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 I 

Chapitre 1 : Introduction 

La visualisation est encore un champ de recherche relativement actif. Ceci vient 
du fait que la vision est le sens le plus développé chez l’homme. La vision et les 
capacités psychovisuelles et cognitives du cerveau qui en découlent, représentent pour 
l’homme l’outil d’analyse privilégié de son environnement. L’idée de base des 
techniques de visualisation consiste à exploiter les propriétés inhérentes du système 
visuel humain pour explorer, comprendre et analyser tout type de données, 
d’information ou de savoir produit par le monde scientifique Le domaine de recherche 
de la visualisation peut être défini par l'ensemble des techniques qui permettent de 
transcoder ou modéliser des phénomènes ou structures complexes, à grand nombre de 
variables (numériques à symboliques) et de dimensions élevées afin de pouvoir les 
manipuler et les analyser sous une forme visuelle, c’est-à-dire permettre à 
l'observateur de construire un modèle mental des processus d'une scène complexe. 
 

Une étude précédente à permis de définir les axes majeurs permettant d’élaborer 
un outil de visualisation répondant à un besoin précis émis par un utilisateur [1]. Cette 
réflexion a essayé de faire ressortir les points principaux qui sont à prendre en compte 
lors de la conception d’un outil de visualisation ainsi que les domaines de 
compétences nécessaires aux développeurs. 
 

Données 
de départ

Objectifs de 
l'observateur

Construction d'un 
modèle général

Transcription en 
entités graphiques 
ou indices visuels 

Conceptualisation de la scène

Représentation 
graphique et 

manipulation du 
modèle

 
 

Ainsi, trois points principaux sont à prendre en compte : 
- La connaissance de la nature des données (dimension, nature et topologie spatiale 

des données) et surtout des objectifs de l’utilisateur (intérêt de certaines variables, 
corrélation entre données). 

- La transposition ou conceptualisation sous une forme schématique et visuelle de 
l’information contenue dans les données et devant être représentée. Cette étape 
peut être divisée en deux sous-parties : 1) la construction d’un modèle général à 
partir des données et pouvant servir de représentation des phénomènes et 2) la 
transcription de ce modèle en entités graphiques ou indices visuels. 

- La représentation graphique et la manipulation des éléments graphiques. 
 

Du fait de sa complexité, le domaine médical, fait un grand usage d’outils de 
représentation. Toutefois, du fait de l’évolution rapide des techniques d’imagerie et de 
la miniaturisation des outils d’intervention, de nouveaux besoins se sont crées en 
terme de visualisation. Ces besoins recouvrent tant le domaine de l’imagerie de 
diagnostic (imagerie 3D +t) que l’imagerie interventionnelle avec des notions de 
planning opératoire, de guidage du geste et de fusion d’information dans le champ 
opératoire. 
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L’objectif de cette Thèse est de se focaliser sur certains des problèmes non résolus 
de la chaîne de visualisation en essayant d’y apporter quelques solutions. Toutefois, et 
cela est particulièrement vrai dans le domaine de recherche de la visualisation, 
l’élaboration de nouvelles solutions est largement liée au contexte de l’application 
finale et des données qui y sont traitées. Nous nous sommes intéressés à une 
application médicale bien précise qui est la chirurgie conservatrice des tumeurs 
rénales. Plus particulièrement, nos travaux de Thèse ont concerné l’élaboration des 
différents éléments d’un outil de visualisation pour le planning préopératoire de cette 
chirurgie rénale. 

 
Pour cela, nous sommes partis du cadre général décrit précédemment permettant 

d’élaborer un outil de visualisation et l’avons adapté à la problématique médicale. 
Nous y avons identifié plusieurs points durs auxquels nous avons essayé d’y apporter 
des éléments de réponses. Ainsi :  
 
- La connaissance de la nature des données et surtout des objectifs de l’utilisateur. 

L’examen préopératoire à la chirurgie des tumeurs rénales est l’uroscan. Il 
consiste à acquérir, par scanner X, 3 ou 4 volumes de l’abdomen à différents 
stades de diffusion de produit de contraste. Une première acquisition avant 
injection permet d’imager le volume du patient. Une seconde acquisition est prise 
juste après injection, ce qui révèle la vascularisation rénale artérielle et permet de 
discriminer la tumeur. Une troisième acquisition est effectuée juste après, elle 
présente un rehaussement du parenchyme rénal et permet également de 
discriminer la tumeur. Une dernière acquisition, effectuée 10 à 20 minutes après 
l’injection de produit de contraste, permet de visualiser le système collecteur 
urinaire. L’objectif est de confronter ces acquisitions afin de fournir au chirurgien 
le cadre anatomique spécifique du patient. 

- La transposition ou conceptualisation sous une forme schématique et visuelle de 
l’information contenue dans les données et devant être représentée. 
Plusieurs étapes sont nécessaires pour la construction du modèle général pouvant 
servir de support de représentation de l’information : 

o L’uroscan est composée d’acquisitions présentant une information 
complémentaire. La première étape consiste à mettre en correspondance 
ces différentes acquisitions par des techniques de recalage. 
Malheureusement, le volume abdominal se déforme continuellement dans 
le temps. Cette mise en correspondance a été effectuée par une technique 
de recalage local centrée sur le volume rénal et basée sur la maximisation 
de l’Information Mutuelle. 

o  Après le recalage, nous sommes en présence maintenant d’un volume où 
chaque voxel porte un vecteur de N valeurs correspondant respectivement 
aux intensités des N acquisitions de l’uroscan (N vaut 3 ou 4 dans notre 
cas). L’étape suivante consiste à différencier les différentes structures 
anatomiques à partir de ces données. Pour cela, nous avons choisi d’utiliser 
une technique de classification statistique du volume vectoriel basée sur 
une modélisation de la distribution des valeurs par un mélange de 
Gaussiennes à laquelle a été ajoutée une information spatiale lors du 
processus de modélisation. 
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Au final, le modèle général se présente sous la forme d’un volume où les 
différents tissus rénaux sont décrits, en chaque voxel, sous la forme d’une 
probabilité de présence. 
Concernant la transcription en entités graphiques, il est classique de représenter 
les différentes structures rénales par leurs surfaces, l’utilisateur choisissant à priori 
la couleur de la structure et son degré de transparence. 

- La représentation graphique et la manipulation des éléments graphiques. 
Dans cette dernière étape de l’élaboration d’un outil de visualisation, deux 
problématiques ont été abordées : d’une part des techniques de visualisation de 
volumes vectoriels et d’autre part la simplification du maillage d’une surface 
décrite par des facettes. 

o  Techniques de visualisation d’un volume vectoriel. Si les techniques de 
représentation de données scalaires ont fait l’objet de nombreuses 
recherches dans les années 80-90, la représentation de volumes vectoriels 
(ou de volumes multiples) a été peu abordée dans la littérature. Notre 
contribution dans ce domaine a porté sur le développement de 3 outils de 
visualisation 3D de l’information contenu dans le modèle général défini 
précédemment : 1) une technique de rendu de surface basée sur une 
extraction des surfaces contenues dans le volume par Marching Cubes [2] ; 
une technique de rendu de volume par lancer de rayons où la couleur et le 
degré de transparence en chaque voxel sont issues d’une procédure de 
décision de classe ; et 3) une technique de rendu de volume par lancer de 
rayons où la couleur et le degré de transparence en chaque voxel sont 
issues d’une procédure de composition en fonction des probabilités 
d’appartenance. 

o Simplification du maillage d’une surface décrite par des facettes. Les 
procédures de visualisation par rendu de surface modélisent les surfaces 
par un grand nombre de polygones (facettes triangulaires généralement). 
Ce grand nombre peut être supérieur à la capacité de traitement en temps 
réels des processeurs graphiques actuels. Pour cela, il est courant de 
diminuer ce nombre à l’aide de procédures de simplifications de maillages. 
Une des techniques de simplification souvent employées consiste à retirer 
successivement des éléments de la surface (facette, arête ou point) en 
fonction d’un critère de coût de préservation de la surface, et ceci jusqu’à 
atteindre le degré de simplification désiré. Un des points clés de toute 
méthode de simplification est la métrique utilisée pour estimer le degré de 
ressemblance entre la surface de départ et la surface simplifiée. Deux 
métriques décrivant la géométrie globale de la surface ont été proposées, 
l’une basée sur les moments géométriques de la surface de l’objet, l’autre 
sur les moments géométriques du volume de l’objet. Ces deux métriques 
peuvent être intégrées dans le processus itératif de simplification.  

 
La suite du mémoire détaille ces points dans les chapitres : chapitre 2, une 

technique de recalage local par maximisation de l’information mutuelle ; chapitre 3, 
une méthode de classification statistique d’un volume vectoriel basée sur une 
modélisation par un mélange de Gaussiennes avec une information spatiale ; chapitre 
4, trois techniques de visualisation d’un volume vectoriel ; et chapitre 5, les deux 
métriques basée sur les moments géométriques et permettant une simplification d’un 
modèle de surface. 
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Chapitre 2 : Recalage local par maximisation de l’information 
mutuelle 

La mise en correspondance de l’information complémentaire dans un même 
volume spatiale de l’uroscan assurerait une description beaucoup plus précise de 
l’anatomie spécifique du patient. Cette mise en correspondance nécessite une étape de 
recalage des différentes acquisitions. 

 
Le choix d’une méthode de recalage dépend généralement de la nature des 

données à traiter [3]. Notre objectif et la nature des acquisitions scanner X imposent 
d’utiliser une technique de recalage 3D/3D, monomodale, intra-sujet. Dans le cas de 
séquences de volumes abdominaux, les tissus se déplacent et se déforment 
continuellement du fait de la respiration, ce qui entraîne de grandes difficultés si nous 
souhaitons recaler les différents volumes abdominaux entre eux. Mais notre cas 
clinique ne s’intéresse qu’à l’anatomie rénale. Si le volume abdominal n’est pas rigide 
en soit, l’hypothèse que le rein reste rigide dans le temps peut être posée, parce que, 
d’une part les tissus rénaux fortement vascularisés sont denses, et, d’autre part, les 
acquisitions sont effectuées dans un laps de temps assez court (20 à 30 minutes). Les 
mouvements respiratoires ou abdominaux ne déforment donc pas le rein mais le 
déplacent uniquement entre les acquisitions. Du fait de cette hypothèse, une technique 
de recalage rigide centrée sur le volume rénal peut être choisie. 

 
Notre problème se décompose donc en deux sous-problèmes, une première étape 

d’extraction d’une région d’intérêt centrée sur le rein et une seconde étape de 
recalage rigide proprement dit. Concernant cette dernière étape, différentes techniques 
sont proposées dans la littérature. Pour des questions de précision, Nous avons choisi 
d’utiliser une technique de recalage basée sur les intensités des voxels et maximisant 
l’information mutuelle entre les différentes acquisitions. 
 
Extraction d’une région d’intérêt centrée sur le rein. 

L’objectif n’est pas ici de segmenter précisément le rein mais simplement 
d’extraire un volume qui contient le rein. Une simple boite englobante ne paraît pas 
satisfaisante car incluant trop d’information extra-rénale ; en contre partie, une 
détection automatique du rein est relativement difficile. Entre ces deux extrêmes, une 
méthode de segmentation semi-automatique paraît raisonnable. Une telle méthode, 
basée sur des contours actifs, a été étudiée afin d’extraire globalement le volume rénal 
dans un temps raisonnable. Les différentes étapes de cette segmentation sont les 
suivantes : 

1) Sur une première coupe, le contour du rein est initialisé en sélectionnant 
manuellement quelques points. Ce contour s’ajuste alors automatiquement par 
la méthode des contours actifs. Ce contour est ensuite propagé vers la coupe 
suivante pour servir d’initialisation au nouveau contour actif. Cette procédure 
de propagation/ajustement se poursuit jusqu’à la dernière coupe. Pendant cette 
procédure automatique, des ajustements manuels restent possibles. 

2) Les contours externes du rein ainsi extraits sont utilisés pour former une 
surface 3D fermée. Cette surface est remplie pour former un volume binaire. 
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3) Le volume est dilaté afin d’être sûr que toute l’information du rein soit incluse 
dans ce volume. 

4) Ce volume sert alors de masque pour extraire le volume rénal en niveau de gris. 
Le temps mis pour l’extraction d’un volume rénal est de l’ordre de 3 minutes pour 

un utilisateur non entraîné. 
 
Recalage basé sur les intensités des voxels et maximisant l’information mutuelle.  

Une méthode de recalage est généralement caractérisée par trois aspects 
importants : le modèle de transformation, la mesure de similarité et la méthode 
d’optimisation.  

− Modèle de transformation. La première étape consistait à extraire les deux 
régions d’intérêt incluant le rein et l’échelle des acquisitions est connue. Nous 
avons donc à recaler les deux régions d’intérêt mises à la même échelle en 
millimètre. Ayant posé l’hypothèse que la forme du rein est invariante dans le 
temps, le recalage recherché est de type rigide avec trois paramètres de 
translation et trois paramètres de rotations à estimer.  

− Mesure de similarité. Elle décrit numériquement le degré de ressemblance 
entre deux volumes. Cinq mesures de similarité ont été implémentées : 1) 
l’information mutuelle, 2) le coefficient de corrélation d’entropie, 3) 
l’information mutuelle normalisée, 4) le rapport de corrélation et 5) l’entropie 
de Tsallys. Ces mesures sont appliquées sur les voxels se superposant entre le 
volume cible après transformation et le volume de référence et sont formulées 
à partir de la densité de probabilité conjointe (estimée à partir de 
l’histogramme 2D conjoint).  
Nous avons voulu évaluer ces cinq mesures de similarité dans le cadre 
spécifique de notre application. Pour cela, nous nous sommes basés sur un 
protocole proposé par Skerl qui évalue la performance des mesures de 
similarité [4]. Connaissant les paramètres de la transformation exacte, le 
protocole choisit, selon des critères de régularité, différents jeux de paramètres 
dans le voisinage des paramètres idéaux. Des mesures de similarité sont 
effectuées sur ces jeux de paramètres. Des statistiques sont réalisées à partir de 
ces mesures. Elles permettent d’évaluer : la précision, le gradient moyen de 
variation des mesures, le nombre de minima locaux, le risque de non-
convergence,…. Ce protocole est appliqué, d’une part sur des données de 
synthèse (un volume rénal de référence et un volume cible fabriqué à partir du 
volume de référence auquel une transformation connue est appliquée) et, 
d’autre part, sur des données réelles. Dans ce dernier cas, la transformation 
estimée par maximisation de l’information mutuelle est considérée comme le 
jeu idéal de paramètres et seules les statistiques portant sur le gradient moyen 
de variation des mesures, le nombre de minima locaux et le risque de non-
convergence seront examinées. Dans les deux cas, données de synthèse et 
données réelles, l’information mutuelle et l’information mutuelle normalisée 
donnent les meilleurs résultats. L’information mutuelle sera donc retenue 
comme méthode de mesure de similarité.  

− Méthode d’optimisation. Plusieurs méthodes d’optimisation existent dans la 
littérature : recuit simulé, Powell, downhill simplex,… Nous avons choisie 
cette dernière méthode car réputée rapide et assez robuste aux minima locaux.  
Par contre, nous nous sommes intéressés à l’influence du choix des paramètres 
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initiaux. Sur des données de synthèse dont la transformation est connue, nous 
avons tracé l’évolution de la mesure de similarité dans l’espace des paramètres. 
Nous constatons que des minima locaux apparaissent en fonction de certaines 
configurations des paramètres initiaux et des transformations à estimer. La 
conclusion de cette analyse est que les paramètres initiaux doivent être proches 
des paramètres à estimer. De ce fait, nous utilisons une première méthode de 
recalage utilisant les moments géométriques afin d’initialiser la méthode de 
maximisation de l’information mutuelle.  

Deux autres points ont été pris en compte et évalués pour l’implémentation de 
notre technique de recalage : la construction de l’histogramme 2D conjoint (nous 
avons choisi de construire l’histogramme en distribuant les volumes partiels) et la 
résolution de cet histogramme (différents tests sur le tracé de l’évolution de la mesure 
de similarité dans l’espace des paramètres nous ont fait choisir une résolution de 64 
bins par axe ; cette résolution donne le meilleur compromis entre temps de calcul et 
précision). 

 
Résultats 

Cette technique a été évaluée sur des données de synthèse et des données réelles. 
Les données de synthèse ont été crées de la façon suivante : un volume rénal (dont la 
résolution est de 0,65 mm) est choisi comme référence et un volume cible est fabriqué 
par l’application d’une transformation connue au volume de référence. Différents jeux 
de couple de données ont été réalisés à partir de paramètres de transformation tirés 
aléatoirement. Les paramètres estimés par notre méthode de recalage sont alors 
comparés aux paramètres réels. L’erreur maximale en translation entre les paramètres 
estimés et les paramètres réels est inférieure à 0,08 mm, l’erreur angulaire maximale 
en rotation est inférieure à 0,1°. 
 

La technique de recalage appliquée sur différentes acquisitions d’un uroscan 
montre visuellement un bon alignement des différents volumes rénaux. Ainsi les 
différents volumes rénaux peuvent être fusionnés dans même référentiel spécifique au 
patient. 
 

Chapitre 3 : Classification statistique d’un volume vectoriel 

Les volumes recalés par la technique décrite dans le chapitre 2, présente 
l’information complémentaire alignée dans un même référentiel spatial. Nous sommes 
en présence maintenant d’un volume où chaque voxel porte un vecteur de N valeurs 
correspondant respectivement aux intensités des N acquisitions de l’uroscan (N vaut 3 
ou 4 dans notre cas). L’étape suivante de la construction d’un modèle général des 
données à visualiser, consiste à différencier les différentes structures anatomiques à 
partir de ces données. Cette étape, que nous allons traiter dans ce chapitre, est une 
étape de segmentation ou de classification et plus précisément d’une technique de 
classification multidimensionnelle. 
 

Une des particularités des volumes acquis en imagerie médicale est que les objets 
ne sont pas décrits de manière explicite. Les données recueillies sont issues de 
mesures physiques échantillonnées spatialement de manière régulière à une certaine 
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résolution. La valeur en chaque voxel est donc le résultat d’une combinaison 
complexe de mesures avec des effets de volume partiel et de bruit de mesure. Cette 
complexité nous conduit à choisir une technique de classification où en chaque voxel 
nous allons définir une probabilité de présence d’un certain tissu plutôt que décider de 
manière définitive qu’un certain tissu est localisé à ce voxel. Ces probabilités de 
présence de tissus seront alors estimées à l’aide d’une classification statistique de 
données.  

 
Parmi les différentes méthodes de classification statistique de données scalaires, 

le modèle basé sur un mélange de Gaussiennes (Gaussian mixture model) est déjà 
utilisé en segmentation d’images médicales (d’IRM en particulier). Nous avons utilisé 
cette méthode de classification statistique par mélange de Gaussiennes et l’avons 
étendu au cas de données décrites par des vecteurs de valeurs. 

 
L’inconvénient principal de cette méthode réside dans le fait qu’elle n’est basée 

que sur la distribution des valeurs et qu’elle ne tient compte d’aucune information 
spatiale. Or, l’information spatiale (et particulièrement pour un voxel donné, 
l’information issue de son voisinage immédiat) est une source d’information 
essentielle en traitement d’images ou de volume médicaux. Nous avons donc modifié 
la méthode de classification précédente en proposant un modèle de mélange de 
Gaussiennes pondérées par le voisinage. 
 
 
Classification statistique par mélange de Gaussiennes. 

Ce modèle est basé sur l’hypothèse que la distribution des valeurs observées, 
représentatives d’un certain tissu, suit une loi Normale fk(x) dont les paramètres sont 
la moyenne et la variance de la distribution. La valeur observée en chaque voxel est 
une combinaison linéaire des valeurs issues des distributions de chaque classe de tissu. 
Ainsi, si nous avons K classes de tissus et donc K distributions Normales fk(x) avec 
1≤k≤K, la valeur en chaque voxel est donnée par la formule suivante : 

( ) ( )∑ =
α= K

k kk xfxf
1

 avec αk qui est le coefficient de mélange de la classe k. 

L’objectif de la classification statistique est d’estimer, à partir des données, un jeu de 
paramètres Θ composé des paramètres de chaque distribution fk(x) (moyenne et 
variance de la loi Normale) et des coefficients de mélange ak.  

 
La technique de la maximisation de l’espérance (Expectation Maximisation) est 

une méthode générale pour estimer les paramètres des distributions sous-jacentes à un 
jeu de données incomplets au sens du maximum de vraisemblance. Appliquée à notre 
cas de mixture de Gaussiennes, cette méthode permet d’identifier de manière itérative, 
à partir des données, les paramètres de chaque distribution et les coefficients de 
mélange. Cette technique itérative se décompose en deux étapes : 1) en chaque voxel 
xi, la probabilité conditionnelle de chaque classe k est estimée en utilisant la règle de 

Bayes : ( ) ( )
( )∑ =

α
α

=Θ
K

k ikk

ikkt
i

xf

xf
,xkp

1

 ; 2) le jeu de paramètres Θt+1 à l’itération suivante 

est estimé à partir des ( )t
i ,xkp Θ . 
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Cette méthode est généralement utilisée sur des données scalaires, mais elle peut 
être étendue à notre cas de description de données par un vecteur de valeurs : x est 
maintenant un vecteur de N composantes et fk(x) est une distribution normale de 
dimension N (la moyenne devient un vecteur de N composantes et la variance de la 
Gaussienne devient une matrice de covariance).  
 
 
Modèle de mélange de Gaussiennes pondérées par le voisinage. 

Le problème inhérent à toute méthode de classification uniquement basée sur la 
distribution de valeurs est que l’information spatiale n’est pas prise en compte. Or, 
cette information est généralement essentielle pour le traitement d’image. Nous 
proposons une méthode qui permet de prendre en compte l’information de voisinage 
lors du calcul des probabilités de classes en chaque voxel. Pour cela, nous sommes 
partis de l’hypothèse que les tissus sont continus et que la probabilité d’une classe k 
en un voxel est influencée par les probabilités de la classe k des voxels du voisinage. 
Nous avons donc introduit, à la probabilité d’une classe k en un voxel, une 
pondération qui est fonction des probabilités de la classe k des voxels du voisinage : 

( ) ( )
( )∑ =

α
α

=Θ
K

k ikikk

ikikkt
i

xfW

xfW
,xkp

1

 avec 
( )

i

N

n

t
n

ik N

xkp
W

i∑ =
Θ

= 1
,

calculé sur un voisinage Ni 

choisi. L’estimation du poids Wik est intégrée dans la procédure itérative de 
maximisation de l’espérance. 
 
Résultat 

Cette méthode a été évaluée dans un premier temps sur une image 2D de synthèse 
où chaque pixel est un vecteur de 3 éléments. Chaque élément est représentatif d’une 
image composée de 2 régions homogènes auxquelles nous avons ajouté du bruit 
Gaussien. 

   

 
La combinaison de ces trois éléments forme une image composée de 6 régions. 

Les résultats de la classification sont présentés ci-dessous avec en (a) la méthode 
estimant le mélange de Gaussiennes basée sur les seules valeurs et en (b) lorsque la 
méthode est pondérée par le voisinage.  
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(a)                                   (b) 

Sur ces images, la couleur attribuée aux différents pixels est représentative de la 
classification statistique et est obtenue par la formule suivante : 

( ) ( )∑ =
Θ=

K

k iki xkpCxC
1

,  avec Ck, la couleur attribuée a priori à la classe k. Nous 

pouvons noter que les régions sont plus homogènes avec la méthode pondérée par le 
voisinage.  
 

Nous avons ensuite appliqué les deux méthodes sur des données réelles : un 
volume rénal dont chaque voxel est un vecteur de 3 éléments correspondants 
respectivement à (a) l’acquisition avant injection, (b) à l’acquisition du stade 
parenchymateux et (c) à l’acquisition prise 10 minutes après l’injection du produit de 
contraste. Les trois composantes d’une coupe de ce volume sont représentées dans la 
figure suivante.  

