Structuring 3D Geometry based on Symmetry and Instancing Information

Aurelien MARTINET

May 14, 2007

Aurelien MARTINET Structuring 3D Geometry

< 4 → < 三

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

3D Geometry Representation

Question

How can these objects be represented in a computer ?

Image: A mathematical states and a mathem

Introduction Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions 3D Geometry Representation Generalities Motivations Approach Contributions

• 3D Geometry represented as a collection of polygons

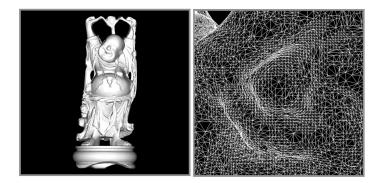
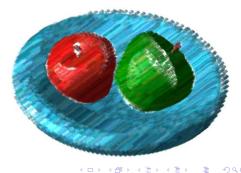


Image: A mathematical states and a mathem


Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

3D Geometry Treatements

Rendering

- Animation
- Editing

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

3D Geometry Treatements

- Rendering
- Animation
- Editing

・ロット (雪) () () (

Э

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

3D Geometry Treatements

- Rendering
- Animation
- Editing

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Motivations Observations

Fact

Structure of Geometry is a key to Efficiency

- Improve rendering speed
- Reduce memory usage

• . . .

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Motivations Observations

Fact

3D Geometry is often unstructured

€

Structural Information is not accessible

Raises two important questions:

- What is Structural Information ?
- Why is it not accessible ?

Image: A math a math

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Motivations Observations

Fact

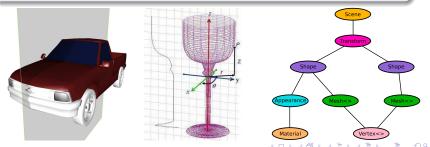
3D Geometry is often unstructured

€

Structural Information is not accessible

Raises two important questions:

- What is Structural Information ?
- Why is it not accessible ?


Image: A math a math

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Structural Information

Generalities

- In Computer Graphics:
 - Symmetry Group of a Shape
 - Parameters of a Revolution Surface
 - Scene-Graph
 - . . .

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Accessibility of Structural Information

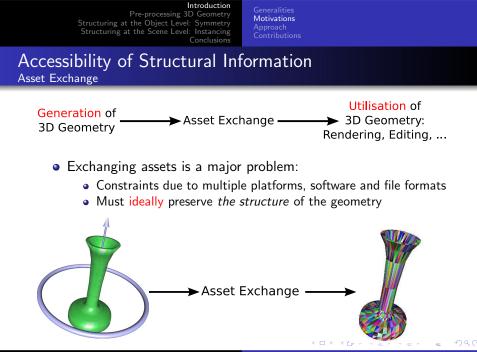
Fact

Structural Information is not accessible

Sources of Problems

- Asset Exchange
- Non-Interactive Modeling Techniques

Image: A math a math


Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Accessibility of Structural Information Asset Exchange

• Exchanging assets is a major problem:

- Constraints due to multiple platforms, software and file formats
- Must ideally preserve the structure of the geometry

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Accessibility of Structural Information Non-Interactive Modeling Techniques

Pros

Reach High-Complexity

Cons

Unstructured Output

・ロン ・回 と ・ ヨン・

Aurelien MARTINET Structuring 3D Geometry

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Accessibility of Structural Information Non-Interactive Modeling Techniques

Pros

Reach High-Complexity

Cons

Unstructured Output

Image: A mathematical states and a mathem

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Structural Information Scene and Objects

Structural Information as a two-scale notion:

- Object Level
- Scene Level

Image: A math a math

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Approach Pipeline and Outline

• A three-stage pipeline:

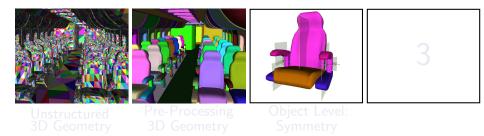
Unstructured 3D Geometry

(日)

