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École Doctorale ‘Sciences et Technologies de l’Information des
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Résumé

Introduction

De nombreux systèmes industriels sont caractérisés par des variations sur des
paramètres qui affectent leur dynamique. Ce phénomène apparâıt notamment
dans le domaine aéronautique (missiles, avions, lanceurs, etc...) où les paramètres
variants sont l’altitude, la vitesse ou l’angle d’incidence. Calculer un correcteur
pour ce type de systèmes n’est pas une tâche facile car ces variations doivent
être prises en compte afin d’obtenir des lois de commande performantes.

Ce travail utilise la méthode de commande par séquencement de gains afin de
construire une commande adaptative qui tienne compte de ces variations. Cette
méthode présente beaucoup d’avantages comme la possibilité d’utiliser les outils
de la théorie moderne de la commande robuste et aussi la capacité de mettre
à jour les paramètres du correcteur séquencé d’une façon simple et facilement
mise en œuvre.

En revanche, malgré la grande richesse de résultats concernant cette méthode,
il existe encore de nombreux problèmes comme par exemple l’absence d’une
méthode systématique pour définir les points de synthèse et la structure des cor-
recteurs linéaires et aussi la façon de les interpoler. Cette thèse essaie de donner
une réponse à ces problèmes en proposant une stratégie de commande perfor-
mante, robuste mais aussi simple pour la commande des systèmes non-linéaires
à paramètres variants.

Partie I: Contexte Théorique

Chapitre 1
Séquencement de Gains Classique.

Le premier chapitre présente la première classe de méthodes de commande par
séquencement de gains, souvent appelée approche par linéarisation et résumée
par la formule ‘diviser pour conquérir’. La commande par séquencement de
gains s’inscrit dans le cadre des méthodes de commande dites adaptatives qui
comprennent les commandes adaptatives directe et indirecte et la commande par
séquencement de gains. Les deux premiers types de commande se basent sur une
optimisation en temps réel afin de mettre à jour les coefficients du correcteur.
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Par contre la commande par séquencement de gains se base sur un calcul
hors ligne de ces coefficients, pour plusieurs conditions de fonctionnement du
système, et adapte ensuite ces coefficients en utilisant la famille de correcteurs
et des méthodes d’interpolation. L’interpolation/adaptation est faite à partir
d’un ensemble de paramètres variants dans le temps qui capturent le changement
du régime de fonctionnement du système, lequel est souvent appelé vecteur de
séquencement ̺ = ̺(t). Cette méthode est encore divisée en deux sous-méthodes
caractérisées principalement par la façon de modéliser le système à commander
pour le rendre exploitable par une méthode de commande.

La première classe de méthodes est la méthode par linéarisation LBGS1 qui
se base sur l’approximation du système non-linéaire à paramètres variants par
des modèles locaux linéaires calculés pour une famille de valeurs fixes du vecteur
de séquencement. Pour cette famille de modèles, un ensemble de correcteurs
linéaires invariants (LTI) est calculé, en utilisant par exemple les techniques
modernes puissantes de la théorie de la commande robuste H2 ou H∞, qui
satisfait les performances exigées par l’utilisateur localement. A la fin, un cor-
recteur global non-linéaire séquencé est calculé en combinant, en quelque sorte,
ces correcteurs locaux grâce à une méthode d’interpolation à partir du vecteur
de séquencement mesuré en temps réel. C’est cette méthode qui est considérée
dans le travail de thèse présenté dans ce rapport.

La deuxième classe de méthodes est la méthode dite LPV2 (ou q-LPV) qui
est basée soit sur une famille continue de systèmes linéaires autour d’un ensem-
ble de points ou de trajectoires d’équilibre du système non-linéaire initial, soit
sur un système quasi -linéaire obtenu en re-formulant la dynamique non-linéaire.

La première classe de méthodes est préférée quand une approche systématique
et non conservative est demandée, et la deuxième classe quand une méthode
offrant de meilleures conditions de stabilité pour le système en boucle fermé
séquencé est exigée.

Avant de commencer à décrire la méthode de séquencement par linéarisation,
quelques concepts sur la modélisation des systèmes sont analysés. En premier
lieu, des concepts sur les notions de points et de trajectoires d’équilibre sont
détaillés pour les systèmes non-linéaires autonomes, non-autonomes et dépendants
de paramètres. Un tel système a la forme suivante3:

Spd :
ẋ = f(x, u, ̺)

y = h(x, u, ̺).

Ce système admet une famille de points d’équilibre pour chaque valeur du
vecteur de séquencement dans un domaine d’opération Γ. Il faut ajouter que
la grande majorité des systèmes aéronautiques sont des systèmes de ce type,
paramétrés par des grandeurs telles que l’incidence, l’altitude ou la vitesse.

1Pour ‘Linearization-Based Gain Scheduling’.
2Pour ‘Linear Parameter-Varying’.
3La notation ‘pd’ signifie ‘parameter-dependent’.
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A partir d’un système non-linéaire dépendant de paramètres, on pourrait
considérer d’autres types de modélisation, afin d’approximer son comportement,
avec une précision différente pour chaque catégorie, ou tout simplement de le
re-configurer. Une approche de ce type est par exemple la modélisation q-LPV
qui essaie de cacher la non-linéarité en faisant des manipulations algébriques sur
le système Spd. Une autre modélisation dite LPV peut être faite en considérant
l’ensemble des systèmes linéaires induit par la linéarisation du système autour
d’un ensemble de points ou de trajectoires d’équilibre. En outre, la dépendance
paramétrique du modèle linéaire par rapport au vecteur de séquencement pour-
rait être cachée en utilisant une autre modélisation appelée LFT (pour ‘Linear
Fractional Transformation’), dans laquelle cette dépendence paramétrique est
considérée comme une incertitude mesurée.

D’autres types de modélisation d’un processus existent comme les systèmes
LTV qui sont purement linéaires mais dont les matrices d’état dépendent ex-
plicitement du temps (et pas par l’intermédiaire d’un vecteur de séquencement
̺). Ce type de systèmes peut être issu d’une linéarisation d’un système non-
linéaire autour d’une trajectoire d’équilibre. Finalement, le cas le plus simple
est le système LTI (pour linéaire invariant dans le temps) dont la modélisation
est faite en utilisant des matrices d’état constantes ; ce type de systèmes peut
aussi être le résultat de la linéarisation du système non-linéaire autour d’un point
d’équilibre.

Cette dernière est faite en utilisant un développement au premier ordre du
système non-linéaire de sorte que le modèle obtenu est une approximation locale
qui peut sous quelques conditions offrir une bonne précision. D’autres types de
linéarisation existent dans la littérature comme la linéarisation ‘basée-vitesse’
(c.f. Chapitre 2) ou la linéarisation entrée 7→ état ou entrée 7→ sortie.

La méthode de séquencement de gains par linéarisation comporte principale-
ment cinq étapes : la paramétrisation des points d’équilibre et le calcul de la
commande nominale ; l’obtention du modèle LPV en fonction du vecteur de
séquencement ; la synthèse de correcteurs linéaires pour une famille de valeurs
du vecteur de séquencement ; l’interpolation des correcteurs ; et finalement la
construction du correcteur global non-linéaire séquencé et sa validation à travers
des simulations.

En ce qui concerne les méthodes d’interpolation, elles sont divisées en deux
familles principales : les méthodes qui ne garantissent pas la stabilité du système
séquencé et les méthodes qui offrent un certain degré de stabilité. Les premières
sont la commutation de correcteurs, le mélange de correcteurs, l’interpolation
ZPK, l’interpolation des coefficients des fonctions de transfert, l’interpolation des
matrices d’état, l’interpolation type retour d’état/observateur, l’interpolation
des gains, l’interpolation des solutions des équations de Riccati, etc...

La première de ces méthodes commute les correcteurs linéaires dans des
régions de séquencement, la deuxième combine les sorties des correcteurs, la
troisième interpole leurs zéros, pôles et gains, la quatrième les coefficients des
nominateurs et dénominateurs de leurs fonctions de transfert, la cinquième les
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matrices de leurs représentations d’état, la sixième les matrices de l’observateur
et du retour d’état, la septième interpole des gains (par ex. d’un correcteur PID)
et la huitième les matrices des équations de Riccati associées à la synthèse H∞.

Les méthodes qui offrent des garanties de stabilité sont aussi nombreuses et
le travail dans le domaine date du début des années ’90 (c.f. Section 1.3.3 pour
plus de détails).

Chapitre 2
Séquencement de Gains Moderne.

Le deuxième chapitre présente brièvement la deuxième famille de méthodes de
séquencement de gains dites LPV (ou q-LPV) ainsi que quelques approches
alternatives (linéarisation ‘basée-vitesse’ et approche floue ou par réseaux de
neurones).

La méthode LPV est aussi divisée en deux grandes catégories pour obtenir
un correcteur séquencé, l’approche polytopique et l’approche LFT. La première
utilise la formulation LMI du calcul d’une fonction de Lyapunov et des cor-
recteurs robustes, pour une famille de systèmes obtenus par une modélisation
polytopique ayant une dépendence affine par rapport aux paramètres de séquencement.
Le séquencement est fait en mesurant les paramètres variants et en les exprimant
comme la combinaison convexe des valeurs aux sommets du polytope considéré.

La méthode LFT à son tour modélise la dépendence paramétrique comme
une incertitude bornée en norme et calcule un correcteur séquencé ayant une
forme spécifique, afin de stabiliser le système pour toute variation possible des
paramètres considérés.

La méthode dite ‘linéarisation basée-vitesse’ présente une modélisation du
système non-linéaire à paramètres variants en linéarisant autour de n’importe
quel point de fonctionnement du système et non nécessairement autour d’un
point d’équilibre. La méthodologie de calcul du correcteur séquencé suit ensuite
les mêmes bases que la méthode ‘diviser pour conquérir’. Enfin, l’approche floue
ou par réseaux de neurones utilise les idées spécifiques de cette communauté,
bien différentes des autres méthodes.

Chapitre 3
Lois de Commande pour le Séquencement de Gains.

La théorie de la commande utilisée dans le cadre du calcul de la famille des
correcteurs linéaires est présentée dans ce chapitre. Trois techniques différentes
sont analysées : la commande H∞ dans des régions LMI, la transformation de
correcteurs sous forme estimateur/retour d’état et la commande H∞ par loop
shaping, dynamique et statique. Chaque méthode est associée à une méthode
d’interpolation utilisée dans ce travail : mélange des correcteurs, interpolation
des matrices d’estimateur et de retour d’état et interpolation des gains. De
plus, un outil d’analyse de la distance entre des systèmes, la gap-métrique, est
présenté.
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En ce qui concerne la première méthode, il est clair qu’il serait intéressant
de combiner les avantages d’un correcteur H∞ quant à la robustesse en face de
perturbations et d’incertitudes de modèle, avec les avantages du placement de
pôles pour le réglage de performances (temps d’établissement, temps de réponse,
dépassement, etc...). Cette combinaison peut être facilement traduite par un en-
semble de contraintes matricielles affines si le domaine du placement des pôles
considéré est affine.

Un correcteur dynamique d’ordre plein calculé avec la méthode précédente
peut être transformé en un correcteur sous la forme d’un estimateur de Kalman
et d’un gain de retour d’état combiné à un système toujours stable appelé le
paramètre de Youla. En général, sous quelques hypothèses pendant la phase de
synthèse, on peut forcer ce paramètre de Youla à zéro (en considérant un cor-
recteur d’ordre égal à celui du système et strictement propre) et donc faciliter
plus tard la tâche d’interpolation. Cependant cette transformation n’est pas du
tout évidente car elle nécessite une analyse combinatoire des valeurs propres de
la boucle fermée.

La méthode de commande H∞ par loop shaping est un cas spécial de la
synthèse H∞ classique. Cette méthode conçue par McFarlane&Glover au début
des années ’90 construit un correcteur robuste afin de maximiser la marge de
robustesse en face d’incertitudes bornées en norme sur les facteurs premiers de la
fonction de transfert en boucle ouverte. Ce correcteur robuste minimise la norme
H∞ des différentes fonctions de transfert en boucle fermée dans des bandes de
fréquences différentes et son calcul est divisé en trois étapes qui font partie d’une
procédure appelée LSDP (pour Loop Shaping Design Procedure).

La première étape (loop shaping) consiste à calculer des pré/post compen-
sateurs pour le système en boucle ouverte afin de régler ses performances d’une
façon satisfaisante. Typiquement cela consiste à assurer un gain élevé/faible en
basses/hautes fréquences et une pente de 20dB/dec dans la zone des fréquences
intermédiaires. La deuxième étape est le calcul de la marge de robustesse qui
peut être atteinte par un correcteur H∞ robuste ; si cette marge est satisfaisante
on peut passer à la prochaine étape, sinon il faudra recalculer les pré/post-
compensateurs. Enfin, la troisième étape est de calculer un correcteur H∞

robuste, pour la boucle ouverte comprenant les pré/post-compensateurs et le
système, afin de le rendre stable en face d’incertitudes de modèle. Le correcteur
final est la combinaison des pré/post-compensateurs avec le correcteur robuste.
Le correcteur robuste étant d’ordre plein, il peut être calculé soit en utilisant
l’approche classique de Doyle&Glover soit la formulation plus attirante par LMI.

En outre, la méthode par loop shaping peut être considérée en utilisant
un correcteur statique, qui est évidemment plus facile à interpoler qu’un cor-
recteur d’ordre plein. La marge de robustesse atteinte avec cette approche est
toujours inférieure au cas dynamique mais souvent très satisfaisante. En re-
vanche, la formulation LMI est issue de conditions seulement suffisantes car le
problème, initialement sous forme BMI, est rendu convexe en supprimant les
termes bilinéaires.
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La gap-métrique est un outil très intéressant introduit au début des années
’80 et exploité dans les années ’90 comme une méthode pour caractériser la
stabilisabilité d’un système perturbé par le correcteur calculé pour un système
nominal. Sa propriété la plus étonnante est qu’elle définit une certaine distance
entre ces deux systèmes liée à la marge de robustesse atteinte par le correcteur
nominal. Cet outil permettra de créer un algorithme de choix des points de fonc-
tionnement ou de synthèse pour un système non-linéaire à paramètres variants
au Chapitre 6 et ainsi d’améliorer le comportement du correcteur séquencé.

Partie II: Contexte Applicatif

Chapitre 4
Modélisation et Analyse.

Les deux exemples d’application considérés dans ce travail sont les suivants : un
autopilote de poursuite pour l’axe de tangage d’un missile fortement manœu-
vrant et un autopilote de régulation pour l’axe de tangage d’un véhicule de
rentrée atmosphérique. L’autopilote du missile doit fournir des commandes de
braquage afin d’assurer la poursuite de consignes en accélération normale de
différentes amplitudes. Le pilote doit assurer une performance rapide et ro-
buste pour toute l’enveloppe de vol du missile formée par ses paramètres vari-
ants : l’angle d’incidence et le nombre de Mach. Concernant le véhicule de
rentrée, l’autopilote doit maintenir un angle d’incidence constant malgré la vari-
ation du Mach. D’autre part, il doit aussi être robuste en face de perturbations
paramétriques et avoir des marges de stabilité satisfaisantes.

Dans ce chapitre sont présentés, d’une façon parallèle, les résultats concer-
nant les deux premières étapes de la procédure LBGS, qui est commune aux trois
méthodes d’interpolation utilisées : la paramétrisation des points d’équilibre et
le calcul de la commande nominale, et l’obtention du système linéarisé en fonc-
tion du vecteur de séquencement.

Concernant le missile, un modèle non-linéaire analytique est disponible sous
forme d’équations différentielles. L’état x se compose de l’angle d’incidence α et
de la vitesse de tangage q et les sorties mesurées sont l’accélération normale η
et la vitesse de tangage. Vu que l’angle d’incidence n’est pas mesuré, le vecteur
de séquencement ne peut comprendre que le Mach et l’accélération. Une anal-
yse algébrique est faite pour exprimer les points d’équilibre en fonction de ces
variables et la commande nominale δ(̺eq) (et la surface correspondante) est fi-
nalement calculée symboliquement.

Après avoir calculé la commande nominale, le modèle linéaire pour chaque
point d’équilibre, paramétré par le vecteur de séquencement, est aussi obtenu
symboliquement. L’analyse de stabilité de ce modèle montre que le système est
stable dans la majorité de l’enveloppe de vol en présentant des pôles mal amor-
tis. Cependant, il y a une petite partie où le modèle est instable, notamment
pour des faibles valeurs d’accélération et un Mach élevé. De plus les zéros du
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système, étant dans le demi-plan complexe droit, introduisent un déphasage non
minimal.

Concernant le véhicule de rentrée, la modélisation est faite en utilisant des
tableaux de données pour les fonctions aérodynamiques. Pourtant dans ce cas
l’enveloppe de vol est paramétrée en utilisant l’angle d’incidence et le Mach ; de
plus la pression dynamique varie en fonction du temps car le scénario de rentrée
suppose que l’altitude varie aussi d’une façon significative. Enfin, pour les deux
exemples, la commande de pilotage est délivrée par un actionneur modélisé par
un filtre du deuxième ordre.

La famille des modèles linéaires est obtenue en considérant le développement
au premier ordre du modèle non-linéaire à paramètres variants du départ. Il
s’avère que le modèle linéarisé est dans la limite de stabilité car il présente des
valeurs propres sur l’axe imaginaire du plan complexe. La fréquence propre ω0

des pôles complexes varie beaucoup avec le Mach et l’angle d’incidence et pose
un problème de commande assez stimulant car le correcteur séquencé doit à la
fois garantir un amortissement suffisant pour les pôles du système mais aussi
limiter la commande exigée. De plus, il est clair (vue la forme de la surface
obtenue pour la fréquence propre - c.f. Fig. 4.15c) que le choix des points de
synthèse n’est pas évident et qu’une stratégie simpliste ne considérant que les
sommets de l’enveloppe de vol ne suffira pas.

Les deux prochains chapitres sont consacrés à l’analyse et à la validation des
méthodes de séquencement conçues dans cette thèse, afin d’affronter le problème
du calcul d’une commande séquencée performante mais simple : le premier
présente deux méthodes ‘ad-hoc’ tandis que le deuxième détaille la méthode
systématique appelée e-LSDP.

Chapitre 5
Stratégies de Commande Ad-hoc.

Ce chapitre présente deux méthodes d’interpolation pour la commande du mis-
sile, basées sur la méthode de mélange des correcteurs et sur la méthode qui
utilise une structure estimateur et retour d’état. Au début du chapitre sont
présentés à la fois une recherche bibliographique assez extensive sur le cal-
cul des autopilotes pour ce type de systèmes et les objectifs pour l’autopilote
non-linéaire. Concernant les autopilotes pour chaque méthode, il est clair que
l’analyse de ce chapitre concerne les trois dernières étapes de la LSDP notam-
ment : la synthèse des correcteurs linéaires, l’interpolation de ces correcteurs et
enfin la construction de la loi de commande globale séquencée.

En ce qui concerne la méthode de mélange de correcteurs, la synthèse linéaire
est faite autour de neuf points de fonctionnement au total (les quatres sommets
de l’enveloppe de vol plus des points additionnels). La méthode de synthèse
choisie est du type sensibilité mixte S/KS, la boucle ouverte comprenant un
intégrateur sur l’erreur de suivi de consigne et le modèle de l’actionneur. Le
modèle standard P (s) obtenu possède une commande (l’angle de braquage com-
mandée δc), trois mesures (l’erreur de suivi de la consigne eδ, l’intégrale de cette
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erreur vδ et la vitesse de tangage qδ), une entrée de perturbation (la référence
ηr) et deux signaux de performance (la dérivée de la commande ζδ̇ et l’erreur de
suivi de consigne ζe, les deux conditionnées avec des gains de pondération). Pour
ce modèle linéaire, un correcteur H∞ dynamique d’ordre cinq (le même que la
boucle ouverte) avec des contraintes de placement des pôles dans des régions
LMI, à été calculé. Ses performances dans le cas linéaire sont très satisfaisantes
mais l’implantation du correcteur non-linéaire séquencé pose un grand nombre
de problèmes.

Le premier problème porte sur la ré-initialisation des correcteurs linéaires
au cours du passage d’une région d’interpolation vers la prochaine. Vu que la
représentation d’état des différents correcteurs et leurs gains statiques ne sont
pas les mêmes durant le passage, il y aura des incompatibilités d’amplitude sur
le signal de commande ; ce souci peut être réglé en utilisant un conditionnement
spécifique des états initiaux des correcteurs. De plus, quand un nouvel ensemble
de correcteurs est introduit, il y aura des transitoires sur la commande. Ce souci
peut être aussi atténué en utilisant une dynamique rapide pour les correcteurs
linéaires, en espérant que ce transitoire disparâıtra assez rapidement ; de plus
cette atténuation devient plus grande si le vecteur de séquencement varie lente-
ment.

Le deuxième problème de cette méthode est qu’afin de règler ces derniers
soucis, le correcteur global séquencé devient plus compliqué car un mécanisme
de supervision est nécessaire pour ré-initialiser les états. De plus, en calcu-
lant des correcteurs linéaires très rapides, on risque d’exciter des modes hautes
fréquences mal modélisés.

En revanche, cette méthode possède quelques avantages comme par exemple
une faible quantité de calculs pour le correcteur non-linéaire et le fait que des
correcteurs linéaires de différentes tailles ou structures peuvent être considérés.

En ce qui concerne la méthode d’interpolation type observateur/retour d’état,
les correcteurs linéaires sont les mêmes que ceux utilisés par la méthode précédente
; cependant la paramétrisation de Youla a été utilisée afin de les exprimer sous
cette forme. L’interpolation est faite sur les matrices de l’observateur et du re-
tour d’état mais aussi sur les matrices de la représentation d’état. Cette méthode
offre de bonnes performances de poursuite pour le scénario utilisé ; pourtant elle
aussi présente des inconvénients assez importants.

Le premier inconvénient est que cette méthode est très gourmande en cal-
culs car toutes les matrices de l’estimateur doivent être interpolées ; ce dernier
point n’est pas évident car la façon de calculer les matrices de la dynamique
du système doit être éclaircie (c.f. Section 5.5.2). Le deuxième inconvénient de
cette méthode porte sur le fait que la répartition des pôles de la boucle fermée
entre les pôles de l’observateur et du correcteur n’est pas unique et elle ne peut
pas être faite automatiquement d’une façon facile, quand il y a par exemple des
pôles complexes conjugués multiples.

En plus des inconvénients de chaque méthode, il y a d’autres soucis con-
cernant ces deux méthodes d’interpolation comme l’ordre élevé des correcteurs
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linéaires considérés, l’absence d’une méthode systématique pour choisir les points
de synthèse ou bien la complexité de l’interpolation. Ces problèmes sont réglés
pour les deux exemples considérés en utilisant la e-LSDP appliquée au chapitre
suivant.

Chapitre 6
Stratégies de Commande Systématiques.

Le dernier chapitre de la thèse détaille une méthodologie innovante, systématique
et performante pour la construction d’un correcteur global non-linéaire. Cette
méthodologie (appelée la e-LSDP) correspond aussi aux trois dernières étapes
de la LBGS, elle utilise la connection de la théorie de la gap-métrique avec la
commande H∞ par loop shaping et elle est appliquée à la fois à la commande
du missile et du véhicule de rentrée.

La première étape est d’augmenter le modèle linéaire du missile ou du véhicule
avec des pré/post-compensateurs afin de régler leurs réponses fréquentielles. Ceci
est fait pour le missile en utilisant un correcteur P/PI sur ses boucles interne et
externe autour de neuf points de fonctionnement, et pour le véhicule en utilisant
un correcteur PID filtré autour de cinq points de fonctionnement. Les perfor-
mances atteintes dans le cas linéaire sont inférieures à celles obtenues avec les
correcteurs H∞ du chapitre précédent mais elles restent tout à fait satisfaisantes
vu l’ordre très faible des correcteurs utilisés. Cependant, un correcteur séquencé
utilisant seulement ces correcteurs type-PID n’est pas suffisamment performant.

Pour cette raison, un algorithme de choix des points de fonctionnement ad-
ditionnels est mis en œuvre en utilisant la théorie de la gap-métrique. Plus
précisément, en tenant compte de la connexion entre la marge de robustesse ǫ
atteinte par un correcteur robuste H∞ pour un système linéaire et la distance δg

entre ce système linéaire et un système perturbé, on peut trouver un ensemble
de points qui captent au mieux la variation de la dynamique du système non-
linéaire à paramètres variants. Les correcteurs robustes utilisés sont de type
retour de sortie statique et possèdent une complexité minimale par rapport à
un correcteur d’ordre plein. Pour le cas du missile il y a deux gains robustes
pour chaque boucle de commande, pour un total de douze points considérés dans
l’enveloppe de vol. Pour le cas du véhicule il y a trois gains pour chaque châıne
du correcteur PID calculés pour six points le long d’une ligne d’angle d’incidence
constant.

Tous les gains sont interpolés en utilisant une combinaison linéaire dans des
régions d’interpolation pour les deux systèmes, en minimisant ainsi la complexité
d’implantation. Le correcteur non-linéaire est obtenu en combinant l’action en
boucle ouverte, les correcteurs séquencés et quelques filtres du type ‘feedforward’
afin de mieux calibrer la réponse du système.

La stratégie de commande proposée pour les scénarios choisis est testée sur
le modèle non-linéaire du véhicule et du missile et les résultats sont très satis-
faisants. De plus, des analyses de type Monte Carlo, linéaires à temps figé, etc...
sont faites et la robustesse de cette méthode est ainsi démontrée.
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Conclusion

Cette thèse a montré, en s’appuyant sur quelques cas d’application concrets,
qu’une structure très simple de correcteurs linéaires pouvait amener à un cor-
recteur global séquencé de très haute performance, sous l’hypothèse que les cor-
recteurs locaux soient calculés autour de points de synthèse choisis d’une façon
intelligente.

Dans ce but, une méthode innovante appelée e-LSDP à été conçue et testée
sur deux exemples d’application différents. Cette méthode est basée sur une
connexion spécifique entre la théorie de la gap-métrique et de la commande H∞

par loop shaping permettant de prendre en compte la variation de la dynamique
du système non-linéaire.

Ce travail peut être étendu en considérant d’autres types d ’algorithmes qui
pourraient prendre en compte la variation de cette dynamique d’une façon plus
intelligente ou aussi considérer d’autres structures pour les correcteurs robustes.
De plus, cette méthode pourrait être testée afin d’affronter le problème 3-axes
pour le missile comme pour le véhicule, utiliser des modèles non-linéaires qui
prennent en compte des modes souples, etc...



Foreword

Many industrial systems are characterized by fast variations on their parameters
characterizing their (in most cases) nonlinear dynamics. This is particularly the
case of aeronautical systems such as missiles, aircrafts, launchers etc. whose
dynamics depend on a number of parameters such as altitude, speed and angle
of attack. Designing a controller for such systems (consider for example a mis-
sile autopilot that realizes desired vertical acceleration commands issued from
a guidance loop) is not an easy task, since these parameter variations need to
be taken into account in some way if the designer desires to achieve highly per-
forming and also robust control laws.

A widely recognized and highly successful control strategy for these nonlin-
ear, parameter-dependent systems is gain scheduling control and more specifi-
cally linearization-based gain scheduling control or ‘divide and conquer’4.

This method uses a set of linear time-invariant controllers, with each mem-
ber of the set being designed for a local linear model of the nonlinear system
around an equilibrium-operating point. An equilibrium point is parameterized
by the so-called scheduling vector including some (or all) of the nonlinear sys-
tem’s time-varying parameters. These parameters take values inside a speci-
fied range, thus forming the system’s operating domain (or flight envelope for
aeronautical systems). The aforementioned set of linear controllers is finally
combined/interpolated in some way, according to the variation of these time-
varying parameters (or scheduling vector), in order to compute a control law
that continuously adapts itself to these changing dynamics, thus ensuring sta-
bility, performance and robustness for the whole system’s operating domain.

The advantages of this method are numerous: for example, the wealth of LTI
modern robust/optimal control theory (such as H2, H∞) and their convex LMI
formulations for the design of the local controllers may be used, thus providing
all these nice features such as robustness to parametric variations, noise atten-
uation, control effort reduction etc. This theory provides controllers that are
highly preferred and have prevailed, as far as industrial real-time implementa-
tion is concerned, over other known linear (e.g. predictive control, fuzzy/neural
control etc.) or nonlinear (backstepping, feedback linearization etc.) control
methods that result being either too complex to compute or ad-hoc.

4Other important alternatives are LPV, velocity or neural/fuzzy-based scheduling control.
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Concerning implementation, gain scheduling remains always the simplest
possible adaptive control strategy, since in most cases, it only needs a limited
memory space in order to stock the linear controllers designed off-line and some
relatively small computational power so as to interpolate them and thus calcu-
late the final control signal.

The linearization-based gain scheduling control, as compared mainly to LPV
control, presents also a number of advantages: it is less conservative since a
solution to the controller design-interpolation problem may be (almost always)
found for each operating point separately and not as a whole as in the LPV case
and it is also more intuitive since the designer’s experience with the system in
various operating points may be better exploited; thus the controller tuning may
be also performed more easily using classical control theory concepts (e.g. H∞

loop shaping control).
Except for all these advantages, gain scheduling control (and as a result its

linearization-based version explored in this work) presents still a number of in-
conveniences despite the intense research effort on the domain, mainly during
the last twenty years. Some of these inconveniences (being treated in this thesis)
are the following and are closely connected to each other:

Synthesis point selection: The number of equilibrium-operating points consid-
ered for the linear controller synthesis is very important since too many
points may result in significant memory storing space demands, whereas
too few may result in lack of performance/robustness since at an interme-
diate operating point, the interpolated controller may be too far from one
designed specifically for this point. The current bibliography really lacks of
systematic methods, that can for example capture the system’s nonlinear
dynamics variation as a function of the changing operating conditions, in
order to choose an appropriate number of synthesis points.

Linear controller order/structure: The linear controllers’ order and/or struc-
ture is another significant issue of this method since a higher order con-
troller may be of high performance but may also need more space to be
stored and more computational power to be interpolated than a lower or-
der one (e.g. say a PID one). As a result, sometimes it would be preferable
to design lower-order controllers at carefully chosen operating points, than
for example a single full-order controller at the center or the corners only
of the flight envelope.

Interpolation method: The interpolation method chosen plays a vital role in
gain-scheduled control schemes since many problems may be caused by a
not-carefully selected interpolation strategy. Some strategies may for ex-
ample result in control signal discontinuities or transients during schedul-
ing region transitions or in high computational power demands from the
on-board plant computer.
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In the context of this thesis these inconveniences have been treated in an
original manner using interpolated static, output feedback H∞ controllers in
addition to interpolated fixed order PID control structures and an operating
point selection algorithm, being the result of the connection between H∞ loop
shaping control theory and a robust control theory tool called the gap metric.
The strategy proposed is an extension to the standard McFarlane&Glover loop
shaping design procedure (LSDP) and has thus been named the e-LSPD5.

This work has been the collaboration of three parties: the automatic control
department of SUPELEC at Gif-sur-Yvette, the Astrium Space Transportation
(EADS) and MBDA research teams and finally the LSS/CNRS (Laboratoire
des Signaux et Systèmes/Centre National de la Recherche Scientifique) nonlin-
ear systems group. The collaboration of SUPELEC’s robust control team with
the EADS and MBDA research teams has a long tradition; this thesis continues
exactly this tradition. It starts in the early 90’s with the development of H∞

design methods to control missiles around fixed operating points (1993-1996,
see also [44]) and then to extend these approaches to a wider domain using an
analytical model (1996-1999, see also [61]). Following these results, works have
been performed to design fixed-order controllers on a wide domain while taking
into account multi-rate sampling (1999-2002, see also [41]). Meanwhile a similar
collaboration including also LSS teams was conducted to deal with robustness
issues in a nonlinear context. It began by assessing the incremental norm used
for robustness issues, which leads to results about stability and robustness of
scheduled controllers (1991-1995, see also [46]), and by studying how to take
into account robustness requirements when using nonlinear control design based
on feedback linearization-like techniques (1996-1999, see also [32]). After these
studies, the next step was an assessment of other techniques for robustness anal-
ysis such as methods based on IQC’s (2000-2003, see also [2]).

The thesis started in 2005 with the scope of exploring/developing tools in
order to facilitate/systematize some issues of the gain scheduling practice, such
as the ones in the previous page. The first six months were devoted to an exten-
sive bibliographic research on existing gain scheduling control strategies in order
to unveil their major inconveniences (see Chapters 1, 2). After this phase, three
promising techniques were chosen (controller blending, observer/state feedback
and gain interpolation) and during the following twelve months the first two
were explored on a realistic benchmark example (R’m’B). The results were not
judged totally sufficient (see Chapter 5) and thus the novel e-LSDP was devel-
oped using the third proposed technique (gain interpolation) and tested also on
the same benchmark example (see Chapter 6), during the six months to follow.
The same technique was validated on a second benchmark example (ARV) dur-
ing the first six months of the thesis’ last year (see also Chapter 6). Meanwhile,
some additional projects in the same context, performed by final year SUPELEC
undergraduate students were supervised (see Publication & Project list).

5The letter ‘e’ stands for ‘extended’.
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The thesis report is divided into two main parts with three chapters each:
The first part presents the extensive bibliographical survey on the subject

of gain scheduling with some additional references on system modeling and H∞

control tools, thus giving the theoretical background needed for the work that
follows in the second part.

The second part details the control strategies proposed in this work and
the corresponding application examples tested; the first one being the famous
Reichert missile benchmark model (or R’m’B) and the second an atmosphere
re-entry vehicle model (or ARV ) provided by Astrium Space Transportation .

The first chapter of this report starts with an introduction to adaptive con-
trol schemes such as direct & indirect adaptive control and gain scheduling. The
first part of the chapter deals with system modeling issues such as equilibrium
and linearization notions, whereas the second part presents an extensive review
of linearization-based gain scheduling (LBGS) (or divide-and-conquer) and rel-
ative issues such as interpolation methods, stability-preserving approaches etc.

The second chapter presents a brief overview of alternative to the LBGS
method gain scheduling strategies such as LPV control, velocity-based, neural
and fuzzy-based implementations. Given that these methods were not being
considered in this work, this chapter is disconnected from the rest and is pri-
marily given for the sake of completeness.

The third chapter completes the theoretical background and details some
control tools used in the context of linearization-based gain scheduling such as
H∞ control in LMI regions, estimator-controller forms of compensators and
H∞ loop shaping control. The latter is especially interesting and is presented in
more detail, along with some elements of the gap metric theory and the McFar-
lane&Glover loop shaping design procedure (LSDP), since they play a key role
in the control strategies proposed in this work - mainly in Chapter 6.

The fourth chapter details the first two steps of the linearization-based gain
scheduling method, namely the trim analysis and plant linearization steps, used
in this work for both benchmark systems. The mathematical models with all
necessary constants and specifications are also given.

The fifth chapter presents the gain-scheduling control strategies, namely the
controller blending and observer/state feedback interpolation methods, tested
on the Reichert missile benchmark model during the first year of the thesis.
Their advantages (but mostly their disadvantages) are stressed out and the dis-
cussion leads to the methods proposed in the final chapter.

The sixth chapter introduces a novel gain-scheduling procedure proposed in
this work: the e-LSDP, correspond to the last three steps of the linearization-
based gain scheduling method, namely the controller synthesis, controller in-
terpolation and controller implementation & validation steps. The proposed
method is detailed and validated on both benchmarks examples considered in a
parallel manner in the two parts of this chapter.



Foreword xxv

A block diagram of the thesis structure is illustrated in Fig. 1; the shaded
boxes corresponding to the application/validation chapters, whereas the un-
shaded to the theoretical/bibliographic ones6. The material presented in Chap-
ter 1, being the most used chapter of this work, is extensively used in Chapters
4, 5, 6 whereas Chapters 5, 6 use all the material of Chapters 3 and 4. Finally
Chapter 2 is somewhat independent and comes as a natural follow-up of Chapter
1.
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Chapter 5 

Chapter 6 

Chapter 4 Chapter 3 

Chapter 2 

 

Figure 1: Thesis structure.

6The arrows show the connections between chapters; dashed lines show loose connection
whereas thick lines stronger ones.
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Chapter 1

Classic Gain Scheduling

Overview

Gain scheduling has been one of the dominant control
strategies for the design of high performance controllers
in the industry for the last fifty years at least. The gain
scheduling practice can be roughly divided into two ba-
sic categories: linearization-based (or classic) and LPV
(or modern) gain scheduling. In this chapter the first
category is detailed whereas in Chapter 2 some clas-
sic results on the second category are mentioned. The
classic method can be also divided into two subcate-
gories: approaches that do offer some stability guar-
anties for the gain-scheduled system and others that do
not. This chapter begins with a general introduction
to the adaptive control framework (encompassing also
gain scheduling) and then proceeds to a detailed cita-
tion of all classic gain scheduling methods existing in
the bibliography. At the end of the chapter some addi-
tional tools used in the gain scheduling context are also
detailed.
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1.1 Adaptive Control Schemes

Adaptive control has risen due to the need of changing/updating afeedback con- Introduction

troller K in order to conform to the changing parameters of a process S. As
a simple example consider the dynamics of an aircraft: this type of systems
operate in different altitudes and with different speeds and thus due to several
physical reasons their dynamics change drastically as a function of time. A ro-
bust controller designed to cope with the different operating conditions cannot
always guarantee, or at least offer some good indications, that the aircraft will
behave in a good way for all altitudes and speeds of its flight envelope.

To solve this problem an adaptive control system may be used in order to
update the controller parameters for changing operating conditions. Three basic
types of adaptive control systems exist (see Figure 1.1):

Indirect Adaptive Control (IAC): In this control scheme (see Fig. 1.1a) the Indirect

Adaptive

Control
controller parameters (or gains) ϑc are updated in real-time by an auto-
tuner. This auto-tuner is based on an identified process model Ŝ provided
by an estimator that uses I/O plant information. This auto-tuner then
calculates ϑc as if Ŝ = S. The control scheme has two feedback loops:
an internal loop that is fast enough to control the plant and an external
one that is slower and detects any potential changes in the system’s model
through an estimator. An example of an IAC scheme is adaptive pole
placement control: the poles of the closed loop plant are assigned in real-
time to a specified location on the complex plane based on the estimate of
S and on a given controller structure (e.g. PID).

Direct Adaptive Control (DAC): In this control scheme the controller parame- Direct

Adaptive

Control
ters ϑc are estimated directly and the use of a plant parameter estimator
is not needed. Take for example a frequently used topology of DAC: the
direct Model Reference Adaptive Control (d-MRAC) configuration of Fig.
1.1b. The auto-tuner here computes the difference ed between the outputs
of the real plant S and of a target plant model S̄ and tries to find a value
for ϑc so that this difference goes to zero. A way to do that is the famous
MIT rule [15, 66].

Gain Scheduling Control (GSC): In this control scheme (see Fig. 1.1c) no Gain

Scheduling

Control
complex algorithm is demanded for updating the controller parameters
but only a parameter (or scheduling) vector ̺ (that can sufficiently cap-
ture the plant’s change of dynamics) and an interpolation method. The
controller parameters ϑc are then updated by combining/interpolating dif-
ferent controllers Ki designed for the plant S, for some family of critical
values of ̺1. The simplest form of GSC is controller switching where no
smooth controller parameter update is performed and a single controller
is used, being valid for a pre-defined operating region over ̺.

1For the aircraft example considered before, this vector ̺ could be the Mach and the altitude.
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In this monograph the latter method will be considered for the control of LPV vs.

LBGSgeneric nonlinear parameter/time dependent systems. The gain scheduling con-
trol practice can be further divided into two major categories: the linearization-
based and LPV/q-LPV gain scheduling procedures. The major distinction be-
tween these two has to do on the one hand with the approach taken in order to
obtain the final nonlinear gain-scheduled controller, and on the other hand on
the way that the system nonlinearity is treated. These two methods sometimes
overlap and there exist a considerable disagreement over the scientific commu-
nity on which one is the best suited for a particular problem.

The linearization-based gain scheduling procedure (LBGS)2 is mostly based
on linearized plants of the initial nonlinear system, calculates a number of con-
trollers of possibly, not the same structure, and finally interpolates them in order
to obtain the gain-scheduled controller. The existence of a controller is (almost)
always guaranteed but stability issues arise due to the ad-hoc linearization-
interpolation. There exist however some notable exceptions that they do consider
stability for the linearized scheduled system, but obviously not on the initial non-
linear one. In this chapter both types of methods will be discussed and some
key results as well as references to real world applications will be given.

The LPV procedure tries to camouflage the nonlinear dynamics and obtain
thus a linear system with time varying state space matrices. These time varying
matrices can be treated either as time varying uncertainty thus leading to the
so-called LFT formulation, or as parameter-dependent matrices that may form
convex hyper-cubes for frozen values of the parameter leading to the Polytopic
formulation. In both cases there exist stability guarantees for the overall sched-
uled system. However, the fact that is not clear enough (see [88], pp. 1012) is
for which system the stability guarantees are offered3.

Briefly it can be said that the first class of methods offers a systematic and
unconservative design methodology that provides always a controller whereas the
second offers a more theoretically sound, yet sometimes conservative in terms of
system operation & controller existence, procedure that guarantees global sta-
bility of the gain-scheduled plant. In this work the first class of methods will be
used and several of its problems addressed.

In this chapter the first class of methods (classic) is extensively detailed Contents

whereas in the next one the second class ones (modern) are briefly reviewed.
The following section (Section 1.2) considers some general results in system
modeling whereas the next one (Section 1.3.1) details the LBGS following the
famous five (2+3) step procedure (see [88]).

Finally, subsections 1.3.2, 1.3.3 consider both the ad-hoc and stability pre-
serving methods existing in the bibliography whereas Section 1.4 presents some
related to the gain scheduling practice results concerning interpolation and op-
erating domain triangulation.

2Also called classic or divide and conquer method (see [88], pp. 1005-1008).
3For more details see Chapter 2 being also based on the analysis of the next section.
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1.2 System Modeling

In this section general modeling issues in the context of gain scheduling are re-
viewed. Some system equilibrium notions are initially introduced before passing
to a citation of various ways to model a physical process. Finally, some material
on Jacobian linearization is covered.

1.2.1 Equilibrium Notions

Consider a generic non-autonomous4 forced nonlinear dynamic system S whoseSystem

modeling state and output dynamics are described by a number of coupled first-order
differential equations (see Fig. 1.2):

S :
ẋ(t) = f [x(t), u(t), t]

y(t) = h[x(t), u(t), t].
(1.1)

The vectors x, u, y represent the states, inputs and outputs of the system
with x ∈ Rn, u ∈ Rnu , y ∈ Rny respectively5. The vector-valued functions f ,h

where f :=
[

f1(x, u), . . . , fn(x, u)
]T

and h :=
[

h1(x, u), . . . , hny(x, u)
]T

perform
the following nonlinear mappings:

f : R
n ×R

nu ×R 7→ R
n (1.2)

h : R
n ×R

nu ×R 7→ R
ny . (1.3)

The nonlinear system S in fact is a mathematical representation of a physical
process and thus for S to provide a valid reproduction of its behavior, several
additional hypotheses need to be made. These hypotheses are mostly related
to the existence and uniqueness of a solution x

(

t; t0, x(t0)
)

given a set of initial
state conditions x(t0) and the differentiability of the functions f ,h with respect
to an equilibrium point or trajectory (see [75], Ch. 3 for more details).

The analysis concerning equilibrium notions in the next two subsections con-
siders both autonomous nonlinear and linear systems and their non-autonomous
extensions. Another extension is also given for parameter-varying systems used
mostly to model processes controlled by gain-scheduled control schemes.
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Figure 1.2: System block diagram.

4Time-invariant /autonomous are equivalent as are time-varying/non-autonomous.
5Dependence on t will be dropped when needed and a derivative is taken with respect to t.
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1.2.1.1 Autonomous Systems

To introduce the notion of an equilibrium point it would be simpler to consider Unforced

casefirst an unforced nonlinear autonomous system Sa whose state dynamics are
described by:

Sa : ẋ = f(x). (1.4)

An equilibrium state xeq for this system Sa is defined as the point in the state
space from which when the state starts it never leaves, for every t ≥ t0, t0 > 0.
The condition that defines such a state is written as:

xeq :
dx(t)

dt

∣

∣

∣

∣

eq

= ẋeq
∆
= 0. (1.5)

The above condition means briefly that x
(

t; t0, x(t0)
)

= x(t0) = xeq and as Equilibrium

conditiona consequence from Eqs. 1.4, 1.5:

f(xeq)
∆
= 0. (1.6)

Now in order to find the equilibrium points of such a system, a collection
of n coupled algebraic equations (given by Eq. 1.6) should be solved. These
equations may yield a finite or even an infinite number of equilibrium points,
depending on their structure. When studying the stability of the system Sa,
using for example the Lyapunov’s stability theory, it may be useful to study the
stability of the state vector at the origin. This can be done by translating all its
equilibrium points via a change of variables; indeed, suppose a xeq 6= 0 and the
change of variables z = x − xeq. Then:

ż = ẋ − ẋeq

= f(x) − 0

= f(z + xeq)
∆
= g(z).

(1.7)

The function g(·) does not depend explicitly on time and thus the unforced
nonlinear equivalent system ż = g(z) is also autonomous with an equilibrium
point at the origin z = 0.

Consider now the case where the autonomous nonlinear system is forced, i.e. Forced

caseit’s dynamics are described by:

Sa,f : ẋ = f(x, u). (1.8)

Then non-zero equilibrium states xeq could be now imposed by using a con- Equilibrium

manifoldstant corresponding equilibrium control input vector ueq = u(xeq), that will
maintain the state to its equilibrium value for all t ≥ t0, t > 0. The system’s
equilibrium manifold Ea,f is defined as the set of all the admissible states/inputs
for which the right-hand side of Eq. 1.8 may go to zero:

Ea,f :
{

(xeq, ueq)|f(xeq, ueq) = 0
}

. (1.9)
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To the equilibrium manifold Ea,f , corresponds also an equilibrium value yeqOutput

condition for the output of the nonlinear autonomous system6:

yeq = h(xeq, ueq). (1.10)

Once again, the equilibrium points of this forced system Sa,f may be trans-
lated to the origin for an unforced equivalent system. To illustrate this, consider
the change of variables z = x − xeq, v = u − ueq. Then:

ż = ẋ − ẋeq

= f(x, u) − 0

= f(z + xeq, v + ueq)
∆
= g(z, v).

