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Chapter 1

Introduction

1.1 Historical background

Photons of the Cosmic microwave background CMB radiations have the lowest tempera-
ture in the Nature [1]. It has a thermal black body spectrum at a temperature of 2.73
K. Low temperature physics has already surpassed it by several orders of magnitude. The
credit for the embarkation of the golden era goes to the Dutch scientist Heike Kamerlingh
Onnes who liquified the helium-4 at 4.2 K in 1908. It opened the doors for Kelvin range of
science, for instance superconductivity, electronic magnetism etc. This achievement also
started the tremendous work to attain extremely low temperatures. Several designs of
cryostat and devices used for producing sub-kelvin temperature have been realized includ-
ing demagnetization refrigerators, dilution refrigerators etc. An overall overview on very
low temperature cooling techniques is summarized in Ref. [2]. The most popular technique
in many laboratories to attain the millikelvin range is the dilution refrigerator. It is based
on the continuous dilution of rare isotope *He by the common isotope *He.

In the mid 90’s the integrated circuit technology progressed fast to miniaturize electronic
devices. Soon the overall size of the device reduced to the micron-scale. It led to the birth
of mesoscopic physics. Mesoscopic physics refers to the dynamics of structures larger than
a nanometer (one billionth of the meter) but smaller than the micron (one millionth of
the meter). The physical properties of a mesoscopic system reveal the information on the
quantum nature of electrons. The phenomenon due to the quantum nature of electrons are
summarized as quantum tunneling, single electron effects and many others.

The blend of endeavors in low temperature physics and also the advancement in the
integrated circuit technology started the search for on-chip solid state refrigerator [3]. Solid
state cooling systems use generally a thermoelectric device, consisting of a semiconductor
based bi-metal junction, a heat sink, and DC power. A typical solid state cooling system is
a sandwich-type structure filled with bismuth telluride particles and doped to obtain P-N
junctions. When a current is passed through the junction of the two different conductors,
a temperature change is achieved. There are no moving parts and no refrigerants. Solid
state cooling systems are very good for small and quiet applications.

7



8 CHAPTER 1. INTRODUCTION

Empty States

TF‘-V Forbidden
states

Figure 1.1: Density of states vs energy schematic of a N-I-S junction showing single qua-
siparticles transfer across the junction.

Most solid state heat pumps operate utilizing the Peltier effect. It was first discovered
by J.C.A. Peltier in 1834 and is based on the thermoelectric effect. Here, the current flow
in between the two different materials kept at the same initial temperature force the heat
from one to the other. The amount of heat transported per unit time is proportional to
the Peltier coefficient (IT) of the two materials. For most pure nonmagnetic metals II =
kT?/eTr, Tr being the Fermi temperature. For typical metals, I is around 50 uV at
room temperature, and for semi-conductor it is around one volt with linear dependence
on the temperature. Peltier coolers derived from the semiconductor has cooling power up
to 100 W at room temperature. Based on thermoelectric coolers, the Peltier coolers can
get a maximum temperature difference of about 70 K. Soon Peltier cooler became popular
in the semi-conductor industry. However, these coolers are unable to reach sub kelvin
temperature.

In the sub-kelvin range, the solid state cooler is based on a quantum mechanical tunnel-
ing based normal metal (N) - insulator (I) - superconductor (S) junction. The refrigerator
based on N-I-S junction is the main topic of this thesis. Fig. 1.1 shows the semiconductor
model schematic of a tunnel barrier (I) in between a BCS superconductor (S) and a normal
metal (N). For 7" > 0, the electrons in the N-metal get excited to occupy the state above
the Fermi level, which smears the electronic Fermi distribution. The amount of smearing
is proportional to the thermal energy (~ kT') of the system. The presence of supercon-
ducting gap (A) in the density of states of the superconductors leads to an energy selective
tunneling. With a sub-gap bias (V < A/e), only the most energetic electrons from the
normal metal can tunnel out of it, leaving behind the electrons with less energy. The weak
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Figure 1.2: Left: First S-I-N-1-S based cooler. Right: Typical electron cooling curve for
different bath temperature. Adapted from Ref. [5].

electron-phonon coupling in a N-metal at sub-Kelvin temperature and the extraction of
hot quasiparticles out of the N-metal, lead to the electronic cooling of the N - metal. The
first cooler based on a single N-I-S junction dates back to 1994 by Nahum et. al. [4], using
a Al/AlO, /Cu tunnel junction. Although the cooling power and efficiency was minimal,
it inspired many research groups to make it more efficient for practical applications. A
significant improvement was done by Leivo et. al. [5], where they exploited the symmetric
cooling power of the N-I-S junction. They arranged the two N-I-S junctions in series con-
figuration (i.e. S-I-N-I-S). The double junction configuration doubled the cooling power
and also gave a better thermal isolation of the Cu island. The electrons cooled down from
bath temperature of 300 mK to around 100 mK. Fig. 1.2 a shows a typical S-I-N-I-S cooler
with the central Cu island (N) connected to the two Al electrode (S) via tunnel barrier (I)
called the injection junctions. In addition to it, there are two additional N-I-S junctions
(probe junction) acting as a thermometer. For a sub-gap bias, the electrons cool down,
reaching the lowest value around the optimum bias of V &~ 360 pV (see Fig. 1.2b). On
further increasing the bias, the temperature of the electrons in the N-island increases due
to the injection of heat into the metal.

The coolers based on S-I-N-I-S junction cool down the electrons in the central N -
island. The phonons in the N-metal can be cooled down via electron-phonon coupling.
The practical application of such coolers requires more efficient phonon cooling. One
effective solution is to exploit thermally isolated thin membranes on which the N region
is extended. Here, the micro-cooler junction cools down electrons and the phonons of
the metal. The latter will subsequently refrigerate the membrane phonons via Kapitza
coupling. The first demonstration [6] of the lattice cooling exploited the phonon cooling
to cool down the silicon nitride (Si3N4) membrane. The membrane cooled down by only
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Figure 1.3: Scanning electron micrograph of a working prototype of a N-I-S refrigerator
with attached neutron transmutation doped (NTD) germanium resistance thermometer [8].

2% from the bath temperature of 200 mK. It was further improved by fabricating the
SizNy membrane with the self-suspended bridges [7]. The bridges isolate the suspended
membrane from the substrate and the phonon propagation is essentially two dimensional.

Recently Clark et. al. [8] demonstrated the first practical realization of complete S-I-
N-I-S based coolers (Fig. 1.3). Here four pairs of N-I-S junctions are used to cool down
a suspended SizNy membrane. On the membrane, they glued a neutron transmutation
doped (NTD) Ge thermometer and cooled it down to 240 mK from the bath temperature
of 320 mK.

1.2 Motivation for this work

The above encouraging work motivated us to start a new project in Grenoble to develop a
new cryogenic device based on S-I-N-I-S junctions. This thesis is the continuation of the
preliminary experiments done at the CRTBT [9].

The quasiparticle tunneling out of a N -metal contribute to sub-gap current across the
N-I-S junction. The electrical properties has been well studied previously. Recently it was
demonstrated that the extraction of quasiparticles leads to cooling of electrons in the N
metal. This demonstration was done using an externally embedded thermometer junction
(probe junction in Fig. 1.2). However, it motivated us to work for an alternate mechanism
to extract the electronic temperature without any thermometer. To enhance cooling and
the efficiency of such devices, it is important to understand the different heat paths in
such devices. Consequently, it motivated us to work on thermal model which takes into
account different heat paths. To achieve an ultimate cooling, we realized the importance to
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Figure 1.4: Carnot heat engine diagram for a N-I-S device.

understand the limitation in cooling using N-I-S junction. Such understanding motivated
us to perform experiments in the dilution refrigerator. In the following, we summarize the
important findings in this thesis.

This device can be thought of as a heat engine, where the heat is transferred from the
normal metal to the superconductor, when the work is done on the system (see Fig. 1.4).
An attempt is made in chapter 2 to bring this analogy closer. It is shown qualitatively that
the smearing of Fermi distribution and superconductor gap leads to the selective tunneling
of hot quasiparticles from N to S. It leads to the electronic cooling of the N-metal. The
heat transfer in such hybrid devices is different from the all normal N-I-N junction. In
N-I-N junctions the work done by the external source V?2/Ry is deposited equally in the
two normal reservoirs.

A N-I-S junction is extremely sensitive to the electronic distribution of the normal metal,
therefore can be used as a thermometer. The experimental demonstration of the cooling of
N metal electrons using N-I-S junctions is usually done with an external N-I-S thermometer
(chapter 5). Soon we realized the importance of a reliable and easy thermometry of the
cooling N-island. A thermometer measures the temperature of electrons in N metal, which
is located on a hot chip. All the experiments discussed in the previous section use an
external double N-I-S junction as a thermometer. The thermometer junction helped in
direct demonstration of electrons cooling in N-metal electrons but it made the whole design
of the cooling device cumbersome (probe junction in Fig. 1.2). The problems get even
more aggravated for the tri-layer geometry or for mounting microcoolers on the membranes.
For instance in Ref. [8] a prototype of practical refrigerator, there was no thermometer to
measure the electronic temperature of the device.

In this thesis (chapter 5), we have done experiments on micro-coolers with no external
thermometer (Fig. 1.5). We have done the precise investigation on the direct current-
voltage characteristic obtained from the cooler junction. The N-metal is assumed to be at
quasi-equilibrium with the electrons following the Fermi distribution. We have used the
kinetic equations to re-define the electronic distribution in the central N-metal. On com-
parison with the experiments we concluded that the electrons can be considered as being
at thermal equilibrium. The electronic temperature of the N metal electrons is extracted



12 CHAPTER 1. INTRODUCTION
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Figure 1.5: Scanning electron micrograph of a cooler with no external thermometer on the
central N-island.

directly from the current-voltage characteristic of the cooler junction. The temperature
T.(V) in the sub-gap region is obtained by superimposing the experimental I-V curve on
a series of isotherm curves, see Fig. 1.6. Every crossing point gives the electronic temper-
ature T, in the normal metal at a particular bias. This sample design with no external
thermometer attains a higher ratio of volume/area of N-metal in comparison with the
previous design, which can contribute to a better cooling of the island.

The theoretical and experimental understanding of heat transfer in the cooling device is
extremely interesting. The electron - phonon coupling in the normal metal is vanishingly
small at low temperature. The decoupling and extraction of hot quasiparticles out of
the N metal lead to cooling of the electron cloud in the N-metal. A complete thermal
model and its effect on the N metal phonon distribution is important for understanding an
efficient cooling. We have devised a quantitative thermal model (chapter 6), by taking into
account the electron - phonon coupling in the N metal and the Kapitza coupling between
the phonons of the central N metal and the substrate.

Some questions remain: What is the minimum electronic temperature that can be
achieved from the N-I-S cooler? At a very low temperature (T, < 200 mK), the thermal
transport in such N-I-S tunnel junctions appears to be still little understood. For instance,
an apparent reversal of the normal metal temperature evolution was observed in various
experiments [10, 11| and related to a non-BCS density of states of the superconductor [11].
A clear understanding of this behavior is still missing.

In a tunnel junction between a normal metal (N) and a superconductor (S), the charge
transfer occurs mainly through two different mechanisms. The tunneling of a single quasi-
particle is possible for electrons or holes with an energy E (compared to the Fermi level Ef)
larger than the superconductor gap (A). At low energy, the charge transfer occurs through
the Andreev reflection [12, 13|. In the normal metal, an electron (a hole) impinging on
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Figure 1.6: Left: Experimental current-voltage characteristic (full line, black) superposed
on a series of calculated isotherm characteristic from T, = 292 mK (top) to T, = 98 mK
(bottom). Ewvery crossing point gives the electronic temperature T, in the central N metal
at a particular bias. Right: Extracted normal metal electronic temperature as a function of
the cooler bias at different cryostat temperatures.

the superconducting interface is reflected as a hole (an electron), enabling the transfer of a
Cooper pair into (out of) the superconductor (see Fig. 1.8). The probability for an incident
quasi-particle to follow an Andreev reflection, a specular reflection or a tunnel transfer is
given in the ballistic regime (no disorder) by the Blonder - Tinkham - Klapwijk (BTK) [14].
For a N-I-S tunnel junction with an insulator (I) of intermediate or low transparency, the
Andreev reflection probability is predicted to be vanishingly small. Taking into account
the quasi-particles confinement in the vicinity of the interface, this is no longer true. This
confinement can be induced by the disorder or the presence of a second barrier in the
normal metal. A single quasiparticle then experiences several collisions with the interface
[15, 16]. The actual Andreev reflection transmission coefficient corresponds to the coherent
addition of many individual transmission probabilities. Therefore, the Andreev sub-gap
current significantly exceeds the ballistic case prediction [17| and can be modulated by a
magnetic flux [18].

A quasi-particle current in a N-I-S junction indeed carries both a charge current and a
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Figure 1.7: Electron and phonon temperature as a function of cooler bias voltage at different
cryostat temperatures. The dots are the experimental points. The complete and dotted
line shows the calculated electron and phonon temperatures respectively, obtained from the

thermal model for ¥ = 2 nW.um 3. K5 and K.A = 66 pW.K*.

heat current; this cools the electronic population of the normal metal. We have done an
experimental and theoretical study of the heat transport in a S-I-N-I-S junction, focusing
on the very low temperature regime. The heat contribution due to the phase-coherent
Andreev current (I4) is mostly neglected. The naive reason is as the energies of the
involved electron and hole are located symmetrically around Ep , the Andreev reflection
does not carry heat through the interface at zero bias. However at a finite bias, the two
electrons coming from the N-metal have finite energy, which gets dissipated in the normal
metal before tunneling into the superconductor as a Cooper pair (see Fig. 1.8). We provide
a fully quantitative analysis of the heat transfer in the system, which shows that although
the Andreev current is a small effect in terms of charge current, the heat it creates has a
dominating influence on the heat balance. Theoretical understanding of the charge and
heat contribution due to the phase coherent Andreev current has been done here in chapter
3. The experiments on the cooler junction at very low temperature are discussed in chapter
7. Fig. 1.9 shows the comparison of the experiment (complete line) and the thermal model
(dotted line) at different cryostat temperatures. Here we have included the work I4.V
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Figure 1.8: Density of states vs energy schematic of a N-I-S junction showing Andreev
reflection across the junction.

done on the central metallic island by the current source. The agreement is good for the
sub-gap bias and at every accessible cryostat temperature.

An important question still remains: What is the limitation in cooling electrons in the S-
[-N-I-S junction? In the N-I-S cooler, the driving current takes hot quasiparticles from the
normal metal to the superconductor. It leads to lowering of the electronic temperature in
the N metal, which reaches its minimum at an optimum bias (~ A). The electronic cooling
at an optimal bias (= A) is poorly understood (see Fig. 1.7 at V ~ 0.4 mV). Cooling effect is
accompanied by the injection of hot quasiparticles in the superconducting electrodes. The
injected quasiparticles have a small group velocity and get accumulated near the junction in
superconductor, leading to two undesiderable mechanisms : quasiparticles backscattering
and re-absorption of 2A phonons in the normal metal strip.

In chapter 8, an attempt is made to understand the phenomena involving the non
equilibrium quasiparticles diffusion in the superconducting electrodes of a S-I-N tunnel
junction. We have proposed a phenomenological model based on the recombination and
pair breaking mechanism in the superconductor. The model includes a normal metal
trap junction which relaxes the quasiparticles to the bath temperature. We have shown
that the diffusion equation has a complete analytic solution. Our model gives the spatial
profile of the effective quasiparticle temperature in the S-strip. Numerical implications of
heating of superconductor on the cooled N - metal electrons are discussed. Our model
will be useful to test accurately the influence of the material and geometrical parameters
(diffusion coefficient, tunnel conductance, trapping junction, thicknesses) and therefore will
be helpful to improve the ultimate cooling of S-I-N-I-S devices.
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Figure 1.9: Current voltage characteristic of the cooler junction at different cryostat tem-
peratures together with the calculated best fit from the full thermal model including the
charge and heat contribution due to Andreev current.



Chapter 2

Cooling effect in S-I-N-I-S tunnel
junction

2.1 Introduction

This chapter is devoted to the charge and heat transport in hybrid superconductor - normal
metal tunnel junctions. We mainly focus on the transport properties in the sub-gap region
i.e. the temperature and the applied bias voltages are smaller than the BCS superconductor
gap energy (A).

Tunneling in hybrid structures is known for many years already to be a sensitive tool
enabling to probe the energy dependence of the density of states (DoS). Combining an
ordinary normal metal in which the DoS is approximately constant close to the Fermi level,
with a superconductor whose DoS is energy dependent gives a non-trivial phenomenon. For
sub-gap bias voltage (eV < A), due to the absence of single quasiparticle states within
the superconductor energy gap, the electronic transport across the normal metal (N) -
superconductor (S) decreases exponentially with lowering the temperature. The tunnel
current across the junction is mainly due to tunneling of high-energy quasiparticles (E
> A) from the normal metal to the superconductor. Giaever pioneered this technique
and confirmed experimentally the energy dependent DoS as predicted by the microscopic
theory of superconductivity [19, 20].

In this chapter, we shall illustrate the peculiar behavior of sub-gap transport in a N-
[-S tunnel junction. Since tunnel junctions are amenable to the simple calculations using
perturbation theory, we will obtain an analytical expression of the tunnel current across a
N-I-S junction. Here, we will restrict to a first order perturbation calculation. In section
2.2, we will obtain the subgap current and conductance across the N-I-S junction in the
clean limit, i.e. the effect of impurity scattering shall be ignored. The heat transport in
such hybrid devices shall be discussed in section 2.3. Here, we will begin with the heat
transport in N-I-N junctions and subsequently discuss the N-I-S junctions. An attempt
will be made to do the schematic comparison of such nano-devices with the heat engines.

17
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2.2 Quasiparticle tunnel current in a N-I-S junction

2.2.1 Tunnel Hamiltonian

To describe the transfer of electrons across N-I-S junctions, we follow the tunnel Hamil-
tonian formalism. The basic idea is to say that there exists a non-zero probability of charge
transfer by quantum mechanical tunneling of electrons between two electrodes separated
by a tunnel barrier. The probability of transfer of charge decreases exponentially with
the barrier separation and these aspects can be absorbed in a phenomenological matrix
element tj ,. Thus, the tunnel Hamiltonian can be written as [21]:

~ G T . ~
HT— E : tk’»pﬂﬂlak,abpﬂl+tk,p;a,0’ p,cr’ak’ya’ (21)

/
k7p707g

where the subscript k£ refers to electrode on the right and p refers to the other. o and
o’ refer to the electron spin in the respective electrode. The operator ’d;a (ak) creates
(annihilates) an electron with the quantum number & and spin ¢ in the right electrode,
similarly bf @) in the right electrode. Physically, the explicit terms on the right hand
side in Eq. 2.1 refer to the transfer of an electron from metal p to metal k, whereas the
conjugate term corresponds to the reverse process. In this thesis, for simplicity we assume
that the spin is conserved during tunneling, hence the amplitude in Eq. 2.1 is independent
of the spin indices. Furthermore, we ignore the dependence of ¢ on the quantum numbers
k and p and substitute tkp = to The total Hamiltonian of the junction is written as the

sum of the three parts, H= HL + HR + HT

2.2.2 Tunnel current across N-I-S junction: golden rule

Fig. 2.1 shows the semiconductor model schematic of the density of states (DoS) as a
function of energy in a N-I-S junction at a non-zero temperature. The normal metal is
represented as a continuous distribution of independent-particle energy states with density
N(0), including the energies well below the Fermi level. The superconductor is represented
by an ordinary semiconductor with a density of independent particle states but with an
energy gap (A), where there are no single quasiparticle states.

At T = 0 K, all the states up to the Fermi energy are filled and for 7" > 0 K, the
occupation number in the respective electrode is given by the Fermi distribution function
f(E) = 1/(1 + eP/*T). The value of f(E) ranges from 0 to 1. In order to calculate the
tunnel current across the N-I-S junction, we use the perturbation theory. The total rate of
tunneling across the N-I-S junction is given by I' = 'y g - I's_.n. According to Fermi’s
golden rule, the rate of tunneling from the normal metal to the superconductor can be
written as 5

Dyes =Y 5 | to P I(BO)[L = fs(BO(E — E,), (2:2)

k.p,o

with fi(E) = [1 + e%F=#)] being the Fermi function of the electrode i = normal metal
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Figure 2.1: Density of states vs energy schematic of a N-I-S junction showing single qua-
siparticles transfer across the junction.

(N) and superconductor (S) electrode kept at the electrochemical potential y; and G; is
defined as 1/kT;. Here the Fermi functions ensure that tunneling is allowed only when the
initial state in the left electrode is occupied and the final state in right is empty. The delta
function d(E) — E),) is to ensure the energy conservation during tunneling.

The sum over k in right side of Eq. 2.2 can be replaced by an integral over the continuous
spectrum Zk7(p)...—> [ dE N s)(E)..., where Ny (s is the density of states per spin and
per unit of energy in the respective electrode. Thus we get

o At / dE,dE>sNy(E))Ns(Eo)[f(E) — f(E)|8(Ey — Ey + V)
_ 47;;(2) / dENN(E — eV)Ns(E)[fn(E —eV) — fs(E)], (23)

with eV being the electrochemical potential difference between the normal metal and the
superconductor (Fig. 2.1).
The total current across the N-I-S junction is given by Iy_;_¢ = el'. Thus we get:

dret?
1V) = T8 [ No(E = VINS(E)Iw(E = V) = [s(BJE. (24)
The normalized density of states in the superconductor can be written as:

| E |

Ns(E) = NN(E)\/ﬁ-

(2.5)
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Thus, we get
1) = 20 [ N = eV )N(B) B (B = V) = fu(B)JE. (20

Normal state conductance :
If both sides of the tunnel barrier are normal metals with a constant DoS, equal to the
value Ny then the integration in Eq. 2.4 can be written as:

1) = T [(5(E - ev) - fE)E
_ [47Tet7(2%Nge]v _ GV, 2.7

with G being the normal state conductance of the junction. The above result is straight-
forward, corresponding to the ohmic nature of the junction.

On substituting Eq. 2.7 in Eq. 2.6, the single quasiparticle current across a N-I-S
junction can be written as:

| B |
VET = A

Now, employing the symmetric DoS in the superconductor, Ng(—F) = Ng(E) and f(—zx)
=1— f(z), we get

I(V) = [In(E—eV) = fs(E)dE.  (2.8)

1 oo
— /Oo Ny(E — eV)Ny(E)

1

/0 Ns(E)[fn(E —€eV) — fn(E +eV)]dE. (2.9)
Note that Eq. 2.9 is insensitive to the temperature of the superconductor electrode and
depends only on the superconductor gap. At low temperature 7' < 0.37,, the gap attains
almost the zero temperature value, A(T) ~ A(0).

Fig. 2.2 shows the calculated isotherm tunnel current across the N-I-S junction for three
different normal metal electrons temperatures. The sub-gap current depends strongly on
the electronic temperature. Pictorially one can understood from Fig. 2.1 that higher
temperature means that there are more electrons above the Fermi energy, which tunnel
across the junction. For eV > A, all the isotherms merge together to the resistive normal
state of the junction.

For A > kTy and 0 < eV < A, the current through N-I-S junction can be written as
[22]:

. (2.10)
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Figure 2.2: Calculated characteristic curve for a N-I-S junction for three different temper-
ature with A = 0.21 meV.

2.3 Heat transfer in the mesoscopic tunnel junction

In the previous section, we discussed the charge current across the hybrid tunnel junction
based devices. However, it remains to understand the heat current distribution due to
tunneling in the tunnel junction. In section 2.3.1, we shall first consider the heat transfer
in a normal metal-based tunnel junction and then in section 2.3.2 we shall consider the
heat transfer in the N-I-S tunnel junction.

2.3.1 Heat transfer in Normal metal - Insulator - Normal metal
junction

We consider two normal metals (N1, N2) connected through a tunnel barrier with a bias
voltage across it and with the chemical potential difference (). We calculate the energy
transfer through the tunnel barrier between the two normal metals. The energy transfer
rate (heat flux) upon electron tunneling from electrode N1 to N2 can be written as:
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Qviwe= - | T EE)L - f(E + eV)E,

€2RN o0
with Ry being the tunnel resistance across the junction. This describes the tunneling of

an electron from electrode N1 under the action of an applied bias V into the electrode 2.
Similarly, the heat flux in the reverse process is given by

Jp—— /oo Ef(E +eV)[1 — f(E)dE.

