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Context

Thesis
Risk analysis — many uncertainties

Example: environmental protection
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Overview

Thesi . . .
= Classical situation
S. Destercke
(Input variables/parameters physical model output variable

Risk Evalua-
’ Representation H Synthesis H Propagation }—> ISk Fvalua

tion

Context

v

@ Representation
@ Synthesis

o Information fusion
o Reliability assessment

@ Propagation
o Independence assumptions
o Practical propagation

@ Risk evaluation and decision making

v
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Basic setting

Thesis

S. Destercke

Situation

Baellllll  Describe our uncertainty about the value assumed by a variable X on
a domain 2" (e.g. temperature in a room, state of a sensor, ...).
Here, the domain 2 is either:

@ finite
@ the real line R with associated borel o-field

In the latter case, when considering discrete representations, we can
come back to a finite domain by taking a suitable partition of R.
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Why imprecise probability frameworks?

Thesis

S. Destercke

Two basic models

@ Intervals or sets: no event is more likely to occur than
another, complete imprecision (worst-case analysis)

@ Probability distributions: precise estimation of the
confidence of the occurence of an event

Representation

In practice, often more information than an interval, but not enough
to identify a precise probability.
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Why imprecise probability frameworks? (Example)

Thesis

S How much gr r ? . . .
ow much grass per day = interval [4,35]: less information

than available
Representation
= triangular probability density with
mode 12 and support [4,35]) — more
information than really available

Answer: usually around /\

12 Kg, but can go from
4 12 35
4 to 35 Kg
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Solutions and approaches

Thesis

S. Destercke

Coping with imprecision

Three main formal frames (denoted .%#) propose to cope with
intermediary states of

Representation

o lower/upper
probabilities

@ random sets

Kyjjesauan)
Kyoidung

@ possibility theory

— understanding their links, similarities,differences is important to
achieve an unified handling of uncertainties.
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Generic representation tool

Thesis

S. Destercke

Generic tools
a capacity on £’ is a function u, defined on the power set &(%Z") of
%, such that:

o AC B= u(A) < u(B) (monotonicity)
o u(0)=0,u(Z)=1 (boundary conditions)
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Generic representation tool

Thesis

S. Destercke

Modeling imprecision and uncertainty

: 3 state of knowledge — need of two measures U< :

e o Certainty of event A: pu(A) =1,11(A) =1

@ Impossibility of event A: u(A) =0,u(A)=0
lgnorance about event A: u(A) =0,1(A) =1

°
U < related by conjugacy relation such that, for any event E,

u(E)=1-F(E°)
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Generic framework: Lower probabilities (Walley, 91)

Thesis

S. Destercke
Associated set of probabilities

To p correspond a convex set (Credal set) of probabilities Zp s.t.

Gensric oo Py ={P ePy|(VAC Z)(P(A) 2 pu(A))},

with P4-: set of all probability measures on 2.

4

Consistence/coherence

@ U is said consistent if QZE# 0

@ p is said coherent if p(A) =infpc ., P(A)

@ If u coherent, p =P
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Representation problem statement

Thesis

Simple representations
S. Destercke

General models: hardly tractable in practice — need for simpler
representations, easier to deal with — many of them proposed and
still proposed.

Generic tools

Problem

Recent representations (p-boxes, clouds) have not yet been related
thoroughly to others.

Both theoretical and practical issues

@ need to know how they settle in existing frameworks

@ gain insights about their expressiveness, easiness of use and
other features.
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A first summary

Thesis
S. Destercke A — B

’ Coherent Lower/upper probabilities

B is par-
ticular

case of A

Generic tools

Classic.

. Proba.

12/77



2-monotone lower probabilities

Thesis

S. Destercke

Definition
A lower probability P is 2 — monotone if, for every A,B C %,
the inequality

P(AUB)+P(ANB) > P(A)+ P(B)

holds

Properties

@ Always coherent lower probability

o Simplify many mathematical operations
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The scheme continued (again)

Thesis
. : A—>B

’ Coherent Lower/upper probabilities

B is par-
ticular
case of A
State of art
Classic.

