

SOLUTIONS ENTIÈRES D'ÉQUATIONS HESSIENNES

Mouhamad HOSSEIN

Dirigé par

Philippe DELANOË

Laboratoire J.A.Dieudonné

Soutenance de thèse

(Mardi 12 Mai 2009, Nice)

Jury:

- M. Arnaud BEAUVILLE
- M Nassif GHOUSSOUR
- M. Philippe DELANOË
- M. Erwann DELAY
- M. Olivier DRUET

Professeur à l'Université de Nice-France

Professeur à l'Université de British Columbia-Canada

Directeur de recherches au CNRS-France

Maître de conférences à l'Université d'Avignon-France

Chargé de recherche CNRS, ENS Lyon-France

EDP linéaire

$$L[u] = a^{ij}(x)D_{ij}u + b^{i}(x)D_{i}u + c(x)u$$

où $a^{ij}=a^{ji}, x\in\omega\subset\mathbb{R}^n, n\geq 2$. L est dit elliptique au point x si la matrice $a^{ij}(x)$ est définie, nous la prendrons par convention définie positive

EDP linéaire

$$L[u] = a^{ij}(x)D_{ij}u + b^{i}(x)D_{i}u + c(x)u$$

où $a^{ij}=a^{ji}, x\in\omega\subset\mathbb{R}^n, n\geq 2$. L est dit elliptique au point x si la matrice $a^{ij}(x)$ est définie, nous la prendrons par convention définie positive; c-a-d, si $\lambda(x), \Lambda(x)$ sont respectivement la plus petite et la plus grande valeurs propres de $[a^{ij}(x)]$, alors,

$$0 < \lambda(x)|\xi|^2 \le a^{ij}(x)\xi_i\xi_j \le \Lambda(x)|\xi|^2$$

pour tout
$$\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n - \{0\}.$$

EDP linéaire

$$L[u] = a^{ij}(x)D_{ij}u + b^{i}(x)D_{i}u + c(x)u$$

où $a^{ij}=a^{ji}, x\in\omega\subset\mathbb{R}^n, n\geq 2$. L est dit elliptique au point x si la matrice $a^{ij}(x)$ est définie, nous la prendrons par convention définie positive; c-a-d, si $\lambda(x), \Lambda(x)$ sont respectivement la plus petite et la plus grande valeurs propres de $[a^{ij}(x)]$, alors,

$$0 < \lambda(x)|\xi|^2 \le a^{ij}(x)\xi_i\xi_j \le \Lambda(x)|\xi|^2$$

pour tout $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n - \{0\}$. On dit que L est elliptique dans $\omega \subset \mathbb{R}^n$ si L est elliptique pour tout point x dans ω . Si de plus Λ/λ est borné dans ω alors on dit que L est uniformément elliptique dans ω .

EDP linéaire

$$L[u] = a^{ij}(x)D_{ij}u + b^{i}(x)D_{i}u + c(x)u$$

où $a^{ij}=a^{ji}, x\in\omega\subset\mathbb{R}^n, n\geq 2$. L est dit elliptique au point x si la matrice $a^{ij}(x)$ est définie, nous la prendrons par convention définie positive; c-a-d, si $\lambda(x), \Lambda(x)$ sont respectivement la plus petite et la plus grande valeurs propres de $[a^{ij}(x)]$, alors,

$$0 < \lambda(x)|\xi|^2 \le a^{ij}(x)\xi_i\xi_j \le \Lambda(x)|\xi|^2$$

pour tout $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n - \{0\}$. On dit que L est elliptique dans $\omega \subset \mathbb{R}^n$ si L est elliptique pour tout point x dans ω . Si de plus Λ/λ est borné dans ω alors on dit que L est uniformément elliptique dans ω .

Hopf, Oddson, Miller, Serrin, Schauder...

EDP Quasilinéaire

$$Q[u] = a^{ij}(x, u, Du)D_{ij}u + b(x, u, Du)$$

où $a^{ij}=a^{ji}, x\in\omega\subset\mathbb{R}^n, n\geq 2$ et a(x,z,p), b(x,z,p) définis $\forall\;(x,z,p)\in(\omega,\mathbb{R},\mathbb{R}^n).\;Q$ est dit elliptique au point (x,z,p) si la matrice $a^{ij}(x,z,p)$ est définie positive.

EDP Quasilinéaire

$$Q[u] = a^{ij}(x, u, Du)D_{ij}u + b(x, u, Du)$$

où $a^{ij}=a^{ji}, x\in\omega\subset\mathbb{R}^n, n\geq 2$ et a(x,z,p), b(x,z,p) définis $\forall~(x,z,p)\in(\omega,\mathbb{R},\mathbb{R}^n).~Q$ est dit elliptique au point (x,z,p) si la matrice $a^{ij}(x,z,p)$ est définie positive.

Meyers, Trudinger, Donglas, Dapont, Serrin, Bakelman, Ladyzhenskaya...

EDPs elliptiques de second ordre

EDP totalement non linéaire

$$F[u] = F(x, u, Du, D^2u)$$

F est une fonction réelle définie sur $\Omega = \omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n}$ et $\mathbb{R}^{n \times n}$ désigne l'espace des matrices symétriques $(n \times n)$.

EDPs elliptiques de second ordre

EDP totalement non linéaire

$$F[u] = F(x, u, Du, D^2u)$$

F est une fonction réelle définie sur $\Omega = \omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n}$ et $\mathbb{R}^{n \times n}$ désigne l'espace des matrices symétriques $(n \times n)$.

F est dite elliptique au point $\gamma = (x, z, p, r) \in \Omega$ si la matrice

$$F_{ij}(\gamma) = \frac{\partial F}{\partial r_{ij}}(\gamma), \quad i,j = 1,\ldots,n$$

est définie positive.

EDPs elliptiques de second ordre

EDP totalement non linéaire

$$F[u] = F(x, u, Du, D^2u)$$

F est une fonction réelle définie sur $\Omega = \omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n}$ et $\mathbb{R}^{n \times n}$ désigne l'espace des matrices symétriques $(n \times n)$.

F est dite elliptique au point $\gamma = (x, z, p, r) \in \Omega$ si la matrice

$$F_{ij}(\gamma) = \frac{\partial F}{\partial r_{ij}}(\gamma), \quad i,j = 1,\ldots,n$$

est définie positive.

Caffarelli, Nirenberg, Spuck, Ivočkina, Evans, Krylov, Trudinger, Lions, Aleksandrov. . .

