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Context

Risk analysis → many uncertainties

Example: environmental protection
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Basic setting

Situation

Describe our uncertainty about the value assumed by a variable X on
a domain X (e.g. temperature in a room, state of a sensor, . . . ).
Here, the domain X is either:

finite

the real line R with associated borel σ -field

In the latter case, when considering discrete representations, we can
come back to a finite domain by taking a suitable partition of R.
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Why imprecise probability frameworks?

Two basic models

Intervals or sets: no event is more likely to occur than
another, complete imprecision (worst-case analysis)

Probability distributions: precise estimation of the
confidence of the occurence of an event

In practice, often more information than an interval, but not enough
to identify a precise probability.
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Why imprecise probability frameworks? (Example)

How much grass per day ?

?

Answer: usually around
12 Kg, but can go from
4 to 35 Kg

⇒ interval [4,35]: less information
than available

⇒ triangular probability density with
mode 12 and support [4,35]) → more
information than really available

4 12 35
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Solutions and approaches

Coping with imprecision

Three main formal frames (denoted F ) propose to cope with
intermediary states of

lower/upper
probabilities

random sets

possibility theory

G
en

era
lity

S
im

p
licity

→ understanding their links, similarities,differences is important to
achieve an unified handling of uncertainties.
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Generic representation tool

Capacity

a capacity on X is a function µ, defined on the power set ℘(X ) of
X , such that:

A⊆ B ⇒ µ(A)≤ µ(B) (monotonicity)

µ( /0) = 0,µ(X ) = 1 (boundary conditions)

8/77



Thesis

S. Destercke

Introduction

Context

Representation

Generic tools

State of art

Gen. p-boxes

Clouds

Mutliple
sources

Inf. fusion

Rel. assess.

Application

Propagation

Independence

Prac. prop

Eval and Dec.

Conclusions &
perspectives

Generic representation tool

Modeling imprecision and uncertainty

3 state of knowledge → need of two measures µ ≤ µ:

Certainty of event A: µ(A) = 1,µ(A) = 1

Impossibility of event A: µ(A) = 0,µ(A) = 0

Ignorance about event A: µ(A) = 0,µ(A) = 1

µ ≤ µ related by conjugacy relation such that, for any event E ,

µ(E ) = 1−µ(E c)
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Generic framework: Lower probabilities (Walley, 91)

Associated set of probabilities

To µ correspond a convex set (Credal set) of probabilities PP s.t.

Pµ := {P ∈ PX |(∀A⊆X )(P(A)≥ µ(A))},

with PX : set of all probability measures on X .

Consistence/coherence

µ is said consistent if Pµ 6= /0

µ is said coherent if µ(A) = infP∈Pµ
P(A)

If µ coherent, µ = P
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Representation problem statement

Simple representations

General models: hardly tractable in practice → need for simpler
representations, easier to deal with → many of them proposed and
still proposed.

Problem

Recent representations (p-boxes, clouds) have not yet been related
thoroughly to others.

Why such a study?

Both theoretical and practical issues

need to know how they settle in existing frameworks

gain insights about their expressiveness, easiness of use and
other features.
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A first summary

Credal sets

Coherent Lower/upper probabilities

Probabilities Sets
Point

A B

B is par-

ticular

case of A

Classic.

Proba.
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2-monotone lower probabilities

Definition

A lower probability P is 2−monotone if, for every A,B ⊂X ,
the inequality

P(A∪B) + P(A∩B)≥ P(A) + P(B)

holds

Properties

Always coherent lower probability

Simplify many mathematical operations
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The scheme continued (again)

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Probabilities Sets
Point

A B

B is par-

ticular

case of A

Classic.

Proba.
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Probability intervals (De Campos, Huete, Moral,
94)

Expert providing his opinion
about the potential value of
pH in a given field

4 85 6 7

Also correspond to: Imprecise
histograms, small multinomial
samples

Definition

Set L = {[l(x),u(x)]|x ∈X } of bounds
on elements of X verifying inducing the
credal set

PL = {P ∈ PX |∀x , l(x)≤ p(x)≤ u(x)}.

