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Mathématiques Appliquées

Sujet de la thèse :
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Je tiens à remercier très chaleureusement Jean-Michel Ghidaglia d’avoir accepté de
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Introduction

L’eau couvre plus de 70% de la surface de la terre. Plusieurs phénomènes qui ont
lieu à la surface de l’eau sont familiers à tout le monde depuis très longtemps, par
exemple les ondes circulaires provoquées par une pierre jetée dans une mare, ou des
vagues qui se brisent à l’approche de la plage. La théorie des ondes à la surface de
l’eau est une source de problèmes mathématiques et physiques intéressants depuis
au moins 150 ans.

Mais l’existence des ondes à l’intérieur du domaine aquatique a été découverte
beaucoup plus tard. Ces ondes sont connues depuis quelques siècles sous le nom
d’ondes internes et les études scientifiques sur ce sujet sont récentes. Les ondes
internes qui ont lieu à l’interface de deux fluides superposés tels qu’une couche
d’eau chaude s’étendant jusqu’à l’interface avec une couche d’eau plus froide, plus
salée, sont appelées ondes à l’interface.

Cette thèse est consacrée à la modélisation numérique des ondes à l’interface. Nous
limitons notre attention au régime où les amplitudes des ondes sont petites et leurs
longueurs sont grandes.

Une brève présentation des ondes à l’intérieur du domaine aquatique, ainsi que cer-
tains modèles existants pour les ondes à l’interface de fluides, est donnée dans
le premier chapitre. Nous décrivons également les trajectoires des particules à
l’intérieur d’un fluide à deux couches superposées dans le cas où l’onde à l’interface
est périodique et de petite amplitude.

Une discussion des équations de Boussinesq classiques, ainsi que de leurs avantages
et de leurs extensions est incluse dans le deuxième chapitre. Ces équations four-
nissent des outils utiles pour la modélisation de notre problème.

Dans le troisième chapitre, nous dérivons un système de trois équations pour modéliser
des ondes à l’interface en utilisant une méthode de perturbation. Pour simplifier,
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nous supposons que les paramètres caractérisant la non-linéarité et la dispersion
sont égaux.

Dans le chapitre quatre, un modèle alternatif à ce problème est proposé. Il s’agit
d’un système de type Boussinesq, qui est libre de l’hypothèse où les paramètres
caractérisant la non-linéarité et la dispersion sont égaux. Le cas critique, où le
carré du rapport entre les épaisseurs de deux couches est égal à leur rapport de
densité, est également étudié. Ce cas de figure est modélisable par un système de
type Boussinesq avec des termes non-linéaires élevés au cube. Nous appelons cela
un système de Boussinesq étendu.

Les simulations numériques sont présentées dans le cinquième chapitre. Elles mon-
trent que ces deux systèmes de type Boussinesq conviennent pour la modélisation
de la propagation ainsi que la collision entre deux ondes solitaires. Nous étudions
à la fois la collision “head-on” et la collision “overtaking” entre deux ondes soli-
taires d’élévation ou deux ondes solitaires de dépression. Les ondes solitaires plates
résolvant le système Boussinesq étendu sont également simulées. Le filtrage itératif
permet d’obtenir, à partir des solutions approximatives, des ondes solitaires affinées
qui se propagent de manière parfaitement stable. Ces ondes solitaires affinées sont
utilisées afin d’étudier quantitativement les run-ups et les déphasages résultant des
collisions de type inélastique entre deux ondes solitaires.

Mots clés: ondes à l’interface, ondes solitaires, ondes solitaires plates, équations de
type Boussinesq, fluide à deux couches, collision “head-on ”, collision “overtaking”,
run-up, déphasage.



Introduction

Water covers more than 70% of the Earth’s surface. Many phenomena which take
place on the water surface are familiar to everyone since a long time ago, for example
the rings spreading out from a stone thrown in a pool or waves breaking whenever
they approach the beach. The theory of water waves (waves at the surface of water)
have been a source of intriguing physical and mathematical problems for at least
150 years.

However the existence of waves in the interior of water domain was discovered
much later. These waves have been known for centuries with the name internal
waves and their scientific studies are recent. The internal waves that take place at
the interface of two superposed fluids such as a warmer water layer extending down
to the interface with a colder, more saline water layer, are called interfacial waves.

This thesis is devoted to the numerical modelling of the interfacial waves. We
restrict our attention to the small amplitude, long-wave regime.

A short presentation of the internal waves as well as some existing models for
interfacial waves is given in the first chapter. We describe also the trajectories of
the particles in the interior of a two-layer fluid in the case where the interfacial wave
is periodic and of small amplitude.

A discussion of the classical Boussinesq equations, their advantages and extensions
is included in the second chapter. These equations provide useful tools for modelling
our problem.

In the third chapter, we derive a system of three equations for modelling the inter-
facial waves by using a perturbation method. For simplicity, we assume that the
nonlinearity and dispersion parameters are equal.

In chapter four, an alternative model for this problem is proposed. It is a Boussi-
nesq system, which is free of the assumption that the nonlinearity and dispersion
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parameters are equal. A critical case, where the square of the thickness ratio of the
two layers equals to their respective density ratio, is also studied. It can be modeled
by a Boussinesq system with cubic nonlinearities terms. We call this the extended
Boussinesq system.

The numerical simulations are presented in the fifth chapter. They show that these
two Boussinesq systems are convenient for modelling the propagation as well as the
collision between two solitary waves. We study both the head-on collision and the
overtaking collision between two solitary waves of elevation or two solitary waves
of depression. The flat solitary waves solution to the extended Boussinesq system
are also simulated. The iterative filtering permits to obtain, from the approximate
solution, the clean solitary waves which propagate in a perfectly stable manner.
Using these clean solitary waves, we investigate qualitatively the run-ups and the
phase shifts resulting from the inelastic collisions between two solitary waves.

Keywords: Interfacial waves, solitary waves, flat solitary waves, Boussinesq equa-
tions, two-layer fluid, head-on collision, overtaking collision, run-up, phase shift.
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Chapter 1

Internal waves overview

Internal waves are waves that travel within the interior of a fluid. They have been
studied much later than water waves (waves at the surface of water). One of the
earliest scientific observations of internal waves is that of Fridtjov Nansen, a Nor-
wegian explorer, scientist and diplomat. Returning from a three year journey of
FRAM expedition to Arctic Ocean with his crew in 1896, he brought to civilization
a wealth of descriptions of unexplained natural phenomena; one of them was the
dead water problem. Dead water is the nautical term for a strange phenomenon
which can occur when a layer of fresh water rests on top of more dense, heavier
salt water, without mixing of two layers. A ship travelling in such conditions may
be hard to manoeuvre or can even slow down almost to a standstill. He discussed
his observations on this phenomenon with Vilhelm Bjerknes, a famous Norwegian
physicist and meteorologist. Vilhelm Bjerknes attributed the wave resistance to
internal wave generated by the ship. More than one hundred years later, the knowl-
edge of the flows due to internal waves, their generation and propagation in addition
to the dead water problem is still partial.

The study of internal waves is motivated by human activities that take place more
and more in the water environment. They are affected by wave motion. For exam-
ple, to exploit oil in the ocean, long cables are usually used to connect ships or oil
platforms floating on the sea surface with sub-sea drilling or production. Knowl-
edge of the internal waves in addition to the wave and current effects at the ocean
surface is important for the design of such constructions. Scientists try to quantify
induced loads on submerged engineering constructions such as oil platforms and rail
and road tunnels lying on the seabed. Work has been done on flows in fjords and
at sills, motion in coastal water and sub-surface waves in a layered ocean, breaking
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10 Chapter 1. Internal waves overview

of internal waves and mixing processes in the ocean.

1.1 Internal waves

Internal waves are gravity waves that oscillate within the fluid medium. Internal
waves that appear at the interface between two fluids of different densities are called
interfacial waves. Fluids can be air, water, petrol, etc, and the fluid domain can be
multiple layers with interfacial waves appearing at different interfaces. The simplest
model is when a coating of oil lies over water. The stability of this configuration
can be explained by everyone who knows that the density of water is larger than
that of petrol, hence it is not surprising that an interface between these two fluids
is established.

Water environment can be stratified by a rapid change in density with depth. In
freshwater such as in lakes, this density change is usually caused by water temper-
ature, while in seawater such as in oceans the density change may be caused by
changes in salinity and/or temperature. Although internal waves are also observed
in the atmosphere, this manuscript deals mainly with internal waves in the water
environment.

Internal waves typically have much lower frequencies and higher amplitudes than
surface gravity waves because the density differences (and therefore the restoring
forces) within a fluid are usually much smaller than the density of the fluid itself.

Internal waves exist in different forms: standing waves, travelling waves, mix of these
two waves, internal solitary waves, etc. As emphasized by Helfrich & Melville (2006)
[30] in their recent survey article on long nonlinear internal waves, observations
over the past four decades have demonstrated that internal solitary-like waves are
ubiquitous features of coastal oceans and marginal seas. The main interest of my
work is in interfacial solitary waves. A short introduction of this kind of wave is
given in the next section.

1.1.1 Internal solitary waves

Solitary waves are nowadays well defined as long nonlinear waves consisting of a
localized central core and a decaying tail. They were reported both at the surface
and in the interior of fluids.
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Figure 1.1: (a) Sketch of a solitary wave of elevation propagating at the surface of fluid
with density ρ and depth h. (b) Sketch of a solitary wave of depression propagating at
the interface between two fluid layers with different densities ρ′ and ρ. The roof and the
bottom of the fluid domain are flat and rigid boundaries, located respectively at z = h′

and z = −h.

Historically, a solitary wave was observed for the first time at the surface of water by
John Scott Russell in 1834, while conducting experiments for other purposes. This
discovery was described by his own words in the report on waves for the fourteenth
meeting of the British Association for the Advancement of Science, in 1844:

“I was observing the motion of a boat which was rapidly drawn along a narrow chan-
nel by a pair of horses, when the boat suddenly stopped - not so the mass of water in
the channel which it had put in motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving it behind, rolled forward with
great velocity, assuming the form of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued its course along the channel appar-
ently without change of form or diminution of speed. I followed it on horseback, and
overtook it still rolling on at a rate of some eight or nine miles an hour, preserving
its original figure some thirty feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one or two miles I lost it in the
windings of the channel. Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon which I have called the Wave
of Translation”.

In order to have an idea of the form of solitary waves, the readers who are not
familiar with this terminology are invited to look at Figure 1.1.

The solitary waves take place whenever the nonlinear and dispersive effects are
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balanced. For water waves, the nonlinearity is characterized by the ratio

α =
A

h

between the wave amplitude A and the water depth h while the dispersion is char-
acterized by the ratio

β =
h2

ℓ2

between the square of the water depth and the square of the wavelength ℓ.

For two fluid layers, the thickness of the lower or upper layer can be used in the
definition of β depending on the regime that one studies. For convenience, in this
manuscript, h is defined as the thickness of the lower layer and h′ is that of the
upper layer. The primes are used to denote quantities in the upper layer.

The amplitude A of the solitary wave is defined as the maximum displacement from
the undisturbed flow. The wavelength which appears in the above definition is given
by

ℓ =
1

A

∫ +∞

−∞
ηdx,

where η is the disturbance of the interface from its stationary position (it is usually
a function of space and time variables).

Internal solitary waves are important for many practical reasons. They are ubiq-
uitous in the coastal water and take place whenever strong tides and stratification
occur in the neighbourhood of irregular topography. Figure 1.2 shows the loca-
tions of solitons (red point) observed around the world with a variety of remote
and in-situ sensors. The present and future studies continue to complete this map
especially in the open-ocean part. Internal solitary waves can propagate over sev-
eral hundred kilometers and transport both mass and momentum. They also carry
considerable velocity shear that can lead to turbulence and mixing. The mixing of-
ten introduces bottom nutrients into the water column, thereby fertilizing the local
region, modifying the biological environment and re-suspending sediment. Internal
solitary waves influence also acoustic propagation, radar observations and offshore
engineering design. An early motivation to study them was the unexpected large
stresses they imposed on offshore oil drilling rigs.
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Figure 1.2: Locations of internal wave imagery and data presented in the Second Edition
of the Atlas of Oceanic Internal Solitary Waves. The vast majority are satellite images.
Lack of open-ocean sites reflects paucity of the data there. Picture taken from website
http://www.internalwaveatlas.com/Atlas2 index.html

1.1.2 Observations

Interest in large internal waves began in the 1960s to 1970s thanks to the confluence
of applied mathematics, remote sensing and development of ocean instrumentation,
especially thermistor. One of the most dramatic early measurements took place in
the Andaman Sea. A group of internal waves with height up to 80 m and length
up to 2000 m was observed on the main thermocline at a depth of 500 m in water
1500 m deep.

As presented in Fig 1.2, internal solitary waves are widespread. Oceanographers
found their existence in many regions around the world oceans, for example in strait,
coastal zone and on continental margin, especially where the tidal flows take place
over topography.

Fig 1.3a shows a solitary wave packet propagating toward the coast on the Oregon
shelf. Wave amplitudes are 20 to 25 meters while the thickness of the upper layer is
just of 7 m. As we know, the solar radiation is absorbed near the free surface of the
upper layer. A region of warmer water, lower density was created and a pycnocline
appeared at a depth of about 7 m. The colors indicate temperatures as indicated
in the color bar.
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Figure 1.3: Large-amplitude internal waves observed with fixed thermistor arrays. (a)
The leading portion of a wave packet observed in about 147 m of water, propagating
toward the Oregon coast (Picture taken from Stanton & Ostrovsky (1998) [36]). The
colors indicate temperatures as indicated in the color bar. (b) A single large wave in 340
m of water in the northeast South China Sea (Picture taken from Duda et al. (2004)).
The temperature is contoured in intervals of 1oC, and the white squares indicate the
thermistor locations. The dashed curve is the profile of a KdV solitary wave calculated
using the background stratification.
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Figure 1.4: (A) Photograph of Canadian ship Vector crossing a packet of solitons
in Knight Inlet, British Columbia. (B) Current vectors and acoustic profile dur-
ing the time that current tidal attains a level near the maximum. Ship direction
is with current. Solitons appear to have been generated before release of down-
stream pycnocline depression (Farmer & Armi (1999) [25]). Picture taken from website
http://www.internalwaveatlas.com/Atlas2 index.html
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Fig 1.3b illustrates the tendency of waves with amplitudes that are significantly large
compared to the total depth to broaden and develop a flat crest. The amplitude is
about 150 m in water of about 340 m total depth with upper layer depth of about
40 m. The dashed curve is the profile for a KdV solitary wave that Dula et al.
(2004) calculated for the observation conditions, and illustrates that the observed
wave is qualitatively different.

The measurements shown in Fig 1.4 were made in Knight Inlet, British Columbia,
a 90 km long density stratified fjord with a 60 m sill separating two deep basins
(Farmer & Armi (1999) [25]).

In the aerial photograph Fig 1.4A, the solitary waves can be seen as a surface
modulation. Typically the waves form almost straight lines, consistent with the 2-
dimensional behaviour of the flow near the channel center. Fig 1.4B is echo-sounder
imaging which corresponds to the boat position in Fig 1.4A. It shows a series of
solitary waves of amplitude 2 to 5 meters appearing in the pycnocline at a depth
of 5 m. The density profile in red color on the upper left corner shows an abrupt
jump in density with depth which creates two superposed fluid layers separated by
an interface.

Although internal solitary waves are of interest in many contexts, their generation
remains poorly understood. If the theoretical study of their generation and propa-
gation is approximately correct, then they should occur whenever the combination
of stratification, bathymetry, and current flow conspire to give the needed condition.
It is apparent that these conditions happen frequently in coastal regions, especially
during the summer.

1.2 Previous studies

Internal waves have been the subject of theoretical analysis for the last five decades
because of their important role. Studies have been performed theoretically, numer-
ically, as well as experimentally, especially for the simplest configuration: two layer
fluid. If not specified, all discussions below will refer to two layer fluids.

In the following, we restrict ourselves to the case of internal waves at the interface
of two superposed fluids. The lower fluid is of density ρ and depth h, and the
lighter upper fluid is of density ρ′ and depth h′. The stability of this configuration
is ensured by ρ′ < ρ. The density ratio r = ρ′/ρ therefore takes values between 0
and 1. The case r ≈ 0 corresponds to water waves while the case r ≈ 1 corresponds
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to two fluids with almost the same density such as an upper, warmer layer extending
down to the interface with a colder, more saline layer. The thickness ratio H = h′/h
takes theoretical values between 0 and ∞. The displacement of the interface from
the rest position is denoted by η.

Internal waves are called long waves if their wavelength is large compared to the
thickness of at least one of the two layers. The long-wave regime contains the six
following basic regimes:

• Korteweg-de Vries regime: two layers are of finite depth and one seeks the
waves of small amplitude. This regime is characterized by A/h ≃ A/h′ ≃
(h/l)2 ≃ (h′/l)2 ≃ β ≪ 1.

• Finite-steepness for two finite layers: two layers are of finite depth and one
seeks the waves of large interface deviations but small slope. This regime is
characterized (h/l)2 ≃ (h′/l)2 ≃ (A/l)2 ≃ β ≪ 1.

• Benjamin-Ono regime: one of the two layers is infinite. Waves of small am-
plitude are considered. If one chooses the bottom layer to be infinite, this
regime is characterized by (h′/l)2 ≃ (A/h′)2 ≪ 1.

• Small steepness for an infinite lower (or upper) layer: one of the two layers is
infinite. The waves of large interface deviation and small slope are considered.
If one chooses the bottom layer to be infinite, this regime is characterized by
(h′/l)2 ≃ (A/l)2 ≃ β ≪ 1.

• Intermediate Long Waves (ILW) regime: one of the two layers is very thin, the
other layer is of finite depth. The waves of small amplitude are studied. If the
lower layer is finite, the characterization of this regime is (h′/l)2 ≃ (A/h′)2 ≃
β ≪ 1;

√
βh ≃ O(1)

• Extension of ILW regime: one of the two layers is very thin, the other layer
is of finite depth. This regime allows the study of large amplitude waves. If
the lower layer is finite, the characterization of this regime is (h′/l)2 ≃ β ≪ 1;√

βh ≃ O(1)

Craig et al. (2005) [16] used Hamiltonian perturbation theory for the long-wave
limit to study these six regimes. They considered two cases, where the surface of the
upper layer is bounded by a rigid lid or a free surface. They focused on quantifying
the difference between these two configurations in the KdV regime. Their numerical
and theoretical results show that: when the difference between the densities of



18 Chapter 1. Internal waves overview

the two layers is large, there are a number of significant differences between both
cases. But when ρ − ρ′ is small, the difference is small. This important remark
was also mentioned in Evans & Ford (1996) [24]. The “rigid lid” configuration
remains consequently popular for investigating internal waves even if it does not
allow for generalized solitary waves. Generalized solitary waves are long nonlinear
waves consisting of a localized central core and periodic non-decaying oscillations
extending to infinity. Such waves arise whenever there is a resonance between a
linear long wave speed of one wave mode in the system and a linear short wave
speed of another mode (see Fochesato et al. (2005) [26]). Classical Korteweg-
de Vries equation do not deal with the resonance, consequently can not exhibit
generalized solitary waves. Dias & Il’ichev (2001) [21] have established a model
which permits the generalized solitary wave solutions as the result of the resonance
between a solitary wave and a periodic wave. The limit case, where the square of
the thickness ratio is close to the density ratio, which possesses the broaden solitary
wave and front solutions has been also discussed in this article.

For solitary waves, it is known that when the wave speed approaches a critical value
the solution reaches a maximum amplitude while becoming indefinitely wider; these
waves are often called ‘table-top’ waves. In the limit as the width of the central
core becomes infinite, the wave becomes a front (see Dias & Vanden-Broeck (2003)
[19]). Such behavior is conveniently modelled by an extended Korteweg-de Vries
(eKdV) equation, i.e. a KdV equation with a cubic nonlinear term (see Funakoshi
& Oikawa (1986) [27]). Sometimes the terminology ‘modified KdV equation’ or
‘Gardner equation’ is also used. KdV-type equations only describe one-way wave
propagation. The natural extension toward two-way wave propagation is the class
of Boussinesq systems.

Let’s consider the Boussinesq system obtained by Craig et al. (2005) [16] for the
KdV regime. This model can be applied to the case where the upper layer is
bounded by a rigid lid. It is correct up to order β. In physical variables, this model
can be written as

∂tη = −∂x

( hh′

ρ′h + ρh′
uI +

1

3

(hh′)2(ρ′h′ + ρh)

(ρ′h + ρh′)2
∂2

xuI +
ρh′2 − ρ′h2

(ρ′h + ρh′)2
(ηuI)

)

∂tuI = −∂x

(
g(ρ − ρ′)η +

1

2

ρh′2 − ρ′h2

(ρ′h + ρh′)2
u2

I

)
, (1.1)

where uI = ρu − ρ′u′ is a combination of horizontal velocities at the interface.

It is evident that, in the case where the amplitude of the surface wave is relatively
large compared to the thickness of the upper layer, the motion of the free surface
influences the interface, so that the rigid lid assumption cannot be used.
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Another model has been obtained by Choi & Camassa (1999) [13]

ηt −
(
(h′ − η)ū1

)
x

= 0,

ū1t + b1ū1ū1x + (b2 + b3η)ηx = b4ū1xxt + O(β3), (1.2)

where ū1 is the mean velocity of the upper layer

ū1 =
1

1 − η

∫ 1

η

u1(x, z, t)dz,

and bi are parameters given by

b1 =
ρ′h2 − ρh′h − 2ρh′2

ρ′h2 + ρh′h
, b2 =

gh(ρ′ − ρ)

ρ′h + ρh′
,

b3 =
gρ(ρ′ − ρ)(h′ + h)

(ρ′h + ρh′)2
, b4 =

1

3

ρ′h′2h + ρh′h2

ρ′h + ρh′
.

This model is a special case of the fully nonlinear model (3.19) − (3.22) that Choi
& Camassa (1999) [13] have established for finite amplitude, long-wave regime. In
the fully nonlinear model, no assumption on the wave amplitude has been made.
They used perturbation theory based only on the small parameter β. Therefore
the model can be used to study waves of not only intermediate but also small
and larger amplitude (compared to the depth of two layers). In the limit, when the
wave amplitude becomes small, the fully nonlinear model restricts to the Boussinesq
equations (1.2). Note that Choi & Camassa did not use the definition of β given
in section 1.1.1. For them β = h′2/ℓ2. This difference does not change anything,
because in the configuration that we discuss h′/h = O(1). The set of equations
(3.19)–(3.22) in Choi & Camassa (1999) [13] is the two-layer version of the Green-
Naghdi equations and it was recently extended to the free-surface configuration (see
Barros et al. (2007) [2]).

It is worth pointing out that the models (1.1) and (1.2) are applicable for two-way
propagation waves. For unidirectional waves, they reduce to the Korteweg-de Vries
(KdV) equation.

Solitary waves for two-layer flows have also been computed numerically as solutions
to the full incompressible Euler equations in the presence of an interface by various
authors – see for example Laget & Dias (1997) [34]. Similarly fronts have been
computed for example in Dias & Vanden-Broeck (2003) [19] and Dias & Vanden-
Broeck (2004) [20].
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1.3 Trajectories of the particles

The trajectories of particles moving under a surface wave are well-known. On the
other hand, we haven’t found any description of particle trajectories for interfacial
waves. This is why we include it here.

Let us briefly study the trajectories of the particles in the interior of the configura-
tion sketched in Figure 1.1b for small amplitude periodic interfacial waves.

Two incompressible and inviscid fluids with densities ρ and ρ′ fill respectively the
lower and upper layer of the fluid domain which is bounded below by a flat bottom
at z = −h and above by a rigid roof at z = h′.

We assume that the displacement η(x, t) of waves at the interface z = 0 is very
small and the flows are potential with φ and φ′ respectively the velocity potentials
of the lower and upper fluids.

At the leading order, where the small quantities are ignored, one has the following
linear equations and linear boundary conditions:

The equations for the conservation of mass for the lower and upper layer respectively
are

∆φ = 0, (1.3)

∆φ′ = 0. (1.4)

The impermeability along the two rigid boundaries gives:

φz = 0 at z = −h, (1.5)

φ′
z = 0 at z = h′. (1.6)

The kinematic conditions along the interface give

ηt − φz = 0 at z = 0, (1.7)

ηt − φ′
z = 0 at z = 0. (1.8)

The dynamic boundary condition imposed on the interface leads to

ρ(φt + gη) = ρ′(φ′
t + gη) at z = 0. (1.9)
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One looks for φ of the form

φ(x, z, t) = (C cosh kz + D sinh kz)ei(kx−ωt),

where C and D are arbitrary constants.

This expression verifies automatically (1.3). Substituting it into the boundary con-
dition (1.5) yields

[
k(C sinh kz + D cosh kz)ei(kx−ωt)

]
z=−h

= 0.

One deduces from the previous equation the relation between the constants C and
D:

D = C tanh kh.

Substituting the previous equation into the expression for φ, one has

φ(x, z, t) = C
(

cosh kz + tanh kh sinh kz
)
ei(kx−ωt)

= C
(ekz + e−kz

2
+

ekh − e−kh

ekh + e−kh

ekz − e−kz

2

)
ei(kx−ωt)

= C
ek(h+z) + e−k(h+z)

ekh + e−kh
ei(kx−ωt).

Thus,

φ(x, z, t) = C
cosh k(h + z)

cosh kh
ei(kx−ωt). (1.10)

Similarly, one looks for φ′ of the form

φ′(x, z, t) = (A cosh kz + B sinh kz)ei(kx−ωt),

where A and B are arbitrary constants. This expression of φ′ verifies automatically
the condition (1.4). Demanding that φ′ formally satisfy the boundary condition
(1.6) leads to [

k(A sinh kz + B cosh kz)ei(kx−ωt)
]

z=h′

= 0.

One deduces from the previous equation that

B = −A tanh kh′.

Substituting this equation into the expression of φ′ yields

φ′(x, z, t) = A
(

cosh kz − tanh kh′ sinh kz
)
ei(kx−ωt)

= A
(ekz + e−kz

2
− ekh′ − e−kh′

ekh′ + e−kh′

ekz − e−kz

2

)
ei(kx−ωt)

= A
ek(h′−z) + e−k(h′−z)

ekh′ + e−kh′
ei(kx−ωt).
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Finally, one has

φ′(x, z, t) = A
cosh k(h′ − z)

cosh kh′
ei(kx−ωt). (1.11)

We will use the kinematic conditions at the interface (1.7) and (1.8) to find out the
relation between the two constants A and C. From these two equations, one has

φz = φ′
z at z = 0.

Substituting (1.10) and (1.11) into the previous equation yields

Ck
sinh k(h + z)

cosh kh
ei(kx−ωt) = −Ak

sinh k(h′ − z)

cosh kh′
ei(kx−ωt) at z = 0.

Therefore

C = −A
tanh kh′

tanh kh
.

Thus, one can express φ′ in terms of C:

φ′(x, z, t) = −C
cosh k(h′ − z) tanh kh

sinh kh′
ei(kx−ωt). (1.12)

Substituting this expression into (1.8) yields

ηt = Ck(tanh kh)ei(kx−ωt)

Integrating the previous equation with respect to t, one obtains

η(x, t) =
iCk

ω
(tanh kh)ei(kx−ωt), (1.13)

assuming that the mean value of η(x, t) is 0.

Now we look for the dispersion relation.

The condition (1.9) can be written as

φt + gη =
ρ′

ρ
(φ′

t + gη) at z = 0.

Let r = ρ′/ρ, the previous equation becomes

φt − rφ′
t + (1 − r)gη = 0 at z = 0. (1.14)

Using (1.10) and (1.12), one has

φt|z=0 = (−iω)C
cosh k(h + z)

cosh kh
ei(kx−ωt)|z=0

= −iωCei(kx−ωt).
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Figure 1.5: Dispersion relation (1.15) for the right-running wave of small amplitude,
periodic interfacial waves with parameters h = 1m, h′ = 0.6m, r = 0.9.

and

φ′
t|z=0 = iωC

cosh k(h′ − z) tanh kh

sinh kh′
ei(kx−ωt)|z=0

= iωC
tanh kh

tanh kh′
ei(kx−ωt).