La classe des équations hessiennes est le premier cas particulier totalement non linéaire important, elles s'écrivent :

$$\mathcal{F}(\lambda(D^2u)) = f(x, u, Du)$$

La classe des équations hessiennes est le premier cas particulier totalement non linéaire important, elles s'écrivent :

$$\mathcal{F}(\lambda(D^2u)) = f(x, u, Du)$$

 $\mathcal{F}(\lambda)$ symétrique, homogène, concave et défini sur une cône de positivité Γ^+ où $\mathcal{F}>0$ et $\frac{\partial \mathcal{F}}{\partial \lambda_i}>0, \forall i$.

La classe des équations hessiennes est le premier cas particulier totalement non linéaire important, elles s'écrivent :

$$\mathcal{F}(\lambda(D^2u)) = f(x, u, Du)$$

 $\mathcal{F}(\lambda)$ symétrique, homogène, concave et défini sur une cône de positivité Γ^+ où $\mathcal{F}>0$ et $\frac{\partial \mathcal{F}}{\partial \lambda_i}>0, \forall i$.

• Exemple important : $\mathcal{F}(\lambda(D^2u)) := [\sigma_{\kappa}(\lambda)]^{\frac{1}{\kappa}}$ dans Γ_{κ}

La classe des équations hessiennes est le premier cas particulier totalement non linéaire important, elles s'écrivent :

$$\mathcal{F}(\lambda(D^2u)) = f(x, u, Du)$$

 $\mathcal{F}(\lambda)$ symétrique, homogène, concave et défini sur une cône de positivité Γ^+ où $\mathcal{F}>0$ et $\frac{\partial \mathcal{F}}{\partial \lambda_i}>0, \forall i$.

- Exemple important : $\mathcal{F}(\lambda(D^2u)) := [\sigma_{\kappa}(\lambda)]^{\frac{1}{\kappa}}$ dans Γ_{κ}
 - Pour $\kappa = 1$ on obtient une équation de Poisson $\Delta u = f$

La classe des équations hessiennes est le premier cas particulier totalement non linéaire important, elles s'écrivent :

$$\mathcal{F}(\lambda(D^2u)) = f(x, u, Du)$$

 $\mathcal{F}(\lambda)$ symétrique, homogène, concave et défini sur une cône de positivité Γ^+ où $\mathcal{F}>0$ et $\frac{\partial \mathcal{F}}{\partial \lambda_i}>0, \forall i$.

- **1** Exemple important : $\mathcal{F}(\lambda(D^2u)) := [\sigma_{\kappa}(\lambda)]^{\frac{1}{\kappa}}$ dans Γ_{κ}
 - Pour $\kappa=1$ on obtient une équation de Poisson $\Delta u=f$
 - Pour $\kappa = n$ on a une équation de Monge-Ampère $[det(D^2u)]^{\frac{1}{\kappa}} = f > 0.$

Équations de courbure

Les équations de courbure sont de la forme :

$$F(\lambda(II)) = f(x, u, Du) > 0$$

où ${\it II}$ est la second forme fondamentale. Ces équations sont plus difficiles à résoudre, elles ne sont pas considérés dans cette thèse

Dans la thèse on considère les équations hessiennes de la forme :

$$m_{\kappa} \left[\lambda(D^2 f)(x) \right] = \left[\psi(x) \right]^{\frac{1}{\kappa}} > 0 \text{ dans } \mathbb{R}^n$$
 (1)

Dans la thèse on considère les équations hessiennes de la forme :

$$m_{\kappa} \left[\lambda(D^2 f)(x) \right] = \left[\psi(x) \right]^{\frac{1}{\kappa}} > 0 \text{ dans } \mathbb{R}^n$$
 (1)

où m_{κ} est la moyenne symétrique élémentaire d'ordre κ à n variables $(n \geq \kappa)$, homogène de degré 1 et telle que $m_{\kappa}(1,\ldots,1)=1$, f asymptote à $\frac{1}{2}|x|^2$ et ψ une fonction positive donnée asymptote à 1.

Dans la thèse on considère les équations hessiennes de la forme :

$$m_{\kappa} \left[\lambda(D^2 f)(x) \right] = \left[\psi(x) \right]^{\frac{1}{\kappa}} > 0 \text{ dans } \mathbb{R}^n$$
 (1)

où m_κ est la moyenne symétrique élémentaire d'ordre κ à n variables $(n \ge \kappa)$, homogène de degré 1 et telle que $m_\kappa(1,\ldots,1)=1$, f asymptote à $\frac{1}{2}|x|^2$ et ψ une fonction positive donnée asymptote à 1.

 $\lambda(D^2f)$ désigne le *n*-uplet des valeurs propres de la matrice hessienne de f par rapport à la *métrique euclidienne standard* de \mathbb{R}^n .

Dans la thèse on considère les équations hessiennes de la forme :

$$m_{\kappa} \left[\lambda(D^2 f)(x) \right] = \left[\psi(x) \right]^{\frac{1}{\kappa}} > 0 \text{ dans } \mathbb{R}^n$$
 (1)

où m_κ est la moyenne symétrique élémentaire d'ordre κ à n variables $(n \ge \kappa)$, homogène de degré 1 et telle que $m_\kappa(1,\ldots,1)=1$, f asymptote à $\frac{1}{2}|x|^2$ et ψ une fonction positive donnée asymptote à 1.

 $\lambda(D^2f)$ désigne le *n*-uplet des valeurs propres de la matrice hessienne de f par rapport à la *métrique euclidienne standard* de \mathbb{R}^n .

Nous supposerons toujours $\lambda(D^2f)$ dans le cône de positivité de m_{κ} (ellipticité de l'équation)

Les équations s'écrivent encore :

$$\mathcal{M}_{\kappa}[u] = m_{\kappa}(\lambda(I + D^2 u)) = (1 + \phi)^{\frac{1}{\kappa}}$$
 (2)

Les équations s'écrivent encore :

$$\mathcal{M}_{\kappa}[u] = m_{\kappa}(\lambda(I+D^2u)) = (1+\phi)^{\frac{1}{\kappa}}$$
 (2)

ou

$$\mathcal{N}_{\kappa}[u] = \log[m_{\kappa}(\lambda(I + D^2 u))] = \frac{1}{\kappa}\log(1 + \phi)$$
 (3)

Les équations s'écrivent encore :

$$\mathcal{M}_{\kappa}[u] = m_{\kappa}(\lambda(I + D^2 u)) = (1 + \phi)^{\frac{1}{\kappa}}$$
 (2)

ou

$$\mathcal{N}_{\kappa}[u] = \log[m_{\kappa}(\lambda(I + D^2 u))] = \frac{1}{\kappa} \log(1 + \phi) \tag{3}$$

avec $f = \frac{1}{2}|x|^2 + u$ et $\psi = 1 + \phi > 0$ où u et ϕ s'annulent convenablement à l'infini

Les équations s'écrivent encore :

$$\mathcal{M}_{\kappa}[u] = m_{\kappa}(\lambda(I + D^2 u)) = (1 + \phi)^{\frac{1}{\kappa}}$$
 (2)

ou

$$\mathcal{N}_{\kappa}[u] = \log[m_{\kappa}(\lambda(I + D^2 u))] = \frac{1}{\kappa} \log(1 + \phi) \tag{3}$$

avec $f = \frac{1}{2}|x|^2 + u$ et $\psi = 1 + \phi > 0$ où u et ϕ s'annulent convenablement à l'infini

Notre choix de f à l'infini permet à l'opérateur différentiel non-linéaire $\mathcal{N}_{\kappa}[u]$ d'être invariant par les rotations de \mathbb{R}^n .

