Thèse de doctorat spécialité : mécanique

# DÉVELOPPEMENT D'ALGORITHMES ET D'UN CODE DE CALCUL POUR LES PROBLÈMES DE L'IMPACT ET DU CHOC

# **Benoît Magnain**

28 novembre 2006

Laboratoire de Mécanique et d'Énergétique d'Évry Université d'Évry - Val d'Essonne



**G** Simulation numérique des problèmes d'impact

- Deux grandes sources de difficultés :
  - $\Rightarrow$  gestion du contact avec frottement
  - $\Rightarrow$  intégration des équations du mouvement
- **O**bjectifs :
  - $\Rightarrow$  précision des résultats
  - $\Rightarrow$  stabilité de la méthode
  - $\Rightarrow$  performance (temps de calcul)

# Couplage de deux méthodes originales

Traitement du contact :

méthode du bi-potentiel (DE SAXCÉ et FENG 1991 et 1998)

- $\Rightarrow$  vérifie de manière exacte les conditions de contact
- $\Rightarrow$  résolution dans un système réduit
- $\Rightarrow$  réactions normales et tangentielles liées par le bi-potentiel de contact
- $\Rightarrow$  méthode éprouvée en statique

Intégration des équations du mouvement :

 $\theta$ -méthode du premier ordre (JEAN 1999)

 $\Rightarrow$  ne fait pas intervenir de termes d'accélération dans le calcul

# □ Introduction

**Contact avec frottement** 

□ Schémas d'intégration

□ Applications numériques

**C**onclusions et perspectives

4

# **I**Introduction

- Contact avec frottement :
  - définition du problème
  - méthode globale de résolution
  - loi de contact avec frottement
  - méthode du bi-potentiel
  - algorithme local de résolution
  - définition des zones de contact
- □ Schémas d'intégration
- Applications numériques
- Conclusions et perspectives

5

### Définition du problème (1/2)



#### Cadre de l'étude :

- problèmes dynamiques
- grands déplacements et grandes déformations
- matériaux hyperélastiques
- contact avec frottement
   entre corps déformables
- problèmes 2D et 3D

Équations d'équilibre discrétisées :

$$\left| \mathbf{M}\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}_T \ \delta \mathbf{U} = \mathbf{F}_{ext} - \mathbf{F}_{int} + \mathbf{R}_c \right| +$$

 $\frac{I\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}_T \ \delta \mathbf{U} = \mathbf{F}_{ext} - \mathbf{F}_{int} + \mathbf{R}_c}{\operatorname{Conditions aux limites}} + \begin{cases} \text{loi de comportement} \\ \text{conditions aux limites} \\ \text{conditions initiales} \\ \text{conditions de contact} \end{cases}$ 

non-linéarité matérielle (hyperélasticité)  $\Rightarrow \begin{cases} Kirchhoff-Saint Venant, Néo-Hookéen, Blatz-Ko et Mooney-Rivlin$ 

non-linéarité géométrique  $\Rightarrow$  formulation lagrangienne totale, **E**, **S** 

non-linéarité de contact  $\Rightarrow$  méthode du bi-potentiel

Contact avec frottement

28/11/2006, Évry

# Algorithme global



Après intégration temporelle :  $\widehat{\mathbf{M}} \; \delta \mathbf{U} = \widehat{\mathbf{F}} + \mathbf{R}_c$ 

$$egin{aligned} \mathbf{D}egin{aligned} \mathbf{D}egin{aligned} \mathbf{D}egin{aligned} \mathbf{D}egin{aligned} \mathbf{D}egin{aligned} \mathbf{D}egin{aligned} \mathbf{P}egin{aligned} \mathbf{D}egin{aligned} \mathbf{D}egin{align$$





8



Changement de base et condensation

$$\begin{aligned} \mathbf{R}_{c}^{\alpha} &= \mathbf{H}^{\alpha} \mathbf{r}^{\alpha} \\ \delta \mathbf{u}_{c}^{\alpha} &= (\mathbf{H}^{\alpha})^{\mathrm{T}} \delta \mathbf{U}_{c}^{\alpha} \\ \delta \mathbf{u}_{c} &= \left(\mathbf{H} \widehat{\mathbf{M}}^{-1} \mathbf{H}^{\mathrm{T}}\right) \mathbf{r} = \mathbf{W} \mathbf{r} \end{aligned}$$



#### Loi de contact avec frottement



Contact avec frottement

#### 28/11/2006, Évry



Contact avec frottement

Algorithme d'Uzawa :

