N

N
N

HAL

open science

Type Theory and Decision Procedures
Pierre-Yves Strub

» To cite this version:

Pierre-Yves Strub. Type Theory and Decision Procedures. Formal Languages and Automata Theory

[cs.FL]. Ecole Polytechnique X, 2008. English. NNT: 2008EPXX0054 . tel-00351837

HAL Id: tel-00351837
https://pastel.hal.science/tel-00351837
Submitted on 12 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://pastel.hal.science/tel-00351837
https://hal.archives-ouvertes.fr

Ecole Polytechnique

Theése

présentée pour obtenir

Le Grade de Docteur en Informatique
de I'Ecole Polytechnique

par

Pierre-Yves Strub

Théorie des Types et

Procédures de Décision

Soutenue le 2 juillet 2008
devant la commission d’examen composée de:

Gérard Huet Président du Jury

Gilles Barthe Rapporteur
José Meseguer
Natarajan Shankar

Frédéric Blanqui Examinateur
Christine Paulin-Mohring
Benjamin Werner

Jean-Pierre Jouannaud Directeur

Abstract

The goal of this thesis is to develop a logical system in which formal proofs of
mathematical statements can be carried out in a way which is close to mathematical
practice.

Our main contribution is the definition and study of a new calculus, the Calculus
of Congruent and Inductive Constructions, an extension of the Calculus of Inductive
Constructions (CIC) integrating in its computational part the entailment relation
- via decision procedures - of a first order theory over equality. A major technical
innovation of this work lies in the computational mechanism: goals are sent to the
decision procedure together with a set of user hypotheses available from the current
context.

Our main results show that this extension of CIC does not compromise its main
properties: confluence, strong normalization, consistency and decidability of proof
checking are all preserved (as soon as the incorporated theory is itself decidable). As
such, our calculus can be seen as a decidable restriction of the Extensional Calculus
of Constructions. It can therefore serve as the basis for an extension of the Coq proof
assistant.

Résumé

Le but de cette thése est I’étude d’un systéme logique formel dans lequel les preuves
formelles de propriétés mathématiques sont menées dans un style plus proches des
pratiques des mathématiciens.

Notre principal apport est la définition et ’étude du Calcul des Constructions
Inductives Congruentes, une extension du Calcul des Constructions Inductives (CIC),
intégrant au sein de son mécanisme de calcul des procédures de décisions pour des
théories equationnelles au premier ordre.

Nous montrons que ce calcul posséde toutes les propriétés attendues : confluence,
normalisation forte, cohérence logique et décidabilité de la vérification de types sont
préservées. En tant que tel, notre calcul peut étre vu comme une restriction déci-
dable du Calcul des Constructions Extentionnelles et peut servir comme base pour
I’extension de l’assistant a la preuve Coq.

This thesis has been partly supported by Fondation d’Entreprise EADS.

This thesis has been partly supported by France Telecom.

1

CONTENTS

Introduction

1.1 A brief history of type theory
1.2 Safety of Proof assistants. ...
1.3 COMEIIDUBIONS -+« v e s e oo
14 OUHNE OF the ThESIS -+ vo et

The Calculus of Presburger Inductive Constructions

2.1 Terms of the calctulus o oooor
2.2 The conversion Telation -« - et
2.3 Two simple examples ..o
2.4 Typing rules - ..o
2.5 COMSISTEIICY -+ttt

The Calculus of Congruent Inductive Constructions

3.1 The Calculus of Inductive Constructions -.........cocoooii
3.2 Parametric multi-sorted theories with constructors........................o
3.3 The calculus - oo

Meta-theoretical Properties of CCIC

4.1 Confluence on Well-Sorted LErmS -« oo vvvrieeee ittt
4.2 MONOLONY OF COMVELSION -+ -+ e re ettt
423 WEAKEIUILE -« veeeee ittt
4od SUDSTIEUEIVIEY - et
4.5 Product compatibility e
4.6 COTECHNESS OF EYPES -+ v vre oottt
A7 SUDJECt TEAUCHON -« et
48 TYPE UILCIEY - e eeeree e e
4.9 Strong normalization ...

10

10

11

11

12

16

17

17

21

21

25

31

45

5 Deciding CCIC
5.1 Decidability of conversion relation
5.2 A syntax oriented typing judgmen

5.3 Deciding more theories..............

6 Conclusion and perspectives

6.1 Stability of extractable equations

6.2 Using a typed extraction -..........
6.3 Weak termsoooooiii
6.4 Extending CCIC to CAC...........

6.5 Embedding a more powerful logic

Bibliography

b o

67
68

79
81

85
85
86
86
87
87

89

3-3
34
3-5
3.6

37

53
5-4

LIST OF FIGURES

CCOE Conversion RELAtion - . ovvo oo 8
CON EEIINS CLASSES - eeee oo 14
CONVELSION TEIALION ~ -« e eeeee e 15
FEVEISE FUNCEION A1 COG .+ oot 17
Typing JUudgerment of COR -« . o veterie ettt 18
CIC LreduCtion eXATIPIE -« o ee e 24
CIC Typing Rules (CC rules) o oovorroii 26
CIC Typing Rules (Inductive Types) - oo oorvoiiii 26
COIC OIS CLaSSES - - - e ettt ettt et 33
CCIC Typing Rules (CC rules) -« ovooroiiii 34
CCIC Typing Rules (Inductive TYPes) -« -« ovmermiriiii 35
CCIC COMVETSION TEIAtiON - -+« v ettt oo 43
Non-object cap equivalence. ... 52
CACT OIS ClASSES - - e e e 60
CACT Conversion ReLation -« - - eenem e 62
CACT Typing RUIES -« oo 62
Conversion relation avf (PArt. 1)« - o o 69
Conversion relation ~af (Part. 2) .- o wrrrr 70
CCIC Typing Rules for i (CC Tules) - oovvorri 80
CCIC Typing Rules for i (Inductive Types) <« -« v ovvreeiiii 81

il

CHAPTER 1

INTRODUCTION

Ce n’est pas une démonstration proprement dite, [...] c’est
une vérification. [...] La vérification différe précisément de
la véritable démonstration, parce qu’elle est purement
analytique et parce qu’elle est stérile.

Henri Poincaré, on the proof of 2+ 2 =4
La science et I’Hypothése, 1902

The goal of this thesis is to develop a logical system in which formal proofs of mathe-
matical statements can be carried out in a way which is close to mathematical practice.

What is a formal proof? Up the end of the XIxth century, no formal description of
reasoning existed: mathematical proofs were made by using an intuitive notion of proof or
validity. Frege and Peano initiated a new discipline: formal mathematics or formal logic.
Formal mathematics is the description of formal rules - permitting the construction of
complex mathematical reasoning - in a formal language.

Alas, description of such systems is not an easy task. The most famous example is the
discovery in 1912, by Russel, of a paradoz (i.e. the ability to prove in a given system any
property expressible in it) in Frege’s logical system. Such a logical system is said to be in-
consistent. It was then clear that studying these systems was necessary: meta-mathematics
was born.

Since then, numerous logical systems has been defined, up to the point that, in 1920,
Hilbert formulated his so-called Hilbert’s Program, which goal was to formalize modern
mathematics in a logical system, and to provide a proof that this system is not inconsis-
tent. The incompleteness theorem of Godel [27] partially answered negatively to Hilbert’s
Program.

The ability of computers to carry out complex computations operating on symbolic
expressions renewed the area of formal mathematics: the mechanization of proof-checking,
as well as the automatic search for proofs was born. On the practical side, theorem provers
have been developed since then by computer scientists, and become now used as tools for
developing formal mathematical proofs.

The first proof-checking system was developed in the 60’s by N.G. Bruijn, under the
name of AUTOMATH [17], a formal language allowing for the description and verification
of mathematical proofs. In AUTOMATH, the user had to enter directly the proof of the
proposition being proved, without help of the system.

The next major step is due to Robin Milner: proof assistants such as LCF [33] allow
to build the proof of a proposition by applying proof tactics, generating a proof term that
can be checked with respect to the rules of the underlying logic. The proof-checker, also
called kernel of the proof assistant, implements the inference and deduction rules of the
logic on top of a term manipulation layer.

Since then, numerous proofs assistants has been developed, including Coq [10], Nu-

1. INTRODUCTION

Prl [g], PVS [36, 42], HOL [26], Isabelle [37, 38], Mizar [47], ..., among many others.

Why so many? Despite the immense progress made since AUTHOMATH and LCF,
developing a formal proof is still quite painful. Only experts can use these systems, and
they can only carry out small developments in a reasonable amount of time. Since these
systems have already been proved very useful for practical applications, the need for scaling
up their abilities has become a major urgent problem.

It is commonly agreed that the success of future proof assistants will rely on their ability
to incorporate computations within deduction in order to mimic the mathematician when
replacing the proof of a proposition P by the proof of a proposition P’ obtained from P
thanks to possibly complex computations.

Our goal in this thesis is to scale up the abilities of the system Coq. The intuitionist
logic on which Coq is based on is the Calculus of Constructions (CC) of Coquand and
Huet [13], an impredicative type theory incorporating polymorphism, dependent types and
type constructors. As other logics, CC enjoys a computation mechanism called cut-elimi-
nation, which is nothing but the -reduction rule of the underlying A-calculus. But unlike
others, CC enjoys a powerful type-checking rule, called conversion, which incorporates
computations within deduction.

The traditional view that computations coincide with B-reduction suffers several draw-
backs. A methodological one is that the user must encode other forms of computations as
deductions, which is usually done by using ad-hoc, complex tactics. A practical one is that
proofs become much larger than necessary, up to a point that they cannot be type-checked
anymore. These questions become extremely important when carrying out complex devel-
opments involving large amounts of computation as the formal proof of the Four Color
Theorem completed by G. Gonthier and B. Werner using Coq [25].

The Calculus of Inductive Constructions of T. Coquand and C. Paulin was a first
attempt to solve this problem by introducing inductive types and the associated elimination
principle rules [15]. The recent versions of Coq are based on a slight generalization of this
calculus [22].

A more general attempt has been carried out since the early go’s by adding user-defined
computations as rewrite rules, resulting in the Calculus of Algebraic Constructions [4].
Although conceptually quite powerful, since CAC captures CIC [5], this paradigm does
not yet fulfill all needs, because the set of user-defined rewrite rules must satisfy several
strong assumptions. As of today, no implementation of CAC has been released.

Besides, in 1998, G. Dowek, T. Hardin and C. Kirchner [18] proposed a new system for
combining deduction with first-order logic: the Natural Deduction Modulo. This system is
an extension of Natural Deduction [39] where all rules are applied modulo a congruence
on propositions. In [19], D. Dowek and B. Werner gave general conditions for ensuring the
termination of cut elimination in Natural Deduction Modulo. In [18], they proved that
arithmetic can be presented as a theory modulo in such a way that cut elimination holds.

The proof assistant PVS uses a potentially stronger paradigm than Coq by combining
its deduction mechanism* with a notion of computation based on the powerful Shostak’s
method for combining first order decision procedures over equality [43], a framework

*PVS logic is not based on the Curry-Howard principle and proof-checking is not even decidable,
making both frameworks very different and difficult to compare.

dubbed little engines of proof by N. Shankar [41]: the little engines of proof are the
decision procedures combined by Shostak’s algorithm.

In this thesis, we investigate a new version of the Calculus of Inductive Constructions
which incorporates arbitrary decision procedures into deduction via the conversion rule of
the calculus.

1.1 A brief history of type theory

We introduce here some basic concepts about type theories, A-calculi, [...] via an informal
historical summary. Readers familiar with these notions, notably with Pure Type Systems,
can skip this section.

An extended introduction, from which this section is inspired, can be found in the
course notes of Gilles Dowek 2.

Lambda calculus

In 1930, Church introduced the A-calculus, a formalism for representing functions. Roughly,
in A-calculus, we have

- objects which are either variables, A-abstractions A[x].t (representing the function
associating t to the variable x), and applications of two objects tu.

- an axiom, called (-convertibility:
(Axa.t)u = t{x — u}

where t{x — u} stands for t where all the occurrences of x has been replaced by u.

The A-calculus is a powerful formalism. Indeed, using Church encoding of natural
numbers, it is possible to express in A-calculus all the computable functions over natural
numbers. However, when seen as a logical system, it is possible to encode the Russel
paradox in A-calculus.

The idea of the simple type theory originally by Whitehead and Russell, and later
elaborated by Church [8], was to restrict the application of objects so that the Russel
paradox can not be expressed anymore.

Simple Type Theory

A simple type is either the constant t (for base objects), the constant o (for propositions),
or the functional type A — B (— being right associative) where A and B are simple types.

For example, if t represents the type of natural numbers, the following types are given
to the symbols of arithmetic: 0 : 1, S:t — 1, + : 1 > t — 1, whereas the equality over
natural numbers has type t —» t — 0.

More generally, in the A-calculus presentation of the simple type theory (called simply
typed A-calculus), are given: i) for each simple type A, an infinite set X of variables of type

“http://www.lix.polytechnique.fr/ dowek/Cours/theories_des_types.ps.gz

http://www.lix.polytechnique.fr/~dowek/Cours/theories_des_types.ps.gz

1. INTRODUCTION

A is given, and ii) a set of constants with associated types: V:o—0—>0,A:0— 0 — 0,
=AtA—>A > A Va:(A—o0)—>o,etc..

The terms of the theory are then the simply typed A-terms, where i) variables and
constants of type A are terms of type A, ii) if t is a term of type B and x a term of type
A, then Ax.t is a term of type A — B, iii) if t is a term of type A — B and u a term of
type A, then tu is a term of type B.

Now, if represents the set of natural numbers, the predicate even is represented by
the expression Ax;i. 3i(Ayi.xi = 2 x yi), of type L — 0.

Typing judgments

Instead of requiring an infinite set of variables for each base type, it is possible to defined
a variant of the simply typed A-calculus where variables are untyped, type annotations
appear in the A-terms and typing contexts are used to indicate the types of the variables.

A pure lambda term is then either i) a variable, ii) an abstraction A[x : A].t where A is
a simple type, or iii) an application tu.

Given a typing context T, i.e. a list of pairs (x,A) where a variables do not appear
twice, the judgment t is of type A under I', written I' - t : A, can be derived by using the
following rules:

(x,A)eT lN-t:A—>B T—u:A r(x,A)—t:B
MEx:A M-tu:B FEAx:Al.t:A—>B

Convertible propositions

In the simply typed A-calculus, if we have a proof 7 of 0 =, 0 (Py), then we can easily
construct a proof P of (Axi.xi)0 =, 0 (P2), using convertibility of p-redexes and Leibniz
axioms. But, although 7t and 1 are proofs of equivalent propositions, they are not identical
as they differ by an explicit conversion.

A solution is to equate the propositions P; and P, so that a proof 7t of Py is also a proof
of P,. This leads to the definition of a theory modulo where all terms are identified up
to B-convertibility. Moreover, by orienting the 3-convertibility ((Ax.t) uﬂt{x — u}), we
obtain a confluent and normalizing rewrite system, leading to a canonical representation
of propositions - 0 =, 0 being the canonical form of (Axi.x;)0 =, 0 in our example.

Curry-Howard isomorphism

Heyting proposed a semantics of proofs as functional objects, proofs of axioms being objects
given a priori. For example, a proof of A = B (resp. Vx.A) is seen as a function from A
to B (resp. a function associating to any object t a proof of A{x — t}).

Following Heyting’s semantic, Curry remarked [16] that a correspondence could be
drawn between types of the simply typed A-calculus and propositions of the minimal propo-
sitional logic, and between the terms of a certain type A and the proofs of the propositions
corresponding to A. Such a correspondence allows us to represent proofs of minimal propo-
sitional logic with simply typed A-terms.

The translation P of a proposition P is simply obtained by replacing occurrences of
= by the functional type constructor — and atomic propositions A with a base type ta.
For example, the type corresponding to the proposition (A = B) = A = B is the type

(LA — LB) — LA — L.

Translation of proofs follows by a direct induction. Given a proof of Aq,--- A, - B
in natural deduction for the minimal propositional logic of Gentzen [20], we construct a
A-term of type B in the context (x1,A1), -+, (Xn, An):

- the proof of Ay,--- ,An — Aj is translated to x;.

- the proof Q - P = Q obtained via =-intro from the proof wof Q, P Q is translated
to A[x : P]. q where q is the translation of 7.

- the proof of Q + Q obtained via =--elim from the proofs mof Q P = Q and ¥ of
Q + P is translated to tu where t is the translation of 7 and u the translation of .

By denoting 7 the translation of 7, it is easy to check that

7 is a proof of Ay,---,An - B if and only if (x1,A4), -+, (Xn,An) - m: B.

As an example, the translation of the usual proof (A = B) = A = B is the A-term

Ap:ta = w][x: Al px.

Cut Elimination

One important remark done by W. Tait: B-reduction coincide with the cut elimination in
natural deduction. Indeed, from the following proof 7t containing a cut (the corresponding
A-terms are also given):

x:PHt:Q
=-intro _—
F'EA[x:Pl.t:P=Q FFu:P
M= Ax:P].t)u:Q

=-elim

it is easy to check the term t{x — u} (obtained by p-reduction from (A[x:P].t)u) is the
translation of the proof obtained from 7t in which the cut has been eliminated.

This emphasizes the importance of the normalization of -reduction in these systems.

Beyond minimal propositional logic

Although the simply typed A-calculus is powerful enough to represent any proof of the
minimal propositional logic, it is not powerful enough to represent the proofs of all the
simply type logic or the first order logic. Some extension has then be done in order to
capture more proofs.

Dependent types

N. de Bruijn and Howard introduced in 1968 [17] and 1969 [28] the notion of dependent
types, an extension of simple types which permits to capture all propositions and proofs of
intuitionist first-order logic.

1. INTRODUCTION

A dependent type is simply a function from objects to types. A canonical example of
dependent types is the type of vectors where the size for the vector is present in its type.
Thus, there is not a single type vector for vectors, but an infinite family of types vector 0,
vector 1, etc... for vectors of size 0, 1, etc... One problem arises when looking the type of
a function f which takes a natural number n and returns an vector of size n. The simple
arrow type is not expressive enough since no dependency exists between the codomain
and the domain of an arrow type. A new type constructor is therefore introduced: the
dependent product ¥(x : A). B which is a generalization of A — B where B can depend from
x. Returning to our function f, we can now write its type as V(x : nat). vector n.

One important point with dependent type systems is that there is no syntactic distinc-
tion between terms and types anymore: a single algebra of terms is given, the distinction
between object level terms and type level terms being done at typing. For that purpose,
two new constants (called sorts) are introduced: the type of propositions and basic types
*, and the type of predicate types o.For example, the type of natural number nat has type
*, whereas the type of the even predicate has type nat — x which itself has type o.

As for simply typed A-calculus, a notion of typing judgments was given for the dependent
A-calculus, also called AlT-calculus. As an example, we give the rules for the formation of
dependent products and sorts in ATT

FET:x Nx:TJFUW:se {*n}
FEVY(x:T).U:s o

Such a rule allows e.g. the formation of the type nat — x (for typing the vector
constructor e.g.), or the type nat — o (for typing the proposition V(1 : nat).evenn e.g.).

Rules for application and A-abstraction are then generalized so that they take into

account the dependency of products (hence the substitution in the type of an application):

Nx:TlFu:U TEVYx:T).U:se {x0o} Ft:vV(x:UW.V Tu:l
FEAX:Tluw:V(x:T). U M=tu:V{x—u}

Last, as stated in previous section, P-convertible propositions are identified. This is
done in ATT by the introduction of a conversion typing rule:

FEt:T TET ise{xo} T, T
N—t:T

Polymorphism

Although ATT-calculus captures more proof than simply typed A-calculus, it does not capture
the impredicative part of simple type theory, i.e. the ability to quantify over predicates.

This problem was solved by J.-Y. Girard [23, 24] with its polymorphic A-calculus: Fw.
What forbids us to quantify over predicates in AIT is the restriction over products domain:
they must be of type *. This restriction is removed in Fw, the new rules for products
construction being:

FN=T:o Ix:T]FUW:se {0} FETeox Tx:T] - UW:~
MEVY(x:T).U:s FEV(x:T).U:x

For example, in such a system, it is possible to type the term V(P :x).P — P (i.e. the
type corresponding to the proposition VP : 0.P = P in simply typed logic) as o — % is a
valid type. Likewise, it is possible to define type constructors, like the list : x — » where
list A denotes the lists whose element are of type A.

Calculus of Constructions

In 1991, H. Barendregt remarks that all these typed A-calculi differ from their products
formation typing rules, being of the form:

FeTersy ,I[Tisi]FU:s,
FEV(x:T).U:s,

where s, sz are sorts. For example, in the simply typed calculus, s; = s, = x whereas in
ATT, s1 = * and s € {*,0}.

The Calculus of Constructions (CC) of T. Coquand and G. Huet [14], which is the basis
of the Coq proof assistant, is simply obtained by allowing all kinds of products (i.e. s; and
s2 being unrestricted).

Logical Systems Expressiveness

One can ask which functions are expressible using (-reduction of typed A-calculi: very few
indeed. For example, in the simply typed A-calculus, using Peano representation of natural
numbers (i.e. using a base type nat and two symbols 0 : nat and S : nat — nat), it is only
possible to express constant functions and functions adding a constant to their arguments.

On the contrary, in simple type theory, it is possible to prove the existence of functions
that are not expressible using A-terms: while it is possible to construct proofs using the
induction principle, it is not possible to -define functions using recursion.

Inductive Types

This is the idea of Godel system T: extending the simply typed A-calculus so that such
definitions are possible. For this, besides the constant nat, 0 and S, a new symbol Elim "
of type T — (nat - T — T) — nat — T is introduced for every type T, along with new
reduction rules:

Elim" VoVvs 0 —L>Vo Elim" vovs (St) —L>\)5 t (Elim vovs t)
In such a system, addition can then simply defined as the A-term
A[xy : nat]. Elim™* y (A[rz : nat]. S z) x
In the Calculus of Constructions, the problem is different. Although it is possible
to express far more functions than in the simply typed A-calculus, one can not express
functions as she likes due to the encoding used for the embedding of natural numbers (we

say that natural numbers are impredicatively defined). For example, it is not possible to
define the predecessor function so that its evaluation is in constant time.

This is the main reason for the introduction by T. Coquand and C. Paulin [15] of
the Calculus of Inductive Constructions (CIC), an extension of CC where it is possible

1. INTRODUCTION

to define inductive types and used their induction principles to define terms. As for the
Godel’s system T, new reduction rules (the t-reduction) are added for the elimination of
recursor symbols. Moreover, following P. Martin-Lof [31] type theory (an extension of ATT
with inductive types), the -reduction is added to the conversion rule.

One point of having t-reduction in the conversion is that more propositions are iden-
tified. E.g., if + is defined by induction on its first argument and P is a predicate over
natural numbers, then the two propositions Px and P (0 + x) are identified since these two
terms are convertible. Alas, this is not true for Px and P (x+0), x +0 being not convertible
to x by t-reduction.

Rewriting in the Calculus of Constructions

One first solution to this problem is the introduction in the conversion rule of a rewriting
system along with the standard 3-reduction. Lot of works has been done along this, the
most noticeable one being the Calculus of Algebraic Constructions of F. Blanqui [4].

As an example, using rewriting, one can define addition as the following rewriting
system

0+x—>x x+0—->x (Sx)+y—S(x+vy).

The immediate consequence is the identification of the three propositions P x, P (x + 0)
and P (0 + x).

Extensionality in the Calculus of Constructions

One more recent extension is the Extensional Calculus of Constructions (CCg) of N. Ou-
ry [35] which is an extension of the Extended Calculus of Constructions (a Pure Type
System with a hierarchy of cumulative sorts o; and an impredicative sort [30]).

Roughly, terms and typing rules of CCg are as in the Extended Calculus of Construc-
tions, but with an abstract conversion relation =r instead of the standard [-conversion.
The relation =r is then defined as the weakest congruence including [-conversion and
the propositional Leibniz equality of CCg (denoted by =), hence the name of Eztensional
Calculus of Constructions. (Rules of Figure 1.1 define the Conversion =r where ¢ de-
notes the typing judgment of CCg - the reflexivity, symmetry and transitivity rules being
omitted)

e Ax:ULt)u: T tr=rw th=rw
[B] [APP|
AUl t=p t{x — u} t1t =r uwy
T =r u t Er,[x:T] u T =r u t Er‘[X:T] u
[PrOD] [LaMm]
V(x:T).t=rV(x:U).u V(x:T).t=r V(x:U).u
F'p:Th=T
— C [ExT]
Ti=rT

Figure 1.1: CCg Conversion Relation

As shown in [35], this calculus is expressive enough to convert two functions which are
point to point equal. Indeed, if in a typing environment T, [x : A], we have a proof of t = u,
then we easily obtain that A[x : A].t is convertible to A[x : A]. u:

s
Nx:AlFep:t=u
[Ie [EXT] AT A [REFL]
t=rpeat =
I [x:A] r [LEM]

Alx:Al.t=r A[x:A]l.u

Unfortunately, such a powerful conversion rule immediately leads to the undecidability
of type-checking. Intuitively, this is due to the [EXT| rule erasing the witness of equality
properties. See [35] for an encoding of the halting problem into the CCg type-checking
problem.

