
HAL Id: tel-00364723
https://theses.hal.science/tel-00364723

Submitted on 26 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and development of a recongurable
cryptographic co-processor

Daniele Fronte

To cite this version:
Daniele Fronte. Design and development of a recongurable cryptographic co-processor. Micro and
nanotechnologies/Microelectronics. Université de Provence - Aix-Marseille I, 2008. English. �NNT : �.
�tel-00364723�

https://theses.hal.science/tel-00364723
https://hal.archives-ouvertes.fr

N◦ d’ordre: Publique

Thèse
présentée devant

l’Université de Provence
pour obtenir

le grade de DOCTEUR DE L’UNIVERSITÉ DE PROVENCE

Mention SCIENCES POUR L’INGÉNIEUR: MÉCANIQUE, PHYSIQUE, MICRO

ET NANOÉLECTRONIQUE

par

Daniele FRONTE

Titre de la thèse :

Design and development of a

reconfigurable cryptographic co-processor

Soutenue le 8 juillet 2008 devant la commission d’examen :

MM. : Michele ELIA Politecnico di Torino, Rapporteur

Lionel TORRES Université de Montpellier II, Rapporteur

Mme : Dominique BORRIONE Université J. Fourier de Grenoble, Examinateur

MM. : Jean-Michel PORTAL Université d’Aix–Marseille I, Examinateur

Eric PAYRAT Société Atmel Rousset, Superviseur industriel de thèse

Mme : Annie PEREZ Université d’Aix–Marseille I, Directeur de thèse

M. : Luc JEANNEROT Société Atmel Rousset, Invité

ii

Contents

Glossary vii

Abstract xiii

1 Introduction 1

1.1 Security and insecurity . 2

1.1.1 From Herodotus to cryptographic processors 2

1.1.2 The Evaluation Assurance Level . 4

1.2 From the Smart-Cards to the secure products 6

1.2.1 Smart Cards . 6

1.2.2 A secure Environment . 7

1.2.3 The Smart Cards market trend . 9

1.2.4 Smart Card Readers . 12

1.3 Side channel attacks . 12

1.3.1 Timing analysis . 14

1.3.2 Power dissipation analysis: SPA, DPA 15

1.3.3 Electromagnetic analysis . 16

1.3.4 Acoustic analysis . 17

1.4 Conclusions . 17

2 Three cryptographic algorithms 19

2.1 The AES algorithm . 20

2.2 The DES algorithm . 23

2.3 The SHA . 27

2.4 Conclusions . 29

iii

3 Hardware and software implementations of cryptographic
algorithms: state of the art 31

3.1 General Purpose Processors . 32

3.1.1 The NEC DRP . 32

3.1.2 The Crow FPGA Implementation 33

3.1.3 The Zippy Project . 34

3.2 Hardwired macros . 37

3.2.1 The Sharma macro . 37

3.2.2 The G-Plus AES implementation 38

3.2.3 The Trichina Coprocessor . 39

3.2.4 The Eli Biham DES implementation 40

3.2.5 The Saqib implementation of DES 41

3.2.6 The Ahmad hardware implementation of SHA 42

3.2.7 The Chavez hardware implementations of SHA 42

3.2.8 The Cadence Hashing Algorithm Generator SHA-256 43

3.3 Conclusions . 44

4 Proposing a reconfigurable cryptographic coprocessor:
Celator 47

4.1 The system: CPU, Memory, peripherals, bus 48

4.2 Celator hardware architecture . 50

4.2.1 The Processing Element Array . 50

4.2.2 The Processing Element – Confidential 51

4.2.3 The Controller – Confidential . 51

4.2.4 CRAM . 51

4.2.5 The Interface unit . 52

4.3 Considerations about Celator hardware architecture 57

5 Validating Celator on FPGA 59

5.1 AES . 64

5.1.1 Implementation of the AES into a PE Array – Confidential 65

5.1.2 FPGA results . 65

5.1.3 ASIC results . 67

5.2 DES . 70

5.2.1 Implementation of the DES into a PE Array – Confidential 70

5.2.2 FPGA results . 70

5.2.3 ASIC results . 71

5.3 SHA . 73

iv

5.3.1 Implementation of the SHA into a PE Array – Confidential 73

5.3.2 FPGA results . 73

5.3.3 ASIC results . 74

6 Conclusions and Further Work 77

7 Résumé en langue française de la thèse intitulée ”Design
and development of a reconfigurable cryptographic co-
processor” par Daniele Fronte 81

7.1 Résumé . 82

7.2 Introduction . 82

7.3 Trois algorithmes cryptographiques . 83

7.3.1 L’algorithme AES . 83

7.3.2 L’algorithme DES . 84

7.3.3 L’algorithme SHA . 85

7.4 Implémentations matérielles et logicielles d’algorithmes cryptographiques : état

de l’art . 85

7.4.1 Le NEC DRP . 86

7.4.2 La macro SHARMA . 86

7.5 L’architecture matérielle de Celator . 87

7.5.1 Le réseau de PE . 88

7.5.2 Le Séquenceur . 90

7.5.3 La CRAM . 91

7.6 Comment Celator exécute les algorithmes cryptographiques 91

7.6.1 Les transformations d’AES . 91

7.6.2 Les transformations de DES . 92

7.6.3 Les transformations de SHA-256 . 92

7.6.4 Modes ECB et CBC . 93

7.7 Résultats et discussions . 93

7.8 Conclusions . 97

Acknowledgments 99

A Annexes – Confidential 101

A.1 Celator assembler converter . 102

v

B Annexes: AES codes – Confidential 103

B.1 AES Celator assembler code . 104

B.2 AES Filling CRAM code . 105

B.3 C function . 106

B.4 Validating ARM code . 107

C Annexes: DES codes – Confidential 109

C.1 DES tables . 110

C.2 DES Celator assembler code . 111

D Annexes: SHA codes – Confidential 113

D.1 SHA Celator assembler code . 114

vi

Glossary

ADS ARM Developer Suite

AES Advanced Encryption Standard

AHB Advanced High-performance Bus

ALU Arithmetic Logic Unit

APB Advanced Peripheral Bus

ASIC Application Specific Integrated Circuit

ATM Automatic Teller Machine

Bit Binary digit

CBC Cipher Block Chaining

CLA Carry Look-ahead Adders

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CRAM The Memory included in the Crypto Engine

CRT Cathode Ray Tube

CSA Carry Save Adders

DES Data Encryption Standard

vii

DMA Direct Memory Access

DPA Differential Power Analysis

DRP Dynamically Reconfigurable Processor

EAL Evaluation Assurance Level

ECB Electronic Codebook

EMV Europay, MasterCard and Visa

et al. et alii (and others)

FF Flip Flop

FIFO First-In-First-Out

FIPS Federal Information Processing Standard

FPGA Field Programmable Gate Array

FSM Finite State Machine

GF Galois Fields

GPP General Purpose Processor

GPRS Global Packet Radio Service

GSM Global System for Mobile communications

HDL Hardware Description Language

HMEM Horizontally Memory

IBM International Business Machine Corporation

IC Identity Card

ID Identity Document

IT Information Technology

LCD Liquid Crystal Display

viii

LSB Least Significant Bit

ME Modular Exponentiation

MIMD Multiple Instruction Multiple Data

MSB Most Significant Bit

NIST National Institute of Standards and Technology

NSA National Security Agency

PE Processing Element

PIN Personal Identification Number

PIO Parallel Input/Output

POS Point Of Sale

PP Protection Profile

RAM Random Access Memory

RPA Refined Power Analysis

RSA Rivest Shamir Adleman

RTL Register Transfer Level

SC Smart Card

SCA Side Channel Attacks

SHA Secure Hash Algorithm

SIM Subscriber Identity Module

SIMD Single Instruction Multiple Data

SPA Simple Power Analysis

SRAM Static RAM

STC State Transition Controller

ix

TPS Télévision par Satellite

UMTS Universal Mobile Telecommunication System

VHDL Very-high-speed integrated circuit Hardware Description Language

VMEM Vertically Memory

WURM autonomous Wearable Unit with Reconfigurable Modules

WWII World War II

ZPA Zero Power Analysis

x

A Francesco e Andrea

Ad Maiora

xi

xii

Abstract

Nowadays hi-tech secure products need more services and more security. Furthermore

the corresponding market is now oriented towards more flexibility. In this thesis we

propose as novel solution a Multi-algorithm Cryptographic Co-processor called Celator.

Celator is able to encrypt or decrypt data blocks using private key encryption algo-

rithms such as Advanced Encryption Standard (AES) [1] or Data Encryption Standard

(DES) [2]. Moreover Celator allows condensing data using the Secure Hash Algorithms

(SHA) [3]. These algorithms are frequently implemented in hi-tech secure products in

software or in hardware mode. Celator belongs to the class of the flexible hardware

implementations, and allows an user implementing its own cryptographic algorithm

under specific conditions.

Celator architecture is based on a 4x4 Processing Elements (PE) systolic array, a

Controller with a Finite State Machine (FSM) and a local memory. Data are encrypted

or decrypted by the PE array.

This thesis presents Celator architecture, as well as its AES, DES, and SHA ba-

sic operations. Celator performances are then given and compared to other security

circuits.

xiii

xiv

1
Introduction

The trend of the hi-tech secure products market is to offer more services and more

security to users. More services and security require flexible functions. It can happen

that an electronic device needs to execute further algorithms than those it was designed

for; therefore such devices must be flexible and reconfigurable.

Our challenge is to implement a multi-algorithm Crypto-Co-Processor, called Cela-

tor. Celator is conceived to be integrated in an ASIC for embedded circuits with Atmel

Standard Cells. More precisely, Celator can be included in Smart Cards and in Smart

Card Readers.

By using simple logic and arithmetic operations, Celator can perform the following

algorithms:

• Advanced Encryption Standard (AES-128, AES-196 and AES-256), [1]

• Data Encryption Standard (DES), [2]

• Secure Hashing Algorithm (SHA-256), [3]

1

Chapter 1

The adopted solution for Celator is based on a 4x4 Processing Elements (PE)

systolic array, which seems a good solution to compute all matrix format data. PE

array’s data path is reconfigurable, just as the Finite State Machine which controls

the PE array is too. Because of these two reconfigurable elements, Celator can be

reconfigured. Results show that Celator is a good trade off with respect to the execution

cycles, to the area and to the flexibility, between a dedicated hardware macro, and a

multi-purpose processor.

This thesis presents my published works [4], [5], [6], [7], [8], [9] and the contribution

of [10].

The rest of the chapter is organized as follows. Section 1.1 presents a brief history

of the security techniques. Section 1.2 introduces the Celator work environment. In

section 1.3 several side channel attacks are disclosed. Some conclusions of this chapter

are given in section 1.4.

1.1 Security and insecurity

1.1.1 From Herodotus to cryptographic processors

Cryptography, deriving from Greek “kryptós” hidden, and the verb “gráfo” write, is

the study of message secrecy.

Encryption attempts to ensure secrecy in communications, such as those of spies,

military leaders, and diplomats, but it has also had religious applications. For instance,

early Christians used cryptography to obfuscate some aspects of their religious writings

to avoid the near certain persecution.

Before the modern era, cryptography was concerned solely with message confiden-

tiality (i.e. encryption). In recent decades, the field has expanded beyond confiden-

tiality concerns to include techniques for message integrity checking, sender/receiver

identity authentication, digital signatures, interactive proofs, and secure computation,

amongst others.

2

Introduction

The earliest forms of secret writing required little more than local pen and paper

analogs, as most people could not read. More literacy, or opponent literacy, required

actual cryptography. The main classical cipher types were transposition ciphers and

substitution ciphers, which systematically replace letters or groups of letters with other

letters or groups of letters. An early substitution cipher was the Caesar cipher, in which

each letter in the plaintext was replaced by a letter some fixed number of positions

further down the alphabet. It was named after Julius Caesar who is reported to

have used it, with a shift of 3, to communicate with his generals during his military

campaigns.

Steganography (i.e. hiding even the existence of a message so as to keep it confi-

dential) was also first developed in ancient times. An early example, from Herodotus,

concealed a message – a tattoo on a slave’s shaved head – under the regrown hair.

More modern examples of steganography include the use of invisible ink, microdots,

and digital watermarks to conceal information.

Various physical devices and aids have been used to assist with ciphers. One of

the earliest may have been the scytale of ancient Greece [11], the cipher grille in

medieval times, the Alberti’s own cipher disk for the polyalphabetic ciphers (circa

1460), the Johannes Trithemius’ tabula recta scheme, and Thomas Jefferson’s multi-

cylinder (invented independently by Bazeries around 1900). Early in the 20th century,

several mechanical encryption/decryption devices were invented, and many patented,

including rotor machines – most famously the Enigma machine used by Germany in

World War (WW) II [12].

The development of digital computers and electronics after WWII made possible

much more complex ciphers. Today digital computers allows a large use of the cryp-

tography not only for government necessity but also for secrecy in ordinary communi-

cations, e-commerce secure transaction, trusted ID etc.

3

Chapter 1

1.1.2 The Evaluation Assurance Level

A standard security measure for cryptographic algorithms or for their hardware and

software implementations does not exist yet. Nevertheless, there are some criteria to

evaluate their security level.

One of these criteria is the evaluation of the difficulty to break a given crypto-

graphic algorithm, with respect to a well-known mathematical problem. Id est, the

security level of many cryptographic algorithms can be associated to the difficulty of

certain computational problems, such as the integer factoring problem or the discrete

logarithms in a finite field problem [13, chapter 11]. There are proofs that crypto-

graphic techniques are secure if a certain computational problem cannot be solved

efficiently [14]. These proofs are contingent, and thus not definitive, but are currently

the best available for cryptographic algorithms and protocols. Example given, as the

main operation in RSA based algorithms is the modular exponentiation in GF(2n),

thus the security level of RSA based algorithms is associated to the discrete logarithms

in a finite field problem.

Since 1999 the international standards for security evaluation are defined by the

Common Criteria [15] as Evaluation Assurance Level (EAL1 through EAL7) of an

Information Technology product or system [16]. The EAL is a numerical grade assigned

following the completion of a Common Criteria security evaluation. The increasing

assurance levels reflect added assurance requirements that must be met to achieve

Common Criteria certification. The intent of the higher levels is to provide higher

confidence that the system’s principal security features are reliably implemented. The

EAL level does not measure the security of the system itself; it simply states at what

level the system was tested to see if it meets all the requirements of its Security Target.

The Security Target is a document that describes the assets to protect in the system,

the threats that are identified on these assets, and the security objectives that are to be

achieved by the system security. Then, it describes the system security by listing the

security requirements, that are written using the Common Criteria restricted syntax.

4

Introduction

A Security Target is generally written to be compliant to a Protection Profile. The PP

is a document, typically created by a user or user community, which identifies security

requirements relevant to that user for a particular purpose. A PP effectively defines a

class of security devices; for example, Smart Cards used to provide digital signatures,

or network firewalls.

A PP is associated to a product, and it is dedicated to a particular EAL.

EAL5+ has become the standard in the SC business, with the PP called SC IC

Platform Protection Profile, under the reference BSI-PP-0002 [17]. The EAL5+ pro-

vides more security confidence than the EAL5 does, but less than the EAL6 does.

The BSI-PP-0002 specifies the security target for SC. The perimeter of the Target Of

Evaluation (TOE) can be one or more assets to be protected, and one or more threats.

For instance, perimeter of the BSI-PP-0002 can be the protection:

• of the user data (asset)

• from the fault injection attack that would try to divulge or modify the asset

(threat)

To achieve a particular EAL, the computer system must meet specific assurance

requirements. Most of these requirements involve design documentation, design analy-

sis, functional testing, or penetration testing. The higher EALs involve more detailed

documentation, analysis, and testing than the lower ones. Achieving a higher EAL

certification generally costs more money and takes more time than achieving a lower

one. The EAL number assigned to a certified system indicates that the system com-

pleted all requirements for that level. A higher EAL means nothing more, or less, than

the evaluation completed a more stringent set of quality assurance requirements. It

is often assumed that a system that achieves a higher EAL will provide its security

features more reliably, but there is little or no published evidence to support that as-

sumption. The required third-party analysis and testing performed by security experts

is reasonably evidence in this direction. An evaluation example of an operating system

is presented in [18].

5

Chapter 1

In 2006, the US Government Accountability Office published (Figure 1.1) a re-

port on Common Criteria evaluations that summarized a range of costs and schedules

reported for evaluations performed at levels EAL2 through EAL4.

Figure 1.1 – Range of completion times and costs for Common Criteria eval-

uations at EAL2 through EAL4. Source [19]

Receiving a particular EAL takes a lot of time and a lot of money. Celator has not

been evaluated by the Common Criteria yet. A next step of the research shall achieve

this evaluation.

1.2 From the Smart-Cards to the secure products

1.2.1 Smart Cards

A Smart Card (SC) is defined as a pocket-sized card with embedded integrated circuits

which can process information. This implies that the SC can receive input which is

processed – by way of the SC applications – and delivered as an output. There are two

broad categories of SC:

• Memory SC: they contain only non-volatile memory storage components, and

some specific security logic. First generation of SC were typically memory SC.

