Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives Uncertainty representation and combination: new results with applications to nuclear safety issues

Sebastien Destercke 1,2

¹Institut de Radioprotection et de Sûreté Nucléaire

²Institut de Recherche en Informatique de Toulouse

Thesis defense - 29 Octobre 2008 Directeur de thèse: Didier Dubois Co-Directeur de thèse: Eric Chojnacki

Context

Thesis

S. Destercke

Introduction Context

- Representatio Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

Risk analysis \rightarrow many uncertainties

Example: environmental protection

Overview

Classical situation

Context

Overview

- Representation
- Synthesis
 - Information fusion
 - Reliability assessment
- Propagation
 - Independence assumptions
 - Practical propagation
- Risk evaluation and decision making

Basic setting

Thesis

S. Destercke

Introduction Context

Representation

Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Situation

Describe our uncertainty about the value assumed by a variable X on a domain \mathscr{X} (e.g. temperature in a room, state of a sensor, ...). Here, the domain \mathscr{X} is either:

finite

ullet the real line ${\mathbb R}$ with associated borel σ -field

In the latter case, when considering discrete representations, we can come back to a finite domain by taking a suitable partition of $\mathbb R.$

4/77

Why imprecise probability frameworks?

Thesis

S. Destercke

Introduction Context

Representation

Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Two basic models

- Intervals or sets: no event is more likely to occur than another, complete imprecision (worst-case analysis)
- Probability distributions: precise estimation of the confidence of the occurence of an event

In practice, often more information than an interval, but not enough to identify a precise probability.

5/77

Why imprecise probability frameworks? (Example)

Thesis

S. Desterck

Introduction Context

Representation

Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec

Conclusions & perspectives

How much grass per day ?

Answer: *usually around* 12 Kg, but can go from 4 to 35 Kg \Rightarrow interval [4,35]: less information than available

 \Rightarrow triangular probability density with mode 12 and support [4,35]) \rightarrow more information than really available

Solutions and approaches

Thesis

Representation

Coping with imprecision

Three main formal frames (denoted \mathscr{F}) propose to cope with intermediary states of

- Iower/upper Simplicity probabilities
- random sets
- o possibility theory

Generality

 \rightarrow understanding their links, similarities, differences is important to achieve an unified handling of uncertainties.

Generic representation tool

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

- Eval and Dec.
- Conclusions & perspectives

Capacity

a capacity on $\mathscr X$ is a function $\mu,$ defined on the power set $\wp(\mathscr X)$ of $\mathscr X,$ such that:

- $A \subseteq B \Rightarrow \mu(A) \le \mu(B)$ (monotonicity)
- $\mu(\emptyset) = 0, \mu(\mathscr{X}) = 1$ (boundary conditions)

Generic representation tool

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec

Conclusions & perspectives

Modeling imprecision and uncertainty

3 state of knowledge \rightarrow need of two measures $\mu \leq \overline{\mu} {:}$

- Certainty of event A: $\underline{\mu}(A) = 1, \overline{\mu}(A) = 1$
- Impossibility of event A: $\underline{\mu}(A) = 0, \overline{\mu}(A) = 0$
- Ignorance about event A: $\mu(A) = 0, \overline{\mu}(A) = 1$

 $\mu \leq \overline{\mu}$ related by conjugacy relation such that, for any event E,

$$\underline{\mu}(E) = 1 - \overline{\mu}(E^c)$$

<ロ> <昂> < 言> < 言> < 言> と言う このののの 9/77

Generic framework: Lower probabilities (Walley, 91)

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Associated set of probabilities

To μ correspond a convex set (Credal set) of probabilities \mathscr{P}_P s.t.

$$\mathscr{P}_{\underline{\mu}} := \{ P \in \mathbb{P}_{\mathscr{X}} | (\forall A \subseteq \mathscr{X}) (P(A) \ge \underline{\mu}(A)) \},$$

10/77

with $\mathbb{P}_{\mathscr{X}}$: set of all probability measures on \mathscr{X} .