     

 (a)                          (b)                             (c) 

 
Nous voulons classer ce volume en 4 tissus : graisse (rouge), cortex (vert), 

medulla (bleu) et voie urinaires (blanc). Les résultats de la classification sont 
présentés ci-dessous avec en (a) la méthode estimant le mélange de Gaussiennes basée 
sur les seules valeurs et en (b) lorsque la méthode est pondérée par le voisinage.  

            

 (a)                                    (b) 
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Nous retrouvons les mêmes caractéristiques de classification que pour les données 

de synthèse. 
 
Nous constatons au final que l’introduction de l’information de voisinage dans les 

étapes de la classification rend cette dernière moins sensible au bruit et aux effets du 
volume partiel. 
 

Chapitre 4 : Techniques de visualisation d’un volume vectoriel 

Si les techniques de représentation de données scalaires ont fait l’objet de 
nombreuses recherches dans les années 80-90, la représentation d’un volume vectoriel 
(ou de volumes multiples) a été peu abordée dans la littérature. Or, les traitements 
d’images médicales proposent de plus en plus de techniques de fusion d’information 
multiple dans un même cadre anatomique, tant pour un but de diagnostic que d’aide 
au geste chirurgical, d’où un besoin croissant d’outil de visualisation de cette 
information multiple. Les techniques proposées jusqu’à maintenant sont basées sur 
des techniques de représentation de données scalaires et se caractérisent par le choix 
de l’étape du processus de formation de l’image où les données multiples sont 
fusionnées [5]. Mais dans tous ces cas, ces données multiples sont considérées comme 
indépendantes avant la fusion. Dans notre cas, les différentes données sont fusionnées 
avant le processus de visualisation. Nous allons donc étudier différentes techniques de 
représentation qui intègrent cette notion de données vectorielles dans le processus de 
visualisation. 
 

Traditionnellement, dans le domaine médical, les techniques de représentation 3D 
ont été classées en deux catégories : les technique dites de "surface rendering" 
caractérisées par le fait que les surfaces qui seront représentées sont dans un premier 
temps extraites (ou segmentées) du volume et décrites typiquement sous la forme de 
facettes ; et les technique dites de "volume rendering" où l’image finale est formée 
directement à partir de l’information du volume sans segmentation préalable. Nous 
nous sommes intéressé à ces deux classes de technique et les avons adaptées à la 
visualisation de données vectorielles. 
 
Méthode de "surface rendering" 

Dans le cadre de la visualisation de volumes de données scalaire, les techniques 
dites de "surface rendering" sont basées sur une extraction et une approximation des 
surfaces à représenter. Dans le domaine médical, la technique classique consiste, à 
l’aide de l’algorithme du Marching Cube [2], à extraire une surface d’isovaleur et à la 
décrire par des facettes. Ces facettes sont ensuite traitées par les processeurs 
graphiques des ordinateurs. Cette technique d’extraction de surfaces n’est pas 
transposable directement au cas des données vectorielles car la notion d’isovaleur y 
est difficilement définissable. Toutefois, la technique de classification décrite dans le 
chapitre 3 donne des résultats homogènes avec des transitions nettes entre tissus. Il est 
donc possible d’utiliser la technique du Marching Cube pour chacun des tissus, 
d’attribuer couleur et transparence à chaque surface ainsi extraite et d’associer ces 
différentes surfaces pour la représentation finale. 
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Représentation des surfaces (cortex en vert, medulla en bleu et voies urinaires en 
blanc) 

Méthode de "volume rendering" 
Dans cette classe de méthode, l’image finale est formée directement à partir de 

l’information du volume sans segmentation préalable. Nous avons choisi de nous 
intéresser à des techniques de type lancer de rayons [6]. Dans cette technique, la 
procédure de calcul d’une image à partir d’un volume de données scalaires est la 
suivante : 1) des rayons sont lancés de l’écran à travers le volume ; 2) chaque rayon 
est échantillonné spatialement ; 3) la valeur recueillie à la position courante d’un 
échantillon sert à : 3a) déterminer une opacité, 3b) déterminer une certaine couleur en 
fonction du tissu et d’un ombrage estimé à l’aide d’un calcul de gradient 3D local ; 4) 
la couleur finale d’un rayon est obtenue par la composition des opacités et des 
couleurs le long de ce rayon.  
 

L’opacité et la couleur en un voxel sont déterminées à partir de sa valeur par des 
fonctions de transfert, ce qui permet plusieurs types de représentation de l’information. 
 

Cette procédure de lancer de rayons peut être adaptée à notre cas de données 
vectorielles après la résolution de certains points clés qui ont fait l’objet de nos 
travaux de recherche : 
- le calcul de gradient 3D. La notion de gradient 3D est difficilement transposable 

dans le cas de données vectorielles, il nous faut donc passer par une variable 
intermédiaire qui reflète l’homogénéité des tissus ou au contraire la présence 
d’une surface entre deux tissus. En nous inspirant d’une idée émise par Drebin [7], 
nous avons créé une nouvelle caractéristique du volume, la densité, déterminée par 

la formule suivante : ∑ = α= K

k kkpD
1

, avec K, le nombre de tissus, pk, la 

probabilité de la présence du tissu k et αk, le degré de transparence du tissu k 
choisi à priori par l’utilisateur. Dans le volume, les voxels d’une région homogène 
auront des densités proches. Ainsi, une surface (le passage d’une région à une 
autre) sera caractérisée par un saut de densité et l’orientation de cette surface 
pourra être estimée par un opérateur de gradient 3D appliqué sur ces densités. 

- L’estimation de l’opacité et de la couleur en un échantillon. Dans la technique 
classique de volume rendering, l’opacité et la couleur sont déterminées localement 
à partir de la valeur par des fonctions de transfert. Ces fonctions de transfert 
peuvent avoir deux rôles [6] : a) d’une part, attribuer à un voxel l’opacité et la 
couleur qui dépendent des tissus ; b) d’autre part, rehausser les surfaces contenues 
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dans le volume en augmentant l’opacité des zones frontières et en la diminuant 
dans les zones homogènes. Dans notre cas, nous devons construire des fonctions 
de transfert qui déterminent l’opacité et la couleur à partir des probabilités pk de 
présence des tissus. Deux méthodes ont été introduites. Ces deux méthodes 
essayent de résoudre à la fois le problème d’attribution d’une opacité en fonction 
du tissu et celui du rehaussement des surfaces. 

o La méthode de décision de classe. L’idée est, pour un voxel donné, de 
décider quel est le tissu le plus probable et de lui attribuer les 
propriétés de ce tissu. Pour cela, les dérivés premières des probabilités 
sont analysées lors de la progression le long du rayon. Pour un voxel 
donné on lui attribue le tissu k qui présente la dérivée de la probabilité 
f’(k) la plus grande. Après cette décision, la couleur Cs et l’opacité αs 
sont attribuées au voxel courant par : 
Cs = Ck    et    αs = αk . f’(k) 
En analysant cette formule, nous constatons que les volumes 
homogènes seront transparents (f’(k) proche de 0) et que seules les 
surfaces présenteront une certaine opacité. 

o La composition des couleurs et opacités. L’idée est d’obtenir 
directement la couleur et l’opacité à partir des probabilités de présence 
de tissus. Pour cela, en un voxel donné, la couleur et l’opacité qui 
dépendent des tissus seront données par la composition des couleurs et 
opacités de chaque tissu selon les formules suivantes : 

∑ =
=

K

k kks CpC
1

 et ∑ =
α=α

K

k kks p
1

 

Le rehaussement des surfaces se fait par une pondération des opacités 
en fonction du module du gradient Ns. Pour cela, nous utiliserons le 
principe décrit précédemment du calcul de gradient 3D sur les densités 
D. Pour un voxel donné, le module normalisé du gradient 3D |Ns| sera 

utilisé pour pondérer l’opacité : ( ) s

K

k kks p N⋅α=α ∑ =1
 

 
Ces deux méthodes d’estimation de l’opacité et de la couleur ont été 

implémentées dans le cadre du lancer de rayons.  

       

(a)                                     (b) 

Méthode de "volume rendering" en utilisant (a): la décision de classe; (b): la 
composition des couleurs et opacités 
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Chapitre 5 : Simplification d’un modèle de surface. 

Les techniques de rendus de surface sont classiquement basées sur une description 
des surfaces par des polygones (facettes triangulaires le plus souvent). Or les 
techniques qui permettent d’extraire ou de définir ces surfaces (Marching Cubes par 
exemple) produisent généralement une description présentant un très grand nombre de 
facettes. Ce grand nombre de facettes est souvent supérieur à la capacité de traitement 
en temps réel des processeurs graphiques actuels. Une solution naturelle à ce 
problème consiste à essayer de réduire le nombre total de facettes tout en préservant 
l’aspect global de la surface.  
 

Une des techniques de simplification souvent employée est la technique de fusion 
d’éléments qui consiste à agréger successivement des éléments de la surface (facettes, 
arêtes ou points) en fonction d’un critère de coût de préservation de la surface, et ceci 
jusqu’à atteindre le degré de simplification désiré. Un des points clés de toute 
méthode de simplification est la métrique utilisée pour estimer le degré de 
ressemblance entre la surface de départ et la surface simplifiée. En effet, c’est sur 
cette métrique que repose le choix des éléments de surface à fusionner et donc la 
qualité finale de la simplification de la surface. La plupart des métriques proposées 
dans la littérature repose sur des critères locaux qui préservent les caractéristiques 
locales de la surface. Toutefois certains auteurs ont proposé des critères globaux afin 
de préserver plutôt la forme globale de la surface à simplifier : Park et al utilisent 
comme métrique de préservation, la différence entre l’aire de la surface simplifiée et 
l’aire de la surface de départ ; selon la même idée, Alliez et al utilisent la différence 
entre le volume de la surface simplifiée et celui de la surface de départ. L’information 
spatiale ou géométrique portée par l’aire ou le volume est toutefois assez restreinte et 
de bas niveau. D’autres mesures géométriques globales, telles les moments 
géométriques, portent plus d’information spatiale sur la forme de la surface. En se 
basant sur cette idée, nous proposons deux nouvelles métriques : l’une utilisant les 
moments géométriques de la surface de l’objet, l’autre utilisant les moments 
géométriques du volume de l’objet. 
 
 
Moments géométriques de la surface. 

Les moments géométriques d’ordre k1+k2+k3 de la surface d’un objet P sont 

définis par : ( ) ∫=
)(

321

321 PS

kkk
kkk dSzyxPSm  où l’intégrale est effectuée sur la surface 

de P. Si nous désirons mesurer la similarité entre la surface de départ S de P et une 
surface simplifiée S’ de P, nous pouvons définir comme métrique : 

( ) ( )( )∑∑∑
= = =

−−−− ′−=
M

p

p

q

q

r
rrqqprrqqp PSmPSmSMD

0 0 0
,,,,  où M est l’ordre maximal des 

moments que nous voulons utiliser. 
 

Il est a noter que m0,0,0S(P) est l’aire de la surface de P et donc, si nous nous 
restreignons à M=0, nous retrouvons la métrique proposée par Park et al.  
 

Pour M>0, notre métrique apporte donc plus d’information que la métrique basée 
sur la seule différence entre surfaces. Toutefois l’inconvénient de la métrique basée 
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sur les moments est qu’elle est assez longue à calculer. Toutefois, ce problème est 
contourné en utilisant l’algorithme simple et rapide d’estimation des moments de 
surfaces proposé par Tuzikov et al [8]. De plus nous démontrons que lors de 
l’opération de simplification, nous pouvons estimer l’évolution des moments de la 
surface de la forme simplifiée en ne regardant que l’impact de la modification sans 
avoir à recalculer les moments sur la surface entière. 
 
 
Moments géométriques du volume. 

Les moments géométriques d’ordre k1+k2+k3 du volume d’un objet P sont définis 

par : ( ) ∫=
P

kkk
kkk dxdydzzyxPVm 321

321
où l’intégrale est effectuée sur le volume de P. Si 

nous désirons mesurer la similarité entre le volume de départ V de P et le volume V’ 
de la surface simplifiée S’ de P, nous pouvons alors définir comme métrique : 

( ) ( )( )∑∑∑
= = =

−−−− ′−=
M

p

p

q

q

r
rrqqprrqqp PVmPVmVMD

0 0 0
,,,, où M est l’ordre maximal des 

moments que nous voulons utiliser. 
 

Comme précédemment il est à noter que m0,0,0V(P) est le volume de la surface de 
P et donc, si nous nous restreignons à M=0, nous retrouvons la métrique proposée par 
Alliez et al. 

 
Comme pour les moments géométriques de surface, nous pouvons utiliser une 

méthode de calcul rapide des moments géométriques de volumes et nous avons 
démontré que lors de l’opération de simplification, nous pouvons estimer l’évolution 
des moments de volume de la forme simplifiée en ne regardant que l’impact de la 
modification sans avoir à recalculer les moments sur le volume de la surface entière. 
 
 
Évaluation des métriques 

Nous nous sommes inspiré du schéma d’évaluation proposé par [4] afin d’estimer 
la performance des deux métriques proposées.  

 
Ce schéma consiste dans un premier temps, à choisir une méthode de 

simplification utilisant une métrique (méthode par suppression d’arêtes dans notre 
cas). Pour chaque métrique à évaluer, cette méthode est alors appliquée sur une même 
surface de départ pour atteindre un même degré de simplification. Le degré de 
ressemblance entre la surface simplifiée et la surface de départ est alors estimé en 
mesurant l’écart type des distances entre ces surfaces afin de comparer la performance 
des différentes métriques entre-elles.  

 
Ce protocole d’évaluation est appliqué sur différentes surfaces 3D de référence 

trouvées dans la littérature. Les deux métriques, moments des surfaces et moments 
des volumes, sont comparées entre-elles pour différents ordres de moments. De cette 
évaluation, plusieurs observations peuvent être émises : 
a) Pour les deux types de moments (surface ou volume), les métriques utilisant des 

moments d’ordre 0 donnent les résultats les plus faibles. Notre hypothèse de 
départ que les moments d’ordre >0 portaient plus information spatiale sur les 
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formes que la seule aire ou le volume d’une surface est vérifiée et utilisée pour 
améliorer la qualité de la simplification. 

b) Pour un même ordre de moment, les moments du volume donnent des résultats un 
peu meilleurs que les moments de la surface. 

c) La métrique utilisant les moments peut également servir de méthode d’estimation 
de degré de ressemblance entre deux surfaces et servir à évaluer d’autres 
métriques (locales ou globales) 

                      

(a) Modèle original (180140 triangles)     (b) 30% (54042 triangles) 
Résultats de la simplification du maillage de la surface de la medulla rénale en 
utilisant la métrique basée sur les moments d’ordre deux du volume de l’objet : 
(a) maillage original, (b) maillage après simplification et ne possédant plus que 

30% du nombre de facettes de départ. 

 

Chapitre 6 : Conclusions. 

Dans cette Thèse, nous avons abordé plusieurs aspects du processus de création 
d’un outil de visualisation appliqué au domaine biomédical. Nous sommes partis 
d’une problématique médicale bien précise qui est le besoin de la représentation des 
structures anatomiques rénale dans le cadre du planning préopératoire d’un traitement 
de tumeurs rénales. Le processus de création de cet outil de visualisation a été 
décomposé en différents sous-problèmes : le recalage local par maximisation de 
l’information mutuelle du volume rénal afin de mettre en correspondance 
l’information complémentaire issue de l’uroscan ; l’estimation de la probabilité de 
présence de tissus en chaque voxel du volume par une méthode de classification 
statistique basée sur un modèle de mélange de Gaussiennes pondérées par le 
voisinage ; la représentation des structures anatomique en se basant sur technique de 
visualisation à partir de ces probabilités de présence de tissus ; et la simplification 
des maillages à l’aide d’une métrique utilisant les moments géométriques.  

 
Les différentes solutions proposées lors de notre travail de Thèse ont été 

développées dans le cadre bien spécifique de notre application médicale : la 
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représentation des structures anatomiques rénale après acquisition par uroscan. Par 
contre, elles sont suffisamment génériques pour être utilisées ou adaptées à d’autres 
organes ou à d’autres applications médicales, soit en tant que solution complète de 
visualisation, soit de manière indépendante afin de répondre à des problématiques 
particulières. 
 

Toutefois, ces travaux n’offrent que quelques éléments de réponses à l’élaboration 
de la chaîne de traitement. Plusieurs des points présentés dans ce mémoire restent à 
être améliorés, essentiellement dans l’automatisation des tâches (extraction d’une 
région d’intérêt centrée sur le rein par exemple), dans le degré de précision 
(classification des réseaux vasculaires ; une solution de classification par étapes 
successives est envisagée) et dans l’optimisation et l’accélération de certains 
traitements (calcul de l’image finale en volume rendering).  
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Chapter 1: Introduction 

Scientific visualization is currently a very active and vital area of research, 
teaching and development. Since vision dominates our sensory input, strong efforts 
have been made to bring the power of mathematical abstraction and modeling to our 
psycho-visual system through the media of computer graphics. This dissertation 
makes focuses on some of these problems in visualization and finally explores a 
specific application of the visualization techniques in a preoperative planning system 
for kidney surgery.  

This introductory chapter introduces a brief description of scientific visualization 
especially in medical area. The visualization application background for kidney 
preoperative planning is also introduced. Then the main research contributions are 
presented and finally the outline of the dissertation is given.    

1.1. Scientific visualization 

Scientific visualization contains a wide range of aspects and algorithms. For an 
extensive overview and classification of scientific visualization techniques, the reader 
could refer to Brodlie et al. [1] or Domik [2]. In this section, we aim only to provide 
some basic concepts in order to better understand the scientific visualization and to 
express our work within this visualization framework. 

1.1.1. Scientific visualization definitions 

The human’s vision, by its psycho-visual and cognitive faculties, represents a 
natural way for observing and understanding phenomena surrounding the individual. 
The basic idea of the scientific visualization is to exploit the inherent properties of the 
human vision for the analysis of different kinds of data, information or knowledge 
produced by scientific or other communities. 

Scientists define their needs to explore scientific data and thus drive the quest for 
some visual exploration tools. Scientific visualization provides concepts, methods and 
tools from existing disciplines to best use human abilities and computer algorithms for 
the display of scientific data. It applies the representation of graphical data for gaining 
understanding and insight of the data. Sometimes it is referred as visual data analysis. 
This enables the researcher to gain insight into the system in ways which were 
previously impossible.  

The research field of scientific visualization can be defined by all of the 
techniques which are used to explore, extract or transcode the data, phenomena or 
complex structures with many variables and high dimensions together into a graphical 
form understandable by the human’s psycho-visual and cerebral system in order to 
enable the observer to construct a mental model of the underlying processes which are 
contained in the complex scene.  

From the previous definition, it seems that the scientific visualization only 
concerns the information transcription techniques. But in fact, the visualization 
process is more than information transcription. Without any observer’s cognitive and 
psycho-visual aspects, this transcription cannot make any sense. The mechanisms how 
the observer will understand the final visual form should also be taken into account 
during the information transcription procedure. This leads to the integration of the 
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observer into the visualization process. The global visualization process is described 
in Fig. 1.1. 

 

Figure 1.1: The global procedure of information processing by scientific 
visualization 

1.1.2. Scientific visualization goals 

Scientific data can be provided by various sources, including measurements or the 
results of scientific computations or simulations performed on supercomputers. 
However, data do not become useful until some (or all) of the information they carry 
is extracted. The goal of scientific visualization is to provide concepts, methods and 
tools to create expressive and effective visual representations from scientific data. 
Such visual representations improve the understanding of physical processes, 
mathematical concepts and other quantifiable phenomena expressed in the data [2]. So 
that scientific visualization is expected to enhance and increase scientific productivity. 

It is important to differentiate scientific visualization and computer graphics. 
Computer graphics only concerns the techniques which can transfer graphic elements 
to an understandable way on the screen. In scientific visualization, we seek also to 
understand the data and convert it to graphic elements. A scientific visualization tool 
is often more than the visual representations themselves. Quantitative analysis of data, 
such as statistical analysis, image and signal processing techniques are often 
associated in order to explore more information inherent in scientific data. So that 
scientific visualization involves research in human perception, computer graphics, 
image processing, high performance computing, and other areas. 

1.1.3. Visualization of medical data 

Three dimensional (3D) volumetric data obtained from medical scanning is in 
abundance today. These data are usually obtained using scanning modalities such as 
computed tomography (CT), magnetic resonance imaging (MRI), positron emission 
tomography (PET), ultrasound, etc. The acquisitions contain information about the 
internal anatomical structures or the physiology of the patient. With the increasing 
acquisitions in medical area, more and more energies are put into medical 
visualization research. It becomes a successful application area of scientific 
visualization, from the computer-assisted diagnose to computer-assisted therapy. 
Analyzing and illustrating the information by scientific visualization techniques 
makes much sense for both diagnostic and therapy usage.  

The visualization of medical data can be classified into three levels: illustrative 
visualization, investigative visualization and imitative visualization [3]: 
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− Illustrative visualization mainly concerns the extraction of information and its 
presentation. According to the image spatial dimensions, the visualization can 
be divided into three cases: 1D displays (real-time displays, e.g. cardiogram 
display), 2D displays (slices, contours etc.), 3D displays (surface rendering, 
volume rendering etc.). Except the 1D displays (very simple), this kind of 
visualization focuses more on the accuracy and quality; speed is less important 
so that low interactivity is also acceptable.  

− Investigative visualization focuses on explorative aspects and attempts to 
provide more information than the apparently revealed by the data. This class of 
visualization techniques is put into forward with the development of various 
medical imaging techniques (MRI, PET etc.). Several techniques are included in 
the investigative visualization: multimodality fusion, stereoscopic visualization, 
navigational visualization (e.g. virtual endoscopy) etc. The speed and 
interactivity are vital aspects for this kind of visualization. 

− Imitative visualization attempts to imitate visual perception (virtual reality) or 
function (simulate and modeling). In addition, the augmented reality (e.g. 
intraoperative image fusion with real world objects) also belongs to this kind of 
visualization. Comparing to the two former visualization classes, this 
visualization level is higher because the user immerses in the visualization 
process.  

Among these three levels of medical visualization, illustrative visualization has 
been investigated thoroughly for a long time [5-7]. Investigative visualization 
involves more medical image analysis techniques and because of its various 
applications, it becomes one of the hottest research topic in recent medical 
visualization research area [8-10]. Imitative visualization is the highest level, besides 
image analysis and visualization techniques, it also acquires the modeling techniques 
for the simulation of visual perception or even sensory perception [11]. The two 
former visualization levels can be the foundation of the research of imitative 
visualization. 

1.2. A general medical data visualization framework 

Scientific visualization is widely used in the medical field. The variety of medical 
data encourages the rapid development of visualization techniques application in 
medical area. Many medical data visualization tools have been developed for specific 
applications. Thinking about the generality of the design process of a medical 
visualization tool, in our opinion, it must follow some specific rules in order to be 
more efficient. Here we will present the key points which have to be taken into 
account during this design [12].   

Overall, there are two strategies that can be followed for the design. On the one 
hand, the observer can use a general visualization software (e.g. AVS [13]). Such 
packages are either developed by researchers majored on visualization, or extended 
from an application of a particular area. They offer a variety of processing and 
representation models. The role of the users is then to choose by themselves and 
combine the different tools which seem the most relevant to their specific application. 
The other possibility is to develop a tool directly dedicated to the user’s specific area. 
This solution requires a close cooperation between the end user and the visualization 
researcher in order to better define the needs and methods of representation. 
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Figure 1.2: The design aspects of a visualization tool 

In both cases, no matter it is done in an intuitive or more formal way, the 
development of a tool for medical visualization is much more than the graphical 
representation. There are three major points that should be taken into account (Fig. 
1.2): 

− The cognition about the input medical data (dimension, nature and spatial 
topology of the data, etc.) and the user’s objectives (interest on certain variables, 
correlation between data, etc.). 

