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Abstract

The goal of this thesis is to develop a logical system in which formal proofs of
mathematical statements can be carried out in a way which is close to mathematical
practice.

Our main contribution is the de�nition and study of a new calculus, the Calculus
of Congruent and Inductive Constructions, an extension of the Calculus of Inductive
Constructions (CIC) integrating in its computational part the entailment relation
- via decision procedures - of a �rst order theory over equality. A major technical
innovation of this work lies in the computational mechanism: goals are sent to the
decision procedure together with a set of user hypotheses available from the current
context.

Our main results show that this extension of CIC does not compromise its main
properties: con�uence, strong normalization, consistency and decidability of proof
checking are all preserved (as soon as the incorporated theory is itself decidable). As
such, our calculus can be seen as a decidable restriction of the Extensional Calculus
of Constructions. It can therefore serve as the basis for an extension of the Coq proof
assistant.

Résumé

Le but de cette thèse est l'étude d'un système logique formel dans lequel les preuves
formelles de propriétés mathématiques sont menées dans un style plus proches des
pratiques des mathématiciens.

Notre principal apport est la dé�nition et l'étude du Calcul des Constructions
Inductives Congruentes, une extension du Calcul des Constructions Inductives (CIC),
intégrant au sein de son mécanisme de calcul des procédures de décisions pour des
théories equationnelles au premier ordre.

Nous montrons que ce calcul possède toutes les propriétés attendues : con�uence,
normalisation forte, cohérence logique et décidabilité de la véri�cation de types sont
préservées. En tant que tel, notre calcul peut être vu comme une restriction déci�
dable du Calcul des Constructions Extentionnelles et peut servir comme base pour
l'extension de l'assistant à la preuve Coq.
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chapter 1

Introduction

Ce n'est pas une démonstration proprement dite, [...] c'est
une véri�cation. [...] La véri�cation di�ère précisément de

la véritable démonstration, parce qu'elle est purement
analytique et parce qu'elle est stérile.

Henri Poincaré, on the proof of 2� 2 � 4

La science et l'Hypothèse, 1902

The goal of this thesis is to develop a logical system in which formal proofs of mathe�
matical statements can be carried out in a way which is close to mathematical practice.

What is a formal proof? Up the end of the XIXth century, no formal description of
reasoning existed: mathematical proofs were made by using an intuitive notion of proof or
validity. Frege and Peano initiated a new discipline: formal mathematics or formal logic.
Formal mathematics is the description of formal rules - permitting the construction of
complex mathematical reasoning - in a formal language.

Alas, description of such systems is not an easy task. The most famous example is the
discovery in 1912, by Russel, of a paradox (i.e. the ability to prove in a given system any
property expressible in it) in Frege's logical system. Such a logical system is said to be in�
consistent. It was then clear that studying these systems was necessary: meta-mathematics
was born.

Since then, numerous logical systems has been de�ned, up to the point that, in 1920,
Hilbert formulated his so-called Hilbert's Program, which goal was to formalize modern
mathematics in a logical system, and to provide a proof that this system is not inconsis�
tent. The incompleteness theorem of Gödel [27] partially answered negatively to Hilbert's
Program.

The ability of computers to carry out complex computations operating on symbolic
expressions renewed the area of formal mathematics: the mechanization of proof-checking,
as well as the automatic search for proofs was born. On the practical side, theorem provers
have been developed since then by computer scientists, and become now used as tools for
developing formal mathematical proofs.

The �rst proof-checking system was developed in the 60's by N.G. Bruijn, under the
name of AUTOMATH [17], a formal language allowing for the description and veri�cation
of mathematical proofs. In AUTOMATH, the user had to enter directly the proof of the
proposition being proved, without help of the system.

The next major step is due to Robin Milner: proof assistants such as LCF [33] allow
to build the proof of a proposition by applying proof tactics, generating a proof term that
can be checked with respect to the rules of the underlying logic. The proof-checker, also
called kernel of the proof assistant, implements the inference and deduction rules of the
logic on top of a term manipulation layer.

Since then, numerous proofs assistants has been developed, including Coq [10], Nu-
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1. Introduction

Prl [9], PVS [36, 42], HOL [26], Isabelle [37, 38], Mizar [47], ..., among many others.

Why so many? Despite the immense progress made since AUTHOMATH and LCF,
developing a formal proof is still quite painful. Only experts can use these systems, and
they can only carry out small developments in a reasonable amount of time. Since these
systems have already been proved very useful for practical applications, the need for scaling
up their abilities has become a major urgent problem.

It is commonly agreed that the success of future proof assistants will rely on their ability
to incorporate computations within deduction in order to mimic the mathematician when
replacing the proof of a proposition P by the proof of a proposition P 1 obtained from P

thanks to possibly complex computations.

Our goal in this thesis is to scale up the abilities of the system Coq. The intuitionist
logic on which Coq is based on is the Calculus of Constructions (CC) of Coquand and
Huet [13], an impredicative type theory incorporating polymorphism, dependent types and
type constructors. As other logics, CC enjoys a computation mechanism called cut-elimi�
nation, which is nothing but the β-reduction rule of the underlying λ-calculus. But unlike
others, CC enjoys a powerful type-checking rule, called conversion, which incorporates
computations within deduction.

The traditional view that computations coincide with β-reduction su�ers several draw�
backs. A methodological one is that the user must encode other forms of computations as
deductions, which is usually done by using ad-hoc, complex tactics. A practical one is that
proofs become much larger than necessary, up to a point that they cannot be type-checked
anymore. These questions become extremely important when carrying out complex devel�
opments involving large amounts of computation as the formal proof of the Four Color
Theorem completed by G. Gonthier and B. Werner using Coq [25].

The Calculus of Inductive Constructions of T. Coquand and C. Paulin was a �rst
attempt to solve this problem by introducing inductive types and the associated elimination
principle rules [15]. The recent versions of Coq are based on a slight generalization of this
calculus [22].

A more general attempt has been carried out since the early 90's by adding user-de�ned
computations as rewrite rules, resulting in the Calculus of Algebraic Constructions [4].
Although conceptually quite powerful, since CAC captures CIC [5], this paradigm does
not yet ful�ll all needs, because the set of user-de�ned rewrite rules must satisfy several
strong assumptions. As of today, no implementation of CAC has been released.

Besides, in 1998, G. Dowek, T. Hardin and C. Kirchner [18] proposed a new system for
combining deduction with �rst-order logic: the Natural Deduction Modulo. This system is
an extension of Natural Deduction [39] where all rules are applied modulo a congruence
on propositions. In [19], D. Dowek and B. Werner gave general conditions for ensuring the
termination of cut elimination in Natural Deduction Modulo. In [18], they proved that
arithmetic can be presented as a theory modulo in such a way that cut elimination holds.

The proof assistant PVS uses a potentially stronger paradigm than Coq by combining
its deduction mechanism1 with a notion of computation based on the powerful Shostak's
method for combining �rst order decision procedures over equality [43], a framework

1PVS logic is not based on the Curry-Howard principle and proof-checking is not even decidable,
making both frameworks very di�erent and di�cult to compare.
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dubbed little engines of proof by N. Shankar [41]: the little engines of proof are the
decision procedures combined by Shostak's algorithm.

In this thesis, we investigate a new version of the Calculus of Inductive Constructions
which incorporates arbitrary decision procedures into deduction via the conversion rule of
the calculus.

1.1 A brief history of type theory

We introduce here some basic concepts about type theories, λ-calculi, [...] via an informal
historical summary. Readers familiar with these notions, notably with Pure Type Systems,
can skip this section.

An extended introduction, from which this section is inspired, can be found in the
course notes of Gilles Dowek 2.

Lambda calculus

In 1930, Church introduced the λ-calculus, a formalism for representing functions. Roughly,
in λ-calculus, we have

· objects which are either variables, λ-abstractions λrxs. t (representing the function
associating t to the variable x), and applications of two objects t u.

· an axiom, called β-convertibility:
pλxA. tqu � ttx ÞÑ uu

where ttx ÞÑ uu stands for t where all the occurrences of x has been replaced by u.

The λ-calculus is a powerful formalism. Indeed, using Church encoding of natural
numbers, it is possible to express in λ-calculus all the computable functions over natural
numbers. However, when seen as a logical system, it is possible to encode the Russel
paradox in λ-calculus.

The idea of the simple type theory originally by Whitehead and Russell, and later
elaborated by Church [8], was to restrict the application of objects so that the Russel
paradox can not be expressed anymore.

Simple Type Theory

A simple type is either the constant ι (for base objects), the constant o (for propositions),
or the functional type A Ñ B (Ñ being right associative) where A and B are simple types.

For example, if ι represents the type of natural numbers, the following types are given
to the symbols of arithmetic: 0 : ι, S : ι Ñ ι, � : ι Ñ ι Ñ ι, whereas the equality over
natural numbers has type ιÑ ι Ñ o.

More generally, in the λ-calculus presentation of the simple type theory (called simply
typed λ-calculus), are given: i) for each simple type A, an in�nite set XA of variables of type

2http://www.lix.polytechnique.fr/~dowek/Cours/theories_des_types.ps.gz
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1. Introduction

A is given, and ii) a set of constants with associated types: _ : o Ñ oÑ o, ^ : o Ñ o Ñ o,
�A: A Ñ A Ñ A, @A : pA Ñ oq Ñ o, etc...

The terms of the theory are then the simply typed λ-terms, where i) variables and
constants of type A are terms of type A, ii) if t is a term of type B and x a term of type
A, then λx. t is a term of type A Ñ B, iii) if t is a term of type A Ñ B and u a term of
type A, then t u is a term of type B.

Now, if ι represents the set of natural numbers, the predicate even is represented by
the expression λxi. Dipλyi. xi � 2� yiq, of type ι Ñ o.

Typing judgments

Instead of requiring an in�nite set of variables for each base type, it is possible to de�ned
a variant of the simply typed λ-calculus where variables are untyped, type annotations
appear in the λ-terms and typing contexts are used to indicate the types of the variables.

A pure lambda term is then either i) a variable, ii) an abstraction λrx : As. t where A is
a simple type, or iii) an application t u.

Given a typing context Γ , i.e. a list of pairs px, Aq where a variables do not appear
twice, the judgment t is of type A under Γ , written Γ $ t : A, can be derived by using the
following rules:

px,Aq P Γ

Γ $ x : A

Γ $ t : A Ñ B Γ $ u : A

Γ $ t u : B

Γ, px,Aq $ t : B

Γ $ λrx : As. t : A Ñ B

Convertible propositions

In the simply typed λ-calculus, if we have a proof π of 0 �ι 0 (P1), then we can easily
construct a proof ψ of pλxi. xiq 0 �ι 0 (P2), using convertibility of β-redexes and Leibniz
axioms. But, although π and ψ are proofs of equivalent propositions, they are not identical
as they di�er by an explicit conversion.

A solution is to equate the propositions P1 and P2 so that a proof π of P1 is also a proof
of P2. This leads to the de�nition of a theory modulo where all terms are identi�ed up
to β-convertibility. Moreover, by orienting the β-convertibility (pλx. tqu β−Ñ ttx ÞÑ uu), we
obtain a con�uent and normalizing rewrite system, leading to a canonical representation
of propositions - 0 �ι 0 being the canonical form of pλxi. xiq 0 �ι 0 in our example.

Curry-Howard isomorphism

Heyting proposed a semantics of proofs as functional objects, proofs of axioms being objects
given a priori. For example, a proof of A ñ B (resp. @x. A) is seen as a function from A

to B (resp. a function associating to any object t a proof of Atx ÞÑ tu).
Following Heyting's semantic, Curry remarked [16] that a correspondence could be

drawn between types of the simply typed λ-calculus and propositions of the minimal propo�
sitional logic, and between the terms of a certain type A and the proofs of the propositions
corresponding to A. Such a correspondence allows us to represent proofs of minimal propo�
sitional logic with simply typed λ-terms.
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The translation P of a proposition P is simply obtained by replacing occurrences of
ñ by the functional type constructor Ñ and atomic propositions A with a base type ιA.
For example, the type corresponding to the proposition pA ñ Bq ñ A ñ B is the type
pιA Ñ ιBq Ñ ιA Ñ ιB.

Translation of proofs follows by a direct induction. Given a proof of A1, � � � , An $ B

in natural deduction for the minimal propositional logic of Gentzen [20], we construct a
λ-term of type B in the context px1, A1q, � � � , pxn, Anq:

· the proof of A1, � � � , An $ Ai is translated to xi.

· the proof Ω $ P ñ Q obtained viañ-intro from the proof π of Ω, P $ Q is translated
to λrx : Ps. q where q is the translation of π.

· the proof of Ω $ Q obtained via ñ-elim from the proofs π of Ω $ P ñ Q and ψ of
Ω $ P is translated to t u where t is the translation of π and u the translation of ψ.

By denoting π the translation of π, it is easy to check that

π is a proof of A1, � � � , An $ B if and only if px1, Aiq, � � � , pxn, Anq $ π : B.

As an example, the translation of the usual proof pA ñ Bq ñ A ñ B is the λ-term

λrp : ιA Ñ ιBsrx : ιAs. p x.

Cut Elimination

One important remark done by W. Tait: β-reduction coincide with the cut elimination in
natural deduction. Indeed, from the following proof π containing a cut (the corresponding
λ-terms are also given):

Γ, x : P $ t : Q ñ-intro
Γ $ λrx : Ps. t : P ñ Q Γ $ u : P ñ-elim

Γ $ pλrx : Ps. tqu : Q

it is easy to check the term ttx ÞÑ uu (obtained by β-reduction from pλrx : Ps. tqu) is the
translation of the proof obtained from π in which the cut has been eliminated.

This emphasizes the importance of the normalization of β-reduction in these systems.

Beyond minimal propositional logic

Although the simply typed λ-calculus is powerful enough to represent any proof of the
minimal propositional logic, it is not powerful enough to represent the proofs of all the
simply type logic or the �rst order logic. Some extension has then be done in order to
capture more proofs.

Dependent types

N. de Bruijn and Howard introduced in 1968 [17] and 1969 [28] the notion of dependent
types, an extension of simple types which permits to capture all propositions and proofs of
intuitionist �rst-order logic.

5



1. Introduction

A dependent type is simply a function from objects to types. A canonical example of
dependent types is the type of vectors where the size for the vector is present in its type.
Thus, there is not a single type vector for vectors, but an in�nite family of types vector 0,
vector 1, etc... for vectors of size 0, 1, etc... One problem arises when looking the type of
a function f which takes a natural number n and returns an vector of size n. The simple
arrow type is not expressive enough since no dependency exists between the codomain
and the domain of an arrow type. A new type constructor is therefore introduced: the
dependent product @px : Aq. B which is a generalization of A Ñ B where B can depend from
x. Returning to our function f, we can now write its type as @px : natq. vectorn.

One important point with dependent type systems is that there is no syntactic distinc�
tion between terms and types anymore: a single algebra of terms is given, the distinction
between object level terms and type level terms being done at typing. For that purpose,
two new constants (called sorts) are introduced: the type of propositions and basic types
�, and the type of predicate types �.For example, the type of natural number nat has type
�, whereas the type of the even predicate has type natÑ � which itself has type �.

As for simply typed λ-calculus, a notion of typing judgments was given for the dependent
λ-calculus, also called λΠ-calculus. As an example, we give the rules for the formation of
dependent products and sorts in λΠ

Γ $ T : � Γ, rx : T s $ U : s P t�, �u
Γ $ @px : Tq. U : s $ � : �

Such a rule allows e.g. the formation of the type nat Ñ � (for typing the vector
constructor e.g.), or the type natÑ � (for typing the proposition @pn : natq. evenn e.g.).

Rules for application and λ-abstraction are then generalized so that they take into
account the dependency of products (hence the substitution in the type of an application):

Γ, rx : T s $ u : U Γ $ @px : Tq. U : s P t�, �u
Γ $ λrx : T s. u : @px : Tq. U

Γ $ t : @px : Uq. V Γ $ u : U

Γ $ t u : Vtx ÞÑ uu
Last, as stated in previous section, β-convertible propositions are identi�ed. This is

done in λΠ by the introduction of a conversion typing rule:

Γ $ t : T Γ $ T 1 : s P t�, �u T
βÐÑ� T 1

Γ $ t : T 1

Polymorphism

Although λΠ-calculus captures more proof than simply typed λ-calculus, it does not capture
the impredicative part of simple type theory, i.e. the ability to quantify over predicates.

This problem was solved by J.-Y. Girard [23, 24] with its polymorphic λ-calculus: Fω.
What forbids us to quantify over predicates in λΠ is the restriction over products domain:
they must be of type �. This restriction is removed in Fω, the new rules for products
construction being:

Γ $ T : � Γ, rx : T s $ U : s P t�, �u
Γ $ @px : Tq. U : s

Γ $ T : � Γ, rx : T s $ U : �
Γ $ @px : Tq. U : �
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For example, in such a system, it is possible to type the term @pP : �q. P Ñ P (i.e. the
type corresponding to the proposition @P : o. P ñ P in simply typed logic) as � Ñ � is a
valid type. Likewise, it is possible to de�ne type constructors, like the list : � Ñ � where
listA denotes the lists whose element are of type A.

Calculus of Constructions

In 1991, H. Barendregt remarks that all these typed λ-calculi di�er from their products
formation typing rules, being of the form:

Γ $ T : s1 , Γ, rT : s1s $ U : s2

Γ $ @px : Tq. U : s2

where s1, s2 are sorts. For example, in the simply typed calculus, s1 � s2 � � whereas in
λΠ, s1 � � and s2 P t�, �u.

The Calculus of Constructions (CC) of T. Coquand and G. Huet [14], which is the basis
of the Coq proof assistant, is simply obtained by allowing all kinds of products (i.e. s1 and
s2 being unrestricted).

Logical Systems Expressiveness

One can ask which functions are expressible using β-reduction of typed λ-calculi: very few
indeed. For example, in the simply typed λ-calculus, using Peano representation of natural
numbers (i.e. using a base type nat and two symbols 0 : nat and S : natÑ nat), it is only
possible to express constant functions and functions adding a constant to their arguments.

On the contrary, in simple type theory, it is possible to prove the existence of functions
that are not expressible using λ-terms: while it is possible to construct proofs using the
induction principle, it is not possible to β-de�ne functions using recursion.

Inductive Types

This is the idea of Gödel system T : extending the simply typed λ-calculus so that such
de�nitions are possible. For this, besides the constant nat, 0 and S, a new symbol ElimT

of type T Ñ pnat Ñ T Ñ Tq Ñ nat Ñ T is introduced for every type T , along with new
reduction rules:

ElimT v0 vS 0 ι−Ñ v0 ElimT v0 vS pS tq ι−Ñ vS t pElim v0 vS tq
In such a system, addition can then simply de�ned as the λ-term

λrxy : nats.Elimnat y pλrr z : nats. S zq x
In the Calculus of Constructions, the problem is di�erent. Although it is possible

to express far more functions than in the simply typed λ-calculus, one can not express
functions as she likes due to the encoding used for the embedding of natural numbers (we
say that natural numbers are impredicatively de�ned). For example, it is not possible to
de�ne the predecessor function so that its evaluation is in constant time.

This is the main reason for the introduction by T. Coquand and C. Paulin [15] of
the Calculus of Inductive Constructions (CIC), an extension of CC where it is possible

7



1. Introduction

to de�ne inductive types and used their induction principles to de�ne terms. As for the
Gödel's system T , new reduction rules (the ι-reduction) are added for the elimination of
recursor symbols. Moreover, following P. Martin-Löf [31] type theory (an extension of λΠ

with inductive types), the ι-reduction is added to the conversion rule.

One point of having ι-reduction in the conversion is that more propositions are iden�
ti�ed. E.g., if � is de�ned by induction on its �rst argument and P is a predicate over
natural numbers, then the two propositions P x and P p0� xq are identi�ed since these two
terms are convertible. Alas, this is not true for P x and P px�0q, x�0 being not convertible
to x by ι-reduction.

Rewriting in the Calculus of Constructions

One �rst solution to this problem is the introduction in the conversion rule of a rewriting
system along with the standard β-reduction. Lot of works has been done along this, the
most noticeable one being the Calculus of Algebraic Constructions of F. Blanqui [4].

As an example, using rewriting, one can de�ne addition as the following rewriting
system

0� xÑ x x� 0Ñ x pS xq � yÑ Spx� yq.
The immediate consequence is the identi�cation of the three propositions P x, P px� 0q

and P p0� xq.

Extensionality in the Calculus of Constructions

One more recent extension is the Extensional Calculus of Constructions (CCE) of N. Ou-
ry [35] which is an extension of the Extended Calculus of Constructions (a Pure Type
System with a hierarchy of cumulative sorts �i and an impredicative sort � [30]).

Roughly, terms and typing rules of CCE are as in the Extended Calculus of Construc�
tions, but with an abstract conversion relation �Γ instead of the standard β-conversion.
The relation �Γ is then de�ned as the weakest congruence including β-conversion and
the propositional Leibniz equality of CCE (denoted by 9�), hence the name of Extensional
Calculus of Constructions. (Rules of Figure 1.1 de�ne the Conversion �Γ where $E de�
notes the typing judgment of CCE - the re�exivity, symmetry and transitivity rules being
omitted)

Γ $E pλrx : Us. tqu : T
[β]

λrx : Us. t �Γ ttx ÞÑ uu
t1 �Γ u1 t2 �Γ u2

[App]
t1 t2 �Γ u1 u2

T �Γ U t �Γ,rx:T s u
[Prod]@px : Tq. t �Γ @px : Uq. u

T �Γ U t �Γ,rx:T s u
[Lam]@px : Tq. t �Γ @px : Uq. u

Γ $ p : T1 � T2
[Ext]

T1 �Γ T2

Figure 1.1: CCE Conversion Relation
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As shown in [35], this calculus is expressive enough to convert two functions which are
point to point equal. Indeed, if in a typing environment Γ, rx : As, we have a proof of t 9� u,
then we easily obtain that λrx : As. t is convertible to λrx : As. u:

π

Γ, rx : As $E p : t 9� u
[Ext]

t �Γ,rx:As u
[Refl]

A �Γ A
[Lem]

λrx : As. t �Γ λrx : As. u

Unfortunately, such a powerful conversion rule immediately leads to the undecidability
of type-checking. Intuitively, this is due to the [Ext] rule erasing the witness of equality
properties. See [35] for an encoding of the halting problem into the CCE type-checking
problem.

Worst, basic properties of Pure Type Systems are lost. For example, β-strong nor�
malization of well-formed terms is lost as the whole lambda calculus can be encoded in
a context Γ containing an equation of the form A 9� A Ñ A. Using extensionality, it is
immediate to verify that the identity id � λrx : As. x over A has type A Ñ pA Ñ Aq (roll)
and type pA Ñ Aq Ñ A (unroll). Thus, the standard encoding | � | of pure lambda calculus
to the simply typed lambda calculus with recursive types can be used:

|x| � x, |λx. t| � roll pλrx : As. |t|q, |mn| � punroll |m|q |n|
One can then check that any closed term |t| is well formed under Γ .

1.2 Safety of Proof assistants

The safety of proof assistants is based on the trustability of their kernel, a proof-checker
that processes all proofs built by a user with the help of tactics that are available from
existing libraries or can otherwise be developed for achieving a speci�c task. In the early
days of Coq, the safety of its proof-checker relied on its small size and its clear structure
re�ecting the inference rules of the intuitionistic type theory, the Calculus of Constructions,
on which it was based. The slogan was that of a readable kernel.

Moving later to the Calculus of Inductive Constructions allowed to ease the speci�cation
tasks, making the system very popular among proof developers, but resulted in a more
complex kernel that can now hardly be read except by a few specialists. The slogan
changed to a provable kernel, and indeed, one version of Coq kernel was once proved with
an earlier version (using strong normalization as assumption), and a new safe kernel was
extracted from that proof [1].

Of course, there has been many changes in the kernel since then, and its correctness
proof was of course not maintained. This is a �rst weakness with the provable kernel
paradigm: it does not resist changes very well. There is a second, more important, which
relates directly to our calculus: there is no guarantee that a decision procedure taken from
the shelf implements correctly the complex mathematical theorem on which it is based,
since carrying out such a proof may require an entire PhD work. Therefore, these proce�
dures cannot be part of the kernel, and be used to identify propositions in the conversion
relation.
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1. Introduction

1.3 Contributions

Our main contribution is the de�nition and study of a new calculus, the Calculus of Con�
gruent and Inductive Constructions, an extension of the Calculus of Inductive Construc�
tions (CIC) integrating in its computational part the entailment relation of a �rst order
theory over equality. A major technical innovation of this work lies in the computational
mechanism: goals are sent to the decision procedure together with a set of user hypotheses
available from the current context.

Our main results show that this extension of CIC does not compromise its main prop�
erties: con�uence, strong normalization, consistency and decidability of proof-checking are
all preserved (as soon as the incorporated theory is itself decidable). As such, our calculus
can be seen as a decidable restriction of the Extensional Calculus of Constructions. It can
therefore serve as the basis for an extension of the Coq proof assistant.

Unlike previous calculi, the main di�culty here is con�uence, which led to a complex
de�nition of conversion as a �x-point. As a consequence, decidability of type-checking
becomes itself di�cult, and does not reduce to the problem of terms reduction w.r.t. a
rewriting system. Instead, a new decision algorithm, mixing standard CIC reduction and
a saturation algorithm w.r.t. the incorporated theory, is de�ned.

1.4 Outline of the thesis

The document is structured as follow:

Chapter 2 The Calculus of Presburger Constructions. We de�ne the Calculus of Pres�
burger Constructions, an extension of the Calculus of Inductive Constructions (with�
out strong reduction) integrating in its computational part the Presburger arithmetic,
and describe how its conversion relation can be decide.

Chapter 3 The Calculus of Congruent and Inductive Constructions. We de�ne our main
Calculus, the Calculus of Inductive and Congruent Constructions, and prove all its
meta-theoretical properties but the decidability.

Chapter 4 Meta-theoretical Properties of CCIC . We state and prove all the needed
meta-theoretical properties of CCIC.

Chapter 5 Decidability. We here describe how our calculus can be decide and give proofs
of completeness and correction of the procedure.