Proba.
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Probability intervals (De Campos, Huete, Moral,
94)

Thesis

S. Destercke

Expert providing his opinion
about the potential value of
pH in a given field

State of art

Also correspond to: Imprecise
histograms, small multinomial
samples

Definition

Set L= {[/(x),u(x)]|x € Z} of bounds
on elements of 2 verifying inducing the
credal set

P ={P ePy|¥x, I(x) < p(x) < u(x)}.

We assume bounds L to be consistent
and coherent

Lower (2-monotone) probability s.t.:

P(A) = max( Z I(x),1— Z u(x))

XEA xEAC
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The summary continued (once again)

Thesis
. : A—>B

’ Coherent Lower/upper probabilities

B is par-
ticular
case of A
State of art
Probability intervals
SEEEEEEEEEEEEEEENGg
. .
. Classic.

Proba.
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P-box: imprecise cumulative distribution (Ferson,
03, Williamson & Downs, 90)

Thesis
S. Destercke
3 - = -+ - === F -—-——
Bo-- F

State of art O ——-|------

25}

X1 X2 X3

Discrete p-box

Expert opinions expressed through
percentiles, small interval with
confidence band
(Kolmogorov-Smirnov distance)

Definition

Pair of cumulative distribution [/, F]

on R.
Induced Lower probability consistent

if F stochastically dominate F

F(x) <F(x) ¥x €R
Induced credals set
Pie g ={Plvx, E(x) < P((=e,x]) < F(x)}

In practice, discrete p-box induced
by a finite set of n constraints

i= 1,...,!7, o < P((—OO,X,']) §ﬁ,
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Yet another summary

Thesis
S A—>»B

’ Coherent Lower/upper probabilities

B is par-
ticular
case of A
State of art
Probability intervals
Classic.
Proba.
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Second framework: random sets (Shafer, 76),
(Dempster, 67), (Smets, 94)

Thesis

S. Destercke Deflnltlon

A (discrete) mass distribution is a mapping m: @(2") — [0,1] such
that Y rc 2 m(E) =1, and a set with masses > 0 is called focal.
m(E) is a probabilistic mass to allocate to elements of E

State of art

m(Ei) °
m(E) Bel(A) = m(Ey) + m(E)
m(E3) _—
m(Ez) - PI(A) = m(E1) + m(E2) +
m(Es) m(Ez)+ m(Es)

A

Bel(A) = Z m(E) (Masses necessarily € A)
ECA
PI(A)= Y m(E)=1-Bel°(A) (Masses potentially € A)
ENA£0
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Link with lower probabilities (Dempster, 67)

Thesis

S. Destercke A belief function Bel induce the credal set
Ppel :={P Py |(VAC Z7)(P(A) > Bel(A))},

Practical usefulness: simulating &g by sampling m

State of art

P-boxes
P-boxes are special cases of random Probability Intervals
sets (Kriegler & Held, 05). No particular links between random

sets and probability intervals.

Authors have studied mapping of a
prob. int. L into a random set
(Lemmer & Kyburg, Denoeux)
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This is not a summary

Thesis
5. Destercke A—>»B

’ Coherent Lower/upper probabilities

B is par-
ticular
2-monotone capacities
case of A
State of art +
’ Random sets (co-monotone)
Probability intervals

Classic.