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Approach Pipeline and Outline

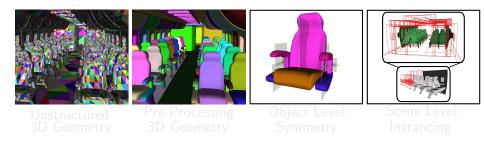
• A three-stage pipeline:



Unstructured 3D Geometry Pre-Processing 3D Geometry

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Approach Pipeline and Outline


• A three-stage pipeline:

Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions Generalities Motivations Approach Contributions

Approach Pipeline and Outline

• A three-stage pipeline:

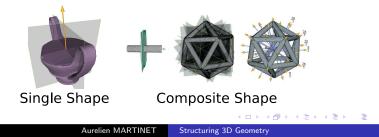

(日)

Generalities Motivations Approach Contributions

Contributions

A new way of partitioning unstructured geometry

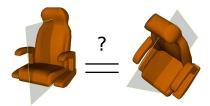
- Original methods to compute Symmetries of 3D Shapes
 - Algorithm for single shapes
 - Algorithm for composite shapes
- A new shape congruency descriptor
- Original method to represent 3D geometry as a hierarchy of instances


• • • • • • • •

Generalities Motivations Approach Contributions

Contributions

- A new way of partitioning unstructured geometry
- Original methods to compute Symmetries of 3D Shapes
 - Algorithm for single shapes
 - Algorithm for composite shapes
- A new shape congruency descriptor


Original method to represent 3D geometry as a hierarchy of instances

Generalities Motivations Approach Contributions

Contributions

- A new way of partitioning unstructured geometry
- Original methods to compute Symmetries of 3D Shapes
 - Algorithm for single shapes
 - Algorithm for composite shapes
- A new shape congruency descriptor
- Original method to represent 3D geometry as a hierarchy of instances

Generalities Motivations Approach Contributions

Contributions

- A new way of partitioning unstructured geometry
- Original methods to compute Symmetries of 3D Shapes
 - Algorithm for single shapes
 - Algorithm for composite shapes
- A new shape congruency descriptor
- Original method to represent 3D geometry as a hierarchy of instances

Objective Tiles: Definition and Construct Examples Summary

Objective

Question

What is an Object ?

Generalities

- Ill-Defined Notion
- Large Number of Possibilities

In this thesis, we define Objects as Tiles

Image: A math a math

Objective Tiles: Definition and Construct Examples Summary

Objective

Question

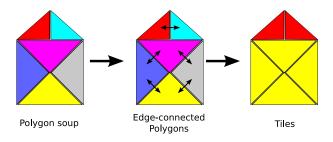
What is an Object ?

Generalities

- Ill-Defined Notion
- Large Number of Possibilities

In this thesis, we define Objects as Tiles

Image: A math a math


Objective Tiles: Definition and Construction Examples Summary

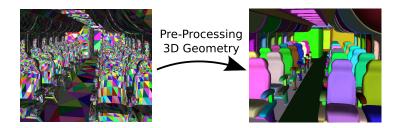
< 4 P > < E

Tiles: Definition and Construction

Definition

A tile is a maximal set of edge-connected polygons

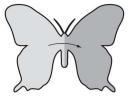
Objective Tiles: Definition and Construction Examples Summary


Examples of Tiles Decomposition

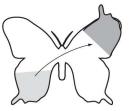
Aurelien MARTINET Structuring 3D Geometry

Objective Tiles: Definition and Construction Examples Summary

Summary


- Polygon Soup is now a Set of Tiles
- Next step is to compute the Symmetries of each Tile.