Consistence/coherence

- μ is said **consistent** if $\mathscr{P}_{\mu} \neq \emptyset$
- $\underline{\mu}$ is said **coherent** if $\underline{\mu}(A) = \inf_{P \in \mathscr{P}_{\mu}} P(A)$
- If μ coherent, $\mu = \underline{P}$

Representation problem statement

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Simple representations

General models: hardly tractable in practice \to need for simpler representations, easier to deal with \to many of them proposed and still proposed.

Problem

Recent representations (p-boxes, clouds) have not yet been related thoroughly to others.

Why such a study?

Both theoretical and practical issues

- need to know how they settle in existing frameworks
- gain insights about their expressiveness, easiness of use and other features.

A first summary

12/77

2-monotone lower probabilities

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Definition

A lower probability \underline{P} is 2-monotone if, for every $A, B \subset \mathscr{X}$, the inequality

 $\underline{P}(A \cup B) + \underline{P}(A \cap B) \ge \underline{P}(A) + \underline{P}(B)$

holds

Properties

- Always coherent lower probability
- Simplify many mathematical operations

The scheme continued (again)

Probability intervals (De Campos, Huete, Moral, 94)

Thesis

S. Desterck

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop Eval and Dec

Conclusions & perspectives Expert providing his opinion about the potential value of pH in a given field

Also correspond to: Imprecise histograms, small multinomial samples

Definition

Set $L = \{[I(x), u(x)] | x \in \mathcal{X}\}$ of bounds on elements of \mathcal{X} verifying inducing the credal set

 $\mathscr{P}_L = \{ P \in \mathbb{P}_{\mathscr{X}} | \forall x, \ l(x) \le p(x) \le u(x) \}.$

We assume bounds L to be consistent and coherent

Lower (2-monotone) probability s.t.:

$$\underline{P}(A) = \max(\sum_{x \in A} l(x), 1 - \sum_{x \in A^c} u(x))$$

The summary continued (once again)

P-box: imprecise cumulative distribution (Ferson, 03, Williamson & Downs, 90)

Thesis

S. Destercke

Introductio Context

Representatic Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop Eval and Dec

Conclusions & perspectives

Expert opinions expressed through percentiles, small interval with confidence band (Kolmogorov-Smirnov distance)

Definition

Pair of cumulative distribution $[\underline{F}, \overline{F}]$ on \mathbb{R} . Induced Lower probability consistent

if \underline{F} stochastically dominate \overline{F}

 $\underline{F}(x) \leq \overline{F}(x) \ \forall x \in \mathbb{R}$

Induced credals set

 $\mathscr{P}_{[\underline{F},\overline{F}]} = \{P | \forall x, \underline{F}(x) \le P((-\infty, x]) \le \overline{F}(x)\}$

In practice, discrete p-box induced by a finite set of n constraints

 $i = 1, \ldots, n, \ \alpha_i \leq P((-\infty, x_i]) \leq \beta_i$

Yet another summary

Second framework: random sets (Shafer, 76), (Dempster, 67), (Smets, 94)

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Definition

A (discrete) mass distribution is a mapping $m : \mathcal{P}(\mathcal{X}) \to [0,1]$ such that $\sum_{E \subseteq \mathcal{X}} m(E) = 1$, and a set with masses > 0 is called focal. m(E) is a probabilistic mass to allocate to elements of E

Link with lower probabilities (Dempster, 67)

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives A belief function *Bel* induce the credal set

$$\mathscr{P}_{Bel} := \{ P \in \mathbb{P}_{\mathscr{X}} | (\forall A \subseteq \mathscr{X}) (P(A) \ge Bel(A)) \},\$$

Practical usefulness: simulating \mathscr{P}_{Bel} by sampling m

P-boxes

P-boxes are special cases of random sets (Kriegler & Held, 05).

Probability Intervals

No particular links between random sets and probability intervals.