Substituting the two previous expressions and (1.13) into (1.14) yields

−iωCei(kx−ωt) − riωC
tanh kh

tanh kh′
ei(kx−ωt) + (1 − r)g

iCk

ω
(tanh kh)ei(kx−ωt) = 0.

Equivalently

1 + r
tanh kh

tanh kh′
− (1 − r)gk

ω2
tanh kh = 0.

One deduces that

ω2 =
(1 − r)gk tanh kh tanh kh′

tanh kh′ + r tanh kh
,

or equivalently

ω = (+,−)

√
(1 − r)gk tanh kh tanh kh′

tanh kh′ + r tanh kh
. (1.15)

In order to obtain the trajectories of a particle of the lower fluid, we call (X̃, Z̃) the
perturbation of the particle at a given time around its mean position (X0, Z0). The
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co-ordinates of the particle are give by

X = X0 + X̃; Z = Z0 + Z̃.

By definition, one has

∂X̃

∂t
=

∂φ

∂x
|(X0,Z0) and

∂Z̃

∂t
=

∂φ

∂z
|(X0,Z0).

Therefore
∂X̃

∂t
= −kC

cosh k(h + Z0)

cosh kh
sin(kX0 − ωt),

and
∂Z̃

∂t
= kC

sinh k(h + Z0)

cosh kh
cos(kX0 − ωt).

Integrating the two previous equations with respect to t yields

X̃ = −kC

ω

cosh k(h + Z0)

cosh kh
cos(kX0 − ωt),

and

Z̃ = −kC

ω

sinh k(h + Z0)

cosh kh
sin(kX0 − ωt),

assuming that the mean value of X̃ and Z̃ are 0.

Thus
(X − X0)

2

(cosh k(h + Z0))2
+

(Z − Z0)
2

(sinh k(h + Z0))2
=

( kC

ω cosh kh

)2

. (1.16)

One deduces that the trajectories of the particles in the lower layer are elliptic.

Similarly, in order to obtain the trajectories of a particle in the upper layer, we call
(X̃ ′, Z̃ ′) the perturbations of the particle around its mean position (X ′

0, Z
′
0) . The

co-ordinates of the particle can be written by

X ′ = X ′
0 + X̃ ′; Z ′ = Z ′

0 + Z̃ ′.

By definition, one has

∂X̃ ′

∂t
=

∂φ̃′

∂x
|(X′

0
,Z′

0
) and

∂Z̃ ′

∂t
=

∂φ̃′

∂z
|(X′

0
,Z′

0
)

Therefore
∂X̃ ′

∂t
= Ck

cosh k(h′ − Z ′
0) tanh kh

sinh kh′
sin(kX ′

0 − ωt),
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and
∂Z̃ ′

∂t
= Ck

sinh k(h′ − Z ′
0) tanh kh

sinh kh′
cos(kX ′

0 − ωt).

Integrating the two previous equations with respect to t yields

X̃ ′ =
Ck

ω

cosh k(h′ − Z ′
0) tanh kh

sinh kh′
cos(kX ′

0 − ωt),

and

Z̃ ′ = −Ck

ω

sinh k(h′ − Z ′
0) tanh kh

sinh kh′
sin(kX ′

0 − ωt),

assuming that the mean value of X̃ ′ and Z̃ ′ are 0.

One deduces that

(X ′ − X ′
0)

2

(cosh k(h′ − Z ′
0))

2
+

(Z ′ − Z ′
0)

2

(sinh k(h′ − Z ′
0))

2
=

(Ck tanh kh

ω sinh kh′

)2

. (1.17)

Thus, the trajectories of the particles of the upper layer are also elliptic.

For a particle at the interface, in the expressions (1.16) and (1.17), Z0 and Z ′
0 will

tend to 0 while X0 and X ′
0 tend to the same value called XI .

The expressions for the particles of the lower layer can be written as

X̃ = −kC

ω
cos(kXI − ωt),

and

Z̃ = −kC

ω
(tanh kh) sin(kXI − ωt).

And the expressions for the particles of the upper layer are

X̃ ′ =
kC

ω

tanh kh

tanh kh′
cos(kXI − ωt),

and

Z̃ ′ = −kC

ω
(tanh kh) sin(kXI − ωt).

Comparing these four expressions, one sees that at the interface one has Z̃ = Z̃ ′ (as
expected) but X̃ 6= X̃ ′.
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Figure 1.6: Trajectories of the particles of a two-layer fluid. They are described by
equations (1.16), (1.17) and (1.15). The dashed curve represents the interface between the
layers. The thick curves represent the trajectories of the particles of the lower layer. The
thin curves represent the trajectories of the particles of the upper layer. The parameters
are h = 1m, h′ = 1m, C = 0.008, k = 1m−1; (a) r = 0.98 , ω = 0.27736s−1; (b) r = 0.995,
ω = 0.13816s−1.

One concludes that the trajectories of the particles at the interface are not contin-
uous. The particles follow the interface vertically but not tangentially.

Figure 1.6 shows the trajectories of the particles. One observes that more the
difference between the density of the two layers are large, more the orbit of the tra-
jectories of particles are large, by consequence more the amplitude of the interfacial
waves are large.

Figure 1.7 shows also the trajectories of particles. The images (a) and (b) are for two
different values of C while (c) and (d) show images corresponding to two different
values of k. One observes that the orbit of the trajectories are right proportional
to the value of C and k.
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Figure 1.7: Trajectories of the particles of a two-layer fluid. They are described by
equations (1.16), (1.17) and (1.15). The dashed curve represents the interface between the
layers. The thick curves represent the trajectories of the particles of the lower layer. The
thin curves represent the trajectories of the particles of the upper layer. The parameters
for figures (a) and (b) are h = 1m, h′ = 0.1m, r = 0.85, k = 0.5m−1; (a) C = 0.008,
ω = −0.19776s−1; (b) C = 0.004, ω = −0.197755s−1. The parameters for figures (c) and
(d) are h = 0.6m, h′ = 0.2m, r = 0.9, C = 0.008; (c) k = 0.6m−1, ω = 0.23982s−1; (d)
k = 1.2m−1, ω = 0.46955s−1.





Chapter 2

Boussinesq equations and some
extensions

In the nineteenth century, the study of water waves was of vital interest for appli-
cation in naval architecture and for the knowledge of tided and floods. Notably in
England and France, many researchers as Scott-Russell, Airy, Stokes, Lord Rayleigh,
Lagrange, St. Venant, Boussinesq, etc, spent their studies on water wave of sev-
eral kinds. In this chapter, we discuss the equations that Boussinesq established
for model water waves and some extensions. The technique that Boussinesq used
and the equations that he obtained are important contributions to modelling water
waves.

Boussinesq equations were first derived by Boussinesq in the 1870s (see [8], [9]) to
describe the two-way propagation of small amplitude and long-wave gravity waves
on the surface of water in a channel. This model is restricted to the case where the
bottom is flat, the fluid ideal, the flow irrotational and the vertical distribution of
variables is parabolic or linear.

It is worth noting that ‘small amplitude’ (‘long-wave’) means that the wave ampli-
tude (wavelength) is respectively small (large) compared to the water depth.

Many extensions of the classical Boussinesq equations have been obtained in or-
der to extend the domain of validity or to improve the nonlinear and dispersive
properties of the equations. Nowadays, one calls Boussinesq model all equation(s)
resulting from studying small amplitude waves in a long-wave limit with the fol-
lowing assumptions: the flow is irrotational; the vertical distribution of variables is
parabolic or linear, two-way propagation is allowed.

29
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The main advantage of the Boussinesq models is the fact that they permit to model
an n-dimensional (n = 3 or 2) physical phenomenon by an (n − 1)-dimensional
problem. It is done by eliminating suitably the dependence of variables on the
vertical direction.

In many laboratory studies or engineering applications, the full Euler equations
appear more complex than is necessary for the modelling situation at hand. Conse-
quently many approximate models adapted to restricted physical regimes have been
derived. The Boussinesq models are a good choice to study small amplitude, long
waves in shallow water, especially when the nonlinear and dispersive effects are of
the same order of magnitude.

General waves cannot be properly described by the models of unidirectional waves
such as Korteweg-de Vries equations. Models for two-way propagation like Boussi-
nesq equations play an important role. They allow the study of the interaction
between two or more waves, and the consideration of the reflected waves which
appear when investigating the flow over an irregular topography.

Boussinesq equations take into account both nonlinearity and dispersion. It is well
known that nonlinearity tends to steepen a given wave form during the course of its
evolution, while dispersion has the opposite effect and tends to flatten steep free-
surface gradients. One of the most striking manifestations of these two opposite
effects lies in the possibility of the balance, which results in solitary waves.

2.1 Classical Boussinesq equations (1870s)

Boussinesq equations represent an approximation of the Euler equations for small
amplitude water waves in shallow water. In Boussinesq (1871) [8], Boussinesq stud-
ied solitary waves in a channel on which he assumed that the movements are the
same across the width. This allows to consider only the vertical plan, called (x, z).
He also supposed that the flow is potential, the wave vanishes at infinity and the
vertical distribution of the velocity vector field is obtained by a polynomial approx-
imation.

In Boussinesq’s model, an incompressible, inviscid fluid fills a channel from the
flat bottom z = 0 up to the free surface z = h + η(x, t). Herein, η(x, t) is the
displacement of the surface water from its undisturbed position h.
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The system describing the motion of water wave that Boussinesq obtained is




v1 =
∂η

∂t
+ u1

∂η

∂x

gη +
∂φ

∂t
+

1

2
(u2

1 + v2
1) = 0

, (2.1)

where u1, v1 are respectively the horizontal and vertical velocities at the surface, g
is the acceleration due to gravity and φ is the velocity potential.

Velocity potential φ is approximated by

φ = −
∫ ∞

x

u0dx − 1

1.2

∂u0

∂x
z2 +

1

1.2.3.4

∂3u0

∂x3
z4 − 1

1.2...5.6

∂5u0

∂x5
z6 + ...,

where u0 is the horizontal velocity at the bottom.

Boussinesq supposed that the quantities u0, η are very small and their derivatives
with respect to x are smaller and smaller. This permits to neglect the small terms.

At the leading order, one has

v1 =
∂φ

∂z
|z=h+η = −∂u0

∂x
(h + η),

and

u1 =
∂φ

∂x
|z=h+η = u0,

and

φt|z=h+η = −
∫ ∞

x

u0tdx − 1

2
h2u0xt.

Substituting these three expressions into (2.1) yields




∂η

∂t
+ h

∂u0

∂x
+ (u0η)x = 0

gη −
∫ ∞

x

u0tdx − 1

2
h2u0xt +

1

2
u2

0 = 0

,

where h is the water depth.

Differentiating the second equation of the previous system with respect to x, one
obtains 




ηt + hu0x + (u0η)x = 0

gηx + u0t −
1

2
h2u0xxt + u0u0x = 0

. (2.2)
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Since the velocity potential φ can be evaluated at any water level, one can obtain the

expression of the horizontal velocity u =
∂φ

∂x
everywhere along the water column.

At water level θ = 1√
3
h one can take

uθ ≈ u0 −
1

6
h2u0xx, or u0 ≈ uθ +

1

6
h2uθxx,

without changing the order of approximation.

Let w = uθ. System (2.2) becomes




ηt + hwx + (wη)x = 0

gηx + wt + wwx − 1
3
h2wxxt = 0

.

Using the following change of variables

xnew =
x

h
tnew =

c

h
t, ηnew =

1

h
η, wnew =

w

c
, c =

√
gh,

the previous system becomes (dropping the subscripts new)




ηt + wx + (wη)x = 0

ηx + wt + wwx − 1
3
wxxt = 0

. (2.3)

The system (2.3) is often considered as the classical Boussinesq equations (see Bona
et al. (2002) [5]).

The classical Boussinesq model permits to study two-way wave propagation. Indeed,
if one retains only the terms of the same order of ηt (see Boussinesq (1872) [9]) in
(2.2) then 




ηt + hu0x = 0

gηx + u0t = 0

.

The previous system has solution

η = f(x − t
√

gh) + f1(x + t
√

gh),

and

u0 =

√
g

h

[
f(x − t

√
gh) − f1(x + t

√
gh)

]
.
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At second order approximation, Boussinesq obtained the following well-known equa-
tion for bidirectional waves

ηtt = ghηxx +
3

2
g(η2)xx +

1

3
gh3ηxxxx. (2.4)

If we restrict to waves propagating in one direction, for example to the right, at
the lowest order (only two first terms are considered) the equation (2.4) will have
solutions:

η = f(x − t
√

gh).

Therefore, the Boussinesq equation (2.4) can be factorized as

(∂t −
√

gh∂x)
(
ηt +

3

2

√
g

h
∂x(

2

3
hη +

1

2
η2 +

h3

9
ηxx)

)
= 0. (2.5)

2.2 Korteweg-de Vries equations

Under the supervision of Korteweg, de Vries has established during his thesis an
equation to model water waves. The readers who are interested in the history of
the KdV equation are invited to read Jager (2006) [32].

Boussinesq used a fixed coordinate system but Korteweg and de Vries chose the
frame moving with the waves for their studies. The relation between the coordinates
(ξ, τ) of the moving frame and the coordinates (x, t) of the fixed frame is given by

ξ = x − (
√

gh −
√

g

h
α)t, τ = t,

where h is the depth water, g acceleration due to gravity and α an arbitrary con-
stant. The equation of Korteweg and de Vries is given in the form

ητ +
3

2

√
g

h
∂ξ

(2

3
αη +

1

2
η2 +

1

3
(
1

3
h3 − Th

ρg
)ηξξ

)
= 0, (2.6)

where η is the displacement of the surface water from its undisturbed position and
T surface tension.

If one ignores the surface tension T and takes α = h (the moving frame becomes
the fixed frame), the one-way Boussinesq equation (2.5) recovers the KdV equation
(2.6).
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Using the following change of variables

η =
2α

3
ηnew,

ξ =

√
1
2
(1

3
h3 − Th

ρg
)

√
α

ξnew,

τ =
1

α

√
h

g

√
1
2
(1

3
h3 − Th

ρg
)

√
α

τnew,

the KdV equation (2.6) can be written as (dropping the subscripts new)

ητ + ηξ + ηηξ + ηξξξ = 0.

This equation is much more famous than the Boussinesq equations and appears in
many physical contexts where wave motion is introduced. It possesses permanent
solutions such as solitary waves, cnoidal waves.

It is worth noting that Boussinesq used the assumption that the wave vanishes at
infinity, which is not necessary in the theory of Korteweg and de Vries. However,
Korteweg and de Vries assumed that the waves are periodic.

2.3 Some extensions of the classical Boussinesq

equations

2.3.1 Higher-order generalization of the Boussinesq equa-
tions

Bona et al. (2002) [5] derived a four-parameter family of Boussinesq systems from
the two dimensional Euler equations for free-surface flow. In this study, it is sup-
posed that

α =
A

ℓ
≪ 1, β =

h2

ℓ2
≪ 1, St =

α

β
≈ 1,
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where A is the amplitude, ℓ is the wavelength and h is the water depth.
The first order approximations in the small parameters α and β are





ηt + wx + (wη)x + awxxx − bηxxt = 0

wt + ηx + wwx + cηxxx − dwxxt = 0

, (2.7)

where a, b, c, d are parameters given by

a =
1

2

(
θ2 − 1

3

)
λ, b =

1

2

(
θ2 − 1

3

)
(1 − λ),

c =
1

2
(1 − θ2)µ, d =

1

2
(1 − θ2)(1 − µ).

Here λ, µ are real arbitrary parameters, θ ∈ [0, 1] specifies the horizontal velocity
represented by w.

At second order in the small parameters α and β, they obtained




ηt − bηxxt + b1ηxxxxt = −wx − (ηw)x − awxxx

+b(ηw)xxx −
(
a + b − 1

3

)
(ηwxx)x − a1wxxxxx

wt − dwxxt + d1wxxxxt = −ηx − cηxxx − wwx − c(wwx)xx − (ηηxx)x

+(c + d − 1)wxwxx + (c + d)wwxxx − c1ηxxxxx

, (2.8)

with a, b, c, d given above and a1, b1, c1, d1 given by

a1 = −1

4

(
θ2 − 1

3

)2

(1 − λ) +
5

24

(
θ2 − 1

5

)2

λ1,

b1 = − 5

24

(
θ2 − 1

5

)2

(1 − λ1),

c1 =
5

24
(1 − θ2)

(
θ2 − 1

5

)
(1 − µ1),

d1 = −1

4
(1 − θ2)2µ − 5

24
(1 − θ2)

(
θ2 − 1

5

)
µ1.

Here λ1, µ1 are arbitrary parameters.

Exact travelling-wave solutions as well as exact solitary-wave solutions of many
classes of (2.7) have been found by Chen (1997) [11]. Several classes of (2.7)



36 Chapter 2. Boussinesq equations and some extensions

have been well studied in the literature, such as the Kaup system (θ2 = 1, λ =
1, µ arbitrary), the coupled KdV system (θ2 = 2/3, λ = 1, µ = 1), etc. In the
case

θ2 =
1

3
, λ arbitrary, µ = 0

the system (2.7) recovers the classical Boussinesq equations. The BBM system
(θ2 = 2/3, λ = 0, µ = 0) was studied numerically by Bona & Chen (1998) [4].

The Boussinesq models given in (2.7) (or (2.8)) are formally equivalent but they
may have rather different mathematical properties.

2.3.2 Arbitrary bathymetry

The classical Boussinesq model has a wide range of potential applicability. But the
assumption that the bottom must be flat limits strongly its domain of application.
Work has been done in order to improve this situation. A recent review is given by
Dutykh & Dias (2007) [23].

In 1967, Peregrine obtained a three dimensional system applicable to irregular to-
pography. This system is known as standard Boussinesq equations. It is written in
physical variables as follows:




ηt + ∇ · [(h + η)ū] = 0

ūt + g∇η + (ū · ∇)ū +
h2

6
∇(∇ · ūt) −

h

2
∇[∇ · (hūt)] = 0

,

where ū = (u, v) is the mean horizontal velocity vector of the water column, η the
displacement of the surface from its rest position, h(x, y) the water depth and g the
acceleration due to gravity.

In 1993 Nwogu established a three dimensional system which is also applicable to
arbitrary bathymetry but the domain of application is larger than that of standard
Boussinesq equations. In physical variables, it is written as



ηt + ∇ · [(h + η)uθ] + ∇ ·
[
(
z2

θ

2
− h2

6
)h∇(∇ · uθ) + (zθ +

h

2
)h∇[∇ · (huθ)]

]
= 0

uθt + g∇η + (uθ · ∇)uθ +
[z2

θ

2
∇(∇ · uθt) + zθ∇[∇ · (huθt)]

]
= 0

,

where uθ = (uθ, vθ) is the horizontal velocity vector at the water level zθ; η, h and
g are defined as in the Peregrine system. In this model, it is supposed that the
vertical velocity varies linearly with respect to the vertical coordinate.
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2.3.3 Two-layer fluid, extended KdV equation, extended
Boussinesq equations

The procedure to obtain the KdV equation, as well as Boussinesq equations for water
waves has been also applied to model the waves at the interface of two superposed
fluids. In most cases, the nonlinearity is quadratic. However, when the square
of the thickness ratio is close to the density ratio, the coefficients of the quadratic
nonlinearities become small and the cubic nonlinearities must be considered. A KdV
equation with both quadratic and cubic nonlinear terms is usually called ‘extended’
KdV (eKdV) equation. Sometimes the terminology ‘modified KdV equation’ or
‘Gardner equation’ is also used.

When dealing with interfacial waves with rigid boundaries in the framework of the
full Euler equations, the amplitude of the central core is bounded by the configura-
tion. In the case of solitary waves, it is known that when the wave speed approaches
a critical value the solution reaches a maximum amplitude while becoming indef-
initely wider; these waves are often called ‘table-top’ waves. In the limit as the
width of the central core becomes infinite, the wave becomes a front (see Dias &
Vanden-Broeck (2003) [19]). Such behavior is conveniently modelled by an extended
Korteweg–de Vries (eKdV) equation.

Considering the two-layer fluid configuration described in section 1.2 for the case
ρ′ ≈ ρ, the extended KdV equation is written as (see Grimshaw et al. (1997) [29])

ηt + c1ηx + c2ηηx + c3η
2ηx + c4ηxxx = 0,

where η is the displacement of the interface from its undisturbed position and ci

are coefficients given by

c1 =

√
g(ρ − ρ′)

ρ

hh′

h + h′
,

c2 =
3c1

2

h′ − h

hh′
,

c3 = − 3c1

8h2h′2
(h2 + h′2 + 6hh′),

c4 =
c1hh′

6
.

Here h and h′ are respectively the depth of the lower and upper layer, ρ and ρ′

respectively the density of the lower and upper layer, g acceleration due to gravity.
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The steady version of the extended KdV equation for interfacial waves proposed by
Dias & Vanden-Broeck (2004) [20] is

1

6
bηxxx +

3

2
aηηx −

3

4
cη2ηx − (F − Fbif )ηx = 0,

where

F =
U√
gh

,

Fbif =

√
H(1 − r)

H + r
,

a =
2(H −√

r)√
r(1 +

√
r)

Fbif ,

b = (1 −
√

r + r)Fbif ,

c =
4√
r
Fbif .

Here U is the velocity of the uniform flow in two layers, r the density ratio between
the upper and the lower layer, H the depth ratio between the upper and the lower
layer.

A similar equation was obtained by Choi et al. (1996) [12] by using asymptotic
expansions.

A Boussinesq system with both quadratic and cubic nonlinear terms is called ‘ex-
tended’ Boussinesq system. An extended Boussinesq system can be derived from
the Hamiltonian formulation obtained by Craig et al. (2005) [16]. In this work,
a Hamiltonian perturbation theory was applied to obtain the Boussinesq system
correct up to order β2. In physical variables, this system is written as





ηt = − hh′

ρ′h + ρh′
uIx −

1

3

(hh′)2(ρ′h′ + ρh)

(ρ′h + ρh′)2
uIxxx

− ρh′2 − ρ′h2

(ρ′h + ρh′)2
(ηuI)x +

ρρ′(h + h′)2

(ρ′h + ρh′)3
(η2uI)x

uIt = −g(ρ − ρ′)ηx −
1

2

ρh′2 − ρ′h2

(ρ′h + ρh′)2
(u2

I)x −
ρρ′(h + h′)2

(ρ′h + ρh′)3
(ηu2

I)x

, (2.9)

where uI = ρu − ρ′u′ is a combination of horizontal velocities at the interface.

In the work presented in chapter 4 a set of extended Boussinesq systems will be
derived. The system (2.9) is a special case of it. The ‘table top’ solitary wave
solutions to these extended Boussinesq systems will be studied in detail in chapter
5 in order to answer the questions: what are their properties and how do they
interact?



Chapter 3

Modelling for interfacial waves by
using a perturbation method

In this chapter one uses a perturbation method to derive a model for interfacial
waves appearing at the interface of two superposed fluids. The bottom as well as
the upper boundary are assumed to be flat and rigid. A sketch is given in Figure 3.1.
The analysis is restricted to two-dimensional flows. In other words, there is only
one horizontal direction, x∗, in addition to the vertical direction, z∗. The interface
is described by z∗ = η∗(x∗, t∗). The bottom layer Ωt∗ = {(x∗, z∗) : x∗ ∈ R,−h <
z∗ < η∗(x∗, t∗)} and the upper layer Ω′

t∗ = {(x∗, z∗) : x∗ ∈ R, η∗(x∗, t∗) < z∗ < h′}
are filled with inviscid, incompressible fluids, with densities ρ and ρ′ respectively.
Let (u∗, v∗) and (u′∗, v′∗) represent the velocity in (x∗, z∗) coordinate. All quantities
related to the upper layer will be denoted with a prime and all physical variables
will be denoted with a star.

In addition the flows are assumed to be irrotational. Only stable configurations
with ρ > ρ′ are considered.

One introduces the dimensionless density ratio r as well as the depth ratio H:

r =
ρ′

ρ
, H =

h′

h
.

Obviously r takes values between 0 and 1, the case r ≈ 0 corresponding to water

39
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(a) in physical space (b) in dimensionless variables

h’

0

−h

z*=η*(x*,t*)

ρ’

ρ

x*

z*

1

0

z=1+αη(x,t)

ρ’

ρ

x

z

1+H

Figure 3.1: Sketch of solitary waves propagating at the interface between two fluid layers
with different densities ρ′ and ρ. The roof and the bottom of the fluid domain are flat
and rigid boundaries, located respectively at z∗ = h′ and z∗ = −h. (a) Sketch of a
solitary wave of depression in physical space; (b) Sketch of a solitary wave of depression
in dimensionless coordinates, with the thickness h of the bottom layer taken as unit length
and the long wave speed c as unit velocity. The dimensionless number H is equal to h′/h.

waves 1 while the case r ≈ 1 corresponds to two fluids with almost the same density
such as an upper, warmer layer extending down to the interface with a colder, more
saline layer. The depth ratio takes theoretical values between 0 and ∞ but values
H ≪ 1 or H ≫ 1 should be avoided in the framework of our weakly nonlinear
analysis.

3.1 Governing equations

One starts with the Euler equations for the two-layer fluid configuration mentioned
above:

u∗
t∗ + u∗u∗

x∗ + w∗u∗
z∗ =

−p∗x∗

ρ
for − h < z∗ < η∗(x∗, t∗), (3.1)

u
′∗
t∗ + u

′∗u
′∗
x∗ + w

′∗w
′∗
z∗ =

−p
′∗
x∗

ρ′
for η∗(x∗, t∗) < z∗ < h′, (3.2)

1In a recent paper, Kataoka (2006) [33] showed that when H is near unity, the stability of
solitary waves changes drastically for small density ratios r. Therefore one must be careful in
evaluating the stability of air-water solitary waves. In other words, there may be differences
between r = 0 and the true value r = 0.0013.
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w∗
t∗ + u∗w∗

x∗ + w∗u∗
z∗ = −p∗z∗

ρ
− g for − h < z∗ < η∗(x∗, t∗), (3.3)

w
′∗
t∗ + u

′∗w
′∗
x∗ + w

′∗w
′∗
z∗ = −p

′∗
z∗

ρ′
− g for η∗(x∗, t∗) < z∗ < h′, (3.4)

where p and p′ are respectively the pressure of the lower and the upper fluid.

The continuity equations in each layer are

u∗
x∗ + w∗

z∗ = 0 for − h < z∗ < η∗(x∗, t∗), (3.5)

u
′∗
x + w

′∗
z∗ = 0 for η∗(x∗, t∗) < z∗ < h′. (3.6)

The boundary of the system {Ωt∗ , Ω
′
t∗} has two parts: the flat bottom z∗ = −h and

the flat roof z∗ = h′. The impermeability conditions along these rigid boundaries
give

w∗ = 0 at z = −h, (3.7)

w
′∗ = 0 at z = h′. (3.8)

The kinematic and dynamic conditions along the interface are

η∗
t∗ + u∗η∗

x∗ = w∗ at z∗ = η∗, (3.9)

η∗
t∗ + u

′∗η∗
x∗ = w

′∗ at z∗ = η∗, (3.10)

p∗ = p′∗ at z∗ = η∗. (3.11)

The flows are assumed to be irrotational. Therefore

u∗
z∗ − w∗

x∗ = 0 for − h < z∗ < η∗(x∗, t∗), (3.12)

u
′∗
z∗ − w

′∗
x∗ = 0 for η∗(x∗, t∗) < z∗ < h′. (3.13)

3.2 Equation in the limit of long waves of small

amplitude

Let us consider herein waves whose typical amplitude, A, is small compared to the
depth of the bottom layer h, and whose typical wavelength, ℓ, is large compared
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to the depth of the bottom layer 2. Let us define the three following dimensionless
numbers, with their characteristic magnitude:

α =
A

h
≪ 1, β =

h2

ℓ2
≪ 1, St =

α

β
=

Aℓ2

h3
≈ 1.