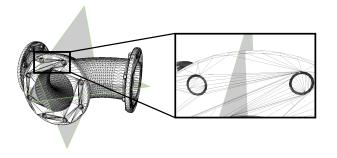
Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary


Problem Statement

Objectives

- Detect global symmetries of a 3D Shape
- Independent of Shape Tesselation

Global Symmetry


Local Symmetry

< D > < A > < B >

Problem Statement

Objectives

- Detect global symmetries of a 3D Shape
- Independent of Shape Tesselation

< □ > < 同 >

Problem Statement

Definition

Finding a symmetry of a shape S is equivalent to find an isometry $A = (\mathbf{X}, \alpha)$, such that:

AS = S

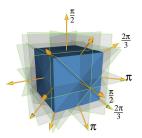


Image: A mathematical states and a mathem

Problem Statement

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

(日)

э

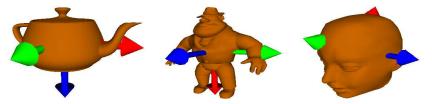
Question

How efficiently found parameters of symmetries of a 3D Shape ?

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

< □ > < 同 >

Our approach extends PCA-Based Approach:


- What is PCA-Based Approach ?
- What are its limitations ?
- Our approach: The Generalized Moment Functions

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Image: A mathematical states and a mathem

PCA-Based Approach

- Principal Component Analysis (PCA)
 - Used to affect a local frame to a 3D Shape,
 - called Principal Axes

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Image: A math a math

PCA-Based Approach

Fundamental Idea [Minovic, 1993] ω is a Symmetry Axis of S ψ \Leftrightarrow ω is a Principal Axis of S

The Method

- Compute principal axes of the shape
- Oneck each axis for a symmetry

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

(日)

PCA-Based Approach

Problems

What happends if principal axes are not uniquely defined ?

Properties of Principal Axes

- Along direction of maximum variance
- Unicity only if extrema are strict

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary


PCA-Based Approach

Problems

What happends if principal axes are not uniquely defined ?

Properties of Principal Axes

- Along direction of maximum variance
- Unicity only if extrema are strict

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

The Generalized Moment Functions

Variance Function *a.k.a.* Moment of Order 2

Generalized Moment of Order k

(日) (同) (三) (

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

The Generalized Moment Functions

Aurelien MARTINET Structuring 3D Geometry

	Introduction Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Structuring at the Scene Level: Instancing Conclusions	Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary
--	--	--

Definition

Property 1 of \mathcal{M}^k

Isometry A is a symmetry of S

↓ \$

Isometry A is a symmetry of \mathcal{M}^k , for all k

Strategy

Candidates Symmetries are Symmetries of \mathcal{M}^k , for all k

2) Check candidates on the shape ${\mathcal S}$

Introduction	Problem Statement
Pre-processing 3D Geometry	The Generalized Moment Functions
Structuring at the Object Level: Symmetry	Symmetries of the Generalized Moment Functions
Structuring at the Scene Level: Instancing	Symmetries of the 3D Shape
Conclusions	Summary

Definition

Property 1 of \mathcal{M}^k

Isometry A is a symmetry of S $\downarrow \quad \clubsuit$

Isometry A is a symmetry of \mathcal{M}^k , for all k

Strategy

- Candidates Symmetries are Symmetries of \mathcal{M}^k , for all k
- 2 Check candidates on the shape ${\mathcal S}$

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

(日) (同) (三) (三)

Determination of the Axis of Symmetry

Property 2

 $\boldsymbol{\omega}$ is a symmetry axis of \mathcal{M}^k

$$\|\nabla \mathcal{M}^k(\boldsymbol{\omega})\|^2 = 0$$

Potential Symmetry Axis $oldsymbol{\omega}$ of the Shape by solving:

 $orall k \ \ (oldsymbol
abla \mathcal M^k)(oldsymbol \omega) = oldsymbol 0$

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

< □ > < 同 >

Determination of the Axis of Symmetry Efficient Computation

- Closed-form expression of \mathcal{M}^k for k even
- Using Spherical Harmonic (SH) Basis


$$\mathcal{M}^{2p}(\omega) = \int_{\mathbf{s}\in\mathcal{S}} \|\mathbf{s}\times\omega\|^{2p} \,\mathrm{d}\mathbf{s}$$
$$= \sum_{l=0}^{p} \sum_{m=-2l}^{2l} C_{l}^{m} Y_{2l}^{m}(\omega)$$

