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Introduction
Introduction Regular graphs and scale-free networks
Aims

Introduction

Cooperative behaviour could evaluate in interacting many-body
systems

e physics, sociology, economy, biology,...

Large number of states = relevant statistical description

Phase transitions and critical phenomena

o Critical exponents and universality classes

Effects of disorder on the critical behaviour

Influence of the system structure on the cooperation processes

Develop and apply capable numerical methods

e Monte Carlo methods, combinatorial optimization,...
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Introduction
Introduction Regular graphs and scale-free networks
Aims

Regular graphs and scale-free networks

o Regular graphs - each site has the same degree
e Solid state physics, Crystallography

e Scale-free (SF) networks - degree distribution:  P(k) ~ k™7
e Self-organizing networks

Only a few well connected node

Short distance between any pair of sites

o WWW, Internet, collaboration networks,
neural networks,...

o Real networks: 2 < v <3

Barabasi-Albert model: v =3

@ Dynamical evolving networks
@ Preferential attachment
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Introduction
Introduction Regular graphs and scale-free networks

Aims

AIMS:
@ Study interacting many-body systems in complex structures
@ Analyze cooperative behavior in different macroscopic phases
@ Describe their critical behaviour during phase transitions
SUBJECTS:

@ Non-equilibrium phase transitions and finite size scaling in
weighted scale-free networks

@ Rounding of first-order phase transitions and optimal
cooperation in scale-free networks

© Density of critical clusters in a strongly disordered system

@ Non-equilibrium dynamics of triangular antiferromagnetic
Ising model at T =0
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P . . Weighted scale-free networks
Non-equilibrium phase transitions in scale-free networks ~
The Contact Process

Dynamical mean-field solution
Finite-size scaling
Numerical results

Non-equilibrium phase transitions and finite size scaling in
weighted scale-free networks

o Interactions between agents are possible along the edges of
the network - cooperative behaviour arises

@ Possible some macroscopic phases
e order parameter: strength of the interaction, external field,...

@ Scale-free networks - the structure influences the process

e Homogeneous SF networks (edge weights \; ; = const) @
e conventional mean-field behavior is expected to hold if v > ~, /VEeL
@ Ising model: v, =5
@ Percolation, epidemic spreading: v, = 4
o Phase transition occurs if v > 3
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Weighted scale-free networks
The Contact Process
Dynamical mean-field solution

Non-equilibrium phase transitions in scale-free networks

Finite-size scaling
Numerical results

@ Inhomogeneous SF networks
ight degradation: Ay = ALk "
e weight degradation: ij= W
@ Scales with the degradation exponent p (0 < p < 1)
o Effective degree exponent: ~ = 1_7“
— K

Possible phase transition for v < 3 if u > (3 —~)/2

e It is true for equilibrium critical phenomena (Giuraniuc et. al.)

AIMS:

@ Check this reparametrization working for non-equilibrium
phase transitions

@ Study the form and validity of finite-size scaling true in
Euclidean lattices
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Weighted scale-free networks
The Contact Process
Dynamical mean-field solution

Non-equilibrium phase transitions in scale-free networks

Finite-size scaling
Numerical results

@ Contact Process - Model with non-equilibrium phase
transition

@ Infection spreading model - Directed percolation
universality class

o Network sites = agents, edge = interaction, edge weights =
strength of interaction
@ Definition of dynamics: sites are vacant (@) or occupied (A)
o Infection: ©;A;, A;0; — A;A; with rate \;;
o Immunization: A; — ©; with rate k
e Control parameter: A/k (we choose k = 1)
@ Phase transition:
@ )\ < A. - absorbing phase
o the number of occupied sites tends to zero and vanishes
@ A > ). - active phase
@ the number of occupied sites tends to a constant
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Weighted scale-free networks
The Contact Process
Dynamical mean-field solution
Finite-size scaling

Numerical results

Non-equilibrium phase transitions in scale-free networks

@ Expected to be exact due to long-range interactions

e Dynamical mean field (MF) equations for sites i = 1, ..., N:

% = 3Nl s )