.- Proba.
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Third framework: possibility theory

Thesis

Definition
S. Destercke

A possibility distribution 7 is a mapping 7 : 2" — [0,1] such that
Ix, m(x) =1, and a set with masses > 0 is called focal. Given
AC Z', two measures are defined:
M(A) = sup m(x) (Possibility)
x€EA
N(A)=1-T(A°) (Necessity)

And an o-cut is defined as Ay = {x € Z7|m(x) > ot} (strict if the inequality
is strict)

State of art

v




Possibilities as random sets

Thesis

S. Destercke

Possibility distribution is a particular case of random sets with
nested realisations (Shafer, 76) J

State of art

oy=ap,=1 -
4
oy
Es3
)
Ep
ay I |
51
ap=0_? ?
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Possibilities as Credal sets

Thesis

S. Destercke
A necessity measure: special case of lower probability (Dubois &
Prade, 92), (de Cooman & Aeyels, 99) inducing

Pr={PEP,IVAC 2, P(A) > N(A)}

State of art

Characterization by constraints on a-cuts (Dubois et al., 04),

(Couso et al., 01)

N(AQ)T Z P(Ag) > 1— o (Va € [0,1])

N.B. upper bounds of P(Ay) always trivial (i.e. =1)

24/77



State of the art: summary

’ Coherent Lower/upper probabilities

ABH.B
particu-

lar case of
A

2-monotone capacities
State of art

A 4

Random sets (c-monotone)

Probability intervals
IEHEHHHHH%I Classic

Proba.

25/77



Generalized p-boxes: introduction

Thesis

S Why studying such a model?

@ Possibility distributions: nested sets with lower confidence
bounds

o (Discrete) P-boxes: lower and upper probabilistic bounds
on (nested) sets (—eo, x;]

Gen. p-boxes

Both, even if poorly expressive, are very useful tools in many
applications

Basic idea

Extend them both by studying a model where we give lower
and upper probabilistic bounds on a collection of nested sets.

y

26/77



Generalized p-boxes: introduction

Thesis

S. Destercke

Let 0C Ay C...C A, C Z be a collection and nested sets. A
Generalised p-box represent constraints

Gen. p-boxes

(X,SP(A,)S[‘}, i=1,...,n
0<om<m<...<a,<1
0<B<P<...<B=sl

— study the induced lower probability and credal set, and its link to
previous representations.

27/77



An example

Thesis

S. Des

Evaluating impact of radionuclides inhalation on workers (e.g. in
Uranium mines) — key parameter: mean diameter of particles
(AMAD)

Gen. p-boxes

Expert opinion translated in constraints: (ljg
@ 0.3< P([4.5,5.5])<0.6 0.6

@ 0.7<P([4.6])<0.9 0.4
e 1<P([3,7))<1 02
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Generalised p-boxes enter the picture

Thesis
S. Destercke A — B

’ Coherent Lower/upper probabilities

B particular

case of A

2-monotone capacities

v

’ Random sets (eo-monotone)

Gen. p-boxes

Generalizgfl p-boxes

Probability intervals

<

» Classic
. Proba.
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Generalized p-boxes: first results

Thesis

S. Destercke

First links with previous representations

Ot,SP(A,)Sﬁ, i:]-v"'an
Gen. p-boxes O§a1 Sazg ...S(Xng ]-
0<Bi<P<...<B, <1

B= We retrieve possibility distributions when f; =1,
i=1,....N
B= We retrieve p-boxes when 2" = R and A; = (—o0,x;)
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Generalised p-boxes get more involved in the

picture

Thesis
'
. : A—> B

’ Coherent Lower/upper probabilities

B particular

case of A

2-monotone capacities

v

Gen. p-boxes
’ Random sets (eo-monotone)

Generalized p-boxes

Probability intervals

A

i === Classic.
Nesssnsnnnnsn "
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Generalized p-boxes: formal definition (Destercke
et al., 08)

Thesis

S. Destercke

Construction
Nested sets 0 C A; C ... C A, = 2 — Sets A; \ Aji_1 partition of 2 .
Define [F, F] such that, if x € A;\ A;_1, F = Bi,F =«

v
Gen. p-boxes

Two mappings f,f’ from 2 — R are comonotone iff Vx,y € 2,
f(x) <fly) = f(x) < f(y')

Definition

A generalized p-box is a pair of comonotone mappings
F: % —[0,1] and F: 2 —[0,1] s.t. Ix,F(x)=F(x)=1
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Generalized p-boxes: formal definition (Destercke
et al., 08)