We assume bounds L to be consistent
and coherent

Lower (2-monotone) probability s.t.:

P(A) = max( ∑
x∈A

l(x),1− ∑
x∈Ac

u(x))
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The summary continued (once again)

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Probabilities

Probability intervals

Sets
Point

A B

B is par-

ticular

case of A

Classic.
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P-box: imprecise cumulative distribution (Ferson,
03, Williamson & Downs, 90)

1

x1 x2 x3

F

F

α1

α2

α3

β1

β2

β3

Discrete p-box

Expert opinions expressed through
percentiles, small interval with
confidence band
(Kolmogorov-Smirnov distance)

Definition

Pair of cumulative distribution [F ,F ]
on R.
Induced Lower probability consistent
if F stochastically dominate F

F (x)≤ F (x) ∀x ∈ R

Induced credals set

P[F ,F ] = {P|∀x , F (x)≤ P((−∞,x])≤ F (x)}

In practice, discrete p-box induced
by a finite set of n constraints

i = 1, . . . ,n, αi ≤ P((−∞,xi ])≤ βi
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Yet another summary

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

P-boxes

Probabilities

Probability intervals

Sets
Point

A B

B is par-

ticular

case of A

Classic.

Proba.
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Second framework: random sets (Shafer, 76),
(Dempster, 67), (Smets, 94)

Definition

A (discrete) mass distribution is a mapping m :℘(X )→ [0,1] such
that ∑E⊆X m(E ) = 1, and a set with masses > 0 is called focal.
m(E ) is a probabilistic mass to allocate to elements of E

m(E1)

m(E2)

m(E3)

m(E4)

m(E5)

A

Bel(A) = m(E1) +m(E2)

Pl(A) = m(E1) + m(E2) +

m(E3) +m(E5)

Bel(A) = ∑
E⊆A

m(E) (Masses necessarily ∈ A)

Pl(A) = ∑
E∩A 6= /0

m(E) = 1−Belc(A) (Masses potentially ∈ A )
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Link with lower probabilities (Dempster, 67)

A belief function Bel induce the credal set

PBel := {P ∈ PX |(∀A⊆X )(P(A)≥ Bel(A))},

Practical usefulness: simulating PBel by sampling m

P-boxes

P-boxes are special cases of random
sets (Kriegler & Held, 05).

R
0.2

0.4

0.6

0.8

1.0

F (x)

F (x)

F (x)

Probability Intervals

No particular links between random
sets and probability intervals.

Authors have studied mapping of a
prob. int. L into a random set
(Lemmer & Kyburg, Denoeux)
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This is not a summary

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

P-boxes

Probabilities

Probability intervals

Sets
Point

A B

B is par-

ticular

case of A

Classic.
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Third framework: possibility theory

Definition

A possibility distribution π is a mapping π : X → [0,1] such that
∃x , π(x) = 1 , and a set with masses > 0 is called focal. Given
A⊆X , two measures are defined:

Π(A) = sup
x∈A

π(x) (Possibility)

N(A) = 1−Π(Ac) (Necessity)

And an α-cut is defined as Aα = {x ∈X |π(x)≥ α} (strict if the inequality
is strict)

1
π

α
Aα
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Possibilities as random sets

Possibility distribution is a particular case of random sets with
nested realisations (Shafer, 76)

α0=0

α1

α2

α4

α4=αM =1

E1

E2

E3

E4
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Possibilities as Credal sets

A necessity measure: special case of lower probability (Dubois &
Prade, 92), (de Cooman & Aeyels, 99) inducing

Pπ = {P ∈ PX |∀A⊆X , P(A)≥ N(A)}

Characterization by constraints on α-cuts (Dubois et al., 04),
(Couso et al., 01)

1
π

α

N(Aα ) Aα

P(Aα )≥ 1−α (∀α ∈ [0,1])

N.B. upper bounds of P(Aα ) always trivial (i.e. =1)
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State of the art: summary

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

P-boxes

Probabilities

Probability intervals

Possibilities

Sets
Point

A B
B particu-

lar case of

A

Classic.

Proba.

25/77



Thesis

S. Destercke

Introduction

Context

Representation

Generic tools

State of art

Gen. p-boxes

Clouds

Mutliple
sources

Inf. fusion

Rel. assess.

Application

Propagation

Independence

Prac. prop

Eval and Dec.

Conclusions &
perspectives

Generalized p-boxes: introduction

Why studying such a model?