Chapter 6 Further works and conclusion We conclude by enumerating several directions
for future research.
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chapter 2

The Calculus of Presburger
Inductive Constructions

Before describing our calculus in all its generality, we �rst de�ne in this chapter CCN [6], an
extension of the calculus of constructions incorporating i) a type nat of natural numbers
generated by its two constructors 0 and S, and equipped with its addition � and weak
recursor RecW

N , ii) a polymorphic equality symbol 9�.
The main modi�cation is obtained by replacing T

βÐÑ� T 1 in the conversion rule:

Γ $ t : T Γ $ T 1 : s 1 T
βÐÑ� T 1

Γ $ t : T 1
by a contextual relation T �Γ T 1 containing (in addition to β-reduction and the reduction
associated with RecW

N ) the entailment relation ( of Presburger arithmetic TN. For example,
�Γ will include the property @n.@p. n� p�Γ p�n, since TN ( n� p � p�n holds. The
relation �Γ will also includes any TN-equation extractable from the typing environment Γ

s.t., if Γ contains - for example - the two equations n � p� 1 and p � 1, then n�Γ 2 will
hold (as TN ( pn � p� 1^ p � 1q ñ n � 2).

See Section 2.3 for detailed examples.

From now on, TN denotes the Presburger arithmetic over the signature Σ � t0, S,�u
and equality predicate �. We write TN ( P if P is a valid TN-formula and TN, E ( P if
TN ( �tQ | Q P Fu ñ P for some possibly in�nite set E of TN-formulas and some �nite
subset F of E. For any set of variables Y, TΣpYq denotes the set of TN-terms over variables
Y. We write TΣ for TΣpHq.

2.1 Terms of the calculus

CCN uses two sorts: � (or Prop, or object level universe) and � (or Type, or predicate level
universe). We denote the set t�, �u of CCN sorts by S.

As usual, following the presentation of Pure Type Systems [21], we use two classes
of variables: let X� (resp. X�) a countably in�nite set of term variables (resp. predicate
variables) such that X� and X� are disjoint. We write X for X� Y X�. If x P Xs, we write
sx for s.

Let A � tr, uu be a set of two constants, called annotations, where r stands for restricted
and u for unrestricted.

We use the following notations: s range over S

x, y, . . . � X

X, Y, . . . � X�

a, b, . . . � A
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2. The Calculus of Presburger Inductive Constructions

De�nition 2.1 CCN terms algebra

The algebra CCN of pseudo-terms of CCN is de�ned as:

t, u, T, U, . . . :� s P S | x P X | nat | 0 | S | 9� | RecW
N pt, Uqtv0, vSu

| @px :a Tq. t | λrx :a T s. t | t u | 9�| EqT ptq | Leib
Note 1

Apart from the introduction of new symbols for natural numbers and the equality predicate,
the di�erence between these terms and the ones from the Calculus of Constructions is the
introduction of annotations for products and abstractions.

Notation. The polymorphic equality symbol will be used in mix�x form t 9�T u or t 9� u

when T is not relevant. EqT ptq will denote the proof by re�exivity of t 9�T t and Leib the
Leibniz equality predicate. We shall distinguish the �rst-order equality predicate � from
the CCN polymorphic equality 9�. We also shall distinguish the �rst order symbols (0, S

and �) of TN from their CCN counterpart (0, S and 9�). We write p (in bold face) for the
p-iteration S p� � � pS 0qq and p (in normal font) for the p-iteration Sp� � �Sp0qq.
Note 2

The notion of free variables is as usual. If t is a CCN term, we write FVptq for the set of
free variables of t. We say that t is closed if FVptq � H. A variable x occurs freely in t if
x P FVptq.
Note 3

If θ in a L-substitution (i.e. a �nite mapping tx1 ÞÑ t1, . . . , xn ÞÑ tnu from X to L), we
write tθ for the (capture free) substitution of the xi's by the ui's in t. If #«

θi is a sequence of
L-substitutions, the sequential substitution t

#«

θi is de�ned by: i) tε � t ii) tpθ #«

θiq � ptθq #«

θi.
The domain (resp. co-domain) of a L- substitution θ is written dompθq (resp. codompθq).

2.2 The conversion relation

Our calculus has a complex notion of computation re�ecting its rich structure made of three
ingredients: the typed lambda calculus, the type of natural numbers with its recursor and
the integration of the �rst order theory TN in its conversion.

Inductive de�nitions

A de�nition by induction over natural numbers is denoted by the dependent recursor a la
Martin-Löf RecW

N pn, Tqtt0, tSu where t is the term being deconstructed, T t the type of the
result, and t0, tS the branches of the de�nition. The reduction relation associated to RecW

N
is de�ned as usual:

De�nition 2.2 ι-reduction

The ι-reduction ι−Ñ is the smallest rewriting relation s.t.:

RecW
N p0, Tqtt0, tSu ι−Ñ t0

RecW
N pS t, Tqtt0, tSu ι−Ñ tS t RecW

N pt, Tqtt0, tSu
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A canonical example of inductive de�nitions over natural numbers is the de�nition of
the addition or multiplication (here multiplication, since addition has been internalized)
by induction:

λrxy : nats.RecW
N px, λrn : nats. natqt0, λrp r : nats. r 9�yu

Algebraisation

As said, our conversion sends goals to the Presburger arithmetic TN along with a set of proof
hypotheses extracted from the typing environment. Algebraisation is the �rst step of this
hypotheses extraction: it allows transforming a CCN term into its �rst-order counterpart.

We begin by the simplest case, the extraction of pure algebraic equations. Suppose
that the proof environment contains equations of the form c 9� 1 9�d and d 9� 2. What is
expected is that the set of hypotheses sent to the theory TN contains the two well formed
TN-formulas c � 1� d and d � 2. This leads to a �rst de�nition of equations extraction:

1. a term is algebraic if it is of the form 0, or S t, or t 9�u, or x P X�. The algebraisation
Aptq of an algebraic term is then de�ned by induction: Ap0q � 0, ApS tq � SpAptqq,
Apt 9�uq � Aptq �Apuq and Apxq � x,

2. a term is an extractable equation if it is of the form t 9� u where t and u are algebraic
terms. The extracted equation is then Aptq � Apuq.

We now come to the case of algebraisation of non-pure algebraic terms or even ill-formed
terms. The problem can be simply solved by abstracting non-algebraic subterms with fresh
variables. For example, algebraisation of 1 9� t with t non-algebraic will yield 1� x where
x is an abstraction variable. Of course, if the proof context contains two equations of the
form c 9� 1 9� t and d 9� 1 9�u with t and u β-convertible, t and u should be abstracted by
a unique variable so that c � d can be deduced in TN from c � 1� y and d � 1� y.

We now give the formal de�nition of Ap�q.
Let Y be a set of variables disjoint from X. For any equivalence relation R, we suppose

the existence of a function πR : CCN Ñ Y s.t. πRptq � πRpuq if and only if t R u (i.e.
πRptq is the variable in Y representing the class of t modulo R).

De�nition 2.3 Algebraisation

Let t be a term in CCN and R an equivalence relation. The algebraisation of t modulo R

is the function AR : CCN Ñ TNpX� Y Yq de�ned by:

ARpxq � x if x P X�
ARp0q � 0

ARpS tq � SpARptqq
ARpt 9� uq � ARptq �ARpuq

ARptq � ΠRptq otherwise

For an arbitrary relation R, AR is de�ned as AR where R is the smallest equivalence
relation containing R. We call alien the subterms of t abstracted by a variable in Y.
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2. The Calculus of Presburger Inductive Constructions

Typing environments

Conversion being contextual, we now need to de�ne typing environments of our calculus.

De�nition 2.4 Pseudo-contexts of CCN
The typing environments of CCN are de�ned as Γ, ∆ ::� rs | Γ, rx :a T s s.t. a variable cannot
appear twice. We use dompΓq for the domain of Γ and xΓ for the type associated to x in Γ .

Remark that in our calculus, assumptions stored in the proof context always come along
with an annotation a P A used to control whether they can be used (when a � r) or not
(when a � u) in a conversion goal. We will later point out why this is necessary.

Conversion relation

Befored de�ning our conversion relation, we are left to give the usual layered de�nition of
PTSs terms, extended to the CCN case.

De�nition 2.5 Syntactic classes

The pairwise disjoint syntactic classes of CCN called objects (O), predicates (P), kinds
(K), � are de�ned in Figure 2.1.

O ::� X� | 0 | S | 9� | O O | O P | EqPpOq | Leib
::� λrx� :a Ps. O | λrx� :a Ks. O | RecW

N pO, PqtO, Ou
P ::� X� | nat | 9�| PO | P P | λrx� :a Ps. P | λrx� :a Ks.P

::� @px� :a Pq. P | @px� :a Kq. P
K ::� � | @px� :a Pq. K | @px� :a Kq. K
� ::� �

Figure 2.1: CCN terms classes

This classes play a crucial role as we only authorize equations extraction and conversion
using Presburger arithmetic to occur at object level. See Section 2.5 for a discussion about
equations extraction.

We can now de�ne the Γ -indexed family of conversion relations t�Γ uΓ .
De�nition 2.6 Conversion relation �Γ

Rules of Figure 2.2 de�nes a family t�Γ u of CCN binary relations.

This de�nition is technically complex:

· being a congruence, �Γ includes congruence rules. However, all these rules are not
quite congruence rules since crossing a binder increases the current context Γ by the
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t
βι−Ñ� t 1 t 1�Γ u

[βι-Left]
t�Γ u

u
βι−Ñ� u 1 t�Γ u 1

[βι-Right]
t�Γ u

rx :r T s P Γ T
β−Ñ� t1 9� t2 t1, t2 P O

[Eq]
t1�Γ t2

TN, E ( A�Γ
pt1q � A�Γ

pt2q
t1, t2 P O E � tA�Γ

pu1q � A�Γ
pu2q | u1�Γ u2u [Ded]

t1�Γ t2

t�Γ u
[Sym]

u�Γ t

t�Γ u u�Γ v
[Trans]

t�Γ v

T �Γ U t�Γ u
[CCN-Eq]EqT ptq�Γ EqUpuq

t1�Γ t2 u1�Γ u2
[App]

t1 u1�Γ t2 u2

T �Γ U t�Γ,rx:aT s u
[Prod]@px :a Tq. t�Γ @px :a Uq. u

T �Γ U t�Γ,rx:aT s u
[Lam]

λrx :a T s. t�Γ λrx :a Us. u
t�Γ u P�Γ Q t0�Γ u0 tS�Γ uS

[Elim-W]
RecW

N pt, Pqtt0, tSu�Γ RecW
N pu, Qqtu0, uSu

Figure 2.2: Conversion relation �Γ

new assumption made inside the scope of the binding construct, resulting in a family
of congruences.

· �Γ includes all the relevant assumptions grabbed from the context, this is the rule
[Eq]. These assumptions must be of the form rx :r T s (i.e. with the appropriate
annotation r), and T must β-reduce to a term headed by 9�. Note that we do not
require T to be �Γ -convertible to an algebraic predicate here. Doing this would not
change �Γ , but would complicate the study of the calculus.

· we use the theory TN to generate new assumptions: this is the rule [Ded].

· Finally, �Γ includes βι-reductions. Unlike the β-rule, ι−Ñ interacts with �rst-order
rewriting, and therefore forbids to express the [Conv] rule of Figure 2.4 as

T
βιÐÑ��Γ

βιÐÑ� T 1
(�Γ being de�ned like �Γ without the βι rule). A simple example demonstrate this.
Suppose that Γ is a typing environment containing two extractable equations x 9� 0
and y 9� 1. One can indeed easily check that

RecW
N px,Qqty, vSu�Γ RecW

N p0, Qqty, vSu ι−Ñy�Γ 1

but in general, RecW
N px, Qqty, vSu�Γ 1 does not hold.

Before going to the typing rules, we give some examples of conversion.
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2. The Calculus of Presburger Inductive Constructions

2.3 Two simple examples

More automation - smaller proofs. We start with a simple example illustrating how
the equalities extracted from a context Γ can be use to deduce new equalities in �Γ .

Γ � rxy t :u nats, rf :u natÑ nats,
rp1 :r t 9� 2s, rp2 :r f px 9� 3q 9� x 9� 2s,
rp3 :r f py 9� tq 9� 2 9� ys, rp4 :r y 9� 1 9� x 9� 2s

From p1 and p4 (extracted from the context by [Eq]), [Ded] deduces that y 9� t�Γ x 9� 3,
and by congruence, f py 9� tq�Γ f px 9� 3q. Therefore, π�Γ

abstracts fpx 9� 3q and fpy 9� tq by
the same variable z, resulting in two new equations available for [Ded]: z � x � 2 and
z�2 � y. Now, z � x�2, z�2 � y and y�1 � x�2 form a set of unsatis�able equations
and we deduce 0�Γ 1 by the [Ded] rule: contradiction has been obtained. This shows that
we can easily carry out a proof by contradiction in TN.

More typable terms. We continue with a second example showing that the new calculus
can type terms that are not typable in CIC. For the sake of this example we assume that
CCN is extended by dependent lists on natural numbers. These dependent lists are de�ned
as a standard inductive type (without a built-in theory of lists). This is a simple extension of
CCN that will be justi�ed later. We denote by list (of type natÑ �) the type of dependent
lists and by nil (of type list 0) and cons (of type @pn : natq. nat Ñ listn Ñ list pSnq) the
lists constructors.

Assume now given a dependent reverse function (of type @pn : natq. listnÑ listn) and
the list concatenation function @ (of type @pnn 1 : natq, listn Ñ listn 1 Ñ list pn 9�n 1q).
We can simply express that a list l is a palindrome: l is a palindrome if reverse l 9� l.

Suppose now that one wants to prove that palindromes are closed under substitution of
letters by palindromes. To make it easier, we will simply consider a particular case: the list
l1l2l2l1 is a palindrome if l1 and l2 are palindromes. The proof sketch is simple: it su�ces
to apply as many times as needed the lemma reversepl@l 1q � reversepl 1q@reverseplq p�q.
What is quite surprising is that Lemma p�q is rejected by the current version of Coq. Indeed,
if l and l 1 are of length n and n 1, it is easy to check that reversepl@l 1q is of type list pn 9�n 1q
and reversepl 1q@reverseplq of type list pn 1 9�nq which are clearly not βι-convertible. This
is not true in our system: n 9�n 1 will of course be convertible to n 1 9�n and lemma p�q
is therefore well-formed. Proving the more general property needs of course an additional
induction on natural numbers to apply lemma p�q the appropriate number of times, which
can of course be carried out in our system.

Note that, although possible, writing a reverse function for dependent lists is not that
simple in Coq. Indeed, a direct inductive de�nition of reverse will de�ne reversepconsna lq,
of type list p1 9�nq, as reverseplq @ a, of type list pn 9� 1q. Coq will reject such a de�nition
since list p1 9�nq and list pn 9� 1q are not convertible. Figure 2.3 shows how reverse can be
(painfully) de�ned in Coq.
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Coq < De�nition reverse: forall (n: nat), (list n) -> (list n) .
Coq < assert (reverse_acc : forall (n m : nat),
Coq < list n -> list m -> list (m+n)) .
Coq < re�ne (�x reverse_acc (n m : nat) (from : list n) (to : list m)
Coq < {struct from} : list (m+n) := _) .
Coq < destruct from as [ | n' v rest ] .
Coq < rewrite <- plus_n_0_transparent; exact to .
Coq < rewrite <- plus_n_Sm_transparent;
Coq < exact (reverse_acc n' (S m) rest (cons _ v to)) .
Coq < intros n l . exact (reverse_acc _ _ l nil) .
Coq < De�ned .

Figure 2.3: reverse function in Coq

2.4 Typing rules

Our typing judgments are classically written Γ $ t : T , meaning that the well-formed t

is a proof of the proposition T under the assumptions in the well-formed environment Γ .
Typing rules are those of CIC restricted to the single inductive type of natural numbers,
with two exceptions: i) the conversion rule [Conv] based on the conversion relation de�ned
in previous section, ii) the application rule [App].

De�nition 2.7 CCN typing relation

Typing rules of CCN are de�ned in Figure 2.4.

2.5 Consistency

We don't give a detailed proof of consistency here, (see Chapter 3 for de�nition of a more
general calculus and for a proof of its consistency) but illustrate by examples our di�erent
design choices.

Extraction of object-level equations only

Allowing extraction of equations at type level breaks two important properties of the
calculus, strong normalization of β-reduction and type convertibility:

Strong normalization of β. Assuming possible the extraction of the type level equation
nat 9� nat Ñ nat leads immediately to the well formation (under any environment
Γ containing the extractable equation) of the non-normalizing term ω ω where ω �
λrx : nats. x x.

Type convertibility. Let p�, �q be a polymorphic constructor for pairs: pa, bqpA,Bq is of
type A � B where a (resp. b) is the type of A (resp. B), and π1 (resp. π2) denotes
the �rst projection (resp. the second projection) operator. Then, in any environment
s.t. the equation A � B � B �A is extractable, for any terms a, b of respective types
A, B, π1pa, bqpB,Aq is a well typed term of type B, whereas π1pa, bqpB,Aq ι−Ña is of
type A, and A and B are not necessarily convertible.
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2. The Calculus of Presburger Inductive Constructions

Γ $ V : s Γ $ t : T

s P t�, �u x P Xsz dompΓq
[Weak]

Γ, rx :a Vs $ t : T

x P dompΓq Γ $ xΓ : sx
[Var]

Γ $ x : xΓ

[ 9�-Intro]$ 9� : @pT :u �q. T Ñ T Ñ �
Γ $ T : sT Γ, rx :a T s $ U : sU

[Product]
Γ $ @px :a Tq. U : sU

Γ $ @px :a Tq. U : s Γ, rx :a T s $ u : U
[Lamda]

Γ $ λrx :a T su : @px :a Tq. U
Γ $ t : @px :a Uq. V Γ $ u : U

if a � r and U
β−Ñ� t1 9�T t2 with t1, t2 P O

then t1�Γ t2 must hold
[App]

Γ $ t u : Vtx ÞÑ uu
[Axiom-1]$ � : �

[Nat]$ nat : � [0-Intro]$ 0 : nat

[S-Intro]$ S : natÑ nat
[ 9�-Intro]$ 9� : natÑ natÑ nat

Γ $ t : T
[Eq-Intro]

Γ $ EqT ptq : t 9�T t

$ τLeib : s

τLeib � @pT : �qpt1 t2 : Tq. t1 9� t2 Ñ @pp : T Ñ �q. p t1 Ñ p t2 [Leib]$ Leib : τLeib

Γ $ t : nat Γ $ Q : natÑ � Γ $ f0 : nat
Γ $ fS : @pn :u natq. Q nÑ Q pSnq

[ι-Elim]
Γ $ RecW

N pt, Qqtf0, fSu : Q t

Γ $ t : T Γ $ T 1 : s 1 T �Γ T 1
[Conv]

Γ $ t : T 1

Figure 2.4: Typing judgement of CCN

In the full version of the calculus, the introduction of strong ι-reduction (i.e. the
possibility to construct predicates/types by induction) will reintroduce the problem of
type level conversion by allowing conversions at object level to be lifted up at type level.
RecS

N denoting here the strong recursor over natural numbers, this is the case for the term

V � RecS
Npp, Qqtnat, λrn :u natsrT :u Qns. natÑ natu
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Indeed, assuming that p�Γ 0 and p�Γ 1, then V �Γ
ι−Ñ nat and V �Γ

ι−ÑnatÑ nat.

This problem will be addressed later in the de�nition of the Calculus of Inductive
Congruent Constructions.

Annotations

Annotations are used to ensure that extractable equations are stable by reduction. Without
annotations, the property does not hold. For example, the typing of q in pλrx : t 9� usqqp
would make use of the equation t 9� u, whereas the typing of its reduce qtx ÞÑ pu can no
more use the equation (unless t 9� u is redundant): it has been in some sense inlined.

Forbidding the application pλrx :r t 9� usqqp (i.e. when the λ-abstraction is annotated
with the restricted annotation) �x this problem as it disallows the formation of the β-redex.

One may wonder how annotations can be handled in practice. As seen, annotations are
used to forbid inlining (when a β-redex is contracted) of equational assumptions used by
conversion. This restriction can be removed by using the notion of opaque de�nitions (as
opposed to transparent de�nitions) of Coq which allows the user to de�ne symbols that
the system cannot inline. In most cases, de�nitions having a computational behavior (like
9�) are transparent whereas de�nitions representing lemmas (like the associativity of 9�)
are opaque. This convention is used in the standard library of Coq.

Returning to our previous example, if the user needs to prove a lemma of the form
@px :r t 9� uq. T , she should declare it as an opaque de�nition P :� λrx :r t 9� usq.
The application of P to a term v should then be allowed: the term P v cannot reduce to
ptx ÞÑ vu. Of course, if P is de�ned transparently, the application P v has to be forbidden
as previously.

Moreover, this gives a simple heuristic to automatically tag products and abstractions:
the restricted annotation should be used by default when the user is de�ning an opaque
symbol, whereas the unrestricted annotation should be used everywhere else.
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chapter 3

The Calculus of
Congruent Inductive Constructions

The Calculus of Congruent Inductive Constructions is a modi�cation of the Calculus of
Inductive Constructions which embeds in its conversion the validity entailment of a �xed
�rst-order theory over equality.

This chapter is organized as follow. We �rst recall the full de�nition of the Calculus
of Inductive Construction as described in [48], with the restrictions given in [5]. We then
introduce parametric multi-sorted theories. These theories play a crucial role as they will
be embeded into the conversion relation of CCIC. Last, we de�ne our calculus, and describe
in details how theories are built in the conversion relation.

3.1 The Calculus of Inductive Constructions

Terms of the calculus

We start our presentation by �rst describing the terms algebra of the Calculus of Inductive
Constructions.

CIC uses two sorts: � (or Prop, or object level universe) and � (or Type, or predicate
level universe). We denote t�, �u, the set of CIC sorts, by S.

We use two classes of variables: let X� (resp. X�) be a countably in�nite set of term
variables (resp. predicate variables) such that X� and X� are disjoint. We write X for
X� Y X�.

We use the following notations: s range over S

x, y, . . . � X

X, Y, . . . � X�

We can now de�ne the algebra of CIC terms:

De�nition 3.1 Pseudo-terms

The algebra CIC of pseudo-terms of CIC is de�ned as:

t, u, T, U, . . . :� s P S | x P X | @px : Tq. t | λrx : T s. t | t u

| IndpX : tqt #«

Tiu | trns | Elimpt : T r # «uis Ñ Uqt #  «wju
Note 4

The notion of free variables is as usual - the binders being λ, @ and Ind (in IndpX : tqt #«

Tiu,
X is bound in the Ti's). If t P CIC, we write FVptq for the set of free variables of t. We
say that t is closed if FVptq � H. A variable x occurs freely in t if x P FVptq.
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3. The Calculus of Congruent Inductive Constructions

Inductive types

The novelty of CIC was to introduce inductive types, denoted by I � IndpX : Tqt #          «

CipXqu
where the #          «

CipXq's describe the types of the constructors of I, and T the type (or arity) of
I itself, which must be of the form @p #          «

xi : Tiq. �. The k-th constructor of the inductive type
I, of type CktX ÞÑ Iu, is denoted by Irks.

Example 3.2

The type of natural numbers can be represented by the inductive type nat � IndpX :

�qtX, X Ñ Xu where the �rst constructor 0 � natr1s (of type XtX ÞÑ natu) represents zero,
and the second constructor S � natr2s (of type pX Ñ XqtX ÞÑ natu) represents the successor
function.

For the consistency of CIC not all inductive types are accepted, but only the ones which
are strictly positive, a notion that we de�ned now:

De�nition 3.3 Strictly Positive Inductives Types

A term CpXq is a constructor type in X if CpXq � @p #           «

xi : Uiq. X #«u with X not free in #«u .
It is moreover strictly positive if for any i, X does not occur in Ui or Ui � @p #      «

z : Vq. X #«v

with X not free in #«

V nor in #«v .

An inductive type I � IndpX : Tqt #          «

CipXqu is strictly positive if all its constructors are
strictly positive constructor types in X.

Example 3.4

The constructors of nat :� IndpX : �qtX,X Ñ Xu are clearly all strictly positive. A more
complicated example using the de�nition of constructor types in all its generality is the
one of enumerable ordinals

ord :� IndpX : �qtX, XÑ X, pnatÑ Xq Ñ Xu
whose constructor types are all strictly positive. See example 3.7 for an example of a
non-strictly positive constructor type.

De�nition by induction

A de�nition by induction on an inductive type I is denoted by Elimpt : I r # «uis Ñ Qqt #«vju
where the # «ui's are the arguments of I, t the term being deconstructed (of type I # «ui), and
Q # «ui t the type of the result. The #«vj's represent the branches of the inductive de�nition,
as explained later.

The reduction relation associated with an inductive de�nition is the ι-reduction, written
ι−Ñ. For instance, the addition over nat can be de�ned by induction on its �rst argument
as follow:

λrxy : nats.Elimpx : nat rεs Ñ Qqty, λrp r : nats. S ru
with Q � λrv : nats. nat, given that:

Elimp0 : nat rεs Ñ Qqtv0, vSu ι−Ñ 0
ElimpS t : nat rεs Ñ Qqtv0, vSu ι−Ñ vS t pElimpt : nat rεs Ñ Iqtv0, vSuq.
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We now give the general de�nition of ι-reduction:

De�nition 3.5 ι-reduction

Given an inductive de�nition I, the ι-reduction ι−Ñ is the smallest rewriting relation such
that:

ElimpT rks #«z : I r #«us Ñ Qqt #«

f u ι−Ñ∆rI, X, Ck, fk, Q,
#«

f , #«z s
where I � IndpX : @p #       «

x : Aq. �qt #       «

CpXqu, and ∆rI, X, Ck, fk, Q,
#«

f , #«z s is de�ned as follow:

· ∆rI, X, X #«m, f, Q,
#«

f , εs � f,
· ∆rI, X,@px : Bq. D, f, Q,

#«

f , z #«z s � ∆rI, X, Dtx ÞÑ zu, f z, Q,
#«

f , #«z s
if X does not occur in B,

· ∆rI, X,@px : Bq. D, f, Q,
#«

f , z #«z s �
∆rI, X, Dtx ÞÑ zu, f z pλr #        «

y : Ds. Elimpz #«y : I r #«q s Ñ Qqt #«

f uq, Q,
#«

f , #«z s
if B � @p #        «

y : Dq. X #«q .

Example 3.6

Although now classical, this de�nition is quite technical. To illustrate it, we de�ne an
inductive predicate even of type natÑ � s.t. evenn is inhabited only if n is even (i.e. only
if n � 0 or n � S pSkq with evenk inhabited):

even � IndpX : natÑ �qtX 0,@pn : natq. Xn Ñ X pS pSnqqu
We write EvenO for evenr1s, and EvenS for evenr2s. We now de�ne a function div2

which takes a natural number k : nat, a proof p : evenk and computes k{2:
div2 � λrk : natsrp : evenks.Elimpp : even rks Ñ Qqtf1, f2u

where f1 � 0 and f2 � λrk 1 : natsrp 1 : evenk 1srr : nats. S r.

We do not explicit the form of Q which is only used for typing purposes.

