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Chapter 1

Introduction

"It is not necessary that you leave the house. Remain at your table and
listen. Do not even listen, only wait. Do not even wait, be wholly still
and alone. The world will present itself to you for its unmasking, it can
do no other, in ecstasy it will writhe at your feet."

Franz Kafka

Throughout the centuries, mathematicians have attached lots of credit to objects
with nice properties, like spheres, lines, circles or differentiable curves and func-
tions. Other mathematical objects were considered as "pathological", like irregular
sets with no derivative almost everywhere. In a letter addressed to Emile Bernard
in April 15th 1904, Paul Cézanne said: "Let me repeat what I told you when we
were here: render nature with the cylinder, the sphere and the cone, arranged in
perspective so that each side of an object or of a plane is directed towards a cen-
tral point" [38]. For him, it was essential to learn how to paint "with reference to
these simple shapes". Almost a century later, Mandelbrot claimed "clouds are not
spheres, mountains are not cones, coastlines are not circle, and bark is not smooth,
nor does lightning travel in straight line" [85]. The birth of the fractal geometry rests
on Mandelbrot’s observations of the world. His merit was to put these observations
together with irregular objects scientists were considering as purely mathematical
objects, to notice their shared properties and unify them to create what he called a
fractal geometry. The term fractal, as defined by Mandelbrot, comes from the Latin
fractus meaning broken and refers to very irregular sets. The rapid development of
fractal geometry was soon recognized in many areas of science, as witnessed by the
exponential growth in the number of papers on fractals during the past 20 years.

In this chapter, I recall the concept of a ‘physical fractal’ and strict self-similarity on
sets through different famous examples. This will lead us to see how this concept can
be adapted to the context of processes, which is the main focus of my research work.
Self-similar processes whose graphs have a non integer dimension can be obtained
through simple recursive procedures. Fixed points of Iterated Functions Systems
(IFS) are one of them and are briefly presented later. We also present the class of
random self-similar processes through different examples, including Brownian mo-
tion and fractional Brownian motions. Then we introduce multifractal processes
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and review a few methods to estimate their properties. Finally, I present a general
outline of my doctoral research work.

1.1 Fractals, multifractals and other oddities

1.1.1 A first glimpse into self-similarity

Traditional geometry cannot describe very accurately irregular objects of our world,
for example a coastline, a mountain or a tree. Before the birth of fractal geometry,
complicated geometrical shapes could only be represented by a map or by their
images. When looking at a map of scale 1 : 100, 000, is it possible to measure the
length of a coastline? What becomes this length if we now look at a more detailed
map of scale 1 : 10, 000? As we zoom in, bays appear, increasing the total length of
the coast. When seen at different scales, the coastline appears similar in some sense.
Likewise for a mountain; a detail of the edge of a mountain looks like the whole
mountain. One aim of mathematics is to provide approximate models to describe
these objects from the real world. We propose to review famous examples which
incorporate the property of similarity of their geometrical shape at different scales
of magnification.
Let us start exploring this mathematical world with the famous Cantor ternary set

(1875), a subset of the real line which contains no intervals but has as many points
as an interval. This set, categorized as pathological and called ‘monster’ by the
mathematician Charles Hermitte, can be obtained through a recursive procedure.
Begin with the interval C1 = [0, 1] and remove its middle third. At the first stage,
you obtain a set C2 which is the union of two intervals: C2 = [0, 1/3] ∪ [2/3, 1].
Repeat the same procedure on the two smaller intervals. Keep going infinitely many
times. The limit set, C =

⋂
n Cn is the Cantor ternary set, an uncountable set with

zero Lebesgue measure. Parts of C look like the original set C, up to a scaling factor.
The journey continues with the Sierpinski gasket constructed by the Polish math-

ematician W. Sierpinski. The idea is similar: start with a single region and remove
parts of its interior. Let the initial set be a triangle S0 together with its interior.
Then, connect the midpoints of the sides with line segments and remove the inte-
rior of the small middle triangular region. At the first stage, three smaller triangles
replace the initial one. Call this set S1. Repeat the same procedure to the three
smaller triangles and continue infinitely many times. The limit set S =

⋂
n Sn is the

Sierpinski triangle. An approximation of S is presented in the left upper corner of
Figure 1.1, together with other limit sets obtained via similar recursive procedures.
The sets are obtained with Matlab code that I have re-implented to produce them.
The Sierpinski triangle possesses a similar property as the Cantor ternary set: each
of the smaller triangles is an exact replica of S. Many other such examples exist,
such as the Von Koch curve (a compact curve with infinite length), the Monger
sponge, the Sierpinski carpet, to name but a few. In general, a figure or set which
can be decomposed into parts which are exact replicas of the whole is called discrete
strict self-similar.
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Figure 1.1: Self-similar sets.
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Let us emphasize the major difference between fractals encountered in mathemat-
ics, for which self-similarity occurs at all scales of magnification, and self-similar
objects found in nature, called ‘physical fractals’, for which this self-similarity holds
only for a range of scales. When looking at a coastline, for example, one cannot zoom
indefinitely but only up to the atomic level. Mathematical fractals have played an
important role in synthetic imagery and graphics [18] and have touched all branches
of science. Applications range from biology (plant trees, bronchial trees, blood cir-
culation systems) to network traffic [2], from art (in decoration, architecture, [108])
to pure mathematics.

1.1.2 Various definitions of dimensions

The next questions that come to mind are how to measure the irregularity of a set or
a curve and how ‘big’ is a fractal set? Are the fractals presented in Figure 1.1 similar
in some way? Also, we have not yet given an accurate definition of a fractal, other
than the fact that it is an irregular set. Is it possible to give a more precise definition?
A possible answer to these questions is related to the concept of dimension, which
gives a good quantitative measure of how much a set or curve fills the space. The
definition of dimension is not unique and throughout the history of mathematics,
many definitions have been given. For example, the Euclidean dimension DE is the
number of coordinates needed to address the object. The topological dimension DT

requires coverings of the object. A covering is by definition a collection of open
sets in a topological space X whose union contains the object. We also define a
refinement of a cover C of X as a new cover C ′ such that each set in C ′ is contained
in some set in C. Then, an object A has topological dimension DT if every covering
C of A possesses a refinement C ′ in which every point of A belongs to at most DT +1
sets in C ′, where DT is the smallest such integer. For example, as illustrated below,
a set of points distributed in the plane have DT = 0 and DE = 2. A smooth curve
in the plane has DT = 1 and DE = 2.

When dealing with irregular objects, other definitions of dimensions have to be
used to compare them. These dimensions are referred to as fractional dimensions
since they can take non integer values. The Hausdorff dimension DH of a set is a
central notion in fractal geometry. Fractional dimensions first appeared in 1919 with
mathematician Felix Hausdorff but had to wait until the works of Mandelbrot to be
related in a systematic way to fractals. Other fractional (or fractal) dimensions are
the box counting and packing dimensions.
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Hausdorff dimension. The Hausdorff dimension of a set is defined from its
Hausdorff measure. To motivate the definition of the Hausdorff measure, we address
the following question: given a curve c ⊂ R

2, how do we measure its length? We
want some measure theory notion, independent of the properties of the curve, such
as its differentiability. The idea is once again to cover c with balls Bj. Denote by
|Bj| the diameter of Bj. Then, an approximation of the length L(c) of c is

∑ |Bj|.
However, the covering can have poorly placed balls or extra balls not needed to cover
c. A better approximation of the length is then to take the infimum over all possible
coverings:

L(c) ≈ inf
{∑

|Bj| | c ⊆
⋃

Bj

}
.

A second problem arises. A ball can do too well because it is too large: the sum
is therefore too small because the balls do not follow the contours of the curve.
Therefore, we approximate the length of c as the sum of the diameter of a ‘good’
covering of c, in the limit where the diameter of the balls tends to 0. Formally, fix
δ > 0 and A ⊂ R

p, then the previous discussion motivates us to define

Hn
δ (A) = inf

{
∞∑

j=1

|Bj|n | A ⊆
∞⋃

j=1

Bj, |Bj| 6 δ

}
.

In the previous definition, we raise |Bj| to the power of n by analogy with covering
sets with balls in R

n. Since the infimum is made over a smaller number of possible
coverings as δ decreases, Hn

δ (A) increases and it is legitimate to consider the limit
as δ → 0:

Hn(A) = lim
δ→0+

Hn
δ (A).

Hn(A) is the Hausdorff measure of A. In fact, one can show that as n increases
Hn(A) jumps from ∞ to 0, and that there is at most one s with 0 < Hs(A) < ∞. It
is always possible to define the biggest n for which Hn(A) is infinite, or equivalently
the smallest n such that Hn(A) = 0. This particular value of n is the Hausdorff
dimension of A:

DH(A) = sup {n | Hn(A) = ∞} = inf {n | Hn(A) = 0} .

The corresponding Hausdorff measure of A is however not necessarily finite. In
general, DH > DT . In fact, one cannot give a precise definition of a fractal, but
Falconer in [44] notices that most fractal sets K share the following properties:

1. K has details/irregularities at all scales.
2. K cannot be described using equations from classical geometry.
3. K is approximately, strictly or statistically self-similar.
4. The ‘fractal’ dimension of K is usually strictly greater than its topological

dimension.
5. K can be constructed most of the time in a simple way, perhaps recursively.

Box-counting dimension. Hausdorff dimension cannot be calculated directly
in practice due to the infimum encountered in the definition. To this end, more
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tractable definitions are needed. Box counting dimension dates back to the 1930’s
and is also known as Kolmogorov entropy, entropy dimension, or capacity dimension.
Its widespread use is due mainly to its ease of calculation. The idea is to cover the
object A with sets of diameter r. Call Nr the number of such sets needed to cover
A. The box dimension is then

DB(A) = lim
r→0

log Nr

− log r

if the limit converges (otherwise replace lim by lim inf or lim sup, respectively the
lower and upper box counting dimensions). The box dimension is therefore the
power law behaviour of the measurement of the object at scale r. The number of
sets that can cover A is of order r−DB(A). The previous definition remains the same
if for Nr we consider the smallest number of cubes of diameter r that can cover
A [44], hence the name box counting dimension. To obtain an estimate of DB(A),
it suffices to plot log Nr versus log r. The slope of a linear interpolation gives an
estimation of DB(A).
For sufficiently smooth objects like a straight line, it is possible to have equality

among the various definitions of dimension. However, in general this does not hold
and DE > DB > DH > DT . We now review a recursive procedure to create sets for
which DE > DH.

1.1.3 Iterated Function Systems (IFS)

IFS are a simple way to generate fractal objects. Hutchinson pioneered the theory of
non random self-similar fractal sets and measures via contracting mapping methods
in his early work in 1981 [60]. He also introduced the notion of scaling operators.
The terminology Iterated Function Systems appeared later on with the works of
Barnsley and Demko [15].
The idea of an IFS is to recursively apply a set of contractive operators on a given

set. A contraction ω : R
d → R

d is a mapping for which there exists a c ∈ (0, 1) such
that ∀(x, y), |ω(x)−ω(y)| 6 c|x− y|. c is called the contraction factor of ω. An IFS
consists of a collection of contractions {ω1, . . . , ωM} with M > 2, with contraction
factor c1, . . . , cM . Let H(R2) be the set of compact sets of R

2 and define the operator
W by:

W (A) =
M⋃

i=1

ωi(A)

for all A ∈ H(R2). Then W is contractive with contraction factor c = max(ci). One
can prove the existence and uniqueness of an attractor A∗ or fixed point of a given
IFS under mild conditions. A∗ satisfies

A∗ =
M⋃

i=1

ωi(A
∗) = W (A∗). (1.1)

The IFS is said to satisfy the open set condition if there exists a non empty open set
O ⊆ R

n such that ∪ωi(O) ⊆ O, where ωi(O) and ωj(O) are disjoint if i 6= j. The
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open set condition is strong enough to ensure good mathematical results (existence
of a fixed point, properties of the fixed point, derivation of its Hausdorff dimension,
etc.) but sufficiently weak to include a large number of examples. Under the open
set condition, one can show that the Hausdorff dimension s = DH(A) of the attractor
A of the IFS satisfies [93]

M∑

i=1

cs
i = 1. (1.2)

We have already encountered two attractors of IFS in this introduction. The Cantor
ternary set C is the fixed point of an IFS with two maps ω1(x) = x/3 and ω2(x) =
x/3 + 2/3 and satisfies C = ω1(C) ∪ ω2(C). From Equation (1.2), it follows that
the Hausdorff dimension of C is log 2/ log 3. The Sierpinski triangle is also the fixed
point of an IFS, consisting of 3 similarities of ratio 1/2. Its Hausdorff dimension is
log 3/ log 2.
IFS received a great deal of interest in data compression. The target image is

represented by the attractor of an IFS. The difficulty of the method is to obtain a set
of contractive maps that approximate correctly the target image. When successful,
the advantage is an enormous compression of information to encode the image.
Fractals encountered so far are all deterministic (IFS considered have non-random

contraction mappings) and are strictly self-similar. It is possible to randomize the
construction of fractals to break the strict self-similarity. The motivation to do so is
that ‘physical’ fractals are statistically self-similar. In other words, when zooming in
on a natural fractal, the detail has the same properties as the whole object without
being exactly the same. Random fractals can also be easily obtained via random
IFS when considering random maps ωi. Results on fractal sets have been adapted
to the study of random self-similar measures and functions. My research works
were partly focused on IFS acting over the space of functions to produce self-similar
random processes. The method used was based on previous results from Hutchin-
son and Rüschendorff [63] and generalized one of their results on the existence and
uniqueness of the attractor of an IFS, when allowing more randomness in the model.

Sets encountered so far possess no characteristic space scale. To characterize them
and give them a dimension, we had to look at the construction procedure and to
understand how scales interact with each other. Motivated by this observation, we
want a process exhibiting scale invariance not to have a characteristic time or scale,
so that the whole signal or parts of it cannot be distinguished. One cannot use
traditional techniques to study these processes. Instead, it is relevant to understand
how properties of the process are related across scales. Dimension is one way of
thinking about fractals, the other paradigm is scaling, better suited to signals. To
illustrate this notion, we consider two famous processes as introductory examples:
the Brownian motion and the fractional Brownian motion. Then, we discuss the
notion of strict self-similarity and introduce models with a richer structure. In this
thesis, a random function X(t) will be called either process or signal. The first term
is more widely used among mathematicians while the second term is more common
in the signal processing community.
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1.1.4 Brownian Motion and fBm

Brownian motion B(t) was first observed by botanist Robert Brown in 1828 as he
noticed the very irregular movement of pollen suspended in water [28]. The origin
of the motion remained however unexplained and we had to wait until the works
of Bachelier in stock price fluctuations in 1900 [11] and Einstein in 1905 [39] to
obtain an explanation of the motion. Einstein predicted the motion of a sufficiently
small particle caused by the random bombardment of the molecules of the liquid:
the random number of collisions on the particle by molecules coming from different
directions, with different strength, would cause an irregular motion of the particle.
It turned out that the model gave a good description of the motion observed by
Brown. A rigorous mathematical treatment of Brownian motion was given by Nor-
bert Wiener in 1923. Applications of Brownian motion are in fact far beyond the
study of microscopic particles floating in water. Its applications include modelling
stock prices or thermal noise in electric circuits, but cover also random perturba-
tions in many branches of science like physics, biology or economy. But Brownian
motion has also played a major role in understanding fractals and self-similar pro-
cesses. It can be constructed as a limit random walk in the plane or space. Limits
of random walks on a Sierpinski gasket were also studied by Barlow and Perkins in
1988 [13]. They proposed to associate a branching process with the random walk
(details about its construction are postponed to Chapter 3). This association was
the primary motivation of the definition of Embedded Branching Processes (EBP)
introduced by Jones in 2004 [69]. Part of my doctoral works consisted in extending
EBP to a wider class of processes that we called Multifractal Embedded Branching
Processes or MEBP.

Let us go back to the properties of B(t). Provided B(0) = 0, it can be shown that
the Brownian motion is the only process satisfying the following 3 properties
1. For all τ > 0, the increment process ∆Bτ (t) = B(t + τ) − B(t) is Gaussian and

stationary.
2. For t1 6 t2 6 t3 6 t4, increments B(t4) − B(t3) and B(t2) − B(t1) are indepen-

dent.
3. B(t) is continuous.

B(t) is the only Gaussian process with stationary and independent increments.
B(t) and ∆Bτ (t) satisfy an interesting scaling law:

B(ct)
d
= c1/2B(t) (1.3)

∆Bτ (ct)
d
= c1/2∆Bτ (t) (1.4)

for all c > 0. Here
d
= denotes equality in distribution. Relation (1.3) suggests that

the sample paths of Brownian motion cannot be distinguished from a rescaled ver-
sion, by dilating the time axis by a factor c and the amplitude axis by a factor c1/2:
there is no reference scale of time. Furthermore, the Hausdorff and box dimensions
of its graph are non integer and equal 1.5 almost surely. This observation builds a
first bridge between the notions of scaling law and fractal dimensions.
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For modelling purposes, Brownian motion suffers from its simplicity. It is unlikely
to be able to model all random processes with a graph whose dimension is 1.5, or
equivalently, whose scaling exponent is fixed to 1/2. To obtain more general models,
at least one of the 3 properties given above need to be relaxed. We can drop for
example either the independence of increments, leading to the fractional Brownian
motion (fBm) or the finite variance of increments to obtain the class of α-stable
Lévy processes. fBm BH(t) was introduced by Mandelbrot and Van Ness in 1968
[89] as a moving average of dB(t), where past increments are convoluted by the
kernel (t − s)H−1/2, for 0 < H < 1.

BH(0) = 0

BH(t) =
1

Γ(H + 1/2)




0∫

−∞

(
|t − s|H−1/2 − (−s)H−1/2

)
dB(s) +

t∫

0

|t − s|H−1/2dB(s)


 .

In fact, fBm has the following properties

1. BH is continuous and BH(0) = 0.
2. BH(t + τ) − BH(t) is normally distributed with mean 0 and variance τ 2H .
3. BH has stationary increments.

For H = 1/2, fBm reduces to Brownian motion. Under the assumption of finite
variance, the covariance structure of fBm is fixed

EBH(t)BH(s) =
E|BH(1)|2

2
(|t|2H + |s|2H − |t − s|2H).

A similar expression holds for increments of fBm (which are called fractional Gaus-
sian noise (fGn)). The study of fGn can inform us about the behaviour of fBm.
When 1/2 < H < 1, fGn is positively correlated and the correlation function is not
integrable (it decreases as the power law τ 2H−2). We are in presence of long-range
dependence (LRD) or long memory [20]. These notions can be compared with more
classical processes with exponential decay of their covariance function, like ARMA
processes.
One can show that fBm with parameter H has Hausdorff and box dimensions 2−H

almost surely. BH(t) and its increments ∆BH,τ (t) := BH(t + τ) − BH(t) satisfy a
similar scaling law to (1.3)

BH(ct)
d
= cHBH(t) (1.5)

∆BH,τ (ct)
d
= cH∆BH,τ (t). (1.6)

The behaviour and properties of fBm can be fully derived through its only param-
eter H. This simplicity is convenient for modelling but is also a drawback since fBm
is too simple for many real world problems. It is unlikely that a whole range of scale
invariant signals can be modeled by a class of processes with a single parameter.
There exists other processes which generalise the Brownian motion. Stochastic dif-
ferential equations are really the first extension to include a wider class of random
processes.
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1.1.5 Strict Self-Similarity

Relations (1.3) and (1.5) can be unified in the fundamental notion of self-similarity.
A process X is said to be self-similar with index H if and only if a change of the
time scale is equivalent to a change in the state space scale

∀c > 0 {X(ct), t ∈ R} fdd
= {cHX(t), t ∈ R}. (1.7)

Equality (1.7) holds in the sense of finite dimensional distributions (
fdd
= ), that is for

any d > 1, t1, . . . , td,

(X(ct1), . . . , X(ctd))
d
= (cHX(t1), . . . , c

HX(td)).

A process satisfying (1.7) was originally called semi-stable by Lamperti in 1962 [77].
Mandelbrot used the term self-similar 20 years later [85]. It follows immediately
from this definition that for all t > 0, the moments of X behave as a power law

E|X(t)|q = E|X(1)|q|t|qH (1.8)

for all q such that E|X(t)|q is finite. Relation (1.8) shows that self-similar signals are
non-stationary. There exists however a relation between stationary and self-similar
processes, given by Lamperti’s theorem [77].

1.1.6 H-SSSI processes

One usually restricts the class of self-similar processes to one of self-similar processes
with stationary increments (SSSI processes) as they are more convenient to work

with since their increments satisfy Ya(t) := X(t + a) − X(t)
d
= X(a) − X(0). If one

assumes finite variance, then the covariance structure of X is constrained to satisfy

EX(t)X(s) =
1

2
[|t|2H + |s|2H − |t − s|2H ]E|X(1)|2.

For the covariance function to be definite non-negative, it follows that the range of
possible values of H is (0, 1]. The unique H-SSSI Gaussian process is the fractional
Brownian motion introduced above and is the most widely used to model phenomena
possessing scale invariance properties. Also, the self-similarity is transmitted to Ya:

E|Ya(t)|q = E|X(1)|q|a|qH . (1.9)

We have already encountered this situation for fBm, where both the process and its
(stationary) increments are self-similar. Note that in (1.8) and (1.9), the exponent
is linear with q.
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1.1.7 Hölder regularity and fractal processes

The concept of local Hölder regularity is closely related to the notion of self-similarity.
Self-similar processes have parts (details) which are statistically similar to the whole.
Zooming in on a detail of the process helps us learn about its the local fluctuations.
Information about these local fluctuations can be made precise with the definition
of the Hölder exponent of a process X(t) at a specific time t = t0. It compares
X(t0) with a polynomial Pt0(t). The process X is said to belong to C

h(t0)
t0 if there is

a polynomial Pt0 of degree at most equal to the integer part of h(t0) such that

|X(t) − Pt0(t)| 6 K|t − t0|h(t0)

in a neighborhood of t0. The largest value H of h(t0) such that X ∈ C
h(t0)
t0 is the

Hölder exponent of X at t = t0. Alternatively, one says that the Hölder regularity of
X at t = t0 is H. Fractional Brownian motion BH(t) with self-similarity parameter
H (see Equation 1.9) has a fixed local Hölder exponent equal to H for all t. It follows
that almost surely, for all t, |BH(t+ δ)−BH(t)| is bounded above by KδH , for some
finite constant K. We refer to processes with a constant Hölder exponent along
their sample paths as monofractals. It is possible to consider a more general class
of processes for which the Hölder exponent varies smoothly and deterministically
with time. These processes are called multifractional. The major drawback is once
again the lack of flexibility since the Hölder exponent is the same at a given time
for all realisations of the process. In network traffic applications, the rich structure
of the data does not allow multifractional processes as good models [1]. Instead,
it is interesting to consider the case when h(t) varies in an erratic way. The name
multifractal was given to such processes, in opposition to monofractals with a single
Hölder exponent. Due to the highly irregularity of h(t), it is not realistic to describe
the fluctuations of multifractal processes in terms of the evolution of h with time.
Instead, we depict the process by means of its multifractal spectrum D(h), a global
description of its local fluctuations. D(h) is defined as the Hausdorff dimension of
the set of points with a given Hölder regularity h. For monofractal processes, D(h)
degenerates to a single point at h = H, D(H) = 1 and generally the convention is
to set D(h) = −∞ for h 6= H.

1.1.8 Multiplicative cascades

The oldest and best known multifractal processes are the multiplicative cascades
introduced by Mandelbrot in the context of intermittent turbulence in 1974 [84].
We review the construction of the deterministic binomial measure µ, indicate some
generalizations and give results about their local behaviour.

Deterministic example. Let the support of µ be the real interval [0, 1). The
idea is to allocate a mass or probability to each subinterval of [0, 1) of the form

In,k =
[ k

2n
,
k + 1

2n

)

for k = 0, . . . , 2n −1, n = 0, 1, 2, . . . Let t ∈ [0, 1), the singleton {t} can be expressed
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as the intersection of all In,k for which t ∈ In,k

{t} =
⋂

n>0

t∈In,k

In,k.

The binomial measure is constructed as the limit of a sequence of measures {µn}. Let
µ0([0, 1)) = 1. Start by splitting [0, 1) into two subintervals of equal length [0, 1/2)
and [1/2, 1). Allocate a mass m0 to [0, 1/2) and m1 to [1/2, 1), with m0 + m1 = 1,

µ1([0, 1/2)) = m0 µ1([1/2, 1)) = m1.

At stage n = 2, we divide each [0, 1/2) and [1/2, 1) into two subintervals of equal
length to obtain intervals [0, 1/4), [1/4, 1/2), [1/2, 3/4) and [3/4, 1). [0, 1/4) receives
a fraction m0 of the mass of [0, 1/2) and [1/4, 1/2) a fraction m1 of the mass of
[0, 1/2). Thus

µ2([0, 1/4)) = m2
0 µ2([1/4, 1/2)) = m0m1

µ2([1/2, 3/4)) = m1m0 µ2([3/4, 1)) = m2
1.

The figure below illustrates the binary branching structure associated with this
construction

m
0

m
1

m m
0 1

m m
1 1

m m
1 0

m m
0 0

At stage n, the initial mass m0 + m1 = 1 is distributed among 2n dyadic intervals,
which defines a measure µn, piecewise uniform. Consider the dyadic expansion of t

t =
n∑

i=1

ξi2
−i

for ξi ∈ {0, 1}. Let N =
∑n

i=1 ξi be the number of ones among the first n binary
digits of t, then, if t ∈ In,k,

µn(In,k) = mn−N
0 mN

1 .

Since for all m > n, µm(In,k) = µn(In,k), we may define the binomial measure µ to
be the limit of the sequence {µn} such that µ(In,k) = µn(In,k). Since µ([0, 1)) = 1
and µ is positive, the limit is well defined since (µn) is an increasing sequence,
bounded above. The construction of µ can be extended to all half-open subintervals
[a, b) of [0, 1). By Carathéodory’s extension theorem, we can uniquely extend µ to
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Figure 1.2: Construction of the deterministic binomial measure ν. From
top to bottom, left to right, construction of the measure after 1, 2, 3, 4, 8 and
12 iterations, for m0 = 1/4 and m1 = 3/4. The measure is renormalized so that∫

dµ = 1.
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Figure 1.3: Binomial cascade: partition function τ(q) and Hausdorff spectrum D(h)
when m0 = 0.25 and m1 = 0.75.

the σ-algebra generated by the dyadic intervals of [0, 1). The first few steps of the
construction of µ with m0 = 1/4 and m1 = 3/4 are illustrated in Figure 1.2.
The binomial measure is by construction very irregular and possesses no density.

We are generally interested in the process X(t) =
∫ t

0
dµ. X(t) is multifractal unless

m0 = m1 = 1/2 and its multifractal spectrum (defined at the end of the previous
section) is given by the Legendre-Fenchel (LF) transform of a so-called partition
function τ(q)

D(h) = inf
q

(qh − τ(q)) (1.10)

where τ(q) is given by
τ(q) = − log2(m

q
0 + mq

1). (1.11)

A review of the Legendre-Fenchel transform is given in Appendix A. As illustrated in
Figure 1.3, the spectrum of the binomial measure with m0 = 0.25 and m1 = 0.75 is
concave. In fact, the concave ∩-shape of the spectrum of X is typical of multiplicative
cascades. All results and observations about the multifractal spectrum in this section
can be found in [102].
The dyadic deterministic construction can be easily generalized by splitting [0, 1)

into b > 2 subintervals of equal length, each receiving a mass m0, . . . , mb−1 > 0,∑
k mk = 1. To this construction, we can associate a deterministic b-ary construction

tree, whose branches are equipped with the non-random weights m0, . . . , mb−1. The
spectrum of the integral of the limit measure is then the LF transform of the partition
function

τ(q) = − logb(m
q
0 + . . . + mq

b−1). (1.12)

Random example. The procedure can be randomized by allocating a random
mass to each subinterval at each iteration. Dyadic intervals In,k therefore receive a
random mass

µ(In,k) = M
(n)
n,k . . .M

(1)
1,k .

We usually make the following assumption about the random weights, for the random
binary cascade:

• All multipliers M
(1)
1,k , . . . , M

(n)
n,k are independent and positive a.s.
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• Conservation of the mass in the mean: E(M
(n+1)
n,2k + M

(n+1)
n,2k+1) = 1

• M
(n)
n,k

d
= M0 if k is even and M

(n)
n,k

d
= M1 if k is odd.

where
d
= denotes equality in distribution. Products of multipliers can be very small

and despite the conservation in the mean, the total mass distributed over the interval
[0, 1) may degenerate in some cases. However, under further conditions on the
multipliers, one can show Eµ([0, 1)) = 1. The Hausdorff spectrum of the integral of
the random binomial measure is then the LF transform of

τ(q) = − log2 E(M q
0 + M q

1 ). (1.13)

The generalization of the construction of the random measure by splitting [0, 1) into
b > 2 subintervals of equal length yields the partition function τ(q) = − log2 E(M q

0 +
. . . M q

b−1). Many other random cascades can be contemplated. In Chapter 3, we de-
rive an upper bound for the Hausdorff spectrum of a new process defined as the
integral of a measure obtained from a cascade construction on a random tree. The
novelty is the way we define an embedding from the boundary of the random tree to
intervals of the real line, which differs from previously proposed random partitions,
for example [100].

1.1.9 Multifractal formalism

For estimation, detection or classification purposes in signal processing, it is impor-
tant to be able to estimate the spectrum D(h) of a signal. It is a way to distinguish
a monofractal process from a multifractal process for example. In practice, we are
facing a double problem. Firstly, locating all points of the process with a given
Hölder regularity is not feasible due to the finite precision of the data. Secondly,
as discussed before, the difficulty in estimating the Hausdorff dimension of a given
set due to the presence of the infimum in its definition. Alternative methods of
estimations were sought, and gave birth to what is known as the multifractal for-
malism. By multifractal formalism we mean a formalism where we calculate the
Legendre-Fenchel transform (see Appendix A) of a partition function, which gener-
ally provides an upper bound for the multifractal spectrum. When this upper bound
is the multifractal spectrum, we will say that the multifractal formalism holds.
Multifractal formalism is associated with the study of the moments of multiresolu-

tion quantities TX(a, t), obtained from a comparison of the original process with a
reference pattern ψ(t) dilated and located at different positions [3, 7]

TX(a, t) =< X,ψa,t >= |a|−1

∫
X(u)ψ((u − t)/a)du (1.14)

where ψa,t(u) = |a|−1ψ((u − t)/a). In previous sections, we considered increments
of SSSI processes. It is easy to see that increments are the result of the comparison
of the original process X(t) with ψ(t) = δ(t + τ0) − δ(t), where δ(t) is the Dirac
distribution located at t. As we will see later, we can increase the regularity of ψ(t)
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by considering techniques based on wavelets coefficients. The study of E|TX(a, t)|q
is in practice replaced by time averages, under the assumption that the {TX(a, tk)}k

form a stationary sequence, for some partition tk, k ∈ Z. Then, a process X is said
to possess scaling properties if the time averages of TX(a, tk) follow a power law
behaviour with respect to a

1

na

na∑

k=1

|TX(a, tk)|q ≃ Cq|a|ζ(q)

where na is the number of TX(a, tk) available at scale a. ζ(q) is called the partition
function. Usually, this behaviour is valid only for a limited range of finite scales
and a limited range of q. It is worth mentioning that the power law behaviour of
time averages may differ from the power law behaviour (if it exists) of ensemble
averages. To illustrate this counterintuitive fact, it has has been demonstrated that
Compound Poisson Motions [19] have stationary increments which satisfy [32]

E|TX(a, t)|q ≃ Cq|a|λ(q)

in the limit as a → 0. This expression holds for a finite range of q ∈ (0, q+
c ) where

q+
c is the largest q such that E|TX(a, t)|q is finite. Although it is tempting to believe

that ζ(q) and λ(q) agree on (0, q+
c ), it is now acknowledged that equality holds only

for a smaller range of q values [92, 98].
The choice of TX(a, t) plays a central role for the estimation of the partition func-

tion. Multiresolution quantities based on a wavelet decomposition of the process are
the most powerful tool to date [1, 3, 7, 8, 66], since they allow the study of the signal
at different scales and positions. We introduce ξ(q), the LF transform of D(h),

ξ(q) = 1 + inf
h

(qh − D(h)).

In the next section we recall relations between ξ(q) and ζ(q), for two expressions of
TX(a, t).

Wavelet based estimators. The discrete wavelet transform is a time/scale
representation of a signal X(t) using a multiresolution analysis, decomposing a signal
into two parts: approximations and details. Approximations are obtained as the
result of projections of the signal onto a low frequency function φ0, called the scaling
function [82, 91]. This operation realizes a low-pass filter and retains the slow
variations of the signal. Details are obtained after comparison of the signal with a
high frequency function called the mother wavelet ψ0. This projection performs a
high-pass filter of the signal and only keeps its fast variations. To reconstruct the
signal from its projections on ψ0 and φ0, ψ0 must satisfy the admissibility condition
[50] ∫

R

ψ0(t)dt = 0.

A wavelet is described by the number N of its vanishing moments
∫

tqψ0(t)dt = 0, 0 6 q < N.
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j

Figure 1.4: The Wavelet leader LX(j, k) in black circle is defined as the maximum
of all detail coefficients dX(·, ·) (black dots) over 3λj,k represented in a shaded area
in the picture.

Let ψj,k(t) = 2−j/2ψ0(2
−jt − k) be a copy of ψ0, scaled by a factor 2−j and shifted

by k. We call the detail coefficient dX(j, k) the inner product of X(t) with ψj,k(t)

dX(j, k) =< X,ψj,k >=

∫

R

X(t)ψj,k(t)dt. (1.15)

The mother wavelet can be chosen so that {2−j/2ψ0(2
−jt−k), j ∈ Z, k ∈ Z} forms an

orthonormal basis of the space of square integrable signals L2(R). Let X ∈ L2(R),
then X can be decomposed

X(t) =
∑

j∈Z

∑

k∈Z

dX(j, k)ψj,k(t).

Let us go back to the estimation of the partition function ζ(q). Noticing the sim-
ilarity between Equations (1.14) and (1.15), we now have more powerful tools to
compare the process with wavelets of higher regularity than ψ(t) = δ(t + τ0)− δ(t),
by increasing the number of vanishing moments. Estimators based on wavelet coef-
ficients study the behaviour of

S1(q, j) =
1

nj

nj∑

k=1

|dX(j, k)|q

in the limit 2j → 0. We define

ζ1(q) = lim inf
j→−∞

( log2 S1(q, j)

j

)
. (1.16)

It was noted in [3] that ζ1(q) = ξ(q) for all positive q, giving only an upper bound of
the increasing part of the multifractal spectrum (see Appendix A). However, when
the process possesses oscillating singularities of the form |t− t0|h sin(|t− t0|−β) with
h, β > 0, the wavelet coefficient based estimator fails. In practice, the difficulty of
estimating the partition function for negative q comes from numerical issues. Since
wavelet coefficients can be very small, raising them to a negative power increases the
uncertainty and leads to estimation errors. In 2006, Jaffard, Lashermes and Abry
proposed a better estimator based on the so called wavelet leaders [66]. Let λj,k =
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[k2j, (k+1)2j) be the k-th dyadic interval at scale 2j and 3λj,k = λj,k−1∪λj,k∪λj,k+1

be the neighborhood around λj,k. The wavelet leaders LX(j, k) are then defined by

LX(j, k) = sup
λ′⊂3λj,k

|dX(·, ·)|

where the supremum is taken on dX(·, ·) in the neighborhood 3λj,k over all finer
scales 2j′ < 2j. This is illustrated in Figure 1.4. The estimation of the partition
function using wavelet leaders requires a slightly stronger condition on the process
than its continuity:

Definition 1. A process X is said Hölder uniform if there exists ǫ > 0 such that

∃C > 0 such that ∀t, s ∈ R, |X(t) − X(s)| 6 C|t − s|ǫ.

The ζ(q) estimator is based on the computation of

S2(q, j) =
1

nj

nj∑

k=1

|LX(j, k)|q.