Prédiction 
$$\mathbf{r}^{*i+1} = \mathbf{r}^i - \varrho^i \left( \mathbf{\dot{u}}_t^i + (\dot{u}_n^i + \mu \| \mathbf{\dot{u}}_t^i \|) \mathbf{n} \right)$$
  
Correction  $\mathbf{r}^{i+1} = \operatorname{proj}(\mathbf{r}^{*i+1}, K_{\mu})$ 





#### Contact avec frottement

12

$$\delta \mathbf{u}_c = \mathbf{W} \mathbf{r}$$
  
+ loi de contact  
 $\Downarrow$   
 $\delta \mathbf{u}_c = \mathbf{W} \mathbf{r}$   
 $\mathbf{r} = \mathsf{proj}(\mathbf{r}^*, K_\mu)$ 

 $\begin{array}{c} \mbox{Gauss-Seidel par bloc} \\ \mbox{problème non-linéaire de } (6 \times N_c) \mbox{ équations} \\ \mbox{ } \\ \mbox{ } \\ N_c \mbox{ sous-problèmes de } 6 \mbox{ équations} \end{array}$ 



#### Zones de contact





Type de traitement :

- **D** problème 2D : nœud-segment
- D problème 3D : nœud-facette

### **I**Introduction

Contact avec frottement

# **Schémas d'intégration :**

- problématique
- schéma classique de Newmark
- schéma adapté aux problèmes d'impact
- □ Applications numériques
- Conclusions et perspectives

15

### **NEWTON-RAPHSON**

$$\mathbf{M}\ddot{\mathbf{U}}_{t+\Delta t}^{i+1} + \mathbf{C}\dot{\mathbf{U}}_{t+\Delta t}^{i+1} + (\mathbf{K}_T)_{t+\Delta t}^i \ \delta \mathbf{U}_{t+\Delta t}^{i+1} = (\mathbf{F}_{ext})_{t+\Delta t} - (\mathbf{F}_{int})_{t+\Delta t}^i + (\mathbf{R}_c)_{t+\Delta t}^{i+1}$$
$$\Delta \mathbf{U}_{t+\Delta t}^{i+1} = \Delta \mathbf{U}_{t+\Delta t}^i + \delta \mathbf{U}_{t+\Delta t}^{i+1}$$

SCHÉMA D'INTÉGRATION

$$\widehat{\mathbf{M}}_{t+\Delta t}^{i+1} \, \delta \mathbf{U}_{t+\Delta t}^{i+1} = \widehat{\mathbf{F}}_{t+\Delta t}^{i+1} + (\mathbf{R}_c)_{t+\Delta t}^{i+1}$$
$$\Delta \mathbf{U}_{t+\Delta t}^{i+1} = \Delta \mathbf{U}_{t+\Delta t}^{i} + \delta \mathbf{U}_{t+\Delta t}^{i+1}$$

**d** schéma explicite (différences centrées ...)

- dynamique rapide
- calcul de crash
- PAM-CRASH, RADIOSS

- Schéma implicite (Newmark, Houbold, HHT ...)
  - vérifie l'équilibre à chaque pas de temps
  - inconditionnellement stable sans contact
  - ANSYS,ABAQUS,...

Hypothèses de départ :

$$\begin{aligned} \dot{\mathbf{U}}_{t+\Delta t} &= \dot{\mathbf{U}}_t + \Delta t \left[ (1-\alpha) \, \ddot{\mathbf{U}}_t + \alpha \ddot{\mathbf{U}}_{t+\Delta t} \right] \\ \mathbf{U}_{t+\Delta t} &= \mathbf{U}_t + \Delta t \, \dot{\mathbf{U}}_t + (\Delta t)^2 \left[ \left( \frac{1}{2} - \beta \right) \, \ddot{\mathbf{U}}_t + \beta \, \ddot{\mathbf{U}}_{t+\Delta t} \right] \end{aligned}$$

Inconditionnellement stable (sans contact) pour :

$$\alpha \geq 0,5 \quad \text{et} \quad \beta \geq (2\alpha+1)^2/16$$

**Couples de paramètres classiques :** 

| $\alpha$ | eta           | à l'intérieur de $\Delta t$                              |
|----------|---------------|----------------------------------------------------------|
| 0,5      | 0,25          | hypothèse de l'accélération constante (règle du trapèze) |
| 0,5      | $\frac{1}{6}$ | hypothèse de l'accélération linéaire                     |

