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une perspective mathématique et numérique
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Systèmes quantiques à grand nombre de particules : une perspective mathématique et numérique.

Résumé : Ce mémoire est consacré à l’étude mathématique de divers modèles variationnels
permettant la description de systèmes quantiques, en particulier infinis. Les outils mathématiques
utilisés sont ceux de l’analyse non linéaire, du calcul des variations, des équations aux dérivées
partielles, de la théorie spectrale et du calcul scientifique.

Une première partie contient quelques résultats pour des systèmes finis. Nous étudions des
approximations de l’équation de Schrödinger pour N électrons dans une molécule ou un atome,
puis le modèle de Hartree-Fock-Bogoliubov pour un système de fermions interagissant avec une
force de type gravitationnelle.

Dans une seconde partie nous proposons une nouvelle méthode pour démontrer l’existence de
la limite thermodynamique pour des systèmes quantiques interagissant avec la force de Coulomb.

Ensuite, nous construisons deux modèles de type Hartree-Fock pour des systèmes infinis. Le
premier est un modèle relativiste, déduit de l’électrodynamique quantique, et qui permet de décrire
le comportement d’électrons, couplés avec celui du vide de Dirac qui peut se polariser. Le second
modèle décrit l’état d’un cristal non relativiste en présence d’un défaut chargé ; il est complété par
une nouvelle approche numérique.

La dernière partie du mémoire est consacrée au problème de pollution spectrale, un phénomène
observé lorsque l’on cherche à calculer des valeurs propres au milieu du spectre essentiel, par
exemple pour des opérateurs de Dirac ou de Schrödinger périodique.

Mots clés : physique mathématique, calcul des variations, équations aux dérivées partielles,
théorie spectrale, analyse numérique, mécanique quantique, théorie quantique des champs, chi-
mie quantique, équation de Schrödinger, modèle Hartree-Fock, modèle Hartree-Fock-Bogoliubov,
limite thermodynamique, polarisation du vide, renormalisation de charge, défaut dans un cristal,
fonctions de Wannier, pollution spectrale.

Large Quantum Systems: a Mathematical and Numerical Perspective.

Abstract: This thesis is devoted to the mathematical study of variational models for large
quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations,
partial differential equations, spectral theory, and numerical analysis.

The first part contains some results on finite systems. We study several approximations of the
N -body Schrödinger for electrons in an atom or a molecule, and then the so-called Hartree-Fock-
Bogoliubov model for a system of fermions interacting via the gravitational force.

In a second part, we propose a new method allowing to prove the existence of the thermody-
namic limit of Coulomb quantum systems.

Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic
theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons,
coupled to that of Dirac’s vacuum which can become polarized. The second model describes a
nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is
also proposed.

The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed
when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator,
for instance for periodic Schrödinger or Dirac operators.

Keywords: mathematical physics, calculus of variation, partial differential equations, spectral the-
ory, numerical analysis, quantum mechanics, quantum field theory, quantum chemistry, Schrödinger
equation, Hartree-Fock model, Hartree-Fock-Bogoliubov model, thermodynamic limit, vacuum po-
larization, charge renormalization, quantum crystal with a defect, Wannier functions, spectral
pollution.
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Introduction

Dans ce mémoire, nous présentons divers travaux consacrés à l’étude mathématique de cer-
tains systèmes quantiques. Les modèles abordés permettent la description de la matière à l’échelle
microscopique, et, surtout, leur comportement lors du passage à l’échelle macroscopique.

La plupart des systèmes étudiés sont composés de fermions interagissant à travers un champ
électromagnétique classique (ce dernier n’est pas quantifié et il n’y a donc pas de photon). Certains
systèmes sont non relativistes (chapitres 1, 3 et 5) alors que pour d’autres les effets relativistes
sont pris en compte (chapitres 2 et 4). Nous étudions aussi des systèmes de fermions interagissant
seulement avec la force gravitationnelle. Les modèles étudiés sont issus de la physique atomique
et de l’état solide, de la chimie moléculaire et de la théorie quantique des champs. Dans plusieurs
cas, ils comprennent un nombre infini de particules.

Les méthodes mathématiques utilisées sont celles de l’analyse non linéaire, du calcul variation-
nel, des équations aux dérivées partielles, de la théorie spectrale et du calcul scientifique.

Une grande partie du mémoire est consacrée à l’étude de modèles stationnaires par des méthodes
variationnelles. Souvent il s’agit de démontrer l’existence d’un minimum (ou de points critiques)
pour une fonctionnelle non linéaire modélisant l’énergie (libre) totale du système, et d’établir les
propriétés des minimiseurs, pertinentes d’un point de vue physique. Les problèmes sont toujours
localement compacts, mais ils sont posés dans tout l’espace physique R

3, avec une possible perte
de compacté à l’infini. Dans beaucoup de cas, une originalité notable est que la variable de la
fonctionnelle d’énergie est un opérateur auto-adjoint, pouvant être de rang infini (contrairement au
cadre classique du calcul variationnel où la variable est souvent une fonction à valeurs complexes
ou vectorielles). Ceci est toujours le cas lorsque l’on désire modéliser des systèmes quantiques com-
portant une infinité de particules. Les propriétés des minimiseurs peuvent alors être très délicates
et mener à la description de phénomènes physiques subtils (renormalisation de charge au chapitre
4, caractère diélectrique d’un cristal au chapitre 5).

Un problème récurrent dans notre travail est celui de l’étude de certains systèmes dans la limite
où le nombre de particules tend vers l’infini. On parle de limite thermodynamique. On s’intéresse
alors à la convergence de l’énergie (par unité de volume ou par particule) et à l’identification précise
de sa limite, ainsi qu’à la convergence des états eux-mêmes. Cette technique est souvent utilisée
pour construire des modèles pertinents pour les systèmes infinis.

Nous étudions aussi certaines équations dépendant du temps. Ce sont toujours des systèmes
Hamiltoniens (équation de Schrödinger) pour lesquels nous démontrons l’existence de solutions, la
stabilité orbitale des solutions stationnaires et, éventuellement, l’explosion en temps fini (si elle a
lieu).

Finalement, une dernière composante essentielle de notre travail est la simulation numérique
des modèles étudiés, et la construction de méthodes algorithmiques robustes. Pour simuler de
tels systèmes, l’effort de calcul à réaliser est souvent déraisonnablement grand. Il est donc très
important d’apporter la rigueur nécessaire à l’efficacité des calculs.

Le mémoire est organisé comme suit. Chaque chapitre contient un exposé assez détaillé d’un
ensemble de résultats, sur un thème précis. Les chapitres sont quasiment indépendants et peuvent
être lus séparément. Le lecteur trouvera ci-après une liste des articles de recherche dont le contenu
est développé dans chaque chapitre, avec un très bref résumé.
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10 Introduction (FR)

Chapitre 1. Atomes et molécules non relativistes

Le premier chapitre est consacré à l’étude de l’équation de Schrödinger et de ses approximations
non linéaires, pour la description des atomes et des molécules. Un système de N électrons dans
une molécule est décrit par un opérateur de Schrödinger ayant la forme

H = −∆ +W (x)

et défini sur L2((R3)N ,C) (en fait sur le sous-espace constitué des fonctions antisymétriques).
La fonction W comprend l’interaction Coulombienne entre les électrons et les noyaux atomiques
(généralement modélisés comme des particules ponctuelles classiques) et l’interaction entre les
électrons eux-mêmes. Elle dépend donc des positions spatiales des noyaux atomiques. Le Laplacien
modélise lui la somme des énergies cinétiques des N électrons. On s’intéresse aux états liés de la
molécule correspondant aux solutions stationnaires de l’équation de Schrödinger, c’est-à-dire aux
fonctions propres de H :

HΨ = EΨ. (1)

Si de nombreuses propriétés mathématiques du spectre l’opérateur H sont connues, ceci est souvent
d’un bien faible intérêt pratique : la dimension de l’espace L2((R3)N ,C) sur lequel H est défini
rend la résolution numérique directe de l’équation (1) tout simplement inaccessible dès que N & 6
ou 7. Pour cette raison, les physiciens et les chimistes utilisent des modèles approchés, qui sont
très souvent non linéaires.

Le premier modèle que nous avons étudié dans [1, 2, 3, 4] est appelé multi-configurations.
Il consiste à restreindre la forme quadratique Ψ 7→ 〈Ψ,HΨ〉 au sous-ensemble de la sphère de
L2((R3)N ,C), constitué des fonctions sous la forme

Ψ =
∑

1≤i1,···iN≤K

ci1,...,iN
ϕi1 ⊗ · · · ⊗ ϕiN

.

Dans cette formule, les {ϕi}K
i=1 forment un système orthonormé de L2(R3,C) et les {ci1,...,iN

} sont
des nombres complexes (antisymétriques par rapport aux échanges des ik). Lorsque K = N , on
trouve le célèbre modèle Hartree-Fock (dont les principales propriétés sont rappelées au chapitre
1 et dont l’équation dépendante du temps a été étudiée dans [8]), alors que lorsque K → ∞ on
obtient le modèle initial de Schrödinger posé sur tout l’espace L2((R3)N ,C). Dans [1, 2] nous
avons étudié l’existence d’un minimum et de points critiques pour la fonctionnelle obtenue, avec
N ≤ K < ∞. Celle-ci est non-quadratique en les ϕi et les équations d’Euler-Lagrange associées
forment un système de K équations aux dérivées partielles elliptiques non linéaires couplées. Nous
avons également relié les points critiques construits avec les valeurs propres et les fonctions propres
de l’opérateur H. Dans [3], nous proposons une nouvelle méthode numérique pour le premier état
excité des électrons (la seconde valeur propre de H), basée sur la formulation variationnelle de [2].
On doit essentiellement calculer un point critique de type col ; des tests sont présentés pour des
molécules comprenant deux électrons.

Dans [5], nous avons étudié un autre modèle permettant le calcul approché de la première
fonction propre de H, basé sur les matrices de densité d’ordre deux. Essentiellement, le problème
de minimisation de Ψ 7→ 〈Ψ,HΨ〉 sur L2((R3)N ,C) est remplacé par un problème de minimisation
sur un sous-ensemble convexe du plus petit espace L2((R3)4,C). Comme l’ensemble convexe en
question est très difficile à caractériser, il est approché par un convexe plus simple. Plusieurs
résultats numériques sont présentés.

Enfin, la dernière partie du chapitre contient un résumé des travaux de [6, 7], dans lesquels
est étudié un modèle très simple pour la description des réactions chimiques (celui utilisé par les
chimistes pour décrire des réactions adiabatiques). Il consiste à faire varier les positions des noyaux
en supposant que les électrons restent toujours dans leur état fondamental (la première fonction
propre de H). Une réaction est alors modélisée par un problème variationnel de type “lemme du
col” pour la première valeur propre λ0 de H (qui dépend des positions des noyaux). Si ce problème



Publications du chapitre 1 11

est posé en dimension finie, montrer l’existence du point col est bien sûr un problème complexe,
car il demande de connâıtre les propriétés précises de λ0(·) ‘à l’infini’, qui sont elles-mêmes reliées
à celles de l’opérateur H.

Publications du chapitre 1

[1] ∗M. Lewin, The multiconfiguration methods in quantum chemistry : Palais-Smale condition
and existence of minimizers, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 299–304.

[2] ∗M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Ration.
Mech. Anal., 171 (2004), pp. 83–114.

[3] ∗É. Cancès, H. Galicher, and M. Lewin, Computing electronic structures : a new mul-
ticonfiguration approach for excited states, J. Comput. Phys., 212 (2006), pp. 73–98.

[4] M. Lewin, On the computation of excited states with MCSCF methods, J. Math. Chem., 44
(2008), pp. 967–980. Conference “Mathematical Methods for Ab Initio Quantum Chemistry”,
Nice, Nov. 2005.

[5] É. Cancès, M. Lewin, and G. Stoltz, The electronic ground-state energy problem : a new
reduced density matrix approach., J. Chem. Phys., 125 (2006), p. 64101.

[6] ∗M. Lewin, A mountain pass for reacting molecules, Ann. Henri Poincaré, 5 (2004), pp. 477–
521.

[7] M. Lewin, Solution of a mountain pass problem for the isomerization of a molecule with one
free atom, Ann. Henri Poincaré, 7 (2006), pp. 365–379.

[8] J. Dolbeault, P. Felmer, and M. Lewin, Stability of the Hartree-Fock model with tem-
perature, Math. Models Methods Appl. Sci., 19 (2009), pp. 347–367.

Chapitre 2. Le modèle Hartree-Fock-Bogoliubov pour les étoiles à neutrons et
les naines blanches

Le chapitre 1 est consacré à l’étude des électrons au sein d’une molécule, c’est à dire de particules
quantiques se repoussant (ils sont de même charge) et soumises à un champ extérieur attractif (celui
créé par les noyaux). Dans le chapitre 2, nous étudions un modèle non linéaire célèbre pour des
particules qui s’attirent et ne sont soumises à aucun champ extérieur. La combinaison entre le
caractère attractif de l’interaction et des effets non linéaires permet alors l’existence d’états liés,
même si le système est bien sûr globalement invariant par translation.

Le modèle Hartree-Fock-Bogoliubov (HFB) étudié dans ce chapitre permet de décrire certaines
des propriétés physiques importantes des systèmes quantiques attractifs. Il s’agit d’une fonction-
nelle non linéaire dont les variables sont deux opérateurs γ et α, agissant sur L2(R3,C2), et reliés
par la contrainte :

0 ≤
(
γ α
α∗ 1 − γ

)
≤ 1.

Les opérateurs γ et α sont respectivement appelés matrice densité d’ordre 1 et matrice d’apparie-
ment. L’opérateur α décrit le comportement des paires de Cooper, responsables de la supraconduc-
tivité ou de la superfluidité de certains systèmes.

Dans [9], nous avons étudié le modèle HFB pour un système pseudo-relativiste soumis unique-
ment aux forces gravitationnelles, comme on peut en trouver dans les étoiles à neutrons ou les
naines blanches. L’énergie cinétique est maintenant modélisée par l’opérateur pseudo-différentiel

T =
√
m2 − ∆ −m

*Les publications dont une version (éventuellement préliminaire) était déjà contenue dans ma thèse sont indiquées
avec une étoile.
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et le potentiel d’attraction est purement gravitationnel. Nous avons démontré l’existence d’un
minimum pour la fonctionnelle HFB dès que cette dernière est bornée inférieurement (cela dépend
du nombre total de particules) et donné certaines propriétés des minima. Plusieurs difficultés
rendent ce problème complexe. Tout d’abord l’énergie est invariante par translation et elle n’est
pas semi-continue inférieure pour la topologie faible. Nous avons donc utilisé des techniques de
type “concentration-compacité” de P.-L. Lions. Cependant, le fait que l’énergie cinétique est non
locale et la difficulté supplémentaire que les variables sont des opérateurs (éventuellement de rang
infini) ont constitué des obstacles importants. Enfin, la présence de l’opérateur α constitue une
complication notable : le terme d’appariement dans l’énergie est “critique” au sens où il ne peut
être contrôlé que par l’énergie cinétique.

Dans une seconde partie, nous énonçons un résultat de [10] : nous considérons l’équation
dépendant du temps associée au modèle HFB et nous montrons que si la masse initiale du système
est trop grande, le système gravitationnel s’effondre en temps fini, c’est-à-dire la solution tempo-
relle explose en norme. Ceci correspond au comportement que l’on observe pour certaines étoiles
trop massives.

Publications du chapitre 2

[9] E. Lenzmann and M. Lewin, Minimizers for the Hartree-Fock-Bogoliubov theory of neutron
stars and white dwarfs. arXiv:0809.2560, 2008.

[10] C. Hainzl, E. Lenzmann, M. Lewin, and B. Schlein. In preparation, 2009.

Chapitre 3. La limite thermodynamique des systèmes quantiques Coulombiens

Dans les deux chapitres précédents, nous avons étudié divers systèmes finis. Le chapitre 3 est
le premier de ce mémoire qui est consacré à l’étude de systèmes quantiques infinis.

Un problème naturel est de passer à la limite macroscopique, c’est-à-dire de faire tendre le
nombre de particules vers l’infini dans un modèle fini. Cette question est difficile, en particulier
lorsque les particules interagissent avec le potentiel de Coulomb, qui est à longue portée (il n’est
pas intégrable). C’est principalement grâce à un phénomène d’écrantage (la matière s’organise
spontanément de façon à être neutre localement) que la matière usuelle peut exister à l’échelle ma-
croscopique. Quantifier et utiliser cet écrantage pour démontrer la stabilité de systèmes quantiques
infinis est complexe.

Si on note E(N) l’énergie fondamentale d’un système comprenant N particules (à définir, bien
sûr – voir les détails au chapitre 3), on doit montrer que E(N) ∼N→∞ ēN pour une certaine
constate ē. En effet imaginons un instant que E(N) ∼N→∞ ēNa pour un certain a 6= 1. Si on
essaie alors de réunir deux systèmes macroscopiques identiques (deux verres d’eau par exemple),
l’énergie à fournir au système sera de l’ordre de E(2N) − 2E(N) ∼ (2a − 2)ēNa. Comme N est
très grand (typiquement N ∼ 1023), selon le signe de ē et la position de a par rapport à 1, il
faudra soit fournir une énergie colossale pour réunir les deux systèmes (le système serait alors très
instable), soit au contraire une énergie gigantesque serait libérée et la réunion de nos deux verres
d’eau formerait une sorte de bombe. Comme aucune de ces deux possibilités n’est physiquement
raisonnable, on doit donc avoir E(N) ∼ ēN .

La démonstration de la convergence de l’énergie par particule E(N)/N quand N tend vers
l’infini ainsi que l’identification de la limite constituent un problème crucial pour une meilleure
compréhension des systèmes quantiques infinis. Celui-ci a été abondamment étudié depuis la fin des
années 60. Dans deux articles [11, 12] résumés dans [13], nous proposons une nouvelle méthode pour
prouver l’existence de la limite de l’énergie par particule, basée sur une inégalité électrostatique
due à Graf et Schenker et qui sert à quantifier le phénomène d’écrantage. Cette méthode permet
de retrouver des résultats précédents de Lieb et Lebowitz, ou de Fefferman de façon unifiée, et
également de traiter de nouveaux systèmes, comme cela est expliqué en détails au chapitre 3.
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Il est en pratique très difficile d’identifier précisément la limite ē de l’énergie par unité de
volume ou de montrer la convergence des états, sauf pour certains systèmes plus simples. Dans les
chapitres 4 et 5, nous étudions deux systèmes avec un modèle de type Hartree-Fock, pour lesquels
ce programme peut être mené à bien.

Publications du chapitre 3

[11] C. Hainzl, M. Lewin, and J. P. Solovej, The thermodynamic limit of quantum Coulomb
systems. Part I. General theory, Advances in Math., 221 (2009), pp. 454–487.

[12] C. Hainzl, M. Lewin, and J. P. Solovej, The thermodynamic limit of quantum Coulomb
systems. Part II. Applications, Advances in Math., 221 (2009), pp. 488–546.

[13] C. Hainzl, M. Lewin, and J. P. Solovej, The thermodynamic limit of quantum Coulomb
systems : A new approach, in Mathematical results in Quantum Mechanics : Proceedings of
the QMath10 Conference, I. Beltita, G. Nenciu, and R. Purice, eds., World Scientific, 2008.

Chapitre 4. L’approximation de Hartree-Fock en Électrodynamique Quantique
sans photon

Le chapitre 4 est probablement le plus long de ce mémoire. Il est consacré à la construction et
l’étude détaillée d’un nouveau modèle permettant la description de systèmes relativistes, déduit de
l’électrodynamique quantique (une théorie qui a, en grande partie, encore résisté à toute formali-
sation mathématique non perturbative rigoureuse).

Pour les atomes lourds, il est nécessaire de prendre en compte les effets relativistes, au moins
pour les électrons “de coeur” (les plus proches des noyaux). En principe, il suffirait de remplacer
l’opérateur −∆ par l’opérateur de Dirac D0 (un opérateur différentiel d’ordre un). Or, contraire-
ment à l’opérateur −∆, le spectre de l’opérateur de Dirac n’est pas borné inférieurement :

σ(D0) = (−∞,−mc2] ∪ [mc2,∞).

Ceci change radicalement le comportement physique et les propriétés mathématiques du système.
Par exemple, en théorie des champs relativiste, le vide n’est plus inerte mais il peut se polariser
en présence d’un champ extérieur, cette polarisation est elle même vue par les particules et mène
à l’étude d’un système couplé. Si le champ extérieur est très fort, le vide peut même réagir in-
tensément au point de créer spontanément, à partir de l’énergie fournie, une paire électron-positron.

Au chapitre 4, nous étudions l’approximation de Hartree-Fock de l’électrodynamique quantique
en négligeant les photons. Le modèle que nous avons obtenu décrit le comportement du vide et ses
interactions avec les particules “réelles”. Le système physique est toujours composé d’une infinité
de particules quantiques : la plupart d’entre elles forment la mer de Dirac modélisant le vide
alors que seulement un nombre fini d’entre elles sont des particules physiques réelles, comme des
électrons ou des positrons.

La première étape est de déterminer l’état du vide libre, c’est-à-dire en l’absence de tout champ
extérieur (mais en tenant compte des interactions entre les particules de la mer de Dirac). Pour
cela nous avons eu recours dans [18] à une limite thermodynamique comme expliqué plus haut
dans notre résumé du chapitre 3 : on commence par poser le modèle sur une bôıte de taille L,
avec des conditions au bord périodiques, puis on identifie la limite de l’énergie par unité de volume
E0(L)L−3. On trouve alors que l’état du système converge vers un état Hartree-Fock comprenant
une infinité de particules. Sa matrice densité est un projecteur orthogonal P0

− de rang infini,
invariant par translation. Même si le vide libre comprend une infinité d’électrons virtuels, sa charge
est toujours supposée non observable. Dans les cas les plus simples, le système est simplement
représenté par le projecteur spectral négatif χ(−∞,0](D

0). Ici l’opérateur P0
−, tenant compte des

interactions entre les particules, est solution d’une équation non linéaire.
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Ensuite, en présence d’un champ extérieur V (par exemple créé par une distribution de charge
positive), l’idée est de décrire les modifications du système par rapport au système de référence,
le vide libre construit précédemment (voir la figure 1). Nous avons montré dans [18] que lorsque
L→ ∞, l’énergie fondamentale du système en présence du champ V se comporte comme suit :

EV (L) − E0(L) → c.

La constante c peut être identifiée comme l’infimum d’une fonctionnelle non linéaire Q 7→ EV (Q)
ressemblant à la fonctionnelle Hartree-Fock et dont la variable Q est un opérateur (a priori de
rang infini) satisfaisant la contrainte −P0

− ≤ Q ≤ 1 − P0
−. L’opérateur Q décrit les modifications

du système en présence de V et on doit avoir Q = 0 en l’absence de tout champ (V = 0). De même,
la différence entre l’état fondamental dans la bôıte de taille L et l’état non perturbé converge à la
limite vers un minimum Q de la fonctionnelle EV .

L’existence de minima pour EV et leur propriétés ont été étudiées dans [14, 15, 16, 21]. Tout
minimiseur est solution d’une équation d’Euler-Lagrange non linéaire sous la forme

Q = χ(−∞,µ)(D
0 + V +XQ) − P0

− (2)

où XQ est un opérateur dépendant de Q. L’équation (2) peut s’interpréter comme un système infini
d’équations aux dérivées partielles non linéaires couplées. Les principales difficultés pour démontrer
l’existence de minima sont : (i) le modèle est posé dans tout l’espace et une perte de compacité
à l’infini est possible ; (ii) la variable Q est un opérateur de rang infini soumis à la contrainte
−P0

− ≤ Q ≤ 1 − P0
− ; (iii) on s’attend à ce que les minima soient singuliers. En fait, nous avons

montré dans [21] que les minima (d’une fonctionnelle simplifiée) ne sont jamais à trace, ce qui est
relié au concept de renormalisation de charge. Ceci est expliqué en détails au chapitre 4.

L’équation dépendante du temps et le modèle à température positive sont respectivement
étudiés dans [17] et dans [20]. Le chapitre 4 est une version améliorée de [19] et de la dernière
partie de [22].

(a) (b)

Fig. 1 – (a) Dans l’approximation de Hartree-Fock de l’électrodynamique quantique sans photon, le
vide est un milieu de charge “infinie mais constante”. (b) Lorsqu’un potentiel extérieur est appliqué
au vide (par exemple si on introduit un noyau chargé, de densité de charge représentée en rouge),
ce dernier se polarise. Dans le modèle du chapitre 4, seulement la modification du vide (en bleue)
par rapport au vide libre, décrite par l’opérateur Q, est modélisée.

Publications du chapitre 4

[14] ∗C. Hainzl, M. Lewin, and É. Séré, Existence of a stable polarized vacuum in the
Bogoliubov-Dirac-Fock approximation, Commun. Math. Phys., 257 (2005), pp. 515–562.
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[15] ∗C. Hainzl, M. Lewin, and É. Séré, Self-consistent solution for the polarized vacuum in
a no-photon QED model, J. Phys. A, 38 (2005), pp. 4483–4499.

[16] C. Hainzl, M. Lewin, and É. Séré, Existence of atoms and molecules in the mean-
field approximation of no-photon quantum electrodynamics, Arch. Rational Mech. Anal., 192
(2009), pp. 453–499.

[17] C. Hainzl, M. Lewin, and C. Sparber, Existence of global-in-time solutions to a gene-
ralized Dirac-Fock type evolution equation, Lett. Math. Phys., 72 (2005), pp. 99–113.

[18] C. Hainzl, M. Lewin, and J. P. Solovej, The mean-field approximation in quantum
electrodynamics : the no-photon case, Comm. Pure Appl. Math., 60 (2007), pp. 546–596.

[19] C. Hainzl, M. Lewin, É. Séré, and J. P. Solovej, A minimization method for relativistic
electrons in a mean-field approximation of quantum electrodynamics, Phys. Rev. A, 76 (2007),
p. 052104.

[20] C. Hainzl, M. Lewin, and R. Seiringer, A nonlinear model for relativistic electrons at
positive temperature, Rev. Math. Phys., 20 (2008), pp. 1283 –1307.

[21] P. Gravejat, M. Lewin, and É. Séré, Ground state and charge renormalization in a
nonlinear model of relativistic atoms, Commun. Math. Phys., 286 (2009), pp. 179–215.

[22] M. J. Esteban, M. Lewin, and É. Séré, Variational methods in relativistic quantum
mechanics, Bull. Amer. Math. Soc. (N.S.), 45 (2008), pp. 535–593.

Chapitre 5. L’approximation de Hartree-Fock pour un cristal non relativiste

Nous présentons au chapitre 5 un modèle inspiré de celui présenté au chapitre 4, mais cette fois
pour la description des cristaux (non relativistes) avec et sans défauts.

Tout comme le vide de Dirac, un cristal quantique est composé d’une infinité d’électrons formant
la mer de Fermi. Celle-ci peut aussi se polariser en présence d’un défaut dans le cristal.

Comme précédemment, la première étape est de décrire le cristal parfait périodique. En utilisant
une nouvelle fois un procédé de limite thermodynamique, on peut construire un modèle de type
Hartree-Fock (réduit) permettant de décrire le système périodique. L’étude des propriétés des
minima périodiques a été réalisée dans [25, 24], généralisant des résultats de Catto, Le Bris et
Lions.

Ensuite, la seconde étape est l’étude du cristal perturbé, par exemple en présence d’un défaut
chargé. Dans [23] nous avons construit et étudié un modèle dans lequel l’état du système est décrit
par rapport à l’état “non perturbé” (périodique), voir la figure 2.

Plusieurs des difficultés rencontrées au chapitre 4 pour la description des systèmes relativistes
se retrouvent dans l’étude des cristaux non relativistes, avec toutefois des différences notables. En
particulier, le Hamiltonien de Schrödinger périodique est cette fois borné inférieurement (contraire-
ment à l’opérateur de Dirac qui a un spectre symétrique par rapport à zéro). Cependant la mer de
Fermi possède moins de symétries que la mer de Dirac (qui est invariante par translations) et ceci
a des conséquences importantes sur les propriétés des minima, comme prouvé dans [26] et détaillé
au chapitre 5.

La dernière partie du chapitre est consacrée à la présentation d’une nouvelle méthode numérique
[25] basée sur le modèle variationnel introduit dans [23]. Cette méthode est fondamentalement
différente de celle communément utilisée par les chimistes et les physiciens, qui consiste essentiel-
lement à périodiser arbitrairement le système en choisissant une grande bôıte bien plus grande
que la taille du défaut. Notre méthode, basée plutôt sur une description du modèle en utilisant
deux échelles (celle décrivant le réseau périodique et celle décrivant les électrons localisés autour
du défaut), semble plus robuste et plus efficace, d’après les premiers tests qui ont été effecutés.
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(a) (b)

Fig. 2 – (a) Les électrons du cristal parfait forment la “mer de Fermi” périodique. (b) En présence
d’un défaut (un noyau du cristal plus chargé que les autres par exemple), la mer de Fermi se pola-
rise. Dans le modèle de [23] et comme pour le modèle relativiste du chapitre 4, seule la modification
par rapport au cristal parfait est modélisée.

Publications du chapitre 5

[23] É. Cancès, A. Deleurence, and M. Lewin, A new approach to the modelling of local
defects in crystals : the reduced Hartree-Fock case, Commun. Math. Phys., 281 (2008), pp. 129–
177.

[24] M. Ghimenti and M. Lewin, Properties of periodic Hartree-Fock minimizers, Calc. Var.
Partial Differential Equations, 35 (2009), pp. 39–56.

[25] É. Cancès, A. Deleurence, and M. Lewin, Non-perturbative embedding of local defects
in crystalline materials, J. Phys. : Condens. Matter, 20 (2008), p. 294213.

[26] É. Cancès and M. Lewin, The dielectric permittivity of crystals in the reduced Hartree-Fock
approximation. arXiv :0903.1944, 2009.

Chapitre 6. Pollution spectrale et comment l’éviter

Dans le dernier chapitre, nous étudions un phénomène bien connu, sous une perspective nou-
velle. Lorsque l’on cherche à calculer le spectre d’un opérateur auto-adjoint A, on a souvent recours
à une approximation de type Galerkin : on se fixe un espace de dimension finie et on diagonalise
la matrice de la forme quadratique associée à A dans cet espace. On espère ensuite que, lorsque
la taille de la base augmente, le spectre converge vers celui de A. Malheureusement, on peut voir
assez facilement (un exemple très simple est donné dans l’introduction du chapitre 6) qu’une telle
méthode peut fournir, à la limite, des valeurs propres spécieuses, ne faisant pas partie du spectre de
A. Ceci ne peut se produire que dans des trous spectraux, au milieu du spectre essentiel. On parle
alors de pollution spectrale. Un tel phénomène est très fréquemment observé lors de calculs sur des
opérateurs de Schrödinger périodiques ou des opérateurs de type Dirac, comme ceux rencontrés
aux chapitres 4 et 5. Dans ces deux cas, on doit toujours calculer des valeurs propres dans un trou
spectral, au milieu du spectre essentiel.

En pratique, on peut soit chercher des critères permettant de savoir si une valeur propre calculée
est réelle ou spécieuse, soit au contraire chercher des contraintes sur les espaces vectoriels utilisés
pour réaliser le calcul, afin d’éviter complètement le problème de pollution (au moins dans un
intervalle donné du spectre). En mécanique quantique relativiste, c’est la seconde solution qui
est le plus souvent choisie : les physiciens et chimistes ont introduit divers méthodes dans le but
d’éviter le problème de pollution spectrale.

Dans [27], nous étudions le phénomène de pollution spectrale en ajoutant certaines contraintes
sur les bases de Galerkin. Nous avons ainsi pu justifier que la méthode numérique proposée dans
[25] (pour le calcul des valeurs propres des opérateurs de Schrödinger périodiques avec des bases de
Wannier) est exempte de toute pollution. Nous avons également étudié quelques unes des méthodes
utilisées en physique et chimie pour les calculs relativistes et déterminé dans quels cas elles sont
efficaces et dans quelle situation elles sont théoriquement d’aucun secours.
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Publications du chapitre 6

[27] M. Lewin and É. Séré, Spectral pollution and how to avoid it (with applications to Dirac
and periodic Schrödinger operators). arXiV:0812.2153, 2008.

Appendice A. Matrice de densité pour les états de Bogoliubov de charge finie

La dernière partie du mémoire est un appendice dans lequel nous présentons certains résultats
abstraits issus de [14, 16] et qui sont constamment utilisés dans les chapitres 2, 4 et 5. Elle fait
le lien entre certaines propriétés des matrices densités et le formalisme usuel pour les états de
Bogoliubov (ou quasi-libres) en terme d’opérateurs de création et d’annihilation dans un espace de
Fock.
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Introduction

In this thesis, we study, from a mathematical point of view, several quantum systems which are
used to describe matter at the microscopic scale, and its behavior when passing to the macroscopic
scale.

We will mainly consider fermionic systems interacting through classical electromagnetic forces
(as the electromagnetic field is not quantized, there will not be any photon). In some cases we
will treat them non-relativistically (Chapter 1, 3 and 5) and in some other cases, we will (maybe
partially) take relativistic effects into account (Chapter 2 and 4). We will also study one system
only submitted to the gravitational force. All the models that we consider arise from Atomic or
Stellar Physics, from Quantum Field Theory, or from Quantum Chemistry. In most cases, our
systems will consist of infinitely many quantum particles.

The mathematical methods will be that of nonlinear analysis, calculus of variations, partial
differential equations, spectral theory, and numerical analysis.

A large part or our work is focused on the study of stationary states by means of variational
methods. The goal will often be to prove the existence of a minimum (or of critical points) for a
certain nonlinear energy functional, and to derive some of the properties of minimizers which are
the most interesting from a physical point of view. All the problems tackled in this thesis are locally
compact (the kinetic energy must stay bounded) but a lack of compactness is always possible at
infinity (when the model is posed on the whole space R

3). In many cases, the main variable of
our energy will be a self-adjoint operator, possibly of infinite rank. This will always be the case
when infinitely many particles have to be described. Some properties of the minimizers can then
be rather delicate and lead to subtle physical phenomena (for instance charge renormalization in
Chapter 4 and dielectric properties of a crystal in Chapter 5).

We will also be often interested in the study of the limit of certain systems when the number of
particles goes to infinity (thermodynamic limit). In this case we will want to prove the convergence
of the energy per particle (or the energy per unit volume) and, possibly, the convergence of states.
We will always use this technique to derive suitable models for infinite systems.

Time-dependent equations will also be considered. For the Schrödinger equation corresponding
to our energy, we will prove the existence of solutions, the (orbital) stability of stationary states
and, possibly, the blow-up in finite-time when it occurs.

Lastly, a large part of our work is devoted to the numerical analysis of our models, and the
design of robust algorithms. For the physical systems we are interested in, the computational cost
is almost always unreasonably large. It is then very important to use some rigorous insight in order
to gain in efficiency.

The thesis is organized as follows. Each chapter contains a rather detailed review of a set of
results, on a precise subject. The chapters are almost independent and can be read separately.
For each chapter, we will now give a very short summary together with a list of the corresponding
publications.

19
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Chapter 1. Nonrelativistic Atoms and Molecules

In the first chapter we study the Schrödinger equation and some of its nonlinear approximations,
for the description of atoms and molecules. In a molecule (or an atom), a system of N electrons is
described by an N -body Schrödinger operator which has the following form

H = −∆ +W (x).

It is defined on L2((R3)N ,C) (indeed on the subspace consisting of antisymmetric wavefunctions).
The function W contains both the electrostatic interaction between the electrons and the nuclei,
and the self-repulsion between the electrons. The nuclei are usually described as fixed (classical)
pointwise particles, hence W depends on their location in R

3. The Laplacian models the sum of
the kinetic energy of the electrons. We are interested in the eigenvalues and eigenfunctions of H,
solving the time-independent Schrödinger equation

HΨ = EΨ. (3)

Many mathematical properties of H are known, but this is of little practical interest: the dimension
of the space L2((R3)N ,C) on which H is defined is so large that it is simply impossible to directly
solve numerically Equation (3) when N & 6 − 7. For this reason, Physicists and Chemists use
many approximate models; they are almost all nonlinear.

The first model that we studied in [1, 2, 3, 4] is called multiconfiguration. It consists in restricting
the quadratic form associated withH, Ψ 7→ 〈Ψ,HΨ〉, to a smaller set of wavefunctions in the sphere
of L2((R3)N ,C), taking the form

Ψ =
∑

1≤i1,···iN≤K

ci1,...,iN
ϕi1 ⊗ · · · ⊗ ϕiN

.

In this formula, {ϕi}K
i=1 is an unknown orthonormal system of L2(R3,C) and the {ci1,...,iN

} are
complex numbers (antisymmetric with respect to exchanges of the indices ik). When K = N ,
one recovers the celebrated Hartree-Fock model. Its main properties are recalled in Chapter 1;
the associated time-dependent equation was studied in [8]. When K = ∞, one gets the usual
Schrödinger model settled on the whole space L2((R3)N ,C). In [1, 2] we have studied the existence
of a minimum and we have constructed specific critical points (for N ≤ K < ∞) which we have
then related to the eigenvalues of H in the limit K → ∞. The energy for K <∞ is non-quadratic
in terms of the ϕi’s, and the Euler-Lagrange equations form a system ofK coupled nonlinear elliptic
PDEs. Finally, in [3] we have proposed a new numerical method for calculating an approximation
of the first excited state of H, based on the variational formalism of [2]. Essentially, one has to
solve a mountain pass problem. Numerical tests for two-electrons systems are provided.

In [5], we have studied another model allowing to compute an approximation of the first eigen-
value of H, based on the formalism of two-body density matrices. Loosely speaking, the mini-
mization of the quadratic form Ψ 7→ 〈Ψ,HΨ〉 on the space L2((R3)N ,C) is replaced by a convex
minimization problem of an N -dependent linear functional, on a very complicated convex subset
of the smaller space L2((R3)4,C). The latter convex set being very difficult to characterize, it is
approximated by a simpler convex set. Several numerical results are provided.

Finally, the last part of Chapter 1 contains a summary of [6, 7], where we have studied a
very simple model for chemical reactions (the one which is used by chemists to describe adiabatic
reactions). The idea is to vary the position of the nuclei, assuming that the electrons always stay
in their ground state (the first eigenfunction of H). A reaction then yields to a mountain pass
problem on the first eigenvalue λ0 of H. Even if the problem is posed in finite dimension (the
locations of the nuclei are in R

3), showing the existence of a mountain pass requires to have some
information on the ‘behavior at infinity’ of λ0, which is of course related to that of H.

*The papers which were already part of my PhD Thesis (possibly in a preliminary version) are indicated with a
star.
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521.

[7] M. Lewin, Solution of a mountain pass problem for the isomerization of a molecule with one
free atom, Ann. Henri Poincaré, 7 (2006), pp. 365–379.
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Chapter 2. The Hartree-Fock-Bogoliubov Theory of Neutron Stars and White
Dwarfs

In Chapter 1 we have studied electrons in a molecule, that is to say fermions with a repulsive
force, submitted to an external attractive field created by the nuclei. In Chapter 2, we study a
celebrated nonlinear model for systems composed of attractive particles. The attractive feature
of the interaction together with some nonlinear effects can then allow the formation of bound
states, even in the absence of any external field and although the model is globally invariant by
translation.

The Hartree-Fock-Bogoliubov (HFB) model which is studied in this chapter allows to describe
some important physical properties of attractive systems. It provides us with a nonlinear functional
whose variables are two operators γ and α acting on L2(R3,C2), related by the constraint:

0 ≤
(
γ α
α∗ 1 − γ

)
≤ 1.

These operators are respectively called the one-body density matrix and the pairing density matrix.
The operator α describes the physical effect of Cooper pairing which is believed to be responsible
for the superconductivity or superfluidity of certain physical systems.

In [9], we have studied the HFB model for a system of pseudo-relativistic fermions only sub-
mitted to gravitational forces, as may be found for instance in neutron stars or white dwarfs. The
kinetic energy is now described by the following pseudo-relativistic nonlocal operator

T =
√
m2 − ∆ −m.

We have proved the existence of minimizers for the HFB functional, as soon as it is bounded from
below (this depends on the total particle number), and we have derived some important properties
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of minimizers. We had to face some complications: first the energy is not weakly lower semi-
continuous which has led us to use the concentration-compactness method of P.-L. Lions. The
nonlocality of the kinetic energy operator together with the fact that our variable is a pair of two
operators (possibly of infinite rank), linked by a constraint, were important obstacles. Lastly, the
operator α cannot be treated by obvious means: the pairing term in the energy is “critical” in the
sense that it can only be controlled by the kinetic energy.

In a second part, we state a result of [10] dealing with the associated HFB time-dependent
equation and which shows the blow-up in finite-time when the initial datum has a large enough
mass (the time-dependent solution then blows up in norm). This corresponds to the observed
collapse of certain stars which are too massive.
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Chapter 3. The Thermodynamic Limit of Coulomb Quantum Systems

In Chapter 1 and 2, we have studied finite systems. Chapter 3 is the first dealing with infinite
quantum systems. A natural problem is to study the thermodynamic limit, i.e. the behavior of
some (given) system when the number of particles grows. This is a rather involved question, in
particular when the particles interact through the Coulomb electrostatic potential which is long
range (it is not integrable at infinity). It is essentially because of screening (matter arranges
itself in a way that it is always locally neutral) that usual matter can exist at the macroscopic
scale. Quantifying and using this screening in order to show the stability of infinite systems is a
challenging problem.

Let us denote by E(N) the ground state energy of a certain quantum system (to be defined,
see examples in Chapter 3) with N particles. What we have to prove is that E(N) ∼N→∞ ēN for
some constant ē. Indeed, let us assume for a while that E(N) ∼N→∞ ēNa for some a 6= 1. Then
|E(2N) − 2E(N)| becomes very large as N ≫ 1 (typically N ∼ 1023). Depending on a and the
sign of the constant ē, a very large amount of energy will be either released when two identical
systems are put together (like two glasses of water for instance), or necessary to assemble them.
As this behavior is not observed in real life, one must have E(N) ∼N→∞ ēN .

The proof of the convergence of the energy per particle E(N)/N as N → ∞ as well as the
identification of the limit is a crucial problem for a better understanding of infinite quantum
systems, which has been largely studied since the sixties. In two papers [11, 12] summarized in
[13], we have proposed a new method for proving the existence of the thermodynamic limit for
systems interacting through Coulomb forces, based on an inequality due to Graf and Schenker,
serving as a tool to quantify screening. This method allowed us to recover in a unified way some
celebrated results of Lieb and Lebowitz, and of Fefferman, and also to study some other systems
which were not known before. Everything is explained in details in Chapter 3.

In practice it is very hard to identify exactly the limit ē of the energy per particle (or per unit
volume), or to prove the convergence of states, except for very simple systems. In Chapter 4 and
5 we study two quantum systems for which this program can be solved completely.
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Chapter 4. No-Photon Quantum Electrodynamics in the Hartree-Fock Approx-
imation

In Chapter 4 (probably the longest of this thesis), we derive and study a model allowing to describe
relativistic electrons. Our model is deduced from Quantum Electrodynamics (QED), a theory
which, despite its incredible predictive power, is not yet really understood from a mathematical
point of view.

For heavy atoms, it is necessary to take relativistic effects into account, at least for the core
electrons in an atom (those close to the nucleus). In principle, it suffices to replace the nonrela-
tivistic kinetic energy operator −∆ by the Dirac operator D0 (a differential operator of order one).
Contrarily to the Laplacian, the spectrum of D0 is not bounded from below,

σ(D0) = (−∞,−mc2] ∪ [mc2,∞),

a property which has many physical consequences. For instance, in QED the vacuum is never inert
but it can react to an external field and become polarized. This polarization is itself seen by the
particles, leading to the study of a coupled system. If the field is large enough, the vacuum can
even react so strongly that an electron-positron pair can be spontaneously created.

In Chapter 4, we study the Hartree-Fock approximation of QED, neglecting photons. Our
model is able to describe the behavior of the vacuum coupled to that of the real particles. The
system always contains infinitely many particles: most of them belong to the vacuum (the so-called
Dirac sea), and only finitely many are ‘real’ particles like electrons or positrons.

The first step is to construct the free vacuum, i.e. the Dirac sea in the absence of any external
field, taking into account all interactions between particles. For this, we used in [18] a thermo-
dynamic limit procedure, as was explained in the previous paragraph devoted to Chapter 3. One
starts by defining the model in a box of size L, with periodic boundary conditions, and one studies
its limit as L→ ∞. It was found that the free vacuum is a Hartree-Fock state containing infinitely
many particles whose one-body density matrix is an orthogonal projector P0

−, of infinite rank,
invariant by translations. Even if the vacuum contains infinitely charged particles, its charge is
itself supposed to be physically unobservable. In the simplest case, the vacuum is described by the
negative spectral orthogonal projector χ(−∞,0)(D

0). In our case, it is a more complicated projector
solution of a nonlinear equation, due to fact that we do not neglect the interactions between the
particles.

In the presence of an external field V (for instance induced by the positive distribution of charge
of a nucleus), the main idea is then to describe the change of the vacuum measured respectively
to the reference system, the free vacuum (see Figure 1). We proved in [18] that when L→ ∞, the
ground state energy EV (L) of the system in the box with the external field V behaves as follows

EV (L) − E0(L) → c.

The constant c can be identified as the minimum of some nonlinear functional Q 7→ EV (Q) having
the same form as the Hartree-Fock energy. However Q is now a (possibly infinite-rank) operator
defined on the whole space and satisfying the constraint −P0

− ≤ Q ≤ 1 − P0
−. The model is such

that when V = 0, one has Q = 0. Similarly, the difference between the ground states with and
without V converges as L→ ∞ to a minimizer Q of the functional EV .
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The existence of a minimum for EV and the properties of minimizers were studied in [14, 15,
16, 21]. Any minimizer is solution to a nonlinear Euler-Lagrange equation taking the form

Q = χ(−∞,µ)(D
0 + V +XQ) − P0

−

where XQ is an operator depending on Q. This equation can be viewed as an infinite system of
coupled nonlinear PDEs.

The main difficulties in proving the existence of minimizers are as follows: (i) the model is
posed on the whole space and a lack of compactness at infinity is possible; (ii) the variable Q is
an operator of infinite rank submitted to the constraint −P0

− ≤ Q ≤ 1 − P0
−; (iii) minimizers are

believed to be rather singular. Indeed we have shown for a simplified model in [21] that minimizers
are never trace-class. This is itself related to charge renormalization, as we will explain in details
in Chapter 4.