It is known that

ζ2(q) = lim inf
j→−∞

( log2 S2(q, j)

j

)
(1.17)

agrees with ξ(q) for all q [3] for Hölder uniform processes, whether the process
possesses oscillating singularities or not. Thus, inverting the LF transform we obtain
an upper bound of the Hausdorff spectrum

D(h) 6 inf
q 6=0

(1 + qh − ζ2(q)). (1.18)

For concave D(h), the LF transform is involutive (see Appendix A) and therefore
equality in (1.18) holds. We have seen earlier that this is the case for multiplicative
cascades. The major advantage of the wavelet leader based multifractal formalism is
the ability to estimate the partition function for all values of q. Another important
property is that estimation of ζ(q) for positive q is independent of the wavelet basis
chosen. For negative q, a similar result holds if the wavelet belongs to the Schwartz
class. However, as noted by the authors, estimations using Daubechies wavelets
(which are not in the Schwartz class) performed well in [66], indicating that this
assumption could be weakened. For all the above reasons, in simulation trials, we
have chosen to estimate the spectrum of MEBP processes using the wavelet leader
technique presented in this introduction.
Wavelet leaders appeared more than ten years after an initial robust estimator of

the partition function was proposed in 1993, called the Wavelet Transform Modulus
Maxima (WTMM). Since it is sufficient to derive the position and values of the
maximum of the wavelet transform to characterize the singular behaviour of func-
tions [83], Arneodo, Bacry and Muzy used this technique to derive the spectrum
of singularities of a signal [12] and applied it in the context of turbulence [7]. A
comparative study in [66] indicated equivalent performances of the two techniques.
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1.2 Research work

In this thesis, I propose two new models to generate fractal processes, whose con-
struction relies on a branching process. A branching process is by definition a system
of particles which live for a random time and can give birth to offspring up to the
moment of their death. Conditioned on when and where they are born, offsprings
are independent of their parent and siblings. We are particularly interested in the
Galton-Watson process, the oldest and simplest branching process. We describe it
as follows. Start with a single ancestor. Suppose it lives exactly one unit of time
and that it gives birth to a random number of children when it dies. Let p be the
distribution of this random variable. Each offspring from the first generation be-
haves exactly the same way as the initial particle and independently of the others.
They live one unit of time and give birth to a random number of offspring at the
moment of death, according to the distribution p. And so on. The process can be
described mathematically using a discrete time index, giving the size of the popu-
lation Zn at time n = 0, 1, 2, . . . The random variables Zn possess very interesting
and well known properties (such as the Markov property) and provide intuition for
more complicated processes.
This model was first studied by Bienaymé in 1845, where he shows verbally in a

communication that the theorem on extinction of families is known to him [21]. His
contribution is however absent from the branching process literature [57]. It was then
reintroduced by Galton and Watson in 1874 when they were studying the problem of
extinction of surnames of noble English families. Galton noticed that in many cases,
surnames which were once very common totally disappeared after a few generations.
He addressed the problem by asking how many generations would elapse before
a name would disappear, given that a man has 0, 1, 2, . . . sons with probabilities
p0, p1, p2, . . . His friend the Reverend H.W. Watson solved the problem using the
iteration of generating functions [47]. Generalizations of the original Galton-Watson
process can be found for example in [54].
Applications of branching processes go beyond the study of population demogra-

phy, and have been applied to model cell growth in many areas of biology [117].
Other applications include polymerase chain reactions and gene amplification, to
cite but a few [67, 74]. Galton-Watson processes have also been used to produce
random fractal sets in the theory of Iterated Function Systems [43, 90]. The novelty
of my doctoral work is to introduce new models for generating fractal signals using
branching processes of the Galton-Watson type. The first model is a generalization
of the construction of Iterated Function Systems acting over the space of signals.
The second model concerns signals whose so-called crossing tree is a Galton-Watson
process, which we call Multifractal Embedded Branching Processes (MEBP) pro-
cesses. We briefly introduce them here.

1.2.1 Galton-Watson Iterated Function Systems

Deterministic fractal sets satisfy relation (1.1). They can be constructed via a de-
terministic recursive procedure. Starting from an initial set, apply M contractive
maps to it. Repeat the procedure ad infinitum. The M -ary tree associated with
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this construction is a deterministic M -ary tree. This procedure can be randomized
in many different ways. We can apply at each iteration a fixed number of random
maps, but we can also consider a random number of random maps at each step.
The theory of random fractal sets were studied by Falconer [43], Graf [48], Mauldin
and Williams [90]. They derived the exact Hausdorff dimension for random sets [49]
which reduces to the result of Moran in the deterministic setting [93]. In [61] and
[62], Hutchinson and Rüschendorff introduced new probability metrics for random
measures and obtained stronger results.
In Chapter 2, we propose a construction of a random IFS based on the works of

Hutchinson and Rüschendorff. We consider a random number of maps at each it-
eration of the algorithm, each map being random. The construction tree is then a
Galton-Watson branching process. We study conditions of existence and uniqueness
of a fixed point of the IFS. It is shown in [14] that the fractal attractor of a determin-
istic IFS continuously depends on the parameters of the IFS. We extend this result
and show, in a special case, that the moments of the fixed point continuously depend
on the distribution of the number of maps used at each iteration of the algorithm.

1.2.2 Multifractal Embedded Branching Processes

In the second part of this thesis, we propose a new class of multifractal processes,
called Multifractal Embedded Branching Processes (MEBP) processes, which can be
efficiently simulated on-line (Chapter 3). MEBP are defined using the crossing tree,
an ad-hoc space-time description of the process, and are such that the crossing tree
is a Galton-Watson branching process. The crossing tree of a given realisation of a
signal is obtained in the same way as Barlow and Perkins [13] associated a branching
process with a diffusion on the Sierpinski gasket. For any suitable branching process
there is a family of discrete-scale invariant processes—identical up to a continuous
time change—for which it is the crossing tree. We identify one of these as the
Canonical Embedded Branching Process (CEBP), and then construct MEBP from
it using a multifractal time change. To allow on-line simulation of the process,
the time change is constructed from a multiplicative cascade on the crossing tree.
Time-changed self-similar signals, in particular time-changed Brownian motion, are
popular models in finance [86, 87].
Brownian motion can be constructed as a CEBP, so MEBP include a class of time

changed Brownian motion, suggesting their suitability for modelling purposes. We
also propose to imitate an fBm with an MEBP. Proofs of the existence and continuity
of MEBP are given, together with an efficient on-line algorithm for simulating them
(a Matlab implementation is freely available from the web page of Jones). Also,
using an approach of Riedi, an upper bound on the multifractal spectrum of the
time change is derived (Chapter 4). Estimation of the spectrum using the wavelet
leaders is also carried out, supporting the theoretical results. Further results about
the Hausdorff spectrum of the time change defined on the boundary of the crossing
tree are also obtained.
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Galton-Watson Iterated Function

Systems

The terminology Iterated Function Systems (IFS), introduced by Barnsley and
Demko [15], refers to a finite set of contractive mappings which completely spec-
ify a fractal set. The study of IFS was pioneered by Hutchinson in 1981 [60] and
Barnsley and coworkers. Hutchinson proved the existence of a unique fractal set and
measure of an IFS using a contraction mapping principle, whereas Barnsley proved
the same result using a probabilistic set up. In the first section of this chapter, we
review the basic construction of fractal sets and measures using IFS. We mainly
focus on the method proposed by Hutchinson since it will be relevant for the pro-
posed extension in a later section. In addition, we briefly review alternatives to the
construction of IFS, like Recursive Iterated Function Systems (RIFS), and explain
how to add randomness to the model. In the second section we consider the space
of p integrable functions and define a set of contractive mappings acting over this
space, using the approach developed in [63]. These IFS rely on an M -ary underlying
construction tree, if M is the total number of contractions used. We propose to ex-
tend the model by allowing a random construction tree, with random contractions.
The existence of a unique fixed point is shown following the approach of Hutchinson
and Rüschendorff. Properties of the fixed point are described in section 2.5.

2.1 Self-similar sets and measures

In this section we review the definition and construction of self-similar sets. But
first, we recall fundamental mathematical notions such as complete metric spaces,
the fixed point theorem and the Hausdorff metric.

2.1.1 Contractive operators in metric spaces

Let X be a space and define a metric d : X × X → R on this space. (X, d) is then
called a metric space. The concept of metric leads to the notion of convergence.
A sequence of points (xn)n∈N of X is said to converge to an element of X when
the distance determined by the metric d between the two elements can be made
arbitrarily small by sending n to infinity. We are mainly concerned with sequences

31
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known as Cauchy sequences, which satisfy

∀ǫ > 0 ∃r ∈ N ∀(p, q) ∈ N
2 p > r q > r ⇒ d(xp, xq) 6 ǫ

where (xn)n∈N is a sequence of X. The definition of a Cauchy sequence states that
the distance between 2 elements of the sequence can be made arbitrarily small if
we consider p and q large enough. Note that a Cauchy sequence does not necessar-
ily converge. A metric space for which every Cauchy sequence converges is called
complete.

Definition 2. If f : X → X, we define the Lipschitz constant of f by

Lip(f) = sup
x 6=y

d(f(x), f(y))

d(x, y)
.

f is Lipschitz if Lip(f) < ∞ and f is contractive if Lip(f) < 1

The following theorem plays a central role in the theory of Iterated Function Sys-
tems. It is known as the Banach fixed point theorem.

Theorem 1. Let (X, d) be a complete metric space and f a contractive map. Then
f possess a fixed point in X. Moreover, this fixed point is unique.

2.1.2 Complete space of compact sets

Let K ⊂ R
2. Suppose

• K is bounded, that is there exists r > 0 such that for all x ∈ K, d(x, 0) 6 r.

• K is closed. A set K is closed if its complement Kc is open, that is if for all
x ∈ Kc, there exists r > 0 such that B(x, r) ⊂ Kc, where B(a, r) is the open
ball of center a and radius r.

K is compact if and only if for every sequence (xn)n∈N, it is possible to extract
a subsequence which converges in K. It is a standard result that if the underlying
space is of finite dimension, then K is compact if and only if K is closed and bounded.
The set of compact subsets of R

2 is usually denoted H(R2).
Let x ∈ R

2 and S ∈ H(R2). Define the distance between x and K ∈ H(R2) by

d(x,K) = inf{d(x, y) | y ∈ K}

and the distance between K and S by d(K, S) = inf{d(x, S) | x ∈ K}. Then, define
the Hausdorff metric on compact subsets of R

2 by

dH(K, S) = sup{d(K,S), d(S, K)}.

It follows that (H(R2), dH) is a complete metric space (see for example [14]). This
result motivates the study of sequences of compact sets defined via contraction
mappings and the definition of IFS and self-similar sets.
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2.1.3 Construction of self-similar sets

Consider a finite set {ω1, . . . , ωM} of contraction maps R
2 → R

2. If K ∈ H(R2),
define the scaling law W by

W (K) =
M⋃

i=1

ωi(K).

Denote by si the Lipschitz constant of ωi. W is contractive with Lipschitz constant
s = max{s1, . . . , sM}. Using the terminology of Hutchinson and Rüschendorff, K∗

satisfies the scaling law W if K∗ = W (K∗) [63]. Such a set is by construction discrete
self-similar, since it can be decomposed into a union of scaled identical M copies of
itself. They proved the existence of a unique self-similar set K∗ using the contraction
mapping theorem [60]. The Hausdorff dimension r of K∗ is usually fractional and
satisfies

M∑

i=1

sr
i = 1.

Let W p(K) = W (W p−1(K)). Starting from an arbitrary initial bounded set K0 6= ∅,
Hutchinson proved that W p(K0) → K∗ in the Hausdorff metric. K∗ is therefore
known as the fixed point or the attractor of the IFS. This gives an algorithm to
generate approximations of K∗. Select a starting point x0 and define K0 = {x0}.
Let K1 = W (K0), K2 = W (K1), and so on. As n → ∞, dH(Kn, K

∗) → 0. So for n
large enough, we can obtain a good approximation of the attractor.
Pictures of K∗ can also be obtained through a random and faster procedure, called

the ‘Random Iteration’ or ‘Chaos game’ [14, 15]. Consider an initial point x0 and ap-
ply a contractive mapping ωi1 chosen uniformly among the M possible contractions.
x1 = ωi1(x0). Select again another transformation, independently from the previous
one, and apply it to x1. Repeat the procedure many times to obtain a sequence
of points. It is a famous result that the orbit {xn} is dense in K∗. This random
algorithm can be slightly modified by not picking ωk with uniform probability but
with probability pk, with

∑
k pk = 1. The orbit still converges to the attractor of the

IFS, however some regions of the fixed point are visited more than others, depending
on the values of pk. In fact the random algorithm generates a picture of a measure
µ, as suggested by the relation [42]

µ(B) = lim
n→∞

1

n + 1

n∑

k=0

χB(xk)

where χB is the characteristic function of B. This equality makes explicit the rela-
tion between a measure, which support is the attractor of the IFS and the relative
visitation frequency of a set B. This notion is made precise using the notion of self-
similar measure, and it was proved in [60] that the measure µ previously obtained
is the unique self-similar measure µ of total mass one, such that

µ =
M∑

i=1

piµ ◦ ω−1
i .
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The support of µ is the attractor of the IFS without probabilities. The chaos game
was extended by Barnsley and coworkers [16] in 1989 by allowing dependence be-
tween the choice of mappings, where the probability of selecting a map at iteration
n depends on the selection made at step n−1. They called the procedure Recurrent
Iterated Function Systems (RIFS) and proved the existence of a unique compact set
called attractor of the IFS. The major difference lies in the fact that the attractor
of an RIFS need not exhibit self-similarity.
The previous constructions have been randomized in various ways to obtain sta-

tistically self-similar sets. The theory was extensively investigated by Falconer [43],
Mauldin and Williams [90] and Graf [48]. Later, Arbeiter [6] and Olsen [97] studied
the theory of random self-similar measures.
IFS considered so far are acting over the space of sets and measures. It is possible to

adapt these definitions to the study of self-similar signals and obtain fast algorithms
to simulate them.

2.2 Iterated Function Systems on functions

In this section we present the model and introduce the working spaces. The random
IFS model presented is referred to as a Galton-Watson IFS, referring to the random
structure of its underlying construction tree.

2.2.1 Deterministic IFS

Let Lp(X) be the space of p-integrable signals X → R where X is a compact subset
of the real line. || · ||p is the usual norm defined on Lp(X): ||f ||p = (

∫
|f(x)|pdx)1/p,

leading to the natural metric dp defined by dp(f, g) = ||f − g||p where f and g are
in Lp. (Lp, dp) is then a complete metric space (Riesz-Fisher theorem, [96]). It is
common to consider without loss of generality the case X = [0, 1].
Similarly, an IFS on functions consists of recursively applying a contractive operator

T . Starting with an initial function f0, we denote by T nf0 the n-th iterate of T acting
on f0. For a class of operators T , the IFS converges to a function f∗

T nf0 → f ∗ as n → +∞ (2.1)

in Lp(X). f ∗ is the unique function satisfying f = Tf and similarly, we say that
f∗ satisfies the scaling law T . That is, f ∗ is the fixed point or attractor of the IFS
associated with T . It is generally assumed that T can be decomposed into a set of
M nonlinear operators φi : R×X → R for 1 6 i 6 M . Each φi deforms the original
signal and maps it to a subinterval Xi = ̺i(X) of X. Specifically,

(Tf)(x) =
M∑

i=1

φi[f(̺−1
i (x)), ̺−1

i (x))]1̺i(X)(x) (2.2)

where {̺i(X)}M
i=1 partitions X. 1̺i(X) is the indicator function of the interval ̺i(X).

The procedure is illustrated in Figure 2.1. In (2.2), φi are functions of two variables.
The second variable is optional however (we introduce it to obtain more general
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Figure 2.1: Operator T acting on f0. Here, M = 3.

results) and one can define the operator T with φi : R → R. The underlying con-
struction tree is an M -ary deterministic tree. Conditions of convergence of the IFS
are derived explicitly in [63] for non-linear functions φi : R → R. The result can be
easily generalized to functions φi : R × X → R, as above.

Theorem 2. Suppose that ̺i are strict contractions with contraction factors ri < 1
for i = 1, . . . , M , and that φi are Lipschitz in their first variable with Lipschitz con-

stants si. If for some p, λp =
M∑
i=1

ris
p
i < 1 and

M∑
i=1

ri

∫
|φi(0, x)|pdx < ∞, then T has

a unique fixed point in Lp(X).

This is a specific case of Theorem 4, so the proof is not given here. The conditions
for convergence are quite weak. The second condition only requires that φi must be
p integrable with respect to their second variable.
Figure 2.2 presents attractors of two different IFS, one continuous and one discon-

tinuous. Conditions for continuity are derived in section 2.5.1 in a more general
setting.
The deterministic model acting on functions is not flexible enough to model natural

signals. This is mainly due to its deterministic self-similarity as observed in Figure
2.2. One way to break this pattern is to add randomness to the construction. Section
2.2.3 defines random IFS with random operators and a random construction tree.

2.2.2 Lp spaces

Before giving the definition of a Galton-Watson IFS we need to specify the space
where the fixed point lies. Let (Σ,F , P ) be a probability space. We endow Lp with
its σ-algebra Lp ([107], définition 25.2). Then, a p-integrable random process is a
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Figure 2.2: Top signal: continuous attractor of the IFS defined with the maps
φ1(u, v) = s1u + v3 and φ2(u, v) = s2u + (1− v2), where s1 = s2 = 0.75. The middle
discontinuous signal is also obtained as the fixed point of an IFS, whose parameters
are φ1(u, v) = s1u+1 and φ2(u, v) = s2u−1, where s1 = 0.6 and s2 = 0.8. X = [0, 1]
in both cases. The bottom figure is a natural fractal obtained at dusk, on a beach
in Queensland.
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random variable f : Σ → Lp(X), provided f is measurable. Define

Lp = {f : Σ → Lp(X), f measurable | E

[
||f ||pp

]
< +∞}

where E denotes expectation under P . We denote by fσ a realisation of the random
process f ∈ Lp, where σ ∈ Σ. f(x) : Σ → R is the random variable obtained by
evaluating f at x. The goal is to define a metric d∗

p over Lp such that (Lp, d
∗
p) is a

complete metric space. Let
||f ||∗p = E

1
p
[
||f ||pp

]
(2.3)

for all random p-integrable functions f ∈ Lp.

Lemma 1. || · ||∗p is a norm on Lp, p > 1.

Proof. The lemma is obvious for p = 1. We consider p 6= 1 in the following. The
key is to derive the triangle inequality for || · ||∗p, using the Hölder and Minkowski
inequalities.
Integrals are defined in this proof with respect to the Lebesgue measure. First note

that if a and b are non negative reals and p and q are such that 1
p

+ 1
q

= 1 and

1 < p, q < ∞, then ab 6 ap

p
+ bq

q
. This inequality can be derived using the concavity

of log. This gives E
∫
|f̄ ḡ| 6 E[

∫
1
p
|f̄ |p +

∫
1
q
|ḡ|q] where we define f̄ = f

||f ||∗p
and

ḡ = g
||g||∗q

, from which

||fg||∗1 = E

∫
|fg| 6 ||f ||∗p||g||∗q (2.4)

follows. This is the equivalent of the Hölder inequality for random p and q integrable
functions.
Applying the triangle inequality to |f + g|, ||f + g||∗pp is smaller than E

∫
|f +

g|p−1(|f | + |g|) =
∣∣∣∣|f + g|p−1|f |

∣∣∣∣∗
1

+
∣∣∣∣|f + g|p−1|g|

∣∣∣∣∗
1
. Thus, using the previous

Hölder’s inequality:

||f + g||∗pp 6
∣∣∣∣|f + g|p−1

∣∣∣∣∗
q

[
||f ||∗p + ||g||∗p

]
.

Since pq = p + q,

∣∣∣∣|f + g|p−1
∣∣∣∣∗

q
= E

1
q
( ∫

|f + g|p
)

= ||f + g||∗p−1
p . (2.5)

Hence:
||f + g||∗pp 6 ||f + g||∗p−1

p

[
||f ||∗p + ||g||∗p

]
.

When ||f + g||∗p = 0, the inequality is trivial. When it is not, we can divide each
side of the inequality by ||f + g||∗p−1

p which concludes the proof of lemma.

Lemma 1 leads us to define the metric d∗
p as follows: d∗

p(f, g) = ||f − g||∗p. It is
straightforward to adapt the proof of the Riesz-Fisher theorem [96] to show that
(Lp, d

∗
p) is a Banach space.
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2.2.3 Galton-Watson IFS

The operator T acting over the space Lp is now defined as follows:

(Tf)(x) =
Z∑

j=1

φj[f
(j)(̺−1

j (x)), ̺−1
j (x))]1̺j(X)(x) (2.6)

where (Z, φ1, ̺1, . . . , φZ , ̺Z) is random and f (j) are i.i.d. copies of f ∈ Lp. The
̺j are affine maps and randomly partition X into Z subintervals. The contraction
factor of ̺j is the random variable rj, such that 0 < rj < 1 almost surely. φj are
functions of two variables, Lipschitz in their first variable, with random Lipschitz
factor sj. Z is distributed according to a probability vector q = (q1, q2, . . .). The
underlying construction tree has therefore a random number of offspring at each
node, as illustrated in Figure 2.3. Assuming that, in this construction, the random
variable Z is independent and identically distributed from one node to another, the
construction tree is a Galton-Watson branching process [95], hence the name of the
IFS. A good survey on Galton-Watson processes can be found in [10]. The natural
question is to know whether T possess a fixed point f∗, and if this fixed point is
unique. By fixed point, we mean a function f∗ which satisfies f∗ = Tf ∗ in Lp.
Also, consider an arbitrary random "seed" f0 and let T nf0 = T (T n−1f0) be the n-th
iterate of f0. Under the condition of existence of a fixed point, we want to find
conditions such that d∗

p(T
nf0, f

∗) → 0 as n → ∞, providing a simple algorithm to
produce an approximation of the fixed point. It is worth noting that the number of
maps used to produce the n-th iterate of f0 varies with n and is a random variable
ν, defined above. In [35], Daoudi proposed to produce fractal functions based on a
generalization of IFS (GIFS), allowing the number of maps used at each iteration to
vary. The first fundamental difference between his model and ours is that the number
of contractions used in [35] is not random whereas it is in the present construction.
Moreover, Daoudi works in H(R2) and not in Lp.
Hutchinson and Rüschendorff [63] have shown the existence and uniqueness of a

fixed point in Lp with random maps and constant ν. Also, they have introduced
new probability spaces to prove existence of a unique fixed point for random sets
and measures, previously obtained by Falconer and Mauldin & Williams. We adopt
their method to prove that T possess a unique fixed point f ∗ under some conditions.

2.3 Space of extended trees

An ad-hoc structure of Σ is needed in order to build i.i.d. copies of the signal f . We
show how to do this in the present section using extended Galton-Watson trees.
The construction of the probability space of extended Galton-Watson trees relies

on two famous theorems in measure theory: the Ionescu-Tulcea theorem and the
Daniell-Kolmogorov extension theorem. We use the first theorem to build a proba-
bility space of the first n generations of extended trees for any finite integer n, then
extend the construction to infinite trees using the Daniell-Kolmogorov extension
theorem. An element of that space therefore consists of a realisation of a Galton-
Watson tree whose branches are equipped with realisations of the IFS operators.
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Figure 2.3: The first two generations of a Galton-Watson IFS. f
(j)
0 are i.i.d. realiza-

tions of an initial process f0. Likewise, (Tf0)
(j) are i.i.d. realisations of the process

Tf0. The associated tree is a realisation of two generations of a Galton-Watson
tree. (T 2f0)

1) is not uniquely determined by its construction tree: there is a loss
of information. Branches of the tree need to be endowed with realisations of the
random mappings of the IFS.

Ionescu-Tulcea [111]. The result of Ionescu-Tulcea relies on the concept of prob-
ability kernels. Let (A1,A1) and (A2,A2) be two measurable spaces. A probability
kernel is a function κ2 : A1 × A2 → [0, 1] such that for all E ∈ A2, a 7→ κ2(a,E)
is a measurable function on A1 and such that for all a ∈ A1, E 7→ κ2(a,E) is a
probability measure on (A2,A2). We interpret κ2 as a probability distribution on
(A2,A2) conditioned on state a ∈ A1 and write it either κ2(E|a) or κ2(a,E). Let
κ3 : A1 × A2 × A3 → [0, 1] be a probability measure on (A3,A3) given we were in
state (a1, a2) for ai ∈ Ai, i = 1, 2 in the previous step. Then the kernel κ2 ⊗ κ3

defined as

(κ2 ⊗ κ3)(a1, E) =

∫ ∫
1E(b, c)κ2(a1, db)κ3(a1, b, dc) (2.7)

measures Borel subsets E of A2 ×A3 from an initial state a1 ∈ A1. Ionescu-Tulcea
let us chain correctly n measurable spaces (Ai,Ai), i = 1, . . . , n by defining a joint

probability on the product space
n∏

i=1

Ai from n probability kernels κi. The result of

Ionescu-Tulcea is then the following [111].

Theorem 3. Let κ1 be a probability measure on (A1,A1) and for all n > 2, κn :( n−1∏
i=1

Ak

)
× An → [0, 1] a probability kernel. Then there exists a unique probability

measure on
n∏

i=1

Ak given by
n⊗

i=1

κi, a generalization of Equation (2.7).

Daniell-Kolmogorov [31]. The Daniell-Kolmogorov extension theorem extends
a measure defined on a sequence of finite product spaces to a measure on an infinite
product space. Let A1, A2, . . . be a sequence of measurable spaces and µn a measure
on the product space A1×. . .×An. We say that the sequence of probability measures



40

µn forms a projective family if µn+1(·×An+1) = µn for all n ∈ N. Daniell-Kolmogorov

states that if µn forms a projective family, then there exists a measure µ on
∞∏
i=1

Ai

such that µn is equal to the projection of µ onto
n∏

i=1

Ai.

Space of extended trees. Let (∆,D, P ) be the probability space of elements of
the form

δ = (Z, φ1, ̺1, . . . , φZ , ̺Z).

An element of this space carries information about the node to which it is attached:
it contains the number of children of the node (random variable ν) and the operators
attached to each of its branches. The probability measure κ1 = P lets us build the
sample space for first generation of the tree, denoted by K1 = ∆. We define Kj the
sample space of the j-th generation of the tree by

Kj := {{δ(i)} | i = 1, . . . , Zj δ(i) ∈ ∆ Zj ∈ {1, 2, 3, . . .}}.

The σ-algebra associated with Kj is

Dj = σ
( ⋃

k>1

Dk
)

= {d1 ∪ d2 ∪ . . . |di ∈ Di} (2.8)

where Dk = D × . . . × D k times. In (2.8), note that the right hand side does not
depend on j. This comes from the definition of Kj which is the same for all j > 2.
The σ-algebra attached to each Kj is therefore the same. Also, we need to consider
the smallest σ-algebra spanned by the union of Dk since the union of σ-algebras is
not in general a σ-algebra.
The construction of κ2 supposes we know the first generation and in particular its

size Z1. For d = d1 ∪ d2 ∪ . . . ∈ D2, with dj = Ej
1 × . . . × Ej

j ∈ Dj, we define

κ2(d|Z1) =

Z1∏

i=1

P (EZ1
i ). (2.9)

Sets di for i 6= Z1 therefore receive a zero measure. This is illustrated in Figure 2.4.
By taking the product of P (EZ1

i ) we ensure independence from one node of the tree
to the next.
The procedure for constructing κ2 is repeated n times to build a probability measure

on the first n generations
n∏

i=1

K i, from Ionescu-Tulcea. Then, Daniell-Kolmogorov let

us extend the measure to infinite trees since by construction
n⊗

i=1

κi forms a projective

family. Let K be the infinite product space, K its σ-algebra and κ the probability
distribution over this space.

Definition 3. (K,K, κ) is the probability space of extended Galton-Watson trees.
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Figure 2.4: Spaces K1, K2 and K1 ×K2 with their respective probability measures
κ1, κ2 and κ1 ⊗ κ2. δ ∈ K1 has 2 children. Conditionally on δ, only d2 ∈ K2

represented here has non-zero measure as it is the only element composed of 2
families. κ2 assigns measure to each family in d2 independently. To keep the figure
simple, operators attached to the branches of the tree are not represented.

By construction, extended trees are Galton-Watson trees whose branches are marked
with random operators. We use classical notation to label nodes and branches of
the tree: let ∅ be the root of the tree and Z∅ be the number of branches rooted at
∅. Then each node coming from the root is denoted by i, for i = 1, . . . , Z∅. The
second generation of the tree is denoted ij for 1 6 j 6 Zi. More generally, a node
i is an element of U =

⋃
n>0 N

∗n, where N
∗ := {1, 2, . . .}, and a branch is a couple

of nodes (i, ij) where i ∈ U and j is a strictly positive integer. Lastly, we consider
ki the subtree of k ∈ K rooted at i: ki = {j | j ∈ U and ij ∈ k}. By construction,
the random variables ki, i = 1 . . . Z∅, are independent and identically distributed
(Equation (2.9)).
To be consistent with the fact that the fixed point lies at the root of its construction

tree, we write Z∅ for Z in (2.6) for the remainder of this chapter.

2.4 Existence and Uniqueness of a fixed point

This section makes precise the conditions under which the Galton-Watson IFS de-
fined in Equation (5.7) possesses a unique fixed point.

Theorem 4. Let (K,K, κ) be the space of extended trees and define Lp using (Σ,F , P ) =

(K,K, κ). If E

Z∅∑
j=1

rj

∫
|φj(0, x)|pdx < +∞ for some 1 < p < +∞, where rj is the

contractive factor of ̺j with 0 < rj < 1 almost surely, each φj(., .) is a.s. Lipschitz
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in its first variable, with Lipschitz constant sj and and λp = E

Z∅∑
j=1

rjs
p
j < 1 , where

E denotes the expectation under κ, there exists a unique function f∗ which satisfies
f∗ = Tf ∗ in Lp. Moreover, for all f0 ∈ Lp(X),

d∗
p(T

nf0, f
∗) 6

λ
n/p
p

1 − λ
1/p
p

d∗
p(f0, T f0) (2.10)

which tends to 0 as n → +∞.

Proof. The proof is in two steps. We first need to check that Lp is closed under T .
Next, we have to show that T is contractive in the complete metric space (Lp, d

∗
p).

The Banach fixed point theorem will ensure the existence and uniqueness of a limit
function in Lp.
Let f ∈ Lp. We make explicit the construction of i.i.d. copies of f ∈ Lp. Using

notations of section 2.2.2, write fk for the realisation of f at point k ∈ K, then define
f

(j)
k by f

(j)
k := fkj

. Since the random variables kj are i.i.d., so are the functions f
(j)
k .

First step. Let f ∈ Lp. We want to show that Tf ∈ Lp, or equivalently
E

∫
X
|(Tf)(x)|pdx < +∞. To this end, first notice that in the expression (2.6) of Tf ,

the indicator function partitions X into disjoint subintervals, so that the absolute
value of the sum equals the sum of absolute values. Thus

E

∫

X

|(Tf)(x)|pdx = E

Z∅∑

j=1

∫

̺j(X)

|φj[f
(j)(̺−1

j (x)), ̺−1
j (x))]|pdx.

Since the ̺j are affine with contraction factor 0 < rj < 1, its inverse is also affine
with almost everywhere existing Jacobian, and we can perform the change of variable
y = ̺−1

j (x). We bound the Jacobian of the transformation by rj, the contraction
factor of ̺j. E

∫
X
|(Tf)(x)|pdx is therefore bounded above by:

E

Z∅∑

j=1

rjE[

∫

X

|φj[f
(j)(y), y]|pdy

∣∣φj]. (2.11)

In (2.11), we have also used the law of total probability

E(·) = E[E(·|{Z∅, {φj, ̺j}})]
where the second expectation is conditioned on the IFS parameters. Terms depend-
ing on Z∅ and ̺j can be put outside the second expectation, leaving us with a term
which only depends on φj, hence (2.11). Note that the term in the inner expectation
does not depend any more on the ̺i’s and is just d∗p

p (φj[f
(j), Id], 0) after condition-

ing on the IFS parameters. Id stands for the identity function and 0 is the zero
function. Using the triangle inequality, and the fact that for any reals x and y we
have |x + y|p 6 2p(|x|p + |y|p) it follows that E

∫
X
|(Tf)(x)|pdx is bounded by:

2p
E

Z∅∑

j=1

rjd
∗p
p (φj[f

(j)
κ , Id], φj[0, Id]) + 2p

E

Z∅∑

j=1

rjd
∗p
p (φj[0, Id], 0). (2.12)
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Using the Lipschitz property of the φj, the first term of (2.12) is smaller than

2p
E

Z∅∑

j=1

rjs
p
jd

∗p
p (f (j)

κ , 0)

which is bounded since f ∈ Lp. The second term of (2.12) is proportional to

E

Z∅∑
j=1

rj

∫
|φj(0, x)|pdx and is finite by assumption. E

∫
X
|(Tf)(x)|pdx < +∞ fol-

lows.

Second step. We now prove the contractive property of T under the conditions of
Theorem 4. Take f and g in Lp and consider d∗p

p (Tf, Tg). As in step 1, we expand
expressions of Tf and Tg and swap the sum and absolute value, we then use the law
of total probability and perform the change of variable y = ̺−1

j (x), whose Jacobian
is bounded by rj. We obtain

d∗p
p (Tf, Tg) = E

∫ ∣∣∣(Tf)(x) − (Tg)(x)
∣∣∣
p

dx

6 E

Z∅∑

j=1

rjE
∗
[ ∫

X

∣∣∣φj[f
(j)(y)), y] − φj[g

(j)(y), y]
∣∣∣
p

dy
]

where E
∗ = E[·|{Z∅, {φi, ̺i}}]. Lastly, we use the Lipschitz property of the non

linear random maps φj to conclude that

d∗p
p (Tf, Tg) 6 λpd

∗p
p (f, g)

where the definition of λp is given in the theorem statement. Under the assumption
λp < 1, the contractive property follows and from the Banach fixed point theorem
there exists a unique function f∗, attractor of the Galton-Watson IFS. Moreover,

d∗p
p (T nf0, f

∗) 6 λpd
∗p
p (T n−1f0, f

∗)

which leads to
d∗

p(T
nf0, f

∗) 6 λn/p
p d∗

p(f0, f
∗).

Now using the triangle inequality:

d∗
p(f0, f

∗) 6 d∗
p(f0, T f0) + λ1/p

p d∗
p(f0, f

∗)

so that

d∗
p(T

nf0, f
∗) 6

λ
n/p
p

1 − λ
1/p
p

d∗
p(f0, T f0)

which concludes the proof of the theorem.

To illustrate, we present in Figure 2.5 a snapshot of the fixed point of a certain IFS
and its mean. The IFS parameters are detailed in the Figure caption.
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The theorem not only states that starting from an initial function the IFS converges
in Lp to a unique fixed point under the metric d∗

p but also that the convergence is
exponential. It follows that the convergence of T nf0 towards f∗ is almost sure. To
show this, let ǫ > 0, then

P (dp
p(T

nf0, f
∗) > ǫ) 6

Edp
p(T

nf0, f
∗)

ǫ
6 Cλn

p

where

C =
d∗p

p (f0, T f0)

ǫ(1 − λ
1/p
p )p

.

It follows that ∑

n>1

P (dp
p(T

nf, f∗) > ǫ) < ∞

and from Borel-Cantelli lemma we have P -almost sure convergence.
f ∗ is the unique fixed point for which f ∗ = Tf ∗ in Lp but there may be some other

f0 6= f∗ such that the law of f 0 equals the law of Tf 0. The following result can be
proven in the same way as Hutchinson and Rüschendorff [63].

Corollary 1. The distribution of f∗ is the unique distribution which satisfies

f∗ d
= Tf ∗, where

d
= denotes equality in distribution.

The idea is to define a new space of probability distributions of elements of Lp and
a new metric over this space which, leads to a complete metric space. Then one can
prove that the operator T seen at the distribution level is contractive in this space
and therefore admits a unique fixed point.

