrive
at

b̄(ImM)−1 IJ
[
(eJA −MJKm

K
A )XA + (pA

J −MJKq
KA)FA

]
+ Z̄Ie

K−

2
−ϕb̄(P1 − iP2) = 0

a(ImM)−1 IJ
[
(eJA −MJKm

K
A )XA + (pA

J −MJKq
KA)FA

]
+ ZIe

K−

2
−ϕa(P1 + iP2) = 0 .

(4.45)

Multiplying from the left (4.45) by
(

a
−b̄

)T
and using (4.44), we conclude

ab̄(mI
AX

A + qIAFA) = −2µ̄Re(abZI) , (4.46)

12|a| = |b| is also necessary for a Minkowski background; however in this case the condition doesn’t arise
from the susy equations, but rather from the orientifold projection one is led to consider in order to cancel
the tadpoles [33]. Another way to arrive at the same conclusion is described in [30].
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where we have also used the fact that, because of the normalizations we adopted for the
pure spinors Φ±, we have eK+ = eK− (recall 3.76).

A second independent linear combination of the two equations (4.45) can be obtained

multiplying them by
(

a
b̄

)T
. Plugging (4.46) in, using again (4.44) and recalling that

MIJZ
J = GI , we arrive at

ab̄(eIAX
A + pA

I FA) = −2µ̄Re(abGI) . (4.47)

Employing (3.64) and the symplectic vectorsXA, ZI introduced in (3.86), our conditions
(4.46) and (4.47) can be summarized in the single equation

ab̄QX = −2µ̄Re(abZ) . (4.48)

As it is clear from a comparison with eq. (4.33), the present condition precisely corresponds
to the integrated first pure spinor equation.

The last condition to be analyzed is the variation of the gaugini, eq. (4.38). Using (4.21)
this reads

ie
K+

2 G
ab̄
+ Db̄X̄

C(Px
C −NCEP̃xE)σABx nB = 0 ,

where σABx = (σx)
B
C ǫ
CA, and we have used DāF̄B = NBCDāX̄

C (recall D.3) in order to

factorize Db̄X̄
C . Multiply this expression by e

K+

2 DaX
D in order to trade a lower case index

with an upper case one; then, using the special Kähler geometry relation

eK+DaX
D
G

ab̄
+ Db̄X̄

C = −1

2
(ImN )−1 DC − eK+X̄DXC (4.49)

(corresponding to the M+ version of (D.7)), and recalling that (Px
B −NBCP̃xC)XB = Px

(see (D.3) and (4.17)), we get

σABx nB
[
(ImN )−1 AB(Px

B −NBCP̃xC) + 2eK+X̄APx
]

= 0 . (4.50)

This is a vector of two equations (A = 1, 2). Multiply it from the left by
(−b̄

a

)T
= n̄CǫCA.

Using (4.39) one sees that n̄CǫCAσ
AB
x nBPx = 0, therefore we are left with

{
2Re[ab(δ1

x − iδ2
x)] + c−δ

3
x

}
(ImN )−1 AB(Px

B −NBCP̃xC) = 0 , (4.51)

where we have introduced the parameter c− := |a|2 − |b|2. Separating into imaginary and
real parts we arrive respectively at

Re[ab(P̃1A − iP̃2A)] +
c−
2
P̃3A = 0 , Re[ab(P1

A − iP2
A)] +

c−
2
P3

A = 0 .

Substituting the expressions (4.13), (4.16) for Px
A and P̃xA, and using (3.76) as well as

expression (3.134) for GA and G̃A, we obtain the couple of equations

Re(abZI)pA
I − Re(abGI)q

IA =
c−
2
GA , Re(abZI)eIA − Re(abGI)m

I
A =

c−
2
G̃A ,
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which can be assembled in a single equation for the symplectic vectors ZI and GA:

Q̃A

I Re(abZI) =
c−√

2
GA . (4.52)

Multiplying the two equations (4.50) by
(

b̄
a

)T
and using once again constraint (4.44),

we get a second independent (recall that a 6= 0 , b 6= 0) combination:

{
2 Im[ab(δ1

x − iδ2
x)]− iδ3

x

}
(ImN )−1 AB(Px

B −NBCP̃xC) = 12e
K+

2
+ϕābµ̄X̄A . (4.53)

Following analogous steps to the ones which led us from (4.51) to (4.52), we arrive at

Q̃A

I Im(abZI) = −3Im(µab̄XA) +
1√
2
NA

BG
B , (4.54)

where the symplectic matrix N is given in (3.55).
Conditions (4.52), (4.54) can be seen as the real and the imaginary parts of the single

complex equation involving the symplectic vectors XA, ZI and GA:

ab Q̃Z = −3iIm(µab̄X) + c−√
2
G+ i√

2
NG . (4.55)

In this way we obtain a condition which exactly corresponds to the integrated second pure
spinor equation, as it can be seen by comparison with eq. (4.34).

Let us summarize the outcome of this section. At the 10d background level, we ex-
panded the pure spinor equations on the basis of forms Σ± and we took the integral over
the internal manifold, obtaining eqs. (4.33) and (4.34). At the level of the four-dimensional
theory, we started from the vev of the fermionic variations under an arbitrary linear com-
bination of the two N = 2 supersymmetries, eqs. (4.36)-(4.38), and we exploited the prop-
erties of special Kähler geometry to rewrite the conditions in a more compact way. From
the hyperini variation we obtained eq. (4.48), corresponding to the integrated first pure
spinor equation, while the gaugini transformation (together with constraint (4.44) ) yields
eq. (4.55), which coincides with the integrated second pure spinor equation. The gravi-
tini variation has been used to simplify the expressions, in particular to obtain constraint
(4.44), which relates P1 ± iP2 or P3 to the spacetime curvature parameter µ.

4.3 Aspects of N = 2→ N = 1 theories

In section 4.2 we studied the conditions to have an N = 1 vacuum starting from the N = 2
effective supergravity defined by the compactification of type IIA on an SU(3)×SU(3)
background. Physically, such solutions can be realized either by spontaneous partial su-
persymmetry breaking in the N = 2 theory, or as supersymmetry-preserving solutions of
an N = 1 theory obtained as a consistent truncation of the N = 2 action. In string theory,
such N = 2→ N = 1 truncations can be realized including appropriate orientifold planes
in the 10d background. Truncations can also be relevant for spontaneous partial susy
breaking, in the sense that the N = 1 theory describing the low energy physics around an
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N = 1 vacuum which breaks N = 2 spontaneously can in some special cases correspond
to a truncation of the N = 2 action. An example of this was provided in ref. [92], where
an N = 1 effective action containing the N = 1 AdS4 vacuum of [114] was obtained by
truncating an N = 2 theory (however, no fluctuations analysis aiming to determine the
light degrees of freedom was done there).

In this section we study some aspects of the N = 1 theory obtained as a generic
truncation of the N = 2 supergravity action derived in the previous chapter. In particular,
we focus on the way the N = 1 superpotential and D-terms are determined as linear
combinations of the three N = 2 Killing prepotentials Px introduced above. Then we
write the F- and D- flatness conditions for N = 1 vacua, establishing their relation with
the N = 1 conditions of the previous section. In this way we will we able to nicely
reinterpret the matching with the pure spinor equations coming from the 10d analysis.

A thorough analysis of the conditions allowing to define a consistent N = 2→ N = 1
truncation has been performed in [115], and extended in [116] to the case in which tensor
multiplets are also present.

4.3.1 N = 1 superpotential

In subsection 4.1.1 we briefly reviewed how refs. [45, 46] derived the Killing prepotentials
of the N = 2 theory which is defined starting from a 10d background preserving eight
supercharges. This strategy was further pursued in the same papers by restricting the
background to preserve four supercharges rather than eight. In this way, as we will recall
next, an expression for the N = 1 superpotential W was obtained (see (4.58)).

The preservedN = 1 spinor parameter can be chosen as in (4.23), and the correspondent
linear combination of the N = 2 gravitini defines the positive-chirality N = 1 gravitino:
ψµ = n̄AψAµ. Then, recalling the general form of the N = 2 gravitini variation, given in
eq. (4.1), one has

δεψµ = n̄AδεψAµ = ∇µε− n̄ASABn∗Bγµε
c . (4.56)

On the other hand, the general form of the gravitino transformation in N = 1 supergravity
is

δεψµ = ∇µε− e
K
2Wγµε

c , (4.57)

where the combination e
K
2W involving the N = 1 Kähler potential K and the superpoten-

tial W corresponds to a gravitino mass term in the N = 1 supergravity action [117].
Comparing (4.56) and (4.57), one arrives at the identification [45, 46]:

e
K
2W = n̄ASABn

∗B =
i

2
e

K+

2

[
a2(P1 − iP2)− b̄2(P1 + iP2)− 2ab̄P3

]
, (4.58)

where in the second equality eq. (4.2) has been used.
At this point let us make a comment. The combination of the N = 2 gravitini which

is orthogonal to the one defining ψµ is ψ̃µ := bψ1µ − āψ2µ. From the point of view of
the N = 1 theory, ψ̃µ would be a component of a (possibly massive) spin 3/2 multiplet.
Such multiplets are usually not included in the standard supergravity action, and should
therefore be truncated out of the spectrum. However, the truncation is consistent only
if the variation of ψ̃µ under the preserved supersymmetry vanishes identically: δεψ̃µ ≡ 0.
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Using the general form of the N = 2 gravitini variation and mass matrix, eqs. (4.1) and
(4.2), this can be written as

e
K+

2

[
ab(P1 − iP2) + āb̄(P1 + iP2) + c−P3

]
= 0 , (4.59)

where as before c− = |a|2 − |b|2. Exploiting this constraint, we rewrite the combination

e
K
2W in a slightly different form. Assuming a 6= 0, b 6= 0, multiplying (4.59) by ic−

4āb
and

subtracting it from (4.58), we get the more symmetric looking expression

e
K
2W =

i

4āb
e

K+

2

[
ab(P1 − iP2)− āb̄(P1 + iP2)− P3

]
. (4.60)

Notice that if c− = 0 ⇔ |a|2 = |b|2 = 1/2, then eq. (4.58) already has this form. Substi-
tuting the geometric expressions (4.4) for the three Px, we conclude that

e
K
2W =

i

4āb
e

K+

2
+2ϕ
[√

2i

∫
〈Φ+ , dHflIm(abΦ−)〉+ 1√

2

∫
〈Φ+, G〉

]
.

We identify the N = 1 Kähler potential K as [118, 94, 92, 66]:

K = K+ + 4ϕ . (4.61)

This yields the compact expression for the superpotential

W =
i

4āb

∫
〈Φ+ ,

1√
2
Gfl + dHflΠ−〉 , (4.62)

where we have defined

Π− :=
1√
2
A+ iIm(CΦ−) , (4.63)

A ≡ A1 +A3 +A5 being the sum of the internal RR potentials, such that G = Gfl + dHflA.
We also introduced

C :=
√

2ab . (4.64)

In [118, 94], C was termed compensator, and also contained the 10d dilaton e−φ. Here
instead we are including the dilaton in Φ−, and C is just a constant. However, for ease of
comparison with the literature we will continue to employ it.

In ref. [94] the form (4.62) of the N = 1 superpotential was derived in the context of
type IIA compactifications in the presence of an O6 orientifold. Here we have a slightly
different perspective, in that we are just requiring an N = 2 → N = 1 truncation, not
necessarily induced by an orientifold. This is in principle more general: for instance, the
orientifold requires |a| = |b|, while here we are not imposing c− = 0. It is not clear to us
whether this really allows for more general constructions. An argument against this is that
a 10d analysis indicates that c− should vanish for all compact N = 1 solutions [33, 30].
Restricting to c− = 0, anyway, does not necessarily mean considering an orientifold, and
eq. (4.62) should also give the correct superpotential of those N = 1 low energy effective
theories valid around N = 1 AdS4 vacua breaking N = 2 spontaneously (at least for the
cases in which these N = 1 theories correspond to N = 2 truncations). This seems to be
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confirmed by the fact that in the geometric SU(3) structure case, the superpotential (4.62)
reduces to the one appearing in the example of ref. [92] mentioned at the beginning of this
section. Clearly, it would be interesting to find a concrete new example.

We obtain the form of the superpotential in terms of the flux charges and the 4d fields
if we substitute into (4.60) the explicit expressions (4.5) of the N = 2 Killing prepotentials:

W =
i

4āb

{[
iIm(CZI)eIA − iIm(CGI)m

I
A

]
XA +

[
iIm(CZI)pA

I − iIm(CGI)q
IA
]
FA

− (eRRA − ξIeIA + ξ̃Im
I

A )XA + (mA
RR + ξIpA

I − ξ̃IqIA)FA

}
. (4.65)

Eq. (4.65) is still written in terms of the N = 2 degrees of freedom, while we should restate
it in N = 1 variables. Recall that, as discussed in subsection 4.1.2, in the N = 2 theory a
subset of the scalars ξI , ξ̃I , together with the axion a, has been dualized to antisymmetric 2-
tensors in order to allow the introduction of the magnetic charges mA

RR, p
A
I , q

IA. However,
according to the remark below eq. (4.16), the Killing prepotential P3 just contains the
combinations of the ξI , ξ̃I which have not been dualized to antisymmetric tensors (these

correspond to the scalars ξ̂ I of section 3.5). Hence the same will be true for the expression
(4.65) of the superpotential. These scalars need to be recombined with the other N = 2
degrees of freedom zi, ϕ contained in (4.65) in order to define appropriate holomorphic
N = 1 variables for the superpotential. Inspection shows thatW depends holomorphically
on the following combinations13

U I := ξI + iIm(CZI) , ŨI := ξ̃I + iIm(CGI). (4.66)

Instead no redefinition is needed for the scalars ta coming from the N = 2 vector multiplets,
since they appear in (4.65) only through the holomorphic functions XA(t) and FA(t).
From (4.63), with the expansion A = ξIαI − ξ̃IβI , we can see that U I and ŨI are precisely
the coefficients of the expansion of Π− on the basis of odd forms:

Π− = U IαI − ŨIβ
I . (4.67)

Therefore Π− defines the correct N = 1 coordinates, and is the N = 1 analog of Φ− [94].
The form of the field redefinition (4.66) was already identified in [118, 94, 92]. Here

we have verified that it is appropriate for any N = 2 → N = 1 truncation, even in the
presence of the general set of fluxes defined in subsection 3.3.5.

Substituting (4.66) into (4.65), we have [34]

W =
i

4āb

[
U IeIAX

A − ŨIm
I
AX

A + U IpA
I FA − ŨIq

IAFA −XAeRRA + FAm
A
RR

]
, (4.68)

which now depends on holomorphic variables only. Notice that this form of the superpo-
tential directly descends from (4.62) if the expansion (4.67) is used.

13Of course, these variables have nothing to do with the matrices U I
A, Ũ

A
I
employed in subsection 3.5.4.
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4.3.2 D-terms from N = 2 → N = 1 truncations

Having as a starting point the 4d N = 2 supergravity defined by the SU(3)×SU(3) com-
pactification of type IIA, we now derive the general form of the D-terms arising from an
N = 2→ N = 1 truncation. As the superpotential, the D-terms are determined by a linear
combination of the three N = 2 Killing prepotentials. If the superpotential was obtained
by looking at the gravitini variations, we will identify the D-terms by studying the gaugini
transformations.

Before going into this, we need some more notions about N = 2→ N = 1 truncations.
Unlike rigid supersymmetry, one cannot rewrite an N = 2 supergravity in an N = 1
form unless some restrictions are imposed. We have already discussed the necessity of
truncating the spin 3/2 multiplet. Consistency with supersymmetry then imposes a series
of constraints involving the other fields appearing in the action [115, 116].

For the sake of writing an expression for the D-terms, we won’t need to consider the
whole set of constraints, rather we can restrict to the ones involving the N = 2 vector
multiplets. In particular, it is not necessary to deal with the more involved part of the
story, namely the fact that (leaving aside the further complication due to the possible
dualization to antisymmetric 2-tensors) the N = 2 quaternionic manifold parameterized
by the scalar components of the hypermultiplets has to reduce to a submanifold respecting
the Kähler-Hodge structure required by N = 1 supersymmetry. Some aspects of this will
be needed in subsection 4.3.3, where we will study the F-flatness conditions in the case of
an orientifold-induced truncation.

An N = 2 vector multiplet is composed of one vector, one complex scalar and two
Weyl fermions (the gaugini), and splits in an N = 1 vector multiplet and an N = 1 chiral
multiplet. The consistent truncation acts in such a way that out of nV N = 2 vector
multiplets (for us nV = b+ ≡ dimM+), the resulting N = 1 theory inherits just nCh ≤ nV

chiral multiplets and n̂V = nV −nCh vector multiplets. In more detail, splitting the indices
as A = (Ǎ, Â) , with A = 0, . . . , nV , Ǎ = 0, . . . , nCh and Â = 1, . . . , n̂V = nV − nCh, we
have the following conditions [115]:

AǍ
µ = 0 , X

bA = 0 (4.69)

Notice that A0
µ is always truncated. If we use special coordinates ta = Xa/X0 for M+,

then the submanifold inherited by the N = 1 theory is parametrized by the tǎ. Further
conditions are

F bA = 0 ; NǍ bB = 0

G
+

ǎb̄b
= 0 ; DǎX

bB = DbaX
B̌ = 0 . (4.70)

We now deduce the expression of the N = 1 D-terms by studying the gaugino vari-
ations, adapting an analogous derivation performed in [115]. In [115] this was done for
the choice of the susy parameters ε = ε1 and ε2 = 0, while here we allow for an arbi-
trary linear combination εA = nAε, and moreover we set everything in the context of flux
compactifications.

When splitting each N = 2 vector multiplet in two N = 1 supermultiplets, a linear
combination of the two gaugini λaA , A = 1, 2 pairs up with the vector Aa

µ and becomes
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the gaugino of the N = 1 vector multiplet, while the orthogonal combination enters in the
chiral multiplet together with the scalar ta. In order to recognize which combination of
the gaugini belonging to a given N = 2 vector multiplet corresponds to the N = 1 chiral
fermion and which other should be identified with the N = 1 gaugino, it is sufficient to
study the N = 2 gaugini variation under the one preserved supersymmetry. Indeed, the
chiral fermion has to transform into the scalar, while theN = 1 gaugino goes into the vector
field strength. The general form (ignoring three fermions terms) of the (positive-chirality)
gaugini variation for the N = 2 theory we are considering is14 [76]

δλaA = ∂µt
aγµεA −G(−)a

µν γµνǫABεB +W aABεB . (4.71)

While the gaugino mass matrix W aAB is defined in (4.21), we won’t need the precise

definition of G
(−)a
µν , corresponding to the anti self-dual part of the “dressed field strength”

for the vectors inside the N = 2 vector multiplets.
With our definition (4.23) of the N = 1 susy parameter ε, we see that the relevant

linear combination for the N = 1 gaugino is

λ̃a ≡ n̄AǫABλ
aB , (4.72)

Indeed this projects (4.71) on the term containing the field strength, excluding the term
containing the scalar ta:

δελ̃
a = G(−)a

µν γµνε+ n̄AǫABW
aBCnCε . (4.73)

The projection on the term containing ∂µt
a is instead obtained by considering

ρa ≡ nAλ
aA ,

so that
δερ

a = ∂µt
aγµεc + nAW

aABnBε .