The time-dependent equation and the model at positive temperature were respectively studied
in [17] and [20]. Chapter 4 is an enhanced version of [19] and of the last part of [22].

(a) (b)

Figure 1: (a) In the Hartree-Fock approximation of no-photon QED, the free vacuum is a
translation-invariant medium with infinite charge. (b) In the presence of an external potential
V , for instance induced by a positive charge distribution as displayed in red, the vacuum becomes
polarized. In our model of Chapter 4, only the modification with respect to the free vacuum (in
blue), modelled by the operator Q, is described.
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Chapter 5. Nonrelativistic Crystal in the Hartree-Fock Approximation

In Chapter 5, we present a model for nonrelativistic crystals with defects, which was inspired of
the relativistic model of Chapter 4. Like for Dirac’s vacuum, a (nonrelativistic) quantum crystal is
composed of infinitely many electrons forming the Fermi sea. The latter can also become polarized
in the presence of a defect in the crystal.

As before, the first step is to describe the perfect (periodic) crystal. Using again a thermo-
dynamic limit procedure, it is possible to derive a (reduced) Hartree-Fock model for the infinite
periodic system. The study of the minimizers was tackled in [25, 24], complementing results of
Catto, Le Bris and Lions.

The second step is the study of the perturbed crystal, for instance in the presence of a (local-
ized) charged defect. In [23] we have constructed a model in which the state is described by its
modification with respect to the unperturbed, periodic, Fermi sea (see Figure 2), similarly to the
QED case.

Several of the difficulties encountered in Chapter 4 for the description of relativistic systems
arise similarly in the study of crystals. There are some important differences. In particular, the
periodic Schrödinger Hamiltonian is bounded below, contrarily to the Dirac operator. However the
crystalline periodic Fermi sea has much less symmetries than the free Dirac sea which is invariant
by translations. This has important consequences on the properties of minimizers, as was proved
in [26] and will be explained in Chapter 5.

In the last part of Chapter 5, we detail a new numerical method of [25] based on the variational
model of [23]. It is very different from the one which is used by Chemists and Physicists which
essentially consists in arbitrarily periodizing the system in a box much larger than the size of the
defect. Our method, on the contrary, is based on a two-scale description of the crystal (the periodic
sea and the localized modifications due to the defect). Our first tests seem to indicate that it is
more efficient and robust.

(a) (b)

Figure 2: (a) The electrons of the perfect crystal form the periodic Fermi sea. (b) In the presence
of a defect (for instance induced by a nuclei with a higher charge), the Fermi sea becomes polarized.
In our model of Chapter 5 and like in Chapter 4, only the modification with respect to the reference
state (the periodic Fermi sea) is described.
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Chapter 6. Spectral Pollution and How To Avoid It

The last chapter is devoted to the study of an important, well-known effect, in a rather new
perspective. When trying to compute the spectrum of a self-adjoint operator A, one usually uses
a Galerkin-type approximation: a finite-dimensional space is fixed and the matrix of the quadratic
form of A in this space is diagonalized. It is hoped that the so-obtained spectrum will converge
to the spectrum of A when the size of the basis is enlarged. Unfortunately, it can be seen on very
simple examples (see, e.g., the introduction of Chapter 6) that such a method can provide spurious
eigenvalues which have nothing to do with the true spectrum of A. This phenomenon, which can
only happen in gaps of the essential spectrum, is called spectral pollution. It is very often observed
when trying to calculate the spectrum of periodic Schrödinger operators or of Dirac operators,
like those we will meet in Chapters 4 and 5 (in both cases, we are indeed interested in computing
eigenvalues in gaps of the essential spectrum).

In practice, one can either try to find a criterion allowing to decide if a computed eigenvalue is
real or spurious, or one can look for constraints on the basis which will avoid the phenomenon of
pollution, at least in a fixed interval of the spectrum. In relativistic calculations, it is the second
option which has been chosen by Chemists and Physicists. They have introduced several methods
in order to avoid spectral pollution (like the so-called kinetic balance).

In [27], we have studied from a rather abstract point of view the phenomenon of spectral
pollution, when some very natural constraints are added on the Galerkin basis. This allowed us
in particular to show that the method of [25], reviewed in Chapter 5 (using Wannier functions
for approximating the spectrum of periodic Schrödinger operators) does not produce any spuri-
ous eigenvalue. We also have studied the methods used in Quantum Chemistry and Physics for
relativistic calculations. We have rigorously decided when they are efficient or when they are
theoretically of no help.
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Appendix A. Density Matrices of Bogoliubov States Having Finite Charge

The last part of the thesis is an appendix in which we present some abstract results of [14, 16],which
we constantly use in Chapters 2, 4 and 5. It clarifies the links between some properties of density
matrices and the formalism of Bogoliubov (quasi-free) states in Fock space.
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1

Nonrelativistic atoms
and molecules

In this first chapter, we review some results on finite systems like atoms and molecules. In Section
1.1, we recall the properties of the N -body Schrödinger model and of the Hartree-Fock approxi-
mation. Section 1.2 (multiconfiguration methods) and 1.3 (Reduced 2-body density matrices) are
devoted to two models for approximating the eigenvalues of the linear Schrödinger operator, for
fixed positions of the nuclei. They contain numerical results. Lastly, in Section 1.4 we consider a
mountain pass problem modeling chemical reactions, and in which the position of the nuclei is not
fixed anymore.

1.1 N-body Coulomb quantum systems

1.1.1 The N-body Coulomb Hamiltonian

We consider a molecule containing N non relativistic electrons and M nuclei of charges Z1, ..., ZM .
The nuclei are supposed to be correctly described by a classical model (Born-Oppenheimer ap-
proximation) and are thus represented as pointwise charges at R1, ..., RM ∈ R

3. In what follows,
we let

R = (R1, ..., RM ) ∈ (R3)M \ (∪i6=j{Ri = Rj})
and

Z = (Z1, ..., ZM ) ∈ (R+)M , |Z| = Z1 + · · · + ZM .

The system is described by the purely Coulombic N -body Hamiltonian

HN (R,Z) =
N∑

i=1

(
−1

2
∆xi

+ VR,Z(xi)

)
+

∑

1≤i<j≤N

1

|xi − xj |
+

∑

1≤i<j≤M

ZiZj

|Ri −Rj |
,

where VR,Z is the electrostatic potential created by the nuclei:

VR,Z(u) = −
M∑

j=1

Zj

|u−Rj |
.

As electrons are fermions they must satisfy Pauli’s principle which is mathematically expressed by
restricting the Hamiltonian HN (R,Z) to the subspace

∧N
1 L2(R3,C) of

⊗N
1 L2(R3,C) consisting

of antisymmetric wavefunctions:

∀σ ∈ SN , Ψ(x1, ..., xN ) = ǫ(σ)Ψ(xσ(1), ..., xσ(N)).

29
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ΣN (R, Z) = EN−1(R, Z)

E0(R, Z)

EN (R, Z)

N < |Z| + 1

ΣN (R, Z) = EN−1(R, Z)

E0(R, Z)

EN (R, Z)

|Z| + 1 ≤ N < Nc

ΣN (R, Z) = EN (R, Z) = EN−1(R, Z)

E0(R, Z)

N ≥ Nc

Figure 1.1: Discrete spectrum of HN (R,Z) depending on the number of electrons.

The quantum energy of the system in a state Ψ ∈ ∧N
1 H1(R3,C) is the associated quadratic form

EN (R,Ψ) =
〈
Ψ,HN (R,Z)Ψ

〉
.

For simplicity, we have neglected the spin variable. We work within the so-called atomic units for
which the mass and the charge of the electrons are both set to one.

For any fixed positions R of the nuclei, it is known [38] that HN (R,Z) is self-adjoint on the

Sobolev space
∧N

1 H2(R3,C), with form domain
∧N

1 H1(R3,C). Also HN (R,Z) is bounded from
below, hence the ground state energy

EN (R,Z) := inf σ
(
HN (R,Z)

)
(1.1)

is a finite quantity. The essential spectrum of HN (R,Z) takes the form [ΣN (R,Z),∞). Indeed
the HVZ Theorem [35, 82, 89, 69] states that

ΣN (R,Z) = EN−1(R,Z) (1.2)

with the convention that

E0(R,Z) =
∑

1≤i<j≤M

ZiZj

|Ri −Rj |
.

Below the essential spectrum, there can be some eigenvalues, depending on the value of N and
|Z| (see Fig. 1.1). The lowest eigenvalue is called the ground state energy and any associated
eigenfunction is a ground state. Higher eigenvalues describe excited states. When there are too
many electrons compared to the number of nuclei, intuitively there should not be any bound state.
It is known [90, 91] that when N < |Z| + 1 (neutral or positively charged molecules), there are
infinitely many eigenvalues converging to the bottom of the essential spectrum ΣN (R,Z). When
N ≥ |Z|+1, the Hamiltonian HN (R,Z) has finitely many eigenvalues below the essential spectrum
[87, 83, 74] and there exists a critical Nc such that for N ≥ Nc, H

N (R,Z) has no eigenvalue below
its essential spectrum [71, 74, 75]. Lieb proved in [51] that Nc ≤ 2|Z| +M .

In this chapter we will always denote by λN
d (R,Z), d ≥ 0, the ordered eigenvalues of HN (R,Z),

with the convention that λN
d (R,Z) = ΣN (R,Z) if there are less than d eigenvalues. Note that

λN
0 (R,Z) = EN (R,Z).

In Quantum Chemistry, one is interested in computing an approximation of the different eigen-
values and eigenfunctions, in particular when the positions of the nuclei R varies (chemical reac-
tions). The Schrödinger equation is a model of extremely high accuracy, except for heavy atoms for
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which core electrons are relativistic. For systems involving a few (say today six or seven) electrons,
a direct Galerkin discretization is possible; such a technique is referred to as Full CI in Compu-
tational Chemistry. For larger systems, this direct approach is out of reach, due to the excessive
dimension of the space R

3N on which the wavefunctions are defined, and some approximation must
be used. To date, the most commonly used approximations are the Hartree-Fock model (described
below in Section 1.1.2) on the one hand, and the Kohn-Sham model (see e.g. [39, 24]) on the other
hand. Both of them have been designed for the calculation of ground states and are not really
adapted to the calculation of excited states. On the contrary, the MCSCF approximation which
will be described in Section 1.2 can be applied to both ground and excited state calculations.

In the next sections, we present several models aiming at calculating approximations of the
eigenfunctions and eigenvalues of HN (R,Z). Only in Section 1.4 we will vary the positions of the
nuclei.

1.1.2 Hartree-Fock theory

In this section, we briefly recall the properties of the Hartree-Fock approximation, which is at the
basis of many of the works presented here.

In the Hartree-Fock (HF) approximation, one computes an approximation of the first eigenvalue
EN (R,Z) of HN (R,Z) by restricting the quadratic form Ψ 7→ 〈Ψ,HN (R,Z)Ψ〉 to the class of the
functions Ψ which are a simple (so-called Slater) determinant:

Ψ = ϕ1 ∧ · · · ∧ ϕN (1.3)

where (ϕ1, ..., ϕN ) is an orthonormal system of L2(R3,C),
´

R3 ϕiϕj = δij . Equation (1.3) means
more precisely

Ψ(x1, ..., xN ) =
1√
N !

det(ϕi(xj)).

Since the set of all the Ψ’s having the form (1.3) is not a vector subspace of
∧N

i=1 L
2(R3,C), one

then obtains an energy functional which is nonlinear in terms of ϕ1, ..., ϕN .
For any wavefunction Ψ ∈ ∧N

1 L2(R3,C), it is convenient to define the one-body density matrix
γΨ associated with Ψ. This is a self-adjoint trace-class operator acting on L2(R3,C) such that
0 ≤ γΨ ≤ 1 and Tr(γΨ) = N , whose kernel is defined by

γΨ(x, y) = N

ˆ

R3

· · ·
ˆ

R3

Ψ(x, x2, ..., xN )Ψ(y, x2, ..., xN ) dx2 · · · dxN . (1.4)

The associated density of charge is defined by

ρΨ(x) := γ(x, x) = N

ˆ

R3

· · ·
ˆ

R3

|Ψ(x, x2, ..., xN )|2 dx2 · · · dxN . (1.5)

For a Hartree-Fock state, i.e. when Ψ takes the special form (1.3), one finds that γΨ is precisely
the orthogonal projector on the N -dimensional space spanned by (ϕ1, ..., ϕN ):

γΨ =

N∑

i=1

|ϕi〉〈ϕi|, ρΨ(x) =

N∑

i=1

|ϕi(x)|2. (1.6)

The energy of a HF state can then be computed and one gets

〈
Ψ,HN (R,Z)Ψ

〉
= Tr

((
−∆

2
+ VR,Z

)
γΨ

)
+

1

2
D(ρΨ, ρΨ) − 1

2

¨

R3×R3

|γΨ(x, y)|2
|x− y| dx dy

+ E0(R,Z) (1.7)
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where we have used the notation

D(f, f) :=

¨

R3×R3

f(x)f(y)

|x− y| dx dy.

As can be noticed, the energy only depends on the rank-N projector γΨ (hence on the N -
dimensional subspace spanned by ϕ1, ..., ϕN ) and not on the ϕi’s themselves. Assuming the nuclei
are fixed, we can discard the self-interaction between them and introduce the Hartree-Fock energy
functional

EHF(γ) := Tr

((
−∆

2
+ VR,Z

)
γ

)
+

1

2
D(ργ , ργ) − 1

2

¨

R3×R3

|γ(x, y)|2
|x− y| dx dy (1.8)

where γ is given by (1.6), i.e. it is a projector of rankN . The last two terms of (1.8) are respectively
called the direct and exchange terms.

The Hartree-Fock ground state energy reads

EN
HF(R,Z) := inf

γ2=γ
Tr(γ)=N

EHF(γ) (1.9)

and one of course has EN
HF(R,Z) + E0(R,Z) ≥ EN (R,Z) (the inequality is even strict [43]).

Existence of a minimizer for (1.9) when N < |Z| + 1 was proved first by Lieb and Simon in [52],
and then with a different method by Lions in [56], who also proved the existence of infinitely many
critical points. Like in the Schrödinger theory, there is a critical NHF

c above which the Hartree-Fock
energy functional has no minimizer anymore. In the atomic case M = 1, it has been shown by
Solovej in [78] that Nc ≤ |Z| + C for some constant C. The reduced Hartree-Fock model in which
the (only nonconvex) exchange term is neglected was studied before in [77]. The associated energy
reads:

ErHF(γ) := Tr

((
−∆

2
+ VR,Z

)
γ

)
+

1

2
D(ργ , ργ) (1.10)

The Euler-Lagrange equations for a critical point of EHF form a system of N coupled nonlinear
Partial Differential Equations:

HγΨ
ϕk = λkϕk, k = 1, ..., N (1.11)

where HγΨ
is the so-called mean-field operator seen by each of the N electrons

HγΨ
= −∆

2
+ VR,Z + ρΨ ∗ 1

| · | −
γΨ(x, y)

|x− y| . (1.12)

Note that we have defined the last operator of (1.12) through its kernel. The λk’s appearing in
(1.11) are Euler-Lagrange multipliers arising from the constraint 〈ϕi, ϕj〉 = δij .

An important result which was shown by Lieb in [50] is that one can actually relax the constraint
γ2 = γ in (1.9) and still obtain the same minimum:

EN
HF(R,Z) := inf

0≤γ≤1
Tr(γ)=N

EHF(γ). (1.13)

This can be interpreted in terms of generalized Hartree-Fock states [5]; more details will be given
later in Chapter 2. We note that the equality (1.13) has been proved to be important for deriving
well-behaved algorithmic methods [11, 12, 8, 40, 9]. Also it was proved in [4, 5] that the (N + 1)st
eigenvalue of the operator HγΨ

appearing in (1.11) is always above the last filled level: λN+1 > λN .
This means that the coupled system of PDEs (1.11) may be written in the simple form

γΨ = χ(−∞,λN ](HγΨ
) (1.14)
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where χI is the characteristic function of the interval I and χI(H) is the associated spectral
projector of H.

In Kohn-Sham models [39, 24, 42, 2] an energy of the same form as (1.8) is considered

EKS(γ) := Tr

((
−∆

2
+ VR,Z

)
γ

)
+

1

2
D(ργ , ργ) + F xc(ργ) (1.15)

where F xc is a function of the density ργ only and which aims at approximating both the exchange
term and the correlation energy which is just the difference between the Hartree-Fock and the
(true) Schrödinger energy EN (R,Z).

Let us mention that in this chapter we will mainly be interested in approximating the stationary
Schrödinger equation, i.e. in computing eigenstates. There is also a time-dependent Hartree-Fock
equation which is a Hamiltonian system associated with the above energy EHF:

i
∂

∂t
γ = [Hγ , γ]. (1.16)

Any minimizer, solution of (1.14), can be shown to yield an orbitaly stable stationary solution of
(1.16). In a work with J. Dolbeault and P. Felmer [22], we have given a method to construct a large
class of orbitaly stable stationary generalized HF states by minimizing free energy-like functionals
of the form

γ 7→ EHF(γ) + Tr(β(γ)),

where β is an adequate convex function on [0, 1]. The usual free energy at temperature T would
correspond to β(ν) = T (ν log ν+(1−ν) log(1−ν)) but it does not yield a bounded below functional
on the whole space. Considering other functions (for instance β(ν) = νm) yielding a bounded-
below functional, we proved the existence of minimizers for not too large a total charge Tr(γ).
The functions β(ν) = νm have themselves been shown to be related to certain Lieb-Thirring and
Gagliardo-Nirenberg inequalities [23].

1.2 Multiconfiguration methods

We present in this section the multiconfiguration methods which aim in Chemistry at calculating
an approximation of the Schrödinger eigenstates. It is a class of nonlinear models, parameterized
by an integer K: when K = N it is simply the Hartree-Fock model presented before, whereas when
K = +∞ one recovers the full linear Schrödinger theory. Our results presented in this section are
contained in [46, 10, 49].

1.2.1 The multiconfiguration approach

The multiconfiguration approach is a natural generalization of the Hartree-Fock method in which
one restricts the Schrödinger Hamiltonian to wavefunctions which are a linear combination of
several Slater determinants instead of only one. This is justified by the remark that for any
orthonormal basis {ψi} of L2(R3,C), {ψi1 ∧ · · · ∧ ψiN

}i1<···<iN
forms an orthonormal basis of the

fermionic N -body space
∧N

1 L2(R3,C).

An integer K ≥ N being fixed, we consider the subset of
∧N

1 L2(R3) consisting of the wave-
functions Ψ which are finite linear combinations of the

(
K
N

)
Slater determinants constructed from

a set of K orthonormal functions (ϕ1, · · · , ϕK) of L2(R3), i.e.

Ψ =
∑

1≤i1<···<iN≤K

ci1...iN
ϕi1 ∧ · · · ∧ ϕiN

. (1.17)

In the multiconfiguration approach, both the coefficients ci1...iN
and the functions (ϕ1, · · · , ϕK)

(called orbitals) are variational parameters. When there is no ambiguity, we shall use the following
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notation
Ψ =

∑

I⊂{1,...,K}, |I|=N

cI ΦI ,

where ΦI = ϕi1 ∧ · · · ∧ϕiN
when I = {i1 < · · · < iN}. In Quantum Chemistry, multiconfiguration

methods are usually called ‘MCSCF’ for MultiConfiguration Self-Consistent Field (the expression
‘Self-Consistent Field’ is often used in Chemistry to emphasize the nonlinearity of the model).

As the Hamiltonian HN (R,Z) is real, its eigenfunctions can be chosen real. This leads to the
natural assumption that the coefficients cI ’s as well as the orbitals ϕi’s are both real. In the rest of
this section, for the sake of simplicity we will always make this assumption, the results being very
similar in the case of complex quantities. We use the simplified notation L2(R3) := L2(R3,R),
H1(R3) := H1(R3,R), etc. Also, as the locations and charges (R,Z) of the nuclei will be fixed, we
will often forget to mention them.

Following our purpose to describe the MCSCF approach, we introduce the manifold

MN,K =

{
(c,Φ) ∈ R(K

N) × (H1(R3))K ,
∑

i1<···<iN

|ci1...iN
|2 = 1,

ˆ

R3

ϕiϕj = δij

}
(1.18)

where we have used the notation

c = (ci1···iN
) ∈ R(K

N), Φ = (ϕ1, ..., ϕK) ∈ H1(R3)K

(we arrange the ci1···iN
in a column vector c using for instance the lexicographical order). The

MCSCF energy functional that we denote here by EN,K , is defined by the formula

EN,K(c,Φ) =
〈
Ψ(c,Φ),H

N (R,Z)Ψ(c,Φ)

〉
(1.19)

Ψ(c,Φ) =
∑

1≤i1<···<iN≤K

ci1...iN
ϕi1 ∧ · · · ∧ ϕiN

,

and the MCSCF ground state energy then reads

EN,K(R,Z) = inf
MN,K

EN,K . (1.20)

An explicit expression of the functional EN,K can be found in [46, Eq. (6)]. Let us point out
that, whereas the Schrödinger energy functional Ψ 7→

〈
Ψ,HN (R,Z)Ψ

〉
is quadratic, the MCSCF

energy functional is not. Consequently, the MCSCF equations, namely the first order stationarity
conditions for the critical points of EN,K on the manifold MN,K , will be nonlinear. More precisely,
EN,K is not quadratic with respect to the orbitals ϕi’s, but it is indeed quadratic with respect to
the cI ’s since

EN,K(c,Φ) =
∑

I,J

cIcJ
〈
ΦI ,H

N (R,Z)ΦJ

〉
=

∑

I,J

cIcJ(HΦ)IJ

where (recall that ΦI = ϕi1 ∧ · · · ∧ ϕiN
, when I = {i1 < · · · < iN})

(HΦ)IJ =
〈
ΦI ,H

N (R,Z)ΦJ

〉
. (1.21)

In other words, HΦ is the
(
K
N

)
×

(
K
N

)
matrix of the quadratic form associated with HN (R,Z) when

it is restricted to the
(
K
N

)
-dimensional space VΦ = Span(ΦI). It can be seen that the MCSCF

equations take the following general form [29, 46]





γi

(
−∆

2
+ VR,Z

)
ϕi +

∑

1≤j,k,l≤K

bijkl

(
(ϕjϕk) ∗ 1

|x|

)
ϕl =

K∑

j=1

λijϕj , 1 ≤ i ≤ K

HΦ c = βc,

(1.22)
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where the bijkl are real numbers which can be expressed in terms of c. The first line of (1.22) is a
system of K nonlinear coupled partial differential equations accounting for the stationarity condi-
tions with respect to Φ; the symmetric matrix (λij) is the Lagrange multiplier matrix associated
with the orthonormality constraints on Φ. The numbers γi are called the occupation numbers and
satisfy 0 ≤ γi ≤ 1. They are the eigenvalues of the one-body density matrix γΨ associated with
the wavefunction Ψ (see [46] for details). A compact form of the first equations of (1.22) is given
in [46]. The second equation is a simple eigenvalue problem and conveys the stationarity condition
with respect to c.

Remark that in (1.17), all the Slater determinants that can be built with the functions ϕi are
taken into account. Most often, this cannot be done in practice for

(
K
N

)
is too large a number. It

is then necessary to resort to an additional approximation consisting in dividing the electrons into
two groups, the inactive electrons that are supposed to be correctly described by a Hartree-Fock
type model, and the active electrons that mostly contribute to the correlation energy, and in using
the MCSCF methodology for the active electrons only. This is the so-called Complete Active Space
Self-Consistent Field (CASSCF) approach [70].

1.2.2 Existence and properties of minimizers

For algebraic reasons [3, 17, 58, 29, 46], there does not exist N -body wavefunctions of rank K =
N + 1 and when N = 2, all the Ψs have an even rank. A partial multiconfiguration method of
rank K = N + 2 was studied by Le Bris [43] who considered the minimization over doubly excited
configurations

Ψ = α ϕ1 ∧ · · · ∧ ϕN + β ϕ1 ∧ · · · ∧ ϕN−2 ∧ ϕN+1 ∧ ϕN+2. (1.23)

He proved the existence of a minimum when |Z| > N−1 and showed the inequality EN,N+2(R,Z) <
EN,N (R,Z). The existence of a minimizer for EN,K(R,Z) for all K ≥ N and N < |Z| + 1 was
proved first by Friesecke in [29]. The result is the following:

Theorem 1.1 (Existence and properties of MCSCF ground state [29, 30, 44, 46]). Let K ≥ N with
N < |Z|+ 1. Then there exists a minimizer (c,Φ) ∈ MK

N for the variational problem EN,K(R,Z).
Additionally, one has for every K ≥ N ,

EN,K+2(R,Z) < EN,K(R,Z). (1.24)

Lastly, any associated sequence of N -body wavefunction ΨK =
∑

I cIΦI has a subsequence which
converges strongly in H2((R3)N ) as K → ∞ to a true ground state Ψ of the Schrödinger operator
HN (R,Z).

To prove the existence of a minimizer for EN,K(R,Z), Friesecke used both concentration-
compactness ideas of Lions [54, 55] and N -body geometric methods inspired by the HVZ theorem
[35, 82, 89, 76, 69]. He proved the compactness of all minimizing sequences under the binding
condition that

EN,K(R,Z) < EN−1,K−1(R,Z)

(compare with the HVZ criterion EN (R,Z) < ΣN (R,Z) = EN−1(R,Z) in the Schrödinger case),
an inequality which can itself easily be proved using a test function when N − 1 < |Z|.

Unfortunately, it is not obvious how to generalize this method to excited states and we gave
a different proof of the existence of a ground state in [44, 46]. It was itself inspired of the proof
given by Lions [56] for the Hartree-Fock model. The idea is to construct a specific Palais-Smale
sequence with a second-order information (i.e. such that the second derivative is nonnegative up to
a controlled error), using a generalization of Ekeland’s lemma [26] due to Borwein and Preiss [7, 32].
Then, one shows that such a Palais-Smale sequence is indeed compact, using both the information
that the first derivative goes to zero and that the second derivative is essentially nonnegative.

The convergence of the wavefunction as K → ∞ was proved in [29]. The monotonicity property
of the MCSCF energy (1.24) was shown independently in [30] and in [47], using ideas of Le Bris
[43].
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1.2.3 Nonlinear excited states

As we have mentioned before, the MCSCF theory is in Quantum Chemistry a method of choice for
the calculation of excited states. However, contrarily to the ground state, it is not a priori clear
how to define excited states for a nonlinear model such as MCSCF. As we will see, the energy
functional EN,K has many critical points on the manifold MN,K , many of them being probably
purely due to the nonlinear nature of the model1.

Taking into account the full nonlinearity of the problem and following ideas of Lions [56], a
family of critical points of EN,K on the manifold MN,K satisfying very natural properties were
constructed in [46]. The result is the following:

Theorem 1.2 (MCSCF Critical points [46]). Let K ≥ N with N < |Z| + 1.

(i) (Existence of infinitely many critical points). There exists an infinite sequence {ci,Φi}i≥1 ⊂
MN,K of critical points of the functional EN,K on the manifold MN,K , satisfying EN,K(ci,Φi) <
E0(R,Z) for all i ≥ 1 and

lim
i→∞

EN,K(ci,Φi) = E0(R,Z). (1.25)

In addition, the corresponding sequence {Ψi}i≥1 of N -body wavefunctions satisfies

lim
i→∞

||∇Ψi||L2 = 0.

(ii) (Existence of finitely many nonlinear excited states). There exists
(
K
N

)
critical points (cKd ,Φ

K
d ),

0 ≤ d ≤
(
K
N

)
− 1, of the functional EN,K on the manifold MN,K , satisfying

λN
d (R,Z) ≤ EN,K(cKd ,Φ

K
d ) := λN,K

d (1.26)

and
lim

K→∞
EN,K(cKd ,Φ

K
d ) = λN

d (R,Z).

As announced previously the first part (i) shows that the functional EN,K has infinitely many
critical points on the manyfold MN,K , for any fixed K. The so-constructed points are the natural
generalization of the ones which were introduced by Lions in [56] in the Hartree-Fock case. Note
that (1.25) together with the fact that λN

d (R,Z) → ΣN (R,Z) = EN−1(R,Z) < E0(R,Z) when
N > 1 and as d→ ∞, imply that the critical points of Part (i) are probably not very much related
to eigenfunctions of HN (R,Z). We do not call them “excited states”.

Some critical points which behave as expected in the limit K → ∞ are constructed in Part
(ii). We believe that the sequence of wavefunctions {ΨK

d } corresponding to (cKd ,Φ
K
d ) converges

strongly in H2(R3N ) (up to a subsequence) as K → ∞ to a dth excited state Ψd solution of
HN (R,Z)Ψd = λN

d (R,Z)Ψd, but we could not prove it.
The method of proof of Theorem 1.2 is very much inspired from the one of Lions in the Hartree-

Fock case [56, 32]. A certain minimax method is defined and again a special Palais-Smale sequence
including a second-order Morse-type information is considered. This time, one uses a result of Fang
and Ghoussoub [28] to get such a sequence. The strong convergence of the Palais-Smale sequence
when N < |Z| + 1 is obtained like in the minimization case.

There is a natural definition for the MCSCF excited state energies, which is indeed the one
which is mostly used in Quantum Chemistry (see, e.g. [73, 84, 85] and the references of [10]).

Let us denote by λ̃N,K
d (Φ), d = 0, ...,

(
K
N

)
− 1, the

(
K
N

)
eigenvalues of the Hamiltonian matrix HΦ

defined in (1.21), depending on the orbitals Φ = (ϕ1, ..., ϕK). By the usual Rayleigh-Ritz formula,
one deduces that

λN
d (R,Z) ≤ λ̃N,K

d (Φ).

1Contrarily to what is sometimes seen in the mathematical literature, we do not use the expression “excited
state” for every critical points of our functional. We will reserve this name to the critical points which have some
relation with the true excited states of the Schrödinger model, in the sense detailed above.
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Sch. K = +∞ λN
0 (R,Z) λN

1 (R,Z) · · · · · · · · · λd(R,Z) · · · · · ·
... ↑ ↑ ↑

MC K λN,K
0 · · · · · · · · · · · · · · · λN,K

(K
N)−1

...
...

...
...

...

K = N + 2 λN,N+2
0 λN,N+2

1 · · · λN,N+2

(N+2
N )−1

HF K = N λN,N
0

Table 1.1: The nonlinear excited states constructed in Part (ii) of Theorem 1.2.

It is therefore natural to define the following variational method:

λ̃N,K
d = inf

Φ
µK

d (Φ), (1.27)

that is to say, quoting [73], “the MCSCF energy results from minimizing the appropriate eigenvalue
of the Hamiltonian matrix with respect to orbital variations”.2 It can actually be proved that
λ̃N,K

d ց λN
d (R,Z) as K → ∞.

However, (1.27) is a minimization of an eigenvalue of a symmetric matrix depending on a
parameter Φ. This type of variational method is generally very ill-posed mathematically (even in

finite dimensions) and it is not at all guaranteed that there will be a critical point at the level λ̃N,K
d

(see [46, 10, 49] for comments in this direction). Indeed we believe that most of the convergence
problems encountered in practical computations (like the so-called root flipping [86, 85, 84]) are
due to this issue.

The problems raised by Definition (1.27) have already been described and studied in details in
the Chemistry literature [33, 36, 37, 66] by the team of the DALTON software [1]. They proposed
a different definition of excited states by requiring that a dth excited state is a stationary state with
Morse index at most d. Such states are computed in DALTON by a well-behaved Newton-type
algorithm followed by a trust region method, which does not lead to any root-flipping problem.
However, it was not proposed how to get the correct critical points. The minimax method used to
construct the ones of Theorem 1.2 fills this gap.

We now quickly explain how the min-max variational methods are defined. If a group G acts
on two topological spaces X and Y , we recall that a function ϕ : X → Y is called G-equivariant
if ϕ(g · x) = g · ϕ(x) for all g ∈ G and x ∈ X. We denote by CG(X,Y ) the set of all continuous
G-equivariant functions. In our case, we consider, as in [56, 32, 68], min-maxing methods of the
form:

min
f∈CG(Sd,MN,K)

max
(c,Φ)∈f(Sd)

EN,K(c,Φ) (1.28)

where G = Z2 ≃ {±1} acts obviously on the Euclidian sphere Sd of R
d+1. The action of Z2 on

MN,K is defined using the fact that EN,K is even in c and Φ:

EN,K(c,Φ) = EN,K(c,−Φ) = EN,K(−c,Φ).

Hence two natural group actions of Z2 may be considered on MN,K :

(−) ·Φ (c,Φ) = (c,−Φ), (1.29)

(−) ·c (c,Φ) = (−c,Φ). (1.30)

2Note that in Chemistry, it is always assumed that the model contains at least d + 1 configurations in order to
compute an approximation of the dth excited state. For instance no excited state is defined in the Hartree-Fock
model.
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A function f : Sd −→ MN,K is said to be (Z2)c-equivariant when f(x) = (c,Φ) =⇒ f(−x) =
(−c,Φ) and (Z2)Φ-equivariant when f(x) = (c,Φ) =⇒ f(−x) = (c,−Φ). Let us denote by p the
projection on the MCSCF coefficients: p(c,Φ) = c. Then we note that when f is a continuous

(Z2)c-equivariant function, p ◦ f : Sd → S(K
N)−1 is a continuous and odd function. By the Borsuk-

Ulam Theorem, such functions only exist when d + 1 ≤
(
K
N

)
. This leads us to the following

definitions:
µN,K

d = inf
f∈C(Z2)Φ

(Sd,MN,K)
max

(c,Φ)∈f(Sd)
EN,K(c,Φ) (1.31)

for d ≥ 1, and
λN,K

d = inf
f∈C(Z2)c (Sd,MN,K)

max
(c,Φ)∈f(Sd)

EN,K(c,Φ) (1.32)

for 0 ≤ d ≤
(
K
N

)
− 1.

The critical levels µN,K
d and λN,K

d respectively furnish the critical points of Part (i) and (ii) in
Theorem 1.2. Let us introduce

ΠN,K : MN,K −→ ∧N
1 H1(R3)

(c,Φ) 7−→ Ψ =
∑

I cIΦI ,

the natural projection from the one-body space into the N -body space. It is easy to see that the
(d+ 1)st eigenvalue can also be obtained through a nonlinear minimax principle:

λN
d (R,Z) = min

g∈Θd

max
Ψ∈g(Sd)

〈HΨ,Ψ〉

where Θd is the collection of all odd continuous map from Sd into the sphere of
∧N

1 H1(R3). Note
that the group action defined in (1.30) was chosen in such a way that for all (Z2)c-equivariant

function f : Sd → MK
N , it holds g = ΠK

N ◦ f ∈ Θd. Hence we deduce that λN,K
d ≥ λN

d (R,Z). On
the other hand, we have for all fixed Φ

λN,K
d ≤ inf

f∈C0

„

Sd,S(K
N)−1

«

f odd

max
(c,Φ)∈f(Sd)×{Φ}

EN,K(c,Φ) = λ̃N,K
d (Φ)

hence we also deduce that λN,K
d ≤ λ̃N,K

d . Therefore we see that our definition (1.32) is the natural
extension of (1.27) taking into account the full nonlinearity of the problem.

1.2.4 A new algorithm for the computation of the first excited state

A new computational method based on the definition (1.32) was proposed and studied for the first
excited state in a collaboration with Éric Cancès and Hervé Galicher in [10] (see also the review
[49]). Using the fact that EN,K is even with respect to c, it can be seen that the minimax level
(1.32) for d = 1 may be rewritten

λN,K
1 = inf

(c,Φ)∈MN,K

{
inf

γ∈Γ(c,Φ)

sup
t∈[0;1]

EN,K(γ(t))

}
(1.33)

where
Γ(c,Φ) =

{
γ ∈ C0

(
[0; 1],MN,K

)
, γ(0) = (c,Φ), γ(1) = (−c,Φ)

}
.

Notice that the inf − sup problem which is in brackets in (1.33) is a usual mountain-pass problem
between (c,Φ) and (−c,Φ). We now conjecture that when K is large enough, a global minimizer
of the MCSCF energy (cK0 ,Φ

K
0 ) as provided by Theorem 1.1 is also a minimizer of the outer

minimization in (1.33). Therefore, we are able to simplify the resolution of problem (1.33) as
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follows: we clamp both ends of the trial paths at (cK0 ,Φ
K
0 ) and (−cK0 ,ΦK

0 ) respectively, and solve
the mountain pass problem

λN,K
1 = inf

γ∈C0([0;1],MN,K),

γ(0)=(cK
0 ,ΦK

0 ), γ(1)=(−cK
0 ,ΦK

0 )

sup
t∈[0;1]

EK
N (γ(t)). (1.34)

Notice that (1.34) mimics the fact that, in the linear case, one can obtain the second eigenfunc-
tion Ψ1 of HN (R,Z), as a mountain pass point between Ψ0 and −Ψ0, where HN (R,Z)Ψ0 =
EN (R,Z)Ψ0, see Fig. 1.2.

Figure 1.2: The true (Schrödinger) first excited state Ψ1 can be obtained as a mountain pass
point between the two ground states ±Ψ0: any path linking Ψ0 and −Ψ0 necessarily intersects the
orthogonal of SpanΨ0, on which the energy is ≥ λ1.

In practice, solving a mountain-pass problem is rather demanding in terms of CPU time since
one has to deform paths. Therefore, a not too tight convergence criteria was chosen in [10] to stop
the path optimization step. The state of highest energy on the final path is then used as initial
guess in a Newton-like procedure to solve (1.22).

We have found many algorithms in the literature for the optimization of paths (often applied
to the simulation of chemical reactions on potential energy surfaces) [72, 67, 34, 14, 27, 21, 25],
some of them being quite peculiar in our opinion. The method that was proposed in [10] for the
deformation of paths, and which seems to give good results on our problem, is of general concern
and could therefore also be useful for some other problems. It was partially inspired of [15, 16].
The idea is to sample a path by a certain number of points on the corresponding manifold, and use
the gradient flow of the functional to be optimized to deform the path. A naive procedure consists
in just moving each point of the path in the direction opposite to the gradient, but in this case the
points will fall down in one of the valley. Many methods have been introduced to circumvent this
issue. It was for instance proposed to attach each point to its neighbor by means of a string, or to
use the component of the gradient normal to the path to move the points. A better approach that
we have used in [10] consists instead of computing at each step new points on the paths which are
better distributed in some sense, hence avoiding them to fall into the valleys. Details can be found
in [10].

We have applied the above strategy to the case of two-electron systems. We considered the
singlet state for which the antisymmetry of the wavefunction is encoded in the spin variable, hence
the spacial component is symmetric, which helped us in reducing the complexity of the calculation.

It is well-known in Chemistry that the true Schrödinger eigenfunctions have special symmetries.
The ground state is an even function, ψ0(−x,−y) = ψ0(x, y), whereas the first excited state is an
odd function, ψ1(−x,−y) = −ψ1(x, y). Hence the first excited state is indeed a ground state of its
symmetry subspace: Chemists would usually impose this symmetry and minimize. To emphasize
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Figure 1.3: Energy along the successive deformed paths generated by the algorithm of [10] for the
computation of the first singlet excited state of H2, with R = 1 Å.

the possible difficulties when dealing with MCSCF methods, we have not imposed any symmetry
(except the one coming from the spin) on our wavefunctions.

We used an MCSCF method with 4 orbitals, i.e. the wavefunction takes the form

ψ(x, y) =

4∑

i=1

ciϕi(x)ϕi(y),

each ϕi being expanded in a selected one-body basis. We treated both Helium-like atoms and
the Hydrogen molecule using the cc-pVDZ basis whose size is 10. The MCSCF ground state was
always found to be an even function, as expected. Figure 1.3 shows the successive paths created
by our algorithm for the computation of the first singlet excited state of the H2 molecule with an
interatomic distance of 1 Å.

The computed value of the vectors (ci)
4
i=1 in both the ground state and the excited state is as

follows:

cmin =




0.9860929
−0.1564182
−0.0548179
−0.0122131


 c1ex =




−0.7086355
0.7051798
0.0166917
0.0166917


 .

As is well-known by chemists, one finds that the ground state has one dominating coefficient,
showing that the Hartree-Fock approximation would yield a quite good result. However the first
excited state has two ci’s of similar size, hence the corresponding wavefunction would be poorely
described by a Hartree-Fock state. What was surprising to us was that the computed nonlinear
first excited state wavefunction was found to be almost odd, but not quite. Hence there is a
symmetry breaking phenomenon occurring: due to the nonlinearity, the MCSCF wavefunction
does not exactly share the symmetry of the true first excited state. It is only in the limit of
infinitely many Slater determinants that the first nonlinear excited state will have the correct
symmetry.

Also in [10], the problem (1.27) corresponding to minimizing the second eigenvalue of the
Hamiltonian matrix was considered. A good candidate for a solution was found. The corresponding
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wavefunction is even, showing that when no symmetry is imposed on the wavefunction, one indeed
has λN,K

d < λ̃N,K
d (for the corresponding discretized problems). This was already mentioned earlier

in [64].

1.3 A new reduced density matrix approach

Recently, there has been a regain of interest in the so-called 2-body reduced density matrix method.
This method allows to calculate an approximation of the ground state energy EN (R,Z) (it does
not allow to calculate excited states). We present this method very quickly here, and refer to the
article [13] written in collaboration with É. Cancès and G. Stoltz for a more precise presentation
(or, even better, to the PhD thesis of G. Stoltz [79] which contains many more details).

The first step consists in noting that

EN (R,Z) = inf
Υ∈B(

VN
1 L2(R3))

Υ≥0, Tr(Υ)=1

Tr
(
HN (R,Z)Υ

)

which is interpreted by saying that for a linear model, the ground state energy among mixed states
is the same as the one among pure states. As early as in 1951, it was noticed by Coleman that the
above electronic N -body ground-state energy could be expressed using only the two-body reduced
density matrices (2-RDM), defined as Γ := N(N − 1)Tr3···NΥ, where Tr3···N denotes the partial
trace in the last N − 2 variables. This can be expressed in terms of the kernels of the operators as

Γ(x1, x2;x
′
1, x

′
2) := N(N − 1)

ˆ

R3

·
ˆ

R3

Υ(x1, x2, x3, ..., xN ;x′1, x
′
2, x3, ..., xN )dx3 · · · dxN . (1.35)

It can then be verified that for every self-adjoint operator Υ,

TrVN
1 L2(R3)(H

N (R,Z)Υ) = TrL2(R3)∧L2(R3)(KN (R,Z)Γ)

where KN (R,Z) is a two-body operator defined as

KN (R,Z) =
hx1

+ hx2

2(N − 1)
+

1

2|x1 − x2|
+ E0(R,Z),

with h = −∆/2 + VR,Z . Hence

EN (R,Z) = inf
Γ∈CN

Tr(Γ)=N(N−1)

Tr (KN (R,Z)Γ) (1.36)

where CN denotes the cone of N -representable two-body density matrices

CN := {Γ | there exists Υ ≥ 0 such that (1.35) holds}.

At a conference in 1959, Coulson proposed to completely eliminate wavefunctions from Quan-
tum Chemistry, since all the electronic ground-state properties of molecular systems can be com-
puted from the 2-RDM [20, 58, 59]. Unfortunately, the set CN of N -representable 2-RDM is not
known explicitly. Some mathematical characterizations were provided [41, 18, 19] but they could
not be used to derive a numerical method with a complexity of a lower order than the usual N -
body problem. It was shown in [57] that the question to know whether a density matrix is N
representable or not, is quantum Merlin-Arthur complete (this is the quantum generalization of
nondeterministic polynomial time (NP) complete), hence NP hard.

Recently a new interest in the Reduced Density Matrix (RDM) approach arose. Impressive
numerical results have been obtained by two different algorithms for semidefinite programming:
primal-dual interior point methods [65, 60, 88, 31], or an augmented Lagrangian formulation using



42 Chap. 1 - Nonrelativistic atoms and molecules

matrix factorization of the 2-RDM [62, 61, 63]. These results use a small number of known necessary
conditions of N -representability. All these conditions take the very general form

Li(Γ) ≥ 0

for some linear operators Li : S
(
L2(R3) ∧ L2(R3)

)
→ S(Hi) and some Hilbert space Hi. The

simpler methods use three conditions denoted as P , Q and G, whereas more complicated methods
use two additional conditions T1 and T2. The P , Q and G conditions may be obtained in a
second-quantized formalism by writting that any state must satisfy ω(c†c) ≥ 0, with, respectively,

c = a†ia
†
j , c = aiaj or c = a†iaj . One can obtain other conditions by considering all possible products

of 3 creation and annihilation operators, but they of course involve the three-body density matrix.
The T1 and T2 conditions are obtained by finding an appropriate linear combination of the 3-body
inequalities, in order to get conditions where only the two-body density matrix appears.

The unknown cone CN is therefore replaced by a bigger cone

Capp
N := {Γ | Li(Γ) ≥ 0 for i = 1, ..., ℓ}

and the associated ground state energy is a lower bound to the true energy EN (R,Z), defined as

EN
app(R,Z) = inf

Γ∈Capp
N

Tr(Γ)=N(N−1)

Tr (KN (R,Z)Γ) . (1.37)

In [13] we have noticed that by duality (1.37) may be written

EN
app(R,Z) = N(N − 1) sup{µ | KN (R,Z) − µ ∈ (Capp

N )∗} (1.38)

where (Capp
N )∗ is the cone dual to Capp

N , which is simply

(Capp
N )∗ =

{
ℓ∑

i=1

(Li)
∗Bi : Bi ∈ S(Hi), Bi ≥ 0

}
.

The advantage of our formulation (1.38) is that it is a one-dimensional problem. Let us intro-
duce the distance to the dual cone (Capp

N )∗:

δ(µ) = dist (KN (R,Z) − µ, (Capp
N )∗) .

Denoting µ∗
app = EN

app/(N(N − 1)), it can be seen that δ ≡ 0 on (−∞, µ∗
app], that δ is increasing

on [µ∗
app,∞) and convex on R. Also δ2 is continuously differentiable on R, thus δ is continuously

differentiable on R \ {µ∗
app}. Its derivative can indeed be explicitely computed: δ′(µ) = −Tr(KN −

µ−Aµ) ||KN − µ−Aµ||−1
where Aµ denotes the projection of KN −µ onto the polar cone (Capp

N )∗.
To illustrate the above properties, a plot of δ(µ) for N2 in a STO-6G basis set is provided in
Figure 1.4.