Thesis

S. Destercke

Induced credal set

The credal set & 7 induced by a gen. p-box [F, F] is defined as

Zier =1{P Py VA, a; < P(A) < Bi}
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Generalized p-boxes: links with other
representations

Thesis

S. Destercke

Theorem (Destercke et al., 08)

From any generalized p-box [F, F], we can define two
possibility distributions 7z, 7r on 2 such that

‘@[E,f] =2 e Z e

holds

= Generalized p-boxes are representable by pairs of possibility
distributions.
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Generalised p-boxes get comfortable in the picture

Thesis
'
. Destercke A—> B

Coherent Lower/upper probabilities .
’ /upper p B particular
Pair of Poss. Dist.
case of A
2-monotone capacities
¥ A--->B
Gen. p-boxes
’ Random sets (eo-monotone) A represent
B

Probability intervals
.
ul .

: ===+ Classic.
Basnnnnnnnns "
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Generalized p-boxes: links with other
representations

Thesis

S. Destercke

Theorem (Destercke et al., 08)

Any generalized p-box [F, F] can be represented as a particular
random set for which, to every level a € [0,1], we associate the
focal element

Ex\ Fo

with Eq:a-cut of @z and Fg: a-cut of 1 — 7

= Calculus used for generic random sets can be directly
applied to generalized p-boxes
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Generalised p-boxes and links: illustration

Thesis

Gen. p-boxes




Generalized p-boxes: links with other
representations

Thesis

S. Destercke

Theorem (Destercke et al., 08)

From a probability interval L, it is possible to build |.27|/2
generalized p-boxes [E,f]l,...,[ﬁ,F]WV2 such that

2|2
P =02 P p,

= Probability intervals representable by generalized p-boxes
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Generalised p-boxes in the picture: the end

Thesis

Credal sets

i

A—>»B
’ Coherent Lower/upper probabilities B particular
—» Pair of Poss. Dist.
case of A
2-monotone capacities
A---»B

Gen. p-boxes
P ’ Random sets (eo-monotone)

A represent
B

Classic.

Proba.
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Clouds: introduction and definition

Thesis Introduced (Neumaier, 04) to deal with imprecision in high
S. Destercke dimenSiOnS

Definition

Cloud [r,6]: pair of mappings 6 : 2" — [0,1], w: 2 — [0,1], with
0 <, m(x)=1 for at least one element x in 2", and 8(y) =0 for at
least one element y in 2.

<

Clouds

Induced credal set (Neumaier, 04)

Plr51={P €Po|P(0a) <1—a < P(74)}
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Now clouds want to get in

5. Destercke A—» B
’ Coherent Lower/upper probabilities B particular
—» Pair of Poss. Dist.

case of A

A---»B

Clouds

A represent
B

Classic.
Proba.
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Clouds: links with other representation

Thesis

S. Destercke

Theorem (Destercke et al., 08)

The two following statements are equivalent:

(i) The cloud [, 8] can be encoded as a generalised p-box
Clouds [E,F] such that ‘@[7575] = ‘@[Ef]

(i) 8 and  are comonotonic (8(x) < 8(y) = m(x) < w(y))

and a cloud is said comonotonic if 6 and 7 are comonotonic.

= comonotonic clouds and generalised p-boxes:
equivalent representations
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They already fit in quite well

Thesi
esis Credal sets

i

A—» B

B particular
—» Pair of Poss. Dist. P
case of A
2-monotone capacities
General clouds

’ Random sets (eo-monotone)

’ Coherent Lower/upper probabilities

A---»B

Clouds

A represent

Comonotonic clouds B

Classic.
Proba.
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Clouds: links with other representations

Thesis

S. Destercke

Theorem (Destercke et al., 08)

A cloud [r, 8] is representable by the pair of possibility
distributions 1 — & and 7, in the following sense:

Clouds

Plrs) = PN P15
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Clouds: links with other representations

Thesis

S. Destercke

Theorem (Destercke et al., 08)

There are families of non-comonotonic clouds [, 8] such that
the lower probability induced by the credal set 2|, 5] is not
even 2-monotone

Clouds

= clouds not special cases of random sets, and
non-comonotonic clouds appears of less practical interest.
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Finally

Thesis

Credal sets

i

A—>»B
’ Coherent Lower/upper probabilities B particular
—» Pair of Poss. Dist.
case of A
2-monotone capacities
General clouds A---» B

Clouds

A represent
B

Classic.

