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Résumé

Pour bien comprendre les orientations suivies dans ce mémoire, il convient de replacer les
travaux présentés dans leur contexte historique. Au commencement de ce travail, au milieu des
années 90, il y eut le projet de navette européenne Hermes et les problemes associés de réentrée
dans la haute atmosphere qui m’orientérent vers I’étude des modeles cinétiques et leurs simula-
tions numériques par les méthodes de type Monte Carlo. Malheureusement, le lancement de la
fusée Ariane 5, réalisé en 1997, est a ce jour le dernier grand projet spatial européen. A la fin des
années 90, avec ’essor des moyens informatiques, de nouvelles perspectives virent le jour dans les
bureaux d’études d’ingénieurs : la possibilité de lancer une boucle d’optimisation en arriére plan
de simulations complexes 3D : cette nouvelle voie me redirigea alors vers 1’étude et I’amélioration
des méthodes d’optimisation de type Algorithmes Génétiques pour toutes sortes d’applications :
optimisation du Cx d’automobiles, optimisation du rendement de réacteurs d’avions, etc... Le
méme type de problemes d’optimisation s’est ensuite retrouvé dans le domaine médical et a
attiré mon attention depuis mon intégration au sein de 1’équipe REO en 2004 : optimisation
de dispositifs médicaux comme les stents ou les pacemakers, identification de parametres de
modeles numériques d’écoulements sanguins.

La premiere partie de ce mémoire est consacrée a des travaux sur le transport de particules
dans le prolongement de ma these soutenue en 1995 : étude du libre parcours moyen de parti-
cules dans un réseau d’obstacles périodiques, trajectoires de particules dans un écoulement fluide
turbulent. L’application visée dans cette derniere étude consistait & estimer le dépot d’alumine
dans le fond arriere du propulseur & poudre de la fusée Ariane 5. La seconde partie consiste en
la présentation des méthodes d’optimisation hybrides et des principes d’évaluations approchées
ayant permis d’améliorer les performances des méthodes de type Algorithmes Génétiques. La
troisieme partie présente un certain nombre d’application des méthodes précédentes a des
problemes d’optimisation ayant pour point commun leur caractere global ainsi que la présence
de contraintes s’exprimant sous la forme d’EDO ou d’EDP. Chacun de ces problemes est par
ailleurs issu d’une problématique d’'ingénierie ou médicale.

1. Transport de particules dans diverses configurations

Le transport de particules a été étudié dans deux configurations particulieres. Chacune d’elles
est directement ou indirectement liée & deux applications aérospatiales que j'ai eu 'occasion
d’aborder lors de mes 3 années d’ingénieur & EADS (ex-Aérospatiale), respectivement la réentrée
de la navette Hermes et le dépot d’alumine dans les boosters d’Ariane 5.

La premiere configuration consiste en 1’étude de particules ponctuelles se déplagant dans un
réseau périodique d’obstacles dans IR™. Ce modele, parfois appelé gaz de Lorentz ou billard de
Sinai, est un premier pas vers 1’étude de I’équation de Boltzman régissant les écoulements dans
la haute atmosphere. La série d’articles [Artl], [Art2] et [Art3] réalisée dans le prolongement
de ma these soutenue en 1995, étudie le comportement asymptotique de ce modele en fonction
de la taille respective r des obstacles par rapport a leur distance mutuelle a. Dans le cas ou ce
rapport est constant et que r et a tendent vers 0, il est démontré dans [Art2] que le comportement
limite en temps grand d’un tel systéme est régi par une équation de diffusion. Les articles [Art1]
et [Art3] s’intéressent pour leur part a étudier le modele lorsque r est de l'ordre de a” avec
~ > 1. I’introduction de la notion de libre parcours moyen des particules permet de dissocier
les différents cas observés en fonction de v. Un exposant critique 7. = "5 est en particulier
exhibé séparant les situations ou le libre parcours moyen tend vers 0 ou l'infini. A noter que
Particle [Art4] s’intéresse & une problématique de transport légérement différente, & savoir I’étude
asymptotique des équations de transport par homogénéisation lorsque les sections efficaces de
collision ont des ordres de grandeur tres différents a petite échelle.
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La deuxieme configuration, encore plus proche de 'application industrielle, consiste en I'étude
générale des trajectoires de particules (solides ou liquides) dans un fluide turbulent dans le but
d’estimer le dépot d’alumine dans le fond arriere des propulseurs a poudre d’Ariane 5. Sur les
230 tonnes de propergol contenues initialement dans chaque booster, des test expérimentaux
ont en effet mis en évidence la présence d’environ 2 tonnes de dépot d’alumine en fin de poussée
pouvant alors mettre en danger la stabilité du lanceur. Le modele numérique présenté dans
[Procl], [Proc2] et [Confl] est basé sur une simulation stationnaire de 'écoulement & différents
instants dans la chambre de combustion et en ’étude des trajectoires des particules d’alumine
issues du bloc en combustion. La turbulence du fluide est prise en compte dans le modele
par I'adjonction dans la vitesse des particules d'une perturbation gaussienne. Les résultats ont
permis de retrouver des valeurs parfaitement réalistes de dépot et ont également mis en évidence
I'importance du terme stochastique dans le modele.

2. Méthodes d’optimisation globale

Un nouveau challenge numérique a vu le jour a la fin des années 90 dans un nombre tres
varié de secteurs de I'industrie, & savoir optimisation de formes de divers objets (automobile,
avion, etc..) dont la simulation directe nécessite déja des calculs cotiteux. C’est au travers de
différentes collaborations industrielles (PSA, Alcatel et Safran principalement) que je suis arrivé
naturellement a m’intéresser a ce sujet transversal.

En termes mathématiques, 'objectif consiste a rechercher le minimum global d’une fonc-
tion réelle J définie sur un sous ensemble O de IR™. En raison de la complexité du principe
d’évaluation de cette fonction, souvent issue de la résolution d’'une EDO ou d’'une EDP dans
une géométrie complexe, le recours aux méthode d’optimisation stochastiques évolutionaires
(Algorithmes Génétiques, Stratégies d’Evolution, PSO, etc...) s’avére souvent inévitable.

Pour les problemes les plus coiiteux, comme par exemple l'optimisation du Cx d’une
automobile nécessitant une simulation tridimensionnelle des équations de Navier Stokes, le
développement de principes d’accélération de convergence des méthodes évolutionaires clas-
siques a été également nécessaire. Deux axes ont plus particulierement été étudiés : la premiere
idée consiste a coupler les méthodes évolutionaires (AG, ES) avec des méthodes d’optimisa-
tion déterministes locales comme les méthodes de gradient. Apres différents essais sur la bonne
stratégie de couplage amorcés dés 2002 dans [Art5], [Art6] et [Art7], un couplage totalement
adaptatif est proposé dans [Art10]. Il consiste & choisir les instants de transition entre la recherche
globale et la recherche locale en fonction de criteres généraux de répartition de la population de
solutions et & subdiviser celle-ci pour répartir plus efficacement les recherches locales. Avec une
telle stratégie et pour les cas les plus défavorables de fonctions ayant un grand nombre de minima
locaux, le gain en termes d’évaluations de J entre une telle méthode dite hybride et une méthode
classique se situe aux alentours d’un facteur trois. Un deuxieme axe de recherche pour accélérer
les méthodes évolutionaires consiste a développer des modeles d’évaluations approchées a partir
d’un échantillon d’évaluation exactes de la fonction cotit J. Un nouveau modele a été proposé
dans [Art6] basé sur des méthodes d’approximation de type RBF et la résolution d’un probleme
aux moindres carrés. Une version simplifiée de ce modele ayant permis d’observer également un
gain important et reproductible est utilisée dans [Art12] et présentée dans le paragraphe 2.3.

Ces deux types d’améliorations, appelées respectivement tout au long de ce travail AHM
(Adaptive Hybrid Method) et AGA (Approximate Genetic Algorithm) ont été largement va-
lidées dans chacune des références citées sur des fonctions analytiques reproduisant différentes
caractéristiques de fonctions réalistes (nombreux minimas locaux, bassins d’attraction étroits ou
quasi-plats, etc...).
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3. Optimisation globale sous contrainte d’EDO ou d’EDP :
applications

Différentes applications, six au total, des méthodes précédentes sont présentées dans ce cha-
pitre. Toutes sont issues de problemes applicatifs, trois le domaine des sciences de I'ingénieur,
trois dans le domaine médical. Dans chacun des cas, la résolution du probléeme direct a nécessité
une étude préalable approfondie et parfois le développement de nouveaux modeles. De méme,
pour certaines applications, le choix de la fonction cott et de la paramétrisation du probleme
se sont avérés déterminants.

La section 3.1 présente la modélisation et la simulation d’un probléme inverse soumis par Alca-
tel dans le but de construire des fibres optiques particulieres, appelées réseaux de Bragg (FBG).
Les simulations détaillées dans [Art8] et [Art9] permettent d’obtenir des résultats tres satisfai-
sants, aussi bien avec des méthodes de type Algorithmes Génétiques qu’avec une méthode semi-
déterministe développée par B. Mohammadi. Le principal intérét des résultats obtenus, com-
parativement a d’autres méthodes précédemment utilisées, réside dans la facilité de réalisation
expérimentale des fibres optimales numériquement exhibées.

La section 3.2 s’intéresse & un probléme inverse a fortes applications médicales potentielles.
Il s’agit d’identifier de maniere expérimentale les parametres d’'un modele monodimensionnel
d’écoulement sanguin. Par rapport a des résultats antérieurs obtenus par J.F. Gerbeau et al.
pour des arteres a flexibilité constante, le travail a consisté a développer et a valider un modele
numérique d’écoulement dans des artéres avec flexibilité variable, afin de simuler par exemple
la présence de plaques d’athérome. Les résultats obtenus, présentés dans [Proc6] et [Artll],
montrent par exemple qu’il est possible de reconstruire un modele simple et pertinent seulement
a partir de mesures expérimentales non invasives en aval de la plaque d’athérome.

La section 3.3 présente les résultats d’une collaboration de 5 ans avec le constructeur au-
tomobile Peugeot Citroén PSA, incluant en particulier I’encadrement d’une étudiante en these
Cifre (F. Muyl). L’objectif fixé des 1999 était de développer des outils automatiques d’optimi-
sation de formes de véhicules dans le but crucial de réduire leur consommation. Au vu de la
complexité de 'évaluation de la fonction coiit correspondante (le Cx du véhicule), accent a été
mis dans cette collaboration sur 'accélération de convergence des méthodes de type Algorithmes
Génétiques, soit par hybridation avec des méthodes de gradient, soit a ’aide d’évaluations ap-
prochées. Les résultats, présentés dans [Chal], [Art5], [Art6], [Art7] ont été tous validés sur une
forme expérimentale inspirée du bluff body d’Ahmed.

La section 3.4 est consacrée a 'amélioration du fonctionnement d’un pacemaker en recher-
chant les instants et les positionnements idéaux de ses électrodes. Ces travaux, effectués dans le
cadre du projet REO ont donné lieu a I'encadrement en 2007 d’une étudiante en post-Docorat
(L. El Alaoui). Apres la mise au point de la résolution du probléme direct ainsi qu'une réflexion
sur la fonction cout la plus pertinente, les premiers résultats présentés dans [Proc4] et en cours
de rédaction dans [Art12] ont mis en évidence le gain important pouvant étre obtenu en optimi-
sant le placement des électrodes. A noter que la lourdeur du calcul direct a nécessité I'usage des
méthodes de type AGA pour obtenir les solutions optimales en un temps de calcul raisonnable.

Enfin, la sections 3.5 présente deux autres exemples d’optimisation dans des domaines ap-
plicatifs, en l'occurrence 1'optimisation multi-objectifs de la formes de stents (voir [Proc6] pour
plus de détails) et Poptimisation avec la méthode AHM de la formes d’aubes de turboréacteurs
d’avions (travaux réalisés conjointement avec Safran et présentés dans [Chal] et [Art10]).

N.B. : A partir ce de point, l'auteur tient & préciser que le reste du mémoire a été rédigé en
anglais et s’en excuse d’avance aupres des défenseurs de la langue de Moliére...
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Summary

In order to understand the evolution of this work throughout the years, some historical expla-
nations are needed. At the beginning of this work, in the mid-90’s, the Hermes project and its
associated reentry problem, lead me to study kinetic models and their corresponding numerical
simulations with the Monte Carlo method. Unfortunately, the Ariane 5 firing in 1997 is up to
now the last large European space project. At the end of this decade, with the growing compu-
tational ability, a new perspective opened for engineers : the possibility to do an optimization
loop even with complex 3D simulations. This new challenge brought me to the field of evolutio-
nary algorithms in order to try to apply and eventually improve them for various problems : car
shape optimization, turbine blade shape optimization etc... The same kind of problems appeared
later in the medical field in which I work since 2004 and my integration inside the REO team :
optimization of medical devices like stents or pacemakers, parameters identification of numerical
blood flow models, etc...