Two steps are still needed in order to get the identification of the N = 1 gaugini. First,
we should recall that conditions (4.69) imply that (with the special coordinates choice
ta = Xa/X0) from a given N = 2 vector multiplet we retain either the N = 1 vector
multiplet or the chiral multiplet. In particular, requiring AǍ

µ = 0 requires λ̃ǎ = 0 too. So

we are left with the λ̃ba only. Second, by looking at the variations of the surviving vectors
δεA

bA
µ , and comparing with the generic susy transformation of an N = 1 vector, one realizes

that the correct identification for the N = 1 gaugini λ
bA is [115]:

λ
bA = −2e

K+

2 DbbX
bA λ̃

bb . (4.74)

Similar arguments lead us to put ρba = 0 and to identify the nCh N = 1 chiral fermions
with the ρǎ.

14The derivative of the ta is not covariantized since in the N = 2 effective action obtained from flux
compactifications as described in this paper one does not have gaugings of the special Kähler isometries.
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Having now the expression (4.74) for theN = 1 gaugini arising from theN = 2→ N = 1
truncation, we can compare their supersymmetry variation with the general form of the
gaugini variation in 4d N = 1 supergravity, which reads (up to three fermions terms):

δλ
bA = F (−) bA

µν γµνε+ iD
bAε , (4.75)

where F
(−) bA
µν is the (anti self-dual) N = 1 field strengths and D

bA are the D-terms, whose
generic form is

D
bA = −2(Imf bA bB)−1

P bB , (4.76)

where P bB is the Killing prepotential of the N = 1 theory depending on the scalars in the
chiral multiplets and f bA bB is the vector kinetic matrix, which is holomorphic in the N = 1
scalars.

Comparison of (4.75) with δελ
bA = −2e

K+

2 DbbX
bAδελ̃

bb, δελ̃
a being given in (4.73), with

the further information that −2e
K+

2 DbbX
bAG

(−)bb
µν reduces to F

(−) bA
µν [115], provides the iden-

tification

D
bA = 2ie

K+

2 DbcX
bAn̄CǫCAW

bcABnB

= −2eK+DbcX
bA
G

bcb̄d
+ Db̄d

X̄
bB
(
n̄C(σx)

B
C nB

)(
Px

bB
−N bB bCP̃x bC

)
. (4.77)

We have also used DāF̄B = NBCDāX̄
C (recall D.3) in order to factorize Db̄X̄

C in the
expression (4.21) for W aAB. Recalling the special geometry formula (4.49) and the fact

that X
bA = 0, we obtain

D
bA = (ImN )−1 bA bB

{
2Re

[
ab(P1

bB
− iP2

bB
)
]
−N bB bC2Re

[
ab(P̃1 bC− iP̃2 bC)

]
+c−(P3

bB
−N bB bCP̃3 bC)

}
.

(4.78)
In [115] it is shown that N bA bB is holomorphic on the reduced manifold,15 and by comparison
with (4.76) it can then be identified with the holomorphic kinetic matrix f bA bB of the N = 1
theory.

Substituting the expressions (4.5) for the Killing prepotentials and using the definition
(4.64) of C, we finally obtain our expression for the D-terms:

D
bA =

√
2e2ϕ(ImN )−1 bA bB

{
Re(CZI)eI bB − Re(CGI)m

I
bB
−N bB bC

[
Re(CZI)p

bC
I − Re(CGI)q

I bC
]

− c−
2

(G̃ bB −N bB bCG
bC)
}
. (4.79)

Since the N = 2 → N = 1 truncation reduces also the hypersector, it is understood that
the index I runs now over the surviving fields only.

Notice that, due to the fact that the graviphoton A0
µ is always projected out by the

N = 2→ N = 1 truncation, the charges eI0,m
I
0 do not appear in the expression for the

D-terms. In the specific context of SU(3) structure compactifications, these charges are
associated with the NS 3-form flux, recall (3.60). We conclude that Hfl contributes to the
superpotential only.

15When the N = 2 prepotential exists, this can be seen from the M+ analogous of (D.5): one checks
that N bA bB

= F bA bB
, which is holomorphic in the ta.
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Figure 4.1: Summary of N = 1 conditions.

Furthermore, we can check that the D-terms vanish when considering a (geometric)
Calabi-Yau orientifold with general RR fluxes [118]; this is because in the Calabi-Yau case
all the basis forms are closed, i.e. eIa = mI

a = 0 (recall the ansatz (3.61)), while the RR
fluxes contained in GA, G̃A (see below eq. (3.134)) don’t contribute because the orientifold
condition imposes |a| = |b| ⇔ c− = 0.

More generally, we observe that the N = 1 theory does not have D-terms if c− = 0
and dHflRe(abΦ−) = 0. This is a ‘generalized half-flatness’ condition for the manifold M6

[94, 33]. In the SU(3) structure case this yields dRe(iabΩ) = 0, which, together with the
constraint d(J ∧ J) = 0 (being always satisfied when adopting the ansatz (3.61) for the
expansion forms), characterizes a half-flat manifold [21].

Finally, let us compare the D-flatness condition with the results of section 4.2. The
combination of the Killing prepotentials defining the D-terms corresponds exactly to the
one appearing in the vacuum condition (4.51); indeed, the D-terms are defined precisely
by the same combination of the N = 2 gaugino variations which has been taken to write
(4.51). The only difference is that here a part of the degrees of freedom has been eliminated
by the N = 2→ N = 1 truncation. According to the computation we did below eq. (4.51),
we conclude that the D-flatness equation for N = 1 supersymmetric solutions corresponds
to the real part of the second pure spinor equation, eq. (4.34), once this last is expanded
in terms of the N = 1 degrees of freedom.
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4.3.3 Supersymmetric vacua from O6-induced truncations

The N = 1 vacuum conditions we have analyzed in subsection 4.2.2 are also valid for the
case of N = 2 → N = 1 truncations. Of course, the truncation reduces the number of
degrees of freedom and, since it has to be consistent with the preserved supersymmetry,
part of the constraints presented in subsection 4.2.2 will be automatically satisfied. For
instance, as we have discussed above eq.(4.59), truncating the N = 2 gravitini combination
corresponding to ψ̃µ goes together with δεψ̃µ = 0, and this has to be imposed already at
the level of the action.

Here we want to reinterpret the conditions of subsection 4.2.2 in the language of N = 1
supergravity. We will also re-establish the correspondence with the pure spinor equations,
this time expanded in terms of the N = 1 degrees of freedom.

We have already seen in the previous subsection how the vanishing of the ε-generated
susy variation of the N = 2 gaugini combination (4.72) corresponds in the truncated theory
to the D-flatness condition, which therefore yields the real part of the second pure spinor
equation.

The 〈δεψµ〉 = 0 condition concerning the N = 1 gravitino is also readily treated using
(4.57) and (4.26), yielding a relation between the spacetime curvature parameter µ and

the vev of e
K
2W (the gravitino mass term):

µ̄ = 2〈eK
2
−ϕW〉 . (4.80)

In order to write the F-flatness conditions associated with the chiral multiplets, one
needs a more detailed knowledge of the N = 2→ N = 1 truncation, and in particular of the
way the N = 2 hypermultiplet sector is reduced to N = 1 chiral multiplets (or better, since
antisymmetric 2-tensors are in principle present, how the N = 2 scalar-tensor multiplet
reduces to N = 1 chiral and linear multiplets). For this reason we restrict ourselves to the
explicit example of truncation provided by the inclusion of an O6 orientifold in the IIA
background.

Orientifolds are string theory objects which correspond to hypersurfaces of the ten-
dimensional background, and which determine a projection of the 10d supergravity fields,
breaking at least half of the supersymmetry of the background. An O6 orientifold is
a 6+1 dimensional object, that in our case fills the 4d spacetime, and wraps some 3-
dimensional subspace of the compact manifold. The latter has to satisfy certain calibration
conditions in order that the truncation induced by the orientifold breaks precisely half of
the supersymmetry.

The 4d N = 1 action associated with the introduction of O6 planes was derived in [118]
for Calabi-Yau compactifications (see also [119] for the related toroidal orbifolds), while
the generalization to SU(3) and SU(3)×SU(3) structures has been discussed in [94]. In
the following we summarize just the features that will be needed in order to compute the
supersymmetric vacuum conditions.

The BPS condition associated with the O6 orientifold gives a = b̄eiθ, where θ is an
arbitrary phase. This implies c− = 0 and 2ab = eiθ.

Beside constraints (4.69), (4.70) concerning theN = 2 vector multiplet sector, even/odd
parity of the internal forms under the orientifold projection imposes the following con-
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straints on the N = 2 hypermultiplet sector16 (prior to the dualization of the axions):

ξ
bI = ξ̃Ǐ = Im(CZ

bI) = Im(CGǏ) = Re(CZ Ǐ) = Re(CGbI) = 0,

where the index I = 0, 1, . . . , b− has been split as I = (Ǐ , Î ) .
The N = 1 scalar degrees of freedom are then encoded in

Φ+ = XǍωǍ −FǍω̃
Ǎ , Π− = U ǏαǏ − ŨbIβ

bI .

For the case in which no axions are dualized, the (real) dimension of the scalar manifold
parameterized by U Ǐ , ŨbI is 2b− + 2, equal to half the dimension of the N = 2 original
quaternionic manifold.

The Kähler potential (4.61) of the N = 1 theory reads

K = − log i(X̄ǍFǍ −XǍF̄Ǎ) + 4ϕ . (4.81)

Its dependence on the N = 1 chiral scalars U Ǐ , ŨbI is implicit in ϕ. Indeed, recalling (4.64)
and using the fact that i

∫
〈Φ−, Φ̄−〉 = e−K− , one has

e−2ϕ =
i

4

∫
〈CΦ−, CΦ− 〉 =

1

2

∫
〈Re(CΦ−) , Im(CΦ−) 〉 (4.82)

=
1

2

[
Im(CZ Ǐ)Re(CGǏ) − Re(CZ

bI)Im(CGbI)
]
.

From the first line of (4.82), it follows [94] that e−2ϕ takes the form of a Hitchin functional.
The real and imaginary parts of the pure spinor CΦ− are related through the Hitchin map,

which can also be expressed as Re(CΦ−) = ∗bIm(CΦ−) . Hence Re(CGǏ) and Re(CZ
bI)

are functions of Im(CZ Ǐ) and Im(CGbI).

Recalling that Π− = 1√
2
A + iIm(CΦ−) = U ǏαǏ − ŨbIβ

bI , we can see that e−2ϕ depends

only on the imaginary parts of U Ǐ and ŨbI . Shifts of the RR scalars corresponding to the

real parts of U Ǐ and ŨbI are therefore isometries of the Kähler metric.

As an aside, we remark that the above also describes the example of theN = 2→ N = 1
truncation exhibited in [92], even if no orientifold was introduced there. This example is
based on compactifications on half-flat manifolds leading to N = 2 theories without hy-
permultiplets, except the universal one (so dimM− = 0); in the N = 1 truncation only
U0 = ξ0 + iIm(CZ0) is kept.

F-flatness in the U Ǐ and ŨbI directions

The F-flatness condition associated with the chiral multiplets coming from the N = 2
hypersector could be studied demanding the vanishing of the chiral fermion susy transfor-
mations, and then exploiting the results of subsection 4.2.2. Equivalently, we choose to

16In this section the real and the imaginary parts of CΦ− (and of its coefficients) are exchanged with
respect to [118, 94]. This harmless difference can be traced back to the fact that in the SU(3) structure
(or Calabi-Yau) case our Φ− = ZIαI − GIβ

I reduces to iΩ instead of Ω .
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evaluate the Kähler covariant derivatives of the superpotential with respect to the chiral
scalars U Ǐ , ŨbI , and impose

0 = DU ǏW ≡ (∂U Ǐ + ∂U ǏK)W , 0 = DŨbI
W ≡ (∂ŨbI

+ ∂ŨbI
K)W . (4.83)

From (4.68) we immediately find the partial derivatives of the superpotential:

∂U ǏW =
i

4āb
(eǏǍX

Ǎ + pǍ
Ǐ
FǍ) , ∂ŨbI

W = − i

4āb
(m

bI
Ǎ
XǍ + q

bIǍFǍ) . (4.84)

The derivatives of the Kähler potential (4.81) are less trivial. Since K depends implicitly
on ImU Ǐ = Im(CZ Ǐ) and ImŨbI = Im(CGbI) through ϕ = ϕ(Im(CZ Ǐ), Im(CGbI)), we have

∂U ǏK = 4∂U Ǐϕ = −2i∂Im(CZ Ǐ)ϕ , ∂ŨbI
K = 4∂ŨbI

ϕ = −2i∂Im(CGbI
)ϕ . (4.85)

In order to evaluate this, we use the following property for the variation of a Hitchin
functional

δe−2ϕ ≡ i

4
δ

∫
〈CΦ−, CΦ− 〉 =

∫
〈Re(CΦ−), δIm(CΦ−) 〉 , (4.86)

which can be derived considering the decomposition under representations of SU(3)×SU(3)
and recalling the fact that the Mukai pairing picks just the singlet. In terms of the moduli
of Im(CΦ−) = Im(CZ Ǐ)αǏ − Im(CGbI)β

bI , (4.86) is rewritten as17

∂ e−2ϕ

∂Im(CZ Ǐ)
=

∫
〈Re(CΦ−), αǏ 〉 = Re(CGǏ)

∂ e−2ϕ

∂Im(CGbI)
= −

∫
〈Re(CΦ−), β

bI 〉 = −Re(CZ
bI) . (4.87)

We conclude that

∂U ǏK = ie2ϕRe(CGǏ) , ∂ŨbI
K = −ie2ϕRe(CZ

bI) .

Recalling the definition (4.64) of C, the fact that with our choice for the normalization of
the pure spinors eK− = eK+ , and eqs. (4.61), (4.80), we obtain

(∂U ǏK)W = 2iµ̄Re(abGǏ) , (∂ŨbI
K)W = −2iµ̄Re(abZ

bI) .

It is now straightforward to see that the two sets of conditions (4.83) precisely give

ab̄QX = −2µ̄Re(abZ) . (4.88)

Here XA =
(
XǍ,FǍ

)T
and ZI =

(
Z

bI ,GǏ

)T
, i.e. they are the remnants of the N = 2 sym-

plectic sections, containing only the truncated fields. The charge matrix is also reduced
accordingly. In agreement with our discussion of subsection 4.2.1, eq. (4.88) corresponds to

17We also checked this explicitly by computing and inverting the jacobian for the change of variables(
e−ϕ, Im(ab̄Z ı̌),Re(ab̄Zbı)

)
−→

(
Im(CZ Ǐ), Im(CGbI

)
)
, where the unphysical Z0 has not been included

in the old variables. The result confirms (4.87).
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the first pure spinor equation, expanded in the N = 1 degrees of freedom and integrated
over the internal manifold.

F-flatness in the tǎ directions

In order to write the F-flatness condition associated with the N = 1 chiral multiplets
(tǎ, ρǎ) descending from the N = 2 vector multiplet sector (ρǎ are the chiral fermions), we
will build on the results of subsection 4.2.2. Imposing 〈δερǎ〉 = 0 is clearly the same thing
as requiring DǎW ≡ (∂tǎ + ∂tǎK)W = 0. Indeed, the form of the variations of the chiral
fermions dictated by N = 1 supergravity is

δερ
ǎ = ∂µt

ǎ + 2e
K
2 G

ǎˇ̄b
+ Dˇ̄b

W . (4.89)

The chiral fermions ρǎ have been identified in subsection 4.3.2 with the N = 2 gaugini
combination nAλ

ǎA. Therefore we have the F-flatness condition 0 = 〈δερǎ〉 = nA〈δελǎA〉,
where in δελ

ǎA one should consider only the non-truncated degrees of freedom. Since
c− = 0 , nA〈δελǎA〉 = 0 is equivalent to b̄〈δελǎ1〉 + a〈δελǎ2〉 = 0, and this corresponds to
eq. (4.53).

At this point the computation becomes identical to the one in subsection 4.2.1, and we
conclude that 〈δερǎ〉 = 0 leads to

Q̃ Im(abZ) = −3Im(µab̄X) + 1√
2
NG . (4.90)

Here again the symplectic vectors XA, ZI and GA contain just the components surviving
the N = 2 → N = 1 truncation. Eq. (4.90) corresponds to the imaginary part of the
second pure spinor equation, expanded in the N = 1 degrees of freedom and integrated
over the internal manifold.

Let us summarize the correspondence between the supersymmetric vacuum conditions
arising in the N = 1 effective action and the pure spinor equations resulting from the 10d
approach.

In order to perform the comparison, the pure spinor equations have to be expanded on
the basis Σ±, truncated to the N = 1 degrees of freedom only, and then integrated over
the compact 6d manifold. The D-flatness constraint matches the real part of the second
pure spinor equation, while the F-flatness condition for the chiral multiplets coming from
the N = 2 vector multiplets corresponds to its imaginary part. F-flatness with respect to
the chiral multiplets descending from the N = 2 hypersector provides instead the first pure
spinor equation.

Even though we have performed the analysis of the present subsection for the orientifold
case, it is pretty clear that it should be applicable more generally to any N = 2→ N = 1
truncation.
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4.4 Summary and discussion

In the first part of this chapter we shed more light on the N = 2 structure of the 4d theory
which was obtained in the previous chapter by dimensional reduction of type II supergravity
on SU(3)×SU(3) structure backgrounds with general fluxes. In doing this, we also discussed
how the gravitino mass matrix SAB derived from the higher dimensional supergravity in
[45, 46] is recovered within the 4d, N = 2 theory. The N = 2 formalism then fixes the
remaining fermionic mass matrices appearing in the supersymmetry transformations, and
these determine the scalar potential via relation (4.22).

In the second part of the chapter, we confronted the 4d and 10d approaches to N = 1
vacua of type II theories. Starting from the N = 2 fermionic shifts, we established the
N = 1 vacuum conditions, and we showed they satisfy an integrated version of the 10d
N = 1 equations, written in the generalized geometry formulation of [27, 33]. Subsequently,
we considered generic N = 2 → N = 1 truncations of the 4d supergravity action, and we
derived the N = 1 constraints within this N = 1 theory as D-flatness and F-flatness
conditions. Again, we established the matching with the equations holding at the 10d
level.

We remark that we have verified the correspondence in the presence of a very large set
of fluxes, composed by the RR ones as well as by all the charges generated by the action
of the twisted differential dHfl . These include the NS and the geometric fluxes (see [P1] for
the further inclusion of a complementary set of charges, which – as argued in [46] – turn
out to be associated with nongeometric backgrounds).

Finally let us notice that, although we have explicitly performed the comparison in
a type IIA setting, we expect the matching be the same for type IIB. Indeed, both the
10d pure spinor equations and the Killing prepotentials leading to the 4d N = 1 vacuum
conditions display a very mirror symmetric aspect: to pass from IIA to IIB and back
again, basically one just has to exchange the pure spinors Φ+ ↔ Φ− and the RR fluxes
F even ↔ F odd. As seen in the previous chapter, this symmetric structure is reflected in the
4d action, and in particular in the scalar potential V .





Chapter 5

Consistent reductions on cosets with
SU(3) structure

As an application of the formalism developed in the previous chapters, we
present here three concrete examples of dimensional reduction, based on SU(3)
structures on coset spaces. The model is simple enough to allow full control
on the compact geometry. Nevertheless, the associated 4d, N = 2 supergravity
displays interesting features, like gaugings and tensor multiplets. We perform
a detailed study, and establish the consistency of the truncation based on left-
invariance. The scalar potential is non-trivial, and we explore his supersym-
metric and non-supersymmetric extrema. Finally, exploiting the constraints
imposed by N = 2 supersymmetry, we investigate the effects of string loops on
the vacuum structure of the theory.