Possibility distributions: nested sets with lower confidence
bounds

(Discrete) P-boxes: lower and upper probabilistic bounds
on (nested) sets (−∞,xi ]

Both, even if poorly expressive, are very useful tools in many
applications

Basic idea

Extend them both by studying a model where we give lower
and upper probabilistic bounds on a collection of nested sets.
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Generalized p-boxes: introduction

Constraints

Let /0⊂ A1 ⊂ . . .⊂ An ⊆X be a collection and nested sets. A
Generalised p-box represent constraints

αi ≤ P(Ai )≤ βi i = 1, . . . ,n
0≤ α1 ≤ α2 ≤ . . .≤ αn ≤ 1
0≤ β1 ≤ β2 ≤ . . .≤ βn ≤ 1

→ study the induced lower probability and credal set, and its link to
previous representations.
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An example

Evaluating impact of radionuclides inhalation on workers (e.g. in
Uranium mines) → key parameter: mean diameter of particles
(AMAD)

Expert opinion translated in constraints:

0.3≤ P([4.5,5.5])≤ 0.6

0.7≤ P([4,6])≤ 0.9

1≤ P([3,7])≤ 1

F

F

3 4 4.5 5.5 6 7
0

0.2

0.4

0.6

0.8

1.0
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Generalised p-boxes enter the picture

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

Generalized p-boxes?
P-boxes

Probabilities

Probability intervals

Possibilities

Sets
Point

A B

B particular

case of A

Classic.

Proba.
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Generalized p-boxes: first results

First links with previous representations

αi ≤ P(Ai )≤ βi i = 1, . . . ,n
0≤ α1 ≤ α2 ≤ . . .≤ αn ≤ 1
0≤ β1 ≤ β2 ≤ . . .≤ βn ≤ 1

We retrieve possibility distributions when βi = 1,
i = 1, . . . ,N

We retrieve p-boxes when X = R and Ai = (−∞,xi )
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Generalised p-boxes get more involved in the
picture

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

Generalized p-boxes

P-boxes

Probabilities

Probability intervals

Possibilities

Sets
Point

A B

B particular

case of A

Classic. Proba.
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Generalized p-boxes: formal definition (Destercke
et al., 08)

Construction

Nested sets /0⊂ A1 ⊂ . . .⊂ An = X → Sets Ai \Ai−1 partition of X .

Define [F ,F ] such that, if x ∈ Ai \Ai−1, F = βi ,F = αi

Two mappings f , f ′ from X → R are comonotone iff ∀x ,y ∈X ,
f (x) < f (y)→ f ′(x)≤ f (y ′)

Definition

A generalized p-box is a pair of comonotone mappings
F : X → [0,1] and F : X → [0,1] s.t. ∃x ,F (x) = F (x) = 1
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Generalized p-boxes: formal definition (Destercke
et al., 08)

Induced credal set

The credal set P[F ,F ] induced by a gen. p-box [F ,F ] is defined as

P[F ,F ] = {P ∈ PX |∀Ai , αi ≤ P(Ai )≤ βi}
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Generalized p-boxes: links with other
representations

Theorem (Destercke et al., 08)

From any generalized p-box [F ,F ], we can define two
possibility distributions πF ,πF on X such that

P[F ,F ] = PπF
∩PπF

holds

⇒ Generalized p-boxes are representable by pairs of possibility
distributions.
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Generalised p-boxes get comfortable in the picture

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

Generalized p-boxes

P-boxes

Probabilities

Probability intervals

Pair of Poss. Dist.

Possibilities

Sets
Point

A B

B particular

case of A

A B

A represent

B

Classic. Proba.
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Generalized p-boxes: links with other
representations

Theorem (Destercke et al., 08)

Any generalized p-box [F ,F ] can be represented as a particular
random set for which, to every level α ∈ [0,1], we associate the
focal element

Eα \Fα

with Eα :α-cut of πF and Fα : α-cut of 1−πF

⇒ Calculus used for generic random sets can be directly
applied to generalized p-boxes
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Generalised p-boxes and links: illustration

1
F

F

1
πF

πF

1

α

Eα

Fα

Pos
s.