2.5 Properties of the fixed point

We now consider two properties of the fixed point. First, we derive conditions under
which paths are a.s. continuous. Then, we look at the moments of the fixed point and
show that under certain assumptions, moments of the attractor continuously depend
on the probability vector q. This fact is suggested by observing the Figure 2.5 where
a small change in q induces ‘small’ variations in the mean of the fixed point. Indeed,
the mean of the fixed point in the middle figure is obtained for q1 = (0.2, 0.3, 0.5),
and the bottom figure shows the mean of another Galton-Watson IFS with the same
parameters, but with q2 = (0.2, 0.2, 0.6), so that the distance (as defined below)
between q1 and q2 is small. Then one can notice that the two means look quite
similar, so that changing q1 by a small amount does not modify too much the shape
of the mean of the fixed point. This observation will be made precise in Section
2.5.2.
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Figure 2.5: A realization of the fixed point (a) and its mean (b). φj are decomposed
as follows φj(x, t) = sjx + Xζj(t) for j = 1, . . . , Z∅ where X is normally distributed
with mean 1 and variance 0.25. When Z∅ = 1, s1 = 0.6 and ζ1(t) = t(1 − t). For
Z∅ = 2 we define s1 = 0.6, s2 = 0.7, ζ1(t) = t3, ζ2(t) = 1 − t2 and for Z∅ = 3
we have s1 = 0.6, s2 = 0.7, s3 = 0.3, ζ1(t) = t4, ζ2(t) = (t + 1)(1 − 0.75t3) and
ζ3(t) = 0.5(1 − t2). Z∅ takes the values 1, 2 or 3 with probabilities 0.2, 0.3 and 0.5
for the first 2 figures. The bottom figure is the mean obtained with the probabilities
0.2, 0.2 and 0.6.
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2.5.1 Continuity of the sample paths

The results for Galton-Watson IFS are a straight-forward generalization of continu-
ity results in the deterministic setting.

Proposition 1. X = [a, b]. Let α be the unique random fixed point of φ1(., a)
and β the unique random fixed point of φZ∅

(., b): φ1(α, a) = α and φZ∅
(β, b) = β.

Assume that α and β are the same for all possible realisations of φ1 and φZ∅
. If

φi(β, b) = φi+1(α, a) a.s. for all i ∈ {1, . . . , Z∅ − 1} and all the operators considered
are continuous, then f ∗ has continuous paths and f ∗(a) = α and f ∗(b) = β (a.s.).

Proof. We first note that f ∗(a) and f∗(b) are respectively fixed points of φ1 and φZ∅
:

f ∗(a) = φ1[f
∗(̺−1

1 (a)), ̺−1
1 (a)] = φ1[f

∗(a), a]

f ∗(b) = φZ∅
[f ∗(̺−1

Z∅
(b)), ̺−1

Z∅
(b)] = φZ∅

[f ∗(b), b].

Those equalities have to remain true whatever Z∅ is, which is realized under the
assumption of Proposition 1.
Let ̺i[a, b] = [ai−1, ai] for i ∈ {1, . . . , Z∅} and a0 = a, aZ∅

= b almost surely.
We only have to prove the continuity at the random points ai of the interval [a, b]
since we consider continuous operators and d∗

p is complete on the set of continuous
functions [63]. Therefore, if the n-th iterate of T is continuous, the limit process
also belongs to the space of continuous functions.
f ∗(ai) can be expressed in two different ways as the point ai is at the intersection

of ̺i[a, b] with ̺i+1[a, b]:

f∗(ai) = φi[f
∗(̺−1

i (ai)), ̺
−1
i (ai)] = φi[f

∗(b), b] = φi[β, b]. (2.13)

We can show in a similar way that f ∗(ai) = φi+1[α, a]. Under the condition of the
proposition the continuity of f ∗ at points ai follows.

With this model, it is possible to obtain continuous paths or random processes
everywhere discontinuous by adjusting the IFS parameters. Allowing only one dis-
continuity by not joining two operators φZ∅,i and φZ∅,i+1 at the random point ai will
result in an everywhere discontinuous fixed point. A snapshot of a continuous fixed
point is represented in Figure 2.5.

2.5.2 Continuous dependency w.r.t. q

The continuity of the moments of the fixed point with respect to q is suggested in
Figure 2.5. This observation is related to the one made by Barnsley in [14] where
the attractor of a deterministic IFS is continuously varying with respect to the IFS
parameters, leading to applications in image synthesis. We prove the result here for
the model presented in [37], with deterministic maps and a random tree.
Consider the set of deterministic maps

{{φk,1, . . . , φk,k, ̺k,1, . . . , ̺k,k}}k=1,2,....
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Given Z∅ = j, then apply {φj,1, . . . , φj,j, ̺j,1, . . . , ̺j,j}. φk,j and ̺k,j may differ for
different values of k, j = 1, . . . , k. The operator T becomes:

(Tf)(x) =

Z∅∑

j=1

φZ∅,j[f
(j)(̺−1

Z∅,j(x)), ̺−1
Z∅,j(x))]1̺Z∅,j(X)(x). (2.14)

Lipschitz factor of φZ∅,j is sZ∅,j and the contraction factor of ̺Z∅,j is denoted by
rZ∅,j. Since the operators attached to the branches of the tree are the same for a
given number of offsprings, to one realisation of the tree is associated one and only
one realisation of the fixed point.

Theorem 5. Suppose conditions of Theorem 4 hold. Let f∗ ∈ Lp be the fixed point
of a Galton-Watson IFS, bounded number of offspring and deterministic maps of the
form φ(u, v) = su + ζ(v), where 0 6 s < 1 and ζ is a nonlinear function. Suppose

that λr = E

Z∅∑
j=1

rZ∅,js
r
Z∅,j < 1 for r = 1, . . . , p. Then the r-th moment of f ∗ continu-

ously varies with respect to the probability generating vector q, for r = 1, . . . , p.

Proof. We prove the theorem by induction on r, for r = 1, . . . , p. The first step of
the proof shows that the continuity property holds for the mean of the fixed point.
In the second step, we generalize it to any higher order integer moment. Let Pv be
the space of probability vectors

Pv = {p = (pi, i ∈ N
∗) |

∑

i

pi = 1}

where N
∗ := {1, 2, . . .}. This space is endowed with the metric l(p,q) =

∑
i |pi − qi|.

First step. By definition of Lp, Epf ∗
p ∈ L1, if we denote by f ∗

p the fixed point
of the IFS with probability vector p and by Ep the expectation under κp, the
probability measure defined on K with probability generating vector p. We adopt
this notation in this section to emphasize the dependence on p. Note that by
changing the probability vector, we change the measure κp on the space of extended
Galton Watson trees. Therefore, if we now call f ∗

q the fixed point of the same
IFS with probability generating vector q, the expectation with respect to this new
measure is different from Ep and we denote it by Eq (expectation under the new
measure κq). The continuity of the mean of the fixed point with respect to the
generating vector follows if we show the continuity of the map ψ : Pv → L1 which
associates with each probability vector the mean of the fixed point of the Galton-
Watson IFS. Let p ∈ Pv, we want to show that for all ǫ > 0, there exists η > 0 such
that

∀q ∈ Pv l(p,q) 6 η ⇒ d1(Epf ∗
p, Eqf

∗
q) 6 ǫ. (2.15)

Let ǫ > 0 and p ∈ Pv. We first use the fact that f ∗ and Tf ∗ have the same
distribution, therefore the same mean:

d1(Epf∗
p, Eqf

∗
q) =
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∫
|Ep

Z1
∅∑

j=1

φZ1
∅
,j[f

∗
p ◦ ̺−1

Z1
∅
,j
, ̺−1

Z1
∅
,j
]1̺

Z1
∅

,j
(X) − Eq

Z2
∅∑

j=1

φZ2
∅
,j[f

∗
q ◦ ̺−1

Z2
∅
,j
, ̺−1

Z2
∅
,j
]1̺

Z2
∅

,j
(X)|

where κp(Z1
∅ = k) = pk and κq(Z

2
∅ = k) = qk. We omit the variable x in the

integrand to keep the notation clear. By conditioning with respect to Z1
∅ and Z2

∅ ,
the right hand side becomes:

∫
|
∑

i>1

pi

i∑

j=1

Epφi,j[f
∗
p ◦ ̺−1

i,j , ̺−1
i,j ]1̺i,j(X) −

∑

i>1

qi

i∑

j=1

Eqφi,j[f
∗
q ◦ ̺−1

i,j , ̺−1
i,j ]1̺i,j(X)|.

The sums can be taken outside the integral. By setting y = ̺−1
i,j (x) and bounding the

Jacobian by ri,j, where ri,j is deterministic here as we consider non random maps,
d1(Epf∗

p, Eqf
∗
q) is less than

∑

i,j

ri,j

∫
|piEpφi,j[f

∗
p(y), y] − qiEqφi,j[f

∗
q(y), y]|dy.

By assumption φi,j(u, v) = si,ju + ζi,j(v). The Lipschitz factor of φi,j is si,j in this
case. Using the triangle inequality of | · | it follows that d1(Epf∗

p, Eqf
∗
q) is bounded

by ∑

i,j

ri,j

[ ∫
si,j|piEpf∗

p − qiEqf
∗
q| + |pi − qi||ζi,j(y)|dy

]
.

The term |piEpf∗
p − qiEqf

∗
q| can be further bounded above by |Epf ∗

p||pi − qi| +
qi|Epf ∗

p −Eqf
∗
q| by adding and subtracting qiEpf∗

p and using the triangle inequality.
Suppose p and q are chosen such that l(p,q) 6 η. We have

d1(Epf∗
p, Eqf

∗
q) 6 η

∑
i,j ri,jsi,j

∫
|Epf∗

p|+
∑

i,j qiri,jsi,j

∫
|Epf∗

p − Eqf
∗
q| + η

∑
i,j ri,j

∫
|ζi,j(y)|dy.

In the first term of the right hand side,
∫
|Epf∗

p| < M < ∞ since Epf ∗
p ∈ L1. We

have a bounded number of maps so
∑

i,j ri,jsi,j is also bounded. In the second term,∫
|Epf ∗

p −Eqf
∗
q| is the distance between Epf∗

p and Eqf
∗
q and

∑
i,j qiri,jsi,j is exactly

the contraction factor λ1(q) < 1 of the map T . Since the map p 7→ ∑
piri,jsi,j is

linear, it follows that the distance between λ1(q) and λ1(p) is small for p sufficiently
close to q. Therefore λ1(q) 6 1 − εp for some small εp > 0. Finally, the third term
is bounded by assumption. It follows that d1(Epf ∗

p, Eqf
∗
q) is smaller than

η

εp

[
M

∑

i,j

ri,jsi,j +
∑

i,j

ri,j

∫
|ζi,j(y)|dy

]
:=

η

εp

γ.

Set η = εp

γ
ǫ, it follows that d1(Epf∗

p, Eqf
∗
q) 6 ǫ.

Second step. We now show that the previous result holds for the r-th moment
of the fixed point, as long as r 6 p. To fix ideas, let us start with the second order
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moment. First note that f ∗2 is distributed like (Tf ∗)2. Then, proceeding as before
we bound d1(Epf∗2

p , Eqf
∗2
q ) by

∑

i,j

ri,j

∫
|piEpφ2

i,j[f
∗
p(y), y] − qiEqφ

2
i,j[f

∗
q(y), y]|dy.

By developing the square, the following terms appear: s2
i,jf

∗2, ζ2
i,j(y) and 2si,jζi,j(y).

It follows that

d1(Epf∗2
p , Eqf

∗2
q ) 6

∑
i,j ri,j

[ ∫
s2

i,j|piEpf∗2
p − qiEqf

∗2
q | + 2si,jζi,j(y)|piEpf∗

p − qiEqf
∗
q| + ζ2

i,j(y)dy
]
.

First note that for all r 6 p, f ∈ Lp(X) ⇒ f ∈ Lr(X). Indeed, notice that
|f(t)|r = |f(t)|r · 1 and apply the Hölder inequality (2.4):

E

∫
|f(t)|rdt 6

(
E

1/s|f(t)|rsdt
)(

E
1/u

∫

X

dt
)

(2.16)

where s and u are chosen such that 1
s
+ 1

u
= 1 and 1 < s, u < ∞. Put s = p/r. The

right hand side becomes

E
r/p

∫
|f(t)|pdt.

The inequality
||f ||∗r 6 ||f ||∗p

follows and if f ∈ Lp, then clearly f ∈ Lr. Note that this result only holds when we
consider functions defined on compact intervals. No similar result holds for functions
of the real line as the right hand side of (2.16) is infinite.
Back to the proof, it follows that f∗ is in L2 and the last term of the right hand

side is bounded above by assumption. The second term of the right hand side is
also smaller than η times some constant, as noted previously in step 1 of the proof.
In the first term, we proceed as in step 1 and it follows that the right hand side is
less than some constant times η. The continuity follows.
When dealing with the r-th order moment, the term φr

i,j[f
∗(y), y] appears in the

bounding factor. Expanding the expression, the terms
∫
|piEpf ∗j

p − qiEqf
∗j
q | for

1 6 j 6 r − 1 show up, all less than some constant times η by the induction
hypothesis. The conclusion follows by noting that the triangle inequality can be
applied as before to the term

∫
|piEpf ∗r

p − qiEqf
∗r
q |.

2.5.3 Test for multifractality

So far, we have not investigated the fractal properties of the fixed point of Galton-
Watson IFS. In this section, we give empirical results showing the multifractal be-
haviour of these random signals by estimating their partition function ζ2(q) using
wavelet leaders. We only perform tests for multifractality, no attempt is made to
support those simulations theoretically.
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Figure 2.6: Estimation of the partition function ζ2(q) of the fixed point of a Galton-
Watson IFS using wavelet leaders. The parameters of the IFS are given in the
figure caption 2.5, with Z∅ taking values 1, 2 or 3 with probabilities 0.2, 0.3 and 0.5
respectively. The partition function is obtained by averaging 100 estimations. 95%
confidence intervals are also plotted.

Consider a Galton-Watson IFS whose characteristics are the same as the one pre-
sented in the Figure caption 2.5, with Z∅ taking values 1, 2 or 3 with probabilities
0.2, 0.3 and 0.5 respectively. Figure 2.6 presents the estimated function ζ2(q), ob-
tained after averaging over 50 estimations using the wavelet leader technique. The
length of each signal is 212. We have used Daubechies wavelets with 2 vanishing
moments and the wavelet scale of analysis ranges from j1 = 3 to j2 = 9. ζ2(q)
clearly appears non-linear, characteristic of multifractal processes.
To support the previous observation, we perform a multifractality test proposed by

Wendt and Abry, using a non parametric bootstrap hypothesis test using wavelet
coefficients and leaders [114]. We have used the Matlab toolbox developed by Wendt
in his PhD [113]. Consider the polynomial expansion of the partition function
ζ2(q) = c1q + c2q

2/2 + c3q
3/3 + . . .. When the multifractal formalism holds and

when ζ2(q) is linear with q (corresponding to cp = 0 for all p > 2), the process is
monofractal (see the end of Section 4.1 for more details). Any departure from a
linear behaviour is characteristic of a multifractal process. Wendt and Abry have
designed a test to decide whether cp = 0 or not. The case p = 2 permits to conclude
between a mono and multifractal stochastic process.
First, cp is estimated by linear regression of the log-cumulants of log dX(j, k) vs

log 2j over the range of scales 2j1 to 2j2 . dX(j, k) is the wavelet coefficient at scale j
and position k. dX(j, k) can be replaced by the wavelet leader LX(j, k). Then, test
cp = cp,0 (null hypothesis) vs the two sided alternative cp 6= cp,0. The basic test is
then

T = cp − cp,0.

The distribution of the statistic under the null hypothesis is unknown in general
and is estimated using non parametric bootstrap techniques. From the empirical
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distribution, one can design an acceptance region T1−α = [tα/2, t1−α/2] where tα is the
α quantile of the null distribution. α is the error rate in rejecting the null hypothesis.
During the simulations, cp,0 is replaced by its estimated value ĉp. The empirical
null distribution is obtained by considering R bootstrap resamples of the wavelet
coefficients or leaders which are used to obtain R resamples of the log cumulants
ĉ
∗,(r)
p , r = 1 . . . R. Wendt and Abry proposed six tests in total but we only focus on

one using percentiles of the null distribution. We choose arbitrarily a significance
level of α = 0.1 in our simulations and perform the estimation 100 times to test
the null hypothesis for p = 2 with the wavelet leaders. We could consider other
significance levels. The averaged rejection rate α̂ = 0.99 obtained in our simulations
is close to 1, confirming the multifractal behaviour of the fixed point studied here
(the rejection rate would be as high when considering for example α = 0.05). This
study shows the existence of a class of multifractal fixed points. In a future project,
it would be interesting to obtain theoretical results on the spectrum of fixed point
of Galton-Watson IFS in terms of its parameters. The study could follow the lines
of Jaffard [65], who derived the spectrum of a class of deterministic IFS signals,
working in the wavelet domain.
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Chapter 3

A multifractal embedded branching

process

In this section we present a new class of multifractal processes, constructed us-
ing an Embedded Branching Process (EBP), which admits an infinite dimensional
Markov representation. Simulation of processes which exhibit long-range depen-
dance is problematic in practice because it is hard in general to simulate X(n + 1)
given X(1), . . . , X(n), due to their highly correlated structure. Using a dynamic re-
striction of the state space of the Markov representation of the process, we are able
to simulate X(n + 1) given X(n) in O(log n) operations. Our class of processes in-
cludes Brownian motion subjected to a continuous-multifractal time-change, which
is constructed from a multiplicative cascade applied to the embedded branching pro-
cess. The study of the multifractal properties of the time change are postponed to
Chapter 4. We present in Section 3.1 the construction of the Canonical EBP process
(CEBP) and extend the model in Part 3.2. The simulation algorithm is detailed in
section 3.3.2. Finally, in Section 3.4, we imitate an fBm with an MEBP.

3.1 EBP and the crossing tree

3.1.1 Construction of the Canonical Embedded Branching
Process (CEBP).

The idea behind embedded branching processes takes its origins to the study of
diffusion on fractal sets [13]. As noted in the introduction of this thesis, it is possible
to associate a branching process to a random walk on a Sierpinski gasket.
Consider the graph S of a Sierpinski triangle with vertices (0, 0), (1, 0) and (0, 1)

whose construction was detailed in Section 1.1.1, considering the initial set to be
a triangle with vertices (0, 0), (1, 0) and (0, 1).Define S0 = S ∪ (S − 1) where S −
1 = {(x − 1, y) | (x, y) ∈ S}. Start the random walk on the graph S0 from one
vertex, say (0, 0), and go to (0, 1), (1, 0), (−1, 0) or (−1, 1), each direction with
equal probability. This gives a first crossing of size 1, represented as the root node
on the crossing tree, in red in Figure 3.1. Then decompose this first crossing of
size 1 into a random number of subcrossings of size 1/2. For example, starting at
(0, 0), we can go to (1/2, 0), (0, 1/2), (−1/2, 0) or (−1/2, 1/2) with equal probability.

53
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Figure 3.1: Crossing tree of a random walk on a Sierpinski triangle
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Figure 3.1 decomposes the first crossing in red into three green subcrossings of size
1/2. Associate vertices of S0 visited by the random walk with nodes of a tree, and
subcrossings with the branches of a tree to obtain the crossing tree of the random
walk. In our example, the random walk is given by {(0, 0), (1/2, 0), (1/2, 1/2), (0, 1)}
and the crossing tree after one step consists of a root node (crossing of size 1) and
its three children (three subcrossings of size 1/2). Repeat the procedure. CEBP
processes are defined in a similar way with their crossing times. Their construction
is now given.
Let X : R

+ → R be a continuous process, with X(0) = 0. For n ∈ Z we define
level-n crossing times T n

k by putting T n
0 = 0 and

T n
k+1 = inf{t > T n

k | X(t) ∈ 2n
Z, X(t) 6= X(T n

k )}.

Definition 4. The k-th level-n (equivalently scale 2n) crossing Cn
k is the bit of

sample path from T n
k−1 to T n

k plus the extra information of the time and place the
crossing starts:

Cn
k := {(t,X(t)) | T n

k−1 6 t < T n
k }

This is illustrated in Figure 3.2, where the level 3, 4 and 5 crossings of a given sample
path are shown. When passing from a coarse scale to a finer one, we decompose each
level n crossing into a sequence of level n − 1 crossings. To define the crossing tree,
we associate nodes with crossings, and the children of a node are its subcrossings.
This is illustrated in Figure 3.2.
The crossing tree is an efficient way of representing a signal, and can also be used

for inference. In [71] the crossing tree is used to test for self-similarity and to obtain
an asymptotically consistent estimator of the Hurst index of a self-similar process
with stationary increments, and in [72] it is used to test for stationarity.
Let (Ω,F , P) be the probability space of extended Galton-Watson trees. In this

chapter and the following one, by extended Galton-Watson tree we mean a Galton-
Watson tree whose branches are endowed with random variables, which may depend
on the size of the generation. In fact, we will use later on results on multitype Galton-
Watson processes. Its construction is similar to the probability space (K,K, κ)
constructed in section 2.3 of the previous chapter.
Let the random variable Zn

k be the number of level-(n− 1) subcrossings that make
up the k-th level-n crossing. The orientation of a crossing can be up or down. Sub-
crossings consist of excursions (up-down and down-up pairs) followed by a direct
crossing (down-down or up-up pairs), whose direction depends on the parent cross-
ing: if the parent crossing is up, then the subcrossings end up-up, if the parent is
down, they end down-down.

Definition 5. A continuous process X is called an Embedded Branching Process
(EBP) process if the random variables Zn

k are independent and identically distributed.

Given an EBP process, let p(x) = P(Zn
k = x) be the offspring distribution, noting

that Zn
k takes values in 2N since subcrossings come by pairs.

Definition 6. p is said to be regular if p(2) < 1 and
∑

x x log(x)p(x) < ∞.
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Figure 3.2: A process and levels n = 3, 4 and 5 of its crossing tree. In the top
frame we have joined the points T n

k at each level, and in the bottom frame we have
identified the k-th level-n crossing with the point (2n, T n

k−1) and linked each crossing
to its subcrossings.
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Let αn
k be a vector of size Zn

k whose components are the types of the Zn
k subcross-

ings of Cn
k . Clearly, each of the (Zn

k − 2) first entries of αn
k come by pair, each pair

being up-down or down-up. The last two components are either the pair up-up or
down-down. Let pc|z(·) = P(αn

k = · | Zn
k = z) be the orientation distribution.

We adopt the following notation for indexing the crossing tree. These notations
were partially introduced in the previous chapter, but we recall them here for con-
venience. Let ∅ be the root of the tree, representing a single level-0 crossing. The
first generation of children are labeled by i, 1 6 i 6 Z∅, where Z∅ is the number
of children of ∅. The second generation are then labeled ij, 1 6 j 6 Zi, and so
on. More generally, a node is an element of U = ∪n>0N

∗n and a branch is a couple
(u,uj) where u ∈ U and j ∈ N. The length of a node i = i1 . . . in is |i| = n. If
|i| > n, i|n is the curtailment of i after n terms. Conventionally |∅| = 0 and i|0 = ∅.
A tree Υ is a set of nodes, that is a subset of U , such that

• ∅ ∈ Υ

• If a node i belongs to the tree then every ancestor node i|k, k 6 |i|, belongs to
the tree

• If u ∈ Υ, then uj ∈ Υ for j = 1, . . . , Zu and uj 6∈ Υ for j > Zu, where Zu is
the number of children of u.

Let F (s) =
∑∞

j=0 p(j)sj denote the probability generating function defined for
complex s such that |s| 6 1. Let ΥGW

n be the n-th generation of the tree, that is
the set of nodes of length n and ZGW

n its cardinal and µ =
∑

x xp(x) be the mean
family size. Then µ−nZGW

n is a non-negative martingale and thus converges almost
surely to some limit W∅ [10]. Consider Λ(s) = E(e−sW∅), the Laplace transform of
W∅ defined for complex s such that Re(s) > 0. Λ satisfies the Poincaré functional
equation [109]

Λ(µs) = F (Λ(s)). (3.1)

Let Υi = {j ∈ Υ | |j| > |i| and j||i| = i}. The boundary of the tree is given by
∂Υ = {i ∈ N

N | ∀n > 0, i|n ∈ Υ}. Let ψ(i) be the position of node i within
generation |i|

ψ : Υ → N
+

i 7→ ψ(i) = #{j 4 i}

where the operator 4 is defined by

j 4 i ⇐⇒ |j| = |i| = n and the exists k, 1 6 k 6 n such that

j|k−1 = i|k−1 and jk < ik with non-strict inequality if k = n.

When convenient we will write Zi and Ti for Z
|i|
ψ(i) and T

|i|
ψ(i), and so on.

Theorem 6. For any regular distribution p on 2N there exists a unique continuous
EBP process X defined on [0, T 0

1 ] such that
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• Orientations follow a distribution pc|z which can depend on the number of chil-
dren of the parent crossing.

• The level n crossing duration is distributed like µ−nW∅ where the Laplace trans-
form of W∅ satisfies (3.1).

Then we call X the Canonical EBP (CEBP) process with offspring distribution p
and orientation distribution pc|z. Let µ =

∑
x xp(x) be the mean family size. Let

H = log 2/ log µ, then for all a ∈ {µn, n ∈ Z},

X(t)
fdd
= a−HX(at) for finite dimensional distributions. (3.2)

Proof. This result can be found as Theorem 1 in [69], for a particular orientation
distribution. The proof given there contains a mistake, which is corrected here.
X is obtained as the limit as n → +∞, of a sequence of random walks X−n with

steps of size 2−n and duration µ−n. If we add weights 1/µ to each branch of the
crossing tree of X−n, then the product of the weights along a line of descent is µ−n,
which is the duration of any crossing of X−n. This construction will be generalized in
the next section, where we allow random weights on the crossing tree and therefore
random crossing durations.
Put X0(0) = 0 and X0(1) = 1, so that the coarsest scale is n = 0. It is sufficient

to construct a crossing from 0 to 1. We explain in Section 3.1.2, Corollary 2, how
to extend the support of X to any compact interval of the form [0, T ]. Given X−n

we construct X−(n+1) by replacing the k-th step of X−n by a sequence of Z−n
k steps

of size 2−(n+1), where the Z−n
k are i.i.d. and P(Z−n

k = x) = p(x). The new steps can
be split into (Z−n

k − 2)/2 excursions (an up-down or down-up pair) followed by a
direct crossing (two ups or two downs, depending on the parent crossing). We allow
a general orientation distribution of the (Z−n

k − 2)/2 excursions, which can depend
on Z−n

k , that we denote pc|z. For diffusion processes, we expect excursion to be
up-down or down-up with equal probability since it is shown in [70] that diffusions
look like continuous local martingales at small scales.
We extend X−n by linear interpolation, from µ−n

Z
+ → 2−n

Z to R
+ → R. Inter-

polated X−n has continuous sample paths and we show that it converges uniformly
on any finite interval, from which the continuity of the limit process will follow. Let

T−n = inf{t | X−n(t) = 1}

and set X−n(t) = 1 for all t > T−n. For 0 6 m 6 n, let T−m,−n
0 = 0 and

T−m,−n
k+1 = inf{t > T−m,−n

k | X−n(t) ∈ 2−m
Z, X−n(t) 6= X−n(T−m,−n

k )}.

If X−n(T−m,−n
k ) = 1 then set T−m,−n

k+1 = ∞. The duration of the k-th level −m cross-
ing of X−n is D−m,−n

k = T−m,−n
k − T−m,−n

k−1 . Since the Z−n
k are i.i.d. {µnD−m,−n

k }∞n=m

is a Galton-Watson branching process. Since p is regular, there exists continuous
strictly positive random variables D−m

k such that ED−m
k = 1 and [73]

D−m,−n
k → D−m

k a.s. as n → ∞.

Let T−m
k =

∑k
j=1 D−m

j = limn→∞ T−m,−n
k . Clearly, T 0

1 = inf{t | X(t) = 1}.
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Take any ǫ > 0, δ > 0 and T > 0. To establish the a.s. convergence of the processes
X−n uniformly on compact intervals, we show that we can find a u so that for all
r, s > u and t ∈ [0, T ]

|X−r(t) − X−s(t)| 6 δ with probability 1 − ǫ. (3.3)

Given t ∈ [0, T ], let k = k(n, t) be such that

T−n
k−1 6 t < T−n

k .

For any r, s > n, the triangle inequality yields

|X−r(t) − X−s(t)| 6 |X−r(t) − X−r(T−n,−r
k )| + |X−s(T−n,−s

k ) − X−s(t)|, (3.4)

since X−r(T−n,−r
k ) = X−s(T−n,−s

k ) = X−n(kµ−n).
For any n ≤ u let j = j(n, u) be the smallest j such that T−n,−u

j > T . As u → +∞,
j(n, u) → j(n) a.s., so for any n w can choose ǫ0 such that

P( min
i6j(n)

D−n
i > ǫ0) ≥ 1 − ǫ,

and u such that for all q ≥ u,

P(max
i6j(n)

|T−n,−q
i − T−n

i | < ǫ0) ≥ 1 − ǫ,

which yields
P(max

i6j(n)
|T−n,−q

i − T−n
i | < min

i6j(n)
D−n

i ) ≥ 1 − ǫ.

Thus, given n, we can find u such that for all q ≥ u, with probability at least 1− ǫ,

T−n,−q
k−2 < t < T−n,−q

k+1 .

Now, since X−q(T−n,−q
k−2 ) = X−n((k−2)µ−n), X−q(T−n,−q

k+1 ) = X−n((k+1)µ−n), and
in three steps X−n can move at most distance 3 · 2−n, we have

|X−q(t) − X−q(T−n,−q
k )| 6 3 · 2−n.

Then choosing n large enough such that 6 · 2−n 6 δ, we see that (3.3) follows from
(3.4). Sending δ and ǫ to 0 shows that X−n converges to some continuous limit
process X uniformly on all closed intervals [0, T ], with probability 1.
The process X constructed here is unique given the joint distribution of the Z−n

k ,
the crossing orientations and the crossing times. Solutions of (3.1) such that ED0

1 = 1
are unique provided µ > 1 and EZ0

1 log Z0
1 < ∞, which follows from the regularity

condition on p (Theorem 8.2 in [54]). The process X for which the crossing time
distribution satisfy the Poincaré functional equation (3.1) is called the CEBP pro-
cess. Note that in the construction of the CEBP, we allow a general expression for
the joint distribution of the Z−n

k and the orientations, but we specify the crossing
durations.
By construction, simultaneously scaling the state space by 2k and time space by µk

does not change the distribution of X(t), so for all t ∈ [0, T 0
1 ],

X(t)
fdd
= 2−kX(µkt) = (µk)− log 2/ log µX(µkt) (3.5)

where
fdd
= is for finite dimensional distributions.
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Recall that ZGW
n is the size of generation n. If p is regular then from Kesten &

Stigum [73] we have that W∅ > 0 a.s. and EW∅ = 1, where W∅ is the almost sure
limit of martingale µ−nZGW

n . Therefore, for the CEBP process, we associate W∅

with the root node of the tree as it gives the duration of the crossing ∅, hence the
notation W∅. Similarly, one can attach to node i in generation n the random variable
Wi, which is the normed-limit of the tree rooted at i. This is illustrated Figure 3.3.
The duration of crossing i is then µ−nWi.
We assume regularity of p throughout the remainder of the chapter. H = log 2/ log µ

is known as the Hurst index and the process X is said to be discrete scale-invariant.
From [52], Brownian motion is an example of a CEBP process, corresponding to
the 2 geometric1(1/2) offspring distribution: the Zn

k are i.i.d. for all n and k, with
P(Zn

k = 2i) = 2−i, i = 1, 2, . . . (see Theorem 9). We present in Figure 3.4 three re-
alisations of CEBP processes with geometric offspring distribution and parameters
θ = 0.3, 0.5, 0.7.

3.1.2 Extension of the support of the CEBP

In this section we explain how to scale up the support of the CEBP process to any
compact interval of R

+. To do so, we consider a sequence {X(n)} of CEBP processes
and investigate two types of convergence to a limit process X: convergence for
finite dimensional distributions and weak convergence (also called convergence in
distribution).
Let X(0) be a CEBP process constructed as before, with duration T 0

1 = inf{t |
X(0)(t) = ±1}, using the notation of the proof of Theorem 6. We define X(0)(t) = ±1
for all t > T 0

1 . Let CT be the space of continuous functions with compact support
[0, T ]. We define a sequence {X(n)} of CEBP processes by

X(n)(t) = 2nX(0)(µ−nt).

Proposition 2. X(n) converges in finite dimensional distribution to a limit process
X in CT . For all k > 1, and 0 6 t1 . . . 6 tk 6 T ,

(X(n)(t1) . . . X(n)(tk))
fdd→ (X(t1) . . . X(tk)).

Proof. Let k > 1 and 0 6 t1 6 . . . 6 tk 6 T . Let n 6 m. X(n) and X(m)

have respective durations T n
1 and Tm

1 . By construction, their finite dimensional
distributions agree on [0, T n

1 ]. It remains to show that

P({T n
1 < T} for infinitely many n) = P({T n

1 < T} i.o.) = 0.

If the total duration of X(0) is W∅, then T n
1 = µnW∅. By the Borel-Cantelli lemma,

it is sufficient to show that
∞∑

n=1

P({T n
1 < T}) =

∞∑

n=1

P({W∅ < µ−nT}) < ∞.

From Biggins and Bingham (Theorem 3 in [24]), the left tail of W∅ decays exponen-
tially when the mean family size is larger than 2. More precisely, as n → ∞,

− log P(W∅ < µ−nT ) = αγnL(µ−nT ) + o(µ−nT )
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Figure 3.3: The top signal is a CEBP from 0 to 1. We consider its crossings of size
0, -1 and -2, together with the crossing durations. The crossing duration of size
0 is represented in blue, and its duration is W∅. This crossing corresponds to the
root node ∅ of the crossing tree. Therefore, we attach the random variable W∅ to ∅.
Similarly, crossings of size -1, in black, have durations µ−1Wi, i = 1, . . . , 4 where Wi

is the normed-limit of the tree rooted at i. For this reason, we attact the random
variable µ−1Wi to node i, and so on.
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Figure 3.4: From top to bottom. Realisations of CEBP processes with geometric
offspring distribution with parameter 0.3, 0.5 and 0.7.
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where α > 0, γ > 1 and L is a real strictly positive function and multiplicatively
periodic. The result follows for CEBP processes since their mean family size is larger
than 2.

Convergence in finite dimensional distribution is not enough to establish the weak
convergence of the sequence. The sequence X(n) converges in distribution to a limit
process if and only if it converges in finite dimensional distribution and if X(n) is
tight (Corollary 11.6.2 in [115]). We give a criteria for a sequence {Wn} of random
elements of CT to be tight:

Theorem 7. (Theorem 11.6.3 in [115]) A sequence {Wn | n > 1} of random elements
of CT is tight if and only if, for every ǫ > 0, there exists a constant c such that

P(|Wn(0) > c|) < ǫ for all n > 1

and, for every ǫ > 0 and η > 0, there exists δ > 0 and n0 such that

P(v(Wn, δ) > ǫ) 6 η for all n > n0

where

v(Wn, δ) := sup {|Wn(t1) − Wn(t2)| | 0 6 t1 6 t2 6 T and |t1 − t2| 6 δ} .

Lemma 2. X(n) is tight.

Proof. The first condition is trivial since X(n)(0) = 0 for all n. Let ǫ > 0. Choose
n∗ large enough such that 2−n∗

6 ǫ. Let a > 0 and (t1, t2) ∈ [0, T ]. If

|t1 − t2| 6 a 6 min
i∈Υn∗+1

µ−(n∗+1)Wi

then [t1, t2] intersects at most two intervals of generation n∗ and v(X(n∗), a) 6 2−n∗
6

ǫ. It follows that the event {v(X(n∗), a) > ǫ} is false whenever { min
i∈Υn∗+1

µ−(n∗+1)Wi 6

a} is false and

P(v(X(n∗), a) > ǫ) 6 P( min
i∈Υn∗+1

µ−(n∗+1)Wi 6 a).