5.1 Introduction and overview

While the previous chapters covered the content of refs. [P1, P2], together with much
background material, this chapter reproduces publication [P3], with just a few changes. In
the context of this thesis, it can be seen as an application of the general picture developed
above.

We consider concrete examples of SU(3) structures on coset spaces G/H. In contrast
with the Calabi-Yau case (recall section 3.2), here the forms J and Ω defining the SU(3)
structure are not closed, hence the truncation cannot be defined by an expansion in a
basis consisting of harmonic forms only. For our expansion basis, we instead select the
forms being invariant under the left action of the group G. This reduction ansatz is not
motivated by a Kaluza-Klein analysis aimed at the identification of the light fluctuations
around a single 10d vacuum, however it finds a solid justification in the fact that it yields
a consistent truncation. We recall that a truncation is called consistent when all solutions
to the lower dimensional equations of motion lift to solutions of the higher dimensional
theory.

The resulting 4d, N = 2 supergravity is in agreement with the framework developed
in the previous chapters, and displays several of the features described there. Specifically,
it is a gauged N = 2 supergravity with one up to three vector multiplets (depending
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on which coset space is chosen), and a single tensor multiplet (replacing the universal
hypermultiplet). In particular, we will focus on the off-shell scalar potential, and explore
its extrema, which are also solutions of the 10d theory thanks to consistency.

Thanks to the full control on the internal geometry allowed by coset spaces, we can
push our analysis beyond the supergravity approximation, and study the corrections that
string theory induce to the higher dimensional supergravity action. Indeed, string theory
is defined perturbatively as a double expansion in the string coupling constant gs = eφ and
in the parameter α′ controlling the string length. Supergravity is recovered by truncating
the expansion at lowest order (tree level). Higher order corrections to the supergravity
action are only partially known. E.g., various leading non-trivial contributions in α′ to the
10d type II supergravity action have been determined [120, 121, 122, 123]. One may hope
to establish the complete action to this order by 10d supersymmetric completion [124].
However, the 10d supersymmetry equations have simply proved too cumbersome to date.
By contrast, the supersymmetric completion of the contribution of these terms to the 4d
N = 2 supergravity action is readily available, yielding the full string tree level and one
loop corrected action. In fact, in 4d we can, as we will discuss, even draw conclusions
regarding the all string loop corrected action.

The chapter is structured as follows. In section 5.2 we introduce our coset spaces and,
after having worked out the basis of left-invariant forms, we discuss their SU(3) structure.
In section 5.3 we revisit the family of N = 1 backgrounds of massive type IIA supergravity
found in [125, 126], and reparameterize the solution in terms of the fluxes. The discreteness
of this family as a result of flux quantization is thus manifest, and we perform the required
K-theory analysis. Furthermore, we show that multiple N = 1 solutions are permitted for
a given choice of flux numbers. By the analysis of chapter 4.2 and [93], these solutions can
be recovered from the 4d point of view. Then we turn to the dimensional reduction. In
section 5.4, we demonstrate that the left-invariant coset reductions represent a consistent
truncation by establishing that the 10d equations of motion reduce to the 4d equations
following from the appropriate N = 2 action. The underlying property explaining the
consistency of the dimensional reduction is the invariance under the group G of the modes
we keep in the truncation ansatz; it follows that these fields define a closed system, which
decouples from the remaining non-invariant modes. In section 5.5 we determine the off-
shell N = 2 scalar potential of the four-dimensional theory. We do this first at tree level,
and then including string loop corrections. Extrema of this potential are investigated in
section 5.6. We find several non-supersymmetric Nearly Kähler companions to the solution
of section 5.3 and study their stability. We also consider the question of the existence
of de Sitter vacua, which has received some attention recently in the type IIA context
[127, 128, 129, 130, 131, 132, 133]. We demonstrate that such vacua are absent at string
tree level (we prove this result in greater generality than the coset context: it is valid for
any gauged supergravity with merely the universal tree-level hypermultiplet, irrespective
of the specifics of the vector multiplet sector). The inclusion of string loop corrections
evades this no-go result, and we uncover a necessary condition on the contribution of the
NSNS sector to the potential for de Sitter vacua to be possible.

Further material referring to this chapter is collected in appendices F and G, where in
turn we fill in the details of the dimensional reduction leading to the 4d N = 2 theory, and
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study the string loop corrected 4d N = 1 conditions.

5.2 Introducing the internal geometries

We consider dimensional reductions of type IIA supergravity on left coset spacesM6 = G/H
endowed with a left-invariant SU(3) structure. An exhaustive list of such cosets was pro-
vided in ref. [126] (see section 1 and in particular table 1 therein). In the following, we are
going to focus on the cosets whose SU(3) structure cannot be further reduced to SU(2),
namely1

SU(3)

U(1)× U(1)
,

Sp(2)

S(U(2)× U(1))
,

G2

SU(3)
, (5.1)

where S(U(2) × U(1)) is non-maximally embedded in Sp(2). Topologically, these three
cosets are identified respectively with the ‘flag manifold’ F(1, 2; 3), with CP3, and with S6.

It is easy to see that a reduction performed on these manifolds by expanding the higher
dimensional fields in a basis of left-invariant forms satisfies the constraints of [49] (and hence
the contraints of section 3.3) and therefore yields a gauged N = 2 supergravity in 4d.

The remaining cosets listed in [126] have vanishing Euler characteristic and admit a left-
invariant vector: this means that their SU(3) structure group is therefore further reduced
to at least SU(2). For these cosets, the N = 2 reduction ansatz based on the presence of
SU(3) structure can be more naturally enlarged to include the whole set of left-invariant
forms, possibly yielding a further extended supergravity (N ≥ 4) in 4d.

Recall that in subsection 2.2.2 we characterized an SU(3) structure by its torsion classes
Wi, i = 1, . . . , 5. For the SU(3) structures on the cosets (5.1), the only non-vanishing torsion
classes are W1 and W2, i.e. the SU(3) invariant 2- and 3-form J and Ω satisfy

dJ =
3

2
Im(W̄1Ω) ,

dΩ = W1J ∧ J +W2 ∧ J . (5.2)

In fact, G2

SU(3)
allows just W1 6= 0. The manifolds whose SU(3) structure satisfies this

condition are called Nearly Kähler. The cosets SU(3)
U(1)×U(1)

and Sp(2)
S(U(2)×U(1))

also admit a

region in the SU(3) structure parameter space in which they are Nearly Kähler, but in
general, their W2 torsion class does not vanish. Since W1 and W2 can be chosen purely
imaginary, these cosets fall into the class of ‘half-flat’ manifolds, characterized by ReW1 =
ReW2 = W4 = W5 = 0 [21].

A description of the coset spaces (5.1) was given e.g. in [134]. In the context of SU(3)
structure compactifications of (massive) type IIA supergravity, supersymmetric AdS4 back-
grounds on these manifolds have recently been found in [135, 125, 126] and further discussed
in [136], while refs. [137, 131] study the properties of the associated effective 4d N = 1
supergravity in the presence of orientifold projections (see also [92] for a previous work

considering the coset SU(3)
U(1)×U(1)

). Type IIA reduction on Nearly Kähler manifolds has been

1The group Sp(n) is defined as Sp(n) := Sp(2n,C) ∩ U(2n), and can also be denoted as USp(2n). It
is compact, and has real dimension n(2n + 1). It does not coincide with the symplectic group Sp(2n,R)
defined in footnote 4 of chapter 2, which has the same dimension, but is noncompact.
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worked out in [93]; furthermore, in this paper the general analysis presented in section 4.2
was applied, and it was demonstrated that 4d solutions preserving N = 1 supersymmetry
lift to 10d. The cosets (5.1) appeared in the string literature in [138, 139] in the heterotic
context, and have also been employed recently in [140] for heterotic dimensional reductions.

5.2.1 Coset spaces and expansion forms

In this subsection, after having introduced some preliminary notions about coset spaces,
we provide the most general left-invariant positive-definite metric for each coset (5.1), as
well as a basis for all the left-invariant differential forms, on which we are going to expand
the supergravity fields.

We define the 6d coset spaces (5.1) as in ref. [126], and in particular we adopt the set
of group structure constants listed therein. Following [126], we now give a concise account
of the needed mathematical notions about coset spaces. A more extended discussion can
be found e.g. in [134].

Consider a coset space G/H, and let g be the Lie algebra of G, and h the Lie algebra
of H. Choose bases of generators2

{Hi} , i = 1, . . . , dimH and {Km} , m = 1, . . . , dimG− dimH

respectively for h and for the complement k of h in g. Then the structure constant of G
are defined by

[Hi,Hj] = fk
ijHk , [Hi,Km] = fn

imKn + f j
imHj , [Km,Kn] = fp

mnKp + f i
mnHi .

In the cases of interest for us (actually, in any compact case), the coset is reductive, i.e. k

can be chosen in such a way that [h, k] ⊂ k, or in other words f i
jn = 0.

A coframe on G/H is then introduced as follows. Let ym, m = 1, . . . , dimG − dimH
be local coordinates on G/H, and let L(y) be a coset representative. The g-valued 1–form
L−1dL decomposes according to

L−1dL = emKm + θiHi .

The 1–forms em(y) define a local coframe on G/H. Furthermore, the Maurer-Cartan
structure equation for L−1dL fixes the action of the exterior derivative on the coframe:

dem = −1

2
fm

npe
n ∧ ep − fm

inθ
i ∧ en .

We now come to the notion of most interest for us, namely the one of left invariance: given
a differential form on G/H

ωk =
1

k!
ωm1...,mk

em1 ∧ · · · ∧ emk ,

2As it will be immediately clear, the indices associated with k are going to be frame indices on G/H.
According to the conventions adopted in this thesis, they are hence underlined.
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this is invariant under the left action of G if its components are constant and satisfy

fp
i[m1

ωm2...mk]p = 0 , (5.3)

It is easy to see that the exterior derivative of a left-invariant form is still left-invariant.
For the coset metric ds2 = gmne

m ⊗ en the condition for left-invariance is analogous to
(5.3), with a symmetrization of indices replacing the antisymmetrization.

Finally, we define the ‘standard volume’ on a 6d coset as

I :=

∫
e123456 .

Let us now analyze the three cosets (5.1) in turn. As a first thing, we remark that none
of them admits left-invariant 1– or 5–forms.

SU(3)
U(1)×U(1)

Left-invariant metric:
gmn = diag(v1, v1, v2, v2, v3, v3) , v1 > 0, v2 > 0, v3 > 0 . (5.4)

The left-invariant forms are spanned by

ω0 = 1 , ω1 = −e12 , ω2 = e34 , ω3 = −e56 ,

α =
1

2
√
I
(e135 + e146 − e236 + e245) , β =

1

2
√
I
(−e136 + e145 − e235 − e246) ,

ω̃0 =
1

I
e123456 , ω̃1 =

1

I
e3456 , ω̃2 = −1

I
e1256 , ω̃3 =

1

I
e1234 . (5.5)

Sp(2)
S(U(2)×U(1))

Left-invariant metric:
gmn = diag(v1, v1, v1, v1, v2, v2) , v1 > 0, v2 > 0 . (5.6)

Basis of left-invariant forms:

ω0 = 1 , ω1 = −e12 − e34 , ω2 = e56 ,

α =
1

2
√
I
(e135 + e146 + e236 − e245) , β =

1

2
√
I
(e136 − e145 − e235 − e246) ,

ω̃0 =
1

I
e123456 , ω̃1 =

1

2I
(e1256 + e3456) , ω̃2 = −1

I
e1234 . (5.7)

G2

SU(3)

Left-invariant metric:
gmn = diag(v1, v1, v1, v1, v1, v1) , v1 > 0 . (5.8)
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Basis of left-invariant forms:

ω0 = 1 , ω1 = −e12 + e34 − e56 ,

α =
1

2
√
I
(e135 + e146 − e236 + e245) , β =

1

2
√
I
(−e136 + e145 − e235 − e246) ,

ω̃0 =
1

I
e123456 , ω̃1 =

1

3I
(e3456 − e1256 + e1234) . (5.9)

Properties

The overall factors in the basis forms (5.5), (5.7), and (5.9) have been chosen in such a
way that ∫

〈ωA, ω̃
B〉 = δB

A ,

∫
α ∧ β = 1 , (5.10)

where A = (0, a) , B = (0, b) and a, b label the left-invariant 2– and 4–forms. The anti-
symmetric pairing 〈 , 〉 is defined as in eq. (2.51).

The basis forms define a closed differential system,

dωa = qaα ,

dα = 0 , dβ = qaω̃
a ,

dω̃A = 0 , (5.11)

which is also closed under the action of the Hodge star operator,

∗α = β , ∗ω̃0 =
1

Vol
, ∗ω̃a = − 1

4Vol
G

abωb .

Here, the qa correspond to the geometric fluxes m0
a of subsection 3.3.5, cf. eq. (3.61) (while

the e parameters of eq. (3.61) vanish here). Furthermore, Vol denotes the volume of the
coset, and the matrix G ab is the inverse of

Gab =
1

4Vol

∫
ωa ∧ ∗ωb , (5.12)

corresponding to the special Kähler metric on the space of the internal metric and B-field
deformations [49]; see section F.1 of the appendix for more details.

In table 5.1, we give the values of the quantities introduced above for each coset. The
standard volume I was computed following ref. [134].3 Its evaluation requires knowledge
of the Euler characteristic of our cosets. Since the harmonic forms on a compact coset
reside among the left-invariant forms, we can read off the cohomology from the differential
relations (5.11). We immediately conclude that all our cosets have trivial odd cohomology.

Concerning the even cohomology, for SU(3)
U(1)×U(1)

, with

ω′1 = ω1 − ω3 , ω′2 = ω2 − ω3 , (5.13)

3We have a 26 supplementary factor in I with respect to [134]. This is due to the fact that for the
normalization of the group structure constants we follow the choice of [126], and this differs from the one
of [134] by a factor 1/2.
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SU(3)
U(1)×U(1)

Sp(2)
S(U(2)×U(1))

G2

SU(3)

range of a : 1, 2, 3 1, 2 1

geometric flux qa : q1 = q2 = q3 = −
√
I q1 = 2

√
I , q2 =

√
I q1 = 2

√
3I

G ab = diag
(

4(v1)2 , 4(v2)2 , 4(v3)2
)

diag
(

2(v1)2 , 4(v2)2
)

4
3
(v1)2

Vol = v1v2v3I (v1)2v2I (v1)3I

I = 25π3 27π3

3
144π3

5

Table 5.1: Values of the different quantities introduced in subsection 5.2.1.

we have
H2 = Span ([ω′1], [ω

′
2]) , H4 = Span

(
[ω̃1], [ω̃2]

)
,

hence the Euler characteristic is χ = 6.
For Sp(2)

S(U(2)×U(1))
, we have b2 = 1 and χ = 4, while for G2

SU(3)
, b2 = 0 and χ = 2.

5.2.2 The SU(3) structure

For each coset in (5.1), the pair of left-invariant forms parametrized by va,

J = vaωa , Ω = 2
√
Vol(α+ iβ) , (5.14)

satisfies the relations J∧Ω = 0 and 3i
4
Ω∧Ω̄ = J∧J∧J and hence determines a left-invariant

SU(3) structure (recall section 2.2). The metric specified by J and Ω is precisely the one
given in eq. (5.4), (5.6), and (5.8) respectively for the three cosets. Using the properties of
the basis forms listed in subsection 5.2.1 above, one can see that the differential relations
(5.2) are satisfied, with torsion classes4

W1 = − ivaqa

3
√
Vol

, (5.15)

W2 = − 2i

3
√
Vol

qa
(
vavb − 3

4
G

ab
)
ωb.

Substituting the quantities given in the table of subsection 5.2.1, we see that the Nearly
Kähler condition W2 = 0 is identically satisfied on G2

SU(3)
. For Sp(2)

S(U(2)×U(1))
and SU(3)

U(1)×U(1)
,

this condition is satisfied on a line in the parameter space determined by v1 = v2 and
v1 = v2 = v3 respectively. In this Nearly Kähler limit the cosets are Einstein manifolds
(the only other loci at which the Einstein condition is satisfied are 2v1 = v2 for Sp(2)

S(U(2)×U(1))

and 2v1 = 2v2 = v3, or cyclic permutations of this, for SU(3)
U(1)×U(1)

[134] ).

The forms (5.14) are the most general left-invariant pair satisfying the SU(3) structure
defining relations (the overall phase of Ω is unphysical; requiring the torsion classes to be

4The evaluation of W2 is performed rewriting the second line of (5.2) as W2 = 2W1J − ∗dΩ.
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purely imaginary, as we have done, fixes it up to a sign). In particular, since the volume
Vol is fixed by the va, we see that Ω identifies a rigid SL(3,C) structure, and there are no
almost complex structure moduli.

5.2.3 An alternative basis?

In the analysis of SU(3) structure reductions done in [49], conditions on the expansion
forms were emphasized that arise when these are moduli dependent, as is the case with the
basis of harmonic forms on which Calabi-Yau reductions are based (the *-ed conditions in
section 2 of [49]). For the set of expansion forms that we have introduced above, these
conditions are trivially satisfied, as the forms are moduli independent. In this sense, our
expansion ansatz here is technically simpler than in the Calabi-Yau case. However, in a
small flux approximation, the Laplacian ∆ = −∗d∗d−d∗d∗ becomes the mass operator for
the modes of the 10d supergravity fields, and an expansion in eigenforms of it is physically
motivated. Can we replace the forms introduced above by such a basis of eigenforms?

In the Nearly Kähler case, the expansion in eigenforms of the Laplacian is further
motivated by the fact that both J and Ω are themselves eigenforms of ∆ [93]. In the more
general case W2 6= 0, this still holds for Ω,5

∆Ω =
(
3|W1|2 +

1

4
W2yW̄2

)
Ω , (5.16)

but not for J , which instead satisfies

∆J = 3|W1|2J −
3

2
Re(W̄1W2) .

Considering e.g. the coset SU(3)
U(1)×U(1)

, a change of basis sending the 2–forms introduced in

(5.5) to a set of eigenforms of the Laplacian is

ω′1 = ω1 − ω3 , ω′2 = ω2 − ω3 , ω′3 =

∑
a(v

a)2ωa∑
b(v

b)2
, (5.17)

where ∆ω′1 = ∆ω′2 = 0 , while ∆ω′3 = (v1)2+(v2)2+(v3)2

v1v2v3 ω′3 . The harmonic 4–forms are
spanned by

∗ω′1 ∝
v3

v1
ω̃1 − v1

v3
ω̃3 , ∗ω′2 ∝

v3

v2
ω̃2 − v2

v3
ω̃3 , (5.18)

while ∗ω′3 ∝ −
√
I(ω̃1 + ω̃2 + ω̃3) = dβ is exact.

The condition va∂vbωa (*7 of [49]) gives rise to a complicated set of equations for possible
va dependent normalization factors of the primed basis. However, it is easy to see upon
inspection that the moduli independence of the triple intersection product (condition *8
of [49]) cannot be satisfied for any such choice. The question whether the choice of left-
invariant expansion forms can be motivated from a Kaluza-Klein reduction point of view
hence remains an interesting open question.

