N

N

Supersymmetry with decoupled scalars and
reconstruction and identification of electrons in the
ATLAS detector
E. Turlay

» To cite this version:

E. Turlay. Supersymmetry with decoupled scalars and reconstruction and identification of electrons
in the ATLAS detector. High Energy Physics - Experiment [hep-ex|. Université Paris Sud - Paris XI,
2009. English. NNT: . tel-00378992

HAL Id: tel-00378992
https://theses.hal.science/tel-00378992
Submitted on 27 Apr 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00378992
https://hal.archives-ouvertes.fr

LAL 09-37
2009

UNIVERSITE PARIS XI|
UFR SCIENTIFIQUE D'ORSAY

THESE
présentée pour |'obtention du titre de

DOCTEUR EN SCIENCES DE L'UNIVERSITE PARIS XI ORSAY
par

Emmanuel Turlay

Supersymétrie avec scalaires découplés et

reconstruction et identification des électrons
dans le détecteur ATLAS

Soutenue le 2 avril 2009 devant la commission d'examen composée de

Claude Charlot Rapporteur
Marie-Claude Cousinou

Abdelhak Djouadi Directeur de these
Ulrich Ellwanger

Giacomo Polesello Rapporteur

Guy Wormser Président du jury

Dirk Zerwas Directeur de these






Résumeé

Le LHC est un collisionneur de protons avec une énergie de 14 TeV disponible dans
le centre de masse, situé au CERN (Geneve, Suisse). Les premieres collisions sont
attendues a I'été 2009. L’expérience ATLAS est, avec CMS, 'une des deux expériences
généralistes installées sur le LHC. L’énergie disponible ainsi que la haute luminosité
de celui-ci permettra aux expériences ATLAS et CMS de rechercher le boson de Higgs
ainsi que d’autres nouvelles particules prédites par les modeles de physique au-dela du
modele standard tels que la supersymétrie.

Les électrons occupent une place importante pour la mesure des parametres du modele
standard ainsi que la recherche de la nouvelle physique. Ils procurent également de
nombreux indicateurs des performances du détecteur, grace notament a la reconstruc-
tion de la désintégration du boson Z en deux électrons, a 1’étude du rayonnement de
freinage ou de la conversion des photons en paires électron-positron. D’autre part, avec
10 jets hadroniques attendus pour chaque électron, une sévere discrimination du bruit
de fond est nécessaire.

Dans cette these, la reconstruction et l'identification des électrons dans le détecteur
ATLAS est présentée. Un certain nombre de variables sont étudiées pour rejeter le
bruit de fond hadronique et électromagnétique tout en optimisant I'efficacité du signal.
Les performances d’identification des électrons et de réjection du bruit de fond sont
estimés dans un environement de détection potentiellement dévaforable.

La supersymétrie est une extension du modele standard dans laquelle chaque particule
standard de spin s s’associe a une nouvelle particule de spin |s — %| La recherche de la
supersymeétrie est I'un des objectifs primaires de I'expérience ATLAS. Dans cette these,
les signatures d’'un modele supersymétrique dans lequel les scalaires sont découplés sont
étudiés. Le potentiel de découverte est quantifié. Les mesures réalisables, leurs bruits
de fonds et leurs incertitudes sont investigués. Ces observables sont ensuite utilisées
pour estimer le potentiel de détermination des parametres du modele au LHC.

Le modele standard supersymétrique minimal est le modele le plus largement utilisé
pour étudier la phénoménologie de la supersymétrie au LHC ainsi qu’aux futurs colli-
sionneurs linéaires. Dans cette these, la précision sur la détermination de ses parametres
apportée par deux futurs collisioneurs linéaire ete™ par rapport au LHC est estimée.

Mots clefs : LHC, ATLAS, supersymétrie, éléctrons, split supersymétrie, détermination
des parametres
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The Standard Model (SM) of particle physics has reached an unprecedented level of
understanding of Nature down to the attometre scale. It beautifully accounts for
observed phenomena and predicts the behaviour of physical systems on energy scales
spanning from the few electron-volts (eV) of classical physics to the hundred GeV
interactions occuring instants after the Big Bang. The SM describes the behaviour
of matter under electromagnetic, weak and strong interactions in a mathematically
consistent framework based on quantum field theory, local gauge invariance and the
Higgs-Englert-Brout mechanism.

The part of the SM describing the electromagnetic and weak nuclear forces, the elec-
troweak model, was established in the sixties in parallel by Glashow [I], Salam [2] and
Weinberg [3] after works by Yang and Mills in the fifties [4]. It is the last step in a series
of attempts at explaining the behaviour of matter at increasingly lower distance scales,
including Maxwell’s electromagnetism and Fermi’s theory of weak interaction. It leans
on a number of theoretical tools such as quantum mechanics and special relativity [5]
for the description of dynamics, group theory for the classification of symmetries and
the path integral method [6] for the computation of elementary processes. The SM
accounts for matter through a number of elementary fermions, quarks and leptons,
many of which were well known before its advent. In the leptonic sector, electrons
were discovered and their charge and mass measured in 1896. Muons were seen fourty
years later in cosmic rays but were initially classified as mesons. Unpredicted, taus
were discovered at Stanford Linear Accelerator Center (SLAC, Stanford, USA) in the
mid-seventies. The SM does not give any prediction as to the number of generations of
fermions, measured to be three by the Large Electron Positron Collider (LEP, CERN,
Geneva, Switzerland). The main prediction of the electroweak model is the existence
of intermediate vector bosons as interaction carriers. Although the existence of the
photon was long known and charged current had already been theorized to explain
weak nuclear decays, neutral currents as well as the existence of W* and Z° bosons
were postulated by the electroweak theory. Weak neutral currents were first seen in the
Gargamelle bubble chamber at CERN in 1973 [7]. The UA1 and UA2 collaborations
later produced and measured the masses of the W and Z bosons in pp collisions at
the SPS (CERN) in 1983 [8,9]. The currently most accurate determination of the W
mass and decay width is the result of a combination of LEP and TeVatron (Fermilab,
Chicago, USA) measurements. The mass of the Z boson was also very well measured
by LEP. Figure|l|shows the agreement between the measured value of a number of elec-
troweak observables and their value predicted by a global fit. Most measurements lie
withing one standard deviation of the predicted values showing an excellent agreement
between the SM and experiments.
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Figure 1: Latest agreements between the C.L. [1].
predicted values of some electroweak ob-
servables and their measurements [10].

The strongly interacting sector of the SM was formulated in parallel to the electroweak
theory. In the sixties, hadronic physics bloomed as many different states bound by
strong interaction were discovered in the recently invented bubble and spark cham-
bers. The classification of these states led to the formulation of the quark model by
Gell-Mann [12] and Zweig [13] in 1964. However this model was incomplete as it did
not provide any explanation for the existence of states such as the ATt that were
forbidden by Fermi statistics. In 1965, Han and Nambu [I4] and Greenberg [15] in-
dependently proposed that quarks should bear an extra degree of freedom, namely a
colour charge, allowing them to form specific bound states. The gluon would be the
interaction vector for the strong force. In 1968, the first generation of quarks (up
and down quarks) were identified as those providing a substructure to the proton as
measured at SLAC. In 1970, the Glashow-Iliopoulos-Maiani mechanism gave strong
support to the prediction of the existence of a second generation that would include
the charm quark. The discovery of the J/W¥ in 1974 at SLAC and Brookhaven National
Laboratory (BNL, Brookhaven, USA) demonstrated the existence of the charm. The
third generation of quarks (the top and bottom quarks) was predicted in 1973 when
Kobayashi and Maskawa noted that a third pair could explain experimental observa-
tion of CP violation. The b quark was discovered in 1977 in the YT resonnances at
Fermilab. In 1973, Wilczek, Gross [16] and Politzer [17] found that a consequence of
quantum chromodynamics (QCD) was that the strong coupling constant became small
at short distances. This paved the way for the application of perturbation theory to
QCD and gluons were discovered at the PETRA accelerator (DESY, Hamburg, Ger-
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many) in 1979 [I8]. The last particle to be discovered tied the knot on the fermionic
sector of the SM as it was the last quark of the third generation, the top quark. It was
seen in the DO [19] and CDF [20] experiments at the TeVatron in 1995.

Despite this collection of experimental successes, the SM cannot claim a thorough
understanding of Nature. Indeed, three major aspects remain unexplained.

Firstly, the SM is believed to provide mass to elementary particles through the Higgs-
Englert-Brout mechanism [21, 22), 23], the main prediction of which is the existence of
a new scalar particle, the Higgs boson. Its mass is a free parameter. No experimental
indications emerged so far but limits were set. Four experiments searched for the Higgs
boson at LEP. No firm evidence for a SM Higgs boson were found but a lower limit
on its mass was set to 114.4 GeV with 95% of confidence level [24]. At TeVatron, the
D@ and CDF experiments search for the Higgs boson in the gluon fusion channel and
in association with a vector bosons. Below a mass of 135 GeV, the dominant decay is
to bb and WWW* for higher masses. Searches including up to 4.2 fb~! of data have not
found any evidence for a SM Higgs. As shown on figure 2] a Higgs boson mass between
160 and 170 GeV was excluded at 95% of confidence level by a combination of results
from both experiments [11]. Indirect measurements from SLD, LEP and the Tevatron,
favor a light Higgs boson with a mass of 87130 GeV at 68% C.L. and constrain its mass
to be below 182 GeV at 95% C.L. when including the LEP 2 exclusion [25]. A light
Higgs boson around 120 GeV would accomodate well with all current bounds and fits.
The search for the Higgs boson is one of the main goals of the ATLAS experiment at
the Large Hadron Collider (CERN). With 14 TeV available in the center-of-mass, the
LHC can produce the Higgs boson if its mass lies within 1 TeV, which corresponds to
the theoretical upper bound. It is expected to be produced via gluon or vector boson
fusion or in associated production with a vector boson or a tt pair. Search channels
include its decay into a photon pair, four leptons, tau lepton pairs and W boson pairs.
The confirmation of the Higgs mechanism through a discovery of the Higgs boson would
be a success but would not tie up the model as it would, if discovered alone, render the
electroweak scale unstable through quantum loop corrections. This issue is beautifully
addressed by different higher scale extensions to the SM, the most popular of which is
supersymmetry.

Secondly, the SM only accounts for 4% of the energy density of the Universe. Ob-
servations such as those of the motion of astrophysical objects (stars, gas clouds or
galaxies) and of the gravitational lensing effect show that part of this missing energy
could be in the form of cold, massive non-baryonic matter, dark matter, interacting
only through the weak and gravitational forces. The latest measurement of the density
of dark matter in the Universe results from measurements of the Cosmic Microwave
Background realized by the WMAP probe [26]. It states that approximately 20% of
the energy in the Universe is in the form of dark matter. Candidates for non-baryonic
dark matter include primordial black holes, axions but the most favoured candidates
are so-called Weakly Interacting Massive Particles (WIMPs). These are expected to
be massive in order to interact gravitationally (with massed from a few GeV to a few
TeV), neutral to avoid annihilation and colourless. No candidate stands out within the
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SM. The most favoured candidate arises in the context of R—parity conserving super-
symmetry. WIMP are searched for directly through their elastic scattering on nuclei
by experiments and indirectly through the increased flux of high-energy neutrinos due
to their annihilation in the sun by numerous experiments. No concording results were
presented so far.

Finally, observations of type Ia supernovae in the last ten years showed that the Uni-
verse is expanding at an increasing rate [27, 28]. This lead to the claim that the
remaining 76% of the energy density of the Universe is of unknown kind and tends
to pull matter apart, dark energy. Candidates include the addition of a cosmological
constant to Einstein’s equation or space-time dependent scalar fields, neither of which
belong in the SM. Indeed, the description of gravitational interactions lies beyond the
scope of the SM. Moreover, the vaccum energy of the only scalar field in the SM, the
Higgs boson, is tenth of orders of magnitude larger than that required to account for
the observed amount of dark energy. Discovered only ten years ago, dark energy re-
mains a mystery as its theoretical description does not accomodate easily with known
physics. The LHC is not expected to provide much experimental input to the problem
but new physics it may unravel might provide clues as to the nature of dark energy.

Supersymmetry sprang in the early seventies. It was quickly adapted to weak scale
phenomenology and became the most popular extension to the SM as it successfuly
adress some of the aforementionned issues. Indeed, supersymmetry predicts the exis-
tence of a new particle for each particle of the SM. The fields associated to these new
particles allow for a cancellation of divergent loop corrections and stabilizes the elec-
troweak scale. Also, supersymmetry can predict that one of the new particles is stable
and weakly interacting. Its mass could account for the dark matter in the Universe. In
some supersymmetric models, gauge couplings can be made to unify at the high scale.
In addition, supersymmetry accomodates well with a Higgs boson mass in the region
favoured by global electroweak fits. The apparition of supersymmetry at the TeV scale
is a necessary condition for the resolution of these two problems. Direct searches for
supersymmetry were performed by experiments at LEP and TeVatron without success.
The current lower limits for the mass of new particles is around 50 GeV for the lightest,
100 GeV for lepton and weak boson partners and 400 GeV for quark partners. With
14 TeV available in the center-of-mass, the LHC can produce supersymmetric particles
with masses up to several TeV.

The ATLAS experiment [29] is one of the two general-purpose experiments installed
on the LHC accelerator at CERN. The other one is the CMS experiment. The AT-
LAS detector is a very large multi-component system, set to record the outcome of
high-energy proton-proton collisions produced by the LHC. It is now fully installed
and all sub-detectors are currently completing or consolidating their commissioning.
Collision data are expected to be recorded in 2009. The aim of the ATLAS and CMS
experiments is to search for the Higgs boson and possible extensions to the SM such
as supersymmetry.

The Standard Model and its most popular extension is presented. I describe the AT-
LAS detector and present the methods used to reconstruct and identify electrons. The
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potential for discovery, measurement and determination of the parameters of a super-
symmetric model with decoupled scalars in ATLAS is shown. Eventually, I estimate the
gain in precision for the determination of the parameters of a popular supersymmetric
model from a multi-TeV linear collider with respect to the LHC and the ILC.






Chapter 1
The Standard Model

“Born a poor young country boy, Mother Nature’s son
All day long I'm sitting singing songs for everyone”

Paul McCartney — Mother Nature’s son

The Standard Model (SM) of particle physics describes matter and its interactions at
the elementary scale. It is a Quantum Field Theory (QFT) invariant under the Poincaré
group and the SU(3)¢ x SU(2);, x U(1)y local gauge group. Fermionic fields describe
matter, vector fields represent interactions. Electromagnetic and weak interactions are
unified and arise through the postulate that laws of motion are invariant under field
transformations belonging to the SU(2);, x U(1)y symmetry group (Special Unitary
group of dimension two tensorialy multiplied by the Unitarity group of dimension one).
Strong interaction results from the assumption that the model is invariant under field
transformations belonging to the SU(3)¢ group. Vector bosons stem from the locality
of these groups. Mass is provided via the Higgs mechanism.

1.1 Symmetries

Fields live in a four dimensional Minkowski space. That is a three space plus one time
dimensional space with the metric ds> = dt? — 327 | x2. It is symmetric under the
Poincaré group which insures that physics are invariant under translations, rotations
and constant motion with respect to any inertial frame. This implies that energy,

momentum and angular momentum are conserved.

In addition, laws of motion are invariant under a number of local gauge symmetries.
The Lagrangian density for a free mass-less spin half field

L = ip(x)y" 0t (2),

is invariant under the transformation 1 (z) — €™ (x). That is a change of phase or
a global gauge transformation as « is a free parameter, constant over all space-time.
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CHAPTER 1. THE STANDARD MODEL

However, if the transformation is made local, that is & — «(z), £ is not invariant
anymore :

L — L —(x)(r)y"duol(z) (1.1)

This extra term can be avoided by a redefinition of the derivative 9, to D, = 0, —
ieA,(z) where D, is a covariant derivative and A,(x) is a so—called gauge field. It is
a vector field and transforms as A, (z) — A, (z) + 10,(z), hence cancelling the extra
term in equation (1.1). Replacing d,, by D,, in the Lagrangian density gives

L = ipy" 0, + ey A,p,

hence generating an interaction term between the spinor field and the gauge field. The
concept of local gauge invariance is of major importance for the SM. It states that
choosing the symmetries of a physical system predicts its dynamics, or, put differently,
nature is not invariant under local gauge transformation unless interactions are present
[]. Thus every interaction in the SM is generated by a specific symmetry, also providing
vector gauge boson.

Gauge symmetries are continuous and are classified in Lie groups. These are equipped
with infinitesimal generators which set the basis for any transformation within the
group. A set of generator is minimal and complete. Their commutator is set by the Lie
algebra associated with the group [T}, Ty] = i fapcTe Where fup. is the structure constant
characteristic of the group. Space-time transformations that leave physics invariant
are all fitted into the Poincaré group which is a Lie group. It is a combination of the
translations group R and the Lorentz group O(1,3).

The transformations that provide the SM with interactions can be fitted into a combi-
nation of three local gauge groups : SU(3)cxSU(2),xU(1)y. The subscript indicates
the quantum operator on which the transformation operates. C stands for color charge,
L for left-handed weak isospin and Y for weak hypercharge. The requirement that the
amplitude (1|¢) must remain unchanged under the transformation ¢ — V¢ forces the
matrix V' to be unitary. The general form of transformations under these groups are
the following :

Uy = (x) = eV (a)
SUQ2)L : ¢(x) — 47/y()
SU(3)C : w(x) _ elpj)\j/Qw(x)

where «, 6; and p; are free space-time dependent parameters. 7 runs from 1 to 3
and j from 1 to 8. 7; are the three Pauli matrices and are a representation of the
infinitesimal generators of the group SU(2). \; are the eight Gell-Mann matrices and
are a representation of the infinitesimal generators of the group SU(3). SU(n) group
have n? — 1 generators which are traceless Hermitian matrices. This combination of
symmetry group sets the bosonic field content of the SM as one vector field will be
required for each generator in order to keep the Lagrangian density symmetric (see
section [1.2). Furthermore, it is the spontaneous breakdown of the SU(2);,xU(1)y
group into U(1)q, the electromagnetic gauge symmetry, that provides masses for the
particles of the SM (see section [1.4)).

8



CHAPTER 1. THE STANDARD MODEL

1.2 Field content

In the SM, fields are classified according to their spin. It specifies the role of the field
in the model and also the way it transforms under the gauge groups. Matter fields are
described by spin half fermions. Interactions are described by vector bosons (spin one).
One extra boson emerges as the result of the spontaneous breaking of the electroweak
symmetry. That is the Higgs-Englert-Brout scalar boson (spin zero). These fields are
coupled as allowed by the gauge symmetries and their quantum numbers.

Fermions are ordered into three families. Each of these contains one left-handed lep-
ton doublet, one left-handed quark doublet, one right-handed charged lepton singlet
and two right-handed quark singlet. Singlets and doublets refer to their behaviour
under SU(2)y,. Left and right-handedness refers to the helicity of the field, that is the
projection of its spin along its momentum.

(), (), (7)),

€R MR TR

U c 4 (1 -2)
di L Sz’ L bz .

Uk Ch th

dy Sk by

Expression displays the three families of fermions in order of increasing mass. The
first, the lighter, contains the electron, its associated neutrino, up and down quarks.
The second contains the muon, its neutrino, charm and strange quarks and the last is
made of the tau, its neutrino, the top and bottom quarks. There are no right-handed
neutrinos. Doublets have helicity one half while singlets have zero. Quark fields bear
colour indices ¢ = 1...3 as they are SU(3)¢ triplets while leptons ¢ and v, transform as
singlet.

One vector boson is needed for each generator of the three gauge group.

SUB)c G4 a=1.8
SUQ2), W), i=1.3
Uy By

SU(3)¢ generates eight neutral gluons. SU(2);, generates three gauge fields W/i, the
third of which is neutral. U(1)y generates one neutral gauge field B,,.
The Lagrangian density for the SM is

ESM = Ldyn + £G + ‘Cmass-

Layn describes the dynamics of the model. It includes kinetic terms for fermions as
well as coupling terms.

‘Cdyn = i?H’y“Duf,{,
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where x should be summed over all singlets and doublets listed in ((1.2)). The covariant
derivative D, is

) .Y . aa
D, = 8M+291Tle]f+lgg§Bu+zgg@ GH

1e
= e A - (T®—sin%6 Z
O + i@ ”+sin6w cos@W( sin” fw Q) H

e 1 - T ; a/a
+—7 (W, W) +ig30°G
V2 sin Oy ( pooH ) 93 .
where g1, go and g3 are the U(1)y, SU(2)y, and SU(3)¢ coupling constants. The follow-
ing definitions

k
-
" = —k=1.3
2 )
)\a
0 = ?,Cl =1.8
e = gicosby = gosinfy = %
V91T 93
Y
= T3+ —
Q +t5
and the following field redefinitions
1
Ay = ——=(0W;+aB.)
' A
1
Zy = —=—=(9:W,; — 1B,)
gt+e "

1 :
Wi = SV Fiwg).

are applied in order to display mass eigenstates A,, Z,, and Wj They correspond to
the photon, Z° and W bosons. @ is the electric charge operator and e the elementary
electric charge. Oy is the Weinberg mixing angle. Once x has been summed over, D,
developed and fields redefined, the remaining terms are the following

Lagn = 0y +ily" 0,0 + iuy"O,u + idy"0,d

_ 2 1-
—eA, (—67“6 + gﬂy“u — gdv“d)

_ 1 5
__ ¢ Z, [5L7MVL + y* (28%/‘/ ) )4

QSWCW 2
e 2 1445 - 1—~° 4
— 7 w(Zg2 d~H — 22 \da
pY— “{m (3sw = —5Jutdy ( 2 3w
e

\/§ (EL’}/MW;EL + ZL’}/MWM_VL + EL’)/NW:dL + C_ZL’)/MWH_UL)
Sw
—ggGZ (ﬂi"}/”ﬂ?’dj + E{Y“T‘gd])

10



CHAPTER 1. THE STANDARD MODEL

where leptons and quarks fields are summed over the three generations. The first
line contains kinetic terms while the second describes electromagnetic interactions.
The third and fourth lines describes weak interactions and the last stands for strong
interactions.

L contains the kinetic and self-interaction terms for the gauge bosons :
1 v ) v a v
Lo=—7 (BuwB" + W, W}" + G;,GLY)
where

B, = 0,B,—0,B,
Wi, = 0W.—0,W,+ige’* WIW;
Go, = 9,GL—9,G% — g3 fGhGy

are the strength tensors of the gauge fields. €Y% and f® are the SU(2) and SU(3)
structure constants. They describe the Lie algebra of the group. The last term in Wﬁy
and G, provide self-coupling terms. The terms proportional to gX 3 are three legged
self-interaction vertices and the ¢>X* terms are four legged vertices. The absence of
a third term in B,, means that the only self-coupling terms in the electroweak sector
will be of the form ZWW, AWW , WWWW G ZZWW, AAWW and AZWW . Only
QCD allows a term of the form GGG.

1.3 Renormalizability

The problem of renormalization arises in the context of perturbation theory. Indeed,
the quantities of interest in fundamental physics such as scattering amplitude, masses,
couplings, etc... are all computed as expansions in orders of the coupling constants

M=) gV (1.3)
i=0
where M; is the contribution to M bearing 7 vertices. Individual contributions M;’s

can diverge. For instance, in a diagram featuring a loop

p—q

the momentum ¢ is not bounded and must therefore be integrated over from 0 to infin-
ity. Divergences then arise in the case of 2-, 3- and 4-point functions. Such divergences
in individual amplitudes are cancelled out by higher order contributions. This how-
ever becomes an issue when M is approximated to the first few orders in perturbation

11
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Figure 1.1: Running of the SM gauge couplings as a function of the renormalization
scale @) for Qg = my.

theory. The solution is to rewrite M in terms of effective renormalized parameters
(mass, couplings, ...) at the specific scale p of the interaction instead of the bare
non-renormalized quantities. The remaining contributions including divergences are
canceled by higher-order so-called counter-terms. A model is said to be renormalizable
if, at any order n in perturbation theory, divergences can be isolated and canceled in
counter-terms of order n+1. This is only possible in theories featuring systematic struc-
tured divergences, orders after orders. Effective renormalized parameters incorporate
higher-order contributions with respect to bare parameters. The magnitude of these
contributions varies with the chosen renormalization scale. Figure [L.1| shows the value
of the renormalized coupling constants of the SM as a function of the renormalization
scale. The slope of the evolution of couplings is related to the sign of the so-called
(G functions which incorporate higher-orders corrections. The non-Abelian nature of
QCD allows for three-legged gluon self-coupling terms. These contribute to a negative
0 function, pulling the QCD coupling constant to lower values as the energy scale in-
crease. The three gauge couplings do not unify at high scale. However, unification can
be achieved in the framework of supersymmetry, see section [2.2.2]

It was shown [30] that the electroweak part of the Standard Model is renormalizable.
One condition for that is the existence of a neutral scalar boson coupling to weak vector
bosons. Indeed, the amplitude for the elastic scattering of W bosons is divergent unless
a graph with an intermediate scalar boson such as the Higgs boson is introduced.

1.4 The Higgs boson

Given the way vector field transform under gauge transformation, mass terms of the
form %m2ZuZ“ would violate gauge invariance. Similarly, a mass term for fermions

12
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of the form mff = m(frfL + frfr) breaks gauge invariance as fg is part of a weak
isospin single whereas f1, is part of a doublet.

In the SM, fermions and bosons masses are generated by the Higgs-Englert-Brout
mechanism [21], 22] 23], that is a spontaneous breakdown of the gauge symmetry. The
by product of such a mechanism is a new scalar field, the Higgs boson. The idea is to
generate masses through a coupling to a scalar field whose vacuum expectation value
is non-zero. The following terms are added to the Lagrangian density

Emass = |D,LL¢‘2 - v<¢> - Y [ZR¢T<V7 g){ + (V7 E)L(bgR]
— yu [ured(u, )], + (4, d)red ur] (1.4)
— ya [dro' (u, d)] + (T, d)L¢dg]

where leptons and quarks are summed over the three families. € is an antisymmetric
matrix and ¢ is a complex scalar doublet

¢:<¢+ ) :L<¢1+i¢2>
¢° V2 \ 903+ iy
and V' (¢) is the scalar potential. Yukawa couplings y link fermions and the scalar field

together.
In order to break gauge symmetry, the scalar potential must be written

V(¢) = —12¢'¢ + Mg ) (1.5)

where ;1 and )\ are positive free parameters. The minus sign before the p? term ensures
the spontaneous breakdown since it forces ¢ to take a non-vanishing vacuum expecta-
tion value. V/(¢) is minimal for (¢} + ¢3 + ¢3 + ¢7) = p?/2X. Any choice along this
four-sphere will break the gauge symmetry. Choosing ¢; = ¢ = ¢, = 0, the ground

state of the scalar field is
0 0
@=(x)=(")
V2X

This choice breaks both SU(2);, and U(1)y but not U(1)q as po is neutral. Hence, the
photon will remain mass-less whereas weak gauge bosons will acquire mass. Similarly,
¢ does not carry any colour charge : gluons will also remain mass-less. From there,
weak gauge bosons will become massive through the development of the D,¢ term
while fermions become massive through the Yukawa terms. The scalar boson field has

weak hypercharge Y = 1 and weak isospin 17" = % so that

DA = '(—z‘%BM —igTwy) ( . )

2

v

1/1 2 1/1 ~—\°
= 5(51]92) W:W_“+§(§v g%—i—g%) ZHZH

The masses of the weak gauge bosons can be identified as

1 1
my = =vgs and myz = —v\/ g} + g3 so that W cos Ow .
2 2 mgz

13
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Figure 1.2: Theoretical bounds on the Higgs boson mass as a function of the ultra-violet
cut-off A [31].

The fermions masses can be identified upon replacement of ¢ by its ground state in
the Yukawa terms

my =Yyysv.
The two charged components ¢; and ¢, of ¢ are absorbed as a longitudinal polarization
component by the W, field and the neutral ¢, is absorbed by the Z, field. The ¢3
component can be expended around its minimum

0
¢:<U+%).

Plugging this expansion in the potential V' (¢) yields

1 A
V(p) = —§U2Ah2 — \vh? — Zh4.
The first term gives the Higgs mass and the last two terms provide the three and four
legged self-interaction coupling terms. The Higgs mass being

2 _ 2
my, = V.

The vacuum expectation value of the Higgs field can be estimated through a measure-
ment of electroweak bosons mass and couplings. However A, or mj, remains a free
parameter of the model. Constraints arise from a number of theoretical considera-
tions. For instance, the production rate of the elastic diffusion of longitudinal W’s,
W} W, — W/ W, , without an intermediate Higgs boson diverges like s, the center-
of-mass energy of the scattering, which violates unitarity. The latter can be restored
if the mass of the Higgs boson satisfies [32, [33]

1/2
87/2
mm(ﬁf) ~ 1 TeV

3Gr

14
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where G is the Fermi constant.

Furthermore, the Higgs self-coupling \ appearing in the Higgs potential diverges
for large values of the renormalization scale ¢?. Requiring that A(A) be finite for some
ultra-violet cut-off A results in the following upper bound on the mass of the Higgs
boson

2 2,2 A(v?) 4v/2n’
M = )\<U )U N \/5 GF < 3GF1nA2/U2

where A is the ultra-violet cut-off of the theory. Figure [1.2| shows the allowed values
of the Higgs boson mass as a function of the cut-off scale. If the SM is to be valid up
to the Planck scale, the limit translates into an upper bound of about 180 GeV for
the Higgs boson mass. If however new physics are to enter at, e.g., the TeV scale, the
Higgs boson mass should be lower than about 750 GeV.

On the other hand, when ¢? goes to zero, A\(¢*) can become negative due to the contri-
bution from the top quark giving rise to a new minimum in the Higgs potential [34] [35].
Requiring A(¢?) to remain positive gives a lower bound on A(v?) yielding

2 4 2
2 v my 3 4 2 2\2 q

If the SM is to be valid up to the Planck scale, the Higgs boson should be heavier than
around 130 GeV. If however new physics come into play around the TeV scale, this
lower bound drops to around 70 GeV.

Figure shows the upper and lower theoretical bounds on the Higgs boson mass as
a function of A.

1.5 Quark flavours

Yukawa coupling matrices ¥, and y4 in equation have no reason to be diagonal.
Hence, quark mass eigenstates are different from their gauge eigenstates. Since neutri-
nos are mass-less in the SM, the matrix y, can always be made diagonal and leptons
mass eigenstates are identical to their gauge eigenstates. In order to have diagonal
mass matrix for quarks, one should rotate the quark fields in the following fashion

ULZ/R = ﬁJ/RUi/R dIf/R = DZL]/R i/R
where ¢ and j run over generations. Consequently, the actual mass terms for the quark
fields are

£f1

mass

= —ydv(ELDTLDRdR —+ ERDEDLdL) — yuv(ﬂLUzURuR + HRU};ULUL)

rather than the one mentioned in[I.4} Similarly, the coupling term between quark fields
and the W/f fields reshapes as

aw __ €

L =
dyn \/§SW

ut V' W; d]L + Hermitian conjugate
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Figure 1.3: Diagrams for the contributions of fermions (A) and scalars (B) to the Higgs
boson mass.

where i and j run over the three generations and V% = UikDij or explicitly

Vud Vus Vub
V=1 Va Vi Va
Viae Vie Vi

V is a unitary matrix which can be parametrized by three angles and one complex phase
generating CP violation. The consequence of such a term is that charged currents can
change the flavour. Namely, in addition to standard Zu;d; couplings, off-diagonal
Wu,d; with ¢ # j can occur. In V, diagonal terms are close to unity, thus, off-diagonal
terms are small and V4 and V,, are of second order of an expansion parameter. V
being unitary, so are Uy, and Dy. Terms coupling quarks to Z,, will include the product
U LUz =1or DLDE = 1. Hence, no flavour changing neutral currents are expected in
the Standard Model.

1.6 The hierarchy problem

One fundamental issue in the SM is that its energy scale is more than ten orders of
magnitude smaller than the Planck scale. Indeed, a theory that would unify all four
interactions has to be valid up to scales of 10'® GeV whereas the typical scale of the
SM is around 300 GeV. Gauge symmetry prevents fermions and vector bosons from
acquiring masses. Oppositely, scalar bosons are not protected and could, in theory,
have very large mass [36, 37, [38, 39], i.e. they become unnatural. Yet, as mentioned in
section [I.4] in the SM, a Higgs boson mass larger than 1 TeV would violate unitarity.
The hierarchy problem is very much related to the naturalness problem which arises
in the SM in the calculation of contributions from fermionic loops to the Higgs boson
mass. Namely, contribution to m7 from a fermion f (diagram A in figure with
Yukawa coupling A; = v/2m /v and multiplicity N; reads [40]

A2 A
2 _ f 2 2 2 2

where A is the ultra-violet cutoff of the loop integral. These corrections are quadrati-
cally divergent. Being the heaviest, the top quark is the main contributor. If the SM
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were to be valid up to say the Planck scale, the Higgs mass would be enormous. The
counter-terms needed to keep it below the TeV scale would have to be adjusted with
a precision of O(107%°) which is unnatural. In turn, the contribution from a scalar
boson S (diagrams B in figure with trilinear and quadrilinear couplings to the
Higgs boson vAg and A\g and multiplicity Ng reads

AsNs 9 5 A NNg
672 {—A +2mgln — Tk

Amj; =
mgs

—1+42In A} + O(1/A?).
mg

Now if we assume that \g = —)\fc and Ng = 2Ny, the total contribution to the Higgs
mass squared is

NEN
Amj, = ! [

A
2 (m} —m$)In e +3m;In %ﬂ + O(1/A?).
Now the quadratic divergence has vanished and the remaining logarithmic divergence
can be led to zero if my = mg. Evidently, there is no such scalar boson in the SM.
However, supersymmetry (see chapter [2)) readily provides two scalar bosons for each
fermion in the model. This cancellation of divergences is one of the main motivation
for extending the SM to supersymmetry.

1.7 High-energy hadronic interactions

Interactions in quantum field theory arise as small perturbations to the free Lagrangian
density. Calculations of physical processes are achieved via the perturbation theory
where coupling constants play the role of the expansion parameter. The dominant
process (graph) to a given set of initial and final states will be the one including the
smallest power of the coupling constants or equivalently, the smallest number of vertices
in the corresponding Feynman graph. The “tree level” designates the leading order
(LO), where the coupling constants appear with a power of one. Common processes
such as electroweak processes, hard QCD processes or Higgs boson and supersymmetry
production have now been calculated to the “one loop” level, that is the next-to-leading
order (NLO). The number of loops and hence the number of different graphs increase
with the order of the contribution. Going further than NLO (NNLO) requires tools for
automatic generation and calculation of graphs. Perturbation theory is not suitable
for low-energy QCD where the coupling constant ag becomes large. Consequently,
perturbative calculations cannot be performed in certain energy domains such as that
of nuclear physics or low-energy hadronic physics. Numeric tools such as Lattice QCD
are necessary to describe such systems. The energy scale of the interactions at the
LHC places ag in a domain where perturbation theory can be comfortably trusted.

The dominant uncertainties on the calculation of hadronic cross-section are due to
higher-order contributions and parton density functions (PDFs) f(x). The latter corre-
spond to the probability distribution of the fraction z of the energy of the incoming pro-
tons that is carried by a given parton. PDFs are not computable analytically but their

17



CHAPTER 1. THE STANDARD MODEL

evolution as a function of the transferred momentum is predicted by the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [41], 42, [43]. Their evolution as
a function of x is predicted by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations
[44, 145, [46]. From there, PDFs can be predicted from a fit to experimental data. Two
collaboration provide a set of PDF's : the Coordinated Theoretical-Experiment Project
on QCD (CTEQ) [47, 48] and the Martin-Robert-Stirling-Thorne (MRST) group.
Once PDFs are known, the cross-section for the production of a final-state X in pp
collisions can be expressed from the perturbative partonic cross-section o(ab — X),
where a and b are quarks or gluons, thanks to the factorisation theorem

1
olpp — X) = Z/ dydry fo(wy, pir) fo(22, pr)o(ab — X sw1a, fig, pup, masses)
ab “F

min

where f,3) is the PDF for parton a(b), s is the square of the energy in the center of mass
and pg and pp are the renormalization and factorization scales. The later represents
the scale above which interactions are treated perturbatively and incorporated into
o(ab — X) and below which interactions are incorporated in the PDFs.