The first part of this document is devoted to my work on particles transport after my PhD
defence in 1995 : asymptotic behavior of the particles mean free path in a periodic array of
scatterers, particles trajectories in a turbulent fluid. The application at stake for this last point
was the numerical simulation of slag deposition at the motor case walls of the Ariane 5 boosters.
The second part of this document deals with the description of hybrid optimization methods
and surrogate models developed in order to improve the performance of evolutionary algorithms.
Finally, the third and last part gives various applications of the previous optimization methods
to applicative fields, coming either from industry or medicine, and having all ODE or PDE
constraints.

1. Particles trajectories in various configurations

Two distinct configurations including particles trajectories computations have been studied.
Both are linked, more or less, to two applicative problems I have encountered during my three
years as research engineer at EADS (ex-Aerospatiale), respectively the Hermes space shuttle
reentry problem and the slag deposition problem in the Ariane 5 boosters.

The first configuration consists in studying the trajectories of point particles moving in a
periodic array of circular obstacles of IR™. This model, also called Lorentz gas or Sinai billiard,
is a first step in the study of the Boltzman equation describing the evolution of rarefied gases.
The three articles [Art1], [Art2] et [Art3] written in the continuity of my PhD defence in 1995,
study the asymptotic behavior of such systems with respect to the size of obstacles r and their
mutual distance a. In the case where r and a go to 0 simultaneously with a constant rate, it is
proven in [Art2] that for large time, the model satisifies a diffusion equation in IR™. The articles
[Artl] and [Art3] are devoted to the asymptotic study of the Lorentz gas where r is of the
order of a” with v > 1. The introduction of the notion of mean free path allows to study the
behavior of the particles depending on . A critical value v, = -5 is in particular introduced,
separating the cases where the mean free path goes to zero, respectively diverges to infinity.
Note that [Art4] is studying a slightly different linear transport model in which the transport
cross section is rapidly varying at small space scales. An equivalent model is then deduced by
using homogenization techniques.

The second configuration, more close to the real application, corresponds to the study of
point particles trajectories (solid or liquid) immersed in a turbulent gas. The objective is here
to estimate numerically the amount of slag deposition at the motor case walls of the Ariane 5
boosters. Indeed, a slag deposition approximately equal to 2 tons (compared to the initial 230
tons of propellant) has been measured of the end of the boosters flight, that could endanger the
launcher stability. The numerical model presented in [Procl], [Proc2] and [Confl] is based on a
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steady state simulation at various burning times of the combustion chamber flow associated to
a Lagrangian particles tracking routine. The flow turbulence is taken into account in the model
by adding a normal random perturbation to the particles velocity. This model has allowed to
recover a correct order of magnitude of slag deposition. In these results, the stochastic term in
the particle velocity plays a crucial role.

2. Global optimization methods

A new numerical challenge broke through at the end of the 90’s in various industrial field :
the opportunity to make shape optimization of various bodies (cars, planes, etc...) fort which the
direct simulation is already costly. I came to this transverse field through several collaborations
with industrial partners (mainly PSA, Alcatel and Safran).

Mathematically speaking, the objective is to seek for the global minimum of a real cost
function J defined on a subset O of IR™. Because of the complexity of the direct evaluation
principle often issued from an ODE or a PDE simulation in complex geometries, the use of
evolutionary algorithms (Genetic Algorithms, Evolution Strategies, PSO,...) is necessary in most
cases.

For the most costly problems, like for instance the car shape optimization issued from a
3d Navier Stokes simulation, a convergence acceleration principle for evolutionary algorithms is
almost mandatory. To this aim, two distinct improvements have been studied. The first idea is to
couple evolutionary algorithms with deterministic local search methods like gradient methods.
After various attempts started since 2002 in [Art5], [Art6] and [Art7] a fully adaptive coupling
is proposed in [Art10]. It consists in selecting the transition shifts between the global and the
local search with some criterions based on the repartition of the population and to divide the
latter into subpopulations to extend as much as possible the local search exploration. With
such a strategy, the gain between this hybrid method and a classical method ranges up to a
factor three even for analytic functions exhibiting a large number of local minima. A second
improvement concerns the introduction of surrogate models based on the computation of an
approximation of the cost function using the database of exact evaluations of J already made.
A new model has been proposed in [Art6] and [Art7] based on an RBF interpolation and a least
square resolution problem. A simplified version of this model leading also to a very reproducible
and important gain is presented in [Art12] and in section 2.3.

These two kinds of improvement, called throughout this work AHM (Adaptive Hybrid Me-
thod) and AGA (Approximate Genetic Algorithm) have been validated on analytic functions
exhibiting various characteristics of real ones (local minima, steep or quasi-flat attraction basins,

).

3. Global optimization with ODE or PDE constraints : ap-
plicative examples

Various applications, namely six, of the previous optimization methods are presented in this
chapter. All are issued from applicative fields, three in engineering science and three in medicine.
In all six cases, the direct problem has first needed a deep investigation and sometimes the
development of new models. As well, the choice for the cost function and for the problem
parametrization have been particulary emphasized.

Section 3.1 presents the modelization and the simulation of an inverse problem that has been
suggested by Alcatel in order to build a particular class of optical fibers, namely Fiber Bragg
Gratings (FBG). The results detailed in [Art8] and [Art9] are very satisfactory, either by using
a Genetic Algorithm or a semi-deterministic method developed by B. Mohammadi. One of the
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major interest of these results, compared to those obtained by the method previously used, lies
in their simplicity in view of an experimental implementation.

Section 3.2 focuses to an inverse problem with high potential applications in medicine. It
consists in experimentally identifying the parameters of a simple blood flow model through
arteries. Compared to other results previously obtained by J.F. Gerbeau et al. for arteries with
a fixed compliance, the same problem has been studied for arteries with a variable compliance, in
order to simulate various phenomenons (atherosclerosis, stented arteries). The results presented
in [Proc6] and [Art11] show for instance that it is possible to recover a simple and accurate
model only by measuring non invasive quantities downstream the atherosclerosis plaque.

Section 3.3 presents the results of a 5 years collaboration with the French car manufacturer
Peugeot Citroén PSA, including a PhD program through a Cifre contract (F. Muyl). The aim,
fixed in 1999, was to develop automatic tools for car shape optimization in order to reduce their
fuel consumption. In view of the complexity of the cost function evaluation (the car drag coef-
ficient), the emphasis has been made on the construction of convergence acceleration principles
of Genetic Algorithms, either by using a coupling with gradient based methods or by developing
surrogate models. The results, presented in [Art5], [Art6] and [Art7] have been validated on an
experimental car shape inspired from the Ahmed bluff body.

Section 3.4 is devoted to the improvement of a pacemaker by seeking for the optimal posi-
tioning and stimulation time of its associated electrodes. This work, made in the context of the
REO team has involved in 2007 a post doc program (L. El Alaoui). After the correct setting of
the direct problem and a discussion on the most pertinent cost function, the first results presen-
ted in [Procd4] and to appear in [Art12] have shown the important gain that can be achieved by
optimizing the electrodes positioning. Note that because of the computational cost of the direct
problem, an AGA method has been used.

Finally, section 3.5 ends with two other applicative optimization problems, namely the multi-
objective optimization of stent shapes (see [Proc6] for more details) and the turbine blade shape
optimization with the AHM method (joint work with Safran, detailed in [Chal] and [Art10]).



Chapitre 1
Particles trajectories in various configurations

1.1 Particles trajectories in a periodic array of scatterers

Summary. The trajectories of point particles moving in a periodic array of circular obstacles are
studied in the asymptotic limit where the obstacles are small but very near. Two definitions of
the mean free path of particles, respectively designed as geometric and mean truncated free path,
are proposed and asymptotically studied. In both cases, convergence results are given depending
on the ratio between the size of the obstacles and their distance.

References : [Artl], [Art3].

1.1.1 The Lorentz gas

One family of simplified models that has played an important role in statistical mechanics and
kinetic theory is the so-called Lorentz gas in a plane dispersive billiard consisting of a periodic
array of circular obstacles, together with its higher dimensional analogues (see Figure 1.1 and
[2,3,4,5,6,7,8,9, 10, 11, 12]).

Fig. 1.1 The Lorentz gas

11
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In kinetic theory, it is particularly interesting to study the behavior of particles in such
billiards in the macroscopic limit (i.e., as the size of the array is reduced to zero). Let r €]0,1/2]
and v > 1; for all € €]0, 1], let

Ze = {x € R"| dist(x,eZ) > re”}

and Y, = Z,/eZ™.
The “length of free path” starting from point z € Z. in direction —w € ™! is the nonnega-
tive borelian function
(7)) 0 Yex " RT

defined by the formula :
T.(z,w;y) = inf{t > 0|z —tw € 2.} = sup{t > 0|[zr,z — tw] C Z.}

There are two different, natural probability measures on Y. x S”~! with respect to which 7. can
be studied as a random variable. One is the normalized Lebesgue measure on Y, x S?~1 :

ey = Q- ' dadw, Q- = drdw — meas (Y. x S 1)
The other is the normalized measure concentrated on
5 ={(z,w) € (0Z:NY)NS" ! |w-n, >0}
where n, is the inward unit normal at point z € JZ. defined by
Ve = I 1dS(2)dw, G. = dS(x)dw — meas (X)

Both these probability measures are invariant under the evolution of the Lorentz gas. The
measure (. ~ is invariant under the broken flow on Z. x S~ associated to

dz dw

i E:O" whenever x ¢ 07, ;

2(to+0) = 2(tg—0), w(te+0) = w(to—0)—2w(to—0)Ny(ty—0) Na(to—0),  Whenever z(tq) € 0Z..
The measure v - is invariant under the map XY — X defined a.e. by

(r,w) = (' =2+ 7 (7, —w;V)w; W = w — 2w - Ny Mgr) (1.1)

We shall denote by ¢, and . , respectively the push-forward of the measures ., and v
under 7(+,+;) ; in other words, ¢.  and 1. , are the probability measures on IR" such that

Pery(A) = peqy (T (57 7 HA)) s Yoy (A) = vey (7 57) TH(A)),

for all measurable subset A of IRT.

1.1.2 Two definitions of mean free path

There are two possible notions of mean free path associated to the periodic Lorentz gas in
YA

+oo
M) = /0 wdo. (2) (1.2)
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and for all T >0 N
et = [ int(e D) (2 (1.3)
0

The first one, A(g,7) will be referred to as the “geometric mean free path”, the second one
(e, T,~) as the “mean truncated free path”. The truncation in the second definition is necessary
because it can be proven that [(g,4+00,7) = +oo. This is why we shall refrain from calling
(e, T,~) the mean free path.

The same construction applies to the most general® billiard tables” (see [5, 9]). Whenever
the analogue of the map (1.1) is ergodic for the measure v, ,, the geometric mean free path
can be interpreted as the average path between N successive collisions of a point particle on
the obstacles (the boundary of Z.) with specular reflections at the boundary of each obstacle,
in the limit as N — +o00. This follows immediately from the Birkhoff ergodic theorem and is
the reason why the geometric mean free path is considered as a natural quantity associated to
billiards (see [5, 9]).

However, if one is interested in the evolution of a population of point particles undergoing
collisions only with the boundary of Z., the mean truncated free path is a more natural quantity.

1.1.3 Asymptotic results on the mean free path

First, the geometric mean free path can be computed explicitly (see for example [5], §4) :

Q- 1 1
Ae,y) = T = Weﬂ v(n=1) 4 0(e") (1.4)
where |B" 1| denotes the volume of the unit ball of IR" 1. Since

—ify >, Ae) = +ocase — 0

—ifl1<y <, AMe)—0ase— 0,

In the case where the particles are completely absorbed at the boundary, the number density
of the particles which at time ¢ are at position x and move in the direction w, f(¢,z,w) is given
by

fs(ta Z, w) = f(oa T = twaw)ltg‘rs(x,w;'y)

Thus, a population of point particles undergoing purely absorbing collisions only with the
boundary of Z. would

— not see the boundary if v > 7,

— be instantaneously absorbed by the obstacle in the limit as e - 0 if 1 < v < 7.