Test 1 : impact longitudinal (Hu 1997)



| type de matériau | Kirchhoff-Saint Venant                               |  |
|------------------|------------------------------------------------------|--|
| longueur         | L = 10                                               |  |
| module de Young  | E = 1000                                             |  |
| masse volumique  | $\rho = 0,001$                                       |  |
| vitesse initiale | $\dot{u}_{0}^{(1)} = -\dot{u}_{0}^{(2)} = (1,0;0,0)$ |  |
| durée totale     | T = 0,04                                             |  |
| pas de temps     | $\Delta t = 10^{-5}$                                 |  |
| maillage         | 20 éléments $Q4$ par barre                           |  |



Impact longitudinal ( $\alpha = 0, 5$  et  $\beta = 0, 25$ )



Impact longitudinal ( $\alpha = 0, 5$  et  $\beta = 0, 5$ )

amélioration global du résultat



| type de matériau | Kirchhoff-Saint Venant         |
|------------------|--------------------------------|
| module de Young  | $E=10^7~{ m Pa}$               |
| masse volumique  | $\rho=1000~{\rm kg/m}^3$       |
| vitesse initiale | $\dot{u}_0 = (3,0;-5,0)$       |
| durée totale     | $T=0,003~{\rm s}$              |
| pas de temps     | $\Delta t = 10^{-5} \text{ s}$ |



Animation





28/11/2006, Évry



**Spécificité des chocs :** 

vitesse discontinue au moment du choc

Idée directrice :

stabiliser le calcul en maîtrisant l'énergie mécanique

axes de recherche :

 $\Rightarrow$  introduire de la dissipation numérique

- $\Rightarrow$  introduire un terme correctif (Laursen, Armero)
- $\Rightarrow$  adapter des schémas différents (Hauret, Barboteu, Jean)



Formulation intégrale :

$$\int_{t}^{t+\Delta t} \mathbf{M} d\dot{\mathbf{U}} + \int_{t}^{t+\Delta t} \mathbf{C}\dot{\mathbf{U}} dt + \int_{t}^{t+\Delta t} \mathbf{F}_{int} dt = \int_{t}^{t+\Delta t} \mathbf{F}_{ext} dt + \int_{t}^{t+\Delta t} \mathbf{R}_{c} dt$$

 $\theta$ -*méthode* du premier ordre :

$$\frac{\mathbf{U}_{t+\Delta t} - \mathbf{U}_t}{\Delta t} = (1 - \theta) \, \dot{\mathbf{U}}_t + \theta \, \dot{\mathbf{U}}_{t+\Delta t} \quad \text{où} \quad 0 \le \theta \le 1$$

Approximations appliquées :

$$\Box \int_{t}^{t+\Delta t} \mathbf{M} \, d\dot{\mathbf{U}} = \mathbf{M} \left( \dot{\mathbf{U}}_{t+\Delta t} - \dot{\mathbf{U}}_{t} \right)$$
$$\Box \int_{t}^{t+\Delta t} \mathbf{F} \, dt = \Delta t \left( (1-\xi) \, \mathbf{F}_{t} + \xi \, \mathbf{F}_{t+\Delta t} \right) \quad \text{où} \quad 0 \le \xi \le 1$$
$$\Box \int_{t}^{t+\Delta t} \, \mathbf{R}_{c} \, dt = \Delta t \, (\mathbf{R}_{c})_{t+\Delta t}$$

Schémas d'intégration



# Impact longitudinal (1/2)

Schémas d'intégration

28/11/2006, Évry

# Impact longitudinal (2/2)



27

28/11/2006, Évry

#### Impact oblique sans frottement

# Animation







#### Influence des paramètres du schéma

 $\theta = \xi = 0,5 \quad \text{couple "optimal"}$ 

30

#### Influence du maillage







M1

M2

| maillage $M1$ | 37 éléments  |
|---------------|--------------|
| maillage $M2$ | 259 éléments |

# Introduction

**Contact avec frottement** 

□ Schémas d'intégration

# Applications numériques :

- présentation de FER/Impact
- impact déformable-rigide en 2D
- impact déformable-déformable en 3D
- application aux problèmes quasi-statiques

Conclusions et perspectives

28/11/2006, Évry

# **FER/Impact**

**Description :** code de calcul par élément finis pour les problèmes d'impact et de choc

**Domaines d'application :** 

**grandes déformations (formulation lagrangienne totale)** 

J matériau hyperélastique (Kirchhoff-Saint Venant, Néo-Hookéen, Mooney-Rivlin et Baltz-Ko)