(1.11)

The right hand side of Eq. 1.10 does not depend explicitly on time and thus
the system described by the transformed equation g(z, v) admits an equilibrium
point at its origin since by definition f(xeq, ueq) = 0. So because of the fact that
in this case v = 0, the transformed plant is now unforced and once again the
analysis ends up to the study of a system like the one in Eq. 1.7 around z = 0.

In the case of a linear time-invariant (LTI) dynamical system having the fol-LTI case

lowing state space representation (with A ∈ Rn×n,B ∈ Rn×nu ,C ∈ Rny×n,D ∈
Rny×nu):

SLTI :
ẋ = Ax + Bu

y = Cx + Du
(1.12)

the things are simple; the origin is always an equilibrium state for the unforced
system whereas for the forced one, under certain controllability conditions, one
may be able to maintain the state to a given equilibrium value xeq using a
suitable equilibrium (or open loop) control ueq that satisfies:

Axeq + Bueq = 0 (1.13)

with a corresponding equilibrium output:

yeq = Cxeq + Dueq. (1.14)

Summarizing, the equilibrium points of any linear or nonlinear, forced or
unforced autonomous system may be translated to the origin with the resulting
system being also autonomous. However, as it will be shown in the next section,
the resulting equivalent system g(·) for an equilibrium trajectory xeq(t) that is
a solution to the initial autonomous nonlinear system Sa and satisfying:

ẋeq(t) = f [xeq(t)] (1.15)

will be non-autonomous even when the initial system is.

6For the autonomous unforced system the output equilibrium value is given by yeq = h(xeq).
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1.2.1.2 Non-autonomous Systems

The state dynamics of the unforced nonlinear non-autonomous system Sna are: Unforced

case

Sna : ẋ = f(x, t). (1.16)

This system has an equilibrium point at t = 0, if f(0, t) = 0,∀t ≥ 0 (any
equilibrium point at t = 0 is also an equilibrium point at all times; see for
example [142], pp. 5). In addition, any constant non-zero equilibrium point can
be translated to the origin (for t = 0) with the same procedure as in Section
1.2.1.1, both for the forced and unforced cases. In fact this may be done not
only for a constant equilibrium point but also on a nonzero system equilibrium
trajectory xeq(t). Indeed, consider the change of variables z = z(t) = x−xeq(t);
then the time derivative of z for Sna will be:

ż = ẋ − ẋeq(t)

= f(x, t) − ẋeq(t)

= f [z + xeq(t), t] − ẋeq(t)
∆
= g(z, t).

(1.17)

Thus the equivalent system described by g(·) has an equilibrium at the origin
for t = 0 like the one in Eq. 1.16. From the above analysis it is also evident that
even if the initial state dynamics are autonomous, the equivalent system g(·) is
non-autonomous in the case of an equilibrium trajectory since the transformed
variable z depends also explicitly on time due to xeq(t).

The equilibrium analysis for the forced non-autonomous system S of Eq. 1.1 Forced

caseis related to its control as in the analysis of the previous section concerning this
case (see Eq. 1.11). The control to maintain the system S to a given equilibrium
state xeq is time-varying and is composed by a steady-state value ueq (translating
the state to its steady-state value) plus a time-varying one uδ that regulates the
time-varying system around the origin (see [75], pp. 469-471). The analysis for
the linear time-varying (LTV) version (see Eq. 1.18) is also similar.

SLTV :
ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u
(1.18)
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Figure 1.3: LTV system block diagram.
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1.2.1.3 Parameter-dependent Systems

A certain class of systems is characterized by a dependence of their dynamics
on a time-varying vector of parameters ̺ = ̺(t). This parameter vector is often
called the scheduling vector and it is assumed that it can be measured in real
time for gain-scheduled systems.

These systems are also called nonlinear parameter-dependent systems (NLPD)NLPD

system and their dynamics are given by:

Spd :
ẋ = f(x, u, ̺)

y = h(x, u, ̺).
(1.19)

Leaving other modeling details for the next section, such a system repre-Equilibrium

manifold sentation has a meaning if an equilibrium manifold Epd is defined and smoothly
parameterized as a function of the scheduling vector ̺:

Epd :
{

[

x(̺eq), u(̺eq)
]∣

∣f
[

x(̺eq), u(̺eq), ̺eq

]

= 0
}

. (1.20)

To illustrate this consider for example the trivial case of a first order SISO
system with a single time-varying parameter. The equilibrium point locus may
look like the one visualized in Fig. 1.4; an equilibrium state xeq and a cor-
responding equilibrium input ueq are assigned for any admissible value of the
scheduling parameter ̺.

 

x  

u  

��
eq 

equ  

eqx  

 
Figure 1.4: Equilibrium point locus.

For each value of the scheduling vector ̺eq the corresponding equilibriumOutput

manifold output may also be defined as:

yeq = h
[

x(̺eq), u(̺eq), ̺eq

]

. (1.21)

Technical Note. The computation of the equilibrium manifold of a parameter-
dependent nonlinear system is by no means a trivial problem and is mainly
done either by solving directly the algebraic equation f(x, u, ̺) = 0 for ev-
ery admissible ̺ (if possible), or by numerical iterative optimization tech-
niques (see for example the function ‘findop’ of the MATLAB R© Simulink
Control Design toolbox).
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1.2.2 System Descriptions

In this section the discussion will involve around various types of systems in-
volved in gain-scheduled control schemes. The discussion necessitates the anal-
ysis of Section 1.2.1 on equilibrium points since for the scope of gain-scheduled
control a process is often studied around such points. Details on linearization
are given in the next subsection.

A physical process is usually modeled using a collection of nonlinear first NLPD

systemorder differential equations representing its state dynamics along with a second
set of nonlinear algebraic equations describing its output dynamics. These mod-
eling equations are often dependent to a number of external or internal variables
that are regarded as parameters of the process. This parameter vector is called
the scheduling vector ̺ = ̺(t) and gives a time-varying sense to such systems.
This modeling results to the following equations for this nonlinear parameter-
dependent system (or NLPD):7

Spd :
ẋ = f(x, u, ̺)

y = h(x, u, ̺).
(1.22)

Besides the usual properties for the state x(t), input u(t), output y(t) and
for the functions f ,h discussed in the beginning of Section 1.2.1, additional
hypotheses are made for the scheduling vector ̺. Specifically it is assumed that
̺ ∈ Γ, where Γ is a connected compact set with Γ ⊂ Rn̺ .

Remark. A set is said to be connected if it is impossible to express it as the Operating

domain

discussion
union of two or more disjoint open subsets. For example the set [0, 1] is
connected whereas the union of the sets [0, 0.5), (0.5, 1] is disconnected. In
fact any convex set is connected. Moreover a set is said to be compact if
it is closed and bounded. For example the set [0, 1] is closed but the sets
(0, 1), (0, 1] are not closed. In addition all these sets are bounded since
they have finite sizes (see [19] for more details on set theory).
The above assumptions on ̺ are quite logical since in physical systems most
variables take values on closed, finite and sometimes convex intervals. For
example the Mach number of a missile takes values between a minimum
and a maximum value; the same holds for the control inputs of a system
which are bounded or a varying resistor in an electrical network.

An extended method to model a parameter-dependent system used mainly Alternative

formulationfor output tracking adopts a linear robust control-type notation (see [79, 80, 128,
129, 131, 133] or even [75], pp. 474-475):

S∗
pd :

ẋ = f(x, u, w)

ζ = hζ(x, u, w)

y = hy(x, u, w).

(1.23)

7Note that the explicit dependence on time is omitted but is assumed because ̺ = ̺(t).
Many authors prefer to omit also the explicit dependence on the scheduling vector.
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In this notation the signals w(t) are external perturbations whereas ζ(t) are
errors to be minimized (or signals to be treated) and hζ ,hy are the corresponding
nonlinear algebraic functions with suitable dimensions. The scheduling vector ̺
may or may not appear directly8 but it is always assumed to exist and defines a
smooth equilibrium manifold as detailed in Section 1.2.1.3.

Return now to the initial parameter-dependent system of Eq. 1.22. Per-q -LPV

system forming state space transformations it is sometimes possible to transform the
state/output dynamics so that an equivalent quasi-linear parameter-varying sys-
tem Sq−LPV may appear (with σ being now the measured parameter vector):

Sq−LPV :
ẋ = A(x, u, σ)x + B(x, u, σ)u

y = C(x, u, σ)x + D(x, u, σ)u
(1.24)

A similar modeling in q-LPV form is when the state x is divided into two
parts: the part that is regarded as a parameter x̺ and the part that keeps its
state variable notion x⋆. Then the final scheduling variable ̺ is consisted of the
parameter-varying variable σ and of x⋆ (see [114], §3.2, pp. 1407).

The (nonlinear) dependence of the system matrices on the state, input &LPV

system measured parameter may also be regarded as a general time-varying parameter
vector ̺ = ̺(x, u, σ). The trajectories of the scheduling vector ̺ are considered
to be measured in real time. In this case a linear parameter-varying system is
obtained:

SLPV :
ẋ = A(̺)x + B(̺)u

y = C(̺)x + D(̺)u.
(1.25)

A delicate issue arises here however: if the scheduling vector is considered to
be a function of the state also, then the gain-scheduled controller is assumed to
be a state feedback one 9. As a result, it is preferable to use the output rather
than the state to parameterize the system. Hence, the scheduling vector and the
LPV dynamics are dependent directly on the output, the parameter vector σ,
and possibly on the input (see [114], §3.2, pp. 1408-09, [120]).

The solutions of the nonlinear system (and hence of the q-LPV one) are alsoDiscussion

on LPV

systems
solutions of the LPV formulation in Eq. 1.25 and thus the former is over-bounded
by the latter (see [88], pp. 1012). This modeling adds some conservativeness but
for gain scheduling control it may taken as a basis for controller design. Both
classic/modern gain scheduling tools consider these types of models (i.e. see the
fundamental work of [13, 18])10 but for the former there exists a major difference:
the LPV models used with classic (or linearization-based) gain scheduling are
only valid close to equilibrium points and do not directly describe the behavior
of the initial parameter-dependent nonlinear system Spd of Eq. 1.22.

8In some cases (see [79, 80]) the scheduling vector appears indirectly but is assumed to be
a nonlinear function of the controller input and of measured external or signals. In other cases
(see [128, 129, 131, 133]) it is considered as a parameter and does not appear directly.

9The same holds for the equilibrium manifold being also a function of the state.
10Modern gain scheduling design tools will be considered in the next chapter.
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More precisely, such linearization-based LPV models are of the form11:

SLPV :
ẋδ = A(̺)xδ + B(̺)uδ

yδ = C(̺)xδ + D(̺)uδ

(1.26)

where:

xδ = x − xeq(̺) (1.27)

uδ = u − ueq(̺) (1.28)

yδ = y − yeq(̺). (1.29)

The distinction between the two LPV models of Eqs. 1.25, 1.26 is now clear:
the first is a ‘superset’ of the initial nonlinear system with x, u, y being its actual
variables whereas the second is a family of linear(ized) systems permitting only
local description (around equilibrium points) of the nonlinear system at best.

A special case of the LPV modeling of Eq. 1.25 is the so-called LFT-based ap- LFT case

proach. This approach treats the LPV model as an LTI one with all time-varying
parameters ̺ being regrouped as (measurable) uncertainties. This approach is
also used in modern gain scheduling methods and it assumes that the plant SLPV

of Eq. 1.25 may be rewritten as the upper LFT (u-LFT) of an LTI standard
plant P(s) (following a robust control-type modeling of the parameter-dependent
plant) and a time-varying block operator Θ, specifying how the scheduling vector
components ̺i enter the LPV plant dynamics:

[

ζ
y

]

= Fu

(

P(s),Θ
)

[

w
u

]

(1.30)

with variables ζ, w being error/external perturbations signals respectively and:

Θ = blockdiag(̺1I̺1 , . . . , ̺1I̺n̺ ) (1.31)

and also:
ζθ = Θwθ (1.32)

representing the I/O’s of the uncertainty block (see Fig. 1.3).
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Figure 1.5: LFT description of an LPV system.

11More details on this formulation and linearization are given are given in the next section.
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Another important class of systems are the linear time-varying (LTV) sys-LTV

systems tems of the form (see Fig. 1.3):

SLTV :
ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u
(1.33)

These types of systems represent either a physical process directly, or (more
often) they stem from the linearization of a nonlinear system (or also parameter-
dependent one) around an equilibrium trajectory xeq(t), ueq(t), yeq(t) (for more
details see the next section). In this case the LTV model is rather written as:

SLTV :
ẋδ = A(t)xδ + B(t)uδ

yδ = C(t)xδ + D(t)uδ

(1.34)

with:

xδ = x − xeq(t) (1.35)

uδ = u − ueq(t) (1.36)

yδ = y − yeq(t). (1.37)

The previous model is valid in the vicinity of the equilibrium trajectory as isLTI

system the following LTI system a valid approximation model of a nonlinear parameter-
dependent system around an equilibrium point.

SLTI :
ẋδ = Axδ + Buδ

yδ = Cxδ + Duδ

(1.38)

The following figure shows an illustration of all the different ways to modelDiscussion

a physical process. Starting from a nonlinear parameter-dependent (NLPD)
model and going inwards to lesser degrees of complexity, one gets the simplest
possible model which is a linear time invariant (LTI) one. An LPV model can
be seen either as a conservative way to approximate a q-LPV or NLPD model
or a more complex way to model a possibly time-varying LTI system. The last
holds also for the LTV one that can be either seen as a linear approximation of
a NLPD system around an equilibrium trajectory or a more ‘realistic’ way to
model an LTI system. Finally, an LTI system is an approximation of a NLPD
model around an equilibrium point.

 

 
Process 

Modeling 
q-LPV 

LPV 

LTV 

LTI 

NLPD 
 

 

Figure 1.6: Process modeling.
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1.2.3 Linearization Notions

In this section some results are presented concerning the approximation of non-
linear parameter-dependent systems by linearizing their dynamics around equi-
librium points or trajectories. This section is also linked to the analysis of the
two previous ones and offers the necessary material for the next section concern-
ing linearization-based gain scheduling.

Suppose a given forced nonlinear parameter-dependent system Spd is de- NLPD

systemscribed by the following first-order differential equations:

Spd :
ẋ = f(x, u, ̺)

y = h(x, u, ̺).
(1.39)

The functions f ,h with f :=
[

f1, f2, . . . , fn

]T
and h :=

[

h1, h2, . . . , hny

]T

perform the following nonlinear mappings on the state x ∈ Rn, input u ∈ Rnu ,
output y ∈ Rny and scheduling vector ̺ ∈ Rn̺ :

f : R
n ×R

nu ×R
n̺ 7→ R

n (1.40)

h : R
n ×R

nu ×R
n̺ 7→ R

ny . (1.41)

As it has been detailed in Section 1.2.1.3, the scheduling vector ̺(t) defines
an equilibrium manifold Epd (see Eq. 1.20). This means that it spans the
equilibrium points of the system inside its domain of operation Γ, with Γ being
a connected compact set (see the corresponding remark in Section 1.2.2).

The trajectory x
(

t; t0, x(t0)
)

of Spd may be approximated via the solution Reformulation

x̃
(

t; t0, x(t0)
)

of a linearized model SLTI in the close vicinity of an equilibrium
point, defined for a constant (or frozen) value of the scheduling vector ̺eq. To
obtain this approximation, reformulate first the dynamics of Eq. 1.39 (see [85],
§2.1, pp. 291) as:

ẋδ = A(̺eq)xδ + B(̺eq)uδ + εf (1.42)

yδ = C(̺eq)xδ + D(̺eq)uδ + εh (1.43)

where the errors xδ, uδ, yδ are defined as: Deviation

quantities

xδ = x − x(̺eq) (1.44)

uδ = u − u(̺eq) (1.45)

yδ = y − y(̺eq). (1.46)

The matrices A,B,C,D are obtained by linearization (or first-order Taylor
expansion) of the functions f ,h around the equilibrium point ̺eq

12 and having
assumed that they have the appropriate differentiability properties.

12Even though the dependence of the matrices is shown to be only on ̺eq (see Eqs. 1.42,
1.43), it is assumed that there exist also a dependence on xeq = x(̺eq), ueq = u(̺eq). However
it is omitted for notational simplicity.
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These matrices are computed as:System

matrix

computation A(̺eq) = ∇xf
∣

∣

̺eq
(1.47)

B(̺eq) = ∇uf
∣

∣

̺eq
(1.48)

C(̺eq) = ∇xh
∣

∣

̺eq
(1.49)

D(̺eq) = ∇uh
∣

∣

̺eq
(1.50)

where:

∇xf =















∂f1

x1
. . .

∂f1

xn
...

. . .
...

∂fn

x1
. . .

∂fn

xn















(1.51)

∇uf =















∂f1

u1
. . .

∂f1

unu

...
. . .

...
∂fn

u1
. . .

∂fn

unu















(1.52)

∇xh =















∂h1

x1
. . .

∂h1

xn
...

. . .
...

∂hny

x1
. . .

∂hny

xn















(1.53)

∇uh =















∂h1

u1
. . .

∂h1

unu

...
. . .

...
∂hny

u1
. . .

∂hny

unu

.















(1.54)

The quantities εf , εh are in fact the higher order terms (H.O.T.) in the TaylorH.O.T.

series expansion of Eqs. 1.42, 1.43 and may be written as:

εf = f(x, u, ̺) − f(xeq, ueq, ̺eq) − A(̺eq)xδ − B(̺eq)uδ (1.55)

εh = h(x, u, ̺) − h(xeq, ueq, ̺eq) − C(̺eq)xδ − D(̺eq)uδ. (1.56)

The dynamics of the initial nonlinear parameter-dependent system may nowLinearized

system be approximated by the following LTI system by truncating the higher-order
terms εf , εh:

SLTI :
˙̃xδ = A(̺eq)x̃δ + B(̺eq)uδ

yδ = C(̺eq)x̃δ + D(̺eq)uδ.
(1.57)
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A solution x
(

t; t0, x(t0)
)

to the nonlinear system Spd with x(t0) being ‘close
enough’ to xeq may now be written as:

x
(

t; t0, x(t0)
)

≃ xeq + x̃δ(t; t0, 0) (1.58)

or xδ ≃ x̃δ, with xδ = x−xeq
13. The question that rises now is to what extent the

approximation x̃δ remains close to xδ. The answer to this important question
is that the peak absolute difference between the two is bounded provided that
the LTI system SLTI is stable (i.e. the eigenvalues of A have negative real parts)
and the excitation uδ is sufficiently small (see [31], Ch. 5, §9 or [88], §2.1).

The same results hold when an approximation of the nonlinear system about Further

resultsan equilibrium trajectory xeq(t) is needed for some constant value of the schedul-
ing vector ̺. However this time, the state space matrices of the approximate
model are time-varying and as a result the resulting system is LTV (see also the
discussion in Section 1.2.2):

SLTV :
˙̃xδ = A(̺eq, t)x̃δ + B(̺eq, t)uδ

yδ = C(̺eq, t)x̃δ + D(̺eq, t)uδ

(1.59)

with:

x̃δ ≃ x − xeq(t) (1.60)

uδ ≃ u − ueq(t) (1.61)

ỹδ ≃ y − yeq(t). (1.62)

In the gain scheduling context however, the designer is interested to approx-
imate the behavior of a nonlinear parameter-dependent system for a family of
equilibrium points rather than a single equilibrium point. In this context, the
approximation results to an LPV system, being a very different object from a
nonlinear system disguised in LPV form via state transformations (see discussion
of the previous section), parameterized by the scheduling variable ̺ as:

SLPV :
˙̃xδ = A(̺)x̃δ + B(̺)uδ

yδ = C(̺)x̃δ + D(̺)uδ.
(1.63)

with:

x̃δ = x − x(̺) (1.64)

uδ = u − u(̺) (1.65)

ỹδ = y − y(̺). (1.66)

For any frozen value ̺eq ∈ Γ of the scheduling vector, the LTV plant becomes
an LTI and describes the dynamics of the nonlinear parameter-dependent system
locally around the corresponding equilibrium point14.

13Dependence on time and initial conditions are omitted.
14With a small abuse in notation, the approximated state is almost always noted as xδ instead

of x̃δ to underline our self-satisfaction in the case that x̃δ 7→ xδ.
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Technical Note: As a technical note concerning Section 1.2.3, the extensive
computational capabilities of commercial software for linearization should
be outlined. In MATLAB R© Simulink Control Design Toolbox for exam-
ple there exists a full suite of specialized functions (linearize, linmod)
that permit linearization of a nonlinear model around user-specified equi-
librium points. This may be done for any portions of the nonlinear model
by specifying input/output points in open or closed loop operation. This
linearization can also be performed in a frozen-time context during a sys-
tem simulation, providing thus the opportunity to analyze the stability of
a gain-scheduled control system for a specific trajectory of the scheduling
vector.
Linearizing a nonlinear model is not of course a trivial procedure and the
algorithms used are either symbolic (block-by block analytic linearization)
or numeric (numerical-perturbation linearization). For either case special
attention should be made for discontinuous blocks, delays, saturations and
also on the properties of each method (e.g. perturbation levels, open or
closed loop linearization etc.) since many subsequent errors are due to a
black-box conception of this process.

Except for the traditional linearization methods based on Taylor-series ex-Other

methods pansion, there exist also other ways to linearize a nonlinear model. The ones
briefly outlined here are velocity-based linearization and feedback linearization.

Velocity-based linearization is a method that approximates the dynamics of
a nonlinear system around any given solution-trajectory instead of considering
only equilibrium operation like the Jacobian-based approach. This method has
in fact received great attention in the last twenty years because it has given birth
to a new class of gain-scheduled control systems (namely for autopilots, power
systems etc.) and has met significant success, even though there exist controver-
sial opinions on its capabilities (see for example the rather amusing discussion
appearing in [84]). A resume of the key points of this methodology are detailed
in the next chapter.

Feedback linearization in its turn is a pure nonlinear method very popular
in the 70’s and 80’s that tries to transform the state dynamics of a nonlinear
system of the form:

ẋ = f(x) + g(x)u (1.67)

y = h(x) (1.68)

to an LTI system, using a state feedback control law:

u = φ(x) + ψ(x)v (1.69)

and a state transformation z = z(x). Except for the aforementioned input 7→ state
linearization, a full input 7→ output linearization is possible. This method is
outside the scope of this work, however more details can be found in standard
nonlinear control textbooks (see for example [75], Ch. 13 and references therein).



1.3 Linearization-based Gain Scheduling 21

1.3 Linearization-based Gain Scheduling

In this section a detailed review of the Linearization-based Gain Scheduling -
(LBGS) method is presented. This general class of methods is considered for this
monograph for the control of nonlinear parameter-dependent systems and is one
of the most used in the control literature (see [88, 114] and references therein).
The section starts with a detailed description of the corresponding procedure for
the design of a nonlinear gain-scheduled controller, whereas the following sections
present the methods that do not or do guarantee certain stability properties of
the gain-scheduled loop.

1.3.1 Gain Scheduling Procedure

Start by considering the nonlinear state/output dynamics of a nonlinear parameter- NLPD

systemdependent system Spd (see Fig. 1.7a):

Spd :
ẋ = f(x, u, ̺)

y = h(x, u, ̺)
(1.70)

where x ∈ Rn, u ∈ Rnu , y ∈ Rny are its state, input and output vectors cor-
respondingly, ̺ ∈ Γ ⊂ Rn̺ the measured in real time scheduling vector with
Γ being a connected compact set and f ,h are nonlinear functions satisfying
standard continuity & differentiability conditions.
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Figure 1.7: Nonlinear parameter-dependent system.

Remark. Note that the modeling-notation existing in the survey of [88] is Alternative

formulationused (the scheduling vector however appears explicitly here) for reasons of
simplicity. An alternative one is the one appearing in [114] (see Fig. 1.7b),
which is more robust control/tracking-oriented:

S∗
pd :

ẋ = f(x, u, w, σ)

ζ = hζ(x, u, w, σ)

y = hy(x, u, σ).

(1.71)

The scheduling variable ̺ here is a function of σ that is a vector capturing
parametric dependence of the plant and of the output y. Other slightly
different formulations are also possible, e.g. see [79].
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The linearization-based gain-scheduling procedure (LBGS) can be divided inLBGS

five distinct steps:

Trim Analysis. First the equilibrium states and the corresponding equilibriumStep 1

inputs (or trim controls) are computed for every value ̺eq of the schedul-
ing variable inside the domain of operation Γ. This can be done either
analytically or numerically as detailed in Section 1.2.1.3 and corresponds
to finding the equilibrium manifold Epd (see Eq. 1.20) of the system. The
trim/equilibrium control hyper-surface ueq = u(̺eq) of the system that
maintains the state to a corresponding equilibrium value xeq = x(̺eq) is
thus obtained. In addition, the equilibrium outputs yeq = y(̺eq) may also
be computed. In a noiseless environment, if the system is fed with an ini-
tial state x(t0) = xeq, then x(t; t0, xeq) = xeq,∀t > t0, t0 ≥ 0 if the input is
always u(t; t0) = ueq for any value ̺eq ∈ Γ.

System Linearization. In this phase, the nonlinear system dynamics are ap-Step 2

proximated using Jacobian linearization for any member of the equilibrium
manifold and thus, the following LPV system is obtained15:

SLPV :
ẋδ = A(̺)xδ + B(̺)uδ

yδ = C(̺)xδ + D(̺)uδ

(1.72)

with:

xδ = x − x(̺) (1.73)

uδ = u − u(̺) (1.74)

yδ = y − y(̺). (1.75)

For every frozen value ̺eq of the scheduling vector, the above linear dynam-
ics describe the initial nonlinear dynamics of Eq. 1.70 in the vicinity of the
corresponding equilibrium state xeq = x(̺eq). Here two remarks should be
made: first it is sometimes impractical to obtain symbolic expressions for
the state matrices of Eq. 1.72 for every value of the scheduling vector; a
designer may be happy with only a tabulated linear model around a signifi-
cant number of operating points. If a linear model around an intermediate
operating point is needed, then interpolation between tabulated points
may be performed (this is very common with aeronautical systems where
the nonlinear aerodynamic functions are computed in wind tunnels for a
family of flight-operating conditions). Second, after the linear model is
computed, certain open loop properties may be studied performing eigen-
value or Bode analysis iteratively for every member of the LPV plant; this
is a major guideline for the next step: Local Controller Synthesis.

15The approximation x̃δ of the plant’s state is supposed to be near enough to the real value
xδ so that the ‘tilde’ sign may be omitted. The same also holds for the output y.
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Local Controller Synthesis. This step involves the synthesis of a family of LTI Step 3

controllers Σ
(

KLTI

)

for a set of linearized systems (being frozen instances
of the plant SLPV) being computed for constant values ̺i

eq of the scheduling
vector. These controllers are of the generic form:

Ki
LTI :

ẋk = Ak(̺
i
eq)xk + Bk(̺

i
eq)yδ

uδ = Ck(̺
i
eq)xk + Dk(̺

i
eq)yδ

(1.76)

with xk ∈ Rnk being the controller state vector and uδ, yδ defined as:

uδ = u − u(̺i
eq) (1.77)

yδ = y − y(̺i
eq). (1.78)

The matrices Ak,Bk,Ck and Dk are each time designed in such a way
so that stability, performance and robustness properties are met for every
member Si

LTI of the family of linearized plants obtained for a family of
values of the scheduling vector. This is in fact the strong point of the gain
scheduling method: use the powerful synthesis methods of linear (mostly
robust) control theory (such as H2, H∞), in order to control an initially
nonlinear system.

Local Controller Interpolation. In this important step lies the essence of gain Step 4

scheduling design: interpolation. As it has been already mentioned, the
scope of a gain-scheduled controller is to provide a control law for any
value of the scheduling vector or else for any point of the operating do-
main Γ of the plant; be it a synthesis point or not, and not only for a
family of synthesis points. Thus, when coming to on-line implementation,
the designer will need only a small memory space for stocking the LTI
controllers and an interpolation algorithm able to provide global opera-
tion. This may simply be restated as replacing in fact the variable ̺eq

(this implies equilibrium operation) with ̺ and the constant equilibrium
quantities yeq = y(̺eq), ueq = u(̺eq) by y(̺), u(̺). For more details on
this important subject, refer to the following section.

Controller Implementation & Validation. The last step of the gain-scheduling Step 5

procedure concerns the final controller implementation. The main problem
here is to construct the gain-scheduled controller in such a way that it
provides an appropriate trim control input for every value of the scheduling
vector. This in fact may be done in many ways (see for example [88], §3.1
or [114], §4.2 or even [149]) but the easiest one is to design the linear
controllers so that they contain integral action; as a result yδ 7→ 0 and the
state of the controller xk tends to an equilibrium value that corresponds
to the uδ needed for the system’s state x to go to the equilibrium value
dictated by the scheduling vector’s equilibrium value ̺eq

16.

16For more details see Section 1.3.3.
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1.3.2 Ad-hoc Interpolation Methods

In this section the so-called ad-hoc controller interpolation methods are pre-
sented. It is reminded that an interpolation method is needed when the schedul-
ing control law is computed at operating points that do not belong to the set of
synthesis points. An interpolation strategy permits calculation of such a control
law by combining controllers computed at a small number of synthesis points.

1.3.2.1 Controller Switching

The controller switching method is the simplest one of all interpolation methods;Controller

set to be more precise it does not involve any interpolation at all. A set Σ(KLTI) of
LTI controllers is computed:

Σ(KLTI) :=
{

K1,K2, . . . , Kk
}

(1.79)

where each controller Ki = K(̺i) of the set is calculated for fixed-equilibriumOperating

domain values of the scheduling vector ̺i = ̺i
eq belonging to the system’s operating

domain Γ17. Each controller is designed to be robust for a given subset Γi of the
operating domain around the corresponding value ̺i (see Fig. 1.8), with:

Γ =
k

⋃

i=1

Γi (1.80)

and:
Γi

⋂

Γj = ∅, with {i, j} = 1, . . . , k and i 6= j. (1.81)

The last condition means that there exists no overlapping in the switchingSwitching

discussion regions Γi and the controllers are simply switched according to the scheduling
vector trajectory ̺(t). Now this may be the source of control signal discon-
tinuities and chattering behavior when passing from one scheduling-switching
region to the next. This may easily seen by considering the control signal pro-
duced from a controller K1 up to a critical switching time t = tsw. Suppose this
controller to be of the standard form:

K1 :
ẋ1

k = A1
kx

1
k + B1

kyδ

uδ = C1
kx

1
k + D1

kyδ.
(1.82)

Then the control signal is:

uδ(t) = C1
k

[

eA1
k(t−t0)x1

k(t0) +

∫ t

t0

eA1
k(t−τ)B1

kyδ(τ)

]

+ D1
kyδ(t). (1.83)

From Eq. 1.83 it is evident that if at t = tsw, the controller matrices change
their values, then the control signal will be discontinuous. The solution to this
problem is fairly simple but it is not very often implemented in real systems.

17The controllers are of the form as in Eq. 1.76.
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Figure 1.8: Controller switching.

To ensure that uδ(t
+
sw) = uδ(t

−
sw), it suffices to initialize the new controller

K2 entering on line to a state that ensures bumpless transfer. Indeed:

uδ(t
+
sw) = C2

kx
2
k(t

+
sw) + D2

kyδ(t
+
sw)

∆
= uδ(t

−
sw) (1.84)

and one has to solve for the initialization state of the second controller x2
k(t

+
sw)18.

For digitally implemented systems where the difference δt = t+sw − t−sw → 0, the
bump in the control signal may be done arbitrarily small (see [64] or [59]).

The major advantage of this interpolation method is that it is fairly simple Features

to implement and has been used extensively in real systems. The operating do-
main is divided in rectangular regions and each controller Ki is valid for given
ranges on each component of the scheduling vector. The major disadvantage
was already stressed: control signal continuity and stability during transitions.

Applications of switching-based gain scheduling are: in [106] a switched gain- Applications

scheduled controller for a two link wafer transfer robot system is designed with
the scheduling variable being the rotational angle difference of the two links. In
[125], a technique for aircraft control is used, generating smooth control signals
using LPV control and LMI’s. In a similar context, a switching control scheme
for the control of magnetic bearings is used in [152]. A not pure switching strat-
egy (involves interpolation in the union of the switching regions) is used in [6] for
the control of the water level of a steam generator. An aircraft control example
with the speed as a scheduling variable is considered in [64].

Finally, some more theoretical work on the subject, with extensions to non-
linear control and hybrid systems, can be also found in [22, 91, 95]. The first
considers a hierarchical switching controller architecture over a set of moving
equilibria and uses equilibria-based Lyapunov functions to guarantee stability.
The second considers also Lyapunov-based control and regions of stability for a
certain class of nonlinear systems. The third one finally considers performance
of switched LPV systems and extensions to hybrid systems.

18Notice that in general there is more than one solution to Eq. 1.84 and in order to obtain
x2

k(t+sw) the pseudo-inverse of C
2
k may be used (see eq. 1.91).
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1.3.2.2 Controller Blending

The controller blending method can be seen as a generalization to controller
switching. Instead of switching controllers when passing from the one operating
region to the next, the output control signals of adjacent controllers are blended
in order to provide the final control command.

Consider (for simplicity) a planar operating region Γ and the correspondingLTI

Controller two-dimensional scheduling vector ̺ = [̺1 ̺2]
T (see Fig. 1.9a). A set ΣK of

linear controllers is computed for fixed equilibrium values ̺i,j
eq of the scheduling

vector (red stars). The controllers are distributed evenly in the horizontal and
vertical directions and produce rectangular scheduling regions Γi. To each rect-
angular scheduling region Γi correspond four controllers Ki,j , with ‘i ’ being the
region index and ‘j ’ (with j = 1, . . . , 4) the controller index of the i’th region,
taken in an anti-clockwise manner19. An LTI controller Ki,j of the form:

Ki,j :
ẋi,j

k = A
i,j
k xi,j

k + B
i,j
k yδ

ui,j
δ = C

i,j
k xi,j

k + D
i,j
k yδ

(1.85)

is calculated for every synthesis point corresponding to an equilibrium value
̺i,j = ̺i,j

eq of the scheduling vector. The total interpolated control output uδ, for
any value of the scheduling vector inside an operating region Γi, is calculated by
blending the four control signals ui,j

δ , j = 1 . . . 4.
This is done as a function of the distances of the current operating point

(cyan star) to the four synthesis points at the edges of the corresponding op-
erating region (see Fig. 1.9a). These distances al (with l = 1 . . . n̺ and n̺

being the dimension of the scheduling vector) are normalized quantities with
0 ≤ al ≤ 1,∀l.

For a two-dimensional scheduling vector and any rectangular scheduling re-Normalized

distances gion Γi they are defined as:

a1(t) =
̺1(t) − ̺i,1

̺i,4 − ̺i,1
≡

̺1(t) − ̺i,2

̺i,3 − ̺i,2
(1.86)

a2(t) =
̺2(t) − ̺i,1

̺i,2 − ̺i,1
≡

̺2(t) − ̺i,4

̺i,3 − ̺i,4
. (1.87)

The total blended control input ui
δ, being a function of the normalized dis-Control

input tances and the control signals of each controller ui,j
δ , is computed as:

ui
δ =

[

1 − a1(t)
]

u
i,{1,2}
δ + a1(t)u

i,{3,4}
δ ≡ u

i,{1,2,3,4}
δ (1.88)

with:

u
i,{1,2}
δ =

[

1 − a2(t)
]

ui,1
δ + a2(t)u

i,2
δ (1.89)

u
i,{3,4}
δ =

[

1 − a2(t)
]

ui,4
δ + a2(t)u

i,3
δ . (1.90)

19Obviously some controllers may be used for up to four neighbor regions, depending their
position on the scheduling region Γ; as a result this numbering is non-unique.
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Figure 1.9: Controller blending technique.
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A possible interpolation scenario is depicted in Fig. 1.9a, with the trajec-
tory ̺(t) passing through three scheduling regions (Γ1 # Γ3 # Γ2). During
the first transition (which is a little exaggerated since the trajectory passes ex-
actly from the synthesis point ̺1,4

eq ) all three controllers K1,1,K1,2, K1,3 turn off
and controllers K3,1, K3,3,K3,4 go on-line to replace them. However, controller
K1,4 ≡ K3,2 remains on-line for both regions Γ1, Γ3. Similarly, during the sec-
ond transition, controller K1,4 remains always on-line as well as controller K3,3;
however controllers K3,1,K3,4 give their place to K2,2,K2,3 respectively.

A simplified structure of the interpolator is visualized in Fig. 1.9b. TheFeatures

scheme is rather simplified but it shows the essence of the method: only the
outputs of the controller are processed and not the controller themselves as with
other interpolation strategies (see following sections). However, a hierarchical
mechanism should be added so as to decide when and how to switch on and
off the controllers. This is a major advantage of this controller interpolation
method: it is not obligatory to use controllers of the same structure or of the
same complexity for each synthesis point since it is only each controller’s out-
put that is processed. This is not the case with other controller interpolation
methods such as gain blending where the controller structure/order remains the
same and the interpolation procedure is done on the controller parameters.

Another advantage of the method is in terms of the numerical computations
needed to obtain the control law; in [73, 74] it is argued that this method is sig-
nificantly faster in terms of multiplications & additions needed to compute the
interpolated control signal in comparison for example with state-space matrix or
zero-pole-gain interpolation.

This method however presents some important disadvantages: an important
one is controller initialization. Consider once again the scenario of Fig. 1.9a
where the scheduling vector crosses the boundary of the regions Γ3 and Γ2. At
the exact moment tsw, where the scheduling vector is on the border of the two
regions, the control signal is affected by the outputs of only two controllers and
two new controllers should be put on-line and initialized to some state, in order
to be able to perform interpolation in region Γ2 for t > tsw (during of course the
time that ̺(t) ∈ Γ2).

However, this initialization process is not a trivial matter since if these con-
trollers are switched on with zero initial state conditions there will probably be
an initial transient on the total control output due to the inconsistency of the
newly entered controllers’ states added and the operating situation of the sys-
tem before the switching. This transient may be rendered smaller if these states
are initialized in a smarter way. A possible solution is to re-initialize all four
controllers of the new region Γ3 to a state dictated by the actual control signal
uδ(tsw), where tsw is the switching time (see [137] or Chapter 5):

xi,j
k (tsw) =

(

C
i,j
k

)+ [

uδ(tsw) − D
i,j
k yδ(tsw)

]

.20 (1.91)

20The ‘+’ sign in the exponent denotes the Moore-Penrose pseudo-inverse of a matrix.
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These inevitable transients become more annoying when the average period
that the scheduling vector stays inside any operating region is small. This may
happen either due to the fact that ̺(t) varies relatively fast with respect to the
plant’s settling time or if the scheduling regions are too small; i.e. the gridding
of the operating domain is overly dense. In this case, even though the designer
could expect an increase in performance when the synthesis points augment, the
initial transients may render the closed loop system slow. This problem may be
corrected if ‘sufficiently fast’ dynamics are assigned to the LTI controllers that
will internally compensate the state inconsistency.

This initial transient problem may yet be amplified if the scheduling vector
demonstrates big step changes from one value to the next, making thus the in-
terpolator jump to interpolation regions that are not neighbor. In this case the
state initialization may not be useful at all and the transients heavier. A possible
solution to this problem is to filter the scheduling vector with a low-pass filter in
order to force the scheduling vector pass from all regions in between and spend
a finite time at each one. However much attention should be paid on the filter’s
bandwidth so as not to augment the closed-loop rise & settling times.

Another disadvantage of this method is the fact that the scheduler needs
four controllers (if there are two parameters, triangles could be considered and
thus three controllers are enough) to be implemented, apart from the unit that
performs the state initialization. This strategy is more complex than say, a gain
interpolation one where only a single controller (e.g. a PID) is implemented and
solely its gains interpolated, depending on the location of the scheduling vector.

Some solid work on the subject appears on two nearly identical papers (see Bibliography

[73, 74]), where this method is compared to state space & zero-pole-gain (ZPK)
interpolation methods21 and several of its details are discussed. However some
of the disadvantages that this method possesses are not stressed out.

Notable work on aeronautical systems (namely missile autopilots) controlled
with this type of interpolation are presented in [35, 81] and [137] respectively.
In [81], a missile autopilot is designed using the controller blending method but
the simulation results are not so thorough, even though local linear equivalence
properties for the gain-scheduled controller (see Section 1.3.3) are exploited. In
[35] a µ-analysis method is used for the LTI controllers for the design of a 3DOF
missile autopilot. The most complete treatment on the subject can be found in
[137] (or equivalently in Chapter 5 of this monograph), where extensive simula-
tions are used to validate and compare the approach with an alternative observer
based blending strategy, detailed in Section 1.3.2.6. A controller blending ap-
proach is also used in [58] for the control of a power plant boiler. The scheduling
variables used are the steam temperature and pressure and the effectiveness of
the gain-scheduled over a robust control scheme is demonstrated. Finally in [60]
an interesting LPV-based method for the control of a vehicle powertrain using
static H∞ controllers and controller blending is proposed.

21These methods are analyzed in the sections to follow.
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1.3.2.3 ZPK Interpolation

The zero-pole-gain interpolation (ZPK) method is one of the standard techniques
used for controller interpolation. For simplicity SISO systems will be considered,
however the analysis could be extended for MIMO ones, even though the method
is not adapted for truly multivariable setups.

Consider once again a set Σ(KLTI) of LTI-SISO controllers designed for fixedLTI

controller values of the scheduling vector inside a scheduling region Γ22. Each controller
Ki,j may be represented in the s-domain in a ZPK form as:

K(s)i,j = Ki,j

∏m
k=1

(

s − zi,j
k

)

∏n
l=1

(

s − pi,j
l

)
(1.92)

with zi,j
k , pi,j

l being the k-th (respectively l-th) zero (respectively pole) and Ki,j

the dc-gain of the j-th controller23 at the corresponding i-th scheduling region Γi.
Each zero, pole and gain is interpolated in the same way as with the controllerGlobal

controller blending method. For each value ̺(t) of the scheduling vector, the normalized
distances are given by Eqs. 1.86, 1.87 and thus the final interpolated compen-
sator has the following form:

K(s, ̺) = K(̺)

∏m
k=1

(

s − zk(̺)
)

∏n
l=1

(

s − pl(̺)
) . (1.93)

The zeros, poles and gain of the compensator are now dependent on time
since ̺(t) draws a trajectory inside the operating region of the system. Consider
for example the k-th zero of the interpolated compensator when the scheduling
vector is inside the i-th scheduling region; its (time-dependent) value is given by:

zk(̺) =
[

1 − a1(t)
]

z
i,{1,2}
k + a1(t)z

i,{3,4}
k ≡ zk(̺)i,{1,2,3,4} (1.94)

with:

z
i,{1,2}
k =

[

1 − a2(t)
]

zi,1
k + a2(t)z

i,2
k (1.95)

z
i,{3,4}
k =

[

1 − a2(t)
]

zi,4
k + a2(t)z

i,3
k . (1.96)

The major advantage of this method is that it maintains ‘a good engineeringFeatures

feeling’ in the interpolation process. Indeed, it is more natural and straightfor-
ward to interpolate the zeros-poles-gains of a controller than say, the coefficients
of a transfer function since the effect of a changing pole (or a zero or also a gain)
could be easily linked to the step or frequency response of the closed loop sys-
tem. However this method becomes rather complicated in the case of complex
poles/zeros and for multivariable systems.

22Consider a two-dimensional scheduling variable ̺ and the same setup and notation as in
Section 1.3.2.2.

23Once again j = 1, . . . , 4, since rectangular scheduling regions Γi are considered.
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There is however a significant issue for this type of interpolation, concern-
ing implementation. Modern gain-scheduled controllers are implemented using
digital components thus a fundamental question arises: should a controller be
first discretized and then interpolated in the z -domain or first interpolated in
the s-domain and then discretized?

To answer this question consider a single pole (real for simplicity) sp and Example

the mapped to the z -domain equivalent one zp = espT , where T is the sampling
period. Suppose both poles are equally perturbed to a new value s∗p and z∗p with
s∗p = sp + δ, z∗p = zp + δ and δ > 0 a small real number. The quotient q(sp, T )24

of the difference between the z -domain mapped perturbed pole z∗p = Z (s∗p)
(perturbation in the s-domain) and the nominal pole zp, and the difference be-
tween the s-domain mapped perturbed pole s∗p = S (z∗p) (perturbation in the
z -domain) and the nominal pole sp is:

q(sp, T ) =
z∗p − zp

s∗p − sp
(≡

zδ

sδ
) =

e(sp+δ)T − espT

ln (espT + δ)

T
− sp

. (1.97)

From the following figure it can be seen that this difference quotient is rather
small; this means that a perturbation on the s-domain pole results to a much
smaller perturbation to the corresponding pole on the z -domain than the inverse.
As a result, it is preferable to perform the interpolation first to the s-domain
and then discretize the controller since numerical sensitivity is bigger in the z -
domain (a similar but approximative analysis may be found in [74], pp. 178).

A recent paper addresses the control of a pick and place machine and per- Applications

forms interpolation using the length of the beam used for transportation [108].
Also in the reference paper [103], a missile autopilot using robust H∞ controllers
scheduled on the vertical acceleration and Mach number but the control scheme
is complicated and more performing controllers are proposed in later works.

Figure 1.10: Quotient concerning ZPK mapping.

24The dependence on the perturbation δ is considered constant; here a value δ = 0.1 rad/s
is taken for both mappings.
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1.3.2.4 Transfer Function Coefficient Interpolation

The transfer function coefficient is similar to the ZPK interpolation technique.
Once again SISO systems will be considered for simplicity; in any case this
method also is not particularly suited for MIMO setups.

The transfer function of an LTI SISO controller may be written in the fol-LTI

controller lowing (alternative to Eq. 1.92 ZPK) form25:

K(s)i,j =

∑m
k=1 βi,j

k sk

∑n
l=1 αi,j

l sl

=
βi,j

k sk + βi,j
k−1s

k−1 + . . . + βi,j
1 s + βi,j

0

αi,j
l sl + αi,j

l−1s
l−1 + . . . + αi,j

1 s + αi,j
0

.

(1.98)

The numerator and denominator have m and n coefficients respectively thatGlobal

controller define their dynamics. In the gain-scheduling context, a set of controllers is
again designed at a number of synthesis points and the corresponding controller
coefficients for the i -th scheduling region and the j -th controller of this region
are denoted by βi,j

k and αi,j
l . To obtain a global interpolated controller:

K(s, ̺) =

∑m
k=1 βk(̺)sk

∑n
l=1 αl(̺)sl

=
βk(̺)sk + βk−1(̺)sk−1 + . . . + β1(̺)s + β0(̺)

αl(̺)sl + αl−1(̺)sl−1 + . . . + α1(̺)s + α0(̺)

(1.99)

the transfer function coefficients of adjacent controllers are interpolated using
the same formulas as in the previous section.