5One needs the relation dW2 = i
4 (W2yW̄2)ReΩ, satisfied by the cosets (5.1).
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5.3 Supersymmetric 10d solutions parametrized by

fluxes

In this section, we will rewrite the family of N = 1 solutions of the 10d supergravity
equations found in [126] in a manner which makes the discreteness of this family as a result
of flux quantization manifest. By the analysis of chapter 4.2 and [93], these solutions can be
recovered from the 4d point of view. After proving the full consistency of our reduction in
section 5.4, we will proceed to complement these solutions with their non-supersymmetric
relatives in section 5.6.

5.3.1 Flux quantization and K-theory

RR-fields are classified topologically by K-theory classes [141, 142]. This has two conse-
quences for the choice of fluxes associated to the RR field-strengths. Firstly, the naive
integer quantization of fluxes must be replaced by quantization in multiples of fractions
determined also by the topology of the compactification manifold. Secondly, not every
choice of flux number satisfying these quantization conditions will possess a K-theory lift
and hence be permissible. We will now study these two points in turn.

In [141], fluxes were conjectured to take values in the image of the map

√
Â(X) ch(·) : K(X)→ Heven(X,Q) .

ch(x) is the Chern character as extended to a K-theory element x = E − F via ch(x) =
ch(E)− ch(F ). Hence,

[F (x)]

2π
=

√
Â ch(x) , (5.19)

where F =
∑5

i=0 F2i denotes a formal sum of all RR field strengths, and [·] indicates
rational cohomology class (rational rather than integral due to the fractional coefficients
of Chern classes that appear in the expansion of the Chern character). When H 6= 0, the
equations of motion and Bianchi identity of F are modified from the naive Maxwell form,
enforcing harmonicity of F , to a version of these equations twisted by H. In particular, F
now satisfies (d−H)F = 0. When H is exact, as will be the case in our study, H-twisted
cohomology maps to ordinary cohomology via F → e−bF , where H = db. It hence proves
convenient to introduce a basis of RR fields given by G = e−bF . Equation (5.19) then
holds for G rather than F , and the term ‘fluxes’ refers to the cohomology classes [G].

To decide which fluxes we can choose as boundary conditions of our physical system (and
then parametrize our solutions by this choice), we need to decide on electric vs. magnetic
variables. Ignoring subtleties related to torsion, which does not enter in a supergravity
analysis, we can choose the electric basis to lie in ⊕3

i=1H
2i(X,Q).

Let us now consider the question of flux quantization. To this end, we expand the right
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hand side of (5.19) in terms of Chern classes for x the class of a vector bundle F on X,

ch0(F ) = rank(F ) , ch1(F ) = c1(F ) , ch2(F ) =
1

2
[c1(F )2 − 2c2(F )] ,

ch3(F ) =
1

3!
[c1(F )3 − 3c1(F )c2(F ) + 3c3(F )] ,

Â = 1− p1

24
+ . . . .

Hence,

[G0]

2π
= rank(F ) ,

[G2]

2π
= c1(F ) ,

[G4]

2π
=

1

2
[c1(F )2 − 2c2(F )]− p1(X)

48
rank(F ) ,

[G6]

2π
=

1

3!
[c1(F )3 − 3c1(F )c2(F ) + 3c3(F )]− p1(X)

48
c1(F ) .

As Chern classes take value in integral cohomology, it follows that, ignoring gravitational
effects, in the presence of G2 flux, G4/2π is generically half-integrally quantized, and G6/2π
is quantized in multiples of 1

6
. Incorporating the Â-genus generically yields quantization in

multiples of 1
48

for both G4/2π and G6/2π. In particular, for the cosets we are considering,
the Pontrjagin classes are given by

p

(
SU(3)

U(1)× U(1)

)
= 1 , p

(
Sp(2)

S(U(2)× U(1))

)
= (1+x2)4 , p

(
G2

SU(3)

)
= 1 . (5.20)

The first result follows from a theorem of Borel and Hirzebruch, according to which the
Pontrjagin class of a coset G/U , with U a maximal torus of G, is trivial. The latter two
follow from the identification of the two cosets topologically with CP3 and S6 respectively.
The x that occurs is the generator of the integer cohomology of CP3. It follows that G6/2π

is quantized in multiples of 1
6

for the cosets SU(3)
U(1)×U(1)

and G2

SU(3)
, and in multiples of 1

12
for

Sp(2)
S(U(2)×U(1))

. For G2

SU(3)
, we can go further. In [143], the following mod 2 relation among

Chern classes is derived

c3(E) = c1(E)c2(E) + Sq2c2(E) mod 2 .

Since G2

SU(3)
has no 2- and 4-cohomology, it follows that c3(E) must be even for any vector

bundle on this space ([143] provide an index theory argument for this conclusion). We
conclude that on this coset, G6 is integrally quantized. These results are summarized in
table 5.2.

We turn to the second question raised above: given an element of H∗(X,Q) satisfying

the integrality conditions just discussed, when does it lie in the image of the map
√
Â ch(·),

thus qualifying as a viable choice of flux? We will not provide a general answer, but address
the following two subquestions which will be relevant in the next subsection.

Is it possible to have only G0 and G6 non-vanishing? It is a theorem (see e.g. Thm.
V.3.25 in [144]) that the map (5.19) provides an isomorphism when the domain is extended
to rational K-theory, K(X)⊗Q. It follows that any class in H∗(X,Q) lifts to a fractional
K-theory class. Multiplying our choice of G0 and G6 with an appropriate integer hence
always provides a viable choice of flux.
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SU(3)
U(1)×U(1)

Sp(2)
S(U(2)×U(1))

G2

SU(3)

G0 Z Z Z

G2 Z Z −
G4

1
2
Z 1

12
Z −

G6
1
6
Z 1

12
Z Z

Table 5.2: Quantization condition on fluxes.

Given G2 = 0, which G4 are permissible? Let us consider the class

x =
[G4]

2π
− p1(X)

48
rank(F ) .

Among the geometries we consider, x differs from [G4]/(2π) only for CP3. x is integrally
quantized whenever G2 vanishes. For the two cosets with non-trivial 2- and 4-cohomology,
this is the only restriction on x, i.e. x can take values in all of H4(X,Z). As pointed
out in [143], this situation arises whenever the cohomology of the manifold is generated in
second degree. If we call the generators xi, line bundles Li exist with c1(Li) = xi. The
K-theory classes xij = Li ⊗ Lj − Li ⊕ Lj can then be used as building blocks for lifting x
to a K-theory class, by

ch(xij) = xixj +
1

2
(x2

ixj + xix
2
j) .

If we choose G0-flux as a multiple of 12, we can ignore the gravitational contribution which
accounts for the difference between x and [G4]/(2π) in the case of CP3. Then, [G4]/(2π)
takes values in H4(X,Z) also for this case.

5.3.2 The solution

The N = 1 supersymmetry conditions for an AdS4 vacuum with internal SU(3) structure
have been determined by [114] (see [27, 33] for generalization to the SU(3)×SU(3) structure
context). A non-trivial warp factor is not allowed, and the dilaton φ has to be constant.
Furthermore, in our conventions6 the equations governing the H-field and the internal RR
field strengths read

H = (−1)s 2m

5
eφ ReΩ , (5.21)

F0 = m, F2 = −f
9
J + (−1)sie−φW2 , F4 =

3m

10
J ∧ J , F6 =

f

6
J ∧ J ∧ J ,

6Here, the susy conditions are derived consistently with the conventions adopted all over this thesis.
In particular, recall that our ansatz for the two type IIA susy parameters ǫ1, ǫ2 assigns negative chirality
to ǫ1 and positive chirality to ǫ2. The resulting equations (5.21) and the SU(3) torsion classes differ from
the ones in [126] by just a few minus signs. The factor of (−1)s = ±1 arises in the following equations as
unlike [114], we have fixed the phase of Ω once and for all in (5.14); see also [33]. Both signs are consistent
with supersymmetry.
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where the only non-vanishing purely imaginary torsion classes are W1 = (−1)s 4i
9
eφf and

W2. The only Bianchi identity which is not automatically satisfied is dF2−HF0 = 0. This
imposes

dW2 = ie2φ
( 2

27
f 2 − 2

5
m2
)
ReΩ . (5.22)

The AdS cosmological constant is determined by

Λ = −3e2φ

(
m2

25
+
f 2

9

)
. (5.23)

Following work of [125], [126] showed that these equations can be solved on the cosets we
introduced in the previous section, by expanding all fields in forms invariant under the
left group action. We will repeat this analysis, but parametrize the solutions by the fluxes
[G], as introduced in the previous subsection, rather than the parameter f and the dilaton.
This is the favored approach as it allows us to take flux quantization into account naturally
(from a 4d point of view, the distinction between fluxes and parameters such as f and the
dilaton is most striking, as the former correspond to charges, the latter to vevs; in 10d,
while fluxes can also be considered as vevs, they are distinguished by encoding topological
information).

We will focus on SU(3)
U(1)×U(1)

for concreteness. This example is the most rich among the
three cosets we are considering, as it has the largest set of left-invariant forms, and the
largest cohomology.

The ansatz (5.14) already led to the expressions (5.15) for W1 and W2 in terms of
the metric parameters va. It will prove convenient for this section to express the internal
component b of the B-field using the closed 2-forms (5.13),

b = b′1ω′1 + b′2ω′2 + b′3ω3 .

Thus, b′1 and b′2 capture topological information about the B-field, while b′3 enters in H.
Likewise, our ansatz for G is

G0 = m,

G2 = m′1ω′1 +m′2ω′2 ,

G4 = −e1ω̃1 − e2ω̃2 − ξ̃ dβ ,
G6 = −eω̃0 .

The equations of motion for G are complicated, and are encoded in the equations (5.21).
By contrast, the Bianchi identities are already guaranteed by the ansatz (hence the use of
primed forms).

To solve (5.21) in terms of the flux parameters, we begin by solving (5.22) in term of
φ, invoking the relation between W1 and f ,

e2φ =
5

16m2v1v2v3
[6
∑

a<b

vavb − 5
∑

(va)2] .

For the rest of this section, φ will denote this solution.
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Utilizing the equation for H, this allows us to solve for b′3 in terms of the metric
parameters,

b′3 = (−1)s+1 4m

5

√
v1v2v3eφ

= (−1)s+1 m

|m|

√√√√5

(
6
∑

a<b

vavb − 5
∑

(va)2

)
.

We next want to solve for f , starting with

F6 = G6 +B ∧G4 +
1

2
B2 ∧G2 +

1

3!
B3 ∧G0 =

f

6
J ∧ J ∧ J . (5.24)

We eliminate the B3 term via

F4 = G4 +B ∧G2 +
1

2
B ∧B ∧G0 =

3m

10
J ∧ J

⇔ mB3 =
3m

5
B ∧ J ∧ J − 2B ∧G4 − 2B2 ∧G2 .

Hence,

f

6
J ∧ J ∧ J = G6 +

2

3
B ∧G4 +

1

6
B2 ∧G2 +

m

10
B ∧ J ∧ J ,

and substituting f into

F2 = G2 +B ∧G0 = −f
9
J + (−1)sie−φW−

2

yields three equations which can be solved for b′1, b′2 and ξ̃,

b′1 = (−1)s (5v1 − 3(v2 + v3))
√
v1v2v3

4v2v3m
e−φ − m′1

m
,

b′2 = (−1)s (5v2 − 3(v1 + v3))
√
v1v2v3

4v1v3m
e−φ − m′2

m

We omit the expression for ξ̃, which is lengthy and not illuminating.
At this stage, we have expressed ξ̃, b′a, eφ in terms of va. Substituting these into the F4

equation,

G4 +G2 ∧B +
1

2
B ∧B ∧G0 =

3m

10
J ∧ J , (5.25)

yields three independent equations for va, two of which take the simple form

(v1 − v3)(v1v2 + v2v3 − 3v1v3)

v1v3
− e2φ(

me1

I
+m′2(2m′1 +m′2)) = 0 ,

(v2 − v3)(v1v2 + v1v3 − 3v2v3)

v2v3
− e2φ(

me2

I
+m′1(m′1 + 2m′2)) = 0 . (5.26)
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The main new feature we wish to demonstrate, as compared to the Nearly Kähler analysis
of [93], is the presence of several supersymmetric vacua of a given theory, i.e. upon a fixed
choice of fluxes. This phenomenon already occurs at ea = m′a = 0, which is a permissible
choice of flux by the previous subsection. The third equation following from (5.25) here
takes the form

15eφ
√
v1v2v3 e+ (−1)s+18I v2v3(v2v3 − 3v1v2 − 3v1v3) = 0 .

It is easy to see that this system of equations has, aside from the Nearly Kähler solution7

v1 = v2 = v3 =

√
15

2

(
1

20I

∣∣∣ e
m

∣∣∣
) 1

3

,

the solution

v1 = v2 = 2v3 =

√
15

4

(
1

2I

∣∣∣ e
m

∣∣∣
) 1

3

,

as well as two others which arise upon cyclic permutation of v1, v2, v3.
The symmetry between the three metric parameters v1, v2, v3 can be broken by consid-

ering backgrounds with G4 flux. E.g., maintaining G2 = 0, we obtain from (5.26)

e1 6= 0 → v1 6= v3 ,

e2 6= 0 → v2 6= v3 ,

e1 6= e2 → v1 6= v2 .

We have checked numerically that e.g. at e1 6= 0, e2 = 0, solutions with v2 = v3 exist.

5.4 The dimensional reduction

5.4.1 The truncation scheme

As announced, we will adopt a reduction prescription in which the higher dimensional
supergravity fields are expanded on a basis for the left-invariant tensors admitted by the
coset. This expansion basis was introduced in subsection 5.2.1 for the three cosets (5.1).

We stress again that this G-invariant truncation does not coincide with a massless
Kaluza-Klein ansatz, of the type adopted e.g. for the Calabi-Yau reduction (see subsec-
tion 3.2.1). We can illustrate the differences between the two schemes e.g. by considering
the gauge vectors of the dimensionally reduced theory arising from the decomposition of
the higher dimensional metric. The conventional massless Kaluza-Klein ansatz associates
a gauge vector of the truncated theory to each Killing vector on the compact manifold,
the gauge symmetry being inherited from the reparameterization invariance of the higher
dimensional spacetime.8 On the other hand, the G-invariant ansatz preserves just a sub-
group of the full isometry group of the internal manifold G/H. The theory of compact left

7Note that physicality (positivity of va) determines the appropriate choice of s depending on the sign
of e.

8In principle, non-vanishing background values of the non-metric supergravity fields may break the
gauge symmetry to a subgroup of the isometry group, however this is guaranteed not to happen as far as
these vevs are invariant under the isometries [12, pag. 16].
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coset spaces endowed with a left-invariant metric (such are the cosets we consider) states
that in general the isometry group of G/H is G×N(H)/H, where N(H) is the normalizer
of H in G, defined as N(H) := {g ∈ G : gH = Hg} . The G factor in G × N(H)/H is
associated with the left action of G on the coset, while the N(H)/H factor derives from
the right action of G. The Killing vectors generating the right isometries are left-invariant,
while this is not the case for the ones generating the left isometries.9 It follows that a left-
invariant reduction ansatz keeps only the former, and the gauge group descending from
the higher dimensional metric sector is just N(H)/H.

For the cosets we consider theG-invariant ansatz is particularly simple, becauseN(H)/H
turns out to be trivial. This can be seen either by observing that rankG = rankH [134],
or by noticing that our cosets do not admit left-invariant vectors at all. We conclude that
no gauge vectors will descend from the dimensional reduction of the type II supergravity
NSNS sector, and the whole (abelian) gauge group will be provided by the RR sector. This
is analogous to what is realized in Calabi-Yau compactifications (in the latter case, this
feature is due to the absence of continuous isometries, cf. subsection 3.2.1).

Though physically well motivated, dimensional reductions based on the full massless
KK ansatz have a drawback: they are generically inconsistent [146, 12]. Rare exceptions
are known, an example being the S7 reduction of [78] (see [147] for a discussion of consistent
KK sphere reductions). The G-invariant reduction scheme is instead believed to provide
consistent truncations, due to the fact that the preserved invariant fields never generate
the truncated non-invariant modes. A further argument for consistency is that the substi-
tution of a G-invariant ansatz guarantees the dropping of the dependence on the internal
coordinates y from the higher dimensional Lagrangian, see e.g. [148, 12] for more details.
The consistency of the G-invariant scheme was explicitly shown in ref. [149] for a reduction
of the pure gravity action. Recent related discussions can be found in [150] (for coset space
reductions of Einstein-Yang-Mills theories), in [151, 152] (for Scherk-Schwarz reductions
on group manifolds), and in [153, 154] (for consistent reductions on spaces supporting
AdS solutions, and their relation with the dual superconformal field theory). However,
an explicit check of consistency in the context of SU(3) structure compactifications with
fluxes had not been performed to date. In subsection 5.4.3 we will work out the reduction
of the higher dimensional equations of motion in detail, and prove the consistency of the
truncation of the full type IIA bosonic sector for the cosets (5.1).

5.4.2 The 4d action

The general dimensional reduction established in chapter 3 applies to our coset spaces
(5.1). In particular, for the RR sector the relevant analysis is the one of subsection 3.5.3.

Performing the necessary specializations, and separating the contributions of the NSNS
and RR sectors as in chapter 3, the complete 4d bosonic action arising from the reduction
of type IIA supergravity on our cosets reads then S(4) = S

(4)
NS + S

(4)
RR, with

9A detailed discussion of the isometries of G/H can be found in section 2 of ref. [145].
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S
(4)
NS =

∫

M4

( 1

2
R4 ∗ 1− 1

4
e−4ϕdB ∧ ∗dB − dϕ ∧ ∗dϕ− Gabdt

a ∧ ∗dt̄b − VNS ∗ 1
)
, (5.27)

S
(4)
RR =

∫

M4

{ 1

4
ImNABF

A ∧ ∗FB +
1

4
ReNABF

A ∧ FB − e2ϕ

4
(Dξ ∧ ∗Dξ + dξ̃ ∧ ∗dξ̃)

+
1

4
dB ∧

[
ξdξ̃ − ξ̃Dξ + 2eAA

A + ξ̃ qaA
a
]
− 1

4
mAeAB ∧B − VRR ∗ 1

}
.(5.28)

In appendix F we make the link with the analysis of chapter 3, illustrating how it specializes
to the present cosets. Let us recall that the 4d degrees of freedom descending from the
NSNS sector are the metric gµν , the 2–form B, the complex scalars ta = ba + iva and the
4d dilaton ϕ, defined in (F.2). The RR sector yields the scalars ξ and ξ̃ introduced in the
first line of (F.11), as well as the gauge potentials AA, whose modified field strengths FA

are defined in (F.12) (recall that the index A runs over (0, a) ). Notice that the mA and
eA used here correspond to the mA

RR and eRRA of chapters 3, 4.
The N = 2 action S(4) contains the gravitational multiplet (gµν , A

0), a number of
vector multiplets (ta, Aa) (see table 5.1 for the coset dependent range of a), and one tensor
multiplet (B,ϕ, ξ, ξ̃). When mA = 0 the antisymmetric tensor B becomes massless and
can be dualized to a scalar, yielding the universal hypermultiplet. From Dξ = dξ− qaAa it
follows that ξ is charged under the Aa, the charges being provided by the geometric fluxes
qa given in table 5.1. The graviphoton A0 instead does not participate to this gauging (due
to the fact that the compactification manifolds (5.1) do not allow for a flux of the NSNS
3–form [47]).