− The conceptualization of the scene or transcription of the information contained 
in the data into a graphical form [1, 14]. This step can be divided into two parts 
[1]: 1) the construction of a general model from input data for the representation 
of the phenomena; 2) the transcription of the model into graphical entities or 
visual signs. 

− The graphical representation and the manipulation of the graphic elements 
according to the user’s objectives. This last point concerns mainly the computer 
graphics aspects. It is only one of the main steps of the visualization pipeline 
even if some authors reduce the scientific visualization into this unique aspect.  

These three steps define the basic structure of scientific visualization and should 
be taken into account during each design of a visualization tool. 

1.2.1. The user’s objective and the input data 

These two aspects, although they are outside of the design of the visualization 
tool, are the key points that will play an important role for the conception of the 
visualization strategy and its design. 
 
The user’s objective. The first step of the development of a visualization tool should 
be to interview the prospective users on different aspects, such as the data they want 
to analyze and how they operate or wish to exploit the data. This step is already a real 
analysis of the information to be transcribed by the visualization process. It integrates 
the scientific knowledge (medical in our case), the specific user’s requests (his 
motivations, his expected objectives, and even his hidden objectives), the habitual 
practice in the area (the accustomed procedures, the conventions of the field, etc.). 
 
The input data. If the goal of visualization research is to transform data into a 
perceptually efficient visual format, and if we are making statements about some 
visualization generality, we must be able to say something about the types of data that 
can exist for us to visualize [15]. The analysis of the data forms the basis of any 
information transcription stages. The input data can be totally different depending on 
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the field and even the scientific application in which they originated. But all this 
information shares common properties which can be classified and then transcribed in 
a visual form. The properties can be classified into four constituents [16]: the  
differentiation between invariants and variables; the number and nature of the data 
components; the organization level of the data components (qualitative vs. 
quantitative information, spatial dimension and topology, temporal organization); and 
finally the resolution of the components. For a specific data, the analysis of these 
constituents is essential because it enables us to choose some appropriate graphical 
encoding which express the same properties.   

1.2.2. Conceptualization of the scene 

The conceptualization of the scene is the central part of the visualization process. 
This step consists in the transcription of the information contained in the input data to 
a schematic and graphical form.  

 

Figure 1.3: The conceptualization of the scene 

Brodlie [1] separated the process of conceptualizing the scene into two stages (Fig. 
1.3): one is the construction of a general model and the other is the transcription of 
this model to graphic entities or visual signs.  

1.2.2.1. Construction of a general model 
The information to be visualized can be composed of data that have relatively 

varied natures, locations and temporal behaviors because they are measured by 
different sources. The fusion of these data will require first a spatial and temporal 
alignment (or registration). The distribution of the information all over the space or 
time requires some interpolation or extrapolation techniques. Useful information can 
be indistinct or hidden so that segmentation techniques are often necessary to extract 
it. Another stage concerns the modeling or approximation of the information by a 
continuous function (for a number of techniques, the modeling or approximation step 
is a part of the segmentation process, but their nature is different).    

Recall that the ultimate goal of these operations is to create a model of the 
information entities from the data. This model can be quite varied: a mathematical 
model, an organization model of the data, etc. This model will be used as a general 
support at the stage of graphic transcription. We can see that this stage of the general 
model construction makes extensive use of classical image analysis techniques. The 
following references can give a starting point for the appropriate choice of these 
techniques: registration [8, 10, 17], interpolation [18], segmentation [19, 20], 
modeling [21].  
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1.2.2.2. Transcription of the information to graphical cues 
The models help to describe the information contained in the input data in general 

terms. The next logical step is to transcribe these models to graphical entities as 
relevant as possible. The description and classification of graphical entities have been 
referenced [14, 16, 22, 23].  

The choice of the best suited visual variable remains delicate. The generic 
visualization software generally offers the user a graphic coding palette. Therefore, 
the user chooses a coding based on his intuition, affinities, etc. In contrast, dedicated 
software offer a coding which supposedly is tailored to the problem. In all cases, 
certain cautions must be taken when allocating a graphic code to the information 
components [16].  

1.2.3. Graphical representation techniques 

In the last stage, the visual variables are represented on the screen by computer 
graphics techniques [24]. In this section, we are more interested in the 3D 
representation forms. The objective of the 3D visualization is to represent the 
information which initially is three-dimensional on a picture plane (the screen). This 
process is the reverse of the human perception process which makes a mental 
reconstruction of 3D volumes from 2D projections collected by the eyes.  

In medical area, the information to be visualized is often described by 3D 
volumetric data. Sakas [25] analyzed that the trends in medical imaging is going from 
2D to 3D in recent years because the imaging procedures are being used not only by 
diagnosticians (usually radiologists) but also increasingly by surgeons during 
interventional procedures (e.g. navigation, guiding intervention, controlling therapy, 
etc.). This doesn’t mean that slices (2D) will be totally replaced. However, the focus 
of future applications will be shifted from 2D to 3D.  

Here we focus on the 3D rendering techniques which are used to visualize 3D 
reconstructions of organs. These techniques can be classified into two categories [4, 
7]: surface rendering and direct volume rendering (DVR). Surface rendering involves 
the extraction of surface primitives from the input data, followed by projection of the 
extracted surface onto a 2D image. The final image quality depends on the extraction 
and information reduces to only surfaces. Direct volume rendering generates the 2D 
projections directly from the dataset. It does this by projecting the entire dataset onto 
the 2D image. One disadvantage of using DVR methods is that the entire dataset must 
be traversed each time an image is rendered. The two techniques can be combined 
together by a hybrid rendering technique when it is desirable to add geometric objects 
to a volumetric scene [26]. 

1.3. An application example: visualization for kidney surgery 
preoperative planning 

For a dedicated application, the general visualization framework can be specified. 
Fig. 1.2 illustrates the general design aspects of a visualization tool. For the special 
kidney surgery preoperative planning visualization system, the design aspects are 
specified in Fig. 1.4. The detail explanation of these aspects will be introduced in this 
section.  
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Figure 1.4: General framework of a visualization tool for the kidney surgery 
preoperative planning 

1.3.1. Renal acquisitions and user’s objective 

Renal cancer represents 2~3% of whole cancers and is the third most frequent in 
urologic cancer. If renal tumors are detected precociously, they are usually less than 4 
cm so that a nephron sparring surgery can be considered through several methods like 
open or celioscopic surgery, even also radiofrequency treatments. In all of these cases 
the surgeon needs to establish his treatment planning so that it is necessary to know 
the patient specific anatomy and more particularly the relations between the tumor, 
the vascular trees and urinary tract. 

   

Figure 1.5: One slice of the acquisitions. From left to right: (a) slice without 
injection; (b) slice with vascular system and parenchyma enhanced; (c) slice with 

collecting system enhanced.  

The CT uroscan is the classical clinical preoperative examination. It consists of 
three to four time spaced 3D acquisitions (Fig. 1.5), which give complementary 
information about the kidney anatomy. The first acquisition is realized without 
injection of contrast agent and informs the surgeon about intern morphology of the 
patient. Just after a contrast medium injection, one or two acquisitions1 are taken, 
which reveal the renal vascular systems and the renal parenchyma and also give 
information about the nature and the location of the renal carcinoma. About ten 
minutes later on the last acquisition the collecting system is enhanced.  

The first step of the kidney preoperative planning is to be aware about the 
anatomical structure of the patient’s kidneys. The acquisitions mentioned above give 
relatively complementary information about the kidney so that it is possible to 

                                                 
1 If two acquisitions are performed, the first one obtained just after the contrast medium injection 
reveals the renal arterial system; the second one obtained just a time later presents the venous 
vascularization and the renal parenchyma. 
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represent the patient’s specific kidney anatomical structure to the surgeon by 
visualization techniques.  

1.3.2. Conceptualization of the scene 

As introduced in the general medical visualization framework, the 
conceptualization of the scene is separated to two stages: the construction of a general 
model and the transcription of this model to graphical cues.  

For the specific application (kidney preoperative planning), the construction of a 
general model can consist of two special techniques: registration and segmentation:  

− The three to four renal acquisitions at different contrast medium time give the 
complementary information about the patient’s kidney anatomical structure. 
In order to integrate this information within a unique spatial volume, it is 
necessary to bring the different acquisitions into spatial alignment, which is 
called registration.  

− After the registration, complementary information is aligned on the same 
spatial reference. We will use this complementary information to delineate 
the several renal structures. The anatomical structure information is implied 
in the spatial aligned acquisitions. In order to construct a model to describe 
this anatomical information, we should identify the tissues contained in the 
acquisitions by applying a suitable segmentation method. If this segmentation 
process is realized by a classifier, it is also called classification.  

The segmentation (classification) method will give out the distribution 
information of the tissues in the acquisitions. The transcription of this model to 
graphical cues is to allocate a graphic code to the information components. Before the 
allocating step, we must be aware of the interested issues in the model. In our case, for 
illustrating the anatomical structures, the tissue surfaces are more important than their 
inside information so that we try to show the surfaces in the final image. In order to 
separate different tissues in the final image, we assign a color to each tissue. If we see 
from one direction, the front tissue will cover the back tissue because they are not at 
the same depth level. So that semi-transparent illustration is acquired to show all the 
tissues together. To achieve this goal, we assign a transparency value to each tissue.  

1.3.3. Rendering techniques 

The graphical representation techniques in the general visualization framework 
are specified to 3D rendering techniques in our case because we seek to visualize the 
3D constructions of the patient’s kidney.  

There are two kinds of rendering techniques for the 3D visualization: direct 
volume rendering (DVR) and surface rendering. Direct volume rendering directly 
compute the final image from the original acquisitions and their properties. 
Depending on some algorithmic characteristics, DVR can either represent transparent 
surfaces or some other volume properties (X-rays similar composition). It can 
generate high quality images but the entire dataset must be traversed each time an 
image is rendered, which will cause low interaction ability. Surface rendering requires 
the extraction of surface primitives from the input data. The final image quality and 
the rendering speed mainly depend on the result of the surface construction. 
Sometimes the constructed surface model can contain too many surface primitives 
(e.g. triangles) to real-time rendering, so that a mesh simplification method can be 
applied before the projection of the extracted surface onto screen. 
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1.4. Contributions of our work 

The research contribution of this dissertation focuses on the essential elements of 
a scientific visualization tool. In particular, the research area falls into the application 
of the kidney preoperative information review. The essential elements for the review 
of anatomical structure are achieved and also some additional visualization techniques 
are finally discussed. The individual contributions are introduced in the following 
chapters and they are summarized as follows: 

 1) A kidney-centered registration method is proposed and realized by local 
mutual information (MI) maximization. Kidney volumes are extracted and the 
registration is performed between the extracted kidneys instead of the whole 
volumes. The corresponding paper has been published in the international 
conference IEEE EMBC ’07 [27] and the Journal of applied sciences (Chinese) 
[28]. 

 2) A neighborhood weighted Gaussian mixture model is proposed. For the 
classification of the vectorial volume, we choose the statistical classification 
method based on Gaussian mixture model in order to acquire the material 
probabilities on each voxel. But this method relies only on the intensity 
distributions without any spatial information, which will lead to misclassification 
on boundaries with partial volume effects (PVE) and inhomogeneous regions 
with noise. In order to solve this problem we propose a neighborhood weighted 
solution. The proposed model is that the voxels’ intensity vectors follow the 
Gaussian mixture distribution and that the classes distributions on each voxel are 
affected by its neighbors’ class probability distributions. The corresponding 
paper has been published in the international conference IEEE EMBC ’08 [29]. 

 3) A new visualization method for visualizing the spatial aligned volume data is 
proposed. This method first intermix the several volumes at the earliest stage 
(acquisition level intermixing). This intermixing is realized through the 
neighborhood weighted Gaussian mixture model based classification method we 
proposed. After this data intermixing, several possible rendering techniques that 
can be adapted to this situation are presented and compared in this dissertation. 
The corresponding paper is in preparation. 

 4) Two new mesh simplification metrics based on surface moments and volume 
moments are proposed, which take the difference between the moments defined 
by the original mesh and those of the simplified mesh as the objective function. 
Comparing to most of the other mesh simplification metrics, these two proposed 
metrics are based on the object’s global features instead of local properties. The 
corresponding paper has been published in the international journal Computers & 
Graphics [30].   
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1.5. Dissertation organization 

This dissertation focuses on some issues about the scientific visualization and 
especially in the application of preoperative kidney information review. The summary 
of the chapters are listed as follows: 

 Chapter 1 first introduces the concept of scientific visualization and then 
summarizes the stages and elements for the design of a general scientific 
visualization tool. The kidney preoperative planning visualization is considered 
as the particular application for the scientific visualization techniques. Finally, 
the contributions and organization of this dissertation are given. 

 Chapter 2 proposed a kidney-centered registration method. In the range of 
organ-centered registration method, Dalen et al. [31] proposed a liver registration 
method. We implemented the similar idea but the application organ turns to 
kidney. The registration metrics are evaluated by an optimization independent 
protocol proposed by Skerl et al. [32] and MI based metrics are chosen according 
to the evaluation results. The experimental results are given and demonstrate the 
effectiveness of the proposed method. 

 Chapter 3 introduces the statistical classification method for the vectorial 
volume which is gotten after the registration. Gaussian mixture model is one of 
the most often used method for statistical classification and it has the ability to 
deal with vectorial volume. But it relies only on the intensity distributions 
without any spatial information, which will lead a misclassification on 
inhomogeneous regions with noise or on partial volume boundaries. In order to 
solve this problem, we propose a neighborhood weighted Gaussian mixture 
model in this chapter and give out the experimental results on both synthetic and 
real data. 

 Chapter 4 describes the methods for visualizing the classified vectorial volume. 
Both surface rendering and volume rendering techniques are described and 
implemented. For volume rendering based methods, two transfer function design 
methods are proposed and implemented for distinguish the classified materials. 
Finally, the experimental results are given for the comparison of different 
rendering methods. 

 Chapter 5 introduces the mesh simplification algorithms, which is one solution 
to speedup the surface rendering. The simplification metric is a key issue for the 
simplification algorithm. Two new simplification metrics based on surface 
moments and volume moments are proposed. The experimental results are given 
and the comparison with some known algorithms is also given out. 

 Chapter 6 summarizes the conclusions of this dissertation and outlines the ideas 
for the future work. 
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Chapter 2: Registration using local mutual information 
maximization 

As introduced in chapter 1, the three to four time-spaced 3D acquisitions of the 
uroscan give complementary information about the kidney anatomy. It is useful for 
the surgeon to integrate this information within a unique spatial volume. The first step 
in this integration process is to bring the different acquisitions into spatial alignment, 
which is referred as registration. 

Because of the respiration, the tissues shift continuously so that it is difficult to do 
registration between the whole abdomen acquisitions. Fortunately, we only need to 
focus on the kidneys. Although the abdomen is definitely not rigid, the kidney can be 
considered rigid because its tissues are dense and the time distance between these 
acquisitions is very short. The nature of the CT acquisitions leads us to decide for a 
3D/3D, mono-modal, intra subject registration technique [1]. We suppose that the 
kidney shape is not deformed during the acquisition, even during the respiratory 
movements. This hypothesis leads us to choose a rigid kidney-centered registration 
technique. 

In order to realize this technique, a local mutual information (MI) maximization 
registration method is proposed in this chapter. The kidneys are first extracted from 
the abdomen volumes. Then we evaluate several registration metrics by an 
optimization independent protocol proposed by Skerl et al. [2] and MI based metrics 
are chosen according to the evaluation results. Finally, the registration between the 
kidneys is implemented by maximizing the MI between them. The experimental 
results demonstrate that this method is effective. 

2.1. Introduction 

Since information from the three to four uroscan images acquired in the renal 
examination process is of a complementary nature, proper integration of useful data 
obtained from the separate images is often desired. A first step in this integration 
process is to bring the images into spatial alignment, which is called registration. The 
registration is to find transformations that relate spatial information conveyed in one 
image to that in another. Two analysis stages are taken into account in order to find an 
appropriate registration method: analyzing the nature of the acquisitions to be 
registered and finding out a suitable registration method.  

The nature of the acquisitions 

Maintz and Viergever [1] presented a survey of medical image registration 
techniques and classified them from several aspects. In this section we will only talk 
about the method classification areas which are related to our situation. According to 
this survey, the analysis of the acquisitions nature can be done from the three points of 
view: spatial dimensions, involved modalities and subject. According to the image 
spatial dimensions, the registration can be divided into three cases: 2D/2D, 2D/3D and 
3D/3D, in which 3D/3D registration normally applies to the registration of two 
tomographic datasets, which is suitable for our case. The four uroscan images are all 
CT acquisitions so that our case belongs to the monomodal applications. Recall that 
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our goal is to bring the kidney images acquired from the four scan stages into spatial 
alignment. The images to be registered are from the same patient so that the 
registration is intrasubject registration from the subject aspect. In conclusion, the 
nature of these CT acquisitions leads us to decide for a 3D/3D, monomodal, 
intrasubject registration technique.  

Registration methods 

The registration methods can be classified into three categories: point-based 
methods, surface based methods and intensity-based methods [3]. Point-based 
methods first identify some fiducial points (features) from the pair of images. The 
transformation that aligns the corresponding fiducial points will then interpolate the 
mapping from one image to another. The location of these fiducial points can be based 
on interactive visual identification of anatomical landmarks, such as the junction of 
two linear structures (e.g. the central sulcus with the midline of the brain) or the 
intersection of a linear structure with a surface (e.g. the junction of septa in an air 
sinus) etc. Alternatively, the feature can be a marker attached to the anatomy and 
designed to be accurately localized by means of automatic algorithms. Surface-based 
methods involve determining corresponding surfaces in different images and 
computing the transformation that best aligns these surfaces. For image-to-image 
registration, the skin boundary surface and the outer cranial surface are frequently 
used. The surface representation can be simply a point set (i.e., a collection of points 
on the surface), a faceted surface (e.g., triangle set), an implicit surface, or a 
parametric surface (e.g., B-spline surface). Intensity-based methods involve 
calculating a transformation between two images using the pixel or voxel values only. 
The registration transformation is determined by iteratively optimizing some 
similarity measure calculated from all pixel or voxel values or a subset of voxels.  

Comparing the three kinds of registration methods, intensity-based algorithms 
require much less amount of preprocessing and user-interaction than point-based and 
surface-based methods so that they have become the most widely used registration 
methods. Because of the need of feature location (point-based) or pre-extraction 
(surface-based), the point-based and surface-based methods require a great degree of 
user interaction and have typically exhibited lower accuracy than the intensity-based 
methods. So that intensity based registration method is applied for our situation.  

Intensity-based registration method 

An intensity-based registration algorithm can be generally characterized by three 
main components: the transformation model, the similarity measure and the 
optimization method. The optimization method finds the parameters which can get a 
transformation that maximize the similarity measure. 

The transformation model specifies the mapping from one volume space to 
another volume space. The transformations are often partitioned into rigid and non-
rigid ones with the latter transformations further divided into many subsets. The non-
rigid transformations are far more complex and varied than rigid ones. Although the 
abdomen is definitely not rigid, the kidney can be considered rigid because its tissues 
are dense and the time distance between these acquisitions is very short. We supposed 
that the kidney shape is not deformed during the acquisition, even during the 
respiratory movements. If the kidneys are extracted from the input acquisitions, the 
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transformation for the registration between the kidneys can be considered rigid, so 
that the kidneys in these acquisitions should be firstly extracted. Lin et al. [4] 
indicated that the segmentation methods are relatively less focused on kidney 
segmentation and they divided the existing kidney segmentation and analysis methods 
into three categories: 1) threshold and region-based approaches [5, 6]; 2) knowledge-
based models [7]; and 3) deformable methods [8, 9]. All the segmentation methods 
are focused on the automatic kidney segmentation precision. Recall that our goal is to 
extract the outline of kidneys in these acquisitions for registration. Because of no 
identified limits, similar gray levels and similar behavior after injection of contrast 
agent, the kidney is difficult to demarcate from the liver or the spleen [10]. The 
importance for this segmentation is completeness instead of precision, that is to say, 
all the kidney component should be extracted in these slices. In order to meet this 
request, a semi-automatic kidney segmentation framework is proposed. We first 
segment the kidney from each slice semi-automatically and then reconstruct the 
kidney volume from the segmented kidney slices. The rigid registration will be 
performed on these reconstructed volumes. 

The similarity measure numerically describes the connection between the two 
images. Both Collignon et al. [11] and Studholme et al. [12] suggested to use entropy 
as similarity measure of registration. Once this measure from information theory 
(entropy) had been introduced for the registration of medical images, another such 
measure quickly appeared: mutual information (MI). It was first brought forward both 
by Collignon et al. [13] and by Viola and Wells [14]. Applied to rigid registration, it 
showed great accuracy and within a few years it became the most investigated 
measure for medical registration [15]. The method applies the concept of MI to 
measure the statistical dependence between the image intensities of corresponding 
voxels in both images, which is assumed to be maximal if the images are 
geometrically aligned. Other similarity measures such as entropy correlation 
coefficient [16], correlation ratio [17], Tsallis entropy [18] etc. are also widely used. 
The choice and the validation of the similarity measures are critical points. Usually 
the similarity measure is evaluated with the registration result, which involves many 
other aspects in the registration algorithms (interpolation, optimization method etc.). 
Skerl et al. [2] proposed an optimization independent protocol to evaluate the 
similarity measures for rigid registration. This protocol is implemented to choose the 
most appropriate similarity measure. The similarity measures evaluation for our 
practical situation will be described in detail in section 2.4. 

Besides of the similarity measure, the optimization method is also a critical point 
in the registration method. In our case, there are six parameters: three for translation 
(tx, ty, tz) and three for rotation (rx, ry, rz) to find. There are many existing 
optimization methods which can do the multidimensional optimization [19]. There is 
no “perfect” algorithm for the particular application. We find that the efficient initial 
parameters set can facilitate the choice of the optimization method. Considering the 
speed and efficiency, a moment based parameters initialization method is proposed 
and the downhill simplex method is implemented as an optimization method. 
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Outline of our work 

According to the analysis above, we construct a kidney-centered registration 
framework: the kidneys are first extracted from the abdominal acquisitions and then 
the registration is performed between the kidneys instead of the abdomens. The 
intensity based registration method is chosen. Similarity measure is a critical aspect 
for the intensity based registration algorithms. We implement an optimization 
independent protocol proposed by Skerl et al. [2] to choose the suitable similarity 
measure for our situation. The MI based similarity measure is chosen and some 
aspects which affect the calculation of MI such as the joint histogram resolution or the 
interpolation method are discussed. Besides the similarity measure, the optimization 
method in the registration procedure is also investigated. We propose to use geometric 
moments to calculate the initial parameters for the optimization method. This 
initialization makes the choice of the optimization method more unrestricted. Finally, 
the results on both synthetic data and real data are given. 

2.2. Intra subject kidney registration framework 

2.2.1. Registration transformations and framework 

The transformation for rigid registration only involves translation and rotation so 
that it is enough to express this kind of transformation by a matrix. The matrix 
expressed transformation between volumes is illustrated in Fig. 2.1. According to the 
relationship of transform matrix, the registration framework is described as follows: 

Rough semi-automatic extraction of the kidney from the abdominal volume. 
During extraction, we keep a matrix (denoted respectively T1 and T2 for the two sub-
volumes) to express the spatial relationship between the kidney volume and the 
corresponding abdominal volume. 

Registration of the two extracted kidneys by maximizing the MI. This registration 
gives the transform matrix Tk . 

 

Figure 2.1: Transformation between volumes 

In fact, the registration is done between the two sub-volumes (extracted kidney 
volumes). By keeping the relationship between the extracted volumes and the original 
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volumes (T1 and T2), we can illustrate the aligned kidney in one of the abdominal 
volumes (the original acquisitions) by calculating Tv:  

1−= ⋅Tv Tk T1  
So this registration process is called a kidney-centered registration. 