Worst, basic properties of Pure Type Systems are lost. For example, 3-strong nor-
malization of well-formed terms is lost as the whole lambda calculus can be encoded in
a context ' containing an equation of the form A = A — A. Using extensionality, it is
immediate to verify that the identity id = A[x : A]. x over A has type A — (A — A) (roll)
and type (A — A) — A (unroll). Thus, the standard encoding |- | of pure lambda calculus
to the simply typed lambda calculus with recursive types can be used:

Ix| = x, [Ax.t| = toll (A[x : A]. [t|), |mn| = (unroll [m|) n|

One can then check that any closed term [t| is well formed under T.

1.2 Safety of Proof assistants

The safety of proof assistants is based on the trustability of their kernel, a proof-checker
that processes all proofs built by a user with the help of tactics that are available from
existing libraries or can otherwise be developed for achieving a specific task. In the early
days of Coq, the safety of its proof-checker relied on its small size and its clear structure
reflecting the inference rules of the intuitionistic type theory, the Calculus of Constructions,
on which it was based. The slogan was that of a readable kernel.

Moving later to the Calculus of Inductive Constructions allowed to ease the specification
tasks, making the system very popular among proof developers, but resulted in a more
complex kernel that can now hardly be read except by a few specialists. The slogan
changed to a provable kernel, and indeed, one version of Coq kernel was once proved with
an earlier version (using strong normalization as assumption), and a new safe kernel was
extracted from that proof [1].

Of course, there has been many changes in the kernel since then, and its correctness
proof was of course not maintained. This is a first weakness with the provable kernel
paradigm: it does not resist changes very well. There is a second, more important, which
relates directly to our calculus: there is no guarantee that a decision procedure taken from
the shelf implements correctly the complex mathematical theorem on which it is based,
since carrying out such a proof may require an entire PhD work. Therefore, these proce-
dures cannot be part of the kernel, and be used to identify propositions in the conversion
relation.

1. INTRODUCTION

1.3 Contributions

Our main contribution is the definition and study of a new calculus, the Calculus of Con-
gruent and Inductive Constructions, an extension of the Calculus of Inductive Construc-
tions (CIC) integrating in its computational part the entailment relation of a first order
theory over equality. A major technical innovation of this work lies in the computational
mechanism: goals are sent to the decision procedure together with a set of user hypotheses
available from the current context.

Our main results show that this extension of CIC does not compromise its main prop-
erties: confluence, strong normalization, consistency and decidability of proof-checking are
all preserved (as soon as the incorporated theory is itself decidable). As such, our calculus
can be seen as a decidable restriction of the Extensional Calculus of Constructions. It can
therefore serve as the basis for an extension of the Coq proof assistant.

Unlike previous calculi, the main difficulty here is confluence, which led to a complex
definition of conversion as a fix-point. As a consequence, decidability of type-checking
becomes itself difficult, and does not reduce to the problem of terms reduction w.r.t. a
rewriting system. Instead, a new decision algorithm, mixing standard CIC reduction and
a saturation algorithm w.r.t. the incorporated theory, is defined.

1.4 Outline of the thesis
The document is structured as follow:

Chapter 2 The Calculus of Presburger Constructions. We define the Calculus of Pres-
burger Constructions, an extension of the Calculus of Inductive Constructions (with-
out strong reduction) integrating in its computational part the Presburger arithmetic,
and describe how its conversion relation can be decide.

Chapter 3 The Calculus of Congruent and Inductive Constructions. We define our main
Calculus, the Calculus of Inductive and Congruent Constructions, and prove all its
meta-theoretical properties but the decidability.

Chapter 4 Meta-theoretical Properties of CCIC . We state and prove all the needed
meta-theoretical properties of CCIC.

Chapter 5 Decidability. We here describe how our calculus can be decide and give proofs
of completeness and correction of the procedure.

Chapter 6 Further works and conclusion We conclude by enumerating several directions
for future research.

10

CHAPTER 2

THE CALCULUS OF PRESBURGER
INDUCTIVE CONSTRUCTIONS

Before describing our calculus in all its generality, we first define in this chapter CCy [6], an
extension of the calculus of constructions incorporating i) a type nat of natural numbers
generated by its two constructors 0 and S, and equipped with its addition + and weak
recursor Rec?\ﬂv , ii) a polymorphic equality symbol =.

The main modification is obtained by replacing T&* T’ in the conversion rule:

FTet:T TT s/ T&, T
Fret:T’

by a contextual relation T~ T’ containing (in addition to p-reduction and the reduction

associated with Rec%\)) the entailment relation = of Presburger arithmetic Ty. For example,
~r will include the property Vn.Vp.n +p ~rp +n, since Ty = n+p = p +n holds. The
relation ~r will also includes any Tn-equation eztractable from the typing environment I'
s.t., if T' contains - for example - the two equations n =p + 1 and p = 1, then n ~p 2 will
hold (as TnE(M=p+1Aap=1)=n=2).

See Section 2.3 for detailed examples.

From now on, Ty denotes the Presburger arithmetic over the signature X = {0, S, +}
and equality predicate =. We write Jy = P if P is a valid Ty-formula and Jx,E = P if
Tn = A{Q | Q € F} = P for some possibly infinite set E of Ty-formulas and some finite
subset F of E. For any set of variables Y, Tx(Y) denotes the set of Ty-terms over variables
Y. We write Ty for Tz ().

2.1 Terms of the calculus

CCl uses two sorts: = (or Prop, or object level universe) and o (or Type, or predicate level
universe). We denote the set {x,o} of CCy sorts by 8.

As usual, following the presentation of Pure Type Systems [21], we use two classes
of variables: let X* (resp. X7) a countably infinite set of term variables (resp. predicate
variables) such that X* and X° are disjoint. We write X for X* u X°. If x € X*, we write
sy for s.

Let A = {r,u} be a set of two constants, called annotations, where r stands for restricted
and u for unrestricted.

We use the following notations: s range over §
xY,... — X
X,Y,... — xX°
a,b,... — A

11

2. THE CALCULUS OF PRESBURGER INDUCTIVE CONSTRUCTIONS

Definition 2.1 CCy terms algebra
The algebra CCy of pseudo-terms of CCy is defined as:

tu, T, U,...:=s€8|xeX|mnat|0]S |+ |Recy (t,U){vo,vs}
| V(x:@T).t|A[x:¢ T].t] tu|=| Eqr(t) | Leib

Note 1

Apart from the introduction of new symbols for natural numbers and the equality predicate,
the difference between these terms and the ones from the Calculus of Constructions is the
introduction of annotations for products and abstractions.

Notation. The polymorphic equality symbol will be used in mizfiz form t =t uwort=1u
when T is not relevant. Eqy(t) will denote the proof by reflexivity of t =1 t and Leib the
Leibniz equality predicate. We shall distinguish the first-order equality predicate = from
the CCy polymorphic equality =. We also shall distinguish the first order symbols (0, S
and +) of Ty from their CCy counterpart (0, S and +). We write p (in bold face) for the
p-iteration S (--- (S0)) and p (in normal font) for the p-iteration S(---S(0)).

Note 2

The notion of free variables is as usual. If t is a CCy term, we write FV(t) for the set of
free variables of t. We say that t is closed if FV(t) = ¢F. A variable x occurs freely in t if
x € FV(t).

Note 3

If 0 in a L-substitution (i.e. a finite mapping {x; — t1,...,xn — tu} from X to L), we
write t0 for the (capture free) substitution of the xi’s by the ui’s in t. If 0; is a sequence of
L-substitutions, the sequential substitution t0; is defined by: i) te = t ii) t(GG_{) = (t6)(¥.
The domain (resp. co-domain) of a L- substitution 0 is written dom(0) (resp. codom(0)).

2.2 The conversion relation

Our calculus has a complex notion of computation reflecting its rich structure made of three
ingredients: the typed lambda calculus, the type of natural numbers with its recursor and
the integration of the first order theory Ty in its conversion.

Inductive definitions

A definition by induction over natural numbers is denoted by the dependent recursor a la
Martin-Lof Recyy (n, T){to, ts} where t is the term being deconstructed, Tt the type of the
result, and to, ts the branches of the definition. The reduction relation associated to Rec?{;v
is defined as usual:

Definition 2.2 i-reduction
The -reduction — is the smallest rewriting relation s.t.:
Recy (0, T){to, ts} = to
Recy! (St, T){to, ts} = ts t Rec (t, T){to, ts}

12

A canonical example of inductive definitions over natural numbers is the definition of
the addition or multiplication (here multiplication, since addition has been internalized)
by induction:

A[xy : nat]. Recy (x, A[n : nat]. nat){0,A[p T : nat]. v 4y}

Algebraisation

As said, our conversion sends goals to the Presburger arithmetic Ty along with a set of proof
hypotheses extracted from the typing environment. Algebraisation is the first step of this
hypotheses extraction: it allows transforming a CCy term into its first-order counterpart.

We begin by the simplest case, the extraction of pure algebraic equations. Suppose
that the proof environment contains equations of the form ¢ = 1+d and d = 2. What is
expected is that the set of hypotheses sent to the theory Ty contains the two well formed
Tn-formulas ¢ = 1 4+ d and d = 2. This leads to a first definition of equations extraction:

1. a term is algebraic if it is of the form 0, or St, or t +u, or x € X*. The algebraisation
A(t) of an algebraic term is then defined by induction: A(0) = 0, A(St) = S(A(t)),
A(t+u) = A(t) + A(uw) and A(x) = x,

2. aterm is an extractable equation if it is of the form t = u where t and u are algebraic
terms. The extracted equation is then A(t) = A(u).

We now come to the case of algebraisation of non-pure algebraic terms or even ill-formed
terms. The problem can be simply solved by abstracting non-algebraic subterms with fresh
variables. For example, algebraisation of 14t with t non-algebraic will yield 1 + x where
x is an abstraction variable. Of course, if the proof context contains two equations of the
form ¢ =14t and d = 1 +u with t and u B-convertible, t and u should be abstracted by
a unique variable so that ¢ = d can be deduced in Ty fromc=1+4+yand d =1 +y.

We now give the formal definition of A(-).

Let Y be a set of variables disjoint from X. For any equivalence relation R, we suppose
the existence of a function 7g : CCy — Y s.t. mg(t) = mx(u) if and only if t R u (i.e.
7R (t) is the variable in Y representing the class of t modulo R).

Definition 2.3 Algebraisation

Let t be a term in CCx and R an equivalence relation. The algebraisation of t modulo R
is the function Ag : CCy — Tn(X* U 'Y) defined by:

Ag(x) =x ifxeX*
Ax(0) =0
Ax(St) = S(Ax(t))
Ax(t +u) = Ax(t) + Az ()
Ag(t) = TTg(t) otherwise

For an arbitrary relation R, Ar is defined as Ax where R is the smallest equivalence
relation containing R. We call alien the subterms of t abstracted by o variable in Y.

13

2. THE CALCULUS OF PRESBURGER INDUCTIVE CONSTRUCTIONS

Typing environments

Conversion being contextual, we now need to define typing environments of our calculus.

Definition 2.4 Pseudo-contexts of CCy

The typing environments of CCy are defined as T, A =[] | T, [x :* T] s.t. a variable cannot
appear twice. We use dom(T") for the domain of T' and xT" for the type associated to x inT.

Remark that in our calculus, assumptions stored in the proof context always come along
with an annotation a € A used to control whether they can be used (when a =r) or not
(when a = u) in a conversion goal. We will later point out why this is necessary.

Conversion relation

Befored defining our conversion relation, we are left to give the usual layered definition of
PTSs terms, extended to the CCy case.

Definition 2.5 Syntactic classes

The pairwise disjoint syntactic classes of CCy called objects (0), predicates (P), kinds
(X), o are defined in Figure 2.1.

G

=X 0|S|+]00 0P| Eqp(O) | Leib
t= A4 PO AT ¢ K. O | Rec (O, P){0O, O}

Pu=X"|mnat |=| PO | PP [A[x* ¢ PL.P|A[x":* K].P
= V(PP V(X" K). P

Kou=x | V(X" P).K|Vx":*XK).XK

o= n0o

Figure 2.1: CCy terms classes

This classes play a crucial role as we only authorize equations extraction and conversion
using Presburger arithmetic to occur at object level. See Section 2.5 for a discussion about
equations extraction.

We can now define the I'indexed family of conversion relations {~r}r.

Definition 2.6 Conversion relation ~p

Rules of Figure 2.2 defines a family {~r} of CCy binary relations.

This definition is technically complex:

- being a congruence, ~r includes congruence rules. However, all these rules are not
quite congruence rules since crossing a binder increases the current context I' by the

14

t—,t’ t'~ru uﬁ»*u’ t~ru’
[Br-LEFT] [Br-RiGHT]
t~ru t~ru

oT]el TH,t12t t,t,€0

[Eq]

ti~rt2

‘INaE = ‘A"'I‘(t1) = ‘ANI‘ (tz)
ti,t, e 0 E= {ANF(LH) =A~r(uz) |LL1 ~ru2} [

DED|
ti~rt2
t~ru t~ru u~rv
[SyMm] ———— [TRrANS]
u~rt t~rv
T~rU t~ru ti~rt2 w~ruy
[CCn-Eq] [APp]
Eqr(t) ~r Eqy(u) tw ~rtaun
T~ru t~r,[X:aT]u T~rUu t~r‘[X:aT]u
[ProD] [Lam]
V(x :*T).t~pV(x:* U).u Ax Tl t~pAx:* Ul.u

t~ru P~rQ to~rup ts~rus
Recll/lv(tv P){tOv tS} ~r Rec[l/lv (u> Q){uo,us}

[ELiv-W)

Figure 2.2: Conversion relation ~r

new assumption made inside the scope of the binding construct, resulting in a family
of congruences.

- ~r includes all the relevant assumptions grabbed from the context, this is the rule
[EQ]. These assumptions must be of the form [x ¥ T] (i.e. with the appropriate
annotation r), and T must B-reduce to a term headed by =. Note that we do not
require T to be ~rp-convertible to an algebraic predicate here. Doing this would not
change ~r, but would complicate the study of the calculus.

- we use the theory Ty to generate new assumptions: this is the rule [DED].

- Finally, ~r includes Bi-reductions. Unlike the B-rule, — interacts with first-order
rewriting, and therefore forbids to express the [CONV] rule of Figure 2.4 as
Bt

T(ﬂ)* = >y T,

(=r being defined like ~r without the i rule). A simple example demonstrate this.
Suppose that T is a typing environment containing two extractable equations x = 0
and y = 1. One can indeed easily check that

Recy (x, Q){y,vs} =r Rec (0, Q){y,vs} Sy =r1

but in general, Recy (x, Q){y,vs} =r 1 does not hold.

Before going to the typing rules, we give some examples of conversion.

15

2. THE CALCULUS OF PRESBURGER INDUCTIVE CONSTRUCTIONS

2.3 Two simple examples

More automation - smaller proofs. We start with a simple example illustrating how
the equalities extracted from a context I' can be use to deduce new equalities in ~r.

I'=[xyt:" nat],[f " nat — nat],
[p1 5t =2],[p2 " f(x+3)=x+2],
[psF fy+t)+2=y],[pafy+1=x+2]

From p1 and p4 (extracted from the context by [EQ]), [DED] deduces thaty +t ~r x + 3,
and by congruence, f (y +t) ~r f (x + 3). Therefore, 7. abstracts f(x +3) and f(y +1t) by
the same variable z, resulting in two new equations available for [DED]: z = x + 2 and
z+2=y. Now,z=x%x+2,z+2 =y and y+1 = x+ 2 form a set of unsatisfiable equations
and we deduce 0 ~r 1 by the [DED] rule: contradiction has been obtained. This shows that
we can easily carry out a proof by contradiction in Jy.

More typable terms. We continue with a second example showing that the new calculus
can type terms that are not typable in CIC. For the sake of this example we assume that
CCly is extended by dependent lists on natural numbers. These dependent lists are defined
as a standard inductive type (without a built-in theory of lists). This is a simple extension of
CCy that will be justified later. We denote by list (of type nat — x) the type of dependent
lists and by nil (of type list 0) and cons (of type V(n : nat).nat — list n — list (Sn)) the
lists constructors.

Assume now given a dependent reverse function (of type V(n : nat).list n — list n) and
the list concatenation function @ (of type V(nn’ : nat),listn — listn’ — list (n +n’)).
We can simply express that a list 1 is a palindrome: 1 is a palindrome if reverse 1 = L.

Suppose now that one wants to prove that palindromes are closed under substitution of
letters by palindromes. To make it easier, we will simply consider a particular case: the list
Li 12121 is a palindrome if 11 and 1, are palindromes. The proof sketch is simple: it suffices
to apply as many times as needed the lemma reverse(l@l’) = reverse(l’)@reverse(l) (#).
What is quite surprising is that Lemma (#) is rejected by the current version of Coq. Indeed,
if L and 1’ are of length n and n’, it is easy to check that reverse(1@l’) is of type list (n +mn')
and reverse(l’)@reverse(l) of type list (n’ +n) which are clearly not Bi-convertible. This
is not true in our system: n+n’ will of course be convertible to n’ +n and lemma ()
is therefore well-formed. Proving the more general property needs of course an additional
induction on natural numbers to apply lemma (#) the appropriate number of times, which
can of course be carried out in our system.

Note that, although possible, writing a reverse function for dependent lists is not that
simple in Coq. Indeed, a direct inductive definition of reverse will define reverse(consn al),
of type list (1+m), as reverse(l) @ a, of type list (n+1). Coq will reject such a definition
since list (1 +n) and list (n + 1) are not convertible. Figure 2.3 shows how reverse can be
(painfully) defined in Coq.

16

Coq < Definition reverse: forall (n: nat), (list n) -> (list n)
Coq < assert (reverse_acc : forall (n m : nat),
Coq < list n -> list m -> list (m+tn)) .
Coq < refine (fix reverse_acc (n m : nat) (from : list n) (to : list m)
Coq < {struct from} : list (m+n) := _)
Coq < destruct from as [| n’ v rest]
Coq < rewrite <- plus_n_o_transparent; exact to .
Coq < rewrite <- plus_n_Sm_transparent;
Coq < exact (reverse_acc n’ (S m) rest (comns _ v to)) .
Coq < intros n 1 . exact (reverse_acc _ _ 1 nil)
<

Coq < Defined .

Figure 2.3: reverse function in Coq

2.4 Typing rules

Our typing judgments are classically written I' -~ t : T, meaning that the well-formed t
is a proof of the proposition T under the assumptions in the well-formed environment T.
Typing rules are those of CIC restricted to the single inductive type of natural numbers,
with two exceptions: i) the conversion rule [CONV] based on the conversion relation defined
in previous section, ii) the application rule [APP].

Definition 2.7 CCy typing relation

Typing rules of CCx are defined in Figure 2.4.

2.5 Consistency

We don’t give a detailed proof of consistency here, (see Chapter 3 for definition of a more
general calculus and for a proof of its consistency) but illustrate by examples our different
design choices.

Extraction of object-level equations only

Allowing extraction of equations at type level breaks two important properties of the
calculus, strong normalization of 3-reduction and type convertibility:

Strong normalization of 3. Assuming possible the extraction of the type level equation
nat = nat — nat leads immediately to the well formation (under any environment
I" containing the extractable equation) of the non-normalizing term w w where w =
A[x : nat]. x x.

Type convertibility. Let (-,-) be a polymorphic constructor for pairs: (a,b)(a p) is of
type A = B where a (resp. b) is the type of A (resp. B), and 717 (resp. 72) denotes
the first projection (resp. the second projection) operator. Then, in any environment
s.t. the equation A * B = B # A is extractable, for any terms a, b of respective types
A, B, mi(a,b)s,a) is a well typed term of type B, whereas m1(a,b)s a) Sais of
type A, and A and B are not necessarily convertible.

17

2. THE CALCULUS OF PRESBURGER INDUCTIVE CONSTRUCTIONS

FM=V:is TH1t:T
s€ {x, o} xeX*\dom(T)
Nx:*V]Et:T

x € dom(T") T xI": sy
[WeAK] I x:xl

[VAR]

- [=-INTRO]
F= V(T %).T>T—«

FeTeost Ox:*T]-U:sy
FEVY(x:*T).U:sy

[PrODUCT]

FEV(x:*T)U:s Ix:*T]Fu:U
FEAx:CTlu:V(x:*T). U

[LamMDA]

FEt:vVx:2U.V TFu:u
ifa=rand U, t; =1 t, with t;,t2 € O
then t; ~r to must hold
MN=tu:V{x —u}

[ApP]

[Ax10M-1] ————— [NarT] ——— [0-INTRO]
%0 nat : — 0 : nat

[S-INTRO] _ [+-INTRO]
~ S :nat — nat + : nat — nat — nat

MN=t:T

[EQ-INTRO]

F Treib - S
TLeib = V(T : *)(’q 2 ZT).t1 =t — V(p T — *)."pt1 —pt2
 Leib : TLeib

[LEIB]

'tt:mat THQ:nat > x T | fy:nat
MNfs:¥(n:M™nat).Qn — Q(Sn)
I Recl (t, Q){fo, fs} : Qt

[i-Eriv]

F'—t:T TET':s" T~pT’
F—t:T

[Conv|

Figure 2.4: Typing judgement of CCy

In the full version of the calculus, the introduction of strong t-reduction (i.e. the
possibility to construct predicates/types by induction) will reintroduce the problem of
type level conversion by allowing conversions at object level to be lifted up at type level.
Recg denoting here the strong recursor over natural numbers, this is the case for the term

V = Recy (p, Q){nat, A[n :* nat][T :* Qn].nat — nat}

18

Indeed, assuming that p ~r 0 and p ~r 1, then V ~p Smnat and V ~p -5 nat — nat.

This problem will be addressed later in the definition of the Calculus of Inductive
Congruent Constructions.

Annotations

Annotations are used to ensure that extractable equations are stable by reduction. Without
annotations, the property does not hold. For example, the typing of g in (A[x:t =u]q)p
would make use of the equation t = u, whereas the typing of its reduce q{x — p} can no
more use the equation (unless t = u is redundant): it has been in some sense inlined.

Forbidding the application (A[x " t = u]q)p (i-e. when the A-abstraction is annotated
with the restricted annotation) fix this problem as it disallows the formation of the 3-redex.

One may wonder how annotations can be handled in practice. As seen, annotations are
used to forbid inlining (when a B-redex is contracted) of equational assumptions used by
conversion. This restriction can be removed by using the notion of opaque definitions (as
opposed to transparent definitions) of Coq which allows the user to define symbols that
the system cannot inline. In most cases, definitions having a computational behavior (like
+) are transparent whereas definitions representing lemmas (like the associativity of +)
are opaque. This convention is used in the standard library of Coq.

Returning to our previous example, if the user needs to prove a lemma of the form
V(x & t = u). T, she should declare it as an opaque definition P := A[x ¥ t = ulq.
The application of P to a term v should then be allowed: the term Pv cannot reduce to
p{x — v}. Of course, if P is defined transparently, the application Pv has to be forbidden
as previously.

Moreover, this gives a simple heuristic to automatically tag products and abstractions:
the restricted annotation should be used by default when the user is defining an opaque
symbol, whereas the unrestricted annotation should be used everywhere else.

19

CHAPTER 3

THE CALCULUS OF
CONGRUENT INDUCTIVE CONSTRUCTIONS

The Calculus of Congruent Inductive Constructions is a modification of the Calculus of
Inductive Constructions which embeds in its conversion the validity entailment of a fixed
first-order theory over equality.

This chapter is organized as follow. We first recall the full definition of the Calculus
of Inductive Construction as described in [48], with the restrictions given in [5]. We then
introduce parametric multi-sorted theories. These theories play a crucial role as they will
be embeded into the conversion relation of CCIC. Last, we define our calculus, and describe
in details how theories are built in the conversion relation.

3.1 The Calculus of Inductive Constructions

Terms of the calculus

We start our presentation by first describing the terms algebra of the Calculus of Inductive
Constructions.

CIC uses two sorts: * (or Prop, or object level universe) and o (or Type, or predicate
level universe). We denote {, 0}, the set of CIC sorts, by 8.

We use two classes of variables: let X* (resp. X7) be a countably infinite set of term
variables (resp. predicate variables) such that X* and X° are disjoint. We write X for
X* o X5,

We use the following notations: s range over 8
XY,... — X
XY, ... — X"

We can now define the algebra of CIC terms:

Definition 3.1 Pseudo-terms
The algebra CIC of pseudo-terms of CIC is defined as:
t,u, T,U,...:=5€8|xeX | V(x:T).t|A[x:T].t|tu
| Ind(X:t){Ti} |t | Elim(t: T[] — U){w:}
Note 4

The notion of free variables is as usual - the binders being A, V and Ind (in Ind(X : t){ﬁ},
X is bound in the Ti’s). If t € CIC, we write FV(t) for the set of free variables of t. We
say that t is closed if FV(t) = . A variable x occurs freely in t if x € FV(t).

21

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

Inductive types

The novelty of CIC was to introduce inductive types, denoted by I = Ind(X : T){Ci(X)}
where the Ci(X)’s describe the types of the constructors of I, and T the type (or arity) of

R

I itself, which must be of the form V(x; : T;). x. The k-th constructor of the inductive type
I, of type Cr {X — I}, is denoted by I[*I.