@ pi(t) - time dependent average active point density
@ Three regimes for the critical behavior depends on ~/
o 7' > 4: Conventional MF regime (at v’ = 4 logarithmic
corrections)

e 3 < ' < 4: Unconventional MF regime - critical exponents
depend on +/

e +' < 3: The system for any A value is in the active phase
= No phase transition
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Weighted scale-free networks
The Contact Process
Dynamical mean-field solution

Non-equilibrium phase transitions in scale-free networks

Finite-size scaling
Numerical results

p =L S ANAST) (2)

e where v* =2/d and =1, A =2 (MF exponents)
o Scale-free networks: N « L9

e For typical sites (k ~ (k)):
prvp = N~ 25up (SN2, ANA/2) (3)
@ For the maximally connected site (k ~ N¥/(7=1):

Pmax = N~P/2HA=m/(=1) 5 (SN2 hNA/2)

Numerical Simulations: \
o Barabdsi-Albert network: v =3, my=m=1, N = 2°..212 *
@ We choose ;1 = 1/2 thus o/ = 5 = conventional MF regime
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Weighted scale-free networks
The Contact Process
Dynamical mean-field solution
Finite-size scaling

Numerical results

Non-equilibrium phase transitions in scale-free networks

The order parameter mtyp(/\)

@ Start the infection from a typical and
maximally connected site (here only
the typical case is presented)

Myp(t)

@ Continuous phase transition with
finite-size effects at the criticality

The order parameter ratio r(N) ® Order parameter ratio:

r(N A = Ae) = oy = 27

1

@ Critical point:

yN)

o A\ =2.30(1) (in both cases)

o Finite-size scaling exponent x:
o x[um = 0.54(7) « xghee = 1/2
o xhum —0.27(4) « xlheo = 1 /4

max

Ve
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Non-equilibrium phase transitions in scale-free networks

Weighted scale-free networks
The Contact Process
Dynamical mean-field solution
Finite-size scaling

Numerical results

Scaling of the order parameter
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Time dependence of N,(t)
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o Correlation volume exponent:

. Num __ Theo __
° W%p =21(2) < w% =

, _ eo __
° ngzq - 20(1) A wmax - 2

Dynamical scaling at A\ = A\.:

e " Diffusion” exponent: N,(t) ~ t?

o alim =0.95(1) < alhee =1

o ahum — 0.52(4) < allee = 0.5

o Mean-field value: aMF =0
e Dynamical exponent: @

0 Ciyp = Cmax =05 = (0 =1/2 Nz

M. Karsai, R. Juhdsz and F. Igléi, Phys.Rev.E 73
036116 (2006)

5

N
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Optimal cooperation

Optimal cooperation in scale-free networks The g-state ferromagnetic random bond Potts model
Exact solution for homogeneous evolving networks
Numerical results

Rounding of first-order phase transitions and optimal
cooperation in scale-free networks

@ Phase transition in complex networks with random interactions
@ Study the combined effect of network topology and bond
disorder
Optimal cooperation

@ Each cooperating pair receive a benefit represented by the
edge weights

@ There is a unit support to each component (to each project)

@ Optimal cooperation: the total sum of pair cooperation
benefits and the supports of independent projects is maximal

¥
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Optimal cooperation
Optimal cooperation in scale-free networks The g-state ferromagnetic random bond Potts model

Exact solution for homogeneous evolving networks
Numerical results

@ Potts model is a generalization of the Ising model

H=-) Jjo(oi,0;) , 0i=0,....q—1 (5)
(i)
@ Jjj > 0 - identical ferromagnetic random couplings

@ Partition function: g — oo random-cluster representation

Z=> g%, §(G)=c(G)+8>_ Jj (6)

GCE ijcG
e inverse reduced temperature: 8 — (3/Ingq

@ ¢(G) is a sub-modular function related to the free-energy

o calculated with a combinatorial optimization algorithm in
strongly polynomial time
o largest term ¢* = maxg ¢(G) determines an optimal graph
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Optimal cooperation
Optimal cooperation in scale-free networks The g-state ferromagnetic random bond Potts model