€2RN —00

Thus the heat flow out of N1 (Qx1) is given by,

. 1 oo V2
v = | BB - J(B+ VB =

Here the negative sign signifies that % is the energy per unit time deposited in electrode
N1 by the load.
Similarly for electrode N2, we get

. 1 0 V2
Qve = g [ (B V){I(E+eV) = {(ENIE = 5.

The total heat energy of the N1-I-N2 system is given by:

Qni(V) + Qna(V) = ——1|. (2.11)

as it should; g—; is the energy per unit time put in by the load.
The work done on the normal reservoir N1 is given by:

Wi = ﬁ/_ plini(E) = fro(E — eV)|dE = _SR‘J/V'

Similarly, the work done on reservoir N2 is given by:

o [l - ev) - e = DT

— 00

Wie =

The total work done on the N1-I-N2 device is given by:

V2
W1+ Whe = ——|. (2.12)
Ry

It shows that total work done by an external source is V2/Ry. By inspection on Eq. 2.11
and Eq. 2.12 we can draw a Carnot engine-like diagram for the N1-I-N2 device (see Fig.
2.3). Tt shows that the work done by the source (V?/Ry) is deposited equally in the two
reservoirs (N1 and N2).
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Figure 2.3: Carnot heat engine diagram for N1-I-N2 device: The work done by the source
15 equally distributed among the two normal reservoirs.

2.3.2 Heat transfer in Normal metal - Insulator - Superconductor
junction

The principle of N-I-S cooling devices (Fig. 2.1) is based on the energy-selective extraction
of high-energy quasiparticles out of the normal metal. The existence of the forbidden single
particle energy states within the superconductor gap results in the fact that only electrons
with energy F > A tunnel from the normal metal to the superconductor.

Here, we shall discuss the heat transfer across a N-I-S junction. We consider that the
two metals have a chemical potential difference eV such that puy = ps + eV, where puy g
is the chemical potential of the normal metal and the superconductor respectively. The
energy transfer rate from the normal metal to the superconductor can be written as:

Qno s = 62;N /_OO (E — eV)Ny(E — eV)Ns(E) fx(E — eV)[1 — fs(E)dE,

as electrons tunneling out of normal metal carry the energy (E —eV'). Similarly, the reverse
process corresponds to a rate:

Qs = — /OO (E — eV)NN(E — eV)Ns(E)[1 — fn(E — eV)|fs(E)dE.

€2RN —c0

The net heat transfer out of N is given by: Qn = Qn_ s — Qs n. We get,

Qn = 6211-'{]\, / (B = eVINN(E — eVINS(E)[fx (E — V) — fs(E)ldE.

To simplify the calculation we approximate the Fermi function: f(E) ~ e #¥ where
B = 1/kT such that A > 1. Assuming Ts = T and constant density of states in the



24 CHAPTER 2. COOLING EFFECT IN S-I-N-I-S TUNNEL JUNCTION

normal metal. We get,

Qn =

g 2coshl3 V] =) [ ENs(E)e FdE

———2¢V sinh[3 eV] / Ng(E)e™” FdE. (2.13)
6 RN
The second term on the right side is I7.V with I7 being the the tunnel current across the
N-I-S junction.

Now we calculate the net heat transfer out of S. The energy transfer rate from the
normal metal to the superconductor can be written as:

1

QN—> S = €2RN

/OO ENy(E — eV)Ns(E)fn(E —eV)[1 = fs(E)]dE.

Similarly, the reverse process corresponds to a rate:

1
GQRN

Os. = / " ENW(E — eVINS(E)1 — fx(E — V)] fs(E)dE

The net heat transfer out of S is given by: Qs = Qs v — Qn_ 5. We get,

Qs = / ZE Ns(E)fs(E) — fw(E — eV)dE.

Using the same approximation on the Fermi function, we get:

Qs = —2—

e

- [cosh(B eV) — 1] /0 T B Ng(E)e P EdE (2.14)

The total heat energy of the N-I-S device is Qnis = Qn + Qs. Using Eq. 2.13 and Eq.
2.14, we get:

Qnis = —2eV = sinh( eV) / Ns(E)e P PdE = —Ip.V (2.15)

The work done by the source on the superconductor is given by:

1 oo
W= = | 0 Ns(E)IS(E) = fulB = eV))iE
s 622R stheV/ Ng(E)e ™ EdE. (2.16)
N

The work done by the source on the normal metal is given by:

1
€2RN

Wy = i [ (u+-eV) Ns(B)fwlE - eV) - fa(EE

_2(p+eV)

ey sinh(3 eV) /0 Ns(E)e™” HdE. (2.17)
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Figure 2.4: Carnot heat engine diagram for a N-I-S device.

The total work done by the source on the N-I-S device is: W = Wy + Wg. Using Eq. 2.16
and Eq. 2.17, the total work done is given by,

W =2eV

~—— sinh(§ V) / Ng(E)e ™ BdE = Ip.V (2.18)
(& RN 0

Using the above definition of the work and energy transfer across the junction, the heat
engine schematic of the N-I-S device for a sub-gap bias voltage, can be given by Fig. 2.4.
In comparison with the N-I-N device, the external source in the N-I-S device takes heat
out of the normal metal (for eV < A) and dissipates heat in the superconductor.

2.4 Cooling using a pair of N-I-S junction

The heat current P, out of the normal metal into an individual N-I-S junction is given
by:

1 oo
R /_ OO(E — eV)ng(E)[fu(E —eV) — fo(E))dE, (2.19)

Fig. 2.5 shows the calculated P,,,; for a N-I-S tunnel junction versus bias voltage at
different temperatures (T=T.=Ty). When P, is positive, it implies the removal of heat
from the N electrode, i.e., hot excitations are transferred to the superconductor. For
each temperature, there is an optimal voltage that maximizes P, and, by decreasing the
temperature, that causes the heat current results to be peaked around A/e. In the low
temperature limit 7, < Ts < A/kpg, it is possible to give an approximate expression for
the optimal bias voltage Vo,

P, cool —

Vot & A — 0.66k5T,/e.

For V' =V,,, the current through the N-I-S junction can be approximated as

VksT./A.

A
I ~04
0 SeR

mn
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Figure 2.5: Calculated cooling power P,,, of a N-I-S junction vs bias voltage for different
temperatures T=T,=T;.

The N-I-S junction coefficient of performance is

For V'~ A/e and in the low-temperature limit, n ~ 0.7(7./T).

It is also worth noticing P.,, is a symmetric function to applied bias. One can ex-
ploit this symmetric P,.,,; by taking a pair of N-I-S junctions in series and arranged in a
symmetric configuration i.e., as a S-I-N-I-S that leads to a much stronger cooling effect.
Therefore at fixed voltage across the S-I-N-I-S junction, quasielectrons are extracted from
the N region through one junction, while at the same time quasiholes are filled in the N
region below the superconducting gap from the other junction.



Chapter 3

Andreev current in a S-I-N junction

3.1 Introduction

This chapter is concerned with the Andreev reflection [12, 13| process, which is a high
order tunnelling phenomenon in Superconductor - Normal metal junctions. As discussed
in Chapter 2, the first order perturbation calculation up to ¢2, where t, is the transfer
matrix element, gives a zero tunnel current for energy below the superconducting gap A.
High-energy quasiparticles in the normal metal cannot tunnel within the superconductor
gap since there are no single quasiparticle states within the superconducting gap. However,
the higher order tunnel processes does contribute to the tunnel current. At second order,
the tunnel process allows the transfer of two-electrons from the normal metal to form a
Cooper pair in the superconductor.

In this chapter, we begin with the main properties of Andreev reflection. The influence
of the Andreev reflection on the current voltage characteristic of a N-I-S junction shall be
discussed in the framework of a ballistic interface as worked out by Blonder, Tinkham and
Klapwijk (BTK) [14]. This formalism is applicable for an arbitrary barrier from a perfect
contact to a tunnel barrier [23].

In section 3.4, the disorder in the electrodes is included in the device. In such a
situation, the phase-coherent Andreev current strongly dominates the subgap conductance
of the hybrid N-I-S junctions [17, 24|. Based on the formalism by Hekkking and Nazarov
[16], we calculate this current for our sample geometry. In Section 3.6, an attempt is made
to understand the heat contribution of the phase-coherent Andreev current [25] and to
derive the relationship with the Andreev heat.

3.2 Andreev reflection

It was noted by Saint James [13] and also by Andreev [12| in 1964 that an electron is
reflected from a superconductor in an unusual way. The incident electron in the normal
metal (N) is retro-reflected as a hole, while a Cooper pair is transmitted in the Supercon-
ductor (S). This is called Andreev reflection. Fig. 3.1 shows the schematic of Andreev

27
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reflection, where the electron coming from N undergoes Andreev reflection at the junction
interface.

Figure 3.1: Density of states vs energy schematic of a N-I-S junction showing a two-
electrons tunneling process. An incident electron from N with E < A strikes the N-S
interface. It is retro-reflected as a hole and as a result a Cooper pair is transmitted in S.

The hall mark properties of the Andreev reflection have been discussed in Ref. [26, 27].
The Andreev reflection conserves the spin, charge, energy and momentum. In the normal
metal, the reflected hole traces back the same trajectory as the incident electron. As a
consequence, this two-electrons pair in N metal is also called an "Andreev pair" [28] as
their existence is not because of the attractive interaction in the N but due to the Andreev
reflection at the N-S interface.

3.2.1 Andreev reflection: BTK model

For a ballistic N-S interface, Blonder, Tinkham and Klapwijk (BTK) formulated a transport
theory taking into account both the specular reflection and the Andreev reflection at the
interface. The BTK model successfully explained the experiments done in 80’s on N-S
junctions for an arbitrary transparency [23]. It describes the cross-over in the behavior
of the conductance of the junction as a function of the tunnel barrier transparency. The
authors showed that for the highly transparent junctions the sub-gap conductance is twice
the normal state conductance i.e. Gyg = 2Gyn and in low transparency junctions, the
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sub-gap conductance vanishes i.e. Gyg — 0.

BTK considered a scattering potential located at the N-S interface V' (z) = Hd(x). The
strength of the barrier is indicated by the parameter Z = H/h vp. The parameter Z is
related to the normal state transmissivity (7) of the interface as:

1
=17z
The total transmission for particle transfer is proportional to 1 — B(E) + A(E), where
A(FE) and B(FE) are the probability for the Andreev reflection and the specular reflection
respectively. Fig. 3.2 shows the transmission and reflection coefficients at the N-S interface
for different barrier strengths from Z = 0 (a transparent barrier) to Z = 3 (a tunnel barrier).
Here C'(F) and D(FE) are the transmission probability without and with branch crossing
respectively. The probability A of the Andreev reflection at the Fermi energy is

1
14224

For a transparent barrier (Z = 0) the probability of Andreev reflection is maximum in
the sub-gap region i.e. A = 1 and B = 0. This means that in the sub-gap region, for
each incoming electron, there is a reflected hole and a Cooper pair is transferred into the
superconductor. Above the gap bias A = B = 0, the usual quasi-particle tunneling is
relevant.

For an opaque barrier (Z = 3) the probability of the Andreev reflection is minimum.
Indeed the specular reflection of the incident incoming electron is maximum i.e. A ~ 0
and B ~ 1. Increasing the barrier strength increases the specular reflection, thus reducing
the transmission probability.

The BTK model gives a good agreement in the case of a macroscopic N-S junction
but it does not take into account the disorder in the electrodes. As we will see in the
next section the disorder plays a crucial role, and contributes significantly to the sub-gap
conductance of N-S hybrid junctions.
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Figure 3.2: Plots of transmission and reflection coefficients at the N-S interface for different
barrier strength Z = 0 (transparent) to 3 (tunnel). The coefficient A gives the probability of
Andreev reflection; B gives the probability of ordinary reflection; C gives the transmission
probability without branch crossing and D gives the probability of transmission with branch
crossing [14].
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3.3 Phase-coherent Andreev reflection - Historical in-
troduction

In the late 80’s, tremendous effort took place to miniaturize the devices, that led to the
emergence of mesoscopic physics. In the early 90’s, Kastalsky et. al. [17] demonstrated the
enhancement of differential conductance at low bias on the Superconductor - Semiconductor
junction. This zero-bias anomaly was clearly incompatible with the BTK theory. This
discovery triggered an extensive work both experimentally [18, 24] and theoretically [15,
16, 29] to understand it.

3.3.1 Excess current in superconductor-semiconductor junction

luﬂ - T T T 1 I L]

——— e —— J T

- 8.6 K .

Figure 3.3: Normalized differential conductance - bias voltage characteristic at different
temperatures for Nb - InGaAs junction [17].

Fig. 3.3 shows this anomaly in the differential conductance of a Nb - InGaAs junction as
a function of bias voltage for different cryostat temperature. The BTK model predicts that
for a N-I-S junction the sub-gap conductance decreases with a decrease in the temperature.
This is same as observed in the experiment from 8.5 to 2.5 K. However on further lowering
the temperature the differential conductance no longer decreases at zero bias. On the
contrary, the peak in the differential conductance at low bias increases. The enhancement
of the differential conductance at zero bias and for low temperature was incompatible with
the BTK model.
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3.3.2 Qualitative explanation of zero bias anomaly
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Figure 3.4: Van Wees et. al. qualitative model of the excess conductance in a S-I-N tunnel
jJunction at low temperature. It consists of three sections: the pure superconductor, the pure
normal metal reservoir and the section near the junction with impurities.

Van Wees et. al. [15] gave the first qualitative picture of zero-bias anomaly by consid-
ering the quantum coherence of the electron and the disorder in the electrodes. Fig. 3.4
shows the schematic of the N-S junction with disorder/impurities in the electrodes. The
electron with energy & < A is incident from N towards the barrier. Since there is no
single quasiparticle state within the superconducting gap, the electron gets mainly specu-
larly reflected from the barrier. The probability of Andreev reflection is very small. The
specularly reflected electron undergoes elastic scattering from impurities (asterisk in Fig.
3.4) leading to trajectories re-directed towards the barrier. The two-electron tunneling
amplitude at each point on the barrier is immune to the phase-randomization induced by
the disorder and therefore adds coherently for the transfer of the electron pairs. Therefore,
disorder increases the probability of transfer of electron pair across the N-S junction.

3.3.3 Flux modulation in NS-QUIDS

Pothier et. al. [18] demonstrated the constructive coherence in the N-S junction with a
fork geometry (see Fig. 3.5). In the NS-QUID the iterative tunneling involves two different
parts of the barrier with a superconducting phase difference 6. An external magnetic field
is used to tune the phase . For instance at 6 = 7, the electron pairs undergo destructive
interference and the sub-gap conductance decreases. The NS-QUID measures the phase-
coherent Andreev current as a function of the imposed superconducting phase difference
and explicitly shows the constructive and destructive interference due to phase-coherent
Andreev current in a N-I-S tunnel junction.
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Figure 3.5: Pothier et. al. experiment on a NS-QUID. A normal metal (Cu) overlaps an
ozidized superconducting (Aluminium) fork-shaped electrode.

Fig. 3.6 shows the enhancement of the sub-gap current in the device at a very low
temperature. The left top inset shows the current - voltage characteristic of the junction
without (complete line) and with (dashed line) external magnetic field (100 mT) at T =
27 mK. The bottom right inset shows the magnetic field dependence of the current. The
conductance was periodic with respect to the magnetic flux in the closed loop.

This experiment clearly illustrated the existence of phase-coherent Andreev current in
which the disorder in the normal metal electrode confines the electrons near the junctions.
The enhancement in current is much larger than the prediction from the ballistic BTK
model [14]. Moreover the current was strongly modulated by the external magnetic field.
The experiment was in excellent agreement to the theory but needed a fitting re-scale
factor of around 2.

3.4 Quantitative model: Hekking and Nazarov

The qualitative explanation of enhancement of differential conductance in the N-I-S junc-
tion considered the highly transparent interface in between the two metals. It means that
the resistance Ry of the boundary is small or comparable to the normal state resistance.
But the experimental situation is on the contrary, with the sub-gap conductivity much
lower than the normal state conductivity. The Andreev current in a N-S structure can be
obtained from the linearized Usadel equation. This has been done by Volkov [30]. However
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Figure 3.6: Pothier et. al. experiment on a NS-QUID. Current - voltage characteristic ob-
tained across the junction at 27 mK with (complete line) and without (dotted line) magnetic
field. The bottom right inset shows the modulation of current as a function of magnetic
field. The top left inset shows the direct I-V at H = 0 (solid line) and H= 0.1 T (dashed
line).

in the following we shall follow the tunnel hamiltonian approach as worked out in Ref. [16]
to calculate the phase-coherent Andreev current across the N-I-S junction.

The first quantitative analysis on the enhancement due to phase-coherent Andreev
current was done by Hekking and Nazarov [16]. For clarity, the detailed calculation has
been included in Appendix B. The total Hamiltonian of the the N-S junction is given by:

~

H = Hy + Hs + Hy.

The subscript N and S refer to the normal and superconductor Hamiltonian respectively.
H ~ and H s are described by the electron operator a and a' in case of N and by quasiparticle
operators v and 7' for the superconductor. The transfer of electrons across the tunnel
barrier is described by the tunnel Hamiltonian Hy [21]. The tunnel Hamiltonian can be
written as:

I/‘\IT = Z[tk pCLk prg + tkpr /dk g]

with ¢, being the phenomenological matrix element associated with the transfer of charge
across the barrier; the subscript & and p refers to normal metal and superconductor elec-
trode. Using the second order perturbation theory in Hp, we can calculate the total
amplitude of the transfer of electron pairs from N to S:
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R 1 1
AN"S = Z tk?,ptkl,p[vpaLQT[Ep . fkl + Ep . £k2]upalt:ll]' (31)

p

with &, and ¢ being the electron energies for the normal metal and the the superconductor
respectively. The quasiparticle energies are £, = /A2 + ¢2. The denominators in Eq. 3.1
reflect the fact that a virtual state is formed when the first electron enters the supercon-
ductor as a quasiparticle. This is subsequently coupled with an another quasiparticle to
form a Cooper pair. The total rate of tunneling from N to S is then given by the golden
rule:

Iy_sg=2x 2% X Z AN—s*f (&) f (Ex2) S (Ep1 + Ex1 + 2eV). (3.2)

k1,k2

where the factor 2 is due to the other possibility of the spin and f(&) is the Fermi function
in the normal metal. A similar representation can be written for the electron transfer from
StoN (F N— S)-

Eq. 3.2 requires the knowledge of the dependence ¢;, on the wave vectors £ and p.
In order to make a connection with the standard diagrammatic techniques for diffusive
systems, we will re-write the tunnel matrix element in real space coordinates. The tun-
nel matrix element ¢;, can be written in terms of the complete set of functions for the
disordered electrodes:

thp = /d3rd3r/¢p(r)¢2(7’/)t(r, ), (3.3)

where ¢,(r) forms a complete set of one-electron wave functions in the electrodes, and
t(r,r") describes the tunneling from a point r in the superconductor to ' in the normal
metal. Further, we define the propagator from 7’ to r: Ke(r,7') = >, 0(§ — &) or(r) 03 (1)
(see Appendix A). We assume that tunneling predominantly occurs between the neighbor-
ing points at the barrier, thus t(r,r") = ¢(r)o(r — ')d(z — 23), where z, is a point on the
barrier and also inserting the identity 1 = [d€ d€'dsds’ 6(& - ££1)0(€7 - Exa) (S - $p1) (S - Sp2),
we get:

D = o [ ded€dedd [ F(ENN(E +€ + 26V o]

1 1
[§+6V—Ep+£’+eV—Ep

JEn—s(s,¢"1€.€), (3.4)
where we define the quantity

EN—>S(§> §,§ §, 5/) = / d27“1d27"2d27’3d27"4t* (Tl)t* (Tz)t(TB)t(7”4)

barrier

Ke(ra, 1) Ker(r1,73) Ko (11, 72) Kot (13, 74). (3.5)

Fig. 3.7 represents the physical meaning of Eq. 3.4 by depicting it diagrammatically.
The cross r; for i = 1,..,4 corresponds to the point of tunneling to either side of the barrier
with amplitude ¢(r;). The solid lines correspond to that of propagator K which depicts
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Figure 3.7: Diagram corresponding to Eq. 3.4. FElectrons tunnel at point m and 3 (marked
by crosses) across the N-S junction. Solid lines show the propagation of the electron with

energy & and &’ in the normal metal (N) and energy ¢ and ¢’ in the superconducting (S).
Crosses at ro and r4 corresponds to the tunneling points in the barrier.
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the propagation of the electron due to disorder. The two-electrons tunnel into the normal
metal from the superconductor with an energy ¢ at r; and ry, propagate in the normal
metal with an energy £ and &’. The diagram also takes into account the time-reversed
process.

One can compare Eq. 3.4 with the BTK model, if the area of the junction (S) is compa-
rable to A% (with Ap being the Fermi wavelength). In such situation, all the crosses (Fig.
3.7) on the barrier are separated by a few Fermi wavelengths such that the components of
momentum k| and p; parallel to the barrier are quantized, leading to the discrete number
of channels. Assuming that the scattering is negligible, the electrons have a ballistic motion
in electrodes. The sub-gap conductance (Using Eq. 3.4) is given by Gys = GinyRo/(k%S)
with Gy the normal state conductance of the tunnel barrier, Rg = h/2e? the quantum
resistance and Gyg the sub-gap conductance due to two-electron tunneling. The effective
number of channels contributing to transport N,.sr = G3yRo/Gns. For such a case, the
contribution depends on the properties of the tunnel barrier only. This gives a result which
coincides with the BTK theory. In the opposite limit, the electrons move diffusively in the
junction region. Due to interference between incoming and backward electron waves, Ncys
will decrease, whereby increasing the conductance due to two-electron tunneling. This is
the 'phase-coherent Andreev current’.

Based on Fig. 3.7, the two-electrons tunneling across the N-S junction can be driven
by three possibilities. Fig. 3.8 depicts the three possible cases.

Possibility 1: The interference contribution originating from the normal metal. It
means that crosses in Fig. 3.7 are defined as: r; ~ ry and r3 =~ ry. Fig. 3.8(a) depicts this
situation.

Possibility 2: The interference contribution originating from the superconductor. It
means that crosses in Fig. 3.7 are defined as: r; ~ r3 and ry ~ ry. Fig. 3.8(b) depicts this
situation.

Possibility 3: The interference contribution originating from both the normal metal and
the superconductor. It is essentially the total contribution due to the interference discussed
individually above. Fig. 3.8(c) depicts this situation.

The average over impurities in the respective electrodes can be done by averaging
the products of propagators in Eq. 3.4. It means that the impurity averaging leads to
definition of Cooperon. The Cooperon is a long-ranged space-dependent quantity with a
characteristic length scale |7] — 75| given by \/h D/E , which satisfies the equation

with D being the diffusion coefficient. It can be related to the propagators K as:

14
< Ke(71,72) Ko (72, 71) >= ﬁ[Pé—f’(Tl —19) — Po_e(T7 — 13)].
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Figure 3.8: Contribution to the sub-gap conductivity due to interference in (a) the normal

electrode, (b) the superconducting electrode, and (c) both electrodes.
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3.5 Current - voltage relation in disordered N-I-S junc-
tions

In the following, we calculate the phase-coherent Andreev current for our sample geometry.
In section 3.5.1 we have re-calculated the phase-coherent current based on Hekking and
Nazarov formalism. In the next section (3.5.2), we solved the differential equation involving
the Cooperon for our considered geometry. In the last section 3.5.3, we have calculated
the full expression of the phase-coherent Andreev current. In comparison to Ref. [16], our
expression is valid for A > eV > kT and the prefactor is obtained more precisely.