Here St is the Stokes number. α small means that the wave amplitude is small
compared to the depth. β small means that the depth is small compared to the
wavelength.

Using the following scaling

x∗ = ℓx, z∗ = h(z − 1), η∗ = Aη, t∗ = ℓt/c0

u∗ = αc0u, u
′∗ = αc0u

′, w∗ = α
√

βc0w, w
′∗ = α

√
βc0w

′,

p∗ = −ρgz∗ + ρgAp, p′∗ = −ρ′gz∗ + ρgAp′,

where c0 =
√

gh, equations (3.1)-(3.13) become

for the lower layer





ut + αuux + βwuz = −px for 0 < z < 1 + αη,

β
(
wt + α(uwx + wwz)

)
= −pz for 0 < z < 1 + αη,

ux + wz = 0 for 0 < z < 1 + αη,

w = 0 at z = 0,

w = ηt + αuηx at z = 1 + αη,

(1 − r)η = p − p′ at z = 1 + αη,

uz − βwx = 0 for 0 < z < 1 + αη,

(3.14)

2There is some arbitrariness in this choice since there are two fluid depths in the problem. One
could has also chosen the depth of the roof layer as reference depth. In fact, one implicitly makes
the assumption that the ratio of liquid depths is neither too small nor too large, without going
into mathematical details. Models valid for arbitrary depth ratio have been derived for example
by Choi & Camassa (1999) [13].
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and for the upper layer





u′
t + αu′u′

x + βw′u′
z = −p′x

r
for 1 + αη < z < 1 + H,

β
(
w′

t + α(u′w′
x + w′w′

z)
)

= −p′z
r

for 1 + αη < z < 1 + H,

u′
x + w′

z = 0 for 1 + αη < z < 1 + H,

w′ = 0 at z = 1 + H,

w′ = ηt + αu′ηx at z = 1 + αη,

(1 − r)η = p − p′ at z = 1 + αη,

u′
z − βw′

x = 0 for 1 + αη < z < 1 + H.

(3.15)

From now on one assumes that α = β.

Applying Taylor expansions in terms of the small quantity αη to the interface
boundary condition, one has:

for the bottom layer





ut + α(uux + wuz) = −px in 0 < z < 1 + αη,

αwt + α2(uwx + wwz) = −pz in 0 < z < 1 + αη,

ux + wz = 0 in 0 < z < 1 + αη,

w = 0 on z = 0,

w + αηwz +
α2η2

2
wzz = ηt + αuηx + α2uzηηx on z = 1,

(r − 1)η + p − p′ + αη(pz − p′z) +
α2η2

2
(pzz − p′zz) = 0 on z = 1,

uz − αwx = 0 in 0 < z < 1 + αη,

(3.16)
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and for the upper layer





u′
t + α(u′u′

x + w′u′
z) = −p′x

r
in 1 + αη < z < 1 + H,

αw′
t + α2(u′w′

x + w′w′
z) = −p′z

r
in 1 + αη < z < 1 + H,

u′
x + w′

z = 0 in 1 + αη < z < 1 + H,

w′ = 0 on z = 1 + H,

w′ + αηw′
z +

α2η2

2
w′

zz = ηt + αu′ηx + α2u′
zηηx on z = 1,

(r − 1)η + p − p′ + αη(pz − p′z) +
α2η2

2
(pzz − p′zz) = 0 on z = 1,

u′
z − αw′

x = 0 in 1 + αη < z < 1 + H.

(3.17)

Since one uses a perturbation method, the variables are expanded in powers of α:

u = u0 + αu1 + α2u2 + ...,

w = w0 + αw1 + α2w2 + ...,

p = p0 + αp1 + α2p2 + ...,

η = η0 + αη1 + α2η2 + ...,

u′ = u′
0 + αu′

1 + α2u′
2 + ...,

w′ = w′
0 + αw′

1 + α2w′
2 + ...,

p′ = p′0 + αp′1 + α2p′2 + ... .

One will study the systems corresponding to each order of approximation such as
O(1), O(α), O(α2) and then, one must combine the results in order to have the
final equations in terms of the initial variables u, u′ and η.

At order O(1), one has the following 13 equations

u0t = −p0x in 0 < z < 1 + αη, (3.18)

p0z = 0 in 0 < z < 1 + αη, (3.19)

u0x + w0z = 0 in 0 < z < 1 + αη, (3.20)
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w0 = 0 on z = 0, (3.21)

w0 = η0t on z = 1, (3.22)

(r − 1)η0 + (p0 − p′0) = 0 on z = 1, (3.23)

u0z = 0 in 0 < z < 1 + αη, (3.24)

u′
0t = −p′0x

r
in 1 + αη < z < 1 + H, (3.25)

p′0z = 0 in 1 + αη < z < 1 + H, (3.26)

u′
0x + w′

0z = 0 in 1 + αη < z < 1 + H, (3.27)

w′
0 = 0 on z = 1 + H, (3.28)

w′
0 = η0t on z = 1, (3.29)

u′
0z = 0 in 1 + αη < z < 1 + H. (3.30)

It follows from (3.24) and (3.30) that u0 and u′
0 are independent of z. Similarly, it

follows from (3.19) and (3.26) that p0 and p′0 are also independent of z.

Taking the derivative of (3.23) with respect to x, one has

p0x − p′0x = (1 − r)η0x at z = 1

Since both the left hand side and the right hand side of the previous equation
contain terms that are independent of z, one can consider that this equation is true
for all values of z. Similarly, in some expressions below, one will not specify that
they are obtained at the interface z = 1.

Substituting (3.18) and (3.25) into the previous equation leads to

−u0t + ru′
0t = (1 − r)η0x.

Taking the derivative of this equation with respect to x leads to

−u0xt + ru′
0xt = (1 − r)η0xx. (3.31)

Integrating equation (3.20) with respect to z, one has

w0 = −zu0x + A(x, t),

where A(x, t) is an arbitrary function of x and t.

Applying (3.21) to the previous equation, one obtains A(x, t) = 0. Therefore

w0 = −zu0x.
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Consequently, one deduces from equation (3.22) that

u0x = −η0t.

Taking the derivative of this equation with respect to t, one has

u0xt = −η0tt. (3.32)

By using the same procedure, one wishes to represent u′
0xt by η′

0tt.

Integrating equation (3.27) with respect to z, one has

w′
0 = −zu′

0x + B(x, t),

where B(x, t) is an arbitrary function of x and t.

Applying (3.28) to the previous equation, one obtains B(x, t) = (1+H)u′
0x. There-

fore
w′

0 = (−z + 1 + H)u′
0x.

Consequently, one deduces from (3.29) that

u′
0x =

1

H
η0t.

Taking the derivative of this equation with respect to t yields

u′
0xt =

1

H
η0tt. (3.33)

Substituting (3.32) and (3.33) into (3.31) one obtains

η0tt −
1 − r

1 + r
H

η0xx = 0. (3.34)

The following expressions summarize some of the results obtained so far, which will
be useful later on:

u0x = −η0t in 0 < z < 1 + αη,

w0z = η0t in 0 < z < 1 + αη,

w0 = zη0t in 0 < z < 1 + αη, (3.35)

u′
0x =

1

H
η0t in 1 + αη < z < 1 + H,

w′
0z = − 1

H
η0t in 1 + αη < z < 1 + H,

w′
0 =

−z + 1 + H

H
η0t in 1 + αη < z < 1 + H.
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At order O(α), one has the following 13 equations (the expressions inside the big
brackets are obtained by using (3.35):

u1t + u0u0x = −p1x in 0 < z < 1 + αη, (3.36)

=
(
u1t − u0η0t

)

w0t = −p1z in 0 < z < 1 + αη, (3.37)

u1x + w1z = 0 in 0 < z < 1 + αη, (3.38)

w1 = 0 on z = 0, (3.39)

w1 + η0w0z = η1t + u0η0x on z = 1, (3.40)

=
(
w1 + η0η0t

)

(r − 1)η1 + p1 − p′1 = 0 on z = 1, (3.41)

u1z = w0x in 0 < z < 1 + αη, (3.42)

=
(
zη0xt

)

u′
1t + u′

0u
′
0x = −p′1x

r
in 1 + αη < z < 1 + H, (3.43)

=
(
u′

1t +
1

H
u′

0η0t

)

w′
0t = −p′1z

r
in 1 + αη < z < 1 + H, (3.44)

u′
1x + w′

1z = 0 in 1 + αη < z < 1 + H, (3.45)

w′
1 = 0 on z = 1 + H, (3.46)

w′
1 + η0w

′
0z = η1t + u′

0η0x on z = 1, (3.47)

=
(
w′

1 −
1

H
η0η0t

)

u′
1z = w′

0x in 1 + αη < z < 1 + H (3.48)

=
(−z + 1 + H

H
η0xt

)
.

Taking the derivative of equation (3.41) twice with respect to x, one has

(r − 1)η1xx = −p1xx + p′1xx at z = 1.

Taking the derivative of (3.36) and (3.43) with respect to x and then substituting
them into the previous equation, one obtains

(r − 1)η1xx = u1xt − ru′
1xt − (u0η0t +

r

H
u′

0η0t)x at z = 1. (3.49)
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Taking the derivative of (3.38) with respect to z, one has

w1zz = −u1xz

= −zη0xxt (using (3.42)).

Integrating twice this equation with respect to z, one has

w1 = −z3

6
η0xxt + zC(x, t) + D(x, t),

where C(x, t) and D(x, t) are arbitrary functions of x and t.
Inserting the previous equation into (3.39) yields D(x, t) = 0. Therefore

w1 = −z3

6
η0xxt + zC(x, t). (3.50)

Applying the previous equation to (3.40), one has

−η0η0t + η1t + u0η0x = −1

6
η0xxt + C(x, t),

and one deduces that

C(x, t) =
1

6
η0xxt − η0η0t + η1t + u0η0x.

Substituting the expression of C(x, t) into (3.50), one has

w1 = (−z3

6
+

z

6
)η0xxt − z(η0η0t − η1t − u0η0x). (3.51)

Taking the derivative of (3.38) with respect to t and then using (3.51), one has

u1xt = −w1zt

= (
z2

2
− 1

6
)η0xxtt + (η0η0t)t − η1tt − (u0η0x)t. (3.52)

Let us now use the same arguments for u′
1xt.

Taking the derivative of (3.45) with respect to z, one has

w′
1zz = −u′

1xz

=
z − (1 + H)

H
η0xxt (using (3.48)).
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Integrating twice this equation with respect to z gives

w′
1 =

( z3

6H
− z2 1 + H

2H

)
η0xxt + zE(x, t) + F (x, t),

where E(x, t) and F (x, t) are arbitrary functions of x and t.

Applying the previous equation to (3.46), one obtains

F (x, t) =
(1 + H)3

3H
η0xxt − (1 + H)E(x, t).

Therefore

w′
1 =

( z3

6H
− z2 1 + H

2H
+

(1 + H)3

3H

)
η0xxt + (z − 1 − H)E(x, t). (3.53)

Applying (3.53) to (3.47), one has

E(x, t) =
2H2 + 6H + 3

6H
η0xxt −

1

H2
η0η0t −

1

H
η1t −

1

H
u′

0η0x.

Substituting the expression of E(x, t) into (3.53), one has

w′
1 =

( z3

6H
− z2 1 + H

2H
+ z

2H2 + 6H + 3

6H
− 2H2 + 3H + 1

6H

)
η0xxt

−z − 1 − H

H2
(η0η0t + Hη1t + Hu′

0η0x). (3.54)

Taking the derivative of (3.45) with respect to t and then using (3.54), one has

−u′
1xt =

( z2

2H
− z

1 + H

H
+

2H2 + 6H + 3

6H

)
η0xxtt

− 1

H2
(η0η0t)t −

1

H
η1tt −

1

H
(u′

0η0x)t (3.55)

Substituting (3.52) and (3.55) into (3.49), one obtains

η1tt −
1 − r

1 + r
H

η1xx −
rH+1

3

1 + r
H

η0xxtt +
r

H2 − 1

1 + r
H

(η0η0t)t

+
1

1 + r
H

(u0η0x +
r

H
u′

0η0x)t +
1

1 + r
H

(u0η0t +
r

H
u′

0η0t)x = 0 on z = 1. (3.56)
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Let us now summarize some of the results obtained at orders O(1) and O(α):

u1z = w0x = zη0xt in 0 < z < 1 + αη,

p1z = −w0t = −zη0tt in 0 < z < 1 + αη,

w1z = −u1x in 0 < z < 1 + αη, (3.57)

u′
1z = w′

0x =
−z + 1 + H

H
η0xt in 1 + αη < z < 1 + H,

p′1z = −rw′
0t = −r

−z + 1 + H

H
η0tt in 1 + αη < z < 1 + H,

w′
1z = −u′

1x in 1 + αη < z < 1 + H.

At order O(α2) one has the following 13 equations (the expressions inside the big
brackets are obtained by using the previous results written in (3.35) and (3.57))

u2t + (u0u1)x + w0u1z = −p2x in 0 < z < 1 + αη,(3.58)

=
(
u2t + (u0u1)x + z2η0tη0xt

)

w1t + u0w0x = −p2z in 0 < z < 1 + αη, (3.59)

u2x + w2z = 0 in 0 < z < 1 + αη, (3.60)

w2 = 0 on z = 0, (3.61)

−η1w0z − η0w1z + η2t + u0η1x + u1η0x = w2 on z = 1, (3.62)(
− η1η0t + η0u1x + η2t + u0η1x + u1η0x

)
=

(r − 1)η2 + (p2 − p′2) + η0(p1z − p′1z) = 0 on z = 1, (3.63)(
(r − 1)η2 + (p2 − p′2) − (1 − r)η0η0tt

)
=

u2z − w1x = 0 in 0 < z < 1 + αη, (3.64)

u′
2t + (u′

0u
′
1)x + w′

0u
′
1z = −p′2x

r
in 1 + αη < z < 1 + H,

(
u′

2t + (u′
0u

′
1)x + (

−z + 1 + H

H
)2η0tη0xt

)
= (3.65)

w′
1t + u′

0w
′
0x = −p′2z

r
in 1 + αη < z < 1 + H,

(
w′

1t +
−z + 1 + H

H
u′

0η0xt −
−z + 1 + H

H2
η2

0t

)
= (3.66)

u′
2x + w′

2z = 0 in 1 + αη < z < 1 + H, (3.67)

w′
2 = 0 on z = 1 + H, (3.68)

η1w
′
0z − η0w

′
1z + η2t + u′

0η1x + u′
1η0x = w′

2 on z = 1, (3.69)
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(
− 1

H
η1η0t + η0u

′
1x + η2t + u′

0η1x + u′
1η0x

)
=

u′
2z − w′

1x = 0 in 1 + αη < z < 1 + H. (3.70)

Taking the derivation of equation (3.63) with respect to x, one has

(r − 1)η2x = (−p2 + p′2)x + (1 − r)(η0η0tt)x on z = 1.

Substituting (3.58) and (3.65) into the previous equation, one has

(r − 1)η2x = u2t − ru′
2t + (u0u1 − ru′

0u
′
1)x

+(1 − r)η0tη0xt + (1 − r)(η0η0tt)x on z = 1.

Taking the derivation of the previous equation with respect to x, one has

(r − 1)η2xx = u2xt − ru′
2xt + (u0u1 − ru′

0u
′
1)xx

+(1 − r)(η0tη0xt)x + (1 − r)(η0η0tt)xx on z = 1. (3.71)

Taking the derivation of (3.60) with respect to z gives

w2zz = −u2xz

= −w1xx (using (3.64)).

Taking the derivation of (3.51) twice with respect to x and then substituting into
the previous equation, one obtains

w2zz = (
z3

6
− z

6
)η0xxxxt + z(η0η0t − η1t − u0η0x)xx.

Integrating this equation twice with respect to z gives

w2 = (
z5

120
− z3

36
)η0xxxxt +

z3

6
(η0η0t − η1t − u0η0x)xx

+zG(x, t) + J(x, t), (3.72)

where G(x, t) and J(x, t) are arbitrary functions of x and t.

Applying (3.72) to (3.61) yields

J(x, t) = 0.
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Applying (3.72) to (3.62) yields

− 7

360
η0xxxxt +

1

6
(η0η0t − η1t − u0η0x)xx + G(x, t)

= −η1η0t + η0u1x + η2t + u0η1x + u1η0x.

Consequently

G(x, t) =
7

360
η0xxxxt −

1

6
(η0η0t − η1t − u0η0x)xx

−η1η0t + η0u1x + η2t + u0η1x + u1η0x.

Substituting the expressions of G(x, t) and J(x, t) into (3.72) yields the expression
for w2. Taking the derivative of this expression twice with respect to z and t and
using (3.60), one has

u2xt =
1

45
η0xxxxtt −

1

3
(η0η0t − η1t − u0η0x)xxt

+(η1η0t)t − (η0u1x)t − η2tt − (u0η1x)t − (u1η0x)t, on z = 1. (3.73)

Using the same arguments, one looks for the expression of u′
2xt.

Taking the derivative of (3.67) with respect to z, one has

w′
2zz = −u′

2xz

= −w′
1xx (using (3.70)).

Taking the derivative of equation (3.54) twice with respect to x and then substitut-
ing into the previous equation, one obtains

−w′
2zz =

( z3

6H
− z2 1 + H

2H
+ z

2H2 + 6H + 3

6H
− 2H2 + 3H + 1

6H

)
η0xxxxt

−z − 1 − H

H2
(η0η0t + Hη1t + Hu′

0η0x)xx.

Integrating this equation twice with respect to z, one has

−w′
2 =

( z5

120H
− z4 1 + H

24H
+ z3 2H2 + 6H + 3

36H
− z2 2H2 + 3H + 1

12H

)
η0xxxxt

−
( z3

6H2
− z2 1 + H

2H2

)
(η0η0t + Hη1t + Hu′

0η0x)xx + zI(x, t) + K(x, t),
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where I(x, t) and K(x, t) are arbitrary functions of x and t.

Applying the previous equation to (3.68), one obtains

K(x, t) = −2H5 − 15H3 − 25H2 − 15H − 3

90H
η0xxxxt

−(1 + H)3

3H2
(η0η0t + Hη1t + Hu′

0η0x)xx − (1 + H)I(x, t).

Substituting the value of K(x, t) into the expression of w′
2, one obtains

−w′
2 =

( z5

120H
− z4 1 + H

24H
+ z3 2H2 + 6H + 3

36H
− z2 2H2 + 3H + 1

12H

−2H5 − 15H3 − 25H2 − 15H − 3

90H

)
η0xxxxt (3.74)

−
( z3

6H2
− z2 1 + H

2H2
+

(1 + H)3

3H2

)
(η0η0t + Hη1t + Hu′

0η0x)xx

+(z − 1 − H)I(x, t).

Applying the previous equation to (3.69), one obtains

I(x, t) = −8H4 − 60H2 − 60H − 15

360H
η0xxxxt

−2H2 + 6H + 3

6H2
(η0η0t + Hη1t + Hu′

0η0x)xx

+
1

H
η0u

′
1x +

1

H2
η1η0t +

1

H
η2t +

1

H
u′

0η1x +
1

H
u′

1η0x.

Substituting the expression of I(x, t) into (3.74), one obtains the expression of w′
2.

Taking the deriving twice of it with respect to z and t, then using the derivative
with respect to x of (3.67), one has

u′
2xt = −H3

45
η0xxxxtt −

1

3
(η0η0t + Hη1t + Hu′

0η0x)xxt

+
1

H
(η0u

′
1x)t +

1

H2
(η1η0t)t +

1

H
η2tt +

1

H
(u′

0η1x)t +
1

H
(u′

1η0x)t

on z = 1. (3.75)

Substituting (3.73) and (3.75) into (3.71), one has

η2tt −
1 − r

1 + r
H

η2xx −
1

1 + r
H

(u0u1 − ru′
0u

′
1)xx −

1 − r

1 + r
H

(η0tη0xt)x
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−
1+rH

3

1 + r
H

η1xxtt +
r

H2 − 1

1 + r
H

(η1η0t)t (3.76)

+
1

1 + r
H

(u0η1x +
r

H
u′

0η1x)t +
1

1 + r
H

(u1η0 +
r

H
u′

1η0)xt

−
1
45

+ rH3

45

1 + r
H

η0xxxxtt +
1−r
3

1 + r
H

(η0η0t)xxt −
1 − r

1 + r
H

(η0η0tt)xx

−
1
3

1 + r
H

(u0η0x + rHu′
0η0x)xxt = 0 on z = 1.

After solving the problem at orders O(1), O(α) and O(α2), it is now possible to
combine the results in order to obtain an equation in terms of the initial variables.

Combining equations (3.34) with α times equation (3.56) and α2 times equation
(3.76), one has:

ηtt −
1 − r

1 + r
H

ηxx +
α

1 + r
H

(u0η0t +
r

H
u′

0η0t)x (3.77)

− α2

1 + r
H

(u0u1 − ru′
0u

′
1)xx −

α2(1 − r)

1 + r
H

(η0tη0xt)x −
α2(1 − r)

1 + r
H

(η0η0tt)xx

+
α

1 + r
H

(u0η0x +
r

H
u′

0η0x + αu0η1x + α
r

H
u′

0η1x)t + α
r

H2 − 1

1 + r
H

(η0η0t + αη1η0t)t

+
α2

1 + r
H

(u1η0 +
r

H
u′

1η0)xt − α
1+rH

3

1 + r
H

η0xxtt − α2
1+rH

3

1 + r
H

η1xxtt

−
α2

45
+ α2rH3

45

1 + r
H

η0xxxxtt + α2
1−r
3

1 + r
H

(η0η0t)xxt −
α2

1 + r
H

(
1

3
u0η0x +

rH

3
u′

0η0x)xxt = 0

on z = 1.

Combining (3.32) with α times (3.52) and α2 times (3.73), then integrating the
result with respect to t yields

ux = −ηt + α
(1

3
η0xxt + η0η0t − u0η0x

)

+α2
( 1

45
η0xxxxt −

1

3
(η0η0t − η1t − u0η0x)xx (3.78)

+η1η0t − η0u1x − u0η1x − u1η0x

)
on z = 1.

Similarly, combining (3.33) with α times (3.55) and α2 times (3.75) and then inte-
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grating the result with respect to t yield

u′
x =

1

H
ηt + α

(
− H

3
η0xxt +

1

H2
η0η0t +

1

H
u′

0η0x

)
(3.79)

+α2
(
− H3

45
η0xxxxt −

1

3
(η0η0t + Hη1t + Hu′

0η0x)xx +
1

H
η0u

′
1x

+
1

H2
η1η0t +

1

H
u′

0η1x +
1

H
u′

1η0x

)
on z = 1.

Equations (3.77)–(3.79) contain a part of the decomposition of u as u0, u1; a part
of the decomposition of u′ as u′

0, u′
1 and a part of the decomposition of η as η0, η1.

It is shown in Appendix A how to go back from the variables u0, u1, u′
0, u′

1, η0 and
η1 to u, u′ and η. One obtains the following equations for modelling the waves at
the interface.

ηtt −
1 − r

1 + r
H

ηxx −
α

1 + r
H

(uux − ru′u′
x)x +

α

1 + r
H

(uη +
r

H
u′η)xt

+
1
3
α

1 + r
H

(u − rH2u′)xxxt −
α2

1 + r
H

(uxuxx − rH2u′
xu

′
xx)x (3.80)

+
α2

1 + r
H

(ηuxt + rHηu′
xt)xx +

2
15

α2

1 + r
H

(u − rH4u′)xxxxxt = 0,

ux = −ηt + α
1

3
ηxxt − α(uη)x + α2 1

45
ηxxxxt − α2 1

3
(ηηt − uηx)xx, (3.81)

u′
x =

1

H
ηt − α

H

3
ηxxt + α

1

H
(ηu′)x − α2H3

45
ηxxxxt − α2 1

3
(ηηt + Hu′ηx)xx. (3.82)

3.3 Remarks

The limit r = 0 and H = 1 corresponds to a one layer fluid. The equation (3.80)
recovers the model (3.39) proposed by Daripa (2006) [17] (when surface tension is
ignored and α is equal to β) for modelling water waves.

The combination of equation (3.34) and α times equation (3.56) for a one layer fluid
recovers the model (3.41) proposed by Johnson (1997) [31] for water waves, which
is correct up to order O(α).
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Note that, the system of three equations (3.80)–(3.82) is written with horizontal ve-
locities at the interface. It is not appropriate for numerical simulations, as explained
at the end of section 4.3. However, from this system, one can obtain other systems
written with arbitrary horizontal velocities, which can be studied numerically. The
technique to do this will be shown in the next chapter.

In the next chapter, we will use another method to model the problem at hand.
A system of three equations free of the assumption α = β will be obtained. This
system is written with horizontal velocities at the bottom and at the roof. We
will demonstrate that it is formally equivalent to system (3.80)–(3.82) in the case
α = β.



Chapter 4

Boussinesq systems for interfacial
waves

In this chapter, an asymptotic expansion method will be used to derive two model
systems for interfacial waves of the configuration described at the beginning of
chapter 3. The first model system contains quadratic nonlinear terms. The second
one contains both quadratic and cubic nonlinear terms. It corresponds to the case
where the square of thickness ratio is close to the density ratio. Comparison between
the Boussinesq system with quadratic nonlinear terms and the system of three
equations obtained in the previous chapter will be also established.

4.1 Governing equations

In this section, the origin of the systems of partial differential equations that will
be derived at the end of this chapter is explained. The methods are standard, but
to my knowledge some of these equations are derived for the first time.

As the flows are assumed to be irrotational, one is dealing with potential flows.
Velocity potentials φ∗ = φ∗((x∗, z∗), t∗) in Ωt∗ and φ∗′ = φ∗′((x∗, z∗), t∗) in Ω′

t∗ are
introduced, so that the velocity vectors v∗ and v∗′ are given by

v∗ = ∇φ∗, (4.1)

v∗′ = ∇φ∗′ . (4.2)

57
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Writing the continuity equations in each layer leads to

φ∗
x∗x∗ + φ∗

z∗z∗ = 0 for − h < z∗ < η∗(x∗, t∗), (4.3)

φ∗′
x∗x∗ + φ∗′

z∗z∗ = 0 for η∗(x∗, t∗) < z∗ < h′. (4.4)

The boundary of the system {Ωt∗ , Ω
′
t∗} has two parts: the flat bottom z∗ = −h and

the flat roof z∗ = h′. The impermeability conditions along these rigid boundaries
give

φ∗
z∗ = 0 at z∗ = −h, (4.5)

φ∗′
z∗ = 0 at z∗ = h′. (4.6)

The kinematic conditions along the interface, namely D(η∗ − z∗)/Dt∗ = 0, give

η∗
t∗ = φ∗

z∗ − φ∗
xη

∗
x at z∗ = η∗(x∗, t∗), (4.7)

η∗
t∗ = φ∗′

z∗ − φ∗′
x η∗

x at z∗ = η∗(x∗, t∗). (4.8)

The dynamic boundary condition imposed on the interface, namely the continuity
of pressure since surface tension effects are neglected, gives

ρ

(
∂φ∗

∂t∗
+

1

2
|∇φ∗|2 + gz∗

)
= ρ′

(
∂φ∗′

∂t∗
+

1

2
|∇φ∗′|2 + gz∗

)
at z∗ = η∗(x∗, t∗),

(4.9)
where g is the acceleration due to gravity.