In order to compute µ∗
app, we use a Newton-like scheme that strongly exploits the above men-

tioned properties in a natural way: starting from an initial energy above µ∗
app (such as the Hartree-

Fock energy for instance) and using the convexity of the function δ, the Newton algorithm ensures
that the energy µ decreases at each step of the optimization process and converges to µ∗

app. The
right derivative of δ at µ∗

app being always positive, the convergence rate is guaranteed to be at least
superlinear. Of course, the most difficult part of the algorithm is the computation of the distance
δ(µ) to the cone, and of the projection Aµ of KN − µ. To this end, we chose to minimize, for a
given µ, the objective function

Jµ(B) =
1

2

∥∥∥∥∥KN − µ−
ℓ∑

i=1

(Li)
∗Bi

∥∥∥∥∥

2

,
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Figure 1.4: Distance of KN (R,Z) − µ to the dual cone (Capp
N )∗ as a function of µ for N2 in a

STO-6G basis set [13]. The tangent at the estimated value for µ∗
app ≃ −1.4457 is also displayed

(dotted line). The Full CI and Hartree-Fock values are, in the same basis, µCI = −1.4454 and
µHF = −1.4435.

under the constraints Bi ≥ 0 (i = 1...ℓ). The above minimization is performed using a classical
limited-memory BFGS algorithm [6]. Computing δ(µ) with sufficient accuracy when µ is close
to µ∗

app can be difficult because the minimization of Jµ(B) then is ill-conditioned. We therefore
consider a “truncated” version of the Newton algorithm where µ is updated by a fraction 0 < a ≤ 1
of the Newton step. We then use the linearity of δ for values close to µ∗

app to devise a stopping
criterion limiting the number of iterations.

Several numerical results using this algorithm are provided in [13]. In general, we have observed
that the function δ is almost linear in quite large a right neighborhood of µ∗

app (see Figure 1.4). One
iteration of the Newton algorithm already provides a very correct approximation of the exact RDM
energy, even when starting from the Hartree-Fock level. Usually, only 3 or 4 Newton iterations are
necessary to achieve convergence.

1.4 A mountain pass for reacting molecules

1.4.1 Adiabatic reactions

In the previous sections we have been concerned with the approximation of the eigenvalues λN
d (R,Z)

of the Schrödinger Hamiltonian HN (R,Z) for fixed positions R = (Rm) of the nuclei. One of the
main goals of Chemistry is precisely to understand the behavior of the system when the nuclei
can move (chemical reactions). In principle one should consider a coupled time-dependent system
but one approximation which is very often done by chemists is to plot (an approximation of) the
functions R 7→ λN

d (R,Z) and, assuming the eigenvalues do not cross, state that understanding
the structure of these surfaces yields an information on the behavior of the system. We will not
address here the issue of justifying the previous claim and we refer for instance to [80].

It was proved by Lieb and Thirring in [53] that for neutral molecules the function R 7→ λN
0 (R,Z)

always has at least one minimum. Here we are interested in the case for which R 7→ λN
0 (R,Z) has

two local minima, corresponding to two locally stable positions of the nuclei. Such situations are
very common in Chemistry. An example is given by the molecule HCN which also has a stable
isomer of the form CNH, see Fig. 1.5. In this case, it is natural to consider the usual mountain pass
variational problem between the two local minima. A path linking these two minima is usually
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Figure 1.5: The Potential Energy Surface of HCN with C and N fixed (i.e. the value of the first
Schrödinger eigenvalue when varying the position of H in the plane containing the three atoms),
calculated in [81] using an MCSCF method.
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Figure 1.6: The system composed of two molecules studied in [45, 48].

interpreted as an adiabatic (infinitely slow) chemical reaction. Computing a good approximation
of an optimal path as well as of the mountain pass is very important for chemists.

In this section we present some results of [45, 48]. For the sake of simplicity, we consider a
molecular system composed of only two subsystems which are free to move and refer to [45] for a
more general setting. This means we define, see Fig. 1.6,

R(d, u, u′) = (u · r, d~v + u′ · r′), Z = (z, z′),

where r = (0, r2, ...rm) ∈ (R3)m, r′ = (0, r′2, ..., r
′
m′) ∈ (R3)m′

and (z, z′) ∈ (R+)m × (R+)m′

are
fixed. The three variables are the rotations of the sub-molecules u, u′ ∈ SO(3) and the distance
between them d ∈ R\{0}. We assume that the global molecule is neutral, i.e. |Z| = |z|+ |z′| = N .
For simplicity, we also define

HN (d, u, u′) = HN (R(d, u, u′), Z), EN (d, u, u′) := inf σ{HN (d, u, u′)}.

and

E(d, u, u′,Ψ) :=
〈
HN (d, u, u′)Ψ,Ψ

〉

for all Ψ ∈ ∧N
1 H1(R3,C), normalized in L2.

We assume that (d, u, u′,Ψ) 7→ E(d, u, u′,Ψ) possesses two local minima M1 = (d1, u1, u
′
1,Ψ1)

and M2 = (d2, u2, u
′
2,Ψ2). Up to a rotation, we can always suppose that d1, d2 > 0. Next we define

the mountain pass level as

c = inf
γ∈C0([0,1] ; M),

γ(0)=M1, γ(1)=M2

max
t∈[0,1]

E(γ(t)) (1.39)

where

M := (0,∞) × SO(3)2 ×
{

Ψ ∈
N∧

1

H1(R3,C) | ||Ψ||L2 = 1

}
.

We believe that the following conjecture holds true:
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Conjecture 1.1. There always exists a critical point M = (d, u, u′,Ψ) of the energy E, of Morse
index at most one, at the level c.

In [45, 48], the conjecture was proved under some assumptions on the “molecules at infinity”,
as will be explained below. We note that the proof of Lieb-Thirring [53] cannot be directly applied
to this problem: it is not sufficient to know that at infinity there is one (unknown) orientation
which yields an attractive interaction. If we want to prove that it is not energetically favorable for
a min-maxing sequence of paths to escape to infinity, we also need have some information on the
directions along which the energy decreases “at infinity” (for instance via the negative eigenspaces
of the Hessian).

Let us remark that we use the wavefunction as variable in our minimax method. This is because
of some regularity problem in the case for which the first eigenvalue is degenerated at the level c.
Using the fact that our wavefunctions takes complex values, it was indeed shown in [45] that

c = inf
R∈C0([0,1] ; (0,∞)×SO(3)2),

R(0)=(d1,u1,u′

1), R(1)=(d2,u2,u′

2)

max
t∈[0,1]

EN (R(t)).

The same holds for real functions, but maybe only for a correct choice of Ψ1 and Ψ2.

1.4.2 Loss of compactness

As usual we have to understand the behavior of Palais-Smale sequences in the case for which
d→ ∞ on a sequence of paths approximating (1.39), i.e. when there is a loss of compactness. The
following was proved in [45]:

Theorem 1.3 (Description of possible loss of compactness [45]). We have the following alternative:

• either one can find a Palais-Smale sequence {dn, un, u
′
n,Ψn} ∈ M with {dn} bounded and

which converges to a critical point (d, u, u′,Ψ) of E at the level c, with a Morse index at most
one and such that

c = EN (d, u, u′), HN (d, u, u′)Ψ = cΨ;

• or there exists δn → ∞ and γn ∈ C0([0, 1],M) with γ(0) = M1 and γ(1) = M2, such that

lim
n→∞

max
t∈[0,1]

EN (γn(t)) = c and dn(t) ≤ δn =⇒ EN (γn(t)) < c.

In this case, one has

c = min
{
En1(r, z) + En2(r′, z′) | n1 + n2 = N

}
. (1.40)

The proof uses a duality theory developed by Ghoussoub [32]. One can also study the sequence
{Ψn} “at the top of γn” and show that it converges to a “critical point at infinity” [45].

Of course, understanding the “molecules at infinity”, i.e. the ground states of the Hamiltonians
Hn1(r, z) and Hn1(r, z) with n1 +n2 = N minimizing (1.40) will be extremely useful. We mention
the following simple result which is contained in [45]:

Proposition 1.1. Assume that (N1, N2) ∈ N
2 is such that

EN1(r, z) + EN2(r′, z′) = min{En1(r, z) + En2(r′, z′) | n1 + n2 = N}.

Then EN1(r, z) < EN1−1(r, z) and EN2(r, z) < EN2−1(r, z). Thus both HN1(r, z) and HN2(r′, z′)
have a ground state.

We provide the proof which is a very simple application of the properties of the point spectrum
of Coulomb Hamiltonians depending on the number of electrons.
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Proof. If for instance EN1(r, z) = EN1−1(r, z), thenN1 ≥ |z|+1 by Zhislin’s Theorem [90, 91]. Thus
N2 +1 ≤ |z′| since N1 +N2 = |z|+ |z′|. We deduce that EN2+1(r′, z′) < ΣN2+1(r′, z′) = EN2(r′, z′)
by the HVZ Theorem. But then this implies

EN1−1(r, z) + EN2+1(r, z) = EN1(r, z) + EN2+1(r, z) < EN1(r, z) + EN2(r, z)

which is a contradiction.

1.4.3 Existence of the mountain pass

In this section, we give some properties of the molecules at infinity implying that the second case
of Theorem 1.3 cannot occur. We treat three cases.

1.4.3.1 Case of charged molecules at infinity

In the first case, we assume that the molecules at infinity are charged. This is the simpler case.

Theorem 1.4 (Charged molecules at infinity [45]). Assume that there exist N1 and N2 with
N1 +N2 = N such that

• (N1 − |z|)(N2 − |z′|) 6= 0;

• EN1(r, z) + EN2(r′, z′) = min{En1(r, z) + En2(r′, z′) | n1 + n2 = N}.

Then the second alternative of Theorem 1.3 does not occur and therefore there exists a critical
point at the level c.

The idea of the proof, illustrated in Fig. 1.7, is rather simple: one considers the sequence
of paths {γn} furnished by the second alternative of Theorem 1.3 and, using that the molecules
attract with each other with a force (N1 − |z|)(N2 − |z′|)/d, one constructs a new path γ̃n on
which, for n large enough, the highest energy is < c, hence getting a contradiction. The new path
is constructed on the set of (rotated and translated) tensor products ψ1(u·) ∧ ψ2(u

′ · −d~v) where
ψ1 and ψ2 are ground states of, respectively, HN1(r, z) and HN2(r′, z′) which are known to exist
by Proposition 1.1.
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Figure 1.7: Idea of the proof of Theorem 1.4.

1.4.3.2 Case of neutral but polarized molecules at infinity

In the case of neutral molecules at infinity, it is natural to look at the next order in the interaction
energy between them, given by the dipole-dipole interaction. The latter depends on the orientation
of the molecules and does not have a fixed sign. Let us first recall the definition of the dipole.
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Definition 1.1 (Dipole of a molecule in its ground state). Let Ψ ∈ ∧N
1 L2(R3,C) and (R,Z) ∈

R
2M . The corresponding dipole is defined as

P (R,Z,Ψ) :=

N∑

i=1

ˆ

(R3)N

xi|Ψ(x1, ..., xN )|2dx1 · · · dxN −
M∑

m=1

ZmRm.

We say that HN (R,Z) has a dipole in its ground state if EN (R,Z) < ΣN (R,Z) and P (R,Z,Ψ) 6= 0
for all normalized Ψ ∈ ker{HN (R,Z) − EN (R,Z)} \ {0}.

The following was proved in [45]:

Theorem 1.5 (Polarized molecules at infinity [45]). Assume that |z| and |z′| are integers and that

• E|z|(r, z) + E|z′|(r′, z′) < min{En1(r, z) + En2(r′, z′) | n1 + n2 = N, n1 6= |z|};
• both H |z|(r, z) and H |z′|(r′, z′) possess a dipole in their ground state;

• E|z|(r, z) or E|z′|(r′, z′) is non degenerated.

Then the second alternative of Theorem 1.3 does not occur and therefore there exists a critical
point at the level c.

The assumption that one of the two ground state energies is non degenerated is a purely
technical condition. The proof of Theorem 1.5 is much more involved than the one of Theorem
1.4. An important tool is given by the properties of the dipole-dipole interaction defined as

F (x, y) := x · y − 3(x · ~v)(y · ~v)
for (x, y) ∈ S2 × S2. It is proved in [45] that the critical points of F have either a negative energy
or a Morse index greater than 1, see Fig. 1.8. Thus either the molecules attract or one can deform
the path using the second derivative to decrease the energy.

Index Energy

4

2

1

0

2

1

−1

−2

-

-

- - � �

- � � -

6 6

6
?

Figure 1.8: Critical points of the dipole-dipole interaction

1.4.3.3 Case when one subsystem is an atom

In [48] it was considered the case for which m′ = 1, i.e. when one of the two subsystems is a single
atom. The following was proved:

Theorem 1.6 (Case of a single atom [48]). Assume that m′ = 1. Then the second alternative of
Theorem 1.3 never occurs and therefore there always exists a critical point at the level c.

This result applies to HCN and many other practical cases. The proof is based on a generaliza-
tion of the Lieb-Thirring result [53]: one shows that there is always an attractive Van Der Waals
interaction between an atom and a molecule, independently of the orientation of the latter. The
proof is then similar to the case of charged molecules at infinity.
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2

The Hartree-Fock-
Bogoliubov theory of
neutron stars and white
dwarfs

In this chapter, we study a model for an attractive system of (pseudo-)relativistic fermions like
the ones which are found, for instance, in neutron stars and white dwarfs. The so-called Hartree-
Fock-Bogoliubov (HFB) model [28, 2] (which generalizes the Hartree-Fock model introduced in
the previous chapter) is a very widely used model for attractive quantum systems [28, 3, 10]. In
some approximation, it yields to the well-known Bardeen-Cooper-Schrieffer (BCS) theory which
has been successfully employed to describe important physical effects such as superconductivity
and superfluidity. The HFB model possesses two variables, the same one body density matrix γ as
in HF theory, and the pairing density matrix α which always vanishes for purely repulsive systems.
The matrix α describes the physical effect of Cooper pairing.

We state the existence and the properties of ground states for a simple HFB model. We also
show the blow-up in finite time of the solution to the corresponding time-dependent equation, in
the case of a purely gravitational force.

2.1 The Chandrasekhar limit

We consider a system of N neutral fermions (like neutrons) which are only submitted to their own
gravitational force. We want to take into account relativistic effects and we will use a pseudo-
relativistic kinetic energy (although one should in principle use the Dirac operator introduced in
Chapter 4), defined as

T :=
√
−c2∆ +m2c4 −mc2

where m is the mass of each particle and c is the speed of light. For simplicity, we will in this
chapter work in a system of units such that c = 1.

The Hamiltonian of the system is formally defined as

H(N,κ) :=

N∑

k=1

Txk
− κ

∑

1≤k<ℓ≤N

1

|xk − xℓ|
(2.1)

53
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on the fermionic N -body space
N∧

1

L2(R3,Cq).

The integer q is the number of internal degrees of freedom which is 2 for spin-1/2 particles. The
coupling constant κ > 0 parameterizes the strength of the gravitational interaction among the
particles and it is very small in practice (if the particles have the mass of a proton, numerically
κ ∼ 10−38). The above Hamiltonian can be viewed as a (very simplified) model problem for self-
gravitating relativistic Fermi systems which are found, for example, in neutron stars and white
dwarfs [22, 23].

The Hamiltonian (2.1) is not always easy to realize as a self-adjoint operator in particular when
κ is too big. However the quadratic form associated with H(N,κ) is always well-defined on the

Sobolev space
∧N

1 H1(R3,Cq) by Hardy-Kato’s inequality [17, 16]

1

|x| ≤
π

2

√
−∆. (2.2)

As we will essentially be interested in the ground state energy, we simply define

E(N,κ) := inf

{
〈H(N,κ)Ψ,Ψ〉, Ψ ∈

N∧

1

H1(R3,Cq), ||Ψ||L2 = 1

}
, (2.3)

a well-defined quantity which can in principle be equal to −∞.
Lieb, Thirring and Yau have proved in [22, 23] that there exists an integer N(κ) such that

{
E(N,κ) > −∞ when N ≤ N(κ),
E(N,κ) = −∞ when N > N(κ).

The interpretation of this is that very massive stars undergo variational collapse in the sense that
the energy is not bounded from below, hence there is no minimizer for (2.3), when N > N(κ). As
stars contain a huge number of particles, it is natural to study the limit N → ∞. Due to the fact
that stability holds only when N ≤ N(κ), this is only possible if at the same time κ → 0 (this is
because N(κ) → ∞ as κ → 0). This was done by Lieb, Thirring and Yau in [22, 23], as we will
now quickly explain.

The famous Chandrasekhar functional was introduced by Chandrasekhar in 1931 [8] (he was
a Nobel laureate in physics along with William Alfred Fowler for their work in the theoretical
structure and evolution of stars [9]). It reads

ECh(ρ) :=

ˆ

R3

j(ρ(x)) dx− κ

2
D(ρ, ρ)

where j is the semi-classical kinetic energy

j(t) := q(2π2)−1

ˆ

“

6π2t
q

”1/3

0

p2
(√

m2 + p2 −m
)
dp. (2.4)

and, like in the previous chapter,

D(ρ, ρ) :=

ˆ

R3

ˆ

R3

ρ(x)ρ(y)

|x− y| dx dy.

The associated minimization problem is defined by

ECh(N,κ) := inf

{
ECh(ρ) | ρ ≥ 0, ρ ∈ L4/3(R3),

ˆ

R3

ρ = N

}
.
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It is known [22, 23] that ECh(N,κ) > −∞ if and only if N ≤ NCh(κ) = (τc/κ)
3/2q−1/2 where

τc := 3/2(6π2)1/3 inf

{
´

R3 ρ
4/3

D(ρ, ρ)
| ρ ≥ 0, ρ ∈ L4/3(R3),

ˆ

R3

ρ = 1

}
≃ 2.677. (2.5)

In [23], Lieb and Yau have shown that the largest possible particle number behaves as

N(κ)κ3/2 → τ3/2
c q−1/2 as κ→ 0 (2.6)

and that for any fixed 0 ≤ τ < τcq
−1/3, the quantum system is well-approximated by the semiclas-

sical Chandrasekhar energy:

lim
N→∞

κN2/3→τ

E(N,κ)

ECh(N,κ)
= 1.

2.2 The Hartree-Fock-Bogoliubov approximation

When N stays finite, calculating an approximation to the Schrödinger problem (2.3) which is more
precise than the Chandrasekhar simple model is of great interest. Like for the atomic case studied
in the previous chapter, we will now introduce a nonlinear model.

The Hartree-Fock approximation of the previous Hamiltonian (2.1) reads

EHF(γ) = Tr(Tγ) − κ

2

¨

R3×R3

ργ(x)ργ(y)

|x− y| dx dy +
κ

2

¨

R3×R3

|γ(x, y)|2
|x− y| dx dy

where 0 ≤ γ ≤ 1 is the one-body density matrix of the fermions, with Tr(γ) = N . The Hartree-
Fock-Bogoliubov (HFB) theory furnishes a more precise model in which one has an additional
variable α called the pairing density matrix. This is described in details in [2] and summarized in
an appendix below, see Section 2.5. The energy functional is given by

E(γ, α) := Tr (Tγ) − κ

2

¨

R3×R3

ργ(x)ργ(y)

|x− y| dx dy

+
κ

2

¨

R3×R3

|γ(x, y)|2
|x− y| dx dy −

κ

2

¨

R3×R3

|α(x, y)|2
|x− y| dx dy. (2.7)

The variables γ and α are two operators acting on L2(R3; Cq). The operator α is only assumed to
be Hilbert-Schmidt, i. e., we have Tr(α∗α) <∞. Its kernel is a q × q matrix which is supposed to
be antisymmetric in the following sense: α(x, y)T = −α(y, x), where T is the usual transposition of
matrices. One has to supplement these conditions with the following operator inequality relating
γ and α: (

0 0
0 0

)
≤

(
γ α
α∗ 1 − γ

)
≤

(
1 0
0 1

)
on L2(R3; Cq) ⊕ L2(R3; Cq). (2.8)

This inequality guarantees that the pair (γ, α) is associated to a unique quasi-free state in Fock
space [2].

In principle, α could vanish for a minimizer in which case one recovers the usual (generalized)
Hartree-Fock model. The kernel α(x, σ; y, σ′) of the operator α should be interpreted as the two-
body wavefunction of Cooper pairs. For more general interactions, the nonvanishing of α is very
important to describe physical effects such as superfluidity or superconductivity. It is of course not
clear whether such effects do really occur in a system interacting only through the gravitational
force as in our study, but this should be seen as a first step towards the study of more complicated
systems. Indeed, HFB theory is the model of choice in nuclear physics, for instance [28, 3].
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To define the gravitational HFB correctly, we introduce the following (real) Banach space of
density matrices

X =
{
(γ, α) ∈ S1 × S2 : γ∗ = γ, αT = −α, ‖(γ, α)‖X <∞

}
, (2.9)

equipped with the norm

‖(γ, α)‖X =
∥∥(1 − ∆)1/4γ(1 − ∆)1/4

∥∥
S1

+
∥∥(1 − ∆)1/4α

∥∥
S2
. (2.10)

We remind the reader that S1 and S2 denote the space of trace-class and Hilbert-Schmidt oper-
ators on L2(R3; Cq), respectively [29, 27]. Furthermore, we define the following subsets of density
matrices in X :

K =

{
(γ, α) ∈ X :

(
0 0
0 0

)
≤

(
γ α
α∗ 1 − γ

)
≤

(
1 0
0 1

)}
, (2.11)

Kλ = {(γ, α) ∈ K : Tr(γ) = λ} . (2.12)

It can be seen [19] that E is well-defined on K. The corresponding HFB minimization problem
then reads

I(λ) := inf
{
E(γ, α) | (γ, α) ∈ Kλ

}

which could of course be equal to −∞. We now define the largest possible mass mλHFB(κ) of a
star in the HFB approximation.

Proposition 2.1 (Boundedness from below and the Chandrasekhar Limit [19]). Let m ≥ 0 and
0 ≤ κ < 4/π be given. Then there exists a unique number λHFB(κ) > 0, which is independent of
m, such that the following holds.

(i) For 0 ≤ λ ≤ λHFB(κ), we have I(λ) > −∞.

(ii) For λ > λHFB(κ), we have I(λ) = −∞.

Furthermore, the function λHFB(κ) is nonincreasing and continuous with respect to κ. It satis-
fies the asymptotic estimate

λHFB(κ) ∼ q−1/2
(τc
κ

)3/2

as κ→ 0, (2.13)

where τc is the universal constant defined before in (2.5). For any fixed τ < τc q
−1/2, we have

lim
λ→∞

κλ2/3→τ

I(λ)

ECh(λ, κ)
= 1.

Hence we see that the semi-classical limit of the HFB model is the same as the original model
based on the Schrödinger operator (2.3).

Remark 2.1. In [19], it is proved that I(λ) = −∞ for all λ > 0 and all m ≥ 0 when κ ≥ 4/π.
Saying differently, we have λHFB(κ) = 0 when κ ≥ 4/π.

2.3 Existence and properties of ground states

2.3.1 Existence of HFB minimizers

We have seen that for λ ≤ λHFB(κ) the HFB energy is bounded from below, hence a very natural
question is the existence of a minimizer for (2.2). The most challenging main feature of the
HFB variational problem in gravitational physics is its lack of weak lower semicontinuity (wlsc)
due to the attractive interaction among particles [19]. As a consequence of the absence of wlsc,
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the existence proof for minimizers is much more involved than for the well-studied Hartree-Fock
(HF) models arising in atomic physics, where wlsc plays an essential role; see [21, 26]. Another
difficulty in the analysis of HFB models stems from its translational invariance and the fact that
the main variables are two operators related via a complicated constraint inequality. A further
complication (although conceptually less important) is the treatment of the pseudo-differential
operator describing the kinetic energy of relativistic fermions. Also, we point out that the pairing
term α cannot be handled by obvious means: In contrast to the trace-class operator γ, the operator
α is a priori only Hilbert-Schmidt. Moreover, loosely speaking, the direct and exchange term are
both “subcritical” in the sense that they may be controlled by the L12/5-norm of

√
ρ

γ
∈ H1/2(R3).

By contrast, the pairing energy depending on α is “critical” because it can only be controlled by
the kinetic energy of γ itself. A particular illustration of this difficulty is that even ruling out the
vanishing of a minimizing sequence is quite delicate, as we will explain later.

The existence of minimizers with particle numbers below the critical threshold was proved with
E. Lenzmann in [19]. Since the functional E is translation invariant, we have to take into account
the unitary action τy on L2(R3) given by the group of translations in R

3: τyf := f(· − y). The
precise existence result now reads as follows.

Theorem 2.1 (Existence of Minimizers [19]). Fix the integer q ≥ 1 describing the internal spin
degrees of freedom. Furthermore, suppose that m > 0 and 0 < κ < 1/π. Then, for all 0 < λ <
λHFB(κ), the following properties hold.

(i) Every minimizing sequence {(γn, αn)}n∈N for I(λ) is relatively compact in X up to trans-
lations. That is, there is a sequence {yn}n∈N ⊂ R

3 such that, after passing to a suitable
subsequence, we have

τ∗yn
(γn, αn)τyn

→ (γ, α) strongly in X as n→ ∞,

where (γ, α) ∈ Kλ is a minimizer for I(λ). In particular, there exists a minimizer (γ, α) for
I(λ).

(ii) The following binding inequality holds for all 0 < λ′ < λ:

I(λ) < I(λ− λ′) + I(λ′),

Remark 2.2. Note that we impose κ < 1/π instead of the more “natural” condition κ < 4/π.
Fortunately, our restriction on κ is practically of no effect, since as we have already mentioned
typically κ = Gm2 ∼ 10−38. Nevertheless, it is an interesting open mathematically question to
extend the existence result up to the optimal threshold κ < 4/π.

Remark 2.3. As can be checked from our proof, Theorem 2.1 also holds true when the purely
gravitational interaction −1/|x − y| is replaced by a general radial potential W (|x − y|) satisfying
the following assumptions

|W (|x|)| ≤ 1

|x| for all x ∈ R
3, and W (|x|) ≤ − ǫ

|x| for |x| ≥ R0. (2.14)

Of course the largest particle number λHFB(κ) has to be defined accordingly.

The proof follows the celebrated concentration-compactness method of Pierre-Louis Lions [24,
25], which of course has to be adapted to the case when the main variable is an operator. It consists
in studying in details the behavior of a minimizing sequence which is not precompact in X .

The first step is to prove that there is no vanishing. Vanishing means that the minimizing
sequence always converges weakly to zero when any translation is applied to it. In this case one
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can show that ργn
→ 0 strongly in Lp(R3) for 1 < p < 3/2, and that the exchange and direct terms

must converge to zero. Therefore in the case of vanishing one has to study the functional

(γ, α) ∈ K 7→ Tr (Tγ) − κ

2

¨

R3×R3

|α(x, y)|2
|x− y| dx dy.

In [19] we have proved that this functional is wlsc and we have computed its minimum using ideas
of Frank, Lieb, Seiringer and Siedentop in [11]. Finally, we have shown in [19] that this infimum
is above I(λ) which implies that vanishing cannot occur.

When the minimizing sequence does not encounter vanishing and is not precompact, one has
to face the so-called dichotomy case of the concentration-compactness principle. We show that the
sequence splits into several pieces receding from each other, where at least two parts are relatively
compact and carry strictly positive particle numbers λ1 > 0 and λ2 > 0, respectively. Furthermore,
we conclude that the infima I(λi) with i = 1, 2 must be attained, and we find that the ground
state energy decomposes as

I(λ) = I(λ1) + I(λ2) + I(λ− λ1 − λ2) = I(λ1 + λ2) + I(λ− λ1 − λ2).

The last step is, using that I(λ1) and I(λ2) both have minimizers, to prove that actually the binding
inequality I(λ1 + λ2) < I(λ1) + I(λ2) must hold. Physically this is very intuitive as when the two
minimizers are put very far away, they should interact through a gravitational interaction force.
However, in order to mathematically quantify it is necessary to understand the decay properties
at infinity of minimizers, when they exist. If γ and α were finite-rank, one could show that they
must decay exponentially. However, when they are infinite rank as is expected in our case (see
Theorem 2.4 below), it is quite hard to decide what could be the decay of a minimizer. We proved
in [19] (see Theorem 2.2 below) by a variational argument that it must decay at least like 1/R2.
This decay was enough for our purposes.

2.3.2 Properties of minimizers

2.3.2.1 Nonlinear Equation and Decay Estimate

Let us now describe some properties of HFB minimizers (γ, α) obtained in Theorem 2.1. We denote

Γ =

(
γ α
α∗ 1 − γ

)
, (2.15)

and we introduce the following HFB mean-field operator

FΓ :=

(
Hγ −κα(x,y)

|x−y|
−κα∗(x,y)

|x−y| −Hγ

)
(2.16)

acting on L2(R3; Cq) ⊕ L2(R3; Cq). Here

Hγ := T − κ(ργ ∗ 1

| · | )(x) + κ
γ(x, y)

|x− y| (2.17)

is the usual mean-field operator of Hartree-Fock theory, see Chapter 1 and [21, 26, 2]. Moreover,
it turns to be convenient to define

N =

(
1 0
0 −1

)
. (2.18)

Note that Γ commutes with N if and only if α = 0, i. e., if and only if the corresponding quasi-free
state in the Fock space also commutes with the number operator N , see, e. g., [2].

We can now state some fundamental properties of the minimizers for the HFB model.
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Theorem 2.2 (Properties of Minimizers [19]). Let q ≥ 1 be given and suppose m > 0 and 0 <
κ < 1/π. Assume that (γ, α) ∈ Kλ is a minimizer for I(λ) for some λ > 0. Then there exists a
negative real number µ < 0 such that Γ = Γ(γ, α) solves the following nonlinear equation

Γ = χ(−∞,0) (FΓ − µN) +D, (2.19)

where D is a finite rank operator of the same matrix form as Γ and satisfies ran(D) ⊂ ker(FΓ−µN).
Moreover, the following decay estimate for the density function holds: for all R > 0 sufficiently

large, we have
ˆ

|x|≥R

ργ(x) dx ≤ C

R2
,

where C > 0 is some constant independent of R.

The decay estimate for ργ(x) (and a slightly refined version) plays an important role in the
proof of Theorem 2.1, as was explained before.

2.3.2.2 The spin-1/2 case (q = 2)

Let us now consider the specific case when the number of internal spin degrees of freedom is q = 2,
which corresponds to the physically relevant case of spin-1/2 fermions such as neutrons. We use
the same notation as in [1]:

γ =

(
γ↑ γ↑↓
γ↓↑ γ↓

)
, α =

(
α↑ α↑↓
α↓↑ α↓

)
.

In this case, it was shown by Bach, Fröhlich and Jonsson in [1], based on a concavity result in Lieb
[20], that the following holds:

Theorem 2.3 (Reduction to Simpler Minimization Problem [1]). Let q = 2 and (γ, α) ∈ K. Then
we have

E(γ, α) ≥ E
(
τ ⊗

(
1 0
0 1

)
,
√
τ(1 − τ) ⊗

(
0 1
−1 0

))
(2.20)

where

τ =
γ↑ + γ↓ + γ↑ + γ↓

4
.

Additionally, there is equality in (2.20) if and only if

γ = τ ⊗
(

1 0
0 1

)
and α = ±

√
τ(1 − τ) ⊗

(
0 1
−1 0

)
.

Theorem 2.3 is contained in [1]. In particular it means that a minimizer of the HFB minimiza-
tion problem is always a projection. It also implies the following important equality

I(λ) = inf

{
E

(
τ ⊗

(
1 0
0 1

)
,
√
τ(1 − τ) ⊗

(
0 1
−1 0

))
, 0 ≤ τ ≤ 1, τ = τ∗ = τ , Tr(τ) = λ/2

}
.

(2.21)
This leads to the study of the (no-spin) energy being defined as

τ 7→ Tr (Tτ)−κD(ρτ , ρτ )+
κ

2

¨

R3×R3

|τ(x, y)|2
|x− y| dx dy−

κ

2

¨

R3×R3

∣∣∣
√
τ(1 − τ)(x, y)

∣∣∣
2

|x− y| dx dy. (2.22)

We note that this energy has a form similar to the Müller functional which was studied in [11].
Indeed, a straightforward adaptation of an argument given in [11] leads to the following statement.

Theorem 2.4 (Infinite Rank of Minimizers if α 6= 0, [19]). Assume that (γ, α) is a minimizers for
I(λ) with 0 < κ < 4/π, λ > 0 and q = 2. Then, if α 6= 0 holds, the operators γ and α both have
infinite rank.
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2.4 The Dynamical Collapse

As it is well-known from nonlinear Schrödinger equations, a detailed understanding of the vari-
ational calculus for the time-independent theory turns out to be of great use when addressing
dynamical questions; e. g., the stability of solitary waves and blowup analysis.

For the reader’s orientation, we recall that the time-dependent HFB equations generated by
the functional E(γ, α) can be written in commutator form as





i
∂

∂t
Γ = [FΓ,Γ],

Γ(t = 0) = Γ0 ∈ K.
(2.23)

Here and as usual, Γ = Γ(γ, α) denotes the admissible 1-pdm defined in (2.15) and FΓ is the HFB
mean-field operator introduced in (2.16). Clearly, the equation (2.23) is a nonlinear evolution equa-
tion. With regard to the wellposedness of its initial-value problem, we note that a straightforward
adaptation of [7, 6, 4, 13, 15, 18] yields the following result.

Theorem 2.5 (Well-posedness). Assume that κ ≥ 0. For each initial datum (γ0, α0) ∈ K, there
exists a unique maximal solution (γ, α) ∈ C0([0, tmax);X ) ∩ C1([0, tmax);X ′) solving (2.23) such
that (γ(0), α(0)) = (γ0, α0). Moreover, we have conservation of energy and expected number of
particles, i. e.,

∀0 ≤ t < tmax, E(γ(t), α(t)) = E(γ0, α0) and Tr(γ(t)) = Tr(γ0).

If the initial datum (γ0, α0) ∈ K satisfies the smallness condition Tr(γ0) < λHFB(κ), then we
have tmax = +∞ and Γ(t) is bounded in X .

It is straightforward to verify that if Γ0 is an orthogonal projector on L2(R3,Cq)⊕L2(R3,Cq),
then so is Γ(t) for all times t ∈ [0, tmax). Similarly, if Γ0 = (γ0, 0) is a Hartree-Fock state, then
α(t) ≡ 0 for all times.

Next, we consider the behavior of minimizers (when they exist) for the HFB energy E(γ, α)
with respect to the evolution equation (2.23). To this end, let us assume that the initial condition
(γ0, α0) is a minimizer for I(λ) as given by Theorem 2.2. With this choice of initial conditions
and using equation (2.19) above, an elementary calculation shows that the corresponding solution
Γ(t) = Γ(γ(t), α(t)) of (2.23) is given by

γ(t) = γ0 and α(t) = e−2µitα0, (2.24)

or equivalently in a 2 × 2 matrix form

Γ(t) = eiµNt Γ0 e
−iµNt (2.25)

with µ < 0 taken from Theorem 2.2 and N defined in (2.18). Hence HFB minimizers give rise
to stationary solutions of (2.23), as one naturally expects. Moreover, by adapting a well-known
general argument in [5], the relative compactness result of Theorem 2.1 and the conservation laws
imply orbital stability of minimizers. The precise statement can be formulated as follows. Let us
define the set of minimizers

Mλ =
{
(γ, α) ∈ Kλ : E(γ, α) = I(λ)

}
,

and introduce the distance function on K

distMλ
(γ0, α0) = inf

(γ,α)∈Mλ

‖(γ0, α0) − (γ, α)‖X .
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Theorem 2.6 (Stability of Minimizers under HFB Time Evolution [19]). Under the assumptions
of Theorem 2.1, the set of minimizers Mλ for I(λ) with 0 < λ < λHFB(κ) is orbitally stable
in the following sense: for every ǫ > 0, there is δ > 0 such that if the initial condition satisfies
distMλ

(γ0, α0) < δ, then the corresponding solution Γ(t) = (γ(t), α(t)) of (2.23) exists for all times
t ≥ 0 and obeys supt≥0 distMλ

(γ(t), α(t)) < ǫ.

Finally, we turn to the study of the finite-time blowup for the time-dependent HFB equation,
when the initial condition has a large number of particles (i.e. when the star has a large mass).
This models the dynamical collapse of stars which are too massive.

Theorem 2.7 (Finite-time blow-up in Generalized HF theory [14]). Let 0 ≤ γ0 ≤ 1 be a spherically
symmetric one-body density matrix, i.e. such that γ0(Rx,Ry) = γ0(x, y) for all R ∈ SO(3).
Assume moreover that

Tr(γ0) + Tr(γ0|L|2) <∞
where L = x× (−i∇) is the angular momentum. If

E(γ0, 0) < −mTr(γ0), (2.26)

then the maximal solution of the time-dependent equation (2.23) with initial datum (γ0, 0) blows
up in finite time: one has 0 < tmax <∞ and

lim
t→tmax

Tr
(
(−∆)1/4γ(t)(−∆)1/4

)
= ∞.

We note that (2.26) requires that Tr(γ0) is large enough, at least Tr(γ0) > λHF(κ). As the
initial state is a Hartree-Fock state (α0 = 0), it stays a Hartree-Fock state for all times.

A result similar to Theorem 2.7 was proved first by Fröhlich and Lenzmann in [13, 12] for
simplified models (Choquard functional or neglecting the exchange term in HF theory). Hainzl
and Schlein have proved Theorem 2.7 in the particular case for which γ0 is a N -dimensional
orthogonal projector, γ2

0 = γ0. Their proof uses as an essential tool that γ(t) stays a projector,
hence is finite rank for all times. The generalization to any one-body density matrix was tackled
in [14]. A very interesting open question is to extend this result to non-vanishing pairing, α0 6= 0.

2.5 Appendix: Hartree-Fock-Bogoliubov Theory

Here we briefly recap Hartree-Fock-Bogoliubov (HFB) theory as is detailed in [2], for the conve-
nience of the reader and also because we want to relate this to the models of the next chapters.
Some of the material of this section is repeated and detailed in a more general setting in Appendix
A. A key observation is the fact the the set of admissible pairs (γ, α), which appears in our main
problem (2.2), stays in one-to-one correspondence to the set quasi-free states ω in Fock space,
having a finite particle number, which generalize Slater determinants of the usual Hartree-Fock
approximation.

Fock Space and Full Hamiltonian

We begin, rather abstractly, by considering a general microscopic model of a quantum system
described in terms of a second-quantized Hamiltonian H acting on a fermionic Fock space F ,
which is defined as follows. Let H be a one-particle Hilbert space (finite or infinite-dimensional,
but always separable). For each integer N ≥ 1, we define the fermionic N -particle space H(N) as
the N -fold antisymmetric tensor product

H
(N) =

N∧

1

H, for N = 1, 2, 3, . . . (2.27)
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The fermionic Fock space F is defined to be the infinite direct sum of Hilbert spaces

F = H
(0) ⊕ H

(1) ⊕ H
(2) ⊕ H

(3) ⊕ . . . . (2.28)

Here, by definition, we set H(0) = C with Ω = 1 ⊕ 0 ⊕ · · · being called the vacuum. To any f ∈ H

we associate a creation operator a†(f) and an annihilation operator a(f), both acting on F , as
follows. The action of a†(f) on simple vectors is defined as

a†(f)(f1 ∧ · · · ∧ fN ) = f ∧ f1 ∧ · · · ∧ fN . (2.29)

By linearity, this definition extends to all of F , and a(f) := (a†(f))∗ is defined as the adjoint of
the operator a†(f) on F . Note that a†(f) and a(f) are bounded operators, and we have a(f)Ω = 0
and a(λf) = λa(f) for any f ∈ H and any λ ∈ C. Furthermore, one verifies that a†(f) and a(f)
obey the canonical anticommutation relations (CAR): For all f, g ∈ H, we have

{a(f), a†(g)} = 〈f, g〉1,
{a†(f), a†(g)} = {a(f), a(g)} = 0.

(2.30)

Here {A,B} = AB + BA denotes the anticommutator, 〈f, g〉 is the inner product on H (with the
convention that its conjugate linear in f), and 1 stands for the identity map on F . We assume
that {fi} is an orthonormal basis of H and we set ai = a(fi) in the following.

Let us now consider an N -body Hamiltonian acting on H(N), composed of a one-body and a
two-body term:

HN :=

N∑

k=1

hk +
1

2

∑

1≤k,ℓ≤N

Vkℓ

where h : H → H and V : H ∧ H → H ∧ H. The family of Hamiltonians HN acting on H(N) gives
rise to a Hamiltonian H in Fock space which is simply

H := 0 ⊕
⊕

N≥1

HN .

It can be verified that it holds

H =
∑

i,j

hija
†
iaj +

1

2

∑

k,l,m,n

Vkl;mna
†
ka

†
l anam (2.31)

where the matrix elements of h and V are given by

hij = 〈fi, hfj〉, Vkl;mn =
1

2
〈fk ∧ fl, V fm ∧ fn〉. (2.32)

At this point we will treat HN and H as formal objects. In practice they of course have to be
realized as self-adjoint operators on H(N) and F .

Next, we recall that a state ω on F is a C-valued linear map defined on B(F) (the set of bounded
operators on F) such that

ω(1) = 1 and ω(A∗A) ≥ 0, for all A ∈ B(F). (2.33)

Note that the latter condition implies that ω(A) = ω(A∗). In particular, if D ∈ S1(F) is a
nonnegative trace-class operator with TrF (D) = 1, then setting

ω(A) = Tr(DA), for all A ∈ B(F), (2.34)

clearly defines a state in F . States of this form are usually called normal states. The simplest
normal states are the so-called pure states given by D = |Ψ〉〈Ψ| for some normalized Ψ ∈ F . If for
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instance Ψ = 0 ⊕ · · · ⊕ ψ ⊕ 0 ⊕ · · · with ψ ∈ H(N), then we just get ω(H) =
〈
HNψ,ψ

〉
H(N) . Note

that we can extend the action of normal states ω = Tr(D·) to operators which are bounded below.
Indeed, by assuming without loss of generality that A ≥ 0 holds, we see that ω(A) = Tr(DωA) is
well-defined (but possibly equals +∞). An important example for such an semibounded operator
is given by the number operator

N =
⊕

N≥0

N =
∑

i≥1

a†iai. (2.35)

We say that a state ω has finite particle number if

ω(N ) =

∞∑

N=0

Nω(Π(N)) <∞ (2.36)

where Π(N) is the projection onto the subspace H(N) ⊂ F . Such states are of primary physical
importance and they lead to the variational problem

E(N) = inf{ω(H) : ω(N ) = N}, (2.37)

which corresponds to finding the (formal) ground state energy of H subject to the constraint of a
fixed average particle number N .

For any state ω, we may define the density matrices γ and α. Following [30], let us denote by
J : H → H∗ the dual (anti-linear) map defined as J (f)(g) = 〈f, g〉. When H = L2(M,Cq) for
some measurable set M in R

d, one can simply identify J to the conjugation operator. We then
view α as a linear operator defined on JH = H∗ with values in H:

〈g, γf〉 = ω
(
a†(f)a(g)

)
, 〈g, αJ f〉 = ω (a(f)a(g)) . (2.38)

the operator γ : H → H is usually called the one-body density matrix, whereas α : H → H∗ is called
the pairing density matrix.

From γ and α we can construct an operator Γ acting on H ⊕ JH dy defining the so-called
generalized one-body density matrix

Γ =

(
γ α
α∗ 1 − J γJ ∗

)
. (2.39)

It can be shown using the CAR (2.30) that Γ is a self-adjoint bounded operator satisfying 0 ≤ Γ ≤ 1
and that α is antisymmetric in the sense that 〈g, αJ f〉 = −〈f, αJ g〉.

When ω(N ) < ∞, γ ≥ 0 is trace-class and ω(N ) = Tr(γ). In this case Tr(α∗α) < ∞, i.e. α
must be a Hilbert-Schmidt operator. Indeed α can be identified with a two-body state α̂ in H∧H

through the property 〈g, αJ f〉 = 〈g ∧ f, α̂〉
H∧H

. We remark that Γ itself does not have finite trace,
but we always have Tr(Γ(1 − Γ)) <∞.

HFB Approximation and Quasi-Free States

When studying the variational problem (2.37), one often has to introduce suitable approximations.
For instance, the Hartree-Fock (HF) method consists of restricting to states given by N -particle
Slater determinants. That is, states ω are of the form ω(A) = 〈Ψ, AΨ〉, where Ψ ∈ H(N) is a simple
vector such that

Ψ = a†(f1) · · · a†(fN )Ω, for some fi ∈ H with 〈fi, fj〉 = δij . (2.40)

A further generalization of the HF method is given by the so-called Hartree-Fock-Bogoliubov
theory (or generalized Hartree-Fock method [2]), which plays a very important role for attractive
two-body potentials; e. g., in nuclear physics, superconductivity, and stellar physics. In HFB
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theory, the set of admissible ω is significantly enlarged to the set of so-called quasi-free states. By
definition, we say that a state ω is quasi-free if, for any integer N ≥ 1,

ω(a#
1 a

#
2 · · · a#

2N ) =
∑

π

(−)πω(a#
π(1)a

#
π(2)) · · ·ω(a#

π(2N−1)a
#
π(2N)). (2.41)

Here a#
1 , a

#
2 , . . . , a

#
2N are each either a† or a, and the sum

∑
π runs over all permutations π which

satisfy π(1) < π(3) < · · · < π(2N − 1) and π(2j − 1) < π(2j) for all 1 ≤ j ≤ N . The condition
(2.41) means that any expectation value can be calculated in terms of only the one-body matrices
γ and α. The formula (2.41) indeed generalizes a property of Slater determinants which can easily
be seen to be quasi-free.

Having defined quasi-free states, we introduce the Hartree-Fock-Bogoliubov (HFB) minimiza-
tion problem as

EHFB(N) = inf{ω(H) : ω(N ) = N and ω is quasi-free}. (2.42)

Clearly, we have that E(N) ≤ EHFB(N) holds. Moreover, by recalling that H is of the form (2.31)
and by using (2.41) with N = 2, we can rewrite HFB minimization problem as follows.

EHFB(N) = inf
{
EHFB(Γ) : Γ is an admissible one-body density matrix, Tr(γ) = N

}
. (2.43)

where

EHFB(Γ) = Tr(hγ) +
1

2

∑

k,l,m,n

Vklmn(γmkγnl − γmlγnk + α∗
lkαmn), (2.44)

with matrix elements γkl = 〈fi, γfj〉 and αij = 〈fi, αfj〉. The last three terms in (2.44) are called
direct, exchange, and pairing energy respectively.