More precisely, it can be proven that :

Theorem 1
— Let n =2, and choose 1 <y < 2, T > 0, and a compact “observation set” K C IRZ. Then
given any number s with 1 < s < (y — 1)1, there exists a constant A such that for any
initial data ¢ € L>(IR? x S'), the family f. of solutions satisfies

T
‘ / / / ot 0) | dwdadt] < AcCF5=9/2)|g]| .
0 KnZ. JSs?t

— Let n > 2, and choose 1 < v < n+2/3’ T > 0, and a compact set K C IR™. Then given

any number s with 1 < s < (y — 1)1, there exists a constant A such that for any initial
data ¢ € L=°(IR" x S"1), the family f. of solutions satisfies
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T
‘/ / / | fo(t, z,0)|dwdadt] < AcOF5779)/2||p|| poc.
0 KnZzZ. Jsn—1

Unfortunately, we do not know of any explicit formula similar to (1.4) for the mean truncated
free path, which is a more elaborate quantity related to the problem. However, a weaker form
of the previous theorem can be given in terms of the distribution of free paths ¢. , as follows :

Theorem 2
—Ify > 5. =5, ¢y — 0 vaguely as € — 0;
Ifn:2and1§fy<fyc:2,orifn>2and1§’y<n%z/?,,¢5,7—>50weaklyass—>0.

We recall (see for example [13] pp. 382-383 and Theorem 29.1) that a sequence of measures
on IR™ is said to converge vaguely to 0 if the sequence of integrals of any compactly supported
continuous function converge to 0; the convergence is weak if the same holds for bounded
continuous functions (and not only for the ones having compact support).

As a consequence, the following corollary giving the behavior of the truncated mean free path
holds :

Corollary 3
~Ify>9y.=-"5,l(eT,v) = Tase—0forall T >0;
—Ifn=2and1<vy<7y.=2,orifn>2and 1 <vy< #M,I(E,T,v)ﬁOaSEHOforall
T > 0.
The proof of Theorem 1 and 2 and of Corollary 3 are not recalled here and can be found in
[Art1] and [Art3].
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1.2 Particles trajectories in a turbulent fluid

Summary. Aluminized propellant may generate alumina deposition behind the submerged nozzle
of solid rocket motors. Space shuttle boosters and Ariane 5 launcher experienced such a pheno-
menon with a respective average of about 900 kg and 2 tons of slag weight. A numerical modelling
has thus been developed to predict slag weight. It is based on steady-state, two dimensional, one
phase, turbulent flow computations and trajectory calculation of alumina droplets of various
diameters. This modelling has been applied with relative success to the Ariane 5 solid rocket
motor.

References : [Procl], [Proc2], [Confl].

1.2.1 Objectives

Aluminized propellants are widely used in solid rocket motors to increase specific impulse.
Nozzles are also commonly submerged into the motor. Aluminium droplets agglomerate on
propellant burning surface. They are steamed into the gas flowfield and burnt for producing
alumina (Al303) droplets. Due to nozzle submergence, a recirculating zone can appear in the
aft dome, behind the nozzle. It can trap alumina droplets : a slag deposition process is then
triggered. Several solid rocket motors experienced this phenomenon : space shuttle boosters
([15]), Titan IV SRMU boosters or P230 boosters on the Ariane 5 launcher. For instance, the
mean slag weight in Titan IV booster is equal to 1985 kg with low dispersion. In RSRM Space
Shuttle booster, the mean slag weight is equal to 888 kg, with higher dispersion (the maximum
value over the minimum value is equal to 1.8). Our interest in slag formation arose after SSM1
(Sub-Scale Motor 1) test firing. This is a sub-scale motor of a three segment solid rocket motor.
A significant amount of alumina was trapped in the aft dome : about 3% of alumina produced
during propellant combustion. This slag can have several consequences on performance, on
thermal insulation behavior and on thrust vectoring. Slag can also be ejected into the nozzle.
The previous analysis of slag formation has been used for a while and applied by several authors.
A numerical approach has been developed at Aerospatiale to predict slag weight.It is based on
CFD codes for flowfield computation, on a droplet tracking routine and on some assumptions
to offset the lack of experimental data, especially concerning droplet size distribution in the
combustion chamber. Indeed, the previous description appeared to be too simple. Steaming of
droplets along walls and impingements of droplets on the nozzle backface may contribute to slag
weight. Another subject of interest concerns turbulent dispersion of droplets.

1.2.2 Numerical model

1.2.2.1 Slag weight prediction

According to Figure 1.2, the way to compute slag weight can be rather straightforward : the
droplets which are trapped inside the recirculation zone or which are impinging downstream of
the reattachment point are to be numbered. Assuming that only large droplets contribute to
slag weight (small ones follow streamlines), the slag weight can be computed from the following
equation :
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Fig. 1.2 The Ariane 5 booster : schematic description of slag deposition
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ts

The formation of the recirculation zone starts when all propellant behind the submerged nozzle
is burnt. Flowfields are computed at several burning times (three or four) and droplets of various
sizes are injected along the burning surface. Aluminum combustion is not modelled.

1.2.2.2 Numerical tools

The CFD code used for computing the one phase turbulent flow field is called CEL and has
been developed at Aerospatiale (former name of EADS). This Navier Stokes code is an explicit
finite volume code, based on unstructured grid (using quadrangles) and Godunov formulation
for convective fluxes. A standard k& — € model is used for the turbulence model.

The second component is a droplet tracking routine. The droplets trajectories are computed
from the momentum equation which is written in the following form :

PXa _ 1 F 4 (1.5)
a2 mq d '

In this equation, the drag force (see [14]) is equal to
— 1 = — — —
Fq= éCngﬂ'D WUy =Uall(Uyg—Ua)

and the drag coefficient is calculated using the following formula :

24
Cp = -—(1+0.15Re %"
D Red( + € )

with
— —
PgHUg - Ud”

Hg

In order to take into account the dispersion of droplets due to the fluid turbulence, a random

Reg =

—
velocity U’ is added to the mean velocity U 4. The random velocity is of Gaussian type with a

12k
zero mean value and a standard deviation equal to 3 where k is the turbulent kinetic energy.
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It is applied during a time step At = min(At., At;) where

and

are respectively called the transit time and the Lagrangian time scale.

The momentum equation (1.5) is solved using a predictor-corrector method, which is easy to
operate. The only restriction concerns time steps, which are chosen depending on various time
scales.

An algorithm has been developed to locate the droplets inside the computational mesh issued
from flow field calculation. The resulting tracking routine is two or three dimensional.

1.2.3 Main results

The P230 solid rocket motor of the Ariane 5 launcher, test fired since 1992, has been investi-
gated. It is a three-segmented motor with more than 230 tons of aluminized propellant. A slag
weight of more than 2 tons has been trapped. This weight seems to be very consistent throu-
ghout several firings. Turbulent flow fields are computed at four burning times. The velocity
field and the turbulent energy field k at the combustion time ¢ = 95s are respectively displayed
at Figure 1.3 and 1.4.

Fig. 1.3 The velocity flow field in the Ariane 5 booster, t=95s

Fig. 1.4 The turbulent energy flow field in the Ariane 5 booster, t=95s

In particular, a high turbulence level is observed inside the third segment of the combustion
chamber which is responsible for the turbulent dispersion of droplets and their accumulation
inside the submerged nozzle. About this phenomena, some qualitative results are shown on
Figure 1.5. The trajectories are significantly dispersed, with droplets impinging the backside of
the nozzle, others impinging the case walls and others finding their way towards the nozzle.

For slag weight calculation, a very large number of trajectories is computed for each group of
droplets. A group of droplets is defined by : the location of injection at the burning surface X,
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Fig. 1.5 Examples of droplets trajectories

the droplet diameter D and the burning time ¢. The number of trajectories is typically equal
to 500. The data collected for these 500 trajectories are summarized in a function F(s,t, D, X).
This function provides the corresponding mass fraction of droplets impinging the motor case
walls upstream of abscissa s (see Figure 1.6)

Fig. 1.6 Abscissa along the motor case wall

Two specific locations for the entrapment criterion can be considered : the first one (location
called A in Figure 1.6) is the reattachment point and the second one (location B) is a break
point in the nozzle backside geometry. Assuming a capture rule (s < s4 or s < sp) and a
droplet size distribution, the slag weight can be easily calculated by integration over ¢, D and
X. It is observed that the total amount of slag deposition numerically obtained is very sensitive
to the droplet size distribution. Depending on that choice, it ranges from 1500 to 2500 kg and
can thus be considered in agreement with the experimental observations. Another observation
is the influence of the turbulent dispersion on this value. In case of a deterministic approach,
slag weight seems to be always underpredicted.



Chapitre 2
Global optimization methods

Summary. There exists many methods for minimizing a const function J defined from a set O C
R™ to IR™. Among them, the family of evolutionary algorithms, including the well known methods
of Genetic Algorithms (GA) and Evolution Strategies (ES) which main principles are recalled
in the next subsection, has the major advantage to seek for a global minimum. Unfortunately,
this type of method needs to be improved because of the large number of cost function evaluations
that are needed. The hybrid optimization methods presented in subsection 2.2 greatly reduce this
time by coupling an evolutionary algorithm with a deterministic descent method. Another way to
speed up the convergence of an evolutionary algorithm is described in subsection 2.8 and consists
in doing fast but approximated evaluations during the optimization process. All these methods
are validated in subsection 2.4 on classical analytic test functions.

References : [Chal], [Art5], [Art6], [Art7], [Art10].

Nota : All the programs presented here are freely available at the following web page :
http://www.ann. jussieu.fr/~dumas/optimisation-scilab.html

2.1 Description of classical global optimization methods

2.1.1 Genetic Algorithms (GA)

Genetic Algorithms are global optimization methods directly inspired from the Darwinian
theory of evolution of species ([20, 21, 22, 23, 24, 25]). They consist in following the evolution of
a certain number IV, of possible solutions, also called population. To each element (or individual)
x; € O of the population is affected a fitness value inversely proportional to J(x;) in case of
a minimization problem. The population is regenerated N, times by using three stochastic
principles called selection, crossover and mutation, that mimic the biological law of the 'survival
of the fittest’.

The Genetic Algorithms that are used here act in the following way : at each generation, %
couples are selected by using a roulette wheel process with respective parts based on the fitness
rank of each individual in the population. To each selected couple, the crossover and mutation
principles are then successively applied with a respective probability p. and p,,. The crossover of
two elements consists in creating two new elements by doing a barycentric combination of them
with random and independent coefficients in each coordinate. The mutation principle consists

19
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in replacing a member of the population by a new one randomly chosen in its neighborhood. A
one-elitism principle is added in order to be sure to keep in the population the best element of
the previous generation. Thus, the algorithm writes as :

Choice of an initial population Py = {z} € 0,1 <i < N,}

- ng = 1. Repeat until ng = Ny

— Evaluate {J(z;?),1 <i < N,} and m = min{J(z;?),1 <i < N,}
1-elitism : if ng > 2 & J(Xp,—1) < m then :L'?g = Xp,—1 for a random i
— for k from 1 to %

- Selection of (r4° ,xgg) with a roulette wheel process

—  with probability p. : replace (xgg,ng) by (ya?, ygg) by crossover
with probability p,, : replace (ygg,ygg) by (za?, zgg) by mutation

end for

- ng =mng+ 1.

— Generate the new population P, .

Call Xp, the best element.

2.1.2 Evolution Strategies (ES)

Evolution Strategies (ES) have been first introduced by H.P. Schwefel in the 60’s [26, 27, 28].
As it is the case for Genetic Algorithms, it consists in following the evolution of a population
of potential solutions through the same three stochastic principles, selection, recombination and
mutation. However, contrarily to Genetic Algorithms, the major process is the mutation process
and the selection is made deterministic.

The Evolution Strategy that is used here is based on the (1 + ) selection principle and on the
1/5 rule for the mutation strength. The latter means that the mutation strength o is readjusted
with respect to the rate of successful mutations in a generation : if this rate is greater than 1/5,
then o is multiplied by a factor a > 1, else it is divided by the same factor a. An intermediate
recombination with two parents is also included. The algorithm thus writes as :

Choice of an initial population of p parents : Py = {z; € O, 1<i<u}
ng = 1. Repeat until ng = N,
Creation of a population of X > p offsprings O,,, by :
—  Recombination : y,* = 1(za’ + :vgg)

Normal mutation : z,* =y;* + N(0,0)
Update of the mutation strength o with the 1/5 rule of parameter «
Evaluate {J(2,), 2] € On,}
- ng=mng+1
— Selection of the best i new parents in the population P, U Oy, .
Call X, the best element.

2.2 Adaptive hydrid optimization method (AHM)

All the previous methods that make evolve a population of potential solutions are very time
consuming because of the large number of evaluations of the functional that are needed. The idea
of coupling them with a gradient-based method for a more efficient local search, leading to what
is called hybrid methods, has shown its efficiency in many situations in the last decade (29, 30,
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31, 32, 33)]), for instance for aerodynamic shape optimization. Unfortunately, the introduction of
new parameters in hybrid methods reduce their range of application and make them ’problem-
dependent’.