Exact solution for homogeneous evolving networks
Numerical results

@ Phase transition occurs of different order in the
thermodynamic limit depends the strength of disorder A

Exact solution for homogeneous A = (0 case:
@ Homogeneous regular graphs - first order phase transition

@ Homogeneous evolving networks (random graphs, SF
networks,...)

e at each time step a new node is added with p number of edges

Two typical optimal set configuration:

o T < T(0): fully connected diagram
o T > T.(0): empty diagram with isolated nodes

Phase-transition point: T(A =0) = Ju

Maximally first-order phase transition
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Optimal cooperation
Optimal cooperation in scale-free networks The g-state ferromagnetic random bond Potts model

Exact solution for homogeneous evolving networks
Numerical results

Numerical parameters:
o Barabdsi-Albert network with = g =2 and N =20 ... 212
@ quasi-continuous distribution: J(1 4+ A/2) where 0 < A <2

@ For a given size, 100 generated networks and for each, 100
independent realizations of disordered couplings

The magnetization: e m(T): size of the largest cluster in the
T T aoe ] optimal set
e -
526~ | @ Homogeneous system (A = 0): The

oss=»  phase transition is maximally first—orde‘}\@

.. | @ Random system (A # 0): The phase
30 transition rounded and becomes
continuous even for weak disorder
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Optimal cooperation
Optimal cooperation in scale-free networks The g-state ferromagnetic random bond Potts model

Exact solution for homogeneous evolving networks
Numerical results

Structure of the optimal set:

Fraction of intermediate size clusters

0.006 [
@ The optimal set consist:
oo o 1 giant cluster
£ o large number of isolated sites
o002 e small number of clusters with
intermediate size
0.000
0.0
Degree @ The fraction of intermediate size
-0.0 . ..
20 clusters is negligible
4.0 % é
S0 @ The degree distribution of the giant Ve
o cluster keeps the scale-free feature y
120 (with exponent v =3 ) forany T < T¢
-14.0
0.0 1.0 20 3.0 4.0 5.0 6.0
In(k)
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Optimal cooperation
Optimal cooperation in scale-free networks The g-state ferromagnetic random bond Potts model

Exact solution for homogeneous evolving networks
Numerical results

Distribution of the finite-size transition temperatures:

Distribution of Tc(a, V) @ Sample dependent finite-size transition

temperature T.(a, N)

o The largest cluster: N(T.) ~ AN*—~
o Magnetization exponent: x = 0.69

e @ Distribution with two scaling exponents:
Shift of Tc(a, N) o The shift of T2V: 7/ =3.8(2)
. o The standard deviation: v/ = 5.6(2)

@ Scaling collapse: modified Gumbel @
distribution '

Ve

| o Critical temperature: T (co0) = 3.03(2)
40 50 60 70 80 2.0 e from Té?V(N) _ TC(OO) ~ Nl/ﬁl

In(N)

M. Karsai, J-Ch. Anglés d’'Auriac and F. Igléi, Phys.Rev.E 76 041107 (2007)
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Correlated clusters in finite geometries
The breaking-up length
Density of critical clusters

Density of critical clusters in a strongly disordered system

Density of critical clusters in strips of a strongly disordered
system

@ In critical systems correlated clusters appear in all length scales
@ Cluster representations:
o Geometrical clusters: Percolation, Ising, Potts clusters
e Fortuin-Kasteleyn clusters: high-temperature expansion
@ Finite geometry: Restricted L x 4L strip square lattice
@ Density of clusters: clusters touching one or more boundary
e Exactly derivable using conformal mapping
o Calculated for critical percolation (conformal invariance
system with geometrical clusters)
AIMS: Check conformal results for disordered systems
@ Fortuin-Kasteleyn clusters
@ average quantities expected to hold conformal invariance
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Correlated clusters in finite geometries
The breaking-up length

Density of critical clusters in a strongly disordered system 5 P
Yy gy Y Density of critical clusters