Most of the available softwares for the generation of Monte Carlo samples of physical
processes are based on the calculation of the tree-level matrix element. Final states of
hard scattering are then matched to a parton shower generator. The latter computes
the hadronization of final state partons. LO samples are then normalized to the NLO
cross-section thanks to so-called K—factors computed by dedicated codes.

Once the cross-section o(pp — X) for some final-state X is known, the expected
number of events produced is

Nx =o(pp — X) x/dtﬁ

where L is the instantaneous collision luminosity. Experimentally, this number should
be multiplied a number of efficiency factors corresponding to detector effects (accep-
tance, reconstruction, identification, etc...) and analysis requirements.

Figure [I.4] shows cross-sections for typical processes as a function of the energy in the
center of mass. At the LHC, the total inelastic cross-section is clearly dominated by
jet production. Production rates for new particles such as the Higgs bosons are about
ten orders of magnitude smaller than the total cross-section.
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Chapter 2

Supersymmetry

“One’s idea must be as broad as nature if they are to interpret nature”

Sherlock Holmes — A study in scarlet

Supersymmetry is the most popular extension to the Standard Model. This status
is mostly due to the way it tackles a number of issues of the SM : it allows for a
stabilization of the weak scale, provides a candidate for the dark matter of the Universe
[49], can unify gauge couplings at the high scale [50] and occur naturally in some higher
scale theories. If it is realized, supersymmetry could be probed in the energy domain
accessible at the LHC.

Supersymmetry establishes a symmetry between fermions and bosons. It extends the
SM via models such as the Minimal Supersymmetric extension to the SM (MSSM,
section and its universal branch mSUGRA (minimal supergravity, section [2.2.3).
In such models, each field of spin s in the SM is associated to a new field of spin
|s — %| with identical quantum numbers. These models propose a candidate for the
dark matter of the Universe, unify gauge couplings at the high scale and address the
hierarchy problem of the electroweak scale (section by cancelling divergence. The
latter implies that new particles must lie in the TeV range. By their coupling to the SM
they may be produced experimentally at colliders such as the TeVatron or the LHC.
Signatures include high-energy jets and leptons and missing transverse energy. No
evidence were seen at the TeVatron but, with a reach of several TeV for the production
of new particles, the LHC is the ideal tool for the search for supersymmetry.

In 1967, Coleman and Mandula showed that the only possible extension of the Poincaré
group, is by a product with an internal symmetry group. They did not consider super-
symmetry as this internal symmetry yet [51]. Separately, in 1971 Gol’'fand and Likht-
man introduced the idea of spinorial translation as a possible extension to the Poincaré
algebra [52]. They built a four-dimensions Quantum Field Theory (QFT) containing
massive quantum electrodynamics. In 1973, Volkov and Akulov proposed another
model along with the concept of spontaneous breakdown. Eventually in 1974, Wess
and Zumino [53] as well as Salam and Strathdee [54] adapted the so-called super-gauge
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transformations emitted in the early seventies by string theorists to four-dimensions
QFT. Subsequently in 1975, Haag, Lopuszanski and Sohnius combined these works
with the Coleman-Mandula theorem to demonstrate that supersymmetry is the only
possible extension of space-time symmetries [55]. The next year, Fayet designed what
a minimal supersymmetric QFT including the SM should look like [56], [57].

2.1 Construction

One of the major theoretical reasons for the interest in supersymmetry is that it was
proved to be the only possible extension of the Poincaré group. The first step towards
that statement is the Coleman-Mandula (CM) theorem. It is the last and most powerful
in a series of no-go theorems [58, [59, [60].

It was shown in [58] that any internal symmetry that does not commute with the
Poincaré group leads to infinite numbers of states with equal four-momentum eigenval-
ues. That is, multiplets of the symmetry group containing both the Poincaré group and
some new internal symmetries would contain an infinite number of particles. Subse-
quently, the CM theorem states that if G is a symmetry group of the scattering matrix,
if it contains the Poincaré group, if there is a finite number of particles of a given mass,
if any two-particle state undergoes scattering at almost all energies and if its amplitude
is an analytic function of the center-of-mass energy and momentum transfer, then GG
is the direct producﬂr] of the Poincaré group with an internal symmetry groupﬂ That
is, space-time symmetries of quantum field theories cannot be extended in any but a
trivial way. A proof of this theorem is provided in [51] and [61].

From there, the last step was provided by [52]. The CM theorem can be circumvented
by extending Lie algebras to superalgebras, i.e., algebras containing both commuting
and anti-commuting relations. [55] proved that this was the only possible way of
extending the Poincaré group.

The commuting part of the algebra identifies with the internal symmetry group to which
the CM theorem applies. However, the anti-commuting part escapes the scope of the
CM theorem and is left free to combine with space-time symmetries. Hence, the only
way to extend the Poincaré group is to include superalgebras, that is, supersymmetries.

Let Q. be the generators of the considered extension. (),’s are two—components Weyl
spinors. They act on the first two components of Dirac spinors while Qg’s act on the
last two components. By construction, they anti-commute, that is

{Qa, Qs} = {QL.Qf} = 0. (2.1)

The structure of superalgebras imposes that the anti-commutator of two fermionic
operators should close into a bosonic operator. Thus, {Q.,, QL} should close into a
linear combination of the two bosonic operators at hand, namely P, and M,,. However,

ITheir generator commute.
2a group which elements are diagonal in and independent of momentum and spin.
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by virtue of Jacobi identities, the M, part vanishes [62] so that
{Qa, QL} = 2004 P (22)

Then, the commutator of a fermionic operator with a bosonic one must close into a
fermionic one. Hence, [Q,, P,] must be proportional to Q.. However, so far, supersym-
metries are global and as so, are independent of position in space—time. Consequently,

[Qaa PM] = [QTM Pu] = 0. (2.3)

Eventually, M,, and (), must commute into an expression proportional to (),’s, that
is [62] .

My Q] = ~(0u)2Qs  and (M, @a*] —Eh iRt (24
One can notice that relations (2.1f), (2.2), (2.3 and (2.4]) are invariant under the trans-
formations A A

Qo — e ¥Q, and QL — erL

which are those of a global U(1) with generator say R leading to the relation

[Qu,Rl=Q. and  [QL,R]=qQL. (2.5)

This U(1) global symmetry known as R-symmetry accommodates perfectly with the
CM theorem since
7= . M) =0

Relations , ., ., and . ) define the supersymmetry algebra. It is

possible to 1nclude more than one (say m) supersymmetry generator in which case it
is refereed to as N = n extended supersymmetry. Most if not all studies and analysis
are performed in the framework of N = 1 supersymmetry.

As a fermionic operator, ) transforms fermionic fields into bosonic fields and vice-
versa. Fields that transform into one another under supersymmetric transformations
are superpartners and can be fitted into supermultiplets. A consequence of eq. ,
is that [Qa, P?] = 0 so that fields that belong to the same irreducible representation
of supersymmetry, i.e. superpartners, have the same mass. The situation is identi-
cal for all internal symmetry generators so that superpartners carry the same set of
quantum numbers except for spin. Another straightforward consequence of the super-
symmetry algebra is that each supermultiplet should have an equal number of bosonic
and fermionic degrees of freedom. This can be proved by considering the trace of the
operator (—1)?*P* where s is the spin of the state, across a supermultiplet containing
the fermionic or bosonic states |).

D G Pr) = ) GH=DZQQT) + (il(—1)*Q1Qld)

% 7

= Z<'|< )2QQ1 i) +ZZ ~1)*Q"5)(j|Ql3)

— Z@'I(— )2QQ1 i) —Z(jl(— )2QQ15)
=0 = p Y DR = pulns — )

i
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using the completeness relation and remembering that, as a fermionic operator, (—1)%
anti-commutes with ). Hence, ng = np. The two simplest way to construct super-
multiplet with ng = np are matter and gauge supermultiplets. The former contain a
Weyl chiral fermion (np = 2) and a complex scalar (ng = 2). Gauge supermultiplets
are made of a mass-less vector boson (np = 2) and a Weyl fermion (np = 2).

The simplest supersymmetric field theory is the Wess-Zumino model. It contains a
matter supermultiplet : a left-handed Weyl fermion ¢ and a complex scalar ¢. An
infinitesimal supersymmetry transformation on ¢ gives

6 —ep and  ¢F — Yl

where € is an infinitesimal anti-commuting Weyl fermion object which parametrizes the
transformation. An infinitesimal supersymmetry transformation on v gives

P — ia“eTﬁuqﬁ +eF and Pl — —te0"0,0" + e F*.

F is an auxiliary complex scalar field introduced in order for the supersymmetry algebra
to close off-shell, i.e. when "0, # 0. Without this field, the commutator of two
supersymmetric transformation on a fermion is not equal to a derivative of the original
field. Auxiliary fields do not propagate and can be eliminated neatly through the
equations of motion they generate. They supersymmetricaly transform as follows

F— eeTﬁ“aﬂw and F*— —iaﬂl/zTE“e.
The free mass-less Lagrangian density
Liee = —0"¢* 0, — iy 0" 0,0p + F*F

is invariant under supersymmetry transformations. A similar exercise can be performed
with a gauge supermultiplet made of a mass-less gauge boson A}, and a Weyl fermion
A% (a is the gauge index). An extra real bosonic auxiliary field D® is required to close
the algebra off—shell. These fields transform as

1 1
Al — —— [ETEqu + )\T“EME] , AY—= ——=0"0"eF}, + —26D“

i
V2 2V/2 V2
and D" — % €15 D, A" — D A5"e]

where F),, and D, are the field strength tensor and the covariant derivative respectively.
The following Lagrangian density is invariant under supersymmetry transformations
1 a pva -y fa—=p a 1 a Ma
Loange = _ZF’“’F — AT D\ 4 §D D?.
Gauge interactions happen through the standard covariant derivative. In order to
include new terms coupling scalar fields beyond gauge interaction, the superpotential
must be introduced

W= §M”¢i¢j + gy”k@%’%
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where M;; is a mass matrix and y;;; a so—called Yukawa coupling matrix. W is an
analytic function of the scalar fields ¢; and represents the most general set of renor-
malizable interactions. It enters the Lagrangian density in the following way

1 /68w . oW dW*
LD —= < 'y + c.c.) -
2 \00:9; 09" 0¢;
The building of a supersymmetric model lies in the design of its superpotential, so that
it is the most general expression respecting the desired symmetries.

2.2 The minimal supersymmetric extension to the SM

In order to design a supersymmetric QFT that would include the SM, supermultiplets
should be constructed as accommodating the existing fields.

Each existing chiral quark and lepton are fitted into a supermultiplet along with one
complex scalar, a so-called squark or slepton. For instance, a left-handed top quark tg
can be associated with a so-called stop right tg. As scalars do not feature handedness,
the right or left tag refers to the handedness of the associated standard fermion.
Similarly, gauge bosons are included in gauge multiplets along with Weyl fermions, the
gauginos. The gluon, W and B bosons are associated with the gluino, wino and bino
which after gauge symmetry breaking mix into the zino and photino.

The Higgs boson could belong to a matter multiplet along with another Weyl fermion
but two problems arise here. The Yukawa terms in eq. (1.4)) should be re-implemented
in the context of the superpotential, bearing in mind that in order to be supersymmetric
W should be an analytic function of left matter superfields. This forbids the Higgs
field to provide mass to both u—type and d-type quarks simultaneously. Parallely, a
single Higgs doublet would lead to triangle gauge anomalies in the electroweak sector,
i.e. a violation of the gauge symmetry in quantum corrections. The condition for
the cancellation of these anomalies is that there are two Higgs doublet with opposite
hypercharge. Hence, it is necessary to have two Higgs doublet, H,, to generate the mass
of T3 = % fermions (u—type quarks) and H,; with opposite hypercharge for T3 = —%
fermions (d-type quarks and massive leptons). Table summarizes the additional
fields of the MSSM.

Thus, supersymmetry predicts the existence of one sfermion for each chiral fermion
and one gaugino for each gauge boson in the SM. Each of this superpartners should
have the same mass as their standard partners. These states have not been discovered
experimentally. If they exist, their mass must lie beyond the reach of current exper-
iments, well above that of their standard partners. This implies that supersymmetry
must be broken below some scale. Many breaking scenarios have been envisioned but
no consensus exist. In fact, it can be shown that spontaneous breakdown of super-
symmetry cannot be realized in the context of the MSSM without introducing new
fields. The latter are phenomenologically believed to be gauge singlet with masses well
beyond the electroweak scale. They constitute the so-called hidden or secluded sector.
However, in order to study the MSSM without knowing the exact supersymmetry
breaking scheme, so-called soft supersymmetry breaking terms must be introduced in
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’ spin 0 \ spin% ‘
squarks quarks
(fLL CZL) (UL dL) ’Splné‘ Spin 1 ‘
Uug u% gluino gluon
diy df, g g
sleptons leptons winos | W bosons
(v éL) (v ep) Wi wi
& el bino | B boson
Higgs higgsinos B B,
(Hp HO) | (HF H)
(Hy Hy)|(Hy Hy)

Table 2.1: Matter (left) and gauge (right) supermultiplets in the MSSM

the Lagrangian density. These terms include mass terms for all superpartners and
bilinear and trilinear scalar couplings

1 -~ Y

L 5 —5(MBB+ MWW + Msgg) + c.c. (2.6)
—Gimiq, — Upmia — dymidg — lfmily, — égmiér
—myy, HyH, —m3 HyHy — (bH, Hy + c.c.)
— (U Auyulr Hy — diy Agyadr, Ha — €5 Acyeli, Hy) + c.c..

Here, M, 2 5 are the gaugino mass parameters. The second line contains the scalar mass
parameters mg%d’e’e. These are 3x3 hermitian matrices in family space. In the third
line, m%,u , are the Higgs mass parameters and b is a bilinear coupling between H,, and

H,. The last line contains trilinear Hff coupling parametrized by the 3x3 Yukawa
matrices ¥y g and A, 4.
The superpotential for the MSSM reads

WMSSM = yu(&i‘iﬂLHS — ’ELEJLHJ) — yd(dﬁﬂLHJ — JECZLH(;))
~ye(EppHy — épéLHy) + p(HS Hy — HyHy).

The terms in W containing fermions should also be included but they vanish upon
derivation and therefore do not enter the Lagrangian density. Disregarding any as-
sumptions on the phenomenology of the model, eq contains 105 parametersﬂ all
defined at the breaking scale. Nevertheless, it is possible and phenomenologically desir-
able to constrain a number of these. For instance, Flavour Changing Neutral Currents,
CP violation and flavour mixing can be avoided by assuming a somehow universal su-
persymmetry breaking scheme. Masses and trilinear coupling matrices can be made
diagonal, reducing the number of parameters to 24. This constrained MSSM is referred
to as the phenomenological MSSM (pMSSM). Table lists its parameters. Gaugino

33 gaugino mass parameters, 2 Higgs mass parameters, 45 scalar mass parameters, 54 trilinear
couplings and one bilinear coupling.
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Gaugino mass parameters Miss
Higgs mass parameters wand My
Trilinear couplings Aspi
i3 and b2
Sfermion soft-breaking terms IR L
1,2,3 1,2,3 1,2,3
m:"", m2"" and m;
qL UR dr
Ratio vy /vy tan 8

Table 2.2: The 24 parameters of the phenomenological MSSM.

mass parameters remain non-universal. All trilinear coupling associated with light SM
fermions vanish and the matrices are diagonalized. Only the trilinear couplings from
the third generation remain. tan 3 can be seen as the rotation angle between the two
Higgs doublets and M4 relates to the bilinear coupling b.

2.2.1 Mass spectrum
The Higgs sector

After rotating the components of the two Higgs doublets in order for the charged
component not to get VEVs, the Higgs potential in the MSSM reads

2 + 12
Vo= (|uf? +my,) [Hol*+(|ul> + m3;,) |Hy)*— (bHy HY + c.c.)+% (JHS” - |Hg|2)2 .

Terms in p and g arise from the equations of motion of the auxiliary fields. Terms in
b and my are those included in the soft terms of equation [2.6, The condition for a
spontaneous breakdown of the symmetry (H? = HJ = 0 is not a stable minimum) and
for a potential bounded from below are

b > (|lul?+mi,) (Il +my,) and 2b < 2|u> +m}, +mj,

respectively. The VEVs of H, and Hy satisfy v2 + 03 = v? = 2m%/(¢* + ¢’*). The
condition for the Higgs potential to have a minimum satisfying this relation reads

|u> + m3, = cot B+ (m}/2)cos2f and |u|*> +mF, = btan 8 — (m3/2) cos 23

where tan 3 = v, /vp. These requirements indicate that ;1 would be of the order of the
electroweak scale. However, similarly to the hierarchy problem in the Higgs sector of
the SM, no symmetry protects p from being of the order of the Planck scale. This
is known as the p problem and can be solved in the context of the next-to-minimal
supersymmetric extension to the SM (NMSSM).

Two Higgs doublet provide eight real, scalar degrees of freedom, three of which provide
longitudinal modes to the massive gauge bosons. The remaining five mass eigenstates
are the CP-even neutral scalars h and H°, two charged scalar H* and the CP-odd
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neutral scalar A. Their tree-level masses are

1
m: = 3 (m?4 +my — \/(mQA + mzz)2 — 4dm?2m? cos? Qﬁ) (2.7)
1
m2 = 3 (mi +m2 + \/(m?4 + mQZ)2 — 4m?%m? cos? Qﬁ)
m% = 2b/sin2p
mye = m3+my

A knowledge of m4 and tan (8 provides the masses of all Higgs bosons. Expression
leads to m;, being bounded from above by my at tree-level. Quantum corrections
induced by fermion and sfermion loops such as those in figure [1.3| are non negligible
[63, [64] leading to an upper bound of 130 GeV if sfermions are lighter than 1 TeV.
This bound gets weaker if sfermions have very large mass, see section [5.1]

Neutralinos and charginos

The weak eigenstates of the neutral higgsinos and gauginos mix into four mass eigen-
states, neutralinos N; 4 with m Ny <My, - The mass matrix

M, 0 —Ccgswmyz  SgSwiyg
M- — 0 M2 CgCwmz —SpCw iz
—CgSwmyz CgCwmMmz 0 — K
SgSwMmyz  —SgCwmz — 0

with {c, s}y = {cos,sin}f can be diagonalized using a 4 x 4 unitary matrix to provide
the neutralino masses my . Charged higgsinos and winos mix into two charged mass

eigenstates, charginos C 2 with mg < mg, . Similarly, the chargino mass matrix

0 0 M V2esmuy
0 0 \/555mw W
M~ —
M ﬁngW 0 0
\/565mw W 0 0
can be diagonalized to give the following mass eigenstates
1
me, ,m¥, = 3 (IMaf? + |puf® + 2m3y, )

1 .
o (AP + 12 + 203, — 4l — i sin 25
The radiative corrections to the neutralino and chargino masses are due in equivalent
part to the fermion/sfermion and gauge/Higgs sectors and are lower than 10% [65].
Gluinos

Gluinos are color octets and as so, do not mix with any other fields. The gluino one-loop
mass is

my = My(Q) (1+ T AQ/My))
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where A accounts for the coupling to all quarks and squarks in the model. This term
can contribute to a fourth or more of the total mass [65].

Supersymmetric scalars

Although in principle, up/down—type squarks and charged sleptons can mix within each
group, it is possible to limit the number of free parameters by assuming flavour-blind
soft parameters. From there the difference in Yukawa and soft couplings between third
generations and others predict that mixing should only occur within (f1,,%g), (by, bg)
and (71, 7r) leaving the other generations unmixed. For instance, the mass matrix for
the stop reads

o mgi +mi + (3 — 2sin® Oy ) cos26m% my(Ay — pcot 3)
t my(Ay — pcot 3) mth +m} + 2 sin® Oy cos 20m?%
Off-diagonal terms are proportional to trilinear couplings and fermion masses. Thus,

little mixing is expected in the first two generations. The matrices mZ and mg are

equivalent with tan 3 instead of cot 3. The mass eigenstates are label f; and f, in
order of increasing mass.

2.2.2 Interesting features
Hierarchy problem

The appearance of two real scalar degrees of freedom for each SM Weyl fermion is
indeed of great help to solve the hierarchy problem of the electroweak scale. After
inclusion of the supersymmetric field spectrum, the leading divergences in the loop
corrections to the Higgs mass are proportional to mfc — mfg. Since supersymmetry
must be broken, these contributions do not vanish entirely, they are merely kept under
control. If the mass of the new particles are not much heavier than the TeV scale, the
radiative corrections should be of the same order as the tree-level Higgs boson mass.
Otherwise, a fine-tuning of the counter-terms will be necessary to keep my, sufficiently
low not to break unitarity.

R—parity

As briefly mentioned in 2.1} another symmetry can be imposed : R—parity. It prevents
terms that would violate baryon or lepton number conservation to enter the super-
potential. These would allow protons to decay in a matter of hours. R-parity is a
multiplicative quantum number defined for each particle as

R = (_1>3B+L+23
where B is the baryon number, L the lepton number and s the spin of the particle.
Particles in the SM all have R = 1. New supersymmetric particles all have R = —1.

Requiring R—parity to be conserved in supersymmetric models has two consequences.
Firstly, supersymmetric particles can only be produced in pairs. Secondly, the decay
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Figure 2.1: Running of the SM gauge couplings as a function of the renormalization
scale in the case of the MSSM (solid) and of the SM (dashed). The supersymmetry
mass scale was varied from 250 to 1000 GeV.

products of any supersymmetric particle must include one sparticle. The immediate
consequence is that the lightest supersymmetric particle (LSP) is stable. Incidentally,
were the LSP to be colourless and neutral, it would qualify as a WIMP candidate
[49]. This constitutes one of the major reasons for the interest for supersymmetry. If
this weakly interacting LSP were to be produced in a colliding experiment, it would
escape detection and energy would be missing in the recorded event. This is one of the
major discriminating variable in any search for R—parity conserving supersymmetry at
colliders.

Gauge coupling unification

Figureshows the SM coupling of the three gauge groups (a; ' = g2/(4)) according
to the renormalization group equations as a function of the renormalization group scale
for the SM (dashed) and for the MSSM (solid). In the case of the SM, they do not
intersect in one point. This means that if a unified gauge theory is desired above
some scale, the SM cannot be the effective model valid up to that scale. Namely, an
intermediate scale with a new particle content is necessary. The solid lines on figure
shows the same couplings but with the inclusion of the MSSM corrections above
some scale. Below that scale, the couplings are equal to those in figure [I.1], above, they
differ. The couplings intersect at Mgyt ~ 10'® GeV. The gauge couplings are then
universal above the GUT scale and break down into the three known couplings below
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that scale [50].
In the one-loop MSSM, the gauge couplings and the gaugino mass parameters run like

d b;

@y~ 1602

bi
g’M; with i=1,2,3

d
3 d —M, =
i an dt 872

where t = QQ/Qo (Qo is the input scale) and b; are some factors. Hence, the gaugino
mass parameters can be unified at Mgyt

M1,2,3(MGUT) = Mmy/2

where my /o denotes the universal gaugino mass parameter. Therefore

_ 5Q)
91'2(@0)

and for any input scale Qg, M;/g? are all identical at any RG scale.

M;(Q)

mi/2

2.2.3 Minimal supergravity

The MSSM parameters are defined at the breaking scale which should be rather close to
the electroweak scale in order to keep control on the Higgs mass. However, assuming
unification is realized at Mqgyr, it is possible to define universal parameters at that
scale and thereby greatly reduce the number of parameters. Namely

e gaugino mass parameters M; unify into a universal parameter m s,
e scalar masses my and mpy, , unify into a universal parameter my,

e trilinear couplings Ay unity into a universal coupling Ay and

e tan 3 and the sign of u remain free.

More generally, supergravity comes into play when one tries to render supersymmetry
local [66, [67, [68, [69]. In doing this, unification of space-time symmetries of general rel-
ativity and local supersymmetry can be achieved. The new local symmetry necessarily
gives rise to a new spin—2 gauge boson, the graviton which superpartner is the spin-3/2
gravitino. The latter acquires mass by absorbing the goldstind| as supersymmetry gets
spontaneously broken in a similar fashion to the Higgs mechanism. It would solely
interact gravitationally and therefore only be of interest for cosmological considera-
tions. In this context, my 2, mo and Ay arise naturally as a parametrization of the soft
terms. Yet, such models are not theoretically viable for they are not renormalizable.
Still, non-renormalizable terms are suppressed by powers of the Planck mass, making
mSUGRA a perfectly well behaved low-energy phenomenological model. With as few
as five free parameters, phase space scans are easily achievable and experimental anal-
ysis are greatly facilitated. mSUGRA stands as a very convenient reference model for
benchmark studies in the experimental community.

4The goldstino intrinsically arises from the breaking of supersymmetry.
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The masses of new particles can be re-written using this new set of parameters unified
at the GUT scale. For the first two generations of squarks where mixing is small,
masses read [70]

1
mé%L = m/QlL = mg + 0-527”%/2 - (5 - 5W> mQZ cos 2[3
1

m3 = mgﬂ = mg + 0-52771%/2 + §m22 cos 23

2
m%R = ng = mg + (007 + Cg)m%/z + gSngz coS 25

1
m%R =mZ, = mg+(0.02+cz)m? ), — gSWWQZ cos 23

1 2
m%L = mgL = my+ (047 + Cg)m%/Q + (5 — §3W> m7 cos 23
2 2 _ 2+(047+ ~) 2 o l_l 2 25

m(iL - mgL - mo . Cg ml/Q 2 3SW mZ COS

where sy = sinfy,. The coefficient c; describes the contribution from gluino-quark
loops to the running of squark masses

5= g [(%)2 - 1] ~ 5. (2.8)

It provides a large contribution from m;/ to squark masses. Also, via the expression
M;(Q) = m1/20;(Q)/i(Mcur) for i = 1,2, gaugino masses at the weak scale read [70]

M1 ~ O41m1/2
M2 ~ 084m1/2

As mentioned in [2.2.1], the gluino mass receives large contributions from quark and
squark loops. Due to large Yukawa couplings, the masses of the third generation
sfermions and Higgs bosons cannot be easily computed analytically.

2.3 Experimental constraints

2.3.1 Constraints from colliders experiments
Sparticle masses

In the context of the mSUGRA, the strongest experimental bound on the mass of
sparticles is due to the non-observation of charginos at LEP with energies in the center-
of-mass of up to /s &~ 208 GeV. If the lightest chargino is produced in pairs, ete™ —
CYCy and Am =me, — my,, the bound reads [72]

me, 2 103 GeV if Am ~ 1 GeV, mg 2 92 GeV otherwise.
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Figure 2.2: Allowed region for mSUGRA in the mo — my, plane [71]. Only the dark
blue region is allowed. In the brown region, the LSP is not the N, there is no radiative
electroweak symmetry breaking and my, , me, or mz lie below the limits set by LEP.
The pink and green regions are favoured by g, — 2 and b — sy measurements respec-
tively. The light blue zone corresponds to previous constraints on the relic density.
The dark blue area takes into account updated measurements.
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If gaugino masses are universal at the GUT scale, their hierarchy at the weak scale is
My : My : M3 ~1:2:8. Hence, the bound on me, translates into a lower limit on the

mass of the le
myg, 2 50 GeV if N, ~ B, myg, 2 92 GeV otherwise.
It also translates into a limit on the gluino mass
mg 2 350 GeV.

The search for stop and sbottom squarks in their decay to neutralino at LEP set a
lower limit of around 100 GeV on their mass.

TeVatron experiments CDF and D@ search for the supersymmetry in pp collisions with
Vs = 1.96 TeV. In typical mSUGRA parameter sets, the dominant channels for the
production of supersymmetry at the TeVatron are chargino and neutralino pairs or
associated production followed by quark and gluino pairs.

Charginos and neutralinos associated production is searched for in the tri-lepton chan-
nel. Recent studies include 2.3 fb~! of data and did not show any evidence for such
a signal [73]. Gluinos are searched for in their decay to bb. Studies with 2.5 fb~! of
data excluded gluinos lighter than 350 GeV for m; = 300 GeV, mg, = 60 GeV and
mg = 500 GeV [74]. Another study excluded m < 392 GeV for m = m; = my and
mg > 280 GeV for mz < 600 GeV [75]. Stops lighter than 132 GeV were excluded for
my = 48 GeV and sbottoms lighter than 193 GeV were excluded for mg = 40 GeV.

Light Higgs boson mass

The limit on the mass of the SM-like Higgs boson set by LEP2 of m;, > 114 GeV
[25] imposes a stringent constraint on supersymmetric models. Contributions from
fermion and sfermion loops should be sufficiently large to lead to a mass above that
limit leading to a lower bound . Figure shows the allowed regions in the mSUGRA
parameter space for low (left) and high (right) tan 3. The lower bound induced by the
Higgs boson mass is shown in red. The largest one-loop correction to the Higgs boson
mass is due to top and stop loops. Incidentally, the stop mass depends mostly on 1,
due to its coupling to quarks and gluon via ag. This corresponds to the ¢; factor is
equation . A lower bound on my, yields a lower bound on m;/,. This limit almost
entirely excludes the bulk region.

Anomalous magnetic moment of the muon

The anomalous magnetic moment of the muon a, = %5 2 as measured by the E821

experiment (BNL) deviates from the SM prediction by 2.6 o [76]. This discrepancy can
easily be accounted for were supersymmetry to be realized. Consequently, the reproduc-
tion of the experimental value constitutes an additional constraint for model building.
Supersymmetric contributions to a, involve chargino-sneutrino and neutralino-smuon
loops. They are of the form

m2 pms jptan 3
Mgysy

AaiUSY o
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The region favoured by the experimental measurement at the 2 ¢ level is shown in pink
on figure . No such region appear on the u < 0 plot since in such a case, AaiUSY is
negative, thus not accounting for the discrepancy.

The b — sy decay

In the case of exact supersymmetry (non-broken), all magnetic moment-transition op-
erator vanish [77]. The direct consequence is that the branching ratio of the b — sy
decay is exactly zero. Yet, as supersymmetry breaks, contributions due to charged
Higgs boson/top loops and chargino/stop loops are non-negligible. The approximate
agreement between the measured value of the branching ratio of B — X,y and the
prediction of the SM imposes constraint on supersymmetric one-loop contributions,
namely, they should cancel. The green domain on figure is favoured by this con-
straint.

2.3.2 Constraints from dark matter

It is now well established that a large fraction of the matter content of the Universe is
non-baryonic. The motion of many astrophysical objects (stars, gas clouds, globular
clusters, or entire galaxies) cannot be fully accounted for by gravitational interacting
radiative matter. Also, the observed gravitational lensing effect cannot be explained if
only visible matter is considered. The latest measurement of the density of dark matter
in the Universe results from a fit of a ACDM cosmological model’]on the WMAP three-
years data [26]. It states that approximately 20% of the energy in the Universe is in
the form of dark matter.

Candidates for non-baryonic dark matter include primordial black holes or axions
but the most favoured candidates are Weakly Interacting Massive Particles (WIMPs).
These are expected to be massive in order to interact gravitationally (a few GeV to a
few TeV), neutral to avoid annihilation and colourless. No candidate stands out within
the SM and the most favoured candidate is the LSP arising in the context of R—parity
conserving supersymmetry.

The WIMP relic density can be calculated assuming they were in thermal and chemical
equilibrium after inflation. WIMPs drop out of thermal equilibrium once the rate of
reactions that change SM particles into WIMPs becomes smaller than the expansion
rate of the Universe. After freeze-out, the number of WIMPs to entropy ratio remains

constant. A good approximation for the WIMP relic density reads
0.1pbec
Qwinph® ® ———

(av)

where ¢ is the speed of light, o4 is the total WIMP annihilation cross-section and v
the relative velocity between the WIMPs.

WIMPs are searched for directly through their elastic scattering on nuclei. Although
no groundbreaking results were published for the direct detection of WIMPs, the

5Cold Dark Matter with a cosmological constant.
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DAMA/LIBRA experiment claimed to have observed an annual modulation of its sig-
nal with a significance of 8.2 ¢ [78]. This controversial result is believed to be a signal
for WIMPs as earth pass through the galactic dark matter cloud. On the other hand,
the ATIC balloon experiment reports an excess of galactic cosmic ray electrons with
energies of 300 to 800 GeV [79]. These could arise from the annihilation of WIMPs
with a mass of around 600 GeV. WIMPs can also be searched for indirectly. They can
be captured by massive celestial objects and annihilate into neutrinos, gamma rays,
positrons, antiprotons or antinuclei. For instance, an increased flux of high-energy neu-
trinos coming from the sun or the earth could sign the presence of WIMPs. Current
experiments could not set competitive limits in the mass domain proposed by super-
symmetry. The Fermi Gamma-ray Space Telescope (formerly GLAST) was launched
in June 2008 and provides an interesting sensitivity in that domain. It will search for
an excess of gamma rays from the center of the galaxy in the 30 MeV to 300 GeV
range.

The occurrence of a candidate for dark matter, i.e. with the right mass and couplings,
is a strong discriminator to constrain parameter spaces. For instance, in the mg—m;;
plane of the mSUGRA parameter space, four regions can be designed according to the
behaviour of their LSP:

e The bulk region corresponds to the low—mg and low—m; /, domain. In this area, all
sparticles and the Higgs bosons are light. This domain was dramatically reduced
by WMAP results [71] due to the large neutralino annihilation cross-section. This
region can be seen on figure as a blob on the lower left corner of the upper
plot.

e The co-annihilation region corresponds to the low—myg horizontal blue stripe on
the upper plot of figure . In that domain, mz ~ myg and 7; — Ny and 7 — 7
annihilation contribute to reduce the relic density to sufficiently low values [80].

e The rapid annihilation funnel region is the domain where tan g is large and m 4
and my ~ 2my, . Hence, neutralinos rapidly annihilate into heavy Higgs bosons
leading to large di-fermion resonances. On figure [2.2] this region can be seen on
the lower plot, corresponding to the large tan (3 case.

e The focus point region corresponds to the high—-mg area were scalars are heavy.
The LSP has a large higgsino component leading to a large annihilation rate
through a Higgs boson.

2.4 Supersymmetry at the LHC

If it is realized, supersymmetry is expected to appear in the energy range probed by
the LHC. With an energy of 14 TeV in the centre-of-mass, the LHC can produce new
particles with masses up to several TeV.

The search for supersymmetry at the LHC has been intensively prepared by dedicated
working groups and is articulated around a number of benchmark parameter points in
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Figure 2.3: Typical processes contributing to the production of supersymmetry at the
LHC.

the mSUGRA phase space such as the SPSla point (see section . However, the
variety of resulting signatures covers a larger range of possible theoretical scenarios. In
such points, new particles have masses of the order of 100 GeV for the N; LSP, 115
GeV for the Higgs boson to 800 GeV for the gluino allowing for total supersymmetry
production cross-sections varying from 2 to 300 pb. The dominant contributions arise
from the production of gluino pairs, squark pairs or gluino-squark associated produc-
tion by gluon or gluon-quark fusion. Also, chargino or neutralino pairs or associated
production can proceed through the annihilation of a quark pair. Figure [2.3] shows
three typical processes to produce supersymmetry at the LHC. After production, su-
persymmetric particles decay into other supersymmetric particles along with jets or
lepton with large transverse momenta. These decay chains proceed until the LSP is
produced and escapes the detector leading to large missing transverse energy. Hence,
typical studied signatures include numerous jets with high transverse momenta, large
missing transverse energy and possibly isolated leptons. The typical SM backgrounds
for search topologies include QCD multi-jets production, ¢t events, vector bosons plus
jets, or vector boson pairs.