Authors have studied mapping of a prob. int. *L* into a random set (Lemmer & Kyburg, Denoeux)

This is not a summary

Third framework: possibility theory

Thesis

Definition

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

A possibility distribution π is a mapping $\pi : \mathscr{X} \to [0,1]$ such that $\exists x, \pi(x) = 1$, and a set with masses > 0 is called focal. Given $A \subseteq \mathscr{X}$, two measures are defined:

 $\Pi(A) = \sup_{x \in A} \pi(x) \qquad (Possibility)$

$$N(A) = 1 - \Pi(A^c)$$
 (Necessity)

And an α -cut is defined as $A_{\alpha} = \{x \in \mathscr{X} | \pi(x) \ge \alpha\}$ (strict if the inequality is strict)

Possibilities as random sets

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives Possibility distribution is a particular case of random sets with nested realisations (Shafer, 76)

23/77

Possibilities as Credal sets

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives A necessity measure: special case of lower probability (Dubois & Prade, 92), (de Cooman & Aeyels, 99) inducing

 $\mathscr{P}_{\pi} = \{ P \in \mathbb{P}_{\mathscr{X}} | \forall A \subseteq \mathscr{X}, \ P(A) \ge N(A) \}$

Characterization by constraints on α -cuts (Dubois et al., 04), (Couso et al., 01)

State of the art: summary

Generalized p-boxes: introduction

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Why studying such a model?

- Possibility distributions: nested sets with lower confidence bounds
- (Discrete) P-boxes: lower and upper probabilistic bounds on (nested) sets (-∞, x_i]

Both, even if poorly expressive, are very useful tools in many applications

Basic idea

Extend them both by studying a model where we give lower and upper probabilistic bounds on a collection of nested sets.

Generalized p-boxes: introduction

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Constraints

Let $\emptyset \subset A_1 \subset \ldots \subset A_n \subseteq \mathscr{X}$ be a collection and nested sets. A Generalised p-box represent constraints

$$egin{aligned} lpha_i &\leq P(A_i) \leq eta_i \qquad i=1,\ldots,n \ 0 &\leq lpha_1 \leq lpha_2 \leq \ldots \leq lpha_n \leq 1 \ 0 &\leq eta_1 \leq eta_2 \leq \ldots \leq eta_n \leq 1 \end{aligned}$$

 \rightarrow study the induced lower probability and credal set, and its link to previous representations.

27/77

An example

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Evaluating impact of radionuclides inhalation on workers (e.g. in Uranium mines) \rightarrow key parameter: mean diameter of particles (AMAD)

Expert opinion translated in constraints:

- $0.3 \le P([4.5, 5.5]) \le 0.6$
- $0.7 \le P([4,6]) \le 0.9$
- $1 \le P([3,7]) \le 1$

Generalised p-boxes enter the picture

Generalized p-boxes: first results

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

First links with previous representations

$$egin{aligned} & lpha_i \leq P(A_i) \leq eta_i & i=1,\ldots,n \ & 0 \leq lpha_1 \leq lpha_2 \leq \ldots \leq lpha_n \leq 1 \ & 0 \leq eta_1 \leq eta_2 \leq \ldots \leq eta_n \leq 1 \end{aligned}$$

We retrieve possibility distributions when $\beta_i = 1$, i = 1, ..., N

▶ We retrieve p-boxes when $\mathscr{X} = R$ and $A_i = (-\infty, x_i)$

30/77

Generalised p-boxes get more involved in the picture

Generalized p-boxes: formal definition (Destercke et al., 08)

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Construction

Nested sets $\emptyset \subset A_1 \subset \ldots \subset A_n = \mathscr{X} \to \text{Sets } A_i \setminus A_{i-1}$ partition of \mathscr{X} .

Define $[\underline{F}, \overline{F}]$ such that, if $x \in A_i \setminus A_{i-1}$, $\overline{F} = \beta_i, \underline{F} = \alpha_i$

Two mappings f, f' from $\mathscr{X} \to \mathbb{R}$ are comonotone iff $\forall x, y \in \mathscr{X}$, $f(x) < f(y) \to f'(x) \le f(y')$

Definition

A generalized p-box is a pair of comonotone mappings $\overline{F}: \mathscr{X} \to [0,1]$ and $\underline{F}: \mathscr{X} \to [0,1]$ s.t. $\exists x, \overline{F}(x) = \underline{F}(x) = 1$

Generalized p-boxes: formal definition (Destercke et al., 08)