The present method, called Adaptive Hybrid Method (AHM) try to remedy to these draw-
backs by answering on a fully adaptive way to the three fundamental questions in the construc-
tion of a hybrid method :

— Question 1 : when do we shift from the global search to the local search?

— Question 2 : when do we come back to the global search?

— Question 3 : on which elements do we apply a local search?

In order to answer to Questions 1 and 2, the AHM method uses some criteria introduced in
the pioneer work of [32] whereas a new strategy called 'reduced clustering’ allows to answer to
Question 3 on a fully adaptive way.

2.2.1 The shift from global to local (the answer to Question 1)

The shift from a global search to a local search is useful when the exploration ability of the
global search is no longer efficient. To this aim, a statistical coefficient associated to the cost
function repartition values is introduced. It is equal to the ratio of the mean evaluation of the
current population X to its corresponding standard deviation :

v _ mean{J(z), z € X}

o /Var{J(z), z € X}

and is named coefficient of variation. A local search will be called when this ratio is increasing
between two consecutive genrations of the global search.

2.2.2 The shift from local to global (the answer to Question 2)

The local search, a gradient based method with a line search strategy, is aimed at making
locally decrease the cost function more efficiently than the normal random mutation. However,
this gain must be counterbalanced each time before evaluating a new gradient vector with a
characteristic gain of the global method. More precisely, the local search will here continue
while :

Glocal > Gglobal

where Gpocqr is equal to the gain when passing from a point to the next one in the steepest
descent algorithm and Ggioba: is the gain of the last global phase (evaluated with the decrease
of m, the mean evaluation of the current population). Both gains are scaled with the number of
evaluations of the cost function needed to achieve them.

2.2.3 The reduced clustering strategy (the answer to Question 3)

In order to spread as much as possible the local search in the whole domain, the population
is divided into a certain number of sub-populations, called clusters. To do so, a very classical
and fast algorithm is used where each cluster is constructed such that all its associated elements



22 2 Global optimization methods

are closer to its center of mass than to any other. After this preliminary step called clustering,
the local search is applied to the best element (with respect to J) of each cluster.

A careful study of the appropriate number of clusters has never been done even though
it appears to be rather important for the algorithm performance. To overcome the difficulty
of choosing this number,a method called reduced clustering is proposed. In this method, the
number of clusters is progressively decreased during the optimization process. It corresponds
to the natural idea that the whole process will progressively focus on a reduced number of
local minima. To do so, a deterministic rule of arithmetic decrease plus an adaptive strategy
including the aggregation of too near clusters has been used here. Note that the effect of the
initial number of clusters has also been investigated on test functions. It appears that a initial
number of clusters between 5% and 20% of the population will give the best results. Below 5%,
some premature convergence can be observed whereas above 20%, the convergence speed may
be reduced. The value of 10% will thus be adopted for all the simulations presented below.

2.3 Genetic Algorithms with approximate evaluations (AGA)

Another idea to speed up the convergence of an evolutionary algorithm when the computa-
tional time of the cost function « — J(z) is high, is to take benefit of the large and growing data
base of exact evaluations by making fast and approximated evaluations z — .J (2) leading to
what is called surrogate or meta-models (see [34, 35, 36, 37, 38, 39, 40]). In the present work, the
chosen strategy consists to perform exact evaluations only for all the best fitted elements of the
population (in the sense of J ). The new algorithm, called AGA is thus deduced from the Genetic
Algorithm described in section 2.1.1 by changing the evaluation phase into the following :

~ Make approzimated evaluations {J(z}?),1 <i < N,}

— For the best Ny(ng) elements in terms of J, make exact evaluations of them.

The shape of the function ng, — Nb—]\(]:g—) representing the rate of exact evaluations at generation
ng is the first choice to make. In any case, it has to be equal to 1 for the first Ngeninst generations.
Then, two choices have been tested :

— In the first version of the AGA algorithm (presented in [Art6], and [Art7]), the exact
evaluations are made only for the elements which have a lower value with J than the best
value previously obtained with J, and for a randomly chosen element.

— In the second version of the AGA algorithm (used in [Art12]), the number of exact evalua-
tions is fixed and is linearly decreasing from a value r €]0, 1] to 0.

The interpolation method chosen here comes from the field of neural networks and is called
RBF (Radial Basis Function) interpolation ([34]). Suppose that the function J is known on N
points {T;,1 < ¢ < N}, the idea is to approximate J at a new point = by making a linear
combination of radial functions of the type :

T@) =Y vl - i) 2.1)

where :
- {Ti,l <i<mn. C{T,1<i< N} is the set of the n. < N nearest points to x for the
euclidian norm ||.||, on which an exact evaluation of J is known.

- @ is a radial basis function chosen in the following set :

&y (u) = exp(f:—z)
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@2(“) =V u? + 72
1
Va2

Pa(u) = exp(~ )

5153 (U) =

for which the parameter r > 0 is called the attenuation parameter.
The scalar coefficients (¢;)1<i<n,. are obtained by solving the least square problem of size

N X ng:
N

Nne
minimize err(z) = Z(J(T,) —J(T))* + )\ZdJJQ
i=1 j=1
where A > 0 is called the regularization parameter.

In order to attenuate or even remove the dependance of this model to its attached parameters,
a secondary global optimization procedure (namely a classical GA) has been over-added in
order to determine for each x, the best values (with respect to err(z)) of the parameters ne,
r € [0.01,10], A € [0,10] and & € {P1, P2, P3,P4}. As this new step introduces a second level of
global optimization, it is only reserved to cases where the time evaluation of x +— J(x) is many
orders of magnitude higher than the time evaluation of x — .J(z).

Note that in the the second version of AGA used in [Art12], this procedure is simpler : n., ¢
and r are fixed and the least square problem is changed into a n. X n. linear system to solve.

2.4 Results on test functions

Both the Adaptive Hybrid Method (AHM) and the Approximated Genetic Algorithm (AGA)
have been tested on various analytical test functions, and among them the well known Rastrigin
function of parameter a :

Rastg (1, ..., ty) = Z (27 — acos(2mx;)) + an
i=1

defined on O = [-5,5]"™ for which there exists many local minima and only a global minimum
located at «* = (0, ..., 0). Note that the number of local minima in O is always equal to 11" but
the attraction basins become steeper when a > 0 takes a higher value.

A statistical comparison based on 40 independent runs for each method, has been made
between a classical population based method, either a GA or an ES, and the associated AHM
method or the AGA method (in its second version).

The result are displayed on Figure 2.1 to 2.4. For each method, the average best obtained
value is plotted with respect to the number of function evaluations needed to achieve it.

In the case of the AHM method, any gradient evaluation counts for n evaluations of the cost
function as it is the case in many real applications for which the gradient has to be approximated
by finite differences.

In the case of the AGA method, only the exact evaluations of the cost function are taken into
account.
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2.4.1 Results obtained for the AHM method

For the simulations presented below, the population size for the GA is either equal to IV, = 40
ifn =6 or N =100 if n = 20 whereas (A, 1) = (35,5) for the ES. A maximal number of function
evaluation is allowed, either equal to 4000 when n = 6 and 10000 when n = 20.

2.4.1.1 Result for the Rast; function

best value
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Fig. 2.1 Comparison of ES (left) and GA (right) with AHM on Rasti, n =6
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Fig. 2.2 Comparison of ES (left) and GA (right) with AHM on Rasti, n = 20

A comparison between the use of a GA or an ES as the global search method for the AHM
method is made on the Rast; function with 6 and 20 parameters. The results, respectively
displayed on Figures 2.1 and 2.2, show that the AHM method takes advantage compared to
a pure ES or a pure GA in terms of the convergence speed to the optimal best value. In this
situation, the GA results are better than the ES results. In particular, there are no longer cases
of premature convergence to a local minima, particularly if n = 20. It implies that, in this case,
the AHM method with a GA base performs better than the AHM with an ES base. However, it
is necessary to be careful about any generalization of this observation.
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2.4.1.2 Result for the Rastig function
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Fig. 2.3 Comparison of GA with AHM on Rastig, n = 6 (left) and n = 20 (right)

Another example of comparison between a pure GA and the corresponding AHM for the
Rastyig function is visible on Figure 2.3. A statistical comparison is also drawn on Table 2.1
where the mean, the best, and the worst value for GA and AHM are displayed after 5000
evaluations of the Rastyg function with n = 20.

Method|Mean obtained value|Best value|Worst value
GA 63.56 45.54 90.49
AHM 9.82 4.97 14.06

Tableau 2.1 Comparison of GA and AHM after 5000 evaluations of Rastig, n = 20

The conclusions are the same than for the Rast; function but with larger differences between
both methods, always in the advantage of AHM. In other words, it means that the interest of
using AHM increases with the difficulty of the problem (related here to the steepness of local
minima attraction basins).

2.4.2 Results obtained for the AGA method

The results obtained by the AGA method and the associated GA are compared in the case
of the Rast; function, with 6 and 20 parameters respectively (see Figure 2.4). The population
size for the GA is either equal to N, = 40 if n = 6 or N, = 160 if n = 20. A maximal number
of functions evaluations is allowed, either equal to 2500 when n = 6 and 12000 when n = 20.

In both simulations, the specific parameters associated to the AGA method are respectively
equal to Nyepinie = 2 (number of initial generations with only exact evaluations) and n. = 16
(size of the sampling to compute the approximated function).

As in the case of the AHM method, the AGA overperforms the GA method in terms of
exact evaluations of the cost function to achieve a given level of convergence. A reduction rate
approximately equal to 3 is observed here in the case of the Rastrigin function.

Compared to other results found in the literature for the Rastrigin function (see for instance
[33, 28]), the results obtained either with the AHM or the AGA method are very competitive.
Moreover, it is worth noticing that the same general conclusions have been observed for other
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Fig. 2.4 Comparison of GA with AGA on Rasti, n = 6 (left) and n = 20 (right)

test functions similar to the Rastrigin function, that is with many local minima, namely the
Ackley and the Griewank functions.

Thus, the use of AHM or AGA will have two positive effects compared to a pure global search
strategy (GA, ES, etc...) : at the early stage of the computation, it will enhance the decrease
of the cost function and, at the late stage, it may also improve the final optimal solution. Such
effects are particularly interesting in an industrial process where the computational time can be
very large and also where any small improvement to the optimal solution can lead to significant
productivity gains, as it will be seen in the next chapter.



Chapitre 3

Global optimization with ODE or PDE
constraints : applicative examples

This chapter presents various global optimization problems that have been solved with the
methods presented above. Each section of this chapter is directly linked to an industrial or a
medical application and can be formulated as a global optimization problem with ODE or PDE
constraints.

3.1 Optimization with ODE constraints for telecommunications

Summary. High channel count filters based on non-chirped apodized Sampled Fiber Bragg Gra-
tings (SFBG) have been synthesized using evolutionary algorithms, leading to better resuts than
the classical Sinc-type apodization method. Moreover, the grating solutions produced by this ap-
proach are easier to build from an industrial point of view.

References : [Art8], [Art9].

3.1.1 Objectives

The use of new optical fiber devices in the telecommunication sector has known an important
development in the last few years. Among them, Sampled Fiber Bragg Gratings (SFBG) based
devices represent an attractive alternative for applications such as multichannel filtering and
multiwavelength laser sources [41]. The main SFBG functionality is to ensure the choice of
desired wavelengths.

We focus here on the design of SFBG multichannels filters that exhibit periodic maxima, called
channels or peaks, in their spectrum. There is an important demand for optimization methods for
the associated inverse problem that consist to design a SFBG with a desired reflection spectrum
[44]. These methods need to perform global optimization as it is observed that the associated
cost function hs multiple minima [43].

27
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3.1.2 Modelization of Fiber Bragg Gratings
3.1.2.1 The coupled mode model

A Fiber Bragg Grating (FBG) is an optical fiber with a perturbed refractive index. Its func-
tionality is, starting from a wavelength band FE, to reflect a part of the wavelength band E—,

called reflection spectrum, and to let the complementary band E+, called transmitted spectrum
pass (see figure 3.1).

E+

core

z—axi

Fig. 3.1 Fiber Bragg grating diagram

FBG are made exposing a classical optical fiber to a Laser Ultra-Violet radiation [41]. This
radiation modify the refractive index of the optical guide core. Thus, the FBG refractive index
n varying as along the fiber axis z is given by :

n(z) = ng + on(z)

where ng is the initial refractive index and dn the UV exposure refractive index perturbation
which is of the form :

— 2
on(z) = on(z) cos(%z) z€[0,1]
In this expression, L is the fiber length, A is the grating period and én(z) is called apodization.