The system of seven equations (4.3)–(4.9) represents the starting model for the
study of wave propagation at the interface between two fluids. Combined with ini-
tial conditions or periodicity conditions, it is the classical interfacial wave problem,
which has been studied for more than a century. A nice feature of this formulation
is that the pressures in both layers have been removed. In some cases, it is advan-
tageous to keep the pressures in the equations. For example, Bridges & Donaldson
(2007) [10] in their study of the criticality of two-layer flows provide an appendix
on the inclusion of the lid pressure in the calculation of uniform flows. In the next
sections, we will derive simplified models based on certain additional assumptions
on wave amplitude, wavelength and fluid depth.
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(a) in physical space (b) in dimensionless variables

h’

0

−h

z*=η*(x*,t*)

ρ’

ρ

x*

z*

1+H

1+H−θ’

1

θ
0

z=1+αη(x,t)

Figure 4.1: Sketch of solitary waves propagating at the interface between two fluid layers
with different densities ρ′ and ρ. The roof and the bottom of the fluid domain are flat
and rigid boundaries, located respectively at z∗ = h′ and z∗ = −h. (a) Sketch of a
solitary wave of depression in physical space; (b) Sketch of a solitary wave of elevation in
dimensionless coordinates, with the thickness h of the bottom layer taken as unit length
and the long wave speed c as unit velocity. The dashed lines represent arbitrary fluid
levels θ and 1 + H − θ′ in each layer. The dimensionless number H is equal to h′/h.

4.2 System of three equations in the limit of long,

weakly dispersive waves

The derivation follows closely that of Bona et al. (2002) [5] for a single layer. Let
introduce two small parameters

α =
A

h
≪ 1, β =

h2

ℓ2
≪ 1

as well as Stokes number

St =
α

β
=

Aℓ2

h3
≈ 1,

where A is typical amplitude, ℓ is typical wavelength and h is the depth of the
bottom layer. As mention in section 3.2 one can chose the depth of the roof layer
as reference depth. The assumption that the ratio of liquid depths is neither too
small nor too large is also made.

The procedure is most transparent when working with the variables scaled in such
a way that the dependent quantities appearing in the problem are all of order one,
while the assumptions about small amplitude and long wavelength appear explicitly
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connected with small parameters in the equations of motion. Such consideration
leads to the scaled, dimensionless variables

x∗ = ℓx, z∗ = h(z−1), η∗ = Aη, t∗ = ℓt/c0, φ∗ = gAℓφ/c0, φ∗′ = gAℓφ′/c0,
(4.10)

where c0 =
√

gh. The speed c0, which represents the long wave speed in the limit
r → 0, is not necessarily the most natural choice for interfacial waves. The natural
choice would be to take

c0 =
√

gh

√
1 − r

1 + r/H
,

which is the speed of long waves in the configuration shown in Figure 4.1. It does
not matter for the asymptotic expansions to be performed later.

In these new variables, the set of equations (4.3)–(4.9) becomes after reordering

βφxx + φzz = 0 in 0 < z < 1 + αη, (4.11)

φz = 0 on z = 0, (4.12)

ηt + αφxηx −
1

β
φz = 0 on z = 1 + αη, (4.13)

βφ′
xx + φ′

zz = 0 in 1 + αη < z < 1 + H, (4.14)

φ′
z = 0 on z = 1 + H, (4.15)

ηt + αφ′
xηx −

1

β
φ′

z = 0 on z = 1 + αη, (4.16)

(
η + φt +

1

2
αφ2

x +
1

2

α

β
φ2

z

)
= r

(
η + φ′

t +
1

2
αφ

′2
x +

1

2

α

β
φ

′2
z

)
on z = 1+αη. (4.17)

One represents the potential φ as a formal expansion

φ((x, z), t) =
∞∑

m=0

fm(x, t)zm. (4.18)

Demanding that φ formally satisfy Laplace’s equation (4.11) leads to

β

∞∑

m=0

(
fm(x, t)

)
xx

zm +
∞∑

m=2

m(m − 1)fm(x, t)zm−2 = 0.

One deduces from the previous equation the recurrence relation

(m + 2)(m + 1)fm+2(x, t) = −β
(
fm(x, t)

)
xx

, ∀m = 0, 1, 2, . . . . (4.19)
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Let F (x, t) = f0(x, t) denote the velocity potential at the bottom z = 0 and use
(4.19) repeatedly to obtain

f2k(x, t) =
(−1)kβk

(2k)!

∂2kF (x, t)

∂x2k
, ∀k = 0, 1, 2, . . . ,

f2k+1(x, t) =
(−1)kβk

(2k + 1)!

∂2kf1(x, t)

∂x2k
, ∀k = 0, 1, 2, . . . . (4.20)

Inserting (4.18) into the boundary condition (4.12) yields

f1(x, t) +
∞∑

m=2

mfm(x, t)zm−1 = 0 on z = 0.

It results
f1(x, t) = 0.

Consequently, it follows from (4.20) that

f2k+1(x, t) = 0, ∀k = 0, 1, 2, ...

Therefore

φ(x, z, t) =
∞∑

k=0

(−1)kβk

(2k)!

∂2kF (x, t)

∂x2k
z2k.

The following expressions show some partial derivatives with respect to time or
space of φ at the interface, which are useful later on.

φx|z=1+αη =
∞∑

k=0

(−1)kβk

(2k)!

∂2k+1F (x, t)

∂x2k+1
z2k|z=1+αη

=
∂F

∂x
+

[
− 1

2
β

∂3F

∂x3
(1 + αη)2

]
+ O(β2)

=
∂F

∂x
− 1

2
β

∂3F

∂x3
+ O(β2), (4.21)

φt|z=1+αη =
∞∑

k=0

(−1)kβk

(2k)!

∂2k+1F (x, t)

∂x2k∂t
z2k|z=1+αη

=
∂F

∂t
+

[
− 1

2
β

∂3F

∂x2∂t
(1 + αη)2

]
+

[ 1

24
β2 ∂5F

∂x4∂t
(1 + αη)4

]
+ O(β3)

=
∂F

∂t
− 1

2
β

∂3F

∂x2∂t
− αβη

∂3F

∂x2∂t
+

1

24
β2 ∂5F

∂x4∂t
+ O(β3), (4.22)
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φz|z=1+αη =
∞∑

k=0

(−1)k+1βk+1

(2k + 1)!

∂2k+2F (x, t)

∂x2k+2
z2k+1|z=1+αη

= −β
∂2F

∂x2
(1 + αη) +

[1

6
β2∂4F

∂x4
(1 + αη)3

]
(4.23)

+
[
− 1

120
β3∂6F

∂x6
(1 + αη)5

]
+ O(β4)

= −β
∂2F

∂x2
− αβη

∂2F

∂x2
+

1

6
β2∂4F

∂x4
+

1

2
αβ2η

∂4F

∂x4
− 1

120
β3∂6F

∂x6
+ O(β4).

Substituting (4.21) and (4.23) into (4.13) yields

ηt + αηx

(∂F

∂x
− 1

2
β

∂3F

∂x3

)

− 1

β

(
− β

∂2F

∂x2
− αβη

∂2F

∂x2
+

1

6
β2∂4F

∂x4
+

1

2
αβ2η

∂4F

∂x4
− 1

120
β3∂6F

∂x6

)
+ O(β3) = 0.

Let call ∂F (x, t)/∂x = u(x, t); u(x, t) is the horizontal velocity at the bottom. The
previous equation can be written in the form

ηt + αηxu − 1

2
αβηxuxx + ux + αηux

−1

6
βuxxx −

1

2
αβηuxxx +

1

120
β2uxxxxx + O(β3) = 0.

or equivalently

ηt + ux + α(uη)x −
1

6
βuxxx −

1

2
αβηxuxx

−1

2
αβηuxxx +

1

120
β2uxxxxx + O(β3) = 0. (4.24)

Similarly, one presents the potential φ′ as a formal expansion

φ′(x, z, t) =
∞∑

m=0

f ′
m(x, t)(1 + H − z)m. (4.25)

Demanding that φ′ formally satisfy Laplace’s equation (4.14) leads to

β

∞∑

m=0

(
f ′

m(x, t)
)

xx
(1 + H − z)m +

∞∑

m=2

m(m − 1)f ′
m(x, t)(1 + H − z)m−2 = 0.
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One deduces from the previous equation the recurrence relation

(m + 2)(m + 1)f ′
m+2(x, t) = −β

(
f ′

m(x, t)
)

xx
, ∀m = 0, 1, 2, ... (4.26)

Let F ′(x, t) = f ′
0(x, t) denote the velocity potential at the roof z = 1 + H and use

(4.26) repeatedly to obtain

f ′
2k(x, t) =

(−1)kβk

2k!

∂2kF ′(x, t)

∂x2k
, ∀k = 0, 1, 2, ...

f ′
2k+1(x, t) =

(−1)kβk

(2k + 1)!

∂2kf ′
1(x, t)

∂x2k
, ∀k = 0, 1, 2, . . . . (4.27)

Inserting (4.25) into the boundary condition (4.15) implies that

f ′
1(x, t) = 0.

Consequently, it follows from (4.27) that

f ′
2k+1(x, t) = 0, ∀k = 0, 1, 2, . . . ,

Therefore

φ′((x, z), t) =
∞∑

k=0

(−1)kβk

(2k)!

∂2kF ′(x, t)

∂x2k
(1 + H − z)2k.

The following expressions show some derivatives of φ′ with respect to time or space
at the interface. They will be useful later on

φ′
x|z=1+αη =

∞∑

k=0

(−1)kβk

(2k)!

∂2k+1F ′(x, t)

∂x2k+1
(1 + H − z)2k|z=1+αη

=
∂F ′

∂x
+

[
− 1

2
β

∂3F ′

∂x3
(H − αη)2

]
+ O(β2)

=
∂F ′

∂x
− 1

2
βH2∂3F ′

∂x3
+ O(β2), (4.28)

φ′
t|z=1+αη =

∞∑

k=0

(−1)kβk

(2k)!

∂2k+1F ′(x, t)

∂x2k∂t
(1 + H − z)2k|z=1+αη

=
∂F ′

∂t
+

[
− 1

2
β

∂3F ′

∂2x∂t
(H − αη)2

]
+

[ 1

24
β2 ∂5F ′

∂x4∂t
(H − αη)4

]
+ O(β3)

=
∂F ′

∂t
− 1

2
βH2 ∂3F ′

∂x2∂t
+ αβHη

∂3F ′

∂x2∂t

+
1

24
β2H4 ∂5F ′

∂x4∂t
+ O(β3), (4.29)
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φ′
z|z=1+αη =

∞∑

k=0

(−1)kβk+1

(2k + 1)!

∂2k+2F ′(x, t)

∂x2k+2
(1 + H − z)2k+1|z=1+αη

= β
∂2F ′

∂x2
(H − αη) +

[
− β2

6

∂4F ′

∂x4
(H − αη)3

]

+
[ β3

120

∂6F ′

∂x6
(H − αη)5

]
+ O(β4)

= βH
∂2F ′

∂x2
− αβη

∂2F ′

∂x2
− 1

6
β2H3∂4F ′

∂x4
+

1

2
αβ2H2η

∂4F ′

∂x4

+
1

120
β3H5∂6F ′

∂x6
+ O(β4). (4.30)

Substituting (4.28) and (4.30) into (4.16), one obtain

ηt + αηx

(∂F ′

∂x
− 1

2
βH2∂3F ′

∂x3

)
− 1

β

(
βH

∂2F ′

∂x2
−αβη

∂2F ′

∂x2

−1

6
β2H3∂4F

∂x4
+

1

2
αβ2H2η

∂4F ′

∂x4
+

1

120
β3H5∂6F ′

∂x6

)
+ O(β3) = 0.

Let call ∂F ′(x, t)/∂x = u′(x, t); u′(x, t) is the horizontal velocity at the roof. The
previous equation can be written in the form

ηt + αηxu
′ − 1

2
αβH2ηxu

′
xx − Hu′

x + αηu′
x +

1

6
βH3u′

xxx

−1

2
αβH2ηu′

xxx −
1

120
β2H5u′

xxxxx + O(β3) = 0,

or equivalently

ηt − Hu′
x + α(u′η)x +

1

6
βH3u′

xxx (4.31)

−1

2
αβH2ηxu

′
xx −

1

2
αβH2ηu′

xxx −
1

120
β2H5u′

xxxxx + O(β3) = 0.

It is important at this stage that H = O(1).

Substituting the partial derivatives of φ and φ′ with respect to t, x, z into the
dynamic condition (4.17) yields

(1 − r)η +
(∂F

∂t
− 1

2
β

∂3F

∂x2∂t
− αβη

∂3F

∂x2∂t
+

1

24
β2 ∂5F

∂x4∂t

)
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−r
(∂F ′

∂t
− 1

2
βH2 ∂3F ′

∂x2∂t
+ αβHη

∂3F ′

∂x2∂t
+

1

24
β2H4 ∂5F ′

∂x4∂t

)

+
α

2

(∂F

∂x
− 1

2
β

∂3F

∂x3

)2

− r
α

2

(∂F ′

∂x
− 1

2
βH2∂3F ′

∂x3

)2

+
1

2

α

β

(
− β

∂2F

∂x2

)2

− 1

2
r
α

β

(
βH

∂2F ′

∂x2

)2

+ O(β3) = 0.

Using u and u′ instead of
∂F

∂x
and

∂F ′

∂x
, the previous equation becomes

(1 − r)η +
∂F

∂t
− r

∂F ′

∂t
− 1

2
βuxt +

1

2
βrH2u′

xt

−αβηuxt − αβrHηu′
xt +

1

24
β2uxxxt −

1

24
β2rH4u′

xxxt +
1

2
α(u2 − βuuxx)

−1

2
αr(u′2 − βH2u′u′

xx) +
1

2
αβ(u2

x − rH2u′2
x ) + O(β3) = 0.

Taking the derivative with respect to x of this equation, one obtains

(1 − r)ηx + ut − ru′
t + α(uux − ru′u′

x) −
1

2
βuxxt +

1

2
βrH2u′

xxt (4.32)

−αβ(ηuxt)x − αβrH(ηu′
xt)x +

1

24
β2uxxxxt −

1

24
β2rH4u′

xxxxt

−1

2
αβ(uuxx − rH2u′u′

xx)x + αβ(uxuxx − rH2u′
xu

′
xx) + O(β3) = 0.

The three equations (4.24), (4.31) and (4.32) provide a Boussinesq system of equa-
tions describing waves at the interface η(x, t) between two fluid layers based on the
horizontal velocities u and u′ along the bottom and the roof, respectively. It is
correct up to second order in α, β. In the limit when r → 0 and H → 1, (4.24)
and (4.32) recover the model equations (2.19) and (2.20) obtained by Bona et al.
(2002) [5] for water waves.

We can derive a class of systems which are formally equivalent to the system we have
just derived. This will be accomplished by considering changes in the dependent
variables and by making use of lower-order relations in higher-order terms. Toward
this goal, begin by letting w(x, t) be the scaled horizontal velocity corresponding
to the physical depth (1 − θ)h below the unperturbed interface, and w′(x, t) be
the scaled horizontal velocity corresponding to the physical depth (H − θ′)h above
the unperturbed interface. The ranges for the parameters θ and θ′ are 0 ≤ θ ≤ 1
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and 0 ≤ θ′ ≤ H. Note that (θ, θ′) = (0, 0) leads to w = u and w′ = u′, while
(θ, θ′) = (1, H) leads to both velocities evaluated along the interface. A formal use
of Taylor’s formula with remainder shows that

w = φx|z=θ =
(
Fx −

1

2
βz2Fxxx +

1

24
β2z4Fxxxxx

)
|z=θ + O(β3)

= Fx −
1

2
βθ2Fxxx +

1

24
β2θ4Fxxxxx + O(β3)

= u − 1

2
βθ2uxx +

1

24
β2θ4uxxxx + O(β3)

as β → 0. In Fourier space, the latter relationship may be written as

ŵ =
(
1 +

1

2
βθ2k2 +

1

24
β2θ4k4

)
û + O(β3).

Inverting the positive Fourier multiplier yields

û =
(
1 +

1

2
βθ2k2 +

1

24
β2θ4k4

)−1

ŵ + O(β3)

=
(
1 − 1

2
βθ2k2 +

5

24
β2θ4k4

)
ŵ + O(β3)

as β → 0. Thus there appears the relationship

u = w +
1

2
βθ2wxx +

5

24
β2θ4wxxxx + O(β3). (4.33)

Similarly

w′ = φ′
x|z=1+H−θ′

=
(
F ′

x −
1

2
βF ′

xxx(1 + H − z)2 +
1

24
β2F ′

xxxxx(1 + H − z)4
)
|z=1+H−θ′ + O(β3)

= F ′
x −

1

2
βθ′2F ′

xxx +
1

24
β2θ′4F ′

xxxxx + O(β3)

= u′ − 1

2
βθ′2u′

xx +
1

24
β2θ′4u′

xxxx + O(β3)

and

ŵ′ =
(
1 +

1

2
βθ′2k2 +

1

24
β2θ′4k4

)
û′ + O(β3).

Inverting the positive Fourier multiplier yields

û′ =
(
1 +

1

2
βθ′2k2 +

1

24
β2θ′4k4

)−1

ŵ′ + O(β3)

=
(
1 − 1

2
βθ′2k2 +

5

24
β2θ′4k4

)
ŵ′ + O(β3)
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and thus the relationship

u′ = w′ +
1

2
βθ′2w′

xx +
5

24
β2θ′4w′

xxxx + O(β3). (4.34)

Substituting (4.33) into (4.24) yields

ηt +
(
wx +

1

2
βθ2wxxx +

5

24
β2θ4wxxxxx

)

+α
(
(w +

1

2
βθ2wxx)η

)
x
− 1

6
β
(
wxxx +

1

2
βθ2wxxxxx

)

−1

2
αβηxwxx −

1

2
αβηwxxx +

1

120
β2wxxxxx + O(β3) = 0,

or equivalently

ηt + wx + α(wη)x +
1

2
β
(
θ2 − 1

3

)
wxxx

+
1

2
αβ(θ2 − 1)(ηwxx)x +

5

24
β2

(
θ2 − 1

5

)2

wxxxxx + O(β3) = 0. (4.35)

Substituting (4.34) into (4.31) yields

ηt − H
(
w′

x +
1

2
βθ′2w′

xxx +
5

24
β2θ′4w′

xxxxx

)

+α

((
w′ +

1

2
βθ′2w′

xx

)
η

)

x

+
1

6
βH3

(
w′

xxx +
1

2
βθ′2w′

xxxxx

)

−1

2
αβH2ηxw

′
xx −

1

2
αβH2ηw′

xxx −
1

120
β2H5w′

xxxxx + O(β3) = 0,

or equivalently

ηt − Hw′
x + α(w′η)x −

1

2
βH

(
θ′2 − 1

3
H2

)
w′

xxx

+
1

2
αβ

(
θ′2 − H2

)
(ηw′

xx)x −
5

24
β2H

(
θ′2 − 1

5
H2

)2

w′
xxxxx + O(β3) = 0. (4.36)

Substituting (4.33) and (4.34) into (4.32) yields

(1 − r)ηx +
(
wt +

1

2
βθ2wxxt +

5

24
β2θ4wxxxxt

)



68 Chapter 4. Boussinesq systems for interfacial waves

−r
(
w′

t +
1

2
βθ′2w′

xxt +
5

24
β2θ′4w′

xxxxt

)

+α
(
(w +

1

2
βθ2wxx)(wx +

1

2
βθ2wxxx) − r(w′ +

1

2
βθ′2w′

xx)(w
′
x +

1

2
βθ′2w′

xxx)
)

−1

2
β
(
wxxt +

1

2
βθ2wxxxxt

)
+

1

2
βrH2

(
w′

xxt +
1

2
βθ′2w′

xxxxt

)

−αβ(ηwxt)x − αβrH(ηw′
xt)x +

1

24
β2wxxxxt −

1

24
β2rH4w′

xxxxt

−1

2
αβ(wwxx − rH2w′w′

xx)x + αβ(wxwxx − rH2w′
xw

′
xx) + O(β3) = 0

or equivalently

(1 − r)ηx + wt − rw′
t + α(wwx − rw′w′

x) +
1

2
β
[
(θ2 − 1)w − r(θ′2 − H2)w′

]
xxt

+
1

24
β2

[
(θ2 − 1)(5θ2 − 1)w − r(θ′2 − H2)(5θ′2 − H2)w′

]
xxxxt

(4.37)

−αβ
[
(ηwxt)x + rH(ηw′

xt)x

]
+

1

2
αβ

[
(θ2 − 1)wwxxx − r(θ′2 − H2)w′w′

xxx

]

+
1

2
αβ

[
(θ2 + 1)wxwxx − r(θ′2 + H2)w′

xw
′
xx

]
+ O(β3) = 0.

The system of three equations (4.35)–(4.37) is formally equivalent to the system
of three equations (4.24), (4.31) and (4.32) but it allows one to choose the fluid
levels θ and θ′ as reference for the horizontal velocities. Among all these systems
that model the same physical problem one can select those with the best dispersion
relations. Neglecting terms of O(α2, β2, αβ), the system (4.35)–(4.37) reduces to





ηt + wx + α(wη)x +
1

2
β
(
θ2 − 1

3

)
wxxx = 0

ηt − Hw′
x + α(w′η)x −

1

2
βH

(
θ′2 − 1

3
H2

)
w′

xxx = 0

(1 − r)ηx + wt − rw′
t + α(wwx − rw′w′

x) +
1

2
β
[
(θ2 − 1)w − r(θ′2 − H2)w′

]
xxt

= 0.

(4.38)

In order to find the dispersion relation of this system, one looks for solution η, w,
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w′ proportional to exp(ikx − iωt) of the linearized system




ηt + wx +
1

2
β
(
θ2 − 1

3

)
wxxx = 0

ηt − Hw′
x −

1

2
βH

(
θ′2 − 1

3
H2

)
w′

xxx = 0

(1 − r)ηx + wt − rw′
t +

1

2
β
[
(θ2 − 1)w − r(θ′2 − H2)w′

]
xxt

= 0.

(4.39)

In appendix B, after several calculations, one obtains the dispersion relation of
system (4.39). In dimensionless variables

ω2

k2
=

H(1 − r)
(
1 − β(θ2− 1

3
)k2

2

)(
1 − β(θ′2− 1

3
H2)k2

2

)

H
(
1 − β(θ2−1)k2

2

)(
1 − β(θ′2− 1

3
H2)k2

2

)
+ r

(
1 − β(θ2− 1

3
)k2

2

)(
1 − β(θ′2−H2)k2

2

) ,

(4.40)
and in physical variables

ω2

k2
=

ghH(1 − r)
(
1 − h2(θ2− 1

3
)k2

2

)(
1 − h2(θ′2− 1

3
H2)k2

2

)

H
(
1 − h2(θ2−1)k2

2

)(
1 − h2(θ′2− 1

3
H2)k2

2

)
+ r

(
1 − h2(θ2− 1

3
)k2

2

)(
1 − h2(θ′2−H2)k2

2

) .

(4.41)

When w and w′ are velocities at the bottom and at the top (θ = θ′ = 0), one has

ω2

k2
= gh

H(1 − r)
(
1 + 1

6
h2k2

)(
1 + 1

6
H2h2k2

)

H
(
1 + 1

2
h2k2

)(
1 + 1

6
H2h2k2

)
+ r

(
1 + 1

6
h2k2

)(
1 + 1

2
H2h2k2

) (4.42)

The formulation (4.40) or (4.41) is also the dispersion relation of the system (4.35)–
(4.37)

In figure 4.2 two cases of the dispersion relation for Boussinesq system (4.38) are
plotted in comparison with the dispersion relation for the linearized interfacial wave
equations, without the long wave assumption.

Note that the dotted curve cuts the k axis. It means that the system (4.38), as
well as system (4.35)–(4.37), written with horizontal velocities at the interface are
not appropriate for numerical simulation. At the end of section 4.4 we will discuss
more about the possible choices of the reference fluid levels θ and θ′ which ensure

that
ω2

k2
takes positive values for all k.
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Figure 4.2: Dispersion relation (4.41) for the right-running wave solution to the Boussi-
nesq system (4.38) with r = 0.9, H = 0.6; dashed curve: horizontal velocities at the
bottom and the roof (θ = θ′ = 0); dotted curve: horizontal velocities at the interface
(θ = 1, θ′ = H). The thick curve represents the dispersion relation for the linearized
interfacial wave equations, without the long wave assumption (see for example Dias &
Vanden-Broeck (2004) [20], see also (1.15)).

4.3 Comparison system (3.80)–(3.82) with sys-

tem (4.35)–(4.37)

System (3.80)–(3.82) is written with horizontal velocities u, u′ at the interface while
system (4.35)–(4.37) can be applied to horizontal velocities at any fluid levels. More-
over, system (3.80)–(3.82) was established by assuming that α = β while the deriva-
tion of system (4.35)–(4.37) asks only α = O(β). In order to compare these two
systems, one will write system (4.35)–(4.37) with the horizontal velocities at the
interface and α = β. It is worth pointing out that, unlike in section 4.2, one uses
here u and u′ to denote the horizontal velocities at the interface of respectively the
lower and upper layer.

System (4.35)–(4.37) written for the horizontal velocities at the interface (θ = 1
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and θ′ = H), up to order α2 is




ηt + ux + α(uη)x +
1

3
αuxxx +

2

15
α2uxxxxx = 0

ηt − Hu′
x + α(u′η)x −

1

3
αH3u′

xxx −
2H5

15
α2u′

xxxxx = 0

(1 − r)ηx + ut − ru′
t + α(uux − ru′u′

x) − α2(ηuxt + rHηu′
xt)x

+α2(uxuxx − rH2u′
xu

′
xx) = 0.

(4.43)

Adding H times the first equation to r times the second equation of system (4.43)
yields

(r + H)ηt + H(u − ru′)x + α(Huη + ru′η)x

+
1

3
αH(u − rH2u′)xxx +

2

15
α2H(u − rH4u′)xxxxx = 0.

Taking the derivative with respect to time of the previous equation, one has

(r + H)ηtt + H(u − ru′)xt + α(Huη + ru′η)xt

+
1

3
αH(u − rH2u′)xxxt +

2

15
α2H(u − rH4u′)xxxxxt = 0.

Equivalently

ηtt +
1

1 + r
H

(u − ru′)xt +
α

1 + r
H

(uη +
r

H
u′η)xt

+
1
3
α

1 + r
H

(u − rH2u′)xxxt +
2
15

α2

1 + r
H

(u − rH4u′)xxxxxt = 0. (4.44)

Taking the derivative with respect to x of the third equation of system (4.43), one
has

(1 − r)ηxx + (u − ru′)xt + α(uux − ru′u′
x)x

−α2(ηuxt + rHηu′
xt)xx + α2(uxuxx − rH2u′

xu
′
xx)x = 0.

Dividing the previous equation by
(
1 + r

H

)
yields

1 − r

1 + r
H

ηxx +
1

1 + r
H

(u − ru′)xt +
α

1 + r
H

(uux − ru′u′
x)x

− α2

1 + r
H

(ηuxt + rHηu′
xt)xx +

α2

1 + r
H

(uxuxx − rH2u′
xu

′
xx)x = 0. (4.45)



72 Chapter 4. Boussinesq systems for interfacial waves

Deducing side by side (4.44) to (4.45), one has

ηtt −
1 − r

1 + r
H

ηxx −
α

1 + r
H

(uux − ru′u′
x)x +

α

1 + r
H

(uη +
r

H
u′η)xt

+
1
3
α

1 + r
H

(u − rH2u′)xxxt −
α2

1 + r
H

(uxuxx − rH2u′
xu

′
xx)x (4.46)

+
α2

1 + r
H

(ηuxt + rHηu′
xt)xx +

2
15

α2

1 + r
H

(u − rH4u′)xxxxxt = 0.

This equation is exactly equation (3.80).

From the first equation of (4.43), one has

ux = −ηt − α(uη)x −
1

3
αuxxx −

2

15
α2uxxxxx. (4.47)

Up to order α, equation (4.47) can be written as

ux = −ηt − α(uη)x −
1

3
αuxxx

Substituting the previous equation into (4.47), one has

ux = −ηt − α(uη)x −
1

3
α
(
− ηt − α(uη)x −

1

3
αuxxx

)
xx

− α2 2

15
uxxxxx.

Equivalently

ux = −ηt − α(uη)x +
1

3
αηxxt +

1

3
α2(uxη + uηx)xx − α2 1

45
uxxxxx.