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Induced credal set

The credal set $\mathscr{P}_{[\underline{E},\overline{F}]}$ induced by a gen. p-box $[\underline{F},\overline{F}]$ is defined as $\mathscr{P}_{[\underline{F},\overline{F}]} = \{P \in \mathbb{P}_{\mathscr{X}} | \forall A_i, \ \alpha_i \leq P(A_i) \leq \beta_i\}$

Generalized p-boxes: links with other representations

Thesis

S. Destercke

Introduction Context

Representatic Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec

Conclusions & perspectives

Theorem (Destercke et al., 08)

From any generalized p-box $[\underline{F}, \overline{F}]$, we can define two possibility distributions $\pi_{\overline{F}}, \pi_{\overline{F}}$ on \mathscr{X} such that

$$\mathscr{P}_{[\underline{F},\overline{F}]} = \mathscr{P}_{\pi_{\overline{F}}} \cap \mathscr{P}_{\pi_{\underline{F}}}$$

holds

 \Rightarrow Generalized p-boxes are representable by pairs of possibility distributions.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

34/77

Generalised p-boxes get comfortable in the picture

Generalized p-boxes: links with other representations

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec

Conclusions & perspectives

Theorem (Destercke et al., 08)

Any generalized p-box $[\underline{F},\overline{F}]$ can be represented as a particular random set for which, to every level $\alpha \in [0,1]$, we associate the focal element

$$E_{\alpha} \setminus F_{\alpha}$$

36/77

with E_{α} : α -cut of $\pi_{\overline{F}}$ and F_{α} : α -cut of $1 - \pi_{F}$

 \Rightarrow Calculus used for generic random sets can be directly applied to generalized p-boxes
Generalised p-boxes and links: illustration

Generalized p-boxes: links with other representations

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Theorem (Destercke et al., 08)

From a probability interval *L*, it is possible to build $|\mathscr{X}|/2$ generalized p-boxes $[\underline{F}, \overline{F}]_1, \dots, [\underline{F}, \overline{F}]_{|\mathscr{X}|/2}$ such that

$$\mathscr{P}_{L} = \bigcap_{i=1}^{|\mathscr{X}|/2} \mathscr{P}_{[\underline{F},\overline{F}]}$$

38/77

 \Rightarrow Probability intervals representable by generalized p-boxes

Generalised p-boxes in the picture: the end

Clouds: introduction and definition

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives Introduced (Neumaier, 04) to deal with imprecision in high dimensions

Definition

Cloud $[\pi, \delta]$: pair of mappings $\delta : \mathscr{X} \to [0, 1]$, $\pi : \mathscr{X} \to [0, 1]$, with $\delta \leq \pi$, $\pi(x) = 1$ for at least one element x in \mathscr{X} , and $\delta(y) = 0$ for at least one element y in \mathscr{X} .

Induced credal set (Neumaier, 04)

$$\mathscr{P}_{[\pi,\delta]} = \{ P \in \mathbb{P}_{\mathscr{X}} | P(\boldsymbol{\delta}_{\alpha}) \leq 1 - \alpha \leq P(\pi_{\alpha}) \}$$

Now clouds want to get in

Clouds: links with other representation

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop Eval and Dec

Conclusions &

Theorem (Destercke et al., 08)

The two following statements are equivalent:

(i) The cloud $[\pi, \delta]$ can be encoded as a generalised p-box $[\underline{F}, \overline{F}]$ such that $\mathscr{P}_{[\pi, \delta]} = \mathscr{P}_{[\underline{F}, \overline{F}]}$

(ii) δ and π are comonotonic $(\delta(x) < \delta(y) \Rightarrow \pi(x) \le \pi(y))$

and a cloud is said comonotonic if δ and π are comonotonic.

 \Rightarrow comonotonic clouds and generalised p-boxes: equivalent representations

They already fit in quite well

Clouds: links with other representations

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Theorem (Destercke et al., 08)

A cloud $[\pi, \delta]$ is representable by the pair of possibility distributions $1 - \delta$ and π , in the following sense:

$$\mathscr{P}_{[\pi,\delta]} = \mathscr{P}_{\pi} \cap \mathscr{P}_{1-\delta}$$

44/77

Clouds: links with other representations

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Theorem (Destercke et al., 08)

There are families of non-comonotonic clouds $[\pi, \delta]$ such that the lower probability induced by the credal set $\mathscr{P}_{[\pi,\delta]}$ is not even 2-monotone

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

45/77

 \Rightarrow clouds not special cases of random sets, and non-comonotonic clouds appears of less practical interest.