Let η > 0. Take a small enough such that

P( min
i∈Υn∗+1

µ−(n∗+1)Wi 6 a) 6 η

and set δ = a.

Corollary 2. X(n) converges in distribution to a limit process X in CT .
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3.2 From CEBP to MEBP

In this section we construct Multifractal Embedded Branching Processes as time
changed CEBP processes.
The crossing tree of a CEBP process X gives the number of subcrossings of each

crossing. If we add a weight of 1/µ to each branch of the tree, then truncating the
tree at level n, the product of the weights down any line of descent is µ−n, which
is the duration of any single crossing by X−n. We generalize this by allowing the
weights to be random, then defining the duration of a crossing to be the product of
the random weights down the line of descent of the crossing.
Let X be a CEBP (level 0 crossing) and consider its crossing tree. We assign weight

ρj(i) to the branch (i, ij). ρ1(i), . . . , ρZi
(i) may be dependent and depend on Zi, but

must be independent of other nodes. The weight attributed to node i is then

ρi =

|i|∏

k=1

ρik(i|k−1).

That is, ρi is the product of all weights on the line of descent from the root down to
node i. We use the weights to define a measure, ν, on the boundary of the crossing
tree. The measure ν on ∂Υ is then mapped to a measure ζ on R, with which we
define a chronometer M (a non-decreasing process) by M(t) = ζ([0, t)). The MEBP
is then given by Y = X ◦M−1, where X is the CEBP. The crossing trees of X and
Y have the same structure, but have different crossing durations. In Figure 3.10 we
plot a realisation of an MEBP and its associated CEBP.

3.2.1 The measure ν

For the remainder of the chapter we will make the following assumptions about the
weights ρ1, . . . , ρZ∅

.

Assumption 1.

ρi > 0, E

Z∅∑
i=1

ρi(∅) = 1, 0 > E

Z∅∑
i=1

ρi(∅) log ρi(∅) > −∞

and E

Z∅∑
i=1

ρi(∅) log
Z∅∑
i=1

ρi(∅) < ∞.

Define Wn =
∑

i∈Υn

ρi. If we take constant weights equal to 1/µ, then Wn = µ−nZGW
n ,

which is the martingale defined in Section 3.1. In fact, Wn is always a non-negative
martingale, and thus converges almost surely to a random variable W . For regular p
and under Assumption 1, Biggins & Kyprianou [25] show that the limit W is strictly
positive and EW = 1. The distribution of W is unknown in general.
Write W∅ for W and attach it to the root of the tree. In a similar fashion, we can

attach to node i a random variable Wi independent within a generation, defined and
distributed like W , using Υi

Wi = lim
n→∞

∑

j∈Υi,|j|=n

ρj/ρi.
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Figure 3.5: Measure of cylinder sets and their mapping onto intervals of the real
line.

Wi can be seen as the mass of Υi and ρi as a weighting of Υi.
From the construction of Wi it follows that almost surely, for all nodes i,

Wi =

Zi∑

j=1

ρj(i)Wij. (3.6)

For i ∈ ΥGW
n , let Ci be the cylinder set defined by Ci = {j ∈ ∂Υ | j|n = i}. In

other words, Ci contains all the nodes on the boundary of the tree which have i

as an ancestor. We define ν(Ci) = ρiWi. From (3.6), ν is additive, as one would
expect for a measure. The term ρi is a weight corresponding to the ‘past’ of i,
from the root node to i and the term Wi can be seen as the total weight of what
is hanging below i, its ‘future’, from i to all its descendants on the boundary of
the tree. By Carathéodory’s Extension Theorem, we can uniquely extend ν to the
σ-algebra generated by these cylinder sets. The construction of ν is illustrated in
Figure 3.5 where we have represented the cylinder sets corresponding to the second
generation of the tree.

3.2.2 Existence and continuity of the MEBP

The measure ζ is a mapping of ν from ∂Υ to [0,W∅] ⊂ R. By analogy with m-ary
cascades, we call ζ a Galton-Watson cascade measure on [0,W∅]. Let T−n

k denote the
k-th level-(−n) passage time of the CEBP process X and put Ri = [T

−|i|
ψ(i)−1, T

−|i|
ψ(i)).
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Note that n goes up for the tree (generations 1, 2, 3 . . .) but down for the crossings
(hitting times T−1

k , T−2
k , T−3

k , . . .). Then |Ri| = µ−|i|Wi and we define

ζ(Ri) := ν(Ci) = ρiWi.

Intervals Ri are illustrated in Figure 3.5. We can now give a ζ-measure of intervals
of the form [0, T−n

k ) and use them to define a time change M of the original process:

M(T−n
k ) := ζ([0 T−n

k )) =
∑

i∈ΥGW
n : ψ(i)6k

ρiWi.

The MEBP process Y is defined through its hitting times T −n
k that we define by

Y (T −n
k ) = Y (M(T−n

k )) = X(T−n
k ), which yields

Y = X ◦M−1.

Thus the duration of crossing i for the time-changed process Y is ρiWi.
We need to make this definition more precise. So far, the MEBP process is defined

only at its hitting times. We want to define Y (t) for all t ∈ [0,W∅]. In other words,
we need to make sure that the chronometer M(t) = ζ([0, t)) is defined for all t.
It is sufficient to construct Y for t ∈ [0,W∅]. We explain later how to scale up the
support of Y to [0,∞) without changing its statistical properties. For any point
t ∈ [0,W∅] we can find i ∈ ∂Υ such that t ∈ Ri|n for all n ≥ 0. If |Ri|n| → 0 for all
i ∈ ∂Υ, then {t} =

⋂
n

Ri and we can define

M(t) = ζ([0, t)) = lim
n→∞

ζ([0, T−n
ψ(i|n))).

Thus to establish the existence of the MEBP it is sufficient to show that as n → ∞,
maxi∈ΥGW

n
|Ri| → 0. To this end we need the following lemma due to Pakes [99],

which gives a limit result on the right tail of the distribution of an extreme order
statistic defined on a Galton-Watson tree.

Lemma 3. (Theorem 4.1 in [99]) Suppose that we are given a Galton-Watson tree
with average family size µ > 1 and regular offspring distribution, and equip the
j-th node of generation n with a random variable {Xj,n}. Suppose independence
and identical distribution F from one node to another. Denote by X(1),n the largest
random variable at generation n and suppose that F is in the domain of attraction
of an extremal density function G(x) = e−γ(x). That is, there exist constants a(n)
and b(n) > 0 such that

lim
n→+∞

n[1 − F (a(n) + xb(n))] = γ(x). (3.7)

Let An = a(µn), Bn = b(µn) and W∅ the limit martingale defined in Section 3.1.
Then

lim
n→+∞

P (X(1),n 6 An + xBn) = E[e−W∅γ(x)]. (3.8)

We use the lemma to prove the following result.
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Assumption 2. There exists ǫ > 0 such that EZ1+ǫ
∅ < ∞.

Proposition 3. Let p a regular distribution and suppose Assumption 2 holds. Then,

lim
n→+∞

max
i∈ΥGW

n

µ−nWi = 0 a.s.

Proof. Since for each i ∈ ∂Υ, µ−nWi|n is a nested decreasing sequence, we have that
max

i∈ΥGW
n

µ−nWi|n is a decreasing sequence. Thus, it is sufficient to prove that

lim
n→+∞

P( max
i∈ΥGW

n

µ−nWi = 0) = 1.

Let ǫ > 0. It is a famous result that EZ1+ǫ
∅ and EW 1+ǫ

∅ converge or diverge together
[27]. Therefore, under Assumption 2, EW 1+ǫ

∅ < ∞. By Chebyshev’s inequality, for
x > 0,

P(Wi > x) 6 x−(1+ǫ)
E(W 1+ǫ

i ) = αx−(1+ǫ)

for some α < ∞. That is, the tail of Wi decays as x−(1+ǫ). Thus we can find i.i.d.
random variables Vi such that

P(Wi > x) 6 P(Vi > x) ∼ cx−(1+ǫ) as x → +∞

for some constant c. Vi is in the domain of attraction of the extremal law e−x−(1+ǫ)
.

That is
lim

n→+∞
nP(Vi > a(n) + xb(n)) = x−(1+ǫ)

with a(n) = 0 and b(n) = (nc)1/(1+ǫ). Lemma 3 lets us conclude that:

lim
n→+∞

P( max
i∈ΥGW

n

Vi > xc1/(1+ǫ)µn/(1+ǫ)) = 1 − E(e−W∅x−(1+ǫ)

).

Take m 6 ǫn, then

lim
n→+∞

P( max
i∈ΥGW

n

µ−nWi > x) 6 lim
n→+∞

P( max
i∈ΥGW

n

µ−( n
1+ǫ

+ m
1+ǫ

)Vi > x)

6 1 − E[exp(−W∅cx
−(1+ǫ)µ−m)]

−→ 0 as m → ∞.

This concludes the proof.

Since MEBP processes are now defined as Y (t) = X ◦ M−1(t), the continuity of
Y follows from the continuity of X if M−1 is continuous, or equivalently if M has
no flat spots. In other words, we have to make sure no interval of positive length
has zero ζ-measure. That is, for every i ∈ ∂Υ we must have ρi|nWi|n > 0 for all
n ≥ 0. However, for regular p and under Assumption 1, this follows immediately
from Biggins & Kyprianou, who proved the existence of the almost sure limit Wi|n

[25] with strictly positive distribution [26].
We summarize conditions for existence and continuity of Y in the theorem below.
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Figure 3.6: Relationships between the spaces of EBP, CEBP and MEBP processes.

Theorem 8. Let p be a regular offspring distribution, pc|z the orientation distri-
bution and X the corresponding CEBP. If Assumptions 1 and 2 hold then we can
construct a chronometer M such that M−1 is a.s. continuous, and so define

Y (t) = X ◦M−1(t) for all t ∈ [0,W∅].

Moreover, Y is continuous a.s.

Figure 3.6 illustrates the relationships between the spaces of EBP, CEBP and
MEBP processes.
It is not straightforward to extend the support of an MEBP to any compact interval

of the real line and we cannot use a similar procedure as for CEBP processes. First,
it is not known whether MEBP possess a discrete scale invariance like CEBP, which
was used to establish the convergence in finite dimensional distribution. We also
need results on the left tail of the distribution of W . There are results in the case
of finite Ω in [53]. Extension of the support of MEBP remains an open problem.

3.2.3 Continuity of M
If M is continuous then it is easier to relate the properties of X and Y . It turns out
that continuity of M is a much stronger restriction than continuity of M−1. In the
remainder we will sometimes use the phrase ‘a.s. on trees’ for P-a.s.
M is continuous if ζ has no atoms. In other words, if for all i ∈ ∂Υ, lim

n→+∞
ρi|nWi|n =

0. We have

Proposition 4. If p is regular and Assumption 1 holds and W∅ admits moments
of all (positive) orders, then

lim
n→+∞

max
i∈∂Υ

ρi|nWi|n = 0 a.s. on trees

Proof. The proof uses an embedded branching random walk (BRW) [23]. A BRW
is described by a triple (Q,M, χ), whose elements respectively describe the repro-
duction, movement and importance of each individual. We label individuals using
elements of U = ∪n>0N

n (as for the crossing tree). With each individual i we asso-
ciate an independent version of (Q,M, χ), denoted (Qi,Mi, χi). Q is a point process
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Figure 3.7: Branching Random Walk (Q,M, χ). We start with one initial particle
(black) which gives birth to two offspring (orange) at times t1 and t2 during its
lifetime. The displacement of the first child from its parent’s birth position is ∆y.
The pair (t1, ∆y) ∈ R×R

+ gives the first point of the point process Q. The movement
of black and orange particles are described by the stochastic process M . Finally,
many choices are allowed for χ(t), which gives the importance of each individual.
One can consider for example a unit weight if the particle is alive at time t and no
weight if the particule is not yet born at time t, or dead.

on R × R
+, its first coordinate gives a child’s displacement from its parent’s birth

position and the second gives the parent’s age at that child’s birth. M is a stochastic
process which describes an individual’s movement during its lifetime. χ : R

+ → R

is the so-called characteristic function. The triple (Q,M, χ) is illustrated in Figure
3.7.
We construct a BRW as follows. The point process Qi generates Zi points at time

1, with displacements log ρi(1), . . . , log ρi(Zi). Thus if σi is the birth position of
individual i, then σi = log ρi. The birth time of individual i is just |i|. Individual
movement consists of a single jump at birth of size logVi, where the Vi are i.i.d.
and distributed like W∅. We only consider the Vi since the Wi are i.i.d. within one
generation. That is, Mi(t) = logVi for all t ≥ 0. The characteristic χ is used to
count generations. If we put χi(t) = I[0,1)(t), where I is the indicator function, then
the population at time t is given by St =

∑
i∈U χi(t − σi).

The right-most particle at time t is defined as

Bt = max
i∈U

χi(t − σi)(σi + Mi(t − σi)) = max
i∈ΥGW

⌊t⌋

log(ρiVi).

Biggins [23] gives conditions for the existence of a γ such that Bt/t → γ a.s. If γ < 0
then clearly maxi∈ΥGW

n
ρiVi → 0 a.s. as n → ∞, and thus maxi∈ΥGW

n
ρiWi → 0 a.s.,

which is our desired result.
Biggins’ results on the right-most particle require that the triple (Q,M, χ) is ‘well-

regulated’. In our case if we put m(θ) = E
∑Z∅

j=1 ρj(∅)−θ and α(θ) = log m(θ), then
the triple is well-regulated if for all θ ≤ 0,

E

(
sup

t

{
e−α(θ)te−θM(t)χ(t)

})
< ∞.

Let c(θ) = supt∈[0,1) e−α(θ)t then our triple is well regulated if c(θ)EW−θ
∅ < ∞ for all

θ ≤ 0. That is, if W∅ admits moments of all orders.
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To finish the proof we just need γ < 0. Let α∗(a) = inf
θ<0

{aθ + α(θ)} then from [23]

γ = inf{a | α∗(a) < 0}.

γ will be strictly negative if for some ǫ < 0,

inf
θ<0

{ǫθ + α(θ)} < 0. (3.9)

As ǫ is arbitrary, this will hold if for some θ0 < 0, m(θ0) < 1. Now m is convex over
(−∞, 0], since m′′(θ) = E

∑Z∅
j=1 ρj(∅)−θ(log ρj(∅))2 > 0. Also, from Assumption 1,

m(−1) = 1 and m′(−1) = E
∑Z∅

j=1 ρj(∅) log ρj(∅) < 0. Thus there exists θ0 ∈ (−1, 0)
such that m(θ0) < 1, and the result follows.

We finish this section with some verifiable conditions that imply W∅ has moments
of all orders.

Assumption 3. Assume that

ρi ∈ (0, 1], P(
Z∅∑
i=1

ρi(∅) = 1) < 1 and

for all p > 1, E

[( Z∅∑
i=1

ρi(∅)
)p]

< ∞.

Liu [78] shows that if p is regular and Assumptions 1 and 3 hold then EWp
∅ < ∞

for all p ≥ 0.

Corollary 3. If Assumptions 1, 2 and 3 hold, then Y (t) and M(t) are continuous.

3.3 On-line simulation

There are many ways we could make a multifractal time-change of a CEBP. However,
by defining a time-change via the crossing tree, we obtain a fast on-line algorithm
to simulate the process. In this section, we present a new algorithm which is a
generalization and a simplification of the one proposed by Jones in [69] for simulating
CEBP. It is a generalisation since it incorporates the time change and a simplification
since the length of the code is reduced by generating the crossing types and the
weights using a vector notation. We first explain the key representation of CEBP
behind this algorithm using vector notation, and then explain how it can be modified
to incorporate the time change.

3.3.1 Markov representation

3.3.1.1 Markov representation of CEBP

When constructing CEBP processes we started with a level-0 crossing then generated
consistent sequences of crossings at finer and finer scales. When simulating CEBP
we specify a minimum level, without loss of generality level-0, and then generate
crossings at level 0 and above.



Chapter 3. A multifractal embedded branching process 71

k

2
n

2
n+1

Figure 3.8: Markov representation of CEBP processes Xn. We have joined the
points T n

k at level n and n + 1. The process X is not represented. Consider the
k-th crossing of level n. Then κ(n, n, k) = k, Sn

κ(n,n,k) = 3, Zn+1
κ(n,n+1,k) = 4. Also

κ(n, n + 1, k) = 2 and κ(n, n + 2, k) = 1 so that nmax = n + 2 here.

Let Xm be the random walk on 2m
Z, defined by Xm(k) = X(Tm

k ) for k = 1, 2, . . .
Let Cn

k be the k-th level n crossing (see Definition 4), which is divided into Zn
k

subcrossings. For 0 ≤ m ≤ n, let κ(m,n, k) be the number such that Xm(k) belongs
to crossing Cn

κ(m,n,k). Clearly κ(n, n, k) = k. Also, denote by Sn
k the position of

crossing Cn
k within its parent crossing Cn+1

κ(n,n+1,k). Thus 1 6 Sn
k 6 Zn+1

κ(n,n+1,k). Finally,
note that a crossing can be one of 6 different types, depending on its direction (up
or down) and where it starts. Consider a level n crossing whose parent crossing
starts at k2n+1: the 6 types are 0+, 0−, 1+, 1−, −1+ and −1− where type i+ denotes
a crossing from k2n+1 + i2n to k2n+1 + (i + 1)2n and type i− is a crossing from
k2n+1 + i2n to k2n+1 + (i − 1)2n. Let αn

k be a vector of size Zn
k whose components

are the types of the Zn
k subcrossings of Cn

k . Denote the distribution of αn
k by pc,

which can depend on the number of subcrossings, the type of the parent crossing
and the position of the current crossing with its parent crossing. We make explicit
this dependence by writing pc|Zn+1

κ(n,n+1,k)
,i+/− or pc|Zn+1

κ(n,n+1,k)
,Sn

k ,i+/− when appropriate.

Define
X n(k) = (κ(0, n, k), Sn

κ(0,n,k), Z
n+1
κ(0,n+1,k), α

n+1
κ(0,n+1,k))

then X n(k) describes the level n crossing of X0 at time k.

Definition 7. X (k) = {X n(k)}n>0 is called the crossing state of X0 at time k.

It is shown in [69] that X is a Markov chain, so knowing X (k) is enough to generate
X (k +1). The proof consists of showing procedure Increment described in the next
section only requires X (k) to generate X (k+1), which is tedious but straightforward.
Initially this may not seem useful, since X (k) is infinite, however it turns out that we
do not need all of X (k), just the truncation X (k) := {X 0(k), . . . ,X nmax(k)}, where
nmax is such that κ(0, nmax, k) = κ(0, nmax, 1) = 1. This is illustrated in Figure 3.8
where we consider the k-th level n crossing of Xn.
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Given a sequence {X (k)}N
k=1, from {α1

k}κ(0,1,N)
k=1 we can generate a process X0 with

steps of size 1, which are the level-0 crossing points of our CEBP process. Noting
that X (N) = {X 0(N), . . . ,X nmax(N)} contains all the information we need about
{X0(k)}N

k=1 in order to simulate X0(N + 1), we see that this is a parsimonious
encoding of the past of X0, since nmax grows like log N : a finite Galton-Watson tree
with nmax levels has on average µnmax leaves. Then N ≈ µnmax and nmax = O(log N)
follows.
For the CEBP process, the crossing durations of X0 are i.i.d. with distribution W .

In general we can not simulate W exactly, though we can do so approximately, and
in practice we usually just set the level-0 crossing durations to be constant. We
could evaluate the error induced by this assumption by simulating a few crossings
below the scale 0. We did not do this study here.

3.3.1.2 Markov representation of MEBP

To simulate an MEBP we simulate a CEBP as well as weights for the crossing tree,
which we use to generate the crossing durations. We extend X n(k) to include weights
P n+1

κ(0,n+1,k) where P n
k is a vector of size Zn

k containing the random weights attached
to the Zn

k branches of Cn
k . To enable us to truncate the crossing state of X0 at time

k, for each n we norm {P n+1
κ(0,n+1,k)}k≥1 by P n+1

κ(0,n+1,1)(S
n
κ(0,n,1)) = P n+1

1 (Sn
1 ), which is

the weight of the first crossing generated at level n. Let P̃ n+1 be the first weight
of generation n: P̃ n+1 = P n+1

1 (Sn
1 ). Since κ(0, n, k) = 1 for all n ≥ nmax we have

P n+1
κ(0,n+1,k)(S

n
κ(0,n,k))/P̃

n+1 = 1 for all n ≥ nmax and we can truncate without loss of
information. It follows that with the new definition of X n(k),

X n(k)=(κ(0, n, k), Sn
κ(0,n,k), Z

n+1
κ(0,n+1,k), α

n+1
κ(0,n+1,k), P

n+1
κ(0,n+1,k), P̃

n+1).

X (k) := {X 0(k), . . . ,X nmax(k)} is still Markov. We denote the distribution of the
vector of weights by qz, which can be discrete or continuous. The duration of crossing
C0

k is given by

W0
k

nmax−1∏

n=0

P n+1
κ(0,n+1,k)(S

n
κ(0,n,k))/P̃

n+1

where the W0
k are i.i.d. with the distribution of W . As for the CEBP we can not

in general simulate the W0
k exactly, and in practice set them to be constant. We

sometimes write Sm,n(k), Zm,n+1(k), αm,n(k) and Pm,n+1(k) for Sn
κ(m,n,k), Zn+1

κ(m,n+1,k),

αn
κ(m,n,k) and P n+1

κ(m,n+1,k).

3.3.2 On-line algorithm

Let X be an MEBP and let Xp(k) and Xt(k) be respectively the position and time
of sample k. In this section, we give the simulation algorithm in detail. It can be
divided into three main procedures: Increment, Expand and Simulation.
The procedure Simulation loops the procedures Expand and Increment to pro-

duce a new sample on demand. It returns sample position Xp(k + 1), sample time
Xt(k + 1) and crossing state X (k + 1) given Xp(k), Xt(k) and X (k). Increment
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Figure 3.9: Description of the procedures Increment, Expand and Simulation.
Suppose we have generated the tree in solid black lines only, so that nmax = 2.
When we reach node i1, we are at the end of level 0,1 and 2 crossings. To generate
the next sample, one needs to increase nmax by at least 1, which is the role of the
procedure Expand. Expand generates the level 3 of the crossing tree (in orange on the
figure), generates the number of children of i3, the position of i2 within this family
and the vector of types and weights. If i2 is at the end of level 3 crossing (which is
not the case here), then Expand increases nmax again by 1. Here, nmax = 3. Once
we are sure we have all the levels needed to generate the next sample, procedure
Increment goes down the tree and generates the family size, type of crossings and
weights at nodes i4 and i5, at levels 2 and 1, which contains all the information
to generate the next sample, corresponding to node i6. The procedure Simulation

loops Expand and Increment to generate as many samples as required.
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generates X (k + 1) from X (k) assuming that you have enough levels in the crossing
tree to do so. Expand makes sure that this is the case, by increasing nmax when we
reach the end of level nmax crossing. This is illustrated in Figure 3.9. A Matlab
implementation is available from the web page of Jones [68].

Procedure Increment. We start this section by giving the procedure Increment.

Procedure Increment X n(k)
(Assume that X0(k) is at the end of level n crossing)
(This is always the case for n = 0)
κ(0, n, k + 1) = κ(0, n, k) + 1

† If Sn
κ(0,n,k) = Zn+1

κ(0,n+1,k) Then

Increment X n+1(k)
Sn

κ(0,n,k+1) = 1

Generate Zn+1
κ(0,n+1,k+1) using distribution p

Generate P n+1
κ(0,n+1,k+1) using distribution qZn+1

κ(0,n+1,k+1)

If αn+2
κ(0,n+2,k+1)(S

n+1
κ(0,n+1,k+1)) = i+ Then

†† Generate αn+1
κ(0,n+1,k+1) using distribution pc|Zn+1

κ(0,n+1,k+1)
,i+

Else

Generate αn+1
κ(0,n+1,k+1) using distribution pc|Zn+1

κ(0,n+1,k+1)
,i−

End If

††† Else

X q(k + 1) = X q(k) for q = n + 1, . . . , nmax

Sn
κ(0,n,k+1) = Sn

κ(0,n,k) + 1
End If

End Procedure

To generate X (k + 1) given X (k), apply procedure Increment to X 0(k). Then,
Increment is applied to all level q crossings X n(k) such that X0(k) is at the end of
level q + 1 crossing; that is, Sq

κ(m,q,k) = Zq+1
κ(m,q+1,k), for all 0 6 q < n. X n(k) remains

unchanged for all n larger than this. We give a few comments on the procedure
Increment:
At †, X0(k) is at the end of level n + 1 crossing. Information at level n + 1 needs

to be updated, so Increment is applied to X n+1(k).
On the other hand, at †††, X0(k) is not at the end of level n+1 crossing. Information

at all coarser scales remain unchanged; only the position of crossing Cn
k within its

parent crossing is updated.
At ††, the type αn+2

κ(0,n+2,k+1) of the parent crossing is already known to be i+/− so

the vector of crossing types αn+1
κ(0,n+1,k+1) at the finer scale must be generated accord-

ingly, hence the notation.

Procedure Expand. We give a procedure Expand to increase nmax when needed,
that is when X0(k) is at the end of level n crossing for n = 0 . . . nmax. We distinguish
two cases:
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• Simulation of a CEBP process: The position of the crossing within its parent
crossing is chosen in a random manner, as described in Figure 3.9.

• Simulation of an MEBP process: Assume X0(0) belongs to the first level m
crossing, for m = 1, 2, . . .. In Figure 3.9, this is equivalent to generate the
level 3 of the crossing tree and to place node i2 at the beginning of the level 3
generation.

The need to separate these two situations will become clear later.

Suppose we want to simulate a CEBP process. Two preliminary results are needed.
The first one concerns the local structure of CEBP processes and provides a way
to determine the distribution of the direction of the parent crossing when we go
from scale n to n + 1. The second one gives an explicit expression of the offspring
distribution to consider when we move upward in the crossing tree.

Lemma 4. Let Υ be the crossing tree of a CEBP process with regular offspring
distribution and ΥGW

n its n-th generation, for some finite integer n. Pick a node
uniformly on ΥGW

n . Then, in the limit n → ∞, the associated crossing has direction
+(up) or −(down) with equal probability.

Proof. Let X be a CEBP process and consider its crossing tree together with the
type + or − of each branch. Denote by Z+

n and Z−
n the number of types +/− at

generation n. Then the size of generation n is Zn = Z+
n + Z−

n . Consider M , the
matrix of first moments, whose entries are

m++ = E(Z+
1 |Z0 type +) = 2 + E((Zn − 2)/2) = 1 + µ/2

m−+ = E(Z+
1 |Z0 type −) = E((Zn − 2)/2) = −1 + µ/2

since a + crossing is decomposed in (Zn−2)/2 excursions followed by two + subcross-
ings and similarly for a − crossing, which is decomposed into (Zn − 2)/2 excursions
followed by two − subcrossings. It is easy to see that m++ = m−− and m+− = m−+

so that

M =

(
1 + µ

2
µ
2
− 1

µ
2
− 1 1 + µ

2

)
.

It is a famous result in the theory of multitype Galton-Watson processes that un-
der certain conditions (see below) the left unit eigenvector ̟ corresponding to the
maximum eigenvalue λ of the mean matrix M gives the relative fixed proportions
of types in the limit n → ∞. By unit vector we mean its components sum up to 1.
Suppose λ > 1 and that the process is positive regular, that is, powers of M have
all positive components. This is true here since µ > 2 from which the positivity of
M follows. Finally, we assume that the random variable representing the number
of particles of type j produced by a particle of type i, for (i, j) ∈ {+,−}, has finite
mean, which holds for CEBP processes with regular offspring distribution. Then,
almost surely on non-extinction, we have (Theorem 2 in [76])

lim
n→∞

(Z+
n , Z−

n )

Zn

= ν.
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Crossing trees of CEBP processes possess at least two children per node and therefore
extinction cannot occur. A straightforward calculation yields λ = µ > 2 and ̟ =
(1/2, 1/2) which concludes the proof.

Corollary 4. Let X be a CEBP process with regular offspring distribution and
T > 0. Observe X at some t uniformly distributed over [0, T ), and let k be such
that X(t) ∈ Cn

k . Then the type of Cn
k is + or − with equal probability, in the limit

n → ∞.

Motivated by this result, if the current crossing is such that Sn
κ(0,n,k) = Zn+1

κ(0,n+1,k)

for all n = 0 . . . nmax, then we choose the type αnmax+2
κ(0,nmax+2,k) of the parent crossing

Cnmax+2
κ(0,nmax+2,k) to be + or − with equal probability. We do not know the error induced

by this approximation.

We now derive a result concerning the offspring distribution and the position of
a current crossing within its parent crossing when we move from level n to level
n+1: we cannot sample directly from p when we move from a fine scale to a coarser
one. To illustrate this fact, consider individuals which have a random number of
offspring according to some distribution L and pick randomly a certain number of
them to estimate L. Since it is more likely to pick individuals coming from a large
family, the distribution we are estimating is not L but some transformation of it.
A similar issue arises when generating CEBP processes. When choosing a time t
randomly, we are more likely to hit a large crossing and therefore the distribution
giving the number of subcrossing of the parent crossing is not p but something else,
which we now make explicit. To do so, let X1,1, X1,2, . . . , X1,N(1), X2,1, . . . , Xk,N(k), . . .
be a sequence of i.i.d. non-negative random variables arranged into families, with
P (Xi,j 6 x) = F (x) and P (N(i) = n) = p(n). Then partition [0,∞) into adjacent
intervals with length Xi,j ordered as above, choose a point x uniformly in [0, T ) for
some T > 0 and consider the sizes of the interval and of the family that contain x.

Lemma 5. Let P be the partition above, let X∗ and N∗ be the interval length and
family size of a uniformly chosen point on [0, T ) for some T > 0, and let J∗ be the
position of the chosen interval within its family. If µ =

∑
x x p(x) and m = EXi,j

are finite then with probability 1, for 1 ≤ l ≤ n, as T → ∞,

P (N∗ = n, J∗ = l, x ≤ X∗ < x + dx | P) → np(n)

µ

1

n

x

m
dF (x).

Note that X∗ will have atoms at the same points as Xi,j.

Proof. We give a correction to the proof in [69], which is flawed.
Let Tk =

∑k
i=1

∑n(i)
j=1 Xi,j and let Pk be the partition of [0, Tk) given by X1,1, . . . , Xk,N(k).

Given Pk, choose x uniformly on [0, Tk) and let X∗
k and N∗

k be the interval length
and family size of x.
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Let Sk(n) = #{i : 1 ≤ i ≤ k, N(i) = n} then sending k → ∞

P (N∗
k = n, J∗ = l, X∗

k ≤ x | P)

=
k∑

i=1

N(i)∑

j=1

P (N∗
k = n, J∗ = l, X∗

k ≤ x |N∗
k = N(i), X∗

k = Xi,j, P)
Xi,j

Tk

=
k∑

i=1

n∑

j=1

I{n}(N(i))I{l}(j)I[0,x](Xi,j)
Xi,j

Tk

=
k

Tk

Sk(n)

k

1

Sk(n)

k∑

i=1

I{n}(N(i))Xi,lI[0,x](Xi,l)

→ 1

µm
p(n)EXi,jI[0,x](Xi,j) with probability 1

=
np(n)

µ

1

n

∫ x

0

y

m
dF (y).

Differentiating w.r.t. x gives the result.
By integrating/summing out the other terms, one can easily show that the marginal

distributions of N∗ and X∗ are given by

P (N∗ = n) =
np(n)

µ
;

P (x ≤ X∗ < x + dx) =
x

m
dF (x).

Similarly, the conditional distribution of J∗ given N∗ is given by

P (J∗ = l |N∗ = n) =
1

n
for 1 ≤ l ≤ n.

It follows that N∗ and J∗ are independent of X∗.

The consequence of this result for the simulation of CEBP processes is stated in
the following corollary.

Corollary 5. Let X be a CEBP process. Observe X at some t uniformly dis-
tributed over [0, T ), and let k be such that X(t) ∈ Cn

k . Then Zn+1
κ(n,n+1,k) has distribu-

tion p(x) = xp(x)/µ and Sn
k is uniformly distributed over {1, . . . , Zn+1

κ(n,n+1,k)} in the
limit T → ∞.
Finally, the sampling distributions of Sn

k and Zn+1
κ(n,n+1,k) are independent of the

length of Cn
k .

This corollary does not hold for the generation of MEBP processes. Indeed, a
fundamental assumption in the derivation of Lemma 5 is the independence of the
variables Xi,j, which correspond to crossing durations. For CEBP processes, cross-
ing durations are independent of each other, but this is no longer true for MEBP
processes, where correlation exists. It would be interesting to investigate how this
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correlation modifies Lemma 5. We do not pursue this here. What we do is, instead of
generating randomly the position of the crossing within its parent crossing for MEBP
processes, we assume that the position of the first level m crossing is 1 for all m > 0.
Consequently, Zn+1

κ(n,n+1,k) is still sampled according to p and Sn
k = 1. When simulat-

ing MEBP processes, replace p by p and S0,nmax+1(k) ∼ U{1, . . . , Z0,nmax+2(k)} by
Sn

k = 1 in the following procedure:

Procedure Expand X (k)
While S0,nmax(k) = Z0,nmax+1(k) Do

κ(0, nmax + 1, k) = 1
Generate Z0,nmax+2(k) using distribution p
Generate S0,nmax+1(k) ∼ U{1, . . . , Z0,nmax+2(k)}
Generate P 0,nmax+2(k) using distribution qZnmax+2

κ(0,nmax+2,k)

If αnmax+1
κ(0,nmax+1,k)(S

nmax

κ(0,nmax,k)) = 1+ Then

Generate αnmax+2
κ(0,nmax+2,k) using distribution pc|Znmax+2

κ(0,nmax+2,k)
,Snmax+1

κ(0,nmax+1,k)
,1+

Else

Generate αnmax+2
κ(0,nmax+2,k) using distribution pc|Znmax+2

κ(0,nmax+2,k)
,Snmax+1

κ(0,nmax+1,k)
,−1−

End If

P1(nmax + 2) = P nmax+2
κ(0,nmax+2,k)(S

nmax+1
κ(0,nmax+1,k))

nmax = nmax + 1
End While

End Procedure

In Expand, the vector of types αnmax+2
κ(0,nmax+2,k) is sampled from pc|z after conditioning

on the size of the parent crossing and the type 1+/ − 1− of the current crossing
Snmax

κ(0,nmax,k). The type of the parent crossing is then + or − with equal probability,
according to Corollary 4. Once the type of the parent crossing is decided, then one
can use a rejection algorithm that generates vectors αnmax+2

κ(0,nmax+2,k) until the type of
crossing Snmax

κ(0,nmax,k) is 1+/ − 1−.
Procedures Simulate and Initialise. Finally we can give the simulation algo-

rithm, which loops the procedures Expand and Increment to generate a new sample.

Procedure Simulate

(Given X (k), X0
p (k) and X0

t (k) (respectively the crossing state, the position
and time of the process at sample k) returns X (k+1), X0

p (k+1) and X0
t (k+1))

If α1
κ(0,1,k+1)(S

0
κ(0,0,k+1)) = i+ Then

X0
p (k + 1) = X0

p (k) + 1
Else

X0
p (k + 1) = X0

p (k) − 1
End If

For j = 0 : nmax

Pt(j + 1) = P j+1
κ(0,j+1,k+1)(S

j
κ(0,j,k+1))

End

† Xt(k + 1) = Xt(k) +
∏

Pt/P1

Expand X (k)
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Increment X 0(k)
End Procedure

At †, we renormalise each weight in Pt by the first weight of each generation,
contained in P1.
To initialise the algorithm, the procedure Initialise can be used:

Procedure Initialise Xm
(k)

nmax = 0
κ(0, 0, 1) = 1
Generate Z0,1(1) using distribution p
Generate S0,0(1) ∼ U{1, . . . , Z0,1(1)}
Generate P 0,1(1) using distribution qZ0,1(1)

Generate α0,1(1) using distribution pc|Z0,1(1)

P1 = P 1
κ(0,1,1)(S

0
κ(0,0,1))

End Procedure

Similarly, when generating MEBP processes, p is replaced by p and S0,0(1) ∼
U{1, . . . , Z0,1(1)} by S0,0(1) = 1.