Les équations s'écrivent encore :

$$\mathcal{M}_{\kappa}[u] = m_{\kappa}(\lambda(I + D^2 u)) = (1 + \phi)^{\frac{1}{\kappa}}$$
 (2)

ou

$$\mathcal{N}_{\kappa}[u] = \log[m_{\kappa}(\lambda(I + D^2 u))] = \frac{1}{\kappa} \log(1 + \phi) \tag{3}$$

avec $f = \frac{1}{2}|x|^2 + u$ et $\psi = 1 + \phi > 0$ où u et ϕ s'annulent convenablement à l'infini

Notre choix de f à l'infini permet à l'opérateur différentiel non-linéaire $\mathcal{N}_{\kappa}[u]$ d'être invariant par les rotations de \mathbb{R}^n .

Notre contribution concerne le cas $1 < \kappa < n$.

Résultat déjà connu

Le problème de Dirichlet posé dans un ouvert borné (de géométrie convenable) a été traité pour l'équation hessienne dans l'article Caffarelli, Nirenberg, Spruck. *Acta Math*, (1986).

Plan

• SOLUTIONS ENTIÈRES D'ÉQUATIONS HESSIENNES RÉELLES

Plan

- SOLUTIONS ENTIÈRES D'ÉQUATIONS HESSIENNES RÉELLES
- SOLUTIONS ENTIÈRES D'ÉQUATIONS HESSIENNES COMPLEXES

Introduction

- Introduction
- 2 Résultat principal

- Introduction
- 2 Résultat principal
- 3 Fonction κ -admissible

- Introduction
- 2 Résultat principal
- **3** Fonction κ -admissible
- 4 Unicité de la solution κ -admissible

- Introduction
- 2 Résultat principal
- **3** Fonction κ -admissible
- 4 Unicité de la solution κ -admissible
- **5** Théorie linéaire
 - Espace de Hölder à poids

- Introduction
- 2 Résultat principal
- **3** Fonction κ -admissible
- 4 Unicité de la solution κ -admissible
- **5** Théorie linéaire
 - Espace de Hölder à poids
- 6 Méthode de résolution (Méthode de continuité)
 - Méthode de continuité

- Introduction
- 2 Résultat principal
- **3** Fonction κ -admissible
- 4 Unicité de la solution κ -admissible
- **5** Théorie linéaire
 - Espace de Hölder à poids
- 6 Méthode de résolution (Méthode de continuité)
 - Méthode de continuité
- Estimation à priori
 - Existence d'une solution radiale
 - Estimation d'ordre zéro pondérée
 - Estimation d'ordre 2 sans poids
 - Estimation pondérée

- Introduction
- 2 Résultat principal
- **3** Fonction κ -admissible
- 4 Unicité de la solution κ -admissible
- **5** Théorie linéaire
 - Espace de Hölder à poids
- 6 Méthode de résolution (Méthode de continuité)
 - Méthode de continuité
- Estimation à priori
 - Existence d'une solution radiale
 - Estimation d'ordre zéro pondérée
 - Estimation d'ordre 2 sans poids
 - Estimation pondérée
- 8 Equations hessiennes complexes

Résultat principal

Théorème

Pour toute fonction $\phi \in C^{0,\alpha}_{p+2}(\mathbb{R}^n)$ telle que $\psi := 1 + \phi > 0$, tous n > 2 et $p \in (0, n-2)$, il existe une unique solution $u \in C^{2,\alpha}_p(\mathbb{R}^n)$ κ -admissible de l'équation (3).

Résultat principal

Théorème

Pour toute fonction $\phi \in C^{0,\alpha}_{p+2}(\mathbb{R}^n)$ telle que $\psi := 1 + \phi > 0$, tous n > 2 et $p \in (0, n-2)$, il existe une unique solution $u \in C^{2,\alpha}_p(\mathbb{R}^n)$ κ -admissible de l'équation (3).

Remarque

Soit u une telle solution de l'équation (3) et $k \in \mathbb{N}$. Alors, si $\phi \in C^{k,\alpha}_{p+2}(\mathbb{R}^n)$, $u \in C^{k+2,\alpha}_p(\mathbb{R}^n)$.

Soient $A \in S_n(\mathbb{R})$ et $\kappa \in \{1, \ldots, n\}$

Soient $A \in S_n(\mathbb{R})$ et $\kappa \in \{1, \ldots, n\}$

Définition

Notons $F_{\kappa}(A) = \sum_{|I|=\kappa} A_{II}$, la somme des mineurs principaux d'ordre κ de A. Par définition on a :

$$F_{\kappa}(A) = \frac{1}{\kappa!} \sum_{i_1 \dots i_{\kappa} \atop j_1 \dots j_{\kappa}} a_{i_1 j_1} \dots a_{i_{\kappa} j_{\kappa}}$$

Soient $A \in S_n(\mathbb{R})$ et $\kappa \in \{1, \ldots, n\}$

Définition

Notons $F_{\kappa}(A) = \sum_{|I|=\kappa} A_{II}$, la somme des mineurs principaux d'ordre κ de A. Par définition on a :

$$F_{\kappa}(A) = \frac{1}{\kappa!} \sum_{i=1}^{k} \varepsilon_{j_1...j_{\kappa}}^{i_1...i_{\kappa}} a_{i_1j_1}...a_{i_{\kappa}j_{\kappa}}$$

Lemme

Pour toute matrice symétrique A telle que $\lambda(A) \in \Gamma_{\kappa}$, la fonction

$$A \longrightarrow [F_{\kappa}(A)]^{\frac{1}{\kappa}}$$

est elliptique et concave, où Γ_{κ} est la cône de positivité de m_{κ}

Soient $A \in S_n(\mathbb{R})$ et $\kappa \in \{1, \ldots, n\}$

Définition

Notons $F_{\kappa}(A) = \sum_{|I|=\kappa} A_{II}$, la somme des mineurs principaux d'ordre κ de A. Par définition on a :

$$F_{\kappa}(A) = \frac{1}{\kappa!} \sum_{i=1}^{k} \varepsilon_{j_1...j_{\kappa}}^{i_1...i_{\kappa}} a_{i_1j_1}...a_{i_{\kappa}j_{\kappa}}$$