Figure shows the 1 fb™! reach for a 50 discovery of mSUGRA in the mg — my /s
plane for different search strategies and for two different parameter sets. mg can be
probed up to values of a few TeV and m;/, up to about 500 GeV.
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Chapter 3
A Toroidal LHC ApparatuS

“Some kind of happiness is measured out in miles
Some kind of innocence is measured out in years”

John Lennon — Hey bulldog

“Success is the ability to go from one failure to another with no loss of
enthusiasm”

Winston Churchill

The ATLAS Collaboration is one of the four experiments installed along the Large
Hadron Collider (LHC) at CERN (Geneva, Switzerland). Its purpose is to search for
the Higgs boson as well as supersymmetry or other extensions to the Standard Model.
The development of the detector started in 1990, the installation in 2000 and the
commissioning in 2004. In 2008, the detector was installed and commissioned. ATLAS
immediately started and is still recording cosmic muons crossing the detector. The
LHC is now is a phase of consolidation of its magnet system and collision are expected
in 2009. As of now, the ATLAS Collaboration counts more than 2000 signing authors
in more than 160 institutes in 37 countries.

3.1 The Large Hadron Collider

The LHC is a proton-proton collider with a nominal center-of-mass energy of 14 TeV
and a design luminosity of 10** cm~2 s~!. It is installed in the LEP circular tunnel
under the French-Swiss border. Its installation started in 2000 and its assembly ended
in 2007. It is 27 km in circumference and lies between 50 and 175 meters below the
surface. The beam trajectory is bent by 1232 14.3 meters long 35 tons superconducting
dipole magnets which contain the two beam pipes. The dipoles generate a magnetic
field of 8.4 T at a current of around 11.7 kA. 392 quadrupoles magnets are used to

focus the beams. Magnets are cooled down to 1.9 K by liquid Helium.

The acceleration complex comprises several steps. 50 MeV protons are generated by
the LINAC 2 linear accelerator. The Proton Synchrotron booster (PS) increases the
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Figure 3.1: Configuration of the acceleration complex and locations of the four LHC
experiments.

energy to 1.4 GeV before the SPS accelerates the beam to 450 GeV and injects it into
the LHC. Beams are expected to stay in the ring for ten to twenty hours. Protons are
grouped in bunches of 10'°, 2808 of which will circulate in the ring separated by 25 ns.
The total inelastic proton-proton cross section at the LHC is 80 mb, that is 10° events
per second at design luminosity. For each bunch crossing, an average of 23 interactions
will occur simultaneously, inducing pile-up (see section .

On September 10, 2008, the LHC injected its first proton. They travelled several
times around the ring, allowing experiments to record splash eventsﬂ On September
29, during the test of the last magnet sector of the LHC, a faulty splice between
two superconducting bus bar caused the release of a large amount of helium in the
tunnel. Several magnets were damaged or displaced. The LHC subsequently switched
to shutdown mode in order to replace, fix or realign the magnets. The LHC is expected
to start injecting protons again in 2009. The beam energy will be pushed to a few TeV
and the luminosity progressively raised to 103 cm™2 s~!. Table summarize the
general parameters of the LHC. Table list typical cross-sections expected at the
LHC for standard processes as well as new physics.

Four experiments are installed along the LHC. Two general purpose detectors, ATLAS
and CMS (Compact Muon Solenoid) are located one across the other respectively at
Point 1 (Meyrin, Switzerland) and 5 (Cessy, France). Experimental techniques are

LA splash event occurs when protons hit the collimators placed before the detector, triggering large
forward showers.
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Nominal values Early runs
Beam energy 7 TeV 5 TeV
Luminosity 103 em™2s7! | up to 103 em=2 57!
Protons per bunch 100 1010
Bunch separation 25 ns 75 ns

Table 3.1: General parameters of the LHC. Values for the early running phase are also
reported.

Final state Cross—section
bb O(100 pb)
Jets O(1 pb)
tt O(1 nb)
Higgs O(1 pb)
Supersymmetry O(10 pb)

Table 3.2: Typical cross-sections at the LHC

complementary while physics goals are the same. In CMS, calorimetry is realized by
scintillating lead tungstate crystal located within a solenoid coil, whereas ATLAS chose
liquid argon as sampling material and lead and stainless steel as absorbers (see section

3.3.2)) situated outside of a solenoid coil.

At Point 8, LHCb will study b—physics and aims at measuring the parameters of CP
violation in an asymmetric detector. At Point 2, ALICE (A Large Ton Collider Exper-
iment) is a heavy ion experiment. For this experiment, the LHC will switch to lead
ion accelerator. Pb-Pb nuclei collisions will be studied at a centre of mass energy of
5.5 TeV per nucleon. The resulting temperature and energy density are expected to
be large enough to generate a quark-gluon plasma.

3.2 Design overview

The LHC provides a rich physics potential, ranging from more precise measurements
of Standard Model parameters to the search for the Higgs boson and new physics.
Requirements for the ATLAS detector system have been defined using a set of standard
or new processes which will be or might be observed. The high luminosity and large
cross-sections at the LHC enable high precision tests of QCD, electroweak interactions,
and flavour physics. The top quark is produced at the LHC at a rate of a few tens
of Hertz, providing the opportunity to test its couplings and spin. The search for
the Higgs boson and supersymmetry have been used as benchmarks to establish the
performance of ATLAS.

A promising channel for the search of the Higgs boson at low mass (m;, < 130 GeV)
is the h — 7. Above 130 GeV, h — ZZ* — 4/ is the golden channel. For low scalar
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mass (mg < 1 TeV), supersymmetric production is dominated by gluino and squark
pairs. These decay into other squarks or neutralinos/charginos along with one or more
jets or leptons. In turn, neutralinos and charginos will cascade down to the Lightest
Supersymmetric Particle (LSP), producing again many jets and isolated leptons on the
way. The remaining LSPs will escape the detector leading to large missing transverse
energy (). Z' and W’ heavy objects predicted by other models of new physics will
produce lepton or jet pairs with very high transverse momenta (pr). Thus, both the
Higgs boson and new physics produce events featuring numerous jets, isolated leptons
and photons and K in a very busy multi-interaction environment. Fundamental
requirements for the detector include :

e very good electromagnetic calorimetry for electron and photon measurements,

e full-coverage hadronic calorimetry for accurate jet and missing transverse energy
measurements,

e good muon identification and momentum resolution over a wide range of mo-
menta,

e good charged-particle momentum resolution and reconstruction efficiency in the
tracking detector and secondary vertex detection close to the interaction point
for 7 and b tagging,

e highly efficient triggering on low—pr objects with sufficient background rejection,

e fast, radiation resistant electronics and sensors elements.

The ATLAS detector [29] is 44 meters long, 25 meters high and weighs about 7000
tons. It is a cylinder whose axis (z axis) is the beam pipe. The x axis points towards
the center of the LHC ring and the y axis points upwards. In polar coordinates, two
quantities are used : The azimuthal angle ¢ and the pseudo-rapidity n = — Intan g. 0
is the polar angle. The positive n half of the detector is called A and the other half C.
The transverse plan is the zy plan.

Figure[3.2]shows the overall layout of the detector. The magnet configuration comprises
a thin superconducting solenoid surrounding the tracking detector cavity, and three
large superconducting toroidal coils (one barrel and two end-caps) arranged with an
eight-fold azimuthal symmetry around the calorimeters.

The tracking detector (section is immersed in a 2 T solenoidal field and cov-
ers the range |n| < 2.5. Pattern recognition, momentum and vertex measurements
and electron identification are achieved with a combination of discrete, high-resolution
semiconductor pixel and strip detectors in the inner part of the tracking volume, and
straw-tube tracking detectors with the capability to generate and detect transition
radiation in its outer part.

High granularity liquid-argon (LAr) electromagnetic sampling calorimeters (section
, with excellent performance in terms of energy and position resolution, cover
the pseudo-rapidity range || < 3.2. The hadronic calorimetry in the range |n| <
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Figure 3.2: Cut-away view of the ATLAS detector.

1.7 is provided by a scintillator-tile calorimeter, which is separated into a large barrel
and two smaller extended barrel cylinders, one on either side of the central barrel.
In the end-caps (|n| > 1.5), LAr technology is also used for the hadronic calorimeters,
matching the outer || limits of end-cap electromagnetic calorimeters. The LAr forward
calorimeters provide both electromagnetic and hadronic energy measurements, and
extend the pseudo-rapidity coverage to |n| = 4.9.

The calorimeter is surrounded by the muon spectrometer (section [3.3.3)). The air-core
toroid system, with a long barrel and two inserted end-cap magnets, generates strong
bending power in a large volume within a light and open structure. Multiple-scattering
effects are thereby minimised, and excellent muon momentum resolution is achieved
with three layers of high precision tracking chambers. The muon instrumentation
includes trigger chambers with very good timing resolution. The muon spectrometer
defines the overall dimensions of the ATLAS detector.

3.3 Detectors

3.3.1 Tracking

With approximately one thousand particles emerging from the interaction point every
bunch crossing at design luminosity, high-precision measurement must be made with
fine detector granularity to achieve momentum and vertex resolution requirements.
This performance is achieved by combining three sub-systems.
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Figure 3.3: Plan view of a quarter of the ATLAS tracking detector.

Pixels

Closest to the beam axis is the silicon pixel detector. Three layers of silicon pixels
located 50.5, 88.5 and 122.5 mm away from the beam axis cover a pseudo-rapidity
range of |n| < 2.5. Each layer is paved with 50 x 400 ym? pixels for a total of 80.4
million readout channels. The first layer starting from the beam axis is called the
vertexing-layer, also called B-layer, as it allows for a very precise determination of
primary and secondary vertices, hence helpful for the tagging of b—jets. The vertexing-
layer is also used to separate electrons from photons (see section . Three end-cap
rings are situated in the x — y plane at z = 495, 580 and 650 mm. Each ring spans in
radii from 89 to 150 mm. The accuracies in the barrel are 10 ym in R¢ and 115 pum
in z and 10 pm (R¢) and 115 pm (R) in the rings.

Semi—Conductor Tracker

Around the pixel detector is the the Semi-Conductor Tracker (SCT). In the barrel
(|z] < 749 mm for the SCT), four concentric layers (r = 299, 371, 443 and 514 mm)
host two sets of silicon strips each. Each set is 80 ym wide, up to 126 mm long. One of
the strip is parallel to the beam axis while the other is twisted with an angle of 40 mrad
to measure both z and R — phi with a resolution of 580 pym and 17 pm respectively.
In the end-cap, nine rings (z = 854 to 2720 mm) bear radial strips as well as 40 mrad
twisted strips. The combination of hits from strips in the same layer constitutes a
space-point.
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Transition Radiation Tracker

The last sub-detector before the solenoid is the Transition Radiation Tracker (TRT).
It covers |n| < 2, its barrel extends to |z| = 712 mm and its end cap from |z| = 848
to 2710 mm. The TRT is made of 4 mm diameter straw tubes filled with 70% xenon,
20% methane and 10% CO,. In the centre of each straw runs a gold clad tungsten
wire, the anode, while the tube plays the role of the cathode. In the barrel, straws run
parallely to the beam axis and the wires split at z = 0. In the end-cap, they run along
¢ in a concentric fashion around the z axis. The TRT solely provides a measurement
of R — ¢ the resolution of which is 130 pum per straw. Each particle coming from the
interaction point crosses 36 tubes on its way out. For each tube, the drift time of
signal is measured leading to an information on perigee of the particle with respect
to anode. Without any information, only a drift circle centered on the anode can be
reconstructed. Approximately 351,000 channels read information from the TRT.

3.3.2 Calorimetry

The ATLAS calorimeters consist of a number of sampling detectors with ¢—symmetry
and pseudo-rapidity coverage up to 4.9. The calorimeters closest to the beam line are
housed in three cryostats, one barrel and two end-caps. The barrel cryostat contains the
electromagnetic barrel calorimeter, whereas the two end-cap cryostats each contain an
electromagnetic end-cap calorimeter (EMEC), a hadronic end-cap calorimeter (HEC),
located behind the EMEC, and a forward calorimeter (FCal) to cover the region closest
to the beam. All these calorimeters use liquid argon as the active detector medium;
liquid argon has been chosen for its intrinsic linear behaviour, its stability of response
over time and its intrinsic radiation-hardness. Figure |3.4]shows a cut-away view of the
ATLAS calorimeter system. Figure details the granularity in each layer.

Presampler

The presampler is a 11 mm thick liquid argon layer located inside the barrel cryostat,
covers |n| < 1.8 and has a granularity of An x A¢ = 0.025 x 0.098. It provides an
estimation of the energy lost by particles in the tracking detector and solenoid in order
to correct the measurements of the barrel calorimeters.

Electromagnetic calorimeter

The electromagnetic (EM) calorimeter aims at detecting and measuring electrons and
photons. Yet, it is also helpful in the reconstruction of muons and jets. It was designed
to optimize resolution and efficiency for the measurement of photons in the h — v
channel and electrons in supersymmetric cascades as well as in the h — 4/ channel.
Its very fine granularity (An x A¢ = 0.025 x 0.0245) and its pseudo-rapidity coverage
(In| < 2.5) allow for a very strong jet rejection and e/~ identification.

Upon entering the calorimeter, incoming particles hit the lead, triggering an electro-
magnetic shower. The particles in the shower ionize the liquid argon (LAr) which
consequently drifts toward kapton electrodes. The latter collect the signal. The barrel
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calorimeter system. with their granularity.

EM calorimeter covers |n| < 1.475 and is made of two half-barrels, one for n > 0 and
the other for n < 0. Each half is 3.2 m long and extends from R = 1.5 to 1.97 m.
It consists of 1024 accordion-shaped lead absorbers providing perfect continuity in ¢,
interleaved with liquid argon and readout electrodes in the centre. The total depth
starts from 22 radiation length (Xy) at 7 = 0 and increases to 30 X, at || = 0.8.
Then, from 24 to 33 X, for 0.8 < |n| < 1.3.

The EM barrel calorimeter is divided in depth in three compartments, also called layers

e The innermost compartment, the strips, is only 4.3 X, deep. Its very fine n
granularity (An x A¢ = 0.0031 x 0.098) allows for an efficient v — 7° separation.

e The next compartment, the middle, is 16 X, deep and measures the largest part
of the electromagnetic shower. Its ¢ granularity is finer than that of the strips
(An x A¢ = 0.025 x 0.0245).

e The last compartment, the back, is only 2 X, deep and receives the tail of the
shower. Its granularity is An x A¢ = 0.1 x 0.0245.

An elementary An x A¢ pad is called a cell. They are the building blocks for clusters
which in turn are used to reconstruct electrons and photons (section [3.4.4)).
Hadronic calorimeter

The hadronic calorimeter is located outside the EM calorimeter and extends out to
In| = 4.9. It aims at differentiating strongly interacting showers from electrons and
photons which do not penetrate as deeply. It comprises two parts.
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Tile calorimeter The tile calorimeter is placed directly outside the EM calorimeter
envelope. Its barrel covers the region |n| < 1, and its two extended barrels the range
0.8 < || < 1.7. It is a sampling calorimeter using 14 mm thick steel sheets as the
absorber and 3 mm thick scintillating tiles as the active material. Radially, the tile
calorimeter extends from R = 2.28 to 4.25 m. It is segmented in depth in three layers,
approximately 1.5, 4.1 and 1.8 X, thick for the barrel and 1.5, 2.6, and 3.3 X for the
extended barrel. The total detector thickness at the outer edge of the tile-instrumented
region is 9.7 Xy at n = 0. The granularity is An x A¢ = 0.1 x0.1 for the two innermost
layers and 0.2 x 0.1 for the outermost one.

LAr end-cap The Hadronic End-cap Calorimeter (HEC) consists of two independent
wheels per end-cap, located directly behind the end-cap electromagnetic calorimeter
and sharing the same LAr cryostats. It extends from |n| = 1.5 to 3.2, thereby overlap-
ping with both the tile calorimeter and the forward calorimeter. Each wheel is divided
into two segments in depth, for a total of four layers per end-cap. The wheels clos-
est to the interaction point are built from 25 mm thick parallel copper plates, while
those further away use 50 mm thick copper plates. The outer radius of the copper
plates is 2.03 m, while the inner radius is 0.475 m (except in the overlap region with
the forward calorimeter where this radius becomes 0.372 m). The copper plates are
interleaved with 8.5 mm LAr gaps, providing the active medium for this sampling
calorimeter. The granularity is An x A¢ = 0.1 x 0.1 for 1.5 < |n| < 2.5 and 0.2 x 0.2
for 2.5 < |n| < 3.2

Forward calorimeter The Forward Calorimeter (FCal) is integrated into the end-cap
cryostats. It is approximately 10 interaction lengths deep, and consists of three modules
in each end-cap: the first, made of copper, is optimised for electromagnetic measure-
ments, while the other two, made of tungsten, measure predominantly the energy of
hadronic interactions. Each module consists of a metal matrix, with regularly spaced
longitudinal channels filled with the electrode structure consisting of concentric rods
and tubes parallel to the beam axis. The LAr in the gap between the rod and the tube
is the sensitive medium. The granularity is An x A¢ = 0.2 x 0.2.

3.3.3 Muon spectrometry

The muon spectrometer is based on the magnetic deflection of muon tracks in the
large superconducting air-core toroid magnets, instrumented with separate trigger and
tracking chambers. Over the range |n| < 1.4, magnetic bending is provided by the
large barrel toroid. For 1.6 < |n| < 2.7, muon tracks are bent by two smaller end-cap
magnets inserted into both ends of the barrel toroid. Over 1.4 < |n| < 1.6, magnetic
deflection is provided by a combination of barrel and end-cap fields. This magnet
configuration provides a field which is mostly orthogonal to the muon trajectories.

In the barrel region, tracks are measured in chambers arranged in three cylindrical
layers around the beam axis at radii of approximately 5, 7.5 and 10 m. In the tran-
sition between the barrel and end-cap regions, the chambers are installed in planes
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Figure 3.6: Plan view of a quarter of the ATLAS muon spectrometer. Monitored drift
tubes are shown in green in the barrel and blue in the end—cap, cathode strips chambers
in yellow, resistive plate chambers in white and thin gap chambers in magenta.

perpendicular to the beam at distances of 7.4, 10.8, 14 and 21.5 m from the interaction
point.

The muon system is instrumented with two kinds of chambers, one for precision mo-
mentum measurement and the other for triggering.

Precision chambers

Monitored Drift Tubes The 1150 MDT’s constitute the bulk of the muon system as
they are present on all layers of both barrel and end—cap. The basic element of the
MDT chambers is a 0.9 to 6.2 m long pressurized drift tube with a diameter of 30 mm,
operating with argon (93%) and COs (7%) gas at 3 bars. Electrons resulting from the
ionisation are collected at the central tungsten-rhenium wire. MDT’s allow for a very
good track reconstruction with a resolution of 300 pm.

Cathode Strips Chambers CSC’s are used in the area where MDT’s cannot bear the
particle flux, that is |§| > 2. They are located in the innermost end—cap wheels, at
|z| = 7.4 m. The CSC system consists of two disks with eight chambers each. Each
chamber contains four CSC planes resulting in four independent measurements in 7
and ¢ along each track.

The CSC’s are multi-wire proportional chambers with the wires oriented in the radial
direction. Both cathodes are segmented, one with the strips perpendicular to the wires,
providing the precision coordinate, and the other parallel to the wires providing the
transverse coordinate. The position of the track is obtained by interpolation between
the charges induced on neighbouring cathode strips. Strips are 5.08 mm apart and the
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gas is a mixture of argon (30%), COs (50%) and CH4 (20%). The CSC’s provide a
resolution of 50 to 70 pm.

Trigger chambers

Resistive Plate Chambers In the barrel, RPC’s cover MDT’s on both side in the second
layer and alternatively on the inner and outer side in the third layer. In the end—caps,
they cover the inner side of MDT’s in the first and third layers. Two extra wheels are
located between the third and fourth layers.

The RPC is a gaseous parallel electrode-plate detector. Two resistive plates, made of
phenolic-melaminic plastic laminate, are kept parallel to each other at a distance of
2 mm by insulating spacers. The electric field between the plates allows avalanches
to form along the ionising tracks towards the anode. The gas used is a mixture of
CoHoFy (94.7%), Iso-C4Hyg (5%) and SFg (0.3%). A RPC trigger chamber is made
of two rectangular detectors, contiguous to each other, each of whom, consists of two
independent detector layers read out by two orthogonal sets of pick-up strips. RPC’s
provide a resolution of 1 cm and 25 ns.

Thin Gap Chambers TGC’s are similar in design to CSC’s with 1.8 mm anode separa-
tion and 2.4 mm cathode separation. The gas is a mixture of CO, (55%) and n—-CsHys.
TGC provide level one trigger signal as well as n and ¢ information for the offline
reconstruction.

3.3.4 Magnets

ATLAS features a unique hybrid system of four large superconducting magnets. This
magnetic system is 22 m in diameter and 26 m in length, with a stored energy of 1.6 GJ
and provides a magnetic field over a volume or approximately 12,000 m3. The ATLAS
magnet system consists of

e a solenoid which is aligned on the beam axis and provides a 2 T axial magnetic
field for the tracking detector. It is incorporated into the cryostat in order to
minimize the radiative thickness in front of the barrel electromagnetic calorime-
ter,

e a barrel toroid and two end-cap toroids which produce a toroidal magnetic field
of approximately 0.5 T and 1 T for the muon detectors in the central and end-cap
regions, respectively.

3.4 Physics events

3.4.1 Collision environment

The analysis of final states at the LHC is very much complicated by the nature of
hadronic interactions. Indeed, as protons collide, only one parton (gluon or quark) in
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each proton is expected to take part in the hard scattering process. This is a high—
¢ interaction (high energy exchange) potentially leading to the production of heavy
particles such as electroweak bosons, top quarks, the Higgs boson or new particles.
However, as opposed to electron-positron colliders, the remaining partons (remnants)
in the incoming protons are also expected to scatter onto one another. However,
these interactions are expected to happen at much lower ¢? and will not produce any
interesting final state. Then, outgoing objects are not very much deviated from the
initial beam direction and hence are mostly expected in the forward region. Hence,
interesting physics are expected in the central region of detectors, that is at high
transverse momenta. The central region can also be populated with gluon jets and
photons springing from initial and final state radiation (ISR and FSR). Indeed, partons
bearing a large fraction of the energy of the incoming protons (x) are naturally the
one participating in the hard scatter. These or those produced in the scattering are
likely to emit gluons or photons before or after the interaction took place leading to
additional jets or photons in the detector. ISR, FSR and low—¢? scatterings from
remnants constitute the underlying event.

In addition, the high luminosity of the LHC causes events to pile-up in the detectors
leading to minimum bias events. Indeed, as mentioned in section protons in the
LHC beams are packed into bunches of 10'°. Hence, many proton pairs can collide
simultaneously leading to multiple interactions. An efficient trigger system (section
3.4.2)) is necessary to filter non-interesting events. Some of them can still make it to
the recorded data if they are simultaneous with an interesting hard scattering leading
to a minimum bias event.

3.4.2 Trigger

As show in table [3.2] new physics are expected to occur at the frequency of one event
in about 10'°. Thereby, the combination of very high luminosity and underlying events
forces the use of an efficient trigger system.

The trigger system has three distinct levels: level one (L1), level two (L.2) and the event
filter (EF). Each trigger level refines the decisions made at the previous level and, where
necessary, applies additional selection criteria. The first level uses a limited fraction of
the total detector information to make a decision in less than 2.5 s, reducing the rate
from 40 MHz at design luminosity to about 75 kHz. The two higher levels access more

detector information for a final rate of up to 200 Hz with an event size of approximately
1.3 Mbyte.

e The L1 trigger searches for high transverse-momentum muons, electrons, photons,
jets, and 7 decaying into hadrons, as well as large missing and total transverse
energy. Its selection is based on information from a subset of detectors. High
transverse-momentum muons are identified using trigger chambers in the barrel
and end-cap regions of the spectrometer. Calorimeter selections are based on
reduced granularity (An x A¢ = 0.1 x 0.1) information from all the calorime-
ters. Table list examples of available trigger items for the start-up luminosity
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EM3 EM7 EMI3() EMI8(i) EM23i EMI00

e/ 2EM3 2EM7 2EMI13(i) 2EMI8(i) 2EM23i 3EM7

Jets JiI0 J18 J23 J42 J70 J120
3J10  3J18 4J10 4J18 4723

Muons | MU4 MUG — MULO  MUI5  MU20  MU40

o2MU4 MU4/6 2MU6  2MUI0  2MU20 3MU6

Missing By | XE25 XE30  XBAO XE50  XB70  XES0

23

-1

Table 3.3: Examples of available trigger items for a luminosity of 103'cm™
The leading letter indicates the nature of the object, the following number indi-
cates the pr-threshold and (i) indicates an optional isolation requirement.

of 103'em=2s7!. Results from the L1 muon and calorimeter triggers are pro-
cessed by the central trigger processor, which implements a trigger menu made
up of combinations of trigger selections. The L1 trigger also defines one or more
Regions-of-Interest (Rol’s), that is the geographical coordinates in 1 and ¢, of
those regions within the detector where its selection process has identified inter-
esting features. The Rol data include information on the type of feature identified
and the criteria passed. This information is subsequently used by the high-level
trigger.

e The L2 selection is seeded by the Rol information provided by the L1 trigger.
L2 selections use, at full granularity and precision, all the available detector data
within the Rol’s (approximately 2% of the total event data). The L2 menus
are designed to reduce the trigger rate to approximately 3.5 kHz, with an event
processing time of about 40 ms, averaged over all events.

e The final stage of the event selection is carried out by the event filter, which
reduces the event rate to roughly 200 Hz. Its selections are implemented using
offline analysis procedures. The average event processing time is of the order of
four seconds.

3.4.3 Event simulation

In order to study the response of the detector to expected physics events and prepare
their analysis, Monte Carlo samples are generated. They are then submitted to a full
simulation of the detector.

Over 1300 different physics samples were generated. The principal general-purpose
Monte Carlo generators employed were PYTHIA [82], HERWIG [83], Sherpa [84], AcerMC
[85], ALPGEN [86], MadGraph/MadEvent [87] and MC@NLO [88]. Parton-level Monte Carlo
generators used either PYTHIA or HERWIG/JIMMY for hadronization and underlying event
modelling. HERWIG hadronization was complemented by an underlying event simulation
from the JIMMY program [89] (versions 4.2 and 4.31). The underlying event model
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parameters were tuned, for PYTHIA and HERWIG/JIMMY, to published data from TeVa-
tron and other experiments. For Sherpa, the default parton shower and underlying
event modelling was used. LHAPDF, the Les Houches Accord PDF interface library
[90], was used throughout, and was linked to all Monte Carlo event generators to pro-
vide the Parton Density Function set values. The PDF sets [47] used were CTEQG6L
for leading order Monte Carlo event generators, and CTEQ6M for the next-to-leading
order Monte Carlo event generator MCONLO.

The response of the ATLAS detector to generated events was estimated using a dedi-
cated Geant 4 simulation [91], [02]. One important aspect of the CSC challenge was the
test of the alignment and calibration procedures with an imperfect description of the de-
tector. The goal was to establish and validate the alignment and calibration procedures
and to determine the known distortions. The used geometry includes misalignment’s
of the inner detector. The misalignment’s were introduced as independent translations
and rotations at three levels: (i) of the main sub-detector parts (pixels, SCT barrel, two
SCT end-caps, TRT barrel and two TRT end-caps), (ii) of major detector sub-units,
like pixel and SCT barrel layers, pixel and SCT end-cap disks and TRT barrel modules
and (iii) of individual silicon detector modules. The sizes of displacements were chosen
to lie within the expected build tolerances. The actual displacements were assigned
randomly in most cases.

Additional material was added in different locations of the inner detector and in front
of the electromagnetic calorimeter. Within the active tracking volume the material in
regions of service routing was increased by 1-5% of a radiation length. For services
outside the active tracking volume the material was increased by up to 15% of a radia-
tion length. Additional material was also added in a ¢—asymmetric way in front of the
calorimeter. In the region n > 0 additional material corresponding to 8-11% X, were
added in front of the barrel cryostat, 5% Xy between the barrel presampler and strip
layers (in 7/2 < ¢ < 37/2), and 7-11% X, behind the cryostat. In the region n < 0,
additional material corresponding to 5% X, was added between the barrel presampler
and the strip layer in the region —7/2 < ¢ < w/2. The density of material in the
gap between the barrel and the end-cap cryostat was increased by 70%. Among the
important studies is the impact of the misalignment’s on the b-tagging performance or
on the reconstructed resolution of the Z resonance in muon final states. In addition the
impact on the mass resolution and reconstruction efficiencies was studied for H — ~~,

H — 77 — 40 and Z — ee samples.

3.4.4 Event reconstruction

After a successful trigger decision, events’ raw data are stored at CERN’s Tier—0 in
the ByteStream format. From there, reconstruction proceeds.

The goal of the reconstruction process is to infer the physics event at the interaction
point given the quantities measured by the detector (energy deposits in the calorime-
ters, hits in the tracker...). It is the reverse process from that of simulating the detector
response to a given physics event.
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Electrons

Electrons are reconstructed using a combination of information from the tracker and
the calorimeters. A detailed account is provided in chapter [4]

Muons

Muons are identified thanks to a combination of three track reconstruction strategies.
The stand-alone method uses only tracks reconstructed in the muon spectrometer (|n| <
2.7). A combination of a muon spectrometer track with an tracking-detector track
is also possible over |n| < 2.5. Eventually, the Segment tag technique combines an
tracking-detector track with a muon spectrometer segment, i.e. a straight line track,
in an inner muon station. The reconstruction of tracks in the muon spectrometer is
essentially equivalent to that in the tracking detector. The overall muon reconstruction
efficiency is around 95% and the resolution on the measurement of the momentum is
around 4% for pr > 25 GeV.

Jets

Jet reconstruction algorithm in ATLAS can be realized by two algorithms, a fixed
cone jet finder or a sequential recombination technique, either on calorimeter towers
or topological clusters. Towers are formed by collecting cells into bins of Anp x A¢ =
0.1 x 0.1 and summing up their signals. For topological clusters, nearest neighbours
are collected around seed cells with a significant absolute signal above the major seed
threshold, i.e. |Ecen| > 40cen of the total noise. These neighbouring cells are collected
independently of the magnitude of their own signal. If the absolute value of their signal
significance is above a secondary seed threshold, typically such that | Eeen| > 40cen, they
are considered as secondary seeds and their direct neighbours are also collected. Finally,
all surrounding cells above a very low threshold are added if no more secondary seeds
are among the direct neighbours. A final analysis of the resulting cluster looks for
multiple local signal maxima. In case of more than one maximum in a given cluster, it
is split into smaller clusters, again in three dimensions, along the signal valleys between
maxima. Once these input objects are built, jet finding algorithms are run. The fixed
cone algorithm collects every input object (towers or topological clusters) around a seed
(> 1 GeV) in a cone of Reope = 0.4 or 0.7 (R = /An? + A¢?). The four-momentum of
the resulting collection is computed and the cone is centered around it iteratively until
convergence is reached. Infrared safety is ensured by splitting or merging overlapping
jets. For the sequential recombination method, the kr algorithm is applied [93]. Jets
are reconstructed with an efficiency of 100% from pt’s of 30 GeV and their energy is
measured with a resolution of ~ 15% to 4% for low and high—pr jets respectively.

Jets are calibrated by the application of weights to individual cells measurements. All
calorimeter cells in tower or cluster jets are re-summed with weighting functions w de-
pending on the cell signal density E;/V; , where V; is the volume of the cell considered,
and on the cell location in the calorimeter, Yi, consisting basically of module and
layer identifiers. They are fitted using simulated QCD di-jet events, covering the whole
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kinematic range expected at the LHC, and matching calorimeter cone-tower jets, with
AR = 0.7, with nearby truth-particle cone jets of the same size. The weighting func-
tions determined in this way absorb all detector effects, including missing signals from
charged truth particles with less than ~ 400 MeV transverse momentum which are
bent away from the calorimeter by the solenoid magnetic field in the tracking detector
cavity.

Flavour tagging

It is not possible to identify the flavour of the parton giving rise to a jet except in
the case of b—jets. B-hadrons are relatively long-lived and travel about 3 mm in
the transverse plane before decaying. In addition, they are fairly heavy (> 5 GeV).
Thus, their decay products may have a large transverse momentum with respect to
the jet axis and the opening angle of the decay products is large enough to allow a
separated reconstruction. A combination of a good reconstruction of secondary vertices
or a measurement of the impact parameter of tracks with an efficient identification of
soft leptons permits to tag jets containing a b—quarks. Using these measurements, a
weight is computed as a sum of likelihood ratio. It was shown in [81] that b—jets can
be identified in ATLAS with an efficiency of about 60% in the central region of the
detector and for pr > 100 GeV.

Missing transverse energy

The reconstruction of the missing transverse energy is based on the calibrated calorime-
ter cells and combined muons, where care is taken not to double-count energy lost by
the latter in the calorimeter. Then, energy lost in the cryostat between the electro-
magnetic calorimeter and the tile calorimeter is accounted for. Eventually, a refined
calibration of [ is performed through the association of each high—pr object in the
event to its globally calibrated cells. The refined calibration of Kt then replaces the
initial contribution from globally calibrated cells by the contribution from the corre-
sponding calibrated high—pr objects themselves.

3.4.5 Data processing

The simulation of Monte Carlo samples, the reconstruction of simulated or recorded
data as well as physics analysis are all performed with the unified athena framework
[94].

Athena is a complex modular C++ framework. It incorporates the various computing
tasks as packages. It contains all on-line and offline algorithms allowing to transform
raw measurements of the detector into high-level combined physics objects. Its package
structure is very modular and allows for a great flexibility in the management of dif-
ferent releases. Major production versions are released every six month. Development
sub-versions are released every month. Athena is highly customizable at run-time by
an ergonomic python interface.
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The first step of simulated data processing are Raw Data Objects (RDO) files. They
contain events as output by the Event Filter in byte-stream format, reflecting the
format in which data are delivered from the detector rather than in any object-oriented
representation. RDO files weighs approximately 2 MB per event.

Event Summary Data (ESD) files contain the output of the reconstruction algorithms.
They are intended to make access to RDOs unnecessary for most physics applications
other than for some calibration or re-reconstruction. ESDs have an object-oriented
representation, and are stored in POOL ROOT format. ESD files weighs approximately
750 kB per event.

Analysis Object Data (AOD) files contain reduced representations of events. They
are derived from ESD and are suitable for analysis. They contain physics objects and
other elements of analysis interest. They have an object-oriented representation, and
is stored in POOL ROOT format. AOD files weighs approximately 170 kB per event.
Derived Physics Data (DPD) is an ntuple-style representation of event data for end-user
analysis and histogramming.

Several standard methods co-exist for the analysis of data. The choice of method
depends on the purpose of the analysis (performance study, physics analysis, etc...)
and on user preferences.

The slowest and less flexible method consists in running a C++ code embedded in an
athena package on ESD or AOD files in order to produce ROOT histograms. A change
in the constitution of histograms necessitates the edition and the recompilation of the
C++ code. Furthermore, the execution of this code is achieved within an athena process
resulting in a very long overhead due to the initialization and loading of the detector
geometry and conditions.