Up to order O(1), (4.47) can be written as ux = −ηt. Substituting it into term in
α2 of the previous equation, one obtains

ux = −ηt − α(uη)x +
1

3
αηxxt −

1

3
α2(ηηt − uηx)xx + α2 1

45
ηxxxxt. (4.48)

This is exactly equation (3.81).

Similarly, from the second equation of (4.43), one has

u′
x =

1

H
ηt + α

1

H
(u′η)x − α

H2

3
u′

xxx − α2 2H4

15
u′

xxxxx. (4.49)
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Up to order α, equation (4.49) can be written as

u′
x =

1

H
ηt + α

1

H
(u′η)x − α

H2

3
u′

xxx.

Substituting the previous equation into (4.49), one has

u′
x =

1

H
ηt + α

1

H
(u′η)x

−α
H2

3

( 1

H
ηt + α

1

H
(u′η)x − α

H2

3
u′

xxx

)
xx

− α2 2H4

15
u′

xxxxx.

Equivalently

u′
x =

1

H
ηt + α

1

H
(u′η)x

−α
H

3
ηxxt − α2H

3
(u′

xη + u′ηx)xx − α2H4

45
u′

xxxxx.

Up to order O(1), (4.49) can be written as u′
x =

1

H
ηt. Substituting into term in α2

of the previous equation, one obtains

u′
x =

1

H
ηt + α

1

H
(u′η)x − α

H

3
ηxxt

−α2 1

3
(ηηt + Hu′ηx)xx − α2H3

45
ηxxxxt. (4.50)

This equation is exactly equation (3.82).

The three equations (4.46), (4.48) and (4.50) show that one can obtain system
(3.80)–(3.82) from system (4.35)–(4.37). The system (4.35)–(4.37) is more general
than system (3.80)–(3.82) because it is free of the assumption α = β and it can be
applied to horizontal velocities at any fluid levels.

As mentioned in section 4.2, the system (4.43) is not appropriate from the numer-
ical point of view. Therefore the system of three equations (3.80)–(3.82) which is
formally equivalent to it, is also not good for numerical simulation.

4.4 System of two equations

The systems obtained in the previous section are not appropriate for numerical
computations. One would like to obtain a system of two evolution equations for
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the variables η and W = w − rw′. In fact, Benjamin & Bridges (1997) [3] (see also
Dias & Bridges (1994) [18], Craig at al. (2005) [16], Agafontsev et al. (2007) [1])
formulated the interfacial wave problem using Hamiltonian formalism and showed
that the canonical variables for interfacial waves are η∗(x∗, t∗) and ρφ∗(x∗, η∗, t∗) −
ρ′φ∗′(x∗, η∗, t∗), where φ and φ′ are respectively velocity potentials of the lower and
upper layer.

At leading order, the first two equations of system (4.38) give





ηt + wx = 0,

ηt − Hw′
x = 0.

One deduces that
wx = −Hw′

x.

One assumes that the fluids is at rest as x → ∞. Integrating the previous equation
with respect to x, the constant will take value 0. Therefore

w = −Hw′.

It leads to

w =
H

r + H
W + O(β), w′ =

−1

r + H
W + O(β). (4.51)

Adding H times the first equation to r times the second equation of system (4.38)
yields

(r + H)ηt + H(w − rw′)x + α
[
(Hw + rw′)η

]
x

+
H

2
β
[(

θ2 − 1

3

)
wxxx − r

(
θ′2 − 1

3
H2

)
w′

xxx

]
= 0.

(4.52)

Up to order O(β), the third and the fourth term of (4.52) can be written

α
[
(Hw + rw′)η

]
x

= α
[( H2

r + H
W − r

r + H
W

)
η
]

x

= α
H2 − r

r + H
(Wη)x,

and

1

2
βH

[
(θ2 − 1

3
)wxxx − r

(
θ′2 − 1

3
H2

)
w′

xxx

]
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=
1

2
β

H2(θ2 − 1
3
) + rH

(
θ′2 − 1

3
H2

)

r + H
Wxxx

=
1

2
β

H2(θ2 − 1) + rH
(
θ′2 − H2

)
+ 2

3
H2 + 2

3
rH3

r + H
Wxxx

= β
(1

2

H2S

r + H
+

1

3

H2(1 + rH)

r + H

)
Wxxx,

where
S = (θ2 − 1) +

r

H

(
θ′2 − H2

)
.

So that equation (4.52) becomes

(r + H)ηt + HWx + α
H2 − r

r + H
(Wη)x + β

(1

2

H2S

r + H
+

1

3

H2(1 + rH)

r + H

)
Wxxx = 0.

Dividing this equation by (r + H) yields

ηt = − H

r + H
Wx − α

H2 − r

(r + H)2
(Wη)x − β

(
1

2

H2S

(r + H)2
+

1

3

H2(1 + rH)

(r + H)2

)
Wxxx.

In the third equation of system (4.38), the term in α can be written in the form

α(wwx − rw′w′
x) = α

( H2

(r + H)2
WWx −

r

(r + H)2
WWx

)

= α
H2 − r

(r + H)2
WWx,

and the term in β can be written as

1

2
β
[
(θ2 − 1)w − r(θ′2 − H2)w′

]
xxt

=
1

2
β
(
(θ2 − 1)

H

r + H
− r(θ′2 − H2)

(−1)

r + H

)
Wxxt

=
1

2
β

H(θ2 − 1) + r
(
θ′2 − H2

)

r + H
Wxxt

=
β

2

HS

r + H
Wxxt.

Then the third equation of system (4.38) becomes

(1 − r)ηx + Wt + α
H2 − r

(r + H)2
WWx +

β

2

HS

r + H
Wxxt = 0,
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or equivalently

Wt = −(1 − r)ηx − α
H2 − r

(r + H)2
WWx −

1

2
β

HS

r + H
Wxxt.

The final system of two equations for interfacial waves in the limit of long, weakly
dispersive waves, can be written in terms of the horizontal velocities at arbitrary
fluid levels as (in dimensionless form)




ηt = − H

r + H
Wx − α

H2 − r

(r + H)2
(Wη)x − β

(
1

2

H2S

(r + H)2
+

1

3

H2(1 + rH)

(r + H)2

)
Wxxx

Wt = −(1 − r)ηx − α
H2 − r

(r + H)2
WWx −

1

2
β

HS

r + H
Wxxt,

(4.53)
or as (in physical variables)





η∗
t∗ = −hd1W

∗
x∗ − d4(W

∗η∗)x∗ − h3d2W
∗
x∗x∗x∗ ,

W ∗
t∗ = −g(1 − r)η∗

x∗ − d4W
∗W ∗

x∗ − h2d3W
∗
x∗x∗t∗ ,

(4.54)

where

d1 =
H

r + H
, d2 =

H2

2(r + H)2

(
S +

2

3
(1 + rH)

)
, d3 =

1

2
Sd1, d4 =

H2 − r

(r + H)2
.

(4.55)

Note that, the case S = 0 corresponding to the horizontal velocities at the interface,
this system recovers system (1.1) that Craig et al. (2005) [16] obtained by using
Hamiltonian method.

Another remark is: Choi & Camassa (1999) [13] also derived a system of two equa-
tions (see system (1.2)), but it is different from ours. In particular, their coefficient
d2 is equal to 0, and their equation for Wt possesses an extra quadratic term ηηx.
The reason is that their ‘W ’ is the mean horizontal velocity through the upper
layer. The value of S which best approximates the Choi & Camassa equations is
S = −2

3
(1 + rH). Indeed the coefficient d2 then vanishes. This particular value

for S can be explained as follows. The leading order correction to the horizontal
velocity is given by

w(z) = u − 1
2
βz2uxx.

The value of z, say z = θ, for which the mean velocity

w =

∫ 1

0

w(z) dz
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is equal to w(θ) is given by θ = 1/
√

3. Similarly, one finds θ′ = (1/
√

3)H for the
upper layer. Therefore S = −2

3
(1 + rH).

Recall that the scaling (4.10) that led to our Boussinesq system can be written in
the form

x∗

h
=

x√
β

,
η∗

h
= αη,

t∗

h/c0

=
t√
β

,
W ∗

gh/c0

= αW

with c0 =
√

gh, α ≪ 1, β ≪ 1 and α = O(β).

Linearizing system (4.54) and looking for solutions (η∗,W ∗) proportional to exp(ikx∗−
iωt∗) leads to the dispersion relation

ω2

k2
=

gh(1 − r)(d1 − d2k
2h2)

1 − d3k2h2
.

Plots of the dispersion relation are given in the next section. Since 0 ≤ θ ≤ 1 and
0 ≤ θ′ ≤ H, the definition of S implies that

−1 − rH ≤ S ≤ 0.

It follows that d3 ≤ 0 and therefore the denominator 1 − d3h
2k2 is positive. In

order to have well-posedness (that is ω2/k2 positive for all values of k), d2 must be
negative, which is the case if S ≤ −2

3
(1 + rH). Finally the condition one wants to

impose on S is that

−(1 + rH) ≤ S ≤ −2

3
(1 + rH). (4.56)

It is satisfied if one takes the horizontal velocities on the bottom and on the roof
(S = −(1 + rH)) or the mean horizontal velocities in the lower and upper layers
(S = −2

3
(1 + rH)), but it is not if one takes the horizontal velocities along the

interface (S = 0).

4.5 Extended Boussinesq system of two equations

with cubic terms

In system (4.53), when |H2 − r| is small, the quadratic nonlinear terms become so
small compared to other terms. In this case, one needs to go one step beyond and
take into consideration the cubic terms. Again one would like to obtain a system
of two equations for the variables η and W = w − rw′. One derives first a general
system of two equations with cubic terms. Then one introduces a specific scaling
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for the case where |H2 − r| is small. A lot of terms in the system drop out because
they are of higher order.

The leading order terms lead to the same equation as before, namely w = −Hw′.
And again

w =
H

r + H
W + O(β), w′ =

−1

r + H
W + O(β). (4.57)

At the next order, the first two equations of (4.38) give

wx + α(wη)x +
1

2
β

(
θ2 − 1

3

)
wxxx = −Hw′

x + α(w′η)x −
1

2
βH

(
θ′2 − 1

3
H2

)
w′

xxx.

Integrating this equation with respect to x. As the fluids are assumed to be at rest
when x → ∞, the constant takes value 0. Therefore

w + αwη +
1

2
β(θ2 − 1

3
)wxx = −Hw′ + αw′η − 1

2
βH

(
θ′2 − 1

3
H2

)
w′

xx.

It is equivalent to

w = −Hw′ + α(w′ − w)η − 1

2
β

(
H

(
θ′2 − 1

3
H2

)
w′

xx +
(
θ2 − 1

3

)
wxx

)
.

Dividing this equation by H, one obtains

w′ = − 1

H
w + α

1

H
(w′ − w)η − 1

2H
β

(
H

(
θ′2 − 1

3
H2

)
w′

xx +
(
θ2 − 1

3

)
wxx

)
.

Applying (4.57) to terms containing α or β in the right hand side of the two previous
equations, one has

w = −Hw′ − α
1 + H

r + H
Wη +

1

2
βH

(
θ′2 − 1

3
H2

)
−

(
θ2 − 1

3

)

r + H
Wxx, (4.58)

and

w′ = −w

H
− α

1 + H

H(r + H)
Wη +

1

2
β

(
θ′2 − 1

3
H2

)
−

(
θ2 − 1

3

)

r + H
Wxx. (4.59)

In Appendix B, after several substitutions, one obtains the system of two equations
(B-10) and (B-17). Switching back to the physical variables

x∗ = ℓx, η∗ = Aη, t∗ = ℓt/c0, W ∗ = gAW/c0, with c0 =
√

gh,
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the system (B-10),(B-17) becomes

(r + H)η∗
t∗ + hHW ∗

x∗ +
H2 − r

r + H
(W ∗η∗)x∗ +

1

2
h3H

H(θ2 − 1
3
) + r(θ′2 − 1

3
H2)

r + H
W ∗

x∗x∗x∗

−1

h

r(1 + H)2

(r + H)2
(W ∗η∗2)x∗ +

1

2
h2rH(1 + H)

(θ′2 − 1
3
H2) − (θ2 − 1

3
)

(r + H)2
(W ∗η∗)x∗x∗x∗

+
1

2
h2

(
rH(1 + H)

(θ′2 − 1
3
H2) − (θ2 − 1

3
)

(r + H)2
+

H2(θ2 − 1) − r(θ′2 − H2)

r + H

)
(W ∗

x∗x∗η∗)x∗

−1

4
h5

(rH2
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)2

(r + H)2
− 5

6

H2(θ2 − 1
5
)2 + rH(θ′2 − 1

5
H2)2

r + H

)
W ∗

x∗x∗x∗x∗x∗

= 0,

(4.60)

and

g(1 − r)η∗
x∗ + W ∗

t∗ +
H2 − r

(r + H)2
W ∗W ∗

x∗ +
1

2
h2H(θ2 − 1) + r(θ′2 − H2)

r + H
W ∗

x∗x∗t∗

−1

h

r(1 + H)2

(r + H)3
(W ∗2η∗)x∗ +

1

2
h2rH(1 + H)

(θ′2 − 1
3
H2) − (θ2 − 1

3
)

(r + H)3
(W ∗W ∗

x∗x∗)x∗

−h
H(1 − r)

r + H
(η∗W ∗

x∗t∗)x∗ +
1

2
h2H2(θ2 − 1) − r(θ′2 − H2)

(r + H)2
W ∗W ∗

x∗x∗x∗

+
1

2
h2H2(θ2 + 1) − r(θ′2 + H2)

(r + H)2
W ∗

x∗W ∗
x∗x∗

−1

2
hrH(1 + H)

(θ2 − 1) − (θ′2 − H2)

(r + H)2
(W ∗η∗)x∗x∗t∗

+h4

(
rH ((θ2 − 1) − (θ′2 − H2))

(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

4(r + H)2

+
H(θ2 − 1)(5θ2 − 1) + r(θ′2 − H2)(5θ′2 − H2)

2(r + H)

)
W ∗

x∗x∗x∗x∗t∗ = 0.

(4.61)

The specific scaling for small values of |H2 − r|,

x∗

h
=

x

β
,

t∗

h/c0

=
t

α
,

η∗

h
= αη,

W ∗

gh/c0

= αW, H2 − r = αC,

with c0 =
√

gh, α ≪ 1, β ≪ 1, α = O(β), will lead to a new Boussinesq system with
cubic terms. A lot of terms in (4.60)-(4.61) drop out (see appendix B) because they
are of higher order. Going back to physical variables, the system of two equations
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becomes




η∗
t∗ = −h

H

r + H
W ∗

x∗ − h3
(1

2

H2S

(r + H)2
+

1

3

H2(1 + rH)

(r + H)2

)
W ∗

x∗x∗x∗

− H2 − r

(r + H)2
(W ∗η∗)x∗ +

1

h

r(1 + H)2

(r + H)3
(W ∗η∗2)x∗

W ∗
t∗ = −g(1 − r)η∗

x∗ − 1

2
h2 HS

r + H
W ∗

x∗x∗t∗

− H2 − r

(r + H)2
W ∗W ∗

x∗ +
1

h

r(1 + H)2

(r + H)3
(W ∗2η∗)x∗ .

(4.62)

This is the same system as (4.54) with two extra terms, the cubic terms. One will
call it a system of extended Boussinesq equations (see also Craig et al. (2005) [16]).
Linearizing (4.62) gives the same dispersion relation as before.

Note that, if we take the horizontal velocities at the interface, S will vanish. In this
case, system (4.62) is exactly system (2.9) that Craig et al. (2005) [16] obtained by
using Hamiltonian method. Therefore one can consider that our systems (4.54) and
(4.62) are more general than the models that Craig et al. have obtained for small
amplitude, long wave regime. This important remark reinforces the confidence to
the judicious of our models which will be studied numerically in the next chapter.

Note that the value S = 0 does not belong to the interval that ensure the well-
posedness of the problem (see (4.56)). Therefore, the systems (1.1) and (2.9) are
not appropriate for the numerical simulation.



Chapter 5

Numerical studies

In this chapter, we study numerically the Boussinesq systems (4.54) and (4.62) ob-
tained in the previous chapter. The propagation of solitary waves of both elevation
and depression will be shown. The inelastic collision between two solitary waves of
elevation or between two solitary waves of depression will be discussed in detail.

In order to do this, one needs to construct numerical schemes and impose initial
conditions. The approximate solutions to Boussinesq systems at time 0 will be
taken as initial conditions.

5.1 Boussinesq system with quadratic nonlinear

terms

In order to integrate the Boussinesq system (4.54) numerically, one introduces a
slightly different change of variables. The stars still denote the physical variables
and no new notation is introduced for the dimensionless variables:

x =
x∗

h
, η =

η∗

h
, t =

c

h
t∗, W =

W ∗

c
, with c2 = gh

H(1 − r)

r + H
. (5.1)

The system (4.54) then becomes




ηt = −d1Wx − d4(Wη)x − d2Wxxx

Wt = − 1

d1

ηx − d4WWx − d3Wxxt

. (5.2)

81
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Figure 5.1: Dispersion relation (5.3) for the right-running wave solution to the Boussinesq
system (5.2) with S = −1 − rH, r = 0.9: (a) H = 1.2, (b) H = 0.8. The dashed curves
represent the dispersion relation for the linearized interfacial wave equations, without the
long wave assumption (see for example Dias & Vanden-Broeck (2004) [20], see also (1.15)).

The dispersion relation of system (5.2) is

ω2

k2
=

d1 − d2k
2

d1(1 − d3k2)
. (5.3)

As k → 0,
ω2

k2
→ 1. As k → ∞,

ω2

k2
→ d2

d1d3

= 1 +
2(1 + rH)

3S
.

Typical plots of the dispersion relation (5.3) are given in Figure 5.1. Comparisons
between the approximate and the exact dispersion relations, given by

ω2

k2
=

tanh k tanh kH

d1k(tanh kH + r tanh k)

are also shown. A very good agreement is found for small k.
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5.1.1 Numerical scheme

Taking the Fourier transform of the system (5.2) gives





η̂t = −d1(ik)Ŵ − d4(ik)Ŵη − d2(ik)3Ŵ

Ŵt = − 1

d1

(ik)η̂ − d4

2
(ik)Ŵ 2 − d3(ik)2Ŵt

.

Equivalently





η̂t = (d2k
2 − d1)ikŴ − d4ikŴη

Ŵt = − 1

d1(1 − d3k2)
ikη̂ − d4

2(1 − d3k2)
ikŴ 2

.

The system of differential equations (5.2) will be solved by a pseudo-spectral method
in space with a number N of Fourier modes on a periodic domain of length L. For
most applications, N = 1024 was found to be sufficient. The time integration is
performed using the classical fourth-order explicit Runge–Kutta scheme. The time
step ∆t was optimized through a trial and error process and was found to have a
dependence in 1/N . In this chapter, ∆t is used to denote the time steps in Fourier
domain from −π to π. The time step for the periodic domain L will be L/(2×π)∗∆t.

5.1.2 Initial conditions

Since the main goal is to study the propagation and the collision of solitary waves,
one first looks for solitary wave solutions of the system (5.2). As opposed to the
KdV equation, there are no explicit solitary wave solutions of the Boussinesq system
that are physically relevant. Therefore one must look for an approximate solitary
wave solution to (5.2) as in Bona & Chen (1998) [4] (see also Dougalis & Mitsotakis
(2004) [22] for the existence of solitary wave solutions). The leading-order terms
give

ηt = −d1Wx, Wt = − 1

d1

ηx.

A solution representing a right-running wave is

W (x − t) =
1

d1

η(x − t).



84 Chapter 5. Numerical studies

One then looks for solutions of system (5.2) in the form

W (x, t) =
1

d1

[
η(x, t) + M(x, t)

]
,

where M is assumed to be small compared to η and W . Substituting the expression
for W into (5.2) and neglecting higher-order terms yields





ηt = −ηx − Mx −
d4

d1

(η2)x −
d2

d1

ηxxx

ηt = −ηx − Mt −
1

2

d4

d1

(η2)x − d3ηxxt

. (5.4)

Comparing the two equations of system (5.4), one has

Mx +
d4

d1

(η2)x +
d2

d1

ηxxx = Mt +
1

2

d4

d1

(η2)x + d3ηxxt.

Assume that the solitary wave goes to the right. Remark that, in (5.1), c is the
phase velocity of system (4.54) up to order O(1). Moreover, the horizontal velocity
combination W is scaled by c, so that the waves will propagate with an approximate
velocity of about 1 in the new variables. Since M is relatively small, one can consider
that Mt ≈ −Mx. Therefore, from the previous equation, one has

Mx = −1

4

d4

d1

(η2)x −
1

2

d2

d1

ηxxx +
1

2
d3ηxxt. (5.5)

Substituting the expression for Mx into one of the equations of system (5.4) yields

ηt + ηx +
3d4

4d1

(η2)x +
d2

2d1

ηxxx +
d3

2
ηxxt = 0. (5.6)

This is essentially the model equation that was studied by Bona et al. (1981) [7].

Looking for solitary wave solutions of (5.6) in the form

η = η0 sech2[κ(x + x0 − V t)] (5.7)

leads to two equations for κ and V :




−V + 1 + 2(d2/d1)κ
2 − 2d3κ

2V = 0

d4η0 − 4d2κ
2 + 4d1d3κ

2V = 0

,
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and x0 can take arbitrary value.

Solving for κ2 and V yields

κ2 =
d4η0

4
(
d2 − d1d3 − 1

2
d3d4η0

) , V = 1 +
d4η0

2d1

.

One looks for M by integrating (5.5) with respect to x

M = −1

4

d4

d1

η2 − 1

2

d2

d1

ηxx +
1

2
d3ηxt + C(t),

where C(t) is an arbitrary function of t. Since the fluids are assumed to be at rest
as x → ∞, one has M(±∞, t) = 0 and η(±∞, t) = 0. Therefore C(t) = 0 and one
obtains explicitly the following expression for M

M = − d4

4d1

η2 − d2

2d1

ηxx +
d3

2
ηxt.

For a given pair (r,H), one must only consider values of η0 which are such that
κ2 > 0.

In addition, one has the condition (4.56) on S. The sign of d4 depends on the
relation between H2 and r. Let us assume first that H2 > r so that d4 > 0. In
order for the condition κ2 > 0 to be satisfied, one needs

η0

(
d2 − d1d3 −

1

2
d3d4η0

)
> 0.

The values of η0 for which the left-hand side of the inequality vanishes are

η01 = 0, η02 =
4H(r + H)(1 + rH)

3(H2 − r)S
.

Since S < 0 one has η02 < 0 and therefore η02 < η01. The coefficient of η2
0 in the

inequality is positive. Consequently one must have

η0 > η01 = 0 or η0 < η02 =
4H(r + H)(1 + rH)

3(H2 − r)S
.

This second branch is not acceptable since

4H(r + H)(1 + rH)

3(H2 − r)
> 1 + rH > −S > 0.
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Therefore
4H(r + H)(1 + rH)

3(H2 − r)S
< −1,

which gives an amplitude larger than the depth of the lower layer!

Similarly, when H2 < r one has d4 < 0. In order for the condition κ2 > 0 to be
satisfied, one needs

η0

(
d2 − d1d3 −

1

2
d3d4η0

)
< 0.

The values of η0 for which the left-hand side of the inequality will vanish still are

η01 = 0, η02 =
4H(r + H)(1 + rH)

3(H2 − r)S
.

In this case η02 > 0, the coefficient of η2
0 in the inequality is negative. Consequently

one must have

η0 < η01 = 0 or η0 > η02 =
4H(r + H)(1 + rH)

3(H2 − r)S
.

This second branch is not acceptable since

4H(r + H)(1 + rH)

3(H2 − r)S
= H

4(r + H)

3(r − H2)

(1 + rH)

(−S)
> H

4r

3r
1 > H,

which gives an amplitude larger than the depth of the upper layer.
The summary of acceptable values for η0 is given in the table below:

H2 − r > 0 0 < η0 < H

H2 − r < 0 −1 < η0 < 0

For a “thick” upper layer (H2 > r), the solitary waves are of elevation, while they
are of depression for a “thick” bottom layer (H2 < r). The weakly nonlinear theory
developed in this section does not provide any bounds on the amplitude of the
solitary waves. We have added a physical constraint based on the fact that both
layers are bounded by flat solid boundaries. It is well-known in the framework of
full interfacial wave equations (see for example Laget & Dias (1997) [34]) that the
rigid top and bottom provide natural bounds on the solitary wave amplitudes.

Different positions of the initial solitary wave along the horizontal axis can be
obtained by varying the value of x0. The initial condition for the left-running wave
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can be constructed easily from the numerical point of view. If the pair ηinitial(x, 0)
and Winitial(x, 0) is an initial condition for right-running wave, the pair ηinitial(x, 0)
and −Winitial(x, 0) will be an initial solitary wave for a left-running wave. In other
words, one needs only to change the direction of the propagation of wave. This
simple technique can be explained theoretically as follows.

Using the above procedure for obtaining a right-running wave, a solution represent-
ing a left-running wave is

W (x + t) = − 1

d1

η(x + t).

Instead of having (5.5) and (5.6), one will have

Mx = −1

4

d4

d1

(η2)x −
1

2

d2

d1

ηxxx −
1

2
d3ηxxt

and

−ηt + ηx +
3d4

4d1

(η2)x +
d2

2d1

ηxxx −
d3

2
ηxxt = 0.

Looking for solitary wave solutions of the previous equation in the form

η = η0sech
2[κ(x + x0 + V t)]

lead to the same values of κ and V for the right-running wave.

The difference between the formulations of η for a right-running wave and a left-
running wave is not a problem, since the initial condition is applied at t = 0.
Moreover this difference does not influence the value of M at t = 0. Consequently,
one can keep the same expression for Winitial and simply put the opposite sign
ahead.

As the speed increases, the wave amplitude reaches a limit. In the next section,
one extends the weakly nonlinear analysis to cubic terms so that this effect can be
incorporated.

5.1.3 Numerical simulations

Once the approximate solitary wave (5.7) has been obtained, it is possible to make
it cleaner by iterative filtering. This technique has been used by several authors,
including Bona & Chen (1998) [4] and Bona et al. (2007) [6]. In order to study run-
ups and phase shifts during collision of solitary waves, it is important to use clean
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solitary waves for the initial conditions. On the other hand, in order to show only
the qualitative behavior, it is not necessary. Therefore results in this Section are
given for non-filtered solitary waves. Some results with filtered waves are described
in the next section.

In this chapter, the parameter x0 which determine the position of solitary wave in
horizontal axis will take values in Fourier domain from −π to π. The position of
solitary wave in the periodic domain L will be L/(2 × π) × x0

Figure 5.2 shows the propagation of an almost perfect right-running solitary wave
of elevation. Even though all computations are performed with dimensionless vari-
ables, it is interesting to provide numerical applications for a configuration that
could be realized in the laboratory (see Michallet & Barthélemy (1998) [35]). Keep-
ing r = 0.9 as in the figure, one could take for example h = 10 cm, h′ = 11 cm
(H = 1.1). The solitary wave amplitude is 1 cm, its speed c ≈ 23.2 cm/s, the length
of the domain 51.2 m (a bit long!). The plots (b)–(e) would then correspond to
snapshots at t = 21.5 s, t = 68.9 s, t = 94.8 s and t = 163.7 s.

Figure 5.3 shows the head-on collision of two almost perfect solitary waves of
elevation of equal amplitude moving in opposite directions. As in the one-layer case,
the solution rises to an amplitude slightly larger than the sum of the amplitudes of
the two incident solitary waves. After the collision, two similar waves emerge and
return to the form of two separated solitary waves. As a result of this collision, the
centers of the two resulting solitary waves are slightly retarded from the trajectories
of the incoming centers.

Figure 5.4 shows the head-on collision of two almost perfect solitary waves of
depression of unequal amplitudes moving in opposite directions. The numerical
simulations exhibit the same features that have been observed in the symmetric
case.