Given that a closed and βι−Ñ-normal term p of type evenp
2�khkkikkj

S � � � pS 0qq must be of the form

p
khkkkkkkkkkikkkkkkkkkj

EvenS � � � pEvenS 0EvenOqq (this is a consequence of the inversion lemma for CIC), div2
simply proceeds by �counting the occurrences of EvenS in p�. We show in Figure 3.1 how
div2 pS pS 0qq pEvenS 0EvenOq reduces to S 0.

Example 3.7 Non positive constructor type

We here give a non positive type, where the occurrence of X which does not appear in
strict positive position is underlined:

absurd :� IndpX : �qtpX Ñ Xq Ñ Xu
If such a de�nition were allowed, it would be possible to construct non-strongly normal�

izing terms. For example, if f denotes the term:

f :� λrx : absurds.Elimpx : absurd rεs Ñ λry : absurds. absurdqtbu
with b :� λrv : absurdÑ absurds. v pabsurdr1s vq, then one can verify that

f pabsurdr1s fq βι−Ñ� f pabsurdr1s fq.
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3. The Calculus of Congruent Inductive Constructions

div2 pS pS 0qq pEvenS 0EvenOq
β−Ñ� ElimpEvenS 0EvenO : even rS pS 0qs Ñ Qqtf1, f2u
ι−Ñ ∆reven, X,@pn : natq. Xn Ñ X pS pSnqq, f2, Q,

#«

fi, r0EvenOss
� ∆reven, X, X 0Ñ X pS pS 0qq, f2 0, Q,

#«

fi, rEvenOss
� ∆reven, X, X pS pS 0qq, f2 0 ElimpEvenO : even r0s Ñ Qqtf1, f2u, Q,

#«

fi, εs
� f2 0EvenO ElimpEvenO : even r0s Ñ Qqtf1, f2u
ι−Ñ f2 0EvenO∆reven, X, X 0, f1, Q,

#«

fi, rss
� f2 0EvenO f1

β−Ñ� S 0

Figure 3.1: CIC ι-reduction example

Strong and Weak ι-reduction

CIC distinguishes two kinds of ι-elimination: the strong one, when the terms constructed
by induction are at predicate level, and the weak one, when they are at object level.
(The categorization of terms which de�nes these levels is given later) To ensure logical
consistency, strong ι-elimination is restricted to small inductive types, i.e. to inductive
types whose constructors do not take a predicate as argument:

De�nition 3.8 Small inductive types

A type constructor @p #          «

xi : Tiq. X #«
t in X is small if all the xi's are in X� (or equivalently for

terms that are typable, if all the Ti's are of type � in their respective environments). If not,
it is called a big type constructor. An inductive type is small if all its constructor types
are small.

Example 3.9

The inductive type I :� IndpX : �qt� Ñ Xu is not small. Allowing strong reduction on such
an inductive de�nition, we can de�ne two terms roll and unroll (of types IÑ � and � Ñ I)
s.t. unroll proll xq βι−Ñ� x:

roll� Ir1s
unroll� λrx : Is.Elimpx : I rεs Ñ Qqtrλrv : �s. vsu

Having such terms allows the encoding in CIC of a typed version of the Burali-Forti
paradox [11].

Typing judgments

The typing judgments are classically written Γ $ t : T , meaning that the well-formed term
t is a proof of the proposition T (or has type T) under the well-formed environment Γ ,
where environments are de�ned as follows:

De�nition 3.10 Typing environments of CIC

A typing environment Γ is a sequence of pairs rxi : Tis made of a variable xi and a term
Ti (we say that Γ binds xi to the type Ti), such that Γ does not bind a variable twice. Γ

can be seen as a substitution : xΓ will denote the type associated to x in Γ , and we write
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dompΓq for the domain of Γ as well.

Before describing how typing judgments are formed, we �rst de�ne the notion of con�
structor derivation. Constructor derivations are used for typing the branches of an induc�
tive de�nition.

De�nition 3.11 Constructor derivation

Given an inductive de�nition I, we de�ne:

· the �-level constructor derivation ∆�tI, X, C, Q, cu as:
· ∆�tI, X, X #«m,Q, cu � Q #«m c

· ∆�tI, X,@pz : Bq. D, Q, cu � @pz : Bq. ∆tI, X, D,Q, c zu if X does not occur in B

· ∆�tI, X,@pz : Bq. D, Q, cu �
@px : BtX ÞÑ Iuq. p@p #        «

y : Dq. Q #«q pz #«y qq Ñ ∆tI, X, D, Q, c zu
if B � @p #        «

y : Dq. X #«q

· the �-level constructor derivation ∆�tI, X, C, #«x y, K, cu as:
· ∆�tI, X, X #«m, #«x y, K, cu � Kt #            «x ÞÑ m,y ÞÑ cu
· ∆�tI, X,@pz : Bq. D, #«x y, K, cu � @pz : Bq. ∆�tI, X, D, #«x y, K, c zu
if X does not occur in B

· ∆�tI, X,@pz : Bq. D, #«x y, K, cu �
@pz : BtX ÞÑ Iuq. p@p #        «

y : Dq. Kt #            «x ÞÑ m, y ÞÑ cuq Ñ ∆�tI, X, D, #«x y, K, c zu
if B � @p #        «

y : Dq. X #«q

We can now de�ne the formation of Γ $ t : T :

De�nition 3.12 Typing judgment of CIC

Typing rules of CIC are de�ned in Figure 3.2 and 3.3.

3.2 Parametric multi-sorted theories with constructors

We choose to embed into the Calculus of Constructions any �rst-order theory expressed
by a parametric multi-sorted algebra, with some restrictions for the notion of constructor
symbols. These algebras can be easily mapped to the Calculus of Inductive Construction
and are expressive enough to describe any theory we want to embed in the calculus and for
which a decision procedure exists: linear arithmetic, datatypes, non-interpreted algebras,
rings.

Signature

The �rst part of this section is taken from the de�nition of parametric multi-sorted algebras,
with some restrictions for the introduction of constructor symbols.

De�nition 3.13

A set of sort constructors is any �nite set Λ whose elements are equipped with an arity. If
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3. The Calculus of Congruent Inductive Constructions

[Ax-1]$ � : �

Γ $ T : sT Γ, rx : T s $ U : sU
[Prod]

Γ $ @px : Tq. U : sU

Γ $ @px : Tq. U : s Γ, rx : T s $ u : U
[Lam]

Γ $ λrx : T s. u : @px : Tq. U
Γ $ V : s Γ $ t : T s P t�, �u x P Xs z dompΓq

[Weak]
Γ, rx : Vs $ t : T

x P dompΓq X Xsx Γ $ xΓ : sx
[Var]

Γ $ x : xΓ

Γ $ t : T Γ $ T : s Γ $ T 1 : s 1 T
βιÐÑ� T 1

[Conv]
Γ $ t : T 1

Figure 3.2: CIC Typing Rules (CC rules)

A � @p #      «

x : Tq. � $ A : � for all i, Γ $ CipXq : �
for all i, CipXq is a strictly positive constructor in X

I � IndpX : Aqt #          «

CipXqu is in βι−Ñ-normal form
[Ind]

Γ $ I : A

I � IndpX : Tqt #          «

CipXqu Γ $ I : T
[Constr]

Γ $ Irks : CktX ÞÑ Iu
A � @p #       «

x : Uq. � I � IndpX : Aqt #          «

CjpXqu Γ $ I : A $ Q : @p #       «

x : Uq. pI #«x q Ñ �
for all i, Ti � ∆�tI, X, CipXq, Q, Irisu $ Ti : � Γ $ fi : Ti

for all j, Γ $ aj : Ajt #           «x ÞÑ au Γ $ c : I #«a
[Elim-�]

Γ $ Elimpc : I r #«a s Ñ Qqt #«

f u : Q #«a c

A � @p #       «

x : Uq. � I � IndpX : Aqt #          «

CjpXqu is small

Q � @p #       «

x : Uqpy : I #«x q. K is in βι−Ñ-normal form r #       «

x : Us, ry : I #«x s $ K : �
for all i, Ti � ∆�tI, X, CipXq, #«x y, K, Irisu $ Ti : � Γ $ fi : Ti

for all j, Γ $ aj : Ajt #           «x ÞÑ au Γ $ c : I #«a
[Elim-�]

Γ $ Elimpc : I r #«a s Ñ Qqt #«

f u : Kt #     «x ÞÑ, y ÞÑ cu
Figure 3.3: CIC Typing Rules (Inductive Types)

E is a countably in�nite set disjoint from Λ of sort variables, the free algebra ΛE � TpΛ, Eq
is called the set of (�rst-order) parametric sorts.
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Notation. From now on, α,β, . . . ranges over E

σ, τ, . . . - Λ

σ, τ, . . . - ΛE

If σ is a sort constructor, we write σ{n for meaning that σ if of arity n.

Example 3.14

Examples of sorts are the sort nat of natural numbers, or listpnatq of lists over natural
numbers, nat (resp. list) being a sort constructor of arity 0 (resp. of arity 1).

De�nition 3.15

A signature in parametric multi-sorted algebra is a pair pΛE, Σq where i) ΛE is a set of
sorts, ii) Σ is a �nite set, disjoint from all others, of function symbols, and iii) an arity
of the form @ #«α. τ1 � � � � τn Ñ σ is attached to any symbol f P Σ, where #«α if the set of sort
variables occurring in τ1, . . . , τn, σ and all the sort variables occurring in σ occur in the
τi's.

We distinguish a subset ΣC of Σ, called set of constructor symbols, the arity of which
must be of the form @α1, . . . , αn. τ1 � � � � � τn Ñ σpα1, . . . , αnq.

Function symbols of Σ� ΣC are called de�ned symbols.

Example 3.16

Returning to our previous example, the signature of parametric lists is given by Λ � tlist{1u
and the signature:

nil @α. Ñ listpαq
cons @α. α� listpαqÑ listpαq
car @α. listpαq Ñ α

cdr @α. listpαq Ñ listpαq
whereas the one of natural numbers is given by Λ � tnat{0u and:

0 Ñ nat
S nat Ñ nat
9� nat� natÑ nat

Terms, Equations

We continue with the de�nition of terms and equations:

De�nition 3.17 Terms

Let pΛ, Σq be a signature in parametric multi-sorted algebra. For any σ P ΛE, let Xσ be
a countable in�nite set of variables of sort σ, s.t. all the Xτ's are pairwise disjoint. Let
X � �

σPΛE
Xσ. For any x P X, we say that x has sort τ if x P Xτ.

For any sort σ P Λ, we de�ne the set TσpΣ, Xq of terms of sort σ with variables in X

as the smallest set s.t.:

1. if x P Xτ, then x P TτpΣ, Xq,
2. a) if t1, � � � , tn P Tσ1ξpΣ, Xq � � � � � TσnξpΣ, Xq, for a sort substitution ξ,

b) f : σ1 � � � � � σn Ñ τ,
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3. The Calculus of Congruent Inductive Constructions

then fpt1, . . . , tnq P TτξpΣ, Xq.
We denote by TpΣ, Xq the set

�
σPΛE

pTσpΣ, Xqq.

We also introduce the notion of term schemes, use later for the de�nition of theories
and rewriting systems.

De�nition 3.18 Term scheme

Let XJ be a set of unsorted variables. A sort assignment is any �nite mapping from XJ to
ΛE, written rx1 : τ1s, . . . , rxn : τns. We write ISx for the sort associated to x in the sort
assignment IS.

Given a sort assignment IS � rx1 : τ1s, . . . , rxn : τns, we inductively de�ned the term
schemes of sort σ w.r.t. IS as:

1. IS. xi is a term scheme of sort τi,
2. a) if IS. t1, � � � , IS. tn are term schemes of respective sorts σ1ξ, . . . , σnξ for a sort

renaming ξ,
b) f : σ1 � � � � � σn Ñ τ,

then IS. fpt1, . . . , tnq is a term scheme of sort τξ.

Let
�

σPΛE
Xσ be a set of sorted variables. For any variable x P XJ and sort σ, we

assign to x and σ a unique variable of Xσ, denoted by xσ. Given a sort substitution ξ, the
ξ-instance of a term scheme IS. t, written xIS. tyξ is inductively de�ned as:

1. xxiyξ � x
pxiISqξ
i ,

2. xIS. fpt1, . . . , tnqyξ � fpxIS. t1yξ, . . . , xIS. tnyξq.
Fact 3.19

If IS. t is a term scheme of sort σ and ξ a sort substitution, then xtyξ is a term of sort σξ.

Example 3.20

Using the signature of example 3.16, with x a variable of sort nat, we have 0, 0� x of sort
nat, and nil of sort listpnatq and sort listpαq.

The term scheme rx : αs. conspx, nilq is of sort listpαq.
De�nition 3.21 Substitution

Let pΛ, Σq be a signature and X � �
σPΛE

Xσ be a set of variables. A substitution is any
�nite mapping, written txi ÞÑ tiu1¤i¤n, from X to TpΣ, Xq preserving sorts, that is s.t. for
all x P dompθq of sort σ, xθ P TσpΣ, Xq.

If θ is an TpΣ, Xq-substitution, we write dompθq � tx1, . . . , xnu for the domain of θ. If
t is a term of sort σ, we denote by tθ the term where all occurrences of the xi's has been
respectively replaced with the ti's.

Fact 3.22

If t is a term of sort σ, then tθ is of sort σ for any substitution θ.
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Equations are simply pairs of terms of same sort:

De�nition 3.23 Equation

Let pΛE, Σq be a signature in parametric multi-sorted algebra. A Σ-equation is any triple
pt, u, σq, where t and u are terms of sort σ, written t �σ u or t � u when σ is not relevant.

A Σ-equation scheme is any triple pt, u, σq where IS. t and IS. u are term schemes of
sort σ, written @α.@ #          «xi : τi. t � u, where the xi's (written with their associated sorts) are
the variables appearing in t and u and the #«α's are the sort variables appearing in the τi's.

Algebra, Interpretation

We can now give the interpretation of signatures and terms:

De�nition 3.24 Algebra

Let Ω � pΛE, Σq be a signature in parametric multi-sorted algebra.

A Ω-algebra A consists of

1. a domain S for sort constructors interpretation,

2. for any sort constructor σ, a function Sσ : Sn Ñ S, where n is the arity of σ,

3. for each function symbol f P Σ of arity @ #«α. τ1 � � � � � τn Ñ σ, a function:
Af : Aτ1

� � � � �Aτn
Ñ Aσ.

where Aν, for ν P TpΛq, is inductively de�ned as:
Aνpπ1,...,πkq � SνpAπ1

, . . . , Aπk
q

and, for ν P ΛEzTpΛq,
Aν � �tAνθ | θ closedu.

Moreover, for any sort substitution ξ, if pv1, . . . , vnq P Aτ1ξ � � � � � Aτnξ, then
Afpv1, . . . , vnq P Aτξ.

De�nition 3.25 Interpretation

Let Ω be a signature in parametric multi-sorted algebra, X � �
σPΛE

Xσ a set of sorted
variables, and A a Ω-algebra. An assignment is any function I : X Ñ �

σPΛE
Aσ respecting

sorts, i.e. such that Ipxq P Aτ if x P Xτ.

The A-interpretation of t P TpΣ, Xq with assignment I, written JtKIA, is de�ned as:

JxKIA � Ipxq
Jfpt1, . . . , tnqKIA � AfpJt1KAI , . . . , JtnKAI q

Theory, Model

We now move to the de�nition of theories:

De�nition 3.26 Theory

Let Ω be a signature in parametric multi-sorted algebra. A Ω-theory is any set of equation
schemes.
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3. The Calculus of Congruent Inductive Constructions

The de�nition of a model of a theory is as usual. We take into account here that we
have constructor symbols.

De�nition 3.27 Model

Let T be a Ω-theory. A model of T (or T-model for short) is any Ω-algebra M s.t. for any
assignment I:

· if f is a constructor symbol,

Jfpt1, � � � , tnqKIM � Jfpu1, � � � , unqKIM implies for all i, JtiKIM � JuiKIM
· if f and g are two distinct constructor symbols, then for any t1, � � � , tn, u1, � � � , uk:

Jfpt1, � � � , tnqKIM � Jgpu1, � � � , ukqKIM
· for any equation scheme @α.@ #          «xi : τi. t � u of the theory, and any sort substitution

ξ, we have:

JxIS. tyξKIM � JxIS. uyξKIM.

with IS � r #          «xi : τis.

Sentence, T-validity

Let T be a Ω-theory. In all the following, we will only consider Horn clauses, i.e. sentences
of the form t1 �σ1

u1 ^ � � � ^ tn �σn
un ñ t �σ u.

Validity of such sentences w.r.t. a T-model is de�ned in the obvious way:

De�nition 3.28 Validity

We say that
Ehkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

t1 �σ1
u1 ^ � � � ^ tn �σn

un ñ t �σ u is valid under a T-model M and an
M-interpretation I, written M (I E ñ t �σ u, if either:

· there exists an equation ti �σi
ui in E s.t. JtiKIM � JuiKIM, or

· JtKIM � JuKIM.

We say that E ñ t �σ u is valid under the model M if for any M-interpretation I,
Eñ t �σ u is valid under M and I.

If E is any possibly in�nite set of equations, we write M, E (I t �σ u (resp. M, E (
t �σ u) if there exists a �nite subset F of E s.t. M (I

�
F ñ t �σ u (resp. M ( �

F ñ
t �σ u).

Validity of sentences for a given T-theory is de�ned as the validity under all the consid�
ered T-models. We write T, E ( t �σ u if M, E ( t �σ u for all the considered T-models.

Rewriting systems

We end this section by introducing the notion of parametric rewriting systems. A rewrite
rule is simply an equation scheme oriented from left to write.
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De�nition 3.29 Rewriting system

Let pΛE, Σq be a signature in parametric multi-sorted algebra. A Σ-rewrite rule is any triple
pt, u, σq of term schemes of sort σ, written @α.@ #          «xi : τi. t−Ñu, where the xi's (written with
their associated sorts) are the variables appearing in t and u and the #«α's are the sort
variables appearing in the τi's.

A Σ rewriting system is any enumerable set of Σ-rewrite rules.

Rewriting of terms is de�ned as usual:

De�nition 3.30

Let R be a Σ-rewrite system. The rewriting relation R−Ñ associated to R if the smallest
binary relation on Σ-terms, closed by substitution and context, s.t. for any rewrite rule
@α.@ #          «xi : τi. t−Ñu of R and any sort substitution ξ P ΛE, we have:

xIS. tyξ R−ÑxIS. uyξ
with IS � r #          «xi : τis.
Fact 3.31

The relation R−Ñ preserves term sorts.

3.3 The calculus

Terms of the calculus

As for CIC, we �rst start by describing the terms algebra of the calculus.

CCIC uses the same set of sorts S � t�, �u and sets of variables X � X� Y X� of CIC.
We distinguish a subset X�� of X� of extractable variables (resp. X�� of extractable types
variables).

As for CCN, let A � tr,uu a set of two constants, called annotations where r stands for
restricted and u for unrestricted. We use a for an arbitrary annotation.

Let Σ and Λ be two disjoint sets of function symbols. We de�ne Σ and Λ later, when
translating parametric multi-sorted signature to CCIC terms: Σ (resp. Λ) will then contain
the translation of the �rst-order function symbols (resp. of the sort constructors).

De�nition 3.32 Pseudo-terms of CCIC

The algebra CCIC of pseudo-terms of CCIC is de�ned by:

t, u, T, U, . . . :� s P S | x P X | @px :a Tq. t | λrx :a T s. t | t u | f P Σ | σ P Λ

| 9� | EqT ptq | Leib | IndpX : tqt #«

Tiu | trns | Elimpt : T r # «uis Ñ Uqt #  «wju
We assume that for any f P ΣYΛ, a CCIC term τf, called the type of f, is attached to f.

Compared to CIC, the di�erences are:

· the presence of annotations for the product and abstraction,
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3. The Calculus of Congruent Inductive Constructions

· the internalization of the equality predicate:

1. t 9�T u (or t 9� u when T is not relevant or can deduced from the context)
denotes the equality of the two terms (of type T) t and u,

2. EqT ptq will represent proof by re�exivity of t 9�T t and Leib the Leibniz predicate
for equality,

· the internalization of the function symbols f P Σ and sort constructors σ P Λ.

Notation. When x in not free in t, @px :a Tq. t will be written T Ña t. The default anno�
tation, when not speci�ed in a product or abstraction, is the unrestricted (u) one.

From now on, let O� and O� be two arbitrary set of CCIC terms, whose elements are
called extractable terms and convertible terms. The set O� will be used in the de�nition
of conversion to restrict the set of extractable equations for a given environment: only
equation of the form t 9� u with t and u in O� shall be extractable. The set O� is used
later to restrict the set of terms on which �rst-order deduction is applied.

Taking O� � O� � O (see De�nition 3.34) does not compromise most standard calculus
properties but it does compromise decidability of type-checking. For example, if T is the
Presburger arithmetic, allowing the extraction of

λrx : nats. f x 9� λrx : nats. f px 9� 2q
would later require to decide any statement of the form

T ( p@x. fpxq � fpx� 2qq ñ t � u,

which is well known to be impossible. Our assumptions on O� and O� will come later, when
proving meta-theoretical properties of CCIC and describing the type-checking algorithm.

We also assume a set of CCIC terms P�. This set is used later to restrict the types of
variables of X�� .

We now de�ne the set of CCIC well-sorted terms. Well-sorted are s.t. β-reduction
always replaces variables of X�� and X�� by terms of O� and P�. Hence, we must forbid
pseudo-terms which contain subterms of the form pλrx :a Us. tqu with x P X�� and u R O�
(resp. x P X�� and u R P�). Since, as in CCN, we do not want terms of the form
pλrx :r Us. tqu and since, we want well-sorted terms to be stable by reduction, we obtain
the following de�nition:

De�nition 3.33 Well-sorted terms

A CCIC pseudo-terms t is well-sorted if:

· t does not contain, on the right of an application or in the branch of a recursor, an
unapplied subterm of the form λrx :a Us. t with x P X�� Y x P X�� or a � r.

· If t contains a subterm of the form pλrx :a Us. tqu, then a � u and if x P X�� (resp.
x P X�� ) then u P O� (resp. u P P�).

Moreover, if CpXq � @p #           «

xi : Uiq. X #«u is a constructor type, the xi's and X are not element
of X�� Y X��

From now on, we only consider well-sorted terms.

See Chapter 6 for a discussion about theses restrictions.
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Note 5

The de�nitions of free variable, capture-free substitution and βι-reduction do not change
from CIC to CCIC.

As usual, it is possible to de�ne layered syntactic classes for CCIC:

De�nition 3.34 Syntactic classes

The pairwise disjoint syntactic classes of CCIC called objects (O), predicates (P), kinds
(K), and � are de�ned in Figure 3.4.

This enumeration de�ned a post-�xed successors function �1 on classes (O � 1 � P,
P�1 � K, K�1 � �, ��1 � K). We also de�ne Classptq � D if t P D and D P tO, P, K, �u,
and Classptq � K otherwise.

O ::� X� | f P Σ | OO | O P | EqPpOq | Leib | Pris | λrx� :a Ps.O | λrx� :a Ks. O
::� ElimpO : P r #«

Os Ñ Pqt #«

Ou
P ::� X� | σ P Λ | 9�| IndpX : Kqt #«

Pu | PO | P P | λrx� :a Ps. P | λrx� :a Ks. P
::� ElimpO : P r #«

Os Ñ λr # «� � �s. Kqt #«

Pu | @px� :a Pq. P | @px� :a Kq.P
K ::� � | @px� :a Pq.K | @px� :a Kq.K
� ::� �

Figure 3.4: CCIC terms classes

Typing judgment

De�nition 3.35 Pseudo-contexts of CCIC

The typing environments of CIC are de�ned as Γ, ∆ ::� rs | Γ, rx :a T s s.t. a variable cannot
appear twice in the left-hand side of a colon. Moreover, if x P X�� , then we require T to be
in P�. We use dompΓq for the domain of Γ and xΓ for the type associated to x in Γ .

We can now de�ne the CCIC typing judgment Γ $ t : T . The rules de�ning Γ $ t : T

are a mix of the ones of CCN (notably for the [App] rule side conditions) and the CIC ones
(for inductive types):

De�nition 3.36 Typing judgement

The typing judgment Γ $ t : T is de�ned by the rules of Figures 3.5 and 3.6, where

· −Ñ is a rewriting relation on CCIC, including βι−Ñ-reduction. Its precise de�nition is
given later.

· For any typing environment Γ , �Γ is the conversion relation of CCIC under environ�
ment Γ . As for −Ñ, its precise de�nition is given later.

· WT is a set of terms. Again, its precise de�nition is given later.
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3. The Calculus of Congruent Inductive Constructions

[Ax-1]$ � : �
f P ΣYΛ $ τf : s

[Symb]$ f : τf

Γ $ t : T
[Eq-Intro]

Γ $ EqT ptq : t 9�T t

$ τLeib : s

τLeib � @pT : �qpt1 t2 : Tq. t1 9� t2 Ñ @pp : T Ñ �q. p t1 Ñ p t2 [Leib]$ Leib : τLeib

Γ $ T : sT Γ, rx :a T s $ U : sU
[Prod]

Γ $ @px :a Tq. U : sU

Γ $ t : @px :u Uq. V Γ $ u : U u P WT

if x P X�� , then u must be in O�
if x P X�� , then u must be in P�

[App]
Γ $ t u : Vtx ÞÑ uu

Γ $ @px :a Tq. U : s Γ, rx :a T s $ u : U
[Lam]

Γ $ λrx :a T s. u : @px :a Tq. U
Γ $ V : s Γ $ t : T s P t�, �u x P Xs z dompΓq

[Weak]
Γ, rx : Vs $ t : T

x P dompΓq X Xsx Γ $ xΓ : sx
[Var]

Γ $ x : xΓ

Γ $ t : T Γ $ T 1 : s 1 T �Γ T 1
[Conv]

Γ $ t : T 1

Figure 3.5: CCIC Typing Rules (CC rules)

Notation. A term t is well-formed (or well-typed), denoted by Γ $ t, if there exists T s.t.
Γ $ t : T . A typing environment is well-formed, denoted by Γ $, if there exists a term t

s.t. Γ $ t.

De�nition 3.37

Among well-typed terms, we distinguish:

· The set OpΓq of well-typed objects under Γ , i.e. the set composed of terms t s.t.
Γ $ t : T and Γ $ T : � for some T .

· The set PpΓq of well-typed predicates under Γ , i.e. the set of terms T s.t. Γ $ T : K

and Γ $ K : � for some K.

· The set KpΓq of well-typed predicate types under Γ , i.e. the set of terms T s.t.
Γ $ T : �.