The fastest method consists in running a C++ code embedded in an athena package on
ESD or AOD file in order to generate a ROOT ntuple files such as an Event View ntuple
or a DPD (Derived Physics Data). These files are generated once at the beginning of
the study and in general need not be rebuilt. They are ROOT trees containing only
the desired variable. Then, a ROOT C++ macro is run on the ntuple files in order to
build histograms. This method has almost no overhead and can process events at a
rate of ~ 1000 Hz.

The most flexible method consist in running a python code in the AthenaROOTAccess
framework directly on AOD files to generate histograms. This method inherits the
flexibility and user-friendly-ness of the python language and allows for a very fast
and compact writing of the desired tasks. Also, this method provides a very direct
way to have a rapid insight of any physics sample after downloading AOD files from
the Grid. The drawback of this flexibility is that the method suffers from the heavy
but necessary C++ machinery of the AthenaROOTAccess framework. This results in a
~ 100 Hz processing rate.

A personal method was used in the analysis presented in chapter[pl A python code was
run in the AthenaROOTAccess framework to store desired variables in python shelve
files. Then a python macro was run on the shelve files to generate histograms. This
method allowed for a ~ 1500 Hz processing rate.
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3.4.6 Distributed computing

The amount of data to be recorded during the operation of the LHC experiments (=~
1 Pbyte/year) as well as the large Monte Carlo production required for a careful study
of the expected backgrounds rule out a central concentration of computing resources.
The Worldwide LHC Computing Grid project [95] aims at distributing the CPU and
storage demand over a number of sites around the world.

The central node is CERN’s Tier-0, a dedicated computing farm. It runs the event
reconstruction withing 24 hours of their recording by the detector. The output of the
reconstruction (ESD POOL files) and raw data are then sent over to eleven Tier-1
sites, each of them conserving a fifth of the data. Reprocessing of the reconstruction is
achieved at Tier-1’s. The analysis objects (AOD POOL files) are all distributed to all
Tier-1’s. 140 Tier-2 sites take care of user analysis jobs and Monte Carlo production.
The French cloud includes one Tier-1 site (CCIN2P3-IRFU in Lyon) and four Tier-2
sites : GRIF (Ile-de-France), LAPP (Annecy), LPC (Clermont-Ferrand) and Subatech
(Nantes).

From the user point of view, the Grid structure allows to send analysis jobs on any
dataset (data or MC) from any machine to almost any grid site around the world in
a very efficient and transparent manner. I used the Grid as a user to perform both
physics analysis and performance studies. I used the PANDA interface to send athena
(ATLAS software) jobs. I used raw grid commands to send non-athena jobs (SFitter).
I sent jobs from the CERN computer farm or from the IN2P3 Computing Center in
Lyon. If no site is specified, the job will be sent to one of the site containing the
desired datasets, preferably on the French cloud. SFitter jobs do not require access to
any ATLAS dataset and, as so, ran successfully on the French cloud. However, most
of my athena jobs were voluntarily sent to the BNL computing center as it contains
all MC samples and has the lowest job failure rate.
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Chapter 4

Reconstruction and identification of
electrons in ATLAS

“Thunderbolts of lightning, very very frightening me”

Freddy Mercury — Bohemian Rhapsody

“They say that genius is an infinite capacity for taking pains, [...] It’s a
very bad definition, but it does apply to detective work.”

Sherlock Holmes — A study in scarlet

Electrons are of major importance in the ATLAS experiment, be it for the understand-
ing of the detector performance, the measurement of Standard Model processes or the
search for physics beyond the latter. Indeed, the measurement of electrons as the decay
products of Z’s, T’s or J/W’s can provide robust constraints on the absolute electro-
magnetic energy scale. The study of photon conversions as well as the bremsstrahlung
activity gives information as to the material distribution before the electromagnetic
calorimeter. Electrons are also necessary for the measurement of the W boson and top
quark masses. Eventually, once the detector response is reasonably understood and the
SM is measured, electrons will be used to probe the Higgs boson in its decay into four
leptons (h — ZZ* — 40 and h — WW* — 202v). Also, electrons often appear in the
long decay chains occurring in supersymmetric events. Namely, the supersymmetric
tri-lepton channel (see chapter [2]) is of great interest for both the discovery and the
measurement of supersymmetry. Some models of new physics based on extra dimen-
sions feature new very heavy gauge bosons, the decay of which will produce leptons
with very high transverse momenta (pr).

Approximately 10° QCD jets are expected for each isolated electron in the 20-50 GeV
pr-range at the LHC. More generally, the QCD jet cross-section is a hundred times
larger than at the TeVatron. On the other hand, cross-sections for electrons in new
physics or Higgs events are of the order of a few fb. Thus, high reconstruction and
identification efficiencies must be achieved against high jet rejections from pt’s of a
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few GeV (J/¥, h — 40 or b-tagging) up to a few TeV (Z' — ee). In the early data-
taking phases, the performances of the reconstruction and identification processes will
be assessed directly on recorded Z — ee events thanks to the in-situ tag-and-probe
method. A good resolution and accuracy on the measurement of the electrons’ energy
is necessary to reconstruct resonances (Z, J/¥, h or t) or other observables such
as kinematic end-points and thresholds. This can be achieved by a combination of
calibration techniques involving both Monte Carlo based and in-situ methods.

In this chapter, the methods used to reconstruct and identify electrons and discriminate
jets in ATLAS are exposed [29, [8I]. In particular, isolation studies, track-matching
optimization, conversion reconstruction and the determination of signal efficiencies
and jet rejection are discussed. The presented studies were performed in the context
of the Computing System Commissioning (CSC) exercise [81]. This effort aimed at
assessing the readiness of the reconstruction chain for data-taking. That included an
optimization of trigger menus, reconstruction algorithms, physics studies and analysis
tools. All results were published in [81].

4.1 Simulation

Signal samples for the study of the reconstruction and identification of electrons include
single electron events as well as actual physics processes such as Z — ee events or
supersymmetric (SUSY) events.

Single electron events were generated at fixed pr or with 7 < pr < 80 GeV. Un-
less stated otherwise, the hereafter mentions of “single electrons” refer to a simulated
sample of single electron events with 7 < pr < 80 GeV.

Samples of Z — ee events were also simulated by the PYTHIA event generator [82].
The new implementation of parton showering, commonly known as pr—ordered show-
ering, was used as well as the new underlying event model where the phase-space is
interleaved /shared between initial-state radiation (ISR) and the underlying event.

SUSY events were generated by the HERWIG code (releases 6.508 to 6.510) [83]. In this
case, the underlying event was generated by JIMMY [89]. This sample will be referred
to as “SUSY events”. The underlying event model parameters were tuned, for PYTHIA
and HERWIG/JIMMY, to published data from TeVatron and other experiments. The
decay of 7—leptons was treated via the TAUOLA package [96], version 2.7. The radiation
of photons by charged leptons was treated using the PHOTOS QED radiation package,
version 2.15 [97].

For the generation of ¢t events, the MCONLO 3.3 code [88] was used to compute the NLO
matrix elements including a next-to-leading log re-summation. This code is interfaced
to the HERWIG parton shower generator for the hadronization of final states and to
JIMMY for the underlying event.

For the study of the jet rejection, PYTHIA was used to produce the large QCD jet
sample required to assess performance of the electron reconstruction and identification.
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The filtered di-jets sample contains all hard-scattering QCD processes with pr > 15
GeV, e.g. qg9 — qg, including heavy-flavour production, together with other physics
processes of interest, such as the production of prompt photon or single W/Z. A
filter was applied at the generator level to simulate the level 1 trigger requirements,
with the goal of increasing in an unbiased manner the probability that the selected
jets pass the electron identification cuts after the detector simulation. The summed
transverse energy of all stable particles (excluding muons and neutrinos) with |n| < 2.7
in a region An x A¢ = 0.12 x 0.12 was required to be greater than 17 GeV for an
event to be retained. The filter retains 8.3% of the di-jet events. The total number of
events available for analysis after filtering, simulation and reconstruction, amounts to
8.2 million. This sample will be referred to as “di-jet events”.

The reconstruction of simulated events is accomplished by the ATLAS athena soft-
ware. The starting point of this work was the reconstruction process contained in
release 12.0.3 (September 2006). Improvements were incorporated, documented and
maintained into successive releases up to 14.2.0 in June 2008.

The analysis of reconstructed samples was performed using two methods. Flat com-
bined ntuples containing the quantities output by the reconstruction and identification
processes were analysed by ROOT C++ macros. From early 2008, the AthenaRO0TAccess
package was used to run Python codes directly on structured AOD files.

4.2 Electrons and photons in the detector

Upon production in a hard scattering process at the interaction point, electrons travel
through the tracking detector where their trajectory is bent by the magnetic field
produced by the solenoid. As charged particles, they leave hits in the silicon detectors
as well as in the TRT drift tubes. As they cross material (see figure [4.1|for the material
distribution in from of the calorimeter as a function of |n|), it is possible that a fraction
of their energy be carried away by a photon emitted in a bremsstrahlung process.
Such processes occur when charged particles (here electrons) are decelerated by nuclei
and emit photons. After leaving the tracking detector and crossing the solenoid, they
enter the presampler and the electromagnetic calorimeter. The interaction with the
lead present in the calorimeter results in an electromagnetic shower. The secondary
particles in the shower ionize the surrounding liquid argon. Ions drift thanks to an
electric field towards the electrodes where the signal is measured. Most of the electrons’
original energy is unloaded there and recorded in the calorimeter cells. The shower is
mostly contained to the electromagnetic calorimeter and small amounts of energy in
the hadronic calorimeter are detected only in the case of high pr electrons. Figure 4.2
shows the amount of transverse energy deposited by pr = 500 GeV single electrons in
the hadronic calorimeter as a function of |n|. Even where the amount of material in
front of the calorimeter is minimal (|n| ~ 0), less than 1% of the pr of the electron
leaks into the hadronic calorimeter.

Photons behave very similarly to electrons except for the fact that they do not leave
hits in the tracking detector and are not deflected by the magnetic field. In the presence
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Figure 4.1: Material distribution at the
exit of the tracking detector envelope, in-
cluding the services and thermal enclo- n|
sures. The distribution is shown as a
function of |n| and averaged over ¢. The
breakdown indicates the contributions of
external services and of individual sub-
detectors, including services in their ac-
tive volume [29].

Figure 4.2: Transverse energy deposited
in the hadronic calorimeter as a function
of |n| for single electrons with pr = 500
GeV.

of material (see figure , photons have a large tendency to convert. In such cases,
an electron-positron pair is produced. They share the photon’s energy in uneven parts
leading to asymmetric conversions. Tracks from the electron-positron pair may not
always be reconstructed, leading to single-track conversions. Late conversions occur
when a photon travels a macroscopic distance in the tracking detector before decaying.
In the calorimeter, photon showers are generally narrower than electron showers. Still,
the main discrimination factor between the two arises from the tracking detector.

4.3 Reconstruction

Two measurements are at hand for the reconstruction of electrons : tracks and calori-
metric information. They will be used to classify EM clusters as electron candidates,
photon candidates or converted-photon candidates.

4.3.1 Track and cluster reconstruction
Tracks

Hits in the pixel and SCT detectors are assembled into clusters. The TRT raw timing
information is turned into calibrated drift circles (see section [3.3.1). The SCT clusters
are transformed into space-points (see section [3.3.1)), using a combination of the clus-
ter information from opposite sides of a SCT module. Then, different fitting strategies
co-exist, each optimized for specific applications. The default technique proceeds out-
wards. It exploits the high granularity of the precision detectors to find prompt tracks
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Figure 4.3: Track reconstruction effi- Figure 4.4: Conversion reconstruction ef-
ciency as a function of |n| obtained on sin-  ficiency as a function of conversion radius.
gle electrons.

originating from the vicinity of the interaction region. Track seeds are formed from a
combination of space-points in the pixel layers and the first SCT layer. These seeds are
then extended throughout the SCT to form track candidates. Next, these candidates
are fitted, outlier clusters are removed, ambiguities in the cluster-to-track association
are resolved, and fake tracks are rejected. The selected tracks are extended into the
TRT to associate drift circles around the extrapolation and to resolve the left-right
ambiguities. Finally, the extended tracks are refitted with the full information of all
three detectors. This method is adapted to tracks left by primary charged particles.

Another method, called back-tracking, proceeds inwards. It searches for unused track
segments in the TRT. Such segments are extrapolated into the SCT and pixel detectors
to improve the tracking efficiency for secondary tracks from conversions or decays of
long-lived particles. The last technique consists in reconstructing TRT tracks in a
standalone fashion. The use of such tracks is very recent and experimental. Therefore,
they are not used in the electron reconstruction process for the results shown in this
work.

Left-side plot of figure shows the track reconstruction efficiency as a function of
pseudo-rapidity obtained on single electrons. The rack reconstruction efficiency is
defined as the fraction of MC truth electrons for which a track is reconstructed with a
distance R = \/An? + A¢? of 0.2. It is close to 100% as a function of pseudo-rapidity
out to |n| &~ 1.4 where the material in the tracking detector increases substantially. It
is also fairly uniform as a function of pr down to low values, with a 97% efficiency for
single electrons with a pt of 10 GeV.

As the number of radiation lengths increases, the probability for an electron to undergo
bremsstrahlung rises. The energy lost in the process can be recovered with dedicated
fitting algorithms. The dynamic noise adjustment method [98] extrapolates track seg-
ments to the next layer, allowing for loss compatible with hard bremsstrahlung. The
Gaussian-sum filter method takes into account non-Gaussian noise by modelling it as
a weighted sum of Gaussian components [99)].
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Figure 4.5: 17 difference
between the EM cluster
and the track extrapolated
to the calorimeter for sin-
gle electrons. The red line
represents the cut.

Figure 4.6: ¢ difference be-
tween the EM cluster and
the track extrapolated to
the calorimeter for single
electrons. The red lines
represent the cut.
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Figure 4.7: Ratio between
the energy of the cluster
and the momentum of the
track for single electrons
with. The red line repre-
sents the cut.

Electromagnetic clusters

EM clusters correspond to local energy deposits in the EM calorimeter. They are
built by the sliding-window algorithm [100]. The latter proceeds in three steps. First,
200 x 256 calorimeter towers are built. Each of them is An x A¢ = 0.025 x 0.025 wide.
Within each tower, the energy of cells in all longitudinal layers is summed. Then a
window of 5 x 5 towers is slid across each the previously built grid, one tower at a time.
If the transverse energy summed over all layers in the window is above 3 GeV and is
a local maxima, a pre-cluster is formed. Its position is the energy-weighted 1 and ¢
barycentre’s inside a 3 x 3 window centred on the central tower. If two pre-clusters lie
within a distance of 2 x 2 of each other, the one with the smallest Et is discarded as
the final clusters would most likely overlap. Eventually, cells within a window of size
N, x N, of a layer-dependent seed position are assigned to EM clusters. N, and Ny
are variable and depend on the physical object of interest. In the middle layer, the
position of the seed is the position of the pre-cluster. In the strips and the back layers,
the position of the seed is the barycentre of the cells selected in the middle layer. In the
presampler, the barycentre of cells selected in the strips is used as seed. The number
of cells included in the strips is N,, x 6 if Ny < 7 and N,, x 8 otherwise. In the back,
(N, +1) x N, cells are included. This is done in such a way that for a 5 x 5 clusters, if
the seed is close to the boundary between two strips, then these two strips are included
into the cluster in the ¢—direction, whereas if the seed is located in the middle of the
strip, only one strip is included.

4.3.2 Electron and photon candidates

The selection of electron candidates can be seeded either by an EM cluster or by a track.
In the former case, any 5 x 5 EM cluster with pr > 3 GeV constitutes a seed. For
each of these, an attempt is made at finding a matching track in the tracking detector.

62



CHAPTER 4. RECONSTRUCTION AND IDENTIFICATION OF ELECTRONS IN ATLAS

The track is extrapolated to the calorimeter in order to account for the curvature due
to the magnetic field in the tracking detector} The track should not belong to any
reconstructed object corresponding to a conversion, see section [£.3.3] The matching
procedure is based on geometrical cuts (An and A¢) as well as on the ratio of the
energy of the cluster to the momentum of the track. The cuts’ values are

|An| <0.05, —0.10<Ap <005 and E/p< 10,

The A¢ cut is asymmetrical to retain electrons losing energy through bremsstrahlung.
If a track is found, an electron candidate is defined, including the cluster and the
associated track. Otherwise, a photon candidate is defined. Figures and show
the n and ¢—difference respectively between the EM cluster and the track for single
electrons. This is mostly important for A¢. The latter is defined as A¢ = Gurack (Ptrack —
Geluster) i order for the tail due to bremsstrahlung effects to always be on the negative
side. Indeed, as electrons radiate photons, they loose momentum and the bending of
their track increases. However, the energy deposited in the calorimeter corresponds
not only to the electron but also to the radiated photons, resulting in an increased Ad.
Figure [4.7| shows the ratio between the energy of the cluster and the momentum of the
track.

When reconstructing a track, the ATLAS software allows to keep a link to the MC truth
particle originating it. The classification efficiency is defined as the fraction of MC truth
electrons for which an electron candidate containing the associated track is found. For
photons, the classification efficiency is simply defined as the fraction of MC truth
photons for which a photon candidate is found within a distance R = \/An? + A¢? of
0.2.

4.3.3 Conversion reconstruction

With a cluster in the EM calorimeter and hits in the inner tracker, electrons springing
from photon conversions are likely to be reconstructed as isolated electrons candidates.
Indeed, If one solely makes use of the cuts on combined variables (An, A¢ and E/p) for
the electron/photon separation, 48% of conversions from single photons (7 < pr < 80
GeV) are being classified as electrons. With 56% of photons converting, that means
27% of single photons end up as electron candidates. Those may off-course not pass
identification cuts on the track as it does not initiate at the interaction point but may
still constitute background in some analyses. Also, they should be reconstructed as
isolated photons and not counted out in analyses with prompt photons in the final
state such as the H — ~~ channel. For that purpose, it is necessary to match potential
electron candidates to reconstructed conversions in order to re-route them properly
and define them as photon candidates.

1Until 2008, the track was extrapolated from its outermost precision hit out to the calorimeter. As
of early 2009, this will be replaced by a new technique in which the momentum of the track is scaled
to the energy of the cluster and the extrapolation is applied from the perigee. The E/p cut will be
removed. This changes will help recover electrons which lost energy via bremsstrahlung.
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track 3

track 2

track 1

Figure 4.8: Sketch of a photon radiating of a primary electron. The photon converts
into an electron pair.

Conversion candidates

Conversions sign in the detector by leaving two tracks with opposite curvature. The
vertex, that is the origin and intersection of the two tracks, is often far from the beam
axis (late conversions). In addition to the charge constraint, a number of quality cuts
are applied to the tracks and geometrical cuts are applied to the pairs (polar angle,
vertex radius, arc length, etc...). This helps fight the background from the underlying
event. Then, the vertex fitting procedure is applied. The default track perigee is
the interaction point. This is incorrect in the case of late conversions. A new fit is
performed including this new parameter. At this stage, fake conversions still widely
outnumber real conversions. No efficient particle identification is achievable with the
tracking detector only. Calorimetric information is needed in order to properly identify
actual conversions and that is done at a later stage.

Once vertices have been reconstructed, the remaining tracks are further investigated
in order to find potential single-track conversions. The latter can occur in the case
of asymmetrical or late conversions. Figure 4.4 shows the conversion reconstruction
efficiency as a function of the conversion radius. As expected, vertex finding works up
to radii of ~ 500 mm (beginning of the TRT) where the single-track method picks up
to add up to a flat overall efficiency of 90%. Indeed, many candidates correspond to
fake combinations : this background will be rejected by further identification cuts.

Conversion identification

The first step to would be to define an electron candidate if, in addition to passing the
cuts on combined variables, the matching track does not belong to any reconstructed
conversion. This requirement helps recover 30% of photon conversions that had been
wrongfully classified as electron candidates. However, its by product is an absolute
decrease of 4% of the classification efficiency of simulated single electrons in the same
pr—range. The reason for that is that an ambiguity remains in the reconstruction of
conversions in the case of the process sketched in figure 4.8 Indeed, when a signal
electron radiates a bremsstrahlung photon, the latter can convert into an electron pair.
When the conversion reconstruction algorithm searches for two crossing tracks with
opposite charges, only tracks 2 and 3 should be associated. However, if the photon
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does not travel and converts right after generation, tracks 1 and 3 can also constitute
a potential conversion and are hence reconstructed as so. The difference is that while
tracks 2 and 3 come from the same point, track 1 starts much closer to the beam axis
than track 3. This mis-identification can be avoided by requiring that both tracks
in the conversion candidate have the same number of hits in the vertexing-layer (see
section [3.3.1)). Indeed, while track 1 will feature a hit in that layer, track 2 will most
likely not.

Looking at numbers, only 1% of true conversions have tracks with different numbers
of hits in the vertexing-layer. However, in a sample of single electrons, 60% of fake
conversions contain tracks with different numbers of hits in the vertexing-layer. In
other words, this extra requirement does not impair the gain in the classification of
true photons and helps recover 60% of the 4% drop due to the track requirement.

Final classification efficiency

Classification efficiencies
Photons Electrons
Only combined cuts 72.7% 89.8%
+ track requirement 80.8% 85.5%
+ vertexing-layer requirement | 80.3% 87.8%
Relative gain +10% —2%

Table 4.1: Photon and electron classification efficiencies for different sets of cut. Num-
bers are quoted for single electrons and photons.

Table summarizes the classification efficiencies for single electrons and photons.
The classification efficiency includes the geometrical matching as well as the conversion
identification procedure. The first line quotes numbers when only cuts on the combined
variables are applied. The second line quotes efficiencies when, in addition, the track is
required not to belong to any reconstructed conversion candidate. The last line shows
efficiencies when both tracks in the conversion candidate are required to have the same
number of hits in the vertexing-layer. This study changes the way converted photon
are classified and defines them as photon candidates. This resulted in an 8% absolute
increase in the photon classification efficiency for a 2% absolute loss in the electron
classification efficiency.

Figures 4.9| and show the efficiency of defining an electron candidate classification
efficiency as a function of pr and |n|. The drop in efficiency for |n| > 1 corresponds
to the expected increase in the fraction of electrons undergoing bremsstrahlung as
the amount of material crossed in the tracking detector increases. For such electrons,
the track reconstruction and extrapolation is affected resulting in a poor geometrical
matching. The integrated classification efficiency is around 92% for pr > 30 GeV.
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Figure 4.9: Classification efficiency versus  Figure 4.10: Classification efficiency ver-

pr for single electrons. sus |n| for single electrons.
Hypothesis Barrel | End-cap
Electrons 3xT7 5x5b

Converted photons 3T 5 x5
Unconverted photons | 3 x 5 5%X5H

Table 4.2: Number of cells (N, x Ny) in EM clusters for each particle hypothesis.

4.3.4 Calibration

Once electron and photon candidates are separated, clusters are re-calibrated accord-
ingly. For instance, electron clusters are enlarged in ¢ so as to recover energy that
could have been lost by bremsstrahlung. The re-calibrated An x A¢ sizes are reported
in table Electron clusters contain 3 x 7 (5 x 5) cells in 7 x ¢ in the barrel (end-cap).
Being migrated over from the electron candidates, clusters for converted photons have
the same dimensions as for electrons. Photons contain only 3 x 5 cells in the barrel.
Cluster sizes were optimized for each particle type by comparing the contribution to
the energy resolution coming from electronics noise and from the pile-up expected at
high luminosity with the contribution coming from the energy leakage fluctuations out-
side the cluster [I01]. Photon clusters are not square in order to account for converted
photons for which the conversion was not identified.

A series of corrections are then applied to calibrate both the energy and position mea-
surements. These corrections are derived from Monte-Carlo simulations and validated
using test-beam data. On top of these corrections, a precise inter-calibration derived
from Z — ee events will be applied. Offline calibration starts with the correction of
cell measurements to take into account electronics non-linearities and non-nominal high
voltage settings. Then, once clusters are built, their energy and position are calibrated.

Position calibration

The cluster 7 position is first calculated in each layer as the energy-weighted barycentre
of the cluster cells in that layer (In the first layer, only the three strips around the
cluster centre are used, regardless of the specified cluster size). Due to the finite
granularity of the readout cells, these measurements are biased towards the centers
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Figure 4.11: Expected 7 position resolu- ‘ o
tion versus || for E = 100 GeV photons Figure 4.12: Expected ¢—position resolu-

for the two main layers of the barrel and ~ tion as a fgnction of [n] for electrons and
end-cap EM calorimeters [29]. photons with an energy of 100 GeV [&1].

of the cells leading to so-called S—shapes. The correction varies continuously over
71, due to changes in the detector geometry. The correction will also depend on the
cluster energy, as that affects the average shower depth. To derive the correction, the
calorimeter is divided in 7 into regions based on where the behaviour of the correction
changes discontinuously. Within each region, an empirical function is constructed
to describe the correction, and an unbinned fit is performed to simulated data for
a particular cluster size, type, and energy. The correction also depends on energy;
over the range 25-1000 GeV, the required correction varies by ~ 20%. To apply the
correction for a given cluster, the correction is first tabulated for each of the energies
for which simulated data samples were available. The final correction is then found
by doing a cubic polynomial interpolation within this table. Figure [4.11] shows the
n-resolution as a function of |n| for £ = 100 GeV photons for the two main layers of
the barrel and end-cap EM calorimeters. The calibration allows for precision on the
n-position better than 1%.

The measurement of the cluster ¢—position must also be corrected. These corrections
are applied only in the second layer of the calorimeter where the ¢—granularity is the
best. As opposed to the 7 direction, the accordion geometry results in more energy
sharing between cells in the ¢ direction, which washes out the S—shape in this direction.
There is, however, a small bias in the ¢ measurement which depends on the average
shower depth with respect to the accordion structure (and thus on |n|). Data are
binned in 7 and the resulting correction is interpolated in 7 and energy. Figure [4.12
shows the expected ¢-resolution as a function of |n| for electrons and photons with
E =100 GeV.

The individual layer n and ¢ measurements are combined to produce the overall position
of the cluster. For ¢, only the second is used. In the overlap region, the energy-weighted
average of the barrel and end-cap ¢ measurements is used. For 7, the first and second
layers 1 are averaged. The first layer is weighted three times as much as the second to
roughly take into account the better resolution. The n—combination implicitly assumes
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that the incoming particle is projective. If its production vertex is shifted from the
origin, then the combined n will be biased.

Energy calibration

The standard method to calibrate the energy of photons and electrons from simulated
data, the so-called Calibration Hits method [102], is based on detailed Monte Carlo sim-
ulations. Dedicated single-particle simulations are used to record the energy deposited
by particles in all detector materials, active or dead. Through these simulations, the
energy depositions in the inactive material can be correlated with the measured quan-
tities. For example, the energy lost in the material in front of the calorimeter (tracking
detector, cryostat, etc...) can be estimated from the energy deposited in the presam-
pler. This method provides a modular way to reconstruct the energies of electrons
and photons by decoupling the different corrections. This approach eases comparisons
between electrons and photons, and might be particularly useful in the initial stages
of the experiment. This most precise method yields a 1 to 3% energy resolution for
100 GeV electrons versus 7 and a linearity better than 0.5% in the barrel for electrons
with energy below 500 GeV.

The cluster energy is decomposed into three components
E = Ecal + Efront + Eback

where E., is the energy deposited in the EM calorimeter, Fpopnt is the energy deposited
in the presampler and in the inactive material in front of the calorimeter, and Fj,q is
the energy that leaks out the rear of the EM calorimeter.

The energy deposited by a particle in the EM calorimeter is estimated as

Ecal = Ccal(X7 77)(1 + fOllt(Xy n))Ecla

where FE is the energy contained in the cluster, X is the longitudinal barycentre or
shower depth measured on the presampler and the EM calorimeter, 7 is the calibrated
pseudo-rapidity of the cluster, f, is the fraction of energy deposited outside the cluster
and C., is the calibration factor. The latter is defined as the average ratio between the
true energy deposited in the EM calorimeter (both absorbers and ionisation medium)
and the reconstructed cluster energy FE.. It is within a few percent of unity, and
takes into account effects such as the dependence of the sampling fraction on n and
on the longitudinal profile of the shower. Due to the presence of the magnetic field
and bremsstrahlung, the fraction of energy deposited in the calorimeter outside the
cluster is energy dependent. Since only single electrons and photons with no noise or
underlying event are simulated, this fraction is easily calculated.

The energy lost in the material in front of the calorimeter (inner detector, cryostat,
coil, and material between the presampler and strips) is parametrised as a function of
the energy lost in the active material of the presampler E :

Efront == a<Ecala 77) + b(Ecab n)Eps + C(Ecah 77)E1ps'

68



CHAPTER 4. RECONSTRUCTION AND IDENTIFICATION OF ELECTRONS IN ATLAS

y 0-06F n o.015———— s
3 [ = Electron 1 Q{: L ]
0-05F" -5~ Photon Electron: b=23% | ¢ =0.5610 (%) | o 101 ™ E=25Cev ToTE=100Gev h
E VE ] I —& E=50GeV E = 200 GeV ]
0.04f- - r E=75GeV = E=500GeV ]
H Photon : b =882 ¢ -06007 (%) 1 1.005[~ 2 é ' -
0.03%% VE - C ediT Ty , ; ]
el B & L 2 gl 6 A u ]
B ] Cutiigr® AuMg ~i@ii%§{ ]
£ ] Yol2gsl I ]
L™ ] E ® ]
0.01- 'f&-m%\&h = 0.995— £
e a8 L + ]
[ ATLAS ] F ATLAS 1

C coe b b b e by by g L L | | | |

% 100 200 300 200 500 0.9% 0.5 1 15 2 25

=

Energy (GeV)

Figure 4.13: Resolution on the energy of  Figure 4.14: Linearity of the energy mea-
electrons and photons as a function of the  surements for electrons as a function of |7|
energy for |n| = 0.3 [&1]. for different energies [81].

Coefficients a, b and ¢ are parametrised in terms of E., and 1. The coefficient c is used
only in the end-cap.

The energy deposited by the showers behind the EM calorimeter is computed as a frac-
tion of the energy reconstructed in the calorimeter. This fraction, when parametrised as
a function of X, is fairly energy independent both for electrons and photons. Averaged
over the particle energies, it is parametrised by

E acC!
freak = 5 1k = fo(m)X + fi(n)e~.

Figure [4.13] shows the resolution on the measurement of the energy of electrons and
photons as a function of the energy for |n| = 0.3. The sampling term b increases from
9% at low—|n| to 20% at high—|n|. This is due to the increase of the material in front
of the calorimeter. The constant term is in general lower than 0.6% and is related to
the energy modulation in a cell which is not corrected at this stage. The linearity, the
ratio between the fitted mean value and the true particle energy, is shown in figure
.14 Tt is better than 0.5% over the full || range and in the energy interval 25-500
GeV.

In-situ calibration

It is also possible to provide a constraint on the absolute energy scale by inter-calibrating
the calorimeter using real Z — ee events. A constant term of 0.7% and a precision
on the energy scale of 0.2%0 can be achieved by fitting the reconstructed Z peak to
a reference line-shape for each 1 x ¢ region for 200 pb~! of data, corresponding to
160,000 reconstructed Z — ee decays. Such a precision will only be achieved once the
material in front of the electromagnetic calorimeter will have been determined to a
high accuracy using e.g. photon conversions.
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Figure 4.15: Distribution of the hadronic leakage for signal (red) and background
(black).

4.4 I|dentification

Candidates corresponding to actual primary electrons can be identified against fakes by
applying a series of pr and |n|-dependent cuts or thanks to multivariate analyses. After
describing the available identification variables, I will detail the cut-based method and
present a cut optimization.

4.4.1 Identification variables

Identification variables include information from the calorimeters as well as from the
inner tracker. In this section, “signal” will refer to single electrons (7 < pr < 80 GeV)
and “background” will refer to di-jet events as described in [£.1]

Hadronic leakage Electrons lose most of their energy before reaching the hadronic
calorimeter. On the other hand, hadronic jet are more likely to deposit a large amount
of energy in the latter. The hadronic leakage is defined as the ratio of the transverse
energy of the shower in the first sampling of the hadronic calorimeter in a region
An x A¢ = 0.12 x 0.12 to the transverse energy of the cluster. Figure shows the
distributions of the hadronic leakage for signal and background. As expected, electrons
leave less than 10% of their pr in the hadronic calorimeter while jets deposit a much
larger fraction.

Second sampling of the EM calorimeter

Electromagnetic showers deposit most of their energy in the second layer of the elec-
tromagnetic calorimeter in which the following variables are used.
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Figure 4.16: Left : distribution of the lateral shower shape in the second sampling of
the EM calorimeter for signal (red) and background (black).Right : distribution of the
weighted shower width in the second layer for signal (red) and background (black).

Lateral shower shape Energy deposit by electrons tend to be more local and concen-
trated in pseudo-rapidity. The lateral shower shape R, is defined as the ratio of the
energy in the second layer of the EM calorimeter in a window of 3 x 7 cells to the
energy in a window of 7 x 7 cells. The left-side plot in figure shows R, for signal
and background. For electrons, typically more than 60% of the energy is contained in
the 3 x 7 window while for jets, R, can get as low as 20%.

Weighted shower width in the second layer Electrons are expected to shower into a more
narrow deposit in the EM calorimeter. w, is the RMS of the pseudo-rapidity of the
cells in the cluster weighted by their energy in the second layer of the EM calorimeter.
The right-side plot in figure .16 shows wy, for signal and background. For signal
electrons, the distribution is narrow and peaks around 0.01 while for jets, it is much
wider and peaks at a higher value.

First sampling of the EM calorimeter

Information recorded in the hadronic calorimeter and the second sampling of the EM
calorimeter rejects jets with pions of high energy and wide showers. After these cuts
jets with single or multiple 1 or 7% are the main source of fake electrons. The first com-
partment, with its very fine granularity in rapidity, can be used to detect substructures
within a shower and thus isolated 7% and photons.

Maximum difference 7 jets often feature two distinct maxima. The variable AFE, is
defined as the difference between the energy of the second hottest cell in the first sam-
pling and the energy of the cell with the lowest energy deposit between the two cells
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Figure 4.17: Distribution of AFE; for signal (red) and background (black).

with the largest energy deposit. Figure shows AFE, in MeV for signal and back-
ground. As expected, for electrons, the distribution peaks at zero and the difference is
never larger than 300 MeV while for jets it peaks around 50 MeV and spreads out to
higher values.

Second largest deposit In order to be insensitive to fluctuations, the value of the second
maximal energy deposition has to be greater than a threshold, which depends linearly
on the transverse energy. Ry is defined as Eyaxa/(1+9(5) x 1073 E1) where Eyaxo is
the energy of the second hottest cell and 9 (5) is for low (high) luminosity. Left-side plot
in figure shows Rpaxo for signal and background. For electrons, the distribution
drops quickly and Ry.xo is seldom larger than 0.7 while for jets it extends to much
higher values.

Weighted shower width in the first layer Same as w,; but in the first compartment of
the EM calorimeter. The right plot in figure shows w,, for signal and background.

Shower width  The shower width is defined as Wiy = \/Z Ei(i — imax)?/ > E;, where
7 is the strip number and 7., the strip number of the first local maximum. The left-side
plot in figure shows wy; for signal and background.