Figure 5.5 shows the overtaking collision between two solitary waves of elevation of
different amplitudes. A sequence of spatial profiles is shown. The larger one, which
is faster, eventually passes the smaller one, which is slower. After the collision, two
similar waves emerge and return to the form of two separated solitary waves. Again
there is a phase shift after the interaction. The amplitude of the solution η(x, t)
never exceeds that of the larger solitary wave, nor does it dip below the amplitude
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(e) t = 380 (f) evolution in time
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Figure 5.2: An approximate solitary wave propagating to the right. This is a solution to
the system of quadratic Boussinesq equations (5.2), with parameters H = 1.1, r = 0.9,
L = 512, N = 1024, S = −1 − rH, ∆t = 1/N , x0 = 2, η0 = 0.1.
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(c) t = 161 (d) t = 170
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(e) t = 250 (f) evolution in time
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Figure 5.3: Head-on collision of two approximate solitary waves of elevation of equal size.
This is a solution to the system of quadratic Boussinesq equations (5.2), with parameters
H = 1.2, r = 0.8, L = 512, N = 1024, S = −1 − rH, ∆t = 1/N , x0 = 2, ηℓ

0 = ηr
0 = 0.1,

where the superscripts ℓ and r stand for left and right respectively.
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(e) t = 110 (f) evolution in time
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Figure 5.4: Head-on collision of two almost perfect solitary waves of depression of different
sizes. This is a solution to the system of quadratic Boussinesq equations (5.2), with
parameters H = 0.6, r = 0.85, L = 256, N = 1024, S = −1 − rH, ∆t = 1/N , xℓ

0 = 2,
xr = −2, ηℓ

0 = −0.04, ηr
0 = −0.11, where the superscripts ℓ and r stand for left and right

respectively. In plot (f), note that −η(x, t) has been plotted for the sake of clarity.
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Figure 5.5: Overtaking collision of two almost perfect solitary waves of elevation of
different sizes. This is a solution to the system of quadratic Boussinesq equations (5.2),
with parameters H = 1.6, r = 0.95, L = 214, N = 214, S = −1 − rH, ∆t = 8/N , xℓ

0 = 2,
xr

0 = 1.4, ηℓ
0 = 0.1, ηr

0 = 0.03, where the superscripts ℓ and r stand for left and right
respectively.
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of the smaller.

5.1.4 Run-ups and phase shifts

In this section we provide accurate results on run-ups and phase shifts. The termi-
nology ‘run-up’ denotes the fact that during the collision of two counter propagating
solitary waves the wave amplitude increases beyond the sum of the two single wave
amplitudes. Since run-ups and phase shifts are always very small, they must be
computed with high accuracy. This is why it is important to clean the solitary
waves obtained by the approximate expression (5.7). One proceeds as follows. One
begins with an approximate solution, let it propagate across the domain, truncate
the leading pulse, use it as new initial value by translating it to the left of the
domain, let it propagate again and distance itself from the trailing dispersive tail,
truncate again, and repeat the whole process over and over until a clean, at least
to the eye, solitary wave is produced. Sometimes, after shifting the solitary wave
backward, one puts a small part on the left of the domain equal to 0. The larger
of this part is called ss, it will not be mentioned in all of the following iterative
cleaning. Then we use this new filtered solution as initial guess to study the various
collisions.

In order to improve the accuracy, one will choose the periodic domain larger than
that of the previous numerical experiments and the number of Fourier modes is
increased to N = 213. This change requires a computational time much longer
than in the cases above. Fortunately, one can increase about 8 times the time step
without lack of considerable precision. Some of the following numerical experiments
use this possibility, others do not.

Figure 5.6 shows the effect of cleaning. Starting with a solitary wave of depression
of amplitude

−ηmin = 0.11,

after 20 iterations of cleaning, one obtains a clean solitary wave of amplitude.

−ηmin = 0.112101.

As the amplitude reaches an asymptotic level after the iterative cleaning, the re-
sulting wave will propagate in a perfectly stable manner. One can use these clean
solutions for the following experiments to study quantitatively the head-on collision
as well as overtaking collision between solitary waves with high precision. Note
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Figure 5.6: A solitary wave produced by iterative cleaning. This is a solution to the
Boussinesq system (5.2) with parameters H = 0.6, r = 0.85, L = 1024, N = 213,
S = −1 − rH, ∆t = 6/N , x0 = 2.2, η0 = −0.11, ss = 52. (a) Profile of the initial
solitary wave. (b) Profile of the approximate solitary waves (5.7) after one propagation
across the domain. (c) Profile (b) after cleaning and translation to the left of the domain.
(d) Profile (b) after 20 iterations of cleaning. (e) Evolution of maximum amplitude −ηmin

during 20 iterations of cleaning. The amplitude reaches an asymptotic level.
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that, the smaller is the amplitude of the solitary waves, the more time one needs
to repeat the iterative cleaning. The number of iterative cleanings required for the
solitary waves of elevation and depression of equal amplitude are not always the
same. This number depends also on how much the wave is shifted backward after
each iteration of cleaning.

For solitary wave solutions to the Boussinesq system with quadratic nonlinearities
(5.2), the behavior is the same as the behavior shown for example in Craig et al.
(2006) [14]. In particular one obtains figures that look very similar to their Figure 2
for the phase shift resulting from the head-on collision of two solitary waves of equal
height, to their Figure 4 for the time evolution of the maximum amplitude of the
solution (it rises sharply to more than twice the elevation of the incident solitary
waves, then descends to below this level after crest detachment, and finally relaxes
back to almost its initial level) and to their Figure 12 for the asymmetric head-on
collision of two solitary waves of different heights. However the quantitative of these
phenomena are very small compared to what Craig et al. (2006) [14] have obtained,
they can be observed only by a zoom in a very small scaling. Therefore, in the
following studies, the phase shift will be described differently.

Figure 5.7 shows a head-on collision between two clean solitary waves of depression
of equal amplitude. The amplitude of solitary waves before cleaning was −ηmin =
0.08.
After 20 iterations of cleaning (x0 = 2.2 has been chosen), it reached

−ηmin = 0.081132.

The run-up during the collision is small:

−ηmin = 0.163961

at collision, which is slightly larger than

2 × (0.081132) = 0.162264.

Both solitary waves shift backward after the collision.

Figure 5.8 shows a head-on collision between two clean solitary waves of different
amplitudes. Starting the cleaning procedure with two solitary waves of amplitude

ηmax = 0.1 and ηmax = 0.08,
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Figure 5.7: A head-on collision between two solitary waves of depression of equal
amplitude. This is a solution to the Boussinesq system (5.2) with parameters H = 0.6,
r = 0.85, L = 1024, N = 213, S = −1 − rH, ∆t = 6/N , −ηl

min = −ηr
min = 0.081132.

(a) Initial profile. (b) Time evolution of the amplitude −ηmin. (c) Crest trajectory. (d)
Phase shift of the left-running wave; dashed curve represents the left-running wave which
propagates without collision. (e) Phase shift of the right-running wave; dashed curve
represents the right-running wave which propagates without collision.
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Figure 5.8: A head-on collision between two solitary waves of elevation of different
heights. This is a solution to the Boussinesq system (5.2) with parameters H = 1.8,
r = 0.85, L = 1024, N = 213, S − 1 − rH, ∆t = 6/N , ηl

max = 0.101567, ηr
max = 0.081011.

(a) Initial profile. (b) Time evolution of the amplitude ηmax. (c) Crest trajectory. (d)
Phase shift of the left-running wave, dashed curve represents the left-running wave which
propagates without collision. (e) Phase shift of the right-running wave, dashed curve
represents the right-running wave which propagates without collision.



98 Chapter 5. Numerical studies

after 16 iterations, one obtains two waves of amplitude

ηmax = 0.101567 and ηmax = 0.081011,

respectively. Put these two resulting solitary waves at the ends of the domain and
make them propagate in opposite directions. During the collision, the amplitude of
the solution reaches

ηmax = 0.184505.

This is slightly larger than the sum of the amplitudes of the two incident solitary
waves:

0.101567 + 0.081011 = 0.182578.

Similarly to the head-on collision between two solitary waves of equal amplitude,
both solitary waves in this numerical experiment are retarded from their trajectories
after the collision.

Figure 5.9 shows the overtaking collision between two solitary waves of elevation
of different heights. Two solitary waves of amplitudes

ηmax = 0.101 and ηmax = 0.030

have been obtained respectively from two solitary waves of amplitudes ηmax = 0.1
and ηmax = 0.03 after 30 and 60 iterations of cleaning. The solitary wave with
smaller amplitude (the shorter wave) was put in front of the solitary wave of larger
amplitude (the higher wave). As the higher wave moves faster than the shorter
one, it passes the small one after a moment and the overtaking collision takes place.
During this collision the amplitude of the solution η(x, t) never exceeds that of the
higher solitary wave, nor does it dip below the amplitude of the shorter.

After the overtaking collision, the solitary wave of higher amplitude shifts forward
while the shorter one shifts backward. In this case, one observes that the distance
that the shorter wave shifts is larger.

Image (b) is similar to Figure 18 obtained by Craig et al. (2006) [14].
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Figure 5.9: Overtaking collision between two solitary waves of elevation of different
heights. This is a solution to the Boussinesq system (5.2) with parameters H = 1.6,
r = 0.95, L = 1024×13, N = 213×13, S−1−rH, ∆t = 6/N , ηℓ

max = 0.101, ηr
max = 0.030.

(a) Initial profile. (b) Evolution in time of the amplitude ηmax; dashed and dotted lines
represent respectively the evolution in time of the amplitudes of the higher and the shorter
waves without overtaking collision. (c) Phase shift; dashed and dotted lines represent
respectively the profile of the higher and the shorter waves without overtaking collision.
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5.2 Extended Boussinesq system with cubic non-

linear terms

In order to integrate numerically the extended Boussinesq system (4.62), one in-
troduces a slightly different change of variables. The stars still denote the physical
variables and no new notation is introduced for the dimensionless variables:

x =
x∗

h
, η =

η∗

h
, t =

c

h
t∗, W =

W ∗

c
, with c2 =

ghh′(ρ − ρ′)

ρ′h + ρh′
=

ghH(1 − r)

r + H
.

Using the same coefficients as in (4.55), one rewrites system (4.62) with the new
variables as





ηt = −d1Wx − d2Wxxx − d4(Wη)x + d5(Wη2)x

Wt = − 1

d1

ηx − d3Wxxt − d4WWx + d5(W
2η)x

(5.8)

where the new coefficient d5 is equal to

d5 =
r(1 + H)2

(r + H)3
.

5.2.1 Numerical scheme for the extended Boussinesq sys-
tem

Taking the Fourier transform of the system (5.8) gives




η̂t = −d1ikŴ − d2(ik)3Ŵ − d4ik(̂Wη) + d5ik(̂Wη2)

Ŵt = − 1

d1

ikη̂ − d3(ik)2Ŵt −
d4

2
ik(̂W 2) + d5ik(̂W 2η)

.

Equivalently




η̂t = (d2k
2 − d1)ikŴ − d4ik(̂Wη) + d5ik(̂Wη2)

(1 − d3k
2)Ŵt = − 1

d1

ikη̂ − d4

2
ik(̂W 2) + d5ik(̂W 2η)

.

The system of differential equations (5.8) will be integrated numerically by using
the method described in section 5.1.1. However, the solitary wave solutions to
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the extended Boussinesq system are relatively larger compared to that solution to
Boussinesq system with quadratic nonlinear terms. Therefore, one needs to extend
the periodic domain. For most applications we will use L = 4096. For qualitative
studies, N = 1024 will usually be taken and for quantitative studies N = 213 will
be used more frequently. The time step ∆t was optimized through a trial and error
process and found to have a dependence in 1/N (in Fourier domain from −π to π).

5.2.2 Initial solutions for the extended Boussinesq system

Again, one looks for approximate solitary wave solutions to (5.8). As before one
looks for solutions of the form

W (x, t) =
1

d1

[
η(x, t) + M(x, t)

]
,

where M is assumed to be small compared to η and W . Substituting the expression
for W into (5.8) and neglecting higher-order terms, one has





ηt = −ηx − Mx −
d2

d1

ηxxx −
d4

d1

(η2)x +
d5

d1

(η3)x

ηt = −ηx − Mt − d3ηxxt −
d4

2d1

(η2)x +
d5

d1

(η3)x

. (5.9)

Comparing the two equations of (5.9), one has

Mx +
d2

d1

ηxxx +
d4

d1

(η2)x −
d5

d1

(η3)x = Mt + d3ηxxt +
d4

2d1

(η2)x −
d5

d1

(η3)x.

As mentioned in section 5.1.2, one can consider that Mx ≈ −Mt. Therefore, from
the previous equation, one obtains

Mx = −1

4

d4

d1

(η2)x −
1

2

d2

d1

ηxxx +
1

2
d3ηxxt. (5.10)

Substituting the expression for Mx into one of the equations of system (5.9) yields

ηt + ηx +
3d4

4d1

(η2)x −
d5

d1

(η3)x +
d2

2d1

ηxxx +
d3

2
ηxxt = 0. (5.11)

We have checked that the extended KdV equation (5.11) is in agreement with
previously derived eKdV equations such as in Dias & Vanden-Broeck (2004) [20].
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Let V = 1 + c1 be the wave speed, with |c1| small compared to 1. In the moving
frame of reference X = x + x0 − (1 + c1)t, T = t, (x0 is an arbitrary constant),
equation (5.11) becomes

−c1ηX + ηT +
3d4

4d1

(η2)X − d5

d1

(η3)X +
d2

2d1

ηXXX +
d3

2
[−(1 + c1)ηXXX + ηXXT ] = 0.

One looks for stationary solutions. Therefore one studies the following equation

−c1ηX +
3d4

4d1

(η2)X − d5

d1

(η3)X +
d2

2d1

ηXXX +
d3

2

[
− (1 + c1)ηXXX

]
= 0.

Integrating this equation with respect to X. Since the fluids are assumed to be at
rest as x → ∞, the integral constant takes value 0. Therefore

−c1η +
3d4

4d1

η2 − d5

d1

η3 +
1

2

(
d2

d1

− d3 − c1d3

)
ηXX = 0. (5.12)

Letting

α1 =
3

2

H2 − r

H(r + H)
, β1 = 3

r(1 + H)2

H(r + H)2
, λ1 =

1

6

H(rH + 1)

r + H
− 1

4

HS

r + H
c1,

equation (5.12) becomes

−c1η +
1

2
α1η

2 − 1

3
β1η

3 + λ1ηXX = 0.

The previous equation has the solitary wave solutions

η(X) =
(α1

β1

) 1 − ǫ2

1 + ǫ cosh(
√

c1
λ1

X)
, with ǫ =

√
α2

1 − 6β1c1

|α1|
. (5.13)

One still has the conditions on S for well-posedness:

−(1 + rH) ≤ S ≤ −2

3
(1 + rH).

One needs two following conditions for the existence of solution (5.13). The first
once is

λ1c1 > 0 or equivalently
(1

6

H(rH + 1)

r + H
− 1

4

HS

r + H
c1

)
c1 > 0.
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The left hand side of this inequality has two solutions:

c10 = 0 and c11 =
2

3

1 + rH

S
.

Since S < 0 one has c11 < c10. The coefficient of c2
1 in the inequality is positive.

Consequently one must have

c1 > c10 = 0 or c1 < c11 =
2

3

1 + rH

S

This second branch is not acceptable since

c11 =
2

3

1 + rH

S
<

2

3

1 + rH

−2
3
(1 + rH)

= −1.

It is contradictory to the assumption that |c1| is very small compared to 1.
The second condition concerns the expression inside the root square in expression
of ǫ. One needs

α2
1 − 6βc1 ≥ 0.

It will be satisfied if one takes

c1 ≤
(H2 − r)2

8rH(1 + H)2
.

Thus, the solitary waves are characterized by wave velocities larger than 1 (c1 > 0).
The maximum wave velocity Vmax is

Vmax = 1 +
(H2 − r)2

8rH(1 + H)2
.

In the fixed frame of reference, the profile of the solitary waves (5.13) is given by

η(x, t) =

(
α1

β1

)
1 − ǫ2

1 + ǫ cosh
(√

V −1
λ1

(x + x0 − V t)
) . (5.14)

When H2 > r the solitary waves are of elevation. When H2 < r they are of
depression. The parameter ǫ can take values ranging from 0 (infinitely wide solution)
to 1 (solution of infinitesimal amplitude).

Since the fluids are assumed to be at rest as x → ∞, one has M(±∞, t) = 0.
One can compute M explicitly by integrating equation (5.10) with respect to x and
neglecting the integral constant

M = − d4

4d1

η2 − d2

2d1

ηxx +
d3

2
ηxt.
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(a) (b)

Figure 5.10: ‘Table-top’ solitary waves which are approximate solutions of the extended
Boussinesq system (5.8). The horizontal velocities are taken on the top and the bottom
so that S = −(1 + rH). (a) H = 1.8, r = 0.8. The wave speeds V are, going from
the smallest to the widest solitary wave, Vmax − V ∼ 10−3, 10−9, 10−15; (b) H = 0.4,
r = 0.9. The wave speeds V are, going from the smallest to the widest solitary wave,
Vmax − V ∼ 10−3, 10−9, 10−14.

Typical approximate solitary waves solutions are shown in Figure 5.10. Notice that
the condition |H2 − r| small is not really satisfied for the selected values of H and
r. The reason is that otherwise the waves would have been too small to be clearly
visible.

In contrast to the solitary waves obtained by the Boussinesq system, where smaller
amplitudes are wider, solitary wave solutions to the extended Boussinesq system
with smaller amplitudes are narrower. The amplitude of wave increases when the
velocity increases. As the upper limit of velocity V is approached, the wave begin
to broaden until the maximum value of V noted Vmax given above.

Similar to what was explained at the end of section 5.1.2, different positions of the
initial solitary wave along the horizontal axis can be obtained by varying the values
of x0. The initial condition for the left-running wave is a pair η(x, 0) and −W (x, 0),
where η(x, 0) and W (x, 0) form an initial condition for the right-running waves.
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5.2.3 Numerical simulations for the extended Boussinesq
system

In contrary to the Boussinesq system with quadratic nonlinear terms, where one
can choose directly the amplitude of the initial solitary wave, the amplitude of the
initial solitary wave of the extended Boussinesq system depends on the choice of c1

and S. One will observe in the following numerical experiments that the solitary
wave solutions to the extended Boussinesq system tend to be flat at an amplitude
very small compared to the depth of both two layers.

Once the approximate solitary wave (5.14) has been obtained, it is again possible
to make it cleaner by the iterative filtering that has been described in section 5.1.4.
Qualitative results for non-filtered solitary waves will be given in this section. Some
accurate results for run-ups and phase shifts with filtered waves will be described
in the next section.

Figure 5.11 shows the propagation to the left of an almost perfect solitary waves
of depression. All of the numerical experiments that we have done show that the
solitary waves of small amplitude (not ‘table top’ waves) solution to the extended
Boussinnesq system behave as waves obtained in section 5.1.

Figure 5.12 shows the head-on collision between two almost perfect ‘table-top’
solitary waves of elevation of equal amplitude moving in opposite directions. As
in the case with only quadratic nonlinearities, the solution rises slightly to an am-
plitude larger than the sum of the amplitudes of the two incident solitary waves.
After the collision, two similar waves emerge and return to the form of two separated
‘table-top’ solitary waves. As a result of this collision, the center of two resulting
solitary waves are slightly retarded from the trajectories of the incoming centers.

Figure 5.13 shows the collision of two almost perfect solitary waves of depression of
equal amplitude moving in opposite directions. The numerical simulations exhibit
the same features that have been observed in the elevation case.
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(e) t = 2800 (f) evolution in time
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Figure 5.11: An approximate solitary wave of depression propagating to the left. This is
a solution to the extended Boussinesq system (5.8) with parameters H = 0.9, r = 0.85,
L = 4096, N = 1024, S = −1 − rH, ∆t = 6/N , x0 = −2, V = 1 + 5 × 10−5, Vmax − V ∼
10−5. In plot (f), note that −η(x, t) has been plotted for the sake of clarity.
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−2000 −1000 0 1000 2000

0

0.01

0.02

0.03

0.04

0.05

0.06

x

η

−2000 −1000 0 1000 2000

0

0.01

0.02

0.03

0.04

0.05

0.06

x

η

(e) t = 1700 (f) evolution in time
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Figure 5.12: Head-on collision of two approximate ‘table-top’ elevation solitary waves of
equal size. This is a solution to the extended Boussinesq system(5.8), with parameters
H = 0.95, r = 0.8, L = 4096, N = 1024, S = −1 − rH, ∆t = 2/N , xℓ

0 = 2, xr
0 = −2,

V = 1 + 4.544383023634 × 10−4, Vmax − V ∼ 10−17.
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(e) t = 2200 (f) evolution in time
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Figure 5.13: Head-on collision of two approximate ‘table-top’ solitary waves of depression
of equal size. This is a solution to the extended Boussinesq system (5.8), with parameters
H = 0.9, r = 0.85, L = 4096, N = 1024, S = −1 − rH, ∆t = 2/N , xℓ

0 = 1.5, xr
0 = −1.5,

V = 1 + 7.24204732 × 10−5, Vmax − V ∼ 10−14. In plot (f), note that −η(x, t) has been
plotted for the sake of clarity.
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(c) t = 520 (d) t = 600

−1000 −500 0 500 1000

0

0.01

0.02

0.03

0.04

0.05

x

η

−1000 −500 0 500 1000

0

0.01

0.02

0.03

0.04

0.05

x

η

(e) t = 800 (f) evolution in time
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Figure 5.14: Head-on collision of a solitary wave of elevation and a ‘table-top’ solitary
wave of elevation. This is a solution to the extended Boussinesq system (5.8), with
parameters H = 0.95, r = 0.8, L = 2048, N = 1024, S = −1 − rH, ∆t = 7/N , xℓ

0 = 1.7,
xr

0 = −1.7, V ℓ = 1 + 3.54436 × 10−4, V r = 1 + 4.54438 × 10−4, Vmax − V ℓ ∼ 10−4,
Vmax − V r ∼ 10−10.
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Figure 5.14 shows the collision of an almost perfect ‘table-top’ solitary wave of
elevation with a solitary wave of elevation moving in the opposite direction. The
numerical simulations exhibit a number of the same features that have been observed
in the symmetric case of two ‘table top’ solitary waves.

Note that in the quadratic as well as in the cubic cases, it is not possible to consider
the collision between a solitary wave of depression and a solitary wave of elevation.
Indeed the sign of H2−r determines whether the wave is of elevation or of depression.

5.2.4 The run-ups and phase shifts

In this section, one concentrates on quantitative studies of run-ups and phase shifts
resulting from the collision between two solitary waves solutions to the extended
Boussinesq system.

In order to make the high accuracy numerical experiments concerning the collision
between two solitary waves, the iterative filtering described in section 5.1.4 will be
applied to obtain the initial solitary waves. But in this case much more iterations
are needed.

Figure 5.15 shows the effect of cleaning. Starting with a ‘table top’ solitary wave
of amplitude

ηmax = 0.06347607,

after 400 iterations of cleaning, one obtains a solitary wave of amplitude

ηmax = 0.06812113.

Thus, after several iterations of filtering, the amplitude of the solitary wave reaches
an asymptotic level. The resulting waves will propagate in a perfectly stable manner.
That is why one will use them to study the run-ups and phase shifts which need
high accuracy.

Figure 5.16 shows the collision between two clean ‘table-top’ solitary waves ob-
tained in the the work showed in Figure 5.15. Two incident solitary waves have the
same amplitude

ηmax = 0.06812113
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Figure 5.15: Flat solitary wave produced by iterative cleaning. This is a solution to
the extended Boussinesq system (5.8) with parameters H = 1.1, r = 0.95, L = 2048,
N = 213, S = −1 − rH, ∆ = 8/N , x0 = 2, ss = 128, V = 1.00183359, Vmax − V ∼ 10−8.
(a) Difference in the profile before (solid line) and after (dashed line) cleaning. (b) Profile
of the approximate solitary wave (5.14) after one propagation across the domain. (c)
Profile (b) after cleaning and translation to the left of the domain. (d) Profile after
several cleanings. Notice the change of scale in the vertical axis. (e) Evolution of the
maximum amplitude ηmax as cleaning is repeated over and over. The amplitude reaches
an asymptotic level.
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Figure 5.16: A head-on collision between two clean ‘table-top’ solitary waves of equal
height. This is a solution to the system of extended Boussinesq equations (5.8) with
parameters H = 1.1, r = 0.95, L = 2048, N = 213, S = −1 − rH, ∆t = 8/N , ηℓ

max =
ηr
max = 0.06812113. (a) Initial profiles. (b) Time evolution of the amplitude ηmax. (c)

Crest trajectory. (d) Phase shift of the left-running wave, dashed curve represents a left-
running wave which propagates without collision. (e) Phase shift of the right-running
wave, dashed curve represents a right-running wave which propagates without collision.
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The run-up during collision is extremely small. The amplitude of the solution
reaches

ηmax = 0.13624323,

at collision, which is slightly larger than

2 × 0.06812113 = 0.13624226.

After the collision, both resulting solitary waves shift backward an extremely small
distance.

Figure 5.17 shows the collision between the clean ‘table-top’ solitary wave obtained
in the work shown in Figure 5.15 and a clean solitary wave.

This shorter clean solitary wave has been obtained by using iterative cleaning from
a solitary wave of amplitude

ηmax = 0.03647847.

After 230 iterations of cleaning, it reached

ηmax = 0.03719492.

The run-up during collision is again extremely small, even if it is larger than in the
previous case. Indeed, the amplitude of solution reaches

ηmax = 0.10556057,

at collision, which is slightly larger than the sum of the amplitudes of the two
incident solitary waves

0.06812113 + 0.03719492 = 0.10531605.

As in the previous case, the phase shifts after this collision are very small. The
crest trajectory shows an interesting path.

Figure 5.18 shows the collision between two ‘table-top’ clean solitary waves of
depression of the same amplitude:

−ηmin = 0.05693521.
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Figure 5.17: A collision between a clean solitary wave and a clean ‘table-top’ solitary
wave. This is a solution to the extended Boussinesq system (5.8) with parameters H =
1.1, r = 0.95, L = 2048, N = 213, S = −1 − rH, ∆t = 8/N , ηℓ

max = 0.06812113,
ηr = 0.03719492. (a) Initial profiles. (b) Time evolution of the amplitude ηmax. (c)
Crest trajectory. (d) Phase shift of the left-running wave, dashed curve represents a left-
running wave which propagates without collision. (e) Phase shift of the right-running
wave, dashed curve represents a right-running wave which propagates without collision.
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Figure 5.18: A collision between two ‘table-top’ clean solitary waves of depression of the
same amplitude. This is a solution to the system of extended Boussinesq equations (5.8)
with parameters H = 0.88, r = 0.98, N = 4096, L = 4096, S = −1 − rH, ∆t = 8/N ,
−ηℓ

min = −ηr
min = 0.05693521. (a) Initial profiles. (b) Time evolution of the amplitude

ηmin. (c) Crest trajectory. (d) Phase shift of left-running wave, dashed line represent
a left-running wave which propagates without collision. (e) Phase shift of right-running
wave, dashed line represent a right-running wave which propagates without collision.
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This solitary wave was obtained from a wave of amplitude −ηmin = 0.055149 after
275 iterations of cleaning.

During the collision, the amplitude reaches

−ηmin = 0.11387060,

which is larger than
2 × 0.05693521 = 0.11387042.

As in the two previous numerical experiments, after the collision the centers of two
solitary waves are retarded from the trajectories of the incoming centers.

Figure 5.19 shows a head-on collision between the ‘table-top’ clean solitary waves
described in the previous numerical experiment and a shorter clean solitary waves.
The shorter wave has amplitude

−ηmin = 0.01261376.

It was obtained from a solitary wave of amplitude −ηmin = 0.01257633 after 275
iterations of cleaning.