3.5.1 Phase-coherent Andreev current

The total phase-coherent Andreev current is given by In,,. nrs = 2¢(I'y_s — 's—n), due
to the transfer of electrons in a N-I-S junction by taking into account the averaging over
the disorder in the normal electrode. It is given by:

87 evd Fs(kpl)
2rh ki

/dQR[t(R)]4] /dfdﬂkl(f(g) — f(§+2eV))[veug][vous]

— 1
E+eV —-LE, ¢+4+eV-FL,

I NS =

/ 01 {Pag ey (1) + Paeaer ()], (3.7)

with F3(kpl) being the dimensionless integral defined as :

Fs(kpl) = /d%d%sm[u]ei;l Sm[v]ei;l. (3.8)
U v

A similar expression can be obtained for the total current, Ig, . nrs due to two-electron
tunneling in a N-I-S junction by taking into account the averaging over the disorder in the

superconducting electrode.
87 vd Fy(kpl
Ispors = o0 Folhrl) [ Erir [ dedsad (7€) - 1€+ 26Vl o)
2rh kg
1 1
[ +
E+eV—-E, ¢+eV-E,

] / Pr[P_o(r) + Pro(r)]. (3.9)

The total phase-coherent Andreev current through the N-I-S tunnel junction is the sum of
Eq. 3.7 and Eq. 3.9, which constitutes the central result of this section. It clearly shows
the importance of the phase-coherence transport due to disorder in a N-S tunnel junction.
The interference effects have been taken into account by averaging the possible scattering
events inside the electrode, which is in the Cooperon. Therefore, the subgap transport in
the N-I-S tunnel junction depends on both the properties of the barrier and the disorder
in the electrodes over a phase-coherence length. In the next section, we will calculate the
total phase-coherent Andreev current for our sample design.
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3.5.2 Cooperon solution in quasi 1-D diffusive wire

As seen in the previous section, the Cooperon solution (Eq. 3.6) depends on the disorder
in electrode and in turn on the layout of the sample. Here, we calculate the total phase-
coherent Andreev current for a quasi 1D diffusive wire, with a cross-section area A oss,
connected to a superconducting electrode by a point-contact tunnel junction at 7 = 0.
The spectral current related to Cooperon can be obtained by solving Eq. 3.6 for a 1D case
such that Ly g > Ao,

Normal metal W Superconductor

Figure 3.9: Layout of the design considered. Here the normal metal (N) is connected to a
superconductor (S).

Thus Eq. 3.6 can be written as:
P(x1, 1)
da?
The above diffusion equation is solved for the boundary condition dP/dz = 0 at the barrier,

indicating no current. Upon Fourier transform, we obtain the Cooperon in momentum
representation,

—hDd?

—ieP.(x1,x9) = 0(x1 — m2).

1
P(k,e) =
k€)= FDkz —ie —hjry

with 74 being introduced as a cut-off time to the Cooperon diffusion in the electrode. The
Cooperon can be transformed back in the real space and time

o(t s x? t

3.5.3 Full expression for the Andreev current

Now we will calculate the Andreev current for the given geometry with the Cooperon
defined as above. The local barrier tunnel conductance by considering the averaging over
the disorder can be written as (see Appendix A):

47T€21/(O)2F1(]€Fl) 2
W R

Now, we consider a uniform tunnel barrier such that Gy is the total normal state con-

ductance across the junction. Gy is defined as:

4re’v(0)2SFy (krl) ,
hk?, o

gyn(R) =

GNN = / d2R gNN(O) = (311)
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Figure 3.10: Calculated Andreev current - voltage characteristics for quasi 1D diffusive
normal metal wire connected to a superconductor as a function of bias voltage. The dot
- dashed line corresponds to interference originating from the superconductor (Is,,. nis
from Eq. 3.14). The dotted line corresponds to interference originating from normal metal
(In,...n1s from Eq. 3.13). Complete line : 1o(V) = In,...n1s + Is,,..n1s. Parameters :
Ryn = 2K, A = 0.2meV, T = 50 mK, Aposs = 50 nm x 0.3 pm, D = 80 cm?/s, 7,
= 300 ps.

The total phase-coherent Andreev current across N-I-S junction (eV < A) is the sum
of Eq. 3.7 and Eq. 3.9:

I(V) = INyye,N1S + L8400 N1 (3.12)

G2 BFs(kel)A? 1
8006 [ (ki )]v/D 2Acronsh / ALF(E/2 = eV) = [(/2+ V)]
1 1 1 (3.13)

[
A2 — &2 4 /1 i€ 1 i€
[ f / ] Te h T h

IN,.NIS =
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Is,e, N1 = (3.14)

AG2, B2 Fy (kpl) A2 / dt 5/2 ) f(&/2+eV)
25/27/063[F1<kFl)] \/_ZAcross — 62/4]5/4

These equations constitute the central result of this section. Here, we have calculated
the phase-coherent Andreev current by doing the averaging over the disorder on either
side of the barrier namely, normal metal and the superconductor. The above results are
valid for A > eV > kT. It is worth noticing that both the contributions diverge near the
threshold voltage (A) indicating the breakdown of the perturbation theory.

Let us discuss the relevant length scale of the diffusion of the Andreev pairs in the
electrodes. Fig. 3.10 shows the different components in the phase-coherent Andreev current
arising due to disorder in the normal metal and the superconducting electrode along with
the total current due to the two processes. For simplicity, we have taken the diffusion
coefficient to be identical in the normal metal and the superconductor. The parameters for
calculation are similar to that of our sample. We have taken the phase-coherence length as
the cut-off length for the diffusion of the Cooperon. The part emerging from the normal
metal is more sensitive to the disorder and adds to the zero bias anomaly.

3.5.4 Temperature dependence of the Andreev current

The total current across the N-I-S tunnel junction is the sum of single quasiparticle current
(I7) and the phase-coherent Andreev current (14), so that Iy_; g = I+ 14. For A > kT,
and 0 < eV < A, the quasiparticle current contribution to the total current can be written
as:

eV —A
I(V) ~ [ —. 3.15
(V) = Do expl == (315)
where [ = eﬁn %. Thus, quasiparticle current reduces exponentially with temper-

ature. At very low temperature, the quasiparticle current contribution almost goes to
zero for sub-gap bias voltage. In comparison, the phase-coherent Andreev current depends
mostly on the transparency of the junction rather than on temperature.

Fig. 3.11 shows the comparison of the quasiparticle current and the phase-coherent
Andreev current at a temperature of 300 and 100 mK respectively. For Andreev current
we consider the disorder on either side of the junction so that, [4(V') = In,,. n1s+1s,,. N1s-

For T = 300 mK, the quasiparticle current is always greater than the phase-coherent
Andreev current. For T = 100 mK, in most of the region the quasiparticle current is much
smaller than the phase-coherent Andreev current. For bias close to the gap, quasiparticle
current subjugates Andreev current due to the tunneling of high-energy quasiparticles.

3.5.5 Relevant cut-off length of Andreev pair

For the two-electrons to interfere constructively, they should have zero phase difference
between them. At zero voltage, energy (compared to Er) indeed it happens, so that the
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Figure 3.11: Clalculated current-voltage characteristic of the N-I-S junction at T, = 300
and 100 mK. The complete lines show the contribution due to quasiparticle current and
the dotted lines show the phase-coherent Andreev current. Parameters : Ryy = 2 K2, A
= 0.2 meV, Aposs = 50 nm x 0.8 um, D = 80 ecm?/s, 74 = 300 ps.

phase acquired by the electron is canceled by the hole, which retraces the same trajectory
as that of the incident electron.

However, the Andreev reflection is a perfect retro-reflection only for the electrons at
the Fermi energy [31|. Fig. 3.12 shows the retro-reflection of the incident electron above
the Fermi energy. For an incident electron above the Fermi level Er + €, kp + § k/2, the
reflected hole is given by Er—e, —kp+0 k/2. This leads to a wavevector mismatch between
the incident electron and the reflected hole which is linear in energy : dk = 2¢/hAvp. If the
two-electrons originating from the superconductor have an energy F, then after diffusion
over a distance Lg from the interface, the phase-shift becomes 7 and the two-electrons no
longer undergoes constructive interference. This energy dependent length scale is given by:

hD
be=y\"g

with D being the diffusion coefficient in the metal. The resulting L at E = 0, leads to
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Figure 3.12: Schematic of the Andreev reflection process. An extra electron with an extra
energy € compared to the Fermi enerqgy Er of the superconductor hits the interface of the
two electrodes from the N side. The reflected hole-like particle and the incident electron
have a slight wave-vector mismatch Ok.

long range coherence responsible for re-entrance effect [32|. For a thermal distribution, the
length scale is determined by the thermal energy kT of the single electron. The resulting
phase-coherence length is given by:

hD

Ly =1/
T kT7

(3.16)
is much larger than the mean free path. It leads to electron pairs adding coherently up to
a distance Ly and hence enhances the sub-gap conductivity near zero bias.

It is also worth noticing that Ly diverges for 7', V' = 0, since the two tunneling electrons
have the same energy, and thus their relative phase is conserved over the infinite distances.
However, the associated low-energy divergence of the sub-gap conductance is spurious and
will be cut naturally by two mechanisms. Firstly the natural decoherence mechanism in
the metal such as electron-electron interactions, electron-phonon interactions and magnetic
impurities will induce decoherence [33]|. Thus, the Cooperon propagation is cut by the so-
called phase-coherence length, L,. Second, if the length of the wire is smaller than the
dephasing length, it provides a cut-off for the diffusion.

Fig. 3.13 shows the differential conductance of the quasi 1D wire as a function of voltage
bias. Here, we have taken the phase-coherence length as the cut-off length for the diffusion
of the Cooperon. It corresponds to three different phase-coherence times namely 1000 ps,
300 ps and 1 ps. As seen, the enhancement in the differential conductance at low bias due
to the phase-coherent Andreev current decreases as we decrease the phase-coherence time.
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Figure 3.13: Clalculated differential conductance as a function of bias voltage across the N-
I-S junction for different phase-coherence times. The calculated parameters are the same
as in Fig. 3.10.

As will be seen in chapter 7 of this thesis, the phase coherence time 7, for our sample is
around 150 ps.

3.5.6 Non-uniform tunnel barrier

In the above quantitative analysis of the phase-coherent Andreev current, we assumed the
uniformity of the tunnel barrier across the junction. Although the barrier is only few nm
thick, in practice the tunnel barrier can be non-uniform (see Fig. 3.14).

We assume the oxide in between the electrode to be a tunnel barrier but of variable
thickness along the junction area. The variable oxide thickness leads to points in the
barrier which have exponentially higher probability for the transfer of the charge across
the junction in comparison to other points.
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Figure 3.14: Layout of the design considered with an non-uniform barrier.

The impurity averaged Andreev current through N-I-S junction can be written as:
E E
L= [ ABIEB)ACG = V) - (5 + V)

where I(FE) is the spectral current as

h

I(E) = 863—V(0) /bamér d*rid®ragnn (r1) gy (r2) [Pe(0) + P-g(0)]. (3.17)

We consider the contribution to the transfer due to the points which has higher probability
for the transfer of charge. Thus the integral over local conductance of the junction in Eq.
3.17 for the two particles can be written as:

/d rid*ragnn (1) gnn (12) ZGNN )GN(R;)

= [Z Gun(R:)* + Z Gnn(R:)Gyn(R;)].

i g

The tunnel conductance at N such points is assumed to be same, we get

N(N -1 N -1
M= D) = vagule T

/d2T1d27“QgNN(T’1)GNN(7"2) = [NG%VN + 2

Thus Eq. 3.17 can be written as:

h  G3 N -1
I(E) = NN
(E) 8e3v(0) N 1+ 2

1[P&(0) + P-g(0)].

Therefore, the enhancement of current across the N-I-S junction due to constructive inter-
ference averaging on the impurities will be further re-scaled due to the non-uniform tunnel
barrier. It could explain the re-scaling (re-scaling factor > 1) done in the experiment of
Pothier et. al. [18] and also in the experiment chapter 7 of this thesis [34].
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3.6 Heat contribution due to phase-coherent Andreev
current

Andreev current is most of the time in the literature is referred as a dissipationless current
[35]. The naive picture behind this folklore is the one which shows the two-electrons
tunneling across the junction at the Fermi energy. It gets even more boosted when no
voltage drop is measured in a S-N-S junction which allows for the flow of suppercurrent
[36].

As discussed for a N-I-S tunnel junction the probability of transfer two-electrons is
mainly dominated by the interference induced by the disorder in the electrodes [25]. In
the following, we will calculate the heat contribution due to the phase-coherent Andreev
current. We consider a tunnel barrier between the infinitely long normal metal and super-
conductor. The heat transfer due to the two-electrons tunneling from N to S is obtained
from Eq. 3.2 as:

Onveos = 5037 Al (€n + Gio) F(662) (€62)0(Gr + Eia +26V),

k1,k2

and that of the reverse process is given by:

Qs—n = 4% D AN PG+ &)L = FEGDIIL = F(Ek)10(Er + & + 2¢V).

k1,k2

The net heat transfer out of the normal metal is given by Qouto N = Q NS — QSH ~. Thus
we get,

QoutofN = 4% Z | AN s (€p1 + Ea) [f (Ex1) + f(Era) — 1]6(Epr + Epa + 2€V)

k1,k2

- 4% Z |AN_)S|2(_2€V>[f(§/€1) - f(gk;l + 26‘/)] = _IAndreev«V (318)
k1

In the above equation we can replace the sum over k1 with the integration over the continues
spectrum, Y, ... — 15 [ dExNn(Egx)Ny(Ej,+2eV) over the density of states per unit spin.

Eq. 3.18 gives the heat carried by the Andreev current out of normal metal. It is worth
noticing that the negative sign gives the direction of heat dissipation. The Andreev current
induces dissipation like Joule dissipation and with the heat going in the normal metal.

Using the above definition of the work done by the source on the device, the heat engine
schematic of the device can be given by Fig. 3.15. In comparison with the N-I-S schematic
in chapter 2, the external source dissipates heat in the normal metal only.
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Figure 3.15: Carnot heat engine diagram for the Andreev current in a N-I-S device.



Chapter 4

Sample fabrication and experimental
techniques

4.1 Introduction

Discovery of various new phenomena in the last two decades in mesoscopic physics is a
direct consequence of advances in the fabrication of samples at the nano-scale. Litho-
graphic techniques such as ultra-violet lithography, field emission lithography, enable one
to fabricate samples at sub-micron scale, which are highly stable and reproducible. One
of the most famous techniques of lithography is electron beam lithography (EBL), which
uses a focussed beam of high energy electrons to expose an electron-sensitive resist on the
substrate. The resolution of EBL is much higher (50 nm) than the optical lithography
due to the short wavelength of high energy electrons. High resolution and reproducibility
makes EBL an attractive technique to pattern a sample at sub-micron scale.

In the following, we will describe the various processes involved in the fabrication of
our samples. Most of the processes are rather well established now. The various steps
involves spinning the resist on the wafer, then exposing it by EBL to pattern the desired
mask and then perform a shadow evaporation of various metals with the desired oxidation
step. Then we discuss the measurement technique involved in characterizing the samples.
A detailed schematic description of the cryostat wiring and the electronic circuit is done.

4.2 Nano-fabrication

Here we will discuss the various steps involved in fabricating most of our devices. For all
samples in this thesis, we use a Si wafer with a thick layer (500 nm) of SiOy on it. The
wafer is first cleaned with plasma oxygen reactive ion etching (RIE) for 1 min.

49



CHAPTER 4. SAMPLE FABRICATION AND EXPERIMENTAL
50 TECHNIQUES

4.2.1 Bilayer resist coating

Substrate are coated by a conventional bi-layer PMMA. The process is rather well estab-
lished in which the substrate is coated with a positive resist.

Bottom layer: The substrate is first coated with a PMMA-MAA which is a positive
resist, whose role is to sustain the upper layer of resist with a significant undercut. PMMA-
MAA is diluted at 90 g/1 in 2-ethoxyethanol, filtered with 0.2 um filters. The PMMA-MAA
is spinned at 2000 rpm for 60 s. Subsequently, the resist is baked for 5 minutes at 180
degree Celsius on a hot plate. It produces a total thickness ~ 900 nm.

PMMA-MAA
33%

Si - substrate

Figure 4.1: Schematic representation of the bilayer resist coating on the top of the substrate.
The PMMA-MAA bottom layer is 900 nm thick and the PMMA top layer is 100 nm thick.

Top layer: The upper resist is a PMMA - 4 percent (very high molecular weight), 2
percent in O-xylene constitutes the mask. It is spun at 5000 rpm for 60 s and subsequently
baked for 30 minutes at 160 degree Celsius on a hot plate. This resist is baked at slightly
lower temperature than the first layer so as to limit the stress between the layers. It is
also important to use a rather weak solvent for this layer, to prevent the intermixing of
the two layers. It produces the typical thickness ~ 100 nm making the total thickness of
the bi-layer of about 1000 nm.

4.2.2 Electron beam lithography, the EBL

The invention of electron beam lithography in late the 60 s and the discovery of a common
polymer, the polymethyl methacrylate (PMMA), as e-beam resist led to a rapid success
in nano-fabrication. Despite sweeping advances in EBL, PMMA still remains the most
common e-beam resist in most of the labs. EBL is preferred over optical lithography
since it has no perturbation due to diffraction limit of light and can make features in the
nanometer range. It can make masks with high resolution and high reproducibility. The
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most important drawback of EBL is low speed, which is crucial for industry but is less
important in a laboratory environment.

The principle of the e-beam lithography is based on the interaction of high energy
electrons onto the sample coated with an electron sensitive resist. High energy electrons
focussed onto the sample penetrate both the polymer (PMMA) and copolymer (PMMA)
to make the desired pattern.

e beam

Diffusion
of )
electrons|

Si - substrate

Figure 4.2: Schematic description of the electron beam lithography step. Here, an electron
sensitive resist is exposed to a high energy electron beam to form the desired pattern.

Fig. 4.2 shows the schematic description of the involved process. High energy electrons
from the beam are absorbed by the resist, leading to the breaking of PMMA and PMMA-
MAA polymer chains into fragments of smaller molecular weight, which will be dissolved
by the developer in the subsequent process. PMMA-MAA has a broader exposed region
in comparison to the top resist. This is due to high sensitivity of PMMA-MAA towards
the electron beam in comparison with the top polymer. Also, the electrons backscattering
from the substrate leads to an extra profile in the bottom layer.

Most of the samples made in this thesis have been fabricated in a Leo 1530 electron
beam lithography with a 20 keV electron beam. It is equipped with a software Elphy from
Nano Raith, in which the design of the desired mask are made. EBL has a resolution to a
line width of less than 50 nm.

4.2.3 Development of resist

The standard development process for PMMA uses a solution of Methyl Isobutyl Ketone
(MIBK) with Iso-Propyl Alcohol (IPA). MIBK is a strong developer of the PMMA so it
is diluted with IPA. The development process is typically arrested by the solution of TPA.
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IPA is often considered a non-solvent, but in case of PMMA it is appropriately termed as
a weak solvent.

A cold mixture of IPA and distilled water can be used as developer. Water by itself
cannot develop PMMA, however, when it is in a solution with IPA it becomes a co-solvent.
While this development system may have the potential to produce little to no swelling of
the resist (unlike MIBK), and very good resolution and line roughness, the needed cold
bath was not readily available, and this method of developing was not pursued in this
thesis. It is mentioned here for a reason that it may provide a less hazardous and more
effective alternative to MIBK.

In this thesis, bilayer polymer and copolymer chains are developed in a 3:1 mixture of
Iso-propanol-2 and MIBK (2-propanol : methyl-isobutyl-ketone ) for 35 s and then flushed
with IPA for 60 s. As a last step, a short anisotropic high pressure oxygen etch is done in
a reactive ion etcher to remove the last PMMA-MAA remnants left on the substrate. The
suspended mask is now ready for the metal evaporation.

Figure 4.3: Development process using MIBK/IPA solution.

4.2.4 Metal deposition

After the completion of the mask, the different metals are deposited accompanied with
the in-situ oxidation. Most of the samples discussed in this thesis were made in a ultra
high vacuum with a electron gun evaporator at a base pressure of below 1072 Torr. The
samples are made with a shadow evaporation technique. In the following, we will discuss
the electron gun evaporator and the shadow evaporation.

The sample is placed on a sample holder which is positioned upside down in a ultra
high vacuum chamber. On the bottom of the chamber is a movable source with 5 different
materials such as: copper, aluminium, niobium, silicon and gold.

All the samples in this thesis are made from Al and Cu. A high energy electron beam is
used to evaporate one of the metal. A e-gun evaporator can be used to evaporate material
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Figure 4.4: Photograph of the ultra high vacuum deposition chamber used to fabricate the
samples.
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with high melting point. Then the materials are deposited at a rate of about 0.2 nm/s
with a pressure of deposition chamber lower than 5.10~% Torr.

The shadow evaporation technique exploits the large undercut of the bottom resist of
the mask to evaporate two or more different materials. The sample holder can be tilted so
that different angles can be used for evaporation without breaking the vacuum.

By evaporating the metals in two steps with a difference in angle 6 through a suspended
resist mask, the structures are shifted with respect to each other by a distance d given by
d = 2.h.tanf, where h is the thickness of the resist. In some cases, some additional
structures from shadow can be prevented by depositing at sufficient large angle 6. It
deposits the material on the side wall of the resist, resulting in a removal during lift off.

Following is the typical process involved during the evaporation of our sample:

Step 1: Deposition of aluminium

First the Al is evaporated through the mask with an angle.

Aluminium

Figure 4.5: Schematic representation of the Al atoms at an angle through the suspended
resist mask.

Step 2: Oxidation of aluminium electrode

In our samples the quality of tunnel barrier is extremely important. There are many
ways to fabricate a tunnel barrier, however the use of aluminium oxide (AlyO3) as a tunnel
barrier is particularly easy and it has been proven to be a reliable barrier over many years
in superconducting tunneling experiments.

In order to prevent the contamination of the other material due to oxidation, we per-
form the oxidation of our sample in a separate chamber called load-lock. After the first
evaporation, the sample is transferred into the load-lock without breaking the vacuum. The
pure oxygen is let into the load-lock vacuum chamber for a few minutes and the tunnel
barrier is formed on the Al electrode.
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Figure 4.6: Ozxidation of the deposited Al atoms in the presence of pure oxygen.

The contact resistance of the junction depends mainly on the pressure/amount of the
oxygen present inside the chamber and also on the time of oxidation.

Step 3: Evaporation of copper

After the tunnel barrier is formed on the top of Al electrode, the Cu is evaporated at
a different angle so as to make a Al-AlO(x)-Cu junction.

Figure 4.7: Schematic representation of the evaporation of the Cu atoms at a different
angle through the suspended resist mask in order to form a Al-AlO(z)-Cu tunnel junction.
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4.2.5 Lift-off

The last process is the lift off. For our delicate samples, we put the samples in the acetone
and wait till all the residual material has lifted off. Then it is flushed with cold Iso-propanol.
The use of ultrasonic agitation is avoided as it can destroy the complete sample. Now we
use NMP heated at 70 degrees Celsius for the lift off.

4.3 Example: Fabrication procedure of the individual
samples

Here I will discuss the fabrication process of two different samples namely the cooler sample
and the phonon thermometer. For both of these devices Al is used as a superconductor
and Cu as a normal metal. In the cooler sample, we have made several different versions
which will be discussed in this thesis. In the following, we will discuss only the main design
of the nano-cooler sample. In the following, the description of different processes for the
nano-cooler sample shall be discussed.

The aim is to fabricate a cooling device which will cool an isolated normal metal using
quasiparticle tunneling. For S-I-N-I-S coolers, the isolated normal metal is a Cu connected
to superconducting Al electrodes through tunnel barriers.

The design requirement:

1. The Cu normal metal is an isolated small island connected to the large supercon-
ducting reservoirs.

2. To increase the cooling efficiency, the normal metal should have a minimum contact
surface to the substrate and also the tunnel junction should have a maximum junction
surface/volume ratio.

3. The quality of tunnel barrier is one of the main requirement of our device. The
tunnel resistance between the normal metal and the superconductor should not be very
high, as it will reduce the cooling power. On the other side, there should not be any defects
and pinholes in the barrier. For most of our cooler junctions the achieved transparency is
of the order 107°Q.um?.