6

Introduction

They can offer a light security.

• Microprocessor based SC: they contain microprocessor, memory medium (volatile

and/or non volatile) and other peripheral components (net-card, sound card etc.).

This kind of SC offer a stronger security than memory SC.

The microprocessor based SC are used to ensure confidentiality and information

integrity, for private data like bank transitions. Therefore the cards need to be pro-

tected, and be robust to attacks. Several security levels must be reached, from the

support protection to the card protection, from the embedded operating system to the

applications that run on them (see section 1.3).

Even if the SC was invented at the beginning of the seventies (first patent about

SC was granted to the German scientist Helmut Gröttrup and Jürgen Dethloff [20] in

1972, and to the French inventor Roland Moreno [21] in 1974), the first mass use of

the cards was pre-payed cards for French public phones, starting in 1983 (Télécarte).

The major boom in SC use came in the nineteens in Europe, with the introduction

of the smart-card-based SIM used in Global System for Mobile communication (GSM)

mobile phone equipments. With the ubiquity of mobile phones in Europe, SC have

become very common.

1.2.2 A secure Environment

Smart cards have a small gold chip measuring about 1cm by 1cm on the front (Fig-

ure 1.2). When inserted into a reader, the chip makes contact with electrical connectors

that can read information from the chip and write information back.

The ISO/IEC 7816 and ISO/IEC 7810 series of standards define:

• the positions and shapes of the electrical connectors

• the electrical characteristics

• the communication protocols

7

Chapter 1

• the format of the commands sent to the card and the responses returned by the

card

• robustness of the card

• the functionality

Figure 1.2 – Smart Card overview. Each Smart Card has 8 Input/Output pins.

The cards do not contain batteries; energy is supplied by the card reader. SC Read-

ers are used as a communication bridge between the SC and a host, e.g. a computer,

a Point Of Sale (POS) terminal, or a mobile telephone.

Most advanced SC are equipped with dedicated cryptographic hardware. Today’s

cryptographic SC are also able to generate key pairs on board, to avoid the risk of

having more than one copy of the key. The reconfigurable cryptographic coprocessor

we present here can be included in a SC, and the user will be able to select among

several cryptographic algorithms.

Such SC are mainly used for digital signature and secure identification trough au-

thentication mechanism. The most widely used cryptographic algorithms in SC (ex-

cluding the GSM so-called crypto algorithm) are Data Encryption Standard (DES),

or its improved version 3DES (Triple DES), and RSA. The key set is usually loaded

(for DES) or generated (for RSA) on the card at the personalization stage. Even if

nowadays the Advanced Encryption Standard (AES) is preferred to the DES based

algorithms because of its stronger security, both AES and DES based algorithms are

8

Introduction

largely used in many IT products, e.g. in e-passports. Another common algorithm in

IT products is the Secure Hash Algorithm (SHA), used to sign a clear or encrypted

message. Our cryptographic coprocessor will be able to perform AES, DES and SHA.

1.2.3 The Smart Cards market trend

The hardware and software architecture for a SC depends on its targets, which are

strictly correlated to the SC market. There are four main SC markets (Figure 1.3):

1. radio-mobile telephony (Figure 1.4)

2. banking (Figure 1.6)

3. multimedia (TV on demand, satellite etc., Figure 1.7)

4. ID (e-passports, health cards etc., Figure 1.8)

Figure 1.3 – Example of SC uses: radio-mobile telephony, multimedia ID

etc . . .

9

Chapter 1

Figure 1.4 – Sim cards. They include a Smart Card

In Europe, all GSM, Global Packet Radio Service (GPRS) and Universal Mobile

Telecommunication System (UMTS) mobile phones are equipped with a SIM card

(Figure 1.4). It is required to secure the identification process of of phone service

users. The SIM cards are sold to the users by the phone operators, and can offer many

services to the customers, e.g. they allow to access to the Internet. The radio-mobile

telephony market is big. It started in the nineties but now it is almost saturated,

especially in Europe: almost everyone owns a mobile phone, which is equipped with a

SIM card, and does not change it very often ([22], Figure 1.5)! In this way, the current

European radio-mobile telephony market is powered by people who buy a new mobile

line, loose its mobile phone with the SIM card etc.

Figure 1.5 – Growth in the number of mobile telephone subscribers world-

wide, 2005–2006.

Mobile manufacturers usually do not appreciate SC, typically because they do not

produce SC, and also because they consider the SIM cards like an hardware intrusion

10

Introduction

of the phone operators in their mobile devices.

Figure 1.6 – Credit cards. They include a Smart Card

The international payment brands Europay, MasterCard and Visa (EMV) agreed

in 1993 to work together to develop the specifications for the SC in payment cards used

as either a debit or a credit card with the EMV. For the banks interested in introducing

SC in credit cards (Figure 1.6), the only quantifiable benefit is the ability to forecast a

significant reduction in fraud, in particular counterfeit, loss and stealing. The current

level of fraud experienced by a country determines if there is a business case for the

financial institutions.

Figure 1.7 – Télévision Par Satellite cards. They include a Smart Card

The development of the multimedia market relies on the diffusion of the satellite

TV decoders, and the services like the TV on demand (Figure 1.7). The banking and

multimedia markets are smaller than the radio-mobile telephony one. Nevertheless,

a banking dedicated SC is typically more expensive (high added value SC) than a

radio-mobile telephony one, because the banking identifying process requires more

sophisticated security levels.

The ID market is a new market and its expansion is in progress everywhere. Indeed,

SC are also being introduced in personal identification and entitlement schemes at

regional, national, and international levels. Citizen cards, drivers’ licenses, and patient

card schemes are becoming more prevalent, and contactless SC are being integrated

11

Chapter 1

into biometric passports to enhance security for international travels. These markets

are currently growing. In France, a leader country in developing and using the SC, the

Carte Vitale (Figure 1.8) includes a SC which secures the identification of patients.

Next generation of this health card will also store the history of cares and the details

of the last medicines taken by the card owner.

Figure 1.8 – A French Carte Vitale. It includes a Smart Card

1.2.4 Smart Card Readers

A Smart Card Reader reads the data off a SC. SC Readers are used as a communication

device between the SC and a host, e.g. a Personal Computer link SC Reader, a POS

terminal, an Automatic Teller Machine (ATM) or a mobile telephone (Figure 1.9).

Celator can be included in a SC Reader.

In order to check and ensure the customer identity and authenticity, a SC Reader

can ask the user to enter its Personal Identification Number (PIN), and then performs

one or more cryptographic algorithms. The algorithms to be used depend on the service

required by the user. For instance, the AES can be used to encrypt a message, while

the SHA can be used to sign a message. Of course, a SC Reader that is able to execute

several cryptographic algorithms, can offer more services to users than mono algorithm

ones.

1.3 Side channel attacks

Using some cryptographic algorithms can not be enough to ensure the identification

and the access to confidential data like bank account, because SC and SC Readers can

12

Introduction

Figure 1.9 – Celator can be included in a SC Reader like a PC link SC reader

(a), an ATM (b), a POS (c), a mobile phone (d)

leak information if they are not protected from attacks. They have to be preserved

against attacks.

Several kinds of attacks exist:

1. social attacks against the people who develop or use the SC

2. static physical attacks (power is not supplied)

3. dynamic physical attacks (power is supplied)

4. passive logical attacks (the hacker tries to obtain information from encrypted

data)

5. active logical attacks (the hacker is able to manipulate encrypted data)

These kinds of attacks cannot be achieved at once. Several studies, hardware and

software developments at different levels are required as countermeasures. We will

detail the above type 3 attack, and more particularly the side channel attack.

13

Chapter 1

In cryptography, a side channel attack is any attack based on information gained

from the physical implementation of a crypto-system, rather than theoretical weak-

nesses in the algorithms, which is the aim of cryptanalysis. For instance, examples of

side channel attacks are the following ones:

• timing analysis attack based on the measure of the time execution for certain

arithmetic or logical operations;

• power analysis attack based on the power analysis during the execution of a given

algorithm;

• TEMPEST (also known as van Eck) attack based on the analysis of the Electro-

Magnetic radiation emissions;

• acoustic analysis based on the measures of the noise emitted by the SC during a

given operation.

In all cases, the underlying principle is that physical effects caused by some op-

erations of a crypto-system (on the side) can provide useful extra information about

secrets in the system, for example, the cryptographic key, partial state information,

full or partial plaintexts and so forth.

Next sections will detail the various side channel attacks.

1.3.1 Timing analysis

A timing attack watches I/O data movement of the CPU and of the memory, while

one algorithm is running. Simply by observing how long it takes to transfer key infor-

mation, it is sometimes possible to determine how long the key is. Internal operational

stages in many cipher implementations provide information (typically partial) about

the plaintext, key values and so on, and some of this information can be inferred from

observed timings. Alternatively, a timing attack may simply watch for the time a

cryptographic algorithm requires.

14

Introduction

One of possible countermeasure is to employ the same time to perform all supported

algorithms. For instance, the encryption and the decryption must have the same ex-

ecution time. If one operation is faster than the other one, some random operations

which do not modify the final result (masking data as shown in [23], no-operations

etc.) can be added.

1.3.2 Power dissipation analysis: SPA, DPA

A power monitoring attack can provide similar information by observing the power lines

to the hardware, especially the CPU. As with a timing attack, considerable information

is inferable for some algorithm implementations under some circumstances.

Among these attacks, first to be developed was the Simple Power Analysis (SPA).

The current power samples are analysed in order to obtain information. The following

operations are considered as leaks and can be attacked by SPA:

• writing “1” or “0” into the storage mediums (RAM, ROM, registers etc.): the

transition current from the p-plan to the n-plan (and vice versa) of CMOS tran-

sistors are different, therefore writing an “1” is different than writing a “0”;

• comparing data value stored in memory (e.g. in the conditional branching) can

cause a variation of the power consumption;

• the execution of certain operations like the power elevation, in which there is an

high correlation between the time during (and then the power consumption) of

the operation itself and the power exponent.

In 1999 the SPA attacks could be performed easily and they cost 400$ only, as it is

detailed in [24].

Another power analysis based attack more efficient than the SPA is the Differential

Power Analysis (DPA) attack, which works even on small signals [25]. In order to

perform a DPA, first an attacker must be able to precisely measure the power con-

sumption. Second, the attacker needs to know what algorithm is computed, and third

15

Chapter 1

an attacker needs the plaintexts or ciphertexts. The strategy of the attacker is to make

a lot of measurements, and then divide them with the aid of some oracle into two or

more different sets. Then, statistical methods are used to verify the oracle. If and only

if the oracle was right, one can see noticeable peaks in the statistics.

A direct countermeasure against SPA and DPA is to parallelize all computations.

In this way the electrical noise produced can make the power analysis stronger to be

performed. The coprocessor’s architecture we present here allows to parallelize the

computations. Furthermore, Atmel technology we used, allows to secure write “1” and

“0” into the memory. Therefore we will consider the writing operations as trusted ones.

1.3.3 Electromagnetic analysis

As a fundamental and inevitable fact of electrical life, current fluctuations generate

radio waves, which are the currents subject – at least in principle – to a TEMPEST or

van Eck attack. If the currents concerned are patterned in distinguishable ways, which

is typically the case, the radiation can be recorded and used to infer information about

the operation of the associated hardware.

If the relevant currents are those associated with a display device (i.e. highly

patterned and intended to produce human readable images), the task is greatly eased.

Cathode Ray Tube (CRT) displays use substantial currents to steer their electron

beams and they have been ’snooped’ in real time with minimum cost hardware from

considerable distances (hundreds of meters have been demonstrated). Liquid Crystal

Displays (LCDs) require and use smaller currents and are less vulnerable than CRT

displays – which is not to say they are invulnerable.

As we said in the previous section, a parallel architecture allows a good protec-

tion even against TEMPEST attack, because the computing data are dispatched in

several components working concurrently. Celator can exploit this protection against

TEMPEST attack thanks to its parallel structure.

16

Introduction

1.3.4 Acoustic analysis

As an inescapable fact of electrical life in actual circuits, flowing currents heat the

materials through which they flow. These materials also continually transmit heat to

the environment due to other equally fundamental facts of thermodynamic existence, so

there is a continually changing thermally induced mechanical stress as a result of these

heating and cooling effects. That stress appears to be the most significant contributor

to low level acoustic (i.e. noise) emissions from operating CPUs. Recent research by

Shamir et al. [26] has demonstrated that information about the operation of crypto-

systems and algorithms can be obtained in this way by the so-called acoustic attack.

This kind of attack is easy to perform hardware machines which include big CPU and

hard disk.

1.4 Conclusions

In this chapter we have presented how the security techniques have changed from old

Greeks to nowadays. Smart cards are used to secure confidential data, ensure the

privacy, provide the authenticity and the integrity of an information message. SC and

SC Readers include cryptographic algorithms. Moreover they have to be side channel

attack resistant.

The rest of the thesis is organised as follows. The Chapter 2 describes some al-

gorithms implemented in Celator, i.e. AES, DES and SHA. The state of the art of

the hardware and software cryptographic implementations is disclosed in Chapter 3.

The Celator hardware architecture is detailed in Chapter 4. The Celator software

programming is shown in Chapter 5. Finally some conclusions are given in Chapter 6.

17

Chapter 1

18

2

Three cryptographic

algorithms

This Chapter briefly introduces three algorithms that have been implemented into

Celator: the AES, the DES and the SHA. The reader can find the complete description

of them in [1, 2, 3]. The AES, the DES and the SHA are presented in sections 2.1, 2.2

and 2.3, respectively.

19

Chapter 2

Table 2.1 – The 4x4 byte matrix for an AES-128 data block.

d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

2.1 The AES algorithm

The Advanced Encryption Standard (AES) specifies a Federal Information Processing

Standards (FIPS) [1] approved cryptographic algorithm that can be used to protect

electronic data. The AES algorithm is a symmetric block cipher that can encrypt or

decrypt information. The AES algorithm is capable of using cryptographic keys of 128,

192 and 256 bits. These different versions are called AES-128, AES-192 and AES-256

respectively, and all versions can be performed by Celator. In this work, we focus

on the AES-128. The plain text consists of 128-bit data blocks. Each block can be

managed as a matrix of 4x4 bytes (Table 2.1).

The AES encryption process includes 10 rounds. Each round (excepting the first

one and the last one) involves the following transformations:

1. Sub-Bytes transformation

2. Shift-Rows transformation

3. Mix-Columns transformation

4. Add-Round-Key transformation

Sub-bytes transformation A round of AES starts with the Sub-Bytes transforma-

tion (Figure 2.1). All data of the array are substituted by using Sbox tables [1].

Shift-Rows transformation The second transformation of a round is the Shift-

Rows (Figure 2.2): each row of the matrix is left shifted by 1, 2, or 3 positions respec-

20

Three cryptographic algorithms

Figure 2.1 – S-Box transformation

tively for row 1, 2 or 3.

Figure 2.2 – Shift-Rows transformation. This transformation cyclically shifts the

last three rows in the state S(x).

Mix-Columns transformation After the Shift-Rows, the following AES transfor-

mation to be executed is the Mix-Columns (Figure 2.3). This transformation linearly

combines all the data in each whole column. More precisely, 4 vectors are applied to

linearly transform the 4 columns. Celator must perform the following matrix multipli-

cation:

S ′(x) = A(x) ∗ S(x) (2.1)

with

A(x) =

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 (2.2)

21

Chapter 2

Figure 2.3 – Mix-Columns transformation. This transformation operates on the

state column-by-column.

where S(x) is the present state of the data, and A(x) is the matrix made of multiplica-

tive vectors, as it is explained in [1, pag. 18].

S

′
0,c

S
′
1,c

S
′
2,c

S
′
3,c

 =

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 •

S0,c

S1,c

S2,c

S3,c

 for 0 ≤ c < 4 (2.3)

Celator could perform the Mix-Columns transformation in two ways. In the first

one, the logarithmic tables [27] and some lookup tables are used; in the second way,

the xtime function is used [1].

Mix-Columns with lookup tables. Assume that a and b are two bytes from

the state matrix and multiplicative vectors matrix, respectively. The equation (2.1)

can be transformed in an addition by using the following logarithmic property:

c = a ∗ b (2.4)

That is equivalent to:

c = log−1 [(log a) + (log b)] (2.5)

where log(a) or log(b) means a lookup from a logarithmic table (see [27]), providing

22

Three cryptographic algorithms

the power representation of a and b. Then log(a) + log(b) should be modulated by 255.

Another lookup, from the inverse logarithmic table, is needed to obtain the polynomial

basis representation of the result c, which is a byte from the next state matrix.

For each byte of the state matrix S(x), Celator uses the logarithm properties in

order to perform (2.5) under the Sequencer control.

Mix-Columns with xtime function. In order to compute the multiplication

(2.1), each byte of the state (i.e. S(x)) is multiplied by the polynomial vector (i.e.

A(x), as described in [1]) by the xtime and xor functions.

In section 5.1.1 we will detail the adopted choice for the Mix-Columns transforma-

tion, and its implementation in Celator based on the xtime function.