We also de�ne the following sets:
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A � @p #      «

x : Tq. � $ A : � for all i, Γ $ CipXq : �
for all i, CipXq is a strictly positive constructor in X

I � IndpX : Aqt #          «

CipXqu is in −Ñ-normal form
[Ind]

Γ $ I : A

I � IndpX : Tqt #          «

CipXqu Γ $ I : T
[Constr]

Γ $ Irks : CkpXqtX ÞÑ Iu
A � @p #       «

x : Uq. � I � IndpX : Aqt #          «

CjpXqu Γ $ I : A $ Q : @p #       «

x : Uq. pI #«x q Ñ �
for all i, Ti � ∆�tI, X, CipXq, Q, Irisu $ Ti : � Γ $ fi : Ti

for all j, Γ $ aj : Ajt #           «x ÞÑ au Γ $ c : I #«a
[Elim-�]

Γ $ Elimpc : I r #«a s Ñ Qqt #«

f u : Q #«a c

A � @p #       «

x : Uq. � I � IndpX : Aqt #          «

CjpXqu is small

Q � @p #       «

x : Uqpy : I #«x q. K is in −Ñ-normal form r #       «

x : Us, ry : I #«x s $ K : �
for all i, Ti � ∆�tI, X, CipXq, #«x y, K, Irisu $ Ti : � Γ $ fi : Ti

for all j, Γ $ aj : Ajt #           «x ÞÑ au Γ $ c : I #«a
[Elim-�]

Γ $ Elimpc : I r #«a s Ñ Qqt #«

f u : Kt #     «x ÞÑ, y ÞÑ cu
Figure 3.6: CCIC Typing Rules (Inductive Types)

O� �tOpΓq | Γ s.t. Γ $u
P� �tPpΓq | Γ s.t. Γ $u
K� �tKpΓq | Γ s.t. Γ $u

We now de�ne a notion of well-formed substitution. In the Calculus of Constructions,
a substitution θ is well-formed from a typing environment Γ to a typing environment ∆ if
for all x P dompθq, ∆ $ xθ : xΓ . One can then easily prove ∆ $ tθ : Tθ if Γ $ t : T - a
property called stability by substitution.

Assume now that Γ is a typing environment of the form Γ1, rx :r a 9� bs, Γ2 (a and b

being two terms in the set of extractable terms O�). Stability by substitution claims that
if we have a derivation of the form Γ $ t : T , then we can substitute x by a any term P

(s.t. Γ $ P : a 9� b) in the derivation Γ $ t : T and obtain a proof of Γ1, Γ2θ $ tθ : Tθ,
where θ � tx ÞÑ Pu. However, this is not true in general since the equation a 9� b is then
removed from context and not usable in the de�nition of �Γ1,Γ2θ. Hence, aθ�Γ1,Γ2θ bθ

does not hold in general, and Γ1, Γ2θ $ tθ : Tθ is not necessarily derivable.

Another problems arise when substituting variables in extractable equations. Suppose
now that Γ $ λrp :r a 9� bs. u with a and b in O�. Stability by substitution now leads
to ∆ $ λrp :r aθ 9� bθs. uθ. Again, for this result to hold, we need aθ and bθ to be
extractable, i.e. O� has to be stable by application of a well-formed substitution.

Hence the following de�nition of well-formed substitutions:

De�nition 3.38 Well-sorted and well-formed substitution
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3. The Calculus of Congruent Inductive Constructions

A substitution θ is well-sorted from Γ to ∆, written θ : Γ ãÑ ∆, if

· @x P dompθq, x is not annotated by r in Γ ,
· if x is annotated by r is Γ , then x P domp∆q, x is annotated by r in ∆, and x∆ � xΓθ.
· @x P dompθq, if x P X�� then xθ P O�,
· @x P dompθq, if x P X�� then xθ P P�,
· @x P dompθq. Classpxq � Classpxθq.
· @x P dompθq. xθ is a weak term.

Moreover, if for all x P dompθq, ∆ $ xθ : xΓθ, then we say that θ is well-formed,
written θ : Γ Ã ∆.

Incorporation of a PMS algebra into CCIC

We start out incorporating of a parametric theory into CCIC. From now on, let ΛE be a
sort signature and Σ a ΛE-signature.

Translation of sort constructors and function symbols

We introduce into CCIC two new sets of symbols: a set of type level symbols Λ � tσ | σ P
Λu, and a set of object level symbols Σ � tf | f P Σu. We then assign for any object (resp.
type) level symbol a type level (resp. kind level) CCIC terms denoting the translation of
their arities.

As an example, for the signature of Presburger arithmetic Λ � tnatu and Σ � t0 :

nat, S : nat Ñ nat,� : nat � nat Ñ natu, we then introduce 4 new symbols with the
following types:

nat : �
0 : nat
S : natÑ nat
� : natÑ natÑ nat

Non surprisingly, nat being a non-parametric �rst-order sort constructor, we associate
the CCIC-sort � to the symbol nat. The types associated to the function symbols are
simply the curry�ed versions of their arities (replacing nat by nat).

In the case of a parametric signature, like the one for parametric lists, Λ � tlist{1u and
Σ � tnil, cons, appu with

nil : @α. Ñ listpαq
cons : @α.α� listpαq Ñ listpαq
app : @α. listpαq � listpαq Ñ listpαq

the translation is similar, but the sort variables appearing in the arities are now abstracted
with CCIC-variables of sort �, i.e.:
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list : � Ñ �
nil : @pT : �q. list T

cons : @pT : �q. T Ñ plist Tq Ñ plist Tq
app : @pT : �q. plist Tq Ñ plist Tq Ñ plist Tq

De�nition 3.39 Signature translation

Let ΛE be a set of sorts and Σ a ΛE-signature. A CCIC-translation of Σ is given by:

· a mapping p� from sort variables to CCIC type level variables (i.e. we associate to
any sort variable α P E a unique CCIC type level variable pα P X�).

· a set of CCIC sort constructor symbols (with associated CCIC types) Λ � tσ : τσ |
σ P Λu where τσ � � Ñ � � � � Ñloooooomoooooon

aritypσq times
�,

· a set of CCIC function symbols (with associated CCIC types) Σ � tσ : τf | f P Σu
where τf is de�ned as follow:

τf � @p #      «pα : �qαPFVparitypfqq. Jτ1KÑ � � � JτnKÑ JσK

with aritypfq � τ1 � � � � τn Ñ σ and J�K : ΛE Ñ CCIC inductively de�ned as

JαK� pα
Jσpτ1, . . . , τnqK� σ Jτ1K . . . JτnK

We have the immediate result:

Fact 3.40

For any CCIC sort constructor symbol σ (resp. CCIC function symbol f), we have $ τσ : �
(resp. $ τf : �).

Translation of Σ-rewriting systems

We now move to the translation of a Σ-rewriting system.

In parametric multi-sorted algebra, a rewrite system preserves sorts as both sides of
any of its rule have the same sort. The analog for type systems is that a rewrite rule l−Ñ r

preserves types if there exists an environment Γ and a term T s.t. Γ $ l : T and Γ $ r : T -
we say that l−Ñ r is well-formed under Γ .

When translating a �rst-order rule into CCIC, one has to give the translation of the
rewrite rule into a CCIC rewrite rule l−Ñ r and a CCIC typing environment Γ s.t. l−Ñ r is
well formed under Γ .

Taking Presburger arithmetic as example, the following rewriting system

@x : nat. x� 0−Ñ x

@x, y : nat. x� Spyq−ÑSpx� yq
is translated into
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3. The Calculus of Congruent Inductive Constructions

x 9� 0−Ñ x Γ � rx : nats
x 9�pSyq−Ñ S px 9�yq Γ � rx : nats, ry : nats

It is clear that all these rewrite rules are well formed under the typing environments
written on their right.

The case of parametric rules is not harder. For example, the de�nition of concatenation
of parametric lists

@α.@l : listpαq. apppl, nilq−Ñ l

@α.@l l 1 : listpαq, x : α. apppl, conspx, l 1qq−Ñ conspx, apppl, l 1qq
is translated into

appA l pnilAq−Ñ l Γ � rA : �s, rl : listAs
appA l pconsA x l 1q−Ñ consA pappA l l 1q Γ � rA : �s, rl l 1 : listAs, rx : As

De�nition 3.41 Rewrite rule translation

Let q � @ #«α.@x1 : τ1 � � � xn : τn. l−Ñ r be a Σ-rewrite rule. We write IS for the sort
assignment rx1 : τ1s, . . . , rxn : τns. The translation of q is Γ : LlM−ÑLrM where:

· L�M is inductively de�ned as

LxM� x

Lfpt1, . . . , tnqM� f Jβ1ξK � � � JβkξK Lt1M � � � LtnM

where i) f has arity @β1, . . . βk. µ1 � � � � � µn Ñ µ ii) IS. fpt1, . . . , tnq is a term
scheme of sort σ and the IS. ti are term schemes of respective sorts σi, and iii) ξ is
the sort substitution of domain tβ1, . . . , βku s.t. @i. σi � µiξ and σ � µξ.

· Γ � rA1 : �s, . . . , rAp : �s, rx1 : Jτ1Ks, . . . , rxn : JτnKs
with tA1, . . . , Anu � pFVpLlMq Y FVpLrMqq X X�.

Lemma 3.42

For any Σ-rewrite rule l−Ñ r, Γ : LlM−ÑLrM is a well formed rewrite rule under Γ .

Proof. If l−Ñ r � @α.@x1 : τ1 � � � xn : τn. l−Ñ r be a Σ-rewrite rule, we prove by induction
on LlM and LrM, that Γ $ LlM : JσK and Γ $ LrM : JσK where σ is the common sort of l and
r.

One major drawback of using such a translation is that, in the case of parametric rewrite
rules, we obtain non-left linear rewrite rules, which complicates the con�uence proof.

This can be overcomed by using the notion of well typed rule of [4], where a substitution
applies to the left hand side before typing it.

Instead of de�ning app as in our previous example, one can give the following rewriting
system instead:

appA l pnilAq−Ñ l Γ � rA : �s, rl : listAs
appA1 l pconsA2 x l 1q−Ñ consA pappAl l 1q Γ � rA : �s, rl l 1 : listAs, rx : As
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along with the substitution ρ � tA1 ÞÑ A, A2 ÞÑ Au for the second rewriting rule.

De�nition 3.43 Well typed rule [4]

A rewrite rule l−Ñ r with l � f
#«
t and f : @p #      «

x : Tq. U is well typed is there exists an environ�
ment Γ and a substitution ρ s.t.

· Γ $ lρ : Uθρ and Γ $ r : Uθρ,
· dompρq X dompΓq � H,
· for any ∆, δ, T , if ∆ $ lδ : T then δ : Γ Ã ∆,
· for any ∆, δ, T , if ∆ $ lδ : T then δ Ó ρδ.

where θ � tx ÞÑ tu.
We write pΓ, ρq : l−Ñ r when these conditions are satis�ed.

Linearisation of translated rules can be done as follow:

De�nition 3.44

Let Γ : l−Ñ r be the translation of a Σ-rewrite rule. For any p P Posplq s.t. l|p P X�, let Ap

be fresh variables of X�. We de�ne θ and ρ as follow:

θ� rp Ð Ap | p P Posplq, l|p P X�s
ρ� tAp Ñ l|p | p P Posplq, l|p P X�u

The linearisation of Γ : l−Ñ r is the rewrite rule lθ−Ñ r, along with the environment Γ

and the substitution ρ.

Conversion relation

From now on, let −Ñ be a rewriting system, de�ned as the union of βι−Ñ and R−Ñ where R is
the translation of a Σ-rewriting system.

We are now left to de�ne our conversion relation �Γ . The two main di�erences with
CCN are the following.

· Our notion of algebraisation now works modulo the expected sort of the resulting
�rst-order term. This is the aim of the next section.

· A notion of weak terms is introduced in Section 3.3 so that conversion operates only
on them - the others being only converted with −Ñ-reductions. This is needed to
forbid inconsistencies at object level to be lift up to the type level.

We start with our new notion of algebraisation.

Algebraisation

Algebraisation is the �rst part of the hypotheses extraction: it allows transforming a CCIC
term into its �rst-order counterpart. We illustrate the di�culties with examples.
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3. The Calculus of Congruent Inductive Constructions

The case for pure algebraic terms is as for CCN. The de�nition becomes a little harder
for parametric signatures. The theory of lists gives us a simple example. From the de�nition
of conversion of an algebra to CCIC, we know than the app symbol has type

@pA : �q. listA Ñ listA Ñ listA

Thus, a fully applied, well formed term having the symbol app at head position is
necessarily of the form app T l l 1, T being the type of the elements of the list. Algebrai�
sation of such a term will erase all the type parameters: in our example, Apapp T l l 1q �
apppAplq, Apl 1qq.

Our conversion being de�ned on non well-formed terms, we now come to the case
of algebraisation of non-pure algebraic terms or even ill-formed terms. As for CCN, for
non-pure algebraic terms, the problem is solved by abstracting non-algebraic subterms with
fresh variables. For example, algebraisation of 1 � t with t non-algebraic yields 1 � xnat
where xnat is an abstraction variable of sort nat for t. The problem is harder for:

· parametric symbols: in pcons T t pnilUqq with t non algebraic, should t be abstracted
by a variable of sort nat or listpnatq ?

· ill-formed terms: should pcons T 0 pcons T pnilUq pnil Tqqq be abstracted as a list of
natural numbers or as a list of lists ?

The solution adopted here is to postpone the decision: Aptq is de�ned as a function from
ΛE to the terms of T s.t. Aptqpσq is the algebraisation of t under the condition that t is a
CCIC representation of a �rst-order term of sort σ.

We now give the formal de�nition of Ap�q.
Let tYσuσ be a ΛE-sorted family of pairwise disjoint countable in�nite sets of variables

of sort σ. Let Y � �
σ Yσ.

For any x P X� and sort σ P ΛE, let xσ be a fresh �rst-order variable of sort σ. We
denote by Zσ the set txσ | x P Xu and by Z the set

�
σ Zσ.

For any equivalence relation R and sort σ P ΛE, we suppose the existence of a function
πσ

R : CCIC Ñ Yσ s.t. πσ
Rptq � πσ

Rpuq if and only if t R u (i.e. πσ
Rptq is the element of Yσ

representing the class of t modulo R).

De�nition 3.45 Well applied term

A term is well-applied if it is of the form f r # «

TαsαP #«α t1 � � � tn with f : @ #«α. σ1�� � ��σn Ñ σ.

Example 3.46

Example of well applied terms are 0, S t, or app T l l 1 - T being the type parameter. Note
that we do not require the terms to be well formed.

Note 6

When writing that f
#«

T
#«
t is well applied, we implicitly require that #«

T contains all the type
parameters and only them.

De�nition 3.47 Algebraisation
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Assume t P CCIC and an equivalence relation R. The algebraisation of t modulo R is the
function ARptq : ΛE Ñ TpYY Zq de�ned as:

ARpxqpσq � xσ if x P X�

ARpf #«

T ruisiPnqpτξq � fpARpu1qpσ1ξq, . . . , ARpunqpσnξqq if p�q
ARptqpτq � Πτ

Rptq otherwise

where p�q
i) f

#«

T ruisiPn is well applied,
ii) f is of arity @ #«α. σ1 � � � �σn Ñ τ,
iii) ξ is a ΛE-substitution.

For any relation R, AR is de�ned as AR where R is the smallest equivalence relation
containing R. We call σ-alien (or alien for short) the subterms of t abstracted by a variable
in Yσ. A term is algebraically pure (or pure for short) if it does not contain aliens.

Example 3.48

Let t � cons T 0 pconsU pnilVq pnilUqq and R a relation on the terms of CCIC. Then,
assuming xnat, ylist, znat being abstraction variables, we have

ARptqplistpnatqq � conspARp0qpnatq, ARpconsUpnilVq pnilUqqplistpnatqqq
� consp0, conspARpnilVqpnatq, ARpnilUqplistpnatqqqq
� consp0, conspxnat, nilqq

whereas

ARptqplistpσqq � conspARp0qpσq, ARpconsUpnilVq pnilUqqplistpσqqq
� conspylist, conspARpnilVqpσq, ARpnilUqplistpσqqqq
� conspylist, conspnil, nilqq

and, ARptqpnatq � znat.

Note that, as explained before, the algebraisation does not only depend on the terms
being abstracted, but also on the expected sort of the result. This is clearly seen on the
example: when abstracting the (heterogeneous and ill-formed) list 0 :: nil :: nil as a list of
lists, 0 is seen as an alien and thus abstracted. Conversely, when this list is abstracted as
a list of natural numbers, 0 is considered algebraic but the nil element is then seen as an
alien and abstracted. Of course, as clear from the last case, if the list is algebraised as a
natural number, it gets directly abstracted by a variable.

Lemma 3.49

Let t P CCIC, σ P ΛE and R a binary relation on CCIC, then ARptqpσq is a well formed
T-term of sort σ.

Proof. By induction on the de�nition on ARp�q.
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3. The Calculus of Congruent Inductive Constructions

Weak terms

We distinguish a class of terms called weak. This class of terms will play an important role
in the following as they restrict the interaction between the conversion at object level and
the strong ι-reduction.

An example of what will be a non weak term is

t � λrx : nats.ElimSpx : nat rs Ñ Qqtnat, λrx : natsrT : Qxs. natÑ natu.
Such a term is problematic in the sense that when applied to convertible terms, it can
βι-reduces to type-level terms that are not βι-convertible. Suppose that the conversion
relation given for CCN is canonically extended to CCIC. We know that there exists a
typing environment Γ s.t. 0�Γ S 0, and hence, by congruence, t 0�Γ t pS 0q. Now, it is
easy to check that t 0 βι−Ñ� nat and t pS 0q βι−Ñ�pnat Ñ natq. It is known that having a
relation capturing nat�Γ natÑ nat breaks strong normalization of β-reduction, the term
ω � λrx : nats. x x being typable in such a system.

On the contrary, weak terms are de�ned s.t. they cannot lift inconsistencies from object
level to a higher level.

De�nition 3.50 Weak terms

A term is said weak if it does not contain open elimination (i.e. does not contain a term
of the form Elimpt : I r #«us Ñ Qqt #«

f u with t having free variables).

A constructor type CpXq � @p #           «

xi : Uiq. X #«u in X is weak if for any i, X does not occur
in Ui or Ui � X #«v . An inductive type is weak if all its constructors type are weak.

We denote by WT the set of weak terms.

Conversion relation

We have now all the ingredients to de�ne our conversion relation �Γ :

De�nition 3.51 Conversion relation

Rules of Figure 3.7 de�nes a family t�Γ u of CCIC binary relations, where for each rule of
the form

E1 � � � En

t�Γ u

one has to read
E1 � � � En Classptq � K Classpuq � K

t�Γ u

Note 7

From CCN, the main di�erences are:

· The rules [App] and [Elim] are now restricted to weak terms.

· Conversion for terms being destructed by a recursor is restricted to ÐÑ�.
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[Refl]
t�Γ t

rx :r T s P Γ T −Ñ� t 9� u t, u P O�
[Eq]

t�Γ u

E ( A�Γ
ptqpτq � A�Γ

puqpτq t, u P O�
E � tA�Γ

pw1qpσq � A�Γ
pw2qpσq | w1�Γ w2, σ P ΛE, w1, w2 P O�u

[Ded]
t�Γ u

t−Ñ t 1 t 1�Γ u
[Rw-Left]

t�Γ u

u−Ñu 1 t�Γ u 1
[Rw-Right]

t�Γ u

T �Γ U t�Γ,rx:aT s u
[Lam]

λrx :a T s. t�Γ λrx :a Us. u
T �Γ U t�Γ,rx:aT s u

[Prod]@px :a Tq. t�Γ @px :a Uq. u
T �Γ U t�Γ u

[EqT]
EqT ptq�Γ EqUpuq

t1�Γ u1 t2�Γ u2 ti, ui are weak
[AppW]

t1 t2�Γ u1 u2

I and I 1 reduce to weak inductive types
Elimpt : I r #«v s Ñ Qqt #«

f u and Elimpt 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u are weak
tÐÑ� t 1 I�Γ I 1 Q�Γ Q 1 #«v �Γ

#«v 1 #«

f �Γ
#«

f 1
[ElimW]

Elimpt : I r #«v s Ñ Qqt #«

f u�Γ Elimpt 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u
A�Γ A 1 #       «

CpXq�Γ

#          «

C 1pXq
[Ind]

IndpX : Aqt #       «

CpXqu�Γ IndpX : A 1qt #          «

C 1pXq
T �Γ U n P N

[Constr]
T rns�Γ Urns

Figure 3.7: CCIC conversion relation

· An equation is extractable only if it is de�ned on terms in O�. Likewise, �rst-order
deduction is now only done on terms of O�.
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chapter 4

Meta-theoretical Properties of CCIC

From now on, let T be a theory over the parametric multi-sorted signature pΛE, Σq and R

the CCIC translation of a Σ-rewriting system s.t. βιR−−Ñ is con�uent. We write −Ñ for βιR−−Ñ.
We also assume that rewrite rules of R preserve syntactic classes.

We start with the road-map, which is basically the one for Pure Type Systems. The
main meta-theoretical properties addressed in this chapter are con�uence, subject reduc�
tion, strong normalization and consistency. As usual, they need proving additional prop�
erties (weakening, stability via well-formed substitution, type correction, ...).

De�nition 4.1

We now de�ne all the restrictions our sets O�, O� and P� must obey:

1. O� � O� � O,
2. P� � P,
3. O�, O� and P� are stable by well-sorted substitutions,
4. P� is stable by conversion,
5. O� is stable by −Ñ-reduction and O� is stable by −Ñ-equivalence,
6. No R-reduction can occur at the root position of terms of OzO�,
7. Suppose that Γ is s.t. O��O� � �Γ . If t�Γ u with t P O�, then there exists a term

u 1 P O� s.t. u−Ñ� u 1 and t�Γ u 1. (Resp. if u P O�, then there exists a term t 1 P O�
s.t. t−Ñ� t 1 and t 1�Γ u.

4.1 Con�uence on well-sorted terms

Lemma 4.2

1. if t−Ñ t 1 and t is well-sorted (resp. weak), so is t 1,
2. −Ñ is con�uent on well-sorted terms
3. If Classptq � K and t−Ñu, then Classpuq � Classptq.

Proof. Property (1) is an immediate induction on the position of the reduction. Prop�
erty (2) is a immediate consequence of property (1). Property (3) is well-known for βιR−−Ñ
reduction where R is a rewriting system preserving classes.

4.2 Monotony of conversion

We start with properties of interpretations of algebraised terms. Our �rst property simply
states that if an algebraised term ARptqpσq is evaluated w.r.t. an interpretation I, then for
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any relation R 1 coarser than R, we can construct an interpretation I 1 (independently of t

and σ) s.t. JAR1ptqpσqKI1M � JARptqpσqKIM.

Example 4.3

If t � u1 9�u2 with u1, u2 non algebraic, then by de�nition of interpretation:

JARptqpnatqKIM � �MpIpy1q, Ipy2qq and JAR1ptqpnatqKI1M � �MpI 1py 11q, I 1py 12qq
where yi � Πnat

R puiq and y 1i � Πnat
R1 pu 1iq. In order to have the desired equality, if su�ces

to take I 1py 1iq � Ipyiq. This de�nition could be ill-formed if y 11 � y 12 and Ipy1q � Ipy2q.
Assuming R 1 coarser than R eliminates this case. Indeed, having y 11 � y 12, implies u1 R 1 u2,
which in turns implies u1 R u2 and y1 � y2.

The lemma we state is a little stronger as it allows the application of a substitution to the
interpreted term: if an algebraised term ARptθqpσq is evaluated w.r.t. an interpretation I,
then for any relation R 1 s.t. R 1θ � R, we can construct an interpretation I 1 (independently
of t and σ) s.t. JAR1ptqpσqKI1M � JARptθqpσqKIM.

Example 4.4

If t � x 9�u with u non-algebraic, then

JARptθqKIM � �MpJxθKIM, IpΠnat
R puθqqq and JAR1ptqKI1M � �MpI 1pxnatq, I 1pΠnat

R1 puqqq.
Taking I 1pxnatq � JxθKIM and I 1pΠR1puqq � IpΠRpuθqq yields the desired result. With

respect to previous example, the di�erence is in the interpretation of variables in the domain
of θ.

Let t � u1 9�u2 (with u1, u2 non-algebraic) as in the previous example, and de�ne
I 1 with I 1pΠnat

R1 puiqq � IpΠnat
R puiθqq. Again, this de�nition is well-formed: if Πnat

R1 pu1q �
Πnat

R1 pu2q, then u1 R 1 u2, and thus u1θ R u2θ and IpΠnat
R pu1θqq � IpΠnat

R pu2θqq.

We now state and prove the property:

Lemma 4.5

Let θ a substitution and R, R 1 two binary relations on CCIC s.t. R 1 � Rθ. Then, for any
T-model M and T-interpretation I, there exists an interpretation Iθ s.t. for any term t and
sort σ P ΛE:

JARptqpσqKIθ

M � JAR1ptθqpσqKIM

Proof. We de�ne Iθ as

Iθpxσq � JAR1pxθqpσqKIM if x P dompθq
Iθpxσq � Ipxσq if x P Xz dompθq
Iθpyq � IpΠσ

R1puθqq if y P Yσ, u P Πσ
R
�1pyq

Note that this de�nition is well de�ned: if ΠRpuq � ΠRpu 1q, then u R u 1. Hence, by
Lemma hypothesis, uθ R 1 u 1θ and ΠR1puθq � ΠR1pu 1θq.

We prove the desired property by an induction on the de�nition of ARptqpσq:
· t � x P X.
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· If x P dompθq, then JARpxqpσqKIθ

M � Iθpxσq � JAR1pxθqpσqKIM.
· Otherwise, JARpxqpσqKIθ

M � Iθpxσq � Ipxσq � JAR1pxqpσqKIθ

M � JAR1pxθqpσqKIθ

M .

· If t is a fully applied term of the form f
#«

T t1 . . . tn with f of arity @ #«α. τ1�� � ��τn Ñ τ

and ξ is a substitution s.t. σ � τξ, then

JARpf #«

T t1 . . . tnqpσqKIθ

M � fMpJARpt1qpτ1ξqKIθ

M , . . . , JARptnqpτnξqKIθ

Mq
� fMpJAR1pt1θqpτ1ξqKIM, . . . , JAR1ptnθqpτnξqKIMq (by IH)
� JAR1pf # «

Tθ t1θ . . . tnθqpτξqKIM
� JAR1ptθqpσqKIM

· Otherwise, JARptqpσqKIθ

M � IθpΠσ
Rptqq � IpΠσ

R1puθqq with u P Πσ
R
�1pyq where y

denotes Πσ
Rptq. Now, by de�nition of u, t R u, and by assumption, tθ R 1 uθ. Thus,

Πσ
R1puθq � Πσ

R1ptθq.
Since t does not have an algebraic cap and is not a variable, so is tθ. Thus,

JAR1ptθqpσqKIM � IpΠσ
R1ptθqq � JARptqpσqKIθ

M .