Core shower shape The core shower shape is define as F' = (E(+3) — E(£1))/E(£1),
where E(+n) is the energy in 4n strips around the hottest strip. The right-side plot
in figure 4.19| shows F' for signal and background.
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Figure 4.18: Left : distribution of the normalized second energy deposit in the first layer
of the EM calorimeter for signal (red) and background (black). Right : distribution of
the weighted shower width in the first layer of the EM calorimeter for signal (red) and
background (black).
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Figure 4.19: Left : distribution of the shower width in the first layer of the EM
calorimeter for signal (red) and background (black). Right : distribution of the core
shower shape in the first layer of the EM calorimeter for signal (red) and background
(black).
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Calorimetric isolation

Another measure of the containment of the shower is Reon.. It is the ratio of the
transverse energy in a cone of radius of 0.2 around the shower axis (excluding the
cluster itself) to the transverse energy of the cluster. Reope is typically small for primary
electrons. The lower right plot in figure 4.20| shows R.one for signal and background.
An optimization of the cut on this variable is presented in section [4.4.3]

Track quality

With the use of calorimetric variables, the contamination of the inclusive signal from
charged hadrons can be greatly reduced. The remaining background is dominated by
photon conversions and low multiplicity jets containing high-pt 7° mesons. They can
be eliminated using track requirements.

vertexing-layer npg indicates whether the track hit the vertexing-layer. This variable
helps discriminating photon conversions.

Pixel detector npixel is the number of hits on the track in the pixel detector.
Precision hits ng; is the number of hits on the track in the pixel and SCT detectors.

Impact parameter Ay is the distance of the perigee to the beam axis. It helps discrim-
inating tracks from secondary vertices.

Track matching

The n and ¢ difference between the cluster and the associated track are used again
in the identification process. E/p is also used. An optimization of the cut on E/p is
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In| bins pr bins (GeV)
0-038 0-75
0.8 -1.37 7.5 15
1.37 - 1.52 15 - 30
1.52 - 1.8 30 — 40
1.8 -2 40 — 50
2235 > 50
2.35 — 247

Table 4.4: List of bins in transverse mo-
Table 4.3: List of bins in pseudo-rapidity. mentum.

presented is section [4.4.3]

Transition radiation

The total number of hits on the track in the TRT nrrr as well as the fraction of high
threshold hits Rrrr are used as discriminants. An optimization of the cut on Rygrr is
presented in section [4.4.3]

4.4.2 Cut-based identification

The standard cut-based procedure is designed to identify electrons in the barrel (|n| <
2.5) with medium to large transverse momenta (say pr > 15 GeV). Its is robust and
will be used as a reference in the early stages of data-taking, before any more subtle
technique can be applied.

Cuts are optimized in 7 X 6 bins in |n| X pr. Bins limits are listed in table and
Three reference sets of cuts have been defined : loose, medium and tight, as
summarised in Table [4.5] This provides flexibility in analyses, for example to improve
the signal efficiency for rare processes which are not subject to large backgrounds.

Loose cuts

This set of cuts performs a simple electron identification based only on limited infor-
mation from the calorimeters. Cuts are applied on the hadronic leakage and on shower-
shape variables, derived from only the middle layer of the EM calorimeter. This set of
cuts provides excellent identification efficiency, but low background rejection.

Medium cuts

This set of cuts improves the quality by adding cuts on the first layer of the EM
calorimeter and on the tracking variables.

Strip-based cuts are effective in the rejection of 7 — ~v decays. Since the energy-
deposit pattern from 7°’s is often found to have two maxima, showers are studied in
a window An x A¢ = 0.125 x 0.2 around the cell with the highest Et to look for a
second maximum. If more than two maxima are found, the second highest maximum
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’ Type \ Description \ Name ‘
Loose cuts
Acceptance of
the detector Il < 247
Tile Hadronic Leakag R
calorimeter adromic Leakage had
Second layer of Lateral shower shape R,
EM
calorimeter Weighted width in the second layer. W2
Medium cuts (includes loose cuts)
Maximum multiplicity. AFE;
Second largest energy deposit. Riax2
First layer of
EM Weighted width in the first layer. Wyt
calorimeter
Shower width. Wiotl
Core shower shape. F
Number of hits in the pixel detector. Npixel
Track quality Number of precision hits. ns;
Transverse impact parameter. Ag
Tight cuts (includes medium cuts)
Isolation Isolation in the calorimeter. Reone
B-layer Number of hits in the vertexing-layer. np
An between the cluster and the track. An
Track
. A¢ between the cluster and the track. A
matching
Ratio of the cluster energy to the track momentum. E/p
Total number of hits in the TRT. NTRT
TRT
Ratio of the number of high threshold hits to ntgr. RrRrT
Tight 90 cuts (includes tight except for isolation)
TRT Same as TRT cuts above, but with tighter values
corresponding to about 90% efficiency for isolated electrons.

Table 4.5: Definition of variables used for loose, medium and tight electron identifica-
tion cuts. See section for a detailed description.
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is considered. The variables used include AFEy, Riyax2, Wiot1, Wy and F. The tracking
variables include npicer, ngi and Ay.

Medium cuts increase the jet rejection by a factor of 3 to 4 with respect to the loose
cuts, while reducing the identification efficiency by ~ 10%.

The baseline analysis for the search for the Higgs boson in the H — ZZ* — 4e channel
makes use of the loose set of cuts for the two electrons springing from the on-shell Z.
Electrons from the Z* are more subject to background. They are required to pass the
medium set of cuts. Also, as part of signatures for supersymmetric events, electrons
are required to pass the medium set as other cuts on the event are likely to reject most
of the background ( Fr, jet pr,...).

Tight cuts

This set of cuts makes use of all the variable currently available for electrons. In addi-
tion to the cuts used in the medium set, candidates are required to have one hit in the
vertexing-layer to reject conversions. Cuts on the TRT are applied to reject the dom-
inant background from charged hadrons and more narrow track matching constraints
are required (An, A¢ and E/p).

Two different final selections are available within this tight category: they are named
tight and tight 90 and are optimised differently for isolated and non-isolated electrons.
In the case of tight cuts, a cut on Ry is applied. This set of cuts provides, in general,
the highest isolated electron identification and the highest rejection against jets. The
tight 90 cuts do not include the additional explicit energy isolation cut, but instead
apply tighter cuts on the TRT information to further remove the background from
charged hadrons.

Electrons passing the tight set of cuts are used in the analysis of processes with a
large rate or that are subject to a large background such as Z, Y, J/¥U — ee, W —
ev or WH — ev~vyy. They are also used as “tag” electrons in the determination of
identification efficiencies from data (see or to reject electrons in the identification
of 7 leptons.

4.4.3 Cut optimization

Two studies leading to the optimization of the identification cuts on Rygrr and E/p
are presented in this section.

Transition radiation

As shown on figure [4.28] one of the most harmful identification cut for the signal is the
requirement on Rrrr, that is the ratio of the number of high-threshold hits in the TRT
to the total number of hits therein. When fitting tracks in the TRT, hits that carry
too large a contribution to the y? are excluded and tagged as outliers. As shown in the
left-side and centre plots in figure [£.21] in black, when excluding outlier hits, around
21% of signal electrons do not feature any hit in the TRT after the rest of the tight
set of cut has been applied (except TRT cuts). As shown on the right-side plot, this
results in more than 22% of signal electrons with Rrrr = 0. The inclusion of outlying
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Figure 4.21: Distributions of the number of TRT hits (left), the number of high-
threshold TRT hits (centre) and of Rygr (right) for electrons found in SUSY events.

| Cut value (Rrgrr >)
0-0.1 0.08
0.1 -0.625 0.085
0.625 - 1.07 0.085
1.07 — 1.304 0.115
1.304 — 1.752 0.13
1.752 - 2 0.155

Table 4.6: Optimized values for the lower cut on Rygy for each TRT |n| bin.

hits to the count decreases this fraction to around 2%, bringing back candidates within
the acceptance of a cut on Rrgr.

The |n| bins design is slightly different for cuts applied on information from the TRT as
they have to take into account its specific geometry rather than that of the calorimeter.
The bin limits for TRT cuts are shown in the left column of table 4.6 Figure [£.22
shows Rrgrr for signal electrons found in SUSY events (red) and fake electrons found in
di-jet events (black). For the signal, candidates are selected after the tight set of cuts
has been applied except for cuts on the TRT. For the background, no identification
cut were applied in order to conserve significant statistics. The blue line indicates the
chosen value for the lower cut on Rrgrr for the corresponding |n| bin. Table lists
the optimal value for the lower cut on Rrgr for each |n| bins in the TRT.

Cluster/track momentum matching

A constraint on the ratio of the energy of the cluster to the momentum of the associated
track is an efficient tool to discriminate background from hadronic jets. Indeed, for the
latter, the energy deposit in the calorimeter results from the showering of a number of
constituents where as the tracks left in the tracking detector only sign the passage of
one of the constituents. This results in £/p values larger than unity which is expected
in the case of signal electrons.
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Figure 4.22: Distributions of Rygr for signal electrons found in SUSY events (red) and
fake electrons found in di-jet events (black). On the left-side, candidates with 0.1 <
In| < 0.625 are selected while, on the right-side, candidates with 1.304 < |n| < 1.752.
For the signal, candidates are selected after the tight set of cuts has been applied except
for cuts on the TRT. For the background, no identification cut were applied in order
to conserve significant statistics. The blue line indicates the chosen value for the lower
cut on Rygrr for the corresponding |n| bin.
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Figure 4.23: Distributions of E/p versus pr for signal electrons (red) found in Z — ee
events and for fake electrons (black) found in di-jet events. Signal electrons were
selected after the tight set of cuts has been applied (except for the cut on E/p) and
fakes were selected before any identification cuts. Vertical lines indicates the pr—bins
limits. Horizontal lines indicates the chosen values for the upper and lower cut on E/p.
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[l

pr (GeV) | 0-08 08-1.37 137-152 152-18 18-2 2-235 2.35-247
0-75 0.8 0.8 0.8 0.8 0.8 0.8 0.8
7515 0.8 0.8 0.8 0.8 0.8 0.8 0.8
15 -30 0.8 0.8 0.8 0.8 0.8 0.8 0.8
30 - 40 0.7 0.7 0.7 0.7 0.7 0.7 0.7
40 - 50 0.7 0.7 0.7 0.7 0.7 0.7 0.7

> 50 0.7 0.7 0.7 0.7 0.7 0.7 0.7
E/p>
1]

pr (GeV) | 0-0.8 08-137 137-152 152-18 1.8-2 2-235 2.35-247
0-7.5 2.5 2.5 2.5 3 3 3 3
7.5-15 2.5 2.5 2.5 3 3 3 3
15 - 30 2.5 2.5 2.5 3 3 3 3
30 — 40 3 3 3 3 4 4 3
40 - 50 3 3 3 4 ) 5 4

> 50 ) ) 5) 5 ) 5 5
E/p<

Table 4.7: Optimized values for the lower and upper cut on E/p for each pr and |7
bin.

Figure [4.23) shows a scatter plot of E/p versus the pr of candidates in the first |n| bin
(In] < 0.8 as listed in for electrons found in Z — ee events (red) and for fake
electrons found di-jet events (black). Signal electrons were selected after the tight set
of cuts was applied whereas fakes were selected before any identification cut. Evidently,
the distribution for fake electrons extends to values up to 10 whereas it is well confined
around unity for signal electrons. The blue vertical lines indicates the chosen values
for the cut on E/p in each pr bin. Table lists optimized values for the lower and
upper cut on E/p for each pr and |n| bin.

Isolation in the calorimeter

In order to increase background rejections, a criterion can be applied on the isolation
of the shower in the calorimeter. For that purpose, the transverse energy in a cone of
radius R can be measured. That quantity is defined as the sum of the transverse energy
of all cells within R of the object position, including those in the hadronic calorimeter
minus the sum of the transverse energy of all cells in the cluster. It measures the
transverse energy surrounding the cluster. This quantity is measured for R = 0.2, 0.3
and 0.4. Off course, it is very much dependant on the transverse energy of the cluster
and hence, should be normalized to it. Let

Er(cone 20, 30, 40)
Er(cluster)

Rcone 20,30,40 —

Figure shows Reone 20, Reone 30 and Reone 49 for signal electrons found in SUSY
events (red) and fake electrons found in di-jet events (black). Fakes are mostly com-
posed of hadronic jets. No cuts are applied. FEvidently, Reone is mostly gathered
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Figure 4.24: Reone 20 (left), Reone 30 (centre) and Reone 40 (right) for electrons found in
SUSY events (red) and fake electrons found in di-jet events (black). Candidates are
selected before the identification process.

Cut Rcone 20 < 0.4 Rcone 30 < 0.7 Rcone 40 < 0.9
Gain in rejection + 22% + 13% + 7%

Table 4.8: Relative increase in rejection after a rudimentary cut on R, for three
values of the cone radius and with no loss of signal efficiency.

towards 0 for signal electrons and more widely spread in the case of fake electrons.
This is due to the fact that hadronic jets deposit energy well outside the 5 x 7 clusters
used to reconstruct electrons as well as in the hadronic calorimeter. For signal elec-
trons, most of the energy is well contained within the cluster. As expected the bulk of
the distribution for fake electrons is shifted towards greater values as the radius of the
cone increases. However, the effect is more visible for signal electrons, for which the
distribution broadens as the radius of the cone increases.

In order to choose which cone radius to use, we apply a rudimentary pr and |n|—
independent cut and compare the variation in efficiencies and rejections. We want to
improve the background rejection without causing any noticeable effect to the tight set
efficiency for the signal. For each radius, the cut value is decreased until a significant
drop in efficiency is observed. For the resulting cut value, the jet rejection is estimated.
Table shows the relative increase in jet rejection after applying the cut. A cut on
Reone for a cone radius of 0.2 provides evidently the best gain in background rejection
for no significant loss in signal efficiency. Furthermore, the amount of transverse energy
in a R = 0.2 cone has been shown to be insensitive to pile-up as opposed to cone with
larger radii [103].

Figure shows the distribution of Reone 20 in the six pr bins defined in table [4.4]
The optimized values for the cut in the different pr bins are listed in table 1.9} Cut
values were chosen to minimize efficiency loss while maximizing the gain in background
rejection.

In terms of performances, table summarizes the effect on this isolation requirement
on signal efficiencies and background rejections for the tight set of cuts. Eventually, the
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Figure 4.25: Distributions of Reone 20 for electrons found in SUSY events (red) and for
fake electrons found in di-jet events (black) for the six pr bins defined in table [4.4]
The first two plots do not show background as there is a pr > 17 GeV cut in the di-jet
sample (see section . The blue lines indicate the chosen values for the cut.

application of an optimized pr—dependent cut on the calorimetric isolation of electron
candidates yields a 64% relative increase in background rejection at the cost of a 1.5%
relative drop in signal efficiency. This isolation criterion stands as a refinement in the
electron identification process and hence belongs in the tight set of cuts.

4.5 Identification performance

A trustworthy measure of the identification performance is crucial for the reduction of
systematic uncertainties. This includes measuring signal efficiencies as well as back-
ground rejections. These must then be estimated as a function of |n| and pr and
confronted among different samples. The following definitions of the performance quan-
tities constitute the baseline for all performance and physics analyses presented in the
CSC challenge [81]. Quoted numbers were obtained with the 13.0.30 release of the
athena software.
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pr (GeV) | Cut value (Reone 20 <)
0-75 0.8
7.5—-15 0.5
15 - 30 0.3
30 — 40 0.25
40 — 50 0.2
> 50 0.2

Table 4.9: Optimized value of the cut on Reone 20 for each pr bin.

Efficiency (%) Rejection
Tight set without isolation | 65.4 £+ 0.6 | 59800 4 2600
Tight set 64.4 + 0.6 | 98000 =+ 4000
Relative difference —1.5% +64%

Table 4.10: Effect of the isolation requirement on signal efficiencies and background
rejections. Efficiencies are obtained on electrons found in SUSY events and rejections
are obtained on fake electrons found in di-jet events.

4.5.1 Signal efficiency

The electron identification efficiency is defined as

Ny
Ntruth

€id (41)
where Niun 18 the number of isolated electrons within the acceptance in the Monte
Carlo truth and N4 is the number of reconstructed electrons passing a certain set of
cut and matching one of the isolated electrons counted in Ni.n. The acceptance refers
to |n| < 2.47, that is the coverage of the EM calorimeter, and a lower pp cut which is
usually quoted along with the efficiency. When the efficiency is quoted as a function
of pr or |n|, these corresponds to the MC truth particle.

Isolated electrons are searched for in the output of the Monte Carlo generators. They
should not be a particle issued by the detector simulation as resulting from the inter-
action of the final state with matter. Table [4.11] describes the classification of Monte
Carlo electrons depending on their parent particle. Isolated electrons should decay

Category Type of parent particle
Isolated Z, W t, Torpu
Non-isolated J/1, b-hadron or c-hadron decays
Background electron | v, 7°/n Dalitz decays, light hadron decays

Table 4.11: Classification of electron according to parent particle.
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Figure 4.26: Electron identification efficiency as a function of pr (left) and |n| (right) for
electrons in SUSY events (full markers) and fixed—p single electrons (hollow markers)
[81].

from an electroweak vector boson, a top quark, a 7 or a muon. Once an isolated elec-
trons is found within the acceptance, the corresponding reconstructed track is searched
for. Indeed, a direct software link exists between reconstructed tracks and the Monte
Carlo truth particle that left it. Eventually, reconstructed electron candidates in the
event are scanned until one contains the previously selected track. This procedure is
more complicated but more stable than a geometrical matching, as it does not depend
on any AR cut. Selected candidates are counted into N4 if they satisfy the set of cuts
of interest.

Efficiencies can be measured on single electron events for sanity checks and software
monitoring. However, realistic final states such as Z — ee or SUSY events should be
used for a more robust measure. Indeed, the high jet and track multiplicity in SUSY
events constitute a very hostile environment for the identification of isolated electrons.
Figure [4.26| shows the electron identification efficiency as a function of transverse mo-
menta and pseudo-rapidity. Efficiencies corresponding to the loose, medium and tight
set of cuts are shown in green squares, blue triangles and red circles respectively. Effi-
ciencies for fixed—pr single electron events (pr = 10, 25, 40, 60 and 120 GeV) are shown
in open markers while efficiencies for electrons in SUSY events are plotted in full mark-
ers. Efficiencies with the tight set of cuts reaches a plateau of 70% at high pr. The
medium (loose) set of cuts reaches a plateau of 80% (85%). The efficiencies obtained
for transverse momenta below say 20 GeV, are significantly lower than the plateau val-
ues, for which the cuts were initially optimised. As expected, single electrons display
higher efficiencies than those in SUSY events because of the large hadronic activity in
these events. The efficiencies as a function of |n| show a drop in the end-cap region
(In| > 1.5). Specific drops can also be seen for |n| ~ 1.35, which corresponds to the
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Figure 4.27: Electron identification efficiency as a function of the distance to the
closest jet for electrons in SUSY events [81].

barrel/end-cap transition region, and for || ~ 0.8, which corresponds to the change in
the lead thickness between the two types of electrodes in the barrel EM calorimeter.
Figure shows the electron identification efficiency as a function of the distance
to the closest jet. Jets were reconstructed based on the MC truth and with a cone
of R = 0.4. The efficiencies are uniform down to AR ~ 0.4 from where the overlap
between the electron and hadronic showers cause a drop. Jets are reconstructed from
topological clusters using a AR = 0.4 cone algorithm.

Figure[£.28|shows the effect of each cut on the identification efficiency of single electrons
with 7 < pr < 80 GeV. The efficiencies in this figure are normalized to the number of
reconstructed electron candidates. On the upper plot, each cut is applied individually.
On the lower plot, all cuts are applied but one. Evidently, the most impairing cuts are
those applied on tracking variables such as Rrrr, 1B, Npixet OF ngi. These cuts are indeed
stringent but are necessary in order to reach the required rejection on charged hadrons.
Also, as shown on the upper plot, cuts on the combined variables (An, A¢ and E/p)
are harmful but, as can be seen on the lower plot, are very correlated with other cuts
as their release do not provide any gain in efficiency. Indeed, removed candidates are
most likely electrons which underwent bremsstrahlung and did not leave any quality
information in the TRT.

Table provides signal efficiencies for the three sets of cuts. Evidently and as
expected, efficiencies obtained on Z — ee events are consistent with those obtained on
SUSY events and with those shown in figure when integrated for pp > 17 GeV.

As mentioned is section the high luminosity of the LHC will induce a pile-up
of minimum bias events in the detector, even in the early phase. The effect of the
pile-up resulting from a 10%* cm~2s~! luminosity on the identification of electrons in
Z — ee and tt events was investigated in [I03]. The largest effect was seen in the track

85



CHAPTER 4. RECONSTRUCTION AND IDENTIFICATION OF ELECTRONS IN ATLAS

0.98

Efficiency

0.96

0.94

0.92
Medium Tight

j
¥

1 1 1 1 1 1 1 1 1 1 1 1
hy hag 11 W'724 ESRman%z M{otf D/')re/nsi 40 QcongQ <]'7 4y E/,D @er?mr

0.75 Medium Tight

Efficiency

:

0.74

0.73

0.72

[ 1 1
/,7/ hag 1 “22 4 ESR'"@\Z%J “{"flp ,7”’3(6’/,78’ 40 R % 4,7 4o E/p I%TRT/?r

CO/7 e

Figure 4.28: Effect of single cuts on the identification efficiency of single electrons. The
classification efficiency was not included. On the top, cuts are applied one by one, on
the bottom, all cuts but one are applied.
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pr > 17 GeV
Isolated Non-isolated Background
W — 75.0% | b-hadrons — 38.7% y-conv. — 97.8%
Z — 20.9% | c-hadrons — 60.6% | Dalitz decays — 1.8%
T —4.1% J/v — 0.7% u/d/s-hadrons — 0.4%

Table 4.12: Contribution and origin of isolated, non-isolated, and background electron
candidates in the two di-jet samples before the identification criteria are applied [81].

pr > 17 GeV
Efficiency (%) Jet rejection
Z — ee SUSY di-jet
Loose | 87.96 + 0.07 | 89.29 + 0.36 567 £ 1

Medium | 77.29 £ 0.06 | 77.35 £ 0.49 2,184 £ 13
Tight | 64.22 £ 0.07 | 64.36 £ 0.56 | 98,000 £ 4,000

Table 4.13: Expected efficiencies for isolated electrons and corresponding jet back-
ground rejections for the three sets of cuts used for electron identification. The results
are shown for pr > 17 GeV for electrons in Z — ee or SUSY events and fake electrons
in di-jet events [81].

multiplicity and in the calorimeter isolation but did not result in any change on the
efficiencies. The effect on photons from H — v+ events was shown in [8I] to be also
negligible.

4.5.2 Background rejection

The jet rejections are obtained using di-jet events. See section for a detailed de-
scription of the sample.

The jet rejections are normalised with respect to the number of particle jets recon-
structed using particle four-momenta within a cone size AR = 0.4 and derived from
un-filtered di-jets events. The average number per generated event of such particle jets
with pr above 17 GeV and in the range |n| < 2.47 is 0.74. The jet rejection is defined
as

N Novents % 0.74

R = Nefid - Nefid
j j X €filter

where N }”‘th is the number of true jets in the non-filtered sample, Ngyents is the number
of events under consideration after the filter has been applied, ege; = 0.0828 is the
filter efficiency and N ;_ld is the number of true jets reconstructed as electrons.

After reconstruction of electron candidates and before any of the identification cuts
are applied, the signal is completely dominated by non-isolated electrons from b and c—
hadron decays. The expected signal-to-background ratios for the filtered di-jet sample
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Jet rejection

I Loose Medium | Tight (x10°)
0.00 - 0.80 | 600 3 | 3740 £ 50 1.5 £ 0.1
0.80 - 1.35 | 353 2 | 1581 + 20 | 1.09 £+ 0.09
1.35 - 1.50 | 353 3 444 £+ 5 09 £ 0.1
1.50 - 1.80 | 643 6 | 2440 + 40 23 £ 04
2 +
+
+
+

1.80 — 2.00 | 1300 119800 £ 450 | 3.2 0.8
2.00 - 2.35 | 1700 24 | 8400 £ 300 | 0.40 0.02
2.35 - 247 | 2170 62 | 4050 £ 170 | 0.29 0.03
0.00 — 2.47 | 567 2 | 2184 = 13 | 0.98 0.04

[ H o HH H

Table 4.14: Jet rejections for each |n| bin.

is 1:80. The residual jet background is dominated by charged hadrons. Only a small
fraction of the background at this stage consists of electrons from photon conversions
or Dalitz decays, namely 6.4%. Table summarises the relative compositions of the
filtered di-jet samples.

Table [4.13| shows jet rejections for the three sets of cuts. By construction, the loose set
provides high signal efficiency but low rejection. It can be useful in the case of multi-
lepton final states with non-dominant QCD background. The medium set provides
intermediate efficiency and rejection while the tight set brings the required 10° jet
rejection for an overall efficiency of 64%.

Figure shows the jet rejection as a function of Er obtained on di-jet events for the
three sets of cuts. Rejections are very high for low—FEr jets for which electromagnetic
showers are expected to be broader and tracks of lesser quality. Rejections reach a
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Cuts Cut-based method Likelihood method
e (%) R; € (%) at fixed R; | R, at fixed e,
Loose 87.97 + 0.05 567 £ 1 89.11 £ 0.05 2767 + 17
Medium 77.29 4+ 0.06 2184 + 7 88.26 + 0.05 (3.77 £ 0.08)10%
Tight 64.22 +£0.07 | (9.9 +0.2)10* 67.53 £ 0.06 (1.26 4+ 0.05)10°
Tight (no iso.) | 61.66 £ 0.07 | (8.9 +0.2)10* 68.71 £+ 0.06 (1.46 4 0.06)10°

Table 4.15: Expected electron efficiencies for a fixed jet rejection and jet rejections for
a fixed electron efficiency, as obtained from the likelihood discriminant method. The
quoted errors are statistical [81].
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Figure 4.31: Jet rejection versus isolated electron efficiency obtained with a likelihood
method (full circles) compared to the results from the two sets of tight cuts (open
triangle and open square) [§1].

plateau around their integrated values for Etr =~ 40 GeV. Table lists the jet
rejections for each |n| bin. Figure shows the differential cross-sections as function
of Er after the tight set of cuts has been applied.

4.5.3 Multivariate techniques

In addition to the standard cut-based method, several multivariate techniques have
been developed and implemented in the ATLAS software. These include a likelihood
discriminant, a discriminant called H-matrix, a boosted decision tree and a neural
network.

Table summarises the gains in efficiency and rejection which may be expected
with respect to the cut-based method by using the likelihood discriminant method.
The gains appear to be artificially large in the case of the loose and medium cuts. This
is due to the fact that these cuts do not make use of all the information available in
terms of electron identification, as they were designed for robustness and ease of use
with initial data. Nevertheless, they indicate how much the electron efficiency may be
improved once all the discriminant variables will be understood in the data.
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Figure [4.31] shows the rejection versus efficiency curve obtained using the likelihood
discriminant method, compared to the results obtained for the two sets of tight cuts.
The likelihood discriminant method provides a gain in rejection of about 20-40% with
respect to the cut-based method for the same efficiency of 61-64%. Alternatively, it
provides a gain in efficiency of 5-10% (tight and medium cuts) for the same rejec-
tion. Multivariate methods of this type will of course only be used once the detector
performance has been understood using the simpler cut-based electron identification
criteria.

4.5.4 In-situ determination of the efficiency

The experimental uncertainty on the electron identification efficiency is expected to
be the source of one of the main systematic errors in many measurements, and in
particular in cross-section determinations. In addition, a reliable monitoring of the
electron identification efficiency is important in the commissioning phase of the detector
and software.

The tag-and-probe method allows for an in-situ determination of electron efficiencies.
It consists in tagging a clean sample of events using one electron, and then measuring
the efficiency of interest using the second electron from the Z boson decay. The tag
condition typically requires an electron identified with tight cuts. The invariant mass of
the lepton pair is then used to identify the number of tagged events, N; (containing Z —
ee decays), and a sub-sample Ny, where the second pre-selected electron further passes
a given set of identification cuts. The efficiency for a given signature is given by the
ratio between N, and N;. To account for background, the lepton-pair invariant mass
spectrum is fitted around the Z mass peak using a Gaussian distribution convoluted
with a Breit-Wigner plus an exponential function. The dominant background arises
from QCD but its contribution is small in general and its impact on the measurement
is therefore very limited.

Figure shows the electron identification efficiency for the medium set of cut ob-
tained on Z — ee events using the tag-and-probe method and the Monte Carlo truth
as a function of pr and |n|. The relative difference between the two methods is less
than 0.5% in regions where the efficiency is flat. The size of the available Z boson
sample is a source of systematic error. With an integrated luminosity of 100 pb™!, the
error is expected to be in the range 1-2% for pr > 25 GeV, and ~ 4% in the low—pt
bin. Another source of systematic error comes from varying the selection criteria. For
instance, uncertainties introduced by varying the cut on the Z boson mass or requiring
an isolation criterion for the probe electron were evaluated. The magnitude of the un-
certainty introduced is smaller than 0.5% for pr > 40 GeV. At low pr, this uncertainty
is estimated to be in the 1-2% range.

4.5.5 Efficiencies in tt events

In the early phases of data-taking, electron efficiencies will have to be estimated from
real data in order to cross-check results obtained using MC generated samples. For
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Figure 4.32: Electron identification efficiency for the medium set of cut obtained on
Z — ee events using the tag-and-probe method and the Monte Carlo truth as a function
of pr (left) and |n| (right) for an integrated luminosity of 100 pb~!.
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Figure 4.33: Distributions of the pr (left) and |n| (right) of electrons found in Z — ee
(blue) and ¢t events (red).
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Process o BR f o
7 — ec | 1430 pb 100% 32% | 458 pb
tt 833 pb | (qqev) = 14% | 58% | 68 pb

Table 4.16: Cross-sections for the production of at least one electron with pr > 50 GeV
in Z and tt events at the LHC. f is the fraction of events with at least one electron
with pt > 50 GeV.

N jets | fraction (%) | Loose | Medium | Tight
0 46 87£0.5 | 77£0.6 | 67£0.7
1 33 87£0.5 | 79£0.7 | 69£0.8
2 14 88+0.8 | 78+1 68+1
>3 7 86£1 e 68+2

Table 4.17: Electron identification efficiencies as a function of the number of true jets
in Z — ee events.

that purpose, the tag-and-probe method was described in section 4.5.41 It relies on
electrons from Z — ee decays and takes advantage of the excellent knowledge of the
Z line-shape obtained at LEP.

tt events constitute one of the main background to all analyses requiring several high—
pr jets, missing transverse energy and leptons. That includes most of the signatures
investigated in the context of the search for supersymmetry. A trustworthy knowledge
of the electron identification efficiency in ¢t events is thus of major importance for a
correct estimation of the background.

Figure 4.33] shows the transverse momentum and pseudo-rapidity distributions of iso-
lated electrons found in Z — ee events (blue) and t¢ events (red). For the latter,
electrons arise from the decay t — bW — ber. Whereas electrons from Z decays are
mostly gathered in the 15-70 pr-range, the pr—spectrum for electrons from tt decays
is much broader and extends up to 200 GeV. More than 10% of these electrons have
pr > 100 GeV. Also, these tt electrons mostly appear in the central part of the de-
tector (|n| = 0) whereas Z electrons are almost uniformly distributed across the whole
acceptance of the detector.

Electrons from Z and tt decays lie in different domains of phase-space. Table
shows the cross-sections for the production of at least one electron with pr > 50 GeV
in Z and tt events at the LHC. Z events will provide almost seven times as many
high-pr electrons than tf events. Hence, the tag-and-probe method applied on Z — ee
events allows to probe secluded regions in phase-space.

Figure [4.34] shows the electron identification efficiency as a function of the transverse
momentum of the leading jet in Z — ee events for the three standard sets of cuts.
Jets were reconstructed with a cone algorithm with R = 0.4 based on true partonic
information. Efficiencies are slightly higher than the numbers shown in as the
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Figure 4.34: Electron identification efficiency as a function of the pr of the leading jet
in Z — ee events for the loose (green), medium (blue) and tight sets (red). The first
bin on the left corresponds to the case where no jet is present in the event.

study was performed with a later version of the Athena software (release 14), which
incorporated a number of improvements. Although statistical error bars stretch as the
pr of the leading jet increases, no dependence of the efficiencies on the latter can be
argued.

Table shows the identification efficiencies as a function of the number of true jets
in the event. Again, although statistical errors increase with the number of jets, no
dependence can be shown. In addition, it was shown in section that identification
efficiencies do not depend on the promiscuity between electrons and jets in the event.

After a careful study of the dependence of the electron identification efficiencies on
various characteristics of tt and Z — ee events, no reason was found to distrust the es-
timation of the electron identification efficiency provided by the tag-and-probe method
as applied on Z — ee events.
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Chapter 5

Search for supersymmetry

“I'm not fat, I'm big boned”
Eric Cartman — SouthPark

“There’s nothing an agnostic can’t do if he doesn’t know whether he believes
in anything or not”

Graham Chapman — Monty Python’s Flying Circus

The search for supersymmetry (SUSY) is one of the main goals of the LHC exper-
iments. The estimation of the potential for the discovery, for the measurement and
determination of the underlying parameters of as many phenomenologically realistic
models as possible has been estimated. The MSSM and in particular mSUGRA, GMSB
and AMSB were extensively explored among the ATLAS and CMS collaborations. The
investigated signatures cover a large panorama of possible models and showed that, if
realized in nature, SUSY will most likely be discovered at the LHC. If discovered, the
underlying parameters of the theory will have to be determined. However, the busy
environment in which SUSY events may occur as well as the rarity of some processes
will disfavour a precise determination of the most secluded sectors. In such cases, fu-
ture colliders such as the ILC or CLIC should provide valuable measurements towards
a full comprehension of the theory.

Two studies are presented. Firstly, the potential for a discovery at the LHC of a model
in which scalars are decoupled from the weak scale is discussed. Possible observables
are investigated. A detailed study with Monte Carlo generated samples is performed to
evaluate the uncertainties on their measurements. The precision to which the parame-
ters of the model can be determined is estimated using the dedicated SFitter program.
Secondly, the determination of the parameters of the MSSM at future linear colliders
is studied. The improvement provided by the International Linear Collider (ILC) or a
Compact LInear Collider (CLIC) to the determination of the parameters of the MSSM
is estimated in the case of a specific parameter set (SPSla). After a review of the
observable sectors including a calculation of the gluino production cross-section at
CLIC, the model is investigated using SFitter.
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5.1 Decoupled scalars at the LHC

The preparation for the search for supersymmetry at the LHC was mostly realized in
the framework of the MSSM and in particular in mSUGRA. Typical parameter sets
provide reasonable cross-sections and present a wide spectrum of new particles at the
LHC. Gluinos and squarks are produced and decay into charginos, neutralinos and
quarks. Neutralinos and charginos can also be produced directly. Heavy Higgs bosons
may also be produced and detected. With all new particles lighter than a few TeV,
these models allow for a cancellation of quadratic and logarithmic divergences in the
corrections to the Higgs boson mass (see section . Also, it is possible to provide a
candidate for dark matter and unify gauge couplings at Mgyr.

Although many signatures have been investigated, the case in which new scalars
(squarks, sleptons and heavy Higgs bosons) are not produced at the LHC has raised
less attention as it does not occur naturally in the MSSM. Indeed, as scalars get heavy,
a large contribution from g drives neutralino and chargino masses to very small val-
ues. In order to generate scalar masses above the reach of the LHC, they have to be
decoupled from the low energy spectrum.

A complementary motivation for decoupling scalars lies in the claim that the natu-
ralness of the weak scale should not be a guiding principle for SUSY model building
[104], 105}, 106). It is argued that since supersymmetry does not address the problem of
the naturalness of the cosmological constant [104], it should not be required to maintain
the weak scale where it is. Both issues may find a solution via anthropic or so-called
galactic principles [I07]. Models in which supersymmetry is broken at a very large
scale (10* — 10'® GeV) may also provide solutions to a number of disturbing aspects
of the MSSM (section as well as a candidate for dark matter and unify gauge
couplings at the high scale (section [5.1.3)).