Lemme

Pour toute matrice symétrique A telle que $\lambda(A) \in \Gamma_{\kappa}$, la fonction

$$A \longrightarrow [F_{\kappa}(A)]^{\frac{1}{\kappa}}$$

est elliptique et concave, où Γ_{κ} est la cône de positivité de m_{κ}

$$\Gamma_{\kappa} = \{\lambda \in \mathbb{R}^n \text{ tel que } \sigma_i(\lambda(A)) > 0, \ \forall \ i = 1, \dots, \kappa\}.$$

Fonction κ -admissible

Définition

Une fonction $u \in C^2(\mathbb{R}^n)$ est dite κ -admissible si $\lambda[a_u(x)] \in \Gamma_{\kappa}$ pour tout $x \in \mathbb{R}^n$, où $a_u = I + D^2u$

Fonction κ -admissible

Définition

Une fonction $u \in C^2(\mathbb{R}^n)$ est dite κ -admissible si $\lambda[a_u(x)] \in \Gamma_{\kappa}$ pour tout $x \in \mathbb{R}^n$, où $a_u = I + D^2u$

Propriétés (de l'opérateur \mathcal{F}_{κ})

 $orall \ u \in C^2(\mathbb{R}^n)$ κ -admissible, le linéarisé de l'opérateur différentiel

$$\mathcal{F}_{\kappa}[u]: u \mapsto \mathcal{F}_{\kappa}[u] := F_{\kappa}(a_u)$$

est elliptique et s'écrit sous forme divergentielle.

Principe de Comparaison

Lemme (Principe de comparaison)

Soient $u,v\in C^2(\mathbb{R}^n)$ κ -admissibles nulles à l'infini telles que

$$m_{\kappa}[\lambda(a_u)] \leq m_{\kappa}[\lambda(a_v)]$$
 dans \mathbb{R}^n .

Alors

$$u \ge v$$
 dans \mathbb{R}^n

Principe de Comparaison

Lemme (Principe de comparaison)

Soient $u, v \in C^2(\mathbb{R}^n)$ κ -admissibles nulles à l'infini telles que

$$m_{\kappa}[\lambda(a_u)] \leq m_{\kappa}[\lambda(a_v)]$$
 dans \mathbb{R}^n .

Alors

$$u \ge v$$
 dans \mathbb{R}^n

Corollaire (Unicité de la solution κ -admissible)

Il existe au plus une solution C^2 de l'équation (3) κ -admissible et nulle à l'infini.

$C_p^{k,\alpha}(\Omega)$ est le sous-ensemble de $C^{k,\alpha}(\Omega)$:

$$||u||_{C_p^{k,\alpha}(\Omega)} = \sum_{i=0}^k M_{p,i}(u) + M_{p,k+\alpha}(u)$$

Espace de Hölder à poids

 $C_p^{k,\alpha}(\Omega)$ est le sous-ensemble de $C^{k,\alpha}(\Omega)$:

$$||u||_{C^{k,\alpha}_{p}(\Omega)} = \sum_{i=0}^{k} M_{p,i}(u) + M_{p,k+\alpha}(u)$$

οù

$$M_{p,i}(u) := \sup_{x \in \Omega} \left\{ \sigma(x)^{p+i} |D^i u(x)| \right\}$$
 et

$$M_{p,i+\alpha}(u) := \sup_{\substack{x,x' \in \Omega \\ x \neq x'}} \left\{ \min \left(\sigma(x)^{p+i+\alpha}, \sigma(x')^{p+i+\alpha} \right) \ \frac{|D^i u(x) - D^i u(x')|}{|x-x'|^{\alpha}} \right\}.$$

avec
$$\sigma(x) = (1+|x|^2)^{\frac{1}{2}}, \quad k \in \mathbb{N}, \quad \alpha \in (0,1) \quad \text{et} \quad p \in \mathbb{R}.$$

Théorème

Soit $L=\partial_i(a^{ij}(x)\partial_j)$ un opérateur différentiel linéaire uniformément elliptique sur \mathbb{R}^n tel que $a^{ij}=a^{ji}, \quad a^{ij}\in C_0^{k,\alpha}, \ \partial_i(a^{ij})=0$. Alors pour tout $p\in(0,n-2), L$ est un isomorphisme de $C_p^{k+2,\alpha}$ dans $C_{p+2}^{k,\alpha}$.

Théorème

Soit $L=\partial_i(a^{ij}(x)\partial_j)$ un opérateur différentiel linéaire uniformément elliptique sur \mathbb{R}^n tel que $a^{ij}=a^{ji}, \quad a^{ij}\in C_0^{k,\alpha}, \ \partial_i(a^{ij})=0$. Alors pour tout $p\in(0,n-2), L$ est un isomorphisme de $C_p^{k+2,\alpha}$ dans $C_{p+2}^{k,\alpha}$.

On a:

$$d\mathcal{F}_{\kappa}[u](v) = \sum_{i} \frac{\partial}{\partial x_{i}} \left(\frac{\partial F_{\kappa}}{\partial a_{ij}}(a_{u}) \partial_{j} v \right)$$

Théorème

Soit $L=\partial_i(a^{ij}(x)\partial_j)$ un opérateur différentiel linéaire uniformément elliptique sur \mathbb{R}^n tel que $a^{ij}=a^{ji}, \quad a^{ij}\in C_0^{k,\alpha}, \ \partial_i(a^{ij})=0$. Alors pour tout $p\in(0,n-2), L$ est un isomorphisme de $C_p^{k+2,\alpha}$ dans $C_{p+2}^{k,\alpha}$.

On a:

$$d\mathcal{F}_{\kappa}[u](v) = \sum_{i} \frac{\partial}{\partial x_{i}} \left(\frac{\partial F_{\kappa}}{\partial a_{ij}}(a_{u}) \partial_{j} v \right) \Rightarrow d\mathcal{N}_{\kappa}[u](v) = \frac{d\mathcal{F}_{\kappa}[u](v)}{\kappa \sigma_{\kappa}(\lambda(a_{u}))}$$

Théorème

Soit $L=\partial_i(a^{ij}(x)\partial_j)$ un opérateur différentiel linéaire uniformément elliptique sur \mathbb{R}^n tel que $a^{ij}=a^{ji}, \quad a^{ij}\in C_0^{k,\alpha}, \ \partial_i(a^{ij})=0$. Alors pour tout $p\in(0,n-2), L$ est un isomorphisme de $C_p^{k+2,\alpha}$ dans $C_{p+2}^{k,\alpha}$.