Rand.
Sets
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Generalized p-boxes: links with other
representations

Theorem (Destercke et al., 08)

From a probability interval L, it is possible to build |X |/2
generalized p-boxes [F ,F ]1, . . . , [F ,F ]|X |/2 such that

PL = ∩|X |/2
i=1 P[F ,F ]i

⇒ Probability intervals representable by generalized p-boxes
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Generalised p-boxes in the picture: the end

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

Generalised p-boxes

P-boxes

Probabilities

Probability intervals

Pair of Poss. Dist.

Possibilities

Sets
Point

A B

B particular

case of A

A B

A represent
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Classic.
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Clouds: introduction and definition

Introduced (Neumaier, 04) to deal with imprecision in high
dimensions

Definition

Cloud [π,δ ]: pair of mappings δ : X → [0,1], π : X → [0,1], with
δ ≤ π, π(x) = 1 for at least one element x in X , and δ (y) = 0 for at
least one element y in X .

Induced credal set (Neumaier, 04)

P[π,δ ] ={P ∈ PX |P(δα )≤ 1−α ≤ P(πα )}

πx

δx

πα

δα

α

1
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Now clouds want to get in

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

Generalised p-boxes

P-boxes

Probabilities

Probability intervals

General clouds?
Pair of Poss. Dist.

Possibilities

Sets
Point

A B

B particular

case of A

A B

A represent

B
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Clouds: links with other representation

Theorem (Destercke et al., 08)

The two following statements are equivalent:

(i) The cloud [π,δ ] can be encoded as a generalised p-box
[F ,F ] such that P[π,δ ] = P[F ,F ]

(ii) δ and π are comonotonic (δ (x) < δ (y)⇒ π(x)≤ π(y))

and a cloud is said comonotonic if δ and π are comonotonic.

⇒ comonotonic clouds and generalised p-boxes:
equivalent representations
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They already fit in quite well

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

Comonotonic clouds

Generalised p-boxes

P-boxes

Probabilities

Probability intervals
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Clouds: links with other representations

Theorem (Destercke et al., 08)

A cloud [π,δ ] is representable by the pair of possibility
distributions 1−δ and π, in the following sense:

P[π,δ ] = Pπ ∩P1−δ
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Clouds: links with other representations

Theorem (Destercke et al., 08)

There are families of non-comonotonic clouds [π,δ ] such that
the lower probability induced by the credal set P[π,δ ] is not
even 2-monotone

⇒ clouds not special cases of random sets, and
non-comonotonic clouds appears of less practical interest.
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Finally

Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

Comonotonic clouds

Generalised p-boxes
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Probabilities
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General clouds
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Sets
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Information fusion: setting

Receiving and representing Information from multiple sources
(e.g., experts, physical models) → summarise this information
into a single representation

Example: expert opinions on the same variable (e.g., AMAD)

Expert

opinion 1

Expert

opinion 2

Expert

opinion N

Rep. 1 (R1) Rep. 2 (R2) Rep. N (RN)

ϕ(R1,R2, . . . ,RN)
? Final representation
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Behaviours of ϕ

Choice of ϕ

Can be guided by the presence/absence of conflict between sources

ϕ can follow three main kinds of behaviour:

Conjunctive (∩): ϕ(R1, . . . ,RN)⊆ Ri for i = 1, . . . ,N. Result is
more informative than each source. Assume reliability of all
sources and no conflict between them.

Disjunctive (∪): ϕ(R1, . . . ,RN)⊇ Ri for i = 1, . . . ,N. Result is
not more informative than each source. Assume reliability of at
least one sources.

Compromise: result between conjunctive and disjunctive
behaviours.
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Conjunction/disjunction: illustration

I1

I2

I3

I4

Conjunction result: /0

Disjunction result:

⇒ Conjunction not reliable.
⇒ Disjunction too imprecise.
→ inadequate to cope with partial conflict.
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a solution

Adaptive fusion rules

Goes from conjunction when there is no conflict towards
disjunction when conflict increase

use of maximal coherent subsets as a general approach (Walley,
82), (Dubois & Prade, 90)
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maximal coherent subsets: principles

Original idea from logic (Rescher & Manor, 70)

Resolve inconsistencies in knowledge bases :

extract maximal subsets of consistent formulas
(conjunction)

proposition true if true in every subsets (disjunction)

Application to uncertainty representations

extract k maximal subsets Ki ⊆ {R1, . . . ,RN} of
representations having non-empty conjunction

take the disjunction of all conjunctions.
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Maximal coherent subsets: illustration (Dubois,
Fargier, Prade, 00)

I1

I2

I3

I4

I1∩ I2 I2∩ I3∩ I4

Maximal coherent subsets: K1 = {I1, I2} and K2 = {I2, I3, I4}

Final result: (I1∩ I2)∪ (I2∩ I3∩ I4)
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MCS: practical issue

Problem

Maximal coherent subsets theoretically and conceptually
attractive, but

Extracting MCS → NP-complete problem in boolean logic:
computational intractability!