Nano cooler fabrication:

Fig. 4.8 shows the scanning electron micrograph of one of the cooler devicees. The
device consist of the central Cu island connected to the two large Al line with a tunnel
barrier making a Al-AlO(x)-Cu-AlO(x)-Al junction. This is called the cooler as the central
N island is electronically cooled due to extraction of quasiparticles through the supercon-
ductor tunnel junction. Typically, the central Cu island is 50 nm thick, 4 or 5 pum long
and 0.3 um wide and it is embedded between the two 40 nm thick and 1.5 ym wide su-
perconducting Al electrodes. The tunnel barriers at the symmetric junctions of dimension
1.5 x 0.3 um? are made by oxidation in 0.2 mBar of oxygen for 3 minutes and this gives
a total normal - state resistance R,, in the range 2-3 kf). The Al electrode is made wide
in comparison to the Cu island, so that Cu obtained from the shadow on either side of Al
act as traps.
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Figure 4.8: Scanning electron micrograph of a cooler sample. Top micrograph shows the
entire sample with the 3 Al-AlO(z)-Cu probe junctions. Bottom micrograph shows the zoom
of the cooler junction. Here the central Cu island is connected to two superconducting Al
reservoirs through a tunnel barrier making a S-1-N-1-S junction.
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In addition to the cooler junctions, there are 3 Cu tunnel junction of area 0.3 x 0.3 ym?
on one side of the Al electrode. These are called probe junctions. In comparison to the iso-
lated cooler island, the Cu on the probe junction is connected to a big reservoir. Therefore
the Cu on probes are strongly thermalized to the bath temperature of the cryostat.

4.4 Measurement apparatus

In this thesis the nano-cooler devices are measured in a homemade He3 cryostat and a
homemade dilution refrigerator [37]. To allow the rapid characterization at room temper-
ature, samples resistance are tested with a two point needle measurement.

The refrigeration in the S-I-N-I-S junction is studied with high accuracy in the sub-gap
bias region of about 10~* of the normal state conductance. The current - voltage character-
istics of the sample are obtained by two wires measurement. For a large signal /noise ratio
from the sample an extra care is taken in the wiring of the cryostat. Fig. 4.9 shows the
schematic of the set up. At the top of the cryostat we have a home made room temperature
low pass filter box (shown by RLC) with a capacitance of 220 pF and inductance of 470 pH.
It acts as a low pass filter and protects the sample from the high frequency noise. Since the
current is around few picoAmpere, it is important to filter the electrical noise in the circuit
at low temperature. All the wires from the top to the cold plate inside the cryostat are
made as unshielded twisted pairs to exclude the electromagnetic interference. The wires
from the cold plate to the sample are made to pass through a home-made sample holder
(see Fig. 4.9). Inside the sample holder, the wires from the cold plate are connected to
the sample via resistive micro co-axial lines (resistance 100 Ohm) and commercial pi-filters
which act as a last stage filtering to the sample. A heat link made of thick copper wire
is connected from the cold plate to the shield of thermo-coax to thermalize it. The cooler
chip is glued with a General Electric resist, which has high thermal conductivity, on a thin
gold plated plate, which is a part of the sample holder. The pads of the sample are con-
nected to the pins of the sample holder with a 30 ym diameter Al wire, using a ultrasonic
bonding machine. An important feature of the measuring technique is the matrix box
(shown in Fig. 4.10) which allows the measurement of as many as 12 different junctions
at low temperature. The matrix box is connected in between the electronic box and the
refrigerator. The matrix box is a 12 x 12 line box, where every line can be selected by
inserting a specific pin.

Fig. 4.11 shows the circuit diagram of the electronic box. The sample is current biased
and the voltage across the sample is measured. The current is obtained by applying a
input bias voltage to a bias line consisting of a voltage divider in series with a resistance.
According to the desired load line, this resistance can be switched to several values between
100 MOhms and 100 Ohms with a mechanical switch in a shielded box. The current is
thus not directly measured, but is calculated from the input voltage. The output voltage
across the sample is measured. The voltage drop across the junction in series with the
filter is measured as a function bias current in the sample. A series of current-voltage
(I — V) characteristics are obtained for different current ranges. The offsets in current
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Figure 4.9: Schematic diagram of the set-up. It shows filtering of noise and thermalization
scheme of wires at different stages inside the cryostat. The top right shows the measurement
box connected at the top of the cryostat. The bottom right shows the sample holder (diameter
40 mm) which has 12 connectors.
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Figure 4.10: Measuring box and the matriz box used to measure the sample.

and voltage in each curves are independently deducted. Then all the curves are combined
together to obtain the complete current-voltage characteristic plot for the junction. Most
of the experiments in this thesis are the dc measurement of the current-voltage character-
istics of the junction. The differential conductance dI/dV of every junction is numerically
obtained. In addition to direct current voltage characterization of the sample, we have
also measured samples where two sources are used. For example, in experiments using an
external thermometer (see Fig. 5.4), here we voltage-bias the thermometer junction at a
certain voltage and sweep the current in the cooler junction, measuring the current in the
cooler junction. In such measurements an extra care was taken for the perfect decoupling
between the two sources.

The data acquisition is done using National Instrument card PCI-6529 which is a high-
speed multifunction M Series data acquisition (DAQ) board optimized for superior accuracy
at fast sampling rates. For the easy connectivity to the analog input and analog output,
we have used BNC-2100 which have shielded connectors blocks with signal labeled BNC
connectors. The measurements are done using a Labview program. The time spacing
between two input bias data point is sufficiently large such that it does not interfere the
measurement data points. Each measured data point is averaged over its 2000 data points
so that it leads to a considerable reduction in the noise level.
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Figure 4.11: Chrcuit diagram of the electronics. IN V is used to apply input dc voltage,
which is converted into the constant current source. The amplified output voltage is mea-

sured at OUT V.






Chapter 5

Inherent thermometer in a S-I-N-I-S
cooling junction

5.1 Introduction

This chapter is concerned with the thermometry of the central normal island in between the
two superconducting reservoirs. Accurate temperature determination with high resolution
is a demanding field of research. In this chapter, we shall discuss the current-voltage char-
acteristic of a N-I-S junction. We restrict ourself to the contribution of single quasiparticle
tunneling across the N-I-S junction. Then we shall discuss the experiment done on S-I-N-
[-S cooler junctions with the classical design, which has an external thermometer on the
central N island. The external thermometer is a S-I-N-I-S junction. Later, the experiment
done on our advanced design is discussed, where there are no external thermometers. Here
we will elaborate on the assumption of quasi-equilibrium in the central N island. The ki-
netic equation is used to re-define the electronic distribution in the N island from complete
non-equilibrium to thermal equilibrium electronic distribution. This electron distribution
function is compared with the experimental current-voltage characteristic of the cooling
island. At the end of this chapter, we present the "nouvelle vague" to extract the electronic
temperature from the direct current-voltage characteristic of the cooling junction.

The experiments discussed are samples A, B and C. Samples A and B were cooled down
to 275 mK and sample C was measured till the dilution temperature.

5.2 External electronic thermometer

In a N-I-S junction, one has to distinguish between the two tunneling mechanisms: two-
electron transfer due to Andreev reflection and the transfer of single quasiparticles. The
former is significant only at low bias and at very low temperature, whereas the latter
depends strongly on the temperature. In this part, we will discuss only the quasiparticle
tunneling in a N-I-S junction.

Rowell and Tsui in 1976 [20] demonstrated experimentally that single quasiparticle

63
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Figure 5.1: Calculated characteristic curves for a N-I-S junction with A = 0.21 meV. Left:
Sub-gap current for three different isotherms. Right: Differential conductance vs bias plot
for the respective isotherms.

tunneling is an extremely sensitive and direct tool of measuring the electron temperature
of a normal metal up to values comparable to the energy gap of the superconductor. The
current-voltage characteristic across a N-I-S junction is given by :

N eRN 0

Ry is the normal state conductance, Ng(F) = |E|/v E? — A? is the normalized density of
states in the superconductor and fy(FE) is the electron distribution in the normal metal.
The quasi-equilibrium limit requires the electrons to follow the Fermi distribution function
fn(E) = 1/(1 + eP/FN). Note that Eq. 5.1 is insensitive to temperature of the super-
conductor and depends solely on the electronic distribution in the N-metal. At thermal
equilibrium, the electron distribution is given by the Fermi-Dirac distribution.

Fig. 5.1(a) shows the current-voltage isotherm at 7, = 100 mK, 300 mK and 500 mK
for a N-I-S junction with a gap voltage compatible with aluminium as a superconductor.
The sub-gap current depends strongly on the bath temperature of the normal metal. For

1(vV) AENS(B)[fw(E — V) — fy(E +eV)]. (5.1)
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eV > A, all the curves merge giving the normal state conductance. For A > kT, and 0
< eV < A, the current through a N-I-S junction can be written as [22]:

eV — A

I(V) ~ _[[) exp[W},

(5.2)

where [ is the characteristic current given by:

A TF.]{TTN
IO_eRn‘/ A (5.3)

It means that the slope of the differential conductance (dI/dV’) plot as a function of the
bias voltage (V') in a logarithmic scale is inversely proportional to the electron temperature.
This can be seen in Fig. 5.1(b). The horizontal dotted line shows that employing a constant
current I = I, and measuring the voltage gives a direct measurement of the electronic
distribution in the N island. With a thermal distribution given by a Fermi distribution,
one can obtain the electronic temperature in the N metal. With R,, and A obtained from
the experiment, there are no fitting parameters to obtain the electronic temperature of the
N-metal from the N-I-S junction based thermometer. Thus the extreme sensitivity of the
N-I-S junction to the local electron distribution in N metal makes it an attractive tool for
thermometry of the S-I-N-I-S coolers.

5.2.1 Experiment with an external thermometer

Here, we discuss the experiment done on the sample A (shown in Fig. 5.2). The central
N-island is connected to two superconductors through a tunnel barrier of large area. These
junctions are called "cooler junctions". The two 40 nm thick and 1.5 pm wide supercon-
ducting Al electrodes were in-situ oxidized in 0.2 mbar of oxygen for 3 min before the
deposition of the central N-metal Cu island which is 14 pm long, 0.3 ym wide and 50 nm
thick. The N-island has two small thermometer junctions on it, which are made together
with the cooler junction. The thermometer junctions are also two Al tunnel junctions on
the Cu island with the area of 0.3 pm x 0.3 pm.

The experiment is done in the following manner:

(a) The S-I-N-I-S cooler junction is biased for the desired voltage;

(b) The thermometer is voltage biased with a sub-gap bias and thermometer current is
measured as a function of cooler bias voltage;

(d) The thermometer current-voltage characteristic is fitted with Eq. 5.1 to obtain the
electron temperature in the central N-island. Here it is assumed that the central N metal is
at quasi equilibrium with the electrons distribution given by a Fermi distribution function.

The red curve and blue curve in Fig. 5.3 shows the differential conductance vs bias
plot of the thermometer junction for two different cooler bias. The red curve correspond
to "cooler off" state, Viooper = 0 mV. The dashed line on the Red curve shows the fit with
Eq. 5.1. The fit N-metal electron temperature is 288 mK, which is only slightly higher
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Thermometer Junctions
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Figure 5.2: Sample A: Scanning electron micrograph of a cooler with an external thermome-
ter on the central N island. Cooler and thermometer have two Al-AlO(z)-Cu junctions in
series. The area of the thermometer junctions is 0.3 pm x 0.3 um and that of the cooler
Junctions is 1.5 ym x 0.8 uym. The central N island is 14 pum long, 0.3 pm wide and 50
nm thick.

than the measured cryostat temperature. This agreement shows the good thermalization
of the central N metal electrons to the cryostat temperature.

Now the cooler junction is biased near the optimum voltage, V. e = 0.308 mV. The
blue curve represents the "cooler on" state. The dashed line on the cooler on state (Blue
curve) shows the fit for a N metal electron temperature at 134 mK.

This experiment clearly shows the cooling of the electrons in the central N island when
the cooler is sub-gap biased. Here, the electrons in the central N metal have cooled from
the bath temperature of 280 mK to about 134 mK.

Fig. 5.4 shows the complete experiment on the device using external thermometer.
The thermometer is voltage biased with a bias of 0.35 mV. The thermometer current is
measured as a function of the cooler bias for different cryostat temperatures from 275 mK
to 345 mK. It decreases as the cooler bias increases to its optimum bias shows the cooling
of the N-metal electrons. A further increase in the cooler bias injects heat in the normal
metal, shown by the increase in the thermometer current.

External N-I-S thermometers have been in practice since a long time. Nahum et. al. [4]
used it to show the first electronic cooling of a Cu island in a micro-cooler. Since then, there
has been a lot of advanced version of N-I-S thermometer. Recently, Schmidt et. al. [3§]
embedded a N-I-S thermometer in a L.C resonant circuit to achieve a sub-us readout times.
Jing et. al. [39] used the S-N transparent junction as another possibility to measure the
local electronic temperature from the supercurrent across the junction. There has been
many other thermometers like Coulomb blockade thermometer [40], Anderson-insulator
based thermometer [41, 42| to obtain the local temperature of a normal metal.



5.3 Inherent electron thermometer in cooler junction 67

Cooler ON
134 mK

Cooler OFF
288 mK

10
di/dv

Thermo

10°

-20 -15 -10 -05 00 0.5 1.0 1.5 2.0

eV

Thermo

Figure 5.3: Sample A: Differential conductance characteristic of the thermometer at two
different cooler biases. The blue line is the experiment for the cooler junction at 0 mV
(Cooler Off ). The red line is the experiment for the Cooler biased at 0.308 mV (Cooler
On). The dashed lines are the fit to the experiment. The cryostat temperature is 275 mK.

In the following, we propose a new idea to extract the electronic temperature in the
context of S-I-N-I-S cooler junction.

5.3 Inherent electron thermometer in cooler junction

5.3.1 Introduction

In the previous section, we used an external double N-I-S junction as a thermometer to ob-
tain the temperature of the cooling N metal electrons. However, the external thermometer
complicates the design of the cooler and inhibits the complete understanding of the cooling
junction. In this section, we will discuss the experiments done on a new design with no
external thermometer. The electronic temperature is obtained directly from the current
voltage characteristic of the cooling junction.
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Figure 5.4: Sample A: Cooling data of the device. Thermometer current as a function of
cooler bias voltage at different bath temperatures. The thermometer is voltage biased at

0.35 mV.

5.3.2 Sample with no external thermometer

Fig. 5.5 shows the scanning electron micrograph of one of the cooler devices of a new
design (sample B), where the central Cu island is attached to two superconducting reser-
voirs through tunnel barriers. The two 40 nm thick and 1.5 pum wide superconducting Al
electrodes were in-situ oxidized in 0.2 mbar of oxygen for 3 min before the deposition of
the central N-metal Cu island which is 5 (sample B) or 4 um (sample C) long, 0.3 ym wide
and 50 nm thick.

Compared to the previous design (Fig.5.2), there is no external thermometer junction on
the central N island. The cooler junctions are the same, the cental Cu island is connected to
two superconducting reservoirs via tunnel barriers. In addition to the two cooler junctions,
we added three Cu tunnel probes (one is shown) of area 0.3 yum X 0.3 pum on one Al
electrode. The probe junction is a N-I-S junction but the N-metal, because of the large
volume, is strongly thermalized to the cryostat temperature.
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Figure 5.5: Sample B: Scanning electron micrograph of a cooler with no external ther-
mometer on the central N-island. Cooler junctions are two Al-AlO(z)-Cu junctions in
series. The area of a cooler junction is 1.5 pm x 0.3 pm. In addition to the cooler there
is one of the three Al-AlO(x)-Cu probe junction on one of the superconducting arm of the
cooler junction.

In comparison to the previous design (sample A), a cooler with no external thermometer
can be more efficient due to a large cooler junction area/total volume ratio. This is because
the Cu island is much shorter while the cooler junctions area is the same.

5.3.3 Experiments

The current-voltage characteristic is measured across either the cooler or a probe junction.
The differential conductance dI/dV for every junction is numerically obtained.

Fig. 5.6 shows the differential conductance obtained from the cooler junction and one
of the probe junction in a logarithmic scale at a 278 mK cryostat temperature. The probe
junction characteristic is fitted (dotted line) by an isotherm at 7 = 300 mK obtained from
Eq. 5.1. In a isotherm, we assume that the electron distribution is at thermal equilibrium,
given by a Fermi distribution function. This implies that the electrons in the probe are at
thermal equilibrium to the cryostat temperature, due to the large volume of N metal in
comparison to the cooler junction. The fit temperature on the probe is only slightly higher
than the cryostat temperature.

On the other side, the isotherm does not fit the characteristic obtained from the cooler
junctions. The experiment on the cooler junction and the simulated isotherm coincide
only at zero bias for sub gap bias. At zero bias, there is no heat current out of the N
metal, so the electrons are thermalized to the cryostat temperature. In the sub-gap region,
the differential conductance of the cooler is smaller than the isotherm prediction. This
behavior exemplifies the cooling of the electronic population in the central normal metal.
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Figure 5.6: Sample B: Differential conductance data obtained from the cooler junction and
probe junction at the bath temperature of 278 mK. Top curve: cooler junction data (full
black line) compared with the calculated isotherm at T, = 300 mK with R,, = 2.8 kQ; 2A =
0.42 meV. Red dotted line on the cooler characteristic is the fit with the thermal model in
the device [43]. Bottom curve: complete line shows the characteristic curve obtained from
the probe junction and the dotted line is the calculated isotherm with R, = 5.7 kQ; A =
0.22 meV. The voltage is normalized to 2A (top curve) and A (bottom curve).

Fig. 5.7 shows the differential conductance obtained from the cooler at different bath
temperatures [34]. Again all the plots are in logarithmic scale. As expected, the differ-
ential conductance at zero voltage bias decreases as the bath temperature of the cryostat
decreases. However at very low temperature (7" = 90 mK), the differential conductance at
zero bias does not decrease further. On the contrary, the differential conductance increases
at zero bias when the temperature is decreased.

There are two clear signature differences in the cooling junction data in comparison to
the theoretical isotherm conductance curve (Fig. 3.13). First, the differential conductance
has a curvature in the sub-gap bias in comparison to the linear behavior. Secondly, at
very low temperature the differential conductance has a zero bias anomaly, which cannot
be explained by any linear leakage.
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Figure 5.7: Sample C: Normalized differential conductance of the cooler junctions as
function of voltage bias at different cryostat temperatures. Dimension of the N island :
um long, 0.3 pm wide and 50 nm thick. Normal state resistance Ry = 1.9 k) and 2A
0.48 meV
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5.3.4 Quasi-equilibrium in the S-I-N-I-S cooling junction

A normal metal cooled by electron tunneling is in principle in out-of-equilibrium situation.
The normal metal states are populated due to the electrons coming from the left supercon-
ducting electrode and depopulated by the right electrode. The electron-electron inelastic
scattering equilibrates the energy distribution towards a Fermi distribution. The electron-
phonon coupling thermalizes the electron population to the phonon temperature of the
metal. As a result, depending on the relative magnitudes of the injection, electron-electron
scattering and the electron-phonon scattering rates, different situations can be met.

If the electron-electron and electron-phonon scattering rates are small compared to the
injection rates, then electrons occupy a non-equilibrium fy(F) which can be very much dif-
ferent from the Fermi distribution. If the electron-electron scattering rate is large compared
to the injection rate, the normal metal electrons follows a Fermi distribution fo(E,T,) at
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an electronic temperature 7T.. In the later case, two different regime can be defined. If
the electron-phonon relaxation time is short enough, the temperature of electrons in the
normal metal 7, is equal to the phonon temperature. This is the standard equilibrium
situation. In the opposite case, electrons in the normal metal attain a temperature 7,
different from the phonon temperature. This is a quasi-equilibrium situation.

If heat is injected in the electron population, the electron temperature 7T, will be higher
than the phonon temperature. A hot electron regime is then achieved [44, 45]. In su-
perconducting micro-coolers, heat is extracted from the normal metal electron population
and a cold electron regime is achieved. In every case, the temperature difference between
electrons and phonons is of the order of P/SUT* where P is the power, ¥ is the electron-
phonon constant and U is the metal volume.

In the following, we will solve a kinetic balance equation in the central N - island to
determine the electron distribution. Here we will follow Ref. [46], to describe a electron
distribution in central N island of S-I-N-I-S junction. We assume identical tunnel barriers
and superconductors on either side of the normal metal. It is also assumed that the
superconducting electrodes remain at equilibrium and the energy distribution there is given
by the Fermi-Dirac distribution fy at the temperature of the cryostat (7).

The tunnel current from the superconductor to the normal metal (in S-I-N-I-S junction)
can be written as:

2 o
- BRN — o0
Ry is the normal state conductance of the double barrier, fy is the electron distribution

function in the normal metal and V/2 is the voltage across each N-I-S junction in series.
Ns(E) is the normalized density of states in the superconductor

v

1) X

ABNS(E ~ S(E ~ 5~ (B, (5.4)

E
Ns(E) = T (5.5)

The rate of population of a certain energy level due to injection from superconductor to
the normal metal is given by:

2

- Ns(E — V/DIlE — eV/2) — fu(E)) (56)
and the rate of depopulation of the energy level due to the extraction is given by:
2
T Vs (B4 V) fN(E) = Jo(B +eV/2)]. (5.7)

Within the relaxation time approximation, the inelastic relaxation of the injected quasi-
particles with a certain energy level E in the normal metal is given by:

- fO(T67E)

TE

ALNy(E)e? In(E) (5.8)
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A, L are the cross-section area and the length of the normal metal, Ny(E) the non-
normalized density of states in the normal metal and 7z the relaxation time. Here T, is the
electronic temperature that the normal metal electrons would reach if the electron-electron
scattering is strong enough to ensure the quasi-equilibrium. In the non equilibrium, it is
thus an effective temperature.

At steady state Eq. 5.6 = Eq. 5.7 + Eq. 5.8. Thus we get,

Ns(E — 6V/2>fs(E — €V/2) + Ns(E + GV/Q)fs(E + 6V/2> + fo(E)/(TEF)

E pum—
fn(E) Ng(E — eV/2) + Ng(E + eV/2) + 1/(75T) ’
(5.9)
I'~! being the mean residency time which is given by :
r— 2 (5.10)
~ Ny(Ep)RyALe? '

It is worth noticing that Eq. 5.9 is identical as obtained by Pekola et al. in Ref. [11]
for completely non-equilibrium distribution in N-metal. It describes a crossover from com-
pletely non-equilibrium to equilibrium distribution depending on the thermalization of the
injected N electron in the central N island.

The ratio of the relaxation rate and rate of injection the electron in the normal metal
is mainly accountable for the distribution of the electrons in the central N island. For
7' > 1 the distribution function in the normal metal is different from the equilibrium
Fermi distribution function and if 7gI' < 1, the normal metal follows a Fermi distribution
function. In every case, the current through N-I-S junction is obtained by substituting Eq.
5.9 in Eq. 5.4.

Fig 5.8 displays the complete non-equilibrium (7xI" — o0) distribution function for
different bias at very low cryostat temperature. This plot shows the broadening of the
distribution function up to eV/2A = 1 and later sharpening for higher bias.

Fig. 5.9 displays the differential conductance as a function of voltage bias for both
complete equilibrium (75" — 0) and non-equilibrium (75" — o0) distribution in the
normal metal at different bath temperatures. It is worth noticing that for the two opposite
distribution in the N metal, the differential conductance at the zero bias is the same.

As seen for T' = 320 mK, there is clear dip in the non-equilibrium differential conduc-
tance near zero bias in comparison its equilibrium isotherm. As argued in Ref. [11], the
smaller differential conductance for sub-gap bias voltage could be interpreted in terms of
cooling in the central N island and similarly above gap it is argued as heating. It was
further argued that the cooling - heating cycle gets reversed at very low temperature (7'
= 100 mK) since the differential conductance increases at low bias. In the following sec-
tion, we will argue and present evidence, which shows that our experiments are not in this
regime and the electrons in the cooling N island are at quasi-equilibrium.

Fig. 5.10 shows the differential conductance isotherm for different values of 75!
from 0 to oo at Ty = 320 mK. It shows a cross-over from the complete non-equilibrium
to equilibrium distribution. As the relaxation time for an electron decreases, the isotherm
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Figure 5.8: Complete non-equilibrium (tgl’ — o0) distribution function in the normal
metal for different bias voltages. Parameters for plot: A = 0.21 meV and Ty = 5 mK.

goes from completely non equilibrium to quasi equilibrium distribution in central N island.

For 75I'~! > 20, the quasi-equilibrium characteristic cannot be distinguished from the
isotherm.