On a:

$$d\mathcal{F}_{\kappa}[u](v) = \sum_{i} \frac{\partial}{\partial x_{i}} \left(\frac{\partial F_{\kappa}}{\partial a_{ij}}(a_{u}) \partial_{j} v \right) \Rightarrow d\mathcal{N}_{\kappa}[u](v) = \frac{d\mathcal{F}_{\kappa}[u](v)}{\kappa \sigma_{\kappa}(\lambda(a_{u}))}$$

Lemme

Pour tout k>0 et pour tout $u\in C^{k+2,\alpha}_p$ κ -admissible, l'application :

$$d\mathcal{N}_{\kappa}[u]: C_{p}^{k+2,\alpha} \longrightarrow C_{p+2}^{k,\alpha}$$

est un isomorphisme.

Pour $t \in [0,1]$, nous allons considérer l'équation de continuité :

Pour $t \in [0,1]$, nous allons considérer l'équation de continuité :

$$\mathcal{N}_{\kappa}[u_t] = \frac{1}{\kappa} \log[1 + t\phi] = \frac{1}{\kappa} \log(\psi_t) \tag{4}$$

Pour $t \in [0,1]$, nous allons considérer l'équation de continuité :

$$\mathcal{N}_{\kappa}[u_t] = \frac{1}{\kappa} \log[1 + t\phi] = \frac{1}{\kappa} \log(\psi_t) \tag{4}$$

avec $\phi \in C^{0,\alpha}_{\rho+2}(\mathbb{R}^n)$ telle que $\psi_1 = \psi = 1 + \phi > 0$ et

Pour $t \in [0,1]$, nous allons considérer l'équation de continuité :

$$\mathcal{N}_{\kappa}[u_t] = \frac{1}{\kappa} \log[1 + t\phi] = \frac{1}{\kappa} \log(\psi_t) \tag{4}$$

avec $\phi \in C^{0,\alpha}_{\rho+2}(\mathbb{R}^n)$ telle que $\psi_1 = \psi = 1 + \phi > 0$ et

$$\mathcal{T} = \{t \in [0,1] \text{ tel que, il existe } \mathbf{u}_t \text{ solution } \kappa - \text{admissible de (4)} \}.$$

Pour $t \in [0,1]$, nous allons considérer l'équation de continuité :

$$\mathcal{N}_{\kappa}[u_t] = \frac{1}{\kappa} \log[1 + t\phi] = \frac{1}{\kappa} \log(\psi_t) \tag{4}$$

avec $\phi \in C^{0,\alpha}_{p+2}(\mathbb{R}^n)$ telle que $\psi_1 = \psi = 1 + \phi > 0$ et

$$\mathcal{T} = \{t \in [0,1] \text{ tel que, il existe } \mathbf{u}_t \text{ solution } \kappa - \text{admissible de (4)} \}.$$

Théorème

L'équation (3) admet une solution κ -admissible si l'ensemble \mathcal{T} est ouvert et fermé dans [0,1].

${\mathcal T}$ ouvert et fermé

T ouvert et fermé

- \bullet T est ouvert dans [0,1]
 - Si, $t \in \mathcal{T}$, alors l'opérateur linéarisé $d\mathcal{N}_{\kappa}[u_t]$ est un isomorphisme de $C_p^{2,\alpha}$ dans $C_{p+2}^{0,\alpha}$ et d'après le théorème d'inversion locale, et la κ -admissibilité étant une propriété ouverte, il existe $\epsilon > 0$ tel que $(t - \epsilon, t + \epsilon) \cap [0, 1] \subset \mathcal{T}$. Donc \mathcal{T} est relativement ouvert dans [0, 1].

$\mathcal T$ ouvert et fermé

- $oldsymbol{0}$ \mathcal{T} est ouvert dans [0,1]
 - Si, $t \in \mathcal{T}$, alors l'opérateur linéarisé $d\mathcal{N}_{\kappa}[u_t]$ est un isomorphisme de $C_p^{2,\alpha}$ dans $C_{p+2}^{0,\alpha}$ et d'après le théorème d'inversion locale, et la κ -admissibilité étant une propriété ouverte, il existe $\epsilon > 0$ tel que $(t \epsilon, t + \epsilon) \cap [0, 1] \subset \mathcal{T}$. Donc \mathcal{T} est relativement ouvert dans [0, 1].
- $\circled{\mathcal{T}}$ fermé dans [0,1]

${\mathcal T}$ ouvert et fermé

- $oldsymbol{0}$ \mathcal{T} est ouvert dans [0,1]
 - Si, $t \in \mathcal{T}$, alors l'opérateur linéarisé $d\mathcal{N}_{\kappa}[u_t]$ est un isomorphisme de $C^{2,\alpha}_{\rho}$ dans $C^{0,\alpha}_{\rho+2}$ et d'après le théorème d'inversion locale, et la κ -admissibilité étant une propriété ouverte, il existe $\epsilon > 0$ tel que $(t-\epsilon,t+\epsilon)\cap [0,1]\subset \mathcal{T}$. Donc \mathcal{T} est relativement ouvert dans [0,1].
- ② \mathcal{T} fermé dans [0,1]
 - Ce résultat suit classiquement des estimations *a priori* sur u_t pour $t \in \mathcal{T}$, construites ci-après, qui fournissent une borne sur $\|u_t\|_{\mathcal{C}^{2,\alpha}_p}$ indépendante de $t \in \mathcal{T}$

${\mathcal T}$ ouvert et fermé

- $oldsymbol{0}$ \mathcal{T} est ouvert dans [0,1]
 - Si, $t \in \mathcal{T}$, alors l'opérateur linéarisé $d\mathcal{N}_{\kappa}[u_t]$ est un isomorphisme de $C^{2,\alpha}_{\rho}$ dans $C^{0,\alpha}_{\rho+2}$ et d'après le théorème d'inversion locale, et la κ -admissibilité étant une propriété ouverte, il existe $\epsilon > 0$ tel que $(t-\epsilon,t+\epsilon)\cap [0,1]\subset \mathcal{T}$. Donc \mathcal{T} est relativement ouvert dans [0,1].
- ② T fermé dans [0,1]
 - Ce résultat suit classiquement des estimations a priori sur u_t pour $t \in \mathcal{T}$, construites ci-après, qui fournissent une borne sur $\|u_t\|_{\mathcal{C}^{2,\alpha}_p}$ indépendante de $t \in \mathcal{T}$
 - En particulier, la κ -admissibilité de u_t avec t adhérent à \mathcal{T} est a priori assurée par l'équation (4) elle-même.

Si ϕ est radiale et $u \in C^2(\mathbb{R}^n)$ nulle à l'infini solution κ -admissible de l'équation (3) alors $u(x) \equiv U(r)$ est radiale.