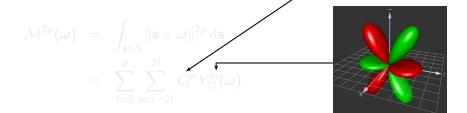

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Image: A math a math

Determination of the Axis of Symmetry Efficient Computation

• Using Spherical Harmonic (SH) Basis

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

< A²

Determination of Symmetry Parameters

Property 3

Symmetries of \mathcal{M}^{2p} are obtained by *testing* SH coefficients.

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

(日)

Determination of Symmetry Parameters Example: Testing Revolution-Symmetry

Question

Has \mathcal{M}^{2p} a revolution-symmetry around axis **n** ?

We use the following powerful property:

Property

A Moment Function has a revolution-symmetry around z-axis if:

$$\forall I \quad \forall m \quad m \neq 0 \Rightarrow C_I^m = 0$$

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Image: A math a math

Determination of Symmetry Parameters Example: Testing Revolution-Symmetry

Question

Has \mathcal{M}^{2p} a revolution-symmetry around axis **n** ?

We use the following powerful property:

Property

A Moment Function has a revolution-symmetry around z-axis if:

$$\forall I \quad \forall m \quad m \neq 0 \Rightarrow C_I^m = 0$$

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Image: A math a math

Determination of Symmetry Parameters Example: Testing Revolution-Symmetry

Lead to a simple 2-step method:

- **()** Rotate \mathcal{M}^{2p} to align axis **n** on **z**
- Test the nullity of the "new" coefficients C^m_l (up to a threshold)

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Determination of Symmetry Parameters

• Equivalent properties exist for:

- Planar symmetries,
- fixed-angle rotational symmetries

Last step is to check candidates on the 3D shape ${\mathcal S}$

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Determination of Symmetry Parameters

• Equivalent properties exist for:

- Planar symmetries,
- fixed-angle rotational symmetries

Last step is to check candidates on the 3D shape ${\mathcal S}$

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Testing a symmetry on a 3D Shape

- Define a Symmetry Measure
- Symmetries defined up to a threshold
- Allow approximate symmetries.

< D > < A > < B >

-act

Testing a symmetry on S is costly.

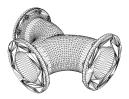
Symmetry Measure only computed for few candidates

Problem Statement The Generalized Moment Functions Symmetries of the Generalized Moment Functions Symmetries of the 3D Shape Summary

Testing a symmetry on a 3D Shape

- Define a Symmetry Measure
- Symmetries defined up to a threshold
- Allow approximate symmetries.

Image: A mathematical states and a mathem

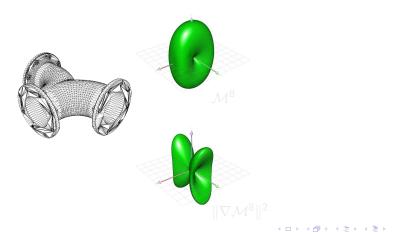

Fact

• Testing a symmetry on S is costly.

• Symmetry Measure only computed for few candidates

Introduction	Problem Statement
Pre-processing 3D Geometry	The Generalized Moment Functions
Structuring at the Object Level: Symmetry	Symmetries of the Generalized Moment Functions
Structuring at the Scene Level: Instancing	Symmetries of the 3D Shape
Conclusions	Summary

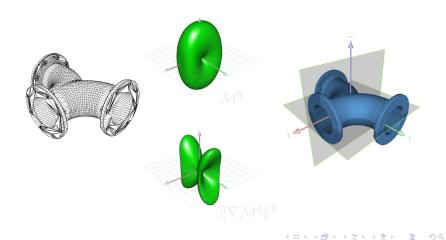
Results Complete Example



э

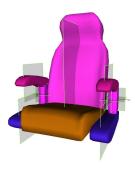
▲ 御 ▶ ▲ 臣

|--|


Results Complete Example

æ

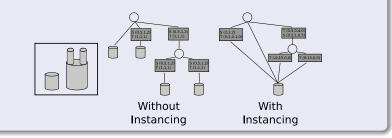
Pre-processing 3D Geometry Structuring at the Object Level: Symmetry Symmetries of the Generalized Moment Functions