5.3.5 Comparison with experiments
The normalized density of states is given by (Ashcroft and Mermin [47]):

2mkF
2h272

In our sample for Cu, we have Ry = 1.4 kQ; kp = 1.75 x 1019 m™; A.L =5 um x 0.3 um
x 50 nm. We thus find the mean residency rate of the electron in the central Cu island
I'~!is of the order of 107 s71.

The inelastic time of scattering in the normal metal is obtained separately by weak
localization correction to the resistance. Magnetoresistance experiment is done on Cu line
made with the same source as for cooling N island. The Cu is of purity 6N (99.9999 %).

Ny(EF) = (5.11)
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Figure 5.9: Differential conductance vs voltage bias plot for complete non-equilibrium
(eI’ — o0) and complete equilibrium (gl — 0) distribution function in the normal
metal for different temperatures. Full and dashed line correspond to the equilibrium and
the non equilibrium distribution for 320mK, 240 mK and 100 mK. Parameter for plot: A
= 0.21 meV.

The dephasing time 7, is obtained by fit using the weak localisation theory [48|. Dephasing
time 7, is found to be 150 ps at 275 mK [49, 50]. This correspond to (75I") ! of the order of
600. As compared to Fig 5.10, the electrons in the normal metal are at thermal equilibrium.

Although the experimentally obtained dephasing time gives a measure of cut-off to the
electron-electron scattering time, we compare the experiment to the calculations with 75.I"
as a free parameter. Fig. 5.11 shows the comparison of the differential conductance of the
cooler with different quasi equilibrium distribution in the central N island. The symbol-
line shows the experiment at 7" = 330 mK along with the simulated curve obtained using
Eq. 5.9. Dotted line, dashed dotted line and dashed dot are simulated curve for Tg'™1 =
10, 50 and 90 respectively at low bias voltage. The full complete line is an isotherm for
complete thermal distribution in the N island. The inset shows the complete comparison
in the sub-gap region. This clearly shows that in the intermediate temperature regime (7T
= 330 mK), the cooler can neither be fitted with a out of equilibrium model nor by the
thermal equilibrium distribution in the central N island.
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Figure 5.10: Differential conductance vs voltage bias plot for different ratio of the relaxation
rate to the rate of injection in the normal metal. Parameters for plot: A = 0.21 meV and

Fig. 5.12 shows the zero bias anomaly obtained from cooler junction at 7' = 90 mK
along with the simulated curve for different 7' ~!. It clearly shows that the enhancement
of zero bias conductance cannot be fitted with a non thermal or a quasi thermal distribution
in central N island. The zero bias anomaly is due to the presence of phase-coherent Andreev
current. This will be discussed in chapter 7 of this thesis. We also conclude that, in our
case, the electrons in the central N island can be considered as being at thermal equilibrium

5.4 Assumption to extract electronic temperature

In order to simplify the extraction of the electronic temperature, we have to make the
following assumptions:

(1) the two refrigerating N-I-S junctions are identical so that there is an equal voltage
drop across each junction. For slight asymmetry between the two N-I-S junction, the total
current across the cooler is little affected. This is due to the singularity of the differential
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Figure 5.11: Differential conductance plot (Sample B) at T = 330 mK of cooler junction
along with the simulated curve at different relaxation time TpI'™' = 10, 50 and 90 at low
bias. Inset shows the complete curve.

conductance at a gap which regularizes the voltage. The error in the current is maximum at
the gap voltage, where the error is proportional to the asymmetry [51]. For our junction,
the difference between the two junctions is less than 5 %. Therefore, for simplicity we
consider the two junctions to be identical.;

(2) leakage channels through the junction are assumed to be absent and also there are
no energy states within the super-conducting gap;

(3) higher order tunneling process is neglected.

In the following, we shall discuss in detail the above assumptions.

5.4.1 Energy states in superconductor energy gap

A non - ideal superconductor can have single electron states within the energy gap (A),
given by the Dynes parameter. The Dynes parameter (7) in the density of states of super-
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Figure 5.12: Differential conductance plot (T = 90 mK) (Sample C) of the cooler junction
along with the simulated curve at different relazation times in the central N island.

conductors is given by [52]:

E 4+
VI(E +in)2+ A2

Ns(E) = |Re (5.12)

1 depends on the phonon induced quasiparticle recombination rate and leads to broadening
of energy gap (A). It is expected to be dominant for strongly coupled superconductor like
Pd and negligible for Al. However, we always include a very small = 107% meV so as to
ensure a good convergence of the numerical calculations.

Fig. 5.13 shows the experiment at the cryostat temperature of 90 mK along with the
simulated non equilibrium curve (7pI'"!) = 0 with different Dynes parameter (). The
complete line shows the experiment with zero bias anomaly. The dotted line shows the
simulated curve with n = 1075, 5x107° and 10~% meV at complete non equilibrium electron
distribution in the N island. It shows that the zero bias anomaly cannot be fitted with the
different n parameter even with a complete non-Fermi distribution in N island.
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Figure 5.13: Zero bias anomaly in differential conductance from the cooler at T = 90 mK
(Sample C) along with the calculated non-Fermi distribution in N island at different n.

5.4.2 Tunnel current due to second order processes

As discussed in the chapter 3 for a tunnel barrier, the amplitude of transfer of electron pairs
due to Andreev reflection vanishes with the transparency of the junction [14]. However
the disorder in the electrode leads to coherent addition of many individual transmission
probability amplitudes for the transfer of electron pairs across the junction. This leads to
an enhancement of the sub gap conductivity [17, 16].

Fig. 5.14 shows the calculated current voltage characteristic across N-I-S junction at
relatively higher temperature (above 300 mK) and with a transparency (10~°) similar to
our junction. Full and dotted line shows the contribution due to the quasiparticle current
and the phase-coherent Andreev current respectively. The contribution due to Andreev
current is negligible in comparison to the single quasiparticle tunnel current. Therefore,
for simplicity in high temperature regime, we will ignore the Andreev current contribution
to the total current.
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Figure 5.14: Calculated current-voltage characteristic of the N-I-S junction at T, = 300
mK. Full line shows the contribution due to quasiparticle current and dotted line shows the
Andreev current.

5.5 Extraction of electron temperature

With the above assumptions, we extract the temperature T,(V') in the sub-gap region by
superimposing the experimental current-voltage characteristic from the cooling S-I-N-I-S
junction on a series of theoretical isotherm curves obtained from Eq. 5.1. Every crossover
point between the experiment and the isotherm gives the electronic temperature in the
central N island at a particular bias.

Fig. 5.15 shows the current voltage characteristic of the cooler junction at the cryostat
temperature of 300 mK along with the calculated isotherms. At zero bias, there is crossover
between the experiment (black complete line) and the isotherm corresponding a 292 mK
electron temperature. As the cooler bias increases, the dashed red isotherm no longer
satisfies the experiment, and there is a crossover with the blue isotherm and the electrons
correspond to the temperature of the blue isotherm. For a bias near the gap, the electrons
in the central N island have cooled from the bath temperature of 292 mK down to 98 mK.
For calculating the isotherms, the normal state resistance and the superconducting gap are
obtained from the differential conductance plot. Here the normal state conductance for
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Figure 5.15: Sample B: Experimental current-voltage characteristic at a 275 mK cryostat
temperature (full line, black) superposed on a series of calculated isotherm characteristic
following Eq. 5.1 from T = 292 mK (top) to T = 98 mK (bottom). Every crossing point
gives the electronic temperature T, in the central N metal at a particular bias. Parameters
for calculated isotherms: Ry = 2.8 k) and the 2A = 0.428 meV .

the S-I-N-I-S cooler is 2.8 k2 and the 2A = 0.428 meV.

It is interesting to note that such extraction of the electron temperature in the central
N island from the direct current-voltage characteristic cannot be done on the differential
conductance-bias plot, for instance on Fig. 5.6. This is due to the error in the isotherm,
as shown below. The tunneling current (Ir) is a function of bias and temperature. In our
case, both are changing, so that we can write,

dly  dI(V,T) n dl dT

v~ dV dT dV
The second part on right side of above equation contributes to an error in determining the
electron temperature from the differential conductance curve.

Fig. 5.16 shows the electronic temperature (Sample B) in the central N island as a
function of cooler bias voltage for three different cryostat temperatures. The temperature
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Figure 5.16: Sample B: Electronic temperature of the central N metal as a function of cooler
bias at three different cryostat temperatures.

is obtained directly from the current voltage characteristic of the cooler junction as shown
in Fig 5.15. The black, red and blue symbols correspond to the cryostat temperatures of
275, 470 and 570 mK. The bath temperature extracted from the data is, respectively, 292,
489 and 586 mK. The electronic temperature at zero bias is only slightly higher than the
cryostat temperature.

Fig. 5.17 shows the extracted electronic temperature (Sample C) for each data point
in the sub-gap region. It is to note that the technique could be in principle exploited for
voltages above the gap voltage. However it is not preferred due to two reasons: for eV > A
all the isotherm curve (for instance in Fig. 5.15) merges together, which makes it difficult
to extract temperature. Also Eq. 5.1 will no more be accurate since the superconductor
will be in strong out of equilibrium state.
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Figure 5.17: Sample C : Electronic temperature of central N metal as a function of cooler
bias at a cryostat temperature of 330 and 440 mK.

5.6 Conclusion

We investigated the cooling of the central N-island in the S-I-N-I-S junction with no exter-
nal thermometer. We have proposed a new technique to obtain the electron temperature
in the central N island by comparing the device current - voltage characteristics to the the-
oretical prediction. The electrons in the N-metal cool down from 300 mK to below 100
mK.






Chapter 6

Electron and phonon cooling in
micro-coolers

6.1 Introduction

This chapter is concerned with the thermal distribution of the heat in superconductor based
micro-coolers. In the chapter 5, we discussed the precise investigation on the electronic
temperature in the Superconductor - Normal metal - Superconductor tunnel junctions with
a design with no external thermometer. This design optimizes the cooling due to two main
reasons. Firstly, the contact surface area ratio between the central normal metal and the
substrate to its volume is much smaller than in samples with an external thermometer.
Secondly, our samples have a higher tunnel junction area to the volume of normal metal
ratio which leads to a better optimization of the coolers.

The normal metal electron temperature is extracted by comparing the experiment with
the theoretical isotherm. Now, we will consider a simple thermal model in the coolers and
quantitatively compare the experimental electronic temperature with the result of thermal
model. The thermal model includes the electron - phonon coupling in the Normal metal
and the Kapitza resistance between the substrate and the normal metal phonons. Here,
we will discuss the experiments done at intermediate temperature regime (7' > 300 mK)

In this chapter, we shall start by discussing the thermal model based on hot electron
experiments. Hot electron experiments were done at very low temperature (7' < 100 mK)
and gave an independent measurement of the electron-phonon coupling in the normal
metal (like Cu). Then, we will ascribe the micro-coolers to a thermal model by taking into
account the electron-phonon coupling and the Kapitza resistance. Here we will discuss
the different simplifications considered in our heat model and discuss the non-equilibrium
phonon distribution of population in more detail. At the end, we will present an evidence
showing the cooling of the normal metal phonons in addition to its electrons.

In this chapter, I will discuss the experiments done on one of the five similar samples
cooled in the He3 refrigerator or the dilution refrigerator. The detailed description of the
sample has been done in the first article which is reproduced at the end of the thesis.

85
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Figure 6.1: Heat flow paths between the different constituents in hot electron devices. An
external power P.. heats the electron in the N metal, which further heats the N-metal
phonons via thermal resistance R._p,. The heat flows into the insulating substrate via the
Kapitza resistance Ry .

6.2 The thermal model

The simplest constituents to the thermodynamics of any N-metal nano-device are the
electrons and the phonons. These are coupled interacting systems with a thermal resistance
[53]. If the device is on an insulating substrate then the phonons can be subdivided as the
phonons in the substrate and the phonons in the N-metal. The thermal resistance between
the two phonon baths is due to the lattice mismatch between the two interfaces, it leads
to Kaptiza resistance |54, 55]. This phenomenological model has been popularly used in
the context of hot electron effects in a N metal [45].

In the case of hot electron effects, an external power P.,; is supplied to the electrons,
leading to the increase in the electronic temperature in the N-metal. The final electron
temperature is given by the steady state situation where the power P, is transferred
to the N-metal phonons. Consequently, the temperature of phonon increases until the
it is compensated by the heat transfer from the substrate. Therefore, depending on the
strength of interaction between the electron-phonon and phonon-phonon, the electrons and
the phonons in the N-metal attain well defined but different steady state temperatures.

Hot electron effects have been experimentally studied [56, 44, 57, 45| for the semi-
conductor at room temperature and for a normal metal at low temperatures. Different
regimes are reached due to the difference in the carrier density of the two systems. The
larger carrier density in the normal metal makes their hot-electron effects small at room
temperature.

In thin films, the hot electron effect is more pronounced due to the larger ratio of
power dissipation per unit volume to contact surface area to the substrate. Also, the
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phonon distribution in the normal metal can in some cases no longer be differentiated to
that of the substrate. Therefore, the hot phonon effect is more difficult to observe. For a
thin film of thickness d to have a distinct population of the phonons, the temperature has
to be T' > hv,/2kd, where v, is the sound velocity [45]. For example: For d = 50 nm, the
temperature should be T > 350 mK in order to construct a wave packet of phonon. The
thickness also plays a critical role in optimizing the ratio of the power dissipated per unit
area to the power dissipated per unit volume to heat the N metal phonons.

From the above discussion, it is clear that the hot electron and phonon effects can
be manipulated or optimized depending on the geometry of the sample. In our samples,
we have taken extra care to optimize the ratio of two powers for the cooling of phonons
in the N-metal film at intermediate temperature. Sample without external thermometer
[43] helps us to attain a smaller film - substrate contact surface area to volume ratio in
comparison to the geometry with an external thermometer [5]. In this chapter, we will use
the thermal model discussed above for our cooling device with a difference that P.,; leads
to electron cooling.

6.2.1 Thermal model taken for cooling device

We have made the following assumptions in order to simplify the thermal model [45]:

(i) The cooling power P, is well defined for tunnel junctions. The cooling power out
of the normal metal from the individual N-I-S junction (complete S-I-N-I-S junction) has
been calculated in chapter 2 in this thesis:

| EE- N E - v - fsE) )

cool —
€2RN —00

where fg n is the electron distribution function in the superconductor and the normal metal
respectively.

(ii) The two N-I-S junctions of the S-I-N-I-S cooler junction are assumed to be identical
such that net cooling power is 2P, [51].

(iii) The electron-electron interaction in the normal metal island is strong enough for
the electrons to attain a thermal equilibrium. It means that the electrons follow a Fermi
distribution at an electronic temperature 7T, that is lower than the cryostat temperature.
It has been checked and discussed in detail in chapter 5 of this thesis.

(iv) The phonons are also at a well defined temperature (7,;,) which is much smaller
than the Debye temperature (6p). In our experiment T,,/0p < 1073. At such temperature
we can neglect the optical phonons. Only acoustic phonons, which at low energy have a
linear dispersion relation €, = h.v,.q, where ¢ is the phonon wavevector, are considered. It
is also assumed that the phonon distribution is spatially uniform [47].

(v) The allowed phonon state spectrum is assumed to be the 3D continuum.

(vi) The electron-phonon interaction is given by a scalar deformation potential. It
means that only the longitudinal phonons couple to the electrons and the transverse
phonons are neglected [58].
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The first three assumptions have been discussed in Chapter 5 in the context of quasi-
equilibrium distribution in the central N metal. Here we will discuss the assumption (iv)
in detail.

6.2.2 Non equilibrium phonon distribution

Let us consider the phonon distribution NV, in the N-metal. The simple phenomenological
description of the energy exchange between the N-metal phonons with the substrate and
with the electronic system is given by:

% - % |ph—subs +% |el—ph . (62)

The first term in right side of Eq. 6.2 is the rate of phonon exchange with the substrate.
It can be written as a relaxation of the N metal phonons to the substrate phonons with
a characteristic time 7p,_sups = 1 d/vs, where vy is the velocity of sound; d the thickness
of the N-metal and 7 is a numerical factor (< 1) which accounts for the lattice mismatch

between the substrate and the N-metal phonons [54]. Thus we have,

dN, N,(Ty) — N,

d_tq |ph—subs: <63)

Tph—subs
Here N,(7p) is the equilibrium phonon distribution given by a Bose distribution N,(7}) =
1/[1 — exp(ZT‘;)] at the substrate temperature 7' = Tj.

The relaxation of N metal phonons is accompanied by an energy transfer with the
substrate phonons. The energy transfer is obtained by multiplying Eq. 6.3 by the phonon
energy and summing over the phonon density of states. For T" < #p, the corresponding
power is given by:

*  Adw?dw v
Poventn = | WG SN (M) - N (6.4
For a phonon distribution N, at equilibrium temperature T}, Eq. 6.4 gives a heat trans-
fer proportional to (T04 - T;lh) through the area A. It is worthnoticing that P,,_sus is
independent of the thickness (d) of the N metal film.

The second term in Eq. 6.2 shows the rate of change of the phonon distribution in the
N-metal due to the interaction with the electron gas of temperature T = T,.. Similarly,
it contributes for the relaxation of the N metal phonon to the electron temperature with
a characteristic time 7,_,,, which describes the phonon absorption and emission by the
electron gas:

% Nq(Te)_Nq

’elfph:
dt Tel—ph

(6.5)

The characteristic time 7,;_,;, can be obtained from the free electron approximation. 7._pp
depends on the phonon wavevector and on the deformation potential C' = 2Fr/3, where
Er is the Fermi energy, m being the electron mass and p the density of the film.
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1 m?C%
Tel—ph B 27Th3p .

(6.6)

It is worth noticing that the coupling of phonons to the electron gas increases with the
phonon wave-vector. Therefore, the phonon cooling is more efficient for the high frequency
part of the phonon distribution.

The energy exchange between electrons and phonons can be written in the same way
as above, except that now we use 6.6. Thus the energy transfer between the electrons and
phonons can be written as:

®  Adw?dwm?C?q
P = hw T.) — Ny (Tpp)]- 6.7
o= | o S N T = N, (Ty) (6.7
Thus we get,
Pupn =S AT, - T7),), (6.8)
where Y is the electron-phonon coupling parameter given by:
2C2k%¢(5
_ m*CkC(5) (6.9)
A3k p vi

From above, the predicted ¥ for Cu is 108 W.m™2.K™° is much smaller than most of
the experimental results obtained by hot electron experiments [44, 45]. It may be due
to assumption of free electron model and impurity free material [59]. For instance, the
density of states obtained from heat capacity experiments is 1.38 times larger than the free
electron model [60].

The difference in power is due to the energy dependence of the electron-phonon charac-
teristic time. The presence of the thickness d in Eq. 6.8 is also worth noticing in comparison
to the phonon interaction.

Now we consider the steady state distribution of the N-metal phonons, i.e. % =
0. The solution of Eq. 6.2 gives the phonon distribution, which is a combination of the
distributions at T and T, respectively weighted by their respective relaxation times:

N No(To) + (Tph—subs/Tet—pn) No(Te) _ Ng(To) + n-0.d.gNy(Te) (6.10)
! 1 + (Tphfsubs/'relfph) 1 + 7706dq ’

where a = m?C? /2rwh3v, and 7 is the acoustic mismatch coefficient lying between 0 and 1.
Eq. 6.10 illustrates that N, is close to the (hot) bath temperature 7j at small wavevector
and approaches the cold distribution (7}) at high wavevector. This is due to the better
electron-phonon coupling at high energy. Increasing the thickness d of the N-metal also
improves the cooling of the phonon distribution.

Fig. 6.2 shows the Planck spectrum for thickness d = 50 nm same as our sample and
vs = 4400 m/s. In our experiment, the temperature of electrons in the central N-island
decreases from the bath temperature of 300 mK to around 100 mK at the optimum bias.
The olive and blue line correspond to the equilibrium spectrum at T, = 300 mK and T, =
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Figure 6.2:  The plot of energy spectra ¢*N,. The olive and blue lines correspond to
equilibrium energy spectra at the bath temperature Ty, = 300 mK and at the cold point T,
= 100 mK respectively. The black crosses are the non equilibrium phonon enerqy spectra
obtained from Eq. 6.10 with n = 0.03; d = 50 nm and vs = 4400 m/s. The red line is the
equilibrium energy spectra with the effective phonon temperature Ty, = 265 mK.

100 mK. The black crosses are the non-equilibrium distribution of phonons in the N-metal
obtained from Eq. 6.10 with n = 0.03. It is interesting to note that the non-equilibrium
distribution of N metal phonons can be approximated with an equilibrium one (red line)
with an effective phonon temperature 7,;, = 265 mK in between the bath temperature of
the cryostat and the cold electronic temperature [61].

Finally, it is worth noticing that the energy transfer between electrons and the bath can
be obtained without assuming an effective phonon temperature in the metal film. Inserting
the distribution Eq. 6.10 in Eq. 6.4, we get

Pel—subs = /oo MAdu)Zdw [Nq(Te) - N‘](Tbath)]
0

2
21203 Ty + Tel—ph

. (6.11)

Interestingly, although the electron gas is coupled to the substrate through the phonons
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Figure 6.3: Sample B: Electronic temperature of the central N metal as a function of cooler
bias at three different bath temperatures. Parameters same as in Fig. 5.16: R, = 2.8 K
and 2A = 0.428 meV.

of the metal film, the details of their non-equilibrium distribution does not appear in the
integral. There is no simple form for 7,; and 7}, since the denominator has w dependence.

6.3 Experiments on a S-I-N-I-S cooler

Here, we discuss the same sample as discussed in the previous chapter. Fig 6.3 shows the
electronic temperature in the central N-island as a function of cooler voltage bias across
the cooler junction at three different bath temperatures.

The temperature at zero bias corresponds to the bath temperature of the central N
island. As the cooler bias voltage increases, the electrons in the N metal cool down till it
reaches the gap voltage. For instance, the black dots correspond to Ty, = 292 mK at V' =
0 mV. As bias voltage increases, the electrons cool down to below 100 mK at the optimum
bias. Similarly, the red and blue dots correspond to Ty, = 489 and 586 mK respectively.
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Figure 6.4: Heat flow paths between the different constituents in the cooler.

6.4 Thermal model in a S-I-N-I-S cooler

Here, we will extend the previously considered thermal model for our S-I-N-I-S cooling
device. Fig. 6.4 shows the schematic of the considered thermal model, which is similar to
the one discussed in the framework of hot electrons in metal. The electrons in the central
normal metal are at quasi thermal equilibrium at the temperature 7. The electrons cool
down due to the extraction of the high-energy quasiparticles from the normal metal to
superconductor. The two superconducting reservoirs are assumed to be thermalized to the
bath temperature Tj.y, of the cryostat. We will re-consider the latter assumption in more
detail in chapter 8.

For sub-gap bias at S-I-N-I-S junction, the quasiparticles tunnel from N to S. This
uni-directional flow of hot quasiparticle leads to a heat current out of the normal metal.
The corresponding cooling power P, can be written as:

Powi = - [ AB(E = o B)AE - ) = 1B (6.12)

Furthermore, the electrons in the normal metal are coupled to its phonons via electron-
phonon coupling. The N-metal phonons are assumed to have an effective temperature
T,n. The electron-phonon scattering is the dominant energy exchange driving heat into
the electronic system given by Eq. 6.8: Py_p, = X.U.(T7 - T3,), where ¥ is the material
dependent prefactor and U is the volume of the central island. At steady state, the heat
balance equation for the N-metal electrons is given by:

2PCOOI(T87 Tbatm V) + Pel—ph(Tea Tph) =0 (613)

where the factor 2 accounts for the presence of two symmetric N-I-S junctions in series.
The normal metal phonons are coupled to the substrate phonons which is at tempera-
ture Tyqn via Kapitza coupling. The heat transfer due to coupling between the two phonon
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baths is given by, Ppn—subs = K. A.(Tyyy, —T,,), where A is the interface area and K depends
on the interface in contact. At steady state, the heat balance equation for the N metal
phonons is given by:

PEl—ph(Tev Tph) + Pph—subs (Tpha Tbath) = 0. (614)

For the phonons thermalized to the bath temperature correspond to Ty, = Tpeen. This
corresponds to an infinite Kapitza coefficient (K') in the thermal model. It implies that the
heat balance for N-metal electron is given by: 2P..0(V, ¢, Tvatn) + Per—pn(Tes Toatn) = 0,
where Py, = S.U.(T? - T3,,)- It can be reformulated as:

(Te )5_1 1 2Pcool
Thath .U Tg’ath

This means that the quantity (7./Tya)® depends linearly on 2P,y /T},,, with a slope given
by the constant 1/XU. Here, we will check the validity of this approach, in particular at
a higher cryostat temperature (7' > 300 mK) regime. Fig. 6.5 shows a plot for (T,/Tpam)®
as a function for 2P, /T,fath for different bath temperature. The cooling power P,
is calculated from Eq. 6.12. It indeed shows that the low bias data at a given bath
temperature has a linear dependence. The related X is obtained from the slope of the fit.
> depends significantly on the bath temperature of the cryostat. For instance, at Tpe, =
292 and 586 mK, the fit gives ¥ = 1.22 and 0.78 nW.um 3. K~ respectively. Moreover, the
fitted 3 are well below the expected experimental value of 2 nW.um=3. K> [44, 45, 40, 62].
It means that the coupling between the electrons and the substrate is weaker than expected.