Now this method seems well suited for SISO systems and relatively low or-Features

der controllers (lead, lag, PID) since if the controller’s order rises the effect of
interpolation on its stability becomes less clear. This means that there is no
guarantee that the interpolated controller will have linearly varying dynamics
even if the coefficients are updated linearly (this is not however the case with
ZPK interpolation which is more direct).

Relative work on the subject may be found in [150], where a missile autopilotApplications

is obtained using interpolation of controller coefficients. In [62] a similar sys-
tem is considered but this time H∞ loop shaping controllers are designed and
a least-squares analytic approach to obtain the global controller coefficients is
adopted. In [92] a robust controller for aircraft is designed whereas finally in [26]
a MIMO controller for a frigate ship is computed using sea state data and the
ship’s velocity. In this final work, an LPV gain-scheduled controller is compared
with the linearization-based with coefficient interpolation and with a robust LTI;
in all cases the gain-scheduled schemes perform better than the robust one.

25Very often the coefficients of the transfer function are normalized so that the highest power

coefficients of both the numerator and the denominator become unitary.
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1.3.2.5 State Space Matrix Interpolation

The state-space matrix interpolation is a method that offers a nonlinear gain-
scheduled controller by blending the coefficients of the state space representation
of local LTI controllers. Consider for example the following state space repre- LTI

controllersentation of a controller Ki,j designed at the j-th point of the i-th scheduling
region of the operating domain Γ of a nonlinear parameter-dependent system:

Ki,j :
ẋi,j

k = A
i,j
k xi,j

k + B
i,j
k yδ

ui,j
δ = C

i,j
k xi,j

k + D
i,j
k yδ

(1.100)

In contrast to the controller blending method which interpolates the outputs Global

controllerof the controllers ui,j
δ , the state-space matrix interpolation method interpolates

directly their internal structure. As a result, the structure of the gain-scheduled
controller K(̺) will be:

K(̺) :
ẋk = Ak(̺)xk + Bk(̺)yδ

uδ = Ck(̺)xk + Dk(̺)yδ.
(1.101)

Now each element of each matrix A,B,C and D is obtained linearly by
interpolating the four adjacent controller matrices using the normalized distances
a1, a2 (when scheduling on the plane) that are a function of the scheduling vector
as in the previous sections. Consider for example the matrix A:

Ak(̺) =
[

1 − a1(t)
]

A
i,{1,2}
k + a1(t)A

i,{3,4}
k ≡ Ak(̺)i,{1,2,3,4} (1.102)

with:

A
i,{1,2}
k =

[

1 − a2(t)
]

A
i,1
k + a2(t)A

i,2
k (1.103)

A
i,{3,4}
k =

[

1 − a2(t)
]

A
i,4
k + a2(t)A

i,3
k . (1.104)

This method, even though it seems rather straightforward, it presents several Features

disadvantages compared to other methods. First, it is rather demanding on
calculations since all elements of a state space realization need to be interpolated;
this may be very conservative. For example the state space representation of a
SISO, 2nd order controller may have up to nine coefficients whereas a ZPK or
transfer function realization up to five (for a 3rd order controller it is even worse:
sixteen and seven respectively). Second, the effect of interpolation to the zeros
and poles and thus to the final controller dynamics is not straightforward and
may also lead to numerical problems for ill-conditioned realizations. Third, a
similar controller structure/realization is assumed for all synthesis points in order
for the interpolation to have a meaning since interpolating between different
states is not a sound strategy (see [73] for more details).

For these reasons, there does not exist significant applications using this type
of interpolation, even though some work on stability preserving interpolation can
be found in [133], as it will be presented in the next part of this chapter.
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1.3.2.6 Observer/State Feedback Interpolation

The observer/state feedback interpolation method is somewhat close to the state-
space matrix interpolation one in the sense that controller matrices are inter-
polated in order to obtain a gain-scheduled controller. Consider once again
the setup used in the previous sections concerning the synthesis points and the
scheduling vector.

A well-known control strategy for MIMO LTI systems is the observer/state
feedback compensator. For the initial nonlinear parameter-dependent system in
Eq. 1.70, consider a family of (strictly proper for simplicity) linearized plants
computed at a number of operating points26:

Si,j
LTI :

ẋδ = Ai,jxδ + Bi,juδ

yδ = Ci,jxδ.
(1.105)

An observer/state feedback controller for each of the above linearized systemsLTI

Controller is written as:

Ki,j :
˙̂xδ = Ai,j x̂δ + Bi,jyδ + Ki,j

o (yδ − Ci,j x̂δ)

uδ = Ki,j
c x̂δ

(1.106)

with K
i,j
c ,Ki,j

o being respectively the observer and controller matrices for each
design point. Now the observer is estimating the state error close to the equilib-
rium point whereas the controller uses this estimation to perform a pole place-
ment. The interpolation procedure here updates all matrices as a function ofGlobal

controller the scheduling vector (the plants’ included) in order to provide the following
gain-scheduled controller:

K(̺) :
˙̂xδ = A(̺)x̂δ + B(̺)yδ + Ko(̺)

(

yδ − C(̺)x̂δ

)

uδ = Kc(̺)xδ

(1.107)

Now here arise several issues: first, it is clear that this interpolation methodFeatures

is very demanding in calculations since both the controller structure (matrices
A,B,C,D) and the controller dynamics (matrices Kc,Ko) need to be updated
as a function of the scheduling vector ̺(t). Second, an important issue is the
update of the controller structure itself; normally, the observer should recon-
struct the state of the linearized system at any possible operating point. This is
done by considering the system matrices at the specific operating point; however
given that these matrices are in general computed at a small number of operat-
ing points (along with the controller/observer gain matrices), it is clear that an
interpolation used for any other operating point may yield a different linearized
plant than the one explicitly or symbolically computed at this operating point.

26Once again ‘i’ denotes the scheduling region and ‘j’ the index of the controller as in the
previous sections. Also the indexes i,j are omitted for the state, input and output of each
linearized plant for simplicity. However it remains evident that the errors xδ, uδ, yδ are taken
with respect to the equilibrium values of each synthesis point.
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To illustrate this fact, consider the following (oversimplified) example: sup- Example

pose that a nonlinear parameter-dependent system has been linearized around
the origin and the following LPV plant describes its dynamics around this point:

ẋδ = 2̺2xδ = A(̺)xδ. (1.108)

Suppose also that the scheduling vector ̺ may vary arbitrarily between 1
and 2 and the state deviation is defined as:

xδ = x − xeq ≡ x. (1.109)

Suppose that an observer for the system’s state is to be constructed using
the two extremal values A(̺min) = 2 · 12 = 2 and A(̺max) = 2 · 22 = 8 of the
system dynamics, for the operating point corresponding to ̺ = 1.5. If a linear
interpolation between the two values is taken, then the interpolated matrix used
in the observer will be Ã = 2 + 8−2

2 = 5.
However the true value, if exact calculations were to be used, is computed

as A(̺)
∣

∣

1.5
= 2 · 1.52 = 4.5. Now, if the synthesis point were four (for ̺ =

1, 1.33, 1.66 and 2 respectively) then the interpolated values would have been
4.55; much closer to the explicitly calculated one.

This simplistic example shows the danger of estimating the dynamics of a
‘wrong’ plant which may result in poor performance, if the operating domain
gridding is not done correctly. A solution to this problem is to perform a denser
gridding when linearizing the plant but calculate the controller/observer matrices
at a smaller number of points. A possible scenario is depicted in Fig. 1.11
where the blue stars denote linearization points and the red both linearization
& controller synthesis-interpolation ones27.

A third issue has to do with appropriate realization of the controller and
observer so that there is a meaning in interpolation. In addition, given that the
interpolation is on the controller matrices, it is not very clear if the interpolated
quantities will behave well as far as stability is concerned (this in fact is the
same problem with state-space matrix interpolation).

 

Synthesis & 
Linearization Points 

Linearization 
Points 

)(t�  

 

Figure 1.11: A potential gridding scenario.

27In this example four triangular interpolation regions are defined that reduce conservatism
at it will be discussed in Section 1.4.
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The major advantage of this control configuration is that it is based on an es-
timation of the nonlinear plant’s state itself; this feature may be highly desirable
for the validation of a gain-scheduled control scheme. In addition, the synthesis
of observer-based state feedback schemes is rather simple and may easily treat
MIMO systems, in contrast to say, ZPK or transfer function coefficient interpo-
lation. In addition, discretization-implementation is by far more straightforward
in state-space setups. Finally, there exist significant work in the field of stability
preserving interpolation schemes using this type of control loops (see later sec-
tions).

As far as applications of this interpolation method are concerned, in [7, 137]Applications

the observed-based interpolation technique was compared to the controller blend-
ing one for an integrated flight and propulsion control system and a missile au-
topilot respectively. In [23], a gain-scheduled controller was used to attenuate
disturbances due to engine-induced vibrations whereas in [147], arbitrary H∞

compensators are converted to state feedback/observer form for the control of a
launcher. In [100] a discrete time controller is interpolated for the stabilization
of an electrostatic levitator whereas in [29] a nice application in a multi-motor
web transport system is presented. Finally [65], is a rather good reference on
the subject.

An interesting extension to the state feedback/observer interpolation methodYoula

param/tion is the Youla parameter-based interpolation method. It is known that any stabi-
lizing LTI controller K for an LTI plant SLTI may be written as the l-LFT of a
stabilizing observer-based state feedback controller J plus a free, stable system
Q which is called the Youla parameter, being driven by the innovations signal.

If desired stabilizing (but of arbitrary structure) compensators Ki,j are de-
signed for some specific operating points of the plant, it is possible to retain the
same observer-state feedback controller for every operating point and change
only the corresponding Youla parameter Qi,j so as to obtain:

Ki,j = Fl(J ,Qi,j). (1.110)

The Youla parameter may then be scheduled in order to obtain a scheduler
transfer function Q(̺) and therefore a scheduled global controller K(̺). Possible
stability preserving extensions to this method are considered in the next section.

An interesting application of this method is found in [102] where the sched-Applications

uled parameter Q is used to achieve rejection of vibrations in magnetic bearing
systems. In [134] a SIMO servo controller is scheduled using two extremal LTI
controllers (that correspond to different Youla parameters): the first one for per-
formance and the second one for good robustness and error tracking suppression.
In [104] a scheme for gain scheduling control is devised when the scheduling pa-
rameter ̺ is not known and need to be estimated; this is done using the Youla
parameterization procedure mentioned above. Finally in [110] some theoretical
work is done in the context of continuation of observer-based structures for issues
arising from interpolation in gain scheduling control.
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1.3.2.7 Other Interpolation Schemes

In this section some additional interpolation techniques will be cited that are
either less used in the bibliography, or they may be regarded as transformations
to the existing methods detailed in the previous sections.

The first technique is called Gain Blending and is maybe the more standard Gain

blendinginterpolation technique of all, since due to this method the Gain Scheduling
terminology rises. A very often used industrial controller is the ‘PID’ type,
existing both in a simple SISO form or in more complex inner-outer loop or
MIMO forms. It is not needed to cite the benefits from PID control since they
are widely accepted: ease of use and implementation, optimality, engineering
intuition preserved etc28. The PID controller is nicely tailored for a great variety
of systems (automotive, aeronautical etc.) and tuning a PID is the most frequent
task a systems engineer may be asked to perform on the field. In addition,
adaptive PID controllers are an excellent (and preferable) choice for the control
of parameter-dependent systems.

The Gain Blending technique is exactly that: for a set of operating points,
compute a family of PID controllers of the form:

K(s)i,j = Ki,j
p + Ki,j

i

1

s
+ Ki,j

d s. (1.111)

Then interpolate the gains Kp,Ki, Kd at each operating region following the
scheduling vector evolution in order to obtain a gain-scheduled controller29.

Some nice applications of gain blending can be found for example in [138] Applications

where a missile autopilot was calculated by scheduling PID controllers of a spe-
cial type or in [139] where a re-entry vehicle autopilot is considered30. Another
good practical example can be found in [69] where a PID controller is scheduled
for the control of a diesel engine.

Another interpolation method used in the context of robust gain-scheduled Riccati

interpolationcontrol is based on the interpolation of the solutions X∞,Y∞ of Riccati equa-
tions relevant to H∞ control synthesis. For further details on applications of
this method see [8, 112].

Finally, other methods could be considered such as coprime factor schedul- Other

methodsing, fuzzy interpolation schemes or even mixed strategies. In the following table,
the most important interpolation schemes described in the previous sections are
compared with each other using various criteria (industrial use, implementation
complexity, possible use for MIMO systems etc.).

28Another interesting feature of the PID controller is that it includes integral action that
ensures proper reference tracking; feature that is very important and very often a problem
with other interpolation structures that do not necessarily provide a correct trim input for
non-synthesis operating points (see Section 1.3.3 for more details)

29The PID controller may be seen as a controller with transfer function K(s) =
Kds2+Kps+Ki

s

or even in ZPK form. That is why a Gain Blending terminology does not really define a separate
interpolation strategy.

30Both articles being part of this thesis are considered in Part II of this manuscript.
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Table 1.1: Comparison of interpolation methods.

Features → Industrial Computational MIMO Stability-preserving Limitations on Controller Signal Continuity
Methods ↓ Spread Complexity Use Extensions Order - Structure Interpolation Coherence

Controller Switching © © © ©§ © §

Controller Blending § © © § © §

ZPK Interpolation ©§ ©§ ©§ § § ©

TF Coefficient Interpolation ©§ ©§ ©§ § § §

SS Matrix Interpolation § § © © § §

Observer-based Interpolation ©§ § © © § ©§

Gain Blending © © ©§ § ©§ ©
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1.3.3 Stability-preserving Methods

The interpolation procedure used for the construction of the global gain-scheduled
controller is crucial since it may cause instability to the closed loop system, even
when the LTI controllers are designed to assure stability around the synthesis
points. In this section some results concerning the analysis of methods that
assure a degree of stability for the gain-scheduled plant are presented.

1.3.3.1 The Origins

A thorough analysis of gain-scheduled control systems lacked in the bibliography
for many years, even though many real-world systems used this attractive control
tool since the 1950’s. Most theoretic work focused on general stability theory for
feedback time-varying systems and the connection between theory and practice
was not clear. The first systematic work on this subject appears in the bibliogra-
phy with the PhD thesis of J. S. Shamma (see [119]) in the late 80’s. The author
considers three major types of gain-scheduled systems: a parameter-dependent
linear plant (LPV) scheduling on its time-varying parameters, a nonlinear plant
(rendered LPV by linearization) scheduled on a reference trajectory or on its
output. In the first case, the author considers LPV systems of the following
form31:

SLPV :
ẋ = A(̺)x + B(̺)u

y = C(̺)x + D(̺)u
(1.112)

and it is argued that closed loop stability and the good properties of the feedback
loop, around the family of operating points for which LTI controllers have been
designed, may be retained provided that the parameter vector ̺ varies slowly
in some operating domain Γ. The overall analysis is rather complicated and
conservative but gives for the first time sufficient conditions for the good behavior
of a gain-scheduled control system.

In the second case when scheduling on a reference trajectory yref(t) (that may
or may not be known beforehand), the plant’s output y should follow yref(t). The
author shows that the closed loop system is stable if the controller designed for
all frozen-values of time (representing distinct values of the reference trajectory
and thus distinct LTI snapshots of the LPV plant in Eq. 1.112) provides robust
stability/performance and the reference trajectory varies slowly.

Finally in the third case, a more realistic case is considered where the gain-
scheduled controller is updated (using state space matrix interpolation) with the
output of the plant in order to ensure following of a reference output value. Again
slowness conditions are imposed as well as the notion of ‘capturing the plant’s
nonlinearities’ with the scheduling variable, meaning that unmodeled dynamics
of the plant should be relatively small. This work has led to two important, yet
not so easily exploited, reference papers on the subject (see [120] and [121]).

31This system may in fact represent linearized dynamics of a nonlinear system with x being
in fact xδ = x − xeq(̺) and the same for the input and output vector.
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Several important points of the gain scheduling practice relevant to the two
aforementioned publications are developed in more detail in [122]. These points
include loss of stability and non-minimum phase properties of a gain-scheduled
plant for rapid parameter variations; in addition real-world examples are given.

Another very interesting approach for the stability analysis of gain-scheduled
systems is found in [118]. In this important paper that was published in the early
nineties, right after the pioneering work of J.S. Shamma, the important problem
of state feedback gain-scheduled regulation is considered. More precisely, for
the LPV dynamics of Eq. 1.11232, the following state feedback control law is
considered (see Fig. 1.12):

u = −K(̺)x + v (1.113)

The state feedback matrix K is computed at a finite number of points
[̺1, . . . , ̺k] so that the eigenvalues of the corresponding frozen closed loop sys-
tems A(̺j) − B(̺j)K(̺j) induce exponential stability. The choice of the syn-
thesis points is done in such a way that the closed loop scheduled systems
A(̺) − B(̺)K(̺) are also exponential stable and their eigenvalues are close
enough to the frozen designs if the gain matrices are interpolated linearly be-
tween the synthesis points. In addition, the gain-scheduled loop remains stable
only if the scheduling vector derivative is smaller to a certain amount. So once
again, the notion of slowness in the time-varying parameter is inferred. Finally,
conditions and ways of computing the state feedback matrix, so that the bounds
on the parameter variation rate may be made arbitrarily high without causing
instability, are devised.
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Figure 1.12: State feedback gain-scheduling.

The initial period on gain scheduling was also marked by a paper (see [113])
considering the problem of appropriate realization of a gain scheduling con-
troller. This is conformable to the discussion of Section 1.3.1 where the five
steps of gain scheduling control were detailed and is relevant with the final step
of controller implementation. This premature paper was the beginning of a se-
ries of papers concerning this important issue as it will be detailed in the next
subsection and triggered a controversy in the scientific community concerning
classical and velocity-based gain scheduling (details for the latter are given in
the next chapter).

32In the paper strictly proper dynamics are in fact assumed.
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1.3.3.2 Mature Era

The mature era starts with the famous paper of R.A. Nichols, R.T. Reichert and
W.J. Rugh (see [103]) for the gain-scheduled autopilot of an Air-to-air missile
and is considered as a benchmark paper. It develops in fact ideas in the controller
realization found in the previous cited paper [113]. However the full theoretical
results are given in the important paper of D.A. Lawrence and W.J. Rugh in
1995 (see [79]).

In this paper, the authors establish some very useful conditions for the gain Generic

nonlinear

controller
scheduling controller realization to provide correct trim control and avoid the
famous coupling terms that stem from the gain-scheduling practice. To illustrate
this fact, suppose a nonlinear gain-scheduled controller to be written in the
following generic form:

ẋk(t) = fk[xk(t), xi(t), ζ(t), y(t), w(t), r(t)] (1.114)

ẋi(t) = fi[xk(t), ζ(t), y(t), w(t), r(t)] (1.115)

u(t) = fu[xk(t), xi(t), ζ(t), y(t), w(t), r(t)] (1.116)

where fk, fi, fu are the nonlinear functions of the dynamic control, integral-error
and output portions of the controller respectively33 and xk, xi, u, y, w, r, ζ are the
states of the dynamic control & integral error, control input, measured output,
measured external parameter (used for scheduling), reference input and tracking
error vectors. The setup is a servo problem one and the goal is to minimize
(ideally nullify) the tracking error when the time-varying scheduling vector ̺,
being a nonlinear function of w, r and y, is taking values in a set Γ34.

The realization of the nonlinear gain-scheduled controller functions that is Controller

nonlinear

functions
proposed by the authors has the following form:

fk =Akk(̺)[xk − xk,eq(̺)] + Aki(̺)[xi − xi,eq(̺)]+

Bkζ(̺)[ζ − ζeq(̺)] + Bky(̺)[y − yeq(̺)]+

Bkw(̺)[w − weq(̺)] + Bkr(̺)[r − req(̺)]

(1.117)

fi =Aik(̺)[xk − xk,eq(̺)]+

Biζ(̺)[ζ − ζeq(̺)] + Biy(̺)[y − yeq(̺)]+

Biw(̺)[w − weq(̺)] + Bir(̺)[r − req(̺)]

(1.118)

fu =Cuk(̺)[xk − xk,eq(̺)] + Cui(̺)[xi − xi,eq(̺)]

Duζ(̺)[ζ − ζeq(̺)] + Duy(̺)[y − yeq(̺)]+

Duw(̺)[w − weq(̺)] + Dur(̺)[r − req(̺)].

(1.119)

33Note that the integral part is particularly important as it ensures appropriate error tracking
when the scheduling vector is varying.

34This setup is rather complicated and may be simplified for particular applications but
encompasses most cases.
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Now the above equations35 have a linear form with respect to deviations from
equilibrium values and should provide the appropriate control input (trim con-
trol) for equilibrium operation. In addition they linearize to an LTI controller
with matrices Akk(̺eq), . . . ,Dur(̺eq) for fixed values of the scheduling vector
that may be designed for a collection of equilibrium points in the operating do-
main Γ of the system.

The gain-scheduled controller however has to update the control input asCoupling

terms a function of the scheduling vector and thus one should consider its behavior
when ̺ = ̺(t) is not constant. Indeed, in this case the scheduling vector is
function of w, r, y and when linearizing Eqs. 1.117-1.119 there appear additional
terms besides the ones corresponding to the linear controllers designed for con-
stant equilibrium point operation. These terms are the famous hidden coupling

terms, they are time-varying and add up to the overall system dynamics causing
problems to the closed loop operation. It turns out from the analysis in [79] that
the inclusion of the integral-error component in the nonlinear controller (see Eq.
1.115) guarantees with appropriate use the existence of a controller without the
coupling terms. Examples for cases that this may be achieved can be found in
[79] or even in the survey of [114].

The second series of articles concerning linearization-based gain scheduling
starts to appear in the late 90’s with the work of D.J. Stilwell. The first paper
(see [132]) addresses a similar problem initially discussed in [118]. A parameter-
dependent system Spd as the one in Eq. 1.70 is considered, as well as an LPV one
as in Eq. 1.72 stemming from linearization around equilibrium points dictated
by the scheduling variable.

Given now this LPV system, an observer/state feedback control setup isStability

covering

condition
assumed (see Section 1.3.2.6). The issue addressed is how to compute the con-
trol matrices Kc,Ko as a function of the scheduling vector so as to guarantee
stability of the LPV system, both for fixed and varying values of ̺. It turns out
that controllers are calculated at a number of points in the operating domain Γ

of the system satisfying a certain stability covering condition and then are in-
terpolated in a specific way that guarantees closed loop stability up to a certain
extent of variation rate of the scheduling vector. Concerning this condition36,
suppose that a set Σ(KLTI) = [K1

c , . . . ,K
k
c ] of state feedback gains are computed

for corresponding constant values of the scheduling vector37 [̺1, . . . , ̺k] ∈ Γ in
such a way that each gain stabilizes the LTI plant (i.e. A(̺i)+B(̺i)Ki

c is stable)
obtained by a frozen LPV one for ̺ = ̺i. In addition each gain also stabilizes
the LPV plant inside a region (i.e. A(̺) + B(̺)Ki

c is stable) Γi with ̺i ∈ Γi. If

Γ ⊂
k
⋃

i=1
Γi (their intersection is not necessarily empty) then the family of gains

is said to satisfy the stability covering condition.

35The ‘eq’ notation means equilibrium operation for fixed values of the scheduling vector.
36Pure state feedback is assumed since the analysis for the full observer-based state feedback

proceeds in an analogous manner.
37Suppose that ̺ ∈ R

1 for simplicity.
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This condition means in brief that the LPV plant must be stabilized at (possi-
bly mutually overlapping) regions, whose union overbounds the operating region
of the plant, using a single feedback gain per region. Of course at overlapping
regions the LPV system may be stabilized by more than one gain. See for exam-
ple Fig. 1.13 where a two dimensional scheduling vector is considered and three
overlapping scheduling regions (light shading) for each one of the three synthesis
points (red stars) inside the rectangular operating domain Γ of the plant. Three
regions (dark shaded) exhibit overlapping of two controllers whereas one (small
central blue region) exhibits overlapping of all controllers.

Returning to the one dimensional scheduling vector discussion, the global
gain-scheduled controller will apply only one stabilizing LTI controller (robust
functioning) for non-overlapping regions whereas in overlapping ones a gain
blending approach is used that guarantees stability and control signal conti-
nuity. For more details on this particular type of interpolation, refer to [132],
pp.1227, Theorem II.2.

Another paper from the same authors (see [133] or equally [131]) generalizes SS & NCF

interpolationthe results of the previous paper [132] for two other cases. The first is state
space matrix interpolation (as in Section 1.3.2.5) and the second one is a partic-
ular type of interpolation using a normalized coprime factor development of the
controllers. As it has been already noted, the first method has several compu-
tational and other disadvantages. The second one has not received practically
any attention in the scientific communities and it would may be interesting in a
H∞ loop-shaping control context.

Finally a very interesting theoretically justified interpolation approach uses J-Q

methodLTI controllers of arbitrary structure (but of the same order) that may all be
parameterized by a single dynamic system J and different stable Youla param-
eters Qi 38. The method uses once again the stability covering condition and
interpolates the state space matrices of the Youla parameter in order to obtain
a gain-scheduled controller. This article (see [129] or equally [128]) also offers a
missile autopilot example in order to justify the practicality of the approach.
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Figure 1.13: Stability covering regions.

38See also Section 1.3.2.6.
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1.3.3.3 Modern Approaches

The modern era on gain scheduling seems to have started by the two surveys on
the subject of gain scheduling in general published the same year (see [88, 114]).
These surveys cover most gain-scheduled control schemes (linearization-based,
LPV-based, fuzzy etc.) known to the scientific community and offer some good
insights on how the gain scheduling research context should be defined in the
future. However, one can distinguish a bias to velocity-based gain scheduling
(see Chapter 2) in the first, and to linearization-based gain scheduling (with
the appropriate controller realizations detailed in Section 1.3.3.2) in the second,
mostly due to the corresponding to either methods work, of each pair of authors.
Despite this fact, these survey should be taken as a landmark for future work.

A piece of work that should be noted is the extension of the one by D.J.
Stilwell and D.A. Lawrence detailed in the previous section on sampled-data
systems and it may be found in [130]. In the paper it is shown that certain
linearization properties of a continuous time gain-scheduled plant carry on to
the sampled data one, a fact that is important for real world systems.

Finally, a work that stands out from the rest in the gain-scheduling control
community can be found in [40] where it is shown that the control objectives of
a gain-scheduled controller can be expressed as the weighted incremental norm
minimization of a nonlinear operator. However this method has yet to prove its
effectiveness in practical situations.

1.4 Operating Domain Issues

In this section some tools used for controller interpolation will be presented. It
has been already remarked that the 2nd and 3rd steps of the linearization-based
gain scheduling procedure involve linearization of the nonlinear plant at a certain
set of equilibrium points inside its operating domain Γ. These points emerge
from constant (or frozen-time) values of the scheduling vector ̺(t) and the LTI
systems obtained are used in order to obtain a set of LTI controllers Σ(KLTI).
Then the LTI controllers are somehow blended to form a gain-scheduled con-
troller. The latter is done by dividing the operating region Γ to appropriate
scheduling regions Γi considering a number of neighbor controllers being placed
at the edges of these regions. Until now, the issues of both choosing these points
in a systematic way and forming the regions have been avoided.

Given that very often the operating domain Γ of a system may be consid-Operating

domain

gridding
ered/rendered convex, an equidistant gridding is performed (see Fig. 1.11) with
no idea on the density of the considered points. As a result, either only region
corners are considered, or the gridding is performed in a trial-error manner until
satisfactory performance is obtained39.

39An exception is the work found in [132] but it remains rather conservative in terms of the
maximum of the scheduling vector rate of variation.
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Thus, the designer is not sure if he has considered too many or too few points
in his study. Additionally, it is not obligatory that the points be taken equidis-
tantly or even in a rectangular gridding40. This problem is addressed for the
first time in this thesis using appropriate operating point selection algorithms
as it will be detailed in Chapter 5.

The result of these algorithms are a number of operating points dispersed
in an non-uniform way on the operating domain Γ. Thus, for implementation
purposes, a way to define scheduling regions Γi should be found. It turns out
that the rectangular ones are nor redundant, given that a plane may be defined
using only three points and not four, nor the interpolation is straightforward
since the operating points will not be in general aligned. As a result, the more
efficient way should be to triangulate the operating domain of the system and
interpolate the controllers in triads (see Fig. 1.14).

An efficient way to triangulate a convex polygonal domain is the famous Triangulation

Delaunay Triangulation. A triangulation △ of a convex domain Γ is a Delau-
nay triangulation provided that for every triangle Γj in △, there is no vertex
̺i /∈ Γj41 inside the circumcircle around Γj . An extension for non-convex op-
erating domains can be found in [78], pp. 109-110. A related notion are the
Voronoi Diagrams which are polygonal domains formed around each vertex ̺i

and define a certain zone of influence around every ̺i.

Technical Note. In the context of Gain Scheduling, given a set of points, one can
use the MATLAB function TRI=delaunay(̺x, ̺y), where ̺x, ̺y are the one
to one ordered vectors of the x and y coordinates of all points, in order to
obtain a Delaunay triangulation. Then, for any value ̺(t) of the scheduling
vector the function tsearch (taking also as inputs all the triangle edges
triplets TRI) gives the corresponding triangle (or else scheduling region
Γj). Thus, controller interpolation may be performed by using the LTI
controllers stored for every edge of the triangle chosen (see Figure 1.15 for
an example of Delaunay triangulation and Voronoi tesselation).
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Figure 1.14: Operating domain triangulation.

40Planar operating regions are considered for simplicity.
41Here it is supposed that the vertices are dictated by constant values of the scheduling

vector ̺i on the operating domain Γ of the system.
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(a) Five points

(b) Fifty points

Figure 1.15: Delaunay triangulation and Voronoi Tesselation.



Chapter 2

Modern Gain Scheduling

Overview

This chapter offers a relatively short overview of alterna-
tive gain scheduling methods that have been proposed the
last years. These methods are the LPV, velocity-based and
neural/fuzzy gain scheduling approaches and they play also
a significant role on the subject, being extensively used on
real-world systems. Since these methods have not been
given further consideration in this work, the material ref-
erenced here is not exhaustive and is presented as a bibli-
ographic complement to Chapter 1 detailing linearization-
based gain scheduling techniques.
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2.1 LPV Gain Scheduling

The LPV (Linear Parameter Varying) gain scheduling approach is the major al- Motivation

ternative to the linearization-based one presented in Chapter 1. This method has
some advantages over the latter since it offers more serious stability guaranties
for the gain-scheduled system. Even though it may also be used for purely LPV
plants resulting from linearization of a nonlinear parameter-dependent system, it
is most interesting when it is applied to an over-bounding q-LPV reformulation of
the nonlinear system. This method can also incorporate bounds on the schedul-
ing vector rates (and thus reducing conservatism) using parameter-dependent
Lyapunov functions. However in some cases it may be rather conservative due
to this reformulation incorporating redundant trajectories that may not belong
to the nonlinear system and in addition, it does not offer feasibility guaranties
for the existence of the gain-scheduled controller.

During the last fifteen years there has been a true wealth in the bibliography
on these methods and several issues continue to be treated; the following analysis
attempts to give only some of the basic results concerning this approach, being
mainly divided in two major categories: polytopic and LFT gain scheduling.

2.1.1 Polytopic Approach

The polytopic approach in LPV gain scheduling is very common in the scientific Control

goalcommunity and has been extensively studied; the results presented here are
taken mainly from [13]. The main goal behind this approach is to calculate
a gain-scheduled controller K(s, ̺) that will guarantee internal stability and
in addition quadratic H∞ performance γ on the performance vector ζ∞ over
external disturbances w and for all admissible values of the scheduling vector
components ̺i (see Fig. 2.1).
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Figure 2.1: Polytopic gain-scheduling structure.

The class of systems considered have an affine dependence of their state space
matrices on the scheduling vector components and in addition the scheduling
vector takes values inside a convex polytope1.

1As a result the state-space matrices take also values inside a convex polytope.
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Searching for a (single) Lyapunov matrix X = XT > 0 that satisfies the
BRL2 ensuring quadratic H∞ performance for a generic (not polytopic) LPV (or
q-LPV) plant poses an infinite number of constraints; however for the polytopic
case, the problem is tractable and reduces to a finite number of constraints posed
for each vertex of the polytope. This is the result of the famous vertex property
stating that the following two arguments are equivalent:Vertex

property

• The polytopic LPV system is stable with quadratic H∞ performance γ.

• There exist a single matrix X = XT > 0 satisfying the collection of LMI’s3:

B[Ai
cl,B

i
cl,C

i
cl,D

i
cl]

(X, γ) < 0, i = 1, . . . , r.

The gain-scheduled LPV controller sought will also be of polytopic form andController

computation the LPV synthesis problem is primarily to find a common Lyapunov matrix for
all vertices; this is done considering the corresponding set of the classic LMI fea-
sibility conditions, given also in Section 3.3.3.2 of this report. The LMI’s are in
fact solved for two matrices R,S and the Lyapunov matrix is finally constructed
solving some matrix equations.

Once the feasibility conditions are met and the Lyapunov matric X com-
puted, all vertex controllers:

Ωi =

(

Ai
k Bi

k

Ci
k Di

k

)

(2.1)

may be sequentially computed either by solving the BRL’s either by the same
convex optimization algorithms or symbolically. The final LPV controller will
be of the form

K(̺) :
ẋk = Ak(̺)xk + Bk(̺)y

u = Ck(̺)xk + Dk(̺)y
(2.2)

and its matrices computed as a convex combination of the vertex controllers,
using the current/measured value of the scheduling vector ̺(t).

For a similar treatment of the problem see [18]; being one of the first worksAdditional

work on the subject. A multi-objective approach treating simultaneously H∞ and
H2 performances, passivity, asymptotic disturbance rejection, time-domain con-
straints and constraints on the closed loop location for different channels of
the closed loop system with a common Lyapunov function is given in [115]. A
good reference on advanced gain-scheduling techniques in order to reduce com-
putational burden is proposed in [9]. Parameter-dependent controllers if the
scheduling parameters are real are using a skew-symmetric technique is pre-
sented in [117] whereas some work using the elimination lemma is proposed in
[126]. Finally, other more recent approaches may be found in [5, 127, 154].

2Bounded Real Lemma.
3The symbol ‘B’ denotes BRL and A

i
cl,B

i
cl,C

i
cl,D

i
cl are the closed loop standard model

matrices at each of the r vertices of the polytope (see also [13], Eq. 29).
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2.1.2 LFT Approach

The LFT (Linear Fractional Transformation) gain scheduling approach is an im-
portant alternative to the standard Lyapunov-based LPV one. Perhaps the one
of the first and most widely known attempts to deal with this formulation can
be found in [12] and the material presented in this section is mainly drawn from
there.

This method is different from the classical polytopic one since it does not LFT vs.

Polytopicrequire an affine dependence of the system’s state space matrices on the time-
varying parameters ̺i since they enter both the plant & controller dynamics in
a specific way. In addition, concerning implementation, the parameter vector
need not be expressed as the convex combination of its vertex values. However,
this method may become cumbersome when the plant’s LFT form needs to be
computed since it is highly non-unique and the designer may need repeated pa-
rameter blocks, thus increasing the order of the system.

The main idea behind this method is to re-cast the initial gain scheduling Modeling

problem as one of robust performance in the face of structured uncertainty using
small gain theory. In the beginning the designer performs the following proce-
dure: starting from a generic nonlinear parameter-dependent plant Spd as in
Eq. 1.22 (with ̺(t) being the on-line measured parameter/scheduling vector)
obtains a q-LPV re-formulated system Sq−LPV (see Eq. 1.24) or an LPV one
using Jacobian linearization (see Eqs. 1.26-1.29). From this point, an equiva-
lent u-LFT formulation of this system is calculated as a specific connection of
a block-diagonal parameter block Θ, containing the measured parameters (see
Eqs. 1.30-1.31 and Fig. 1.5)4. This u-LFT connection is written as:

[

ζ∞
y

]

= Fu

(

P,Θ
)

[

w
u

]

(2.3)

where ζ, y, w, u are once again the performance, controller input, perturbation
and controller output vectors respectively.

The gain-scheduling problem now is to find a time-varying controller having a Control

goalsimilar l-LFT formulation as the plant; thus find a control input u that satisfies:

u = Fl(K, Θ). (2.4)

This specific structure of the ‘time-varying’ uncertainty interconnection be-
tween the system, the controller and the scheduling vector block containing the
varying parameters is depicted in Fig. 2.1. Alternatively, the overall feedback
connection may be expressed as

T (P,K,Θ) = Fl

(

Fu(P,Θ),Fl(K, Θ)
)

(2.5)

and the corresponding H∞ control problem may now be posed as follows:

4The parameters are supposed to be confined to a ball with radius γ−1, with γ being the
corresponding H∞ performance level; however a re-scaling on the input perturbations may be
performed in order to permit larger variations.
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Figure 2.2: LFT gain-scheduling structure.

Find a structure (i.e. state space matrices) for the controller K(s) such that
the gain-scheduled LPV controller Fl(K,Θ) satisfies the following properties:

• The closed loop system given by Eq. 2.5 is internally stable for all param-
eter trajectories ̺i(t) that satisfy the scaling γ2ΘT Θ ≤ 1.

• The induced L2 norm of the closed loop system satisfies:

max
‖Θ‖∞≤γ−1

‖T (P,K,Θ)‖∞ ≤ γ.

Now the closed loop system may be written as the u-LFT of the l-LFT
of a specific augmented system Paug(s) (containing P(s)) with the unknown
controller K(s), and a 2 × 2 block diagonal matrix containing all measurable
time-varying parameters:

T (P,K,Θ) = Fu

(

Fl

(

Paug,K
)

,

(

Θ 0
0 Θ

)

)

. (2.6)

From the aforementioned equation it may be deduced that the original gainController

computation scheduling problem may be viewed as a classical robust performance problem in
the face of the block-repeated uncertainty and sufficient conditions for solvability
are provided by the small gain theory. This results to a particular case of the
general H∞ synthesis problem which is rather easily transformed to a set of LMI
existence conditions that may be solved using interior point algorithms. Finally,
the controller matrices are computed by the corresponding to the H∞ problem
scaled BRL (see also Section 3.1.3).

Globally, a nice introduction to the subject may be found in the survey
papers [88] and [114], whereas more modern results concerning this method are
given in [14, 67, 94, 148, 151, 153].
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2.2 Velocity-based Gain Scheduling

The velocity-based gain scheduling method belongs to the class of methods char-
acterized by the ‘divide and conquer’ design presented in Chapter 1. It has been
already remarked that (see Section 1.3.2.2) gain-scheduled controller realiza-
tions ensuring correct trim control and matching of the linearization of the gain-
scheduled controller, at each equilibrium/synthesis point, with the corresponding
member of the controller family designed at this point, may be designed.

This property is often called local linear equivalence (see [88], §3.1b) but it Motivation

does not treat the extent for which this equivalence is valid. A particular class
of methods claiming to treat this subject was developed in the late 90’s by D.
J. Leith and W. E. Leithead with a series of articles and is called velocity-based
implementation of the gain scheduling controllers, satisfying an extended local
linear equivalence property. Given the fact that this method has not received
the appropriate attention henceforth and due to the already mentioned exchange
in [84], its potential remains yet to be proved.

This method differentiates itself from the classical first order series (or Ja-
cobian) linearization theory used by every method mentioned so far, in order to
obtain a family of linear systems computed at a corresponding family of equilib-
rium points of a nonlinear parameter-dependent system. The most important
point here is that when considering linearized models such as the ones in Eq.
1.26, the notation xδ = x−xeq is abused since this difference quantity only tends
to describe the true state difference and only under heavy assumptions on the
corresponding linear system’s range of operation, on the input rate etc.

In addition, when a nonlinear system is not confined to a vicinity of an equi- Modeling

librium point, the linear approximation of Eq. 1.26 does not offer an accurate
approximation of the nonlinear system dynamics. To overcome this difficulty,
Leith & Leithead offer an alternative linearization around a generic operating
point (x1, u1) of the system (see [85], §3.2, 3.3). The linearized model thus is5:

˙̂xδ = ∇xf(x1, u1)x̂δ + ∇uf(x1, u1)uδ + f(x1, u1)

ŷδ = ∇xh(x1, u1)x̂δ + ∇uh(x1, u1)uδ

(2.7)

with uδ = u − u1, ŷδ = ŷ − y1, x̂δ = x̂ − x1 and ˙̂xδ = ˙̂x, with the neighborhoods
around the operating point being sufficiently small. The main difference with the
Jacobian linearization is that there is a nonzero term in the first equation6 thus
making the approximation model nonlinear. Re-arranging the previous equation
using the aforementioned transformations, the following approximation of the
system’s state is obtained:

˙̂x = ∇xf(x1, u1)x̂ + ∇uf(x1, u1)u + f(x1, u1) −∇xf(x1, u1)x1 −∇uf(x1, u1)u1

ŷ = ∇xh(x1, u1)x̂ + ∇uh(x1, u1)u + h(x1, u1) −∇xh(x1, u1)x1 −∇uh(x1, u1)u1

(2.8)

5Dependence on the scheduling vector is for now omitted for simplicity.
6Note that in the Jacobian case this term vanishes since this point is an equilibrium one.
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Now by differentiating Eq. 2.8 and considering the appropriate initial con-Velocity

form ditions for the state of the system, one gets the following velocity form that is
now totally linear:

˙̂x = ŵ

˙̂w = ∇xf(x1, u1)ŵ + ∇uf(x1, u1)u̇

˙̂y = ∇xh(x1, u1)ŵ + ∇uh(x1, u1)u̇.

(2.9)

From the analysis found in [85], it turns out that the aforementioned linear
system yields an approximation of the initial nonlinear system’s dynamics dur-
ing a certain time interval for the operating point considered, accurate now to
a second order (instead of a first one in the Jacobian case). It is evident that
additional linearizations are needed for subsequent operating points, when the
approximation error starts to increase.

Suppose now that the initial nonlinear system is in fact dependent on theController

computation scheduling vector with ̺ = ̺(x, u); then the approximation performed in Eq. 2.9
is now scheduling vector-dependent. Based on this modeling, encapsulating an
approximation of the nonlinear system for an arbitrary operating point, a gain
scheduling procedure may be devised.

This is first done by calculating a family of specific velocity-based lineariza-
tion type of controllers that achieves the performance requirements for the now
linear velocity-based model of the nonlinear plant. Since this linear is smoothly
parameterized by the scheduling vector ̺, one needs to calculate an infinite num-
ber of controllers for every possible value of ̺; however, the same strategy as
with conventional gain scheduling may be used where controllers are designed
only at a number of operating points.

The final gain-scheduled controller is obtained from the family of linear con-
trollers by permitting the scheduling vector to vary with the operating point. A
thorough treatment of the subject is clearly out of the scope of this work but
one can refer to the series of papers [82, 83, 86] and additional details may be
also found in [87].

An interesting approach that satisfies however only the local linear equiva-Alternative

method lence property has been given in [71]. This work once again considers the demand
for an appropriate gain-scheduled controller implementation that preserves the
input-output properties of the closed loop systems locally about each equilib-
rium point. The method and the control law proposed follow the so-called D

procedure and use a particular form in order to construct the controller. Integral
action is added at its input whereas some of its inputs are differentiated before
actually given to the controller.

It is claimed that this scheme does not introduce any additional noise am-
plification at the relevant inputs and outputs of the linearized feedback system
since all closed loop functions are preserved. However the issue of noise amplifi-
cation inside the controller and how it impacts on the behavior of the nonlinear
feedback system is not addressed.
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2.3 Neural/Fuzzy Gain Scheduling

An unconventional method to construct gain-scheduled controllers has been de-
veloped by the fuzzy/neural community and applied on numerous cases, e.g. for
flight control laws; for some recent examples see [70, 107, 141]. The material pre-
sented here is mainly from the survey [88] and from the tutorial-like paper [135]
reviewing separately classical, fuzzy, neural, and neuro-fuzzy gain-scheduling.

The first step towards the design of a fuzzy gain-scheduled controller is a Modeling

representation of a nonlinear system as a blend of i local models of the form:

ẋ =
∑

i

−
f i(x, u)µi(σ) (2.10)

y =
∑

i

−
hi(x, u)µi(σ) (2.11)

The functions µi are the so-called membership functions used to blend these
models, with

∑

i µi(σ) = 1 and the quantity σ = σ(x, u) shows the dependence
of this blending on the state and the input. The interesting fact in the approach
is that the blended models may be considered as affine local models:

−
f i(x, u) = αi +

−
Aix +

−
Biu (2.12)

−
hi(x, u) = βi +

−
Cix +

−
Diu (2.13)

This blending representation can thus directly lead to a divide and conquer Controller

computationgain scheduling strategy since a local controller may be designed for a local model
and then blended using the weighting functions, according to the quantity σ.
This representation of the nonlinear system may be also considered in another
context: each member of the local models family may be used only at a certain
operating region of the system, leaving the blending occur at transition regions;
however, with this approach problems occur concerning coupling terms with the
derivatives of the membership functions.

The primary advantage of a fuzzy gain-scheduled controller is that the plant Features

&

comments
modeling may be done exploiting human expertise on particular systems where
modeling using the physics laws of physics is not possible or does not lead to
reliable results. However, this procedure of determining a fuzzy model may be
time consuming and demanding extensive computer simulations to reassure the
designer for the closeness of the fuzzy model to the real-world system.

This leads to neural network-based gain scheduling that utilizes the learning
capabilities of a neural network so that the controller parameters are ‘learned’
without a detailed prior knowledge of the plant. This method also has drawbacks
since a neural-network does not give much insight into the plant dynamics and
its structure is not an easy to task to construct. Thus, combined schemes may
be used that take advantage of each approaches benefits (see [135] and references
therein).





Chapter 3

Control Theory for Gain
Scheduling

Overview

A major advantage of gain scheduling control is that it
provides nonlinear parameter-dependent systems a non-
linear time varying controller by using linear time invari-
ant ones. It has been remarked that for real world applica-
tions the elegant and powerful results of the modern H∞

control theory are particularly interesting for the synthe-
sis of LTI controllers in contrast to other methods such
as predictive and/or pure nonlinear control strategies that
risk being overly complex and/or difficult to implement.
In this work two H∞ control structures were tested in
order to provide the necessary LTI controllers needed for
interpolation in the gain scheduling control context. This
chapter offers a solid yet not exhaustive review of two of
these methods: H∞ dynamic output feedback with pole
placement constraints and H∞ dynamic and static loop
shaping. In addition some rather standard results con-
cerning full order state observers and Youla parametriza-
tion (in use with the first synthesis method) and an im-
portant system analysis tool called the gap metric (in use
with the second synthesis method) are presented.
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3.1 H∞ Control in LMI Regions

In this section some theoretical results concerning H∞ control with pole place-
ment constraints in LMI regions will be presented. The section starts with a
classical analysis motivating the use of this powerful synthesis method for the
computation of LTI controllers at the first benchmark example of Chapter 5.
The subsequent sections give all the necessary results for a systematic treatment
of this control problem with most of the material drawn from [27].