Results Complete Example

'≣ ▶

Introduction	Problem Statement
Pre-processing 3D Geometry	The Generalized Moment Functions
Structuring at the Object Level: Symmetry	Symmetries of the Generalized Moment Functions
Structuring at the Scene Level: Instancing	Symmetries of the 3D Shape
Conclusions	Summary

- Each tile (object) is structured using symmetry information
- Last step is to compute a representation of the geometry as a Hierarchy of Instances.


Introduction

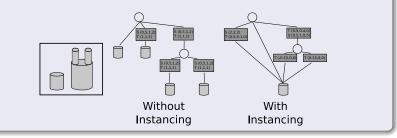
Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Hierarchical Instantiation

Instantiation

Factorize repeated geometry

Hierarchical Instantiation Extend Instantiation at multiple scales Aurelien MARTINET Structuring 3D Geometry


Introduction

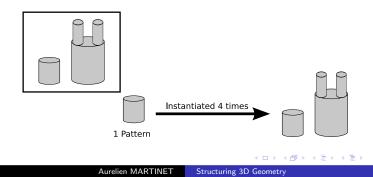
Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Hierarchical Instantiation

Instantiation

Factorize repeated geometry

Hierarchical Instantiation Extend Instantiation at multiple scales


Introduction

Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Patterns and Instances

Definition

- A pattern is a generic set of objects,
- represented in the scene by *its instances*.
- Per instance attributes: Transformation matrix

Introduction

Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Utility of Instancing Information

Rendering

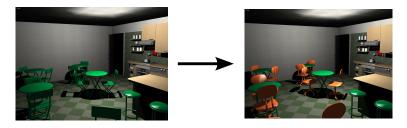
Geometry Editing

H.Radiosity (119mn/123MB)

H.Instantiation (14mn/8MB)

Image: A mathematical states and a mathem

Introduction

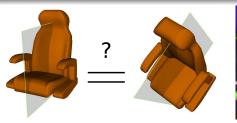

Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

< 4 ₽ > < E

Utility of Instancing Information

Rendering

• Geometry Editing

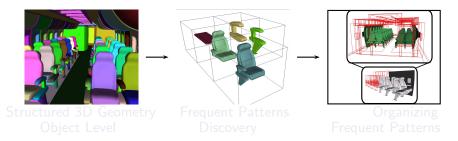


Introduction
Pre-processing 3D Geometry
Structuring at the Object Level: Symmetry
Structuring at the Scene Level: Instancing
Conclusions
C

Overview

Input data

- Set of Tiles
- Class of Congruency
 - Congruent Descriptor (see manuscript)
 - Derived from \mathcal{M}^{2p}



(日) (同) (三) (

Overview

Introduction Overview Step 1: Frequent Pattern Discov Step 2: Organizing frequent pat Results

A two-step approach:

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

イロト イポト イヨト イヨ

Problem Definition

Definition

The *frequency* of a pattern is equal to the number of its (possibly overlaping) instances

Objective

Given a threshold *f*, identify all patterns *P* which frequency is greater or equal to *f*.

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A math a math

Problem Definition

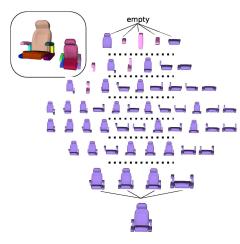
Definition

The *frequency* of a pattern is equal to the number of its (possibly overlaping) instances

Objective

Given a threshold f, identify all patterns P which frequency is greater or equal to f.