2.2.2. Coordinate systems definition 

Each volume that is involved in a registration will be referred to a coordinate 
system, which defines a space for that volume. When we get the transformation 
between two kidney volumes, we expect to have a real world expression (millimeter 
for translation and degree for rotation). If the transformation unit is defined according 
to the real world coordinate, the result will be more related to the reality. But usually 
the volumes are described by voxels, which are defined in the image coordinate 
system. So when we do registration, we cannot calculate the transformation between 
the kidney volumes directly. In order to do registration between different volumes in 
the real world space, we define the following coordinate systems.  

The first is volume coordinate system, which is called IJK coordinate system. This 
coordinate system is used as the original volume description. The directions are 
defined as follows: I, slice left to right; J, slice top to down; K, slice’s orthogonal 
direction. 

The second is human coordinate system, which is called RAS coordinate system. 
As shown in Fig. 2.2, the directions are defined as follows: R, human left to right; A, 
human front to back; S, human bottom to top. The measurements are in millimeter in 
this coordinate system. 

In order to unify all volumes after registration, we defined a coordinate system 
called REF coordinate system. The REF coordinate system still belongs to the range 
of RAS coordinate system. The difference is that it is the RAS coordinate system of 
the reference volume. After registration, all volumes are transformed into this 
coordinate system so that they can be merged.  

Finally, the window coordinate system is the coordinate system of the screen 
window.  

 

Figure 2.2: RAS coordinate directions definition 

Transformation between different coordinate systems is illustrated in Fig. 2.3. T7 
is used to get one cut plane data of the merged volume in order to show it in the 
screen window. During registration, T1, T2, T3 and T4 will keep changeless because 
they describe the natural relationships between the coordinates. If one volume, for 
example volume 1, is considered as the reference volume, the transform T5 will be an 
identity matrix and the transformation of the floating volume T6 will be calculated 
according to the registration result of the two kidney volumes. That is to say, if we 
fixed the volume 1 as the reference volume, T6 will be equal to the Tk  mentioned 
before.  
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Figure 2.3: Transformation between coordinate systems 

This kind of coordinate system definition has the ability to involve more volumes 
into the registration. If there are more than two kidney volumes to be registered, we 
can fix one volume as the reference volume and consider the others as floating 
volumes. The REF coordinate is equal to the RAS coordinate of the reference volume. 
All the float volumes will be transformed to the REF coordinate after registration so 
that we can get the transformation between the kidneys through the unified REF 
coordinate.  

2.3. Volume extraction 

2.3.1. Extraction method 

Automatically extracting the kidney volume from the abdomen volume is difficult 
and time-consuming. We develop a semi-automatic snake-based segmentation method 
to broadly extract the kidney volume in a reasonable time. As the input data is a series 
of CT slices, we first segment the kidney slice by slice and then reconstruct the kidney 
volume from the segmented kidney slice. 

The extraction steps are as follows: 
1) Roughly initialize the kidney contour manually by picking some points to form 

a bounding contour, then use the discrete dynamic contour model [20-22] to segment 
the external kidney contour in one slice (as shown in Fig. 2.4). The result on one slice 
is then propagated to the neighboring slice as an initialization. This propagated snake 
will be automatically adjusted to the new data by Lobregt and Viergever’s model. 
This propagation procedure continues until it reaches the last slice. During this 
automatic process, sometimes manual corrections need to be performed. In this way, 
the kidney external contour is extracted on each slice. 

2) Connect these extracted kidney contours by a string matching based contour 
tiling method to form a kidney surface [23]. 

3) Fill this surface to get a binary volume. 
4) Do 3D dilatation to the binary kidney volume to make sure that the kidney 

information is inside. 
5) Intersect the binary volume with the original grey volume. 
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(a)                                                           (b) 

Figure 2.4: 2D snake segmentation. (a): Manual initialization; (b): Contour 
adjustment after applying the discrete dynamic contour model. 

After these five steps, the kidney volume is achieved. We can make sure that the 
kidneys are inside and so that the registration between kidney volumes can be 
performed. The total amount of time of this semi-automatic extraction for one volume 
is about three minutes for a non-trained user. 

2.3.2. Extraction results and synthetic experimental data 

Extraction results 

Several experiments have been done for the extraction of the kidney volumes. Fig. 
2.5 illustrates one of them. We display three slices of the volume from three axis 
direction of the RAS coordinate system: axial, coronary and sagittal. Fig. 2.5(a) and (b) 
show the volume without and with dilatation (step 4 in the extraction process) 
respectively. We can see that the dilatation operation can make sure that all the kidney 
information including the kidney boundary is contained within the volume.    
 

Synthetic experimental dataset for the validation of registration methods 

In order to validate the registration methods for our special case, we create a 
synthetic experimental dataset composed by two volumes. Denote one extracted 
kidney volume as A, the second volume is created by applying a transformation 
matrix to A and then get the corresponding kidney volume B. Therefore, the 
transformation between volume A and B is already known, which can be considered 
as the registration “golden standard”. As our real registration is between monomodal 
images, the synthetic data is similar to the real case. For the following sections, we do 
the method validation on these kidney volume pairs where the transformation between 
them is already known. 
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(a) 

 

(b) 

Figure 2.5: Kidney volume without and with dilatation. The slices from left to 
right are axial, coronary and sagittal images. (a): without dilatation; (b): with 

dilatation.  

2.4. Evaluation of the registration metrics 

2.4.1. Similarity measures 

We have implemented and evaluated five similarity measures: 1) mutual 
information [16, 24]; 2) entropy correlation coefficient [16]; 3) normalized mutual 
information [12]; 4) correlation ratio [17]; 5) Tsallis entropy [18]. All similarity 
measures were applied to overlapping voxels of floating (transformed) and reference 
(target) volumes and formulated on the 2D joint histogram or joint probability 
distribution of the intensities of the two volumes.  

Consider two digital images, X and Y, with Lx and Ly possible gray levels, 
respectively. We may assume that both images have N pixels over a common spatial 
domain 1 2Ω = Ω ∩ Ω , where 1Ω  and 2Ω  are the spatial domain of X and Y, 

respectively. Treating each pixel intensity value as a symbol of an underlying discrete 
random value, and an image as a long sequence of symbol observations of the discrete 
random value, we have the following probability descriptions: 

( )
,

( , )
,

( , )
XY

XY
XYi j

h i j
p i j

h i j
=
∑

 (2.1) 

Where ( , )XYh i j  is the number of pixel pairs in (X, Y) having intensity 

combination (i, j). Note that ( , )XYh i j  is their joint histogram, evaluated over Ω . Eq. 

(2.1) indicates that dividing the entries by the total number of entries in the histogram 
yields a probability distribution.  
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The marginal probability distributions can be found by summing over the rows 

and columns, respectively, of the joint probability: 
 

( ) ( , )X XYj
p i p i j=∑  (2.2) 

( ) ( , )Y XYi
p j p i j=∑  (2.3) 

 
Let H(X) and H(Y) be the Shannon entropies of images X and Y, respectively, and 

let H(X, Y) be the joint entropy of the two images, in which: 
 

( ) ( ) log( ( ))H p p⋅ = − ⋅ ⋅∑  (2.4) 

 
The mathematical definitions of the five implemented similarity measures are the 

following:  
 
1) mutual information [16, 24] 

( , ) ( ) ( ) ( , )MI X Y H X H Y H X Y= + −  (2.5) 

 
2) entropy correlation coefficient [16] 

2 ( , )
( , )

( ) ( )

MI X Y
ECC X Y

H X H Y
=

+
 (2.6) 

 
3) normalized mutual information [12] 

( ) ( )
( , )

( , )

H X H Y
NMI X Y

H X Y

+=   (2.7) 

 
4) correlation ratio [17] 

[ ( | )]
( | )

( )

Var E Y X
Correlation Y X

Var X
=  (2.8) 

where E[.] and Var[.] denote the expectation and the variance respectively. 
 
5) Tsallis mutual information [18] 

( , ) ( ) ( ) (1 ) ( ) ( ) ( , )MI X Y H X H Y H X H Y H X Yα α α α α αα= + − − −  (2.9) 

where 1( ) (1 ) ( ( ) 1)
x

H x p x α
α α −= − −∑  is the Tsallis entropy. 

2.4.2. Evaluation protocol 

The rigid registration similarity measures can be evaluated by an optimization 
independent protocol proposed by Skerl et al. [2]. This protocol requires that the 



 28 

“golden standard” registration transform between the images is available. The main 
idea of this protocol is to first sample some positions centered by the “golden 
standard” position in the normalized parameter space; then calculate the similarity 
measures on these positions; finally define some statistical estimates of a similarity 
measure. Therefore, the evaluation protocol is composed by the following three steps: 

1. A normalized parameter space is defined so that a unit change in any 
transformation parameter causes the same mean shift in voxels. It is then sampled 
over a hyper-sphere with radius R centered on the gold standard parameters into N 
rays, each of them composed of M+1 equally spaced pose parameters. If there are 
no gold standard parameters in our testing data, instead we will use the 
approximate parameters which are gotten by our registration method. 

2. The similarity measure is computed for all NM+1 samples. 

3. Five distinct statistical estimates are computed to characterize similarity measures 
in the neighborhood of the expected maximum: accuracy, measure of 
distinctiveness, capture range, risk of non-convergence, number of local minima. 
The definitions of these measures are as following: 

� Accuracy (ACC) is the root mean-square distances between the hypersphere 
origin and the global maxima over each line. 

� Measure of distinctiveness (DO(r)) is the average change of similarity 
measures near the global maximum and is defined as a function of distance 
r k δ= ⋅  from the maximum, where 2 /R Mδ =  is the distance between two 
consecutive points along a line and k is the number of steps from the origin. 

� Capture range (CR) is the smallest of the N distances between positions of 
global maxima and closest minima along each line. 

� Number of local maxima (NOM(r)) is the total maxima number of distance r 
from each of the N global maxima. 

� Risk of non-convergence (RON(r)) describes the behavior of a similarity 
measure around the N global maxima. It is defined as the average of positive 
gradients within distance r from each of the N global maxima. 

2.4.3. Evaluation results and discussions 

2.4.3.1. Results on synthetic data 
In order to evaluate the metrics, we formed a synthetic kidney volume by 

translating and rotating a real volume by known parameters (txT, tyT, tzT, rxT, ryT, rzT). 
This synthetic volume is considered as a floating volume during the registration 
metric evaluation. The information of the kidney volume is listed in Table 2.1 and the 
parameters we randomly choose are listed in Table 2.2. These known parameters are 
considered as the gold standard parameters of the evaluation method proposed by 
Skerl et al. [2].  
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Table 2.1: Testing image sizes, voxel sizes, translation and rotation units of normalized parametrical 
space, radius R, number of lines N, number of points along a line M, and distance δ between two 
consecutive points along a line for the image set. 

Image size 
(voxels) 

Voxel size (mm) 

X Y Z X Y Z 

Unit 
(mm) 

Unit 
(°) 

R 
(mm) 

N M δ 
(mm) 

124 114 178 0.65 0.65 0.65 7.41 5.3285 22 50 200 0.22 
 
Table 2.2: Parameters used for constructing the synthetic kidney volume, being used as the golden 
standard  

txT (mm) tyT (mm) tzT (mm) rxT (°) ryT (°) rzT (°) 
-3.01 -9.73 -3.23 5.97 -4.63 2.71 
 
 

Table 2.3: Accuracy (ACC), distinctiveness of optimum (DO), capture range (CR), number of local 
maxima (NOM), and risk of nonconvergence (RON) of five similarity measures applied to the image 
mentioned above. The numbers printed in bold represent the best and the ones in italic the worst values 
in a column. 

 ACC DO(R) CR NOM(R) RON(R) 
MI 0 0.006160 26.083166 0 364.58 
ECC 0 0.005761 26.083166 0 452.85 
NMI 0 0.005306 26.083166 0 113.23 
Correlation 0 0.005774 27.713364 0 663.23 
Tsallist 0 0.004444 21.192572 0 274.19 

 
The evaluation results are listed in Table 2.3. From the result, we can see that 

there is no significant difference between these registration metrics according to these 
evaluation measures, but the MI based metrics (MI and NMI) express a small 
advantage. 

2.4.3.2. Results on real data 
In the real situation, we have no gold standard parameters because the real 

transformation between the two kidney volumes is unknown. Approximately, we use 
the parameters we get through MI based registration method as the gold standard 
parameters, as shown in Table 2.4. Perhaps the approximated parameters are not 
exactly at the correct position, but at least they can be close to the global maxima and 
the evaluation of the measure of distinctiveness (DO), the number of local maxima 
(NOM) and the risk of nonconvergence (RON) is less affected by the position of the 
global maxima. So for the real situation, we can also evaluate the registration metric 
by calculating these measures while assuming the approximated gold standard 
parameters.  

 
Table 2.4: Parameters after registration to be used as the golden standard  

X (mm) Y (mm) Z (mm) rx (°) ry (°) rz (°) 
2.79 -4.105 -1.403 1.364 1.179 -1.446 

 
The evaluation results are listed in Table 2.5. The experimental results on the real 

data accord with the experiments on synthetic data. The MI based metrics (MI and 
NMI) appear a small advantage comparing to the others.  
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Table 2.5: Distinctiveness of optimum (DO), capture range (CR), number of local maxima (NOM), and 
risk of nonconvergence (RON) of five similarity measures applied to the image mentioned above. The 
numbers printed in bold represent the best and the ones in italic the worst values in a column. 

 DO(R) CR NOM(R) RON(R) 
MI 0.006139 26.083168 0 509.01 
ECC 0.006133 26.083168 0 588.60 
NMI 0.005268 26.083168 0 137.99 
Correlation 0.005014 26.083168 0 558.48 
Tsallist 0.004358 21.192574 0 303.29 

 
 

2.4.3.3. Discussions and conclusions 
The experiments compare different registration metrics for our practical situation. 

From the results, we cannot definitely say that which one is the best because of their 
close evaluation properties. But the MI based metrics (MI and NMI) still show the 
advantages during the experiment. So we can reach the conclusion that the MI based 
metrics are suitable in our situation.  

2.5. Optimization method 

As MI is used as the matching metric, registration can be performed by 
optimizing this similarity criterion. There are many existing optimization methods 
which can do the multidimensional optimization [19]: downhill simplex method, 
Powell’s method (one of the direction-set methods) and simulated annealing methods 
etc. Downhill simplex method and Powell’s method are relatively fast, but they have 
the problem to drop into local extrema; simulated annealing methods address directly 
the problem of finding global extrema in the presence of large numbers of undesired 
local extrema, but the computation is time-consuming. There is no “perfect” algorithm 
for the particular application. They are two critical points in all the optimization 
methods: the choice of the initial parameters set (tx0, ty0, tz0, rx0, ry0, rz0) and the 
choice of the optimization method itself. We will make our choice by analyzing the 
two issues in this section. 

2.5.1. Initial parameters 

In order to analyze the effect of the initial parameters set (tx0, ty0, tz0, rx0, ry0, rz0), 
we displayed the MI variation within the parametric searching space in order to 
estimate the presence or not of local extrema.  

For this, we formed a synthetic kidney volume by translating and rotating a real 
volume by known parameters (txT, tyT, tzT, rxT, ryT, rzT). From the initial parameters 
set (tx0, ty0, tz0, rx0, ry0, rz0), we sampled the parametric search space and measure the 
MI for each (tx, ty, tz, rx, ry, rz). 

In order to present some graspable results, we fixed constant the value of ty=ty0, 
tz=tz0, ry=ry0, rz=rz0. Only tx and rx are varying and the MI variation can be seen as a 
surface as shown in Fig 2.6. 

Fig 2.6(a) illustrates the MI surface in the situation that the parameters set is 
initialized by the real value: ty0=tyT, tz0=tzT, ry0=ryT, rz0=rzT. We can see that in this 
situation, the MI surface is smooth and the global extremum is obvious. The 
extremum can be achieved by any optimization method easily. Fig 2.6(b) sets ty0=0, 
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tz0=0, ry0=0, rz0=0 and it can be seen that many local extrema appear and the global 
extremum is inconspicuous. Fig 2.6(c) is the situation that ty0=tyT=0, tz0=tzT=0, 
ry0=ryT=0, rz0=rzT=0. We can see that although there are still many local extrema, the 
global extremum is obvious and easy to achieve. 

From the analysis above we can get the conclusion that the more initial 
parameters close to their real values the smoother MI surface will be. According to the 
experiment result, we utilize the characteristics of the image geometric moments [25] 
to initialize the parameters instead of initialization by zero or random values. 

 

  

(a)                                                        (b) 

 

(c) 

Figure 2.6: tx-rx searching space MI surface for different parameter 
initializations. (a): ty, ry, tz, rz are initialized on the real values when the real 

values are not zero; (b): ty, ry, tz, rz are initialized to zero when the real values 
are not zero; (c): ty, ry, tz, rz are all initialized to zero when the real values are 

zero; 

For a three dimensional discrete image f(i,j,k), its geometric moments of order 
u+v+w are defined as: 

( , , ) u v w
uvw

i j k

m f i j k i j k=∑∑∑  (2.10) 

The first order geometric moments denotes the volume center of gravity. The 
translation between the centers of gravity can be the initial value of (tx0, ty0, tz0). The 
second order moments can determine the 2 volumes main direction axes. A rotation 
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matrix can be estimated from these main axes. Then the three initial parameters (rx0, 
ry0, rz0) can be achieved from the matrix. 

2.5.2. Optimization method 

The registration process is a multi-variable optimization problem. As mentioned 
before, there exist many optimization methods. Among these methods, the downhill 
simplex method is one the most used. Although compared to the simulated annealing 
methods it has more probability to meet local extrema, simplex method is accurate 
enough after parameters initialization and it is faster than the other methods.  

2.6. Implementation details 

2.6.1. Interpolation and outside point processing 

Denote the floating volume by F and the reference volume by R, when 
transforming a point s from F to R by the transformation Tk , usually the resulting 
position Ts  is not exactly on the grid of R (as illustrated in Fig. 2.7), so that 
interpolation is required to estimate the grey value of the resulting point from the 
neighborhood ni.  
 

 

Figure 2.7: The illustration of the mapping from floating volume F to reference 
volume R. With the transformation Tk , the grid position s in F is transformed to 

Ts in R.  

For calculating the mutual information between the two volumes, the joint 
histogram h(F,R) is necessary. In order to calculate the joint histogram with the 
transformation Tk , an interpolation method is required. We studied three interpolation 
methods to calculate the joint histogram; these methods are illustrated (in 2D) in Fig. 
2.8:  

− Nearest neighbor (NN) interpolation of R get the nearest grid point value for the 
position Ts. For example, if n3 is the closest grid point, the calculation formula for 
the corresponding intensity pair related to the current sample position (s) is: 

3

3

arg min ( , )

( ) ( )

( ( ), ( )) 1

in i

r r

r

d Ts n n

f Ts f n

h f s f Ts

=

=
+ =

 (2.11) 
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where f(s) denote the image intensity in the floating image F at position s,  fr(Ts) 
denote the intensity at the transformed position (Ts) in the reference image R and 
h(f(s), fr(Ts)) denotes the joint histogram bin for the intensity pair (f(s), fr(Ts)). We 
can see that NN interpolation is generally insufficient to guarantee subvoxel 
accuracy, as it is insensitive to translations up to one voxel.  

− Trilinear (TRI) interpolation is more reasonable with the calculating formula: 

( ) ( )

( ( ), ( )) 1

r i r ii

r

f Ts w f n

h f s f Ts

= ⋅

+ =
∑

  (2.12) 

With the constraint that: ( ) 1ii
w Ts =∑ . But we can see that this method will 

introduce new intensity values which are originally not present in the reference 
image.  

− In order to avoid this problem, Maes et al. [16] proposed trilinear partial volume 
distribution (PV) interpolation to update the joint histogram for each voxel pair. 
The joint corresponding joint histogram calculating formula is: 

: ( ( ), ( ))r i ii h f s f n w∀ + =                              (2.13) 

 

Figure 2.8: Graphical illustration of NN, TRI and PV interpolation in 2-D 

NN and TRI interpolation find the reference image intensity value at position Ts 
and update the corresponding joint histogram entry, while PV interpolation distributes 
the contribution of this sample over multiple histogram entries defined by its NN 
intensities, using the same weights as for TRI interpolation.  

 
If the resulting position Ts is outside the spatial range of R, we use an image 

background expansion method, which is to look for the nearest position in R and use 
the corresponding intensity as the current point intensity.  

2.6.2. Histogram resolution 

The intensity values of the original medical images have a very large range up to 
4096. This huge range induces a very large joint histogram. The computation time of 
MI is directly related to the size of the joint histogram. This computation can be 
speeded up if we define larger bins to the histogram which can be obtained by 
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rescaling the image intensity values before registration. Linear mapping is a practical 
method. The formula to rescale an intensity value r from image range [r1, r2] to [s1, s2] 
by linear mapping is as follows: 

2 1
1 1 1 2

2 1

1 1

2 2

( ) ,

,

,

s s
r r s r r r

r r

s s r r

s r r

− − +      ≤ ≤ −
=                              <
                             >



 (2.14) 

Lin et al. [26] discussed the affection of number of levels on mutual information 
based medical image registration. The authors indicated that the value of mutual 
information is reduced when the number of levels in both images is compressed. We 
proposed an experiment which highlighted this belief, as shown in Fig. 2.9.  

 

 

(a)                                                           (b) 

 

(c)                                                           (d) 

Figure 2.9: MI surfaces calculated from the real volume and the synthetic 
volume with different number of levels. The parameters to get float volume are: 

tx=1.46, ty= -1.01, tz=1.9, rx= -3.835, ry= -3.295, rz=2.95. The surface was 
gotten when ty, ry, tz, rz all equal to the original parameters, tx and rx ranged 

from -5 to 5.  (a) number of levels = 16; (b) number of levels = 64; (c) number of 
levels = 128; (d) number of levels = 256.  



 35 

It can be seen that with the growth of number of levels, the MI values become 
higher and the MI surface becomes sharper. But the high number of levels will cause 
a great calculation burden during the iterative registration process because the joint 
histogram will be recalculated on each iteration step. Lin et al. [26] reached the 
conclusion that rescaling the intensity values into [0, 63] is an excellent tradeoff 
between the accuracy and the computation time cost. We implemented this result in 
our registration process. 

 

2.7. Experimenal results 

The results on synthetic and real data are presented in this section. 
 

2.7.1. Experimental data 

 

Figure 2.10: Some of the slices. From up to down: (a) slices without injection; (b) 
slices with arterial system enhanced; (c) slices with venous system enhanced.  

We take a series of acquisitions taken by the GE product CTA1.0CO for the real 
testing. Some of the slices are illustrated in Fig. 2.10. The pixel resolution is 
0.65039mm. The slice thickness and interslice spacing are 5mm. The first acquisition 
is realized without injection of contrast agent and informs the surgeon about intern 
morphology of the patient. The second one, taken just after a contrast medium 
injection, reveals the renal arterial system. Obtained just a time later, the third 
acquisition enhances the venous and renal parenchyma vascularization. These two 
acquisitions give also information about the nature and the location of the renal 
carcinoma (marked by the red square in the first slice of Fig. 2.10 (b) and (c)). 
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After extracting the kidney volume form the abdomen acquisitions, we form the 
synthetic data by transforming the extracted kidney volume with the randomly set 
transform parameters, as introduced in section 2.3.2. 

2.7.2. Experimental results on synthetic data 

To evaluate the registration process, an experiment is done on synthetic data. As 
introduced before, a synthetic volume is build by translating and rotating the real 
kidney volume. On each experiment, we set a group of translation and rotation 
parameters to build up a synthetic volume and then do registration between the 
original volume and the synthetic one. More that thirty experiments have been 
performed with randomly chosen parameters and the errors between the estimated 
parameters and the real ones are estimated, some of the results are listed in Table 2.6. 
From all the results, the maximal translation error is less than 0.08 mm and the 
maximum rotation angle error is less than 0.1°. 
 
Table 2.6: Registration result between the real kidney volume and the synthetic kidney volume: In each 
group, the first line is the transformation parameters used to build the synthetic volume and the second 
line is the registration result. 