3.1.1 Motivation

Consider a SISO linear time invariant system G(s) and a controller K(s) in a 2nd order

system

analysis
standard closed loop control configuration (see Fig. 3.1a). The primary goal of
classical control systems is to design the controller K so that the time response
y(t) to a step reference input yr(t) has good properties. Many of these properties
are dominated mostly by the location of the poles λ of the closed loop system
H(s) with:

H(s)
∆
=

Y (s)

Yr(s)
=

G(s)K(s)

1 + G(s)K(s)
(3.1)

To quantify the influence of the pole location to the time response of the
closed loop system H(s), suppose that H is or may be approximated by a second
order system (see Fig 3.1b), as is the case very often in practice, with:

H(s) =
ω2

n

s2 + 2ξωns + ω2
n

(3.2)

The transfer function parameters ωn and ξ are called undamped natural fre-
quency and damping ratio of the poles λ1,2 of H, being the roots of its denomi-
nator, with:

Polesλ1,2 = −ξωn ± jωn

√

1 − ξ2. (3.3)

The quantitative meaning of the two fundamental variables ωn and ξ is re-
lated to the step response of H. The undamped natural frequency is the system’s
output oscillation frequency if its damping ratio is reduced to zero whereas the
damping ratio is closely related to the overshoot experienced on the system’s
step response, given that the system is underdamped.
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Figure 3.1: Basic analysis block diagrams.
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The poles λ1,2 depend on both ωn and ξ (see Eq. 3.3), but it is the latter thatDamping

scenarios characterizes the form of the step response y(t). Four scenarios are considered
for the damping ratio: ξ = 0 (non-damped), 0 < ξ < 1 (underdamped), ξ = 1
(critically damped) and ξ > 1 (overdamped). The first and the third scenarios
may be considered as limit cases of the second and the fourth ones.

In the non-damped case (ξ = 0) the closed loop poles are purely imaginary
with λnd

1,2 = ±jωn and the time response is purely oscillatory whereas in the
critically damped case (ξ = 1) the closed loop poles are purely real and nega-
tive with equal values λcd

1,2 = −ωn. The system in the first case is said to be
conditionally stable whereas in the second remains always stable. In the over-
damped case (ξ > 1) the system demonstrates two distinct stable real poles with
λod

1,2 = (−ξ ±
√

ξ2 − 1)ωn. For a constant undamped natural frequency, as the
damping ratio increases the first stable pole goes to infinity whereas the second
goes to zero. Thus, the time response of such as system becomes sluggish since
it gets dominated by a slow stable eigenvalue. All three cases are not interesting
for a control system for stability and/or speed reasons, so only the underdamped
case is considered in the following analysis.

For an underdamped system 0 < ξ < 1 its step response y(t) and step track-
ing error e(t) = yr(t)− y(t) (see Fig. 3.1b) are computed using basic knowledge
of ODE theory as (see [105], pp. 147-148)1:

y(t) = 1 −
e−ξωnt

√

1 − ξ2
sin

(

ωdt + arctan

√

1 − ξ2

ξ

)

(3.4)

e(t) = e−ξωnt

(

cos ωdt +
ξ

√

1 − ξ2
sinωdt

)

. (3.5)

The step response y(t) of H(s) for a given ωn, presents different amounts of
overshoot and oscillation around the desired reference trajectory yr(t) for dif-
ferent values of ξ (see Fig. 3.2a) whereas its settling speed for a given ξ is a
function of ωn (see Fig. 3.2b).

In order to characterize an LTI system in a more uniform way, several proper-
ties of its step time response y(t) may be defined, depending only on the damping
ratio ξ and undamped natural frequency ωn. Some of these properties are the
rise time tr, peak time tp, settling time ts and overshoot Mp (see Fig. 3.2c) and
may be easily calculated for a second order system as:

1. Rise Time tr: It is usually defined as the time that the step response y(t)Step

response

properties
takes to reach its 100% value for the first time. It may be computed from
Eq. 3.4 by letting y(t) = 1:

tr =

π − arctan

√

1 − ξ2

ξ

ωn

√

1 − ξ2
. (3.6)

1The quantity ωd = ωn

√

1 − ξ2 is called the damped natural frequency.
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(a) Step responses (varying ξ)

(b) Step responses (varying ωn)

(c) Step response characteristics

Figure 3.2: Step response study - underdamped case.
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2. Peak Time tp: It is defined as the time that the step response y(t) takes to
reach its maximum value. It is computed by letting the derivative of y(t)
go to zero:

tp =
π

ωn

√

1 − ξ2
=

π

ωd
. (3.7)

3. Settling Time ts: It is defined as the time that the step response y(t) takes
to reach a 2% or 5% envelope around its steady state value y(t∞). It is
approximatively computed as:

ts =
3

ξωn
(5% criterion) (3.8)

ts =
4

ξωn
(2% criterion) (3.9)

4. Maximum Overshoot Mp: It is defined as the maximum positive percentage
deviation (occurring at the peak time t = tp) of the step response y(t). It
is computed as:

Mp =
y(tp) − y(t∞)

y(t∞)
· 100% = e

− πξ
√

1 − ξ2
· 100% (3.10)

A control system should be able to provide satisfactory response times andPole

placement

discussion
damping for the plant under control. For a second order system with the simple
form of Eq. 3.2, this is done by placing its poles λ1,2 (see Eq. 3.3) to an
appropriate location following two rules of thumb, as it has been implied in
the preceding analysis: first the desired settling time ts of the process is set by
adjusting the undamped natural frequency ωn and then an appropriate damping
ratio ξ is chosen in order on the one hand avoid excessive overshoot, and on the
other hand obtain a time response for the system that is not too sluggish.

The dependence of the rise, peak and settling times over the damping ratio
and a given undamped natural frequency is shown in Fig. 3.3a2. Even though
the rise and peak times augment monotonically with the damping ratio ξ, it
does not happen the same with the settling time. It may be remarked that
while the settling time is almost constant for medium values of the damping
ratio 0.45 ≤ ξ ≤ 0.65, it reaches a minimum for ξ ≃ 0.69 and then starts to rise
almost linearly. The corresponding percentage overshoot Mp for this optimal
value of the damping ratio is about 4.7% (see Fig. 3.3b). In practice, a damping
ratio between 0.6 and 0.8 for the closed poles of a real-world system is considered
satisfactory with the undamped natural frequency being chosen as a function of
the specific bandwidth demanded from the control system.

2The figure shows the settling time for ωn = 1rad/s and thus provides scaling for any ωn.
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(a) Step response times

(b) Step response overshoot

Figure 3.3: Step response characteristics.
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3.1.2 LMI Regions

From the analysis of the previous section it has been made clear that the tran-Motivation

for

eigenvalue

clustering

sient behavior of a control system is dominated by the location of its closed loop
poles. For a simple second order system as the one in Eq. 3.2, it is generally
easy to obtain the desired closed loop dynamics by setting the damping ratio
and undamped natural frequency to some desired values. For a higher order
system there exist also solid methods for robust state/output feedback eigen-
value placement to an arbitrary accuracy (see for example [72] for details on the
algorithm implemented in MATLABR© for state feedback eigenvalue placement).

Besides focusing on eigenvalue placement only, a control system could provide
a control law that takes into account constraints over frequency domain aspects,
robustness over external perturbations and parametric uncertainties. A good
way to take into account all these requirements is the H∞ robust control con-
text with additional eigenvalue placement constraints. There exists an extensive
literature over this general problem of root clustering (e.g. see [28, 56, 57]); here
however the approach found in [27] will be preferred since the author believes
that it gives the more general results on the subject. Having given the moti-
vation why eigenvalue placement is so important in Section 3.1.1, this section
presents some introductory material over the famous LMI regions.

3.1.2.1 Design Objectives

As pointed out in the previous analysis, an eigenvalue placement procedure could
be very efficient for a control system. This procedure could be either a rather
exact or one-to-one eigenvalue assignment to predefined locations, or a more
general placement of the system’s state space representation eigenvalues into
convex sub-regions of the complex plane PC. The latter method is very appeal-
ing because it can be cast as an LMI convex optimization problem solvable by
efficient algorithms.

These regions may be vertical or horizontal strips, circles, parabolas or gen-D(α, r, ϑ)
region eral conic sections on the complex plane. An LMI region used often in practice

is the D(α, r, ϑ) performance-stability region of Fig. 3.4. This particular LMI
region could define a useful design objective as it is the intersection of an α-
stability vertical strip Dα that provides a minimum decay rate α, a semi-circular
region Dr imposing undamped natural frequency constraints and a triangular
constraint region Dϑ that sets minimum damping on the closed loop eigenval-
ues. For any complex number z = x + yj ∈ C these regions are defined as:

Dα : Re{z} = x ≤ −α, α > 0 (3.11)

Dr : |z| ≤ r, r > 0 (3.12)

Dϑ : tanϑ · x ≤ −|y|, 0 < ϑ < π/2 (3.13)

and
D(α, r, ϑ)

∆
= Dα ∩ Dr ∩ Dϑ. (3.14)
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Figure 3.4: D performance-stability region.

3.1.2.2 D-Stability

In order to use the powerful machinery of LMI solvers to confine the eigenvalues
of a plant inside a given region D of the complex plane PC, a formal definition
of such a region is needed and it is given by the following statement [27]:

Definition 3.1. A subset D of the complex plane PC is called an LMI region LMI

regionif there exists a symmetric matrix Λ with Λ = ΛT ∈ Rm×m and a matrix
M ∈ Rm×m so that:

D =: {fD(z) < 0, z ∈ C} (3.15)

with:
fD(z) = Λ + zM + z̄MT . (3.16)

¤

Given the negative definitiveness of Eq. 3.15 the LMI regions are always
convex and symmetric with respect to the negative real axis of PC since fD(z̄) =
f̄D(z). In addition, more complex LMI regions may be constructed by simpler
ones since they are in general invariant under set intersection3. This result was
used for example in the previous section in order to construct the D(α, r, ϑ)
performance-stability region of Fig. 3.4 and will be further exploited when it
comes to the placement of the eigenvalues of a LTI system inside this region.

Consider the following LTI and finite dimensional unforced system with x ∈
Rn×1 and A ∈ Rn×n:

ẋ = Ax (3.17)

3This means that the intersection fD1 ∩ fD2 of two LMI regions is also an LMI region with
fD1∩D2 = Diag(fD1 , fD2).
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The necessary and sufficient condition for the plant to be quadratically asymp-
totically stable is the following well-known Lyapunov inequality condition:

∃X = XT > 0 : AX + XAT < 0. (3.18)

The aforementioned condition may be extended for general stable subregions
D of the complex plane (LMI regions) as in Definition 3.1; if the spectrum of
A belongs to D, then the system in Eq. 3.17 is called D-stable. The following
theorem gives necessary and sufficient conditions for D-stability of such a system:

Theorem 3.1. Consider the system of Eq. 3.17 and a convex LMI region D,Stability

condition

for

eigenvalue

placement

characterized by the matrices Λ,M and described by the complex function
fD(z) as in Definition 3.1. Consider also the m×m block matrix FD(A,X)
with:

FD(A,X) = Λ ⊗ X + M ⊗ (AX) + MT ⊗ (AX)T

=
[

ΛklX + MklAX + Mlk(AX)T
]

1≤k,l≤m

(3.19)

The system in Eq. 3.17 is then called D-stable if and only if there exists a
matrix X = XT > 0 so that the following LMI condition holds:

FD(A,X) < 0. (3.20)

¤

Proof. See [27], Appendix.

¥

From the preceding analysis it is obvious that one could concatenate more
than one LMI’s of the form FDi

(A,X) < 0 for each i ’th LMI region; their
intersection then forms the desired eigenvalue placement region of Eq. 3.14.
This is exactly the power of the method since complex, performance-tailored
LMI regions may be easily described in this way.

The corresponding LMI conditions for each of the D(α, r, ϑ) subregions areD(α, r, ϑ)
stability

conditions
given by the following expressions:

Dα : AX + XAT + 2αX < 0 (3.21)

Dr :

[

−rX AX

XAT −rX

]

< 0. (3.22)

Dϑ :

[

sinϑ
(

AX + XAT
)

cos ϑ
(

AX − XAT
)

cos ϑ
(

XAT − AX
)

sinϑ
(

AX + XAT
)

]

< 0. (3.23)

This concludes the analysis concerning the conditions for eigenvalue place-
ment inside LMI regions. In the following section the synthesis equations for
the calculation of an output feedback H∞ controller with additional eigenvalue
placement constraints4 for the closed loop eigenvalues will be given.

4The regional constraints will be of the form as in Eqs. 3.21-3.23.
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3.1.3 Controller Synthesis

Consider a finite dimensional LTI standard plant P(s) where x ∈ Rn×1 is the
state vector, u ∈ Rnu×1 the control vector, y ∈ Rnp×1 the measurement vector,
ζ∞ ∈ Rnζ×1 a generalized performance vector and w ∈ Rnw×1 an external
perturbation vector5:

Standard

plant P
P :

ẋ = Ax + Bww + Buu

ζ∞ = Cζx + Dwζw + Duζu

y = Cyx + Dwyw + Duyu

(3.24)

Consider also an LMI D-stability region D(α, r, ϑ) (see Fig. 3.4) and some
H∞ performance level γ > 0. The goal is to calculate an output feedback
dynamic controller K(s) in a standard l-LFT form (see Fig. 3.5) so that:

• The eigenvalues of the closed loop system interconnection are placed inside Synthesis

constraintsthe LMI region D(α, r, ϑ).

• The H∞ performance level for the transfer function from the disturbance
to the performance vector is satisfied; i.e. ‖Twζ∞(s)‖∞ < γ with Twζ∞(s) =
Fl(P, K).

The output feedback controller K(s) having as a task to achieve the afore-
mentioned goals has the following standard form (with xk ∈ Rnk×1 the controller
state):

Feedback

controllerK :
ẋk = Akxk + Bky

u = Ckxk + Dky.
(3.25)

The closed loop system transfer function Twζ∞(s) from the perturbation to
the performance vector is written as:

Twζ∞(s)
∆
= Ccl(sI− Acl)

−1Bcl + Dcl. (3.26)

 

 
PI  

 
K 
 

w  ∞ζ  

u  y  

Standard plant 

Controller  

Figure 3.5: Standard l-LFT interconnection.

5The plant may be considered strictly proper (Duy = 0) without any loss of generality.
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with:

Acl =

[

A + BuDkCy BuCk

BkCy Ak

]

(3.27)

Bcl =

[

Bw + BuDkDwy

BkDwy

]

(3.28)

Ccl =
[

Cζ + DuζDkCy DuζCk

]

(3.29)

Dcl = Dwζ + DuζDkDwy. (3.30)

Before giving the formulas for controller synthesis, it should be outlined that
these will involve the satisfaction of the BRL for the H∞ part (with a Lyapunov
matrix X∞) and the eigenvalue placement LMI’s of Eqs. 3.19-3.20 (with a
Lyapunov matrix X). However the problem is not tractable when considering
two Lyapunov matrices so with some conservativeness it will be assumed that
X∞ = X. In addition, the BRL is not initially an LMI when substituting inside
it the matrices of Eqs. 3.27-3.30 so a change of variables is needed (see [48]).
The following theorem gives the final necessary and sufficient conditions for the
problem:

Theorem 3.2. Let D be a desired LMI region of the complex plane PC de-Conditions

for H∞

control

with

eigenvalue

placement

constraints

scribed by a characteristic function fD(z) as in Eq. 3.16, with correspond-
ing matrices Λ,M. There exist a Lyapunov matrix X and an output feed-

back controller K(s)
∆
=

[

Ak Bk

Ck Dk

]

that assure ‖Twζ∞‖∞ < γ and λ(Acl) ∈ D

if and only if the following LMI’s are satisfied:
Find R = RT ,S = ST ∈ Rn×n and matrices Ak,Bk, Ck,Dk such that:

[

R I

I S

]

< 0 (3.31)

1≤k,l≤m

[

Λkl

[

R I

I S

]

+ MklΦ + MlkΦ
T

]

< 0 (3.32)

[

Ψ11 ΨT
21

Ψ21 Ψ22

]

< 0 (3.33)

with the matrices Φ,Ψ11,Ψ21,Ψ22 being defined as:

Φ =

[

AR + BuCk A + BuDkCy

Ak SA + BkCy

]

(3.34)

Ψ11 =

[

AR + (RA)T + BuCk + (BuCk)
T Bw + BuDkDwy

(Bw + BuDkDwy)
T −γI

]

(3.35)

Ψ21 =

[

Ak + (A + BuDkCy)
T SBw + BkDwy

CζR + DuζCk Dwζ + DuζDkDwy

]

(3.36)

Ψ22 =

[

SA + (SA)T + BkCy + (BkCy)
T (Cζ + DuζDkCy)

T

Cζ + DuζDkCy −γI

]

. (3.37)
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¤

Proof. See [27], pp. 365.

¥

Once the feasibility LMI’s are solved obtaining R,S,Ak,Bk, Ck,Dk and the Controller

reconstructionminimal value of γ, the matrices Ak,Bk,Ck of a full-order controller (i.e. nk =
n) can be then computed6. To do this, first a full rank factorization N1N

T
2 =

I−RS (with N1,N2 being square and invertible) is performed using SVD. The
matrices N1,N2 are in fact parts of the Lyapunov matrix X and its inverse
partitioned as:

X =

[

R N1

NT
1 U

]

(3.38)

X−1 =

[

S N2

NT
2 V

]

. (3.39)

The controller matrices are finally calculated by inverting the transformations
done to render the BRL convex7:

Bk = N2Bk + SBuDk (3.40)

Ck = CkN
T
1 + DkCyR (3.41)

Ak = N2AkN
T
1 + N2BkCyR + SBuCkN1 + S(A + BuDkCy)R. (3.42)

Obviously, if the eigenvalues of the system have to be confined inside a generic
LMI region being the intersection of several basic LMI regions Di, as is the
case with the D(α, r, ϑ) performance-stability region of Fig. 3.4, then several
inequality conditions of the type as in Eq. 3.32 should be concatenated and
satisfied simultaneously.

Technical Note: As far as practical implementation is concerned, one could
either code the LMI feasibility conditions of Theorem 3.2 using available
software for LMI solution (MATLABR© LMI Toolbox, YALMIP etc.) or
use the available macro hinfmix of MATLAB R© Robust Control Toolbox
which performs multi-objective H2/H∞ synthesis with eigenvalue place-
ment constraints. This macro gives the dynamic controller K(s) satisfying
all the constraints as well as the minimum γ attained and the feasibility
matrices R,S of Theorem 3.2.
The macro hinfmix takes the argument ‘region’ that is consisted in fact
of the matrices Λ,M characterizing the LMI region D used for the eigen-
value placement. The argument ‘region’ is obtained from an interactive
dialog with the user by the macro lmireg of the same toolbox. A pre-
defined inventory with various LMI regions (horizontal and vertical strips,
disks, conic sections etc.) is available by default.

6More precisely the order nk is equal to rank(RS − I), with R,S given by Theorem 3.2.
7The final implemented controller is given then by Eq. 3.25.
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3.2 Compensator Estimator-Controller Form

In this section some results will be presented on the subject of converting a
generic compensator K(s) into an equivalent observer/state feedback controller
form. A very good treatment of the subject can be found in [4] with most of the
material drawn from the original work found in [20, 21].

3.2.1 Motivation

The conversion of a generic compensator K(s) to an observer/state feedback con-
troller form may be useful for two reasons. The first has to do with the advantage
of observer/state feedback controllers to preserve the same state representation
as the plant for which they have been computed, since the controller states can
be viewed as estimates of the plant’s states. The second reason is relevant with
gain scheduling; if the compensator’s parameters are to be changed/updated,
it is better to update only the two matrices Kc,Ko of the observer/state feed-
back form of the compensator instead of updating the compensator matrices
Ak,Bk,Ck,Dk.

The material of this section will be used in conjunction with the analysis of
Section 3.1, where dynamic compensators with eigenvalue placement constraints
are designed, in order to conceive gain-scheduled control laws based on the ob-
server/state feedback controller interpolation technique of Chapter 5.

3.2.2 Controller Transformation

The general idea is based on the fact that an output feedback dynamic compen-
sator K(s) of the form (with xk ∈ Rnk×1 being the compensator state vector
and nk ≥ n):

K :
ẋk = Akxk + Bky

u = Ckxk + Dky.
(3.43)

may be transformed to an equivalent observer/state feedback controller being of
the same order as the plant for which it has been computed (order n) plus the
famous Youla parameter Q(s) that is an always stable system of order nk − n.

In order to avoid having an additional dynamical system Q(s) for whichDiscussion

on the

Youla

parameter

interpolation should be also used when coming to gain scheduling, the compen-
sators designed must be forced to have the same order as the plant. In this case,
after the transformation that will be detailed in the following lines, the Youla
parameter becomes only a static gain:

Q(s) ≡ Dk. (3.44)

Furthermore, if the compensators designed are restricted to be strictly proper,
then the Youla parameter is zero and the compensator K(s) may be represented
by a standard Kalman observer plus a state feedback gain (see Fig. 3.6).
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The conversion formulas will now be given according to [4]. Consider without
loss of generality a finite dimensional strictly proper LTI system G(s) with the
following state space representation (with x ∈ Rn×1 the state vector, u ∈ Rnu×1

the control vector and y ∈ Rny×1 the measurement vector):

G :
ẋ = Ax + Bu

y = Cx.
(3.45)

Consider also a LTI dynamic output feedback compensator as in Eq. 3.438

that stabilizes the plant and may also provide additional useful properties such
as robustness to external perturbations, eigenvalue placement etc.

The idea here is to transform the dynamic controller K(s) in such a way so Conversion

procedurethat it would be a Kalman observer of a linear transformation of the plant state
x or:

xk = Tx̂. (3.46)

A Kalman observer of the system’s state plus the state feedback controller
are written as:

˙̂x = Ax̂ + Bu + Ko(y − Cx̂)

u = Kcx̂.
(3.47)

If the state feedback controller equation is substituted to the observer one
then the following dynamic controller is obtained:

˙̂x = (A + BKc − KoC)x̂ + Koy

u = Kcx̂.
(3.48)

Now if the state transformation of Eq. 3.46 is performed to Eq. 3.48, then
the following compensator form is calculated:

ẋk = T(A + BKc − KoC)T−1xk + TKoy

u = KcT
−1xk.

(3.49)

Finally, by performing an one to one identification of the controller matrices
of Eq. 3.49 using Eq. 3.47, the following conditions are found:

AkT − TA − TBCkT + BkC = 0 (3.50)

and:

Ko = T−1Bk (3.51)

Kc = CkT. (3.52)

Equation 3.50 is a generalized non-symmetric rectangular Riccati equation
that can be solved using the following technical note. After it has been solved,
the observer/controller matrices of Eqs. 3.51-3.52 may be finally computed.

8The compensator K(s) is considered strictly proper (Dk = 0).
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Technical Note: To solve the Riccati equation 9 (Eq. 3.50), it suffices to observe
that it may be written as:

[

−T I
]

[

A BCk

BkC Ak

] [

I

T

]

= 0. (3.53)

The matrix in the middle of Eq. 3.53 is nothing else than the closed
loop matrix of the system Acl (see Eq. 3.27 with Bu = B,Cy = C and
Dk = 0). Use then eigenvector decomposition in order to find a matrix U

and a matrix Λ so that:
U−1AclU = Λ. (3.54)

Then compute the solution to the generalized non-symmetric rectangular
Riccati equation of Eq. 3.50 as:

T = U21U
−1
11 (3.55)

where the matrix U is partitioned as U =
[

U11 U12
U21 U22

]

.

Now if the eigenvalues of the closed loop system are not repeated, then theEigenvalue

ordering columns of U are simply the eigenvectors of the closed loop system matrix
Acl and Λ is a diagonal matrix whose elements are the eigenvalues of Acl.
The solutions of the Riccati equations are not unique since each solution
correspond to a different ordering of the columns of U. In general, the
eigenvectors should be ordered in such a way that the first n ones cor-
respond to the closed loop controller eigenvalues whereas the rest to the
n estimator eigenvalues. This ordering should be done according to the
rapidity of the eigenvalues and is not always trivial (for further discussion
see [21]). The possible orderings are in fact the combinations of n eigen-
values out of totally 2n or

(

2n
n

)

and can be as high as 20 for a third order
compensator.
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Figure 3.6: Compensator and estimator/controller equivalence.

9For alternative methods to solve the Riccati equation see [20], pp. 1576 and references
therein.
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3.3 H∞ Loop Shaping

In this section, an alternative method to the classic H∞ formulation for the de-
sign of robust output feedback controllers of Section 3.1 will be presented. This
method is based on the famous loop shaping approach for the design of MIMO
output feedback controllers first introduced in [98].

In Section 3.3.1 the principal ideas motivating the method are presented
whereas in Section 3.3.2 the method itself is outlined. The solution to the prob-
lem of designing full order controllers, satisfying the analysis of Sections 3.3.1,
3.3.2 using the Riccati and LMI-based formulation, is presented in 3.3.3. Finally
in Section 3.3.4 the problem of designing a static instead of a full order controller
is described.

3.3.1 Motivation

The methodology of designing a classic H∞ robust output feedback controller Standard

H∞

control

vs. LSDP

K(s) for a LTI system G(s) is mainly based on shaping the singular values of
certain transfer functions of the closed loop via the use of weighting filters. These
closed loop transfer functions are defined using an input vector w representing
external disturbances and/or reference signals and an output vector ζ∞ repre-
senting critical signals on the closed loop system needing particular treatment
as for example error and/or control signals (see Fig. 3.5). Then a stabilizing
controller is computed, ensuring that the H∞ norm of the transfer function
Twζ∞(s) = Fl(P,K) from w to ζ∞ is minimized. Additional constraints (such
as closed loop eigenvalue placement ones) could be subsequently added as in
Section 3.1.

A major disadvantage of this method is that the choice of the weighting
functions used is either highly empirical or involves a great number of trial and
error experiments until a good compromise between performance and robustness
is found. At the end, one cannot be sure that the best choice of filters has been
done and as a result, it cannot be argued that the controller computed is the
optimal one (even though it is optimal (or sub-optimal) for the selected filters).

An alternative to this method is the so-called loop shaping design procedure
(LSDP) first introduced in [98]. It is based on the fact that performance and
robustness optimization could be separated in two phases (retaining always a
trade-off between the two) and therefore obtain more flexibility in controller de-
sign. This procedure uses this time the open loop singular values σ(GK) over
specified frequency ranges in order to characterize the closed loop performance
and robustness of the plant instead of using directly various weighted closed loop
transfer functions as with standard H∞ control.

This in fact is in accordance with the classic SISO control practice where
controllers are designed in order to achieve high/low open loop gain at low/high
frequencies for good performance/robustness and a correct roll off rate at the
gain crossover frequency to maintain stability avoiding excessive phase lag.
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To prove that in fact it is possible to describe closed loop performance andGeneralized

feedback

scheme
robustness requirements by the use of open loop information, consider the follow-
ing generalized feedback interconnection scheme where d, n may model various
disturbances, sensor noises or reference signals acting on the plant G, whereas
y, u are the inputs/outputs to the controller K.
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Figure 3.7: Generalized feedback interconnection.

The reason for which this feedback structure is chosen is twofold. First
it incorporates all possible external signals acting on G in a general manner.
Second it permits to define an uncertain system G∆ with additive perturbations
to its coprime factors in a straightforward way as it will be presented at the end
of this section. The controller K is then computed to stabilize the plant G in
the face of such uncertainties in the context of the LSDP. As an extension to
this stabilization property, this feedback structure permits also the introduction
of another significant system notion: the gap metric. The interconnection of
the gap metric and the robust stabilization of an uncertain system G∆ using a
controller K is very important as it will be shown in Section 3.4 and it will be
used for the development of gain-scheduled control laws in Chapter 6.

The analysis presented further down will show that many performance and
requirements for a closed loop system may be incorporated using the feedback
scheme shown in Fig. 3.7. The transfer functions considered are the ones from
the external disturbances n, d to the controller output/inputs y, u. After simple
matrix manipulation one gets:

[

u
y

]

=

[

KS T ′

S SG

] [

n
d

]

. (3.56)

In the previous equation S is called the output sensitivity matrix and T ′ the
input complementary sensitivity matrix defined as:

S
∆
=(I− GK)−1 (3.57)

T ′ ∆
=K(I− GK)−1G = KSG. (3.58)
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A very good control strategy, following a classic H∞ formulation, is in fact to
design a stabilizing controller K in such a way that the effect of the input/output
disturbances d, n on the open loop plant G is also minimized over all frequencies.
This means that K is designed to satisfy:

∥

∥

∥

∥

[

KS T ′

S SG

]∥

∥

∥

∥

∞

≡

∥

∥

∥

∥

[

SG T
S′ KS

]∥

∥

∥

∥

∞

< γ, γ > 0 (3.59)

with S′ being the input sensitivity matrix and T the output complementary
sensitivity matrix defined as10:

S′ ∆
=(I− KG)−1 (3.60)

T
∆
=GK(I− GK)−1 = GKS. (3.61)

The minimization of the H∞-norm of each one of the six closed loop transfer From open

to

closed -loop

objectives

functions-objectives S, S′, T, T ′, SG, KS of Eq. 3.59 over all frequencies is not
generally possible because there is always a conflict between them due to the
fact that for example S +T = I. However this minimization could be performed
for different zones of frequencies and also considering open loop instead of these
closed loop objectives.

Take for instance the H∞-norm of the output sensitivity matrix S which can
be studied by studying its maximum singular values σ(S) for all frequencies. For
frequencies where the minimum singular values of the open loop transfer function
are big (i.e. σ(GK)≫1), then the following approximation holds (see [155], pp.
131-133, 486 or [96], pp. 102):

σ(S) = σ
(

(I− GK)−1
)

≃
1

σ(GK)
(3.62)

The sensitivity function gives the influence of output disturbances n to the
plant output y. If these disturbances n are reference signals (typically low fre-
quency ones) then ‖S‖∞ should be minimized for low frequencies in order to
ensure good reference tracking and hence from Eq. 3.62, σ(GK) should be max-
imized for a low frequency band ω < ωl.

In conflict with the above requirement, suppose the output disturbance n is
a high frequency noise. The complementary sensitivity function T = GKS gives
the closed loop noise influence on the plant output ζ. The maximum singular
values of T can be approximated for some frequencies where the maximum of
the open loop singular values are small (σ(GK)≪1) with:

σ(T ) = σ
(

GK(I− GK)−1
)

≃ σ(GK). (3.63)

In this case (and given that n appears in high frequencies) σ(GK) should be
minimized at a high frequency band ω > ωh. As a final remark it could be added
that the frequency zone (ωl, ωh), defining the roll-off rate, cannot be made very
small since this could lead to excessive phase lag and hence instability11.

10The classic relations S + T = I and S′ + T ′ = I always hold.
11A theoretical maximum is -40db/dec but in practice a 20db/dec rate is preferred.
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The two aforementioned closed loop objectives (reference signal tracking,On loop

shaping output measurement noise rejection) are typically performance and robustness
ones and can be adjusted by making the minimum/maximum open loop system
singular values big/small at low/high frequencies (ω < ωl, ω > ωh) respectively
while retaining a roll of rate of around 20db/dec for intermediate frequencies.
Typically this leads to a singular value shaping as in Fig. 3.812.
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Figure 3.8: Shaping of the open loop singular values.

In the context of the LSDP (see Section 3.3.2), these open loop singular val-
ues could be ‘shaped’ using appropriate pre/post filters W1,W2 before and after
the system G so that the shaped open loop plant’s Gs = W2GW1 singular val-
ues have a desired shape (see Fig. 3.8). However, this shaping is done without
regarding the plant’s phase (except for a rough demand on the roll-off rate) and
hence loop stability. The solution to this problem is addressed by adding an
additional controller acting on Gs in such a way that guarantees loop stability.
In the LSDP procedure, this controller is of a special type: it stabilizes but ad-
ditionally it renders the loop robust over left unstructured NCF uncertainties.

In the remainder of this section, this problem of robust stabilization over leftNCF

robust

stab/tion
unstructured NCF uncertainties is posed. Its solution is presented in Section
3.3.3 using both the standard Glover/Doyle and the equivalent LMI formula-
tions. In addition further down it will be shown that the solution to this four-
block shaping problem of Eq. 3.59 detailed before, and which has a standard
H∞ formulation, is equivalent to this robust stabilization problem.

The question however arising is why consider such a specific type of uncer-
tainties. It has been argued in [143, 144] that this way of representing process
uncertainty is very attractive since no particular information in its form in de-
manded and hence general perturbed plants G∆ that are situated ‘around’ a
nominal plant G could be considered. This could be of use for example for
linearized plants of a nonlinear system being computed on equilibrium points
close enough to a reference equilibrium point; these linearized plants could be
considered as perturbed plants G∆ over the reference plant G.

12Additionally one could also treat the closed loop objectives SG, KS that boil down to
specifications on the controller’s minimum/maximum singular values σ(K), σ(K) for low/high
frequencies (performance/robustness specifications respectively) by further adjusting K.



3.3 H∞ Loop Shaping 77

Start by considering the left NCF representation of a nominal plant G(s) as NCF

perturbed

system
(with ÑÑ∗ + M̃M̃∗ = I)13:

G
∆
= M̃−1Ñ . (3.64)

A perturbed plant G∆ with the perturbations acting on its left NCF’s is
considered as (see Fig. 3.9)14:

G∆ = (M̃ + ∆M )−1(Ñ + ∆N ) (3.65)
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Figure 3.9: NCF perturbed plant.

If w = w1 + w2 is the external perturbation, ζ∞ = [ζ1 ζ2]
T = [u y]T is the

performance vector and the uncertainty is regrouped as ∆ = [∆N − ∆M ], then
the perturbed plant can be written as the upper linear fractional transformation

(u-LFT) of the standard plant P =
[

P11 P12
P21 P22

]

(corresponding to the nominal

plant G) and the unstructured uncertainty ∆ as:

G∆ = FU (P, ∆)

∆
= P22 + P21∆(I− P11∆)−1P12.

(3.66)

where the following standard I/O signal expression:

[

ζ∞
y

]

= P

[

w
u

]

(3.67)

defines P as:

P =





0 I

M̃−1 G

M̃−1 G



 . (3.68)

13In the context of the LSDP this open loop plant will be in fact an already shaped one
Gs = W2GW1.

14The perturbations considered are unstructured & unknown but stable & bounded transfer
functions with

∥

∥[∆M ∆N ]
∥

∥

∞
< ǫ and ǫ > 0.
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The NCF robust stabilization problem of G (equivalently Gs in the LSDP)The NCF

robust

stab/tion

problem

with a controller K is taken for their l-LFT FL(P,K) with:

FL(P,K) ≡

[

KSM̃−1

SM̃−1

]

. (3.69)

A formal definition of the NCF optimal robust stabilization problem is given
in the following theorem [96, 97]:15

Theorem 3.3. Consider a plant G and stable norm-bounded left NCF uncer-
tainties ∆ = [∆N − ∆M ] with ‖∆‖∞ < ǫ and ǫ > 0. A robust controller
K stabilizes the perturbed plant G∆ = FU (P, ∆) for all such ∆ with P

being the related to G standard plant if and only if:

a. K stabilizes G.

b. ‖FL(P,K)‖∞ =

∥

∥

∥

∥

[

K(I− GK)−1M̃−1

(I− GK)−1M̃−1

]
∥

∥

∥

∥

∞

≤ ǫ−1.

¤

Proof. See [96], pp. 33-36.

¥

The above two-block robust optimization problem is proven immediately toFrom two

to

four -block

problem

be equivalent to the initial four-block disturbance rejection problem since the
factorization of G is normalized and:

[

I G
]

= M̃−1
[

M̃ Ñ
]

. (3.70)

So finally Eqs. 3.59, 3.69 are equivalent:

∥

∥

∥

∥

[

K(I− GK)−1 K(I− GK)−1G
(I− GK)−1 (I− GK)−1G

]∥

∥

∥

∥

∞

≡

∥

∥

∥

∥

[

K(I− GK)−1M̃−1

(I− GK)−1M̃−1

]∥

∥

∥

∥

∞

⇔

∥

∥

∥

∥

[

K
I

]

(I− GK)−1
[

I G
]

∥

∥

∥

∥

∞

≡

∥

∥

∥

∥

[

K
I

]

(I− GK)−1M̃−1

∥

∥

∥

∥

∞

.

(3.71)

The motivation for the use of robust stabilizing H∞ controllers is now clear:
since the feedback loop could obtain some good initial performance and maybe
robustness properties by the use for example of some pre-compensators shaping
its open loop singular values, such an H∞ stabilizing controller could be subse-
quently added in the loop rendering it also robust over generalized unstructured
coprime factor uncertainties. This procedure outlined here will be presented in
detail in the following section.

15It is of course attempted to maximize this robustness margin ǫ to an optimum value ǫmax.
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3.3.2 The Loop Shaping Design Procedure (LSDP)

The loop shaping design procedure (LSDP) of McFarlane & Glover presented in
detail in [97], [96] - Ch. 6, [155] - Ch. 18, [93] - Ch. 12 will be outlined in the
first part of this section. Some results concerning this method will equally be
presented in the second part16. The LSDP can be divided in three distinct steps
and is visualized in Figs. 3.10a, 3.10b. These steps are:

Step 1 - Loop Shaping. The initial open loop plant G(s) is augmented using The LSDP

pre/post compensators W1,W2 in order to shape the singular values σ(Gs)
of the new augmented open loop plant Gs = W2GW1, following the analysis
of the previous section (see Fig. 3.8). Typically the designer chooses W1 as
a low pass filter in order to have a sufficiently small loop gain in high fre-
quencies (ω > ωh) and W2 in order to assure a good tracking performance
with high loop gain in low frequencies (ω < ωl). In addition the compen-
sators should also be chosen in such a way so as to avoid excessive roll-off
rates (and hence instability) in intermediate frequencies (typically around
the gain crossover frequency ωg); a good value being about −20dB/dec17.

Step 2 - Controller Calculation. The maximum robustness margin ǫmax achieved
by a robust stabilizing controller K∞, designed for the open loop system
Gs, can be calculated before actually K∞ is computed (see Section 3.3.3).
This maximum stability margin ǫmax is also a measure of the success of
the loop shaping performed in Step 1. If ǫmax ≪ 1 then there is an incom-
patibility between the chosen loop shape, the shaped plant’s phase and
robust closed loop stability; thus W1,W2 should be readjusted. If ǫmax is
satisfactory (typically around 0.3), then select a sub-optimal ǫ < ǫmax and
calculate the H∞ controller K∞ that robustly stabilizes the loop.

Step 3 - Controller Implementation. The final controller Ks = W1K∞W2 being
the series interconnection of the pre/post compensators and the robust
controller may now be implemented. The order of Ks is equal to the order
of the plant n plus the sum of the orders of the pre/post compensators
nw = nw1 + nw2 . As a result, the order ns of the final controller is n +
2nw, fact that could be conservative for implementation. To solve this
problem, model reduction techniques could be applied on K∞ while using
compensators W1,W2 of the simplest possible structure. Another solution
could be the design of a reduced order or even a static robust controller
K∞ from the beginning, a problem which is in general difficult to solve18.

16This method gives a solid alternative to classic H∞ control strategy. It has been applied
to a big number of study cases (see Section 5.2 for a comprehensive review).

17Note that the compensators may also be unstable and/or having poles/zeros on the imagi-
nary axis without this fact posing any problems since they are on the feedback loop in contrast
to the classic H∞ practice.

18In the context of gain-scheduled control where reduced order controllers are of particular
interest, a solution to this problem is given in Section 3.3.4.
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Figure 3.10: The loop shaping design procedure (LSDP).
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The robust controller Ks = W1K∞W2 calculated using the LSDP will try to
stabilize the plant while also rendering it robust to coprime factor uncertainties.
However it may be possible that it will degrade the singular value shape of the
initial open loop Gs = W2GW1 adjusted with the pre-post compensators. The
following analysis shows that it is in fact possible to compute maximum limits for
this degradation that depend not on the controller K∞ but only on the singular
value shape of the initial open loop and also on the robustness margin ǫ that
may be achieved by K∞. Given however that this robustness margin depends
by its turn only on W1, W2 (and hence on Gs), it follows that the degradation
is dependent only on the initial loop shape.

To compute this degradation it is imperative to compare the initial loop Degradation

of the

initial

loop

shape

shape of Gs = W2GW1 with the final ones W1K∞W2G = KsG at the plant
input and GW1K∞W2 = GKs at the plant output. For low (respectively high)
frequencies the minimum (respectively maximum) singular values of the initial
and final open loop shapes are compared.
For low frequencies the following relations hold19:

Plant output: σ(GKs) ≥
σ(Gs)σ(K∞)

c(W2)
(3.72)

Plant input: σ(KsG) ≥
σ(Gs)σ(K∞)

c(W1)
(3.73)

whereas for high frequencies:

Plant output: σ(GKs) ≤ σ(Gs)σ(K∞)c(W2) (3.74)

Plant input: σ(KsG) ≤ σ(Gs)σ(K∞)c(W1). (3.75)

The only obstacle to find a lower (respectively upper) bound for the low
(respectively high) frequency loop shape deterioration at the input/output of
the plant is to obtain bounds on the minimum (respectively maximum) singular
values of the controller K∞. This bound is obtained in [96], pp. 110-116:

σ(K∞) ≥
σ(Gs) +

√

γ2 − 1

1 + σ(Gs)
√

γ2 − 1
for ∀ω where σ(Gs) >

√

γ2 − 1 (3.76)

σ(K∞) ≤
σ(Gs) −

√

γ2 − 1

1 − σ(Gs)
√

γ2 − 1
for ∀ω where σ(Gs) <

1
√

γ2 − 1
. (3.77)

In addition these two bounds σ(K∞), σ(K∞) tend asymptotically to
1

√

γ2 − 1

and to
√

γ2 − 1 respectively if the values of σ(Gs) and σ(Gs) are much greater

than
√

γ2 − 1 and much smaller than
1

√

γ2 − 1
respectively, with γ

∆
= ǫ−1.

19c(G) denotes the frequency dependent condition number of G with c(G) =
σ(G)

σ(G)
.
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In addition to the previous results linking the initial loop shape specified by
the use of the pre/post compensators and the final loop shape when the H∞

controller has been added there are also results concerning the behavior of the
closed loop performance & robustness objectives S, SG, KsS,KsSG. Briefly it
can be said that bounds on these closed loop objectives can also be computed
as a function of γ, G, W1 and W2 only20.

In this section the standard McFarlane & Glover loop shaping design pro-
cedure (LSDP) has been detailed and some theoretical results justifying this
procedure presented. In the context of gain-scheduled control considered in this
work, this procedure will be used for the design of LTI controllers for LTI ap-
proximations of nonlinear systems around a set of equilibrium points in Chapter
6.

3.3.3 Full Order Case

In this section the solution to the sub-optimal robust stabilization problem of
Theorem 3.3 linked to the LSDP of Section 3.3.2 will be given. For completeness,
both the solution based on the classic Glover & Doyle formulation [53] and an
LMI formulation will be detailed in the following two subsections.

Briefly the problem is to find a dynamic output feedback stabilizing controller
K∞ to the already shaped open loop plant Gs = W2GW1 of Fig. 3.10a21 that
also satisfies the requirement:

∥

∥

∥

∥

[

K∞

I

]

(I− GsK∞)−1M̃−1

∥

∥

∥

∥

∞

≤ γ, γ > 0. (3.78)

It is clear that if ǫmax is the maximum robustness margin that can beRobustness

margin achieved, an ǫ . ǫmax is chosen in order to construct the robust controller with
γ = 1/ǫ and typically 2 < γ < 10. The controller K∞ will robustify the open
loop plant Gs in the face of additive unstructured uncertainties acting on its
left NCF’s as presented in Section 3.3.1 (see Fig. 3.9, with K∞ here being the
robust controller K and G∆ = FU (Gs,∆) the perturbed plant).

As a final remark before actually giving the solution to Eq. 3.78, the maxi-
mum robustness margin ǫmax (or equivalently γmin) can be computed beforehand
and before actually K∞ and in an one step procedure for the normalized coprime
factorization of Gs. In addition it depends only on the coprime factorization
[M̃, Ñ ] of Gs as22:

ǫmax =

√

1 −
∥

∥

∥
[M̃, Ñ ]

∥

∥

∥

2

H
. (3.79)

20For additional details see [97], Section IV or [96], Sections 6.5, 6.6.
21Note that now the final open loop plant of Theorem 3.3 is the one obtained by augmenting

the initial open loop plant with the pre/post compensators of the LSDP of Section 3.3.2.
22The subscript ‘H ’ denotes the Hankel norm of a system associated to its Hankel singular

values.
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3.3.3.1 Standard Solution

Consider the strictly proper23 state space representation of the open loop shaped Shaped

systemplant Gs (see Fig. 3.10a) satisfying the classic H∞ assumptions needed (see [155],
Ch. 16):

Gs :
ẋ = Asx + Bsu

y = Csx
(3.80)

Then out of all stabilizing controllers achieving also the tolerance level γ, the Feedback

controllerso-called central or maximum entropy one K∞ with:

K∞ :
ẋk = Akxk + Bky

u = Ckxk + Dky
(3.81)

is given by:

K∞
ss
=

[

Ak Bk

Ck Dk

]

=

[

As − BsBs
TX + γ2W−1ZCs

TCs γ2W−1ZCs
T

Bs
TX 0

]

.

(3.82)

The matrices X,Z solve the control (respectively filtering) algebraic Riccati
equations (CARE, FARE):

CARE : As
TX + XAs − XBsB

T
s X + CT

s Cs = 0 (3.83)

FARE : ZAs
T + AsZ − ZCT

s CsZ + BsB
T
s = 0 (3.84)

with the matrix W (entering Ak,Bk) given by:

W =
(

I + XZ − γ2
I
)T

. (3.85)

The maximum robustness margin ǫmax obtained can be also calculated using Optimal

robustness

margin
the solutions X,Z of the Riccati equations as (with ǫmax < 1 always):

ǫmax =
1

√

1 + λmax(XZ)
. (3.86)

Technical Note: The problem of designing a sub-optimal robust output feed-
back controller following the McFarlane & Glover loop shaping design pro-
cedure (LSDP) is solved by MATLABR© with the macro ‘ncfsyn’ of the
Robust Control Toolbox. This macro designs a positive feedback controller
K∞ for an open loop plant G with corresponding pre/post compensators
W1,W2. Additionally it computes the corresponding maximum stability
margin ǫmax, the stability margin ǫ achieved and the corresponding aug-
mented open loop plant Gs and stabilized closed loop system transfer func-
tions.