Example 3.2

The type of natural numbers can be represented by the inductive type nat = Ind(X :
*){X,X — X} where the first constructor 0 = nat['l (of type X{X - nat}) represents zero,
and the second constructor S = natl?! (of type (X — X){X — nat}) represents the successor
function.

For the consistency of CIC not all inductive types are accepted, but only the ones which
are strictly positive, a notion that we defined now:

Definition 3.3 Strictly Positive Inductives Types

A term C(X) is a constructor type in X if C(X) = V(xi : Wy). XU with X not free in .
It is moreover strictly positive if for any i, X does not occur in Ui or Uy = V(z: V). XV
with X not free in V nor in V.

B —

An inductive type I = Ind(X : T){Ci(X)} is strictly positive if all its constructors are
strictly positive constructor types in X.

Example 3.4

The constructors of nat := Ind(X : x){X, X — X} are clearly all strictly positive. A more
complicated example using the definition of constructor types in all its generality is the
one of enumerable ordinals

ord := Ind(X: »){X,X - X, (nat —» X) — X}

whose constructor types are all strictly positive. See example 3.7 for an example of a
non-strictly positive constructor type.

Definition by induction

A definition by induction on an inductive type I is denoted by Elim(t : [[wi] — Q){V}}
where the Ui’s are the arguments of I, t the term being deconstructed (of type 11}), and
Quit the type of the result. The vj’s represent the branches of the inductive definition,
as explained later.

The reduction relation associated with an inductive definition is the -reduction, written
. For instance, the addition over nat can be defined by induction on its first argument
as follow:

A[xy : nat]. Elim(x : nat [e] —» Q){y,A[p T :nat].St}
with Q = A[v : nat]. nat, given that:

Elim(0 : nat [e] — Q){vg,vs} —0
Elim(St : nat [e] — Q){vo,Vvs} — vg t (Elim(t : nat [e] — I){vg,vs}).

22

We now give the general definition of t-reduction:

Definition 3.5 i-reduction

Given an inductive definition 1, the t-reduction — is the smallest rewriting relation such
that:

Elim(TK Z: 1[T] > Q){ T} S A[L X, Cy, T, Q, T, Z]
where I = Ind(X: V(x : A). x){C(X)}, and A[L, X, Cy, fx, Q, T, Z] is defined as follow:
CA[LX, X, ,Q, T, €] =1,
- A[LX,¥(x:B).D,f,Q, f,zZ] = A[,X,D{x > z},fz Q, T, Z]
if X does not occur in B,

- A[LX,¥(x:B).D,f,Q, f,zZ] =
A[LX,Dfx > z},fz(A\[y: D]. Blim(2 ¥ : 1[4] —» Q){}),Q, , Z]
ifB=VY(y:D).XT.

Example 3.6

Although now classical, this definition is quite technical. To illustrate it, we define an
inductive predicate even of type nat — * s.t. evenn is inhabited only if n is even (i.e. only
if n =0or n=S8(Sk) with evenk inhabited):

even = Ind(X : nat — *){X0,¥(n : nat). Xn — X (S(Sn))}

We write EvenO for evenl'l, and EvenS for even!?l. We now define a function div2
which takes a natural number k : nat, a proof p : evenk and computes k/2:

div2 = A[k : nat][p : evenk]. Elim(p : even [k] — Q){f1,f2}
where f1 = 0 and f; = A[k’ : nat][p’ : evenk’][r : nat].Sr.

We do not explicit the form of Q which is only used for typing purposes.
2%k

Given that a closed and 25-normal term p of type even(S - - - (S 0)) must be of the form
k

——

(EvenS - - - (EvenS 0EvenO)) (this is a consequence of the inversion lemma for CIC), div2
simply proceeds by “counting the occurrences of EvenS in p”. We show in Figure 3.1 how
div2 (S (S0)) (EvenS 0 EvenO) reduces to S0.

Example 3.7 Non positive constructor type

We here give a non positive type, where the occurrence of X which does not appear in
strict positive position is underlined:

absurd := Ind(X: %) {(X - X) - X}

If such a definition were allowed, it would be possible to construct non-strongly normal-
izing terms. For example, if f denotes the term:

f := A[x : absurd]. Elim(x : absurd [¢] — A[y : absurd]. absurd){b}
with b := A[v : absurd — absurd]. v (absurd["!v), then one can verify that

f (absurd!'l f) ﬁ* f (absurdl'l f).

23

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

div2 (S (S0)) (EvenS 0 EvenO)

Enr Elim(EvenS 0 EvenO : even[S (S0)] — Q){f,f2}

— Aleven, X, V(n :nat). Xn — X (S(Sn)),f2, Q, fi, [0EvenO]]

= Aleven, X, X0 — X (S(S0)),,0,Q, f;, [EvenO]]

= Aleven, X,X(S(S0)),f 0 Elim(EvenO : even [0] — Q){f1,f2},Q, fi, €]
= f,0EvenO Elim(EvenO : even [0] — Q){f,f2}

5 f,0EvenO A[even,X‘XO,ﬁ,Q,f‘{, 1]

= f,0EvenO f, E>+SO

Figure 3.1: CIC t-reduction example

Strong and Weak (-reduction

CIC distinguishes two kinds of t-elimination: the strong one, when the terms constructed
by induction are at predicate level, and the weak one, when they are at object level.
(The categorization of terms which defines these levels is given later) To ensure logical
consistency, strong t-elimination is restricted to small inductive types, i.e. to inductive
types whose constructors do not take a predicate as argument:

Definition 3.8 Small inductive types

A type constructor V(xl—T:) X T in X is small if all the xi’s are in X* (or equivalently for
terms that are typable, if all the Ti’s are of type * in their respective environments). If not,
it is called a big type constructor. An inductive type is small if all its constructor types
are small.

Example 3.9

The inductive type I:=Ind(X: *){x — X} is not small. Allowing strong reduction on such
an inductive definition, we can define two terms roll and unroll (of types I — % and x — I)

s.t. unroll (roll x) i* X:
roll = IU']
unroll = A[x : I]. Elim(x : I[e] = Q){[A[v:].v]}

Having such terms allows the encoding in CIC of a typed version of the Burali-Forti
paradox [11].

Typing judgments

The typing judgments are classically written I' - t : T, meaning that the well-formed term
t is a proof of the proposition T (or has type T) under the well-formed environment T,
where environments are defined as follows:

Definition 3.10 Typing environments of CIC

A typing environment ' is a sequence of pairs [xi : Ti] made of a variable xi and a term
Ty (we say that T binds xi to the type Ti), such that T does not bind a variable twice. T
can be seen as a substitution : xI" will denote the type associated to x in ', and we write

24

dom(T") for the domain of T' as well.

Before describing how typing judgments are formed, we first define the notion of con-
structor derivation. Constructor derivations are used for typing the branches of an induc-
tive definition.

Definition 3.11 Constructor derivation

Given an inductive definition 1, we define:

- the *-level constructor derivation A*{1,X,C,Q,c} as:
AL X, X, Q,c} = Qmic
- A*{[,X,¥(z:B).D,Q,c} =V(z:B).A{I,X,D, Q,cz} if X does not occur in B
- A*{,X,¥(z:B).D,Q,c} =
V(x:B{X ~ 1}).(¥(y: D).Q 4 (2 §)) —» A{L,X,D,Q,cz}
ifB=VY(y:D).Xq

- the o-level constructor derivation A°{I,X,C,Xy,K,c} as:
AL X, XM, Xy, K, ¢} = K{x = m,y — c}
- A"{1,X,¥(z:B).D,Xy,K,c} = V(z: B).A*{[,X,D, X y,K,cz}
if X does not occur in B
- A*{I,X,¥(z:B).D, &K,c} =
V(z:B{X—I}).(V(y: D). K{x > m,y — c}) - A"{[,X,D, X y,K,cz}
ifB=V(y:D).Xq

We can now define the formation of 't : T:

Definition 3.12 Typing judgment of CIC

Typing rules of CIC are defined in Figure 3.2 and 3.3.

3.2 Parametric multi-sorted theories with constructors

We choose to embed into the Calculus of Constructions any first-order theory expressed
by a parametric multi-sorted algebra, with some restrictions for the notion of constructor
symbols. These algebras can be easily mapped to the Calculus of Inductive Construction
and are expressive enough to describe any theory we want to embed in the calculus and for
which a decision procedure exists: linear arithmetic, datatypes, non-interpreted algebras,
rings.

Signature

The first part of this section is taken from the definition of parametric multi-sorted algebras,
with some restrictions for the introduction of constructor symbols.

Definition 3.13

A set of sort constructors is any finite set A whose elements are equipped with an arity. If

25

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

[Ax-1]
= %o

FeTerst Mx:T]FUW:sy
FEVY(x:T).U:sy

[PrOD]

FEVY(x:T).U:s Mx:T]u:U
FEAXx:Tluw:V(x:T). U

[LaMm]

FeV:is THt:T se{xo} xeX*\dom(T)

[WEAK]
Nx:V]Et:T
x € dom(l") m X% T xI":sy
[VAR]
I'=x:xl
P-t:T TeTis TET s’ TES, T
[Conv]

M—t:T'

Figure 3.2: CIC Typing Rules (CC rules)

A=VY(x:T).x FA:o foralli, '+ Ci(X):*
for all i, Ci(X) is a strictly positive constructor in X

[=Ind(X:A){Ci(X)} is in P4 normal form
F—1:A

[InD]

e

[=Ind(X:T){C:;(X)} THI:T
M1k X -1}

[CoNSTR|

A=V¥x:U).x I=MdX:A{GX)} THI:A FQ:v(x:U).(IX) -«
for all i, Ty = A*{I, X, Ci(X), Q, I} FTiix THF:T;
forallj,T+aj:Aj{x—>d} Threc:Id
I Elim(c:1[d] > Q){f}:Qdc

[Enmv-«]

A=VY(x:U.+ I=Ind(X:A){C;(X)} is small
Q =VY(x:W(y:I%).Kisin 25 normal form [x: U], [y: 1%+ K:o
forall i, T; = A™{I[,X,Ci(X), Xy, K, I} FTi:o THF:T;
forallj,T—a;:Aj{x—~d} Threc:ld
M Elim(c:1[d] —» Q){f}: K{x =,y c}

[ELiv-o]

Figure 3.3: CIC Typing Rules (Inductive Types)

& is a countably infinite set disjoint from A of sort variables, the free algebra Ag = T(A, €)
is called the set of (first-order) parametric sorts.

26

Notation. From now on, o, f,... rangesover &
g) Tyenn - A
o,T,... - Aeg

If o is a sort constructor, we write g/n for meaning that o if of arity n.
Example 3.14
Examples of sorts are the sort mat of natural numbers, or list(nat) of lists over natural
numbers, nat (resp. list) being a sort constructor of arity O (resp. of arity 1).
Definition 3.15

A signature in parametric multi-sorted algebra is a pair (Ag, L) where i) Ag is a sel of
sorts, 1) L is a finite set, disjoint from all others, of function symbols, and iii) an arity
of the form VA. Ty x ---Tn — 0 is attached to any symbol f € L, where & if the set of sort
variables occurring in T1,...,7Tn, 0 and all the sort variables occurring in o occur in the
Ti ’s.

We distinguish a subset Z¢ of L, called set of constructor symbols, the arity of which
must be of the form Vo, ..., 0. T1 X +-+ X Ty — 0(0X7,..., 0tn).

Function symbols of L — L are called defined symbols.

Example 3.16

Returning to our previous example, the signature of parametric lists is given by A = {list/1}
and the signature:

nil V. — list(x)
cons Vo o x list(o) — list(ox)
car Vo list(x) -

cdr Vo.list(x) — list(o)
whereas the one of natural numbers is given by A = {nat/0} and:

0 — nat
S nat — nat
+ nat x nat — nat

Terms, Equations

We continue with the definition of terms and equations:

Definition 3.17 Terms

Let (A, X) be a signature in parametric multi-sorted algebra. For any o € Ag, let X° be
a countable infinite set of variables of sort o, s.t. all the X" ’s are pairwise disjoint. Let
X = Ugen, X°. For any x € X, we say that x has sort T if x € X*.

For any sort 0 € A, we define the set T5(X,X) of terms of sort o with variables in X
as the smallest set s.t.:

1. if x € X7, then x € T(X,X),
2. a)ifty, o tn € T6,6(5,X) x oo x To, e(Z,X), for a sort substitution &,

b) f:01 x---xX0opn >,

27

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

then f(ty,...,tn) € Tre (X, X).

We denote by T(Z,X) the set Jyen, (To(Z,X)).

We also introduce the notion of term schemes, use later for the definition of theories
and rewriting systems.

Definition 3.18 Term scheme

Let X be a set of unsorted variables. A sort assignment is any finite mapping from X1 to
Ag, written [x1 : T1],...,[Xn : Tn]. We write Igx for the sort associated to x in the sort
assignment Jg.

Given a sort assignment Jg = [x1 : T1],...,[Xn : Tn], we inductively defined the term
schemes of sort o w.r.t. Jg as:
1. Jg.xq is a term scheme of sort Ty,

2. a) ifIg.t1,---,Js.tn are term schemes of respective sorts o1&, ..., 0n& for a sort
renaming &,

b) f:01 x - X 0pn >,

then Jg. f(t1,...,tn) is a term scheme of sort T&.

Let Jgen, X° be a set of sorted variables. For any variable x € X7 and sort o, we
assign to x and o a unique variable of X°, denoted by x°. Given a sort substitution &, the
&-instance of a term scheme Jg. t, written (Js.t)e is inductively defined as:

1J
. <Xi>£ :ng s)&}

2. <jg. f(t1 S ,tn)>g = f(<jg. t >£, R ,<jg. tn>g).
Fact 3.19

If Js. t is a term scheme of sort o and & a sort substitution, then (t) is a term of sort o&.

Example 3.20

Using the signature of example 3.16, with x a variable of sort nat, we have 0, 0 + x of sort
nat, and nil of sort list(nat) and sort list(c).

The term scheme [x : «]. cons(x, nil) is of sort list(c).

Definition 3.21 Substitution

Let (A X) be a signature and X = |J,cp, X be a set of variables. A substitution is any
finite mapping, written {xi — ti}1<i<n, from X to T(X,X) preserving sorts, that is s.t. for
all x € dom(0) of sort o, x0 € T5(L,X).

If 0 is an T(Z, X)-substitution, we write dom(0) = {x1,...,xn} for the domain of 0. If
t is a term of sort o, we denole by t0 the term where all occurrences of the xi’s has been
respectively replaced with the ti’s.

Fact g3.22

If t is a term of sort o, then t0 is of sort o for any substitution 6.

28

Equations are simply pairs of terms of same sort:

Definition 3.23 Equation

Let (Ae, L) be a signature in parametric multi-sorted algebra. A L-equation is any triple
(t,u,0), where t and w are terms of sort o, written t =° w or t = w when o is not relevant.

A XY-equation scheme is any triple (t,u, o) where Js.t and Js.u are term schemes of
sort o, written V&.VXi : Ti. t = u, where the xi’s (written with their associated sorts) are
the variables appearing in t and u and the & ’s are the sort variables appearing in the Ty ’s.

Algebra, Interpretation

We can now give the interpretation of signatures and terms:

Definition 3.24 Algebra
Let QO = (Ag, L) be a signature in parametric multi-sorted algebra.

A Q-algebra A consists of

1. a domain 8 for sort constructors interpretation,
2. for any sort constructor o, a function Sg : 8™ — 8, where n is the arity of o,
9. for each function symbol f € ¥ of arity YX. Ty X --- X Tn — 0, a function:
Af i A X x A, = Ag.
where A, for v e T(A), is inductively defined as:

‘Ax(m) = Sx(Am yoee "A'T[k)
and, for v.e Ag\T(A),

Ay = J{Ave | 0 closed}.

Moreover, for any sort substitution &, if (vi,...,vn) € A, X -+- x Ag_ &, then
Af(V] Yoo ,Vn) € .AT({,
Definition 3.25 Interpretation

Let Q) be a signature in parametric multi-sorted algebra, X = Jyep, X a set of sorted
variables, and A a Q-algebra. An assignment is any functionJ: X — | J,cp, Ao respecting
sorts, i.e. such that J(x) € A if x € X™.

The A-interpretation of t € T(L,X) with assignment J, written [t]%, is defined as:

[X[5 = 9(x)
[f(tr, o)% = Ac(ta]f - [ta]4)

Theory, Model

We now move to the definition of theories:

Definition 3.26 Theory

Let Q) be a signature in parametric multi-sorted algebra. A Q-theory is any set of equation
schemes.

29

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

The definition of a model of a theory is as usual. We take into account here that we
have constructor symbols.

Definition g.27 Model

Let T be a Q-theory. A model of T (or T-model for short) is any Q-algebra M s.t. for any
assignment J:

- if f is a constructor symbol,

[f(tr, -t = [f(ur, - s un)]y implies for all i, [ti]3 = Wil
- if f and g are two distinct constructor symbols, then for any t1,- -+ ,th,wy, -+ Uy
[[f(t1 o »tﬂ)]]gvt 7= [[9(u1 o ’uk)]]g\/[

- for any equation scheme Y&.Vxi : Ti.t = u of the theory, and any sort substilution
&, we have:

[Ts. elde = [Ts- wely-

with Jg = [xq : Ti].

Sentence, T-validity

Let T be a Q-theory. In all the following, we will only consider Horn clauses, i.e. sentences
of the form t; =g, W A+ Aty =g, Un =t =5 U

Validity of such sentences w.r.t. a T-model is defined in the obvious way:

Definition 3.28 Validity

E

We say that t =5, W A Aty =¢, Up = t =¢ u is valid under a T-model M and an
M-interpretation J, written M =9 E = t =5 u, if either:

- there exists an equation ti =¢, Wi in E s.t. [t} # [[ui]]g\,[, or

- [t = [ulae

We say that E = t =5 u is valid under the model M if for any M-interpretation J,
E=t=,u is valid under M and J.

If E is any possibly infinite set of equations, we write M,E 5 t = u (resp. M,E =
t =4 u) if there exists a finite subset F of E s.t. M =g AF=t=5u (resp. M= AF=
t=cu).

Validity of sentences for a given J-theory is defined as the validity under all the consid-
ered T-models. We write T,E =t =¢ wif M,E =t =4 u for all the considered T-models.

Rewriting systems

We end this section by introducing the notion of parametric rewriting systems. A rewrite
rule is simply an equation scheme oriented from left to write.

30

Definition 3.29 Rewriting system

Let (Ae, L) be a signature in parametric multi-sorted algebra. A Z-rewrite rule is any triple
(t,u,0) of term schemes of sort o, written V&.VX; : Ti.t — W, where the xi’s (written with
their associated sorts) are the variables appearing in t and w and the &’s are the sort
variables appearing in the Ti’s.

A X rewriting system is any enumerable set of L-rewrite rules.

Rewriting of terms is defined as usual:
Definition 3.30

Let R be a Z-rewrite system. The rewriting relation R, associated to R if the smallest
binary relation on L-terms, closed by substitution and context, s.t. for any rewrite rule
Vo Vxi : Ti. t > u of R and any sort substitution & € Ag, we have:

<j§ . t>g' i<35 . u>5
with g = [x{ : Ti].

Fact 3.31

. R
The relation — preserves term sorts.

3.3 The calculus

Terms of the calculus

As for CIC, we first start by describing the terms algebra of the calculus.

CCIC uses the same set of sorts 8§ = {*, 0} and sets of variables X = X* U X" of CIC.
We distinguish a subset X, of X* of extractable variables (resp. X7 of extractable types
variables).

As for CCp, let A = {r,u} a set of two constants, called ennotations where r stands for
restricted and u for unrestricted. We use a for an arbitrary annotation.

Let £ and A be two disjoint sets of function symbols. We define £ and A later, when
translating parametric multi-sorted signature to CCIC terms: X (resp. A) will then contain
the translation of the first-order function symbols (resp. of the sort constructors).

Definition 3.32 Pseudo-terms of CCIC
The algebra CCIC of pseudo-terms of CCIC is defined by:

tLu, U, ..i=se8|xeX|Vx:*T).t|A[x:*T].t|tu|feXZ|oeA
| =|Eqr(t) | Leib | Ind(X: t){Ti} | tM | Elim(t: T [{T}] — W){w}}

We assume that for any f e X U A, a CCIC term Ty, called the type of f, is attached to f.

Compared to CIC, the differences are:

- the presence of annotations for the product and abstraction,

31

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

- the internalization of the equality predicate:

1. t =1 u (or t = u when T is not relevant or can deduced from the context)
denotes the equality of the two terms (of type T) t and u,

2. Eqy(t) will represent proof by reflexivity of t =t t and Leib the Leibniz predicate
for equality,

- the internalization of the function symbols f € X and sort constructors o € A.

Notation. When x in not free in t, V(x :* T).t will be written T —¢ t. The default anno-
tation, when not specified in a product or abstraction, is the unrestricted (u) one.

From now on, let Ot and O~ be two arbitrary set of CCIC terms, whose elements are
called eztractable terms and convertible terms. The set OF will be used in the definition
of conversion to restrict the set of extractable equations for a given environment: only
equation of the form t = u with t and u in OF shall be extractable. The set O~ is used
later to restrict the set of terms on which first-order deduction is applied.

Taking Ot = O~ = O (see Definition 3.34) does not compromise most standard calculus
properties but it does compromise decidability of type-checking. For example, if T is the
Presburger arithmetic, allowing the extraction of

A[x : nat]. fx = A[x : nat]. f (x + 2)
would later require to decide any statement of the form
TE (Wx.f(x) =f(x +2)) =t =1,

which is well known to be impossible. Our assumptions on OF and O~ will come later, when
proving meta-theoretical properties of CCIC and describing the type-checking algorithm.

We also assume a set of CCIC terms PT. This set is used later to restrict the types of
variables of X}.

We now define the set of CCIC well-sorted terms. Well-sorted are s.t. (-reduction
always replaces variables of X, and X by terms of OF and P*. Hence, we must forbid
pseudo-terms which contain subterms of the form (A[x :* U].t)u with x € X; and u ¢ OF
(resp. x € X7 and u ¢ Pt). Since, as in CCy, we do not want terms of the form
(A[x F U].t) u and since, we want well-sorted terms to be stable by reduction, we obtain
the following definition:

Definition 3.33 Well-sorted terms
A CCIC pseudo-terms t is well-sorted if:

- t does not contain, on the right of an application or in the branch of a recursor, an
unapplied subterm of the form A[x :* U].t withxe X; uxe X, ora=r.

- If t contains a subterm of the form (A[x:* U].t)u, then a = u and if x € X7 (resp.
x € X7) thenue OF (resp. we PT).

Moreover, if C(X) = V(xi : Uy). XU is a constructor type, the xi’s and X are not element
of Xy v Xy

From now on, we only consider well-sorted terms.

See Chapter 6 for a discussion about theses restrictions.

32

Note 5

The definitions of free variable, capture-free substitution and Pi-reduction do not change
from CIC to CCIC.

As usual, it is possible to define layered syntactic classes for CCIC:

Definition 3.34 Syntactic classes

The pairwise disjoint syntactic classes of CCIC called objects (O), predicates (P), kinds
(X), and o are defined in Figure 9.4.

This enumeration defined a post-fized successors function +1 on classes (O +1 = P,
P+1 =K, K+1 =0,0+1 = 1). We also define Class(t) =D ifte D and D € {0, P, K, 0},
and Class(t) = L otherwise.

Ou=X*|feZ|O00|O0P|Eqp(0)|Leib | P | A[x*:¢ PL.O | A[x" :* K]. O
2= Elim(0 : P[6] - P){0}

Pu=X"]oeAl|=|Ind(X: 3(){55} [PO|PP|A[x*:* PP A[x":¢ K].P
= Elm(0: P[0] > A[T].1O{P} | V(x* 1 P). P | V(x° :* K). P

Kou=x | V(X" P).K|Vx":*XK).XK

o

[m]

Figure 3.4: CCIC terms classes

Typing judgment

Definition 3.35 Pseudo-contexts of CCIC

The typing environments of CIC are defined as T, A == [] | T, [x:* T] s.t. a variable cannot
appear twice in the left-hand side of a colon. Moreover, if x € X, then we require T to be
in Pt. We use dom(T") for the domain of T and xI" for the type associated to x in T.

We can now define the CCIC typing judgment I' — t : T. The rules defining ' = t: T
are a mix of the ones of CCy (notably for the [APP] rule side conditions) and the CIC ones
(for inductive types):

Definition 3.36 Typing judgement

The typing judgment T t: T is defined by the rules of Figures 3.5 and 3.6, where

- — is a rewriting relation on CCIC, including Py reduction. Its precise definition is
given later.

- For any typing environment ', ~r is the conversion relation of CCIC under environ-
ment I'. As for —, its precise definition is given later.

- WT is a set of terms. Again, its precise definition is given later.