Add-Round-Key transformation The last transformation Add-Round-Key of the

encryption round combines the key values Wt related to the current round, with the

present state S of the data through an exclusive XOR (Figure 2.4).

Figure 2.4 – Add-Round-Key transformation. This transformation xors each col-

umn of the state with a word from the key schedule.

2.2 The DES algorithm

The Data Encryption Standard (DES) algorithm was developed at International Busi-

ness Machine Corporation (IBM), as a modification of an earlier system known as

23

Chapter 2

LUCIFER. DES was first published in the US Federal Register in 1975. After a con-

siderable amount of public discussion, DES was adopted by the NIST as a standard

in 1977, and has become one of the most widely used cryptosystem in the world [2].

Nowadays DES is still very used, especially the enhanced DES, so-called 3DES.

DES is a block cipher which operates on plaintext 64-bit blocks and returns cipher-

text blocks of the same size, using a key which is a bitstring of length 56 bits. The

3DES operates on plaintext 64-bit blocks using a 168-bit key.

The algorithm proceeds in three stages (Figure 2.5a):

1. Given a plaintext x, the bitstring x0 is constructed by permuting the bits of x

according to a (fixed) Initial Permutation (IP). We write x0 = IP(x) = L0R0

where L0 comprises the MSB 32 bits of x0 and R0 the LSB 32 bits:

x0 = {MSB(x0)︸ ︷︷ ︸
R

, LSB(x0)︸ ︷︷ ︸
L

} (2.6)

2. for i = 1 to 16

Li = Ri−1

Ri = LI ⊕ f(Ri−1, Ki)
(2.7)

where ⊕ denotes the exclusive-or of two bitstrings. f is a function that we will

describe later, and K1, K1 . . .K16 are each bitstrings of length 48 computed as a

function of the key Ki.

3. Apply the inverse permutation IP−1 to the bitstring R16L16 obtaining the ci-

phertext y. That is, y = IP−1(R16L16). Note the inverted order of R16 and

L16.

The f function is depicted in Figure 2.5b. Basically, it consists of

• the E expansion, from 32 to 48 bits, using the E table (Table 2.2).

• the xoring with a 48-bit key word

• the substitution using an S-box

24

Three cryptographic algorithms

Figure 2.5 – DES algorithm. Source: Wikimedia Commons.

(a) Enciphering

computation (b) f function

• the permutation P

Figure 2.6 illustrates the DES key schedule:

1. The 56-bit key K is expansed to 64-bits by adding 8 zeros. Then the 64-bit key K

is permuted according to the permutation PC1. We will write PC1(K) = C0D0,

where C0 comprises the MSB 28 bits of PC1(K) and DO the LSB 28 bits.

2. for i = 1 to 16

Ci = LSi(Ci−1)

Di = LSi(Di−1)
(2.8)

and Ki = PC2(CiDi). LSi represents a cyclic shift (to the left) of either one or

25

Chapter 2

Table 2.2 – E function. The first three bits of E(R) are the bits of R in positions 32,

1 and 2 respectively, while the last 2 bits of E(R) are the bits of R in positions

32 and 1 respectively.

E bit-selection table

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

two positions, depending on the value of i: shift one position if i = 1, 2, 9 or 16,

and shift two positions otherwise. PC2 is another fixed permutation.

Figure 2.6 – Calculation of f(R,K). Source: Wikimedia Commons.

To resume the DES operations, in order to execute DES, Celator must perform the

26

Three cryptographic algorithms

xor and shift operation, the E expansion as well as the following permutations: IP

(Table 2.3), IP−1, P, PC1, PC2. All expansion and permutation tables are given in

annexes C.1.

Table 2.3 – Initial Permutation. The permuted input has bit 58 of the input as its

first bit, bit 50 as its second bit, and so on to bit 7 as its last bit.

IP

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Unlike AES transformations, DES permutations are bitwise permutations and thus

their execution in Celator requires more time than a byte permutation. Their imple-

mentation in Celator, which work on 32-bit wide words, shows how Celator can also

perform bit format data operations.

2.3 The SHA

The SHA-1 and the SHA-2 (i.e. SHA-256, SHA-384, and SHA-512) are four secure hash

algorithms specified by [3]. These algorithms are iterative, one-way hash functions that

can process a message to produce a condensed representation called a message digest.

Each algorithm can be described in two steps: preprocessing and hash computation.

Preprocessing involves padding a message, parsing the padded message into m-bit

blocks (m= 512 for SHA-1 and SHA-256, m= 1024 for SHA-384 and SHA-512), and

setting initialization values to be used in the hash computation. The hash computation

generates a message schedule from the padded message and uses that schedule, along

27

Chapter 2

with functions, constants, and word operations to iteratively generate a series of hash

values. The final hash value generated by the hash computation is used to determine

the message digest. In this work, we focus on the SHA-256.

From [3], eight 32-bit intermediate variables (a, b, c, . . . , g, h) are required by

SHA. These variables are initialized by eight 32-bit constants given by the standard

(H1, H2, . . . , H8).

The required steps to apply the SHA to a 512-bit message are the following ones:

• for j = 16 to 63

– Wj = σ1(Wj−2) +Wj−7 + σ0(Wj−15) +Wj−16

• for j = 0 . . . 63

– h⇐ g

– g ⇐ f

– f ⇐ e

– e⇐ d+ T1

– d⇐ c

– c⇐ b

– b⇐ a

– a⇐ T1 + T2

– T1 ⇐ h+ Σ1(e) + Ch(e, f, g) +Kj +Wj

– T2 ⇐ Σ0(a) +Maj(a, b, c)

– Ch⇐ (a and b) xor ((not a) and c)

– Maj ⇐ (a and b) xor (a and c) xor (b and c)

– Σ0(x) = ROTR2(x) xor ROTR13(x) xor ROTR22(x)

– Σ1(x) = ROTR6(x) xor ROTR11(x) xor ROTR25(x)

28

Three cryptographic algorithms

– σ0(x) = ROTR7(x) xor ROTR18(x) xor SHR3(x)

– σ1(x) = ROTR17(x) xor ROTR19(x) xor SHR10(x)

• The result is HN = (Hn1, Hn2, . . . , Hn8), i.e. :

– H1 ⇐ a+H1

– H2 ⇐ b+H2

– . . .

– H8 ⇐ h+H8

2.4 Conclusions

Three algorithms have been presented: the AES, the DES and the SHA. Celator must

be able to execute these three algorithms. The AES is a ciphertext that can encrypt

and decrypt a 128-bit data block. The AES data format is the byte. The DES is a

ciphertext that can encrypt and decrypt a 64-bit data block. The DES data format is

the bit. The SHA is a hashing function that can hash a 512 data block, resulting in to

a 256-bit digest. The SHA data format is 32-bits.

This list of already-implemented algorithms is not closed. Given the reconfigurable

architecture of Celator (chapter 4), Celator can be reconfigured in order to perform

more algorithms. Before detailing in chapter 5 the implementation and the execution

of these algorithms in Celator, we will draw up the state of the art in chapter 3 and

we will describe the Celator architecture in chapter 4.

29

Chapter 2

30

3
Hardware and software

implementations of

cryptographic algorithms:

state of the art

Cryptographic algorithms can be performed on General Purpose Processors (GPP), or

on hardware special purpose devices, like hardwired macros. GPP usually have lower

performances than hardwired macros, but GPP are 100% reconfigurable. Hardwired

macros give higher performances than GPP, but unlike GPP the hardwired macros are

not reconfigurable.

Next sections present several implementations of cryptographic algorithms by GPP

(section 3.1) and by hardwired macros(section 3.2).

31

Chapter 3

3.1 General Purpose Processors

Hereafter three reconfigurable cryptographic coprocessors, are presented. We will con-

sider the AES as the benchmark algorithm. Some of the techniques presented in these

sections can be viewed in Celator, too.

3.1.1 The NEC DRP

The systolic technology described in [28] allows to parallelize the computations and

shows a way to easily reconfigure such Dynamically Reconfigurable Processor (DRP,

Figure 3.1). The DRP enables switching among different encryption algorithms.

The DRP core is a two dimensional array, and it is made of:

• Several Processing Elements (PE) arranged in a systolic fashion. A PE is able to

receive instructions and compute data. A PE is made of:

– an Arithmetic and Logic Unit (ALU)

– several registers (including a register file)

• A State Transition Controller (STC) which contains the control programs

• Vertically and Horizontally Memory units (VMEM and HMEM)

Before performing a computation, all data paths and control programs have to be

saved. In order to save them, a C-language code is used: first it has to be compiled,

then synthesized and downloaded into the DPR.

This systolic architecture seems to be well suited to parallel compute matrix format

data. In Celator we will also see that several processing elements work simultaneously

to parallelize some operations. Nevertheless in Celator, contrarily to the DRP archi-

tecture, a dedicated instruction set is defined, in order to avoid the timing loss of the

C compilation phase.

32

Hardware and software implementations of cryptographic algorithms:
state of the art

Figure 3.1 – The DRP architecture. The DRP is made of several Processing Ele-

ments, a State Transition Controller and several memory blocks.

3.1.2 The Crow FPGA Implementation

The flexibility and high speed capability of FPGAs make the hardware accelerators a

suitable platform for cryptographic applications, as it is shown in [29]. Crow et al. built

a Field Programmable Gate Array (FPGA) coprocessor to perform the AES in Cipher

Block Chaining (CBC) mode [30], the SHA-512 [3] and a Modular Exponentiation

(ME).

The FPGA cryptographic co-processor includes a First-In-First-Out (FIFO) mem-

ory block, a Static RAM (SRAM), a memory control block, an AES block, a SHA

block and a ME block (Figure 3.2). Data are stored in the FIFO. The SHA input data

are stored in FIFO1, the AES input data are stored in FIFO2. The AES output data

are stored in FIFO3, which is linked to the FIFO1 via an I/O buffer. In this way,

after encrypting data by the AES module, data can be signed by the SHA module.

The memory control block manages data transfers and provide commands to the AES,

SHA and ME blocks which perform the crypto operations.

This co-processor was tested on Xilinx VirtexII-pro FPGA. The SHA is achieved

33

Chapter 3

Figure 3.2 – An FPGA cryptographic co-processor

with a throughput of 570 Mbps when operated at 20 MHz; the SHA block requires 2304

CLB slices. The AES execution is performed with a throughput of 468 Mbps when

operated at 40 MHz (there is a multi-clock environment); the AES block requires 2688

CLB slices. For the ME block, the throughput is 51.84
#Expon.bits

Mbps when operated at

50 MHz; the ME block requires 8064 CLB slices large.

The performances of the combined architecture are impressive. Nevertheless, its

implementation requires a big amount of CLB slices.

3.1.3 The Zippy Project

Enzler et al. present the Zippy design methodology in [31]. Zippy’s mission is to

develop reconfigurable processor for the domain of handled and wearable computing.

Figure 3.3 shows the body computing system. Enzler et al. built a so called autonomous

Wearable Unit with Reconfigurable Modules (WURM). Each WURM node consists of

a CPU, a FPGA based reconfigurable hardware unit, memory, a set of I/O interfaces

34

Hardware and software implementations of cryptographic algorithms:
state of the art

that connect sensors and actors, and a wireless interface for communications with other

WURM nodes (Figure 3.4).

Figure 3.3 – The body area computing system for wearable computers

While the CPU is configured into the FPGA at power-on, the hardware tasks

are dynamically configured on demand. For instance, when the WURM receives a

compressed audio stream for playback, the CPU recognizes the encoding format in use

and initiates the dynamic configuration of suitable audio decoding coprocessor into the

reconfigurable hardware unit. When the audio coprocessor is in place, it receives the

encoded audio stream from the CPU. The audio coprocessor decodes the audio stream

and sends the raw audio data for playback to the digital-to-analog converter.

Figure 3.4 – WURM hardware architecture

35

Chapter 3

Results show how the reconfigurable hardware unit computes runtime intensive

functions more efficiently than the CPU. Runtime functions are found in applications

from cryptography, multimedia and communication. Enzler et al. did not report

WURM’s performances and size for encrypting or decrypting functions. Nevertheless,

they state that the WURM’s soft CPU core requires 3865 Virtex slices, which is 41%

of the FPGA resources, and 14 dedicated block RAM, which equals 50% of the FPGA

memory resources. The CPU runs at 25MHz (Figure 3.5 shows the overhead of the

WURM).

Figure 3.5 – Block diagram of the WURM prototyping platform

In our opinion the WURM solution can require too many area resources for embed-

ded systems. Moreover, as we said in the previous section, the FPGA based solutions

require many FPGA resources for connections. Therefore, our reconfigurable crypto

co-processor will not include any FPGA technology, even if one of our goals is to

implement a multi-algorithm circuit.

36

Hardware and software implementations of cryptographic algorithms:
state of the art

3.2 Hardwired macros

Hereafter eight cryptographic hardwired macros are detailed. These macros are dedi-

cated to AES, DES and SHA.

3.2.1 The Sharma macro

In [32] a systolic architecture is used for constructing high-speed AES special-purpose

devices, which includes a computer memory and a processing element array. Data flow

from the computer memory in a rhythmic fashion, passing through several processing

elements before it returns to memory. The architecture has improved the hardware

complexity and the rate of encryption/decryption. Similarities of encryption and de-

cryption are used to provide a high level of performance while keeping the chip size

small.

The four AES transformations are achieved in the following way:

1. The Sub-Bytes transformation is performed by ASIC AES boxes (Figure 3.6).

With few connections, the same Galois Field (28) inverter can be used both in

encryption and decryption.

2. In Shift-Rows transformation no separate design have been implemented. Data

are shifted by using registers R0–R5.

3. In Mix-Columns transformation systolic architecture is used for matrix-matrix

multiplication of the 4x4 array. In each processing element a combinational logic

is used for multiplication in GF(28) and for addition. Moreover, each cell has

one register which contains the values required by the encryption and decryption

process and one register is used to store the computation result.

4. In Add-Round-Key transformation, a combination of XOR gates is used.

The implementation of this hardware systolic architecture requires 40 clock cycles

to perform an AES encryption for 128-bits, with a theoretical throughput of 3.2 bit

37

Chapter 3

Figure 3.6 – Design for AES Data Unit

per cycle (the authors did not provide the test clock frequency). Considering that an

AES round includes 4 transformations and that a round is repeated 10 times for an

encryption, each transformation is performed in one clock cycle only. This is a high

performance result.

The drawback of these macros is the non reconfigurability: they are able to

perform an algorithm only, i.e. the AES. Nevertheless, their systolic architecture seems

to be a good idea to encrypt/decrypt matrix format data. Our solution shall improve

this idea in order to obtain a reprogrammable and multi-algorithms integrated circuit

to compute matrix format data.

3.2.2 The G-Plus AES implementation

In [33] a special purpose architecture which performs the whole AES encryption in 1

clock cycle only is patented. Its implementation requires a maximum parallel encryp-

tion module (Figure 3.7).

High throughput is achieved, even when the AES algorithm is employed with one

of the feedback operation modes [30]. Hardware is provided for one encryption round,

38

Hardware and software implementations of cryptographic algorithms:
state of the art

Figure 3.7 – The G-plus AES implementation

which is re-used as needed to complete the encryption process. This allows feedback

modes to be used without adversely affecting AES throughput.

The controller is part of a hierarchical distributed control scheme comprising some

Finite State Machines (FSMs). It controls the operation of the encryption and key

scheduling modules such that one round of the AES algorithm is completed per clock

cycle.

The main advantage of this solution is the possibility to encrypt/decrypt on the

fly, which is useful in products dedicated to the multimedia market. A drawback of

this solution is the big amount of logic gates, which can be difficult to implement in

embedded systems. Furthermore, as in the device described previously [32], this circuit

is not reconfigurable.

3.2.3 The Trichina Coprocessor

In [23] an immune to first order DPA AES coprocessor is described. Masking all input

and intermediate data values appears to be useful to decorrelate any information leaked

39

Chapter 3

through Side Channels Attacks (SCA). This countermeasure is one of the most powerful

countermeasures against SCA [34], [35].

The data masking idea is simple: the message and the key are masked with some

random values at the beginning of the computation process, and thereafter everything

is almost as usual. Of course, the value of the mask at the end of some fixed steps must

be known in oder to re-establish the expected data value at the end of the execution.

A traditional XOR operation is used for data masking. The operation is compatible

with the AES structure except for the inversion in Sub-Bytes, which is the only non-

linear transformation. Trichina et al. show how to manipulate masked data. They

build a masked multiplier in GF(2n) from standard multipliers, and they achieve the

Sub-Bytes transformation by a Masked S-box.

Results show that this architecture is able to secure encrypt an AES data block with

a throughput of 4 Mbps when operated at 5 MHz. The total gate count for the circuit

is 16K. By a simple multiplication, we can estimate that the encryption is achieved

in 16 rounds only. In our solution, we shall adopt the masking data as one possible

countermeasure.