Proba.
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Overview

Thesis

S. Destercke

Representation

Synthesis

o Information fusion

o Reliability assessment
Mutliple
sources

Propagation
o Independence assumptions
o Practical propagation

o Risk evaluation and decision making
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Information fusion: setting

Thesis

Receiving and representing Information from multiple sources
(e.g., experts, physical models) — summarise this information
into a single representation

S. Destercke

Example: expert opinions on the same variable (e.g., AMAD)

Expert

Expert Expert

opinion N

opinion 1 opinion 2

Inf. fusion

Rep. 1 (R)) Rep. 2 (Ry) Rep. N (Rw)

\ ? inal representation

(p(Rl,RQ-,. . .,RN)
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Behaviours of ¢

Thesis

S. Des

Choice of ¢

Can be guided by the presence/absence of conflict between sources

¢ can follow three main kinds of behaviour:

@ Conjunctive (N): @(Ry,...,Ry) CR; fori=1,...,N. Result is
more informative than each source. Assume reliability of all
sources and no conflict between them.

Inf. fusion

@ Disjunctive (U): @(Ry,...,Ry) D R;i fori=1,...,N. Result is
not more informative than each source. Assume reliability of at
least one sources.

@ Compromise: result between conjunctive and disjunctive
behaviours.
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Conjunction /disjunction: illustration

Thesis

S. Destercke

J

/ kL

Conjunction result: 0

Inf. fusion

Disjunction result:

=- Conjunction not reliable.
= Disjunction too imprecise.
— inadequate to cope with partial conflict.
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a solution

Thesis

S. Destercke

Adaptive fusion rules

Goes from conjunction when there is no conflict towards
disjunction when conflict increase

Inf. fusion

use of maximal coherent subsets as a general approach (Walley,
82), (Dubois & Prade, 90)
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maximal coherent subsets: principles

Thesis

S. Destercke

Original idea from logic (Rescher & Manor, 70)

Resolve inconsistencies in knowledge bases :
@ extract maximal subsets of consistent formulas
(conjunction)

@ proposition true if true in every subsets (disjunction)

v

Application to uncertainty representations

@ extract k maximal subsets K; C {Ry,...,Ry} of
representations having non-empty conjunction

Inf. fusion

@ take the disjunction of all conjunctions.
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Maximal coherent subsets: illustration (Dubois,
Fargier, Prade, 00)

Thesis

Maximal coherent subsets: Ky ={h,h}and Ko = {h, 5,14}

Final result: (hNK)U(LNNI,)
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Thesis

S. Destercke

Inf. fusion

MCS: practical issue

Problem
Maximal coherent subsets theoretically and conceptually
attractive, but

Extracting MCS — NP-complete problem in boolean logic:
computational intractability!

Solutions

@ use heuristics and approximations

@ work in a restricted but tractable framework: intervals on
the real line — polynomial complexity (Dubois, Fargier,
Prade, 00)
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Level-wise MCS with possibility distributions

hesis . .
! Our proposition
S. Destercke
N distributions 7;: apply MCS to each level a € [0,1].