23The strictly proper case is considered here in order to simplify the formulas.
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3.3.3.2 LMI Solution

In this section an alternative method for the solution of the sub-optimal ro-
bust stabilization corresponding to the LSDP of Section 3.3.2 is presented. This
method is based on a LMI formulation of the problem of finding the stabilizing
robust dynamic controller K∞ that also satisfies Eq. 3.78.

The idea is simple enough: given that the problem of designing this stabiliz-
ing controller corresponds to the minimization of the H∞ norm from the input
disturbance w (representing the additive uncertainty over the normalized left
coprime factors of the shaped open loop plant Gs) to the performance vector ζ∞
consisting of the input u and the output y of Gs (see Fig. 3.9); then it suffices
to design the controller K∞ for the corresponding standard plant Ps of Fig. 3.11
in such a way that ‖Twζ∞‖∞ = ‖FL(Ps, K∞)‖∞ < γ with K∞ stabilizing and γ
minimized. The solution to this problem via LMI’s could be done in more than
one ways; here the basic approach found in [11] is presented.
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Figure 3.11: LFT of the LSDP.

To find the standard plant representation Ps of the open loop shaped plant
Gs, with a general standard plant representation defined as:





ẋ
ζ∞
y



 =





A Bw Bu

Cζ Dwζ Duζ

Cy Dwy Duy









x
w
u



 (3.87)

it suffices to obtain a minimal normalized LCF of the shaped open loop plantNCF’s

Gs =
[

As Bs
Cs Ds

]

24. These coprime factors of are given by [155] (with Gs = M̃−1Ñ):

Ñ
ss
=

[

As + LCs L

R−1/2Cs R−1/2

]

(3.88)

M̃
ss
=

[

Bs + LDs L

R−1/2Ds R−1/2

]

. (3.89)

24The more general case where the plant is not necessarily strictly proper is considered here
with As ∈ R

n×n,Bs ∈ R
n×nu ,Cs ∈ R

ny×n,Ds ∈ R
ny×nu .
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After the necessary matrix manipulations the standard plant Ps is found to LSDP

standard

plant
be (one-to-one connection using Eq. 3.87):

Ps
ss
=









As −LR1/2 Bs
[

0
Cs

] [

0

R1/2

] [

Inu

Ds

]

Cs R1/2 Ds









. (3.90)

The coprime factorization matrices R,L in Eq. 3.90 are defined as:

R = I + DsD
T
s (3.91)

L = −
(

BsD
T
s + ZCT

s

)

R−1 (3.92)

where Z = ZT ,Z > 0 is the solution to the (generalized) filtering algebraic
equation (GFARE):

GFARE :
(

As − BsS
−1DT

s Cs

)

Z + Z
(

As − BsS
−1DT

s Cs

)T

−ZCT
s R−1CsZ + BsS

−1BT
s = 0

(3.93)

and
S = I + DT

s Ds. (3.94)

Given the standard plant Ps the solution to the problem of finding the dy-
namic controller K∞ is divided into two phases: the feasibility problem and
controller reconstruction. The first phase involves the solution of a number of
LMI’s, which is the result of the effort of rendering the corresponding Bounded
Real Lemma (BRL) convex, in order to obtain the problem’s Lyapunov matri-
ces25. If these exist, then the initial BRL becomes convex, the second phase has
a meaning and the controller matrices may be computed by solving the initial
BRL either as an LMI problem or symbolically (for the latter method see [68]).

Feasibility Problem: The following theorem gives the necessary and sufficient Feasibility

problemconditions for the existence of a sub-optimal full order output feedback
H∞ controller K for a general standard plant P like the one of Eq. 3.8726:

Theorem 3.4. Under the hypothesis that the pairs (A,Bu) and (A,Cy)
are stabilizable and detectable then there exists a full order dynamic
controller K (as the one in Eq. 3.43) ensuring that the transfer func-
tion Twζ∞(s) = FL(P,K) from the vector of disturbances w to a per-
formance vector ζ∞ will be stable and also the H∞-norm of this trans-
fer function will be less than a performance level γ (‖Twζ∞‖∞ < γ),
if and only if there exist symmetric matrices X,Y and a performance
level γ > 0 satisfying the following three LMI’s:

25This is equivalent to the solution of the two Riccati equations when using the standard
problem formulation of the previous section.

26In the following analysis it will be assumed without loss of generality that Duy = 0 in order
to simplify the calculations.
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[

NX 0
0 I

]





AX + XAT XCT
ζ Bw

CζX −γI Dwζ

BT
w DT

wζ −γI





[

NX 0
0 I

]

< 0 (3.95)

[

NY 0
0 I

]





ATY + YA YBT
w CT

ζ

BT
wY −γI DT

wζ

Cζ Dwζ −γI





[

NY 0
0 I

]

< 0 (3.96)

[

X I

I Y

]

≥ 0. (3.97)

¤

Proof. See [11], pp. 10-11.

¥

The matrices NX,NY are (preferably orthonormal) bases to the null spaces
of

[

BT
u DT

uζ

]

and
[

Cy Dwy

]

respectively. Now in practice, one tries to
solve a minimization problem by trying to solve for the matrices X,Y
for the smallest γ possible; once this is done the controller matrices are
obtained following the analysis below.

Controller Reconstruction: The problem of obtaining the feasibility solutionsController

recon/tion involves in fact the convexifying of an initially BMI problem. This problem
emerges by imposing satisfaction of the BRL for the closed loop system
given by the l-LFT of the general standard plant P and the controller

K. This problem can be translated into finding the matrix Θ =
[

Ak Bk

Ck Dk

]

,

regrouping the controller matrices, that satisfies the following inequality:

Ψ + QTΘTP + PTΘQ < 0. (3.98)

The aforementioned equation contains the matrices Ψ,P,Q that are gen-
erally dependent27 on the known standard plant matrices and on X,Y, γ
obtained from the feasibility problem28.

The initial problem of computing a robust dynamic controller K∞ for the
shaped open loop plant Gs can be in fact viewed as a standard H∞ problem
with a special structure on the corresponding standard plant P. Given that the
standard plant referring to this special problem Ps may be computed using Eqs.
3.88-3.90, then the problem of designing K∞ may be solved by directly applying
the aforementioned LMI formulation of Theorem 3.4.

27For the exact dependence and how to solve for these matrices refer to [11].
28As a small technical note it may be added that the LMI of Eq. 3.98 can be readily solved

using the macro ‘basiclmi’ of the MATLABR© Robust Control Toolbox.
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3.3.4 Static Case

In this section the problem of computing static instead of dynamic robust H∞

controllers for the LSDP of Section 3.3.2 will be addressed. The problem in fact
is to find a static output feedback control law u = −K∞y for the shaped plant
Gs of Fig. 3.10a that will stabilize the plant and also render it robust to left
NCF perturbations; this is translated in the two-block H∞ problem of Eq. 3.78
that is repeated here:

∥

∥

∥

∥

[

K∞

I

]

(I− GsK∞)−1M̃−1

∥

∥

∥

∥

∞

≤ γ, γ > 0. (3.99)

This approach of designing simpler controllers is very important in the con- Static

vs.

dynamic

H∞

control

text of gain scheduling, as it will be detailed in Chapter 6, since the controller
updating procedure has a very reduced complexity. Indeed, from the discussion
of Section 3.3.2 it has been made clear that the order of a dynamic controller Ks

is equal to the sum of the orders of the plant plus the pre/post compensators’.
Thus for example for a second order system G shaped by a PID post-compensator
W2 and a low pass filter W1 as pre-compensator, the final controller would be of
order five making things maybe more complicated than they should have been.

Two are the major solutions proposed for this problem of high controller
order: the first is try to reduce the order of K∞ (using for example techniques
such as Hankel norm approximation or balanced truncation) whereas the second
is attempting to compute reduced order controllers directly from the beginning;
here this second method will be outlined.

The basic difficulty in designing reduced order controllers comes from the
famous rank minimization condition for the existence of a controller of order
k < n (where n is the plant order):

Rank(I− XY) ≤ k. (3.100)

Several heuristic methods have been proposed in order to take out this condi-
tion such as the alternative projection method, the XY-centering algorithm, the
cone complementarity linearization method and others (see for example [52, 54]
and references therein). However these approaches (along with the one trying
to solve the initial problem, which is of course a BMI, with appropriate solvers)
do not guarantee convergence even though they have been successfully applied
to real world applications.

Other methods focus their effort to obtain only sufficient conditions for the
existence of lower order controllers, conditions which however involve the formu-
lation of the problem into LMI’s. One of these methods has appeared in [111]
and will be exploited in this work. Briefly, it involves the aforementioned two-
block loop shaping problem itself and demands only the solution of two LMI’s
to guarantee the existence of a static controller K∞. Another method that ad-
dresses the equivalent four-block problem (see Eq. 3.71) and claims to achieve
better results than the previous one has been very recently proposed in [109].
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Following the analysis in [111] and always under the LSDP context of the

previous sections, consider the open shaped plant Gs =
[

As Bs
Cs Ds

]

of Figs. 3.10a-

3.11. The problem this time is finding a static controller K∞ and the following
theorem gives sufficient conditions for the existence of such a controller.

Theorem 3.5. There exist a static stabilizing controller K∞ that also satisfiesLSDP:

static

H∞

control

feasibility

the two-block LSDP H∞ robustness problem:
∥

∥

∥

∥

[

K∞

I

]

(I− GsK∞)−1M̃−1

∥

∥

∥

∥

∞

≤ γ, γ > 0.

if there exist γ < 1 and a matrix X = XT > 0 that satisfies the LMI’s:

(As + LCs)X + X(As + LCs)
T < 0 (3.101)





AsX + XAT
s − γBsB

T
s XCT

s − γBsD
T
s −LE1/2

CX − γDsB
T
s −γE E1/2

−E1/2LT E1/2 −γIny



 < 0 (3.102)

with L = −
(

BsD
T
s + ZCT

s

)

R−1, Z = ZT ≥ 0 being the solution to the
GFARE of Eq. 3.93 and R = I + DsD

T
s ,S = I + DT

s Ds.

¤

Proof. See [111], pp. 1519.

¥

As a first comment it should be stressed that the difficulty in computing aComments

static controller comes from the fact that Eq. 3.101 is a BMI transformed to an
LMI by neglecting an additive factor F which is quadratic on R, with F being
equal to29:

F = −γRCT
s E−1CsR. (3.103)

As a second comment it may be added that the procedure of arriving to the
conditions of Eqs. 3.101-3.102 is nothing more than applying the standard LMI
conditions of Theorem 3.4 to this particular static output feedback problem. As
a result, the analysis of this section may be considered as an extension to the
discussion of Section 3.3.3.2.

As a third comment it should be made clear that because of the fact that
a much simpler structure controller has been designed in contrast with the full
order case of the previous section, the performance level γ (respectively robust-
ness margin ǫ) will be bigger (respectively smaller). In practice, and as it will be
observed in Chapter 6, this trade-off between controller complexity and robust
stability leans heavily towards the first; this meaning that the robustness margin
deterioration in the static case is only about 30% for a seventh order open loop
plant Gs, thus justifying the static approach.

29The simplification of this quadratic factor F renders the conditions sufficient instead of
necessary and sufficient in the beginning.
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Now once the performance level γ and the Lyapunov matrix X have been Static

controller

recon/tion
found, the static output feedback gain can be computed following the Controller
Reconstruction phase of Theorem 3.4 that involves the solution of the initial
Bounded Real Lemma relevant to the problem. If K∞ = K̃∞(I − DsK̃∞)−1

then K∞ may be computed by solving the LMI of Eq. 3.98 for K̃∞ with:

Ψ =









AsX + XAT
s 0 XCT

s −LE1/2

0 −γInu 0 0

CsX 0 −γIny E1/2

−E1/2LT 0 E1/2 −γIny









(3.104)

P =









Bs

Inu

Ds

0









T

(3.105)

Q =
[

CsX 0 0 E1/2
]

. (3.106)

This concludes the discussion on the classic LSDP of McFarlane&Glover and on
how to obtain full order or static controllers using the standard Glover&Doyle
formulation or an alternative LMI approach. As a last comment it may be
added that this LSDP analyzed in the last sections offers indeed a sound and
theoretically justified approach but which on the same time preserves its intuitive
nature concerning the synthesis of MIMO controllers for LTI plants. From the
one side it can encompass many interesting features that could be useful for a
control system (low/high open loop gains at high/low frequencies, treatment for
the general I/O disturbance rejection problem, stabilization over unstructured
uncertainties etc.) but on the other hand it can be seen, in the context of
singular value shaping, as a generalization to well known loop shaping practices.
In addition this synthesis procedure can be further simplified by considering
simpler control structures for the robust closed loop controller; this fact is easily
done due to the fact that the LSDP can be recast as a standard H∞ synthesis
problem.

3.4 The Gap Metric

In this section a powerful system analysis tool will be presented that will permit
the development of advanced gain scheduling controllers in Chapter 6. This
tool is called the gap metric and it has been primarily introduced in the control
community with the work of El-Sakkary in the 80’s [38, 39]. It has been mostly
exploited by Georgiou&Smith both concerning computational aspects and its
connection with H∞ control [49, 50]. Other interesting metrics were conceived
by Vidyasagar [143] and more recently by Vinnicombe [146]. Additional work in
a nonlinear context has been done for example in [51] and in [34] for the LTV
case.
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3.4.1 Motivation & Definitions

A major motivation for the development of the gap metric and other metricsDistance

between

systems
was the desire to obtain a measure of the distance between two systems in a
closed loop setting and the possible extension of this idea to study the stability
of a perturbed system G∆(s) given that it is controlled by the same compen-
sator K(s) computed for a nominal system G(s). Moreover this metric should
be able to compare different types of systems: stable or unstable, of the same
or different orders etc.; the only restriction is that they should have the same
number of inputs or outputs since they are compared in the same closed loop
setting (i.e. using the same compensator).

The gap metric captures differences between the closed loop behaviors of two
plants G(s), G∆(s) when the same compensator K(s) is applied. If another sys-
tem G∗(s) is considered, that may have similar open loop but very different closed
loop when compared to G (always with the same compensator K), then this met-
ric should be able to distinguish G∗ from G∆ which behaves well/similarly as G
in closed loop, though it may be totally different in open loop30. As an illustra-
tive example suppose that G is a stable first-order system, G∆ an unstable one,
whereas G∗ is similar to G in terms of open loop step response:

G(s) =
100

2s + 1
, G∆(s) =

100

2s − 1
, G∗(s) =

100

(s + 1)2
. (3.107)

Suppose also that all plants are given a unity negative feedback (K(s) = −1);
then their closed loop transfer functions H(s),H∆(s),H∗(s) are:

H(s) =
100

2s + 101
, H∆(s) =

100

2s + 99
, H∗(s) =

100

s2 + 2s + 101
(3.108)

and all open and closed loop step responses are shown in Figs. 3.12a, 3.12b.

(a) Open loop step responses (b) Closed loop step responses

Figure 3.12: System responses comparison.

30For example G may be stable and G∆ unstable in open loop as it is the case in real life
situations when a nominal but uncertain plant may become unstable under heavy perturbations.
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The topology inducing the gap metric is depicted in Fig. 3.13; this topology The graph

topologytakes into account the special structure of the feedback problem seen in Section
3.3. In this structure, a nominal plant G that is stabilized by a compensator K,
receives input/output perturbations d, n whereas another plant G∆, receives the
same perturbations while being in feedback interconnection with the same com-
pensator K. The goal then is to find a distance measure for the inputs/output
behaviors of each system G,G∆ under this specific feedback form. This distance
measure, that is defined for these two systems G,G∆, is called the gap metric
δg(G,G∆) and it is the maximum of the two directed gaps ~δg(G,Gδ), ~δg(G∆, G):

δg(G,G∆)
∆
= max

{

~δg(G,G∆), ~δg(G∆, G)
}

. (3.109)

In this closed loop structure of Fig. 3.13, the two systems G,G∆ may be
considered close if for all appropriate inputs u to the plant G there exists an
appropriate input u∆ that makes a certain norm small. This norm, being of key
importance, can be found in the actual definition of the directed gap between
two systems which is the following:

~δg(G,G∆)
∆
= sup





u
y



∈GG

inf




u∆

y∆
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∥
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u
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∥

∥

∥

2

. (3.110)

These appropriate inputs u, u∆ mentioned before, along with the correspond-
ing outputs y = Gu, y∆ = G∆u∆ are said to belong to the domain D(MG) of a
multiplication operator MG. This domain is defined as:

D(MG)
∆
= {u ∈ H2 : Gu ∈ H2}. (3.111)
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Figure 3.13: Gap metric related topology
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The multiplication operator MG is an operator on the input signal space H2,
defining the signals being zero for t < 0 and with bounded energy for t > 0, and
is described as:

MG : H2 → H2, u 7→ Gy. (3.112)

where the system G belongs to the class of rational transfer functions with nu

inputs and ny outputs respectively.
Returning to the definition of the directed gap of Eq. 3.110, it may be added

that the gap metric can be also viewed as the distance between the so-called
graphs of the two systems GG,GG∆

; this is the reason because it is a metric
induced by the graph topology. Given that a system G may be seen as a mul-
tiplication operator MG, the graph of a system is defined as all the possible
H2-bounded input/output pairs of the corresponding to G multiplication oper-
ator MG:

GG ≡ G(MG)
∆
=

{[

y
u

]

: u ∈ D(MG)

}

. (3.113)

A very useful property of the gap metric δg, defined in Eq. 3.109 by meansGap

metric

properties
of the directed gap, is that given it is a metric the following hold31:

0 ≤ δg(G,G∆) ≤ 1 (3.114)

and also:
δg(G,G∆) ≡ δg(G∆, G). (3.115)

Returning to the initial motivation example, given that the gap metric shows
the closed loop closeness between two systems under the same feedback struc-
ture, the gaps between all the systems are seen in Table 4.1. On the one hand
it is verified that even though the systems G,G∗ have similar open loop step
responses (see Fig. 3.12a) their gap is large, showing exactly the incompatibility
of the controller K for G∗ in closed loop (see Fig. 3.12b). On the other hand,
even though the open loop step response of G∆ is unstable, therefore very differ-
ent to the one corresponding to G, their gap is small since the compensator K
is very good for both systems under the graph topology. In addition, because of
the fact that G,G∆ are very close by means of the gap whereas G, G∗ are not,
it is expected that the gap between G∆, G∗ will be also large.

Table 3.1: Gaps concerning the motivation example.

System G(s) G∆(s) G∗(s)

G(s) 0 0.0205 0.8995
G∆(s) 0.0205 0 0.8946
G∗(s) 0.8995 0.8946 0

31A large gap between two systems means that they are not close in the graph topology
whereas a gap close to zero shows closed loop compatibility for an appropriate compensator K.
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3.4.2 Connection to the H∞ Theory

In this section the connection of the gap metric and the H∞ loop shaping the-
ory of Section 3.3 will be outlined. This important result obtained by Geor-
giou&Smith in [50] is of key interest since two systems G,G∆ may be compared
in a closed loop setting as in Fig. 3.13, with the second system G∆ considered
as a coprime factor perturbed of the initial one G. Quantitative results are then
obtained on the maximum amount of uncertainty ∆ that can be tolerated over
G until the behavior of its closed loop starts to deteriorate rapidly.

The theory presented assumes normalized coprime factorizations of an open
loop plant G and a stabilizing controller K which stabilizes and renders G robust
over unstructured additive uncertainties ∆ on its normalized coprime factors, ex-
actly as in the setting of Fig. 3.9. It is argued by Georgiou&Smith that iff the
H∞-norm of the uncertainty introduced is less than the gap between the systems
G,G∆ then K stabilizes the perturbed system G∆. This result is formally given
by the following theorem:

Theorem 3.6. Consider a system G with a right normalized coprime fac- Gap

metric &

robust

stab/tion

torization G = NM−1 and a controller K that stabilizes it. Take a real
number ǫ so that 0 ≤ ǫ ≤ 1. Then these two statements are equivalent:

a. The closed loop pair [G∆,K] is stable for every plant G∆ with G∆
∆
=

(N + ∆N )(M + ∆M )−1 being a right NCF perturbed plant G, where

∆N , ∆N ∈ RH∞ and
∥

∥

∥

[

∆M

∆N

]∥

∥

∥

∞
< ǫ.

b.The closed loop pair [G∆,K] is stable for every plant G∆ for which
δg(G,G∆) < ǫ.

¤

Proof. See [50], pp. 679.

¥

Now it is interesting to note that the theorem above is given in terms of Right vs.

left

NCF’s
right NCF’s whereas the formulation of the robust stabilization problem stated
in Theorem 3.3 is done in terms of left NCF’s. It follows from the analysis in [50]
that a controller K, being optimal for coprime factor perturbations, is optimal
for both left and right factorizations of the plant G, even though these two types
of uncertainty generate in general different classes of perturbed plants.

Given now that this controller K is optimal for both types of uncertainties,
the connection with the H∞ loop shaping theory is clear: a (sub)optimal con-
troller K robustly stabilizes a plant G if the conditions of Theorem 3.3 hold,
roughly if it satisfies (recall that P is the corresponding to G standard plant):

‖FL(P,K)‖∞ =

∥

∥

∥

∥

[

K(I− GK)−1M̃−1

(I− GK)−1M̃−1

]
∥

∥

∥

∥

∞

≤ ǫ−1. (3.116)
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Then a simple and qualitative condition to verify if this controller K stabilizesDiscussion

on the

gap
a NCF perturbed plant G∆ is to check whether the gap between G,G∆ is less
than the stability margin ǫ. Thus a compensator stabilizes a ball of uncertainty
in the gap metric of given radius iff it stabilizes a ball of uncertainty of the same
radius defined by perturbations on a normalized left coprime fraction.

It should be made clear that a perturbed plant at a distance greater than the
stability margin will not necessarily be destabilized by some compensator that
stabilizes the nominal plant with a stability margin equal to the gap between
the two systems. This latter feature is the property of another metric: the ν-gap
metric proposed by Vinnicombe in [145, 146].

As a last comment it should be added that this analysis can be extended in
the context of the LSDP of Section 3.3.2. This means that the plants considered
for the gap metric calculation are Gs (initial open loop plant) and Gs,∆ (the left
NCF perturbed plant) with the robust controller K∞ calculated for Gs.

3.4.3 Computation of the Gap Metric

In this final section the problem of actually computing the gap metric between
two systems will be briefly addressed. For more details on the mathematics and
on the method used to actually calculate the gap, the reader is encouraged to
refer to [49, 50].

Even though the gap metric was introduced in [39], its actual computationComputation

of the

gap
for any given plants G,G∆ was obtained by Georgiou&Smith in [49]. This is
done first by noting that the gap metric δg(G,G∆) is computed as the maximum
of the two directed gaps as in Eq. 3.109. Then, a quantitative expression for
computing the directed gap stems from Eq. 3.110 by using the Commutant
Lifting Theorem (see [50], pp. 674 and references therein):

~δg(G,G∆) = inf
Q∈H∞

∥

∥

∥

∥

[

MG

NG

]

−

[

MG∆

NG∆

]

Q

∥

∥

∥

∥

∞

. (3.117)

In the above equation Mi, Ni are right NCF of any plant Gi
32 and Q is related

to the Youla parametrization procedure of any stabilizing controller K acting on
G. Even though this equation does not give on its own any clear way on how to
compute the gap, it may be further manipulated in order to conceive a traceable
algorithm for this computation and it was a milestone getting a quantitative
method to transform the graph topology-induced metric (see Eq. 3.110) into
the exploitable expression in Eq. 3.117.

Technical Note: The gap metric and the ν-gap metric can be calculated to
any desired accuracy by using MATLABR© Robust Control Toolbox and
the command ‘gapmetric’. The calculation time needed is small enough
(typically less than 500ms) to permit its use inside a robustness verification
algorithm as it will be seen in Chapter 6.

32Recall that Gi(s)
∆
= Ni(s)M

−1
i (s) and M∗

i Mi + N∗
i Ni = I, with Mi, Ni ∈ RH∞.
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3.5 Conclusions

In this chapter some topics of modern H∞ theory were presented in order to
give insights and to provide completeness in the technical part of this work.

In Section 3.1 the general framework of output feedback H∞ control with
pole placement in LMI regions was presented. It has been argued that this con-
trol synthesis approach is attractive since it permits the tailoring of the plant’s
closed loop dynamics in terms of eigenvalue placement, along with H∞-based
optimization on several closed loop objectives. The disadvantage of this method
is the complexity of the controller obtained when full order convex synthesis is
assumed.

In Section 3.2 some standard results on how to transform an arbitrary com-
pensator into an equivalent observer-based state feedback controller were re-
viewed. It has been argued that in order to simplify the control structure in the
context of linearization-based gain-scheduled control, it is preferable to consider
strictly proper compensators with order equal to that of the plant in order to
obtain a null Youla parameter Q. A drawback of this method is that the parti-
tion of the closed loop eigenvalues to the state feedback or the observer part of
the controller is sometimes not so trivial.

In Section 3.3 some material on the classic McFarlane&Glover loop shaping
design procedure (LSDP) was detailed. The problem of coprime factor robust-
ness stabilization was also linked to the LSDP and the solution with a robust,
either full order or static, controller was presented. The discussion involved the
result that this procedure is particularly attractive in the context of gain schedul-
ing control for two reasons: first it offers an intuitive but theoretically justified
procedure of computing high performance controllers based on frequency domain
analysis and second because it gives the means to link stability of a plant as a
function of the uncertainty introduced on its coprime factors.

In Section 3.4 finally, a tool (the gap metric) linking stability and uncertainty
was presented. The gap metric is in fact a norm under a closed loop feedback
setting and it can give information on the stabilizability of a NCF perturbed
plant by a controller computed for a nominal plant. With this tool the classic
LSDP can be linked with gain scheduling as it will be seen in Chapter 6: a
LTI plant calculated around an equilibrium point near (or not too near) another
‘nominal’ one may be seen as a ‘perturbed’ plant. Thus the gap between these
two plants could give valuable information on the stabilizability of the second
plant using a controller calculated for the nominal one.
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Application examples.





Chapter 4

Modeling & Analysis

Overview

The gain scheduling methods of Chapter 1 that
were judged to be the more promising and also
offering the best background for further develop-
ment were tested using two different benchmark
examples. The first one is an analytic nonlin-
ear model of the pitch axis dynamics of a highly
manoeuvrable missile called the Reichert Missile
Benchmark (R’m’B). The second one is a tab-
ulated nonlinear example of an atmospheric re-
entry vehicle (ARV) provided by the EADS As-
trium Space Transportation corporation. This
chapter gives the results obtained from the appli-
cation of the first two steps of the Linearization-
based Gain Scheduling Procedure (LBGS) of Sec-
tion 1.3.1 (trimming and linearization) on these
systems. Given that these two steps are common
for any candidate for gain scheduling nonlinear
system, the same analysis techniques were used
and the results are presented in a similar way.
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4.1 The Reichert Benchmark Missile Model

The Reichert Missile Benchmark (R’m’B) was first presented in the control liter-
ature in the early 90’s (see [112]) and has been the benchmark system for many
works since, mostly due to the fact that it incorporates analytic formulas for the
aerodynamic functions of the system. In this monograph, a similar but more
recent version of the model appearing in [103] will be preferred.

4.1.1 Airframe Modeling

The nonlinear model of the R’m’B describes the longitudinal (or pitch) dynamics System

dynamicsof a highly manoeuvrable missile airframe around its center of mass. The state
vector x of the missile (see Fig. 4.1)1 is its angle of attack α (in rad) and pitch
rotational rate q (in rad·s−1). The command is the elevator deflection angle δ
(in rad), the output is the vertical acceleration η (in g’s) and its Mach number
M is considered as an internal time varying parameter2. The state dynamics of
the missile are given by:

dα

dt
= KαMCn(α,M, δ) cos α + q (4.1)

dq

dt
= KprM

2Cm(α, M, δ) (4.2)

whereas the output dynamics are:

η = KηM
2Cn(α, M, δ) . (4.3)

The lift force and pitching moment aerodynamic functions Cn, Cm are de- Aerodynamic

functionsscribed by the following equations in standard notation:

Cn(α, M, δ) = Cnα(α, M)α + Cnδδ (4.4)

Cm(α, M, δ) = Cmα(α, M)α + Cmδδ (4.5)

with

Cnα(α, M) =

(

180

π

)3

anα
2 +

(

180

π

)2

bn|α| +
180

π
cn

(

2 −
M

3

)

(4.6)

Cmα(α, M) =

(

180

π

)3

amα2 +

(

180

π

)2

bm|α| +
180

π
cm

(

−7 +
8M

3

)

(4.7)

and

Cnδ =
180

π
dn (4.8)

Cmδ =
180

π
dm. (4.9)

1The symbols Gm, Gp correspond to the missile’s center of mass and center of pressure.
2Explicit time dependence will be dropped when needed for the sake of simplicity.



102 Chapter 4. Modeling & Analysis

 
 
 

δ  

α  

velocity vector 

lift vector q  

zη  

z  x  

mG  pG  

 

Figure 4.1: Missile pitch view

Table 4.1: Missile & actuator coefficients.

Name Symbol Expression Value Unit

Reference area S - 0.04088 m2

Diameter d - 0.2286 m
Mass m - 204.02 kg
Moment of inertia Iyy - 247.44 kg · m2

Static pressure P0 - 46601.6 N/m2

Speed of sound vs - 315.89 m/s
Drag coefficient Ca - -0.3 -
Damping ratio ξ - 0.7 -
Natural frequency ωa - 150 rad/s
- Kα 0.7P0S/mvs 0.02069 s−1

- Kpr 0.7P0Sd/Iyy 1.23194 s−2

- Kη 0.7P0S/mg 0.66624 -
- Ax 0.7P0SCa/Iyy -1.96074 N/m
- an - 0.000103 deg−3

- bn - -0.00945 deg−2

- cn - -0.1696 deg−1

- dn - -0.034 deg−1

- am - 0.000215 deg−3

- bm - -0.0195 deg−2

- cm - 0.051 deg−1

- dm - -0.206 deg−1

(i) The altitude is considered constant (≃ 6100m).
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The missile is considered to be operating during the terminal target inter- Mach

trajectorycepting phase with its engine thrust equal to zero and the Mach profile given by
the following nonlinear differential equation:

dM

dt
=

1

vs

(

−|η| sin|α| + AxM
2cos α

)

, withM(0) = M0. (4.10)

The elevator fin is driven by an actuator modeled using the following second Actuator

dynamicsorder filter (δc (in rad) is the control signal provided by the autopilot):

d2δ

dt
+ 2ξωa

dδ

dt
+ ω2

aδ = ω2
aδc. (4.11)

The actuator and missile data coefficients are shown in Table 4.1. It should
be noted that the latter are generally dependent on the flight altitude that is
here considered as constant. The nonlinear mathematical model of the missile
is valid for −20◦ ≤ α ≤ 20◦ and for 1.5 ≤ M ≤ 3; these two variables forming
its flight envelope.

The aerodynamic functions related to the angle of attack Cnα, Cmα for α > 03

are shown in Figs. 4.2a, 4.2b. It can be observed that there exists a significant
variation of the functions values over α and M.

4.1.2 Trim Analysis

In this section the application of the first step of the Linearization-based Gain
Scheduling Procedure (LBGS), concerning the missile trim control computation,
will be detailed. The trim control δr is the rudder reference deflection angle
needed in order to stabilize the missile around an equilibrium (or reference)
point in the absence of external perturbations.

The equilibrium points can be parameterized as function of the angle of
attack α or the vertical acceleration η, and the Mach number M . Each pair,
α, M or η,M , forms the so-called scheduling vector ̺ used to describe the flight
envelope of the missile.

4.1.2.1 Parametrization on α

The trim control δ(̺r) = δr for each value of the scheduling vector ̺r = [αr Mr]
T Trim

inputinside the flight envelope specifications (−20◦ ≤ αr ≤ 20◦ and 1.5 ≤ Mr ≤ 3)
can be calculated easily using Eqs. 4.2, 4.5, 4.7 and 4.9. Given that the airframe
is on equilibrium for a given value ̺r, then dq

dt

∣

∣

r
= 04 and so:

δ(̺r) = −
Cmα(̺r)

Cmδ
αr. (4.12)

3For α < 0 the functions are symmetric due to |α| entering in Eqs. 4.6, 4.7.
4The ‘r’ notation means calculation on a reference-equilibrium point.
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(a) Lift aerodynamic function Cnα

(b) Pitching moment aerodynamic function Cmα

Figure 4.2: Missile aerodynamic function surfaces.
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Furthermore, the corresponding trim values q(̺r) = qr and η(̺r) = ηr can be Trim

outputscalculated by letting dα
dt

∣

∣

r
= 0 and then substituting Eq. 4.12 into Eqs. 4.1 and

4.3 respectively:

q(̺r) = −KαMrCn(αr,Mr, δr) cos αr

= −KαMr

[

Cnα(̺r) −
Cnδ

Cmδ
Cmα(̺r)

]

αr cos αr

(4.13)

and

η(̺r) = KηM
2
r Cn(αr,Mr, δr) cos αr

= KηM
2
r

[

Cnα(̺r) −
Cnδ

Cmδ
Cmα(̺r)

]

αr.
(4.14)

The results (3D and contour maps) of the trim procedure are visualized in
Figs. 4.3a-4.3f in the next page. It may be observed that for positive values of
the angle of attack, the corresponding trim control is negative, the trim pitch
rate positive, and the trim output negative. For negative angles of attack the
results are of course symmetric.

4.1.2.2 Parametrization on η

The parametrization of the trim control using the angle of attack α described Trimming

algorithmpreviously (see Section 4.1.2.1) is not preferable since α is usually not measured.
The variable that is actually measured (using accelerometers) is the output of
the plant η. As a result the trim control δr should be re-parameterized in terms
of a new scheduling vector ̺ = [η M ]T for every equilibrium point. To do this,
the following procedure is used:

1. Trim Control: Express the trim control δr as a function of the new scheduling Trim

inputvector ̺r = [ηr Mr]
T and the corresponding trim value for the angle of

attack α(̺r) = αr that is not known for the moment. To do this use Eq.
4.3 along with Eqs. 4.4, 4.6 and 4.8.

δ(ηr,Mr, αr) =

ηr

KηM2
r

− Cnα(αr, Mr)αr

Cnδ
(4.15)

2. Angle of Attack: Supposing that the system is on equilibrium (briefly ẋ|r
∆
= 0

and so the left hand sides of Eqs. 4.1, 4.2 go to zero), replace δ(ηr,Mr, αr)
of Eq. 4.15 into the pitch rate equation (see Eq. 4.2) obtaining:

0 = Cm(αr,Mr, δr)

= Cmα(αr,Mr)αr + Cmδδ(ηr,Mr, αr)

= Cmα(αr,Mr)αr +
Cmδ

Cnδ

(

ηr

KηM2
r

− Cnααr

)

.

(4.16)
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(a) Trim control surface (b) Trim control contour map

(c) Trim pitch rate surface (d) Trim pitch rate contour map

(e) Trim vertical acceleration surface (f) Trim vertical acceleration contour map

Figure 4.3: Missile trim results -parametrization on α
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From the last expression, the following third order polynomial equation
for αr as a function of the scheduling vector variables ηr,Mr is taken:

(

am −
dm

dn
an

)(

180

π
αr

)3

+ sgn(αr)

(

bm −
dm

dn
bn

)(

180

π
αr

)2

+

+

[

cm

(

−7 +
8Mr

3

)

−
dm

dn
cn

(

2 −
Mr

3

)

]

(

180

π
αr

)

+
dm

dnKη

ηr

M2
r

= 0

(4.17)

or in a more compact, ̺r-dependent form:

k1α
3
r + k2 sgn(αr)α

2
r + k3(̺r)αr + k4(̺r) = 0. (4.18)

Finally, because of the fact that sgn(αr) = −sgn(ηr) (see Figs. 4.3e, 4.3f), Trim AoA

the last equation can be written:

k1α
3
r − k2 sgn(ηr)α

2
r + k3(̺r)αr + k4(̺r) = 0. (4.19)

The previous polynomial equation can be solved for αr, for each value of
̺r using either the classic method of Cardano or numerical root finding
methods. In either case one will get three solutions for αr; however only
one has a physical sense5. For every ̺r, one solution has always the op-
posite sign than expected whereas another one violates the flight envelope
constraints taken over α (see Section 4.1.2.1). The acceptable solution is
shown in Figs. 4.4a, 4.4b6.

3. Pitch Rate: Since the trim value αr is computed by solving Eq. 4.19 for Trim

pitch

rate
every ̺r, the corresponding trim control δr may be calculated by replacing
αr into Eq. 4.15. In addition, the trim pitch rate values can be also found
by replacing αr, δr into Eq. 4.1 given that dα

dt

∣

∣

r
= 0:

qr = −KαMrCn(αr,Mr, δr) cos αr. (4.20)

The trim control and trim pitch rate when using the η-parametrization are
shown in Figs. 4.4c-4.4f.

The trim control δ(̺r) is needed as a necessary part of a gain-scheduled con-
trol law in order to ensure proper reference point tracking. For implementation
of such control laws, on line computation of δ(̺r) is unrealistic since it involves
real time solution of the aforementioned polynomial equation (see Eq. 4.19).
For this reason, the trim control is calculated off-line for a sufficient number
of points and the results are stored in a look-up table. Linear interpolation is
then used to provide an appropriate value for every other point ̺r of the flight
envelope7.

5For the singular case ηr = 0, the solution considered is αr = 0.
6Only positive values for ηr are considered; for negative ones the results are symmetric.
7Here a total number of 66 × 66 = 4356 points was used.
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(a) Trim angle of attack surface (b) Trim angle of attack contour map

(c) Trim control surface (d) Trim control contour map

(e) Trim pitch rate surface (f) Trim pitch rate contour map

Figure 4.4: Missile trim results - parametrization on η
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4.1.2.3 Flight Envelope Analysis

Most works concerning the R’m’B model lack a thorough analysis of the mis-
sile’s flight envelope (see [17, 36, 55, 81, 99]). This is probably due to the fact
that the flight envelope is directly parameterized using α,M and not η, M that
is more realistic, since α is not available for feedback8. However, all the oper- [α, M ]

flight

envelope
ating constraints are initially imposed on the angle of attack and the Mach, as
presented in Section 4.1.1, defining the corresponding [α, M ]-dependent flight

envelope Γ
[α,M ]
fe :

Γ
[α,M ]
fe :

[

|α| ≤ 20◦, 1.5 ≤ M ≤ 3
]

. (4.21)

The flight envelope can be re-parameterized in terms of η, M , using the
analysis of Section 4.1.2. The result is a non convex hull as it can be seen in
Fig. 4.4b (for ηr > 0), with the isoline α = −20◦ setting the right border of the
envelope. An analytic expression ηfe(M) for this isoline can be easily found by
setting α = −20◦ in Eq. 4.17 (symmetric results are obtained for for ηr < 0):

ηfe(M) ≃ −0.454M3 + 5.035M2. (4.22)

The [η,M ]-dependent flight envelope Γ
[η,M ]
fe is now given by Eq. 4.23 and [η, M ]

flight

envelopes
is visualized in Fig. 4.5 (yellow surface). A convex linear approximation Γ

[η,M ]
fe,lin

(yellow plus red surface) will be used from now on to simplify the shape of the
flight envelope in order to make the task of interpolation easier and is given by
Eq. 4.24:

Γ
[η,M ]
fe :

[

0 ≤ η ≤ ηfe(M), 1.5 ≤ M ≤ 3
]

(4.23)

Γ
[η,M ]
fe,lin :

[

0 ≤ η ≤ ηfe,lin(M), 1.5 ≤ M ≤ 3
]

(4.24)

with
ηfe,lin(M) ≃ 15.506M − 13.462. (4.25)

Figure 4.5: Missile flight envelope

8In practice, an estimator could be used to obtain α but this results to greater complexity.
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The discussion of this section showed that if a careful analysis of the operating
domain is not performed according to the initial nonlinear system constraints,
redundancy will occur. Indeed, if a rectangular flight envelope had been used

as in Section 4.1.2, the surface redundancy with respect to Γ
[η,M ]
fe would have

been around 60%, whereas with the linear approximation Γ
[η,M ]
fe,lin it is only 3.6%.

This surface redundancy is particularly important for a gain-scheduled controller
since it can significantly augment the number of synthesis points and hence the
interpolation complexity.

4.1.3 System Linearization

After the analysis of Sections 4.1.2.1-4.1.2.3 and the parametrization of the equi-
librium points of the missile in terms of the scheduling vector ̺ = [η M ]T , the
second step of the Linearization-based Gain Scheduling procedure (LBGS) con-
cerning linearization will now be detailed according to the standard analysis of
Section 1.3.1.

4.1.3.1 LTI Models

The goal here is to provide an LPV model of the missile’s nonlinear dynamicsLTI

models (see Eqs. 4.1-4.9) smoothly parameterized by the scheduling vector ̺ = [η M ]T

with ̺ ∈ Γ
[η,M ]
fe,lin and the corresponding equilibrium manifold information ob-

tained from the trim analysis. For notational simplicity, frozen instances of the
LPV model will be considered (with ‘r’ meaning frozen equilibrium-reference
operation):

ẋδ = A(̺r)xδ + B(̺r)δδ (4.26)

yδ = C(̺r)xδ + D(̺r)δδ (4.27)

with x = [α q]T , y = [η q]T and

xδ = x − x(̺r) (4.28)

δδ = δ − δ(̺r) (4.29)

yδ = y − y(̺r). (4.30)

The linear systems’ matrices are computed using Jacobian linearization of
the initial nonlinear system dynamics, for any desired value ̺r of the scheduling
vector inside the flight envelope:9

[

A(̺r) B(̺r)

C(̺r) D(̺r)

]

∆
=

[

∇x,rfx ∇δ,rfx

∇x,rhy ∇δ,rhy

]

(4.31)

9For notational simplicity, fx = [fα, fq]
T : R4 → R

2 and hy = [hη, q]T : R3 → R are the
nonlinear functions of the missile’s state and output dynamics (Eqs. 4.1-4.3).
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with: Jacobians

∇xfx =

(

∇αfα ∇qfα

∇αfq ∇qfq

)

(4.32)

∇δfx =

(

∇δfα

∇δfq

)

(4.33)

∇xhy =

(

∇αhη ∇qhη

0 1

)

(4.34)

∇δhy =

(

∇δhη

0

)

. (4.35)

The partial derivatives entering all the previous equations can be explicitly
computed using the following formulas10:

∇αfα = KαM
[

cos α
(

Cnα + α∇αCnα

)

− sinαCn

]

(4.36)

∇qfα = 1 (4.37)

∇αfq = KprM
2
(

Cmα + α∇αCmα

)

(4.38)

∇qfq = 0 (4.39)

∇δfα = KαMCnδ cos α (4.40)

∇δfq = KprCmδM
2 (4.41)

∇αhη = KηM
2
(

Cnα + α∇αCnα

)

(4.42)

∇qhη = 0 (4.43)

∇δhη = KηCmδM
2. (4.44)

The partial derivatives (computed using Eqs. 4.36-4.44) of the LTI models
(see Eqs. 4.26, 4.27) are not only dependent on M but also on α, δ; parameters
that not belong to the scheduling vector ̺. However, given that these derivatives
are computed at desired operating-equilibrium points and the corresponding
equilibrium values αr, δr can be parameterized as a function of the scheduling
vector ̺r (according to the analysis of Sections 4.1.2.2, 4.1.2.3), it can be clearly
seen that these LTI models are fully parameterized by the scheduling vector only.

Regrouping the above results, all linear time invariant, scheduling vector

dependent (with ̺ ∈ Γ
[η,M ]
fe,lin ) models of the R’m’B can be written in the following

transfer function and state space forms (see Eqs. 4.45, 4.46):

SLPV(̺r)
tf
:

{[

ηδ(s)
qδ(s)

]

=

[

Gη(s)
Gq(s)

]

δδ = G(s)δδ. (4.45)

10The aerodynamic functions Cn, Cnα, Cmα dependency on α, M, δ is omitted for notational
simplicity.
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SLPV(̺r)
ss
:



















(

α̇δ

q̇δ

)

=

(

∇α,rfα 1
∇α,rfq 0

)(

αδ

qδ

)

+

(

∇δ,rfα

∇δ,rfq

)

δδ

(

ηδ

qδ

)

=

(

∇α,rhη 0
0 1

)(

αδ

qδ

)

+

(

∇δ,rhη

0

)

δδ

(4.46)

The matrix transfer function G(s) = C(sI −A)−1B +D presents totally twoMissile

transfer

functions
poles, two zeros for the η-channel and one zero for the q-channel I/O transfer
functions as seen from the following relation:

G =

[

Gη

Gq

]

=

[

D11s
2 + (C11B11 − A11D11)s + C11B21 − A21D11

−B21s + A21B11 − B21A11

]

s2 − A11s − A21
. (4.47)

The elements of the state space matrices A,B,C and D, depending on the
scheduling vector ̺ = [η M ]T , make the values of the zeros and poles of the
aforementioned I/O transfer functions varying over the flight envelope. This
necessitate a comprehensive stability and dynamics analysis of the linear systems
SLPV(̺r) for every value of the scheduling vector that will shed some light on the
stability of the initial nonlinear plant. These six scheduling vector-dependent
elements A11, A21, B11, B21, C21, D11 are visualized in Figs 4.6a-4.6f.