5.1.1 Problems with weak-scale supersymmetry

Weak-scale SUSY and in particular the MSSM are usually the most studied realization
of supersymmetry. However, these models contain a number of disturbing features:

The Higgs boson mass

As mentioned in section [2.2.1] in the context of the MSSM, the mass of the lightest
Higgs boson my, is bounded from above by my at tree-level. Radiative corrections from
fermion and sfermion loops induce non-negligible contributions to m; and the upper
bound can rise to 130 GeV [63] if sfermions are lighter than 1 TeV and the tree-level
my, is close to its upper bound. Also, the triviality argument discussed in section
states that if SUSY appears at the TeV scale, the Higgs boson should be heavier than
~ 70 GeV in order for the Higgs quartic coupling A to remain positive.

Hence, a theoretically comfortable mass range for the light Higgs boson is between 70
and 130 GeV. Experimentally, m;, is bounded from below by the LEP experiments
with my, > 92.8 GeV at 95% confidence level [24] when MSSM couplings are included.
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Thus, about half of the allowed region is already excluded experimentally. This shows
that a soft fine-tuning may already be at play in the Higgs sector of the MSSM.

Cosmological constant problem

As mentioned in the introduction, some sort of vacuum energy is necessary to account
for the observed acceleration of the expansion of the Universe. This energy density
should be of gravitational scale in order to produce the desired effects. If gravity is
to be described by a local quantum field theory, contributions to the vacuum energy
may arise from the quantum fluctuations of the gravity gauge boson, the graviton.
However, if this is to be valid up to the Planck scale Mp, the resulting vacuum energy
is larger than the observed one by some 120 orders of magnitude. A cancellation of
these contributions similar to that of the quadratic divergences in the Higgs boson mass
would require the occurrence of new physics at the 1073 eV scale. This fine-tuning is
of much larger magnitude than that of the weak scale. It was suggested that both of
these may be realized in the anthropic selection of the vacuum within the enormous
landscape of vacua appearing in string theory [107, 104].

Dimension—-5 proton decay

In the MSSM, requiring R-parity to be conserved prevents dimension—4 operators
gld® and u¢d¢d® from mediating proton decay faster than experimental upper limits.
However, in the context of supersymmetric Grand Unified Theories [50], dimension—5
operators of the form ffff can also accelerate proton decay. In such cases, the decay
rate of the proton scales as m? sa/ mg [108], where my ;2 and my are the universal gaugino
and scalar masses, respectively. Hence, if scalars are taken to be very heavy, this rate
is suppressed.

Flavour and CP problems

The SM prevents flavour-changing interaction and none was observed experimentally.
Also, the only observed occurrence of CP—violation (in weak decays of K and B-—
mesons) are also correctly described by the SM. In the constrained MSSM, new flavour-
changing terms and CP-violating phases in the Lagrangian are assumed to be negligible
in order to build a phenomenologically viable model. Yet, no symmetry prevents the
existence of these terms. Notably, large flavour changing neutral current due to the
exchange of sfermions are generally expected to enhance K°— K9 mixing or the p — ey
decay. Also, CP—violating contributions to the electric dipole moment of fermions are
expected. Again, if scalars are very heavy, these effects are suppressed.

5.1.2 Decoupled Scalars Supersymmetry

In Decoupled Scalars Supersymmetry (DSS), all scalars are degenerate with mass mg
m;=mg= My gt s =ms 2 10* GeV
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and are all decoupled from the low energy spectrum. The latter consists of the usual
SM fields, the remaining SUSY fields, i.e. the gluino g, the wino W, the bino B
and the higgsinos components ]:I%d. Omitting gauge-invariant kinetic terms and non-
renormalizable operators, the Lagrangian density of the low energy effective theory
reads [106]

A _
L > wHUH =3 (H'H)" ~ [k,quel” + xagdH + rleH

1 . . -
+5 (Mggg + MWW + M1BB) v AT e,
HT ~ ~\ o~ HTe ~ <\ -
+—F (AUO'W + A;B) H, 4+ — (A’B — g 0W> H;+ h.c} 5.1
V2 g g /2 9a 9d d (5.1)
where 0% are the Pauli matrices, € = i02. xk%%¢ are effective Yukawa couplings. H is
the light Higgs boson doublet. It is fine-tuned to have a small mass term m?

H = —cosffeH} + sin H,,.

At the scale mg, the low-energy effective theory is matched with the full MSSM to
determine effective couplings

Amg) = i [ggf(mg) + g%(ms)} cos? 23 + A,

k,(ms) = yi(mg)sing, kae = yj.cosf3

(5.2)
Ju(ms) = ga(mg)sin 3, ga(ms) = ga(mg)cos 3

Gums) = \/2gr(ms)sinp, Gims) = /2a1(ms) cos

where g; and gy are the U(1) and SU(2) gauge couplings. It is important to note that
tan § only appears in the boundary conditions and therefore is not a parameter of the
low-energy effective theory. tan [ is interpreted as the fine-tuned angle that rotates
the two Higgs doublets into one heavy and one light rather than as the ratio of two
vacuum expectation values.

In order to keep gauginos and higgsinos light, it is argued that they are protected by
an R—symmetry and a Peccei-Quinn symmetry, respectively. If M; = p = 0 simultane-
ously, the low-energy effective theory remains invariant under a global U(1) symmetry
that is the product of an R—symmetry and a PQ symmetry.

One of the corrections to the tree-level Higgs boson mass mi = 2\v arises from the
threshold correction to the quartic Higgs coupling Ay,

Ay — 3y [<1 %ngrg%) XX
" _ 39\ A
8y? m%  12md

where y, = my/v is the top Yukawa coupling and X; = A; — p/tan 3, with A; the
trilinear Higgs-stop coupling. Ay, is suppressed for large values of mg and A; must be
small for the same reasons as gaugino and higgsino masses.
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Figure 5.1: Mass of the light Higgs boson as a function of the scalar mass mg for
Ay =0, 1t = mqp = 500 GeV [I10]. The dashed lines correspond to a £1 ¢ variation
of the top quark mass.

The gaugino masses are given as input at the GUT scale and assumed to be universal:
M;(Mgur) = mijs. They are evolved down to the scale mg by the SuSpect code
[109, TT0] using the one-loop Renormalization Group Equations (RGEs) of the MSSM.
1 is provided as an independent input parameter at the scale myz. From mg, scalars
are integrated out and the modified RGEs [106] are run down to the desired scale.

SuSpect includes one-loop corrections from both the SM and charginos and neutralinos
in the computation of the mass of the light Higgs boson my. Figure [5.1] shows the
logarithmic dependence of my, on the scalar mass mg for a given set of input parameters
and two values of tan 3. This dependence on mg is due to the running of A from mg to
the weak scale. For low mg, the variation of tan 3 can change m; by almost 20 GeV.
This is the largest effect of tan 5 on the low-energy effective theory and is due to the

cos®2f3 in [5.2]

The tree-level chargino and neutralino mass matrices read

9qv guv
PSRRI
~ 0 M. [EC _ Guv
Mg = ( {\{2) Ju? ) and MN = gy édf vz vz
9d H R 0 —H
s uV
- Ry

SuSpect includes one-loop corrections to the chargino and neutralino masses in order
to reduce the dependence on the renormalization scale. The gluino mass is related to
M3 by

2
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Scalar mass scale mg
Gaugino mass parameter at Mgyt | M2
Higgsino mass parameter at my W

Matching parameter tan 3
Higgs-stop trilinear coupling Ay

Table 5.1: Input parameters of the DSS model
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Figure 5.2: Running of the gauge couplings (left) and of the gaugino mass parameters
(right) using the DSS RGEs [106] below mg [113]. The following parameters were used:
mg = 10° GeV, myje = 120 GeV, p = —120 GeV and tan 3 = 4.

Table summarizes the input parameters of the DSS model.

5.1.3 Properties of DSS
Gauge couplings unification

It is shown in [IT1], 112] that new particles entering the RGEs at an intermediate scale
ms (myz < mg < Mgyr) contribute identically to the running of the three gauge cou-
plings if they compose complete representations of the unification group. All sfermions
in the MSSM form complete SU(5) representations. Hence, the gauge couplings unifi-
cation scheme exposed in the case of the MSSM (section is unchanged.

Figure shows the running of the gauge couplings (left) and of the gaugino mass
parameters (right) using the standard MSSM RGEs above mg and the DSS RGEs
below.
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Fine-tuning of the Higgs boson mass

The mass matrix for the two Higgs doublets reads

( |ul? +mi, b )
b |ul? +mi,

(m?%,) £ VA2 + b2

whose eigenvalues are

with <m%{> =

Requiring the lightest Higgs boson mass to be of the order of the weak scale amounts
to constraining the lightest of the eigenvalues to the range [—m#y, : 0]. These bounds
translate into

VA2 + 02 —miy < (m3) < VAZ + b2, (5.3)

The b term in the Lagrangian density breaks a Peccei-Quinn symmetry and can there-
fore be kept small as opposed to A and (m?) who can vary on a range of size ~ mg.
However, in order for the light Higgs boson mass to be at the electroweak scale, (m?;)
can only vary on a range of size miy, as shown in Hence, the fraction of the
((m%), A) space that is tuned, i.e. satisfies equation [5.3, corresponds to

2 2 2
Viuned MmgewMyg Mew
avl v .

4 2
V;;otal mg myg

For a scalar mass scale of 10* GeV, a fine-tuning of one part in 10* is necessary. For
mg ~ 101 GeV, a fine-tuning of one part in 106 is required.

Dark matter

DSS leaves the chargino and neutralino spectrum untouched, hence still providing a
good candidate for dark matter in the form of the lightest neutralino. The requirement
that the experimental measurement of the density of dark matter in the universe be
reproduced imposes a constraint on p. Unlike in mSUGRA, p is not determined by
electroweak symmetry breaking.

The density of dark matter as measured by the WMAP satellite (Qpyh? = 0.11170 009
[26]) can be reproduced in small regions of parameter space shown in red in figure .
They can be classified as follows

e The “mixed region” where M; ~ p and the LSP is a higgsino-gaugino mixture.
In this region NiN; annihilation is enhanced into final states containing gauge
and/or Higgs bosons and top quarks : NyN; — WW, ZZ, hZ, hh and tt. This

corresponds to the diagonal region in figure [5.3]

e The “pure higgsino” and “pure wino” regions where the LSP is almost degenerate
in mass with the C; and the N,, leading to an enhanced destruction of sparticles
for the C’l and Nz co-annihilation cross-sections are much larger than that of the
LSP. This region generally requires a LSP heavier than 1 TeV.

101



CHAPTER 5. SEARCH FOR SUPERSYMMETRY

1500 T T T T

1000 =

0.089< Qh’ <0.128

00 Mg=10" Gev

Scenario 1

200

100
100 200 400 00 1000 2000 3000

M; (GeV)

Figure 5.3: Regions of the (u, Ms) space allowed by WMAP constraints (red) and
excluded by direct searches (green) [I10]. The following parameters were used : mg =
10* GeV, tan 3 = 30 and gaugino masses are universal at the GUT scale.

e The “h-pole” region in which the LSP is rather light, mg =~ %mh and the s—
channel h exchange is nearly resonant allowing neutralinos to annihilate rapidly.
This corresponds to the peak region in figure [5.3|

Long-lived gluinos

In the MSSM, if gluinos are lighter than squarks, they will mainly decay through vir-
tual squark exchange into quarks and charginos/neutralinos [I14]. In DSS, quantum
corrections to the gluino decay processes can be very significant because they are en-
hanced by the potentially large logarithm of the ratio between the gluino mass mg
and the scale mg at which the interactions responsible for gluino decay are mediated.
In order to obtain a reliable prediction for the gluino decay width, the large logarith-
mic corrections have to be re-summed by means of standard renormalization group
techniques [115]. The gluino lifetime is approximately given by

o ( ms >4 1 eV’
T8, T \100 Gev my; )

Figure [5.4] compares the gluino lifetime with other relevant scales. If the scalar mass
scale is larger than 10° GeV, the gluino is potentially sufficiently stable to form so-called
R-hadrons [116]. As a colour octet, the gluino can be fitted into a colour-singlet hadron
along with two or three quarks coupled as an octet. R-hadrons could be stable and,
if produced, escape detectors and be stopped in the surrounding material. For even
higher values of mg, R—hadrons could become relevant on cosmological scales since they
would affect nucleosynthesis if their abundance in the early Universe is sufficiently high.
Limits on the scalar mass scale can be set by big bang nucleosynthesis. A TeV mass
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Figure 5.4: Gluino lifetime as a function of the scalar mass scale m = mg.

DSS1 \ DSS2
mg 10 TeV
tan G(mg) 30
At(ms) 0

ms(Maur) | 1324 GeV 296.5 GeV

p(myz) 290 GeV 200 GeV

Table 5.2: DSS1 and DSS2 parameter points chosen for the study of the phenomenology
of DSS at the LHC.

gluino must have a lifetime shorter than 100 seconds to avoid altering the abundances
of deuterium and lithium 6. This sets an upper limit of mg < 10? GeV [117].

The study presented in this thesis will focus on short-lived gluinos to avoid exotic
phenomenologies.

5.1.4 Parameter sets

Two points in the parameter space are chosen in agreement with known constraints
from both dark matter observations and collider searches in order to study the potential
for discovery, measurements and determination of the parameters of DSS at the LHC.

Table presents the parameter values for DSS1 and DSS2.

In both case, the scalar mass scale mg is set to 10 TeV. This is the lower edge of the
region of application of DSS. It allows for a soft fine-tuning of the mass of the Higgs
boson, only one part in 10%, and sets the gluino lifetime to reasonably short length of
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DSS1 | DSS2
h | 129 129
G | 438 880

N, | 60 125

Ny, | 117 185

N; | 296 206

Ny | 310 317
c, | 117 175
Cy | 313 317

Table 5.3: Mass spectrum for DSS1 and DSS2 as computed by a modified version of
SuSpect [110].

time in order to avoid non-standard phenomenology or undesirable cosmological effects.
Yet, squarks, sleptons and heavy Higgs bosons still lie beyond the mass reach of the
LHC (~ 3.5 TeV).

tan [ is set to 30 for both points to allow for a light Higgs boson mass above the LEP
limit. The only influence of tan 3 in the low-energy theory is on my. Similarly, the
only impact of the trilinear coupling A; on my are suppressed as m§2 and m§4. It is
therefore set to 0 for all point.

The most relevant parameters for the low-energy effective theory are p and m; /5. They
define the mass spectrum as well as the field content of the neutralinos and charginos
and most notably the LSP. We chose two (11, m1/2) combinations in order to cover most
of the parameter space allowed by LEP and WMAP and relevant at the LHC. With
p = 290 GeV and m;,; = 132.4 GeV, DSSI lies in the “Higgs pole” region of figure
. At this point, the LSP (Nl) is mostly bino but still has a non-vanishing higgsino
component. With p = 200 GeV and m;/, = 296.5 GeV, DSS2 is in the “mixed region”
of figure and the LSP is a higgsino-gaugino mixture.

Table presents the sparticle mass spectra for DSS1 and DSS2. For both points, the
Higgs boson is SM-like. With a mass of 129 GeV, the dominant decay is to bb, 777~
and WW*. However, it is also the mass were the branching fraction of the decay into
a pair of photons reaches its maximum. The h — 7~ channel is especially suitable
for a precise measure of the Higgs boson mass using the reconstructed invariant mass
of the two photons. The LSP is the N; which is very light and mpy, < my leading
to a ~ 1% branching ratio of the invisible decay h — N;N;. In DSS1, the gluino,
the N, and C; are fairly light leading to an enhanced production of gluino pairs and
chargino-neutralino associated production at the LHC (see table . With a larger
my 2, DSS2 has a much heavier gluino and LSP.

Table shows the field content of neutralinos and charginos in DSS1 and DSS2. In
DSS1, the N; and N, are bino and wino, respectively. In DSS2, the N, is mostly bino

but still has a higgsino component. The N, is everything. The C; is mostly wino in
DSS1 and higgsino in DSS2.
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DSS1 DSS2

~OZ NOZ ~ 0 ~ |2 ,,02 ~02
LA O L

2

~ 2
B )Hg

Ny 0.97 0 0.03 0 0.74 0.02 017 0.07
Ny 0.01 0.8 0.09 0.01 | 019 0.25 0.3 0.25
Ns 0 0.02 047 051 {001 001 047 0.51

14
[\

Ny 0.02 009 041 048 |0.01 078 0.06 0.15

DSS1 DSS2

L N LEREE
’é 080 011 | 021  0.79
‘é 011 089 | 0.79 021

Table 5.4: Neutralinos and charginos field content for DSS1 and DSS2 as computed by
SuSpect [109]. For charginos, components from C;" and C; are averaged.

Table lists the next-to-leading order cross-sections for direct production of sparti-
cles at the LHC for DSS1 and DSS2 as computed by Prospino2 [I18], 119 120]. As
expected, the light gluino of DSS1 yields a relatively large cross-section for the produc-
tion of gluino pairs. In DSS2, gluinos are fairly heavy and the gluino pair cross section
is low. The second largest contribution to SUSY production is due to the associated
production of charginos and neutralinos with 12 pb and 2 pb in DSS1 and DSS2, re-
spectively. In DSS1, this channel is very much dominated by the C, N, channel while
in DSS2, equlvalent contributions arise from C;N; 2,3 and CyN,. This is due to the
fact that the mass splittings between the first three neutralinos are larger in DSS1
resulting in a less degenerate production of charginos and neutralinos. Furthermore,
in DSS2, the C; is mostly higgsino of which there is a large fraction in all neutralinos.
The total CN direct production cross-section is lower for DSS2 due to a larger m o.
The lower p increases the C N5 production rate but fails to keep up with the very light
]\7172 in DSS1. The only other significant contribution to SUSY production in DSS1 is
due to the production of C; pairs. DSS2 production also receives contributions from
neutralino pairs.

Table [5.6] lists the branching fraction of DSS sparticles as computed by SDECAY [121].
Most gluino decays contain three particles in the final state as they proceed through a
very virtual squark. Due to its wino-like nature, Ny mostly decays as a Z boson. The
higgsino component in DSS2 opens the decay to charginos. Also, the C decays like a
W boson.
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g
Channel DSS1 an DSS2
7g 62.8 pb 954 fb
C. N, 227 fb 451 fb
C1N, | 11.67 pb 848 b
Cy Ny 41 fb 496 fb
CiNa | ATib |90 b | 3THb 199 py,
Cy N, 7 b 0.6 b
Cy N, 15 fb 41 fb
Cy Ny 100 fb 40 fb
CyN, 104 fb 296 fbh
0101 5.9 pb 642 b
C,C, 18 fb 6 pb 38fb | 827 fb
CyCy 56 fb 147 tb
N, N, 7 b 3 fb
Ny N, 2 b 2 b
Ny Ny 6 fb 119 fb
NN, 1fb ~0
No N, 12fb | g9 | 008> | 31011
Ny Ny 18 fb 166 fb
Ny N, 2 fb 0.2 fb
N3N; | 0.01 fb 0.09 fb
N3N, 51 fb 20 fb
NyN, | 0.06 fb 0.06 fb
Chq 290 fb 0.02 b
God o0 | 310 fb 005 | 007 fb
N g 71 fb 0.01 fb
Nog | 140> | 5o5 g | 0018 |00 p
Nsig 4 fb 0.001 fb
Ny 8 fb 0.02 fb
Total 81.6 pb 4.3 pb

Table 5.5: Next-to-leading order cross-sections for direct production of sparticles at
the LHC for DSS1 and DSS2 as computed by Prospino 2 [118] 119, 120].
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Decay DSS1 | DSS2
BR (%)
Ny stable stable
Niqq | 15 8
Naqg | 30 | 45 1 37
N3 qq | <1 6
Nygg | <1 12
~_. | Ciqq | 55 24
I Coqy | <1 o 28 b2
Nig <1
Na g 0 3 11
N3 qg 6
N4 g 1
N1 qq 69 68
) Ny t¢ 7 7
Ny — Nl TT 3 3
N,vv 21 20
Ch qq 0 1
N Z |9 | gy Miag 65
Ny, Z | 21 Ny 0 ¢ 7
v ~ Ch qq 3
NS - Cl |74 64 él 0y 1
Niho |2 ] ]\:fl vl 20
Ny h 2 Ny TT 3
NZ |4 0
i Ny Z | 5 2
No—| Nih | 6 oo | Ns Z 9
Ny h | 14
C\ W 70 86
N1 qq 67 N1 qq 66
Cy— | Nylv 292 N, v | 22
]\71 TV 11 Nl TV 11
Cy Z 32 Cy Z 32
~ N, W | 8 Cy h 9
Qo mw Lo | B s .
Cy h 20 Ny W | 19

Table 5.6: Branching fraction of DSS sparticles as computed by SDECAY [121].
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Process Generator | Hadronization/Underlying event
SUSY HERWIG [83] JIMMY [R9]
QCD jets PYTHTA PYTHIA
tt MCGNLO [85] HERWIG/JIMMY
W/Z + jets ALPGEN [80] HERWIG/JIMMY
WW/WZ/ZZ | HERWIG JIMMY

Table 5.7: Codes used for the generation of signal background samples.

5.1.5 Generation and simulation

Leading-order and, when available, next-to-leading-order Monte Carlo (MC) generators
were used for the generation of signal and background processes. All LO-generated
samples were normalized to NLO cross-sections using K—factors. The most relevant
SM background processes to SUSY searches are tt, W + jets, Z + jets, WW/W Z/ZZ
and jet production from QCD processes. Corresponding generators were chosen to
optimize the fidelity of MC samples to potential real data. For LO and NLO cross-
sections, the CTEQ6L and CTEQ6M [47] sets of parton density functions were used,
respectively.

General-purpose leading-order generators include PYTHIA [82] and HERWIG [83]. The
latter proposes a better treatment of additional jets due to initial/final state radiation
or to the hard scattering, includes spin correlations in the decay of heavy fermions
and azimuthal correlations within and between jets. It was used for the generation of
SUSY samples for both parameter sets and of WW /W Z/Z Z samples. The generation
of the underlying event was achieved by the JIMMY package [89]. Cross-sections were
normalized to the next-to-leading-order calculations realized by the MCFM program [122].
Most of the background arising from QCD jets production is expected to be suppressed
in the early stages of the analysis by cuts on, e.g, the transverse missing energy. For
that reason, a highly accurate generation of those processes is not crucial and the
PYTHIA program can be used. QCD jets samples were produced in slices of pr of the
hard scattering. A filter was applied at generation level, requiring for the hardest jet a
transverse momentum above 80 GeV, for the second jet transverse momentum above
40 GeV and missing transverse energy above 100 GeV.

When available, exact matrix-elements calculators and MC generators were used and
matched to parton shower generators. For the generation of heavy-quark pairs, the
MC@ONLO program [88] calculates next-to-leading-order matrix elements and generates
final states. It was used for the production of ¢t samples. It provides a quite stable
absolute cross-section prediction and a good description of the final state kinematics
for events with up to one additional QCD jet.

The ALPGEN program [86] calculates leading-order and generates final states for multi-
parton processes. It was used for the generation of W/Z + jets samples. Those samples
were matched to HERWIG for the generation of parton showers. JIMMY was used for the
underlying event. The underlying-event parameters were tuned to published data from
the TeVatron and other experiments. The parton-matching between event generators
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DSSI [ DSS2 [ & | W/Z + jets | WW/WZJZZ | QCD
events IM | 500k | 8M | 3M/2M | 700k/30k/60k | 2M
[Ldt (b 0y | 11 | 113 | 9 1/3 10/1/5 1

Table 5.8: Number of events used in this study.

and parton showers generators was achieved using the MLM scheme [123] with the jet
matching cut set at 40 GeV. Contributions from processes with matrix-element parton
multiplicities between one and five were summed to produce the multi-jet sample. A
filter was applied at the generator level requiring at least four jets with transverse
momentum above 40 GeV, with at least one of these having a transverse momentum
above 80 GeV, and with missing transverse energy above 80 GeV.

The decay of 7-leptons was treated by the TAUOLA program [96] and the radiation of
photons by charged leptons by PHOTOS [97]. Pile-up and cavern background simulations
were not included. Events were generated and simulated on the WLCG grid. Table
5.7l summarizes the different program used for the generation of signal and background
samples.

The background samples used in this work were generated as part of the ATLAS official
production with release 12 of the ATLAS software in the context of the CSC effort.
Table [5.§| shows the number of events used in this study along with the corresponding
integrated luminosities.

The amount of signal events required for this study as well as the non-mainstream
character of the model forbids a time-consuming full simulation of the ATLAS detector
on the Grid. On the other hand, the historic tool for fast simulation of physics events
in ATLAS (ATLFast [124]) is based on a smearing of the four-momenta of particles in
the final state. Therefore, it overestimates the reconstruction efficiencies of all objects
and underestimate bias that could alter the estimations of the position and momentum
of a particle such as material effects or noise.

Instead, events (signal and background) were submitted to a semi-fast simulation of
the detector. The inner detector was simulated by the FATRAS package [125] and
the calorimeter by the FastCaloSim package [126]. The response of the detector to
muons was simulated using the usual ATLFast [124] parametrization. FATRAS and
FastCaloSim are implemented within the standard athena event data model (EDM).
Therefore, standard reconstruction algorithm such as those presented in chapter 4| can
be applied. ATLFast uses a separate data model. It should be noted that although the
FATRAS /FastCaloSim combination provides more faithful performance with respect
to a full simulation, it is still under development and has not been fully validated yet.
On the other hand, ATLFast is fully validated and its limitations are well understood.
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------- FastCaloSim

Probability
o
8
I

Simulation — Full simulation
fast full
Reconstruction | 89.6 £0.2 | 91.0 £ 0.2 0.02
Loose 88.2+0.2 | 89.5+0.3
Medium 79.9+02 1| 79.7+0.3
Tight 69.7+0.3 | 68.8+0.4 0.01

Table 5.9: Electron identification efficien-
cies obtained on Z — ee with the Fast 0 d L L L ‘
Calorimeter Simulation package or with 0 50 100 150 200
the standard full simulation of the detec- Energy (GeV)
tor. Efficiencies are quoted for the three
standard sets of cuts described in chapter — Figure 5.5: Energy spectra of electrons
Al in Z — ee events obtained with the Fast
Calorimeter Simulation package or with
the standard full simulation of the detec-
tor.

Fast ATLAS TRAck Simulation

The full simulation of the inner detector is the most time-consuming part of the full
Geant 4 simulation because it tracks charged particles through the full complex geome-
try of the inner detector. FATRAS [125] makes use of a number of standard techniques
together with a simplified geometry of the inner tracker. It accounts for material effects
such as multiple scattering, energy loss, bremsstrahlung, hadronic interaction as well
as noise effects. FATRAS is about fifty times faster than the standard full simulation.

Fast Calorimeter Simulation

The aim of the FastCaloSim package [126] is to provide a parametrized simulation of
the particle energy response and distribution in the calorimeter to reduce the simula-
tion time. FastCaloSim simulates only the average shower properties and uncorrelated
fluctuations (fluctuations from calorimeter cell energy resolution and electronic noise).
The particle shower is described by two parametrizations, one providing the total en-
ergy deposited in each calorimeter layer and the other providing the energy distribution
within a specific calorimeter layer. The calorimeter response to electrons and photons
are based on a parametrization of a Geant 4 simulation of photons while the response
to hadrons is parametrized on simulated charged pions. Muons are ignored. Cells in
the calorimeter are described as cuboids in the » — 7 — ¢ space. The parametrizations
are binned in pseudo-rapidity and energy.

Table[5.9/shows the identification performance obtained Z — ee with the Fast Calorime-
ter Simulation package or with the standard full simulation of the detector. Efficiencies
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are quoted for the three standard sets of cuts described in chapter [4, All discrepancies
are within the errors. Figure shows the energy spectra of electrons in Z — ee
events obtained with the Fast Calorimeter Simulation package or with the standard
full simulation of the detector. No discrepancy can be seen.

ATLFast

The muon spectrometer is to a large degree decoupled from the rest of the detector. It
is therefore well isolated from the overall event activity. For that reason, it is assumed
that the response of the detector to muons as parametrized by the ATLFast software
[124] is a good approximation.

Muon reconstruction is carried out using an analytical evaluation of the muon mo-
mentum resolution. This approach properly takes into account the detailed geome-
try of the muon spectrometer and the distribution of the material contained in the
magnets and in the muon chambers, as well as resolution effects. The algorithm pro-
vides the momentum resolution as a function of pr, n and ¢. This method neglects
non-Gaussian effects such as multiple-scattering tails and pattern-recognition errors,
excellent agreement has been found between its results and those of a full detector
simulation. The muon momentum is corrected for energy loss before the spectrometer
by using a parametrization which takes into account the contribution from fluctuations
in the calorimeters. In ATLFAST, isolated muon candidates are searched for in the
MC truth. The muon momentum is smeared using a pr, 7 and ¢—dependent resolution
function. The resolution in the spectrometer is evaluated by an interpolation between
eight tables produced at four pr values.

5.1.6 Objects for SUSY analysis

The objects used for the analysis of SUSY events and referred to in section [5.1.7] are
described.

Jets

Because of the relatively large multiplicity of jets in SUSY events, a narrow cone is
preferable in the reconstruction of jets. The algorithm used to reconstruct jets in the
analysis documented here is the cone algorithm with a cone size of 0.4.

Missing transverse energy

Fr is calculated from the calorimeter cells, with calibration weights derived sepa-
rately for cells associated to different objects (jets, electrons, photons, taus, and non-
associated clusters due to the soft part of the event). Sources of fake missing energy,
such as dead or noisy parts of the calorimeter, fake muons, beam-gas and beam-halo
events, cosmic rays and electronics problems are not considered here. The contribution
from non-Gaussian tails in the [ measurement can be strongly suppressed by requir-
ing a minimum angular separation between the [t vector and the jets in the event.
This cut also suppresses the contributions from jets containing hard neutrinos from the
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Figure 5.6: Distributions of the missing transverse energy (left) and ¢—difference be-
tween the P vector and the three leading jets (right) for SUSY DSS1 events and SM
processes (tt, ZZ, QCD jets and Z + jets).

leptonic decays of charmed and beauty mesons. The right-side plot in figure [5.6| shows
the distribution of the ¢-difference between the Kt vector and the three leading jets
in the event. In most QCD events, at least one of the three leading jets is very close
to the Hr vector.

The distribution of Fr for SUSY DSS1 events and SM processes is shown in the left-
side plot of figure |5.6l For SUSY events, the distribution is clearly shifted toward
higher values while for SM processes, it is mainly gathered below 100 GeV.

Electrons

For typical SUSY analyses the background from the production of QCD jets can be re-
duced by requirements on [ or the transverse sphericity. Therefore stringent rejection
against jets is not needed in SUSY studies, and relatively soft electron identification
cuts can be applied, leading to a significant gain in efficiency especially for searches
involving many leptons. The medium set of cuts defined in chapter [4] is used. How-
ever, the busy environment surround electrons in SUSY events suggests the use of an
additional isolation cut. The R... cut is applied in addition to the standard medium
set. Only electrons with transverse momentum larger than 20 GeV are considered.

Muons

All ATLFast muons with transverse momentum larger than 20 GeV are included. An
additional isolation criteria is required. Namely, the sum of the transverse momentum
of all tracks with a distance R = y/n? + ¢*> = 0.2 of a muon is required to be lower
than 10 GeV.
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Figure 5.7: Distribution of the transverse sphericity for SUSY DSS1 events and SM
processes.

Overlap removal

Candidates can be reconstructed in parallel by different algorithms. For instance,
all true electrons will be reconstructed as jets, muons can also be reconstructed as
electrons. In order to remove the overlap between the candidates, electrons passing the
medium set of cuts are taken as basis. All jets within a distance R = /n? + ¢? of 0.2
of an electron are discarded. It was shown in chapter 4| that the electron identification
efficiency is uniform as a function of R for R > 0.4. Thus, electrons within a distance
R = 0.4 of the remaining jets are rejected. Finally, electrons within a distance of 0.2
of a muon are discarded.

Effective mass
The effective mass Mg is a measure of the total activity in the event. It is defined as
Meg = Fr + ZPT(jet) + ZpT(lepton)
i<d

where the sums run respectively over the four highest—pr jets and over all of the
identified leptons. This variable is useful to discriminate SUSY from SM events. It
also has the interesting properties that, for SUSY events, Mg is strongly correlated
with the mass of the pair of SUSY particles produced in the proton-proton interaction.
It can therefore be used to quantify the mass-scale of SUSY events [127].

Transverse sphericity

The transverse sphericity (St) is defined as
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jets + fr +
0¢ 10 20 3¢
DSS1 | = 70% | = 20% | = 5% | = 3%
DSS2 | > 70% | > 23% | > 5% | > 1%

Table 5.10: Most frequent final states in the production of DSS at the LHC. Leptons
include electrons and muons.

where ); are the eigenvalues of the 2 x 2 sphericity tensor S;; = >, pripr;. The tensor
is computed using all jets with pr > 20 GeV, and all selected leptons. SUSY events
tend to be relatively spherical (Sp ~ 1) since the initial heavy particles are usually
produced approximately at rest in the detector and their cascade decays emit particles
in many different directions. QCD events are dominated by back-to-back configurations
(St ~ 0). The distribution of Sy for SUSY DSS1 events and SM processes is shown in
figure In DSS1, sparticles are fairly light, resulting in a fairly uniform distribution
between 0.1 and 0.6. For QCD jets or Z + jetsevents, the distribution peaks at zero.
A cut on S7 does not discriminate against tf events as the distribution is very similar
to signal events.

5.1.7 Collider observables

The potential for the discovery of DSS at the LHC is described in the case of the DSS1
and DSS2 parameter sets. In order to estimate the precision on the determination of
the DSS parameters at the LHC, a number of quantitative observables are shown.

Discovery potential

Table |5.10] shows the most frequent final states occurring in the production of DSS at
the LHC in terms of the number of isolated leptons in the final state. All production
channels are included and leptons include electrons and muons. All channels include
some amount of missing transverse energy resulting from the non-detection of the Nj.
The number of jets in the cascade, i.e. not counting jets from the underlying event or
initial and final state radiation, can vary from zero in the case of the direct production
of C1N, both decaying leptonically to eight in the case of gluino pairs. The most
common channel for both points is the no-lepton channel §j — CiCy + 4 jets —
8 jets + K1 + 0 leptons. This channel is used for the estimation of the discovery
potential of both points. The following standard cuts [81] are applied to both signal
and background samples:

1. At least one jet with pr > 100 GeV, three other jets with pr > 50 GeV and
Fr > 100 GeV

2. Fr>0.2x Mg
3. S50 >0.2

4. A¢(jet, For) > 0.2 for the three leading jets
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Mg >
Process | cut1l cut2 cut3d cut4 cut 5 800 GeV 1000 GeV
DSS1 31495 19849 16985 15759 12631 4701
DSS2 504 313 251 231 145 112 97
tt 18031 11542 8981 8219 5161 274
QCD 27330 7231 4632 851 848 15
W +jets | 2517 1561 1149 1028 769 195
Z + jets 1532 933 645 538 422 128 62
Wz 58 38 34 31 20 4
WWw 84 53 42 42 12 3
47 21 13 8 6 2 2
Total SM 621
DSS1 significance 18
DSS2 significance 0.8 6

Table 5.11: Number of events remaining for each process after the successive application
of each cuts. Numbers are normalized to NLO cross-sections and for an integrated
luminosity of 1 fb~!.

5. no electrons and no muons
6. M.g > 800 GeV

Most of the background samples have been filtered at generation level with various
requirements on [ and jet multiplicity. The first cut in the analysis flow applies
harder requirements than any of the ones applied at the filter level to minimise the
bias to the study from the use of filtered samples.