3.2.4 The Eli Biham DES implementation

In [36] a DES implementation is presented by Eli Biham. Its solution uses a 64-bit

processors as SIMD parallel computer which can compute a 64-bit operations simul-

taneously. It achieves speeds of about 137 Mbps to encrypt a 64-bit data block. The

DES operations are executed as follows:

• XOR operation: the XOR operation of the processor computes 64 one-bit XORs;

• expansion and permutations: these operations do not cost any operation, since

instead of changing the order of words, the required word can be addressed di-

rectly by only changing the naming of the registers;

• S-box operation: the S-boxes are computed by their logical gate circuit, using

40

Hardware and software implementations of cryptographic algorithms:
state of the art

XOR, AND, OR and NOT operations. Typically they are represented in about

100 gates.

This implementation is attractive to ciphers that manipulate bit format data block,

whose operations are simple (no multiplication for example, except the trivial one with

factor 2), use only small S-boxes (thus their gate complexity is small), or use small

register sizes. With difficulty Celator can be a Single Instruction Multiple Data (SIMD)

processor. A Multiple Instruction, Multiple Data (MIMD) processor would be more

suitable to ensure many possible computations. The dedicated S-boxes seem to be a

good solution to speed up these substitutions. Unfortunately, dedicated S-boxes can

be exploited by one algorithm only. Thus, we will try to develop a generic look up

table for every kind of substitutions in Celator.

3.2.5 The Saqib implementation of DES

In [37] an efficient and compact DES architecture especially designed for reconfig-

urable hardware platforms is detailed. This DES implementation makes use of an

eight DES S-Boxes parallel structure (Figure 3.8), resulting in a significant reduction

of the critical path for encryption/decryption. Its DES round design achieves a data

encryption/decryption rate of 274 Mbps.

DES makes use of 8 S-Boxes (each of 64x4) occupying a total of 2 Kbits. This

relatively small amount of memory is implemented by using the distributed memory

resources in FPGAs. Fixed permutations in fact occupy a low percentage of FPGA

interconnection lines because they are hardwired.

FPGA implementation of DES algorithm was accomplished on a VirtexE device

XCV400e-8-bg560. The design achieves a frequency of 68.05 MHz. It takes 16 clock

cycles to encrypt one data block (64-bits). Therefore, the achieved throughput is

274 Mbps.

Reconfigurable devices are attractive since the time and costs of VLSI design and

manufacturing can be reduced. The S-Boxes can be stored in a dedicated memory,

41

Chapter 3

Figure 3.8 – DES Algorithm implemented on a FPGA

but including a memory per S-box is expensive in terms of area. We will see how in

Celator two look up tables can be accessed concurrently by using a double port memory

to store the S-boxes, and how the execution time can be saved.

3.2.6 The Ahmad hardware implementation of SHA

In [38] an architecture to implement the hash algorithms of the secure hash standards

SHA-256 on Altera FPGA is explored. A ROM is used to store the SHA initial hash

value. A high throughput is achieved 335 Mbps. Multi-operand adders are implemented

by carry save adders (CSAs), referred to as redundant adders but which are faster and

have a smaller area than Carry look-ahead Adders (CLAs).

3.2.7 The Chavez hardware implementations of SHA

The hardware implementations of SHA-256 can be improved by the techniques pre-

sented in [39]. The most relevant techniques are:

• parallel counters or well balanced Carry Save Adders, in order to improve the

partial additions;

42

Hardware and software implementations of cryptographic algorithms:
state of the art

• techniques (see below the example of the SHA variable computation) that opti-

mize the data dependency, and parallelize operations;

• improved addition units;

• embedded memories to store the required constant variables.

In this way, the SHA is executed in 65 cycles (i.e. one cycle per SHA round) with a

throughput of 1.4 Gbps.

The usage of SHA, CSA would not be so beneficial in Celator, because among

the PE (its reconfigurable devices) there is a dedicated connection paths for addition.

Embedded memories can speed up all data transfers between registers and we shall use

this technique.

Parallelizing computations is difficult in the SHA-256, because the data dependency

is very complex. Nonetheless, SHA algorithm can be divided into two parts: the

variables B, C, D, F, G, and H (section 5.3.1) are obtained directly from the variables

of the round, without any computation, while the variables A and E require some

computations, and depend on all other SHA variables. Thus the computations of all

SHA variables can be split in two stages: a stage to get the values of B, C, D, F, G,

and H, and a stage to get the values of A and E.

We will see how Celator split the computations of the SHA variables in two stages,

too.

3.2.8 The Cadence Hashing Algorithm Generator SHA-256

Cadence implemented an hardware SHA-256 [40] suitable for use in random number

generators. High speed operation with throughput at low gate count were achieved:

• 133 MHz operation at 0.18 µm CMOS technology

• 2100 NAND-2 equivalent ports

• 971 Mbps throughput

43

Chapter 3

Hardwired macros like this has the advantage of a high performances, but is not

reconfigurable. Unlike Celator shall be.

3.3 Conclusions

We have seen the hardware and software implementations of AES, DES and SHA

algorithms. We can resume the following statements:

• The systolic architectures seem to be well suited for parallel compute matrix

format data [28].

• The performances of the combined architecture are impressive. Nevertheless, its

implementation requires a big amount of CLB slices [29].

• FPGA based solutions require many FPGA resources for connections [31].

• The hardwired macros are not reconfigurable.

• The hardwired macros can achieve a high bit-rate, and they can encrypt/decrypt

on the fly, which is useful in products dedicated to the multimedia market [33].

• Masking data can be an useful countermeasure against SCA [23].

• The dedicated S-boxes speed up a software implementation [36].

• The time and costs of VLSI design and fabrication can be reduced on reconfig-

urable devices [37].

• In SHA the data dependency is very complex, therefore parallelizing computa-

tions is difficult [39].

The reconfigurability grows up from a hardwired implementation (0% reconfig-

urable) to an implementation on GPP (100% reconfigurable), while the throughput

and the area decrease. For us, the good trade off choice is a solution “in the middle”.

44

Hardware and software implementations of cryptographic algorithms:
state of the art

In this way, the developed Celator has a x degree of reconfigurability comprised be-

tween 0% and 100%, faster than GPP and smaller than hardwired macros. In next

chapter the Celator architecture is disclosed.

45

Chapter 3

46

4
Proposing a reconfigurable

cryptographic coprocessor:

Celator

This chapter describes the hardware implementation of Celator processor.

Our challenge is to make Celator reconfigurable. If you do a Google search for

“reconfigurable processor” you find more than 40000 results including FPGA technolo-

gies (Avril 2008). But FPGA based solutions are not adequate to implement Celator

because:

• too many FPGA resources are needed for connections; the embedded FPGA can

be another solution, and this technique is currently under study

• too many time is lost in compilation time when the FPGA cards are reconfigured;

the dynamically configurable FPGA can be another solution, but again, to many

area is required to interface the FPGA card with other devices.

47

http://www.google.com/search?=reconfigurable+processor&btnG=Search

Chapter 4

Therefore we aimed to find a reconfigurable technology without FPGA cards. We

found the solution in a systolic processor based on a Proposing Element array. In Cela-

tor, the data-path of the PE array can be reconfigured at each clock cycle. Therefore

Celator is a reconfigurable processor.

The AES operates on 8-bit data word, while the DES operates on 1-bit data word,

and the SHA operates on 32-bit data word. In this way we show that Celator can

efficiently operate on 8-bit, 1-bit and 32-bit data words.

Three cryptographic algorithms have been implemented on Celator. Therefore Cela-

tor is also a cryptographic multi-algorithm processor.

Section 4.1 shows the computer system that Celator is conceived for. Celator archi-

tecture is detailed in section 4.2. Finally, in section 4.3 some considerations are given

about the choices we made in Celator hardware development.

4.1 The system: CPU, Memory, peripherals, bus

Celator is designed to be integrated in a computer system which includes at least the

following devices:

• a Main processor or CPU

• a RAM

• Celator

• an Interface (IF) unit

• Other peripherals (i.e. Parallel Input/Output (PIO), buses, Direct Memory Ac-

cess (DMA) controller, net-card, etc..)

A Smart Card or a Card Reader are an example of such a computer system (Fig-

ure 4.1). In the validation system the CPU is the ARM 7 TDMI core (Figure 4.2, [41]).

The CPU will be the master of both the bus and the Main Memory.

There are 2 buses: the Advanced High-performance Bus (AHB) and the Advanced

Peripheral Bus (APB). The first works at a higher frequency than the second one.

Celator will be linked to the CPU and to the RAM via the AHB and via the IF unit.

48

Proposing a reconfigurable cryptographic coprocessor: Celator

Figure 4.1 – Smart Card architecture. Celator can be included in a SC

Figure 4.2 – The ARM 7 TDMI architecture

The IF unit manages the AHB (section 4.2.5) in order to let the CPU communicate

to Celator, and vice-versa. For instance, the CPU can program Celator to encrypt a

data block. When the encryption is achieved, Celator communicates the results to the

CPU.

49

Chapter 4

4.2 Celator hardware architecture

This section details the hardware development of Celator and the architecture of the

whole computer system around Celator. The whole computer system (Figure 4.3)

includes the ARM 7 TDMI core, a Main Memory, the IF unit, Celator and the AHB.

Celator includes a PE array, a Controller and the Celator Memory called CRAM.

Celator can have a different clock from the CPU, and the IF unit allows Celator and

the CPU to communicate even when they work at a different frequency. These modules

are detailed in next sections.

Figure 4.3 – Whole computer system architecture

4.2.1 The Processing Element Array

The PE array is the data path of Celator, and consists of a systolic array of 4x4 Process-

ing Elements. All PE are identical. The PE array is controlled by the Controller (sec-

tion 4.2.3). Systolic array processors [42] can have mono-dimensional, two-dimensional

or three-dimensional I/O connections. The 3D I/O connections need more area than

1D I/O. For Celator we chose the 2D I/O, which seems to be a good trade off with

respect to the connection (Figure 4.4) and allows Celator to execute several algorithms.

Thus, by the 2D I/O, the whole PE array has (Figure 4.5):

50

Proposing a reconfigurable cryptographic coprocessor: Celator

Figure 4.4 – Three types of I/O connections

(a) 1D

I/O

(b) 2D

I/O

(c) 3D

I/O

• four 32-bit data inputs/outputs, i.e. one per cardinal direction;

• four multiplexers (MUX N, MUX E, MUX W, MUX S) which the input/output

of the PE array allow to be switched among: North, East, West and South

input/outputs. The multiplexers can also make PE array linked in a toric fashion,

which can be useful to perform operations such as rotations around the PE array

(Figures 4.5 and 4.6).

All PE array multiplexers are configured by the Controller, and the configuration

can be modified at each clock cycle. Therefore, the PE array data path is reconfigurable.

4.2.2 The Processing Element – Confidential

This section is Atmel confidential.

4.2.3 The Controller – Confidential

This section is Atmel confidential.

4.2.4 CRAM

The Celator RAM, or CRAM, can store 32-bit data and instruction words (Figure 4.7).

Data include the encrypting or decrypting input/output data, as well as all data needed

by the encrypting/decrypting process, e.g. the Sbox for the AES. Programs stored in

CRAM include the micro-instructions for the Controller. The CRAM is a double port

51

Chapter 4

Figure 4.5 – The architecture of the Processing Element array

RAM, therefore both CPU and Controller can access to the CRAM in read/write mode.

The CRAM that we use is 4KB large, 32-bit word size and its area is 1 mm2 with Atmel

CMOS 130 nm technology.

4.2.5 The Interface unit

The Interface (IF) unit links the CPU and Celator via the AHB bus. It lets the CPU

communicate with Celator. The AHB is made of the following buses:

HADDR : 32-bit input address bus

HWRITE : 1-bit input write enable signal

HSEL RAM : 1-bit input RAM select signal. Celator includes a RAM (section 4.2.4),

and this signal enables the writing and the reading operations into the Celator

RAM.

HSEL REG : 1-bit input register select signal. The IF includes several registers, and

this signal enables the writing and reading into the IF unit registers

52

Proposing a reconfigurable cryptographic coprocessor: Celator

Figure 4.6 – Details of the 1st column of the PE Array

Figure 4.7 – The CRAM architecture. It is a double port RAM.

HWDATA : 32-bit output data bus

HRDATA : 32-bit input data bus

53

Chapter 4

The IF unit includes (Figure 4.8):

• Control register: used by the CPU to start and reset Celator (2 bits)

• Status register: used by Celator to indicate to the CPU that the current algorithm

is done (1 bit)

• Interrupt register: to indicate the CPU when the current algorithm is done (1

bit)

• Split-Address (S-A) register: the S-A register can be written by the CPU only,

and stores a RAM address. This address is comprised between 0 and the

CRAM highest address (1023), that we call Max CRAM Address. The S-A reg-

ister value is used to disable the CPU writing mode into the CRAM: the CPU

may write into the CRAM addresses comprised between the S-A value and the

Max CRAM Address, only. For instance, before filling the CRAM with a program,

the CPU sets the S-A value to 0. Before starting Celator, the CPU can set the

S-A value to Max CRAM Address - 16 bytes. If so, the CPU may write into the

last 16 bytes of the CRAM only: that memory space can be used as data buffer

between Celator and the CPU. In this way, no malicious applications can write

into CRAM, and modify the program (or data) stored at the address comprised

between 0 and in the Max CRAM Address. The S-A size is 12 bits.

Both Control and Status registers are set-reset registers (Figure 4.9). These registers

allow the communication between 2 devices (i.e. CPU and Celator), even if these

devices work at different frequencies. For each bit of a such set-reset register, 4 Flip-

Flops with asynchronous clear and one “or” logic port are needed.

The communication between CPU and Celator works in the following way. Let the

Control register have the following structure:

• LSB (i.e. bit number “0”): reset signal

• MSB (i.e. bit number “1”): start signal

54

Proposing a reconfigurable cryptographic coprocessor: Celator

Figure 4.8 – Interface unit.

In order to reset Celator, the CPU has to write 01b into the Control register. In order

to start Celator, the CPU has to write 10b into the Control register.

Consider one bit of the Control register, e.g. the start signal. Four flip-flops (FF)

and one or logic gate are needed to transmit the start information. Let in 1 and out

1 be the start I/O with the CPU. Let f1 be the CPU frequency. Let in 2 and out

2 be the start I/O with Celator. Let f2 be the Celator frequency. In this way, when

the CPU starts Celator, in 1, D0 and D3 are set to 1. After 1 clock cycle of f1, D1 is

set to 1; in 1 switches from 1 to 0, D0 and D3 hold 1. The set information (start) is

55

Chapter 4

Figure 4.9 – Architecture of the set-reset register.

ready to pass from f1 world to f2 world (D1 is sampled on f2). In the meanwhile, D3

is also set to 1. By now:

• after 1 clock cycle of f1, Q3 and out 1 are set to 1. The CPU knows that Celator

is receiving the start signal

• after 1 clock cycle of f2, Q1 and out 2 are set to 1. Celator receives the start

signal

Once Celator is started, Celator sets in 2 to 1. After 1 clock cycle of f2, Q2 is set

to 1, and Q0 is asynchronously reset. D1, D0, and D3 are immediately set to 0. The

reset information (start) is ready to pass from f2 world to f1 world (D3 is sampled on

f1) By now:

• after 1 clock cycle of f2, Q1 and out 2 are set to 0. Celator knows that the CPU

is knowing that Celator started

• after 1 clock cycle of f1, Q3 and out 1 pass from 1 to 0. The CPU knows that

Celator started

56

Proposing a reconfigurable cryptographic coprocessor: Celator

In this way, the CPU frequency modules are decoupled from Celator, which can

work at a different frequency.

4.3 Considerations about Celator hardware architecture

The adopted solution Celator is based on a 4x4 Processing Element (PE) systolic array

[42], which seems a good solution to compute all matrix format data.

PE array’s data path is reconfigurable, just as the Finite State Machine which

controls the PE array is, too. Because of these two reconfigurable elements, Celator

can be reconfigured. Results show that Celator is a good trade off with respect to the

execution cycles, between a dedicated hardware macro and a general purpose processor.

The CRAM stores the instructions for the FSM, and the user data.

The PE array is the Celator operating center. It is made of 4x4 1 byte PEs, which

can operate arithmetic and logic computations on 8-bit data words. In order to operate

on data words larger than 8-bits, more PE must be concatenated each others.

Three algorithms have been implemented into Celator: AES [1], DES [2] and SHA

[3]. In the next sections we show how Celator may be programmed in order to execute

these algorithms.

57

Chapter 4

58

5
Validating Celator on FPGA

Before developing the ASIC, Celator was prototyped and validated on FPGA. In this

way, Celator was developed in Verilog Hardware Description Language (Verilog HDL)

at the Register Transfer Level (RTL). Therefore Celator was prototyped by Mentor

Precision RTL (synthesis) and Xilinx ISE (place and route) and validated on a Xilinx

Virtex XC2V3000 FPGA. We used the Atmel Voyager Platform (Figure 5.1) which

include the FPGA card and an external memory, the SRAM. Simulations were executed

by means of the ARM Developer Suite (ADS).

Two images were encrypted, decrypted and signed by Celator: Lena color image

(Figure 5.2a) and the Penguin gray image (Figure 5.2b).