Model: Random bond Potts model with large-q state
3-v5 1

@ Magnetization scaling dimensions: x, = *32 |, xs = 3

N

@ Reduced random couplings:
e Bimodal distribution: Kj = K+ A (K. =1/2,0< A <1/2)
o A =0 - Homogeneous limit
o A =1/2 - Percolation limit

The breaking-up length:

@ /,: typical size of compact units
Ip =~ Iy exp [A (@1
@ Choose an appropriate A:

o Smaller than 1/2
o Large enough to I, < L

@ Optimal choice for L = 256:
o Ax5/12= Iy~ 14
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Correlated clusters in finite geometries
The breaking-up length

Density of critical clusters in a strongly disordered system Density of critical clusters

Definition: fraction of samples where a given point belongs to a
cluster with prescribed property

@ Study the densities along the y axis

e y=1//L(I=0..L—1) - continuous limit if /> 1and L > 1
The pp(y) density: py(y) o (sinmy) ™ [(cos )™ + (sin B£)™ — 1]

1.2

1k

@ Clusters which touch both
boundaries

0.8 -

Po

e Good fit between the numerical™
and analytical curves

064

04 {f

oz} @ Inset: Fit close to the surface

% 0.2 04 06 08 1 Xs — Xp = 0.309

[/
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Correlated clusters in finite geometries
The breaking-up length

Density of critical clusters in a strongly disordered system Density of critical clusters

s : : : : The po(y) density:
: | po(y) o (sinmy) ™ (cos )™

@ Clusters touch boundary at y =0
e Good fitif //L > 0.5

@ Deviation: middle size clusters are
underrepresented (long /p)

Po

The pe(y) density: pe(y) o (sinmy) ™

@ Clusters touch either of boundaries ...

@ Strongly influenced by /,

line
Pe
IS

02 04 06 08
%

1

@ Measured along spanning lines

@ Good fit but worse statistic

08 : : : : M Karsai, I. A. Koviacs, J-Ch. Anglés d'Auriac and

0 0.2 0.4 0.6 0.8

nw "F. Igléi, Phys.Rev.E 78 061109 (2008)
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Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
e . Equilibrium autocorrelation function
Non-equilibrium dynamics of the TAFIM at T = 0 1 g ; q
Non-equilibrium autocorrelation function

Non-equilibrium dynamics of triangular antiferromagnetic
Ising model (TAFIM) at T =0

H= —JZ<,-J> ojogj—hY ;o; where o;j==%1 and J<O

° metri rustr m v
o st ots s AR LIRS
P & A'&'AVA'A'AVAVAV
iV VAV AVAYAVAVAN

e Reduced magnetic field: H = h/kgT AvAvAv"Av""Av
AVAVAVAVAVAVAV. V4

o if T—=0=H=0(1)
At T =0:
@ Non-zero residual entropy at the ground state
o Highly degenerated ground state - loose spins
@ Expanded critical phase at T, = 0 between 0 < H < Hkr

@ Kosterlitz-Thouless phase transition at Hxr ~ 0.266
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Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
Equilibrium autocorrelation function
Non-equilibrium autocorrelation function

Non-equilibrium dynamics of the TAFIM at T = 0

Non-equilibrium dynamics:
@ Quench the system from T = oo to T, =0
@ Defects of three neighbouring T or | spins

@ Zero temperature random update Glauber dynamics
o Accept spin a flip only if it does not increase the energy

Analog problems: XY model, fully frustrated Ising model

@ diffusive non-equilibrium dynamics with logarithmic corrections

TAFIM: contradictory interpretations in the literature

o Diffusive dynamics with z = 2 dynamical exponent and
logarithmic corrections

o Subdiffusive dynamics with an effective exponent z = 2.33

@ All these results were derived from indirect considerations
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Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
Equilibrium autocorrelation function
Non-equilibrium autocorrelation function

Non-equilibrium dynamics of the TAFIM at T = 0

AIMS:
@ Direct study of the non-equilibrium dynamics of TAFIM with
a new parameter
@ Find independent evidences to describe the relevant dynamical
behavior
Non-equilibrium relaxation time:
@ t,: the time when the system reaches its ground state energy
Epmin = —L? after it was proceeded from a random initial state