By definition, we say that Γ is an admissible one-body density matrix if it arises from a quasi-
free state having a finite particle number. It was shown in [2] that essentially all density matrices
are admissible:

Theorem 2.8 (Hartree-Fock-Bogoliubov states are characterized by the density matrix [2]). Let
Γ be a self-adjoint operator acting on H ⊕ H∗ of the form (2.39) such that 0 ≤ Γ ≤ 1, Tr(γ) < ∞
and 〈g, αJ f〉 = −〈f, αJ g〉 for all f, g ∈ H. Then there exists a unique quasi-free state ω on F
with finite particle number, whose generalized one-body particle density matrix is Γ.

HFB Energy for Self-Gravitating Gases

For fermionic systems interacting through the gravitational interaction, one takes

H = L2(R3,Cq), h = T =
√

−∆ +m2 −m, V (x, y) = − κ

|x− y| .

This leads to (2.7).
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3

The thermodynamic
limit of Coulomb
quantum systems

This chapter is almost identical to a review [15] of the two papers [16, 17], written in collaboration
with C. Hainzl and J.P. Solovej. It deals with the study of quantum systems interacting through
Coulomb forces when the number of particles goes to infinity (thermodynamic limit).

3.1 Introduction

Two difficulties arise when describing particles interacting through the Coulomb potential (as the
ones in ordinary matter). Both have to do with the physical problem of stability of quantum
systems.

The first is due to the singularity of 1/|x| at 0: it is necessary to explain why a particle will
not rush to a particle of the opposite charge. One of the first major triumphs of the theory of
quantum mechanics is the explanation it gives of the stability of the hydrogen atom (and the
complete description of its spectrum) and of other microscopic quantum Coulomb systems, via the
uncertainty principle. One often refers to this kind of stability as stability of the first kind [20, 21].
If we denote by E(N) the ground state energy of the system under consideration, for N particles,
stability of the first kind can be written

E(N) > −∞. (3.1)

In proving (3.1) for Coulomb systems, a major role is played by the uncertainty principle
which for nonrelativistic systems is mathematically expressed by the critical Sobolev embedding
H1(R3) →֒ L6(R3). The latter allows to prove Kato’s inequality

∀ǫ > 0,
1

|x| ≤ ǫ(−∆) +
1

ǫ
,

which means that the Coulomb potential is controlled by an arbitrary small amount of kinetic
energy.

The second issue concerns the slow decay of 1/|x| at infinity and this has to do with the
macroscopic behavior of quantum Coulomb systems, as we will see in details in this chapter. It
is indeed necessary to explain how a very large number of electrons and nuclei can stay bounded
together to form macroscopic systems, although each particle interacts with a lot of other charged
particles due to the long tail of the Coulomb interaction potential. Whereas the stability of atoms
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was an early triumph of quantum mechanics it, surprisingly, took nearly forty years before the
question of stability of everyday macroscopic objects was even raised (see Fisher and Ruelle [11]).
A rigorous answer to the question came shortly thereafter in what came to be known as the
Theorem on Stability of Matter proved first by Dyson and Lenard [8].

The main question which we want to address is how the lowest possible energy E(N) appearing
in (3.1) depends on the (macroscopic) number N of particles in the object. More precisely, one is
interested in proving a behavior of the form

E(N) ∼N→∞ ēN. (3.2)

This behavior as the number of particles grows is mandatory to explain why matter does not
collapse or explode in the thermodynamic limit. Assume that (3.2) does not hold and that for
instance E(N) ∼N→∞ cNp with p 6= 1. Then |E(2N) − 2E(N)| becomes very large as N ≫ 1.
Depending on p and the sign of the constant c, a very large amount of energy will be either released
when two identical systems are put together, or necessary to assemble them. The constant ē in
(3.2) is the energy per particle.

Stability of Matter is itself a necessary first step towards a proof of (3.2) as it can be expressed
by the lower bound

E(N) ≥ −κN. (3.3)

Put differently, the lowest possible energy calculated per particle cannot be arbitrarily negative
as the number of particles increases. This is also often referred to as stability of the second kind
[20, 21].

A maybe more intuitive notion of stability would be to ask for the volume occupied by a
macroscopic object (in its ground state). Usually this volume is proportional to the number of
particles N . Denoting by Ω a domain in R

3 which is occupied by the system under consideration
and by E(Ω) its (lowest possible) energy, (3.2) then reads

E(Ω) ∼|Ω|→∞ ē|Ω| (3.4)

where |Ω| is the volume of Ω. Stability of the second kind is expressed as

E(Ω) ≥ −κ|Ω|. (3.5)

Instead of the ground state energy, one can similarly consider the free energy F (Ω, β, µ) at
temperature T = 1/β and chemical potential µ. One is then interested in proving the equivalent
of (3.4)

F (Ω, β, µ) ∼|Ω|→∞ f̄(β, µ)|Ω| (3.6)

where f̄(β, µ) is the free energy per unit volume.
Large quantum Coulomb systems have been the object of an important investigation in the last

decades and many techniques have been developed. A result like (3.3) (or equivalently (3.5)) was
first proved for quantum electrons and nuclei by Dyson and Lenard [8]. After the original proof by
Dyson and Lenard several other proofs were given. Lieb and Thirring [28] in particular presented an
elegant and simple proof relying on an uncertainty principle for fermions. The different techniques
and results concerning stability of matter were reviewed in several articles [20, 21, 22, 30, 33].

It is very important that the negatively charged particles (the electrons) are fermions. It was
discovered by Dyson [7] that the Pauli exclusion principle is essential for Coulomb systems: charged
bosons are alone not stable because their ground state energy satisfies E(N) ∼ −CN7/5, as was
proved later [4, 27, 34].

A result like (3.2) (or equivalently (3.4)) was first proved by Lieb and Lebowitz [23] for a system
containing electrons and nuclei both considered as quantum particles, hence invariant by rotation.
Later Fefferman gave a different proof [9] for the case where the nuclei are classical particles placed
on a lattice, a system which is not invariant by rotation.
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In a recent work [16, 17, 15], we have provided a new insight in the study of the thermodynamic
limit of quantum systems, by giving a general proof of (3.4) or (3.6) which can be applied to many
different quantum systems including those studied by Lieb and Lebowitz [23] or Fefferman [9],
and others which were not considered before. Our goal was to identify the main general physical
properties of the free energy which are sufficient to prove the existence of the thermodynamic limit.
However, for the sake of simplicity we will essentially address the crystal case in this paper and we
refer to our works [16, 17] for a detailed study of the other cases.

In proving the existence of the thermodynamic limit of Coulomb quantum systems, the most
difficult task is to quantify screening. Screening means that matter is arranged in such a way
that it is essentially locally neutral, hence the electrostatic potential created by any subsystem
decays much faster than expected. This effect is the main reason of the stability of ordinary
matter but it is very subtle in the framework of quantum mechanics because the particles are by
essence delocalized. In our approach, we shall heavily rely on an electrostatic inequality which
was proved by Graf and Schenker [13, 12] and which serves as a way to quantify screening. It was
itself inspired by previous works of Conlon, Lieb and Yau [4, 5], for systems interacting with the
Yukawa potential. Fefferman used a similar idea in his study of the crystal case [9].

Like in previous works, our method consists in first showing the existence of the limit (3.6) for
a specific domain △ which is dilated (and possibly rotated and translated). Usually △ is chosen
to be a ball, a cube or a tetrahedron. In the applications [17] we always choose a tetrahedron as
we shall use the Graf-Schenker inequality [13] which holds for this type of domains. The second
step consists in showing the existence of the limit (3.6) for any (reasonable) sequence of domains
{Ωn} such that |Ωn| → ∞. This is important as in principle the limit could depend on the chosen
sequence, a fact that we want to exclude for our systems. We shall specify later what a “reasonable”
sequence is. Essentially some properties will be needed to ensure that boundary effects always stay
negligible.

It is to be noticed that our method (relying on the Graf-Schenker inequality) is primarily de-
voted to the study of quantum systems interacting through Coulomb forces. It might be applicable
to other interactions but we shall not address this question here.

Proving a result like (3.4) or (3.6) is only a first step in the study of the thermodynamic limit
of Coulomb quantum systems. An interesting open problem is to prove the convergence of states
(or for instance of all k-body density matrices) and not only of energy levels. For the crystal case,
convergence of the charge density or of the first order density matrix was proved for simplified
models from Density Functional Theory or from Hartree-Fock theory [26, 3]. A result of this type
was also proved for the Hartree-Fock approximation of no-photon Quantum Electrodynamics [14],
as reviewed in Chapter 4.

Another (related) open question is to determine the next order in the asymptotics of the energy
in the presence of local perturbations. Assume for instance that the crystal possesses a local defect
modelled by a local potential V and denote the ground state energy in the domain Ω by EV (Ω).
Since V is local, it does not contribute to the energy in the first order of the thermodynamic
limit. One is then interested in proving a behavior like EV (Ω) = E0(Ω) + f(V ) + o(1)|Ω|→∞.
Such a result was recently proved for the reduced Hartree-Fock model of the crystal with the
exchange term neglected [2] as will be explained in Chapter 5. This includes an identification of
the function f(V ). This program was also tackled for the Hartree-Fock model (with exchange
term) of no-photon Quantum Electrodynamics [14], see Chapter 4.

The chapter is organized as follows. In the first section we introduce the model for the crystal
and state our main theorem. In Section 2, we briefly describe two other quantum systems which
we can treat using our method. Section 3 is devoted to the presentation of our new approach, in
a quite general setting, together with hints on how it can be applied to the crystal case.
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3.2 The crystal case

For simplicity, we put identical nuclei of charge +1 on each site of Z
3. The results below can be

generalized to any periodic system. Let Ω be a bounded open set of R
3 and define the N -body

Hamiltonian in Ω by

HN
Ω :=

N∑

i=1

−∆xi

2
+ VΩ(x1, ..., xN ),

where

VΩ(x) =

N∑

i=1

∑

R∈Z3∩Ω

−1

|R− xi|
+

1

2

∑

1≤i6=j≤N

1

|xi − xj |
+

1

2

∑

R 6=R′∈Z3∩Ω

1

|R−R′| .

Here −∆ is the Dirichlet Laplacian on Ω (we could as well consider another boundary condition).

The Hamiltonian HN
Ω acts on N -body fermionic wavefunctions Ψ(x1, .., xN ) ∈ ∧N

1 L2(Ω). Stability
of the first kind states that the spectrum of HN

Ω is bounded from below:

EN
Ω = inf

Ψ∈VN
1 H1

0 (Ω),
||Ψ||L2=1

〈
Ψ,HN

Ω Ψ
〉

= inf σVN
1 L2(Ω)(H

N
Ω ) > −∞.

We may define the ground state energy in Ω by

E(Ω) := inf
N≥0

EN
Ω . (3.7)

It is more convenient to express (3.7) in a grand canonical formalism. We define the (electronic)
Fock space as

FΩ := C ⊕
⊕

N≥1

N∧

1

L2(Ω)

The grand canonical Hamiltonian is then given by HΩ :=
⊕

N≥0H
N
Ω with the convention that

H0
Ω = (1/2)

∑
R 6=R′∈Z3∩Ω |R − R′|−1 ∈ R ⊂ C. The number operator reads N :=

⊕
N≥0N . It is

then straightforward to check that

E(Ω) = inf σFΩ
(HΩ) = inf

Γ∈B(FΩ), Γ∗=Γ,
0≤Γ≤1, TrFΩ

(Γ)=1.

TrFΩ
(HΩΓ) .

The free energy at temperature 1/β and chemical potential µ ∈ R is defined by

F (Ω, β, µ) := inf
Γ∈B(FΩ), Γ∗=Γ,

0≤Γ≤1, TrFΩ
(Γ)=1.

(
TrFΩ

((HΩ − µN )Γ) +
1

β
TrFΩ

(Γ log Γ)

)

= − 1

β
log TrFΩ

[
e−β(HΩ−µN )

]
. (3.8)

As explained before, our purpose is to prove that

E(Ω) ∼|Ω|→∞ ē|Ω| and F (Ω, β, µ) ∼|Ω|→∞ f̄(β, µ)|Ω| (3.9)

in an appropriate sense. The first important property of E and F is the stability of matter.

Theorem 3.1 (Stability of Matter [17]). There exists a constant C such that the following holds:

E(Ω) ≥ −C|Ω|, F (Ω, β, µ) ≥ −C
(
1 + β−5/2 + max(0, µ)5/2

)
|Ω|

for any bounded open set Ω ⊂ R
3 and any β > 0, µ ∈ R.
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Sketch of the proof. The first step is to use an inequality for classical systems due to Baxter [1],
improved later by Lieb and Yau [29], and which allows to bound the full N -body Coulomb potential
by a one-body potential:

V (x1, ..., xN ) ≥ −
N∑

i=1

3/2 +
√

2

δ(xi)
(3.10)

where δ(x) = infR∈Z3 |x−R| is the distance to the closest nucleus. Hence we have the lower bound

HN
Ω ≥

N∑

i=1

(
−∆xi

2
− 3/2 +

√
2

δ(xi)

)
.

Next we split the kinetic energy in two parts and we use the uncertainty principle to show that on
L2(Ω)

−∆

4
− 3/2 +

√
2

δ(x)
≥ −C.

In proving this lower bound, one uses the Sobolev inequality in a small ball around each nucleus,
exploiting the fact that the nuclei are fixed and separated by a distance at least one to each other.
The proof of the stability of matter for systems with classical nuclei whose position is unknown is
more difficult and it uses the improved version of (3.10) contained in the paper by Lieb and Yau
[29], as explained in our work [17]. This shows

HN
Ω ≥

N∑

i=1

(
−∆xi

4
− C

)
hence HΩ ≥ −1

4

∑

i

∆i − CN (3.11)

on
∧N

1 L2(Ω) and FΩ respectively. The last step is to use the Lieb-Thirring inequality [28] which
states that 〈

N∑

i=1

(−∆xi
) Ψ,Ψ

〉
≥ CLT

ˆ

Ω

ρΨ(x)5/3dx (3.12)

for all N ≥ 1 and all N -body fermionic wavefunction Ψ ∈ ∧N
1 L2(Ω). The density of charge ρΨ

is as usual defined by ρΨ(x) = N
´

ΩN−1 |Ψ(x, y)|2dy. Using the fact that
´

Ω
ρΨ = N and Hölder’s

inequality, (3.12) yields on the Fock space FΩ

∑

i

(−∆xi
) ≥ CLT|Ω|−2/3N 5/3. (3.13)

Hence we obtain HΩ ≥ (CLT/4)|Ω|−2/3N 5/3 −CN which, when optimized over N , gives the result
for the ground state energy.

For the free energy, we use (3.11), (3.13) and Peierls’ inequality [32, 35] to get

F (β, µ,Ω) ≥ − 1

β
log TrF

(
e−β

P

i(−∆i)/4
)
− C(1 + µ

5/2
+ )|Ω|.

The first term of the r.h.s. is the free energy of a free-electron gas which is bounded below by
−C(1 + β−5/2)|Ω| in the thermodynamic limit [17].

In order to state our main result, we need the following

Definition 3.1 (Regular sets in R
3). Let a > 0 and ǫ > 0. We say that a bounded open set Ω ⊆ R

3

has an a-regular boundary in the sense of Fisher if, denoting by ∂Ω = Ω \ Ω the boundary of Ω,

∀t ∈ [0, 1],
∣∣∣
{
x ∈ R

3 | d(x, ∂Ω) ≤ |Ω|1/3t
}∣∣∣ ≤ |Ω| a t. (3.14)
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We say that a bounded open set Ω ⊆ R
3 satisfies the ε-cone property if for any x ∈ Ω there is a

unit vector ax ∈ R
3 such that

{y ∈ R
3 | (x− y) · ax > (1 − ε2)|x− y|, |x− y| < ε} ⊆ Ω.

We denote by Ra,ε the set of all Ω ⊆ R
3 which have an a-regular boundary and such that both Ω

and R
3 \ Ω satisfy the ε-cone property.

ε

ε
Ω

Figure 3.1: Cone property.

Note that any open convex set is in Ra,ε for some a > 0 large enough and ε > 0 small enough
[16]. We may state our main

Theorem 3.2 (Thermodynamic Limit for the Crystal [17]). There exist ē ∈ R and a function
f̄ : (0,∞) × R → R such that the following holds: for any sequence {Ωn}n≥1 ⊆ Ra,ǫ of domains
with |Ωn| → ∞, |Ωn|−1/3diam(Ωn) ≤ C, a ≥ a0 > 0 and 0 < ε ≤ ε0

lim
n→∞

E(Ωn)

|Ωn|
= ē, lim

n→∞
F (Ωn, β, µ)

|Ωn|
= f̄(β, µ). (3.15)

Moreover f̄ takes the form f̄(β, µ) = ϕ(β) − µ.

Remark 3.1. We know from [23, Appendix A p. 385] and [10, Lemma 1] that if each set Ωn of
the considered sequence is connected, then automatically |Ωn|−1/3diam(Ωn) ≤ C.

A very similar result was proved by C. Fefferman [9]. Our result is more general: we allow
any sequence Ωn tending to infinity and which is regular in the sense that {Ωn}n≥1 ⊆ Ra,ǫ. In
Fefferman’s paper [9], Ωn = ℓn(Ω + xn) where ℓn → ∞, Ω is a fixed convex open set and xn is any
sequence in R

3. These sets are always in Ra,ǫ for some a, ε > 0.
In our work [17] a result even more general than Theorem 3.2 is shown: we are able to prove the

existence of the same thermodynamic limit if the crystal is locally perturbed (for instance finitely
many nuclei are moved or their charge is changed). A similar result can also be proved for the
Hartree-Fock model.

3.3 Other models

Our approach [16, 17] is general and it can be applied to a variety of models, not only the crystal
case. We quickly mention two such examples. It is interesting to note that for these other models,
we do not need the cone property and we can weaken the assumptions on the regularity of the
boundary by replacing t on the r.h.s. of (3.14) by any tp, 0 < p ≤ 1. Details may be found in our
article [17]. Roughly speaking, when the system is “rigid” like for the crystal (the nuclei are fixed),
the proof is more complicated and more assumptions are needed on the sequence of domains to
avoid undesirable boundary effects.
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3.3.1 Quantum particles in a periodic magnetic field.

Define the magnetic kinetic energy T (A) = (−i∇ + A(x))2 where B = ∇ × A is periodic (for
instance constant) and A ∈ L2

loc(R
3). Next, consider the Hamiltonian

HN,K
Ω :=

N∑

i=1

T (A)xi
+

K∑

k=1

T (A)Rk
+ V (x,R),

V (x,R) =
∑

i,k

−z
|Rk − xi|

+
1

2

∑

i6=j

1

|xi − xj |
+

1

2

∑

k 6=k′

z2

|Rk −Rk′ |

The ground state energy is this time defined as

E′(Ω) := inf
N,K≥0

inf σVN
1 L2(Ω)⊗S

NK
1 L2(Ω)

(
HN,K

Ω

)
.

We do not precise the symmetry S of the particles of charge z which can be bosons or fermions.
A formula similar to (3.8) may be used for the free energy on the (electronic and nucleic) Fock
space. We prove in our paper [17] a result similar to Theorem 3.2 for this model. Lieb and
Lebowitz already proved it in the seminal paper [23] when A ≡ 0. They used as an essential tool
the rotation-invariance of the system to obtain screening. When A 6= 0 the system is no more
invariant by rotations and their method cannot be applied.

3.3.2 Classical nuclei with optimized position.

For all R ⊂ Ω, #R <∞, let us define

HN,R
Ω :=

N∑

i=1

−∆xi

2
+ V (x,R)

and the associated ground state energy by

E′′(Ω) := inf
N≥0

inf
R⊂Ω,

#R<∞

inf σVN
1 L2(R3)

(
HN,R

Ω

)
.

We could as well optimize the charges in [0, z] of the nuclei without changing the energy [6, 17].
However, the free energy itself is not the same when the charges of the nuclei are optimized or not
[17].

Surprisingly, to our knowledge the existence of the thermodynamic limit for this model was
unknown. A result similar to Theorem 3.2 is proved in our paper [17] for E′′.

3.4 A general method

In this section, we give the main ideas of our new approach which allows to prove Theorem 3.2
and its counterparts for the other models quoted before.

3.4.1 Screening via the Graf-Schenker inequality

As mentioned in the introduction, an important step is to quantify screening. For quantum nuclei
without a magnetic field (A ≡ 0), Lieb and Lebowitz used [23] the following method (see Figure
3.2). First they took a big ball B which they packed with several small balls Bk of different size. In
each of these balls, they took the (neutral) ground state of the corresponding ball. As the system is
invariant under rotations, they can freely rotate each ground state. Averaging over rotations of all
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Ω

△(R,u)
i

R

u

Figure 3.2: A comparison between the original method of Lieb and Lebowitz [23] (left) and our
method based on the Graf-Schenker inequality [13, 16, 17] (right).

the small balls, they reduced the computation of the interaction between them to that of classical
pointwise particles located at the center of the balls, by Newton’s theorem. As each subsystem is
neutral, this interaction vanishes. This proves a fortiori that there exists an adequate rotation of
each system in each little ball such that the total interaction between them cancels. Choosing this
configuration, they could build a test function whose energy is just the sum of the small energies,
proving an estimate of the form E(B) ≤ ∑

k E(Bk). This inequality can be used to prove the limit
for balls. Clearly this trick can only be used for rotation-invariant systems.

Note in the Lieb-Lebowitz proof, a domain (the big ball) is split in several fixed subdomains
and an average is done over rotations of the states in each small domain. This yields an upper
bound to the energy. The Graf-Schenker inequality is kind of dual to the above method (see Figure
3.2). This time a domain Ω is split in several subdomains by using a tiling of the space R

3. But
the system is frozen in the state of the big domain Ω and the average is done over the position of

the tiling. This yields a lower bound to the energy of the form E(Ω) ≥ ∑
k E(∆

(R,u)
i ∩Ω) + errors,

where ∆
(R,u)
i are the tetrahedrons which make up the (translated and rotated) tiling.

The Graf-Schenker inequality was inspired by previous works of Conlon, Lieb and Yau [4, 5]. It
is an estimate on the Coulomb energy of classical particles. The proof of Fefferman in the crystal
case [9] was also based on a lower bound on the free energy in a big set and an average over
translations of a covering of this set (the method was reexplained later in details by Hugues [18]).
Fefferman [9] uses a covering with balls and cubes of different size. The lower bound depends on
the number of balls contained in the big domain and of the form of the kinetic energy which is
used to control error terms.

Let G = R
3

⋊ SO3(R) be the group of translations and rotations acting on R
3, and denote by

dλ(g) its Haar measure.

Lemma 3.1 (Graf-Schenker inequality [13]). Let △ be a simplex in R
3. There exists a constant

C such that for any N ∈ N, z1, ..., zN ∈ R, xi ∈ R
3 and any ℓ > 0,

∑

1≤i<j≤N

zizj

|xi − xj |
≥
ˆ

G

dλ(g)

|ℓ△|
∑

1≤i<j≤N

zizj1gℓ△(xi)1gℓ△(xj)

|xi − xj |
− C

ℓ

N∑

i=1

z2
i . (3.16)

In the previous lemma it is not assumed that △ yields a tiling of R
3. Up to an error which

scales like ℓ, (3.16) says that the total Coulomb energy can be bounded from below by the Coulomb
energy (per unit volume) of the particles which are in the (dilated) simplex gℓ△, averaged over all
translations and rotations g of this simplex.
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g

ℓ△

Figure 3.3: The Graf-Schenker inequality: the total Coulomb interaction of the charged particles
is bounded below by an average over translations and rotations of a term corresponding to the
Coulomb interaction of the particles which are in the simplex only, plus an error term.

Because of the above inequality, simplices play a specific role in the study of Coulomb systems.
Hence proving the existence of the thermodynamic limit for simplices first is natural (as it was
natural to consider balls in the Lieb-Lebowitz case due to the invariance by rotation). In the next
section we give an abstract setting for proving the existence of the limit when an inequality of the
form (3.16) holds true.

It is to be noticed that, so far, an inequality of the type (3.16) is only known in dimension 3 for
the Coulomb potential (it can easily be generalized in any dimension but always for the potential
1/|x| which is not the Coulomb one in dimension d 6= 3) and for simplices (the inequality can be
shown to be wrong for balls). A generalization to other interactions and other convex domains
(with possibly a different error term) is a very interesting question.

3.4.2 An abstract result

In this section we consider an abstract energy E : Ω ∈ M 7→ E(Ω) ∈ R defined on the set
M of all bounded open subsets of R

3 and we give sufficient conditions for the existence of the
thermodynamic limit. In the application, E will be either the ground state energy, or the free
energy of the system under consideration.

We fix a reference set △ ∈ Ra,ǫ which is only assumed to be a bounded open convex set in R
3

(it need not be a simplex for this section), such that 0 ∈ △. Here a, ǫ > 0 are fixed. We assume
that the energy E satisfies the following five assumptions:

(A1) (Normalization). E(∅) = 0.

(A2) (Stability). ∀Ω ∈ M, E(Ω) ≥ −κ|Ω|.
(A3) (Translation Invariance). ∀Ω ∈ Ra,ǫ, ∀z ∈ Z

3, E(Ω + z) = E(Ω).

(A4) (Continuity). ∀Ω ∈ Ra,ǫ,Ω
′ ∈ Ra′,ǫ′ with Ω′ ⊆ Ω and d(∂Ω, ∂Ω′) > δ,

E(Ω) ≤ E(Ω′) + κ|Ω \ Ω′| + |Ω|α(|Ω|).

(A5) (Subaverage Property). For all Ω ∈ M, we have

E(Ω) ≥ 1 − α(ℓ)

|ℓ△|

ˆ

G

E
(
Ω ∩ g · (ℓ△)

)
dλ(g) − |Ω|r α(ℓ) (3.17)

where |Ω|r := inf{|Ω̃|, Ω ⊆ Ω̃, Ω̃ ∈ Ra,ǫ} is the regularized volume of Ω.

In the assumptions above α is a fixed function which tends to 0 at infinity and δ, a′, ǫ′ are fixed
positive constants. In our work [16], an even more general setting is provided. First (A3) can
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Figure 3.4: Idea of the proof of (A4) for the crystal.

be replaced by a much weaker assumption but we do not detail this here. Also a generic class of
regular sets R is considered instead of Ra,ǫ. This is because for instance the cone property is only
needed for the crystal case and it is not at all necessary in other models, hence the concept of
regularity depends on the application.

Notice (A4) essentially says that a small decrease of Ω will not decrease too much the energy.
A similar property was used and proved in the crystal case by Fefferman [9, Lemma 2]. Taking
Ω′ = ∅ and using (A1), property (A4) in particular implies that for any regular set Ω ∈ Ra,ǫ,
E(Ω) ≤ C|Ω|. However this upper bound need not be true for all Ω ∈ M. We give a sketch of the
proof of the following result in Section 3.4.5.

Theorem 3.3 (Abstract Thermodynamic Limit for △ [16]). Assume E : M → R satisfies the
above properties (A1)–(A5) for some open convex set △ ∈ Ra,ǫ with 0 ∈ △. There exists ē ∈ R

such that eℓ(g) = |ℓ△|−1E
(
gℓ△

)
converges uniformly towards ē for g ∈ G = R

3
⋊ SO(3) and as

ℓ→ ∞. Additionally, the limit ē does not depend on the set △1.

3.4.3 Idea of the proof of (A1)–(A5) for the crystal

Before switching to the abstract case of a general sequence {Ωn}, we give an idea of the proof of
(A1)–(A5) in the crystal case. We apply the theory of the previous section to both the ground
state energy and the free energy of the crystal which were defined in Section 3.2. First (A1) and
(A3) are obvious. Property (A2) is the stability of matter as stated in Theorem 3.1. On the
other hand (A5) is essentially the Graf-Schenker inequality (3.16), up to some localization issues
of the kinetic energy which have essentially already been dealt with by Graf and Schenker [13].

For the crystal the most difficult property is (A4). The difficulty arises from the fact that this
is a very rigid system. For the two other examples mentioned in Section 3.3, (A4) is obvious, the
energy being nonincreasing: E(Ω) ≤ E(Ω′). This is because we can simply choose a ground state
of Ω′ as a test for Ω and take the vacuum in Ω \ Ω′. In the crystal case we always have nuclei in
Ω \Ω′ and if we do not put any electron to screen them, they will create an enormous electrostatic
energy.

The idea of the proof of (A4) for the crystal is displayed in Figure 3.4. We build a test state
in Ω by considering the ground state in Ω′, and placing one radial electron in a ball of fixed size
on top of each nucleus outside Ω′. By Newton’s theorem, the electrostatic potential out of the
support of the electron will vanish, hence the energy will simply be E(Ω′) plus the sum of the
kinetic energies of the electrons, which is bounded above by a constant times |Ω \ Ω′| for regular
domains. The only problem is that we cannot put an electron on top of the nuclei which are too
close to the boundary of Ω or of Ω′. For these nuclei, using the cone property we can place the ball

1This means if all the assumptions are true for another set △′ then one must have ē′ = ē.
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Figure 3.5: Proof for general sequences {Ωn}.

aside and create a dipole. The difficult task is then to compute a bound on the total interaction
between the dipoles and the ground state in Ω′. We prove [17] that it is o(|Ω|), using a specific
version of stability of matter.

3.4.4 General domains and strong subadditivity of entropy

In the previous two subsections, we have presented our abstract theory giving the thermodynamic
limit of special sequences built upon the reference set △, and we have explained how to apply it to
the crystal case. For all regular domain sequences we can only get from (A5) a bound of the form

lim inf
n→∞

E(Ωn)

|Ωn|
≥ ē.

In order to get the upper bound, we use a big simplex Ln△ of the same size as Ωn and a tiling
made with simplices of size ℓn ≪ Ln, as shown in Figure 3.5. We use the ground state of the big
simplex Ln△ to build a test state in Ωn, hence giving the appropriate upper bound. To this end,
we need some localization features, hence more assumptions in the general theory.

It is sufficient [16] to assume that

(i) △ can be used to build a tiling of R
3;

(ii) the free energy is essentially “two-body”2 such that we may write the total energy E(Ln△) as
the sum of the energies of the small sets of the tiling, plus the interaction between them and the
relative entropy;

(iii) the entropy is strongly subadditive.

This is summarized in the following assumption. We assume that Γ is a subgroup of G yielding a
tiling of R

3 by means of △, i.e. ∪µ∈Γµ△ = R
3 and µ△∩ ν△ = ∅ for µ 6= ν.

(A6) (Two-body decomposition). For all L and ℓ we can find g ∈ G and maps Eg : Γ → R,
Ig : Γ × Γ → R, sg : {P : P ⊆ Γ} → R such that

• Eg(µ) = Ig(µ, ν) = 0 if ℓgµ△∩ (L△) = ∅;

• E(L△) ≥
∑

µ∈Γ

Eg(µ) +
1

2

∑

µ,ν∈Γ
µ6=ν

Ig(µ, ν) − sg(Γ) − |L△|α(ℓ);

2We could as well assume that the energy is k-body with k < ∞ but this would complicate the assumptions even
more.
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• For all P ⊆ Γ and AP = L△∩ ⋃
µ∈P ℓgµ△

E(AP) ≤
∑

µ∈P
Eg(µ) +

1

2

∑

µ,ν∈P
µ6=ν

Ig(µ, ν) − sg(P) + |AP |α(ℓ);

• (Strong subadditivity). for any disjoint subsets P1, P2, P3 ⊆ Γ

sg(P1 ∪ P2 ∪ P3) + sg(P2) ≤ sg(P1 ∪ P2) + sg(P2 ∪ P3);

• (Subaverage property).

ˆ

G/Γ

dg
∑

µ,ν∈Γ
µ6=ν

Ig(µ, ν) ≥ −|L△|α(ℓ).

In the applications3 the previous quantities are interpreted as follows: Eg(P) is the free energy
in the union AP = (L△)∩∪µ∈Pℓgµ△, Ig(µ, ν) is the interaction energy between the simplices ℓgµ△
and ℓgν△, and sg(P) is the difference between the entropy of AP and the sum of the entropies of
ℓgµ△ with µ ∈ P.

Conjectured by Lanford and Robinson [19] the strong subadditivity (SSA) of the entropy in
the quantum mechanical case was proved by Lieb and Ruskai [24, 25]. The fact that SSA is very
important in the thermodynamic limit was remarked by Robinson and Ruelle [31] and others [35].
In [16] we prove the following

Theorem 3.4 (Abstract Limit for general domains [16]). Assume E : M → R satisfies the
properties (A1)–(A6) for some open convex polyhedron △ ∈ Ra,ǫ with 0 ∈ △, yielding a tiling of
R

3. Then we have for all sequences {Ωn} ⊂ Ra,ǫ with |Ωn| → ∞ and |Ωn|−1/3diam(Ωn) ≤ C,

lim
n→∞

E(Ωn)

|Ωn|
= ē

where ē is the limit obtained in Theorem 3.3.

The proof of Theorem 3.4 is based on a careful estimate of the energy and the interaction
energies of boundary terms, ie. of the sets ℓgµ△ which intersect the boundary of the big set L△.
The application to the crystal is not much more difficult than for Theorem 3.3. Indeed in the
paper of Graf and Schenker [13], (3.16) was expressed using a tiling of R

3 and the last subaverage
property of (A6) essentially follows from their ideas [13]. Strong subadditivity of the entropy is
usually expressed via partial traces. A generalization in the setting of localization in Fock space is
detailed in our article [17].

3.4.5 Proof of Theorem 3.3

Denote as in the Theorem eℓ(g) = E(gℓ△)|ℓ△|−1. Notice that (A2), (A4) with Ω′ = ∅, and (A1)
imply that eℓ is uniformly bounded on G. Also we have by (A3) eℓ(u + z,R) = eℓ(u,R) for all
(u,R) ∈ R

3 × SO3(R), z ∈ Z
3, i.e. eℓ is periodic with respect to translations. Hence it suffices to

prove the theorem for g = (u,R) ∈ [0, 1]3 × SO3(R).

Next we take ḡ ∈ G, L≫ ℓ and apply (A5) with Ω = ḡL△. We get

eL(ḡ) ≥ 1 − α(ℓ)

|L△|

ˆ

G

E(ḡL△∩ gℓ△)

|ℓ△| dg − α(ℓ).

3Due to some localization issues of the kinetic energy, it is often needed that the sets of the tiling slightly overlap.
See [16] for a generalization in this direction.
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Let us introduce the set Z of points z ∈ Z
3 such that Rℓ△ + u + z ⊂ ḡL△ for all u ∈ [0, 1]3 and

all R ∈ SO3(R). We also define ∂Z as the set of points z ∈ Z
3 such that (Rℓ△+u+ z)∩ ḡL△ 6= ∅

for some (u,R) ∈ [0, 1]3 × SO3(R) but z /∈ Z. We obtain using (A1) and (A3)

ˆ

G

E(ḡL△∩ gℓ△)

|ℓ△| dg =
∑

z∈Z3

ˆ

[0,1]3
du

ˆ

SO3(R)

dR
E(ḡL△∩ (Rℓ△ + u+ z))

|ℓ△|

=
∑

z∈∂Z

ˆ

[0,1]3
du

ˆ

SO3(R)

dR
E(ḡL△∩ (Rℓ△ + u+ z))

|ℓ△|

+(#Z)

ˆ

[0,1]3
du

ˆ

SO3(R)

dR eℓ(u,R).

Using the stability property (A2), we infer

E(ḡL△∩ (Rℓ△ + u+ z))

|ℓ△| ≥ −κ |ḡL△∩ (Rℓ△ + u+ z)|
|ℓ△| ≥ −κ.

Hence
ˆ

G

E(ḡL△∩ gℓ△)

|ℓ△| dg ≥ (#Z)

ˆ

[0,1]3×SO3(R)

eℓ(g) dg + κ(#∂Z).

As △ has an a-regular boundary, it can be seen that (#∂Z) ≤ CL2ℓ and #Z = |L△| + O(L2ℓ).
Using again that eℓ is bounded, we eventually obtain the estimate

eL(ḡ) ≥
ˆ

[0,1]3×SO3(R)

eℓ(g) dg − C(α(ℓ) + ℓ/L)

for some constant C. It is then an easy exercise to prove that

lim
ℓ→∞

inf
G
eℓ = lim

ℓ→∞

ˆ

[0,1]3×SO3(R)

eℓ := ē

and finally that eℓ → ē in L1([0, 1]3 × SO3(R)).
The last step consists in proving the uniform convergence, using (A4). Fix some small η > 0.

As 0 ∈ △ and △ is convex, we have (1 − η)△ ⊂ △. More precisely, there exists an r > 0 and a
neighborhood W of the identity in SO3(R) such that R(1 − η)△ + u ⊂ △ for all (u,R) ∈ A :=
B(0, r)×W ⊂ G. We have that gℓ(1−η)△ ⊂ ℓ△ for all g ∈ Aℓ := B(0, rℓ)×W , hence in particular
for all g ∈ A. Now we fix some ḡ ∈ G and apply (A4) with Ω = ḡℓ△ and Ω′ = ḡgℓ(1 − η)△, we
get

E(ḡℓ△) ≤ E(ḡgℓ(1 − η)△) + C|ℓ△|η + o(|ℓ△|).
Integrating over g ∈ A and dividing by |ℓ△| we infer

eℓ(ḡ) ≤
1

|ḡA|

ˆ

ḡA

e(1−η)ℓ(g) dg + Cη + o(1)ℓ→∞.

First we pass to the limit as ℓ→ ∞ using that eℓ → ē in L1(G) and |A| 6= 0. Then we take η → 0
and get lim supℓ→∞ supḡ∈G eℓ(ḡ) ≤ ē. This ends the proof of Theorem 3.3.
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4

No-Photon Quantum
Electrodynamics in the
Hartree-Fock
Approximation

For heavy atoms, it is necessary to take relativistic effects into account. However there is no
equivalent of the well-known N -body (non-relativistic) Schrödinger theory involving the Dirac op-
erator, because of its negative spectrum. The correct theory is Quantum Electrodynamics (QED).
This theory has a remarkable predictive power but its description in terms of perturbation theory
restricts its range of applicability. In fact a mathematically consistent formulation of the nonpertur-
bative theory is still unknown. On the other hand, effective models deduced from nonrelativistic
theories (like the Dirac-Hartree-Fock model [84, 28]) suffer from inconsistencies: for instance a
ground state never minimizes the physical energy which is always unbounded from below.

Here we study a variational model based on a physical energy which can be minimized to obtain
the ground state in a chosen charge sector. Our model describes the behavior of a finite number
of particles (electrons), coupled to that of the Dirac sea which can become polarized. Our results
are fully non-perturbative.

The chapter is organized as follows: in Section 4.1 we explain (formally) how the Hartree-Fock
approximation can be derived from first-principle QED. The Hartree-Fock free vacuum is con-
structed in Section 4.2 and the Bogoliubov-Dirac-Fock (BDF) model which describes any Hartree-
Fock state by using the free vacuum as a reference state is introduced in Section 4.3. Existence
of minimizers are studied with or without charge constraints in Sections 4.4 and 4.5. In Section
4.6 we neglect the exchange term and get some more properties of minimizers, in particular linked
with charge renormalization. The time-dependent equation associated with the model is studied
in Section 4.7. Lastly, the BDF model at positive temperature is described in Section 4.8.

This chapter is an enhanced version of [45] and of the last part of [27].

4.1 The Hartree-Fock approximation of QED

4.1.1 The Dirac operator

Dirac derived his operator in 1928 [17], starting from the usual classical expression of the energy
of a free relativistic particle of momentum p ∈ R

3 and mass m

E2 = c2|p|2 +m2c4 (4.1)

83
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(c is the speed of light), and imposing the necessary relativistic invariances. By means of the usual
identification

p←→ −i~∇
where ~ is Planck’s constant, he found that an adequate observable for describing the energy of
the free particle should therefore be a self-adjoint operator Dc satisfying the equation

(Dc)
2 = −c2~

2∆ +m2c4. (4.2)

Taking the locality principle into account, Dirac proposed to look for a local operator which is first
order with respect to p = −i~∇:

Dc = −ic~ α · ∇ +mc2β = −ic~
3∑

k=1

αk∂k + mc2β, (4.3)

where α1, α2, α3 and β are hermitian matrices which have to satisfy the following anticommutation
relations: 




αkαℓ + αℓαk = 2 δkℓ 1,
αkβ + βαk = 0,

β2 = 1.
(4.4)

It can be proved [87] that the smallest dimension in which (4.4) can take place is 4 (i.e. α1, α2, α3

and β should be 4 × 4 hermitian matrices), meaning that Dc has to act on L2(R3,C4). The usual
representation in 2 × 2 blocks is given by

β =

(
I2 0
0 −I2

)
, αk =

(
0 σk

σk 0

)
(k = 1, 2, 3) , (4.5)

where the Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.6)

The main unusual feature of the Dirac operator is the fact that its spectrum is not bounded
from below:

σ(Dc) = (−∞,−mc2] ∪ [mc2,∞). (4.7)

Compared with non-relativistic theories in which the Schrödinger operator −∆/(2m) appears in-
stead of Dc, property (4.7) leads to important physical, mathematical and numerical difficulties.
Indeed, if one simply replaces −∆/(2m) by Dc in the energies or operators which are commonly
used in the non-relativistic case, one obtains energies which are not bounded from below.

Although there is no observable electron of negative energy, the negative spectrum plays an
important role in physics. Dirac himself suspected that the negative spectrum of his operator could
generate new interesting physical phenomena, and he proposed in 1930 the following interpretation
[18, 19, 20]:

“We make the assumption that, in the world as we know it, nearly all the states
of negative energy for the electrons are occupied, with just one electron in each state,
and that a uniform filling of all the negative-energy states is completely unobservable
to us.” [20]

Physically, one therefore has to imagine that the vacuum (called the Dirac sea) is filled with
infinitely many virtual particles occupying the negative energy states. With this conjecture, a real
free electron cannot be in a negative state due to the Pauli principle which forbids it to be in the
same state as a virtual electron of the Dirac sea.

It was realized just after Dirac’s discovery that, for consistency of the theory, the vacuum
should not be considered as a totally virtual physical object which does not interact with the real
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Figure 4.1: Creation of an electron-positron pair.

particles. Dirac himself [18, 20, 19] conjectured the existence of surprising physical effects as a
consequence of his theory, which were then experimentally confirmed. First, the virtual electrons
of the Dirac sea can feel an external field and they will react to this field accordingly, i.e. the
vacuum will become polarized. This polarization is then felt by the real particles and one therefore
is led to consider a coupled system ‘Dirac sea + real particles’. From the experimental viewpoint,
vacuum polarization plays a rather small role for the calculation of the Lamb shift of hydrogen
but it is important for high-Z atoms [68] and it is even a crucial physical effect for muonic atoms
[32, 36]. Second, in the presence of strong external fields, the vacuum could react so importantly
that an electron-positron pair can be spontaneously created [69, 38, 75, 76].

The mathematical difficulties of a model aiming at describing both the Dirac sea and the real
particles are important, for one has to deal at the same time with infinitely many particles (the
real ones and the virtual ones of the Dirac sea). In the following, we present a Hartree-Fock
(mean-field) type model for this problem, which has been mathematically studied in collaborations
with Hainzl, Séré, Solovej, Gravejat, Seiringer and Sparber [42, 43, 46, 44, 47, 41, 37]. The results
have already been reviewed in [45] and in the last part of [27]. The model under consideration is
inspired of an important physical article by Chaix and Iracane [15] in which the possibility that a
bounded-below energy could be obtained by adding vacuum polarization was first proposed. But
the equations of this so-called Bogoliubov-Dirac-Fock model were already known in QED [75].

For the sake of simplicity, we take c = 1 except when explicitly mentioned. In this case an
additional parameter α = e2 appears, where e is the (bare) charge of the electron.

4.1.2 The Hamiltonian of QED

In the next two sections, we formally derive the Hartree-Fock energy of no-photon QED, see
Formula (4.12). It is a functional (which can only be made rigorous in finite volume) whose main
variable γ = P − 1/2 is a self-adjoint operator satisfying −1/2 ≤ γ ≤ 1/2. Here 0 ≤ P ≤ 1
is the usual one-body density matrix of the Hartree-Fock state and the subtraction of 1/2 is a
kind of renormalization whose usefulness will be explained below. The reader not familiar with
second-quantization can at first jump directly to the remarks after Formula (4.12) in which we
explain our methodology.

We start with the formal QED Hamiltonian written in Coulomb gauge, in the presence of an
external electromagnetic potential (V, a), see [48, 49, 80, 78, 5]

H
V,a =

ˆ

Ψ∗(x) [α · (−i∇− A(x) − a(x)) +mβ] Ψ(x) dx+

ˆ

V (x)ρ(x) dx

+
α

2

¨

ρ(x)ρ(y)

|x− y| dx dy +Hf . (4.8)

In this formula, Ψ(x) is the second quantized field operator which annihilates an electron at x and
satisfies the anticommutation relation

Ψ∗(x)σΨ(y)ν + Ψ(y)νΨ∗(x)σ = 2δσ,νδ(x− y). (4.9)

We use here physicists’ notation (Ψ(x)σ is an operator-valued distribution). It is possible to give
a real mathematical meaning to these formulas, assuming the system is confined to a box with an
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ultraviolet cut-off [46]. We will however detail this later on and continue to write formal expressions
for the moment.

The operator ρ(x) is the density operator defined by

ρ(x) =

4∑

σ=1

[Ψ∗
σ(x),Ψσ(x)]

2
(4.10)

where [a, b] = ab− ba. The operator Hf describes the kinetic energy of the photons:

Hf =
1

8πα

ˆ (
|∇ × A(x)|2 + |Et(x)|2

)
dx =

1

α

∑

λ=1,2

ˆ

R3

dk |k|a∗λ(k)aλ(k) + Cte

(Cte indicates a constant which diverges in infinite volume). The operators A(x) and Et(x) are
the electromagnetic field operators for the photons and a∗λ(k) is the creation operator of a photon
with momentum k and polarization λ. In (4.8), (V, a) is an external electromagnetic potential.
The potential V can for instance be created by a set of nuclei, a physical situation that we will
consider in the rest of the chapter. The Hamiltonian H

V,a formally acts on the Fock space,

F = Fe ⊗Fph

where Fe is the fermionic Fock space for the electrons and Fph is the bosonic Fock space for the
photons.