The Celator test on FPGA requires several hardware components and software ap-

plications. These components include the CPU (ARM 7 TDMI), the Interrupt Control

(IC), Celator and the Interface (IF). The algorithm to be tested, for instance the AES,

must be written first in Celator software instructions, and then the Celator software

instructions must be coded in hexadecimal format, according to the instruction types

shown in section 4.2.3. In order to automatize the assembler to hexadecimal format

translation, we developed a C program called celator_compiler. This program is

called by the following command:

59

Chapter 5

Figure 5.1 – The Atmel Voyager Platform used to prototype Celator. The

Xilinx Virtex XC2V3000 FPGA (1) and an external SRAM (2) are included

in Atmel Voyager Platform.

/> celator_compiler src_file dst_file

For the AES Celator dedicated code, see annexes B.2. For the celator_compiler

source C code, see annexes A.1.

The FPGA hardware implementation is performed in the following way (Figure 5.3):

1. Celator, IF, CPU and IC Verilog codes (RTL) are synthesized by Mentor Precision

RTL for the Xilinx Virtex XC2V3000 FPGA

2. the synthesis netlist is placed and routed by Xilinx ISE

3. a bit-file is generated by Xilinx ISE

4. the bit-file is downloaded into the Virtex XC2V3000 FPGA by Xilinx Impact

software

60

Validating Celator on FPGA

Figure 5.2 – AES encrypting a colour image in ECB and CBC modes

(a) (b)

Figure 5.3 – The Celator FPGA implementation steps

The Celator software programming is performed in the following way (Figure 5.4):

1. the AES is written in Celator assembler dedicated format

2. the assembler format file is translated into hexadecimal format file by

celator_compiler. Each instruction is coded as a 32-bit word

3. each 32-bit word is written into ARM assembler format file, the ARM DCD

constants

4. a scatter file is used to map the AES instructions (in DCD format) into the

SRAM

5. all ARM assembler files are compiled by ADS

6. an object file is generated and downloaded into the FPGA

61

Chapter 5

Figure 5.4 – The Celator software programming steps

The assembler files compiled by ADS include the AES instructions in DCD format,

and also other files that let Celator work, e.g. the IC handler, a vector table, a test

image etcetera; for more details, see annexes B.4. Data and program words are stored

by the ADS into the SRAM, at the addresses specified in the scatter file.

After the hardware and the software set up, Celator can be controlled by the IF

registers. The ADS allows to write/read into all memory space. Thus, Celator can

be manually reseted and started. The CPU resets Celator, fills the CRAM with AES

instructions and data (Figure 5.5), then starts the AES. A software C function, called

CFunction, was programmed to execute an algorithm on Celator (annexes B.3).

For instance, in order to encrypt (AES) an image stored in the SRAM, the

CFunction does the following:

1. copy 128-bit data block from the image in the SRAM into the CRAM;

2. write the CRAM address of the encrypting program (e.g. 0h10) at the address 0

of the CRAM;

3. start the AES encryption; once the AES finished;

4. copy the AES output 128-bit data block from the CRAM to the SRAM;

5. copy a new 128 bit block from the image in the SRAM into the CRAM;

6. allow to start the AES encryption, and go to 1.

62

Validating Celator on FPGA

Figure 5.5 – The CRAM. In this example, the CRAM is filled with the AES instruc-

tions and data by the CPU.

If the Celator user would decrypt a block data instead of encrypt it, he can use the

same above CFunction by simply modifying the value that the CFunction stores at

address 0 of the CRAM. Celator directly jumps to the address written at the address

0 of the CRAM. Thus, to execute an AES decrypting, the CFunction has to write the

address of the AES decrypting instructions (e.g. 0h120) at address 0 of the CRAM

(Figure 5.5). To execute the AES key schedule, the CFunction has to write the address

of the AES key schedule (e.g. 0h010) at address 0 of the CRAM.

A whole encrypting/decrypting cycle schema is shown in Figure 5.6.

After the Celator hardware and software set up, the CPU starts Celator by writing

the start signal into the IF Control register (section 4.2.5). Then Celator works au-

tonomously. In order to compute an algorithm, the instructions stored in the CRAM

are fetched by the FSM and then are executed by the PE array. When an algorithm

63

Chapter 5

Figure 5.6 – An encrypting/decrypting cycle schema

AES

jpg file

DCD 0x0123
DCD 0x4567
DCD 0x8901

dcd file

0x9267
0x2301
0x4805

Celator (FPGA)

jpg file

AES1

jpg file

DCD 0x0123
DCD 0x4567
DCD 0x8901

dcd file Celator (FPGA)

dcd file

is achieved, Celator transfers the results into the CRAM and generates an interrupt

dedicated to the CPU.

Next sections will detail how Celator can be programmed in order to perform AES

(section 5.1), DES (section 5.2) and SHA (section 5.3).

5.1 AES

An AES data block is made of 128-bits. In Celator data are computed by the 4x4 PE

array and each PE works on 8-bit data. Each element of the data matrix (Figure 5.7a)

can be mapped into a Processing Element device (Figure 5.7b). As a consequence,

each byte to be encrypted or to be decrypted is mapped into a single PE, and each

AES transformation can be mapped into the 4x4 PE array.

In Figure 5.7a the data block is arranged in a 4x4 matrix, just like the 4x4 PE array

does in Figure 5.7b.

Celator can perform all 4 AES transformations that are required by AES encryption,

decryption and key scheduling. The Controller can execute a whole AES by combining

these transformations.

64

Validating Celator on FPGA

Figure 5.7 – Data Mapping to a PE array.

(a) The 4x4 byte data ma-

trix for an AES data

block.

d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

(b) The 4x4 8-bit PE array

of Celator.

PE11 PE12 PE13 PE14

PE21 PE22 PE23 PE24

PE31 PE32 PE33 PE34

PE41 PE42 PE43 PE44

5.1.1 Implementation of the AES into a PE Array – Confidential

This section is Atmel confidential.

5.1.2 FPGA results

Celator is able to encrypt and decrypt an AES data block both in Electronic Codebook

(ECB, Figure 5.8) mode and in Cipher Block Chaining (CBC, Figure 5.9) mode [30].

The Celator dedicate assembler code for AES is annexed (section B). Figures 5.10

show the difference between encrypting a gray scale image (Figure 5.10a) in ECB

(Figure 5.10b) and CBC (Figure 5.10c) modes.

Figure 5.8 – Electronic Codebook (ECB) encryption mode

In ECB mode, the plain image is first cut in several 128-bit data blocks separately, and

65

Chapter 5

then the blocks are independently encrypted. If the input data blocks of the encrypting

process have the same values, i.e. if there are some repeated pixels in the image, then

the output data blocks of the encrypting process will be the same, i.e. several pixels

will have the same values, since the keys are the same for all data blocks. That is why

we can identify the penguin’s profile in Figure 5.10b.

Figure 5.9 – Cipher Block Chaining (CBC) encryption mode

In CBC mode, the plain image is first cut in several 128-bit data blocks and, unlike

the ECB mode, each block is xored with the previous encrypted data block, and then

each block is encrypted (first data block of the picture is xored with an initialisation

vector). In this way, all output data blocks are different, and the output image is

unrecognizable (Figure 5.10c).

Figure 5.10 – AES encrypting a gray scale image in ECB and CBC modes

(a) (b) (c)

Again, Figures 5.11 show difference between encrypting the colour image of Lena in

66

Validating Celator on FPGA

ECB and CBC modes. Like for the penguin, Lena in ECB mode is recognisable, while

in CBC mode the image is not.

Figure 5.11 – AES encrypting a colour image in ECB and CBC modes

(a) (b) (c)

The images of Lena and of the penguin used in this test are smaller than the original

ones (Figure 5.2a and 5.2b). They were resized because the adopted SRAM was size

limited, and only images up to 12 MB size could be loaded.

5.1.3 ASIC results

Celator performances for the AES algorithm are given thereafter and compared with

the performances of other cryptographic structures. We chose to compare Celator with

GPPs and AES dedicated hardwired macros. The GPPs are ARM7TDMI (32-bits)

[41], ARM9 (32-bits) [43] and AVR (8-bits). The AES dedicated hardware macros are

the Atmel SOMA AES (AT91S0100 [44]), the Helion Standard AES cores [45], and the

architectures presented in [32], [46], [47]. Moreover, Celator is also compared with a

dynamically reconfigurable architecture called PiCoGa [48].

The whole computer system presented in Figure 4.3, i.e. Celator, the ARM7TDMI

and some other peripherals, were synthesized by Synopsys Design Compiler with Atmel

Standard Cells resources and the 130 nm technology. These same tools were also used

to determine the ASIC areas of SOMA and of AVR microprocessors. Results are shown

and commented below.

The version of Celator presented here needs 570 clock cycles and performs at

43 Mbps to encrypt an AES 128-bit data block in ECB mode. In CBC mode an

AES 128-bit data block is encrypted in 580 clock cycles and performed at 42 Mbps.

67

Chapter 5

Even though a dedicated hardware macro is faster than our solution (the AES hard-

ware macro of Atmel SOMA takes 40 cycles, i.e. a cycle for each AES transformation),

it needs a larger area. GPPs such as the ARM7TDMI and ARM9 processors are larger

and slower than Celator. The GPP AVR has the same size but it is slower than Celator.

Comparisons between Celator and hardwired macros and GPP are given in Table 5.1.

This table does not show the size of RAM and caches. The CRAM area is 1mm2 in

130nm Atmel technology.

Table 5.1 – Comparisons of areas and performances for encrypting an AES

128-bit data block in CBC mode. Note that RAM and Cache sizes are

not taken into account.

cycles Max Freq. Area Bit-rate Techno.

(# of) (MHz) (mm2) (Mbps) (nm)

Atmel SOMA [44] 40 150 Atmel 480.0 130

Celator 580 190 Confidential 42.0 130

µ PiCoGa[48] 285 200 Atmel 90.0 90

µ AVR 5000 40 Confidential 1.0 130

µ ARM7TDMI [41] 3600 65 Atmel 2.3 130

µ ARM9 [43] 830 200 Confidential 31.0 130

Dedicated hardware macros (Tables 5.1 and 5.2) such as Mangard, Satoh, Sharma

and Atmel SOMA AES have a higher bit-rate (bit per second) than Celator but un-

like Celator they are not reconfigurable. A dynamically reconfigurable architecture

such as PiCoGa [48] achieves a higher bit-rate than Celator but, even if PiCoGa is

reconfigurable, it is far larger than Celator.

68

Validating Celator on FPGA

Table 5.2 – Throughput performances for encrypting an AES 128-bit data

block in ECB mode

Throughput

(bits per cycle)

µ AVR 0.024

µ ARM7TDMI [41] 0.036

Celator 0.224

Mangard Macro [47] 2.0

Satoh Macro [46] 2.37

Sharma Macro [32] 3.2

AES Macro of Atmel SOMA [44] 3.2

Figure 5.12 – Areas and Throughputs for AES-128 in CBC mode encrypting

of a special purpose macro (Atmel), of multi-algorithms proces-

sors (Celator and PiCoGa) and of general purpose processors

(AVR and ARM).

69

Chapter 5

To conclude this result section, Celator has a good percentage of reconfigurability

given by the portfolio of its instructions and proved by the implementation of other

algorithms (sections 5.2 and 5.3): the PE array data-path can be modified and up

to eight ALU operations can be selected. It also results clear that Celator represents

a good trade off among dedicated hardware macros (which are not reconfigurable),

the dynamically reconfigurable architecture as PiCoGa (which has a good percentage

of reconfigurability) and GPPs (which are fully programmable) in terms of areas and

throughput (Figure 5.12).

5.2 DES

Before detailing every step on how Celator can do the DES permutations, we must

consider that Celator is able to compute 32-bit word data (Figure 5.13). In fact, as

a single PE computes a 8-bit data (Figure 5.13a), four PE can be concatenated in

order to compute a 32-bit data. In this way, the PE array can be considered as four

32-bit data rows (Figure 5.13b). Moreover, as each PE includes two 8-bit registers, the

whole PE array can be considered as eight 32-bit registers, four Reg A and four Reg

B (Figure 5.13c).

5.2.1 Implementation of the DES into a PE Array – Confidential

This section is Atmel confidential.

5.2.2 FPGA results

Figures 5.14 show the image of Lena before (Figures 5.14a) and after DES encrypting

(Figures 5.14b) in ECB mode. The Celator dedicate assembler code for DES is annexed

(section C). Like in the Figure 5.8, the Lena’s profile is recognisable when encrypted

in ECB mode.

The schema followed for encrypting in ECB mode is the same used in Figure 5.8,

replacing the AES with the DES algorithm.

70

Validating Celator on FPGA

Figure 5.13 – Considering the PE as eight 32-bit PE rows. In each PE row,

four PE can be concatenated and operate on 32-bit data; as each PE include

two registers (Reg A and Reg B), four PE can work on two 32-bit data

.
(a)

PE11 PE12 PE13 PE14

PE21 PE22 PE23 PE24

PE31 PE32 PE33 PE34

PE41 PE42 PE43 PE44

=⇒
(b)

PE1

PE2

PE3

PE4

=⇒

(c)

Reg A Reg B

Reg A Reg B

Reg A Reg B

Reg A Reg B

5.2.3 ASIC results

Celator performances for the DES algorithm are given thereafter and compared with

the performances of other cryptographic structures (Table 5.3). We chose to compare

Celator with a GPP and a DES dedicated hardwired macro. The GPP is the Alpha

processor [36]. The DES dedicated hardware macro is the Atmel DES macro. Moreover,

Celator is also compared with an efficient FPGA implementation [37].

Since Celator is reconfigurable, we do not need to modify its architecture in order to

encrypt a DES data block. Therefore, the same timing results presented in section 5.1.3

will be used here. Celator was synthesized by Synopsys Design Compiler with Atmel

Standard Cells resources and the 130 nm technology.

The version of Celator presented here needs 590 clock cycles to encrypt a DES

64-bit data block. It achieves 22 Mbps throughput when operated at 190 MHz. This

throughput is smaller than other circuits performances. The slowest operation in DES

71

Chapter 5

Figure 5.14 – DES: encrypting a colour image in ECB

(a) (b)

Celator implementation is the permutation. In DES there are up to 5 permutations,

and 3 of them are executed 16 times. A PE array like Celator seems to not be fully

suitable to execute these permutations, that are bitwise operations, and leaves most of

the PEs unused.

The software solution proposed in [36] operates on a 64-bit processor, which is very

suitable to manage 64-bit data block. These S-boxes are hardwired. Therefore this

solution is not fully reconfigurable, unlike Celator is.

The Atmel hardware macro needs 16 clock cycles to perform a DES encryption,

i.e. a cycle per DES round. This is one of the best throughput suitable for embedded

systems. Again, this solution is not reconfigurable, unlike Celator is.

The FPGA based solution is more then 12 times faster than Celator, thanks espe-

cially to its parallelized S-boxes.

Celator has a good percentage of reconfigurability given by the portfolio of its in-

structions and proved by the implementation of other algorithms (sections 5.1 and 5.3):

the PE array data-path can be modified and up to eight ALU operations can be se-

lected. Like AES execution, DES execution is slower on Celator than on dedicated

hardware macros. Unlike AES execution, DES execution is slower on Celator than on

hardware implementations in FPGA or on GPP.

72

Validating Celator on FPGA

Table 5.3 – Comparisons of areas and performances for encrypting a DES

64-bit data block in EBC mode.

Type Cycles Frequency Bit-rate

(# of) (MHz) (Mbps)

Atmel HW 16 100 400

Saqib [37] FPGA – – 274

Ebiham 1 [36] SW 140 300 167

Ebiham 2 [36] SW 417 300 46

Celator HW/SW 590 190 22

5.3 SHA

We implemented the SHA-256. The input block for a such hashing algorithm is 512

bits, while the output digest is over 256 bits. In the SHA-256 main loop eight 32-bit

variables are used. As the whole PE array can compute up to four 32-bit values at

once, Celator compute the eight SHA variables in 2 times.

5.3.1 Implementation of the SHA into a PE Array – Confidential

This section is Atmel confidential.

5.3.2 FPGA results

Celator was programmed to operate a SHA on Lena image (Figure 5.15). The Celator

dedicate assembler code for SHA is annexed (section D).

The SHA output of Figure 5.15 is the following eight 32-bit words (hexadecimal

format):

D0E309A7 88BE2E1B 255BEE42 B18B0675 174E1E05 69063F30 D748EEF4 F236D21D

After changing a single pixel on the original image, which is unrecognisable by the

naked human eye (Figure 5.15b), the SHA output is:

73

Chapter 5

Figure 5.15 – The versions of Lena image. The original image is (a), in (b) one

pixel is changed

(a) (b)

38F26C9A B2DC15A3 845E6AAD 6B94495C 9747FE14 86E513D1 D2FD2CE7 BDA331C3

The digest of Figure 5.15a is totally different of the 5.15b.

5.3.3 ASIC results

Celator performances for the SHA algorithm are given thereafter and compared with

the performances of other cryptographic structures (Table 5.4). We chose to compare

Celator with some SHA dedicated hardwired macros. The SHA dedicated hardware

macros are the macros presented in [39], [38] and [40].