3.3.3 Efficiency

Generation n of the crossing tree has on average µn leaves. Therefore, X0 starts a
new crossing after µn steps and it follows that nmax(k) = O(log k). Thus, generating
N steps requires O(log N) storage.
The procedure Expand is finite and does not depend on nmax(k) and we go through
Increment up to nmax(k) times. Therefore, the number of operations computed by

Simulation is of order N log N since
n∑

k=1

log k = O(N log N).

The type of signal obtained with this algorithm is illustrated in Figure 3.10 where
we have represented an MEBP process with its CEBP. p, qz and pc|z are given in
the Figure caption.

3.4 Fractional Brownian Motion

In this section, we propose to construct empirically an MEBP process which imitates
a fractional Brownian motion with Hölder exponent H. The idea of this section is
mainly to provide a description of fBm in terms of its crossing tree. In the particular
case H = 0.5, we can fully describe a Brownian motion in terms of its crossing tree.
Consider the k-th level n crossing and let Dn

k and Zn
k denote the crossing length and

the number of subcrossings respectively. V n
j is the crossing excursion (let V n

j = 0
if the j-th level n excursion is up-down and V n

j = 1 if it is down-up). Then it is
known that [52]

Theorem 9. Brownian motion is the unique continuous process B for which



80

0 2000 4000 6000 8000 10000
−20

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−20

0

20

40

60

80

100

120

140

Figure 3.10: Top figure: CEBP process with offspring distribution 2 geometric1(0.6)
and excursions +/− or −/+ with equal probability, independent of Zn

k . Bottom
figure: MEBP process obtained from a multifractal time change of the top CEBP
process, with i.i.d. gamma distributed weights.
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• B(0) = 0 and B(1) has unit variance;

• For each n, the Dn
k , k = 1, 2, . . . are i.i.d. with Laplace transform Ee−sDn

k =
1/ cosh(2−n+1/2s1/2);

• The Zn
k are i.i.d. for all n and k, with P(Zn

k = 2i) = 2−i, i = 1, 2, . . .;

• The V n
j are i.i.d. for all n and j, with P(V n

j = 0) = P(V n
j = 1) = 1/2.

For fractional Brownian motion, there is no equivalent result concerning its branch-
ing structure. We propose to estimate empirically the crossing durations and the
offspring distribution of an fBm with parameter H = 0.7 and then construct an
MEBP process that imitates this behaviour. We then estimate the correlation struc-
ture, the marginals and the partition function of the MEBP process and compare it
with a theoretical fBm. We generate an fBm using the method proposed by Wood
and Chan [116]. This algorithm returns samples at regular times and differs from
the MEBP algorithm which simulates crossings and returns samples on an irregular
lattice.
Consider a node i ∈ Υn−1 on generation n − 1 of the crossing tree starting from a

level 0 crossing and its k-th child ik. Denote by Dn
ik the crossing duration associated

with node ik. Recall that Zi denotes the number of offspring of node i. We compute
the average duration of subcrossings for an fBm after conditioning on the family size
of the parent crossing, and renormalizing by a factor α:

f(z) := αE(Dn
ik | Zi = z) (3.10)

where α ensures
∑

zf(z)P(Z = z) = 1. The motivation for scaling by α is explained
later. The expectation is estimated over one level of the crossing tree only, so that we
do not have to worry about scaling the crossing durations amongst different levels.
The choice of the level is important however. If we pick up a level at a large scale,
the variance of the estimation is large since we have fewer crossings available. If
the level corresponds to a fine scale, then one can miss crossings using the Chan-
Wood algorithm since the samples are generated on a regular vertical lattice. This
is illustrated in Figure 3.11.
Now we turn to the estimation of f(z) of an fBm with Hölder exponent H =

0.7. Denote it by f̂fBm(z). The results presented in Figure 3.13(a) are obtained by
averaging 80 estimates of f(z) for the Brownian motion and for the fBm (H=0.7),
each of length 220. The expectation is estimated using the level 6 crossing (crossings
of size 64), following the previous remarks. After normalization, we obtain an average
duration of 0.26 for Brownian motion (bottom curve), which is close to the theoretical
value 1/µ = 0.25. For fBm with H = 0.7, it is interesting to note that the average
crossing duration is much shorter when Z = 2 and seems to reach a constant value
of 0.45 for larger Zs (‘o’). The previous observation remains true for other values of
H > 0.5, but we do not present the curves here.
We also estimate the offspring distribution of an fBm with H = 0.7, say p̂. The

table below summarizes the numerical values obtained for p̂ and f̂fBm(z).

z 2 4 6 8 10 12 > 12
p̂(z) 0.758 0.171 0.050 0.015 0.004 0.001 0.001

f̂fBm(z) 0.328 0.419 0.434 0.444 0.451 0.450 0.459



82

Figure 3.11: The figure displays the first few samples of an fBm generated on a
regular lattice (black line), which is a discrete version of a realisation of a continuous
fBm (in orange). Since the samples are generated at regular times and not on a
regular horizontal lattice, when looking at crossings at the resolution of the process,
we are likely to miss some of them. This is illustrated by the crossing in dot line
which is missed by the discrete process.

Based on the results of the Brownian motion, one may hope that the offspring distri-
bution of an fBm with Hölder exponent H is geometrical with parameter p = 21−1/H ,
parameter obtained by solving H = log 2/ log µ where µ = 2/p for a 2 geometric1(p)
distribution. Figure 3.12 shows the deviation for fBm from this distribution, as H
and the number of offspring increases.
To imitate the fBm, we define weights ρ on the crossing tree as follows

ρ | (Z = z) = f̂fBm(z).

Weights are deterministic after conditioning on Z. With this definition, scaling by
α in (3.10) ensures E

∑Z
i=1 ρi = 1, which is a key assumption in the existence of

MEBP processes (see Assumption 1 in the previous chapter). For the Brownian
motion, weights are constant equal to 1/µ, as suggested by the empirical f(z). By
defining weights that way, the expected subcrossing duration given the family size
of the parent crossing of the MEBP process is then

E(ρikWik | Zi = z) = f̂fBm(z) [Eρ]n (3.11)

and (3.11) and (3.10) match.
We now generate an MEBP process which imitates an fBm with H = 0.7. Let

f̂fBm(12) = f̂fBm(14) = 0.453 and use p̂ for the offspring distribution. In our simula-
tions, we use the approximation P(Z > 12) = P(Z = 14) = 0.001.

Figure 3.13(b) presents f̂fBm(z) and f̂MEBP(z), which is the estimation of f(z) for
the MEBP process. We consider MEBP processes of length 220, estimate f(z) and
build confidence intervals using 80 independent realisations. Estimation is good for
z = 2 and z = 4 but the average crossing duration tends to be larger than expected
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Figure 3.12: Estimated offspring distribution from fBm time series. From top to
bottom, H = 0.5 (square), H = 0.6 (circle), H = 0.7 (diamond), H = 0.8 (cross)
and H = 0.9 (star). The solid grey lines are the geometrical distribution P (Z =
k) = p(1 − p)(k−2)/2, k = 2, 4, 6, . . . with parameter p = 21−1/H .
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Figure 3.13: Estimation of the average crossing times of subcrossings for fBm and
MEBP. Figure (a) presents f̂fBm(z) for H = 0.7 (top curve) and H = 0.5 (bottom
curve). For Brownian motion (H = 0.5), f̂fBm(z) is constant and close to the the-
oretical value 1/µ = 0.25. The case H = 0.7 shows that the average crossing time
of subcrossings is smaller when Z = 2 and tends to reach a constant value as Z
increases. Figure (b) displays the plots f̂fBm(z) and f̂MEBP(z) for a fitted MEBP.
The two curves follow the same trend, with small differences for larger values of Z.
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Figure 3.14: The figures present the marginal distribution, the correlation function
and the partition function of an MEBP process which imitates an fBm with H =
0.7. Figure (a) displays the empirical marginal distribution with a fitted normal
distribution. Figure (b) plots the empirical cdf with the fitted one. In Figure (c)
we show the estimated corrolation function of the MEBP together with the exact
correlation structure of an fBm with H = 0.7. Finally, Figure (d) presents the
partition function of the MEBP estimated using wavelet leaders (dots) with the
straight line with slope 0.7, which is the partition function of an fBm with H = 0.7.
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for larger values of z, with larger confidence intervals. This can be due to impreci-
sions in the offspring distribution we used, but also from the dependency structure
for MEBP and fBm, which are different.

We now estimate the marginal distribution of the MEBP process at a fixed time t.
Since the MEBP algorithm returns samples on an irregular time grid, we do a linear
interpolation between two consecutive samples. We arbitrarily set t = 500 and we
denote by X1, . . . , Xn the random sample we collect. Note that the conclusions of
this paragraph remain unchanged if we set t = 1000 and t = 10000. We have not
tested the dependence of the results on n. Let X̄ be the sample mean and S2 the
sample variance. We calculate for i = 1, . . . , n

Yi =
Xi − X̄

S

and we fit a normal distribution, shown in Figure 3.14(a). To test the closeness
of the sample to a normal distribution, we consider two tests based on differences
between the empirical distribution function Fn(x) and the target distribution Φ(x):
the Kolmogorov-Smirnov and Anderson-Darling tests. Figure 3.14(b) also displays
the empirical and fitted cumulative distribution functions, which match closely.

Kolmogorov-Smirnov Test. Consider the maximum absolute difference Dn be-
tween Fn(x) and Φ(x),

Dn = sup
x

|Fn(x) − Φ(x)|.

Then the exact distribution of Dn can be derived and is independent of the target
distribution (see Kolmogorov [75]). Consider the modified statistic

Dn = Dn(
√

n − 0.01 + 0.85/
√

n).

Let F (x) be the cdf of the sample. We test the hypothesis H0: F (x) = Φ(x) against
the two sided alternative H1: F (x) 6= Φ(x). We accept H0 if Dn 6 zα where
P (Dn 6 zα) = α. Values of zα can be found in [34] for example. For n = 1000,
α = 0.95, with unknown mean and variance we have zα = 0.895. With the data
presented in Figure 3.14(a), we obtain Dn = 0.723 and we accept H0 with 95%
confidence.

Anderson-Darling Test. This test measures the discrepancy by assigning weights
to the squared difference (Fn(x) − Φ(x))2. It gives more importance to the tails of
the distribution than the previous test. Let X1 6 . . . 6 Xn be the ordered statistic
and consider Ui = Φ(Xi). The asymptotic distribution of

W 2
n = −n − 1

n

n∑

j=1

(2j − 1)[log Uj + log(1 − Un−j+1)]

is known [5]. For the case of unknown mean and variance, consider the modified
statistic

W2
n = W 2

n(1 + 0.75/n + 2.25/n2).
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We test the same two hypothesis H0 and H1 as before and want a 0.95 confidence
level. Then z0.95 = 0.752 [34] and the data yields W2

n = 0.558. Here again we accept
H0 with 95% confidence.

Figure 3.14(c) presents the correlation structure of the increments of the MEBP
process on a log-log plot and the theoretical correlation of a fGn ∆BH(t) := BH(t+
1) − BH(t) where BH(t) is an fBm with H = 0.7. Its correlation structure is given
by [89]

E[∆BH(t)∆BH(t + τ)] =
1

2
VH(|τ + 1|2H + |τ − 1|2H − 2|τ |2H) (3.12)

where VH = Var[BH(1)]. For H > 0.5 and large τ , the correlation is positive and
decays like τ 2H−2. The estimated correlation is averaged over 100 estimates, for sig-
nals of length 1000. The estimated correlation is displayed for τ = 1 . . . 300, together
with the theoretical one given by Equation (3.12) and 95% confidence intervals. It
appears to decay linearly with log τ , with a small departure from the slope 2H − 2.
This small departure shows the different corrolation structure of fBm and MEBP
processes. Maybe we could consider in another study a more general model and
allow correlation in the Zn

k to take this observation into account.

Finally, Figure 3.14(d) estimates the partition function ζ2(q) with wavelet leaders.
We generate 100 independent samples of length 214, and perform its wavelet trans-
form from scale 3 to 12. We use Daubechies wavelets with two vanishing moments
and estimate the spectrum for q ∈ [−10, 10]. We used a linear interpolation to go
from the irregular time grid generated by the MEBP algorithm to a regular lattice.
The partition function appears linear, which is expected for monofractal processes
such as fBm. In this case, the slope of the partition function gives the Hölder ex-
ponent of the fBm (see the end of Section 4.1 in the next chapter). A mean square
regression estimate of the slope of the partition function gives Ĥ = 0.709, close to
the theoretical value. The slight departure from linearity observed for large nega-
tive values of q probably comes from the linear interpolation. We will notice again
in the next chapter the high sensitivity of the estimation to the step of linear in-
terpolation. Oversampling or undersampling can discard or add extra information
about the fractal structure of the process, which has an impact when estimating the
spectrum.

Overall, the statistical tests performed indicate the MEBP process here defined is
a good approximation of an fBm with parameter H = 0.7, with the advantage of an
on-line simulation. To illustrate, two realisations of an fBm using the Chan-Wood
algorithm and with the MEBP algorithm are presented in Figure 3.15. The advan-
tage of our algorithm is that it provides an on-line simulation of an approximated
fBm.
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Figure 3.15: A realisation of fBm generated using the Chan-Wood algorithm (in
grey) and a realisation of an MEBP process imitating an fBm (in black).
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Chapter 4

Multifractal formalism for CEBP

and MEBP processes

"Abstract painting is abstract. There was a reviewer a while back who
wrote that my pictures didn’t have any beginning or any end. He didn’t
mean it as a compliment, but it was."

Jackson Pollock

In practice, we are interested in deciding the nature of the fractal structure of a
random process, and in particular, we want to know whether a stochastic process is
mono or multifractal. The aim of this chapter is to answer this question theoreti-
cally for both the CEBP and MEBP processes. In the first section, we explain the
terminology mono and multifractal with the definition of the Hausdorff spectrum.
In the second, we prove that CEBP processes have a constant local Hölder regularity
along their sample paths. In the third section, we introduce a multifractal formal-
ism adapted to the study of MEBP and derive an upper bound of its Hausdorff
spectrum. Simulations using the wavelet leader technique support the theory.

4.1 Monofractals versus Multifractals

As stated in the introduction, the local Hölder exponent is an efficient tool to measure
the local fluctuations of a process, by comparing it to a power law. Unless stated
otherwise, we work on a realisation of a continuous process. Random variables take
values in C(R), the space of continuous functions of R. The local Hölder exponent
at time t is defined as

Definition 8. [102] If there exists a polynomial Pt such that

|X(u) − Pt(u)| = O(|u − t|h) as u → t

we say that the function X is in Ch
t . The local Hölder exponent of X at time t is

defined to be the supremum of those h such that X is in Ch
t :

H(t) := sup{h | X ∈ Ch
t }.

89
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When the polynomial Pt is constant with respect to u, Pt(u) = X(t). This motivates
the following definition

Definition 9. Let ǫ > 0, Iǫ = [t − ǫ, t + ǫ] and X ∈ C(R)

h(t) := lim inf
ǫ→0

1

log(2ǫ)
log sup

|u−t|<ǫ

|X(u) − X(t)|

= lim inf
ǫ→0

1

log(2ǫ)
log sup

(u,u′)∈Iǫ

|X(u) − X(u′)|

with the convention that log(0) = −∞.

When X is a non decreasing process, h(t) reduces to

h(t) = lim inf
ǫ→0

1

log(2ǫ)
log[X(t + ǫ) − X(t − ǫ)]. (4.1)

Note that we write hX(t) to indicate h(t) for a function or path X.

When the polynomial Pt is known to be constant, then h(t) = H(t). In fact, Riedi
proved the stronger result that when h(t) is not an integer, then Pt is constant and
h(t) = H(t) [102]. In the remainder we call h(t) the Hölder exponent. An interest-
ing geometrical characteristic for irregular processes is the multifractal spectrum or
Hausdorff spectrum. The spectrum describes for each a > 0, the size of the set of
points Θa where X has local Hölder exponent a

Θa := {t | h(t) = a}. (4.2)

The measurement of the size of Θa is provided by the Hausdorff dimension, hence
the definition of the multifractal spectrum

Definition 10. The Hausdorff spectrum fH of the function X at the point a is the
Hausdorff dimension DH of Θa

D(a) := DHΘa.

A stochastic process is said to have a multifractal structure if the sets Θa are
highly interwoven. The spectrum thus describes the connection between the local
fluctuations of a process and the measure of the set of points that have the same local
variability. Generally, sets Θa are dense in the support of the process. It follows that
measuring the size of sets Θa using box dimension would be inappropriate because
dimB Θa would equal the box dimension of the support of the process [45]. When
the Hausdorff spectrum degenerates to a single point, we say that the process is
monofractal, since it possesses only one Hölder exponent.
In general, it is hard to calculate or estimate directly the Hausdorff spectrum of a

function X since it is not possible to locate precisely the points of a process with
a given regularity, and it is difficult to estimate the Hausdorff dimension of a set.
In practice, the spectrum is calculated using a multifractal formalism, which relates
the spectrum to the Legendre Fenchel (LF) transform of a partition function defined



Chapter 4. Multifractal formalism for CEBP and MEBP processes 91

as the power exponent of a structure function TX(a, t) in the limit of small scales.
TX(a, t) is obtained from a comparison between the original process and a reference
pattern dilated and located at different positions. The use of wavelets is useful for
the analysis of a process at different scales and one can use for example the wavelets
coefficients dX(a, tk) or wavelet leaders LX(a, tk) for TX(a, tk). The characteriza-
tion of the Hölder exponent using wavelets requires a regularity hypothesis that is
stronger than continuity: X is said uniform Hölder if (Definition 1, Chapter 1)

∃ǫ > 0 ∃C > 0 ∀t, s ∈ R, |X(t) − X(s)| 6 C|t − s|ǫ.

Recall the definition of S1(q, j) and S2(q, j) given in the Introduction,

S1(q, j) =
1

nj

nj∑

k=1

|dX(j, tk)|q S2(q, j) =
1

nj

nj∑

k=1

|LX(j, tk)|q.

We identify their power law behaviour by defining the partition functions ζ1(q) and
ζ2(q)

ζ1(q) = lim inf
j→−∞

( log2 S1(q, j)

j

)
ζ2(q) = lim inf

j→−∞

( log2 S2(q, j)

j

)
. (4.3)

Also, we have introduced earlier the LF transform ξ(q) of the spectrum D(a)

ξ(q) = 1 + inf
a

(qa − D(a)). (4.4)

Then it is known that for all uniform Hölder functions or processes, the LF transform
of ζ2(q) provides an upper bound for the Hausdorff spectrum

D(a) 6 inf
q

(1 + qa − ζ2(q)) (4.5)

since ζ2(q) = ξ(q) for all q ∈ R [3]. When the Hausdorff spectrum is concave,
then the LF transform is involutive, and inequality in (4.5) is replaced by equality.
This is true for most multiplicative cascades. Also, when X possesses no oscillating
singularities, then ζ1(q) = ξ(q) for all q > 0. When the inequality in (4.5) is
an equality, the multifractal formalism is said to hold. When deciding whether a
process is mono or multifractal, we can use either the spectrum or the partition
function. Assuming the multifractal formalism holds and the partition function is
reduced to a linear function of q, D(h) reduces to a single point and the stochastic
process is said to be monofractal. In this case, the slope of the partition function
gives the Hölder exponent of the process. When the partition function is non linear,
the spectrum is non trivial and the process is said to be multifractal.

4.2 The CEBP process

In this section we prove the monofractal structure of CEBP processes. First, we need
a preliminary result on the random variables Wi, introduced in the previous chapter,
end of Section 3.1.1, as the limit of a martingale defined on a Galton-Watson tree.
We keep the same notations as before.
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Assumption 4. Suppose for all p > 0, EZp
∅ < ∞.

Lemma 6. Let Υ be a Galton-Watson tree with regular offspring distribution. Under
Assumption 4,

log max
i∈ΥGW

n

Wi = o(n) and log min
i∈ΥGW

n

Wi = o(n)

almost surely with respect to trees.

Proof. The proof uses an embedded branching random walk (BRW) [23]. We recall
that a BRW is described by a triple (Q,M, χ), whose elements respectively describe
the reproduction, movement and importance of each individual. We label individuals
using elements of U = ∪n>0N

n (as for the crossing tree). With each individual i we
associate an independent version of (Q,M, χ), denoted (Qi,Mi, χi). Q is a point
process on R×R

+, its first coordinate gives a child’s displacement from its parent’s
birth position and the second gives the parent’s age at that child’s birth. M is
a stochastic process which describes an individual’s movement during its lifetime.
χ : R

+ → R is the so-called characteristic function.
We construct a BRW as follows. The point process Qi generates Zi points at time 1,

with no displacement. The birth time of individual i is just |i|. Individual movement
consists of a single jump at birth of size logVi, where the Vi are i.i.d. and distributed
like W∅. That is, Mi(t) = logVi for all t ≥ 0. The characteristic χ is used to count
generations: χi(t) = I[0,1)(t).
The right-most particle of the BRW at time t is defined as

Bt = max
i∈Υ⌊t⌋

log(Vi).

Biggins [23] studied the behaviour of the right-most particle under the condition
that the BRW is ‘well-regulated’ and derived conditions of the existence of a γ
such that Bt/t → γ a.s. In our case, m(θ, φ) := E

∫
e−θz−φτQ(dz, dτ) = e−φ and

α(θ) := inf{φ | m(θ, φ) 6 1} = 0. (Q,M, χ) is said to be well-regulated if for all
θ 6 0,

E

(
sup

t

{
e−α(θ)te−θM(t)χ(t)

})
= E

(
sup

t

{
e−θM(t)χ(t)

})
< ∞.

With the present definition of characteristic, this reduces to checking that EV−θ
∅

for all θ 6 0. The regularity condition on the offspring distribution ensures that
EV∅ = 1. Moreover, Bingham and Doney [27] have shown that for all p > 1, EZp

∅

and EVp
∅ converge or diverge together. The process is thus well regulated under

Assumption 4.
Let α∗(a) := infθ<0{aθ + α(θ)}, that is

α∗(a) =

{
0 if a 6 0

−∞ if a > 0

Then from [23],
γ = inf{a | α∗(a) < 0} = 0

and log maxi∈ΥGW
n

Wi = o(n) follows.
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To prove that log min Wi = o(n), we note that min(log Wi) = −max(− log Wi).
We consider the same BRW as before, but with jumps of magnitude − logVi. We
still have γ = 0, provided that the branching random walk is ‘well-regulated’, which
is the case if E(Vθ) < ∞ for all θ < 0. This follows from Biggins and Bingham
[24], Theorem 3, which shows that the left tail of V∅ decays exponentially as long
as the family size is greater than 2, which is verified for the crossing tree of CEBP
processes.

We can now state the main result of this section.

Theorem 10. Let X be a CEBP with regular offspring distribution p and mean
family size µ. Suppose the number of offspring is bounded, that is there exists M
such that p(x) = 0 for all x > M . Also, suppose Assumption 4 holds. Then, with
probability 1, for all t,

h(t) =
log 2

log µ
. (4.6)

In other words, X is monofractal.

Proof. Let ǫ > 0. It is always possible to find a positive n∗(ǫ) such that

2−(n∗+1) < sup
|u−t|<ǫ

u,t∈[0,W∅]

|X(u) − X(t)| 6 2−n∗

. (4.7)

Reciprocally, given n∗, ǫ is not unique, hence we define In∗ := {ǫ | n(ǫ) = n∗}. We
need to derive bounds for In∗ .
Suppose

ǫ 6 min
j∈ΥGW

n∗+2

µ−(n∗+2)Wj (4.8)

and consider crossings of size 2−(n∗+2). If ǫ satisfies (4.8), then the interval (u, t)
intersects at most two intervals corresponding to generation n∗ + 2 and it follows
that

sup
|u−t|<ǫ

u,t∈[0,W∅]

|X(u) − X(t)| 6 2.2−(n∗+2) = 2−(n∗+1)

which contradicts (4.7). Therefore, if ǫ ∈ In∗ then

ǫ > min
j∈ΥGW

n∗+2

µ−(n∗+2)Wj.

Suppose
ǫ > µ−n∗

max
i∈ΥGW

n∗

[Wi + . . . + Wi+M ,Wi + . . . + Wi−M ]

where µ−n∗
Wi+M is the length of the M -th consecutive interval to the right of

µ−n∗
Wi, corresponding to level n∗ crossing, and µ−n∗

Wi−M the length of its M -
th consecutive interval to the left. When these intervals do not exist (which can be
the case at the two ends of the process), then omit them. Thus

sup
|u−t|<ǫ

u,t∈[0,W∅]

|X(u) − X(t)| > 2−n∗
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θ 0.2 0.5 0.7
Theoretical slope 0.3010 0.5 0.6603
Estimated slope 0.2957 0.4909 0.6675

Table 4.1: Estimated slope of the partition function of a CEBP for different values
of θ, using a least squares regression. Estimates are close to the theoretical value
log 2/ log µ with µ = 2/θ.

which contradicts (4.7). Thus if ǫ ∈ In∗ then

ǫ 6 µ−n∗

max
i∈ΥGW

n∗

[Wi + . . . + Wi+M ,Wi + . . . + Wi−M ] 6 Mµ−n∗

max
j∈ΥGW

n∗

Wj.

In summary, for ǫ ∈ In∗ , we have

min
j∈ΥGW

n∗+2

µ−(n∗+2)Wj < ǫ 6 Mµ−n∗

max
j∈ΥGW

n∗

Wj.

Under Assumption 4, it follows that

−(n∗ + 2) log µ + log 2 + o(n∗) < log(2ǫ) < −n∗ log µ + log(2M) + o(n∗). (4.9)

Taking the logs of (4.7) and combining it with (4.9) yields

−(n∗ + 1) log 2

−n∗ log µ + log(2M) + o(n∗)
<

log sup |X(u) − X(t)|
log(2ǫ)

<
−n∗ log 2

−(n∗ + 2) log µ + log 2 + o(n∗)
.

From the almost sure continuity of X, n∗(ǫ) → ∞ as ǫ → 0, and the result follows.

Figure 4.1 displays the estimation of the partition function τ(q) of CEBP processes
with geometric offspring distribution, with parameter θ = 0.2, 0.5 and 0.7,

P (k) = θ(1 − θ)(k−2)/2, k = 2, 4, 6, . . .

Note that the case θ = 0.5 corresponds to the Brownian motion. The estimation is
performed using the wavelet leader technique described earlier, assuming the CEBP
process is Hölder uniform. In each case, the results are obtained by averaging 100
realisations, each realisation of length 217. We used Daubechies wavelets with 3
vanishing moments. The wavelet leaders LX(j, k) are calculated over the range of
scales j1 6 j 6 j2 with j1 = 3 and j2 = 14. As predicted, τ(q) is linear in q,
with slope log 2/ log µ. The slope is estimated using a least squares regression and
presented in table 4.1.
In the simulations, we have used a geometric offspring distribution which is not

bounded. The numerical results show that this assumption on the offspring distri-
bution can probably be weakened.
To further test the monofractal behaviour of CEBP processes, we perform a multi-

fractality test proposed by Wendt and Abry [114], briefly described in section 2.5.3,
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Figure 4.1: Partition function of CEBP processes. Offspring distribution is
P (Z = k) = θ(1 − θ)(k−2)/2, with k = 2, 4, 6, . . . and θ = 0.2, 0.5 and 0.7, from
top to bottom figures. Estimation (‘o’) is from an average of 100 realisations. The
theoretical function is the solid black line. The partition function is linear in q, which
characterizes a monofractal stochastic processes. Note that confidence intervals are
too small to be plotted.
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θ 0.2 0.5 0.7
α̂ for c2 0.12 0.06 0.08
α̂ for c3 0.11 0.10 0.11

Table 4.2: Rejection of hypothesis c2 = 0 and c3 = 0 at 10% significance.

using the Matlab toolbox developed by Wendt in his PhD [113]. Consider the par-
tition function ζi(q), i = 1 or 2 whose definitions are given by Equations (4.3), and
their polynomial expansion ζi(q) = c1q + c2q

2/2 + c3q
3/3 + . . . The test allows us

to decide whether cp = 0 or not. In particular, assuming the multifractal formalism
holds, the case p > 2 distinguishes between mono and multifractal behaviour.
Of the six tests proposed by Wendt and Abry, we chose the one called ‘Percentile

Bootstrap Test’. We test the null hypothesis 100 times for p = 2 and 3 at a signif-
icance level of α = 0.1 and report the rejection rate. We use wavelet coefficients,
however wavelet leaders would give similar results. Results are given in table 4.2.
In the three considered cases, the average rejection rate α̂ is close to the theoretical
value, agreeing with the monofractal behaviour of CEBP processes established in
Theorem 10.

4.3 Multifractal formalism for MEBP

4.3.1 Multifractal formalism

There are many technical difficulties when trying to estimate the Hausdorff spectrum
of a measure. Not only is it impossible to calculate the Hausdorff dimension of a set
in any real-world situation, but also the local regularity of a multifractal stochastic
process at each point cannot be estimated numerically. From these difficulties appear
indirect methods for calculating the spectrum.
An alternative description of the singular structure of multifractals is provided by

the coarse theory which splits the support of the function or the measure with r-mesh
cubes, counts how many of them have a measure with Hölder exponent of order a,
and then lets r → 0. The coarse theory is more easily computed theoretically. In
practice, one needs a partition function to estimate it.
Let X be a stochastic process defined on R, whose realisations belong to C(R), the

space of continuous functions on R. In the coarse theory, we are talking about path
by path realisation of the process. Consider the increment process ∆Xr defined over
the r-mesh cubes In

r = [nr, (n+1)r). If t ∈ In
r , then ∆Xr(n) = X((n+1)r)−X(nr).

Then, the coarse spectrum of X is defined as [44]

f †(a) := lim
ǫ→0

lim
r→0

1

− log r
log[#{In

r | t ∈ In
r , a − ǫ 6

log |∆Xr(t)|
log r

6 a + ǫ}]. (4.10)

When the limit lim
r→0

fails to exist, one can consider alternative definitions of f † using

lim inf and lim sup, called respectively the lower and upper coarse spectrum. It is
shown in [44], Lemma 11.1, that the fine and coarse spectra are related by

D(a) 6 f †(a).
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Estimating the coarse spectrum directly from its definition is hard, particularly
because of the presence of the double limit. In practice, one prefer to relate the
coarse spectrum to the LF transform of the power law exponents of moment sums,
which is faster and more manageable numerically. Let Sr(q) =

∑∗ |∆Xr(n)|q where
the

∑∗ is taken over all In
r for which |∆Xr(n)| > 0. Let β1(q) = lim

r→0
log Sr(q)/ log r,

and call β1(q) a partition function. Then it is proved in [44], Lemma 11.2, that for
any function in C(R),

f †(a) 6 f †
L(a) := inf

−∞<q<∞
(aq − β1(q)).

The LF transform of β1(q) provides an upper bound of the Hausdorff spectrum, but
there are many functions for which equality holds.
Consider an averaging of Sr(q) over all realisations of X and denote this averaging

by E. β2(q) = lim
r→0

log ESr(q)/ log r is called the deterministic partition function.

Then, for any random process, with probability one (Lemma 3.9 in [102]),

β1(q, ω) > β2(q) for all q with β2(q) < ∞.

In the previous inequality, we have made the randomness of β1 explicit by writing
its dependence on ω. Let β∗

2(a) := infq(qa − β2(q)) be the LF transform of β2.
Since β1(q, ω) > β2(q) almost surely, we get f †

L(a) 6 β∗
2(a). Relations between the

different spectra introduced so far can be summarized as:

D(a) 6 f †(a) 6 f †
L(a) 6 β∗

2(a). (4.11)

Examples where the previous inequalities are strict inequalities can be found in [101]
and [104]. In the remainder, by multifractal formalism we mean a formalism where
we calculate the Legendre-Fenchel transform of a partition function (β1(q) or β2(q)
for example) which provides an upper bound for the multifractal spectrum, and
we say that the multifractal formalism holds when the inequality between the two
spectra is replaced by an equality.
Finally, define the deterministic coarse spectrum F † of X as an averaged version

of f †

F †(a) := lim
ǫ→0

lim
r→0

1

− log r
E log[#{In

r | t ∈ In
r , a − ǫ 6

log ∆Xr(n)

log r
6 a + ǫ}]. (4.12)

Theorem 3.13 and 3.14 in [102] state that f †(a) 6 F †(a) 6 β∗
2(a).

In the classical definitions presented so far and encountered in the literature, coarse
spectra are derived using a regular subdivision of the real line: intervals In

r all
have length r. The mathematical study of the singularities of the chronometer M
introduced in the previous chapter requires an irregular subdivision of its support.
Recall that M is defined as the integral of a measure ζ, where ζ(Ri) = ρiWi for
all i ∈ ΥGW

n . The length of interval Ri is given by µ−nWi and varies from one i to
another. In order to be able to obtain theoretical results about the coarse spectra of
M, it will be convenient to partition the real line with intervals Ri. In section 4.3.3,
we introduce definitions of coarse spectra and partition functions with an irregular
subdivision of the real line. We show that inequalities (4.11) still hold for those
definitions, and derive explicitly an upper bound for the fine spectrum of M. First,
a discrete version of the local Hölder exponent adapted to the study of M is needed.
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4.3.2 Discretization of the local Hölder exponent

We reuse notations from the previous chapter. Let p be a regular offspring distri-
bution and suppose Assumptions 1, 2 and 3 hold. Then the chronometer M has
continuous sample paths and we consider its local Hölder exponent

hM(t) := lim inf
ǫ→0

1

log(2ǫ)
log(M(t + ǫ) −M(t − ǫ))

for all t ∈ [0,W∅].

In the remainder, we always assume a regular offspring distribution and that As-
sumptions 1, 2 and 3 hold, which ensures that realisations of M belong to C(R).

Let i ∈ ΥGW
n . Let ψ(i) be the position of i in generation n. Denote by i− and i+

respectively the left and right neighbours of i in generation n, so that ψ(i−) + 1 =
ψ(i) = ψ(i+) − 1.

Definition 11. Let i ∈ ΥGW
n and si = ρi−Wi− + ρiWi + ρi+Wi+. Define hn

M(i) as

hn
M(i) := − 1

n
logµ si.

The right and left neighbours of i play a central role in the discretization of the
Hölder exponent by avoiding boundary problems which can arise when t is a hitting
time. In fact, we have

Proposition 5. Let p be a regular offspring distribution and suppose Assumptions
1, 2, 3 and 4 hold. Let t ∈ [0,W∅] and i ∈ ∂Υ be such that

⋂
n Ri|n = {t}. Then, for

all ω ∈ Ω,
lim inf
n→∞

hn
M(i|n) = hM(t).

Proof. Take ǫ > 0. (si|n) is a nested sequence, therefore decreases with n. Thus, it
is always possible to find a positive n = n(ǫ, t) large enough that

log si|n+1 6 log[M(t + ǫ) −M(t − ǫ)] < log si|n . (4.13)

The procedure is now similar to that used in the proof of Theorem 10. Given n and
t, let In(t) = {ǫ|n(ǫ, t) = n} and suppose ǫ ∈ In(t). We need bounds for In(t).
Suppose ǫ is larger than µ−nWi|n + µ−nWi−|n and µ−nWi|n + µ−nWi+|n. Then it

follows that
|M(t + ǫ) −M(t − ǫ)| > si|n

which contradicts (4.13). This is illustrated in Figure 4.2. Consequently, ǫ <
µ−n max[Wi|n + Wi−|n,Wi|n + Wi+|n] for all ǫ ∈ In(t).
Similarly, if ǫ is strictly smaller than µ−(n+1)Wi−|n+1 and µ−(n+1)Wi+|n+1 then

|M(t + ǫ) −M(t − ǫ)| < si|n+1

which also contradicts (4.13). Hence, ǫ > µ−(n+1) min[Wi−|n+1,Wi+|n+1] for all ǫ ∈
In(t).
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Figure 4.2: Bounds for In(t). If ǫ is larger than µ−nWi+µ−nWi− and µ−nWi+µ−nWi+

for i ∈ ΥGW
n , then M(t + ǫ)−M(t− ǫ) colored in grey is necessarily larger than si,

the measure of the interval containing t and its right and left neighbours.