Group ID x(mm) y(mm) rz(mm) rx(°) ry(°) rz(°) 
-6.75 5.18 -5.11 -2.26 -5.99 -5.29 1 -6.7418420 5.2116291 -5.1120056 -2.2842028 -5.9603878 -5.3083628 
-4.74 -6.08 -7.58 7.55 1.02 -1.83 2 -4.7602659 -6.0350842 -7.4883824 7.5110615 1.0417165 -1.8512405 
-1.36 2.14 -2.73 6.01 -3.07 -4.67 3 -1.3221311 2.1003808 -2.8529953 6.0986129 -3.0535301 -4.6607840 
6.95 -9.32 4.75 -3.15 -2.68 7.44 4 6.9570326 -9.2632615 4.8530425 -3.2897572 -2.6222272 7.4076053 
1.3 -3.22 2.0 -4.46 8.9 -0.60 5 1.3553261 -3.2410673 1.9061267 -4.4989978 8.9839812 -0.5952921 
1.53 3.19 4.07 3.09 -2.34 -0.04 6 1.5547357 3.2102461 4.0694638 3.0934631 -2.3287156 -0.0547939 
9.06 0.43 7.09 -9.36 -9.10 -2.76 7 9.0848879 0.4531154 7.1147671 -9.4261618 -9.0525263 -2.7799144 
8.01 4.76 9.41 4.98 7.49 7.05 8 8.0674316 4.7399294 9.2888299 5.0535454 7.5581793 7.0771735 
-3.94 8.08 -7.55 -4.45 6.41 -8.55 9 -3.9445847 8.1179366 -7.5172744 -4.4732718 6.4294913 -8.5622459 
1.26 -1.75 -9.60 -2.0 -6.79 -5.78 10 1.3334176 -1.8234414 -9.8614753 -1.9451294 -6.8072046 -5.7731429 

 

2.7.3. Experimental results on real data 

The experimental results are illustrated in both kidney-only form and the whole 
abdomen form. 

Registration result between extracted kidney volumes 

The registration result on the extracted kidney volumes is illustrated in Fig. 2.11. 
Here we take the registration of the arterial and the venous phase acquisition for 
example. The extracted kidney volume from the arterial acquisition is considered as 
the reference volume and the other from the venous acquisition is considered as the 
floating volume. The first column shows two cut-planes from the reference volume. 
The second column is the cut-plane taken from the same position of the floating 
volume before registration. We can see that because of the transformation, the cut-
plane images are not fitted to the reference images. The third column is the cut-plane 
from the floating volume after registration. They are more fitted to the reference cut-
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planes now. After the kidney volumes are extracted from the abdomen acquisitions, 
they are expressed by a 3D volume with similar size. This extraction step implies a 
rough center alignment so that from the registration result, we can only sense the 
rotation phenomena without the translation information. When we illustrate the 
registration result in the abdomen volume, the translation effect is clearer. 

   

(a) two slices from reference volume 

   

(b) two slices from floating volume before registration 

   

(c) two slices from floating volume after registration 

Figure 2.11: Two cut-planes from the registration result of kidney volumes. 
From top to down: two slices from reference kidney volume, floating kidney 

volume before registration, floating kidney volume after registration. 

Kidney-centered registration result 

Two axial slices taken from the same position of the two volumes are merged in 
Fig 2.12. The bounding lines are the mapping boundaries of the extracted kidney 
volume. We can see that after registration, although the two volumes are not fitted 
exactly, the kidneys seem to be well register together.  
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(a) before registration                       (b) after registration 

Figure 2.12: Kidney-centered registration result. 

Using the same registration framework, the kidneys present on all the 3 or 4 CT 
uroscans can be merged within one same patient-specific referential coordinate.  

2.8. Conclusions 

In this chapter we present a kidney-centered registration method by local MI 
maximization. Kidney volumes are extracted and the registration is performed 
between the extracted kidneys instead of the whole volumes. The registration metrics 
are evaluated by an optimization independent protocol proposed by Skerl et al. [2] and 
according to the evaluation result, we choose the MI based metric for our practical 
situation. As to the optimization method, we focus on the initial parameters setting 
problem. The importance of the parameters initialization is analyzed and the 
parameters are initialized by a geometric moments based registration scheme. Some 
implemental details, such as the choice of number of levels and interpolation method 
are also discussed.   

Experiments are performed on both synthetic and real data. The experimental 
results demonstrate the effectiveness of the registration method. 
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Chapter 3: Vectorial volume statistical classification 

The registered datasets contain full anatomical information about the same patient. 
To visualize the vectorial datasets, one of the most important parts is to differentiate 
the objects in the vectorial datasets, which is called classification or segmentation.  

In the practical situation, the datasets, especially those generated by scanning 
modalities, contain a complex combination of values. One of the main reasons for this 
complexity is the partial volume effect (PVE). It is the effect wherein insufficient 
image resolution leads to a mixing of different tissue types (materials) within a voxel. 
So that, during classification, a more reasonable way is to give out the probability 
distributions of different material types for each voxel instead of a definite material 
label. 

Gaussian mixture model is often used in probability classification problem, 
because of its ability to classify both scalar and vectorial datasets. But it relies only on 
the intensity distributions, which will lead a misclassification on the inhomogeneous 
regions with noise and the partial volume boundaries. G. Kindlmann noted this 
problem in his tutorial [1] that “histograms/scatter-plots entirely loose spatial 
information” and he asked if there would be “any way to keep some of it?”. In order 
to integrate the spatial information into classification procedure, a neighborhood 
weighted Gaussian mixture model is proposed in this section. Expectation-
maximization (EM) algorithm is used as optimization method. The experiments 
demonstrate that the proposed method can get a better classification result and is less 
affected by the noise. 

3.1. Introduction 

After this registration process discussed in chapter 2, we will get a multi-volume 
dataset which can form a vectorial volume. A combined presentation of registered 
volume datasets will give a better illustration of the anatomical structures. Suitable 
methods should be found to show the anatomical structures inside the vectorial 
volume.  

For the visualization of the spatial aligned multi-volume, most of the existing 
methods [2-5] differentiate the objects from the individual volumes and then combine 
them together during the visualization procedure. Roettger et al. [4] proposed to add 
spatial information to multi-dimensional transfer functions in order to separate as 
many features as possible in the scalar volume and the authors also mentioned its 
ability to deal with multi-volume dataset. Firle and Keil [3] did further research on 
this spatial transfer function based method and they focused on the multi-volume 
situation. Wilson et al. [5] applied different rendering styles for different volumes in 
order to visualize the multi-volume. But actually, these volumes are different 
acquisitions taken from the same patient so that they are not independent. While 
analyzing the registered volume dataset, each sample point should contain several 
elements which are sampled from the corresponding volumes. So that we can form a 
vectorial volume dataset, in which each voxel contains a vector of n elements 
corresponding to the information of the CT uroscan acquisitions (n is equal to the 
number of acquisitions, three to four in our practical case). In order to get the material 
(tissue) distribution information of this vectorial volume, a multi-dimensional 
classification (segmentation) method should be performed. 
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Due to partial volume effects (PVE), the object boundaries are usually combined 
by several materials. Getting the material probabilities instead of assigning a definite 
material to the voxels (especially the boundary voxels) will be more conformable to 
the reality. Opposite to assign definite labels to voxels which is called hard 
segmentation, segmentations that allow regions or classes to overlap are called soft 
segmentation [6]. Because of partial volume effects, soft segmentations are important 
in medical image segmentation. Based on the analysis of the data to be segmented, we 
are looking for a soft segmentation method for vectorial volume.   

In the range of segmentation methods, clustering algorithms are termed 
unsupervised classification methods which organize unlabeled feature vectors into 
clusters or “natural groups” such that samples within a cluster are more similar to 
each other than samples belonging to different clusters. The three most commonly 
used clustering methods are the K-means [7], the fuzzy c-means algorithm (FCM) [8, 
9] and the Gaussian mixture model (GMM) solved by Expectation-maximization (EM) 
algorithm [10]. The K-means algorithm clusters data by iteratively computing a mean 
intensity for each class and segmenting the image by classifying each pixel in the 
class with the closest mean. This algorithm belongs to the hard segmentation and 
cannot meet our requirement.  

The fuzzy c-means algorithm generalizes the K-means algorithm [11], allowing 
for soft segmentations based on fuzzy set theory. For a joint-volume with N voxels, 
the voxel intensity vectors are denoted by ),,2,1( Nixi ⋯= . If K is the number of 

tissues (or materials), the fuzzy c-means is an iterative optimization that minimizes 
the cost function defined as follows: 
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1 1
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where iku  represents the membership of voxel ix  in the kth cluster, kµ  is the kth 

cluster center. 
The Gaussian mixture model assumes that each voxel is composed by K 

component densities mixed together with K mixing coefficients. Each component 
density follows a Gaussian distribution. Based on statistical theory, the parameters are 
estimated by maximum likelihood (ML) and EM algorithm is used as an optimization 
method.  

Both the fuzzy c-means algorithm and the Gaussian mixture model based method 
algorithm belong to the soft segmentation method. The fuzzy c-means estimates the 
parameters which minimize the distance from each voxel to the class centers. It uses 
only the distance objective function without any other information about the intensity 
distributions. In contrast, the method based on Gaussian mixture model uses the 
statistical theory to model each voxel’s intensity, which is more reasonable to the real 
situation. In this chapter, we choose the Gaussian mixture model and estimate the ML 
parameters by EM algorithm.   

All the clustering algorithms mentioned above do not directly incorporate spatial 
modeling. So when dealing with the data containing partial volume effect, these 
methods can lead to misclassification at the object boundaries because they rely only 
on the intensity distributions during the classification process. To understand 
misclassification, let us consider a situation where a dataset has three tissues A, B and 
C, with scalar values f(a), f(b) and f(c), respectively, such that f(a)< f(b)< f(c). Let us 
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assume that the tissues A and C touch each other, chances are very high that the 
boundary between A and C is classified to B. In addition, the lack of spatial 
information during classification will lead to noise sensitivity in inhomogeneous 
regions. Lakare [12] treated the sample locations in the partial volume area specially 
to solve this misclassification problem. When detecting a partial volume boundary, 
the author chose the closer material value (between the two component materials of 
the boundary) instead of the sampled value in order to avoid the misclassification. 
This method takes the partial volume effect into classification process, but the 
classification result is definite decisions at the partial volume boundary instead of the 
material probabilities and it only focused on the PVE problem without considering the 
noise sensitivity problem.  

G. Kindlmann noted for intensity-only classification problems in his tutorial [1] 
that “histograms/scatter-plots entirely loose spatial information” and he asked if there 
would be “any way to keep some of it?”. As described by Roettger et al. [4], spatial 
information is important, because a feature by definition is a spatially connected 
region in the volume domain with a unique position and certain statistical properties. 
They indicated that only using the statistical information of the scatter-plot will 
effectively ignore the most important part of a features definition.  

Many researchers have realized the importance of spatial information for image 
segmentation (classification). Zhang et al. [13] proposed a novel hidden Markov 
random field (HMRF) model to integrate spatial information to Gaussian model based 
segmentation methods. Instead of using Markov random filed (MRF) as a general 
prior in Gaussian model based approach as other researchers did [14], the author 
proposed a Gaussian hidden Markov random field model and used an MRF-MAP 
approach to estimate class labels, while MAP was used to estimate the bias field 
which is only exist in MR images. The bias field doesn’t exist in CT images and in 
addition this model estimates a definite class label for each pixel without the 
consideration of PVE, so that it doesn’t meet the requirement of our situation. Tang et 
al. [15] proposed to use a multi-resolution Gaussian mixture model method for image 
segmentation in order to solve the noise sensitivity problem of Gaussian mixture 
model based method. The spatial information is implicitly contained in the higher 
level image. Chuang et al. [8] integrated the spatial information to fuzzy c-means 
algorithm by incorporating it into the membership function. 

We also agree that the spatial information is very important for classification. In 
order to integrate spatial information to the Gaussian mixture model based vectorial 
image segmentation method, we proposed to involve a neighborhood weight to the 
classification process. To reach this goal, we need a neighborhood information 
descriptor. Lunstrom et al [16] proposed the Partial Range Histogram (PRH) concept, 
which is a way to describe the amount of a tissue within a local region. This gives us 
the hint to use this concept as a neighborhood descriptor. Inspired by this 
neighborhood description form, we propose a neighborhood weighted Gaussian 
mixture classification method with the purpose of getting a more accurate 
classification result. 
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3.2. Gaussian mixture model 

For a joint-volume with N voxels, each voxel is a n-dimensional vector. The voxel 
intensity vectors are denoted by ),,2,1( Nixi ⋯= . If K is the number of tissues (or 

materials), we assumed that each voxel intensity f(x) is composed by K component 
densities mixed together with K mixing coefficients: 

1
( ) ( )

K

k kk
f x f xα

=
=∑  (3.1) 

where ( )kf x  denotes the kth component density and kα  denotes the mixing 

coefficient of the kth material. If ( )kf x  follows Gaussian distribution, the model of 

Eq. (3.1) becomes a Gaussian mixture model (GMM). The Gaussian mixture model 
has been widely applied on MR image segmentation [17-19]. 

The Gaussian distribution of the kth tissue class is denoted by ( | )k kp x Θ , which 

is governed by a set of parameters kΘ . Given the parameters of all the classes, the 

probability distribution of each voxel can be described as follows: 

1

( | ) ( | )
K

i k k i k
k

p x p xα
=

Θ = Θ∑  (3.2) 

where the parameters are 1 1( , , , , , )K Kα αΘ = Θ Θ⋯ ⋯  with the constraint that 

1
1

K

kk
α

=
=∑ . 

Maximum likelihood (ML) estimation is a common used method to find the 
probability distribution parameters. The log-likelihood expression for this density 
from the data X is given by: 

1 11

log( ( | )) log ( | ) log ( | )
N N K

i k k i k
i ki

L X p x p xα
= ==

 Θ = Θ = Θ 
 

∑ ∑∏  (3.3) 

Typically, kp  is modeled by a Gaussian distribution with mean kµ  and 

covariance matrix kΣ . That is:  

1( ) ( ) / 21
( | ) ( | , )

det(2 )

T
i k k i kx x

k i k k i k k

k

p x p x e µ µµ
π

−− − Σ −Θ = Σ =
Σ

 (3.4) 

Finding the ML solution directly from Eq. (3.3) is difficult because it contains the 
log of the sum. The EM algorithm [20] is a good way to solve this problem. In the 
next section, we describe how to maximize the likelihood by EM algorithm. 

3.3. EM algorithm 

3.3.1. EM algorithm principle [20] 

The EM algorithm is a general method of finding the ML estimate of an 
underlying distribution parameters form a given dataset when the data is incomplete 
or has missing values. The EM algorithm is very useful in this situation: if we assume 
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the existence of the missing (or hidden) values, the likelihood function can be 
simplified. 

This algorithm is based on the idea that the observed data X is incomplete. We 
assume that a complete dataset exists ( , )Z X Y=  and Y is the missing data. So that a 
joint density function is: 

);();|();,();( Θ⋅Θ=Θ=Θ XfXYfYXfZf  (3.5) 

So 

);|(log);,(log);(log Θ−Θ=Θ XYfYXfXf  (3.6) 

The ML estimation can be equal to the maximization of the right side of Eq. (3.6). 
X is the observed data, so it can be considered as a constant. Take the conditional 
expectation of Eq. (3.6), we get: 

]|);|([log]|);,([log]|);([log XXYfEXYXfEXXfE Θ−Θ=Θ  (3.7) 

If X is given, )|(log ΘXf  is a certain function. So that 

);(log]|);([log Θ≡Θ XfXXfE . The right side of Eq. (3.7) is equal to the original 
function.  

We assume that there is another parameter Θ′  that isn’t equal to Θ . According to 
Eq. (3.7), we can get this equation: 

])|);|([log]|);|([log(

]|);,([log]|);,([log)()(

XXYfEXXYfE

XYXfEXYXfELL

Θ−Θ′−
Θ−Θ′=Θ−Θ′

 (3.8) 

As Y is a random variable, we can define: 

( , ) [log ( , ; ) | ] ( ; | ) log ( , ; )Q E f X Y X f Y X f X Y dY′ ′ ′Θ Θ Θ = Θ Θ∫≜   (3.9) 

( , ) [log ( | ; ) | ] ( | ; ) log ( | ; )K E f Y X X f Y X f Y X dY′ ′ ′Θ Θ Θ = Θ Θ∫≜  (3.10) 

Using Eqs. (3.9) and (3.10), Eq. (3.8) becomes: 

( ) ( ) ( , ) ( , ) ( ( , ) ( , ))L L Q Q K K′ ′ ′Θ − Θ = Θ Θ − Θ Θ − Θ Θ − Θ Θ  (3.11) 

According to the non-negative property of relative entropy, we can get this 
decision:  

( | ; )
( , ) ( , ) ( | ; ) log 0

( | ; )

f Y X
K K f Y X dY

f Y X

′Θ′Θ Θ − Θ Θ = Θ ≤
Θ∫  (3.12) 

Considering Eqs. (3.11) and (3.12), we can find that if ( , ) ( , ) 0Q Q′Θ Θ − Θ Θ ≥ , we 

can get ( ) ( ) 0L L′Θ − Θ ≥ . That is to say, if we want to find the ML estimation Θ̂ , we 

can construct a series ̂{ }tΘ  to satisfy that: 

1ˆ ˆ( ) ( ), 0,1,2,t tL L t+Θ ≥ Θ ∀ = ⋯  (3.13) 

According to Eqs. (3.11) and (3.12), this series only need to satisfy the condition: 

1ˆ ˆ ˆ ˆ( , ) ( , ), 0,1,2,t t t tQ Q t+Θ Θ ≥ Θ Θ ∀ = ⋯  (3.14) 

The EM algorithm process can be summarized as follows: 
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1) Initialize the parameters, get 0Θ̂ .  
2) E-step: Under the condition that the observed data X and the current parameters 

ˆ tΘ  are known, compute the conditional expectation: 

ˆ ˆ( , ) ( ; | ) log ( , ; )t tQ f Y X f Y X dYΘ Θ = Θ Θ∫  (3.15) 

3) M-step: Compute the optimization solution of ˆ( , )tQ Θ Θ  to update the 
parameters: 

1ˆ ˆarg max ( , )t tQ+

Θ
Θ = Θ Θ   (3.16) 

4) Let 1t t +≜  and repeat 2) and 3) until the end of the iteration. 

3.3.2. Finding ML estimation via EM algorithm [10] 

The main part of EM algorithm is the two steps: E-step and M-step. The first step 
(E-step) is to find the appropriate function Q. This function is a conditional 
expectation to the unobserved random vector Y.  

( , ) [log ( , | ) | , ]t t
YQ E P X Y XΘ Θ = Θ Θ  (3.17) 

We assume that Y is the probability that the ith voxel is generated by the kth class. 
That is to say, when the ith voxel is generated by the kth class, iy k= . In this case, Eq. 

(3.17) takes the form: 
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This form looks very daunting, but it can be simplified: 
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Since 
1

( | , ) 1
j

K
t

j j
y

p y x
=

Θ =∑ , using Eqs. (3.18) and (3.19), Eq. (3.17) can be written 

as: 

1 1

1 1 1 1

( , )

log( ( | )) ( | , )

log( ) ( | , ) log( ( | )) ( | , )

t

N K
t

k k i k i
i k

N K N K
t t

k i k i k i
i k i k

Q

p x p k x

p k x p x p k x

α

α

= =

= = = =

Θ Θ

= Θ Θ

= Θ + Θ Θ

∑∑

∑∑ ∑∑

 (3.20) 

The next step is to maximize the function Q, which is called M-step. From Eq. 
(3.20) we can see that the term containing kα  and the term containing kΘ  can be 

maximized independently because they are not related.  
As 1kk

α =∑ , we introduce the Lagrange multiplier λ  and then solve the 

following equation: 
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 (3.21) 

Summing both sizes over k, we get that Nλ = −  resulting in: 

1

1
( | , )

N
new t
k i

i

p k x
N

α
=

= Θ∑  (3.22) 

Using Eq. (3.4), the kΘ  part of Eq. (3.20) becomes: 
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If A is a symmetric matrix, X, a, b are vectors, the following results from matrix 
algebra is useful to compute the derivatives of Eq. (3.23).  

( ) 2TX AX AX
X

∂ =
∂

 (3.24) 

det( )
det( )( )TA

A A
A

−∂ =
∂

 (3.25) 

( )1T T T Ta A b A ab A
A

− − −∂ = −
∂

  (3.26) 
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Using Eq. (3.24), take the derivative of Eq. (3.23) with respect to kµ  and set it 

equal to zero, we get: 

1

1

( ) ( | , ) 0
N

t
k i k i

i

x p k xµ−

=
Σ − Θ =∑  (3.27) 

Solve this equation, we obtain the estimate of kµ : 
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Similarly, using Eqs. (3.25) and (3.26) we can get the estimate of kΣ : 
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Using Bayes’ rule, we can compute: 
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Eqs. (3.22), (3.28) and (3.29) are the update formula during iteration. Based on 
these equations, the estimation process can be summarized as in Fig. 3.1. 

 

(Input: The vectorial volume ( 1,2, , )ix i N= ⋯ , the number of classes K.) 

Step 1: Initialization of 0Θ  and 0α . Any classification method could be used, in 
our case we choose K-means2. 
Step 2: Calculate the prior probability by Eq. (3.30). 
Step 3: Compute the new parameter data according to Eqs. (3.22), (3.28) and 
(3.29). 
Step 4: Let 1t t +≜  and repeat steps 2-3 until reaching the end condition. 

Figure 3.1: Vectorial volume classification algorithm by Gaussian mixture model 

                                                 
2 K-means decomposes the volume into K clusters with nk voxels in each cluster. 0kµ  is initialized by 

the center of gravity of cluster k. 0
kΣ  is initialized by the variance of cluster k. 0

kα  is initialized by the 

ratio of nk to the total voxel number of the volume.  
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3.4. Proposed neighborhood weighted classification 

3.4.1. Modified model with neighborhood information 

The iteration formula described in section 3.3 didn’t involve any spatial 
information about current voxel. As discussed in section 3.1, neighborhood 
information is one of the most important spatial information. If the iteration procedure 
takes the neighborhood effect into account, the classification result can be more 
reasonable.  

The original model calculates the class probabilities according to Bayes’ rule, 
which is described by Eq. (3.30). This calculation is based on intensity distributions 
without any neighborhood information. Usually the material is continuous, so that it is 
natural to have the idea that for each voxel, the probability of the kth class should be 
affected by the neighbors’ kth class probabilities. According to this belief, we can 
integrate the neighborhood effect on the class distributions of the current voxel by 
modifying Eq. (3.30). 

Due to the deducing process of EM algorithm and the natural continuous 
properties of the classes (materials), the class probability should obey the two rules: 

1)   
1

( | , ) 1
K

t
i

k

p k x
=

Θ =∑ , 

2) Current voxel’s kth class probability magnifies if the neighbors’ kth class 
probabilities tend to 1; current voxel’s kth class probability decreases if the neighbors’ 
kth class probabilities tend to 0. 

According to the second rule, the neighborhood class distribution can be designed 
as a weight on the current class distribution, so that we designed the neighborhood 
weighted probability for the current voxel: 
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Where  
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 (3.32) 

iN  is a set of neighborhood of the ith voxel. iN  denotes the number of voxels in 

a set iN . nix  denotes the nth neighbor’s intensity of the ith voxel.  

Now we briefly prove that the designed formula Eq. (3.31) can satisfy the two 
rules. When taking Eq. (3.31) into the left side of the first rule, it equals to 1 so that 
Eq. (3.31) can rule 1) naturally.  