Finally

Overview

Thesis

S. Destercke

- Introduction Context
- Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources

- Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

- Representation
- Synthesis
 - Information fusion
 - Reliability assessment
- Propagation
 - Independence assumptions
 - Practical propagation
- Risk evaluation and decision making

Information fusion: setting

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion

Application

Independence Prac. prop

Eval and Dec.

Conclusions & perspectives Receiving and representing Information from multiple sources (e.g., experts, physical models) \rightarrow summarise this information into a single representation

48/77

Behaviours of ϕ

Thesis

- S. Destercke
- Introduction Context
- Representatio Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion
- Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

Choice of φ

Can be guided by the presence/absence of conflict between sources

- ϕ can follow three main kinds of behaviour:
 - Conjunctive (∩): φ(R₁,...,R_N) ⊆ R_i for i = 1,...,N. Result is more informative than each source. Assume reliability of all sources and no conflict between them.
 - Disjunctive (∪): φ(R₁,...,R_N) ⊇ R_i for i = 1,...,N. Result is not more informative than each source. Assume reliability of at least one sources.
 - **Compromise**: result between conjunctive and disjunctive behaviours.

Conjunction/disjunction: illustration

a solution

Thesis

S. Destercke

- Introduction Context
- Representation Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

Adaptive fusion rules

Goes from conjunction when there is no conflict towards disjunction when conflict increase

use of maximal coherent subsets as a general approach (Walley, 82), (Dubois & Prade, 90)

maximal coherent subsets: principles

Thesis

S. Destercke

- Introduction Context
- Representatio Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources
- Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

Original idea from logic (Rescher & Manor, 70)

Resolve inconsistencies in knowledge bases :

- extract maximal subsets of consistent formulas (conjunction)
- proposition true if true in every subsets (disjunction)

Application to uncertainty representations

- extract k maximal subsets K_i ⊆ {R₁,...,R_N} of representations having non-empty conjunction
- take the disjunction of all conjunctions.

Maximal coherent subsets: illustration (Dubois, Fargier, Prade, 00)

Maximal coherent subsets: $K_1 = \{I_1, I_2\}$ and $K_2 = \{I_2, I_3, I_4\}$

(日)、

53/77

Final result: $(I_1 \cap I_2) \cup (I_2 \cap I_3 \cap I_4)$

MCS: practical issue

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess.

Application Propagation

Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Problem

 $\ensuremath{\mathsf{Maximal}}$ coherent subsets theoretically and conceptually attractive, but

Solutions

- use heuristics and approximations
- work in a restricted but tractable framework: intervals on the real line → polynomial complexity (Dubois, Fargier, Prade, 00)

Level-wise MCS with possibility distributions

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources

Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Our proposition

N distributions π_i : apply MCS to each level $\alpha \in [0,1]$.

Results for \neq levels \rightarrow not necessarily nested

Level-wise MCS with possibility distributions

Thesis

S. Destercke

Introduction Context

Representatic Generic tools State of art Gen. p-boxes Clouds

Mutliple sources

Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Finite set of values $\beta_i \ i = 0, 1, ..., n$ such that sets E_{α} resulting from MCS for $\alpha \in (\beta_i, \beta_{i+1}]$ are nested

Result: *n* possibility distributions with weights $(\sum m(F_i) = 1)$

Level-wise MCS with possibility distributions

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources

Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Summarizing the information

 $m(F_i)$ Complex structure \rightarrow compute contour function π_c as an interpretable summary (weighted average of F_i)

Fusion rules for clouds ?