33

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

feXuA FT:s
) [Ax-1] [SymB]
.o R

M=t:T
IM—Eqr(t):t=7t

[EQ-INTRO]

F Treib - S
TLeib = V(T : *)(t] t2 :T).h =t — V(p T — *).pt1 —-pt2
b Leib : TLeib

[LEIB]

FETeist Mx:@T]-UWU:sy
FEVY(x:*T).U:sy

[PrOD]

Ft:Vx*UW.V T'Fu:l ueWT
if x € X, then u must be in OF
if x € X7, then u must be in P+

[APP]
MN=tu:V{x —u}

FEVis THt:T se{xo} xeX*\dom(T)

[WEAK]
Nx:V]Et:T

x € dom(l") M XS T xIM:sy

[VAR]
N x:xI

Ft:T T=T':s" T~pT

Tt T [Conv]

Figure 3.5: CCIC Typing Rules (CC rules)

Notation. A term t is well-formed (or well-typed), denoted by T' - t, if there exists T s.t.
' t:T. A typing environment is well-formed, denoted by T |-, if there exists a term t
st. It

Definition 3.37
Among well-typed terms, we distinguish:

- The set O(T) of well-typed objects under T, i.e. the set composed of terms t s.t.
F't:TandT = T:* for someT.

- The set P(T") of well-typed predicates under T, i.e. the set of terms T s.t. =T : K
and I' = K: o for some K.

- The set K(I') of well-typed predicate types under I, i.e. the set of terms T s.t.
N'eT:o.

We also define the following sets:

34

A=VY(x:T).+ FA:o foralli, ' Cy(X):«

for all i, Ci(X) is a strictly positive constructor in X

B ———

[=Ind(X:A){Ci(X)} is in —-normal form
N=1:A

[IND]

—_—

[=MIdX:T){Ci(X)} THI:T
M1 (X)X T}

[CoNsTR|

A=V(x:U.x I=IndX:A){C;(X)} THI:A FQ:V(x:U).(IX)— *
for all i, Ty = A*{[,X,Ciy(X),Q, I} - Tiix THf:T;
forall j, M+ a;:Aj{x—d} Trc:Id

— - = [ELiv-x]
I Elim(c:I[d] - Q){f}:Qdc
A=V(x:U).+ I=Ind(X:A){Cj(X)} is small
Q=V(x:U)(y:IX).Kisin —-normal form [x:U],[y:IX]+K:o
for all i, Ty = A°{, X, Ci(X), Xy, K, I} —Ti:o THF:T;
forall j, M+ a;:Aj{x—>d} Trc:Id
[ELIM-o]

I Elim(c: 1[d] > Q){f}: K{x=,y > c}

Figure 3.6: CCIC Typing Rules (Inductive Types)

O=UJ{OM) |T s.t. T+}
P=J{PT)|T s.t. TH+}
K= J{K(T)|T s.t. T'+}

We now define a notion of well-formed substitution. In the Calculus of Constructions,
a substitution 0 is well-formed from a typing environment I' to a typing environment A if
for all x € dom(0), A - x0 : xI'. One can then easily prove AR t0 : TOU T t:T-a
property called stability by substitution.

Assume now that I is a typing environment of the form I',[x ¥ a = b],> (a and b
being two terms in the set of extractable terms O1). Stability by substitution claims that
if we have a derivation of the form I' — t : T, then we can substitute x by a any term P
(s.t. T P:a = D) in the derivation I' - t : T and obtain a proof of 7,120 - t0 : T8,
where 8 = {x — P}. However, this is not true in general since the equation a = b is then
removed from context and not usable in the definition of ~r, r,e. Hence, a® ~r, r,o b6
does not hold in general, and T, 1,0 I t0 : TO is not necessarily derivable.

Another problems arise when substituting variables in extractable equations. Suppose
now that I' = A[p* a=b].u with a and b in OF. Stability by substitution now leads
to A Alpf ab =b0].ub. Again, for this result to hold, we need a® and b8 to be
extractable, i.e. OF has to be stable by application of a well-formed substitution.

Hence the following definition of well-formed substitutions:

Definition 3.38 Well-sorted and well-formed substitution

35

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

A substitution 0 is well-sorted from I' to A, written 0 : T — A, if

- ¥x € dom(0), x is not annotated by r in T,

- if x is annotated by r is T, then x € dom(A), x is annotated by r in A, and xA = xI'0.
- ¥x € dom(0), if x € X7 then x0 € OF,

- ¥x € dom(0), if x € X, then x0 € P,

- V¥x € dom(0). Class(x) = Class(x0).
(6).

- V¥x € dom(0).x0 is a weak term.

Moreover, if for all x € dom(0), A x0 : xI'O, then we say that 0 is well-formed,
written 0 : T~ A,

Incorporation of a PMS algebra into CCIC

We start out incorporating of a parametric theory into CCIC. From now on, let Ag be a
sort signature and X a Ag-signature.

Translation of sort constructors and function symbols

We introduce into CCIC two new sets of symbols: a set of type level symbols A = {0 | o€
A}, and a set of object level symbols £ = {f | f € Z}. We then assign for any object (resp.
type) level symbol a type level (resp. kind level) CCIC terms denoting the translation of
their arities.

As an example, for the signature of Presburger arithmetic A = {nat} and £ = {0 :
nat,S : nat — nat,+ : nat x nat — nat}, we then introduce 4 new symbols with the
following types:

nat :x

0 :nat

S :npat — nat

+ :nat — nat — nat

Non surprisingly, nat being a non-parametric first-order sort constructor, we associate
the CCIC-sort x to the symbol nat. The types associated to the function symbols are
simply the curryfied versions of their arities (replacing nat by nat).

In the case of a parametric signature, like the one for parametric lists, A = {list/1} and
L = {nil, cons, app} with
nil Vo — list(x)
cons : Vou. oo x list(or) — list(x)
app Vo list(x) x list(x) — list(x)

the translation is similar, but the sort variables appearing in the arities are now abstracted
with CCIC-variables of sort o, i.e.:

36

list

*

— *
nil (T:*).list T

cons :V(T:x).T— (listT) — (List T)

app :¥(T:). (list T) - (list T) — (list T)

<C

Definition 3.39 Signature translation

Let A¢ be a set of sorts and £ a Ag-signature. A CCIC-translation of L is given by:

- a mapping ~ from sort variables to CCIC type level variables (i.e. we associate to
any sort variable « € & a unique CCIC type level variable & € X7).

- a set of CCIC sort constructor symbols (with associated CCIC types) A = {0 : T¢ |
o€ A} where Tg = x> - -x = %,
o (\ERE—

arity (o) times

- a set of CCIC function symbols (with associated CCIC types) L = {a :1¢ | f € L}
where Tf s defined as follow:

Tf = V(& *)ocEFV(arity(f))' [ti] — - [tn] — [0]

with arity(f) = 71 X -+ Ty > 0 and [-] : Ae - CCIC inductively defined as

[of = &

[o(ti,...,T)]=0o[t] ... [Tnl

We have the immediate result:

Fact 3.40

For any CCIC sort constructor symbol o (resp. CCIC function symbol f), we have - 15 : o
(resp. - Tf 1 *).

Translation of X-rewriting systems

We now move to the translation of a Z-rewriting system.

In parametric multi-sorted algebra, a rewrite system preserves sorts as both sides of
any of its rule have the same sort. The analog for type systems is that a rewrite rule l - r
preserves types if there exists an environment I' and aterm Tst. T'—1: Tand TH1:T -
we say that 1 — 1 is well-formed under T.

When translating a first-order rule into CCIC, one has to give the translation of the
rewrite rule into a CCIC rewrite rule | - v and a CCIC typing environment I' s.t. 1 —> 1 is
well formed under T.

Taking Presburger arithmetic as example, the following rewriting system

Vx : nat. x+0—>x

¥x,y:nat. x4+ S(y) = S(x +y)

is translated into

37

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

x+0—x ' =[x : nat]
x+(Sy) =S (x+v) ' =[x : nat], [y : nat]

It is clear that all these rewrite rules are well formed under the typing environments
written on their right.

The case of parametric rules is not harder. For example, the definition of concatenation
of parametric lists

Vox. V1: list(x). app(l,nil) —»1
Vo VI : list (o), x : . app(l, cons(x, 1)) — cons(x, app(l, 1))

is translated into

appAl(nilA) —1 M= [A:x],[l:listA]
appAl(cons Axl’) —cons A (appAll’) M= [A:«], IV list A],[x: A]
Definition 3.41 Rewrite rule translation

Let @ = VA.YX7 : T1 - Xn : Tn.l—=7T be a L-rewrite rule. We write Jg for the sort
assignment [x1 : T1],...,[Xn : Tn]. The translation of q is T': () —(r) where:

< () is inductively defined as

(x) =x
(]f(t1,...,tn)l) =f[[f516]] [“-))ka]] G’HD qtn[)

where i) f has arity VB1,...Px.- 11 X =+ X Wn — W 1) Js. f(t1,...,tn) is a term
scheme of sort o and the Js.ti are term schemes of respective sorts o1, and i) & is
the sort substitution of domain {f1,..., Pk} s.t. Vi.oy = W& and o = pé.

T =[Ar#], oo [Ap cx] [xa [Tl - - oy [t [on]]
with {A1,...,An} = (FV(()) U FV((r))) n X°.

Lemma 3.42

For any Z-rewrite rule L >, I': (1) —(r) is a well formed rewrite rule under T

Proof. f l>1 =V&. VX1 :T1 - Xn : Tn.l— 71 be a -rewrite rule, we prove by induction
on () and (), that ' - (1) : [o] and T" - (r) : [o] where o is the common sort of | and
T. O

One major drawback of using such a translation is that, in the case of parametric rewrite
rules, we obtain non-left linear rewrite rules, which complicates the confluence proof.

This can be overcomed by using the notion of well typed rule of [4], where a substitution
applies to the left hand side before typing it.

Instead of defining app as in our previous example, one can give the following rewriting

system instead:
appAl(nilA) —1 =[A:x],[L:list A]

[A:x], [IV :list A], [x: A]

r
appAq l(cons Ay x1’) — cons A (app A L1') r

38

along with the substitution p = {A; — A, A, — A} for the second rewriting rule.

Definition 3.43 Well typed rule [4]

A rewrite rule > 1 with L = f € and f: V(x:T). U is well typed is there exists an environ-
ment I' and a substitution p s.t.

-TH1p:UBp and T 7 : UBp,

- dom(p) ndom(T") = &,

< forany A, 5, T, if AL 10T thend:T ~ A,
- forany A, 5, T, if A= 18:T then 8] pd.

where 0 = {x — t}.

We write (T, p) : L > 1 when these conditions are satisfied.

Linearisation of translated rules can be done as follow:

Definition 3.44

Let T': 1— 1 be the translation of a Z-rewrite rule. For any p € Pos(l) s.t. 1, € X°, let A,
be fresh variables of X°. We define © and p as follow:

0=[p« Ay |pePos(l),, e X7]
p= {A-p d ll‘p |‘p € POS(l),Hp € DC”}

The linearisation of I' : L — 1 is the rewrite rule 10 — 1, along with the environment T’
and the substitution p.

Conversion relation

From now on, let — be a rewriting system, defined as the union of P4 and & where R is
the translation of a X-rewriting system.

We are now left to define our conversion relation ~r. The two main differences with
CCy are the following.

- Our notion of algebraisation now works modulo the expected sort of the resulting
first-order term. This is the aim of the next section.

- A notion of weak terms is introduced in Section 3.3 so that conversion operates only
on them - the others being only converted with —-reductions. This is needed to
forbid inconsistencies at object level to be lift up to the type level.

We start with our new notion of algebraisation.

Algebraisation

Algebraisation is the first part of the hypotheses extraction: it allows transforming a CCIC
term into its first-order counterpart. We illustrate the difficulties with examples.

39

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

The case for pure algebraic terms is as for CCy. The definition becomes a little harder
for parametric signatures. The theory of lists gives us a simple example. From the definition
of conversion of an algebra to CCIC, we know than the app symbol has type

V(A :*).list A — list A — list A

Thus, a fully applied, well formed term having the symbol app at head position is
necessarily of the form app TLU, T being the type of the elements of the list. Algebrai-
sation of such a term will erase all the type parameters: in our example, A(app T1ll') =

app(A(L), A(l')).

Qur conversion being defined on non well-formed terms, we now come to the case
of algebraisation of non-pure algebraic terms or even ill-formed terms. As for CCy, for
non-pure algebraic terms, the problem is solved by abstracting non-algebraic subterms with
fresh variables. For example, algebraisation of 1 4+ t with t non-algebraic yields 1 + Xpat
where X,a¢ 18 an abstraction variable of sort nat for t. The problem is harder for:

- parametric symbols: in (cons Tt (nilU)) with t non algebraic, should t be abstracted
by a variable of sort nat or list(nat) 7

- ill-formed terms: should (consTO (cons T (nilU) (nilT))) be abstracted as a list of
natural numbers or as a list of lists ?

The solution adopted here is to postpone the decision: A(t) is defined as a function from
Ag to the terms of T s.t. A(t)(0) is the algebraisation of t under the condition that t is a
CCIC representation of a first-order term of sort o.

We now give the formal definition of A(-).

Let {Ys}o be a Ag-sorted family of pairwise disjoint countable infinite sets of variables
of sort 0. Let Y = J, Yo

For any x € X* and sort o € Ag, let x° be a fresh first-order variable of sort 0. We
denote by Zs the set {x° | x € X} and by Z the set | Zo-

For any equivalence relation R and sort 0 € A¢, we suppose the existence of a function
ng : CCIC — Y5 s.t. R (t) = mq(uw) if and only if t R u (i.e. 7H(t) is the element of Yo
representing the class of t modulo R).

Definition 3.45 Well applied term

—

A term is well-applied if it is of the form f [To]aca t1 -+« th withf:V&. 07 X -+ X 0y — 0.

Example 3.46

Example of well applied terms are 0, St, or app T1l1l’ - T being the type parameter. Note
that we do not require the terms to be well formed.

Note 6

When writing that f T T is well applied, we implicitly require that T contains all the type
parameters and only them.

Definition 3.47 Algebraisation

40

Assume t € CCIC and an equivalence relation R. The algebraisation of t modulo R is the
function Ax(t) : Ae = T(Y v 2) defined as:

Ax(x)(0) = x° if x e X*
Ax(f T [wilien) (7€) = F(Az(W)(18), -, AR (un)(0nE)) if (¥)
Ag(t)(t) = TTR(t) otherwise

where (x) .
i) £ T [Wilien is well applied,

i) fis of arity V&K. 01 X -+ 0 — 1T,

iii) & is a Ag-substitution.

For any relation R, Agr is defined as Ax where R is the smallest equivalence relation
containing R. We call o-alien (or alien for short) the subterms of t abstracted by a variable
inYe. A term is algebraically pure (or pure for short) if it does not contain aliens.

Example 3.48

Let t = consTO0 (cons U (nil V) (nilU)) and R a relation on the terms of CCIC. Then,
assuming Xpat, Ylist, Znat Deing abstraction variables, we have

Ar(t)(list(nat)) = cons(Ag(0)(nat), Ag(cons U(nil V) (nil U))(list(nat)))
= cons(0, cons(Ag(nil V)(nat), Ag (nil U)(list(nat))))

= cons(0, cons(Xyat, nil))

whereas

Agr(t)(list(o)) = cons(Ar(0)(0), Ar(cons U(nil V) (nil U))(list(o)))
= cons(Yust, cons(Ag (nil V) (o), Ar(nil U) (list(0))))

= cons(Yust, cons(nil, nil))

and, Ag(t)(nat) = zyat.

Note that, as explained before, the algebraisation does not only depend on the terms
being abstracted, but also on the expected sort of the result. This is clearly seen on the
example: when abstracting the (heterogeneous and ill-formed) list 0 :: nil :: nil as a list of
lists, 0 is seen as an alien and thus abstracted. Conversely, when this list is abstracted as
a list of natural numbers, 0 is considered algebraic but the nil element is then seen as an
alien and abstracted. Of course, as clear from the last case, if the list is algebraised as a
natural number, it gets directly abstracted by a variable.

Lemma 3.49

Let t € CCIC, 0 € Ag and R a binary relation on CCIC, then Ax(t)(0) is a well formed
J-term of sort o.

Proof. By induction on the definition on Ag(+). O

41

3. THE CALCULUS OF CONGRUENT INDUCTIVE CONSTRUCTIONS

Weak terms

We distinguish a class of terms called weak. This class of terms will play an important role
in the following as they restrict the interaction between the conversion at object level and
the strong t-reduction.

An example of what will be a non weak term is
t = A[x : nat]. Elim® (x : nat [] —» Q){nat, A[x : nat][T : Q x]. nat — nat}.

Such a term is problematic in the sense that when applied to convertible terms, it can
[Br-reduces to type-level terms that are not (3t-convertible. Suppose that the conversion
relation given for CCy is canonically extended to CCIC. We know that there exists a
typing environment I' s.t. 0~r S0, and hence, by congruence, t0~rt(50). Now, it is

easy to check that t0 ﬁ»* nat and t(S0) E>,.<(nat — mnat). It is known that having a
relation capturing nat ~r nat — nat breaks strong normalization of -reduction, the term
w = A[x : nat]. x x being typable in such a system.

On the contrary, weak terms are defined s.t. they cannot lift inconsistencies from object
level to a higher level.

Definition 3.50 Weak terms

A term is said weak if it does not contain open elimination (i.e. does not contain a term
of the form Elim(t: I[1¥] — Q){ f} with t having free variables).

A constructor type C(X) = V(xi : Up). XU in X is weak if for any i, X does not occur
in Uy or Uy = X V. An inductive type is weak if all its constructors type are weak.

We denote by WT the set of weak terms.

Conversion relation

We have now all the ingredients to define our conversion relation ~r:

Definition 3.51 Conversion relation

Rules of Figure 9.7 defines a family {~r} of CCIC binary relations, where for each rule of
the form

E; - Epn
t~ru
one has to read

E; -+ En Class(t) # L Class(u) # L

t~ru

Note 7

From CCly, the main differences are:

- The rules [ApP] and [ELIM] are now restricted to weak terms.

- Conversion for terms being destructed by a recursor is restricted to <.

42

[x"T]el Toit=u tbueOt
ot [REFL] o— [Eq]
~r

EEA. (t)(1) =A. (W)(T) t,ue O~
E= {.ANF(W1)(G) = .ANF(Wz)(G) | W1 ~rW2,0 € /\g,W],Wz c O+}

[DED]
t~ru
t—-t t'~ru u—u" t~pu’
—— [Rw-LEFT] [Rw-RicHT|
t~ru t~ru
T~rU t~p e Tr~rU t~p et
[Lam] [PrOD]
Al Tlot~pAlx:* Ul.u V(x:*T).t~rV(x:*U).u
T~ruU t~ru ti~ru; ta~ruwr ti,uy are weak
[EQT] [ApP™]
Eqr(t) ~r Equ(w) trta~ruiuz
[and I’ reduce to weak inductive types
Elim(t : I[V] > Q){f} and Elim(t' : I'[V'] - Q"){ f '} are weak
tesgt! I~rI Qor Q' Vor V! fap f!
Sy L _’Q rQ” v~r V_» rf’ ELnd®]
Elim(t: I[V] = Q){f} ~rElim(t": I'[V'] - Q"){f'}
A~rA’ C(X)~r C'(X) T~rU neN
[INnp] ————————— [CONSTR]
Ind(X : A){C(X)} ~rInd(X : A"){C"(X) T < ulmd

Figure 3.7: CCIC conversion relation

- An equation is extractable only if it is defined on terms in OF. Likewise, first-order

deduction is now only done on terms of O—.

43

CHAPTER 4

META-THEORETICAL PROPERTIES OF CCIC

From now on, let T be a theory over the parametric multi-sorted signature (Ag,X) and R

. . R . . R
the CCIC translation of a X-rewriting system s.t. PR, s confluent. We write — for 25

We also assume that rewrite rules of R preserve syntactic classes.

We start with the road-map, which is basically the one for Pure Type Systems. The
main meta-theoretical properties addressed in this chapter are confluence, subject reduc-
tion, strong normalization and consistency. As usual, they need proving additional prop-
erties (weakening, stability via well-formed substitution, type correction, ...).

Definition 4.1

We now define all the restrictions our sets OF, O~ and Pt must obey:

1. Ot c O~ cO,

2. Pt c P,

OF, O~ and Pt are stable by well-sorted substitutions,

P+ is stable by conversion,

O™ is stable by —-reduction and O~ is stable by —-equivalence,

No R-reduction can occur at the root position of terms of O\O~,

NS s

Suppose that T is s.t. O~ x O~ & ~r. Ift~ru with t € OF, then there exists a term
u' €0t st. u—o,uw and t~ru'. (Resp. ifue O, then there exists a termt' € O
s.t. t—=y.t' and t' ~ru.

4.1 Confluence on well-sorted terms

Lemma 4.2

1. if t >t/ and t is well-sorted (resp. weak), so is t’,
2. — is confluent on well-sorted terms

3. If Class(t) # L and t —u, then Class(u) = Class(t).

Proof. Property (1) is an immediate induction on the position of the reduction. Prop-

erty (2) is a immediate consequence of property (1). Property (3) is well-known for PR,
reduction where R is a rewriting system preserving classes. O

4.2 Monotony of conversion

We start with properties of interpretations of algebraised terms. Our first property simply
states that if an algebraised term Ax(t)(0) is evaluated w.r.t. an interpretation J, then for

45

4. META-THEORETICAL PROPERTIES OF CCIC

any relation R’ coarser than R, we can construct an interpretation J’ (independently of t
and 0) s.t. [Ax/(t)(0) % = [Ax(t)(0) -

Example 4.3

If t = uy +uy with wuy,us non algebraic, then by definition of interpretation:

[Az (t) (mat)[3c = +ac(I(y1),9(y2)) and Az (t) (nat)[3¢ = +ac(0' (1), 9" (y3))

where y; = T3 (u;) and y = T4 (uf). In order to have the desired equality, if suffices
to take J'(y{) = J(yi). This definition could be ill-formed if y; = y5 and I(u1) # I(y2).
Assuming R’ coarser than R eliminates this case. Indeed, having y; = y3, implies u; R’ uy,
which in turns implies wy R u; and y1 = y».

The lemma we state is a little stronger as it allows the application of a substitution to the
interpreted term: if an algebraised term A (t0)(0) is evaluated w.r.t. an interpretation J,
then for any relation R’ s.t. R’'8 € R, we can construct an interpretation J’ (independently
of t and o) s.t. [Ax/(t)(0)]3; = [A=(t0)(0)]3-

Example 4.4
If t = x + 1 with u non-algebraic, then
[A(t0)]3c = +ac (X813, I (uB))) and [Ax: ()5 = +ac(3'(x), I’ (T (w)).

Taking J/(x"2t) = [x0]3; and J'(Mx/(u)) = I(Tx(ub)) yields the desired result. With
respect to previous example, the difference is in the interpretation of variables in the domain
of 6.

Let t = u; +uy (with uy,u; non-algebraic) as in the previous example, and define
3 with J/(TT83¢ (u;)) = J(T15*(u;0)). Again, this definition is well-formed: if T4 (uy) =
183 (u,), then uy R’ uy, and thus w10 R w0 and J(TT5* (w1 0)) = I(TT8*¢(u,0)).

We now state and prove the property:

Lemma 4.5

Let 0 a substitution and R, R’ two binary relations on CCIC s.t. R’ € R6. Then, for any
T-model M and T-interpretation J, there exists an interpretation Jg s.t. for any term t and
sort o€ Ag:

[Ax()(0)]5% = [Ax: (t8)(0)]3

Proof. We define Jg as

Jo(x%) = [Ax (x0) (o)} if x € dom(8)
Jo(x%) = I(x°) if x € X\ dom(0)
Jo(y) = I(TTE, (uB)) ifyeY®, uellg '(y)

Note that this definition is well defined: if TTg(u) = TMx(w’), then u R u’. Hence, by
Lemma hypothesis, ud R’ u’6 and Tx/(ub) = Mg/ (u’'0).

We prove the desired property by an induction on the definition of Ax(t)(0):

-t=xeX.

46

- If x € dom(8), then [Ax(x)(0)]32 = Jo(x%) = [Ax/(x0)(0)[3-
- Otherwise, [Ax(x)(0)]33 = Jo(x%) = I(x%) = [Ax:(x)(0)]39 = [Ax: (x8)(0)]32-

- If tis a fully applied term of the form f ?h ooty with f of arity VA7) x-- - xTp > T
and & is a substitution s.t. o = &, then

[Ax(f T t1...ta) (@)% = fac([An(t) (T O, - .., [An (tn) (Tn E)[32)
= fa([Az (t10)(T1E) [0, - -+ [A (800) (Tn E)]3) (by IH)
= [Ax (FT64,0... t,0) (&),

= [Ax: (t8)(0)[3

- Otherwise, [Ax(t)(0)]3? = Jo(TI%(t)) = I(T1, (u6)) with u e T~ (y) where y
denotes 1% (t). Now, by definition of u, t R u, and by assumption, t0 R’ ué. Thus,
Mg, (ub) =TI, (t0).

Since t does not have an algebraic cap and is not a variable, so is t8. Thus,

[Ax: (10)(0)]3¢ = I(TT% () = [Ax (t)(0)]35.

We now carry out monotony of conversion.