In order to extract a mathematical model which permit to compute the reflection spectrum
of a given FBG, we assume that for any wavelength A in the transmission band E there exist
only two counter propagating guided modes in the FBG, the reflected and transmitted modes
of respective amplitude by (z,\) and bg(z,\) . These two functions are solution of the following
system of coupled ordinary differential equations :

% — iBbr (2, ) = T(2)br(z, A) (3.1)
% +ipbr(z,\) = q(2)br(z, N (3.2)

for every z € [0, L] and every wavelength A € B and with the boundary conditions
bT(O, /\) =1 and bR(L,A) =0

In these equations, 3 is a parameter homogeneous to a frequency and is linked to A by the
relation :
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1 1
et 2 _—
ﬁ 7TTLO( A 271(]/1 )
whereas ¢ is called the coupling function and is defined as :
[ —

) = —gp=n(2)

The reflection spectrum of the FBG corresponds to the function A — p()\) where
p(A) = br(0, N)?

In order to approximate the reflection spectrum, we use the transfer matrix method [41]. Tts
principle consists first to compute the exact solution of (3.1)-(3.2) when the coupling coefficient
q is constant (¢ = qo). In this case,

—qosh(vL)
ych(yL) —ifsh(vL)

p(A) =

where 72 = |go|* — 3%
The considered FBG is then decomposed into a set of N elementary fibers of length

=N _1 with a constant refractive index. For the j** uniform section, we have :

where Tj is a transfer matrix given by :

o (MG +iZsh(y4)  Lsh(y4)
j L sh (yA) ch(yA) — i sh(yA)

with ¢; = q(jA). Using the following notation : T' = Tn_2...Tyo = [Tj ;] ;), we have the ap-
proximation of reflection spectrum :

. Tz,

PA) = =77

) Toa

The cost of this method is O(NM) times the cost of the evaluation of the matrix 7 with M
being the number of points of the spectral discretization.

As we can see, for the considered FBG modelling, the reflection spectrum can be computed
knowing only the apodization én of the fiber.

3.1.2.2 Sampled FBG

A Sampled FBG (SFBG) is a fiber made with a FBG pattern reproduced R times. This is
an efficient and simple technique to construct an optical filter that exhibits periodic maxima
in its reflection spectrum. Using the coupled mode theory [41], it can be shown that a SFBG

structure leads to a spectrum which is a comb distribution of peaks with identical response and

2RnoA?
with a wavelength separation A\ = SR

The computation of the reflection spectrum of a SFBG remains unchanged compared to what
is exposed in the previous paragraph, though more time consuming.
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3.1.3 Main results

A global optimization method based on Genetic Algorithms has been successfully applied to
solve various examples of inverse problems relative to the design of SFBG. In the case presented
here, the objective is to construct a multichannel filter with the following characteristics : the
spectra is centered around 1552.5nm and consist of Npeqrs = 16 totally reflective identical
channels spaced of AX = 0.8nm. The unperturbed refractive index and the total length of the
SFBG are respectively fixed equal to n.yy = 1.45 and L = 103.9mm.

3.1.3.1 Current design of multichannel filters based on SFBGs

The method usually used in industry was initiated by Ibsen et al. [42]. They have shown the
possibility to inscribe inside the fiber core a Sinc-shaped apodization profile with a continuous
writing technique :

Sin( QNPeI(;kS Tz )
2NpeaksT2

P
9

N |

on(z) = Nmax z €[~ ]

Where 01,4, is the maximum apodization variation.
These technique allow to generate filters which exhibit a comb distribution of Npeqrs channels
in their spectra. But this type of apodization profile suffers several drawbacks :
The Sinc function consists of a main lobe and secondary side loops which proportion must
be perfectly respected. This profile is not homogeneously distributed along the pattern. So
it may give rise to a non linear regime during the UV-writing.

— The 6npmq, value has to be high. High values are difficult to reach in practice and they
imply to use very photosensitive fibers.

— The number of secondary side loops of the Sinc function is directly proportional to the
total number Npeqrs channels. To physically express the sign change of the Sinc function,
discrete phase shifts must be inserted between each side loop. So a great number of phase
shifts are required as the number of channels increases.

For all these reasons a perfect and expensive control and mastering of the writing process is

required to apply this method.

3.1.3.2 Numerical modelling

In order to find a SFBG with the desired spectral response and associated with an index
modulation with some ’interesting’ industrial characteristics in comparison to the Sinc-profile :
smooth enough, slowly varying and reduced sign change number and symmetric, apodization
profiles are generated by spline interpolation through a reduced number of Ng points equally
distributed along the first half of the sampling pattern and completed by parity. We will thus
choose a value of Ng high enough to ensure a large number of peaks in the spectral response but
small enough to ensure improvement in the apodization profile. More precisely, the corresponding
search space of the optimization problem is a hypercube :

QNS = [*ﬁmal‘aﬁmar]NS
where Tinqe the maximum amplitude variation is a design constraint. Here ey = 5 x 107%
and Ng = 9 respectively for the inverse problem presented here.
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The functional on 2y, to minimize is an error-type function, as in any inverse problem,
defined by :

In.(x) = i(p(x)(Ai) — Prarget (2)(Mi))?

In the above expression, the reflection spectrum function p(z) associated to a SFBG with an
apodization z € {2y, is a function defined from the transmission band [Ain, Amaz] to [0,1]. On
the other hand, piarget () denotes the nearest reflection spectrum function to p(x) matching the
desired requirements, namely Npeqrs transmitted wavelengths with a perfect transmission rate
and separated by A\ :

Lif Ae {a, Aa + AN ..., Az + (Npeaks — 1) AN}
0 elsewhere

Pmrget(if?)()\) = {

From an industrial point of view, note that an exploitable peak should only have a reflectivity
superior to 0.95. Both functions p(z) and pierget () are evaluated here on M = 1200 wavelengths
equally distributed on the transmission band.

3.1.3.3 Results and discussion

Refractive index modulation x 107
Reflectivity
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Fig. 3.2 16 peaks multichannel filter with Sinc filter. Left : Apodization profile, right : Associated spectrum.
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Fig. 3.8 16 peaks multichannel filter with GA filter. Left : Apodization profile, right : Associated spectrum.
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Figure 3.2 and 3.3 show the apodization profile and the associated reflection spectrum of two
different filters, respectively Sinc and GA (i.e. obtained by these procedures). The Sinc filter
has a cost function equal to 6.59 whereas the GA filter gives 5.83. These two values of the cost
function show that GA algorithm has led to better solutions in terms of reflection characteristics
than the Sinc profile. This is visible in the second column of Figure 3.3 on the undesirable side
peaks amplitude which are reduced to 0.3 in the GA one to be compared to the value of 0.4 for
the Sinc profile.

In addition, optimized profiles are more suitable for industrial realization as the number of
necessary phase shifts (when 0n(z) = 0) is only 6 for the GA profile against 14 for the Sinc-
profile and the index modulation of profiles is more homogeneously distributed along the pattern
and does not exhibit any dominant lobe. A last improvement concerns the maximum amplitude
of the apodization profile which has been reduced to AMmge = 2. X 10~* for the GA profile
compared to 5. x 1074 for the Sinc filter.
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3.2 Optimization with PDE constraints in a 1D space for medicine

Summary. The inverse problem corresponding to the identification of the main parameters of a
1D model for blood flow has been successfully solved. It has shown in particular that the optimal
parameters may be different from those expected from a formal averaging. Moreover, in the case
of an artery with a loss of compliance in some portion, the knowledge of only one area section
profile downstream is enough to locate the exact position of this disease portion.

References : [Art11], [Proc6]

3.2.1 Objectives

In order to reduce the cost of complex 3D fluid-structure computations of blood flow in
arteries, a one dimensional model has been developed based on the averaging of the general three
dimensional equations [46, 48]. Under a certain number of hypotheses for the artery flow and
geometry, it computes the section area A(t, z) and the volumic flux Q(¢, z) at any longitudinal
position z and time ¢. Such model is interesting for three main reasons : first, it drastically
reduces the computational time of the 3D model, secondly, its two unknowns are quantities that
can be experimentally obtained by non invasive techniques and finally, it allows to recover all
the other hemodynamic variables like blood pressure that are more difficult to measure.

The general objective of this work is to show that the parameters of this 1D model can be
fitted either with the results of 3D computations or with experimental values measured at a
finite number of positions z and times ¢. In particular, it includes the case of an artery with
a large compliance step which occurs when this artery is partially obturated by atherosclerotic
plaques (see Figure 3.4). In this case, it can be important to locate precisely the position of the
plaque before putting a permanent metallic implant used to prop open arteries and called stent
[47]. Even after this operation, note that the artery will still experience a compliance step at
the stent location.

ux,y,zt)
-

loss of compliance
area (stent, plaque)

Fig. 3.4 Blood flow in an artery : the 3D model

The main parameter of the 1D model that has to be fixed by solving an inverse problem is
a function of z, called (3, directly linked to the compliance value of the artery. The problem of
the amount of information needed to recover the correct shape of 3 is in particular discussed.
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3.2.2 The 1D model of blood flow

3.2.2.1 From 3D to 1D

The blood velocity and pressure in an artery satisfy the following Navier Stokes equations in
a 3D domain similar to the one depicted in Figure 3.4 :

T
gu + (u-Vu+ %Vp—kdiv (VW) =0
div(u) =0

where p and v respectively denote the density and the kinematic viscosity of the blood. Because
of the compliance of the arterial wall, theses equations must be coupled with an appropriate
model of the vessel wall dynamics. Moreover, this compliance can vary along the artery, for
instance because of the formation of atherosclerotic plaques or the presence of a stent (see
Figure 3.4).

In order to reduce the computational time needed to solve these equations, a 1D model has
been proposed by assuming that the artery has a cylindrical geometry with a circular cross
section (see Figure 3.5).

After averaging the 3D Navier Stokes equations over each cross section, a system with two
unknowns, A(t, z) the section area at time ¢ and position z € [0, L], and Q(¢, 2) the volumic flux,
is derived (see [46] for more details) :

04, 0Q _

ot 0z )
Qo (@Y, Aw @, (33)
ot 0z \ A p 0z "A

In this system, p denotes the average pressure and is determined by the following law :

p(t.2) = B(VA /Ao (3-4)

where Ag represents the section area of the artery at rest.

The coefficients K,- and (3 appearing in the model are respectively linked to the blood viscosity
and the elastic properties of the artery. In view of the possible applications, 4 will thus take the
form of a function of z. A formal derivation from the 3D to the 1D model lead to the following
expression for the parameter 3 :

="

where hg and E(z) respectively denote the thickness and the Young modulus of the vessel wall.
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Fig. 3.5 Blood flow in an artery : the 1D model
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The 1D model 3.3-3.4 can be rewritten in a conservative form :

oUu  9F(U)
e + s = B(U) (3.5)
where U = (g) and
2 @ A
FU) = a+£)A% , BWU)= KQ+—@\/ ——\/

It can be observed that this system is hyperbolic, as the Jacobian

0 1

oF
H=""=(p/a @, 0
v \=, G

has always two real and distinct eigenvalues for all the allowable values of U. The PDE system
is then completed by two appropriate boundary conditions, one at each end. A pressure profile
is in particular imposed at the entrance.

3.2.2.2 Numerical discretization

The equations of the 1D model are discretized in their conservative form (3.5) by using
a second order Taylor Galerkin scheme. Denote At the chosen time step, then the vector of
unknowns U" at time t,, = nAt satisfies the following time-marching scheme :

9 ALOF™ A2 OBTOFT 9 OFTOF" AL OB
n+1 -~ m =Y ny_—/" (¥~ I St n === n
v mAtg (Mt 5an B -5 G B T aslar T N TANB g BY

The spatial discretization is then done by using linear finite elements on the subdivision
(2i)ieqo,...,ny of [0, L].

3.2.2.3 Numerical tests

Two numerical tests have been performed in order to see the influence of a compliance loss
on the transmission of a pressure impulse. In both cases, the same pulsatile pressure, displayed
on Figure 3.6, is imposed at the entrance of an artery of length L = 4cm.

For both cases, the section area at rest Ay is chosen constant and equal to 0.780362 cm?
whereas K, = 0.75. On the contrary, the coefficient § is different between the two test cases
(see below).

The initial conditions for A and @ are chosen constant in space, respectively A(0,z) = Ag
and Q(0, z) = 0.

Test cas 1 : artery with a constant compliance
In this first test case, the compliance is chosen constant and taken equal to its formal expression
(4) with Eg = 4.10° dynes/cm? and hg = 0.1 cm, that is :

Bformal = 1211372 dynes/cm®
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Fig. 3.6 Blood pressure at entrance (in dynes/cm?)