In this discussion, we neglected a leakage in the sub-gap current. It is demonstrated
by the fact that the differential conductance at V' = 0 of the coolers coincides with the
isotherm prediction at the cryostat bath temperature. It is due to the relatively high bath
temperature (7" > 300 mK) in the experiment. Considering a leakage resistance of 5 MOhm
would lead to an additional current at the bias edge below 0.1 nA, which about 0.1 % of
the measured current at this point. This change would modify the electron temperature
by less than 1 mK at the gap edge, which is much smaller than the discrepancy between
the data and the fixed phonon temperature. At zero bias, this gives a change of 10 mK
for the electron temperature extracted from the data that would be actually difficult to
justify from the fit.

We conclude that the experiments on our cooling S-I-N-I-S device without an external
thermometer cannot be understood within the thermalized phonon hypothesis. It is also
worth noticing that 2P,.,,;/T},, cannot be linearly fitted at the gap edge. This will be
discussed in chapter 8.
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Figure 6.5: Sample B: Measured bias dependence of the quantity (T./Tyan ) for three
different bath temperatures Tya, of 292, 489 and 586 mK as a function of 2Peoor/ Toath °-
Dotted line shows the linear fit to the experiment which gives the values of > parameter
equal to 1.22 , 1.02 and 0.78 respectively.

6.5 Electron and Phonon cooling in the S-I-N-I-S junc-
tion

In order to understand the data, we consider the full thermal model as shown in Fig. 6.1.
It means that we self consistently solve the two heat balance equations for the electrons
and the phonons given in Eq. 6.13 and Eq. 6.14 in order to calculate the electron and
phonon temperatures as a function of bias voltage. Here we have taken the electron -
phonon coupling constant ¥ to be equal to 2 nW.um™3.K=5 [44, 45, 40, 62] and used the
quantity K.A to fit the experiment.

Fig. 6.6 shows the fit of the experiment with the thermal model. Black, red and blue
dots are the extracted electron temperature of the central N island for the bath temperature
of 292, 489 and 586 mK respectively. The full and dotted lines shows the calculated
electron and phonon temperature obtained from the thermal model at the respective bath
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Figure 6.6: FElectron and phonon temperature as a function of cooler bias voltage for a
cryostat temperature of 275 mK, 470 mK and 570 mK. The bath temperature extracted from
the cooler data (V = 0 mV) is respectively 292 mK, 489 mK and 586 mK respectively. The
dots are the experimental points. The full and dotted lines shows the calculated electron and
phonon temperatures respectively obtained from the thermal model for ¥ = 2 nW.pum=3. K>

and K.A = 66 pW. K4,

temperature. We have obtained the best fit for K.A = 66 pW.K~*. We have taken the
measured values of superconducting gap A and the normal state conductance R,.

The model shows an acceptable fit between the experiment and the calculated electrons
temperature. This demonstrates the cooling of normal metal phonons in addition to the
standard electron cooling [63| in the S-I-N-I-S tunnel junction. The phonons cooling is
more efficient at higher temperature. For instance, at Ty, = 489 mK the phonons reach
at the optimum bias a temperature about 50 mK below to the bath temperature. The
dependence of cooling of N-metal phonons on the bath temperature of the cryostat can
be understood simply by comparing the temperature dependence of the electron-phonon
and the phonon-phonon couplings. At low temperature, the ratio between the phonon
cooling and the electron cooling decreases because the electron - phonon decoupling («
T°) dominates the Kapitza resistance (o 7).

For a consistency check between the model and experiment, we compare the differ-
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Figure 6.7: Cooler junction data (full black line) along with the calculated curve. The blue
dotted line shows the calculated isotherm at T, = 292 mK with R, = 2.25 kKQ); 2A = 0.42
meV. The red dotted line on the cooler characteristic is the fit with the thermal model of
the device. The thermal model is solved for ¥ = 2 nW.um=3.K=5 and K.A = 66 pW.K™*.

ential conductance calculated from the electronic temperature evolution in the thermal
model with the experiment. Fig. 6.7 shows the comparison of the experiment (black line)
differential conductance with the thermal model (red line) for the cryostat temperature of
292 mK. The two curves show a very good agreement (note the logarithmic scale) for a
sub-gap bias voltages. The blue line is the isotherm which does not fit either of the two
other curves.

The parameter K.A accounts for the total Kapitza coupling of the Cu island to the
Si0, substrate that includes the contributions of both a direct Cu/SiOy contact and a
contact through the oxidized Al film with a presumably weaker efficiency. Dividing the
fit-derived KA parameter by the full area of the Cu island provides an effective mean
value < K >. We found that < K > varies from sample to sample in the range 40 - 120
pW.m 2K~ (see Table 1 at the end of thesis). < K > = 40 pW.m 2. K™ is about a
factor 3 below the values calculated for bulk Si/Cu interface [54] and only a factor 2 below
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the experimental value in Ref. [44]. It could be due to the fact that our samples are made
on Si/Si0, substrate and the oxide is expected to reduce the < K >.

6.6 Conclusion

In conclusion, we followed a precise investigation of the S-I-N-I-S cooler characteristics, in
the frame-work of a model mainly used for the hot electron effects with a very low bath
temperature.

We demonstrated the cooling of N-metal phonons in addition to its electrons [43].
For instance, at Ty, = 489 mK, the electrons in the N-metal cools down to 300 mK
and the phonons reach at the optimum bias a temperature about 50 mK below the bath
temperature. We showed the relevance of the phonon cooling, which can be demonstrated
by the dimensionless parameter XdT/K here of the order of unity.

The thermal model gave an acceptable fit and understanding of the electron cooling in
the normal metal. However the model shows a poor fit at the gap edge, due to mechanisms
that are not included. For instance, the assumption of superconductor remaining at the
bath temperature will not be correct at the gap edge, where the maximum injection of
hot quasiparticle in S takes place. It can lead to some back-flow of hot quasiparticles
accumulated close to the junctions. We will consider this situation in greater detail in
chapter 8, where the diffusion of hot quasiparticles in the superconductor shall be discussed.

Let us consider the thermal model in different temperature regime. Fig. 6.8 shows
the calculated electron temperature (full line) and phonon temperature (dashed line) in
the central normal metal as a function of the cooler bias voltage at different cryostat
temperatures. Here we have considered only the single quasiparticle tunneling across the
N-I-S junction. At very low bath temperature (7' < 250 mK), the phonon cooling has a
minimal effect in comparison to the high bath temperature. Only the heat contribution
due to quasiparticles is considered and other processes like Andreev current are neglected.
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Figure 6.8: Full and dashed line represent the calculated electron and phonon temperatures
as a function of the cooler bias voltage for different cryostat temperatures. Calculation
parameters: ¥ = 2nW.um 3. K5; K.A = 60 pW.K™*; d = 50 nm; 2\ = 0.424 meV; R,
= 1KQ.



Chapter 7

Andreev current-induced dissipation

7.1 Introduction

This chapter is mainly concerned with experiments done at very low temperature. As
discussed in Chapter 2 and 3, the charge transfer across the N-I-S junctions is mainly
governed by two processes. For an electron with energy E > A, tunnel from N to S
leading to both charge and heat current. At intermediate temperature (7' > 300 mK),
the electrons in the central N island cool down significantly, for example from 300 mK to
below 100 mK [63]. For energy below the gap (F < A), the higher order process Andreev
reflection is responsible for electron pairs transfer across the junction [12, 13]. The Andreev
reflection provides a conversion of dissipative electrical current in the normal current into
a dissipationless supercurrent [35].

Here, we discuss the experiments, done on the S-I-N-I-S cooler junctions and the probe
junction at a very low temperature. There is an explicit crossover between the quasiparticle
current and the phase-coherent Andreev current in the total current across the probe
junction. We use the Hekking and Nazarov model discussed in chapter 3 to fit the phase-
coherent contribution due to Andreev current. Then we discuss the experiments done on
the cooler junction. Here we will extend the thermal model discussed in the chapter 6
for our cooling device, by considering the thermal contribution due to the phase-coherent
Andreev current. The thermal model shows the need of an extra non-linear dissipation.
It is being identified as a dissipation due to phase-coherent Andreev current. Later, the
consequence of dissipative Andreev current as a increase of the electron temperature shall
be discussed. Lastly, the influence of several external parameters, like the phase-coherence
length, shall be discussed.

99
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7.2 Experimental observation of phase-coherent Andreev
current

7.2.1 Introduction

As discussed in Chapter 3, at a N-S interface a specularly reflected electron undergoes
elastic scattering from the impurities which leads to trajectories re-directed towards the
barrier. These trajectories add constructively and are immune to the phase-randomization
induced by the disorder [18]. At zero temperature, the relevant length scale for the con-
structive coherent addition of probability amplitude is given by the phase-coherence length
(Lg) or by the actual length of the wire |28, 64]. For a finite temperature or bias, the two-
electrons originating from the superconductor have a difference in energy F and the energy-
dependent length scale is Ly = y/hD/E. If we consider the whole thermal population, the
resulting phase-coherence length given by:

hD
Ly =\ eV ) (7.1)

is much larger than the mean free path. This leads electron pairs tunneling to add co-
herently over a large distance. Thus the phase-coherent Andreev current enhances the
probability for transfer of electron pairs across the junction.

In the following, we fit the experimental data acquired on the probe junction where the
normal metal thermalized to the bath temperature, taking into account the quasi-particle
current and the phase-coherent Andreev current.

7.2.2 Experiment on Probe junction

In all our samples, we have 3 Al-AlO,-Cu junctions called probe junctions on the Al
electrode in addition to the cooler junctions. As discussed previously, the N-metal on the
probe junction is strongly thermalized to the cryostat temperature.

Fig. 7.1 shows the differential conductance of one probe junction (1.55 pym from the
cooler junction) as a function of voltage bias at the cryostat temperature of 90 mK. Clearly
in comparison to the Fig. 5.6 of chapter 5, the probe junction at low temperature has a
different characteristic at low bias. Instead of a monotonous exponential decay of the
differential conductance in the subgap bias, the differential conductance has a peak at zero
bias. Similar differential conductance characteristics are also obtained on the other two
probes.

The dotted red line is the fit to the experiment by considering only the single quasi-
particle tunnel current given by Eq. 5.1 with a electronic temperature of 105 mK. The
enhancement of differential conductance at zero bias clearly cannot be fitted by the sin-
gle quasiparticle tunnel equation. The electronic temperature T, extracted from the fit is
slightly higher than the cryostat temperature.
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Figure 7.1: Sample C: Normalized differential conductance as a function of voltage at a
cryostat temperature of 90 mK. The black cross symbol line shows the experiment on the
probe junction. The dotted red line shows the quasiparticle fit to the experiment with Ry
=276 K2, A = 0.228 meV and T, = 105 mK.

The zero bias conductance increases when the cryostat temperature is lowered below
about 200 mK, which suggests that it is a phase-coherent effect (see Fig. 7.2). The zero
bias anomaly is similar to the one obtained by Kastalsky et. al. [17].

7.2.3 Phase-coherent Andreev current in Probe junction

The zero bias peak in the differential conductance cannot be accounted by a linear leakage
as it would lead to a saturation of the conductance near zero bias. As discussed in chapter
5, the zero bias anomaly cannot be fitted by considering a non-equilibrium distribution in
N-metal or by considering a smeared density of states [24, 11].

As discussed in chapter 3, in the normal metal - superconductor tunnel junction the
phase-coherent Andreev current leads to the enhancement of the differential conductance
at low temperature. Thus we will ascribe the zero bias enhancement of the differential
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Figure 7.2: Sample C: Normalized differential conductance of the cooler junction as a
function of voltage at a different cryostat temperatures.

conductance to a phase-coherent Andreev current. We will follow the theory and equations
(Eq. 3.13 and Eq. 3.14) for the phase-coherent Andreev current obtained in Chapter 3.

The coherence length Ly of an Andreev pair at 7' = 90 mK is 0.8 pm, which is much
greater than the width dimension (= 0.12 pum) of the central Cu wire. Therefore we consider
the 1D diffusion of the Cooperon, where the coherence length of an Andreev pair in the
normal metal Ly is much larger than the cross-section area of the electrode.

We have obtained the phase-coherent Andreev current (I4) by taking into account the
disorder both in the normal metal and the superconductor electrode. The calculation takes
into account the finite gap of superconductor and is valid for eV, kT < A. The propagation
of the Cooperon in the electrode is cut by the phase-coherence length (L).

Fig 7.3 shows the tunnel current as a function of the voltage bias for the probe junction
(black dots) at a cryostat temperature of 90 mK. The complete line shows the fit of the
phase-coherent Andreev current and the dotted line shows the single quasiparticle current.
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Figure 7.3: Sample C: Current - voltage characteristic of the probe junction at the cryostat
temperature of 90 mK. The dots show the experiment, the continuous line is the fit with
the phase-coherent Andreev current given by FEq. 3.13 and 3.1/ and the dotted line shows
the fit with single quasiparticle current. The fit parameters are : D = 80 cm?/s, Ly = 1.5
um, Ry = 2.76 k2, A = 0.228 meV, T, = 105 mK and M = 1.37 to fit the experiment.

7.2.4 The Fit parameters for the phase-coherent Andreev current

The phase-coherent Andreev current has been computed for the sample geometry and
dimensions. The fit parameters are : Ly = 1.5 um, Ry = 2.76 kQ, A = 0.228 meV. We
took the measured diffusion coefficient as D = 80 cm?/sec. Here, the electron temperature
of 105 mK is obtained from single quasiparticle fit (Fig. 7.1), which is slightly higher than
the cryostat temperature. Lg is close to the the phase-coherence of 2.1 um found at T" =
275 mK from a weak localization experiment on a wire fabricated with the same material
(see chapter 5) and also agrees well with the expected value for a pure metal at very low
temperature [49, 50].

We have used the same parameters to fit the experiments on the other two probe
junctions and also on other samples. For different samples, the fit phase-coherence length
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Figure 7.4: Sample C: Current - voltage characteristic of the probe junction at a cryostat
temperature of 90 mK. The dots show the experiment, the complete line is the fit with
phase-coherent Andreev current and the dotted line with single quasiparticle current.

is found to be slightly different. The difference in dephasing time could be due to a number
of reasons like the different evaporation conditions during different samples fabrication or
the contamination of the Copper between the evaporation and mounting the sample in the
dilution refrigerator. In the fit, we had to scale the phase-coherent Andreev current by a
multiplying factor M = 1.37, which is done in the same way as done previously by Pothier
et al. [18].

Fig. 7.4 shows an excellent fit of the experiment with the phase-coherent Andreev
current and the single quasiparticle current. Thus we conclude that the sub-gap current
in the N-I-S junction is the superposition of the single quasiparticle tunnel current and
the two particle Andreev current. The factor M could be possible contribution of pinholes
or inhomogeneities in the tunnel barrier (see chapter 3), which are not considered here in
obtaining the Andreev current.
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Figure 7.5:  Sample C: Differential conductance at a cryostat temperature of 90 mK.
Top curve - the dI/dV of one probe junction 1.55 pm from the cooler junction which has
been fitted in the previous section with the phase-coherent Andreev current and the single
quasiparticle current (see left y-axis). The normal state resistance of the probe junction,
Ry = 2.76 k). Bottom curve: cooler junction data (see right y-axis) with normal state
resistance, Ry = 1.9 K.

7.3 Cooler junction at low temperature

Fig. 7.5 shows the differential conductance of the cooler and one of the probe junctions at
the cryostat temperature of 90 mK. As discussed in the previous section, the enhancement
of the differential conductance near zero bias is associated to the phase-coherent Andreev
current.

The differential conductance obtained from the probe junction has a linear slope below
the gap voltage, which corresponds to the isotherm nature of the probe. This is not the case
in the cooler junction experimental data. The differential conductance peak at gap bias
from the cooler junction is larger than in the case of the probe junction, which exemplifies
the cooling of the N island electrons at the optimum bias.
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Figure 7.6: Schematic of the thermal model.

7.3.1 The behavior of the cooler junction in the presence of an
Andreev current

In order to understand the behavior of the S-I-N-I-S cooler junction, we need to consider the
heat balance in the central normal metal. Here we assume the quasi-equilibrium situation
similar to the previous chapter: the electrons and the phonons in the central N island
follow a thermal distribution function at a respective temperature 7, and 7}, which are
in general different from the bath temperature Ty, of the cryostat.

In the schematic above, the single quasiparticle current is responsible for the cooling
power out of the central N-island. The cooling power is compensated by the electron-
phonon coupling power such that:

2Pcool(‘/7 Te> Ts) + Pel—ph(Tea Tph) = 07 (72)

where the factor 2 is due to the double N-I-S junction in series. We consider that the heat
given to the phonons in the normal metal is compensated by the Kapitza coupling with
the phonons of the substrate, such that

Pel—ph(T67 Tph) + PK(Tpiw Tbath) =0. (73)

The Kapitza thermal resistance is significant only for higher temperature (7" > 300 mK),
which leads to the cooling of the normal metal phonons [43]. As seen in Chapter 6, at
low temperature (7" < 250 mK) the assumption of perfect thermalization N phonons to
the bath temperature would change the total current by only 2%. Therefore the cooling
of phonons has a negligible role at very low temperature.

The total current through the N-I-S junction is the sum of the single quasiparticle
current I and the phase-coherent Andreev current I4 so that:

Icooler - ]T(Vva Te) + ]A(Vva Te>' (74)
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Figure 7.7: Current - voltage characteristic of the S-1I-N-1-S cooler junction along with the
simulated curve at bath temperature of 90 mK. The full red line shows the experiment. The
dashed curve and dotted dash line shows calculated curve. The dotted dash curve includes
only the single quasiparticle contribution to the thermal model with the parameters: 2A =
0.43meV, K.A = 144 W.K~* and the dashed line includes the Andreev current contribution
with the parameters: D = 80 ¢cm?/s; Lo = 1.5 um and M = 0.49

To fit the experiment, we first numerically solve the thermal model for relatively high
temperature (T > 300 mK), where the contribution due to the phase-coherent Andreev
current is negligible. We take the electron-phonon coupling coefficient ¥ = 2 nW.ym=3. K>
and obtain the electron phonon coupling parameter K.A — 144 W.K~*. The Kapitza
coefficient < K > is comparable to the one discussed in chapter 6.

We turn afterwards to the very low temperature regime of interest here. Fig. 7.7
shows the direct current-voltage characteristic obtained from the cooler junction (full red
line) along with calculated curves (dashed and dotted-dash lines). The dotted-dash line is
the calculated current-voltage characteristic at a 90 mK cryostat temperature including the
charge and heat currents of the single quasi-particle tunneling only. The agreement is poor,
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which confirms the need to include the Andreev current contribution to the junction. The
dashed line shows the result of the calculation based on the thermal model with the charge
current given by the sum of the single quasi-particle current and the Andreev current. The
fit parameters are the same than for the probe except for the scaling factor M = 0.49. The
difference with the probe junction factor is not understood, although it could be due to
the difference in geometry between the two junctions. The addition of the phase-coherent
current provides an acceptable fit at low bias but shows a clear discrepancy at intermediate
voltage. The experimental curve shows a larger current than what is obtained from the
thermal model. This demonstrates that an excess dissipation term or an extra current
contribution is missing in the thermal model.

Assumption: Contribution due to the linear leakage current

Fig. 7.8 shows the comparison between the experiment and calculated curve from the
thermal model, which consider an excess dissipation due to a linear resistance. Here the
leakage contributes both as a heat in the thermal model and to the total current across
the junction.

The minimum leakage resistance can be estimated from the differential conductance
plot of the cooler junction, which corresponds to a minimum leakage as 20 M(2. Fig. 7.8
shows that adding an extra dissipation term in the thermal model due to a linear leakage
does not provide a good description of the experiment.

Thus a significant thermal contribution is missing in the heat balance equations of the
described thermal model.
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Figure 7.8: Current -voltage characteristic of the cooler junction along with the calculated
thermal model curve, which considers an excess leakage due to a linear resistance.

7.4 The Andreev current induced dissipation

In chapter 3 we discussed the heat transfer due to the Andreev current in a N-I-S tunnel
barrier. We found that the work performed by the current source feeding the circuit with
an extra current due to Andreev reflection (4) generates a Joule heat Py = I4.V [25]. This
induced dissipation due to the Andreev current is deposited entirely in the N metal and
does not perturb the superconductor. Hence, the net cooling power of the S-I-N junction
due to the tunneling of hot single quasiparticle out of the N metal will be reduced by the
Joule heat deposited into N by the Andreev current. The net cooling power of the device
is re-defined as, Pt = Pooot - Pa.

The Andreev current induced dissipation depends strongly on the temperature and
transparency of the junction. For low transparency and at intermediate temperature (7'
> 300 mK) the phase-coherent Andreev current contribution is negligible in comparison
to the single quasiparticle current. Thus the Joule heat dissipation in N-island is small.
At very low temperature and low bias, the cooling power is negligible in comparison to
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Figure 7.9: Calculated power due to quasiparticle cooling (P..o) and the heat dissipation
due to Andreev current (P4) as a function of voltage bias at Tyyy, = 100 mK. Parameters
used in the calculation are the same as in Fig. 7.7.

the induced Andreev power. The induced dissipation will then subjugate the quasiparticle
cooling and lead to heating of the electrons in N-island.

Fig. 7.9 shows the quantitative comparison of the cooling power (P,.,) due to single
quasiparticle tunneling (red dotted dash line) and the Andreev current (blue dotted line)
induced dissipation (P,) at very low temperature. Due to the absence of quasiparticles,
P.,, is almost zero near zero bias and attains its maximum near the gap. However the
phase-coherent Andreev current induces the dissipation as a Joule heat (I4.V) in the N
metal, which increases sharply near the zero bias. At a bias close to the gap voltage, the
cooling power out-does the dissipation due to the Andreev current.

As Andreev current induced dissipation depends on the transparency of the junction, it
surpasses the single quasiparticle cooling at a varying temperature. For our cooling device
with a low transparent tunnel barrier (107°), the Andreev current dissipation becomes
relevant only at low temperature (7" < 200 mK).
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Figure 7.10: Schematic of complete thermal model of the device.

7.5 Thermal model with Andreev dissipation

Fig. 7.10 shows the complete schematic of the thermal model of the device. Here we have
included the work done on the central N island by the current source with a current 14
as a Joule heating. At steady state, the heat balance for the electrons in N island can be
rewritten as:

2Pcool(V7 Tea Ts) - Pel—ph(T67 Tph) - IAV =0. (75)

With this complete heat balance equation taken into account, we solve the thermal model
and calculate the total contribution to the current in the cooler junction. Fig. 7.11 shows
the comparison of the experiment (complete lines) and the thermal model (dotted lines).
The agreement is excellent between the experiment and theory for 4 order of magnitude of
current in the sub-gap bias and at every accessible cryostat temperature. The fit parameters
for the Andreev current are the same as obtained from the probe junction except the global
scale factor on the Andreev current, M = 0.49.

The above conclusion on the Andreev heat is independent of the phonon cooling. As-
suming the perfect thermalization of the phonons to the substrate temperature would
change the total calculated current by less than 2 % at 90 mK, which means that phonon
cooling has a negligible role in data analysis at very low temperature. This is due to the
negligible amplitude of the phonon cooling at very low temperature (see chapter 6).