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results


Approach

Two potential approaches

Agglomerative Approach

- Progressively grow up a pattern
- Efficient traversal of the search space
- Exponential Complexity

Symmetry-Based Approach

(日)

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Approach

Two potential approaches

Agglomerative Approach

- Progressively grow up a pattern
- Efficient traversal of the search space
- Exponential Complexity

Symmetry-Based Approach

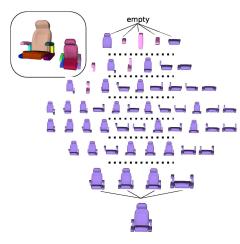
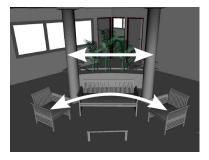



Image: A math a math

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

・ロッ ・ 同 ・ ・ ヨ ・ ・

Symmetry-Based Approach Basic assumption

Fact

Two instances of a pattern form a local symmetry.

Aurelien MARTINET Structuring 3D Geometry

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

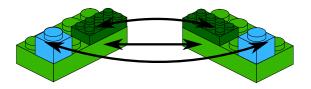
Image: A mathematical states and a mathem

Symmetry-based approach

Strategy

Set of Frequent Patterns

\updownarrow

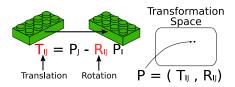

Local Symmetries of the Scene

Aurelien MARTINET Structuring 3D Geometry

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A math a math

Symmetry-Based Approach


Overview

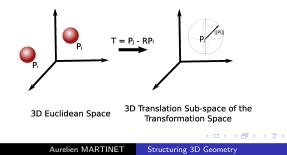
- Consider each couple of congruent tiles
- Compute the transformation that map one tile to the other
- Add the corresponding point in the Transformation Space

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A mathematical states and a mathem

Symmetry-Based Approach

Overview

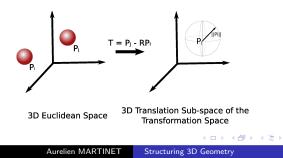

- Consider each couple of congruent tiles
- Compute the transformation that map one tile to the other
- Add the corresponding point in the Transformation Space

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Symmetry-Based Approach

The Transformation Space

- For a couple of tiles, transformation is not unique:
 - Discrete symmetries *i.e.* rotation or planar symmetries.
 - continuous symmetries:

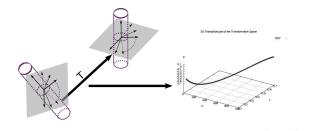


Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Symmetry-Based Approach

The Transformation Space

- For a couple of tiles, transformation is not unique:
 - Discrete symmetries *i.e.* rotation or planar symmetries.
 - continuous symmetries:
 - spherical symmetries,
 - cylindrical symmetries.



Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Symmetry-Based Approach

The Transformation Space

- For a couple of tiles, transformation is not unique:
 - Discrete symmetries *i.e.* rotation or planar symmetries.
 - continuous symmetries:
 - spherical symmetries,
 - cylindrical symmetries.

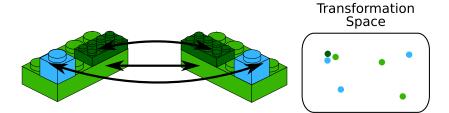
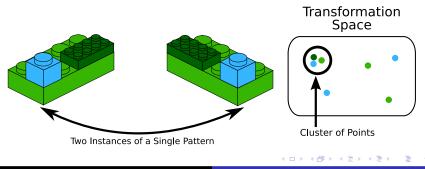

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A mathematical states and a mathem

Symmetry-Based Approach

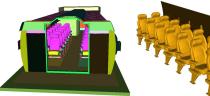
Forming patterns

- Each point of the Transformation Space contains an information of mapping between two tiles,
- Local symmetries are obtained by clustering points



Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Symmetry-Based Approach


Forming patterns

- Each point of the Transformation Space contains an information of mapping between two tiles,
- Local symmetries are obtained by *clustering points*

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Frequent Patterns: Results

# Tiles	480
Frequency Threshold	2
Runtime (secs)	1.4
# Frequent Patterns	65

tiles = 66 Freq = 4

(日)