The special Kähler metric Gab governing the kinetic terms for the scalars in the vector
multiplets is given in table 5.1, and further discussed in section F.1 of the appendix,
together with the period matrix NAB describing the kinetic and topological terms for the
gauge potentials.

The full 4d scalar potential reads V = VNS + VRR. Reduction of the internal NSNS
sector on our coset spaces yields

VNS ≡ −e
2ϕ

2

(
R6 −

1

2
HyH

)

=
e2ϕ

4Vol
qaqb

(
G

ab − 3vavb + babb
)
, (5.29)

where the 6d Ricci scalar R6 has been evaluated in terms of the torsion classes expressed
in eq. (5.15) via the formula10 [102]

R6 =
15

2
|W1|2 −

1

2
W2yW 2 , (5.30)

10An equivalent expression for R6 was given in [134] using a general formula relating the Riemann tensor
of G/H to the structure constants of G. The 4 factor mismatch we have with respect to that expression
is due to the different normalization of the SU(3) structure constants already mentioned in footnote 3.
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while for the internal NSNS 3–form we have H = d6b = baqaα. Equivalently, in order to
evaluate VNS we could have applied the general formula (3.85) derived in chapter 3.

The RR contribution to the scalar potential is obtained from the general expression
given in eq. (3.117) by substitution of the expressions for G(0) and G̃(0) given in (F.11),
and reads

VRR = −e
4ϕ

4

[
mAImNABm

B +(eA + qAξ̃−mCReNCA)(ImN )−1 AB(eB + qB ξ̃−ReNBDm
D)
]
,

(5.31)
where qA = (0, qa). Notice that while ξ̃ appears in the potential, the other RR scalar ξ is
a flat direction (however, ξ is not a modulus, since it is charged under the Aa). We recall
that, since the matrix ImN is negative, VRR is positive semi-definite.

5.4.3 Consistency of the truncation

We now prove the consistency of the dimensional reduction leading to the 4d action S(4)

introduced in the previous subsection. To this end, we plug the G-invariant reduction
ansatz into the bosonic equations of motion (EoM) of type IIA supergravity, and show
that these yield the EoM following from the reduced action S(4).

The reduction of the equations for the RR degrees of freedom was already described in
the general analysis of section 3.5; in appendix F.2 we provide the specialization of that
analysis to the compactification on the coset spaces (5.1). In fact, the piece (5.28) of the
4d action has been established requiring its compatibility with the EoM for the 4d fields
AA, ξ, ξ̃ as obtained from the higher dimensional equations (3.93), (3.94). It follows that,
as far the RR sector is concerned, the reduction is consistent by construction.

Hence, we just have to analyze the equations of motion for the NSNS degrees of freedom,
namely the B-field, the Einstein and the dilaton equations. For the democratic formulation
of type II supergravity, these have already been given at the end of section 3.1. However,
for the reader’s comfort we reproduce them here:

d(e−2φ ∗ Ĥ)− 1

2
[F̂ ∧ ∗F̂]8 = 0 , (5.32)

R̂MN + 2∇̂M∂Nφ−
1

2
ιMĤyιNĤ −

e2φ

4

10∑

k=0,2

ιM F̂(k)yιN F̂(k) = 0 , (5.33)

R̂− 1

2
ĤyĤ + 4

(
∇̂2φ− ∂Mφ∂̂

Mφ
)

= 0 , (5.34)

where we recall that the hat denotes 10d quantities, M,N are 10d spacetime indices, and
in type IIA F̂ ≡∑10

k=0,2 F̂(k) is the sum of the even RR field-strengths.

B̂-field EoM

The B̂-field EoM (5.32) is an 8–form equation, and its expansion in the left-invariant
forms on M6 yields two independent equations: the first exhibiting two indices along 4d
spacetime M4 and 6 indices along M6, and the second with 4 indices along M4 and 4 indices
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along M6. We get no equation with 5 indices along M6 due to the absence of invariant
5-forms on the cosets (5.1). Rewriting the RR piece of (5.32) as in (3.109), expanding B̂
as in (F.4) and Ĝ as in (3.95), we see that eq. (5.32) reduces to

[
d(e−4ϕ ∗ dB) + GA

(0)G̃(2)A − G̃(0)AG
A
(2) + G̃(1) ∧G(1)

]
ω̃0 = 0 (5.35)

and

− 4d4(Gab ∗4 d4b
b)ω̃a + e−2φ+4ϕvol4 ∧ d6(∗6d6b) + (5.36)

+
[
G0

(0)G̃(4)a +G0
(4)G̃(0)a −KabcG

b
(0)G

c
(4) −G0

(2) ∧ G̃(2)a +
1

2
KabcG

b
(2) ∧Gc

(2)

]
ω̃a = 0 ,

where the 4d forms G(p), G̃(p) are expressed in (F.11), and we used ωa∧ωb = −Kabcω̃
c, with

the Kabc explicitly given in (F.7).
As in section 3.5, eq. (5.35) provides the EoM for the 2–form B in 4d, and has been

employed in order to deduce the 4d action S(4) written in subsection 5.4.2 above (notice
however that here we are not integrating over M6). It follows that, on the same footing
as the RR equations, consistency of this equation with the action S(4) is guaranteed by
construction.

Eq. (5.36) (which was not analyzed in section 3.5) corresponds to the EoM for the 4d
scalars ba defined by the expansion of the internal B-field b on the basis 2–forms. Using
d6 ∗6 d6b = qbb

bqaω̃
a, substituting the expressions (F.11) for G(2), G̃(2), G(4), G̃(4) and the

definition (3.114) of FA, eq. (5.36) reads

4∇µ(Gab∂
µbb) − e2ϕ qbb

bqa
Vol

− ImNaB ∗ (F 0 ∧ ∗FB)− ReNaB ∗ (F 0 ∧ FB)

+
1

2
Kabc ∗ (F b ∧ F c) + e4ϕ

[
G0

(0)(ImNG(0) − ReNL)a − G̃(0)aL
0 +KabcG

b
(0)L

c
]

= 0,

where we denote L ≡ (ImN )−1(G̃(0) −ReNG(0)). Recalling the form of ImN and ReN in
(F.8) and (F.9), as well as VNS in (5.29) and VRR in (5.31), one checks that this equation
can be reformulated as

2∇µ(Gab∂
µbb)− 1

4
∂baImNBC ∗ (FB ∧∗FC)− 1

4
∂baReNBC ∗ (FB ∧FC)− ∂ba(VNS +VRR) = 0

which is precisely the EoM obtained varying S(4) in (5.27), (5.28) with respect to ba.

10d Einstein equation

We first deal with the term R̂MN +2∇̂M∂Nφ in eq.(5.33). Starting from the G–invariant
metric ansatz (F.1) and recalling that the 4d dilaton ϕ(x) satisfies (F.3), we derive the
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following decomposition11

R̂µν + 2∇̂µ∂νφ = Rµν −
1

4
gmpgnq∂µgmn∂νgpq − 2∂µϕ∂νϕ− gµν∇2

4ϕ ,

R̂µn = 0 = ∇̂µ∂nφ ,

R̂mn + 2∇̂m∂nφ = Rmn +
1

2
e−2ϕ

(
gpq∂µgmp∂

µgnq −∇2
4 gmn

)
. (5.37)

Taking the trace, we get

R̂ + 4∇̂2φ− 4∂Mφ∂̂
Mφ = e−2ϕ

(
R4 + e2ϕR6 −

1

4
gmpgnq∂µgmn∂

µgpq − 2∇2
4ϕ− 2∂µϕ∂

µϕ
)
.

(5.38)
In the previous expressions, quantities labeled with 4 or 6 are associated to (M4, gµν) or
(M6, gmn) respectively. The 4d indices on the r.h.s. are raised using the rescaled metric gµν

of eq. (F.1). Notice that all the terms depend just on xµ: indeed, thanks to G-invariance,
the whole dependence on the internal coordinates drops out.

Let us now consider the µν components of the 10d Einstein equation (5.33). Using
(5.37), (5.38) we find (we reinstate in the Einstein equation the term proportional to ĝµν ,
which actually vanishes thanks to the dilaton EoM (5.34) ),

R̂µν + 2∇̂µ∂νφ−
1

2
ιµĤyινĤ −

1

2
ĝµν

(
R̂ + 4∇̂2φ− 4∂ρφ∂̂

ρφ− 1

2
Ĥ2
)

=

= Rµν −
1

4
e−4ϕHµρσH

ρσ
ν − 2∂µϕ∂νϕ− 2Gab∂(µt

a∂ν)t̄
b (5.39)

− gµν

( 1

2
R4 −

1

24
e−4ϕHµνρH

µνρ − ∂µϕ∂
µϕ− Gab∂µt

a∂µt̄b − VNS

)
.

For the RR piece, taking into account all the terms of the expansion described in section
F.2 of the appendix, we arrive at

−e
2φ

4

10∑

k=0

ιµF̂(k)yινF̂(k) =
1

2
ImNABιµF

A
yινF

B − 1

2
e2ϕ(DµξDνξ + ∂µξ̃∂ν ξ̃)

−gµν

{ 1

4
ImNABF

A
yFB − e2ϕ

4
[(Dµξ)

2 + (∂µξ̃ )2]− VRR

}
. (5.40)

From (5.39), (5.40) we see that the equation arising from the µν components of (5.33)
precisely reproduces the 4d Einstein equation following from S(4).

Since there are no left-invariant 1–forms on the cosets (5.1), the 10d Einstein equation
with µn indices is trivialized by our left-invariant truncation prescription, and does not
yield any constraint at the 4d level. Indeed, one can check that all the µn terms in (5.33)
vanish once the truncation ansatz is plugged in.

11The non-vanishing higher dimensional Christoffel symbols are:

Γ̂ρ
µν = Γρ

µν + ∂µϕδ
ρ
ν + ∂νϕδ

ρ
µ − gµν∂

ρϕ , Γ̂ρ
mn = −1

2
e−2ϕ∂ρgmn , Γ̂p

µn =
1

2
gpq∂µgnq , Γ̂p

mn = Γp
mn .

In the derivation of R̂µn = 0 we assume ∇me
p
n = 0.
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Finally, we study the purely internal components of (5.33) in flatmn indices. Depending
on which of the cosets (5.1) we consider, these yield just one, two or three 4d scalar
equations, labeled by the index a. On our cosets, any left-invariant symmetric rank-2
tensor has the same diagonal structure as the invariant metric gmn given in subsection
5.2.1. Furthermore, the left-invariant Ricci tensor on coset spaces satisfies Rmn = ∂

∂gmnR6.

Focusing for definiteness on SU(3)
U(1)×U(1)

, we have (recall G ab in table 5.1)

R2a−1 2a−1 ≡ R2a 2a = −1

8
G

ab∂vbR6 , a = 1, 2, 3 .

Then, using the last line of (5.37), we get

R̂2a 2a + 2∇̂2a∂2aφ−
1

2
ι2aĤyι2aĤ =

e−2ϕG ab

4

[
− 2∇µ(Gbc∂

µvc) + ∂vbGcd∂µt
c∂µt̄d + ∂vbVNS

]
.

(5.41)
Concerning the RR term, a tedious computation gives

−e
2φ

4

10∑

k=0

ι2aF̂(k)yι2aF̂(k) =
e−2ϕG ab

4

[
∂vbVRR −

1

4
∂vb(ImNCD)FC

yFD
]
. (5.42)

Analogous steps can be repeated for the cosets Sp(2)
S(U(2)×U(1))

and G2

SU(3)
, leading to the same

r.h.s. of the equations here above.
From (5.41), (5.42) we conclude that the components of the 10d Einstein equation (5.33)

with two internal indices precisely match the EoM for the scalars va following from S(4):

− 2∇µ(Gab∂
µvb) + ∂vaGbc∂µt

b∂µt̄c + ∂va(VNS + VRR)− 1

4
∂va(ImNBC)FB

yFC = 0 .

Dilaton equation

Subtracting the trace over the µν components of (5.33) from the 10d dilaton equation
(5.34), we eventually obtain

2∇2
4ϕ+

1

6
e−4ϕHµνρH

µνρ − e2ϕ

2

[
(Dµξ)

2 + (∂µξ̃)
2
]
− 2VNS − 4VRR = 0 , (5.43)

which is the EoM for the 4d dilaton ϕ following from S(4).
This concludes the consistency proof of the dimensional reduction.

5.5 The 4d potential via N = 2

In this section, we recast the scalar potential obtained in (5.29) and (5.31) in 4d N = 2
language. In this framework, given the prepotential F governing the special geometry data
of the vector multiplet sector and the quaternionic metric huv of the hypermultiplet sector,
the potential is uniquely determined by the gauged isometries of huv. This structure allows
us to incorporate string loops into our considerations, which correct the hypermultiplet
metric. As the 4 dimensional quaternionic metrics with the isometry structure imposed by
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our compactifications are highly constrained, we use the results of [155, 156, 157] to write
down the general form of the all-loop string corrected potential in subsection 5.5.2. We
analyze this potential further in subsection 5.6.3.

From the Ward identity (4.22) it follows that the general form of the potential in 4d
N = 2 gauged supergravity is [76, 15, 97, 98]

V = 4eKhuv(X
Aku

A − k̃uAFA)(X̄Bku
B − k̃uBF̄B)

−
[
1

2
(ImN )−1 AB + 4eKXAX̄B

]
(Px

A − P̃xCNCA)(Px
B − P̃xDN̄DB) . (5.44)

The coordinates X, the prepotential F , and the gauge coupling matrix N encode special
geometry data and are discussed further in appendix F. huv refers to the universal hy-
permultiplet metric, which is expressed in terms of the quaternionic vielbein components
as

h = u⊗ ū+ v ⊗ v̄ .

We will denote the quaternionic coordinates collectively by qu. ku
A and k̃uA are the com-

ponents of the Killing vectors describing the isometries of the hypermultiplet metric being
gauged by the Ath gauge vector. The Sp(1) factor ω of the spin connection of the hyper-
multiplet metric enters in the potential via its relation to the Killing prepotentials. For
the case that the 3 components of the curvature of ω each are invariant under an isometry
ku∂qu of the metric, the corresponding Killing prepotential is given by

Px = ωx
uk

u . (5.45)

In this case, one can rewrite the potential in a more convenient form. Introducing

Qu
A = ku

A − k̃uBNBA ,

we obtain

V = Qu
AQ̄

v
B

[
4eKXAX̄B

(
u⊗ ū+ v⊗ v̄

)
uv
−
(
4eKXAX̄B +

1

2
(ImN )−1 AB

)∑

x

(
ωx⊗ωx

)
uv

]
.

(5.46)

5.5.1 Tree level

At tree level, the quaternionic vielbein is given by [68]12

u =
1

2
eϕ(dξ̃ − idξ) ,

v = dϕ− ie
2ϕ

2

(
da+ ξ̃dξ

)
.

12ϕ, ξ, ξ̃ were introduced above. The coordinate a is related to the dual aB of the spacetime component

of the B-field via aB = a+ ξξ̃
2 .
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The Sp(1) connection has the following form in terms of these quaternionic vielbein com-
ponents13

ω1 = i(ū− u) , ω2 = −(u+ ū) , ω3 =
i

2
(v − v̄) . (5.47)

In the class of theories we are considering, the Killing vectors (4.11), (4.14), generating the
isometries being gauged, reduce to

kA =
√

2

(
eA

∂

∂a
+ qA

∂

∂ξ

)
, k̃A =

√
2mA ∂

∂a
. (5.48)

Since Qu does not contain a non-vanishing entry for u = ϕ, the real part of v does not
enter upon contraction with Qu, hence we can substitute

∑

x

(
ωx ⊗ ωx

)
∼ 4u⊗ ū+ v ⊗ v̄

in the potential, obtaining

V = Qu
AQ̄

v
B

[
− e2ϕ

(1
2
(ImN )−1 AB + 3eKXAX̄B

)(
dξ2 + dξ̃2

)
uv

−1

8
e4ϕ(ImN )−1 AB

(
da+ ξ̃dξ

)2
uv

]
.

This coincides with (5.29) and (5.31) obtained above via reduction from 10 dimensions.

5.5.2 All string loop

For the case of the universal hypermultiplet with 3 isometries, the quaternionic metric
is of the Calderbank-Pedersen form [155]. It comes in a 1-parameter family [156, 157],
determined by

u =

√
ρ2 + c

2(ρ2 − c)(dξ̃ − idξ) ,

v = − ρ

2(ρ2 − c)
√
ρ2 + c

[
2
ρ2 + c

ρ
dρ+ i(da+ ξ̃dξ)

]
. (5.49)

The metric at string tree level lies at c = 0, and the variable identification

ρ = e−ϕ

takes us back to the expression for the metric introduced above.14

13The components ωx of the Sp(1) curvature ω should not be confused with the expansion forms ωa.
14The coordinates used in [157] are related to our choice via ψ = a+ξξ̃

2 , η = − ξ
2 , φ = ξ̃.
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In terms of the quaternionic vielbein components (5.49), the Sp(1) connection of the
Calderbank-Pedersen metric is [155]

ω1 =
ρ√
ρ2 + c

i(ū− u) = − ρ

ρ2 − cdξ ,

ω2 = − ρ√
ρ2 + c

(u+ ū) = − ρ

ρ2 − cdξ̃ ,

ω3 =

√
ρ2 + c

ρ

i

2
(v − v̄) =

1

2(ρ2 − c)(da+ ξ̃dξ) . (5.50)

The N = 2 potential (5.46) for this choice of metric becomes

V =
Qu

AQ̄
v
B

(ρ2 − c)2

[(
− 1

2
(ImN )−1 AB − 3eKXAX̄B

)
ρ2(dξ2 + dξ̃2)uv

−1

8
(ImN )−1 AB(da+ ξ̃dξ)2

uv + c eKXAX̄B(dξ2 + dξ̃2)uv

− c

ρ2 + c
eKXAX̄B(da+ ξ̃dξ)2

uv

]
. (5.51)

In the case of Calabi-Yau compactifications, the metric is corrected away from c = 0 in
passing from tree level to 1-loop [157]. Beyond 1-loop, all corrections can be captured by
field redefinitions. This means that the quaternionic metric (i.e. the value of c) remains
unchanged, the identification ρ = e−ϕ however is modified (note that the isometry structure
of the metric determines the identification of the other 3 Calderbank-Pedersen coordinates
with the 10d variables as indicated in footnote 14; this is why we have not introduced
separate notation for them).

To study perturbative string corrections in the case of interest, let us review the argu-
ment of [157]. The 1-loop correction to the four dimensional Einstein-Hilbert term can be
determined by reduction of the 1-loop R4 correction in 10d. In the normalization of [157],
this yields

SEinstein−Hilbert =

∫
d4x
√
g
(
e−2ϕ − 4ζ(2)χ

(2π)3

)
R .