The above fit with the thermal model also provides us with the electron temperature for
every bias. Fig. 7.12 shows the calculated electron temperature in the central N island as a
function of voltage bias across the cooler junction for different cryostat temperatures Tyqp
= 90, 140 and 230 mK. At very low temperature, the electron temperature first increases
with the bias as Andreev current-induced heat is dominant, till voltage bias reaches the
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Figure 7.11: Current voltage characteristic of the cooler junction at different cryostat tem-
peratures together with the calculated best fit from the full thermal model, including the
charge and heat contributions due to the Andreev current.

gap where single quasiparticle based cooling dominates. As the bath temperature increases
the Andreev current induced-dissipation become less effective and for Ty, = 230 mK the
cooling always prevails over induced heat.

The above analysis clearly demonstrates the dissipation due to the phase-coherent An-
dreev current [34]. Although the Andreev reflection is a higher order tunneling process, its
heat contribution is dominant at very low temperature and low bias. A naive explanation
for this is the following: The efficiency of the electronic cooling is of the order of T,/A,
which is about 5% at a 100 mK electron temperature. In comparison to the Joule effect
of the Andreev current is fully efficient (100%). This explains why although the Andreev
charge current is small to the quasiparticle current at the optimum bias its heat contribu-
tion still has a significant effect. It shows that to achieve a minimum temperature of below
10 mK, the transparency of the cooler junction has to be further decreased.
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Figure 7.12: Dependence of the calculated electronic temperature with the voltage for a
series of cryostat temperatures: 90, 140 and 230 mK. The parameters are obtained from
the fit to experiment.

7.6 Conclusion

We observed a peak in the differential conductance at low bias in the probe junction and
the cooler junctions. The precise investigation on the current-voltage characteristic of the
probe junction led us to the conclusion that this enhancement is due to the phase-coherent
Andreev current.

We have also devised a quantitative analysis on the current-voltage characteristic of the
cooler junction. The thermal model includes the heat contribution of the Andreev current.
We demonstrated the importance of the induced dissipation due to the phase-coherent
Andreev current. The phase-coherent Andreev current induced dissipation is universal to
the S-I-N-I-S junction and dominates the cooling power at very low temperature.

The above conclusion poses a challenge to diminish extra non-linear induced dissipation
by the phase-coherent Andreev current in the central N island.
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Figure 7.13: Calculated electronic temperature as a function of bias at a 100 mK bath
temperature for different dephasing length. Complete, dotted dash, dash and dotted line
correspond to Le = 0, 0.01, 0.1 and 1 um respectively. Parameters same as in Fig. 7.7.

7.6.1 Taper coherence

The phase-coherent Andreev current induces a non linear dissipation in the device. As
discussed in chapter 3, the subgap Andreev current is strongly enhanced due to coherent
scattering of electrons by impurity. The coherent propagation of two-electrons in the
electrode is limited by decoherence effect. The electron-electron interactions naturally
induce decoherence and the cooperon propagation is cut by the phase-coherence length
(La).

Fig. 7.13 shows the simulated electronic temperature as a function of bias for different
dephasing length at 100 mK bath temperature. The complete line shows the solution
for an ideal N-metal with no coherence (Lg = 0), as seen there in no Andreev current
dissipation. With increasing Lg, the phase-coherent Andreev current contribution to the
charge current as well as to the thermal dissipation increases. For instance, the AuPd is a
better choice as a N metal in coolers as it has a much shorter phase-coherence length than
Copper [65].
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7.6.2 The ultimate cooling device

For a fixed Lg, what are the right parameters needed to optimize the cooling power of the
S-1-N-I-S based coolers?

The induced dissipation due to the Andreev current depends strongly on the trans-
parency. It scales as the square of the normal state conductance (G). In comparison, the
quasiparticle cooling P.,.; is linear with conductance. The net power out of the N-metal is
given by: P,e; = Puoor - Pa. The cooling power P,,, across the N-I-S is given by :

P = 5= [ dB(E = V)NS(B)fw(E = V) = fo(B)) = p-Foms. (10

with F,,, being the integrant of the cooling power.
The Andreev current induced dissipation in the N island is given by:

1
Pyr=1,V = —5Fy (7.7)
Ry
with F4 being the integrant of the Andreev heat.
Therefore, the optimum normal-state resistance for which net cooling of electron is

maximum (% = 0) is given by:

Fa
Fcool .
As T increases, the sub-gap transfer of the quasiparticle increases, thus Ry optimum de-
creases. At the optimum bias, the Andreev current is insignificant in comparison to the

single quasiparticle tunneling. Fig. 7.14 shows the normal state resistance at the optimum
bias, Voptimum ~ 2A - 0.26T", as a function of the bath temperature.

(7.8)

RN ,optimum — 2
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Figure 7.14: Optimum normal state resistance at optimum bias voltage V =~ A/e as a
function of bath temperature of the cryostat.



Chapter 8

Quasiparticle diffusion based heating in
S-I-N-I-S coolers

8.1 Introduction

In a S-I-N-I-S cooler, the extraction of hot quasiparticles from the central normal metal
(N) to the two superconductors (S) leads to the cooling of N - metal electrons. It is
widely assumed that for a sub-gap bias injection the superconductor remains at the bath
temperature |43, 63]. This assumption is further strengthened due to the presence of N -
metal trap junctions on the side of the superconductor electrode. The N-metal traps help
the injected quasiparticles in the superconductor to relax faster, thus maintaining the bath
temperature in the superconductor [66, 67].

For a sub-gap bias, the hot quasiparticles are injected in the superconductor at the gap
edge (A) and thus have a zero group velocity (dE/dk ~ 0). It leads to an accumulation of
hot quasiparticles close to the junction area of the cooler. The accumulated quasiparticles
in the superconductor at the junction edge inhibit the optimum performance of the cooling
device due to two main mechanisms: quasiparticle backscattering due to increase in the
population of hot quasiparticle near the junction edge and re-absorption of the 2A phonons
in the normal metal strips.

In this chapter, we shall attempt to understand the phenomenon involving the hot
quasiparticles diffusion near the junction area along the superconducting Al strip. A phe-
nomenological model based on the recombination and pair breaking mechanism in the
superconductor is discussed. The transfer of 2A phonons to the substrate is included in
the formalism. The model also includes the escape of the quasiparticles in the normal metal
strip acting as a trap. Eventually, a quantitative comparison between the experiments and
the model is done along with its implication on the coolers behavior.

117
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Figure 8.1: Cooler sample and the schematic of the system considered.

8.2 Quasiparticle diffusion along the superconducting
strip

8.2.1 Introduction

As discussed in chapter 6, the understanding of the electron cooling from our thermal model
is little (see Fig. 6.6) at the gap bias voltage [43]. Electrons cool down to around 100 mK
at an optimum bias, which is significantly greater than the expected 70 mK electronic tem-
perature. In our simplified thermal model, we assumed that the superconducting electrode
is always at thermal-equilibrium to the bath temperature of the cryostat. However, the
current driven in the device creates an injection of non-equilibrium quasiparticles near the
gap energy [68|. The insufficient relaxation of non-equilibrium quasiparticles perturbs the
cooling of the central N island.

Fig. 8.1 shows the schematic which is at par with our sample on the S-I-N-I-S cooler.
For simplicity we consider only one side of the cooler. The superconductor is Al and the
normal metal is Cu. We take into account the following physical processes:

- Diffusion of quasiparticles along the Al strip;

- Recombination and pair breaking processes;

- 2A phonons transfer to the substrate;

- Escape of the quasiparticles to the normal metal traps

The excess quasiparticles injected by the cooler junction into the superconducting elec-
trode will diffuse out of the injection region. We shall consider the 1D diffusion of the
quasiparticles in the Al electrode of infinite length along with the trap N metal. The
trap junction is assumed to remain at the bath temperature of the cryostat and overlap
completely the superconducting electrode.

8.2.2 Phenomenological model

Recombination of non-equilibrium quasiparticles in the superconducting electrode has been
studied both theoretically [69, 70, 71| and experimentally |72, 66, 73]. Rothwarf and
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Taylor [69] gave a phenomenological model involving both the recombination of the hot
quasiparticles and emission of the 2A phonons in the superconductor.

Based on Rothwarf and Taylor model, we have added two extra contributions: the
diffusion of the quasiparticle along the superconducting strip and quasiparticle absorption
by the trap junction. We obtain:

d d? Ny — N,
— — Dypr5)Nyp = —RN2 + bNop + I, — — 220
(dt quxg) qp qp + 2A + o
d R _, b Noa — Nono

where D, is the quasiparticle diffusion coefficient, R is the recombination coefficient, b is
the absorption rate of 2A phonons and I, is the injection current. The diffusion coefficient
constant for quasiparticles (D,,) differs from that of normal metal since quasiparticles in
superconductor have zero group velocity at the gap energy [74]. The injection term I, is a
d(z) function localized at x = 0, proportional to the cooler electrical current.

The two relaxation terms on the right of each equation describe respectively the rate
of quasiparticles escaping to the N-metal trap 7, and the rate T, L of 2A phonon escape
to the substrate. Both the substrate and the trap N metal are assumed to remain at the
temperature of the cryostat.

N,p is the density of quasiparticles and Ny is the density of the phonons with en-
ergy greater than 2A. We assume that excess quasiparticles have energy about A and
recombination phonons have an energy close to 2A. The low energy phonons (< A) are
ignored since a BCS superconductor is transparent for those phonons [75, 76]. There is
no gradient term for the phonon equation since the 2A phonon absorption rate (term b,
which will be replaced by 2/75) is very high. We ignore the charge imbalance effects since
both electron-like and hole-like branches contribute additively to the current and energy.
Charge imbalance is noticeable only at bias voltage larger than the gap [68, 77|, which is
irrelevant for the cooler operation.

The equilibrium quasiparticle (N,,0) density at low temperature 7" = Tj is given by :

Nz = N(Ep)A exp|—-—]. (8.2)

2A

where A is the superconducting energy gap and Ny(EF) is the electron density of states
at the Fermi energy. The number of quasiparticles decreases exponentially with the tem-
perature. For instance in Al, there are only 10 quasiparticles per cubic micron at T = 300
mK.

The coeflicient b is the absorption rate of 2A phonons. The time scale of the phonon
breaking process (75) does not vary much with the temperature. Theoretical predictions
for various materials can be found in Ref. [71]. For Al the (75) is predicted to be around
1.8 x 1070 s,

The coefficient R is the recombination coefficient. For a pair of quasiparticles at the
gap edge, the expression for the recombination constant is [73]:
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R ( 28 ! (8.3)

3
]{JBTC) QA NN(EF)Tel—ph.
where A and T, are the superconducting energy gap and the critical temperature respec-
tively and 7, is the time scale of the electron-phonon interaction. The value of 7.,
is material-dependent and the predicted value is in Ref. [71]. Various experiments have
given the value of 7.;_,, for Al to be around 100 ns [78].

Eq. 8.1 is a system of coupled non-linear equations for the diffusion of quasiparticle
(N,p) and the density of 2A phonons Na in the superconducting strip.

Here we do a comparison with our S-I-N-I-S cooler experiment. The injection current
density at an optimum bias is typically 10®> A/m?, corresponding to the injection rate of
10" /s.m?. For the typical Al strip thickness of 40 nm, the density of the injected carrier is
about 10%® /m®.s. For Al, the theoretically calculated lifetime is of the order of 10~"s [71].
Therefore, the steady state density of the injected quasiparticles is of the order of 10! /m3
which is much larger than the equilibrium number of exponential decaying quasiparticles
(N7) at low temperature. For T' < T, the steady state density of the injected quasiparticles
in the superconductor can be much larger than the thermally generated quasiparticles
density.

If one eliminates the phonon density and assumes steady state conditions, Eq. 8.1
reduces to a damped diffusion equation for the quasiparticle density. As shown below, the
differential equation can be solved analytically in the general non-linear case.

8.2.3 Connection to experimental parameters

We first discuss how the phenomenological parameters introduced in Eq. 8.1 can be related
to the experiments. For no injection, all temperatures are equal to the bath temperature
To.

The intrinsic recombination time is 75" = 2RN,,0 where R is the recombination coeffi-
cient. T diverges as exp A/kTy at low temperature. It is discussed in detail and tabulated
in Ref. [71]. If the escape time exceeds the pair breaking time, then the effective quasipar-
ticle recombination time (7.7s) is renormalized and is given by:

Teff = TR (14-&) . (84)

B
The phonon breaking time 75 = 2/b is weakly dependent on the temperature and again
has been discussed in detail Ref. [71].
The decay rate of the quasiparticle density in the S - strip involves both 7.;; and 7.
We now introduce the relevant diffusion length A and the corresponding time ratio « as:

1 1
AP = ( + ) :
DypTess DgpTo

a=1+2 (8.5)
70
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We also introduce a zero-dimensional injection parameter /;,; defined as the density of
the quasiparticles injected in the diffusion volume A.A (A being the cross-section of the
superconducting strip) during the diffusion time A\*/D,,:

A
ququo GA ’
with ¢ being the electrical current in the cooler junction. It is worth-noticing that we do
not need the cooler junction area since it is included in electrical current i through the
junction conductance.

An explicit expression for the rate 7, ' can be written as a function of the characteristic
conductance of the trap junction. Considering that 7, ' is a volume decay rate, it involves
the thickness d4; of the S strip and is proportional to the specific resistance Ry (for unit

area) and also to the density of states at Fermi level. The expression of 7y can be written
as:

Iy = (8.6)

T0 = €RNNN<EF)CZA[, (87)

where Ry is the specific resistance of the junction in between the trap and the supercon-
ductor and dy; is the thickness of S strip.
The phonon escape time for the 2A phonon to the substrate can be written as [61]:

2d 4
T, R )
v
1 Cph

(8.8)

For our typical cooler sample with Ryy = 5.62 x 1 €2/ cm? and d4; = 40 nm, this gives 7
= 0.19 ps. The diffusion constant of our Al films is D = 30 cm?/s. This corresponds to the
trapping length of A\g = /D7y ~ 20 pm. The phonon escape time, 7, ~ idTA; ~ 8.107Ms.
The effective recombination time for the quasiparticle as defined in Eq. 8.4 iSpTe 75 ~ 1.57g.

8.2.4 Exact solution

The diffusion non-linear equation (Eq. 8.1) has a complete analytic solution, which depends
on the experimentally obtained parameters. The general solution of the quasiparticle
density profile has a simple form:

Ngp(z) = Nygo[1 + 2()]

6[1 + “<LL]
cosh [Z2] —1 | (8.9)

z(x) =1+

2(0)

Iin' - O 1
i = 2(0) + 3a
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Figure 8.2: xy as a function of injection current.

The injection term appears in the last line of Eq. 8.9. It fixes the integration constant
2. This constant goes to 0 at high injection and diverges at low injection. The constant
z(x) at = 0 is important since it provides the steady state local increase of the density
of quasiparticles in the S strip of the S-I-N-I-S cooler junction. It depends linearly on the
injection current at low injection (I;,; < «) as z(0) = [;,; and as a power law at strong

injection z(0) ~ 3 [Z-ln/;’. The diffusion coefficient of the quasiparticle (Eq. 8.1) combines
the two mechanisms of absorption/recombination and trapping of quasiparticles.
In the following, we will plot the result obtained in this section and will use the para-

meters obtained from the experiment.

8.3 Parasitic power in the cooler

As discussed in Ref. [79], one can identify two mechanisms which re-inject the undesirable
power back to the central cooling metal in the S-I-N-I-S junction.

8.3.1 Quasiparticle back-tunneling

Due to the increase in the temperature of the superconductor |70], some heat is sent back
to the central Cu electrode across the tunnel junction.
We know that the particle heat current through the tunnel barrier from the normal
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metal to the superconductor is controlled by twice the Fermi function at the superconductor
temperature T;. We find it preferable to use the combination of the distribution functions
2fs(E) - fu(E—¢eV) - fo(E+eV) at V =0 to ensure the zero power injection at T = T,,.
By integrating over the energy, one can obtain the parasitic power due to backtunneling
of quasiparticles from S to N:

Py =

2A N, (0) — ])qun’ (8.10)

62RN N(EF

where N, is the injected quasiparticle density at junction edge x = 0 (see Eq. 8.9), Ny,
is the equilibrium quasiparticle density in the normal metal at temperature Ty, Ry is the
normal state conductance of the single junction in the cooler junction. It is worth noticing
that the above equation is equivalent to the cooling power (P..) of the N-I-S junction
for Tg (# Tu) at zero bias. As already discussed, Eq. 8.2 can be inverted to obtain the
effective superconductor temperature (Ts) at x = 0. Since the trap and cooler junction
have the same thickness of the barrier, we can use Eq. 8.7 in the above expression Eq.
8.10. Thus we get:

N, (O) — qun

Py = 2A Ady—% (8.11)

To

8.3.2 Reabsorption of 2A phonons

The second mechanism is the reabsorption of 2A phonons in the Cu electrode. The 2A
phonon density can be obtained from the steady state phonon density in the Al electrode.
The transfer of 2A phonon depends on absorption coefficient between the Cu electrode
and the Al electrode. In our cooler sample, the Al electrode at the cooler junction is in
between the substrate (bottom) and the Cu electrode (top). Therefore one has to compare
the corresponding phonon transfer rate 7¢,a; (for the Cu-Al interface) and the 7 (for
the Al-interface). Since the interface area in between the Cu-Al (cooler junction area) is
smaller in comparison to the Al-substrate contact, we can assume that the junction does
not disturb the phonon density in the Al electrode. The steady state phonon density at x
= 0 can be obtained from Eq. 8.1 as:

1 1\ R(N? —N?
Nan — Naao = (— + —) Ny = Nogo). (8.12)
TB Ty 2

The 2A phonon density in the Cu is given by:

Non T
Ng, = — 28N (8.13)
TN + TCuAl
where 7y is the phonon lifetime due to the electron-phonon interaction on the Cu. There-

fore, the power dissipated by the phonons in the Cu is:
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Ney,
Pon = 2A Adey, T]CV’ . (8.14)
Since Tn > Toyar and for Al 75 > 7. Thus we get:
R(N? — N?
Poa ~ 2AA .A.dCuTT—Z[ ( = o) (8.15)

8.3.3 Comparison of parasitic back-tunneling and phonon reab-
sorption power

At high bath temperature and low injection current, Poa can be expanded near N,,,. The
ratio between the 2A reabsorption power to the backtunneling power can be written as:

Pon deuto TN
Pbt TR QdAlT-y

Eq. 8.16 involves the film thickness of the two films (N and S) and the ratio of the two rates:
To/Tr compares the quasiparticle escape rate to the trap junction with the recombination
time in Al. For our sample, this ratio vanishes at very low temperature and reaches unity
at 0.3 K. The second, 7, /7y compares the time escape for the phonon to the substrate and
the phonon reabsorption to the Cu island in the cooler junction. The estimated 2A phonon
mean free path in Cu [80] gives 7 = 0.5 ns compared to the time escape of phonon to the
substrate for our sample 7, = 7.da;/c = 60 ps. Thus we find that P is 1/5 of Py at 0.3
K and becomes much smaller at low temperatures.

At lower temperature the thermal population vanishes. The 2A phonons are produced
only by the recombination of the injected quasiparticles. The Poa is quadratic in current
(I) and is independent of the bath temperature of system. For our typical cooler sample it
goes as: Pop /12 & 8.5 fW/uA2.

In conclusion, our experiments at low temperature the main parasitic power is the heat
carried by back tunneling of quasiparticles (Py;) from superconductor to normal metal.

(8.16)

8.4 Preliminary experimental connection with theory

In this section, we will compare the previous experiment (chapter 6) on cooling of elec-
trons in the S-I-N-I-S junction and in particular at the gap edge. We will re-examine the
considered thermal model and take into account the quasiparticle induced heating in the
superconductor.

In the considered thermal model (chapter 6), we assumed that the superconductor
is well thermalized to the bath temperature. However this assumption is countered in
the previous section. It is argued that quasiparticle injection in the S strip leads to two
additional parasitic heat sources: back-tunneling of hot quasiparticles in the normal metal
(Py) and the reabsorption of 2A phonon power (Pea) into the normal metal. Since the
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Figure 8.3: Sample B experiment. FElectronic temperature as a function of bias. Fit pa-
rameters: For complete blue line ¥ = 2 nW.um 3. K5, K.A = 5/ pW.K™* and foupr =
0.01 pW/nA and for red dotted line same as in Fig. 6.6.

coolers are operated mostly in the sub-Kelvin temperature, we have P,o < Py. The
quasiparticle density at the cooler junction edge (z = 0) can be obtained from Eq. 8.9.
For our sample parameters (sample B), the injected current given by Eq. 8.6 reads as I;;,;
~ i(nA) and is independent of temperature. The back-tunneling power given by Eq. 8.11
for the cooler device reads as:

2A X\ dy

Py =2————19 = fiheory-t- 8.17

bt 6qu7_0 i = fin y-l ( )
2A )\ dy

eory — 2 . 8.18

Juneory eDg,To ( )

where a factor 2 is due a pair of a N-I-S junction in series in the cooler. It is worth noticing
that the parasitic power due to backtunneling of quasiparticles (Eq. 8.17) is proportional
to the current in the device.
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In the following, we will include the parasitic power given by Eq. 8.17 in the thermal
model described previously. In addition we will do the quantitative comparison with sample
B, whose results has been discussed in Fig. 6.6 of chapter 6. Fig. 8.3 shows the comparison
of the experiment (black dots) with the calculated curve (red and blue lines). The red line
is obtained from the thermal model with no parasitic backtunneling power and blue line
considers the Py, into the thermal model. Clearly the red line has a poor agreement with
the experiment at the gap edge and the blue one fits well. The only additional fit parameter
used in the blue curve is f.,;,x = 0.01 pW/nA.

For our sample: d4 =40 nm, D = 30 cm?/s and A = 0.214 meV. The calculation of 7
given by Eq. 8.7 assumes the complete coverage of Al by the trap (Cu) junction. However
as seen in SEM picture of sample Fig. 5.5, the Cu on trap overlaps the superconductor
only around one-half of its width which correspond to 79 = 0.19 x 2 us = 0.38 us and A =
vV D1y = 34 pm. It corresponds to a prefactor in Py given by Eq. 8.18 as: fipeory — 0.001
pW/nA.

The theoretical pre-factor fineory is less only by a factor ten in comparison to feup:.
This could be due to underestimation of ficory, Where we used the diffusion coefficient in
Al which is measured at 4 K (normal state) using the free electron approximation. On the
contrary, the injected quasiparticle at the gap edge has a small or zero group velocity i.e.
dE/dk — 0, which leads to the suppression of the Dy, in comparison to the one obtained
from the free electron model [74]. Narayanamurti et. al. found that D,, decreases by a
factor of 2.5 at 0.5 K and more at lower temperature.

The qualitative agreement at gap bias voltage demonstrates that the parasitic power
due to the back-tunneling of quasiparticles brings heat into the N metal. The parasitic
heat deposition due to back-tunneling is maximum at the gap edge.



Chapter 9

Conclusions and perspectives

In this thesis, we have realized the solid - state cooling of electrons in a Copper strip using
superconductor - normal metal - superconductor tunnel junctions. In the following, I will
summarize the main conclusions of this work and give a few perspectives.

Inherent thermometer: One of the challenges in this field is to fabricate a nano cooling
device with less external perturbations on the central N island and more efficient designs. In
our first work (chapter 5), we found a "nouvelle vague" to extract the electrons temperature
without any external thermometer. The electronic temperature is extracted directly from
the experimental current - voltage characteristic of the cooler (S-I-N-I-S) junction. The
cross-over between the experiment and the theoretical isotherms enables us to extract the
temperature of electrons in the N metal. This sample design with no external thermometer
attains a smaller contact surface area of the N-metal with the substrate, in comparison
with the design having external thermometer, which can contribute to a better cooling of
the island.

Phonon cooling: To understand the cooling mechanism in the central N island, we de-
vised a quantitative thermal model (chapter 6). It takes into account the electron - phonon
coupling in the N metal and the Kapitza coupling between the phonons of the central N
metal and the substrate. With this model, we have achieved a thorough description of the
charge and the heat currents. We have shown that in an intermediate regime (Tpq, > 300
mK) the effective temperature in the N-metal phonons goes well below the temperature of
the cryostat. The model gives an indirect determination of the phonon temperature as a
function of cooler bias.