Notation. For any CCIC binary relation R, we denote by E(R) the following set of first
order equations:

E(R) = {Ax(w1)(0) = Axr(w2)(0) | wi,w2 € OF,w; Rwy,0€ Ag}
Lemma 4.6 Monotony of conversion
Let R and R’ be two binary relations on CCIC terms s.t. R € R’.
Then for any term t,t’ and sort 0 € Ag, if T,E(R) = Ax(t)(T) = Ax(t’)(T) holds then
T E(R) & Ax/(t)(T) = Ax:(t")(T) holds.
Proof. There exists {Ei}ien with By = (Ax(w11)(Ti) = Axr(W2.1)(T1)) € E(R)), s.t.:
TEE A AEq = Ax(t)(0) = Ax(u)(o) (*)

We first show that
TEE|A...AE = Ax(t) = Az (u) ()
where B = (Ax: (w1 1)(T1) = Ax:(W2.1)(T1)).
Let M be a T-model and J a M-interpretation. If [Ef A --- A EL]3; = L then (¥) is sat-

isfied by J. Otherwise, assume that [Ax/(t)(0)]3; # [Ax:(w)(0)]%. We apply Lemma 4.5
(using an empty substitution), and construct a M-interpretation J s.t.

[E1 A+ A B = T and [Ax(6)(0)]% # (@)
contradicting ().

Therefore, [Ax:(t)(0)]3 = [Ax (w)(0)]3, and [F]3; = T, ending the proof of (}).

Now, by assumption, for all i, wy i R’ wy ;. Hence, for all i, E{ € E(R’). Therefore,
T ER) E Az (t)(0) = Az (u)(0) by (f). O

47

4. META-THEORETICAL PROPERTIES OF CCIC

Monotony of conversion will be used later in several lemmas stating stability of conver-
sion w.r.t. several operations, such as:

Weakening If ' © A then ~r € ~x,
Stability by reduction If ' - A, then ~r © ~4,
Stability by substitution If 8:T — A then ~r € ~a.
Theses lemmas have all the same proof sketch: an induction on the definition of ~r
demonstrating that i) every equation extracted from T is extractable from A, and that

ii) every application of [DED| of ~r can be translated to an application of [DED] of ~a.
Monotony of conversion is dealt with by [DED] case.

4.3 Weakening

We state here the different basic properties of Pure Type Systems. Only the proof of
weakening differs from the PTS case.

Lemma 4.7 Free variables / Subterms / Environments
1. Let T'=[x4: % Ti]. HT —t: T, then
- FV(t) u FV(T) < dom(T),
- for any i, FV(i) € {x1,...,%xi_1}.

2. All subterms of a well-formed term are well-formed.

3. Let I = [x; :“* Ti] be a well-formed environment. Then,

a) if x; € X*, then [X] Rl T]], s ,[Xi,1 (i Ti,]] =T : sy,
b) for any i, [x1 :*" T1],--, [xi—1 %" Ticq] %t Th.

Proof. 1. Straightforward induction on I' -t : T.
2. Straightforward induction on the typing judgment derivation.

3. Property a) is done by induction on I' + t : T. Property b) is an immediate conse-
quence of a) using [VAR]. O

We now state two stability lemmas for conversion:

Stability w.r.t. conversion of extractable equations If ' and A are s.t. any ex-
tractable equation of I is extractable in A, then ~r € ~a.

Stability by reduction If ' - A, then ~r € ~ax.

Lemma 4.8 Conversion weakening

Let T and A be two environments s.t. Vx € dom(T), if x is annotated by r in I, then
i) x € dom(A), i) xA = xI", and iii) x is annotated by r in A. Then ~r € ~a.

Proof. We prove t ~a u by induction on the definition of t ~ru.

48

. [EQ] = ﬁ,[x x T],rz, T—>*W1 in and Wi,W) € ot

Then, A = Ay, [x:F T],A; and by application of [EQ], wi ~a w;.

- [DED]. T,EL,. E AL, (t)(0) = A, (u)(0o) with t,ue O™, 0 € A¢g and
Evr ={A . (W)(1) = A (W2)(T) | Wi,w2 € OF,T€ Ag, w1 ~r W2}

Using induction hypothesis and Lemma 4.6, we have
T Evs B AL (D)(0) = AL, (W)(0)
with
Eo, ={A ,(W)(1) = A, (W2)(T) | Wwi,w2 € OF,T€ Ag, w1 ~a W2},

Thus t ~a u by application of [DED].
- All other cases are done by application of the induction hypothesis. O
Fact 4.9
The conversion relation ~r NnOt ~ O7 is transitive and symmetric.
Proof. it ~pu~rvwith t,u,ve Ot € O, then t ~rv by application of [DED]. Likewise,
if t~ru with t,ue OF € O™, then u~rt by application of [DED|. O
Lemma 4.10 Stability by reduction

If ', A, then ~p C ~4.
Proof. We prove t ~au by induction on t ~ru and by case on the last rule used.

|EQ]. T =T, [x*T],T2, To,wi =wa, wi,wy e OF

Suppose that Ty, [x & T],T2 = Aq,[x & T'],A; with T—, T’. Using confluence of
—, T' >, Wi = w) with wi >, w} and wy —, w). Using stability of O w.r.t. —,
wi,wh € OF. Thus, wi -, W) ~A W) —, Wy, and wy ~5 w by application of [Rw]
and Lemma 4.9.

- [DED]. T,EL,. E AL, (t)(0) = AL (u)(0) with t,ue O™, 0 € Ag and

ENF = {.ANF(V\M)(T) = .ANF(Wz)(T) | W1, W) € O+,T € /\g,W] ~r Wz}

As for the weakening proof, using induction hypothesis and Lemma 4.6, we have
T Ees E AL () (0) = AL, (u)(0)
with
Eo, ={A., w)(t) = A, (W2)(T) [W1,W2 € O, TE€ Ag, Wy ~aW2}.

Thus, t ~a u by application of [DED].

- All other cases are done by application of the induction hypothesis. O

We obtain weakening as a immediate consequence of Lemma 4.8.

Lemma 4.11 Weakening

Suppose that T' -+t : T and t ~ru. Then, for any typing environment A s.t. ' € A and
A, wehave AR-t:T.

Proof. The proof is as usual by induction on I' -t : T, using Lemma 4.8 for [Conv]. O

49

4. META-THEORETICAL PROPERTIES OF CCIC

4.4 Substitutivity

We now come to the stability of substitution for well-sorted substitutions.

Lemma 4.12 Stability by substitution
Let 0:T— Aand T,T’ s.t. T~ T’. Then, t0 ~A ub.

Proof. By induction on the definition of T ~p T':

- [Rw]. By standard properties of reductions.

[EqQ]. [x* U] el withx—, T=T and T,T" € OF
Since 0 : T — A, we have x € dom(A) and xA = xI'0. Since TO —, W10 = w,0 and

O is stable by well-sorted substitutions, then w18 ~A w20 using [Eq].

- [DED]. E~r E A (T)(0) = A (T (o) with T, T" € O, 0 € Ag and
E~r = {ANF(W1)(T) = .ANI.(Wz)(T) | Wi1,W3 € O+,T e Ag, Wi ~r Wz}

There exists {Ei}ien with Ei = (-A~F(W1,i)("fi) = A~F(W2‘i)(’fi)) € E~r s.t.:
TEE A A=A (T)(0) = A (T)(0) (%)

By mimicking the proof of monotony of conversion (Lemma 4.6), we can prove:
TEEO A ... AES = A (TO) = A, (T0) (1)

where E? = (.ANA (W])16)(11) = .ANA (Wz‘ie)("fi)).
Now, by induction hypothesis, for all i, wy ;0 ~aw2 60 and by stability of O%,
w110, w2 :0 € OF. Hence, for all i, E® € E_,, where:

ENA = {.ANA(V\M)(T) = .ANA(Wz)(T) | Wi,W) € O+,T (S /\g,W] ~AW2}
Therefore, T,E., = A.,(T0)(0) =A~,(T'0)(0) by (f). By stability of O—, T8 € O~
and T'8 € O~. Hence, T ~5 T'0 by [DED].

- Other cases follow by an application of the induction hypothesis, noting that if t is
weak, then so is t0.

O
Corollary 4.13 Substitution
Suppose that ' t: Tand 0:T ~~ A. Then A+ t6:T6.
Proof. By induction on the definition of ' —t: T:
- [VAR] -t =x e dom(l"), T =xI". Since 0:T ~> A, A x0:xI0.
- [Conv]. Immediate from induction hypothesis and Lemma 4.12.
- Other cases follow by an application of the induction hypothesis. O

50

4.5 Product compatibility

Product compatibility is one of the needed properties for proving subject reduction. Indeed,
assume that T' — Ax " U].vu @ V{x — u} with T — A[x:"* UW].v: V(x*U).V and
'~ u: U. For subject reduction to hold, we must have I' - v{x — u} : V{x — u}. By
inversion of typing, we have I',[x * W] - v : V/ with V(x :* W). V' ~EV(x " U). V. We
can conclude I' - v{x — u} : V{x — U} only if

V(x ¢ W)V ~EV(x: U). V implies U’ ~f U and V’ ”lf,[xzau/] V.
This property is the product compatibility. We prove here a stronger property as required
by the induction we use later: the equivalence of non-object caps.
Definition 4.14

Rules of Figure 4.1 define a family of relation {=r}r on terms of class different from L,
and where each rule whose name is annotated with a + and of the form

E; - E,
t=ru
has to be read as

Ey .- En eithert oruis not in O~ Class(t) # L Class(u) # L

t=ru

If t =r u, we say that t and u have I'-equivalent non-object caps.

Lemma 4.15

If t=r u, then t~ru.

Proof. Straightforward induction on the definition of t =r u. O

Lemma 4.16

Assume that I and A are environments s.t. ~r € ~a. Then =rC=4,.
Proof. Straightforward induction on the definition of t =p wu. O

The relation =r has been defined s.t. if t =r u where t and u are weak terms, then
there exists a derivation t =r u using only weak terms.
Definition 4.17

W
=r

We define E,W as =r but restricted to weak terms. ILe. is defined by the same rules of

~r1 where

1. all occurrences of =r are replaced by E}N, and

2. all terms appearing in the conclusion of a rule are weak.

Lemma 4.18

Ift,ue WTand t =r u, then t E}’V u.

51

4. META-THEORETICAL PROPERTIES OF CCIC

o

t~ru t,bue O~

[OBJECT] [SorT ()] [VAR-X (#)]
t=ru S=rs X =r X
feZuAu{Leib, =} o T=rU t=ru .
f=rf [Sve (w)) Eqr(t) =r Eqr(w) [Eq (+)]
T =r u t Ery[X:QT] u T =r u t EF,[X:“T] u
a a [Lanm ()] - — - [PROD ()]
Al Tt ~pA[x ¢ U]u V(x:*T).t=pV(x:*U).u

tr=rw ta=ruz ti,t2,ur,uz weak

[App™ ()]
ttr=ruiuy

th=w tb=w

[APP® (4]
tt=ruvw

[and I’ are weak inductive types

Elim(t: I[V] > Q){ f} and Elim(t': I’ [V'] — Q"){f '} are weak
t=t' I=rl' Q= Q' V=V’ T

Elim(t: I[V] > Q){ f} =r Elim(t’ : I'[V] —

e

= ;f [ELim™ ()]

QN{f"}
t=t' I=1' Q=Q' V=V =71
Elim(t : I[V] —» Q){f} =r Elim(t’ : I' [V/] — Q"){f}

A=r A’ C(X)=rC'(X) [=rl
[IND ()] ———————— [CONSTR (%)]
Ind(X : A){C(X)} =r Ind(X : A"){C’(X)} 1 = i

Figure 4.1: Non-object cap equivalence

Proof. Straightforward induction on t =r u, using the fact that subterms of weak terms
are weak terms. O

Note 8

The rules [APP®] and [ELIM®] of =} are subsumed by [APP"W] and [ELiM"]. Thus, we
can remove them from the definition of =},

Lemma 4.19 Substitutivity for =r

If0:T— A and t =r u, then t0 =4 ub.
Proof. Straightforward induction on t = u, using the substitutivity of ~r. O

We now come to the main property of weak terms: the stability of conversion by
convertible substitutions.

Lemma 4.20

Suppose that t ~ru with t,ue WJT and 6,0’ : T — A s.t.

52

- dom(0) = dom(0’),

- for all x € dom(0), x0 ~a x6’,
Then t0 ~% 10",

Proof. By the substitutivity lemma, t0 ~A u8. We now prove by induction on the structure
of u that if u is weak, then for any environment Q, u6 ~x o ud’.

- [VAR] - t = x. If x is not in dom(®), this is immediate. Otherwise, x0 ~a x8’ by
assumption, hence x0 ~a o X0’ by weakening.

- [APP] - t = t; t,. By induction hypothesis, t10 ~a o t10 and 120 ~a o t20’. Since

co-domains of 8 and 0’ are weak, t10,t,0,t10’ and t,0’ are all weak. We conclude

by application of [APP™].

- |[ELM] - t = Elim(v: I[U] — Q){?} We first apply our induction hypothesis on I,
U, Q and f. Since t is weak, v = v = v0’. Since co-domains of 0 and 0’ are weak,
t0 and t0’ are weak terms. We conclude by applying rule [ELim™].

- All other cases are done by a straightforward application of the induction hypothesis.
O

Lemma 4.21

Suppose that t =r u with t,ue WJ and 0,0’ : T — A s.t.

- dom(0) = dom(0'),

- for all x € dom(0), x0 ~A x6’,
Then t0 =4 ub’.
Proof. By induction on the definition of t =¥ u, t,u being weak terms:

- [OB3IECT]. This is a consequence of Lemmas 4.20.

. [APPW]. t=1tt, u=uyuy, ti =r wy, t1,t2,u1, Uy are weak
By application of the induction hypothesis, t;0 =a 1;0’. Moreover, by assumption
on the co-domain of 0 and 6/, t10,t,0,u;0’ and u,0’ are all weak. Hence, by
application of the [APP"W] rule, t0 =5 u0’.

- [ELiM™]. t = Elim(v: I[V] » Q){f}, u = Elim(v' : I’ [¥'] > Q"){ "}
Since t and u are weak, v0 = v = v/ = v/8. Moreover, by assumption on 0 and 0’,

t0 and uB’ are weak. We conclude by application of induction hypothesis and of rule
[ELim™].

- All other cases are done by a straightforward application of induction the hypothesis,
using that if v is weak then v0 is weak. O

We need a last technical lemma about =r-conversion and —-reduction:

53

4. META-THEORETICAL PROPERTIES OF CCIC

Lemma 4.22

Suppose that t =r u and t—t’, where t,u € WJ. Then, there exists a term u’ s.t.

t'=ru and u—cu'.

Proof. By induction on t =¥ u, t and u being weak.

54

- [OBJECT]. Since t,ue O~ and O~ is stable by reduction, we have t' € O~. Hence,

t’ ~rt~ru. By Lemma 4.9, t' ~ru. Hence, t’' =r u.

. [APPW]. t=tit),u=uwuz, ty =ry

If reduction occurs in t; or tz, we conclude by an application of the induction hy-
pothesis. Otherwise, —-reduction is necessarily a 3 or R-reduction. Since t ¢ O,
by assumption on O\O~, this cannot be an R-reduction. Thus, t; = A[x :* T].v and
t’ = v{x — t;}. By inversion of t; ~ruy, we have u; = A[x:* U].w with T =r U
and v =p [xu7] W. Thus, u—w{x + uz}. Since T is annotated with the unrestricted
annotation, we have v =r w. From v =r w, t; =r uz and t;,u; € WT, we obtain
v{x — t2} =r w{x = u} by Lemma 4.21.

- [APP®]. We simply take u’ = t’.

- [BLv™]. t = Elim(v: 1[W] » Q){}, uw = Elim(v' : I [W'] » Q"){ T}, v =/

If reduction does not occur at the root position, we conclude by application of the
induction hypothesis. Otherwise, the reduction must be a t-reduction.

Then, v =v' = T F, t 5 A[L X, Cy, fi,, Q, f, P and I = Ind(X : ¥(x : A).s){Ci}.
Moreover, U A[l’, X, CL, 1, Q’, T, P)] with Cy =r Cy.
We now prove by induction on the constructor type C(X) that if C(X) =r C’(X) and

f,f are two weak terms at type level s.t. f =r f/ and q is a vector a closed terms,
then A[I, X, C(X),f,Q, f,q] =r A[l',X,C'(X),1,Q, f', q]:

- If C(X) = X, then by inversion, C’'(X) = Xm’, and:
AL X, C(X),f,Q, T, G =f=r f = A[l',X,C'(X),f',Q, T, GJ.

- If C(X) = V(x:B).D where X does not occur in B and § = r 7, then by
inversion C’(X) = V(x: B’).D’ with B =r B’ and D =r [,.3] D’. Hence:

A[LX,C(X),f,Q, T, d] = A[L,X,D{x = 1},f1,Q, T, 7]

A[I’,X,C(X),f’,Q’,?’, q]=A[l',X,D'{x — r},f’r,Q’,?’, 7]
Since f and f’ are weak and 7 is closed, fr and f’'r are weak. If fr or f'r are
not in O, then from f = f’, we have fr =p f’'r. Otherwise, f ~r f’ and thus
fr~r f'r using [APP"]. Hence, fr =r f'r using [OBIECT].
Moreover, since x ¢ X, u X7 (by assumption on the formation of constructor
types) and 1 is weak (since 1 is closed), {x — r} is a well-sorted substitution
and D{x — r} =r D’{x — r} by substitutivity (Lemma 4.19).
Hence, by application of the induction hypothesis:

A[LX,D{x =1}, fr,Q, T, q] =r A[l',X,D"{x = 1},¥'1,Q’, T/,]

- If C(X) = V(x : B). D with X occurring in B and q = r 7, then, since [is weak, B
is of the form Xw. By inversion of C(X) =r C’(X), C'(X) = XW’ with w = W’.
Hence:

A[LX,C(X),f,Q, f,d] =
AL X, D{x — 1}, fr Elim(r: 1[Q] - W){f},Q, T, T]
Al X, C(X),f,Q", ', q] =
A[l',X,D'{x > 1}, f'r Elim(r : I' [Q"] —» W/){f'},Q", ', T]
As for previous case, one can check that fr Elim(r : I[Q] — 17\5){?} and
f’r Elim(r : I’[Q’] —» W’'){f’} are =r-convertible. Hence, by application of
the induction hypothesis:

A[LX,C(X),f,Q, T,q] =r A[l',X,C(X),,Q", T, q

- All other cases use a straightforward application of the induction hypothesis. O

We can now state and prove the preservation of non-object cap Lemma:

Lemma 4.23

If t~ruand t—, t’ then there exists t” and u” s.t. t/ >, t”, u—,u” and t” = u”.

Proof. By induction on the definition of t~ruw. If t,u are in O~, then so is t’. Thus,
t'~rt~ruand t’ =r uby [OBIECT]|. We now consider rules which do not operate at O~.

Note that if t ¢ O, then for any t’ s.t. t—,t/, t' ¢ O~

- [REFL]. Immediate since t = u.

- [RW-LEFT]. t>vand v~ru

t—t If t—,t/, then by confluence of —, there exists a term w s.t.
: t" -, w and v—, w. By induction hypothesis on v ~ru, there
* v ~r exists two terms w” and u” s.t. w -, w”, u—,u” and w” =r
L ETmo

W Koo =p u"

- [RW-RIGHT]. u—»u’ and t ~pu’
If t -, t’, by induction hypothesis on t~ru/, there exists t” and u” s.t. t—,t",
u—-u —,u” and t” = u”.

. [APPW]. t=1t;t, u=u;uy, ti ~ru; and ty,t2,u1,uy are weak

t——tity ~p u1u2 By application of the induction hypothesis to t; ~r uy and

% OR * #) ~ruy, there exists t],t5,uf, u} s.t. ti > t], ug >, uf
TN A B A gy, ! -
WK £t =r and t{ =r uj. Note that t{,u] are weak since weak terms
ﬁ ------------ are closed under reduction.

fowiert S
W'

Suppose now that t —,t’. By confluence, there exists a term w s.t. tjt) —,w
and t' —,w. t]t5 and uju) being weak as application of weak terms, we obtain
t] t5 =r wj u} by application of [APPY]. By repeated application of Lemma 4.22,
there exists a term w’ s.t. uju) —, w’ and w=r w'.

< [LaM]. t = Al ¢ TLv, w=Ax:C Ul.w, T~r WU, v~p peappw

95

4. META-THEORETICAL PROPERTIES OF CCIC

MMz :*Tl.v ~r Mz :*Ul.w Since no reductions can occur at the root po-
* sition of t, t—o A[x:* T'].v/ with T—, T’ and
IH * v—,Vv'. Applying the induction hypothesis to

V~r ety Wand T ~p U, there exist v/, T”, w” U

H ; st. T'—=, T" =p U, U and v/ =4 V" = [x.a7)
Alz @ T".v" =r ANz ¢ U"]. 0" w” —,w. By Lemma 4.10 and 4.16, v" =1 [x:aT7]
w”. We conclude A[x :* T"].v" = A[x ¢ U"].w”

by application of [LAM].

- [ProD]. As for the [LAM] case.

- [BLv]. t = Elim(v: I[W] - Q){f}, u = Elim(v/ : I'[W'] > Q){T'}, vy v’

This case is similar to the [APP] one. Using induction hypothesis and confluence of
—, there exist w1 and wj s.t. t >, wi, u—, Wy and wy =r wy.

If t —, t/, then by confluence of —, there exists a term t” s.t. t/ —, t” and wy —, t".
By repeated application of Lemma 4.22, we obtain that there exists a term u” s.t.
wy =, u” and t” =r u”.

- The cases [IND], [CONSTR], [EQ] and [SYMB] are done by application of the induction

hypothesis. [

A first consequence of preservation of non-object cap is the stability of conversion by

environment conversion:

Definition 4.24 Environment conversion

We define the relation ~ on typing environments as the smallest relation s.t.

T =T, [x: T, Ty and A =Ty, [x: T, T2 with T~p, T', then T~ A.

Lemma 4.25

If '~ A, then ~r = ~a.

Proof. Let T'=T7,[x:@ T], T2 and A =Ty, [x:* T'],T2 with T ~p, T’. Assume that t ~ru.
We prove t ~A u by induction on the definition of t ~ru:

|EQl. [y Ulel ylr—»,t=u, t,ue Ot

If x # y, this is immediate since xI' = XA and x is annotated by r in T.

Otherwise, U ~r yA. From Lemma 4.23, there exist t/,u/,t”, u” st. t >, t , u—,u’
and yA -, t” = u” with t' ~p, t”, W ~pr, u” and t’,u’ € OF. Using stability of OF,
there exist t3,u3 € OF sit. t” -, t3, W —,u3, t' ~p, t3 and W ~r, u3. Hence,
t3 ~au3 using [EQ]. Using weakening and multiple application of the [Rw] rule,
t~at3 and u~au. Using transitivity and symmetry on O+ (Lemma 4.9) of ~a,

t~au.

- |[DED]. As for the [DED] case of the Lemma 4.10.

- All other cases are done by a straightforward application of the induction hypothesis

O

Lemma 4.26 Product compatibility

56

1. EVY(x:*T). t~EV(x:* U).u, then T~F U and t~?)[X:aT] u.

2. If s4 NF sz, then s1 = s3.

Proof. 1. We do an induction on the length of the conversion t ~fu, proving that if
t—, V(x:¢T).t/, then u—, V(x:* U).u with T~Ff U and t'~f [x:aT] u’.

Assume that t ~rv~fuand t —», V(x:* T).p. Using Lemma 4.23, there exist T’, p’,
Vi5q st t =, V(x:@T).p/, vy V(x @ V). q" with T =r V' and p’ =r .a1/7 4"

M — * ! Ed ’ I * /!
Since =rC ~f, T'~f V" and p ~Fxcaty 9

By application of the induction hypothesis, there exists U’ 1/ s.t. u—, V(x:* U"). 1’
with V/ ~f U’ and q’ ““lf,[xzav'] ", From T —, T’ ~# V" and by Lemma 4.25, we have
P—up’ “F,[x:uT] q’ N?:,[x:“T] 1/, Hence, T~} U’ and p ~f1'.

2 ~r v ~r “
* PC: IH:

i *

v \

V(z:*T.p =r Y(z 2 U').r" =rV(z a V.q

2. As for the [PROD] case. O

4.6 Correctness of types

Lemma 4.27

1. BT -V(x:“T).trs, then I [x:* T] - t:s.

S

2. IT-Ind(X: A){Ci(X)}: T, then A~FT, T T:oand I [X: A] - Cy(X) for any i.

Proof. 1. The judgment I' - V(x:*T).t ends by an application of [ProD] followed
by several applications of [WEAK] or [CONV]. Thus, we have I [x :* T] - t : s’
c =T

with s’ = sg ~Ty ST~y S~ Sn = s with [h € 7 € --- M Le.,

s'=81=---=8, =5.

_—

2. The judgment ' - Ind(X : A){Ci(X)} : T ends by an application of [IND] followed by
several applications of [WEAK] or [CONV]. We use the same argument as before:

~A=To~r0T1 ~T ---TnfvrnTWith lhehc--.cli, =T
- Tor A:oand Vi, I, [X: A] = Ci(X) @ *.

We obtain the desired result using weakening of typing and monotony of conversion. [

Lemma 4.28 Preservation of classes

If t ~ru, then Class(t) = Class(u).