1

@ t, is size and sample
dependent

In (P (t))

2
0
2
08 “
-6
8

0.6

-

@ sample distribution of t,
PL(ty) o e /(D

@ 7(L): size dependent
0 40000 80000 120000 160000

R characteristic time
Sample distribution of t,(L), L = 192
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Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time

e . Equilibrium autocorrelation function
Non-equilibrium dynamics of the TAFIM at T = 0 1 g ; q
Non-equilibrium autocorrelation function

@ Two possible scenarios for the scaling of (t,):

n(l)~ L% and (L) ~ LZIn(L/Lo)

Fitting of (t,) with 71(L) and 72(L)

SR @ z, Loy, A parameter fit:
s (L) = 15512288
g ‘b (L) = .17412In(L/3.14)
g‘ 0 01 mn?i) 03 04 Q@ Z = 2 was Obtalned, but not
2x10° | f|Xed| I
i — @ inset: extrapolation of
" '/.‘,, ‘ <‘[r(L)> . P _ 2 + 1 :> 7~ 2
0 200 480 600 800 eff |n(L/L0) —=

e For sufficiently large size the two scenarios are distinguishable
@ The diffusive dynamical assumption with z = 2 and
logarithmic correction has a much better fit
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Triangulal tiferromagnetic Ising model
am dynamics
rium relaxation time
autocorrelation function
Non-equilibrium autocorrelation function

Non-equilibrium dynamics of the TAFIM at T = 0

@ Two time correlation function
e t: execution time, s: waiting time

@ Invariant under time-translation = it depends only on the
difference (t — s)

Aeq(t,s) ~ (t —s)™% where ac=203/vzés2f/v=1/2

1

Seg, e Equilibrium state:
~ thermalization from a
5 random initial state
g o Power-law behaviour for

5310 + \/EEL

= t—s>40 !

bl e ] : : .
S0 o ‘ ‘ o Fitted straight line:
1 10 100 1000 10000

log(t-) ac~025=2z~2

Equilibrium autocorrelation for different s
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Triangulal tiferromagnetic Ising model
am dynamics
rium relaxation time

Equilibriu utocorrelation function

Non-equilibrium dynamics of the TAFIM at T = 0 Non-eq i

@ Use the previously calculated a. ~ 0.25 exponent
@ Scaling of the autocorrelation function following the two scenarios:

A (s, ) ~ 57A(%) Aog(s, 1) ~ 5-2<A( 289

-14
3 , -
S 1 2
S o =
S - . 21
1 e
5 7, 15 2
< Inw <
5 s & In(tn(s)s In@)
o © 3
5 z
-4
$510 ——
st a=25 “
-
6| 55160 w“h
5=640
, Ls=12e0
6 7 o 1 2 3 4 5 6

In(tIn(s)’s In(t))

@ Logarithmically corrected scaling supply a better asymptotic
collapse
M. Karsai, J-Ch. Anglés d’'Auriac and F. Igléi, submitted to J. Stat. Mech.
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Conclusions

Conclusions

@ Cooperative behaviour and phase transitions in regular lattices
and complex networks

@ Completed studies in four different subjects

e Non-equilibrium phase transitions in scale-free networks

o Optimal cooperation in scale-free networks

e Density of critical clusters in a strongly disordered system

e Non-equilibrium dynamics of triangular antiferromagnetic Ising
model at T =0

@ New results are published in referred scientific journals ;

o M. Karsai, R. Juhasz and F. Igléi, Phys.Rev.E 73 036116 (2006) Ve
@ M. Karsai, J-Ch. Anglés d'Auriac and F. Igléi, Phys.Rev.E 76 041107 (2007)
@ M. Karsai, I. A. Kovics, J-Ch. Anglés d'Auriac and F. Igléi, Phys.Rev.E 78 r

061109 (2008) -
@ M. Karsai, J-Ch. Anglés d'Auriac and F. Igldi, submitted to J. Stat. Mech. =
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Conclusions

THANK YOU FOR YOUR ATTENTION!
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