In order to prove rule 2), we assume that for the kth class of the ith voxel, there 
exist two neighborhood weights W1 and W2 with: 1 2 0W W> > , the corresponding 

probabilities calculated by Eq. (3.31) are denoted by p1 and p2 respectively. If we can 
prove that 1 2p p> , the second rule can be satisfied. We denote ( | )t t

k k i kM p xα Θ≜ , 

1 ,

( | )t t t
j ij j i j

j K j k

N W p xα
= ≠

Θ∑
⋯

≜ . When the variable is the neighborhood weight, M and N 
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are constant and 0M ≥ , 0N ≥ . We can rewrite Eq. (3.31) for W1 and W2 
respectively: 

1
1

1
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p

MW N
=

+
, 2

2
2

MW
p

MW N
=

+
 

so that 

1 2
1 2

1 2
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p p
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−− =
+ +

 

When M and N are constant and positive, we can deduce that if 1 2 0W W> > , then 

1 2p p> . When the condition is 0ikW = , the probability ( | , ) 0t
ip k x Θ = . That is to 

say, the weighted probability according to Eq. (3.31) is a monotonously increasing 
function to the neighborhood weight Wik. With this property, the rule 2) can also be 
satisfied. 

The new class distribution formula is conformable to the two rules and integrates 
the neighborhood information to the current voxel’s class distribution during iteration. 
For each iteration step, the class distribution will be amended by the neighbors’ class 
distribution information. So that through this weighted formula, the neighborhood 
information is taken into account to the classification process. 

3.4.2. Description of the algorithm 

The EM solution formula for the proposed neighborhood weighted Gaussian 
mixture model is summarized as follows: 

E-step: 
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M-step: 
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Based on these equations, the estimation process we implemented is described in 
Fig. 3.2. 

For each element vector of the input series, the aim is to find its class distributions. 
From the iteration process, we can see that this algorithm is not limited in applying on 
vectorial volume. According to the spatial dimension (denoted by D) of the input 
series ( 1,2, , )ix i N= ⋯  with N elements, the shape of the vectorial image to be 

classified can be a line (D=1), an image (D=2) or a volume (D=3). The difference is 
that the shape of iN  in Eq. (3.37) should match the dimension of the input series. 

Here we only take the nearest neighbors into account with: D=1, iN =2; D=2, iN =8; 

D=3, iN =26. The neighborhood shape and topology could be modified according to 

the real practical situation. 
 

(Input: The vectorial volume ( 1,2, , )ix i N= ⋯ , the number of classes K.) 

Step 1: Initialization of 0Θ , 0α  and W0. Any classification method could be used, 
in our case we choose K-means. Using Eq. (3.32) to initialize the neighborhood 
weight for each voxel. 
Step 2: Calculate the prior probability by Eq. (3.33). 
Step 3: Compute the new parameter data according to Eqs. (3.34), (3.35), (3.36) 
and (3.37). 
Step 4: Let 1t t +≜  and repeat steps 2-3 until reaching the end condition. 

Figure 3.2: Vectorial volume classification algorithm by proposed neighborhood 
weighted Gaussian mixture model 

3.5. Experiments and discussions 

In order to illustrate the classification results, we use vectorial images to test our 
algorithm instead of volumes. Comparing to images, the only difference for the 
vectorial volumes is that the shape of neighborhood should change accordingly, as 
mentioned in section 3.4.2. In order to avoid the local maxima, the algorithm is 
initialized as follows: for the synthetic data, we initialize the center points with a 
random data near the global maximum; for the practical situation, this initialization 
can be implemented by picking a point in each material region manually. 

We evaluate our algorithm on both synthetic and real data. The effect of 
neighborhood range choice is also discussed. 

3.5.1. Evaluation on synthetic data 

3.5.1.1. Evaluation on two-dimensional vectorial image 
We start the experiments with a simplest case that each pixel in the vectorial 

image contains only two elements. That is to say, each pixel is a vector with two 
elements. The test vectorial image (Fig. 3.3) is constructed as following:  

The first channel image (Fig. 3.3 left) is composed by two homogeneous regions 
in which we add Gaussian noise: ( 5, 1.2µ σ= = ) and ( 10, 1µ σ= = ) respectively. 
The second channel image (Fig. 3.3 right) follows the same scheme with: 
( 15, 2µ σ= = ) and ( 5, 0.9µ σ= = ) respectively.  
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Figure 3.3: Synthetic data. Each image is one channel of the vectorial image. 

The combination of these two channels leads to a vectorial image with three 
classes. According to the proposed algorithm described in Section 3.4, the input 
number of classes is K=3. 

The classification on synthetic data is performed and the result is shown in Fig. 
3.4. Each pixel of the result image is formed by this formula: 

1

( ) ( | , )
K

i k i
k

C x C p k x
=

= Θ∑  (3.38) 

Where ( )iC x  is the color assigned to the ith pixel and kC  is the color we assigned 

to the kth class.  
 

   

 (a)                                      (b)                                      (c)  

Figure 3.4: Classification result of the synthetic data. (a): the Gaussian mixture 
method; (b): directly smooth the class decisions with neighborhood after 

classification with the Gaussian mixture method; (c): our method. 

Fig. 3.4(a) is the classification result with the original Gaussian mixture model. 
We can notice that the final regions are not homogeneous as expected because of the 
noise. The reason is that the method relies only on the intensity distribution 
(histogram). The classification progress is a direct mapping from intensity to classes 
so that the noise areas are assigned an incorrect class distribution. In order to 
demonstrate that our method is not a simple class decisions smoothness. We use the 
neighborhood described in section 3.4.2 to smooth the class decisions after 
classification with the Gaussian mixture model and the result is illustrated in Fig. 
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3.4(b). We can see that although the noises are faded, the edges are blurred at the 
same time, which is not corresponding to the real situation. When we integrate the 
neighborhood information into the iteration procedure, we get the result in Fig. 3.4(c). 
It is obvious that the regions are more homogeneous and the classification process is 
less affected by the noise. 

In the practical situation, histograms are considered as an approximation of the 
class distribution. Fig. 3.5 illustrates the histogram of the synthetic vectorial image 
and the corresponding classified class distributions. The original image’s histogram is 
shown in Fig. 3.5(a) and the Gaussian mixture classification result is illustrated in Fig. 
3.5(b). Our neighborhood weighted classification result is shown in Fig. 3.5(c). From 
these figures, we can see that the classification fits the original histogram very well. 
We cannot see and even measure significant differences between Fig. 3.5 (b) and (c). 
That is to say, the neighborhood weighted method doesn’t change the intensity 
distributions. The effect of our proposed method is to amend the class decision by its 
neighborhood on each pixel during the iteration procedure, while keeping the global 
intensity distribution nature. 

 
(a) Original histogram 

 
(b) Classification without neighborhood 

 
(c) Classification with neighborhood 

Figure 3.5: Histogram of the vectorial image. (a): Original histogram; (b): The 
result distribution after classification by the Gaussian mixture model; (c): The 

result distribution after classification with our method. 
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From the analysis before, we can see that taking the neighborhood into account 
doesn’t change the class distribution parameters. When we go back to Fig. 3.4, we can 
see that the difference between these results comes from the calculation of ( | , )ip k x Θ . 

Fig. 3.4(a) is calculated according to Eq. (3.30), that is, without any neighborhood 
weight. Fig. 3.4(b) and (c) are both calculated according to Eq. (3.33) with the 
neighborhood weight Wik, but the apparent results are quite different. The weight Wik 
in Fig. 3.4(b) is calculated according to the final result of the class parameters 
estimation process, in contrast, Wik in Fig. 3.4(c) is iteratively estimated during the 
EM algorithm, as presented in section 3.4.2. Comparing Fig. 3.4(b) and (c), we can 
easily reach the conclusion that when taking the estimation of neighborhood weight 
into the EM algorithm, the classification result is more conformable to the reality. 

3.5.1.2. Experiments on three-dimensional vectorial image 
In the real situation, there are usually more than two elements contained in each 

pixel of the vectorial image. We also did some experiments on a three-elements 
vectorial image. The test vectorial image (Fig. 3.6) is constructed as following:  
The first channel image (Fig. 3.6 left) is composed by two homogeneous regions in 
which we add Gaussian noise: ( 3, 1.5µ σ= = ) and ( 10, 1.5µ σ= = ) respectively. The 
second channel image (Fig. 3.6 middle) follows the same scheme with: 
( 15, 1.5µ σ= = ) and ( 5, 1.5µ σ= = ) respectively. The third channel image (Fig. 3.6 
right) follows also the same scheme with: ( 2, 1.5µ σ= = ) and ( 8, 1.5µ σ= = ) 
respectively. 

The three images (Fig. 3.6) form a three-elements vectorial image, in which each 
channel of the vector forms an independent image. The combination of these three 
channels leads to a vectorial image with six classes. According to the proposed 
algorithm described in Section 3.4, the input number of classes is K=6. 

   

Figure 3.6: Synthetic data. Each image is one channel of the vectorial image. 

Similar to the classification of two-elements vectorial image discussed in section 
3.5.1.1, the corresponding results formed by Eq. (3.38) are illustrated in Fig. 3.7. The 
results demonstrate that our proposed algorithm also works well for three-elements 
vectorial image. 

It is difficult to illustrate the histogram and the result intensity distribution 
directly for three-elements vectorial image because the histogram has four axes. We 
solve this problem by calculating the intensity distribution summation along one axis 
to reduce the total number of axis. The results are shown in Fig. 3.8. Fig. 3.8(a) 
illustrates the intensity distribution summation along three axes of the original image. 
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(a)                                (b)                               (c) 

Figure 3.7: Classification result of the synthetic data. (a): the Gaussian mixture 
method; (b): directly smooth the class decisions with neighborhood after 

classification with the Gaussian mixture method; (c): our method. 

Fig. 3.8(b) is the classification result of Gaussian mixture classification and Fig. 3.8(c) 
illustrates the neighborhood weighted classification results. These histograms also 
demonstrate that the neighborhood weighted method doesn’t change the intensity 
distribution of the final result. 

 

 
(a) Original histogram 

 
(b) Classification without neighborhood 

 
(c) Classification with neighborhood 

Figure 3.8: Intensity distribution along one axis. (a): Original image; (b): The 
results after classification by the Gaussian mixture model; (c): The results after 

classification with our method. 

We also did some experiments while changing the size of the neighborhood in 
order to see its effect on the classification results. The results are illustrated in Fig. 3.9. 
We cannot see significant differences between these results so that the shape of the 
neighborhood plays a tiny part in the classification procedure for this synthetic data. 
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In our case, we choose the standard 8-connectivity neighborhood. For the other spatial 
dimensions (line, volume, etc.), the neighborhood should change accordingly as 
described in section 3.4.2.   

         

(a) 8-connectivity          (b) 24-connectivity 

          
(c) 4-connectivity           (d) special shape 

Figure 3.9: Classification results with different neighborhood shapes. 

3.5.2. Application on real data 

After the evaluation on synthetic data, we performed the methods on the real data 
obtained after the registration of three CT acquisitions. Fig. 3.10 shows one slice of 
the registered vectorial volume, which is composed by three channels: (a), acquisition 
before contrast medium injection; (b), immediately after injection; (c), ten minutes 
after injection. 

     

(a)                           (b)                        (c) 

Figure 3.10: One slice of the kidney volume after registration. 

We expect to classify our volume into four classes: fat, renal cortex, renal medulla 
and collecting system. With K=4, the classification result formed by Eq. (3.38) is 
shown in Fig. 3.11. It effectively demonstrates our conjecture. While taking the 
neighborhood information into classification procedure (Fig. 3.11(c)), the anatomical 
structures are better delineated into homogeneous regions: fat (red), renal cortex 
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(green), renal medulla (blue) and collecting system (white). The simple class 
decisions smoothness (Fig. 3.11(b)) blurs the image and cannot get an accurate 
classification result especially on the tissue border. 

   

 (a)                          (b)                          (c) 

Figure 3.11: Classification result of the real. (a): the Gaussian mixture method; 
(b): directly smooth the class decisions with neighborhood after classification 

with the Gaussian mixture method; (c): our method. 

Similar to the experiments on synthetic data, we also illustrate the histograms by 
integrating the intensity distributions along one axis (Fig. 3.12). We can see that the 
fitted histogram agree with the original histogram very well. The difference between 
the classified intensity distribution with and without neighborhood is tiny. The results 
confirm that the proposed neighborhood weighted classification method gives the 
pixels’ class probabilities concerning the neighborhood information while maintaining 
the global intensity distribution. 

3.5.3. Discussions 

From the above results, we can reach the conclusion that the Gaussian mixture 
model based method has the ability to classify vectorial image with the aim of 
illustrating the anatomical structures. Because of the inhomogeneity of the 
acquisitions and the partial volume effects, the result of the intensity-only method has 
some misclassification area, especially the renal cortex and the renal medulla because 
of their close intensity range, which is shown in Fig. 3.11(a). In order to illustrate this 
phenomenon more clearly, the corresponding first order derivate of the result 
probabilities along one cut line (represented in white) is shown in Fig. 3.13. Because 
of the white background color, the collecting system (represented in white originally) 
is represented in black line in the probabilities derivate figure (Fig. 3.13), the other 
materials are represented according to the colors originally assigned to them.  

In fig. 3.13(a), according to the probabilities first order derivate, we can clearly 
see that the regions are not separated because there are some inhomogeneous regions, 
e.g. in the renal medulla (between index [30, 40] on the line) or partial volume effect 
on tiny object, e.g. the collecting system (between index [70, 80] on the line). While 
taking the neighborhood information into the iteration process, the results are 
improved significantly, as shown in Fig. 3.13(b). We can see that inside one material 
region, the proposed method gives a more homogeneous decision. The proposed 
method considers the intensity and the position of one pixel simultaneously so that it 
can give a more reasonable classification result. While comparing Fig. 3.13 (a) and 
(b), we can see that the proposed method has the effect of less sensitive to 
inhomogeneous region, while giving a better class distribution. 
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(a) Original histogram 

 
(b) Classification without neighborhood 

 
(c) Classification with neighborhood 

Figure 3.12: Intensity distribution along one axis. (a): Original image; (b): The 
results after classification by the Gaussian mixture model; (c): The results after 

classification with our method. 
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(a) 

 

(b) 

Figure 3.13: Probability first order derivate along one cut line. (a): the Gaussian 
mixture method; (b): our method 

3.6. Conclusions 

In this chapter, Gaussian kernel functions are used in a statistical classifier to have 
the ability of classifying vectorial images or volumes. A neighborhood weighted 
method is proposed. The model is that the voxels’ intensity vectors follow the 
Gaussian mixture distribution and the classes distributions on each voxel are affected 
by its neighbors’ class probability distributions so that a neighborhood weight is used 
to describe this property. The neighborhood information is integrated to the 
classification process by amending the voxel’s class distributions at each iteration step. 

Experiments on both synthetic and real data are performed. The results show that 
this improvement on Gaussian mixture model is less affected by noise and gives better 
classification results. Usually, a nearest neighborhood is enough in practical use. The 
experiments also demonstrate that the expansion of the neighborhood range makes 
tiny effect in the final classification results. The experimental results demonstrate that 
the proposed method gives more reasonable class distributions for each pixel while 
keeping the global intensity distribution. 
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Chapter 4: Vectorial volume visualization techniques 

For scalar volume rendering, there exist many volume visualization methods [1]. 
There are relatively less researches focused on the rendering of vectorial volume 
composed by multi-volumes, that is, volumes acquired by scanning an object with 
multiple modalities or the same modality at several period of time. But because of the 
development of scan techniques and registration methods [2], this vectorial volume 
data becomes arisen in medical visualization. 

Most of the existing methods [3-5] for this vectorial volume visualization are 
based on the intermixing of the component volumes at one certain step in the 
rendering pipeline, these spatial-aligned volumes are still considered individually. But 
all the volumes are from the same patient, they should be combined together as a 
vectorial volume. We have presented a neighborhood weighted Gaussian mixture 
classification method to get the class distributions of the vectorial volume. With the 
help of that vectorial volume statistical classification method, we can consider this 
vectorial volume as an integrative volume and render it with several rendering 
techniques.  

The rendering techniques are divided into two categories: surface rendering and 
volume rendering. Surface rendering techniques are relatively easier to implement in 
our situation. But its disadvantage is that a geometrical presentation should be 
obtained first and the final image relies mostly on the generation quality of the surface 
models. Direct volume rendering methods can get the final image directly from the 
volumes, but in our situation, the difficulties appear in gradient calculation, transfer 
function design etc. We focus on the solvent of these difficulties and propose several 
rendering techniques for classified vectorial volumes in this chapter. 

4.1. Introduction 

In this section, we first outline our research context of this chapter. The 
representation of the results from the previous work gives us a classified volume. The 
specificity of this volume is that each voxel is a vector and the tissues memberships 
are assigned to each voxel by a classification method. To display this volume, we 
need a suitable vectorial volume visualization algorithm. Vectorial volume 
visualization techniques are expanded from scalar volume visualization techniques. 
For the investigation of vectorial volume visualization algorithms, we first briefly 
review the scalar volume visualization algorithms then the existing vectorial 
visualization algorithms are analyzed in comparison to our proposed method. Finally, 
the outline of our work in this chapter is given. 

In chapter 1 we have shown that the general visualization framework can be 
adapted to our situation (Fig. 4.1).  

The next step is now the graphical encoding of the general model. In order to 
distinguish all the tissues in the final image, we need to assign a color and a 
transparency value for each material. For the kth material, the user will assign a color 
Ck and an opacity value kα  (denotes the transparency of the material). The opacity 

has such properties: 1kα =  implies that the kth material is completely opaque, and 

0kα =  implies that it is completely transparent.  
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Figure 4.1: General framework of a visualization tool for the kidney surgery 
preoperative planning 

As referred in Fig. 4.1, these steps conclude the process of the conceptualization 
of the scene and now the next step is to find appropriate rendering techniques for the 
final visualization. 
 

Scalar volume visualization 

In this chapter, we focus on the rendering techniques for vectorial volumes. But 
because the vectorial volume visualization techniques are expanded from scalar 
volume visualization techniques we first introduce the scalar volume visualization. 

For the visualization of scalar volumes, most of the algorithms can be classified 
into two categories: surface rendering algorithms and direct volume rendering 
algorithms [6]. Surface rendering algorithms first extract the surface representations 
from the volume data and then graphic techniques are used to render the extracted 
geometric primitives. Volume rendering algorithms directly get the final image from 
the volume data without going though an intermediate surface extraction step. 

For surface rendering algorithms, a surface shell is extracted from the data. The 
surface is typically approximated as triangular mesh which can be passed as geometry 
to a rendering process. The classical approach to surface extraction is the Marching 
Cubes algorithm, proposed by Lorensen and Cline [7]. This algorithm assumes that 
the data is on a structured grid and then extracts the iso-value surface within a unit 
cube and processes the cubes independently one after the other.  

Unlike the surface approximation method, direct volume rendering convey an 
entire 3D dataset in a 2D image directly. There are many research concerned about 
volume rendering [1, 8, 9]. The process of constructing an image from a volumetric 
dataset using direct volume rendering can be summarized by the following steps [10]: 

1) Data traversal: The positions where samples will be taken from the 
volume are determined. 

2) Sampling: The dataset is sampled at the chosen positions. The sampling 
points typically do not coincide with the grid points, and so interpolation is 
needed to reconstruct the sample value. 

3) Gradient computation: The gradient of the data is often needed, in 
particular as input to the shading component. Gradient computation 
requires additional sampling. 

4) Transfer function:  The sampled values are mapped to optical properties, 
typically color and opacity value. The transfer function is used to visually 
distinguish materials in the volume. 

Rendering 
techniques 

 
 
 
 
 

Conceptualization of the scene 
 

Renal 
acquisitions 

User’s 
objective 

Registration and 
segmentation 

(classification) 

Surface  
Color  
Transparency 
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5) Shading and illumination: Shading and illumination effects can be used 
to modulate the appearance of the samples. The three-dimensional 
impression is often enhanced by gradient-based shading. 

6) Compositing: The pixels of the rendered image are computed by 

compositing the optical properties sα  and the colors Cs of the sample 

points according to the volume rendering integral.  

Vectorial volume visualization 

For the vectorial volume visualization methods, we shall first distinguish between 
vectors of physical quantities (such as flow and strain) and vectors that store a list of 
voxel attributes. There is a large body of literature to visualize the former, but it is out 
of our discussion range. We focus on the latter, that is, volumes which are composed 
by voxels of attribute vectors. Here, in particularly, are the volumes acquired by 
scanning an object at different periods, which is similar to multi-modal volumes. Each 
voxel of the vectorial volume contains a vector formed by the patient’s acquisitions 
from different scan times.  

Based on the fundamental algorithms used for scalar volume visualization, a few 
literatures did some research about the vectorial visualization techniques [3-5]. These 
authors consider the vectorial volume as a collection of separate volumes and they 
mix the vector’s components at one certain step of the scalar volume rendering 
pipeline. 

Cai and Sakas [5] classified the methods according to the levels where the data 
intermixing occurs. Three levels were defined: image level intermixing, composition 
level intermixing and illumination model level intermixing (Fig. 4.2).  

− The simplest mixing technique is image level intermixing. It consists to 
render each volume separately as a scalar dataset and then to blend the result 
images according to some weighting function that possibly includes the z-
buffer of opacity channel. This method doesn’t require a modification of the 
volume renderer but it loses the depth ordering information.  

− The composition level intermixing method solved this problem. For each 
voxel of each volume, the opacity and color are estimated according to the 
voxel value and the illumination model. These opacities and colors are then 
intermixed at each compositing step, thus preserving the depth information. 

− A third method is illumination model level intermixing. The volume samples 
are combined before colors and opacities are computed.  

Although these intermixing methods can render the vectorial volume, they all 
consider the space aligned volumes individually. In addition, these methods mix the 
data at different steps of the volume rendering pipeline so that the surface rendering 
techniques cannot be applied at all.  

In our case, the volumes are taken from the same patient at different contrast 
periods so that they can be considered together. The intermixing level can then occur 
before the rendering pipeline. We will call this level acquisition level intermixing (Fig. 
4.2). The acquisition intermixing step is realized by the neighborhood weighted 
mixture Gaussian classification method we proposed in Chapter 3. After this 
classification, we get the material probability distributions on each grid of the volume. 
As introduced later, both surface rendering and volume rendering techniques for 
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scalar volume visualization can be adapted to the vectorial volume visualization with 
this acquisition level intermixing method. 
 

 

Figure 4.2: Rendering pipeline for different intermixing levels 

 

Outline of our work 

Both surface rendering and volume rendering techniques can be expanded to the 
vectorial volume visualization in the acquisition level intermixing method. Surface 
rendering method applied in our situation is a simple multi-object expansion, which 
will be introduced in detail in section 4.2.  

Volume rendering is relatively complex because some of its steps cannot be 
simply expanded for the intermixed vectorial volume. According to the volume 
rendering procedure, the difficulty of the expansion from scalar volume to vectorial 
exists in the gradient computation and the transfer function design because the sample 
values are intensity vectors and material probabilities instead of scalar values. We 
focus on solving these problems in the direct volume rendering section of this chapter 
(section 4.3). Finally, our discussions and conclusions are given. 
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4.2. Surface rendering method 

For scalar volume, surface rendering techniques approximate a surface by some 
geometrical primitives, most commonly triangles, which can then be rendered using 
conventional graphics accelerator hardware. A surface can be defined by applying a 
binary decision function B(v) to the volumetric data, where B(v) evaluates to 1 if the 
value v is considered part of the object, and evaluates to 0 if the value v is part of the 
background. The surface is then contained in the region where B(v) changes from 0 to 
1. When B(v) is a step function: ( ) 1, isoB v v v= ∀ ≥ , where isov  is called the iso-value, 

the resulting surface is called the iso-surface [1]. The Marching Cubes algorithm [7] 
was developed to approximate an iso-valued surface with a triangle mesh.  

This surface extraction cannot be applied on the vectorial volume directly because 
the vectorial iso-value is difficult to define. But the class distributions we get after 
applying the vectorial classification method are relatively separated, as shown in Fig. 
4.3. Each material distribution can be treated as an independent volume. Each material 
distribution volume is closed to a binary volume with the value range [0, 1] 
(especially at the border) instead of always 1 in a binary volume. We can get the 
surfaces of each class and then render them in the same scene as multiple objects so 
that the materials can be merged in the final image.  