The main background at this point is from QCD events where Jr is produced either
by a fluctuation in the measurement of the energy of one or more jets, or by a real
neutrino from the decay of a B—hadron produced in the fragmentation process. Since
the statistical fluctuation on the K1 measurement grows with increasing Mg, the
second cut above eliminates the Gaussian part of the [ fluctuations. In SUSY events
the jets are produced from the decay of heavy particles produced approximately at
rest, and are thence distributed isotropically in space, whereas for the QCD events the
direction of the two partons from the hard scattering provides a privileged direction.
The cut on sphericity is intended to exploit this fact. Both for jet mis-measurement
and b decays, the [ vector will be close the direction of one jets. The A¢ cuts are
very efficient in reducing the QCD background.

Table shows the number of events remaining after the successive application of each
cuts. Numbers are normalized to NLO cross-sections and for an integrated luminosity
of 1 fb~!. The QCD background is dominant after the first cut but is reduced to a
level similar to the backgrounds containing real neutrinos by subsequently requiring
Fr > 0.2Mg (cut 2). The cuts on the sphericity and A¢ strongly reduce the QCD
background, which becomes concentrated in the region of low M.g. After all cuts tt is
the dominant background, but there are also significant contributions from W +jets and
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Figure 5.8: Distributions of Mg for signal and background processes after the appli-
cation of cuts 1 to 5 for an integrated luminosity of 1 fb=.

Z + jets. The final cut, Mgz > 800 GeV, reduces the background to below the level of
the signal for DSSI.

The systematic uncertainties on the number of background events for 1 fb~! was taken
to be 50% for QCD multi-jet events and 20% for tt, W + jets, Z + jets, WW, W Z and
Z 7. These are estimations of what could be obtained using procedures for background
evaluation based on a combination of data-driven and Monte Carlo methods [S1].
Systematic and statistical uncertainties are incorporated in the calculation of the signif-
icance by convoluting a Poisson probability density with a Gaussian probability density
with the number of background events N, as mean and J, (systematic uncertainties) as
standard deviation [128] 129]. The probability that the background fluctuates to the
observed number of events Nops = Nsignal + N}, or above is

(e}

p:A/ dbGauss( Ny, 0) Z

0

e~

2!

1=Nobs

where A normalizes the integral. Then the significance of the signal reads
Zy = \2erf (1 — 2p).

In the case where Ny is very large compared to Ny, the significance is approximated
by [130]

2 3 3 2
Zy =~ | A/ Nobs + = — [Ny + =L
" VTN, " "T8N,
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Figure 5.10: Expected signal significance
for a Higgs boson using the h — v decay
for 10 fb! of integrated luminosity as a
function of the mass [81].

Figure 5.9: Distribution of the invariant

mass of the photon pair in A — v events
for my, = 120 GeV [&1].

By convention, the discovery of new physics can be claimed if the number of observed
events exceeds 25 and the significance larger than 5. The significance of the observation
of DSS1 with an integrated luminosity of 1 fb~! is 18. Hence, this point in parameter
space can be discovered very quickly at the LHC, within one year of data taking at
low luminosity. For DSS2, the significance is very low and, for this set of cuts, does
not increase with statistics. However, if Mg is required to be larger than 1 TeV, the
significance for 1 fb= is 6.

Higgs boson mass

In DSS1 and DSS2, the lightest Higgs boson is essentially equivalent to that of the
SM. Its production through supersymmetric cascades only occurs through the decay
of N3, Ny and C,. The production cross-sections of these sparticles are small and the
resulting contribution to the total cross-section for Higgs boson production is of the
order of 100 fb, i.e. negligible compared to SM channels.
The next-to-leading order production cross-section for a 130 GeV Higgs boson is 39 pb
[81]. Tt is computed by the HIGLU code for the gluon fusion channel [131], the VV2HF
for the vector boson fusion (VBF) channel and V2HV for the production in association
with a vector boson. This number includes NLO electroweak and QCD corrections.
At my, ~ 130 GeV, the Higgs boson mostly decay to bb (53%), then to WWW* (29%),
7 (5%), ZZ (4%) and finally to vy (2%o). Nevertheless, thanks to its two isolated
photons in the final state, this channel bears less background than others and is the
most suitable for the measurement of the Higgs boson mass. The analysis is not part of
this thesis [81]. Figure shows the significance for the h — ~v signal for 10fb=! as
a function of my,.

Figure shows the distribution of the invariant mass of the photon pair in h — ~v

events. The main source of systematic uncertainties on the measurement of the Higgs
boson mass in this channel arise from the knowledge of the electromagnetic energy
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Figure 5.11: Possible three-bodies decays of sparticles.

scale. In the early phases of data-taking, the calibration of the photon energy scale
will be derived from that of the electron energy scale realized on Z — ee events (see
chapter {4)) in combination with Monte Carlo simulations. Later, Z — uuy events can
be used to reconstruct the Z boson mass and constrain the photon energy scale. It
should eventually be known to 0.1%.

The measurement of the mass of the Higgs boson provides a strong constraint on the
value of tan 3 in DSS.

Di-lepton end-point

Three-bodies decay of sparticles can provide valuable information to constrain their
masses. If the mass splitting between two sparticles, X and Y with mg > My, 18
smaller than the mass of the Z boson, then X may decay to Y through a virtual
squark, slepton or Z boson along with a fermion pair. Figure [5.11|shows these decays.
In DSS, squark and slepton masses are very large and the graph with slepton or squark
exchange is negligible. If only the graph with the exchange of a Z boson contributes,
the differential rate of these decay with respect to the invariant mass of the fermion
pair reads [132]

ar oM VM*— M2(D? + S%) + (DS)?
dM (M? —m?)?

[M?(25% + D) — 2M* + (SM)?*]  (5.4)

where M = M7 is the invariant mass of the fermion pair, D = mgx — my, S =
mg 4+ my and C' is a normalization factor. If it is experimentally possible to establish
the distribution of the invariant mass of the fermion pair, it will show a triangular
shape with a sharp end-point at Mz = D = myg — my. A fit of the distribution to
equation provides the difference and sum of the masses of the two sparticles in the
decay. However the determination of the sum is much less precise, since the dependence
of the distribution shape on my becomes very weak when this mass is larger than the
mass difference.

N in DSS1 and ]\73,4 and charginos in DSS2 decay through an on-shell Z. The M, dis-
tribution will thus show a Z peak rather than a triangular shape. However, the
end-point technique can be applied to two decays : N, — Ni£¢ in both points and
N3y — Ny0¢ in DSS2. Leptons in ¢ pairs have Opposite Signs and Same Flavour
(OSSF). Even if N, and N; decay mostly into a quark pair, the use of OSSF leptons
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Process ete” ptp~ OSSF | OSOF
DSS1 264 359 623 61
tt 128 214 342 327
W/Z+ijets | 1 5 6 4
WW/wWz/zZ| 1 13 14 7
Total SM 130 232 362 338

Table 5.12: Number of lepton pairs passing the event selection for 1 fb=1.

dramatically reduces the combinatorial background in the constitution of the fermion
pair. Furthermore, the lepton energy scale is expected to be known to the per-mil
level while the jet energy scale is only determined to the percent level. Although the
direct production of ]\72 via the élNQ channel bears little background due to the small
number of jets in the final state, it is important to include the production of N, via the
decay of a gluino in order to increase statistics. The total cross section for the decay of
interest is o(Ny — N1£0) ~ 3.5 pb in DSS1 and 93 fb in DSS2 and o(N3 — Ny £0) =~ 75
fb in DSS2.

Events are selected by requiring a missing transverse energy larger than 100 GeV,
the leading jet with Er > 100 GeV and a next-to-leading jet with Er > 50 GeV.
Also, events are required to contain at least two Opposite-Sign-Same-Flavour (OSSF)
leptons. Leptons refer to electrons or muons with pr > 20 GeV and |n| < 2.5. In
order to improve the sensitivity to the signal, only lepton pairs with an invariant mass
My < my, —myg, + 10 GeV are considered. Since the true value of the endpoint is
a priory unknown, this choice implies that the edge has already been observed. The
number of remaining lepton pairs for signal and backgrounds are listed in able[5.12] The
QCD background is removed by the lepton and Fr cuts. The remaining background
is mostly composed of tt events but also contains W + jets, Z + jets, WW, W Z and
Z 7 events. Figure .12 shows the distribution of the invariant mass of OSSF lepton
pairs for DSS1 and all SM backgrounds for an integrated luminosity of 1 fb~!.

In order to remove combinatorial background, the flavour subtraction method is ap-
plied. It is based on the fact that the signal contains two OSSF leptons, while the
background leptons come from different decay chains, which can be of the same flavour
or of different flavour with the same probability. The background thus cancels in the
subtraction

N(ete™)/B+ BN (utp~) — N(e*pT)

where (3 is an efficiency correction factor equal to the ratio of the electron and muon
reconstruction efficiencies. The dominant SM background arise from ¢t events in which
each lepton in the pair comes from the decay of a W boson. In such a case, the
number of events containing an OSSF lepton pair is theoretically equal to the number
of events containing an Opposite-Sign-Opposite-Flavour (OSOF) lepton pair. Hence,
the flavour subtraction technique also cancels contributions from ¢¢ events. Figure
shows the distribution of the invariant mass of lepton pairs after suppression of the SM
and combinatorial backgrounds for DSS1 with 10 fb~! and DSS2 with 100 fb~!. In the
case of DSS2, the lowest end-point corresponds to the mass splitting m g, —myg, while
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Figure 5.12: Distribution of the invariant mass of OSSF lepton pairs for DSS1 and all
SM backgrounds for an integrated luminosity of 1 fb=!. DSS1 is superimposed on the

background.
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Figure 5.13: Distributions of the invariant mass of lepton pairs after suppression of
the SM and combinatorial backgrounds for DSS1 with 10 fb™! (left) and DSS2 with
100 fb~! (right). Error bars include contributions from the SUSY and SM backgrounds
subtraction. The fit is superimposed.
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Theoretical value | Fit value | Statistical error
(GeV) (GeV) (GeV)
DSS1 my, — Mg, 55.1 55.2 +0.6 / 10 fb~!
. -1
DSS2 my, — Mg, 60.7 60.2 +2 /100 fb_1
my, — Mg, 81.9 79.0 +3 /100 tb

Table 5.13: Results of the fit to the invariant mass distribution.

the second corresponds to myg, —my,. The distribution is fitted with a superposition of
three components, two corresponding to equation[5.4/and a Breit-Wigner corresponding
to the Z line-shape. The Z peak will be exploited later.

Table[5.13|compares the results of the fit with the theoretical values. The corresponding
statistical errors are directly provided by the fit. The fit value for myg, — myg, are in
good agreement with the theoretical values for DSS1 and in reasonable agreement for
DSS2. It can be argued that the myg, —mg, edge is not clearly visible but the domain
between the myg, — mpg, edge and the beginning of the Z peak has a 5o significance
with respect to the background.

The assignment of the value of this end-points to sparticle mass splittings necessitates
a few assumptions. In DSS1, lepton pairs are quite frequent with respect to the overall
SUSY production. This suggests that the neutralino triggering this decay is somewhat
light. In addition, a decay through a 296 GeV Nj is rather unlikely, and in such a case
additional structure would be seen. In DSS2, with two end-points and a Z peak, the
interpretation is slightly more complicated. Indeed, in addition to the assumption that
the end-points arise from the decay of N3 and Ny, we have to assume that N3 decays
preferably to N, Otherwise, the largest end-point could correspond to myg, —my, and

the Z peak to the decay N3 — N, Z.

The main source of systematic uncertainty in the measurement of di-lepton end-points
arises from the knowledge of the lepton energy scale. Assuming that the error is
dominated by the electromagnetic energy scale, the systematic uncertainty is of the
order or the per-mil.

The measurement of the mass splitting between the lightest neutralinos provides a
direct constraint on gaugino mass parameters M; and M, as well as the higgsino mass
parameter p.

Di-jet end-point

The application of the aforementioned technique to measure mass splittings is not
applicable to decays involving quark pairs. The lack of information as to the flavour
of the reconstructed jets implies a very large combinatorial background and washes
out the end-point feature in the invariant mass distributions. However it is possible to
identify jets from b-quarks (see chapter [3)).

In DSS1, 1.7% of gluinos decay to the LSP with two b—quarks. Events are selected
by requiring at least four jets with Er > 50 GeV, no leptons and [t > 100 GeV. If
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Figure 5.14: Distribution of the invariant mass of b—jet pairs. On the left-side plot, the
DSS1 signal for 1 fb~! is superimposed on the SM background. On the right-side plot,
the background has been subtracted and the signal is shown for 10 fb™!.

Theoretical value | Fit value | Statistical error
GeV GeV GeV
| mg —mg, 383.0 380.6 | £5.2 /10 b’

Table 5.14: Result of the fit of the My, distribution.

two jets with a b—tagging weight larger than 10 are present in the event, the invariant
mass My, is computed. The background is mostly constituted of tf events as well as
combinations due to decays other than § — N;bb.

Figure[5.14|{shows the distribution of the M, invariant mass in DSS1 and SM events for
1 fb~!(left) and after subtraction of the background for 10 fb~!(right). The distribution
is fitted from the peak with a sum of two straight lines and a Gaussian smearing to
account for the smooth transition. The fit function reads

D
j—; = / dtGauss(t,o)max {A(t — D),0} + max{B + Cm, 0}

0
where D = myz —mg, and A, B and C are the parameters of the two straight lines.
The smearing parameter o is fixed to 15 GeV. Table|5.14] compares the result of the fit
with the theoretical value. The statistical uncertainty is quoted for 10 fb~!. The value
obtained by fitting the distribution is in good agreement with the theoretical value.
The main source of systematic uncertainty on the measurement of the end-point arise
from the knowledge of the hadronic energy scale. It is expected to be known to the
percent level once the detector will have been understood.

The measurement of this observable is important for the determination of Mj as it
gives an indication on the gluino mass scale.
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DSS1 o BR | o(3¢) || DSS2 o BR | o(3¢)
Direct | 11.7 pb 180 fb || Direct | 1390 fb 21.4 tb
Via gg | 10.4 pb 1.54% 160 fb || Via gg | 166 fb 1.54% 2.6 fb

Total | 340 b Total | 24 fb

Table 5.15: Cross-section of the tri-lepton signal in DSS.

Process Frcut 3¢ cut OSSF cut My cut  jet veto
DSS1 617,326 807 775 681 43
DSS2 27,362 135 127 87 4

i 4682.866 1,020 1350 1,106 59

QCD 14,023,358 0 0 0 0
W/Z +jets | 10,227,119 97 27 14 0
WW/WZ|ZZ 397,569 2,499 2,493 235 73
| Z,=25]|2,=15

Table 5.16: Number of events remaining after the successive application of each cut for
10 fb1.

Tri-lepton cross-section

The use of leptons in SUSY observables reduces backgrounds and increases the precision
of the measurement. In DSS, many charginos and neutralinos may be produced at the
LHC resulting in many final states with numerous isolated leptons. The tri-lepton final
state is very well known as it allows for a large background rejection by requiring that
two lepton be OSSF. Indeed, this signature arise in the case where a chargino (usually
é’l) and a neutralino (usually ]\72) are produced in two parallel SUSY cascades. If they
decay as N, — Nl and C; — Nlﬁu, three leptons will be detected two of which
(from the decay of N,) will be OSSF. If SM and SUSY backgrounds, PDFs, luminosity
and lepton identification performances are well understood and a large signal sample
is gathered, it may be possible to measure the cross-section of such a process.

Table shows the components of the tri-lepton signal in DSS1. C; N, pairs can be
produced directly or through the decay of a gluino pair.

Events are selected by requiring at least one OSSF pair and exactly three leptons. In
case of direct production, N; will be emitted essentially back-to-back, hence cancelling
the missing transverse energy. The cut Kt > 50 GeV is applied. An optional upper
cut of 20 GeV on the pr of the leading jet can be applied in order to select events
from direct C} N, production rather than § pair decays. In the former case, no jets are
produced from the SUSY cascade. Only jets resulting from initial state radiation or
from the underlying event will be found in the event. In order to reject lepton pairs
arising from decays of Z bosons, the invariant mass of all OSSF pairs in the event
are required to satisfy My, < 81.2 GeV and My, > 102.2 GeV. For the signal, My, is
expected to be lower than about 56 GeV due to the mass splitting between the N, and
Nl.
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Table presents the number of events remaining after the successive application of
each cut for an integrated luminosity of 10 fb~!. Significances for the last two cuts are
also quoted. After the three-leptons requirement, only ¢t and WW /W Z/ZZ remain
significant. The latter is partly removed by the My, cut while the former is removed
by the jet veto cut. A study performed on fully simulated data shows that additional
cuts on the isolation of lepton tracks enables a further rejection of the background [81].

A somewhat precise determination of the number of tri-lepton events due to the signal
relies on a good knowledge of the backgrounds and a complete understanding of detec-
tor effects, luminosity and PDFs. Once this is achieved, the efficiency of each cut must
be known. Theoretically, once the end-point has been observed, it should be clear that
the cut applied on the invariant mass M, should only remove background events. The
signal efficiency should be 1. The cut on the number of leptons and on the number
of OSSF pairs only relies on lepton identification efficiencies. In order to estimate the
exact factors to include in the analysis, lepton efficiencies including trigger and recon-
struction will have to be determined precisely as a function of pr and |n| using Z — ¢
events (see chapter {4)) ' Also, the pr and |n| spectrum of leptons stemming from Cy and
N, decays should be established. This can be achieved assuming that the majority of
leptons found in SUSY events decay from the latter and that a somewhat pure SUSY
sample will have been assembled using cuts detailed in the inclusive study detailed
above. Using a similar approach, it should be possible to establish the K1 spectrum
of SUSY tri-lepton events and thus estimate the efficiency ep, of the associated cut.
The number of combinatorial background events can be estimated by counting events
containing three leptons but no OSSF pairs N5,

Once SM backgrounds have been removed and all efficiency factors estimated, the
SUSY tri-lepton cross section should read

4 (N:50ZSSF _ N§SSF)

Y — 3() = '
a(SUS 30 (€ + €} (€c + €p)acce [ Lot

The systematic uncertainty on o(SUSY3/) is bounded from below by the knowledge of
the luminosity £ which will be measured with an accuracy of 5% [133]. In order to take
into account other contributions, systematic errors of 5, 10 and 20% are considered.
The statistical uncertainty scale with the square root of the number of selected events.

Gluino pairs cross-section

The gluino pair channel constitutes the largest part of the SUSY signal in both DSS
points (77% in DSS1 and 22% in DSS2). A number of analysis can be established in
order to select gg events and reject SM and SUSY backgrounds. Each of them are very
model-dependent as they require a knowledge of the gluino decays branching fraction.
One could for instance take advantage of the very short cascade §§ — Ny N1qgqq.
This O-lepton mode can help remove SUSY background from chargino and neutralino
channels. This channel uses the assumption of a single gluino branching ratio, i.e. that
of the decay § — Niqq.
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DSS1 [ DSS2
| Rz | <0.004 ~0 ] 0.196

Table 5.17: Theoretical values for R.

Again, the systematic uncertainty is bounded from below by the knowledge of the
luminosity which is expected to be measured to within 5% [133]. In order to take into
account other contributions, systematic errors of 5, 10 and 20% are considered. The
statistical uncertainty scale with the square root of the number of selected events.

Ratio of on-shell to off-shell 7 bosons

If the mass difference between two neutralinos or two charginos is larger than my, the
Z boson in figure [5.11] will be on-shell. Consequently, the distribution of the invariant
mass of its decay products will exhibit a very sharp peak around mj . Otherwise, if
the mass difference between the two sparticles is smaller than my, the distribution of
M,p will exhibit a triangular shape with a sharp end-point below m . Both feature can
be seen in figure where, on the left-side (DSS1), only the end-point appears while
on the right (DSS2) a non-negligible fraction of the SUSY production decays through
an on-shell Z boson and a large peak is observed at My, = my. This effect can provide
valuable information as to the mass of the neutralinos and charginos as well as their
couplings to the Z boson. Such a study suffers from a very large SM background due
to the production of Z boson. These SM channels will have to be measured to a very
high accuracy.

The measurement of the Z cross-section in SUSY events o(SUSY — Z) requires a
good knowledge of the luminosity, lepton efficiencies and background rates. Some of
these source of systematic uncertainties can be cancelled if instead of simply counting
the number of events in the Z peak, the ratio

N (M, dpoint
Ry — Y M > endpoint) (5.5)
N (M, < endpoint)

is measured. This quantity measures the fraction of on-shell to off-shell Z bosons in
SUSY events. Table presents the values of Ry for DSS1 and DSS2 as obtained
from the cross-sections and branching ratios in tables[5.5]and [5.6] Potential systematic
uncertainties on Rz arise if the pt spectra of leptons from the Z peak or from the
triangular shape are different, and if the identification efficiencies for this two spectra
are different. As shown in chapter [4] electron identification efficiencies are reasonably
flat for pr > 25 GeV. Leptons from the Z peak will have pr’s around 45 GeV. Those
in the triangular shape have their pr bounded from below from the analysis cut pr >
20 GeV. Another source of systematic error arises from the SM Z cross-section. SM
processes containing a Z boson are assumed to be removed in the course of the analysis
with cuts on e.g. Fr. An overall 1% systematic error is included to account for lepton
identification uncertainties.
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5.1.8 Parameter determination

Once supersymmetry will have been discovered, models will have to be discriminated
and the parameters of the underlying theory will have to be determined in a consistent
manner. Also, it will be necessary to combine new observables with external constraints
such as the measurement of the relic density, the magnetic moment of the muon or the
b — sv decay.

The observables described in section [5.1.7] can be used to constrain the parameters of
the model. This analysis can be realized using the SFitter program.

The SFitter program

SFitter [134] is a global code for the study of supersymmetric models. It is a European
collaboration including collider experimentalists and SUSY phenomenologists. It is
designed to solve the task of mapping up to 20-dimensional highly complex parameter
spaces onto a large set of observables of different quality, which can be highly correlated.
SFitter uses combinations of elaborate minimization techniques to scan the parameter
space of a given SUSY model. At each point, observables are predicted with a set of
well-known tools. The best parameter set is found and errors on the determination of
the model parameters are estimated in a consistent manner.

Coded in C++, it is very flexible and modular. It supports the SUSY Les Houches
Accord format (SLHA [135], 136]) and can be easily and quickly adapted to any model
and any experimental constraint. SFitter is useful to estimate the determination
potential of a given model at a given experiment but it will also be used once physics
analysis will have been realized to work a “bottom-up” approach to determine the
parameters of the theory.

As input, SFitter takes experimental observables with errors and a model. Observ-
ables can be in the form of a fixed measured value with an error or a limit with
a confidence level. Supported observables include measurements of particle masses,
cross-sections, branching ratios, couplings or external constraints (relic density, b — s7,
g, —2, etc...). In fact, any SLHA entry can serve as input. Also, any analytical function
constructed on the latter can be used as observable. This allows to input e.g. cascade
cross-sections, the ratio of the rates of two channels, etc...

SFitter can fit six SUSY models. The MSSM (see chapter [2)) is used in its phe-
nomenological form, i.e. when the number of parameters has been reduced to about 20
in order to minimize undesired effects such as flavour-changing currents and additional
CP-violation. The parameters of the MSSM can be defined at the weak scale or at
the GUT scale. mSUGRA is included. SUSY models with gauge mediated breaking
(GMSB) or anomaly mediated breaking (AMSB) are also available. In the context of
this thesis, I have implemented DSS in SFitter and added it to the list of available
input models.

SFitter can predict a large variety of observables thanks to a number of tools. For
the prediction of mass spectra, three generators can be used, SoftSUSY [137], SuSpect
[109] and ISASUSY [138]. Next-to-leading-order cross sections for LHC are calculated
by the program Prospino2 [118| 119 120] and branching ratios can be included via
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links to Msmlib [139] and SUSY-HIT (HDECAY and SDECAY) [121) 140]. Also the dark
matter content of the relic density is readily available by an interface to micrOMEGAs
[141]. The communication of parameters and results between the different programs is
performed by the SLHA data format using the implementation of SLHAio [142].

Comparing the experimental data d; and the theoretical prediction d;, where the index
1 runs over the different data, a likelihood value is assigned to every point in parameter
space. Hereby we follow the RFit scheme of [143] and assume the theoretical errors
ot as box-shaped. This scheme interprets theoretical errors as a lack of knowledge
on a parameter. As long as the deviation between theory and experiment is within
the theoretical error, this must not have any influence on the total likelihood. In
combination with the experimental error o " the total log-likelihood log L = —X; is
given by

0 for |d; — d;| < of®
2 = . d. th\ 2 g
X (‘d—g#;”) for |d; — d;| > of"

The experimental error is a combination of three different sources. All three are con-
sidered as Gaussian and are summed quadratically. The statistical error is assumed to
be uncorrelated between different measurements. The first systematic error originates
from the lepton energy scale and the second from the hadronic energy scale. They are
treated separately. Each is taken as 99% correlated between different observables.

In order to determine the underlying parameters, a scan of the parameter space is per-
formed. Three method can be combined. The first scan on a fixed grid. Secondly, the
Minuit fitter [144] is included as a minimum finder. It makes use of a steepest-descent
hill-climbing algorithm. The third option uses the technique of Weighted Markov
Chains (WMC). Markov chains are defined as a sequence of points which are the result
of a stochastic process. In SFitter the Metropolis-Hastings [145, [146] algorithm is used
for choosing the next point, which works in the following way. In the first part of
the algorithm a new point is suggested, based on the current one using a probability
distribution function. The latter can be freely chosen as long as it satisfies the property
that the probability from being at point x and proposing z’ is the same as being at
2’ and proposing z. It can for example be chosen flat, then the Markov-Chain algo-
rithm has no dependence between points at all and reduces to a simple Monte-Carlo
fitting. A good performance was found using a Breit-Wigner or Cauchy-shaped func-
tion. This type of function has more pronounced tails than a Gaussian distribution
and provides a better balance to avoid random-walk behaviour. The second part of
Metropolis-Hastings consists of the acceptance stage. It is decided whether the sug-
gested point is accepted or rejected based on a potential, which in our case is 2. So
if the log-likelihood of the suggested point is larger than that of the previous one, it
is always accepted, else, it is accepted if the ratio of the two log-likelihoods is larger
than a random number r chosen uniformly between 0 and 1. In all other cases the old
point is added to the Markov chain another time. The resulting Markov chain has the
property that the density of points is proportional to the potential, i.e. to xy =2 which
can then be used to obtain likelihood maps by binning the points.
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Uncertainties (%)
Observables Stat. Systematic Th.
Value Source
mp 129 GeV | 0.1 0.1 energy scale 4
my, —my, | 55.2 GeV |1 0.1 energy scale 1
pss1 | M T My, 382.8 GeV | 1.5 1 energy scale 1
o(30) 340 fb 2 >5 luminosity 12
Ry <0.004 |0.01 |1 lepton id. 1
o(g9) 62.8 pb | 0.1 > 5 luminosity 30
mp 129 GeV | 0.1 0.1 energy scale 4
myg, —mg, | 61.3GeV | 3.3 |0.1 energy scale 1
DSSy | MR M, 76.4 GeV | 3.7 | 0.1 energy S(.:ale 1
o(3¢) 24 fb 14 >5 luminosity 12
R 0.195 0.7 1 lepton id. 1
o(g9) 954 tb |3 > 5 luminosity | 30

Table 5.18: Summary of available collider observables in DSS1 and DSS2. Statistical
errors are quoted for an integrated luminosity of 100 fb~!.

Results

The collider observables investigated in section [5.1.7 can be used to determine the
parameters of the model using a global fit. Table summarizes the observables
along with the expected uncertainties for DSS1 and DSS2. The chosen integrated
luminosity for this study is 100 fb~'. It corresponds to one year of data-takingl] of
the LHC at the design luminosity of 103 cm~2s~!. For the observables for which a
detailed study was performed (myg, — myg,, myg, —myg, and mz — my, ), the outcome
of the result of the analysis is used as central value. For the others, a potential study
is assumed to provide the correct central value and the theoretical value is used.

In both points, the lightest Higgs boson can be discovered and its mass measured in the
h — 7~ channel. The statistical uncertainty for 100 fb—! is estimated to 0.1% by [148§].
The systematic uncertainty is dominated by the electromagnetic energy scale (0.1%).
The theoretical uncertainty is due to the knowledge of higher-order SUSY corrections
to my, and is estimated to be 4%. The mass splittings myg, —mg, and mg, —my, (for
DSS2 only) are measured using end-points in the invariant mass distribution of OSSF
lepton pairs. The statistical errors are extracted from the fit to the reference function.
Systematic uncertainties are dominated by the lepton energy scale (0.1%). Theoretical
errors are due to non-calculated higher-order contributions as well as discrepancies
between different codes. They are estimated to be of the order of a percent. The
tri-lepton signal can be detected and its cross-section measured. Systematic errors
are bounded from below by the luminosity (5%) and the theoretical uncertainty is
estimated to be of the order of 12%. The ratio of on-shell to off-shell Z bosons produced
in SUSY cascades can be measured using again the invariant mass distribution of
OSSF lepton pairs. Systematic uncertainties due to lepton identification efficiencies

!That is 200 days of running and 3 months of winter shutdown [147].
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Nominal | Starting | WMC MIGRAD
values point | minimum | minimum
My, | 132.4 GeV 100 225 132.4
My | 132.4 GeV 100 176 132.2
M; | 132.4 GeV 100 150 132.3
DSS1 | tan 8 30 50 69 30
1 290 GeV 100 381 289
1
ﬂjj 18 fixed
My | 296.5 GeV 100 282 296.4
My | 296.5 GeV 100 279 296.5
M; | 296.5 GeV 100 293 296.5
DSS2 | tan 8 30 50 64 30
1L 200 GeV 100 186 200
1
ﬂjj 18 fixed

Table 5.19: Results of the WMC and Minuit minimization for DSS1 and DSS2.

and lepton energy scale are cancelled in the ratio. The theoretical uncertainty is due
to the generation of branching ratios by SDECAY and is taken to be of the order of 1%.
The systematic error on the measurement of the gluino pair cross-section is bounded
from below by the knowledge of the luminosity (5%). Theoretical uncertainties from
higher order contributions are very large due to the strongly-interacting nature of
gluinos. They are assumed to be of the order of 30%.

The determination of the parameters proceeds in two steps. In a first stage, the likeli-
hood is maximized to find the best point in parameter space. Then the minimization
is started from the correct point in order to estimate the error on the parameters. All
SFitter jobs were run on the WLCG grid.

For the first stage, the Weighted Markov Chain (WMC) method is used to find the
approximate region of the minimum. The starting point is arbitrary and the search is
repeated several times to ensure the convergence of the procedure. Then, the minimum
found by the WMC algorithm serves as starting point for a higher resolution local search
with the Minuit MIGRAD minimization technique.

No information on the squark and slepton sector is available except for the absence
thereof. Consequently, mg and A; remain undetermined. They are fixed to their
nominal value throughout the study. The three gaugino mass parameters are fitted
independently.

Table presents the results of the minimization procedure. For both points, the
starting point is chosen randomly. The minimum found by the WMC algorithm is
fairly distant from the nominal point but proves to stay in the correct domain. From
there, Minuit recovers correctly the nominal parameter sets.

Three scenarios are layed out in order to estimate the precision on the determination
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STAT SYST TH
A %N | A% | A%

M, 19| 14]02]0.2 413.0
M, 09| 1.4,0.1]0.1 2115
DSS1 | M; 03| 020.1]0.1 4115

1 05 02102]01] 10|34
tang | 12.7 | 42.3 | 1.3 | 4.4 | undet.
My 213 72(0903]6.1]2.1
M, 98| 33/04]0.1]0.8]0.3
DSS2 | M; 23| 0.8|1.6]0.5| undet.
14 105 531041024422
tanf3 | 17.6 | 58.7 | 1.4 | 4.7 | undet.

Table 5.20: Errors on the determination of the parameters for three fitting strategies.

of the DSS parameters. This scenarios aim at evaluating the effect from each error set.
The starting point of the minimization is the best point found by MIGRAD, in the last
column of table [5.19) From there, the Minuit MINOS technique is used to estimate the
errors. MINOS performs a consistent estimation of the uncertainties taking into account
the various correlation between measurements and parameters. Table displays the
resulting uncertainties for the three scenarios :
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e Scenario STAT : Statistical errors. In order to evaluate the impact of the sta-

tistical uncertainties on the determination of the DSS parameters, no theoretical
errors are included.

Firstly, with a ~ 50% error, the determination of tan( is imprecise in both
points. This is expected since with all heavy Higgs bosons at mg, the only
leverage available on this parameter is the Higgs boson mass. p is determined to
less than 1% in DSS1 and 5% in DSS2. In the former, leverage is provided by large
rates of neutralino and chargino productions. In the latter, higgsinos are more
equally spread over all neutralinos. Hence, m g, —my, provides sufficient leverage.
Thanks to very small statistical uncertainties on myg, —mg, and mg —myg, in
DSS1, the gaugino mass parameters are determined within 2%. This is not the
case in DSS2 and they are determined to ~ 10%. It was mentioned in section[5.1.7]
that the visibility of the myg, — mg, edge was arguable. In order to consolidate
the results, the DSS2 fit was performed without this observable and no obvious
difference was noted.

Scenario SYST : Systematic errors. This scenario assumes that a very large
statistic has been gathered at the LHC (> 300 fb~!) and that statistical uncer-
tainties are negligible. Also by that time, it is assumed that theoretical progress
will have been achieved in the calculation of higher-orders contributions to my,
and SUSY cross-sections rendering theoretical errors negligible. This is indeed
an idealized scenario but it is useful to measure the impact of systematic errors
on the determination of the parameters.



CHAPTER 5. SEARCH FOR SUPERSYMMETRY

All parameters are determined within 1% except for tan $ which still suffers from
an almost invisible Higgs sector. Systematic errors on cross-section measurements
of 5, 10 and 20% are considered. In DSSI1, the determination is not affected as
all parameters are already well constrained by mass measurements. In DSS2,
a 20% systematic error on o(gg) doubles the uncertainty on the determination
of M3 with respect to the case where it is dominated by the knowledge of the
luminosity (5% systematic error). A 20% systematic error on o(3¢) has no effect
on the determination of the parameters as mass constraints myg, — myg, and
mpy, — my, determine the same parameters.

e Scenario TH : Theoretical errors. In this scenario, statistic is assumed to be
infinite but theoretical errors are included. This more realistic scenario gives a
flavour of what is achievable after at least five years of operation of the LHC.

With a 4% theoretical uncertainty on my,, tan § is largely undetermined in both
points. The interplay of neutralinos mass splittings, Rz and the tri-lepton cross-
section provides a somewhat tight constraint on the neutralino and chargino
sector, leading to a determination of My, M, and p within 4%. In DSS1, Mj
is mostly determined by the mass splitting mgz — myg, and is, hence, very well
determined. However, in DSS2, the only available handle on M3 comes from
the gluino pair cross-section which suffers from a 30% theoretical uncertainty,
rendering M3 undetermined.

5.1.9 Summary

Decoupled scalars supersymmetry is an attractive extension to the SM. While dis-
carding SUSY as a means of stabilizing the weak scale, it still provides a number of
desirable features such as a candidate for dark matter and gauge couplings unification.
The absence of squarks and sfermions in the low energy theory suppresses features of
the general MSSM such as proton decay mediating processes, flavour-changing inter-
actions and additional CP-violation. The stabilization of the weak scale together with
the cosmological constant are expected to be achieved through a fine-tuning of some
sort.

A phenomenological model was constructed with a limited number of parameters. Two
points were chosen in phase-space in order to analyse the potential of DSS at the LHC.
They were designed to provide a reasonable fine-tuning of the Higgs boson mass and
satisfy current experimental constraints such as measurements of the relic density or
lower mass bounds set by previous collider experiments. With a very large SUSY cross-
section, the first point was shown to be discoverable within a year of data-taking at
the LHC. The second point necessitates a finer analysis but may be discovered within
a few years. A number of observables were established for both points. The statistical
and systematic errors on their measurement and the theoretical uncertainties on their
prediction was estimated.