We emphasize that (4.8) does not contain any normal-ordering or notion of (bare) electrons
and positrons: Ψ(x) can annihilate electrons of negative kinetic energy. The distinction between
electrons and positrons should be a result of the theory and not an input. The commutator used in
the formula (4.10) of ρ(x) is a kind of renormalization, independent of any reference. It is due to
Heisenberg [48] (see also [70, Eq. (96)]) and it is necessary for a covariant formulation of QED, see
[78, Eq. (1.14)] and [21, Eq. (38)]. More precisely, the Hamiltonian H

V,a possesses the interesting
property of being invariant under charge conjugation since the following relations hold formally

C ρ(x)C−1 = −ρ(x), C H
V,a

C
−1 = H

−V,a,

where C is the charge conjugation operator acting on the Fock space. Associated with ρ(x) we
define an average number operator (counted relatively to I/2)

N :=

ˆ

ρ(x) dx

which satisfies CNC−1 = −N .
In Quantum Electrodynamics, the vacuum is defined to be the state of lowest energy of the

system under consideration. If V = 0 and a = 0, one obtains the free vacuum. It is expected that
the free vacuum Ω0 is never charged, 〈Ω0|N |Ω0〉 = 0. It is also expected that the free vacuum is
invariant by translation, in a sense to be made more precise later. If the external fields do not
vanish, the state of lowest energy Ω is the polarized vacuum in the presence of V and a. It might be
charged when the fields are strong enough. For instance in the presence of a very strong external
field V created by positively charged particles, it is expected that one (or even several) electron-
positron pair(s) will be created [76]. However the positron(s) will escape to infinity whereas the
electron(s) will stay in a neighborhood of the positive density of charge inducing the electrostatic
field. At the end we will have 〈Ω|N |Ω〉 = N > 0, the number of such created pairs.1

1Note that this phenomenon is different from the usual formulation of pair-creation based on the time-dependent
equation [69, 72, 85, 86]. In our case we may talk about “static pair creation” as opposed to “dynamic pair creation”.
In the static case the ground state does not depend continuously on the strength of the external field: it suddenly
jumps from one charge sector to another one provided the associated energy has become lower. For a system without
interaction, static pair creation will occur when the first eigenvalue equals 0. In the dynamic case, it was proved that
pair creation occurs when the first eigenvalue dives into the continuum [69, 72] i.e. when it passes −1 (however this
only makes sense in an adiabatic limit). The positron is then able to radiate through the continuum. The difference
between the two concepts was already mentioned earlier in [77]. The study of dynamic pair-creation within one of
the nonlinear models presented in this chapter is a very interesting challenge.
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If one wants to describe atomic systems (like electrons in a molecule), one has to find the state
of lowest energy in a fixed charge sector, i.e. under the constraint that 〈Ω|N |Ω〉 = N where N is
defined as above. Intuitively if the external fields are not too strong, this should lead to a system
of N electrons (or −N positrons when N < 0), coupled to the Dirac sea.

4.1.3 Derivation of the Hartree-Fock energy

In our study of the QED Hamiltonian H
V,a, we shall make two approximations:

• we neglect photons and assume there is no external magnetic field, a ≡ 0;

• we work in a mean-field theory, i.e. we restrict the Hamiltonian to Hartree-Fock states.

These approximations are of a different importance. Neglecting photons is of course a very rough
approximation as it will forbid us to describe important physical effects occurring in QED like
the self-energies of the electrons, the biggest contribution to the Lamb shift. But we do that only
for mathematical reasons: we were not yet able to extend most of the results presented below
when photons are taken into account. Formally, a large part of our study is exactly the same with
photons (when they are treated by a mean-field procedure). We hope to come back to this point
in the near future.

The second approximation which we make by restricting ourselves to Hartree-Fock states is
more fundamental and many of our results are specific to this case. Nevertheless, some of our
general ideas may be applicable to the full QED model.

Let us recall that the electronic one-body density matrix (two point function) of any electronic
state |Ω〉 ∈ Fe is defined as

P (x, y)σ,σ′ = 〈Ω|Ψ∗(x)σΨ(y)σ′ |Ω〉
and it satisfies 0 ≤ P ≤ I where I is the identity operator. In view of (4.10), it is natural to
introduce a renormalized one-body density matrix

γ(x, y)σ,σ′ =

〈
Ω

∣∣∣∣
[Ψ(x)∗σ,Ψ(y)σ′ ]

2

∣∣∣∣ Ω

〉
.

By (4.9), we obtain the simple relation

γ = P − I

2

hence −I/2 ≤ γ ≤ I/2. Electronic Hartree-Fock states form a subset {|ΩP 〉} ⊂ Fe of states which
are completely determined by their density matrix P (or equivalently by their renormalized density
matrix γ = P − I/2). Recall that if

|Ω〉 = ϕ1 ∧ · · · ∧ ϕN

is a Hartree-Fock states with N occupied orbitals ϕ1, ..., ϕN , then the associated density matrix P
is just the orthogonal projector on Span(ϕ1, ..., ϕN ):

P =

N∑

i=1

|ϕi〉〈ϕi|.

For a formal Hartree-Fock state with infinitely many occupied orbitals

|Ω〉 = ϕ1 ∧ · · · ∧ ϕN ∧ · · ·

we also obtain
P =

∑

occ

|ϕi〉〈ϕi|.
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Hence

γ = P − I

2
=
P − P⊥

2
=

1

2

(∑

occ

|ϕi〉〈ϕi| −
∑

unocc

|ϕi〉〈ϕi|
)
.

The associated density of charge is formally given by

ργ(x) = 〈Ω|ρ(x)|Ω〉 =
1

2

(∑

occ

|ϕi(x)|2 −
∑

unocc

|ϕi(x)|2
)
. (4.11)

Now we can (formally) compute the energy of any state |ΩP 〉⊗|0〉 where |ΩP 〉 is a Hartree-Fock
state in Fe and |0〉 ∈ Fph is the photonic vacuum. We obtain

〈0| ⊗ 〈ΩP |HV,0|ΩP 〉 ⊗ |0〉 = Eν
HF(P − I/2) + Cte

where Cte is a constant (diverging in the infinite volume limit) and

Eν
HF(γ) = Tr(D0γ) − α

¨

ργ(x)ν(y)

|x− y| dx dy

+
α

2

¨

ργ(x)ργ(y)

|x− y| dx dy − α

2

¨ |γ(x, y)|2
|x− y| dx dy. (4.12)

Here and in the rest of the whole chapter we will consider for convenience an external electrostatic
field of the form

V = −αν ∗ 1

|x|
which is the usual Coulomb field induced by a distribution of charge ν.

The reader can recognize in (4.12) the well-known Hartree-Fock energy introduced in Chapter
1, but applied to the renormalized density matrix γ = P − I/2 instead of the usual density matrix
P . The last two terms of the first line are respectively the kinetic energy and the interaction energy
of the electrons with the external potential induced by the charge distribution ν. In the second
line appear respectively the so-called direct and exchange terms. In Relativistic Density Functional
Theory [24, 25], the exchange term is approximated by a function of ργ and its derivatives only.

Note that we have restricted ourselves to quasi-free states having a vanishing pairing density
matrix. Let us recall from Chapter 2 that the latter is defined for any state Ω as [4]:

p(x, y)σ,σ′ = 〈Ω|Ψ∗(x)σΨ∗(y)σ′ |Ω〉.

The energy of a general quasi-free state is then equal to (4.12) plus (α/2)
˜

|p(x, y)|2|x−y|−1dx dy.
Hence one always decreases the energy by removing the pairing density matrix (as in usual gener-
alized Hartree-Fock theory with a repulsive potential [4]).

Any stationary point of the above energy formally satisfies the first order equation (written in
terms of the usual density matrix P = γ + I/2)

[
P, FP−I/2

]
= 0

where FP−I/2 is the Fock operator

FP−I/2 = D0 + α
(
ρ[P−I/2] − ν

)
∗ 1

|x| − α
(P − I/2)(x, y)

|x− y| .

For a minimizer (in a chosen charge sector), one will have the more precise equation

P = χ(−∞,µ]

(
FP−I/2

)
(4.13)
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where µ is a Fermi level which is adjusted to get the correct charge (it vanishes if there is no charge
constraint). Saying differently, one obtains a Hartree-Fock state with infinitely many occupied
orbitals, all having an energy ≤ µ. We shall give a precise interpretation of this equation later on.

It is time to worry about the mathematical meaning of the formulas we have formally derived
up to now, in particular the definition of the energy (4.12). Unfortunately, the latter does not
make any sense for the following reason: when P is an orthogonal projector (as this is usually the
case for HF minimizers), γ = P − I/2 is never a compact operator in an infinite dimension space.
Hence none of the terms appearing in (4.12) has a clear mathematical meaning. Formally, one has
Eν
HF(P − I/2) = −∞ for any density matrix P .

In [46], we proposed to overcome this difficulty in the following way: we restrict the whole
system to a box of size L with periodic boundary conditions and an ultraviolet cut-off Λ in the
Fourier domain. Then all the above formulas make perfectly sense because we are in a finite-
dimensional setting. In particular one can define minimizers of the HF energy with or without the
external field V , with or without a charge constraint. Then, we look at the limit of the minimizer
in the considered class when the size of the box grows, L→ ∞, but the cut-off Λ stays fixed. The
limit (if it exists) is the formal minimizer of the unbounded below energy Eν

HF.
Notice the ultraviolet cut-off Λ is fixed during the whole study. It is only at the very end that

we can tackle the difficult task to remove it by renormalization.
We explain all that in details in the next sections.

4.2 Definition of the free vacuum

We start by explaining how the free vacuum was constructed in [46], in the case ν = 0. This is
done by defining the energy (4.12) for operators P acting on the finite-dimensional space

H
L
Λ :=

{
f ∈ L2

per([−L/2, L/2)3,C4), supp(f̂) ⊂ B(0,Λ)
}

= span
{
exp(ik · x), k ∈ (2π/L)Z3 ∩B(0,Λ)

}
.

To define the energy properly, it is necessary to periodize the Coulomb potential as follows:

WL(x) =
1

L3




∑

k∈(2π)Z3/L
k 6=0

4π

|k|2 e
ik·x + wL2


 ,

where w is some constant which is chosen such that min CL
WL = 0 for any L. The Dirac op-

erator D0 is also easily defined on HL
Λ: it is just the multiplication of the Fourier coefficients by

(D0(k))k∈2πZ3/L. Then, one introduces

E0
L(Γ) := TrHL

Λ
(D0Γ) + +

α

2

¨

CL×CL

WL(x− y)ρΓ(x)ρΓ(y) dx dy

− α

2

¨

CL×CL

WL(x− y)|Γ(x, y)|2dx dy , (4.14)

for any self-adjoint operator Γ acting on HL
Λ. The kernel Γ(x, y) of Γ is easily defined in the Fourier

basis since HL
Λ is finite-dimensional. Its density ρΓ is then defined as ρΓ(x) := TrC4(Γ(x, x)). A

translation-invariant operator T acting on HL
Λ is by definition a multiplication operator in the

Fourier domain. In this case, one has T (x, y) = f(x− y) for some f and therefore ρT is constant.
The identity of HL

Λ, denoted by IL
Λ is an example of a translation-invariant operator.

It is possible to define the QED Hamiltonian without photons in the box in the same way, see
[46]. Notice the fermionic Fock space built on the one-body space HL

Λ is also finite-dimensional.
The first result proved in [46] is the following:
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Theorem 4.1. (QED mean-field minimizer in a box [46]) Assume that 0 ≤ α < 4/π, Λ > 0 and
that L is large enough. Then the functional E0

L has a unique minimizer Γ0
L on the convex set

GL
Λ :=

{
Γ ∈ L(HL

Λ), Γ∗ = Γ, −IL
Λ/2 ≤ Γ ≤ IL

Λ/2
}
.

It is invariant by translation and satisfies ρΓ0
L
≡ 0. Moreover, it takes the form Γ0

L = P0
L − IL

Λ/2

where P0
L is an orthogonal projector on HL

Λ.

Of course, it can easily be shown that P0
L satisfies an equation similar to (4.13) with V removed

and 1/|x| replaced by WL. But we do not give more details since we are more interested in the limit
of P0

L as L → ∞. We note that although the HF energy (in a box) is not convex, we have been
able to prove that there is no symmetry breaking in the sense that its minimizer is invariant by
translation and unique. We are not aware of any previous result of this kind for Hartree-Fock-type
theories including the non-convex exchange term.2

In order to state the thermodynamic limit correctly, we first need to introduce the translation-
invariant projector P0

− acting on HΛ, which will be the limit of the sequence (P0
L)L. The identity

of HΛ is denoted by IΛ. We introduce

T (A) =
1

(2π)3

ˆ

B(0,Λ)

TrC4 [D0(p)A(p)]dp− α

(2π)5

¨

B(0,Λ)2

TrC4 [A(p)A(q)]

|p− q|2 dp dq (4.15)

for any A belonging to the convex set

AΛ := {A translation-invariant on HΛ, A
∗ = A, −IΛ/2 ≤ A ≤ IΛ/2} .

It will be shown in Theorem 4.3 below that T represents the energy per unit volume of translation-
invariant operators. For this reason, one now considers the minimization of T on AΛ. The following
was proved in [46]:

Theorem 4.2. (Definition of the free vacuum [46]) Assume that 0 ≤ α < 4/π and Λ > 0. Then
T possesses a unique global minimizer Γ0 on AΛ. It satisfies the self-consistent equation





Γ0 = − sgn(D0)

2
,

D0 = D0 − α
Γ0(x, y)

|x− y|
(4.16)

or, written in terms of the translation-invariant projector P0
− = Γ0 + IΛ/2,

P0
− = χ(−∞,0)

(
D0

)
. (4.17)

Moreover, D0 takes the special form, in the Fourier domain,

D0(p) = g1(|p|)α · p+ g0(|p|)β (4.18)

where g0, g1 ∈ L∞([0,Λ),R) are such that 1 ≤ g1(x) ≤ g0(x) for any x ∈ [0,Λ), and therefore

|D0(p)|2 ≤ |D0(p)|2 ≤ g0(|p|)|D0(p)|2. (4.19)

The self-consistent equation (4.16) has already been solved by Lieb and Siedentop in a different
context [62]. They used a fixed point method only valid when α log Λ ≤ C for some constant C.

As shown by the next result, the negative spectral projector P0
− of the Dirac-type operator

D0 represents the free vacuum, as it is the limit of the sequence P0
L when L → ∞. An important

2The main idea was indeed taken from [2]: it consists in controlling the exchange term by the kinetic energy.
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property of Γ0 showing the usefulness of the subtraction of half the identity is the following. Due
to

P0
−(p) − IΛ(p)/2 = Γ0(p) = − g1(|p|)

2
√
g1(|p|)2|p|2 + g0(|p|)2

α · p− g0(|p|)
2
√
g1(|p|)2|p|2 + g0(|p|)2

β, (4.20)

one infers

TrC4(Γ0(p)) = TrC4 [(P0
− − IΛ/2)(p)] = 0 ,

for any p ∈ B(0,Λ), the Dirac matrices being trace-less. This has the important consequence that
the (constant) density of charge of the free vacuum vanishes:

ρΓ0 ≡ (2π)−3

ˆ

B(0,Λ)

TrC4(Γ0(p)) dp = 0.

This formally means that

“ 〈Ω0|N |Ω0〉 =

ˆ

R3

ρΓ0 dx = 0” (4.21)

where Ω0 is the (formal) Hartree-Fock vacuum state in the Fock space, as desired.
In QED, the Feynman propagator at equal times

SF (x, y; tx = ty) := iγ(x, y)β

is often expressed using the Källén-Lehmann representation [53, 59, 5], based on relativistic in-
variances. Although our model is not fully relativistically invariant (we discard photons and use
an ultraviolet cut-off Λ) and is only defined in the mean-field approximation, our solution (4.20)
has exactly the form which may be derived from the Källén-Lehmann representation for the equal
time propagator. In four-dimensional full QED, a self-consistent equation similar to (4.16) is well-
known and used. These so-called Schwinger-Dyson equations [79, 22] have been approximately
solved for the free vacuum case first by Landau et al. in [57, 58], and then by many authors (see,
e.g., [52, 40, 1]).

We notice that P0
− is not Dirac’s original choice P 0

− (except when α = 0) because the interaction
between the particles (the virtual and the real ones) is taken into account by the model. Notice
also that Equation (4.17) is exactly the same as (4.13) with V = 0 and µ = 0, due to (4.16).

As a consequence of (4.18), the spectrum of D0 is

σ(D0) =
{
±

√
g0(|p|)2 + g1(|p|)2|p|2, p ∈ B(0,Λ)

}
.

It has a gap which is greater than the one of D0, by (4.19):

1 ≤ m(α) := minσ(|D0|). (4.22)

In [44], it is proved that when α ≪ 1, then m(α) = g0(0) and conjectured this is true for any 0 ≤
α < 4/π. Notice that the following expansion is known [62, 46]: g0(0) = 1 + α

π arcsinh(Λ) + O(α2).

σ
`

D
0
´

P
0
− 1 + α

π
arcsinh(Λ) + O(α2)

0 1−1

Figure 4.2: The free vacuum P0
− is the negative spectral projector of the translation-invariant

operator D0.

We are now able to state the thermodynamic limit, as proved in [46]:
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Theorem 4.3. (Thermodynamic limit in the free case [46]) Assume that 0 ≤ α < 4/π and Λ > 0.
Then, one has

lim
L→∞

E0
L(Γ0

L)

L3
= min

AΛ

T ,

where we recall that Γ0
L is the unique minimizer of E0

L defined in Theorem 4.1. Moreover, P0
L =

Γ0
L + IL

Λ/2 converges to P0
− in the following sense:

lim
L→∞

∣∣∣∣P0
L − P0

−
∣∣∣∣

S∞(HL
Λ)

= lim
L→∞

sup
p∈(2πZ3/L)∩B(0,Λ)

|P0
L(p) − P0

−(p)| = 0.

4.3 The Bogoliubov-Dirac-Fock model

Now that the free vacuum P0
− has been correctly defined, we will be able to introduce the

Bogoliubov-Dirac-Fock (BDF) energy as studied in [42, 43, 44, 46]. Formally, it measures the
energy (4.12) of a state P , relatively to the (infinite) energy of the free vacuum P0

−. It depends on
P − P0

− and reads formally:

“ Eν(P − P0
−) = Eν

HF(P − IΛ/2) − E0
HF(P0

− − IΛ/2) (4.23)

= Tr
(
D0Q

)
− α

¨

R3×R3

ρQ(x)ν(y)

|x− y| dx dy

+
α

2

¨

R3×R3

ρQ(x)ρQ(y)

|x− y| dx dy − α

2

¨

R3×R3

|Q(x, y)|2
|x− y| dx dy ”, (4.24)

with Q = P −P0
−. This new energy looks again like a Hartree-Fock type functional except that our

main variable is Q = P −P0
−, which measures the difference between our state and the (physically

unobservable) translation-invariant free vacuum P0
−. Note also that the translation-invariant mean-

field operator D0 appears3.
As we will see later on, the above formal computation can again be justified by a thermodynamic

limit. We will proceed as follows: first we explain how we have been able to give a proper math-
ematical meaning to the above energy and its minimizers. Then we show that the so-constructed
states are indeed the limits of minimizing states in the thermodynamic limit L→ ∞.

The energy (4.24) was introduced and studied by Chaix-Iracane in [15] (see also Chaix-Iracane-
Lions [16]). An adequate mathematical formalism was then provided by Bach, Barbaroux, Helffer
and Siedentop [2] in the free case ν = 0, and by Hainzl, Lewin and Séré [42, 43] in the external
field case ν 6= 0. However, in all these works a simplified version was considered: D0 and P0

− were
replaced by Dirac’s choice D0 and P 0

−. As mentioned in [46], although the choice of P0
− for the

free vacuum is better physically, the two models are essentially the same from the mathematical
point of view: the main results of [2, 42, 43] were easily generalized in [46] to treat the model in
which the better D0 and P0

− are used.
What is gained with (4.24) is that Q can now be a compact operator (it will be Hilbert-Schmidt,

indeed) and, thanks to the Fourier cut-off Λ, many of the terms in (4.24) will be mathematically
well-defined. However, there is still a notable difficulty in defining the BDF energy correctly, i.e.
finding what is the correct functional setting. First one might be tempted to restrict the functional
to operators Q which are trace-class [74, 81], so that the density ρQ and the kinetic energy term
Tr(D0Q) are both well-defined. However we will see below that minimizers of the energy are never
trace-class. This can be seen formally by expanding the self-consistent equation on first order in
α. This peculiar mathematical property is not purely technical: as we will explain below, it is the
main explanation of charge renormalization, an important physical issue in QED.

For this reason the formal BDF energy has to be defined on a larger set than only trace-class
operators. We refer to Appendix A where the correct functional analysis setting is presented in

3It is obtained from the cross terms which are obtained when expanding the formal difference Eν
HF(P0

− − IΛ/2 +

Q) − E0
HF(P0

− − IΛ/2) in terms of Q.
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details. The main idea is to generalize the trace functional in order to define correctly the kinetic
energy Tr

(
D0Q

)
. This is done by introducing the following space

S
P0

−

1 (HΛ) :=
{
Q ∈ S2(HΛ) | P0

−QP0
−, P0

+QP0
+ ∈ S1(HΛ)

}
,

with the the usual notation

Sp(HΛ) := {A ∈ L(HΛ), Tr(|A|p) <∞}.

An operator Q belonging to S
P0

−

1 (HΛ) is said to be P0
−-trace class. For any such Q ∈ S

P0
−

1 (HΛ),
we then define its P0

−-trace as

TrP0
−
(Q) := Tr(P0

−QP0
−) + Tr(P0

+QP0
+).

Due to the fact that the free vacuum has a vanishing charge (4.21), TrP0
−
(Q) can be interpreted

as the charge of our state P = Q + P0
−. Our generalization of the trace functional has many

interesting features which are proved in [42] and reviewed in Appendix A.

Definition of the density for states in S
P0
−

1 (HΛ)

Thanks to the cut-off in Fourier space, the charge density ρQ of an operator Q ∈ S
P0

−

1 (HΛ) is
well-defined in L2(R3,R), via

ρ̂Q(k) = (2π)−3/2

ˆ

|p+k/2|≤Λ
|p−k/2|≤Λ

TrC4

(
Q̂(p+ k/2, p− k/2)

)
dp.

Let us introduce the following notation:

D(f, g) = 4π

ˆ

f̂(k)ĝ(k)

|k|2 dk ,

for any (f, g) ∈ L2(R3,R)2, which coincides with
˜

R3×R3 f(x)g(y)|x− y|−1dx dy when f and g are
smooth enough. We also define the so-called Coulomb space

C = {f | D(f, f) <∞} , (4.25)

which is the natural space for defining the terms depending on ρQ in the energy. The following
Lemma was proved in [41]:

Lemma 4.1 (The density is in C ∩ L2 [41, Lemma 1]). Let 0 ≤ α < 4/π and Λ > 0. The map

Q ∈ S
P0

−

1 (HΛ) 7→ ρQ ∈ C ∩ L2 is continuous: there exists a constant C = C(α,Λ) such that

||ρQ||C + ||ρQ||L2 ≤ C(Λ) ||Q||
S

P0
−

1 (HΛ)
.

Definition of the BDF energy

It is now possible to define the Bogoliubov-Dirac-Fock energy as in [42, 43, 46]

Eν(Q) := TrP0
−
(D0Q) − αD(ρQ, ν) +

α

2
D(ρQ, ρQ) − α

2

¨

R6

|Q(x, y)|2
|x− y| dx dy , (4.26)

where

Q ∈ K :=

{
Q ∈ S

P0
−

1 (HΛ), −P0
− ≤ Q ≤ P0

+

}
. (4.27)

As we have stated in Lemma 4.1, we know that ρQ ∈ C when Q ∈ S
P0

−

1 (HΛ), hence Eν is well
defined when ν ∈ C. The following was proved:
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Theorem 4.4 (The BDF energy is bounded-below [16, 2, 42, 43, 46]). Assume that 0 ≤ α < 4/π,
Λ > 0 and that ν ∈ C.

(i) One has

∀Q ∈ K, Eν(Q) +
α

2
D(ν, ν) ≥ 0 , (4.28)

and therefore Eν is bounded from below on K.

(ii) If moreover ν = 0, then E0 is non-negative on K, 0 being its unique minimizer.

The boundedness from below of the BDF energy is an essential feature of the theory. It shows
the usefulness of the inclusion of the vacuum effects in the model. The interpretation of (ii) is the
following: by (4.23), it proves that the free vacuum P0

− is the unique minimizer of the (formal)
QED energy in the set of all the projectors P which are such that P − P0

− ∈ K. In the previous
subsection (Theorem 4.2), it was also proved that P0

− is the unique minimizer of the energy per
unit volume T . These are two different ways of giving a mathematical meaning to the fact that
P0
− is the unique minimizer of the QED energy when no external field is present.

The case ν = 0, (ii) in Theorem 4.4, was proved by Bach, Barbaroux, Helffer and Siedentop [2].
In this paper, the authors also study a relativistic model for ν 6= 0, but with vacuum polarization
neglected (in the spirit of a paper of Mittlemann [67], see [27]). They were inspired of a paper by
Chaix, Iracane and Lions [16]. Then, it has been argued in [42, 43, 46] that the proof of the case
ν 6= 0, (i) in Theorem 4.4, is a trivial adaptation of [2].

Now that Eν has been shown to be bounded-below, it is natural to try to minimize it. Actually,
we shall be interested in two minimization problems. The first is the global minimization of Eν

in the whole set K. As mentioned above, a global minimizer of the mean-field QED energy Eν
HF

and therefore of the BDF energy Eν (they formally differ by an infinite constant !) is interpreted
as the polarized vacuum in the external electrostatic field −αν ∗ | · |−1. If one wants to describe a
system of charge −eN , one has to minimize Eν in the Nth charge sector:

K(N) :=
{
Q ∈ K | TrP0

−
(Q) = N

}
.

These two minimization problems will be tackled in the following two sections.

Let us now give the proof of Theorem 4.4, which is a simple adaptation of arguments of [2].

Proof of Theorem 4.4. Let Q ∈ K, and therefore satisfying the operator inequality

− P0
− ≤ Q ≤ P0

+. (4.29)

It is easily proved that (4.29) is equivalent to

Q2 ≤ Q++ −Q−− (4.30)

where Q++ := P0
+QP0

+ and Q−− := P0
−QP0

−. This now implies that

0 ≤ Tr(|D0|Q2) ≤ TrP0
−
(D0Q) (4.31)

which shows that the kinetic energy is non-negative. We now use Kato’s inequality (2.2) and
Equation (4.19) to obtain

¨

R3×R3

|Q(x, y)|2
|x− y| dx dy ≤ π

2
Tr(|D0|Q2) ≤ π

2
Tr(|D0|Q2).

Together with (4.31), this implies

Eν(Q) ≥
(
1 − α

π

4

)
Tr(|D0|Q2) − α

2
D(ν, ν),

which easily ends the proof of Theorem 4.4. ¤
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4.4 Global minimization of Eν: the polarized vacuum

The existence of a global minimizer of Eν has been proved with Hainzl and Séré, first in [42] by a
fixed-point argument valid only when α

√
log Λ ≤ C1 and αD(ν, ν)1/2 ≤ C2, and then by a global

minimization procedure in [43], valid for any cut-off Λ and 0 ≤ α < 4/π. The precise statement of
the latter is the following:

Theorem 4.5 (Definition of the polarized vacuum [42, 43, 46]). Assume that 0 ≤ α < 4/π, Λ > 0
and that ν ∈ C. Then Eν possesses a minimizer Qvac on K such that Pvac = Qvac + P0

− is an
orthogonal projector satisfying the self-consistent equation

Pvac = χ(−∞,0) (DQvac
) , (4.32)

where

DQvac
= D0 + α (ρQvac

− ν) ∗ 1

| · | − α
Qvac(x, y)

|x− y| (4.33)

= D0 + α
(
ρ[P̄−−1/2] − ν

)
∗ 1

| · | − α
(P̄− − 1/2)(x, y)

|x− y| . (4.34)

Additionally, if α and ν satisfy

0 ≤ α
π

4

{
1 − α

(
π

2

√
α/2

1 − απ/4
+ π1/6211/6

)
D(ν, ν)1/2

}−1

≤ 1, (4.35)

then this global minimizer Qvac is unique and the associated polarized vacuum is neutral, i.e.
Qvac ∈ K(0):

TrP0
−
(Qvac) = TrP0

−
(Pvac − P0

−) = 0. (4.36)

The proof consists in showing that Eν is lower semi-continuous for the weak-∗ topology of K.
For this purpose, one shows that, in the electron-positron field, any mass escaping to infinity takes
away a positive energy. This is the so-called dichotomy case of the concentration-compactness
principle [64]. To prove (4.36), one first uses that TrP0

−
(Pvac − P0

−) is always an integer as stated

in Lemma A.2 of Appendix A and one applies a continuation argument.
Notice that the definition (4.16) of D0 has been used to obtain (4.34) from (4.33). Of course,

equations (4.32) and (4.34) are exactly the one we wanted to solve in the beginning (4.13). For
not too strong external densities ν, a neutral vacuum is necessarily obtained, as shown by (4.36).
But in general, a charged polarized vacuum could be found.

σ (DQvac)

Pvac

Figure 4.3: The polarized vacuum Pvac in the presence of the external density ν is the negative
spectral projector of the mean-field operator DQvac

.

In [46], a thermodynamic limit was considered as for the free case ν = 0, to justify the formal
computation (4.24) when ν 6= 0. As before, the QED energy is well-defined in a box CL =
[−L/2, L/2)3 with periodic boundary conditions and a cut-off in Fourier space by

Eν
L(Γ) := E0

L(Γ) − α

¨

CL×CL

WL(x− y)ρΓ(x)νL(y) dx dy, (4.37)

where

νL(x) =
(2π)3/2

L3

∑

k∈(2πZ3)/L

ν̂(k)eik·x, (4.38)

(for simplicity, it is assumed that ν̂ is a smooth function). Then the following was proved in [46].
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Theorem 4.6 (Thermodynamic limit with external field [46]). Assume that 0 ≤ α < 4/π, Λ > 0,
ν ∈ C and that ν̂ is continuous on B(0,Λ). Then for any L, Eν

L possesses a minimizer ΓL =
PL − IL

Λ/2 on GL
Λ where PL is an orthogonal projector, and one has

lim
L→∞

{
Eν

L(ΓL) − E0
L(Γ0

L)
}

= min {Eν(Q), Q ∈ K} . (4.39)

Moreover, up to a subsequence, QL(x, y) := (ΓL−Γ0
L)(x, y) = (PL−P0

L)(x, y) converges uniformly
on compact subsets of R

6 to Qvac(x, y), a minimizer of Eν on K.

4.5 Minimization of Eν in charge sectors

The previous subsection was devoted to the global minimization of the BDF energy. We now
mention some results that have been obtained in [44] for the minimization with a charge constraint.
It is believed that the charge constrained BDF model can be obtained as the thermodynamical
limit of the full QED model in a fixed charge sector and posed in a box with periodic boundary
conditions, but this has not been shown yet.

Due to the charge constraint and like for the Hartree-Fock model [63, 65, 60, 83] for instance,
minimizers will not always exist for the BDF functional: it depends whether the external electro-
static potential created by the charge distribution ν is strong enough to be able to bind the N
particles in the presence of the Dirac sea. On the other hand, it must not be too strong otherwise
electron-positron pairs could appear.

We start with a general result proved in [44] providing the form of a minimizer, if it exists. To
this end, we introduce the minimum energy in the Nth charge sector:

Eν(N) := inf {Eν(Q) | Q ∈ K(N)} , (4.40)

where we recall that
K(N) :=

{
Q ∈ K | TrP0

−
(Q) = N

}
.

In principle N could be any real number, but here, for simplicity, we shall restrict ourselves to
integers, which corresponds to the physical case.

Theorem 4.7 (Self-Consistent Equation of a BDF Minimizer [44]). Let 0 ≤ α < 4/π, Λ > 0,
ν ∈ C and N ∈ Z. Then any minimizer Q solution of the minimization problem (4.40), if it exists,
takes the form Q = P − P0

− where

P = χ(−∞,µ](DQ) = χ(−∞,µ]

(
D0 + α(ρQ − ν) ∗ 1/| · | − α

Q(x, y)

|x− y|

)
, (4.41)

for some µ ∈ [−m(α),m(α)].

Recall that m(α) is the threshold of the free operator D0 defined in (4.22). We remark that
(4.41) implicitly means that the last eigenvalue below µ of the mean-field operator DQ is necessarily
totally filled. This is a general fact for Hartree-Fock type theories [3]. For a minimizer of the form
(4.41) and when N,µ > 0, it is natural to consider the decomposition

P = Π + χ[0 , µ](DQ),

where Π is the polarized Dirac sea:

Π := χ(−∞ , 0)(DQ).

For not too strong external potentials, the vacuum will be neutral, i.e.

TrP0
−
(Π − P0

−) = 0 ,
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and therefore χ[0 , µ](DQ) will be a projector of rank N :

χ[0,µ](DQ) =

N∑

n=1

ϕn ⊗ ϕ∗
n, DQϕn = εnϕn ,

where ε1 ≤ · · · ≤ εN are the first N positive eigenvalues of DQ counted with their multiplicity.
Notice that

DQ = D0 + α(ρΦ − ν) ∗ 1

| · | − α
γΦ(x, y)

|x− y| + αρ[Π−IΛ/2] ∗
1

| · | − α
(Π − IΛ/2)(x, y)

|x− y| , (4.42)

where

γΦ := χ[0,µ](DQ) =

N∑

n=1

ϕn ⊗ ϕ∗
n, ρΦ(x) := TrC4(γΦ(x, x)) =

N∑

n=1

|ϕn(x)|2.

In the terms of (4.42), the Dirac-Fock operator associated with (ϕ1, ..., ϕN ) appears, see [28]. This
shows that the electronic orbitals ϕi are solutions of a Dirac-Fock type equation in which the mean-
field operator is perturbed by the (self-consistent) potentials of the Dirac sea Π−IΛ/2. In practice,
these potentials are small, and the DF equations are a good approximation of the BDF equations
for the electronic orbitals. But the energy functionals behave in a completely different way: as
explained in [28], the DF energy is strongly indefinite while the BDF energy is bounded below.
The Dirac-Fock model is thus interpreted as a non-variational approximation of the mean-field
model of no-photon QED [15].

σ (DQ)

Π ϕi’s

P
µ

Figure 4.4: Decomposition of the system ‘vacuum + N electrons’ for the solution P = Π + γΦ in
the Nth charge sector.

Concerning the existence of a minimizer, solution of (4.41), the following result was proved in
[44]:

Theorem 4.8 (Binding Conditions and Existence of a BDF Minimizer [44]). Let 0 ≤ α < 4/π,
Λ > 0, ν ∈ C and N ∈ Z. Then the following two assertions are equivalent:

(H1) Eν(N) < min
{
Eν(N −K) + E0(K), K ∈ Z \ {0}

}
.

(H2) Each minimizing sequence (Qn)n≥1 for Eν(N) is precompact in K and converges, up to a
subsequence, to a minimizer Q of Eν(N).

Conditions like (H1) appear classically when analyzing the compactness properties of minimiz-
ing sequences, for instance by using the concentration-compactness principle of P.-L. Lions [64].
They are also very classical for linear models in which the bottom of the essential spectrum has the
form of the minimum in the right hand side of (H1), as expressed by the HVZ Theorem [50, 89, 90].
Assume N > 0 for simplicity. When 0 < K ≤ N , (H1) means that it is not favorable to let K
electrons escape to infinity, while keeping N −K electrons near the nuclei. When K < 0, it means
that it is not favorable to let |K| positrons escape to infinity, while keeping N + |K| electrons near
the nuclei. When K > N , it means that it is not favorable to let K electrons escape to infinity,
while keeping K −N positrons near the nuclei. When α is small enough and N > 0, it was shown
in [44] that the separation of electron-positron pairs is not energetically favorable, so that one just
needs to check (H1) for K = 1, 2, ..., N .

To prove the existence of a minimizer, one can therefore prove that (H1) holds. Two situations
in which (H1) is true have been provided in [44]. The first one is the case of weak coupling α≪ 1
and αν = ν̄ fixed (the charge N is also fixed). The following was proved:
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Theorem 4.9 (Existence of a minimizer in the weak coupling limit [44]). Assume that Λ > 0,
that N is a non-negative integer, and that ν̄ ∈ C is such that

1. the spectrum σ(D0 − ν̄ ∗ | · |−1) contains at least N positive eigenvalues below 1,

2. ker(D0 − tν̄ ∗ | · |−1) = {0} for any t ∈ [0, 1].

Then (H1) holds in Theorem 4.8 for α small enough and αν = ν̄, and therefore there exists a
minimizer Qα of Eν̄/α(N). It takes the form

Qα = χ(−∞,0] (DQα
) − P0

− + χ(0,µα] (DQα
) := Qvac

α +

N∑

i=1

|ϕα
i 〉〈ϕα

i | (4.43)

DQα
ϕα

i = εα
i ϕ

α
i (4.44)

where εα
1 ≤ · · · ≤ εα

N are the N first positive eigenvalues of DQα
. Finally, for any sequence

αn → 0, (ϕαn
1 , ..., ϕαn

N ) converges (up to a subsequence) in HΛ to (ϕ1, ..., ϕN ) which are N first
eigenfunctions of D0 − ν̄ ∗ | · |−1 and Qvac

αn
converges to χ(−∞;0)

(
D0 − ν̄ ∗ | · |−1

)
−P 0

− in S2(HΛ).

The second situation provided in [44] is the case of the non-relativistic regime c≫ 1. To state
the result correctly, we reintroduce the speed of light c in the model (of course, we shall then take
α = 1). The expression of the energy and the definition of the free vacuum P0

− (which of course
then depends on c and the ultraviolet cut-off Λ) are straightforward. We denote by Eν

α,c,Λ(N) the
minimum energy of the BDF functional depending on the parameters (α, c,Λ). The following was
proved:

Theorem 4.10 (Existence of a minimizer in the non-relativistic limit [44]). Assume that α = 1
and that the ultraviolet cut-off is Λ = Λ0c for some fixed Λ0. Let ν ∈ C∩L1(R3,R+) with

´

R3 ν = Z,
and N a positive integer which is such that Z > N − 1. Then, for c large enough, (H1) holds in
Theorem 4.8 and therefore there exists a minimizer Qc for Eν

1,c,Λ0c(N). It takes the following form:

Qc = χ(−∞,0)(DQ) − P0
− + χ[0,µc)(DQ) = Qvac

c +

N∑

i=1

|ϕc
i 〉〈ϕc

i | ,

and one has

lim
c→∞

{
Eν

1,c,Λ0c(N) −Ng0(0)
}

= min
0≤γ≤1

Tr(γ)=N

EHF(γ)

where EHF is the (spin-1/2) Hartree-Fock energy (1.8) as defined in Chapter 1.
Moreover, for any sequence cn → ∞, (ϕcn

1 , ..., ϕcn

N ) converges in H1(R3,C4)N (up to a subse-

quence) towards (ϕ1, ..., ϕN ) with ϕi =
(ϕ̄i

0

)
, and where γ =

∑N
i=1 |ϕ̄i〉〈ϕ̄i| is a global minimizer of

the Hartree-Fock energy.

We notice that this theorem is very similar to a result of [29] providing the convergence of the
Dirac-Fock ‘ground state’ in the non-relativistic limit.

4.6 The reduced model and charge renormalization

4.6.1 Renormalization: generalities

In regular QED, the divergences of the (appropriately defined) physical measurable quantities are
usually eliminated by means of a mass and a charge renormalization. The main idea is to assume
that the parameters α and m appearing in the theory are indeed bare parameters which are not
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physically observable. The physical parameters are assumed to be functions of α, m and the cut-off
Λ

αph = αph(α,m,Λ), mph = mph(α,m,Λ)

and equal the physical values obtained in experiment. These functions should be inverted in order
to express the unknown bare quantities in term of the physical quantities

α = α(αph,mph,Λ), m = m(αph,mph,Λ). (4.45)

Using these functions, one expects to remove (in some sense that needs to be precised) all diver-
gences from physically measurable quantities.

Mass and charge renormalization however does not remove all divergences in the theory. Certain
quantities, e.g. the bare Feynman propagator SF (either at equal times or at general space time
points), are still divergent. The expectation is that all these divergences cancel in physically
measurable quantities and that they are therefore of no real relevance in formulating the theory.

Although there is no real need to do this, it is often convenient to introduce a renormalization
of the bare Feynman propagator SF . This is referred to as a wavefunction renormalization. In
full QED [22] it is claimed that the divergence in the Feynman propagator may be removed by
a multiplicative renormalization and that the renormalized propagator has the same pole near
mass shell in 4-momentum space as a free propagator corresponding to a particle with the correct
physical mass.

Note that in practice, this theoretical renormalization procedure is always used to justify the
dropping of the divergent terms obtained at each order of the perturbation theory [22]. For this
fact to be true, it is particularly important that renormalization can be expressed by means of
multiplicative parameters in front of the different propagators [22].

In Hartree-Fock QED, it is not clear at all if the usual renormalization program of QED can
be applied, especially when photons are not included. In [75, p. 194–195], it is argued that mass
and charge renormalization is alone not enough to completely remove the divergences of the HF
theory by means of multiplicative parameters.

In any case, the physical mass and charge have to be identified within the model. We propose
the following definitions (one may expect that other physically reasonable definitions would lead
to the same observable quantities in the limit Λ → ∞). In relativistic quantum mechanics the
physical mass is just the lowest energy of a free electron, hence

mph(α,m,Λ) := E0(1) (4.46)

which was defined in (4.40).
To define the physical coupling constant, we consider an extended nucleus of density ν,

´

ν = Z,
and put it in the vacuum. Let Qvac = Pvac − P0

− be the polarized vacuum solution of (4.32). We
assume that ν is not too strong such that the vacuum stays neutral, Tr0(Qvac) = 0. Of course in
reality it is impossible to distinguish the nucleus from the vacuum and the charge which is observed
far way from the nucleus is just

e

(
Z −
ˆ

R3

ρQvac

)

(provided ρQvac
is an L1 function). Hence we may define

αph(α,m,Λ) := α

(
1 − Z−1

ˆ

R3

ρQvac

)
. (4.47)

As we will see, the so-obtained formula is indeed independent of Z (if not, we would take its limit
as Z → 0).

It is very important to realize that charge renormalization is based on the fact that the operator
Qvac is not trace-class. If it were trace-class, one would of course have Tr0(Qvac) = 0 =

´

ρQvac
,

hence αph = α. Therefore, the mathematical difficulty that a minimizer of the BDF energy is
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never trace-class (except when ν = 0) is the origin of charge renormalization. Also this shows that
in a finite dimensional space (for computational purpose for instance), renormalization is certainly
more involved as all operators are trace class.

Both (4.46) and (4.47) would define mph and αph as extremely complicated non-linear functions
of α, m and Λ. A challenging task is to study the finiteness of measurable quantities like for instance
the binding energy of an electron in the presence of an external field Eν(1) − E0(1), when αph

and mph are fixed to be the observed physical quantities. We do not know if this is possible when
photons are not taken into account.

It is however possible to completely solve the above program for a (further) simplified theory
called the reduced Bogoliubov-Dirac-Fock, as was done in [43, 37]. We explain that now.

4.6.2 Minimizers in the reduced BDF model and charge renormalization

Following [82] we consider a simplified model where the exchange term is neglected from the very
beginning, i.e. in Formula (4.12). In Relativistic Density Functional Theory [24, 25], the exchange
term is approximated by a function of the density only. The formal QED energy becomes:

Eν
rHF(γ) = Tr(D0γ) − α

¨

ργ(x)ν(y)

|x− y| dx dy +
α

2

¨

ργ(x)ργ(y)

|x− y| dx dy. (4.48)

The main advantage compared to the HF case is that this energy is now (formally) convex with
respect to γ and strictly convex with respect to ργ . This is a huge simplification which dramatically
reduces the complexity of many proofs.

For this new functional one can follow the method of the previous paragraphs. One finds
that the free vacuum is this time described by the usual Dirac sea, i.e. its density matrix is
P 0
− = χ(−∞,0)(D

0). Hence, subtracting this energy to the energy of any state, one obtains the
reduced Bogoliubov-Dirac-Fock energy:

Eν
r (Q) := TrP 0

−
(D0Q) − αD(ρQ, ν) +

α

2
D(ρQ, ρQ), (4.49)

where similarly as before

Q ∈ Kr :=

{
Q ∈ S

P 0
−

1 (HΛ), −P 0
− ≤ Q ≤ P 0

+

}
. (4.50)

Again one can prove that for any Q ∈ Kr, one has automatically ρQ ∈ C. Also we have the same
lower bound

∀Q ∈ Kr, Eν
r (Q) +

α

2
D(ν, ν) ≥ 0 , (4.51)

Since Eν
r is convex on Kr and strongly continuous, it is weakly lower semi-continuous, hence

it has a global minimizer4 Qvac, interpreted as the rHF polarized vacuum in the presence of the
external field induced by the density ν. This was remarked in [43, Theorem 3]. Assuming that
ker(DQvac

) = {0} where
DQvac

= D0 + α(ρQvac
− ν) ∗ | · |−1

is the mean field operator, then one can adapt the proof of Theorem 4.5 to get that Qvac is unique
and is a solution of the nonlinear equation Qvac = χ(−∞,0](DQvac

)−P 0
−. The charge of the polarized

vacuum is −eq0 where

q0 = TrP 0
−
(Qvac).

When αD(ν, ν)1/2 is not too large [43, Eq. (15)], it was proved that q0 = 0. However in general
electron-positron pairs can appear, giving rise to a charged vacuum. When ker(DQvac

) 6= {0}, then
Eν
r does not necessarily have a unique global minimizer on Kr, but it was proved in [37] that q0 is

anyway a uniquely defined quantity.

4We will use the same notation Qvac as for the BDF model with exchange term, although, of course, the two
states are different.
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4.6.2.1 Existence of minimizers and their charge

Like in Section 4.5, we are interested in the following minimization problem

Eν
r (q) = inf

Q∈Kr(q)
Eν
r (Q) (4.52)

where the sector of charge −eq is by definition

Kr(q) := {Q ∈ Kr, TrP 0
−
(Q) = q}

and q is any real number. Of course in Physics q ∈ Z but it is convenient to allow any real value.
It was proved in [37] that q → Eν

r (q) is a Lipschitz and convex function. Notice that if Qvac is a
global minimizer of Eν

r on Kr, then q0 = TrP 0
−
(Qvac) minimizes q → Eν

r (q).