 

Figure 4.3: One slice of the material distributions, from left to right: fat, renal cortex, renal 

medulla and collecting system. 

The value range of the material distribution is [0, 1]. From Fig. 4.3 we can see 
that this data range only happens at the border and inside the object the material 
probabilities tend to 1, so that we choose 0.5 as the iso-value to extract the surfaces of 
the objects. The algorithm is summarized as follows: 

1) Set the iso-value to 0.5 and extract surfaces from each material distribution 
volume. 

2) Assign material color and transparency to the corresponding surface. 
3) Render the surfaces in the same scene by the graphical rendering techniques. 

 
The results get from step 1) and 2) are illustrated in Fig. 4.4. In this figure, we do 

not consider fat because it’s not useful for illustrate the anatomical structure of the 
kidney. We can see that the three materials are relatively independent from each other. 
At the border of two materials, the algorithm detects the surface for each of them 
respectively. That is to say, the algorithm cannot separate the surface inside and 
outside of the object and all of the borders are detected as surfaces. The three surfaces 
are rendered as three different objects with transparency properties and the final 
merged image is illustrated in Fig. 4.5. From the results, we can see that the multi-
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object solution is practical for this situation. The advantage of this method is that the 
final image can be rendered very fast after the surface extraction. The disadvantage is 
that the surfaces should be extracted first and the volumes are reduced to the 
boundaries of materials and all the other information is lost.  

     

Figure 4.4: Surface extraction result of the material probability volumes, from 
left to right: renal cortex, renal medulla and collecting system. 

 

Figure 4.5: Merged scene rendered by semi-transparent surface rendering 
technique. 

4.3. Direct volume rendering method 

4.3.1. Introduction 

Direct volume rendering is a visualization technique to convey an entire 3D 
dataset in a 2D image directly. The direct volume rendering process expressed by 
Hadwiger et al. [10] has been reviewed in section 4.1, in which transfer function is an 
important step to visually distinguish materials. Drebin et al. [11] proposed a direct 
volume rendering technique to visualize a scalar volume composed by several 
materials, which is similar to our situation, but the authors didn’t pay much attention 
on the boundaries of materials. Kindlmann and Durkin [12] indicated the importance 
of transfer functions and analyzed the boundary properties. According to their 
analysis, the authors proposed to assign the opacity by a function of both data value 
and gradient magnitude. But the analysis has a significant assumption: the features of 
interest in the scalar volume are the boundary regions between areas of relatively 
homogeneous material. Considering these volume rendering methods for multi-
materials, we proposed two volume rendering methods based on ray casting which 
enhance the boundaries by the design of transfer function.  
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4.3.2. Volume rendering framework 

The framework of the ray casting rendering process is shown in Fig. 4.6. The 
sample positions depend on the direction of the casted rays. As introduced before, the 
input of this rendering pipeline is the material probabilities on each voxel and the 
material properties (color and opacity value) assigned by the user. Recall that the 
material probabilities on grids are gotten by the neighborhood weighted classification 
method presented in chapter 3. 

 

Figure 4.6: Volume rendering framework 

The material probabilities on the sample points are achieved by interpolation 
method. For gradient calculation, Drebin et al. [11] proposed to form a density 
volume by assigning a density value to each material and then composing the 
densities weighted by the materials’ probabilities. We apply a similar idea but use the 
opacity value instead of an extra density assignment, which will be expressed in detail 
in section 4.3.3.  

From the sampled material probabilities and the assigned material properties, we 
get the sample color sC  and sample opacity sα  for the composition step of the 

rendering pipeline. The sample color and opacity are given by a transfer function. 
Concerning the opacity, the transfer function can have two roles [8]: (a) assign to a 
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specific voxel the tissue transparency and (b) enhance the surfaces by increasing the 
opacities in the boundary areas and decreasing them in homogeneous regions. 
Different transfer functions will lead us to different direct volume rendering methods, 
which will be described in detail in section 4.3.4. Kindlmann [13] summarized the 
transfer functions and indicated that gradient magnitude is a useful second dimension 
for transfer function design to enhance surfaces. We take this idea and adapt it to our 
practical situation. 

Besides the transfer function, shading is another important issue in the rendering 
pipeline. Shading effects can be used to modulate the appearance of the samples. We 
apply the widely used Phong shading model [14] to calculate the shaded color.  
The final step in the volume rendering process is the composition. It constitutes the 
optical foundation of the method. We will express it in detail in section 4.3.5. Finally, 
in section 4.3.6 we illustrate some experimental results and do some comparison.  

4.3.3. Gradient calculation 

Drebin et al. [11] proposed to form a density volume and calculate the gradient. 
The density volume is formed by the material properties. A density characteristic kρ  

is assigned for the kth material and then the density is formed by the following 
formula for each grid: 

1

K

k k
k

D p ρ
=

=∑  (4.1) 

We can see that the greater kρ  is, the more important the kth material is. If kρ  

equals to zero, the kth material will disappear in the final image.  
As referred in section 4.1, the material opacity α  has such properties: 1α =  

implies that the material is completely opaque, and 0α =  implies that it is completely 
transparent. The material opacity has the similar effect as the density characteristic ρ  

so that we can use the opacity α  to replace ρ  to form the density volume. This 
replacement can reduce the input parameters of the rendering pipeline so that it can 
simplify the user input because the two properties: opacity α  and the density ρ  can 
be confused. The formula is as follows: 

1

K

k k
k

D p α
=

=∑  (4.2) 

 

Figure 4.7: 2D Sobel operator 

Our experimental dataset in this chapter is almost noise free because of the 
efficient classification method proposed in Chapter 3. We choose the Sobel operator 
for the gradient calculation because it provides the best edge quality for noise absence 
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edges comparing to other operators [15]. For illustration, Fig. 4.7 shows the mask of 
2D Sobel operator in one direction. The 3D Sobel operator is a special expansion of 
the 2D case. Denote the gradient vector by G , and ( , , )x y zG G G=G . xG , yG  and zG  

are the directional gradient in x, y and z axis direction respectively. The corresponding 
formula to calculate the gradient is as follows: 

1, , 1, , 1, 1, 1, 1,

1, 1, 1, 1, 1, , 1 1, , 1 1, , 1 1, , 1

(2 ( ) ( )

( ) ( ) ( )) /12
x x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

G D D D D

D D D D D D

+ − + + − +

+ − − − + + − + + − − −

= ⋅ − + −

       + − + − + −
 (4.3) 
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The normal direction is the gradient vector normalized by its magnitude: 

( / , / , / )x y zG G G=N G G G  (4.6) 

where G  denotes the magnitude of G , with 2 2 2
x y zG G G= + +G . 

4.3.4. Transfer function 

Transfer function is applied to assign one color and one opacity value to each 
sample point comprising the volume dataset in order to visually discern the several 
materials in the final image. For our situation, we introduce two methods to assign the 
colors and opacities to the sample points. 

4.3.4.1. Class decision method 
The input is the classified probabilities, it is natural to consider making a material 

decision for each sample and then to assign the corresponding material properties to 
the sample point, which is called class decision method.  
 

 

Figure 4.8: Probability first order derivate along one cut line. The circled region 
means the line goes from material B (red part) to material A (green part). 

Recalling the first derivate analysis of the classified probabilities (Fig. 4.8), we 
can see the border of two materials very clearly. At the boundary region, the positive 
derivate indicates that the line is going inside the material and the negative derivate 
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indicates going out of the material. The first derivate tends to zero when the line 
passes inside of the materials. When we cast a ray into the volume, we calculate the 
first derivate along the ray. With the analysis before, we can easily distinguish the 
inside of the one material and the borders of materials. We can also get the 
information that we are going from material B to material A if the first derivate of A is 
positive and the first derivate of B is negative, as illustrated in Fig. 4.8. Denote the 
directional first derivate of kth material as ( )f k′ , and the color and opacity of the kth 

material as kC  and kα  respectively, The sample color sC  and the sample opacity sα  

are given by:  

s pC C= ,  ( )s p f pα α ′= ⋅ ,    where arg max ( )
k

p f k′=  (4.7) 

With this formula, the inside of the materials will be discarded because the first 
derivate tends to zero. From Fig. 4.8 we can see that the highest first derivate appears 
at the border of two materials which will give a high opacity according to Eq. 4.7. 
This formula defines a class decision for the boundary of two materials, so that it is 
called class decision method.  

4.3.4.2. Composed color and opacity 
Unlike the class decision method, the color and opacity for the sample position 

can be gotten from the material probabilities directly by multiplying the color and 
opacity assigned to that material by the probability of each material. The sample color 

sC  and sample opacity sα  are given by: 

1

K

s k k
k

C p C
=

=∑ ,   
1

K

s k k
k

pα α
=

=∑  (4.8) 

where kp  denotes the probability of the kth material and the number of materials 

is K.  
As mentioned before, during the rendering process, the regions of interest are 

boundaries between materials and the transfer function is an efficient tool to express 
the boundaries. Eq. (4.8) has given out the color and opacity of the sample position, 
but it doesn’t have the ability to highlight any boundaries. The composed opacity has 
the same formula as the density volume (Eq. (4.2)). Fig. 4.9 illustrates the relationship 
between the sample location and the first derivative of the density volume. The first 
derivate is actually just the gradient magnitude [12] (the gradient computed on the 
densities D). We can see that the gradient magnitude magnifies at the material 
boundaries and equals to zero at the interior of one material, which is corresponding 
to the separated materials’ first derivative (Fig. 4.8).  
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Figure 4.9: The first derivative of the density volume 

Usually the gradient magnitude is very sensitive to the noise, but due to the 
efficiency of neighborhood weighted classification method, the result of the classified 
material is almost homogeneous. As the density volume is constructed according to 
the material opacities, the gradient magnitude agrees with the material opacity values. 
If two materials have similar opacities, the boundary between them will have small 
gradient magnitude; contrarily, if the two materials are quite different, the boundary 
between them will have a big gradient magnitude. The gradient magnitude can be 
considered as the “importance” of a boundary surface. If we use the gradient 
magnitude as an opacity mask, all the boundaries will appear in the final image 
according to their “importance”.  

The weighted opacity is described by the following formula: 

1

K

s k k
k

pα α
=

  ′= ⋅ 
 
∑ sN  (4.9) 

where ′
sN is the normalized gradient magnitude of the sample position, it is 

given by: 

min

max min

−′ =
−

s
s

N N
N

N N
 (4.10) 

where 
max

N  and 
min

N  denote respectively the global maximum and minimum 

gradient magnitude of the whole volume. 

4.3.5. Composition 

The final step of volume rendering is composition, which has two kinds of 
direction: front-to-back and back-to-front. The advantage of the front-to-back 
composition order is that it can terminate the ray as soon as the accumulated ray 
opacity reaches a threshold close to full opacity. The reported benefit for this early ray 
termination is about 50% [9].  

The fundamental process for creating a volume rendering image is based on 
simplified models of the real physical realism [16]. These optical models describe 
how a ray of light is affected when traveling through the volume. To compute an 
image, the effects of the optical properties must be integrated continuously along each 
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viewing ray. Among all the optical models, the absorption plus emission model is the 
most common one in direct volume rendering.  

Let a and b denote the entry and exit points of the ray, I0 be the light entering 
from the background, T(u, v) be an aggregate of the transparency between u and v, g(u) 
specifies the emission at a point u along the ray. The optical model can be described 
as follows: 

0( ) ( , ) ( ) ( , )
b

a
I b I T a b g u T u b du= + ∫  (4.11) 

The first term accounts for the absorption of light as the ray passes through the 
volume and the second term captures the emission from the inside of the volume, 
which is also affected by the volume. 

This description assumes both the volume and the mapping to optical properties 
to be continuous. In practice, of course, the evaluation of the volume rendering 
integral is usually calculated numerically, together with several additional 
approximations. Max [16] also gave out the numerical calculation method after the 
description of the optical models. According to the integration sequence, both the 
back-to-front and front-to-back compositing algorithm can be deduced from the 
optical model (Eq. 4.11).  

The ray is divided into n small segments. For the ith segment the emission 
contribution becomes a single color Ci. the transparency Ti is usually denoted by the 
opposite property opacity: 1i iTα = − . Assume that the enter color of the ith segment is 

inC  and the enter opacity is inα . After the integration of the ith segment, the result 

color is outC  and the result opacity is outα .  

The back-to-front compositing formula is as follows: 

(1 ) 1,2, ,out in i i iC C C i nα α= − +      = ⋯  (4.12) 

The front-to-back compositing formula is: 

(1 )
, 1, ,1

(1 )
out out in in i i in

out in i in

C C C
i n n

α α α α
α α α α

= + − 
    = −        = + − 

⋯   (4.13) 

Comparing Eqs. (4.12) and (4.13), we can see that during the front-to-back 
compositing process, the cumulative opacity α  magnified continuously. When α  
tends to 1, it means that this ray tends to be totally opaque and the following ray 
segments will have no more effect on the final pixel value, so that we can stop the 
integration process. Due to its ability of earlier termination, the front-to-back 
compositing algorithm gets a widely application. 

4.3.6. Experimental results 

According to the framework described in Fig. 4.6, we did some experiment on the 
classified volume. The input is the material probabilities on each grid and the 
materials’ colors and opacities. The “fat” material is useless for the observer, so a 
totally transparency property (opacity equals to zero) is assigned to it.  

Fig 4.10 shows the difference between the two transfer function design methods: 
Fig. 4.10(a) class decision method and Fig. 4.10(b) composed color and opacity. 
Comparing these two methods we can state the following remarks. On Fig. 4.10(a), 
we can see that the class decision method can better discriminate the different material; 
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there is less color confusion in the rendering result. This is the result that the 
boundaries between the materials lie on the position who gives the max first derivate 
of the material probabilities and that we use this information to make a material 
decision on each sample point and the corresponding material color and opacity is 
taken as the sampled color and opacity. But the decision making process is a 0-1 
procedure. In contrast, on Fig. 4.10(b), the final result appears more continual because 
of the composed color and opacity but the boundaries are composed by two materials. 

       

(a)                                     (b) 

Figure 4.10: Different transfer functions. (a): rendering result with class decision; 
(b): rendering result with composed color and opacity 

4.4. Discussions and conclusions 

Two categories of rendering techniques: surface rendering and direct volume 
rendering are introduced for the vectorial volume visualization in this chapter. The 
final experimental results are illustrated together in Fig. 4.11.  

Surface rendering technique is relatively easier to apply in our situation, but the 
result (Fig. 4.11(a)) illustrates surfaces only and the geometry primitives should be 
extracted first. Direct volume rendering technique can get the final image directly 
from the classified material probabilities, but the rendering results rely much on the 
transfer function design. Different transfer functions will give different results. Two 
transfer functions are proposed: class decision method (Fig. 4.11(b)) and composed 
color and opacity method (Fig. 4.11(c)). According to the analysis of the first derivate, 
we propose to the gradient (first derivate) weighted opacity design method for both of 
the two transfer functions. The rendering result of the composed color and opacity is 
smoother than the class decision method. The experimental results demonstrate that 
both of the two direct volume rendering methods can highlight the boundaries with 
only a little user interaction (assignment of the material properties). 
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(a)                            (b)                           (c) 

Figure 4.11: Comparison of different rendering techniques: (a), surface rendering; 
(b), volume rendering with class decision; (c), volume rendering with composed 

color and opacity. 

In this chapter, several rendering techniques are used to visualize the classified 
result gotten by the classification method in chapter 3. Considering the classification 
and visualization process, we use the classification method to mix the component 
volumes of the vectorial volume. Then several rendering techniques are applied on the 
intermixed result. Comparing to other vectorial volume visualization methods, our 
method mixes the volumes at the acquisition intermixing level, which combines the 
acquisitions into a vector volume instead of several separated scalar volumes. The 
first step of this acquisition intermixing level visualization method has been discussed 
in chapter 3 and this chapter focuses on several following rendering techniques. Both 
of the surface rendering and direct volume rendering techniques are adapted to our 
situation. Two kinds of transfer design methods for direct volume rendering are 
implemented and compared. The comparison of these methods are given and 
discussed. 
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Chapter 5: Mesh simplification 

For surface-based volume visualization methods, triangle meshes are often used 
to represent the object surfaces. But the total number of triangles used to represent 
object often largely exceeds the capacity of real-time rendering of graphics hardware. 
One natural way to solve it is to simplify the mesh models, replacing the original 
object with respectively fewer faces while trying to keep its main characteristics.  

The simplification metric is a key issue of a simplification algorithm. In this 
chapter, two new simplification metrics based on surface moments and volume 
moments are proposed, which take the difference between the moments defined by 
the original mesh and those of the simplified mesh as the objective function. Edge 
collapse scheme is implemented as mesh simplification procedure. For a given 
maximum moment order and a required number of triangles, the optimal mesh with a 
minimum moment difference from the original mesh can be determined. The 
procedures are applied to some models and better results are obtained in comparison 
with some known algorithms. 

5.1. Introduction 

The volume visualization methods are divided into two categories: direct volume 
rendering and surface rendering methods [1]. For the later, the surface based volume 
visualization methods, a surface shell is extracted from the volume data. The classical 
approach to surface extraction is the Marching Cubes algorithm, proposed by 
Lorensen and Cline [2]. But one problem of this method is that it produces large 
number of triangles in the resulting mesh model which may largely exceeds the 
capacity of the graphics hardware real-time rendering [3]. One natural way to solve 
this problem consists of simplifying the mesh model by eliminating elements of 
polygons (vertices, edges, faces) for topologically-simple surface or by reducing the 
geometric and topological complexity for topologically-rich model [4], replacing the 
original object with fewer triangles while trying to keep its main characteristics. 

The mesh simplification methods can be classified into four groups: sampling, 
adaptive subdivision, decimation and vertex merging. 

� Sampling algorithms sample the geometry of the initial models, either with 
points upon the model’s surface or voxels superimposed on the model in a 3D 
grid. They may have trouble achieving high fidelity since high frequency 
features are inherently difficult to sample accurately. 

� Adaptive subdivision algorithms find a simple base mesh that can be 
recursively subdivided to more and more closely approximate the initial 
model. 

� Decimation techniques iteratively remove vertices or faces from the mesh, 
re-triangulating the resulting hole after each step. These algorithms are 
relatively simple to code and very fast. 

� Vertex merging schemes operate by collapsing two or more vertices of a 
triangulated model into a single vertex, which can in turn be merged with 
other vertices. Vertex merging is a fairly simple and easy-to-code mechanism, 
but algorithms use techniques of varying sophistication to determine which 
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vertices to merge in what order. Most view-dependent algorithms are based 
on vertex merging. 

Among these methods, the vertex merging schemes which principally consist in 
iteratively removing edges or triangles from the mesh are very fast and relatively 
simple to program. According to the merged elements such as edges or triangles, the 
simplification method is called edge collapse or triangle removal, respectively.  

Most of the vertex merging approaches is based on the following iterative 
framework:  

� Assigning a cost to each valid operation which represents the amount of 
change introduced in the model.  

� Applying the operation with minimum cost. 

� Recalculating the costs of the operation belonging to the modified mesh 
portion. This iteration continues until the desired resolution is reached. 

Mesh simplification based on vertex merging schemes introduces a metric 
between the original mesh and the approximated one. In the design of a mesh 
simplification algorithm, an important issue is the selection of an element to be 
deleted. Choosing optimal elements guarantees minimization of the metric between 
the original mesh and the final approximation. Oliver et al. [5] compared several 
metrics for mesh simplification and indicated the importance of the metric to the 
quality of approximations. These simplification metrics can be classified into two 
categories according to the geometry features they try to preserve: local features and 
global features. Most of the proposed metrics are based on local properties which 
guaranty preservation of local features [6-8]. Some authors started to imply the global 
features based metrics such as the area-based metric [9] and the volume-based metric 
[10]. The two metrics are both based on the object’s global features, but their 
preserved characteristics are single and lack of enough information.  

Moments and moment invariants contain more information about the object and 
they are widely used in object representation and recognition [11]. Since the moments 
of lower order (up to two) can be used to describe the shape of boundary segment, 
they have been successfully used to detect the image boundary [12, 13]. Shu et al. [14] 
proposed moment-based methods for polygonal approximation of digitized curves. 
Inspired by these research works, a surface moments-based metric and a volume 
moments-based metric are proposed with the purpose of generating low error 
approximations and being simple to implement. A uniform framework is applied for 
the simplification of all models, and only the investigated metrics are different. This 
framework is designed based on edge collapse algorithm, with the aim of comparing 
the different metrics independently of other aspects related to the simplification 
method. 

5.2. Related previous works 

As mentioned before, vertex merging based simplification process often takes an 
iterative method. The metric according to which we decide the simplification 
sequence is crucial during the iterative process. Some existing metrics are presented 
in this section. 
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Simplification metrics can be divided into two classes: local features-based 
metrics and global features-based metrics. 

Within the class of local feature based metrics methods, one of the first vertex 
removal based simplification methods was proposed by Schroeder et al. [6]. The 
implemented simplification metric is the distance of the vertex to the average plane 
formed by its adjacent triangles. This metric is very simple to compute, but generates 
low-quality approximated models. Kim et al. [15] proposed a discrete curvature 
metric for simplification which has been demonstrated as not satisfactory because it 
always generates low-quality simplifications [5]. Vollmer et al. [7] used the standard 
deviation of a vertex set as a simplification metric. It has the effect of smoothing a 
triangle mesh during its simplification. Graland et al. [8] proposed a quadric error 
metrics (QEM) based algorithm. This algorithm made use of the quadric error metric 
to choose the edge to be simplified and the new vertex after contraction. It estimates 
the error introduced by a pair collapse operation as the distance from a vertex to a 
quadratic surface, represented as a symmetric matrix. The algorithm provides high-
quality results because the quadric matrices are accumulated during the simplification 
process. Lindstrom et al. [16] added volume preservation and boundary preservation 
constrains to the quadratic objective functions when selecting the position of the new 
vertex. Hoppe [17] introduced an energy function to describe the complexity and 
fidelity of mesh and tracked simplification quality minimizing it. Hoppe’s energy 
function requires many vertex distance evaluations so that it reduces the 
computational speed. Klein et al. [18] evaluated the Hausdorff distance between the 
original and simplified models, allowing precise error control. Hussain et al. [19] 
proposed a metric which is the summation of geometric change combined with vertex 
visual importance. 

The above presented metrics are all designed according to the local feature 
preservation, but ignore the global geometry features, which can influence the 
approximation of simplified mesh. Wu et al. [20] introduced a global geometry 
features preservation method in the QEM based method. In this case, the global 
feature preservation is used as constraint within the simplification process and the 
metric itself is still according to the local features.  

Methods directly based on global geometry features preservation are another 
efficient way to determine the approximated meshes. Among this kind of methods, 
Park et al. [9] proposed an area-based metric which compares the area difference of 
the original mesh S and its approximationS′ . The cost function is defined as: 

 )()( SAREASAREAAD ′−=  (5.1) 

Alliez et al. [10] proposed a volume-based metric, which is used to minimize the 
volume difference between the simplified mesh and the original mesh. The cost 
function is as follows: 

)()( SVOLUMESVOLUMEVD ′−=  (5.2) 

Inspired by these two metrics, we propose two moments-based simplification 
metrics with the purpose of improving the approximated results, which is described in 
detail in the following section. 
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5.3. Proposed moments-based metrics 

In this section, the two moments-based metrics are presented. They are based on 
surface moments and volume moments respectively. The fast computation methods 
proposed by Tuzikov et al. [21] are applied to reduce the computational burden.  

5.3.1. Surface moments-based metric 

The surface moment of order k1+k2+k3 of a 3D compact body P is defined as: 

( ) ∫=
)(
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321 PS

kkk
kkk dSzyxPSm  (5.3) 

where the integral is taken on the surface of P. 
Notice that m000S(P) is the area of the model’s surface which is used by Park et al. 