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources

Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop Eval and Dec

Conclusions & perspectives

Definition

Let $[\pi, \delta]_1, \dots, [\pi, \delta]_N$ be *N* clouds, we propose the following fusion rules:

- Conjunction: $[\pi, \delta]_{\cap} = [\pi_{\cap}, \delta_{\cap}] = [\min_{i=1}^{N} (\pi_i), \max_{i=1}^{N} (\delta_i)].$
- Disjunction: $[\pi, \delta]_{\cup} = [\pi_{\cup}, \delta_{\cup}] = [\max_{i=1}^{N} (\pi_i), \min_{i=1}^{N} (\delta_i)]$

 \rightarrow conjunction and disjunction defined, maximal coherent subsets follow.

Overview

Thesis

S. Destercke

- Introduction Context
- Representatio Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources
- Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

- Representation
- Synthesis
 - Information fusion
 - Reliability assessment
- Propagation
 - Independence assumptions
 - Practical propagation
- Risk evaluation and decision making

Evaluation of source reliability

Thesis

S. Destercke

Introduction Context

- Representation Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

Principle (Cooke, 91), (Sandri et al., 95)

Evaluate sources from past performance. Two quantitative values:

- Precision of information delivered by source. The more precise the information, the more useful it is ⇒ proposition of a general criteria based on cardinality
- Accuracy: consistency between delivered information and observed (experimental) values ⇒ proposition of a general criteria based on inclusion index
- **Global**: global score=precision × accuracy

Application to result of OCDE project BEMUSE

Ten different institutes use their own models and experts to reproduce a simulated accident \rightarrow use fusion rules and information evaluation technics to analyse information, with the help of SUNSET software

Application to result of OCDE project BEMUSE

Application to result of OCDE project BEMUSE

Thesis

S. Destercke

Result

- Introduction Context
- Representatio Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

- Detection of participants overestimating (bad precision, good accuracy) or underestimating (good precision, bad accuracy) their uncertainty
- Quantified evaluation of conflict between subgroups of sources
- Generic tool to validate computer codes

Interest of non-experts

- Results added to final report
- Price at λμ conference (high number of participants from industry)

Overview

Thesis

S. Destercke

- Introduction Context
- Representation Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application

Propagation

- Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

- Representation
- Synthesis
 - Information fusion
 - Reliability assessment
- Propagation
 - Independence assumptions
 - Practical propagation
- Risk evaluation and decision making

Problem setting

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec

Conclusions & perspectives

Propagate uncertainty through a model $f(X_1,...,X_N) = Y$ to evaluate uncertainty on Y.

- Often, information given separately for X_1, \ldots, X_N
- Then propagate through *f* with independence assumptions between

65/77

• Many different notions of independence when using imprecise probabilistic frameworks

 \rightarrow need to make some sense of them, to relate them and to understand their respective usefulness

Our contribution

Thesis

S. Destercke

Introduction Context

- Representatior Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

Preliminary work

First classification of independence notions based on:

- Informative vs non-informative
- Symmetric vs Asymmetric
- Objective vs Subjective

Practical results:

- using more tractable independence notions as conservative approximation of less tractable ones
- relating notions of independence to imprecise probabilistic trees (work with G. de Cooman)

Overview

Thesis

S. Destercke

- Introduction Context
- Representation Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.
- Conclusions & perspectives

- Representation
- Synthesis
 - Information fusion
 - Reliability assessment
- Propagation
 - Independence assumptions
 - Practical propagation
- Risk evaluation and decision making

・ロト ・聞ト ・ヨト ・ヨト

67/77

Starting point

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Conclusions & perspectives

Hybrid propagation

Propagate by differentiating aleatory uncertainty (probabilistic calculus) from epistemic uncertainty (possibilistic calculus)

High computational cost to concentrate on specific summary \rightarrow sometimes unaffordable

Improving efficiency

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop Eval and Dec

Conclusions & perspectives

"RaFu" method (implemented in SUNSET software)

Use hybrid propagation \rightarrow sample from distributions only values needed to compute desired result.