Inf. fusion

Results for # levels — not necessarily nested J

55/77



Level-wise MCS with possibility distributions

Thesis

S. Destercke

Finite set of values B; i =0,1,...,n such that sets E, resulting from
MCS for o € (B;,Bi+1] are nested J

fil
B
ﬂ
F
1 /1\ 1
m(F1)=P1—-0(Bo) m(F2)=p2—p1 m(F3)=1(B3)—p2
Result: n possibility distributions with weights (¥ m(F;) = 1) )
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Level-wise MCS with possibility distributions

Thesis

S [DEEie Summarizing the information

m(F;) Complex structure — compute contour function 7. as
an interpretable summary (weighted average of F;)

Inf. fusion

Tc

m(lf_la):ﬁro(ﬁo)

m(F3)=1(B3)~p>
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Fusion rules for clouds ?

Thesis

S. Destercke

Definition
Let [,8];,...,[m, 8]y be N clouds, we propose the following
fusion rules:

o Conjunction: [x,8] = [, 8] = [minl; (7;), max_, ()]
. fusion e Disjunction: [r,8], = [m, 8] = [max_, (), min_ (57)]
— conjunction and disjunction defined, maximal coherent
subsets follow.
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Overview

Thesis

S. Des

Representation

Synthesis

o Information fusion
o Reliability assessment

Propagation
o Independence assumptions
o Practical propagation

Inf. fusion

o Risk evaluation and decision making

59/77



Evaluation of source reliability

Thesis

S. Destercke

Principle (Cooke, 91), (Sandri et al., 95)
Evaluate sources from past performance. Two quantitative
values:

@ Precision of information delivered by source. The more
precise the information, the more useful it is =
proposition of a general criteria based on cardinality

Rel. assess.

@ Accuracy: consistency between delivered information and
observed (experimental) values = proposition of a general
criteria based on inclusion index

@ Global: global score=precision x accuracy
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Application to result of OCDE project BEMUSE

Thesis

S. Destercke Containment Structure

Pressurizer _Steam

Application

Ten different institutes use their own models and experts to
reproduce a simulated accident — use fusion rules and
information evaluation technics to analyse information,
with the help of SUNSET software
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Application to result of OCDE project BEMUSE

Thesis

S. Destercke

10 # mod-

elling of this 10 # Results to compare
Experiment experiment
to reproduce
Application CATHARE 1 T+ l[—“
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Application to result of OCDE project BEMUSE

Thesis

S. Destercke Resu |t

@ Detection of participants overestimating (bad precision,
good accuracy) or underestimating (good precision, bad
accuracy) their uncertainty

@ Quantified evaluation of conflict between subgroups of
sources

@ Generic tool to validate computer codes

.
Interest of non-experts

@ Results added to final report

Application

@ Price at A conference (high number of participants from
industry)
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Overview

Thesis

S. Des

Representation

Synthesis

o Information fusion
o Reliability assessment

Propagation
o Independence assumptions
o Practical propagation

Propagation

o Risk evaluation and decision making
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Problem setting

Thesis

S. Destercke

Propagate uncertainty through a model f(Xi,...,Xy) =Y to
evaluate uncertainty on Y.

@ Often, information given separately for Xi,..., Xy

@ Then propagate through f with independence assumptions
between

@ Many different notions of independence when using
imprecise probabilistic frameworks

e — need to make some sense of them, to relate them and to
understand their respective usefulness
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Our contribution

Thesis

S. Destercke
Preliminary work

First classification of independence notions based on:

o Informative vs non-informative

@ Symmetric vs Asymmetric

@ Objective vs Subjective
Practical results:

@ using more tractable independence notions as conservative
approximation of less tractable ones

@ relating notions of independence to imprecise probabilistic
trees (work with G. de Cooman)

Independence
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Overview

Thesis

S. Des

Representation

Synthesis

o Information fusion
o Reliability assessment

Propagation
o Independence assumptions
o Practical propagation

o Risk evaluation and decision making

Prac. prop
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Starting point

Thesis

S. Destercke Hybnd propagation

Propagate by differentiating aleatory uncertainty (probabilistic
calculus) from epistemic uncertainty (possibilistic calculus)

Variable X; Variable X i
1 1 prop. 1
P P f -
0 0 0
X1 Xk

extract summary l

Variable Xj1 1 Variable Xy 1

1
Prac. prop 0 0

High computational cost to concentrate on specific summary —

sometimes unaffordable
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Improving efficiency

Thesis

S. Destercke "RaFu" method (implemented in SUNSET software)

Use hybrid propagation — sample from distributions only
values needed to compute desired result.