We now carry out monotony of conversion.

Notation. For any CCIC binary relation R, we denote by EpRq the following set of �rst
order equations:

EpRq � tARpw1qpσq � ARpw2qpσq | w1, w2 P O�, w1 R w2, σ P ΛEu
Lemma 4.6 Monotony of conversion

Let R and R 1 be two binary relations on CCIC terms s.t. R � R 1.
Then for any term t, t 1 and sort σ P ΛE, if T, EpRq ( ARptqpτq � ARpt 1qpτq holds then

T, EpR 1q ( AR1ptqpτq � AR1pt 1qpτq holds.
Proof. There exists tEiuiPn with Ei � pARpw1,iqpτiq � ARpw2,iqpτiqq P EpRqq, s.t.:

T ( E1 ^ � � � ^ En ñ ARptqpσq � ARpuqpσq p�q
We �rst show that

T ( E 11 ^ . . .^ E 1n ñ AR1ptq � AR1puq (:)
where E 1i � pAR1pw1,iqpτiq � AR1pw2,iqpτiqq.

Let M be a T-model and I a M-interpretation. If JE 11 ^ � � � ^ E 1nKIM � K then (:) is sat�
is�ed by I. Otherwise, assume that JAR1ptqpσqKIM � JAR1puqpσqKIM. We apply Lemma 4.5
(using an empty substitution), and construct a M-interpretation J s.t.

JE1 ^ � � � ^ EnKJM � J and JARptqpσqKJM � JARpuqpσqKJM,

contradicting (�).
Therefore, JAR1ptqpσqKIM � JAR1puqpσqKIM, and JFKIM � J, ending the proof of (:).
Now, by assumption, for all i, w1,i R 1 w2,i. Hence, for all i, E 1i P EpR 1q. Therefore,

T, EpR 1q ( AR1ptqpσq � AR1puqpσq by (:).
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Monotony of conversion will be used later in several lemmas stating stability of conver�
sion w.r.t. several operations, such as:

Weakening If Γ � ∆, then �Γ � �∆,

Stability by reduction If Γ −Ñ∆, then �Γ � �∆,

Stability by substitution If θ : Γ ãÑ ∆, then �Γ � �∆.

Theses lemmas have all the same proof sketch: an induction on the de�nition of �Γ

demonstrating that i) every equation extracted from Γ is extractable from ∆, and that
ii) every application of [Ded] of �Γ can be translated to an application of [Ded] of �∆.
Monotony of conversion is dealt with by [Ded] case.

4.3 Weakening

We state here the di�erent basic properties of Pure Type Systems. Only the proof of
weakening di�ers from the PTS case.

Lemma 4.7 Free variables / Subterms / Environments

1. Let Γ � r #               «

xi :ai Tis. If Γ $ t : T , then

· FVptq Y FVpTq � dompΓq,
· for any i, FVpiq � tx1, . . . , xi�1u.

2. All subterms of a well-formed term are well-formed.
3. Let Γ � r #               «

xi :ai Tis be a well-formed environment. Then,

a) if xi P Xs, then rx1 :a1 T1s, � � � , rxi�1 :ai�1 Ti�1s $ Ti : si,
b) for any i, rx1 :a1 T1s, � � � , rxi�1 :ai�1 Ti�1s $ xi : Ti.

Proof. 1. Straightforward induction on Γ $ t : T .
2. Straightforward induction on the typing judgment derivation.
3. Property a) is done by induction on Γ $ t : T . Property b) is an immediate conse�

quence of a) using [Var].

We now state two stability lemmas for conversion:

Stability w.r.t. conversion of extractable equations If Γ and ∆ are s.t. any ex�
tractable equation of Γ is extractable in ∆, then �Γ � �∆.

Stability by reduction If Γ −Ñ∆, then �Γ � �∆.

Lemma 4.8 Conversion weakening

Let Γ and ∆ be two environments s.t. @x P dompΓq, if x is annotated by r in Γ , then
i) x P domp∆q, ii) x∆ � xΓ , and iii) x is annotated by r in ∆. Then �Γ � �∆.

Proof. We prove t�∆ u by induction on the de�nition of t�Γ u.
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· [Eq]. Γ � Γ1, rx :r T s, Γ2, T −Ñ�w1 9� w2 and w1, w2 P O�
Then, ∆ � ∆1, rx :r T s, ∆2 and by application of [Eq], w1�∆ w2.

· [Ded]. T, E�Γ
( A�Γ

ptqpσq � A�Γ
puqpσq with t, u P O�, σ P ΛE and

E�Γ
� tA�Γ

pw1qpτq � A�Γ
pw2qpτq | w1, w2 P O�, τ P ΛE, w1�Γ w2u

Using induction hypothesis and Lemma 4.6, we have
T, E�∆

( A�∆
ptqpσq � A�∆

puqpσq
with

E�∆
� tA�∆

pw1qpτq � A�∆
pw2qpτq | w1, w2 P O�, τ P ΛE, w1�∆ w2u.

Thus t�∆ u by application of [Ded].

· All other cases are done by application of the induction hypothesis.

Fact 4.9

The conversion relation �Γ XO� X O� is transitive and symmetric.

Proof. If t�Γ u�Γ v with t, u, v P O� � O�, then t�Γ v by application of [Ded]. Likewise,
if t�Γ u with t, u P O� � O�, then u�Γ t by application of [Ded].

Lemma 4.10 Stability by reduction

If Γ −Ñ� ∆, then �Γ � �∆.

Proof. We prove t�∆ u by induction on t�Γ u and by case on the last rule used.

· [Eq]. Γ � Γ1, rx :r T s, Γ2, T −Ñ�w1 9� w2, w1, w2 P O�
Suppose that Γ1, rx :r T s, Γ2−Ñ� ∆1, rx :r T 1s, ∆2 with T −Ñ� T 1. Using con�uence of
−Ñ, T 1−Ñ�w 1

1 9� w 1
2 with w1−Ñ�w 1

1 and w2−Ñ�w 1
2. Using stability of O� w.r.t. −Ñ,

w 1
1, w 1

2 P O�. Thus, w1−Ñ�w 1
1�∆ w 1

2Ð−�w2, and w1�∆ w2 by application of [Rw]
and Lemma 4.9.

· [Ded]. T, E�Γ
( A�Γ

ptqpσq � A�Γ
puqpσq with t, u P O�, σ P ΛE and

E�Γ
� tA�Γ

pw1qpτq � A�Γ
pw2qpτq | w1, w2 P O�, τ P ΛE, w1�Γ w2u

As for the weakening proof, using induction hypothesis and Lemma 4.6, we have
T, E�∆

( A�∆
ptqpσq � A�∆

puqpσq
with

E�∆
� tA�∆

pw1qpτq � A�∆
pw2qpτq | w1, w2 P O�, τ P ΛE, w1�∆ w2u.

Thus, t�∆ u by application of [Ded].

· All other cases are done by application of the induction hypothesis.

We obtain weakening as a immediate consequence of Lemma 4.8.

Lemma 4.11 Weakening

Suppose that Γ $ t : T and t�Γ u. Then, for any typing environment ∆ s.t. Γ � ∆ and
∆ $, we have ∆ $ t : T .

Proof. The proof is as usual by induction on Γ $ t : T , using Lemma 4.8 for [Conv].
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4.4 Substitutivity

We now come to the stability of substitution for well-sorted substitutions.

Lemma 4.12 Stability by substitution

Let θ : Γ ãÑ ∆ and T, T 1 s.t. T �Γ T 1. Then, tθ�∆ uθ.

Proof. By induction on the de�nition of T �Γ T 1:

· [Rw]. By standard properties of reductions.

· [Eq]. rx :r Us P Γ with x−Ñ� T 9� T 1 and T, T 1 P O�

Since θ : Γ ãÑ ∆, we have x P domp∆q and x∆ � xΓθ. Since Tθ−Ñ�w1θ 9� w2θ and
O� is stable by well-sorted substitutions, then w1θ�∆ w2θ using [Eq].

· [Ded]. E�Γ
( A�Γ

pTqpσq � A�Γ
pT 1qpσq with T, T 1 P O�, σ P ΛE and

E�Γ
� tA�Γ

pw1qpτq � A�Γ
pw2qpτq | w1, w2 P O�, τ P ΛE, w1�Γ w2u

There exists tEiuiPn with Ei � pA�Γ
pw1,iqpτiq � A�Γ

pw2,iqpτiqq P E�Γ
s.t.:

T ( E1 ^ � � � ^ En ñ A�Γ
pTqpσq � A�Γ

pT 1qpσq p�q
By mimicking the proof of monotony of conversion (Lemma 4.6), we can prove:

T ( Eθ
1 ^ . . .^ Eθ

n ñ A�∆
pTθq � A�∆

pT 1θq (:)
where Eθ

i � pA�∆
pw1,iθqpτiq � A�∆

pw2,iθqpτiqq.
Now, by induction hypothesis, for all i, w1,iθ�∆ w2,iθ and by stability of O�,
w1,iθ, w2,iθ P O�. Hence, for all i, Eθ

i P E�∆
, where:

E�∆
� tA�∆

pw1qpτq � A�∆
pw2qpτq | w1, w2 P O�, τ P ΛE, w1�∆ w2u

Therefore, T, E�∆
( A�∆

pTθqpσq � A�∆
pT 1θqpσq by (:). By stability of O�, Tθ P O�

and T 1θ P O�. Hence, Tθ�∆ T 1θ by [Ded].

· Other cases follow by an application of the induction hypothesis, noting that if t is
weak, then so is tθ.

Corollary 4.13 Substitution

Suppose that Γ $ t : T and θ : Γ Ã ∆. Then ∆ $ tθ : Tθ.

Proof. By induction on the de�nition of Γ $ t : T :

· [Var] - t � x P dompΓq, T � xΓ . Since θ : Γ Ã ∆, ∆ $ xθ : xΓθ.

· [Conv]. Immediate from induction hypothesis and Lemma 4.12.

· Other cases follow by an application of the induction hypothesis.
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4.5 Product compatibility

Product compatibility is one of the needed properties for proving subject reduction. Indeed,
assume that Γ $ λrx :u U 1s. v u : Vtx ÞÑ uu with Γ $ λrx :u U 1s. v : @px :u Uq. V and
Γ $ u : U. For subject reduction to hold, we must have Γ $ vtx ÞÑ uu : Vtx ÞÑ uu. By
inversion of typing, we have Γ, rx :u U 1s $ v : V 1 with @px :u U 1q. V 1��Γ @px :u Uq. V. We
can conclude Γ $ vtx ÞÑ uu : Vtx ÞÑ Uu only if

@px :a U 1q. V 1��Γ @px :a Uq. V implies U 1��Γ U and V 1��Γ,rx:aU1s V.

This property is the product compatibility. We prove here a stronger property as required
by the induction we use later: the equivalence of non-object caps.

De�nition 4.14

Rules of Figure 4.1 de�ne a family of relation t�Γ uΓ on terms of class di�erent from K,
and where each rule whose name is annotated with a � and of the form

E1 � � � En

t �Γ u

has to be read as
E1 � � � En either t or u is not in O� Classptq � K Classpuq � K

t �Γ u

If t �Γ u, we say that t and u have Γ -equivalent non-object caps.

Lemma 4.15

If t �Γ u, then t�Γ u.

Proof. Straightforward induction on the de�nition of t �Γ u.

Lemma 4.16

Assume that Γ and ∆ are environments s.t. �Γ � �∆. Then �Γ��∆.

Proof. Straightforward induction on the de�nition of t �Γ u.

The relation �Γ has been de�ned s.t. if t �Γ u where t and u are weak terms, then
there exists a derivation t �Γ u using only weak terms.

De�nition 4.17

We de�ne �W
Γ as �Γ but restricted to weak terms. I.e. �W

Γ is de�ned by the same rules of
�Γ where

1. all occurrences of �Γ are replaced by �W
Γ , and

2. all terms appearing in the conclusion of a rule are weak.

Lemma 4.18

If t, u P WT and t �Γ u, then t �W
Γ u.
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t�Γ u t, u P O�
[Object]

t �Γ u

s P S
[Sort (�)]

s �Γ s

x P X�
[Var-X� (�)]

x �Γ x

f P ΣYΛY tLeib, 9�u
[Symb (�)]

f �Γ f

T �Γ U t �Γ u
[Eq (�)]

EqT ptq �Γ EqT puq
T �Γ U t �Γ,rx:aT s u

[Lam (�)]
λrx :a T s. t�Γ λrx :a Us. u

T �Γ U t �Γ,rx:aT s u
[Prod (�)]@px :a Tq. t �Γ @px :a Uq. u

t1 �Γ u1 t2 �Γ u2 t1, t2, u1, u2 weak
[AppW (�)]

t1 t2 �Γ u1 u2

t1 � u1 t2 � u2
[AppS (�)]

t1 t2 �Γ u1 u2

I and I 1 are weak inductive types
Elimpt : I r #«v s Ñ Qqt #«

f u and Elimpt 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u are weak
t � t 1 I �Γ I 1 Q �Γ Q 1 #«v �Γ

#«v 1 #«

f �Γ
#«

f 1
[ElimW (�)]

Elimpt : I r #«v s Ñ Qqt #«

f u �Γ Elimpt 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u
t � t 1 I � I 1 Q � Q 1 #«v � #«v 1 #«

f � #«

f 1
[ElimS (�)]

Elimpt : I r #«v s Ñ Qqt #«

f u �Γ Elimpt 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u
A �Γ A 1 #       «

CpXq �Γ

#          «

C 1pXq
[Ind (�)]

IndpX : Aqt #       «

CpXqu �Γ IndpX : A 1qt #          «

C 1pXqu
I �Γ I 1

[Constr (�)]
Irns �Γ I 1rns

Figure 4.1: Non-object cap equivalence

Proof. Straightforward induction on t �Γ u, using the fact that subterms of weak terms
are weak terms.

Note 8

The rules [AppS] and [ElimS] of �W
Γ are subsumed by [AppW] and [ElimW]. Thus, we

can remove them from the de�nition of �W
Γ .

Lemma 4.19 Substitutivity for �Γ

If θ : Γ ãÑ ∆ and t �Γ u, then tθ �∆ uθ.

Proof. Straightforward induction on t �∆ u, using the substitutivity of �Γ .

We now come to the main property of weak terms: the stability of conversion by
convertible substitutions.

Lemma 4.20

Suppose that t�Γ u with t, u PWT and θ, θ 1 : Γ ãÑ ∆ s.t.
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· dompθq � dompθ 1q,
· for all x P dompθq, xθ�∆ xθ 1,

Then tθ��∆ tθ 1.

Proof. By the substitutivity lemma, tθ�∆ uθ. We now prove by induction on the structure
of u that if u is weak, then for any environment Ω, uθ�∆,Ω uθ 1.

· [Var] - t � x. If x is not in dompθq, this is immediate. Otherwise, xθ�∆ xθ 1 by
assumption, hence xθ�∆,Ω xθ 1 by weakening.

· [App] - t � t1 t2. By induction hypothesis, t1θ�∆,Ω t1θ 1 and t2θ�∆,Ω t2θ 1. Since
co-domains of θ and θ 1 are weak, t1θ, t2θ, t1θ 1 and t2θ 1 are all weak. We conclude
by application of [AppW].

· [Elim] - t � Elimpv : I r #«us Ñ Qqt #«

f u. We �rst apply our induction hypothesis on I,
#«u , Q and #«

f . Since t is weak, vθ � v � vθ 1. Since co-domains of θ and θ 1 are weak,
tθ and tθ 1 are weak terms. We conclude by applying rule [ElimW].

· All other cases are done by a straightforward application of the induction hypothesis.

Lemma 4.21

Suppose that t �Γ u with t, u PWT and θ, θ 1 : Γ ãÑ ∆ s.t.

· dompθq � dompθ 1q,
· for all x P dompθq, xθ�∆ xθ 1,

Then tθ �∆ uθ 1.

Proof. By induction on the de�nition of t �W
Γ u, t, u being weak terms:

· [Object]. This is a consequence of Lemmas 4.20.

· [AppW]. t � t1 t2, u � u1 u2, ti �Γ ui, t1, t2, u1, u2 are weak
By application of the induction hypothesis, tiθ �∆ uiθ

1. Moreover, by assumption
on the co-domain of θ and θ 1, t1θ, t2θ, u1θ 1 and u2θ 1 are all weak. Hence, by
application of the [AppW] rule, tθ �∆ uθ 1.

· [ElimW]. t � Elimpv : I r #«v s Ñ Qqt #«

f u, u � Elimpv 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u
Since t and u are weak, vθ � v � v 1 � v 1θ. Moreover, by assumption on θ and θ 1,
tθ and uθ 1 are weak. We conclude by application of induction hypothesis and of rule
[ElimW].

· All other cases are done by a straightforward application of induction the hypothesis,
using that if v is weak then vθ is weak.

We need a last technical lemma about �Γ -conversion and −Ñ-reduction:
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Lemma 4.22

Suppose that t �Γ u and t−Ñ t 1, where t, u P WT. Then, there exists a term u 1 s.t.
t 1 �Γ u 1 and u−Ñ¤ u 1.

Proof. By induction on t �W
Γ u, t and u being weak.

· [Object]. Since t, u P O� and O� is stable by reduction, we have t 1 P O�. Hence,
t 1�Γ t�Γ u. By Lemma 4.9, t 1�Γ u. Hence, t 1 �Γ u.

· [AppW]. t � t1 t2, u � u1 u2, ti �Γ ui

If reduction occurs in t1 or t2, we conclude by an application of the induction hy�
pothesis. Otherwise, −Ñ-reduction is necessarily a β or R-reduction. Since t R O�,
by assumption on OzO�, this cannot be an R-reduction. Thus, t1 � λrx :u T s. v and
t 1 � vtx ÞÑ t2u. By inversion of t1�Γ u1, we have u1 � λrx :u Us. w with T �Γ U

and v �Γ,rx:uT s w. Thus, u−Ñwtx ÞÑ u2u. Since T is annotated with the unrestricted
annotation, we have v �Γ w. From v �Γ w, t2 �Γ u2 and t2, u2 P WT, we obtain
vtx ÞÑ t2u �Γ wtx ÞÑ u2u by Lemma 4.21.

· [AppS]. We simply take u 1 � t 1.
· [ElimW]. t � Elimpv : I r #«ws Ñ Qqt #«

f u, u � Elimpv 1 : I 1 r #«w 1s Ñ Q 1qt #«

f 1u, v � v 1
If reduction does not occur at the root position, we conclude by application of the
induction hypothesis. Otherwise, the reduction must be a ι-reduction.
Then, v � v 1 � T rks #«p , t

ι−Ñ∆rI, X, Ck, fk, Q,
#«

f , #«p s and I � IndpX : @p #       «

x : Aq. sqt # «

Ciu.
Moreover, u

ι−Ñ∆rI 1, X, C 1k, f 1k, Q 1, #«

f 1, #«p qs with Ck �Γ C 1k.
We now prove by induction on the constructor type CpXq that if CpXq �Γ C 1pXq and
f, f 1 are two weak terms at type level s.t. f �Γ f 1 and #«q is a vector a closed terms,
then ∆rI, X, CpXq, f, Q,

#«

f , #«q s �Γ ∆rI 1, X, C 1pXq, f, Q,
#«

f 1, #«q s:
· If CpXq � X #«m, then by inversion, C 1pXq � X #«m 1, and:

∆rI, X, CpXq, f, Q,
#«

f , #«q s � f �Γ f 1 � ∆rI 1, X, C 1pXq, f 1, Q,
#«

f 1, #«q s.
· If CpXq � @px : Bq. D where X does not occur in B and #«q � r #«r , then by
inversion C 1pXq � @px : B 1q. D 1 with B �Γ B 1 and D �Γ,rx:Bs D 1. Hence:

∆rI, X, CpXq, f, Q,
#«

f , #«q s � ∆rI, X, Dtx ÞÑ ru, f r,Q,
#«

f , #«r s
∆rI 1, X, CpXq, f 1, Q 1, #«

f 1, #«q s � ∆rI 1, X, D 1tx ÞÑ ru, f 1 r,Q 1, #«

f 1, #«r s
Since f and f 1 are weak and r is closed, f r and f 1 r are weak. If f r or f 1 r are
not in O�, then from f �Γ f 1, we have f r �Γ f 1 r. Otherwise, f�Γ f 1 and thus
f r�Γ f 1 r using [AppW]. Hence, f r �Γ f 1 r using [Object].
Moreover, since x R X�� Y X�� (by assumption on the formation of constructor
types) and r is weak (since r is closed), tx ÞÑ ru is a well-sorted substitution
and Dtx ÞÑ ru �Γ D 1tx ÞÑ ru by substitutivity (Lemma 4.19).
Hence, by application of the induction hypothesis:

∆rI, X, Dtx ÞÑ ru, f r, Q,
#«

f , #«q s �Γ ∆rI 1, X, D 1tx ÞÑ ru, f 1 r, Q 1, #«

f 1, #«q s
· If CpXq � @px : Bq. D with X occurring in B and q � r #«r , then, since I is weak, B

is of the form X #«w. By inversion of CpXq �Γ C 1pXq, C 1pXq � X #«w 1 with #«w �Γ
#«w 1.

Hence:
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∆rI, X, CpXq, f, Q,
#«

f , #«q s �
∆rI, X, Dtx ÞÑ ru, f r Elimpr : I rQs Ñ #«wqt #«

f u, Q,
#«

f , #«r s
∆rI 1, X, CpXq, f 1, Q 1, #«

f 1, #«q s �
∆rI 1, X, D 1tx ÞÑ ru, f 1 r Elimpr : I 1 rQ 1s Ñ #«w 1qt #«

f 1u, Q 1, #«

f 1, #«r s
As for previous case, one can check that f r Elimpr : I rQs Ñ #«wqt #«

f u and
f 1 r Elimpr : I 1 rQ 1s Ñ #«w 1qt #«

f 1u are �Γ -convertible. Hence, by application of
the induction hypothesis:

∆rI, X, CpXq, f, Q,
#«

f , #«q s �Γ ∆rI 1, X, CpXq, f 1, Q 1, #«

f 1, #«q s
· All other cases use a straightforward application of the induction hypothesis.

We can now state and prove the preservation of non-object cap Lemma:

Lemma 4.23

If t�Γ u and t−Ñ� t 1 then there exists t2 and u2 s.t. t 1−Ñ� t2, u−Ñ� u2 and t2 �Γ u2.

Proof. By induction on the de�nition of t�Γ u. If t, u are in O�, then so is t 1. Thus,
t 1�Γ t�Γ u and t 1 �Γ u by [Object]. We now consider rules which do not operate at O�.

Note that if t R O�, then for any t 1 s.t. t−Ñ� t 1, t 1 R O�.

· [Refl]. Immediate since t � u.

· [Rw-Left]. t−Ñ v and v�Γ u

If t−Ñ� t 1, then by con�uence of −Ñ, there exists a term w s.t.
t 1−Ñ�w and v−Ñ�w. By induction hypothesis on v�Γ u, there
exists two terms w2 and u2 s.t. w−Ñ�w2, u−Ñ� u2 and w2 �Γ

u2.

· [Rw-Right]. u−Ñu 1 and t�Γ u 1

If t−Ñ� t 1, by induction hypothesis on t�Γ u 1, there exists t2 and u2 s.t. t−Ñ� t2,
u−Ñu 1−Ñ� u2 and t2 �Γ u2.

· [AppW]. t � t1 t2, u � u1 u2, ti�Γ ui and t1, t2, u1, u2 are weak

By application of the induction hypothesis to t1�Γ u1 and
t2�Γ u2, there exists t 11, t 12, u 11, u 12 s.t. ti−Ñ� t 1i, ui−Ñ� u 1i
and t 1i �Γ u 1i. Note that t 1i, u 1i are weak since weak terms
are closed under reduction.

Suppose now that t−Ñ� t 1. By con�uence, there exists a term w s.t. t 11 t 12−Ñ�w

and t 1−Ñ�w. t 11 t 12 and u 11 u 12 being weak as application of weak terms, we obtain
t 11 t 12 �Γ u 11 u 12 by application of [AppW]. By repeated application of Lemma 4.22,
there exists a term w 1 s.t. u 11 u 12−Ñ�w 1 and w �Γ w 1.

· [Lam]. t � λrx :a T s. v, u � λrx :a Us. w, T �Γ U, v�Γ,rx:aT sw
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Since no reductions can occur at the root po�
sition of t, t−Ñ� λrx :a T 1s. v 1 with T −Ñ� T 1 and
v−Ñ� v 1. Applying the induction hypothesis to
v�Γ,rx:aT sw and T �Γ U, there exist v2, T 2, w2, U2
s.t. T 1−Ñ� T 2 �Γ U2Ð−�U and v 1−Ñ� v2 �Γ,rx:aT s
w2Ð−�w. By Lemma 4.10 and 4.16, v2 �Γ,rx:aT 2s
w2. We conclude λrx :a T 2s. v2 �Γ λrx :a U2s. w2
by application of [Lam].

· [Prod]. As for the [Lam] case.
· [Elim]. t � Elimpv : I r #«ws Ñ Qqt #«

f u, u � Elimpv 1 : I 1 r #«w 1s Ñ Q 1qt #«

f 1u, vÐÑ� v 1
This case is similar to the [App] one. Using induction hypothesis and con�uence of
−Ñ, there exist w1 and w2 s.t. t−Ñ�w1, u−Ñ�w2 and w1 �Γ w2.
If t−Ñ� t 1, then by con�uence of −Ñ, there exists a term t2 s.t. t 1−Ñ� t2 and w1−Ñ� t2.
By repeated application of Lemma 4.22, we obtain that there exists a term u2 s.t.
w2−Ñ� u2 and t2 �Γ u2.

· The cases [Ind], [Constr], [Eq] and [Symb] are done by application of the induction
hypothesis.

A �rst consequence of preservation of non-object cap is the stability of conversion by
environment conversion:

De�nition 4.24 Environment conversion

We de�ne the relation � on typing environments as the smallest relation s.t.

if Γ � Γ1, rx :a T s, Γ2 and ∆ � Γ1, rx :a T 1s, Γ2 with T �Γ1
T 1, then Γ � ∆.

Lemma 4.25

If Γ � ∆, then �Γ � �∆.

Proof. Let Γ � Γ1, rx :a T s, Γ2 and ∆ � Γ1, rx :a T 1s, Γ2 with T �Γ1
T 1. Assume that t�Γ u.