Si ϕ est radiale et $u \in C^2(\mathbb{R}^n)$ nulle à l'infini solution κ -admissible de l'équation (3) alors $u(x) \equiv U(r)$ est radiale.

on a:

$$\partial_{ij}u(x)=\frac{x_ix_j}{r^2}\left(\ddot{U}-\frac{\dot{U}}{r}\right)+\delta_{ij}\frac{\dot{U}}{r}.$$

Pour faire le calcul de $m_{\kappa}[\lambda(a_u)]$ au point $x \neq 0$, on se ramène par rotation au cas $x = (r, 0, \dots, 0)$. Alors, si u satisfait l'équation (3), U vérifie l'équation différentielle suivante

Si ϕ est radiale et $u \in C^2(\mathbb{R}^n)$ nulle à l'infini solution κ -admissible de l'équation (3) alors $u(x) \equiv U(r)$ est radiale.

on a:

$$\partial_{ij}u(x)=\frac{x_ix_j}{r^2}\left(\ddot{U}-\frac{\dot{U}}{r}\right)+\delta_{ij}\frac{\dot{U}}{r}.$$

Pour faire le calcul de $m_{\kappa}[\lambda(a_{\mu})]$ au point $x \neq 0$, on se ramène par rotation au cas x = (r, 0, ..., 0). Alors, si u satisfait l'équation (3), Uvérifie l'équation différentielle suivante

$$\frac{\kappa}{n}\left(\ddot{U}+1\right)\left(\frac{\dot{U}}{r}+1\right)^{\kappa-1}+\frac{n-\kappa}{n}\left(\frac{\dot{U}}{r}+1\right)^{\kappa}=1+\varphi$$

Proposition

Si ϕ est radiale avec $1+\phi>0$, alors la solution radiale U nulle à l'infini de l'équation (3) s'écrit formellement :

$$U(r) = -\int_{r}^{\infty} s \left[\left(1 + n \int_{0}^{1} \varphi(\tau s) \tau^{n-1} d\tau \right)^{\frac{1}{\kappa}} - 1 \right] ds.$$

En plus si, $u \in C^2(\mathbb{R}^n)$ solution nulle à l'infini de l'équation (3), $\phi \in C^0_{p+2}$ et $p \in (0, n-2)$, alors u(x) = U(r) et $u \in C^0_p$; précisément on a :

$$||u||_{C_p^0} \le n[p(n-2-p)]^{-1}||\phi||_{C_{p+2}^0}$$

Construction des solution radiales sup et inf

Construction de u^{\pm} Comme $\phi \in C_{p+2}^0(\mathbb{R}^n)$, il existe des constantes $0 < C_1 \le C_2$ telles que :

$$1 + \phi^+ \equiv \exp\left[-C_1\sigma(r)^{(-\rho-2)}\right] \le 1 + t\phi \le 1 + C_2\sigma(r)^{-\rho-2} \equiv 1 + \phi^-$$

Construction des solution radiales sup et inf

Construction de u^{\pm} Comme $\phi \in C_{p+2}^0(\mathbb{R}^n)$, il existe des constantes $0 < C_1 \le C_2$ telles que :

$$1 + \phi^+ \equiv \exp\left[-C_1\sigma(r)^{(-\rho-2)}\right] \le 1 + t\phi \le 1 + C_2\sigma(r)^{-\rho-2} \equiv 1 + \phi^-$$

Par construction on a:

$$1 + \phi^+ = \mathcal{N}_{\kappa}[u^+] \le \mathcal{N}_{\kappa}[u_t] = 1 + t\phi \le \mathcal{N}_{\kappa}[u^-] = 1 + \phi^-$$

Construction de u^{\pm} Comme $\phi \in C_{p+2}^0(\mathbb{R}^n)$, il existe des constantes $0 < C_1 < C_2$ telles que :

$$1 + \phi^+ \equiv \exp\left[-C_1\sigma(r)^{(-\rho-2)}\right] \le 1 + t\phi \le 1 + C_2\sigma(r)^{-\rho-2} \equiv 1 + \phi^-$$

Par construction on a:

$$1 + \phi^+ = \mathcal{N}_{\kappa}[u^+] \le \mathcal{N}_{\kappa}[u_t] = 1 + t\phi \le \mathcal{N}_{\kappa}[u^-] = 1 + \phi^-$$

donc d'après la principe de comparaison et la κ -admissibilité de u^\pm on obtient :

$$u^- \le u_t \le u^+$$

Construction des solution radiales sup et inf

Construction de u^{\pm} Comme $\phi \in C_{p+2}^0(\mathbb{R}^n)$, il existe des constantes $0 < C_1 \le C_2$ telles que :

$$1 + \phi^+ \equiv \exp\left[-C_1\sigma(r)^{(-\rho-2)}\right] \le 1 + t\phi \le 1 + C_2\sigma(r)^{-\rho-2} \equiv 1 + \phi^-$$

Par construction on a:

$$1 + \phi^+ = \mathcal{N}_{\kappa}[u^+] \le \mathcal{N}_{\kappa}[u_t] = 1 + t\phi \le \mathcal{N}_{\kappa}[u^-] = 1 + \phi^-$$

donc d'après la principe de comparaison et la κ -admissibilité de u^\pm on obtient :

$$u^- \le u_t \le u^+$$

et d'après la proposition précédente on obtient l'estimation C_p^0

Estimation d'ordre 2 sans poids

Soit $\xi \in \mathbb{R}^n$ tel que $|\xi| = 1$ et on note par $\partial_{\xi} = \sum \xi_i \partial_{x_i}$.

Estimation d'ordre 2 sans poids

Soit $\xi \in \mathbb{R}^n$ tel que $|\xi|=1$ et on note par $\partial_\xi = \sum \xi_i \partial_{x_i}.$ On a :

$$N_{\kappa}[a_{u_t}] := \mathcal{N}_{\kappa}[u_t] = \frac{1}{\kappa}\log(\psi_t)$$

Estimation d'ordre 2 sans poids

Soit $\xi \in \mathbb{R}^n$ tel que $|\xi|=1$ et on note par $\partial_\xi = \sum \xi_i \partial_{x_i}.$ On a :

$$N_{\kappa}[a_{u_t}] := \mathcal{N}_{\kappa}[u_t] = \frac{1}{\kappa}\log(\psi_t)$$

$$\underbrace{\frac{\partial^2 N_{\kappa}}{\partial a_{ij}\partial a_{kl}}\partial_{\xi}(u_t)_{ij}\partial_{\xi}(u_t)_{kl}}_{<0} + \frac{\partial N_{\kappa}}{\partial a_{ij}}\partial_{\xi\xi}(u_t)_{ij} = \frac{1}{\kappa}\partial_{\xi\xi}\log(\psi_t)$$