Reduce number of computations (\sim 10 to 20 times less) by concentrating on desired result \Rightarrow currently applied in BEMUSE propagation

Overview

Thesis

S. Destercke

- Introduction Context
- Representation Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

- Representation
- Synthesis
 - Information fusion
 - Reliability assessment
- Propagation
 - Independence assumption
 - Practical propagation
- Risk evaluation and decision making

(日)、

70/77

Computing expectations

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

With probabilities

Decision making based on the computation of expected value $\mathbb{E}_P(u)$ of a function $u: \mathscr{X} \to \mathbb{R}$, given a probability measure P:

$$\mathbb{E}_{P}(u) = \sum_{x \in \mathscr{X}} u(x) P(\{x\}) \text{ if } \mathscr{X} \text{ finite}$$

$$\mathbb{E}_P(u) = \int_{\mathbb{R}} u(x) dP$$
 if \mathscr{X} = real line

イロト 不得 トイヨト イヨト

71/77

Computing expectations

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

With imprecise probabilities

Expected values become imprecise \rightarrow compute $[\underline{E}_{\mathscr{P}}(u), \overline{E}_{\mathscr{P}}(u)]$

When \mathscr{X} finite \rightarrow efficient algorithms to compute them (Utkin & Augustin, 05)

 \rightarrow start from simple representations \rightarrow p-boxes
Computing expectations

With P-boxes (work with L. Utkin)

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Given a (cont.) function u on \mathbb{R} and a (classical) P-box $[\underline{F}, \overline{F}]$, find $\mathbb{E}_{[\underline{F},\overline{F}]}(u) = \inf_{F \in [\underline{F},\overline{F}]} \int_{\mathbb{R}} u(x) dF(x),$ $\mathbb{E}_{[\underline{F},\overline{F}]}(u) = \sup_{F \in [\underline{F},\overline{F}]} \int_{\mathbb{R}} u(x) dF(x).$ $\rightarrow \text{ Find } F \text{ inside } [\underline{F},\overline{F}] \text{ reaching } [\underline{E}_{[\underline{F},\overline{F}]}(u), \overline{E}_{[\underline{F},\overline{F}]}(u)]$

F for which **lower expectation** is reached with a_i : local maxima, b_i : local minima $\stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\rightarrow} \stackrel{\frown}{\rightarrow}$

Conclusions

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec

Conclusions & perspectives

New results and new methodologies regarding the problems of

- Representing uncertainty: Gen. P-boxes, relations with clouds.
- Dealing with multiple sources: MCS method on possibilities
- Propagating uncertainties: improving IRSN algorithm
- Making decision under uncertainty: computation of expectations on p-boxes

Keeping in mind the three frameworks we chose to work in and that successful applications need:

- Theoretically sound methods
- O Tractable methods

Next challenges and perspectives

Thesis

S. Destercke

Introduction Context

Representatio Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Theoretical

As we have done for uncertainty representations, there is a need to provide a unified framework for the problems of

- Information fusion (e.g., study idempotent rules in random set theory)
- Independence modelling (e.g., how to model both source dependencies and variable dependencies)
- Conditioning our knowledge on some event (e.g., compare the notions of focusing on a particular subfamily, revising my information and learning from new information)

Next challenges and perspectives

Thesis

- S. Destercke
- Introduction Context
- Representatio Generic tools State of art Gen. p-boxes Clouds
- Mutliple sources Inf. fusion Rel. assess. Application
- Propagation Independence Prac. prop
- Eval and Dec.

Conclusions & perspectives

Practical

- uncertainty representations:
 - build sound elicitation methods
- multiple sources treatment:
 - propose efficient algorithm to fuse information using maximal coherent subsets approach in general frames
- propagation
 - algorithmic work on the combined use of MC simulation + interval analysis + heuristic approaches
 - design efficient methods to simulate credal sets
- decision making
 - explore the computation of lower/upper expectations for other representations and for multiple variables

Next challenges and perspectives

Thesis

S. Destercke

Introduction Context

Representation Generic tools State of art Gen. p-boxes Clouds

Mutliple sources Inf. fusion Rel. assess. Application

Propagation Independence Prac. prop

Eval and Dec.

Conclusions & perspectives

Applications

With the help of SUNSET software, applications in perspective encompass:

- Evaluation of environmental impacts of radioactive wastes on river populations (few data available)
- Similar study as the one in BEMUSE programme to study/validate the results provided by computer codes simulating fires

77/77

Expert system using MCS approach in dosimetry (monitoring of exposed workers)