The following theorem was proved in [37]:

Theorem 4.11 (Existence of atoms and molecules in the reduced BDF model [37]). Let Λ > 0,
α ≥ 0, ν ∈ L1(R3) ∩ C and denote Z =

´

R3 ν ∈ R. Then there exists qm ∈ [−∞,∞) and
qM ∈ [qm,∞] such that

(i) [qm, qM ] is the largest interval on which q → Eν
r (q) is strictly convex. If qM < ∞, then

Eν
r (q) = Eν

r (qM ) + q − qM for any q > qM . If qM > −∞, then Eν
r (q) = Eν

r (qm) + qm − q for any
q < qm;

(ii) the interval [qm, qM ] contains both Z and the unique minimizer q0 of q → Eν
r (q);

(iii) if q /∈ [qm, qM ], then Eν
r has no minimizer in the charge sector Kr(q);

(iv) if q ∈ [qm, qM ], then Eν
r has a minimizer Q in the charge sector Kr(q). This minimizer is not

a priori unique but its associated density ρQ is uniquely determined. It is radially symmetric if ν
is radially symmetric. The operator Q satisfies the self-consistent equation

{
Q+ P 0

− = χ(−∞,µ) (DQ) + δ,

DQ = D0 + α(ρQ − ν) ∗ | · |−1,
(4.53)

where µ ∈ [−1, 1] is a Lagrange multiplier associated with the charge constraint and interpreted as
a chemical potential, and δ satisfies 0 ≤ δ ≤ 1 and Ran(δ) ⊆ ker(DQ − µ). If µ ∈ (−1, 1), then δ
has a finite rank. If µ ∈ {−1, 1}, then δ is trace-class.

Moreover, ρQ belongs to L1(R3) and satisfies

ˆ

R3

ρQ − Z =
q − Z

1 + αBΛ(0)
(4.54)

where

BΛ(0) =
1

π

ˆ Λ√
1+Λ2

0

z2 − z4/3

1 − z2
dz =

2

3π
log Λ − 5

9π
+

2 log 2

3π
+O(1/Λ2).

The constant BΛ(0) is the value at zero of some real function BΛ which will be defined later in
Equation (4.61).

Equation (4.54) has an important physical interpretation: it gives us the formula of the physical
coupling constant in terms of the bare coupling constant, as explained in the previous section. We
obtain from (4.54)

αph =
α

1 + αBΛ(0)
. (4.55)
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-
qm q0 Z qM

q

Eν
r (q)

no minimizer ∃ a minimizer

Figure 4.5: Schematic representation of the result for the rBDF model.

The above value of the observable αph is very well-known in QED, see e.g. [56, Eq. (8)] and [51,
Eq. (7.18)]. It is important to note that the above formula is exact (within our model): contrarily
to what is usually done in QED, it was obtained by a completely non perturbative method. Let
us add that it was proved in [37] that

mph = Eν
r (1) = m

hence there is no mass renormalization in reduced BDF theory.
Equation (4.54) implies that a minimizer Q in the charge sector q 6= Z is never trace-class, as

this would imply TrP 0
−
Q =

´

R3 ρQ and contradict (4.54). This shows that the generalization of the

reduced BDF energy Eν
r to the Banach space S

P 0
−

1 (HΛ) is mandatory, as no minimizer exists in
the trace class. The mathematical difficulty that a minimizer is not trace-class is well interpreted
physically in terms of charge renormalization.

When q = Z, it is in principle possible that a minimizer Q for Eν
r (q) is trace-class. This natural

question has not been investigated.
We believe that a formula similar to (4.55) holds for the BDF model with exchange term (with

a slightly modified constant BΛ(0) due to the replacement of D0 by D0), but we have been unable
to prove that ρQ ∈ L1 in this case. Also we expect that there will be a mass renormalization with
the exchange term. These important questions have not been solved yet.

4.6.2.2 An ionization estimate

It is well-known that in Quantum Electrodynamics a cut-off is mandatory [5, 51]. There are two
sources of divergence in the Bogoliubov-Dirac-Fock model. The first is the negative continuous
spectrum of the Dirac operator, which is cured by the subtraction of the (infinite) energy of the
Dirac sea, as explained above. The second source of divergence is the rather slow growth of the
Dirac operator for large momenta: D0 only behaves linearly in p at infinity. This second issue is
solved by the cut-off Λ in Fourier space,5 which itself leads to renormalization.

There are many different ways to implement an ultraviolet cut-off. In the previous sections
we have chosen above a simple “sharp” cut-off consisting in replacing the ambient Hilbert space
L2(R3,C4) by the space of functions whose Fourier transform have their support in a ball of radius

5Note in Chapter 5 we will present a model for non-relativistic crystals which was studied in [9, 10]. It has a
structure very similar to the BDF model of QED. But one main difference is that the second divergence does not
occur, because of the presence of the Laplacian (instead of D0) which has a faster growth at infinity. Hence there
will not be any cut-off Chapter 5.
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Λ. However, when looking at decay properties of the electronic density, it might be more adapted
to impose a “smooth” cut-off (a similar remark was made by Lieb and Loss [61] in the context of
non-relativistic QED). One possibility is to increase the growth of the Dirac operator at infinity,
instead of changing the underlying Hilbert space. This has been proposed and studied in [37].

The idea is to replace D0 by the following operator

D0
Λ = (−iα · ∇ + β)

(
1 − ∆

Λ2

)
.

The corresponding reduced BDF energy is then defined for states Q acting on the whole space
L2(R3,C4) but with some growth conditions of the form

|D0
Λ|1/2Q ∈ S2, |D0

Λ|1/2Q++|D0
Λ|1/2 ∈ S1, |D0

Λ|1/2Q−−|D0
Λ|1/2 ∈ S1.

We refer to [37] for details. A result similar to Theorem 4.11 holds in this case, with a different
constant B′

Λ(0) = BΛ(0) + o(1). The following was proved in [37]:

Theorem 4.12 (Estimates on qm and qM when Z > 0, in the smooth cut-off case [37]). We assume
that D0

Λ is defined as above. There exists universal constants 0 < θ0 < 1, α0 > 0 and C > 0 such
that the following holds. For any 0 ≤ α ≤ α0, for any radial function ν ≥ 0 in L1(R3) ∩ C such
that Z =

´

ν > 0 and αD(ν, ν)1/2 ≤ θ0 < 1 and any cut-off Λ ≥ 4 such that α log Λ < 1/C, the
following estimate holds true:

− C
Zα log Λ + 1/Λ + αD(ν, ν)1/2

1 − Cα log Λ
≤ qm ≤ 0 = q0, (4.56)

Z ≤ qM ≤ 2Z + C(Zα log Λ + 1/Λ + αD(ν, ν)1/2)

1 − Cα log Λ
. (4.57)

In a nonrelativistic limit in which one takes α→ 0, Λ → ∞ such that α log Λ → 0 and ν fixed,
one obtains the usual estimate of [60]

0 = qm = q0 < Z ≤ qM ≤ 2Z.

4.6.3 Renormalization of the self-consistent equation

The renormalized charge is only observed far away from the nucleus. Close to it, one will observe a
different behavior like the oscillations of the polarization of the vacuum ρQvac

. We now give some
more details concerning the renormalization of charge and its interpretation in terms of the self-
consistent equation. For simplicity, we consider the case of the polarized vacuum (the argument is
the same in charge sectors).

Consider a small external density ν,
´

ν = Z and let Qvac be the associated polarized vacuum,
with density ρvac := ρQvac

. As we have seen, the SCF equation satisfied by Qvac reads

Qvac = χ(−∞;0](DQvac
) − χ(−∞;0](D

0). (4.58)

When ν is small enough, we know that 0 /∈ σ(DQvac
) and that Qvac is unique. We expand (4.58)

in powers of α, using the resolvent representation [54, Section VI, Lemma 5.6] to derive the self-
consistent equation for the density ρvac

ρvac(x) = − 1

2π

ˆ ∞

−∞
dηTr

[
1

D0 + α(ρQ − ν) ∗ 1
|x| + iη

− 1

D0 + iη

]
(x, x). (4.59)

Applying the resolvent equation

1

A− αB
− 1

A
= α

1

A
B

1

A
+ α2 1

A
B

1

A
B

1

A
+ α3 1

A
B

1

A
B

1

A
B

1

A− αB
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and using Furry’s Theorem [33], telling us that the corresponding α2-term with two potentials
vanish, we obtain

ρvac = αF1[ρvac − ν] + F3[α(ρvac − ν)], (4.60)

F3[ρ](x) =
1

2π

ˆ ∞

−∞
dηTr

[
1

D0 + iη
ρ ∗ 1

|x|
1

D0 + iη
ρ ∗ 1

|x|
1

D0 + iη
ρ ∗ 1

|x|
1

D0 + ρ ∗ 1
|x| + iη

]
(x, x).

As realized first by Dirac [20, 19] and Heisenberg [48], cf. also [34], the term F1[ρ] plays a
particular role since it is logarithmically ultraviolet divergent. Following, e.g., Pauli-Rose [71], one
evaluates in Fourier representation

F̂1[ρ](k) = −ρ̂(k)BΛ(k),

where [71, Eq. (5)–(9)]

B0
Λ(k) =

−1

π2|k|2
ˆ

|ℓ+k/2|≤Λ,
|ℓ−k/2|≤Λ

(ℓ+ k/2) · (ℓ− k/2) + 1 −E(ℓ+ k/2)E(ℓ− k/2)

E(ℓ+ k/2)E(ℓ− k/2)(E(ℓ+ k/2) + E(ℓ− k/2))
dℓ (4.61)

and

BΛ = BΛ(0) =
1

π

ˆ Λ√
1+Λ2

0

z2 − z4/3

1 − z2
dz =

2

3π
log(Λ) − 5

9π
+

2

3π
log 2 +O(1/Λ2). (4.62)

It can be seen that BΛ(k) = BΛ − CΛ(k), with

lim
Λ→∞

CΛ(k) = C(k) = − 1

2π

ˆ 1

0

dx(1 − x2) log[1 + k2(1 − x2)/4], (4.63)

which was first calculated by Serber and Uehling [80, 88].
We now show how to renormalize the SCF equation using (4.55). Denote ρ = ρvac −ν the total

(observable) density, then (4.60) can be rewritten in terms of ρ

αρ̂ = −αν̂ − α2BΛρ̂+ α2CΛ(k)ρ̂+ αF̂3[αρ] (4.64)

and

αρ̂ = − α

1 + αBΛ
ν̂ +

α

1 + αBΛ
CΛ(k)αρ̂+

α

1 + αBΛ
F̂3[αρ]. (4.65)

To perform our renormalization scheme we fix as physical (renormalized) objects αphρph = αρ.
Notice the renormalization of the density ρ is similar to a wavefunction renormalization of the
(equal time) Feynman propagator as explained above. We can rewrite the self-consistent equation
(4.64) as

αphρ̂ph = −αphν̂ + α2
phCΛ(k)ρ̂ph + αphF̂3[αphρph], (4.66)

independently of the bare α. Notice that equation (4.66) satisfied by αphρph is exactly the same
as equation (4.64) satisfied by αρ, but with the logarithmically divergent term α2BΛρ̂ dropped.
Therefore, as usual in QED [22], the charge renormalization allows to simply justify the dropping
of the divergent terms in the self-consistent equation. In practice [68], one would solve (4.66)
perturbatively with αph ≃ 1/137 and with CΛ(k) replaced by its limit C(k). However it is probably
not expected that this scheme actually converges to a solution in the whole space [23].

Returning to the effective Hamiltonian D0 + α(ρvac − ν) ∗ 1/|x| and inserting (4.66), i.e. ex-
pressing in terms of the physical objects, we obtain

D0 + αphρph ∗ 1

|x| = D0 − αphν ∗
1

|x| + Veff , (4.67)
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with

Veff =
2

π3
F−1

[
α2

phCΛ(k)ρ̂ph(k) + αrF̂3(αrρph)

k2

]
(x)

the effective self-consistent potential, where F−1 denotes the inverse Fourier transform. Notice,
this equation is valid for any strength of the external potential. However, expanding ρph in αph,
we obtain to lowest order in αph

Veff ≃ α2
ph

2

π3
F−1

[
CΛ(k)ν̂(k)

k2

]
(x)

≃
α2

ph

3π

ˆ ∞

1

dt(t2 − 1)1/2

[
2

t2
+

1

t4

]
ˆ

dx′e−2|x−x′|t ν(x′)
|x− x′| ,

the Uehling potential [6].

The Landau pole

We notice that (4.55) can be written as

α =
αph

1 − αphBΛ(0)
.

The fact that the denominator can go to zero is usually called the Landau pole. Also we see that

αphBΛ(0) < 1 (4.68)

which proves that αph → 0 when Λ → ∞, independently of α.
In physics, this “nullification” of the theory as the cut-off Λ diverges has been first suggested

by Landau et al. [55, 56, 57, 58] and later studied by Pomeranchuk et al. [73]. We notice that
with the usual value αph ≃ 1

137 , (4.68) leads to the physical bound Λ < 10280 (in units of mc2).
This phenomenon has two consequences.

The first consequence is that when renormalizing observable quantities, it is not possible to fix
αph and take Λ → ∞. Let A(m,α,Λ) be an observable quantity. Expressing m and α in terms

of physical quantities we can write A(m,α,Λ) = Ã(m,αph,Λ) (we have supposed that mph = m).

Unfortunately, it does not make sense to assume that Ã(m,αph,Λ) has a limit when αph is fixed
and Λ → ∞: this function is only defined for Λ’s which are such that αphBΛ(0) < 1. However, let
us assume that

Ã(m,αph,Λ) =
∑

k≥0

Ak(m,Λ)(αph)k.

By renormalization one sometimes means that each Ak(m,Λ) should have a limit Ak(m) when
Λ → ∞. However, it is probably not expected that the series

∑
k≥0Ak(m)(αph)k will always have

a positive radius of convergence [23].
The second consequence is a rather peculiar behavior of the minimization problem when Λ → ∞

and α stays fixed. In [43, Thm 2], it was proved that for a fixed (and not too strong) external field
V = −αν ∗ 1

|x| one has

lim
Λ→∞

inf
Q∈S

P0
−

1 (HΛ)

−P 0
−
≤Q≤P 0

+

Eν
r (Q) = −1

2
D(ν, ν),

hence the lower bound in (4.51) is optimal. This implies that the unique polarized vacuum PΛ of
the reduced BDF model satisfies

lim
Λ→∞

Tr
(
PΛ − P 0

−
)2

= 0 and lim
Λ→∞

D(ρPΛ−P 0
−
− ν, ρPΛ−P 0

−
− ν) = 0.
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In words, when Λ → ∞, the vacuum polarization density totally cancels the external density ν
in C, for ρPΛ−P 0

−
→ ν. But since PΛ −P 0

− → 0, this means that in the limit Λ → ∞, PΛ −P 0
− and

its associated density become independent. Therefore, the minimization without cut-off makes no
sense both from a mathematical and physical point of view. Indeed all this easily implies that
when no cut-off is imposed and when ν 6= 0, the infimum of the reduced BDF functional is not
attained.

4.7 The time-dependent equation

The boundedness from below of the BDF energy (4.26) has been used in a work with Hainzl and
Sparber [47] to prove the existence of global-in-time solutions to the time-dependent nonlinear
equation associated with the BDF functional. The so-called von Neumann equation reads:





i
d

dt
P (t) =[DQ(t) , P (t)],

P (0) =PI ,

Q(t) =P (t) − P0
− ∈ K,

(4.69)

where [·, ·] is the usual commutator and

DQ := D0 + α(ρQ − ν) ∗ 1

| · | − α
Q(x, y)

|x− y|
is the mean-field operator introduced before.6 The following result was proved in [47]:

Theorem 4.13 (Existence of a unique global-in-time solution [47]). Let Λ > 0, 0 ≤ α < 4/π and
ν ∈ C. Then, for any initial self-adjoint operator PI such that QI = PI − P 0 ∈ K, there exists a
unique maximal solution

P (t) ∈ C1
(
[0,∞),P0

− + K
)

of the Cauchy problem (4.69). Moreover, one has with Q(t) = P (t) − P0
−

TrP0
−
(Q(t)) = TrP0

−
(QI) and Eν(Q(t)) = Eν(QI),

for all t ∈ [0,∞).

If the exchange term is neglected like in the original papers of Dirac [19, 20], the theorem is
valid for any α ≥ 0.

The method of proof is similar to classical arguments already used for the Hartree-Fock theory,
based on Schrödinger’s equation, cf. [14, 13, 7, 8, 11] and the references given therein. We indeed
solve the evolution-problem written in terms of Q(t) = P (t) − P0

−, i.e.



i
d

dt
Q(t) = [DQ, Q] + [VQ,P0

−],

Q(0) =QI ∈ S
P0

−

1 (HΛ),

(4.70)

where

VQ = PΛ

(
α
(
ρQ − ν

)
∗ 1

| · | − α
Q(x, y)

|x− y|

)
PΛ,

PΛ being the projector onto HΛ in L2(R3,C4). The existence of a unique local-in-time solution

in S
P0

−

1 (HΛ) is obtained by classical arguments. Then, it is shown that the BDF energy is con-
stant along this solutions, which consequently implies that it is indeed global-in-time, since Eν is
bounded-below and coercive.

6Indeed, like in [42, 43], the model for which P0
− and D0 are replaced by P 0

− and D0 was considered, but the
proof holds similarly in the case of (4.69).
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The existence of a bounded below energy-functional, conserved along the solution Q(t) is indeed
a huge advantage of the BDF-model in comparison to other nonlinear Dirac equations, see, e.g.,
[26, 35, 39, 66]. There global-in-time solutions are obtained with quite strong restrictions on the
considered initial data, due to the non-existence of such an a priori energy-estimate. More precisely,
sufficient smallness assumptions within appropriate Sobolev norms are required in [26, 35, 66].
Similar assumptions for initial data corresponding to sufficient small scattering states at t = +∞
are used in the related study of [30, 31]. Here, the proof is highly simplified by the important
property that the BDF energy Eν , which is conserved along solutions of (4.69), is bounded-below
and coercive.

As a simple consequence of Theorems 4.57, 4.8 and 4.13, and of the method of Cazenave and
Lions [12], we obtain the orbital stability of the set of minimizers. Let us recall that a set M ⊂ K′

is said to be orbitally stable in K′ ⊆ K if for any ǫ > 0 , there exists η > 0 such that for all
QI ∈ K′ with dist(QI ,M) ≤ η , if t 7→ Q(t) is the solution of (4.70) with initial data QI , we have
dist(Q(t),M) ≤ ǫ for all t ∈ R . Here dist(Q,M) := infQ′∈M ‖Q−Q′‖

S
P0
−

1 (HΛ)
.

Corollary 4.1 (Orbital stability). Let 0 ≤ α < 4/π, Λ > 0, ν ∈ C. Then

1. the set M of vacua minimizing Eν on the whole set K is orbitally stable in K;

2. when N ∈ Z is such that (H1) in Theorem 4.8 holds, the set M(N) of minimizers of Eν(N)
is orbitally stable in K(N).

4.8 The positive temperature case

In a joint work [41] with Hainzl and Seiringer, we have partly extended all the above results to the
non-zero temperature case, where minimizers behave in a rather different way. We briefly describe
this now.

The starting point is as usual the Hartree-Fock free energy at temperature T = β−1 which can
be made rigorous in a box with periodic boundary conditions and a Fourier cut-off. It is expressed
as

Fν
HF(γ) = Eν

HF(γ) − TS(γ) (4.71)

where S is the entropy which reads for HF states

S(γ) = −Tr
(
(γ + 1/2) log(γ + 1/2)

)
− Tr

(
(1/2 − γ) log(1/2 − γ)

)
.

We recall that −1/2 ≤ γ ≤ 1/2 is the renormalized density matrix of the HF state, i.e. γ = P −1/2
where P is the usual one-body density matrix.

As before the first step is to construct the free vacuum state. It is defined as the thermodynamic
limit of the free vacuum in a box of size L as L → ∞. Similarly to Theorems 4.1, 4.2 and 4.3, it
was proved in [41] that for L ≫ 1, the free vacuum γ0

L is unique and invariant by translations. It
converges as L→ ∞ to a state γ0 which satisfies the following self-consistent equation

γ0 =
1

2

(
1

1 + eβDγ0
− 1

1 + e−βDγ0

)

where

Dγ = D0 − α
(γ0 − 1/2)(x, y)

|x− y|
is the usual mean-field operator. The limiting state γ0 of the free vacuum is also the unique
minimizer of the free energy per unit volume which reads

TT (γ) = T (γ) +
β−1

(2π)3

ˆ

B(0,Λ)

TrC4

[ (
1
2 + γ(p)

)
log

(
1
2 + γ(p)

)
+

(
1
2 − γ(p)

)
log

(
1
2 − γ(p)

)]
dp

7More precisely it is a consequence of the compactness of all minimizing sequences for Eν on K which is contained
in the proof of Theorem 4.5.
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where T is the energy per unit volume which was defined before in (4.15). Like for T = 0, it was
shown in [41] that γ0 takes the special form

γ0(p) = f1(|p|)α · p+ f0(|p|)β (4.72)

with f0, f1 ≤ 0 a.e. on B(0,Λ) and that Dγ0 satisfies

|Dγ0 | ≥ |D0|. (4.73)

In particular we have that when T > 0

σ(γ0) ⊂
[
−1

2
+ ǫ,−ǫ

]
∪

[
ǫ,

1

2
− ǫ

]
(4.74)

for some ǫ > 0. This can be seen from (4.73) and the fact that Dγ0 is a bounded operator on HΛ

due to the presence of the ultraviolet cut-off. Notice also that we have formally ργ0 ≡ 0 by (4.20),
like for the T = 0 case. We assume that T > 0 henceforth.

We refer to [41] for a precise statement of the above claims. Again the uniqueness for L large is
a non trivial result since the energy is not convex. The proof relies on a relative entropy estimate
which we will explain with more details below.

As we did for the zero-temperature case, we now formally substract the free energy of the free
vacuum to the formal free energy (4.71) and obtain the following expression:

Fν
T (Q) := TH(γ0 +Q, γ0) +

α

2
D(ρQ − ν, ρQ − ν) − α

2

¨

R6

|Q(x, y)|2
|x− y| dx dy (4.75)

where Q = γ − γ0 and H(γ, γ0) is the relative entropy which is formally defined by the formula

TH(γ, γ0) = “Tr(Dγ0(γ − γ0)) − TS(γ) + TS(γ0)”. (4.76)

One can compute that

H(γ, γ0) = Tr

[ (
1
2 + γ

) (
ln

(
1
2 + γ

)
− ln

(
1
2 + γ0

))
+

(
1
2 − γ

) (
ln

(
1
2 − γ

)
− ln

(
1
2 − γ0

)) ]
. (4.77)

Note that when γ is a compact perturbation of γ0 (as this will be the case in the following), we
always have σess(γ) = σess(γ

0). Hence σ(γ) only contains eigenvalues of finite multiplicity in the
neighborhood of ±1/2. Using an integral formula we easily see that Eq. (4.77) is well defined as
soon as γ − γ0 ∈ S1(HΛ), since the spectrum of γ0 does not contain ±1/2. When Q = γ − γ0 is
merely Hilbert-Schmidt, we may define the relative entropy by the integral formula

H(γ, γ0) = Tr

(
ˆ 1

−1

2

1 + 2uγ0
(γ − γ0)

1 − |u|
1 + 2uγ

(γ − γ0)
1

1 + 2uγ0
du

)
(4.78)

It is clear that this provides a well defined object as one has

∀γ ∈ K, ∀u ∈ [−1, 1], 0 ≤ 1 − |u|
1 + 2uγ

≤ 1 and 0 ≤ 1

1 + 2uγ0
≤ 1

ǫ

for some ǫ > 0, by (4.74). It is not difficult to see that (4.78) and (4.77) coincide when γ − γ0 ∈
S1(HΛ). An important result proved in [41] is the
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Theorem 4.14 (Properties of Relative Entropy [41]). The functional Q 7→ H(γ0 +Q, γ0) defined
in (4.78) is strongly continuous on

K′ := {Q ∈ S2(HΛ) | − 1/2 ≤ γ0 +Q ≤ 1/2}

for the topology of S2(HΛ). It is convex, hence weakly lower semi-continuous (wlsc). Moreover, it
is coercive on K′ for the Hilbert-Schmidt norm:

∀γ ∈ K, TH(γ0 +Q, γ0) ≥ Tr
(
|D0|Q2

)
(4.79)

where we recall that T = β−1 is the temperature.

We have already seen in the T = 0 case that the kinetic energy is controlling the norm of

S
P0

−

1 (HΛ). In the positive temperature case, the kinetic energy only controls the Hilbert-Schmidt
norm of Q; it does not control the trace norm of Q++ and Q−− which could in principle only be
in S2(HΛ).

Equation (4.79) implies that the BDF free energy is bounded below:

Fν
T (Q) ≥ −α

2
D(ν, ν)

by the same proof as the one for T = 0. In particular, we obtain that Q = 0 is the unique minimizer
when ν = 0. This property can be transferred to a large box to prove the uniqueness when L≫ 1.

The free energy being bounded-below, it is natural to try to minimize it, like for T = 0.
Unfortunately, we were not able to prove the existence of a minimizer when the exchange term is
taken into account. However it was shown in [41] that any global minimizer (polarized vacuum at
temperature T > 0) solves the following self-consistent equation, written in terms of γ = γ0 +Q,

γ =
1

2

(
1

1 + eβDγ
− 1

1 + e−βDγ

)

where

Dγ = D0 + α(ρQ − ν) ∗ | · |−1 − α
(γ − 1/2)(x, y)

|x− y| .

The reduced model and Debye screening

As for T = 0 it is possible to prove much more for the reduced model consisting in neglecting the
exchange term. The free vacuum is of course given by the following formula

γ̃0 =
1

2

(
1

1 + eβD0 − 1

1 + e−βD0

)

and the reduced-BDF free energy is defined similarly as before by

Fν
T,r(Q) := TH(γ̃0 +Q, γ̃0) +

α

2
D(ρQ − ν, ρQ − ν) (4.80)

with

Q ∈ K′
r = {Q ∈ S2(HΛ) | − 1/2 ≤ γ̃0 +Q ≤ 1/2 and ρQ ∈ C}.

Theorem 4.15 (Minimizer for reduced model at T > 0 and Debye screening [41]). Assume T > 0,
α ≥ 0, Λ > 0 and ν ∈ C. Then Fν

T,r satisfies

∀Q ∈ K′
r, Fν

T,r(Q) ≥ −α
2
D(ν, ν) (4.81)
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hence it is bounded below on K′
r. It has a unique minimizer Q on K′

r. The operator γ = γ0 + Q
satisfies the self-consistent equation





γ =
1

2

(
1

1 + eβDγ
− 1

1 + e−βDγ

)
,

Dγ := D0 + α(ρQ − ν) ∗ | · |−1.

(4.82)

If moreover ν ∈ L1(R3), then Q ∈ S1(HΛ) and the associated density ρQ is an L1(R3) function
which satisfies

ˆ

R3

ρQ =

ˆ

R3

ν and
(
ρQ − ν

)
∗ 1

|x| ∈ L1(R3). (4.83)

This result shows that the particles arrange themselves such that the total effective potential(
ρQ − ν

)
∗ 1/|x| has a decay much faster than 1/|x|. This implies that the nuclear charge of

the external sources is completely screened. Within non-relativistic fermionic plasma this effect
is known as Debye-screening. Let us emphasize that in order to recover such a screening, it is
essential to calculate the Gibbs-state in a self-consistent way.

As a conclusion we have seen that the non-zero temperature case is quite different from the
case T = 0. On the first hand the relative entropy only controls the Hilbert-Schmidt norm of Q,
hence one a priori does not know wether Q++ and Q−− are trace-class. However (at least for
the reduced model but a similar result is expected for the BDF model), the minimizers are indeed
always trace-class. This is because the virtual particles of the vacuum have so much freedom
due to the temperature that they are allowed to completely screen the nucleus, hence the total
electrostatic potential decays much faster than expected. This is completely different from the
T = 0 case for which Q is never a trace-class operator, a fact that is linked to renormalization as
we have explained.
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5

Nonrelativistic crystal in
the Hartree-Fock
approximation

Describing the electronic state of crystals with local defects is a major issue in solid-state physics,
materials science and nano-electronics [30, 21, 34]. In this chapter, we develop a theory based
on formal analogies between the Fermi sea of a perturbed crystal and the polarized Dirac sea in
Quantum Electrodynamics in the presence of an external electrostatic field, as described in Chapter
4. Using and adapting the methods presented before, we are able to propose a new mathematical
approach for the self-consistent description of a crystal in the presence of local defects. We focus
on the Hartree-Fock (HF) and on the reduced Hartree-Fock (rHF) models.

The chapter is organized as follows. In Section 5.1 we define the HF and rHF ground states of
the perfect crystal and study its thermodynamic limit; we essentially complement results of Catto,
Le Bris and Lions [13]. Section 5.2 is devoted to the definition and the study of the rHF model for
the crystal in the presence of a defect. In some sense this is similar to the BDF model studied in
the previous chapter, but with many technical and conceptual differences that will be emphasized.
Eventually, we describe in Section 5.3 a numerical approach associated with our theoretical study
and test it on a simple 1D system.

5.1 Perfect crystal

We start by studying the perfect crystal. We define two models, the Hartree-Fock and the reduced
Hartree-Fock, following [13]. We prove the existence of minimizers and give some of their properties.
We also show in Section 5.1.3 that the reduced Hartree-Fock Fermi sea is actually the correct state
as it can be obtained by a thermodynamic limit (in the Hartree-Fock case this is not known).

To simplify the mathematical formulas, we will not explicitly take the spin variable into account
and we will assume (except in Section 5.2.4) that the host crystal is cubic with a single atom of
charge Z per unit cell. The arguments below can be easily extended to the general case. In
the whole chapter, we denote by R := Z

3 the lattice on which are placed the nuclei, and by
Γ := [−1/2, 1/2)3 the corresponding unit cell. We denote by R∗ := 2πZ

3 the associated dual
lattice and by Γ∗ := [−π/2, π/2)3 the so-called Brillouin zone.

5.1.1 The periodic Coulomb interaction

In this paragraph, we introduce two functions G and W which we shall need throughtout the
chapter. They will respectively yield the so-called direct and exchange terms of periodic Hartree-
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Fock theory. We start by introducing the Z
3-periodic Green kernel of the Poisson interaction,

denoted by G and uniquely defined by




−∆G = 4π

( ∑

k∈Z3

δk − 1

)

G Z
3-periodic, min

R3
G = 0

and where the first equation holds in the distributional sense. The Fourier expansion of G is

G(x) = h+
∑

k∈2πZ3\{0}

4π

|k|2 e
ik·x (5.1)

with h =

ˆ

Γ

G > 0. The electrostatic potential associated with a Z
3-periodic density ρ ∈ L1

loc(R
3)∩

L3
loc(R

3) is the Z
3-periodic function defined as

(ρ ∗R G)(x) :=

ˆ

Γ

G(x− y) ρ(y) dy.

We also set for any Z
3-periodic functions f and g

DG(f, g) :=

ˆ

Γ

ˆ

Γ

G(x− y) f(x) g(y)dx dy.

Next we introduce the following function [13]

W (η, z) =
∑

k∈Z3

eik·η

|z + k| , η, z ∈ R
3. (5.2)

The function eiη·xW (η, x) is Γ-periodic with respect to x, when η is fixed. So we can write W as
a Fourier series and obtain

W (η, x) = 4πe−iη·x ∑

k∈2πZ3

eik·x

|η − k|2 . (5.3)

5.1.2 The (reduced) periodic Hartree-Fock functional

We now define the periodic Hartree-Fock functional (and its corresponding reduced version) which
were studied before in [13]. The main object of interest will, as usual, be the so-called (periodic)
density matrix of the electrons. We define the translation operator τk acting on L2

loc(R
3) as follows:

τku(x) = u(x− k) and introduce the following variational set of density matrices:

Pper =

{
γ ∈ S

(
L2(R3)

)
| 0 ≤ γ ≤ 1, ∀k ∈ Z

3, τkγ = γτk,

ˆ

Γ∗

TrL2
ξ(Γ)((1 − ∆ξ)

1/2γξ(1 − ∆ξ)
1/2) dξ <∞

}
.

In the whole paper, we use the notation (Aξ)ξ∈Γ∗ for the Bloch waves decomposition of a periodic
operator A, see [31, 13]:

A =
1

(2π)3

ˆ

Γ∗

Aξ dξ, Aξ ∈ S(L2
ξ(Γ)),

L2
ξ(Γ) =

{
u ∈ L2

loc(R
3) | τku = e−ik·ξu, ∀k ∈ Z

3
}
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which corresponds to the decomposition in fibers L2(R3) =
´ ⊕
Γ∗ dξL

2
ξ(Γ).

For any γ ∈ Pper (and almost every ξ ∈ Γ∗), we denote by γξ(x, y) the integral kernel of γξ ∈
S1(L

2
ξ(Γ)). The density of γ is then the non-negative Z

3-periodic function of L1
loc(R

3) ∩ L3
loc(R

3)
defined as

ργ(x) :=
1

(2π)3

ˆ

Γ∗

γξ(x, x) dξ.

Later we shall add the constraint that the system is neutral and restrict to states γ ∈ Pper satisfying
´

Γ
ργ(x)dx = Z where Z is the charge of the only nucleus in each unit cell.
The periodic Hartree-Fock and reduced Hartree-Fock functional give, for a system in a state

γ ∈ Pper the energy per unit volume in the corresponding model. They are respectively defined by

Eper
HF (γ) :=

ˆ

Γ∗

TrL2
ξ(Γ)

(
−1

2
∆ξγξ

)
dξ

(2π)3
+

1

2
DG(ργ − µper, ργ − µper) −

1

2
X(γ, γ) (5.4)

and

Eper
rHF(γ) :=

ˆ

Γ∗

TrL2
ξ(Γ)

(
−1

2
∆ξγξ

)
dξ

(2π)3
+

1

2
DG(ργ − µper, ργ − µper), (5.5)

for any γ ∈ Pper. In the above formula, the exchange term X(γ, γ)/2 is defined for any β, γ ∈ Pper

as

X(β, γ) =
1

(2π)6

¨

Γ∗×Γ∗

dξ dξ′
¨

Γ×Γ

dx dy β(ξ, x, y)W (ξ − ξ′, x− y)γ(ξ′, x, y) (5.6)

where W is the function defined in (5.2). We remark that W (−η, z) = W (η, z) = W (η,−z), so
X(β, γ) = X(γ, β) = X(γ, β). Lastly, the periodic background density of the nuclei is given by

µper := Z
∑

k∈Z3

τkm. (5.7)

We assume that either m = δ0 (pointwise nuclei), or that m is a C∞
0 (R3) nonnegative function such

that
´

R3 m(x) = 1 and with a support small enough such that all the τkm have disjoint supports
(extended nuclei).

The existence of a minimizer for Eper
HF and Eper

rHF on the set of density matrices γ ∈ Pper such that
´

γ
ργ = Z was proved by Catto, Le Bris and Lions in [13], see Theorem 2.1 p. 696 and Theorem 2.3

p. 698. However, the form of the self-consistent equation satisfied by a minimizer as well as the
uniqueness in the reduced case were missing. These open problems were solved with A. Deleurence
and É. Cancès in [9] for the rHF case and with M. Ghimenti in [17] for the HF case:

Theorem 5.1 (Minimizers in the periodic reduced Hartree-Fock case [9]). Let Z ∈ N \ {0}. The
minimization problem

Iper
rHF = inf

γ∈Pper,
´

Γ
ργ=Z

Eper
rHF(γ) (5.8)

admits a unique minimizer γ0
per. Denoting by

H0
per := −∆

2
+ (ργ0

per
− µper) ∗R G, (5.9)

the corresponding periodic mean-field Hamiltonian, γ0
per is solution to the following nonlinear equa-

tion

γ0
per = χ(−∞,ǫF ](H

0
per), (5.10)
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where ǫF is a Lagrange multiplier called Fermi level, which can be interpreted as a chemical poten-
tial. Additionally, for any ǫF ∈ R such that (5.10) holds, γ0

per is the unique minimizer on Pper of
the energy functional

γ 7→ Eper
rHF(γ) − ǫF

ˆ

Γ

ργ .

Theorem 5.1 contains three main results that were not present in [13]: first γ0
per is unique,

second it is a projector, and third it satisfies Equation (5.10). These three properties are crucial
for a proper construction of the model for the crystal with a defect, as will be done below in Section
5.2. It can easily be seen that (ργ0

per
− µper) ∗R G belongs to L2

loc(R
3). By a result of Thomas

[35] this implies that the spectrum of H0
per is purely absolutely continuous. Hence, we must have

ker(H0
per − ǫF) = {0} which easily implies the uniqueness of γ0

per, see the Appendix of [9].
In the Hartree-Fock case, the following was proved in [17]:

Theorem 5.2 (Minimizers in the periodic Hartree-Fock case [17]). Let Z ∈ N \ {0}. Assume that
γ is a minimizer of

Iper
HF = inf

γ∈Pper,
´

Γ
ργ=Z

Eper
HF (γ) (5.11)

and denote by

(Hγ)ξ = −∆ξ

2
+ (ργ − µper) ∗R G− (2π)−3

ˆ

Γ∗

W (ξ′ − ξ, x− y)γξ′(x, y) dξ′ (5.12)

the Bloch transform of the associated periodic Hartree-Fock mean-field Hamiltonian. Then γ solves
the following nonlinear equation:

γ = χ(−∞,ǫF)(Hγ) + sχ{ǫF}(Hγ), , (5.13)

where ǫF is a Lagrange multiplier called Fermi level, which can be interpreted as a chemical poten-
tial, and s ∈ {0, 1}.

As usual it is not expected that minimizers will always be unique in the Hartree-Fock case.
When the exchange term is kept in the model as in Theorem 5.2, the situation is much more
complicated than in the reduced case. The main difficulty is that the Bloch decomposition of the
last term of Hγ depends in a non trivial way of ξ. In particular, we do not know if the spectrum of
Hγ is purely absolutely continuous. It is in principle possible that ǫF is an eigenvalue (of infinite
multiplicity) of Hγ in (5.13). However, we are able to prove that any minimizer is automatically
a projector. Theorem 5.2 even states that either the minimizer γ does not contain the eigenspace
corresponding to the eigenvalue ǫF (s = 0) or it fills it completely (s = 1). Equation (5.13) as well
as the fact that γ is a projector were absent in [13].

The idea of the proof is somewhat similar to that of the atomic case [24, 3, 4, 5, 25]. We transfer
within the last level ǫF some mass from an eigenvector to another one and show that the energy
must decrease. The originality of the periodic case studied here is that the transfer needs to be
done between two different Bloch sectors L2

ξ1
(Γ) and L2

ξ2
(Γ).

In the rest of the chapter, we will focus on the simpler reduced case. We will often need to
know that the perfect crystal is an insulator or a semi-conductor. This means that there is a gap
between the last filled band and the first unfilled band. When necessary, we shall hence make the
following assumption (recall that Z is the total charge of the nuclei in each cell):

(A1) There is a gap between the Z-th and the (Z + 1)-st bands, i.e. Σ+
Z < Σ−

Z+1, where Σ+
Z and

Σ−
Z+1 are respectively the maximum and the minimum of the Z-th and the (Z+1)-st bands of H0

per.

We emphasize that Assumption (A1) is a condition on the solution γ0
per of the nonlinear

problem (5.10). Note that under (A1), one has γ0
per = χ(−∞,ǫF ](H

0
per) for any ǫF ∈ (Σ+

Z ,Σ
−
Z+1).
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Zth band (Z + 1)st band

Σ+
Z Σ−

Z+1

ǫF

γ0
per

Figure 5.1: Spectrum of H0
per.

5.1.3 Thermodynamic limit of the supercell model in the reduced case

In the previous section, we have introduced two Hartree-Fock type models for a periodic crystal
but we have not justified these definitions. Indeed, it was proved in [13] that the periodic reduced
HF model is the thermodynamic limit of the corresponding theory for finite systems, as studied
in Chapter 3. This result was itself complemented in [9], by (vaguely speaking) adding periodic
boundary conditions on the sequence of domains considered in the limit, as will be explained in
details in this section.

For the full Hartree-Fock theory with exchange term, it is known from Chapter 3 that the
thermodynamic limit exists, but the limit could be different from the model defined in the previous
section, based on the energy Eper

HF . In principle symmetry breaking could occur in such a way that a
minimizer would have another periodicity than the one given from Z

3. In particular it could be that
the HF ground state is actually kZ

3-periodic, for some integer k. It would then be described by the
same model as in the previous section, with Z

3 replaced by kZ
3. In practice it is however almost

always assumed in quantum chemistry calculations that the Hartree-Fock state is Z
3 periodic,

leading to the energy Eper
HF that we have introduced.

In [13], the authors consider a domain ΩL, and assume that the nuclei are located on Z
3 ∩ΩL.

Then they consider the rHF model for N electrons living in the whole space, with N = Z|ΩL|
chosen to impose neutrality. Denoting by ρL the ground state electronic density of the latter
problem, it is proved in [13, Thm 2.2] that the energy per unit volume converges to Iper

rHF when the
sequence ΩL grows (in some appropriate sense similar to what we have done in Chapter 3), and
that the following holds: √

L−3
∑

k∈Z3∩ΩL

ρL(x− k) → √
ργ0

per
(5.14)

weakly in H1
loc(R

3), strongly in Lp
loc(R

3) for all 2 ≤ p < 6 and almost everywhere on R
3 when

L→ ∞.
Another way for performing thermodynamic limits is to confine the nuclei and the electrons

in the domain ΩL by means of Dirichlet boundary conditions for the electrons, as explained in
Chapter 3. Note that confining the electrons in ΩL is mandatory in the positive temperature case.

Another possibility, perhaps less satisfactory from a physical viewpoint but more directly related
to practical calculations (see e.g. [14]), is to take ΩL = ΛL := [−L/2, L/2)3 (with L ∈ N) and to
impose periodic boundary conditions on the box ΛL. Usually the Coulomb interaction is also
replaced by a (LZ

3)-periodic Coulomb potential, leading to the so-called supercell model which
will be described in detail below. This approach has the advantage of respecting the symmetry
of the system in the crystal case. It was used by Hainzl, Lewin and Solovej in [18] to justify the
Hartree-Fock approximation of no-photon Quantum Electrodynamics, as explained in Chapter 4,
Theorem 4.3.

Of course the conjecture is that the final results (the energy per unit cell and the ground state
density of the crystal) should not depend on the chosen thermodynamic limit procedure. This is
actually the case for the reduced Hartree-Fock model of the crystal.

Let us now describe the supercell model. For L ∈ N \ {0}, we introduce the supercell ΛL =
[−L/2, L/2)3 and the Hilbert space

L2
per(ΛL) =

{
ϕ ∈ L2

loc(R
3) | ϕ (LZ

3)-periodic
}
.
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We also introduce the LZ
3-periodic Coulomb potential GL defined as the unique solution to





−∆GL = 4π

( ∑

k∈L Z3

δk − 1

L3

)

GL LZ
3-periodic, minR3 GL = 0.

An admissible electronic state is then described by a one-body density matrix γ in

Psc,L =

{
γ ∈ S1(L

2
per(ΛL)) | γ∗ = γ, 0 ≤ γ ≤ 1, TrL2

per(ΛL)(−∆γ) < +∞
}
.

Throughout this section, we use the subscript ‘sc’ to indicate that we consider the thermodynamic
limit of the supercell model. The reduced Hartree-Fock energy functional of the supercell model
is defined for γ ∈ Psc,L as

E0
sc,L(γ) = TrL2

per(ΛL)

(
−1

2
∆γ

)
+

1

2

ˆ

ΛL

ˆ

ΛL

GL(x− y) (ργ − µper)(x) (ργ − µper)(y) dx dy

where we recall that µper(x) =
∑

R∈Z3 Zm(x − R) is a Z
3- (thus LZ

3-) periodic function. The
reduced Hartree-Fock ground state energy for a neutral system in the box of size L is then given
by

I0
sc,L = inf

γ∈Psc,L,
´

ΛL
ργ=ZL3

E0
sc,L(γ) (5.15)

Let us recall that Iper
rHF, γ0

per and H0
per are defined in Section 5.1.2. The following was proved in [9]:

Theorem 5.3 (Thermodynamic limit of the defect-free supercell model [9]). Let Z > 0.

i) For all L ∈ N \ {0}, the minimizing problem I0
sc,L has at least one minimizer, and all the

minimizers share the same density. This density is Z
3-periodic. Besides, there is one minimizer

γ0
sc,L of (5.15) which commutes with the translations τk, k ∈ Z

3.

ii) The following thermodynamic limit properties hold true:

• (Convergence of the energy per unit cell).

lim
L→∞

I0
sc,L

L3
= Iper

rHF;

• (Convergence of the density).

√
ργ0

sc,L
⇀

√
ργ0

per
weakly in H1

loc(R
3), (5.16)

ργ0
sc,L

→ ργ0
per

strongly in Lp
loc(R

3) for 1 ≤ p < 3 and a.e.;

• (Convergence of the mean-field Hamiltonian and its spectrum). Let

H0
sc,L = −∆

2
+ (ργ0

sc,L
− µper) ∗R G

seen as an operator acting on L2(R3). Then, for all L ∈ N\{0}, H0
sc,L−H0

per is a bounded operator
and

lim
L→∞

∣∣∣∣H0
sc,L −H0

per

∣∣∣∣ = 0.

Denoting by (λL
n(ξ))n∈N\{0} the nondecreasing sequence of eigenvalues of (H0

sc,L)ξ for ξ ∈ Γ∗, one
has

lim
L→∞

sup
n∈N\{0}

sup
ξ∈Γ∗

∣∣λL
n(ξ) − λn(ξ)

∣∣ = 0 (5.17)
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where (λn(ξ))n≥1 are the eigenvalues of (H0
per)ξ introduced in Theorem 5.1.

iii) Assume in addition that (A1) holds. Fix some ǫF ∈ (Σ+
Z ,Σ

−
Z+1). Then for L large enough,

the minimizer γ0
sc,L of I0

sc,L is unique. It is also the unique minimizer of the following problem

I0
sc,L,ǫF

:= inf
{
E0
sc,L(γ) − ǫF TrL2

per(ΛL)(γ), γ ∈ Psc,L

}
. (5.18)

Notice that some of the above assertions are more precise for the supercell model than for
the thermodynamic limit procedure considered in [13, Thm 2.2] (compare for instance (5.16) with
(5.14)). This is because the supercell model respects the symmetry of the system, allowing in
particular to have a minimizer γ0

sc,L in the box of size L3 which is periodic for the lattice Z
3. For

an insulator, the uniqueness of γ0
sc,L for large L and the convergence properties of ii) are also very

interesting for computational purposes.

5.2 Crystal with a defect

5.2.1 The reduced-Hartree-Fock energy with a defect

We now define the reduced Hartree-Fock model describing the behavior of the Fermi sea and
possibly of a finite number of bound electrons (or holes) close to a local defect. Our model is an
obvious transposition of the Bogoliubov-Dirac-Fock model which was presented before in Chapter
4.