1 Variable X; 1 Variable Xy
0 0 1
X1 Xk prop. + summ.

B —
Variable Xj1 1 Variable Xy

1
o EEEEE 0 4 /_\

Prac. prop 0 0

Reduce number of computations (~ 10 to 20 times less) by
concentrating on desired result = currently applied in BEMUSE
propagation
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Overview

Thesis

S. Des

Representation

Synthesis

o Information fusion
o Reliability assessment

Propagation
o Independence assumption
o Practical propagation

@ Risk evaluation and decision making

Eval and Dec.

70/77



Computing expectations

Thesis

S. Destercke

With probabilities

Decision making based on the computation of expected value
Ep(u) of a function u: 2" — R, given a probability measure P:

Ep(u) = % u(x)P({x}) if Z finite

Ep(u) :/Ru(x)dP if 2" = real line

Eval and Dec.
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Computing expectations

Thesis

S. Destercke

Eval and Dec.

With imprecise probabilities

Expected values become imprecise — compute [E 5 (u), E »(u)]

B= When 2 finite — efficient algorithms to compute them
(Utkin & Augustin, 05)

B= When & =R — hard problem in general

— start from simple representations — p-boxes
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Computing expectations

Thesis

With P-boxes (work with L. Utkin)
Given a (cont.) function u on R and a (classical) P-box [F, F], find

B= Eirp(v) = infeee py Jr u(x)dF (%),
= Er7(u) = suppeer Jr u(x)dF (x).
— Find F inside [F, F] reaching [Ej 7 (u), Eje 7 (v)]

S. Destercke

Eval and Dec.

ay ax a3 as

F for which lower expectation is reached with a;: local maxima, b;:

local minima
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Conclusions

Thesis

S. Destercke

New results and new methodologies regarding the problems of

@ Representing uncertainty: Gen. P-boxes, relations with
clouds.

@ Dealing with multiple sources: MCS method on possibilities
@ Propagating uncertainties: improving IRSN algorithm
@ Making decision under uncertainty: computation of
expectations on p-boxes
Keeping in mind the three frameworks we chose to work in and
that successful applications need:
@ Theoretically sound methods

Conclusions & e Tractable methods

perspectives
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Next challenges and perspectives

Thesis

S. Destercke

Theoretical

As we have done for uncertainty representations, there is a need to provide
a unified framework for the problems of

@ Information fusion (e.g., study idempotent rules in random set theory)

@ Independence modelling (e.g., how to model both source
dependencies and variable dependencies)

@ Conditioning our knowledge on some event (e.g., compare the
notions of focusing on a particular subfamily, revising my information
and learning from new information)

Conclusions &
perspectives
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Thesis

S. Destercke

Conclusions &
perspectives

Next challenges and perspectives

@ uncertainty representations:

@ build sound elicitation methods
@ multiple sources treatment:

@ propose efficient algorithm to fuse information using maximal
coherent subsets approach in general frames

@ propagation

@ algorithmic work on the combined use of MC simulation +
interval analysis 4+ heuristic approaches
@ design efficient methods to simulate credal sets

@ decision making

@ explore the computation of lower/upper expectations for other
representations and for multiple variables
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Next challenges and perspectives

Thesis

S. Destercke

Applications

With the help of SUNSET software, applications in perspective encompass:

@ Evaluation of environmental impacts of radioactive wastes on river
populations (few data available)

@ Similar study as the one in BEMUSE programme to study/validate
the results provided by computer codes simulating fires

@ Expert system using MCS approach in dosimetry (monitoring of
exposed workers)

Conclusions &
perspectives
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