A uniform spatial discretization of [0, L] is chosen with N = 128 and the time step is taken
equal to 1075,

The results are depicted on Figure 3.7. The two unknowns A and @, as well as the pressure
issued from them by the relation 3.4, are displayed at three different points inside the artery,
respectively located at z = %, % and % and called points P, M and D (see Figure 3.5).

In this case, it can be observed that the pressure impulse travels along the artery at a constant
speed and with minor changes during its propagation.
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Fig. 3.7 Section area A (top left), volumic flux Q (bottom left) and pressure (right) at points P, M and D for
the constant compliance case.

Test case 2 : artery with a variable compliance
The second test case studies the propagation of the same impulse pressure in a case where the
compliance of the artery is supposed to be variable with z.

More precisely, the value of (3 is taken 10 times higher in a portion located between a; = 1.5
cm and az = 2.5 cm. Such abrupt change can be linked for instance by the presence of a stent
or of atherosclerotic plaques at this location inducing a severe loss of compliance. Numerically,

d
the function 3 — [3(z) has to be at least C? because of the presence of the term d_ﬂ in B(U).

z
A smoothing procedure with a small transition parameter § is thus done leading to the shape
depicted in Figure 3.8 with

(ﬂla 62) = (ﬂformala 1Oﬂformal)

and (a1,aq) = (1.5,2.5)
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Fig. 3.8 Function z — (3(z), variable compliance case

d
Because of the large value of d—ﬂ near the points z = a1 and z = a9, the spatial mesh has to
yA

be refined locally and the time step is now equal to 3.1076.
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Fig. 3.9 Artery section (top left), blood flow rate (bottom left) and pressure (right) at points P, M, D for the
variable compliance case.

The results depicted on Figure 3.9 show that the pressure wave is partially reflected at z = ay,
thus giving a more complex pressure profile downstream and also a decrease of the next pressure
peaks. Note also that the propagation speed increases inside the disease portion while its section
area remains almost constant.

3.2.3 Main results

3.2.3.1 The inverse problem with a constant compliance

The first inverse problem that is studied here concerns the case of an artery with a constant
compliance. The objective is to find the optimal constant 3 that would allow the 1D model to
fit as best as possible the corresponding 3D computation. In particular, it will corroborate or
deny the formal expression previously given as the best choice for .
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To this aim, a preliminary 3D computation with a fluid structure model has first been done
on an artery of the same type as the one used in the previous section and with the same pressure
impulse. The 3D Navier Stokes equations with a linear Venant Kirchoff model for the structure
have been solved with the C++ library LifeV (see [48] for more details). The results of this
computation at a particular time are given on Figure 3.10.

Fig. 3.10 Solution of the 3D model at ¢t = 50.10~* (left : fluid velocity, right : wall displacement)

To find the optimal value of 3 for the associated 1D model, an error-type cost function is
defined. It uses the computed value with the 3D model of the section area Asp and the volumic
flux Qsp for the three points P, M and D previously defined (see Figure 3.5) and at the times
t; =i10~* (0 <4 < 78). More precisely :
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Fig. 3.11 Section area (top left), volumic flux (bottom left) and pressure (right) at points P, M and D for the
3D and the optimal 1D case, artery with constant compliance.

In [48], the same problem had been tackled by using a deterministic optimization method
and by computing the gradient of J; with an adjoint formulation. It is solved here by using a
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real valued Genetic Algorithm with 100 evaluations of the direct problem (5 individuals and 20
generations). As the shape of the function 8 — J;(3) exhibits a convex behavior, both methods
succeed to locate the global minimum of J;, namely

Bopt = 0.5490284 % B ormar = 665077

It is interesting to notice that the optimal value of 4 which allows the 1D model to fit to the
corresponding 3D model is far below the value issued from a formal derivation. A comparison
between the values of section area, volumic flux and pressure issued from the 3D model and the
1D model with 8 = B,,: at points P M and D is visible on Figure 3.11. It shows in particular
that the 1D model can fit relatively well with the complex 3D model at a very lower computa-
tional cost.

3.2.3.2 The inverse problem with a variable compliance
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Fig. 3.12 Section area, volumic flux and pressure at points P, M and D for the synthetic data and the optimal

1D case, artery with variable compliance, cost function Js.
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Fig. 3.13 Section area, volumic flux and pressure at points P, M and D for the synthetic data and the optimal

1D case, artery with variable compliance, cost function .J3.
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The second inverse problem that is studied concerns the case of arteries having a compliance
step that can be due to different reasons (stent, plaque,...). The objective now is is to determine
the characteristics of this compliance step by looking at the values of the section area A and/or
the volumic fluxe @) at different positions. In the present case, the synthetic data are issued from
a direct computation of the 1D model already presented in a previous section (Test case 2).

In order to determine the amount of information needed to recover the correct parameters
of the model, two test function have been tested. Both have four parameters as unknowns : the
position of the compliance loss, a; and as, and the respective values, 31 and 3 of the function
z — [(z) in both zones (see Figure 3.8). The two cost functions write respectively as :

78

1
JQ(a17a2aﬂlaﬂ2) = Z Z‘A<ti;pts)_Atarget(tiaptS)|2+1_0‘Q(tiapts)thaTget(tiaptS)F
ptse{P,M,D} i=0
and
78
JB(ala ag, ﬁla 62) = Z |A(tla D) - Atarget(tia D)|2
1=0

which means that the optimization is done with much less information in the case of J3, namely
the section area values down the compliance step.

Both optimization process have been done by using a real-valued Genetic Algorithm with
less than 400 evaluations. In both cases the four parameters have been chosen in a very large
domain. In particular, a; and as are allowed to take all the values between 0 and 4 with a1 < as.

In the case of the cost function Ja, the four parameters characterizing the function z — 3(z)
have been recovered with an excellent accuracy. It explains the perfect matching visible on
Figure 3.12 of the values of the optimal 1D model with the synthetic data.

In the case of the cost function J3, the situation is slightly different as the optimization
process is only able to locate the position of the compliance step (that is a; and as) but not
the exact amount of it. More precisely, the obtained value of 3; matches the one used in the
synthetic data but the value of 35 is underpredicted by 50%. It can be observed on Figure 3.13
that the profile of the section area at point D is similar for both models while there exists
some significant differences at point P, that is upstream the compliance step. However, in the
future, such model may be able to help practioners for an efficient and quick diagnosis of arteries
pathologies such as stenosis by using non invasive measurements.
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3.3 Optimization with PDE constraints in a 3D space for car industry

Summary. In order to reduce their fuel consumption, the minimization of the drag coefficient
of cars has become a magjor topic for car manufacturers. The developpement of fast and global
optimization methods based either on hybridization of evolutionary algorithms with a local search
process or on the use of surrogate models, has allowed only recently a first numerical and au-
tomatic approach for the drag reduction problem. The results obtained on a simplified geometry
called Ahmed bluff body are presented here. They confirm the experimental analysis saying that
the drag coefficient is very semsitive to the rear geometry of the car, because of the presence
of separation and recirculation zones in this region, and thus can be largely reduced by shape
optimization.

References : [Chal], [Art5], [Art6], [Art7]

3.3.1 Objectives

The external shape of cars has always been evolving in the past, because of safety reasons,
comfort improvement and also aesthetics considerations. The effect of these guidelines on car
aerodynamics was not of prime importance during many years. This situation changed in the
70’s with the breakthrough of the oil crisis. Indeed, it has been discovered at this time that the
amount of the aerodynamic drag in the fuel consumption ranges between 30% during a urban
cycle to 75% at a 120km/h cruise speed. Since this period, decreasing the fuel consumption
of road vehicles became a major concern for car manufacturers. The ecological argument also
appeared in the last decade to make this topic more crucial in the automotive research centers.

The process of drag creation and the way to control it has been first discovered experimentally.
In particular, it has been found that the major amount of drag is due to the appearance of flow
separation at the rear surface of cars ([50, 51]). Unfortunately, contrarily to the situation in
aeronautics where it can be largely excluded from the body surface, this aerodynamic phenomena
is an inherent situation for ground vehicles and can not be avoided. Moreover, the associated
three-dimensional flow in the wake behind a car exhibits a complex 3D behavior and is very
difficult to capture because of its unsteadiness and its sensitivity to the car geometry.

3.3.2 The drag reduction problem

3.3.2.1 The drag coefficient

A dimensionless coefficient, called drag coefficient and related to the drag force acting on a
car or a bluff body, is defined in the following way :

Iy

Cp= 2
1T 128

(3.6)

In this expression, p represents the air density, V is the velocity of the car, S is the cross
section area and Fy is the total drag force acting on the car in the longitudinal direction. Note
that the drag force F; can be decomposed into a sum of a viscous drag force and a pressure
drag force. Examples of values of Cy for past or existing cars are presented in Table 3.1.
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Car Cy
Ford T (1908) 0.8
Hummer H2 (2003)| 0.57
Citroen SM (1970) | 0.33
Peugeot 407 (2004)] 0.29
Tatra T77 (1935) |0.212

Tableau 3.1 Examples of drag coefficient Cy

It can be seen from this table that the drag coefficient of cars has been decreasing during the
last century even though other considerations like comfort or aesthetics have also been taken
into account to popularize a high drag model (see Hummer H2) or abandon a low drag model
(see Tatra T7T).

Fig. 3.14 Side and front view of Tatra T77 (1935, Cy = 0.212)

About the last example of Tatra T77 which had a remarkable low drag value of 0.212, a side
and front view of this car is given in Figure 3.14. The short forebody compared to the very long
tailored shape confirms the experimental observations stated in the previous section, saying that
the separation zone at the slant and base area is the most important contribution to the total
drag.

For a realistic car, Table 3.2 displays the repartition of the relative contribution of various
elements on the total drag.

percent of Cy

Upper surface 40%

Lower surface 30%
Wheels 15%
Cooling 10%
Others 5%

Tableau 3.2 Drag repartition on a realistic car

It shows in particular that 70% of the drag coefficient depends on the external shape. Such
large value justifies the interest of a numerical modelization of the problem in order to find
numerically innovative external shapes that will largely reduce the drag coefficient.
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3.3.2.2 Numerical modelization
(i) The Navier Stokes equation

The incompressible Navier Stokes equations are governing the flow around the car shape.

Denote S, the car surface, G the ground surface and {2 a large volume around S, and above G
then, using the Einstein notation, the Navier Stokes equations write in the following way :

— Incompressibility :
O _ () on 0 (3.7)
05, on .
— Momentum (1 < j <3):
Ou;  Ouu; 1 9dp 0 Ou; ~ Ouj
e n 3.8
ot + o0x; p Oz + o0x; v O0x; + ox; on (3.8)

where u;(t, z), p(t,z) and p are respectively the flow velocity, pressure and density. The boundary
conditions for the velocity are of Dirichlet type :

u;=0 on S;UG and wu; =V, ond2\ (S.UG) (3.9)

As the Reynolds number is very high in real configurations, usually more than 108, a tur-
bulence model must be added. This model must be of reduced computational cost in view of
the large number of simulations, more than 100, that need to be done during the optimization
process. That explains why the Large Eddy Simulation model can not be used here (see [56] and
references herein for an example of the application of LES for a single computation around the
Ahmed bluff body).

A Reynolds Averaged Navier Stokes (RANS) turbulence model which consists in averaging
the previous equations (3.7) and (3.8), is chosen here. Denoting @; the averaged velocity, a
closure principle for the term w;u; has to be defined. The most popular way to do it leads to
the well known k — e model. In this model, the averaged equations (3.8) rewrite as :

Ou; Ouu; 1 0p 0 {(

ou; aﬂj 2
ot or; | pox; | oz l/-i-llt)< + )—gémk] on 2 (3.10)

an axl
where 14 is called the eddy viscosity and is related to the turbulent kinetic energy k and its rate
of dissipation € by

k2

vy =C,— (3.11)

€
In this expression, C), is a constant and the new variables k and e are obtained from a set of
two equations (see [57]).

In the present configuration, it has been observed that the second order closure model called
RSM with an adequate wall function gives better results than the k¥ — e method (see [55]).
Despite the small computational overcost, of the order of 40%, this model will be prefered in
the forthcoming simulations. A first example of such flow computation around a realistic car in
given on Figure 3.15.

(ii) The cost function to minimize

The drag coefficient to be minimized is defined by the following expression :
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2

Fig. 3.15 Numerical flow field around a realistic car (Peugeot 206)

Iy

Cy= -t
T Ipv2s

(3.12)

where p is the mass density, S the front surface, V, the freestream velocity and F). the longitu-
dinal component of the aerodynamic force exerted on the car. The latter is obtained after a 3D
turbulent Navier Stokes computation around the car :

F = /// (P—Poo)ndS—l—/// pVa—VudS (3.13)
Shape Shape 6y

where n is the normal vector and v is the projection of the velocity vector to the element of
shape dS.