Assume that the periodic nuclear density µper defined in (5.7) is replaced by a locally perturbed
nuclear density µper + ν. The defect ν can model a vacancy, an interstitial atom, or an impurity,
with possible local rearrangement of the neighboring atoms. The main idea underlying the model
is to define a finite energy by subtracting the infinite energy of the periodic Fermi sea γ0

per, from
the infinite energy of the perturbed system under consideration. This is of course exactly the same
method as the one of Chapter 4 for relativistic systems. Formally, one obtains for a test state γ

ErHF
µper+ν(γ) − ErHF

µper+ν(γ0
per) “ = ” Tr

(
H0

per(γ − γ0
per)

)

−
ˆ

R3

ˆ

R3

ν(x)ρ[γ−γ0
per]

(y)

|x− y| dx dy +
1

2

ˆ

R3

ˆ

R3

ρ[γ−γ0
per]

(x)ρ[γ−γ0
per]

(y)

|x− y| dx dy. (5.19)

The two terms in the left-hand side of (5.19) involve the usual reduced HF energy in the whole
space introduced in Chapter 1. They are not well-defined because µper is periodic and because γ
and γ0

per have infinite ranks, but we shall be able to give a mathematical meaning to the right-hand
side, exploiting the fact that Q := γ−γ0

per induces a small perturbation of the reference state γ0
per.

The formal computation (5.19) will be justified by means of thermodynamic limit arguments.
Similarly as in Chapter 4, we have to properly define our energy functional. As usual, we use

the shorthand notation

Q−− := γ0
perQγ

0
per, Q++ := (1 − γ0

per)Q(1 − γ0
per).

We introduce the Banach space

Q =
{
Q∗ = Q ∈ S2, : |∇|Q ∈ S2, Q

++, Q−− ∈ S1, |∇|Q++|∇| ∈ S1, |∇|Q−−|∇| ∈ S1

}
,

endowed with its natural norm

||Q||Q := ||Q||
S2

+
∣∣∣∣Q++

∣∣∣∣
S1

+
∣∣∣∣Q−−∣∣∣∣

S1

+ |||∇|Q||
S2

+
∣∣∣∣|∇|Q++|∇|

∣∣∣∣
S1

+
∣∣∣∣|∇|Q−−|∇|

∣∣∣∣
S1
. (5.20)



122 Chap. 5 - Nonrelativistic crystal in the Hartree-Fock approximation

For such states we can define a generalized charge similarly to what we have done in the previous
Chapter, by introducing

Trγ0
per

(Q) := Tr(Q++ +Q−−).

Again we refer to Appendix A for general properties of this generalization of the trace functional.
The convex set on which the energy will be defined is

K :=
{
Q ∈ Q | − γ0

per ≤ Q ≤ 1 − γ0
per

}
. (5.21)

In order to define properly the energy of Q, we need to associate a density ρQ with any state
Q ∈ K. We recall that C is the Coulomb space containing all functions f such that D(f, f) < ∞.
The density ρQ was defined in [9] by means of a duality argument:

Proposition 5.1 (Definition of the density [9]). Assume that (A1) holds true and let Q ∈ Q.

Then QV ∈ S
γ0
per

1 for any V = V1 + V2 ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
and moreover there exists a

constant C (independent of Q and V ) such that

|Trγ0
per

(QV )| ≤ C ||Q||Q (||V1||C′ + ||V2||L2(R3)).

Thus the linear form V ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
7→ Trγ0

per
(QV ) can be continuously extended to

C′ + L2(R3) and there exists a uniquely defined function ρQ ∈ C ∩ L2(R3) such that

∀V = V1 + V2 ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
, 〈ρQ, V1〉C,C′ +

ˆ

R3

ρQV2 = Trγ0
per

(QV ).

The linear map Q ∈ Q 7→ ρQ ∈ C ∩ L2(R3) is continuous:

||ρQ||C + ||ρQ||L2(R3) ≤ C ||Q||Q .

Eventually when Q ∈ S1 ⊂ S
γ0
per

1 , then ρQ(x) = Q(x, x) where Q(x, y) is the integral kernel of Q.

Proposition 5.1 is similar to Lemma 4.1 in Chapter 4. Assuming that (A1) holds true, we are
now in a position to give a rigorous sense to the right-hand side of (5.19) for γ− γ0

per = Q ∈ K. In
the sequel, we use the following notation for any Q ∈ Q:

Trγ0
per

(H0
perQ) := Tr(|H0

per − κ|1/2(Q++ −Q−−)|H0
per − κ|1/2) + κTrγ0

per
(Q) (5.22)

where κ is an arbitrary real number in the gap (Σ+
Z ,Σ

−
Z+1) (this expression can be proved to be

independent of κ, see [9]). Then we define the energy of any state Q ∈ K as

Eν(Q) := Trγ0
per

(H0
perQ) −D(ρQ, ν) +

1

2
D(ρQ, ρQ). (5.23)

It was shown in [9] that the energy is well-defined for all Q ∈ K.

5.2.2 Existence of minimizers

The next step is to study the existence and the properties of minimizers. Like in the previous
chapter, we will minimize while imposing a charge constraint Trγ0

per
(Q) = q. Similarly, one can

minimize the functional without any constraint but with a chemical potential. Indeed, arguing like
in Chapter 4, one easily sees that

∀Q ∈ K, Eν(Q) − ǫFTrγ0
per

(Q) ≥ −1

2
D(ν, ν).

Even when ν is a delta function, the energy can be shown to be bounded from below as was
explained in [12]. Concerning the existence of minimizers, the following was proved in [9] (the
extension to a pointwise defect is taken care of in [12] but we do not state an explicit result).
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Theorem 5.4 (Existence of minimizers with a chemical potential [9]). Let ν ∈ L1(R3) ∩ L2(R3),
Z ∈ N\{0} and assume that (A1) holds. Then for any ǫF ∈ (Σ+

Z ,Σ
−
Z+1), there exists a minimizer

Q̄ ∈ K for the following variational problem:

Eν
ǫF

:= inf{Eν(Q) − ǫF Trγ0
per

(Q), Q ∈ K} > −∞ . (5.24)

Problem (5.24) may have several minimizers, but they all share the same density ρ̄ = ρQ̄. Any
minimizer Q̄ of (5.24) satisfies the self-consistent equation

{
Q̄ = χ(−∞,ǫF )(HQ̄) − γ0

per + δ,

HQ̄ = H0
per + (ρQ̄ − ν) ∗ | · |−1

(5.25)

where δ is a finite rank self-adjoint operator satisfying 0 ≤ δ ≤ 1 and Ran(δ) ⊆ ker(HQ̄ − ǫF ).

It is easily seen that (ρQ̄ − ν) ∗ | · |−1 is a compact perturbation of H0
per, implying that HQ̄

is self-adjoint on D(H0
per) = D(−∆) = H2(R3) and that σess(HQ̄) = σ(H0

per). Thus the discrete
spectrum of HQ̄ is composed of isolated eigenvalues of finite multiplicity, possibly accumulating at
the ends of the bands, see Fig. 5.2.

Recall that the charge of the minimizing state Q̄ obtained in Theorem 5.4 is defined as Trγ0
per

(Q̄).
Similarly to what was explained in Chapter 4, it can be proved by perturbation theory that for any
fixed ǫF , there exists a constant C(ǫF ) such that whenD(ν, ν) ≤ C(ǫF ), one has ker(HQ̄−ǫF ) = {0}
and Trγ0

per
(Q̄) = 0, i.e. the minimizer of the energy with chemical potential ǫF is a neutral

perturbation of the periodic Fermi sea.
The proof of Theorem 5.4 uses the same general ideas as in the relativistic case. There are

however several complications, the biggest one being that there is no cut-off in Fourier space.

Zth band (Z + 1)st band

Σ−
Z+1 Σ+

Z

ǫF

γ = Q̄ + γ0
per

Figure 5.2: Spectrum of HQ̄.

We have stated the existence of minimizers for any chemical potential in the gap of the periodic
operator H0

per, but of course the total charge Trγ0
per

(Q̄) of the obtained solution was unknown a
priori. We now tackle the more subtle problem of minimizing the energy while imposing a charge
constraint. Mathematically this is more difficult because although the energy Eν(Q) is convex on
K and weakly lower semi-continuous (wlsc) for the weak-∗ topology of Q, the γ0

per-trace functional
Q ∈ K 7→ Trγ0

per
(Q) is continuous but not wlsc for the weak-∗ topology of Q: in principle it is

possible that a (positive or negative) part of the charge of a minimizing sequence for the charge-
constrained minimization problem escapes to infinity, leaving at the limit a state of a different
(lower or higher) charge. In fact, we can prove that a minimizer exists under a charge constraint, if
and only if some binding conditions hold, the role of which being to prevent the lack of compactness.

We introduce the minimization problem with a real charge constraint q ∈ R:

Eν(q) := inf{Eν(Q), Q ∈ K, Trγ0
per

(Q) = q}. (5.26)

When no defect is present, E0(q) can be computed explicitly [9]:

E0(q) =

{
Σ−

Z+1q when q ≥ 0
Σ+

Zq when q ≤ 0.

The following result, similar to Theorem 4.11 in Chapter 4, was proved in [9]:
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Theorem 5.5 (Existence of minimizers under a charge constraint [9]). Let ν ∈ L1(R3) ∩ L2(R3),
Z ∈ N \ {0} and assume that (A1) holds. The following assertions are equivalent:

(a) Problem (5.26) admits a minimizer Q̄;

(b) Every minimizing sequence for (5.26) is precompact in Q and converges towards a mini-
mizer Q̄ of (5.26);

(c) ∀q′ ∈ R \ {0}, Eν(q) < Eν(q − q′) + E0(q′).

Assume that the equivalent conditions (a), (b) and (c) above are fulfilled. In this case, the
minimizer Q̄ is not necessarily unique, but all the minimizers share the same density ρ̄ = ρQ̄.

Besides, there exists ǫF ∈ [Σ+
Z ,Σ

−
Z+1] such that the obtained minimizer Q̄ is a global minimizer for

Eν
ǫF

defined in (5.24). It solves Equation (5.25) for some 0 ≤ δ ≤ 1 with Ran(δ) ⊆ ker(HQ̄ − ǫF ).

The operator δ is finite rank if ǫF ∈ (Σ+
Z ,Σ

−
Z+1) and trace-class if ǫF ∈ {Σ+

Z ,Σ
−
Z+1}.

Additionally the set of q’s in R satisfying the above equivalent conditions is a non-empty closed
interval I ⊆ R. This is the largest interval on which q 7→ Eν(q) is strictly convex.

Unfortunately, and contrarily to the relativistic case, we have not been able to verify the binding
condition (c). In the QED case, we first proved that ρQ must be L1 and use this fact to show
that neutral atoms always have a minimizer. Here it is not expected that ρ is in L1 (this will be
explained below in Section 5.2.4) and proving (c) would probably require a better understanding
of the properties of the density ρQ for a minimizer, when it exists.

5.2.3 Thermodynamic limit of the supercell model

Similarly as before, we now derive the reduced Hartree-Fock model with defect that we have just
introduced as the thermodynamic limit of the super-cell method. First we need to periodize the
defect ν with respect to the large box ΛL, for instance by defining

νL(x) :=
∑

z∈Z3

(1ΛL
ν)(· − Lz).

The reduced Hartree-Fock energy functional of the supercell model with defect is then defined for
γ ∈ Psc,L as

Eν
sc,L(γ) = TrL2

per(ΛL)

(
−1

2
∆γ

)
+

1

2
DGL

(ργ − µper − νL, ργ − µper − νL) .

For ǫF ∈ (Σ+
Z ,Σ

−
Z+1), we consider the following minimization problem

Iν
sc,L,ǫF

= inf
{
Eν
sc,L(γ) − ǫF TrL2

per(ΛL)(γ), γ ∈ Psc,L

}
. (5.27)

Theorem 5.6 (Thermodynamic limit of the supercell model with defect [9]). Let Z ∈ N \ {0}.
Assume that (A1) holds and fix some ǫF ∈ (Σ+

Z ,Σ
−
Z+1). Then one has

lim
L→∞

(
Iν
sc,L,ǫF

− I0
sc,L,ǫF

)
= Eν

ǫF
−
ˆ

R3

ν
(
(ργ0

per
− µper) ∗R G

)
+

1

2
D(ν, ν). (5.28)

Additionally, if γν
sc,L denotes a minimizer for (5.27), then one has, up to extraction of a sub-

sequence,
(γν

sc,L − γ0
sc,L)(x, y) → Q̄(x, y)

weakly in H1
loc(R

3 × R
3) and strongly in L2

loc(R
3 × R

3), where Q̄ is a minimizer of (5.24), as
obtained in Theorem 5.4. Besides,

ργν
sc,L

− ργ0
sc,L

→ ρ̄

weakly in L2
loc(R

3), where ρ̄ is the common density of all the minimizers of (5.24).
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In numerical simulations, the right-hand side of (5.28) is approximated by Iν
sc,L,ǫF

− I0
sc,L,ǫF

for a given value of L. This approach has several drawbacks. First, the values of L that lead to
tractable numerical simulations are in many cases much too small to obtain a correct estimation
of the limit L→ ∞. Second, it is not easy to extend this method for computing Eν

ǫF
, to the direct

evaluation of Eν(q) for a given q (i.e. the energy of a defect with a prescribed total charge). The
formalism introduced in this chapter suggests an alternative way for computing energies of defects
in crystalline materials that will be detailed in Section 5.3.

5.2.4 Properties of minimizers: the dielectric permittivity of a crystal

In this subsection, we review a recent work [12] with É. Cancès in which we have investigated
the regularity properties of minimizers Q of our rHF functional for crystals with defects. In this
section, we will not assume anymore that the lattice is necessarily R = Z

3. Similarly we do not
assume a priori that the set of nuclei has any special symmetry (except, of course that it must
be R-periodic). As we have already mentioned, all the previous results are valid in this general
setting. The reason of this sudden change is that, as we will see, isotropic crystals are a bit special
when dealing with properties of minimizers.

In the previous chapter on no-photon QED, a crucial role was played by the first order density,
i.e. by the linear response of the model to a small external density ν. This in particular led to the
concept of charge renormalization via the properties of the function BΛ(k) at zero. In the crystal
case the same kind of behavior will occur, with however some important differences. First there is
no cut-off in the rHF model of the crystal, and there will not be any renormalization issue. Like
in the previous chapter, minimizers will not be trace-class and the Fermi sea will partly screen
the defect (by a finite amount of charge). However we will see that, contrarily to the Dirac case,
in most cases the density is not even L1 and it is believed to have a peculiar behavior at zero in
Fourier space. Hence it is not really possible to define an observed charge. This makes the study
of the regularity of ρQ (hence the proof of the existence of neutral systems) more difficult than in
the reduced BDF model.

5.2.4.1 The linear response

The first order density will be described by the following map

L(f) := −ρ
[

1

2iπ

˛

C

(
z −H0

per

)−1
f ∗ 1

| · |
(
z −H0

per

)−1
dz

]
, (5.29)

where C is a smooth curve in the complex plane enclosing the whole spectrum of H0
per below ǫF,

crossing the real line at ǫF and at some c < inf σ(H0
per) (the above quantity is independent of C ).

The reason why we have put a minus sign in (5.29) is very simple: in the rHF nonlinear case, we
will have

ρQ = L(ν − ρQ) + r̃2

where r̃2 contains the higher order terms, and which we will rewrite as

(1 + L)(ν − ρQ) = ν − r̃2. (5.30)

This motivates the following result of [12], which is central in the mathematical analysis of the
dielectric response of crystals.

Theorem 5.7 (Properties of L(ρ) when ρ ∈ C or when ρ ∈ L1, [12]).

1. L defines a bounded nonnegative self-adjoint operator on C. Hence 1 + L, considered as an
operator on C, is invertible and bicontinuous from C to C.
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2. Let ρ ∈ L1(R3). Then, L(ρ) ∈ L2(R3)∩C, L̂(ρ) is continuous on Γ∗ \{0}, and for all σ ∈ S2

(the unit sphere of R
3),

lim
η→0+

L̂(ρ)(ησ) = (σTLσ) ρ̂(0) (5.31)

with L being the 3 × 3 matrix defined by

kTLk =
8π

|Γ|
N∑

n=1

+∞∑

n′=N+1

 

Γ∗

∣∣∣〈(k · ∇x)un,q, un′,q〉L2
per(Γ)

∣∣∣
2

(
ǫn′,q − ǫn,q

)3 dq, (5.32)

where the ǫn,q’s and the un,q’s are the eigenvalues and the eigenvectors arising in the Bloch-
Floquet spectral decomposition of (H0

per)q : L2
per(Γ) → L2

per(Γ):

(H0
per)q =

∞∑

n=1

ǫn,q|un,q〉〈un,q|. (5.33)

Additionally, L ≥ 0 and

L0 =
1

3
Tr(L) > 0. (5.34)

Note that (5.34) implies that σ 7→ σTLσ does not vanish for at least a set of nonzero measure.
Theorem 5.7 shows that L(ρ) is not in general a function of L1(R3) even when ρ ∈ L1(R3), as

when L is not constant, L̂(ρ) is not continuous at zero (note that L ≡ L0 characterizes isotropic
dielectric materials).

5.2.4.2 Properties of minimizers

Let us now come back to the reduced Hartree-Fock framework and the decay properties of mini-
mizers. The following is taken from [12]:

Theorem 5.8 (Properties of the nonlinear rHF ground state for perturbed crystals [12]). Let ǫF
in the gap (Σ+

Z ,Σ
−
Z+1). Let ν ∈ L1(R3) ∩ L2(R3) be such that

´

R3 ν 6= 0 and ‖ν ∗ | · |−1‖L2+C′

is small enough. Then the variational problem (5.24) has a unique minimizer Qν,ǫF . It satisfies
Tr0(Qν,ǫF) = 0 but it is not trace-class. If additionally the matrix L defined in Theorem 5.7 is not
proportional to the identity, then ρν,ǫF is not in L1(R3).

The proof of Theorem 5.8 is a simple consequence of Theorem 5.7 and of the continuity prop-
erties of higher order terms for an L1 density ρ.

As previously mentioned, the situation L ≡ L0 characterizes isotropic dielectric materials;
it occurs in particular when R is a cubic lattice and ρnuc

per has the symmetry of the cube. For

anisotropic dielectric materials, σ 7→ σTLσ is not a constant function, so that ρν,ǫF /∈ L1(R3).
Formula (5.34) for L is well-known in the Physics literature [2, 37]. However to our knowledge

it was never mentioned that the fact that L 6= 0 is linked to the odd mathematical property that
the operator Qν,ǫF is not trace-class when

´

R3 ν 6= 0.
For isotropic dielectric materials, L = L0, and we conjecture that the density ρν,ǫF is in L1(R3).

In this case, one can define the total charge of the defect (including the self-consistent polarization
of the Fermi sea) as

´

(ν − ρν,ǫF). For ν small enough, the Fermi sea formally stays neutral,
Tr0(Qν,ǫF) = 0, but it nevertheless screens partially the charge defect in such a way that the total
observed charge gets multiplied by a factor (1 + L0)

−1 < 1:

ˆ

R3

(
ν − ρν,ǫF

)
=

´

R3 ν

1 + L0
,
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similarly to (4.54) in Chapter 4. Contrarily to the Fermi sea of periodic crystals, the rBDF free
vacuum of Chapter 4 is not only isotropic but also homogeneous, and the mathematical analysis
can be pushed further. Extending these results to the case of isotropic crystals seems a very
challenging task.

When L is not proportional to the identity (anisotropic dielectric crystals), it is not possible to
define the observed charge of the defect as the integral of ν − ρν,ǫF since ρν,ǫF is not an integrable
function. Understanding the regularity properties of the Fourier transform of ρν,ǫF is then a very
interesting problem. In the next section, we consider a certain limit related to homogenization in
which only the first order term plays a role and for which one can analyse the limit in details.

5.2.4.3 Macroscopic dielectric permittivity

In this section, we focus on the electrostatic potential

V = (ν − ρν,ǫF) ∗ | · |−1 (5.35)

generated by the total charge of the defect and we study it in a certain limit.
We note that the self-consistent equation (5.30) can be rewritten as

ν − ρν,ǫF = (1 + L)−1ν − (1 + L)−1r̃2. (5.36)

Therefore for the nonlinear rHF model, the linear response at the level of the density is given
by the operator (1 + L)−1. Even when ν ∈ L1(R3), applying the operator (1 + L)−1 creates
some discontinuities in the Fourier domain for the corresponding first order term (1 + L)−1ν in
Equation (5.36). If we knew that the higher order term r̃2 is better behaved, it would be possible
to deduce the exact regularity of ρ̂ν,ǫF . We will now consider a certain limit of (5.36) by means
of a homogenization argument, for which the second order term disappears. This will give an
illustration of the expected properties of the density in Fourier space at the origin. For this
purpose, we fix some ν ∈ L1(R3) ∩ L2(R3) and introduce for all η > 0 the rescaled density

νη(x) := η3ν(ηx).

We then denote by V η
ν the total potential generated by νη, i.e.

V η
ν := (ν − ρνη,ǫF) ∗ 1

| · | , (5.37)

and define the rescaled potential

W η
ν (x) := η−1 V η

ν

(
η−1x

)
. (5.38)

Note that the scaling parameters have been chosen in such a way that in the absence of dielectric
response (i.e. for L = 0, r̃2 = 0), one has W η

ν = ν ∗ | · |−1 for all η > 0.

Theorem 5.9 (Macroscopic Dielectric Permittivity [12]). There exists a 3 × 3 symmetric matrix
ǫM > 1 such that for all ν ∈ L1(R3)∩L2(R3), the rescaled potential W η

ν defined by (5.38) converges
to Wν weakly in C′ when η goes to zero, where Wν is the unique solution in C′ to the elliptic equation

−div(ǫM∇Wν) = 4πν.

The matrix ǫM is proportional to the identity matrix if the crystal has the symmetry of the cube.

From a physical viewpoint, the matrix ǫM is the electronic contribution to the macroscopic
dielectric tensor of the host crystal. Note the other contribution, originating from the displacements
of the nuclei [29], is not taken into account here.
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The matrix ǫM can be computed from the Bloch-Floquet decomposition of H0
per as follows. We

consider the operator ǫ̃ = v
1/2
c (1+L)v

−1/2
c where vc(ν) := ν∗|·|−1 is the Coulomb operator. By the

properties of L, ǫ̃ is a bounded self-adjoint operator on L2(R3) such that ǫ̃ ≥ 1. As ǫ̃ commutes with
the translations of the lattice, it can be represented by the Bloch matrices ([ǫ̃KK′(q)]K,K′∈R∗)q∈Γ∗

which means
∀f ∈ L2(R3), ̂̃ǫf(q +K) =

∑

K′∈R∗

ǫ̃KK′(q)f̂(q +K ′)

for almost all q ∈ Γ∗ and K ∈ R∗. Similarly we may define the Bloch matrix ǫ̃−1
KK′ of ǫ̃−1 =

v
1/2
c (1 + L)−1v

−1/2
c . It is shown in [12] that ǫ̃K,K′(ησ) has a limit when η goes to 0+ for all fixed

σ ∈ S2. Indeed one has ǫ̃0,0(ησ) → 1 + σTLσ where L is the 3× 3 non-negative symmetric matrix
defined in (5.32). When K,K ′ 6= 0, ǫ̃K,K′(ησ) has a limit for η → 0, which is independent of σ
and which we simply denote as ǫ̃K,K′(0). When K = 0 but K ′ 6= 0, the limit is a linear function
of σ: for all K ′ ∈ R∗ \ {0}, ǫ̃0,K′(ησ) → βK′ · σ, for some βK′ ∈ C

3. The electronic contribution
to the macroscopic dielectric permittivity is the 3 × 3 symmetric tensor defined as [6]

∀k ∈ R
3, kT ǫMk = lim

η→0+

|k|2
[ǫ̃−1]00(ηk)

. (5.39)

By the Schur complement formula, one has

1

[ǫ̃−1]00(ηk)
= ǫ̃00(ηk) −

∑

K,K′ 6=0

ǫ̃0,K(ηk)[C(ηk)−1]K,K′ ǫ̃K′,0(ηk)

where C(ηk)−1 is the inverse of the matrix C(ηk) = [ǫ̃KK′(ηk)]K,K′∈R∗\{0}. This leads to

ǫM = 1 + L−
∑

K,K′∈R∗\{0}
βK [C(0)−1]K,K′β∗

K′ . (5.40)

Formula (5.40) has been used in numerical simulations for estimating the macroscopic dielectric
permittivity of real insulators and semiconductors [6, 19, 20, 15, 16]. Direct methods for evaluating
ǫM, bypassing the inversion of the matrix C(0), have also been proposed [32, 23].

5.3 Variational approximation and numerical results in 1D

Let us now come to the discretization of problem (5.26), as was presented in [10]. If one discretizes
(5.26) in a local basis without taking care of the constraint Q ∈ K, there is a risk to obtain
meaningless numerical results, due to a spectral pollution phenomenon, as will be explained in
Chapter 6. On the other hand, selecting a basis set which respects the decomposition

L2(R3) = H− ⊕ H+ = γ0
perL

2(R3) ⊕ (γ0
per)

⊥L2(R3)

will lead to a well-behaved variational approximation of (5.26), see Section 6.2.3.1 in Chapter 6.
Let V h

± be finite-dimensional subspaces of the occupied and virtual spaces H± of the refer-
ence perfect crystal. Consider the finite-dimensional subspace V h = V h

− ⊕ V h
+ of L2(R3). Let

(ϕ1, · · · , ϕm−
) (resp. (ϕm−+1, · · · , ϕNb

)) be an orthonormal basis of V h
− (resp. of V h

+ ). We denote
for simplicity m+ := Nb −m−. The approximation set for Q consists of the finite-rank operators

Q =

Nb∑

i,j=1

Qh
ij |ϕi〉〈ϕj | (5.41)

with Qh ∈ Kh =
{
Qh = [Qh]∗, 0 ≤ I +Qh ≤ 1

}
, where I is the Nb ×Nb block diagonal matrix

I =

[
1m−

0
0 0m+

]
.



5.3 Variational approximation and numerical results in 1D 129

Minimizing over Q’s of this form, one gets an upper bound to the true energy Eν(q). As Qh ∈ Kh

with Tr(Qh) = q if and only if

I +Qh ∈
{
D = DT ∈ R

2Nb , D2 ≤ D, Tr(D) = q +m−
}
,

the corresponding finite-dimensional problem can be solved using relaxed constrained algorithms [11,
8, 22].

The question is now to build spaces V h
− and V h

+ that provide good approximations to (5.26). A
natural choice proposed and tested in [10] is to use Wannier functions [36] of the reference perfect
crystal. Wannier functions {wk} are in general defined in such a way that wk belongs to the
spectral subspace associated with the kth band and {wk(· − a)}a∈Z3 forms a basis of this spectral
subspace. One can take

wk(x) =

ˆ

Γ∗

uk(ξ, x)dξ (5.42)

where uk(ξ, ·) ∈ L2
ξ is for any ξ ∈ Γ∗ an eigenvector of (H0

per)ξ corresponding to the kth eigenvalue
ǫk(ξ). The so-defined {wk(· − a)}a∈Z3 are mutually orthogonal. Formula (5.42) does not define
wk uniquely since the uk(ξ, x) are in the best case only known up to a phase. Choosing the right
phase, one can prove that when the kth band is isolated from other bands, wk decays exponentially
[27].

More generally, instead of using only one band (i.e. one eigenfunction uk(ξ, x)), one can use K
different bands for which it is possible to construct K exponentially localized Wannier functions
as soon as the union of the K bands is isolated from the rest of the spectrum [28, 7]. The union of
the K bands is called a composite band. In our case, under assumption (A1), we typically have a
natural composite band corresponding to the first Z bands, and another one corresponding to the
other bands (the latter is not bounded above).

We emphasize that the Wannier basis does not depend on the defect, and can be precalculated
once and for all for a given perfect crystal. Another huge advantage is that since wk decays fast,
it will be localized over a certain number of unit cells of Z

3. When there is a localized defect in
the lattice (let’s say at z), keeping only the Wannier functions wk(· − a) with a ∈ Z

3 ∩B(z,R) for
some radius R > 0 should already yield a very good approximation. This approximation can be
improved by enlarging progressively the radius R.

Of course in practice exponentially localized Wannier functions are not simple to calculate.
Marzari and Vanderbilt have defined the concept of maximally localized Wannier functions [26]
which also form a basis of the associated composite bands, but are not necessarily orthogonal with
each other. Several efficient methods are known to find these functions numerically.

To construct V h
− , one can therefore select the maximally localized (generalized) Wannier func-

tions of the occupied bands, that overlap with some ball B(z,R) of radius R centered on the nuclear
charge defect. To obtain a basis set for V h

+ , one can select a number of active (unoccupied) bands
using an energy cut-off and retain the maximally localized (generalized) Wannier functions of the
active bands that overlap with the same ball B(z,R). The so-obtained basis set of the virtual space
can be enriched by adding projected atomic orbitals of the atoms and ghost atoms involved in ν
(using the localized Wannier functions of the occupied bands to project out the H− component of
atomic orbitals preserves the locality of these orbitals).

In order to illustrate the efficiency of the variational approximation presented above, the exam-
ple of a one-dimensional (1D) model with Yukawa interaction potential was tackled in [10]. The
energy functional reads

E1D(γ) = Tr

(
−1

2

d2γ

dx2

)
−Dκ(ρnuc, ργ) +

1

2
Dκ(ργ , ργ)

with

Dκ(f, g) = (A/2κ)

ˆ

R

ˆ

R

f(x) e−κ |x−x′| g(x′) dx dx′.
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In the numerical examples reported below, the host crystal is Z-periodic and the nuclear density
is a Dirac comb, i.e. ρnuc = Z

∑
j∈Z

δj , with Z a positive integer. The values of the parameters
(A = 10 and κ = 5) have been chosen in such a way that the ground state kinetic and potential
energies are of the same order of magnitude. The nuclear local defect is taken of the form

ν = (Z − 1)δ0.25 − Zδ0.

This corresponds to moving one nucleus and lowering its charge by one unit.

0 10 205 15
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Figure 5.3: Modulus of MLWFs associated with the two occupied bands (left) and with the lowest
two virtual bands (right).
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Figure 5.4: Density ρQh obtained with 28 MLWFs (line in red). The reference is a supercell
calculation in a basis set of size 1224 (dashed line in blue).

The first stage of the calculation consists in solving the cell problem. For simplicity, we used a
uniform discretization of the Brillouin zone (−π, π], and a plane wave expansion of the crystalline
orbitals.
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The second stage is the construction of MLWFs. For this purpose, we make use of an argument
specific to the one-dimensional case [33]: the MLWFs associated with the spectral projector γ are
the eigenfunctions of the operator γxγ. One first constructs Ne mother MLWFs (taking γ = γ0

per),
then Na mother MLWFs corresponding to the lowest Na virtual bands (taking for γ the spectral
projector associated with the lowest Na virtual bands). The so-obtained mother MLWFs are
represented on Fig. 5.3.

The third stage consists in constructing a basis set (ϕj)1≤j≤Nb
of MLWFs by selecting transla-

tions of mother MLWFs that are closest to the local defect, and in computing the first-order density
matrix of the form (5.41) which satisfies the constraints and minimizes the energy. The profile of
the density ρQh obtained with Z = 2, Ne = 2, Na = 2 and Nb = 28 is displayed on Fig. 5.4. It
is compared with a reference supercell calculation with 1224 plane wave basis functions. A fairly
good agreement is obtained with very few MLWFs.

The implementation of our method in the Quantum Espresso suite of programs [1], in the 3D
case is work in progress.
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[9] É. Cancès, A. Deleurence, and M. Lewin, A new approach to the modelling of local defects in crystals: the
reduced Hartree-Fock case, Commun. Math. Phys., 281 (2008), pp. 129–177.

[10] , Non-perturbative embedding of local defects in crystalline materials, J. Phys.: Condens. Matter, 20
(2008), p. 294213.
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6

Spectral pollution and
how to avoid it

This chapter is a summary of a work [18] with É. Séré. Let us consider a (bounded or unbounded,
always densely defined) self-adjoint operator A acting on a separable Hilbert space H, with domain
D(A) and spectrum σ(A). Let {Vn}n≥1 be a sequence of finite-dimensional spaces such that
Vn ⊂ D(A), Vn ⊂ Vn+1, and ∪n≥1Vn = H. For each n, we may define A|Vn

:= PVn
APVn

where PVn

is the orthogonal projector on Vn. The operator A|Vn
can just be seen as a dn × dn matrix where

dn = dim(Vn), hence the spectrum σ(A|Vn
) is just discrete. The goal of this chapter is to address

the natural question whether one has σ(A|Vn
) → σ(A) in an appropriate sense.

To emphasize the possible difficulties, we give an example which already contains many of the
general ideas. Let {en}n≥1 be an orthonormal basis of H and let

A :=
∑

n≥1

|e2n〉〈e2n|, Vn = span
(
e1 , · · · , e2n , sin(θ)e2n+1 + cos(θ)e2n+2

)
.

Note that A is simply the orthogonal projector on the subspace spanned by {e2n}. Both its kernel
and its range are infinite-dimensional, hence σ(A) = σess(A) = {0, 1}. The matrix of A|Vn

is just

A|Vn
=




0
1

0
1

. . .

cos2(θ)



,

i.e. σ(A|Vn
) = {0, 1, cos2(θ)} for all n. We see that the spectrum of A|Vn

contains, for all n ≥ 1,
an eigenvalue which has nothing to do with the true spectrum of A. Such an eigenvalue is called a
spurious eigenvalue and the associated phenomenon is usually referred to as spectral pollution (see
Figure 6.1).

Clearly, the above construction was possible because we have two eigenspaces of infinite mul-
tiplicity, i.e. because 0 and 1 are point of the essential spectrum of A. Also it is fairly easy to
see that the above construction may be generalized in order to get any discrete set of polluted
eigenvalues in (0, 1), even a dense set in the limit n→ ∞. The purpose of this chapter is to study
this phenomenon in details, from a rather abstract point of view and also with applications to
periodic Schrödinger operators and to Dirac operators.

133



134 Chap. 6 - Spectral pollution and how to avoid it

0 1

σ(A)

0 1

σ(A|Vn
)

0 1cos2(θ)

σ(A|Wn
)

(a) (b) (c)

Figure 6.1: (a) True spectrum of the operator A. (b) Spectrum of our example A|Vn
, with one

spurious eigenvalue. (c) It is possible to construct an example with a dense spectrum in [0, 1].

6.1 A theorem of Levitin and Shargorodsky

In the whole chapter we consider a bounded or unbounded self-adjoint operator A on a separable
Hilbert space H, with (dense) domain D(A).

Definition 6.1 (Spurious eigenvalues). We say that λ ∈ R is a spurious eigenvalue of the operator
A if there exists a sequence of finite dimensional spaces {Vn}n≥1 with Vn ⊂ D(A) and Vn ⊂ Vn+1

for any n, such that

(i) ∪n≥1Vn
D(A)

= D(A);

(ii) lim
n→∞

dist
(
λ , σ(A|Vn

)
)

= 0;

(iii) λ /∈ σ(A).

We denote by Spu(A) the set of spurious eigenvalues of A.

In this chapter we shall only consider the spectral pollution issue, and we shall not study how
well the spectrum σ(A) of A is approximated by the discretized spectra σ(A|Vn

). Let us only
mention that for every λ ∈ σ(A), we have dist(λ, σ(A|Vn

)) → 0 as n→ ∞, provided that (i) holds
in Definition 6.1.

We will use like in [17] the notation σ̂ess(A) to denote the essential spectrum of A union −∞
(and/or +∞) if there exists a sequence of σ(A) ∋ λn → −∞ (and/or +∞). The following was
proved by Levitin and Shargorodsky [17]:

Theorem 6.1 (Pollution in all spectral gaps [17]). Let A be a self-adjoint operator on H with
dense domain D(A). Then

Spu(A) ∪ σ̂ess(A) = Conv (σ̂ess(A)) .

σ(A)a b

Spu(A)

Figure 6.2: For an operator A which has a spectral gap [a, b] in its essential spectrum, pollution
can occur in the whole gap.

A similar result was previously obtained for bounded self-adjoint operators in [20] and gener-
alized to bounded non self-adjoint operators in [7]. A short proof of Theorem 6.1 was given in
[18]. All the main ideas are essentially contained the example we gave in the introduction. Levitin
and Shargorodky have even shown that one can always construct one increasing sequence of finite-
dimensional spaces {Vn} which will create spurious eigenvalues in all gaps within the essential
spectrum.

Indeed, spectral pollution is an important issue which arises in many different practical situa-
tions. It is encountered when approximating the spectrum of perturbations of periodic Schrödinger
operators [4] or Strum-Liouville operators [25, 26, 1]. It is a very well reported difficulty in Quantum
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Chemistry and Physics in particular regarding relativistic computations [10, 14, 16, 24, 11, 19, 23].
It also appears in elasticity, electromagnetism and hydrodynamics; see, e.g. the references in
[2]. Eventually, it has raised as well a huge interest in the mathematical community, see, e.g.,
[17, 6, 4, 15, 7, 20, 21].

In [18] we have studied spectral pollution from a rather new perspective. Although many works
focus on how to determine if an approximate eigenvalue is spurious or not (see, e.g., the rather
successful second-order projection method [17, 4, 3]), we have on the contrary found conditions on
the sequence {Vn} which ensure that there will not be any pollution at all, in a given interval of
the real line. This corresponds to some methods which are encountered in relativistic calculations
[10, 14, 16, 24, 11, 19, 23]. We have indeed studied in details most of the techniques used by
Chemists and Physicists in this setting, as we will explain.

6.2 Spectral pollution associated with a splitting of the ambient

Hilbert space

The purpose of this section is to study spectral pollution if we add some assumptions on {Vn}.
More precisely we will fix an orthogonal projector P acting on H and we will add the natural
assumption that PVn

commute with P for all n, i.e. that Vn only contains vectors from PH and
(1−P )H. As we will see, under this new assumption the polluted spectrum (union σ̂ess(A)) will in
general be the union of two intervals. Saying differently, by adding such an assumption on {Vn},
we can create a hole in the polluted spectrum. Choosing P appropriately might then allow to avoid
pollution in a given gap of the spectrum.

Note that our results of this section can easily be generalized to the case of a partition of
unity {Pi}p

i=1 of commuting projectors such that 1 =
∑p

i=1 Pi. Adding the assumption that PVn

commutes with all Pi’s, we would create p holes in the polluted spectrum. This might be useful if
one wants to avoid spectral pollution in several gaps at the same time.

6.2.1 A general result

We start by defining properly P -spurious eigenvalues.

Definition 6.2 (Spurious eigenvalues associated with a splitting). Consider an orthogonal projec-
tion P : H → H. We say that λ ∈ R is a P -spurious eigenvalue of the operator A if there exist two
sequences of finite dimensional spaces {V +

n }n≥1 ⊂ PH ∩D(A) and {V −
n }n≥1 ⊂ (1 − P )H ∩D(A)

with V ±
n ⊂ V ±

n+1 for any n, such that

1. ∪n≥1(V
−
n ⊕ V +

n )
D(A)

= D(A);

2. lim
n→∞

dist
(
λ, σ

(
A|(V +

n ⊕V −
n )

))
= 0;

3. λ /∈ σ(A).

We denote by Spu(A,P ) the set of P -spurious eigenvalues of the operator A.

In [18] we have characterized exactly the spurious spectrum, in a similar way as in the theorem
of Levitin and Shargorodsky:

Theorem 6.2 (Characterization of P -spurious eigenvalues [18]). Let A be a self-adjoint operator
with dense domain D(A). Let P be an orthogonal projector on H such that PD(A) ⊂ D(A). We
assume that PAP (resp. (1−P )A(1−P )) is essentially self-adjoint on PD(A) (resp. (1−P )D(A)),
with closure denoted as A|PH (resp. A|(1−P )H). We assume also that

inf σ̂ess

(
A|(1−P )H

)
≤ inf σ̂ess

(
A|PH

)
. (6.1)
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Then we have

Spu(A,P ) ∪ σ̂ess(A) =
[
inf σ̂ess(A), sup σ̂ess

(
A|(1−P )H

)]
∪

[
inf σ̂ess

(
A|PH

)
, sup σ̂ess(A)

]
. (6.2)

σ(A)a b

Spu(A,P )

σess(A|(1−P )H) σess(A|PH)

Figure 6.3: Illustration of Theorem 6.2: for an operator A with a gap [a, b] in its essential spec-
trum, pollution can occur in the whole gap, except between the convex hulls of σ̂ess

(
A|PH

)
and

σ̂ess

(
A|(1−P )H

)
.

Let us emphasize that condition (6.1) always holds true, exchanging P and 1 − P if necessary.
Usually we will assume for convenience that 1 − P is “associated with the lowest part of the
spectrum” in the sense of (6.1).

The proof of Theorem 6.2 is more involved than the one of Theorem 6.1. Adapting ideas
of Levitin and Shargorodsky, one easily sees that Conv(σ̂ess(A|PH)) ∪ Conv(σ̂ess(A|(1−P )H)) ⊂
Spu(A,P ) (i.e. the convex hull of the green sets on Figure 6.3). The difficult part is to get the
other part of the polluted spectrum, and to show that there is no pollution between the two convex
hulls.

An interesting example is when A possesses a gap [a, b] in its essential spectrum, i.e. such that
(a, b)∩σess(A) = ∅, [−∞, a]∩ σ̂ess(A) 6= ∅ and [b,∞]∩ σ̂ess(A) 6= ∅. In this case it is easily seen that
Spu(A,Π) ∩ (a, b) = ∅ for Π := χ[c,∞)(A) with c = (a+ b)/2. The idea that we shall pursue in the
next section is simply that if P is “not too far from Π”, then we may be able to avoid completely
pollution in the gap [a, b].

6.2.2 A simple criterion of no pollution

Using Theorem 6.2, the following was proved in [18]:

Theorem 6.3 (Compact perturbations of spectral projector do not pollute [18]). Let A be a
self-adjoint operator defined on a dense domain D(A), and let a < b be such that

(a, b) ∩ σess(A) = ∅ and Tr
(
χ(−∞,a](A)

)
= Tr

(
χ[b,∞)(A)

)
= +∞. (6.3)

Let c ∈ (a, b) \ σ(A) and denote Π := χ(c,∞)(A). Let P be an orthogonal projector satisfying the

assumptions of Theorem 6.2. We furthermore assume that (P − Π)|A− c|1/2, initially defined on
D(|A− c|1/2), extends to a compact operator on H. Then we have

Spu(A,P ) ∩ (a, b) = ∅.

Remark 6.1. In [18], a simple example was given, showing that the power 1/2 in |A − c|1/2 is
sharp: one can construct an (unbounded) operator A and a projection P such that (P −Π)|A− c|α
is compact for all 0 ≤ α < 1/2 but Spu(A,P ) ∩ (a, b) 6= ∅.

The proof of Theorem 6.3 essentially consists in showing that one has, using the notation of
Theorem 6.2, σess(A|PH) ⊂ [b,∞) and σess(A|(1−P )H) ⊂ (−∞; a].

The following simple application of the above result is useful:

Corollary 6.1. Let A be a bounded-below self-adjoint operator defined on a dense domain D(A),
and let a < b be such that

(a, b) ∩ σess(A) = ∅ and Tr
(
χ(−∞,a](A)

)
= Tr

(
χ[b,∞)(A)

)
= +∞. (6.4)
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Let c ∈ (a, b) be such that c /∈ σ(A) and denote Π := χ(c,∞)(A).

Let B be a symmetric operator such that A + B is self-adjoint on D(A) and such that
(
(A +

B − i)−1 − (A− i)−1
)
|A− c|1/2, initially defined on D(|A− c|1/2), extends to a compact operator

on H. Then we have

Spu(A+B,Π) ∩ (a, b) = ∅.

Remark 6.2. Again the power 1/2 in |A− c|1/2 is optimal, as shown in [18]. Corollary 6.1 is a
priori wrong when A is not semi-bounded. One can construct operators A and B such that (with
A not semi-bounded) such that

(
(A + B + i)−1 − (A + i)−1

)
|A|α is compact for all 0 ≤ α < 1

whereas Spu(A+B,Π)∩ (a, b) 6= ∅. Hence in the case of not semi-bounded operators, a reasonable
conjecture is that Corollary 6.1 holds true with 1/2 replaced by 1, but we have been unable to prove
this.

6.2.3 Applications

6.2.3.1 Periodic Schrödinger operators

In this section, we show that approximating eigenvalues in gaps of periodic Schrödinger operators
using a so-called Wannier basis as was explained in Chapter 5, Section 5.3 (following [5]), does
not yield any spurious eigenvalue. For references on spectral pollution in this setting, we refer for
example to [4].

Consider a potential Vper which is Z
d-periodic in R

d (the generalization to any lattice is straight-
forward and tackled in [18]) such that

Vper ∈ Lp
loc(R

d) where





p = 2 if d ≤ 3,
p > 2 if d = 4,
p = d/2 if d ≥ 5,

and a decaying potential

W ∈ Lq(Rd) ∩ Lp
loc(R

d) + L∞
ǫ (Rd)

for some q > max(d/3, 1) and p as before. As is well-known [22], the operators

Aper := −∆ + Vper, A = Aper +W

are self-adjoint on H2(Rd). The spectrum of Aper is composed of bands as seen via the Bloch-
Floquet decomposition recalled in Chapter 5. When Vper is smooth enough [29, 22], the spectrum of
Aper is purely absolutely continuous. Under our assumptions on W , (Aper+W−i)−1−(Aper−i)−1

is (1 − ∆)−1/2-compact as seen by the resolvent expansion [22], and one has σess(A) = σ(Aper).

Using the Bloch-Floquet decomposition, a spectral decomposition of the reference periodic
operator Aper is easily accessible numerically. This decomposition can be used as a starting point
to avoid pollution for the perturbed operator A. For simplicity we shall assume that the spectral
decomposition of Aper is known exactly. More precisely we make the assumption that there is
a gap (a, b) between the kth and the (k + 1)st band and that the associated spectral projector
Pper := χ(−∞,c)(Aper) with c = (a+ b)/2 is known. The interest of this approach is the following
immediate consequence of Corollary 6.1:

Theorem 6.4 (No pollution for periodic Schrödinger operators). We assume Vper and W are as
before. Then we have

Spu(A,Pper) ∩ (a, b) = ∅. (6.5)

As was noticed in [5] and re-explained in Chapter 5, Section 5.3, a natural basis respecting the
spectral decomposition of Aper is given by a so-called Wannier basis.
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6.2.3.2 Dirac operator in upper/lower spinor basis

An important problem is to compute eigenvalues of operators of the form

DV = D0 + V

where D0 is the usual Dirac operator introduced in Chapter 4,

D0 = −ic
3∑

k=1

αk∂xk
+ βmc2

(αk and β are the Pauli matrices defined in (4.5)) and V is a multiplication operator by a real
function x 7→ V (x). In practice, spectral pollution is an important problem [10, 14, 16, 24] which
is dealt with in Quantum Physics and Chemistry by means of several different methods, the most
widely used being the so-called kinetic balance which we will study later in Section 6.3. We refer
to [3] for a recent numerical study based on the so-called second-order method for the radial Dirac
operator.