During the collision, the amplitude of the solution reaches

−ηmin = 0.06956701.

This is slightly larger than the sum of the amplitudes of the two incident solitary
waves:

0.05693521 + 0.01261376 = 0.06954897.

Similar to the three previous cases, the resulting solitary waves of the collision are
retarded from their trajectories.

The overall conclusion is that run-ups and phase shifts are smaller for ‘table-top’
solitary waves than for ‘classical’ solitary waves.

Figure 5.20 shows the overtaking collision between two solitary waves of depression
of amplitudes

−ηmin = 0.0569 and − ηmin = 0.0126.

The iterative cleaning that we used to obtain them has been mentioned in the two
previous experiments.
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Figure 5.19: A head-on collision between a clean solitary wave of depression and a ‘table-
top’ clean solitary wave of depression. This is a solution to the extended Boussinesq system
(5.8) with parameters H = 0.88, r = 0.98, L = 4098, N = 213, S = −1 − rH, ∆t = 8/N ,
−ηℓ

min = 0.05693521, −ηr
min = 0.01261376. (a) Initial profiles. (b) Time evolution of the

amplitude −ηmin. (c) Crest trajectory. (d) Phase shift of the left-running wave, dashed
line represents a left-running wave which propagates without collision. (e) Phase shift
of the right-running wave, dashed line represents a right-running wave which propagates
without collision.
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Figure 5.20: Overtaking collision between two solitary waves of depression of different
amplitudes. This is a solution to the extended Boussinesq system (5.8) with parameters
H = 0.88, r = 0.98, L = 4096 × 141, N = 213 × 141, S = −1 − rH, ∆t = 8/N ,
−ηℓ

min = 0.0569, −ηr
min = 0.0126 .(a) Initial profiles. (b) Time evolution of the amplitude

−ηmin. (c) Phase shift; dashed and dotted curves represent respectively the propagation
of the small and the large waves without overtaking collision.
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Similar to what has been shown in Figure (5.9), during this overtaking collision the
amplitude of the solution η(x, t) never exceeds that of the higher solitary wave, nor
does it dip below the amplitude of the shorter.

As a result of the overtaking collision, the higher solitary wave is advanced while
the shorter one is retarded from its trajectories. The distance that the shorter wave
shifts is larger.





Conclusion and perspectives

In this thesis, two models for interfacial waves have been obtained by using two
different methods.

The first model was established by using a perturbation method. It is a model of
three equations with three variables: interfacial displacement, horizontal velocities
at the interface. This model can be extended to the case where the nonlinear and
dispersive parameters α and β are of the same order (not necessary equal), but it
requires a lot of tedious calculations.

The second model is a Boussinesq system of three equations with three variables:
interfacial displacement, horizontal velocities at the bottom and at the top. This
model then has been written with horizontal velocities at arbitrary fluid levels. If
one chooses the fluid levels at the interface, this model for α = β recovers the first
model.

For numerical purpose, we wrote the model with arbitrary horizontal velocities in
the form of a system of two equations with two variables: interfacial displacement
and combination of horizontal velocities. In the critical case, where the square
of the thickness ratio is close to the density ratio, the nonlinear terms become
small compared to the dispersive terms. The extended Boussinesq system with
cubic nonlinear terms was found to model this situation. This system permits flat
solitary wave solutions.

The numerical simulations based on the two previous Boussinesq systems are carried
out. We studied the propagation of a solitary wave as well as a flat solitary wave
from right to left or left to right of the domain. In the next level of complexity,
we studied the head-on collision and the overtaking collision of the solitary waves.
We observed the run-ups during the head-on collision and the phase shifts after the
collision of both kinds. In order to study quantitatively these phenomena, we used
the clean solitary waves resulting from iterative filtering.
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We took the horizontal velocities at the bottom and on the roof for most of our
experiments. By choosing horizontal velocities at other fluid levels, we can vary the
dispersion relation of the Boussinesq systems and study the dispersion effect on the
waves. This is one of our perspectives.

From the numerical point of view, we would like to study the stability of our nu-
merical scheme. This work will permit to choose optimal time steps.

In future research, we plan to study the interfacial waves of two-layer fluid in the
case where the bottom is not flat.



Appendix A

Intermediate steps in the
derivation of the equations by
using a perturbation method

It is worth noting that equations (3.77), (3.81) and (3.82) are correct up to order
O(α2). Therefore one can add or eliminate terms of order O(α3) without disturbing
the level of approximation.

The intermediate steps to obtain (3.80)

Combining the 3th and 4th terms of (3.77) gives

α
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perturbation method

The 5th term of (3.77) can be written in the form

−α2(1 − r)
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The 6th term of (3.77) can be written in the form

−α2(1 − r)

1 + r
H

(η0η0tt)xx = − α2

1 + r
H

(η0η0tt − rη0η0tt)xx

= − α2

1 + r
H

(−η0u0xt − rHη0u
′
0xt)xx (A-3)

=
α2

1 + r
H

(ηuxt + rHηu′
xt)xx.

Combining the 7th, 8th and 9th terms of (3.77)will be done in two steps. First, one
combines the 7th and 8th terms as follows:
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Then we combine this result with the 9th term
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In order to combine the 10th, 11th, 12th, 13th and 14th terms of (3.77), one shows
first that
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perturbation method

Finally, adding term by term equations (A-5) and (A-6) yields
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One deduces from the previous equation that
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Combining (A-1),(A-2),(A-3),(A-4) and (A-7) with the first and the second terms
of (3.77) one obtains the following equation to model interfacial waves:
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The intermediate steps to obtain (3.81):
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Equation (3.78) can be written in the form

ux = −ηt + α
1

3

(
η0xxt + αη1xxt

)
+ α

(
η0η0t + αη1η0t − αη0u1x

)

−α
(
u0η0x + αu0η1x + αu1η0x

)
(A-8)

+α2 1

45
η0xxxxt − α2 1

3
(η0η0t − u0η0x)xx

The 2th term of (A-8):

α
1

3

(
η0xxt + αη1xxt

)
= α

1

3
ηxxt (A-9)

The 3th term of (A-8):

α
(
η0η0t + αη1η0t − αη0u1x

)
= α

(
(η0 + αη1)η0t − αηu1x

)

= α(ηη0t − αηu1x) (A-10)

= −α(ηu0x + αηu1x)

= −αηux

The 4th term of (A-8):

−α
(
u0η0x + αu0η1x + αu1η0x

)
= −α

(
u0(η0x + αη1x) + αu1ηx

)

= −α(u0ηx + αu1ηx) (A-11)

= −α(u0 + αu1)ηx

= −αuηx

The 5th term of (A-8):

α2 1

45
η0xxxxt − α2 1

3
(η0η0t − u0η0x)xx (A-12)

= α2 1

45
ηxxxxt − α2 1

3
(ηηt − uηx)xx

Substituting (A-9)-(A-12) in (A-8) yields

ux = −ηt + α
1

3
ηxxt − α(uη)x (A-13)

+α2 1

45
ηxxxxt − α2 1

3
(ηηt − uηx)xx
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Chapter A. Intermediate steps in the derivation of the equations by using a

perturbation method

The intermediate steps to obtain (3.82):

Equation (3.79) can be written in the form

u′
x =

1

H
ηt − α

H

3

(
η0xxt + αη1xxt

)
(A-14)

+α
1

H

( 1

H
η0η0t +

1

H
αη1η0t + αη0u

′
1x

)

+α
1

H
(u′

0η0x + αu′
0η1x + αu′

1η0x)

−α2H3

45
η0xxxxt − α2 1

3
(η0η0t + Hu′

0η0x)xx

The 2th term of (A-14):

−α
H

3

(
η0xxt + αη1xxt

)
= −α

H

3
ηxxt (A-15)

The 3th term of (A-14):

α
1

H

( 1

H
η0η0t +

1

H
αη1η0t + αη0u

′
1x

)

= α
1

H

( 1

H
(η0 + αη1)η0t + αηu′

1x

)

= α
1

H

( 1

H
ηη0t + αηu′

1x

)
(A-16)

= α
1

H

(
ηu′

0x + αηu′
1x

)

= α
1

H
ηu′

x

The 4th term of (A-14):

α
1

H

(
u′

0η0x + αu′
0η1x + αu′

1η0x

)

= α
1

H

(
u′

0(η0x + αη1x) + αu′
1ηx

)
(A-17)

= α
1

H

(
u′

0ηx + αu′
1ηx

)

= α
1

H
(u′

0 + αu′
1)ηx

= α
1

H
u′ηx
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The 5th term of (A-14):

−α2H3

45
η0xxxxt − α2 1

3
(η0η0t + Hu′

0η0x)xx (A-18)

= −α2H3

45
ηxxxxt − α2 1

3
(ηηt + Hu′ηx)xx

Substituting (A-15)-(A-18) into (A-14) yields

u′
x =

1

H
ηt − α

H

3
ηxxt + α

1

H
(ηu′)x (A-19)

−α2H3

45
ηxxxxt − α2 1

3
(ηηt + Hu′ηx)xx





Appendix B

Intermediate steps used to derive
the results in chapter 4

a. Intermediate steps to obtain the dispersion relations (4.40) and (4.41)

Look for solutions η, u and u′ proportional to exp(ikx − iωt). In Fourier space,
system (4.39) can be written as




−iω ik +
β

2
(θ2 − 1

3
)(ik)3 0

−iω 0 −Hik − β

2
H(θ′2 − H2

3
)(ik)3

(1 − r)(ik) −iω +
β

2
(θ2 − 1)(ik)2(−iω) −r(−iω) − β

2
r(θ′2 − H2)(ik)2(−iω)







η̂

ŵ

ŵ′




= 0

or equivalently




−iω ik
(
1 − β

2
(θ2 − 1

3
)k2

)
0

−iω 0 −Hik
(
1 − β

2
(θ′2 − H2

3
)k2

)

(1 − r)(ik) −iω
(
1 − β

2
(θ2 − 1)k2

)
r(iω)

(
1 − β

2
(θ′2 − H2)k2

)







η̂

ŵ

ŵ′




= 0.

System (4.39) has a non-trivial solution only if the previous matrix is not invertible,

131
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i.e.

∣∣∣∣∣∣∣∣∣∣∣∣

−iω ik
(
1 − β

2
(θ2 − 1

3
)k2

)
0

−iω 0 −Hik
(
1 − β

2
(θ′2 − H2

3
)k2

)

(1 − r)(ik) −iω
(
1 − β

2
(θ2 − 1)k2

)
r(iω)

(
1 − β

2
(θ′2 − H2)k2

)

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

It follows that

ω2

k2
=

H(1 − r)
(
1 − β

2
(θ2 − 1

3
)k2

)(
1 − β

2
(θ′2 − 1

3
H2)k2

)

H
(
1 − β

2
(θ2 − 1)k2

)(
1 − β

2
(θ′2 − 1

3
H2)k2

)
+ r

(
1 − β

2
(θ2 − 1

3
)k2

)(
1 − 1

2
β(θ′2 − H2)k2

) .

In order to obtain the dispersion relation written in physical variables, we switching
back to physical variables

x =
1

ℓ
x∗, t =

c0

ℓ
t∗, η =

1

A
η∗, w =

c0

gA
w∗, w′ =

c0

gA
w′∗.

System (4.39) is written as





ηt + hwx +
1

2
h3

(
θ2 − 1

3

)
wxxx = 0

ηt − Hhw′
x −

1

2
Hh3

(
θ′2 − 1

3
H2

)
w′

xxx = 0

g(1 − r)ηx + wt +
1

2
h2(θ2 − 1)wxxt − rw′

t −
1

2
h2r(θ′2 − H2)w′

xxt = 0

. (B-1)

Similarly, one looks for solution η, u, u′ proportional to exp(ikx − iωt). In Fourier
space, the previous system becomes




−iω ikh +
h3

2
(θ2 − 1

3
)(ik)3 0

−iω 0 −Hhik − h3H

2
(θ′2 − 1

3
H2)(ik)3

g(1 − r)(ik) −iω +
h2

2
(θ2 − 1)(ik)2(−iω) −r(−iω) − h2r

2
(θ′2 − H2)(ik)2(−iω)







η̂

ŵ

ŵ′




= 0
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or equivalently




−iω ikh

(
1 − h

2

2

(
θ2 − 1

3

)
k2

)
0

−iω 0 −Hhik

(
1 − h

2

2

(
θ′2 − H

2

3

)
k2

)

g(1 − r)(ik) −iω
(
1 − h

2

2
(θ2 − 1)k2

)
r(iω)

(
1 − h

2

2
(θ′2 − H2)k2

)







η̂

ŵ

ŵ′




= 0.

System (B-1) has a not-trivial solution only if the previous matrix is not invertible,
i.e

∣∣∣∣∣∣∣∣∣∣∣∣∣

−iω ikh

(
1 − h2

2

(
θ2 − 1

3

)
k2

)
0

−iω 0 −Hhik

(
1 − h2

2

(
θ′2 − H2

3

)
k2

)

g(1 − r)(ik) −iω
(
1 − h2

2
(θ2 − 1)k2

)
r(iω)

(
1 − h2

2
(θ′2 − H2)k2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

It follows that

ω2

k2
=

ghH(1 − r)
(
1 − h2

2
(θ2 − 1

3
)k2

)(
1 − h2

2
(θ′2 − H2

3
)k2

)

H
(
1 − h2

2
(θ2 − 1)k2

)(
1 − h2

2
(θ′2 − H2

3
)k2

)
+ r

(
1 − h2

2
(θ2 − 1

3
)k2

)(
1 − h2

2
(θ′2 − H2)k2

) .

b. Intermediate steps to obtain equations (4.60) and (4.61).

Adding H times equation (4.35) to r times equation (4.36) yields

(r + H)ηt + H(wx − rw′
x) + α[(Hw + rw′)η]x

+
H

2
β

[
(θ2 − 1

3
)wxxx − r(θ′2 − 1

3
H2)w′

xxx

]

+
1

2
αβ

[
H(θ2 − 1)(ηwxx)x + r(θ′2 − H2)(ηw′

xx)x

]

+
5H

24
β2

[(
θ2 − 1

5

)2

wxxxxx − r

(
θ′2 − 1

5
H2

)2

w′
xxxxx

]
= 0. (B-2)
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Replacing the variables w and w′ in (B-2) by their expressions (4.57)–(4.59) in terms
of W and let

F =
1 + H

r + H
, G = H

(θ′2 − 1
3
H2) − (θ2 − 1

3
)

r + H
.

We will consider all the terms of (B-2) one by one:

The second term of (B-2):

H(wx − rw′
x) = HWx (B-3)

The term in α of (B-2):
One deduces rw′ from both sides of equation (4.58) in order to make appear W

w − rw′ = −(r + H)w′ − αFWη +
1

2
βGWxx.

Dividing the previous equation to (r + H), one has

w′ = − 1

r + H
W − α

1

r + H
FWη +

1

2
β

1

r + H
GWxx. (B-4)

Similarly, multiplying equation (4.59) to (−r), and then adding w to both sides
yields

w − rw′ = w +
r

H
w + α

r

H
FWη − 1

2
β

r

H
GWxx.

Dividing both sides of the previous equation by
r + H

H
yields

w =
H

r + H
W − α

r

r + H
FWη +

1

2
β

r

r + H
GWxx. (B-5)

Combining (B-4) and (B-5) yields

Hw + rw′ =
H2 − r

r + H
W − α

r(1 + H)

r + H
FWη +

1

2
β

r(1 + H)

r + H
GWxx.

Therefore

α
[
(Hw + rw′)η

]
x

= α
H2 − r

r + H
(Wη)x − α2 r(1 + H)2

(r + H)2
(Wη2)x (B-6)

+
1

2
αβ

rH(1 + H)
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)2
(Wxxη)x.
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Term in β of (B-2):
Using (B-4) and (B-5) one has

H

2
β

[
(θ2 − 1

3
)wxxx − r(θ′2 − 1

3
H2)w′

xxx

]

=
1

2
βH

H(θ2 − 1
3
) + r(θ′2 − 1

3
H2)

r + H
Wxxx

+
1

2
αβrH(1 + H)

(
θ′2 − 1

3
H2

)
−

(
θ2 − 1

3

)

(r + H)2
(Wη)xxx

−1

4
β2rH2

(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)2

(r + H)2
Wxxxxx. (B-7)

Term in αβ and term in β2 of (B-2):
Since only the terms up to order 2 in α and/or β will be retained in the final
equation, one can apply (4.57) to terms in αβ or β2

1

2
αβ

[
H(θ2 − 1)(ηwxx)x + r(θ′2 − H2)(ηw′

xx)x

]

=
1

2
αβ

H2(θ2 − 1) − r(θ′2 − H2)

r + H
(Wxxη)x, (B-8)

and

5

24
Hβ2

[(
θ2 − 1

5

)2

wxxxxx − r

(
θ′2 − 1

5
H2

)2

w′
xxxxx

]

=
5

24
Hβ2H(θ2 − 1

5
)2 + r(θ′2 − 1

5
H2)2

r + H
Wxxxxx. (B-9)

Substituting (B-3), (B-6), (B-7), (B-8) and (B-9) into equation (B-2) yields the first
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equation of the extended Boussinesq system

(r + H)ηt + HWx + α
H2 − r

r + H
(Wη)x

+
1

2
β

H
(
H(θ2 − 1

3
) + r(θ′2 − 1

3
H2)

)

r + H
Wxxx−α2 r(1 + H)2

(r + H)2
(Wη2)x

+
1

2
αβrH(1 + H)

(θ′2 − 1
3
H2) − (θ2 − 1

3
)

(r + H)2
(Wη)xxx

+
1

2
αβ

rH(1 + H)

(r + H)2

(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)

)
(Wxxη)x

+
1

2
αβ

H2(θ2 − 1) − r(θ′2 − H2)

r + H
(Wxxη)x

−1

4
β2

rH2
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)2

(r + H)2
Wxxxxx

+
5

24
β2H

H(θ2 − 1
5
)2 + r(θ′2 − 1

5
H2)2

r + H
Wxxxxx = 0.

(B-10)

We proceed the same way for equation (4.37).

Term in α of (4.37):
Using (B-4) and (B-5), one has

wwx − rw′w′
x

=
( H

r + H
W − α

r

r + H
FWη +

1

2
β

r

r + H
GWxx

)
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( H

r + H
Wx − α

r

r + H
F (Wη)x +

1

2
β

r

r + H
GWxxx

)

−r
(
− 1

r + H
W − α

1

r + H
FWη +

1

2
β

1

r + H
GWxx)

(
− 1

r + H
Wx − α

1

r + H
F (Wη)x +

1

2
β

1

r + H
GWxxx)

=
H2

(r + H)2
WWx − α

rH

(r + H)2
F (W 2η)x +

1

2
β

rH

(r + H)2
G(WWxx)x

−r
1

(r + H)2
WWx − αr

1

(r + H)2
F (W 2η)x +

1

2
βr

1

(r + H)2
G(WWxx)x

=
H2 − r

(r + H)2
WWx − α

r(H + 1)

(r + H)2
F (W 2η)x +

1

2
β

r(H + 1)

(r + H)2
G(WWxx)x

Multiplying this equation by α yields

α(wwx − rw′w′
x) = α

H2 − r

(r + H)2
WWx − α2 r(H + 1)2

(r + H)3
(W 2η)x

+
1

2
αβ

rH(H + 1)
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)3
(WWxx)x

(B-11)

Term in β of (4.37):
Inserting (4.58)-(4.59) into this term, one has

1

2
β

[
(θ2 − 1)w − r(θ′2 − H2)w′

]
xxt

=

1

2
β

H(θ2 − 1) + r(θ′2 − H2)

r + H
Wxxt −

1

2
αβ

r(1 + H)
(
(θ2 − 1) − (θ′2 − H2)

)

(r + H)2
(Wη)xxt

+
1

4
β2

rH
(
(θ2 − 1) − (θ′2 − H2)

)(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)2
Wxxxxt (B-12)

Since only the terms up to order 2 in α and/or β will be retained in the final result,
one can apply (4.57) to the last four terms of (4.37)
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1

2
β2

[
(θ2 − 1)(5θ2 − 1)w − r(θ′2 − H2)(5θ′2 − H2)w′

]
xxxxt

=
1

2
β2H(θ2 − 1)(5θ2 − 1) + r(θ′2 − H2)(5θ′2 − H2)

r + H
Wxxxxt. (B-13)

and

−αβ
[
(ηwxt)x + rH(ηw′

xt)x

]
= −αβ

H(1 − r)

r + H
(Wxtη)x, (B-14)

and

1

2
αβ

[
(θ2 − 1)wwxxx − r(θ′2 − H2)w′w′

xxx

]

=
1

2
αβ

H2(θ2 − 1) − r(θ′2 − H2)

(r + H)2
WWxxx, (B-15)

and

1

2
αβ

[
(θ2 + 1)wxwxx − r(θ′2 + H2)w′

xw
′
xx

]

=
1

2
αβ

H2(θ2 + 1) − r(θ′2 + H2)

(r + H)2
WxWxx. (B-16)

Substituting (B-11)–(B-16) to equation (4.37) yields the second equation of the
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extended Boussinesq system

(1 − r)ηx + Wt+α
H2 − r

(r + H)2
WWx

+
1

2
β

H(θ2 − 1) + r(θ′2 − H2)

r + H
Wxxt−α2 r(1 + H)2

(r + H)3
(W 2η)x

+
1

2
αβ

rH(H + 1)
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)3
(WWxx)x

−αβ
H(1 − r)

r + H
(Wxtη)x+

1

2
αβ

H2(θ2 − 1) − r(θ′2 − H2)

(r + H)2
WWxxx

+
1

2
αβ

H2(θ2 + 1) − r(θ′2 + H2)

(r + H)2
WxWxx

−1

2
αβ

r(1 + H)
(
(θ2 − 1) − (θ′2 − H2)

)

(r + H)2
(Wη)xxt

+
1

4
β2

rH
(
(θ2 − 1) − (θ′2 − H2)

)(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)2
Wxxxxt

+
1

2
β2H(θ2 − 1)(5θ2 − 1) + r(θ′2 − H2)(5θ′2 − H2)

r + H
Wxxxxt = 0

(B-17)

c. Intermediate steps to obtain system (4.62)

One examines term by term of equations (4.60) and (4.61).
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Let begin with the first one

η∗
t∗ = (hαη) h

c0α
t = c0α

2ηt,

W ∗
x∗ =

(ghα

c0

W
)

h
β

x
=

g

c0

αβWx,

(H2 − r)(W ∗η∗)x∗ = αC
(ghα

c0

Whαη
)

h
β

x
=

ghC
c0

α3β(Wη)x,

W ∗
x∗x∗x∗ =

(ghα

c0

W
)

h3

β3
xxx

=
g

c0h2
αβ3Wxxx,

(W ∗η∗)x∗x∗x∗ =
(ghα

c0

Whαη
)

h3

β3
xxx

=
g

c0h
α2β3(Wη)xxx,

(W ∗
x∗x∗η)x∗ =

(ghα

c0

Wh2

β2
xx

(hαη)
)

h
β

x
=

g

c0h
α2β3(Wxxη)x,

W ∗
x∗x∗x∗x∗x∗ =

(ghα

c0

W
)

h5

β5
xxxxx

=
g

c0h4
αβ5Wxxxxx.

One decides to retain only terms up to order 4 in α and/or β, therefore the three
last terms will be neglected.
For equation (4.61), one has

η∗
x∗ = (hαη)h

β
x = αβηx,

W ∗
t∗ =

ghα

c0

W h
c0α

t = gα2Wt,

(H2 − r)W ∗W ∗
x∗ = αC

(ghα

c0

)2

WWh
β

x = gCα3βWWx,

W ∗
x∗x∗t∗ =

(ghα

c0

)
Wh2

β2
xx h

c0α
t
=

g

h2
α2β2Wxxt,

(W ∗2η∗)x∗ =

((ghα

c0

)2

W 2hαη

)

h
β

x

= ghα3β(W 2η)x,

(W ∗W ∗
x∗x∗)x∗ =

(
(
ghα

c0

)2WWh2

β2
xx

)
h
β

x
=

g

h2
α2β3(WWxx)x,

(η∗W ∗
x∗t∗)x∗ =

(
αhη

ghα

c0

Wh
β

x h
c0α

t

)
h
β

x
=

g

h
α3β2(ηWxt)x,

WWxxx =
(ghα

c0

)2

WWh3

β3

=
g

h2
α2β3WWxxx,
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(W ∗η∗)xxt =
(ghα

c0

Whαη
)

h2

β2
xx h

c0α
t
=

g

h
α3β2(Wη)xxt,

W ∗
x∗x∗x∗x∗t∗ =

(ghα

c0

)
Wh4

β4
xxxx

h
c0α

t
=

g

h4
α2β4Wxxxxt.

Only terms up to order 4 in α and β will be retained, therefore the five last terms
will be neglected.





Appendix C

Numerical simulations

C.1 The program is used to obtain the trajecto-

ries of the particles

Perturbation of the particles in the interior of two-

layer fluid (linear case)

clear all; close all;

M=1; % M takes value 1 or 2, depends on what we want to take

% w(1) or w(2).

Parameters :
p = 2*pi;

g = 10;

k=0.5;

h = 1; %the depth of the lower layer

h1 = 0.1; %the depth of the upper layer

r = 0.85; %density ratio

%k = 1;

%h = 1; %the depth of the lower layer

%h1 = 1; %the depth of the upper layer

%r = 0.98; %density ratio
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%k=0.6;

%h = 0.6; %the depth of the lower layer

%h1 = 0.2; %the depth of the upper layer

%r = 0.9; %density ratio

%k = 1.2;

%h = 0.6; %the depth of the lower layer

%h1 = 0.2; %the depth of the upper layer

%r = 0.9; %density ratio

c = -(h+h1)/2;

d = (h+h1)/2;

x0 = (c+d)/2;

C = 0.008;

x = c:p/200:d;

Two solutions of the dispersion relation
w(1) = sqrt((1-r)*g*k*tanh(k*h)*tanh(k*h1)/(tanh(k*h1)+r*tanh(k*h)));

w(2) = -sqrt((1-r)*g*k*tanh(k*h)*tanh(k*h1)/(tanh(k*h1)+r*tanh(k*h)));

Initial matrices
xtraj1 = [];

ztraj1 = [];

xtraj2 = [];

ztraj2 = [];

xf_particle_u=[];

zf_particle_u=[];

xe_particle_l=[];

ze_particle_l=[];

Main program contains a loop in time that takes place on a
periodic domain 0<wt<2*pi
nb = 1; %number of periods we want to observe

dt = 100; %number of points represent

%%The form of the roof and the bottom:

paroi_superieure=h1*(x-x)+h1;

fond=-h*(x-x)-h;



145 C.1 Program for the trajectories of the particles

for j = 1:dt+1

t = nb*p*(j-1)/(dt*w(M));

%%The form of the interface:

eta = -k*C/w(M)*tanh(k*h)*sin(k*x-w(M)*t) ;

%%Trajectories of the particles of the lower layer

e=6; %Number of particles that we want to represent for the lower layer

for m=1:e

z0L = (m-e)/(e-1)*h; %Position of each particle in the interval [-h 0]

xtraj10 = x0 - k*C/w(M)*cosh(k*(h+z0L))/cosh(k*h)*cos(k*x0-w(M)*t);

ztraj10 = z0L - k*C/w(M)*sinh(k*(h+z0L))/cosh(k*h)*sin(k*x0-w(M)*t);

xe_particle_l = [xe_particle_l xtraj10];

ze_particle_l = [ze_particle_l ztraj10];

end

xtraj1 = [xtraj1 ; xe_particle_l];

ztraj1 = [ztraj1 ; ze_particle_l];

xe_particle_l = [];

ze_particle_l = [];

%%Trajectories of the particles of the upper layer

f=4; %Number of particles that we want to represent for upper layer

for n=1:f

z0u = h1*(n-1)/(f-1); %Position of each particle in the interval [0 h1]

xtraj20 = x0 - k*C/w(M)*cosh(k*(h1-z0u))*tanh(k*h)/sinh(k*h1)...