4.1.3.2 Stability Analysis

The local stability properties of the missile nonlinear dynamics (see Eqs. 4.1-
4.2) can be investigated using the well-known Lyapunov’s indirect method. For
a given reference-equilibrium state xr parameterized in terms of the scheduling
vector ̺r = [ηr Mr]

T , the eigenvalues of A(̺r) provide the information if the
missile is locally stable around this equilibrium point. The eigenvalues and theEigenvalues

corresponding stability condition are:

λ1,2(̺r) =
∇α,rfα ±

√

(

∇α,rfα

)2
+ 4∇α,rfq

2
(4.48)

Stability condition: The linear missile dynamics are stable iff for ̺r ∈ Γ
[η,M ]
fe,lin ,

∇α,rfα < 0

∇α,rfq < 0.
(4.49)

From Fig. 4.6a it can be seen that the first stability condition is always
satisfied for all the flight envelope; however the second one not always (see Fig.
4.6c). Using Eq. 4.38 it can be rewritten as a condition over Cmα:

Cmα,r < −αr∇α,rCmα. (4.50)
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(a) Element A11 (b) Element B11

(c) Element A21 (d) Element B21

(e) Element C11 (f) Element D11

Figure 4.6: Missile LTI system matrix elements
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(a) Stable eigenvalues’ real part (b) Unstable eigenvalues’ real part

(c) Eigenvalues’ absolute imaginary value

(d) Gη transmission zeros (absolute value) (e) Gq transmission zeros

Figure 4.7: Missile linearization results - eigenvalues, transmission zeros
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The right hand side of Eq. 4.50 is always positive since by observing Fig. Stability

discussion4.2a, the slope of the aerodynamic function is always negative for α > 0 (sym-
metry exists always for α < 0). Thus it can be said that roughly, the airframe is
stable iff Cmα < 0 but this is not totally correct. This previous type of stability
analysis based on the sign of Cmα is rather classical (see [77]) and is based on
the fact that if for a given equilibrium angle of attack αr and a corresponding
trim input δr, the variation on the pitching moment due to the aerodynamic
forces with respect to the center of gravity, caused by an external perturbation
and forcing the plant to a new α = αr + ∆α, tends to bring the angle of attack
to its initial equilibrium value, then the airframe is stable.

The full stability conditions (see Eq. 4.49) are given as a function of α and
it is difficult to translate them directly on η in order to symbolically calcu-
late the boundaries of the unstable region. The symbolical calculations can be
avoided and stability could be studied by iteratively computing the sign of the
eigenvalues of the missile linearized dynamics for a fixed gridding of the flight
envelope. Thus a good approximation of the unstable subregion Γfe,un (with

Γ
[η,M ]
fe,lin ⊂ Γfe,lin) can be found (see Fig. 4.8). The surface percentage of Γfe,un

with respect to Γ
[η,M ]
fe,lin and Γ

[η,M ]
fe is 0.82% and 0.79% respectively.

The linear analysis of the missile’s nonlinear dynamics can also provide some LTI

models

properties
very interesting insight results visualized in the following pages. In Figs. 4.7a,
4.7b, the amplitude of the real part of the LTI plants’ eigenvalues for both the

stable and unstable parts of Γ
[η,M ]
fe,lin is visualized whereas in Fig. 4.7c the imagi-

nary part is displayed. The evolution of the transmission zeros of G(s) (see Eq.
4.47) is also shown in Figs 4.7d, 4.7e.

Finally, in Figs. 4.9a-4.9h the Bode diagrams and the I/O pole-zero maps of
G = [Gη Gq]

T are visualized for four different values of the Mach. Two things
may be observed: first, the poles of the system are stable but badly damped
(except for some unstable cases for M = 3, corresponding to Γfe,un) and second,
the plant has non-minimal phase transmission zeros for Gη whereas the zeros of
Gq remain stable. In general it can be remarked that all these characteristics of
the LTI plants are considerably varying over the flight envelope.

Figure 4.8: Missile flight envelope unstable part
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(a) M = 1.5 (b) M = 1.5

(c) M = 2 (d) M = 2

(e) M = 2.5 (f) M = 2.5

(g) M = 3 (h) M = 3

Figure 4.9: Missile Bode and Pole-zero maps of Gη, Gq
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4.2 The ARV Benchmark Model

The second system considered in this work is an atmospheric re-entry vehicle
example (ARV) provided by EADS ASTRIUM Space Transportation corpora-
tion. It is used to validate the techniques developed during this thesis and the
results given are by no means representing real situations; however they are ac-
curate enough to provide insight into the control methods presented in the next
chapters.

4.2.1 Airframe Modeling

The nonlinear model of the vehicle11 presented here describes its longitudinal System

dynamicsmotion during the atmospheric re-entry phase (a pitch view is shown in Fig.
4.10). The state x here is once again the angle of attack α (in rad) and the pitch
rate q (in rad · s−1). Two control signals δel, δer (in rad) representing the left and
right tail elevator deflections are available to manipulate the vehicle’s pitch and
roll motion. The deflections are symmetric for pitch control (defining the pitch
control signal δe) and antisymmetric for roll control; here only the first will be
considered and is defined as12:

δe =
1

2
(δel + δer). (4.51)

The pitch rate dynamics of the vehicle are dependent on the Mach number M
following a predefined time trajectory (Fig. 4.12a), on the dynamic pressure Q
(in N/m2) depending on the Mach (Fig. 4.12b) and on the physical parameters
of the vehicle (Table 4.2). The state dynamics are:

dα

dt
= q (4.52)

dq

dt
=

SlQ

Iyy
Cm(α, M, δe) (4.53)

where the pitching moment aerodynamic function Cm is defined as:

Cm(α, M, δe) = Cm0(α,M) + Cme(α, M)δe. (4.54)

The highly nonlinear aerodynamic function derivatives Cm0, Cme are not
available in symbolic form as in the missile but are rather tabulated for var-
ious points of the vehicle flight envelope (Figs. 4.11a, 4.11b). The latter is Flight

envelopeparameterized in terms of the angle of attack and the Mach number, thus the

scheduling vector taken here is ̺ = [α M ]T . The flight envelope Γ
[α,M ]
fe is defined

as:
Γ

[α,M ]
fe :

[

30◦ ≤ α ≤ 50◦, 4 ≤ M ≤ 26
]

. (4.55)

11Real values for several parameters are not given for confidentiality reasons.
12Once more time dependence is omitted to simplify the equations.
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Figure 4.10: The ARV vehicle

Table 4.2: Vehicle & actuator coefficients

Name Symbol Unit

Damping ratio ξ -
Natural frequency ωa rad/s
Reference area S m2

Reference length l m
Moment of Inertia Iyy kgm2

(a) Cm0

(b) Cme

Figure 4.11: Vehicle aerodynamic functions



4.2 The ARV Benchmark Model 119

(a) Mach number M (b) Dynamic pressure Q

Figure 4.12: Time profiles for M, Q

The elevator fins are driven by an actuator that can be modeled as a second
order filter governed by the following I/O representation:

d2δe

dt
+ 2ξωa

dδe

dt
+ ω2

aδe = ω2
aδc. (4.56)

4.2.2 Trim Analysis

The first step of the LBGS procedure (trim control computation) is detailed in Trim

controlthis section. The trim control δe(̺r) = δe,r maintains the vehicle at a desired
angle of attack in the absence of external perturbations. Of course since the Mach
number varies according to the profile of Fig. 4.12a this control is not sufficient
to stabilize the vehicle and a feedback control should be added. The trim control
can be calculated as a function of the scheduling vector ̺ by supposing that at an
equilibrium or reference state is imposed and consequently dq

dt

∣

∣

r
= 0. To compute

δe,r, Eq. 4.53-4.54 are used and the trim surface is obtained (Fig 4.13):

δe(̺r) = −
Cm0(̺r)

Cme(̺r)
. (4.57)

Figure 4.13: Vehicle trim control surface
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4.2.3 System Linearization

4.2.3.1 LTI Models

Having parameterized the system in terms of a scheduling vector ̺, the secondLTI

models step of the (LBGS) procedure is to obtain LTI models of the vehicle for every

desired operating point inside the flight envelope Γ
[α,M ]
fe . Similarly to the proce-

dure used for the missile, a family of linear models SLPV(̺r) for every ̺r can be
written in the following state space form:

SLPV(̺r)
ss
: ẋδ = A(̺r)xδ + B(̺r)δe,δ (4.58)

with x = [α q]T and:

xδ = x − x(̺r) (4.59)

δe,δ = δe − δ(̺r). (4.60)

The linearized matrices A,B are given by:13

A(̺r) =

(

0 1
∇α,rfq 0

)

(4.61)

B(̺r) =

(

0
∇δe,rfq

)

(4.62)

with:14Jacobians

∇α,rfq =
SlQr

Iyy

[

∂Cm0(̺r)

∂α
−

∂Cme(̺r)

∂α

Cm0(̺r)

Cme(̺r)

]

(4.63)

∇δe,rfq =
SlQr

Iyy
Cme(̺r) . (4.64)

The family of LTI systems S(̺r) is written in transfer function form:

S(̺r)
tf
:

{[

αδ(s)
qδ(s)

]

=

[

Gα(s)
Gq(s)

]

δe,δ = G(s)δe,δ (4.65)

where:

G(s) =

[

Gα(s)
Gq(s)

]

=
1

s2 + ω2
0

[

b
bs

]

. (4.66)

The corresponding natural frequency ω0 and open loop gain b of the linear
systems are calculated from the matrix elements A21, B21 and vary as a function
of the scheduling vector:

ω2
0(̺r) = −∇α,rfq (4.67)

b(̺r) = ∇δe,rfq. (4.68)

13The function fq : R3 → R is the right hand side of Eq. 4.53.
14The dynamic pressure Q is not considered as a scheduling parameter since it depends

directly on the Mach; however the corresponding reference value Qr is shown in the linearization
equations.
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4.2.3.2 Stability Analysis

A stability analysis of the vehicle dynamics is given here, based on the family of
LTI models SLPV(̺r) calculated for every value of the scheduling vector ̺ inside
the vehicle flight envelope. It may be observed (e.g. from Eq. 4.65) that the
linear models present two complex conjugate eigenvalues with zero real parts;
thus the vehicle is conditionally stable.

The three element surfaces A12(̺r), B12(̺r) and ω2
0(̺r) are visualized in Stability

discussionFigs. 4.15a-4.15c. The first two figures presenting the evolution of the LTI
matrix elements do not give more information further than underlining the heavy
change of the system dynamics for all values of ̺. However, Fig. 4.15c showing
the form of the LTI models natural frequency dependence on ̺, is particularly
interesting. This is because a closed loop controller (namely a gain-scheduled
one) should be able to maintain appropriate damping to the imaginary closed
loop poles and also sufficient stability margins despite this dependence.

This ‘bell’ type surface is a very good way to characterize the variation of
the system’s dynamics and will also give rise to the discussion of Chapter 6
concerning gain scheduling control laws and their ability to capture the plant’s
nonlinearities and change of dynamics; it will indeed be shown that the gain-
scheduled control laws calculated in Chapter 6 achieve this task by means of the
gap metric.

This change of the natural frequency ω0 can be also visualized in the following
figure (Fig. 4.14) representing Bode magnitude diagrams of transfer functions
Gα of the vehicle’s family linear systems SLPV(̺r) for a significant number of
frozen values for ̺.

As a last comment it can be said that whereas in the missile the pitch rate q
is used also as a measured output; here it is not the case and only the angle of
attack α is used. This is done primarily for reasons of simplicity of the feedback
loop as it will be seen in the following chapters since a gain-scheduled controller
of the least possible complexity is always sought.

Figure 4.14: Vehicle Bode magnitude diagrams
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(a) Element A21 (b) Element B21

(c) Natural frequencies

Figure 4.15: Vehicle linearization results
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4.3 Conclusions

In this chapter we have presented the preliminary work conducted concerning
the modeling and analysis of the two benchmark systems used during the the-
sis in order to validate the proposed gain scheduling strategies of the following
chapters. This phase practically corresponds to the first two steps of the LBGS
procedure detailed in Section 1.3.1, namely the trim analysis (or equilibrium
point parametrization) and the Jacobian linearization of the plants.

The procedure followed is similar in both cases: first choose a family of sys-
tem variables (scheduling vector) to parameterize the equilibrium points of the
initial nonlinear system and then use either symbolical or numerical techniques
to calculate a trim control in order to equilibrate the state/output of the plant
to a pre-defined desired value for all the operating domain of the system. Sec-
ond, calculate LTI models of the system for a family of reference values of the
scheduling vector and analyze their stability.

It has been analyzed that for the missile this parametrization is output-based
whereas for the missile is state-based. The missile presents a small unstable re-
gion of its flight envelope whereas the vehicle is everywhere between the limits
of stability and instability.





Chapter 5

Ad-hoc Control Strategies

Overview

In this chapter two gain scheduling control strategies are
applied to the autopilot problem of an Air-to-air missile.
These strategies are the controller blending and state feed-
back/observer -based interpolation methods detailed in Chapter
1 of this thesis and they are used for the control of the pitch-
axis nonlinear model of the Reichert Air-to-air missile. These
methods present some advantages in terms of using powerful
tools of the modern robust control theory to control a nonlin-
ear system; even so, in terms of implementation they are not
so realistic compared to the gain blending method detailed in
the next chapter. For low dimension and/or not much non-
linear systems however they still remain attractive and rather
intuitive. The scope of this chapter is mostly to insist on their
characteristics, rather than perform an exhaustive simulation
procedure, remaining though inside a practical context.
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5.1 Introduction

In this chapter two major interpolation methods will be applied to the pitch Method

overviewaxis autopilot problem of an Air-to-air missile. These methods are the con-
troller blending and observer/state feedback interpolation methods detailed in
Sections 1.3.2.1 and 1.3.2.6 respectively. These methods have been selected over
others (e.g. controller switching, state space matrix interpolation) due to the
advantages they present. The controller blending method for example demands
less computational effort and presents a rather small interpolation difficulty due
to the fact that only output signals are interpolated whereas the observer/state
feedback method is rather straightforward since it gives an estimate of the plant
state while being a true MIMO method. In addition, it rises as a good extension
to the controller blending method since by Youla parameterization (see Section
3.2) the same LTI controllers may be used for both methods and thus a com-
parison between the methods is easier to perform.

These methods are compared to each other and to the more systematic gain
blending method (detailed in the next chapter) using a realistic scenario and
extensive simulations. The advantages and disadvantages of each method are
stressed out and potential improvements are proposed. This chapter comes as a
natural extension of Chapter 4 where the first two steps of the linearization-based
gain scheduling procedure (see Section 1.3.1) were applied to obtain the trim con-
trol surface/operating point parametrization and the corresponding LTI/LPV
models for each value of the scheduling vector, both for the Reichert missile and
the re-entry vehicle. In this chapter, the three remaining steps are detailed,
namely: the LTI controller computation, controller interpolation and controller
implementation & validation.

The chapter is organized in two main parts: the first one (see Section 5.3)
presents the controller blending method whereas the second (see Section 5.4)
presents the observer/state feedback method. Finally, the chapter ends with
some conclusions.

5.2 Related Work

A full bibliographic study on the subject of missile control is beyond the scope The

originsof this work for two reasons: first, several methods have been proposed to cope
with different problems and second, the missile autopilot design dates back to
the 40’s and a huge number (maybe hundreds) of references on the subject can
be found; in this monograph only the most notable works since the 90’s are cited.

Perhaps one of the first works published1 is the one found in [16] exactly half
a century ago. It concerns a simple angular rate/position feedback in order to
stabilize the roll motion of an Air-to-air missile. Of course there was no question
using even the simplest adaptive control scheme with the technology of the time.

1One can find even earlier research work on guided missiles; see for example [1].
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An adaptive control approach using parameter estimation and gain schedul-
ing was used in [76] to obtain an autopilot for a flexible Air-to-air missile. An
ad-hoc control scheme is used and its gains are scheduled by identifying the fin
position pitching coefficient for the entire flight envelope of the missile.

One of the first examples in gain scheduling applied on missile control is
found in [112] in the early 90’s. In this work modern H∞-µ techniques are used
to obtain LTI controllers which are put in observer/state feedback form. The
solutions to the corresponding Riccati equations are then scheduled as a func-
tion of the angle of attack (AoA) and the Mach number in order to provide a
time-varying gain-scheduled controller.

In [17], the pitch axis missile nonlinear model is linearized and put in LFT
form with the uncertainty block ∆ using the AoA. Linear controllers are de-
signed (being robust with respect to the AoA) and scheduled for different values
of the Mach number. The results are promising, even though the simulations
are not too exhaustive. Another similar approach using tools of the µ-analysis
to guarantee stability between the controller synthesis points is found in [37].
The controllers are optimal LQ regulators but the results were not too good.

An early attempt to use a q-LPV modeling of a missile’s dynamics starting
from a pure nonlinear model can be found in [123]. Then a particular type of tra-
jectory scheduling is used in order to avoid the classical procedure of designing a
finite number of LTI controllers for various design points. The controllers used
are once again optimal LQ regulators, however the simulation results mostly
demonstrate the feasibility of the approach.

A major advance in missile autopilot design was done by the classical workThe

‘Reichert’

missile
found in [103]. This paper presents a benchmark pitch axis model of an air-
air missile (Reichert missile Benchmark or R’m’B) and uses classic H∞ control
theory, along with a particular type of controller implementation found in more
detail in [79], in order to remove the famous hidden coupling terms2. The con-
trollers are scheduled using directly the output and not the state (as well as
the Mach number), and ZPK interpolation (see Section 1.3.2.3) and the overall
control scheme is tested using extensive simulations. Similar ideas, along with a
very small reference on the missile’s flight envelope can be found in [150] where
instead of robust H∞, reduced order controllers are considered. In the same
framework as in the previous two references, an observer/state feedback form of
the central H∞ controller obtained by appropriate frequency weighting is used
in [55] in order to construct a gain-scheduled controller.

A modern approach using modern H∞ LPV control and LMI’s is the fa-
mous paper [13] (see equally [10]). In this paper the controllers are scheduled
using two nonlinear functions (depending on the Mach, altitude and AoA respec-
tively) inside a polytope. The overall scheme gives all the stability guarantees
of this class of control methods but suffers also of all their inherent drawbacks
(conservativeness, complexity).

2For more details on this important notion see the discussion in 1.3.3.2.
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Another application example using a q-LPV formulation (using state trans-
formations) of a 6DoF bank-to-turn (BTT) missile is the one in [25]. Tools of
the µ-synthesis robust control theory are used and the resulting controllers for
the pitch and roll/yaw channels are scheduled using the AoA and the roll rate
(similar approaches may be found either in [124] or in [123]).

In [116] a pure nonlinear control strategy (dynamic inversion) is compared
with H∞ gain scheduling using the so-called D implementation for the autopi-
lot of a bank-to-turn missile. The two methods were found to be equivalent in
terms of performance and robustness thus clearly favoring the gain scheduling
approach due to its simplicity.

The controller blending interpolation method, along with the ideas concern-
ing controller realization treating the hidden coupling terms3, is tested using the
Reichert missile benchmark in [81]. The methodology, even though it appears
rather promising, is not validated by simulations in an appropriate manner.

A very good reference on the subject is the work found in [45]. A full autopilot
is designed for an Aerospatiale missile with very lightly damped bending modes.
The classic Glover&McFarlane H∞ loop shaping design procedure (LSDP) is
used and robustness is verified using the ν-tool and a complete simulation suite.

In [24] an autopilot for a 6DoF skid-to-turn missile is designed using µ-
analysis. The controllers are scheduled using the dynamic pressure and a signal
conditioning/blending technique similar to controller blending. The effectiveness
of the control loop is also validated by an interesting engagement scenario with
the missile pursuing an aircraft sustaining 9g normal accelerations.

A self-scheduled nonlinear pitch-axis autopilot for a missile is designed in [63]
using LPV synthesis tools coupled with H∞ loop shaping design criteria. The
controller is scheduled using the Mach number, altitude and AoA over a wide
flight envelope. The approach is systematic and stability preserving, offering
good results in terms of performance and robustness.

An interesting theoretical work may be found in [47] where notions like in-
cremental stability are used for the analysis of a PI controlled missile (namely
the Reichert benchmark model). The analysis, even though it turns out to
require the solution of LMI’s is not put in the traditional autopilot perfor-
mance/robustness framework and has not been used in other cases to date.

The ideas behind stability preserving interpolation using the stability cover-
ing condition analysis of 1.3.3.2 were applied as a benchmark to the autopilot
synthesis of the Reichert benchmark model in [132] and [129]. The first paper
concerns observer/state feedback interpolation whereas the second interpolation
using the Youla parameter. Both papers give a theoretical flare to the applica-
tion but unfortunately lack significantly on the controller validation part.

Another approach using a q-LPV formulation of a missile dynamics and mod-
ern LPV control (casts the problem as a generalized disturbance rejection one)
gives some good results and is detailed in [136].

3See once again the classic paper [79] or Section 1.3.3.2 for further details.
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A comparative paper demonstrating various control strategies for a skid-to-
turn Aerospatiale missile is found in [33]. The control strategies include classic
PI-like loops as well as nonlinear linearizing static and dynamic state feedbacks.
The results clearly favor the nonlinear control methods; however it remains to
be seen if they are on the one hand realistic for implementation and on the
other hand, if being compared to more advanced gain-scheduled robust control
schemes, retain their advantages.

A rather unusual missile control problem is outlined in [101]. The problem
is the trajectory following of a particular 6DOF skid-to-turn missile. The con-
trolled outputs are the AoA, sideslip and Euler roll angle and the control setup
consists of two parts: first an open loop dynamic inverse of the plant puts it
on the desired trajectory and second an eigenstructure assignment LTV (due
to trajectory linearization) control law stabilizes the open loop dynamics. The
method is promising and according to the authors presents advantages over the
traditional gain scheduling design but robustness testing is yet required.

An alternative strategy for missile autopilot design based on velocity-based
gain-scheduling is found in [90] and [89]. This class of methods has been ana-
lyzed in Chapter 2 and their inventors claim that they present superior features
over the traditional gain scheduling ones, even though their merits are doubted
by some (see for example [84]). In any case, the simulation results appearing in
both seem nice and demonstrate the feasibility of the approach.

Some work on digitally implemented autopilot control laws in the H∞ loop
shaping context can be found in [43] or equally in [42]. In the first case, reduced
order discrete time dynamic controllers are considered and interpolated using
the output (vertical acceleration) and the Mach number, whereas in the second
case, multi-rate design is considered.

Another method based on multi-model eigenstructure assignment and µ-
iteration is presented in [36]. This work is notable since on the one hand, it
presents very good simulation results on the well known Reichert benchmark
missile and on the other hand, because several other classical works on gain
scheduling control autopilots are compared (see for example Section 4.5 of the
paper) to the proposed approach.

In [3], integral quadratic constraints (IQC’s) and LPV modeling are used to
analyze the stability robustness of an uncertain nonlinear missile control system
based on dynamic inversion. The tuning of the controller was done using a ge-
netic algorithm and then it was put (together with the plant) in LPV/LFT form
in order to use the IQC analysis tools. Since the latter can be put into LMI form
they are computationally tractable. Finally, the stability of of the autopilot was
proven under the appearance of time-varying parameters.

Some very recent work may be found in [141] where a fuzzy interpolation
control is used for the missile autopilot. In [99] an LPV control scheme is com-
pared to an eigenvalue assignment technique for the autopilot of a skid-to-turn
missile. Finally a paper concerning control of a square cross section missile using
classical H∞ control and nonlinear dynamic inversion is the one in [30].
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5.3 Missile Control Objectives

The missile autopilot control goals-objectives will be detailed in this section. Missile

modelRecall from Chapter 4 that the pitch axis missile nonlinear parameter-dependent
model Spd, is a SIMO system with its state being comprised by the angle of
attack (AoA) α (in rad) and the pitch rate q (in rad/s); its control input being the
tail elevator deflection angle δ (in rad) and the measure vector being comprised
by the vertical acceleration η (in g’s) and the pitch rate q. The nonlinear model
is parameterized also by the Mach number M considered as an internal variable
(see Fig. 5.1).
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Figure 5.1: Missile block diagram.

The missile’s rectangular flight envelope is formed due to the restrictions on Flight

envelopethe AoA and Mach number: −20◦ ≤ α ≤ 20◦ and 1.5 ≤ M ≤ 3 respectively
and linear models may be computed for every α, M inside this envelope. Given
though that the AoA is not available as a measurement, it should not be used
directly when calculating trim conditions and linear models.

The vertical acceleration η should be used in its stead, and thus the flight
envelope can be re-parametrized as a function of η, M . The obtained flight

envelope Γ
[η,M ]
fe has now a more complicated non-convex trapezoidal form (see

Fig. 4.5) and thus, for every value of M , the maximum admissible value for η
(due to the limits on α) is given by (see also Section 4.1.2.3)4:

ηfe(M) ≃ −0.454M3 + 5.035M2, α ≤ 0. (5.1)

As it has been already detailed, a linear approximation of the aforementioned

equation yields a superset of Γ
[η,M ]
fe ; this new, slightly redundant5, flight envelope

(denoted as Γ
[η,M ]
fe,lin ) has been used instead for simplicity, and it forms a trapezium

whose four corners are the following pairs:

[η, M ] : [0, 1.5], [9.7969, 1.5], [0, 3], [0, 33.0559]. (5.2)

The scheduling vector ̺ (being now formed by η, M) takes values inside

Γ
[η,M ]
fe,lin and parameterizes all the plants equilibrium points, trim control and

linear models, as it has been detailed in the previous chapter.

4Of course since the AoA may also take positive values, the flight envelope is symmetric
with respect to the Mach number and so do the linear models, trim control etc.

5Since this approximation adds up about 3.6% of surface.
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The control objective for the autopilot is simple enough: track step referenceControl

objectives signals ηr(t) of different amplitudes inside the flight envelope while the Mach
varies with certain performance and robustness constraints. The performance
constraints concern the output tracking characteristics (P1) and maximum con-
trol signal rates (P2) whereas the robustness constraints concern stability mar-
gins/high frequency open loop attenuation (R1) and robust stability under aero-
dynamic coefficient perturbations (R2). These constraints are taken from the
benchmark paper [103] and are the following:

P1: Track step commands on ηr(t) of various amplitudes with a time constant6

τ ≤ 0.35s, overshoot Mp ≤ 10% and steady state error ess ≤ 1%.

P2: The tail elevator angle deflection rate |δ̇| should be inferior to 25deg/s for
1g step reference commands.

R1: The missile should exhibit robust stability inside all its flight envelope
when the pitching moment coefficients (am, bm, cm) and dm vary around
their nominal values by ±25%.

R2: The linearized system should maintain at least 30dB attenuation for the
gain amplitude of the obtained open loop transfer function, when the loop
is opened just before the actuator.

The first two performance characteristics denote objectives that in the bench-Performance

mark paper [103] are tested for a given simulation profile on the nonlinear system.
This profile may sometimes be too favorable for the autopilot since variations
of big amplitude are demanded for relatively high values of the Mach number
where the controllers are in general more performing. The procedure often used
by the designers is to calculate a small number of controllers and try to adapt
the performance objectives only for these points, hoping that the design will
carry on to the nonlinear system. There is no indication if the number of points
considered is too small, too big or even if the points themselves are chosen in
places where the nonlinear dynamics need treatment.

The situation for the robustness objectives is the same: these objectives areRobustness

most of the time satisfied (with a relative margin) at the synthesis points and
the nonlinear gain-scheduled controller is exhaustively tested for stability when
the aerodynamic coefficients are perturbed. This analysis is done using a Monte
Carlo procedure for hundreds (in real world systems maybe several thousands)
of operating points; thus guaranteeing in a way a posteriori the well-behaved of
the controller. Other tests performed include linearization of the total open loop
of the system plus the gain-scheduled controller in order to check its stability
margins for frozen values of time along the desired reference trajectory of the
scheduling vector.

6To avoid confusion the time constant is here defined as the time it takes the tracking output
to reach the 63.2% of its final value.
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5.4 Controller Blending

In this section the results from the first ad-hoc scheduling method, based on
controller blending, will be presented. Recall from Section 1.3.2.2, that this
method uses LTI controllers designed around a family of operating points inside
the system’s operating domain and then interpolates the outputs of adjacent
controllers in order to provide the final control signal.

Initially in this work, only four controllers at the corners of the flight envelope Synthesis

pointsΓ
[η,M ]
fe,lin were used, but the performance of the gain-scheduled controller was not

satisfactory. This was due to the fact that such a small number of controllers was
inadequate to capture the variation of the plant dynamics inside the operating
domain. Thus, it was decided to divide the flight envelope in four scheduling
regions Γ1, Γ2,Γ3, Γ4 formed by nine synthesis points. These synthesis points,
for each value ̺i, i = 1, . . . , 97, are shown in Table 5.1.

Table 5.1: Controller synthesis points(i),(ii).

Point 1 2 3 4 5 6 7 8 9

η 0 4.898 9.797 0 10.713 21.426 0 16.528 33.056
M 1.5 1.5 1.5 2.25 2.25 2.25 3 3 3
(i) Each point corresponds to a value ̺i.
(ii) The values for η are approximated to the third digit.

The flight envelope along with the four scheduling regions are illustrated in
Fig. 5.2 (the symmetrical part for negative values of the vertical acceleration is
not here shown). Before proceeding to the LTI controller calculation, it should
be stressed out that the same nine synthesis points are used for every type of
interpolation method in the rest of this work.

Figure 5.2: Flight envelope, synthesis points and scheduling regions.

7Instead of noting each synthesis point as ̺i,j (where i = 1, . . . , 4 is the scheduling region
and j = 1, . . . , 4 the number of the controller in each region) as in Section 1.3.2.2, a simpler

notation is used with i = 1, . . . , 9 denoting globally every controller in Γ
[η,M ]
fe,lin .
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5.4.1 LTI Controller Synthesis

In this section the LTI controller synthesis procedure (corresponding to the thirdMissile

LPV model step of the linearization-based gain scheduling procedure) will be detailed. Re-
call that in Section 4.1.3.1, an LPV model of the missile’s nonlinear dynamics,
parameterized by the scheduling vector ̺ = [η M ]T , was obtained. This model
SLPV(̺) was of the following form:

SLPV(̺) :
ẋδ = A(̺)xδ + B(̺)δδ

yδ = C(̺)xδ + D(̺)δδ

(5.3)

with x = [α q]T , y = [η q] and:

xδ = x − x(̺)

δδ = δ − δ(̺)

yδ = y − y(̺).

(5.4)

For the sake of correctness, it should be stressed that the above LPV model
is in fact a family of LTI models, smoothly parameterized by fixed-equilibrium
values ̺r of the scheduling vector. Thus, each member of this family SLTI(̺r) of
linear models describes the behavior of the initial nonlinear parameter-dependent
missile model Spd, locally around the equilibrium point.

The corresponding constant system matrices A(̺r),B(̺r),C(̺r) and D(̺r)
are of course obtained by Jacobian linearization using appropriate trim values for
the state and the input. The corresponding to each frozen state space description
SLTI(̺r), I/O matrix transfer function G(s) is written as:

[

ηδ(s)
qδ(s)

]

=

[

Gη(s)
Gq(s)

]

δδ = G(s)δδ. (5.5)

In the context of controller synthesis, the plant was preceded by the actua-LTI

synthesis tor transfer function Ga(s) (see Eq. 4.11) and also augmented by an integrator
acting on the tracking error eδ = ηr − ηδ (in order to ensure proper reference
trajectory following). A robust H∞, S/KS-type mixed sensitivity control strat-
egy was then selected in order to treat the tracking error dynamics on the one
hand, but limit on the other hand the control effort rate, conformably to the per-
formance objectives P1, P2. Appropriate constant (for simplicity) weights ke, kδ̇

were added for use with this method on each signal eδ, δ̇δ.
In addition to the H∞ optimization, LMI pole placement constraints were

imposed, to have a better control on the closed loop dynamics and avoid inherent
inconveniences of standard H∞ control (e.g. very fast closed loop eigenvalues).
Thus, an LMI region D(λmin, rmax, ϑmin) was used with λmin, rmax, ϑmin provid-
ing minimum decay rate, maximum undamped natural frequency and minimum
damping constraints for the closed loop eigenvalues (see Fig. 3.4)8.

8For each of the nine synthesis points, λmin was variable in order to fine-tune the max-
imum control signal rate whereas r, θ, ke, kδ̇ were held constant. The values used were
rmax = 150, ϑmin = 0.707 (actuator undamped natural frequency/damping) and ke = 1, kδ̇ = 3.
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Figure 5.3: H∞ synthesis standard form.

The total synthesis block diagram used is illustrated in Fig. 5.3. The exter-
nal ‘disturbance’ signal (often denoted by w) is the output reference signal ηr,
the ‘performance’ signals ζδ̇, ζe are the weighted actuator deflection rate δ̇δ and
tracking error eδ. The control input is the commanded actuator signal δc and
the controller inputs are the tracking error eδ, the integral of the tracking error
vδ, and the pitch rate qδ

9.
The controller synthesis standard form may be written thus in the following Standard

formcompact state-space form:




ẋaug

ζ∞
yaug



 = P





xaug

w
uaug



 (5.6)

where:

P =





Aaug Bw Bu

Cζ Dwζ Duζ

Cy Dwy Duy



 . (5.7)

The vectors in the above equations are: xaug =
[

δ̇δ, δδ, αδ, qδ, vδ

]T
∈ R5×1

is the augmented (without the controller) state vector, ζ∞ = [ζδ̇, ζe]
T ∈ R2×1 is

the performance vector, yaug = [eδ, vδ, qδ]
T ∈ R3×1 is the controller input vector

and uaug = δc is the controller output and thus evidently P ∈ R10×7. The latter
may also be written as:

[

ζ∞
yaug

]

=

[

Pwζ(s) Puζ(s)
Pwy(s) Puy(s)

] [

w
uaug

]

. (5.8)

The standard form synthesis matrices of the above Eq. 5.7 are given by the
following equations:

Aaug =













−2ζωn −ω2
n 0 0 0

1 0 0 0 0
0 B11 A11 A12 0
0 B21 A21 A22 0
0 −D11 −C11 −C12 0













(5.9)

9Note that the ‘δ’ notation is maintained to emphasize that the signals are in fact pertur-
bation ones around equilibrium points.
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Bw =













0
0
0
0
1













Bu =













ω2
n

0
0
0
0













(5.10)

C∞ =

[

kδ̇ 0 0 0 0
0 −keD11 −keC11 −keC12 0

]

Cy =





0 −D11 −C11 −C12 0
0 0 0 0 1
0 0 0 1 0





(5.11)

Dwζ =

[

0
ke

]

Duζ =

[

0
0

]

Dwy =





1
0
0



 Duy =





0
0
0





. (5.12)

The additional constants A11, A12, A21, A22, B11, B21, C11, C12, D11 are in fact
the (frozen) state-space matrix components of the missile linearized dynamics
around an equilibrium point (see Eq. 5.3) with:

A(̺r) =

[

A11 A12

A21 A22

]

B(̺r) =

[

B11

B21

]

C(̺r) =

[

C11 C12

0 1

]

D(̺r) =

[

D11

0

]

.

(5.13)

Furthermore, due to the special form of the missile nonlinear dynamics,
A22 = C12 = 0 and A12 = 1. It should be also noted that the minus signs
inside the matrices are due to the negative addition of the reference signal ηr to
the vertical acceleration error ηδ (see Fig. 5.3).

The goal for the robust controller K(s) now is to ensure closed stability,
minimization of the H∞ norm of the transfer function from the disturbance to
the performance vector, and also ensure a correct eigenvalue placement inside
the LMI region D. Briefly this can be denoted as:

H∞ synthesis: Calculate a linear MISO, dynamic output feedback controller

K(s) =
[

Ak Bk

Ck Dk

]

with uaug(s) = K(s)yaug(s), so that ‖Twζ∞‖∞ < γ with

Twζ∞ stable, and additionally λ(Acl) ∈ D(λmin, rmax, ϑmin)
10.

Now for each synthesis point, it has been tried to compute a feedback con-
troller in such a way that the step response time constant is minimized while the
control effort rate is limited (according to performance objectives P1, P2). The
parameters used are shown in Table 5.2.

10Recall that Twζ∞ = Fl(P, K) = Ccl(sI− Acl)
−1

Bcl + Dcl.
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Table 5.2: Controller synthesis parameters(i).

Points 1 2 3 4 5 6 7 8 9

λmin 5.831 5.922 6.025 11.23 11.52 11.90 18.18 18.27 19.09

τ 361.9 339.3 325.6 199.2 191.3 182.2 129.2 128.9 122.0
ts 616.4 576.6 557.7 332.1 316.1 300.6 209.6 208.2 196.3

Mp 0 0 0 0.041 0.054 0.051 0.068 0.076 0.108

GM 27.93 20.93 19.75 11.66 16.43 15.06 6.93 14.86 13.83
PM 72.53 70.67 68.10 63.99 70.75 68.01 56.02 67.25 67.89
ωc 12.82 18.19 20.54 18.11 27.23 31.63 23.80 27.59 37.41
datt 54.66 49.23 48.21 48.67 43.25 40.52 43.69 43.88 39.28

γ 2.243 2.249 2.286 2.576 2.562 2.603 2.995 2.957 3.013
(i) The time constant τ and the settling time ts (taken for 95% of the final value)

are measured in ms, the overshoot Mp in %, the gain margin (GM) and the open
loop magnitude attenuation datt in dB, the phase margin (PM) in degrees and
the gain crossover frequency ωc in rad/s.

(ii) The GM, PM, ωc and datt are all computed for the open loop transfer function,
with the loop opened before the actuator.

The poles of each H∞ controller are shown in Table 5.3 whereas the poles Controller

resultsand transmission zeros for each of the three I/O channels are shown in Fig.
5.4 11. It may be observed that the synthesis algorithm provides well-behaved
controllers in terms of pole location (avoids excessively fast modes) and I/O
zeros (except for some cases in controllers No. 8, 9 where some non-minimal
phase zeros appear).

In Figs. 5.5a-5.5b, simulations of each of the nine closed loops (corresponding
to the synthesis points) are demonstrated. In the first figure, step responses of
the vertical acceleration are shown whereas in the second the corresponding
control signal rates are presented.

Table 5.3: Controller poles.

Points Poles

1 −48.71 ± 9.63j,−120.94,−129.22 ± 8.01j
2 −38.42,−103.16 ± 25.32j,−123.32,−130.64
3 −55.76,−99.39 ± 35.15j,−123.19,−136.45
4 −28.66 ± 59.56j,−118.1,−133.8 ± 26.71j
5 −69.23 ± 37.07j,−114.51,−118.92,−150.16
6 −68.02,−96.49 ± 21.16j,−121.05,−165.68
7 −20.08 ± 86j,−123.41,−166.74 ± 65.34j
8 −30.75 ± 80.9j,−116.81,−158.64 ± 53.34j
9 −62.46 ± 82.08j,−123.01,−134.77,−167.26

11The controllers are depicted in triplets, corresponding to constant Mach numbers: M =
1.5, 2.25, 3.
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(a) Controllers No. 7,8,9

(b) Controllers No. 4,5,6

(c) Controllers No. 1,2,3

Figure 5.4: Controllers’ I/O poles & zeros.
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(a) Output step responses (closed loop) (b) Control signal rates (closed loop)

(c) Nichols charts (open loop)

(d) Poles-zeros (closed loop)

Figure 5.5: Simulation results for the linear plants.
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Concerning the outputs12 (see Fig. 5.5a), it may be remarked that the con-
trollers provide excellent damping and thus the corresponding step responses
demonstrate practically no overshoot (see also Table 5.2). In addition, it may
be remarked from ig. 5.5b that the controllers exploit all available bandwidth
(reaching the maximum of 25deg/s) and thus provide a time constant in most
cases well below the performance specifications (τ ≤ 350ms) 13.

Concerning now the Nichols charts, they present a very good visualization
of the open loop gain & phase margins for every linear synthesis point. Once
again the smallest, but still adequate values, are obtained for synthesis point
No. 7. The stability margins may also be seen from the corresponding Bode
diagrams depicted in the following Fig. 5.6. In addition to these margins, and
the gain & phase crossover frequencies, the very good magnitude attenuation
margins datt of the robustness objective R2 can be observed (the grey box shows
the attenuation constraint). Finally, in Fig. 5.5d are shown the closed loop poles
of the transfer function Twζ∞(s) for every synthesis point. It may be observed
that they are indeed inside the convex LMI region D(λmin, rmax, ϑmin)

14.

Figure 5.6: Bode diagrams (open loop).

As a last comment, it should be stressed that even though the H∞ controllers
are really of very good performance, they remain complex since the final con-
troller to be implemented is the fifth order controller K(s) plus the integrator;
all this for a second order plant. In addition, it remains to be seen in the next
section if the interpolation strategy chosen (controller blending) merits such a
complicated LTI synthesis approach.

12All the time responses are again grouped in triplets for constant Mach numbers (blue
corresponds to synthesis points No. 1,4,7, green to No. 2,5,8 and red to No. 3,6,9 respectively).

13Except for synthesis point No. 7 where there is a small violation. Now this may be
expected since the open loop dynamics are here unstable (for more details see the missile open
loop stability discussion of Chapter 4).

14The minimum decay rate λmin changes for each synthesis point according to Table 5.2.
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5.4.2 Gain-scheduled Controller

In this section the gain-scheduled controller, using the controller blending method
and the H∞ controllers of the previous section, will be detailed. The analysis
starts with some details on some practical issues concerning the controller inter-
polation/realization; the next section presents simulation results.

5.4.2.1 Practical Issues

The Simulink block diagram of the total simulated plant and the gain-scheduled Inner

control

structure
controller is presented in Fig. 5.7. The grey boxes correspond to the missile
nonlinear dynamics, Mach number generation trajectory and their appropriate
initialization blocks. The blue boxes are the error integrator, the gain-scheduled
controller and a block providing trim values for the pitch rate q according to
the scheduling vector value in the missile flight envelope15. The red box is
the reference trajectory generating block and finally the yellow boxes are the
actuator and a first order filter acting on the reference trajectory. The latter is
used in order to smoothen the passage of the scheduling vector through the four
scheduling regions Γ1, Γ2, Γ3, Γ4 and thus facilitate the interpolating procedure.

The gain-scheduled controller block interior is more complicated and is shown
in Fig. 5.8; its major functions are performed mainly by four block families
depicted in different colors. The blue colors depict the four adjacent controllers
the interpolation procedure needs, in order to interpolate between their signals
and provide the final control law. Each block realizing a dynamic controller,
needs the appropriate controller matrices Ak,Bk,Ck and Dk, appropriate state
initialization and reset when moving from one scheduling region to the next,
according to the values of the scheduling vector ̺ = [ηr M ]T .

Figure 5.7: Total simulation block diagram (controller blending).

15The last is a necessary box since the input to the controller is qδ = q−qr, where qr = q(̺r).
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Figure 5.8: Total simulation block diagram (controller interior).
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The controller state matrices of each controller are provided by an orange State

matricesblock that is in fact a look-up table. Inside this table are stored the controller
matrices of all nine synthesis points and they are appropriately selected according
to a signal index that dictates the current scheduling region. This signal is the
output of another block (red color) that outputs this region number (Γ1, Γ2, Γ3

or Γ4) 16 according to the value of the scheduling vector.
Now for each region number corresponds a different quartet of controllers Interpolation

(in total there are nine controllers and each time only four are used). This is
important when coming to interpolation since each time, in order to compute
the final interpolated signal, the controllers on the left (respectively right) side
corners of the current scheduling region are first combined, each combination
providing a control signal. Then, these two interpolated signals are once again
combined to compute the final control law (see Eqs. 1.88-1.90 for more details).
This quartet of controllers in the lower left (ll), lower right (lr), upper right (ur)
and upper left (ul) corners of the scheduling region is also the output of the red
block that gives the scheduling region number17.

Recall now from the analysis of Section 1.3.2.2, concerning the controller Controller

resetblending method, that when changing scheduling regions and charging different
controller matrices, the control signal will be discontinuous due to the incom-
patibility of the DC gains of the various controllers entering and leaving the
algorithm. This may be corrected by guaranteeing a bump-less control signal
using the analysis of the aforementioned section. Briefly, this is done by re-
initializing all controllers of the new scheduling region at the transition time to
an appropriate state. This state is calculated from Eq. 1.91 using the control
signal at the transition time and the output controller matrices of the newly
entered scheduling region. This is done using the grey blocks of Fig. 5.8: the
four vertically aligned ones re-initialize the controllers at the appropriate state
using the grey block on the upper left whereas the state reset command is given
by the grey block on the center.

Finally, the yellow blocks calculate the interpolated final control signal. The Normalized

distancestwo vertically aligned yellow boxes on the left blend the controllers’ signals by
pairs as detailed above (ll-ul and lr-ur respectively) and the one in the right
blends these two, to provide the final control signal. The yellow block on the
page center computes the normalized distances a1, a2 (with 0 ≤ ai ≤ 1) used by
the aforementioned control signal interpolation blocks (see Eqs. 1.86-1.87)18.

16See Fig. 5.2.
17For example, for the scheduling region Γ4, the ll, lr, ur, ul, corners correspond to controllers

No. 5, 6, 9, 8 respectively.
18As a last comment it should be stressed out that given the fact that the interpolation

regions Γi are not rectangular as assumed in Section 1.3.2.2 (for simplicity) but trapezoids,
with the upper and lower sides being parallel to each other, the interpolation procedure needs
some more trigonometry. For the generic trapezoid of Fig. 5.9, the normalized distances are
defined as: a1 = l1/l{1,4} and a2 = l2/l{1,4}↔{2,3}. The difference from a rectangular region is
that the distances l{1,4}, l{1,4}↔{2,3} are also time varying (except for the other ones l1, l2 that
are always time varying because of the scheduling vector motion inside the flight envelope.
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Figure 5.9: Generic trapezoidal scheduling region.

These normalized distances a1, a2 are visualized for the whole missile flight
envelope in Figs. 5.10a-5.10b. As expected, the first one is clearly augmenting
inside the scheduling regions Γ1,Γ2 and Γ3,Γ4 as the Mach increases, whereas
the second one is augmenting inside the regions Γ1, Γ4 and Γ2, Γ3 as the vertical
acceleration increases.

As a last comment it may be added that the trajectory reference tracking is
assured by the integrator at the input of the controller. An alternative to that
is to decompose the control signal δc into an open loop control signal providing
a trim control input δc,r (as a function of the scheduling vector) and a closed
loop interpolated control signal δc,δ stabilizing the missile (see for example the
conference paper [137]).

(a) Normalized distance a1

(b) Normalized distance a2

Figure 5.10: Scheduling region normalized distances.
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5.4.2.2 Simulation Results

In this section, the simulation results of the nonlinear controller will be pre-
sented. Contrary to other existing works, where the nonlinear controller is not
thoroughly tested due to scheduling vector reference trajectories not covering
the whole missile flight envelope, here some rather stringent scenarios are con-
sidered.

The Mach number trajectory given by Eq. 4.10 (taken from the original Simulation

scenariobenchmark paper [103]) covers only a small part of the missile operating domain
when combined to the corresponding vertical acceleration reference trajectory
given in the same work. To obtain a more realistic scenario, here the drag co-
efficient Ax (see Table 4.1) has been augmented in order to provide a steeper
descent for the Mach number. In addition, the vertical acceleration profile has
been slightly modified with respect to the aforementioned work.