Under Assumption 4, it follows from Lemma 6 that for ǫ ∈ In(t),

−(n + 1) log µ + log 2 + o(n) 6 log 2ǫ < −n log µ + log 4 + o(n).

Now dividing each member of the double inequality (4.13) by log 2ǫ < 0 and using
these bounds, we obtain

lim inf
ǫ→0

[ log |M(t + ǫ) −M(t − ǫ)|
log(2ǫ)

]
6 lim inf

n→+∞

[ log si|n+1

−n log µ + o(n)

]

and

lim inf
n→+∞

[ log si|n

−(n + 1) log µ + o(n)

]
6 lim inf

ǫ→0

[ log |M(t + ǫ) −M(t − ǫ)|
log(2ǫ)

]

which yields

lim inf
n→+∞

[ n

n + 1
hn
M(i|n)

]
6 hM(t) 6 lim inf

n→+∞

[n + 1

n
hn+1
M (i|n+1)

]

and the result follows.

4.3.3 An upper bound for the spectrum of M
As explained earlier, we need to introduce new definitions to derive theoretically the
spectrum of M. Motivated by its cascade construction, the results and proofs pre-
sented here follow the methodology presented by Riedi [102] who gives conditions for
the multifractal formalism to hold and presents results for the binary cascade. We
introduce definitions of coarse spectrum (section 4.3.3.1) and deterministic coarse
spectrum (section 4.3.3.2) adapted to the study of M, which possess strong similari-
ties with the spectra presented in section 4.3.1. The derivation of an upper bound for
the Hausdorff spectrum of M (section 4.3.3.6) is obtained using a large deviations
approach, whose theory is briefly summarized in section 4.3.3.3.
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4.3.3.1 Coarse spectrum

In this section, we present the definition of a coarse spectrum adapted to M and
show that it provides an upper bound of the fine spectrum D(a).

Definition 12. Let f be the coarse spectrum of M defined as

f(a) := lim
ǫ→0

lim sup
n→+∞

1

n
logµ[#{i ∈ ΥGW

n | a − ǫ 6 hn
M(i) 6 a + ǫ}]. (4.14)

When convenient, we write N (n)(a, ǫ) for #{i ∈ ΥGW
n | a−ǫ 6 hn

M(i) 6 a+ǫ}. The
main difference between f and f † (Equation 4.10) comes from the irregular grid used
to partition the real line instead of r-mesh cubes. The 2 spectra are a priori different
and it is not fully understood whether the global properties of M are similar when
described by f or f †. A way to show equality between the 2 spectra would be to
obtain bounds for the cardinality of ΥGW

n and to compare them with the number
of µ−n-mesh cubes used in the definition of f †, with r = µ−n. However, we do not
pursue this study here.
Also, note that neither f nor f † can be understood as the box dimension of M, as

explained in [45], Chapter 17 for f †, since intervals covering the set of points with
regularity a do not form a nested sequence. That is, intervals not counted when
n is small can contain an interval counted when n is large, which contradicts the
definition of box dimension.
The classical result that f † is an upper bound of the fine spectrum also holds for

f , as stated in the next theorem.

Theorem 11. Let p be a regular offspring distribution and suppose Assumptions 1,
2, 3 and 4 hold. Then,

D(a) 6 f(a)

almost surely with respect to trees.

Proof. Let a ∈ R and γ > f(a) be arbitrary. We want to show that f(a) is an upper
bound for the Hausdorff dimension of Θa = {t | h(t) = a}. To do so, we find a
covering of Θa and show that its γ-Hausdorff measure is zero for all γ > f(a). The
result follows by sending γ to f(a).
Let η > 0 such that γ > f(a) + 2η. By definition of f(a), there exists ǫ0 > 0 and

m0 such that for all n > m0 and 0 < ǫ 6 ǫ0,

f(a) + η >
1

n
logµ N (n)(a, ǫ)

that is
N (n)(a, ǫ) 6 µn[f(a)+η]. (4.15)

Note that this inequality is true for all n > m0 since f is defined with a lim sup.
Defining f using a lim inf would lead to an inequality true only for infinitely many
n > m0.
We now find a covering for Θa. Let t ∈ [0,W∅] and let i ∈ ∂Υ be such that⋂
n Ri|n = {t}. If t ∈ Θa, then lim

n→+∞
hn
M(i|n) = a, that is for any 0 < ǫ 6 ǫ0,
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there exists N ∈ N such that for all n > N , a − ǫ 6 hn
M(i|n) < a + ǫ. Since

t ∈ [T−n
ψ(i|n)−1 T−n

ψ(i|n)[:= Ri|n for all n, we conclude that for any m

⋃

n>m

⋃†
Ri|n

is a covering of Θa, where
⋃† is the union taken over i ∈ ∂Υ such that a − ǫ 6

hn
M(i|n) 6 a+ǫ. Note that the number of nodes i in generation n of the tree such that

a − ǫ 6 hn
M(i|n) 6 a + ǫ is exactly N (n)(a, ǫ). Also note that |Ri|n| 6 max

j∈ΥGW
n

µ−nWj.

It follows that if m > m0 and 0 < ǫ 6 ǫ0, then

∑

n>m

∑†
|Ri|n|γ 6

∑

n>m

| max
j∈ΥGW

n

µ−nWj|γµn[f(a)+η] =
∑

n>m

| max
j∈ΥGW

n

Wj|γµ−n[γ−f(a)−η]

where
∑† is taken over all i ∈ ∂Υ such that a − ǫ 6 hn

M(i|n) 6 a + ǫ. Since
γ > f(a) + 2η, then µ−nη > µ−n[γ−f(a)−η] and

∑

n>m

∑†
|Ri|n|γ 6

∑

n>m

| max
j∈ΥGW

n

Wj|γµ−nη.

Under Assumption 4, for any ǫ > 0 there exists n0 such that for all n > n0,

max
j∈ΥGW

n

Wj 6 enε a.s. with respect to trees.

It follows for all m > max(m0, n0):

∑

n>m

∑†
|Ri|n|γ 6

∑

n>m

enεγµ−nη =
∑

n>m

en(εγ−η log µ).

For ε < η(log µ)/γ, the exponent is strictly negative and the sum is finite. Hence,
sending m to infinity, we obtain

∑

n>m

∑†
|Ri|γ → 0 as m → +∞.

The γ-Hausdorff measure of a covering of Θa is zero, therefore its Hausdorff dimen-
sion is smaller than γ. Since it is true for all γ > f(a), the result follows.

4.3.3.2 Deterministic coarse spectrum

The coarse spectrum f is obtained for one realisation of M. Here, we propose
to average the spectrum over the whole sample space, leading to the deterministic
coarse spectrum. Recall that P is the probability measure defined over the space of
extended Galton-Watson trees and E is the expectation under P.

Definition 13. The deterministic coarse spectrum F of M is given by

F (a) := lim
ǫ→0

lim sup
n→+∞

1

n
logµ E[#{i ∈ ΥGW

n | a − ǫ 6 hn
M(i) < a + ǫ}].
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Using classical definitions of section 4.3.1, we saw that the deterministic coarse
spectrum F † gives an upper bound for the coarse spectrum f †. This relation also
holds with f and F , as stated below

Theorem 12. Let p be a regular offspring distribution and suppose Assumptions 1,
2 and 3 hold. Then

f(a) 6 F (a)

P-almost surely.

Proof. Given a ∈ R, ǫ > 0 let n0 be such that for all n > n0,

EN (n)(a, ǫ) 6 µn(F (a)+ǫ).

Consider E lim sup
n→∞

µ−n(F (a)+2ǫ)N (n)(a, ǫ). This can be bounded by

E

∑

n>n0

µ−n(F (a)+2ǫ)N (n)(a, ǫ) 6
∑

n>n0

µ−n(F (a)+2ǫ)µn(F (a)+ǫ) =
∑

n>n0

µ−nǫ < ∞

so that lim sup
n→∞

µ−n(F (a)+2ǫ)N (n)(a, ǫ) is finite P-almost surely. Thus using the defini-

tion of f(a), F (a) + 2ǫ > f(a). Sending ǫ to zero gives the desired result.

One could also try to define the deterministic coarse spectrum by averaging f(a),
that is we could define F ∗(a) := Ef(a). However, there is no obvious relationship
between the f and F ∗. In particular, using Fatou’s lemma and Jensen’s inequality,

F ∗(a) = E lim
ǫ→0

lim sup
n→+∞

1

n
logµ N (n)(a, ǫ) > lim

ǫ→0
lim sup
n→+∞

1

n
E logµ N (n)(a, ǫ)

6 lim
ǫ→0

lim sup
n→+∞

1

n
logµ EN (n)(a, ǫ) = F (a).

No clear relationship can be derived between F and F †, for the same reasons as for
f and f †.
The presence of the double limit in the definition of the coarse spectra is problem-

atic in practice. Usually, we estimate it via the Legendre Fenchel transform of an
auxiliary function, as explained in section 4.3.1. We introduce auxiliary functions for
the coarse spectra and deterministic coarse spectra in the framework of the theory
of large deviations. Before doing so, in the next section we recall the main result of
Gärtner and Ellis on large deviations.

4.3.3.3 Large deviations

The theory of large deviation studies the occurrence of rare events. Consider a
sequence of random variables S1, S2, . . . converging in probability to some constant
c. Then, P (|Sn−c| > ǫ) → 0 as n → ∞. Often, the convergence is at an exponential
rate, hence we can write

lim
n→∞

1

n
log(P (|Sn − c| > ǫ)) = −I(ǫ, c)
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where I(·, ·) is a non negative function. When the previous limit exists, we say that
the sequence {Sn} satisfies a large deviation principle. The theory of large deviations
is mainly concerned about determining I(·, ·). It can be seen as a generalization of
the law of large numbers since it not only says that certain probabilities go to zero,
but also find rates of convergence. First results on large deviations are attributed to
Cramer who derived an expression for I(·, ·) in the case of i.i.d. random variables on
the real line [33]. Since then, the theory has been considerably broadened. Gärtner
[51] and then Ellis [40, 41] have obtained similar results in a more general context,
where Sn can be vectors, not necessarily averages and not necessarily defined over
the same probability space. A good introduction to the theory of large deviations
can be found in [29].
We will state the Gärtner-Ellis theorem here, then use it in the following sections.

We need the following definitions.

Definition 14. A function f(x) is said to be closed if the set {x ∈ R | f(x) 6 b}
is closed, for all b ∈ R.

Definition 15. Let f be a convex function on R, whose domain D = {x | f(x) <
∞} has a non-empty interior. Assume also that f is differentiable on the interior of
D. We say that f is steep at x for x a boundary point of D if f ′(xi) → ∞ whenever
x1, x2, . . . is a sequence of points of the interior of D converging to x. f is steep if
it is steep at all boundary points.

Theorem 13. (Gärtner-Ellis theorem [40, 41])
Let:

• Yn be a sequence of random variables defined on probability spaces (Ωn,Fn, ρn)
for n > 1.

• a−1
n Yn be a sequence of random variables where an → ∞ as n → ∞.

• Pn be a sequence of probability measure defined by Pn(A) = ρn{ω ∈ Ωn | a−1
n Yn ∈

A} for any A ∈ B(R). Denote by En the expectation under Pn.

We assume the following

• C(q) = lim
n→+∞

Cn(q) where Cn(q) = 1
an

log EneqYn exists for all q ∈ R. The

value +∞ is allowed both for C(q) and Cn(q). We define C(q) = +∞ if
Cn(q) = +∞ for n larger than some N ∈ N.

• C(q) is a closed convex function on R.

• The domain D = {q ∈ R | C(q) < ∞} of C(q) has a non empty interior
containing q = 0.

• C(q) is differentiable on its domain and is steep.

Let I(y) := supq∈R
(qy − C(q)) be the LF transform of C(q). Then, I(y) is convex,

closed and non-negative. A Borel subset A of R is called I-continuity set if

inf
y∈clA

I(y) = inf
y∈intA

I(y)
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If A is an I-continuity set, then

lim
n→+∞

1

an

log Pn(a−1
n Yn ∈ A) = − inf

y∈A
I(y).

Remark: This theorem is the combination of Theorem II.3.4 in [41] and Theorem
II.2 in [40]. Theorem II.3.4 gives the previous result for general I(y), not necessar-
ily defined as the Legendre Fenchel transform of an auxiliary function, under the
assumption that I has a large deviation property (see Definition II.3.1. in [41]).
Theorem II.2 states that when the conditions of the theorem hold, then I indeed
satisfies the large deviation properties, and we can apply Theorem II.3.4 in this
context.

4.3.3.4 Partition function τh

We use the theorem of Gärtner and Ellis to derive an upper bound of the coarse spec-
trum f . In this section, we work on one realisation of M. All quantities introduced
are therefore deterministic. Let i ∈ ΥGW

n and

an = n log µ and Yn = log si.

Then an → ∞ as n → ∞. Also,

−a−1
n Yn = − 1

n
logµ si = hn

M(i).

Let Aǫ = [−a − ǫ,−a + ǫ] → {−a} as ǫ → 0 and let Pn be the uniform distribution
on {1, . . . , Zn}. En is the expectation under Pn. Here, the randomness comes by
choosing one of the Zn intervals and then checking whether or not the singularity
exponent is in a neighborhood of a.

Assumption 5. The random variable Yn and probability measure Pn satisfy the
conditions of the Gärtner-Ellis theorem.

Under Assumption 5 one have

−Cn(q) = − 1

n log µ
log En exp[q log si] → τh(q) = −C(q) (4.16)

for all q ∈ R with −C(q) a closed, concave, differentiable on its domain and steep
function. Thus we can apply Theorem 13 to get

1

n log µ
log Pn[a−1

n Yn ∈ Aǫ] → − inf
z∈Aǫ

sup
q∈R

[qz + τh(q)].

Then,

lim
ǫ→0

lim
n→+∞

1

n
logµ Pn[hn

M(i) ∈ −Aǫ] = − lim
ǫ→0

inf
z∈−Aǫ

sup
q∈R

[−qz + τh(q)]

= − sup
q∈R

[−qa + τh(q)]

= inf
q∈R

[qa − τh(q)]. (4.17)
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The probability Pn[hn(i) ∈ −Aǫ] can be re-expressed as its relative frequency in
the limit as n → ∞. Thus,

lim
ǫ→0

lim
n→+∞

1

an

log Pn[hn
M(i) ∈ −Aǫ] = lim

ǫ→0
lim

n→+∞

1

n
logµ

#[hn
M(i) ∈ −Aǫ]

Zn

= f(a) − lim sup
n→+∞

1

n
logµ Zn. (4.18)

Since µ−nZn converges almost surely to a non-degenerate random variable W∅,
1/n logµ Zn → 1 as n → ∞ when EZ1 log Z1 < ∞ [73], re-expressing (4.16) and
combining results from Equations (4.17) and (4.18), we obtain

Theorem 14. Let p be a regular offspring distribution and suppose Assumptions 1,
2, 3 and 5 hold. Then, as n → ∞, the limit

− 1

n
logµ

[ 1

Zn

∑

i∈ΥGW
n

|si|q
]
→ τh(q) (4.19)

exists for all q ∈ R with τh a closed, concave, differentiable on the interior of its
domain and steep function. Let τ̃h(q) = τh(q) − 1 and let τ̃ ∗

h(a) be its LF transform

τ̃ ∗
h(a) := inf

q∈R

[qa − τ̃h(q)].

Then,
f(a) = inf

q∈R

[1 + qa − τh(q)] = τ ∗
h(a)

almost surely on trees.

We remark that when τh(q) < ∞ for all q ∈ R, its domain has no boundary point
and we do not need to check the steep property of τ .
Assumption 5 is hard to check. As f only gives an upper bound on the Hausdorff

spectrum D, it is sufficient to have an upper bound on f , which is what the next
theorem gives.

Theorem 15. Let p be a regular offspring distribution and suppose Assumptions 1,
2 and 3 hold. Define

τh(q) := lim inf
n→+∞

− 1

n
logµ

[ 1

Zn

∑

i∈ΥGW
n

|si|q
]

(4.20)

= lim inf
n→+∞

− 1

n
logµ

[ 1

Zn

∑

i∈ΥGW
n

µ−nqhn
M(i)

]

and τ̃h(q) = τh(q) − 1. Then, for any a ∈ R,

f(a) 6 τ̃ ∗
h(a) := inf

q∈R

[qa − τ̃h(q)]

almost surely on trees
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Remark. We have used τh(q) for the limit and lim inf, but we will understand it
to be the lim inf in what follows.
This theorem provides a way to estimate an upper bound for the coarse spectrum

of M, based on its increments. The method is similar to classical estimators of the
partition function using a wavelet decomposition on a Haar basis. The difference
here is that we use an irregular grid to derive increments. The grid is provided by
the crossing tree and is therefore adapted to the signal.

Proof. Let a ∈ R be such that f(a) > −∞. Let γ < f(a), then there exists ǫ0 > 0
and m0 such that for all 0 < ǫ 6 ǫ0 and n > m0,

γ 6
1

n
logµ N (n)(a, ǫ)

or equivalently N (n)(a, ǫ) > µγn. The sum
∑

i∈ΥGW
n

µ−nqhn
M(i) can be bounded below by

considering only singularity coefficients which are roughly equal to a:
∑

i∈ΥGW
n

µ−nqhn
M(i)

>
∑

i∈ΥGW
n

|hn
M(i)−a|6ǫ

µ−nqhn
M(i).

There are exactly N (n)(a, ǫ) > µγn of those coefficients. Furthermore, for such a
coefficient hn

M(i), we have

For q > 0, −nqhn
M(i) > −nqa − nqǫ

For q < 0, −nqhn
M(i) > −nqa + nqǫ.

So that µ−nqhn
M(i) > µ−n(qa+|q|ǫ) for all q. It follows that

∑

i∈ΥGW
n

µ−nqhn
M(i)

> N (n)(a, ǫ)µ−n(qa+|q|ǫ)
> µ−n(qa−γ+|q|ǫ).

From the definition of τh,

τh(q) = lim inf
n→+∞

− 1

n
logµ

1

Zn

∑

i∈ΥGW
n

µ−nqhn
M(i)

= 1 + lim inf
n→+∞

− 1

n
logµ

∑

i∈ΥGW
n

µ−nqhn
M(i)

6 1 + qa − γ + |q|ǫ.

Now let ǫ → 0 and γ → f(a). Then τh(q) 6 1 + qa − f(a), or f(a) 6 qa − τ̃h(q).
This inequality is obviously true if f(a) = −∞. Since this inequality holds for all
(a, q) ∈ R

2,the result follows.



Chapter 4. Multifractal formalism for CEBP and MEBP processes 107

4.3.3.5 Deterministic partition function Th

We introduce a deterministic partition function Th by averaging across all sample
paths. τh and f depend on one realisation of the chronometer M whereas Th and F
(the deterministic coarse spectrum introduced in section 4.3.3.2) are path indepen-
dent. Recall that Ω is the sample space of extended Galton-Watson trees.
To define τ , we defined a probability distribution Pn to be the uniform distribution

on level n of a single realisation of the tree and applied the Gärtner-Ellis theorem.
Here, we introduce a new probability P on Ω to perform averages within and across
all sample paths.
Let X : Ω → R. We are particularly interested in the case when X is the weight

assigned to a particular node of a tree, that is when X(ω) = ρiWi for ω ∈ Ω. We
define P as follows:

P(ρiWi > x) := µ−n
E#{i ∈ ΥGW

n | ρiWi > x}.

Denote by E the expectation under P.

E [ρiWi] =

∫

R+

P(ρiWi > x)dx = µ−n

∫

R+

E#{i ∈ ΥGW
n | ρiWi > x}dx.

We can rewrite the expression inside the expectation as a sum of indicator functions.
Also, since all terms are non-negative, we can swap sum and integral:

E [ρiWi] = µ−n
E

∫

R+

∑

i∈ΥGW
n

1{ρiWi>x}dx = µ−n
E

∑

i∈ΥGW
n

∫ ρiWi

0

dx = µ−n
E

∑

i∈ΥGW
n

ρiWi.

We prove the following in the same way we proved Theorem 14 and 15. We keep
the same definitions for an and Yn and we use the probability measure P.

Assumption 6. The random variable Yn and probability measure P satisfy the con-
ditions of the Gärtner-Ellis theorem.

Under Assumption 6 one have

− 1

n log µ
log E exp[q log si] = − 1

n
logµ

[
µ−n

E

∑

i∈ΥGW
n

|si|q
]
→ Th(q)

for all q ∈ R with −Th(q) a closed, concave, differentiable on its domain and steep
function. Let Aǫ = [a − ǫ, a + ǫ] be defined as in section 4.3.3.4. Theorem 13 states
that

1

n
logµ P [a−1

n Yn ∈ Aǫ] → − inf
z∈Aǫ

sup
q∈R

[qz + Th(q)].

Sending n → ∞ and ǫ → 0, the left hand side in (4.3.3.5) becomes:

lim
ǫ→0

lim
n→+∞

1

an

logP[hn(i) ∈ −Aǫ] = F (a) − 1

and the right hand side is given by

inf
q∈R

[qa − Th(q)].



108

Let T̃h(q) = Th(q)− 1 and T̃ ∗
h (a) = inf

q∈R

[qa− T̃h(q)] its LF transform. We summarize

the result of applying the Gärtner-Ellis theorem to P in the following theorem

Theorem 16. Let p be a regular offspring distribution and suppose Assumptions 1,
2, 3 and 6 hold. Then, as n → ∞,

− 1

n
logµ

[
µ−n

E

∑

i∈ΥGW
n

|si|q
]
→ Th(q) (4.21)

exists for all q ∈ R with Th a closed, concave, differentiable on the interior of its
domain and steep function. Let T̃h(q) = Th(q)− 1 and let T̃ ∗

h (a) be its LF transform

T̃ ∗
h (a) := inf

q∈R

[qa − T̃h(q)].

Then, for all a ∈ R,
F (a) = inf

q∈R

[qa − T̃h(q)] = T̃ ∗
h (a).

When one cannot check Assumption 6, we can obtain an upper bound for F , the
same way Theorem 15 provides an upper bound for f .

Theorem 17. Let p be a regular offspring distribution and suppose assumptions 1,
2 and 3 hold. Define

Th(q) := lim inf
n→+∞

− 1

n
logµ

[
µ−n

E

∑

i∈ΥGW
n

|si|q
]

(4.22)

and T̃h(q) = Th(q) − 1. Then, for any a ∈ R,

F (a) 6 T̃ ∗
h (a) := inf

q∈R

[qa − T̃h(q)].

Remark. We have used Th(q) for the limit and lim inf, but we will understand it
to be the lim inf in what follows.
We now investigate the relationship between τ̃ ∗

h(a) and T̃ ∗
h (a). For convenience, we

introduce the following notation

Sh
n(q) =

1

Zn

∑

i∈ΥGW
n

|si|q

Sh
n(q) = µ−n

∑

i∈ΥGW
n

|si|q.

Equations (4.20) and (4.22) can be rewritten

τh(q) := lim inf
n→+∞

− 1

n
logµ Sh

n(q)

Th(q) := lim inf
n→+∞

− 1

n
logµ ESh

n(q)
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or equivalently

τ̃h(q) := lim inf
n→+∞

− 1

n
logµ ZnS

h
n(q)

T̃h(q) := lim inf
n→+∞

− 1

n
logµ EµnSh

n(q).

The following result can be derived, following the steps of Riedi:

Theorem 18. Let p be a regular distribution and suppose Assumptions 1, 2 and 3
hold. Then, for all a ∈ R,

τ ∗
h(a) 6 T ∗

h (a)

almost surely with respect to trees.

Proof. Let ǫ > 0. Then Th(q)−ǫ < lim inf − 1
n

logµ ESh
n(q) and there exists a positive

integer m0 such that ∀n > m0,

ESh
n(q) 6 µ−n(Th(q)−ǫ).

Now consider E[lim sup µn(Th(q)−2ǫ)Sh
n(q)]. This quantity is bounded above by

E

∑

n>m0

µn(Th(q)−2ǫ)Sh
n(q) =

∑

n>m0

µn(Th(q)−2ǫ)
ESh

n(q) 6
∑

n>m0

µ−nǫ < ∞.

It follows that lim sup µn(Th(q)−2ǫ)Znµ−nSh
n(q) < ∞ almost surely with respect to

trees, or lim sup µn(Th(q)−2ǫ−τ(q))µ−nZn is finite with probability 1. Since µ−nZn tends
almost surely to some non degenerate random variable W∅ < ∞ under the assump-
tion that p is regular, the last inequality holds if

Th(q) − 2ǫ 6 τh(q).

Sending ǫ → 0, we obtain with probability 1, τh(q) > Th(q) for all q such that
Th(q) < ∞. The result now follows from taking the LF transform of τh(q) and
Th(q).

We summarize the relationships among the various spectra we have introduced so
far in the following theorem. The set of inequalities is similar to the previous ones
(4.11).

Theorem 19. Given Assumptions 1, 2, 3 and 4 hold, we have almost surely with
respect to trees, for all a ∈ R,

D(a) 6 f(a) 6 τ̃ ∗
h(a) 6 T̃ ∗

h (a) (4.23)

where D, f and τ̃h are defined pathwise. Also,

D(a) 6 f(a) 6 F (a) 6 T̃ ∗
h (a). (4.24)
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4.3.3.6 Deterministic coarse spectrum of M
In this section we derive an expression for an upper bound of the Hausdorff spectrum
in terms of the cascade parameters using the Theorem 19. The first step is to
introduce another discrete local exponent γn

M(i), closely related to hn
M(i) introduced

in Section 4.3.2. Next, we show that using hn
M(i) or γn

M(i) does not change the
definition of τh(q) and Th(q) (Proposition 6) and then express Th(q) as a function of
the offspring distribution parameters and the weight moments.

Definition 16. Let i ∈ ΥGW
n . Define γn

M(i) as

γn
M(i) := − 1

n
logµ ρiWi.

We introduce further notation

Sγ
n(q) =

1

Zn

∑

i∈ΥGW
n

|ρiWi|q

Sγ
n(q) = µ−n

∑

i∈ΥGW
n

|ρiWi|q.

Define τγ(q) and Tγ(q) as

τγ(q) := lim inf
n→+∞

− 1

n
logµ Sγ

n(q)

Tγ(q) := lim inf
n→+∞

− 1

n
logµ ESγ

n(q). (4.25)

Also put τ̃γ(q) = τγ(q) − 1 and T̃γ(q) = Tγ(q) − 1. Using the same arguments,
it is possible to obtain the same set of inequalities derived in Theorem 19 using
the exponents γn

M(i). However, γn
M(i) does not tend a priori to the local Hölder

exponent hM(t) of M(t), so τ̃γ(q) and T̃γ(q) are not necessarily the same as in
Theorem 19. The following proposition gives conditions such that τh(q) = τγ(q) and
Th(q) = Tγ(q). Its proof follows the same lines as Lemma 5.5 in [102].

Proposition 6. Let p be a regular distribution. Assume the crossing tree has
bounded family size and that Assumptions 1, 2 and 3 hold. Then γn(i) and hn(i)
lead to the same partition function and deterministic partition function. That is, for
all q ∈ R,

τγ(q) = τh(q) Tγ(q) = Th(q). (4.26)

The first equality holds for all q almost surely with respect to trees.

Proof. First step. M is a non decreasing process, therefore ρiWi 6 si = ρi−Wi− +
ρiWi + ρi+Wi+ or equivalently hn

M(i) 6 γn
M(i). Consider first the case q > 0. Then

µ−nqhn
M(i) > µ−nqγn

M(i). By summing over all intervals at generation n, we obtain
ZnS

h
n(q) > ZnSγ

n(q). It follows that for positive q, τh(q) 6 τγ(q) and similarly for
the deterministic envelopes Th(q) 6 Tγ(q). It is straightforward to check that the
reverse inequalities hold for negative values of q. In summary, we have:

For q > 0, τh(q) 6 τγ(q) Th(q) 6 Tγ(q)

For q < 0, τh(q) > τγ(q) Th(q) > Tγ(q).
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Rj

Ri

sj

r W
i i

Ri Ri+

Figure 4.3: Top figure: Each interval Ri of generation n is decomposed into at
least two intervals in generation n + 1, which are also subdivided into at least two
intervals Rj in generation n + 2. By conservation of mass, ρiWi, in light grey on the
figure, is split here into four intervals at generation n + 2. The measure sj (dark
grey) is therefore smaller than ρiWi. This geometric argument illustrates why it is
always possible to find j ∈ Υn+2 such that Rj ⊂ Ri for i ∈ ΥGW

n and such that
sj 6 ρiWi. Bottom figure: each interval of the form [T

−(n+1)
k−2 T

−(n+1)
k+1 ) (light grey)

can only intersect two intervals Ri at generation n, since each interval of generation
n is divided in at least two intervals at generation n + 1.
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Second step. Let q < 0. The crossing tree has at least two children per node.
Also, for a particular realisation, the intervals Ri form a nested sequence. For a
given i ∈ ΥGW

n , this ensures the existence of a node j ∈ Υn+2 such that

Rj ⊂ Ri and sj 6 ρiWi. (4.27)

It follows by the definition of Sγ
n(q) and Sh

n+1(q) that:

ZnS
γ
n(q) =

∑

i∈ΥGW
n

|ρiWi|q <
∑

j∈Υn+2

|sj|q = Zn+2S
h
n+2(q)

since q < 0. The inequality is strict since there are only Zn of j ∈ Υn+2 for which
(4.27) holds while Sh

n+2(q) is defined over the whole generation n + 2 of size Zn+2 >
Zn. By taking the logµ and sending n to infinity, it follows that

For q < 0, τh(q) 6 τγ(q) Th(q) 6 Tγ(q).

Let q > 0. Each interval of the form [T
−(n+1)
k−2 T

−(n+1)
k+1 ) intersects at most two Ri at

generation n. Let s(k) denote the largest increment ρiWi over the two. Let i ∈ Υn+1

such that ψ(i) = k (recall that ψ gives the position of a node within its generation)
and j ∈ ΥGW

n such that ψ(j) = s(k). Then:

si 6 2ρjWj.

We assume a bounded maximum number of children M1. Then each interval Rj of
generation n will only intersect a finite number of intervals si of generation n + 1.
Denote by M2 the largest such number. M1 and M2 are related to each other by
M2 = M1 + 2. It follows:

Zn+1S
h
n+1(q) :=

∑

i∈Υn+1

|si|q 6 2qM2

∑

j∈ΥGW
n

|ρjWj|q = 2qM2ZnSγ
n(q).

The extra multiplicative factor 2qM2 disappears when taking logs, dividing by n and
sending n to infinity. Thus,

For q > 0, τh(q) > τγ(q) Th(q) > Tγ(q).

Lemma 7. Let p be a regular distribution. Assume i.i.d. weights on the crossing tree
distributed like ρ, bounded family size and that Assumptions 1, 2 and 3 hold. The
deterministic partition function of M reduces to

Th(q) = − logµ E[ρq].

Proof. By definition of Tγ(q),

µ−n
E

∑

i∈ΥGW
n

|ρiWi|q = µ−n
EE


 ∑

i∈ΥGW
n

|ρiWi|q | Zn
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where ρiWi are independent and identically distributed. Since Wi is distributed like

W∅ and ρi =
n∏

k=1

ρik(i|k−1), where ρi1(∅), . . . , ρin(i|n−1) are i.i.d. random variables,

we have
µ−n

E

∑

i∈ΥGW
n

|ρiWi|q = µ−n
E[ZnE|ρ1 × . . . × ρnW∅|q]

where ρ1 × . . .× ρn is a product of n i.i.d. random variables distributed like, say, ρ.
Thus:

µ−n
E

∑

i∈ΥGW
n

|ρiWi|q = µ−n(EZn)(Eρq)n(EWq
∅) = (Eρq)n(EWq

∅) (4.28)

where EWq
∅ < ∞ under Assumption 3. The deterministic envelope Tγ can be com-

puted by taking logs, dividing by n and then sending n to infinity:

lim
n→+∞

− 1

n
logµ

[
µ−n

E

∑

i∈ΥGW
n

|ρiWi|q
]

= − logµ Eρq.

Assuming bounded family size, the result holds for Th from Proposition 6.

Corollary 6. Let p be a regular offspring distribution. Assume bounded family
size, i.i.d. weights and Assumptions 1, 2, 3 and 4 hold. Let T̃h(q) = −1 − logµ Eρq.
An upper bound for the Hausdorff spectrum of M is given by

DH(Θa) 6 inf
q∈R

(qa − T̃h(q)). (4.29)

Proof. It follows from Theorem 19, Proposition 6 and Lemma 7.

Remarks.

• If we consider constant weights, ρiWi become µ−nWi. The time change is then
linear (hence monofractal) and Th(q) = q.

• By definition, when EZ1 log Z1 < ∞, µ−nZn converges to a non-degenerate
limit and Tγ(0) = 0. Furthermore, since M is a non decreasing process, it has
positive increments and

ZnSγ
n(1) =

∑

i∈ΥGW
n

ρiWi =
∑

i∈ΥGW
n

ρi

(
Zi∑

j=1

ρj(i)Wij

)
=

∑

i∈ΥGW
n+1

ρiWi = Zn+1S
γ
n+1(1).

Thus −(1/n) logµ ZnSγ
n(1) → 0 as n tends to infinity, which implies Tγ(1) = 1.

Similarly, T̃γ(0) = −1 and T̃γ(1) = 0 and the results also hold for Th and T̃h.

• S1,h
n (0) counts the number of finite hn

M(i). Thus for all n, (1/n) logµ EN (n)(a, ǫ) 6

(1/n) logµ ES1,h
n (0). If all the hn

M(i) are finite, sending n to infinity yields

F (a) 6 −T̃h(0) = 1. (4.30)
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Under conditions of Theorem 16, we have equality between F and T̃h (the LF
transform of Th), and Th is differentiable. Therefore, there exists a∗ such that
F (a∗) = 1. The associated value of q, denoted q(a∗) is 0. Thus,

F (a∗) = 1 = inf
q

(qa∗ − T̃h(q)) = qa∗ − T̃h(q)|q=q(a∗)

where the infimum is reached at a∗ − T̃ ′
h(q(a

∗)) = 0, or a∗ = T̃h

′
(0) = T ′

h(0)
since q(a∗) = 0.

• Under the conditions of Theorem 16, the equality between F and T̃h holds,
and Th is differentiable. We saw before that T̃γ(1) = 0. It follows that for all
a,

F (a) = inf
q

(qa − T̃h(q)) 6 qa − T̃h(q)|q=1 = a

with equality at a0 = T̃ ′
h(1) = T ′

h(1).

• Suppose µ is an integer. Then the upper bound derived for M whose crossing
tree is a Galton-Watson tree with average family size µ is exactly the Hausdorff
spectrum of a random cascade defined on a µ-ary tree with random weights
[102]. This motivates us to believe that the upper bound derived for M is a
tight upper bound.

We simulate 100 approximations of M of length 215 by constructing finite realisa-
tions of Galton-Watson trees with eight levels and random weights and estimate its
partition function using two techniques described below. We pick a geometric distri-
bution with parameter 0.5 for p (µ = 4) and we suppose weights are log normal with
parameters m = −0.05 − ln(µ) and σ2 = 0.1 so that the mean value is 1/µ = 0.25.
Straightforward calculations give

T̃γ(q) = T̃h(q) = − σ2

2 ln µ
q2 − m

ln µ
q − 1. (4.31)

The infimum of qa − T̃γ(q) is obtained for q∗ = −(m + a ln µ)/σ2. The two in-
tersections a∗ of the LF transform of T̃γ with the horizontal axis are such that
qa∗ − T̃γ(q)|q=q∗ = 0 = (− ln µ/2σ2)(a∗)2 − (m/σ2)a∗ + (1 − m2/2σ2 ln µ) that is

a∗ = − m

ln µ
± σ

√
2

ln µ
.