Solutions

use heuristics and approximations

work in a restricted but tractable framework: intervals on
the real line → polynomial complexity (Dubois, Fargier,
Prade, 00)
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Level-wise MCS with possibility distributions

Our proposition

N distributions πi : apply MCS to each level α ∈ [0,1].

1
π1 π3π2

α

E 1
α E 3

αE 2
α

β

E1
β

E3
β

E2
β

Eα

Results for 6= levels → not necessarily nested
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Level-wise MCS with possibility distributions

Finite set of values βi i = 0,1, . . . ,n such that sets Eα resulting from
MCS for α ∈ (βi ,βi+1] are nested

1

β1

β2
β3

β0

1
F1

m(F1)=β1−0(β0)

1
F2

m(F2)=β2−β1

1
F3

m(F3)=1(β3)−β2

Result: n possibility distributions with weights (∑m(Fi ) = 1)
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Level-wise MCS with possibility distributions

Summarizing the information

m(Fi ) Complex structure → compute contour function πc as
an interpretable summary (weighted average of Fi )

1

β1

β2
β3

β0

1
F1

m(F1)=β1−0(β0)

1
F2

m(F2)=β2−β1

1
F3

m(F3)=1(β3)−β2

1

πc
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Fusion rules for clouds ?

Definition

Let [π,δ ]1, . . . , [π,δ ]N be N clouds, we propose the following
fusion rules:

Conjunction: [π,δ ]∩ = [π∩,δ∩] = [minN
i=1(πi ),maxN

i=1(δi )].

Disjunction: [π,δ ]∪ = [π∪,δ∪] = [maxN
i=1(πi ),minN

i=1(δi )]

→ conjunction and disjunction defined, maximal coherent
subsets follow.
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Evaluation of source reliability

Principle (Cooke, 91), (Sandri et al., 95)

Evaluate sources from past performance. Two quantitative
values:

Precision of information delivered by source. The more
precise the information, the more useful it is ⇒
proposition of a general criteria based on cardinality

Accuracy: consistency between delivered information and
observed (experimental) values ⇒ proposition of a general
criteria based on inclusion index

Global: global score=precision × accuracy
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Application to result of OCDE project BEMUSE

Ten different institutes use their own models and experts to
reproduce a simulated accident → use fusion rules and
information evaluation technics to analyse information,
with the help of SUNSET software
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Application to result of OCDE project BEMUSE

 - Présentation Cadarache 28/02/08 – Page 

Le cas BEMUSE : incertitudes cibles

Problème générique : chaque participant a fourni, pour chaque variable 
d’intérêt, la réponse obtenue suite à son analyse d’incertitude. La 
comparaison de ces résultats, relativement différents, n’est pas aisée (au-
delà de quelques constatations évidentes)
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Dans le cas BEMUSE : utilisation d’écarts maximaux et d’indicateurs 
statistiques simples pour tenter d’extraire de l’information.

Experiment

to reproduce

10 6= mod-

elling of this

experiment

10 6= Results to compare
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Application to result of OCDE project BEMUSE

Result

Detection of participants overestimating (bad precision,
good accuracy) or underestimating (good precision, bad
accuracy) their uncertainty

Quantified evaluation of conflict between subgroups of
sources

Generic tool to validate computer codes

Interest of non-experts

Results added to final report

Price at λ µ conference (high number of participants from
industry)
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Problem setting

Propagate uncertainty through a model f (X1, . . . ,XN) = Y to
evaluate uncertainty on Y .