Proof. Straightforward induction on t~r u, noticing that [EQ| and [DED] constrain the
converted terms to be in O. O

Lemma 4.29 Correction of types

IfT'~t:T then

57

4. META-THEORETICAL PROPERTIES OF CCIC

1. T=oor '+ T:s with se S,
2. Class(T) # L and Class(t) # L, and
3. Class(T) = Class(t) + 1.

Proof. The proof is as usual, we detail the changing cases. We do an induction on the
definition of T - t: T.

- [APPL.t=uv, TFu:¥V(x " V).W, Tv:Vand T = W{x — v}

By induction hypothesis, ' - V(x * V). W : s and from Lemma 4.27, I[x * T]
W :s.

Using side conditions of [APP], we know that v € WT and that if x € X, (resp.
x € X1), then v e O (resp. v e PT). Moreover, by induction hypothesis on T' - t :
Y(x:* UW).V, we know that Class(x) = Class(U). Thus, {x — v} :T,[x:" T] ~» I" and
by substitutivity Lemma, we obtain I' - W{x — t} : s.

- [ConsTR]. t = 1" T = C (1) with T = Ind(X: A){Ci(X)}

Then, from Lemma 4.27, we have A~ET, T' =T : o and I [X " A] = C5(X) : ».
Form Lemma 4.7 and definition of well-sorted terms, X € X® — X7 . By application
of the induction hypothesis, Class(T) = X. Hence, by preservation of classes by
conversion, Class(A) = XK. By a second application of the induction hypothesis,
Class(I) = Class(T) — 1 = P. Hence, Class(X) = Class(I). Since X is annotated with
u and Class(X) = Class(I) = P, we have {X — I} : T, [X: A] ~» T, and we can apply
the substitutivity Lemma to I',[X:* A] = C;j(X). Hence, T' = C (I) @ ».

- All other cases are immediate or is a straightforward consequence of the induction
hypothesis. O

4.7 Subject reduction

Lemma 4.30 Subject reduction for R ([4])

Fr-t:Tandt>t, then Tt/ :T.

Proof. Following the proof of [4]. O

Lemma 4.31 Subject reduction

Irt:Tandt—,t, Tt :T.

Proof. As usual, we prove by induction on the definition of I' - t : T that the two following

properties hold:

58

CifT—>g A then A-1t:T,
cift—ogt/ then Tt/ :T.

Proof is standard here, and we only detail new cases:

- [VAR] -t=x€e X.

Reduction is in I'. If the reduction is not in the type associated to x in I, the result
is immediate. Otherwise, ' = T, [x :* T], T2, I'" =T, [x:* T'], T2 with T>< T’ and
there must be a sub-derivation Iy = T :sin ' t: T. Thus, by weakening I'" T : s,
and since I'" = x: T and T —-< T’, by conversion, I'" - x: T.

“[APP] -t=uv, TFUW:V(x:* V). W, T Fv:V, T=W{x— v}
If the reduction occurs in u, this is immediate. If v P, V" then by induction hypothesis,
we can easily derive that T = uv’ : W{x — v} and I - uv : W{x — v}. Since
W{x — v} E»* W{x — v'}, we have W{x > v} ~r W{x — v’} and, T’ : uv’: W{x —
v} by conversion.

Otherwise, we have either a 3 or R-reduction at root position.

- If a B-reduction occurs at the root of t, then u = A[x:* V'].w and t E>w{x —
v}. By inversion, I [x :¢ V] = w: W’ with V(x:* V). W ~p ¥(x :* V). W’ and
a = u. By type structure compatibility, V ~f V' and W~’F)[x:ﬂv,] W', Thus, by
conversion, I [x:* V[-w:Wand T +v: V.

We can then apply the substitution lemma: ' - w{x — v} : W{x — v}.

- If a R-reduction occurs at the root of t, we apply Lemma 4.30.

- [ELM]. Identical to the proof of subject reduction of CIC [48].

- All other cases are immediate. O

4.8 Type unicity

Lemma 4.32 Type unicity

Assume that ~r is an equivalence relation on well-formed terms. If ' = t: Ty and T t: T,
then Ty ~r Ts.

Proof. The proof is as usual by case on the head structure of t, and then by inversion,
using type structure compatibility. O

4.9 Strong normalization

In 2001, Blanqui [3] defined the Calculus of Algebraic Constructions (CAC), an extension
of the Calculus of Constructions whose conversion relation is the union of 3-reduction and
an arbitrary rewriting system R. Combination of B, reduction with rewriting has been
studied since the end of the 80’s, starting with the work of Tannen [44] for the confluence
of the combination of 2 and first order rewriting, and next the works of Tannen and
Gallier [45, 46], and of Okada [34] for the strong normalization and confluence of the
combination of 2 and polymorphic first-order rewriting system. In CAC, R can be an
arbitrary higher-order rewriting system including type level rewriting as long as R verifies
the so-called general schema, which is a generalization of primitive recursion at higher
types introduced by Jouannaud and Okada [29] and further generalized by Blanqui [3, 4].

A concise and elegant proof of strong normalization of PR, for well formed terms can
be found in [4]. CAC can capture numerous higher-order systems, including CIC, for

99

4. META-THEORETICAL PROPERTIES OF CCIC

which the rules are simply beta, weak-iota and strong-iota. See [5] for a description of the
embedding of CIC in CAC.

Our proof of strong normalization shall indeed mimic Blanqui’s proof of strong normal-
ization for CAC. We shall recall the main lemmas, and carry out in detail the proofs which
are not verbatim copies of Blanqui’s proofs.

In [2], Barthe proved that strong normalization is compatible with proof-irrelevance,
that equates all object-level expressions of a given type. Because his result is restricted to
PTSs, it does not apply to CCIC. Our result can therefore be seen as a generalization of
Barthe’s one. Here, we build a proof-irrelevant interpretation for the Calculus of Inductive
Constructions, which equates object level terms as in Barthe.

A modified version of the Calculus of Algebraic Construction

We give here the definition of the Calculus of Algebraic Construction with a slight modifi-
cation of its conversion relation. In the initial definition CAC, terms are equal if and only if
they are convertible w.r.t. a fixed rewriting relation. In CAC™, two terms are convertible
is they =-reduce, for a given rewriting system =, to two terms having the same non-object
level cap. Assuming = confluent, we have a strict extension of CAC, since our conversion
relation clearly captures =-convertibility.

Note that we are not interested in the logical consistency of CAC™, nor its decidability.
We deliberately define a coarse conversion relation so that the meta-theory of CAC™ is
straightforward, but not too coarse so that = is strongly normalizing in CAC™.

Definition 4.33 Terms of CAC™*

Let ¥ be a set of function symbols. We denote by WV* (resp. W°) the set of object level
function symbols (resp. type level function symbols). The algebra of pseudo-terms of
CAC is defined by:

tu T U....=feW¥|se8|xeX|V(x:T).t|A[x:T].t|tu

We here too give a layered definition of pseudo-terms of CAC:

Definition 4.34 Syntactic classes

The pairwise disjoint syntactic classes of CACT called objects (O), predicates (P), kinds
(X), o are defined in Figure 4.2.

Ou=X*|feW |00 |OP|A[x":* P|.O| A[x* :© K].O

Pu=X" | feW |PO|PP|A[x* ¢ P.P | A[x" ¢ K].P
s=VY(X PP V(X" K).P

K= | V(X2 P).K|V(x":*K).K

o= n0

Figure 4.2: CAC™ terms classes

60

As for CCIC, this enumeration defined a post-fixed successors function +1 on classes
and we define Class(t) = D if te€ D and D € {0, P, K, o}, and Class(t) = L otherwise.

Translation of CCIC to CAC™

Definition 4.35 Translation of CCIC to CAC™ (Definition 7.3 of [5]

We define the translation of CCIC well-formed terms to CACT, written (t), by induction
on the definition of T = 1t:7T:

(o =x
(fy="~ feXuAu{=, Leib}
(Eqr(t)) = Eq(T)<t)
tuy = {tH<w)
A T]t) = Ax : (T)].<{t)
2 T)oty = A[x : (TH]. {8

Iy = fi I=Ind(X: A){C(X)}
(Elim(t: I[U] - Q){ f = SEhm%2 Gy ()< f> if Q is of the form V(m)(y
(Elim(t: I[[U] - Q){ f 1= WElimy (Q) (W) ()¢ f> otherwise
iy = !

where f, Eq, f1, SElimIQ, WELlim; and f! are symbols of V.

Having this translation, we can now transpose the notion of weak terms to CAC*:

Definition 4.36 CAC" weak terms

A term t € CACY is weak if there exists w € CCIC s.t. u is well-formed in CCIC and
(uy = t.

Typing judgments
Assume that, for any symbol f of ¥, we attach a type t7r € CAC™.

Definition 4.37 Conversion relation

Rules of Figures 4.3 define a binary relation = on terms of class different from 1, and
where each rule whose name is annotated with a * and of the form

E; -+ Ep
t=ru
has to be read as
Ey - En t,bug O Class(t)# L Class(u) # 1

t=ru

We then define the CACT conversion relation ~r by t ~r u if there exists t’,u’ € CAC"
st t=,t, u=,u and ' =u’

61

1%).K

4. META-THEORETICAL PROPERTIES OF CCIC

t,ue O ti=w th=Ruy ti,u,ty,u, are weak
—— [OBJECT] [APPY (%)]
t=u bt =uru

tr=w1 th=u

R4

[APP® (#)]
tHh=2uw

ses x e X® feV¥
[SorT (%)] [VAR-X" (#)]
SXs XX f=f

[¥ ()]

T=ru t=u T=U t=u
— [LaM ()] — [PrOD ()]
Alx: Tl t=Ax:Ul.u Vix:T).t=vV(x:U).u

Figure 4.3: CAC™ Conversion Relation

Definition 4.38 CAC™ typing judgement

The typing judgment T -t : T, for CAC", is defined by the rules of Figure 4.4.

FTe:s feVW
) [Ax-1] ——— [SyMB|
- %:o - f e

FETost Nx:T]IFUW:sy
FiFY(x:T).U:sy

[PrOD]

FEY(x:T).U:s Ix:T]IFu:U
FIFAx:Tluw:V(x:T). U

[Lam]

FFV:s Tit:T se{xo} xeX*\dom(T)

WEAK
NLx:V]IFt:T []
x € dom(l") m XS T Ik xI: sy
[VAR]
IiEx:xl
F'Et:T TI-T:s TIFT :s" TxT
[Conv|

FrFt:T

Figure 4.4: CAC™ Typing Rules

As for CCIC, we define a notion of well-formed substitution:

Definition 4.39

Let T and A two CACT typing environments and 0 a CACT substitution. 0 is well-formed
from T to A, written © : T ~> T if for all x € dom(0), A I-x6 : xI'0.

62

Correctness of conversion

Lemma 4.40 Embedding of conversion
1. The relation = is reflexive.

2. Assume that T and T’ are two CCIC well-formed terms s.t. T =r T'. Then, (T)={T").

Proof. 1. Straightforward induction on the definition of =.

2. Straightforward induction on the definition of T = T'.

O

Lemma 4.41 Correctness of translation (Theorem 7.1 of [5])
There exists a rewriting relation = and function symbol types T s.t.

1. T t:T, then () I {t) : (T).
2. T Ht:Tand t—1t', then {t)={").

Proof. Following the proof of Theorem 7.1 of [5], only the [CONV] case changes. Assume
that I' =t : T’ is derived using the [CONV] rule from 't : T, T T:s, ' T':s’ and
T~rT.

By Lemma 4.23, there exists two CCIC terms U and U’ s.t. T—, U, T' >, U’ and
U =r U’'. By application of the induction hypothesis, (T)=,{U) and {T")=,{U"). By
Lemma 4.40, U and U’ being well-formed under I' by subject reduction, (Uy={U"). Hence
() =(T").

By application of the induction hypothesis to all the premises and application of the
[Conv] rule, Ty I {t) : {T". O

Meta-theory of CAC*

Before proving strong normalization of = for well-formed terms of CAC™, we must prove
some basic meta-theoretical properties, namely substitutivity, product compatibility and
correctness of types.

Lemma 4.42

If0:T~»Aand T~U, then TO ~ UB.

Proof. Assume that T=, T'= U’ <, U. Then, TO=, T'60 and U0 =, U'0 from properties
of rewriting. A straightforward induction on the definition of U U’ gives U0 U'6. O

Corollary 4.43 Substitutivity

If0:F~AandI'-t:T, then A-10:T6.

Lemma 4.44
1. V(W) VaY(x:UW). V/, then U U and VE V'

2. If s1 = sy, then s7 = s3.

63

4. META-THEORETICAL PROPERTIES OF CCIC

Proof. Immediate using inversion of V(x : U). VEV(x: U’). V/ and s1 = s;. O

Corollary 4.45 Pre-product compatibility

1 IEV(x:U). VaV(x:U). V/, then U~ U’ and V~ V'

2. If sy ~s,, then s1 = s5.

Proof. 1. IfV(x:U).VxV(x:U).V’ then

Vx:U).V=,V(x:Up). Vyand Y(x: UW). V' =, ¥(x:U). Vs

with V(x:Up). Vi = V(x:Uy). V2. By Lemma 4.44, U; = U, and Vi = V,. Hence,
U~U"and V>V’

2. If s7~s,, then s1 = s,, s1,s2 being =-normal. Hence, s1 = s; by Lemma 4.44.

O

Lemma 4.46
If T U and T=T’, then there exists U’ s.t. U=< U’ and T'={,.
Proof. Similar to the proof of Lemma 4.22. O
Corollary 4.47 Product compatibility

1. V(W) Va*Y(x: W),V then U~*U" and V ~* V',

2. If sy ~*sy, then s1 = s;.
Proof. Following the proof of 4.26. O

Lemma 4.48
If t ~u with Class(t) # L and Class(u) # L, then Class(t) = Class(u).

Proof. Straightforward induction on the definition of t'&=u’, where t’ and u’ are s.t.
t=,t and u=,u’. O

Lemma 4.49 Correctness of types

IfTI-t:T then

1. T=oorTIFT:s with se S,
2. Class(T) # L and Class(t) # L, and
3. Class(T) = Class(t) + 1.

Proof. The proof is identical to the one of CAC, using classes preservation of ~. O

64

Strong normalization in CAC™

Definition 4.50 Neutral terms

A CAC* term is neutral if it is not of the form A[x: T].t, or a not fully applied term fii.

Notation. We write SN (resp. WN, NT) for the set of =-strongly normalizing CAC™ terms
(resp. the set of =-weakly normalizing CAC™ terms, the set of neutral terms).

Definition 4.51 Reducibility candidates (Definition 32 of [4])

We inductively define the set Ry of the interpretations for the terms of type t in CACT,

the ordering <¢ on Ry, an element T € Ry, and an internal operation /\, on the powerset
of Ry as follows:

-ift#oand T+ t:o, then:
Re ={}, <i=C¢, Tt =, /\t(iﬁ) =T¢.
- R is the set of all the subsets R of CACT s.t.:
(R1) RS 8N

(R2) IfteR and t=1t', thent' e R
(R3) IfteNT and t=1t" implies t' € R, then te R

Furthermore, <s=C, Ts = SN, A (R) = ((R) (using Ts as neutral element for n).
- Ryuy.x 18 the set of functions R from CACY x Ry to Rx s.t. R(w,S) = R(W/,S)
whenever w=u’. Furthermore:
© Tyeewy.x(w, S) = Tk,
: /\V(x:u).K(gK)(qu) = Ac({R(w,S) [Re R}),
- R <yeuy.x R if and only if for all (u,S), R(u,s) <x R'(w,S).

Definition 4.52 Interpretation schema (Definition 37 of [4])

A candidate assignment s a function & from X to |y Re. A candidate assignment &,
validates an environment ', written T &= T, if for all x € dom T, x& € Ryr. An interpretation
of a symbol f is an element of R,. An interpretation of a set G of symbols is a function
I which, to each symbol g € G, associate a interpretation 14 of g.

The interpretation of t w.r.t. candidate assignment &, an interpretation I and a sub-
stitution 0, is defined by induction on the structure of t as follows:

[th:.e =TyifteOuUS

[[f]](lz,e =If

[[Xﬂlg,e =x§

[V(x:U). V] o ={te L |VYue[U];q,VSeRu,tue [[V]]fii,ey}
D UL V] o(w, S) = [V]is ou

[[tu]]é‘e = [[t]]‘lz,e(uea [[uﬂla,e)

where 0¥ = 0 U {x = u} and £ = & U {x — S}.

A substitution is adapted to a I-assignment & if dom(0) € dom(l") and, for all x €
dom(8), x6 € [xI'; . A pair (&,0) is T-valid, written £,0 £ T, if & =T and 8 is adapted
to &.

65

4. META-THEORETICAL PROPERTIES OF CCIC

Lemma 4.53 Invariance by reduction (Lemma 65 of [4])

Hr-t:T,t—>t, & =T and t0 € WN; then [t]z o = [t']z.0

Proof. Following the proof of Lemma 65 of [4]. O

Lemma 4.54 Invariance by conversion on non-object cap

Assume that T U. Then [[T]]g_‘e = HUHE“Q.

Proof. Straightforward induction on the definition of T = U. O

Lemma 4.55 Computability of symbols

There exists an interpretation of ¥ s.t. for all f e ¥, f € [7].

Proof. Following the proof of Lemmas 63 and 68 of [4]. O

Lemma 4.56 Computability of well-formed terms (Lemma 69 of [4])
T -t:Tand &0 =T then to € [T]z 0.

Proof. Following the proof of Lemma 69 of [4]. The proof is done by induction on the
definition of ' |- t : T. Ounly the case [CONV] is modified.

We have then ' —t: U, T = U:sy, ' T : st and Ux~rT. By application of the
induction hypothesis, t0 e [[U]kye, ue e [[Su]];ﬂe = Tsu =8N and TO € HSTHEHQ = TsT =
SN.

From definition of ~r, there exists two CAC' terms U/, T/ sit. T=,T/, U=, U’
T =U.

By Lemma 4.53, [T]e,0 = [T']e,0 and [U]e o = [U]e0. By Lemma 4.54, [T']e0 =
[U]ee. Hence, [UJzo = [T]e,0 and t0 € [T]z 0. O

Theorem 4.1 Strong normalization of =

Assume that T |- t: T. Then, t is strongly normalizing.

Proof. Let x& = Tyr for all x € dom(T"). Since & = T and the identity substitution t is
adapted to &, t€ S = [T]g,.. Now, either T=oor I'|-T:s for some s € 8. If T = o, then
S=To=8N.ETI-T:s, then Te Rs and Ry < SN by (Ra). O

Corollary 4.57

Every typable term of CCIC is —-strongly normalizing.

Proof. Assume that ' = t : T. By Lemma 4.41, () IF {(t) : {T). By Lemma 4.1, <{t) is
=-strongly normalizing. By Lemma 4.41, t is necessary —-strongly normalizing. O

66

CHAPTER 5

DECIDING CCIC

We now move to the decidability of the type checking of CCIC, that is, given a valid
environment I', a type T such that ' = T : s € 8, and an arbitrary term t, checking whether
' t:T. We do not decide the calculus in all its generality but instead take an instance
of CCIC:

- We take Presburger arithmetic as the embedded logic 7. See Section 5.3 for a discus-
sion about deciding more theories.

- The set of extractable terms O is defined as the set of pure algebraic terms,

- The set of convertible terms O~ is defined as the set of all object-level terms but
terms of the form x t with x € X*\X; or terms of the form f T not fully applied
terms.

- The set of extractable type variables P+ contain all the terms which are convertible,
in some environment, to nat.

- 'We of course assume that the rewriting system — respects the conditions of Blan-
qui [4], which implies its strong normalization on well-typed terms.

Definition 5.1 Extractable terms

The set OF of extractable terms is made of all the terms which are pure algebraic (i.e. of
the form: t:=0|St|t+t|xe X,). We denote by A the set of pure algebraic terms.

The set X5 being of no use here (we do not have parametric sorts), we take X5 = .
Moreover, having only one sort, we take Zyat = Xy (Zpnat was defined as the set of variables
used for the abstraction, w.r.t. the sort mat, of the variables of X), and we define x®a¢

for x € X. The set Ynat of abstraction variables for alien of sort nat is denoted by Y. (All

=X

these sets where defined in Definition 3.47 and above)

Hence, the algebraisation of a pure algebraic term t result in the currification of all
the symbols of t. From now on, we will write t for the algebraisation Ax(t) of the pure
algebraic term t.

Note that in our case, the [DED] rule of ~r is now:

EEA. () =A. (u) tbue O~

E= {W] = Wy |W] ~Tr W2, W1, W) € O+}

[DED]
t~ru

Type-checking is decomposed as follow. The rules of Figure 3.5 and 3.6 providing
no algorithm (due to the presence of the conversion rule), a new syntax oriented typing
judgment (; is defined such that:

MN-t:Tifand only if ' t: T/ with T~pT’.

67

5. DEciDING CCIC

Described in Section 5.2, this transformation is classical and done as usual by integrating
the conversion rule of - in the application rule [12]. Decidability of type-checking in CCIC
is then reduced to the decidability of the conversion relation ~r. Deciding ~r is carried
out in Section 5.1.

5.1 Decidability of conversion relation

The main idea, again, is to eliminate the non-structural rules, here rules [RwW-LEFT| and
[Rw-R1GHT]| of Figure 3.7, and therefore to introduce a weaker conversion relation =
defined by structural rules only. As a result, the conversion relationship will be related by
the property:

wr=bard,

Since conversion for non-weak terms was restricted to be «—,, their —-normal forms
become syntactically equal. As a consequence, the rules of ~r which differ from those of
~r are: 1) [REFL], now restricted to constants and variables. ii) [EQ], now internalized in
[DED|. iii) [ELiM™], for which conversion for the first argument is now syntactic equality,

and iv) [DED] which now works with algebraic equations which can be directly computed
from T.

Besides, most rules check whether the assumptions made in the environments are con-
sistent with the theory T. This check is absolutely crucial to guarantee the termination of
the algorithm. Note that, in the case of an implementation, this check is only needed at
the beginning and when traversing a binder, resulting in an increase of the set of extracted
equations.

Weak conversion ~r

Definition 5.2 Environment equations
For any typing environment I', we define the set of I'-equations as

EqM) ={t=u|[x"T]eNxI->,t=u,t,ue 0%}

Note that, for any [x * T] € T, there is a unique equation t = u (t,u € O%) s.t.
T—,t=uas terms in OF are normal and — is confluent.

Definition 5.3 Weak conversion relation ~r

Rules of Figures 5.1 and 5.2 define a family of relation {=~r}r.

Example 5.4

Let T = [c : mat],[p * (A[x :nat].x)0 = c]. The only extractable equation of I being pI,
Eq(T) = {0 = c}. We clearly have (A[x : nat].x +x) 0 ~r c. Indeed, by [EQ], 0 ~r c. Hence
0+0~rc by [DED] and (A[x : nat].x +x) 0 ~r ¢ by [Rw].

On the contrary, (A[x :nat].x + x)0~r c does not hold, (A[x : nat].x + x) 0 not being
~r-convertible to its reduct. As expected, the result is recovered by first normalizing the
terms being converted. Here, (if we assume R to be empty):

68

[REFL-%]

* T Kk O~ro

[REFL-0]

T, Eq(T) # Lorf¢ O™
[REFL-X| feZouAu{Leib,=}
f%rf

T Eq(M # Lorx¢ O~

X AT X [SymB]

T Bq(T) i L
a(l) ¥ tueO T,EqN) e L
T~rU txru [Unsat]

[EqQ] taru
Eqr(t) =r Eqy(w) :

T~ru tRr e
T,Eq(T) # L or A[x :* T].t and A[x:* U].u not in O~
ADx ¢ Tlotap Alx ¢ U].u

[Lawm]

T~ru tmr,[X:aT]u
V(x:*T).tapV(x:*U).u

[PrOD]

th=uy th=w
T,Eq(l") ¥ L or ty t2 and uy up not in O~
t1 t2 or/and uy uy is not weak

[App®]
tithhr~ruw
ti~ruw; taaruw ti,uy are weak
T,Eq(T") ¥ L or t1t2 and uy up not in O~

titarruru;

[ApPY]

T, EqM ¥ L t=Ciar,...,ax] uw=Cy[axt1,...,ax+1]
Cy or Cy, is a non-empty algebraic context
all the ai’s have empty algebraic caps
the ci’s are fresh variables of Y s.t. ¢; = ¢; iff a; ~r b
T, Eq(T) &= Cilcr, ..., cx] = Culcks1,- -+ Crrt]

~ru

[DED]

Figure 5.1: Conversion relation ~} (Part. 1)

((A[x:nat].x+x)0); =0+0~rc

We show in next section that this result always holds.

Decidability of ~r

Fact 5.5

1. Assume that E is a set of T-equations s.t. T = E and let t € OF. For any term
ue CCIC s.t. T,E =t =Ax(u), we have ue O%.

2. [T,EE=t=mu,then T,E = tr = ur.