Unfortunately, the full 1-loop corrected 10d action is not available as a means towards
obtaining the 1-loop completion of the 4d action. Nonetheless, after parametrizing the ig-
norance regarding this action and comparing to the 4d effective action obtained by choosing
the Calderbank-Pedersen metric on the universal hypermultiplet scalar manifold, [157] finds
that only two possible values for c are possible,

c = 0 or c = −4ζ(2)χ

(2π)3
, (5.52)

with χ the Euler characteristic of the Calabi-Yau. A perturbative string calculation then
establishes that it is the latter value that is correct beyond tree level. Such a calculation in
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the case of the coset backgrounds with RR-flux that we are interested in is very challenging,
and beyond our scopes. However, the first part of the analysis of [157] goes through also
for these more general backgrounds. In particular, the 10d R4 term is proportional to [157]

t8t8R
4 +

1

4
E8 .

The first term is shorthand for t8t8R
4 = tM1···M8tN1···N8RM1M2N1N2

· · ·RM7M8N7N8
, which is

expanded in terms of scalars built out of contractions of four Riemann tensors in eq. (A.12)
of [157]. The second term can be written compactly in form notation as

E8 ∼ ΩAB ∧ ΩCD ∧ ΩEF ∧ ΩGH ∧ ∗(eA ∧ · · · ∧ eH) ,

with ΩA
B = 1

2
RA

BCDe
CeD the curvature 2-form and eA, A = 1, . . . , 10 a local coframe

basis. From the expansion of the t8 term in [157], we see that in each scalar invariant,
contractions pair at least two Riemann tensors. Hence, this term does not contribute to
the 4d Einstein-Hilbert term upon reduction. The contribution from E8 to the Einstein-
Hilbert term stems, exactly as in the Ricci flat case, from

Ωab ∧ ∗4(ea ∧ eb) ∧ Ωmn ∧ Ωpq ∧ Ωrs ∧ ∗6(em ∧ · · · ∧ es) ,

with a, b flat spacetime and m,n, . . . flat internal indices. We recognize the internal contri-
bution as proportional to the 6 dimensional Euler density. The conclusion of our analysis is
hence that in generalizing beyond Calabi-Yau manifolds, the same two possibilities for the
Calderbank-Pedersen parameter c exist as in the Calabi-Yau case (and await a perturbative
string calculation as arbiter).

5.6 Non-supersymmetric vacua

As an application of our consistent truncation result, we will search for non-supersymmetric
vacua of the 4d effective action. By the analysis of section 5.4, these are guaranteed to lift
to 10d solutions.

5.6.1 Tree level

The potential we obtained at tree level above has the form

V = A1e
2ϕ + A2e

4ϕ , (5.53)

with

A1 = −Qu
AQ̄

v
B

(1
2
(ImN )−1 AB + 3eKXAX̄B

)(
dξ2 + dξ̃2

)
uv
,

A2 = −Qu
AQ̄

v
B

1

8
(ImN )−1 AB

(
da+ ξ̃dξ

)2
uv
. (5.54)

Minimizing the potential with regard to the 4d dilaton yields [158]

Vϕ = − A2
1

4A2

.
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As A2 is positive definite, the potential at tree level is negative semi-definite on-shell.
In fact, this result generalizes immediately to any hypermultiplet metric of the general
form (3.16) that arises upon Calabi-Yau and SU(3) structure compactifications, and the
respective gaugings. The corresponding potential is obtained by appropriately modifying
u and v in (5.54) along the lines of eq. (4.6). A2 hence remains positive also in this more
general case.

We have thus proved that N = 2 gauged supergravity as it arises in Calabi-Yau like
compactifications at string tree level (i.e. with hypermultiplet metric as given in [68], and
gaugings of abelian quaternionic isometries) does not permit de Sitter solutions. Due to
the consistency of the truncation, this 4d result also follows from the 10d no-go theorem of
Maldacena-Nuñez [159]. Note however that our 4d reasoning continues to hold for an ar-
bitrary vector multiplet sector, i.e. including all possible worldsheet instanton corrections.

The two contributions to (5.53) arise upon compactification from the NSNS and the
RR sector respectively, see (5.29) and (5.31). The positivity of A2 is also manifest here.

5.6.2 Non-supersymmetric Nearly Kähler companions

The 10d analysis of subsection 5.3.2 reveals that, given a choice of the RR fluxes G0 and
G6, with all the other fluxes vanishing, there exists a single Nearly Kähler supersymmetric
vacuum on the cosets (5.1). This solution is also recovered adopting the 4d approach, as
discussed in [92, 93].

It is possible to show that, under the same conditions, the 4d tree level scalar potential
V also admits non-supersymmetric Nearly Kähler extrema. In the following formulae, we
introduce the sum of the geometric fluxes q ≡∑a qa, we rename the RR fluxes as e0 → e ,
m0 → m, and we call the equal va and the equal ba respectively v and b.

We obtain three Nearly Kähler extrema, lying at

v =

√
15

2

(
1

20I

∣∣∣ e
m

∣∣∣
)1/3

, b =
1

2

(
1

20I

e

m

)1/3

, ξ̃ =
24Imb2

q
, e2ϕ =

5q2

48I2m2v4
,

(5.55)

v =
√

3

(
1

20I

∣∣∣ e
m

∣∣∣
)1/3

, b = −
(

1

20I

e

m

)1/3

, ξ̃ = −12Imb2

q
, e2ϕ =

q2

12I2m2v4
,

(5.56)
and

v =

(
1√
5I

∣∣∣ e
m

∣∣∣
)1/3

, b = 0 = ξ̃ , e2ϕ =
5q2

36I2m2v4
. (5.57)

By comparing to section 5.3.2, we learn that the only extremum preserving supersymmetry
is (5.55).

Thanks to the consistency of the reduction, the non-supersymmetric extrema of V
found here also solve the 10d equations of motion, and actually turn out to coincide with
the solutions previously found in ref. [41] via a 10d approach (see subsection 11.4 therein).

Unlike the situation for the supersymmetric solution (5.55), for (5.56) and (5.57) stabil-
ity is of course no longer guaranteed. As in any truncation scheme, a full stability analysis
can only take place in the higher dimensional theory. What we can offer in our 4 dimen-
sional theory is a stability analysis with regard to the modes we retain. To this end, we
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Figure 5.1: The potential for G2

SU(3) : we plot the rescaled potential e
5

3m
1

3 I
4

3V as a function of (Im/e)
1

3 b

and |Im/e| 13 v, at the extremum of ϕ and ξ̃. The deepest minimum corresponds to solution (5.56). The
cut of the plot at V = 0 is due to the constraint eϕ(b,v) > 0.

rescale the scalar fields15 (va, ba, ϕ, ξ̃) to obtain canonically normalized kinetic terms, and
then diagonalize the mass matrix at the respective solutions.

The case G2

SU(3)
is depicted in figure 5.1: the first two extrema (5.55) and (5.56) are

minima, while the remaining extremum is a saddle point. For SU(3)
U(1)×U(1)

and Sp(2)
S(U(2)×U(1))

,

(5.56) is a minimum, whereas due to modes leading away from the Nearly Kähler locus
va = v for all a, (5.55) is merely a saddle point, as is (5.57). To analyze stability, we compare
the magnitude of the negative masses at the saddle points with the Breitenlohner-Freedman
bound

m2
tachyonic ≥ −

3

4
|V | .

All extrema (including the saddle point depicted in figure 5.1) prove stable.
Finally, we remark that α′ and string loop corrections can be safely neglected for

the solutions above by tuning the RR fluxes e and m in such a way that the internal
volume Vol ≡ v3I ∼ e/m becomes sufficiently large and the string coupling constant

eφ ≡ eϕ
√
Vol ∼ e−

1

6m−
5

6 becomes small (recall the definition (F.2) of the 4d dilaton).
We can study moderately large string coupling by invoking the corrected potential (5.51).
A numerical analysis indicates that all three AdS extrema survive string loop corrections.
For the supersymmetric extremum, we push beyond numerics in appendix G, and establish
analytically that it persists, as expected, in the face of string loop corrections.

5.6.3 de Sitter vacua at all string loop order?

In face of the no-go result for de Sitter vacua obtained in subsection 5.6.1, we would like
to analyze how loop corrections modify the outcome of this study. Of course, to guarantee
the consistency of the truncation, the analysis in section 5.4 must be extended beyond
the two derivative case. However, the arguments put forth in subsection 5.4.1 in favor
of consistency apply to the additional terms as well. We will also assume in this section

15Note that the shift symmetry of a and ξ is gauged, the background value of these fields is hence a
gauge choice.
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that c 6= 0, as in the Calabi-Yau case. Note that by the results above, we can perform an
(almost) complete analysis of the full loop corrected potential. The identification of the
physical coordinate ϕ and the Calderbank-Pedersen coordinate ρ, which is modified order
by order in the string coupling and is not available, merely enters in identifying the range of
the CP coordinate, see below. Away from very strong coupling (in which brane instanton
corrections would have to be considered regardless), this does not affect the search for de
Sitter minima.

Focusing on the ρ dependence of the potential (5.51) and taking the obvious positivity
constraints on the coefficients into account does not rule out de Sitter vacua. One can
then proceed to derive various constraints on these coefficients. E.g., by noting that the
potential (5.51) has the form

V (ρ) = P (ρ)Q(ρ) ,

with P (ρ) = 1
(ρ2−c)2

, we obtain

V (ρ0) = −P
2

P ′
Q′|ρ0

=
Qu

AQ̄
v
B

2(ρ2
0 − c)

[(
− 1

2
(ImN )−1 AB − 3eKXAX̄B

)
(4dξ2)uv

+
c

(ρ2
0 + c)2

eKXAX̄B(da+ ξ̃dξ)2
uv

]
,

where ρ0 signifies the value of ρ at a minimum of the potential. Since c is negative for the
cosets we are considering, a de Sitter vacuum requires the first term in the square bracket
to be positive at the minimum of the potential. This term is proportional to the tree level
NSNS contribution to V , given in eq. (5.29). Hence, our necessary condition translates
into the following inequality involving the internal NSNS 3–form and Ricci scalar

HyH − 2R6 > 0 .

Recalling eq. (5.30), this is obviously true whenever the non-vanishing SU(3) torsion
classes satisfy 15|W1|2 < W2yW 2. For the simple case of Nearly Kähler manifolds (i.e.
when W2 = 0) the inequality is however non-trivial, and reads 3b2 − 5v2 > 0.

It would be interesting to analyze further this loop-corrected scalar potential, possibly
including non-perturbative corrections due to brane instantons.





Chapter 6

Conclusions

In this thesis we have studied dimensional reductions of type II string theory yieldingN = 2
supergravity in four dimensions. We have illustrated how the formalism of generalized
geometry allows to approach the problem on general grounds, and provides the expressions
for the various data of the N = 2 theory. Beside the previously known formulae for the
Kähler potentials of special Kähler geometry and for the Killing prepotentials determining
the N = 2 gaugings [45, 46], the expressions established in the context of this thesis were
the metric on the space of deformations of the internal metric and B-field, the period
matrices of special Kähler geometry, and the scalar potential [P1, P2]. In particular, the
expression for the scalar potential can be helpful for the study of non-supersymmetric
string backgrounds with SU(3)×SU(3) structure. See sections 2.6, 3.6, 4.4 and 5.1 for a
more detailed discussion of the contents of the respective chapters.

Despite the progresses made over the last years, several aspects of flux compactifications
deserve further study. For instance, a systematic characterization of the light degrees of
freedom associated with a Kaluza-Klein truncation in the presence of fluxes has not been
derived to date. A related open question is the identification of the moduli space of
the geometries supporting flux backgrounds. A further point which is essential in the
construction of realistic models is the role of the warp factor. Indeed, warping is generic in
flux compactifications including localized sources, and its effect on the low energy effective
physics in four dimensions is not completely understood yet.

From a more formal viewpoint, another question arising in the context of flux com-
pactifications concerns the relations existing between lower dimensional supergravities and
higher dimensional supergravity/string theories. It would be very interesting to understand
which supergravities can be derived via dimensional reduction from a higher dimensional
theory. Here, we have approached a more circumscribed question, namely which deforma-
tions of the ungauged N = 2 theory associated with Calabi-Yau compactifications can be
realized via string compactifications with fluxes. As we have seen, the answer should be
searched in the realm of SU(3)×SU(3) structures. We remark that the gaugings realized
in this context are all associated with the hypermultiplet sector of N = 2 supergravity,
hence the gauge group of the 4d theory remains abelian. It would be interesting to study
if it is possible to obtain N = 2 gaugings which determine a non-abelian gauge group (see
[160] for an M-theory derivation).

In order to gain a deeper understanding of these issues, it would be important to
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elaborate new explicit examples of string backgrounds with fluxes, possibly in a generalized
geometry framework. For instance, in order to fully exploit the SU(3)×SU(3) structure
formalism, one should find an example in which the basis defining the truncation consists
of forms of mixed degree (not simply related to a basis of forms of pure degree by a
symplectic rotation). In this thesis, we have studied in detail the case of dimensional
reduction on certain coset spaces with SU(3) structure [P3]. These comprise the currently
known examples of N = 1 AdS4 vacua of type II supergravity in the absence of sources, and
have the remarkable property of yielding a consistent truncation. The constraints imposed
both by the coset structure and by N = 2 supersymmetry allow to take stringy corrections
into account, going in this way beyond the supergravity approximation. It would be
interesting to derive a thorough description of these corrections in the compactification
context. Though not directly applicable to phenomenology, these AdS4 supersymmetric
solutions, together with their non-supersymmetric companions existing on the same coset
spaces, are relevant [161] for the recent activity on the AdS4/CFT3 correspondence [162].



Appendix A

Notation and conventions

A.1 Indices

We summarize here the meaning of the several different indices used all over this thesis:

letters range labeling

M,N, . . . 0, . . . , 9 10d spacetime coords.

µ, ν, . . . 0, . . . , 3 4d spacetime coords.

m,n, . . . 1, . . . , 6 6d space coords.

Λ,Σ, . . . 1, . . . , 12 vector repr. of O(6,6), i.e. T ⊕ T ∗ coords.

a, b, . . . 1, . . . , b+ coordinates for M+ (Mks for Calabi-Yau 3–folds)

A,B, . . . 0, 1, . . . , b+ projective coords. for M+ (Mks for Calabi-Yau 3–folds)

A,B, . . . 1, . . . , 2(b− + 1) fundamental repr. of Sp(2b+ + 2,R)

i, j, . . . 1, . . . , b− coordinates for M− (Mcs for Calabi-Yau 3–folds)

I, J, . . . 0, 1, . . . , b− projective coords. for M− (Mcs for Calabi-Yau 3–folds)

I, J, . . . 1, . . . , 2(b− + 1) fundamental repr. of Sp(2b− + 2,R)

u, v, . . . 1, . . . , 4(b− + 1) quaternionic coordinates

A,B, . . . 1, 2 fundamental repr. of SU(2)

In section 2.3, and only there, the greek indices µ, ν . . . label the complex coordinates
on the Calabi-Yau manifold M6.

Flat indices are denoted by underlining the letters associated with the corresponding
curved indices. For instance, we denote the 10d vielbein by eM

N .
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A.2 Differential forms and the Hodge dual

In the main text we deal with a 10d spacetime M10, decomposed into a 4d spacetime M4

and an internal, compact 6d space M6. The manifold M6 is Riemannian, while M10 and
M4 are Lorentzian, with a (−+ . . .+) signature.

The manifold Md is assumed orientable, i.e. it admits a globally defined and nowhere
vanishing top form vold (the volume form). We fix the orientation requiring the coefficient
of vold to be positive. Given a local coframe {eM}, we also take

e0 ∧ e1 ∧ . . . ∧ ed−1 = + vold . (A.1)

The Levi-Civita tensor is defined in flat indices by

ǫM1...Md
:= ǫ[ M1...Md ] , ǫ01...d−1 := +1 . (A.2)

Hence in curved indices we have

ǫM1...Md
≡ ǫN1...Nd

e
N1

M1
· · · eNd

Md
⇒ ǫ01...d−1 = det eN

M =
√
| det gMN | . (A.3)

With this definition, ǫ transforms tensorially, and indices can be raised using the metric.
Contractions of two Levi-Civita symbols yield

ǫM1...MrP1...Pd−rǫN1...NrP1...Pd−r
= (−1)t r!(d− r)! δM1...Mr

N1 ... Nr
, (A.4)

where δM1...Mr

N1 ... Nr
:= δ

[M1

N1
· · · δMr]

Nr
, while t = 0 if Md is Riemannian and t = 1 if Lorentzian.

Differential p-forms come with a factor of p! , i.e.

Ap =
1

p!
AM1...Mp

dxM1 ∧ . . . ∧ dxMp . (A.5)

We define the Hodge dual by

∗Ap :=
1

p!(d− p)!AM1...Mp
ǫ
M1...Mp

Mp+1...Md
dxMp+1 ∧ . . . ∧ dxMd . (A.6)

It satisfies (again, t = 0 if Md is Riemannian, and t = 1 if Lorentzian):

∗ ∗ Ap = (−)p(d−p)+tAp . (A.7)

If Ap and Bq are p– and q– forms respectively, with p ≤ q, we define the contraction

ApyBq :=
1

p!(q − p)!A
M1...MpBM1...MpMp+1...Mq

dxMp+1 ∧ · · · ∧ dxMq . (A.8)

Then we have
Ap ∧ ∗Bp = ApyBp ∗ 1 , (A.9)

so that the kinetic term of a p–form potential Ap can be written as −1
2

∫
dA ∧ ∗dA .

In the main text, ten dimensional quantities are denoted by a ˆ symbol.
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If F̂p = Fp−k ∧ ωk is a p–form living on M10, while Fp−k lives on M4 and ωk lives on M6,
then the 10d Hodge dual splits into 4d and 6d Hodge duals as

∗F̂n = (−1)k(n−k) ∗ Fn−k ∧ ∗ωk . (A.10)

Recalling the definition of the involution λ in eq. (3.5) we also deduce

∗λ(F̂n) = ∗λ(Fn−k) ∧ ∗λ(ωk) . (A.11)

A.3 Clifford algebra and spinors

A.3.1 Gamma matrices

The 10d gamma matrices ΓM generate the Cliff(9, 1) algebra, and satisfy

{ΓM ,ΓN} = 2gMN ,

where gMN is the metric on M10. The 4d and 6d gamma matrices γµ and γm generate
respectively the Cliff(3, 1) and the Cliff(6) algebras, i.e.

{γµ, γν} = 2gµν , {γm, γn} = 2gmn .

We choose a Majorana representation for the Cliff(3, 1) and Cliff(6) gamma matrices. The
γµ are all real; they are hermitian, except γ0 which is antihermitian. The γm are all purely
imaginary and hermitian.

Note that the 4d supergravity literature often adopts a (+−−−) signature convention
for the 4d metric. When switching from this mostly − to our mostly + signature, the
γµ get multiplied by a factor of i. The original 4d supergravity formulae reported in this
thesis have been retouched accordingly.

The 4d and 6d chirality matrices are respectively

γ5 = − i

4!
ǫµνρσγ

µνρσ = −iγ0γ1γ2γ3 , γ =
i

6!
ǫmnpqrsγ

mnpqrs , (A.12)

so that both γ5 and γ are purely imaginary and hermitian, and square to +1. An identity
which will be useful in appendix B is

γγm1...mk
=
i(−)[ k+1

2
]

(6− k)! ǫm1...mkmk+1...m6
γmk+1...m6 . (A.13)

Concerning the Cliff(9, 1) gamma matrices, we build ΓM = (Γµ,Γm) by tensoring the
Cliff(3, 1) and Cliff(6) gamma matrices:

Γµ = γµ ⊗ 1 , Γm = γ5 ⊗ γm .

Notice that the ΓM obtained in this way are all real. The 10d chirality matrix is given by

Γ11 = γ5 ⊗ γ , (A.14)

and is real and hermitian.
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A.3.2 Weyl spinors and Majorana spinors

We recall that on Spin(3,1) spinors one can impose either the Weyl or the Majorana
condition. Similarly, on Spin(6) spinors one can impose either the Weyl or a reality
condition. On the other hand, for Spin(9,1) spinors the Majorana and Weyl conditions are
allowed simultaneously (see e.g. [4, vol. 2, appendix B]).