The numerical computation of the drag coefficient that requires a full 3D turbulent Navier
Stokes computation around the car is thus very costly, which explains the major difficulty of the
related optimization problem.

3.3.3 Main results

3.3.3.1 Description of the test case

In order to test the global optimization methods on a realistic car drag reduction problem, a
simplified car geometry has been extensively studied. It consists in minimizing the drag coeffi-
cient, also called Cy and defined in equation (3.12), of a simplified car shape with respect to the
three geometrical angles defining its rear shape (see Figure 3.16) : the slant angle (called «), the
boat-tail angle () and the ramp angle (7). The forebody of the vehicle is fixed and corresponds
to a shape near to an existing vehicle, namely the Xsara Picasso from Citroén. The objective is
thus to find the best associated rear shape that will reduce the total drag coefficient of the car,
without taking care of any any aesthetic considerations. As it has been observed experimentally
on the Ahmed bluff body [51], it is expected that modifying the rear shape will lead to a very
important drag reduction.



3.3 Optimization with PDE constraints in a 3D space for car industry 45

Fig. 3.16 3D car shape parametrized by its three rear angles «, 3 and ~

3.3.3.2 Details of the numerical simulation

An automatic optimization loop has been implemented and is summarized in Figure 3.17.
This loop includes the following steps :

CFD simulation ol
Oplimization Y

Fig. 3.17 General principles of the automatic optimization loop

(i) Car shape generation and meshing

The three rear angles are sought in the following intervals (in degrees) :
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(a, 8,7) € [15,25] x [5,15] x [15,25]

For any given geometry, the 3D-mesh around the car shape is generated with the commercial grid
generator GAMBIT. It contains a total of approximately 6 millions of cells, both tetrahedrons
and prisms. In order to simulate accurately the flow field behind the car which is responsible of
the major part of the drag coefficient, the mesh is particularly refined in this region.

(ii) CFD simulation

The commercial CFD code FLUENT is used for the computation of the flow field around the
car. The Reynolds number based on the body length (3.95m) and the velocity at infinity (40m/s)
is taken equal to 4.310° like for the Ahmed experiment ([51]). The 6-equations turbulence model
RSM is chosen as it gives better results in this case than the classical k — ¢ model (see [55]).
The computation is performed until a stationary state is observed for the main aerodynamic
coefficients which approximately takes 14 hours CPU time on a single processor machine. In order
to achieve a reasonable computational time, parallel evaluations on a cluster of workstations have
been done here.

(iii) Optimization method

Thwo different global optimization methods have been compared on this problem. The first
one is a classical Genetic Algorithm (GA) with a population number N, equal to 20, a crossover
and a mutation coefficient respectively equal to 0.9 and 0.6. The second method consists in the
same Genetic Algorithm but with fast and approximated evaluations, called AGA. Note that
hybrid methods have also been tested on this problem but are not presented here as the AGA
performs better. Contrarily to these three global optimization methods, it is worth mentioning
that a pure deterministic method like BFGS fails to find the global drag minimum.

3.3.3.3 Numerical results
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Fig. 3.18 Convergence history (best Cy vs. number of evaluations)

The convergence history of both optimization methods GA and AGA for the present drag
reduction problem is depicted on Figure 3.18. This figure shows in particular that both methods
have nearly reached the same drag value, namely 0.114, but with a different number of cost
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function evaluations. More precisely, the AGA algorithm has permitted to reduce the exact
evaluation number by a factor 2 compared to a classical GA, leading to the same proportional
time saving.

The optimal angles obtained by both global optimization methods are nearly equal to
(o, B,7) = (18.7,19.1,9.0). These values have been experimentally validated in the Peugeot
wind tunnel to be associated with the lowest drag value that can be reached with this particular
forebody.

In order to understand more deeply the complex phenomenons involved in the variations of
the drag coefficient, four characteristic shapes are presented in Table 3.3 and carefully studied.

shape|slant angle («)|boat-tail angle (38)|ramp angle (y)| Cq
(a) 21.1 241 14.0 0.1902
(b) 15.5 15.7 5.6 0.1448
(© 16.9 7.7 11.3 0.1238
(d) 18.7 19.1 9.0 0.1140

Tableau 3.3 Four examples of characteristic shapes
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Fig. 3.19 Pressure and viscous part of drag for shapes (a) to (d)

The first shape, called (a), corresponds to a high drag configuration whereas shapes (b), (c)
and (d) correspond to low drag configurations with an increasing value of slant and boat-tail
angles. More precisely, shape (c) corresponds to the best shape obtained after the first generation
of the GA whereas shape (d) is the best shape obtained in the whole range of admissible angles.
Compared to shape (a), note that value of the drag coefficient of shape (d) is almost divided
by a factor two even if both shapes are actually not very different which confirms the high
dependance of C; on the rear shape.

Figure 3.19 displays for the four chosen configurations, the relative part of the pressure drag
and the viscous drag in the value of the drag coefficient Cy. It is worth noticing that the
pressure drag represents the major contribution to the total drag and also that the viscous drag
remains almost constant for all cases. In particular, a higher pressure at the rear of the car will
automatically reduce the drag. To see more precisely the topology and the pressure values of the
wake flow, Figure 3.20 depicts for shapes (a) to (d) the isosurface of null longitudinal velocity
colored with the pressure coefficient. The latter corresponds to an dimensionless pressure value
and is given by :
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Fig. 3.20 Isosurface of null longitudinal velocity colored with pressure coefficient for shapes (a) to (d)

PPy

Cp= e 3.14
A (3:14)

It can be seen in particular on shapes (a) and (b) that too high, respectively too low, slant
and boat-tail angles will not generate a sufficient pressure level at the rear of the vehicle, thus
increasing the pressure drag. On the contrary, intermediate and similar values of these two
angles, coupled with a low ramp angle as it is the case for shapes (c¢) and (d), will improve
the recompression at the car base. Note also that the optimal shape (d) is associated to a very
narrow and regular recirculation bulb. All these observations corroborate the qualitative trends
well known by car engineers since the experiments done by Morel [50] and Ahmed [51].
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3.4 Optimization with PDE constraints in a 3D space for medicine

Summary. In this section, various test cases are presented to show how optimization can improve
the placement of the electrodes of a pacemaker. A robust cost function based on the depolarization
delay of the disease heart is in particular introduced. The obtained result show how a rather good
ECG can be recovered, even with only one electrode, after an optimization of its positioning.

References : [Art12], [Proc3], [Proc4].

3.4.1 Objectives

The heart is located between the lungs and consists of four parts, the right and left atria
and ventricles. The function of the heart involves pumping blood from the lung and the body
and ejecting it towards the body allowing the organs to operate. This function is the result
of a contraction—relaxation process induced by an electrical impulse moving across the heart.
The electrical signal is first induced in the sinus node, the natural pacemaker, then propagates
through the atria and reaches the ventricles through the atrioventricular (A-V) node, see Fi-
gure 3.21. In the ventricles, the propagation is led by the bundle of His causing a wavefront
which propagates by a cell-to—cell activation. In each cell, a depolarization phase occurs corres-
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Fig. 3.21 Potential profiles at various points

ponding to the inflow of sodium ions (causing the electrical activation) followed by a plateau
phase, and then by a repolarization phase corresponding to the outflow of potassium ions. This
phenomenon is illustrated in Figure 3.21 by the representation of the potential action in different
types of cardiac cells.

The electrical activity of the cell membranes is generally modelled by the so—called bidomain
equations [58] in which the current term due to ionic exchanges can be simulated by the Mitchell
and Schaeffer model [59].

The electrical conduction of heart may be defective causing the heartbeat to be too fast, too
slow or irregular. Some pathologies, as for example sinus node dysfunction or bundle branch
block are treated with an artificial pacemaker which is used to help the heart to recover a quasi
normal electrical activity. A pacemaker consists of a small battery and electrodes transmitting
the electrical impulse. Though today pacemakers give good results, certain questions still arise.
How many electrodes should be set ? Where the electrodes should be placed? When the elec-
trodes should act ? Many experiments are led to give answers to these questions, see [60] and
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references therein. As experimental measurements are difficult to obtain, numerical simulations
may contribute to a better understanding.

3.4.2 Modelling of the heart electrical activity

3.4.2.1 The bidomain model

At the microscopic level, the cardiac muscle, denoted by (2g, is made of two distinct and
intricate media : the intra and extra-cellular media, respectively called 2g; and 2g., that are
separated by a surface membrane 'y (see Figure 3.22).

Iy
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Fig. 3.22 Simplified view of the heart at macro/microscopic level.

After a homogenization process, the corresponding electrical potentials ¢; and ¢, and the
transmembrane potential

Vin(t. @) = di(t. x) — de(t. 7) (3.15)

are defined on the entire domain z € 2y and satisfy the so—called bidomain model [58], on
[O,T] X Qg :

A (C0tVin + Lion) — div(o;VV,,) = div(e; Ve ) , (3.16)
div(o;Ve;) = —div(oeVe) , (3.17)

with the following boundary condition on the heart boundary 0y :
oiVo;n=0.Vpen=0, (3.18)

where n denotes the outward unit normal at z € 02y.
Finally an initial condition is prescribed :

Vin(0,2) = Vo (x) in Q2. (3.19)

In this model, the parameters A,,, C,,, 0; and o, respectively denote the average rate of
membrane surface per volume area, the membrane capacity and the intra and extracellular
conductivity tensors. Note that the presence of electrodes is modelled here by adding a local
source term in (3.16).
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The current term due to ionic exchanges, Iion, is evaluated with the help of the physiological
model of Mitchell and Schaeffer [59] :

Vin
Lion = —%Vﬁ;(l Vo) + (3.20)
where the auxiliary variable w satisfy the following ODE :
dw , =L if Vip <V,
= g(WVw),  with  g(Vin,w) = { iV, >V, (3.21)

and 71,72, 72,73, 74 and Vy are given parameters.

The model (3.16)—(3.21) is usually used when the heart is isolated. In order to derive an ECG,
this model is coupled with a model of the electrical activity of the surrounding tissues. To this
end, we assume that the interface between the heart and the extra—cardiac region is divided into
the endocardium I¢nq, and the epicardium Igp;. Then, the coupling we consider is

(Pr—¢e
RyoeVéen = Ry Cp2220) 4 (47 — @) on Ty (322)
Uev¢e'n - UTV¢T'n on Fendo 3
where ¢ denotes the potential in the torso domain, R, and C,, are given parameters. We refer
to [62] for more details.

3.4.2.2 Pathologic case

The pathology we consider here is called left bundle branch block. In such situation, the
electric signal can not be propagated by the bundle of His in the left ventricle, consequently
the depolarization process occurs with delay causing asynchronous contraction—decontraction.
In the previous bidomain model, it is simulated by an absence of initial natural stimulation in
the left ventricle in equation (3.19).

In order to help the heart to recover its normal electrical activity, a well known surgery device,
called pacemaker, is used. It acts through the application of a certain number of electrodes
located at the heart surface that are able to give a local electrical impulse. In the previous
bidomain model, the electrodes act like a local (in space and time) current volumic source term
in the right hand side of the equation (3.16).

3.4.3 Main results

3.4.3.1 Description of the cost function

We investigate two different cost functions to optimize the positioning of the electrodes of a
pacemaker on a disease heart. We first consider a cost function which takes into account the
delay of a characteristic depolarization time, namely

J1 =tq— td,target ; (323)
where t4 represents the first time for which 95 per cent of the whole heart is depolarized :

tq =inf{t >0, Volume({2;) > 0.95 Volume(£2x)},
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with :
Qy={z € Qu, Vn(t,z)>Vs}.

and t4 tqrget denotes the same value for the corresponding healthy heart.
The second cost function we consider is based on the behavior of the ECG during the depo-
larization phase :

J2 = ||D - Dtargﬁt”L"’(O,T) ) (324)
where D is the so called first lead of the ECG given by
D =¢r(L) = ¢r(R),

where L and R are two points of measure located on the left and right arm. As above, Dyqrget
denotes the same value for the corresponding healthy heart.
3.4.3.2 Description of the test case

The simulations are performed on a simplified geometry which contains ventricles only, see
Figure 3.23.

Fig. 3.23 A simplified heart geometry 2.

The domain, closed to a human heart, is analytically defined through its boundary, made of
the union of four truncated ellipsoids :

GEP+GEP+(E) =1 (B)P+(E)P+(E)32=1,

airL bir CiL ar

with {a;r, ,bir., i ,ar ,br ,cr} = {2.72,2.72,5.92,4,4, 7.2} cm for the left ventricle internal and
external boundary respectively, and

() + (Gl + () =1 (@) + () + () =1,

bir CiR ar CRr

with {a;r,bir,cir,ar,br,cr} = {7.36,3.36,6.2, 8,4, 6.84} cm for the right ventricle. All these
ellipsoids are restricted to the half space z < 2.75.