69

5. DEciDING CCIC

t=t" I~rl’ QarQ’ Varv’ ?%r?’
T,Eq(T) # 0 =1 or Elim(t,...){...} and Elim(t’,...){---} not in O~
Elim(t: I[V] —» Q){f} and Elim(t': I'[¥'] — Q"){ '} are weak
[,1’ are weak inductive types

— = — = [ELim™]
Elim(t: I[V] = Q){f}~r Elim(t": I'[V'] - Q"){f'}
t=t' I=0I' Q=Q" Vv=v' f=1"
T,Eq(T") # 0 =1 or Elim(t,...){...} and Elim(t’,...){---} not in O~
Elim(t:I1[V] — Q){ T} is not weak
or I or I’ is not a weak inductive type s
= — = [ELIM®|
Elim(t: I[V] —» Q){f}~r Elim(t': I'[V'] - Q"){f'}
A~xrA’ CarC I~r 1’ T,Eq(N) # L
= —— [IND] [CoNsTR]|
Ind(X: A)C ~rInd(X: A’)C’ (L I L

Figure 5.2: Conversion relation ~} (Part. 2)

Correctness of extractable terms

Before proving correctness and completeness of ~, we first must ensure that the sets OF,
O~ and Pt conform to the required restrictions of our meta-theory.

The set OF is clearly closed by reduction. It is also clear that Ot € O~ and that O
and O~ are stable by well-sorted substitutions. Moreover, terms of O\O~ having empty
algebraic caps, no R-reduction can occur at the root of any term of O~.

Likewise, nat being in P and conversion conserving classes, we have P* < P. Moreover,
P+ is stable by conversion by definition.

Now, assume that t € O~ and u € CCIC s.t. t«>,u. Then, t—,xt; ...ty (resp.
t—,fty ...ty with fty ... t,, being not fully applied). Note that no reduction can occur
at the root of xt; ... ty (resp. ft; ... ty) since they are not algebraic. By confluence of
—, U—xt] ... t] (resp. u—, Tt] ... t]) with for all i, t; =, t{. Hence, ue O~ and
O~ is stable by —-equivalence.

We are left to prove:
Lemma 5.6
Assume that O~ x O~ & ~p. If t~ru with t € OF, then u—,u’ € OF and t~ru'.
(Resp., if ue OF, then t >, t' € OF and t’ ~ru)
Proof. By induction on the definition of t ~ru, we prove that:

1. fte OF, then u—,u € OF and t~ru’,

2. ift = fty,...,t, with t not fully applied and tq,...,tn € OF, thenu—, fuy,..., Un,
and for all 1, t; ~ru; and uy — u{ e Ot.

From the form of t, only 5 rules are applicable: [Eq], [Rw-R1aHT], [REFL], [DED] and
[ApP™W]:

70

- |EQ]. We have t,ue Ot by rule assumption.
- [Rw-Ri1GHT]. Straightforward application of induction hypothesis.

- [REFL] - t =u. We take u’ = .

E

A

[DED]. {wy =wz |wy ~rw2, w1, w2 € 0T} EA_ () = A (1)

If te OF, then A..(t) = t. Since E is T-valid (otherwise we would have O~ x O-
C ~r, which contradicts lemma assumption), u is algebraic from Lemma 5.5. Thus,
Ao (u) =u. Let ' =ujr € OF. From Lemma 5.5, T,E =t = u’/, and thus, t ~ru’.

If t =fty,...,tn, then [DED] is not applicable since t is not fully applied (t ¢ O7).

. [APPW]. t=1tt, u=uyuy, ti ~ruy, t1,t2,uq,ur are weak

IfteOt, thent = fvy ... v, with all the vi’s in OF. Then t; = fvy,...,vh_7 and
ty = v, and from induction hypothesis, u; -, p1 = fwy, ..., wh_jand uy -, py =
wy with all the wi’s in OF and for all i, vi ~pw;. Let E = {v; = wi};. Then,
T,E =t =p1p2. From Lemma 5.5, T,E =t = (p1p2),;r. Hence, t~r(p1p2);r by
[DED] with u—>*(‘p1 pZ)iR e Ot.

If tyt; = fp1,...,pn, then we conclude by a straightforward application of the
induction hypothesis. [

Corollary 5.7

The reduction — is strongly normalizing on well-formed terms.

Correctness

We now state and prove the correctness of ~r:

Lemma 5.8 Correctness

If t~ru then t ~ru.

Proof. The proof is done by induction on the definition of t ~ru:

- If t~ru by [REFL-%]|, [REFL-0] or [REFL-X], we conclude that t ~ru by [REFL].

- Assume that t ~r uis obtained by rule [UNsAT]. For any equation wi = w; € Eq(I),
we know that wi ~rwy by [EQ]. Thus, from T,Eq(T") = L, and t,u e O, we have
t~ru by [DED].

- If t ~r wis obtained from [Lam], [ProD], [ELim™], [ArPY], [Eq], [SYMB], [IND] or
[CONSTR], we conclude by direct application of the induction hypothesis, using the
corresponding congruence rule of ~r.

- If tar u is derived from [ELiM®] or [APP®], then t = u. Hence, t ~ru by [REFL].

- If t ~r uis obtained from [DED]|, with t = C¢[ay,...,ax] andu = Cyfak41, ..., Qkt1],
Cy, Cy being maximal algebraic contexts, then let cq,...,cxy1 € Y be the variables
affected to aj,...,ax41 in the application of the [DED] rule. By application of
the induction hypothesis, we know that if a; ~r aj, then a; ~r a;. Thus, the alge-
braic context being maximal, there exists a variables & injection (whose domain is

71

5. DEciDING CCIC

{c1,. .y Cxq1}) st Axp(t) = Cifcr,...,cx]& and Ay () = Cyfcktt, .-, Crir]é-
Hence, T,Eq(T) = Ax, (1) = Ay () - variables of Eq(T") being disjoint from dom(&).

Now, by application of the [EQ] rule, we have wy ~r w; for any equation wi = w; €
Eq(T"). Hence, by [DED], t ~r u. O

Completeness
For completeness, we need to prove for ~r lemmas similar to the Lemmas 4.20 and 4.22
for =r.
We start with some technical lemmas about ~r.
Lemma 5.9 Reflexivity

For any term t and typing environment I', t > t.

Proof. Straightforward induction on the structure of t. O
Lemma j.10 Preservation of classes
1. The relation ~r preserve classes.

2. Ifte O7 and t~ru, then ue O~.

Proof. 1. Straightforward by induction on the definition of ~r.

2. We first show that O\O~ is stable by ~r: by induction on the definition of t ~r u,
we prove that if t = xty,... t, with x € X\X, (resp. t = ft;1,... t, and not fully
applied), then uw = xty,... ty (resp. u=fuy,... un)

Only three rules are applicable: [REFL-X], [REFL-X], [APP]. The cases [REFL-X] and
[REFL-X] are immediate. We detail the [APP| one. We have thent =ft; ... th_1tn
and u=ww’ with ft; ...t,_1 ~rw and t, ~r w’. By application of the induction

hypothesis, w = fwy ... w,_1 for some wy’s. Hence, u=fw; ... w,_1w’.

The case t = xty,... t, is identical.

Now, since O and O\O~ are stable by ~r, sois 0. O
Lemma 5.11 Stability of ~r

If I and A are two typing environments s.t. Eq(I") = Eq(A), then ~r = ~a.

Proof. Straightforward induction on the definition of ~r (resp. ~a). O
Lemma 5.12

If t~rufor t,ue O, then T,Eq(l") =t =u.

Proof. If T,Eq(T") & L, then necessarily T,Eq(l") &= t = u. Otherwise, the only applicable
rule is [DED]. Since t and u are pure algebraic, we have T,Eq(T") = t = u from [DED]
assumptions. O

We now state and prove all the lemmas about stability of weak conversion we will need
in completeness proof.

72

Lemma 5.13
Let t,u e WT s.t. t~ru and two substitutions 0,0’ : T — A s.t.

- dom(0) = dom(8"),

- for all x € dom(8), x0 ~A x0’.
Then, t0 x5 ud’.

Proof. By induction on the definition t~ru, we prove that for any substitutions 6,6’
conforming to the lemma assumptions, t0 ~a uf’:

- [DED]. t = Ci[a,...,an], u=Cyfanti,.--, Anikls
T,Eq(T) & Ce[yr, .-y Un] = CulUntts - Unsx]s @i =raj = yi = y;
Let Cip and Cyp be the maximal algebraic caps of t0 and uf: 10 = Cyg[b1,...,b1]

and ub = Cyug [b1+1 e ,b1+p]. Let zq,... y Zl4+p be variables of Y s.t. if by x~a b]'
then Zi = z5.

Since Cyp and Cyp span the contexts Cy and Cy, for all i, there exists a maximal
algebraic context Cj s.t.

aie = Ci[biiﬂ)) cee ‘bii(oﬁ)]'

Assume a T-model M and a M-interpretation J s.t. [Eq(A)]3; = T and

[Cte [Z] oo ,Zl]ﬂgv[#* [[Cue [Z1+1 oo aZler]]]gv[-
We define the M-interpretation J’ as:

I'(yi) = [Cilze 1), - - - Zey ())
I'(y)=1I(y) ifyeWN{ur, ..., Unsr}
I’ (x) = [x0]3; if x e X,

We first prove that if y; = yj, then

[Cilze. 1), - - Zew(an I = [Cilze; (1), -+ 265 o) D
hence assuring the well-formation of the definition of J’.

Assume that a; ~r a;. Without loss of generality, we here assume i <1 and j > n.

From the induction hypothesis, a;0 ~a a;0’. Then,
- If Ci and Cj are empty algebraic contexts, ai® = bg (1) and ;0 = by (7).
Thus, z¢, (1) = z¢; (1) and we obtain the desired result.

- Otherwise, by inversion of a;0 ~a a;0’, we have:
T Eq(A) = Cilxe, 1y 0 Xe ()] = Cilxes(1yr -+ X ()]

for some fresh variables X € Y s.t. by ~p b; implies x; = x;. Since no variables
of Y appear in Eq(A), we obtain the desired result by a renaming from X to Z.

Now,

1. If t € OF, then [t]3; = [t0]3; = [t0]%. Indeed, if t = x € X, [t]3; = I'(x) =
[x6]3%¢ by definition of J’. Furthermore, since x0 ~x x0’ and x0 and x0’ € O+,
by Lemma 5.12, T,Eq(A) karg x0 = x0’. Hence, having [Eq(A)]3; = T, we
obtain [x0]3; = [x0']3,-

73

5. DEciDING CCIC

2. We also have [Ciolz1,--- ,Zl]]]gv’[= [C¢lyn,... »Un]]]gvr
[[Cue [ZI-H y o yZI+p]]]g\/l[= [[Cu[yT‘H—T y o)yn+k]]]g\/[
This is proved by a straightforward induction on the algebraic structure of Cy
and Cig (resp. Cy and Cyg). Notably, if C¢[y1,...,yn] = yi for some i, then
Ciol[2z1,...,21] is necessarily of the form Ci[zg (1),...,2¢ («y)] by definition of
Cip and we obtain the desired result from the definition of J’.

Thus, [Eq(M]%: = T and [Ci[yt,-- -, yn]ldt # [Culyntt,- -+ Unsk]]ae- This con-
tradicts T,Eq(T") & C¢[u1, ..., Un] = CulUn+1, .- Untk]-

Hence T,Eq(A) & Ceo[z1,...,21] = Cus[zt41,-..,214p] and by [DED], t0 ~p ub’.

- [UNsaT]. As for the previous case, if we have a T-model M and a J interpretation

s.t. [Eq(A)]3c = T, we construct a M-interpretation J’ as

I(y) =) ifyey
J'(x) = [x0]3; if x e X

which is s.t. [Eq(T")]3; = T, which contradicts T, Eq(T") = L.
Hence, T,Eq(A) = L and, t8,uB’ begin in O, 10 ~a u8’ by [UNSAT]

- [REFL-s]. Immediate since then t0 =t and u = u.

- [REFL-X] -t =u=x€ X. Ifx € dom(0), then x0 ~A x’0 by assumption. Otherwise,

X0 =x~apx =x0'

CJAPPY t =t ty, u=w up, i AT W

If 7,Eq(A) = L and t0,uB € O, we conclude by application of the [UNSAT] rule.
Otherwise, ;0,10 are in W7 since co-domains of 6, 8’ are uniquely composed of
weak terms, and we conclude by direct application of induction hypothesis.

- [APP®]. Not applicable since t,ue WT

- [ELv™]. t = Elim(v: I[W] » Q){f}, u = Elim(v': I [W'] - Q){f '}, v =/,

—

~r Q) Ixp I, War W and f ar T/
Qar Q' IxrI', warw' and f ~rp

If 7,Eq(A) = L and t,u e O, then we conclude by application of the [UNSAT] rule.
Otherwise, since t,ue WT, v0 =v = v’ = v'08’. We then conclude by application of
induction hypothesis and [ELim™].

- [ELim®]. Not application since t,ue WT.

- If t~ru by [EQ], [SYMB], [CONSTR] or [IND], we conclude by a application of the

induction hypothesis. O

Lemma 5.14

Suppose that t ~r u and t and u do not contain subterms of the form av with a algebraic.
If t > t’, then there exists a term u’ s.t. u—<u’ and t' ~ru’. Symmetrically, if u—u’,
then there exists a term t’ s.t. t—><t’ and t'~pu’.

Proof. By induction on the definition of t ~ru.

74

- [UNSAT]. We simply take u’ = u.

. [APPW]. t=1t1t, u=ujuy, ti =xrug, t1,t2, w1, uy e WT
If reduction occurs in ty or t2, we conclude by application of induction hypothesis.

If reduction occurs at root position, this cannot be a t-reduction since t is headed
with an application, nor a R-reduction since t cannot have an algebraic cap from rule
assumptions. Thus, t; = A[x * T].v and t - v{x — t,}.

Now, since t; is headed with a lambda abstraction, t; can be converted to u; by
only three rules: [UNSAT]|, [DED] and [LaM]. If [UNSAT] applies, then t,ue O~ and
T,Eq(l") & L, which contradicts lemma assumptions. If [DED] applies, then u con-
tains a subterm of the form av with a algebraic, which contradicts rule assumption.
Then, u; = A[x:* Ul.wwith Txr Uand v ~p ury W and u— wi{x — uz}. Since T is
marked with the unrestricted annotation in T, [x * T], we have Eq(I") = Eq(T, [x :" T])
and thus v~rw. We conclude v{x — t2} ~r w{x — uy} by Lemma 5.13.

- [Bum™]. t = Elim(v: I[W] > Q){f}, w = Elim(v/: I'[W] > Q) {f'}, v="1"
The proof is identical to the [ELIM"] case of Lemma 4.22.
- If t~r u is obtained from [APPS] or [ELIM®], then we take u’ = u.

~[PrOD] t =VY(x:* T).v, u=VY(x:* U).w, Txr U, var amyw

If reduction occurs on v, we conclude by application of the induction hypothesis.
If T—>T’, then by application of induction hypothesis, there exists a term U’ s.t.
U—< U and T'~r U’. Since, Eq(T, [x :* T]) = Eq(T, [x :* T']), then v ~r x.arqw.
Thus, by application of [PROD], ¥(x :* T").var V(x :¢ U). w.

- [LaM]. As for the [PROD] case.

- All other cases are done by direct application of induction hypothesis. O

We can now state and prove completeness of weak conversion on strongly normalizing
terms. Note that we also require terms to have no over-applied algebraic subterms, which
is always the case for well-formed terms.

Lemma 5.15 Completeness

Let t,u e 8N and T a typing environment. Suppose that t and u cannot reduce to a term
containing a subterm of the form av with a having a non-empty algebraic cap.

If t ~r U, then t - ~p <11

Proof. By induction on the definition of t ~rw:

JEQ] - [x " T]eT, To,t =uwith ttue Of. If T,Eq(l') = L, then t~ru by
[UNSAT]. Otherwise, t = uwe Eq(T") and t ~ru by [DED].

- [DED]. {w1 =wa |wi,w2 € OF Wy ~pwat E AL (1) = A (u), t,bue O~

E
Let w; = w, € E. By application of the induction hypothesis and Lemma 5.12,
T,Eq(T) E w1 =w;,. Thus, T,Eq(T") = E. Now,

- IfT,EE L, then T7,Eq(T") = L and we conclude by [UNSAT].

- Otherwise, if t nor u has a non-empty algebraic cap, then A_.(t) = yy € Y,
A..(w) =yz €Y and T,Eq(T") = y1 = yz. Since T,Eq(T') ¥ L and no variables
of Y occurs in Eq(T"), then y; = yz. Thus, we can use the induction hypothesis
on t ~ru and obtained the desired result.

5

5. DEciDING CCIC

- Otherwise, let t = C¢[ay,...,an] and uw = Cy[an41,..., ans+k] where Cy and
C, are maximal algebraic caps. let y € Y s.t. if ai, ~raj, then yi = yj.
Since ai ~r aj implies aij ~raj; and T,Eq(l) & AL (t) = AL (u), we have
T,Eq(T) = C¢[ur,-- - Un] = Cu[Un+1,---,Untk]- Now, from Lemma 5.5, we
have:

7’ EQ(F) = Ct,LR[U1 y oo »Un] = Cu,LR[yn+1 yo e)yn+k]
Hence, t| ~ru,.

. [APPW]. t=1t1t, u=ujuy, ti ~ruq, t1,t2,uy,uy € WT

Ift,tue O and T,Eq(T") &= 1, then ta~ru by [UNSAT].

Otherwise, by application of the induction hypothesis, 1 ~ru;; and t2) ~ruz;.
Applying [App]|, t1; t2) ~ru1; uz;. By multiple applications of Lemma 5.14 along
the reduction path ty t2 L>(’c1 12),, there exists a term v s.t. (t1t2); ~rv and
u—,v. Then, by multiple applications of Lemma 5.14 along the path v#vi, we
obtain (tt2); ~r(uiuz).

- [REFL] - t = u. We conclude by Lemma 5.9.

~[PrOD]. t =VY(x:* T).v, u =V(x:* U).w, T~r U, v~r arp W
By induction hypothesis, T~r U and t ~r [.a7ju. Then V(x:* T).var V(x:* U). w
by [PROD].
< [LAaM]. t =A@ Ty, u=Ax:* UL.w, T~r U, v~r peamw
If T,Eq(T) = L and t,u e O, we conclude by [UNSAT]. Otherwise, we conclude by
application of the induction hypothesis as in the [PROD] case.
- [ELiM™]. t = Elim(v: I[W] —» Q){f}, u = Elim(v' : I [W'] > Q"){ '},
ves, v, t,ue WT
By application of the induction hypothesis, we have I} ~r Ii, e ,;‘1 ~r ?1 Thus,
t’ ~ru’ where
t'=Elim(vy : I, [W,] > Q){f}
w = Elim(v] : I} [W]] — Q)){f}
As for the [App"W] case, we conclude by application of Lemma 5.14 on the reduction
paths t’ —, ti and u’ —, ui. O

Decidability of conversion

Before terminating the proof, we are left to prove that ar is an equivalence relation on
well-formed terms.

Lemma 5.16

T, t=uwith t,ue OF and Tar U, then U—y t/ = with t/,u’ € OF, T, Eq(T) £
tyr = tjg and T,Eq(l) F ujr = uf.

Proof. By correctness, t ~ru. By product compatibility, U —, t; = uy with t~rt; and
U~ruq. By assumption on O+, there exist t’,u’ e O s.t. t1 -, t', ug -, u/, t~rt’ and
u~ru’. By Lemma 5.15, t ~rt’ and uxru’. By Lemma 5.12, T,Eq() = t|r = t[z and
T, Eq(F) EuwrRr= uiR. O

76

Corollary 5.17
Hr=",[x:*T],l2 and A =Ty, [x:* T'], T2 with Tap, T, then ~p = ~a.

Proof. Straightforward induction, using 7, Eq(T") &= Eq(A) and T,Eq(A) = Eq(T). O

We now show that ~ is an equivalence:

Lemma 5.18

i) If trrusrv, then usrv. ii) If t~ru, then usrt.

Proof. From now on, we write wq zfﬁ wy for wi &rwq or wy & wa.

By induction on the definition of t ~ru, we prove: i) u=rt, ii) if uaf v, then t ~rv,
i) if v~ t, then vart.

We only details interesting cases, i.e. i) u~rt for the rules [PROD] and [LaM], ii) if
u~rv, then t ~rv for all the rules.

- |[UNsAT]. If uarv, then ve O~ by Lemma 5.10. Then, t ~rv by [UNSAT].

- [DED]. t = Cy[t1,...,tn], w = Calus, ..., uy]

We have T,Eq(T) = Ci[x1,...,%n] = C2[y1,...,yk] with i) x4 = x5 if ti ~rt;,
i) yi = yj if wi ~rwy, and iii) x; = yj if i ~2 .

- If uw or v has a non-empty algebraic cap, then w~rv by [DED], i.e.

v=_Cz[vi,...,vp]
T,Eq(T) = C2[ut, - Uil = C3[z1,...,2p]
with yi,...,Yp,21,..., 2« fresh variables of Y and i) y{ = yj if ui ~rw;, ii) zi =

. ~ 3 coe ! Ll . NS 3
z; if vi &r vy, and iii) y{ = zj if wy AR v;.

/ / / li " n
Letx1,...,xn,z1,...zp,y1,...,yks.t.
A I : o~ . ! li : o~ .
X{ = X; iftimrt zi = z; if vi &1 v;
[/Y G I n_ 1 A~ S,
x{ =vyj iftixpuy yi =z; ifuirpv

Let ©0:Y — Y defined by

0= {xi—>x{} v{yi—yt vy~ ylt vz 2}
One can check that the definition is well-formed since the conditions equating

the variables of the co-domain are stronger that the one equating the variables
of the domain. Hence,

T,Eq(l‘) = C1[x1,...,xn]9 = Cz[y1,...,yk]6
T,Eq(T) = Ca[vy, .-, U] = C2[z1,...,2p]0
Since Cz2[yr1,...,ux]0 = C2[u],...,ur]6,
T,Eq(l) & Ci[x],...,x4] = C3[z},...,2]]

' 4p

Now, if t; 2 uj, & - Uj, &3 vq, then by repeated application of the induction

i ~ ~S s P PO
hypothesis on u;,_, ~ruj,,...,uj, ®p>uj,, we have uj, =2 Vvq,...,Uj, *p Vq.
By a last application of the induction hypothesis, we obtain t; ~3 vq.

Thus, we could have defined x7,...,%5,27,...2, as being fresh variables of
s.t.

7

5. DEciDING CCIC

. 7 s ~ . ! _ 2] ~ 3 e ! 2 'NS X
i) x{ =xj if ti~rty, ii) z{ = z{ if vi ~rvj, and iii) x{ = zj if i ~Rvj.

Hence, t ~rv by [DED].

- Otherwise, u and v have empty-algebraic caps. Hence, T,Eq(T") = C[x1,...,%Xn] =
Y with X1,...,Xn, Y s.t. i) xi = x5 if t; ~r tj, and ii) x; = y if t; P w.
Let x7,...,xh,y’ s.t.: i) x{ = x{ if ti ~r ty, and i) x{ =y’ if ti P v.
By application of the induction hypothesis, we have t; z,s-u implies t; ~Pv.
Thus, the mapping 6 = {xy — x{}; U {y — y’} is a valid substitution and:
T,Eq(T) = C[x1,...,xn]0 =y0

Hence, t ~rv by rule [DED].

S [APPW]. t =ty t2, = wguy, ti ~rug and t,t2,u7, Uy are weak
~rv can be derived by [DED], or [APP™], or [APP®] or [UNSAT].
- [DED]. We have v = C[vy,...,v] and T,Eq(l") & y = C[z1,...,2zx] where
Y,21,...,2k are s.t. 1) zy = z; if vi &r vy, and i) y = z; ifuz?vi.
Let y',2f,... 2 s.t. i) [=z if vi &1 vy, and i) y’ = z{ if ta7 i

By application of the induction hypothesis, we have uz?vi implies tzﬁvi.
Thus, the mapping 0 = {z; — z{} U {y — y’} is a valid substitution and:

T,Eq(T) Ey6 = C[z1,...,2n]0
Hence, t ~rv by rule [DED].
- [ApPY]. Straightforward application of the induction hypothesis.
- [APP®]. Straightforward since u = v.

- [UnsAT]. Then, ue O~ and so is t by Lemma 5.10, which contradicts [APP™]

assumptions.

- The cases for rules [EqQ], [SYmB], [IND] [CONSTR], [ELIM™], [REFL-?] are similar to
the [APPW] one.

- The cases [APP®] and [ELIM®] are straightforward since t = .

- [LAam]. The proof of transitivity is as for the rule [APPW]. We here detail the
proof of symmetry. We have t = A[x:* T].v and u = A[x:* U].w with T~r U and
VAT [x:eT]W- By application of the induction hypothesis, U~r T and w ~r [x.a1] V.
By Lemma 5.17, W=r [x.au] V- Hence, uxrt by [LaM].

- [ProD]. As for the [LaMm]. O

Corollary 5.19

The relation ~r is symmetric and transitive on well-formed terms.

Proof. 1. Suppose that t ~ru~rv, with t,u,v well-formed. Since a well formed term
(and any of its reduces by subject reduction) cannot contain a subterm of the form
av with a algebraic, by Lemma 5.15, t; ~ruj ~rv,. By Lemma 5.18, t, ~r v, and
by Lemma 5.8, t; ~rv,. Hence, by multiple application of the rule [RW], t ~rv.

2. Similar to the proof of transitivity. O

78

Theorem 5.1

Suppose that ~ is decidable. The relation ~r for I well-formed is decidable on well-formed
terms.