It was shown that a global fit of the DSS parameters to the experimental observables
using elaborate minimization techniques together with well-known prediction tools is
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able to determine the correct central value of all parameters. A study of the errors
on their determination showed that the systematic uncertainties on the observables
are not dominant on the determination of the parameters. However, the estimation
of such errors prior to a full-fledged analysis on real data should be taken with care.
Large theoretical uncertainties on the SUSY production cross-sections were shown to
be non-dominant as long as another leverage is provided on the parameters in the form
of mass constraints. Cross-sections alone cannot be used for the determination. The
partial visibility of the Higgs sector in DSS does not allow an accurate estimation of
tan 3. Together with mg and A;, this parameters has few prospects at the LHC. The
ILC is not expected to provide further information on the scalar sector, considering
that the mass of the lightest Higgs boson was already well measured at the LHC and
that 10 TeV scalars will not be produced at the ILC. As expected, the non-coloured
sector of DSS (M;, M, and ) can be fairly well determined at the LHC with accuracies
of the order of a few percent when all errors have been included.
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M, [ 1031 mz, | 1944 [ ma, | 5081 | mg | 526.6

4,

My | 1929 | me, | 135.8 | my, | 505.9 | mg | 526.6
Mz | 567.9 | ma, | 194.4 | mg, | 508.1 | mg | 480.8

| 3537 | mpy, | 135.8 | mg, | 505.9 [ A; | -249.4
ma | 394.9 | ms | 193.6 | m;, | 408.3 | A; | -490.9
tan3 | 10.0 | ms, | 1334 | my | 502.9 | A; | -763.4

Table 5.21: Low-energy MSSM parameters for the SPS1a point. Masses and couplings
are GeV.

5.2 Determination of the MSSM at future linear col-
liders

If supersymmetry is discovered at the LHC, the parameters of the underlying theory
will have to be determined. In this analysis, the study-case of the MSSM, and its
universal branch mSUGRA, are used to compare the expected precision on the deter-
mination of the parameters between the LHC and future linear colliders. This study
was realized in the case of the SPSla parameter set. The latter represent a fairly fa-
vorable case for supersymmetry at the LHC and was already used in many prospective
studies [149]. In addition to the LHC, the precision on the determination of the super-
symmetric parameters was estimated at two future linear colliders: The International
Linear Collider (ILC) is a project for an eTe™ collider with a center-of-mass energy of
500 GeV, extensible to 1 TeV. The Compact Llnear Collider (CLIC) is a feasibility
study for an ete™ collider with 3 TeV in the center-of-mass. In order to estimate the
potential for the measurement of the gluino mass at CLIC, the cross-section for the
production of gluinos in ete™ collisions was calculated.

5.2.1 The SPS1a parameter point

The Snowmass Points and Slopes (SPS) [150] are sets of benchmark points and pa-
rameter lines in the MSSM parameter space corresponding to different scenarios in the
search for supersymmetry at present and future experiments. The SPSla reference
point is a “typical” parameter point of the minimal supergravity (mSUGRA) scenario.
It gives rise to a particle spectrum where many states are accessible both at the LHC
and the ILC, corresponding to a rather favourable scenario for phenomenology. The
SPSla benchmark scenario has been studied with experimental simulations at both
colliders.

The mSUGRA parameters for the SPS1a point are
mo = 100 GeV, myp =250 GeV, Ay = —100 GeV, tanf3 =10, signy = +.

All but tan 3 are defined at the GUT scale. The corresponding low-energy MSSM
parameters are listed in table [5.21 The SPS1a scenario yields the sparticle spectrum
reported in table [5.22, The dominant production channel for the SPSla point at the
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Table 5.22: Mass spectrum in GeV for the SPS1a point obtained with SuSpect.
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LHC is the squark-gluino channel with 28 pb (Prospino2) followed by squark pairs with
21 pb and gluino pairs with 8 pb. At the LHC squarks and gluinos will be produced
abundantly. The gluino is the heaviest particle and decays to a squark and a quark.
The squarks decay to neutralinos and charginos, which in turn decay to sleptons or
lighter neutralinos and charginos. The sleptons then decay into the LSP, the N. Since
the LSP will escape detection, it is not a straightforward task to reconstruct SUSY
events. A possible approach is to use kinematic edges. Particularly interesting is the
decay Ny — gl — (t0~N;. The two leptons in the final state provide a natural trigger,
and the energy resolution is high. While right-handed squarks decay directly to the
LSP, due to the bino-like nature of the N; in SPSla, left-handed squarks decay to Ny
with a branching ratio of one third. The decay ¢, — qNy — qﬁili — ql*(F Ny, where
¢i, can be 1uy,, d;, or a b is particularly useful to measure kinematic edges or threshold,
leading to measurements of squark and neutralino masses [151], [149].

5.2.2 Future linear colliders

As a high-luminosity hadronic collider, the LHC is very useful to probe rare signals
such as the production of Higgs bosons or new particles from physics beyond the SM. It
is a discovery-oriented collider. The very busy environment in which hard scatterings
take place due to the underlying event and pile-up as well as the large uncertainties
introduced by parton density functions render precision tests challenging.

In ete™ colliders, the four-momenta of the initial state of the hard scattering is known
with great accuracy and no underlying event occurs. If the Higgs boson and super-
symmetry are discovered at the LHC, such machines will be necessary to perform a
full survey of the mass spectrum, couplings, spins and potential unexpected features
of the underlying models. It may even be impossible to identify new phenomena that
may occur at the LHC as supersymmetry before the properties of the new particles are
measured with an ete™ collider.

The International Linear Collider (ILC) [152] is a project for a 30 km long e*e™ linear
accelerator with a center-of-mass energy of 500 GeV and a peak luminosity of 2 x 1034
em 2571, Electrons will be accelerated by 1.3 GHz superconducting radio-frequency
cavities. There is a world-wide consensus that the ILC will be the next large experi-
mental facility for high-energy physics. Designs for this machine have been developed
in a world-wide effort, and it has been demonstrated that a ILC can be built and
reliably operated. The project is now in the preparatory phase. No hosting site has
emerged yet, but sample sites were studied in the USA (Fermilab), Europe (CERN,
Switzerland) and Asia (Japan). If approved (around 2012), the ILC is expected to be
operational in 2020-2025. A possible extension of the center-of-mass energy to 1 TeV
is included in the design of the machine. This will be denoted ILCiggo hereafter.

The 1000 fb~! that may be accumulated during the first running phase would help
measure the physical parameters of the new particles discovered at the LHC. The
couplings and spin of the Higgs boson may be measured along with a thorough survey
of new SUSY particles or other new particles such as heavy gauge bosons.

The Compact LInear Collider (CLIC) is a feasibility study realized by CERN [153], 154].
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Figure 5.15: Feynman diagrams contributing to the associated production of gluino
with quarks and squarks in e*e™ collisions.

It would be built after the LHC and differs from the ILC in its use of more novel
technology to achieve a higher center-of-mass energy. It would use a 48 km long, 12
GHz acceleration system to bring electrons and positrons in collision with an energy in
the center-of-mass of 3 TeV at a luminosity of 6 x 103* cm~2s~!. Currently, research is
in progress to develop cavities that can sustain the required alternating electric field.
The aim is to demonstrate the feasibility of the technology in the year 2010.

The novel feature of the CLIC proposal is its use of two-beam acceleration. The design
involves coupled RF cavities to transfer energy from a high-current, low-energy drive
beam to a low-current, high-energy beam to be used in collisions. It is hoped that this
design will allow acceleration to significantly higher energies (3 to 5 TeV) in a shorter
distance than the more conventional acceleration cavities of the ILC design.

The increased cross-section for the production of the Higgs boson at CLIC would allow
for a study of its rare decays such as H — ¢¢. Also CLIC could produce heavy Higgs
bosons that arise in the MSSM with masses up to 1100 GeV.

5.2.3 Gluino production in ¢*¢~ collisions

Gluinos cannot be produced in pairs at leading-order in ete™ collisions as they only
couple to strongly interacting particles. The only way to produce gluino pairs is via
quark-squark triangular loops and results in cross-sections of the order of 1072 fb [I55].
Another way to produce gluinos in ete™ collisions is in association with quarks and
squarks. This can proceed via the two graph shown in figure [5.15 The three-body
final state ¢Gg is produced through an intermediate virtual quark or squark.

In order to estimate the precision on a potential measurement of the gluino mass at
a linear collider, it is necessary to calculate its production cross-section. The total
amplitude M of the process is

Ve Y

X=ABV=y,2
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where My, corresponds to the amplitude of the graph X in figure with the exchange
of the V' gauge boson. The following momenta are defined

e (p1) e (p2) — q(ps) G(pa) T(ps)-
The ete vy and eTe™ Z vertices have the form, respectively

_ g _ e e
—i€Ue(p1)Vutie (P2) and — Eve(pl)»yﬂ (Cv — CA’YS) Ue(p2)

where «, are the Dirac matrices, g is the SU(2) coupling, {s,c}w = {sin, cos}fw,

& = 28, — %, ¢4 = —3% and u and v are Dirac spinors for incoming fermions and

outgoing anti-fermion, respectively. The photon and Z propagators read

—ig"” ond 9w = (01 4 p2)u(pr+ pa)y /iy

(p1 + p2)? (p1 + p2)? —m%

where g, is the metric. The Ggy and GgZ vertices take the form, respectively

. ig v
—ieQz(ps +ps —p3),  and - (Qasty — T7) (pa +ps — ps)

where ); and Tq?’ are the electric charge and third component of the weak isospin,
respectively. The squark and quark propagators are, respectively

) . + +
! and ) byt ity

(pa +ps)? — m% (p3 4 pa)? —m2’

Finally, the ¢,qg vertex is
—iﬁgsﬂg(m))\a (PrMpr — PLM, 1) vg(ps)

where P, p are left and right helicity projectors, M, ,r are elements of the mass/helicity

eigenstates mixing matrix and A, are the Gell-Mann matrices. Then, the amplitudes
MY read

Y /9.20). Ue(P1)(fat Ps— ps)ue(p2)uG(pa)a(PrMun — PLMnr)va(ps)
M, = V2e Qq9s ; (p1 + p2)? [(p4 +p5)? — mg'}
7 o~ s > Ve(p1) (fat 5 — P3)(cLPL + CRPR)uc(p2)

4 V2832, [(pr + p2)? = m] [(pa + p5)? — mg]

X (Qsty — T3)ud(pa) \a(PrMyr — PLM,1)vg(ps)

Ve LT u Mo (PRM,r — PLM,, + +m Vg
My = VB0 Y (p1)7 ue(p2) g (pa) Na(Pr : r— D 2L)(ﬁz b+ my)7,04(ps)
- (p1 + p2) [(pB +pa)? — mq]
P e2gg Ve(p1)7* (e Pr + R Pr)Ue(p2) UG (Pa) Aa (PR Mynr — PLM 1)

2v2s%, 3, [(p1 + p2)* = mZ] [(ps + pa)* — mg]
X (3t a4 mg)yu(cf P+ ¢t Pr)vg(ps)
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Figure 5.16: Cross-section for the production of gluino in association with a quark and
a squark in eTe™ collisions as a function of the center-of-mass energy (left) and of the
gluino mass (right).

The amplitudes were checked against [I56]. The total spin-averaged and color-summed
squared amplitude reads

1 2
\/\/l|2:Z > |My+ MY+ MY+ M

spins, colors

and the differential cross-section obtained by dividing by the flux and multiplying by
the phase-space

1 1 dBpsd®py d?
do — — x P3a pg G ps

25 (271')5 2E3 2E4 2E5

54 (p1 +p2 — 3 — pa— ps) x |MJ* (5.6)

The integration is achieved numerically using the RAMBO Monte Carlo final state gen-
erator [157].

Figure shows the cross-section for the production of gluino in association with a
quark and a squark in ete™ collisions as a function of the center-of-mass energy and of

the gluino mass. The leading-order cross-section for the production of gluinos at CLIC
(v/s = 3 TeV) in the case of the SPSla scenario is

o"O(CLIC — §) ~ 2.7 fb.

At the LHC, the gluino mass can be measured thanks to the § — ¢gr, — qqNs decay
where the momentum of the N, can be reconstructed [I58]. In such a case, the invariant
mass of the gg/N, system will show a peak at mg. Systematic uncertainties are mainly
due to the knowledge of the hadronic energy scale (1%) and of the leptonic energy scale
(0.1%) in the reconstruction of the Ny. A statistical error of the order of 0.5% was
obtained using 1000 gluino events, after analysis cuts [149] were applied to suppress
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SPS1a | LHC | ILC | CLIC

SPS1a | LHC | ILC | CLIC € ;338 458 00-025 00-025

h | 1108 0.25 1 0.05] 0.05 €2 ' ' '
4 | 3089 T | 1429 48 | 02| 02
i O i, | 2008 5 | 05| 05
g+ | aora O 7 | 1332] 65 | 03| 03
7 1 6063 8 65 2 gggg L1 1;
C, | 180.2 0.55 | 0.55 51 £36.0 53
~ 9 . .
Cp | 382.2 3 by 516.3 | 14 2.6
N, | 972 4.8 | 0.05] 0.05 ; ciea | 14 -
~ P . .
Ny | 1808 | 47 | 12 | 12 iz | sa61]| 19 s
N | 363.1 41 4 fy, Gy | 562.4 | 17.4 5.5
Ny | 3819] 51 | 4 | 4 dy, 5 | 5448 | 19 5.5
GeV dy, 5, | 567.9 | 174 5.5

GeV

Table 5.23: Uncertainties on the measurement of the mass of Higgs bosons and spar-
ticles at the LHC, ILC [I49] and CLIC. Systematic and statistical error are included
for 300 fb~1L.

backgrounds. In order to improve this uncertainty, a potential similar analysis at CLIC
should be performed on at least 1000 events. Assuming an efficiency of the analysis of
10%, 10* gluino events should be produced corresponding to an integrated luminosity of
about 4000 fb~!. With a luminosity of 6 x 10** cm~2s~!, approximately 1000 fb~! are
expected every year. Hence, after four years of operation, CLIC will improve the
statistical precision on the measurement of the gluino mass with respect to the LHC.

5.2.4 The MSSM at linear colliders

Mass measurements

In order to evaluate the precision on the determination of the parameters of the MSSM
at future linear colliders, it is necessary to estimate the uncertainties on the measure-
ment of sparticle masses.

Several studies [149] investigated the measurement of the mass of the particles of the
MSSM at the LHC and ILC. Table lists the experimental uncertainties on these
measurements, including systematic errors and 300 (500) fb~! systematic uncertainties
for the LHC (ILC). Essentially, the errors for CLIC are the same as for the ILC but
extended to a broader spectrum (squarks and gluinos).

In the Higgs sector, only the mass of the lightest Higgs boson is measured at the LHC.
The energy available at the ILC will not be sufficient to produce heavy Higgs bosons
with mass of the order of 400 GeV. The lightest Higgs boson can be produced and
measured in the Higgsstrahlung channel. At the 1LC;gpp and CLIC, all Higgs bosons
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may be produced via Higgsstrahlung, fusion processes or in pairs.

The gluino is reconstructed at the LHC using the § — bb — Nabb decay. If the four-
momentum of the Ny can be reconstructed, the distribution of the invariant mass of
the Nobb shows a peak at mg. As mentioned in section gluinos are not produced
at the ILC but the ILCg9g and CLIC may provide a measurement of the mass, the
error on which is estimated to be 6.5 GeV.

It is well known that chargino masses are not measurable at the LHC. At the ILC,
the heaviest chargino is too heavy to be produced in pairs. o may be produced and
would most likely decay into a tau-lepton. Its mass can be measured from the energy
spectra of hadronic 7 decays. At ILCyg99 and CLIC, both charginos may be produced
and their mass measured.

Sleptons are produced in pairs and in the ¢, cascade at the LHC. Two OSSF lepton
pairs is the key signature to such events. However, due to the LSP present in the
cascade, a direct measurement of the mass is not possible. It was shown that I, masses
(¢ = e, p) can be derived from a study of the so-called stransverse mass variable My
[149, 159]. I, masses can be measured using the invariant mass distribution of OSSF
lepton pairs arising from N, decays. The 7; mass can be measured similarly but relies
on an efficient tagging of 7-leptons. At linear colliders, all sleptons may be produced
in pairs and their mass reconstructed using the energy spectra of leptons arising in the
cascades or thanks to a threshold scan of the cross-section as a function of \/s.

¢1 are produced in gluino decays and, for the first two generations, decay almost ex-
clusively to the LSP along with a quark. Given my, , the stransverse mass method
allows to measure the mass of ¢is for the first two generations. Sbottom masses can
be measured in their decay to N»b, assuming again that the four-momentum of the N,
can be reconstructed. In the case of the SPSla point, no squark can be produced at
a y/s = 500 GeV linear collider. Top squarks exhibit non-trivial decay patterns. The
reconstruction of their mass necessitates high b and 7-tagging efficiencies in addition
to assumptions on chargino masses. They are not included for the LHC. At ILCygg
and CLIC, it was shown [149] that the ; mass can be obtained via the energy spectra
of b-jets arising in its decay to charginos. A 1% error on the mass was established.
This error was scaled to the mass of other squarks for CLIC.

Table summarizes the available mass measurement at the LHC, ILC and CLIC.

MSUGRA determination

In order to have a global view on the sensitivity of the parameters of the model
to the different mass measurement, the mSUGRA parameter set is fitted using the
SFitter program described in section [5.1.8] The starting point of all fits is the SPSla
nominal parameter set. The MINOS Minuit package is used to estimate the error on the
determination of the parameters.
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mo 100 3.9 ] 0.16 0.2 0.2
mio 250 0.7 1 0.06 0.05| 0.05
tan 3 10 | 10.4 | 3.11 1.3 1.3

Ao —100 | 31.6 | 16.6 4.8 4.4

GeV %

Table 5.24: Result of the fit of the mSUGRA parameter set on the mass measurement
available at the LHC, ILC and CLIC. For the ILC, two energy configuration are consid-
ered. ILC corresponds to the nominal center-of-mass energy of 500 GeV while ILCgg
corresponds to a potential center-of-mass energy of 1 TeV.

Table shows the result of the fits performed on the observables available at the
LHC, ILC and CLIC. In the case of the ILC, energies in the center-of-mass of 500 GeV
(ILC) and 1 TeV (ILCjgg) are considered.

The scalar mass parameter mg can be determined at the LHC with a precision better
than 5% despite large errors on the measurement of squark masses. The squark and
slepton sectors are almost completely surveyed, providing good constraints on mg. At
the ILC, no squark can be produced. Yet, mg is determined with a precision better
than 0.2% due to the very good accuracy on the measurement on slepton masses. This
is confirmed by the ILC;g9g and CLIC, for which no improvement is seen on mgy. Hence,
it is already fully determined by the slepton sector.

The gaugino mass parameter m;/, can be determined at the LHC with a precision
better than 1% thanks to the interplay of the measurement of the Nl, N, and N,. The
addition of the measurement of the ]\73 and C; mass at the ILC and Cj at the ILC1000
pulls the precision on my 2 below 0.1%. No further information on gauginos is provided
by CLIC and the precision on m;, is not improved.

At the LHC, heavy Higgs boson masses cannot be measured. This results in a de-
termination of tan 3 with a precision larger than 10%. The ILC does not provide a
measurement of the mass of heavy Higgs boson either but improves the precision on
my, leading to a 3% precision on tan 3. ILC;y99 and CLIC are able to measure the mass
of all Higgs boson, yielding a ~ 1% determination of tan j3.

The determination of the trilinear coupling Ay at the LHC suffers from the partial and
imprecise measurements in the scalar sector and especially from the absence of stop and
stau mass measurements. The ILC does not improve the picture as the whole squark
spectrum is absent. The ILC;po and CLIC provide a determination of Ag better than
5% thanks to a full and somewhat precise coverage of the scalar sector.

At the LHC, my and my/, can be determined within 5%. Due to the absence of
measurement in the heavy Higgs sector and to rather large errors on the measurement
of squark masses, tan 3 and Ay cannot be determine. With errors of the order of 0.1%,
the ILC improves the determination of mg and m;/, mostly due to an increase of the
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precision on the measurements rather than an increase of the number of measurements.
The ILC1p99 and CLIC both provide a very good determination of all parameters thanks
to a complete survey of the SUSY spectrum. The /s = 1 TeV barrier seems to be
crucial for the determination of mSUGRA parameters.

MSSM determination

The mSUGRA models has very few parameters compared to the number of observables
available. Even if most of the latter are highly correlated, the fits presented above are
over-constrained. If the condition of universality is released, many more parameters
have to be included in the fits. With respect to the MSSM, the pMSSM assumes the
absence of flavour-changing neutral currents or additional CP—violation reducing the
number of parameters from 105 to 24 (see chapter . The pMSSM is more realistic
phenomenologically and more suitable to include in a fitting procedure.

The parameters of the pMSSM were adjusted using SFitter with five different sets
of uncertainties. First, the LHC and the ILCigoo error sets are considered. Then a
combination of both is included. The combination is realized in [149] using a fit to the
many kinematic observables provided by both the LHC and the ILC. Finally, the error
set corresponding to CLIC observables are included, with and without the gluino.
Table presents the results of the fit of the parameters to the five sets of uncertain-
ties. Absolute and relative errors are quoted.

At the LHC, the number of available observables is smaller than the number of pa-
rameters. The least sensitive parameters have to fixed. In the Higgs sector, only the
mass of the lightest Higgs boson may be measured. Hence, no sensitivity is expected
on the mass of the A Higgs boson m4 and it can be fixed. In the slepton sector, the
mass of the heaviest stau 7y is not measurable. As 7y mostly corresponds to the 7,
field, no sensitivity is expected on the corresponding mass mz and it can be fixed. In
the squark sector, no stop mass is measurable. The parameters corresponding to the
stop masses are mg and mg . The former may be determined by the measurement
of sbottom masses whereas no measurement constraint the latter and it can be fixed.
The situation is slightly more complex for trilinear couplings Ay for which the correla-
tions with the observables is not straightforward. Cross-sections and branching ratios
may be necessary to investigate these parameters. Indications presented in [149] are

followed and A; and A are fixed.

The nominal value to which these parameters should be fixed is a priory unknown.
In order to study the impact of the choice of value, parameters to be fixed are varied
within some range, one at a time. For each value, a fit is performed and the deviation
of other parameters from their nominal value is investigated. Table [5.26| shows the
variation of the value of tan 8 output by the fit when parameters are varied on a broad
range. Each parameter is varied independently by steps of 100 GeV and the maximal
variation of tan (3 is reported. While the fixing ms , A7 and my4 to some random values
have little impact on the fit, the effect of fixing mj, and A; is not negligible.

After fixing some parameters, the pMSSM can be determined at the LHC with preci-
sions ranging from a few to 25%. Despite the absence of charginos, My, M, and p are
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LHC CLIC

SPS1a LHC ILCIOOO 4 ILClooo W/Out g W/ g
GeV GeV % GeV % GeV % GeV % GeV %
My 103.1 5.1 49 | o2 0.2 0.1 01 | o2 0.2 ] o2 0.2
M, 192.9 5.5 2.8 | oo 0.5 0.3 0.2 | oo 05 | 09 0.5
M, 567.9 | 100 1.8 fixed 1471 25.9 undet. 78 1.4
0 353.7 | 61 1.7 | 24 0.7 | 19 05 | 23 07|23 0.7

tan( | 10.0 11 11.3 | 12 119 os 5.7 | 12 11.9 | 12 11.9
ma 394.9 fixed 00 02| 15 04|09 02109 02

urs 006 0.03] 0o5 0.03] 006 0.03] 006 0.03
mp, | O 25 01 o2 01|02 010z 0.1
My 0.2 01 | o2 01 | o2 0.1
Mg 1358 | 52 3.9 102 0. o5 04 o5 04 o5 04

mz | 193.6 fixed 28 14 | 210 1.1 |28 14 |28 14
My 133.4 7.2 54 | 36 2.7 | 26 1.9 | 36 2.7 | 36 2.7

508.1

184 3.6 146 2.9 | 132 2.6 5.8 1.1

505.9

fixed

L 526.6 | 143 2.7 157 3.0 | 128 24 | 42 0.8

mg | 480.8 | 1200 26.8 | 566 11.8 | 533 11.1 | 173 3.6 | 119 2.5
mg, | 408.3 fixed 80 2.0 | 232 5.7 | 155 3.8 | 116 2.8
my, 502.9 | 1231 24.5 fixed 472 94 | 166 3.3 | 121 2.4
A; | -490.9 fixed 184 3.7 | 93 19 | 186 3.8 | 186 3.8
A; | -7634 undet. fixed undetermined
Az | -249.4 fixed undet. undetermined

Table 5.25: Results of the fit of the pMSSM parameters to five sets of uncertainties.
Errors are presented in absolute and relative values.

msz. ng A.;- A{ ma
range | [0 : 2000] | [0 : 2000] | [—=4000 : 4000] | [—4000 : 4000] | [0 : 2000]
Atan 3 1.68 5.95 0.64 2.5 0.55

Table 5.26: Impact of the fixation of some parameters on the fit.
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determined within 5% due to the interplay of the three neutralino masses. The slepton
sector as well as the first two generations of squarks are also determined within about
5%. The third generation sector, masses and couplings, are not determined.

At the ILC, no measurement of the gluino mass is expected. Mj is fixed. Similarly,
the squark sector is mostly invisible and the parameters corresponding to the first two
generations and the sbottom are fixed. The stau trilinear coupling is released but
undetermined. tan [ is determined thanks to the measurement of heavy Higgs bosons
mass but still suffers from a 12% error. With all chargino and neutralino masses
measured within one percent, M; and M are very well determined. Also, the slepton
sector is fully visible and the associated parameters are determined very precisely. With
respect to the LHC, the ILC provides valuable information in the slepton, gaugino and
heavy Higgs’s sectors. A combination of measurements realized at both experiments
allows for a release of fixed parameters, achieving a fairly good determination (within
less than 5%) of these sectors. These statements are valid for an energy in the center-
of-mass of 1 TeV at the ILC. The determination of M3 in the combination is worth than
that for the LHC alone because all parameters are released. CLIC provides valuable
information in the squark sectors. The determination of squark masses is better (about
1%) than the combination of LHC and ILC data. In the gaugino and slepton sectors,
CLIC is equivalent to the ILC. However, CLIC is important for the determination of
M thanks to the measurement of the gluino mass demonstrated in section [5.2.3] A;
and A; are still undetermined and will necessitate measurements such as cross-section
or branching fractions to be determinable.

5.2.5 Summary

The determination of the MSSM at several colliders was investigated in the constrained
cases of the pMSSM and mSUGRA. The SPS1a parameter set yields rather light new
particles and constitutes a favourable scenario at the LHC and the ILC. The improve-
ment in the determination of the supersymmetric parameters brought by potential
future linear colliders such as the ILC or CLIC with respect to the LHC was studied.

The reach for sparticle mass measurements and associated uncertainties was investi-
gated for the LHC, the ILC with /s = 500 GeV and /s = 1 TeV and CLIC. In a
parameter set such as SPS1a where all squarks and sleptons have their mass between
200 and 570 GeV, the /s = 1 TeV barrier seems crucial to achieve an exhaustive
survey of the supersymmetric particle spectrum. In order to estimate whether an 600
GeV gluino could be produced, detected and measured in eTe~ collisions, the leading-
order cross-section for its production in association with a quark and a squark was
computed. It was found that for myz; = 606.3 GeV and /s = 3 TeV, the gluino pro-
duction cross-section is of the order of 2.7 fb at leading-order. A measurement of the
gluino mass with a better precision than that realized at the LHC was estimated to be
attainable for an integrated luminosity of 4000 fb=!, corresponding to about four years
of operation of CLIC at nominal luminosity.

Mass measurements and uncertainties were input into the SFitter program in order
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to realize a global fit of the supersymmetric parameters. In the case of the mSUGRA
reduced parameter set, it was shown that the gaugino sector (m;/;) can already be
determined within one percent at the LHC. The squark and slepton sector is deter-
mined within 5% at the LHC but may require the ILC to pass the 1% barrier. The
determination of tan 5 at the LHC and the ILC with /s = 500 GeV suffers from the
invisibility of heavy Higgs masses. In such a case, the 1 TeV barrier is very important.

In the case of the less constrained pMSSM parameter set, some parameters had to be
fixed in order to obtain a solvable system. The effect of the choice of fixation value was
shown to be non-negligible but limited. Errors of the order of 5% can be achieved at
the LHC. The ILC with /s = 1 TeV alone provides a weak determination of the scalar
sector but the combination of LHC and ILC information yields a precision better than
the percent on the determination of the gaugino and slepton sectors and better than 5%
on the squark sector. CLIC provides valuable input in the squark and gluino sectors,
yielding a percent determination for both. The inclusion of further measurements such
as cross-sections or branching fraction is necessary in order to constrain couplings and
other parameters to a better level.

145



CONCLUSION

146



Conclusion

“Well what starts out as a warm breeze turns into something more

Like the lightning that burns down houses or the wind that blows down doors
I see it in the distance, it moves much faster than I think

Yes this storm will wreak much havoc, bring my sanity to the brink [...]

Now the wooden gate is creaking and the windows loudly rattle

Yet I still venture towards it like I’'m marching into battle

I could heed your good advice and stay in comfort back at home

But there it is in its splendour and it’s chilling me down to the bone [...]

The storm is coming, it’s gonna make a beautiful sound,
I hope it turns your life upside down.”

Ed Harcourt — The storm is coming

The LHC is set to start producing proton-proton collisions in 2009. The ATLAS
experiment, installed on the LHC, is fully functional and ready to record data. The
analysis of produced events will most likely unveil new kinds of physics. If it exists,
the particle supposed to account for the mass of the Standard Model fields, the Higgs
boson, will be produced and detected at the LHC. In order to stabilize its mass, the
Higgs boson should be accompanied by an extension to the SM, including new particles.
The most popular extension to the SM is supersymmetry. Again, if supersymmetry is
realized in Nature, it will most likely be produced and detected at the LHC.

In this thesis, I presented my contribution to the preparation of the ATLAS experiment.
Firstly, I exposed the improvements I brought to the reconstruction and identification
of electrons in the ATLAS detector. Electrons are of major importance for many
physics studies such as the search for the Higgs boson into its decay into four leptons,
for heavy gauge bosons occurring in models with extra-dimensions, for supersymmetry
in decay cascades producing many leptons or in the measurement of the W and top
quark masses. In addition, the analysis of electrons in standard processes such as
Z,Y,J/U — ee decays provide robust constraints on the absolute electromagnetic
energy scale. The study of electrons from photon conversions and of the bremsstrahlung
activity in the tracking detector constitutes a solid probe of the amount of matter
present before the electromagnetic calorimeter.

I showed that an electron identification efficiency of about 70% (for electrons with
pr > 25 GeV and in the central region of the detector) was reached for a jet rejection
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of 10° (for jets with pr > 17 GeV). This was achieved thanks to the analysis of many
identification variables on both signal and background. The correspondence between
tracks left by electrons in the tracking detector and electromagnetic showers left by
their decay in the calorimeter was fully exploited to reject photons and neutral mesons.
Furthermore, converted photons were correctly identified thanks to information from
the vertexing layer of the tracking detector. In the latter, the electron identification
efficiency was optimized using the ratio of the energy deposit in the calorimeter and
the momentum of the track. The fraction of high-threshold hits on electron tracks in
the Transition Radiation Tracker was also exploited. In the calorimeter, the isolation
of the electrons showers was studied with the R..,. variable in order to optimize the
jet rejection.

All improvements were incorporated in the unified athena framework in order to be
used in various physics analysis. The performance of the identification process was
assessed, documented and maintained throughout many successive software releases.
The performance was measured and cross-checked using different physics process such
as single electrons, supersymmetric events, Z — ee decays or tf events and confronted
to independent studies in order to provide physics groups with robust results.

With collisions expected in the LHC at the end 2009, the improvement and monitoring
of reconstruction and identification performances are of major importance. The first
few month of collision data will help gather large samples of di-electron resonances
(Z, Y, J/¥ — ee), the use of which will help assess the electron identification efficiencies
for various kinematic configurations. They will also be very useful to gain knowledge
on the absolute electromagnetic energy scale. On the achievement of these tasks will
depend the reactivity of physics group to potential signal for the Higgs boson or new
physics.

Secondly, I presented my contribution to the preparation for the search for supersym-
metry at the LHC.

If the stabilization of the weak scale is abandoned as a motivation for supersymmetry,
phenomenological models can be constructed in which new scalar particles (squarks,
sleptons and heavy Higgs bosons) are very heavy, beyond the reach of the LHC. In
such models, scalars are decoupled from the weak scale, where an effective theory
containing the rest of the supersymmetric spectrum is established. A candidate for
dark matter is provided in the form of the lightest supersymmetric particle (LSP) and
gauge couplings are unified at the high scale. In addition, the absence of sfermions
at the weak scale highly suppresses flavour-changing neutral current and additional
CP-violation processes usually associated with weak-scale supersymmetric models.
The Decoupled Scalars Supersymmetry (DSS) model is a heavy-scalars model with
only five parameters. DSS was studied in two points in parameter space, covering
the entire domain of interest at the LHC. In this framework, supersymmetry may be
produced at the LHC through gluino or gaugino pairs. They sign in the detector by a
large amount of missing transverse energy due to the non-detection of the LSP, many
jets with large transverse momenta and leptons in the case of gaugino decays. Thanks
to an analysis based on the Monte Carlo generation of signal and background samples
and a semi-fast simulation of the ATLAS detector, I showed that both points can be
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discovered or excluded at the LHC. I investigated a number of observables that may be
measured at the LHC such as the mass splitting between the two lightest neutralinos,
the cross-section for the production of gluino pairs and the tri-lepton signal, the ration
of on-shell to off-shell Z bosons produced in supersymmetric cascades, etc... The un-
certainties on the measurement of these observables was evaluated in order to estimate
the precision on the determination of the DSS parameters that may be achieved at
the LHC. This task was realized in the framework of the SFitter program, in which
the DSS model was implemented. I showed that a global fit of the DSS parameters to
the observables was able to determine the correct central value of parameters. I also
showed that the gaugino sector may be determined within a few percent thanks to the
use of leptonic observables. However, the partial visibility of the Higgs sector and the
complete invisibility of the scalar sector prevents a determination of their parameters.
In order to establish even tighter constraints on DSS models, the inclusion of indirect
measurements such as that arising from the b — sy decay, g, — 2, the relic density or
other cosmological quantities may be useful.

Finally, T investigated the impact of future linear colliders on the determination of
the parameters of the MSSM in the case of the SPSla parameter set. LHC potential
results were compared to input from ete™ linear colliders with energies in the center
of mass of 500 GeV, 1 TeV (ILC) and 3 TeV. The 1 TeV barrier seems important in
the case of the SPS1a where squarks and sleptons have masses in the 200 to 600 GeV
range. The cross-section for the production of gluinos in ete™ collisions was calculated
at leading-order in order to estimate the capacity of a 3 TeV eTe™ collider to measure
its mass. It was shown to be possible within a few years of operation of the collider.
After fixing indeterminable parameters, the MSSM may be determined at the LHC
with a precision of the order of 5%. In some sectors, the ILC improves this precision
by one order of magnitude. The combination of LHC and ILC data allows for a 1%
determination of most sectors of the MSSM. If the center-of-mass energy of the ILC
is upgraded to 1 TeV, the impact of a 3 TeV ete™ collider on the determination of
the MSSM resides mostly in the heaviest sectors : scalars and gluinos. Such a collider
may be necessary for the measurement of masses above 300 GeV and an exhaustive
determination of the MSSM.
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