Often, information given separately for X1, . . . ,XN

Then propagate through f with independence assumptions
between

Many different notions of independence when using
imprecise probabilistic frameworks

→ need to make some sense of them, to relate them and to
understand their respective usefulness
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Our contribution

Preliminary work

First classification of independence notions based on:

Informative vs non-informative

Symmetric vs Asymmetric

Objective vs Subjective

Practical results:

using more tractable independence notions as conservative
approximation of less tractable ones

relating notions of independence to imprecise probabilistic
trees (work with G. de Cooman)
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Starting point

Hybrid propagation

Propagate by differentiating aleatory uncertainty (probabilistic
calculus) from epistemic uncertainty (possibilistic calculus)

0

1
FX1

x1

Variable X1

. . .
0

1
FXk

xk

Variable Xk

0

1

α

Variable Xk+1

. . .
0

1

α

Variable XN

prop.

0

1
πi

extract summary

1

F

F

High computational cost to concentrate on specific summary →
sometimes unaffordable
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Improving efficiency

”RaFu” method (implemented in SUNSET software)

Use hybrid propagation → sample from distributions only
values needed to compute desired result.

0

1
FX1

x1

Variable X1

. . .
0

1
FXk

xk

Variable Xk

0

1

α

Variable Xk+1

. . .
0

1

α

Variable XN

prop. + summ.
1

F

F

Reduce number of computations (∼ 10 to 20 times less) by

concentrating on desired result ⇒ currently applied in BEMUSE

propagation
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Computing expectations

With probabilities

Decision making based on the computation of expected value
EP(u) of a function u : X → R, given a probability measure P:

EP(u) = ∑
x∈X

u(x)P({x}) if X finite

EP(u) =
∫

R
u(x)dP if X = real line
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Computing expectations

With imprecise probabilities

Expected values become imprecise → compute [EP(u),EP(u)]

When X finite → efficient algorithms to compute them
(Utkin & Augustin, 05)

When X = R → hard problem in general

→ start from simple representations → p-boxes
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Computing expectations

With P-boxes (work with L. Utkin)

Given a (cont.) function u on R and a (classical) P-box [F ,F ], find

E[F ,F ](u) = infF∈[F ,F ]

∫
R u(x)dF (x),

E[F ,F ](u) = supF∈[F ,F ]

∫
R u(x)dF (x).

→ Find F inside [F ,F ] reaching [E [F ,F ](u),E [F ,F ](u)]

1

α1
α2

α3

α4

b1 b2 b3 b4 b5
a1 a2 a3 a4

F for which lower expectation is reached with ai : local maxima, bi :
local minima
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Conclusions

New results and new methodologies regarding the problems of

Representing uncertainty: Gen. P-boxes, relations with
clouds.

Dealing with multiple sources: MCS method on possibilities

Propagating uncertainties: improving IRSN algorithm

Making decision under uncertainty: computation of
expectations on p-boxes

Keeping in mind the three frameworks we chose to work in and
that successful applications need:

1 Theoretically sound methods

2 Tractable methods
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Next challenges and perspectives

Theoretical

As we have done for uncertainty representations, there is a need to provide
a unified framework for the problems of

Information fusion (e.g., study idempotent rules in random set theory)

Independence modelling (e.g., how to model both source
dependencies and variable dependencies)

Conditioning our knowledge on some event (e.g., compare the
notions of focusing on a particular subfamily, revising my information
and learning from new information)
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Next challenges and perspectives

Practical

uncertainty representations:

build sound elicitation methods

multiple sources treatment:

propose efficient algorithm to fuse information using maximal
coherent subsets approach in general frames

propagation

algorithmic work on the combined use of MC simulation +
interval analysis + heuristic approaches
design efficient methods to simulate credal sets

decision making

explore the computation of lower/upper expectations for other
representations and for multiple variables
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Next challenges and perspectives

Applications

With the help of SUNSET software, applications in perspective encompass:

Evaluation of environmental impacts of radioactive wastes on river
populations (few data available)

Similar study as the one in BEMUSE programme to study/validate
the results provided by computer codes simulating fires

Expert system using MCS approach in dosimetry (monitoring of
exposed workers)

77/77


	Introduction
	Context

	Representation
	Generic tools
	Simple representations: state of the art
	Generalized p-boxes
	Clouds

	Mutliple sources
	Information fusion
	Reliability assessment
	Application

	Propagation
	Independence
	Practical propagation

	Risk Evaluation and Decision making
	Conclusions & perspectives