**J** problème 2D (T3 et Q4) et 3D (T4 et H8)

#### Programmation et méthodes numériques :

- **J** C++ orientée objet (environ 4000 lignes)
- I stockage des matrices type "ligne de ciel"
- J résolution système linéaire : pivot de Gauss

# Impact déformable-rigide en 2D



Modèle de Blatz-Ko :

$$W = \frac{G}{2} \left( \frac{I_1}{I_2} + 2\sqrt{I_3} - 5 \right)$$

| type de matériau           | Blatz-Ko                       |  |
|----------------------------|--------------------------------|--|
| module de cisaillement     | $G=3~\mathrm{MPa}$             |  |
| masse volumique            | $ ho=700~{ m kg/m}^3$          |  |
| vitesse initiale           | $\dot{u}_0=-30,0$ m/s          |  |
| durée totale               | $T = 3 \ 10^{-3} \ \mathrm{s}$ |  |
| pas de temps               | $\Delta t = 10^{-5} \text{ s}$ |  |
| paramètres de l'algorithme | $\xi = \theta = 0, 5$          |  |

| cas A | $\mu = 0, 0$ |
|-------|--------------|
| cas B | $\mu = 0, 2$ |
| cas C | $\mu = 0, 4$ |

Applications numériques

# Évolution de l'énergie mécanique

 $\mu = 0, 0$ 





Applications numériques

# Évolution de l'énergie et déplacement vertical

 $\mu = 0, 4$ 







| Cas               | temps (ms) | $\sigma_{max}$ (MPa) | temps CPU (s) |
|-------------------|------------|----------------------|---------------|
| Α : <i>μ</i> =0,0 | 0,87       | 8,192                | 62            |
| B : <i>µ</i> =0,2 | 0,70       | 4,523                | 77            |
| C : <i>µ</i> =0,4 | 0,61       | 4,396                | 83            |

# Influence des forces de frottement



| type de matériau           | Kirschhoff-Saint Venant        |  |
|----------------------------|--------------------------------|--|
| module de Young            | $E=36000~\mathrm{MPa}$         |  |
| coefficient de Poisson     | $\nu = 0, 2$                   |  |
| masse volumique            | $\rho=100~{\rm kg/m}^3$        |  |
| vitesse initiale           | (0,0;1,5;-1,0)                 |  |
| durée totale               | $T = 3 \ 10^{-3} \ \mathrm{s}$ |  |
| pas de temps               | $\Delta t = 10^{-5} \text{ s}$ |  |
| paramètres de l'algorithme | $\xi = \theta = 0, 5$          |  |

# Dissipation d'énergie par frottement

 $\mu = 0, 2$ 





### Auto-contact



# Multi-corps déformables







### □ Introduction

□ Contact avec frottement

□ Schéma d'intégration

□ Applications numériques

Conclusions et perspectives

Extension de la méthode du bi-potentiel à l'étude des problèmes d'impact (code de calcul FER/Impact).

# Conservation des propriétés de la méthode du bi-potentiel :

- **d** aucune régularisation de lois de contact
- vérification exacte des conditions de contact
- **d** aucune modification du système global
- résolution efficace dans un système réduit

# Utilisation d'un schéma d'intégration adapté :

- pas de terme d'accélération dans le calcul
- **conservation quasi-parfaite de l'énergie en l'absence de frottement**
- dissipée de l'énergie dissipée

Mise en évidence d'une relation non-monotone entre  $\mu$  et la quantité d'énergie dissipée

# Développement du domaine d'application

#### prise en compte du contact :

- □ autre modèle de frottement (frottement orthotrope, coefficient de frottement variable ...)
- □ méthode de résolution (confrontation de résultats)

#### schémas d'intégration :

- étude théorique du schéma proposé
- implanter et tester de nouveaux schémas

#### comportement matériau non-réversible :

D plasticité, usure, rupture

#### couplage frottement/thermique :

Iier la dissipation d'énergie mécanique aux phénomènes thermiques

# Amélioration des performances de calcul

### algorithme de détection du contact :

améliorer la stratégie de détection du contact

### parallélisation du code de calcul :

- niveau 1 : détection du contact
- □ niveau 2 : résolution du contact
- □ niveau 3 : résolution des systèmes linéaires

### optimisation de la bibliothèque d'objets C++ :

utilisation du formalisme "templates"