3+1 dimensions

For Spin(3,1) spinors, the Majorana (charge) conjugation can be defined using the
charge conjugation matrix C, which satisfies

(γµ)T = −C−1γµC , CT = −C , C−1 = −C∗ . (A.15)

For any spinor ε, its charge conjugate εc is defined by

εc := C(ε̄)T ,

where ε̄ := iε†γ0 . Adopting the Majorana representation for the Cliff(3, 1) gamma matrices
specified above, we take C = −iγ0, in such a way that the charge conjugation acts just by
complex conjugation:

εc ≡ C(ε̄)T = ε∗ .

With this choice, a Spin(3, 1) Majorana spinor, i.e. a spinor satisfying εc = ε, is just a real
spinor.

Notice that if ε+ is a Weyl spinor with positive chirality: γ5ε+ = ε+, then ε− := εc
+ is

again a Weyl spinor, with opposite chirality (and vice versa). Indeed, from (A.12), (A.15),
we have that γT

5 = C−1γ5C. Then

γ5ε
c
+ ≡ γ5C(ε̄+)T = C(ε̄+γ5)

T = C(iε†+γ
0γ5)

T = −C(i(γ5ε+)†γ0)T = −εc
+ .

In our Majorana representation of the Cliff(3, 1) gamma matrices, we have ε− ≡ ε∗+; its
opposite chirality with respect to ε+ follows immediately by the fact that γ5 is purely
imaginary.

6 dimensions

On Spin(6) spinors, one can impose a reality condition as follows. For any Spin(6)
spinor η, define the conjugate ηc := Dη∗, where D is the intertwiner relating the γm to
their complex conjugate: −γm∗ = D−1γmD. Then η satisfies the reality condition if ηc = η.

Now, if η+ has positive Spin(6) chirality (γη+ = η+), then η− := ηc
+ has negative

chirality. Indeed, recalling (A.12) we have: γηc
+ = γDη∗+ = −D(γη+)∗ = −ηc

+.
In our Majorana representation of the gamma matrices, in which all the γm are imagi-

nary, D can be taken as the identity, hence η− ≡ η∗+.

9+1 dimensions

Since our Cliff(9,1) gamma matrices are all real, a Majorana Spin(9, 1) spinor is just a
real spinor. If ζ is any Spin(9, 1) Majorana spinor, then we can introduce Majorana-Weyl
spinors of positive/negative chirality by ζ± := (1 ± Γ11)ζ. This preserves the Majorana
condition because the Γ11 given in (A.14) is real.
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A.4 SU(3) structure conventions

In this subsection we work with normalized spinors: η†+η+ = 1. We relate the different
SU(3)–invariant objects on M6 as follows

gmn = JmpI
p
n , (A.16)

Jmn = ∓iη†±γmnη± , Ωmnp = −iη†−γmnpη+ . (A.17)

where, as in subsection 2.2.2, η± are globally defined nowhere vanishing chiral spinors, I is
the almost complex structure, J is the almost symplectic 2–form, and Ω is the decomposable
(3,0)–form. J and Ω satisfy the compatibility condition J ∧Ω = 0, so that J is (1,1) with
respect to I.

A useful decomposition of the chirality projectors on the basis of eigenstates {η±, γmη∓}
is

1± γ
2

=
(
η±η

†
± +

1

2
γmη∓η

†
∓γm

)
. (A.18)

This can be used to show that

γmη+ = −iJmnγ
nη+ (A.19)

γmnη+ = iJmnη+ +
i

2
Ωmnpγ

pη− (A.20)

γmnpη+ = iΩmnpη− + 3iJ[mnγp]η+ . (A.21)

Using the holomorphic projector

P =
1

2
(1− iI) ,

existing also if the almost complex structure is not integrable, we introduce the gamma
matrices with holomorphic/antiholomorphic indices i, ı̄ = 1, 2, 3 :

γi := P i
nγ

n and γ ı̄ := P̄ ı̄
nγ

n . (A.22)

From (A.19) and (A.16) we see that γiη+ = 0. Instead γ ı̄η+ transforms in the 3̄ of SU(3).
With the conventions listed above, one also has

∗J =
1

2
J ∧ J , ∗1 ≡ vol6 =

1

6
J ∧ J ∧ J =

i

8
Ω ∧ Ω̄ , (A.23)

as well as, using the fierzing (2.61):

8η+ ⊗ η†+ = e−iJ , 8η+ ⊗ η†− = −iΩ . (A.24)





Appendix B

Mukai pairing and Clifford map

In this appendix we collect some relations involving the Mukai pairing and the Clifford map
(defined in (2.51) and (2.59) respectively), which turn out to be useful in the generalized
geometry computations performed in the main text. We also include a computation mak-
ing explicit the relation between Spin(6,6) pure spinors and generalized almost complex
structures.

We recall that the Mukai pairing is antisymmetric in six dimensions. Further simple
properties are

λ(ebA) = e−bλ(A) , (B.1)

〈e−bA, e−bC〉 = 〈A,C〉 , (B.2)

〈A, ∗C〉 = 〈C, ∗A〉 , (B.3)

〈A±, λ(C±)〉 = ±〈C±, λ(A±)〉 (B.4)

〈A,ΓΛC〉 = 〈C,ΓΛA〉 , (B.5)

where A,C ∈ ∧•T ∗M6, b ∈ ∧2T ∗M6, and the Cliff(6, 6) gamma matrices ΓΛ correspond to
dym∧ or ι∂m

, as in the main text (see (2.50)).
The action of the operator ∗λ on the forms can be evaluated using the Clifford map

(2.59) and identity (A.13):

✏✏
✏∗ λ(A) = −iγ/A . (B.6)

Since ✟✟λ(A) = /AT , this also reads

✟✟∗ A = −iγ /AT . (B.7)

Then the Mukai pairing translates under the Clifford map as [33]

〈Ak, C6−k〉 =
i

8
tr
(
γ /A T

k ✟
✟C6−k

)
vol6 , (B.8)

where vol6 is the volume form of M6 and the trace is taken over the spinorial indices of
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the Cliff(6) gamma matrices. Indeed,

tr
(
γ /A T

k ✟
✟C6−k

)
vol6 =

i

[(6− k)!]2 (∗A)m1...m6−k
Cn1...n6−ktr

[
γm1...m6−kγn1...n6−k

]
vol6

= 8i (−)[
6−k
2 ] (C6−ky(∗Ak)

)
vol6

= −(−)[
k+1

2 ] 8i Ak ∧ C6−k

= −8i 〈Ak, C6−k〉 ,

where for the first equality we used (B.7), while the following two steps involve relations
(A.7)–(A.9). For the last equality recall the definition (2.51) of the Mukai pairing.

If C± is an even/odd polyform, the operator corresponding to the action of the Cliff(6)
gamma matrices on /C± is given by [33]

γm/C± = ✭✭✭✭
✭✭✭✭

✭
(dym∧+gmnι∂n

)C± , /C±γ
m = ± ✭✭✭✭

✭✭✭✭
✭

(dym∧ −gmnι∂n
)C± . (B.9)

With an abuse of notation, in the main text sometimes we write expressions like
→
γ mC±

and C±
←
γ m, to be read as the Clifford map counter-image of (B.9). From (B.9) we see that

the Cliff(6, 6) action on the polyforms, introduced in (2.48), translates under the Clifford
map as

✘✘✘
✘✘dym ∧ C± =

1

2
[γm, /C± ]± , ✘✘✘

✘i∂m
C± =

1

2
[γm, /C± ]∓ , (B.10)

where [ , ]± stands for anticommutator/commutator. In the main text we also need the
action of the antisymmetrized product of two Cliff(6, 6) gamma matrices

ΓΛΣ =
(
dym ∧ dyn∧ ,

1

2
[dym∧, ι∂n

] ,
1

2
[ι∂m

, dyn∧] , ι∂m
ι∂n

)
. (B.11)

Under the Clifford map this becomes:

✭✭✭✭
✭✭✭✭dym ∧ dyn ∧ C± =

1

4

[
γmn /C± ± γm /C±γ

n ∓ γn /C±γ
m − /C±γ

nm
]

✭✭✭✭
✭✭✭✭

1

2
[dym∧, ι∂n

]C± =
1

4

[
γm

n /C± ∓ γm /C±γn ∓ γn /C±γ
m + /C±γ

m
n

]

✭✭✭✭
✭✭✭✭

1

2
[ι∂m

, dyn∧]C± =
1

4

[
γ n

m /C± ± γm /C±γ
n ± γn /C±γm + /C±γ

n
m

]

✥✥✥
✥✥ι∂m

ι∂n
C± =

1

4

[
γmn /C± ∓ γm /C±γn ± γn /C±γm − /C±γnm

]
. (B.12)

If C is one of the pure spinors Φ0
± defining the SU(3)×SU(3) structure, then it’s straight-

forward to see how each term appearing in (B.12) transforms under SU(3)×SU(3), and
therefore to locate its position in the diamond (2.68). Indeed, recalling the explicit basis
given in (2.69), we see that for instance γmΦ0

+γ
n ∈ U3̄,3, while Φ0

+γ
mn contains a term

proportional to Φ0
+ ∈ U1,1̄ and a term belonging to U1,3̄ .

As an example of the use of the technology introduced above, we now check the corre-
spondence between the generalized almost complex structures defined from the pure spinors
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(2.64) via the formula (2.54), and the matrices J± given in eq. (2.42). We start from the
case of vanishing b, and write (2.54) for Φ0

±. Recalling eq. (2.63) and the basis (2.50) for
the Cliff(6, 6) gamma matrices, we have

J Λ
± Σ = − 1

2vol6

( 〈ReΦ0
± ,

1
2
[dym∧, ι∂n

]ReΦ0
±〉 〈ReΦ0

± , dy
m ∧ dyn ∧ ReΦ0

±〉
〈ReΦ0

± , ι∂m
ι∂n

ReΦ0
±〉 〈ReΦ0

± ,
1
2
[ι∂m

, dyn∧]ReΦ0
±〉

)
. (B.13)

We evaluate this in the bispinor picture, using eqs. (B.8) and (B.12). For instance, for the
‘south-west’ block we have

− 1

2vol6
〈ReΦ0

±, ι∂m
ι∂n

ReΦ0
±〉 = − i

82
tr
[
γ( ✟✟ReΦ0

±)T (γmn ✟✟ReΦ0
± + ✟✟ReΦ0

±γmn)
]

= − i
2
(η1†

+ γmnη
1
+ + η2†

± γmnη
2
±)

=
1

2
(J1 ± J2)mn .

In the first equality we have written only the non-vanishing terms; to obtain the second
line we substituted (2.60) and used the first of (A.17). The evaluation of the other blocks
is analogous, and we obtain eq. (2.42) with b = 0. When considering pure spinors with
nonvanishing b, in (B.13) Φ0

± is replaced by Φ± = e−bΦ0
±. We wish to make e−b pass

through the dym∧ and ι∂m
and then use (B.2). While the dym∧ commute with e−b, for the

contractions we have ι∂m
e−b = e−b(ι∂m

− bmndy
n∧). Taking this into account we recover

the two matrices
(

1 0
−b 1

)
and

(
1 0
b 1

)
of eq. (2.42).





Appendix C

Type IIA action with fluxes

In this appendix we make explicit the compatibility of the system of democratic EoM/Bianchi
identities (with no localized sources) considered in section 3.1 with the standard formu-
lation of the type IIA action.1 In doing so, we reconsider an issue already discussed in
the literature [85, 87] concerning the expression for the Chern-Simons piece of the action
when NSNS and RR background fluxes are switched on. We derive a general form of this
Chern-Simons term by requiring consistency with the equations of motion.

In order to make contact with the standard formulation of (massive) type IIA su-
pergravity, we need to break the democracy among the RR fields stated in section 3.1.
Eliminating via the self-duality relations (3.5) the forms2 F6, F8, F10 from eqs. (3.6) and
(3.9), we are left with the following set of independent equations in terms of H,F0, F2 and
F4 only:

dH = 0 , (C.1)

dF0 = 0 , dF2 −HF0 = 0 , dF4 −H ∧ F2 = 0 , (C.2)

d(e−2φ ∗H)− F0 ∧ ∗F2 − F2 ∧ ∗F4 −
1

2
F4 ∧ F4 = 0 , (C.3)

d ∗ F2 +H ∧ ∗F4 = 0 , d ∗ F4 +H ∧ F4 = 0 . (C.4)

In a topologically trivial background (where no fluxes can be switched on), the Bianchi
identities (C.1) and (C.2) are solved in terms of globally defined NS 2–form B as well as
1– and 3–form RR potentials C1 and C3 :

H = dB , F0 = const , F2 = dC1 +BF0 , F4 = dC3 −H ∧ C1 +
1

2
B2F0 . (C.5)

Now we can immediately check that the remaining equations (C.3) and (C.4) correspond
to the EoM for the potentials B,C1 and C3 descending from the standard massive type
IIA (bosonic) action SIIA, with mass parameter F0. Denoting SIIA = Skinetic +SCS, we have
(see e.g. [48]):

Skinetic =
1

2

∫ [
e−2φ

(
R∗1+4dφ∧∗dφ−1

2
H∧∗H

)
−1

2

(
F0∧∗F0+F2∧∗F2+F4∧∗F4

)]
, (C.6)

1The problem of writing a supergravity action in the presence of general D-branes is studied e.g. in
[163, 164]. These papers also discuss a possible background independent formulation.

2In this appendix all the forms are ten dimensional. Since there is no risk of confusion, we omit the
hat symbol over them.
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SCS = −1

4

∫ [
BdC3dC3 +

1

3
F0B

3dC3 +
1

20
F 2

0B
5
]

(C.7)

(the ∧ symbol is understood in SCS). Notice that the F0 = 0 limit yields the standard
massless type IIA action [4, vol. 2].

Things become more subtle if one looks for general global solutions of the Bianchi
identities (C.1) and (C.2) on topologically non-trivial backgrounds, allowing for fluxes of
the NS and RR field-strengths. In this case the expressions in (C.5) are modified as follows
(F0 is still a constant parameter):

H = Hfl + dB ,

F2 = dC1 + F fl
2 +BF0 ,

F4 = dC3 −H ∧ C1 + F fl
4 +B ∧ F fl

2 +
1

2
B2F0 , (C.8)

where the forms labeled with ‘fl’ are defined as the non-exact parts of the solutions, satis-
fying the conditions

HflF0 = 0 , dHfl = 0 , dF fl
2 = 0 , dF fl

4 −Hfl ∧ F fl
2 = 0 . (C.9)

The first condition holds because if F0 6= 0, then the Bianchi identity dF2 − HF0 = 0
implies that H is exact and therefore Hfl = 0. In the expression (C.10) below we will
however keep both Hfl and F0, also because the F0H

fl = 0 constraint can be invalidated by
the possible introduction of localized sources such as O6 planes,3 which modify the Bianchi
identity for F2 (see for instance [87, 66, 164, 165]).

Let’s now consider how the new expressions (C.8) for the field-strengths enter in the
type IIA action. While we can simply substitute such new expressions into the kinetic
terms (C.6), the determination of the Chern-Simons action (C.7) is more delicate. In [85]
a modified form of the Chern-Simons term was obtained by requiring consistency with
the structure of the expected 4d N = 2 gauged supergravity after compactification on a
Calabi-Yau three-fold, while in appendix A of [87] it was deduced by properly modifying
the M-theory Chern-Simons term in order to accomodate for a 4-form flux, and then
performing the reduction to ten dimensions.

Here we propose a general expression for SCS by imposing that the equations of motion
derived from the action still have the form (C.3), (C.4). We can see that this requirement
is satisfied if we preserve the form (C.6) for Skinetic, and modify the Chern-Simons term as
follows:

SCS = −1

4

∫ [
C3H

fl(dC3 + 2F fl
4 ) +B(dC3 + F fl

4 )(dC3 + F fl
4 ) +B2F fl

2 (dC3 + F fl
4 )

+
1

3
B3F fl

2 F
fl
2 +

1

3
F0B

3(dC3 + F fl
4 ) +

1

4
F0B

4F fl
2 +

1

20
F 2

0B
5
]
. (C.10)

This expression agrees with - and extends - the results of [85, 87], which just considered
the vanishing F fl

2 case.

3In this case of course the action needs to be completed with the terms describing the couplings to the
localized sources.
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Finally, one can verify that the field-strengths H,F2, F4, as well as the action SIIA, are
invariant under the following globally defined gauge transformations involving the k–form
(infinitesimal) parameters Λk:

δB = dΛ1 , δC1 = dΛ0 − Λ1F0 , δC3 = dΛ2 −HΛ0 − Λ1(F
fl
2 +BF0) . (C.11)

The EoM (C.3), (C.4) are of course gauge-invariant due to the invariance of the field-
strengths.





Appendix D

Geometry of N = 2 supergravity I :
Special Kähler manifolds

Special Kähler manifolds are the scalar manifolds of vector multiplets in 4d N = 2 super-
gravity [73]. In this appendix we provide a definition of this geometry, and we collect the
properties needed in the main text. More thorough discussions can be found, for instance,
in refs. [76, 166, 167]. Here we present the formulae in the notation referring to the special
Kähler manifold M− introduced in subsection 3.3.2. Modulo switching the notation, it is
understood that the same relations hold for M+ too. We recall that for Calabi-Yau 3–folds
we identify M− = Mcs and M+ = Mks.

A characterization of special Kähler manifolds, based on the notion of prepotential, has
already been given in subsection 2.3.2, below eq. (2.25). In the following we provide an
alternative definition [168], which is more intrinsic and does not rely on the prepotential.

A local special Kähler manifold M− of complex dimension b− is a Hodge-Kähler man-
ifold (with line bundle L)1 with the further structure of a holomorphic flat Sp(2b− + 2,R)
vector bundle S over it. Furthermore, the S ⊗L bundle has to admit a symplectic section
V , which locally we denote as

V =

(
ZI(z)

GJ(z)

)
, I, J = 0, . . . , b− ,

such that the Kähler potential reads

K = − log( iV̄ T SV ) = − log i(Z̄IGI − ḠJZ
J) , (D.1)

and satisfying
V T S ∂iV = 0 . (D.2)

Here, S =
(

0 1
−1 0

)
is the Sp(2b− + 2,R) metric, defining the symplectic bilinear product on

the fibers of S, the zi, i = 1, . . . , b−, are complex coordinates on M−, and ∂i = ∂/∂zi.
Notice that K is a symplectic invariant.

1A Hodge-Kähler manifold M is a Kähler manifold admitting a line bundle L →M whose first Chern
class equals the cohomology class of the Kähler form. It follows that the Kähler potential K can be written
as K = − log h, where h is the hermitian metric on the fibers of L (see e.g. [76] for details). This is the
geometry of the scalar manifolds in 4d N = 1 supergravity.
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The advantage of avoiding to define special Kähler manifolds via the prepotential is
related to the fact that this is not a symplectic invariant. In fact there are cases where,
starting from a holomorphic section V for which there exists a given prepotential, by a
symplectic rotation one can move to a new holomorphic section for which a prepotential
does not exist [169]. It can therefore be more convenient to dispose of a definition which
is independent of the explicit choice of the holomorphic section.