We now present a heuristic argument which can be made mathematically rigorous in many cases
[28, 12]. First we write the equation satisfied by an eigenvector (ϕ, χ) of D0 + V with eigenvalue
mc2 + λ ∈ (−mc2,mc2) as follows:

{
(mc2 + V )ϕ+ cσ · (−i∇)χ = (mc2 + λ)ϕ,
(−mc2 + V )χ+ cσ · (−i∇)ϕ = (mc2 + λ)χ,

(6.6)

where we recall that σ = (σ1, σ2, σ3) are the Pauli matrices defined in Chapter 4, Equation (4.6).
Hence one deduces that (when it makes sense)

χ =
c

2mc2 + λ− V
σ · (−i∇)ϕ. (6.7)

If V and λ stay bounded, we infer that, at least formally,
(
ϕ
χ

)
∼c→∞

(
ϕ

1
2mcσ · (−i∇)ϕ

)
. (6.8)

Hence we see that in the nonrelativistic limit c → ∞, the eigenvectors of A associated with a

positive eigenvalue converge to a vector of the form

(
ϕ
0

)
. Reintroducing the asymptotic formula

(6.8) of χ in the first equation of (6.6), one gets that ϕ is an eigenvector of the nonrelativistic
operator −∆/(2m) + V in L2(R3,C2).

For this reason, it is very natural to consider a splitting of the Hilbert space L2(R3,C4) into
upper and lower spinor and we introduce the following orthogonal projector

P
(
ϕ
χ

)
=

(
ϕ
0

)
, ϕ, χ ∈ L2(R3,C2). (6.9)

This splitting is the choice of most of the methods we are aware of in Quantum Physics and
Chemistry. Applying Theorem 6.2, we can characterize the spurious spectrum associated with this
splitting. For simplicity we take m = c = 1 in the following.

Theorem 6.5 (Pollution in upper/lower spinor basis for Dirac operators [18]). Assume that the
real function V satisfies the following assumptions:

(i) there exist {Rk}M
k=1 ⊂ R

3 and a positive number r < infk 6=ℓ |Rk −Rℓ|/2 such that

max
k=1..K

sup
|x−Rk|≤r

|x−Rk| |V (x)| <
√

3

2
; (6.10)
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(ii) one has

V 1R3\∪K
1 B(Rk,r) ∈ Lp(R3) + L∞

ǫ (R3) for some 3 < p <∞. (6.11)

Let P be as in (6.9). Then one has

Spu(D0 + V,P) =
{
Conv

(
Ess

(
1 + V

))
∪ Conv

(
Ess

(
− 1 + V

))}
∩ [−1, 1] (6.12)

where Ess(W ) denotes the essential range of the function W , i.e.

Ess(W ) =
{
λ ∈ R |

∣∣W−1([λ− ǫ, λ+ ǫ])
∣∣ 6= 0 ∀ǫ > 0

}
.

Our assumptions on V cover the case of the Coulomb potential, V (x) = κ|x|−1 when |κ| <
√

3/2.
In our units, this corresponds to nuclei which have less than 118 protons, which covers all existing
atoms. On the other hand, a typical example for which V ∈ Lp(R3) ∩ L∞(R3) is the case of
smeared nuclei V = ρ∗1/|x| where ρ is a (sufficiently smooth) distribution of charge for the nuclei.

As it may be seen, using the characterization of eigenvalues in gaps which was provided by
Dolbeault, Esteban and Séré in [9], the discrete spectrum of D0 + V lies precisely in the set{
Conv

(
Ess

(
1 + V

))
∪ Conv

(
Ess

(
− 1 + V

))}
∩ [−1, 1]. Therefore Theorem 6.5 shows that pollu-

tion can in principle occur in all interesting places. Physicists and Chemists then add constraints
on the basis to avoid this phenomenon, like the kinetic balance method which will be studied later
in Section 6.3.

6.2.3.3 Dirac operator in free basis

In this section, we prove that a way to avoid pollution in the whole gap is to take a basis associated
with the spectral decomposition of the free Dirac operator, i.e. choosing as projector P 0

+ :=
χ(0,∞)(D

0). As we will see this choice does not rely on the size of V like in the previous section.
Its main disadvantage is that constructing a basis preserving the decomposition induced by P 0

+

requires a Fourier transform, which might increase the computational cost dramatically. However
this might be the only reasonable option to describe strong QED-like effects. In [18], another
method proposed by Shabaev et al was also studied but we will not detail this here.

Theorem 6.6 (No pollution in free basis [18]). Assume that V is a real function such that1

V ∈ Lp(R3) +
(
Lr(R3) ∩ Ẇ 1,q(R3)

)
+ L∞

ǫ (R3) (6.13)

for some 6 < p <∞, some 3 < r ≤ 6 and some 2 < q <∞, or that

V = κ|x|−1

for some |κ| <
√

3/2. Then one has

Spu(D0 + V, P 0
+) = ∅.

The awkward condition (6.13) was chosen in such a way that the operator
(
(D0 + V + i)−1 −

(D0 + i)−1
)
|D0|1/2 is compact, as seen by the resolvent expansion. The result in this case is then

a consequence of Theorem 6.3. In the Coulomb case the corresponding operator is not compact
but the essential spectra of P 0

+(D0 + V )P 0
+ and P 0

−(D0 + V )P 0
− are known from [13] and it then

suffices to apply directly Theorem 6.2.

1We have used the notation Lr(R3) ∩ Ẇ 1,q(R3) = {V ∈ Lr(R3) | ∇V ∈ Lq(R3)}.
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6.3 Balanced basis

We have seen in Theorem 6.5 that a basis made of upper and lower spinors can give rise to
pollution. In Chemistry and Physics, the usual solution is the so-called kinetic balanced method,
which consists in imposing a specific relation between the vectors in the upper and lower spinor
basis sets. The main argument consists in noticing from (6.8) that the lower spinor basis set must
be able to reproduce correctly the derivative of the functions used to form the upper spinor basis.
This leads to choosing the lower spinor basis as {(σ · p)ϕn} when {ϕn} is the chosen basis for the
upper spinor.

As before we start by defining abstractly the concept of balanced basis before turning to appli-
cations in the Dirac case. For simplicity we will not state all the abstract results of [18].

6.3.1 Abstract setting

Consider an orthogonal projection P : H → H. Let L : D(L) ⊂ PH → (1 − P )H be a (possibly
unbounded) operator which we call balanced operator. We assume that

• L is an injection: if Lx = 0 for x ∈ D(L), then x = 0;

• D(L) ⊕ LD(L) is a core for A.

Definition 6.3 (Spurious eigenvalues in balanced basis). We say that λ ∈ R is a (P,L)-spurious
eigenvalue of the operator A if there exists a sequence of finite dimensional spaces {V +

n }n≥1 ⊂ D(L)
with V +

n ⊂ V +
n+1 for all n, such that

1. ∪n≥1(V
+
n ⊕ LV +

n )
D(A)

= D(A);

2. lim
n→∞

dist
(
λ, σ

(
A|(V +

n ⊕LV +
n )

))
= 0;

3. λ /∈ σ(A).

We denote by Spu(A,P,L) the set of (P,L)-spurious eigenvalues of the operator A.

For any fixed 0 6= x ∈ D(L), we consider the 2 × 2 matrix M(x) of A restricted to the 2-
dimensional space xC ⊕ LxC, and we denote by µ1(x) ≤ µ2(x) its eigenvalues. The vague idea
that one should have is that the polluted spectrum will arise from accumulation points of the two
functions µi(x

+
n ) for sequences {x+

n } ⊂ D(L) converging weakly to zero.
Clearly the introduction of the operator L breaks the symmetry between the two spaces PH

and (1−P )H. For this reason we shall concentrate on pollution occurring in the upper part of the
spectrum and we will not give necessary conditions for the lower part2. Let us introduce

d := supσ(A(1−P )H). (6.14)

and assume that d < ∞. In [18] we have only studied (P,L)-spurious eigenvalues in (d,∞). Note
that due to Theorem 6.2, it would be more natural to let instead d := sup σ̂ess(A(1−P )H) but this
will actually not change anything for the examples we are interested in: in the Dirac case D0 + V
and for P = P, the orthogonal projector on the upper spinor defined in (6.9), the spectrum of
(D0 + V )|(1−P )L2(R3,C4) = −1 + V is only composed of essential spectrum.

In [18], we could not characterize completely the (P,L)-spurious spectrum of A and we have
provided some necessary or sufficient conditions. We will not explain this in details here and we
only quote the following result, contained in [18]:

2As we have mentionned before we always assume for simplicity that inf σ̂ess(A|(1−P )H) ≤ inf σ̂ess(A|PH), i.e.
that 1 − P is responsible from the pollution occurring in the lower part of the spectrum.
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Theorem 6.7 ((P,L)-spurious eigenvalues, necessary condition [18]). Let be A, P and L as before.
Let us define

m = inf
{x+

n}⊂D(L)\{0},

x+
n ⇀0, ||x+

n ||=1

lim inf
n→∞

µ2(x
+
n ). (6.15)

and assume that m > d where d was defined in (6.14). We also assume that the following additional
continuity property holds for some b > d:

{x+
n } ⊂ D(L)

x+
n → 0

lim sup
n→∞

µ2(x
+
n ) < b





=⇒
〈
Ax+

n , x
+
n

〉
→ 0. (6.16)

Then we have

Spu(A,P,L) ∩
(
d,min(m, b)

)
= ∅.

If A|PH is bounded, then condition (6.16) holds true for b = +∞ > d.
Theorem 6.7 has many similarities with the characterization of eigenvalues in a gap which was

proved by Dolbeault, Esteban and Séré in [9] (where our number d = supσ(A(1−P )H) was denoted
by ‘a’). In particular the reader should compare the assumptions d < m with (iii) at the bottom
of p. 209 in [9]. The proof of [18] indeed uses many ideas of [9], which was itself inspired by an
important Physics paper of Talman [27] (he introduced a minimax principle for the Dirac equation
in order to avoid spectral pollution).

6.3.2 Kinetic and Atomic Balance in Dirac calculations

We come back to the Dirac operator A = D0 + V for a potential satisfying the assumptions (6.10)
and (6.11) of Theorem 6.5 and

sup(V ) < 2 (6.17)

in such a way that d = −1 + sup(V ) = supσess(A|(1−P)L2) does not reach the top of the gap. We
will indeed for simplicity concentrate ourselves on the case for which either V is bounded, or V
is a purely attractive Coulomb potential, V (x) = −κ/|x|, 0 < κ <

√
3/2. We take P = P, the

projector on the upper spinors.
The most common method is the so-called kinetic balance [10, 14, 16, 24]. It consists in choosing

as balanced operator

LKB = −iσ · ∇ (6.18)

We can for instance define LKB on the domain D(LKB) = C∞
0 (R3,C2), in which case LKB satisfies

all the previous assumptions. In [18], it was proved that kinetic balance allows to avoid pollution
in the upper part of the gap for smooth potentials, hence for instance for V = −ρ ∗ |x|−1 where
ρ ≥ 0 is the distribution of charge for smeared nuclei. However, the kinetic balance method does
not avoid spectral pollution in the case of pointwise nuclei (Coulomb potential):

Theorem 6.8 (Kinetic Balance [18]). (i) Bounded potential. Assume that V ∈ Lp(R3) ∩
L∞(R3) for some p > 3, that lim|x|→∞ V (x) = 0, and that sup(V ) < 2 Then we have

Spu(D0 + V,P, LKB) = [−1,−1 + supV ].

(ii) Coulomb potential. Assume that 0 < κ <
√

3/2. Then we have

Spu

(
D0 − κ

|x| ,P, LKB

)
= [−1, 1]. (6.19)
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It seems a well-known fact in Quantum Chemistry and Physics [11, 19] that the kinetic balance
method consisting in choosing L = LKB is not well-behaved for pointwise nuclei. The reason is
that the behavior at zero of c(2mc2+λ−V )−1σ ·(−i∇) appearing in (6.7), is not properly captured
by σ · (−i∇), if V (x) = −κ|x|−1. To better capture the behavior at zero, we study another method
which we have called atomic balance. It consists in taking

LAB =
1

2 − V
σ · (−i∇) (6.20)

where we recall that we have assumed 2 > sup(V ). Provided that V is smooth enough, we can
define LAB on the domain D(LAB) = C∞

0 (R3\{0},C2), in which case LAB satisfies all the previous
assumptions. The following was proved in [18]:

Theorem 6.9 (Atomic Balance [18]). Let V be such that sup(V ) < 2, (2 − V )−2∇V ∈ L∞(R3)
and

− κ

|x| ≤ V (x)

for some 0 ≤ κ <
√

3/2. We also assume that the positive part max(V, 0) is in Lp(R3) for some
p > 3 and that lim|x|→∞ V (x) = 0. Then we have

Spu(D0 + V,P, LAB) = [−1,−1 + supV ].

We now quickly explain the vague idea of the proof of Theorems 6.8 and 6.9. The number
µ2(ϕ) (the highest eigenvalue of D0+V in the basis {ϕ,Lϕ}) is the largest solution to the following
equation [9]

〈(1 + V )ϕ,ϕ〉 +

(
ℜ〈Lϕ, σ · (−i∇)ϕ〉

)2

〈(µ+ 1 − V )Lϕ,Lϕ〉 = µ ||ϕ||2 (6.21)

where the denominator of the second term does not vanish when µ2(ϕ) > d = sup(V ) − 1. Note
the term on the left is decreasing with respect to µ, whereas the term on the right is increasing
with respect to µ. The idea is, using the above characterization, to show that m ≥ 1, where m is
defined in Theorem 6.7, see (6.15) (we will not explain why (6.16) holds in our cases). Also, when
m < 1, one can usually construct by hand spurious eigenvalues in [m, 1]. In the Coulomb case
for the kinetic balance method, this is done by taking a sequence {ϕn} composed of two bubbles
concentrating at zero.

In the kinetic balance case of Theorem 6.8 (when V is bounded), arguing by contradiction leads
to the existence of {ϕn} with ||ϕn|| = 1 and ϕn → 0, such that µ2(ϕn) → µ ∈ (d, 1). Using (6.21)
this means

ˆ

R3

V |ϕn|2 +

(
ˆ

R3

|σ · ∇ϕn|2
)2

ˆ

R3

(µ2(ϕn) + 1 − V )|σ · ∇ϕn|2
= µ2(ϕn) − 1 → µ− 1 < 0. (6.22)

One can then see that {ϕn} is bounded in H1 and easily get a contradiction.
The atomic balance case is more involved. This time one gets a sequence satisfying

ˆ

R3

V |ϕn|2 +

(
ˆ

R3

|σ · ∇ϕn|2
2 − V

)2

ˆ

R3

(µ2(ϕn) + 1 − V )|σ · ∇ϕn|2
(2 − V )2

= µ2(ϕn) − 1 → µ− 1 < 0. (6.23)

Using that 1 + µ− V ≤ 2 − V , one gets for n large enough

−
ˆ

R3

κ

|x| |ϕn|2 +

(
ˆ

R3

|σ · ∇ϕn|2
2 + κ/|x|

)2

≤
ˆ

R3

V |ϕn|2 +

(
ˆ

R3

|σ · ∇ϕn|2
2 − V

)2

≤ µ− 1

2
< 0. (6.24)
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One then gets a contradiction by splitting ϕn in three pieces, isolating the part at zero and at
infinity, and using the following Hardy-type inequality:

ˆ

R3

c2|σ · ∇ϕ(x)|2
c2 + ν

|x| +
√
c4 − ν2c2

dx+ (c2 −
√
c4 − ν2c2)

ˆ

R3

|ϕ(x)|2dx ≥ ν

ˆ

R3

|ϕ(x)|2
|x| dx. (6.25)

This inequality was obtained in [9] by using a min-max characterization of the first eigenvalue of
−icα · ∇ + c2β − ν/|x|. Indeed (6.25) is an equality when ϕ is equal to the upper spinor of the
eigenfunction corresponding to the first eigenvalue in (−c2, c2) of −icα · ∇ + c2β − ν/|x|. The
inequality (6.25) was then proved by a direct analytical method in [8]. We note that, introducing
m = c(1 +

√
1 − (ν/c)2) and κ = ν/c we can rewrite (6.25) in the following form

ˆ

R3

|σ · ∇ϕ(x)|2
m+ κ

|x|
dx+m

1 −
√

1 − κ2

1 +
√

1 − κ2

ˆ

R3

|ϕ(x)|2dx ≥ κ

ˆ

R3

|ϕ(x)|2
|x| dx. (6.26)
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A

Density matrices of
Bogoliubov states having
finite charge

This chapter provides some important tools of functional analysis, which we have used throughout
the text. We work in an abstract separable Hilbert space H and consider a fixed projector Π
such that both Π and 1 − Π have an infinite rank. The physical picture is that Π is a reference
Hartree-Fock state representing our system in some unperturbed situation. The infinite rank of Π
means that our system contains infinitely many particles.

In Chapter 2, we have

Π =

(
0 0
0 1

)
and H = L2(R3,Cq) ⊕ JL2(R3,Cq)

where J is the conjugation operator.
In Chapter 4, we have H = L2(R3,C4) and Π = P0

− = χ(−∞,0)(D0) (Bogoliubov-Dirac-Fock
model) or Π = P 0

− = χ(−∞,0)(D
0) (reduced Bogoliubov-Dirac-Fock model) which represent the

free vacuum (Dirac sea) in the absence of any external source, in the corresponding model.
In Chapter 5, we have H = L2(R3,C) and Π = P 0

per = χ(−∞,ǫF)

(
H0

per

)
which is the (reduced)

Hartree-Fock state of the Fermi sea of the perfect crystal, in the absence of any defect.
When describing perturbations of a quantum system around the state Π, we had to consider

the following set
K :=

{
Q ∈ S

Π
1 (H) | Q∗ = Q, −Π ≤ Q ≤ 1 − Π

}
. (A.1)

where the definition of SΠ
1 (H) will be recalled below. The set K can indeed be defined as the (closure

of the) convex hull of operators of the form Q = P − Π where P is an orthogonal projector and
P − Π is Hilbert-Schmidt. Any such projection P represents another Hartree-Fock state which is
not too far from the reference state Π. As we will see below, the interpretation is that any Q ∈ K
is uniquely associated with a quasi-free state having a finite charge, in the Fock representation
associated with Π. States corresponding to Q = P −Π with P being a projector are usually called
Bogoliubov states because they can be obtained by applying a Bogoliubov rotation to the reference
state Π (the vacuum in the Fock space). The condition that P − Π ∈ S2(H) is usually called the
“Shale-Stinespring” condition.

In this chapter we define the spaces SΠ
1 (H) and the associated Π-trace. Then we give a decom-

position for states Q belonging to K. In particular we present a useful formula when Q = P − Π
with P 2 = P . Finally we recall the definition and properties of the Fock space associated with Π
and we link our results with previously known statements in the Fock representation. The pre-
sented results are all contained (with their proof) in our works [6, 7]. They could be used as a
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basis for any quantum theory of a system whose Hartree-Fock (ground) state is a perturbation of
a fixed reference HF state containing infinitely many particles.

A.1 Generalization of the trace functional

A.1.1 Definition of Π-trace

Definition A.1. Let Π be a projector on H such that Π and 1 − Π have infinite rank, and A ∈
S2(H). We shall say that A is Π-trace class if and only if A++ := (1−Π)A(1−Π) and A−− := ΠAΠ
are trace class. Then we define the Π-trace of A by

TrΠ(A) := Tr(A++) + Tr(A−−).

We denote by SΠ
1 (H) the space of all Hilbert-Schmidt operators which are Π-trace class.

Notice that if A is a trace class operator, then A ∈ SΠ
1 (H) and Tr(A) = TrΠ(A) for any

projector Π. However it is easy to see that a Π-trace class operator is not necessarily trace-class.
Indeed we have seen in Chapter 4 and 5 that in general ground states of infinite quantum systems
in a Hartree-Fock-type approximation are usually not trace-class.

Remark A.1. We will see in Section A.2 that for Q ∈ K, TrΠ(Q) should be interpreted (up to a
multiplication by −e) as the charge of the corresponding quantum state (counted relatively to that
of Π). It has no sign a priori.

Remark A.2. It is obvious that SΠ
1 (H) is a Banach space when endowed with the norm

||A||
SΠ

1 (H) = ||A||
S2(H) +

∣∣∣∣A++
∣∣∣∣

S1(H)
+

∣∣∣∣A−−∣∣∣∣
S1(H)

.

As S1(H) is the dual of the space of compact operators acting on H, S1(H) can be endowed with
the associated weak-∗ topology where An ⇀ A in S1(H) means that Tr(AnK) → Tr(AK) for
any compact operator K. Together with the fact that S2(H) is a Hilbert space, this defines a weak
topology on SΠ

1 (H) for which any bounded sequence in SΠ
1 (H) has a ∗-weak converging subsequence.

It is clear that the convex set K defined in (A.1) is closed both for the strong and the ∗-weak
topology of SΠ

1 (H). However, the functional A 7→ TrΠ(A) is not weakly lower semi-continuous for
this topology. Hence the sets (consisting of states having a fixed charge −eq)

K(q) = {Q ∈ K | TrΠ(Q) = q} (A.2)

are not closed for the ∗-weak topology. Indeed for any q′ 6= q it is easy to construct a sequence
Qn ⇀ Q such that Qn ∈ K(q) for all n and Q ∈ K(q′).

The following result shows that SΠ
1 (H) = SΠ′

1 (H) when Π − Π′ ∈ S2(H):

Lemma A.1 (Changing the reference projector [6]). Let Π and Π′ be two orthogonal projectors
such that Π − Π′ ∈ S2(H). Then A is Π-trace class if and only if it is Π′-trace class, and in this
case TrΠ(A) = TrΠ′(A).

Another important fact is that when A is Hilbert-Schmidt and A + Π is a projector, then A
has a Π-trace, as explained below:

Lemma A.2 (Generalized trace of a difference of two projectors [6]). Let P and Π be two projectors
on a Hilbert space H, such that P −Π is a Hilbert-Schmidt operator. Then P −Π is Π-trace class.
Moreover, TrΠ(P − Π) is an integer which satisfies

TrΠ(P − Π) = Tr
(
(P − Π)2n+1

)

for all n ≥ 1, and TrΠ(P − Π) = 0 when ||P − Π|| < 1.
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The proof of the two lemmas may be found in [6, p. 528]. For Lemma A.2, we proved first that
TrΠ(P − Π) = Tr(P − Π)3 and then used a result of Seiler and Simon [1] on pairs of projectors,
giving the equality for every n. Indeed, a pair (P,Π) with P −Π ∈ S2(H) is Fredholm, as defined
in [1]. Lemma A.2 is also a consequence of Theorem A.1 that will be stated below.

The condition that P − Π ∈ S2(H) is linked to the Shale-Stinespring theorem [15, 17], as we
will explain in details in the next section. This means that the Fock representation associated with
P is equivalent to that of Π. But before entering in these details, we quote some results of [7]
which help in understanding better the geometry of SΠ

1 (H).

A.1.2 A decomposition for P − Π

We start with a difference of two projectors. The decomposition below is valid in a more general
setting (for any Fredholm pair of projections (P,Π) [1]) but for the sake of simplicity, we restrict
ourselves to the Hilbert-Schmidt case needed in the text. We will deduce a general structure result
for the variational set K in the next subsection.

Theorem A.1 (Reduction for difference of projections in K [7, Thm 5]). Let P be an orthogonal
projector on H such that P − Π ∈ S2(H). Denote by (f1, ..., fN ) ∈ (H+)N an orthonormal basis
of E1 = ker(P − Π − 1) = ker(Π) ∩ ker(1 − P ) and by (g1, ..., gM ) ∈ (H−)M an orthonormal
basis of E−1 = ker(P − Π + 1) = ker(1 − Π) ∩ ker(P ). Then there exist an orthonormal basis
(vi)i≥1 ⊂ H+ of (E1)

⊥ in H+, an orthonormal basis (ui)i≥1 ⊂ H− of (E−1)
⊥ in H−, and a

sequence (λi)i≥1 ∈ ℓ2(R
+) such that

P =

N∑

n=1

|fn〉〈fn| +
∞∑

i=1

|ui + λivi〉〈ui + λivi|
1 + λ2

i

, (A.3)

1 − P =

M∑

m=1

|gm〉〈gm| +
∞∑

i=1

|vi − λiui〉〈vi − λiui|
1 + λ2

i

. (A.4)

The numbers θi = arccos(1 + λ2
i )

−1/2 are usually called the Bogoliubov angles. The proof
of Theorem A.1 was given in [7]. It is an adaptation of ideas in [1, 11, 17, 9, 8, 12]. Since

Π =
∑M

m=1 |gm〉〈gm| + ∑
i≥1 |ui〉〈ui|, we obtain

P − Π =

N∑

n=1

|fn〉〈fn| −
M∑

m=1

|gm〉〈gm| +
∑

i≥1

λ2
i

1 + λ2
i

(
|vi〉〈vi| − |ui〉〈ui|

)
(A.5)

+
∑

i≥1

λi

1 + λ2
i

(
|ui〉〈vi| + |vi〉〈ui|

)
. (A.6)

The terms in (A.5) form the diagonal part of P −Π, which is trace-class by Lemma A.2. The last
term (A.6) is the off-diagonal term which is only Hilbert-Schmidt a priori. Note we obtain from
this formula that

TrΠ(P − Π) = N −M

is an integer as claimed in Lemma A.2. The formula of P − Π can also be written as

P = Π +

N∑

n=1

|fn〉〈fn| −
M∑

m=1

|gm〉〈gm| +Q(A)

where A :=
∑

i≥1 λi|vi〉〈ui| and

Q(A) =
A∗A

1 +A∗A
− AA∗

1 +AA∗ +A
1

1 +A∗A
+

1

1 +A∗A
A∗.
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Therefore

{
P | P = P ∗ = P 2, P − Π ∈ S2(H), ‖P − Π‖ < 1

}
= {Π +Q(A), A ∈ S2(H+,H−)} .

Remark A.3. It is an easy consequence of Theorem A.1 that the connex components of the set of
pure states

{P − Π ∈ Q | P 2 = P}
are indexed by their charge TrΠ(P − Π) = N −M . This was already proved before in [14, 4].

A.1.3 The structure of K
We can now clarify the structure of the variational set K defined in (A.1).

Theorem A.2 (Structure of the variational set K [7, Thm 6]). The set K coincides with the set
containing all the operators of the form

Q = UD(Π + γ)U−D − Π (A.7)

where

1. D ∈ S2(H) is such that kerD ⊇ ker Π and kerD∗ ⊇ ker(1 − Π);

2. UD = exp(D −D∗);

3. γ ∈ S1(H) is a self-adjoint and trace-class operator such that [γ,Π] = 0 and, denoting
γ−− = ΠγΠ and γ++ = (1 − Π)γ(1 − Π), then −Π ≤ γ−− ≤ 0 and 0 ≤ γ++ ≤ 1 − Π.

This result was used several times in our work to construct suitable trial states. A particularly
important consequence is the following

Corollary A.1 (Approximation by finite-rank operators [7, Prop. 2]). The set consisting of the
operators Q which satisfy

1. Q ∈ K(q);

2. Q = P − Π + γ where P is an orthogonal projector and γ is a finite rank operator such that
0 ≤ γ < 1, Pγ = γP = 0;

3. Q has a finite rank;

is a dense subset of K(q) for the strong topology of SΠ
1 (H).

We recall for the reader’s convenience that K(q) was defined earlier in (A.2).

A.2 Bogoliubov states in the Fock space with vacuum Π

In this section we recall the definition of Bogoliubov states and we exhibit a link between the
results of the previous section and known results in the Fock space.

The projector Π being given and fixed, we may define the following two subspaces of H:

H
+ := (1 − Π)H and H

− := ΠH.

This allows us to introduce the space of N particles and the space of M holes as follows:

FN
+ :=

N∧

1

H
+, FM

− :=

M∧

1

JH
−
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with the convention that F0
± = C, and where J is any anti-linear unitary operator.1 Eventually

the Fock space associated with Π is defined as

F :=
⊕

N,M≥0

FN
+ ⊗FM

− .

Acting on this space we have two creation and annihilation operators b†±(f) and b±(f) acting on the

corresponding components of the Fock space. We use the following notation: a†+(f) = b†+((1−Π)f)

and a†−(f) = b†−(JΠf) for any f ∈ H. Note that a†+(·) is linear whereas a†−(·) is anti-linear.
Now we define the usual particle/anti-particle annihilation field operator as follows:

Ψ(f) := a+(f) + a†−(f)

(this operator is anti-linear). The vacuum Ω = 1 ∈ F0
+ ⊗F0

− = C is characterized (up to a phase)
by the properties a+(f)Ω = a−(f)Ω = 0 for any f ∈ H, and ‖Ω‖F = 1. Written in terms of Ψ,
this becomes Ψ((1 − Π)f)Ω = Ψ†(Πf)Ω = 0, for all f ∈ H.

A.2.1 The Shale-Stinespring condition

Let us now fix an orthogonal projector P acting on H. The natural question arises whether there
exists a state ΩP ∈ F characterized by the relations

Ψ((1 − P )f)ΩP = Ψ†(Pf)ΩP = 0 for all f ∈ H. (A.8)

The answer is given by the celebrated Shale-Stinespring theorem [15]

Theorem A.3 (Shale-Stinespring [15]). Let P be an orthogonal projector acting on H. There
exists a state ΩP ∈ F such that (A.8) holds true, if and only if P −Π ∈ S2(H). Then ΩP is unique
up to a phase. It may be written, using the notation of Theorem A.1,

ΩP = k

N∏

n=1

a†+(fn)

M∏

m=1

a†−(gm) exp(Aa†+a
†
−) Ω (A.9)

= k

N∏

n=1

a†+(fn)

M∏

m=1

a†−(gm)
∏

i≥1

(
1 + λia

†
+(vi)a

†
−(ui)

)
Ω (A.10)

where A :=
∑

i≥1 λi|vi〉〈ui| and k =
∏

i≥1(1 + λ2
i )

−1/2.

Formula (A.9) is classical and can be found in different forms in [17, 11, 12, 13, 14, 5] (see
also [3, Theorem 2.2]). However we are not aware of any interpretation in terms of the projectors
themselves, as expressed by Theorem A.1.

The unitary operator

U := k

N∏

n=1

a†+(fn)

M∏

m=1

a†−(gm) exp(Aa†+a
†
−)

is called a Bogoliubov transformation. It is not uniquely defined (one may add in the exponential

terms of the form a†+a−, a+a
†
− and a+a− without changing ΩP ).

1In the Dirac case, one usually chooses the charge conjugation operator. In general one can choose any anti-linear
unitary operator, the most natural one being probably the dual map J : H → H∗ defined by J (f)(g) = 〈f, g〉, as
done in [16] and already mentioned in Chapter 2. If H = L2(Rd, Cq), J is just the usual (transposition and) complex
conjugation of vector-valued functions.
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A.2.2 Density matrices

In this section, we recall the definition of density matrices for any state ω acting on F . This
means ω is a linear form acting on the space of bounded operators B(F) such that ω(1) = 1 and
ω(B∗B) ≥ 0 for every B. We associate with ω two operators γ : H → H and p : JH → H defined
as follows:

〈f, γg〉 = ω
(
Ψ†(g)Ψ(f)

)
, 〈f, pJ g〉 = ω

(
Ψ(g)Ψ(f)

)
.

The operator γ is usually called the one-body density matrix whereas p is usually called the pairing
density matrix of ω. It may be verified that

0 ≤
(
γ p
p∗ 1 − J γJ ∗

)
≤ 1 (A.11)

as an operator acting on H⊕JH. In particular we obtain that 0 ≤ γ = γ∗ ≤ 1. For any such state
ω we may also introduce its density matrix counted with respect to the reference state Π defined
as

Q := γ − Π

and which satisfies −Π ≤ Q ≤ 1 − Π, hence Q++ ≥ 0, Q−− ≤ 0.
It can be verified using Formulas (A.10), (A.3) and (A.4), that the density matrices of a

Bogoliubov state ΩP as defined in Theorem A.3 are respectively γ = P and p = 0, as expected.

A.2.3 Charge in Fock space

As explained in the previous section, the density matrix of a Bogoliubov state of the form ΩP =
a†−(g1)Ω is just P = Π− |g1〉〈g1|. It really consists in removing a particle from the reference state

Π or saying differently to create a hole in it. On the contrary the density matrix of ΩP = a†+(f1)Ω
is P = Π + |f1〉〈f1|, i.e. it consists in creating a particle.

Motivated by this observation, we may define the following operator

Q :=
∑

i≥1

a†+(e+i )a+(e+i ) −
∑

i≥1

a†−(e−i )a−(e−i )

where {e±i } is any orthonormal basis of H±. This operator can be interpreted as the charge (up to
a factor −e) counted relatively to the charge of Π. The minus in front of the second term accounts
from the fact that creating a state in H− is the same as making a hole in the reference state, as
mentioned before. Discarding the constant −e, Q is usually called the charge operator. Note that
the operator N := |Q| is just the usual particle number operator.

It can be checked that any Bogoliubov state ΩP with P − Π ∈ K is in the form domain of Q,
i.e.

〈ΩP , |Q|ΩP 〉 = N +M + 2
∑

i≥1

λ2
i

1 + λ2
i

<∞

and that

〈ΩP ,QΩP 〉 = TrΠ(P − Π) = N −M

as expected. In particular, the average charge of a Bogoliubov state is always an integer.

A.2.4 Quasi-free states

In the previous subsections we have only considered pure Hartree-Fock states in the Fock space.
We may indeed consider generalized states like in [3] and in Chapter 2. Like for the Bogoliubov
states ΩP , these states are completely characterized by their one-body density matrices.
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Let ω be any state with one-body density matrix γ and renormalized density matrix Q = γ−Π.
A simple calculation using the definition of Q shows that

ω(Q) = TrΠ(Q) and ω(|Q|) = Tr(Q++ −Q−−) .

Hence we have that ω(|Q|) <∞ if and only if Q ∈ SΠ
1 (H). For any such state ω with finite average

number of particles, we therefore have Q ∈ K.
A quasi-free state (with finite average particle number) [3, 2] is a state ω which satisfies the

following two conditions:

1. ω is in the domain of Q, i.e. ω(|Q|) <∞;

2. for any {d1, ..., d2K+1} ⊂ {a±(e±i )} ∪ {a†±(e±i )} we have

ω(d1 · · · d2K+1) = 0

ω(d1 · · · d2K) =
∑

σ∈S

ǫ(σ)ω(dσ(1)dσ(2)) · · ·ω(dσ(2K−1)dσ(2K))

where S is the set of permutations such that σ(1) < σ(3) < · · ·σ(2K−1) and σ(2i−1) < σ(2i).

Here we have fixed as before a basis {e±i } of H± but it can be checked that the previous definition
is indeed independent of that basis. It was proved in [2, 3] that any such state is completely
characterized by its two matrices γ and p.

Theorem A.4 (Quasi-free states [2, 3]). For any Q ∈ K and any antisymmetric p ∈ S2(JH,H)
such that (A.11) holds true, there exists a unique quasi-free state ω with finite particle number,
ω(|Q|) <∞, whose density matrix is Π +Q and pairing density matrix is p.

Hence restricting to quasi-free states amounts to working on the density matrices only. Usually
for repulsive systems the pairing density matrix always vanishes for a minimizer [3], in which case
one can restrict to states having no pairing. However, for (partially) attractive potentials, the
pairing density matrix may be nonzero for a ground state.

A.2.5 Normal ordering

Normal ordering is an operation denoted as : :Π which consists in placing the creation operators
on the left by anti-commuting them with the corresponding annihilation operator. For instance
we have

: Ψ†(f)Ψ(g) :Π = a†+(f)a+(g) + a−(f)a+(g) + a†+(f)a†−(g) − a†−(g)a−(f)

Note this uses the fact that a†± are operators of the Fock space built on Π, hence normal ordering
depends on Π, a fact that we have strengthened in the notation. Now let us fix as before any
orthogonal basis {ei} of H and assume that each ei belongs to H+ or H−. Then we can write

Q =
∑

i

: Ψ†(ei)Ψ(ei) :Π .

In Physics one would use the notation

Q =

ˆ

: Ψ†(x)Ψ(x) :Π dx.

Similarly, it can be checked that

〈ej , Qei〉 = ω
(
: Ψ†(ei)Ψ(ei) :Π

)
(A.12)
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for all states ω and any such basis {ei}, where Q = γ − Π is the one-body density matrix with Π
as reference state.

Let us now consider another reference state Π′ such that Π′−Π ∈ S2(H), with associated state
ΩΠ′ ∈ F in the Fock space. Due to the characterization of ΩΠ′ , we may define the associated
creation and annihilation operators as

a†Π′,+(f) := Ψ†((1 − Π′)f) and a†Π′,−(f) := Ψ(Π′f).

Note that a†Π′,+ has the correct linear behavior since Ψ(·) has been made linear by the introduction

of the anti-linear operator J . On the other hand, like for a†−, the operator a†Π′,− is anti-linear.
Note we have as before

Ψ†(f) = a†Π′,+(f) + aΠ′,−(f).

Hence we may define normal-ordering with respect to Π′ as for Π and we obtain:

: Ψ†(f)Ψ(g) :Π′ = a†Π′,+(f)aΠ′,+(g) + aΠ′,−(f)aΠ′,+(g) + a†Π′,+(f)a†Π′,−(g) − a†Π′,−(g)aΠ′,−(f).

This leads to the following definition:

QΠ′ :=
∑

i

: Ψ†(fi)Ψ(fi) :Π′

for any basis {fi} composed of elements of Π′H and (1 − Π′)H. Similarly to (A.12) we have
〈fj , Q

′ef 〉 = ω
(
: Ψ†(fi)Ψ(fi) :Π

)
where Q′ = γ − Π′ is the density matrix of ω with reference Π′.

We get for any state

ω(QΠ′) = TrΠ′(Q′) = TrΠ(Q′) = TrΠ(Q+ Π′ − Π) = ω(Q) − 〈ΩΠ′ ,QΩΠ′〉.

Hence we obtain that the charge behaves linearly under changes of the reference state

QΠ′ = Q− 〈ΩΠ′ ,QΩΠ′〉

where we recall that the last term is an integer. This formula can easily be recovered using the
canonical anti-commutation relations.

Let us now consider any bounded self-adjoint operator A acting on H (we could also consider an
unbounded operator but we restrict ourselves to the simplest case for convenience). We furthermore
assume that A+− ∈ S2(H). We define the (normal-ordered) second quantization of A in F as

: A :Π =
∑

i,j

〈ei, Aej〉 : Ψ†(ei)Ψ(ej) :Π .

As before, it can be verified using the definition of γ that for any state ω with finite average particle
number, we have

ω(: A :Π) = TrΠ(AQ)

where Q = γ − Π ∈ K. Using that A is bounded and that A+− ∈ S2(H) one verifies that this
expression is well-defined for any state in the domain of Q.

In principle the expectation value ω(: A :Π) is not bounded from below when varying over all
states, even when A is bounded. For instance for A = 1 we obtain : 1 :Π= Q which is not bounded-
below on F . Indeed one can check that ω 7→ ω(: A :Π) is bounded from below if and only if
χ(−∞,0)(A) − Π ∈ S2(H), i.e. if and only if the Hartree-Fock state PA := χ(−∞,0)(A) consisting
of filling all the negative energies of A (which should clearly be the Hartree-Fock ‘ground state’)
belongs to the same Fock space representation as our reference state Π. Assuming PA − Π ∈ K,
we obtain for any state

ω(: A :Π) = TrΠ(AQ) = TrPA
(AQA) + TrΠ(A(PA − Π)) = TrPA

(AQA) + 〈ΩPA
, : A :Π ΩPA

〉
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where we have introduced QA := γ − PA. As it is clear that TrPA
(AQA) ≥ 0, we get that the

above expression is minimized for the state ΩPA
, as expected. When ker(A) = {0}, it can even be

shown that the minimizer is unique.
When χ(−∞,0)(A)−Π /∈ S2(H), the previous argument can be adapted to get that the infimum

of ω(: A :Π) over all states is −∞.
Typically we have a reference Hamiltonian A0 which is perturbed by a potential V being A0-

compact. If one chooses as reference state Π = χ(−∞,0](A
0), we will have that the ground state of

the Hamiltonian A0+V is formally PV := χ(−∞,0)(A
0+V ). It lives in the same Fock representation

as Π when PV −Π is Hilbert-Schmidt. In this case one can use the Fock space formalism and normal
ordering to verify that PV is really the ground state. For instance for A0 = D0, the Dirac operator,
and V a real potential, necessary and sufficient conditions have been found by Klaus and Scharf
[11] to ensure that PV − P0 ∈ S2(L

2(R3,C4)). For the Coulomb potential (without an ultraviolet
cut-off), it was proved [10] that this is not the case: Pκ|x|−1 − P0 /∈ S2(L

2(R3,C4)).

As we have seen, our generalized trace functional mimics the properties of normal ordering in
Fock space. Once a reference Hartree-Fock state has been chosen, this allows to give a mathematical
meaning to certain physical quantities in the Fock space associated with our reference. This makes
perfectly sense for linear minimization problems for which the ground state is always a Hartree-
Fock state. However in general the true ground state of an interacting quantum system is never a
Hartree-Fock state (it is not uniquely determined by its one-body density matrix), but instead a
highly correlated state. In that case the Fock space formalism that we have presented cannot be
used anymore and normal ordering is of no use.
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[6] C. Hainzl, M. Lewin, and É. Séré, Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock
approximation, Commun. Math. Phys., 257 (2005), pp. 515–562.

[7] , Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrody-
namics, Arch. Rational Mech. Anal., 192 (2009), pp. 453–499.

[8] T. Kato, Notes on projections and perturbation theory, Tech. Rep. 9, University of California, 1955.

[9] , Perturbation theory for linear operators, Springer, second ed., 1995.

[10] M. Klaus, Nonregularity of the Coulomb potential in quantum electrodynamics, Helv. Phys. Acta, 53 (1980),
pp. 36–39.

[11] M. Klaus and G. Scharf, The regular external field problem in quantum electrodynamics, Helv Phys. Acta,
50 (1977), pp. 779–802.

[12] S. N. M. Ruijsenaars, On Bogoliubov transformations for systems of relativistic charged particles, J. Math.
Phys., 18 (1977), pp. 517–526.

[13] G. Scharf and H. P. Seipp, Charged vacuum, spontaneous positron production and all that, Physics Letters
B, 108 (1982), pp. 196–198.

[14] H. P. Seipp, On the S-operator for the external field problem of QED, Helv. Phys. Acta, 55 (1982/83), pp. 1–28.

[15] D. Shale and W. F. Stinespring, Spinor representations of infinite orthogonal groups, J. Math. Mech., 14
(1965), pp. 315–322.

[16] J. P. Solovej, Many body quantum mechanics. Lectures notes at LMU Münich, 2007.

[17] B. Thaller, The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992.


	Introduction (FR)
	Publications du chapitre 1
	Publications du chapitre 2
	Publications du chapitre 3
	Publications du chapitre 4
	Publications du chapitre 5
	Publications du chapitre 6

	Introduction (ENG)
	References for Chapter 1
	References for Chapter 2
	References for Chapter 3
	References for Chapter 4
	References for Chapter 5
	References for Chapter 6

	Nonrelativistic atoms and molecules
	N-body Coulomb quantum systems
	The N-body Coulomb Hamiltonian
	Hartree-Fock theory

	Multiconfiguration methods
	The multiconfiguration approach
	Existence and properties of minimizers
	Nonlinear excited states
	A new algorithm for the computation of the first excited state

	A new reduced density matrix approach
	A mountain pass for reacting molecules
	Adiabatic reactions
	Loss of compactness
	Existence of the mountain pass

	References

	The Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs
	The Chandrasekhar limit
	The Hartree-Fock-Bogoliubov approximation
	Existence and properties of ground states
	Existence of HFB minimizers
	Properties of minimizers

	The Dynamical Collapse
	Appendix: Hartree-Fock-Bogoliubov Theory
	References

	The thermodynamic limit of Coulomb quantum systems
	Introduction
	The crystal case
	Other models
	Quantum particles in a periodic magnetic field.
	Classical nuclei with optimized position.

	A general method
	Screening via the Graf-Schenker inequality
	An abstract result
	Idea of the proof of (A1)--(A5) for the crystal
	General domains and strong subadditivity of entropy
	Proof of Theorem 3.3

	References

	No-Photon Quantum Electrodynamics in the Hartree-Fock Approximation
	The Hartree-Fock approximation of QED
	The Dirac operator
	The Hamiltonian of QED
	Derivation of the Hartree-Fock energy

	Definition of the free vacuum
	The Bogoliubov-Dirac-Fock model
	Global minimization of E: the polarized vacuum
	Minimization of E in charge sectors
	The reduced model and charge renormalization
	Renormalization: generalities
	Minimizers in the reduced BDF model and charge renormalization
	Renormalization of the self-consistent equation

	The time-dependent equation
	The positive temperature case
	References

	Nonrelativistic crystal in the Hartree-Fock approximation
	Perfect crystal
	The periodic Coulomb interaction
	The (reduced) periodic Hartree-Fock functional
	Thermodynamic limit of the supercell model in the reduced case

	Crystal with a defect
	The reduced-Hartree-Fock energy with a defect
	Existence of minimizers
	Thermodynamic limit of the supercell model
	Properties of minimizers: the dielectric permittivity of a crystal

	Variational approximation and numerical results in 1D
	References

	Spectral pollution and how to avoid it
	A theorem of Levitin and Shargorodsky
	Spectral pollution associated with a splitting of the ambient Hilbert space
	A general result
	A simple criterion of no pollution
	Applications

	Balanced basis
	Abstract setting
	Kinetic and Atomic Balance in Dirac calculations

	References

	Density matrices of Bogoliubov states having finite charge
	Generalization of the trace functional
	Definition of -trace
	A decomposition for P-
	The structure of K

	Bogoliubov states in the Fock space with vacuum 
	The Shale-Stinespring condition
	Density matrices
	Charge in Fock space
	Quasi-free states
	Normal ordering

	References