With the previous choice of m and σ2, those values are 0.656 and 1.416. The
corresponding values of q are ±5.26, so there is no need to estimate T̃γ(q) for |q| >
5.26.
First, we use Equation (4.25) which provides a direct method for estimating the

deterministic coarse spectrum T̃γ(q). The expectation is approximated by averaging
over 100 realisations. Figure 4.4(a) presents the estimated and theoretical Tγ(q) =
T̃γ(q) + 1. Error bars are too small to be plotted. The two spectra match closely.
Figure 4.4(b) is the LF transform of Tγ(q). The 95% confidence intervals are derived
by estimating Tγ(q) 100 times.
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Then, assuming M is Hölder uniform, we use wavelet leaders to estimate the par-
tition function ζ2(q) given in Equation (4.3), whose LF transform also provides an
upper bound for the Hausdorff spectrum of M. The spectrum is estimated using
Daubechies wavelets with three vanishing moments. The scale of analysis ranges
from j1 = 3 to j2 = 13. Since taking the LF transform of a function is a very
unstable procedure, the estimated spectrum is obtained from the average of 100 es-
timations of the partition function. Here again, ζ2 and Tγ match closely for positive
and negative q as illustrated in Figure 4.4(c).
Recall that for all q ∈ R, ζ2(q) = ξ(q), where ξ(q) is the LF transform of the

Hausdorff spectrum D (Equation (4.4)). If D is concave, then the LF is involutive
and the LF transform of ξ(q) gives D back (see Appendix A). Assuming this is the
case, which is true for many multiplicative cascades as we noticed earlier in the
introduction chapter, then the LF transform of ζ2(q) gives the Hausdorff spectrum
of M. From this remark, the close similarities between Tγ and ζ2 tend to indicate
empirically that the upper bound is in fact the exact spectrum of M. Proving
this result theoretically can be challenging. Deriving lower bounds for Hausdorff
dimensions is usually a hard problem since it requires an optimal covering of the set,
though techniques exist [45].

4.3.4 An upper bound for the spectrum of a subordinated
Brownian motion.

MEBP processes are an example of monofractal processes time changed by a multi-
fractal cascade. When the crossing tree has a geometric offspring distribution with
parameter 0.5, CEBP reduces to a standard Brownian motion B [52] and therefore

Y = B ◦M−1 (4.32)

is a Brownian motion in multifractal time. Mandelbrot first proposed to model
financial data by means of a Brownian motion in multifractal time [86, 87]. Thus
MEBP processes can potentially have applications in finance. In this section, we are
going to look at the multifractal spectrum of Y , defined as in Equation (4.32).
First, we want to relate the Hausdorff spectrum of the chronometer M with the

inverse process M−1. Mandelbrot and Riedi [88, 103] made precise this relationship
under general conditions on M. We state their main result in the following lemma.

Lemma 8. Let M be a non decreasing continuous process and suppose it admits a
continuous inverse M−1. Denote by DM

H and DM−1

H the Hausdorff spectrum of M
and M−1 respectively. Then,

DM−1

H (a) = aDM
H (1/a).

The next step is to relate the spectrum of M−1 and X when considering the
composition X ◦M−1. We need a preliminary result due to Adler [4].

Lemma 9. Let I be a compact interval and B a Brownian motion.
1- (Theorem 8.3.1, [4]) ∀η > 0, ∃δ > 0 and V an almost surely positive random

variable such that ∀(s, t) ∈ I, |s − t| 6 δ, with probability one,

|B(t) − B(s)| 6 V |s − t|(1/2)−η. (4.33)
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Figure 4.4: Estimation of the partition function of M. We present in solid line
in (a) and (c) the partition function Tγ(q), and its Legendre Fenchel transform in (b)
and (d), with 95% confidence intervals. The top figures also display the estimated
partition function (‘o’ in (a)) and its LF transform (b) using a direct method, using
Equation (4.25). The bottom two figures show the estimated partition function ζ2(q)
in the framework of wavelet leaders (‘o’ in (c)), and its LF transform (d). The close
match between Tγ(q) and ζ2(q) tends to indicate that the multifractal formalism
holds here, as explained in the text.
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2- ((8.8.26), [4]) ∀η > 0, ∃h > 0,

sup{|B(t) − B(s)| | |s − t| 6 h} > Kh(1/2)+η (4.34)

for all t in I, all K < ∞, with probability one.

Riedi [102] used the previous result to relate the spectrum of a time changed frac-
tional Brownian motion (fBm) to the spectrum of the time change, when the time
change is independent of the fBm. However, an MEBP is a CEBP warped with a
random cascade, both defined with the same crossing tree. It would therefore be
surprising if the chronometer and its CEBP process are independent. As we shall
see now, the following result holds nevertheless:

Lemma 10. Consider an MEBP process Y = B◦M−1 obtained from a time changed
CEBP process B, which reduces to a Brownian motion. Denote by DY

H and DM−1

H

the Hausdorff spectrum of Y and M−1 respectively. Given Assumptions 1, 2 and 3
hold, M and M−1 are continuous and

DY
H(a) = DM−1

H (2a).

Proof. We recall the definition of the Hölder exponent hY of Y (Definition 9):

hY (t) := lim inf
ǫ→0

1

log(2ǫ)
log sup

(u,u′)∈Iǫ

|Y (u) − Y (u′)| (4.35)

where Iǫ = [t − ǫ, t + ǫ].

First step: Clearly

sup
(u,u′)∈Iǫ

|Y (u) − Y (u′)| = sup
(u,u′)∈Iǫ

|B ◦M−1(u) − B ◦M−1(u′)|

= sup
s,s′

{|B(s) − B(s′)| | M−1(t − ǫ) 6 s′ < s 6 M−1(t + ǫ)}

where u = M(s) and u′ = M(s′).
Let η > 0 and δ > 0. There exists ǫ0 such that for all ǫ 6 ǫ0, sup |M−1(u) −
M−1(u′)| 6 δ, where the supremum is over Iǫ. Then, |s − s′| 6 δ and from Lemma
9, Part 1, there exists an almost surely finite positive random variable V such that

sup
(u,u′)∈Iǫ

|Y (u) − Y (u′)| 6 V sup
(u,u′)∈Iǫ

|M−1(u) −M−1(u′)|(1/2)+η

Dividing each member of the inequality by log 2ǫ < 0 and letting ǫ → 0 and η → 0,
yields

2hY (t) > hM−1(t).

Second step: To prove the reverse inequality, use Part 2 of Adler’s result, following
the same procedure as in Step 1.

Theorem 20. Let Y = B ◦ M−1 be an MEBP process, where B is a Brownian
motion. Suppose Assumptions 1, 2 and 3 hold. Let DM

H and DY
H be the Hausdorff

spectra of Y and M respectively. Then

DY
H(a) = 2aDM

H (1/2a).



118

Proof. This follows directly from Lemmas 8 and 10.

We present in Figure 4.5 estimations of the partition function ζ2(q) for various
subordinated Brownian motions, assuming they are Hölder uniform. Assuming that
the multifractal formalism holds, the upper bound of the spectrum of M is in fact
its Hausdorff spectrum and the LF transform of DY

H(a), which will be the same as
ζ2(q), can be computed given Theorem 20. We present on the same graph both
estimations ζ2(q) and the LF transform of DY

H(a).
In the top and middle figure, we consider a time change obtained with lognormal

weights, with parameters m = −0.05 − ln 4 and σ2 = 0.1. The figure shows an
average of 100 estimations of the partition function, each obtained with an analysis
of a process of length 214 from scale j1 = 3 to j2 = 11. We used Daubechies wavelets
with three vanishing moments. The original Brownian motion in multifractal time
generated with the algorithm described in the previous chapter has a non constant
sampling period. We need to resample it at a constant rate to estimate its partition
function. In the top figure, we resampled every δ = 14 units of time and in the middle
one every δ = 6 units of time. The results emphasize the issue of the resampling step
in the estimation of the partition function for negative q’s. While the estimation is
correct for δ = 14, the negative part of ζ2(q) is wrongly estimated for δ = 6.
To support this observation, we consider a Brownian motion in multifractal time,

whose subordinator is a deterministic binomial cascade with weights m0 = 0.6 and
m1 = 0.4 (see Section 1.1.8). The Hausdorff spectrum of binomial cascades is known
and given by Equations 1.10 and 1.11. The estimated partition function presented
on the bottom figure is obtained as an average of 100 estimations obtained with
Daubechies wavelets with two vanishing moments. The length of the samples is
215,the scale of analysis ranges from j1 = 3 to j2 = 12 and we set δ = 10−4. The
choice δ = 10−4 is much different from the previous choices δ = 6, 14 since we have
two distinct time scales. This is of no importance here as we only want to check the
impact of resampling when the resampling period is too small or too large with re-
spect to the mean distance between two samples. The small discrepancies observed
between the theory (known since the multifractal formalism holds for the determin-
istic binomial cascade) and practice mainly comes from the resampling period. If
we decrease δ to 10−5, the estimation gets much worse (Figure not presented here).
We explain the sensitivity of estimations to the resampling period as follows. By

doing a linear interpolation, we modify information about the increments of the
process. These errors are transmitted to the wavelet coefficients and therefore to
the wavelet leaders. When raised to a negative power of q, errors are magnified from
which the estimation of the negative part of the partition function is erroneously
estimated. The difficulty to estimate the partition function for negative q’s is a
widely known problem [66, 101].
For the same reasons as before, the empirical results presented here motivate us

to hope that the multifractal formalism holds for Y = B ◦ M−1. We attribute
estimation errors mainly to the resampling step, to which the estimation of ζ2(q) is
highly sensitive.
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Figure 4.5: Estimation of ζ2(q) for Brownian motions in multifractal time. Top
and middle figure: lognormal weights with identical parameters. Resampling is
respectively 14 and 6 units of time. Bottom figure: time change is a deterministic
binomial cascade with weights 0.6 and 0.4. The solid line represents the LF transform
of DY

H(a). Error bars are too small to be plotted.
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4.4 Special points on the spectrum of ν

In the previous sections, we have been interested in deriving the Hausdorff spectrum
of M(t) = ζ([0, t)), where ζ is defined on the real line. ζ is constructed from the
random measure ν whose discrete support is the boundary of the crossing tree (see
the previous chapter for the definition of ν). When we consider Galton-Watson
trees with fixed weights equal to 1/µ where µ is the mean family size, ν reduces
to a measure η known as the branching measure. Similarly, we call ν the weighted
branching measure.
The study of the spectrum of measures defined on the boundary of a tree differs

widely from standard techniques for measures defined on the real line. The under-
lying space is different (compact interval vs a subset of N

N) and the metric defined
on it is not the same. Therefore, it is unlikely that ζ and ν have the same spectrum.
Let Υ be a Galton-Watson tree and ∂Υ its boundary. We equip ∂Υ with the metric
d given by

d(i, j) = e−n(i,j) (4.36)

where n(i, j) is such that i|k = j|k for all k 6 n and i|k 6= j|k otherwise; it is the
generation of the last common ancestor of i, j ∈ ∂Υ. Given the metric d, the local
Hölder regularity of a measure ν at a point x is defined as

lim
r→0

log ν[B(x, r)]

log r

where B(x, r) is the open ball centered at x with radius r. For each a > 0, consider
the set Ea of points i ∈ ∂Υ at which the Hölder regularity of ν is a. When the sets
Ea are non empty and fractal over a range of values of a, ν is said to be multifractal
[44]. When the Hölder regularity is the same for all i ∈ ∂Υ, ν is called monofractal.
In Section 4.4.1, we give the definition of the branching measure η and recall some

famous results on its Hausdorff spectrum. Then, we study particular points on
the multifractal spectrum of ν and point out the similarities with the branching
measure. Burd and Waymire [30] have studied independent random cascades on
Galton-Watson trees, leading to the same definition of ν. They proved the existence
of a Borel subset of the boundary of the tree which contains the whole mass ν and
gave its Hausdorff dimension. Here, we obtain results about the Hölder exponent of
points i ∈ ∂Υ, which differs from the study in [30].

4.4.1 The branching measure η

Consider a Galton-Watson tree Υ with regular offspring distribution p. Denote by
∅ its root node. Let Z1 be the size of the first generation. p(Z1 = k) = pk. Let
µ = EZ1 be the mean family size and suppose EZ1 log Z1 < ∞. Equip the boundary
of the tree ∂Υ with the metric (4.36). Denote by Ci the cylinder set defined by
Ci = {j ∈ ∂Υ | j|n = i}. Let Υi be defined as i: Υi = {j ∈ Υ | |j| > |i| and j||i| = i}
and ΥGW

n the n-th generation of Υ. Denote by Zn(i) the size of generation n in Υi.
For each node i ∈ Υ, we define the martingale limit Wi as

Wi = lim
n→∞

Zn(i)

µn−|i|
.
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Then, almost surely on ∂Υ 6= ∅, there exists a unique nonzero finite measure η on
the boundary of the tree, called the branching measure such that

η(Ci) =
Wi

µ|i|
.

Clearly,
η(∂Υ) = W∅ = µ−n

∑

i∈ΥGW
n

Wi.

The branching measure η has been studied by many authors and we refer to the
works of Liu [79, 80], Mörters and Shieh [94], Shieh and Taylor [110], Hawkes [55].
Hawkes pioneered the study of the branching measure with the following result

Theorem 21 (Theorem 1 [55]). Suppose
∞∑

k=2

pkk(log k)2 < ∞. Then, almost surely

on trees, for i ∈ ∂Υ

lim
n→∞

log η[B(i|n, r)]

−n
= log µ

except on an η negligible set.

The theorem states the local dimension of the branching measure at a bound-
ary point is log µ except possibly on a P × η negligible set. There exists points
i ∈ ∂Υ which have a local regularity which differs from log µ. The condition
∞∑

k=2

pkk(log k)2 < ∞ is equivalent to EW∅ log W∅ < ∞ (see Athreya [9]). We want

to know when Theorem 21 holds for all boundary points, or equivalently when the
spectrum of η degenerates to a single point. This issue is addressed in Liu [80]

Theorem 22 (Theorem 4.1 [80]). Suppose that p1 = 0 and EZa
1 < ∞ for all a > 1.

Then, almost surely on trees,

lim
n→∞

log η[B(i|n, r)]
−n

= − log µ

for all i ∈ ∂Υ.

Conditions of Theorem 22 are stronger than in Theorem 21. Bingham and Doney
have shown [27] that EZa

1 and EW a
∅ converge or diverge together for all a > 1. There-

fore, the condition EW∅ log W∅ < ∞ for Theorem 21 hold under the assumptions
of Theorem 22. We now derive similar results for the weighted branching measure
ν and show the correspondence with the branching measure η when we consider
constant weights equal to 1/µ.

4.4.2 The weighted branching measure ν

Consider Υ an extended Galton-Watson tree whose branches are equipped with a
random weight. Under Assumption 1, the martingale limit attached to node i of the
tree

Wi = lim
n→∞

∑

j∈Υi,|j|=n

ρj/ρi.
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exists in (0,∞) and is such that EWi = 1 (see Chapter 3 for further details). We
define

ν(Ci) = ρiWi

and we call ν the weighted branching random measure.

First we derive an equivalent of Theorem 21 for ν. We need a result due to Biggins.

Assumption 7.

E

[( Z1∑

i=1

ρi

)(
log

( Z1∑

i=1

ρi

))2]
< ∞.

Theorem 23 (page 28 of [22]). Given Assumptions 1 and 7 hold, EW∅ logW∅ < ∞.

Theorem 24. Given Assumptions 1 and 7 hold, then almost surely on trees,

lim
n→∞

log ν[B(i|n, r)]

−n
= E log ρ

for ν-almost all i ∈ ∂Υ.

Proof. The proof is similar to Theorem 21 [55]. It is obtained by replacing µnη[B(i|n, r)]
by ρ−1

i ν[B(i|n, r)] everywhere in his proof. In the proof of Theorem 21, the condition
EW∅ log W∅ < ∞ is needed. Similarly, one needs EW∅ log W∅ < ∞ here, which holds
under Assumption 7. Existence and non-degeneracy of W∅ follows under Assumption
1.

Lemma 11. Suppose Assumptions 1 and 3 hold. Then, almost surely on trees,

log max
i∈ΥGW

n

Wi = o(n).

Proof. The proof is similar as the one found in Lemma 6. Just replace Wi by Wi.
The result follows under the condition that Wi admits moments of all orders, which
holds under Assumption 3.

Theorem 25. Given Assumptions 1 and 3,

lim
n→∞

log ν[B(i|n, r)]

−n
= E log ρ (4.37)

for all i ∈ ∂Υ, with probability 1 with respect to trees.

Proof. Let i ∈ ∂Υ.

log ν[B(i|n, r)]

n
=

log ρi|nWi|n

n
=

log ρi|n

n
+

logWi|n

n
.

Under Assumption 3, the maximum of the Wi|n tends to 0 with n (Lemma 11). The
second term of the right hand side tends to 0 as n tends to infinity. The first term
can be reexpressed

log ρi|n

n
=

1

n

n∑

k=1

log ρik(i|k) → E log ρ a.s.

from the strong law of large numbers.
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From Theorem 25, adding weights ‘regular’ enough (in the sense that they admit
moments of all orders) does not destroy the monofractal property of the branching
measure η.
Set constant weights ρ = 1/µ. The assumptions of Theorem 25 reduce to assump-

tions of Theorem 22 and the 2 theorems do not contradict themselves. This study
present an alternative proof of the result of Liu. When (4.37) holds for all i ∈ ∂Υ, the
Hausdorff dimension of the set KE log ρ := {i ∈ ∂Υ with regularity E log ρ} is log µ.
This follows from the classical result of the Hausdorff dimension of the boundary
∂Υ of a Galton-Watson tree to be log µ. See for instance [55, 81].
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Chapter 5

Further work

In this thesis, we have studied two models of (multi)fractal signals with underlying
branching structure. The first one, called Galton-Watson IFS, proposes a general-
ization of the construction of a random IFS acting over the space Lp of p-integrable
functions. The second one, called MEBP processes, is constructed using the con-
cept of crossing tree of a process. We now discuss open questions about those two
processes.

Galton-Watson IFS. Chapter 2 presents the theoretical foundations for the exis-
tence and uniqueness of a fixed point when considering an IFS with random opera-
tors and random construction tree. Simulations also indicate a possible multifractal
structure of these processes. It would be interesting to validate this in theory. One
could start by considering deterministic operators after conditioning on the num-
ber of offspring, and give a simple form for these operators, keeping a random tree
structure. Some work on the spectrum of fixed point of IFS has been done before;
we could refer to those results as a starting point. See for example [65].
The problem of estimating the parameters of the model could also be contemplated.

As far as I am aware, there are no results concerning estimation techniques of the
parameters of a deterministic IFS acting over the space of random functions. In
other words, given one or more realisations of a signal, can we derive a method to
estimate the functions φ, ̺ and the distribution of Z∅ and then fit a Galton-Watson
IFS? This inverse problem is far from being trivial, even when the tree is deter-
ministic. One could first give a particular form of random operators, assuming an
M -ary tree, and estimate the first and second moments of the random parameter.
This problem was suggested in [36], but a much deeper analysis is needed to gener-
alize the results to arbitrary random operators. As a starting point, one could refer
to existing techniques in image compression where attempts are made to represent
a target image as the attractor of an IFS, within a degree of accuracy [17, 46, 64, 112].

MEBP processes Chapters 3 and 4 present a new class of multifractal processes,
called MEBP, generalizing the construction of the CEBP process.
It is known that CEBP processes are discrete scale invariant (Theorem 6) and

monofractal (Theorem 10). It would be interesting to relate the Hölder exponent of
the CEBP process to the box dimension of the sample path. Indeed, one can expect
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the graph in R
2 of a CEBP process to have box dimension 2−log 2/ log µ. To see this,

let Xm be the random walk on 2m
Z, defined by Xm(k) = X(Tm

k ) for k = 1, 2, . . .
where X is a CEBP process for some offspring and orientation distributions and Tm

k

is the k-th level m hitting time. Then one can cover Xm with Zm(⌈µ/2⌉)m boxes of
size µ−m × µ−m. Since Zm/µm converges to some fixed limit as m → ∞, we have

log(Zm(⌈µ/2⌉)m)

log µm
→ 2 − log 2

log µ
,

where log 2/ log µ is the Hölder exponent of the CEBP process (Theorem 10). To
prove this result rigorously, one needs to consider coverings of the process X itself
instead of coverings of Xm. The presence of the double limit here (box size and path)
is problematic and does not let us conclude immediately that the box dimension of
the graph of X is indeed 2 − log 2/ log µ.

Although we have derived an upper bound for the Hausdorff spectrum of the time
change, it would be interesting to derive theoretically the exact spectrum. From the
simulations, it is believed that the upper bound obtained is in fact a tight bound, if
not the exact spectrum. Also, a generalization of the multifractal study for general
MEBP is needed. Only the subordinated Brownian motion has been studied (Sec-
tion 4.3.4).

Applications of MEBP processes may include modelling financial time series. If Pt

is the price at time t of a risky asset, it is commonly accepted that depending on the
time interval over which one take the returns, the log-returns log Pt − log Pt−1 show
heavier tails than a Gaussian distribution, possess a strong non-linear dependence
and a high volatility and intermittency [56]. The marginal distribution of returns
can be fitted very well with Student t-distributions with ν degrees of freedom, typ-
ically such that 3 6 ν 6 5 [58, 59]. Figure 5.1 presents the marginal distribution
of an MEBP process with 2 geometric1(0.5) offspring distribution and i.i.d. Gamma
weights with parameters α = 3.5 and β = 1. We have fitted a Student-t distribution
with 4 degrees of freedom. The Q-Q plot shows a very good fit. Furthermore, incre-
ments of this MEBP process have very little linear correlation (bottom left image),
as it should be for financial time series, since it is known that the autocorrelations of
the log returns die away quickly. Moreover, there is correlation between the absolute
value of the increments (bottom right image), which is another accepted property
of the log-returns.

To fit data with an MEBP process, one needs to estimate the offspring distribution
of the crossing tree, the distribution of orientations and finally the weight distribu-
tion.
The estimation of the offspring distribution is quite straightforward. One can start

by calculating the crossing tree of a given signal, and then computing the relative
frequency of each family size. Also, one may want to estimate the orientation dis-
tribution. For diffusion processes, one expects i.i.d. orientations, independent of
the family size [70]. This can be tested in practice by considering a sequence of N
excursions. If each of them is ‘up-down’ or ‘down-up’ with probability 1/2, then the
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Figure 5.1: Marginal distribution of an MEBP process with 2 geometric1(0.5) off-
spring distribution and i.i.d. gamma weights with parameters α = 3.5 and β = 1
with a fitted t distribution, Q-Q plot and correlation matrix of returns and absolute
returns. Estimated mean, variance and degrees of freedom are respectively −0.35,
13.91 and 4.01. The correlation matrices are estimated using 1000 realisations of
the process, each of length 500.
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sum of N observations should have a binomial distribution with parameters N and
1/2. In [70], Jones and Rolls developed methods to test whether or not a signal is a
time changed Brownian motion, based on the previous observations.

Estimating the weight distribution from one realisation of a signal is still an open
problem. One could start by considering the case of i.i.d. weights. Consider a finite
crossing tree with n generations starting from a level 0 crossing. By taking the
logarithm of each weight ρiWi on the n-th generation, one transforms products of
i.i.d. random variables along a line of descent to a sum

log ρiWi = log ρi1(∅) + . . . + log ρin(i|n−1) + logWi.

Thus, it is possible to express the problem as follows

y = Ax + ǫ

where y are the observed values log ρiWi, A is a sparse matrix with entries 0 and 1, x
is a column vector containing the log of the weights and ǫ a column vector containing
logWi. If N denotes the total number of weights on the first n generations of the
finite crossing tree and M is the cardinality of generation n, then y is an M × 1
vector, A is an M ×N matrix, x is an N × 1 vector and ǫ a M × 1 vector. Since the
crossing tree of a process is known, the matrix A is known. However, the rank of A
is not full and one cannot directly invert this system to recover the original weights.
Different methods can be investigated, such as a ridge regression.
One can also give a parametric distribution to the weights. Considering lognormal

weights on the crossing tree, weights are i.i.d. normal after a log transform. In a first
step, one could ignore the vector of errors ǫ and consider the system y = Ax. Given
this distribution, one could derive the likelihood of the joint distribution of y and
derive maximum likelihood estimators of the parameters of the normal distribution.
When this problem is solved, one could add the vector of errors ǫ, consider other
weight distributions and contemplate a non-parametric approach.



Appendix A.

The Legendre Transform

In this appendix, we address a few questions concerning the Legendre-Fenchel (LF)
transform, in the context of multifractal analysis. Let τ(q) be any function. Define
its LF transform τ ∗(h) by

τ ∗(h) = inf
q∈R

(qh − τ(q)).

The LF transform is a generalisation of the Legendre transform, defined by

τ ∗
L(h) = hq∗ − τ(q∗), (5.1)

where q∗ is given by solving τ ′(q) = h. This transform is only defined for differen-
tiable functions. We will see later in this appendix that the LF transform reduces
to the Legendre transform for concave and differentiable functions.
We address the following questions: why does the LF transform plays a central

role in the theory of multifractals? How do we derive the LF transform of a given
function? What are the properties of this transform? Why does the negative (re-
spectively positive) part of a partition function typically correspond to the increasing
(resp. decreasing) part of the Hausdorff spectrum after LF transform, for many cas-
cade processes?

LF transform in multifractal analysis. To give mathematical justification of
how the LF transform appears in multifractal analysis, consider a measure µ, whose
fluctuations are described by its local Hölder exponent at any x ∈ R

n, given by

dimlocµ(x) = lim
r→0

log µ(B(x, r))

log r
,

where B(x, r) is the open ball centered at x with radius r. The Hausdorff spectrum
D(h) of µ is a global description of its local fluctuations, given by the Hausdorff di-
mension of the set of points with Hölder exponent h. The complexity in estimating
D(h) directly in practice has lead to the discovery of alternative methods, giving
birth to the multifractal formalism, which provides methods to recover the multi-
fractal spectrum via the LF transform of some partition function. For example, the
spectrum of multiplicative cascades is usually related to a so-called partition function
τ(q), whose LF transform is typically equal to D(h). Let us now give mathematical
justification to the previous claim. To do so, write

Nr(h) = #
{
r-mesh cubes A with µ(A) > rh

}
.
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The coarse multifractal spectrum of µ is given by [44]

fc(h) := lim
ǫ→0

lim
r→0

log+ (Nr(h + ǫ) − Nr(h − ǫ))

− log r
,

where log+ x = max(0, log x). It is a famous result that fc provides an upper bound
for D(h) (Lemma 11.1 in [44]). However, due to the presence of a double limit, fc

is not much simpler to estimate than D(h). In fact, the coarse spectrum is related
to the sum of the q-th moments of µ. Define

Mr(q) =
∑

µ(A)q,

where the sum is taken over all r-mesh cubes A such that µ(A) > 0. For all h > 0,
it follows from the definition of Nr(h) that for all q > 0,

Mr(q) =
∑

µ(A)q
>

∑
(rh)q = rqhNr(h).

If q < 0, we have

Mr(q) 6 rqh#
{
r-mesh cubes A with 0 < µ(A) < rh

}
. (5.2)

We are interested in the power law behaviour of Mr(q), that we identify with

τ(q) := lim
r→0

log Mr(q)

log r

provided the limit exists. If not, one can use lim inf and lim sup in the definition of
τ . The following result can be found in [44], Lemma 11.2.
Let q > 0 and ǫ > 0. Then, from the definition of fc(h) and r small enough,

Mr(q) > rq(h+ǫ)Nr(h + ǫ)

> rq(h+ǫ)r−fc(h)+ǫ.

From the definition of τ ,
fc(h) 6 qh − τ(q)

by sending ǫ to 0. It can be shown that this inequality also holds for q < 0, using
relation (5.2). Since it holds for all q ∈ R, we have

fc(h) 6 inf
q∈R

(qh − τ(q)) := τ ∗(h).

The LF transform can also appear by considering a Large Deviation approach to
the problem, which enables a statistical description of the distribution of the Hölder
exponents. The Gärtner-Ellis theorem, central in the theory of large deviations,
relates probabilistic quantities through the LF transform (Theorem 13). This trans-
formation is however not limited to the study of multifractal measures, but plays an
important role in physics, notably in thermodynamics.
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Figure 5.2: Illustration of the Legendre transform.

A brief study of the LF transform. The results of this section are based mainly
on the Appendix A of [105]. Let τ(q) be any function. We first make the following
assumption about τ :

i- τ is concave at some q0.
This assumption is convenient when studying the LF transform since it enables us

to calculate τ ∗ at a special point. τ is concave at q0, so there exists a linear function
s(q) = h0q + b such that τ(q) 6 s(q) for all q ∈ R, with equality at q = q0. h0 may
not be unique. Clearly

qh0 − τ(q) > qh0 − s(q)

with equality at q = q0. It follows,

inf
q

(h0q − τ(q)) = q0h0 − s(q0)

= −b

= τ ∗(h0).

Therefore, τ ∗(h0) = −b and τ ∗(h0) = q0h0 − τ(h0); the LF transform of τ at q0 is
the opposite of the intercept of s with the ordinate axis, as illustrated Figure 5.2.

ii- In addition, assume τ is differentiable at q0.
Then h0 is unique and the slope h0 is given by the derivative of τ evaluated at q0:

d

dq
(qh0 − τ(q))|q=q0 = h0 − τ ′(q0) = 0,

which implies h0 = f ′(q0). We have indeed a maximum

d2

dq2
(qh0 − τ(q))|q=q0 = −τ ′′(q0) > 0,

since we assume τ concave at q0. Then invert h0 = τ ′(q0) to express q0 as a function
of h0: q0(h0). It follows that

τ ∗(h0) = q0(h0)h0 − τ(q0(h0)).



132

For concave differentiable functions, the LF transform therefore reduces to the Leg-
endre transform of τ (equation(5.1)). Some other important properties of the LF
transform are summarized below. More details and proofs can be found in [106].

• The LF transform of τ is always concave.

• (τ ∗)∗(h) = τ(h) if and only if τ is concave at h. We say that the LF transform
is involutive.

• If τ is not concave, then (τ ∗)∗ is the smallest concave function satisfying τ 6

(τ ∗)∗. (τ ∗)∗ is then usually called concave hull of τ .

LF transform for multiplicative cascades. We now study the LF transform
from the paradigm of multiplicative cascades. Typically, the Legendre-Fenchel trans-
for of τ(q) provides an upper bound for the multifractal spectrum

D(h) 6 inf
q

(qh − τ(q))) := τ ∗(h)

We have presented in the introduction of this thesis different expressions for τ(q),
by looking at binary, c-ary, deterministic and random cascades (equations (1.11),
(1.12) and (1.13)). They all share the property τ(0) = −1. In the remainder of this
section, we consider τ̃(q) = 1 + τ(q) instead of τ(q) so that τ̃(0) = 0. We just keep
in mind that we need to add one when going back to the Hausdorff spectrum. The
typical shape of τ̃ is plotted below (compare with Figure 1.3, for a deterministic
binomial cascade). The LF transform compares τ̃(q) with the linear function qh and
then returns the infimum of the difference between qh and τ̃(q) with respect to q.
The figure below depicts a typical τ̃(q) for multiplicative cascades, together with qh,
for different values of h:

qh

qh qh

qq q

1+t( )q1+t( )q 1+t( )q

The left figure is obtained for very small values of h, so that inf(qh− τ̃(q)), whose
position is indicated by a grey line, is smaller than −1, corresponds to τ̃ ∗(h) < 0,
the LF transform of τ̃ . The middle figure corresponds to small h, but not too small,
so that the value of the infimum lies between −1 and 0, which yields τ̃ ∗(h) ∈ [0, 1].
Finally, the right plot is obtained for a critical value h∗ for which the infimum is
0, corresponding to the maximum value of the Hausdorff spectrum τ̃ ∗(h∗) = 1. In
summary, τ̃ ∗(h) increases with h, where the value of the infimum is obtained for q
positive.
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Likewise, for values of h slightly larger than h∗, the infimum becomes negative once
again but remains betweens −1 and 0, corresponding to the positive decreasing part
of τ̃ ∗(h). For h large enough, the infimum is smaller than −1 and corresponds to
negative values of τ̃ ∗(h).
To sum up, τ for q positive typically corresponds to the increasing part of the

Hausdorff spectrum and its negative part to the decreasing part of τ̃ ∗(h).
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Résumé étendu en français

Dans le cadre de ma cotutelle internationale de thèse entre le Gipsa-Lab (Grenoble)
et le Département de Mathématiques et de Statistiques de l’Université de Melbourne
(Australie), je présente un résumé étendu de mes résultats de thèse en français, en
accord avec les conventions de cotutelle de thèse signées par les deux établissements.
Une introduction plus détaillée ainsi que les preuves des résultats énoncés ici peuvent
être trouvées dans les chapitres précédents, en anglais. Mes apports personnels sont
surlignés en gras tout au long de ce résumé. Les numéros des théorèmes, corollaires,
lemmes et hypothèses donnés dans ce résumé renvoient aux résultats énoncés dans
les chapitres précédents. Ils ne suivent donc pas un nécessairement ordre croissant ici.

Les objets fractals, considérés comme des "monstres mathématiques" au milieu
du XIXème siècle, n’obtiennent un statut à part entière que depuis les travaux
de Benoît Mandelbrot dans les années 70. Depuis, la géométrie fractale est re-
connue dans de nombreux domaines en sciences, comme en témoigne le nombre
exponentiel de publications depuis ces 20 dernières années. En traitement du signal,
l’invariance d’échelle est une propriété qui a été largement observée en pratique,
dans des domaines aussi divers que l’étude de la turbulence développée, du télétrafic
informatique ou des signaux biomédicaux. Les signaux présentant une invariance
d’échelle sont extrêmement irréguliers : une partie du signal possède la même in-
formation statistique que le signal d’origine, à un facteur de renormalisation près.
L’absence d’échelle caractéristique rend leur analyse impossible à l’aide de quantités
classiques en traitement du signal (périodes, fréquences, . . .). Cependant, il est pos-
sible d’analyser leur régularité locale à t = t0 à l’aide de l’exposant de Hölder H(t0).
Cet exposant compare le signal d’origine X(t) à des fonctions polynomiales. X(t)

appartient à l’ensemble C
h(t0)
t0 s’il existe un polynôme Pt0 de degré au plus égal à la

partie entière de h(t0) tel que

|X(t) − Pt0(t)| 6 K|t − t0|h(t0)

dans un voisinage de t0. La plus grande valeur H de h(t0) telle que X ∈ C
h(t0)
t0 est

l’exposant de Hölder de X à t = t0 [102]. Un signal qui possède un unique coefficient
h(t) pour tout t est qualifié de monofractal, par opposition aux signaux multifractals,

i



ii

pour lesquels h varie de manière erratique avec l’échelle des temps. Dans le cas des
signaux multifractals, il est impossible d’estimer en pratique la valeur de l’exposant
local de Hölder en chaque point du signal (caractère discret des signaux, précision
finie des données, . . .). On s’intéresse alors au spectre multifractal D, qui à un
exposant local donné H0 détermine la dimension de Hausdorff DH de l’ensemble des
points possédant comme régularité H0

D(H0) = DH{t | h(t) = H0}.

Pour les processus monofractals, D(h) se réduit à un seul point h = H0, D(H0) = 1
et par convention, D(h) = −∞ pour h 6= H0. Différentes techniques s’intéressent
aux procédures d’estimation du spectre multifractal. Citons par exemple la méthode
du Maximum du Module de la Transformée en Ondelettes (MMTO) [7, 12] ou la
technique des coefficients dominants [66].