In Fig. 5.11a this Mach trajectory is visualized whereas in Fig. 5.11b the Mach &

outputvertical acceleration reference trajectory ηr(t) (black), the filtered reference tra-
jectory ηr,f(t) (red) and the actual response of the system η(t) (blue) are demon-
strated. Finally in Fig. 5.11c, the output trajectories are plotted on the missile
flight envelope (using the same controllers). The general behavior of the gain-
scheduled controller is rather acceptable; however there many issues that will be
detailed further on.

In Fig. 5.12a is shown the total control command δc(t) of the global gain- Control

signalsscheduled controller given to the actuator (red) and the filtered one δ(t) that is
the actual input to the system. In the same figure is also depicted the scheduling
region number (either 1, 2, 3 or 4 corresponding to regions Γ1, Γ2,Γ3 or Γ4).

In Fig. 5.12b are shown the four controller outputs (corresponding each
time to each of the four corners of each scheduling region) and once again the
interpolated control signal δc(t) (in red and blue respectively). In addition, the
controller state reset signal is shown (being in fact accordant to the scheduling
region number signal of the previous figure). Finally, in Fig. 5.12c the nor-
malized distance signals a1, a2, that are used to interpolate the four controller
signals, are illustrated; taking obviously values between zero and one.

5.4.2.3 Discussion

Even though the time performance of the controller blending method is good
(see Fig. 5.11b), there exist several inconveniences due to the fact that the con-
trollers need to re-initialize when changing scheduling region.

This fact causes control signal transients, chattering and degrades the over-
all time performance of the system19. Consider for example to different cases
observing Figs. 5.11-5.12: switching due to the vertical acceleration (Case 1)
and due to the Mach number (Case 2).

19When referring to time performance, output tracking is considered in most cases since this
is the primary goal of control systems in this work.
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Case 1. The simulation scenario chosen involves four changes on the desired
output vertical acceleration (see Fig. 5.11b):

ηr(t) : 0g → 25g → −15g → −10g → 5g

These changes correspond to the first three and the fifth state resets of
Fig. 5.12b (see reset signal impulses). Consider now just one of them (the
first) since the controller behavior is similar for all four. At t = 0s, the
output reference signal (see Figs. 5.11b-5.11c) changes its value. Given
that the state reset signal is based on the filtered reference signal, it gives
the command to reset the states of the four controllers approximately at
t = 0.15s, the time it takes the filtered signal to cross the boundary of the
fourth and third scheduling regions respectively (see Fig. 5.11c).
As a consequence, the control signals exhibit a transient behavior right
afterwards (see Fig. 5.12a) before settling down and controlling the plant.
This fact may be observed equally on the four controller signals of Fig.
5.12b. This behavior is clearly undesirable and undermines the plant per-
formance but is unavoidable if this interpolation method is used.
This is once again due to the need to change the whole controller when
passing on to a subsequent region; in general two controllers are switched
on and off respectively, except for the extremely improbable case that the
scheduling vector crosses the scheduling boundary at a synthesis point and
thus three controllers need to be switched.

Case 2. Consider now a scheduling region change due to the Mach number.
Refer again to Figs. 5.11b-5.11c and consider the crossing of the reference
trajectory at t = 2.3s (this can be equally seen from the reset signal of
Fig. 5.12b) due to the Mach number falling below the value 2.25.
This causes the scheduling vector passing from region Γ4 to region Γ2

and thus the controllers switch and re-initialize20. The latter fact causes
a transient behavior and the output η demonstrates a small oscillation
around its steady state value (that had already been established at t =
2.3s).
It is clear that this issue is even more important; if the user is not so
lucky and this switch due to the Mach number falls during the transient
of a switch due to the vertical acceleration also, then the performance of
the system is even more deteriorated because of the combination of both
effects.

These two study cases demonstrate in practice the greatest disadvantage of
the controller blending method: controller re-initialization. In the next section
an alternative method is considered based on state feedback/observer interpo-
lation, solving this problem since the controllers are not switched but rather
structurally modified.

20Recall that the missile flight envelope is symmetrical and at the switching time ηr < 0;
thus the system functions on the left symmetric side of the flight envelope.
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(a) Mach number

(b) Vertical acceleration

(c) Flight envelope trajectories

Figure 5.11: Controller blending nonlinear simulations (output).
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(a) Actuator command and region number

(b) Controller outputs and reset signal

(c) Normalized distances

Figure 5.12: Controller blending nonlinear simulations (control).
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5.5 Observer/State Feedback Interpolation

In the previous section, H∞ controllers were computed at nine operating points
and then their outputs interpolated at four scheduling regions, in order to com-
pute the final gain-scheduled control law. In this section another interpolation
method for the control of the Reichert missile will be detailed, based on the state
feedback/observer interpolation technique presented in Section 1.3.2.6.

5.5.1 LTI Synthesis

The scheduling regions and the interpolation geometry used for this method LTI

control

structure
are the same as the ones used with the controller blending method. The key
difference is in the interpolation method itself. The idea here is to convert all nine
H∞ controllers of the previous section in estimator-controller form (see Section
3.2) and then obtain a gain-scheduled controller by updating/interpolating its
inherent structure (gains, matrices).

As far as LTI controllers are concerned, they have the following general
standard form:

˙̂xδ = Ax̂δ + Buδ + Ko(yδ − Cx̂δ) (5.14)

uδ = −Kcx̂δ. (5.15)

The matrices A,B,C are in fact the open loop dynamics matrices Aaug,Bu

and Cy of the standard model of Eq. 5.7. As a result the estimator shall
inevitably reconstruct all the state vector xaug of the open loop system and
perform then a state feedback pole placement in order to control it.

5.5.2 Gain-scheduled Controller

A simplified block diagram of the state feedback/observer-based gain-scheduled Controller

realizationcontroller is shown in Fig. 5.13. The controller is constructed using a standard
state space realization of a Kalman observer (see Eq. 5.14 above). The inputs to
the observer are the plant’s input and outputs plus the structure of the observer
(state feedback/observer matrices and plant matrices). Now all these matrices
should be supplied to the observer/controller according to the system’s operation
using the block named ‘Interpolator’ for each corner of the scheduling region and
the value of the scheduling vector ̺.

Consider first the state feedback/observer matrices Kc,Ko: the dimensions of Method

issuesthese matrices is 1×5 and 5×3 respectively, thus the total number of coefficients
needing interpolation is twenty (!), which is a rather big number for real world
implementation21. This is of course done with the same procedure as before
concerning controller blending, using normalized distances between controllers
for each synthesis points and linear interpolation.

21Compare with the controller blending interpolation where only four signals were interpo-
lated.
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Figure 5.13: State Feedback - Observer Gain-Scheduled Controller.

The most unrealistic thing however concerning this method is the fact thatInter/tion

in order to reconstruct the state of the plant, the observer needs information
on the system’s structure, that is the matrices A,B and C. In order for the
observer to reconstruct the state, these matrices should be computed for each
reference/operating point of the plant. This may done in three different ways:
symbolic computation, tabulation or interpolation.

Symbolic computation means that the formulas in Chapter 4 (e.g. Eqs. 4.36-
4.44) concerning in fact the LPV model of the missile should be evaluated in
real time for each reference/equilibrium point. Tabulation means that the cor-
responding surfaces of these equations for every value of the scheduling vector
(see Fig. 4.6) should be stored in memory and retrieved using the value of the
scheduling vector. Finally interpolation means that this storing procedure may
be done only for the nine synthesis points and then use interpolation for every
other intermediate point.

It is clear that each of these methods presents advantages and disadvan-Implem/tion

tages but globally, all three are not so realistic. The first one is evident that
is totally not feasible for real world implementation (even though it offers the
best results) since symbolic calculations are very costly in terms of hardware
implementation. The second one could be considered but it would be also costly
in terms of storage memory for a real world system or for a system that has
more than two scheduling variables where coefficients hyper-surfaces should be
calculated. Finally, the third method lacks precision because it is clear that nine
points could not necessarily cover the whole domain of operation correctly. In
addition, interpolation would be needed in order to obtain a value for the system
matrix coefficients for every operating point.

This method however, even though it presents all these disadvantages demon-
strates a clearly better performance than the controller blending one on various
aspects. Simulation results will not be presented here since they may be found
in the comparison paper [137] where the two approaches are put side by side
and all their advantages and disadvantages stressed out.
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Concerning the advantages of this method, it should be at least cited its ex- Performance

cellent output time performance and the avoidance of problems regarding con-
troller re-initialization as with the controller blending method. Clearly, it has
been already stressed out in the previous section that the main disadvantage of
the controller blending method is the not coherent state initialization when pass-
ing from one scheduling region to the next and the resulting control transients
during this procedure. With this method, this annoying fact is avoided since
the controller structure is fixed and only its inherent parameters interpolated
whereas with the controller blending method, four controllers need to be real-
ized at each scheduling region with possibly inconsistent I/O representations.

A last delicate matter concerning this interpolation method based on state Pole

partitioningfeedback/observer control has to do with the issue mentioned in the discussion at
the end of Section 3.2.2, concerning the partitioning of the closed loop eigenval-
ues between the controller and observer. It is really important that this partition
be done in an automatic way since this is the essence of gain scheduling: have
a systematic and repetitive manner of doing things for a generic parameter-
dependent system. However, this fact is not always easy since the closed loop
poles resulting from the H∞ controllers may be also complex conjugate or real
or a mixture of two and of different multiplicity/speed for each synthesis point.
Thus the choice of closed loop assignment is clearly not trivial as it may be also
seen from the analysis in [4] or even in [20, 21].

5.6 Conclusions

In this chapter two ad-hoc interpolation strategies using the controller blend-
ing and state feedback/observer scheduling methods were tested and compared.
Much attention has been given on issues when using these approaches for the
control of real world systems.

As far as these issues are concerned, it has been stressed out that the con-
troller blending method seems to be the simplest one in terms of calculations
(only four signals are interpolated) with respect to the state feedback/observer
one (all control/system matrices are interpolated). However the latter one is
easier to implement since only one controller is considered and only its struc-
ture interpolated whereas the first one needs always four controller that run in
real time. The state feedback/observer method is also of higher performance
since it avoids control signal transients and chattering caused by controller re-
initialization. However, it remains an open issue on how its LTI controllers
should be calculated: should they be chosen in a standard ‘controller poles three
times slower than the observer ones’ or via the Youla parametrization-based
conversion detailed in the previous section. If the first method is used, the user
loses the highly desirable robustness properties of H∞ control theory, whereas if
the second method is used, the partitioning of the closed loop poles is not trivial
when more than one operating/synthesis points are considered.



152 Chapter 5. Ad-hoc Control Strategies

Seeing things in a global manner, it is evident that these two methods are
both complicated and ad-hoc. The latter issue comes from the fact that re-
garding LTI controller computation there is practically no guideline if the nine
synthesis points considered were too few, too many, appropriately partitioned
in the flight envelope etc. In addition, the control structure used is too compli-
cated; a sixth order controller for a second order plant.

As a result, a simpler, more efficient and more systematic way to treat the
problem is needed that will offer an elegant and practical solution for the con-
trol of this type of nonlinear parameter-dependent systems. The next and most
important chapter of this work is exactly devoted to that.



Chapter 6

Systematic Control Strategies

Overview

In this chapter the main results of this work are presented. A new,
systematic and easy to implement gain-scheduled control strategy is
proposed: the extended Loop Shaping Design Procedure (or e-LSDP).
This method is based on the gain blending interpolation method and
uses the McFarlane&Glover standard LSDP coupled with the gap metric
theory in order to provide a gain-scheduled controller that takes into
account the nonlinear dynamics variation as a function of the system’s
operating conditions. This procedure is applied both to the Reichert
and ARV benchmark examples to obtain a gain-scheduled autopilot;
for both systems an exhaustive analysis is presented focusing on the
features and advantages that this method presents over the ad-hoc ones
analyzed in the previous chapter.
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6.1 Introduction

In this chapter a novel method, for the control of the two benchmark examples Novel

approach(the ‘Reichert’ missile model and the atmospheric re-entry vehicle) introduced in
Chapter 4, will be presented. This method is the gain blending method detailed
in Section 1.3.2.7 and is coupled with the H∞ loop shaping and gap metric
theory of Sections 3.3-3.4, in order to provide a systematic control strategy that
treats the inconveniences of the two methods detailed in the previous chapter.

As it has been already remarked, the two major disadvantages of these meth- Motivation

ods are complexity and lack of performance-robustness. Complexity results from
two factors: relatively high-order LTI controllers to be interpolated and unknown
number of synthesis points required in order to obtain a good coverage of the
system’s operating domain. Lack of performance results from the interpolation
strategy chosen (see for example control transients from the controller blending
method) and from the number of synthesis points considered, whereas lack of
robustness results from the absence of a systematic/general way to take into
account uncertainty in the feedback loop of the gain-scheduled controller.

The solution of these problems is not easy; to the author’s opinion, one Solution

straightforward way to treat complexity is by selecting simple to tune yet per-
forming controllers such as PID in order to obtain a basic compensation of the
nonlinear system at a relatively small number of synthesis points (e.g. using the
corners of the flight envelope or an intuitive selection like in the previous chap-
ter). By interpolating the gains of such controllers an acceptable compensation
is taken as a basis, in order to compute an additional number of synthesis points
where simple enough static H∞ controllers (based on the initial loop shaping by
the PID ones) are obtained. These H∞ controllers capture the nonlinearity of
the system by the use of the notion of the gap metric as it will be shown in this
chapter. Thus, they correct in a way the somewhat ‘ad hoc’ loop shaping of the
PID controllers since they act on the control signal components and are after-
wards interpolated using a triangulation of the system’s operating domain. In
order to show in fact this amelioration, the ‘ad hoc’ controllers are compared to
the combination of these loop shaping controllers and the additional H∞ ones.

The control strategy proposed is applied to the control of the ‘Reichert’ mis-
sile benchmark and to the ARV provided by the EADS foundation. It is clear
that the work presented here corresponds to the three last steps of the LBGS
procedure detailed in Section 1.3.1; namely to the LTI Controller Synthesis,
Gain Interpolation and Global Controller Implementation & Validation steps.

This chapter is divided in two parts: in the first one the gain blending method
is applied on the ARV to obtain a regulating autopilot1, whereas the second is
devoted to the missile where the same control strategy is adapted with slight
modifications (due to the different control objectives).

1The regulating autopilot is computed for the ARV re-entry vehicle using only the systematic
gain blending method and not the ad-hoc methods of Chapter 4 since this corresponds to the
main work of this thesis.
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6.2 Gain Blending (re-entry vehicle)

Recall from Section 4.2 that the ARV nonlinear dynamics are described by a stateThe ARV

vehicle vector that is comprised by the AoA α (in rad) and the pitch rate q (in rad/s).
The control input is elevator deflection signal δe (in rad) whereas the measured
output is the AoA. The elevator dynamics are governed by a second order ODE

and the rectangular flight envelope Γ
[α,M ]
fe is a function of the Mach number

M and the AoA. The nonlinear aerodynamic functions Cm0(α, M), Cme(α, M)
associated with the pitch rate are tabulated for every value of the scheduling
vector ̺ = [α M ]T inside this envelope2.

The problem here is to obtain a regulating autopilot that will maintain theControl

objectives AoA to a constant value αr for a given variation profile of the Mach number
and the dynamic pressure Q(M), which is an additional non-measurable time-
varying variable.

The ARV control objectives are mostly precision and robustness ones and
are the following:

Regulation & Flight Envelope. The autopilot should be able to regulate the AoA
around a pre-defined reference value αr with ±1% step response steady-
state error accuracy when the Mach number follows a given time trajectory
inside the vehicle flight envelope.

LTI Synthesis Objectives. The linear controllers designed on the synthesis
points should provide at least 50◦ phase margin and 12dB gain margin. In
addition, the dominant closed loop poles must have a damping of at least
0.45 and natural frequencies greater or equal to the dominant open loop
ones. Finally, the control effort should be minimized in terms of variation
rate.

Gain-scheduled Controller Objectives (nominal). The gain-scheduled controller
should be implemented with a sampling period Ts < 0.15s and the frozen
time open loops during all the Mach time variation range should have
at least 30◦ phase margin, 6dB gain margin and 1 control period delay
margin.

Gain-scheduled Controller Objectives (uncertain). The gain-scheduled con-
troller should provide at least 3dB gain margin and one half control pe-
riod delay margin when heavy additive uncertainties are introduced on
the dynamic pressure, on the moment of inertia and on the aerodynamic
functions.

The next section details the extended loop shaping design procedure (e-
LSDP) that corresponds to the third step of the LBGS procedure (LTI Controller
Synthesis) of Section 1.3.1. Of course all trim analysis-control, linear models are
based on the discussion in Section 4.2 and may be equally found in [139].

2For more details see Section 4.2.1.
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6.2.1 LTI Controller Synthesis

The e-LSDP (extended-Loop Shaping Design Procedure) devised in this work is
based on the standard one of Section 3.3.2 and is used to compute a global gain-
scheduled controller for a nonlinear parameter-dependent plant. It incorporates
not only the LTI controller synthesis phase of Section 1.3.1 but also a systematic
way of choosing the operating points where this synthesis will occur.

The e-LSDP corresponds as said, to the third step of the LBGS procedure of The

e -LSDPSection 1.3.1 concerning the LTI controllers used in order to cover the operating
domain of the system. Additionally, in the robust H∞ loop shaping - gap metric
context of Chapter 3 an operating point choice algorithm is proposed. The e-
LSDP is decomposed in three steps:

Step 1 - Loop Shaping. A linearized model of the vehicle G(s) is obtained (see
Section 4.2.3) for five synthesis points inside the flight envelope, namely
on the corners and on the center of the envelope (see Fig. 6.1):

[α, M ] : [30◦, 4], [50◦, 4], [30◦, 26], [50◦, 26], [40◦, 15]

The linearized plant is then augmented using a pre-compensator W1(s)
(which is actually the actuator dynamics) and a post-compensator W2(s)
(which is a filtered PID controller) in order to provide basic performance
and robustness requirements for the aforementioned five synthesis points
corresponding linearized plants. The analysis on how to obtain these con-
trollers is detailed in the next section. For any other point of the flight
envelope, a linear interpolation of these gains is used by considering the
four corresponding triangular interpolation regions Γ1, Γ2, Γ3 and Γ4.

Step 2 - Operating Point Algorithm. Given that a simple linear interpolation
of the f -PID controllers is not sufficient as it will be seen in Section 6.2.3,
an additional number of controllers should be used in order to treat the
variation of the nonlinear dynamics of the vehicle. A variation indicator
is the undamped natural frequency of the complex conjugate poles of the
linearized plant for every value of the scheduling vector ̺ = [α M ]T (see
Fig. 4.15). However, given that a closed loop criterion would be preferred,
here the gap metric notion is used to quantify such variation.
Recall once again from Section 3.4.2, Theorem 3.6, that the gap metric
between a nominal LTI plant G and a perturbed one G∆ are closely re-
lated to the stabilizability of both plants by the same H∞ controller K∞

(designed for the nominal plant), and the robustness margin ǫmax
3.

The autopilot regulates α around a constant αr for all M ; thus these ad-
ditional synthesis points are sought on this line of the flight envelope; for
the rest of the analysis concerning this algorithm see Section 6.2.1.2.

3Recall that the maximum robustness margin is smaller in the static case than in the full
order one (see Section 3.3.4).
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Step 3 - H∞ Controller Synthesis. After the algorithm using the gap metric de-
scribed in Section 6.2.1.2 has found the additional set of synthesis points,
robust H∞ controllers are computed at these points to increase the ro-
bustness of the final gain-scheduled controller. The additional controllers
are static ones to reduce complexity and are of course also interpolated at
intermediate points using the Mach number (and for constant α), in the
fourth step of the LBGS procedure (see Section 6.2.2).
These two last steps of the e-LSDP are closely connected; the robust con-
troller K∞ may be computed after all synthesis points are found (since the
robustness margin associated to a given synthesis point depends only on
the initial loop shaping) or immediately when this point is found.
The nominal open loop plant G(s) when using the operating point choice
algorithm, is in fact the augmented plant Gs(s) obtained by the series in-
terconnection of the pre/post compensators of Step 1 and is written as
Gs(s) = W2(s)G(s)W1(s), for any operating point. As it has already been
mentioned, the linearized vehicle model G(s) varies as function of ̺ and
so does the post-compensator W2(s), since its gains are the interpolation
of the controller gains at the initial five synthesis points given in Step 1.
The final implemented controller Ks(s) for a synthesis point issuing from
the algorithm is in fact the series interconnection of the pre/post com-
pensators and the static robust controller. The robust controller becomes
itself also interpolated at the fourth step (Controller Interpolation) of the
LBGS procedure as it will be presented in Section 6.2.2.

The operating point choice algorithm treats in fact the variation of the openDiscussion

loop shaped linear dynamics Gs(s) between a nominal operating point and a
subsequent one, as uncertainty. This uncertainty is in fact visualized in the gap
δg between these two systems. Leaving details for Section 6.2.1.2, it will only be
mentioned that by computing the gap between subsequent ‘uncertain’ systems
and a nominal one, the designer can find out until what point this dynamics
variation is tolerable by a robust controller K∞ designed for the nominal point.
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Figure 6.1: ARV flight envelope.
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6.2.1.1 Loop Shaping

As it has been mentioned in the previous section, in order to obtain a basic Basic

control

action
control action for the ARV, five f -PID controllers are designed. These controllers
are designed using the linearized, scheduling vector-dependent state space model
SLPV(̺r) of the ARV at these points given by Eqs. 4.58-4.68. The equivalent
matrix transfer function of the vehicle G(s) at each operating point gives the
I/O relation of the control input δe to each state variable (AoA and pitch rate).
Given that only the first state variable is measured, the plant is SISO with Gα(s)
being the transfer function from the control input to the AoA.

In the loop shaping context (see also Section 3.3), the transfer function Gα(s) Loop

shapingis augmented by the actuator acting as a pre-compensator (with W1(s) = Ga(s))
on the control signal, and by a filtered PID controller (f -PID) Gc(s) acting on
the regulation error eδ = αδ −αr

4. The control signal δe,c (‘c’ for commanded) is
fed to the actuator that produces the final control stabilizing control signal δe,δ.
The loop shaping block diagram is shown in Fig. 6.2 with the corresponding
open loop transfer function being:

Gs(s) = Gc(s)Gα(s)Ga(s). (6.1)

The filtered PID controller used for the AoA regulation has the following f -PID

controllertransfer function:

Gc(s) =
1

1
N s + 1

(

Kp +
Ki

s
+ Kds

)

(6.2)

with Kp,Ki,Kd being the PID gains and N the filter’s time constant inverse.
As it has been detailed in Chapter 4 concerning the stability analysis of the Control

challengelinearized models of the vehicle, its open loop dynamics are conditionally unsta-
ble given that the poles are purely imaginary. The nonlinear control problem
is challenging since their undamped natural frequency ω0 changes as a function
of the Mach number and the AoA, as it may be observed from Fig. 4.15. Here
however the latter is mostly important since the autopilot is a regulation one
around a constant αr.
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Figure 6.2: Loop shaping block diagram.

4The subscript ‘δ’ notation is used to emphasize around equilibrium operation.
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The control goal is somewhat different from the Reichert missile one; the
need for a classic signal tracking performance with appropriate rise times, set-
tling times etc. is not crucial. Here the autopilot should mostly provide good
stability, delay margins and damping while minimizing the control effort.

Consider now one synthesis point (e.g. point No. 1 for ̺1 = [30◦, 4]) in
order to detail the correction needed by the f -PID controller. The vehicle’s
open loop transfer function Gα(s) presents two complex conjugate poles with an
undamped natural frequency ω0 and zero damping since these poles are purely
imaginary. The PID controllers shall correct this fact by using its two complex
conjugate zeros (adjusted by the three gains Kp,Ki, Kd) and attract these poles
into the negative complex plane. The integrator of the controller will provide
zero steady-state error whereas the filtering part that is a first order transfer
function limits the control effort and adjusts the bandwidth of the system.

In terms of frequency response, the choice of the controller’s parameters is
not trivial; here a classic Bode response correction is used to provide an ini-
tial adjustment whereas fine-tuning is performed by using MATLABR© Simulink
Control Design toolbox and its optimization routines.

The natural frequency of the controller’s complex zeros ω0,z is equal toController

zeros

influence

√

Ki/Kd and plays a significant role in providing the correct gain and phase
margins for the open loop plant as well as the bandwidth, combined by the filter
action. It should be chosen near but a bit smaller than the open loop natural
frequency of the plant’s complex conjugate poles. Reducing this frequency by
moving the zeros nearer the origin, the gain magnitude increases starting from
a lower frequency and thus the gain crossover frequency ωgc is increased5. In
addition, given that the ωgc increases and the phase continuously decreases to
−180◦, the phase margin gets smaller6. The phase crossover frequency ωpc is
almost one decade further on and is not so much influenced by the movement
of the zero, however given that by reducing the zeros’ frequency the loop gain
increases, the gain margin decreases.

The damping now of the controller zeros is governed by Kp if the other two
gains are fixed; its influence is more complicated on the frequency response. In
general, if the damping is increased, the step performance of the plant is ame-
liorated with the cost of deteriorating the stability margins and augmenting the
control signal amplitude needed.

5The open loop magnitude starts at low frequencies from a value dictated by the controller
zeros natural frequencies and drops with -20dB/dec until the point where the zeros start to act
and increase the gain. Then the gain increases even more (mathematically to infinity around
ω0) due to the imaginary poles of the plant before falling once again due to the filter pole with
-40dB/dec for higher frequencies (-80dB/dec if the actuator poles are added).

6The open loop phase starts from −90◦ due to the integrator and then starts to increase
due to the complex controller zeros until ω0; then it suddenly loses −180◦ due to the plant’s
complex conjugate purely imaginary poles. However the phase remains sufficient due to the
total phase added until ω0 by the zeros (about 150◦). It then continues to decrease due to the
filter pole until −180◦; if the actuator is counted also, then it continues to drop further on until
−360◦ at high frequencies.
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Concerning now the influence of the filter’s pole, things are also a bit compli- Controller

pole

influence
cated: given that the pole’s frequency is bigger than the gain crossover frequency,
it does not directly affect it for small displacements. If it is reduced, it starts
also reducing the total phase added by the controller (being the combination of
the phase due to the complex zeros and the pole) and thus deteriorate the phase
margin. However, once this frequency is chosen (roughly at the middle of the
zone [ωgc, ωpc]) it may be fine-tuned using Simulink Control Design.

These concepts may be seen in Fig. 6.37 where the transfer functions of the Controller

resultsopen loop plant Gα(s)Ga(s), the compensator Gc(s) and the combined, corrected
(or ‘shaped’) open loop Gs(s) = Gc(s)Gα(s)Ga(s) are shown together.

Figure 6.3: Correction open loop transfer function.

In Fig. 6.4 is shown the root locus diagram of the closed loop; in order to
view the closed loop poles, the loop gain should be chosen as unitary.

Figure 6.4: Open/closed loop poles diagram.

7Frequency values are omitted for confidentiality reasons.
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The upper box in the previous figure shows the location of the vehicle’s closed
loop poles when the loop gain is unitary; the damping is satisfactory (0.457) as
is demanded by the LTI synthesis objectives of Section 6.2. In addition, the
controller closed loop poles are shown by the lower box; for high gains they tend
to the open loop complex zeros. Here the actuator poles are not shown since
they are much further on the left.

Concerning now the fine-tuning performed using MATLABR© Simulink Con-Fine-tuning

& final

results
trol Design toolbox, it should be pointed out that it permits to optimize all four
controller gains by putting constraints on the closed loop pole minimum damp-
ing and natural frequencies as well as on the stability margins. Performing this
optimization for all points yields the results of Table 6.1.

Finally the five Nichols charts of the open loop systems are shown in Fig.
6.5a; the correct GM, PM achieved may be observed. In Fig. 6.5b are also
shown the closed loop poles and zeros for all synthesis points.

Table 6.1: Loop shaping results(i),(ii)

Points 1 2 3 4 5

Kp 0.04904 0.04879 0.06209 0.06868 0.06867
Ki 0.29011 0.36260 0.18882 0.22324 0.58750
Kd 0.20454 0.18348 0.38169 0.41269 0.23058
N 5.91630 7.43050 3.04130 3.25040 8.55560

GM 19.3 18.1 23.2 22.7 17.3
PM 50.3 50.2 50.3 50.4 49.0
ωpc 2.65 3.15 1.54 1.64 3.59
ωgc 9.18 10.2 6.71 6.93 10.8

ts 4.77 3.98 8.31 7.84 3.46

|δ̇e,δ|max 12.7 13.8 12.8 14.8 20.4

(i) The gain margin (GM), phase margin (PM), phase
crossover frequency (ωpc), gain crossover frequency
(ωgc), settling time (ts) and maximum control rate
(|δ̇e,δ|max) are measured in dB, deg, rad·s−1, rad·s−1,
s and deg·s−1 respectively.

(ii) The settling time is measured within a 2% envelope.

If a gain-scheduled controller is constructed using only the family of five
points and the corresponding interpolated controller gains are computed using
the four scheduling regions of Fig. 6.1, then the results are not satisfactory in
terms of stability margins both for the nominal and uncertain cases, as it will
be presented in Section 6.2.3.

For this reason, some additional points are added on the line for constant αr

and robust H∞ controllers are designed and also interpolated using the Mach
number. The operating point choice algorithm is detailed in the next section.
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(a) Nichols charts

(b) Pole-zero maps

Figure 6.5: Loop shaping results.
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6.2.1.2 Operating Point Algorithm

The operating point choice algorithm will add some additional synthesis pointsMotivation

on the line αr in order to ameliorate the robustness of the gain-scheduled con-
troller detailed in Section 6.2.2. On these additional points, static H∞ con-
trollers are designed using the analysis of Section 3.3.4. The algorithm is based
on the analysis of Section 3.4.2 that merges the loop shaping control theory and
the gap metric.

The general idea behind the algorithm is the following: the designer com-Discussion

putes the open loop corrected transfer function of the system Gs(s) at a nominal
point (e.g. α = αr, M0 = 26), using interpolation for the PID gains and com-
putes the corresponding robustness margin for this point. This is done of course
after a static robust controller K∞ is computed using the analysis of Section
3.3.48. Then, for a neighbor operating point (say for M0 + δM), the new cor-
rected open loop Gs,∆(s) is computed and then the gap between these two open
loops is calculated. If this gap is smaller than the robustness margin associated
with the nominal point, then this means that the robust controller is satisfac-
tory for the neighbor point; if not a new operating point is chosen, a new robust
controller and robustness margin computed and the algorithm continues until
the flight envelope is covered. The algorithm is formally divided in the following
steps:

Step 1 - Initialization. Choose a gridding (e.g. equidistant) over the Mach
number range [26,4] and thus obtain a set of candidate synthesis points
ΣM = [M1, . . . ,Mk]. Then take as the initial operating point P j (corre-
sponding to a scheduling vector value ̺j) the one corresponding to M = 26.

Step 2 - Interpolated Loop Shaping. For the operating point P j , compute the
open loop shaped plant Gj

s = Gj
cG

j
αGa. The plant Gj

α is simply the lin-
earization of the nonlinear parameter-dependent vehicle model at ̺ = ̺j ,
whereas the f -PID controller gains are obtained using a triangular interpo-
lation of the five synthesis points of the previous section9. For the shaped
plant Gj

s , a static H∞ controller is calculated using Theorem 3.5 and the
corresponding to the point P j robustness margin ǫj is computed.

Step 3 - Line Search or Reset. Performing a line search using subsequent candi-
date points belonging to ΣM , successive shaped plants Gf

s are computed,
until the gap δg(G

j
s , G

f
s ) between the nominal initial plant and the suc-

cessive one is greater or equal than the robustness margin ǫj . If this is
the case, then a new operating point P j is chosen and then the algorithm
jumps back to Step 2, except for the case when the end of the flight en-
velope is reached. In this case, even if δg(G

j
s , G

f
s ) < ǫj , the final point is

selected and the procedure terminated.

8Recall that in the full order case the robustness magin is computed before actually com-
puting the controller; however here it is not possible.

9For more details on the triangulation process see Section 6.2.2 further on.
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Table 6.2: Robust controller gains

Mach Kp,∞ Ki,∞ Kd,∞ ǫ

26 0.5181 0.5965 0.9424 0.3297
23.5 -0.1472 0.7028 1.0769 0.3374
20.75 -0.1559 0.6507 1.0353 0.3363
18.25 0.4020 0.5894 0.8927 0.3358
16 -0.0899 0.5609 0.8148 0.3162
4 -0.0318 0.6395 0.9429 -

Using this algorithm, totally six additional H∞ controllers are computed. Algorithm

resultsThe static controller K∞ ∈ R3×1 treats each of the three channels of the f -PID
controller10. Each of the gain elements Kp,∞,Ki,∞,Kd,∞ (one for each channel)
as well as the corresponding Mach numbers are given in Table 6.2.

In Figs. 6.6a-6.6b some results on the operating point choice algorithm are
presented. In the first figure, the gap δg(G

j
s , G

f
s ) evolution with respect to M is

given for a gridding performed each 0.25 units (totally 88 points) whereas in the
second, the natural frequency ω0 evolution with respect to M is shown.

From Fig. 6.6a it may be observed that the gap increases until the first
robustness margin ǫ1 = 0.3297 (see Table 6.2) is surpassed; the algorithm is then
re-initialized until all Mach range is covered. It may also be observed that all re-
initializations take place (and thus synthesis points added) until approximately
M = 16; further on, the gap is rather small. The algorithm thus continues until
the flight envelope is finished and adds the final point at M = 4.

This behavior is explained from Fig. 6.6b showing the linearized plant’s
natural frequency ω0 variation, being an indicator of the system’s ‘nonlinearity’.
This frequency increases rapidly until M = 16 but then remains almost constant;
this is captured by the algorithm which decides that the plant’s dynamics do
not change significantly to justify another synthesis point until M = 4.

(a) Gap between subsequent shaped plants (b) Natural frequencies & synthesis points

Figure 6.6: Operating point choice algorithm results.

10For more details on the synthesis scheme refer to the next section.
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6.2.1.3 H∞ Controller Synthesis

In this section, the synthesis procedure concerning the static, robust H∞ con-Control

goal trollers of the previous section is detailed. Recall from Section 3.3.2 concerning
the LSDP that the robust controllers are in fact designed for a shaped open loop
plant Gs(s); additionally nothing changes for the synthesis problem in terms of
posing (except of course for the LMI’s) be the designed compensator of full or
zero order. The final goal is to compute a static controller K∞ for Gs(s) in order
to guarantee a stable loop and additionally:

∥

∥

∥

∥

[

K∞

I

]

(I− GsK∞)−1M̃−1

∥

∥

∥

∥

∞

≤ γ, γ = ǫ−1 > 0. (6.3)

Recall from the previous section that these controllers computed totally at
six additional synthesis points (see Table 6.2) yield a robustness margin ǫj for
the corresponding linearized shaped plants Gs(s); neighbor plants are also well-
behaved under the same corresponding controller due to the gap metric theory.

The open loop shaped plant is SISO and thus a robust controller wouldSynthesis

structure be a simple gain on the output of the f -PID controller, thus not permitting
significant amelioration on the feedback loop. However, if the f -PID controller’s
control signal is broken in three parts (proportional, integral and derivative)
then the robust controller is a three element matrix (Kp,∞,Ki,∞,Kd,∞). The
synthesis block diagram corresponding to Fig. 6.2 is shown in Fig. 6.711.

As a final comment concerning the robust controllers, it is clear that the
control structure is really simple (compared to a dynamic robust controller that
would be of order five), easy to implement-interpolate and of high performance,
as it will be presented in Section 6.2.3.
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Figure 6.7: Robust controller synthesis block diagram.

11For details on solving the synthesis problem refer to Section 3.3.4.
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6.2.2 Gain Interpolation

The gain-scheduled controller presented in the next section uses gain interpola-
tion in order to update the LTI controllers’ parameters, based on the scheduling
vector values. The parameters interpolated are the f -PID gains Kp,Ki,Kd, N
and additionally the robust controller gains Kp,∞,Ki,∞,Kd,∞.

The first are interpolated using the five initial synthesis points of Table 6.1 f -PID

interp/tionand the corresponding four triangular scheduling regions Γ1, Γ2,Γ3, Γ4. To create
the scheduling regions, Delaunay triangulation is used (refer to Section 1.4) using
the coordinates [αi M i]T , i = 1, . . . , 5 of all five points. Each gain is interpolated
by considering the corresponding plane equation defined by the coordinates of
each triangle corner of every scheduling region.

Consider for example the f -PID controller derivative gain Kd, the three cor-
ner gains K1

d,K2
d,K5

d of scheduling region Γ1 (see Fig. 6.1) and the scheduling
vector coordinates ̺1 = [α1 M1]T , ̺2 = [α2 M2]T , ̺5 = [α5 M5]T . Then the
interpolated gain Kd(̺) with ̺ ∈ Γ1 is computed by solving the plane equation
leading to the following solution12:

Kd(̺) =
c1 − c2α(t) − c3M(t)

c4
. (6.4)

The constants c1, c2, c3 and c4 are dependent only to the data concerning the
synthesis points and are calculated as:

c1 =

∣

∣

∣

∣

∣

α1 M1 K1
d

α2 M2 K2
d

α5 M5 K5
d

∣

∣

∣

∣

∣

, c2 =

∣

∣

∣

∣

∣

1 M1 K1
d

1 M2 K2
d

1 M5 K5
d

∣

∣

∣

∣

∣

, c3 =

∣

∣

∣

∣

∣

α1 1 K1
d

α2 1 K2
d

α5 1 K5
d

∣

∣

∣

∣

∣

, c4 =

∣

∣

∣

∣

α1 M1 1
α2 M2 1
α5 M5 1

∣

∣

∣

∣

. (6.5)

The three H∞ controller gains are linearly interpolated as a function of H∞

controller

interpolation
the Mach number for the constant regulation value of the AoA αr, considering
the five intervals formed by the six additional synthesis points added by the
gap metric operating point choice algorithm of Section 6.2.1.2. Consider for
example the proportional channel gain Kd,∞, the middle interval [M3,M4] and
the corresponding gains K3

d,∞,K4
d,∞. Then the interpolated value Kd,∞(M) is

given by:
Kd,∞(M) = K4

d,∞aM (t) +
[

1 − aM (t)
]

K3
d,∞ (6.6)

with 0 ≤ aM (t) ≤ 1 being the normalized distance given by:

aM (t) =

∣

∣

∣

∣

M(t) − M3

M4 − M3

∣

∣

∣

∣

. (6.7)

In Fig. 6.8a are shown the interpolation surfaces corresponding to the deriva-
tive gain Kd for all four triangular scheduling regions whereas in Fig. 6.8b is
shown the interpolated derivative robust gain Kd,∞ for all five linear interpola-
tion regions for constant AoA.

12The interpolated gain may be also seen as the projection of the current scheduling vector
coordinates on the plane defined by the three corners of each scheduling region.
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(a) Interpolation surfaces for Kd

(b) Interpolation line for Kd,∞

Figure 6.8: Gain interpolation results.
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6.2.3 Controller Implementation & Validation

The global gain-scheduled controller will be detailed in this section; in the first
section its structure and some other minor issues will be detailed whereas in the
following section some simulation results will be presented.

6.2.3.1 Nonlinear Gain-scheduled Controller

The global gain-scheduled controller is implemented by discretizing the f -PID
controller using bilinear transformation13 with a sampling time Ts < 0.15s and
an ideal sampler. All seven gains are then interpolated using the procedure
described in the previous section.

The total control signal δe,tot supplied to the actuator is the sum of the trim Global

controllercontrol signal δe,r = δe(̺r) (see Eq. 4.57 in the trim analysis Section 4.2.2) and
the closed loop scheduled stabilizing signal δe,c. The transfer function K(s, ̺)
providing the gain-scheduled control signal before discretizing is:

K(s, ̺) =
1

1
N(̺)s + 1

[

Kp(̺)Kp,∞(̺) +
Ki(̺)Ki,∞(̺)

s
+ Kd(̺)Kd,∞(̺)s

]

(6.8)

The following figure shows the Simulink diagram of the gain-scheduled con- Controller

block

diagram
troller. The big grey block represents the ARV nonlinear dynamics, the small
one generates the Mach reference time trajectory illustrated in Fig. 4.12a and
the red block generates the AoA reference value. The upper small blue block
generates the trim control signal whereas the other two big blue blocks repre-
sent the discretized controller of Eq. 6.8 and the interpolating functions used to
update its gains as a function of the scheduling vector. Finally the yellow block
represents the actuator dynamics.

Figure 6.9: Robust controller synthesis block diagram.

13Recall that using this transformation the Laplace variable is replaced with s = 2
Ts

z−1
z+1

.
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6.2.3.2 Simulation Results

In this section some simulation results will be presented both for the nominal
and the uncertain case corresponding to the control objectives of Section 6.2,
demonstrating the effectiveness of the proposed control scheme.

For the nominal case, the simulation profiles used for the Mach and theNominal

case

results
dynamic pressure are already presented in Figs. 4.12a-4.12b. The goal for the
autopilot is to regulate the AoA around the reference value with ±1% steady-
state accuracy. The time simulation of the gain-scheduled controller is shown
in Fig. 6.10; the blue curve shows the response if only the f -PID controller is
used whereas the red one if both the f -PID controller and the H∞ controllers are
used. The steady state margins are satisfied for both cases with slight differences
in the amplitude; however the stability margin performance is not good if the
robust controllers are not used, as it is demonstrated further on.

To test these stability margins, the gain-scheduled system is linearized every
10s and thus totally 57 frozen time open loop systems are obtained14 when using
either the f -PID controller or both the f -PID and H∞ controllers. In Fig. 6.11a
the Nichols charts for these two cases are shown whereas in Figure 6.11b the
corresponding gain & phase margins (GM & PM) are plotted for each system.
Using these figures it may be seen that the GM lower limit of 6dB is never
violated and the robust controllers provide an amelioration of up to 2dB’s. The
results are even better for the PM since the f -PID controller by itself is not
sufficient with the lower limit of 30◦ being violated for 350 . t . 435s and
reaching its worst point of 24◦ at t ≃ 380s. The robust controller, using the
additional synthesis points, succeeds at augmenting the PM up to 7.5◦ and thus
helps the gain-scheduled controller meeting the robustness constraints15.

Figure 6.10: Gain-scheduled controller time performance.

14This is done using the MATLABR© Simulink Control Design toolbox.
15The biggest augmentation is observed in fact for the worst point (t ≃ 380s).
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(a) Nichols charts

(b) Gain & Phase Margins

Figure 6.11: Simulation results (nominal).
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Concerning now the uncertain case, the gain-scheduled autopilot is alsoUncertain

case

results
tested in the face of uncertainties over the dynamic pressure Q, the moment
of inertia Iyy and the aerodynamic functions Cm0 and Cme. Two worst case sce-
narios are considered in total; ±35% and ∓50% additive uncertainties on Cm0

and Cme, +35% on Q and +10% on Iyy.
The delay margin (DM) is tested for both scenarios by considering the nom-

inal case plus the robust cases (with totally 9+9 uncertain runs obtained by
increasing the uncertainty over the four variables by 10% each time until reach-
ing the maximum uncertainty limit) and the results are shown in Figures 6.12a,
6.12b for all 57 frozen time models. Moreover, the Nichols charts (see Figures
6.13a, 6.13b) show the stability margins of these linearized open loops for the
worst cases (maximum uncertainty norm) of both uncertain scenarios.

The minimum gain, phase and delay margin (in sampling periods) for the
nominal case and both uncertain scenarios16 are found in Table 6.3. It can
be observed that the additional points added with the synthesis point selection
algorithm of Section 6.2.1.2 have clearly assisted the gain-scheduled controller
meeting the specifications imposed in Section 6.2 with only small violations on
the delay margins. Obviously, no uncertain cases are considered for the simple
PID tuning since not even the nominal ones are satisfied; this in fact shows the
necessity of the H∞ controllers.

Table 6.3: Stability margin results(i)

Study case GM PM DM

PID (nominal) 6.5(6.0) 24.1 (30) 0.70 (1.0)
PID+H∞ (nominal) 8.7(6.0) 32.2 (30) 1.00 (1.0)
PID+H∞ (uncertain case No.1) 6.4(3.0) 17.3 (na) 0.44 (0.5)
PID+H∞ (uncertain case No.2) 3.4(3.0) 15.9 (na) 0.40 (0.5)

(i) The constraint values are given in parentheses.

6.2.3.3 Discussion

The autopilot designed in this section is used for the regulation of the ARV
AoA around a reference value αr during the atmosphere re-entry phase, when
the Mach number is time-varying and this reference value must be held constant
during the flight phase considered.

However, the procedure used here may be applied for any other reference
AoA; this is easily done by re-running the e-LSDP operating point selection
algorithm for this new value and re-storing the H∞ controller gains. This fact
really proves the generality of the approach followed here since the operating
point choice algorithm is designed to fine-tune the f -PID controllers for any
value of 30 ≤ αr ≤ 50 of the ARV’s flight envelope.

16In the uncertain cases only the combined loop shaping plus robust controller based gain-
scheduled controller is considered.
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(a) Uncertain case No.1

(b) Uncertain case No.2

Figure 6.12: Delay margins (nominal & uncertain).
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(a) Uncertain case No.1

(b) Uncertain case No.2

Figure 6.13: Nichols charts (worst cases).
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6.3 Gain Blending (missile)

The Reichert benchmark missile autopilot problem has been analyzed in Chapter Reminder

&

motivation
5 and two scheduling methods have been applied to obtain a gain-scheduled au-
topilot. These methods (the controller blending and the state feedback/observer-
based interpolation) are of common use in the gain scheduling practice; however
they result to a conservative and complicated controller due to the fact that
they give no indication on the number of synthesis points needed, due to the
high order of the LTI controller and also due to practical issues concerning the
methods (e.g. initialization, eigenvalue partitioning etc.). A new method is pro-
posed here based on gain blending interpolation and on an extended loop shaping
procedure (the e-LSDP) permitting to conceive an interpolation strategy that
addresses the aforementioned issues.

In this second part of the chapter this procedure is detailed, following the
analysis of the first part concerning the ARV autopilot design. The e-LSDP
is adjusted to take into account that the additional points needed must now be
added on a plane and not only across a line as with the ARV since the scheduling
vector ̺ may follow any trajectory on the missile flight envelope.

As it has been already detailed in Section 5.3, the missile control objectives
are performance ones (adequate time constant, overshoot, steady-state error &
control rate) as well as robustness ones (robust stability in the face of para-
metric uncertainties & high frequency open loop magnitude attenuation). The
difference between the missile autopilot problem and the ARV one is mainly
that here the problem is a tracking and not a regulation one and that stability
margin constraints do not appear explicitly; even though it is desired that they
are maximized as for any feedback control system.