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

(日) (同) (三) (

Summary of Contributions

Identify the "hardness" of the problem

A new approach to generate frequent patterns

Not presented in this talk (see manuscript):

- Analytic expression of curve equation for continuous symmetry
- Method to reduce the number of mappings

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

(日)

Summary of Contributions

- Identify the "hardness" of the problem
- A new approach to generate frequent patterns
- In the second second
 - Analytic expression of curve equation for continuous symmetry
 - Method to reduce the number of mappings

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A math a math

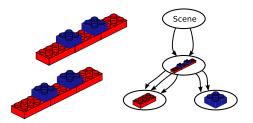
Summary of Contributions

- Identify the "hardness" of the problem
- A new approach to generate frequent patterns
- On the presented in this talk (see manuscript):
 - Analytic expression of curve equation for continuous symmetry
 - Method to reduce the number of mappings

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A math a math

Summary of Contributions


- Identify the "hardness" of the problem
- A new approach to generate frequent patterns
- On the presented in this talk (see manuscript):
 - Analytic expression of curve equation for continuous symmetry
 - Method to reduce the number of mappings

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Problem Statement

Goal

- Obtain a hierarchy of instances
- Represented as a Hierarchy Assembly Graph (HAG)

- Directed Acyclic Graph
- Each node is a pattern

Image: A mathematical states and a mathem

• Each edge carries geometric transformation

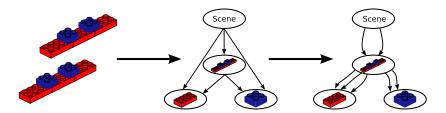
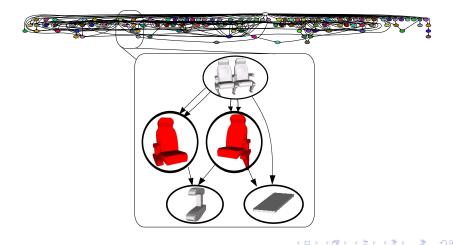

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A math a math

HAG Construction


HAG Construction

- Represent inclusion between frequent patterns
- Pick a *reference instance* for each pattern
- Compute the appropriate transform by iterating through edges

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

HAG Construction Example: The Plane Model

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

< D > < A > < B >

HAG Construction

Observation

A HAG with overlap nodes is hardly usable

Overlapping Problems

- Multiple rendering of overlaped parts
- Inefficient for memory reduction
- Geometry editing is much more difficult

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A mathematical states and a mathem

HAG Construction

Observation

A HAG with overlap nodes is hardly usable

Overlapping Problems

- Multiple rendering of overlaped parts
- Inefficient for memory reduction
- Geometry editing is much more difficult

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

< D > < P > < P > <</p>

Deriving a usable Hierarchy of Instances

- Usable Hierarchy : Hierarchy with no-overlap
- Some choices must be made
- This process is Application-Dependent

Example

• Hierarchy of Instances optimized for Ray-Tracing

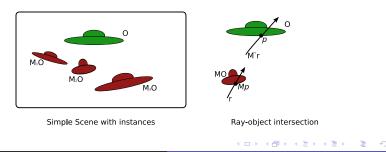
Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A math a math

Deriving a usable Hierarchy of Instances

- Usable Hierarchy : Hierarchy with no-overlap
- Some choices must be made
- This process is Application-Dependent

Example


• Hierarchy of Instances optimized for Ray-Tracing

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Deriving a usable Hierarchy of Instances Ray-Tracing

Generalities

- Ray-Tracing naturally allows instancing
- Load a single pattern per instance
- Reduce part of the geometry loaded in memory

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A mathematical states and a mathem

Deriving a usable Hierarchy of Instances Ray-Tracing

If considering whole scene itself as a Pattern of frequency 1:

Hierarchy of Instances optimized for Ray-Tracing

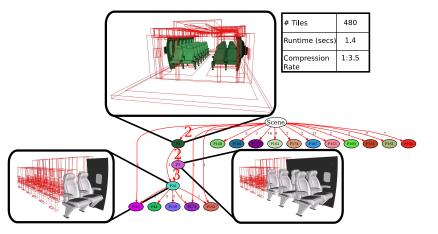
\updownarrow

Reduce storage cost C(P) of each pattern P

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A math a math

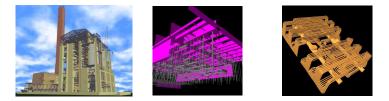
Deriving a usable Hierarchy of Instances Ray-Tracing


Strategy

- Bottom-Up Approach
- For each pattern P:
 - $\min C(P)$ constrained by non-overlap
- Such problem is *NP*-complete
- Need an approximation algorithm: greedy approach

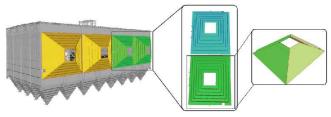
Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

(日)


Deriving a usable Hierarchy of Instances Example: Plane Model

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Image: A math a math


Deriving a usable Hierarchy of Instances Example: Powerplant Model

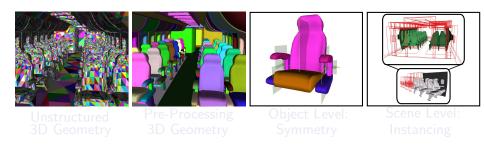
# Polygons	Pre-processing Geometry	# Tiles	Structuring Object Level (Parallel process)	Frequer Runtime	nt Patterns # Patterns
12,748,510	2 minutes	155,348	Approx. 16 hours	1h45	87,100

Introduction Overview Step 1: Frequent Pattern Discovery Step 2: Organizing frequent patterns Results

Deriving a usable Hierarchy of Instances Example: Powerplant Model

Level 1

Level 2



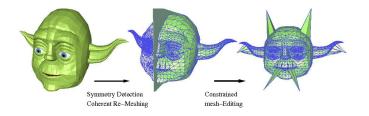
Runtime	Compression Rate	
51 seconds	1:5.2	

Summary Contributions Future Work

Summary

• A whole pipeline for structuring 3D Geometry:

- Potential Applications:
 - Rendering
 - Geometry Editing

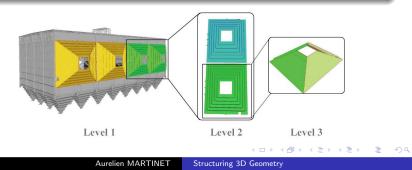

Summary Contributions Future Work

Summary of Contributions

Two contributions for Structuring 3D Geometry:

Detection of Symmetries in 3D Shapes

- The Generalized Moment Functions
- Algorithms for Single and Composite Shapes
- Potential Applications: Compression, Geometry Editing, ...


Summary Contributions Future Work

Summary of Contributions

Two contributions for Structuring 3D Geometry:

Hierarchical Instancing of Geometry

- A way of representing geometry as a Hierarchy of Instances
- Potential Applications: Geometry Editing, Compression, rendering, ...

Summary Contributions Future Work

Future Work

• Most Promising Work: Structuring at the Semantic Level

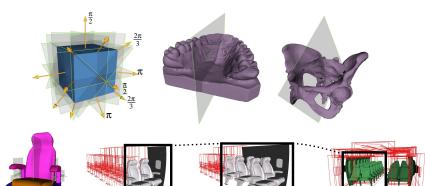
• Adaptive Display Algorithm [Funkhouser et al. 93]

• Adapt geometry to render it at interactive frame rates

These furnitures a chair These chairs are similar

Image: A math a math

Summary Contributions Future Work


Future Work

- Most Promising Work: Structuring at the Semantic Level
- Adaptive Display Algorithm [Funkhouser et al. 93]
 - Adapt geometry to render it at interactive frame rates

Summary Contributions Future Work

Thank you for your attention

Aurelien MARTINET Stru

Structuring 3D Geometry