Dans cette thèse, je m’intéresse à l’élaboration de deux nouveaux modèles pour
la génération de signaux (multi)fractals. Leur point commun est leur structure
de branchement sous jacente. Un processus à branchements est par définition un
ensemble de particules qui vivent pendant un temps aléatoire et qui peuvent donner
naissance à un nombre aléatoire de fils jusqu’au moment de leur mort. Le plus simple
des processus à branchements est le processus de Galton-Watson, que l’on décrit de
la manière suivante. Considérons un unique ancêtre vivant pendant exactement une
unité de temps et donnant naissance à un nombre aléatoire Z1 de fils au moment de
sa mort. Soit p la distribution de cette variable aléatoire. Chaque fils de la première
génération se comporte alors comme la particule initiale, et indépendamment les
uns des autres. Ils vivent exactement une unité de temps et donnent naissance à
un nombre aléatoire de fils (formant la deuxième génération) au moment de leur
mort, selon la distribution p. Et ainsi de suite. Ce processus peut être décrit
mathématiquement à l’aide d’un index de temps discret, donnant la taille de la
population Zn à n = 0, 1, 2, . . .. Les processus à branchement sont de bons modèles
mathématiques pour l’étude de la démographie des populations et possèdent de
nombreuses applications en biologie [67, 74, 117]. L’application qui nous intéresse
ici concerne la génération de signaux fractals à l’aide de processus de Galton-Watson.
En 1986, Falconer, Mauldin et Williams se sont penchés sur l’existence d’ensembles
compacts fractals obtenus à l’aide d’une structure aléatoire de Galton-Watson [43,
90]. Ici nous proposons deux nouveaux modèles. Le premier est une généralisation
de la construction des Systèmes de Fonctions Itérés (IFS). Le deuxième concerne
l’ensemble des signaux dont l’arbre de branchement (‘crossing tree’) est un processus
de Galton-Watson. Une construction de tels signaux est proposée dans cette thèse.
Nous les nommons Multifractal Embedded Branching Processes (MEBP). Dans les
deux sous-sections qui suivent, j’introduis les notions mathématiques nécessaires à
la compréhension de mes résultats de thèse et je présente un résumé de mes travaux.
J’invite le lecteur à se réferrer aux chapitres précédents en anglais pour les preuves
de mes résultats.
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Systèmes de Fonctions Itérés de Galton-Watson.

Les Systèmes de Fonctions Itérés (IFS) procurent un moyen simple de générer des
ensembles fractals. La terminologie ‘IFS’ a été introduite par Barnsley et Demko
[15] mais c’est Hutchinson en 1981 qui a le premier démontré l’existence d’ensembles
et de mesures déterministes auto-similaires en utilisant des opérateurs contractants
[60]. Le formalisme, d’abord introduit pour la génération d’ensembles compacts et
de mesures, a par la suite été adapté au cas des signaux. Nous présentons Figure
5.3 quatre ensembles fractals obtenus à l’aide de cette procédure.
Soit Lp(X) la classe des signaux p-intégrables X → R, 1 < p < ∞, où X est un

sous ensemble compact de R. || · ||p dénote la norme classique dans Lp(X): ||f ||p =
(
∫
|f |pdµ)1/p où µ est la mesure de Lebesgue. On munit Lp(X) d’une métrique

dp(f, g) = ||f − g||p où f et g sont dans Lp. Le théorème de Riesz-Fisher assure que
(Lp, dp) est complet [96]. On considère dans la suite X = [0, 1].
Un IFS consiste en l’application récursive d’un opérateur T . Soit une fonction ini-

tiale f0, on dénote par T nf0 le n-ième itéré de T sur f0. Pour une classe d’opérateurs
T , l’IFS converge dans Lp(X) vers une fonction f ∗

T nf0 → f∗ lorsque n → +∞. (5.3)

f∗ est l’unique fonction satisfaisant la relation f = Tf . On dit que f∗ satisfait la
loi d’échelle T [63]. f∗ est communément appelé point fixe ou attracteur de T . On
suppose généralement que T se décompose en un ensemble de M opérateurs non-
linéaires plus simples φi : R×X → R pour 1 6 i 6 M . Chaque φi déforme le signal
d’origine et le place dans un sous-intervalle Xi = ̺i(X) de X

(Tf)(x) =
M∑

j=1

φj[f(̺−1
j (x)), ̺−1

j (x))]1̺j(X)(x) (5.4)

où {̺i(X)}M
i=1 partitionne X. 1̺i(X) est la fonction indicatrice de l’interval ̺i(X). φi

sont des fonctions à deux variables. L’arbre de construction sous jacent est un arbre
déterministe M -aire: l’image de f par T est construite à l’aide de M copies de f .
La construction de T 2f , image de f par le deuxième itéré de T , requiert M copies
de Tf , soit M2 copies de f , et ainsi de suite. Au n-ième itéré de T on associe alors
un arbre déterministe M -aire contenant n niveaux de profondeur.
Des conditions sous lesquelles l’IFS converge sont données explicitement dans [63]

pour des fonctions φi : R → R à une variable. Le résultat se généralise facilement
pour des fonctions φi : R × X → R à deux variables, comme ci-dessous. Ce résultat
est prouvé plus loin dans un cadre plus général (Théorème 4, Chapitre 2).

Théorème 2. Soient ̺i des fonctions contractantes avec facteur de contraction
ri < 1 pour i = 1, . . . ,M , et φi Lipschitz en leur première variable, avec constante

de Lipschitz si. Si pour un p, λp =
M∑
i=1

ris
p
i < 1 et

M∑
i=1

ri

∫
|φi(0, x)|pdx < ∞, alors T

possède un unique point fixe dans Lp(X).
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Figure 5.3: Ensembles fractals.
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Nous proposons de généraliser ce résultat en introduisant de l’aléa dans
la définition de l’opérateur. Comme nous venons de le voir, le point fixe généré
possède un arbre de construction déterministe M -aire. En reconduisant une étude
semblable à celle de Hutchinson et Ruschendorff, nous donnons des conditions
sous lesquelles il existe un unique point fixe lorsque l’arbre de construc-
tion est aléatoire, de type Galton-Watson. Nous autorisons également
une structure aléatoire pour T . Il faut alors définir de nouveaux espaces de
travail.
Soit (Σ,F , P ) un espace probabilisé. On munit Lp d’une σ-algèbre Lp ([107], défi-

nition 25.2). Un processus aléatoire p-intégrable est une variable aléatoire f : Σ →
Lp(X). On définit

Lp = {f : Σ → Lp(X), f mesurable | E
[
||f ||pp

]
< +∞}

où E dénote l’espérance mathématique sous P . f(x) : Σ → R est la variable

aléatoire obtenue en évaluant f en x. On montre alors que ||f ||∗p = E
1
p
[
||f ||pp

]

est une norme sur Lp et que la métrique définie par d∗
p(f, g) = ||f −g||∗p rend l’espace

(Lp, d
∗
p) complet. Muni de cet espace métrique complet, on définit alors un opérateur

aléatoire T de la manière suivante

(Tf)(x) =
Z∑

j=1

φj[f
(j)(̺−1

j (x)), ̺−1
j (x))]1̺j(X)(x) (5.5)

où (Z, φ1, ̺1, . . . , φZ , ̺Z) est une variable aléatoire et f (j) sont des copies i.i.d. de
f . Les ̺j partitionnent de manière aléatoire X en Z sous-intervalles. Le facteur de
contraction de ̺j est la variable aléatoire rj. φj sont des fonctions de deux vari-
ables, Lipschitz en leur première variable, avec coefficient aléatoire de Lipschitz sj.
Z est distribué selon le vecteur de probabilités q = (q1, q2, . . .) où qi est la proba-
bilité associée à l’événement {Z = i}. Sauf mention du contraire (Théorème 5), on
autorise un nombre infini de fils. L’arbre de construction sous-jacent possède alors
un nombre aléatoire de fils (Z) à chaque noeud, Z étant indépendant d’un noeud à
l’autre de l’arbre. Il est donc de type Galton-Watson. On se propose de déterminer
des conditions sous lesquelles il existe une unique fonction f ∗ satisfaisant f ∗ = Tf ∗

dans Lp pour cette définition de T . Pour ce faire, il est indispensable de se munir
de l’espace probabilisé des arbres étendus de Galton-Watson (Σ,F , P ) = (K,K, κ),
dont la construction est détaillée plus loin dans le manuscrit. Un élément k ∈ K
est une réalisation d’un arbre de Galton-Watson, dont chaque branche est munie
d’un couple d’opérateur réalisés {̺j, φj}. Le théorème qui suit est le résultat
principal de l’étude menée au Chapitre 2 de cette thèse.

Théorème 4. Soit (K,K, κ) l’espace des arbres étendus de Galton-Watson. On

définit Lp avec (Σ,F , P ) = (K,K, κ). On suppose E

Z∑
j=1

rj

∫
|φj(0, x)|pdx < +∞

pour un 1 < p < +∞ et λp = E

Z∑
j=1

rjs
p
j < 1, où E dénote l’espérance sous κ. Alors

il existe une unique fonction f ∗ satisfaisant f∗ = Tf ∗ dans Lp. En outre, pour tout
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f0 ∈ Lp(X),

d∗
p(T

nf0, f
∗) 6

λ
n/p
p

1 − λ
1/p
p

d∗
p(f0, T f0) (5.6)

qui tend vers 0 lorsque n → +∞. De plus, la distribution de f∗ est l’unique distri-

bution satisfaisant f∗ d
= Tf ∗, où

d
= dénote l’égalité des distributions.

Nous illustrons ce théorème à l’aide de la Figure 5.4, où l’on présente une réalisa-
tion du point fixe d’un IFS de Galton-Watson. Nous représentons également une
estimation du signal moyen obtenu à l’aide de 100 réalisations indépendentes du
point fixe.

Nous proposons ensuite de déterminer quelques propriétés du point fixe.
On commence par énoncer le résultat concernant la continuité des réali-
sations du point fixe.

Proposition 1. X = [a, b]. Soit α l’unique point fixe aléatoire de φ1(., a) et β
celui de φZ(., b): φ1(α, a) = α et φZ(β, b) = β. On suppose que α et β sont les
même pour toutes les réalisations de φ1 et φZ. Si φi(β, b) = φi+1(α, a) p.s. pour tout
i ∈ {1, . . . , Z − 1} et si les opérateurs considérés sont continus, alors les traces de
f∗ sont continues, f∗(a) = α et f∗(b) = β p.s.

Nous étudions dans un deuxième temps le comportement des moments
du point fixe de l’IFS en fonction du vecteur de probabilités q. On considère
le modèle présenté dans [37], où l’arbre est aléatoire et les opérateurs déterministes.
On considère l’ensemble des opérateurs déterministes

{{φk,1, . . . , φk,k, ̺k,1, . . . , ̺k,k}}k=1,2,....

Pour Z = j, on applique {φj,1, . . . , φj,j, ̺j,1, . . . , ̺j,j}. φk,j et ̺k,j peuvent avoir
différentes expressions pour différentes valeurs de k, j = 1, . . . , k. L’opérateur T
devient:

(Tf)(x) =
Z∑

j=1

φZ,j[f
(j)(̺−1

Z,j(x)), ̺−1
Z,j(x))]1̺Z,j(X)(x). (5.7)

Le facteur de Lipschitz de φZ,j est sZ,j et le facteur de contraction de ̺Z,j est rZ,j.
Puisque les opérateurs attachés aux branches de l’arbre sont identiques pour un
nombre de fils donné, à une réalisation de l’arbre correspond une et une seule réali-
sation du point fixe.

Théorème 5. On suppose vérifiées les hypothèses du Théorème 4. Soit f∗ ∈ Lp

le point fixe de l’IFS de Galton-Watson possédant un nombre borné de fils et des
opérateurs déterministes de la forme φ(u, v) = su + ζ(v), où 0 6 s < 1 et ζ est

une fonction non-linéaire. On suppose que λr = E

Z∑
j=1

rZ,js
r
Z,j < 1 pour r = 1, . . . , p.

Alors le r-ième moment de f∗ varie continuement avec le vecteur de probabilités q,
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Figure 5.4: Une réalisation de l’attracteur d’un IFS de Galton-Watson (haut) avec
une estimation de sa moyenne (milieu). La figure du bas est la moyenne du point
fixe d’un autre IFS de Galton-Watson. Les paramètres de ces IFS sont décrits dans
le texte en anglais.
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pour r = 1, . . . , p.

Enfin, nous testons de manière empirique le caractère multifractal des
points fixes des IFS de Galton-Watson à l’aide de la technique des coeffi-
cients dominants. Pour un IFS donné, le spectre obtenu est non trivial, indiquant
une structure riche du point fixe. Les simulations proposées indiquent l’existence
d’une classe d’IFS pour lesquels le point fixe semble multifractal et motive une étude
future afin de déterminer le spectre théorique de ces signaux.
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Multifractal Embedded Branching Processes (MEBP).

Dans la deuxième partie de cette thèse (Chapitres 3 et 4), nous proposons la
construction d’un nouveau modèle de signaux multifractals, que nous
appellons Multifractal Embedded Branching Processes (MEBP). Les pro-
cessus MEBP sont construits à l’aide de leur arbre de branchement, de type Galton-
Watson, dont la construction est donnée plus loin. Pour tout processus de branche-
ment adéquat, il existe une famille de processus monofractals possédant une in-
variance d’échelle discrète pour lesquels c’est l’arbre de branchement. On identifie
l’un d’entre eux comme étant le processus Canonical Embedded Branching Process
(CEBP). Le processus MEBP est alors construit à partir du processus CEBP à l’aide
d’un changement de temps multifractal, construit à l’aide d’une cascade multiplica-
tive définie sur l’arbre de branchement. On prouve que le processus CEBP est
monofractal et on obtient une borne supérieure pour le spectre multi-
fractal d’un processus MEBP particulier. Aussi, on donne un algorithme
de simulation efficace pour la génération de processus MEBP. Les mouve-
ments Browniens en temps multifractals introduits par Mandelbrot [86, 87] sont un
cas particulier des processus MEBP, laissant imaginer de potentielles applications
en finance. Nous expliquons maintenant la construction du processus CEBP, du
processus MEBP et donnons les principaux résultats dont les preuves sont données
dans les chapitres 3 et 4.

Soit X : R
+ → R un processus continu, avec X(0) = 0. Pour n ∈ Z on définit les

temps de passage de niveau n (correspondant à l’échelle 2n), dénotés T n
k , par T n

0 = 0
et

T n
k+1 = inf{t > T n

k | X(t) ∈ 2n
Z, X(t) 6= X(T n

k )}.
Soit Cn

k le k-ième passage de niveau n. On entend par passage une partie du proces-
sus X de T n

k−1 à T n
k avec comme information supplémentaire le temps du début de

passage T n
k−1 et la position du processus X(T n

k−1) en début de passage. Un passage
est de type haut si X(T n

k ) = X(T n
k−1)+2n ou bas si X(T n

k ) = X(T n
k−1)−2n. En allant

d’une échelle grossière à une échelle plus fine, on décompose chaque Cn
k en une suite

de passages de niveau n − 1. En associant chaque passage à un noeud d’un arbre
et aux sous-passages les fils d’un noeud, on définit alors l’arbre de branchement du
processus X, comme illustré Figure 5.5.
On représente le nombre de sous-passages à l’échelle 2n−1 remplaçant le k-ième

passage de niveau n à l’aide de la variable aléatoire Zn
k . Les Zn

k sous-passages
consistent de (Zn

k − 2)/2 excursions suivies d’un passage direct. Une excursion est
une paire haut-bas ou bas-haut; un passage direct est une paire haut-haut ou bas-
bas, comme illustré Figure 5.6: le premier passage de niveau n en pointillés est
remplacé par 6 sous passages de niveau n − 1, contenant 2 excursions haut-bas et
d’un passage direct haut-haut. Le deuxième passage de taille 2n est lui remplacé par
4 sous passages, contenant une excursion bas-haut et un passage direct haut-haut.
Un processus continu X est appelé Embedded Branching Process (EBP) si les

variables aléatoires Zn
k sont indépendantes et identiquement distribuées.

On adopte les notations suivantes pour la définition de l’arbre de branchement.
Soit ∅ la racine de l’arbre, représentant un unique passage de niveau 0. On dénote
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Figure 5.5: Construction de l’arbre de branchement.
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Figure 5.6: Construction du processus CEBP.

la première génération par i, 1 6 i 6 Z∅, où Z∅ représente le nombre de fils de ∅.
La deuxième génération est alors dénotée par ij, 1 6 j 6 Zi, et ainsi de suite. Z∅

est distribué selon P (Z∅ = j) = p(j). Plus généralement, un nœud est un élément
de U = ∪n>0N

∗n et une branche un couple (u,uj) où u ∈ U et j ∈ N
∗. La longueur

d’un nœud i = i1 . . . in est |i| = n. Si |i| > n, i|n est la restriction de i à ses n
premiers termes. Par convention, |∅| = 0 et i|0 = ∅.
Un arbre Υ est un ensemble de nœud, c’est à dire un sous-ensemble de U , tel que

• ∅ ∈ Υ

• Si un nœud i appartient à l’arbre, alors chaque restriction i|k, k 6 |i| appartient
également à l’arbre.

• Si u ∈ Υ, alors uj ∈ Υ pour j = 1, . . . , Zu et uj 6∈ Υ for j > Zu, où Zu est le
nombre de fils de u.

Soit F (s) =
∑∞

j=0 p(j)sj la fonction génératrice de Z∅, définie pour s complexe tel
que |s| 6 1. Soit ΥGW

n la n-ième génération de l’arbre, c’est à dire l’ensemble des
nœuds de longueur n et ZGW

n son cardinal et µ =
∑

x xp(x) la taille moyenne de
la première génération. Alors µ−nZGW

n est une martingale non-négative et converge
presque sûrement vers une limite W∅ [10]. Soit Λ(s) = E(e−sW∅) la transformée de
Laplace de W définie pour s complexe tel que Re(s) > 0. ψ satisfait l’équation
fonctionnelle de Poincaré [109]

Λ(µs) = F (Λ(s)). (5.8)

On considère ensuite Υi = {j ∈ Υ | |j| > |i| et j||i| = i}. La frontière de l’arbre est
donnée par ∂Υ = {i ∈ N

N | ∀n > 0, i|n ∈ Υ}.

Soit (Ω,F , P) l’espace des arbres aléatoires marqués, que l’on peut construire selon
la même procédure que les arbres étendus de Galton-Watson (K,K, κ) de la section
précédente. Un arbre marqué est un arbre donc chaque branche est munie d’une
variable aléatoire. Pour un processus EBP donné, soit p(x) = P(Zn

k = x) la distri-
bution du nombre de ses fils. Si p est tel que p(2) < 1 et

∑
x x log(x)p(x) < ∞ on

dit que la distribution est régulière. On remarque que Zn
k prend ses valeurs dans
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2N
∗ puisque les sous-passages viennent par paires. Soit αn

k un vecteur de taille Zn
k

dont les composantes définissent les types des Zn
k sous-passages de Cn

k . Chacunes
des (Zn

k −2) entrées viennent par paires, chaque paire étant ‘haut-bas’ ou ‘bas-haut’.
Les deux dernières composantes sont soit ‘haut-haut’ ou ‘bas-bas’. On définit alors
la distribution pc|z des orientations de la manière suivante: pc|z = P(αn

k = · | Zn
k = z).

Théorème 6. Pour toute distribution régulière p sur 2N
∗ il existe un unique

processus EBP continu X sur [0, T 0
1 ] tel que

• Les excursions sont distribuées selon pc|z.

• La longueur du passage de niveau n est distribuée comme µ−nW∅ où la trans-
formée de Laplace de W∅ satisfait (5.8)

Alors on appelle l’unique processus X le processus EBP Canonique (CEBP). Soit
µ =

∑
x xp(x) la taille moyenne de la première génération. Soit H = log 2/ log µ,

alors pour tout a = µn, n ∈ Z et t ∈ [0, T 0
1 ],

X(t)
fdd
= a−HX(at) pour les distributions de dimension finie. (5.9)

Nous illustrons Figure 5.7 trois réalisations de processus CEBP. La distribution du
nombre de fils est géométrique avec paramètres 0.3, 0.5 et 0.7 et les excursions sont
i.i.d. et de type ‘haut-bas’ et ‘bas-haut’ avec probabilité 1/2.

Par ailleurs, on propose l’extension de la construction du processus CEBP
à tout interval compact de R. Pour ce faire, on considère la suite {X(n)} de
processus CEBP et on prouve la convergence en distribution de {X(n)} vers un
processus limite X. Soit X(0) un processus CEBP construit comme dans Théorème
6. Soit CT l’espace des fonctions continues à support compact [0, T ] dans R

+. On
définit la suite de processus CEBP {X(n)} de la manière suivante

X(n)(t) = 2nX(0)(µ−nt).

On montre alors que

Corollaire 2. X(n) converge en distribution vers un processus limite X dans CT .

Il est clair d’après la relation (5.9) que les processus CEBP possèdent une invari-
ance d’échelle discrète. On prouve par ailleurs que ce sont des processus
monofractals, comme l’indique le résultat suivant.

Hypothèse 4. Pour tout p > 0, EZp
∅ < ∞.

Théorème 10. Soit X un processus CEBP avec distribution régulière p et taille
moyenne µ. Suppose que le nombre de fils est borné, c’est-à-dire qu’il existe M
tel que p(x) = 0 pour tout x > M . On suppose vraie l’Hypothèse 4. Alors X est
monofractal: avec probabilité 1, pour tout t,

h(t) =
log 2

log µ
. (5.10)
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Figure 5.7: De haut en bas. Réalisations de processus CEBP. La distribution du
nombre de fils est géométrique avec paramètres 0.3, 0.5 et 0.7.
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On est maintenant en position d’introduire les processus MEBP, définis comme des
processus CEBP en temps multifractal. Le changement de temps est défini à partir
d’un processus en cascade sur l’arbre de branchement. A chaque branche (i, ij)
de l’arbre, on associe une variable aléatoire (ou poids) ρj(i). Les ρ1(i), . . . , ρZi

(i)
peuvent être dépendantes et dépendre de Zi, mais sont indépendantes des autres
nœuds de l’arbre. Le poids associé au nœud i est alors

ρi =

|i|∏

k=1

ρik(i|k−1).

ρi est le produit de tous les poids le long d’une ligne de descente, de la racine
jusqu’à i. ρi nous sert à définir les temps de passage du nouveau processus. En
effet, on utilise ces poids pour définir une mesure, ν, sur la frontière ∂Υ de l’arbre
de branchement. A partir de cette mesure (à support discret), on construit une
deuxième mesure, ζ, dont le support est un intervalle de R. On définit alors le
changement de temps M par M(t) = ζ([0, t)). Le processus MEBP est alors donné
par Y = X ◦ M−1, où X est le processus CEBP. Les processus X et Y possèdent
donc la même structure, mais ont des temps de passage différents. Il existe des
restrictions sur les poids associés aux branches de l’arbre afin que le changement de
temps soit continu. Nous pouvons maintenant énoncer le premier résultat
du Chapitre 3 sur l’existence et la continuité des processus MEBP.

Hypothèse 1.

ρi > 0, E

Z∅∑
i=1

ρi(∅) = 1, 0 > E

Z∅∑
i=1

ρi(∅) log ρi(∅) > −∞

et E

Z∅∑
i=1

ρi(∅) log
Z∅∑
i=1

ρi(∅) < ∞.

Hypothèse 2. Il existe ǫ > 0 tel que EZ1+ǫ
∅ < ∞

Théorème 8. Soit p une distribution régulière sur 2N
∗ et X le processus CEBP

associé. Si les hypothèses 1 et 2 sont vérifiées, alors on peut construire un processus
croissant M tel que M−1 soit continu, et ainsi définir pour tout t ∈ R

Y = X ◦M−1.

Le processus Y est appelé processus MEBP.

Nous présentons Figure 5.8 une réalisation d’un processus CEBP et une réalisation
du processus MEBP, obtenu à l’aide d’un changement de temps multifractal défini
sur l’arbre de branchement.

Hypothèse 3. On suppose que

ρi ∈ (0, 1], P(
Z∅∑
i=1

ρi(∅) = 1) < 1 et

pour tout p > 1, E

[( Z∅∑
i=1

ρi(∅)
)p]

< ∞.
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Figure 5.8: Figure du haut: processus EBP. La distribution du nombre de fils est
géométrique. Figure du bas: processus MEBP obtenu à l’aide d’un changement
de temps multifractal du processus CEBP. Le changement de temps est défini sur
l’arbre de branchement, à l’aide de poids distribués selon une loi Gamma.
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Corollaire 3. Sous les hypothèses 1, 2 et 3, Y et M sont continus.

Définir le changement de temps à l’aide de l’arbre de branchement nous permet
de simuler efficacement les processus MEBP. Nous proposons un algorithme de
simulation dans la troisième section du Chapitre 3. Pour ce faire, nous util-
isons une représentation de Markov de dimension finie du processus. En considérant
une restriction de l’espace d’état, nous représentons X(n) à l’aide d’un vecteur de
taille O(log n), ce qui nous permet de simuler X(n+1) à partir de X(n) en O(log n)
opérations.

Dans la dernière section du Chapitre 3, on propose d’imiter un mouve-
ment Brownien fractionnaire à l’aide d’un processus MEBP.
Soit i ∈ Υn−1 un noeud de la génération n− 1 de l’arbre de branchement et ik son

k-ième fils. Soit Dn
ik la durée du passage associé avec le noeud ik. On rappelle que Zi

correspond au nombre de fils du noeud i. On considère alors la durée moyenne des
sous-passages pour un fBm après conditionnement sur la taille du passage parent:

f(z) := αE(Dn
ik | Zi = z) (5.11)

où α est tel que
∑

zf(z)P(Z = z) = 1. Le rôle du facteur de renormalisation α

est expliqué après. On estime alors f(z), noté f̂fBm(z), pour un fBm avec exposant
H = 0.7. f̂fBm(z) est obtenu en moyennant 80 estimations de f(z). On se sert alors
de ce graphe pour déterminer la valeur des poids à attacher à l’arbre de branchement
du processus MEBP:

ρ | (Z = z) = f̂fBm(z).

Les poids sont déterministes conditionnellement à Z. Avec cette définition, le fac-
teur de renomalisation α nous assure que E

∑Z
i=1 ρi = 1, hypothèse fondamentale

pour l’existence des processus MEBP (Hypothèse 1). On montre alors que la durée
moyenne des sous passages du processus MEBP est

f̂fBm(z) [Eρ]n . (5.12)

Les deux équations (5.12) et (5.11) sont alors identiques.
La Figure 5.9 présente l’estimation de f(z) pour le fBm et pour le processus MEBP

associé. Les deux courbes suivent la même tendance, surtout pour les petites valeurs
de z. La figure du milieu présente la distribution marginale du processus MEBP
ainsi défini, que l’on compare à une loi normale. Nous avons également réalisé
deux tests statistiques (Kolmogorov-Smirnov et Anderson-Darling) afin de décider
si les données proviennent d’une loi normale. Les résultats obtenus indiquent que
oui, avec un niveau de confiance de 95%. Enfin nous présentons sur la figure du
bas la structure de corrélation du processus MEBP en échelle logarithmique avec
celle théorique d’un fBm. On observe une légère déviation par rapport à la pente
théorique 2H − 2. Un autre test, validant la structure monofractale du processus
MEBP ici défini a été réalisé. Nous ne le présentons pas dans ce résumé.
En conclusion, l’ensemble des tests réalisés indiquent une bonne approximation

d’un fBm par un processus MEBP.
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Figure 5.9: La figure du haut présente f̂fBm(z) et f̂MEBP(z), estimations de f(z) pour
un fBm et pour le processus MEBP associé. Sur la figure du milieu, nous présentons
la distribution marginale du processus MEBP, que l’on compare à une loi normale.
La figure du bas présente la fonction de corrélation du processus MEBP avec la
corrélation théorique d’un fBm avec H = 0.7.
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Figure 5.10: Estimation du spectre de M. Figure (a): Fonction de partition (‘o’)
estimée à l’aide de la méthode des coefficients dominants. La courbe en trait plein
représente 1 + T̃ (q). Figure (b): Transformée de Legendre-Fenchel de la fonction de
partition. Des intervalles de confiance à 95% sont également représentés.

Dans le Chapitre 4, on s’intéresse au spectre multifractal de M et de Y . En suiv-
ant une méthode développée par Riedi [102] pour les cascades définies
sur des arbres déterministes, nous obtenons une borne supérieure pour
le spectre de M sous certaines conditions.

Corollaire 6. Soit p une distribution régulière. On suppose que le nombre de
fils à chaque nœud est borné, que les poids ρ sont i.i.d. et que les hypothèses 1, 2,
3 et 4 sont vérifiées. Soit T̃ (q) = −1 − logµ Eρq. Alors, le spectre multifractal D(a)
de M est borné par

D(a) 6 inf
q∈R

(qa − T̃ (q)). (5.13)

Nous avons effectué des simulations pour estimer le spectre de M à l’aide
de la méthode des coefficients dominants. Les résultats obtenus, présentés sur
la Figure 5.10, supportent la théorie et semblent indiquer que la borne supérieure
proposée est en fait le spectre lui-même, sous l’hypothèse que le spectre de M est
concave. En effet, la fonction de partition ζ(q) estimée à l’aide des coefficients
dominants se superpose avec la courbe théorique 1 + T̃ (q). Sous l’hypothèse que le
spectre est concave, la transformée de Legendre-Fenchel de ζ(q) (et, par la même
occasion, de T̃ (q)) donne le spectre de Hausdorff du processus [66].
Nous n’avons pas poursuivi l’étude théorique afin de démontrer cette égalité, qui

reviendrait à déterminer une borne inférieure, problème théorique reconnu comme
étant difficile en général.

On utilise ensuite le résultat du Théorème 6 pour l’obtention d’une borne
supérieure du spectre de Y dans un cas particulier. En effet, lorsque la dis-
tribution p est géométrique avec paramètre 0.5, le processus CEBP est réduit à un
mouvement Brownien B classique. Dans ce cas, il est possible d’établir une relation
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entre le spectre de M et celui de Y , comme l’indique le théorème suivant.

Théorème 20. Soit Y = B◦M−1 le processus MEBP obtenu à l’aide d’un change-
ment de temps du processus CEBP B, qui se réduit à un mouvement Brownien. On
suppose les hypothèses 1, 2 et 3 vérifiées. Soient DM

H et DY
H le spectre multifractal

de Y et M respectivement. Alors

DY
H(a) = 2aDM

H (1/2a).

La relation précédente nous permet d’obtenir une borne supérieure pour le spectre
de Y . Nous avons également estimé le spectre de Y à l’aide des coefficients
dominants. Les estimations obtenues pour Y vont dans le même sens que celles
obtenues pour M et nous laissent penser une fois de plus à une égalité entre les
spectres.

Dans la dernière section du Chapitre 4, nous nous intéressons au spectre de la
mesure de branchement ν, dont le support est la bordure de l’arbre ∂Υ. Soient i et
j ∈ ∂Υ. On se doit dans un premier temps de redéfinir la notion d’exposant local.
Dans ce but, on équipe la bordure de l’arbre avec la métrique

d(i, j) = e−n(i,j) (5.14)

où n(i, j) est tel que i|k = j|k pour tout k 6 n(i, j) et i|k 6= j|k sinon. Étant donné d,
la régularité locale de Hölder de la mesure ν à un point x est définie comme

lim
r→0

log ν[B(x, r)]

log r

où B(x, r) est la boule ouverte centrée en x et de rayon r. On obtient 2 résultats
concernant ν. Dans le premier cas, ν est multifractale et on donne la
valeur de l’exposant qui concentre toute la masse ν. Dans le deuxième
cas, on donne des conditions plus restrictives sur les poids associés aux
branches de l’arbre afin que la mesure ν soit monofractale.

Hypothèse 7

E

[( Z1∑

i=1

ρi

)(
log

( Z1∑

i=1

ρi

))2]
< ∞.

Théorème 24 Lorsque les Hypothèses 1 et 7 sont vérifiées, alors avec probabilité
1,

lim
n→∞

ν[B(i|n, r)]

n
= E log ρ

pour ν-presque tout i ∈ ∂Υ.

Théorème 25 Sous les conditions des Hypothèses 1 et 3,

lim
n→∞

ν[B(i|n, r)]

n
= E log ρ (5.15)
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pour tout i ∈ ∂Υ, avec probabilité 1.

Ces résultats sont à mettre en relation avec le cas de la mesure de branchement
obtenue avec des poids constants égaux à 1/µ. Cette mesure a beaucoup été étudiée
[55, 79, 80, 94, 110] et les résultats obtenus s’accordent avec ceux de la littérature
en remplaçant E log ρ par − log µ.
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GENERATION DE SIGNAUX MULTIFRACTALS POSSEDANT UNE
STRUCTURE DE BRANCHEMENT SOUS-JACENTE

Résumé

La géométrie fractale, développée par Mandelbrot dans les années 70, a connu un
essor considérable ces 20 dernières années. Dans cette thèse, je m’intéresse à la
génération de signaux dits fractals et multifractals. J’étudie en particulier 2 mod-
èles, dont leur point commun est leur structure d’arbre de branchement sous jacente.
Le premier modèle est une généralisation des Systèmes de Fonctions Itérés ou IFS,
introduits par Hutchinson dans les années 80. Les IFS constituent un moyen sim-
ple et efficace pour produire des ensembles et des processus fractals en itérant un
nombre fixed d’opérateurs. L’idée est d’autoriser un nombre aléatoire d’opérateurs
aléatoires à chaque itération de l’algorithme. Nous donnons des conditions simples
et faciles à vérifier sous lesquelles l’IFS admet un point fixe. Quelques propriétés du
point fixe sont également étudiées. Le deuxième modèle, que nous appellons Multi-
fractal Embedded Branching Process (MEBP), s’obtient à l’aide d’un changement de
temps multifractal d’un processus à invariance d’échelle discrète, le processus EBP
Canonique (CEBP). Nous donnons un algorithm efficace de simulation "on-line" de
ces processus, permettant de générer X(n + 1) à partir de X(n) en O(log n) opéra-
tions. Nous obtenons également un borne supérieure pour le spectre multifractal du
changement de temps et confirmons les résultats théoriques à l’aide de simulations.
Les mouvements Browniens en temps multifractal sont des cas particuliers des pro-
cessus MEBP, ce qui suggère une application potentielle des processus MEBP en
finance. Enfin, nous proposons d’imiter un mouvement Brownien fractionnaire à
l’aide d’un processus MEBP.

Mots Clés

Invariance d’échelle, Systèmes de Fonctions Itérés, Formalisme multifractal, Spectre
de Hausdorff, Arbre de branchement, Arbre de Galton-Watson, mouvement Brown-
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GENERATION OF MULTIFRACTAL SIGNALS WITH UNDERLYING
BRANCHING STRUCTURE

Summary

Fractal geometry, pioneered by Mandelbrot in the 70s, has been recognized in many
areas of science. The novelty of this thesis is the generation of fractal and multifrac-
tal processes with underlying construction tree. I study two models in particular.
The first one is a generalisation of Iterated Function Systems (IFS), introduced by
Hutchinson in the early 80s. IFS are an efficient tool to generate fractal sets and
functions, by iterating a given set of operators. The idea here is to allow a random
number of random operators at each iteration of the algorithm. We derive simple
conditions under which the IFS possesses a fixed point. A few properties of the
fixed point are also investigated. The second model, called Multifractal Embedded
Branching Process (MEBP), is obtained via a multifractal time change of a discrete
self-similar process, the Canonical EBP (CEBP). We give an efficient simulation on-
line algorithm which generates X(n+1) from X(n) in O(log n) steps. We also derive
an upper bound of the multifractal spectrum of the time change and we confirm the
theoretical results with simulations. Subordinated Brownian motions are partic-
ular cases of MEBP processes, which suggests a potential application of MEBP in
finance. Finally, we propose to imitate a fractional Brownian motion with an MEBP.

Key words

Self-similarity, Iterated Function Systems, Multifractal formalism, Hausdorff spec-
trum, Crossing tree, Galton-Watson tree, fractional Brownian motion.