In the context of SU(3)×SU(3) structure compactifications (see subsection 3.3.2), the
symplectic structure is provided by the Mukai pairing as in eq. (3.18), and the holomorphic
section is encoded in Φ− = ZIαI−GIβ

I , so that K− = − log i
∫
〈Φ−, Φ̄−〉 . As we discussed,

this is true in particular for a Calabi-Yau 3-fold, where Φ− = Ω and Φ+ = e−b−iJ .
The following relations define the period matrix MIJ , relating the upper and lower

components of the holomorphic section:

GI =MIJZ
J , DiGJ =MJKDiZ

K , (D.3)

where the Kähler covariant derivative acting on the holomorphic section is Di = ∂i + ∂iK.
Whenever a prepotential G can be introduced, we have GI = ∂IG and

GI = GIJZ
J , where GIJ := ∂I∂JG . (D.4)

In this case the period matrixMIJ can be expressed as

MIJ = GIJ + 2i
(ImGIK)ZK(ImGJL)ZL

ZM(ImGMN)ZN
. (D.5)

One can also prove the identities

ZIImGIJ Z̄
J = −1

2
e−K (following directly from (D.1) and (D.4)) (D.6)

DkZ
I
G

kl̄Dl̄Z̄
J = −1

2
e−K(ImM)−1 IJ − Z̄IZJ . (D.7)

Finally, using (D.5) and (D.6), one can see that

(ImM)−1 IJ = −(ImG)−1 IJ − 2eK(ZIZ̄J + Z̄IZJ)

[ReM(ImM)−1] J
I = −[ReG(ImG)−1] J

I − 2eK(GIZ̄
J + ḠIZ

J) (D.8)

[ImM+ ReM(ImM)−1ReM]IJ = −[ImG + ReG(ImG)−1ReG]IJ − 2eK(GI ḠJ + ḠIGJ) .



Appendix E

Geometry of N = 2 supergravity II :
Quaternionic-Kähler manifolds

Quaternionic-Kähler manifolds are the scalar manifolds of the hypermultiplets in 4d N = 2
supergravity [74]. In the following we review their definition and some relevant properties,
mainly following [76].

E.1 Definition

A quaternionic-Kähler manifold is a 4n-dimensional Riemannian manifold whose Levi-
Civita connection has holonomy group contained in Sp(1)× Sp(n).

The degenerate case in which the holonomy is contained just in Sp(n) defines a hy-
perkähler manifold, which is the scalar manifold of hypermultiplets in N = 2 rigid super-
symmetry. For the definition of Sp(n), recall footnote 1 in chapter 5.

An alternative definition of quaternionic-Kähler manifolds is the following. Let Q be
a 4n-dimensional manifold parameterized by coordinates qu, u = 1, . . . , 4n, and endowed
with a Riemannian metric h:

ds2 = huv(q)dq
u ⊗ dqv . (E.1)

For Q to be quaternionic-Kähler, it has to locally admit three almost complex structures
Ix : TQ→ TQ (x = 1, 2, 3) that satisfy the quaternionic (Sp(1) ∼= SU(2)) algebra

IxIy = −δxy
1 + ǫxyzIz, (E.2)

and with respect to which the metric is hermitian: h(IxX, IxY ) = h(X, Y ) ∀X, Y ∈ TQ
(recall the notions introduced in section 2.2). To complete the definition, we introduce a
triplet of locally defined 2–forms, known as the su(2)-valued hyperkähler form:

Kx = Kx
uvdq

u ∧ dqv , Kx
uv = huw(Ix)w

v , (E.3)

as well as a non-trivial principal Sp(1) ∼= SU(2) bundle over Q, of which the hyperkähler
form is a local section. The latter is required to be covariantly constant with respect to
the connection ωx on the bundle:

∇Kx ≡ dKx + εxyzωy ∧Kz = 0 , (E.4)
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and proportional to its curvature Ωx:

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = λKx , (E.5)

where λ is a real number. The λ = 0 limit corresponds to the hyperkähler case. Notice
that when λ 6= 0 eq. (E.5) implies (E.4).

E.2 Properties

The SU(2) defining the bundle over Q introduced above is the same SU(2) ∼= Sp(1) factor in
the holonomy group of Q. In N = 2 supergravity, this also corresponds to the R-symmetry
group rotating the supersymmetries.

For n > 1, quaternionic-Kähler manifolds are Einstein spaces, with Ricci tensor

Ruv = 2λ(n+ 2)huv .

In particular, the quaternionic manifolds arising in 4d, N = 2 supergravity have negative
curvature. Usually the normalization λ = −1 is chosen.

Quaternionic vielbein

Let us introduce the Sp(1) indices A,B = 1, 2 and the Sp(n) indices α, β = 1, . . . , 2n, as
well as the flat Sp(1) and Sp(n) invariant metrics1

ǫAB =

(
0 1
−1 0

)
and Sαβ =

(
0 1n

−1n 0

)
.

Recalling that Q has Sp(1)× Sp(n) holonomy, it is natural to define the vielbein

UAα = UAα
u (q)dqu ,

relating the metric huv with ǫAB and Sαβ:

huv = UAα
u UBβ

v SαβǫAB ,

and satisfying the reality condition

ǫABSαβUBβ ≡ UAα = (UAα)∗ .

One can show that
Ωx = −iλSαβ(σx)

C
A ǫCBUAα ∧ UBβ ,

which also yields
i

2
Ωx(σx)

B
A = −λUAα ∧ UBα .

1In the main text (see chapter 4), the indices α, β = 1, . . . , 2n are replaced by I, J = 1, 2, . . . , 2b− + 2.
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Triholomorphic isometries

The isometries of the quaternionic manifold that respect the quaternionic nature of Q are
called ‘triholomorphic’. Suppose there are r such isometries, and denote by kA, A = 1, . . . r
the Killing vectors generating them.2 Then, the Lie derivative with respect to kA of the
hyperkähler form Kx = λ−1Ωx and of the SU(2) connection ωx must vanish up to an SU(2)
rotation in the SU(2) bundle introduced above:

LkA
Ωx = ǫxyzΩyW z

A , LkA
ωx = ∇W x

A , (E.6)

where W x
A is an SU(2) compensator associated with kA, and ∇ = dqu∇u is the SU(2)

covariant exterior derivative on Q.
To each triholomorphic isometry, one can associate a triplet of real functions Px

A(q) via
the momentum map equation

−ιkA
Kx = ∇Px

A ≡ dPx
A + εxyzωyPz

A. (E.7)

The momentum maps Px
A, x = 1, 2, 3, are known as the Killing prepotentials, and can be

seen as the fundamental objects determining the triholomorphic isometries, in a fashion
analogous to the relation existing between the metric and the Kähler potential on a Kähler
manifold.

From (E.7) and the first of (E.6), one finds [170]

Px
A = ιkA

ωx −W x
A .

For the isometries we consider in the main text, it turns out that [15, 89]

LkA
ωx = 0 ⇒ LkA

Ωx = 0 ,

so that the compensator W x
A vanishes. Hence the formula determining the Killing prepo-

tentials simplifies to
Px

A = ωx
uk

u
A .

This is the relation we use in the main text, cf. eq. (4.12).

2In the main text we have A = 0, 1, . . . b+, where b+ is the number of vector multiplets in the N = 2
theory.





Appendix F

Details of the dimensional reduction
on coset spaces

In this appendix we collect some details of the dimensional reduction on the coset spaces
considered in chapter 5. This can be seen as an application of the general procedure worked
out in chapter 3.

The G-invariant reduction ansatz adopted in chapter 5 strongly constrains the depen-
dence of all the higher dimensional fields on the G/H coordinates, relegating it into the
coframe em introduced in subsection 5.2.1. In particular, the most general G-invariant 10d
metric is (we recall that by the hat symbol we denote the 10d fields):

dŝ2 = e2ϕ(x)gµν(x)dx
µ ⊗ dxν + gmn(x)em(y)⊗ en(y) , (F.1)

where xµ and ym are respectively coordinates on the 4d spacetime and the internal manifold
M6, and gmn satisfies the G-invariance condition discussed in subsection 5.2.1. Components
of the 10d metric with mixed 4d-6d indices are not allowed since there are no left-invariant
1–forms on our coset manifolds (5.1); this feature is common to the massless Kaluza-
Klein ansatz for Calabi-Yau compactifications described in subsection 3.2.1, though here
it is justified differently. Since the invariant scalars on the coset are necessarily constant,
a nontrivial warp factor is also not permitted. As illustrated in chapter 3, the Weyl
rescaling factor e2ϕ(x) in front of the 4d metric is needed in order to obtain a canonical lower
dimensional Einstein-Hilbert term

∫
M4
vol4R4 from the string frame higher dimensional

action
∫

M10
vol10e

−2φR̂. Recalling (3.75), the ansatz φ = φ(x) for the 10d dilaton implies

ϕ(x) = φ(x)− 1

2
log

∫

M6

d6y
√
g6 , (F.2)

where
√
g6 ≡

√
det gmn(x, y) =

√
det gmn(x) | det e

p
q(y)| . Notice that, thanks to this

factorization of the x and y dependence, ∂µ log
√
g6 does not depend on the internal coor-

dinates (this was one of the requirements arising from the analysis of section 3.4), and

∂µϕ = ∂µφ−
1

2
∂µ log

√
g6 . (F.3)

The ansatz for the 10d supergravity field strengths must be chosen consistently with their
Bianchi identities. For instance, from the Bianchi identity dF̂2 = ĤF̂0, one sees that if
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F̂0 6= 0, then the NSNS 3–form Ĥ has to be exact: Ĥ = dB̂, with a globally defined 2–form
potential B̂. The most general B̂ respecting left-invariance on M6 is

B̂ = B + b , (F.4)

where B(x) is along 4d spacetime, while b(x, y) = ba(x)ωa(y) lives on M6 (the left-invariant
2–forms ωa were given in subsection 5.2.1). Again, our ansatz (3.71) here finds a concretiza-
tion in the left-invariance requirement.

We deal with the expansion of the RR fields in subsection F.2.

F.1 Special Kähler geometry from the NSNS sector

Combining the 2–form J of subsection 5.2.2 and the internal NS field b we introduce
t = b + iJ , whose expansion t = taωa on the basis 2–forms defines the complex 4d scalars
ta = ba + iva. The associated kinetic term is determined by

1

8
gmpgnq

(
∂µgmn∂

µgpq + ∂µbmn∂
µbpq

)
=

1

4Vol

∫

M6

∂µt ∧ ∗∂µt̄ = Gab∂µt
a∂µt̄b , (F.5)

where the l.h.s. originates from the reduction of the 10d Ricci scalar and Ĥ2 terms, while
the σ-model metric Gab was introduced in eq. (5.12). The first equality in (F.5) is derived
recalling that the internal metric is fixed by the forms J and Ω defining the SU(3) structure:
indeed, calling I the almost complex structure induced by Ω, we have gmn = JmpI

p
n. Notice

that we get no contribution from the variation of I since the associated Ω, given in eq.(5.14),
is rigid.

The metric Gab is special Kähler: indeed, it can be obtained via Gab = ∂2K
∂ta∂t̄b

from the
Kähler potential

K = − log
4

3

∫
J ∧ J ∧ J = − log 8Vol . (F.6)

It in turn is determined by a prepotential F via the special Kähler geometry formula

K = − log i(X
AFA −XAFA ), where XA ≡ (X0, Xa) = (1,−ta) and FA = ∂F(X)

∂XA .
For each of the cosets we consider, the explicit expressions of Gab and Vol were given in

table 5.1. The (cubic) prepotential reads

F(X) =
1

6
Kabc

XaXbXc

X0
,

where the non-vanishing triple intersection numbers Kabc :=
∫
ωa ∧ ωb ∧ ωc (recall the

2–forms ωa in subsection 5.2.1) are

K123 = I for SU(3)
U(1)×U(1)

K112 = 2I for Sp(2)
S(U(2)×U(1))

K111 = 6I for G2

SU(3)
.

(F.7)

The period matrix NAB of special Kähler geometry is given by the formula (D.5), which
here reads

NAB = FAB + 2i
Im(FAC)XCIm(FBD)XD

XEIm(FEF )XF
, where FAB ≡

∂2F
∂XA∂XB

.
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Equivalently, we can compute it directly from the coset geometry via relation (3.55), derived
using the tools of generalized geometry. We obtain the matrices

ImN = −Vol
(

1 + 4Gabb
abb 4Gabb

b

4Gabb
b 4Gab

)
, (F.8)

ReN = −
(

1
3
Kabcb

abbbc 1
2
Kabcb

bbc

1
2
Kabcb

bbc Kabcb
c

)
. (F.9)

F.2 The RR sector

In order to reduce the RR sector we specialize the general procedure described in section 3.5
for M6 corresponding to our coset spaces (5.1).

The expansion ansatz (3.95) for Ĝ here reads

Ĝ = (GA
(0)+G

A
(2)+G

A
(4))ωA−(G̃(0)A+G̃(2)A+G̃(4)A)ω̃A+(G(1)+G(3))α−(G̃(1)+G̃(3))β (F.10)

where the expansion forms are the left-invariant basis introduced in subsection 5.2.1, and
G(p)(x) and G̃(p)(x) are p–forms in 4d spacetime. Notice that, in contrast to (3.95), here

we are not taking a
√

2 factor multiplying the expansion of the RR field Ĝ. This difference
should be recalled when comparing the expressions of chapter 5 which involve RR fields
with the corresponding ones appearing in the previous chapters.

Going through the derivation of subsections 3.5.1–3.5.3, we identify the 4d variables

GA
(0) = mA , G̃(0)A = eA + qA ξ̃ (F.11)

G(1) = Dξ ≡ dξ − qaAa , G̃(1) = dξ̃

GA
(2) = dAA , G̃(2)A +BG̃(0)A = ImNAB ∗ FB + ReNABF

B

G(3) = −B ∧Dξ + e2ϕ ∗ dξ̃ , G̃(3) = −B ∧ dξ̃ − e2ϕ ∗Dξ

GA
(4) +B ∧GA

(2) +
1

2
B2GA

(0) = e4ϕ
[
(ImN )−1(G̃(0) − ReNG(0))

]A ∗ 1

G̃(4)A +B∧G̃(2)A +
1

2
B2G̃(0)A = e4ϕ

[
− ImNG(0) + ReN (ImN )−1(G̃(0) − ReNG(0))

]
A
∗ 1

where the propagating fields are the two real scalars ξ, ξ̃ and the 1–forms AA. The modified
field strengths read as in (3.114):

FA ≡ dAA +mAB . (F.12)

Furthermore we introduce qA = (0, qa), the qa being the geometric fluxes defined in sub-
section 5.2.1, while mA, eA are constant flux parameters satisfying qam

a = 0. Notice that
the qa correspond to the m0

a introduced in eq. (3.61), and that the mA and eA used here
correspond to the mA

RR and eRRA of chapters 3, 4. We observe that one of the ea is redun-
dant, since it can be eliminated via a constant shift of ξ̃ . This reflects the fact that on our
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cosets the linear combination qaω̃
a is exact (see eq. (5.11)), and therefore doesn’t support

any flux.
Applying the procedure of subsection 3.5.3, we reconstruct the 4d action S

(4)
RR from the

EoM for ξ, ξ̃ and AA. The resulting expression is given in (5.28).
As a last remark, we stress that the whole procedure of section 3.5 applies here with

no need to take any integral over M6. In other words, once the left-invariant truncation
ansatz has been plugged in, the dependence of eqs. (3.93), (3.94) on the internal coordinates
automatically factorizes out.



Appendix G

String loop corrections to the N = 1

coset vacua

In this appendix, we study how string loop corrections affect the tree level supersymmetric
AdS4 solutions of massive type IIA supergravity compactified on the cosets of chapter 5.

As discussed in section 4.2, within an N = 2 theory the N = 1 vacuum conditions arise
by requiring the vanishing of the fermionic (i.e. the gravitino-, hyperino- and gaugino-)
variations under a single linear combination of the two N = 2 supersymmetry parameters.
The conditions associated with general SU(3)×SU(3) structure compactifications, spelled
out in section 4.2, were solved for the specific case of Nearly Kähler manifolds in ref. [93].
Here, we extend the latter analysis employing the string loop corrected quaternionic viel-
bein (5.49) and the associated Sp(1) connection. In particular, the Killing prepotentials
associated with our electric and magnetic gaugings of the quaternionic isometries become,
recalling relation (5.45), the Killing vectors (5.48), and the Calderbank-Pedersen Sp(1)
connection (5.50),

P1
A = −

√
2ρ

ρ2 − cqA , P̃1A = P2
A = P̃2A = 0 ,

P3
A =

√
2

2(ρ2 − c)(eA + ξ̃qA) , P̃3A =

√
2

2(ρ2 − c)m
A . (G.1)

The tree level Killing prepotentials are recovered by taking c = 0 (recall the possible
values of c, given in (5.52)), together with the identification ρ2 = e−2ϕ. The first part of
the analysis performed in subsection 6.1 of [93] goes through in the present case, the only
substantial difference being that the relation between the quaternionic vielbein u, v and the
Sp(1) connection ωx is here slightly more involved than (5.47); this leads to a modification
of the equations arising from the hyperino variation. After a few manipulations, we arrive
at the following N = 1 AdS vacuum condition for our coset reductions (both ± signs are
allowed by susy),

−
[
(ImN )−1 AB +

3ρ2 + c

ρ2
eKX̄AXB

]
P1

B ± i(ImN )−1 AB
(
P3

B −NBCP̃3C
)

= 0 , (G.2)
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the (string frame) AdS cosmological constant being given by

Λ = −3

2
eK |qAXA|2 . (G.3)

We now solve the susy condition in the Nearly Kähler limit. As in subsection 5.6.2, we
define q ≡∑a qa, we rename the only non-vanishing fluxes as e0 → e , m0 → m, and we set
va = v and ba = b for all a. Separating (G.2) into real and imaginary parts, and recalling
(F.6) for K, as well as (F.8), (F.9) for N , we obtain the four real equations

b = ± 4ρ

5ρ2 − c
mIv3

q
, b2 =

ρ2 + 3c

15ρ2 − 3c
v2

−be+
(
b2 +

v2

3

)
qξ̃ +mI(b4 + v2b2) = 0 , −e+ bqξ̃ +mIb3 ± 3ρ2 + c

4ρ
qv = 0 .

This system of equations is solved by

v = vT
5x− c̃

(5x+ 3c̃)x
1

2

, b = bT

[
(x+ 3c̃)3

x(x− c̃/5)

] 1

4

, ξ̃ = ξT

[
x(x+ 3c̃)

x− c̃/5

] 1

2

, ρ2 = ρ2
Tx ,

(G.4)
where by vT , bT , ξ̃T , ρ

2
T we denote the tree level values (5.55) (recall that at tree level ρ2 is

identified with e−2ϕ). We have also defined c̃=ρ−2
T c (note that this depends on the values

of the fluxes appearing in ρ2
T ∼ (me2I)

2

3 q−2), while x is the unique positive solution to the
equation

(5x+ 3c̃)4(x+ 3c̃)x− 5(5x− c̃)3 = 0 , (G.5)

and can easily be determined numerically. The cosmological constant (G.3) here reads

Λ = − q2

5IvT

(x+ 3c̃/5)x
3

2

(x− c̃/5)2
.

The tree level result is recovered by taking c̃ = 0, in which case (G.5) is solved by x = 1.
We have also checked that (G.4), (G.5) extremize the all loop scalar potential (5.51).

We conclude that string loops preserve the main outcome of the tree level analysis:
for any choice of the fluxes e,m, there exists a unique Nearly Kähler supersymmetric
solution. This is however shifted from the tree level position as shown in (G.4). It would
be interesting to study the lifting of this result to a 10d framework.
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