Note that the pathology considered here, is called a left bundle branch block for which only
the right ventricle is initially stimulated. In this case, the electrodes can be placed in the atria
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and/or in the ventricles. As we only simulate here the ventricles, we seek for the best positioning
of the electrodes in the internal surface of the left ventricle.

3.4.3.3 Numerical results

We choose the conductivities in (3.16) such that the anisotropy of the fibers in the myocardium
are taken into account, namely o; = of(I — df ® df) + ol(I —df ® df) and oo = ol (I — df ®
ds) + ol (I — dy ®dy), where dy is the direction of the fibers, I the identity matrix in R® and
al=510"%,al =1.5107 ol =1.107! and ol = 7.51072. The parameters in (3.16)—(3.21)are
choosen as follows : A, =Cp, =1, 71 =045, 75 =9,73 = 150,74 = 100, V; = 0.13 and R, and
C)p are choosen sufficiently small. The intensity of the initial stimulation equals 0.5 mV during 10
ms. The artificial stimulations have the same intensity as the initial stimulation and hold during
40 ms. As we are interested in the depolarization phase only, the final time of computations is
actually equal to 100 ms whereas the total duration of depolarization—repolarization process is
approximately 300 ms.

The domain 2p is discretized with tetrahedra for a total number of nodes equal to 12921.
The ionic current is solved by the cvode! solver, an appropriate solver for stiff nonlinear systems
of ODE. The bidomain problem (3.16)—(3.21) is approximated by a piecewise finite elements
scheme in space and by a second order backward differences scheme in time. The simulations
are done with the C++ library LifeV2.

A number of 30 individuals in taken for the GA population in the case of the optimization of
the positioning of one electrode. A number of 10 generations is then needed to achieve a near
optimal solution. Note that a similar computation has also been done on a finer grid of the heart
muscle by using the AGA algorithm and a parallel implementation on a 13 proc. cluster and
has lead to the same results.

ol ol

400 4 4m
20 0 I

0 i i
-2 -200 -200
mom-zc-;'-m:c-.:mc.c-smm 'mo-mzc-;'-m:c-:-mc.m.mm -mg“-

Fig. 3.24 The first lead (DI) of the ECG in the reference case, the pathologic case, the pathologic case with
one electrode when Ji is used and when Js is used (from left to right).

We first present the results obtained by using the cost function J;. In this case the isolated
model (3.16)—(3.21) is used to simulate the electrical activity of the heart. In the pathological
case J; = 73 ms whereas this delay is reduced to J; = 20.75 ms when an electrode is placed at
the optimal point which actually corresponds to the value

(z,y,2) = (3.71,0.024, —2.03) .

When we use the cost function J3, the coupled model (2)—(8) is used and the optimal posi-
tionning of the electrode is the following :

L http ://linl.gov/casc/sundials
2 http ://www.lifev.org/
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(z,y,2) = (—1.29,1.68, —3.69).

Note that for this position, the delay in the depolarization process, namely J1, is far from being
optimal as it equals 64.75 ms. These results show that according to the cost function, the optimal
positionning of the electrode can be very different.

Figure 3.24 shows the first lead of ECG, respectively in the reference case, the pathologic
case and the pathologic case after an optimization with J; and Js.

It is natural that the recovery of this particular lead of the ECG is more efficient with the
Ja optimization, in view of its definition in (3.24). However, the results obtained with the .J;
optimization also lead to a good ECG recovery even if it is based on a different criteria. Moreover,
for the corresponding optimal point, all the other leads of the ECG also perform well. It thus
seems to indicate that the J; optimization is the more interesting and robust criteria for the
optimization of the positioning of the electrodes of a pacemaker. Note also that a computation
with two electrodes, not shown here, has allowed the cost function J; to decrease still more but
to a lesser extent.
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3.5 Other examples

3.5.1 Optimization of a stent shape

Reference : [Proc6].

3.5.1.1 Objectives

Cardiovascular diseases are the first cause of death in Europe. For two decades, they constitute
an important subject of clinical investigations and academic studies. The well known stenosis
pathology — reduction of the vascular lumen of an artery— affects the dynamics of the blood
flowing through arteries and may even obturate them.

An appropriate procedure to eradicate this constriction is a balloon angioplasty, and/or a
stent placement ([63], [65]). In the latter procedure, a stent is transported by a catheter, known
as a stent delivery device, to the defective site in the artery and then expanded radially by the
balloon to dilate the site (see Figure 3.25).

Though this method is commonly used by practitioners, the stent treatment is not a perfect
solution and is often associated with complications such as restenosis. Indeed, numerous clinical
studies describe the vessel damage during stent implantation and thereof the arterial wall growth
over the wire mesh of the prothesis for about 20-30% of the patients who receive it.

SR

x/xxxx}\xx%,xw

Fig. 3.25 A balloon expandable stent.

Many numerical simulations have been done, by following various approaches, to understand
why restenosis occurs. Some authors have carefully studied the two-dimensional ([63], [64], [65],
[47], [66]) or even three-dimensional ([68]) blood flow behavior through stented arteries. Others
have focused on the mechanical properties of the stent ([67]) or on chemical aspects of coated
stents ([69]).

We adopt, here, the fluid-structure approach to describe the problem. We then couple equa-
tions with a stochastic optimization process in order to define optimal stent designs. More pre-
cisely, we are seeking with the best three geometric parameters of a simplified two-dimensional
stent, namely the strut spacing [, the strut height h and the strut width w that could reduce
blood stagnation and also fluid swirl. To perform optimization, a multicriteria genetic algorithm
has been used.
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3.5.1.2 Main results

The most important criteria to fulfill for designing optimal stents that has been obtained is
the following : in all cases, the ratio » = [/h has to be chosen greater than r,,. It corresponds to a
situation where the two recirculation areas before and after each strut are separated. Moreover, a
higher ratio, that can be raised up to 20 in our study, is not always preferable. Note also that the
strut width w only plays a secondary role compared to [ and h in the optimization process. It will
thus be adjusted by the designer at its convenience. Another important observation coming from
this work is the relative independence on the design results of some simplificatory hypotheses
that can be made during the modelling phase, such as the steady flow hypothesis or the absence
of fluid-structure interaction.

3.5.2 Optimization of a blade shape

Reference : [Chal], [Art10].

3.5.2.1 Objectives

Fig. 3.26 Blades in the fan (left) and the high pressure compressor module (right)

In a turboreactor, the blades, which represent a big amount of an engine price (nearly 35%),
are designed in order to create and control the aerodynamic flow through the engine (see Figure
3.26).

The design of the blades in the high pressure compressor module is optimized in order to
minimize the mechanical efforts applied on them. Actually, it represents only a first step in the
field of blades optimization as, for a high pressure compressor designer, increasing the isentropic
efficiency of the compressor is the main target. Nevertheless, this goal can not be achieved
regardless other engine features. Among them is the stall margin. This aerodynamic instability
phenomena consists in the stall of the flow around the blades. This leads to backward flow inside
the compressor and can result in engine shutdown, overtemperature in the low pressure turbine,
high level of vibration or blade out. To prevent such events, the designer will have to increase
the compressor pressure ratio for low mass flow rates.
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3.5.2.2 Detalils of the computation

A 3D blade can be broken down into a set of several 2D airfoils profiles. The different airfoils
are linked to the original blade through the stacking law (see Figure 3.27). Each airfoil can then
be described by a set of design parameters which reflect physical phenomenon that can be seized
by the human designer. Figure 3.27 shows some of common design parameters of the 2D profiles
such as chord (¢), maximum thickness value (e), upstream and downstream skeleton angles (3;
and (32), stagger angle (). In the presented case, theses parameters are kept fixed whereas the
parameters to optimize, on the number of six, are all associated to the stacking law.

Stacking law

Fig. 3.27 Design parameters of a 3D blade

In order to minimize the mechanical efforts on the blade, the associated function to minimize
is equal to the maximal value on 2D profiles of the Von Mises constraints (see [70] for more
details on this criteria). Such problem is highly non linear, has a large number of constraints,
many local minima and is also time consuming.

3.5.2.3 Obtained results

The Adaptive Hybrid Method (AHM) method with a reduced clustering strategy has been
used here to solve the blade optimization problem described above. Note in particular that
constraints are handled with a penalization term whereas the gradients are approximated by
finite differences.

Optimization method|number of evaluations|best obtained value
Commercial code 460 163.5
AHM 480 158.6

Tableau 3.4 The blade optimization problem, performances comparison

The results are compared on Table 3.4 with those obtained with a commercial optimization
platform based on a pure stochastic algorithm. It can be seen that for the same simulation time
(approximately 80 hours CPU), the Adaptive Hybrid Method overperforms the commercial
code . Indeed, even if the relative decrease obtained on the cost function appears to be small
(3% approximately), it actually represents a significant improvement for the blade design. Note
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that such very interesting optimal value had never been achieved previously, even after many
independent runs of the commercial code.
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Du transport de particules a ’optimisation globale
sous contrainte d’équations aux dérivées partielles

Résumé : pour bien comprendre les orientations suivies dans ce mémoire, il convient de replacer
les travaux présentés dans leur contexte historique. Au commencement de ce travail, au milieu
des années 90, il y eut le projet de navette européenne Hermes et les problemes associés de
réentrée dans la haute atmosphere qui m’orienterent vers I’étude des modeles cinétiques et leurs
simulations numériques par les méthodes de type Monte Carlo. Malheureusement, le lancement
de la fusée Ariane 5, réalisé en 1997, est a ce jour le dernier grand projet spatial européen.
A la fin des années 90, avec I'essor des moyens informatiques, de nouvelles perspectives virent
le jour dans les bureaux d’études d’ingénieurs : la possibilité de lancer une boucle d’optimisa-
tion en arriere plan de simulations complexes 3D : cette nouvelle voie me redirigea alors vers
I’étude et 'amélioration des méthodes d’optimisation de type Algorithmes Génétiques pour
toutes sortes d’applications : optimisation du Cx d’automobiles, optimisation du rendement de
réacteurs d’avions, etc... Le méme type de problemes d’optimisation s’est ensuite retrouvé dans
le domaine médical et a attiré mon attention depuis mon intégration au sein de ’équipe REO en
2004 : optimisation de dispositifs médicaux comme les stents ou les pacemakers, identification
de parametres de modeles numériques d’écoulements sanguins.

La premiere partie de ce mémoire est consacrée a des travaux sur le transport de particules
dans le prolongement de ma these soutenue en 1995 : étude du libre parcours moyen de parti-
cules dans un réseau d’obstacles périodiques, trajectoires de particules dans un écoulement fluide
turbulent. La seconde partie consiste en la présentation des méthodes d’optimisation hybrides et
des principes d’évaluations approchées ayant permis d’améliorer les performances des méthodes
de type Algorithmes Génétiques. La troisiéme partie présente un certain nombre d’application
des méthodes précédentes a des problemes d’optimisation ayant pour point commun leur ca-
ractere global ainsi que la présence de contraintes s’exprimant sous la forme d’EDO ou d’EDP.
Chacun de ces probléemes est par ailleurs issu d’une problématique d’ingénierie ou médicale.

From particle trajectories to global optimization
with partial differential equations constraints

Summary : in order to understand the evolution of this work throughout the years, some histo-
rical explanations are needed. At the beginning of this work, in the mid-90’s, the Hermes project
and its associated reentry problem, lead me to study kinetic models and their corresponding
numerical simulations with the Monte Carlo method. Unfortunately, the Ariane 5 firing in 1997
is up to now the last large European space project. At the end of this decade, with the growing
computational ability, a new perspective opened for engineers : the possibility to do an opti-
mization loop even with complex 3D simulations. This new challenge brought me to the field
of evolutionary algorithms in order to try to apply and eventually improve them for various
problems : car shape optimization, turbine blade shape optimization etc... The same kind of
problems appeared later in the medical field in which I work since 2004 and my integration
inside the REO team : optimization of medical devices like stents or pacemakers, parameters
identification of numerical blood flow models, etc...

The first part of this document is devoted to my work on particles transport after my PhD
defence in 1995 : asymptotic behavior of the particles mean free path in a periodic array of
scatterers, particles trajectories in a turbulent fluid. The second part of this document deals
with the description of hybrid optimization methods and surrogate models developed in order
to improve the performance of evolutionary algorithms. Finally, the third and last part gives
various applications of the previous optimization methods to applicative fields, coming either
from industry or medicine, and having all ODE or PDE constraints.