Since Celator is reconfigurable, we do not need to modify Celator architecture in

order to encrypt a SHA data block. Moreover, the same timing results presented in

section 5.1.3 will be used here. Celator was synthesized by Synopsys Design Compiler

with Atmel Standard Cells resources and the 130 nm technology.

The version of Celator presented here needs 6000 clock cycles to hash a SHA 256-bit

data block. It achieves 16 Mbps throughput when operated at 190 MHz. With some

slight hardware modifications, which are already under study, Celator can hash a SHA

256-bit data block with an estimated 46 Mbps throughput. This throughput is smaller

than other circuits performances. The slowest operations in SHA Celator implementa-

tion are the data transfers among all registers that store the SHA values (SHA values

are eight 32-bit registers). In order to speed up the data transfers, thus the SHA ex-

ecution, some local memory blocks must be included in the Celator implementation

(other than the CRAM).

74

Validating Celator on FPGA

Table 5.4 – Comparisons of areas and performances for hashing 512-bit data

block, according to SHA-256.

Type Cycles Frequency Bit-rate

(# of) (MHz) (Mbps)

Rchaves [39] HW 65 – 1400

Iahmad [38] HW – – 1000

Cadence datasheet [40] HW 70 133 971

Celator HW/SW 6000 190 16

Like for AES and DES execution, the SHA execution is slower in Celator than

in dedicated hardware macros. But dedicated macros are not reconfigurable, unlike

Celator is. Celator has a good percentage of reconfigurability given by the portfolio

of its instructions and proved by the implementation of other algorithms (sections 5.2

and 5.3): the PE array data-path can be modified and up to eight ALU operations can

be selected.

75

Chapter 5

76

6
Conclusions and Further Work

This thesis describes an original implementation of a multi-algorithm Crypto-Co-

Processor called Celator. Celator can perform the AES, DES and SHA algorithms.

Celator is aimed to be integrated in an ASIC for embedded circuits by using Atmel

Standard Cells, and it can be included in a Smart Card or in a Smart Card Reader. We

propose the systolic architecture to make Celator reconfigurable, which is a novelty, at

our knowledge, for cryptographic applications. Usually FPGA techniques are adopted

to make a device reconfigurable [49]. However, our reconfigurable solution is FPGA

less. The developed Celator processor has a degree of reconfigurability. We found a

reconfigurable technology by using a systolic processor based on a Processing Element

(PE) array.

In chapter 1 we have presented a brief history of the security. Confidential data

have to be hidden, or encrypted, in order to ensure the people privacy (ID), and to

allow the people to access to a required service (communications, electronic payment,

TV on demand et cetera). Thus we need secure products. But these products must be

protected against side channel attacks, otherwise the protection they are supposed to

offer is leaked. Side channel attacks is one example of threats that must be countered.

77

Chapter 6

Another big family is the fault injection, which can be very powerful for an attacker

too.

In chapter 2 we have seen three algorithms that we have executed on Celator: AES,

DES, and SHA algorithm. AES and DES are used to encrypt/decrypt a message by

private keys, while SHA is used to hash a message. These algorithms are largely used

in most of the nowadays secure products.

In chapter 3 we have described some hardware and software implementations of

cryptographic algorithms. The execution on GPP is slower than on hardwired macros,

but hardwired macros are larger in terms of equivalent gates. Hardwired macros are

not reconfigurable unlike GPP. For us, the good trade off choice is a solution “in the

middle”, between GPP and hardwire macros. Celator performances are situated among

those of dedicated hardware macros and those of GPPs.

In chapter 4 we have presented Celator. Celator is made of 16 Processing Elements

arranged in a systolic fashion (PE array), of a local RAM (the CRAM) and of a

Controller, which includes an FSM. The FSM reads the instructions in the CRAM, and

the PE array executes them under the control of the FSM. Celator can be reconfigured

by the CPU. Given its structure based on a PE array, all matrix format data can be

easily computed.

In chapter 5 we have described how Celator can be reprogrammed in order to

execute AES, DES and SHA algorithm. We have shown how Celator can operate on

32-bit, 8-bit and 1-bit data words. We have prototyped Celator on a Xilinx FPGA

card to test it. Celator has been synthesized and placed and routed for an ASIC with

Atmel Standard Cells. Results show how Celator is a good trade off choice of crypto-

processor with respect to the number of gates, the number of execution cycles and the

reconfigurability.

In this thesis the security aspects are not fully analysed. We consider “writing” or

“reading” operations into/from a register or the CRAM as trusted operations. Given

the structure of Celator, during the encrypting or decrypting operations, data can be

masked; for instance data can be xored once or several times with random data in order

78

Conclusions and Further Work

to become more difficult to be intercepted by hackers through Side Channel Attacks

(SCA) [50], [51]. Furthermore, several nop operations can be added to certain Celator

programs, in order to have the same execution time for all algorithms performed by

Celator. In this way, Celator would be timing attack resistant.

Celator will be included in the next generation of Atmel Smart Card Readers. Re-

cent studies show how Celator performances can be improved with a slight modification

of its architecture. Celine Huynh Van Thieng [52] is currently developing a combinato-

rial block in the PE array, which is dedicated to the bit permutations on 32-bit words

based based on omega–flip networks [53]. She is also allowing the FSM to access the

CRAM by both ports. In this way, the execution of the AES, DES and SHA in Celator

is speeded up. The cost of these modifications is to add 10% of the equivalent gates

only. Thus, the AES execution can be reduced to 510 clock cycles only. The DES

execution can be reduced to 470 clock cycles only: the DES permutations benefit from

the permutation-dedicated block. The SHA execution can be reduced to 3700 clock

cycles only: in the legacy SHA implementation there are many data transfers from/to

the CRAM, which are speeded up by the new access to the CRAM.

As further work on Celator, we will improve the security against all SCA, and we

will study the implementation of other algorithms in Celator. Thanks to its generic

structure and its generic instruction set, Celator can be multi-algorithms. According

to the Atmel strategy, Celator can be required to obtain an EAL evaluation. If so,

a Protection Profile will be written in order to fit the EAL5+ specific requirements.

Another main point of the further work will be to study and develop a trusted platform

to secure exchanges of data between the CPU and Celator, as well as between the CPU

and an external data source.

79

Chapter 6

80

7
Résumé en langue française

de la thèse intitulée ”Design

and development of a

reconfigurable cryptographic

co-processor” par Daniele

Fronte

Ce chapitre résume ma thèse en langue française.

81

Chapter 7

7.1 Résumé

Les circuits à haute technologie d’aujourd’hui requièrent toujours plus de services et

de sécurité. Le marché correspondant est orienté vers de la reconfigurabilité. Dans

cette thèse je propose une nouvelle solution de coprocesseur cryptographique multi-

algorithmes, appelé Celator. Celator est capable de crypter et décrypter des blocs

de données en utilisant des algorithmes cryptographiques à clé symétrique tel que

l’Advanced Encryption Standard (AES) [1] ou le Data Encryption Standard (DES) [2].

De plus, Celator permet de hacher des données en utilisant le Secure Hash Algorithm

(SHA) [3]. Ces algorithmes sont implémentés de façon matérielle ou logicielle dans les

produits sécurisés. Celator appartient à la classe des implémentations matérielles flexi-

bles, et permet à son utilisateur d’exécuter des algorithmes cryptographiques standards

ou propriétaires.

L’architecture de Celator est basée sur un réseau systolique de 4x4 Processing Ele-

ments, nommé réseau de PE, commandé par un Contrôleur réalisé par avec une Machine

d’États Finis (FSM) et une mémoire locale.

Cette thèse présente l’architecture de Celator, ainsi que les opérations de base

nécessaires pour qu’il exécute AES, DES et SHA. Les performances de Celator sont

également présentées, et comparées à celles d’autres circuits sécurisés.

7.2 Introduction

La tendance du marché des produits sécurisés est d’offrir plus de services et sécurité aux

utilisateurs. Il se peut qu’un dispositif électronique doive exécuter des algorithmes pour

lesquels il n’avait pas été conçu. Notre challenge est l’implémentation d’un coprocesseur

cryptographique multi-algorithmes, appelé Celator. Celator est conçu pour être intégré

dans un ASIC pour circuits embarqués, réalisés par des cellules standards de la société

Atmel. Plus précisément, Celator doit être inclus dans des cartes à puce et dans des

lecteurs de cartes à puce.

Résumé en langue française de la thèse

En utilisant des opérations logiques et arithmétiques de base, Celator est capable

d’exécuter les algorithmes suivants:

• Advanced Encryption Standard (AES-128, AES-196 et AES-256), [1]

• Data Encryption Standard (DES), [2]

• Secure Hashing Algorithm (SHA-256), [3]

La solution que nous avons adoptée pour Celator est basée sur un réseau systolique à

maille carrée de 4x4 Processing Elements, nommé réseau de PE. Le chemin de données

du réseau de PE ainsi que la Machine d’Etats Finis sont reconfigurables.

Le reste de ce chapitre est organisé comme suit. Le paragraphe 3 introduit les

algorithmes exécutés par Celator. Le paragraphe 4 présente l’architecture matérielle

de Celator. Le paragraphe 5 montre les résultats de validation sur FPGA, et également

les résultats de validation ASIC de Celator. Dans le paragraphe 5 je donnerai des

conclusions sur Celator.

7.3 Trois algorithmes cryptographiques

Ce paragraphe introduit brièvement les trois algorithmes qui ont été implémentés dans

Celator: AES, DES et SHA. Le lecteur peut trouver une description complète de ces

algorithmes dans [1, 2, 3].

7.3.1 L’algorithme AES

L’Advanced Encryption Standard (AES) est un algorithme de cryptage et décryptage à

clé privée, approuvé comme standard par le Federal Information Processing Standards

(FIPS). C’est le successeur de DES décrit dans le paragraphe suivant. Cependant, DES

est encore de nos jours très demandé par les utilisateurs. L’AES existe en trois versions

AES-128, AES-196 et AES-256, dans lesquelles la clés initiale est codée sur 128, 192 et

Chapter 7

256 bits. Dans les trois versions, l’AES crypte ou décrypte des messages par blocs de

128 bits. Dans cette thèse, nos études se sont portés sur l’AES-128

Chaque bloc de données peut être géré comme une matrice de 4x4 octets (Table 7.1).

Table 7.1 – La matrice de 4x4 octets pour un bloc de données AES-128.

d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

Le procédé de cryptage AES inclut 10 boucles. Chaque boucle (à l’exception de la

première et de la dernière) comporte les transformations suivantes :

1. Sub-Bytes

2. Shift-Rows

3. Mix-Columns

4. Add-Round-Key

7.3.2 L’algorithme DES

L’algorithme Data Encryption Standard est un algorithme de cryptage et de décryptage

à clé privée, constitué d’une permutation initiale IP, de 16 boucles de transformations,

et d’une permutation finale IP−1. Dans chaque boucle, une opération “ou exclusif”,

une fonction f, ainsi que deux permutations sont exécutées : PC1, PC2. La fonction f

inclut l’expansion E, la permutation P et huit substitutions S. Contrairement à AES,

les permutations de DES se font bit à bit. Leur exécution par Celator, qui travaille

sur des mots d’un octet, montre comment Celator peut travailler avec un format de

données d’un bit.

Résumé en langue française de la thèse

7.3.3 L’algorithme SHA

Le SHA-1 et le SHA-2 (c’est-à-dire SHA-256, SHA-384, et SHA-512) sont quatre Secure

Hash Algorithms spécifiés par [3]. Ces algorithmes sont itératifs, représentent des

fonctions de hachage à une direction (one-way hash functions) qui peuvent traiter un

message pour produire un condensé appelé haché (ou digest en anglais).

Chaque algorithme peut être décrit en deux étapes : d’abord le prétraitement,

puis le calcul du condensé. Le prétraitement implique le remplissage d’un message

(padding), la décomposition de ce message formaté en plusieurs blocs de m bits (m= 512

pour SHA-1 et SHA-256, m= 1024 pour SHA-384 et SHA-512), et l’initialisation de

valeurs qui seront ensuite utilisées dans le calcul du condensé. Le calcul du condensé

génère une liste de messages à partir du message rempli et utilise cette liste, à travers

des fonctions, constantes, et opérations sur des mots pour générer itérativement une

série de valeurs hachées. La valeur finale du condensé généré par ce calcul est utilisée

pour déterminer le message haché.

Comme décrit dans [3], 8 variables intermédiaires de 32 bits (a, b, c, . . . , g, h) sont

nécessaires pour le calcul de SHA. Ces variables sont initialisées par 8 constantes 32

bits données par le standard (H1, H2, . . . , H8).

7.4 Implémentations matérielles et logicielles d’algorithmes cryp-

tographiques : état de l’art

Les algorithmes cryptographiques peuvent être exécutés sur des processeurs à usage

générique (GPP, de l’anglais General Purpose Processor), ou sur des dispositifs dédiés,

comme les macros matérielles. Généralement, les macros matérielles ont de meilleures

performances que les GPP, mais les GPP sont reconfigurables à 100%, alors que les

macros sont dédiés et donc pas reconfigurables.

Chapter 7

7.4.1 Le NEC DRP

Un processeur dynamiquement reconfigurable (DRP) a été décrit par NEC dans [54]. Le

DRP est composé d’un réseau à 2 dimensions fait de plusieurs Processeurs Élémentaires

(PE), une machine d’états et d’éléments de mémorisation. Un PE contient un banc de

registres, et une ALU. Avant de commencer un calcul, les chemins de données et les

programmes de contrôle doivent être sauvegardés. A cette fin, un programme écrit en

langage C est d’abord compilé, puis synthétisé et ensuite téléchargé dans le DRP.

Une telle architecture systolique se montre bien adaptée pour des calculs en parallèle

sur des données sous format matriciel. Son point négatif est le temps de compilation-

synthèse-téléchargement du programme de contrôle. Si une architecture similaire est

présente dans Celator, le temps de contrôle devra être minimisé.

7.4.2 La macro SHARMA

Dans [32] une architecture systolique est utilisée pour construire un dispositif à hautes

performances dédié à AES, incluant une mémoire et un réseau de PE. Les données

circulent de la mémoire vers les PE pour ensuite retourner vers la mémoire.

Les quatre opérations d’AES sont réalisées de la façon suivante :

1. Les transformations Sub-Bytes sont réalisées à l’aide d’un bloc ASIC. Avec

quelques connexions, la même structure peut être modifiée et utilisée tant en

cryptage qu’en décryptage.

2. Les transformations Shift-Rows ne demandent pas d’implémentations séparées.

Les données sont décalées à l’aide des registres R0–R5.

3. Pour les transformations Mix-Columns, une architecture systolique est utilisée

pour effectuer la multiplication matricielle du réseau 4x4

4. Dans les transformations Add-Round-Key, des portes combinatoires XOR sont

utilisées.

Résumé en langue française de la thèse

Une telle implémentation systolique requiert 40 cycles d’horloge pour crypter un

bloc de 128 bits avec AES, atteignant une vitesse théorique d’exécution de 3,2 bits

par cycle. Sachant qu’une boucle AES comprend 4 transformations et qu’une boucle

est répétée 10 fois par cryptage, alors chaque transformation est exécutée en un cycle

d’horloge seulement. Cela représente un résultat excellent.

Le désavantage d’une telle macro est la non reconfigurabilité : elle est capable

d’exécuter un seul algorithme, AES dans ce cas. Néanmoins, l’approche systolique

se montre un bon candidat pour crypter/décrypter des données en format matriciel.

Notre solution de coprocesseur doit améliorer cette idée afin d’obtenir un circuit intégré

reprogrammable et multi-algorithmes.

7.5 L’architecture matérielle de Celator

Dans cette section nous allons illustrer le développement de Celator et l’architecture

du système dans lequel s’insère Celator. Le système considéré (Fig. 7.1) comprend

une CPU basée sur un processeur ARM, une mémoire centrale, Celator et d’autres

périphériques.

Figure 7.1 – Système complet incluant Celator

Chapter 7

Celator comprend un réseau de PE, un contrôleur, et une mémoire propre à Celator,

appelée CRAM. Les Processeurs Élémentaires sont les blocs de base à partir desquels le

réseau de PE est construit. Celator peut avoir une horloge de fonctionnement différente

du CPU. L’unité IF assure la communication entre Celator et le CPU.

7.5.1 Le réseau de PE

Le réseau de PE (Fig. 7.1) est composé d’un réseau 4x4 de Processeurs Élémentaires

(PE). Tous les PE sont identiques. Le réseau de PE est contrôlé par le Séquenceur.

Le réseau de PE a une structure d’entrée/sortie à deux dimensions (2D I/O). De

cette façon, chaque PE (Fig. 7.3) a 4 entrées données, c’est-à-dire une par chaque

direction cardinale : Nord, Sud, Ouest et Est. Chaque PE possède une sortie donnée,

connectée à l’entrée donnée de ses 4 PE voisins les plus proches. Dans un PE, toutes

les entrées et sorties données sont de 1 octet. Un PE inclut un registre 8 bit et une

ALU.