[9] as a simplification metric (Eq. (5.1)) in their method. Since the higher order 
moments contain more information about the object’s surface, we will use the 
moments difference to measure the similarity between the original model surface S  
and the simplified model surfaceS′ . Let ( )PSm kkk 321

 and ( )PSm kkk ′
321

 be the surface 

moments defined by S and S′ , respectively. Then we define the following 
simplification cost function: 
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where M is the maximum order of moments that we will use. 
Comparing Eq. (5.4) with Eq. (5.1), it can be seen that Eq. (5.1) corresponds to a 

special case of Eq. (5.4) (with M = 0). Therefore, we can expect to obtain better 
results using Eq. (5.4) with M > 0 contrasting with Eq. (5.1). However, the algorithm 
directly based on Eq. (5.4) could be time-consuming because the moment calculation 
by a straightforward method is very expensive. This problem can be solved using a 
simple and fast surface moment computing algorithm which was proposed by 
Tuzikov et al. [21]. A brief description of this algorithm is given below. 

 

Figure 5.1: Tetrahedron Ti 
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Assume that the object is represented by a mesh of N triangles, each triangle 
defined by its vertices via, vib, vic, i = 1, 2, …, N. For each triangle we form a 
tetrahedron denoted by Ti defined by the three vertices and the coordinate origin (Fig. 
5.1). Let S0(Ti) be the tetrahedron facet that is opposite to the coordinates origin, then 
Eq. (5.3) can be rewritten as: 

( ) ( )∫ ∑==
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i

ikkk
kkk

kkk TSmdSzyxPSm  (5.5) 

Eq. (5.5) shows that we need only to calculate the surface moment ( )ikkk TSm 0321
 of 

order k1+k2+k3. To do this, let Ti = Ti(via, vib, vic) be the tetrahedron formed by the 
coordinate origin and the three vertices via = (a1, a2, a3), vib = (b1, b2, b3), vic = (c1, c2, 
c3) and the vertices via, vib, vic are arranged in counter-clockwise order with respect to 
the outward normal of the surface S0(Ti(via, vib, vic)). 

Let us introduce some notations. Denote by A=(Aij) the following matrix: 
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where Ar(S0) denotes the area of the face S0(T). 
The fast surface moment computing algorithm allows us to develop a mesh 

simplification method based on higher order moments. 
Using Eq. (5.5), Eq. (5.4) becomes: 
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Eq. (5.7) can be used to determine a sequence of approximation meshes with 
different number of triangles. Let FN be the original mesh with N triangles. For a 
specified number n, the objective may be to find an approximated mesh Fn so that the 
moment differences of Fn from the initial mesh FN is minimal. The candidate Fn is 
uncountable because the three-dimensional model is complicated. In order to simplify 
the optimization procedure, we take the iterative vertex merging methods (face 
removal or edge collapse) to determine a sequence of approximated meshes of the 
initial model. During the iterative vertex merging procedure, only the moments 
related to the modified triangles are changed for each step. So Eq. (5.7) can be 
simplified to a more efficient form. Here we take edge collapse procedure for 
illustration. 
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Figure 5.2: Process of edge collapse from eij to vertex k 

As illustrated in Fig. 5.2, each operation will remove two triangles adjacent to the 
deleted edge eij. That is, we start with the initial mesh FN to get the first simplified 
mesh FN-2, then the simplified mesh FN-4 from FN-2, and so on until finding Fn. The 
greedy strategy we use in the approximation process is that FN-2 is derived from FN 
such that the surface moment difference between FN-2 and FN is minimal (global 
minimum). To obtain the approximated mesh FN-2 from FN, the kernel operation of the 
approximation process is to collapse an edge eij to a point k. Since all the other 
triangles have no change except the triangles adjacent to the two points i and j, which 
are the two vertices of the deleted edge. We can deduce from Eq. (5.7) that the 
moment difference of order up to M between FN-2 and FN is as follows: 
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where Tv denotes the triangles adjacent to a vertex v and 
ijeT denotes the two 

triangles adjacent to the edge eij. Eq. (5.8) shows that the computation of adjacent 
triangle moments is taken instead of the whole object triangle moments.  

This principle can be extended to vertex or face removal methods by only taking 
their respective triangle changes caused by each operation into account.  

5.3.2. Volume moments-based metric 

The volume moment of order k=k1+k2+k3 of a 3D compact body P is defined as: 
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where the integral is taken on the volume of P. 
Notice that m000V(P) is the volume of the model P which is used by Alliez et al. 

[10] as a simplification metric (Eq. (5.2)) in their method. The simplification cost 
function by using the volume moments is similar to that of the surface moments. It is 
defined by 
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where ( )PVm kkk 321
 and ( )PVm kkk ′

321
 denote the (k1+k2+k3)th-order of volume 

moments defined on the volume P and simplified mesh P′ , respectively. Comparing 
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Eq. (5.10) with Eq. (5.2), it can be seen that Eq. (5.2) corresponds to a special case of 
Eq. (5.10) (with M = 0). 

Tuzikov et al. [21] also proposed a fast algorithm for computing the volume 
moments. The computation method of volume moments is similar to that of surface 
moments. Let ( )iV T  be the volume of the tetrahedron Ti (Fig. 5.1), similar to Eqs. 

(5.5), (5.6), the corresponding formulas for volume moments-based simplification are 
as follows: 
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where A  is the determinant of A. 

Using Eq. (5.11), Eq. (5.10) becomes: 
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For iterative mesh simplification methods, only some local modification presents 
to each iteration. Similar to that of surface moments-based metric, we take edge 
collapse operation to illustrate the simplified form of Eq. (5.13) for a series of vertex 
merging methods. We can deduce from Eq. (5.13) that the moment difference of order 
up to M between FN and FN-2 is as follows: 
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where EVMD denotes the global volume moment difference of an edge collapse 
operation, which is called the cost function. As mentioned previously, this metric can 
be easily extended to vertex or face removal operation.  

5.4. A framework for mesh simplification metrics evaluation 

In order to evaluate the proposed metrics, we follow the well-established mesh 
simplification framework described in [22]. This framework was implemented by 
Oliver et al. [5] to compare different simplification metrics, in which the authors 
suggest to employ the edge collapse operation (Fig. 5.2) for the simplification 
procedure because it preserves topology and it is easy to implement. In our opinion, it 
is a good choice because the approximation results mainly rely on the metrics, without 
the involvement of any other factors (like re-triangulation method choice). 
 

The simplification procedure can be described as follows: 

� Firstly, the costs of all candidate operations, in this case edge collapses that 
do not introduce degeneracy into the mesh, are calculated.  

� The valid operations are inserted into a priority queue indexed by their costs.  
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� Thereafter, the iterative simplification procedure starts. The operation on the 
top of the queue is applied, and the costs of all operations dependent on the 
modified mesh portion are updated, possibly causing the candidates to 
change positions in the priority queue.  

� This procedure continues until a desired number of mesh faces is removed 
from the model.  

The metrics used to assign a cost to the possible operations are discussed in the 
following section. Instead of half-edge collapses implemented in [5], we performed a 
simple edge collapses procedure by adding a third choice for the position of k, which 
is the middle point of the collapsed edge. 

5.5. Metrics evaluation method 

The two moments-based metrics were evaluated quantitatively and estimated by 
measuring the global simplification error assessment. Since the root mean square 
(RMS) error measures the global average error between the model and its 
approximation, it is commonly used as the efficiency measurement in the mesh 
simplification algorithms. We used the error detection tool Metro [23] to calculate the 
RMS error between one model and its approximation. The RMS error from S′  to S is 
defined as: 

( ) ( ) ( )∫ ′=′
Srms dsSpd

SAREA
SSd 2,

1
,  (5.15) 

Besides the error detection method, the moments themselves can also be used as 
evaluation tools. The moments difference between the approximation and the original 
model is an efficient measure tool to evaluate the moments-preservation ability of the 
simplification methods. We have done some experiments to demonstrate this 
evaluation method in section 5.6.  

5.6. Experiments and discussions 

The experiments were performed on a PC Pentium 4 2.66GHZ CPU with 512MB 
RAM, running on Windows XP operating system. Visual C++ and OpenGL were 
taken as development tools.  

5.6.1. Experimental models 

Four models are used to demonstrate the performance of the algorithm. They are: 
the Cow model, the North America model, the Vessel model and the Renal medulla 
model. Table 5.1 illustrates the detail information of these models. The original 
models are shown in Fig. 5.3.  

 
Table 5.1: Information about the models in experiments 

Models Original 
vertices 

Original 
triangles 

Cow model 2904 5804 
North America model 2025 3872 

Vessel model 45029 90050 
Renal medulla model 90438 180140 
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(a) Cow model                      (b) North America model 

    

(c) Vessel model              (d) Renal medulla model 

Figure 5.3: Models for experiment 

5.6.2. Implemental details 

Based on the edge collapse method, the greedy strategy for determining the 
approximated meshes can be summarized as follows. In each step of the 
approximation process, i.e., when we pass FN and FN-2, the certain edge among all the 
edges of FN is removed if it gives the minimum moment difference value. The 
corresponding algorithm is as follows: 

 
Input: The original mesh FN containing N triangles, the maximum order of moments 

M and the number of triangles n required. 
Step 1: Compute every triangle’s moments using Eq. (5.6) or Eq. (5.12) and then 

compute the moment difference (ESMD or EVMD) for each edge collapse 
operation using Eq. (5.8) or Eq. (5.14). The moment differences are stored as a 
contraction cost for every edge. 

Step 2: Sort the costs in an increasing order. 
Step 3: Select the top edge in the queue, and check if it can be contracted. If not, 

remove it from the queue and return to the beginning of step 3. If yes, contract 
this edge and recalculate the information of the affected triangles and edges. 

Step 4: Update the position of the affected edges in the cost queue. 
Step 5: Repeat step 3 and step 4 until the required triangle number of the 

approximation is reached. 
Each time when one edge is collapsed, two triangles and one edge will be deleted. 

In order to perform the operation, we must choose a position for k. A simple scheme 
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is implemented, which is to choose vi, vj or (vi+ vj)/2 depending on the lowest value of 
simplification cost that produced by the new position. In order to preserve the vision 
characteristic, if the largest normal direction change of one edge’s adjacent triangles 
is greater than a certain threshold (here we choose 4/π ) after edge contraction, we 
keep the edge. 

5.6.3. Experimental results 

For the performance testing, we use the cow model and the North America model 
because they contain relatively fewer triangles and can better illustrate the 
performance of the simplification procedure. But the algorithm is also implemented 
on the vessel and the renal medulla models and the results are illustrated at the end of 
the section.  

   

(a) Original Model                                          (b) M=0 

   

(c) M =1                                                       (d) M =2 

   

(e) M =3                                                        (f) M =4 

Figure 5.4: 70% simplification (possessing 30% of the original faces) for cow 
model using surface moments-based metric up to different maximum order M. 
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Fig 5.4 and 5.5 present the qualitative results of a 70% model simplification rate 
of the cow model (from 5804 triangles to 1704 triangles) using respectively surface 
and volume moments-based metrics for different maximum moment order values M. 
In all the cases we can see that they still contain the major topological characteristic 
of the initial model. From Fig. 5.4, we can see that the choice of M > 0 gets 
qualitatively better results than that of M = 0. When M = 0, the surface moments-
based metric becomes the area-based metric of Eq. (5.1). Fig 5.5 shows that the 
increase of the moment order for volume-based method slightly improves the 
approximated results, but it performs better than the surface moments-based 
simplification. 

  

(a) Original Model                                       (b) M=0 

  

(c) M =1                                                        (d) M =2 

  

(e) M =3                                                      (f) M =4 

Figure 5.5: 70% simplification (possessing 30% of the original faces) for cow 
model using volume moments-based metric up to different maximum order M. 

Fig. 5.6 and Fig. 5.7 show the simplification errors of the two moments-based 
metrics for different values of M in terms of the simplification rate. The results 
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presented in Fig 5.6 (a) and (b) confirm quantitatively the visual effect of Fig. 5.4 and 
Fig. 5.5, respectively. For the two moments-based metrics, M = 0 represents area-
based metric and volume-based metric respectively. When the required facet rate in 
the approximation is low, it seems that M > 0 can get a lower simplification error than 
M = 0. That is to say, the moments-based metrics can get a better result in the 
simplification error sense. 

In order to compare the two moments-based metrics, a graph of their 
simplification errors is drawn in Fig. 5.8. For each metric, we choose the lowest 
simplification error for M varying from 0 to 3. It seems that the volume moments-
based metric provides lower simplification error. 

 

(a) Surface moments 

 

(b) Volume moments 

Figure 5.6: Influence of the moment order on the RMS error between the cow 
model and its approximation for different simplification rate: (a) Surface 
moments (SM)-based method. (b) Volume moments (VM)-based method. 
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(a) Surface moments 

 

(b) Volume moments 

Figure 5.7: Influence of the moment order on the RMS error between the North 
America model and its approximation for different simplification rate: (a) 

Surface moments (SM)-based method. (b) Volume moments (VM)-based method. 
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(a) the cow model 

 

(b) the North America model 

Figure 5.8: Comparison of VM-based method and SM-based method: (a) the cow 
model. (b) the North America model 
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Figure 5.9: Comparison of SM differences between SM-based method and QEM 

The aim of the proposed metrics is to preserve the moment features of the original 
models. So in order to demonstrate the preservation ability of the two metrics, we 
compute the moment difference between the original model and the approximation, 
using our metrics and the quadric error metric (QEM) respectively. The results are 
illustrated in Fig. 5.9 and Fig. 5.10, for SM-based metric and VM-based metric 
respectively. Here we choose M = 2 for illustration. The results show that our methods 
have a better ability to preserve the moment features. These results also demonstrate 
that our global moments-based metrics can also be used to evaluate the several mesh 
simplification methods. 
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Figure 5.10: Comparison of VM differences between VM-based method and 
QEM 

From the above discussion, we can see that VM-based metric can get a better 
performance in both appearance and simplification error senses. We implemented it to 
the extracted vessel model and the renal medulla model. Here we choose M=2 for 
illustration. The experimental results are illustrated in Fig. 5.11 and Fig. 5.12 
respectively. It can be seen that the appearance and the structures are kept very well 
while the number of triangles is largely deduced, as illustrated in Table 5.2.  

 
Table 5.2: Number variation of vertex and triangle in the process of simplification of vessel 
model and renal medulla model 

Vessel model Original 70% 50% 20% 
Vertices 45209 31521 22516 9009 
Triangles 90050 63034 45024 18010 

Renal medulla model Original 70% 50% 30% 
Vertices 90438 63416 45403 25389 
Triangles 180140 126096 90070 54042 
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(a) Original model (90050 triangles)                 (b) 70% (63034 triangles) 

  

(c) 50% (45204 triangles)                              (d) 20% (18010 triangles) 

Figure 5.11: Mesh simplification results on the vessel model using VM-based 
metric (M=2). (a) The original model, (b) possession 70% of the original model, 

(c) possession 50%, (d) possession 20%. 
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(a) Original model (180140 triangles)     (b) 70% (126096 triangles) 

        

(c) 50% (90070 triangles)               (d) 30% (54042 triangles) 

Figure 5.12: Mesh simplification results on the renal medulla model using VM-
based metric (M=2). (a) The original model, (b) possession 70% of the original 

model, (c) possession 50%, (d) possession 30%. 

5.7. Conclusions 

In this chapter, we proposed two new metrics for mesh simplification, with the 
aim of preserving the original model’s global features in the approximation. They are 
designed based on the surface moments and volume moments by extending the two 
global metrics, which are area based and volume-based metrics, respectively. The 
experimental results demonstrated that the extended metrics can get better result since 
they contain more information about the model. From the experimental analysis, we 
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can get the conclusion that volume-based metrics can achieve a better performance 
than the surface one. We also demonstrate that the moments based metrics can also be 
used as an evaluation metric for the comparison of mesh simplification algorithms. 
Finally, we implemented the proposed algorithm in our medical visualization 
framework.  
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Chapter 6: Conclusions and future works 

This chapter summarizes the conclusions of our research and outlines several 
ideas for the future work based on our current results.  

6.1. Conclusions 

Scientific visualization is currently a very active and vital area of research 
especially in medical area. Many researchers focus on the medical visualization 
problems. This dissertation takes the preoperative kidney planning system as a 
specific case to do some research about medical volume visualization techniques. The 
input data of the system are three to four time-spaced 3D acquisitions, which give 
relatively complementary information about the kidney anatomy. Our work followed 
the essential stages of the design of a general visualization tool: registration, 
segmentation (classification), visualization (graphical representation).  

We did some research aiming at solving some of the problems that appeared 
during the visualization progress. Our work can be summarized as follows: 

1) The classical urinary imaging system is the Spiral CT Urography, which gives 
three to four time-spaced acquisitions at different injection diffusion phases 
respectively. These acquisitions give relatively complementary information 
about the kidney anatomy. It is useful for the surgeon to integrate this 
information within a unique spatial volume. The first step in this integration 
process is to bring the different acquisitions into spatial alignment, which is 
called registration. To achieve this goal, a local MI maximization registration 
method is proposed. The kidneys are first extracted from the abdomen 
volumes and then the registration is performed between the extracted kidneys 
instead of the whole abdomen volumes. For the choice of registration metric, 
we implement an optimization independent protocol to evaluate several 
registration metrics and finally choose MI based metric for our practical 
situation. Optimization method is another important issue for registration 
methods. We find out that if the initial parameters are well chosen, the 
importance of optimization method can be reduced. We apply a geometric 
moments based registration technique to initialize the parameters and choose 
the relatively fast optimization method: downhill simplex method. Some 
implemental details, such as the choice of histogram resolution and 
interpolation method are also discussed. Experiments are performed on both 
synthetic and real data. The experimental results demonstrate the effectiveness 
of the kidney-centered registration method.  

2) After registration of these acquisitions, we have a vectorial volume, which 
contains complete anatomical information. In order to outline the anatomical 
structures, multi-dimensional classification is necessary for analyzing this 
vectorial volume. Because of the partial volume effect (PVE), one voxel 
contains more than one material so that probability distributions are assigned 
to the different material types within this vectorial volume instead of a definite 
material label. Gaussian mixture model is often used in probability 
classification problems to model such distributions, but it relies only on the 
intensity distributions, which will lead a misclassification on the PVE 
boundaries and inhomogeneous regions with noises. In order to solve this 
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problem, a neighborhood weighted Gaussian mixture model is proposed. The 
model is that the voxels’ intensity vectors follow the Gaussian mixture 
distribution and the classes distributions on each voxel are affected by its 
neighbors’ class probability distributions so that a neighborhood weight is 
used to describe this property. Expectation Maximization algorithm is used as 
an optimization method to get the maximum likelihood estimation parameters 
of the neighborhood weighted Gaussian mixture model. The experiments 
demonstrate that the proposed method can get a better classification result and 
is less affected by the noise. 

3) For the visualization of vectorial volume, most of the existing methods mix the 
component volumes at one certain step of the general scalar volume rendering 
pipeline. The problem of these methods is that they consider the component 
volumes individually instead of an integrated vectorial volume. We propose to 
analyze the vectorial volume directly instead of the individual component 
volumes. The first intermixing step can be achieved by the vectorial volume 
classification method we discussed before. After classification, several 
rendering techniques for scalar volume visualization can be adapted to our 
situation. Both of the surface rendering and volume rendering techniques are 
adapted to our practical situation. The comparison of these methods are given 
and discussed. Comparing to other methods, our method is an acquisition level 
intermixing method, which is the earliest intermixing stage during the 
rendering pipeline.  

4) For surface-based volume visualization methods, triangle meshes are often 
used to represent the object surfaces. But the total number of triangles used to 
represent the object often largely exceeds the capacity of real-time rendering 
of graphics hardware. One nature way to solve it is to simplify the mesh 
models, replacing the original object with respectively fewer faces while 
trying to keep its main characteristics. The simplification metric is a key issue 
of a simplification algorithm. Two new simplification metrics based on surface 
moments and volume moments are proposed, which take the difference 
between the moments defined by the original mesh and those of the simplified 
mesh as the objective function. Edge collapse scheme is implemented to the 
mesh simplification procedure. For a given maximum moment order and the 
number of triangles required, the optimal mesh with a minimum moment 
difference from the original mesh can be determined. The procedures are 
applied to some models and better results are obtained in comparison with 
some known algorithms. 

The research in this thesis is about a visualization tool for the preoperative kidney 
planning system with CT uroscans. But the proposed algorithms and techniques are 
not limited to this special application case. They can be adapted to other organs, even 
other non-medical application areas. 

6.2. Future work 

Medical volume visualization is a vital research topic for the development of 
medical applications. It involves research in computer graphics, image processing, 
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high performance computing and other areas. This dissertation only concerns a tiny 
part of the area. The future work can be done along the following paths: 

1) For the conceptualization of the scene, automatic and more precise volume 
classification (segmentation) can be a research direction. Current 
classification method only gives the rough material distribution about the 
regions, with the loss of the volume detail information. A coarse-to-fine 
classification method would probably solve this problem. 

2) For the rendering techniques, the future work can focus on containing more 
information in the final image with a better image quality. Achieving a faster 
rendering speed without any image quality loss is a continuous research topic, 
which can still be a research direction in the future.  

3) For our specific application case: kidney preoperative planning system, there 
are still many tasks to be done: automatically delineating the renal carcinoma, 
specifying the renal arterial, venous and collecting system anatomies (by 
using for example a coarse-to-fine classification), fast rendering techniques 
for visualization etc. 

 

 







 

Résumé 

Ce mémoire de Thèse se focalise sur certains des problèmes non résolus en visualisation 

scientifique. Plus particulièrement nous avons pris une problématique médicale bien spécifique, la 

chirurgie conservatrice des tumeurs rénales, comme cadre applicatif pour l’élaboration de nouvelles 

solutions incluant des techniques de recalage de données, de segmentation et de visualisation 3D. 

L’uroscan fournit 3 à 4 volumes présentant une information complémentaire sur l’anatomie rénale. 

La première étape consiste à mettre en correspondance ces différents volumes par une technique de 

recalage rigide du volume rénal basée sur la maximisation locale de l’information mutuelle. 

L’idée principale de ce mémoire de Thèse est de proposer une visualisation de l’anatomie rénale 

directement à partir de ces données fusionnées. Pour cela, une technique de classification statistique des 

données basée sur une modélisation de la distribution des valeurs par un mélange de Gaussiennes 

incluant une information spatiale a été développée. Différentes techniques de visualisation 3D ont 

ensuite été adaptées à la représentation de cette information et comparées entre-elles. 

Les techniques de représentation de surfaces peuvent être accélérées par des procédures de 

simplifications de maillages. Dans ce cadre, nous avons proposé deux métriques de description de la 

surface basées sur les moments géométriques et pouvant être incluses dans une telle procédure. 

Ces différentes solutions, même si elles ont été développées dans le cadre de la représentation des 

structures anatomiques rénale, sont suffisamment génériques pour être utilisées ou adaptées à d’autres 

organes ou à d’autres applications médicales. 

Abstract 

This dissertation focuses on the main elements of a scientific visualization tool and takes a kidney 

preoperative information review system as a special application example to introduce the 

corresponding algorithms. Our research work followed the essential stages of the design of the kidney 

visualization system: registration, segmentation and visualization. 

The CT uroscan consists of three to four time spaced 3D acquisitions, which give complementary 

information about the kidney anatomy. In order to bring these acquisitions into spatial alignment, a 

kidney centered registration method which is realized by local mutual information maximization is 

proposed. In order to illustrate the information contained in the spatial aligned volume, an acquisition 

level intermixing method is proposed, which intermix the several component volumes at the earliest 

stage. The first step for the acquisition level intermixing is a vectorial volume classification. We 

proposed a neighborhood weighted Gaussian mixture model, which involves the spatial information 

into the classification process. Then, several possible rendering techniques that can be adapted to this 

situation are presented and compared. For surface based volume visualization methods, mesh 

simplification is a usual way to improve rendering speed. The simplification metric is a key issue of a 

simplification algorithm. Two new mesh simplification metrics are proposed. They are based on 

surface moments and volume moments respectively.  

Although these algorithms are introduced in the framework of the kidney visualization system, 

they are not limited to this system and can also be adapted to other applications. 

 