Estimation d'ordre 2 sans poids

$$L(\partial_{\xi\xi}(u_t)) := \frac{\partial N_{\kappa}}{\partial a_{jj}} \partial_{\xi\xi}(u_t)_{ij} \ge \frac{1}{\kappa} \partial_{\xi\xi} \log(\psi_t)$$
 (5)

$$L(\partial_{\xi\xi}(u_t)) := \frac{\partial N_{\kappa}}{\partial a_{ii}} \partial_{\xi\xi}(u_t)_{ij} \ge \frac{1}{\kappa} \partial_{\xi\xi} \log(\psi_t)$$
 (5)

On diagonalise $D^2u_t(x)$, on pose $\lambda_i=1+(u_t)_{ii}$ on obtient :

$$L(u_t) = \kappa - (n - \kappa + 1) \frac{\sigma_{\kappa - 1}}{\sigma_{\kappa}}.$$
 (6)

$L(\partial_{\xi\xi}(u_t)) := \frac{\partial N_{\kappa}}{\partial a_{ii}} \partial_{\xi\xi}(u_t)_{ij} \ge \frac{1}{\kappa} \partial_{\xi\xi} \log(\psi_t) \tag{5}$

On diagonalise $D^2u_t(x)$, on pose $\lambda_i=1+(u_t)_{ii}$ on obtient :

$$L(u_t) = \kappa - (n - \kappa + 1) \frac{\sigma_{\kappa - 1}}{\sigma_{\kappa}}.$$
 (6)

D'après (5) et (6) l'inégalité $L\tilde{w_t} \leq 0$ entraine au point x_0 :

$$rac{1}{\kappa}(\log(\psi_t))_{\scriptscriptstyle 11} - \kappa + (n-\kappa+1)rac{\sigma_{\kappa-1}}{\sigma_{\kappa}} \leq 0$$

$L(\partial_{\xi\xi}(u_t)) := \frac{\partial N_{\kappa}}{\partial a_{ii}} \partial_{\xi\xi}(u_t)_{ij} \ge \frac{1}{\kappa} \partial_{\xi\xi} \log(\psi_t) \tag{5}$

On diagonalise $D^2u_t(x)$, on pose $\lambda_i=1+(u_t)_{ii}$ on obtient :

$$L(u_t) = \kappa - (n - \kappa + 1) \frac{\sigma_{\kappa - 1}}{\sigma_{\kappa}}.$$
 (6)

D'après (5) et (6) l'inégalité $L\tilde{w}_t \leq 0$ entraine au point x_0 :

$$\frac{1}{\kappa}(\log(\psi_t))_{11} - \kappa + (n - \kappa + 1)\frac{\sigma_{\kappa-1}}{\sigma_{\kappa}} \le 0$$

Inégalité de Newton pour σ_{κ}

On obtient au point x_0 : $\sigma_1 \leq C$

Lemme

Il existe une constante C>0 indépendante de $t\in[0,1]$ telle que, pour tout vecteur unitaire ξ et tout $x\in\mathbb{R}^n$,

$$|\partial_{\xi\xi}u_t(x)|\leq C.$$

Estimation d'ordre 2 sans poids

Lemme

Il existe une constante C>0 indépendante de $t\in[0,1]$ telle que, pour tout vecteur unitaire ξ et tout $x\in\mathbb{R}^n$,

$$|\partial_{\xi\xi}u_t(x)|\leq C.$$

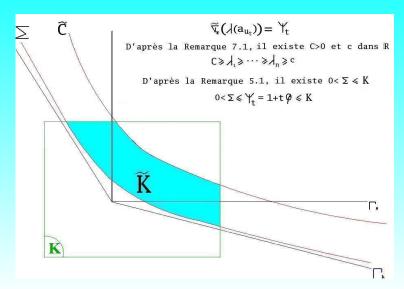
Pour finir, on prend $\partial_{\xi} = \frac{1}{\sqrt{2}} (\partial_i \pm \partial_j)$ pour $i \neq j$ et on conclut que :

Proposition

 $\exists \textit{C} \textit{ indépendante de } t \in [0,1] \textit{ telle que :}$

$$|(u_t)_{ii}| \leq C.$$

Ellipticité uniforme



Lemme

Soit $x_0 \in R^n$ fixé, soit $X = \frac{x - x_0}{\sigma(x_0)}$ et soit $0 < \rho < 1$ on définit les boules:

$$B_{\rho} = \{X \in R^n, |X| \le \rho\} \ .$$

 $\forall u \in C_p^{k,\alpha}$, associons à u la fonction :

$$X \in B_{\rho} \longmapsto u_{x_0}(X) = [\sigma(x_0)]^{\rho} u(x)$$

La norme $\sup_{x_0 \in R^n} \|u_{x_0}\|_{C^{k,\alpha}(B_\rho)}$ est équivalente à la norme $\|u\|_{C^{k,\alpha}_\rho}$

Pour $u\in C^4_p(\mathbb{R}^n)$ κ -admissible et $f=\mathcal{N}_\kappa[u]\in C^2_{p+2}(\mathbb{R}^n)$, on définit sur B_ρ les deux fonctions :

$$u_{x_0}(X) := [\sigma(x_0)]^p u(x) , f_{x_0}(X) := [\sigma(x_0)]^{p+2} \mathcal{N}_{\kappa}[u](x)$$

Pour $u\in C^4_p(\mathbb{R}^n)$ κ -admissible et $f=\mathcal{N}_\kappa[u]\in C^2_{p+2}(\mathbb{R}^n)$, on définit sur B_ϱ les deux fonctions :

$$u_{x_0}(X) := [\sigma(x_0)]^p u(x) , f_{x_0}(X) := [\sigma(x_0)]^{p+2} \mathcal{N}_{\kappa}[u](x)$$

En outre:

$$d\mathcal{N}_{x_0}[u_{x_0}](v)(X) = \frac{\sum \frac{\partial F_{\kappa}}{\partial a_{ij}}(a_u)(x)v_{ij}(X)}{\kappa \sigma_{\kappa}\left(\lambda(a_u(x))\right)}$$

Pour $u\in C^4_p(\mathbb{R}^n)$ κ -admissible et $f=\mathcal{N}_\kappa[u]\in C^2_{p+2}(\mathbb{R}^n)$, on définit sur B_ρ les deux fonctions :

$$u_{x_0}(X) := [\sigma(x_0)]^p u(x) , f_{x_0}(X) := [\sigma(x_0)]^{p+2} \mathcal{N}_{\kappa}[u](x)$$

En outre:

Estimation pondérée

$$d\mathcal{N}_{x_0}[u_{x_0}](v)(X) = \frac{\sum \frac{\partial F_{\kappa}}{\partial a_{ij}}(a_u)(x)v_{ij}(X)}{\kappa \sigma_{\kappa}\left(\lambda(a_u(x))\right)}$$

il existe des constantes C et $\alpha \in (0,1)$ dépendant seulement de n, λ et Λ telles que:

$$||u_{x_0}||_{C^{2,\alpha}(B_\rho)}^* \le C\{||f_{x_0}||_{C^2(B_\rho)}^* + ||u_{x_0}||_{C^2(B_\rho)}^*\}$$

Pour $u\in C^4_p(\mathbb{R}^n)$ κ -admissible et $f=\mathcal{N}_\kappa[u]\in C^2_{p+2}(\mathbb{R}^n)$, on définit sur B_ϱ les deux fonctions :

$$u_{x_0}(X) := [\sigma(x_0)]^p u(x) , f_{x_0}(X) := [\sigma(x_0)]^{p+2} \mathcal{N}_{\kappa}[u](x)$$

En outre:

$$d\mathcal{N}_{x_0}[u_{x_0}](v)(X) = \frac{\sum \frac{\partial F_{\kappa}}{\partial a_{ij}}(a_u)(x)v_{ij}(X)}{\kappa \sigma_{\kappa}\left(\lambda(a_u(x))\right)}$$

il existe des constantes C et $\alpha \in (0,1)$ dépendant seulement de n, λ et Λ telles que:

$$||u_{x_0}||_{C^{2,\alpha}(B_\rho)}^* \le C\{||f_{x_0}||_{C^2(B_\rho)}^* + ||u_{x_0}||_{C^2(B_\rho)}^*\}$$

$$\|v\|_{C^{2,\alpha}(B_{\rho})}^{*} = \|v\|_{C^{2}(B_{\rho})}^{*} + \sup_{x,x' \in B_{\rho}} d_{x,x'}^{2+\alpha} \frac{|D^{2}v(x) - D^{2}v(x')|}{|x - x'|^{\alpha}}$$

avec
$$d_x = dist(x, \partial B_\rho), d_{x,x'} = min(d_x, d_{x'})$$

D'après l'inégalité d'interpolation, on obtient avec une autre constante uniforme ${\it C}$

$$||u_{x_0}||_{C^{2,\alpha}(B_\rho)}^* \le C\{||f_{x_0}||_{C^2(B_\rho)}^* + ||u_{x_0}||_{C^0(B_\rho)}\}.$$

D'après l'inégalité d'interpolation, on obtient avec une autre constante uniforme ${\cal C}$

$$||u_{x_0}||_{C^{2,\alpha}(B_\rho)}^* \le C\{||f_{x_0}||_{C^2(B_\rho)}^* + ||u_{x_0}||_{C^0(B_\rho)}\}.$$

Si Ω borné, $\Omega' \subset\subset \Omega$, $\theta=dist(\Omega',\partial\Omega)$ et $\varrho=\frac{1}{2}diam\Omega$, alors pour toute fonction $v\in C^{2,\alpha}(\Omega)$

$$\min(1,\theta^{2+\alpha})\|v\|_{C^{2,\alpha}(\Omega')} \leq \|v\|_{C^{2,\alpha}(\Omega)}^* \ \ \text{et} \ \ \|v\|_{C^2(\Omega)}^* \leq \max(1,4\varrho^2)\|v\|_{C^2(\Omega)}$$

Estimation pondérée

Estimation $C_p^{2,\alpha}$

D'après l'inégalité d'interpolation, on obtient avec une autre constante uniforme ${\it C}$

$$||u_{x_0}||_{C^{2,\alpha}(B_\rho)}^* \le C\{||f_{x_0}||_{C^2(B_\rho)}^* + ||u_{x_0}||_{C^0(B_\rho)}\}.$$

Si Ω borné, $\Omega' \subset\subset \Omega$, $\theta = dist(\Omega', \partial\Omega)$ et $\varrho = \frac{1}{2} diam\Omega$, alors pour toute fonction $v \in C^{2,\alpha}(\Omega)$

$$\min(1,\theta^{2+\alpha})\|v\|_{C^{2,\alpha}(\Omega')} \leq \|v\|_{C^{2,\alpha}(\Omega)}^* \ \ \text{et} \ \ \|v\|_{C^2(\Omega)}^* \leq \max(1,4\varrho^2)\|v\|_{C^2(\Omega)}$$

donc on obtient ici avec $\Omega=B_{\rho}$ et $\Omega'=B_{\rho/2}$ et avec une autre constante uniforme C dépendant de ϱ mais pas de x_0 :

$$||u_{x_0}||_{C^{2,\alpha}(B_{\rho/2})} \le C\{||f_{x_0}||_{C^2(B_{\rho})} + ||u_{x_0}||_{C^0(B_{\rho})}\}$$

D'après l'inégalité d'interpolation, on obtient avec une autre constante uniforme ${\it C}$

$$||u_{x_0}||_{C^{2,\alpha}(B_\rho)}^* \le C\{||f_{x_0}||_{C^2(B_\rho)}^* + ||u_{x_0}||_{C^0(B_\rho)}\}.$$

Si Ω borné, $\Omega' \subset\subset \Omega$, $\theta=dist(\Omega',\partial\Omega)$ et $\varrho=\frac{1}{2}diam\Omega$, alors pour toute fonction $v\in C^{2,\alpha}(\Omega)$

$$\min(1,\theta^{2+\alpha})\|v\|_{C^{2,\alpha}(\Omega')} \leq \|v\|_{C^{2,\alpha}(\Omega)}^* \ \text{et} \ \|v\|_{C^2(\Omega)}^* \leq \max(1,4\varrho^2)\|v\|_{C^2(\Omega)}$$

donc on obtient ici avec $\Omega=B_{\rho}$ et $\Omega'=B_{\rho/2}$ et avec une autre constante uniforme C dépendant de ϱ mais pas de x_0 :

$$||u_{x_0}||_{C^{2,\alpha}(B_{\rho/2})} \le C\{||f_{x_0}||_{C^2(B_{\rho})} + ||u_{x_0}||_{C^0(B_{\rho})}\}$$

Prenant le $\sup_{x_0 \in \mathbb{R}^n}$, nous obtenons (encore avec un autre uniforme constante C)

$$||u||_{C_p^{2,\alpha}} \le C \left\{ ||\mathcal{N}_{\kappa}[u]||_{C_{p+2}^2} + ||u||_{C_p^0} \right\}.$$

Equations hessiennes complexes

Les équations hessienne complexes dans tout \mathbb{C}^n :

$$m_{\kappa}[\lambda(\partial_{i\bar{j}}f(z))] = [\psi(z,\bar{z})]^{\frac{1}{\kappa}} > 0$$
 (7)

Merci

Merci

pour

votre

attention