We prove t�∆ u by induction on the de�nition of t�Γ u:

· [Eq]. ry :r Us P Γ , yΓ −Ñ� t 9� u, t, u P O�
If x � y, this is immediate since xΓ � x∆ and x is annotated by r in Γ .
Otherwise, U�Γ y∆. From Lemma 4.23, there exist t 1, u 1, t2, u2 s.t. t−Ñ� t 1, u−Ñ� u 1
and y∆−Ñ� t2 9� u2 with t 1�Γ1

t2, u 1�Γ1
u2 and t 1, u 1 P O�. Using stability of O�,

there exist t3, u3 P O� s.t. t2−Ñ� t3, u2−Ñ� u3, t 1�Γ1
t3 and u 1�Γ1

u3. Hence,
t3�∆ u3 using [Eq]. Using weakening and multiple application of the [Rw] rule,
t�∆ t3 and u�∆ u3. Using transitivity and symmetry on O� (Lemma 4.9) of �∆,
t�∆ u.

· [Ded]. As for the [Ded] case of the Lemma 4.10.

· All other cases are done by a straightforward application of the induction hypothesis

Lemma 4.26 Product compatibility

1. If @px :a Tq. t��Γ @px :a Uq. u, then T ��Γ U and t��Γ,rx:aT s u.
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2. If s1��Γ s2, then s1 � s2.

Proof. 1. We do an induction on the length of the conversion t��Γ u, proving that if
t−Ñ� @px :a Tq. t 1, then u−Ñ� @px :a Uq. u 1 with T ��Γ U and t 1��Γ,rx:aT s u 1.
Assume that t�Γ v��Γ u and t−Ñ� @px :a Tq. p. Using Lemma 4.23, there exist T 1, p 1,
V 1, q 1 s.t. t−Ñ� @px :a T 1q. p 1, v−Ñ� @px :a V 1q. q 1 with T 1 �Γ V 1 and p 1 �Γ,rx:aT 1s q 1.
Since �Γ� ��Γ , T 1��Γ V 1 and p 1��Γ,rx:aT 1s q 1.
By application of the induction hypothesis, there exists U 1, r 1 s.t. u−Ñ� @px :a U 1q. r 1
with V 1��Γ U 1 and q 1��Γ,rx:aV 1s r 1. From T −Ñ� T 1��Γ V 1 and by Lemma 4.25, we have
p−Ñ� p 1��Γ,rx:aT s q 1��Γ,rx:aT s r 1. Hence, T ��Γ U 1 and p��Γ r 1.

2. As for the [Prod] case.

4.6 Correctness of types

Lemma 4.27

1. If Γ $ @px :a Tq. t : s, then Γ, rx :a T s $ t : s.

2. If Γ $ IndpX : Aqt #          «

CipXqu : T , then A��Γ T , Γ $ T : � and Γ, rX : As $ CipXq for any i.

Proof. 1. The judgment Γ $ @px :a Tq. t ends by an application of [Prod] followed
by several applications of [Weak] or [Conv]. Thus, we have Γ, rx :a T s $ t : s 1
with s 1 � s0�Γ0

s1�Γ1
� � � sn�Γn

sn � s with Γ0 � Γ1 � � � � � Γn � Γ . I.e.,
s 1 � s1 � � � � � sn � s.

2. The judgment Γ $ IndpX : Aqt #          «

CipXqu : T ends by an application of [Ind] followed by
several applications of [Weak] or [Conv]. We use the same argument as before:

· A � T0�Γ0
T1�Γ1

� � � Tn�Γn
T with Γ0 � Γ1 � � � � � Γn � Γ

· Γ0 $ A : � and @i, Γ0, rX : As $ CipXq : �.
We obtain the desired result using weakening of typing and monotony of conversion.

Lemma 4.28 Preservation of classes

If t�Γ u, then Classptq � Classpuq.

Proof. Straightforward induction on t�Γ u, noticing that [Eq] and [Ded] constrain the
converted terms to be in O.

Lemma 4.29 Correction of types

If Γ $ t : T then
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4. Meta-theoretical Properties of CCIC

1. T � � or Γ $ T : s with s P S,
2. ClasspTq � K and Classptq � K, and
3. ClasspTq � Classptq � 1.

Proof. The proof is as usual, we detail the changing cases. We do an induction on the
de�nition of Γ $ t : T .

· [App]. t � uv, Γ $ u : @px :u Vq. W, Γ $ v : V and T �Wtx ÞÑ vu
By induction hypothesis, Γ $ @px :u Vq.W : s and from Lemma 4.27, Γ, rx :u T s $
W : s.
Using side conditions of [App], we know that v P WT and that if x P X�� (resp.
x P X�� ), then v P O� (resp. v P P�). Moreover, by induction hypothesis on Γ $ t :

@px :a Uq. V , we know that Classpxq � ClasspUq. Thus, tx ÞÑ vu : Γ, rx :u T s Ã Γ and
by substitutivity Lemma, we obtain Γ $Wtx ÞÑ tu : s.

· [Constr]. t � Irns, T � CnpIq with I � IndpX : Aqt #          «

CipXqu
Then, from Lemma 4.27, we have A��Γ T , Γ $ T : � and Γ, rX :u As $ CjpXq : �.
Form Lemma 4.7 and de�nition of well-sorted terms, X P X� � X�� . By application
of the induction hypothesis, ClasspTq � K. Hence, by preservation of classes by
conversion, ClasspAq � K. By a second application of the induction hypothesis,
ClasspIq � ClasspTq � 1 � P. Hence, ClasspXq � ClasspIq. Since X is annotated with
u and ClasspXq � ClasspIq � P, we have tX ÞÑ Iu : Γ, rX : As Ã Γ , and we can apply
the substitutivity Lemma to Γ, rX :u As $ CjpXq. Hence, Γ $ CnpIq : �.

· All other cases are immediate or is a straightforward consequence of the induction
hypothesis.

4.7 Subject reduction

Lemma 4.30 Subject reduction for R ([4])

If Γ $ t : T and t
R−Ñ t 1, then Γ $ t 1 : T .

Proof. Following the proof of [4].

Lemma 4.31 Subject reduction

If Γ $ t : T and t−Ñ� t 1, Γ $ t 1 : T .

Proof. As usual, we prove by induction on the de�nition of Γ $ t : T that the two following
properties hold:

· if Γ −Ñ¤ ∆, then ∆ $ t : T ,
· if t−Ñ¤ t 1, then Γ $ t 1 : T .

Proof is standard here, and we only detail new cases:

· [Var] - t � x P X.
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Reduction is in Γ . If the reduction is not in the type associated to x in Γ , the result
is immediate. Otherwise, Γ � Γ1, rx :a T s, Γ2, Γ 1 � Γ1, rx :a T 1s, Γ2 with T −Ñ¤ T 1 and
there must be a sub-derivation Γ1 $ T : s in Γ $ t : T . Thus, by weakening Γ 1 $ T : s,
and since Γ 1 $ x : T 1 and T −Ñ¤ T 1, by conversion, Γ 1 $ x : T .

· [App] - t � uv, Γ $ u : @px :a Vq. W, Γ $ v : V , T �Wtx ÞÑ vu.
If the reduction occurs in u, this is immediate. If v

β−Ñ v 1 then by induction hypothesis,
we can easily derive that Γ 1 $ u v 1 : Wtx ÞÑ v 1u and Γ 1 $ u v : Wtx ÞÑ vu. Since
Wtx ÞÑ vu β−Ñ�Wtx ÞÑ v 1u, we have Wtx ÞÑ vu�Γ Wtx ÞÑ v 1u and, Γ 1 : uv 1 : Wtx ÞÑ
vu by conversion.
Otherwise, we have either a β or R-reduction at root position.

· If a β-reduction occurs at the root of t, then u � λrx :a V 1s. w and t
β−Ñwtx ÞÑ

vu. By inversion, Γ, rx :a V 1s $ w : W 1 with @px :a Vq. W�Γ @px :a V 1q. W 1 and
a � u. By type structure compatibility, V ��Γ V 1 and W��Γ,rx:aV 1sW 1. Thus, by
conversion, Γ, rx :a V 1s $ w : W and Γ $ v : V 1.
We can then apply the substitution lemma: Γ $ wtx ÞÑ vu : Wtx ÞÑ vu.

· If a R-reduction occurs at the root of t, we apply Lemma 4.30.

· [Elim]. Identical to the proof of subject reduction of CIC [48].

· All other cases are immediate.

4.8 Type unicity

Lemma 4.32 Type unicity

Assume that �Γ is an equivalence relation on well-formed terms. If Γ $ t : T1 and Γ $ t : T2

then T1�Γ T2.

Proof. The proof is as usual by case on the head structure of t, and then by inversion,
using type structure compatibility.

4.9 Strong normalization

In 2001, Blanqui [3] de�ned the Calculus of Algebraic Constructions (CAC), an extension
of the Calculus of Constructions whose conversion relation is the union of β-reduction and
an arbitrary rewriting system R. Combination of β−Ñ-reduction with rewriting has been
studied since the end of the 80's, starting with the work of Tannen [44] for the con�uence
of the combination of β−Ñ and �rst order rewriting, and next the works of Tannen and
Gallier [45, 46], and of Okada [34] for the strong normalization and con�uence of the
combination of β−Ñ and polymorphic �rst-order rewriting system. In CAC, R can be an
arbitrary higher-order rewriting system including type level rewriting as long as R veri�es
the so-called general schema, which is a generalization of primitive recursion at higher
types introduced by Jouannaud and Okada [29] and further generalized by Blanqui [3, 4].

A concise and elegant proof of strong normalization of βR−−Ñ for well formed terms can
be found in [4]. CAC can capture numerous higher-order systems, including CIC, for
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4. Meta-theoretical Properties of CCIC

which the rules are simply beta, weak-iota and strong-iota. See [5] for a description of the
embedding of CIC in CAC.

Our proof of strong normalization shall indeed mimic Blanqui's proof of strong normal�
ization for CAC. We shall recall the main lemmas, and carry out in detail the proofs which
are not verbatim copies of Blanqui's proofs.

In [2], Barthe proved that strong normalization is compatible with proof-irrelevance,
that equates all object-level expressions of a given type. Because his result is restricted to
PTSs, it does not apply to CCIC. Our result can therefore be seen as a generalization of
Barthe's one. Here, we build a proof-irrelevant interpretation for the Calculus of Inductive
Constructions, which equates object level terms as in Barthe.

A modi�ed version of the Calculus of Algebraic Construction

We give here the de�nition of the Calculus of Algebraic Construction with a slight modi��
cation of its conversion relation. In the initial de�nition CAC, terms are equal if and only if
they are convertible w.r.t. a �xed rewriting relation. In CAC�, two terms are convertible
is they =ñ-reduce, for a given rewriting system =ñ, to two terms having the same non-object
level cap. Assuming =ñ con�uent, we have a strict extension of CAC, since our conversion
relation clearly captures =ñ-convertibility.

Note that we are not interested in the logical consistency of CAC�, nor its decidability.
We deliberately de�ne a coarse conversion relation so that the meta-theory of CAC� is
straightforward, but not too coarse so that =ñ is strongly normalizing in CAC�.

De�nition 4.33 Terms of CAC�

Let Ψ be a set of function symbols. We denote by Ψ� (resp. Ψ�) the set of object level
function symbols (resp. type level function symbols). The algebra of pseudo-terms of
CAC� is de�ned by:

t, u, T, U, . . . :� f P Ψ | s P S | x P X | @px : Tq. t | λrx : T s. t | t u

We here too give a layered de�nition of pseudo-terms of CAC�:

De�nition 4.34 Syntactic classes

The pairwise disjoint syntactic classes of CAC� called objects (O), predicates (P), kinds
(K), � are de�ned in Figure 4.2.

O ::� X� | f P Ψ� | OO | OP | λrx� :a Ps.O | λrx� :a Ks. O
P ::� X� | f P Ψ� | PO | P P | λrx� :a Ps. P | λrx� :a Ks.P

::� @px� :a Pq. P | @px� :a Kq. P
K ::� � | @px� :a Pq. K | @px� :a Kq. K
� ::� �

Figure 4.2: CAC� terms classes
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As for CCIC, this enumeration de�ned a post-�xed successors function �1 on classes
and we de�ne Classptq � D if t P D and D P tO, P, K, �u, and Classptq � K otherwise.

Translation of CCIC to CAC�

De�nition 4.35 Translation of CCIC to CAC� (De�nition 7.3 of [5]

We de�ne the translation of CCIC well-formed terms to CAC�, written xty, by induction
on the de�nition of Γ $ t : T :

xxy � x

xfy � f f P ΣYΛY t 9�,Leibu
xEqT ptqy � Eq xTy xty

xt uy � xty xuy
xλrx :a T s. ty � λrx : xTys. xty
x@px :a Tq. ty � λrx : xTys. xty

xIy � fI I � IndpX : Aqt #       «

CpXqu
xElimpt : I r #«us Ñ Qqt #«

f uy � SElim
Q
I x #«uy xty x #«

f y if Q is of the form @p #       «

x : Aqpy : I #«x q. K
xElimpt : I r #«us Ñ Qqt #«

f uy � WElimI xQy x #«uy xty x #«

f y otherwise
xIrisy � fI

i

where f, Eq, fI, SElim
Q
I , WElimI and fI

i are symbols of Ψ.

Having this translation, we can now transpose the notion of weak terms to CAC�:

De�nition 4.36 CAC� weak terms

A term t P CAC� is weak if there exists u P CCIC s.t. u is well-formed in CCIC and
xuy � t.

Typing judgments

Assume that, for any symbol f of Ψ, we attach a type τf P CAC�.
De�nition 4.37 Conversion relation

Rules of Figures 4.3 de�ne a binary relation u on terms of class di�erent from K, and
where each rule whose name is annotated with a � and of the form

E1 � � � En

t �Γ u

has to be read as
E1 � � � En t, u R O Classptq � K Classpuq � K

t �Γ u

We then de�ne the CAC� conversion relation �Γ by t�Γ u if there exists t 1, u 1 P CAC�
s.t. t =ñ� t 1, u =ñ� u 1 and t 1u u 1.
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4. Meta-theoretical Properties of CCIC

t, u P O
[Object]

tu u

t1u u1 t2u u2 t1, u1, t2, u2 are weak
[AppW (�)]

t1 t2u u1 u2

t1 � u1 t2 � u2
[AppS (�)]

t1 t2u u1 u2

s P S
[Sort (�)]

su s

x P X�
[Var-X� (�)]

xu x

f P Ψ
[Ψ (�)]

fu f

T uΓ U tu u
[Lam (�)]

λrx : T s. tu λrx : Us. u
T uU tu u

[Prod (�)]@px : Tq. tu @px : Uq. u

Figure 4.3: CAC� Conversion Relation

De�nition 4.38 CAC� typing judgement

The typing judgment Γ , t : T , for CAC�, is de�ned by the rules of Figure 4.4.

[Ax-1], � : �
, τf : s f P Ψ

[Symb], f : τf

Γ , T : sT Γ, rx : T s , U : sU
[Prod]

Γ , @px : Tq. U : sU

Γ , @px : Tq. U : s Γ, rx : T s , u : U
[Lam]

Γ , λrx : T s. u : @px : Tq. U
Γ , V : s Γ , t : T s P t�, �u x P Xs z dompΓq

[Weak]
Γ, rx : Vs , t : T

x P dompΓq X Xsx Γ , xΓ : sx
[Var]

Γ , x : xΓ

Γ , t : T Γ , T : s Γ , T 1 : s 1 T �Γ T 1
[Conv]

Γ , t : T 1

Figure 4.4: CAC� Typing Rules

As for CCIC, we de�ne a notion of well-formed substitution:

De�nition 4.39

Let Γ and ∆ two CAC� typing environments and θ a CAC� substitution. θ is well-formed
from Γ to ∆, written θ : Γ Ã Γ if for all x P dompθq, ∆ , xθ : xΓθ.
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Correctness of conversion

Lemma 4.40 Embedding of conversion

1. The relation u is re�exive.

2. Assume that T and T 1 are two CCIC well-formed terms s.t. T �Γ T 1. Then, xTyuxT 1y.
Proof. 1. Straightforward induction on the de�nition of u.

2. Straightforward induction on the de�nition of T �Γ T 1.

Lemma 4.41 Correctness of translation (Theorem 7.1 of [5])

There exists a rewriting relation =ñ and function symbol types τf s.t.

1. If Γ $ t : T , then xΓy , xty : xTy.
2. If Γ $ t : T and t−Ñ t 1, then xty=ñxt 1y.

Proof. Following the proof of Theorem 7.1 of [5], only the [Conv] case changes. Assume
that Γ $ t : T 1 is derived using the [Conv] rule from Γ $ t : T , Γ $ T : s, Γ $ T 1 : s 1 and
T �Γ T 1.

By Lemma 4.23, there exists two CCIC terms U and U 1 s.t. T −Ñ�U, T 1−Ñ�U 1 and
U �Γ U 1. By application of the induction hypothesis, xTy=ñ�xUy and xT 1y=ñ�xU 1y. By
Lemma 4.40, U and U 1 being well-formed under Γ by subject reduction, xUyuxU 1y. Hence
xTy�xT 1y.

By application of the induction hypothesis to all the premises and application of the
[Conv] rule, xΓy , xty : xT 1y.

Meta-theory of CAC�

Before proving strong normalization of =ñ for well-formed terms of CAC�, we must prove
some basic meta-theoretical properties, namely substitutivity, product compatibility and
correctness of types.

Lemma 4.42

If θ : Γ Ã ∆ and T �U, then Tθ�Uθ.

Proof. Assume that T =ñ� T 1uU 1ð=�U. Then, Tθ=ñ� T 1θ and Uθ=ñ�U 1θ from properties
of rewriting. A straightforward induction on the de�nition of UuU 1 gives UθuU 1θ.

Corollary 4.43 Substitutivity

If θ : Γ Ã ∆ and Γ , t : T , then ∆ , tθ : Tθ.

Lemma 4.44

1. If @px : Uq. V u @px : U 1q. V 1, then UuU 1 and V u V 1.
2. If s1u s2, then s1 � s2.
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4. Meta-theoretical Properties of CCIC

Proof. Immediate using inversion of @px : Uq. V u @px : U 1q. V 1 and s1u s2.

Corollary 4.45 Pre-product compatibility

1. If @px : Uq. V � @px : U 1q. V 1, then U�U 1 and V � V 1.
2. If s1� s2, then s1 � s2.

Proof. 1. If @px : Uq. V � @px : U 1q. V 1, then

@px : Uq. V =ñ� @px : U1q. V1 and @px : U 1q. V 1=ñ� @px : U2q. V2

with @px : U1q. V1u @px : U2q. V2. By Lemma 4.44, U1uU2 and V1u V2. Hence,
U�U 1 and V � V 1.

2. If s1� s2, then s1u s2, s1, s2 being =ñ-normal. Hence, s1 � s2 by Lemma 4.44.

Lemma 4.46

If T uU and T =ñ T 1, then there exists U 1 s.t. U=ñ¤U 1 and T 1u 1U.

Proof. Similar to the proof of Lemma 4.22.

Corollary 4.47 Product compatibility

1. If @px : Uq. V �� @px : U 1q. V 1, then U��U 1 and V �� V 1.
2. If s1�� s2, then s1 � s2.

Proof. Following the proof of 4.26.

Lemma 4.48

If t� u with Classptq � K and Classpuq � K, then Classptq � Classpuq.

Proof. Straightforward induction on the de�nition of t 1u u 1, where t 1 and u 1 are s.t.
t =ñ� t 1 and u =ñ� u 1.

Lemma 4.49 Correctness of types

If Γ , t : T then

1. T � � or Γ , T : s with s P S,
2. ClasspTq � K and Classptq � K, and
3. ClasspTq � Classptq � 1.

Proof. The proof is identical to the one of CAC, using classes preservation of �.
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Strong normalization in CAC�

De�nition 4.50 Neutral terms

A CAC� term is neutral if it is not of the form λrx : T s. t, or a not fully applied term f #«u .

Notation. We write SN (resp. WN, NT) for the set of =ñ-strongly normalizing CAC� terms
(resp. the set of =ñ-weakly normalizing CAC� terms, the set of neutral terms).

De�nition 4.51 Reducibility candidates (De�nition 32 of [4])

We inductively de�ne the set Rt of the interpretations for the terms of type t in CAC�,
the ordering ¤t on Rt, an element Jt P Rt, and an internal operation

�
t on the powerset

of Rt as follows:

· if t � � and Γ $ t : �, then:
Rt � tHu, ¤t��, Jt � H,

�
tpRq � Jt.

· Rs is the set of all the subsets R of CAC� s.t.:
(R1) R � SN

(R2) If t P R and t =ñ t 1, then t 1 P R

(R3) If t P NT and t =ñ t 1 implies t 1 P R, then t P R

Furthermore, ¤s��, Js � SN,
�

spRq � �pRq (using Js as neutral element for X).
· R@px:Uq. K is the set of functions R from CAC� � RU to RK s.t. Rpu, Sq � Rpu 1, Sq
whenever u =ñu 1. Furthermore:

· J@px:Uq.Kpu, Sq � JK,
· �@px:uq. KpRqpu, Sq ��

KptRpu, Sq | R P Ruq,
· R ¤@px:Uq. K R 1 if and only if for all pu, Sq, Rpu, sq ¤K R 1pu, Sq.

De�nition 4.52 Interpretation schema (De�nition 37 of [4])

A candidate assignment is a function ξ from X to
�

tPL Rt. A candidate assignment ξ

validates an environment Γ , written Γ ( Γ , if for all x P dom Γ , xξ P RxΓ . An interpretation
of a symbol f is an element of Rτf

. An interpretation of a set G of symbols is a function
I which, to each symbol g P G, associate a interpretation Ig of g.

The interpretation of t w.r.t. candidate assignment ξ, an interpretation I and a sub�
stitution θ, is de�ned by induction on the structure of t as follows:

JtKIξ,θ � Jtif t P OY S

JfKIξ,θ � If

JxKIξ,θ � xξ

J@px : Uq. VKIξ,θ � tt P L | @u P JUKIξ,θ,@S P RU, t u P JVKIξS
x,θu

x
u

Jλrx : Us. vKIξ,θpu, Sq � JvKIξS
x,θu

x

Jt uKIξ,θ � JtKIξ,θpuθ, JuKIξ,θq
where θu

x � θY tx ÞÑ uu and ξS
x � ξY tx ÞÑ Su.

A substitution is adapted to a Γ -assignment ξ if dompθq � dompΓq and, for all x P
dompθq, xθ P JxΓKIξ,θ. A pair pξ, θq is Γ -valid, written ξ, θ ( Γ , if ξ ( Γ and θ is adapted
to ξ.
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Lemma 4.53 Invariance by reduction (Lemma 65 of [4])

If Γ $ t : T , t−Ñ t 1, ξ ( Γ and tθ PWN, then JtKξ,θ � Jt 1Kξ,θ

Proof. Following the proof of Lemma 65 of [4].

Lemma 4.54 Invariance by conversion on non-object cap

Assume that T uU. Then JTKξ,θ � JUKξ,θ.

Proof. Straightforward induction on the de�nition of T uU.

Lemma 4.55 Computability of symbols

There exists an interpretation of Ψ s.t. for all f P Ψ, f P JτfK.

Proof. Following the proof of Lemmas 63 and 68 of [4].

Lemma 4.56 Computability of well-formed terms (Lemma 69 of [4])

If Γ , t : T and ξ, θ ( Γ then tθ P JTKξ,θ.

Proof. Following the proof of Lemma 69 of [4]. The proof is done by induction on the
de�nition of Γ , t : T . Only the case [Conv] is modi�ed.

We have then Γ $ t : U, Γ $ U : sU, Γ $ T : sT and U�Γ T . By application of the
induction hypothesis, tθ P JUKξ,θ, Uθ P JsUKξ,θ � Jsu

� SN and Tθ P JsT Kξ,θ � JsT
�

SN.

From de�nition of �Γ , there exists two CAC� terms U 1, T 1 s.t. T =ñ� T 1, U=ñ�U 1
T 1uU 1.

By Lemma 4.53, JTKξ,θ � JT 1Kξ,θ and JUKξ,θ � JU 1Kξ,θ. By Lemma 4.54, JT 1Kξ,θ �
JU 1Kξ,θ. Hence, JUKξ,θ � JTKξ,θ and tθ P JTKξ,θ.

Theorem 4.1 Strong normalization of =ñ
Assume that Γ , t : T . Then, t is strongly normalizing.

Proof. Let xξ � JxΓ for all x P dompΓq. Since ξ ( Γ and the identity substitution ι is
adapted to ξ, t P S � JTKξ,ι. Now, either T � � or Γ , T : s for some s P S. If T � �, then
S � J� � SN. If Γ , T : s, then T P Rs and Rs � SN by (R1).

Corollary 4.57

Every typable term of CCIC is −Ñ-strongly normalizing.

Proof. Assume that Γ $ t : T . By Lemma 4.41, xΓy , xty : xTy. By Lemma 4.1, xty is
=ñ-strongly normalizing. By Lemma 4.41, t is necessary −Ñ-strongly normalizing.

66



chapter 5

Deciding CCIC

We now move to the decidability of the type checking of CCIC, that is, given a valid
environment Γ , a type T such that Γ $ T : s P S, and an arbitrary term t, checking whether
Γ $ t : T . We do not decide the calculus in all its generality but instead take an instance
of CCIC:

· We take Presburger arithmetic as the embedded logic T. See Section 5.3 for a discus�
sion about deciding more theories.

· The set of extractable terms O� is de�ned as the set of pure algebraic terms,

· The set of convertible terms O� is de�ned as the set of all object-level terms but
terms of the form x

#«
t with x P X�zX�� or terms of the form f

#«
t not fully applied

terms.

· The set of extractable type variables P� contain all the terms which are convertible,
in some environment, to nat.

· We of course assume that the rewriting system −Ñ respects the conditions of Blan�
qui [4], which implies its strong normalization on well-typed terms.

De�nition 5.1 Extractable terms

The set O� of extractable terms is made of all the terms which are pure algebraic (i.e. of
the form: t ::� 0 | S t | t 9� t | x P X�� ). We denote by A the set of pure algebraic terms.

The set X�� being of no use here (we do not have parametric sorts), we take X�� � H.
Moreover, having only one sort, we take Znat � X�� (Znat was de�ned as the set of variables
used for the abstraction, w.r.t. the sort nat, of the variables of X), and we de�ne xnat � x

for x P X. The set Ynat of abstraction variables for alien of sort nat is denoted by Y. (All
these sets where de�ned in De�nition 3.47 and above)

Hence, the algebraisation of a pure algebraic term t result in the curri�cation of all
the symbols of t. From now on, we will write t for the algebraisation ARptq of the pure
algebraic term t.