6.3.1 LTI Controller Synthesis

Following the discussion for the ARV autopilot of Section 6.2.1, the LTI con- The

e -LSDP

(re-visited)
trollers for the Reichert benchmark problem are calculated using the e-LSDP
procedure that is divided in the three standard steps: loop shaping, operating
point algorithm and finally H∞ controller synthesis. Briefly these steps involve
the following analysis:

Step 1 - Loop Shaping. A linearized model of the missile G(s) is obtained for a
small number of synthesis points (9) on the flight envelope, the same as in
Chapter 5 (see Table 5.1). The missile linearized dynamics are preceded
by the actuator dynamics Ga(s) (acting as a pre-compensator W1(s)) and
followed by a specific outer-inner loop PI/P controller (acting as a post-
compensator W2(s)), in order to shape the open loop frequency response.
This procedure corresponds to the LSDP of Section 3.3.2 and provides
some basic compensation for these synthesis points; additional synthesis
points are added using the algorithm that follows.
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Step 2 - Operating Point Algorithm. Similarly to the ARV autopilot problem
considered in the first part of this chapter, if the loop shaping controllers
only are used to obtain an interpolated gain-scheduled controller, the re-
sults are not satisfactory. Once again, the gap metric coupled with H∞

loop shaping theories are used to devise an operating point choice algo-
rithm that will capture the nonlinear dynamics variation; a glimpse of this
variation may be observed from the linearized dynamics results presented
in Fig. 4.7. As it has been already mentioned, the algorithm chooses points
for a family of values for the scheduling vector ̺, inside all the flight enve-
lope and not only across a line as with the ARV problem ; for additional
details on the algorithm see Section 6.3.1.2.

Step 3 - H∞ Controller Synthesis. The robust controller synthesis algorithm
follows closely the theory presented in the first part and thus the static
H∞ controller synthesis of Section 3.3. The static controllers are once
again designed at the synthesis points deducted from the previous step
and then interpolated to provide an additional corrective action over the
loop shaping PI/P controllers; for more details see Section 6.3.2.

6.3.1.1 Loop Shaping

As it has been detailed in the previous section, the first step of the e-LSDP is
the initial loop shaping performed over a small number of synthesis points, using
corresponding transfer functions G(s) = [Gη(s) Gq(s)]

T issued from the initial
missile nonlinear parameter-dependent model Spd

17.
The control structure chosen is a special type of external/internal (PI/P

type) compensation; this strategy has been chosen among others due mainly to
its simplicity and ease of tuning as it will be shown in the following analysis. It is
evident that in terms of performance and robustness it may be inferior than the
full-order H∞ controllers considered in the previous chapter; however in terms
of implementation and aided by the additional static H∞ controllers designed
in the next sections, it results to a better gain-scheduled controller.

The control structure used is depicted in Fig. 6.14; an inner simple propor-Control

structure tional feedback (P controller) is applied first on the pitch rate qδ with positive
feedback18 in order to reduce its corresponding open loop gain and augment its
gain margin. Then, an external proportional plus integral feedback (PI con-
troller) is added to the tracking error eδ = ηδ − ηr in order to achieve good
tracking performance19. The three gains Kp,Ki,Kq are first adjusted in a two
step procedure considering first the inner and then the outer loop, using stan-
dard frequency domain techniques, and then are optimized using MATLABR©

Simulink Control Design and Simulink Response Optimization routines.

17For details on the missile trim analysis and linearization refer to Sections 4.1.2-4.1.3.
18Positive feedback is used since the pitch rate open loop gain is negative (see Eq. 6.10).
19The feedback sign convention for the tracking error is conformable to a standard robust

control notation maintaining positive feedback.
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Figure 6.14: PI/P compensation block diagram.

To illustrate the PI/P controller tuning, consider the missile linearized state- Tuning

examplespace model S(̺r) for the fifth synthesis point (̺r = [ηr Mr]
T = [10.7132 2.25]T )

corresponding to the middle of the missile flight envelope:

SLPV(̺r)
ss
:
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(6.9)

or the corresponding matrix transfer function G(s), with:

G =

[

Gη

Gq

]

=

[

−6.57s2 + 0.1996s + 4593
−73.61s − 59.8

]

s2 + 0.9945s + 151
. (6.10)

The aforementioned linearized system presents two badly damped but stable
poles p1,2 = −0.4972±12.279 whereas the transmission zeros are z1,2 = ±26.453
and z3 = −0.812 for the vertical acceleration and pitch rate channels respectively.

The tuning of the pitch rate Kq is done by considering the inner loop that may P

controller

tuning
be seen as the positive feedback interconnection of the actuator transfer function
Ga(s) with the series interconnection of the pitch rate transfer function Gq(s)
and the P controller. The input to this loop is the output of the PI controller
δc,PI with negative sign whereas the output is the filtered total control signal δδ;
the block diagram of this loop is shown in Figure 6.15.
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Figure 6.15: Inner loop block diagram.
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The closed loop transfer function Gcl
q (s) formed by this interconnection is:

Gcl
q (s) =

Ga(s)

1 − KqGq(s)Ga(s)
. (6.11)

The pitch rate feedback gain Kq permits to play on the magnitude of the
corresponding open loop transfer function Gol

q (s) given by:

Gol
q (s) = KqGq(s)Ga(s). (6.12)

This gain is computed by the Evans root locus method; the open loop poles
of Gol

q (s) are comprised by the badly damped missile ones plus the actuator’s;
given that the latter are very fast, only the former are considered for the tuning.
The gain is chosen so that these poles obtain a good damping corresponding to
the 10% overshoot constraint P1 of the missile control objectives; this gives a
damping of 0.59. The root locus diagram for synthesis point No. 5 is shown
in Fig. 6.17a and the gain computed is Kq = 0.183; resulting to a loop gain
decrease of 20 log10(Kq) = −14.75dB (see also the Bode diagram of Fig. 6.17b).

Once the pitch rate loop is tuned, the vertical acceleration loop is correctedPI

controller

tuning
by adjusting the gains Kp,Ki of the PI controller. The open loop Gol

η (s) now is
formed by the series interconnection of the PI controller transfer function GPI(s)
(with a negative sign, corresponding to the negative feedback of Fig. 6.14), the
adjusted closed loop pitch rate transfer function Gcl

q (s) and the missile vertical
acceleration transfer function Gη(s):

Gol
η (s) = −Gη(s)G

cl
q (s)GPI(s). (6.13)

The closed loop transfer function Gcl
η (s) is obtained by the unitary positive

feedback interconnection of the open loop transfer function Gol
η (s)20:

Gcl
η (s) =

Gη(s)G
cl
q (s)GPI(s)

1 + Gη(s)Gcl
q (s)GPI(s)

. (6.14)
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Figure 6.16: Outer loop block diagram.

The PI controller transfer function is given by the following equivalent for-
mulations:

GPI(s) = Kp +
Ki

s
= Ki

1 +
Kp

Ki
s

s
. (6.15)

20Note that the reference signal ηr is applied using a negative sign.
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(a) Evans root locus (pitch rate loop)

(b) Bode diagram (pitch rate loop)

Figure 6.17: Pitch rate pre-tuning.
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The PI controller is tuned in two phases: first only the integral action isPre-tuning

added and the integral gain Ki is adjusted so as obtain a satisfying step re-
sponse performance21. By augmenting the gain, the response becomes more
rapid (the time constant τ is reduced) but also more oscillatory. The integral
gain is chosen trying to minimize the time constant while respecting the max-
imum overshoot constraint. The resulting gain is Ki = 0.15314, giving a time
constant τ = 254.6ms (less than 350ms imposed by the performance objectives)
and a settling time ts = 552ms22 with the overshoot being Mp = 10% (equal
to the constraints). The results using only the integral action are good but
not all the control bandwidth is used. Indeed the maximum control rate δ̇δ is
approximately 9deg/s, about three times less than the limit of 25deg/s of the
performance objective P2 of Section 5.3. The proportional action now of the PI
controller will add a zero on the open loop transfer function Gol

η (s) of Eq. 6.13
permitting a more rapid step response.

Based on the pre-tuning of the integral gain, both the integral and pro-Final

tuning portional gains are optimized using MATLABR© Simulink Control Design and
Simulink Response Optimization; the strategy used is to try and minimize the
vertical acceleration step response time constant τ while not violating the over-
shoot and control rate constraints. The gains obtained are Ki = 0.18593 (re-
tuned) and Kp = 0.005217323 and the two step responses (integral and re-tuned
integral plus proportional) are shown in Fig. 6.18a whereas the two correspond-
ing corrected open loop Bode diagrams are visualized in Fig. 6.18b.

The faster step response with PI controller (red line) with respect to the I
controller (blue line) is evident (see Fig. 6.18a); this may in fact be explained by
the increased open loop bandwidth. In the second case the gain crossover fre-
quency ωgc is 4.87rad/s whereas in the first case 6.19rad/s (27% bigger) (see Fig.
6.18b). The time constant τ is in the second case 254.6ms (as mentioned before)
whereas in the first case 203ms (25.5% faster). Despite the system being signif-
icantly faster, the gain margin is also slightly ameliorated (8.71dB compared to
7.84dB initially) whereas the phase margin is similar since the damping in both
cases is the same.

The closed loop dynamics are of fifth order; the poles (system, controller, ac-
tuator) and zeros (total outer feedback loop) are the following (the non-minimum
phase step response of Fig. 6.18a may now be justified by the positive closed
loop I/O zero):

poles : − 3.84 ± 11.6j,−6.8,−97.9 ± 96.5j

zeros : ± 26.4,−35.6.

21This adjustment is done using MATLABR© SISOTool, permitting to observe in real-time
the influence of the integral gain on the step response.

22Note that no settling time constraints are imposed; trying to minimize the time constant
does not always mean that the settling time is also minimized. In fact this results to a greater
overshoot and thus the settling time is finally augmented.

23This corresponds to a controller zero added at s = −Ki/Kp ≃ −35.64.
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(a) Step responses

(b) Open loop Bode diagrams

Figure 6.18: PI controller tuning comparison results (blue: integral action, red: integral
plus proportional actions).
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Table 6.4: PI/P controller tuning results

Points Kq Kp K
(i)
i

1 0.214 0.0056002 0.11111 0.12988
2 0.307 0.0042098 0.28452 0.30545
3 0.351 0.0031131 0.37043 0.38815

4 0.144 0.0057412 0.07762 0.10476
5 0.183 0.0052173 0.15314 0.18593
6 0.213 0.0046419 0.21069 0.24660

7 0.106 0.0057885 0.05839 0.08913
8 0.117 0.0056409 0.08030 0.11584
9 0.141 0.0053212 0.12486 0.16721

(i) The first column gives the values for the
pre-tuning whereas the second the final val-
ues after the optimization.

The same procedure is applied iteratively for all synthesis points (see Section
5.4) and the results for the gains are shown in Table 6.4. The pitch rate and
integral channel gains increase with the vertical acceleration for a given Mach
number whereas the proportional channel gain decreases.

The results from the PI/P controller shaping are shown in Table 6.5. TheTuning

results &

discussion
second line shows the time constant achieved; the missile’s performance ame-
liorates with increasing Mach and vertical acceleration. The synthesis is done
trying not to violate Mp = 10% and |δ̇δ|max = 25deg/s; the rapidity constraint
is not achieved only at the first synthesis point where τ = 440ms(> 350ms).
Comparing with the H∞ controllers of Section 5.4.1 the results are really good,
taking also into account the controller order considered in both cases.

Table 6.5: PI/P controller tuning results(i)

Points 1 2 3 4 5 6 7 8 9

τ(ms) 440 321 286 240 203 181 146 126 141

GM(dB) 9.62 8.15 7.78 10.5 8.71 8.00 10.3 9.44 8.25
PM(deg) 61.1 61.2 61.2 60.8 61.5 61.2 58.8 60.5 61.7
DM(ms) 370 276 248 196 173 155 109 112 106

ωgc(rad/s) 2.89 3.87 4.31 5.44 6.19 6.88 9.39 9.39 10.1

GM(dB) 26.3 25.0 24.6 21.2 20.4 20.0 17.2 17.0 16.4
PM(deg) 78.5 79.9 79.9 67.2 69.6 70.0 52.0 54.3 55.8
DM(ms) 144 103 90.1 81.7 66.7 57.7 47.0 45.0 38.5

ωgc(rad/s) 9.51 13.5 15.5 14.3 18.2 21.2 19.3 21.1 25.3
datt(dB) 43.5 41.9 41.2 38.2 37.7 37.3 34.1 34.0 33.8

(i) Lines 2 → 5 give the frequency results with the outer loop opened,
whereas lines 6 → 10 when the actuator loop is opened.
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All nine step responses of the missile vertical acceleration and control rate
are visualized in Figs. 6.19a-6.19b; the red lines correspond to the faster re-
tuned PI controller and the blue ones to the I controller only. The uniformity of
the curves is apparent with the system becoming faster through points 1 → 9; in
addition, each response demonstrates the same overshoot and control rate (for
the PI case only of course).

In Figs. 6.20a-6.20b the closed loop poles (missile+controller+actuator) and
η-channel transmission zeros of each of the nine corrected systems using the final
PI/P controller are presented; the first figure shows the big picture whereas the
second zooms on the missile’s poles only. The rapidity of the system’s dominant
poles (namely the missile ones) clearly increases through the synthesis points
1 → 9 (see Fig. 6.20b). These poles exhibit a rather constant damping (between
0.283 and 0.333) and an increasing natural frequency (between 5.59rad/s and
19.2rad/s).

The open loop frequency results with the loop opened before the PI controller
(see Fig. 6.16) are given in lines 3 → 6 of Table 6.5 and the corresponding Bode
and Nichols diagrams in Figs. 6.21a-6.21b. The results include the gain, phase
and delay margins (GM, PM, DM) and gain crossover frequencies for all open
loop transfer functions Gol

η (s) of Eq. 6.13. Again the PM is almost constant
(around 60◦) since all time responses exhibit the same overshoot whereas the
GM seems adequate ranging from 8 to 10.5dB. The DM follows the same pat-
tern as the time constant one and corresponds from 75% to 87% of the time
constant.

The open loop frequency results with the loop now opened before the actuator
(see Fig. 6.14) are also given in lines 7 → 11 of Table 6.5 and the correspond-
ing Bode and Nichols diagrams in Figs. 6.21a-6.21b. Suppose the total PI/P
controller matrix transfer function from the missile outputs ηδ, qδ to the control
input δc is denoted by:

Gc(s) =
[

−GPI(s) Kq

]

=

[

−Kp −
Ki

s
Kq

]

. (6.16)

Then the aforementioned open loop (stabilized always with a positive feed-
back) is a SISO transfer function Gol

a comprised by the series interconnection of
the actuator, the missile linearized dynamics and the controller24:

Gol
a = Gc(s)G(s)Ga(s). (6.17)

Besides the GM, PM, DM and gain crossover frequency, the open loop mag-
nitude attenuation datt (robustness constraint R2 of Section 5.3) is given; the
latter is maintained for all synthesis points (datt > 30db). The GM and DM
decreases for synthesis points 1 → 9 since the system becomes more rapid with
the latter being approximately one third of the system’s time constant; finally,
the PM is also very good.

24Note that a positive feedback is always assumed for the calculation of the closed loop
transfer function.
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(a) Step responses

(b) Open loop Bode diagrams

Figure 6.19: Total controller tuning results (blue: integral action, red: integral plus pro-
portional actions).
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(a) General view

(b) Zoomed view

Figure 6.20: Closed loops pole-zero map.
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(a) Bode diagrams

(b) Nichols diagrams

Figure 6.21: Open loops analysis (outer feedback loop).
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(a) Bode diagrams

(b) Nichols diagrams

Figure 6.22: Open loops analysis (actuator loop).
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6.3.1.2 Operating Point Algorithm

Based on the loop shaping performed in the previous section, an additional set
of synthesis points for the H∞ controllers will be computed, similarly to the
analysis of Section 6.2.1.2 concerning the ARV benchmark model. The major
difference between the two is that the missile’s nonlinear dynamics will be treated
in two dimensions and not only across a line as with the ARV.

The algorithm proposed in this section is essentially the same as the one inDiscussion

Section 6.2.1.2, with the difference that here the linear search is performed for
m sets of equidistant values Σm

η = [η1, . . . , η
m
k ] for the vertical acceleration. The

index ‘m’ defines the value Mm of the Mach number corresponding to each set,
since the algorithm is performed iteratively for a gridding ΣM = [M1, . . . ,Mm]
over the Mach number. Given the fact that for each value of ΣM , the corre-
sponding final value ηm

k is different because of the trapezoidal form of the flight
envelope, the size of each set Σm

η will be different for each m. The algorithm used
here proposes only three values for ΣM ; the same used for the loop shaping of
the previous section (i.e. 1.5,2.25,3) and thus the additional synthesis points will
be added across these three (constant Mach) lines25. Once again, the operating
point algorithm is divided into three distinct steps:

Step 1 - Initialization. Choose an equidistant gridding (e.g. ΣM = [1.5, 2.25, 3])
over the Mach range and then a second equidistant gridding Σm

η for all
m = 1, . . . 3 over the vertical acceleration, thus creating a planar gridding
of candidate synthesis points. Take then as the initial synthesis point P j

the one corresponding to η = 0, for each value of ΣM
26.

Step 2 - Interpolated Loop Shaping. For the initial operating point P j (for a
corresponding scheduling vector value ̺ = ̺ j with m = 1), compute the
open loop shaped plant Gj

s = Gj
cGjGa (see Eq. 6.17). The loop shaping

PI/P controller gains at this point are computed using linear interpolation
of the nine initial synthesis points and the corresponding four trapezoidal
scheduling regions (see Fig. 5.2). The missile model is simply the lineariza-
tion of the initial parameter-dependent model for ̺ = ̺ j , and the open
loop shaped plant is finally completed by adding the actuator model. For
this shaped plant Gj

s an H∞ static loop shaping controller is computed
following Theorem 3.5 and the discussion of the next section; in addition,
the corresponding robustness margin ǫj is obtained.

Step 3 - Line Search or Reset. Performing a line search for subsequent values
of η belonging to Σm

η , successive shaped plants Gf
s are computed, until the

gap δg(G
j
s , G

f
s ) between the nominal initial plant and the successive one is

greater or equal than the robustness margin ǫj .

25Of course more points could be used; however three seem to be adequate in this case.
26Note that the right extremal values of the flight envelope are computed using Eq. 4.22; for

more details concerning the missile operating domain refer to Section 4.1.2.3.
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If this is the case, then a new operating point P j is chosen and the algo-
rithm jumps back to Step 2, except for the case when the end of the flight
envelope is reached. In this case, even if δg(G

j
s , G

f
s ) < ǫj , the final point is

selected and the procedure jumps to Step 2 where a new set value ΣM is
chosen (m = m + 1) and the algorithm continues for all m.

Using this algorithm, totally twelve synthesis points are computed. The H∞ Algorithm

resultscontroller treats the internal/external loops outputs and K∞ = [KPI,∞ Kq,∞] ∈
R1×2 (for more details see the next section). The coordinates of the synthesis
points, the corresponding gains and robustness margins are shown in Table 6.6.

Table 6.6: Robust controller gains

Points [η,M ] KPI,∞ Kq,∞ e

1 [0 1.5] 0.594 1.098 0.369
2 [4.20 1.5] 0.626 1.099 0.378
3 [9.7969 1.5] 0.657 1.129 0.381

4 [0 2.25] 0.645 1.131 0.391
5 [4.20 2.25] 0.643 1.093 0.387
6 [12.91 2.25] 0.720 1.152 0.396
7 [21.43 2.25] 0.745 1.155 0.389

8 [0 3] 0.569 0.960 0.292
9 [4.20 3] 0.544 0.874 0.369
10 [11.11 3] 0.628 1.006 0.399
11 [21.01 3] 0.770 1.167 0.395
12 [33.0559 3] 0.738 1.133 0.383

The gap evolution is shown in Fig. 6.23 for M = 1.5 (for the rest of the values
for M the profile is similar). For this Mach value the operating point algorithm
finds three points (see Table 6.6). Take for example the first one (η = 0); the
robustness margin ǫj and the maximum robustness margin ǫj

max (corresponding
to the full order robust controller) are shown with black points. The red points
show the gap between subsequent candidate synthesis points and the initial one;
once the gap becomes greater than ǫj , a new synthesis point is selected.

Figure 6.23: Gap evolution for M = 1.5.
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6.3.1.3 H∞ Controller Synthesis

The analysis concerning the computation of the robust H∞ controllers is essen-
tially the same as in Section 6.2.1.3 with the corresponding problem being given
by Eq. 6.3, and will not be repeated.

The robust controller structure uses a slightly different form here, comparingControl

structure to the one concerning the ARV benchmark, where all three channels of the PID
controller were treated (see Fig. 6.7). The loop now is opened using directly
the output of the PI controller δc,PI (instead of e.g. separately the proportional
& integral channels) and the output of the P controller δc,P. Two static gains
KPI,∞, Kq,∞ are thus computed treating each controller output and their out-
puts are summed in order to provide the final control signal δc (see Fig. 6.24).

The step responses for the PI/P shaped plant (blue) and the PI/P shaped
plant plus the robust controller (red) for the synthesis point (No. 12) are shown
in Fig. 6.25 (similar behavior holds for all points); with the output now being
more damped. The PI/P controllers could have very well been adjusted initially
to provide such damping; however it should not be forgotten that the robust
controllers, coupled with the gap metric theory, additionally capture the plant’s
nonlinear dynamics variation using the algorithm of the previous section.
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Figure 6.24: Robust controller synthesis block diagram.

Figure 6.25: Step response comparison.
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6.3.2 Gain Interpolation

The gain-scheduled controller detailed in the next section uses gain interpola-
tion in order to update its parameters as a function of the scheduling vector
̺ = [η M ]T . Gain interpolation is also used by the operating point selection
algorithm of Section 6.3.1.2 in order to provide PI/P controller gain values for
the loop shaping needed at any point on the missile’s flight envelope.

The PI/P controller gains Kq,Kp,Ki are designed using the analysis of Sec-
tion 6.3.1.1 at nine synthesis points (see Table 6.4) forming four trapezoidal
scheduling regions Γ1, Γ2,Γ3 and Γ4 (the same used in Chapter 5). The robust
controller gains KPI,∞, Kq,∞ are designed at twelve synthesis points (see Table
6.6) forming twelve triangular scheduling regions.

Concerning the PI/P controller gains, the trapezoidal interpolation is per- PI/P gain

interpolationformed like the one used for the controller blending method in Section 5.4.2.1 (see
especially Fig. 5.9). Consider for example the gain Kq and the first scheduling
region Γ1; define as K ll

q ,K lr
q , Kur

q , Kul
q the gain values at the lower-left, lower-

right, upper-right and upper-left corners of the scheduling region. The normal-
ized quantities a1, a2 (with 0 ≤ ai ≤ 1) give the relative distance of the current
interpolated value Kq(t) from the left (lower & upper) points and from the lower
(left & right) points respectively. These distance need some trigonometry to be
computed and the calculations will not be given here; it must however be stressed
out that once the normalized quantities are found, the interpolated value for the
controller gain is simply obtained by27:

Kq(t) =
[

1 − a1(t)
]

K l
q(t) + a1(t)K

u
q (t) (6.18)

where:

K l
q(t) =

[

1 − a2(t)
]

K ll
q + a2(t)K

lr
q (6.19)

Ku
q (t) =

[

1 − a2(t)
]

Kul
q + a2(t)K

ur
q . (6.20)

To illustrate the interpolation method used here, a spiral scheduling vector
trajectory is shown in Fig. 6.26 (red points).

Figure 6.26: Pitch rate gain interpolation.

27Dependence on the scheduling vector is omitted; only time dependence is used for simplicity.
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The robust controller gains KPI,∞,Kq,∞ now are interpolated using triangu-H∞

controller

interp/tion
lar scheduling regions as a result of Delaunay triangulation. In order to ensure a
more correct triangulation of the missile flight envelope, the scheduling regions
are obtained by considering only the portion of the flight envelope that corre-
sponds to two subsequent values of the Mach number gridding.

For example, if the current value of the scheduling vector for the Mach num-
ber is M = 1.6 and given that the gridding values are 1.5, 2.25, 3, only the
portion of the flight envelope corresponding to 1.5 ≤ M ≤ 2.25 is triangulated.
In this case the triangular scheduling regions are illustrated in Fig. 6.27.

Figure 6.27: Flight envelope triangulation.

Finally in Figs. 6.28a-6.28b, the robust controller gains KPI,∞,Kq,∞ are
shown in 3D (see also Table 6.6).

(a) PI-channel gain

(b) Pitch rate-channel gain

Figure 6.28: Robust controller gains.
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6.3.3 Controller Implementation & Validation

The missile gain-scheduled controller will be detailed in this section. The first
subsection presents the controller structure whereas the second one presents the
main results concerning the nominal and uncertain behavior of the missile under
the specific controller; the chapter ends with a short discussion.

6.3.3.1 Nonlinear Gain-scheduled Controller

The nonlinear gain-scheduled controller block diagram is shown in Fig. 6.29. The
grey blocks represent the nonlinear missile pitch-axis dynamics, the actuator
dynamics and the Mach dynamics (see Eqs. 4.1-4.9, Eq. 4.11 and Eq. 4.10
respectively). The total control signal δ is the sum of the trim control δr and
the closed loop control signal δδ.

The trim control δr = δ(̺r) is computed using the analysis of Section 4.1.2.2 Trim &

feed/ward

control
as a function of the scheduling vector ̺ = [ηr Mr]

T . A feedforward controller
is added before the trim control block in order to ‘schedule on a slow variable’
as it is often the case in gain scheduling. This controller is a simple first-order
filter acting on the reference signal ηr dampening the system’s output η(t); as a
result, the trim control is computed using the filtered reference signal ηr,f .

The closed loop control signal δδ is the sum of the outputs of the PI and the Fast loop

pitch rate controllers (see in Fig. 6.14), and scaled by the robust H∞ controller.
The inputs to these controllers are the ‘error signals’ ηδ and qδ; the former
is computed by subtracting the missile output by the reference output signal
whereas the latter is also computed in a similar way28. This closed loop is the
fast one since it stabilizes the system and ensures trajectory following.

The additional scheduling loop is the slow one, and uses the scheduling vector Slow loop

̺ and the ‘Interpolation Mechanism’ block (in red) in order to update all five
gains of the inner control loop as a function of the system’s operating conditions
(see Section 6.3.2). A similar feedforward controller as the trim control one
(but with a different time constant) is used to smooth the gain variation29. The Global

controllergain-scheduled controller is thus governed by the following equations30:

ẋc = Ac(̺)
[

xc − xc(̺)
]

+ Bc(̺)
[

y − yr(̺)
]

δ = Cc(̺)
[

xc − xc(̺)
]

+ Dc(̺)
[

y − yr(̺)
]

+ δ(̺r)
(6.21)

with y = [η q]T , ẋc = ηδ and:

Ac(̺) = 0 (6.22)

Bc(̺) = [1 0] (6.23)

Cc(̺) = KPI,∞(̺)Ki(̺) (6.24)

Dc(̺) = [KPI,∞(̺)Kp(̺) Kq,∞(̺)Kq(̺)]. (6.25)

28To compute qr, an additional ‘Trim Values’ block is used (see Section 4.1.2.2 & Eq. 4.20).
29For details on tuning both feedforward controllers, see [140], §VI.A.
30The feedforward filters are not considered in the equations for simplicity.
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Figure 6.29: Gain-scheduled controller block diagram.
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6.3.3.2 Simulation Results

The simulation results presented in this section are obtained under the same
conditions as the ones in Chapter 5 (Mach number trajectory, reference signal
scenario); for more information refer to Figs. 5.11a-5.11c.

The first figure presented here (see Fig. 6.30) illustrates the missile’s output Nominal

case

results
vertical acceleration η as a function of time, when applying two gain-scheduled
controllers: the PI/P scheduled controller using the nine LTI controllers of Sec-
tion 6.3.1.1 (blue line), and the full PI/P plus robust H∞ scheduled controller
detailed in Sections 6.3.1.2-6.3.1.3 (red line). The tracking reference ηr and the
filtered tracking reference ηr,f are also shown (black lines).

When observing the responses, the robust controller is clearly superior to
the simple PI/P controller, providing adequate damping to the system’s output
while retaining excellent time constants and steady-state errors and satisfying
the missile control objectives of Section 5.331. The response characteristics for
the robust gain-scheduled controller are also presented in detail in Table 6.7 for
all four reference operating points.

Table 6.7: Controller nonlinear performance

Points No. 1 No. 2 No. 3 No. 4 Limit

τ (ms) 260 283 250 319 350

Mp (%) 3.88 6.25 0.00 5.33 10

ess (%) 0.19 0.00 1.71 1.05 1

|δ̇| (deg/s)(ii) 4.44 6.03 6.64 7.20 25

(i) The violated constraints are shown in italics.
(ii) The control rate is normalized by the amplitude

of the reference signal ηr.

Figure 6.30: Vertical acceleration (comparison).

31There is a small violation on the steady-state errors for points No. 3 & 4.



196 Chapter 6. Systematic Control Strategies

(a) Control signal

(b) Control rate signal

Figure 6.31: Controller outputs.
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The two figures in the previous page present the gain-scheduled controller
output characteristics. In Fig. 6.31a, the total control signal δ(t)32 after the
actuator is shown (in red)33 along with the trim control signal (in blue). It
may be observed that the control signal does not present any discontinuities or
transients as with the controller blending method.

An interesting phenomenon may be also observed from Fig. 6.31a concerning
moving equilibria. Take for example the transient response for the first reference
point 0 → 25g; the output η(t) has settled down for t > 0.7s (see Fig. 6.30),
however the control signal δ(t) continues to increase (see Fig. 6.31a). This may
be explained from the fact that during the system’s operation the Mach number
continues to drop rapidly and thus the trim control also augments according to
Fig. 4.4c.

The control rate δ̇(t) illustrated in Fig. 6.31b is also well inside the con-
straints (25deg/s for 1g reference commands) as it is also seen from Table 6.7.
The obvious question is whether the response could be faster and exploit all the
available bandwidth; the answer is of course positive but with the expense of
smaller stability margins presented further down. In any case, a major role in
this issue is played by the feedforward controllers that provide damping and do
not let the control signal be too aggressive; the time constants however remain
fast for all reference points considered in the benchmark tests (see Fig. 6.30).

The missile state vector x = [α q]T is depicted in Fig. 6.32; the angle of
attack α lies well within its domain of operation (recall from Section 4.1.1 that
the nonlinear pitch-axis missile model is valid for |α| ≤ 20◦) and reaches its equi-
librium values corresponding to the output reference trajectory, practically with
no overshoot and in a smooth way. In addition, the pitch rate q is rapidly aug-
menting when there is a change to the output operating point and then reaches
asymptotically its equilibrium value (see also Fig. 4.3c).

Figure 6.32: Missile state vector.

32Recall that the total control signal is the sum of the nominal (or trim) control signal δr

plus the closed loop stabilization signal δδ.
33The control signal before the actuator δc is not shown here since it is very close to δ.
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The robust controller gains KPI,∞,Kq,∞ time evolution for the simulation
scenario chosen is shown in Fig. 6.3334. The gain evolution is smooth and
the transition rate between operating points is influenced by the feedforward
controller applied on the output of the interpolation mechanism. The same
phenomenon as with the control signal is also observed here; the gains do not
reach steady-state values since they are interpolated not only as a function of η,
but also as a function of the Mach number M that continues to drop during the
system’s operation.

Figure 6.33: Robust controller gains time evolution.

In order to test the stability of the missile under the gain-scheduled controller,
the loop is opened before the actuator and the plant is linearized freezing the
time each 0.1s during the benchmark scenario of Fig. 6.30 (totally 60 open loop
models are obtained). Then the Nichols & Bode diagrams of these open loops
are superimposed and illustrated in Figs. 6.34a-6.34b. The worst gain and phase
margins are 9.5dB and 52◦ respectively whereas the worst magnitude attenuation
at high frequencies35 datt is approximatively 27.5db; slightly violating the 30dB
robustness constraint limit R2 (see Section 5.3).

So far, the gain-scheduled controller’s performance has been tested for theUncertain

case

results
two performance and the second robustness constraint of the control objectives
described in Section 5.3. The last test concerns the controller’s robustness in
the face of disturbances in the missile’s pitch aerodynamic coefficients am, bm, cm

and dm (see Table 4.1). These coefficients are independently perturbed in two
groups (the first three in the same manner and the fourth separately) with a
maximum deviation of 25% of their nominal values and all resulting outputs
η(t) are superimposed in Fig. 6.35a. The independent perturbations follow a
Gaussian distribution with zero mean and standard deviation σ = 0.25/3, with
totally 150 cases being considered36. The envelope created around the nominal
response is not too large and the plant demonstrates robust stability.

34The PI/P gains follow similar patterns and are not shown here for brevity.
35Recall from Section 5.3 that this corresponds to the robustness objective R2.
36This scenario corresponds to a Monte-Carlo analysis.
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(a) Nichols diagrams

(b) Bode diagrams

Figure 6.34: Open loop linearization results.
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(a) Parametric robustness

(b) Gain robustness

(c) Delay robustness

Figure 6.35: Additional robustness tests.
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Some additional tests were performed to demonstrate the robust stability Additional

testsof the missile in the face of open loop gain & delay augmentation. First, a
variable gain was added before the actuator and the gain margin of the loop
was verified by augmenting the gain from 0.7 to 3 (corresponding to the 9.5db
of the worst GM of the previous frozen-time linearization analysis) and taking
totally 47 simulation cases. The responses were superimposed in Fig. 6.35b; it
is apparent that the output becomes more oscillatory as the loop gain increases
but the system remains stable. Second, a variable loop delay was added, taking
values from 0 (nominal case) to 35ms (worst case), in order to test the plant’s
delay margin. The totally 8 cases are also superimposed and illustrated in Fig.
6.35c; the limits of stability are clearly demonstrated as the output starts to
oscillate as the loop delay increases.

6.3.3.3 Discussion

In this second part of the chapter, a novel gain-scheduling approach for the
control of the Reichert missile benchmark model, based on the e-LSDP, was
proposed and extensively tested in order to demonstrate both its good time per-
formance and robustness.

The advantages of the proposed method are its simple structure (low or-
der controllers), its ability to take into account the plant’s nonlinear dynamics
variation (gap metric algorithm) and its simplicity of interpolation (gain interpo-
lation). The gain-scheduled controller depicted in Fig. 6.29 is thus very straight-
forward to implement on a real system since it does not demand any complex
calculations or great memory as for example other gain-scheduled controllers
found in the bibliography (see for example [17, 74, 103] and other approaches
detailed in Section 5.2).
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This thesis involved research on the subject of linearization-based gain scheduling
for nonlinear parameter-dependent systems. Given that these systems require
controllers that are on the one hand adaptive and on the other hand easy to
implement, the designer’s task is not straightforward.

To obtain the required performance/robustness characteristics, most gain-
scheduled control schemes reside on high-order LTI controllers designed only at
a small number of synthesis points to limit memory/processing requirements
(see for example [103], [17]). Other control schemes use simpler structure con-
trollers (e.g. PID) designed at a relatively higher number of points 37. The
LTI controllers are then interpolated (or simply switched) using one of the in-
terpolation strategies presented in the first chapter of this work. In the context
of linearization-based gain-scheduling, some schemes even offer some stability
guaranties for the gain-scheduled system (see for example [150]).

This thesis has shown that in some cases a gain-scheduled system need not be
based on high order controllers or use a significant number of operating points
so as to ensure a good behavior of the controlled plant. In fact, it has been
demonstrated that low order controllers (e.g. PID) may form a good basis for a
high performance gain-scheduled system, if they are complemented by specific
‘corrective’ gains designed around a smartly chosen set of synthesis points.

This strategy has been called the e-LSDP (extended -Loop Shaping Design
Procedure) and can be briefly decomposed into three steps: loop shaping, op-
erating point selection and H∞ controller computation. The loop shaping is
performed using simple structure LTI controllers at a relatively small number
of points in order to obtain a basic tuning for the system. Then, based on this
tuning, a complementary number of synthesis points is computed (using inter-
polated values of the PID controllers) from a specific operating point selection
algorithm. This algorithm uses the gap metric as a distance measure between
systems in order to capture the nonlinearity variation of the initial parameter-
dependent system and this variation being regarded as unstructured normalized
co-prime factor uncertainty. For this additional number of synthesis points, the
PID controller outputs are treated/corrected by static H∞ controllers that come
as a natural connection of the gap metric tool and the standard LSDP.

37This is the case mostly in the industry.
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To obtain the gain-scheduled controller, all gains (PID plus robust controller)
are interpolated according to the scheduling vector inside the whole system’s op-
erating domain. It is clear that this interpolation strategy is the simplest possible
since it does not require large memory to store the controllers or significant com-
putational capacities to compute the interpolated control law, as is the case for
example with state-space or ZPK interpolation. In addition it does not cause
signal discontinuities or transients as with the controller blending method.

This method has been tested on two benchmark systems: a pitch axis mis-
sile model and an atmosphere re-entry vehicle, to obtain a tracking/regulating
autopilot respectively. In the first case, the autopilot should provide adequate
tracking performance for output reference step commands whereas in the second
case, it should be able to regulate the AoA around a given value. In both cases
there are strict constraints concerning robust stability in the face of uncertain-
ties, control signal energy minimization, stability margin maximization etc.

In the missile case, the loop shaping controllers are designed at nine synthe-
sis points and are of a specific internal/external feedback configuration (internal
proportional feedback on the pitch rate and external proportional plus integral
feedback on the vertical acceleration). These controllers offer excellent proper-
ties on the linear case but, being of relatively low order, are not adequate when
considering the nonlinear gain-scheduled system. An additional set of twelve
static, H∞ output feedback controllers are designed at a new set of synthesis
points using the gap metric-based operating point selection algorithm proposed
in this thesis. These controllers are two gains treating each of the two initial
feedback loops, thus robustifying the system and offering excellent tracking char-
acteristics. All five gains are then scheduled as a function of the Mach number
and the output to provide a global nonlinear gain-scheduled controller38.

In the re-entry vehicle case, the loop shaping controllers are designed only
at five synthesis points of the flight envelope, formed by the AoA (regulated
variable) and the Mach number. The control structure is even simpler than in
the missile case and is consisted of a PID controller preceded by a first-order
filter. The controllers for both systems are designed using classical frequency
domain concepts and re-tuned using optimization techniques; however, they also
are not sufficient on their own. An additional set of six static robust controllers
is designed at carefully chosen operating points, using the aforementioned point
selection algorithm, treating each of the proportional/integral/derivative chan-
nels of the initial loop shaping controllers. Finally, all LTI controllers are dis-
cretized and the global control law is computed by appropriately scheduling the
totally seven gains. Both systems are exhaustively tested using standard bench-
mark scenarios and Monte Carlo analysis in order to ensure their good behavior
throughout all their domain of operation both in the nominal case but also when
uncertainties are introduced on their aerodynamic coefficients/functions.

38The gain-scheduled controller is aided by a trim preserving open loop controller and a
carefully tuned feedforward loop (for more details see Chapter 6).
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The gain-scheduled control strategy proposed in this work is by no means
perfect and several enhancements may be considered. Take for example the op-
erating point selection algorithm, described in detail in the last chapter of this
work, and consider the missile’s autopilot case. The algorithm performs a linear
search for candidate operating points, for constant values of the first scheduling
variable (Mach number) on the trapezoidal flight envelope and increasing values
of the second scheduling variable (vertical acceleration). This search thus con-
siders the gap metric variation only as a function of a single variable, based on
a given gridding for the second variable. Evidently, this is not the best way to
perform the search, even though the results obtained are very good. In addi-
tion, the gap is computed with respect to a single initial system and not for a
collection of systems forming say, a triangular or trapezoidal region where the
gap of each system with respect of all others will be inferior than a given value.
In this way, a more re-assuring partitioning of the operating domain could be
performed, with the expense of course of a more demanding/complex operating
point selection algorithm 39.

Possible ways to perform this could be for example exhaustive triangulation
of the operating domain: start with an initial triangle, check all the gaps; if at
least one is superior to a given value then divide the initial triangle in three
sub-triangles and restart. Another method could be circular search: start with
a given point say, at the center of the flight envelope and then check the gaps
between this point and a sufficient number of neighbor points residing on the
circumference of a circle of varying radius. When at least one gap is superior to
a given value then stop and add an additional synthesis point on the given circle;
then take out the covered area and continue the search until all the operating
domain is covered.

In the same context, consider now the linear search concerning the re-entry
vehicle operating point selection algorithm. The algorithm starts by comparing
the gap between an initial point for M = 26 and subsequent points; then it
continues until M = 4. This approach however maybe conservative since it is
possible that the last two synthesis point may be close; this is due to the fact
that when the algorithm is searching for the last point, the operating domain
may end suddenly. As an extension to this fact, if the algorithm starts from
the opposite end of the envelope, it is highly probable that the synthesis points
will be different than before. A solution to this problem may be for instance, to
start from the center of the operating domain and proceed in both directions in
the same time.

Another issue concerning the gap metric-based operating point selection al-
gorithm is the heavy demands on processing power in order to check the gap
for a fine gridding of possible synthesis points. To solve this, variable-step/grid
methods could be considered instead of fixed ones; that check will accelerate the
search and may use for example the gap’s rate of variation.

39See Fig. 6.36 for a brainstorming session!
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Figure 6.36: Brainstorming: Georgiou & Theodoulis, CDC’07, New Orleans, USA.
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From a practical point of view, another possible research direction would be
the exploitation of techniques related to the nonlinear gap-metric theory (see for
example [51]) or exploitation of other types of metrics such as the ν-gap metric
proposed by Vinnicombe (see for example [145]).

The next step of this work surely is the integration of the proposed gain-
scheduling strategy to the 3-axes autopilot problem; notably constructing an
autopilot for the roll and yaw axis of both systems. This will result to a true
MIMO problem and it should be a real challenge to find out the effectiveness of
the e-LSDP in this coupled case. Finally, more complex mathematical models
of the systems could be considered, taking into account flexible modes, digital
implementation, the guidance loop etc.
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[15] K.J. Åstrom and B. Wittenmark. Adaptive Control. Addison-Wesley, 1995.

[16] L. Atran. Analysis of a Nonlinear Control System for Stabilizing a Missile.
IRE Transactions on Automatic Control, 46(3):671–675, 1958.

[17] G.J. Balas and A.K. Packard. Design of Robust, Time-varying Controllers
for Missile Autopilots. In Proceedings of the 1st IEEE Conference on Con-
trol Applications, pages 104–110, Dayton, USA, 1992. IEEE.

[18] G. Becker and A. Packard. Robust Performance of Linear Parametrically-
varying Systems Using Parametrically-dependent Linear Feedback. Sys-
tems & Control Letters, 23:205–215, 1994.

[19] D.J. Bell. Mathematics of Linear and Nonlinear Systems. Oxford Science
Publications, 1990.

[20] D.J. Bender and R.A. Fowell. Computing the Estimator-controller Form of
a Compensator. International Journal of Control, 41(6):1565–1575, 1985.

[21] D.J. Bender and R.A. Fowell. Some Considerations for Estimator-based
Compensator Design. International Journal of Control, 41(6):1577–1588,
1985.

[22] C.J. Bett and M.D. Lemmon. Bounded Amplitude Performance of
Switched LPV Systems with Applications to Hybrid Systems. Automatica,
35:491–503, 1999.



REFERENCES 211
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Résumé de Thèse.

Cette thèse porte sur le problème de commande des systèmes non-linéaires
à paramètres variants rencontrés souvent (mais non seulement) dans le domaine
aéronautique, avec la technique de séquencement de gains par linéarisation.

Une stratégie innovante, appelée extended - Loop Shaping Design Procedure
(e-LSDP), qui facilite et systématise la tache du scientifique pour le calcul d’une
loi de commande séquencée pour ce type de systèmes, est ici proposée.

Cette stratégie est basée sur une pré-compensation (loop shaping) faite à
partir des systèmes linéarisés du système non-linéaire autour d’un petit nombre
de points de fonctionnement en utilisant des compensateurs de structure simple
(e.g. PID), et de plus en utilisant une compensation additionnelle/corrective
type retour de sortie H∞ statique. Les points de fonctionnement de la deuxième
compensation sont calculés à l’aide d’un algorithme de choix de points de
synthèse basé sur la connexion des théories de la gap métrique et de la com-
mande H∞ par loop shaping. La loi de commande globale non-linéaire séquencée
est finalement obtenue en utilisant une interpolation de tous les gains des com-
pensateurs impliqués pendant la phase de synthèse.

La méthode proposée ici est validée sur deux exemples d’application : le
pilotage autour de l’axe de tangage d’un missile fortement manœuvrant et d’un
véhicule de rentrée atmosphérique. Les deux autopilotes sont testés de façon
intensive en utilisant des simulations non-linéaires, une analyse Monte Carlo
et linéaire à temps figé afin de démontrer leurs excellents caractéristiques en
termes de performance et de robustesse.

Mots-clés : Séquencement de gains, H∞ loop shaping, gap métrique, systèmes
nonlinéaires & LPV, linéarisation, analyse de robustesse, LMI, autopilotes.

Thesis Abstract.

This thesis deals with the problem of linearization-based gain scheduling
control for nonlinear parameter-dependent systems often (but not exclusively)
encountered in the aeronautical domain.

A novel control strategy, the extended - Loop Shaping Design Procedure
(e-LSDP), that facilitates and systematizes the designer’s task for the calcula-
tion of gain-scheduled control laws for such systems, is here proposed.

This strategy is based on a pre-compensation (loop shaping) of linearized
instances of the nonlinear system at a small set of synthesis points using simple
structure (e.g. PID) controllers and on an additional/corrective compensation
at a second set of points by static H∞ output feedback controllers. The latter
compensation points are computed using an operating point selection algorithm
based on the connection of the gap metric and standard H∞ loop-shaping theo-
ries. The final global nonlinear gain-scheduled control law is finally obtained
using interpolation of all controller gains involved in the synthesis phase.

The proposed method is validated on two pitch axis autopilot problems :
a highly manoeuvrable missile and an atmosphere re-entry model. Both au-
topilots are extensively tested using nonlinear simulations, Monte Carlo and
frozen time-type linear analysis in order to prove their excellent characteristics
in terms of both performance and robustness.

Keywords : Gain scheduling, H∞ loop shaping, gap metric, nonlinear & LPV
systems, linearization, robustness analysis, LMI, autopilots.