Figure 7.2 – L’architecture du réseau de PE

Résumé en langue française de la thèse

Figure 7.3 – Les entrées/sorties du PU

Chaque PE reçoit des signaux de contrôle du Séquenceur afin de traiter les données.

Les signaux de contrôle peuvent :

1. charger les données du PE nord, sud, ouest, est, la CRAM, le CPU, ou une source

extérieure ;

2. choisir quelle donnée enregistrer entre la donnée qui vient d’être calculée et la

donnée en entrée du PE ;

3. choisir la sortie donnée du PE entre la donnée précédemment enregistrée et la

donnée qui vient d’être élaborée ;

4. choisir une des opérations de l’ALU ;

5. lire/écrire à partir du PE ouest/nord et écrire/lire dans les PE est/sud.

Un PE peut exécuter seulement une instruction par cycle d’horloge.

L’ALU de chaque PE peut exécuter les opérations arithmétiques et logique sur des

opérandes de 8 bits : addition modulo 256, addition modulo 255, ou, ou exclusif, xtime,

et, inversion et non-opération.

Étant donné que les multiplexeurs des PE sont configurés par la machine d’états

(FSM) du Séquenceur, et que cette configuration peut être modifiée à chaque cycle

Chapter 7

d’horloge, le chemin des données du réseau de PE est donc reconfigurable, tout comme

la FSM.

Nous avons choisi une granularité de PE sur 8 bits. De cette façon, les registres

et l’ALU de chaque PE permettent de manipuler très aisément des octets. Comme

nous le montrerons dans le paragraphe 6, le choix de ce format de données pour le PE

permettra l’exécution d’algorithmes n’ayant pas le même format de données, tels que

DES et SHA.

Par exemple, comme chaque PE traite des mots de données de 8 bits, alors une ligne

entière de PE peut traiter des mots de données de 32 bits. Ainsi, le réseau de PE peut

être considéré comme travaillant sur quatre mots de données de 32 bits. Cette propriété

peut être exploitée afin de résoudre des algorithmes tels que SHA-256, qui opère sur

huit mots de données de 32 bits. Les calculs du SHA-256 peuvent être exécutés par

Celator en deux temps.

De plus, ce type d’architecture peut être aussi utile pour exécuter des algorithmes

tels que DES, parce que DES opère sur des mots de données de 64 bit, qui est la taille

de 2 colonnes PE.

7.5.2 Le Séquenceur

Le Séquenceur génère les signaux de contrôle pour le réseau de PE et les instructions

pour le CPU. Aussi, il contrôle les entrées et sorties données du réseau de PE. Le

Séquenceur est composé d’une FSM et d’éléments de stockage.

Les instructions de la FSM sont simples, et ne sont pas dédiées à AES. Il s’agit

d’instructions génériques qui peuvent être réutilisées pour implémenter d’autres algo-

rithmes. Par exemple, avec une seule instruction la FSM peut copier des données de

la CRAM vers le réseau de PE et vice-versa, avec un offset spécifique ou pas, ou peut

effectuer une rotation de données dans le réseau de PE. Les instructions de la FSM

sont enregistrées dans la CRAM.

Résumé en langue française de la thèse

7.5.3 La CRAM

La mémoire RAM de Celator, ou CRAM, enregistre des mots de données et

d’instructions sur 32 bits. Parmi les données, on compte les données d’entrées/sorties

qui doivent être cryptées ou décryptées, ou bien les données nécessaires au procédé de

cryptage/décryptage, comme les Sbox pour AES. Parmi les programmes enregistrés

dans la CRAM, on compte les instructions pour le Séquenceur. La CRAM est une

RAM double port, ainsi le CPU et le Séquenceur peuvent accéder simultanément à la

CRAM en mode lecture/écriture.

7.6 Comment Celator exécute les algorithmes cryptographiques

7.6.1 Les transformations d’AES

Celator peut exécuter les 4 transformations demandées par un cryptage, un décryptage

et la génération des clefs d’AES.

Le réseau de PE travaille comme un processeur systolique de type Complex In-

struction Multiple Data (CIMD) [42]. La CRAM contient les instructions pour la

FSM. Ces instructions sont chargées par la FSM et ensuite sont exécutées par le réseau

de PE. Le CPU charge d’abord l’algorithme cryptographique, par exemple l’AES, dans

la CRAM et ensuite le CPU démarre Celator. Le CPU contrôle Celator via l’unité

IF et peut modifier quelques instructions de la séquence d’instructions de l’algorithme

cryptographique, ou bien sélectionner un algorithme différent. Donc, le CPU peut

reconfigurer Celator.

Sub-Bytes : la table Sbox est enregistrée dans la CRAM. La FSM du Contrôleur

fournit les signaux pour exécuter une “look-up table” de chaque octet de donnée en-

registré dans chaque PE. Un registre de la FSM est utilisé.

Shift-Rows : chaque ligne du réseau de PE est décalé de 1, 2, ou 3 positions

respectivement pour les colonnes 1, 2 or 3.

Mix-Columns : l’opération fondamentale de la transformation Mix-Columns est

Chapter 7

la multiplication S ′(x) = A(x) ∗ S(x).

Chaque octet de l’état S(x) est multiplié par le vecteur polynomial A(x), comme

décrit dans [1], par l’opération xtime et ensuite xoré par colonnes. Les deux opérateurs

xtime et xor sont présents dans l’ALU.

Add-Round-Key : les clefs sont chargées à partir de la CRAM dans le réseau de

PE et ensuite ”xorées” avec les données du réseau.

7.6.2 Les transformations de DES

Les permutations de DES peuvent être exécutées de la façon suivante. Le mot à

permuter A = a1 . . . a64 est multiplié par une matrice identité. Du moment que les ai

sont des éléments binaires, le résultat de la multiplication sera constitué de 64 lignes

avec un seul “1” et soixante “0”. Ensuite ces mots sont rotées, et xorés entre eux.

Comme un seul PE traite des données de 8 bits, quatre PE peuvent être concaténés

afin de traiter des données sur 32 bits. Ainsi, le réseau de PE peut être considéré

comme un ensemble de quatre lignes de PE de 32 bits chacune. Afin d’exécuter DES,

2 lignes de 4 PE chacune peuvent être utilisées pour traiter un bloc de données de 64

bits.

Les substitutions S de DES sont exécutées comme les transformations Sub-Bytes

de AES.

7.6.3 Les transformations de SHA-256

Nous supposons que le prétraitement des données en entrée est réalisé par le

CPU, et que Celator traite le calcul du condensé seulement. Nous allons détailler

l’implémentation du calcul du condensé de SHA-256.

Comme décrit dans [3], les variables requises pour l’exécution de SHA sont les

suivantes :

1. 8 variables intermédiaires de 32 bits (a, b, c . . . g, h);

2. 48 variables 32 bits Wj;

Résumé en langue française de la thèse

3. 8 variables 32 bits : T1, T2, Ch,Maj,Σ0,Σ1, σ0, σ1, ROTR;

4. Le résultat est HN = (Hn1, Hn2, . . . , Hn8), c’est-à-dire 8 variables 32 bits;

Comme pour DES, plusieurs PE sont utilisés pour traiter les variables du calcul du

condensé. Dans le cas de SHA-256, quatre PE sont concaténés pour traiter des mots

de 32 bits.

7.6.4 Modes ECB et CBC

Celator est capable de crypter et décrypter un bloc de données AES et DES en mode

Electronic Codebook (ECB) et en mode Cipher Bloc Chaining (CBC) [30]. La Fig. 7.4

montre la différence entre le cryptage AES d’une image en noir et blanc ([55], Fig. 7.4a)

en mode ECB (Fig. 7.4b) et en mode CBC (Fig. 7.4c).

Figure 7.4 – Cryptages AES en modes ECB et CBC

(a) (b) (c)

7.7 Résultats et discussions

Dans cette section nous détaillons les performances de Celator et nous les comparons

aux performances d’autres dispositifs cryptographiques. Nous avons choisi de comparer

Celator à des GPP [56, 41, 57], à des macros matérielles dédiées [44, 37, 36] et aussi à

une architecture dynamiquement reconfigurable [48].

Le système complet placé autour de Celator est présenté dans la Fig. 7.1. Ce

système a été développé en Verilog au niveau RTL (Register Transfer Level), simulé

par Mentor ModelSim synthétisé par Synopsys DC avec des ressources Standard Cells

Chapter 7

d’Atmel, avec une technologie de 130 nm (longueur du canal du transistor). Ces mêmes

outils ont été utilisés pour déterminer les surfaces ASIC des microprocesseurs Atmel

et AVR. Les résultats correspondants sont montrés et commentés plus bas.

La version de Celator présentée ici requiert 514 cycles d’horloge pour crypter un

bloc de données par AES de 128 bit, avec un débit de 47 Mbps en mode ECB. En mode

CBC, le même bloc est crypté en 524 cycles d’horloge, soit 46 Mbps (Table 7.2). Même

si une macro matérielle dédiée est plus rapide que notre solution (la macro matérielle

AES d’Atmel prend 40 cycles, c’est-à-dire un cycle pour chaque transformation AES),

elle a besoin d’une surface plus importante. Les GPP tels qu’ARM 7 TDMI et ARM 9

occupent une superficie plus importante et sont plus lents que Celator. Le GPP AVR

a la même taille mais il est plus lent que Celator.

Table 7.2 – Comparaison des surfaces et des débits (AES en mode CBC)

entre macros dédiées, macros reconfigurables et GPP

cycles Max Freq. Area Bit-rate Techno.

(# of) (MHz) (mm2) (Mbps) (nm)

Atmel SOMA [44] 40 150 0.2 480.0 130

Celator 580 190 0.1 42.0 130

µ PiCoGa[48] 285 200 11.0 90.0 90

µ AVR 5000 40 0.1 1.0 130

µ ARM7TDMI [41] 3600 65 0.4 2.3 130

µ ARM9 [43] 830 200 1.1 31.0 130

Les macros présentées dans [47], et [46, 32] ont des performances (exprimées en bits

par cycle) inférieures ou égales à celles des macros comme Atmel [44], c’est-à-dire 3.2

bits par cycle pour crypter un bloc de données AES de 128 bits en mode ECB.

Les macros matérielles dédiées (Table 7.2) ont un débit plus élevé (en bit par sec-

onde) que Celator mais, contrairement à Celator, elles ne sont pas reconfigurables. Une

architecture dynamiquement reconfigurable tel que PiCoGa [48] a un débit plus élevé

Résumé en langue française de la thèse

que Celator mais, même si PiCoGa est reconfigurable, sa surface est beaucoup plus

importante.

Figure 7.5 – Surface et débits pour des cryptages AES-128 en mode CBC de

macros dédiées, de processeurs multi-algorithmes et de GPP

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Atmel HW

Macro

Celator PiCoGa µ AVR µ ARM 7 µ ARM 9

mm2

0

50

100

150

200

250

300

350

400

450

Mbps

Area (mm2)

Bit-rate (Mbps)

11mm2

100% reconf.x% reconf.0% reconf.

Étant donné que Celator est reconfigurable, nous n’avons pas besoin de modifier

son architecture afin de crypter un bloc de données DES.

Celator a besoin de 476 cycles d’horloge pour crypter un bloc de données DES de

64 bit. Il réalise un débit de 26 Mbps avec une fréquence de fonctionnement de 190

MHz.

Ce débit est plus faible que celui d’autres circuits (Table 7.3). Pour DES,

l’opération la plus lente dans l’implémentation de DES dans Celator est la permu-

tation. L’algorithme DES comporte 5 permutations, et 3 d’entre elles sont exécutées

16 fois. Un réseau de PE comme Celator ne semble pas pleinement adéquat à exécuter

ces permutations, car il s’agit d’opérations bit à bit qui laissent la plupart des PEs non

utilisés.

La solution logicielle proposée dans [36] utilise un processeur 64 bit, qui est très

Chapter 7

utile pour manipuler des blocs de données 64 bit. Les tables S-boxes sont câblées en

dur, donc cette solution, à la différence de Celator, n’est pas pleinement reconfigurable.

La macro matérielle d’Atmel requiert 16 cycles d’horloge pour exécuter un cryptage

DES. Celle-ci est l’un des meilleurs débits dans des cartes à puce. Encore une fois, cette

solution, à la différence de Celator, n’est pas reconfigurable.

Table 7.3 – Comparaison des performances pour le cryptage d’un bloc de

données DES 64 bits en mode EBC

Type Cycles Frequency Bit-rate

(# of) (MHz) (Mbps)

Atmel HW 16 100 400

Saqib [37] FPGA – – 274

Ebiham 1 [36] SW 140 300 167

Ebiham 2 [36] SW 417 300 46

Celator HW/SW 590 190 22

La solution basée sur l’utilisation d’une carte FPGA a un débit élevé, grâce surtout

à ses S-boxes parallèles.

Celator requiert 2720 cycles d’horloge pour condenser un bloc de données de 512

bits, en utilisant l’algorithme SHA-256. Il atteint un débit de 36 Mbps avec une

fréquence de fonctionnement de 190 MHz.

Ce débit est plus petit que les débits des autres circuits (Table 7.4). Les opérations

plus lentes dans l’implémentation SHA de Celator sont les transferts de données entre

tous les registres qui contiennent les variables utilisées dans SHA (il s’agit de 8 registres

32 bits). Afin d’accélérer ces transferts de données, et par conséquent l’exécution de

SHA, quelques éléments de mémoire doivent être inclus dans Celator (outre la CRAM).

Pour conclure, nous pouvons dire que Celator a un bon pourcentage de reconfig-

urabilité fournie par le portfolio de ses instructions, qui peuvent modifier le chemin des

données du réseau de PE et sélectionner jusqu’à 8 opérations de l’ALU.

Résumé en langue française de la thèse

Table 7.4 – Comparaison des performances pour condenser un bloc de

données de 512 bits, en utilisant l’algorithme SHA-256

Type Cycles Frequency Bit-rate

(# of) (MHz) (Mbps)

Rchaves [39] HW 65 – 1400

Iahmad [38] HW – – 1000

Cadence datasheet [40] HW 70 133 971

Celator HW/SW 6000 190 16

Il résulte aussi clairement que Celator représente un bon compromis entre les macros

matérielles dédiées (qui ne sont pas programmables), les architectures dynamiquement

reconfigurables (qui ont un bon pourcentage de programmibilite) et les GPP (qui sont

pleinement programmables) en termes de surfaces, débit et flexibilité (Fig. 7.5).

7.8 Conclusions

Le coprocesseur cryptographique multi-algorithmes nommé Celator est présenté dans

cette thèse. Celator peut exécuter les algorithmes AES, DES et SHA-256. Il est

composé de 16 Processeurs Élémentaires (PE) disposés en réseau systolique (réseau

de PE), d’une mémoire RAM locale (la CRAM) et d’un Contrôleur (qui inclut une

FSM). La FSM lit les instructions dans la CRAM, et le réseau de PE les exécute

sous le contrôle de la FSM. Celator peut être programmé par le CPU. Grâce à sa

structure basée sur un réseau de PE, toutes les données sous format matriciel peuvent

être facilement traitées.

Celator est un bon compromis de crypto-coprocesseur par rapport au nombre de

portes équivalentes, au nombre de cycles d’exécution et au pourcentage de programma-

bilité. Les performances de Celator se situent entre celles de macros matérielles dédiées

et celles des GPP.

Chapter 7

Dans cette thèse, les aspects sécuritaires n’ont pas été analysés. Nous considérons

les opérations d’écriture ou de lecture dans les registres ou dans la CRAM comme des

opérations sûres. Grâce à la structure de Celator, pendant les procès de cryptage ou

décryptage, les données peuvent être masquées : par exemple, les données peuvent

être ”xorées” une ou plusieurs fois avec des variables aléatoires, afin de les rendre plus

difficilement interceptables par des personnes malveillantes, par des attaques de type

Side Channel Attacks [50, 51].

Le prochain pas de nos investigations sera l’implémentation d’autres algorithmes

dans Celator. L’ architecture du réseau de PE sera peut-être modifiée, mais sa surface

ne sera pas affectée de manière considérable, grâce surtout à sa structure et à son jeu

d’instruction génériques.

Notre objectif à long terme sera l’étude et le développement de plateformes sûres

pour sécuriser les échanges de données entre le CPU et Celator, ainsi que entre le CPU

et des sources de données externes.

Acknowledgments

This research was sponsored by the Erevna European research project, and was a

collaboration with the following organizations:

• Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP), Mar-

seille, France

• Atmel, Rousset, France

I would like to thank Annie Perez and Eric Payrat, without whom this thesis would

not have been possible. I would also like to thank my parents, without whom I would

not have been possible.

I was fortunate to have a conscientious and supportive thesis committee: thanks to

Michele Elia and Lionel Torres for their helpful advices; thank to Dominique Borrione,

Jean-Michel Portal and Luc Jeannerot for attending the thesis committee.

I warmly thank all at IM2NP and Atmel, especially Sabine De Molliens, Nico-

las Ferrazzi, David Moreira, Alexandre Croguennec, Jean-Charles Lesage and Nadine

Fabre: they were generous with thier time in reviewing this thesis.