Note that in our case, the [Ded] rule of �Γ is now:

E ( A�Γ
ptq � A�Γ

puq t, u P O�
E � tw1 � w2 | w1�Γ w2, w1, w2 P O�u

[Ded]
t�Γ u

Type-checking is decomposed as follow. The rules of Figure 3.5 and 3.6 providing
no algorithm (due to the presence of the conversion rule), a new syntax oriented typing
judgment $i is de�ned such that:

Γ $ t : T if and only if Γ $i t : T 1 with T �Γ T 1.
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5. Deciding CCIC

Described in Section 5.2, this transformation is classical and done as usual by integrating
the conversion rule of $ in the application rule [12]. Decidability of type-checking in CCIC
is then reduced to the decidability of the conversion relation �Γ . Deciding �Γ is carried
out in Section 5.1.

5.1 Decidability of conversion relation

The main idea, again, is to eliminate the non-structural rules, here rules [Rw-Left] and
[Rw-Right] of Figure 3.7, and therefore to introduce a weaker conversion relation �Γ

de�ned by structural rules only. As a result, the conversion relationship will be related by
the property:

�Γ � !−Ñ�Γ
!Ð−.

Since conversion for non-weak terms was restricted to be ÐÑ�, their −Ñ-normal forms
become syntactically equal. As a consequence, the rules of �Γ which di�er from those of
�Γ are: i) [Refl], now restricted to constants and variables. ii) [Eq], now internalized in
[Ded]. iii) [ElimW], for which conversion for the �rst argument is now syntactic equality,
and iv) [Ded] which now works with algebraic equations which can be directly computed
from ΓÓ.

Besides, most rules check whether the assumptions made in the environments are con�
sistent with the theory T. This check is absolutely crucial to guarantee the termination of
the algorithm. Note that, in the case of an implementation, this check is only needed at
the beginning and when traversing a binder, resulting in an increase of the set of extracted
equations.

Weak conversion �Γ

De�nition 5.2 Environment equations

For any typing environment Γ , we de�ne the set of Γ -equations as

EqpΓq � tt � u | rx :r T s P Γ, xΓ −Ñ� t 9� u, t, u P O�u

Note that, for any rx :r T s P Γ , there is a unique equation t 9� u (t, u P O�) s.t.
T −Ñ� t 9� u as terms in O� are normal and −Ñ is con�uent.

De�nition 5.3 Weak conversion relation �Γ

Rules of Figures 5.1 and 5.2 de�ne a family of relation t�Γ uΓ .

Example 5.4

Let Γ � rc : nats, rp :r pλrx : nats. xq 0 9� cs. The only extractable equation of Γ being pΓÓ,
EqpΓq � t0 � cu. We clearly have pλrx : nats. x 9� xq 0�Γ c. Indeed, by [Eq], 0�Γ c. Hence
0 9� 0�Γ c by [Ded] and pλrx : nats. x 9� xq 0�Γ c by [Rw].

On the contrary, pλrx : nats. x� xq 0�Γ c does not hold, pλrx : nats. x� xq 0 not being
�Γ -convertible to its reduct. As expected, the result is recovered by �rst normalizing the
terms being converted. Here, (if we assume R to be empty):
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[Refl-�]��Γ � [Refl-�]
��Γ �

T,EqpΓq * K or x R O�
[Refl-X]

x�Γ x

T,EqpΓq * K or f R O�
f P ΣYΛY tLeib, 9�u

[Symb]
f�Γ f

T,EqpΓq * K
T �Γ U t�Γ u

[Eq]
EqT ptq�Γ EqUpuq

t, u P O� T,EqpΓq ( K
[Unsat]

t�Γ u

T �Γ U t�Γ,rx:aT s u
T,EqpΓq * K or λrx :a T s. t and λrx :a Us. u not in O�

[Lam]
λrx :a T s. t�Γ λrx :a Us. u

T �Γ U t�Γ,rx:aT s u
[Prod]@px :a Tq. t�Γ @px :a Uq. u

t1 � u1 t2 � u2

T,EqpΓq * K or t1 t2 and u1 u2 not in O�
t1 t2 or/and u1 u2 is not weak

[AppS]
t1 t2�Γ u1 u2

t1�Γ u1 t2�Γ u2 ti, ui are weak
T,EqpΓq * K or t1 t2 and u1 u2 not in O�

[AppW]
t1 t2�Γ u1 u2

T,EqpΓq * K t � Ctra1, . . . , aks u � Curak�1, . . . , ak�ls
Ct or Cu is a non-empty algebraic context

all the ai's have empty algebraic caps
the ci's are fresh variables of Y s.t. ci � cj i� ai�Γ bj

T,EqpΓq ( Ctrc1, . . . , cks � Curck�1, . . . , ck�ls [Ded]
t�Γ u

Figure 5.1: Conversion relation �?
Γ (Part. 1)

ppλrx : nats. x 9� xq 0qÓ � 0 9� 0�Γ c

We show in next section that this result always holds.

Decidability of �Γ

Fact 5.5
1. Assume that E is a set of T-equations s.t. T ( E and let t P O�. For any term

u P CCIC s.t. T, E ( t � ARpuq, we have u P O�.
2. If T, E ( t � u, then T, E ( tÓR � uÓR.
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5. Deciding CCIC

t � t 1 I�Γ I 1 Q�Γ Q 1 #«v �Γ
#«v 1 #«

f �Γ
#«

f 1
T,EqpΓq * 0 � 1 or Elimpt, . . .qt. . .u and Elimpt 1, . . .qt� � � u not in O�
Elimpt : I r #«v s Ñ Qqt #«

f u and Elimpt 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u are weak
I, I 1 are weak inductive types

[ElimW]
Elimpt : I r #«v s Ñ Qqt #«

f u�Γ Elimpt 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u
t � t 1 I � I 1 Q � Q 1 #«v � #«v 1 #«

f � #«

f 1
T,EqpΓq * 0 � 1 or Elimpt, . . .qt. . .u and Elimpt 1, . . .qt� � � u not in O�

Elimpt : I r #«v s Ñ Qqt #«

f u is not weak
or I or I 1 is not a weak inductive type

[ElimS]
Elimpt : I r #«v s Ñ Qqt #«

f u�Γ Elimpt 1 : I 1 r #«v 1s Ñ Q 1qt #«

f 1u
A�Γ A 1 #«

C�Γ
#«

C 1
[Ind]

IndpX : Aq #«

C�Γ IndpX : A 1q #«

C 1
I�Γ I 1 T,EqpΓq * K

[Constr]
Irns�Γ I 1rns

Figure 5.2: Conversion relation �?
Γ (Part. 2)

Correctness of extractable terms

Before proving correctness and completeness of �Γ , we �rst must ensure that the sets O�,
O� and P� conform to the required restrictions of our meta-theory.

The set O� is clearly closed by reduction. It is also clear that O� � O� and that O�
and O� are stable by well-sorted substitutions. Moreover, terms of OzO� having empty
algebraic caps, no R-reduction can occur at the root of any term of O�.

Likewise, nat being in P and conversion conserving classes, we have P� � P. Moreover,
P� is stable by conversion by de�nition.

Now, assume that t P O� and u P CCIC s.t. tÐÑ� u. Then, t−Ñ� x t1 . . . tn (resp.
t−Ñ� f t1 . . . tn with f t1 . . . tn being not fully applied). Note that no reduction can occur
at the root of x t1 . . . tn (resp. f t1 . . . tn) since they are not algebraic. By con�uence of
−Ñ, u−Ñ� x t 11 . . . t 1n (resp. u−Ñ� f t 11 . . . t 1n) with for all i, ti−Ñ� t 1i. Hence, u P O� and
O� is stable by −Ñ-equivalence.

We are left to prove:

Lemma 5.6

Assume that O� � O� � �Γ . If t�Γ u with t P O�, then u−Ñ� u 1 P O� and t�Γ u 1.
(Resp., if u P O�, then t−Ñ� t 1 P O� and t 1�Γ u)

Proof. By induction on the de�nition of t�Γ u, we prove that:

1. If t P O�, then u−Ñ� u 1 P O� and t�Γ u 1,
2. if t � f t1, . . . , tn with t not fully applied and t1, . . . , tn P O�, then u−Ñ� f u1, . . . , un,

and for all i, ti�Γ ui and ui−Ñ� u 1i P O�.

From the form of t, only 5 rules are applicable: [Eq], [Rw-Right], [Refl], [Ded] and
[AppW]:
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· [Eq]. We have t, u P O� by rule assumption.

· [Rw-Right]. Straightforward application of induction hypothesis.

· [Refl] - t � u. We take u 1 � u.

·
[Ded].

Ehkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj
tw1 � w2 | w1�Γ w2, w1, w2 P O�u ( A�Γ

ptq � A�Γ
puq

If t P O�, then A�Γ
ptq � t. Since E is T-valid (otherwise we would have O� � O-

� �Γ , which contradicts lemma assumption), u is algebraic from Lemma 5.5. Thus,
A�Γ

puq � u. Let u 1 � uÓR P O�. From Lemma 5.5, T, E ( t � u 1, and thus, t�Γ u 1.
If t � f t1, . . . , tn, then [Ded] is not applicable since t is not fully applied (t R O�).

· [AppW]. t � t1 t2, u � u1 u2, ti�Γ ui, t1, t2, u1, u2 are weak
If t P O�, then t � f v1 . . . vn with all the vi's in O�. Then t1 � f v1, . . . , vn�1 and
t2 � vn and from induction hypothesis, u1−Ñ� p1 � f w1, . . . , wn�1 and u2−Ñ� p2 �
wn with all the wi's in O� and for all i, vi�Γ wi. Let E � tvi � wiui. Then,
T, E ( t � p1 p2. From Lemma 5.5, T, E ( t � pp1 p2qÓR. Hence, t�Γ pp1 p2qÓR by
[Ded] with u−Ñ�pp1 p2qÓR P O�.
If t1 t2 � f p1, . . . , pn, then we conclude by a straightforward application of the
induction hypothesis.

Corollary 5.7

The reduction −Ñ is strongly normalizing on well-formed terms.

Correctness

We now state and prove the correctness of �Γ :

Lemma 5.8 Correctness

If t�Γ u then t�Γ u.

Proof. The proof is done by induction on the de�nition of t�Γ u:

· If t�Γ u by [Refl-�], [Refl-�] or [Refl-X], we conclude that t�Γ u by [Refl].

· Assume that t�Γ u is obtained by rule [Unsat]. For any equation w1 � w2 P EqpΓq,
we know that w1�Γ w2 by [Eq]. Thus, from T,EqpΓq ( K, and t, u P O�, we have
t�Γ u by [Ded].

· If t�Γ u is obtained from [Lam], [Prod], [ElimW], [AppW], [Eq], [Symb], [Ind] or
[Constr], we conclude by direct application of the induction hypothesis, using the
corresponding congruence rule of �Γ .

· If t�Γ u is derived from [ElimS] or [AppS], then t � u. Hence, t�Γ u by [Refl].

· If t�Γ u is obtained from [Ded], with t � Ctra1, . . . , aks and u � Curak�1, . . . , ak�ls,
Ct, Cu being maximal algebraic contexts, then let c1, . . . , ck�l P Y be the variables
a�ected to a1, . . . , ak�l in the application of the [Ded] rule. By application of
the induction hypothesis, we know that if ai�Γ aj, then ai�Γ aj. Thus, the alge�
braic context being maximal, there exists a variables ξ injection (whose domain is
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5. Deciding CCIC

tc1, . . . , ck�lu) s.t. A�Γ
ptq � Ctrc1, . . . , cksξ and A�Γ

puq � Curck�1, . . . , ck�lsξ.
Hence, T,EqpΓq ( A�Γ

ptq � A�Γ
puq - variables of EqpΓq being disjoint from dompξq.

Now, by application of the [Eq] rule, we have w1�Γ w2 for any equation w1 � w2 P
EqpΓq. Hence, by [Ded], t�Γ u.

Completeness

For completeness, we need to prove for �Γ lemmas similar to the Lemmas 4.20 and 4.22
for �Γ .

We start with some technical lemmas about �Γ .

Lemma 5.9 Re�exivity

For any term t and typing environment Γ , t�Γ t.

Proof. Straightforward induction on the structure of t.

Lemma 5.10 Preservation of classes

1. The relation �Γ preserve classes.

2. If t P O� and t�Γ u, then u P O�.

Proof. 1. Straightforward by induction on the de�nition of �Γ .

2. We �rst show that OzO� is stable by �Γ : by induction on the de�nition of t�Γ u,
we prove that if t � x t1, . . . tn with x P XzX�� (resp. t � f t1, . . . tn and not fully
applied), then u � x t1, . . . tn (resp. u � f u1, . . . un)
Only three rules are applicable: [Refl-X], [Refl-Σ], [App]. The cases [Refl-X] and
[Refl-Σ] are immediate. We detail the [App] one. We have then t � f t1 . . . tn�1 tn

and u � ww 1 with f t1 . . . tn�1�Γ w and tn�Γ w 1. By application of the induction
hypothesis, w � f w1 . . . wn�1 for some wi's. Hence, u � f w1 . . . wn�1 w 1.
The case t � x t1, . . . tn is identical.
Now, since O and OzO� are stable by �Γ , so is O�.

Lemma 5.11 Stability of �Γ

If Γ and ∆ are two typing environments s.t. EqpΓq � Eqp∆q, then �Γ � �∆.

Proof. Straightforward induction on the de�nition of �Γ (resp. �∆).

Lemma 5.12

If t�Γ u for t, u P O�, then T,EqpΓq ( t � u.

Proof. If T,EqpΓq ( K, then necessarily T,EqpΓq ( t � u. Otherwise, the only applicable
rule is [Ded]. Since t and u are pure algebraic, we have T,EqpΓq ( t � u from [Ded]
assumptions.

We now state and prove all the lemmas about stability of weak conversion we will need
in completeness proof.
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Lemma 5.13

Let t, u PWT s.t. t�Γ u and two substitutions θ, θ 1 : Γ ãÑ ∆ s.t.

· dompθq � dompθ 1q,
· for all x P dompθq, xθ�∆ xθ 1.

Then, tθ�∆ uθ 1.

Proof. By induction on the de�nition t�Γ u, we prove that for any substitutions θ, θ 1
conforming to the lemma assumptions, tθ�∆ uθ 1:

· [Ded]. t � Ctra1, . . . , ans, u � Curan�1, . . . , an�ks,
T,EqpΓq ( Ctry1, . . . , yns � Curyn�1, . . . , yn�ks, ai�Γ aj ñ yi � yj

Let Ctθ and Cuθ be the maximal algebraic caps of tθ and uθ: tθ � Ctθrb1, . . . , bls
and uθ � Cuθrbl�1, . . . , bl�ps. Let z1, . . . , zl�p be variables of Y s.t. if bi�∆ bj

then zi � zj.
Since Ctθ and Cuθ span the contexts Ct and Cu, for all i, there exists a maximal
algebraic context Ci s.t.

aiθ � Cirbξip1q, . . . , bξipαiqs.
Assume a T-model M and a M-interpretation I s.t. JEqp∆qKIM � J and

JCtθrz1, . . . , zlsKIM � JCuθrzl�1, . . . , zl�psKIM.

We de�ne the M-interpretation I 1 as:

I 1pyiq � JCirzξip1q, . . . , zξipαiqsKIM
I 1pyq � Ipyq if y P Yzty1, . . . , yn�ku
I 1pxq � JxθKIM if x P X��

We �rst prove that if yi � yj, then
JCirzξip1q, . . . , zξipαiqsKIM � JCjrzξjp1q, . . . , zξjpαjqsKIM

hence assuring the well-formation of the de�nition of I 1.

Assume that ai�Γ aj. Without loss of generality, we here assume i ¤ n and j ¡ n.

From the induction hypothesis, aiθ�∆ ajθ
1. Then,

· If Ci and Cj are empty algebraic contexts, aiθ � bξip1q and ajθ
1 � bξjp1q.

Thus, zξip1q � zξjp1q and we obtain the desired result.
· Otherwise, by inversion of aiθ�∆ ajθ

1, we have:

T,Eqp∆q ( Cirxξip1q, . . . , xξipαiqs � Cjrxξjp1q, . . . , xξjpαjqs
for some fresh variables #«x P Y s.t. bi�Γ bj implies xi � xj. Since no variables
of Y appear in Eqp∆q, we obtain the desired result by a renaming from #«x to #«z .

Now,
1. If t P O�, then JtKI1M � JtθKIM � Jtθ 1KIM. Indeed, if t � x P X�� , JtKI1M � I 1pxq �

JxθKIM by de�nition of I 1. Furthermore, since xθ�∆ xθ 1 and xθ and xθ 1 P O�,
by Lemma 5.12, T,Eqp∆q (M,I xθ � xθ 1. Hence, having JEqp∆qKIM � J, we
obtain JxθKIM � Jxθ 1KIM.
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5. Deciding CCIC

2. We also have JCtθrz1, . . . , zlsKI1M � JCtry1, . . . , ynsKIM
JCuθrzl�1, . . . , zl�psKI1M � JCuryn�1, . . . , yn�ksKIM

This is proved by a straightforward induction on the algebraic structure of Ct

and Ctθ (resp. Cu and Cuθ). Notably, if Ctry1, . . . , yns � yi for some i, then
Ctθrz1, . . . , zls is necessarily of the form Cirzξip1q, . . . , zξipαiqs by de�nition of
Ctθ and we obtain the desired result from the de�nition of I 1.

Thus, JEqpΓqKI1M � J and JCtry1, . . . , ynsKI1M � JCuryn�1, . . . , yn�ksKI1M. This con�
tradicts T,EqpΓq ( Ctry1, . . . , yns � Curyn�1, . . . , yn�ks.
Hence T,Eqp∆q ( Ctθrz1, . . . , zls � Cuθrzl�1, . . . , zl�ps and by [Ded], tθ�∆ uθ 1.

· [Unsat]. As for the previous case, if we have a T-model M and a I interpretation
s.t. JEqp∆qKIM � J, we construct a M-interpretation I 1 as

I 1pyq � Ipyq if y P Y

I 1pxq � JxθKIM if x P X��

which is s.t. JEqpΓqKI1M � J, which contradicts T,EqpΓq ( K.
Hence, T,Eqp∆q ( K and, tθ, uθ 1 begin in O�, tθ�∆ uθ 1 by [Unsat]

· [Refl-s]. Immediate since then tθ � t and uθ � u.

· [Refl-X] - t � u � x P X. If x P dompθq, then xθ�∆ x 1θ by assumption. Otherwise,
xθ � x�∆ x � xθ 1

· [AppW]. t � t1 t2, u � u1 u2, ti�Γ ui

If T,Eqp∆q ( K and tθ, uθ P O�, we conclude by application of the [Unsat] rule.
Otherwise, tiθ, uiθ are in WT since co-domains of θ, θ 1 are uniquely composed of
weak terms, and we conclude by direct application of induction hypothesis.

· [AppS]. Not applicable since t, u P WT

· [ElimW]. t � Elimpv : I r #«ws Ñ Qqt #«

f u, u � Elimpv 1 : I 1 r #«w 1s Ñ Qqt #«

f 1u, v � v 1,
Q�Γ Q 1, I�Γ I 1, #«w�Γ

#«w 1 and #«

f �Γ
#«

f 1
If T,Eqp∆q ( K and t, u P O�, then we conclude by application of the [Unsat] rule.
Otherwise, since t, u P WT, vθ � v � v 1 � v 1θ 1. We then conclude by application of
induction hypothesis and [ElimW].

· [ElimS]. Not application since t, u PWT.

· If t�Γ u by [Eq], [Symb], [Constr] or [Ind], we conclude by a application of the
induction hypothesis.

Lemma 5.14

Suppose that t�Γ u and t and u do not contain subterms of the form a v with a algebraic.
If t−Ñ t 1, then there exists a term u 1 s.t. u−Ñ¤ u 1 and t 1�Γ u 1. Symmetrically, if u−Ñu 1,
then there exists a term t 1 s.t. t−Ñ¤ t 1 and t 1�Γ u 1.

Proof. By induction on the de�nition of t�Γ u.

· [Unsat]. We simply take u 1 � u.
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· [AppW]. t � t1 t2, u � u1 u2, ti�Γ ui, t1, t2, u1, u2 PWT

If reduction occurs in t1 or t2, we conclude by application of induction hypothesis.
If reduction occurs at root position, this cannot be a ι-reduction since t is headed
with an application, nor a R-reduction since t cannot have an algebraic cap from rule
assumptions. Thus, t1 � λrx :u T s. v and t−Ñ vtx ÞÑ t2u.
Now, since t1 is headed with a lambda abstraction, t1 can be converted to u1 by
only three rules: [Unsat], [Ded] and [Lam]. If [Unsat] applies, then t, u P O� and
T,EqpΓq ( K, which contradicts lemma assumptions. If [Ded] applies, then u con�
tains a subterm of the form a v with a algebraic, which contradicts rule assumption.
Then, u1 � λrx :u Us. w with T �Γ U and v�Γ,rx:uT sw and u−Ñwtx ÞÑ u2u. Since T is
marked with the unrestricted annotation in Γ, rx :u T s, we have EqpΓq � EqpΓ, rx :u T sq
and thus v�Γ w. We conclude vtx ÞÑ t2u�Γ wtx ÞÑ u2u by Lemma 5.13.

· [ElimW]. t � Elimpv : I r #«ws Ñ Qqt #«

f u, u � Elimpv 1 : I 1 r #«w 1s Ñ Q 1qt #«

f 1u, v � v 1
The proof is identical to the [ElimW] case of Lemma 4.22.

· If t�Γ u is obtained from [AppS] or [ElimS], then we take u 1 � u.

· [Prod]. t � @px :a Tq. v, u � @px :a Uq. w, T �Γ U, v�Γ,rx:aT sw
If reduction occurs on v, we conclude by application of the induction hypothesis.
If T −Ñ T 1, then by application of induction hypothesis, there exists a term U 1 s.t.
U−Ñ¤U 1 and T 1�Γ U 1. Since, EqpΓ, rx :a T sq � EqpΓ, rx :a T 1sq, then v�Γ,rx:aT 1sw.
Thus, by application of [Prod], @px :a T 1q. v�Γ @px :a U 1q. w.

· [Lam]. As for the [Prod] case.

· All other cases are done by direct application of induction hypothesis.

We can now state and prove completeness of weak conversion on strongly normalizing
terms. Note that we also require terms to have no over-applied algebraic subterms, which
is always the case for well-formed terms.

Lemma 5.15 Completeness

Let t, u P SN and Γ a typing environment. Suppose that t and u cannot reduce to a term
containing a subterm of the form a v with a having a non-empty algebraic cap.

If t�Γ u, then t
!−Ñ�Γ

!Ð−u.

Proof. By induction on the de�nition of t�Γ u:

· [Eq] - rx :r T s P Γ , T −Ñ� t 9� u with t, u P O�. If T,EqpΓq ( K, then t�Γ u by
[Unsat]. Otherwise, t � u P EqpΓq and t�Γ u by [Ded].

· [Ded]. tw1 � w2 | w1, w2 P O�, w1�Γ w2ulooooooooooooooooooooooomooooooooooooooooooooooon
E

( A�Γ
ptq � A�Γ

puq, t, u P O�

Let w1 � w2 P E. By application of the induction hypothesis and Lemma 5.12,
T,EqpΓq ( w1 � w2. Thus, T,EqpΓq ( E. Now,

· If T, E ( K, then T,EqpΓq ( K and we conclude by [Unsat].
· Otherwise, if t nor u has a non-empty algebraic cap, then A�Γ

ptq � y1 P Y,
A�Γ

puq � y2 P Y and T,EqpΓq ( y1 � y2. Since T,EqpΓq * K and no variables
of Y occurs in EqpΓq, then y1 � y2. Thus, we can use the induction hypothesis
on t�Γ u and obtained the desired result.

75



5. Deciding CCIC

· Otherwise, let t � Ctra1, . . . , ans and u � Curan�1, . . . , an�ks where Ct and
Cu are maximal algebraic caps. let #«y P Y s.t. if aiÓ�Γ ajÓ, then yi � yj.
Since ai�Γ aj implies aiÓ�Γ ajÓ and T,EqpΓq ( A�Γ

ptq � A�Γ
puq, we have

T,EqpΓq ( Ctry1, . . . , yns � Curyn�1, . . . , yn�ks. Now, from Lemma 5.5, we
have:

T,EqpΓq ( CtÓRry1, . . . , yns � CuÓRryn�1, . . . , yn�ks
Hence, tÓ�Γ uÓ.

· [AppW]. t � t1 t2, u � u1 u2, ti�Γ ui, t1, t2, u1, u2 PWT

If t, u P O� and T,EqpΓq ( K, then t�Γ u by [Unsat].
Otherwise, by application of the induction hypothesis, t1Ó�Γ u1Ó and t2Ó�Γ u2Ó.
Applying [App], t1Ó t2Ó�Γ u1Ó u2Ó. By multiple applications of Lemma 5.14 along
the reduction path t1Ó t2Ó !−Ñpt1 t2qÓ, there exists a term v s.t. pt1 t2qÓ�Γ v and
u−Ñ� v. Then, by multiple applications of Lemma 5.14 along the path v

!−Ñ vÓ, we
obtain pt1 t2qÓ�Γ pu1 u2qÓ.

· [Refl] - t � u. We conclude by Lemma 5.9.

· [Prod]. t � @px :a Tq. v, u � @px :a Uq. w, T �Γ U, v�Γ,rx:aT sw
By induction hypothesis, T �Γ U and t�Γ,rx:aT s u. Then @px :a Tq. v�Γ @px :a Uq. w
by [Prod].

· [Lam]. t � λrx :a T s. v, u � λrx :a Us. w, T �Γ U, v�Γ,rx:aT sw
If T,EqpΓq ( K and t, u P O�, we conclude by [Unsat]. Otherwise, we conclude by
application of the induction hypothesis as in the [Prod] case.

· [ElimW]. t � Elimpv : I r #«ws Ñ Qqt #«

f u, u � Elimpv 1 : I 1 r #«w 1s Ñ Q 1qt #«

f 1u,
vÐÑ� v 1, t, u PWT

By application of the induction hypothesis, we have IÓ�Γ I 1Ó, � � � ,
#«

f Ó�Γ
#«

f 1Ó. Thus,
t 1�Γ u 1 where

t 1 � ElimpvÓ : IÓ r #«wÓs Ñ QÓqt #«

f Óu
u 1 � Elimpv 1Ó : I 1Ó r #«w 1Ós Ñ Q 1Óqt #«

f 1Óu
As for the [AppW] case, we conclude by application of Lemma 5.14 on the reduction
paths t 1−Ñ� t 1Ó and u 1−Ñ� u 1Ó.