Andreev induced dissipation: The thermal transport in the normal metal - superconduc-
tor junctions at very low temperature has always been adventurous. At low temperature
and bias, the charge transfer across the normal metal and superconductor is governed by
the higher order tunneling process, namely Andreev current. On precise investigation on
the thermalized N-I-S (probe junction in our sample) junction, we confirmed the presence
of phase-coherent Andreev current in our samples (chapter 7). The charge contribution
due to Andreev current subjugates the quasiparticle current of the junction at very low
temperature. Similar precise investigation on the cooler junction concluded the induced ad-
ditional non linear dissipation due to the Andreev current. The Andreev current dissipates
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fully its Joule heat in the N metal (chapter 3). This new induced heating regime is quanti-
tatively analyzed in our thermal model, which provides a full description of the electronic
temperature evolution with the cooler bias voltage. At low temperature, the quasiparticle
based cooling is little efficient while the induced heat dissipation due to Andreev current
is fully efficient. It leads to a significant increase of the electronic temperature over a large
bias range. Only for the bias close to the optimum bias the quasiparticle based cooling
becomes predominant.

Superconductor heating: In a S-I-N-I-S cooler, the driving current injects hot quasipar-
ticle in the superconductor electrodes. The heat contribution of the quasiparticles is gener-
ally ignored. However, we presented a model which describes precisely the non-equilibrium
processes occurring in the S electrode. It shows that the injection in the superconductor
degrades the cooler performance via two main mechanisms: quasiparticle back-tunneling
(i.e. increase in the superconductor temperature) and re-absorption of the 2A phonons in
the normal metal strip. In our model, we have considered the diffusion of quasiparticles in
the superconductor and also the trap junction. The solution of the non-linear equation for
quasiparticle diffusion is obtained exactly in space as a function of the injection current.
The influence of the material and geometric parameters such as diffusion coefficient, tunnel
conductance, trapping junction, has been included in the study and will therefore be useful
to improve the minimum temperature of the future devices.

Perspectives:

Inherent thermometer method to extract the electronic temperature without any ex-
ternal thermometer can be useful for sand-witched tri-layer geometry. In such designs
mounting an external thermometer aggravates the problems in designing the coolers. For
instance in Clark et. al. [8] experiment to cool down an external object (NTD sensor),
there was no thermometer to measure the temperature of electrons.

Phonons in thin film at low temperature are mostly assumed to thermalize at the cryo-
stat temperature. As discussed in chapter 6, the N-metal phonon distribution depends on
film thickness and acoustic mismatch between the N-metal phonons and the substrate. Our
experiments on phonon cooling needs more investigation, especially in a high temperature
regime (T > 350 mK). Now we have devised a phonon thermometer (see 9.1), which is
supposed to measure the phonon distribution in the normal metal. The sample consists
of two layers of Cu separated by a thick insulator (~ 100 nm Si). Each Cu layer has a
S-I-N-I-S thermometer on top of it. Hot electron effects on bottom Cu is measured by the
electron thermometer |56, 44, 57, 45]. The thermometer on the 2" Cu (top) is expected
to give a measure of an effective Kapitza resistance between the two Cu layers. This ex-
periment is expected to measure an independent hot electron and phonon effects, which
can be manipulated or optimized depending on the geometry of the sample. In S-I-N-I-S
junction, cooling of phonons depends on Kapitza resistance between the normal metal and
the substrate. The Kapitza resistance can be modified by etching out the N-metal from
the substrate.

The induced heat dissipation due to Andreev current is one of the main limitation
factor in reaching the very cold electronic temperature. This heat dissipation needs more
experimental and theoretical investigation. The basic picture of Andreev current tells us
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Electron ! Phonon
Thermometer ‘Thermometer
! 10 um

Cu heat

Figure 9.1: Scanning electron micrograph of a sample having independent electron and
phonon thermometer. The top view shows the complete device. The bottom view is the
zoom showing the phonon thermometer.

that it is dominant due to the constructive interference of the probability amplitude of
two-electrons tunneling across the barrier. The phase-coherence is mainly cut-off by the
natural coherence length (Lg). Therefore, an efficient cooler sample should be made from
the normal metal with a small Lg, for example AuPd. Addition of magnetic impurities
like iron could also diminish the coherence and consequently heat dissipation in the normal
metal. Also, the transparency of most of the cooler junction made in this thesis were
small ~ 1076 which diminished the cooling power of the device. Therefore by choosing a
N-metal which has a small Lg and also by fabricating more transparent junction can be
used for more practical application. More transparent tunnel barrier can be made from on
epitaxial aluminium nitride barriers which is better than the aluminium oxide barrier for
high critical current densities [81].

The quantitative thermal model for the quasiparticle diffusion in S strip is expected
to check the efficiency of the traps. The parasitic power in the cold normal metal is
linearly proportional to the injected tunnel current. We have done more experiments on
the cooler junction with no traps. They need to be reproduced at lower temperature, lower
power and with an optimized choice of geometry. The model shows the requirement of
"heat exchangers" in the solid state refrigerators that take the hot quasiparticle out of the
superconductor. One way to install heat exchangers in the micro coolers is via cascading.

This thesis could be useful for choosing the right materials to reach a temperature of
below 10 mK (illusive so far!). For instance, half-metallic ferromagnetic materials such as
CrO, [82] could be an important candidate for the coolers. For practical application, it
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is also required to cool from liquid Helium temperature to milli-Kelvin temperature. It
can be achieved by cascade arrangement with several stages of coolers. Coolers based on
S-I-N-I-S junction can also be useful to cool down a nano-mechanical based devices by
cooling down their relevant mechanical modes below the quantum of resonator energy.



Appendix A

Normal state tunnel conductance

The tunnel Hamiltonian for a N1-I-N2 junction can be written as :

HT = Z[tk,PaL,abP:U + tz,pb;ra,aakﬂ']?

with ¢, being the phenomenological matrix element associated with the transfer of charge
across the barrier; the subscript k£ and p refers to left and right normal metal electrodes.

The total current across the junction is given by: In1_7 - n2 = In1—n2 - Ino—n1- The
two currents are given by :

Ivins = e x 20 x 23 [, PREL — FE)5(6 & +2V)

Inant = € x 2% %23 iy PRE) — FENS(E — & + 26V). (A1)

Real space representation of ti,: We will re-write the tunnel matrix element in the real
space coordinates. The tunnel matrix element ¢, can be written in terms of the complete
set of wave functions for the disordered electrodes

thyp = /d?’rdg?"’gbp(r)qb,’;(?“’)t(r, ). (A.2)

As a result, the current from N1 to N2 can be obtained by substituting eq. A.2 to eq. A.1.
We get

4re

]N1—>N2 = 7 Z f(gk)[l — f(gp)](;(gk — fp + 26V) /d37“1d37"2d37’3d37”4

Gp(11) D1 (12) Pp(13) D5 (1a)E (11, 72 )t (173, 74).

We assume that tunneling predominantly occurs between the neighboring points at the
barrier, thus t(r,r") = t(r)d(r — 1')0(z — z,), where z, is a point on the barrier and also
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N1 Interface N2
— t*(rg)

k.

Sk

gt

— t(r)

Figure A.1: Diagram corresponding to Eq. A.4. FElectrons tunnel at point i and r3 (marked
by crosses) across the N1-I-N2 junction with energy & and &,. The solid line shows the
propagation of the electron in the electrode.

inserting the identity 1 = [ d€ d€'6(§ — &)0(&' — &,). We get

Iyioa = 2 [ dedg 1O = FEN6E € +eV) [ dridirafln)
F )Y Ghr)L0)0(E ~ G olri)pr)d(E — G — V)] (A

We define a propagator from ry to ry by Ke(r1,7r3) = Y 0(& — &) dr(r1)¢r(r3). With these

definitions we can rewrite the Eq A.3 as:

IN1—>N2 = 4—7};6 dfdflf(f)[l - f(§ —+ €V)] /dngdsrg%v(Tl)i;(Tg)Kf(Tl, 7"3)K§+ev(’r’3, T1>

(A.4)

The physical meaning of Eq. A.4 can be understood easily from Fig. A.1. The cross

at r; for i = 1,3 corresponds to tunneling with amplitude ¢(r;). The lines correspond to
propagation on the disordered electrodes.

Further progress can be made by including the retarded (Gg) and advanced (G,)
Green’s function which can be defined as :

1

GA,R(k>w) = m,

as well as the propagator function

Kg(k,w) = (1/27T Z)[GA — GR]
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Propagator in real space representation can be written as:

1
Ke(rr)= 5= e
k

z‘?.(?’—?)[ 1 N 1 ]
§—& —if2r =& +ij2r7

such that

V 1

Knr) = =) /0 ke =

1 _ 1
§—&—if21 {—&+i/2T

Since the integration contributes near the Fermi-energy, k— kp+x and we integrate x from
2
(-00,00). Also, sz%kw{ and kp+r~ kp, we get

] (A.5)

Ke(r, r') = v(0) eXp_(gi?T,) Slr}jf?:i:‘g,)] (A.6)

vy being the density of states per spin.
We can calculate the total impurity-averaged current across N1-I-N2 junction. We use
the above definition of propagator Eq. A.6 and substitute in Eq. A.4 to find

_Am e 0 T\ —tnr) sinfkp(ry — r3)]
Ini—n2 = : 0 /dff(g)[l—f(§+eV)]/d2r1d r3 t(r1)t*(r3) exp [ e _TX 7)]2

Now, we assume that the tunneling amplitude is same at all points on the barrier, t(ry) =
t(r1) = t(r). We use the Jacobian transformation such that r = ry - r3 ; 2R = ry + r3, then

4 0)29
Do = T E Rty [ @RURE [aer©n - e+ eV (as)
F
with F;(kpl) being the dimensionless integral given by:
Fu(kpl) = / e w22 (A.9)
u

In accordance with the above, the total impurity-averaged current across the N1-I-N2
junction, In1_;_no = In1—n2 - Ino_.n1 can be written as:

4re’v(0)2SFy (krl)
hiz

where Gy is the normal state conductance.
Here the "local barrier tunnel conductance" is given by:

[ / ERIER)V = GanV, (A.10)

() = T E D (A1)







Appendix B

Phase-coherent Andreev current in a
N-I-S junction

The tunnel Hamiltonian can be written as:

Hy = St} by + 1,05 o n0]s (B.1)

with ¢, being the phenomenological matrix element associated to the transfer of charge
across the barrier; the subscript k and p refers to normal metal and superconductor elec-
trode.

An excitation in the superconductor is given by :

byt = upYpr + UP,YT_pw (B.2)
bpy = Upp) — Up'YT_pTy (B.3)

u, and v, being the BCS coherence factors. The interest of this representation is that
it enables us to express the tunnel Hamiltonian in terms of the Bogoliubov quasiparticle
operator v and v'. There exists two possibilities for the tunneling of two electrons across
the junction. In the first case, the tunnel transfer of two electrons from N to S and vice-
versa.

Case 1: From N — S:

Let us consider the initial state is given by | kq,ko;|p>. Applying second order pertur-
bation theory in [:TT, we have

HpGoHy = [tZLplb;uakll] Go [t;;Q,prZﬁTasz] :

Using Eq. B.2 and Eq. B.3, we get
HyGoHy =t 5 S[(upyl,, — v Va1 | Gol (upay o + v Yako]
TG T = Uiy prlro,p2l\UplTp1 | p1V—p11)Ak1|[Go[\Up2TY oy T Up27—p2| ) Ak21]-
Clearly in the above equations, there are two allowed processes :

135



APPENDIX B. PHASE-COHERENT ANDREEV CURRENT IN A N-I-S
136 JUNCTION

1. As a first possibility, an electron with quantum number ks and spin up is annihilated,
thereby creating an excitation as a quasiparticle in S. This leads to a virtual state with
energy —Eys — xo.

2. As a second possibility, an electron with quantum number ks and spin up is created,
due to annihilation, which leads to no excitation as quasiparticle in S. This leads to a
virtual state with energy E,o — &ko.

We assume that the superconductor is at thermal equilibrium and the temperature is
low enough so that there are no excitations as quasiparticles in S. Therefore, only the
second possibility contributes to tunneling of two electrons.

1

m}upaizﬁ] (B.4)

p

N 1r * * T
1GoHr = —t51 _tho pUpasy |

Now we can do the same as above with the initial state in N as k1 | and the final state as
k2 7.
1

HrGoHr =t ,th1 [Upaitm[m]upaltu]-

(B.5)

The total Hamiltonian is then given by the sum of eq. B.4 and eq. B.5 and sum over all
intermediate state 'p’. In eq. B.4 we substitute p = -p, thus we get

1 n 1 ] t ]
U,a .
E,—&n  E,—&o UM

Hence, the total amplitude of the transfer of 2e electron from N to S is given by:

3 N 7y _gx * t
HyGoHy = tho i pl0paso; |

. 1 1
An_g = Z tk?,ptkl,p[vpaLZT[Ep . + E, - gkz]upaLuL (B.6)

p

with & and ¢ being the electron energies for the normal metal and the superconductor
respectively; and quasiparticle energies: E, = /A? +¢2. The denominators in Eq. B.6
reflects the fact that a virtual state is formed when the first electron enters the quasiparticle
as a quasiparticle. This is coupled with an another quasiparticle to form a Cooper pair.
The total rate of tunneling from N to S is then given by the golden rule :

[yos=2x 2% X Y2l An—sl?f (&) f(Ek2)0(Epa + &1 + 2€V), (B.7)

where the factor 2 is due to the other possibility of the spin and the f(&) is the Fermi
functions in the normal metal.

Case 2 : From S — N

A similar expression can be written from the transfer of two electrons from S — N :

Doy = 2% 5 X Syl s nP[1 = FEIIL ~ F(EI0(E0 + & +26V),

Ag_.n is the amplitude for the transfer of two electrons from S to N is given by :
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1 1 t
Ep+ & * E, + fk2]ul)akll].
The total 2e charge transfer current across N-I-S junction is given by: I'yrs = 2e X [Ay_s—
As_n].

Real-space representation of ty,: We will re-write the tunnel matrix element in the real-

space coordinates. The tunnel matrix element ¢; , can be written in terms of the complete
set of wave functions for the disordered electrodes

Ag_n = Eptklptkl,p[vpazx[

thyp = /d‘q’rd?’r’(bp(r)(b,t(r’)t(r, ') (B.8)

As a result the amplitude Ay _. g for the transfer of two electrons from N to S can be written
as :

An_s(kl |, k2 17) = /d3r1d3r2d3r1/d37’2/t*(r1,r’l)t*(rg,Té)qﬁkl (r1) o, (r2) F*(r1,72), (B.9)

where we define the quantity

1 1
F p—
(ri,r2) zp:[vp[fkl +eV - E, + Eo +eV — L,

Jupdp(r1)dp(r2) (B.10)

The above equation describes the propagation of an electron between r; and 75 in the
superconductor with the tunneling amplitude ¢, ,» on either side of the barrier. We assume
that the tunneling predominantly occurs between the neighboring points at the barrier as
given by t(r,r") = t(r)d(r — ') §(z — zp), where z, is a point on the barrier. We obtain

AN_,5(]€1 l, k’2 T) = / d27"1d27“2t*7“1t*7“2¢k1 (Tl)gka (T’Q)F*(T‘l, 7“2)

barrier

leading to

|An_s(k1 |, k2 7)]* = / d®r d*rod®rsd?r gt (r)t* (1)t (r3)t(ry)

barrier

Dy (71) Phy (12) iy (73) Py (1) F (11, 72) F (13, 74). (B.11)
Thus Eq. B.7 can be written as:

Tvs = o [ dedg'dsds' V(€1 +€ + 26V ocucuou]
( 1 1

Enos(s, ¢ € 8. B.12
5Jrev_EpﬂLg,Jrev_Ep]zvs(<§§€) (B.12)

where we define the quantity
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EN—»S(§> §,§ §, fl) = / d27“1d27"2d27’3d27“4t* (Tl)t* (7“2)75(7’3)75(7"4)

barrier

Kg@“z, 7"4)K§’(7"1> 7’3)K<(7“17 7"2)K<' (7’37 7“4)- (B~13)

As discussed in chapter 3, the charge transfer across the N-S junction can be driven by
three possibilities.

Possibility(a) depicts the situation when r; ~ r9 and r3 & r4, contribution arising due
to the interference in the normal metal.

Possibility(b) depicts the contrary situation i.e. 7 ~ r3 and 79 ~ r4, where the inter-
ference is in the superconducting electrode.

Possibility(c) interference both in normal metal and superconducting electrode is taken
into account. The total contribution to the phase coherent Andreev current is the sum of
the interference in the normal metal and the superconductor.

Case 1 : Interference in the normal electrode

For the interference in the normal metal electrode, we have

En_s(s,¢€,&) = / d?r d*rod®rsd?ryt* (r)t* (1)t (rs)t(ry)

barrier

< Kg(?“g, T4)K§/(T‘1, Tg) >< Kg(T’l, 7“2) >< Kgl(T’g, Ty > . (814)
The average over impurities of the product of the propagator can be written as :

v

< Ke(r1, r3) Ko (72, 71) >= ﬁ[Pg—e(ﬁ —12) — Po_¢(17 = 73))], (B.15)
where P,E/,g('r_f — 73) is the Cooperon. The Cooperon is a long-ranged space-dependent
quantity with a characteristic length scale |r] — 73| is given by Lp, which satisfies the

equation
—~hDAP(7{ —73) —ieP(7] — 73) = (71 — 73) (B.16)

D being the diffusion coefficient.
We assume that the tunnel amplitude obeys t(r1) = t(r2) and t(r3) = t(ry) and we use
the definition of propagator as:

—(r—r' ] k — !
Kelror) = w(0) ™ S0 =)

(B.17)
Vo being the density of states per spin. On substituting Eq. B.17 in Eq. B.14, we get

3

e 1%
Sxesledi6€) =5 / d'rid*radrsd®rat(r1)*t(rs)*[Pe—g (11 — r2) — Po—¢(71 — 72)]
barrier

—(r; — rg)][sin[kF(rl — 7“2)]] o [—(7“3 — r4)][sin[kp(r3 — 7“4)]]

exp] 21 kp(ry —rg) 21 kp(rs —ry)
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We use the Jacobian transformation such that r = r; - r3 ; 2R = r; + r3 and substituting
above

Zyos(ssi6.E) = / ERI(R)] / Pr{Pe_g(0) — Po_e(0)] / Pradry exp|—
[sin[k‘F(r/Q + R — 7“2)]] exp[—(r/Z + R - 7’4)“
k’F(’I“/2+R—’I“2) 21

(r/24+ R —rg)

21 ]

sin[k'p(r/Q + R — 7"4)]
kF(T/2+R— 7“4)

The total phase coherent Andreev current is given by In,  nrs = 2¢(I'y_s - ['s—n), due
to the transfer of electrons in a N-I-S junction by taking into account the averaging over
the disorder in the normal electrode.

87 ey Fs(kpl)
2rh k.

INyeNIS =

[ eriy) [ agacac (7€) - s(e + 26V )focudened

1 1
_l’_
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F3(kpl) being the dimensionless integral defined as :

2vsm[u] L sin|v] T (B.19)
u v

Fy(kpl) = / Pud

Case 2 : Interference in the superconducting electrode
For the interference in the superconducting electrode, we have

En_s(s,¢5¢,&) = / d?r d*rod®rsd?ryt* (r))t* (1)t (r3)t(ry)

barrier

< KE(T27T4) >< KE’(T17T3> >< Kc(rly7’2)K<’(7’377"4 >

As in case 1, a similar expression can be obtained for the total current, Ig,, . n7s due to
transfer of 2e electrons in a N-I-S junction by taking into account the averaging over the
disorders in the superconducting electrode.

87 vy Fiy(kel) [ @ Ritr [ dgiad (566~ 6+ 26V lueulfoeas]

2rh  kp
[5 + eé —E, L 6‘1/ - E,,] /d2("”)[P<<f(r) + P._.(r)]{(B.20)

Is,pe.N15 =

The total phase coherent Andreev current through the N-I-S tunnel junction is the sum of
Eq. B.18 and Eq. B.20.
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Résumé

Refroidissement électronique a base de jonctions tunnel
supraconductrices

Au cours des dernicres années, le refroidissement des électrons par effet tunnel dans
des jonctions hybrides composés de métal Normal - Isolant - Supraconducteur (N-I-S)
a suscité de plus en plus l'attention. Son principe repose sur un effet tunnel sélectif en
énergie en raison de la présence d'une bande interdite A dans la densité d'états du
supraconducteur. Avec une tension de polarisation inférieure a I'énergie du gap, seuls
les électrons de plus haute énergie peuvent traverser l'interface du métal normal par
effet tunnel, laissant derriére eux les électrons de moindre énergie.

Nous avons mesuré la conductance différentielle de jonctions S-I-N-I-S avec une
grande résolution. Son analyse nous renseigne sur la température électronique du
métal normal en fonction de la tension. Un modéele quantitatif est proposé qui inclut le
couplage électron-phonon et la résistance dite de Kapitza, a l'interface avec le
substrat. Avec ce mod¢le, nous avons réalisé¢ une description détaillée du courant
¢lectronique et du flux de chaleur. Nous avons également montré que la température
des phonons dans le métal normal baisse sensiblement au-dessous de la température
du substrat.

A trés basse température (T < 200 mK) et a faible tension de polarisation, le courant
d'Andreev cohérent en phase domine le courant des quasi-particules. En analysant
quantitativement 1'équilibre thermique dans la jonction S-I-N-I-S, nous avons
démontré que le courant d'Andreev transporte de la chaleur. Cette contribution
thermique chauffe les électrons du métal normal.

Le refroidissement électronique a la tension de polarisation optimum (V ~ 2A/e) dans
la jonction S-I-N-I-S est un probléme bien connu mais qui reste en suspens. L'effet de
refroidissement dans la jonction S-I-N-I-S est accompagné par l'injection de quasi-
particules dans les électrodes supraconductrices. Nous avons proposé un modele
simple pour la diffusion de l'excés des quasi-particules dans 1'électrode
supraconductrice possédant un piege métallique. Le modele de diffusion a une
solution analytique qui prédit la température minimum de refroidissement susceptible
d'étre atteinte.

Mots clés:
Supraconductivité — jonction S-I-N — effet tunnel quantique — refroidissement
¢électronique — courant Andreev — nano-¢électronique quantique



Abstract

Electronic refrigeration using superconducting tunnel junctions

In the recent years, nano-refrigeration using electron tunneling in hybrid Normal
metal - Insulator - Superconductor (N-I-S) junctions has gained increasing attention.
Its basic principle is the energy selective tunneling due to the presence of an energy
gap in the superconductor density of states. With a sub-gap voltage bias, only the
most energetic electrons can tunnel out of the normal metal, leaving behind the
electrons with less energy.

We have measured with a high resolution the differential conductance of S-I-N-I-S
junctions, whose analysis gives us an access to the normal metal electronic
temperature as a function of the voltage. A quantitative model is proposed, that
includes the electron-phonon coupling and the Kapitza resistance at the interface with
the substrate. With this model, we have achieved a thorough description of the charge
and heat currents. We have also shown that the normal metal phonon temperature
drops significantly below the substrate temperature.

At very low temperature (T < 200mK) and low bias, the phase coherent Andreev
current dominates the quasi-particle current. By analyzing quantitatively the heat
balance in the S-I-N-I-S junction, we demonstrate that the Andreev current does carry
heat. This thermal contribution heats the normal metal electrons, overriding over a
large voltage range the tunneling-based cooling.

The electronic cooling at an optimal bias (V ~ 2A/e) in a S-I-N-I-S junction is a
known pending issue. Cooling effect in S-I-N-I-S junction is accompanied by the
injection of hot quasi-particles in the S electrodes. We have proposed a simple model
for the diffusion of excess quasi-particles in a superconducting strip with an external
trap junction. The diffusion model has a complete analytic solution and predicts the
minimum attainable temperature of the coolers.

Keywords:
superconductivity - S-I-N junction - quantum tunneling - electronic cooling - Andreev
current - quantum nanoelectronics
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