*sin(k*x0-w(M)*t);

ztraj20 = z0u + k*C/w(M)*sinh(k*(h1-z0u))*tanh(k*h)/sinh(k*h1)...

*cos(k*x0-w(M)*t) ;

xf_particle_u=[xf_particle_u xtraj20];

zf_particle_u=[zf_particle_u ztraj20];

end

xtraj2 = [xtraj2; xf_particle_u];

ztraj2 = [ztraj2; zf_particle_u];

xf_particle_u = [];

zf_particle_u = [];
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Plot the trajectories, the boundaries and the interface:

plot(x,fond,’k’,x,eta,’--k’,x,paroi_superieure,’k’,xtraj2,ztraj2,...

’k.’,xtraj1,ztraj1,’k’);

axis([ c d -h-(h+h1)/10 h1+(h+h1)/10]);

xlabel x; ylabel z

set(get(gca,’ylabel’),’Rotation’,0.0)

F(j) = getframe;

end

C.2 This program is used to study qualitatively

the head-on collision between 2 elevation soli-

tary waves of equal size which is solution to

system (5.2)

clear all, close all

domaine = 512;

time = 300;

H = 1.2; %thickness ratio

r = 0.8; %density ratio

c = domaine/2/pi;

N = 1024; %space mesh

Fourier mode

k = [0:N/2-1 0 -N/2+1:-1]’;

ik = i*k;

tmax = time/c;

Space step and time step

x = (2*pi/N)*(-N/2:N/2-1)’;

dt = 1/N;% (dt<=9/N);

nmax = round(tmax/dt);
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Initial condition

eta0 = 0.1; %initial amplitude

x0 = 2; %initial position

theta = 0; %water level in the lower fluid

theta1 = 0; %water level in the upper fluid

S = (theta^2-1)+r/H*(theta1^2-H^2);

d1 = H/(r+H);

d2 = H^2/(2*(r+H)^2)*(S+2/3*(1+r*H));

d3 = 1/2*S*d1;

d4 = (H^2-r)/((r+H)^2);

V = 1+d4*eta0/(2*d1);

K = sqrt(d4*eta0/(4*(d2-d1*d3-1/2*d3*d4*eta0)));

eta1 = eta0*(sech(K*c*(x+x0))).^2;

M1 = -1/4*d4/d1*eta1.^2 - eta0*K^2*(d2/d1+d3*V)...

*(2./((cosh(K*c*(x+x0))).^2) - 3./((cosh(K*c*(x+x0))).^4));

u1 = (r+H)/H*(eta1+M1);

eta2 = eta0*(sech(K*c*(x-x0))).^2;

M2 = -1/4*d4/d1*eta2.^2 - eta0*K^2*(d2/d1+d3*V)...

*(2./((cosh(K*c*(x-x0))).^2) - 3./((cosh(K*c*(x-x0))).^4));

u2 = -(r+H)/H*(eta2+M2);

eta = eta1+eta2;

u = u1+u2;

etan = eta1; %Initial condition for the right running-wave

un = u1; %which propagates without collision

etam = eta2; %Initial condition for the left running-wave

um = u2; %which propagates without collision

Coefficients of the system of 2 equations

d12k = (1/c^2*d2*k.^2 - d1).*ik;

d13k = - 1./(d1*(1-1/c^2*d3*k.^2)).*ik;

d34k = - d4./(2*(1-1/c^2*d3*k.^2)).*ik;

d4k = - d4.*ik;
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Fourier
v1 = fft(eta);

v2 = fft(u);

v1n = fft(etan);

v2n = fft(un);

v1m = fft(etam);

v2m = fft(um);

peaks = max(abs(eta));

index_i = find(eta==max(eta));

left = min(index_i);

right = max(index_i);

tdata = 0;

tdata_left = 0;

tdata_right = 0;

aa = 0;

udata1 = eta;

for n = 1:nmax

t = n*dt;

%RK4

a1 = d12k.*v2 + d4k.*fft(real(ifft(v2)).*real(ifft(v1)));

a2 = d13k.*v1 + d34k.*fft(real(ifft(v2)).^2);

b1 = d12k.*(v2+a2*dt/2)...

+ d4k.*fft(real(ifft(v2+a2*dt/2)).*real(ifft(v1+a1*dt/2)));

b2 = d13k.*(v1+a1*dt/2) + d34k.*fft(real(ifft(v2+a2*dt/2)).^2);

c1 = d12k.*(v2+b2*dt/2)...

+ d4k.*fft(real(ifft(v2+b2*dt/2)).*real(ifft(v1+b1*dt/2)));

c2 = d13k.*(v1+b1*dt/2) + d34k.*fft(real(ifft(v2+b2*dt/2)).^2);

d1 = d12k.*(v2+c2*dt)...

+ d4k.*fft(real(ifft(v2+c2*dt)).*real(ifft(v1+c1*dt)));

d2 = d13k.*(v1+c1*dt) + d34k.*fft(real(ifft(v2+c2*dt)).^2);

v1 = v1 + (a1 + 2*b1 + 2*c1 + d1)*dt/6;

v2 = v2 + (a2 + 2*b2 + 2*c2 + d2)*dt/6;
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a1n = d12k.*v2n ...

+ d4k.*fft(real(ifft(v2n)).*real(ifft(v1n)));

a2n = d13k.*v1n + d34k.*fft(real(ifft(v2n)).^2);

b1n = d12k.*(v2n+a2n*dt/2)...

+ d4k.*fft(real(ifft(v2n+a2n*dt/2)).*real(ifft(v1n+a1n*dt/2)));

b2n = d13k.*(v1n+a1n*dt/2) + d34k.*fft(real(ifft(v2n+a2n*dt/2)).^2);

c1n = d12k.*(v2n+b2n*dt/2)...

+ d4k.*fft(real(ifft(v2n+b2n*dt/2)).*real(ifft(v1n+b1n*dt/2)));

c2n = d13k.*(v1n+b1n*dt/2) + d34k.*fft(real(ifft(v2n+b2n*dt/2)).^2);

d1n = d12k.*(v2n+c2n*dt)...

+ d4k.*fft(real(ifft(v2n+c2n*dt)).*real(ifft(v1n+c1n*dt)));

d2n = d13k.*(v1n+c1n*dt) + d34k.*fft(real(ifft(v2n+c2n*dt)).^2);

v1n = v1n + (a1n + 2*b1n + 2*c1n + d1n)*dt/6;

v2n = v2n + (a2n + 2*b2n + 2*c2n + d2n)*dt/6;

a1m = d12k.*v2m + d4k.*fft(real(ifft(v2m)).*real(ifft(v1m)));

a2m = d13k.*v1m + d34k.*fft(real(ifft(v2m)).^2);

b1m = d12k.*(v2m+a2m*dt/2)...

+ d4k.*fft(real(ifft(v2m+a2m*dt/2)).*real(ifft(v1m+a1m*dt/2)));

b2m = d13k.*(v1m+a1m*dt/2) + d34k.*fft(real(ifft(v2m+a2m*dt/2)).^2);

c1m = d12k.*(v2m+b2m*dt/2)...

+ d4k.*fft(real(ifft(v2m+b2m*dt/2)).*real(ifft(v1m+b1m*dt/2)));

c2m = d13k.*(v1m+b1m*dt/2) + d34k.*fft(real(ifft(v2m+b2m*dt/2)).^2);

d1m = d12k.*(v2m+c2m*dt)...

+ d4k.*fft(real(ifft(v2m+c2m*dt)).*real(ifft(v1m+c1m*dt)));

d2m = d13k.*(v1m+c1m*dt) + d34k.*fft(real(ifft(v2m+c2m*dt)).^2);

v1m = v1m + (a1m + 2*b1m + 2*c1m + d1m)*dt/6;

v2m = v2m + (a2m + 2*b2m + 2*c2m + d2m)*dt/6;
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u1 = real(ifft(v1)); h = waitbar(n/nmax);

u1n = real(ifft(v1n));

u1m = real(ifft(v1m));

tdata = [tdata; t];

udata1 = [udata1 u1];

plot(c*x,u1,’k’)

title(’Head-on collision of 2 elevation solitary waves of equal size’)

xlabel x; ylabel \eta

set(get(gca,’ylabel’),’Rotation’,0.0)

axis([-c*pi c*pi -0.02 0.22])

peaks = [peaks max(abs(u1))];

index = find(u1==max(u1));% index can have 4 components

[mm nn] = size(index); % nn=1 car index is column vector

if mm==1

if index<N/2 left = [left index];

tdata_left = [tdata_left t];

else right = [right index];

tdata_right = [tdata_right t];

end

elseif mm==2

left = [left min(index)];

tdata_left = [tdata_left t];

right = [right max(index)];

tdata_right = [tdata_right t] ;

else

aa=aa+1 %number of time index has more than 2 components

end

end

%waterfall(c*x(1:5:end),tdata(:),udata1(1:5:end,:)’);

x_left = c*x(left);

x_right = c*x(right);

tdata_left = c*tdata_left;

tdata_right = c*tdata_right;

tdata = c*tdata;

scrsz = get(0,’ScreenSize’);
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Plot the evolution in time of the peaks (run-up)

figure(’Position’,[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

plot(tdata, peaks’, ’.k’);

set(gca,’FontWeight’,’bold’);

xlabel (’t’, ’fontsize’, 14);

ylabel (’sup_x(\eta(x,t))’, ’fontsize’, 14 );

newsize = get(gca,’FontSize’)*1.2;

set(gca,’FontSize’,newsize);

axis([0 time 0.09 0.215]);

Plot the trajectory

figure(’Position’,[scrsz(3)/2 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2]);

plot(x_left,tdata_left,’.k’);

hold on;

plot(x_right,tdata_right,’.k’);

set(gca,’FontWeight’,’bold’);

xlabel (’x’, ’fontsize’, 14);

ylabel (’t’, ’fontsize’, 14 );

set(get(gca, ’ylabel’), ’Rotation’,0.0)

newsize = get(gca,’FontSize’)*1.2;

set(gca,’FontSize’,newsize);

axis([ min(x_left) max(x_right) 0 time ]);

Plot the phase shifts

figure(’Position’,[1 1 scrsz(3)/2 scrsz(4)/2]);

plot(c*x, u1, ’k’);

hold on;

plot(c*x, u1n, ’k--’);

plot(c*x, u1m, ’k--’);

set(gca,’FontWeight’,’bold’);

xlabel (’x’, ’fontsize’, 14);

ylabel (’\eta’, ’fontsize’, 14 );

set(get(gca, ’ylabel’), ’Rotation’,0.0);

newsize = get(gca,’FontSize’)*1.2;

set(gca,’FontSize’,newsize);
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C.3 The program is used to filter a solitary wave

which is solution to the extended Boussinesq

system (5.8)

clear all, close all

domain = 1024*4; %real domain

time = 2600; %real time propagating

H = 0.88; %thickness ratio

r = 0.98; %density ratio

c = domain/2/pi; %compress coefficient: from real domain to Fourier domain

N = 1024*8; %space mesh

c1_max = (H^2-r)^2/(8*r*H*(1+H)^2);

%c1_max = 0.001733531698205

Fourier mode
k = [0:N/2-1 0 -N/2+1:-1]’;

ik = i*k;

tmax = time/c;

Space step and time step
x = (2*pi/N)*(-N/2:N/2-1)’;

dt = 8/N;

nmax = round(tmax/dt);

Initial condition
c11 = 0.00173353;

x0 = 1.8; %initial position

theta = 0;

theta1 = 0;

S = (theta^2-1)+r/H*(theta1^2-H^2); %S=-1-r*H

d1 = H/(r+H);

d2 = H^2/(2*(r+H)^2)*(S+2/3*(1+r*H));

d3 = 1/2*S*d1;

d4 = (H^2-r)/((r+H)^2);

d5 = r*(1+H)^2/((r+H)^3);

alpha = 3/2*(H^2-r)/(H*(r+H));

beta = 3*r*(1+H)^2/(H*(r+H)^2);

lambda = 1/6*H*(r*H+1)/(r+H) - 1/4*H*S/(r+H)*c11;
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epsilon = sqrt(alpha^2-6*beta*c11)/alpha;

coh = cosh(sqrt(c11/lambda).*(c*(x+x0)));

eta = alpha/beta*(1-epsilon^2)./(1-epsilon*coh);

amp = min(eta);

plot(c*x,eta,’k--’);

title (’Initial condition of \eta’);

xlabel x; ylabel \eta

set(get(gca,’ylabel’),’Rotation’,0.0);

axis([-c*pi c*pi amp*11/10 -amp/10 ]);

etaxx = -alpha*epsilon*c11*(epsilon^2-1)*(epsilon*coh.^2-2*epsilon+coh)...

/beta/lambda./((1-epsilon*coh).^3);

etaxt = alpha*epsilon*c11*(epsilon^2-1)*(1+c11)*...

(epsilon*coh.^2-2*epsilon+coh)/beta/lambda./((1-epsilon*coh).^3);

M = -d4/(4*d1)*eta.^2 - d2/(2*d1)*etaxx + d3/2*etaxt;

u = (r+H)/H*(eta+M);

Coefficients of the system of 2 equations with cubic terms
d12k = (1/c^2*d2*k.^2 - d1).*ik;

d4k = - d4.*ik;

d5k = d5.*ik;

d13k = - 1./(d1*(1-1/c^2*d3*k.^2)).*ik;

d34k = - d4./(2*(1-1/c^2*d3*k.^2)).*ik;

d35k = d5./(1-1/c^2*d3*k.^2).*ik;

N012 = find(eta==min(eta));

peaks = min(eta);

fois = 0;

tdata = 0;

jmax=255;

Begin filter %*****************************************
for j=1:jmax

% Fourier

v1=fft(eta);
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v2=fft(u);

for n=1:nmax

t=n*dt;

%RK4;

a1 = d12k.*v2 + d4k.*fft(real(ifft(v2)).*real(ifft(v1)))...

+ d5k.*fft(real(ifft(v2)).*real(ifft(v1)).^2) ;

a2 = d13k.*v1 + d34k.*fft(real(ifft(v2)).^2)...

+d35k.*fft(real(ifft(v2)).^2.*real(ifft(v1)));

b1 = d12k.*(v2+a2*dt/2)...

+ d4k.*fft(real(ifft(v2+a2*dt/2)).*real(ifft(v1+a1*dt/2)))...

+ d5k.*fft(real(ifft(v2+a2*dt/2)).*real(ifft(v1+a1*dt/2)).^2);

b2 = d13k.*(v1+a1*dt/2)...

+ d34k.*fft(real(ifft(v2+a2*dt/2)).^2)...

+ d35k.*fft(real(ifft(v2+a2*dt/2)).^2.*real(ifft(v1+a1*dt/2)));

c1 = d12k.*(v2+b2*dt/2)...

+ d4k.*fft(real(ifft(v2+b2*dt/2)).*real(ifft(v1+b1*dt/2)))...

+ d5k.*fft(real(ifft(v2+b2*dt/2)).*real(ifft(v1+b1*dt/2)).^2);

c2 = d13k.*(v1+b1*dt/2)...

+ d34k.*fft(real(ifft(v2+b2*dt/2)).^2)...

+ d35k.*fft(real(ifft(v2+b2*dt/2)).^2.*real(ifft(v1+b1*dt/2)));

d1 = d12k.*(v2+c2*dt)...

+ d4k.*fft(real(ifft(v2+c2*dt)).*real(ifft(v1+c1*dt)))...

+ d5k.*fft(real(ifft(v2+c2*dt)).*real(ifft(v1+c1*dt)).^2);

d2 = d13k.*(v1+c1*dt)...

+ d34k.*fft(real(ifft(v2+c2*dt)).^2)...

+ d35k.*fft(real(ifft(v2+c2*dt)).^2.*real(ifft(v1+c1*dt)));

v1 = v1+(a1+2*b1+2*c1+d1)*dt/6;

v2 = v2+(a2+2*b2+2*c2+d2)*dt/6;

u1 = real(ifft(v1)); waitbar(n/nmax);

u2 = real(ifft(v2));

tdata = [tdata (j-1)*tmax+t];

peaks = [peaks min(u1)];

plot(c*x,u1,’k’)
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title(’Evolution in time of \eta at this filter step’)

xlabel x; ylabel \eta

set(get(gca,’ylabel’),’Rotation’,0.0)

axis([-c*pi c*pi amp*11/10 -amp/10])

end

ss = find(u1==min(u1));

eta = zeros(N,1);

u = zeros(N,1);

eta(round(N/8):N-ss+N012,1) = u1(ss-N012+round(N/8):N,1);

u(round(N/8):N-ss+N012,1) = u2(ss-N012+round(N/8):N,1);

fois=fois+1;

end

End filter ******************************************

etaeta = eta;

uu = u;

scrsz = get(0,’ScreenSize’);

Plot the values of \eta
figure(’Position’,[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

plot(c*x,u1,’k’)

title (’\eta at the end of filter step’);

xlabel x; ylabel \eta

set(get(gca,’ylabel’),’Rotation’,0.0)

axis([-c*pi c*pi amp*11/10 -amp/10]);

Plot the values of peaks

figure(’Position’,[scrsz(3)/2 1 scrsz(3)/2 scrsz(4)/2])

plot(c*tdata, -peaks,’.k’)

title(’Evolution in time of the peaks of \eta ’)

xlabel t; ylabel sup_x(-\eta(x,t))
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C.4 The program is used to study the overtak-

ing collision between two solitary waves of

depression which is solution to the extended

Boussinesq system (5.8)

clear all, close all

domain=1024*4;

time=4100*40*3.5;

H=0.88;

r=0.98;

c=domain/2/pi;

N=1024*8;

c1_max=(H^2-r)^2/(8*r*H*(1+H)^2);

%c1_max = 0.001733531698205

Fourier mode
k=[0:N/2-1 0 -N/2+1:-1]’;

ik=i*k;

Space step and phase steps
x=(2*pi/N)*(-N/2:N/2-1)’;

dt=8/N;

tmax=time/c;

Initial condition
theta = 0;

theta1 = 0;

S = (theta^2-1)+r/H*(theta1^2-H^2); %S=-1-r*H

load c_filter_negative_normal_etaeta_uu_275times.mat etaeta uu

u1 = zeros(N,1);

eta1 = zeros(N,1);

eta1(round(N/30):N-1,1) = etaeta(1:N-round(N/30),1);

u1(round(N/30):N-1,1) = uu(1:N-round(N/30),1);

etan = eta1;

un = u1;
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load c_negative_modi1_etaeta_uu_255time.mat etaeta uu

u2 = zeros(N,1);

eta2 = zeros(N,1);

eta2(1:N-round(N/20),1) = etaeta(round(N/20)+1:N,1);

u2(1:N-round(N/20),1) = uu(round(N/20)+1:N,1);

etam = eta2;

um = u2;

eta = eta1+eta2;

u = u1+u2;

Coefficients of the system of 2 equations with cubic terms
d1 = H/(r+H);

d2 = H^2/(2*(r+H)^2)*(S+2/3*(1+r*H));

d3 = 1/2*S*d1;

d4 = (H^2-r)/((r+H)^2);

d5 = r*(1+H)^2/((r+H)^3);

d12k = (1/c^2*d2*k.^2 - d1).*ik;

d4k = - d4.*ik;

d5k = d5.*ik;

d13k = - 1./(d1*(1-1/c^2*d3*k.^2)).*ik;

d34k = - d4./(2*(1-1/c^2*d3*k.^2)).*ik;

d35k = d5./(1-1/c^2*d3*k.^2).*ik;

Fourier
v1=fft(eta);

v2=fft(u);

v1n=fft(etan);

v2n=fft(un);

v1m=fft(etam);

v2m=fft(um);

nplt=floor((tmax/600)/dt);

nmax=round(tmax/dt);
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udata1=eta;

udata2=u;

tdata=0;

h=waitbar(0,’just hold on...’);

peaks=[];

peaksn=[];

peaksm=[];

x_peaks_real=[];

x_peaks=[];

t_peaks=[];

index_real=0;

periodic=0;

for n=1:nmax

t=n*dt;

%Runge Kutta 4 scheme;

a1 = d12k.*v2 + d4k.*fft(real(ifft(v2)).*real(ifft(v1)))...

+ d5k.*fft(real(ifft(v2)).*real(ifft(v1)).^2) ;

a2 = d13k.*v1 + d34k.*fft(real(ifft(v2)).^2)...

+ d35k.*fft(real(ifft(v2)).^2.*real(ifft(v1)));

b1 = d12k.*(v2+a2*dt/2)...

+ d4k.*fft(real(ifft(v2+a2*dt/2)).*real(ifft(v1+a1*dt/2)))...

+ d5k.*fft(real(ifft(v2+a2*dt/2)).*real(ifft(v1+a1*dt/2)).^2);

b2 = d13k.*(v1+a1*dt/2)...

+ d34k.*fft(real(ifft(v2+a2*dt/2)).^2)...

+ d35k.*fft(real(ifft(v2+a2*dt/2)).^2.*real(ifft(v1+a1*dt/2)));

c1 = d12k.*(v2+b2*dt/2)...

+ d4k.*fft(real(ifft(v2+b2*dt/2)).*real(ifft(v1+b1*dt/2)))...

+ d5k.*fft(real(ifft(v2+b2*dt/2)).*real(ifft(v1+b1*dt/2)).^2);

c2 = d13k.*(v1+b1*dt/2)...

+ d34k.*fft(real(ifft(v2+b2*dt/2)).^2)...

+ d35k.*fft(real(ifft(v2+b2*dt/2)).^2.*real(ifft(v1+b1*dt/2)));

d1 = d12k.*(v2+c2*dt)...
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+ d4k.*fft(real(ifft(v2+c2*dt)).*real(ifft(v1+c1*dt)))...

+ d5k.*fft(real(ifft(v2+c2*dt)).*real(ifft(v1+c1*dt)).^2);

d2 = d13k.*(v1+c1*dt)...

+ d34k.*fft(real(ifft(v2+c2*dt)).^2)...

+ d35k.*fft(real(ifft(v2+c2*dt)).^2.*real(ifft(v1+c1*dt)));

v1 = v1+(a1+2*b1+2*c1+d1)*dt/6;

v2 = v2+(a2+2*b2+2*c2+d2)*dt/6;

a1n = d12k.*v2n + d4k.*fft(real(ifft(v2n)).*real(ifft(v1n)))...

+ d5k.*fft(real(ifft(v2n)).*real(ifft(v1n)).^2) ;

a2n = d13k.*v1n + d34k.*fft(real(ifft(v2n)).^2)...

+ d35k.*fft(real(ifft(v2n)).^2.*real(ifft(v1n)));

b1n = d12k.*(v2n+a2n*dt/2)...

+ d4k.*fft(real(ifft(v2n+a2n*dt/2)).*real(ifft(v1n+a1n*dt/2)))...

+ d5k.*fft(real(ifft(v2n+a2n*dt/2)).*real(ifft(v1n+a1n*dt/2)).^2);

b2n = d13k.*(v1n+a1n*dt/2)...

+ d34k.*fft(real(ifft(v2n+a2n*dt/2)).^2)...

+ d35k.*fft(real(ifft(v2n+a2n*dt/2)).^2.*real(ifft(v1n+a1n*dt/2)));

c1n = d12k.*(v2n+b2n*dt/2)...

+ d4k.*fft(real(ifft(v2n+b2n*dt/2)).*real(ifft(v1n+b1n*dt/2)))...

+ d5k.*fft(real(ifft(v2n+b2n*dt/2)).*real(ifft(v1n+b1n*dt/2)).^2);

c2n = d13k.*(v1n+b1n*dt/2)...

+ d34k.*fft(real(ifft(v2n+b2n*dt/2)).^2)...

+ d35k.*fft(real(ifft(v2n+b2n*dt/2)).^2.*real(ifft(v1n+b1n*dt/2)));

d1n = d12k.*(v2n+c2n*dt)...

+ d4k.*fft(real(ifft(v2n+c2n*dt)).*real(ifft(v1n+c1n*dt)))...

+ d5k.*fft(real(ifft(v2n+c2n*dt)).*real(ifft(v1n+c1n*dt)).^2);

d2n = d13k.*(v1n+c1n*dt)...

+ d34k.*fft(real(ifft(v2n+c2n*dt)).^2)...

+ d35k.*fft(real(ifft(v2n+c2n*dt)).^2.*real(ifft(v1n+c1n*dt)));

v1n = v1n+(a1n+2*b1n+2*c1n+d1n)*dt/6;

v2n = v2n+(a2n+2*b2n+2*c2n+d2n)*dt/6;
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a1m = d12k.*v2m + d4k.*fft(real(ifft(v2m)).*real(ifft(v1m)))...

+ d5k.*fft(real(ifft(v2m)).*real(ifft(v1m)).^2) ;

a2m = d13k.*v1m + d34k.*fft(real(ifft(v2m)).^2)...

+ d35k.*fft(real(ifft(v2m)).^2.*real(ifft(v1m)));

b1m = d12k.*(v2m+a2m*dt/2)...

+ d4k.*fft(real(ifft(v2m+a2m*dt/2)).*real(ifft(v1m+a1m*dt/2)))...

+ d5k.*fft(real(ifft(v2m+a2m*dt/2)).*real(ifft(v1m+a1m*dt/2)).^2);

b2m = d13k.*(v1m+a1m*dt/2)...

+ d34k.*fft(real(ifft(v2m+a2m*dt/2)).^2)...

+ d35k.*fft(real(ifft(v2m+a2m*dt/2)).^2.*real(ifft(v1m+a1m*dt/2)));

c1m = d12k.*(v2m+b2m*dt/2)...

+ d4k.*fft(real(ifft(v2m+b2m*dt/2)).*real(ifft(v1m+b1m*dt/2)))...

+ d5k.*fft(real(ifft(v2m+b2m*dt/2)).*real(ifft(v1m+b1m*dt/2)).^2);

c2m = d13k.*(v1m+b1m*dt/2)...

+ d34k.*fft(real(ifft(v2m+b2m*dt/2)).^2)...

+ d35k.*fft(real(ifft(v2m+b2m*dt/2)).^2.*real(ifft(v1m+b1m*dt/2)));

d1m = d12k.*(v2m+c2m*dt)...

+ d4k.*fft(real(ifft(v2m+c2m*dt)).*real(ifft(v1m+c1m*dt)))...

+ d5k.*fft(real(ifft(v2m+c2m*dt)).*real(ifft(v1m+c1m*dt)).^2);

d2m = d13k.*(v1m+c1m*dt)...

+ d34k.*fft(real(ifft(v2m+c2m*dt)).^2)...

+ d35k.*fft(real(ifft(v2m+c2m*dt)).^2.*real(ifft(v1m+c1m*dt)));

v1m = v1m+(a1m+2*b1m+2*c1m+d1m)*dt/6;

v2m = v2m+(a2m+2*b2m+2*c2m+d2m)*dt/6;

u1 = real(ifft(v1)); h = waitbar(n/nmax);

u1n = real(ifft(v1n));

u1m = real(ifft(v1m));

plot(c*x,u1,’k’);

peaks = [peaks min(u1)];

peaksn = [peaksn min(u1n)];

peaksm = [peaksm min(u1m)];

t_peaks = [t_peaks t];

end
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scrsz = get(0,’ScreenSize’);

Plot the evolution in time of the peaks of the solition
figure(’Position’,[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

plot(t_peaks, -peaks,’k’)

hold on

plot(t_peaks, -peaksn,’k:’)

plot(t_peaks, -peaksm,’k--’)

xlabel t; ylabel sup_x(-\eta(x,t))

axis([0 max(t_peaks) 0 0.061 ])

Plot the phase shift
figure(’Position’,[scrsz(3)/2 1 scrsz(3)/2 scrsz(4)/2])

plot(c*(x+140*pi),u1,’k’);

hold on

plot(c*(x+140*pi),u1n, ’k:’);

plot(c*(x+140*pi),u1m,’k--’);

set(get(gca,’ylabel’),’Rotation’,0.0)

xlabel x; ylabel \eta

axis([c*139*pi c*141*pi -0.06 0.003])
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