Decidability of conversion

Before terminating the proof, we are left to prove that �Γ is an equivalence relation on
well-formed terms.

Lemma 5.16

If T −Ñ� t 9� u with t, u P O� and T �Γ U, then U−Ñ� t 1 9� u 1 with t 1, u 1 P O�, T,EqpΓq (
tÓR � t 1ÓR and T,EqpΓq ( uÓR � u 1ÓR.

Proof. By correctness, t�Γ u. By product compatibility, U−Ñ� t1 9� u1 with t�Γ t1 and
u�Γ u1. By assumption on O�, there exist t 1, u 1 P O� s.t. t1−Ñ� t 1, u1−Ñ� u 1, t�Γ t 1 and
u�Γ u 1. By Lemma 5.15, t�Γ t 1 and u�Γ u 1. By Lemma 5.12, T,EqpΓq ( tÓR � t 1ÓR and
T,EqpΓq ( uÓR � u 1ÓR.
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Corollary 5.17

If Γ � Γ1, rx :a T s, Γ2 and ∆ � Γ1, rx :a T 1s, Γ2 with T �Γ1
T 1, then �Γ � �∆.

Proof. Straightforward induction, using T,EqpΓq ( Eqp∆q and T,Eqp∆q ( EqpΓq.
We now show that �Γ is an equivalence:

Lemma 5.18

i) If t�Γ u�Γ v, then u�Γ v. ii) If t�Γ u, then u�Γ t.

Proof. From now on, we write w1�S
Γ w2 for w1�Γ w1 or w2�Γ w2.

By induction on the de�nition of t�Γ u, we prove: i) u�Γ t, ii) if u�S
Γ v, then t�Γ v,

iii) if v�S
Γ t, then v�Γ t.

We only details interesting cases, i.e. i) u�Γ t for the rules [Prod] and [Lam], ii) if
u�Γ v, then t�Γ v for all the rules.

· [Unsat]. If u�Γ v, then v P O� by Lemma 5.10. Then, t�Γ v by [Unsat].

· [Ded]. t � C1rt1, . . . , tns, u � C2ru1, . . . , uks
We have T,EqpΓq ( C1rx1, . . . , xns � C2ry1, . . . , yks with i) xi � xj if ti�Γ tj,
ii) yi � yj if ui�Γ uj, and iii) xi � yj if ti�S

Γ uj.

· If u or v has a non-empty algebraic cap, then u�Γ v by [Ded], i.e.

v � C3rv1, . . . , vps
T,EqpΓq ( C2ry 11, . . . , y 1ks � C3rz1, . . . , zps

with y 11, . . . , y 1p, z1, . . . , zk fresh variables of Y and i) y 1i � y 1j if ui�Γ uj, ii) zi �
zj if vi�Γ vj, and iii) y 1i � zj if ui�S

Γ vj.

Let x 11, . . . , x 1n, z 11, . . . z 1p, y21 , . . . , y2k s.t.

x 1i � x 1j if ti�Γ tj z 1i � z 1j if vi�Γ vj

x 1i � y2j if ti�S
Γ uj y2i � z 1j if ui�S

Γ vj

Let θ : Y Ñ Y de�ned by

θ � t #               «

xi ÞÑ x 1iu Y t #                «

yi ÞÑ y2i u Y t #                «

y 1i ÞÑ y2i u Y t #              «

zi ÞÑ z 1iu
One can check that the de�nition is well-formed since the conditions equating
the variables of the co-domain are stronger that the one equating the variables
of the domain. Hence,

T,EqpΓq ( C1rx1, . . . , xnsθ � C2ry1, . . . , yksθ
T,EqpΓq ( C2ry 11, . . . , y 1ksθ � C2rz1, . . . , zpsθ

Since C2ry1, . . . , yksθ � C2ry 11, . . . , y 1ksθ,
T,EqpΓq ( C1rx 11, . . . , x 1ns � C3rz 11, . . . , z 1ps.

Now, if ti�S
Γ uj1

�S
Γ � � �ujl

�S
Γ vq, then by repeated application of the induction

hypothesis on ujl�1
�Γ ujl

, . . . , uj1
�S

Γ uj2
, we have ujl

�S
Γ vq, . . . , uj1

�S
Γ vq.

By a last application of the induction hypothesis, we obtain ti�S
Γ vq.

Thus, we could have de�ned x 11, . . . , x 1n, z 11, . . . z 1p as being fresh variables of Y

s.t.
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i) x 1i � x 1j if ti�Γ tj, ii) z 1i � z 1j if vi�Γ vj, and iii) x 1i � z 1j if ui�S
Γ vj.

Hence, t�Γ v by [Ded].
· Otherwise, u and v have empty-algebraic caps. Hence, T,EqpΓq ( Crx1, . . . , xns �

y with x1, . . . , xn, y s.t. i) xi � xj if ti�Γ tj, and ii) xi � y if ti�S
Γ u.

Let x 11, . . . , x 1n, y 1 s.t.: i) x 1i � x 1j if ti�Γ tj, and ii) x 1i � y 1 if ti�S
Γ v.

By application of the induction hypothesis, we have ti�S
Γ u implies ti�S

Γ v.
Thus, the mapping θ � txi ÞÑ x 1iui Y ty ÞÑ y 1u is a valid substitution and:

T,EqpΓq ( Crx1, . . . , xnsθ � yθ

Hence, t�Γ v by rule [Ded].

· [AppW]. t � t1 t2, u � u1 u2, ti�Γ ui and t1, t2, u1, u2 are weak
u�Γ v can be derived by [Ded], or [AppW], or [AppS] or [Unsat].

· [Ded]. We have v � Crv1, . . . , vks and T,EqpΓq ( y � Crz1, . . . , zks where
y, z1, . . . , zk are s.t. i) zi � zj if vi�Γ vj, and ii) y � zi if u�S

Γ vi.
Let y 1, z 11, . . . , z 1k s.t. i) z 1i � z 1j if vi�Γ vj, and ii) y 1 � z 1i if t�S

Γ vi.
By application of the induction hypothesis, we have u�S

Γ vi implies t�S
Γ vi.

Thus, the mapping θ � t #              «

zi ÞÑ z 1iu Y ty ÞÑ y 1u is a valid substitution and:

T,EqpΓq ( yθ � Crz1, . . . , znsθ
Hence, t�Γ v by rule [Ded].

· [AppW]. Straightforward application of the induction hypothesis.
· [AppS]. Straightforward since u � v.
· [Unsat]. Then, u P O� and so is t by Lemma 5.10, which contradicts [AppW]
assumptions.

· The cases for rules [Eq], [Symb], [Ind] [Constr], [ElimW], [Refl-?] are similar to
the [AppW] one.

· The cases [AppS] and [ElimS] are straightforward since t � u.

· [Lam]. The proof of transitivity is as for the rule [AppW]. We here detail the
proof of symmetry. We have t � λrx :a T s. v and u � λrx :a Us. w with T �Γ U and
v�Γ,rx:aT sw. By application of the induction hypothesis, U�Γ T and w�Γ,rx:aT s v.
By Lemma 5.17, w�Γ,rx:aUs v. Hence, u�Γ t by [Lam].

· [Prod]. As for the [Lam].

Corollary 5.19

The relation �Γ is symmetric and transitive on well-formed terms.

Proof. 1. Suppose that t�Γ u�Γ v, with t, u, v well-formed. Since a well formed term
(and any of its reduces by subject reduction) cannot contain a subterm of the form
a v with a algebraic, by Lemma 5.15, tÓ�Γ uÓ�Γ vÓ. By Lemma 5.18, tÓ�Γ vÓ, and
by Lemma 5.8, tÓ�Γ vÓ. Hence, by multiple application of the rule [Rw], t�Γ v.

2. Similar to the proof of transitivity.
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Theorem 5.1

Suppose that �Γ is decidable. The relation �Γ for Γ well-formed is decidable on well-formed
terms.

Proof. Let t and u be two well-formed terms under Γ .

Suppose �rst that t�Γ u. Since a well formed term (and any of its reduces by subject
reduction) cannot contain a subterm of the form a v with a algebraic (since algebraic terms
have non-functional types) and since −Ñ is strongly normalizing on well-formed terms, we
conclude by Lemma 5.15 that tÓ�Γ uÓ.

Conversely, if tÓ�Γ uÓ, then tÓ�Γ uÓ by Lemma 5.8. Using multiple applications of
[Rw] yield t�Γ u.

Corollary 5.20

Assume that Γ is a well-formed environment. Then, the relation �Γ is decidable on well-�
formed terms.

Proof. We prove that �Γ is decidable. A straightforward induction on t�Γ u for t, u well-�
formed shows that we only need to compute Eqp∆q for well-formed typing environments
∆. From the de�nition of Eqp∆q and strong normalization of well-formed terms, we have:

Eqp∆q � tt � u | rx :u T s P Γ, TÓ � pt 9� uqu
Rules of �Γ being structural, there is a simple top-down algorithm checking conversion:

assume that t and u are two terms well formed under a typing environment Γ . Then, we
decide if t�Γ u as explained bellow:

1. If t, u are not −Ñ-normal, we �rst normalize them. In the following, t and u denote
−Ñ-normal terms.

2. Then comes the top-down algorithm:

a) Assume that t and u are in O� and T,EqpΓq ( K. Then t and u are�Γ -convertible.
b) Assume that t and u have a non-empty algebraic cap, T,EqpΓq * K, t has k

aliens a1, . . . , ak at positions p1, . . . , pk and u has l aliens ak�1, . . . , ak�l at
positions pk�1, . . . , pk�n. For any alien ai, we assign a fresh variables ci s.t.
ci � cj if and only if ai is �Γ convertible to aj. Of course, checking ai�Γ aj

is done recursively, by doing all possible pairwise comparisons of the aliens.
Then, we obtain two pure algebraic terms t 1 � trp1 Ð c1, . . . , pk Ð cks and
u 1 � urpk�1 Ð ck�1, . . . , pk�l Ð ck�ls. t and u are �Γ -convertible if and only
if T,EqpΓq ( t 1 � u 1.

c) In all other cases, we check whether t and u have the same head symbol. If so,
we call the procedure recursively on the subterms. Of course, when traversing
a binder (with annotation r) binding a pure algebraic equation, it is added to
the set of extracted equations.

5.2 A syntax oriented typing judgment

We now start with the de�nition of the syntax oriented typing judgment $i.
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De�nition 5.21 Typing judgment $i

Typing judgment $i is de�ned by rules of Figures 5.3 and 5.4.

[Ax-1]$i � : �

Γ $i T : sT Γ, rx : T s $i U : sU
[Prod]

Γ $i @px : Tq. U : sU

Γ $i @px : Tq. U : s Γ, rx : T s $i u : U
[Lam]

Γ $i λrx : T s. u : @px : Tq. U
Γ $i V : s Γ $i t : T s P t�, �u x P Xs � dompΓq

[Weak]
Γ, rx : Vs $i t : T

x P dompΓq X Xsx Γ $i xΓ : sx
[Var]

Γ $i x : xΓ

Γ $i t : T Γ $i u : U 1 U�Γ U 1
TÓ � @px :u Uq. V
u is a weak term

if x P X�� , then u must be in O�
if x P X�� , then u must be in P�

[App]
Γ $i t u : Vtx ÞÑ uu

Figure 5.3: CCIC Typing Rules for $i (CC rules)

Proof of correctness and completeness are immediate.

Lemma 5.22 Correctness

If Γ $i t : T , then Γ $ t : T

Proof. Direct induction on Γ $i t : T , using a one-to-one mapping from rules of $i to rules
of $, a extra conversion being needed for the [App] case of $i.

Lemma 5.23 Completeness

If Γ $ t : T , then there exists T 1 s.t. i) Γ $i T 1 : s if T 1 � �, and ii) T �Γ T 1

Proof. If T � �, then we take T � T 1 � �. Otherwise, we do an induction on Γ $ t : T .
The only delicate case are the [App] and [Conv] ones.

· If Γ $ t : T is deduced from [App], then t � uv : Vtx ÞÑ uu with i) Γ $ t :

@px :u Uq. V , ii) if x P X�� , then v P O�, iii) v is weak, and iv) Γ $ u : U.

By induction hypothesis, there exists P and U 1 s.t. Γ $i v : P and Γ $i u : U 1, with
P�Γ @px :a Uq. V , U 1�Γ U.
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A � @p #      «

x : Tq. � $i A : � for all i, Γ $i Ci : �
for all i, Ci is a strictly positive constructor in X

I � IndpX : Aqt # «

Ciu is in βι−Ñ-normal form
[Ind]

Γ $i I : T

I � IndpX : Tqt # «

Ciu Γ $i I : T
[Constr]

Γ $i Irks : CktX ÞÑ Iu
A � @p #       «

x : Uq. � I � IndpX : Tqt # «

Cju Γ $i I : T $i Q : @p #       «

x : Uq. pI #«x q Ñ �
Ti � ∆�tI, X, Ci, Q, Irisu $i Ti : �

for all j, Γ $i aj : Ajt #           «x ÞÑ au Γ $i c : I #«a for all i, Γ $i fi : Ti [Elim-�]
Γ $i Elimpc : I r #«a s Ñ Qqt #«

f u : Q #«a c

A � @p #       «

x : Uq. � I � IndpX : Tqt # «

Cju is small

Q � @p #       «

x : Uqpy : I #«x q. K is in βι−Ñ-normal form

r #       «

x : Us, ry : I #«x s $i K : �
Ti � ∆�tI, X, Ci,

#«x y, K, Irisu $i Ti : �
for all j, Γ $i aj : Ajt #           «x ÞÑ au Γ $i c : I #«a for all i, Γ $i fi : Ti [Elim-�]

Γ $i Elimpc : I r #«a s Ñ Qqt #«

f u : Kt #     «x ÞÑ, y ÞÑ cu
Figure 5.4: CCIC Typing Rules for $i (Inductive Types)

By type structure compatibility, PÓ � @px :a UÓq. VÓ. Hence, U 1�Γ U�Γ UÓ. We
clearly have U and thus UÓ well-formed. From correctness of $i, we have Γ $ u : U 1
and hence, U 1 is also well-formed. (U 1 cannot be the sort � since Γ $ u : U and U is
well-formed) Hence, by transitivity of �Γ on well-formed terms, U 1�Γ UÓ.
We can then apply the [App] rule for $i, obtaining that Γ $i V 1tx ÞÑ uu, with
V 1tx ÞÑ uu�Γ Vtx ÞÑ uu from substitutivity lemma.

· If Γ $ t : T from [Conv], then Γ $ t : U with U�Γ T , and by application of the
induction hypothesis, there exists a term V s.t. Γ $i t : V with V �Γ U�Γ T . Since
U � � (U is well-formed from rule assumption), U � �. From correctness of $i, we
have Γ $ t : V and V � � since V �Γ U. Hence, V is well-formed too and we obtain
V �Γ T from transitivity of �Γ on well-formed terms.

5.3 Deciding more theories

We now explain the extension of our algorithm for arbitrary theories, using as example the
theory composed of the parametric lists and the Presburger arithmetic. The main di�culty
resides in the [Ded] rule, which algebraised all the convertible terms for all the possible
�rst-order sorts.

We start with the de�nition of O�. Taking here the set of pure algebraic terms (de�ned
as the set of terms having no aliens w.r.t. a �rst-order sort):
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O� � tt | Dσ P ΛE. FVpARptqpσqq X Y � Hu

is of no use since it is not stable by substitution. For example, x 9� 0 and nilA are in O�,
but not pnilAq 9� 0. What breaks here the stability by substitution is the possibility of
constructing ill-formed terms by well-typed substitution. Taking this into account yields
a de�nition of O� where instead of considering pure algebraic terms, we consider terms
having a non-empty algebraic cap and composed only of subterms having non-algebraic
caps. I.e. terms of the form:

t, u, . . . ::� x P X�� | 0 | S t | t 9�u | nilA | consA e l | appAl1 l2.

Note that restricting this de�nition to the case of Presburger arithmetic yield our pre�
vious notion of O�.

The set O� is now clearly stable by well-sorted substitutions and stable by reduction.
For the stability of O� w.r.t. conversion (property 7 of De�nition 4.1) to hold, we must
add the two following rewrite rules:

carA pconsBx lq R−Ñ x

cdrA pconsBx lq R−Ñ l

so that when having a conversion of the form x�Γ carA pconsBx lq with l not in O�, then
carA pconsBx lq−Ñ x.

For P�, we do not change our de�nition. Extended to the case of Presburger arithmetic
and parametric lists, we obtain the set P� composed of terms convertible to terms of the
form:

T, U, . . . ::� A P X�� | nat | list T

We now come to the decidability of the [Ded] and [Eq] rules. As for the Presburger
arithmetic, [Eq] is replaced by an a priori extraction of equations: this is the set EqpΓq.
We do not change its de�nition:

EqpΓq � tt1 9� t2 | rx :r T s P Γ, T −Ñ� t1 9� t2, t1, t2 P O�u

Note that now, EqpΓq is not composed of pure algebraic equations. Assume now that
Γ is a typing environment containing the two extractable equations:

consAxA lA 9� consB1 xB lB (E1)
consB2 xB lB 9� consC xC lC (E2)

Hence, xA�Γ xC. Indeed, assuming that σ � listpαq, then the algebraisation of (E1)
and (E2) w.r.t. σ yields the two equations

conspyA, zAq � conspyB, yBq and conspyB, zBq � conspyC, zCq
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with yA � A�Γ
pxAqpαq (resp. yB � A�Γ

pxBqpαq, yC � A�Γ
pxCqpαq). Hence yA � yC is

valid in the theory and xA�Γ xC by [Ded]. Note that the algebraisations of (E1) and (E2)
w.r.t. other �rst-order sorts if of no use: they will either give the same �rst-order equations
(up to a renaming), or worst, will simply yield weaker equations (e.g. when algebraizing
(E1) and (E2) w.r.t. the sort nat).

Hence, an equation of the form l 9� cons nat pnilAq l 1 will only be algebraised using the
two sorts listpαq and nat. The �rst one because the �rst element of the list is headed by
nilA, the second one because the type parameter of the list if nat.

Finally, t�Γ u for t or u having a non-algebraic cap is extended as follow. Let E be
the set of all the possible algebraisation of EqpΓq (which is now �nite), and let t 1 � u 1 be
a possible algebraisation of the equation t 9� u. Note that when choosing a possible alge�
braisation of t 9� u, we make here a non-deterministic choice. As for the Presburger case,
the algebraisation is now done by a pairwise comparison, w.r.t. �Γ , of all the encountered
aliens (i.e. the aliens of t and u as well as the aliens of all the terms of E). Then, we
conclude t�Γ u if T, E ( t 1 � u 1 holds.

However, it is easy to see that there are no non-deterministic choices when checking
conversion w.r.t. a well-formed environment and well-formed terms. Indeed, a non-deter�
ministic choice occurs when several arguments of a function symbol disagree. This is the
case of the ill-formed term cons nat pnilAq l where the type parameter indicates a list of
type nat but the �rst parameter is of type listA. Now, having well-formed terms should
lead to unique algebraisation. For example, cons nat 0 l will be algebraised as a list of type
nat where cons plistAq pnilBq l will be algebraised as a list of list, as long as A is convertible
to B, which is the case when the term is well-formed.
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chapter 6

Conclusion and perspectives

In this thesis, we have described how decision procedures for �rst-order theories over equal�
ity can be introduced into the conversion relation of the Calculus of Inductive Construc�
tions. We have shown that this extension does not break logical consistency of the calculus
as well as the decidability of type-checking.

To this end, we have introduced strong syntactical restrictions which limit the bene�t
of such an extension. We review here them all and give suggestions for their removal.

We also point out several research directions.

6.1 Stability of extractable equations

Equations in CCIC are introduced via lambda abstractions and dependent products. This
is the case in the term λrp :r x 9� ys. t where the typing of the subterm t may make use
of the equation x 9� y. As have seen however, this way of extracting equations does not
behave well with β−Ñ-reduction, because some equality predicates (the type x 9� y of p in
our example) are erased.

To this end, two annotations were introduced indicating which equations can be used
by conversion and which cannot: in λrp :a x 9� ys. t, the equation x 9� y can be used only if
p :a x 9� y is annotated with the restricted annotation, that is a � r. Moreover, application
of r-annotated λ-abstractions are forbidden, therefore eliminating the problem of erasing
equality predicates.

The idea is then to make use of de�nitions, as available in the Coq system. A de�nition
is a triple x : T :� t where x is a variable, T the type associated to x and t a term of type
T . De�nitions are introduced using a new typing rule

Γ $ t : T

Γ, rx : T :� ts $ x : T

There are two kinds of de�nitions in Coq, called respectively global and opaque.

To a global de�nition x : T :� t is associated a reduction relation δ,Γ−−Ñ such that x
δ,Γ−−Ñ t

if x : T :� t appears in Γ - we say that x has been unfolded. It is known that adding global
de�nitions is harmless (the case of local de�nitions is harder and studied in [40]).

On the other hand, opaque de�nitions cannot be unfolded, that is, there are no rules as�
sociated to them. They conform to the mathematical tradition of proof irrelevance, in which
proofs of a logical propositions do not matter. Hence, although the term pλrp :r x 9� ys. tqq
is not well-sorted in the present version of CCIC, it could be expressed as the application
u q where u is an opaque de�nition for λrp :r x 9� ys. t, of type @pp :r x 9� yq. T .

An alternative to opaque de�nition to overcome this problem would be the use of term
annotations keeping track of all equations used in a conversion: terms would be annotated
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with a sequence of pairs pe, tq where e is an extractable equation and t a term of type e in
the current environment. β−Ñ-reduction would then be modi�ed as follows:

pλrx :r T s. uq v β−Ñutx ÞÑ vu ` pT, vq

where p` pT, vq is the term p whose annotation is augmented with the pair pT, vq.
Conversion could then be modi�ed in order to use the equations present in annotated

terms, hence ensuring the stability of extractable equation w.r.t. β−Ñ-reduction. In this
modi�ed calculus, the restricted annotation would no more be used to restrict the applica�
tion of terms, but as a hint to the system to select which extractable equations it should
use in a given conversion goal.

6.2 Using a typed extraction

In order to ensure stability of extractable equations by substitution, and to make type�
-checking decidable, strong syntactical restrictions have been made: a set X�� of extractable
variables has been introduced and only those substitutions mapping extractable variables
to extractable terms are allowed.

Instead, we could have de�ned a notion of extractable terms w.r.t. the types of the
terms - hence, obtaining a typed conversion. For example, one could decide to extract from
an environment Γ those equations only which related terms of type nat in the considered
environment.

In such a calculus, stability of extractable equations w.r.t. well-formed substitutions
becomes a special case of substitutivity: the set of extractable variables as well as the
syntactical restrictions on substitutions become useless. Further, we think that this calculus
enjoys a decidable type-checking problem as well. To substantiate this belief, let us remark
that in the current version of CCIC, O� is restricted to be the set of pure algebraic terms
so that the equation

λrx : nats. f x 9� λrx : nats. f px 9� 2q

cannot be extracted. Indeed, we saw that allowing such an equation introduces an encoding
of universally quanti�ed �rst-order formulas into the deductional part of our conversion,
resulting in the undecidability of type-checking. Restricting extractable equations to the
ones relating terms of type nat also forbids the use of such equations as long as product
compatibility holds.

6.3 Weak terms

Weak terms were introduced in order to limit the interactions between the deductive part
of conversion and the recursors. We saw that allowing conversion under strong recursors
may yield the convertibility of A and A Ñ A under an inconsistent environment. On the
other hand, allowing conversion under weak recursors is important for practice, allowing a
kind of non-structural elimination. For example, one could expect the following reduction
to hold, as long as x is convertible to 0:
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Elimpx : nat rεs Ñ Qqtrf0, fSsu ι−Ñ f0.

Because of the strong dependency between extractable and convertible terms - as exem�
pli�ed by the requirement that extractable terms must be stable by conversion -, we know
that allowing conversions below weak recursors will require extracting equations containing
weak recursors that cannot be eliminated by ι−Ñ-reduction alone. Indeed, any term of the
form Elimpx : I r #«us Ñ Qqt #«

f u, with f0 algebraic, must become extractable, since

Elimpx : I r #«us Ñ Qqt #«

f u�Γ Elimp0 : I r #«us Ñ Qqt #«

f u ι−Ñ f0

in any typing environment s.t. x�Γ 0.

A main reason why type-checking of CCIC is decidable is the strict separation be�
tween −Ñ-conversion and the deductive part of the embedded �rst-order theory. We could
however imagine an approach where variables could appear under weak recursors of ex�
tractable equations as long as they do not appear in subsequent equations. This would
allow extracting the equation

y � Elimpx : I r #«us Ñ Qqt #«

f u (�)
as long as no extractable equation involving x appears in the rest of the environment.

In this case, there is no strict separation anymore between conversion and −Ñ-conversion,
since the presence of the extractable equation x � 0 occurring before p�q in the typing envi�
ronment would lead to the conversion y�Γ f0. We hope nevertheless to �nd an incremental
decision procedure, using the underlying order over variables induced by the suggested re�
striction.

6.4 Extending CCIC to CAC

One important motivation of CAC was the introduction of type level rewriting in the
conversion rule, which permits, for example, the introduction of decision procedures for
�rst order tautologies.

One can think of a calculus merging the embedding of �rst-order theories over equations
as well as type level rewriting (besides the already existing strong ι−Ñ-reduction).

We believe that this could be done by extending the notion of weak terms so as to take
into account the new interactions between type level rewriting and the embedded theory.

6.5 Embedding a more powerful logic

Our choice of embeddable theories have some drawbacks. For example, it is not possible
to use the �rst-order theory of lists for the CCIC type of dependent lists, the mapping
between �rst-order signatures and CCIC symbols being strict, and thus not allowing the
use of extra parameters (here the length of the list) in the type of mapped function symbols.

The user is then facing a choice: to use the non-dependent type of lists, and bene�t
from the �rst-order theory of lists in conversions, or to use the dependent type of lists
without having the �rst-order theory of lists available in conversions, but having instead
the theory of linear arithmetic available for converting the dependent arguments.
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6. Conclusion and perspectives

Several directions can be investigated to overcome this problem and have the bene�t
of both in the case of dependent lists. A �rst is to allow embedding the more expressive
(parametric version of) membership equational logic [7] in CCIC along the lines of the
simpler embedding described here. A second is to consider the case of dependent algebras
instead of the simpler parametric algebras. This is a more di�cult question, which requires
using our generalized notion of conversion in the main argument of an elimination, but
would further help us addressing other weaknesses of Coq.
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