Proof. Let t and u be two well-formed terms under T

Suppose first that t ~r u. Since a well formed term (and any of its reduces by subject
reduction) cannot contain a subterm of the form av with a algebraic (since algebraic terms
have non-functional types) and since — is strongly normalizing on well-formed terms, we
conclude by Lemma 5.15 that t| ~ru,.

Conversely, if t; ~ru}, then t, ~ru; by Lemma 5.8. Using multiple applications of
[Rw] yield t ~ru. O

Corollary 5.20

Assume that T is a well-formed environment. Then, the relation ~r is decidable on well--
formed terms.

Proof. We prove that ~r is decidable. A straightforward induction on t ~ru for t, u well--
formed shows that we only need to compute Eq(A) for well-formed typing environments
A. From the definition of Eq(A) and strong normalization of well-formed terms, we have:

Eq(A) = {t=u|[x* T e T, = (t = w)}

Rules of ~1 being structural, there is a simple top-down algorithm checking conversion:
assume that t and u are two terms well formed under a typing environment I'. Then, we
decide if t ~ru as explained bellow:

1. If t, u are not —-normal, we first normalize them. In the following, t and u denote
—-normal terms.

2. Then comes the top-down algorithm:

a) Assume that tand warein O~ and T,Eq(T") = L. Then t and u are ~r-convertible.

b) Assume that t and u have a non-empty algebraic cap, T,Eq(") ¥ L, t has k
aliens ay,...,ax at positions py,...,px and u has | aliens ax41,...,arx4+1 at
positions px+1,...,Pkin. For any alien ai, we assign a fresh variables c; s.t.
¢y = ¢ if and only if a; is ~r convertible to aj. Of course, checking a; ~r q;
is done recursively, by doing all possible pairwise comparisons of the aliens.
Then, we obtain two pure algebraic terms t’ = t[p; < c1,...,px < cx] and
uw =Uu[prs+1 < Cks1y--+, Pkl < Ckt1]. t and u are ~p-convertible if and only
if T,Eq(T) =t/ =u'.

c¢) In all other cases, we check whether t and u have the same head symbol. If so,
we call the procedure recursively on the subterms. Of course, when traversing
a binder (with annotation r) binding a pure algebraic equation, it is added to
the set of extracted equations. O

5.2 A syntax oriented typing judgment

We now start with the definition of the syntax oriented typing judgment ;.

79

5. DEciDING CCIC

Definition 5.21 Typing judgment

Typing judgment i is defined by rules of Figures 5.9 and 5.4.

[Ax-1]
-1 x:o

FeiTeost Ox:T] i U:sy
T V(x:T). U:sy

[ProD]

FiVis THt:T se{xo} xeX*—dom(l
Nx:V]EFit:T

[WEAK]

x € dom(T") M XSx T 4 xI": sy

[VAR]
Ny x o xl

M t:T ThRu:uU U~pu’
T, =V(x " U).V
u is a weak term
if x € X, then u must be in OF
if x € X, then u must be in P

M tu: Vix - u}

[APp]

Figure 5.3: CCIC Typing Rules for ; (CC rules)

Proof of correctness and completeness are immediate.

Lemma 5.22 Correctness

Hrit:T,thenT—1t:T

Proof. Direct induction on I' -; t: T, using a one-to-one mapping from rules of ; to rules
of -, a extra conversion being needed for the [APP] case of };. O

Lemma 5.23 Completeness

I+ t:T, then there exists T' s.t. i) T T': s if T/ # o, and ii) T~p T’

Proof. If T = o, then we take T = T’ = o. Otherwise, we do an induction on I' - t : T.
The only delicate case are the [APP] and [CONV] ones.

- If T+ t:Tis deduced from [APP], then t = uv : V{x — u} with i) ' - t:
V(x:* U).V,ii) if xe X;, then ve O, iii) v is weak, and iv) ' u: L.

By induction hypothesis, there exists P and W s.t. Ty v:Pand I' ; uw: W, with
P ~r V(X @ U) V, u’ ~r .

8o

A=VY(x:T).x FiA:o foralli, i Ci:x
for all 1, C; is a strictly positive constructor in X

[=Ind(X: A){a} is in £5-normal form

P 1T

[InD]

[=Ind(X:T){Ci} TriI:T
M I Cu{X - 1}

[ConsTR]

A=VY(x:U).x I=IndX:T){Cj} TriI:T 1 Q:V¥(x:U).(IX) >«
To =AY, X,Ci, Q I} - Tiox
forallj,]“l—ia]-:Aj{x'—»a} Fl—ic:Ia’ foralli,Fl—ifi:Ti

— = — [Eniv-«]
I'ti Elim(c: I[d] - Q){f}:Qdc
A=V(x:U).x I=Ind(X: T){a} is small
Q =V(x:U)(y:I%).K is in 25 normal form
[x:U],[y:IX] i K:o
Ti:AD{IaXaCia?{vaaI[i]} i Ti:D
forall j, M aj: Aj{x—>d} Thric:Id foralli, M fi: Ty
[ELiM-o]

M Elim(c: 1[d] —» Q){f}: K{x =3,y - c}

Figure 5.4: CCIC Typing Rules for ;i (Inductive Types)

By type structure compatibility, Py = V(x:* U;).V,. Hence, W' ~rU~rU;. We
clearly have U and thus U, well-formed. From correctness of -, we have I' = w: U’
and hence, U’ is also well-formed. (U’ cannot be the sort o since ' - uw: U and U is
well-formed) Hence, by transitivity of ~r on well-formed terms, U’ ~p U, .

We can then apply the [APP] rule for i, obtaining that I' i V/{x — u}, with
V'{x » u} ~r V{x — u} from substitutivity lemma.

T Et:Tfrom [CoNV], then ' - t : U with U~ T, and by application of the
induction hypothesis, there exists a term V s.t. T3 t:V with V~pr U~ T. Since
U # o (U is well-formed from rule assumption), U # o. From correctness of -, we
have ' t:V and V # o since V ~r U. Hence, V is well-formed too and we obtain
V ~r T from transitivity of ~r on well-formed terms. O

5.3 Deciding more theories

We now explain the extension of our algorithm for arbitrary theories, using as example the

theory composed of the parametric lists and the Presburger arithmetic. The main difficulty

resides in the [DED] rule, which algebraised all the convertible terms for all the possible

first-order sorts.

We start with the definition of Ot. Taking here the set of pure algebraic terms (defined

as the set of terms having no aliens w.r.t. a first-order sort):

5. DEciDING CCIC

Ot ={t]|3oeAe. FV(Ax(t)(0)) nY = &}

is of no use since it is not stable by substitution. For example, x + 0 and nil A are in OF,
but not (nilA) +0. What breaks here the stability by substitution is the possibility of
constructing ill-formed terms by well-typed substitution. Taking this into account yields
a definition of O where instead of considering pure algebraic terms, we consider terms
having a non-empty algebraic cap and composed only of subterms having non-algebraic
caps. l.e. terms of the form:

tu,...i=xeX, |0|St|t+u|nilA|consAel|appAl;l,.

Note that restricting this definition to the case of Presburger arithmetic yield our pre-
vious notion of OF.

The set O is now clearly stable by well-sorted substitutions and stable by reduction.
For the stability of Ot w.r.t. conversion (property 7 of Definition 4.1) to hold, we must
add the two following rewrite rules:

car A (cons Bx1) B x
LN

cdr A (consBx1l) -1

so that when having a conversion of the form x ~r car A (cons B x 1) with 1 not in OF, then
car A (cons Bx1) — x.

For P*, we do not change our definition. Extended to the case of Presburger arithmetic
and parametric lists, we obtain the set P composed of terms convertible to terms of the
form:

TU,...:=AeX; |nat |listT

We now come to the decidability of the [DED] and [EQ] rules. As for the Presburger
arithmetic, [EQ] is replaced by an a priori extraction of equations: this is the set Eq(T).
We do not, change its definition:

Eq(F) = {t1 =1t | [X x T] eNT—o.ti =1t,t, € O+}

Note that now, Eq(T") is not composed of pure algebraic equations. Assume now that
' is a typing environment containing the two extractable equations:

cons Axa la = cons By xg (E1)

cons B> xg lg = cons Cxc lc (E2)

Hence, xa ~r xc. Indeed, assuming that o = list(«), then the algebraisation of (Eq)
and (Ez) w.r.t. o yields the two equations

cons(ya,za) = cons(ys,ygs) and cons(yp,zg) = cons(yc, zc)

82

with ya = A~ (xa)(x) (resp. yp = A~ (x)(x), yc = A~ (xc)(x)). Hence ya = yc is
valid in the theory and xa ~r x¢c by [DED]. Note that the algebraisations of (E1) and (E>)
w.r.t. other first-order sorts if of no use: they will either give the same first-order equations
(up to a renaming), or worst, will simply yield weaker equations (e.g. when algebraizing
(E1) and (E2) w.r.t. the sort nat).

Hence, an equation of the form 1 = cons nat (nilA) 1’ will only be algebraised using the
two sorts list(o) and nat. The first one because the first element of the list is headed by
nil A the second one because the type parameter of the list if nat.

Finally, t~ru for t or u having a non-algebraic cap is extended as follow. Let E be
the set of all the possible algebraisation of Eq(T") (which is now finite), and let t" = u’ be
a possible algebraisation of the equation t = u. Note that when choosing a possible alge-
braisation of t = u, we make here a non-deterministic choice. As for the Presburger case,
the algebraisation is now done by a pairwise comparison, w.r.t. ~r, of all the encountered
aliens (i.e. the aliens of t and u as well as the aliens of all the terms of E). Then, we
conclude t~ruif 7,E =t = u’ holds.

However, it is easy to see that there are no non-deterministic choices when checking
conversion w.r.t. a well-formed environment and well-formed terms. Indeed, a non-deter-
ministic choice occurs when several arguments of a function symbol disagree. This is the
case of the ill-formed term consnat (nil A)1 where the type parameter indicates a list of
type nat but the first parameter is of type list A. Now, having well-formed terms should
lead to unique algebraisation. For example, consnat 0 1 will be algebraised as a list of type
nat where cons (list A) (nil B) 1 will be algebraised as a list of list, as long as A is convertible
to B, which is the case when the term is well-formed.

83

CHAPTER 6

CONCLUSION AND PERSPECTIVES

In this thesis, we have described how decision procedures for first-order theories over equal-
ity can be introduced into the conversion relation of the Calculus of Inductive Construc-
tions. We have shown that this extension does not break logical consistency of the calculus
as well as the decidability of type-checking.

To this end, we have introduced strong syntactical restrictions which limit the benefit
of such an extension. We review here them all and give suggestions for their removal.

We also point out several research directions.

6.1 Stability of extractable equations

Equations in CCIC are introduced via lambda abstractions and dependent products. This
is the case in the term A[p ¥ x = y].t where the typing of the subterm t may make use
of the equation x = y. As have seen however, this way of extracting equations does not
behave well with E>—1reduction, because some equality predicates (the type x =y of p in
our example) are erased.

To this end, two annotations were introduced indicating which equations can be used
by conversion and which cannot: in A[p : x = y]. t, the equation x =y can be used only if
p :¢ x =y is annotated with the restricted annotation, that is a = r. Moreover, application
of r-annotated A-abstractions are forbidden, therefore eliminating the problem of erasing
equality predicates.

The idea is then to make use of definitions, as available in the Coq system. A definition
is a triple x : T := t where x is a variable, T the type associated to x and t a term of type
T. Definitions are introduced using a new typing rule

F=t:T
Nx:T=1tFx:T

There are two kinds of definitions in Coq, called respectively global and opaque.

To a global definition x : T := t is associated a reduction relation 2L, such that x 25t
if x: T:=1tappears in ' - we say that x has been unfolded. It is known that adding global
definitions is harmless (the case of local definitions is harder and studied in [40]).

On the other hand, opaque definitions cannot be unfolded, that is, there are no rules as-
sociated to them. They conform to the mathematical tradition of proof irrelevance, in which
proofs of a logical propositions do not matter. Hence, although the term (A[p :* x = y].t) g
is not well-sorted in the present version of CCIC, it could be expressed as the application
u q where u is an opaque definition for A[p ¥ x = y].t, of type V(p " x = y).T.

An alternative to opaque definition to overcome this problem would be the use of term
annotations keeping track of all equations used in a conversion: terms would be annotated

85

6. CONCLUSION AND PERSPECTIVES

with a sequence of pairs (e, t) where e is an extractable equation and t a term of type e in

the current environment. E>—reduction would then be modified as follows:
Ax* TLwvSux - vi@(T,v)

where p @ (T, v) is the term p whose annotation is augmented with the pair (T,v).

Conversion could then be modified in order to use the equations present in annotated
terms, hence ensuring the stability of extractable equation w.r.t. P, veduction. Tn this
modified calculus, the restricted annotation would no more be used to restrict the applica-
tion of terms, but as a hint to the system to select which extractable equations it should
use in a given conversion goal.

6.2 Using a typed extraction

In order to ensure stability of extractable equations by substitution, and to make type-
-checking decidable, strong syntactical restrictions have been made: a set X of extractable
variables has been introduced and only those substitutions mapping extractable variables
to extractable terms are allowed.

Instead, we could have defined a notion of extractable terms w.r.t. the types of the
terms - hence, obtaining a typed conversion. For example, one could decide to extract from
an environment ' those equations only which related terms of type nat in the considered
environment.

In such a calculus, stability of extractable equations w.r.t. well-formed substitutions
becomes a special case of substitutivity: the set of extractable variables as well as the
syntactical restrictions on substitutions become useless. Further, we think that this calculus
enjoys a decidable type-checking problem as well. To substantiate this belief, let us remark
that in the current version of CCIC, OV is restricted to be the set of pure algebraic terms
so that the equation

A[x : nat]. fx = A[x : nat]. f (x + 2)

cannot be extracted. Indeed, we saw that allowing such an equation introduces an encoding
of universally quantified first-order formulas into the deductional part of our conversion,
resulting in the undecidability of type-checking. Restricting extractable equations to the
ones relating terms of type nat also forbids the use of such equations as long as product
compatibility holds.

6.3 Weak terms

Weak terms were introduced in order to limit the interactions between the deductive part
of conversion and the recursors. We saw that allowing conversion under strong recursors
may yield the convertibility of A and A — A under an inconsistent environment. On the
other hand, allowing conversion under weak recursors is important for practice, allowing a
kind of non-structural elimination. For example, one could expect the following reduction
to hold, as long as x is convertible to 0:

86

Elim(x : nat [e] — Q){[fo, fs]} > fo.

Because of the strong dependency between extractable and convertible terms - as exem-
plified by the requirement that extractable terms must be stable by conversion -, we know
that allowing conversions below weak recursors will require extracting equations containing
weak recursors that cannot be eliminated by —>-reduction alone. Indeed, any term of the
form Elim(x : [[U] — Q){?}, with fo algebraic, must become extractable, since

Elim(x : 1[T] —» Q){ T} ~r Elim(0: 1[T] —» Q){T} 5o

in any typing environment s.t. x ~r 0.

A main reason why type-checking of CCIC is decidable is the strict separation be-
tween —-conversion and the deductive part of the embedded first-order theory. We could
however imagine an approach where variables could appear under weak recursors of ex-
tractable equations as long as they do not appear in subsequent equations. This would
allow extracting the equation

y =Elim(x: I[¥] > Q){f} (%)
as long as no extractable equation involving x appears in the rest of the environment.

In this case, there is no strict separation anymore between conversion and —-conversion,
since the presence of the extractable equation x = 0 occurring before (*) in the typing envi-
ronment would lead to the conversion y ~r fo. We hope nevertheless to find an incremental
decision procedure, using the underlying order over variables induced by the suggested re-
striction.

6.4 Extending CCIC to CAC

One important motivation of CAC was the introduction of type level rewriting in the
conversion rule, which permits, for example, the introduction of decision procedures for
first order tautologies.

One can think of a calculus merging the embedding of first-order theories over equations
as well as type level rewriting (besides the already existing strong —»-reduction).

We believe that this could be done by extending the notion of weak terms so as to take
into account the new interactions between type level rewriting and the embedded theory.

6.5 Embedding a more powerful logic

Our choice of embeddable theories have some drawbacks. For example, it is not possible
to use the first-order theory of lists for the CCIC type of dependent lists, the mapping
between first-order signatures and CCIC symbols being strict, and thus not allowing the
use of extra parameters (here the length of the list) in the type of mapped function symbols.

The user is then facing a choice: to use the non-dependent type of lists, and benefit
from the first-order theory of lists in conversions, or to use the dependent type of lists
without having the first-order theory of lists available in conversions, but having instead
the theory of linear arithmetic available for converting the dependent arguments.

87

6. CONCLUSION AND PERSPECTIVES

Several directions can be investigated to overcome this problem and have the benefit
of both in the case of dependent lists. A first is to allow embedding the more expressive
(parametric version of) membership equational logic [7] in CCIC along the lines of the
simpler embedding described here. A second is to consider the case of dependent algebras
instead of the simpler parametric algebras. This is a more difficult question, which requires
using our generalized notion of conversion in the main argument of an elimination, but
would further help us addressing other weaknesses of Coq.

88

3]
[4]

[5]

(6]

[7]

18]

[o]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

B. Barras. Auto-Validation d’un systéme de preuwves avec familles inductives. PhD
thesis, Université de Paris VII, 1999.

G. Barthe. The relevance of proof-irrelevance. In K. G. Larsen, S. Skyum, and
G. Winskel, editors, ICALP, volume 1443 of Lecture Notes in Computer Science,

pages 755-768. Springer, 1998.
F. Blanqui. Type Theory and Rewriting. PhD thesis, Universite Paris XI, 2001.

F. Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical
Structures in Computer Science, 15(1):37-92, 2005.

F. Blanqui. Inductive types in the calculus of algebraic constructions. Fundam. In-
form., 65(1-2):61-86, 2005.

F. Blanqui, J.-P. Jouannaud, and P.-Y. Strub. Building decision procedures in the
calculus of inductive constructions. In J. Duparc and T. A. Henzinger, editors, CSL,
volume 4646 of Lecture Notes in Computer Science, pages 328-342. Springer, 2007.

A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in member-
ship equational logic. Theor. Comput. Sci., 236(1-2):35-132, 2000.

A. Church. A simple theory of types. Journal of Symbolic Logic, 5:56—68, 1940.

R. Constable, S. Allen, M. Bromley, R. Cleaveland, J. Cremer, R. Harper, D. Howe,
T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and S. Smith. Implementing
mathematics with the Nuprl proof development system. Prentice Hall, 1986.

Coq Development Team. The Coq proof assistant - version 8. Technical report, INRIA,
2008.

T. Coquand. An analysis of girard’s paradox, 1986.

T. Coquand. An algorithm for testing conversion in type theory. Cambridge University
Press, New York, NY, USA, 1991.

T. Coquand and G. Huet. The calculus of constructions. Inf. Comput., 76(2-3):95-120,
1988.

T. Coquand and G. P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95-120, 1988.

T. Coquand and C. Paulin. Inductively defined types. In COLOG-88: Proceedings of
the international conference on Computer logic, pages 50-66, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

H. Curry and R. Feys. Combinatory Logic I. Studies in Logic and the Foundations of
Mathematics. North-Holland, 1958. Volume II, with Jonathan Seldin, 1972.

89

BIBLIOGRAPHY

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

90

N. de Bruijn. The mathematical language AUTOMATH, its usage, and some of its
extensions. In M. Laudet, D. Lacombe, L. Nolin, and M. Schiitzenberger, editors, Proc.
of Symp. on Automatic Demonstration, volume 125 of Lecture Notes in Mathematics,
pages 29—61. Springer-Verlag, 1970.

G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. J. Autom. Reason-
ing, 31(1):33-72, 2003.

G. Dowek and B. Werner. Proof normalization modulo. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, TYPES, volume 1657 of Lecture Notes in
Computer Science, pages 62—77. Springer, 1998.

G. Gentzen. Untersuchungen iiber das logisches schliefen. Mathematische Zeitschrift,
1:176-210, 1935.

H. Geuvers and M.-J. Nederhof. Modular proof of strong normalization for the calculus
of constructions. J. Funct. Program., 1(2):155-189, 1991.

E. Gimenez. Structural recursive definitions in type theory. In Automata, Languages
and Programming, pages 397408, 1998.

J.-Y. Girard. Une extension de 'interprétation de gidel a ’analyse et son application
a l’élimination des coupures dans ’analyse et la théorie des types. In J. Fenstad,
editor, Proc. of the 2nd Scandinavian Logic Symposium, volume 63. North-Holland,

1971.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press,
1988.

G. Gonthier. The four color theorem in coq. In TYPES 2004 International Workshop,
2004.

M. Gordon and T. Melham, editors. Introduction to HOL: A theorem proving envi-
ronment for higher order logic. Cambridge Univ. Press, 1993.

K. Godel. Uber formal unentscheidbare sitze der principia mathematica und ver-
wandter systeme. Monatshefte fir Mathematik und Physik, 38:163-198, 1931.

W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry : Essays on Combinatory Logic, Lambda Calculus
and Formalism. Academic Press, 1969.

J.-P. Jouannaud and M. Okada. A computation model for executable higher-order
algebraic specification languages. In LICS, pages 350-361. IEEE Computer Society,

1991.

Z. Luo. ECC, an extended calculus of constructions. In Proceedings 4th Annual IEEE
Symp. on Logic in Computer Science, LICS’89, Pacific Grove, CA, USA, 5-8 June
1989, pages 386—395. IEEE Computer Society Press, Los Alamitos, CA, 1989.

P. Martin-Lo6f. Haupsatz for the intuitionistic theory of iterated inductive definitions.
In J. Fenstad, editor, Proc. of the 2nd Scandinavian Logic Symposium, volume 63 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1971. See [32].

P. Martin-Lof. Intuitionistic type theory. Bibliopolis, 1984.

R. Milner. Implementation and applications of Scott’s logic for computable functions.
ACM sigplan notices, 7(1):1-6, Jan. 1972.

[34]

[35]

[36]

[37]

[38]

[30]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

M. Okada. Strong normalizibility for the combined system of the typed lambda calcu-
lus and arbitrary convergent term rewriting system. In Proc. of the 1989 Int. Symp.
on Symbolic and Algebraic Computation. ACM Press, 1989.

N. Oury. Extensionality in the calculus of constructions. In J. Hurd and T. F. Melham,
editors, TPHOLs, volume 3603 of Lecture Notes in Computer Science, pages 278-293.
Springer, 2005.

S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction, volume 607 of Lecture
Notes in Artificial Intelligence, pages 748-752. Springer-Verlag, June 1992.

L. Paulson. Experience with Isabelle : A generic theorem prover. Technical Report
UCAM-CL-TR~143, University of Cambridge, Computer Laboratory, Aug. 1988.

L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in
Computer Science. Springer-Verlag, 1994.

D. Prawitz. Natural Deduction: a Proof-Theoretical Study, volume 3 of Stockholm
Studies in Philosophy. Almqvist & Wiksell, 1965.

P. Severi and E. Poll. Pure type systems with definitions. In A. Nerode and Y. Matiya-
sevich, editors, LFCS, volume 813 of Lecture Notes in Compuler Science, pages
316—328. Springer, 1994.

N. Shankar. Little engines of proof. In L.-H. Eriksson and P. Lindsay, editors, FME
2002: Formal Methods — Getting IT Right, Copenhagen, pages 1—20. Springer- Verlag,
2002.

N. Shankar, S. Owre, J. Rushby, and D. Stringer-Calvert. PVS Prover Guide. Com-
puter Science Laboratory, SRI International, Sept. 1999.

R. E. Shostak. Deciding combinations of theories. J. ACM, 31(1):1—12, 1984.

V. Tannen. Combining algebra and higher-order types. In LICS, pages 82—go. IEEE
Computer Society, 1988.

V. Tannen and J. H. Gallier. Polymorphic rewriting conserves algebraic strong nor-
malization and confluence. In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca,
editors, ICALP, volume 372 of Lecture Notes in Computer Science, pages 137-150.
Springer, 1989.

V. Tannen and J. H. Gallier. Polymorphic rewriting conserves algebraic confluence.
Inf. Comput., 114(1):1—29, 1994.

A. Trybulec. The Mizar-QC/6000 logic information language. In Association for
Literary and Linguistic Computing Bulletin, volume 6, pages 136-140, 1978.

B. Werner. Une théorie des Constructions Inductives. PhD thesis, Université de
Paris VII, 1994.

91

	Introduction
	A brief history of type theory
	Safety of Proof assistants
	Contributions
	Outline of the thesis

	The Calculus of Presburger Inductive Constructions
	Terms of the calculus
	The conversion relation
	Two simple examples
	Typing rules
	Consistency

	The Calculus of Congruent Inductive Constructions
	The Calculus of Inductive Constructions
	Parametric multi-sorted theories with constructors
	The calculus

	Meta-theoretical Properties of CCIC
	Confluence on well-sorted terms
	Monotony of conversion
	Weakening
	Substitutivity
	Product compatibility
	Correctness of types
	Subject reduction
	Type unicity
	Strong normalization

	Deciding CCIC
	Decidability of conversion relation
	A syntax oriented typing judgment
	Deciding more theories

	Conclusion and perspectives
	Stability of extractable equations
	Using a typed extraction
	Weak terms
	Extending CCIC to CAC
	Embedding a more powerful logic

	Bibliography