Thanks to Fanny, who lovely supported me in these years.

99

A

Annexes – Confidential

101

A.1 Celator assembler converter

This section is Atmel confidential.

B

Annexes: AES codes –

Confidential

103

B.1 AES Celator assembler code

This section is Atmel confidential.

B.2 AES Filling CRAM code

This section is Atmel confidential.

B.3 C function

This section is Atmel confidential.

B.4 Validating ARM code

This section is Atmel confidential.

C

Annexes: DES codes –

Confidential

109

C.1 DES tables

This section is Atmel confidential.

C.2 DES Celator assembler code

This section is Atmel confidential.

D

Annexes: SHA codes –

Confidential

113

D.1 SHA Celator assembler code

This section is Atmel confidential.

Bibliography

[1] “Specification for the advanced encryption standard (AES),” Federal Information

Processing Standards Publication 197, 2001. [Online]. Available: http:

//csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] “Data encryption standard (DES),” Federal Information Processing Standards

Publication 46, Tech. Rep., 1999. [Online]. Available: http://csrc.nist.gov/

publications/fips/fips46-3/fips46-3.pdf

[3] “Secure hash standard (sha-2) (+ change notice to include sha-224),” Federal In-

formation Processing Standards Publication 180, Tech. Rep., 2002. [Online]. Avail-

able: htt://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.

pdf

[4] D. Fronte, “Etude pour un crypto processeur reconfigurable,” in Journées

Nationales du Réseau Doctoral en Microélectronique, Ecole Nationale Supérieure

de Télécom de Paris, 2005. [Online]. Available: http://jnrdm.free.fr/Conference.

php

[5] S. Charbouillot, A. Pérez, and D. Fronte, “A programmable hardware cellular

automaton: example of data flow transformation,” VLSI Des., vol. 2008, no. 1,

pp. 1–7, 2008.

115

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
htt://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
htt://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://jnrdm.free.fr/Conference.php
http://jnrdm.free.fr/Conference.php

[6] D. Fronte, A. Perez, and E. Payrat, “A multi-algorithm cryptographic co-

processor,” in Computing, Communications and Control Technologies, in the con-

text of the International Multi-Conference on Engineering and Technological In-

novation, 2008.

[7] ——, “The aes in a systolic fashion: Implementation and results of celator pro-

cessor,” in IEEE International Conference on Electronics, Circuits, and Systems,

2008.

[8] ——, “System and method for encrypting data,” U.S. Patent

US2 008 062 803, 2008. [Online]. Available: http://v3.espacenet.com/textdoc?

DB=EPODOC&IDX=US2008062803&F=0

[9] A. Perez, C. Huynh Van Thieng, and D. Fronte, “Application de la physique statis-

tique à la cryptographie,” in Congrès Général 2007 de la Société Française de

Physique, 2007.

[10] V. Mollet, “Implémentation de fonctions cryptographiques sur fpga et program-

mation d’un microprocesseur arm,” diploma thesis, 2007.

[11] B. Collard, “La cryptographie dans l’antiquité gréco-romaine,” Folia Electronica

Classica, 2004. [Online]. Available: http://bcs.fltr.ucl.ac.be/FE/07/CRYPT/

Crypto44-63.html#42047

[12] A. R. Miller, “The cryptographic mathematics of enigma,” National Security

Agency, Tech. Rep., 2001. [Online]. Available: http://www.nsa.gov/publications/

publi00004.cfm

[13] B. Schneier, Applied Cryptography, P. Sutherland, Ed. Wiley, 1996.

[14] O. Goldreich, Foundations of Cryptography, C. University, Ed. Cambridge Uni-

versity Press, 2001.

http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US2008062803&F=0
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US2008062803&F=0
http://bcs.fltr.ucl.ac.be/FE/07/CRYPT/Crypto44-63.html#42047
http://bcs.fltr.ucl.ac.be/FE/07/CRYPT/Crypto44-63.html#42047
http://www.nsa.gov/publications/publi00004.cfm
http://www.nsa.gov/publications/publi00004.cfm

[15] Common Criteria, Tech. Rep., 2007. [Online]. Available: http://www.

commoncriteriaportal.org/

[16] C. Criteria, Supporting Document Guidance – Smartcard Evaluation, DCSSI, Ed.,

2006.

[17] “Smartcard ic platform protection profile, bsi-pp-0002,” Bundesamt fur Sicherheit

in der Informationstechnik (Federal Office for Information Security), Tech. Rep.,

2000. [Online]. Available: www.bsi.de/cc/pplist/ssvgpp01.pdf

[18] J. S. Shapiro. (2007) Understanding the windows EAL4 evaluation. [Online].

Available: http://web.archive.org/web/20060527063317/http://eros.cs.jhu.edu/

∼shap/NT-EAL4.html

[19] Report to the Honorable William Lacy Clay, House of Representatives, “Infor-

mation assurance, national partnership offers benefits, but faces considerable

challenges,” United States Government Accountability Office, Tech. Rep., 2006.

[20] J. Dethloff and H. Grottrup, “Identification switch,” Patent US3 678 250, 1972.

[Online]. Available: http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=

US3678250&F=0

[21] M. Roland, “Procédé et dispositif de commande électronique,” French Patent

2 266 222, 1974. [Online]. Available: http://v3.espacenet.com/textdoc?DB=

EPODOC&IDX=JP51015947&F=0

[22] “Le téléphone mobile, premier pas du dv́eloppement?” Le Monde, 2008.

[23] E. Trichina, T. Korkishko, and K. H. Lee, “Small size, low power, side

channel-immune AES coprocessor: Design and synthesis results,” Lecture Notes

in Computer Science, 2005. [Online]. Available: http://www.springerlink.com/

http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
www.bsi.de/cc/pplist/ssvgpp01.pdf
http://web.archive.org/web/20060527063317/http://eros.cs.jhu.edu/~shap/NT-EAL4.html
http://web.archive.org/web/20060527063317/http://eros.cs.jhu.edu/~shap/NT-EAL4.html
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US3678250&F=0
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US3678250&F=0
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=JP51015947&F=0
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=JP51015947&F=0
http://www.springerlink.com/

[24] P. Kocher, J. Jaffe, and B. Jun, “Introduction to differential power analysis

and related attacks,” Cryptography Research, San Frencisco, Tech. Rep., 1999.

[Online]. Available: http://www.cryptography.com/

[25] M. Aigner and E. Oswald, “Power analysis tutorial.”

[26] A. Shamir and E. Tromer, “Acoustic cryptanalysis, on nosy people and noisy

machines.” [Online]. Available: http://people.csail.mit.edu/tromer/acoustic

[27] V. Rijmen and J. Daemon, “Rijndael (cryptografie),” Wikipedia, Tech. Rep.,

2007. [Online]. Available: http://nl.wikipedia.org/wiki/Rijndael#Mix Column

[28] Dynamically Reconfigurable Processor, “DRP,” NEC, Tech. Rep., 2004. [Online].

Available: http://www.necel.com/en/techhighlights/drp/

[29] F. Crowe, A. Daly, T. Kerins, and W. Marnane, “Single chip FPGA

implementation of a cryptographic co-processor,” IEEE International Conference

on Field-Programmable Technology, 2004. [Online]. Available: http://ieeexplore.

ieee.org/xpls/abs all.jsp?arnumber=1393279

[30] N. Ferguson and B. Schneier, Practical Cryptography, C. A. Long, Ed. Wiley,

2003.

[31] R. Enzler, M. Platzner, C. Plessl, L. Thiele, and G. Troester, “Reconfigurable

Processors for Handhelds and Wearables: Application Analysis,” in Proceedings of

Reconfigurable Technology: FPGAs and Reconfigurable Processors for Computing

and Communications III (ITCom 2001). Denver, Colorado, USA: SPIE, August

2001. [Online]. Available: http://www.ethz.ch

[32] S. Sharma and S. B. Sudarshan, “Design of an efficient architecture for advanced

encryption standard algorithm using systolic structures,” in International

Conference of High Performance Computing (HiPC), 2005. [Online]. Available:

http://www.hipc.org/hipc2005/posters/systolic.pdf

http://www.cryptography.com/
http://people.csail.mit.edu/tromer/acoustic
http://nl.wikipedia.org/wiki/Rijndael#Mix_Column
http://www.necel.com/en/techhighlights/drp/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1393279
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1393279
http://www.ethz.ch
http://www.hipc.org/hipc2005/posters/systolic.pdf

[33] I. Verbauwhede, “High throughput aes architecture,” U.S. Patent 7 221 763, 2007.

[Online]. Available: http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=

US2003202658&F=0&QPN=US2003202658

[34] K. Tiri, M. Akmal, and I. Werbauwhede, “A dynamic and differential cmos logic

with signal independent power consumption to withstand differential power anal-

ysis on smart cards,” IEEE 28th European Solid-State Circuit – ESSCIRC’02,

2002.

[35] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Tylor, “Improving

smart card security using self-timed circuits,” 8th IEEE International Symposium

on Asynchronous Circuits and Systems – Async’02, 2002.

[36] E. Biham, “A fast mew des implementation in software,” 1997. [Online].

Available: http://www.cs.technion.ac.il/∼biham/

[37] N. A. Saqib, F. Rodŕıguez-Henriquez, and A. Dı́az-Pérez, “A compact and efficient

fpga implementation of the des algorithm,” 2004.

[38] I. Ahmad and A. S. Das, “Hardware implementation analysis of sha-256 and sha-

512 algorithms on fpgas,” Computers & Electrical Engineering, vol. 31, no. 6, pp.

345–360, 2005.

[39] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, “Improving sha-2 hardware

implementations,” in CHES, ser. Lecture Notes in Computer Science, L. Goubin

and M. Matsui, Eds., vol. 4249. Springer, 2006, pp. 298–310.

[40] “Hashing algorithm generator sha-256, cadence datasheet.”

[41] (2007) Arm 7 tdmi. [Online]. Available: http://www.arm.com/products/CPUs/

ARM7TDMI.html

[42] P. Frison, E. Gautrin, D. Lavenier, and J. L. Scharbarg, “Réseaux systoliques

spécifiques à base du processeur,” Institut National de Recherche en Informatique

http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US2003202658&F=0&QPN=US2003202658
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US2003202658&F=0&QPN=US2003202658
http://www.cs.technion.ac.il/~biham/
http://www.arm.com/products/CPUs/ARM7TDMI.html
http://www.arm.com/products/CPUs/ARM7TDMI.html

et en Automatique (INRIA), France, Tech. Rep., 1990. [Online]. Available:

http://www.inria.fr/

[43] C. Mucci, L. Vanzolini, F. Campi, and M. Toma, “Interactive presentation: Imple-

mentation of aes/rijndael on a dynamically reconfigurable architecture,” in DATE

’07: Proceedings of the conference on Design, automation and test in Europe. San

Jose, CA, USA: EDA Consortium, 2007, pp. 355–360.

[44] Atmel Secure Terminals, “AT91SO100,” Atmel, Tech. Rep., 2007. [Online].

Available: http://www.atmel.com/dyn/products/product card.asp?part id=3810

[45] Standard AES cores, “Helion standard AES,” Helion, Tech. Rep., 2007. [Online].

Available: http://heliontech.com/aes std.htm

[46] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact rijndael hardware

architecture with s-box optimization,” in ASIACRYPT ’01: Proceedings of the

7th International Conference on the Theory and Application of Cryptology and

Information Security. London, UK: Springer-Verlag, 2001, pp. 239–254. [Online].

Available: http://www.springerlink.com/index/BC7DVD7YMADU3J8L.pdf

[47] S. Mangard, M. Aigner, and S. Dominikus, “Highly regular and scalable

AES hardware architecture,” IEEE Transactions on Computers, 2003. [Online].

Available: http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10557/33406/

01581498.pdf?arnumber=1581498

[48] D. Thull and R. Sannino, “Performance considerations for an embedded imple-

mentation of oma drm 2,” in DATE ’05: Proceedings of the conference on Design,

Automation and Test in Europe. Washington, DC, USA: IEEE Computer Society,

2005, pp. 46–51.

[49] N. Valette, L. Torres, G. Sassatelli, and F. Bancel, “Securing embedded pro-

grammable gate arrays in secure circuits,” ipdps, vol. 0, p. 226, 2006.

http://www.inria.fr/
http://www.atmel.com/dyn/products/product_card.asp?part_id=3810
http://heliontech.com/aes_std.htm
http://www.springerlink.com/index/BC7DVD7YMADU3J8L.pdf
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10557/33406/01581498.pdf?arnumber=1581498
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10557/33406/01581498.pdf?arnumber=1581498

[50] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanalysis

of product ciphers,” in The Journal of Cryptography, Counterpane, University

of Berkley and University of Princeton, 2000. [Online]. Available: http:

//www.schneier.com/paper-side-channel.html

[51] T. Lash, “A study of power analysis and the AES (recommendation for designing

power analysis resistant attack),” in MS Scholarly Paper, George Mason Univer-

sity, 2002.

[52] C. Huynh Van Thieng, “Amélioration des performances d’un crypto-processeur,”

diploma thesis, 2008.

[53] R. B. Lee, Z. Shi, and Y. L. Yin, “Cryptographic properties and implementation

complexity of different permutation operations,” Princeton University, Tech. Rep.,

2002.

[54] NEC, “Dynamically reconfigurable processor (drp),” Tech. Rep., 2004. [Online].

Available: http://www.necel.com/en/techhighlights/drp/

[55] Tux the penguin. [Online]. Available: http://upload.wikimedia.org/wikipedia/

commons/a/af/Tux.png

[56] Atmel, “AVR processor 8 bits,” Tech. Rep., 2006. [Online]. Available:

http://www.atmel.com/products/AVR/

[57] (2007) Arm 9 embedded core. [Online]. Available: http://www.arm.com/

products/CPUs/families/ARM9Family.html

http://www.schneier.com/paper-side-channel.html
http://www.schneier.com/paper-side-channel.html
http://www.necel.com/en/techhighlights/drp/
http://upload.wikimedia.org/wikipedia/commons/a/af/Tux.png
http://upload.wikimedia.org/wikipedia/commons/a/af/Tux.png
http://www.atmel.com/products/AVR/
http://www.arm.com/products/CPUs/families/ARM9Family.html
http://www.arm.com/products/CPUs/families/ARM9Family.html

	Glossary
	Abstract
	Introduction
	Security and insecurity
	From Herodotus to cryptographic processors
	The Evaluation Assurance Level

	From the Smart-Cards to the secure products
	Smart Cards
	A secure Environment
	The Smart Cards market trend
	Smart Card Readers

	Side channel attacks
	Timing analysis
	Power dissipation analysis: SPA, DPA
	Electromagnetic analysis
	Acoustic analysis

	Conclusions

	Three cryptographic algorithms
	The AES algorithm
	The DES algorithm
	The SHA
	Conclusions

	Hardware and software implementations of cryptographic algorithms: state of the art
	General Purpose Processors
	The NEC DRP
	The Crow FPGA Implementation
	The Zippy Project

	Hardwired macros
	The Sharma macro
	The G-Plus AES implementation
	The Trichina Coprocessor
	The Eli Biham DES implementation
	The Saqib implementation of DES
	The Ahmad hardware implementation of SHA
	The Chavez hardware implementations of SHA
	The Cadence Hashing Algorithm Generator SHA-256

	Conclusions

	Proposing a reconfigurable cryptographic coprocessor: Celator
	The system: CPU, Memory, peripherals, bus
	Celator hardware architecture
	The Processing Element Array
	The Processing Element – Confidential
	The Controller – Confidential
	CRAM
	The Interface unit

	Considerations about Celator hardware architecture

	Validating Celator on FPGA
	AES
	Implementation of the AES into a PE Array – Confidential
	FPGA results
	ASIC results

	DES
	Implementation of the DES into a PE Array – Confidential
	FPGA results
	ASIC results

	SHA
	Implementation of the SHA into a PE Array – Confidential
	FPGA results
	ASIC results

	Conclusions and Further Work
	Résumé en langue française de la thèse intitulée "Design and development of a reconfigurable cryptographic co-processor" par Daniele Fronte
	Résumé
	Introduction
	Trois algorithmes cryptographiques
	L'algorithme AES
	L'algorithme DES
	L'algorithme SHA

	Implémentations matérielles et logicielles d'algorithmes cryptographiques : état de l'art
	Le NEC DRP
	La macro SHARMA

	L'architecture matérielle de Celator
	Le réseau de PE
	Le Séquenceur
	La CRAM

	Comment Celator exécute les algorithmes cryptographiques
	Les transformations d'AES
	Les transformations de DES
	Les transformations de SHA-256
	Modes ECB et CBC

	Résultats et discussions
	Conclusions

	Acknowledgments
	Annexes – Confidential
	Celator assembler converter

	Annexes: AES codes – Confidential
	AES Celator assembler code
	AES Filling CRAM code
	C function
	Validating ARM code

	Annexes: DES codes – Confidential
	DES tables
	DES Celator assembler code

	Annexes: SHA codes – Confidential
	SHA Celator assembler code

